

NSTITUTION

sョly४yglר

NOI $\cap \perp I \perp S N I-$ NVINOSHLIWS

 N甘INOSHLIWS
 LIBRARIES
 NOILOLILSNI


$\stackrel{0}{5}$
$\frac{5}{5}$
$\frac{n}{2}$
NSTITUTI


| 2 |
| :--- |
| 2 |
| 0 |
| $\sum_{n}^{1}$ |
| 1 |

INSTITUTION NOILOLILSNI

Sヨ1女母y817

N甘INOSHLIWS


LIBRARIES

 S3I甘甘y 17 LIBRARIES

$=$
2
$=1$
$=$
$=1$
0
2
$=$
$E$
$E$
$E$ S3Iy甘y817


INSTITUTION




N甘INOSHLIWS＂

SヨI甘甘甘8I7＿LIBRARIES SMITHSONIAN


INSTITUTION

 LIBRARIES

## Sヨاष甘女धा7

## INSTITUTION

$n$
$n$
$n$
$n$
$n$



INSTITUTION



| 2 |
| :--- |
| 2 |
| 0 |
| 0 |



2
$\frac{2}{1}$
$\frac{1}{2}$
$\frac{1}{2}$
$\geqq$


Sヨ｜

institution


INSTITUTION NOILNLILSNI



A QUANTITATIVE AND STATISTICAL STUDY OF THE PLANKTON OF THE SAN JOAQUIN RIVER AND ITS TRIBUTARIES IN AND NEAR STOCKTON, CALIFORNIA, IN 1913

BY
WINFRED EMORY ALLEN

Vol. 22, pp. 1-292
1 no l

## UNIVERSITY OF OALIFORNIA PUBLIOATIONS

Note.-The University of California Publications are offered in exchange for the pubucations of learned societies and institutions, universities, and Hbraries. Complete lists of all the publications of the University will be sent upon request. For sample copies, lists of publications or other information, address the MANAGER OF THE UNIVERSITY PRESS, BERKELEY, CALIFORNIA, U. S. A. All matter sent in exchange should be addressed to THE EXCHANGE DEPARTMENT, UNIVERSITY LIBRARY, BERKELEY, CALIFORNLA, U.S. A.

WILLIAM WESLEY \& SONS, LONDON
Agent for the series in American Archaeology and Ethnology, Botany, Geology, Physiology, and Zoology.

> ZOOLOGY.-W, E. Ritter and C. A. Kofoid, Editors. Price per volume, $\$ 3.50$; beginning with vol, 11, $\$ 5.00$.
> This series contains the contributions from the Department of Zoology, from the Marine Laboratory of the Scripps Institution for Biological Research, at La Jolla, California, and from the California Museum of Vertebrate Zoology in Berkeley.

## Cited as Univ, Calif. Publ. Zool.

Volume 1, 1902-1905, 317 pages, with 28 plates ..... $\$ 3.50$
Volume 2, 1904-1906, xvii +382 pages, with 19 plates ..... $\$ 3.50$
Volume 3, 1906-1907, 383 pages, with 23 plates ..... $\$ 3.50$
Volume 4, 1907-1908, 400 pages, with 24 plates ..... $\$ 3.50$
Volume 5, 1908-1910, 440 pages, with 34 plates ..... $\$ 3.50$
Volume 6, 1908-1911, 478 pages, with 48 plates ..... $\$ 3.50$
Volume 7, 1910-1912, 446 pages, with 12 plates ..... $\$ 3.50$
Volume 8, 1911, 357 pages, with 25 plates ..... $\$ 3.50$
Volume 9, 1911-1912, 365 pages, with 24 plates ..... $\$ 3.50$
Volume 10, 1912-1913, 417 pages, with 10 plates ..... $\$ 3.50$
Volume 11, 1912-1914, 538 pages, with 26 plates ..... $\$ 5.00$
Volume 12, 1913-1916, 558 pages, with 22 plates ..... $\$ 5.00$
Volume 13, 1914-1916, 529 pages, with 39 plates ..... $\$ 5.00$
Volume 14, 1914-1918, 452 pages, with 60 plates ..... $\$ 5.00$
Volume 15. 1915-1916, 360 pages, with 38 plates ..... $\$ 5.00$
Volume 16, 1915-1917, 522 pages, with 46 plates ..... $\$ 5.00$
Volume 17, 1916-1918, 545 pages, with 24 plates ..... $\$ 5.00$
Vol. 17. 1. Diagnosis of Seven New Mammals from East-Central California, by Joseph Grinnell and Tracy I. Storer. Pp. 1-8.
2. A New Bat of the Genus Myotis from the High Sierra Nevada of Call- fornia, by Hilda Wood Grinnell. Pp. 9-10. Nos. 1 and 2 in one cover. August, 1916 ..... 10
S. Spelerpes platycephalus, a New Alpine Salamander from the Yosemite National Park, California, by Charles Lewis Camp. Pp. 11-14. Septem- ber, 1916 ..... 05
4. A New Spermophile from the San Jeaquin Valley, California, with Notes on Ammospermophilus nelsoni nelsoni Merriam, by Walter P. Taylor. Pp. 15-20, 1 figure in text. October, 1916 ..... 05
5. Habits and Food of the Roadrunner in California, by Harold C. Bryant. Pp. 21-58, plates 1-4, 2 figures in text. October, 1916 .....  35
6. Description of Bufo canorus, a New Toad from the Yosemite National Park, by Charles Lewis Camp. Pp. 59-62, 4 figures in text. November, 1916 ..... 05
7. The Subspecies of Sceloporus occidentalis, with Description of a New Form from the Sierra Nevada and Systematic Notes on Other California Lizards, by Charles Lewis Camp. Pp. 63-74. December, 1916 .....  10
8. Osteological Relationships of Three Species of Beavers, by F. Harvey Holden. Pp. 75-114, plates 5-12, 18 text figures. March, 1917 ..... 40
8. Notes on the Systematic Status of the Toads and Frogs of California, by Charles Lewis Camp. Pp. 115-125, 3 text figures. February, 1917 ..... 10
10. A Distributional List of the Amphibians and Beptiles of California, by Joseph Grinnell and Charles Lewis Camp. Pp. 127-208, 14 figures in text. Juily, 1917 ..... 85

## Invert Zool.



A QUANTITATIVE AND STATISTICAL STUDY OF THE PLANKTON OF THE SAN JOAQUIN RIVER AND ITS TRIBUTARIES IN AND NEAR STOCKTON, CALIFORNIA, IN 1913

## University of California Publications in Zoology <br> Vol. 22, No. 1, pp. 1-292, pls. 1-12, 1 text figure <br> Issued June 25, 1920

CONTENTS
PAGE
Introduction ..... 4
Acknowledgments ..... 5
General features of San Joaquin River basin ..... 6
General characteristics ..... 6
Location ..... 7
Similar geographic localities ..... 7
Geographic areas of middle California ..... 7
Size and form of San Joaquin drainage area ..... 7
Forest areas ..... 8
Rainfall ..... 8
Important tributaries of San Joaquin River ..... 8
The Kings River ..... 8
The Merced River ..... 9
The Tuolumne River ..... 9
The Stanislaus River. ..... 10
The Calaveras River ..... 10
Turbidity ..... 10
River conditions near Stockton ..... 11
Relation of Stockton to tide-water. ..... 11
River gradients above Stockton ..... 11
Opportunities for plankton development ..... 11
Effect of the mountains ..... 12
Temperature ..... 12
Light ..... 13
Air currents ..... 13
Chemical conditions not studied ..... 14
Tide ..... 14
Aquatic and marginal vegetation ..... 14
The Collecting stations ..... 15
Station I ..... 16
Station II ..... 16
Station III ..... 16
River currents and depths ..... 16
Comparison of stations ..... 16
Methods of securing data ..... 18
Time of collecting ..... 18
The form of net ..... 19
The amount of haul ..... 20
Depth and rate of haul ..... 20
Records ..... 20
Preservation of material ..... 21
Tests of salinity ..... 21
Measurement of volume ..... 22
The enumeration ..... 22
Apparatus ..... 22
Procedure ..... 23
Standard concentration ..... 23
Method of filling Sedgwick-Rafter cell ..... 23
PAGE
Making and recording the count. ..... 23
Computation and tabulation ..... 24
Identification of forms ..... 24
Estimation of silt ..... 25
The clogging of the net ..... 26
Volumetric data ..... 26
Organisms found in San Joaquin plankton. ..... 27
Definitions ..... 27
Component forms ..... 27
The principal types of fresh water plankton. ..... 28
Major groups of plankton ..... 29
Algae ..... 29
Zooplankton ..... 29
Totals of major groups ..... 30
Comparison with similar groups of Illinois forms ..... 32
Detailed discussion of statistics. ..... 33
Algae ..... 34
Bacteriaceae ..... 34
Schizophyceae ..... 34
Discussion of species ..... 35
Chlorophyceae ..... 38
Discussion of species ..... 40
Bacillariaceae ..... 46
Discussion of species. ..... 49
Conjugatae ..... 62
Discussion of species. ..... 63
Chlorophyll bearing organisms and Mastigophora ..... 64
Protozoa ..... 66
Mastigophora ..... 67
Discussion of species ..... 68
Rhizopoda ..... 75
Discussion of species ..... 75
Heliozoa ..... 78
Discussion of species ..... 78
Ciliata ..... 79
Discussion of species ..... 80
Suctoria, ..... 85
Rotifera ..... 86
Rhizota ..... 87
Discussion of species. ..... 87
Bdelloida ..... 88
Discussion of species. ..... 88
Ploima. ..... 90
Discussion of species. ..... 91
Scirtopoda ..... 106
Gastrotricha ..... 106
Entomostraca ..... 106
Cladocera ..... 107
Discussion of genera ..... 108
Ostracoda ..... 108
Copepoda ..... 109
Discussion of genera
page ..... 109
Malacostraca.
Miscellaneous ..... 111
The daily series. ..... 114
Summary ..... 116
The hourly series ..... 117
Conclusion ..... 124
Addendum ..... 125
Tables 1 to 8 ..... 126
Literature cited. ..... 291
Plates ..... 293

## INTRODUCTION

The biology of fresh water is an attractive field for investigation both from the standpoint of ecology and from that of its practical bearings on the problems of fisheries. The fresh water plankton with its varying components forms a biological complex, or association of both plant and animal forms which have an intimate relation not only each to the others, but also to the varying factors of their environment, such as light, temperature, organic and inorganic substances in solution, and to seasonal change attendant upon the run-off from the watershed.

The survey of San Francisco Bay undertaken by the United States Bureau of Fisheries in 1912-13 in coöperation with the University of California afforded an opportunity to initiate a survey of the plankton of the San Joaquin River, one of the principal tributaries of that bay. My position at Stockton as teacher of biology in the High School afforded some laboratory facilities and also a location near the head of tidewater where the ultimate contributions of the stream of the bay could be examined and where a varicty of conditions were present, including both the main channel, and backwaters with varying rates of flow, as well as a canal much enriched by sewage.

The author is conscious not only of the serious and baffling difficulties that attend such an attempt at a continuous piece of work but also of the errors which inevitably creep in, especially in the initial stages of such an enterprise. These errors are, however, in the main, distributed throughout the data and do not necessarily invalidate our conclusions. Such errors as occur in taxonomy are due to lack of the specialist's knowledge of nomenclature and synonymy, and of his critical skill in the finer distinctions of species and subspecies. The species as I have recorded them are at least groups of recognizably similar organisms. The largest source of significant error in this ecological study is the not improbable inclusion in such groups, of small numbers of less abundant or rare species of closely similar form.

## ACKNOWLEDGMENTS

This investigation owes its origin to the committee in charge of the survey of San Francisco Bay, of which Professor Charles A. Kofoid, is chairman, and was undertaken under the auspices of the United States Bureau of Fisheries, to which I am indebted for equipment of nets and supplies.

Both Dr. F. B. Sumuer and Waldo K. Schmitt, successive naturalists of the United States Steamship "Albatross," have lent their encouragement to my efforts and have also titrated some water samples. For literature, or assistance in securing it, sincerest thanks are hereby given to Professor S. A. Forbes, of the Illinois State Laboratory of Natural History, to the Michigan State Fish Commission, to Professor H. W. Conn of Connecticut, to Professor H. B. Ward of the University of Illinois, to Dr. Vincente Izquierdo of Santiago, Chile, to the United States Geological Survey, to the Chief of Engineers of the United States War Department, to Professor F. E. Clements of the University of Minnesota, to Dr. William F. Allen of the University of Minnesota, and to the Library of the University of Minnesota, to Dr. C. Dwight Marsh of the United States Bureau of Plant Industry, to Mr. H. K. Harring of the United States Bureau of Standards, to Professor C. J. Elmore, Grand Island, Nebraska, to Dr. B. W. Evermann of the Califormia Academy of Science, to Professor E. A. Birge of the University of Wisconsin, and to Professor C. A. Kofoid of the University of California.

Dr. Marsh and Mr. Harring have also very kindly made some identifications of copepods and rotifers. Very material aid has been given by Mr. E. P. Higby of the California State Hospital at Stockton, who has given full use of his weather records; and to Mr. Lawrence Backes of Stockton for photographic views of the stations. Above all it should be said that whatever value there may be in the present paper is largely dependent upon the advice, encouragement and assistance of Professor C. A. Kofoid; and upon the painstaking care with which Mrs. W. E. Allen has computed, recorded and preserved most of the data as they came to hand. Inasmuch as Professor Kofoid's report on the Illinois River has been in constant use for reference and guidance it has been used liberally for suggestive outline of discussion. Many of its generalizations and conclusions are assumed
as applying here, but some points will receive special notice for the purpose of comparing conditions there and here when the data will permit.*

## GENERAL FEATURES OF TIIE SAN JOAQUIN RIVER BASIN

The writer has not yet had sufficient opportunity to collect detailed information on this topic. The California report by Clapp and Henshaw (1909), to the United States Geological Survey, upon the surface water supply gives an excellent discussion of the most important features and it forms the main basis for this present brief discussion.

## GENERAL CHARACTERISTICS

Two points of difference from the typical river basin in its latitude are interesting characteristics of the San Joaquin. First, its drainage is northwestward away from the equator. Second, it consists throughout of a rather deep trough with comparatively abrupt sides and unusually flat bottom, the level of which is repeatedly broken by the deltas of tributaries entering in most cases very nearly at right angles. The land surface.varies markedly in character with the differences in these tributaries, but with a constant tendency to the formation of swamps and marshes at the lower points through the deposit of the lighter organic matter not left in the tributary deltas. This condition is very prominent from some distance above Stockton on to the mouth of the river. Stockton itself is on the eastern border of an area of swampy peat land through which the course of the river can be maintained only by extensive systems of levees. Even then great stretches of the lower levels are inundated each year, and Stockton has the perennial problem of escaping from floods.

It is quite evident from the foregoing that the lower valley as a whole is fertile, with a deep soil of good texture. The lower part is fairly well settled but there is as yet no adequate control of the water supply and an extensive area is practically undeveloped. The few cities are small and far apart. None of them is so situated as to cause any appreciable contamination of the river water near Stockton. The whole basin is under the direct influence of the "dry" and "wet" seasons. With its low levels, this results in sluggish, almost stagnant flow of the main river during the first, and a brisk flow during the run-off of flood waters incident to the second.

[^0]
## Location

## SIMILAR GEOGRAPHIC LOCALITIES

The San Joaquin River lies in about the same latitude as the larger part of the Mediterranean Sea, the headwaters of the Tigris and Euphrates, and a considerable portion of the Hoang Ho, both of headwaters and lower reaches. It extends northwest from about $35^{\circ}$ to $38^{\circ}$ N . latitude between $118^{\circ}$ and $122^{\circ} \mathrm{W}$. longitude. The main basin lies on the isotherm of $60^{\circ} \mathrm{F}$. Similar average temperature conditions are found in the Potomac region of the United States, along the northern border of the Mediterranean Sea and in north central China near the coast. Stockton lies in latitude $37^{\circ} 57^{\prime} 30^{\prime \prime} \mathrm{N}$., longitude $121^{\circ} 17^{\prime} 30^{\prime \prime}$ W. and on isotherm $60^{\circ}\left(15.5^{\circ} \mathrm{C}\right)$. The altitude at the steamer landing in mid-city is sixteen feet, according to Mr. A. L. Miner, assistant city engineer.

## GEOGRAPHIC AREAS OF MIDDLE CALIFORNIA

The part of California containing the San Joaquin system is a region of great diversity, but it is quite distinctly composed of three parallel strips of country. There is the Coast Range at or near the western border of the state, the central plain known as the San Joaquin Valley, and the Sierra on the eastern border. The part with which we are immediately concerned is comprised in the eastern slopes of the Coast Range, 4,000 square miles, the valley, 12,700 square miles, and the western slopes of the Sierra, 16,000 square miles. The range of altitude is from near sea level in the lower valley through some hundreds and thousands of feet in the Coast Range and the Sierra foothills up to over 14,000 feet in the High Sierra. The gradient is slight lengthwise of the valley, very steep, commonly twenty to forty feet to a mile, to the Coast Range, and generally moderate to the Sierra, averaging nearly five feet to a mile.

## SIZE AND FORM OF SAN JOAQUIN DRAINAGE AREA

The total length of the San Joaquin River is near 350 miles, 125 miles from the High Sierra to the main valley and 225 miles thence to the outlet into Suisun bay, 50 miles from San Francisco. All the important tributaries are from the Sierra slopes, which consist mainly of granites and metamorphic rocks, sedimentary and igneous. The slopes of the other side are mostly sandstone, shale and conglomerates.

The differences in gradient partly cause an asymmetery of the valley floor which is made prominent by the differences of the streams on the two sides. Since the streams on the east side are larger, they have built larger deltas with a wider spread as they cross the lighter, longer slopes. Deltas from the two sides have united across the valley, cutting off the Tulare basin. For this reason water from the large streams at the head of the valley does not reach the San Joaquin River, except in years of unusual rainfall. Thus about one-fourth of the main basin is practically separated from the rest and this southern area rarely has any influence on northern conditions.

## FOREST AREAS

There is no important forest cover in the main valley. Some of the higher ground in the Coast Range bears shrubbery and light timber. The Sierra foothills are usually well covered with grass, brush and scattering trees. Above the foothills is heavy timber to 10,000 feet, above which none occurs. The famous Sequoias occur in this region. National forests occupy about 65 per cent of the Sierra slopes.

## RAINFALL

The annual rainfall varies from five to twenty inches from south to north along the valley. The west slope has light rainfall with similar increase northwest. The Sierra slopes show heavier precipitation according to altitude, but with similar increase to northward.

## IMPORTANT TRIBUTARIES OF SAN JOAQUIN DRAINAGE AREA

In addition to the foregoing consideration of the main river and the basin as a whole it is worth while to include some points concerning three or four of the principal tributaries which may have some recognizable influence at Stockton.

## The Kings River

The King's River is the most southerly tributary that has any ordinary connection with the San Joaquin. Its relation is rather peculiar since its delta forms a large part of the barrier cutting off the Tulare Lake Basin from the main valley. This delta has been built in such a way as to carry the entire flow of the Kings River to the San Joaquin during low water, but most of the flood waters go to Tulare Lake. The altitude near the entrance of the San Joaquin is about 175 feet according to Clapp and Henshaw (1911).

King's River basin has fifty miles of Sierra divide as its eastern border, with some altitudes above 14,000 feet. Its length is about sixty miles in the mountains, with an area approximating 1,840 square miles. The river source consists of many little glacial lakes at the edge of glaciers and perpetual snow. The length of the river to the mouth of its cañon is nearly 85 miles.

The basin as a whole is very rough and irregular, the head especially including the most rugged region in the Sierra. Nearly all the tributaries run through glacial cañons cut through solid granite. Several of the latter are 2,000 or 3,000 feet deep. The whole formation is granitic.

The larger part of the basin is well forested up to 10,000 feet Most of it is in the National Forest Reserve. Precipitation ranges from eight to ten inches in the San Joaquin Valley to fifty or sixty inches in the high altitudes. Most of the precipitation of this basin is in the form of snow.

## The Merced River

The Merced River drains an area sixty-five miles in length from Mount Lyell on the Sierra divide ( 13,090 feet) down to the San Joaquin River. This includes a total of 1,200 square miles. The river itself is about 135 miles in length, with four or five tributaries of some importance, including the famous Yosemite Creek. Though the Yosemite Valley is the most remarkable, there are other parts of the basin very rough and broken, with many waterfalls and glaciated regions. About 850 square miles of the upper part of the basin is included in national forests, though there is little growth above 12,000 feet. The annual precipitation in the San Joaquin Valley near the mouth of the Merced sixty or seventy miles from Stockton, is ten to fifteen inches and it ranges through twenty-five inches in the foothills to about sixty inches near the divide. Even in the mountains this precipitation occurs mainly in the rainy season, mostly as snow, the melting of which is most rapid in May and June.

The Tuolumne River
The Tuolumne River traverses a basin 105 miles long, two-thirds of which is in the mountains. The mountainous portion is about 1,680 square miles in area. This river is 150 miles long, about 80 miles of which is through a deep cañon cut down into solid granite. This cañon drains numerons glacial lakes at the Sierra divide, and the upland meadows slightly lower down. The basin as a whole is
very rough, with bare, glaciated rocks of granite in the upper parts. Altitudes vary from 300 feet in the foothills to 12,000 or 13,000 feet at the divide. Upper parts have no forests, but there is a median belt heavily forested with coniferous trees. The lower region has only grass and brush, usually. There is about 1,200 square miles of National Forest in the mountains. Precipitation is about ten inches per annum in the region near the junction with the San Joaquin, 25 or 30 miles from Stockton. It ranges to sixty inches at high altitudes where most is snow, the greater part of which disappears in spring.

The Stanislaus River
The Stanislaus River has a long, narrow basin, about 75 miles in length and an area of somewhat over 950 square miles. The length of the river is about 120 miles, 80 miles in the mountains. The source is mainly in glacial lakes about the divide and the mouth is about 20 miles above Stockton. The general character of the basin is quite similar to that of the Tuolumne.

## The Calateras River

The Calaveras River flows near Stockton and empties six or seven miles below the city. It has some influence in flood season on account of the overflow, but in this case its influence would be much the same as that of those already mentioned since the flood waters of all are essentially similar. Furthermore, the flood waters of the Calaveras are largely kept from the San Joaquin above Stockton by an enormous levee forming the so-called "diverting canal."

## TURBIDITY

The turbidity of the water of the San Joaquin in the vicinity of Stockton at all times of the year is very characteristic. In the river channel this is obviously due to fine silt during the flood season but the plankton is the principal source in the sluggish water of late fall. Water in some of the sloughs sometimes becomes clear enough to reveal objects at a depth of six or eight feet.

## RIVER CONDITIONS NEAR STOCKTON

## Relation of Stockton to Tidewater

In this connection it is doubtless worth while to reconsider the points already mentioned which have most obvious relation to Stockton conditions. First, we may emphasize the fact of the low gradient. Since the steamer landing at Stockton is only sixteen feet above sea level the water level must be only about eight feet above sea level for a considerable part of each year. Stockton is about one hundred miles from the Golden Gate, so the gradient to the sea is only about 0.08 foot to the mile. This must account in large measure for the range of the tide, which sometimes shows a difference of something over three feet between high and low water in Stockton Channel.

## River Gridient Above Stockton -

In the other direction, we find a rise to one hundred and seventyfive feet above sea level at the mouth of Kings River, probably about two hundred miles above Stockton. Assuming this distance as an approximation, we find the gradient above Stockton to average a little more than 0.8 foot to the mile. As might be expected from such a low gradient, there is a great deal of swamp land throughout the distance. Formerly there was annual flooding of this low area during the wet season, with a good deal of deposit of silt and stirring up of organic matter, much of which came from the death of plants and animals in the preceding dry season. The definite limitation and constant alternation of dry and wet seasons, together with the proximity of the mountains, must have had a very marked influence on plankton production in the low lands under such conditions.

## OPPORTUNITIES FOR PLANKTON DEVELOPMENT

Recently more and more of these low lands have been reclaimed and protected by levees. The run-off is thus materially hastened in flood season and there is much less opportunity for plankton development than Kofoid has found for the Illinois River. There is also the further consideration that most cases in which impounding of the water occurs, show rapid evaporation after river subsidence, with great destruction of organisms before they have opportunity to get into the river channel. Unfortunately, definite information as to areas still open and details of their seasonal history are not available.

At any rate, it seems that one explanation of the apparent numerical deficiency in plankton production as compared with the Illinois may be that there is less impounded water ready to develop and discharge plankton, and that there are no frequently occurring minor floods to wash out these areas. It should be stated, however, that 1913 was an unusually dry year; hence the flood conditions were not typical for this region.

## Effect of the Mountains

The mountains probably have just as much influence on plankton in the river as does the character of the bottom lands. The Coast Range has no very extensive influence. In the main it is rather against plankton production. The slopes are steep and the run-off torrential during the heavy rains. There are not many natural reservoirs such as either swamps or lakes, and the surface water is soon lost. Consequently very little plankton is contributed to the San Joaquin from these western tributaries. In fact most of them are dry through a large part of the year and the water they contribute in time of flood is so full of silt as to hamper rather than hinder plankton production in the main river.

## Temperature

The Sierra Nevada seems to affect production in two rather important ways. First, temperature in their run-off is rather low for either quantity or variety of plankton in the higher areas during most of the year. On the other hand, there are few places for impounding the water in the lower areas and the streams move too rapidly for much development even on the comparatively low gradients of the foothills, Hence there is no very great contribution of plankton from any tributary. Second, the snows, glaciers, forests, lakes and swamps of the higher region all together constitute an enormous series of reservoirs which hold much of the water in check, not only greatly prolonging the flood season, but giving a remarkably even distribution of flood water over a period of weeks or even months. The effect of this is evidently twofold, inasmuch as the volume of water hastens the flow of the river and so may retard production, while at the same time it keeps many of the sloughs and swamps sufficiently filled to maintain a rapid plankton output. This period of flood from the Sierra often overlaps the period of floods in the valley due to the winter rains. In other cases it follows or is continuous with the same. Hence there are a few rises and subsidences of the floods, almost every year, some of which are effective in clearing out the sloughs and giving
basis for a new plankton crop. The combined flood periods usually extend from late December to about July, after which there is gradual subsidence to the low-water conditions of sluggish flow and partial stagnation. It should be said that the term "flood" is here used to include all stages of water at Stockton which are high enough to keep a distinct current in the river.

The mean annual temperature of the valley, stated as $15.5^{\circ} \mathrm{C}$, does not give a very good idea of the real conditions at Stockton. For one thing, the range in temperature in every twenty-four hours is considerable throughout the year. The nights are almost invariably cool even in late summer and by far the larger number of days become quite warm. The average range for the year is about $8^{\circ} \mathrm{C}$ and is about $3^{\circ} \mathrm{C}$ in winter and $12^{\circ} \mathrm{C}$ in summer. On the other hand, the seasonal range is not so very great. Very rarely a high temperature near $40^{\circ} \mathrm{C}$ is reached in summer and a low temperature of about $-10^{\circ} \mathrm{C}$ in winter. On the whole, there is good reason for thinking that temperature fluctuations in the San Joaquin River Basin have less influence than some other conditions on the general plankton production.

## Light

Of course the fluctuations in available light are of great importance. These fluctuations are dependent on a number of conditions, such as the seasonal changes in length of days, turbidity of the water, cloudiness, and agitation by wind. All these influences are most adverse during the winter months, coineident with adverse temperature, so that it is almost impossible to prove which is most responsible for scarcity of plankton at that time.

As already stated, the turbidity of the waters in the Stockton region is very great and fairly constant. During the greater part of the first six months of the year this is evidently due mainly to very fine silt. During the rest of the year the high organic content seems to have some influence. Although the net with its brass parts was a rather conspicuous object in clear water, it was never visible one meter below the surface at any station. There are, however, no data available for accurate determination or comparison of turbidity.

## Air Currents

Since Stockton is in a low region adjacent to extensive swamp areas and waterways, it is considerably affected by fog and clouds. The exclusion of light from this cause is quite important in the course of
the year. Being located almost opposite the Golden Gate, this region is also under almost daily influence of distinct air currents. These are very frequently strong enough to make the water surface quite rough and there is scarcely a day that it is not made ripply for some hours. This also causes important loss of light throughout the year.

## Chemical Conditions Not Studied

No definite data are available as to the chemical composition of San Joaquin waters. Hence discussion of this important factor must be deferred.

## Tide

The ocean tide is very much in evidence at Stockton, but the available data are not adapted to satisfactory study. The extreme range is about three feet, but that does not occur very often. The only local records were those from a private tide-guage kept by Dixon Brothers Transportation Company. These records were made very irregularly in connection with the movement of their barges and cannot be used with much confidence in this discussion.

## Aquatic and Marginil Vegetation

No definite study has been made of the aquatic and marginal vegetation of this section. The ocasional dredging of all larger waterways has kept down such growths in the places most accessible locally. Hence the following list must be regarded as incomplete. It is certainly inadequate so far as the typical delta flora is concerned.

Chara sp. occurs abundantly in some of the ditches and narrow waterways. It has not been observed in the river or in the larger canals, possibly because of the dredging. Where found it furnishes extensive lodging places for myriads of microscopic animals and plants.

Duckweeds, probably Lemna gibba L. and Lenma minor L., are very conspicuous in the fall in quiet nooks and ditches.

Typha latifolia L . is very abundant in a few places and is frequently found in small groups along any water margins.

Alisma plantago L. is said to be common.
Sagittaria is common and three species at least occur in this region. Apparently S. latifolia Willd is most frequent, though S. greggii J. G. Smith, and S. sanfordii Greene are more characteristic of the locality.

Urtica holosericea Nutt. is very abundant on most undisturbed levees and water margins.

Jussiaea californica fills some quiet sloughs and canals with an almost impenetrable mass of stems.

Scirpus lacustris L., is by far the most conspicuous plant in the marshes and shallow waters from one end of the valley to the other.

Carex marcida Boott. covers large areas of ground where the soil remains saturated though not completely submerged through most of the year.

Anemopsis californica Hook. occurs in temporary marshes and is peculiar to the rainy season.

The most abundant willows are Salix nigra Marsh., S. lasiolepis Benth., and S. fluviatilis Nutt. Although abundant by natural propagation, they are frequently planted along the levees to help to hold the dirt in place.

Populus fremonti Wats. is common along the water courses, but not abundant.

Rumex salicifolius Wats. is conspicuous in marshy ground, especially in the heavy loam and peat soils. $R$. occidentalis Wats. and $R$. Crispus are also prominent.

Polygonum amphibium L. occurs in the ditches and narrow waterways. So far as observed, it furnishes remarkably good shelter for minute animals and plants.

Ramunculus aquatilis L. is exceedingly abundant in small areas at times, forming dense mats in shallow water.

Nasturtium officinalis is reported as common, but it has not been observed by the present writer.

## THE COLLECTING STATIONS

Three collecting stations were used. Plate 20 Station I was located in Stockton Channel at the foot of Yosemite street. This is about one mile and three-quarters from the river; four hundred yards from Mormon Channel outlet and three-fourths of a mile from the steamer landing at the head of Stockton Channel. There was a good deal of sewage coming down this channel. Mormon Channel was an open cesspool during most of the year. Hence this station seemed to be fairly typical for the study of organisms in dilute sewage.

Station II was in the river, from four hundred to eight hundred yards above Stockton Channel, and it represented as nearly natural river conditions as could be found in this section.

Station III was in Smith Canal about four hundred yards from the river. There was a small amount of sewage coming down this
canal from the outskirts of the city. There was also a small slough about one hundred yards from the place of collecting. The general similarity to river conditions was well marked.

Station IV was not used in this series.
Stockton Channel and Smith Canal are more subject to disturbance by prevailing winds than is the river. Smith Canal being shallowest, Station III was probably most affected.

Stockton Channel was vastly more disturbed by river traffic than either of the other stations. Smith Canal was rarely affected in this way. Station II, in the river, was probably not stirred up one-tenth as much as Station I.

The turbidity of the water was least at Station III during 1913, and greatest at Station II. But Station III was never clear and the turbidity was not much less than at Station I.

Since the times of taking the temperatures at the various stations varied by an hour or more, an accurate comparison is impossible. The observer, however, always expected to find the highest temperatures at Station I, and the lowest at Station II and something between these at Station III.

There was no vegetation of consequence near Station I, but the levees were heavily covered at both the others. No aquatic vegetation occurs at any of the stations.

## River Currents and Depths

Tidal currents were sometimes very noticeable at all the stations, but strong currents of any sort were very rare except at Station II, where they were noticeable for several months during the spring and early summer. The highest estimate placed on the rate of the river current in 1913 was four miles per hour. River transportation men, notably Captain Curry of the Island Transportation Company, say that five miles per hour is often reached during the heavier floods.

The least depth of water noted at the stations at low tide was about one and one-half meters at Station I, two and one-half meters at Station II and one meter at Station III.

## Comparison of Stations

The general form of the three channels is somewhat different. The bed in all cases seems to be a clay with variable superimposed ooze. Stockton Channel is a straight canal ending blindly at the steamer landing, two and one-fourth miles from the river. It is nearly the same width throughout, probably two hundred feet on the average.


Its flow is westward. Mormon Chamel empties into it about half way up on the south side. Miner Channel, after traversing the city as an open ditch, empties into it through McLeod's Lake about three hundred yards from the steamer landing. McLeod's Lake is merely a broad slough some four hundred yards in length. It was almost filled with arks and boat houses during 1913. All sorts of rubbish and refuse were dumped into Miner Channel and McLeod's Lake at that time, including some sewage from factory drains and some refuse from the tannery.

The river channel is very crooked. The general direction is northeast for about one mile above Station II. At Station II it is nearly east, but within another half mile it has turned to the west. The width is kept fairly uniform by dredging and it probably averages one hundred and twenty feet near the station.

Smith Canal is a straight channel about sixty feet wide and two miles long, ending abruptly at the northwest city limits. An open ditch across the northern edge of the city carried waste water from certain gas wells and some sewage directly into its upper end, during most of 1913. This ditch was also partly filled with rubbish and garbage.

## METHODS OF SECURING DATA

## Time of Collecting

Most of the collections at Stations II and III were taken at sevenday intervals, at week ends. There was occasional variation of a day or two. Collections at Station I were made twice a week. The midweek collection was usually on Wednesday. In a few cases there was a change of a day or two in the interval, but there was no failure to make two collections in any week.

One series of daily collections was taken in Stockton Channel for one month in July and August. Another series of hourly collections was taken for twelve hours in Smith Canal about one mile from the river. The plankton content was slightly different from that of the regular station in Smith Canal, but this was not realized at the time the series was being taken. The difference is not great enough to prevent instructive comparison.

The time of day at which collections were taken was very variable. Most of the midweek collections were taken after school in the late afternoon. Most of the week end collections at all stations were taken in the forenoon.

## The Form of Net

The first few collections in January were obtained with a temporary net made of used mill silk. But a net, of number 25 new bolting silk, was put into use on January 15, 1913, and was used continuously to January 1, 1915. There were occasional changes of drain cups.

The net was constructed after a plan suggested by Professor C. A. Kofoid. Outspread, its general form is that of a very broad and short truncated cone, the base having a total circumference of 166.65 centimeters and the apex 17.59 centimeters. The slant length is 60 centimeters. In order to avoid the awkwardness of such a shape, eight equal folds are made lengthwise and their upper edges closed. The inner points of the folds are then fastened directly to a brass ring of proper size. The outer points of the folds and an unfolded part between each two is bound by butcher's linen to a slightly conical brass plate with an opening in the middle which will pass just 10,000 cubic centimeters of water for each meter hauled, i.e., 100 square centimeters area. The convex surface of this subconical plate is kept outermost, so that in hauling the water may all pass away from the opening, except that which is in the column immediately before it.

A small brass cylinder is fitted into the small end of the net and fastened there by butcher's linen. Smooth grooves on the outer surface of the cylinder, near each end, serve for securing it to the net as well as for attaching the drain cup to the distal end.

This drain cup is made of the same silk as the net. It is a very simple pocket, about 5 centimeters deep, made of two semicircular pieces sewed together by the circular edges. The straight edges thus form the top of the cup, just large enough to slip over the end of the brass cylinder. The size was not kept quite uniform but the filtering surface of this cup averaged about 100 square centimeters in 1913. A draw string of white tape is run around the margin of the cup and fastened by a small hook and eye, such as is used by dressmakers. The draw string makes it possible to slip the cup over the cylinder ent without tearing. The hook and eye, when properly adjusted, makes a very secure fastening, easily and quickly opened or closed.

The total net surface before shrinkage was $5,527.20$ square centimeters, not including the drain cup. The total filtration opening as calculated from micrometer measurements was 690.9 square centimeters. This gives a filtration outlet somewhat more than six times
the area of the inlet to the net. Before using, the net was placed in warm, soapy water and gently rinsed in order to induce uniform shrinkage.

The drain cup was removed after each haul and the contents washed off into a small pail. Some organisms clung very tenaciously to the net and vessels. This was especially true of the stentors and some rotifers. The water in the pail was strained through a silk cup at the end of the collection.

## The Amount of Haul

The standard collection covered an aggregate haul of twenty-five meters. Sometimes it was not possible to make a full collection. On a few occasions the light was too poor to make a full midweek collection. At these times it was usually possible to take half the usual haul. On still fewer occasions the silt clogged the net so badly in the river that only about one-fifth of a standard collection was taken. Even so it seemed that the net would surely break before it drained. Drainage of the net was always hastened by shaking the net slightly or by working it with the fingers.

Most hauls at Station I were at the depth of three meters ; at Station II, four meters, and at Station III, two meters. Sometimes five meters could be taken at Station II. On the other hand there were times when only one meter could be taken at Station III. Most hauls in the river were taken while drifting. Most hauls in Stockton Channel and Smith Canal were taken while at anchor. Except on one occasion all hauls were made by the same person. The net was always hauled as nearly as possible at such a speed that it would just fail to throw water from its mouth as it broke the surface. This was about one-half meter per second. All hauls were as nearly vertical as possible. No particular effort was made to get in midstream at any time. In fact some collections were taken near the bank because of deeper water there. A few collections were taken from boat landings when the writer's motor boat was not in working order.

## Records

Records were kept of the temperature of air and water at each station. The air temperature was taken first and it was always taken in the shade without much motion. The water temperature was taken by holding the bulb from one to three inches below the surface of the
water and reading while in that position. Temperature was forgotten once during the year and on a few occasions it was taken at some distance from the point of collection. This was usually when there was a high wind that made any appreciable variation improbable.

The condition of the tide was recorded when it could be detected. Dixon Brothers' Tide Record is of some value for comparison, but it is so fragmentary that it cannot be depended upon. Corrections for this locality from the United States Tide Tables are of some value.

Records were kept of cloudiness, rain, fog, wind, roughness of the water, etc., at the time collections were being taken.

The hour and minute of collection was regularly recorded, usually at beginning and end.

## Preservation of Miterials

The collections were preserved in formalin in four-ounce, corkstoppered bottles of the so-called vaselinetype. The formalin was not measured accurately, but it was intended to be from 6 to 10 per cent. The stronger solutions were used for the heavier collections. The formalin for one collection was forgotten until two days after it was taken, but so far as known that is the only serious error. The total number of collections during 1913 is 242 . The year 1913 was very dry with very little flood water at any station. On the contrary, the water was unusually low much of the time. For this reason it would not show the local plankton range and distribution most typically. But there were some features strikingly similar to river conditions in other parts of the world, and it will make a good basis of comparison with 1914 which was a wet year.

## Tests of Salinity

In spite of the low water it is not at all probable that sea water ever had any influence here except in causing tides. Surface samples of San Joaquin River water were taken at Station II at about the twentieth of each month. These samples were titrated for chlorine content by the scientific staff of the U. S. S. "Albatross" and their report is presented herewith. It is given in parts of chlorine per 1000 .

| Jan. 19 | 0.0280 | July 19 | 0.0800 |
| :---: | :---: | :---: | :---: |
| Feb. 19 | 0.0745 | Aug. 21 | 0.0964 |
| Mar. 29 | 0.1025 | Sept. 21 | 0.1764 |
| Apr. 26 | 0.1680 | Oct. 19 | 0.2352 |
|  | 0.0032 | Nov. 22 | 0.6600 |
| June 21 | 0.0072 | Dec. 20 | 0.1404 |

The most probable explanation of the variation shown is that the incoming tide carried some of the polluted Stockton Channel water up stream when the natural stream flow was very weak. No other tests of the chemical composition of water at any station are available.

## Me.isurement of Volume

In order to measure the mass of material secured in the collections, a Bausch and Lomb hand centrifuge was used. The sedimentation tubes were graduated to tenths of a cubic centimeter. This machine makes 23 revolutions to each turn of the crank. After a few trials it was decided to run at $5 t$ turns per minute. While no amount of practice made uniform speed possible, the average was kept at about 1300 revolutions per minute. The time of running was four minutes. Experience indicated that this was a little longer time than necessary, but it was undertaken with the intention of compensating for any possible inaccuracy due to variation in rate. Since this indicated only the mass of material held by the net, it was necessary to make some supplementary test to determine as nearly as possible what volume went through. Only two or three such tests were made because of the pressure of other duties, but the indication from filter paper tests is that the net sometimes retains only one-tenth of the mass of material actually present in the water. This material is often composed principally of silt.

## The Enumeration

After considerable experiment, the count of the organisms in the catches was begun in September, 1914. Since the time available was nearly always at night, almost all the counting was done by artificial light from an ordinary 60 -watt, frosted, incandescent globe. Only rarely was it possible to make two counts in one day. Hence the enumeration was not finished until the night of June 18, 1915.

## APPARATUS

The microscope used throughout was a Spencer with 16 millimeter objective and 8 x ocular. It was equipped with a quick serew substage and a Spencer mechanical stage. The Whipple ocular micrometer and the Rafter counting cell were used. Its largest square covered 1.1 square millimeters with the above lens equipment, so that the labor of calculating was slightly increased by the fractional area.

## PROCEDURE

## Standard Concentration

In preparation for counting, all catches were first brought to a volume of 100 cubic centimeters by addition of water or, in a few cases, by decanting some fluid. If the concentration was too great at this volume, dilution was made to 400 or 800 or 1,600 cubic centimeters. No other quantities were used because the increase in difficulty of computation would offset the difficulty in counting. This was due to the fact that the above quantities were used often enough to make the formation of computing tables useful for them.

Method of Fillina Sedgwick-Rafter Cell
In the process of filling the cell after thorough mixing a little more than 1 cubic centimeter was taken quickly into a pipette. The cell was then filled as rapidly as possible until the cover slipped into place. This never occurred completely until there was a slight excess of fluid. The excess was immediately taken back into the pipette, leaving the cover glass flat. The possibility of some error is evident, but experiment indicated that this method gave more even distribution in the cell than any other and that errors were not appreciably more frequent than those attending other methods. The method was followed throughout the whole series and every detail was handled by the writer, so that there must have been practical uniformity. This would certainly reduce the significance of any error which may have been incident to the method.

Making and Recording the Count
After filling the cell satisfactorily, a rapid survey was always taken in order to estimate the relative amounts of plankton and nonplankton. The estimate was then recorded in percentage of silt. With these preliminaries completed, the work of counting was begun, fifty fields being always counted. This made a total of 60.5 cubic millimeters. Counting was begun on the proximal side of the slide at point 32 on the lateral scale of the mechanical stage. The field next to the wall of the cell was not counted, but the next five were taken consecutively. This process was repeated at point 16 , then at point 80 on the proximodistal scale at the right end of the cell, followed by point 87. Points 16 and 32 distal, 87 and 80 left, were then taken in order. The detail count was completed by ten fields from point 15 to

27 in the median line of the cell. The whole count was completed by rumning over exactly half of the cell looking for strays and for a check on larger organisms which might be irregular in distribution. After a year's experience the writer is inclined to think that twenty-five or thirty fields would be sufficient for the detailed count in view of the half-slide check. At any rate he is satisfied that the possibility of error in counting will rest elsewhere than on the method of selecting areas for counting. It might be said too, that the year's experience indicates that the method of filling the cell gives as uniform distribution of plankton in the cell as can be hoped for in any case.

The method of recording the count was almost uniform. Mrs. Allen sat near the microscope and wrote down names or made check marks as the names were called. In two or three cases about half the catch was recorded by the writer while himself counting. On about ten occasions he recorded as much as ten fields in like manner. These were the only exceptions. Occasionally the writer called the name of one planktont when another was intended, the mistake being noticed because it did not sound right. It is altogether probable that some such mistakes were made which were not noticed. In addition to this, of course, we must recognize the presence of clerical errors not humanly avoidable in such a mass of material. It can only be said that all reasonable precaution has been taken to avoid them.

Conputation and Tabulation
After recording, the counts were computed for a full cubic meter, and then tabulated by key sheets, such as suggested by Professor Kofoid in his Illinois report. From these sheets they were finally transferred to the statistical tables.

Identification of Forms
Identification of species, or even genera, was very difficult in many cases. This was due to several conditions. First, the preserved planktont was often very different in appearance from the living specimen. Second, many kinds had very marked tendency to coherence or agglutination in formaldehyde. Third, many of the smaller organisms were hidden wholly or in part by silt or by larger organisms. Fourth, many different organisms have the same appearance in very young stages; they also resemble mature stages of simpler forms. Fifth, distinctive characters were frequently invisible in the position found in the Rafter cell. Sixth, many forms were not sufficiently
figured and described in the literature immediately available for use. Seventh, much of the accurate identification of plankton forms would require long time and careful work, even for specialists in the various groups. The writer was hampered by lack of time and experience in identification in all groups. Eighth, the synonymy is confusing. This, however, is rather an aggravation than a difficulty in the sense of the foregoing.

This list certainly seems imposing as stated. As against it, the following facts should be noted. First, that more than one year was spent in studying the living materials, with both 16 millimeter and 4 millimeter objectives, before there was any attempt to count. In this way, sufficient familiarity was obtained with many forms to enable identification even in much contracted, distorted and broken conditions. Second, that most of the names as finally applied meant something definite to the writer, even though there might be error in their specific application. While this fact is unfortunate for the specialist who may wish to know exactly what species are present, it surely leaves the possibility of drawing some valuable conclusions as to seasonal changes, plankton rhythms, and relative numbers. Third, there were enough prominent planktonts, easy to identify, to make a good foundation for a report on plankton characteristics of this region at such stations as were selected. Fourth, those planktonts hardest to identify were mostly of the kind which would be largely lost through the meshes of the net, or which were adventitious and so of minor importance in solution of the greater problems of plankton production and distribution. F'ifth, the various totals are not much affected by specific errors of identification.

## Estimation of Silut

In estimating the percentage of silt, the same possibility of error was noticed as that mentioned by Kofoid (1908), i.e., some of the material, being flocculent in character, would appear unduly prominent in the Rafter cell; whereas, the compression of the centrifuge would make it relatively small in the volumetric record. While it seems probable that differences in the stations and in seasonal conditions give this error some real importance, there appears to be no way of avoiding it. There may be some compensation in the fact, that with larger quantities of sediment there is usually a larger proportion of heavy materials, thus making the compressible materials less conspicuous.

Tife Clogang of the Net
The elogging of the net is undoubtedly an important factor affecting the catch and it was also quite variable under 1913 conditions here. Hence some designation of its probable condition is very desirable. In spite of this it was finally decided to ignore it for 1913 at least. This is because too few filter paper, or other supplementary, catches have been made to give adequate ground for estimation.

## VOLUMETRIC DATA

There is not a great deal to say on this topic as yet. The main points are distinctly shown by plate 1 and table 6 . The two most interesting points, in the light of such investigations elsewhere, are that only Station I shows a very distinct vernal pulse and that the autumnal pulses are most prominent at all stations. This statement needs some qualification since there was a higher maximum shown at Station I in March than in the fall. This vernal pulse was, however, so very abruptly developed, and the autumnal so very gradually, that it seems natural to assign the greater importance to the latter. At neither of the other stations does the vernal pulse compare in magnitude with the autumnal. Indeed, at Station III, there is no well marked, vernal pulse.

It is worthy of note that volumes appear least variable at Station I and most so at Station II. It might, at first thought, seem that this was owing to the uniformity of food supply at Station I, caused by the constant inflow of sewage throughout the year. Closer examination of the records suggests, however, that variation in speed of currents in the river, together with the dilution due to flood waters is more potent. This estimate of the importance of the current as a factor is supported by collections made in the San Joaquin River near Fresno, California, in August, 1916. Although this was the season for maximum occurrence of plankton at Stockton, not enough was taken by the net at Fresno to be measurable volumetrically with any accuracy. Since the current at Fresno is about as rapid in the dry season as at Stockton in flood season, it seems certain that it has a profound influence. Still the importance of the uniform food supply at Station I must not be minimized.

The whole series of collections for 1913 is now (1916) in the permanent possession of the Department of Zoology of the University of California.

## ORGANISMS FOUND IN SAN JOAQUIN PLANKTON

## Definitions

Professor Kofoid's definitions are followed as closely as possible, although only a few terms will be used. This report designates only three types of planktons, i.e., the continuous, the periodic and the adventitions. No closer distinction is advisable in view of the writer's lack of definite knowledge of life histories of various species. There has been no difficulty about the application of the general term "plankton" to the typically mixed population of minute living things found in these collections, because there was no case observed in which the plant or animal seemed distinctly out of place. It might be rare, and perhaps evidently ill-fitting, but in no way could its presence be regarded as surprising. Hence it becomes perfectly natural to apply the term collectively to all the organisms found.

## Component Forms

A total of 471 planktonts was listed during the year, though only 396 were recorded from the preserved material. The number of species present was doubtless much greater. Those not recorded were found only in the living material and in small numbers. Of those recorded, some forms which might be distinct species were placed together in one because they could not be distinguished during the count. This lack of distinction was sometimes due to the inadequate preservation or to the rarity or to the difficulty of identifying specific characters while counting. Others were placed together because the writer's acquaintance with them was not sufficient for definite recognition. Very many were simply referred to the genus withont attempt at species segregation because identification was too difficult to be undertaken in the time available. The question of probability of proper identification will be taken up in the detailed discussion of each form.

## THE PRINCIPAL TYPES OF FRESH WATER IPLANKTON

Among the 396 forms recorded and counted in the preserved material, 201 were thought to be positively identified as to genus, of which number 107 were also satisfactory as to species. The generic designation of most of the remaining 195 forms was regarded as probably correct though some were merely referred to the nearest possible genus or species according to the information at hand. The following table gives the general distribution of these forms among the three stations.

|  | At three stations | At two stations | At one station |
| :---: | :---: | :---: | :---: |
| Algae | 90 | 29 | 53 |
| Protozoa | 56 | 26 | 37 |
| Rotifera | 44 | 11 | 26 |
| Crustacea | 8 | 2 | 2 |
| Miscellaneous | 3 | 1 | 8 |
| Total | 201 | 69 | 126 |

As might be expected of those found at only two stations most are from stations I and II. Those found at only one station are of the rarer, less conspicuous kinds.

This table shows the main characteristics mentioned by Kofoid (1908) as distinguishing fresh water from marine plankton. It may be well to enumerate his main points as verified in the present study. The plankton consists of cryptogams and invertebrates, with some orders missing and the others very variable in numbers of representatives. Larval forms are very few and the number of invertebrate groups much less than that of the sea. The small size of organisms in fresh water is also a conspicuous feature. There are no large crustaceans, no coelenterates, no mature mollusks, few worms, no tunicates or radiolarians, to make diversity such as that of the sea. In spite of the smaller size of the organisms in fresh water their total mass is much greater than that in the sea. The highest amount recorded here is 18 cubic centimeters per cubic meter; the smallest 0.28 cubic centimeters per cubic meter; while a typical marine product is stated as 0.12 to 0.48 cubic centimeter per cubic meter. The San Joaquin production noted was taken from net hauls only, the maximum from Stockton Channel, the minimum from Smith Canal. Filter paper catches show ten times the recorded volume in some cases.

## Major Groups of Plankton

## ALGAE

No plants higher than the algae have been found in these collections. Very few bacteriaceae were found because of their small size. Very few schizophyceae were conspicuous in 1913, though the numbers of individuals were sometimes large and the total quantity sufficient in late summer to give characteristic color to the waters. Bacillariaceae were always present and usually in large numbers. Many of them are doubtless adventitious. Chlorophyceae were not prominent, though some were present throughout the year. The conjugatae were not represented by many species and the numbers were few.

## ZOOPLANETON

Almost all the zooplanktonts found were included in the three groups Protozoa, Rotifera and Entomostraca. Other types of animals are decidedly rare.

Amongst the Protozoa, Ciliata and Mastigophora predominate. The group Mastigophora is meant to include the same organisms as comprised under that head by Kofoid (1908), i.e., "all green and brown flagellates, sometimes classified with the Chlorophyceae and Phaeophyceae." Rhizopoda were usually present but in small numbers. Heliozoa were rare except for one or two smaller forms which kept up rather large totals for the group. Suctoria were rare. No Sporozoa were recognized. Ciliata were distinctly more noticeable in the dilute sewage of Stockton Channel than at either of the other stations.

The Rotifera were even more prominent inhabitants of Stockton Channel than the ciliate Protozoa, but their numerical superiority may have been due to larger size and consequent capture by the net. The numerical difference at the other stations was not very marked. There is no question that their considerable size and large numbers entitle them to the leading place among analytic organisms assigned by Kofoid (1908) to the Illinois Rotifera. The greater abundance in the sewage laden water is, however, rather against his suggestion that they may be found to be more characteristic of river than of lake plankton. Local conditions indicate sewage or at least organic
content as being a deciding factor. Apparently, most of the species recorded here are to be regarded as normal constituents of the local plankton.

With the exception of three or four specimens of Gummarus found on two different dates, and of a few misecllaneous forms, the Entomostraca are far the largest of the local planktonts. While much less numerous on the whole than they were in the Illinois River, they undoubtedly play a large part in the life of our waters. Copepoda, through larval forms, are distinctly in the ascendant, with Cladocera somewhat scattering and Ostracoda barely represented. Most of the forms found appear to be true planktonts. In fact, C'ypris, the sole member of the Ostracoda, is the only genus which is evidently adventitious.

Turbellaria, Oligochaeta, Hexapoda, Hydrachnida, Gastrotricha and Bryozoa barely find representation at any station. Their influence in the plankton is negligible.

## TOTALS OF MAJOR GROUPS

The following table of averages (text table I) will serve to indicate in some measure the proportionate representation in the San Joaquin plankton of the most typical constituent groups. As already noted elsewhere, 1913, was a comparatively dry year so that the production in most cases was probably below normal. The figures given are the result of the count of individuals, except in the case of colonial forms such as Bacillaria, Synura and Scenedesmus where the colonies only were counted. The small numbers as compared with Kofoid's similar table (1908) for the Illinois plankton of 1898 is mainly due to the fact that all San Joaquin enumerations are from silk net collections, whereas many of his were from filter paper catches. Our table includes all recorded forms whether satisfactorily identified or not. It should be noted that in the total of synthetic organisms Schizophyceae are included because they do some of that work. All of the Mastigophora are also included because there was not sufficient aequaintance with them to distinguish synthetic and analytic forms and it was understood that most of them found here were synthetic. The averages are computed on the basis of 104 catches for Station I, 52 for Station II and 51 for Station III. The daily and hourly series are not included in the general discussion except as incidentally referred to. They require separate discussion.

Text Table 1.-Total Planktonts by Major Groups

|  | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { orms } \end{gathered}$ | Station I |  | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { forms } \end{gathered}$ | Station II |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Average |  | Total | Average |
| Total Phytoplanktonts. | 85 | 2,720,856,600 | 26,162,100 | 97 | 2,216,347,628 | 42,622,068 |
| Bacteriaceae ........... | 2 | 1,696,364 | 16,310 | 1 | 1,035,072 | 19,905 |
| Schizophyceae | 15 | 166,755,148 | 1,603,414 | 18 | 67,219,364 | 1,292,680 |
| Chlorophyceae | 15 | 188,417,098 | 1,811,722 | 13 | 77,972,944 | 1,499,479 |
| Bacillariaceae | 47 | 2,351,342,460 | 22,609,062 | 59 | 2,052,872,514 | 39,478,317 |
| Conjugatae | 6 | 12,651,930 | 121,653 | 9 | 17,247,734 | 331,687 |
| Total Zoöplanktonts | 141 | 1,102,116,740 | 10,597,272 | 110 | 229,332,166 | 4,410,230 |
| Mastigophora | 2.5 | 385,691,226 | 3,708,569 | 20 | 136,713,846 | 2,629,112 |
| Rhizopoda...... | 13 | 17,402,198 | 167,328 | 9 | 7,842,488 | 150,817 |
| Heliozoa. | 5 | 38,583,488 | 370,995 | 5 | 13,376,096 | 257,232 |
| Ciliata... | 29 | 98,463,242 | 946,762 | 16 | 23,291,268 | 447,909 |
| Suctoria | 3 | 79,296 | 762 | 3 | 467,776 | 8,995 |
| Total Protozoa. | 75 | 540,219,450 | 5,194,416 | 53 | 181,691,474 | 3,494,065 |
| Rhizota | 2 | 156,992 | 1,509 | 3 | 1,933,424 | 37,181 |
| Bdelloida | 6 | 36,328,460 | 349,312 | , | 2,449,472 | 47,105 |
| Ploima | 47 | 467,115,946 | 4,491,499 | 34 | 41,559,652 | 799,224 |
| Total Rotifera. | 55 | 503,601,398 | 4,842,320 | 43 | 45,942,548 | 883,510 |
| Cladocera | 3 | 400,992 | -3,855 | 4 | 384,000 | 7,384 |
| Copepoda | 4 | 57,856,500 | 556,312 |  | 770,768 | 14,822 |
| Total Entomostraca | 7 | 58,257,492 | 560,167 | ? | 1,154,768 | 22,206 |
| Miscellaneous. | 4 | 38,400 | 369 | 7 | 543,376 | 10,449 |
| Total planktonts enumerated | 226 | 3,822,973,340 | 36,759,372 | 207 | 2,445,679,794 | 47,032,298 |
| Synthetic |  | 3,104,857,862 | 29,854,420 |  | 2,352,026,402 | 45,231,275 |
| Analytic |  | 718,115,478 | 6,904,952 | ...... | 93,653,392 | 1,801,023 |

Text Table 1.-Total Planktonts by Major Groups-Continued

|  | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { forms } \end{gathered}$ | Station III |  | $\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { forms } \end{aligned}$ | Daily |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Average |  | Total | Average |
| Total Phytoplanktonts. | 93 | 2,090,812,294 | 40,996,318 | 53 | 1,018,801,028 | 32,864,549 |
| Bacteriaceae | - 1 | 116,992 | 2,294 | 1 | 115,392 | 3,722 |
| Schizophyceae | 16 | 99,840,742 | 1,957,661 | 12 | S0,574,044 | 2,599,163 |
| Chlorophyceae.... | 13 | 91,241,112 | 1,789,041 | 11 | 67,560,712 | 2,179,378 |
| Bacillariaceae | 55 | 1,878,169,822 | 36,826,859 | 25 | 869,719,232 | 28,055,459 |
| Conjugatae | 8 | 21,443,626 | 420,463 | 4 | 831,648 | 26,827 |
| Total Zooplanktonts | 108 | 253,153,822 | 4,963,800 | 61 | 335,441,120 | 10,820,681 |
| Mastigophora....... | 25 | 134,216,822 | 2,631,702 | 14 | 57,456,320 | 1,853,429 |
| Rhizopoda | 11 | 14,706,62 | 288,365 | 4 | 3,155,872 | 101,802 |
| Heliozoa | 4 | 14,003,600 | 274,580 | 2 | 19,193,826 | 619,156 |
| Ciliata | 17 | 22,003,692 | 431,445 | 6 | 40,488,334 | 1,306,075 |
| Suctoria | 2 | 409,984 | 8,039 | 0 |  |  |
| Total Protozoa | 59 | 185,340,722 | 3,634,131 | 26 | 120,294,352 | 3,880,462 |
| Rhizota | , | 1,539,424 | 30,185 |  |  |  |
| Bdelloida. | 3 | 2,897,100 | 56,806 | 3 | 3,745,752 | 120,831 |
| Ploima | 33 | 61,996,492 | 1,215,618 | 27 | 165,007,160 | 5,322,812 |
| Total Rotifera. | 39 | 66,433,016 | 1,302,609 | 30 | 168,752,912 | 5,443,643 |
| Cladocera | 3 | 469,040 | 9,197 | 2 | 230,400 | 7,432 |
| Copepoda. | 3 | 742,032 | 14,549 | 2 | 46,141,056 | 1,488,421 |
| Malacostraca. | - 1 | 20 |  |  |  |  |
| Total Entomostraca | 7 | 1,211,092 | 23,746 | 4 | 46,371,456 | 1,495,853 |
| Miscellaneous. | - 3 | 168,992 | 3,314 | 1 | 22,400 | 723 |
| Total Planktonts | 201 | 2,343,966,116 | 45,960,118 | 114 | 1,354,242,148 | 43685.230 |
| Synthetic ... |  | 2,225,029,116 | 43,628,020 |  | 1,076,257,348 | 34,717,978 |
| Analytic | $\ldots$ | 118,937,000 | 2,332,098 |  | 277,984,800 | 8,967,252 |

Text Table 1.-Total Planktonts by Major Groups-Concluded


## COMPARISON WITH ILLINOIS FORMS

As in the case of the Illinois River, this table shows plants to be more numerous than animals, though they are generally smaller. The disparity in numbers is slightly different being, in recorded order of stations 2.5, 9 , and 9 to 1 , instead of 5 to 1 as in the Illinois River. The preponderance of Rotifera and Protozoa over Entomostraca is less marked than in Illinois, being $8.5,45$, and 50 to 1 ; and 9,180 , and 151 to 1 , respectively. The numbers of Rotifera and Protozoa are not markedly different from each other in Stockton Chamel though Protozoa are four or five times as numerous as Rotifera at the other two stations. In Stockton Channel synthetic organisms are relatively few even among plants proper. In this place the principal food of the zooplankton, therefore, is probably furnished by the Bacteriaceae and other saprophytic plants. For this reason the forms of plankton usually rated as important in more or less direct support of a fish fauna are few in kinds if not in numbers, although there is a conspicuous animal population.

At Station I, Copepoda (including immature forms) outnumber Cladocera about 18 to 1, but only about 2 to 1 at Station II and 1.5 to 1 at Station III. Protozoa are 1210, 500, and 404 to 1 of the Cladocera, distributed as follows: Rhizopods 45, 22, and 32 to 1 ,

Ciliata 236, 64, and 48 to 1, Mastigophora 927, 361, and 292 to 1. Cladocera are outnumbered by plants 6540 , 6090, and 4555 to 1 . Diatoms are responsible for most of this with 5652,5640 , and 2314 to 1 . Schizophyceae appear at 400,185 , and 217 to 1 and Chlorophyceae 452, 214, and 198 to 1.

The most striking features of these results when compared with those of Kofoid (1908) are two in number. First, there is the remarkable number of Copepoda in Station I. Second, the astonishingly small number of synthetic organisms and of Protozoa at all stations, in proportion to the number of Cladocera. Since Cladocera are almost all caught in the adult stage and since they are almost all retained by the silk net, they present very good ground for comparison of plankton catches everywhere. Hence the numbers of Cladocera, the lack in numbers of other organisms and the results of the few, filter paper catches point conclusively to the fact that the numerical and volumetric study of plankton calls for absolute filtration, high magnification and a laborious technique adequately to represent the sources of food, and the interrelations of the organisms of the plankton.

## DETAILED DISCUSSION OF STATISTICS RECORDED BY THE AUTHOR

## Prefatory

Tables and plates have been prepared to show in numerical or graphic form the various facts of distribution and occurrence which are or may be reckoned as important. This commentary is intended to elucidate and amplify such records and to serve especially as a guide to the details of observation or conclusion concerning which the writer is certain or uncertain. Averages, when given for each organism in numbers per cubic meter will be given for each station on the basis of 104 collections at Station I, 52 at Station II and 51 at Station III. Averages are only used because there is no other way of making a general numerical comparison in brief form. Temperatures, in degree Centigrade, are given both for surface water and for air. While the latter may be unnecessary it was thought that it might help to give an idea of the conditions locally.

Numbers of planktonts are recorded in units for the same reasons of consistency and convenience as those mentioned by Kofoid (1908). There is not the slightest intention to imply fictitious accuracy by unit expression. Those who prefer can read the record in "round numbers." The writer himself rarely gives any thought to more than the first three figures of a number.

## AlgaE <br> Bacteriaceae

Members of this group were unquestionably abundant both in numbers and kinds, but they were very rarely retained by the silk net. In fact, Spirillum undula was the only representative recorded from Stockton Channel, the station most favorable for Bacteria and giving most evidence of their presence. The average number there, 16,310 , is ridiculously small in view of the general conditions and in consideration of the filter paper collections which indicated a total volume of eatch about ten times as great as that found in the silk net catches. The relatively great numbers of Cladocera and Copepoda also serve to emphasize the fact that the large portion of the plankton population is very freqently beyond the reach of the usual methods of observation. Silk net methods can never be more than suggestive of the productivity of the waters since they must deal mainly with the giants of the plankton. For that reason, an extended discussion of the Bacteriaceae cannot be undertaken for this series. It might be said, however, that general conditions indicate a maximum production of Bacteria in late summer along with the other groups.

Beggiatoa and Micrococcus were only recorded from Stations II and III, and then only once, but they were probably common at all stations.

## Schizophyceae

|  | Station I | Station II | Station III | Daily | Hourly |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Number of forms.................. | 18 | 15 | 15 | 15 | 7 |
| Average per cubic meter ....... | $1,603,414$ | $1,292,680$ | $1,957,661$ | $0,599,163$ | 499,123 |

This group was most conspicuous at all stations in July, August and September, when it gave a peculiar color and appearance to the water, but it had some representation throughout the year. Anabaena, Nostoc and Oscillatoria were generally most prominent. Some of the smaller forms were probably represented but not identified. Some sinall forms were also probably confused with other groups. The group, as a whole, does not seem according to record to be of quite so great importance as in the Illinois, but this apparent lack is doubtless due to escape through the net. The color of the water alone would suggest that much of the material is lost. It is then, not only safe to say that the group is valuable in furnishing food for other
organisms, but also that it probably holds a high place in working up the organic content of the water. Identification, even of genera, was frequently rather difficult in this group, although there was not often any question as to their belonging to the Schizophyceae. Names as recorded are to be regarded as suggestive rather than positive. Eyferth's Einfachste Lebensformen and Tilden's Minnesota Algae were the guides mainly used.

Discussion of Species

| nabacna spp. | I | Station II | Station III | Daily | Hol |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 57,600 | 317,644 | 437,967 | 245,139 | 1,531,949 |

Not clearly distinguished from Nostoc, straight filaments being the characteristic usually considered indicative. Includes some Aphanizomenon. Found occasionally throughout the year. Abundant only in July, August and September, at all stations, in a water temperature ranging from $23.5^{\circ} \mathrm{C}$. to $28^{\circ} \mathrm{C}$. Largest number recorded at Station I on July 12, Station II on August 9, and Station III on July 19.

Aphanocapsa spp.

|  | Station I | Station II | Station III | Daily | Hourlv |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 117,381 | 84,916 | 74,329 | 441,469 | 187,647 |

Most of the colonies counted under this name probably belong under Clathrocystis and Nicrocystis. There were probably few, if any Aphanocapsa present. The characteristics of Aphanocapsa were not understood until the count had gone too far for revision. Since Clathrocystis and Microcystis were also more or less subject to confusion it was thought best to let the record for 1913 stand under this head. The maximum production occurs at about the same time as that of Microcustis at all stations. Hence the error probably affects nothing but the question of species distribution. Clathrocystis does not appear on the record though now known to be present and it might be well to transfer the Aphanocapsa count to that heading. The late summer maximum, occurring in higher temperatures and the sudden fall in numbers in colder waters suggests the characteristies of Clathrocystis as noted by Kofoid (1908) in Illinois.

Coclosphaerium kiutzingianum Naeg. Recorded three times from Station III and once from each of the other stations. Very small numbers in all cases. Identification not positive.

Glococapsa conglomerata Kütz.

|  |  | Station I | Station II | Station III | Daily |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average Mourly |  |  |  |  |  |

Recorded only in July and August at all stations. Identification not positive. Abundant through daily and hourly series and in considerable numbers for the few times taken in the regular series. However, not an important factor so far as these catches indicate. Losses through net probably heavy.

Glococapsa spp.
Average $\qquad$ $\begin{array}{ccccc}\text { Station I } & \text { Station II } & \text { Station III } & \text { Waily } & \text { Hourliv } \\ 197,400 & 141,594 & 181,426 & 520,660 & 539,132\end{array}$
Probably several species are included under this heading. They are found at all stations throughout the year though most abundant in July and August. Losses through the net were probably very heavy and the genus must play an important part in local waters. Identification considered probable though some confusion affected the count at times.

Gomphosphaera aponina Kg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 7,856 | 8,968 | 14,485 | 726 | 36,620 |

Identification uncertain. Occurrence at irregular intervals throughout the year at all stations. Numbers small.

Inactis tinctoria Agardh

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average ............................................ | 532,790 | 215,653 | 594,302 | 0 | 10.592 |

Identification uncertain. None recorded until August. Very few after October at any station. Numbers large while present. Heavy loss through net probable. Evidently of considerable importance in the plankton while present.

Merismopedium glaucus Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | ---: |
| Average $\ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~$ | 89,512 | 5,117 | 6,992 | 413 | 210 |

Identification satisfactory. Losses through net very heavy. Numbers fairly large in November and December. Rarely recorded earlier in year. Small size makes it easy to overlook even when present.

Microcystis sp.

|  | Station I | Station II | Station 111 | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 44,240 | 64,890 | 43,646 | 166,545 | 364,169 |

Identification satisfactory. Count probably too low on account of confusion of some colonies with other forms. Found occasionally
thrughout the year at all stations. Much more abundant in July, August and September. Loss through net certainly very great. An important member of the plankton, but net catches do not afford a good basis for discussion of its distribution.

Nostoc spp.

|  | Station I | Station II | Station III | Daily | Huprly |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Average | ............................$- ~$ | 156,435 | 301,283 | 459,306 | 547,678 | $1,794,781$ |

All the plants included under this head were filaments of the contorted type. The count gives the number of filaments in some cases though usually fragments of colonies constituted the units. Whole colonies were rarely, if ever, found. Possibly three or four species are included in this enumeration. Nostoc appeared occasionally throughout the year and became quite prominent in July, August and September. In view of the fragmentary condition of the colonies it is probable that the loss through the net was considerable.

## Oscillatoria formosa Bory.

|  | Station I | Station II | Station III Daily Hourly |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Average | ......................................... | 2,037 | 45,699 | 2,205 |  |

Identification uncertain. This form occurred more often at Station II where it was recorded frequently throughout the year, reaching its maximum in June. It does not seem to be very important since its size makes it improbable that loss through the net was very great.

Oscillatoria spp.


Probably three or four species are included under this heading. Found occasionally throughout the year but distinctly a summer form. Maximum in August. Oscillatoria of all kinds were nearly always found in single filaments or fragments of filaments. Masses of filaments were rarely seen. This might be considered as supporting Kofoid's suggestion (1908) that physiological conditions may at times make Oscillatoria a temporary planktont. On the other hand it does not furnish very definite proof against the view that this form is an adventitious planktont, cast adrift by gas bubbles or violent currents.

Oscillatoria tenuis Agardh.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 46,340 | 2,404 | 3,040 | 154,363 | 12,207 |

Identification uncertain. Not a very prominent form. General occurrence much the same as for the above mentioned species.

Phormidium spp.

|  | Station I | Station II | Station III | Hailr | Hourly |
| :--- | :---: | :---: | :---: | :---: | :---: |

Probably includes more than one species. Genus uncertain also. Occurrence occasional through the year. Most abundant at Station I. Maximum in September. Not a very prominent plankiont.

Stigoncma sp.

| Stigonema sp. | Station I | Station II | tion III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average |  | 45,665 | 8,831 |  |  |

Identification very doubtful. Filaments always fragmentary. Nothing but vegetative cells seen. Referred to Stigonema partly on account of occasional lateral arrangement of two cells in the filament. Never very prominent. Maximum in June at Station II where it was most often found. Apparently of little importance. Probably adventitious.

The following forms were recorded but once, at one or more stations, or else are listed because thought to be present in living material:

Calothrix sp. Recorded once at Station I.
Clathrocystis aeruginosa Kg.
Cylindrospermum comalum Wood.
Dactylococcopsis rhaphidioides Hausg. Recorded once at Station I.
Gloeocapsa gelatinosa Kütz.
Lyngbya sp. Recorded once at Stations I and II.
Oncobyrsa rivularis Kutz. Recorded once at each station.
Rivularia sp. Recorded once at Station I.
Symplocastrum sp. Recorded once at Station III.

## Chlorophyccae

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of forms................ | 15 | 14 | 17 | 8 | 8 | Ar. numbers per cu. meter $1,811,72 \mathrm{~g}$ (1,499,479 $\quad 1,789,041 \quad 2,179,378 \quad$ 1,703,883

These averages indicate only about one-thirtieth of the number found by Kofoid (1908) in Illinois. Since, however, the main contribution here was made by Actinastrum, Coelastrum, Pediastrume and Scenedesmus it may be readily understood that losses through the net account for most of the difference. The group was represerited through the entire year, though the numbers were often very few. Station I showed the peculiarity of a great increase in numbers in May and June, a decline in July and August, and another well sustained increase in September, October and November. Stations II and III showed only one conspicuous rise in numbers, covering about four months, from July to October inclusive. The numbers occur-
ring in other months were very small. It is quite difficult to determine the cause of the two pulses at Station I as distinguished from the other two stations. It could hardly be temperature since that factor remains too nearly constant during the period involved. The earlier increase in May might be ascribed to the more quiet water rich in organic matter, and the continuance through November might be aided by the sewage. The most probable explanations of the intermediate fall in numbers seems to be that predatory organisms may have been most prominent at that period or that stagnation of the sewage laden water hindered growth and multiplication. The possibility of the last named factor being the more important is supported by the fact that increase comes in September when there begins to be some relief from stagnation by increase of supply from the mountain streams. This relief was not very great in 1913, however, nor is it very well marked in any year. The possibility of interference by other organisms is supported by the fact that the numbers present are mainly influenced by the numbers of Scenedesmus, an organism very likely to be extensively used for food by some of the organisms of the zooplankton. Amongst the Ciliata, Vorticella seems most likely to be responsible while Asplanchna is the most prominent of the Rotifera. But the Copepoda are still more characteristic of this period and the summer decline of Scencdesmus may be due mainly to their activity. Chlorophyceae were never very conspicuous in 1913 and they were outnumbered by diatoms 14 to 1 and by Mastigophora about 2 to 1 . Uncertainty as to the percentages of losses of various forms through the net makes definite conclusion impossible.

The very interesting question concerning recurrent pulses and their relation to lunar cycles, discussed by Kofoid (1908), cannot be answered any more definitely here. It is clear from these net catches that there are recurrent pulses (plates 1-5) at about three to six weeks intervals but there is nothing which warrants more than an indorsement of his provisional conclusion that there may be an increase in number of chlorophyll bearing organisms to correspond with each recurrent increase of light from the moon. It is altogether probable that this problem cannot be solved until some one is able to carry a long series of daily catches, carefully timed, and by more accurate methods than those of the silk net. Whether any filter method would suffice is hard to say. It was hoped that the daily series carried for thirty-one days in 1913 would help to solve this problem but it presented no conclusive evidence. (PI. 6.)

Thirty forms were recorded in the count and it was thought that several others were recognized in the living material. Certainly there were more species present. So far as net catches indicate, Pediastrum was the leader both numerically and volumetrically, at Stations II and III. At Station I it was not far different from Scenedesmus in numbers (coenobia counted) and of course, exceeded it in volume of catch. Scenedesmus was clearly second in importance, Actinastrum third and Coclastrum fourth. Crucigonia, Raphidium, Richteriella and Schroederia were frequently found. In view of the common occurrence of Botryococous in other places its searcity here needs explanation. Failure to identify seems to be the most probable reason, though it may actually have been absent usually.

Present methods do not show the dilute sewage water of Stockton Channel to be much more productive of Chlorophyceae than the river. Hence such evidence as we get from this study only weakly supports Kofoid's suggestion (1908) that sewage laden waters favor the increase in numbers of the group. At any rate there is clear. indication that the Chlorophyceae contribute largely to the plankton at all stations.

## Discussion of Species

Actinastrum hantzschii Lagerh.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 51,050 | 216,851 | 257,954 | 36,939 | 392,439 |

Identification satisfactory. The combined averages of two varieties of this species are given here. They are recorded separately in tables 1 to 5 . The only difference noted was in size, the one recorded as "large" being from two to four times as large as the typical form measured by length of the cell. As might be expected, it is largely responsible for the enormous average here as compared with the silk net average (338) in Illinois. Without it, however, the average is much greater, thus indicating a distinctly greater prevalence of the species here. It will be noticed too that Stockton Channel with its dilute sewage shows only about one-fourth of the average numbers produced by the other stations. The typical form was found occasionally at all stations throughout the year and it also reached its greatest abundance at the same three periods at all stations, i.e., March, June and September, the last showing the maximum. The large variety came in late (April and May), produced a weak pulse in July, and strong pulses in August and October; it dropped out again in November. Apparently temperature affected it much more
definitely than it did the typical form. Temperature is not the deciding factor, however, as is shown by the fact that this variety appeared last in the warmer water of Stockton Channel whence it also practically disappeared first. Its lower temperature limit seems to be about $14^{\circ} \mathrm{C}$. Stockton Channel was distinctly less favorable to the large form than to the typical form as is shown by the difference in numbers being greater there than at the other two stations (tables 1 to 3). Gradations in size between the two forms sometimes made sep. aration difficult. This species is evidently of considerable importance here.

Coelastrum microporum Naeg.

|  | Station I | Station II | Station III | Daily | Mourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average.............................................$~$ | 190,313 | 31,595 | 60,819 | 143,454 | 107,761 |

Identification satisfactory. Possibly includes at least two other species. Coenobia counted. Was not found at Stations II and III until July, and only five times before that at Station I. Maximum in September at all stations. Last appearance on December 14 at Station I, a month later than at the other places. Obviously favored by the slightly higher temperature of Stockton Channel. The difference in averages also suggests a distinct preference for sewage water. The maximum in September, when there was little disturbance of the waters, may indicate great susceptibility to action of strong currents and to rising and falling flood waters with their rapid changes in temperature. The September pulse is the only distinct one. In view of the enormous losses through the net, Coclastrum must be reckoned as an important planktont, though it is mainly limited to temperatures above $15^{\circ} \mathrm{C}$.

Crucigenia lauterbornii Schmidle.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average |  |  |  |  |  |

Identification fairly satisfactory. Recorded once from Station II, four times from Station III. Average of colonies for the year at Station III, 14,771. Clearly too small for accurate study by net methods. Occurrence in September and October.

Pediastrum boryanum Menegh.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 9,913 | 41,265 | 72,153 | 12,612 | 37,47 |

Identification inesact. Coenobia with bicornate marginal cells but without intercellular spaces were counted under this head. Va-
rious gradations and differences in detail make it seem probable, as Kofoid (1908) found in Illinois, that at least two or three species may at times be represented in the count.

Present throughout the year at all stations. Missing irregularly in almost every month at Station I, less often at the other two. Very few in January and December. Distinctly more numerous at all stations than in Illinois. Sewage water evidently less favorable for its development. All stations show a March pulse of some moment and another in September. There is some evidence of recurrent pulses corresponding to lunar eycles, strongest at Station II. Maxima in September at Stations I and II, October at Station III. The most consistent record at Station I is in March and November, indicating a preference in sewage water for temperatures from $13^{\circ} \mathrm{C}$. to $19^{\circ}$ C. Since the only misses at Station II are in May, June and December the same inference might be drawn as to temperature if it were not for the fact that the representation was well sustained through August to November. Somewhat similar conditions were shown by Station III. At all stations the fluctuations were well marked at all seasons. This was even more true of the daily series at Station I (table 4) than of the regular series. The fluctuations of the first half year may be mainly due to rise and fall of flood waters. It is more difficult to account for those of the succeeding four months under relatively stable conditions.

Pcdiastrum duplex Meyen.

|  | Station I | Station II | Station III | Dail | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | . 301,913 | 686,539 | 837,875 | 703,005 | 1,613,919 |

Diagnosis inexact. All the coenobia with more or less bicornate marginal cells showing distinct intercellular spaces were counted under this head. The assemblage as a whole is fairly constant to a provisional type and is quite possibly a single species. It was also different from the preceding form in its larger numbers, greater constancy of occurrence and greater regularity of development. Then too, this species has a more uniform chronology at all stations. There is a vernal pulse with maximum in March and an autumnal pulse with maximum in October. The marked decline after March is evidently chargeable in some way to flood conditions. The steady rise from July through August and September to the October maximum is just as evidently due to warmer temperature and greater stability. Though $P$ '. duplex is present at all stations through the whole year its optimum temperature is clearly near $20^{\circ} \mathrm{C}$. The comparatively
small numbers in Stockton Channel indicate that much sewage is detrimental. By similar reasoning it might be concluded that Smith Canal (Station III) supported a larger number than the river (Station II) because more organic matter is beneficial up to a certain point. Such a conclusion is not entirely warranted, however, because the river has an open channel with some flow while the other is closed at one end. This difference alone might amount to more than the organic content.

The indication of recurrent cycles due to lunar influence is more distinct with this form than the preceding though they are not at all regular even here (tables 1 to 3 ). The daily series shows an interesting suggestion of recurrent pulses at intervals of four to six days (table 4). In the hourly series (table 5), it appears that both P. boryanum and $P$. duplex reach maxima in the afternoon, suggesting diurnal influence of light and temperature. The data, however, do not warrant a conclusion. The hourly series needs extension.

There is no very definite relation of Pediastrum pulses to the volumetric pulses.

Pediastrum simplex Meyen.


Identification fairly satisfactory. Coenobia having marginal cells with one median spine were counted under this head. Probably only one species included. Fewer than either of the foregoing forms at all stations, except that it exceeds $P$. boryanum in both the daily and hourly series. Rare at Station I through the first six months, considerable numbers there in July, very few in August, maximum in September, rare thereafter. Occurrence at the other two stations similar, except that the numbers were larger. So far as the records go they indicate the same general characteristics of distribution as mentioned for the foregoing species.

It is evident that Pediastrum is a very important genus, both numerically and volumetrically in the local plankton. The greater numbers here, as compared with Illinois, indicate that local conditions are better suited to this genus, but it is also true that this may have been an exceptionally favorable year. It is worth noting in this connection that the representation of Pediastrum is proportionally greater here as compared with other forms found in both sections and this fact favors the view that it is really more characteristic of our plankton.

Since the genus shows very distinct response to flood conditions, perhaps it is worth while to emphasize that point, especially in view of the fact that there are no reliable water gauge or tide records available. The rapid decline of numbers in March follows very closely on the arrival of the heavy stream flow from the mountains. The rapid rise in numbers in June is just as closely connected with the disappearance of flood waters.

Raphidium polymorphum Fres.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 131,037 | 48,363 | 47,002 | 129,935 | 29,744 |

Diagnosis inexact. Probably includes two or more species. Occurrence rare in winter months at all stations. Thrives best in Stockton Channel (Station I). While the numbers are large at times the records are so fragmentary, particularly in view of the enormous numbers escaping through the net, that no generalization can be made. There is, however, some support for Kofoid's observation (1908) that the organism has an optimum temperature above $15^{\circ} \mathrm{C}$. Furthermore the larger numbers in Stockton Channel indicate the benefits of sewage.

Richtericlla botryoides Lemm.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 5,723 | 20,806 | 27,499 |  |  |

Identification satisfactory. Occurrence at very irregular intervals at all seasons of the year and at all stations. Rather large numbers at times. Records too scant to warrant conclusions. Percentage captured evidently very small.

Scencdesmus obliquus Kütz.

|  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Average | $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | Station I | Station II | Station III | Daily |
| Hourly |  |  |  |  |  |

Diagnosis sometimes confused on account of apparent intergradations. May perhaps include two or three species. Rare in January and February. Few in March, April, May and December at all stations. Maximum in June at Station I, although the numbers are best sustained there through September and October. Other stations also show greater constancy in that period. Vernal pulse very slight so far as silk net can show. Average silk net catch in Illinois was given by Kofoid (1908) as 673 . The largest Stockton Channel catch is about 500 times as great. If the silk net only captures a fraction of 1 per cent of the Scencdesmus present the numbers there were certainly enormous. In spite of the losses through the net it is at least safe to say that sewage and moderate temperature, $15^{\circ} \mathrm{C}$. to $20^{\circ} \mathrm{C}$. are
especially favorable to this form. There are recurrent pulses apparently but the uncertainty as to the percentage of the population on record makes all such points unreliable.

Scenedesmus quadricauda Breb.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 772,520 | 224,775 | 363,308 | 786,615 | 366,203 |

Diagnosis sometimes confused by intergradations. Only a small percentage in doubt. Losses through net certainly very lieavy, probably over 99 per cent according to Kofoid's results (1908). Hence inferences are to be made with caution as in case of the preceding species However, the greater continuity of the record for this species makes intelligent discussion possible.

A vernal pulse in March and an autumnal pulse culminating in October were quite well marked at Stations II and III. The vernal pulse is not clear at Station I and the autumnal maximum was reached in November. In no case was there very heavy representation until about June. At Station I a distinct decline through July and August suggests marked limitation by higher temperatures. Sewage water with temperature between $15^{\circ} \mathrm{C}$. and $20^{\circ} \mathrm{C}$. is evidently nearly ideal for Scenedesmus.

There is rather distinct indication of monthly pulses at all three stations (tables 1-3). These do not, however, correspond very closely with Pediastrum pulses, so it is hardly worth while to attempt to establish any connection with lunar cycles from present data.

This species was rarely absent from any station, never from Station I. Its appearance there in large numbers through the winter months clearly marks it as perennial in this locality. While the records of this and the preceding species are fragmentary so far as the whole population of the genus is concerned they show very clearly that the genus is of first rate importance in our waters through a large part of the year and especially where there is much organic matter.

Schroederia setigera Lemm.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 35,724 | 4,099 | 5,343 | 43,587 | 16,276 |

Identification satisfactory. Probably only small percentage captured by the net. Only recorded six times at Station III and three times at Station II. Irregular occurrence from last of April to end of year at Station I. Well represented through June and part of November. Not enough data to indicate more than a preference for dilute sewage.

## Selenastrum bibrainum Reinsch.

Identification satisfactory. Recorded five times from Station I in small numbers. Once at Station III. Evidently too small to be held by the net.

The following forms were recorded only once or twice in small numbers or else were noticed in living material.
Botryococcus sp. Once at Stations II and III. May lave been overlooked.
Bulbochacte sp.
Chodatella ciliata. Lemm. Once at Station III.
Crucigenia quadrata Morr. Once in daily series.
Crucigenia rectangularis Chod.
Crucigenia sp. Once at Stations II and III.
Dimorphococcus lunatus A. Br.
Draparnaldia plumosa Ag.
Golenkinia radiata Chod. Once at Stations I and III.
Lagerheimia wratislaviense Schroed. Once at Station I.
Lauterborniella elegantissima Schmidle. Once at Stations I and II.
Mouostroma sp. Once at Station III.
Neplrocytium agardhianum Naeg.
Pleurococeus sp.
Sorastrum spinulosum Naeg.
Stigeoclonium. (8) sp. Twice at Stations I and II.
Tetrastrum sp. Once at Station III.
Ulothrix sp. Twice at Station I. Doubtful identification.

## Bacillariaccae

Plates 7-9
Station I Station II Station III Daily Elourly
Number of forms recoriled $44 \quad 4 \quad 58 \quad 53 \quad 25$
Av. number per cu. meter $\ldots-\ldots 2,609,062 \quad 39,478,317 \quad 36,826,859 \quad 28,055,45929,029,248$
The diatoms are distinctly the most abundant group of organisms in San Joaquin plankton so far as present methods show. According to these records they outnumber Schizophyceae 14,33 and 18 to 1 ; Chlorophyceae 12, 28 and 21 to 1 , and Mastigophora 6, 14 and 7 to 1 at Stations I, II and III respectively, thus making them appear to have a still more prominent place in the plankton than they had in Illinois. There were always some diatoms in every collection at all stations throughout the year.

There was only one very distinct pulse at each station. At Station I this appeared in May, while at the other stations, where it was larger but less abrupt, it came in August. There is no way of telling from these records whether this difference was due to better temperature or to more stable conditions at those times. The fact that Smith Canal
resembles the river in temperature and is more like Stockton Channel in stability suggests a stronger influence of temperature. A glance at plates 7,8 and 9 shows a marked resemblance of all three stations in low production of diatoms through the first twenty and the last six weeks of the year. All show comparatively heavy production through all the intervening period though the culmination is more nearly median in this time at Stations II and III. This characteristic of distribution is common to all the algae. These major pulses are evidently composite though the exact location of their maxima may be due to single species. The diatoms as a group show more marked indication of pulses recurrent at approximately four weeks intervals than do any other algae.

One notable difference in the three stations is that the total production is less at Station I than at either of the others. Except for the difference in the location of the maxima this was shown throughout the year. The production in winter and spring is continuously less at Station I. Althongh the maximum came earlier it did not appear so abruptly nor decline so quickly as at both Station II and Station III. Sewage seems to be detrimental, as does a temperature above $23^{\circ} \mathrm{C}$. However, it is not certain that temperature is the determining factor, for stagnation of the water probably has a deleterious effect more quickly in sewage water than in water comparatively clean. It seems quite possible that simultaneous strong flood currents through Stockton Channel and the river would hold the maximum back to a similar date. Some light on this question may be expected from the 1914 series which covers a time of heavy flood. Again there is the possibility that predatory organisms, notably Entomostraca, cut down the supply of diatoms in spite of favorable conditions for development. The maximum for Entomostraca comes at the time of decline of production of diatoms in the summer (plates 3,9 ).

The fact noted by Kofoid (1908) that the volumetric measure shows mainly the zoöplankton is especially important here because there is not sufficient check by other methods to give any idea of the relative loss of phytoplankton through the net. The diatom count corresponds pretty closely, in its rise and decline, to the volumetric record (plates $1,7,8,9$ ) at Station II and III but no very definite relation appears at Station I. This might be expected from the fact that a moment's examination gives one the impression that the Stockton Channel plankton is distinctly animal and the river plankton mainly plant.

While the records of Station I might lead one to think there possibly were reproductive cycles and successive rest periods as suggested by Kofoid (1908) the records for Stations II and III point rather the other way. The strong and somewhat rapid rise through June and July to a maximum in August with a similar decline to the winter level suggests, indeed, that factors of the immediate external environment are responsible and that increase in numbers would continue indefinitely if the proper balance of temperature, food materials and natural enemies could be secured along with sufficient removal of injurious accumulations.

The number of forms of diatoms listed (98) may seem unwarranted inasmuch as there could be no hope of accurate determination of all the species present. The large list was the cumulative result of an effort to give expression to differences noted. The futility of it was not realized until too late to change it easily. After all, it happens that there are only a few forms found frequently and in great numbers and most of these can be approximately determined.

Twenty forms occur at one or more stations with sufficient contimuity to give the impression that they are true planktonts. These are Asterionella gracillima, Bacillaria paradoxa, Cyclotella spp. Cymatopleura solca, Cymbella affinis, Cymbella cymbiformis, Cymbella tumida, Fragillaria capucina, Gyrosigma kützingii, Gyrosigma scalproides, Mclosira gramulata, Melosira varians, Navicula alpestris, Navicula bacillum, Navicula gracilis, Nitzschia acicularis, Pleurostauron parvulum, Surirella spp., Synedra radians, and Synedra ulna. Distinctly the most important of these are Asterionella, Bacillaria, Cyclotella, Mclosira and Synedra, all of which are satisfactorily determined as to genus, though the species are sometimes uncertain. Most of the other genera just mentioned are also believed to be correctly designated. Much of the specific determination is largely guess work for the inexperienced observer under the conditions of counting. Fortunately such errors do not materially affect the generalizations within reach of this present study. Schönfeldt's "Bacillariales" in the Siussuasserflora Deutschlands series was the main dependence for identification.

## Discussion of Species

## Asterionella gracillima Heib.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 344,378 | 1,743,406 | 1,381,583 | 3,516 | 12,206 |

Identification certain. Records show numbers of colonies. Average size of colonies at Station I was three, at Station II four, at Station III three. Two forms were noted, a typical and a large form. They were recorded separately in tables 1 to 5 though the above averages are for the two combined. As in the case of Actinastrum the two were alike except for size but the larger was usually ouly about 50 per cent larger, rarely twice as large. There were sometimes all gradations in size but in most cases the distinction was plain. It will be noticed by reference to the tables that the pulses ran somewhat the same with both forms at all stations but that the large form appeared rather late at all stations and that it was only prominent in May and June at Stations I and II, June at Station III. Perhaps this condition warrants the inference that the large form is favored by a temperature above $20^{\circ} \mathrm{C}$. especially since the June maximum comes at the highest temperature ( 26.5 C . and $29^{\circ} \mathrm{C}$. respectively at Stations II and III) and very nearly so at Station I ( $22^{\circ} \mathrm{C}$.) 。

Both forms were practically absent at all stations through July, August, September and October. Both reappear in November. The typical form is abundant at all stations except during the four months just mentioned. At Station I it showed a strong pulse in January and a maximum pulse in March. Another strong pulse came in December. At both of the other stations the maximum pulse came in February and a very strong pulse in December. If both forms be counted together, Station II is seen to have almost as large a pulse in June as in February. The combination also shows a very large pulse in June at Station III. The abrupt disappearance of both forms in July at all stations must be due to some other factor than temperature since the temperature change is neither abrupt nor very marked. Stagnation may have a strong deterrent influence. There are fairly well marked, recurrent pulses at four to six weeks intervals at all stations.

Very few single cells of Asterionella were recorded. This can be accounted for in two ways: first, escape through the net; second, confusion with other single cells.

## Amphiprora alata Kütz.

|  | Station 1 | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 12,847 | 4,161 | 21,0.57 | 8,373 | 268,548 |

Identification satisfactory as to gemus and probable as to species. A. ornata is probably included in the count at times, as it was sometimes found by the writer and was also identified in 1915 catches by Professor C. J. Elmore. Probably heavy loss through the net. So far as net catches show it is not so very important. Occurrence rather scattering at all stations though fairly constant in latter part of the year at Station I. Maximum at Station I in May, at other stations in June.

Bacillaria paradoxa Gmel.

|  | Station I | Station II | Station III | Daily | Ifourly |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Average ..................................... | 8,547 | $1,6 \pm 7,817$ | 984,810 | 28,857 | 254,916 |

Identification positive. Colonies usually large, hence probably very little loss through the net. Occurrence scattering at Station I, fairly constant through the year at Station II and III where it was abundant through the second half year. Maximum in July at Station I, August 2 at Station II, and August 9 at Station III. Conspicuous minor pulses in April and December at Station II; April, September and December at Station III. The sudden jump into prominence at Stations II and III in July and the reappearance at Station I, where it had been absent more than two months, seems to indicate farorable influence of stagnant water. Retardation by sewage is also indicated. Higher temperatures may have a bearing, though the temperature change is not nearly so abrupt as the change in numbers of Bacillaria. There are no very strong indications of recurrent pulses at any station, but Station II shows them slightly.
B. paraloxa is certainly one of the most important planktonts of the river after the flood season. Colonies containing less than ten individual cells were comparatively rare, certainly not more common than those consisting of more than twenty-five. It would be very safe to estimate the average number of cells captured at ten times the average recorded for the colonies. This would bring $B$. paradoxa into the foremost rank of planktonts, numerically, at Stations II and ILI. Only C'yclotclla sp. and Mclosira gramulata would clearly exceed it in numbers by that reckoning. The other forms which might do so are not identified with sufficient certainty.

Cocconeis pediculus Ehrbg.
Determination probable. May include other species. Losses through net undoubtedly heavy. According to the records not a very import-
ant planktont. Occurs five times at Station I, thirteen times at Station II with a maximum of 105,792 at the end of May, and four times at Station III.

Cyclotella spp.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 15,052,042 | 6,335,253 | 6,805 c72 $^{1}$ | 191 | ,415,7 | species, certainly two. Impossible to distinguish species completely while counting though the attempt was made throughout the whole series for 1913. It was finally decided that more accurate conclusions were probable if all counts were thrown together. So few individuals are retained by the net that any conclusion must be taken with caution even then. Present through the year in all collections at all stations. Wide range in size. Most of them nearer the smaller limit as noted by Kofoid (1908).

Maximum numbers at Station I in June, at both of the other stations in October. One minor pulse is of unusual interest because it falls on January 19 at all three stations (tables 1-3). There is no great change in temperature to account for it but it came after a week of cloudy weather with more or less rain on the five days immediately preceding. It would seem that the condition of falling flood is responsible in this case. Possibly the June maximum at Station I can be explained in the same way. No such local conditions apply in case of the October maximum at Stations II and III. There was, however, about that time higher water than there had been for several weeks previous, due to the inflow from mountain tributaries enlarged by the early mountain rains.

So far as our present records show, the optimum temperature seems to be nearer $20^{\circ} \mathrm{C}$. than $15^{\circ} \mathrm{C}$. as found by Kofoid (1908) in Illinois. Sewage contamination, stagnation and flood waters all appear to be factors of marked importance in determining maximal production of this diatom. There is no indication of a maximum corresponding to the volumetric maximum (plate 1) such as was observed in Illinois, but this may be due to the small numbers caught as compared with those escaping.

Cymatopleura solea Breb.


Identification satisfactory. Recorded only six times at Station I, but found at intervals through whole year at other stations. Numbers
rather small. Loss through net considerable. Maximum in May at Station II with a well defined pulse. Maximum in August at Station III where there were no definite pulses. May be adventitious. Temperatures at maxima were above $20^{\circ} \mathrm{C}$.

Cymbella affinis Kuitz.

|  | Station I | Station II | Station III | Daily | Hourly |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average |  | ........................................... | 1,283 | 73,671 | 10,276 | 516 | 20,345

Identification uncertain. This was a very small Cymbella relatively few of which could have been retained by the net. Recorded only eleven times at Station I. Abundant in March, April, May and June at Station II but missing in January, February and December. Scattering in other months. Maximum on May 31 in a well developed pulse. More irregular in occurrence at Station III where the maximum came in April. Probably an important planktont numerically. Evidently not favored by sewage.

Cymbella cymbiformis Kütz.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average......................................$- ~$ | 446 | 8,382 | 4,331 | 310 | 4,561 |

Identification uncertain. Probably includes more than one species not distinguishable while counting. Recorded thirteen times at wide intervals at Station I, in small numbers. Small numbers recorded in every month of the year at Stations I and III with a fairly constant record through May and June at Station II. Apparently of minor importance.

Cymbella tumida Breb.

|  | Station I | Station II | Station III | Daily | Hourly |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average | $-\ldots-\ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~$ | 2,245 | 23,677 | 3,547 | 619 | 5,546 |

Identification uncertain. Probably includes more than one species. Records seattering and in small numbers at Station I. Small numbers but fairly constant, May to September, at Station III. Recorded in every month except January and September at Station II. Maximum in May. Probably of minor importance.

Epithcmia ocellata Kütz.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| Average........................................$~$ | 1,015 | 15,713 | 3,579 | 413 | 8,630 |

Identification fairly satisfactory. Probably two other species included. Loss through net heavy. Numbers small and records seattering at Stations I and III. Representation fairly constant at Station II except in January, February and December. Maximum in May on a well marked pulse. May be adventitious since the maximum comes on the waters of the mountain flood.

Fragillaria capucina Desm.


Identification satisfactory. Colonies usually rather large, seldom less than six cells. Most of the colonies probably retained, though loss of small colonies and single cells may have been heavy. Numbers very small at Station I and records few after April. Numbers larger and occurrence more constant at Stations II and III, though frequently missing there after August. Maximum in May at both places. No other pulse of particular note. Apparently not very important.

## Fragillaria crotonensis Kitton.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 92 | 4,516 | 7,888 |  |  |

Identification satisfactory. Colonies not very large. Occurrence twice at Station I, seven times at Station II at wide intervals and nine times at Station III. The records at Station III are mainly in September, October and November. Evidently unimportant here in spite of considerable escape from net in catches.

Fragillaria spp.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 92 | 27,832 | 290 | 103 |  |

Probably most of those included under this heading belonged to $F$. virescens. Occurrence only twice at Station I. Represented at Station II by some fairly large numbers widely seattered. Colonies small. Apparently adventitious.

Gomphonema constrictum Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average....$-\ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~$ | 1,322 | 22,094 | 282 | 103 | 8,138 |

Identification uncertain. Numbers small. Losses through net heavy. Recorded seven times at Station I at irregular intervals. Well represented in May and June at Station II. Recorded seven times at Station III in very small numbers.

Gomphonema spp.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 65 | 6,419 | 5,000 | 103 |  |

Under this heading are included some members of this group which could not be placed satisfactorily. Probably most of them were $G$. subclavatum. Apparently there were five or six species of this genus observed at various times and it probably has some importance though it may be adventitious.

Gyrosigma acuminatum Kütz.


Identification uncertain. Recorded seven times at Station I at wide intervals, twelve times at Station II and Station HII. Grouped in August at Station III. Considering amount of loss through net may have some importance though evidently adventitious.

Gyrosigma kützingii Grun.

|  | Station I | Station II | Station III | Daily | IIourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 3,330 | 102,723 | 70,433 | 1,032 | 87,974 |

Identification probable. Losses through net very heavy. Recorded frequently in small numbers in every month except February, June, and July at Station I. Maximum there in September. Occurred regularly with only one or two breaks at Stations II and III. Maximum at Station II in late August in a well developed pulse. Maximum at Station III in late July at the beginning of a similar pulse which almost reached the maximum again at the same time with Station II. Minor pulses at from two to six weeks intervals through most of the year were rather prominent at both stations. Apparently this is a planktont of some importance throughout the year since the percentage retained by the net is undoubtedly small.

Gryrosigma scalproides Rabenh.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average ........................................ | 13,733 | 31,294 | 206,444 | 826 | 480,133 |

Identification satisfactory. May include G. spenceri W. Sm. Loss through net heavy. Records seattering at Station I especially in first seven months. Maximum in August with a well developed pulse. Recorded in every month up to September and not later, at Station II, with a sharp pulse in August. Recorded every month after January and February at Station III though seattering until late July. Very strong pulse in August reaching apex on August 23. Seems to be, like other Gyrosigma, a seasonal planktont favored by temperatures above $20^{\circ} \mathrm{C}$. and injured by sewage.

Melosira gramulata Ehrbg.
Station I Station II Station III Daily Hourly
Average
$2,305,175 \quad 25,163,409 \quad 22,821,226 \quad 1,880,779 \quad 18,144,471$
Identification certain. Mostly variety spinosa. Loss through net high. Kofoid (1908) says about 98 per cent in Illinois and it is doubt-
less nearly the same here. His observation that silk catches showed the same seasonal routine as the filter catches makes it seem probable that we can use our counts here with some confidence in the conclusions they may indicate. M. granulata is recorded in every collection through the whole year at all stations. At all stations the numbers are comparatively small until April, though the million mark was reached a few times before that date at each. The earliest count of this size was at Station I in January. The maximum at all stations falls on September 6, after a considerable period of rather high temperatures. A temperature of $25^{\circ} \mathrm{C}$. or higher and stagnation of the water are at least two favorable factors in production. Since Station I has less than 10 per cent of the number at the other stations at that time it seems equally clear that sewage is detrimental. So far as the 1913 collections show, there is a rather definite growth period in September, though there are several prominent pulses through the warm season just as there were in Illinois. Minor pulses at from two to six weeks intervals were quite prominent characteristics of the occurrence of this organism everywhere. The steady decline from the September maximum in spite of occasional minor pulses strongly supports Kofoid's view that temperature is the most potent factor influencing production.

The time of maximum production corresponds fairly well with the time of greatest production of total plankton mass (plate 1), though the largest number is reached a little later. It is, however, coincident with the maximum of the total count of organisms. To this last total M. gramulata contributes largely since it is the most abundant local planktont at Stations II and 111. Owing to its large numbers it also contributes a very considerable mass.

There was a good deal of variability in this species. Spines varied from very coarse, prominent projections to none. Granulation was very prominent in some cases, absent in others. There was a wide variation in size. This was so great that for a time a small form was listed as M. granulata A and counted separately (tables 1-3). By so doing the main count was fairly well restricted to the more nearly typical granulata and to the variety spinosa. Sometimes these seemed to be nearly equal in numbers but usually the spinous form was less noticed than the other.

Various encumbrances of the filaments were common. None of these were certainly identified. The only one counted was a small Rotifer egg listed as Diurella sp., by guess.

No effort was made to determine the average number of cells in a filament but it was probably not less than five. The cells composing a filament were much longer in proportion to width than they were figured in the literature consulted. A common form about the time of maximum numbers had cells abont five times as long as wide.

Melosira varians Ag.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 4,682 | 233,227 | 93,884 | 619 | 9,12 |

Identification satisfactory. Losses through net heavy. Occurrence at Station I quite irregular in small numbers, with a maximum in April. Main production at other stations in first six months, two or three misses after that time at both. Maximum at last of May in Station II after steady increase for several weeks. Maximum in March at Station III, appearing rather abruptly. Recurrent pulses at two to six weeks intervals at both stations. A large September pulse is only indication of response to conditions similar to those of M. gramelata. In fact the most favorable temperature seems to be near $18^{\circ} \mathrm{C}$. or between $12^{\circ} \mathrm{C}$. and $20^{\circ} \mathrm{C}$. There is a strong pulse in late December at Station II which follows about a month of temperatures below $10^{\circ} \mathrm{C}$. Hence it is certain that the two species are distinctly different in the responses to temperature. While M. varians is overshadowed in productiveness by M. gramulata, it is yet to be reckoned an important planktont here.

Navicula affinis Ehrbg.
Identification doubtful. Losses through net heavy. Recorded eleven and eight times at Stations II and 111 respectively in rather small numbers. Not sufficient data for discussion.

Navicula alpestris Grun.

|  | Station I | Station II | Station III | Daily | Mourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 6,746 | 76,645 | 29,979 | 3,929 | 55,357 |

Identification doubtful. Losses through net very heavy. Occurrence at Station I in small numbers and very scattering through the year. Not much better record at Station III. Appears in March at Stations II and III. Maximum at Station II on May 31 after two months of fairly steady increase, followed by slow decline to August. Seems to be favored by moving water. Its long continued presence seems to indicate that it is a true planktont, and it is probably of considerable importance.

## Navicula bacillum Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 56,910 | 169,399 | 42,869 | 16,079 | 65.1 |

Identification doubtful. Percentage retained by net must be very small. It may seem a waste of time to list so many diatoms of uncertain identity, especially of the smaller forms, but it is the writer's opinion that to do so may serve two purposes : first, to give a faint idea of the large number of forms present; second, to show how very many forms there are beyond the reach of ordinary quantitative methods. For example the small diatom listed under this present heading was quite probably present in one hundred times the numbers recorded, possibly more. It appears in April at all stations and is erratic in appearance and numbers after that. The maximum appears in September at Station I and Station III but in June at Station II. In the circumstances no safe conclusions can be drawn from such a small organism.

## Navicula didyma Ehrbg.

Identification doubtful. Losses through net heavy. Recorded once at Station I, ten times at Stations II and III, always in small numbers.

## Navicula dubia Ehrbg.

Identification doubtful. Losses through net heavy. Recorded six times at Station I, four times at Station II and five times at Station III in small numbers.

Navicula gracilis Ehrbg.

|  | Station | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 209,568 | 722,906 | 1,514,448 | 166,20 | 1,177,953 |

Identification uncertain. Losses through net very heavy. Recorded in every month at all stations. Maximum in August at all stations on a rather abrupt rise in numbers. Certainly favored by higher temperatures and quiet water but hindered by sewage. These points are shown by the remarkable development at Station III with quiet water but with little sewage and by the fact that the large numbers shown by Station II through May probably came from the washing out of some sloughs where there had been a time of quiet just preceding. Recurrent pulses are fairly well marked. This form is evidently very important numerically. The count may include several species.

## Navicula sp.

Under this head are included a number of forms thought to be Navicula. Some of these were first recorded as $N$. oblonga, $N$. pusilla, $N$. rhomboides and $N$. smithii, but the numbers were few and the identity uncertain, so it was more convenient to place them this way. There is nothing of particular importance to be obtained even from the combined record.

Navicula viridis Ehrbg.


Identification satisfactory. Losses through net probably heary. Numbers very small at Stations I and III. Maximum in May at Station II where the numbers were larger and there were few collections showing none. For purposes of discussion it is unfortunate that the only Navicula named with confidence presents too few numbers to warrant much attention.

Nitzschia acicularis Kütz.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 2,878,662 | 316,042 | 476,223 | 4,390,368 | 600,166 |

Identification satisfactory. Probably very small percentage retained by net. Present throughout the year at all stations. Maxima in June at Stations I and II, in late August at Station III. Numbers well sustained through summer at all stations, with a conspicuous September pulse. Evidently a summer planktont favored by temperatures above $20^{\circ} \mathrm{C}$. Just as evidently favored by the sewage at Station I as shown by the enormous averages there in comparison with the averages at other stations. Recurrent pulses fairly well marked. Certainly of great numerical importance though its small size would keep the volumetric showing low.

## Nitzschia spp.

Under this heading are discussed four or more species of Nitzschia all but one of which are doubtful as to identification. Nitzschia angularis was satisfactorily determined but $N$. sigma, sigmoidea and vermicularis were all somewhat donbtful, at least sometimes. They were all listed separately in the tables but the occurrence was so erratic and the probable losses from the net so heavy that it hardly seemed worth while to attempt to draw any conclusions from the records of any of them. It might be noted, however, that all Nitzschia are favored by higher temperatures, but that none of these do well in sewage, $N$.
acicularis being exceptional in that respect. It may also be the only true planktont, all the others being adventitious.

Pleurostauron parvulum Grun.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average .......................................... | 34,379 | 261,925 | 149,609 | 310 | 28,521 |

Identification probable. Probably very small percentage retained by net. Almost entirely absent from Station I through July, August and September. Few during last half of year. Maximum in May at Stations I and II and in March at Station III. Heavier representation in first half year at all stations. Hence it appears to be favored by flood waters and lower temperatures. Larger numbers at Station II and III indicate bad effects of sewage at Station I. Must be of numerical importance.

Stauroneis phoenicenteron Ehrbg.

|  | Station | I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 115 |  | 5,746 | 1,320 |  | 8,138 |

Identification satisfactory. Losses through net probably heavy. Found at various times of year at all stations but in small numbers. Recorded only six times at Stations I and III. Maximum in May at Station II. Probably adventitious.

Surirella spp.

|  | Station I | Sfation II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 14,270 | 753,747 | 404,242 | 12,303 | 305,828 |

Genus identification certain. Probably at least four species included under this heading. Losses through net heavy. Present through year at all stations. Maximum in August at Stations If and III. The representation at Station I was light and scattering and though the maximum came in May it cannot be considered very important, especially since large pulses came at that time at the other stations. This planktont is evidently favored by temperatures above $20^{\circ} \mathrm{C}$. and retarded by sewage. Both in numbers and volume it makes an important contribution to the plankton population.

Synedra radians Kütz.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average $-\ldots-\ldots-\ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~$ | 389,043 | 144,508 | 194,502 | $1,126,141$ | 486,236 |

Identification doubtful. Probably very small percentage retained by net. This is one of those very small forms so difficult to handle in a count. Its appearance on the record at mid-July is simply due to the fact that its continued presence seemed to demand some definite notice. The occurrence before that date must be ignored because of
failure to decide to record it. There is enough record to indicate that it is a warm weather form and not nearly so well represented in the colder months.

Syncdra ulna Ehrbg.

|  | Station I | Station II | Station III | Daily | Ilourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 655,730 | 730,339 | 744,781 | 2,351,197 | 305,169 |

Identification uncertain. Probably includes at least three or four other species with possibly some similar genera. This probably accounts for the similarity of numbers and distribution at all stations. Maximum in August at Stations II and III, in June at Station I with a large pulse in August. Certainly favored by higher temperatures. Losses through net heavy. An important local planktont.

## Tabcllaria spp.

Identification of genus satisfactory. Occurrence at all stations rare. Evidently unimportant here. It was thought that both $T$. fonestrata and T. flocculosa were recognized a few times. This genus is apparently no more at home here than Kofoid (1908) reported it to be in Illinois.

The following forms of Bacillariaceae were recorded only once or twice at the three stations, or were thought to be recognized in living material:

```
Amphora coffeaeformis Ag . Once, I and twice, III.
Amphora sp. Once, I and III.
Cocconeis placentula Ehrbg. Once, II.
Cocconeis sp.
Coscinodiscus sp. Once Stations I and III and daily.
Cyclotella schrocteri Lemm. Once, I.
Cymbella helvetica Kütz. Once, II and IIT.
Cymbella lanceolata Ehrbg.
Cymbella parva W. Sm. Twice, I, once at II and III.
Cymbella pusilla Grun.
Cymbella prostrata Berk.
Denticula sp.
Diatoma sp.
Diatoma vulgare Bory. Twice, I, once at III.
Diatomella sp. Grev. Once, I and II.
Epithemia granulata Ehrbg.
Epithemia sorex Kütz. Once, III.
Epithemia sp.
Epithemia turgida Ehrbg. Once, II.
Eunotia flexuosa Kütz. Once at Station I, twice at III.
Eunotia major W. Sm. Once, III.
Eunotia pectinalis Kütz.
Fragillaria mutabilis.
```

Gomphonema acuminatum Ehrbg. Once, III.
Gomphonema olivaceum Lyngb. Twice, III,
Gomphonema subclavatum Grun.
Gyrosigma attenuatum Kütz. Once, III.
Mastogloia braunii Grun. Twice, II and JII.
Mastogloia sp. Once, II.
Melosira subflexilis Kütz. Once, II.
Navicula helvetica J. Brun. Once, III.
Navicula lanceolata Kütz. Once, II.
Navicula oblonga Kütz.
Navicula pusilla W. Sm.
Navicula rhomboides Ehrbg.
Navicula smithii Breb.
Nitzschia dubia W. Sm. Once, II.
Nitzschia gracilis Hantzsch. Once, III.
Pinnularia acrosphaeria Breb. Once, III.
Pleurostauron obtusum Lagerst. Once, I and II.
Rhizosolenia longiseta Zach. Once, I and III.
Rhopalodia gibba O. Müll. Once, I, twice, II.
Rhopalodia paralella O. Müll. Once, II.
Stephanodiscus sp. Twice, I, once, II.
Surirella spiralis Kütz. Once, II.
The following list of forms, identified by Professor C. J. Elmore of Grand Island College in Nebraska from material collected in 1915 and sent to him for naming, will prove of interest for comparison.

```
Achnanthes lanceolata (Breb) Grun.
Amphora ovalis.
Asterionella gracillima Heib.
Amphiprora ornata Bailey.
Bacillaria paralloxa Gmel.
Ceratoneis arcus Ehr.
Cocconeis perliculus Ehr.
Cyclotella meneghiniana Kütz.
Cymatopleura solea (Breb) Grun.
Cymatopleura elliptica (Kütz) W. Sm.
Cymbella gastroides Kütz.
Cymbella lanceolata.
Cymbella pusilla.
Diploneis (Navicula) elliptica.
Eneyonema turgidum (Greg) Grun.
Epithemia gibba (Ehr) Kütz.
Epithemia ocellata Kütz.
Epithemia turgida Ehr.
Eunotia robusta.
Fragilaria capucina Desm.
Gomphonema montanum.
Gomphonema constrictum Ehr.
Gyrosigma kützingii (Grun) Cl.
Gyrosigma parkerii.
Gyrosigma sealproides (Rabenh) Cl.
```

```
Gyrosigma spencerii (W. Sm) Cl.
Homoeocladia (Nitzschia) acicularis.
Homococladia amphioxys.
Homococladie obtusa.
Homococladia sigma.
Homococladia spectabilis.
Homoeocladia tryblionella.
Melosira granulata (Ehr) Ralfs.
Melosira crenulata Ehr.
Melosira distans. Kütz.
Melosira varians Ag.
Navicula ambigua.
Navicula borealis.
Navicula cryptocephala Kütz.
Navicula iridis.
Navicula fulva.
Navicula lanceolata Kütz.
Navicula parva (Ehr).
Navicula pupula Kütz.
Navicula pygmaea.
Navicula rhynchocephala Kütz.
Navicula viridis (Nitz) Kütz.
Nitzschia vermicularis Kütz.
Odontidium elongatum (Ag) Kuntze.
Sphinctocystis librilis.
Stauroneis anceps.
Stauroneis phoenicenteron.
Surirella biseriata.
Surirella ovalis.
Surirella robusta.
Surirella spiralis.
Synedra acus Kuitz.
Synedra capitata.
Synedra radians Kütz.
Synedra ulna Ehr.
Tabellaria fenestrata Kütz.
```

Conjugatae

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of forms listed.... | 10 | 15 | 13 | 5 | 5 |
| Average number of indi- <br> viduals per cubie meter | 121,653 | 331,687 | 420,463 | 26,827 | 931,948 |

The representation for this group is mainly desmid but there were a few filamentous forms such as Spirogyra included occasionally. These latter occurred in such small quantities, however, that they had no appreciable volumetric effect and the count serves to show their relative importance quite clearly. Including one form of Spirogyra there are seven species of Conjugatae listed here which will be given separate discussion. Even among the desmids the number of individuals was not great.

## Discussion of Species

Closterium acerosum Ehrbg.

|  | Station I | Station II | Station III | Daily | Ifourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average.........................................$~$ | 539 | 7,108 | 6,161 | 206 | 10,961 |

Identification uncertain. Losses through net probably large. Occurrence rare, irregular and in small numbers at Station I. Found at almost all times of year at other stations. Maximum in September at both. Evidently favored by higher temperatures.

Closterium acuminatum.
Identification doubtful. Recorded three times at Station II and five times at Station III.

Closterium rostratum Ehrbg.

|  | Station I | Station 11 | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 21,580 | 8,322 | 4,494 | 929 | 3,045 |

Identification satisfactory. Losses through net probably large. Recorded only seven times at Station II, five times at Station III and occurrence rare at Station I until late summer. Maximum at Station I in August. Distinctly a summer planktont. Apparently favored by sewage.

Mougeotia sp.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average .......................................... | 75,517 | 262,429 | 269,657 | 23,118 | 793,870 |

Identification of genus satisfactory. This was decidedly the most abundant of the filamentous Conjugate. Rather prominent at all stations in July, August and September with maximum in last week of August or first of September. Not found often or in large numbers at other times. Favored by temperatures above $20^{\circ} \mathrm{C}$. and somewhat hindered in development by sewage.

## Spirogyra protecta Wood.

Identification uncertain. Occurred once at Station I, five times at Station II and nine times at Station III. Never in very large numbers. So far as catches show it is unimportant in every way.

Staurastrum sp. A.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 8,741 | 97,529 | 128,529 | 1,548 | 87.419 |

Genus certain. Species description not found in any literature available. Only the more voluminous references at the University of

California have been consulted, however. This Staurastrum is the most delicate and graceful of any ever observed by the present writer. Losses through net probably very heavy. Occurrence as recorded at Station I, small in numbers and seattered; May is the only month yielding none. More abundant at other stations but missing in January and May. Maximum in September at all stations. This comes after several weeks of strong development at Stations II and III. Evidently favored by higher temperatures, $20^{\circ} \mathrm{C}$. or above, but hindered by sewage. Probably of considerable importance in summer.

## Staurastrum spp.

|  | Station I | Station LI | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Arerage | 3,566 | 38,901 | 37,338 | 826 | 12,207 |

Probably three or more Staurastrum are included under this heading. There were a large number of different kinds found at various times at different stations. All seem to be rather closely confined to the warm season and to the water with least sewage.

The following forms of Conjugatae were recorded only once or twice or were thought to have been recognized in living material.

Closterium gracile Breb.
Closterium lineatum Ehrbg. Once, III.
Closterium lunula Ehrbg. Once, II, and III.
Closterium obtusum Breb. Once, II.
Cosmarium botrytis Menegh.
Cosmocladium saxonicum DeBy.
Didymoprium sp.
Docidium sp.
Sphaerozosma vertebratum Ralfs.
Spirogyra fluviatilis Hilse. Once, II.
Spirogyra majuscula Kütz. Once, II.
Spondylosium depressum Arch.
Staurastrum alternans Breb. Once, III.
Staurastrum cuspidatum Breb.
Staurastrum eustephanum Ehrbg. Once, I and Daily.
Staurastrum macrocercum.
Staurastrum vestitum Ralfs.
Xanthidium sp.
Zygnema sp.

## CHLOROPHYLL BEARING ORGANISMS

So few flagellates were found that were clearly non-chlorophyll bearing, there was so much difficulty in separating the two types, and the characteristics of the Mastigophora so clearly resembled those
of the algae, that it was finally decided to give a list of totals of algae (except Bacteriaceae) plus Mastigophora under the heading of chlorophyll bearing organisms (tables 1-5). This plan was also followed with the graphs in plates 3 to 6. A separate list of algae is given under headings of Total Phytoplanktonts (text table 1, p. 31), but no graph was made for it as the slight apparent difference did not seem to warrant it.

It will be noticed that this combination shows marked coherence through the year. There is a rather prominent pulse in every month through the first nine months at Stations I and II and in almost every month at Station III. There is steady increase in numbers from May to September at Stations II and III followed by a steady decline to the end of the year, and at Station I the numbers were well maintained from May to September with a steady decline following. The most striking difference in the three stations concerns the maxima. The maximum came in June at Station I and in September at the other two. The June maximum at Station I was due, however, to the enormous numbers of Cyclotella at that period. With Cyclotella exerting less influence on the totals or entirely omitted, the general features of occurrence look much the same at Station I as at the other two stations.

The response to higher temperatures is quite noticeable at all stations, the larger numbers being especially characteristic of the time from June to November when the temperature was usually near or above $20^{\circ} \mathrm{C}$. This, however, is also the time at which there was least disturbance of the water.

The recurrent pulses were very striking and may be conveniently illustrated by Station II where the dates and intervals ran as follows: January 19, three weeks to February 8, three weeks to March 1, four weeks to March 29, three weeks to April 19, four weeks to May 17, three weeks to June 7, three weeks to June 28, five weeks to August 2, three weeks to August 23, two weeks to September 6, five weeks to October 11, seven weeks to December 6.

Fluctuations at Station II and III also showed a very close correspondence with the volumetric record. This is probably because the algae and Mastigophora furnished a large part of the volume at those stations (plates 1, 4, 5). Such a conclusion is supported by the fact that there is no such correspondence at Station I where the Rotifera and Entomostraca furnish much of the volume (pl. 1, 3).

## PROTOZOA

|  | Station I | Station II | Station III | Daily | Hourly |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Number of forms recoriled | 75 | $5: 3$ | 59 | 26 | 34 |
| Average number of indi- <br> viluals per cu. meter ...... | $5,194,416$ | $3,494,065$ | $3,634,131$ | $3,850,462$ | $7,908,872$ |

The number of forms recorded is 116 but that is certainly considerably less than the real number of species. Identification was very difficult, not only of species but of genera. Many species were indistinguishable under conditions of counting and some that were recorded for a time were abandoned later when high power study showed how great the error was. Distortion of preserved material was a great factor affecting accuracy of counting of Protozoa. Even such strikingly different species as the two stentors, ( $S$. coeruleus and S. miger) could not be separated with full confidence during the count. For these reasons the list of Protozoa shows more often than that of algae names which include several forms within rather ill defined limits.

Notwithstanding the great diversity of characteristics shown by several prominent protozoan planktonts, the distribution of totals through the year at different stations deserves some attention. The totals of non-flagellated Protozoa at all stations agree in that there is light representation in January, February and December, with an equally well defined heavy representation from May or July to midNovember. Station I averages about 60 per cent higher on its totals than either of the others but its maximum is only slightly greater. The maximum for Station I falls on August 13 but it is almost equalled by a similar pulse in November. The maximum for Station II comes on October 4 and for Station III on August 15, but the latter record is almost equalled by a further pulse on October 4. There is then substantial agreement of all stations in making the best showing as to large numbers and continuity of numbers in late summer and through autumn, when temperatures are rather high, the water quiet and the organic content great.

The inclusion of the Mastigophora with the Protozoa almost destroys the definiteness referred to above. Such a combination shows at Station I a fairly well marked pulse in January, another in March and another in April, followed by a steady increase up to the maximum on September 9. There were then two moderate pulses on the decline, which was otherwise fairly steady to the end of the year. At

Station II there were prominent pulses in January, February, March, May, July and October, while at Station III the prominent pulses came in February, March, April, July, August, September and October. It is thus apparent that the combined history is considerably different at the different stations and that the inclusion of the Mastigophora destroys the coherence of the Protozoa as a group. The totals are given both with and without the Mastigophora in tables 1 to 5 and the reader may suit himself with the list of his preference. See also Plates 12-14.

## Mastigophora

|  | Station I | Station II | Station III | Daily | Hourly |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Number of forms recorded | 33 | 30 | 31 | 20 | 20 |
| Av. number per cu. meter-. | $3,708,569$ | $2,629,112$ | $2,631,702$ | $1,853,429$ | $3,931,890$ |

Almost all of the Mastigophora were too small to be retained by the silk net to any great extent. This is probably the main reason for the fact that the averages recorded are exceeded from twenty-five to forty times by Kofoid's averages (1908) in Illinois. It is certainly true that other factors might be expected to operate, as mentioned before in this paper, but this is so obviously sufficient in itself to account for the difference that it seems useless to inquire further.

Mastigophora were present at all stations throughout the year, although the numbers were quite small for the first few catches. This may be partly due to the fact that the net used before January 15 was of slightly larger mesh than the regular number 25 which was ready by that date. By far the larger proportion of the flagellates came in the last six months, even December showing much more than June. There were, however, two or three strong pulses in January and February at all stations. Hence the general indication seems to be that quiet water or even stagnation is about as important as temperature in controlling production. The greater numbers at Station I also indicate that sewage is favorable to this group. The maximum at Station I was reached in September, at Station II in October and at Station III in November. These dates are largely due to Chromulina sp., a form very unreliable for suggesting conclusions, both on account of its small size and the uncertainty of identification.

The recurrent pulses of Mastigophora were not so distinct as they were in the case of the total chlorophyll bearing organisms. The semi-weekly collections at Station I seem to obscure them rather than make them more distinct. At any rate the intervals vary from eleven to forty days in a rather indefinite way. Indications at the other
two stations are not much better. Evidently we have again too much influence of Chromulina in the record. Since the only other flagellate showing very large numbers is Trachelomonas, itself very small, it seems hardly worth while to attempt any conclusions from net collections.

## Discussion of Species

Ceratium hirundinella O. F. Mïll.
Identification satisfactory. Loss through net probably very heavy. Occurrence rare and in small numbers, four times at Station I in September and October. Five times at Station II in June, July, August and September. Three times at Station III in July, September and October.

## Cercomonas crassicauda Duj.

Identification satisfactory. Loss through net very heavy. Occurrence rare and in small numbers. Recorded at Station I nine times at wide intervals from July to the end of the year. Twice at Station II in July and September. Five times at Station III in June, August and September.

## Cercomonas sp.

Identification of genus doubtful. Recorded seven times at Station I in August and September, and once at Station III.

Chlamydomonas sp.
Identification of genus doubtful. Recorded eight times at Station I from July to December, five times at Station II from May to October and twice at Station 11 in February and May.

Chromulina spp.

|  | Station I | Station II | Station III | Daily | Hourly |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Average | .......................................$~$ | $2,760,969$ | $2,205,384$ | $2,241,982$ | $4,136,123$ |
| $30,256,512$ |  |  |  |  |  |

Identification uncertain. May include various minute genera not readily distinguished while counting. Percentage retained by net surely very small. Found in every month at all stations but occasionally not recorded in the first half year. Constantly present after July. Maximum at Station I on September 13, Station II on October 26, and Station III on November 22. Evidently favored by warm and quiet water and not much affected by sewage.

## Cryptomonas sp.

Identification doubtful. May be confused with some other forms. Loss through net heavy. Recorded at Station I in considerable numbers in latter part of year. Only once at Station II and four times at Station III. Distinctly favored by sewage and low temperature but relatively indifferent to quiet water by this showing, which agrees pretty well with Kofoid's findings (1908) in Illinois.

Dinobryon sertularia Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: |
| A |  |  |  |  |  |

Identification of species frequently uncertain. Loss through net probably large. Occurrence rare at Station I and in small numbers of colonies at that. Recorded eleven times at Station II in four, well marked groups at the last of March and May, first half of June and through most of November. Maximum in May and June. Recorded frequently at Station III from March to July and again in November. Absent at other times. Favored by cooler water or flood time and hindered by sewage. Although the numbers here were small the distribution resembles that recorded for Illinois most remarkably. On the present showing it cannot be regarded as a very important planktont here. While not followed very far, the general impression given by the condition of the colonies here leads to support of Kofoid's contention (1908) that the synonymy of this species has been needlessly extended and that all the variant forms might be included under one species name with advantage.

Eudorina elegans Ehrbg.
$\begin{array}{lcccccc} & \text { Station I } & \text { Station II } & \text { Station III } & \text { Dailv } & \text { Hourly } \\ \text { Average } & \text {...................................... } & 11,277 & 84,275 & 71,776 & \mathbf{9 , 3 5 1} & 376,375\end{array}$
Identification usually certain. Found throughout the year at Stations II and III with only six seattered periods of absence at each. Numbers much smaller and absences more apparent at Station I where it was only twice recorded in May, entirely absent in August and most of September, last half of October and first half of November. Evidently deleted by sewage. Maximum in October at this station, on August 9 at Station II and III. Contrary to the Illinois record the period of greatest abundance in our river is in the warmest season and almost at greatest stagnation. The complete absence at Station I at this time, however, may throw some light on the Illinois situation. Either the sewage is more injurious to this organism in
warmer weather or else its enemies multiply faster under such conditions and so keep it down. The substantial agreement of Stations II and III upon such a point in opposition to Station I makes it almost certain that sewage or organic content is in some way a more influential factor than temperature in the warmer season. There are some indications of recurrent pulses at all stations but they cannot be readily followed through the year. Parasitized colonies were frequently found, especially through the warm season. Eudorina is evidently a more important planktont here than in Illinois except at Station I where it is about the same.

One experience in collecting at Station I gives some interesting evidence as to the occurrence of swarms. The regular collection was taken near shore from the boat landing, one morning about 8 o'clook. On examination of the living material under the microscope after reaching home it was found to contain unusual quantities of Eudorina. It seemed a favorable time to make a special collection to send to Professor Kofoid so another trip was made to the same spot and hauls taken as nearly as possible in the same way as before. Although there had been a time interval of less than two hours scarcely any Eudorina could be found anywhere about. Weather conditions had not changed and there had been no great disturbance of the water by boats as it was on a Sunday morning when the traffic was light.

Euglena deses Ehrbg.
Identification satisfactory. Loss through net heavy. Recorded at Station I five times and once at Station II.

Euglena viridis Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Average .......................................... | 51,693 | 11,782 | 13,592 | 306,464 | 28,975 |

Identification satisfactory. Probably very small percentage retained by net. Occurs mainly in summer and early fall at all stations. Maximum in July at Station I and III, June at Station II. Apparently favored by sewage, quiet water and temperatures above $20^{\circ} \mathrm{C}$. Information from silk net catches not reliable beyond this.

Hemidinium nasutum St.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 535,079 | 2S,48: | 26,967 | 228,971 | 293,432 |

Identification doubtful. Very small percentage retained by net. Recorded only in last half of year at all stations, possibly because not
definitely distinguished before. Very few at any station after midOctober. Far more numerous at Station I than at either of the others. Certainly favored by temperatures near or above $20^{\circ} \mathrm{C}$. by quiet water and by sewage.

## Mallomonas sp.

Identification of genus certain. Recorded three times at Stations I and III in small numbers.

Pandorina morim Bory.


Identification satisfactory in most cases. May sometimes include young colonies of Eudorina or Pleodorina. Probably some loss through net. Occurrence at Station I frequent in small numbers through first three months, after that at irregular intervals usually several weeks apart. Fewest in warmer months. Maximum on March 26. At Station II most constant occurrence was through February and March in moderate numbers. Maximum of 105,792 reached in each of the four months of June, July, August and September. At Station III fairly constant in February and March, November and December. Records grouped at irregular intervals between. Maximum in May. Although the records differ strangely at the three stations it seems fair to infer that sewage is deterrent, especially during stagnation but that warmer waters are favorable if stagnation could be avoided. It is possible, however, that the organism was not captured so constantly in warmer waters because those were the quiet waters, hence there were no currents to mix it through the whole body of water. If this be true it is easy to see that the net might at one time traverse a "swarm" of the organisms but miss it entirely at another time.

Peridinium cinctum Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | ...........................$-- ~$ | 34,262 | 5,209 | 18,732 | 111,324 |
| 12,207 |  |  |  |  |  |

Identification uncertain. Probably very small percentage retained by net. Occurrence rare in first half year at all stations. Recorded only six times at Station II and seven times at Station III. Evidently favored by sewage, since it occurred frequently in rather large numbers at Station I from late June to late November. Naximum apparently in July with most consistent record in September. Evidently favored also by temperature of $20^{\circ} \mathrm{C}$. or over, and by quiet water.

Peridinium sp.
Identification of genus satisfactory. Species different from $P$. cinctum but not placed. Recorded four times at Station II three times at Station III.

Phacus pleuronectes Ntz.

|  | Station 1 | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 25,375 | 1,045 | 1,131 |  |  |

Identification questionable. Loss through net probably very heavy. Occurrence twice at Station II and thrice at Station III in small numbers. Recorded with only five exceptions at Station I through last three months of year. May have been overlooked before. Kofoid (1908) designates this genus and this species as a summer planktont. The failure of the record here to support fully this view may be due to small size and consequent inaccuracy with silk net catches.

## Platydorina caudata Kofoid.

|  | Station I | Station II | Station III | Jonily | IVourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average .......................................... | 431 | 3,569 | 5,020 | 206 | 48,290 |

Identification positive. Loss through net considerable. Occurrence quite distinctly limited both by temperature and sewage. Recorded only six times at Station I, all at variable intervals from August 2 to November 1 and in very small numbers. Nine occurrences, mainly in August and September at each of the other stations. No case of occurrence in temperature less than $17^{\circ} \mathrm{C}$. Maximum at Station I on September 2, Stations II and III on September 13. Considering the small numbers and the short period of occurrence, the similarity of occurrence at the three stations is most remarkable. All stages of development were found and special collections were made for Professor Kofoid in order that he might study some features of development.

Pleodorina californica Shaw.

|  | Station I Station II | Station III | Daily | Hourly |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average..........................................$~$ | 123 | 21,231 | 6,282 | 413 | 67,751 |

Identification certain. Probably most of the matured colonies were retained by the net. Recorded only twice (in August) at Station I. Evidently strong sewage is deterrent though Kofoid (1908) mentions sewage as probably a factor leading to larger numbers in 1897 than in 1898. Station II showed the only consistent development of this organism. After being recorded in mid-June it was not found until three weeks later when it began an eight weeks period of
steady increase to a maximum on August 31, followed by a three weeks decline, after which there were three isolated records. Station III showed no distinct maximum but the nine catches were distributed over about the same period from July to mid-November. It seems clear enough then that too much organic matter, and possibly too great stagnation, is detrimental and that the optimum temperature is above $20^{\circ} \mathrm{C}$.

Pleodorina illinoisensis Kofoid.
Identification uncertain. Probably some loss through net. Recorded once at Station I, twice at Station II and four times at Station III, all in small numbers. A puzzling thing about this form is that when examining fresh catches in 1913 the writer was sure he found it frequently and in considerable numbers. Hence he was somewhat surprised at not finding it readily while counting. About the only conclusion possible is that it is very hard to distinguish this form from Eudorina elegans in preserved material. Chodat (1902) and others would doubtless say that this fact supports their view that $P$. illinoisensis is only a stage of development of Eudorina.

Pteromonas sp.
Identification probable. Loss through net heavy. Occurrence irregular and rare. Recorded ten times at Station I between June 21 and October 8, three times at Station II and twice at Station III. Apparently favored by sewage, stagnation and higher temperatures.

Spondylomorum quaternarium Ehrbg.
Identification certain. Loss through net heavy. Occurrence very rare in small numbers. Recorded twice at Station I, once at Station II.

Symura uvella Ehrbg.

|  | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: |
| Average | 30 | 4,462 | 5,292 |  |

Identification uncertain. Colonies only counted. Loss through net probably very heavy. Occurrence greatest at Station I but at wide intervals there. Numbers recorded usually rather small. From our records it seems to do best at about $20^{\circ} \mathrm{C}$. Maximum at Station I in August. Also evidently favored by sewage and stagnation, since it is recorded only once at Station II and five times at Station III. Certainly much less important than in Illinois, even with full allowance for escape through the net.

Trachelomones cuchlora Lemm.

|  | Strtion I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 14,295 | 21,739 | 30,180 | 7,032 | 56,965 |

Identification uncertain. Small percentage retained by net. Found frequently in first half year at all stations. Rare in second half year. Warmer waters, sewage and stagnation seem to be deterrent, since numbers were smallest at Station I and during the period from June to October.

Trachelomonas volgensis Lemm.
Identification probable. Loss through net very heavy. Recorded five times near last of year at Station II and six times at Station III.

Trachelomonas volvocina Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 268,091 | 134,297 | 180,692 | 179,473 | 512,684 |

Identification uncertain. Loss through net very heavy. Recorded in every month at all stations. Maximum at Station I on August 20, at Station II on September 13, and at Station III on August 31. While a number of minor pulses are readily distinguishable at all stations, the percentage of loss is too uncertain to encourage conclusions. The maxima of the three stations coming so close together lead to the idea that temperature is an important factor for this form and that it does best above $20^{\circ} \mathrm{C}$. The difference in averages listed above supports the view that sewage is beneficial and this is strengthened by the fact that several catches at Station I exceed the maxima at Station II and III. Stagnation seems favorable at all stations.

Volvox aureus Ehrbg.
Identification satisfactory. Recorded only at Station II, five times in August and September.

## Volvox globator L.

Identification satisfactory. Recorded only at Station III twice, in September and December.

The following forms of Mastigophora were recorded only once or twice, or else they were thought to be present in fresh material:

```
Anthophysa sp. Once, I and Daily.
Chilomonas paramoecium Ehrbg.
Dinema sp. Once, III.
Diplosiga sp. All stations. Not counted because too small.
Diplosigopsis entzi France. Once, II.
Euglena acutissima Lemm.
Gonium pectorale O. F. M. Once, II and III and Hourly.
```

```
Gymnodinium sp.
Hyalobryon sp.
Mastigamoeba sp. Once, Station I, Station II and Hourly.
Oikomonas sp. Once, Station I.
Phacus longicauda Duj. Station I.
Salpingoeca sp.
Syncrypta sp. Once, Station II and III.
Uroglena volvox. Once, Station III and Hourly.
```

Rhizopoda

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of forms recorded <br> Average number of indi- | 13 | 14 | 17 | 7 | 9 |
| viduals per cubic meter | 167,328 | 150,817 | 288,365 | 101,802 | 396,950 |

Rhizopoda, according to our records are from five to ten times as numerous as in Illinois. This is probably erroneous, however, since Difflugia contributes mainly to this showing and the Diflugia count includes an unknown percentage of Tintinnidium. Conceding this error to be very large, it still seems safe to say that the Rhizopoda were at least as important as in Illinois where Kofoid (1909) gives them a high rank because they are bottom living forms, actually present in far greater numbers than the catch of floating forms could possibly indicate. This adventitious character is just as strongly marked here as there, since all the recorded forms are irregular in distribution and erratic in occurrence. The group as a whole contributes most during the warmer season. This might be expected as a result of greater activity of the animals rendering them more liable to dislodgment. Larger numbers produced would also mean larger numbers dislodged. Heavy food supply would also account for it in part because, as Kofoid (1908) says, it means greater oil and gas production in the body of the animal thus reducing the specific gravity.

## Discussion of Species

Amoeba proteus Rösel.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 2,782 | 14,487 | 3,645 | 206 | 61,034 |

Identification uncertain. Probably includes several species. Amoeba proteus was the large form most frequently observed and so the name is used as being probably most frequently correct. Occurrence rather irregular at all seasons of the year. All stations agree in showing the largest numbers at about the height of the warm season, i.e., in August at Stations I and II and September at Station III. All show only very small numbers in cold weather. Larger numbers at Station

II may be due not so much to favorable effect of clean water as to the slight flow in the river tending to greater dislodgment.

Amocba radiosa Duj.

|  | Station I | Station II | Station III | I)aily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 18,202 | 11,528 | 17,852 | 206 | 12,209 |

Identification satisfactory. Losses through net probably great. Although Kofoid (1908) counts A. radiosa with A. proteus, it is given separate listing here because it was the one form that seemed to be always clearly recognizable under conditions of counting. Either singly or combined the two forms were decidedly more numerous than the combination was in Illinois, and this is true of all stations. A. radiosa was not recorded at any station until the last of April. It developed a small pulse at Station I in May, disappeared entirely in July and August but reappeared in considerable strength in September. The maximum came in a strong abrupt pulse in late October after which the form disappeared again showing only two small records in the rest of the year. At Station II there were two occurrences in April and May, one (the maximum) in September and a small series of four records in October and November. At Station III there were seattered records from July to a September maximum, a small group in October and November and one catch in December. In spite of considerable differences at the three stations the record shows a rather definite preference for water a little below the maximum temperature. The larger numbers at Station I indicate a preference for sewage. An almost equal number at Station III warns against too much confidence in such a conclusion, however.

Arcella vulgaris Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 238 | 523 | 1,790 | 103 |  |

Identification of species uncertain. Probably includes three or four species. Certainly there were marked differences in shells found. Not very important in our plankton so far as our records show. Occurred only seven times at widely separated intervals at Station I, four times in April and June at Station II, and six times at wide intervals at Station III. Numbers always rather small. Is known to be very abundant in ditches near Stockton. Clearly adventitious.

Cyphoderia ampulla Leidy.
Identification probable. Recorded five times at Station II, and four times at Station III in rather small numbers and at wide intervals. Clearly adventitious.

Diffugia corona Wallich.
Identification uncertain. Recorded three times at Station I, six times at Station II and twice at Station III, always in small numbers.

Diffugia pyriformis Py.

|  | Station I | I | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 76,692 | 51,957 | 43,84 | 71,508 | 28,483 |

Identification uncertain. Surely includes several other species certainly includes some Codonella and Tintinnidium which could not be readily distinguished while counting. This was especially true up to August before the presence of Tintimidium and Codonella was noticed. In view of this error the record for Diffugia cannot be regarded as trustworthy. The variations in form are bewildering at best. As the record stands, the maximum seems to fall in June at all stations and Station I shows the largest numbers.

| Hyalodiscus sp. | Station I | Station II | Station IIJ | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 26,286 | 15,566 | 22,818 |  | 144,447 |

Identification very doubtful. This form was not recorded until late in the season because it was small and hard to diagnose. It was finally decided to record it simply for the purpose of calling attention to considerable numbers of an organism frequently occurring which could not be definitely designated. The condition of the records does not warrant conclusions.

Microgromia socialis H . and L.


Identification uncertain. Probably heavy loss through net. Occurrence at Station I in every month except January and December. Found mainly at the other stations in July, August, September and October. Evidently favored by warm weather and deterred by sewage.

The following forms were recorded only once or twice, or were thought to be present in fresh material:

Amoeba verrucosa Ehrbg. Once, II and III.
Difflugia acuminata Ehrbg. Once, II and III.
Difflugia globulosa Duj. Once, I and twice at III.
Euglypha alveolata Duj.
Hyalosphenia cuneata St. Twice, I.
Hyalosphenia papilio Leidy. Twice, I, once, II and III.
Nebela collaris Leidy. Once, III.
Pseudodifflugia gracilis Schlumbg. Once, III.
Quadrula symmetrica F. E. Sch. Once, III and daily.
Trinema enchelys Ehrbg. Once, III.


#### Abstract

Heliozaa $\begin{array}{lccccc} & \text { Station I } & \text { Station II } & \text { Station III } & \text { Daily } & \text { Hourly } \\ \text { Number of forms recorded } & 8 & 6 & 10 & 4 & 4 \\ \text { Individuals per cu. meter.. } & 370,995 & 257,232 & 274,580 & 619,156 & 441,478\end{array}$ While there were only a few species of Heliozoa recorded the numbers of some of the smaller forms were quite large and so make the group somewhat important. The extreme fragility under manipulation makes detailed examination somewhat untrustworthy in results and also invalidates the count more than in the other groups. Nevertheless the following records seem to be fairly satisfactory. Through some error in copying early lists, Nuclearia and Vampyrella were included with Rhizopoda. The numbers do not seriously change the totals in the two groups, however; the totals for Heliozoa have been left short by that much and the totals for Rhizopods show a corresponding excess.


## Discussion of Species

## Heterophrys fockei Arch.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average........................................$~$ | 24,459 | 139,328 | 98,532 | 55,170 | 207,538 |

Identification uncertain. May include other species or other genera at times. Thought to be usually correct. Not recorded at any station before July. Not present at any after October. One of the most definitely limited organisms on our records. Limited to a period of about sixteen weeks with a peculiar break in the middle (last of August). This is a period in which the temperature was almost constantly above $20^{\circ}$ C. Maximum numbers on August 2 at Station I, October 4, at Stations II and III. Smaller numbers at Station I indicate deterrent action of sewage.

## Heterophrys sp.

Probably not deserving separate listing though this fact was not discovered until too late to change easily.

Nuclearia simplex Cienk.

|  | Station 1 | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 7,020 | 338 | 15,871 | 206 | 44,758 |

Identification uncertain. No records until late in the season, partly because overlooked until October, partly because of indecision as to advisability of recording. It was finally decided that some indication of the presence of an organism possibly belonging under this species name was desirable. No conclusions can safely be drawn as to distribution, however.

Raphidiophrys elegans H. \& L.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 309,635 | 79,467 | 107,739 | 532,371 | 20,345 |

Identification probable. First recorded in April at Station I and Station III, in March at Station II. Constant in occurrence at Station I through June, July, August and November. Irregular at other times. Irregular at both the other stations except for a period through August and early September at Station II, late June and July at Station III. Evidently favored by higher temperatures and sewage, not so much by stagnation. From these records, seems to be a rather important constituent of our plankton. This is somewhat different from the condition at Illinois where it appeared only as a constituent of back waters.

The following forms were recorded only once or twice or were thought to be present in living material.

```
Actinosphaerium eichornii Ehrbg. Once, I and III.
Diplocystis sp.
Vampyrella sp. Once, III.
```

|  | Station I | Station II | Station III | Daily | Hourly |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Number of forms recorded | 32 | 22 | 25 | 9 | 10 |
| Number of individuals |  |  |  |  |  |
| per cubic meter..........- | 946,762 | 447,909 | 431,445 | $\mathbf{1 , 3 0 6 , 0 7 5}$ | $3,136,583$ |

Identification of ciliates was about as unsatisfactory as was that of the Rhizopoda and Heliozoa. This was due partly to distortion of preserved specimens and partly to small size. It is probable, however, that totals for the group are fairly accurate.

Members of the group were always found throughout the year, except for the first three and two collections at the first of the year at Stations II and III respectively. Unfortunately no general conclusions can be stated with full confidence from the totals of Protozoa because Vorticella sp. is too largely responsible for them. This was because Vorticella sp. was used as a sort of catchall for a miscellaneous assemblage of organisms which could not be readily distinguished under conditions of counting. Most of these were clearly Vorticella (nearly all of the short stem type) but some craspemonad flagellates and the like were undoubtedly counted in at times. In spite of these defects in the record, there is some reason for thinking that the group as a whole develops best in sewage water and in the higher temperatures with rather stable conditions. Since this does not agree very

Well with Kofoid's (1908) Illinois results and since the net error is undoubtedly great, too much importance must not be attached to such a suggestion.

Whatever the truth may be concerning their distribution there is no question that the Ciliata exert a very marked influence amongst local planktonts, especially in Stockton Channel. The larger Ciliata are quite conspicuous in the catches there in the colder months.

## Discussion of Species

## Askenasia elegans Bloch.

Identification probable. Recorded only at Station I four times in small numbers. Thought to have been positively recognized in fresh material, however.

## Chilodon sp.

Identification doubtful. Recorded four times at Station I and twice at Station II in small numbers.

Coleps hirtus Ehrbg.


Identification certain. Loss through net heavy. Probably also overlooked in counting sometimes. Recorded ten times at Station I, five of which came in December. Recorded twice at Station II and once at Station III. Evidently favored by sewage and probably by temperature below $15^{\circ} \mathrm{C}$.

## Colpoda sp.

Identification very doubtful. Recorded at Station I five times in very small numbers, once at Stations II and III.

## C'yclidium sp.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 29,530 | 10,234 | 6,286 |  | 24,414 |

Identification unsatisfactory. Referred to this genus purely on general resemblance to figures in reference books. No undulating membrane was visible under conditions of counting. Apparently a warm water form favored by sewage. Small percentage retained by net.

Didinium nasutum.
Average at Station I, 1,636.
Identification positive. Recorded sisteen times at Station I at irregular intervals January to April and in November. Only once at Station II and twice at Station III. Distinctly a cold water form. Probably heavy loss through net.

Euplotes patclla Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 38,100 | 7,350 | 8,068 |  |  |

Identification of species fairly certain. Recorded in first three and four months and the last two months at all stations. Far more numerous at Station I. Distinctly favored by sewage and low temperatures. Spring maximum on March 19 at Station I at $14.5^{\circ}$ C. Fall maximum on November 12, at $17.5^{\circ} \mathrm{C}$. Disappearance in April at $20^{\circ} \mathrm{C}$., reappearance in October at $19^{\circ} \mathrm{C}$.

## Euplotes sp.

Average at Station I, 3,567.
Recorded only twelve times at Station I (February 8-April 5), twice at Station II and three times at Station III. Showed same tendencies of distribution as preceding species. Probably variety of same.

Halteria grandinella O. F. Müll.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 3,390 |  | 126 | 206 | 12,207 |

Identification probable. Loss through net heavy. Recorded sixteen times in first three months and five times in the last three months at Station I, only five times at Station III. Apparently adventitious and not of much consequence here.

Hastatella radians Erlanger.


Identification positive. Probably very small percentage retained by net. Recorded fourteen times at Station I, once at Station II and twice at Station III, in February, March, April and December. Distinctly a cold wate. form and almost as distinctly favored by sewage. Notwithstanding its small size this form is so distinct in appearance and so little deformed by preservation that the count is unusually trustworthy.

Holophrya sp.

|  | Station I | Station II | Station III | Daily | IIourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average ............................................ | 109,113 | 76,816 | 103,778 | 140,641 | 870,497 |

Identification very doubtful. This generic name was used as a catchall for a number of forms that might be referred to it without too great stretch of possibilities. They were usually too much deformed in preservation to give any definite clue to affinities. About all that can be safely said is that the assemblage is favored by warmer waters and stagnation, probably also by sewage.

Paramoecium aurclia O. F. Müll.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 10,931 | 1,415 | 941 |  |  |

Identification satisfactory. Loss through net probably heavy. Occurrence almost entirely limited to first two and last two months of the year. Hence distinctly a cold water form. Record at Station I fairly constant in periods mentioned, with a maximum in December. Numbers small and catches rare at Station II and III. Evidently does best in sewage, probably on account of quantities of bacteria for food.

Paramoccium bursaria Focke.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 9,785 | 4,254 | 439 |  |  |

Identification uncertain. Probably should be included with $P$. aurelia though there seemed to be some difference. Shows practically same characteristics of distribution as the former species.

Peramoccium caudatum Ehrbg.
Identification satisfactory. Although a few specimens of this type were found six times at Station I and once at Station III, it was probably not worth while to attempt separation. They are too few to signify much.

Plcuronema sp.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 5,402 | 3,052 | 16 |  |  |

Identification doubtful. Recorded thus as nearest possibility. Records indicate preference for sewage and cold water.

Prorodon sp.


Identification uncertain. Occurrence almost entirely confined to first three months and last three months of the year, thus indicating the favorable influence of cold weather. Larger numbers at Station I were probably due to sewage.

Stentor cocrulcus Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 8,141 | 123 | 141 |  | 499 |

Identification usually satisfactory. Under conditions of counting probably some confusion with S. nigor and perhaps another species. This was because distortion in preservation made it almost impossible to use any distinction except size in many cases, hence a small $S$. coerulcus might be mistaken for $S$. niger, or a large specimen of the latter might be mistaken for the former. Generally, however, the stouter body of S. cocruleus showed plainly enough to make it fairly certain. Occurrence was almost confined to first four months and December. Only two catches were recorded at Station II and three at Station III. Clearly a cold water form almost limited to sewage or at least to water with heavy organic content. Maximum occurred in December at Station I, although the catches were fairly constant over a period of four months from the first of the year. The maximum for this carly period was in January. Since it is absent at periods of greatest stagnation, this planktont is evidently more influenced by temperature than by that factor. The most favorable temperature seems to be at about $10^{\circ} \mathrm{C}$. since the maxima just mentioned come at about that condition.

Stentor niger Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 42,691 | 739 | 871 |  | 472 |

Identification satisfactory. Probably some loss through net. Also considerable loss of this and the preceding form through clinging to net, utensils, etc. This form was first recorded as $S$. roeselii on account of the nucleus, but the delicacy and grace of form together with smoky color seem so strongly characteristic that it has finally been referred to $S$. niger. The decision to make the change was mainly due to Professor Kofoid's statement that nuclear characters are very unstable in this genus. They cannot be determined at least while counting.

Occurrence at Station I runs later in spring and begins earlier in fall than that of $S$. cocruleus. The numbers are very noticeably greater in the fresh material while the animals are active. The January and December maxima fall on the same dates as those of $S$. coeruleus but there are strong pulses in April and May by way of contrast. It seems safe to say then that both species have about the same optimum but that $S$. niger is able to endure a slightly higher temperature ( $20^{\circ} \mathrm{C}$.) and that it is less disturbed by flood conditions.

## Tintinnidium fluviatile St.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 17,333 | 3,359 | 8,642 | 7,341 | 323,479 |

Identification uncertain. Loss through net probably heavy. For some reason (probably because intent on Difflugia) the writer entirely overlooked this form and that of Codonella until attention was forcibly attracted by some living material in 1914. This was after the count had progressed almost through the first seven months of 1913, hence it was too late to rectify by recounting. It was also impossible at that late date to distinguish the three forms readily in preserved material. Undoubtedly some Codonella and a few Difflugia are included under the present head. It is also probable that Difflugia includes some of both Tintinnidium and Codonella even after an attempt was made to differentiate them. Codonella was not successfully distinguished at all. The count as it stands yields very imperfect results. It appears certain, however, that Tintinnidium does best in heavy sewage. Since the river shows least of this species it is also probable that quiet water is favorable. So far as the evidence goes, it seems that higher temperatures are best.

Trichodina pediculus Ehrbg.
Average at Station I, 631.
Identification probable. Loss through net probably heavy. Occurrence at Station I almost entirely in first three and last three months. Recorded only once at Stations II and III. Small numbers everywhere. Surely a cold water form favored by sewage. Adventitious.

## Vorticella longifium Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 13,991 | 2,588 | 3,612 | 413 |  |

Identification doubtful. Count includes all individuals with very long and slender stalks. None were ever found attached to anything. Loss through net probably very heavy. Occurrence at Station I mainly in last three months. Catches in small numbers and at widely separated and irregular intervals at other times and other stations. Evidently a cold water form doing best in sewage and quiet waters.


Identification uncertain. Probably includes several species of short stemmed Vorticella and some craspemonad flagellates attached to various objects.

Those taken to be most typical of this miscellaneous assemblage were found on the bodies and appendages of Entomostraca, especially Cyclops. Most of these were large enough to be fairly accurately counted. In view of the miscellaneous character of the forms included, it is undesirable to draw definite conclusions. There is, however, a clear suggestion of preference for sewage and quiet water. Higher temperatures are also distinctly favorable for the assemblage and this is in marked contrast to nearly all the other ciliates.

The following forms were recorded only once or twice or else were thought to be observed in fresh material.

```
Aspidisca sp.
Bursaria sp. Twice I, once, III.
Carchesium sp.
Climacostomum virens St.
Condylostoma vorticella Ehrbg.
Didinium balbianii Btschli.
Enchelys sp. Twice, I, once, IMI.
Epistylis sp. Twice, II.
Frontonia sp. Twice, I, once, III.
Gastrostyla sp.
Glaucoma sp. Once, I.
Lacrymaria sp.
Loxophyllum sp. Twice, I.
Mesodinium acarus St.
Pyxidium cothurnoides Kent.
Rhabdostyla brevipes Cl. & L. Once, I.
Spirostomum sp.
Trachelius ovum Ehrbg. Twice, I.
Urocentrum turbo Ehrbg.
```

| Suctoria |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of forms recorded | Station 3 | I | Station II <br> 3 | Station III 3 | Daily | $\begin{gathered} \text { Hourly } \\ 1 \end{gathered}$ |
| Number of indi- |  |  |  |  |  |  |
| viluals per cubic meter | 762 |  | 8,995 | 8,039 |  | 1,969 |

Only three forms were recorded from this group and they occurred at all three stations but mainly in the last three or four months of the year. In no case were the numbers very large. While genera could not be identified with much confidence, it yet seemed clear that the forms recorded were Suctoria and that the generic designation was probable. Inasmuch as none of the three forms appeared to be a true planktont and the numbers were few, it seems hardly necessary to attempt detailed discussion. The most notable suggestion that can be made is that sewage seems unfavorable to all three forms. The following are the three forms recorded. See tables $1-5$.

Acineta sp. Podophrya sp. Sphaerophrya sp.

## ROTIFPRA



These averages are made from records which include males, females, eggs attached, a few records of free eggs, winter eggs, male eggs and parasitized individuals. Further distinctions were not advisable because of inability to carry them through the count with accuracy.

Rotifera were found in every collection through the whole year at all stations. Only twice in the whole year did the numbers fall below 75,000 per cubie meter at Stations II and III, and at no time was a smaller number than 200,000 recorded at Station I. This makes a remarkably consistent showing, especially by way of contrast with Illinois conditions as found by Kofoid (1908). This consistency is even more striking than are the distinctly larger numbers found here at all stations. Both features are evidently due to the peculiar climatic conditions of this region. There is agreement with Illinois records in the fact that minimum production occurred in winter and the maximum in warmer weather, though much later there than at Station I. There is a difference in that the fluctuations were less extreme here, and that maxima occurred in November at Stations II and III.

Recurrent pulses were fairly well marked at all stations though the intervals were quite variable. These pulses were not coincident with those of any other group. The maximum number of Rotifera did not correspond in time with the maximum mass production of plankton at any station nor did it agree with any other group.

This group affords another illustration of a case in which a single genus exerts a remarkable influence on the whole group, the late maximum in November at Stations II and III being due to K eratella. Since, however, this same genus is largely responsible for throwing the Illinois maximum into May, perhaps those records and ours can be compared with some fairness.

Catches of $1,000,000$ or near that number were rare at temperatures below $15^{\circ} \mathrm{C}$. About eighty-seven forms of Rotifera were listed.

The names used have been checked as closely as possible to correspond with those indicated in Harring's Symopsis of the Rotatoria.

## Rhizota

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of forms recorded | 2 | 3 | 3 |  | 3 |
| Individuals per cu, meter.- | 1,509 | 37,181 | 30,185 |  | 16,145 |

Practically all of the Rhizota found at any station were single individuals without tubes. Only two or three times were colonial forms recorded and then only part of the colony was present. These facts serve to emphasize the adventitious character of the Rhizota and to indicate that their presence in the plankton was due to broken anchorage. The large numbers at Stations II and III as compared with Station I suggest a decidedly deterrent influence of sewage.

## Discussion of Species

## Collotheca pelagica Rous.



Identification uncertain. May include two or three species, one of which is possibly C. mutabilis. The preserved condition does not permit of very accurate judgment and the animals were usually without tubes. So many of the tubes which were seen were of a slender type that it was thought that they indicated the species designated. This form was only recorded at Station I six times (in small numbers), all in August, September and October with the largest number in October. Occurrence at Station II was from August 15 to Novem. ber 22. Most of the catches were fairly large and there were only two failures to appear in that period. The largest number recorded was in Angust, due probably to some unusual disturbance of the water by barges or dredges.

Attached eggs of this genus and almost entirely of this form were recorded with averages as follows: Station I, 185 ; Station II, 14,288; Station III, 15,332. Although certainly adventitious, the combined numbers of eggs and adults make this form of some importance in the local river plankton for a brief period. It is not adapted to life in sewage, however.

The following forms were recorded only once or twice or were thought to be present in fresh material:


#### Abstract

Bdelloida |  | Station I | Station II | Station III | Daily | Hourly |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Number of forms recorded | 6 | 6 | 3 | 3 | 2 |
| Individuals ler eu. meter.. | 349,312 | 47,105 | 56,806 | 120,831 | 225,414 |

These large averages are perhaps mfair, inasmuch as they are largely influenced by the assemblage of unidentified forms which was assigned to the Bdelloida because it seemed almost certain that all but a very few belonged to that group.

The only genus recorded is Rotaria and it is itself a heavy contributor to the plankton. Probably some other genera are included, especially in the unidentified list. The larger numbers at Station I indicate a distinct preference for sewage, a condition directly opposite to that of the Rhizota. The representation in February and March at Station I is much heavier than at any other time of year, the maximum falling on Narch 12. This is very largely due to the abundance of Rotaria rotatoria. The maxima at Stations II and III came in October and August respectively, due to the greater influence of the unidentified assemblage at those stations. It must be acknowledged that the data for this group do not lead to satisfactory conclusions. Some of the difficulty is due to the characteristics of the group and some to the difficulty of identification in preserved material.


## Discussion of Species

Rotaria neptunia Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | ---: |
| Average ......................................... | 14,987 | 2,331 | 3,829 | 1,961 | 492 |

Identification usually positive. Occurrence most constant in cooler months of the year at all stations. Much more abundant at Station I, thus showing preference for sewage. Not recorded in April, May and June at Station I and but rarely in July and September. Numbers small in March, species well represented in other months. Maximum number recorded twice, October 15 and November 5 at temperature of $18.5^{\circ} \mathrm{C}$., which is probably near the optimum. Small numbers in early January were probably due to the temperature being below $10^{\circ}$ C. Flood conditions may be responsible for absence in April, May and June while high temperature accounts for it in July. The reason for absence in September after being recorded in August is not clear.

While definite pulses were present, there is not much regularity of appearance.

At Station II this form was recorded in every month except February, April, May and June though the numbers were rather small throughout and the catches mostly at irregular intervals. The maximum occurred in October at a temperature of $20^{\circ} \mathrm{C}$. and again at $17^{\circ}$ C. Conditions were much the same at Station III except that April, June and July were the only months without catches. This again supports the conclusion that flood and higher temperatures are both deterrent factors. The maximum came in October.

While the habits of this organism would lead one to think of it as really adventitious in the plankton, the large numbers here raise a definite question as to the validity of that view. Can it be that this animal has adopted a free swimming habit under our local conditions? Or are the general conditions so favorable for development that favorite haunts become rapidly overcrowded thus forcing individuals temporarily into the plankton while seeking other quarters?

Rotaria rotatoria Pallas.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average...........................$~$ | 287,186 | 19,099 | 18,283 | 54,197 | 8,500 |

Identification uncertain. Probably includes two or three other species and possibly other genera. So far as estimated from living material the above named species was more numerous; the others could not be distinguished from it while counting. Occurrence in every month of the year at all stations, though rather light in April, May and first half of June at each, and continuing so through June and July at Stations II and III. The maximum came in March at all three stations. The fairly rapid decline after the March maximum was apparently due to the incoming mountain flood waters. There was a marked pulse in July at the disappearance of these flood waters. Higher temperatures undoubtedly kept the numbers down, however, and none of the pulses of the last half year reached the numbers common in the first quarter year. This, of course, is also some indication that the comparative stagnation of the last half year was less favorable than the disturbed hydrographic conditions of the first three months when there was enough rainfall to cause considerable local variation. Comparison with the 1914 condition when there was heavier rainfall may help to settle some of these questions. The numbers clearly show that this form does best in sewage. There can be no question that it prefers temperatures below $20^{\circ} \mathrm{C}$. and the indications are that it does best in waters slightly disturbed, as by local rains, but this cannot be settled now.

No other forms of Bdelloida were recorded.


#### Abstract

Ploima |  | Station I | Station II | Station III | Daily | Hourly |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Number of forms recorted | 47 | 3.4 | 33 | 27 | 29 |
| Individuals per cu. meter... | $4,491,499$ | $799,2 \Omega 4$ | $1,215,618$ | $5,322,812$ | $5,439,813$ |

Ploima were invariably present at all stations throughout the year. The averages given above include the eggs, of which there were about 30 per cent at Station I and Station III and over 40 per cent at Station II. While the numbers were always rather large they were especially so in temperatures above $15^{\circ} \mathrm{C}$., the maximum at Station I occurring in June at a temperature of $22.5^{\circ}$ C., in November at Station II at $19.5^{\circ}$ C., in November at Station III at $17^{\circ} \mathrm{C}$. A marked preference for sewage is proved by the exceedingly large numbers at Station I, median numbers at Station III and smallest numbers at Station II. The large numbers in late summer and throughout the autumn at all stations also indicate a favorable effect of stagnation.

The fact that all the Ploima show strikingly uniform characteristics of seasonal distribution, noted by Kofoid (1908) in Illinois is strongly in evidence here, especially amongst the forms occurring throughout the year. Plates 3,4 and 5 give a graphic representation of the occurrence of the group as a whole (including eggs) accompanied by a similar graph for the chlorophyll bearers. This does not indicate any prominent relationship of the two groups. The following text table gives the more prominent pulses of Ploima at Station I (exclusive of eggs). Omission or inclusion of eggs does not affect the location of the pulses, hence eggs are not segregated from other records in totals at Stations II and III.




It may be seen that of the seventeen pulses noted in this table eight preceded chlorophyll and algal pulses by from three to twelve days, usually three or four days. Coincidence occurred twice, and there were two cases in which ploman pulses followed the others by a few days. In the other five cases no definite relation appeared. It therefore seems that there is no such clearness of relationship of pulses of Ploima and of chlorophyll bearers as was noted in Illinois
(Kofoid 1908). Inasmuch, however, as ten out of seventeen puises came near to those of chlorophyll bearers it may be fair to assume that the two groups are in some way interdependent or that the general conditions favoring one likewise favor the other. The relationships at the other two stations were still less definite and it was not considered worthwhile to transeribe the tables of pulses of Ploima there.

Our records are at variance with the Illinois records in showing more pulses of Ploima to precede pulses of chlorophyll bearers than to follow. The discrepancy is probably due to the errors incident to escape of chlorophyll organisms through the net. But it might be due to a difference in the numerically dominant forms in the two regions or to some similar factor. The problem of difference cannot be solved, apparently, from the 1913 records, but after all there is sufficient likeness to warrant the conclusion that the two groups are closely inter-related, here as there. The daily record was too short to help in a decision on this matter.

## Discussion of Species

Anuracopsis fissa Gosse.

|  | Station I | Station 11 | Station III | Ditily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10,251 | 8,411 | $\begin{aligned} & 18,507 \\ & 2,070 \end{aligned}$ | 2,477 | ,0,066 |

Identification frequently satisfactory, more often uncertain. Probably some loss through net. Not recorded anywhere during first half year. Appeared at Stations I and II about mid-July, at Station III in August. Maximum at Station I in November, at Station II in August and at Station III in September. Occurrence frequent at Stations I and III in August, September, October and November, disappearing in December. Occurrence at Station II rare except in August. Apparently a form favored by warm and quiet water. Larger numbers at Station III suggest a preference for moderate quantities of organic matter in surrounding water.

All stations resemble Illinois in showing a distinct limitation of this form to a four months period after midsummer. It was recorded in June there and disappeared in early November. A single December record here at Station II indicates the possibility of occurrence in very small numbers at other times. The pulses came mainly at temperatures above $20^{\circ} \mathrm{C}$., the single exception on November 22 possibly being due to confusion in counting.

Amuracopsis sp.


Identification doubtful. Record probably includes two or three small forms with indistinct characteristics in the preserved condition. Referred to this genus as the nearest probability. May include distorted specimens of A. fissa. Since the only records of this form are in June and July at the three stations, it may be that the whole number should be transferred to A. fissa.

Asplanchna brightwelli Gosse.

|  | Station I | Station II | Station III | Iaily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average ......................................... | 16,892 | 308 | 533 | 43,192 | 2,954 |

Species determination uncertain. Genus certain. Record probably includes at least two or three species under this heading, species segregation being too difficult during the count. Eggs not counted.

Occurrence at Station I regular from mid-March to November I. Maximum, 158,688, on July 5 but almost equalled in April and October. Recorded only three times at Station II in April, June and July in small numbers. Recorded five times at Station III from March to November in small numbers and at wide intervals. Distinctly favored by sewage and by temperatures near $20^{\circ} \mathrm{C}$.

The record at Station I shows ten fairly distinct pulses, seven of which followed pulses of chlorophyll bearing organisms by from three to seven days, two of which coincided with such pulses, while one preceded. The correlation of these pulses is far the most impressive of any yet observed. The following table, text table 3, shows temperatures and pulses:

Text Table 3

| April 9 ............... | 18 | 132,240 | April 26 | 20 | 41,600 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| May 11 | 21 | 44,800 | May 27 | 23 | 51,200 |
| June 7 ............... | 25 | 44.800 | July 5 | 26 | 158,688 |
| Aug. $2 . . . . . . . . . . . . . .$. | 26 | 44,800 | Aug. 15 | 23.5 | 76,800 |
| Sept $13 . . . . . . . . . . .$. | 25 | 51,200 | Oct. 29 | 19 | 105,792 |

Asplanchnopus sp.
Identification doubtful. Recorded three times each at Stations I and II and six times in hourly series at Station III. Not important.

## Brachionus.

Identification of the females of this genus was nearly always satisfactory as to gems but the separation of species was frequently difficult and sometimes impossible. Males were never positively recognized, hence species records were of females only. Eggs were easily
identified when attached but the confusion was great when unattached. Probably eggs of other genera were often included amongst the free eggs. Eggs of species were not recorded.

Only seven species and one variety were recorded, although there were probably many more. The reference of many individuals to some of these species was somewhat arbitrary, but on the whole the eight groups were fairly definite in the writer's mind and may be properly discussed despite some technical error in identifying.

Since the eggs were only recorded for the genus as a whole their averages and the main features of their occurrence may be stated now.

Text Table 4

|  | Station | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Av. female eggs attached | 255,960 | 16,390 | 28,607 | 409,180 | 139,240 |
| Av. male eggs attached.... | 26,190 | 2,773 | 4,44.3 | 4,238 | 22,806 |
| Av. female eggs free | 351,039 | 14,780 | 41,963 | 718,76* | 396,7:0 |
| Av. male eggs free | 817 |  | 157 |  |  |

In view of the uncertainty of identification of unattached Brachiomus eggs either male or female, it is hardly worth while to attempt any detailed discussion of the records for these kinds. The maximum for both kinds of attached eggs came early in March at Station I. Occurrence of attached male eggs was seattered after March, though the female eggs were almost constantly present through the year. They almost reached the March maximum twice in September. At Station II there were only three records of male eggs, two coming in March. Occurrence of female eggs was fairly constant from June to October inclusive, infrequent at other times, the maximum coming in October. At Station III male eggs were recorded seven times, the maximum in March. The female eggs occurred rather regularly from February to October inclusive, excepting April, when there were none. The maximum came on October 4. About the only safe conclusion to be drawn from these inadequate records is that male egges are most numerous in early springtime at all stations. It is, of course, unfortunate that the attached eggs were not segregated with tim proper species, but the desirability of segregation was not realized until too late in the count.

Brachiomus angularis Gosse.

|  | Stalion I | Station II | Station III | I) aily | Hourls |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 78,367 | 3,417 | 4,675 | 14,579 | 8,630 |

Identification usually satisfactory. Occurrence far most conspicuous in May and June at Station I, with maximum in mid-May. Miss-
ing in Jamuary, February, and December, rare in March, April, July, August and October. Occurrence at Station II from April to November inclusive, but seattered and in small numbers with a maximmm in September. Limited to same period at Station III but regularly recorded during most of May and June with maximum in May, favored by sewage and by a temperature near $20^{\circ}$ C. Stagnation seems to be detrimental.

The periods of regular occurrence were too short to give very well marked evidence of recurrent pulses.

Brachionus angularis caudatus B . and Da.

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | : $: 3: 532$ | 65,243 | $70,480$ | $830,657$ | $1,284,905$ |

Identification usually satisfactory. Sometimes hard to distinguish from type form of $B$. angularis. The separate record of this variety seems to have been worth while because of the tremendous emphasis which it gives to the continuity in occurrence of the two forms. The variety was almost wholly absent from the collections until the type form had passed the spring maximum. As the latter declined the former increased until it entirely displaced the other. This was strikingly true at all three stations. The variety also disappeared by November at all stations, at which time the type came in in small numbers for a few weeks. At Station I the maximum came on June 25 but was almost equalled in September. At both of the other stations the maxima came in August.

Recurrent pulses were very marked in the records for this form as shown by the following table:

Text Table 5

Station I
June 7
June 25
July 12
July 26
Aug. 20
Sept. 9
Sept. 27

Station II

July 12
Aug. 15
Sept. 20
Oct. 11

Station 111

July 1:
Aug. -
Aug. 31
Oct. 18

Comparison with the table of ploiman pulses at Station I shows that four of the $B$. caudatus pulses correspond exactly while two others are very close. It is thus evident that the relationship of occurrence of this organism to that of the chlorophyll bearers is abont as intimate as that of the whole ploiman group.

The larger numbers at Station I indicate favorable influence of sewage and the distinct limitation to temperatures above $20^{\circ} \mathrm{C}$. and mark B. caudetus as a summer form. The maxima in late summer may also indicate stagnation as a favorable factor. Kofoid's reference (1908) to the contention of various observers that spinous processes, etc., appear as adaptive responses to lessened buoyancy of warmer waters is especially interesting in this connection. The condition of our records more strongly supports that view than do the Illinois records. In fact the evidence could hardly be stronger without deliberate manipulation.

Brachionus budapestinensis D.

|  | Station | I | Station II | Station III | Daily | Ifourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 970 |  | 7,564 | 2,322 | 413 | 9,615 |

Identification doubtful. Recorded six times at Station I, thirteen times at Station II and seven times at Station III. Occurrence at all stations rather seattered and mainly from July to October. Maximum at Station II in August. Apparently hindered by sewage but favored by warmth and stagnation. Not a very important form here, though the àverage at Station I is somewhat higher than it was in Illinois.

Brachionus calyciflorus Pallas. . (B. pala Ehrbg.)

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 109,718 | 10,828 | 32,378 | 516 | 175,708 |

Identification satisfactory. No attempt to distinguish varieties in final records. The above count consists entirely of females exclusive of eggs. The most striking features in the record of the occurrence of this form are its great abundance in the first four or five months of the year at all stations, its abrupt disappearance at the close of this period and its reappearance in considerable numbers in and after August. The three stations vary considerably in these last two points, the break in the record in May being much more abrupt at Station I than at either of the others. Station I also shows only a few very light catches in the fall while Station III reaches the maximum for the year at that time. Station II has the maximum in February but shows records of considerable numbers through September and October. Station I has the maximum in March. The reasonable inference seems to be that much sewage is favorable to this species in flood water but that it is detrimental in stagnation. Also that temperatures above $20^{\circ} \mathrm{C}$. are rather unfavorable.

The numbers here were much larger than those noted in Illinois and the vernal maxima came about a month earlier. Otherwise there is rather close similarity in the records. Recurrent pulses are not distinct, however, at any of our stations here.

|  | station <br> 195 | station II | station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average |  |  |  |  |  |

Identification probable. Occurrence at Station I scattered, in small numbers, from May to December, with a small maximum in October. Occurrence at Station II almost limited to August and September, with a maximum in September. At Station III somewhat similar, except for a slightly larger number of carlier records of small numbers.

The likeness to Illinois conditions is very marked, especially at Station II. Our records indicate that sewage is detrimental while stagnation and rather high temperature (near $24^{\circ} \mathrm{C}$.) are beneficial. It seems rather strange that though the river showed the largest numbers, the limits of their occurrence were much more sharply defined than at the other stations; only four small catches being found outside of the eleven weeks period from August 2 to October 11, as against twice that number elsewhere. No males were recognized.

Brachiomus patulus Müll. (B. militaris Ehrbg.)

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average …................................... | 120 | 4,804 | 1,631 | 310 | 10,469 |

Identification certain. Recorded only once at Station I in July (6,400). Occurrence at Stations II and III limited to July and August and September, except for one catch on December 6 at Station II. Maximum on September 6 at both places. Evidently a summer form favored by stagnation but intolerant of sewage. No data are at hand bearing upon Kofoid's suggestion (1908) that this species probably thrives in warm, shallow water rich in organic matter. Its absence from sewage does not prove that it would be injured by decaying vegetation, ete.

Brachiones plicatilis Mïll. (B. mülleri Ehrbg.)

|  | Station I | Station II | Station III | Inaly | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 9,179 | 977 | 965 | 413 |  |

Identification usually satisfactory. Occurrence at Station I mainly in first three months, thereafter in small numbers at variable but usually wide intervals through the year. Maximum $(132,240)$ twice,

February 12 and March 5. Numbers always small at other stations, otherwise distributed about the same. Hence this form may be said to be definitely limited to temperatures below $20^{\circ} \mathrm{C}$. Sewage appears to be favorable.

This species is not listed by Kofoid for Illinois. Mr. H. K. Harring designates it particularly as a brackish water form. It is also so listed in Süsswasserfauna Deutschlands. However, its presence here is not so prominent as is that of the brackish water diatom, Bacillaria paradoxa. Some other factor than salinity must determine the occurrence of such forms.

Brachionus urceus L.

|  | Station I | Station 11 | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 139,352 | 8,558 | 2,871 | 352,237 | 36,606 |

Identification usually satisfactory. Some confusion with other forms at times. Recorded in every month of the year at Station I. Missing in March and November at Station II, in April, November and December at Station III. There was a well developed pulse in February at Station I but there were only four catches from March I to May 14 when a long period of regular appearance in considerable numbers began, which finally ended on October 29. Numbers were then small and absences frequent to the end of the year. Maximum $(899,232)$ reached twice in June. Records scattering at Station II except in June, July and August. Maximum $(105,792)$ on August 2. Conditions similar at Station III with smaller numbers. Maximum September 20, 38,400. This form shows a clear preference for sewage and for temperatures above $20^{\circ} \mathrm{C}$., but stagnation is apparently detrimental. Recurrent pulses are fairly distinct at Station I as follows:

| Feb. 8 | July. 26 | Sept. 27 |
| :--- | :--- | ---: |
| June 3 | Aug. 9 | Oct. 15 |
| June 21 | Aug. 23 | Oct. 29 |
| July 12 | Sept. 9 | Nov. 15 |

Of the twelve dates just mentioned, eleven can be connected definitely with pulses of chlorophyll bearers, four preceding by from four to eleven days, four following by three or four days and three exactly coinciding.

Brachionus with endoparasites. Average at Station I, 5,363.
Different species of Brachionus were found infested with parasites but no specific count was made. These parasites were rather small and their relationships were not determined. In almost all cases they
occupied at least half of the space inside the lorica of the host. None were noticed at Stations II and III so it is probable that sewage is favorable to the parasites in some way. They were recorded five times at Station I, one in June, thrice in August and once in November.

Diurella egg, free.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 4,161 | 146,079 | 108,270 | 4,445 | 122,068 |

Identification very doubtful. Small eggs attached to filaments of Melosira gramulata were counted under this heading. They were only recorded eight times at Station I but they were quite prominent at the other stations, at Station II from June to October inclusive, at Station III from May to October inclusive. Inasmuch as no considerable number of Diurella females were ever found, it is probable that these eggs were wrongly designated, but nothing is known as to the real identity.

Epiphanes clavulata Ehrbg. (Notommata.)

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 1,263 | 6,400 | 10,423 |  |  |

Identification uncertain. Recorded five times at Station I, nine times at Station II and seven times at Station III in August, September and October. Hence it is to be regarded as definitely limited to stagnating waters and temperatures above $20^{\circ} \mathrm{C}$. Sewage unfavorable. Attached female eggs were also recorded for this form at Stations II and III.

Filinia brachiata Rous. (Triarthra.)

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 2,943 | 123 | 62 | 206 |  |

Identification certain. Recorded eleven times at Station I and once at each of the other stations. Occurrence at Station I usually in small numbers at rather wide intervals. Catches grouped in May and November. Maximum in November. This species was not reported as present in Illinois.

Filinia eggs, attached.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Female, average | 79,131 | 554 | 1,004 | 12,667 |  |
| Male, average | 24,818 | 431 | 251 |  |  |

Identification certain. Attached female egg appeared in every eatch at Station I from February 12 to April 26, then frequently to

July 19, being absent the rest of the year except for two small catches in November. Maximum ( $1,481,088$ ) in March. Recorded only five times at other stations, mainly in March.

Male eggs were recorded continuously at Station I for a short time in February and March and there were occasional catches to June 28. They were recorded once at Station II and twice at Station III in small numbers. Both kinds were first recorded at Station I on February 2.

The maximum egg records of both kinds at Station I preceded the maximum record for females of Filinia longiseta by three days and the maximum for female eggs was almost reached again four days after it.

Unattached Filinia eggs were not certainly identified though recorded.

Filinia longiseta Ehrbg.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 361,166 | 14,486 | 12,192 | 99,012 | 4,561 |

Identification positive. About twice as abundant at Stations II and III as ever noted by Kofoid in Illinois and about fifty times as many at Station I. Seasonal limitation earlier and more definite here at all stations. Occurrence at Station I regular from January 5 to July 19, missing thereafter except for two small catches in December. Maximum on March $8,6,083,040$. Catches of more than 1,000 ,000 taken seven times in February and March, three in May and one each in June and July. An extremely important planktont at this station. At Station II one small catch was made in January but the regular occurrence began February 23, extending to April 13. Several more catches to July 12, then none till late October, followed by another in December. Maximum on March 8. At Station III one small catch came in January, then the regular occurrence began on February 8, extending with one lapse to July 12. Only two catches thereafter, one in July and one in October. Maximum on June 28.

There were rather distinct recurrent pulses at Station I culminating as follows:

| Jan. 15 | Feb. 23 | May |
| :--- | :---: | :---: |
| Jan. 29. | Mar.8 | June 3 |
| Feb. 12 | Apr. 13 | July 5 |

Contrary to Illinois conditions the principal occurrence of this form was below a temperature of $20^{\circ} \mathrm{C}$. instead of above, and from March to July instead of from May to October, so far as Station I is
concerned. In view of the enormous numbers at Station I it may be safe to conclude that the food factor is more potent than temperature and that the smaller Illinois numbers at lower temperatures were only indirectly due to that condition. With abundant food in the sewage the lower temperatures seem quite favorable here. 'This form may then be regarded as very dependent upon sewage. The higher temperatures and stagnating waters seem to be deterrent.

Kieratella cochlearis Gosse. (Amuraea.)

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 78,769 | 281,504 | 354,304 | 164,517 | 6,530 |

Identification usually certain. No attempt to distinguish varieties. Some confusion probably of spineless varicties with spineless varieties of $K$. quadrata or other species. The numbers were greater at all stations than recorded for Illinois, but the records resemble Illinois records in the fact that the organism was found at some station in every month of the year. Also in the fact that there was a period of regular occurrence in the first seven months of the year, separated by a period of irregular occurrence or absence from a period of regular occurrence in the last three months. The location of the maximum is distinctly different from the Illinois condition at all stations. The maximum there was early in May, while our records show a maximum at Station I in July and at Stations II and III on November 1, the last two being in remarkably large numbers. The inference from our records is that sewage is detrimental in large amounts, that stagnation is even more so, and that temperature in moderate limits is less important directly than are other factors. The optimum temperature seems to be slightly below $20^{\circ} \mathrm{C}$. The presence of largest numbers at Station III indicates the probability that a larger amount of organic matter than that in the river may be favorable.

Recurrent pulses are distinguishable at all stations, about half of those at Station I corresponding closely with those of chlorophyll bearers.
station II Station II Station III

| Feb, 12 | June 18 | Mar. 33 | Mar. 23 |
| :---: | :---: | :---: | :---: |
| Mar. 5 | June 28 | Apr. 19 | Apr. 19 |
| Mar. 19 | July 5 | July 12 | May 31 |
| Apr. 2 | Oct. 26 | Nov. 1 | July 12 |
| Apr. 23 | Nov. 12 |  | Nov. 1 |

May 7

This was numerically the most important planktont at Stations II and III.

Keratella quadrata Müll. (Amuraca aculcata.)

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 1,276,350 | 42,919 | 57,432 | 1,467,437 | 219,396 |

Identification usually certain. Contrary to Illinois records this was numerically our most important rotifer, all stations considered. It was one of the most important planktonts. Furthermore our records show it to be a distinctly perennial planktont here, since considerable numbers were found at all stations in every month of the year. At Station I there was only one lapse in the record. The increase was unusually uniform from January 5 to the maximum on June 28 , followed by a similar decrease to December 31. At Station II the occurrence resembled that of $K$. cochlearlis in that there was a decrease in numbers with a few absences in the summer months, thus making the records for spring and autumn more prominent. The maximum came on October 18 not far from the $K$. cochlearis maximum. At Station III the records for the summer were not materially different from those for spring and fall except that the maximun came on October 11 in a much larger pulse than at other times.

Not only do our records fail to correspond with those of Illinois, they also fail to agree at our three stations. Consider, for example, the maximum in relation to temperature. - Station I shows a maximum in a strongly developed pulse at a temperature of $23^{\circ} \mathrm{C}$., Stations II and III at $17^{\circ} \mathrm{C}$. Station I has its largest numbers in summer, Station II its smallest and Station III much the same as in other seasons. In spite of these differences some definite conclusions are possible. The vastly larger numbers at Station $I$ at all seasons indicate not only a beneficial effect of sewage but the importance of the food factor. The smaller numbers at all stations in January and December show that temperatures may get low enough to be injurious, though it is not clear that this may not be due to reduced food supply incident to low temperature. In fact, when one considers that the numbers appearing at Station I at $7^{\circ} \mathrm{C}$. or $9^{\circ} \mathrm{C}$. were as large as those found in the culminations of ordinary pulses at the other stations in any season, it seems that the range of temperatures in ordinary fresh waters has little direct bearing on production. The unusually strong pulses in October at Stations II and III indicate a beneficial effect due to relief from Stagnation by the incoming autumnal freshet waters from the mountains.

Recurrent pulses are quite prominent in the records for this form, with culminations as follows:

| Station I |  | Station II | Station III |
| :---: | :---: | :---: | :---: |
| Jan. 15 | June 28 | Feb. 8 | Feh. 8 |
| Jan. 29 | July 12 | Mar. 29 | Mar. 93 |
| Feb. 12 | July 26 | Apr. 19 | Apr. ${ }^{\text {d }}$ |
| Feb. 23 | Aug. 23 | May 31 | May 17 |
| Mar. 8 | Sept. 13 | July 19 | June 28 |
| Apr. 5 | Oct. 8 | Aug. 31 | July 26 |
| Apr. 19 | Dec. 3 | Oct. 18 | Oct. 11 |
| May 11 | Dec. 14 | Nov. 30 | Dec. 14 |
| June 3 | Dec. 31 |  |  |

Keratclla eggs, attached.

|  |  | Station I | Station II | Station III | Daily |
| :---: | :---: | :---: | :---: | :---: | :---: | Hourly

Identification certain. No male eggs were recorded and no effort was made to keep the species record separate for eggs. The desirability of such separation was overlooked until too late; hence, as might be expected, the egg record shows the same characteristics as the dominant species, i.e., K. quadrata at Station I, and K. cochlearis at the other two stations.

Keratella egg, free.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 363,933 | 57,631 | 100,216 | 128,490 | 602,201 |

Identification quite uncertain. The designation was probably correct in a large majority of the counts but there is enough uncertaiaty to invalidate definite conclusions, so they are not offered.

Lecanc luna Müll. (Cathypna.)

|  | Station | I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 10 |  | 677 | 251 |  |  |

Identification uncertain. Recorded only four times at Stations I and II in small numbers, and once at Station III. Probably adventitious. At any rate umimportant.

Notholca striata Müll.


Identification satisfactory. Count included a small number of different forms most of which were considered varieties with perhaps one or two other species. Only six catches at Station I at rather wide intervals, in very small numbers and mostly in the first three months. Occurrence at Station II in every month except December, seven catches in first three months, one catch in each month thereafter up
to December. Numbers always small. Maximum, 16,000, April 5. Recorded nine times at Station III, seven times from January 23 to April 19 and twice in November. Numbers always small but considerably larger in November than at other times. It is clear from these records that this form is intolerant of sewage and of summer conditions, probably including temperatures, though the monthly occurrence at Station II may indicate the influence of a food factor. At any rate the optimum temperature seems to be below $15^{\circ} \mathrm{C}$. The seasonal distribution at our Station III most nearly resembles that noted for Illinois.

## Polyarthra trigla Ehrbg. (P. platyptcra.)

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 410,770 | 35,241 | 58,037 | 662,712 | 1,267,469 |

Identification certain. Recorded in every month at all stations. Occurrence at Station I very constant after January 12, only two absences, both in November. Maximum on May 7, culminating a gradual increase from first appearance, numbers well sustained after that except for a drop in June, another in November and the final decline in December. Continuous record at Station II except for two misses in June, one in August, one in October and three in November. Maximum on September 6 in a well defined pulse. Record at Station III began on January 19, after which there was one miss in March, one in June, one in October and three in November. Maximum on September 20 in a minor pulse. The character of the record at Station I suggests the idea that temperatures may vary widely without appreciable influence except as they approach the lower recorded limits. Even here the influence may be through the food supply instead of direct. Stagnation appears to be slightly favorable. This is next to the most important species numerically, of rotifers at Station I.

Recurrent pulses are prominent at all stations as follows:

|  | Station I |  | Station II | Station III |
| :---: | :---: | :---: | :---: | :---: |
| Jan. 15 |  | July 30 | Feb. 8 | Feb. 8 |
| Jan. 29 |  | Aug. 9 | March 8 | Apr. 26 |
| Feb. 8 |  | Aug. 20 | March 29 | May Bl |
| Feb. 23 |  | Sept. 13 | May 10 | July 12 |
| Mar. 8 |  | Oct. 18 | May 24 | Aug. ${ }^{\text {a }}$ |
| Apr. 13 |  | Nov. 1 | June 28 | Aug. 31 |
| Apr. 26 |  | Nov. 19 | Sept. 6 | Sept. 20 |
| May 7 |  | Nov. 30 | Oct. 18 | Oet. 18 |
| June 3 |  | Dee. $1 \pm$ | Dec. 14 | Dee. 6 |
| June 25 |  | Dec. 31 |  |  |

July 12
These pulses at Station I are even more distinctly marked than in Illinois, which of course might be expected from the very large
numbers distributed over the entire year. The correspondence of these pulses with those of chlorophyll bearers is quite close, thirteen being within seven days of the same date.

Polyarthra trigla eggs, attached.

|  | Station I | Station II | Station III | Daily | Houty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Female, average | 35,511 | 431 | 408 | 723 | 40,686 |
| Male average | 342 | 4,100 |  | ...... | 8,138 |

Identification certain. Probably most eggs became detached in manipulations and the records are to that extent unreliable. Certainly there are some very curious features to the records as they stand. Female eggs only were recorded at Station III in the regular series and then in small numbers at wide intervals, but the hourly series from the same canal, but a mile away, showed great numbers of both sexes. At Station II the numbers of female eggs were also scant but in the two eatches of male eggs one was rather large. At Station I, female eggs appeared irregularly in small numbers from the last of February to the end of March, after which the occurrences were regular and in rather large numbers till May 11 when they abruptly failed. Only a very few catches were found in the interval to midNovember when the occurrence became regular again for several weeks. The records of male eggs came in November.

Such records are quite unsatisfactory as it is evident that they do not show the real numbers of eggs produced, in view of the large numbers of females recorded at all periods at all stations. Quite probably many of the free eggs counted as Keratella and Filinia eggs should have been referred to Polyarthra. This was suspected early in the count and the eggs were frequently examined for distinctive characters in the groups but none were found that could be used accurately while counting.

Rotifer eggs, winter, free, unidentified.
These were counted merely as a matter of routine in trying to give attention to everything found. There is not enough certainty in any observation concerning them to make comment desirable.

Synchaeta sp.

|  | Sstation I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 76,696 | 35,039 | 83,865 | 19,850 | 25,890 |

Identification of genus satisfactory. Judging from living material, three or more species were represented in the counts but they
could not be accurately distinguished in preserved material. S. tremula, S. stylata and S. pectinata were probably most often present. Although the assemblage was recorded at Station I in every month of the year, the catches were few and small during the first three months and in July, August, September and October. The maximum occurred on June 25 in a strongly developed pulse. The occurrence at Station II was somewhat similar except that there were no large numbers till July when there was a fairly strong pulse. The maximum came, however, in the larger November pulse. At Station III the numbers were more evenly distributed from March to December, August being the only later month with very small numbers. The November pulse was largest on the whole but the maximum came on May 31 in a catch following a lapse and preceding two lapses. Such irregular records, in addition to the difficult identification make it necessary to be cautious as to conclusions. Still it seems clear that sewage is beneficial and that stagnation with high temperature is harmful.

Trichocerca capucina W. \& C. (Rattulus capucimus.)

|  | Station | I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 246 |  | 4,777 | 1,004 | 413 | 9,123 |

Identification uncertain. Genus probably correct in all cases. Recorded only four times at Station I in small numbers and at wide intervals; seven times at Station II, once in fairly large numbers; eight times at Station III, all in small numbers. Unimportant numerically in our plankton. Probably adventitious.

Trichocerca iernis Gosse. (Rattulus gracilis.)

|  | Station | I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 13,097 |  | 21,577 | 46,414 | 88,913 | 285,187 |

Identification uncertain. May include other species. Not recorded at Station I till May 27 and not appearing regularly till July 3. Fairly constant through July and August and for a time in September, and October. Maximum in July. Occurrence at Station II almost limited to July, August and September with maximum in September. Conditions similar at Station III with a slightly longer period of regular occurrence. Maximum in September. Evidently favored by higher temperatures and quiet waters. Larger numbers at Station III than in river suggest that more organic matter in the water is helpful, though the organism does not do so well in the dilute sewage of Station I.

The following Ploima were only recorded once or twice, or were only recognized in living material.

```
Ascomorpha ccaudis l'erty.
Asplanchna priodonta Gossc. Once,I.
Asplanchna sieboldii Leydig.
Asplanchnopus multiceps Schrank. Once, 1 and IlI.
Diaschiza exigua Gosse.
Diaschiza gibba Ehrbg.
Diurella porcellus Gosse. Once, II and ILI.
Diurella tenvior Gosse. Twice, I, and once, II and III.
Euchlanis dilatata Ehrbg. Once, III.
Filinia cornuta Weisse. Once, II.
Lecane ungulata Gosse. Once, III.
Lepadella ovalis Müll.
Macrochactus subquadratus Perty. Once, III.
Monostyla cormuta Müll.
Monostyla lunaris Ehrbg.
Mytilina mucronata Müll.
Notholea longispina.
Notholea egg, attached. Once, III.
Notommata aurita Müll. Twice, I, once, III.
Platyias quadricornis Ehrbg.
Pleurotrocha petromyzon Ehrbg.
Rhinoglena frontalis. Once, II,
Trichocerca endoparasitized. Once, II.
Trichotria curta Voronkov. Twice, II, once, III.
```


## Scirtopoda

Pedalia mira Hudson was found in very small numbers once or twice in fresh material from Stockton Channel but not in regular catches for 1913.

## GASTROTRICHA

Chactonotus nodicaudus Voight and another species were each recorded once at Station I. They are known to be present in the locality in larger numbers and are, no doubt, strictly adventitious.

## ENTOMOSTRACA

|  | Station I | Station II | Station III | Daily | Mourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average......................................$~$ | 560,149 | 22,022 | 22,551 | $1,498,724$ | 83,099 |

With the exception of three specimens of Gammarus found at Station III the Crustacea recorded consisted of Entomostraca. Of this group only the Cladocera and Copepoda were of any importance in our plankton. Entomostraca were recorded in every month of the year at all stations, but the numbers were small everywhere during the first three months and there were some misses at all stations at
that period. In addition, Stations II and III showed occasional absences up to May and June, and in the last two months of the year. The greatest abundance at all stations was in July, August and September with the maximum in August or September at all.

The count of Entomostraca is unsatisfactory for two reasons: first, specific identifications were too difficult for the writer under the conditions of work; second, the method of counting permitted too much error. Special trials showed that even distribution of Entomostraca in the counting cell seldom occurs. As the records stand, the main error was due in most cases to counting only the same fractional field as was counted for smaller organisms. It was the intention to make a special count of Entomostraca later in order to correct this, but an examination of the records showed that it was not probable that the limited increase in accuracy of count would make any material change in the possible conclusions. For that reason the intention of recounting was abandoned. So far as can be estimated from several recounts made at random, the variance in the count by the two different methods is mainly from 10 to 25 per cent.

|  | Cladocera |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Station I | Station II | Station III | Daly | Hourly |
| Forms recorded | 3 | 4 | 4 | 2 | 2 |
| Individuals per cu. meter.- | 3,836 | 7,385 | 9,197 | 7,432 | 34,752 |

The Cladocera were rarely prominent at any station. There was probably a much larger number of forms present than was recorded, since names were given only to those with conspicuous characters. The averages were distinctly lower at all stations than they were found to be in Illinois, except for one year there of recurrent floods. Since 1913 seems to have been an unusually stable year here, there is reason for believing that the Cladocera are naturally fewer here. They were recorded in every month of the year at some station but the catches were few and far between and the numbers small at all stations until August. The maximum came on October I at Station I and in September at Station II and III, after which the numbers rapidly declined at all stations. Our records therefore agree with those of Illinois in showing the favorable effect of stable (or even stagnating) water and of high temperatures. We have the further indication that sewage is detrimental since Station I had so much fewer numbers than either of the other stations. The explanation of the deleterious effect of flood waters in Illinois (Kofoid 1908) applies equally well here. The evidence for recurrent pulses is not convincing here at any station.


#### Abstract

Discussion of Genera Bosmina longirostris O. F. Miull. |  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average |  |  |  |  |  |
| An |  |  |  |  |  |

Identification probable. This form was rare at Station I, being recorded only eleven times in small numbers, six times in September and October, the rest seattering. Catches at the other stations were almost confined to the same period but there were more of them and the numbers were larger. Clearly favored by warm, stagnating water and retarded by sewage.


Chydorus sp.

|  | Station I | Station II | Station III | 1)aily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Averase |  | 1,66 ${ }^{\circ}$ | 1,555 |  |  |

Identification doubtful. Recorded seven times at Station II mainly in August and September, and five times at Station III at irregular intervals. No definite conclusion possible, though the indication is that sewage is injurious, while warm stagnating water is favorable.

Sida sp.

|  | Station I | Station II | Station III | Daily | IIourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average ............................................ | 2,960 | 738 | 1,325 | 5,781 | 21,068 |

Identification doubtful. There was probably considerable confusion with other forms, especially Daphnia. Recorded frequently at Station I from early June to late October, rarely at other times. Numbers always small except on October 1 (105,792). Recorded twice at Station II and seven times at Station III, nearly all in the warm months. Seems to be a warm water form favored by sewage and quiet waters.

The following other genera of Cladocera were thought to be present :

Alona sp.
Bosmina sp. All three stations.
Daphnia sp.

## Ostracoda

Ostracoda were mainly notable for their absence. Cypris sp. was the only form recognized and it was rare. It was not recorded from the preserved material. Inasmuch as it has been found in abundance in ditches and temporary ponds about Stockton, it must be regarded as strictly adventitious.

## Copepoda

|  |  | Station I | Station II | Station III | Daily | Hourly |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Forms recorded | ..............-. | 4 | 3 | 3 | 4 | 3 |
| Individuals per cu. meter.. | 556,312 | 14,882 | 14,549 | $1,488,401$ | 189,469 |  |

Copepoda were recorded in every month of the year at Station I, and they were entirely missing only at Stations II and III in December and November, respectively. Numbers were small at all stations through the first three months and in the last month. At Stations II and III they only reached 100,000 in three eatches in September at the former, and one catch at the latter. There was no increase in numbers at either place until May and the decline was very rapid after September. On the contrary, Station I showed very marked and steady increase in numbers after March and the decline after September was gradual, though starting abruptly with the close of the month. The maximum at Station I came in August according to the record but it was so nearly eqalled in September that a recount might show it really to be in that month. However, this does not affect the general conclusion that the warmest mouths are most favorable, the culmination coming with approaching staguation. The record also clearly shows that the dilute sewage of Station I was distinctly favorable to this group.

Specific identifications were not attempted and there was certainly some confusion of forms during the count. Some of these errors could be corrected by a recount, but in the writer's judgment there would not be enough advantage to warrant the great effort involved.

Dr. C. D. Marsh, of the United States Bureau of Plant Industry, very kindly identified a few forms from a very limited amount of material sent to him. He noted the presence of Cyclops americanus Marsh, Cyclops prasinus Fischer, and Cyclops albidus Jurine. No other Copepoda were found in the samples sent to him but the writer is certain that some other forms occurred at times in limited numbers. Since Cyclops completely dominated the other genera in numbers, discussion of seasonal distribution will be deferred till discussion of that group is reached.

## Discussion of Genera

## Canthocamptus sp.

Identification fairly certain. Recorded only twice at Station I, thrice at Station II and five times at Station III in small numbers and at wide intervals, but mainly in spring and fall. This genus has been
found in abundance in some of the shallow temporary ponds in Stockton in February, March and April, hence it is to be regarded as adventitious in the plankton collections.

Cyclops sp.

|  | Station I | Station II | Station III | Daily | Mourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average ............................................ | 165,660 | 2,238 | 7,929 | 525,978 | 83,099 |

Identification of genus usually certain. May include some other genera when preservation of the individual was poor. As mentioned above, Dr. Marsh has indicated the presence of three species in the first half year. These were C. americanus Marsh, C. prasinus Fischer, and C. albidus Jurine. It is probable that there were few other species and that these furnished the principal numbers.

The genus was rarely missing at Station I, though the numbers were comparatively small before May and in December. Only two catches were recorded before June 21 at Station II and two after September 13. Conditions were somewhat the same at Station III, though the number of catches before mid-June was larger. The evidence seems to be conclusive that the genus is favored by sewage, by stagnation and by high temperature. It does not seem possible that recounting by any method could change the basis for such conclusions.

There is some evidence of recurrent pulses at Station I but a recount would be necessary before listing them with full confidence. As it stands, no very close relationship to the algal pulses can be shown except in two or three cases.

## Diaptomus sp.

While this genus does not appear in the record, it is so certain that it was present that definite mention of the fact seems desirable. It may have been sometimes included in the count with Cyclops, but the numbers were never very large and it may have failed to get into the counting field except in one or two cases.

Nauplius spp.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average ..-.-.-...........-------- | 392,240 | 11,722 | 5,239 | 962,366 | 106,370 |

All kinds of larval copepods were included under this heading. Undoubtedly, nearly all belonged to Cyclops. They showed practically the same characteristics of distribution at all stations as those already noted for Cyclops, almost the only difference being that more catches were recorded. This might be expected since such a variety of larval forms was included in the count.

No copepods other than the forms already noted were recorded from the 1913 collections. Since most of the Entomostraca were quite well preserved, it may be possible to make a critical study of the group at a later period.

## MALACOSTRACA

Three specimens, probably Gammarus sp., were found at Station III in January, 1913. They were taken from very shallow water before the best place for collecting was found and they were evidently adventitious in the plankton.

## Glochidia spp.

Average $\qquad$
miscellaneous

General identification certain. May include larvae of several species of fresh water clams. Recorded three times at Station I in July and August and five times at Station III, mostly in the same period. At Station II the numbers were much larger and the catches more numerous. Recorded three times in January and February in very small numbers and almost continuously in June and July. Sewage evidently detrimental and flood water favorable to occurrence in the plankton. Effect of temperature uncertain.

Macrobiotus sp.

|  | Station | I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 80 |  | 854 | 2,263 |  |  |

Identification satisfactory. All the Tardigrada found were referred to this genus. It was only recorded twice at Station I, eleven times at Station II and three times at Station III, always in small numbers. Evidently adventitious.

Nematoda sp.

|  | Station I | Station II | Station III | Daily | Hourly |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average | 212 | 185 | 424 |  |  |

Identification of the order certain. Nothing definite known as to generic classification. Very many specimens were immature. Recorded six times at Station I in small numbers and at wide intervals, twice at Station II, and five times at Station III, these five being taken in the first three months. These are evidently adventitious forms in the plankton.

Other groups represented by only one or two forms or seen only in fresh material are as follows:

```
Chironomus larva, Twice, II. Planarian.
Oligochactes. Three times, II. Statoblast of P'ectinatella. (b)
    Nais(%) sp.
    Oelosoma sp.
    Statoblast of Plumatella. (?)
    Hydrachnida sp. Twice, II.
```

Summarizing, it may be worth while to call particular attention to the number of forms present at different stations in different months, and to the proportional differences in numbers of organisms at the three stations by months, as shown by the accompanying text table.

Text Table 6.-Numbers of Kinds of Planktonts by Stations and by Months in 1913

|  | January |  |  | February |  |  | March |  |  | April |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stations | I | II | III | I | II | III | I | II | III | 1 | II | III |
| Bacteriaceae | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | , |
| Schizophyceac. | 7 | 4 | 3 | 7 | 4 | 3 | 6 | 6 | 6 | 7 | 7 | 8 |
| Chlorophyceae | 7 | 6 | 3 | 9 | 6 | 6 | 8 | 8 | 8 | 13 | 9 | 8 |
| Bacillariaceac | 24 | 28 | 18 | 22 | 28 | 28 | 26 | 34 | 38 | 27 | 37 | 33 |
| Conjugatae | 6 | 3 | 3 | 4 | 4 | 5 | 1 | 6 | 4 | 2 | 6 | 6 |
| Mastigophora | 6 | 5 | 5 | 10 | 6 | 11 | S | 7 | 7 | 7 | 6 | 9 |
| Rhizopoda | 2 | 1 | 2 | 3 | 2 | 3 | 3 | 2 | 4 | 5 | 5 |  |
| Heliozoa | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 1 | 1 | 0 |  |
| Ciliata... | 13 | 2 | 3 | 17 | 5 | 9 | 18 | 7 | 10 | 16 | 8 | 8 |
| Suctoria, | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Rhizota | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Bdelloida. | 3 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 1 |
| Ploima. | 11 | 10 |  | 10 | 12 | 10 | 15 | 11 | 12 | 14 | 12 | 10 |
| Cladocera | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 1 |
| Copepoda | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 3 | 2 |  |
| Miscellancous. | 1 | 4 | 1 | 2 | 3 | 2 | 0 | 3 | 2 | 1 | 1 | 1 |
| Total.. | 83 | 69 | 51 | 89 | 73 | 82 | 92 | 91 | 96 | 98 | 90 |  |


|  | Stations | May |  |  | June |  |  | July |  |  | August |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | I | II | III | 1 | II | III | I | II | III | 1 | II | 11 |
| Bacteriaceae |  | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| Schizophyceae |  | 9 | 5 | 6 | 10 | 7 | 10 | 8 | 10 | 11 | 12 | 14 | 14 |
| Chlorophyceae |  | 10 | 8 | 8 | 11 | 8 | 7 | 11 | 9 | 10 | 10 | 10 | 9 |
| Bacillariaceae. |  | 25 | 37 | 31 | 23 | 42 | 34 | 18 | 35 | 29 | 22 | 35 | 33 |
| Conjugatae |  | 1 | 4 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 6 | 6 |
| Mastigophora. |  | 10 | 7 | 9 | 9 | 9 | 11 | 10 | 12 | 14 | 15 | 13 | 10 |
| Rhizopoda |  | 6 | 2 | 2 | 4 | 3 | 3 | 5 | 3 | 4 | 6 | 5 | 7 |
| Heliozoa. |  | 1 | 0 | 2 | 1 | 1 | 2 | 3 | 4 | 3 | 4 | 4 | 3 |
| Ciliata |  | 8 | 4 | 5 | 3 | 3 | 3 | 7 | 2 | 2 | 8 | 5 |  |
| Suctoria. |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 2 |
| Rhizota |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |  |
| Bdelloida |  | 2 | 2 | 2 | 2 | 2 | 1 | 3 | 3 | 1 | 3 | , | 2 |
| Ploima |  | 16 | 9 | 15 | 16 | 15 | 13 | 16 | 20 | 16 | 15 | 16 | 16 |
| Cladocera |  | 1 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 2 | 3 | 3 |
| Copepodia |  | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | ' |  |
| Miscellaneous |  | 1 | 5 | 0 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 2 |
| Total |  | 93 | 86 | 84 | 87 | 98 | 92 | 91 | 107 | 101 | 107 | 122 |  |

Text Table 6.-Numbers of Kinds of Planktonts by Stations and by Months in 1913-Continued

|  | Stations | September |  |  | October |  |  | November |  |  | December |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | I | II | III |
| Bacteriaceac |  | 1 | 0 | 1 | 1 | 1 | 0 | 1 | . | 1 | 1 | 0 | 1 |
| Schizophyceae. |  | 12 | 12 | 11 | 11 | 10 | 6 | 9 | 12 | 11 | 12 | 5 | 3 |
| Chlorophyceae. |  | 11 | 10 | 11 | 11 | 11 | 11 | 10 | 11 | 10 | 11 | 6 | 7 |
| Bacillariaceae |  | 25 | 28 | 25 | 28 | 25 | 31 | 26 | 29 | 35 | 32 | 29 | 36 |
| Conjugatae |  | 5 | 6 | 5 | 5 | 5 | 4 | 3 | 4 | 3 | 4 | 5 | 4 |
| Mastigophora. |  | 15 | 12 | 16 | 13 | 9 | 10 | 14 | 10 | 12 | 13 | 8 | 9 |
| Rhizopoda |  | 6 | 7 | 6 | 6 | 4 | 5 | 7 | 5 | 6 | 5 | 4 | 3 |
| Heliozoa |  | 3 | 3 | 4 | 5 | 3 | 5 | 3 | 2 | 2 | 1 | 0 | 1 |
| Ciliata. |  | 5 | 3 | 6 | 12 | 6 | 5 | 15 | 8 | 11 | 20 | 6 | 10 |
| Suctoria |  | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 0 | 3 | 3 | 1 |
| Rhizota |  | 1 | 1 | 1 | 1 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 |
| Bdelloida |  | 3 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 2 |
| Ploima... |  | 13 | 17 | 16 | 16 | 15 | 16 | 11 | 11 | 11 | 8 | 12 | 4 |
| Cladocera |  | 2 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
| Copepoda |  | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| Miscellaneous. |  | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 1 |
| Total. |  | 104 | 108 | 108 | 116 | 100 | 101 | 108 | 101 | 107 | 115 | 85 | 83 |

This table shows some points quite well. The number of forms was lowest at all stations in January. There was then steady increase to May, when flood waters were highest and the number of forms recorded slightly less. Increase in number of forms began again in June, becoming greatest at Stations II and III in August and at Station I in October. The numbers were well sustained at the two stations until December, when there was a marked decrease. Station I not only showed increase to October, but almost equaled it in December. While it is probable that more accurate species determination might change the detail of this showing, it is not probable that the general differences would be affected.

One legitimate inference from this table is that Station I is less subject to seasonal fluctuations than either of the other stations. At present the only reasonable explanation of this fact seems to be that the dilute sewage of Station I is the prime factor, for the superficial resemblances would lead one to expect that Stations I and III would most closely approach each other in character and distribution of populations, rather than Stations II and III. But the reverse is true, and sewage is the only known factor of sufficient moment to account for it. It is true that temperatures run slightly higher at Station I, but is it not possible that this higher temperature is partly due to the rapid turnover of the great quantities of organic matter.

Aside from the question of temperature there is ample reason for assigning main influence to sewage because of the great food supply, a supply superabundant and hence essentially constant through the
year, with the exception of May and June, the time of the mountain floods. The decrease in number of forms at this time strengthens the view that flood waters dilute the sewage and reduce the food supply, thus reducing reproductive and growth activities. There is also considerable loss through washing out, even with the rather low waters of 1913. The 1914 collections should certainly throw some additional light on this question.

## THE DAILY SERIES

As noted elsewhere, the daily series was undertaken in the hope that it would give definite information concerning the problems of recurrent pulses and the incident conditions. This hope was partly realized, although the thirty-one days constituting the series was not enough, and it is evident that more faithful adherence to a uniform hour of collection is desirable. Since this last would involve very marked differences in condition of tide, it is probable that Stockton is not a good locality for such a test. It would be much better to try it in a locality free from tidal influence. It is also probable that the large amount of traffic past the point at which this series was taken might affect the results. At any rate, these two factors, at least, might be eliminated in some other locality. However unimportant they might later be proven to be, they do make the problem needlessly complex.

Under the circumstances it does not seem desirable to discuss individually even the more conspicuous species. Generalizations to be reached by such discussion in this series do not differ materially from those to be obtained from consideration of the larger groups. Species records are given in table 4.

Although the thirty-one days did not give a series of sufficient length to be wholly satisfactory, there are some points of decided interest. These are graphically indicated in plates 1, 6, and 3. In plate 1, showing volumes, there was a prominent pulse apex on July 13, another maximum for the series on July 18, and another almost as large on July 27. Explanation of this is afforded in part by plate 6, where it is shown that chlorophyll bearers and Protozoa and Rotifera all had pulse culminations near July 13 and July 27, while the Entomostraca showed a pulse culmination maximum for the series on July 22. It is evident that the median position of the volumetric maximum is due to its dependence on the entomostracan numerical
maximum since the bodies of individual Entomostraca are so much larger than those of the other planktonts. Just why the numerical maximum of Entomostraca should fall between pulses of other groups does not so elearly appear. The most obvious explanation is that the abundant food supply furnished by other organisms near July 12 led to abundant reproduction of Entomostraca (mainly Cyclops), which in turn reduced the number of other organisms and led to its own decline. The pulse culmination of other organisms at July 27 would then be due to rapid recovery from the inroads of the Entomostraca.

On account of insufficiency of records, consideration of light relations does not give very satisfying aid toward an explanation of these pulses. Both our records and those of Mr. Higby, the Stockton weather observer, were made at a particular time of day and so fail to show the day as a whole so far as clouds, etc., were concerned. It is also true that such records fail to show the influence of the wind except for a small part of the day. As the records stand (table 7), the daylight conditions appear to lave been too nearly uniform through the series to have had any marked influence on plankton pulses.

Reference to the lunar cycle for July, 1913, however, suggests the probability of its having a strong influence in this connection. It may be noted that the beginning of the marked rise in production of chlorophyll bearers came on July 10 at the first quarter of the moon, and that the apex of the pulse for these organisms came on July 17, at full moon. The rapid decline thereafter may be easily explained by the unusual abundance of Entomostraca and other predatory animals, while the smaller pulse culminating on July 27 might be due to partial recovery from their attacks. The evidence here that the waxing moon brings rapid increase of chlorophyll bearing organisms is as strong as could possibly be imagined, since the record covers only a single lunar cycle. It makes one wish that the daily records might have been carried over several lunar cycles in order to find the variations which might be expected. This particular series certainly confirms in a definite way Professor Kofoid's argument (1908) that pulses of chlorophyll bearers, and consequently of other planktonts, tend to accompany increases of lunar light.

The important features in the records of this series are concerned most directly with the chlorophyll bearing organisms, as just discussed. But, as a matter of interest, brief mention will now be given of the
typical Protozoa (Mastigophora are included above with chlorophyll bearers) and of the Rotifera. Examination of plate 6 discloses the fact that Protozoa showed pulses at about the same periods as did the chlorophyll bearers, slightly preceding the latter at the first and coinciding at the second. The evidence which this gives of close association of the two groups is the only important feature. The analysis of the relationship presents some decided difficulties. In the first place, most of the Protozoa found here at this time were of the type which depends upon bacteria for food rather than upon green organisms (at least no Protozoa were ever observed with green organisms in their bodies). The presence of green organisms might favor them, however, by excretion of oxygen and absorption of carbon dioxide. Aside from these considerations, the only reason for coincidence of pulses in the two groups would seem to be in general conditions favorable to both.

In the case of the Rotifera, the abundance of food with which most of them are furnished by an increase in green organisms would seem sufficient to account for close correspondence of pulses of the two groups. Unfortunately for the validity of this view, the first rotiferan pulse (pl. 6) culminates on July 12, five days before the culmination of the pulse of chlorophyll bearers. It is also true that the sceond pulse coincides exactly with that of the green organisms. If the food relationship were the deciding factor, the rotiferan pulse should always follow. It is possible that here again is a case in which the gaseous content of the water forms one of the connecting links for two groups of organisms.

## Sumpiary

Considering the large numbers of factors which might influence the location of pulses of various organisms or groups of organisms, it is necessary for the present to say that the showing made by this daily series of a single lunar cycle may be to some degree accidental. Hence no inference can be regarded as proven. The important inferences suggested by these daily records may be summarized as follows:

1. There was a very distinct increase in numbers of green organisms as the light of the moon increased.
2. There was an abrupt decrease in green organisms as Entomostraca increased, which was followed by a partial recovery after the entomostracan maximum.
3. The two pulses of chlorophyll bearers were closely accompanied by similar pulses of Protozoa (exclusive of Mastigophora) and of Rotifera.
4. It is very necessary to have similar series covering several lunar cycles in order to evaluate the various factors of distribution and the bonds of relationship of plankton organisms.

Before leaving the discussion of this series, the point should be emphasized that daily collections frequently give a very different view of the situation from any that may be obtained at longer intervals. Comparison of plates 3 and (graph Station I and Daily) shows this very clearly. Referring first to plate 1 , it will be seen that although the regular Station I series was taken twice a week the difference is very great. In the Station I regular series the volumetric maximum came on July 30, but the daily record shows that four catches (July $13,18,20$, and 27 ) exceeded it, two of them greatly. The semiweekly record shows this maximum on the rise of a pulse while the daily record shows it as on the decline of another. The daily record also shows marked fluctuations in volume of the catches during this lunar cycle which are not indicated by the other.

If the regular series had been taken only once a week (which is usually the shortest interval used by investigators), the dates would have been July 5, 12, 19, 26, and August 2. Comparing this with the daily record we see that it would have shown an erroneous picture of conditions since it would have indicated a considerable abrupt rise in volumes to fairly stable, higher levels.

Turning to plates 3 and 6 , we find the same things true. In the case of the Entomostraca the remarkable pulse from July 20 to 23 is entirely missed by even the semiweekly method. While the pulses of the other groups are not entirely missed, they appear much more abrupt in the regular series than they really are.

In consequence of these remarkable differences it is surely clear that only the most general conclusions may be safely drawn from series of catches taken at intervals greater than one day.

## THE HOURLY SERIES

This series, covering a period of about twelve hours on August 11, was undertaken in the hope of finding some indication of the importance of the daily tidal currents in a study of the plankton. It was
also expected that some information might be obtained as to diurnal influences of light. The series is too short to be satisfactory (twentyfour hours would be better) and several days should be covered instead of one.

Despite these defects, the records indicate some points of interest. It happened that on the day selected low tide came at about 11 A.m. at Stockton, but there was no available way of recording the tide accurately. There is nothing in the record that can be positively connected with tides.

Still less than in the Daily series does there seem to be anything indicated by the species record which is not as well shown by major groups. For that reason the general discussion only will be given. Reference to table 5 will easily show such detail as has been recorded.

Since chlorophyll bearing organisms give, to a large extent, the basis of interpretation of plankton conditions they may receive first attention. Plate 6 (hourly) shows a preliminary drop in numbers from 7 A.m. to 8 A.M. a nearly uniform succession of catches to 12 m . and a constant rise through the remainder of the series to the close at $6: 45$ p.m. A graph of such very prominent characters demands explanation, but the demand cannot be fully satisfied from the present records. During the forenoon period of nearly uniform numbers the tide was ebbing, the air was hazy with full sunlight, there was little wind and the water was nearly smooth most of the time. In the afternoon period of rapidly and constantly rising numbers there was flowing tide, hazy air with full sunlight, strong wind, almost a gale at the close, and very rough water, with strong cross currents due to wind. The water temperature varied from $24^{\circ} \mathrm{C}$ at 7 A.m. to $26^{\circ} \mathrm{C}$ from 11 A.m. to 4 P.M. and to $25^{\circ} \mathrm{C}$ at $6: 45$ r.m. Among the observable factors involved, the temperature seemed to be the only one of sufficient constancy to account for the increase. Light was the only other factor that seemed likely to have had a beneficial effect and it was surely very much poorer in the afternoon on account of rough water. In view of such adverse conditions as rough water and poorer light it would have been reasonable to expect that there would at least be no increase in numbers of plankton in the afternoon. As the evidence stands it points distinctly to the conclusion that temperature was the dominant factor in the diurnal fluctuation of chlorophyll bearers.

If there had been only one or two larger catches in the afternoon or if there had been fluctuation in numbers there might be some
question as to the sufficiency of the above evidence, but it will be noted that after 12 m . there was a steady increase broken by only one fall below the last preceding number and this break occurred at 6 p.m. A more detailed analysis of the chlorophyll bearing group very forcibly emphasizes the reliability of the record covering this point. In plate 11 it will be seen that Schizophyceae and Bacillariaceae have very pronounced increase after 12 o'clock, while Chlorophyceae and Conjugatae have moderate increase, somewhat wavering, and that Mastigophora have a strong but erratic rise from greater numbers at 1 p.m. a low minimum, to 7 p.an., almost equal to the forenoon maximum. It is also clear that all these except the Chlorophyceae show the sharp temporary decline at 6 p.m. Looking up species records in table 5, we find that the 6 р.m. decline is mainly due to deficiencies in numbers of Nostoc and Cyclotclla. Also that the erratic record of Mastigophora through the day is due principally to Chromulina, Hemidinium and Trachelomonas, all very difficult to identify or to count. Taken as a whole, the evidence indicates that the records give a fairly dependable idea of the history of the chlorophyll bearers through the twelve-hour period. From this history the tentative conclusion may be drawn that temperature is a major if not the determining factor in daily fluctuations of numbers. It may be, however, that wind and waves do not exclude enough sunlight in shallow water to make any great difference and that the greatest influence in this case was due to sunlight. This last view is supported by the history of the other groups.

In case of the Protozoa, the Rhizopoda (pl. 11, and table 5) and the Heliozoa (table 5) give responses similar to chlorophyll bearers, i.e., an afternoou rise ; but their numbers are relatively small, for most of the catches and their afternoon prominence might easily be due to the stirring of bottom waters by the strong currents caused by combined wind and tide. This leaves, then, the Ciliata as the ouly typical protozoan group with a reasonably clear record. Reference to table 5 shows the ciliate assemblage to consist almost entirely of Holophrya, Tintinnidium and two Vorticella and that they all agree in a strong forenoon representation with an afternoon decline, well pronounced for three of them. Since temperature would be expected to affect these as markedly as it did the chlorophyll bearers, while light probably would not, we have a valid conclusion indicated that light is the major factor in the afternoon rise in numbers of chlorophyll bearers.

The Rotifera ( pl .19 ) show substantial agreement with the Ciliata, both collectively and individually. Itence we are still further led to doubt the dominance of temperature.

As to Entomostraca (pl. 19) the catches of Cladocera were too variable to give any information, and those of Copepoda were also rather indefinite. There was not much difference between the forenoon and afternoon catches either of Cladocera or of Copepoda or of both together.

As shown by plate 1 , the whole plankton volume increased strongly through most of the twelve hours, both actually and also relatively to the volume of sediment. No explanation of this fact seems to be available, although the distribution of the chlorophyll bearers may be of sufficient importance.

The foregoing discussion leaves a final impression which is badly muddled. This may truly represent the facts, but it is not satisfying to the mind. A different form of discussion may help to clear the problems involved. Examination of tables and plates already mentioned discloses the fact that, based on distribution through the twelve hours, there were two fairly well marked groups of planktonts, consisting on the one hand of the chlorophyll bearers and on the other hand of the more highly motile animal forms. The former showed a steady increase in numbers as the hours of afternoon passed. The latter showed just as pronounced a decrease, though less uniform, from the forenoon numbers.

Apparently the general factors which could probably be involved are the following: vital, chemical and physical. While specific subdivisions of these make a formidable list, which is further complicated by their very general interdependence, it seems that some are sufficiently dominant to enable tentative discussion, as in the accompanying list:

Vital Factors Locomotion Irritability Feeding Respiration Excretion Reproduction Other organisms

Chemical Factors
Organic content Mineral content Gaseous content

Physical Factors
Viscosity
Turbidity
Suspended solids
Currents $\left\{\begin{array}{l}\text { Tide } \\ \text { Wind }\end{array}\right.$
Oscillations
Temperature
Light
Pressure

Locomotion, among the vital factors, is characteristic of the typical animal forms, but its effectiveness may be increased or diminished by respiration and excretion, or other factors, in the same animal or in
neighboring organisms of any type. It may be similarly affected by the gaseous content of the water, which in turn is determined to some extent by temperature, light and currents in water and air, and so on with an indefinite number of combinations. It is necessary to limit our present discussion to those combinations which are most probably determinative within the twelve-hour period. Continuing the reference to locomotion with this limitation in view, we have to note that the more typically animal organisms may have been less numerous in afternoon catches because of migration to bottom layers of water, the lowest of which the net did not reach. Such a migration might be due to the influence of several other factors. Rising temperature might induce it directly by discomfort or indirectly by lessened viscosity of water, relatively increasing the influence of gravity, or by reducing the gaseous content, probably not greatly effective, or by changing the gaseous content through more oxygen excretion and carbon dioxide absorption by green organisms, or by increase of disagreeable excretions from the surface organisms as they became more active under higher temperature.

Locomotion might also be affected by the wind, directly by discomfort due to surface agitation, indirectly by interference with food taking near the surface through rapid oscillations of surface layers of water. Leeward drive of the wind is not considered because it would affect green organisms as much or more than the locomotor organisms.

Light might affect locomotion directly by discomfort and indirectly by the increase of starch manufacture, in green plants, with the larger amount of oxygen liberation and carbon dioxide consumption, thus shifting the region of the mean gas content to which motile forms are accustomed, to some distance below the surface.

Locomotion might affect non-motile surface organisms through removal of predatory organisms by migration, thus letting growth and multiplication go on unchecked. It would not be necessary for an organism to pass a whole life cycle in order to show this effect. Undoubtedly there are at any given moment in a plankton population many very young individuals, many just maturing, and many just ready to divide. Unfavorable conditions would arrest or deter developmental processes which would be again accelerated by favorable conditions. At a favorable time, then, many new organisms, which had been restrained during an adverse period, might be liberated and allowed to grow.

Reproduction as a factor influencing diurnal oscillations of numbers may not be important, but, for the reason just stated, it probably is. If, in addition to this, it could be shown that any considerable number of plankton forms accelerate both growth and fission processes with diurnal rise in temperature and that fission may occur two or more times in twenty-four hours, the argument in favor of dominance of temperature through the reproductive factor would be convincing. The writer has examined large numbers of publications without finding definite discussion of this point. Apparently the only eases in which the number of generations in a twenty-four hour period has been accurately determined have shown what occurred under special laboratory conditions only, and they do not tell what occurs with a mixed population under natural conditions. Even so, the published records of such studies deal almost entirely with animal ${ }^{\circ}$ types. Since the increase of numbers due simply to acceleration of vital processes is sufficient to account for any probable influence of the reproductive factor in this series, it is doubtless best to say that the addition of a distinct generation during the twelve-hour period is improbable.

It is also true that reproduction may be influenced by light. Some organisms may be stimulated to greater reproductive capacity, some to less. In the green organisms, with which we are now mainly concerned, it may be seen that light, through acceleration of food manufacture, might cause increase of fission, due to increased availability of energy producing and building materials. On the other hand, it seems to be pretty well known that in higher algae and phanerogams food manufacture is characteristic of day time, growth and reproduction of night, i.e., the plant does not carry on all its functions equally well at the same time.

The gaseous content of the water would be mainly effective, under ordinary conditions, through its influence on the irritability of the organisms and through its more or less direct connection with their feeding and respiration. A very slight difference in dissolved gases would surely change the responses of some organisms to light and other stimuli, but it is hard to determine the definite connection of that fact with the conditions now under consideration. As Birge and Juday have clearly shown, the physiology of plankton organisms cannot be fully determined by tests under artificial conditions such as those of the laboratory, e.g., the capacity of various animal forms for meeting anacrobic conditions of the environment is vastly greater in
natural bodies of water than it is in artificial cultures. In the present instance it seems possible that the decline in numbers of certain zooplanktonts toward midday might be due to negative phototropism caused by supersaturation of water by oxygen liberated during photosynthesis by plants. But it might be due to negative phototropism due to rising temperature, or to negative phototropism or positive geotropism due to increasing agitation of the water, or to varions other factors or combinations of factors.

So far as green organisms are concerned, it may be readily understood that photosynthetic and growth and reproductive processes might all be accelerated by the presence of carbon dioxide with a rising temperature and a considerable amount of sunlight (though less than the maximum because of rough water). It is also true that increase of oxygen formation might increase the buoyancy of the plant cells so that larger numbers of them would be in the region of water traversed by the net. This is especially probable in the presence of wind because any agitation of the shallow (two and one-half meters) water would be an aid to buoyancy.

There is no possibility of segregating tidal from other influences on our present information. So far as the currents, wind and tide, and oscillations of the water are concerned, taken all together, they might induce negative phototropism, or positive geotropism and thigmotropism in the animals. They might also affect the green organisms by aiding buoyancy and by increasing the circulation of the water, thus bringing more carbon dioxide to the absorbing surfaces and rapidly removing oxygen and other waste products from such surfaces.

Perhaps enough has already been said about temperature, but it will do no harm to recall that it affects flotation of organisms through changes in viscosity, that it probably plays an important part in reversal of tropisms under natural conditions, and that any change either accelerates or retards all of the activities of the organisms.

For this series the influence of light cannot be segregated from that of temperature since both are dependent on the sun's rays. It may be said, however, that light plays more or less part in reversal, or intensity of reversal, of tropisms of organisms, and that it is of major importance in photosynthesis and thus in effect on the gas content of the water.

So far as the other factors listed above are concerned, it is not seen that they could be of appreciable influence in this period under the conditions of variability recorded for the organisms and for the general factors involved.

One point of general interest may be noted in plate 1, where it appears from the volumetric graph that the total volume decreased gradually to midday and increased again through the afternoon, but that the net volume of plankton increased fairly steadily throughout the twelve hours. This is not what might be expected because the wind and tide of the afternoon should, theoretically, stir the water enough to increase the relative amount of silt. The unexpected silt diminution might be due to collecting conditions, the stronger combined current from wind and tide in the afternoon carrying away the silt stirred up by impact of the drain cup eylinder upon the bottom.

## CONCLUSION

In conclusion it may be said that the following points appear distinctly from the present study :

1. San Joaquin waters are capable of supporting abundant plankton, and they do so in the vicinity of Stockton.
2. The plankton of the sewage-laden Stockton Channel is distinctly different from that of the river, the number and volume of its animal forms being especially conspicuous as distinguished from the algal dominants of the latter.
3. Temperature is, within certain limits, the determining factor in seasonal distribution. This may be by direct retardation of growth and reproduction in organisms, or by indirect influence through food supply and gaseous content of water.
4. Water currents above a very moderate speed are distinctly inimical to plankton development.
5. The peculiar succession of rainy season and dry season has resulted in an autumnal maximum of plankton about Stockton, a condition directly contrary to that of vernal maxima recorded by various observers in other localities.
6. Collections taken at intervals of one week or more do not furnish a basis for accurate determination of plankton distribution through the year. Daily collections properly taken would probably do so.
7. There is some evidence in favor of the idea that increase of lunar light tends to the increase of plankton, especially chlorophyll bearers.
8. There is evidence to show that fluctuations in amount of plankton occur at various hours of the day.
9. The abundant occurrence of Bacillaria paradoxa, generally listed as a typical brackish water form, is notable. This seems to be one case in which marked departure from a typical chemical environment has not visibly affected structure or behavior.
10. Lastly, it is necessary to emphasize the fact again that whatever fault or error there may be in this report is chargeable absolutely to the writer. In some cases expert advice has not been followed after being asked. On the other hand, there is the deepest obligation to the persons already mentioned for advice and assistance.

## ADDENDUM

Since writing the discussion of the series of plankton collections of 1913 the statisties for the collections of 1914 and 1915 have been compiled and examined. Inasmuch as weekly collections only were taken in 1914 and 1915, and since two stations only were used in each of these years, the records are much less comprehensive than those for 1913. On this account, and also because the 1914 and 1915 records are essentially similar to those for 1913, it seems inadvisable to prepare them for publication. The collections for 1914 and 1915 have already been deposited with the Department of Zoology of the University of California and it is the writer's intention to deposit the manuscript records in the same place.

Tabie 1.-Organisms Per Cubic Meter in Plaskton of Stockton Channel in 1913

| 1913 | Spirillum undula | Anabaena sp . | Aphanocapsa上. | Glococapsa conglomerata | Glococapsa sp. | Gomphosphaera aponinae |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5) |  |  | . . . . | . . . | . ... ... ... |  |
| 1/8 | 400 | - . |  |  | .. .. .. ..... | - |
| 1/12 |  |  |  | . . | ... . . . . |  |
| $1 / 15$ | 400 | . . |  | . | .. . . . .... |  |
| 1/19 | 26,448 |  | . . |  | ...... . |  |
| 1/22 |  | 800 |  |  | .. .. |  |
| 1/26 | . .. |  | . |  | 400 |  |
| 1/29 |  |  | . . |  | .. |  |
| $2 / 2$ | ... .. | . . |  |  | 400 |  |
| 25 | .. . |  |  | . . | 2,400 |  |
| 2/8 |  |  |  |  | 800 |  |
| 2/12 |  |  |  |  |  |  |
| 2.15 | 800 |  |  |  | . .. . . |  |
| $2 / 19$ |  | 800 |  |  |  |  |
| 2/23 | - .. |  |  |  | . | 39,672 |
| 2/26 | $\cdots$.. |  | .. |  | . . | 1,600 |
| 3/1 | 1,600 | . | - . | . - |  | 3,200 |
| 3/5 |  | - . | , | . | .. . . | 52,896 |
| $3 / 8$ |  |  |  |  |  |  |
| $3 / 12$ |  |  |  |  |  |  |
| $3 / 15$ |  |  |  |  | 52,896 |  |
| 3/19 | . . |  | . | . |  |  |
| 3/23 |  |  | . |  | . . . . |  |
| 3/26 |  |  |  |  |  |  |
| $3 / 29$ |  |  | . |  | 1,600 |  |
| $4 / 2$ | . | 1,600 |  |  |  | . |
| 4/5 | . . . | .. . . |  | - . | 52,896 |  |
| 4/9 | . . . | . . . . . | . . | . | , | 6,400 |
| 4/13 | . . . |  | . | . | . . .. . | 3,200 |
| 4/16 | . .. .. . | 1,600 | . . . . |  | . ... . . . . |  |
| 4/19 |  | 1,600 |  | . |  | . .. ... . ... |
| 4/23 | $\cdots$ | ... . . . ... | . . | . | 52,896 |  |
| 4/26 | .. . . . | .. ...... . | - . | . . . | 79,344 | 3,200 |
| 4/30 |  |  | . | . . |  |  |
| 5/3 |  | 79,344 | . . . . | . . | , . . | 3,200 |
| $5 / 7$ | 1,600 | 9,600 |  | . . . |  | 1,600 |
| $5 / 11$ | 1,600 | 52,896 |  | . . |  | 1,600 |
| $5 / 14$ | .... . .... | 105,792 | . . . | . . | 105,792 | 3,200 |
| $5 / 17$ | - | 6,400 |  | .. |  |  |
| 5/21 | . .. . ..... | 158,688 | . |  |  | 105,792 |
| $5 / 24$ |  | 3,200 |  |  | 105,792 | 3,200 |
| $5 / 27$ | 3,200 | ..... . . . | . . . | . | 211,584 |  |
| $5 / 31$ | 105,792 |  |  |  | 3,200 | 3,200 |
| $6 / 3$ | 3,200 | 6,400 | 1,269,504 | . . . | 105,792 | - |
| $6 / 7$ |  | 25,600 | 740.544 |  | 105,792 | .. .. . ..... |
| 6/11 | 3,200 | 6,400 | 846,336 |  |  |  |
| 6/16 | 3,200 | 6,400 | 317,376 | . | 6,400 | 3,200 |
| 6/18 | 105,792 | 6,400 | 740,544 |  | 3,200 |  |
| 6/21 |  | 370,272 | 657,648 | . | , |  |
| 6/25 | 3,200 | 32,000 | 1,110,816 |  | . . .. . . | 317,376 |
| 6/28 | 3,200 | 370,272 | 687,648 |  |  |  |
| 7/3 | 3,200 |  | 687,648 |  | 1,600 | . |
| 7/5 | 105,792 |  | 476,064 |  | 264.480 | - ... |
| 7/9 | ... | 158,688 | 687,648 | 38,400 | 370,272 |  |
| 7/12 | . . ... | 1,163,712 | 1,005,024 | 899,232 | 581,856 |  |
| 7/16 | . . | 846,3:36 | 1,216,608 | 158,688 | 1,375,296 |  |
| 7/19 |  | 581,856 | 158,688 | 3,200 | 528,960 | . .. .... |
| $7 / 23$ |  | 105,792 | 6,400 |  | 264,480 |  |
| $7 / 26$ |  | 211,584 | 264,480 |  | 1,005,024 | $\cdots$ |
| 7/30 | ... .... | 158,688 | 211,584 | 3,200 | 317,376 | .... ........... |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Contimed)

1913
$8 / 2$
$8 / 6$
8/ 9
S/13
$8 / 15$
$8 / 20$
8/23
$8 / 27$
$8 / 31$
8/31
$9 / 2$
$9 / 6$
9/ 9
$9 / 13$
9/17
$9 / 20$
$9 / 24$
$9 / 28$
$10 / 1$
$10 / 4$
10/8
$10 / 11$
10/15
$10 / 18$
$10 / 22$
$10 / 26$
$10 / 29$
11/1
11/5
11/8
$11 / 12$
$11 / 15$
$11 / 19$
$11 / 29$ $11 / 26$ $11 / 30$ 12/3 $12 / 6$ 12/10 $12 / 14$ 12/17 $12 / 20$ $12 / 24$ $12 / 27$ 12/31

| Spirillum undula | Anabaena sp. | Aphanocapsa sp. | Gloeocapsa conglomerata | Glococapsa sp. | Gomphosphaera aponinae |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3,200 |  | 3,200 |  | 105,792 |  |
|  |  |  |  | 264,480 |  |
|  | 3,200 | 12,800 | ............... | 528,960 |  |
|  | 105,792 | 3,200 |  | 317,376 | . . |
| 3,200 | 158,688 | 12,800 | 3,200 | 370,272 |  |
| 3,200 | 6,400 | 211,584 |  | 423,168 |  |
|  | 211,584 | 105,792 |  | 476,064 |  |
| 105,792 |  |  | 105,792 | 899,232 |  |
|  | 19,200 | ............ | 105,792 | 370,27 ${ }^{2}$ |  |
|  | 3,200 |  | 105,792 | 370,272 | 158,688 |
| 3,200 | 12,800 | 105,792 | .............. | 634,752 |  |
|  | 264,480 | 105,792 |  | 370,272 |  |
| .. ............ | 261,480 | 105,792 | .............. | 370,272 |  |
|  | 6,400 |  |  | 476,064 |  |
|  | 6,400 | 52,896 |  | 740,544 |  |
|  | 211,584 | 2,80 | ............... | 423,168 | 52,196 |
|  | 6,400 |  |  | 65\%,648 |  |
| 52,896 | 105,792 |  |  | 952,128 |  |
|  | 6,400 | 52,896 |  | 740,544 | 52, 196 |
|  | 52,896 | 105,792 | ............... | 528,960 |  |
| 52, 5,96 | . . |  |  | 423,168 |  |
| 52,896 | .............. | 52,896 |  | 158,688 |  |
|  | ....... ...... | .............. |  | $52,896$ |  |
| 52,896 |  |  |  | 158,688 |  |
| 105,792 | ............... | ............... |  | 264,480 |  |
| 158,688 | ............... | . | ............... | 634,752 |  |
| 105,792 | . |  |  | 423,168 |  |
| 52,896 | ............... |  |  | 264,480 |  |
| 238,032 | $\ldots$ | 105,792 | ............. | 634,752 |  |
| 158,688 |  | . |  | 581,856 |  |
| 52,896 |  |  | ............. | 317,376 |  |
| , |  |  |  | 476,064 |  |
|  |  | 52,896 | .............. | 105,792 |  |
| 1,600 |  |  | $\ldots$ | 52,896 | . . .. |
| ... . . .. |  | 3,200 |  |  | - |
| 26,448 | 26,448 |  |  | 66,120 |  |
| 26,448 | 26,448 | .... .......... | ............... | 52,896 |  |
| 26,448 |  |  |  | 13,224 |  |
| 400 | S00 |  |  | 39,672 |  |
| 400 | 800 |  |  | 46,284 | . |
| 19,836 | $\ldots$ |  | ............... | 39,673 |  |
| Inactis tinctoria Agardh | Merismopedium glaucum | n Microcystis sp. | Nostoc sp . | Oscillatoria formosa | $\begin{aligned} & \text { Osellatoria } \\ & \text { sp. } \end{aligned}$ |
|  |  |  | ..... . . | 800 |  |
|  |  | . . |  | 800 |  |
| .. |  |  | .. . . . . | . . |  |
| - . |  | - . ${ }^{\text {c }}$ | - . . . - | - | $\cdots \cdot$ |
| $\cdots$ |  | 800 | .... ... . | $\cdots$ |  |
| . |  |  | 800 | 400 |  |
| . . .. | - . |  | 800 |  |  |
| - .. . .. ${ }^{\text {. }}$ |  | - ... | . . . . |  |  |
| . .. . ........ | - . | . | ........... | .... .. . . |  |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Inactis tinctoria Agardh | Merismopedium glaucum | Microcystis sp. | Nostoc sp. | Oscillatoria formoss | Oscillatoria sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 212 | . .. . . |  |  |  |  |  |
| 215 | - . ${ }^{\text {a }}$ |  |  |  |  |  |
| 219 | . |  |  |  |  | 800 |
| 223 | ... |  | , |  |  |  |
| 226 | . | .. |  |  | 3,200 |  |
| 31 | . . . | . . . |  |  | .. ${ }^{\text {a }}$ |  |
| 3/5 |  | .. |  |  | .. .. . |  |
| $3 / 8$ | . . . |  |  |  |  |  |
| 312 | . . | .. . . |  |  | . |  |
| $3 / 15$ | . .. . | ..... ..... | . . . . | 1,600 |  |  |
| 319 | .... .. . . |  |  | 1,00 | 79,344 |  |
| 3/23 |  |  |  |  |  |  |
| 3/26 | . . . |  |  |  | 52,896 |  |
| 329 | $\cdots$ | .. . | $\cdots$ |  | 3,200 |  |
| $4 \geq$ | ... ... .. .. | .... |  |  | 3,200 |  |
| 45 | ..... . |  |  |  | 1,600 |  |
| 49 | . .. . . | - | 3,200 |  | 6,400 |  |
| 413 | . . . . |  |  |  |  |  |
| 416 | $\cdots$ | . . | 1,600 |  | 1,600 |  |
| 419 | . | . |  | . | 3,200 |  |
| 423 | . . . |  |  |  | 52.896 |  |
| 426 | ... . . | . .. . |  |  |  |  |
| $\pm 30$ | . ... . |  | ... . | . | 1,600 |  |
| $5 / 3$ | . . . | ... | .. .. | . . | , |  |
| $5 / 7$ | .... . . . . | .... ... . | . . . | . | . . |  |
| 511 | . .. . . . | ..... . |  |  | - . |  |
| 514 | - . | .. . . .. | .. . . .. | . | . . . | $\cdots$ |
| $5 \cdot 17$ | . ... .. . |  |  |  |  |  |
| $5 \stackrel{1}{1}$ |  | . .. . .. | 105,792 | . . | . . .. .. . |  |
| $5 / 24$ | - | $\cdots$ | 3,200 |  |  | 3,200 |
| $5 / 27$ | . .... . . . | 3,200 |  |  | . .. .. | . .. ..... . |
| 5/31 | -. .. | ... ... |  |  | - . |  |
| $6 / 3$ | - ... . |  | 3,200 | 6,400 | .... . . |  |
| $6 \cdot 7$ | . . . | . . |  | 6,400 |  |  |
| 6 11 | . .. . .. |  |  |  |  | 3,200 |
| 6.16 | .... ..... |  | - . . ... | 6,400 | ... . . . | 105,792 |
| 618 | .... ..... | - . ... | .... ... . | 3,200 |  |  |
| 6.21 | -.. . ..... |  |  | 6,400 | . . |  |
| 6, 25 | .. .... . . | ...... .. . |  | 158,688 | .. ... . . |  |
| $6 / 28$ | - |  | 846,336 | 317,376 | - ... . |  |
| 73 | $\cdots$ |  | 211.584 | 2,226,336 |  | 1,600 |
| 75 | . |  | 12.800 | 793,440 |  |  |
| 7 -9 |  |  | 105,792 | 787,648 | .. - | 105,792 |
| 712 | . . . | . . . . | 264,480 | 476,064 |  | 3,200 |
| $7 / 16$ | . .. . |  | 317,376 | 793,440 | . . | 211,584 |
| 719 |  |  | 261,480 | 740,544 |  | 370,272 |
| 723 | . . |  | 264,480 | 171,488 |  | 317,376 |
| 7/26 |  |  | 264,480 | 528,960 | . . . | 476,064 |
| 7/30 | . . |  | 211,584 | 323,776 | - .. | 317,376 |
| 8.2 |  | 3,200 | 105,792 | 3,200 | . | 476,064 |
| $8 / 6$ |  | 6,400 | 3,200 | 370,272 | - | 476.064 |
| 8.9 |  |  | 105,792 | 264,480 | .. . | 317,376 |
| 8/13 | 703,440 | . | 158,688 | 1,005,024 |  | 1,692,672 |
| $8 / 15$ |  | .............. | 6,400 | 476,064 |  | 528,960 |
| $8{ }^{8} 20$ | 211,584 | - ... | 3,200 | 42:3, 168 | ..... . . | 1.692.672 |
| 8/23 | 211,584 | $\ldots$ | 6,400 | 370,272 | ....... . | 1,110,816 |
| 8/27 | 264,480 |  |  | 581,856 | ... . . | 846,336 |
| 8/31 | 211,584 |  |  | 1,005, 02 4 | .... . . .... | 2,221,632 |
| 9/2 | 3,226,656 |  | 105,792 | 899,238 | .......... . | 2,062,944 |
| $9 / 6$ | 6,876,480 |  |  | 899,232 |  | 1,216,608 |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Inactis tinctoria Agardh | Merismopedium glaucum | Microcystis sp. | $\begin{aligned} & \text { Nostoc } \\ & \text { sp. } \end{aligned}$ | Oscillatoria formosa | $\begin{aligned} & \text { Oscillatoria } \\ & \text { sp. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $9 / 9$ | 5,130,912 |  |  | 261,480 |  | 899,232 |
| 9/13 | 5,501,184 |  |  | 846,336 |  | 1,216,608 |
| $9 / 17$ | 4,231,680 |  | 317,376 | 423,168 |  | 105,792 |
| $9 / 20$ | 6,876,480 | 105,792 | 158,688 | 264,480 |  | 1,110,816 |
| $9 / 24$ | 6,559,104 |  |  | 476,064 |  | 370,272 |
| 9/27 | 4,337,472 |  | 52,896 | 52,896 |  | 740,544 |
| 10/1 | 2,433,216 |  | 105,792 |  |  | 370,272 |
| 10/4 | 2,221,632 |  | 105,792 | 158,688 |  | 105,792 |
| 10/8 | 1,428,192 |  | 52,896 | 158,688 |  | 317,376 |
| 10/11 | 1,163,712 | 52,896 | 105,792 | 6,400 |  | 105,792 |
| 10/15 | 1,216,608 |  | 6,400 |  |  | 528,960 |
| 10/18 | 476,064 |  |  |  |  | 105,792 |
| 10/22 | 846,336 | ............... | 6,400 | - |  | 370,272 |
| 10/26 | 105,792 |  | 52,896 |  |  |  |
| 10/29 | 317,376 |  | 6,400 | 6,400 |  | 211,584 |
| 11/1 | 264,480 | 634,752 | 105,792 | 6,400 |  | 52,896 |
| 11/5 |  | 370,272 | 6,400 | 52,890 |  | 52,896 |
| 11/8 | 158,688 | 264,480 | 52,896 | .............. |  | 52,896 |
| 11/12 | 79,344 | 3,358,896 |  |  |  | 52,896 |
| 11/15 | 158,688 | 1,269,504 | 52,896 |  |  |  |
| 11/19 | 52,896 | 528,960 |  | 3,200 |  | 52,890 |
| 11/22 | 52,896 | 634,752 | ............ |  |  | 158,688 |
| 11/26 |  | 634,752 |  |  |  |  |
| 11/30 |  | 105,792 | 1,600 |  |  |  |
| 12/3 |  | 343,824 | 3,200 |  |  | 52,896 |
| 12/6 | 1,600 | 211,584 | .............. | 1,600 |  | 79,344 |
| 12/10 |  | 92,568 | ............... |  |  | 26,448 |
| 12/14 | . ............... | 132,240 | ............... | ........... |  | 33,060 |
| 12/17 | .......... | 238,032 |  |  |  | 33,060 |
| 12/20 | ......... | 105,792 |  | ............ |  | 39,672 |
| 12/24 | ........... | 33,060 | 400 | ........... | 800 | 13,224 |
| 12/27 | ............... | 99,180 |  |  |  | 52,896 |
| 12/31 |  | 79,344 |  |  |  | 13,224 |


| 1913 | $\begin{aligned} & \text { Oscillatoria } \\ & \text { tenuis } \end{aligned}$ | $\underset{\substack{\text { Phormidium } \\ \text { spp. }}}{\text {. }}$ | Stigonema | $\begin{gathered} \text { Total } \\ \text { Schizophyceae } \end{gathered}$ | Actinastrum | $\begin{gathered} \text { Actinastrum } \\ \text { hantzschii (large) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 |  | 13,224 |  | 14,024 |  | ... |
| 1/8 | 1,200 |  |  | 2,000 | -........... |  |
| 1/12 |  |  |  |  |  |  |
| 1/15 |  |  |  |  |  |  |
| 1/19 |  | 400 | . | 800 |  |  |
| 1/22 | 800 | 800 | ............ | 3,200 | 800 |  |
| 1/26 |  | 26,848 | .............. | 27,248 |  |  |
| 1/29 | ............... | 800 | ...... | 2,000 |  |  |
| 2/2 | ............... | 13,624 | ........ | 14,824 | 400 |  |
| 2/5 | .........- | 400 | ............... | 2,800 |  |  |
| 2/8 | ............... | 39,672 | ............... | 40,472 |  |  |
| 2/12 |  | 26,448 | ............ | 26,448 |  |  |
| 2/15 | 26,448 | 370,272 | ............. | 396,720 |  |  |
| 2/19 |  | 92,568 |  | 94,168 | 1,600 |  |
| 2/23 |  | 238,032 | , | 277,704 |  |  |
| 2/26 |  | 238,032 |  | 244,432 |  |  |
| $3 / 1$ | 3,200 | 79,344 | ...... | 85,744 |  |  |
| 3/5 |  | 158,688 |  | 211,584 | .............. |  |
| 3/8 |  | 318,976 |  | 318,976 |  |  |
| $3 / 12$ |  |  |  |  |  |  |
| 3/15 |  | 158,688 | . $\cdot$ | 213,184 |  |  |
| 3/19 | 1,600 | 238,032 | ............... | 318,976 | 52,896 | ........... |

Thable 1.-Organisms Per Cubic Meter in Phankton of Stockton Channel in 1913-(Contimued)

| 1913 | Oscillatoria | Phormidium | Stigonema | Total Schizophyceao | Actinastrum hantzschii | Actinastrum hanteschii (large) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3/23 | 1,600 | 79,344 |  | 80,944 | 52,896 |  |
| 3.26 |  | 238,03:2 |  | 290,92S | 1,600 |  |
| 3/29 | .............. | 105,792 |  | 110,592 |  |  |
| 4/2 |  | 158,688 |  | 163,488 | 3,200 |  |
| 4/5 | ............... | 185,136 |  | 239,63: |  |  |
| 4/9 |  | 158,688 |  | 175,688 | 1,600 | .. |
| 4/13 |  | 6,400 |  | 11,200 |  |  |
| 4/16 | 52,896 | 264,480 |  | 322,176 |  |  |
| 4/19 | 1,600 | 158,688 | ............. | 165,088 |  |  |
| 4/23 |  | 79,344 |  | 185,136 | 52,596 |  |
| 4/26 |  | 3,200 |  | 92,144 |  | 3,200 |
| 4/30 |  |  |  | 1,600 |  |  |
| 5/3 | 185,136 |  |  | 267,680 |  | 3,200 |
| $5 / 7$ | 1,600 | 1,600 |  | 14,400 |  | 3,200 |
| 5/11 | 52,896 | 52,896 |  | 160,288 | 3,200 | .... . .... |
| $5 / 14$ | 105,792 |  |  | 320,576 |  | .... |
| $5 / 17$ | 317,376 |  |  | 323,776 |  | . . .. . |
| 5/21 | 3,200 |  | 6,400 | 379,872 |  |  |
| 5/24 | 370,272 |  | 3,200 | 488,864 | 6,400 | . . .. .. . |
| $5 / 27$ | 105,792 | 3,200 |  | 323,776 |  |  |
| $5 / 31$ | 158,688 |  |  | 168,288 | 3,200 | 3,200 |
| $6 / 3$ |  |  |  | 1,391,290 | 105,792 | 3,200 |
| $6 / 7$ |  |  | 6,400 | 884,736 | 3,200 | .. ..... |
| 6/11 | 3,200 |  |  | 859,136 |  |  |
| 6/16 | 3,200 |  | ............... | 461,568 |  |  |
| 6/18 | 105,792 |  |  | 859,136 | 105.792 |  |
| 6/21 | 3,200 | 158,688 | ............... | 1,226,208 | 3,200 |  |
| $6 / 25$ | 3,200 | 264,480 | ............... | 1,886,560 | 3,200 | 3,200 |
| 6/28 | 211,584 | 3,200 | .............. | 2,436,416 |  |  |
| $7 / 3$ |  | .............. | .............. | 3,127,168 | 105,792 |  |
| $7 / 5$ | 12,800 | .... |  | 1,559,584 | 3,200 |  |
| $7 / 9$ |  | ............... |  | 2,164,240 | 3,200 |  |
| $7 / 12$ | 370,272 |  |  | 4,763,840 | 6,400 | 12,800 |
| 7/16 |  |  |  | 4,919,328 |  | 105,792 |
| 7/19 |  |  |  | 2,648,002 |  | 19,200 |
| 7/23 | 105,792 | - |  | 1,262,208 |  | 6,400 |
| 7/26 |  |  | ............... | 2,750,602 | 3,200 | 105,792 |
| $7 / 30$. |  | ............... |  | 1,543,584 |  | 6,400 |
| $8 / 2$ | 3,200 | ............... |  | 703,648 |  | 6,400 |
| 8/6 |  |  |  | 1,114,016 | . | 12,800 |
| $8 / 9$ | 158,688 |  |  | 1,391,296 | . . . . | 19,200 |
| 8/13 | 264,480 | 528,960 |  | 4,659,632 |  | 264,450 |
| $8 / 15$ | 3,200 |  | 105,792 | 1,666,376 | -.. | 6,400 158,688 |
| $8 / 20$ $8 / 23$ | 105,792 | 158,688 | 12,800 | 3,049,056 $2,704,096$ |  | 158,688 |
| $8 / 23$ $8 / 27$ |  | 211,584 |  | 2,704,096 2,803,488 | 3,200 3,200 | 158,688 370,272 |
| $8 / 27$ $8 / 31$ | 3,200 | 105,792 |  | 2,803,488 $3,936,704$ | 3,200 | 158,685 |
| $9 / 2$ | 3,200 | 1,110,816 |  | 8,046,592 |  | 12,800 |
| $9 / 6$ | 211,584 | 1,481,088 | ............... | 11,438,336 |  | 3,200 |
| $9 / 9$ | 211,584 | 952,128 |  | 8,198,850 |  | 3,200 |
| 9/13 | 3,200 | 528,960 |  | 8,806,832 | 3,200 | 6,400 |
| $9 / 17$ |  | 317,376 |  | 5,877,856 |  | 6,400 |
| 9/20 |  | 264,480 |  | 9,580,576 | 211,584 | 6,400 |
| 9/24 | 52,896 | 1,163,712 | ........... | 9,309,696 |  | 105,792 |
| 9/27 |  | 158,688 |  | 6,036,544 | 52,896 | 12,800 |
| 10/1 |  | 423,168 |  | 4,290,368 | 52,896 | 264,480 |
| 10/4 |  | 105,792 | ............ | 3,550,432 | ...... | 476,064 |
| 10/8 | 52,896 | 634,752 | ........... | 3,332,448 | .............. | 158,688 |
| 10/11 | 6,400 | 581,856 |  | 2,446,016 | ............... | 158,688 |
| 10/15 | 476,064 | 105,792 |  | 2,545,408 | .............. | 158,688 |

Table 1.-Organisms Per C'ubic Meter in Planeton of Stockton Channel in 1913-(Continued)

| 1913 | Oscillatoria tenuis | Phormidium spp. | $\underset{\substack{\text { Stigonema } \\ \text { sp. }}}{ }$ | Total <br> Schizophyceae | Actinastrum hantzschii | Actinastrum hantzschii (large) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10/18 | 370,272 | 105,792 |  | 1,110,816 |  | 211,584 |
| 10/22 | 317,376 | 423,16\% |  | 2,016,448 | 6,400 | 105,792 |
| 10/26 | 52,896 |  |  | 370,272 |  | 264,480 |
| 10/29 | 6,400 | . . . |  | 812,640 | 10.),792 | 211,584 |
| 11/1 |  | . . |  | 1,699,072 |  | 211,584 |
| 11/5 | 6,400 | . . |  | 912,032 |  | 52,896 |
| 11/8 |  |  |  | 793,440 |  |  |
| 11/12 | .. . . .... | 52,596 |  | 4,284,576 | 1,600 | . |
| 11/15 |  |  |  | 2,063,144 | 52,896 | . |
| 11/19 | 52,896 |  |  | 1,008,224 | 10.5,792 | . . . |
| 11/22 | 3,200 | 52,896 |  | 1,388,496 | 79,344 |  |
| 11/26 | 1,600 | 52,896 |  | 659,248 | 132.240 | 52,896 |
| 11/30 | 79,341 | 1,600 |  | 347,024 | 52,896 |  |
| 12/3 | 3,200 | 185,136 |  | 641,152 | 3,200 |  |
| 12/6 |  |  |  | 297,328 | . | . |
| 12/10 | 400 | 400 |  | 158,052 |  |  |
| 12/14 | \$00 | 400 | 1.600 | 260.668 |  | - |
| 12/17 | 13,22 ${ }^{\text {2 }}$ | 400 |  | 364,060 | 400 |  |
| 12/20 | 105,792 | 400 |  | 264,880 |  | 400 |
| 12/24 | 400 |  | 800 | 89,156 | 400 | . |
| 12/27 | 26,448 |  |  | 225,608 | . . . |  |
| 12/31 | 13,224 |  | . | 145,461 |  |  |


| 1913 | Conastrum microporum | Pediastrum boryanum | Pediastrum duplex | Pediastrum simplex | Raphicium <br> polymorphum | Richteriella botryoides |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 |  | 6,412 | 6,612 |  |  |  |
| $1 / 8$ |  | 800 | 400 |  |  |  |
| 1/12 | . |  | 400 |  |  |  |
| 1,1.) |  | 400 | 400 |  | 400 |  |
| 1/19 |  | 1,200 | 1,200 |  |  |  |
| 1/23 |  | 1,600 | 4,800 |  |  |  |
| $1 / 26$ |  |  | 400 |  |  |  |
| 1/29 |  | SOO | 19,836 |  |  |  |
| $2 / 2$ |  | k00 | 13,224 |  |  |  |
| $2^{\prime} 5$ |  | 3,200 | 2,400 | 13,224 |  |  |
| 2/8 |  | 4, 000 | 5,600 |  |  |  |
| $2 / 12$ |  | 4,500 | 6,400 |  |  |  |
| $2 / 15$ |  |  | 11,200 |  |  | 800 |
| $2 / 19$ |  | 39,672 | 92,568 | 1,600 | 52,890 |  |
| 2,23 |  | 26, 445 | 26,448 |  |  |  |
| 2/26 |  | 6,400 | 79,344 | 1,600 |  |  |
| 3/1 |  | 6,100 | 3,200 |  | 79,344 |  |
| $3 / 5$ |  |  | 12,800 |  |  | 3,200 |
| $3 / 8$ |  | 1,600 | 12,800 | 6.400 |  |  |
| 3/12 |  | 9,600 | 6,400 |  |  |  |
| 3/15 | 3.200 | 9,600 | 22,400 |  | 1,600 |  |
| 3/19 |  | 79,344 | 132,240 |  | 1,600 |  |
| 3/2'3 | . | 3,200 | 9,600 |  | 52.806 |  |
| $3 / 26$ |  | 9,600 | 16,000 |  | 1,600 |  |
| $3 / 29$ |  | 3,200 | 9,600 |  | 3,200 |  |
| $4 / 2$ |  | 12,800 | 6,400 |  |  |  |
| $4 / 5$ | 3,200 | 3,200 | 79,344 | 3,200 | 1,600 |  |
| $4 / 3$ |  |  | 6,400 |  | 6,400 |  |
| 4/13 |  | 9,600 | 6,400 |  | 4,800 |  |
| 1/16 |  |  | 16,000 |  | 79.344 |  |
| 4.19 |  |  | 1,600 |  | 79.344 |  |
| 4,23 |  | 1.600 | 3,200 |  | 132,240 |  |
| 4/26 |  |  | 16,000 |  | 132,240 |  |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Coclastrum microporum | Iediastrum boryanum | Pediastrum duplex | Pediastrum simplex | Raphidium polymorphum | Richteriella botryoides |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 430 |  | 6,400 | 6.400 | . . | 79,344 |  |
| 5) 3 |  |  | 3,200 | . . | 105,792 |  |
| $5 / 7$ | .. . | . | 6,400 | . . . | 1,600 | $\cdots$. 1,00 |
| 5 '11 |  |  | 105,792 |  | 107,392 | 1,600 |
| 514 |  | 6,400 |  | . | 108,992 |  |
| 517 | . . . . | 6,400 | 6,400 |  | 108,992 |  |
| 5) 21 |  |  | 19,200 | 6,400 | 158,688 |  |
| $5 \cdot 24$ | . | 6.400 | 6,400 |  | 317,376 |  |
| 527 |  | 3,200 | 12,800 |  | 264,480 |  |
| 5/31 | 264,480 |  | 6,400 | . | 743,744 | . . |
| $6 / 3$ | 158,685 | 105, 792 | 12,800 |  | 211,584 |  |
| $6 / 7$ |  | 3,200 | 32,000 |  | 105,792 |  |
| $6 / 11$ |  |  | 158,688 |  | 317,376 |  |
| 6/16 |  |  | 25,600 | . | 528,960 |  |
| $6 / 18$ |  | 3,200 | 6.400 |  |  |  |
| $6 / 21$ | 370,272 |  | 158,688 | - | 6.34,752 | … |
| 6/25 |  | 3,200 | 317,376 | ... .. | 264,480 | 3,200 |
| $0 \cdot 2$ |  | 6,400 | 370,272 | . . . | 3,200 |  |
| $7 \cdot 3$ |  |  | 793,440 |  | 4,800 |  |
| $7 / 5$ | 6,400 |  | 476,064 | 3,200 |  |  |
| 7/9 | 158,658 | 6,400 | 1,005,02 4 | . . | 108,992 |  |
| 7/12 | 158,688 |  | 1,269,504 |  | 3,200 | . |
| $7 / 16$ | 105,792 |  | 793,440 | 12,800 | 264,480 |  |
| $7 / 19$ | 105,792 | 12,500 | 740.544 |  | 3,200 |  |
| $7 / 23$ | 211.584 |  | 634,752 | 158,688 | 6,400 |  |
| $7 / 26$ | 476,064 | 6,400 | 793,440 | 19,200 | 267,680 | - . .. |
| $7 / 30$ | 211,584 |  | 740,544 | 3,200 | 3,200 | . . . . |
| $8 / 2$ | 105,792 | 3,200 | 476,064 | 6,400 | 105,792 |  |
| $8 / 6$ | 211,584 | 12,800 | 264,480 | . . . . | 323,776 | . . . . .. |
| S/ 9 | 211,584 | 3,200 | 793,440 |  | 3,200 |  |
| 8/13 | 105,792 | ... . .... | 423,168 | 6,400 | 264,480 | . . . . . ${ }^{\text {a }}$ |
| S 15 | 211.584 |  | 317,376 |  | 3,200 | - |
| $8{ }^{\prime} 20$ | 423,168 |  | 211,584 |  | 105,792 |  |
| 8/23 | 634,752 |  | 476,064 | 3,200 | 211,584 | .. . . . ... |
| 8.27 | 528,960 | 3,200 | 105,792 |  | 6,400 |  |
| 8,31 | 6,34,752 |  | 105,792 | - . ${ }^{\text {d }}$ | 370,272 | $\ldots$. |
| $9 / 2$ | 1,005,024 | 12,800 | 634,752 | 6,400 | 479,26.4 |  |
| $9 / 6$ | 2,221,632 | . $1050.70{ }^{\text {a }}$ | 634,752 | 211.584 | 211,584 | 105,792 |
| $9 / 9$ | 2,697,696 | 105,792 | 687,648 | 105,792 | 264,480 |  |
| $9 / 13$ | 3,544,032 | 105,792 | 476,064 |  | 264,480 |  |
| $9 / 17$ | 1,163,712 | 6.400 | 423,168 | 12,800 | 267,680 |  |
| 9,20 | 793,440 | 6,400 | 740,544 |  | 211,584 |  |
| $9 / 24$ | 264,480 | 12,800 | 1,851,360 | 25,600 | 317,376 |  |
| $9 / 27$ | 476,064 |  | 793,440 | 6,400 | 317,376 |  |
| 10/1 | 423,168 |  | 952,128 | 6,400 | 317.376 |  |
| $10 / 4$ | 317,376 | 12,800 | 1,110,816 | 19,200 | 370,272 | 52,896 |
| 10/8 | 158,688 | 105,792 | 1,798,464 | 6,400 | 376,672 | .. . . . |
| $10 / 11$ | 211,584 | 12,800 | 2,010,048 | ... . . | 171,488 |  |
| 10/15 | 52,896 |  | 1,533,984 | - - |  |  |
| 10/18 |  |  | 476,064 |  | 158,688 | 52,896 |
| 10/22 | 158,688 | 6,400 | 740,544 | 52,896 | .. ... . . | 105,792 |
| $10 \cdot 26$ | 12,800 |  | 793,440 |  |  | 52,896 |
| 10.29 | 211,584 | 19,200 | 846,336 | 12,800 | 264,480 | 52,896 |
| 11/1 | 158,688 | 6,400 | 528,960 | 6,400 | 317,376 | 52,896 |
| 11/5 | 52,896 | 12,800 | 952,12S | - - | 6,400 | . . . .... |
| 11/8 |  | 6, 400 | 158,688 | 52,896 | 370,272 |  |
| 11/12 | 52,896 | 52,896 | 317,376 | . ... . . | 572.784 | ... |
| 11/15 | 264,480 | 52,896 | 6,400 | (18) | 42:3,168 |  |
| 1119 | 79,344 | 12,800 | 52,896 | ... | 158.688 |  |
| 1122 | 28,800 | 6,400 | 238,032 |  | 105,792 |  |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)
1913
$11 / 26$
$11 / 30$
$12 / 3$
$12 / 6$
$12 / 10$
$12 / 14$
$12 / 17$
$12 / 20$
$12 / 24$
$12 / 27$
$12 / 31$

| Coelastrum microporum | Pediastrum boryanum | Pediastrum duplex | Pediastrum simplex | Raphidium polymorphum | Richteriella botryoides |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6,400 | 6,400 | 32,000 | ... . . .... | 79,344 | ... . . |
| 52,896 | 1,600 | 79,344 |  | 1,600 | -. |
| 79,344 | 3,200 | 52,896 | $\ldots$ | 105,792 | . . |
| 3,200 | 1,600 | 19,200 |  | 54,496 | -. |
| 800 | 800 | 19,836 | .... . .. | 59,908 | .... . |
| 800 | 800 | 33,060 |  | 13,224 | 400 |
|  |  | 400 |  | 53,296 | ...... ... . |
|  |  | 13,224 | 800 | 46,284 | ..... ...... . |
| ..... | 1,600 | 13,224 | ..... ....... | 13,224 | . . . . . . |
| .............. | 1,600 | 39,672 |  | 119,016 | .... |
| .-............ | .. | 33,060 | . ... ... ... . | 85,956 | . ... . . . |
| Scenedesmus obliquus | Scenedesmus quadricauda | Schroederia setigera | Selenastrum bibraianum | Stigeoclonium sp. | Ulothrix sp. |
| 6,612 |  |  |  |  |  |
| 400 |  |  |  |  |  |
|  | 400 |  |  |  |  |
|  | 33,060 |  | 400 | . |  |
| 13,224 |  |  | 400 |  |  |
|  | $\begin{aligned} & 400 \\ & 400 \end{aligned}$ |  |  | . | 1 |
| . . . . ... | 13,224 | - . |  |  |  |
|  | 800 |  |  |  |  |
|  | 1,600 |  | 800 |  |  |
|  | 52,596 |  | 52,896 |  |  |
| 800 | 52,896 | . . . |  |  |  |
| 800 | 39,672 |  |  |  | .... - ... |
| .. . | 132,240 |  |  | $\cdots$ |  |
| 3,200 | 6,400 |  |  |  |  |
| 1,600 | 79,344 | . . . |  |  |  |
| .. . . . | 6,400 |  |  |  |  |
| - . . . | 52,896 |  |  |  |  |
| . . . ... | 132,240 | . |  | . |  |
|  | 3,200 | - . |  |  |  |
|  | 105,792 | . |  |  | 3,200 |
|  | 3,200 |  |  |  |  |
| . | 3,200 |  |  |  |  |
|  | 6,400 | . |  |  |  |
|  | 10.5,792 |  |  | 3,200 | 3,200 |
| 1,600 | 79,344 |  |  | .. |  |
|  | 6,400 158,688 |  | . | . |  |
|  | +52,896 |  |  | . |  |
|  | 132,240 |  | . |  |  |
| 6,400 | 132,240 |  | - | . |  |
| 52,896 | 52,896 | 1,600 |  |  |  |
|  | 1,600 |  |  |  |  |
| 79,344 | 52,896 | 1,600 | -.. |  |  |
| 1,600 | 185,136 |  | . |  |  |
|  | 317,376 |  |  |  |  |
| 3,200 | 19,200 | 3,200 |  | . |  |
| 264,480 | 264,480 |  |  |  |  |
| 211,584 | 1,057,920 | 3,200 |  | . |  |
| 423,168 | 1,216,608 | 105,792 | - . | - |  |
| 1,322,400 | 3,385,344 | 105,792 |  | .... .. . |  |
| 2,591,904 | 2,539,008 | 105,792 |  | ....... . |  |

Table 1.-Organisms Per Cubic Meter in Plankton of
STOCKTON CHANNEL, IN 1913-(Continucd)

| 1913 | Scenelesmus obliquus | Scenedesmus quadricauda | schroederia setigera | Selenastrum bibraianum | Stigeoclonium sp. | Ulothrix sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/ 7 | 1,957,152 | 2,697,696 | 317,376 |  |  |  |
| $6 / 11$ | 634, 752 | 1,5333,984 | 158,688 |  | .. |  |
| $6 / 16$ | 423,168 | 1,110,816 | 3,200 | . |  |  |
| ti/18 | (634,752 | 1,745,568 | 264,480 |  |  |  |
| $6 / 21$ | 370,273 | 2,909,280 | 264,480 | 3,200 |  |  |
| (1/25 | 899,232 | 2,80:3,45s | 105,792 |  |  |  |
| 6/25 | 1,110,816 | 2,803,458 | 105,792 |  |  |  |
| 7 3 | 740,544 | 1,163, 712 | 108,685 |  |  |  |
| 75 | 158,688 | 370,272 |  |  | 3.200 |  |
| 79 | 211,584 | 6:34,752 |  |  |  |  |
| 7/12 | 211,584 | 476,064 |  |  |  |  |
| 7/16 | 423,168 | 1,375,296 |  |  |  |  |
| 7/19 | 528,960 | 952,128 |  |  |  |  |
| $7 / 23$ | 105,792 | 581.856 | 105,792 |  |  |  |
| $7 / 26$ | 657,648 | 1,005,024 | 105,792 |  |  |  |
| 7/30 | 317,376 | $6: 34,752$ | 3,200 | . |  |  |
| $8 / 2$ | 105,792 | S90,2:32 | 3,200 |  |  |  |
| $8 / 6$ | 158,688 | 634,752 |  |  |  | . |
| 8/9 |  | 581,856 |  |  |  |  |
| 8/13 | 370,272 | 1,639,776 | 264,480 |  |  |  |
| 8/15 | 264.480 | 899,232 |  |  |  |  |
| 8 \% | 211.58 .4 | 581,8.56 |  |  |  |  |
| 8/233 | 42:3.168 | 1,110,816 | 3,200 |  |  |  |
| 8/27 | 528,960 | 1,216,608 |  |  |  |  |
| 8/31 | 423,168 | 846,336 |  |  |  |  |
| $9 / 2$ | 581,856 | 1,322,400 |  | . |  |  |
| $9 / 6$ | 476,064 | 1,057,920 |  |  |  |  |
| $9 / 9$ | 528,960 | 1,163,712 |  | . |  |  |
| $9 / 13$ | 476,064 | 1,533,584 |  |  |  |  |
| $9 / 17$ | 370,272 | 1,163,712 |  |  |  |  |
| $9 / 20$ | 687,648 | 1,428,192 |  | . |  |  |
| $9 / 24$ | 264,480 | 1,586,880 | 52,896 |  |  |  |
| $9 / 27$ | 528,960 | 1,639,776 | 52,896 | . |  |  |
| 10/1 | 1,057,920 | 2,062,944 |  |  |  |  |
| $10 / 4$ | 740,544 | 1,53:3,984 |  |  |  |  |
| 10/8 | 581,856 | 1,428,192 |  |  |  | . |
| 10/11 | 1,057,920 | 952,123 | 105,792 | . |  | . |
| 10/15 | 687,648 | 1,269,504 | 52,896 | . |  | , . |
| 10/18 | 687,618 | 1,057,920 |  | . |  | . |
| 10/22 | 687,648 | 1,375,296 | 52,896 |  |  |  |
| 10/26 | 793,440 | 1,5:33, 984 |  |  |  |  |
| 10/29 | 1,428,192 | 1,957,152 | 264,480 |  |  |  |
| 11/1 | 687,648 | 2,115,840 | 105, 792 |  | . |  |
| 11/5 | 1,005,024 | $3,438,240$ | 6,400 | - |  |  |
| 11/8 | 158,688 | 899,232 | 105,792 |  | . |  |
| 11/12 | $899,23{ }^{2}$ | 2,644,800 | 317,376 | . |  |  |
| 11/15 | 476,064 | 1,163, 712 | 317,376 | . . | . |  |
| 11/19 | 18.5,136 | 846,3:36 |  | . . |  |  |
| 11/22 | 290,928 | 925,680 |  |  |  |  |
| 11/26 | 185,136 | 370,272 | 1,600 |  |  |  |
| 11/30 | 158,688 | 661,200 | 1,600 |  |  |  |
| 12/3 | 317,376 | 185,136 | - | - . |  |  |
| 12/6 | 16,000 | 390,720 |  |  |  |  |
| 12/10 | 19,836 | 112,404 |  |  | . | . |
| 12/14 | 99,180 | 211,584 | 13,224 |  |  |  |
| 12/17 | 52,896 | 132,240 | 400) |  |  | . |
| 12/20 | 66,120 | 178.528 | 26,448 |  |  |  |
| 12/24 | 13,221 | (6t), 120 | 13,224 | - |  |  |
| 12/27 | 26,448 | 99.180 | 13,224 | . |  |  |
| 12/31 | 19,836 | 132,240 | 19,836 |  | - . | . |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel In 1913-(Continued)

| 1913 | Total Chlorophyceae | Asterionella gracillima | Asterionella gracillima (large) | $\begin{gathered} \text { Amphiprora } \\ \text { alata } \end{gathered}$ | Bacillairia paradoxa | Cocconeis pediculus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 | 19,836 | 707,484 | ................ |  | 6,612 |  |
| 1/8 | 1,200 | 257,868 | ............... | ............... | , |  |
| 1/12 | 400 | 528,960 |  |  |  |  |
| 1/15 | 1,600 | 2,254,692 | 19,836 |  |  |  |
| 1/19 | 2,800 | 4,350,696 | 400 | 13,224 |  |  |
| 1/22 | 40,660 | 740,544 |  |  | 46,284 |  |
| 1/26 | 14,024 | 238,032 |  |  |  |  |
| 1/29 | 21,036 | 1,071,144 |  | ............... | 1,600 |  |
| 2/2 | 14,824 | 1,031,472 |  |  | 6,400 |  |
| 2/5 | 32,448 | 985,188 |  | 13,224 | . |  |
| 2/8 | 11,200 | 1,044,696 |  |  |  |  |
| 2/12 | 13,600 | 251,256 |  | 52.896 |  |  |
| 2/15 | 117,792 | 859,560 |  | 26,448 | .. ...... . |  |
| 2/19 | 242,032 | 1,097,592 |  | 26,448 |  |  |
| 2/23 | 93,368 | 370,272 |  | 800 |  |  |
| 2/26 | 219,584 | 4,496,616 | .............. |  |  | 1,600 |
| $3 / 1$ | 98,544 | 528,960 |  | 3,200 | ..... ......... |  |
| 3/5 | 96,944 | 290,92 |  |  |  |  |
| 3/8 | 27,200 | 132,240 |  |  |  |  |
| 3/12 | 68,896 |  |  |  |  |  |
| 3/15 | 169,040 | 370,272 |  | 1,600 |  |  |
| 3/19 | 279,280 | 132,240 |  | 1,600 |  |  |
| 3/23 | 22.,384 | 185,136 | 6,612 | 1,600 | ..... ... .. ... |  |
| $3 / 26$ | 32,000 | 158,688 | ............... | ....... .... |  |  |
| 3/29 | 19,200 | 581,856 |  | ..... ....... |  |  |
| 4/2 | 28,800 | 79,344 | ............... |  | 3,200 |  |
| 4/5 | 196,336 | 105,792 |  | 1,600 | 3,200 |  |
| 4/9 | 96,944 | 105,792 | 26,448 | 1,600 |  |  |
| 4/13 | 25,600 | 16,000 | 1,600 | 1,600 | 3,200 |  |
| 4/16 | 255,632 | 105,792 |  |  |  |  |
| 4/19 | 133,810 | 26,448 | ........... . |  |  |  |
| 4/23 | 375,072 | 132,240 |  |  |  |  |
| 4/20 | 290,080 | 132,240 | ............... |  |  |  |
| 4/30 | 201,136 |  | .... |  |  |  |
| $5 / 3$ | 113,792 | 1,600 | $\ldots$ |  |  |  |
| $5 / 7$ | 145,040 | 502,512 |  |  | . ..... | ....... |
| $5 / 11$ | 404,720 | 52,896 | 714,096 | 1,600 | ............... |  |
| $5 / 14$ | 432,768 | 105,792 | 264,480 | ..... ......... | .............. |  |
| $5 / 17$ | 147,392 | 211,584 | 370,272 |  |  |  |
| $5 / 21$ | 713,248 | 211,584 | 3,200 |  |  |  |
| $5 / 24$ | 1,873,760 | 12,500 |  | 3,200 |  |  |
| 5/27 | 2,026,048 | 158,688 | 3,200 | 158,688 |  |  |
| $5 / 31$ | 5,834,560 |  |  | 3,200 |  |  |
| $6 / 3$ | 5,829,760 | 158,688 | 3,200 |  |  | $\ldots$ |
| $6 / 7$ | 5,116,416 | 105,792 |  |  |  |  |
| 6/11 | 2,803,488 | 211,58 | 105,792 | $\cdots{ }^{-}$ |  |  |
| 6/16 | 1,091,744 | 423,168 | 423,168 | 3,200 |  |  |
| 6/18 | 2,750,192 | 528,960 | 476,064 |  |  |  |
| 6/21 | 4,714,144 | 423,168 | 264,480 |  |  |  |
| 6/25 | 4,603,168 | 476,064 | 158,688 | 105,792 |  |  |
| 6/28 | 4,399,968 | 634,752 | $26.4,480$ | 3,200 |  |  |
| 7/3 | 2,966,976 | 105,792 | 3,200 |  | ............... | .... |
| 7/5 | 1,021,024 | . . | . . | 3,200 | . |  |
| $7 / 9$ | 2,131,840 | .............. | ............ |  |  |  |
| 7/12 | 2,138,232 | .......... | .............. | 3,200 |  |  |
| 7/16 | 3,050,768 | ........... | ........... |  | 12,800 |  |
| 7/19 | 2,362,624 |  |  | 6,400 | 57,600 |  |
| $7 / 23$ | 1,811,264 | ............... | ............... |  |  |  |
| 7/26 | 3,470,240 |  |  | 3,200 | 211,584 |  |
| 7/30 | 1,920,256 | .... | ............ | 3,200 |  |  |

## Table 1．－Organisms Per Cubic Meter in Piankton of Stockton Channel in 1913－（Continued）

| 1913 | Total Chiorophyceae | Asterionella gracillima | Asterionella gracillima（large） | Amphiprora alata | Bacillairia paradoxa | Cocconeis pediculus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S／ 2 | 1，710，872 |  | ．．．．．．．．．．．．．．．． |  | 32，000 |  |
| 8／ 6 | 1，618，880 | ．．．．．．．．．．．．．．． |  | ．．．．．．．．．．．．．．． | 3，200 |  |
| 8／9 | 1，612，480 |  |  |  |  |  |
| S／13 | 3，338，948 | 3，200 |  | ．．．．．．．．．．．．．．． | 6，400 |  |
| $8 / 15$ | 1，702，272 |  |  |  | 12，800 |  |
| 8／20 | 1，692，672 | 105，792 |  |  |  |  |
| 8／2＇3 | 3，024，672 |  |  |  | 25，600 |  |
| 8／27 | 2，76：3，392 |  |  |  | 105，792 |  |
| 8／31 | 2，538，988 |  |  |  | 25，600 |  |
| $9 / 2$ | 4，048，296 |  |  |  | 6，400 |  |
| $9 / 6$ | $4,922,528$ |  |  |  | 6，400 |  |
| $9 / 9$ | 5，557，280 |  |  | 3，200 | 6，400 |  |
| $9 / 13$ | 6，410，016 |  |  | 3，200 | 6，400 |  |
| $9 / 17$ | 3，414，944 |  |  | 105，792 |  |  |
| 9／20 | 3，085，784 |  |  | 52，896 | 52，896 |  |
| $9 / 24$ | 4，481，664 |  |  |  | 6，400 |  |
| $9 / 27$ | 3，880，608 |  |  | 52，806 | 52，896 |  |
| 10／1 | 5，137，312 |  |  |  | 12，800 |  |
| 10／4 | 4，633，952 |  |  |  | 32，000 |  |
| 10／8 | 4，667，636 |  |  |  | 6，400 | 52，896 |
| 10／11 | 4，680，448 |  |  |  |  |  |
| 10／15 | 3，755，616 |  |  | 52，896 | 6，400 |  |
| 10／18 | 2，591，904 |  |  |  |  |  |
| 10／22 | 3，312，352 |  |  | 105，792 | 6，400 |  |
| 10／26 | 3，451，040 |  |  | 52，896 |  | 52，836 |
| 10／29 | 5，324，496 | 52，896 |  | 12，800 |  |  |
| 11／1 | 4，191，584 |  |  | 105，792 |  |  |
| 11／5 | 5，526，784 | 52，896 |  | 158，688 |  |  |
| 11／8 | 1，851，968 |  |  |  |  |  |
| 11／12 | 5，211，856 |  |  | 1，600 |  |  |
| 11／15 | 2，809，888 |  |  |  |  |  |
| 11／19 | 1，441，592 | 79，344 | 79，344 | 1.600 |  |  |
| 11／22 | 1，674，976 | 3，200 | 9，600 | 52，896 | 9，600 |  |
| 11／26 | 866，288 |  |  | 1，600 |  |  |
| 11／30 | 1，009，824 |  | 1，600 |  | 6，400 |  |
| 12／3 | 746，944 | 1，507，536 | 1，600 |  |  |  |
| 12／6 | 491，216 | 1，401，744 | 52，896 | 1，600 | 52，896 |  |
| 12／10 | 213，584 | 614，916 |  | 400 | 800 |  |
| 12／14 | 372，272 | 198，360 | 390，108 | 39，672 | 19，836 |  |
| 12／17 | 239，632 | 185，136 | 400 | 13，224 |  |  |
| 12／20 | 331，800 | 105，792 |  | 26，448 | 26，448 | 800 |
| 12／24 | 121，016 | 85，956 | ．．．．．．．．．．．．．． | 13，224 | 2，400 | 400 |
| 12／27 | 299，140 | 59，508 |  | 33，060 | 800 |  |
| 12／31 | 290，928 | 19，836 | ．．． | ．．．．．．．．．．． | 4，000 | ．．．． |

が心ーーーーーーーー 灾

Cymatopleura
solea


Cymbella cymbiformis affinis 106．592 317．376 793，440
1，573，656 449，616 204，972 257，868 158，688 357，048 304，152

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel In 1913-(Continued)

| 1913 | Cyclotella sp. | Cymatopleura solea | $\underset{\text { aftinis }}{\text { Cymbella }}$ | Cymbella cymbiformis | $\begin{gathered} \text { Cymbella } \\ \text { parva } \end{gathered}$ | $\underset{\text { sp. }}{\text { Cymbella }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2/12 | 740,544 |  |  | 1,600 |  |  |
| 2/15 | 1,150,488 | ............... | ............... |  |  | 800 |
| 2/19 | 1,401,744 | ......... . |  | 1,600 | .. . . |  |
| 2/23 | 886,008 | ............... | .... |  | ............... |  |
| 2/26 | 3,570,480 |  | ............... | ............... | ............... | 3,200 |
| 3/1 | 5,210,256 |  |  |  |  |  |
| $3 / 5$ | 5,659,872 | 3,200 |  |  |  |  |
| $3 / 8$ | 1,613,328 |  | 1,600 | 3,200 | .............. |  |
| $3 / 12$ | 2,697,696 | ............... |  |  | ............... |  |
| $3 / 15$ | 1,110,816 |  |  |  |  |  |
| 3/19 | 2,168,736 |  |  |  |  |  |
| 3/23 | 2,724,144 | ............... | .............. | 3,200 |  | 1,600 |
| 3/26 | 1,163,712 |  |  |  |  |  |
| 3/29 | 925,680 | ............... | ............... |  |  |  |
| 4/2 | 925,680 |  |  |  | 3,200 |  |
| 4/5 | 2,459,664 |  |  | . | 1,600 |  |
| 4/9 | 6,162,384 |  |  |  |  |  |
| 4/13 | 3,570,480 | 3,200 | . . . |  |  |  |
| 4/16 | 9,151,008 |  |  |  |  |  |
| 1/19 | 10,684,992 |  |  | ........... |  |  |
| $4 / 23$ | 15,472,080 |  |  |  |  |  |
| 4/26 | 15,286,944 |  |  |  |  |  |
| 4/30 | 18,116,880 |  |  |  |  |  |
| $5 / 3$ | 20,391,408 |  |  | 3,200 |  |  |
| 5/7 | 19,597,968 | .... . |  |  |  |  |
| $5 / 11$ | 32,610,384 |  | 1,600 |  | . | . |
| $5 / 14$ | 60,248,544 |  |  |  | ............... |  |
| $5 / 17$ | 43,216,032 | .............. | ............... | . |  |  |
| 5/21 | 36,022,176 |  | ........ |  |  |  |
| $5 / 24$ | 35,704,800 | . |  |  |  |  |
| $5 / 27$ | 54,482,880 |  |  | ............... | ........ |  |
| $5 / 31$ | 53,001,792 | ............... | 3,200 |  |  |  |
| $6 / 3$ | 57,286,368 |  |  |  |  |  |
| $6 / 7$ | 60,195,648 |  |  |  |  |  |
| 6/11 | 59,349,312 |  | 105,792 | 3,200 |  |  |
| 6/16 | 38,508,288 |  |  |  |  | 3,200 |
| 6/18 | 42,475,488 |  |  | . |  |  |
| $6 / 21$ | 34,646,880 |  |  |  | .............. |  |
| 6/25 | 36,974,304 |  |  |  |  |  |
| 6/28 | 51,362,016 |  |  | 6,400 |  |  |
| $7 / 3$ | 35,175,840 |  |  |  |  |  |
| $7 / 5$ | 14,281,920 |  |  |  |  |  |
| $7 / 9$ | 12,324,768 |  |  |  |  |  |
| $7 / 12$ | 16,768,032 |  |  |  |  |  |
| 7/16 | 45,755,040 |  |  |  |  |  |
| 7/19 | 24,279,264 |  |  |  |  |  |
| 7/23 | 11,742,912 |  |  | 6,400 |  |  |
| 7/26 | 17,349,888 |  | 3,200 |  |  |  |
| 7/30 | 15,168,800 | . |  |  |  |  |
| $8 / 2$ | 14,916,672 |  |  |  |  |  |
| $8 / 6$ | 9,838,656 |  |  |  |  |  |
| $8 / 9$ | 10,790,784 |  |  |  |  |  |
| 8/13 | 14,229,024 | .. |  |  |  |  |
| 8/15 | 6,770,688 |  | . |  |  |  |
| 8/20 | 12,113,184 |  |  |  |  |  |
| 8/23 | 14,440,608 |  | . |  |  |  |
| 8/27 | 20,047,584 |  |  |  |  |  |
| 8/31 | 21,898,944 |  |  |  |  |  |
| $9 / 2$ | 12,166,080 |  | ... .- |  |  |  |
| $9 / 6$ | 12,166,080 | ............ |  |  |  |  |

# T'abie 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued) 

| 1913 | Cyclotella spp. | Cymatopleura | Cymbella affinis | Cymbella cymbiformis | Cymbella parva | $\begin{gathered} \text { Cymbella } \\ \text { sp. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $9 / 9$ | 12,166,080 |  | 3,200 |  |  |  |
| 9/13 | 15, 128, 256 |  |  | . |  |  |
| $9 / 17$ | 14,493,504 |  |  | . |  |  |
| $9 / 20$ | 13,065,312 | - |  | . |  |  |
| $9 / 24$ | 14,757,984 | . |  | . . |  |  |
| 9/27 | 19,677,312 | . |  | . |  |  |
| 10/1 | 21,687,360 | . |  |  | . |  |
| 10/4 | 12,695,040 |  |  |  |  |  |
| 10/8 | 18,090,432 | 6.400 |  | . |  |  |
| 10/11 | 22,851,072 |  |  | . |  |  |
| 10/15 | 20,788,128 | . |  | . |  |  |
| 10/18 | $25,866,144$ |  |  | . |  |  |
| 10/22 | 28,246,464 | . |  | 6,400 |  |  |
| 10/26 | 34,276,608 | . |  |  |  |  |
| 10/29 | 31,853,392 |  |  | 6,400 | $\ldots$ |  |
| 11/1 | 12,589,248 | 6, 400 |  | . . | . |  |
| 11/5 | 9,203,304 | . . . . |  | . |  |  |
| 11/8 | 7,775,712 | .. | 6,400 | . . | . . |  |
| 11/12 | 11,240,400 |  | 1,600 | $\cdots$. |  |  |
| 11/15 | 7,722,816 |  |  | .. |  |  |
| 11/19 | 7,061,616 |  | 3,200 | 3,200 | . | . |
| 11/22 | 7,697,968 | 3,200 | 3,200 |  |  |  |
| 11/26 | 6,692,914 | . |  | . . . | - . |  |
| 11/30 | 6,876,480 | . |  | . . |  |  |
| 12/3 | 6,955, 824 | . | - . | . . | - . |  |
| 12/6 | 4,522,608 | - |  | . . | . |  |
| 12/10 | 1,970,376 |  | 400 | . . |  |  |
| 12/14 | 2,281,140 | . |  | - . |  |  |
| 12/17 | 2,499,336 |  |  |  |  |  |
| 12/20 | 2,737,368 |  | ... | - . ${ }^{\text {- }}$ | - | 800 |
| 12/24 | 1,283,128 | 400 |  | 800 |  |  |
| 12/27 | 2,876,220 | .. . . |  | 800 | - . .. |  |
| 12/31 | 1,838,136 |  |  |  | . . . . . . |  |


| 1913 | Cymbella tumida | Diatom unidentified | Diatoma vulgare | Epithemia ocellata | Fragillaria capucina | Fragillaria crotonensis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 | . . | . | . . . | . . ..... | . . . |  |
| 1/8 | . | . . |  | . |  | . |
| 1/12 |  | . | - . | . .. . |  | . |
| 1/15 |  | - |  | - | \$00 |  |
| 1/19 |  | . |  |  | S00 | . |
| 1/22 |  | . . . | . | 400 |  | . |
| 1/26 | . | 400 |  | . . | . .. | . |
| 1/29 |  | . | . | . | - | . |
| 2/2 |  | . |  | - . |  |  |
| 2/5 | - |  |  | .. . | \$00 |  |
| 2/8 |  |  |  | . . . |  | . |
| 2/12 |  | 26,448 |  | . . . |  | .. |
| 2/15 | . |  | .. . . | .. . | 1,600 | . |
| 2/19 |  | 800 |  | . . . | 1.600 | .. . ....... |
| 2/23 | 800 | . | . . | .... | 800 |  |
| 2/26 | . | - . .. | . | . .. .... | 1,600 |  |
| 3/1 |  | . | . . | .. . ... | 3,200 | - |
| $3 / 5$ | . | . . . | . .. . . | . . . . ${ }^{\text {a }}$ | ... . |  |
| $3 / 5$ |  | $\cdots$. | - . . . . | 3,200 | ..... . . | - . . . |
| $3 / 12$ |  | . | - . ... | ........ . ... |  | $\ldots$ |
| $3 / 15$ |  |  |  | ........ ...... | 6,400 |  |
| 3/19 | 3,200 | 1,600 | ...... . ..... | .............. | 1,600 | ......... .... |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Contimued)

| 1913 | Cymbella tumida | Diatom unidentified | Diatoma vulgare | Epithemia ocellata | Fragillaria capucina | Fragillaria crotonensis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3/2; | 3,200 | 1,600 |  |  | 3,200 |  |
| $3 / 26$ |  | 1,600 |  |  | 3,200 |  |
| $3 / 29$ |  |  |  |  | 3,200 |  |
| $4 / 2$ |  |  |  |  | 3,200 |  |
| 4/5 | . |  |  | . . | 1,600 |  |
| $4 / 9$ |  |  | . |  |  |  |
| 4/13 | 3,200 |  | - |  | 3,200 |  |
| $4 / 16$ | 3,200 | 1,600 |  |  | 1,600 | - |
| 4/19 | . | 1.600 |  | . . |  |  |
| 4/23 |  | 1,600 |  |  |  |  |
| 4/26 | 1,600 |  |  |  | 6,400 | 3,200 |
| $4 / 30$ | 52,596 |  | . |  | 1,600 | .. |
| $5 / 3$ |  |  | . . |  | 3,200 |  |
| $5 / 7$ | . | . | . | . | 3,200 |  |
| $5 / 11$ |  |  |  | . . |  |  |
| $5 / 14$ | 6,400 | . | . | . |  |  |
| 517 | 25,200 | . |  | . |  |  |
| $5 / 21$ | . . |  |  | , |  | . |
| $5 / 24$ |  |  |  |  |  |  |
| $5 / 27$ |  | - . |  | 6,400 |  |  |
| $5 / 31$ | . | . |  |  |  |  |
| $6 / 3$ |  |  |  |  |  |  |
| $6 \cdot 7$ |  | 6,400 | 3,200 | . | . |  |
| 6.11 | - . |  | . |  |  |  |
| $6 / 16$ | . |  |  | 6,400 |  |  |
| 6/18 |  |  | . | . . |  |  |
| $6 / 21$ | . |  | . |  |  | . |
| 6/25 | . | . | . | . . | 6,400 |  |
| 6/28 |  | . . |  |  |  |  |
| $7 / 3$ | . . . .. |  | . | . . | , . |  |
| $7 / 5$ | - .. . ... | . | . . |  |  |  |
| $7 / 9$ | . . . . . | . | . . . |  |  |  |
| 7/12 |  |  |  |  |  |  |
| $7 / 16$ | 6,400 |  |  | 6,400 |  |  |
| 7/19 | . . |  |  | . . |  |  |
| 7/23 | . . | . . |  | . . | 6,400 |  |
| 7/26 | . | . | . | . |  |  |
| $7 / 30$ | . | . | . |  |  |  |
| $8 / 2$ | . . | . |  | 6,400 |  |  |
| 8/ 6 |  | . |  |  | 12,500 |  |
| $8 / 9$ |  |  |  |  | 6,400 |  |
| 8/13 | . |  |  | 3,200 |  |  |
| 8/15 | . . . . . | . . |  |  |  |  |
| 8/30 | .. . |  |  |  | 3,200 |  |
| 8/23 |  | $\ldots$. |  |  |  |  |
| S/27 | 6,400 | .... . |  | 6,400 | . |  |
| 8/31 | , | . . | 3,200 | . | . |  |
| $9 / 2$ | . . . | ... . . |  |  |  | - . |
| $9 / 6$ | . . . | .... . |  |  | 6,400 | . . |
| $9 / 9$ | . | .. . | . | 6,400 |  | . . . |
| $9 / 13$ | ... . . . | .... . |  | 6,400 |  |  |
| $9 / 17$ | - ... . | ..... | . | 6,400 | 3,200 |  |
| $9 / 20$ | ... . | . . . | . | . | . |  |
| $9 / 24$ | .... |  |  |  |  | . |
| 9/27 | . . |  |  |  |  | , |
| 10/1 | . . | . | . | . |  | . |
| 10/4 |  |  |  | . |  | . . . . |
| 10/8 | - .. |  | . |  | 6, 400 |  |
| 10/11 |  |  |  |  | . . | . |
| 10/15 | 105,792 | 105,792 | - . | 6,400 |  | . |

T'able 1.-Organisms Per Cubic Meter in Plankton of Stockton Chansel in 1913 -(Continued)

| 1913 | Cymbella tumida | Diatom unidentified | Diatoma vulgare | Epithemia ocellata | Fragillaria capucina | Fragillaria crotonensis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10,18 | . | .. |  | . . . | . ... ..... .. |  |
| 10,2\% | - |  |  | . . | ... . .. | . . . . ... |
| $10^{\prime 2} 6$ | 6,400 |  |  | . | . . .. .. |  |
| 10,29 |  | . | . | ... ${ }^{\text {a }}$ |  | 6,400 |
| 11/1 | . . . | . | . ...... | 6. 400 |  |  |
| 11/5 | - 0, | . | - . | 6,400 | 6,400 | ... |
| 11/8 | 6,400 |  |  | , | , | . ..... |
| 11/12 |  | . | , . | . | . . . . . | ... . ... |
| 11/15 |  |  | . | 6,400 | . | . . |
| 11/19 |  |  | - . | 3,200 |  | .. . |
| $11 / 22$ | . | . . | . . | 3,200 | 3,200 | .. . . |
| 11/26 |  | . . |  | .. . | 3,200 | . |
| 11/30 | . | . . . | . | 6,400 | 3,200 | . |
| 12/3 |  | . . |  | 6,400 |  |  |
| 12/6 | 1.600 | . . . |  | . . | .. . . | . |
| 12/10 | 1,600 | . . . | . | . .. | . . . |  |
| 12/14 |  | . |  |  |  | . . |
| 12/17 |  | .. |  |  | .. . |  |
| 12/20 | 800 | . |  | 400 | . . | .. . .. |
| 12/24 |  | $\cdots$ |  |  |  |  |
| 12/27 | 800 |  |  | 800 |  |  |
| 12/31 | 800 | . . |  | 1,600 |  | . . .. |


| 1913 | $\begin{aligned} & \text { Fragillaria } \\ & \text { sp. } \end{aligned}$ | Comphonema constrictum | Gomphonema sp. | Gyrosigma acuminatum | Gyrosigma kiitzingii | Gyrosigma scalproides |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 | .. | . ..... - | .... . | - .. - | 6,612 | .. .. . .... |
| 1/8 | . . . . . | . . . | .. | .. | . . | . . . . |
| 1/12 | . . |  |  | . . . | . . . | . $\ldots$. |
| 1/15 | . . .. . . | ..... . . | .. . | . . . | - $\cdot$ | . . . ..... |
| 1/19 | . | .. | . . . | . | - . ${ }^{\circ}$ |  |
| 1/22 | . . |  | . . . | .. . | 400 | . |
| 1/26 | . | . . | . | . . | . . | .. . . |
| 1/29 | . . . |  | . . | - . |  |  |
| 2/2 | - | . . . . |  | . . | - | . . |
| 2/5 | . |  | . |  |  |  |
| 2/ 8 | . | . | . | . | . . | - . |
| $2 / 12$ | . . |  | . . |  |  | 800 |
| 215 | . |  | . |  |  |  |
| 2/19 | . . . | . | , |  | - . | . |
| 2/23 | . |  | . | . . | . . . |  |
| 2/26 | - . | . . | . . | .. . | .. . . .. | 1,600 |
| $3 / 1$ | . . | . | . . | . . | . |  |
| $3 / 5$ | . |  |  | . . | 1,600 | . |
| $3 / 8$ | . | . | . . | . | . . |  |
| $3 / 12$ | . | . | . | . . . |  | , |
| $3 / 15$ | . . . | . | . | . | . | . |
| $3 / 19$ |  | . |  | .. . . | . . |  |
| $3 / 2: 3$ | . . | . | - |  |  |  |
| $3 / 26$ | . | . |  | 52,896 | . . |  |
| $3 / 29$ | . . . |  |  | . . . |  | .. . |
| 4/2 | . | . |  |  | 1,600 |  |
| $4 / 5$ | .. . ... . | .. |  | . | . . . | . . |
| 4/9 | .. | 1,600 | . . | . . . | ... | . . . |
| $4 / 13$ | - . | . |  | 3,200 |  |  |
| $4 / 16$ | . | . . | 1,600 | . . | - . | . . . |
| 4/19 |  |  |  |  |  |  |
| 4.23 | ... . | . . . |  |  | 1,600 |  |
| 4/26 |  |  |  |  |  |  |

Table 1.-Organisms Per Cubic Meter in Planikton of Stockton Channel in 1913-(Continued)

| 1913 | $\begin{gathered} \text { Fragillaria } \\ \text { sp. } \end{gathered}$ | Gomphonema constrictum | Gomphonema sp. | Gyrosigma acuminatum | Gyrosigma kiitzingii | Gyrosigma scalproides |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4/30 |  |  |  |  |  |  |
| 5/3 | ........ . . . | . . |  |  |  |  |
| 5/ 7 | .. ....... . |  |  |  | 1,600 |  |
| $5 / 11$ | . .. . |  |  |  | 52,896 | - . |
| 5/14 | .... |  |  |  |  |  |
| 5/17 | 6,400 | . | . | . | 3,200 | .. |
| 5/21 |  |  |  |  |  |  |
| 5/24 | . |  |  |  |  | 3,200 |
| 5/27 | .... |  |  |  |  |  |
| 5/31 | . |  |  | 3,200 |  |  |
| $6 / 3$ |  |  |  |  | - . |  |
| $6 / 7$ |  | . |  |  |  |  |
| 6/11 |  | . |  |  |  | . |
| 6/16 | .. |  |  |  |  |  |
| 6/18 | ... |  |  |  | . |  |
| $6 / 21$ |  |  |  |  |  |  |
| $6 / 25$ | .. . |  |  |  | . . | 3,200 |
| 6/28 | . |  |  |  | . |  |
| $7 / 3$ | - | . | . . . | - . |  |  |
| 7/5 |  | . | - |  | . |  |
| $7 / 9$ | ... ... . . |  |  |  | . | . |
| 7/12 | ........ . |  |  |  |  |  |
| $7 / 16$ | .... | $\cdots$ | . .. .. . . | . . | . |  |
| 7/19 |  | . . . . |  |  |  |  |
| 7/23 | ..... . .. . | ... | .. . | . . |  | .. |
| $7 / 26$ | -.... | -. | . . | - |  |  |
| $7 / 30$ | . .. ... .. |  |  |  |  |  |
| $8 / 2$ |  | ... |  |  | 25,600 | . |
| $8 / 6$ | ... . . . |  |  |  |  |  |
| 8/9 |  |  | . |  |  | 3,200 |
| 8/13 | . .. .. |  | ... . |  |  | 158,688 |
| 8/15 |  |  | . | 6,400 |  | 264,480 |
| S/20 S/23 | . |  |  |  |  | 3,200 |
| S/23 $8 / 27$ |  |  |  |  | 3,200 | 6,400 $15 S, 688$ |
| S/27 $8 / 31$ | '..... |  |  |  | 3,200 | 158,688 105,792 |
| $9 / 2$ | 3,200 |  |  |  |  | 158,688 |
| 9/6 | ......... . | - . | . . . . | 6,400 | 105,792 | 12,800 |
| $9 / 9$ |  |  |  |  | 6,400 |  |
| $9 / 13$ |  |  | . |  | 6,400 | 6,400 |
| $9 / 17$ $9 / 20$ | . | 3,200 |  |  |  | 6,400 |
| $9 / 20$ $9 / 24$ |  |  |  |  |  | 105,792 |
| $9 / 24$ $9 / 27$ |  |  |  |  |  | 105,792 |
| 9/27 | ... . |  | . |  |  | 52,896 |
| 10/1 |  |  |  | 52,896 |  |  |
| 10/4 | $\cdots$ |  | . |  | 25,600 |  |
| 10/8 |  | 52,596 | - |  | 12,800 |  |
| 10/11 | - . |  |  |  | 6,400 | 6.400 |
| 10/15 |  | 52,896 |  |  |  | 105,792 |
| $10 / 18$ $10 / 22$ | . |  |  |  |  | 105,792 |
| 10/22 |  |  |  |  | 12,800 | .. |
| 10/26 |  |  |  |  | 12,800 |  |
| 10/29 | ..... |  |  |  |  |  |
| 11/1 | $\ldots$ | - | - | . |  |  |
| 11/5 |  |  |  |  |  |  |
| 11/8 | . |  |  |  | 52,896 | . |
| 11/12 |  |  |  |  |  |  |
| 11/15 |  |  |  |  |  |  |
| 11/19 |  |  | 3,200 |  |  |  |
| 11/22 |  |  |  |  |  |  |

Table 1.-Organisms Per Cubic Mfeter in liankton of STockton Channel in 1913-(Continucd)
1913
$11 / 26$
$11 / 30$
$12 / 3$
$12 / 6$
$12 / 10$
$12 / 14$
$12 / 17$
$12 / 20$
$12 / 24$
$12 / 27$
$12 / 31$

1913
$1 / 5$
$1 / 8$
1/12
$1 / 15$
1/19
122
1/26
1/29
$2 / 2$
2.5
$2 / 12$
$2 / 15$
2/19
$2 / 23$
2/26
3/1
$3 / 5$
$3 / 8$
$3 / 12$
$3 / 15$
3/19
:3/23
$3 / 26$
3/29
4/ 2
4.5
4.9
4.13
$4 / 16$
$4 / 19$
4 2'3
426
$4 / 30$
5. 3

57
$5 / 11$
5/14
517
5) 21

524
$5 / 27$
5,31
6. 3
$\underset{\text { bpagial }}{\text { Fratia }}$
bl

| Gyrosigma <br> acuminatum | Gyrosigma <br> kiitzingii | Gyrosigma <br> scalproides |
| :---: | :---: | ---: |
|  | 1,600 |  |
|  | 3,200 | 1,600 |
|  |  | 1,600 |
|  | 800 | 1,600 |
| $\cdots$ |  | 800 |
|  |  | 400 |
|  |  | 800 |
|  | 400 | 13,244 |
|  |  | $19,8: 36$ |
|  |  |  |

Melosira $\underset{\text { granulata }}{\text { Melosira }}$Melosira

26,448
Navicula affinis

Navicula alpestris

Navicula

26,448
2,400
13,224
26,448
1,322,400
33,060
125,628
72,732
204,972
132,240
145,464
304,152
542,184
119,016
476,064
343,824
132,240
264,480
158,688
793,440
1,031,472
793,440
476,064
502,512
502,512
132,240
634,752
952,128
872,784
528,960
2,274,528
3,702,720
449,616
449,616
343,824
343,824
581,856
1,269,50.4
1,163,712
1,005,024
1,375,296
317,376
634,752
Gomphonema
constrictuma Gomp
nphonema
sp.

1,600

400
$1: 3,2: 24$
13,224
400
400
13,224

| $\because$ | 2.800 |  |
| :--- | :--- | ---: |
| $\ddots$ | $\ddots$ | 800 |
| $\therefore$ |  | 800 |


|  | $\begin{array}{r} 1,600 \\ 3,200 \\ 26,448 \\ 3,200 \end{array}$ | $1,600$ | - |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 3,200 | ... . |  |  |
|  | 3,200 | .. . |  |  |
|  | $6,400$ | $\cdots$. | $\begin{aligned} & 52,896 \\ & 52,896 \end{aligned}$ |  |
|  | $\begin{array}{r} 79,344 \\ 6,400 \end{array}$ |  |  |  |
| 185, 136 | 3,200 | . |  |  |
| 317,376 | 9,600 |  |  |  |
| 211,584 | 132,240 | - . |  | 52,896 |
|  | 1,600 |  |  |  |
|  | 52,896 |  |  |  |
|  | 6,400 | . | 1,600 |  |
| 317,376 |  | .... . |  |  |
| 238,032 | 1,600 |  | 1,600 | 52,896 |
| 1,600 | 9,600 |  |  | 3,200 |
|  |  |  | 1,600 | 52,896 |
| 52,896 |  |  |  |  |
| 1,600 | 3,200 |  | 1,600 | 1,600 |
|  | 3,200 |  | 52,896 | 105,792 |
| 211,584 |  | - . |  | 105,792 |
| 158,688 | 6,400 |  | 3,200 | 105,792 |
|  | 3.200 |  |  |  |
| 105,792 | 3,200 |  |  | 3,200 |
| 317,376 |  | . |  | 211,584 |
| 105,792 |  | ................ | 3,200 | 158,688 |
| 105,792 |  | ........ | ............ | 105,792 |

## Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Contimued)

| 1913 | Melosira granulata | $\underset{\text { Mraposira }}{\text { Malata A }}$ | Melnsira varians | $\underset{\substack{\text { Navicula } \\ \text { affinis }}}{\substack{\text { and }}}$ | Navicula <br> alpestris | Navicula bacillum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6 \cdot 7$ | 528.960 |  |  |  | 3,200 |  |
| $6 / 11$ | 370,272 |  |  |  |  | 211,584 |
| 6/16 | 1,322,400 |  |  |  |  | 264,480 |
| $6 / 18$ | 1,375,296 |  |  |  |  | 211,584 |
| $6 / 21$ | 634,752 |  |  |  | 6,400 |  |
| $6 / 25$ | 2,062,944 |  |  |  |  | 3,200 |
| $6 / 28$ | 7,617,024 | . | 6,400 |  |  | 158,688 |
| 7/3 | 3,067,968 |  | 6,400 |  |  | 3,200 |
| 7/5 | 1,005,024 |  |  |  |  | 3,200 |
| $7 / 9$ | 1,481,088 |  |  |  |  |  |
| 7/12 | 2,697,696 |  |  |  |  | 3,200 |
| 7/16 | 1,586.880 |  |  |  |  | 105,792 |
| 7/19 | 2,168,736 |  |  |  |  |  |
| 7/23 | 1,428,192 |  |  |  |  |  |
| $7 / 26$ | 2,962,176 |  |  |  |  |  |
| 7/30 | 2,539,008 |  |  |  |  |  |
| $8 / 2$ | 3,914,304 |  |  |  |  | 3,200 |
| 8/6 | 3,385,344 |  |  |  |  |  |
| 8/ 9 | 4,972,224 |  |  |  |  |  |
| 8/13 | 10,314,720 | ... .. |  |  | 3,200 | 105,792 |
| 8/15 | 10,103,136 |  |  |  | 3,200 | 3,200 |
| 8/20 | 5,342,496 | . |  |  | 6,400 | 158,688 |
| 8/23 | 4,760,640 |  |  |  |  | 211,584 |
| 8/27 | 6,083,040 |  |  |  |  | 105,792 |
| 8/31 | 8,357,568 |  |  |  |  | 3,200 |
| $9 / 2$ | 7,828,608 |  |  |  |  | 211,584 |
| $9 / 6$ | 16,556,448 | - . |  | - . |  | 158,688 |
| $9 / 9$ | 10,420,512 |  |  |  |  | 264,480 |
| 9/13 | 5,025,120 |  |  |  |  | 370,272 |
| $9 / 17$ | 8,251,776 |  |  |  |  | 105,792 |
| 9/20 | 8,410,464 |  |  |  |  | 105,792 |
| $9 / 24$ | 15,604,320 |  |  | 52,896 | 105,792 | 105,792 |
| 9/27 | 5,183,808 |  |  |  |  | 264,480 |
| 10/1 | 8,145,984 |  |  |  | 6,400 | 264,480 |
| 10/4 | 5,236,704 |  |  |  |  | 52,896 |
| 10/8 | 8,040,192 |  |  |  | 52,596 | 52,896 |
| 10/11 | 5,289,600 |  | 6,400 |  | 105,792 |  |
| 10/15 | 7,828,608 |  |  |  | 6,400 | 264,480 |
| 10/18 | 4,601,952 |  |  |  | 52,896 | 158,688 |
| 10/22 | 4,654,848 |  |  |  |  |  |
| 10/26 | 3,544,032 | $\cdots$ | . .. |  | 52,896 | 52,896 |
| 10/29 | 2,750,592 |  |  |  | 52,896 | 211,584 |
| 11/1 | 2,010,048 |  |  |  |  |  |
| 11/5 | 1,798,464 |  |  |  | 52,896 | 52,896 |
| 11/8 | 899.232 |  |  | . |  | 264.480 |
| 11/12 | 1,137,264 |  |  |  |  | 1,600 |
| 11/15 | 1,005,024 |  |  |  | .. | 105.792 |
| 11/19 | 740,544 |  |  |  |  | 52,896 |
| 11/22 | 978,576 |  |  |  |  | 52,896 |
| 11/26 | 1,137,264 |  |  |  |  |  |
| 11/30 | 1,084,368 |  |  |  | 1,600 | 52,896 |
| 12/3 | 1,745,568 |  | 3,200 |  |  | 1,600 |
| 12/6 | 1,057,920 |  |  |  | 1,600 |  |
| 12/10 | 350,436 |  | 2,400 |  |  | 33,060 |
| 12/14 | 257,868 |  | 400 |  |  | 400 |
| 12/17 | 337,212 |  |  |  |  | 33,060 |
| 12/20 | 370,272 |  | 800 |  | 400 | 19,836 |
| 12/24 | 271,092 |  | 800 |  | 800 | 39,672 |
| 12/27 | 588,468 |  | 26,448 |  | 400 |  |
| 12/31 | 925,680 |  | 33,060 |  | 13,224 | 46,28 4 |

Table 1.-Organisms Per Cubic Meter in Piankton of Stockton Channel in 1913-(Continued)

| 1913 | Navicula dubia | Navicula gracilis | Navicula sp. | $\begin{aligned} & \text { Navicula } \\ & \text { viridis } \end{aligned}$ | Nitzschia acicularis | Nitzschia angularis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 |  |  |  |  |  |  |
| 1/8 | ............. | ............... |  |  | 400 |  |
| 1/12 | . | . | 400 |  |  |  |
| 1/15 | .............. |  | 13,224 | 400 | 13,224 |  |
| 1/19 |  |  | 33,060 |  | 13,24 |  |
| 1/22 |  |  |  | 800 | 400 |  |
| 1/26 |  | 400 |  |  | 13,224 |  |
| 1/29 |  |  |  |  | 26,848 |  |
| 2/2 |  | 13,224 |  |  | 19,8:36 |  |
| $2 / 5$ |  | 13,224 |  |  | 13,224 | . |
| 2/8 |  | 800 |  |  | 27,248 | . |
| $2 / 12$ |  | 39,672 |  |  | 26,448 |  |
| $2 / 15$ |  | 800 |  |  | 26,448 |  |
| 2/19 |  | 39,672 |  |  | 120,616 |  |
| '2/23 |  | 39,672 | 800 |  |  |  |
| $2 / 26$ |  | 1,600 |  |  | 3,200 |  |
| 3/1 |  | 1,600 |  |  | 107,392 | ...... . |
| $3 / 5$ |  |  | 52,896 |  |  |  |
| 3/8 |  | 1,600 | 3,200 |  | 3,200 |  |
| $3 / 12$ |  | 52,896 | 52,896 |  | 3,200 |  |
| $3 / 15$ |  | 105,79 | , |  | 1,600 |  |
| 3/19 |  | 1,600 |  |  | 79,344 |  |
| 3/23 |  | 105,792 |  |  | 1,600 | .... . . ..... |
| 3/26 |  | 105,792 |  |  | 79,344 |  |
| 3/29 |  | 52,896 |  |  | 1,600 |  |
| 4/2 |  | 79,344 |  |  | 79,344 |  |
| $4 / 5$ |  |  | 52,896 |  |  |  |
| 4/9 |  | 105,792 | 1,600 |  |  |  |
| $4 / 13$ |  | 1,600 |  |  | 4,800 | - . |
| 4/16 |  | 52,896 | 1,600 |  | 80,944 |  |
| 4/19 |  | 52,896 |  |  | 1,600 |  |
| 4/23 |  |  |  |  | 211,584 |  |
| 4/26 |  | 52.896 | 1,600 |  | 185,136 | - . . . ... |
| 4/30 |  | 79,344 |  |  | 264,480 |  |
| $5 / 3$ |  |  |  |  | 79,344 | .. . .. ...... |
| $5 / 7$ |  | 1,600 |  |  | 317,376 | .. .. . . |
| $5 / 11$ |  | 52,896 |  |  | 290,928 |  |
| $5 / 14$ |  | 105,792 |  |  | 952,128 |  |
| $5 / 17$ |  | 158,688 | 3,200 |  | 1,533,984 | 6,400 |
| 5/21 |  | 3,200 |  |  | 2,644,800 |  |
| $5 / 24$ |  | 264,480 |  | 6,400 | 5,289,600 | . . . . |
| $5 / 27$ |  |  |  |  | 15,181,152 |  |
| $5 / 31$ |  | 317,376 |  |  | 20,999,712 | . . . |
| 6/3 |  | 264,480 |  |  | 23,221,344 |  |
| $6 / 7$ |  | 3,200 |  |  | 11,055,264 |  |
| 6/11 |  | 3,200 |  |  | 11,108,160 |  |
| 6/16 |  | 105,792 |  |  | 13,752,960 | . |
| 6/18 |  | 211,584 |  |  | 19,624,416 | . . 0 |
| 6/21 |  | 370,272 |  |  | 14,969,568 | 6,400 |
| 6/25 |  | 158,688 |  |  | 11,901,600 | . .. ... |
| 6/28 |  | 211,584 |  |  | 11,108,160 | . |
| $7 / 3$ $7 / 5$ |  | 211,584 |  |  | 10,050,240 | - |
| $7 / 5$ $7 / 9$ | .............. |  |  |  | 4,284,576 | . |
| $7 / 9$ $7 / 12$ |  | 3,200 |  | 3,200 | 2,909,280 | - .. . . |
| 7/12 |  |  |  |  | 4,866,432 |  |
| $7 / 16$ |  | 370,272 | ............... |  | 5,035,120 | .. . . |
| 7/19 |  | 211,584 |  |  | 4,125,888 |  |
| 7/23 |  | 3,200 |  |  | 2,380,320 |  |
| 7/26 |  | 423,168 |  |  | 6,982,272 |  |
| 7/30 | ............. | 370,272 | ............... |  | 3,755,616 | ... . .... |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913--(Continued)

| 1913 | Navicula | Navicula gracilis | Navicula sp. | $\begin{aligned} & \text { Navicula } \\ & \text { viridis } \end{aligned}$ | Nitzschia acicularis | Nitzschia angularis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $8 / 2$ | 6,400 | 264,480 |  |  | 3,385,344 |  |
| 8/6 |  | 158,688 | - |  | 3,702,720 |  |
| $8 / 9$ | 3,200 | 264,480 |  | ............... | 3,279,552 |  |
| 8/13 |  | 2,539,008 |  |  | 6,453,312 |  |
| 815 |  | 952,128 |  |  | 1,586,880 |  |
| $5 / 20$ |  | 1,269,504 |  |  | 634,752 |  |
| $8 \cdot 3$ |  | 1,110,816 | ............ |  | 1,005,024 |  |
| $8 / 27$ | 3,200 | 793,440 | ............ |  | 2,539,008 |  |
| 8/31 |  | 1,322,400 |  |  | 4,760,640 |  |
| $9 / 2$ |  | 1,163,712 |  |  | 5,236,704 |  |
| $9 / 6$ | 3,200 | 846,336 | ... |  | 3,596,928 |  |
| 9/9 |  | 846,336 | ........... |  | 2,115,840 |  |
| 9/13 |  | 476,064 |  |  | 1,904,256 |  |
| $9 / 17$ |  | 370,272 |  |  | 2,010,048 |  |
| 9,20 | ....... | 846,336 |  |  | 2,750,592 |  |
| $9 / 24$ | .... | 899,232 |  |  | 3,332.448 |  |
| 9/27 |  | 476,064 | 52,596 |  | 2,750,592 |  |
| 10/1 | .1....... | 528,960 |  |  | 3,120,864 |  |
| 10/4 | ..... |  |  |  | 1,533,984 |  |
| 10/8 | ............... | 52,896 | ............... | ............... | 1,745,568 |  |
| 10/11 | .............. | 264,480 | .............. | ............... | 1,904,256 |  |
| 10/15 |  | 158,688 | ............... |  | 2,062,944 |  |
| 10/18 |  | 158,688 |  |  | 2,221,632 |  |
| 10/22 | 52,896 | 52,896 |  |  | 2,062,944 |  |
| 10,26 |  | 158,688 |  |  | 1,163,712 |  |
| 10,29 |  | 105,792 |  |  | 1,745,568 |  |
| 11/1 | .... | ............ | .............. |  | 1,322,400 |  |
| $11 / 5$ |  |  |  |  | 1,005,024 |  |
| 11/8 | ............ |  | ............... |  | 1,322,400 |  |
| 11/12 |  | 52,896 |  |  | 3,173,760 |  |
| 11/15 |  |  | ............... |  | 1,851,360 |  |
| 11/19 |  | 79,344 |  | 3,200 | 1,719,120 |  |
| $11 / 22$ |  | 105,792 | ....... |  | 2,062,944 |  |
| 11/26 |  | 79,344 |  |  | 2,036,496 |  |
| 11/30 |  | 105,792 | ............... |  | 2,062,944 |  |
| 12/3 |  |  |  |  | 1,163,712 |  |
| 12/6 | ........... | 105,792 | ............... | 3,200 | 1,666,224 | 3,200 |
| 12/10 | . | 19,836 |  |  | 568,632 | .. |
| 12/14 |  | 46,284 | ............. |  | 416,556 |  |
| 12/17 |  | 39,672 | - |  | 310,764 |  |
| 12/20 | 800 | 46,284 | .......... |  | 138,852 |  |
| 12/24 |  | 46,284 | ............ |  | 119,016 |  |
| 12/27 |  | 66,120 |  |  | 145,464 |  |
| 12/31 |  | 92,568 |  | 400 | 79,344 |  |


| 1913 | Nitzschia sigma | Nitzschia sigmoidea | Nitzschia vermicularis | Pleurostauron parvulum | Stauroneis phoenicenteron | Stephonodiscus sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 | . . ... |  | $\cdots$ - | 6,612 | ... . | .. . |
| 1/8 |  |  | 400 | S00 |  |  |
| 1/12 | .. . . | . . . | . . . | 400 |  | ..... |
| 1/15 | . |  | . . | 26,448 | . | .. . . . . |
| 1/19 |  |  | 400 | 39,672 | . . |  |
| 1/22 | 19,836 |  | .. . . . | 26,448 | 800 | 400 |
| 1/26 |  | - . . | .. .. .. .. .. | 26,448 | ... . | . . ... .. . |
| 1/29 | . . |  | .. . ...... | 26,448 | .. . | . . . . . |
| 2/2 | . . |  | .............. | 400 | . 10 | .. . |
| 2/5 |  | - .... | .............. | 46,284 | 800 | - . . |
| 2/8 | .. . . | . . . . ... | .. ... ........ | 26,448 | ........... . |  |

# ＇Mable 1．－Organisms Per Cubic Meter in Plankton of Stochton Channel in 1913－（Continued） 

| 1913 | Nitzschia sigma | Nitzschia sigmoidea | Nitzschis vermicularis | Pleurostauron parvulum | Stauroneis phoenicenteron | Stephonodiscus sp． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 211 |  |  |  |  |  |  |
| 215 |  |  | 1，600 | 26.415 |  |  |
| 219 |  | 3.200 |  | ：39，673 |  |  |
| 23 | S00 |  |  | sO |  |  |
| 226 |  |  |  | 1，600 |  |  |
| ：3 1 |  |  | 1，600 | 52，596 |  |  |
| ； 3 |  |  |  | 52，596 |  |  |
| ： 8 |  | 1，600 |  | 79，344 |  |  |
| ； 12 |  |  |  | 79,344 |  |  |
| 3） 15 | ． |  | ． | 105，792 |  |  |
| ：319 |  |  | ． | 105，792 |  |  |
| ：3 23 |  |  |  | 132,240 |  |  |
| 326 |  |  |  |  |  |  |
| ：3 29 |  |  |  | 1.600 |  |  |
| 42 |  |  |  | 1，600 |  |  |
| 4 － |  |  |  | 79，344 |  |  |
| 49 |  |  |  |  |  |  |
| 413 |  |  |  | 1，1000 |  |  |
| 416 |  |  |  | 15ふ，6から |  |  |
| 419 |  |  |  | 158．685 |  |  |
| 423 | 1,600 |  |  | 22，N96 |  |  |
| 426 |  |  |  | 79,344 |  |  |
| 4：30 |  |  |  |  |  |  |
| 5 ： |  |  |  | 52．${ }^{\text {206 }}$ |  | 3，200 |
| 5） 7 |  |  |  | $79.3+4$ |  |  |
| 511 |  | 1.600 |  | 1，600 |  |  |
| 511 |  |  |  | 158，6ら5 |  |  |
| 517 | 6，400 |  |  | 211.354 | 6,400 |  |
| 5．21 |  |  |  | 10．5，792 |  |  |
| 521 |  |  |  | $211,5 ¢$ |  |  |
| 527 | 16，400 |  |  |  | 3.200 | 10．5， 792 |
| ．） 31 |  |  |  |  |  |  |
| （6） 3 |  |  |  | ：3，200 |  |  |
| （6） 7 |  |  |  | $\because 200$ |  |  |
| （i） 11 |  |  |  | 3.200 |  |  |
| （ 16 | 0.100 |  |  | 211.581 |  |  |
| （f） 18 |  |  |  | 3,200 |  |  |
| （1） 21 |  |  |  |  |  |  |
| （192．3 |  |  |  | 105,792 |  |  |
| （1） 25 |  |  |  |  |  |  |
| 73 |  | $\therefore 2,200$ |  |  |  |  |
| 75 |  |  |  |  |  |  |
| 79 |  |  |  |  |  |  |
| 712 |  |  |  |  |  |  |
| 710 |  |  |  |  |  |  |
| 719 |  |  |  |  |  | ． |
| 723 | － |  |  |  |  |  |
| － 26 |  |  |  |  |  |  |
| 780 |  |  |  |  |  |  |
| S＇2 | 6． 100 |  |  |  |  |  |
| \＆ 6 |  |  |  |  |  |  |
| \＆ 3 | 3,200 |  |  |  |  |  |
| 813 |  |  |  |  |  |  |
| is $1 . \%$ |  |  |  |  |  |  |
| $8: 20$ | 3200 |  |  |  |  |  |
| 88 |  |  |  | 3.200 |  |  |
| Nイ8 |  |  |  |  |  |  |
| 8， |  | 400 |  |  |  |  |
| $3{ }^{18}$ |  |  |  |  |  |  |
| （1） 6 | ：3，200 |  |  | 10．7．792 |  | － |

Table 1.-Organisms Per Citbic Meter in Plankton of Stockton Cilannel in 1913-(Continued)

| 1913 | Nitzschia sigma | Nitzschia sigmoidea | Nitzschia vermicularis | Pleurostauron parvulum | Stauroneis Phoenicenteron | Stephonodiscus sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $9 / 9$ | ............... |  | 6,400 |  |  |  |
| 9/13 |  |  | 6,400 | . |  | . |
| 9/17 | .............. |  |  |  |  |  |
| $9 / 20$ |  |  | 6,400 |  |  | - . |
| 9/24 | 105,792 |  | 6,400 |  |  | . |
| 9/27 | 52,896 |  | . |  |  |  |
| 10/1 | , | ..... |  | 105,792 | . |  |
| 10/ 4 |  | . |  |  | . | . |
| 10/8 |  |  | 19,200 |  | . | . |
| 10/11 | 6,400 |  |  | 52,896 |  | . |
| 10/15 | 12,800 |  | 12,800 |  |  | . |
| 10/18 | 52,896 | $\ldots$ | 52,896 |  |  | . . |
| 10/22 |  |  |  | 52,496 |  |  |
| 10/26 | .. |  |  | 105,792 |  |  |
| 10/29 | . . . |  |  | 52,596 |  | . |
| 11/1 | - 12,800 |  |  |  | . |  |
| 11/5 | 12,800 |  |  | 32,896 |  | - |
| 11/8 | . |  |  |  |  |  |
| 11/12 |  | $\ldots$ |  | 79,344 |  |  |
| 11/15 |  |  | 6,400 |  |  |  |
| 11/19 |  |  |  | 52,896 |  |  |
| 11/22 | 3,200 |  | 1,600 |  |  |  |
| 11/26 |  | $\ldots$ | ...... ........ | 1.600 | ............. | . |
| 11/30 | 3,200 | .... |  | 105,792 | .............. |  |
| 12/3 | 3,200 |  |  | 1,600 | - |  |
| 12/6 |  |  | 3,200 |  |  |  |
| 12/10 | 800 | ........ | ........ ...... | 33,060 | ............... |  |
| 12/14 | 19,836 |  | ......... .. ... | 26,448 |  |  |
| 12/17 | 800 | ........ |  | 19,836 | ... |  |
| 12/20 | 39,672 | ........ |  | 33,060 | 400 |  |
| 12/24 | 800 | ......... | ........... . | 400 |  |  |
| 12/27 | 39,672 |  |  | 26,448 | 400 |  |
| 12/31 | ............... |  | 800 | 26,448 | .......... |  |


| 1913 | Surirella sp. | Synedra radians | Synedra ulna | Total <br> Bacillariaceae | Closterium acerosum | Closterium rostratum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 |  |  | 132,240 | 1,163,712 |  |  |
| 1/8 | ............ |  | 59,508 | 452,016 |  | $\ldots$ |
| 1/12 |  |  | 66,120 | 915,656 |  |  |
| 1/15 |  |  | 13N,852 | 3,275,140 |  |  |
| 1/19 |  |  | 198,360 | 6,253,140 |  |  |
| 1/22 | 3,200 |  | 211,584 | 2,858,572 | 400 |  |
| 1/26 |  |  | 257.868 | 774,404 | 400 |  |
| 1/29 | 400 |  | 251,256 | 1,761,992 |  |  |
| 2/2 |  |  | 152,076 | 1,454,828 |  |  |
| $2 / 5$ | 1,600 |  | 310,764 | 1,948,328 |  |  |
| 2/8 | 800 |  | 132,240 | 1,668,621 | 1,600 |  |
| 2/12 |  |  | 370,272 | 1,656,200 |  |  |
| 2/15 | 800 |  | 436,092 | 2,837,136 |  |  |
| 2/19 | 4.800 |  | 357,048 | 3,641,776 | .............. |  |
| 2/23 | 3,200 |  | 317,376 | 1,766,79 ${ }^{2}$ | .... .......... | ........... |
| 2/26 | 6,400 |  | 528,960 | 5,049,120 | ............... |  |
| 3/1 |  |  | 581,856 | 6,834,784 | ........ ...... | ......... |
| 3/5 | 3,200 |  | 211,584 | 6,621,600 | $\ldots .$. |  |
| $3 / 8$ |  |  | 235,032 | $2,348,224$ |  |  |
| $3 / 12$ | 3.200 |  | 158,688 | 3,206,608 |  |  |
| $3 / 15$ |  |  | 370,272 | 2,925,280 |  |  |
| 3/19 | 3,200 |  | 290,928 | 4,263,892 |  |  |

Table 1.-Organtsms Per Cubic Meter in Plankton of
STOCKTON CHANNEL in 1913-(Continued)

| 1913 | $\underset{s p .}{\substack{\text { Surirclla } \\ \text { s. } \\ \text { S. }}}$ | Synedra radians | Synedra ulna | Total Macillariaceac | Closterium acerosum | Closterium rostratum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3, 26 |  |  | 396,720 | 2,441,216 |  |  |
| 3,29 | 12,800 |  | 105,792 | 2567,808 | . |  |
| 4, 2 | 3,200 |  | 264,480 | 2,343,424 | . |  |
| 4,5 |  |  | 370,272 | 3,209,808 | . |  |
| 4,9 | 3,200 |  | 185, 136 | 7,360,544 | . |  |
| 4,13 | 52,806 |  | 79,344 | 4,706,048 |  |  |
| 4,16 |  |  | 396,720 | 11,142,608 | . . |  |
| 4,19 |  |  | 158,685 | 11,613,872 |  |  |
| 4,23 |  |  | 714,096 | 19,156,352 |  |  |
| 4,26 | 3,200 |  | 132,240 | 19,654,816 | . . . |  |
| 4,30 |  |  | 132,240 | 19,204,448 |  |  |
| 5,3 | (6,400 |  | 581,856 | 21,622,416 | .. |  |
| 5, 7 |  |  | 290,928 | 21,166,352 | .. |  |
| 5, 11 | 1,600 |  | 132,240 | 34,420,048 | . . |  |
| 514 | 6,400 |  | 687,648 | 63,435,104 | ..... .. ... |  |
| 517 | 211,584 |  | 2,010,048 | 49,630,352 | .. . . |  |
| 5.21 |  |  | 687,648 | 40,739,520 | .. . . . | . |
| $5 \cdot 24$ | 19,200 |  | 423,168 | 43,227,536 | . |  |
| 527 | 25,600 |  | 1,957,152 | 74,204,992 | .. |  |
| 5.31 | 3,200 |  | 1,110,816 | 75,971,456 | . | 3,200 |
| 6. 3 |  |  | 846,336 | 82,633,152 | .. - |  |
| 6. 7 |  |  | 1,375,296 | 73,280,160 | .. |  |
| $6 / 11$ |  |  | 1,110,816 | 72,582,912 | .. . . . | . . . . |
| $0 / 16$ | 6,400 |  | 899,232 | 55,939,872 | .. . . | .. |
| 618 | 6,400 |  | 1,110,816 | 66,023,80S | .. | . . . |
| 621 |  |  | 476,064 | 51,797,984 | . . . . |  |
| 6,25 |  |  | 1,692,672 | 53,755,136 | .. . 400 |  |
| 6-28 | 3,200 |  | 2,856,384 | 74,338,080 | 6,400 | $\cdots$. |
| 73 |  |  | 1,533,984 | 50,161,408 | . . .. |  |
| 75 |  |  | 423,168 | 20,001,088 | .. .. . . | $\ldots$ |
| $7 / 9$ | 6,400 |  | 476,064 | 17,204,000 | .... | .. ... ..... |
| 7/12 |  |  | 423,168 | 24,761,728 | .. . . |  |
| 7'16 | 3.200 | 4,496,160 | 634,792 | 58,002,816 | . . . | ... ... |
| 719 |  | 634,752 | 317,376 | 31,801,600 | .. . | ... ..... |
| $7{ }^{7}$ | 83,200 | 581,856 | 528,960 | 16,675,040 | .. . . . | . . |
| 7 26 | 105,792 | 899,232 | 687,648 | 29,637,760 | - 0,100 |  |
| 730 | 6,400 | 423,168 | 528,960 | 23,495,424 | 6,400 | 3,200 |
| $8 / 2$ | ........ .. | 370,272 | 423,168 | 23,354,240 | 6, 400 |  |
| $8 / 6$ |  | 634,752 | 423,168 | 18,159,32S | 6,400 | 105,792 |
| 8/9 | 105,792 | 1,005,024 | 528,960 | 20,966,016 |  | 211,584 |
| 8,13 | 6,400 | 2,750,592 | 2,062,944 | 39,059,648 | 3,200 | 423.168 |
| 8,15 | 6,400 | 740,544 | 1,005,024 | 21,613,568 | 6,400 | 19,200 |
| 8/20 | 6,400 | 846,336 | 952,128 | 21,815,552 | .... . . . | 105,792 |
| 8/23 |  | 740,544 | 1,375,296 | 31,965,184 | . ... . . | 6,400 |
| 8/31 | 12,800 | 2,115,840 | 1,375,296 | 39,987,680 | $\cdots$. | 105,792 |
| $9 / 2$ | 6,400 | 1,481,088 | 1,322,400 | 29,588,064 | ..... 3 , ${ }^{\text {d }}$ | 211,584 |
| $9 / 6$ | 12,800 | 634,752 | 2,539,005 | 36,761,024 | 3,200 | 264,480 |
| $9 / 9$ $9 / 13$ |  | 687,648 740,544 | $1,057,920$ $1,533,984$ | $27,590,816$ $25,372,384$ | . .... ........ | 3,200 6,400 |
| $9 / 13$ $9 / 17$ | 158,688 | 740,544 | 1,533,984 | 25,372,384 | .... . . .. | 6,400 |
| $9 / 17$ $9 / 20$ | .. . . . . . | 687,648 | 687,648 | 26,731,680 | . .. . . ... | 105,792 |
| $9 / 20$ $9 / 24$ | 19,200 | 952,128 $1,639,776$ | 846,336 793,440 | $27,194,944$ $37,535,264$ | $\cdots$ | 105,792 52,896 |
| $9 \cdot 27$ | 52,896 | 1,322,400 | 4:33,168 | $30,415,200$ |  | 6,400 |
| 10/ 1 | 6,400 | 1,692,672 | 1,216,608 | 36,841,216 | 6,400 | 6,400 |
| 10/ 4 | 52,896 | 1,375,296 | 1,375,296 | 22,379,712 | . ... . . |  |
| 10/ 8 | 19,200 | 1,481,08S | 1,216,608 | 30,908,768 | - .... .. | - 100 |
| 10/11 | 12,800 | 1,692,672 | 1,375,296 | 33,574,464 | .... .. . | 6,400 |
| 10/15 | 158,688 | 1,269,504 | 2,803,488 | 35,802,496 | $\cdots$. ${ }^{\text {a }}$ | 52,896 |
| 10.18 | 19,200 | 1,005,024 | 1,322,400 | 35,512,416 | 6,400 | -......... |
| 1022 | . ... ......... | 1,269,50. | \$46,336 | 37,370,176 | 6,400 | .............. |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)
1913
$10 / 26$
$10 / 29$
$11 / 1$
$11 / 5$
$11 / 8$
$11 / 12$
$11 / 15$
$11 / 19$
$11 / 22$
$11 / 26$
$11 / 30$
$12 / 3$
$12 / 6$
$122 / 10$
$12 / 14$
$12 / 17$
$12 / 20$
$12 / 24$
$12 / 27$
$12 / 31$

| Surirella |
| ---: |
| sp. |
| 6,400 |
| 12,800 |
| 105,792 |
| 6,400 |
| 6,400 |
| 1,600 |
| $\ldots .2,200$ |
| 52,896 |
| 3,200 |
| 3,200 |
| $\ldots 6,400$ |
| $\ldots \ldots$ |
| 800 |
| 400 |
| 4,000 |
| 19,836 |
| 46,284 |
| 26,448 |



| $\begin{gathered} \text { Synedra } \\ \text { ulñ } \end{gathered}$ | Total Bacillariaceae | Closterium acerosum | Closterium rostratum |
| :---: | :---: | :---: | :---: |
| 528,960 | 40,861,312 |  |  |
| 793,440 | 38,450,896 |  | 105,792 |
| 211,584 | 17,098.208 |  |  |
| 528,960 | 13,467,584 | ............. |  |
| 264,480 | 11,233,152 | ............ |  |
| 476,064 | 17,409,184 |  | 52,890 |
| 105,792 | 10,962,272 | . |  |
| 370,272 | 10,547,104 |  | 6,400 |
| -423,168 | 11,546,480 | .............. |  |
| 211,584 | 10,301,072 | ............. | 1,600 |
| 396,720 | 10,874,080 | ............... | 1,600 |
| 925,680 | 12,398,464 |  | 1,600 |
| 158,688 | 9,041,168 |  | 3,200 |
| 113,204 | 3,751,992 | 1,600 |  |
| 191,784 | 3,943,552 |  |  |
| 125,628 | 3,598,928 | 800 | 400 |
| 370,27? | 3,976,400 |  |  |
| 138,852 | 2,071,744 |  |  |
| 621,528 | 4,627,788 |  |  |
| 509,124 | 3,671,048 |  |  |

1913
$1 / 5$
$1 / 8$
$1 / 12$
$1 / 15$
$1 / 19$
$1 / 22$
$1 / 26$
$1 / 29$
$2 / 2$
$2 / 5$
$2 / 8$
$2 / 12$
$2 / 15$
$2 / 19$
$2 / 23$
$2 / 26$
$3 / 1$
$3 / 5$
$3 / 8$
$3 / 12$
$3 / 15$
$3 / 19$
$3 / 23$
$3 / 26$
$3 / 29$
$4 / 2$
$4 / 5$
$4 / 9$
$4 / 13$
$4 / 16$
$4 / 19$
$4 / 23$
$4 / 26$
$4 / 30$

| Closterium sp . |
| :---: |
| 400 |
|  |
| ............ |
|  |
|  |
|  |
|  |
| 800 |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |


| $\begin{aligned} & \text { Mougeotia } \\ & \text { sp. } \end{aligned}$ | Staurastrum A | Straurastrum sp. |
| :---: | :---: | :---: |
| ............ | .......... |  |
| ............... | .............. |  |
| ........... |  |  |
| ........... | 800 | ............... |
| ............... | ............. |  |
| ................ | ................ |  |
| ............ | ............... |  |
|  | . |  |
| 800 |  |  |
| . | 1,600 |  |
| ... | 800 | ....... |
| $\cdots$ | 1,600 |  |
| .............. |  |  |
| ........... |  |  |
| .......... | 3,200 |  |
|  | $\ldots$ |  |
| .............. |  |  |
| .............. | 1,600 |  |
| $\ldots$ | ................. |  |
|  | .............. |  |
|  |  |  |
| 3,200 |  |  |
|  | 3,200 |  |


| Total <br> Conjugatae | Total |
| :---: | :---: |
|  | 1,197,572 |
| 400 | 456,016 |
| 400 | 916,456 |
|  | 3,277,140 |
|  | 6,283,188 |
| 21,036 | 2,923,468 |
| 800 | 816,476 |
|  | 1,785,028 |
|  | 1,484,476 |
|  | 1,963,576 |
| 1,600 | 1,721,896 |
| 800 | 1,697,048 |
| 1,600 | 3,354,048 |
| 1,600 | 3,979,576 |
| 800 | 2,138,664 |
|  | 5,513,136 |
| 600 | 7,021,272 |
|  | 6,930,128 |
|  | 2,694,400 |
|  | 3,275,504 |
|  | 3,307,504 |
| 3,200 | 4,551,808 |
| 3,200 | 4,572,420 |
|  | 2,764,144 |
|  | 2,697,600 |
| 1,600 | 2,537,312 |
| 6,400 | 3,652,176 |
|  | 7,633,176 |
| ......... | 4,742,848 |
|  | 11,720,416 |
|  | 11,912,800 |
| 3,200 | 19,719,760 |
| 3,200 | 20,040,240 |
|  | 19,407,184 |

'IAble 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Closterium $s p$. | Mougeotia sp. | Staurastrum | Straurastrum sp. | Total Conjugatae | Total Algae |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 53 |  | . .. . |  | . .. ... . |  | 22,00:3,888 |
| 57 |  |  |  |  | . | 21,327,392 |
| 5) 11 |  |  | . |  |  | 34,986,656 |
| 514 |  |  |  | . . |  | 64,188,448 |
| 517 |  |  |  |  |  | 50,101,520 |
| $5 \cdot 21$ |  | . |  |  |  | $41,832,640$ |
| 524 |  | . |  |  |  | 45,590,160 |
| $5 \cdot 27$ | , | . . | . . | . . . |  | 76,558,011 |
| 5, 31 |  | . . . | . . . |  | 3,200 | \$2,053,296 |
| 6/3 |  | . . | . .. ..... |  |  | 89,857,408 |
| 67 |  | 6,400 | . . .. ..... | 3,200 | 9,600 | 79,290,912 |
| $6 / 11$ | . . | . . |  |  |  | 76,248,736 |
| $6^{\prime} 16$ |  | - . | 6,400 |  | 6.400 | 57,502,784 |
| 618 | - . |  |  |  |  | 69,738,928 |
| 6.21 |  |  |  | 3,200 | 3,200 | 57,741,536 |
| 6.25 |  | 105, 792 |  |  | 108,992 | 60,357,056 |
| 6 2s | . |  | 105,792 | . | 112,192 | 81,289,856 |
| $7 / 3$ |  |  |  |  |  | 56,258,752 |
| $7 / 5$ | . $\cdot$ | . | 3,200 |  | 6,400 | 22,693, 888 |
| $7 / 9$ | - . |  | 6,400 |  | 6,400 | 21,500,080 |
| $7 / 12$ |  | 3,200 |  |  | 3,200 | 31,667,000 |
| $7 / 16$ | . | 3,200 | 6,400 |  | 9,600 | 66,012,512 |
| 7,19 | . |  |  |  |  | 36,812,226 |
| 723 |  | 3,200 |  |  | 9,590 | 19,75S,102 |
| $7 / 26$ |  |  |  | 3,200 | 6,400 | 35,865,002 |
| 7/30 |  |  | $\cdots$. | .. . | ... . . | 26,959,264 |
| 8, 2 | . |  |  | .. . . |  | 25,771,960 |
| S/6 |  |  |  |  | 112,192 | 21,004,416 |
| S, 9 |  | 158,688 |  | 158,688 | 528,960 | 24,498,752 |
| 813 |  | 846,336 |  | 3,200 | 1,275,904 | 48,334,132 |
| 8/15 | . . . | 846,336 | 3,200 |  | 875,136 | 25,866,952 |
| $8 / 20$ |  | 476,064 |  |  | 581,856 | 27,142,336 |
| 823 |  | 370,272 |  |  | 634,752 | 29,838,048 |
| 8.27 | - .. | 264,480 | 3,200 |  | 274,080 | 37,911,936 |
| 8,31 |  | 476,064 |  |  | 581,856 | 47,045,228 |
| $9 / 2$ |  | 1,745,568 |  |  | 1,967,352 | 43,650,304 |
| 9,6 | . | 1,639,776 | 105,792 |  | 2,013,248 | $55,138,336$ |
| $9 / 9$ |  | 264,480 | 6,400 |  | 274,080 | 41,621,056 |
| $9 / 13$ | ..... | 158,688 |  |  | 165,088 | $40,754,320$ |
| $9 / 17$ |  | 158,688 | 6,400 |  | 270,880 | 36,295,360 |
| 9/20 |  |  |  |  | 105,792 | 39,967,096 |
| $9 / 24$ |  |  | 211,584 | 52,896 | 317,376 | 51,644,000 |
| 9/27 |  | 52,896 | 52,896 |  | 112,192 | 50, 444,544 |
| 10.1 | . . |  | 12,800 |  | 1,263,104 | 47,584,896 |
| 10/4 |  |  | 6,400 |  | 6,400 | 30,570,496 |
| 10 / |  | 52,896 | 105,792 | 52,896 | 211,584 | 39,120,434 |
| 1011 |  | 52.896 | 6,400 |  | 72,096 | 40,825,920 |
| 1015 |  | 10.5.792 | 52,896 |  | 211,584 | 42,368,000 |
| 1018 |  | 52,896 | 52,896 | 52,896 | 165,088 | 39,380,224 |
| $10 / 22$ |  | ...... | 12,800 |  | 19,200 | 42,718,176 |
| 10,26 |  |  | 52,896 |  | 52,896 | 44,788,416 |
| $10 / 29$ |  |  | 52,896 |  | 158,688 | 44,852,512 |
| 11/1 | . | . |  |  |  | 23,147,552 |
| 11/5 |  |  | 12,800 |  | 12,800 | 20,024,992 |
| 11/8 | , . |  |  |  |  | 13,931,456 |
| 1112 |  |  | 1,600 |  | 1,600 | $27,145,248$ |
| 11/15 | - |  |  |  |  | 15,993,992 |
| 11/19 | . | 1,600 | 1,600 |  | 9,600 | 13,059,416 |
| 11/22 |  | 1,600 |  |  | 1,600 | 14,611,552 |
| 11/26 | ............... | 1,600 | ............. | ............... | 3,200 | 11,859,808 |

Table 1.-Organisms Per Cubic Meter in Plankton of Stoceton Channel in 1913-(Continued)

| 1913 | $\begin{aligned} & \text { Closterium } \\ & \text { sp. } \end{aligned}$ | Mougeotia sp. | Staurastrum | Straurastrum sp. | Total <br> Conjugatae | Total <br> Algae |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11/30 |  |  |  |  | 1,600 | 12,232,528 |
| 12/3 |  |  | 6,400 |  | 8,000 | 13,796,160 |
| 12/6 |  |  |  |  | 3,200 | 9,832,912 |
| 12/10 |  |  | ............... | ............... | 21,336 | 4,144,964 |
| 12/14 |  |  |  |  |  | 4,602,910 |
| 12/17 |  |  | .............. | ............... | 1,200 | 4,230,268 |
| 12/20 |  |  |  |  |  | 4,599,528 |
| 12/24 |  |  | 400 |  | 400 | 2,282,716 |
| 12/27 |  | 400 |  |  | 400 | 5,153,036 |
| 12/31 |  |  |  |  |  | 4,127,276 |


| 1913 | Total Chlorophyll bearing | Ceratium hirundinella | Cercomonas crassicauda | Cercomonas sp. | Chlamydomonas sp. | Chromulina sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 | 1,197,572 |  |  |  |  |  |
| 1/8 | 456,016 |  |  |  | ............... |  |
| 1/12 | 917,256 |  | . |  |  |  |
| 1/15 | 4,255,716 |  |  |  |  | 945,516 |
| 1/19 | 7,257,952 |  |  |  |  | 958,740 |
| 1/22 | 3,024,248 |  |  |  |  | 99,180 |
| 1/26 | 1,059,168 |  |  |  |  | 251,256 |
| 1/29 | 2,079,556 |  |  |  |  | 271,092 |
| 2/2 | 1,513,724 |  |  |  |  | 13,224 |
| 2/5 | 2,157,088 |  |  |  |  | 152,076 |
| $2 / 8$ | 2,259,656 |  |  |  |  | 462,840 |
| 2/12 | 1,950,704 |  |  |  |  | 251,256 |
| 2/15 | 3,675,424 |  |  |  |  | 317,376 |
| 2/19 | 5,542,136 |  |  |  |  | 1,481,088 |
| 2/23 | 2,528,560 |  |  |  |  | 277,704 |
| $2 / 26$ | 6,268,080 |  |  |  |  | 687,648 |
| 3/1 | 7,113,336 |  |  |  |  | 423,168 |
| 3/5 | 7,019,072 |  |  |  |  |  |
| 3/8 | 2,755,296 |  |  |  |  | 1,600 |
| 3/12 | 3,322,000 |  |  |  |  |  |
| 3/15 | 3,488,592 |  |  |  |  | 79,344 |
| 3/19 | 4,599,504 |  |  |  |  |  |
| 3/23 | 4,686,212 |  |  |  |  |  |
| 3/26 | 3,117,568 |  |  |  |  | 158,688 |
| $3 / 29$ | 3,179,968 |  |  |  |  | 423,168 |
| 4/2 | 2,697,600 |  |  |  |  | 79,344 |
| 4/5 | 3,666,576 |  |  |  |  | 1,600 |
| 4/9 | 7,647,576 |  |  |  |  |  |
| 4/13 | 4,755,648 |  |  |  |  | 1,600 |
| 4/16 | 12,156,384 | .............. |  |  | .............. | 317,376 |
| 4/19 | 11,976,896 |  |  |  |  | 52,896 |
| $4 / 23$ | -20,939,568 |  |  |  |  | 290,928 |
| 4/26 | 20,254,224 |  |  |  |  | 158,688 |
| 4/30 | 19,542,624 |  |  |  |  | 132,240 |
| $5 / 3$ | 22,294,816 |  |  |  |  | 79,344 |
| $5 / 7$ | 21,378,688 |  |  |  |  | 52,896 |
| 5/11 | 35,355,328 | ............. |  |  |  | 132,240 |
| $5 / 14$ | 64,300,640 |  | ............... |  |  | 105,792 |
| $5 / 17$ | 50,683,376 | ............... |  |  |  | 317,376 |
| $5 / 21$ | 42,053,824 |  | ............... |  |  |  |
| $5 / 24$ | 45,854,640 |  |  |  |  |  |
| $5 / 27$ | 77,086,976 |  |  |  | 3,200 | 264,480 |
| $5 / 31$ | 83,517,888 |  |  |  |  | 1,322,400 |
| $6 / 3$ | 90,601,152 |  |  |  |  | 105,792 |

# Tabte 1.-Organisms Per Cubic Meter in Planikton of Stockton Channel in 1913-(Continued) 

| 1913 | Total <br> Chlorophyll bearing | Ceratium hirundinella | Cercomonas crassicauda | Cercomonas sp. | Chlamydomonas sp. | Chromulina <br> sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 67 | S0,295,93.36 |  |  |  |  | 105,792 |
| (6) 11 | 77,356,352 |  |  |  |  | 211,584 |
| (6) 16 | 58,996,672 |  |  |  |  | 899,232 |
| (f) 18 | 71,136,624 |  |  |  |  | 634,752 |
| $6 / 21$ | 58,441,984 |  |  |  |  | 370,272 |
| (1)25 | 61,801,248 |  |  |  |  | 581,856 |
| 62.8 | 83,154,016 |  |  |  |  | 740,544 |
| $7 / 3$ | 59,196,832 |  |  | . |  | 1,428,192 |
| 7 75 | 24,657,440 |  |  |  |  | 634,752 |
| $7 / 9$ | 24,516,656 |  |  |  |  | 2,486,112 |
| $7 / 12$ | 37,862,232 |  |  |  |  | 4,919,328 |
| 7/16 | 71,364,608 |  | 3,200 |  |  | 5,183,808 |
| 7/19 | 43,853,794 |  |  | . | 105,792 | 6,929,376 |
| 7/23 | 23,044,054 |  |  |  |  | 3,173,760 |
| $7 / 26$ | 44,063,882 |  |  |  |  | 7,299,648 |
| 7/30 | 31,213,344 |  | 3,200 |  |  | 3,279,552 |
| $8 / 2$ | 30,601,496 |  |  |  |  | 3,967,200 |
| 8/6 | 25,992,640 |  |  |  |  | 3,226,656 |
| $8 / 9$ | 27,411,232 |  |  |  |  | 1,481,088 |
| 813 | 56,819,882 |  | 3,200 |  |  | 6,347,520 |
| 8/15 | 32,637,640 |  |  |  |  | 4,231,680 |
| 8/20 | 37,612,544 |  |  |  |  | 6,876,480 |
| 8/23 | 38,727,776 |  |  | 3,200 |  | 6,770,688 |
| 8/27 | 46,325,600 |  |  |  | 423,168 | 5,289,600 |
| 8/31 | 58,364,972 |  |  | 264,480 | 370,272 | 5,554,080 |
| $9 / 2$ | 58,853,856 |  |  | 1,533,984 | 687,648 | 7,722,816 |
| $9 / 6$ | 71,957,264 |  |  | 370,272 | 105,792 | 10,579,200 |
| $9 / 9$ | 64,266,944 |  |  | 423,168 |  | 11,531,328 |
| 9/13 | 62,388,784 |  |  | 211,584 |  | 13,224,000 |
| $9 / 17$ | 57,307,872 | 3,200 | 3,200 | 158,688 |  | 17,825,952 |
| 9/20 | 49,541,272 |  | 52,896 | ... ... . |  | 5,977,248 |
| $9 / 24$ | 59,108,736 |  |  | ... . .. | - | 6,559,104 |
| $9 / 27$ | 55,149,632 |  |  |  |  | 9,785,760 |
| 10/1 | 59,909,664 |  | - . .. | ... $\cdot$. |  | 9,151,008 |
| 10/4 | 37,200,696 | 6,400 | - |  |  | 5,342,496 |
| 10/8 | 45,580,140 | 6,400 | .. . .. | . .. . .... | ... . | 4,813,536 |
| 10/11 | 47,708,800 | 6,400 | - .... |  | .... . . | 4,549,056 |
| 10/15 | 46,335,128 |  | . .... | . ..... |  | 2,539,008 |
| 10/18 | 45,833,536 |  | - .... | ... . |  | 5,395,392 |
| $10 \cdot 22$ | 48,536,736 |  | ..... | ... | .... | 4,813,536 |
| 10/26 | 49,760,640 |  |  |  | ... | 4,231,680 |
| 10/29 | 52,006,272 |  | .... | . . . ... | ... | 6,612,000 |
| 11/1 | 31,041,856 |  |  |  |  | 7,299,648 |
| 11/5 | 25,526,176 |  | . ... | .. . . .. . |  | 5,44,288 |
| 11/8 | 20,151,680 | - . | - | .. |  | 5,977,248 |
| 11/12 | 40,772,368 | .. .. ........ |  | . ... .... | .. . . | 12,906,624 |
| 11/15 | 23,200,648 | .... ... .... | 52,896 |  |  | 6,347,520 |
| 11/19 | 18,674,392 | . .... . .. . | 1,600 |  | . | 5,104,464 |
| 11/22 | 20,426,064 |  |  |  |  | 5,210,256 |
| 11/26 | 14,403,616 |  | .... |  |  | 2,089,392 |
| 11/30 | 15,549,728 | . . .... | $\cdots$ | - .... |  | 2,856,384 |
| 12/3 | 16,574,800 |  |  |  |  | 2,221,632 |
| 12.6 | 11,905,456 |  | 1,600 |  |  | 1,957,152 |
| 12/10 | 5,169,854 |  | … |  |  | 806,664 |
| $12 / 14$ | $5,796,300$ |  |  | - . .. | -. . | 859,560 |
| 1217 | 5,633,212 |  | 132.240 |  |  | 932,292 |
| 12.20 | 5,321,200 |  |  | ... | 400 | 621,528 |
| 12.24 | 3,422,780 |  |  |  | 400 | 932,292 |
| 12.27 | 6,502,284 |  |  |  |  | 971,964 |
| 12/31 | 5,146,724 |  |  |  |  | 641,364 |

Table 1.-Organisms Per Cubic Meter in Plankton of Stoceton Channel in 1913-(Continued)

| 1913 | Cryptomonas sp. | Dinobryon sertularia | Eudorina elegans | Euglena deses | Euglena viridis | Flagellate unidentified |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 | ..... . |  | . |  | . .. . | $\cdots$ |
| 1/8 |  |  | 400 |  |  | . |
| 1/12 | .. . . ... . . |  | 800 | . . |  |  |
| 1/15 | .. . . . | . | 400 | . |  | . |
| 1/19 | .. . . | . . | 2,000 | . |  | . . |
| 1/22 | .. . . . | - .. . . | 800 |  |  | . |
| 1/26 | .. . . . | . | 800 | . | . |  |
| 1/29 | . . . | 400 | 2,400 |  |  |  |
| 2/2 | . . . . . | .. . . | 2,400 | - . | . |  |
| $2 / 5$ | . .. . | .. . | 1,600 |  |  | 19,836 |
| 2/8 | - ... . . | . . | 8,000 | - |  |  |
| 2/12 | . . |  | 1,600 | . |  |  |
| 2/15 | . | - . 1,000 | 1,600 | . |  |  |
| 2/19 |  | 1,600 | 20,800 | . | 1,600 | 800 |
| 2/23 | . . .. . | . . | 6,400 | . | 26,448 | .. 1,000 |
| 2/26 | . . . | . . | 9,600 | . | 1,600 | 1,600 |
| $3 / 1$ | ..... .r |  | 9,600 | .. | . . |  |
| $3 / 5$ | . .. |  | 9,600 | - |  |  |
| 3/ 8 | . |  | 3,200 | . |  |  |
| $3 / 12$ |  |  | 1,600 |  | 1,600 |  |
| $3 / 15$ | . ... . |  | 16,000 | . |  |  |
| $3 / 19$ |  |  | 3,200 | . | 1,600 |  |
| $3 / 23$ | . . | . | 3,200 | . .. | . . | 52,896 |
| $3 / 26$ | .. . |  | 9,600 | . | . | . . .. |
| 3/29 |  |  | 57,600 |  |  |  |
| 4/2 |  |  | 79,344 |  |  | . . .. |
| $4 / 5$ |  |  | 9,600 |  |  | . |
| 4/9 |  |  | 6,400 | . | . |  |
| $4 / 13$ |  | . | 9,600 | . |  | . . |
| 4/16 | . |  | 9,600 | . |  |  |
| 4/19 | . . . | . | 3,200 | - |  |  |
| 4/23 |  |  | 1,600 |  |  | - . |
| 4/26 |  | $\ldots$ | 3,200 | , |  | . |
| 4/30 | . |  | . . |  | 1,600 |  |
| $5 / 3$ |  |  |  |  |  | - |
| $5 / 7$ | . . | . . | . | .. ........ |  | - . . . |
| 5/11 | . . . . | . . | . | .......... | 105,792 | .. ... . |
| $5 / 14$ | - . |  | . | ............. | 3,200 | . $\quad$. |
| $5 / 17$ | ... . | . | 3)200 | ......... | 105,792 | , |
| $5 / 21$ |  | . | 3,200 | - |  | . . |
| 5/24 |  | - | . . |  |  | . |
| 5/27 | . . | . . | - 100 |  |  |  |
| $5 / 31$ | - .... . | . . | 6,400 |  |  |  |
| $6 / 3$ | . | . . | 6,100 |  |  |  |
| $6 / 7$ | . | . |  |  |  | - . |
| $6 / 11$ |  | . |  |  |  |  |
| $6 / 16$ |  |  | 6,400 |  |  |  |
| 6/18 |  | . | 19,200 |  | . |  |
| 6/21 | - .... |  | 6,400 |  |  | ! |
| $6 / 25$ | .... |  | 12,500 |  | 158,683 | 3,200 |
| 6/28 | - . . | - . . | 12,800 |  | . .. | . |
| 7/ 3 | . . | .. . . | 32,000 | .. ... . |  | . |
| 7/5 |  | . | $10 \cdot 00$ |  | 3,200 |  |
| 7/9 | . . . . | .. . . | 19,200 |  | 211,584 |  |
| 7/12 | . . | ... . | 6,400 |  | $79.3,440$ |  |
| 7/16 | . | . . | 6,100 | .......... | 158,688 |  |
| 7/19 | . .. ... . .. | $\cdots$ | . ... . .. . | ........... | 6,400 | ......... |
| $7 / 23$ | . .. .. . . | $\ldots$ | . . . . |  | 105,792 |  |
| 7/26 | .... ... .. | .... . . |  |  | 370,272 | .......... |
| 7/30 | .... ... . | .. . . . . | 6,400 | ......... | 423,165 |  |

Table 1.-Organisms Per Cubic Meter in Plankton of
Stoceton Channei in 1913-(Contimued)

| $\begin{gathered} \text { Cryptomonas } \\ \text { sp. } \end{gathered}$ | Dinobryon sertularia | Eudorina clegans | Euglena deses | Euglena viridis | Flacellate unidentified |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . . | .. . . |  | 105,792 | . . .. |
| . . . | . . . . . | . ........ . | 6.400 | 476,064 |  |
| . . .. | . . | .... . . | . . . . | 264,480 | .. .. . ... . |
| . . | , . | .... | . . . | 3,200 | . ... .. |
| $\cdots$ | - . | $\cdots$. | . | 158,688 |  |
| . . . | . . | ... . . |  | 158,688 |  |
| . . . | . . | . . . | . |  | 105,792 |
| ... . . . | . | . . . . . | .. . . | 105,792 | .. . .... |
| .. . . . | . . . . . | . . . . . | . . . .. | 158,688 | . . . .. |
| - . | . | .. . . | . | 264,480 | .. . . |
| .. | - . |  | . . | 105,792 | . . .. ... |
| . | . | . . . | . . . | . .. . | - ....... . |
| 317,376 | - |  | . . | 158,688 |  |
|  | . | 6,400 |  |  |  |
| 476,064 |  |  |  | 211,584 |  |
| 158,688 |  | 6,400 |  | 158,688 | . . . |
| 105,792 |  | 105,792 | . | 52,896 |  |
|  | . | 19,200 | .. | 105,792 | . . .. ..... |
| .. . .. | . . . | 3,200 |  | 105,792 |  |
| .. . . . | . . . |  | 52.896 |  | . . . .. . |
| 211,584 | $\cdots$ | . . |  |  | $\cdots$ |
| 52,896 |  | $\cdots$ | 6,400 |  | . |
| ... . | - .. - .. | . ... . . | . | 6,400 | . .. .. .... |
| .. . . . |  | $\cdots \cdots$ |  | 6,400 |  |
| 264,480 | . . . | . . . | 3,400 | 79,344 | . . ..... |
| 105,792 | . . |  | 6,400 | 6,400 | ... .. ... |
| 79,344 | . . | 3,200 | .... . . | 79,344 | .. . . . |
| 185,136 |  | 3,200 |  | 12,500 | . . . . . . |
| 185,136 | . . | 1,600 | . . . | . . | .. . . . . |
| 132,240 | 3,200 | 3,200 |  |  | .... .. .. . |
| 52,896 | . . | 1,600 | $\cdots$. |  | . . . .'. |
| 1,600 | - . | 3,200 | . . | 3,200 | .. ... . . . .. |
| 66,120 |  | 13224 | . . | ...... . . | ...... ... .... |
| 400 | 400 |  | .. . . | ... . . | . . ..... ... |
| 99.180 |  | 800 |  |  | ... ... . .. |
| 26,448 |  |  | . . . | - 800 | .. . .. . . |
| 59,508 | . . | 800 | - . | 800 | . . . . . |
| 66,120 |  | 800 | . . . | . . | . . ...... . |
| 112,404 | ............... | 400 | $\cdots$. | . . .. |  |
| Hemidinium nasutum | Mallomonas sp. | Pandorina morum | Peridinium cinctum | $\begin{aligned} & \text { Peridinium } \\ & \text { sp. } \end{aligned}$ | Phacus pleuronectes |
| . |  | . . . | . | . | $\ldots$ |
| , . |  |  | - |  | - . . . |
|  | .. . | 13,224 |  | . . |  |
|  |  | 800 |  |  | . .... |
| . | - . |  | . | - | $\cdots$ |
|  | - . |  |  |  | . |
| - | $\cdots$ - | $13,224$ |  |  | $\cdots$ |
|  |  | 26,448 | . ${ }^{\text {. }}$ | . ${ }^{\text {. }}$. |  |

# Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued) 

| 1913 | $\underset{\substack{\text { Hemidinium } \\ \text { nasutum }}}{ }$ | $\underset{\text { sp. }}{\text { Mallomonas }}$ | Pandorina morum | Peridinium cinctum | $\begin{aligned} & \text { Peridinium } \\ & \text { sp. } \end{aligned}$ | Phacus pleuronectes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2/12 |  |  |  |  |  |  |
| 2/15 | .. |  | 1,600 | S00 |  |  |
| 2/19 | . |  | 16,000 |  |  |  |
| 2/23 | .. . |  |  |  |  |  |
| 2/26 |  |  |  |  |  |  |
| $3 / 1$ | . . |  | 6,400 | . |  |  |
| $3 / 5$ |  |  |  |  |  |  |
| $3 / 8$ |  |  |  |  |  |  |
| 3/12 |  |  | 3,200 |  |  |  |
| 3/15 |  |  | 6,400 |  |  |  |
| 3/19 |  |  |  |  |  |  |
| 3/23 |  |  | 3,200 |  |  |  |
| $3 / 26$ |  |  | 79,344 |  |  |  |
| 3/29 |  |  |  |  |  |  |
| $4 / 2$ |  |  |  |  |  |  |
| $4 / 5$ |  |  | 1,600 |  |  |  |
| $4 / 9$ |  |  | 6,400 |  |  |  |
| 4/13 |  |  | 1,600 |  |  |  |
| 4/16 |  |  | 3,200 |  |  |  |
| 4/19 |  | . | 1,600 |  |  |  |
| $4 / 23$ |  |  | 1,600 |  |  |  |
| 4,26 |  |  | 3,200 |  |  |  |
| 4/30 |  |  |  |  |  |  |
| $5 / 3$ |  |  |  |  |  |  |
| $5 / 7$ |  |  |  |  |  |  |
| 511 |  | 52,896 |  | 105,702 |  |  |
| 5/14 |  |  |  |  |  |  |
| $5 / 17$ |  |  |  |  |  |  |
| $5 / 21$ | . |  | 6,400 |  |  |  |
| $5 / 24$ |  |  |  |  |  |  |
| $5 / 27$ |  | . |  |  |  |  |
| $5 / 31$ |  | . |  |  |  |  |
| 6 6 3 |  | -. . | ......... |  | 158,688 |  |
| $6 / 7$ |  |  |  |  | 211,584 |  |
| $6 / 11$ |  |  |  |  |  |  |
| 6,16 |  |  | 3,200 |  | 158,688 |  |
| 6/18 |  |  | 3,200 | 317,376 | 3,200 |  |
| $6 / 21$ |  | . |  |  |  |  |
| $6 / 2.0$ |  |  |  |  |  |  |
| $6 / 28$ | . | . |  | 105.792 |  |  |
| 7/3 |  |  |  | 423,168 |  |  |
| $7 / 5$ | . | 3,200 |  | 1,005,024 |  |  |
| 7/9 |  |  |  | 3,200 |  |  |
| 7/12 | . . . | .. ... |  |  |  |  |
| $7 / 16$ |  | . . . |  |  |  |  |
| 7/19 | .. . | ......... |  |  | . |  |
| 7/23 | .... |  |  |  |  |  |
| 7/26 |  |  |  | 317,376 |  |  |
| $7 / 30$ | 52,896 |  |  | 3,200 |  |  |
| $8 / 2$ | 634,752 |  |  |  |  |  |
| 8/6 | 1,163,712 |  |  |  |  |  |
| 8. 9 | 952,128 |  |  |  |  |  |
| 8/13 |  |  |  | 105,792 |  |  |
| 8/15 | 1,745,568 |  | 3,200 |  |  |  |
| 8/20 | 2,168,736 |  |  |  |  |  |
| 8/23 | 1,533,984 |  |  |  |  |  |
| 8/27 | 2,380,320 |  |  | 3,200 |  |  |
| 8/31 | 4,125,888 |  |  | 158,688 |  |  |
| $9 / 2$ | 4,178,784 | 3,200 |  | 370,272 |  |  |
| $9 / 6$ | 4,866,432 |  |  | 3,200 |  |  |

> Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Cilannel in 1913-(Continued)

| 1913 | Hemidinium nasutum | $\underset{\mathrm{sp} \text {. }}{\substack{\text { Mallomas } \\ \hline \\ \hline}}$ | Pandorina morum | Peridinium cinctum | $\underset{\text { sp. }}{\text { Peridinium }}$ | Phacus pleuronectes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $9 \quad 9$ | 9,679,968 |  |  | 105,792 | . |  |
| 913 | 7,617,024 |  | . | 105,792 |  | . |
| $9 / 17$ | 2,221,632 | . . . |  | 3,200 | . |  |
| $9 / 20$ | 2,433,216 |  | . | .. | - |  |
| $9 / 24$ | 528,960 | . . . | . | 52,806 |  |  |
| $9 / 27$ | 3,861,408 |  |  | 52.896 | . |  |
| 10/1 | 2,16S,736 |  |  | 52, 896 |  | 264,480 |
| 10/4 | 528,960 | . | . | 52,896 |  | 155,688 |
| 10/8 | 317,376 |  |  |  |  | 158,688 |
| 10/11 | 1,481,088 | . | . | 52.896 |  | 105,792 |
| 10/15 | 264,480 |  | . . | 52,896 | . | 52,896 |
| 10 Is | 211,584 |  |  |  |  |  |
| $10^{\circ} 2$ |  |  |  |  | . |  |
| $10^{\prime 2} 26$ |  |  |  |  | . |  |
| $10 \cdot 29$ | 52,8,96 | . | . . | - . | . | 52896 |
| 11/1 |  |  |  | 52,896 | . | 476,064 |
| 11/5 | . . . |  |  | 52,896 |  |  |
| 11/8 |  |  |  |  | . | 211,584 |
| $11 / 12$ |  |  | 52,896 |  | . | 52,896 |
| $11 / 15$ |  |  |  | - 1 , | . | 370,27' |
| $11 / 19$ |  |  |  | 1,600 |  | 238,032 |
| $11 / 22$ | 1,600 |  |  |  | . | 235,032 |
| $11 / 26$ |  |  |  | 1,600 |  | 52,890 |
| $11 / 30$ |  |  | 3,200 | . |  | 52,896 |
| 12/3 | . |  | 1,600 | . |  | 52,896 |
| 12/6 | . . |  |  |  |  |  |
| 12/10 | - . |  | 19,8:36 | . |  | 26, 4.48 |
| 12/14 |  | . | 2,400 |  |  | 26,448 |
| 12/17 | . |  | . . |  | . | 13,224 |
| 12/20 | . . . . . | . |  |  | . | 19,836 |
| 12/24 |  |  | 400 | .. | . | 400 |
| 12/27 | . . . |  |  | . . | . | 13,224 |
| 12/31 |  |  |  |  |  | 400 |


| 1913 | Platydorina caudata | Pleodorina californica | Pteromonas sp. | Spondylomorum quarternarium | Synura uvella | Trachelomonas euchlora |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 | . . | . . | . | - | . . . | . . . |
| 1/8 | - |  | . . | - . | . . | . . . |
| 1/12 | . |  | . | . |  |  |
| 1/15 | . |  | . . | . . . | -. | . . |
| 1/19 | . |  | . . | . . | . | . |
| 1/22 | . | - . |  | . | - . |  |
| 1/26 | . . . | . . | . . | . . . | . . | 800 |
| 1/29 | . | . . | . | . | . | . . |
| $2 \cdot 2$ | . |  | . | . | . | . |
| 25 | . |  |  |  |  |  |
| 2/ S |  |  |  | . | - | . |
| 2/12 |  |  |  |  | - | - |
| $2 / 15$ | - | - |  | . |  |  |
| 2,19 | - | $\cdot$ |  | . | , | $39,672$ |
| $2 \cdot 23$ |  |  |  |  |  | $39,672$ |
| 2) 26 |  |  |  |  |  | 52,896 |
| $3 / 1$ |  |  |  |  |  | . |
| $3 / 5$ | . |  |  | . |  |  |
| :3 8 |  |  |  |  | 3,200 | . 1 , |
| $3 / 12$ |  |  |  |  | - | 1,600 |
| $3{ }^{1} 15$ |  |  |  | . . | . . | . |
| :3,19 |  |  |  |  |  |  |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913 -(Continued)

| 1913 | Platydorina caudata | Pleodorina californica | Pteromonas sp. | Spondylomorum quarternarium | Synura uvella | Trachelomonas euchlora |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3/23 | ..... ... .. , | . . |  |  |  | 52,896 |
| 3/26 | ..... . . | . |  |  |  | 52,896 |
| $3 / 29$ | ........ .. . | - .. .. | . . . | .. . . |  | 1,600 |
| $4 / 2$ | ......... . ... |  | . . . . | . |  | 1,600 |
| $4 / 5$ | . . . .. ... | . . | . . . . | . . |  | 1,600 |
| 4/ 9 | .. ... . . . |  |  |  |  |  |
| 4/13 | . .... .. ... . | .... . . | .. . | .. . |  |  |
| 4/16 | .... ..... ... . |  |  | - |  | 105,792 |
| 4/19 | .... ... ..... | .. | . . | 3,200 |  | 1,600 |
| 4/23 | ... .... ... |  |  |  |  | 476,064 |
| 4/26 | .... . . . | . | . . | . |  | 52,896 |
| $4 / 30$ | . ..... . | . |  | . . . |  | 1,600 |
| $5 / 3$ | . |  |  | . |  | 105,792 |
| $5 / 7$ | .... . |  |  | . . |  |  |
| $5 / 11$ | .... | . ... | . | . |  |  |
| $5 / 14$ | .. . . . . | . |  |  | . . . | 3,200 |
| $5 / 17$ | .. .. .. |  |  | . . |  |  |
| $5 / 21$ | . .. |  |  | . . |  |  |
| $5 / 24$ | . . | . |  |  |  | 158,688 |
| 5/27 | .... |  |  | . |  |  |
| $5 / 31$ | . |  |  |  |  |  |
| 6/3 | . | . | $\ldots$ | . |  | 158,688 |
| $6 / 7$ | .... .... .. . . |  | ... . . | . |  |  |
| 6/11 | ... . . | . . |  | . |  |  |
| 6/16 | .... . . |  |  | . . |  | 3,200 |
| 6/18 | . . . |  | . 50.08 | . |  | 158,688 |
| $6 / 21$ | -. |  | 158,688 | . |  | 3,200 |
| 6/25 |  |  | 158,68 |  |  | 3,200 |
| 6/28 | $\cdots$. |  |  | . |  | . . . . |
| $7 / 3$ | . .. . . |  |  | . |  | - . |
| 7/5 | . . |  | 158,688 | . |  |  |
| 7/9 | - . | . | 32,000 | . |  |  |
| 7/12 |  | .. |  | . |  |  |
| $7 / 16$ | . . . |  | . . . |  |  | . |
| 7/19 | . $\cdot$. | - | . . |  |  | . |
| 7/23 | .. |  |  |  |  |  |
| 7/26 | ... .. . |  | 105,792 |  |  |  |
| 7/30 | - . | - | .. ... . | . .. . |  |  |
| $8 / 2$ | 6,400 | 6,400 | . . . . | . . | 3,200 | 3,200 |
| 8/6 | .... . .. . |  |  |  | 6,400 | 3,200 |
| 8/9 | .- |  | 3,200 |  |  |  |
| 8/13 | 6,400 | 6.400 | 105,792 |  | $3: 200$ |  |
| 8/15 | .. . |  |  |  | 3,200 |  |
| 8/20 | . .. . . |  | 158,688 |  |  |  |
| 8/23 | .... | . | 3,200 |  | 264,480 | . |
| 8/27 |  | ... . |  | . . |  |  |
| 8/31 | - 12,800 |  | . |  |  |  |
| $9 / 2$ | 12,800 |  |  |  | 6,400 | . |
| $9 / 6$ |  | . | - |  |  |  |
| $9 / 9$ | 6,400 |  |  |  | 105,792 | . |
| $9 / 13$ | . ... . |  | . |  |  |  |
| $9 / 17$ | . |  |  |  | 3,200 |  |
| $9 / 20$ | .. .. |  | 211,584 |  | 158,688 |  |
| $9 / 24$ |  |  |  |  |  |  |
| 9/27 |  |  |  |  |  |  |
| 10/1 | .. . |  | . |  |  |  |
| 10/ 4 | 6,400 |  |  |  |  |  |
| 10/ 8 |  |  | 52,896 |  | 52,896 |  |
| 10/11 |  |  |  |  | 52,896 | . |
| 10/15 |  |  |  |  |  |  |

Table 1.-Organisms Per Cubic Meter in Plankton of
Stockton Channel in 1913 -(Continued)

1913
$10 / 18$
$10 / 22$
$10 / 26$
$10 / 29$
11/1 11/5 11/8 11/12 11/15 11/19 11/22 $11 / 26$ $11 / 30$
$12 / 3$ $12 / 3$ 12/ 1 12/10 $12 / 14$ 12/17 $12 / 20$ 12/24 $12 / 27$ 12/31

| Platydorina caudata | Pleatorina californica | $\begin{gathered} \text { Pteromonas } \\ \mathrm{sp} \text {. } \end{gathered}$ | Spondylomorum quarternarium | Synura uvella | Trachelomonas cuchlora |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . . |  |  |  | - | . |
| - |  |  | . | , | . |
| 6,400 |  |  | . | .. |  |
| . |  |  | - |  |  |
| - |  | , | - | ... | - |
| - |  |  |  | - . . |  |
| $\cdots$ | ' • - . | $\cdots$ | . . |  |  |
| . . | . . | . . |  | 3,200 | - ... |
|  |  |  |  |  |  |
|  | , |  | , | . | 1,600 |
| . ${ }^{\text {a }}$ | -. | $\cdots$ | . . |  |  |
| . | . . |  | . |  |  |
|  |  |  |  |  | 400 |
| - |  |  | . | 400 |  |
| . |  |  | 13,224 | . |  |
|  |  |  |  |  | 400 |


| Trachelomonas sp. | Trachelomonas volvocina | Total <br> Mastigophora | Amocba proteus | Amoeba radiosa | Arcella vulgaris |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 400 |  |  |  |
|  |  | 800 | 800 |  |  |
| . | 19,836 | 978,976 |  | . |  |
|  | 39,672 | 1,001,212 | 400 |  |  |
| 400 | 400 | 100,750 |  |  |  |
|  | 19,836 | 272,692 |  | . |  |
| ..... | 19,836 | 294,528 |  |  |  |
| ............... | 400 | 29,248 | . |  |  |
|  |  | 173,512 |  |  | 800 |
| 800 | 39,672 | 537.760 |  | . |  |
|  | 800 | 253,656 | $\cdots$. |  |  |
| ....... | 800 | 322,176 |  |  |  |
|  |  | 1,561,560 |  |  | 1,600 |
|  | 39,672 | 389,896 |  |  |  |
| ... | 1,600 | 754,944 |  |  |  |
|  | 52,596 | 493,66. |  |  |  |
| ... | 79,344 | 88,944 |  | . |  |
|  | 52,896 | 60,896 |  |  |  |
|  | 52,896 | 60,896 |  |  |  |
| ... | 79,344 | 181,088 |  |  |  |
|  | 52,596 | 57,696 |  |  |  |
| .... | 1,600 | 113,792 |  |  |  |
|  | 52,896 | 353,424 | 1,600 |  |  |
| .... | ................. | 452,365 | . |  |  |
|  | ............... | 160,288 |  |  |  |
| . |  | 14,400 | . |  |  |
| ............... | 1,600 | 14,400 |  |  |  |
|  |  | 12,800 |  |  | 3,200 |
| ..... |  | 435,968 |  |  |  |
|  | 1,600 | 64,096 |  |  |  |
|  | 370,272 | 1,219,808 | 3,200 |  | .. |
|  |  | 217,984 |  |  |  |

Table 1.-Organisms Per Cubic Meter in Plankton of Stoceton Channel in 1913-(Continued)

| 1913 | Trachelomonas sp. | Trachelomonas volvocina | Total Mastigophora | Amoeba proteus | Amoeba radiosa | Arcella <br> vulgaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $4 / 30$ |  |  | 135,440 |  | 1,600 |  |
| $5 / 3$ |  | 105,792 | 290,928 | 1,600 | 79,344 |  |
| $5 / 7$ |  |  | 52,896 |  | 1,600 |  |
| $5 / 11$ |  | 79,344 | 370,272 |  | 1,600 |  |
| 5/14 | 3,200 |  | 112,192 |  |  |  |
| $5 / 17$ |  | 264,480 | 581,856 |  |  |  |
| 521 |  | 211,584 | 221,184 |  | 3,200 |  |
| $5 / 24$ |  | 105,792 | 264,480 |  |  |  |
| $5 / 27$ |  | 264,480 | 532,160 |  |  |  |
| 5/31 |  | 211,584 | 1,540,384 |  |  |  |
| 6/ 3 |  | 317,376 | 746,944 |  |  |  |
| $6 / 7$ |  | 687,648 | 1,005,024 | ............ |  |  |
| $6 / 11$ |  | 793,440 | 1,110,816 | ............. | 3,200 |  |
| 6/16 |  | 423,168 | 1,497,088 |  |  |  |
| 6/18 |  | 264,480 | 1,503,488 |  |  |  |
| 6,21 |  | 158,688 | 700,448 |  |  |  |
| $6 / 25$ |  | 687,648 | 1,447,392 |  |  |  |
| $6 / 28$ |  | 1,005,024 | 1,867,360 |  |  |  |
| $7 / 3$ | . | 1,057,920 | 2,941,250 |  |  |  |
| $7 / 5$ |  | 264,480 | 2,069,344 | 6,400 |  |  |
| $7 / 9$ |  | 264,450 | 3,016,576 |  |  |  |
| 7/12 |  | 476,064 | 6,195,232 |  |  | 3,200 |
| 7/16 | . |  | 5,352,096 |  |  |  |
| 7/19 |  |  | 7,041,568 |  |  |  |
| 7/23 |  | 3,200 | 3,285,952 |  |  |  |
| 7/26 |  | 105,792 | 8,198,880 |  |  |  |
| 7/30 |  |  | 4,244,480 |  |  |  |
| $8 / 2$ |  | 105,792 | 4,832,736 |  |  |  |
| S/ 6 |  | 105,792 | 4,988,224 |  |  |  |
| 8/ 9 |  | 211,58.4 | 2,912,480 |  |  |  |
| 8/13 |  | 1,057,920 | 8,485,750 | 158,688 |  |  |
| 8/15 |  | 793,440 | 6,780,288 | 105,792 |  |  |
| 8/20 |  | 1.110,816 | 10,473,408 |  |  |  |
| 8/23 |  | 158,688 | 8,892,928 | . |  |  |
| 8/27 |  | 317,376 | 8,519,456 |  |  |  |
| 8/31 | . . | 740.544 | 11,319,744 |  |  |  |
| 9 9 2 |  | 524,960 | 15,203,552 |  |  |  |
| $9 / 6$ |  | 634,752 | 16,824,128 |  | 3,200 | 6,400 |
| 9/9 |  | 687,648 | 22,645,888 |  |  |  |
| 9/13 |  | 476,064 | 21,634,464 | ............. |  |  |
| $9 / 17$ |  | 793,440 | 21,012,512 |  | 158,688 |  |
| $9 / 20$ | $\ldots$ | 264,480 | 9,574,176 |  | 211,584 |  |
| $9 / 24$ |  | 317,376 | 7,464,736 |  |  |  |
| 9/27 |  | 317,376 | 14,705,088 |  |  |  |
| 10/1 |  | 423,168 | 12,377,664 |  | 52,896 |  |
| $10 / 4$ | . | 370,272 | 6,630,200 |  |  |  |
| 10/8 |  | 952,128 | 6,459,712 |  |  |  |
| 10/11 |  | 581,856 | 6,935,776 |  | 52,896 |  |
| $10 / 15$ |  | 1,057,920 | 4,020,024 |  |  |  |
| 10/18 |  | 846,336 | 6,453,312 |  |  |  |
| 10/22 |  | 793,440 | 5,818,560 |  | 211,584 |  |
| 10/26 | .... | 740,544 | 5,025,120 |  | 476,064 |  |
| 10/29 |  | 476,064 | 7,259,552 | 6,400 | 370,272 |  |
| 11/1 | . | 211,584 | 8,052,992 | . .. . | 264,480 |  |
| 11/5 |  |  | 5,606,976 |  |  | 6,400 |
| 11/8 |  | 158,688 | 6,373,120 |  |  |  |
| 11/12 |  | 502,512 | 13,865,152 |  |  |  |
| 11/15 | . . ... | 476,064 | 7,365,344 |  |  |  |
| 11/19 |  | 158,688 | 5,667,872 |  |  |  |
| 11/22 |  | 158,688 | 5,814,512 | 3,200 |  |  |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Trachelomonas sp. | Trachelomonas volvocina | Total <br> Mastigophora | Amoeba proteus | Amoeba radiosa | Arcella vulgaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11/26 | . . | 211,584 | 2,543,808 |  |  |  |
| 11/30 | .. .. . | 264,480 | 3,317,200 |  |  |  |
| 12/3 | . | 449,616 | 2,780,240 |  |  | 3,200 |
| 12/6 | - .. . . | 105,792 | 2,072,544 |  |  |  |
| 12/10 |  | 112,404 | 1,024,860 |  |  | . .. .. . |
| 12/14 | .. . . | 330,600 | 1,219,808 | $\cdots$ | 400 |  |
| 12/17 | . . . .. . | 370,272 | 1,429,392 | 400 |  |  |
| 12/20 | . | 59,508 | 748,120 | 400 |  | .. . |
| 12/24 | . . . | 132,240 | 1,140,464 | 400 | 400 |  |
| 12/27 | - | 297,540 | 1,349,648 | . .. . | . . . | . .. .. .. |
| 12/31 | .... . . . | 284,316 | 1,039,284 | ...... .. . | .. . . |  |


| 1913 | $\begin{gathered} \text { Difflugia } \\ \text { corona } \end{gathered}$ | Difflugia pyriformis | $\underset{\substack{\text { Hyalodiscus } \\ \text { sp. }}}{\text { Hes. }}$ | Hyalosphenia cuneata | Hyalosphenia papilio | Microgromia socialis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 | ...... .... | 13,224 | ... . . . | . | ... . | . . . |
| 1/8 | .. ... ..... | ... .... .. | - |  | - . . |  |
| 1/12 |  | ... | ... . | . |  |  |
| 1,15 |  | .. . | - . |  |  |  |
| 119 |  |  |  |  |  |  |
| 1/22 |  | 400 |  | . . | . . |  |
| 1/26 |  |  |  |  |  |  |
| 1/29 | - ... . |  |  | . |  | . |
| 2/2 | .. . . | .. | . | . |  |  |
| 2/5 |  |  | . | . . | . |  |
| 2/8 | . . | . | . . . . | . |  | .. |
| 2/12 | . .. .. |  |  |  |  |  |
| 2/15 | . . | 1,600 | . . | $\cdots$ | .. . |  |
| 2/19 | .. . . . | 3,200 | $\cdots$ |  | . . | 4,800 |
| 2/23 | ... |  |  |  | . . . | 800 |
| 2/26 | .. . .. . | 52,896 | . .. . |  |  |  |
| 3/ 1 |  |  |  |  | 3,200 | 1,600 |
| 3/5 |  |  |  |  |  |  |
| 3/8 |  |  |  | . . |  | . . . |
| 3/12 | . . |  |  | .. | . | . ... |
| 3/15 | . . . |  |  |  |  |  |
| 3/19 | - |  |  | $\cdots$. | - . | $\ldots$ |
| 3/23 | . . . | 1,600 |  |  |  |  |
| $3 / 26$ | . | 1,600 |  | $\ldots$ |  |  |
| $3 \times 29$ | .. . |  | , | $\cdots$ |  | 1,600 |
| $4 / 2$ | . . .. | 52,896 |  |  |  |  |
| 4/5 |  | 52,896 | . . . . |  |  | 1,600 |
| 4/9 | .. . . . | 79,344 |  |  |  |  |
| 4/13 | .. . |  |  | .. . |  | 1,600 |
| 4/16 | . . . | .. . | - . |  |  | 1,600 |
| 4/19 |  |  |  | - . |  |  |
| $4 / 23$ |  | 1,600 |  |  |  | 79,344 |
| $4 / 26$ | . |  |  |  |  | 185,136 |
| 4/30 |  | 105,792 |  | . |  |  |
| 5/3 | - . | 1,600 |  |  |  |  |
| $5 / 7$ | - |  |  |  |  | 1,600 |
| 5/11 | . | 158,688 |  |  |  | 1,600 |
| 514 |  | 211,584 |  |  |  | . |
| $5 \cdot 17$ | 6,400 | 423,168 |  | . |  |  |
| $5 \cdot 21$ |  | 211,584 |  |  |  |  |
| $5 \cdot 24$ |  | 317,376 |  |  |  |  |
| 5.27 | . . . | 952,128 |  | 3,200 |  |  |
| 5. 31 |  | 370,272 | . | 105,792 |  | 105,792 |
| 6.3 |  | 1,322,400 |  |  |  |  |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Difflugia corona | Difflugia pyriformis | $\begin{gathered} \text { Hyalodiscus } \\ \text { sp. } \end{gathered}$ | Hyalosphenia cuneata | Hyalosphenia papilio | Microgromia socialis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6 / 7$ |  | 740,544 |  |  | 3,200 | 3,200 |
| $6 / 11$ |  | 158,688 | ............... | ............... | ............... | 3,200 |
| 6/16 |  | 423,168 | $\ldots$ | .......... | ........ |  |
| 6/18 |  | 158,688 | ... | ............. | ............... | 3,200 |
| $6 / 21$ |  | 19,200 |  |  |  |  |
| 6/25 |  | 581,856 | .............. | $\ldots . . . . . . . . . . .$. | .............. |  |
| 6/28 |  | 581,856 |  |  |  |  |
| 7/3 |  | 105,792 |  |  |  |  |
| $7 / 5$ |  | 211,584 | . |  |  |  |
| $7 / 9$ |  | 264,480 |  |  |  |  |
| $7 / 12$ |  |  | . |  |  |  |
| $7 / 16$ |  |  |  |  |  | 3,200 |
| $7 / 19$ |  | 3,200 |  |  |  |  |
| $7 / 23$ |  |  |  |  |  | 105,792 |
| 7/26 |  | 264,480 | . |  |  |  |
| 7/30 |  |  |  |  |  | 3,200 |
| 8/2 |  |  |  |  |  |  |
| 8/6 |  |  |  |  |  |  |
| 8/9 |  | 3,200 |  |  |  |  |
| 8/13 |  |  |  |  |  |  |
| 8/15 |  |  | $\ldots . .$. | ......... ...... | ..... ........ | 105,792 |
| $8 / 20$ |  | 3,200 | .............. | ............. . | .............. | ..... |
| 8/23 | 6,400 | 3,200 |  |  |  |  |
| 8/27 |  |  | ............... | .............. | .............. | 3,200 |
| S/31 |  |  |  |  |  |  |
| $9 / 2$ |  |  |  |  |  |  |
| $9 / 6$ | . |  |  |  |  |  |
| $9 / 9$ | $\ldots$. | 6,400 | 3,200 | ........ |  |  |
| $9 / 13$ |  | . . | 3,200 | ....... |  |  |
| $9 / 17$ | ............... |  |  |  | ............... | 105,792 |
| $9 / 20$ | . | . | 158,688 |  |  | 52,896 |
| $9 / 24$ |  |  | 105,792 | ............... | .............. | 52,896 |
| $9 / 27$ | - ..... |  | 52,896 |  |  |  |
| 10/1 |  |  | ............... | ............... |  | 211,584 |
| $10 / 4$ |  | .......... | .... | ............... | ............... | 264,480 |
| 10/8 | ..... |  | ............... | ............... |  | 211,584 |
| 10/11 |  |  | ............... |  | ............... | 264,480 |
| 10/15 | ... | 105,792 |  | ............... |  | 52,896 |
| 10/18 |  |  |  |  |  |  |
| 10/22 |  |  | 634,752 | ............... |  | 211,584 |
| 10/26 |  |  | 370,272 |  | ............. |  |
| 10/29 | ..... |  | 52,896 | ............... |  | 211,584 |
| 11/1 | ..... | .......... | , | ...... ......... | .............. | 52,896 |
| 11/5 |  |  | .............. | ... |  | 105,792 |
| 11/8 |  |  |  |  |  |  |
| 11/12 | 3,200 |  | 132,240 | ............... | ............... | ............. |
| 11/15 |  |  | 158,688 |  |  |  |
| 11/19 |  | 3,200 | 1,600 | ...... ........ | .............. | 1,600 |
| $11 / 22$ |  |  |  | . |  |  |
| 11/26 |  |  |  | . |  |  |
| $11 / 30$ |  | . |  |  |  |  |
| 12/3 |  |  |  |  |  |  |
| 12/6 |  |  | 1,600 | . |  |  |
| 12/10 |  | 800 | . . | - . | . |  |
| 12/14 |  |  | . | - | . |  |
| 12/17 |  | . |  |  | - . |  |
| 12/20 |  |  | . |  |  |  |
| 12/24 |  | 400 | - . | . | . |  |
| 12/27 | . | 400 | .... | ............... | .... . .. |  |
| 12/31 | . . | . . | . . ....... . |  | .......... |  |

'Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel is 1913-(Continued)

| 1913 | Nebela $s p .$ | Trinema sp. | Total Rhizopoda | Actinophrys | Heterophrys fockei | Heterophrys sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 |  | .. | 13,224 | . . | . |  |
| 1/8 | - | - |  |  |  |  |
| 112 |  |  | 800 | . . |  |  |
| 1/15 |  |  |  |  |  |  |
| 1/19 |  |  | 400 |  |  | - |
| 1/22 |  |  | 400 |  |  | . |
| 1/26 |  |  |  | . | . . |  |
| 1/29 |  |  |  | . . |  |  |
| 2/2 |  | . |  | . | . |  |
| $2 / 5$ |  |  | 800 | . |  | . |
| 2/8 |  |  | . . | . |  |  |
| $2 / 12$ |  | . |  |  | . |  |
| 2/15 |  | . | 1,600 | - . | . | . |
| 2/19 |  | . | 9,600 | $\cdots$ | . . | . |
| 2/233 |  |  | 800 | . | . . |  |
| $2 / 26$ |  | .. |  |  | . | . |
| $3 / 1$ |  | .. | 4,800 | . . | . |  |
| $3 / 5$ |  | . |  |  |  |  |
| $3 / 8$ |  | - | . . . | ... | . . . | , . |
| 3/12 | , | . |  |  | . |  |
| $3 / 15$ |  |  | 1,600 | .. | . | 1,600 |
| 3/19 |  | . | 1,600 | . . | . |  |
| 3/23 |  |  | 1,600 |  | . |  |
| $3 / 26$ |  | - | 3,200 |  | - | . |
| $3 / 29$ |  | . | 4,800 |  |  |  |
| $4 / 2$ |  | . | 52,896 | . | . . | , . |
| 4/5 |  | .. | 54,496 | . | . | ... |
| $4 / 9$ |  | . | S0,944 | - | . |  |
| 4/13 |  | . | 67,696 | . | . | . . . |
| 4/16 |  |  | 3,200 | . | . . . | . . . |
| 4/19 |  | - |  |  | . . . | . . . |
| 4/23 |  | . | 16:3,488 | . | . . . |  |
| 4/26 |  |  | 238,032 | . | $\cdots$. | .. . . . $\cdot$ |
| 4/30 |  |  | 107,392 |  | - . |  |
| $5 / 3$ |  |  | 82,844 |  | . | - .. |
| $5 / 7$ |  |  | 3,200 | . | . |  |
| $5 / 11$ |  |  | 161,888 |  | . . | . |
| $5 / 14$ |  |  | 211,58.4 | , - | . . | . |
| $5 / 17$ |  |  | 429,568 |  | . . | . |
| $5 / 21$ |  |  | 214,784 |  | . | . . . |
| 5/21 | ............... |  | 317,376 |  | . |  |
| $5 / 27$ |  |  | 955,328 | - . | . . | . |
| $5 / 31$ | ............ |  | 781,856 | . . ${ }^{\text {- }}$ | . | . . |
| $6 / 3$ |  |  | 1,533,98. | .. . . . | . . . |  |
| (1) 7 | .... |  | 746,944 | . | . |  |
| 6/11 | ............... |  | 165,088 |  | . . |  |
| $6 / 16$ | ............... |  | 423,168 | . | . |  |
| 6/18 |  |  | 161,888 |  |  | . . |
| 6/21 |  |  | 22,400 |  | . | - |
| 6/25 | ................ |  | 581,850 |  | . |  |
| 6/2S | $\cdots$ |  | 581,856 |  | - |  |
| 7/ 3 |  |  | 105,792 |  |  | . |
| 7/5 |  |  | 224,384 |  | . |  |
| $7 / 9$ | 6,400 |  | 270,880 | . | . . | - |
| 7/12 |  |  | 3,200 | . | . | . . |
| $7 / 16$ | 105,792 |  | 112,192 | . . | . | . . . . . . |
| $7 / 19$ | 3,200 |  | 6,400 | . | - - | . . . |
| 7/23 |  |  | 105,792 | . | . | - . |
| 7/26 | 3,200 |  | 267,680 | - |  | . . |
| 7/30 |  | ............. | 3,200 |  | 4.4,800 | .. |

Table 1.-Organisms Per C'ubic Meter in Plankton of Stockton Channel in 1913-(Continued)

1913
$8 / 2$
$8 / 2$
$8 / 6$
S/ 9
8/13
$8 / 15$
$8 / 30$
8/23
$8 / 27$
8/31
$9 / 2$
$9 / 6$
9/9
9/13
9/17
$9 / 20$
924
$9 / 27$
10/1
$10 / 4$
$10 / 8$
10,11
10,15
10,18
$10 / 22$
$10 / 26$
$10 / 29$
11/I
11/5
$11 / 8$
11/12
$11 / 5$
11/19
$11 \cdot 2$
1126
$11: 30$
12/3
12/6
12/10
12,14
12/17 1220 $12: 24$ $12 / 27$ 12/31


Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Nuclearia simplex | Pinaciophora fluviatilis | Raphidiophrys elegans | Total <br> Heliozoa | Askenasia elegans | Bursaria 8 p. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 212 |  |  |  |  |  |  |
| 2/15 |  |  |  |  |  |  |
| 219 |  |  |  |  |  |  |
| 2823 |  |  | . |  |  |  |
| 226 |  |  |  |  |  |  |
| 31 |  | . | . |  |  |  |
| $3 / 5$ |  |  |  |  |  |  |
| $3 / 8$ | ............... |  | .............. |  |  |  |
| 312 |  | . . |  |  | 1,600 |  |
| $3 / 15$ |  |  |  | 1,600 |  |  |
| 3/19 | 1,600 |  | .............. |  |  | 1.600 |
| $3 / 23$ |  |  |  |  |  |  |
| $3 / 26$ |  |  |  |  |  | . |
| 3/29 | 3,200 |  |  |  |  | .. . |
| $4 / 2$ |  |  |  | ........ |  |  |
| 4/5 |  |  |  |  |  | . |
| 4/9 | 1,600 |  |  |  |  | - |
| 4/13 | 52,896 |  |  |  | - .. | .. ... . . |
| 4/16 | 1,600 |  | ............... |  |  |  |
| 4,19 |  |  |  |  |  | .. . |
| $4 / 23$ | 79,344 |  |  |  |  | . |
| 4/26 | 52,896 |  |  |  |  |  |
| 4/30 |  |  | 132,240 | 132,240 |  | 3,200 |
| 5/3 | .............. |  |  |  |  |  |
| $5 / 7$ |  |  | 211,584 | 211,584 |  |  |
| $5 / 11$ | ............... |  | 158,688 | 158,688 |  | . |
| $5 / 14$ |  |  | 3,200 | 3,200 |  |  |
| 517 | . |  |  |  |  |  |
| $5 / 21$ | .............. |  | 1,216,608 | 1,216,608 |  | . |
| $5 \cdot 24$ |  |  |  |  |  |  |
| 5/27 |  |  |  |  | . . | - . . . |
| $5 / 31$ |  |  | 3,200 | 3,200 | .. . . | - .. |
| $6 / 3$ |  |  |  |  |  |  |
| $6 / 7$ |  |  | 740,544 | 740,544 | . |  |
| $6 / 11$ |  |  | 1,005,024 | 1,005,024 |  |  |
| 6/16 |  |  | 1,322,400 | 1,322,400 |  | - |
| 6/18 |  |  | 158,688 | 158,688 |  |  |
| 6/21 |  |  | 264,480 | 264,480 |  |  |
| 6/25 |  |  | 1,851,360 | 1,851,360 |  | . |
| 6/28 | ............... |  | 740,544 | 740,544 |  |  |
| 7/3 |  |  | 793,440 | 793,440 | - . |  |
| 7/5 | 6,400 |  | 528,960 | 528,960 |  | . |
| 7/9 | ................. |  | S46,336 | 846,336 |  | . |
| 7/12 |  |  | 158,688 | 158,688 |  | - |
| 7/16 | 3,200 |  | 528,960 | 528,960 |  |  |
| 7/19 | ............... |  | 370,272 | 370,272 |  | . |
| 7/23 | ........... |  | 317,376 | 317,376 |  |  |
| 7/26 | ............... |  | 370,272 | 370,272 |  |  |
| 7/30 |  |  | 370,272 | 415,072 |  |  |
| $8 / 2$ |  |  | 1,269,504 | 1,798,46. |  | . |
| 8/ 6 |  |  | 264,480 | 370,272 |  | . |
| S/ 9 |  |  | 423,168 | 740,544 |  |  |
| 8/13 | 158,688 |  | 1,745,568 | 1,851,360 |  | . |
| 8/15 |  |  | 528,960 | 952,128 |  | . |
| 8/20 |  | .............. | 317,376 | 317,376 |  |  |
| 8/23 |  |  | 1,586,880 | 1,590,080 |  | . |
| 8/27 | 3,200 |  | 105,792 | 108,992 | . | . |
| 8/31 |  |  | 687,648 | 687,648 |  | - |
| $9 / 2$ | 3,200 |  | 211,584 | 211,584 | - . | . |


| 1913 | Nuclearia simplex | Pinaciophora fluviatilis | Raphidiophrys elegans | Total Heliozoa | Askenasia elegans | Bursaria sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $9 / 9$ |  |  |  |  | . | - . |
| 9/13 | . | . . | 3,200 | 3,200 | . |  |
| $9 / 17$ | . . |  |  |  |  |  |
| 9/20 | . . . | - . |  | 211,584 |  |  |
| $9 / 24$ | - | . |  | 211,584 | - |  |
| 9/27 | . . . |  |  | 211,584 | . | 105,792 |
| 10/1 |  | . |  | 52,896 |  | . . |
| 10/4 | . | . . | . | 264,480 |  | - . |
| 10/8 |  |  |  | 158,688 | . | . |
| 10/11 | 52.896 | 423,168 |  | 429.568 | . . . | . . . |
| 10/15 | 105,792 | 52,896 |  | 105,792 |  | . . . |
| 10/18 |  | 476,064 | . | 528,960 |  |  |
| 10/22 | 105,792 | 370,272 |  | 581,856 |  |  |
| 10/26 | 105,792 | 317,376 | 211,584 | 1,110,816 |  |  |
| 10/29 | .. . | 370,272 |  | 423,168 |  |  |
| 11/1 |  | 476,064 |  | 476,064 |  |  |
| 11/5 |  | 105,792 | 4,549,056 | 4,654,848 |  |  |
| 11/8 |  |  | 1,428,192 | 1,428,192 |  |  |
| 11/12 |  | 79,344 | 3,702,720 | 3,782,064 |  |  |
| 11/15 |  | 52.896 | 1,745,568 | 1,798,464 |  |  |
| 11/19 |  | . . | 819,888 | 819,888 |  |  |
| 11/22 |  |  | 1,600 | 1,600 | . | . |
| 11/26 | . . . . | 52,896 | 1,600 | 54,496 |  |  |
| 11/30 | .. | . . | 396,720 | 398,320 | . |  |
| 12/3 | . . . |  | 1,600 | 1.600 |  |  |
| 12/6 | . . | - | 52,896 | 52,896 |  |  |
| 12/10 | . |  |  |  |  |  |
| 12/14 |  |  |  |  |  |  |
| 12/17 |  |  |  |  |  |  |
| 12/20 | - |  |  |  |  | . |
| 12/24 | . |  |  |  |  |  |
| 12/27 | . |  | 400 | 400 |  |  |
| 12/31 | - . |  | . |  |  |  |
| 1913 | $\begin{gathered} \text { Chilodon } \\ \text { sp. } \end{gathered}$ | Ciliate unidentified | Coleps hirtus | $\begin{aligned} & \text { Colpoda } \\ & \text { sp. } \end{aligned}$ | Cyclidium sp. | Didinium nasutum |
| 1/5 | . . . . | . | . . |  |  | , |
| 1/8 |  |  |  |  |  |  |
| 1/12 | . | . . | . |  |  |  |
| 1/15 |  |  | . |  |  | 00 |
| 1/19 |  |  |  |  |  |  |
| 1/22 |  | 26,448 | . | 400 |  |  |
| 1/26 |  | 46,284 |  |  |  | 52,896 |
| 1/29 |  | 52,896 |  |  |  | 400 |
| $2 / 2$ | . | 800 |  |  |  |  |
| 2/5 |  | 33,060 | . |  |  |  |
| 2/8 | . | 3,200 |  |  |  | 4,800 |
| 2/12 | . | 52,896 | . |  |  | 1,600 |
| 2/15 | . | 66,120 | , |  |  | 39,672 |
| 2/19 | . | 1,600 |  |  |  |  |
| 2/23 |  | 26,448 | 800 |  |  | 3,200 |
| 2/26 |  | 105,792 |  | . |  | 1,600 |
| $3 / 1$ | . | 1,600 |  |  |  | 3,200 |
| $3 / 5$ | - | 52,896 | . |  |  |  |
| 3/8 | . | 79,344 |  | - |  |  |
| 3/12 |  |  | - |  | . |  |
| 3/15 |  |  | . . . . |  |  |  |
| 3/19 | 1,600 | 52,896 | - . |  | . |  |

Table 1.-Organisms Per Cubic Meter is Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Chilodon sp. | Ciliate unidentified | Coleps hirtus | $\begin{gathered} \text { Colpoda } \\ \text { sp. } \end{gathered}$ | $\begin{aligned} & \text { Cyclidium } \\ & \text { sp. } \end{aligned}$ | Didinium nasutum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 \cdot 36$ | .. | 132,240 |  |  |  |  |
| 326 |  |  |  |  | . | 1,600 |
| $3 \times 9$ | . | 3,200 |  |  |  |  |
| 42 | . | 6,400 |  | .. . . | . . |  |
| 4 '5 |  |  |  |  |  |  |
| $4 / 9$ |  | 1,600 |  | ... | . . | . |
| 413 | . |  |  | . | . . | 3,200 |
| 416 | . . | 1,600 |  | . ${ }^{\text {c }}$ | . . . | . . |
| 419 |  |  |  | 1,600 | - |  |
| 423 |  |  |  |  | . |  |
| 426 |  | 1,600 |  |  | . | 1,600 |
| 430 | 3,20 |  |  |  |  |  |
| $5 / 3$ |  |  |  | . |  | . |
| $5 \cdot 7$ |  |  |  |  | . |  |
| 511 |  |  |  | . | . . . | . |
| 514 |  | . | . | . | . . . . | . |
| 517 |  |  |  | . |  | . |
| $5 / 21$ |  | . |  | . | . . | . . |
| $5 / 24$ |  |  |  |  |  | . |
| $5 / 27$ |  |  |  | , . | . |  |
| $5 / 31$ |  |  |  |  | . |  |
| $6 / 3$ |  |  |  |  | . |  |
| $6 / 7$ |  | . |  | . |  | . |
| $6 / 11$ |  |  |  | . . | - . |  |
| 6/16 |  | . |  | . |  | . |
| 6/18 |  | . |  |  |  | . |
| 6/21 | . | - |  | . | , |  |
| 6/25 |  |  |  | - |  |  |
| $6 / 28$ | . | . |  |  |  |  |
| 7 -3 |  | . . |  | 3,200 | . . . | . |
| 7/5 | . | ... . . |  | 3,200 | . . . |  |
| $7 / 9$ | . | . . . |  | .. . | . . . | . |
| $7 / 12$ |  | . . . |  | . |  | . |
| 7/16 | . .. | . |  | . | . | - |
| $7 / 19$ |  | $\cdots$ |  | - | . | . |
| 7/23 |  | . |  | . . | . . | . |
| 7/26 | . | . |  | - . | . . | . |
| 7/30 | . |  |  | . . . | . . | .. |
| $8 / 2$ | 3,20 | . . |  | . . | . . . | . |
| 86 |  |  |  | . . . |  | . |
| 89 |  |  |  | . |  | ... |
| 813 |  |  |  |  | 158,688 | . |
| \& 15 |  | . . |  | . | 105,792 | . .. |
| 8/20 | . |  |  |  | 105,792 | ... . . |
| 8.23 |  | - . |  | . | 264,480 | . |
| S 27 | - .. | . . |  | 6,400 | 158,688 | . |
| 8:31 |  |  | . . |  | 158,688 | . |
| 9 2 |  |  |  |  | 317,376 |  |
| 96 |  |  |  |  | 476,064 |  |
| 99 |  | . |  | . |  | . . |
| $9 / 13$ |  |  |  |  | 264.480 | . |
| 917 |  |  |  |  | 3,200 | .... |
| 920 |  |  |  | . |  |  |
| 924 |  |  |  |  | 264,480 |  |
| 927 |  |  | 52,89 |  | 105,792 | .. .. |
| 10'1 |  |  |  |  | 105,792 | .... .. .. . |
| $10 / 4$ |  | . | . |  | 158,688 | .. ... . . .... |
| $10^{/ 8}$ |  |  |  | . | 52,896 | ......... |
| 1011 |  |  |  |  | 211,584 | .. .. ... . |
| 10,15 |  |  |  |  |  | ........... |

10/18
10/22
10/26 10/29
11/1
11/5 11/8 11/12 11/15 11/19 11/22 11/26 11/30
12/3 $12 / 6$ 12/10 12/14 12/17 12/20 12/24 12/27 12/31

1913
1/5
1/8
1/12
1/15
1/19
$1 / 22$
1/29
$2 / 2$
2/ 5
$2 / 8$
2/12
2/15
2/19
2/23
226
3/ 1
3/5
$3 / 8$
$3 / 12$
3/15
3/19
$3 / 23$
$3 / 26$
3/29
4/2
$4 / 5$
49
4/13
$4 / 16$
4/19
$4 / 23$
4/26

TAble 1.-Organisms Per Cubic Mmter in Plankton of Stockton Channel in 1913-(Continued)

| Chilodon sp. | Ciliate unidentified | Coleps hirtus | $\begin{gathered} \text { Colpoda } \\ \text { sp. } \end{gathered}$ | $\begin{gathered} \text { Cyclidium } \\ \text { sp. } \\ 158,688 \end{gathered}$ | Didinium nasutum |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & 264,480 \\ & 105,792 \end{aligned}$ |  |  |  |
|  |  | 1,600 |  |  | $\begin{array}{r} 32,000 \\ 19,200 \\ 1,600 \end{array}$ |
| 22,400 |  |  |  |  | 3,200 |
|  |  | $\begin{array}{r} 132,240 \\ 119,016 \\ 66,120 \\ 19,836 \\ 400 \end{array}$ |  |  |  |
| $\begin{aligned} & \text { Enchelys } \\ & \text { sp. } \end{aligned}$ | Euplotes harpa | Euplotes patella | $\begin{gathered} \text { Frontonia } \\ \text { sp. } \end{gathered}$ | Halteria grandinella | Hastatella radians |
|  | $\begin{array}{r} 1,600 \\ 13,224 \\ 11,200 \end{array}$ |  |  |  |  |
|  | 19.836 |  |  | 52,896 |  |
|  | 3:3,060 |  |  | 46,284 |  |
|  | 13,224 |  |  | s00 |  |
|  | 26, 414 |  |  | 800 | 1,600 |
|  | 16.000 | 800 |  | 4,800 |  |
|  | $39.672$ |  |  | 1,600 |  |
|  | 158,688 | 52,896 |  | 4,800 | 52.596 |
|  | 145,464 | 52,896 |  | 1,600 | 1.600 |
| 1,600 | $132,240$ | 66,120 |  | 3,200 | 1.6000 |
|  | 132,240 | 10.5,792 |  | 3,200 | 3,200 |
|  | $317,376$ | 52,896 |  |  | 12,800 |
|  | $6,400$ |  |  | $52,896$ |  |
|  | 158,688 | $3,200$ |  | 3,200 |  |
|  | $79.344$ | $1,600$ | 155,1585 |  |  |
|  | 158,688 | 12,800 |  | 3,200 |  |
|  | 370,272 |  |  |  |  |
|  | $\begin{array}{r} 264,480 \\ 79,344 \end{array}$ | 9,600 |  | 9,600 |  |
|  | $\begin{aligned} & 35,200 \\ & 70.400 \end{aligned}$ | 3,200 |  |  |  |
|  | 211,584 | 9,600 |  | 10.5, 59 |  |
|  | 132,240 |  |  |  | 6,400 |
|  | 25,600 |  | - |  | $\begin{aligned} & 9,600 \\ & 9,600 \end{aligned}$ |
|  | 6,400 |  |  |  | 105,792 |
|  | 1,600 |  |  |  | 1,600 |

T'able 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | $\begin{gathered} \text { Enchelys } \\ \text { sp. } \end{gathered}$ | Euplotes harpa | Euplotes patella | Frontonia sp. | Halteria grandinella | Hastatella radians |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 40 |  |  |  |  |  |  |
| 5 5 3 |  |  |  |  |  |  |
| $5 / 7$ |  |  |  |  |  |  |
| $5 / 11$ |  |  |  | 3,200 |  |  |
| $5 / 14$ | . |  |  |  |  |  |
| $5 / 17$ |  |  |  |  |  |  |
| 5.21 |  |  |  |  | . |  |
| 524 |  |  |  | . |  |  |
| $5 \cdot 27$ |  |  |  |  |  |  |
| 531 |  |  |  | . . |  |  |
| 6 3 3 |  |  |  |  |  |  |
| 6 ${ }^{7}$ | . |  | . | . |  |  |
| 6/11 | . |  | . | . | . | . |
| 6,16 |  | . . |  | . . | . |  |
| 6.18 |  |  |  |  | - |  |
| 6.21 |  |  |  |  |  |  |
| 6.25 |  |  |  |  |  |  |
| 628 |  |  |  |  |  |  |
| 7/ 3 |  | . | . | . . |  | . |
| $7 / 5$ |  |  |  |  | . |  |
| 7/9 | . |  |  |  |  |  |
| 7/12 | . |  |  |  |  |  |
| $7 / 16$ | - . |  |  |  |  |  |
| 7/19 |  |  |  | . | . |  |
| $7 / 23$ | . |  |  | . |  |  |
| 7/26 | . |  |  |  |  |  |
| $7 \cdot 30$ |  |  |  | . |  |  |
| $8 \cdot 2$ |  |  |  |  |  |  |
| 8 S 6 | , | . |  | , . |  |  |
| 8/ 9 |  |  |  | . | . . |  |
| 8/13 | . |  |  | . | ... | . |
| S/15 | . | 12,800 |  | . . . - | - . |  |
| 8/20 |  | . . |  | - . |  | . |
| 8/23 |  |  |  |  |  |  |
| 8,27 | - . |  |  |  |  |  |
| 8/31 | . . |  |  |  |  |  |
| $9 / 2$ |  |  |  |  |  |  |
| $9 / 6$ |  | . |  |  |  |  |
| $9 / 9$ |  |  |  | - |  |  |
| $9 / 13$ |  |  | . |  |  |  |
| $9 / 17$ | - . | . |  | - |  |  |
| 9/20 |  |  |  | . |  |  |
| $9 / 4$ |  | . |  | . |  |  |
| 9/27 |  |  |  |  |  | ... |
| 10/1 |  |  |  |  |  |  |
| 10/ 4 | . . | . |  | . |  |  |
| 10/8 |  |  |  | . . |  |  |
| 10/11 | . | . . | . | . . |  |  |
| 10/15 |  | . |  | . | . |  |
| 10/18 |  | . |  | . . . | . |  |
| $10^{\prime 2} 2$ |  | . |  | - . |  | . |
| $10^{\prime 2} 6$ |  |  |  | . |  | . . |
| 1029 |  | 6,400 |  | - | 52,896 |  |
| 11/1 | 52.896 | 44,800 |  | . |  | . |
| 11/5 |  | 19,200 |  | . | 52,896 |  |
| 11/8 |  | 80,600 | . | - | . |  |
| 11/12 | .. | 528,960 |  | . . |  |  |
| 11/15 |  | 264,480 |  |  |  | . |
| 11/19 |  | 211,584 |  | - | $\ldots$ | . |
| 11/22 | 1,600 | 19,200 |  |  |  |  |

Table 1.-Organisms Per Cubic Meter in Planeton of Stoceton Channel in 1913-(Continued)
1913
$11 / 26$
$11 / 30$
$12 / 3$
$12 / 6$
$12 / 10$
$12 / 14$
$12 / 17$
$12 / 20$
$12 / 24$
$12 / 27$
$12 / 31$
1913
 harpa Euplotes

Frontonia
sp.
$\underset{ }{\text { Halteria }}$ grandinella
Hastatella radians

| $\begin{gathered} \text { Enchelys } \\ \text { sp. } \end{gathered}$ | Euplotes harpa | Euplotes patella | Frontonia sp. | Halteria grandinella | Hastatella radians |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 28,800 |  | . . |  |  |
| .. :• | 52,896 | . | . . . |  |  |
|  | 9,600 | . . | . . |  |  |
|  | 12,800 |  |  |  |  |
| 33,060 | 800 | $\ldots$ |  |  | 13,224 |
| . . . | .. | . ... . |  | 400 |  |
|  | $\cdots$ | . ... ..... | . . . . | 800 | 400 |
|  |  | ... . |  | .. | 13,224 |
|  | .. ... ... .... | .... ..... | .............. | 13,224 |  |

Holophrya Loxophyllum Paramecium Paramecium Paramecium Pleuronema

# 'LAbie 1.-Organisms l'er Cubic Meter in Plankton of Stockton Channel In 1913-(Continued) 

| 1913 | Holophrya sp. | Loxophyllum sp. | Paramecium aurelia | Paramecium bursaria | Paramecium caudatum | Pleuronema sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6 / 7$ |  |  | ............... |  |  |  |
| 6/11 | 158,688 | ..... | $\ldots$ | .... | ............... |  |
| 6/16 | 3,200 | ............... | $\ldots$ | ... |  |  |
| 6/18 | 3,200 |  |  |  | . |  |
| 6/21 | 3,200 |  |  | . . | . . . | . |
| 6/25 | 3,200 | . . |  |  |  |  |
| 6/28 | 158,688 |  |  | . . | .. . |  |
| $7 / 3$ | 3,200 |  | . . |  | . | 3,200 |
| 7/5 | 158,688 |  |  |  |  |  |
| 7/9 | 211,584 | . |  | . . . . | . | . . .. |
| 7/12 | 3,200 |  |  |  |  |  |
| 7/16 | 6,400 | - . |  | - . . . | . . | .. . . |
| 7/19 | .... . | .. ... ... . |  | ..... . .. . |  |  |
| 7/23 | - | . . . | . . . | .... - | ..... . | .... . ... |
| $7 / 26$ | 211,584 | .. . . .. . | . . . | ... . . . |  |  |
| 7/30 | 105,792 | . . | . . | . . . | ... | . . . |
| 8/2 | 105,792 | . . . .. | , . | . . . | $\cdots$. | . |
| 8/6 | 105,792 | . . . | .. . |  | .. . . . |  |
| 8/9 | 740,544 | . | .. . | . . | . . . . | ... |
| 8/13 | 634,752 | .. . . | . . | - . |  |  |
| 8/15 | 317,376 | . . . | - . | .. .. . | ... . | . . |
| 8/20 | 105,792 | . .. . . | . . ..... . | . . . | . . . - |  |
| 8/23 | 158,688 | ... . .. | ... ... .. |  | .. .. . | .. .. ... .. |
| 8/27 | 105,792 | .. . . | , . | . | . .. | - |
| 8/31 | 3,200 | . . . | . . . | . . . | . . | .. . . |
| 9/2 | 3,200 | . . | . . . | . . .. . | - | .... . |
| 9/6 | 317,376 | . . . | . | .. . . . . | . . . | .. .. .. .. . |
| 9/9 | 211,584 | . . . | .. . . | . .. . ..... | .. ... . | .. ... |
| 9/13 | ... | . . . . | . .. . | . . . ... | . .. .. . . | .. . . .... |
| 9/17 | 3,200 | . .. .. .. . | . .. .... | . .. . . .. .. | .... . |  |
| 9/20 | 370,272 | . ... . . | , . . | - .] ...... | - .. . . | ........... . |
| $9 / 24$ | 158,688 | .. . . ... | . . . | .. . . ... | .. .. .. ... .. | ...... ....... . |
| 9/27 | 211,584 | .. . . | . . . | . . . . . . | .. .... . . | ..... ... ... . |
| 10/1 | 211,584 | .. . . . | $\cdots$. | . .. . .... | .. . . . | ..... .. .... |
| 10/ 4 | 52,896 |  |  | .. . . | * . .. .. | ..... . .. .. |
| 10/8 | 423,168 | . . . | 6,400 |  | ..... ... . | ..... ... ... .. |
| 10/11 | 105,792 | . . . | .. . . |  | ... . | . . . . |
| 10/15 | 105,792 | .. . | .. . | . .. . . .... | .. . . .. . | .. .. ...... |
| 10/18 | 105,792 | . . . . | - .. .... |  | . .. . . | .. .. .... .. |
| 10/22 | 370,272 | . . . . | . . .. . | .... . .... .. | -. ${ }^{\text {. }}$ | .. . . . . |
| 10/26 | 52,896 | . . . | . . . . | . .. . . | - . . | . . . . . . . |
| 10/29 |  |  |  |  | . . . | .. .. ... . ... |
| 11/1 | 52,896 | . . | 51,200 | 264,480 | $\cdots$. | $\ldots$ |
| 11/5 | 52,896 |  | 70,400 |  | - . . |  |
| 11/8 | 52,896 | . . | 96,000 | 57,600 | .. . . | 6,400 |
| 11/12 | 52,896 | . . |  | 581,856 | ... .. | 132,240 |
| 11/15 |  |  | 25,600 |  | .. ... . | 6,400 |
| 11/19 | 105,792 | . | 79,344 | 1,600 | . . | 79,344 |
| 11/22 | 79,344 | - . | 6,400 | ..... . . . | . . . . | 79,344 |
| 11/26 |  | . . | 3.200 | . .. . . |  | 105,792 |
| 11/30 | 2,38,032 | .. | 3,200 |  | . . . |  |
| 12/3 | 79,344 | . | 19.200 | 6,400 | . | 79,344 |
| 12/6 | 1,600 |  |  | 6.400 | - 1000 | 3,200 |
| 12/10 |  | - soor | 13.224 | 13.224 | 4,000 | 26,448 |
| 12/14 |  | 800 | 10,400 | 800 |  | 39,672 |
| 12/17 | 13,224 |  | 145,464 |  | 9,600 | ... |
| 12/20 | 72,732 |  | 105,792 | 19,836 | 13,224 | 400 |
| 12/24 | 13,224 |  | 16,000 | 3,200 | - 1.800 | .. . . . . . |
| 12/27 | 59,508 |  | 72,732 | 13,224 | 5,600 |  |
| 12/31 | 39,672 |  | 33,060 | 19,836 |  |  |

Table 1.-Organisms Per Cubic Meter in Plankton of Stoceton Channel in 1913-(Continued)

| 1913 | $\begin{gathered} \text { Prorodon } \\ \text { sp. } \end{gathered}$ | Stentor coeruleus | Stentor niger | Tintinnidium fuviatile | Trachelius ovum | Trichodina pediculus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 |  | 800 | 6,612 | ...... |  |  |
| 1/8 |  | 400 | 1,200 |  |  |  |
| 1/12 |  | 1,200 | 2,000 | . . |  |  |
| 1/15 |  | 33,060 | 26,448 | . . . |  |  |
| 1/19 |  | 52,896 | 39,672 | . |  |  |
| 1/22 |  | 72,732 | 112,404 | . . . | 800 |  |
| 1/26 | . | 132,240 | 515,736 | . . . |  |  |
| 1/29 | $\cdots$ | 26,448 | 158,688 | . . . . . | 400 |  |
| 2/2 | . |  | 33,060 | ..... |  |  |
| 2/5 |  | 400 | 39,672 | . . | . | . |
| 2/8 |  |  | 11,200 | . . . | . |  |
| 2/12 | 52,896 | 1,600 | 66,120 | ... . |  |  |
| 2/15 | 105,792 | 8,000 | 39,672 |  |  |  |
| 2/19 | 800 | 800 | 52,896 |  | 1,600 | 3,200 |
| 2/23 | 66,120 | 1,600 | 105,792 |  |  | 1,600 |
| 2/26 | 3,200 |  | 67,200 |  |  | 6,400 |
| $3 / 1$ | 105,792 | 12,800 | 158,688 | ............... | ............... | 9,600 |
| $3 / 5$ |  |  | 185,136 |  | .......... .... |  |
| 3/8 | 3,200 |  | 158,688 |  |  | 1,600 |
| $3 / 12$ |  | 105,792 | 608,304 |  |  |  |
| $3 / 15$ | 16,000 |  | 35,200 | ............... |  |  |
| 3/19 | 6,400 |  | 211,584 |  | .............. | 3,200 |
| 3/23 | 3,200 | 6,400 | 238,032 | ............... | ............... |  |
| 3/26 |  | . . | 132,240 | . |  |  |
| $3 / 29$ | 1,600 |  | 79,344 |  |  | 3,200 |
| $4 / 2$ |  | 6,400 | 22,400 | .............. | .............. |  |
| 4/5 | 6,400 | 6,400 | 28,800 |  | ............... |  |
| $4 / 9$ |  | 9,600 |  | .............. |  |  |
| 4/13 | 6,400 |  | 6,400 |  |  |  |
| 4/16 | ............... | ............... | 105,792 |  | 3,200 |  |
| 4/19 |  |  | 41,600 |  |  |  |
| 4/23 |  | 6,400 | 54,400 | ............ ... | ............... |  |
| 4/26 |  | 3,200 | 211,584 |  |  |  |
| 4/30 | 3,200 |  | 19,200 |  | . |  |
| 5/3 |  | 6,400 | 105,792 | .............. | .............. |  |
| $5 / 7$ |  |  | 25,600 | . . | . | . |
| $5 / 11$ | ... | ....... ...... | 105,792 |  |  |  |
| $5 / 14$ |  | ............... |  | ...... ......... | ............... | .... |
| $5 / 17$ | ............... | .............. | 211,584 |  |  |  |
| $5 / 21$ | ............... |  |  |  |  |  |
| $5 / 24$ |  | ............... | 6,400 |  |  |  |
| $5 / 27$ | ............... |  | ........... | ......... .. . | .............. | ......... |
| $5 / 31$ |  |  |  |  |  |  |
| $6 / 3$ |  |  |  |  |  |  |
| $6 / 7$ |  |  |  |  | . . .. |  |
| $6 / 11$ |  |  |  |  |  |  |
| $6 / 16$ |  |  |  |  | . .. |  |
| 6/18 |  |  |  |  |  |  |
| 6/21 |  | . |  |  | . | . |
| 6/25 |  |  |  |  |  |  |
| 6/28 |  |  |  |  |  |  |
| 7/3 | . . | . | . |  |  |  |
| 7/5 |  |  |  |  | . | . |
| 7/9 | . |  |  |  | - | . |
| 7/12 | . | . |  |  | . . | - |
| 7/16 |  |  |  |  |  |  |
| 7/19 |  | . |  |  | . |  |
| 7/23 | . |  |  |  | . |  |
| 7/26 | . |  |  |  | . . | 6,400 |
| 7/30 | $\cdots$ | . | - . | 105,792 | . . | . . . |

## Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Prorodon вp. | Stentor coeruleus | Stentor niger | Tintinnidium fluviatile | Trachelius ovum | Trichodina pediculus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 83 |  |  |  |  |  |  |
| S 6 |  |  |  | 3.200 |  |  |
| 89 |  |  |  |  |  |  |
| S 1:3 |  |  |  | 6,400 |  |  |
| 815 |  |  |  | 317,376 |  |  |
| S 20 | 3,200 |  |  | 3,200 |  |  |
| $8: 3$ |  | . |  | 12,800 | . |  |
| $8 / 27$ |  |  |  | 3,200 | . |  |
| $8: 31$ | - |  |  | 12,500 | . |  |
| 912 | . . |  |  | 6,400 |  |  |
| $9 / 6$ | . |  |  |  |  |  |
| $9 / 9$ |  |  |  | 264,480 |  |  |
| $9 / 13$ | . |  |  | 25,600 |  |  |
| $9 / 17$ | .. . |  |  | 211,584 |  |  |
| $9 \cdot 20$ |  |  |  |  |  |  |
| $9 \times 4$ |  |  |  | 6,400 |  |  |
| 9.27 |  |  |  | 158,688 |  |  |
| 10. 1 |  |  |  | 211,584 |  |  |
| 10 + |  |  |  | 12,800 | . |  |
| 10 K |  |  |  | 6,400 | ... |  |
| 1011 |  |  |  | 158,685 |  |  |
| 10/15 | 52,896 | 6,400 |  |  |  |  |
| $10^{\prime} 18$ |  |  |  | 6,400 | . |  |
| $10: 2$ | 52,896 |  |  | 105,792 |  |  |
| $10 / 26$ |  |  |  |  | .............. | ... |
| 10/29 | 6,400 | . |  | 158,688 | .............. | .............. |
| 11/1 |  |  | 6,400 |  | . . |  |
| $11 / 5$ | 6,400 | . |  |  |  |  |
| 11/8 | 12,800 |  |  | . |  |  |
| $11 / 12$ |  |  | 9,600 | . |  | 16,000 |
| 11,15 |  |  |  |  |  |  |
| 11/19 | 52,896 |  | 6,400 | . . . |  | 9,600 |
| $11 / 22$ | 6,400 |  | 3,200 | . | . | 3,200 |
| $11 / 26$ | 12,800 | 6,400 |  | . . |  | . |
| 11/30 | 3,200 |  | 22,400 |  |  |  |
| 12/3 | 132,240 | 19,200 | 19,200 |  |  |  |
| $12 / 6$ | 9,600 | 3,200 | 16,000 | 3,200 |  |  |
| 12/10 |  | 2,400 | 800 | 800 |  |  |
| 12,14 |  | 800 | 39,672 |  | . | 800 |
| $12 / 17$ | 1.600 | 32,672 | 79,344 |  |  |  |
| 12'20 | 33,060 | 165,300 | 158,688 |  |  |  |
| 12.24 |  | 2,400 | 7,200 |  |  | 800 |
| 12.27 |  | 46,2s4 | 400 |  |  |  |
| 12:31 |  | 66,130 | $39,67^{2}$ |  |  | - |
| 1913 | Vorticella longifilum | Vorticella $\mathrm{sp} .$ | Total Ciliata | Acineta sp. | $\begin{gathered} \text { Podophrya } \\ \text { sp. } \end{gathered}$ | $\begin{gathered} \text { Sphaerophrya } \\ \text { sp. } \end{gathered}$ |
| 15 | . |  | 7,412 |  | . |  |
| $1 / 8$ |  |  | 1,600 |  |  |  |
| 1/12 |  |  | 4,000 |  |  |  |
| 1/15 |  |  | 63,108 |  |  |  |
| 1/19 |  |  | 132,040 |  |  |  |
| 1.22 | . |  | 250,832 |  |  |  |
| 1,26 |  |  | 899,632 |  |  | , |
| 1,29 |  |  | 391,308 |  |  | - |
| $2{ }^{2}$ |  |  | 53, 484 |  |  |  |
| $2 / 5$ |  |  | 103, 180 |  |  |  |
| $2 / 8$ |  |  | 85,272 |  |  |  |
| 2,12 |  |  | $2 \mathrm{~S} 4,104$ |  |  |  |

Table 1.-Organisms Per Cubic Meter in Plankton of
Stockton Channel in 1913-(Continued)

| 1913 | Vorticella longifilum | Vorticella sp . | Total Ciliata | $\begin{aligned} & \text { Arineta } \\ & \text { sp. } \end{aligned}$ | Podophrya sp. | Sphaerophrya sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2/15 | 1,600 |  | 649,152 | . . | - . |  |
| 2/19 |  | .. . | 272,856 |  | . |  |
| 2/23 |  |  | 411,920 | . . | . . |  |
| 2/26 | .. ..... .. . |  | 484,720 | . . | , | , |
| 3/1 |  |  | 780,544 | ... . |  |  |
| $3 / 5$ | 3,200 | . .. .. . | 302,128 | . . |  |  |
| 3/8 |  |  | 460,816 | . |  |  |
| $3 / 12$ |  | .. .. | 1,538,782 |  | . . |  |
| $3 / 15$ | 3,200 | . | 248,288 | .. . | - .. |  |
| 3/19 |  |  | 893,584 | $\cdots$. | - . | . .. |
| $3 / 23$ |  | 3,200 | 775,944 | . . |  |  |
| 3/26 | . . . . |  | 345,424 | - .. |  |  |
| $3 / 29$ | . . ... |  | 281,232 |  |  | . |
| 4/2 | - ... ... . |  | 399,728 | . |  |  |
| 4/5 | . . |  | 370,176 | . |  |  |
| 4/9 |  |  | 364,624 | . | . |  |
| 4/13 |  | 1,600 | 70,408 | -. | - . |  |
| 4/16 | 70,344 | 1,600 | 387,272 |  |  | . |
| 4/19 | 105,792 |  | 340,528 | . |  |  |
| $4 / 23$ | 1,600 | 1,600 | 278,784 |  |  | . |
| 4/26 | . . . | 79,344 | 411,120 | . |  |  |
| 4/30 |  | 528,960 | 766,144 |  |  |  |
| $5 / 3$ | 1,600 | 687,648 | 910,432 |  |  | . |
| $5 / 7$ |  | 396,720 | 554,560 | . |  |  |
| $5 / 11$ | 1,600 | 396,720 | 586,656 | , |  | . |
| $5 / 14$ |  | 1,533,984 | 1,639,776 | . |  |  |
| $5 / 17$ |  | 1,692,672 | 2,915,680 | - . |  | - |
| $5 / 21$ | 3,200 | 740,544 | 849,536 | - | . . | . |
| 5/24 |  | 1,428,192 | 1,699,072 |  |  | - |
| 5/27 | 6,400 | 1,163,712 | 1,170,112 |  |  |  |
| $5 / 31$ |  | 1,322,400 | 1,322,400 | . | . | - |
| 6/3 |  | 1,428,192 | 1,428,192 |  | - |  |
| $6 / 7$ |  | 2,433,216 | 2,433,216 |  |  | . |
| 6/11 |  | 1,745,568 | 1,904,256 | . | - |  |
| 6/16 | . . | 1,798,464 | 1,801,604 |  | . | - |
| 6/18 | - . | '2,591,904 | 2,595,104 | . |  | . |
| 6/21 |  | 3,596,928 | 3,600,128 | $\cdots$ |  | . |
| 6/25 | 12,800 | 1,851,360 | 1,873,360 |  |  |  |
| 6/28 | . . .... .. | 2,062,944 | 2,221,632 |  | . | . |
| 7/3 | . . . . . | 1,692,672 | 1,702,272 |  |  | - |
| $7 / 5$ | - . | 2,644,800 | 2,806,688 | . |  |  |
| 7/9 | . | 476,064 | 687,648 |  | . | . |
| 7/12 |  | 740,544 | 743,744 |  |  |  |
| 7/16 | . .. ... | 1,110,816 | 1,116,216 |  |  |  |
| 7/19 |  | 1,057,920 | 1,057,920 | . |  |  |
| $7 / 23$ | .. . ${ }^{\text {a }}$ | 476,064 | 476,064 |  |  |  |
| 7/26 |  | 1,269,504 | 1,487,488 |  |  |  |
| 7/30 | 6,400 | 899,232 | 1,117,216 |  | . |  |
| $8 / 2$ | . . ... . | 1,639,776 | 1,748,768 |  |  |  |
| 8/6 | - .. .. | 634,752 | 743,744 | . |  |  |
| 8/9 |  | 687,648 | 1,428,192 | . . |  |  |
| 8/13 |  | 2,168,736 | 2,968,576 |  |  |  |
| 8/15 |  | 1,375,296 | 2,128,640 |  |  |  |
| 8/20 |  | 1,586,880 | 1,804,864 |  |  |  |
| 8/23 |  | 793,440 | 1,229,408 |  |  |  |
| 8/27 |  | 740,544 | 1,011,624 |  |  |  |
| 8/31 |  | 1,851,360 | 2,028,048 |  |  |  |
| $9 / 2$ |  | 899,232 | 1,216,208 |  |  |  |
| $9 / 6$ |  | 899,232 | 1,692,672 | 3,200 |  |  |
| $9 / 9$ | . . $\cdot$. | 634,752 | 1,110,816 |  |  |  |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Vorticella longifilum | $\begin{aligned} & \text { Vorticella } \\ & \text { sp. } \end{aligned}$ | Total Ciliata | $\begin{aligned} & \text { Acineta } \\ & \text { sp. } \end{aligned}$ | Podophrya sp. | Sphaerophrya sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 913 |  | 952,128 | 1,242,208 | . . | . | . . |
| 9) 17 |  | 1,005,024 | 1,222,008 |  |  | . |
| 920 |  | 423,168 | 793,440 |  | . | .... |
| 924 | 52,896 | 581,856 | 1,064,3:0 |  | - |  |
| 927 | 52,896 | 317,376 | 793,440 |  |  | . . . . |
| 10 1 |  | 1,322,400 | 1,851,360 |  | - |  |
| 104 |  | 687,648 | 912,032 |  | . |  |
| $10^{\prime} \mathrm{S}$ | 6,400 | 528,960 | 1,024,224 |  |  | . |
| 1011 |  | 528,960 | 1,005,024 |  | - |  |
| 10 15 |  | 687,648 | 852,736 |  | 6,400 |  |
| 1018 |  | 423,168 | 694,048 |  |  |  |
| $10^{\prime 2}$ | 52,896 | 1,692,672 | 2,274,528 |  | . | . . . |
| 10,26 | 211,584 | 634,752 | 809,242 | . . . | ... |  |
| 10/29 | 105,792 | 1,481,088 | 2,095,744 | . | . |  |
| 11'1 |  | 317,376 | 895,840 |  |  | .... - ... . |
| 11'5 |  | 158,688 | 360,480 | . . | ... |  |
| 11/8 |  |  | 318,296 |  | - . | $\cdots$.... |
| $11^{/ 12}$ | .. | 290,928 | 1,646,080 |  | . | .. |
| $11^{\prime} 15$ | .. |  | 315,680 | 6,400 |  |  |
| 11'19 | 79,344 | 211,584 | 839,088 |  | . | 52,896 |
| 11.22 | 9,600 | 211,584 | 419,572 |  |  | .. . . .... |
| 11/26 | 6,400 | 79,344 | 242,736 |  |  |  |
| $11 / 30$ | 158,688 | 79,344 | 559,360 |  | . |  |
| 12'3 | 52,896 | 52,896 | 470,320 |  |  | 3,200 |
| 12 6 | 22,400 | 105,792 | 209,792 | $\cdots$ | 3,200 |  |
| 12'10 | 39,672 | 13,224 | 113,792 | 800 | 800 | 800 |
| $12 \cdot 14$ | 125,628 | 72,732 | 470,618 | . . . . | . . . 800 | .... . . . |
| 1217 | 13,224 | 26,448 | 447,992 |  | 800 | .. . ... ... |
| 12:20 | 46,284 | 39,672 | 721,108 | .. . . | - 800 |  |
| 12 24 | 52,896 | 19,836 | 141,392 |  | 800 | .. . .. ..... |
| $12 \cdot 7$ | 52,896 | 33,060 | 297,328 | . .. ... | . ... ... . | ... . . .... |
| 12,'31 | 85,956 | 52,896 | 350,436 | .... . . .... | .. ... . ...... |  |


| 1913 | Total Suctoria | Total Protozoa without Mastigophora | Total Protozoa with Mastigophora | Collotheca egg, attached | Collotheca pelagica | Total Rhizota |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 |  | 20,636 | 20,636 | .. .. . | - . | - . |
| 1/8 |  | 1,600 | 2,000 | . . | . . . |  |
| 1/12 |  | 4,800 | 5,600 |  |  |  |
| 1/15 |  | 63,108 | 1,042,084 |  |  |  |
| 1/19 |  | 132,440 | 1,133,652 | ............... | ............... | ......... |
| 1/22 |  | 251,232 | 352,012 | ............... | .... |  |
| 126 |  | 899,632 | 1,172,324 |  |  |  |
| 1/29 |  | 391,308 | 685,836 | . . |  |  |
| 2/2 |  | 53,484 | 82,732 |  |  |  |
| 2.5 |  | 103,980 | 277,492 | . |  |  |
| 2/8 |  | 85,272 | 623,032 | ............... |  |  |
| 2/12 |  | 284,104 | 537,760 | ............... |  |  |
| 2/15 |  | 650,752 | 972,928 |  |  | $\ldots$ |
| 2/19 |  | 282,456 | 1,844,016 | ............... |  | $\ldots$ |
| 2/23 |  | 412,720 | 802,616 |  |  |  |
| 2/26 |  | 484,720 | 1,239,664 |  | ............... | ..... |
| 3/1 |  | 785,344 | - 1,279,008 | ................ |  |  |
| 3/5 |  | 302,128 | 391,072 | ............... | ............... | ......... |
| 3/8 |  | 460,816 | 521,712 |  | .............. |  |
| 3/12 |  | 1,538,782 | 1,599,678 | ............... | ............... |  |
| 3/15 |  | 251,488 | 432,576 |  |  |  |
| $3 / 19$ |  | 895,184 | 952,880 |  | ................ | . |
| $3 / 23$ |  | 780,544 | 894,336 | ............... | ............... |  |

T'able 1.-Organisms Per Cubic Meter in Plankton of
Stockton Channel in 1913-(Continued)

| 1913 | Total Suctoria | Total Protozoz without <br> Mastigophora | Total Protozoa with Mastigophora | Collotheca egg. attached | Collotheca pelagica | Total Rhizota |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3/26 | - | 384,624 | 702,048 |  |  | ....... |
| $3 / 29$ |  | 286,032 | 768,400 | .............. | .............. | ............... |
| 4/2 |  | 452,624 | 612,912 | ............... | ............... |  |
| 4/5 |  | 424,672 | 439,072 | ............... | ............... | ...... . |
| 4/ 9 |  | 445,568 | 459,968 |  |  |  |
| 4/13 |  | 138,104 | 150,904 |  |  | . |
| 4/16 |  | 390,472 | 826,440 |  |  |  |
| 4/19 |  | 340,528 | 404,624 |  |  |  |
| 4/23 |  | 442,272 | 1,662,080 |  |  |  |
| 4/26 |  | 702,048 | 920,032 |  |  |  |
| 4/30 |  | 1,005,776 | 1,141,216 |  | ............... |  |
| 5/3 |  | 993,276 | 1,284,204 |  |  |  |
| $5 / 7$ |  | 769,344 | 822,240 | . |  |  |
| $5 / 11$ |  | 907,232 | 1,277,504 |  |  |  |
| $5 / 14$ |  | 1,854,560 | 1,966,752 | - |  |  |
| $5 / 17$ |  | 3,345,248 | 3,927,104 |  |  |  |
| 5/21 |  | 2,280,928 | 2,502,112 |  |  |  |
| 5/24 |  | 2,016,448 | 2,280,928 | ............... | ........... |  |
| 5/27 |  | 2,125,440 | 2,657,600 | $\ldots$ |  |  |
| $5 / 31$ |  | 2.107,456 | 3,647,840 | . |  |  |
| $6 / 3$ |  | 2,962,176 | 3,709,120 |  |  |  |
| $6 / 7$ |  | 3,920,714 | 4,925,738 |  |  |  |
| $6 / 11$ |  | 3,074,368 | 4,185,184 |  |  |  |
| $6 / 16$ |  | 3,547,172 | 5,044,260 |  |  |  |
| 6/18 |  | 2,915,680 | 4,419,168 |  |  |  |
| 6/21 |  | 3,887,008 | 4,587,456 |  |  |  |
| 6/25 |  | 4,306,576 | 5,753,968 |  |  |  |
| 6/28 |  | 3,544,032 | 5,411,392 |  | ......... |  |
| $7 / 3$ |  | 2,601,504 | 5,542,784 |  | . | - . |
| 7/5 |  | 3,560,032 | 5,629,376 |  | . . | . |
| 7/9 |  | 1,804,864 | 4,821,440 |  |  |  |
| 7/12 |  | 905,632 | 7,100,864 | . | . | . |
| 7/16 |  | 1,757,368 | - 7,109,464 |  |  |  |
| 7/19 |  | 1,434,592 | S,476,160 |  |  |  |
| $7 / 23$ |  | 899,232 | 4,185,184 |  |  |  |
| $7 / 26$ |  | 2,125,440 | 10,324,320 |  |  |  |
| $7 / 30$ |  | 1,535,488 | 5,779,968 |  |  |  |
| $8 / 2$ |  | 3,547,232 | 8,379,968 | .............. | .............. | ..... |
| S/ 6 |  | 1,114,016 | 6,102,240 | . |  |  |
| $8 / 9$ |  | 2,277,728 | 5,190,208 |  |  |  |
| 8/13 |  | 5,666,262 | 14,152,012 |  |  |  |
| 8/15 |  | 3,398,144 | 10,178,432 |  | 6,400 | 6,400 |
| 8/20 |  | 2,284,128 | 12,757,536 | $\ldots$ |  |  |
| 8/23 |  | 2,987,776 | 11,880,704 |  | 6,400 | 6,400 |
| 8/27 |  | 1,235,808 | 9,755,264 | ............... | .............. |  |
| 8/31 |  | 2,980,176 | 14,299,920 |  |  |  |
| $9 / 2$ |  | 1,430,992 | 16,634,544 | 12,800 | 6,400 | 19,200 |
| $9 / 6$ | 3,200 | 1,705,472 | 18,529,600 |  | ............... |  |
| $9 / 9$ |  | 1,226,208 | 23,872,096 | .............. | .... - |  |
| $9 / 13$ |  | 1,248,608 | 22,883,072 | .............. | ............... |  |
| $9 / 17$ |  | 1,289,688 | 22,502,200 | .............. | ......... . |  |
| $9 / 20$ |  | 1,328,192 | 10,902,368 |  |  |  |
| $9 / 24$ |  | 1,434,592 | 8,899,328 | .............. | ............ |  |
| 9/27 |  | 1,163,712 | 15,868,800 |  |  |  |
| 10/1 |  | 2,168,736 | 14,546,400 |  |  |  |
| 10/ 4 |  | 1,440,992 | 8,071,192 |  |  |  |
| 10/8 |  | 1,394,496 | 7,854,208 |  | 6,400 | 6,400 |
| 10/11 |  | 1,804,864 | 8,740,640 |  |  |  |
| 10/15 | 6,400 | 1,335,200 | 5,355,224 | .... | 105,792 | 105,792 |

# Tabief 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued) 

| 1913 | Total Suctoria | Total Protozoa without <br> Mastigophora | Total Protozoa with Mastigophora | Collotheca cgg, attached | Collotheca pelagica | Total Rhizota |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 IS |  | 1,22:3,008 | 7,676,320 |  |  |  |
| $10^{\prime 2}$ |  | 4,020,096 | 9,838,656 | 6,400 | 6,400 | 12,500 |
| 10/20 |  | 2,591,914 | 7,617,034 | ..... . . . . |  |  |
| 10/29 | . .... | 3,377,4,36 | 10,6:36,988 | ......... . | $\cdots$ |  |
| 11/1 | . | 1,753,750 | 9,806,752 | . .. .. | .. . . |  |
| 11/5 |  | 5,339,104 | 10,946,080 |  | . |  |
| 11/8 | . | 1,746,488 | 8,119,608 |  |  |  |
| 11/12 | - ${ }^{\text {. }}$ | 5,565,184 | 19,430,336 | . |  |  |
| 11/15 | 6,400 | 2,279,232 | 9,644,576 | .. . . | . |  |
| 11/19 | 52,896 | 1,718,272 | 7,386,144 | . . . . | . . . . |  |
| 11/28 |  | 424,672 | 6,239,184 | $\ldots$. |  |  |
| 11/26 | . | 297,232 | 2,841,040 | .. .. . . | . .. . |  |
| 11/30 | .. . | 957,680 | 4,274,880 | ... . |  |  |
| 12/3 | 3,200 | 478,320 | 3,255,560 | .. . |  |  |
| 12/6 | 3,200 | 267,488 | 2,340,032 | .... |  |  |
| 12/10 | 2.400 | 116,992 | 1,141,852 | . |  |  |
| 12/14 |  | 471,018 | 1,690,826 | ..... . | ... . . . |  |
| 12/17 | 800 | 449,192 | 1,878,584 | ... . | .. |  |
| 12/20 |  | 721,508 | 1,469,628 | .... . . | . . |  |
| 12/24 | 800 | 143,392 | 1,283,856 | . |  |  |
| 12/27 |  | 298,128 | 1,647,776 | . . . . |  |  |
| 12/31 | ... ..... | 350,436 | 1,389,720 | $\cdots$. . | .... . . . |  |
| 1913 | Rotaria neptunia | Rotaria rotatoria | Rotifer egg, winter | Rotifer egg, unidentified | Rotifer unidentified | Total Bdelloida |
| 1/5 | 3,200 | 112,404 | .. ... . .. | $\cdots$. |  | 115,604 |
| 1/8 |  | 213,420 | . .. . . | . . . | . . . .. | 231,420 |
| 1/12 |  | 178,524 | . ... . | . . |  | 178,524 |
| 1/15 | 2,000 | - 449,616 | .... . ... . | .... . . . | ...... . . . | 451,616 |
| 1/19 | 7,200 | 720,708 | .. . . . . . | ... .. ... |  | 727,908 |
| 1/22 | 8,000 | 185,136 | . . . . | .. . |  | 193,136 |
| 1/26 | 39,672 | 1,309,176 | . . | .... | 26,448 | 1,375,496 |
| 1/29 | -39,672 | 1,243,056 | 10 | .. . . . . | 46,284 | 1,329,012 |
| $2 / 2$ | 8,000 8.600 | 1,282,728 | 400 | ..... | 3,200 | 1,293,928 |
| $2 / 5$ | 25,600 | 1,335,62 ${ }^{1}$ | .. . . 0 , |  | SOO | 1,361,024 |
| $2 / 8$ | 11,200 | 1,203,384 | 800 | 79,344 |  | 1,284,728 |
| $2 / 12$ | 25,600 | 1,626,552 | S00 | 145,464 | 66,120 | 1,864,536 |
| $2 / 15$ | 24,000 | 1,401,744 | . . . | 800 | 3,200 | 1,428,744 |
| 2/19 | 11,200 | 357,048 |  |  | 1,600 | 369,848 |
| $2 / 23$ |  | 674,424 | 39,672 |  | 1,600 | 676,024 |
| $2 / 26$ | 3,200 | 1,057,920 | 1,600 | . | 3,200 | 1,064,320 |
| $3 / 1$ | 3,200 | 1,745,568 | , | . . . | 6,400 | 1,755,168 |
| $3 / 5$ |  | 1,639,776 | - 1,000 | .. .. . | 52,896 | 1,692,672 |
| $3 / 8$ |  | 766,992 | 1,600 |  | 1,600 | 768,592 |
| $3 / 12$ | 3,200 | 2,512,560 | .. . . | .. . . . | 105,792 | 2,681,552 |
| $3 / 15$ |  | 1,269,504 | . . | .. . . . | 6,400 | 1,275,904 |
| $3 / 19$ | 3,200 | 714,09t | . . | . 11000 | 3.200 | 720,496 |
| $3 / 23$ | 3,200 | 793,440 | . . | 1,600 | 1,600 | 798,240 |
| $3 / 26$ |  | 343,824 | . . | .. . |  | 343,824 |
| $3 / 29$ | 6,400 | 528,960 | .. .. . | .. .. . . | 52,896 | 588,256 |
| 4/2 |  | 79,344 |  | . . . | 3,200 | 82,544 |
| 4/5 | . | 290,928 | . . . | . . . |  | 290,925 |
| $4 / 9$ |  | 317,376 |  | ... . . | 132,240 | 449,616 |
| 413 |  | 132,240 | . . . . | $\ldots$. . | 3,200 | 135,440 |
| $4 / 16$ |  | 185,136 |  |  | 1,600 | 186,736 |
| 4/19 |  | 105.792 | .. | 1,600 |  | 105,792 |
| 4/23 |  | 79,344. |  | 1,600 | 1,600 | 80,944 |
| $4 \% 6$ | - .. | 3,200 |  | $\ldots$ | 1,600 | 4,800 |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel In 1913-(Continued)

| 1913 | Rotaria neptunia | Rotaria rotatoria | Rotifer egg, winter | Rotifer egg, unidentified | Rotifer unidentified | $\begin{gathered} \text { Total } \\ \text { Bdelloida } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4/30 |  | 79,344 | ............... | ............... | 79,344 | 158,688 |
| 5/3 |  | 79,344 | .............. |  | 158,688 | 238,032 |
| 5/7 |  | 105,792 | .............. | ...... | 1,600 | 107,392 |
| 5/11 |  | 1,600 | ............... |  |  | 1,600 |
| 5/14 |  | 6,400 |  | 6,400 | 6,400 | 12,800 |
| 5/17 |  | 370,272 | 6,400 |  | 211,584 | 581,856 |
| 5/21 |  | 3,200 |  |  | 264,480 | 267,680 |
| 5/24 |  | 25,600 |  |  | 264,480 | 290,080 |
| 5/27 |  | 6,400 | ... | ............... |  | 6,400 |
| 5/31 |  | 6,400 |  |  | 6,400 | 12,800 |
| $6 / 3$ |  | 6,400 | ............... | ............... | 3,200 | 9,600 |
| 6/ 7 |  |  | ............. |  | 6,400 | 6,400 |
| 6/11 |  |  |  |  | 3,200 | 3,200 |
| 6/16 |  |  |  |  | 12,800 | 12,800 |
| 6/18 |  | 19,200 |  |  | 3,200 | 22,400 |
| 6/21 |  | 19,200 |  |  | 6,400 | 25,600 |
| 6/25 |  | 158,688 |  | 3,200 | 6,400 | 165,088 |
| 6/28 |  | 423,168 | .............. |  |  | 423,168 |
| 7/3 | 6,400 | 158,688 |  |  |  | 165,088 |
| 7/5 |  | 19,200 | ............... |  | 158,688 | 177,888 |
| 7/9 |  | 6,400 | ..... |  | 3,200 | 9,600 |
| 7/12 |  | 211,584 | .............. |  | 3,200 | 214,784 |
| 7/16 |  | 19,200 |  |  | 19,200 | 38,400 |
| 7/19 |  |  | .... |  | 158,688 | 158,688 |
| 7/23 |  | 317,376 |  |  |  | 317,376 |
| 7/26 |  | 12,800 |  | ............... | 26,500 | 38,400 |
| 7/30 | 6,400 | 6,400 |  |  | 3,200 | 16,000 |
| 8/2 | 6,400 | 32,000 | 19,200 |  | 3,200 | 41,600 |
| 8/ 6 | 6,400 | 32,000 | 3,200 |  | 211,584 | 249,984 |
| 8/ 9 | 6,400 | 370,272 | 264,480 |  |  | 376,672 |
| 8/13 |  | 105,792 |  |  | 317,376 | 105,792 |
| 8/15 | 57,600 | 153,600 | ............... | ............... | 317,376 | 528,576 |
| 8/20 | 25,600 | 237,184 | ............ |  | 158,688 | 262,784 |
| 8/23 | 12,800 | 16,000 | ............... |  | 6,400 | 35,200 |
| 8/27 | 32,000 | 105,792 |  |  | 158,688 | 296,480 |
| 8/31 |  |  | ............... |  | 105,792 | 105,792 |
| 9/2 | .......... |  |  |  | 3,200 | 3,200 |
| $9 / 6$ |  | 6,400 |  |  | 105,792 | 112,192 |
| $9 / 9$ |  |  | 3,200 |  | 3,200 | 3,200 |
| 9/13 |  | 12,800 |  |  | 105,792 | 118,592 |
| $9 / 17$ |  |  |  |  |  |  |
| $9 / 20$ | 12,800 | 211,584 | .............. |  | 6,400 | 230,784 |
| 9/24 | 12,800 | 6,400 | ............... |  |  | 19.200 |
| 9/27 |  |  |  |  |  |  |
| 10/1 |  | 52,896 |  |  |  | 52,896 |
| 10/4 | 25,600 | 6,400 |  |  |  | 32,000 |
| 10/8 | 6,400 | 12,800 | 6,400 |  | 211,584 | 230,784 |
| 10/11 | 6,400 |  |  |  | 105,792 | 112,192 |
| 10/15 | 158,688 | 65,696 | .............. | ............... | 211,584 | 435,968 |
| 10/18 | 38,400 | 19,200 |  |  |  | 57,600 |
| 10/22 | 12,800 | 105,792 |  |  | 264,480 | 389,472 |
| 10/26 | 19,200 | 19,200 | 6,400 |  | 52,896 | 91,296 |
| 10/29 | 19,200 | 25,600 |  | ............... | 211,584 | 256,384 |
| 11/1 | 76,800 | 211,584 |  |  | 105,792 | 394,176 |
| 11/5 | 158,688 | 158,688 | ...... | ......... | ........... | 317,376 |
| 11/8 | 105,792 | 105,792 |  |  |  | 211,584 |
| 11/12 | 105,792 | 79,344 |  |  |  | 186,136 |
| 11/15 | 6,400 | 105,792 | 6,400 |  |  | 112,192 |
| 11/19 | 19,200 | 317,376 | 3,200 |  | 52,896 | 489,472 |
| 11/22 | 12,800 | 132,240 | 6,400 |  | 52,896 | 207,936 |

1913
1126
$11 / 30$
$12 / 3$
$12 / 6$
$12 / 10$
$12 / 14$
$12 / 17$
$12 / 20$
$12 / 24$
$12 / 27$
$12 / 31$
$1 / 5$
1/8
$1 / 12$
1/15
1/19
1/22
$1 / 26$
1/29
$2 \cdot 2$
2/5
2/8
$2 / 12$
$2 / 15$
2/19
2/23
2/26
$3 / 1$
$3 / 5$ 6,400
,
$3 / 12$
$3 / 15$
3/19
3/23
3/26
3/29
$4 / 2$
4'5
4/9
$4^{\prime} 13$
416
$4 / 19$
$4 / 23$
$4 / 26$
4/30
$5 / 3$
$5 / 7$
5/11
$5 / 14$
5/17
5/21
$5 / 24$
$5 / 27$
5,31
$6 / 3$

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Cifannel in 1913-(Continued)

| $\begin{gathered} \text { Rotaria } \\ \text { neptunia } \end{gathered}$ | $\begin{aligned} & \text { Rotaria } \\ & \text { rotatoria } \end{aligned}$ | Rotifer egg winter | Rotifer egg unidentified | Rotifer unidentified | Total <br> Bdelloida |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 52,896 | 51,200 | 9,600 |  |  | 104,096 |
| 16,000 | 79,344 | 52,896 |  | 1,600 | 96,944 |
| 52,896 | 79,3+4 |  |  |  | 132,240 |
| 41,600 | 185,136 | 1,600 |  | ............... | 226,736 |
| 19,826 | 19,8:36 |  |  |  | 39,672 |
| 33,060 | 800 | 400 |  | . | 33,860 |
| 33,060 | 1,600 | 400 |  |  | 34,660 |
| 52,896 | 13,22.4 | 400 |  |  | 66,120 |
| 4,800 |  | 800 |  |  | 4,800 |
| 13,224 | 26,448 |  |  |  | 39,672 |
| 52,896 | 39,672 | 1,600 | . . ... . | 400 | 92,968 |


| Anuraeopsis | Anuraeopsis | Anuraeopsis | Asplanchna | Asplanchnopus Brachionus |
| :---: | :---: | :---: | :---: | :---: |
| Cgg, attached | fissa | sp. | brightwellii | sp. | ...


| 1913 | Anuraeopsis egg, attached | Anuraeopsis fissa | Anuraeopsis sp. | Asplanchna brightwellii | Asplanchnopus sp. | Brachionus angularis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6 / 7$ | . $\cdot$ |  |  | 44.800 |  | 158,688 |
| 6/11 | . . . |  |  | 32,000 |  | 370,272 |
| $6 / 16$ | ... .. . | . .. . | . . | 19,200 |  | 264,480 |
| 6/18 | . .. . . |  |  | 6,400 |  | 19,200 |
| 6/21 | . |  | 6,400 | 6,400 |  |  |
| 6/25 | . . | . . |  | 51,200 |  | 3.200 |
| 6/2S | . . . | . |  | 38, 100 |  |  |
| $7 / 3$ | . |  |  | S3,200 |  | 12,800 |
| $7 / 5$ | . . .. . |  | . | 158,688 |  | 3,200 |
| 7/9 | - .. |  |  | 19,200 |  |  |
| $7 / 12$ | . |  |  | 44,800 |  | 158,63S |
| 7/16 | . | . |  | 12,800 |  |  |
| $7 / 19$ | . . |  |  | 6,400 |  |  |
| 7/23 |  | 6,400 |  | 3,200 |  |  |
| 7/26 |  | . |  | 19,200 |  |  |
| 7/30 |  |  |  | 25,600 |  |  |
| $8 / 2$ | . | . |  | 44,800 |  |  |
| $8 / 6$ |  |  |  |  |  |  |
| 8/9 |  | 6,400 |  |  |  | 3,200 |
| 8,13 | 6,400 | 3x,400 |  | 38,400 |  |  |
| $8 / 15$ |  | 6,400 |  | 76,800 |  |  |
| 8/20 |  | 12,800 |  | 25,600 |  |  |
| 8/23 |  | 3,200 |  | 25,600 |  |  |
| 8/27 | . |  | . | 32,000 |  |  |
| $8 / 31$ | . | 19,200 |  | 6,400 |  |  |
| $9 / 2$ |  | 6,400 |  | 12,800 |  |  |
| $9 / 6$ |  |  |  |  |  |  |
| 9 /9 |  |  |  | 6,400 |  |  |
| $9: 13$ |  | 3,200 |  | 51,200 |  |  |
| $9 / 17$ |  | (j, 400 |  | 3,200 | . |  |
| $9 / 20$ |  |  |  |  |  | 52,896 |
| $9 / 24$ | 6,400 | 105,792 |  |  |  | 105,792 |
| 9/27 | 50, |  |  |  |  | 370,272 |
| 10/1 | 52,896 | 52,896 |  |  |  | 317,376 |
| 10/4 |  | 6,400 |  |  |  |  |
| 10/8 | 6,400 | 19,200 |  | - 100 |  | 52,896 |
| $10 / 11$ | . |  |  | 6,400 |  | 5,80 |
| 10/15 |  | 12,800 | . . | 19,200 |  |  |
| 10/18 |  | 105,792 |  | 6,400 |  |  |
| $10 / 22$ | 6,400 | 12,800 |  | 57,600 |  |  |
| 10/26 |  | 6, 400 |  | 12,800 |  |  |
| 10/29 | 6,400 | 108,800 |  | 105,792 |  |  |
| 11/1 | 6,400 | 158,688 |  | 6,400 | . |  |
| 11/5 | . . |  | . |  |  |  |
| 11/8 |  |  |  |  |  |  |
| 11/12 |  |  |  |  |  | 3,200 |
| $11 / 15$ |  | 12,800 |  |  |  | 19,200 |
| 11/19 | 41,600 | 51,400 |  |  |  | 23.400 |
| 11/22 | 52,896 | 158,688 |  |  |  | 79,344 |
| 11/26 | . . . | 132, 240 |  |  |  | 16,000 |
| $11 / 30$ $12 / 3$ | . . | 6,400 | . |  | . | 3,200 |
| $12 / 3$ $12 / 6$ | . . . . . | 3.200 | - . . |  |  | 3,200 |
| $12 / 6$ $12 / 10$ | . . . .. . |  | . . . |  | . | . . |
| $12 / 10$ $12 / 14$ | . . . . |  | . . |  |  |  |
| 12/14 | . . . |  |  |  |  |  |
| 12/17 |  |  |  |  |  |  |
| 12/20 |  |  |  |  |  |  |
| 12/24 | -. |  |  |  |  |  |
| 12/27 | . . |  |  |  |  |  |
| 12/31 |  |  |  |  |  |  |

## Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Brachionus angularis caudatus | Brachionus budapestenensis | Brachionus calyciforus | Irachionus capsuliftorus | Brachionus egg, attached female | Jirachionus egg, attached male |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 |  |  | 6,612 |  |  |  |
| 1/8 |  |  | 39,672 |  | 400 |  |
| 1/12 |  | 9,600 | 10,000 | ............... | 2,400 |  |
| 1/15 |  |  | 13,224 |  | 1,200 | 8,400 |
| 1/19 |  |  | 13,224 |  | 800 | 5,200 |
| 1/22 |  |  | 800 |  | 4,800 |  |
| 1/26 |  |  | 19,836 |  | 19,836 |  |
| 1/29 |  |  | 59,508 |  | 1,600 |  |
| 2/ ${ }^{\text {2 }}$ |  |  | 33,060 |  | 33,060 | 39,672 |
| 2/5 |  |  | 52,896 |  | 85,956 | 79,344 |
| 2/8 |  |  | 171,912 |  | 79,344 | 52,896 |
| 2/12 |  |  | 224,808 |  | 224,808 | 105,792 |
| 2/15 |  |  | 9,600 |  |  | 6,400 |
| 2/19 |  |  | 66,120 |  | 39,672 |  |
| 2/23 |  |  | 211,584 |  | 304,152 |  |
| 2/26 |  |  | 396,720 |  | 528,960 | 16,000 |
| 3/ 1 |  |  | 317,376 |  | 290,928 | 12,800 |
| $3 / 5$ |  |  | 1,295,952 |  | 1,375,296 | 317,376 |
| 3/8 |  |  | 1,110,816 |  | 714,096 | 79,344 |
| 3/12 |  |  | 3,914,304 |  | 608,304 | 476,064 |
| 3/15 |  |  | 132,240 |  | 92,800 | 48,000 |
| 3/19 |  |  | 264,480 |  | 105,792 |  |
| 3/23 |  |  | - 449,616 |  | 132,240 | 32,000 |
| 3/26 |  |  | 343,824 |  | 317,376 | 32,000 |
| 3/29 |  |  | 264,480 | 1,600 | 290,928 |  |
| 4/2 |  |  | 714,096 |  | 185,136 | 290,928 |
| 4/5 |  |  | 317,376 |  | 3,200 |  |
| 4/9 | . . . |  | 16,000 | . . . |  |  |
| 4/13 |  |  | 19,200 |  | 12,800 |  |
| 4/16 |  |  | 79,344 |  | 52,896 |  |
| 4/19 |  |  | 38,400 |  | 9,600 |  |
| 4/23 |  |  | 44.800 |  | 12,800 | 52,896 |
| 4/26 |  |  | 57,600 |  | 9,600 | . . . |
| 4/30 |  |  | 25,600 |  | 61,600 | . . |
| 5/3 | 12,800 |  | 105,792 |  | 79,344 | - .. .. ..... |
| $5 / 7$ | ............... | . $\cdot . .1$......... | 185,136 | 6,400 | 502,512 |  |
| 5/11 |  |  | 79,344 |  | 238,032 |  |
| $5 / 14$ |  |  | 140,800 | 12,800 | 370,272 | 6,400 |
| $5 / 17$ |  |  | 102,400 | 6,400 | 423,168 | . .. . |
| $5 / 21$ | 12,800 |  | 44,800 |  | 211,584 | .. .. . . . |
| 5/24 | 12,800 |  | 6,400 |  | 317,376 |  |
| 5/27 | 25,600 |  |  |  | 423,168 | 44,800 |
| $5 / 31$ | 211,584 |  |  |  | 211,584 |  |
| 6/3 | 581,856 |  |  |  | 899,232 | 3,200 |
| -6/ 7 | 952,128 |  |  |  | 476,064 |  |
| $6 / 11$ | 370,272 |  |  | 6,400 | 288,000 |  |
| 6/16 | 317,376 |  |  |  | 952,128 | 147,200 |
| 6/18 | 899,232 |  |  |  | 370,272 |  |
| 6/21 | 1,110,816 |  |  |  | 793,440 | 12,800 |
| 6/25 | 2,591,904 |  |  | 6,400 | 846,336 | 317,376 |
| 6/28 | 1,269,504 |  |  | 6,400 | 528,960 |  |
| 7/3 | 687,648 |  |  |  | 158,688 |  |
| 7/5 | 476,069 |  |  | .. | 158,688 | - . . |
| 7/9 | 1,163,712 |  | 3,200 |  | 687,648 |  |
| 7/12 | 1,375,296 |  |  |  | 528,960 | . . ..... |
| 7/16 | 793,440 |  |  |  | 846,336 | , $\cdot \cdots$ |
| 7/19 | 793,440 |  |  |  | 476,064 |  |
| 7/23 | 317,376 |  |  | 6,400 | 158,688 |  |
| $7 / 26$ | 1,481,088 |  | 6,400 |  | 370,272 |  |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel In 1913-(Continued)

| 1913 | Brachionus angularis caudatus | Brachionus budapestenensis | Brachionus calycillorus | Brachionus capsuliforus | Brachionus egg, attached female | Brachionus egg, attached male |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/30 | 423,168 |  |  | 6,400 | 12,800 |  |
| 8/2 | 211,584 |  |  |  | 2,644,480 |  |
| $8 / 6$ | 105,792 |  |  |  | 3.200 |  |
| 8/9 | 105,792 |  |  |  | 158,688 | 105,792 |
| 8/13 | 1,269,504 |  |  |  | 317,376 |  |
| 8.15 | 1,428,192 |  |  | 6,400 | 687,648 |  |
| 8/20 | 1,692,67 ${ }^{\text {² }}$ | . |  | 6,400 | 952,128 |  |
| 8/23 | 899,232 |  |  | - | 740,544 |  |
| 8/27 | 952,128 |  |  |  | 476,064 |  |
| 8/31 | 317,376 |  |  |  | 105,792 |  |
| $9 / 2$ | 476,064 |  |  | 6,400 | 158,688 |  |
| $9 / 6$ | 476,064 |  |  |  | 317,376 | 105,792 |
| $9 / 9$ | 2,433,216 |  |  | 3,200 | 1,269,504 | 19,200 |
| $9 / 13$ | 2,062,944 |  |  | 3,200 | 476,064 |  |
| $9 / 17$ | 687,648 |  | 6,400 |  | 370,272 |  |
| $9 / 20$ | 19,200 |  |  |  | 6,400 |  |
| $9{ }^{\prime 2} 4$ | 264,480 |  | 12,800 |  | 105,792 |  |
| 9/27 | 740,544 |  |  |  | 1,005,024 |  |
| 10/1 | 581,856 | 19,200 |  | 12,800 | 370,272 |  |
| 10/4 | 581,856 | 6,400 | 6,400 | 6,400 | 423,168 |  |
| 10/8 | 793,440 |  |  | 32,000 | 634,752 | 52,596 |
| 10,11 | 423,168 | 52,896 | 6,400 | 6,400 | 158,688 |  |
| 10/15 | 264,480 |  |  | 6,400 | 158,688 | 19,200 |
| 10/18 | 158,688 | 6,400 |  | 32,000 | 52,896 |  |
| 10/22 | 370,272 |  | 6,400 |  | 211,584 | 211,584 |
| 10/26 | 19,200 |  |  |  |  |  |
| 10/29 | 25,600 | 6,400 |  | 6,400 | 6,400 |  |
| 11/1 |  |  |  | 6,400 |  | . |
| 11/5 | 6,400 | . | 6,400 |  |  |  |
| 11/8 | . . | . . |  | . . |  |  |
| 11/12 |  |  | 3,200 |  | 9,600 | 9,600 |
| 11/15 | . | - . | 6,400 | . | 12,800 | 12,800 |
| 11/19 | . ${ }^{\text {. }}$ | .. | 3,200 |  | 19,200 |  |
| 11/22 | - . | . . | 3,200 |  | 105,792 |  |
| 11/26 |  | . . | 9,600 |  | 79,344 |  |
| 11/30 | . |  |  |  | 16,000 | . |
| 12/3 | . . |  |  |  | 9,600 | . |
| 12/6 |  |  |  |  |  |  |
| 12/10 | . . |  |  |  | 1,600 |  |
| 12/14 |  |  |  |  | 800 |  |
| 12/17 | . |  |  |  |  |  |
| 12/20 |  |  | 800 |  |  |  |
| 12/24 |  |  |  |  | 1,600 | . . . |
| 12/27 |  |  |  |  |  |  |
| 12/31 | - . . | . | . . |  |  | . . |
| 1913 | Brachionus egg, free female | Brachionus egg, free male | Brachionus male | Brachionus plicatilis | Brachionus urceus | $\begin{aligned} & \text { Brachionus } \\ & \text { with } \\ & \text { endoparasites } \end{aligned}$ |
| 1/5 | 13,224 |  |  | 1,600 | 6,612 |  |
| 1/8 | 33,060 | - - |  | 2,000 | 400 |  |
| 1/12 | 6,400 |  |  | 5,200 | 800 |  |
| 1/15 | 26,448 |  |  | 13,224 | 400 |  |
| 1/19 | 13,224 |  |  | 26,448 |  |  |
| 1/22 | 400 |  |  | 4,800 | 1,600 |  |
| 1/26 |  |  |  | 26,448 | 400 |  |
| 1/29 | 19,836 |  |  | 52,896 | 17,600 |  |
| $2 / 2$ | 13,224 |  |  | 92,568 | 59,508 |  |
| $2 / 5$ | 92,568 | . . | . . | 99,180 | 52,896 |  |

## Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Brachionus rgg, free female | Brachionus egg, free male | Brachionus male | Brachionus plicatilis | Brachionus urceus | Brachionus with endoparasites |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2/8 | 119,016 | ............... | ............... | 79,344 | 52,896 |  |
| 2/12 | 39,672 | .............. |  | 132,240 | 105,792 |  |
| 2/15 |  |  |  | 1,600 | 3,200 |  |
| 2/19 | 92,568 |  |  | 3,200 |  |  |
| 2/23 | 171,912 | 800 |  | 17,600 | 800 |  |
| 2/26 | 105,792 | 1,600 |  | 16,000 | 79,344 |  |
| 3/ 1 | 52,836 |  |  | 25,600 |  |  |
| 3/5 | 211,584 | 79,344 |  | 132,240 | 6,400 |  |
| $3 / 8$ | 52,896 |  |  | 12,800 |  |  |
| 3/12 | 476,06t | 1,600 | 1,600 | 38,400 | . | . |
| $3 / 15$ |  |  | 6,400 | 19,200 | . . |  |
| 3/19 | 158,688 | 1,600 |  | 12,800 |  |  |
| 3/2'3 | 185,136 |  |  | 6,400 |  |  |
| $3 / 26$ | 264,480 |  |  | 22,400 | 3.200 |  |
| $3 / 29$ | 211,584 |  |  | 25,600 | 3,200 |  |
| 42 | 132,210 |  |  | 9.600 |  |  |
| 4/5 | 52,896 |  |  | 19,200 |  | . |
| 4/9 | 1,600 |  |  |  | 3,200 |  |
| 4/13 |  |  |  | 3,200 |  |  |
| 4/16 |  |  |  |  |  |  |
| 4/19 | 1,600 |  | .............. |  |  |  |
| 4/23 | 3,200 | . |  | - 200 |  |  |
| 4/26 | 1,600 |  |  | 3,200 |  |  |
| 4/30 | 1,600 |  |  | - . |  |  |
| 5/ 3 | ........ . | . |  |  | 3,200 | - .. . .. |
| 5/7 |  |  |  | 1,600 |  |  |
| $5 / 11$ | 42,3,168 | '. |  | . . |  |  |
| $5 / 14$ | 423,168 |  |  |  | 25,600 |  |
| $5 / 17$ | 1,005,024 | , |  |  | 32,000 |  |
| $5 / 21$ | 211,584 |  |  |  | 155,685 |  |
| 5/24 | 211,584 | . | . |  | 128,000 |  |
| 5/27 | 211,584 |  |  | 12,800 | 423,168 |  |
| $5 / 31$ | 317,376 |  |  |  | 370,272 |  |
| $6 / 3$ | 158,688 |  | 211,584 |  | 899,232 |  |
| $6 / 7$ | 211,584 |  | 3,200 |  | 740,544 |  |
| 6/11 | 317,376 |  |  | ............... | 505,600 |  |
| $6 / 16$ | 370,272 |  |  |  | 423,168 |  |
| 6/18 | 317,376 |  |  |  | 687,648 | ..... |
| 6/21 | 317,376 |  |  | 3,200 | 899,232 |  |
| 6/25 | 581,856 |  |  |  | 581,856 | 528,960 |
| 6/28 | 687,648 |  |  | 6,400 | 128,000 |  |
| 7/3 | 264,480 |  |  |  | 51,200 |  |
| $7 / 5$ | 1,005,024 |  |  | 6,400 | 44,800 |  |
| 7/9 | 899,232 |  |  |  | 4.4,800 | ..... |
| $7 / 12$ | 1,005,024 |  |  |  | 528,960 |  |
| 7/16 | 370,272 | ............... |  | ............... | 528,960 |  |
| 7/19 | 264,480 |  |  | .............. | 370,272 | . |
| 7/23 | 740,544 | .............. |  |  | 6,400 |  |
| 7/26 | 476,064 | .............. |  |  | 423,168 |  |
| 7/30 | 42: 168 |  |  |  | 105,792 | 12,800 |
| $8 / 2$ | 423,168 | ............... |  |  | 370,272 | 3,200 |
| $8 / 6$ | 634,752 |  |  |  | 264,480 | 6,400 |
| S/9 | 1,16:3,712 | ............... |  | 6,400 | 793,440 |  |
| $8 / 13$ | 1,110,816 |  | 105,792 |  | 793,440 | ......... |
| 8/15 | 899,232 |  | .............. |  | 264,480 |  |
| 8/20 | 2,486,112 |  |  |  | 476,064 |  |
| 8/23 | 634,752 |  |  |  | 581,856 |  |
| 8/27 | 1,005,024 |  |  |  | 370,272 |  |
| 8/31 | 687,648 |  |  | ............ | 105,792 |  |


| 1913 | Brachionus egg, free female | Brachionus egr, free male | Brachionus male | Brachionus plicatilis | Brachionus ureeus | $\begin{gathered} \text { Brachionus } \\ \text { with } \\ \text { wadoparasites } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $9 / 2$ | 634,752 |  |  |  | 96,000 |  |
| $9 / 6$ | 846,336 |  |  |  | 105,792 |  |
| $9 / 9$ | 793,440 |  |  |  | 211,584 |  |
| 9/13 | 1,057,920 |  |  |  | 211,584 |  |
| $9 / 17$ | 370,272 | . |  |  | 12,800 |  |
| $9 / 20$ | 687,648 |  |  |  | 19,200 |  |
| $9 / 24$ | 476,064 |  |  |  | 121,600 |  |
| $9 / 27$ | 370,272 |  |  |  | 204,480 |  |
| 10/1 | 370,272 |  |  |  | 158,688 |  |
| 10/4 | 952,128 | .. |  | . | 105,792 |  |
| 10/8 | 793,440 |  |  |  | 158,688 | 6,400 |
| 10/11 | 952,128 |  |  |  | 105,792 |  |
| 10/15 | 634,752 |  |  |  | 211,584 |  |
| 10/18 | 952,128 |  |  |  | 44,800 |  |
| 10/22 | 52S,960 |  |  |  | 32,000 |  |
| 10/26 | 264,480 |  |  | 6,400 | 6,400 |  |
| 10/29 | 317,376 |  |  |  | 12,800 |  |
| 11/1 | 105,792 |  |  | 6,400 |  |  |
| 11/5 | 105,792 |  |  |  |  |  |
| 11/ S | 158,688 |  |  |  |  |  |
| 11/12 | 52,896 |  |  |  |  |  |
| 11/15 |  |  |  |  | 53,896 |  |
| 11/19 | 238,032 |  | . |  | 3,200 |  |
| 11/22 | 370,272 |  |  |  | 9,600 |  |
| 11/26 | 132,240 |  |  |  | 1,600 |  |
| 11/30 | 449,616 |  |  |  | 6,400 |  |
| 12/3 | 449,616 |  |  |  | 3,200 |  |
| 12/6 | 158,688 |  |  |  | 3,200 |  |
| 12/10 | 46,284 |  |  |  | 800 |  |
| 12/14 | 119,016 |  |  |  | 1,600 |  |
| 12/17 | 33,060 |  |  |  |  |  |
| 12/20 | 66,120 |  |  |  |  |  |
| 12/24 | 26,448 |  |  |  | 800 |  |
| 12/27 | 72,732 |  |  |  |  |  |
| 12/31 | 105,792 |  |  |  |  |  |
| 1913 | Diurella egg, free | $\underset{\substack{\text { Diurella } \\ \text { tenuior }}}{ }$ | Epiphanes | $\underset{\text { Frachiata }}{\text { Filinia }}$ brachiata | $\underset{\substack{\text { egg, iltachiad } \\ \text { female }}}{\text { Fill }}$ | Filinia egg, attached male |
| 1/5 | ... |  |  |  |  |  |
| $1 / 8$ | ... |  |  |  |  |  |
| 1/12 | - . . |  |  |  |  |  |
| 1/15 |  |  |  |  |  |  |
| 1/19 |  |  |  |  |  |  |
| 1 122 |  |  |  |  |  |  |
| 1/26 |  | . |  |  |  |  |
| 1/29 |  |  |  |  |  |  |
| $2 / 2$ | -.. |  |  |  | 400 | 2,400 |
| $2 / 5$ |  |  | . |  |  |  |
| 2/8 |  |  |  |  |  |  |
| 2/12 |  |  |  |  | 92,568 |  |
| 2/15 |  |  |  |  | 26,448 |  |
| 2/19 |  |  |  |  | 158,688 |  |
| 2/23 |  |  |  |  | 581,856 | 277,704 |
| 2/26 |  |  |  |  | 555,408 | 79,344 |
| $3 / 1$ |  |  |  |  | 105,792 | 132,240 |
| $3 / 5$ |  |  |  |  | 1,481,088 | 502,512 |
| 3/8 |  |  |  |  | 123,168 $1,190,160$ | 238,032 105,792 |



Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)
1913

$$
10 / 22
$$

$$
10 / 29
$$

$$
11 / 5
$$



[^1]Diurella
egg, free
Diurella
tenuior
\[

$$
\begin{aligned}
& 52,896 \\
& 52,896
\end{aligned}
$$
\]

$$
10 / 26
$$

$$
11 / 1
$$

$$
11 / 8
$$

$$
11 / 12
$$

$$
11 / 15
$$

$$
11 / 19
$$

$$
11 / 22
$$

$$
11 / 26
$$

$$
11 / 30
$$

$$
12 / 3
$$

$$
12 / 6
$$

$$
12 / 10
$$

$$
12 / 14
$$

$$
12 / 17
$$

$$
12 / 20
$$

$$
12 / 24
$$

$$
12 / 27
$$

$$
12 / 31
$$

1913
$1 / 5$
$1 / 8$
$1 / 12$
$1 / 15$
$1 / 19$
$1 / 22$
$1 / 26$
$1 / 29$
$2 / 2$
$2 / 5$
$2 / 8$
$2 / 12$
$2 / 15$
$2 / 19$
$2 / 23$
$2 / 26$
$3 / 1$
$3 / 5$
$3 / 8$
$3 / 12$
$3 / 15$
$3 / 19$
$3 / 23$
$3 / 26$
$3 / 29$
$4 / 2$
$4 / 5$
$4 / 9$
$4 / 13$
$4 / 16$
$4 / 19$
$4 / 23$

## Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Filinia | $\underset{\text { longiseta }}{\text { Filinia }}$ | Keratella cochlearis | Kieratella e.R., attached | Keratella egg. frec | Keratella male |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 420 | 608,304 | 581,8.56 | 211,584 | 42:3,168 | 1,930,704 |  |
| 430 | 809,2:32 | 204,480 |  | 476,064 | 1,53:3,984 |  |
| 53 | 819,885 | 370,272 | 1,600 | 502,512 | 1,24.3,056 |  |
| 57 | Sl9,858 | 1,930,704 | 105,792 | 1,005,024 | 2,036,496 |  |
| 511 | 502,512 | 925,128 | 52,896 | 819,888 | 793,440 |  |
| 514 | 105,792 | 1,639,776 |  | 370,272 | 476,064 |  |
| 517 | 211.58. | 1,057,920 | 3,200 | 3,200 | 317,376 |  |
| 521 | 581.856 | 158,685 |  | 158,688 | 476,06i4 |  |
| 524 | 370,272 | 6, 400 |  |  | 476,064 |  |
| 527 |  | 158,688 | 6,400 | 105.792 | 211,584 |  |
| 531 |  | 25,600 |  | 3,200 | 476,064 |  |
| $6 \cdot 3$ |  | 211,58.4 | 3,200 | 6:34,752 | 1,322,100 |  |
| $6 \quad 7$ |  | 51,200 | 6.400 | 105,792 | 370,272 |  |
| 611 |  | 6,400 | 3,200 | 105.792 | 3.200 |  |
| $6 \cdot 16$ | 105,792 | 38,400 | 19,200 | 158,688 | 264,480 |  |
| (0) 18 | 83,200 | 51,200 | 158,688 | 476,06t | 528,960 |  |
| $6 / 21$ | 158,688 | 211,584 | 6,400 | 211,584 | 1,586,880 |  |
| 6/25 | 3,200 | 423,168 | 211,584 | 1,533,984 | 1,533, 984 | 158,658 |
| $6 / 28$ | 103,792 | 1,110,816 | 317,376 | 1,957,152 | 1.481,088 |  |
| $7 / 3$ | 158,658 | 264,480 | 264,480 | 317.376 | 3,200 |  |
| 7/5 | 370,272 | 1,375,296 | 793,440 | 211.584 | 476,064 |  |
| $7 \cdot 9$ | 476,064 | 12,800 | 211,584 | 3,200 | 211,584 |  |
| 7,12 | 370,272 | 105,792 | 423,168 | 3,200 | 687,648 |  |
| $\bigcirc 16$ |  | 25,600 | 12,800 | 105.792 |  |  |
| 719 | 105,792 | 6,400 | 32,000 | 211.584 | 105,792 |  |
| 723 | 105,792 |  | 38,400 | 211,584 |  |  |
| 726 | 211,584 | . | 6,400 | 264,480 |  | 3,200 |
| 730 | 158.688 |  | 12,800 | 105,792 | 3,200 |  |
| S 2 |  |  |  | 158,688 | 105,792 |  |
| 8. 6 | 3.200 |  |  | 3,200 |  |  |
| 8/ 9 | 261,480 |  |  | 105.792 | 264,480 |  |
| 8,13 | 423,168 |  |  | 105,792 | 3,200 |  |
| 8/15 | 370,272 | . |  | 3,200 | 3,200 |  |
| $8 / 20$ | 476,064 |  |  |  | 3,200 |  |
| 8 2:3 | 158.688 |  |  | 317,376 |  |  |
| S 27 | 158,688 |  |  | 3,200 |  |  |
| 831 | 264,480 |  |  | 3,200 |  |  |
| $9 \cdot 2$ | 105,592 |  |  | 12,800 |  |  |
| $9 / 6$ | 3,200 |  |  | 105.792 | 3,200 |  |
| 99 | 3,200 |  |  | 3,200 |  |  |
| 91.3 | 3,200 |  |  | 423,168 |  |  |
| 917 |  |  | 6.400 | 3,200 |  |  |
| $9 \times 20$ |  |  |  | 12,800 |  |  |
| 924 | 52.896 |  |  | 52,896 |  |  |
| 927 | 52,896 |  |  | 370,272 |  |  |
| 10 1 | 52,896 |  | 6,400 | 634.752 |  |  |
| $10 \cdot 4$ | 105,792 |  |  | 793.440 |  |  |
| 10 ' 8 |  |  |  | 1,798,464 |  |  |
| 1011 |  |  |  | 1,216,608 |  |  |
| 10 1\% | 211,584 |  | 52,896 | 1,216,608 |  |  |
| 1018 | 52,89\% |  | 158,688 | 423,168 |  |  |
| $10 \cdot 2$ | 52,896 |  | 264,480 | 634,752 | 370,272 |  |
| 1026 |  |  | 528,960 | 423,168 | 158,688 |  |
| 1029 | 158,688 |  | 423.168 | 476,064 | 158,688 |  |
| 11 1 | 211,58 4 |  | 105,792 | 6,400 | 105,792 |  |
| 115 |  |  | 211,584 | 6,400 |  |  |
| 11 ' 8 |  |  | 89,600 | 25,600 |  |  |
| 1112 |  |  | 1:32,240 | 52,896 | 79,344 |  |
| 1115 | 105,792 |  | \$1,200 | 12,800 | 581,836 |  |
| 1119 | 132,240 |  | 52,896 | 2S,800 | 714,096 |  |

```
        Table 1.-Organisms Per Cubic Meter in Plankton of
            Stockton Channel in 1913-(Continued)
```

1913
$11 / 22$
$11 / 26$
$11 / 30$
$12 / 3$
$12 / 6$
$12 / 10$
$12 / 14$
$12 / 17$
$12 / 20$
$12 / 24$
$12 / 27$
$12 / 31$

| Filinia <br> egg, free <br> 185,136 |
| :---: |
| 105,792 |
| 52,896 |
| 19,836 |
| $\vdots$ |


| $\underset{\text { longiseta }}{\text { Filinia }}$ | Keratella cochlearis | Keratella egg, attached | Keratella egg, free |
| :---: | :---: | :---: | :---: |
| 1,600 | 48,000 | 22,400 | 123,168 |
|  | 51,200 | 28,800 | 79,344 |
|  | 52,896 | 19,200 | 105,792 |
|  | 57,600 | 52,896 | 52,896 |
|  | 3,200 | 52,896 | 52,896 |
|  | 1,600 | 6,400 |  |
|  | 800 | 72,732 | 46,284 |
|  | 1,600 | 4,000 | 1,600 |
| 1,600 |  | 46,284 | 19,836 |
|  | 1,600 | 13,224 | 19,836 |
|  |  | 26,448 | 39,672 |
|  |  | 66,120 | 79.344 |


| Keratella |
| :---: |
| male |

Polyarthratriela
egg, attacled
female
1913

Keratella
Lecan
luna

| Notholea | Notommata | Polyarthra |
| :---: | :---: | :---: |
| striata | aurita | trigla |

            26,448
            92,568
            79,3+4
                1,200
    39,672
$1 / 12$
$1 / 15$
1.19
$1 / 2,2$
$1 / 26$
$1 / 29$
2.2
3/5
2/8
$2 / 12$
$2 / 15$
2/19
2, 23
2/26
$3 / 1$
$3 / 5$
$3 / 8$
$3 / 12$
$3 / 15$
319
3,23
$3 / 26$
$3 / 29$
$1 / 2$
45
$4 / 0$
$4 / 9$
$4 / 13$
$4 / 16$
$4 / 16$
419
$4 / 23$
$4 / 26$
$4 / 30$
$5 / 3$
$5 / 3$
$5 / 7$
$5 / 11$
$5 / 14$
$5 / 17$
$5 \quad 21$
$5 / 21$
$5 / 24$
$5 / 24$
$5 / 27$
$5 / 31$
$6 / 3$

Thble 1.-Organisms Per Cubic Meter is Plankton of STOCKTON CHANNEL IN 1913-(Contimued)

| 1913 | Keratella quadrata | $\begin{gathered} \text { Lecane } \\ \text { lung } \end{gathered}$ | Notholea | $\underset{\text { Nuritata }}{\substack{\text { Notommata }}}$ | Polyarthra triçla | Polyarthra trigla eRR, attached female |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 67 | 846,336 |  |  |  | 6,400 |  |
| 611 | 525,960 |  |  |  | 19,200 |  |
| (6) 16 | 317,376 | 6,400 |  |  | 51,200 |  |
| 6 is | 740,544 |  |  |  | 317,376 |  |
| 621 | 1,798,464 |  |  |  | 476,064 |  |
| 625 | 6,030,14 | . |  |  | 1,005,024 |  |
| 628 | 7,035,168 |  |  |  | 687,648 |  |
| 73 | 1,798,464 |  |  |  | 19,200 |  |
| 7.5 | 1,163,712 |  |  |  | 158,688 |  |
| 79 | 264,480 |  |  |  | 899,232 | 3,200 |
| 712 | 1,322,400 |  |  |  | 1,692,672 | 3,200 |
| 710 | 952,128 |  |  |  | 687,648 |  |
| $7 / 19$ | 846.336 |  |  |  | 158,688 |  |
| 7/23 | 1,692,672 |  |  |  | 134,400 |  |
| $7 / 26$ | 2,062,944 |  |  |  | 634,752 |  |
| 730 | 2,010,048 |  |  |  | 952,128 |  |
| 8.2 | 1,110,816 |  |  |  | 793,440 | 3,200 |
| S. 6 | 687,648 |  |  |  | 687,648 |  |
| 89 | 740,544 |  |  |  | 2,327,424 |  |
| S 13: | 899.232 |  |  |  | 952,128 |  |
| 815 | 423,168 |  |  |  | 1,057,920 |  |
| S 20 | 1,163,712 |  |  |  | 1,904,256 |  |
| 8 23 | 1,904,256 |  | (6,400 |  | 1,428,192 |  |
| 827 | 528,960 |  |  |  | 952,128 | 12,800 |
| 831 | 581,856 |  |  |  | 581,856 |  |
| 9 2 | 158,688 |  |  |  | 952,128 | 3,200 |
| 96 | 317,376 |  |  |  | 264,480 |  |
| 9.9 | 899,232 |  |  |  | 846,336 | 105,792 |
| 913 | 1,957,152 |  |  |  | 1,057,920 | 105,792 |
| 917 | 1,005,024 |  |  |  | 264,480 |  |
| 9.20 | 89,600 |  |  |  | 899,232 |  |
| $9 / 24$ | 846,336 |  |  |  | 581,856 | 52,896 |
| 9/27 | 1,322,400 |  |  |  | 740,544 | 52,896 |
| 10, 1 | 1,533,984 |  |  |  | 476,064 |  |
| 10/4 | 2,062,944 |  |  |  | 581,856 |  |
| $10 / 8$ | 5,395,392 |  |  |  | 634,752 | 52,896 |
| 10/11 | 4,866,432 |  |  |  | 634,752 | 105,792 |
| 10/15 | 3,914,304 |  |  |  | 634,752 |  |
| 10 18 | 2,010,048 |  |  |  | 740,544 |  |
| 10/22 | 2,697,696 |  |  |  | 423,168 |  |
| 10/26 | 952, 128 |  |  |  | 44,800 |  |
| 10/39 | 1,269,504 |  |  |  | 32,000 |  |
| 11/1 | 581,856 |  |  |  | 158,688 |  |
| 11 5 | 64,000 |  |  |  |  |  |
| 11/8 | 19,200 |  |  |  | 52.896 |  |
| 11/12 |  |  |  |  |  |  |
| 11/15 | 12,800 |  |  |  | 6,6.400 |  |
| 11/199 | 25,600 |  |  |  | 476,064 | 264,480 19,200 |
| 11/22 | 12, 2500 |  |  |  | 158,688 | 19,200 108,800 |
| 11/26 | 25,600 38,400 |  |  |  | 185, 523,960 | 105,800 132,240 |
| $12 / 3$ | 79,3+4 |  |  |  | 264,480 | 28,800 |
| $12 \cdot 6$ | 35,200 |  |  |  | 449,616 | 52,596 |
| 1210 | - 33,060 |  |  |  | 46,234 | 1,600 |
| 1214 | 132,240 |  |  |  | 495,900 | 66.120 |
| 12/17 | 33,060 |  |  |  | 66.120 | 13,224 |
| 12/20 | 92,568 |  |  |  | 66,120 | 13,224 |
| 12/24 | 40,284 |  |  |  | 5.600 |  |
| 12:27 | 85,956 | 400 |  |  | 46,284 | 800 |
| 12.31 | 125,628 |  |  |  | 132,240 | 1,600 |

Table 1-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Polyarthra trigla ege, attached male | $\begin{gathered} \text { Synchaeta } \\ \text { sp. } \end{gathered}$ | Trichocerca capucina | Trichocerca iernis | Total Ploima | Total Ploima without eggs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 |  |  |  |  | 199,960 | 114,004 |
| 1/8 |  |  |  |  | 268,644 | 155,440 |
| 1/12 |  |  |  |  | 142,544 | 102,544 |
| 1/15 |  |  |  | . | 419,944 | 258,268 |
| 1/19 |  |  |  |  | 221,984 | 130,028 |
| 1/22 |  | 800 |  |  | 148,640 | S3,932 |
| 1/26 |  |  |  |  | 530,960 | 301,540 |
| 1/29 |  | S00 |  |  | 827,464 | 567,996 |
| 2/2 |  |  |  |  | 696.848 | 403,120 |
| 2/5 |  |  |  |  | 807,840 | 364,836 |
| $2 / \mathrm{S}$ |  |  |  |  | 1,667,024 | 900,032 |
| 2/12 |  |  |  |  | 3,783,664 | 1,985,200 |
| $2 / 15$ |  |  |  |  | 96,848 | 60,000 |
| 2/19 |  |  |  |  | 990,528 | 560,960 |
| 2/23 |  | 1.600 |  |  | $4,386,320$ | 2,692,848 |
| $2 / 26$ |  | 3,200 |  |  | 4,058,496 | 2,107,392 |
| 3/1 |  | 3.200 |  |  | 1,924,960 | 1,082,67 ${ }^{\text {a }}$ |
| $3 / 5$ |  | 6,100 |  |  | 11,674,672 | 5,722,272 |
| $3 \cdot 8$ |  |  |  |  | 11,317,818 | 8,856,584 |
| 3,12 |  | 6,400 |  |  | 13,336,096 | 9,577,280 |
| $3 / 15$ |  | 6,400 |  |  | 2,468,480 | 1,898, 112 |
| $3 / 19$ |  |  |  |  | 4,663,600 | 3,311,552 |
| $3 / 23$ |  |  |  |  | 3,587,984 | 2,618,720 |
| $3 / 26$ |  | 9,600 |  |  | 4,062,44S | 2,300,672 |
| $3 / 29$ |  | 16,000 |  |  | 5,717,472 | 2,525,552 |
| 4/2 |  | 6.400 |  |  | 7.860 .608 | $4,895,432$ |
| $4 / 5$ |  | 3,200 |  |  | 7,887,712 | 5,398,400 |
| $4 / 9$ |  | 52,896 |  |  | 7,612,976 | 4,726,944 |
| 413 |  |  |  |  | $6,1 \mathrm{~s}^{2}, 992$ | 3,075,776 |
| $4 / 16$ |  |  |  |  | 5,263, 056 | 2,801,792 |
| $4 / 19$ |  |  |  |  | 9,316,752 | 6,526,912 |
| $4 / 23$ |  |  |  |  | 5,025,776 | 3,211,312 |
| $4 / 26$ |  | 1,600 |  |  | 9,573, 1:36 | 6,017,904 |
| 4/30 |  | 3,200 |  |  | 8,009,552 | $4,508.062$ |
| $5 / 3$ |  | 6,100 |  |  | $6,757,440$ | $3,501,336$ |
| $5 / 7$ |  | 52,896 |  |  | 13,932,448 | S,775,088 |
| $5 / 11$ |  | 1,600 |  |  | 13,163,008 | 9,936,352 |
| $5 / 14$ |  |  |  |  | 8,664,960 | 6,701,408 |
| $5 / 17$ |  | 44,800 |  |  | 5,911,168 | 3,845,024 |
| $5 / 21$ |  | 317.376 |  |  | 5,143,968 | 3,504,192 |
| $5 \cdot 24$ |  | 70, 400 |  |  | 2,556,128 | 1,180,832 |
| $5 / 27$ |  | 44,800 |  | 12.800 | 2,786,620 | 1,786,492 |
| $5 \% 1$ |  | 12, 200 |  |  | $3,194.464$ | 2,186,240 |
| 6 :3 |  | 317,376 |  |  | 7,483,936 | 4,359,872 |
| $6 / 7$ |  | 32,000 | 6,400 |  | 4,018,208 | 2,854,496 |
| 6/11 |  |  |  |  | $2,556,672$ | 1,842,304 |
| 6/16 |  | 3,200 |  |  | 3,464,960 | 1,466,400 |
| 6/18 |  | 211,5S4 |  |  | 4,797,336 | 3,085,064 |
| 6/21 |  | 317,376 |  |  | 7,916,704 | 4,835,936 |
| 6/25 |  | 2,644,800 | 6,400 |  | 18,537,504 | 13,717,568 |
| 6/28 |  | 1,745,568 | 6,400 |  | 17,647,680 | 12,358,080 |
| 7/3 |  | 32, 3000 |  | 6,400 | 4,125,504 | 3,219,872 |
| 7/5 |  | 528,960 |  | 19,200 | 7,111,908 | 4,731,648 |
| $7 / 9$ |  | 12,800 |  | 211,584 | 5,127,720 | 2,843,592 |
| 7/12 |  | -3,200 |  | 317,376 | $8,57 \times, 0.76$ | 5,979,752 |
| $7 / 16$ |  | 6, 400 |  | 6,400 | $4,34 \times, 576$ | 3,026,176 |
| $7 / 19$ |  |  |  | 6,400 | $3,390,048$ | 2,219,936 |
| 7/23 |  | 6,400 |  |  | 3,42x.250 | 2,208,448 |
| $7 / 26$ |  |  |  | 12,800 | $5,972,352$ | 4,649,952 |
| $7 / 30$ |  |  |  | 19.200 | 4,255,7内1 | 3,552,136 |
| 8/2 |  |  |  | 19,200 | 3,639,032 | 2,683,704 |

Table 1.-Organisms Per Cubic Meter in Plankton of
Stockton Channel in 1913-(Continued)

| 1913 | 1'olyarthra trigla egg. attached male | $\begin{gathered} \text { Synchaeta } \\ \text { sp. } \end{gathered}$ | Trichocerca capucina | Trichocerca iernis | Total Ploima | Total Ploima without eggs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 i |  |  |  | 158,688 | 2,551,808 | 1,907,456 |
| - 9 |  | 12,800 |  | 105,792 | 6,029,196 | 3,966,252 |
| - 13 |  |  |  | 19,200 | 6,082,848 | 4,116,096 |
| S 1.5 |  |  |  | 105,792 | $5,332,704$ | 3,369,152 |
| S 20 |  |  |  |  | 9,205,408 | 5,287,904 |
| \& 23 |  | 6,400 |  | 3,200 | 6,716,096 | 4,864,736 |
| \& 27 |  |  |  |  | 4,491,296 | $2,8355,520$ |
| ¢ 31 |  | 6,400 |  | 12,800 | 2,686i,400 | 1,625,280 |
| () 2 |  |  |  | 6,400 | 2,630,112 | 1,714,880 |
| 96 |  | 6,400 |  |  | 2,551,808 | 1,170,112 |
| 98 |  | .. |  |  | 6,597,504 | $4,403,168$ |
| 9 1:3 |  |  |  | 6,400 | 7,419,74.4 | 5,353,600 |
| (3) 17 |  |  |  |  | 2,736,096 | 1,992,352 |
| (1) 20 |  |  |  |  | 1,756,976 | 1,050,128 |
| 921 |  |  | ..... | 19,200 | 2,812,200 | 2,065,256 |
| () 27 |  |  |  | 52,896 | 5,342,496 | 3,491, 1:36 |
| 10 1 |  | 52,896 |  | 6,400 | 4,699,648 | 3,218,560 |
| $10 / 4$ |  |  |  | 105,792 | 5,744,868 | 3,470,340 |
| 10, is |  |  | 6,400 | 6,400 | 10,444,416 | 7,105,568 |
| 10/11 |  |  |  | 12,800 | 8,548,256 | 6,115,040 |
| 10/15 |  | 19,200 |  | 52,896 | 7,588,032 | 5,347,200 |
| 10/18 |  | 158,688 |  |  | 4,956,032 | 3,474,914 |
| 10/22 |  | 105,792 |  |  | 5,980,266 | $3,963,818$ |
| 10/26 |  | 6, 400 |  |  | $2,436,224$ | 1,589,888 |
| 10/29 |  | 44,800 |  | 52,896 | 3,209,776 | 2,056,160 |
| 11/1 |  | - |  | ............... | 1,460, 192 | 1,024,224 |
| 11/5 |  |  |  |  | 400,576 | 288,384 |
| 11/8 |  | 6,400 |  |  | 352,384 | 165,096 |
| 11/12 |  | 105,792 |  | 3,200 | 451,968 | 247,632 |
| $11 / 15$ |  | 105,792 |  |  | 1,018,136 | 272,888 |
| $11 / 19$ |  | 52,896 |  |  | 2,242,896 | 802,848 |
| 11/22 |  | 132,240 |  |  | 1,972,960 | 714,752 |
| 11/26 | 28,800 | 12,800 | ............... |  | 955,600 | 496,672 |
| 11/30 | 6,400 | 79,344 |  |  | 1,618,336 | 78:3,296 |
| 12/3 |  | 79,344 |  | ............... | 1,121,872 | 475,168 |
| 12/6 |  | 52,896 |  | ............... | 853,088 | 5:35,712 |
| 12/10 |  | 33,060 |  |  | 171,088 | 114,804 |
| 12/14 | 400 | 92,568 |  |  | 1,048,696 | 723,508 |
| 12/17 |  | 39,672 | ................ |  | 192,736 | 140,852 |
| 12/20 |  | 79,344 | ............... |  | 384,696 | 239,232 |
| 12/24 |  | 39,672 | ................ | ............... | 155, 86.4 | 94,756 |
| 12/27 |  | 33,060 |  |  | 306,952 | 167,300 |
| 12/31 |  | 79,344 |  |  | 592,868 | 340,012 |
| 1913 | Total Rotifera | Bosmina longirostris | Bosmina sp. | Sida | Total Cladocera | Canthocamptus sp. |
| 1/5 | 315,561 |  |  |  | . |  |
| 1/8 | 500,064 | $\cdots$. . . | . |  | 100 |  |
| 1/12 | 321,068 | .... . |  | 400 | 400 |  |
| 1/15 | 871,560 | - . . |  | . |  |  |
| 1/19 | 949,892 | .. . |  |  |  |  |
| 1/22 | 341,776 | - . | . . | . | - |  |
| 1/26 | 1,906,456 | .. . |  |  |  |  |
| 1/29 | 2,156,476 | . . |  |  | - 210 |  |
| $2 / 2$ | 1,990,776 |  |  |  | 800 |  |
| 2/5 | 2,165,564 |  |  | . . |  |  |
| $2 / 8$ | 2,951,752 | . . |  | . |  | . |
| 2/12 | 5,648,200 |  |  |  |  |  |
| 2/15 | 1,525,692 |  |  | . . . |  | . |
| 2/19 | 1,360,476 | . . . | . | . . | - . | - . . |
| $2 / 23$ | $5,062,314$ |  |  | . . . . ${ }^{\text {c }}$ | .. |  |

Table 1.-Organisais Per Cubic Meter in Planeton of Stockton Channel in 1913-(Continued)

| 1913 | Total <br> Rotifera | Bosmina longirostris | $\begin{gathered} \text { Bosmina } \\ \text { sp. } \end{gathered}$ | $\begin{gathered} \text { Sida } \\ \text { sp. } \end{gathered}$ | Total Cladocera | Canthocamptus sp . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2/26 | 5,123,216 | .......... |  |  |  |  |
| 3/ 1 | 3,680,128 |  |  |  |  |  |
| $3 / 5$ | 13,367,344 |  |  |  |  |  |
| 3/8 | 12,086,440 |  |  |  |  |  |
| $3 / 12$ | 16,017,648 |  |  |  |  |  |
| 3/15 | 3,744,384 |  |  |  | 3,200 |  |
| 3/19 | 5,354,096 |  |  |  |  |  |
| $3 / 23$ | 4,386,224 | .............. |  |  | .............. | 3,200 |
| 3/26 | 4,406,272 | .............. | ............... | $\ldots$ | .............. |  |
| $3 / 29$ | 6,305,728 | ............... |  |  |  |  |
| 4/2 | 7,943,152 |  |  |  |  |  |
| 4/5 | 8,178,640 |  |  | ............... | .............. | 3,200 |
| 4/9 | $8,062,592$ |  |  |  |  |  |
| 4/13 | $6,318,432$ |  |  |  |  |  |
| 4/16 | 5,449,792 |  |  |  |  |  |
| $4 / 19$ | 9,422,544 |  |  |  |  |  |
| 4/23 | 5,106,720 |  |  |  |  |  |
| 4/26 | 9,577,936 |  |  |  |  |  |
| 4/30 | 8,168,240 |  |  |  |  |  |
| $5 / 3$ | $6,995,472$ | $\ldots$ |  |  |  |  |
| $5 / 7$ | 14,030,840 |  |  |  |  |  |
| 5/11 | 13,164,608 |  |  |  |  |  |
| $5 / 14$ | 8,677,760 |  |  |  |  |  |
| $5 / 17$ | 6,493,024 |  | 3,200 |  | 3,200 |  |
| 5,21 | 5,411,648 |  |  |  | 6.400 |  |
| $5 / 24$ | 2,846,208 | ......... ..... | 6,400 |  | 6,400 |  |
| 5/27 | 2,793,020 | ............... | ............. | ......... .... | .... ........... |  |
| $5 / 31$ | 3,207,264 | ............ |  |  |  |  |
| $6 / 3$ | 7,493,536 | ..... .......... |  | 6,400 | 6,400 6,400 |  |
| $6 / 7$ | 4,024,608 |  |  | 6,400 | 6,400 |  |
| 6/11 | 2,559,872 |  |  | 6,400 | 6,400 |  |
| 6/16 | 3,477,760 | $\ldots$ | .............. | ....... ....... | ............... |  |
| $6 / 18$ | 4,819,736 |  |  |  |  |  |
| $6 / 21$ | 7,942,304 | ............. |  | 6,400 | 6,400 |  |
| $6 / 25$ | 18,702,592 | ............... |  | 6,400 | 6,400 |  |
| $6 / 28$ | 18,070,648 | .............. |  | ... .... | ............... |  |
| 7.3 | 4,290,592 |  |  |  |  |  |
| 7/5 | 7,289,856 | ......... ..... |  | 6,400 | 6,400 |  |
| 79 | 5, 137,3:30 |  |  |  |  |  |
| 7/12 | 8,792,840 | ............. . |  | 6,400 | 6,400 |  |
| $7 / 16$ | 4,386,976 |  |  |  |  |  |
| 7/19 | 3,548,736 | ............... |  | 12,800 | 12,500 |  |
| 7/23 | 3,745,632 |  |  |  |  |  |
| $7 / 26$ | 6,010,752 |  |  | 6,400 | 6,400 | ............... |
| $7 / 30$ | 4,271,784 | 6,400 | ............... |  | 6,400 12,800 | $\ldots$ |
| $8 / 2$ | 3,680,632 | 6,400 |  | 6,400 | 12,800 |  |
| S/6 | 2,801,792 |  |  |  |  |  |
| S/ 9 | $6,405,868$ | ............... |  | 6,400 | 6,400 |  |
| 8/13 | 6,188,640 | .............. | ............... | .............. | .............. | . |
| $8 / 15$ | 5,867,680 |  |  |  |  |  |
| 8/20 | 9,467,192 | 3,200 | ............... |  | 3,200 10,000 | ...... |
| 8/23 | 6,757,696 | ............... | .............. | 19,200 | 19,200 |  |
| 8/27 | 4,787,776 |  | ............... | 6,400 | 6,400 |  |
| S/31 | 2,792,192 | .............. |  | 6,400 | 6,400 |  |
| $9 / 2$ | 2,652,512 |  | .............. | 25,600 | 25,600 |  |
| $9 / 6$ | 2,644,000 |  | .............. |  |  |  |
| $9 / 9$ | 6,600,704 | 6,400 |  | 6,400 | 12,800 |  |
| 9/13 | 7,638,336 |  |  |  |  |  |
| $9 / 17$ | 2,736,096 | 6,400 | .............. | 12,800 | 19,200 |  |
| 9/20 | 2,017,760 |  | ........... |  |  |  |
| 9/24 | 2,831,400 | 6,400 | ............. | 12,500 | 19,200 |  |

## Table 1.-Organisms Per Cubic Meter in Planktoy of Stockton Chañel IN 1913-(Continued)

| 1913 | Total Rotifera | l3osmina longirostris | $\begin{gathered} \text { Bosmina } \\ \text { sp. } \end{gathered}$ | $\begin{gathered} \text { Sids } \\ \text { sp. } \end{gathered}$ | Total Cladocera | Canthocamptus 8 p . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $9 / 27$ | $5,342,496$ |  |  | 12,800 | 12,800 |  |
| 10/ 1 | 4,752,5-44 | 19,200 |  | 105,792 | 124,992 |  |
| 10/4 | 5,776,868 | 6,400 |  | 6,400 | 12,800 |  |
| 10/8 | 10,681,600 | 12,800 | . . |  | 12,800 |  |
| 10/11 | 8,660,448 |  |  |  |  |  |
| 10/15 | 8,129,792 |  |  |  |  |  |
| 10/18 | 5,013,632 |  |  | 6,400 | 6,400 |  |
| 10/22 | 6,382,538 |  |  | 6,400 | 6,400 | . |
| 10/26 | 2,527,520 | . | . |  |  |  |
| 10/29 | 3,466,160 |  |  |  |  |  |
| 11/1 | 1,854,368 |  |  |  | . . . | . |
| 11/5 | 717,952 |  |  |  |  |  |
| 11/8 | 563,968 |  |  |  |  |  |
| 11/12 | 641,30-4 |  |  |  |  |  |
| 11/15 | 1,130,328 |  |  |  |  |  |
| 11/19 | 2,732,368 | 3,200 |  |  | 3,200 |  |
| 11/22 | 2,180,896 |  |  |  |  |  |
| 11/26 | 1,059,696 | . ......... | ............... | 3,200 | 3,200 |  |
| $11 \cdot 30$ | 1,715,280 |  |  |  |  |  |
| 123 | 1,254,112 |  |  |  |  |  |
| 12 d | 1,079,824 |  |  |  |  |  |
| 1210 | 210,760 |  |  |  |  |  |
| 1214 | 1,052,556 |  |  |  |  |  |
| 1217 | 227,396 |  |  |  |  |  |
| 1230 | 450,816 | S00 |  |  | SOO | - |
| $12: 21$ | 160,664 | .. . |  |  | . |  |
| 1227 | 346,624 | . |  |  | . . . |  |
| 1231 | 685,836 |  | . |  | - . |  |
| 1913 | Cyclops | $\begin{gathered} \text { Diaptomus } \\ \text { sp. } \end{gathered}$ | Nauplius sp. | Total Copepoda | Total <br> Entomostraca | Glochidia |
| 1 5 | 6,612 |  | 800 | 7,412 | 7,412 | .. . .. . |
| 1'N |  |  | 1,600 | 1,600) | 1,600 |  |
| $1{ }^{1}$ | 800 | . . | 2,400 | 3,200 | 3,600 | ., . |
| 115 | 2,400 |  | 1,200 | 3,600 | 3,600 | .. .. . |
| 1/19 | 2,000 |  |  | 2,000 | 2,000 | . . |
| $1{ }^{\prime} 2$ |  |  |  |  |  |  |
| 1,26 | 1,600 |  |  | 1.600 | 1,600 | . |
| 1, 29 | 1,600 |  | 800 | 2,400 | 2,400 |  |
| 2,2 | 2,400 |  | 2,400 | 4,800 | 5,600 |  |
| 2,5 | 1,600 |  | 800 | 2.400 | 2,400 |  |
| 2, 8 | 1,600 |  | 2,400 | 4,000 | 4,000 |  |
| $2 / 12$ | 1,600 |  | 1,600 | 3,200 | 3,200 |  |
| $2 / 15$ |  |  |  |  |  | . - |
| 2,19 |  |  |  |  |  |  |
| $2 / 3$ | 1,600 |  |  | 1,600 | 1,600 |  |
| $2 / 26$ |  |  |  |  |  | . |
| $3 / 1$ | 3,200 |  |  | 3,200 | 3,200 |  |
| $3 / 5$ | 3,200 |  |  | 3,200 | 3,200 |  |
| $3 / 8$ |  |  |  |  |  |  |
| $3 / 12$ |  |  |  |  |  |  |
| 3/15 | 6,400 | . | 6,400 | 12,800 | 16,000 |  |
| $3 / 19$ | 3,200 |  | 12,800 | 16,000 | 16,000 | . . . |
| $3 / 23$ | 9,600 |  | 12,800 | 25.600 | -25,600 |  |
| $3 / 26$ | 19,200 |  | 16,000 | 835.200 | 35.200 | . . |
| $3 / 29$ | 9,600 |  |  | 9,600 | 9,600 |  |
| $4 / 2$ | 3,200 | 3,200 | 9,600 | 16.000 | 16,000 |  |
| 4/5 | 12,800 | 9,600 | 32,000 | 57,600 | 57,600 |  |
| 4/9 | 12,800 | 1,600 | 105,792 | 120,192 | 120,192 | . |
| 4/1:3 | 9,600 | 12,800 | 105,792 | 12S,192 | 128,192 |  |

Table 1-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | $\begin{aligned} & \text { Cyclops } \\ & \text { sp. } \end{aligned}$ | $\begin{aligned} & \text { Diaptomus } \\ & \text { sp. } \end{aligned}$ | Nauplius | $\begin{gathered} \text { Total } \\ \text { Copepoda } \end{gathered}$ | $\underset{\text { Entomostraca }}{\text { Total }}$ | Glochidia |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4/16 | 6,400 | 12,800 | 25,600 | 44,800 | 44,800 |  |
| 4/19 | 38,400 | 52,896 | 79,344 | 170.640 | 170,640 |  |
| 4/23 | 22,400 | 6,400 | 132,240 | 161,040 | 161,040 |  |
| $4 / 26$ | 41,600 | 22,400 | 185,136 | '249,136 | 249,136 |  |
| 4/30 | 38,400 | 44,800 | 79,344 | 162,544 | 162,544 |  |
| 5/3 | S0,000 | 6,400 | 132,240 | 218,640 | 218,640 |  |
| $5 / 7$ | 73,600 |  | 185,136 | 258,736 | 258,736 |  |
| $5 / 11$ | 51,200 |  | 423,168 | 474,368 | 474,368 |  |
| 5/14 | 57,600 |  | 1,005,024 | 1,062,624 | 1,062,624 |  |
| $5 / 17$ | 211,584 |  | 264,480 | 475,964 | 479,164 |  |
| 5/21 | 57,600 |  | 634,752 | 692,352 | 692,352 |  |
| 5/24 | 249,600 |  | 1,163,712 | 1,413,312 | 1,419,712 |  |
| $5 / 27$ | 192,000 |  | 952,128 | 1,144,128 | 1,144,128 |  |
| 5/31 | 460,800 |  | 899,232 | 1,360,032 | 1,360.032 |  |
| $6 / 3$ | 317,376 |  | 899,232 | 1,216,608 | 1,223,008 |  |
| $6 / 7$ | 147,200 |  | 872,784 | 1,019,984 | 1,026,384 |  |
| 6/11 | 264,480 |  | 1,375,296 | 1,639,776 | 1,646,176 |  |
| 6/16 | 115,200 |  | 211,584 | 326,784 | 326,784 |  |
| 6/18 | 179,200 |  | 317,376 | 496,576 | 496,576 |  |
| 6/21 | 76.800 |  | 846,336 | 923,136 | 929,536 |  |
| $6 / 25$ | 317,376 |  | 528,960 | 846,436 | 852,836 |  |
| $6 / 28$ | 264,480 |  | 476,064 | 740,544 | 740,544 |  |
| $7 / 3$ | 179,200 |  | 423,168 | 602,368 | 602,368 |  |
| $7 / 5$ | 268,800 |  | 1,057,920 | 1,326,720 | 1,333,120 |  |
| 79 | 370,272 |  | 1,163,712 | 1,533,954 | 1,533,984 |  |
| 7/12 | 740,544 |  | 846,336 | 1,586,880 | 1,593,280 |  |
| 7/16 | 454,400 |  | 793,440 | 1,247,840 | 1,247,840 |  |
| $7 / 19$ | 687,648 |  | 740,544 | 1,428,192 | 1,440,992 | 6,400 |
| $7 / 23$ | 264,480 |  | 1,110,816 | 1,375,296 | 1,375,296 |  |
| 7/26 | 264,480 |  | 687,648 | 952,128 | 958,528 |  |
| 7/30 | 317,376 |  | 740,544 | 1,057,920 | 1,064,320 | 3,200 |
| $8 / 2$ | 581,856 |  | 1,322,400 | 1,904,256 | 1,917,056 |  |
| $8 / 6$ | 264,480 |  | 1,269,504 | 1,533,984 | 1,533,984 |  |
| $8 / 9$ | 317,376 | 25,600 | 1,005,024 | 1,348,000 | 1,354,400 |  |
| 8/13 | 1,005,024 |  | 1,692,672 | 2,697,696 | 2,697,696 |  |
| $8 / 15$ | 476,064 |  | 1,110,816 | 1,586,880 | 1,586,880 |  |
| 8/20 | 740,544 | . | 846,336 | 1,586,880 | 1,590,080 | 3,200 |
| 8/23 | 476,064 |  | S46,336 | 1,322,400 | 1,341,600 |  |
| 8/27 | 634,752 |  | 1,216,608 | 1,851,360 | 1,857,760 |  |
| $8 / 31$ | 317,376 | .. | 793,440 | 1,110.816 | 1,117,216 |  |
| $9 / 2$ | 793,440 |  | 1,586,880 | 2,380,320 | 2,405,920 |  |
| $9 / 6$ | 264,480 |  | 1,269,504 | 1,533,984 | 1,533,984 |  |
| $9 / 9$ | 581,856 | .. | 1,322,400 | 1,904,256 | 1,917,056 |  |
| $9 / 13$ | 476,064 |  | 1,005,024 | 1,481,088 | 1,481,088 |  |
| $9 / 17$ | 370,272 | $\ldots$. . . | 1,110,816 | 1,481,088 | 1,500,288 |  |
| $9 / 20$ | 370,272 |  | 370,272 | 740,544 | 740,544 |  |
| $9 / 24$ | 224,000 |  | 952,128 | 1,176,128 | 1,195,328 |  |
| $9 / 27$ | 317,376 |  | 687,648 | 1,005,024 | 1,017,824 |  |
| 10/1 | 211,584 |  | 26.4,480 | 476,064 | 601,056 |  |
| 10/4 | 211,584 |  | 211,584 | 423,168 | 435.968 |  |
| 10/8 | 134,400 |  | 528,960 | 663,360 | 676,160 |  |
| 10/11 | 158,688 | - . | 105,792 | 264,480 | 264,480 |  |
| 10/15 | 121,600 | ... | 264,480 | 386,080 | 356,080 |  |
| 10/18 | 64,000 |  | 158,688 | 222,688 | 229,088 |  |
| 10/22 | 38,400 |  | 105,792 | 144,192 | 150,592 |  |
| 10/26 | 158,688 |  | 105,792 | 264,480 | 264,480 |  |
| 10/29 | 76,800 |  | 158,688 | 235,488 | 235,488 |  |
| 11/1 | 29,600 |  | 211,584 | 211,584 | 211,584 |  |
| 11/5 | 400 |  | 6,400 | 6.400 | 6,400 |  |
| 11/8 |  |  | 12,800 | 12,800 | 12,800 |  |
| 11/12 | 3,200 |  | 19,200 | 22,400 | 22,400 |  |

> Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Cyclops sp. | Diaptomus sp. | Nauplius sp. | Total Copepoda | Total Entomostraca | Glochidia |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11/15 | 12,800 |  | 211,584 | 224,384 | 224,384 |  |
| 11/19 | 28,800 |  | 79,344 | 108,144 | 111,344 |  |
| 11/22 | 158,688 |  | 12,800 | 171,488 | 171,485 |  |
| 11/20 | 57,600 |  | 52,896 | 110,496 | 113,696 |  |
| 11/30 | 22,400 |  | 52,896 | 75,296 | 75,296 |  |
| 13/3 | 79,344 |  | 132,210 | 211,584 | 211,584 |  |
| 12/6 | 22,400 |  | 54,400 | 76,800 | 76,800 |  |
| 12/10 | 52,896 |  | 8,800 | 61,696 | 61,696 |  |
| 12/14 | 26, 248 |  | 39,672 | 66,120 | 66,120 |  |
| 12/17 | 3,200 |  | 2,400 | 5,600 | 5,600 |  |
| 12/20 | 46,284 |  | 400 | 46,684 | 47,484 |  |
| 12/24 | 4,000 |  | 3,200 | 7,200 | 7,200 |  |
| 12/27 | 1,600 |  | 19,836 | 21,436 | 21,436 |  |
| 12/31 | 4,800 |  | 12,000 | 16,800 | 16,800 |  |
| 1913 | Macrobiotus sp. | Nematode larva | Nematode sp. | Total <br> Miscellaneous | Total Organisms |  |
| 1/5 |  |  |  |  | 1,541,184 |  |
| 1/8 |  |  | 400 | 400 | 960,080 |  |
| 1/12 |  |  |  |  | 1,246,724 |  |
| 1/15 |  | 400 |  | 400 | 5,194,784 | - .. |
| 1/19 |  |  |  |  | 8,368,732 |  |
| 1/22 | ............... |  |  |  | 3,617,256 | .. |
| 1/26 |  |  |  |  | 3,566,856 |  |
| 1/29 |  |  |  |  | 4,629,740 |  |
| $2 / 2$ |  |  |  |  | 3,563,584 |  |
| $2 / 5$ | *-......... 800 |  |  |  | 4,432,332 |  |
| 2/8 8 | 800 |  |  | 800 | 5,301,480 |  |
| 2/12 |  |  | 1,600 | 1,600 | 7,887,808 |  |
| $2 / 15$ |  |  |  |  | 5,852,668 | . |
| 2/19 |  |  |  |  | 7,185,068 | . ..... |
| $2 / 23$ |  |  |  |  | 8,005,224 |  |
| $2 / 26$ |  |  |  |  | 11,876,016 |  |
| $3 / 1$ |  |  |  |  | 11,583,608 |  |
| 3/5 |  |  |  |  | 20,691,744 |  |
| 3/8 |  |  |  |  | 15,302,552 |  |
| $3 / 12$ |  |  |  |  | 20,878,430 |  |
| 3/15 |  |  |  | ............... | 7,500,464 | . |
| 3/19 |  |  |  |  | 10,594,784 |  |
| 3/23 |  |  |  |  | 9,878,580 | - . . |
| 3/26 |  |  |  |  | 7,907,664 |  |
| 3/29 |  |  |  |  | 9,781,328 | . |
| $4 / 2$ |  |  | ............... | ........ | 11,109,376 |  |
| 4/5 |  |  |  | ............... | 12,327,488 |  |
| 1/ 9 |  |  | ............ | .............. | 16,275,928 |  |
| 4/13 |  |  |  |  | 11,340,376 |  |
| $4 / 16$ |  |  |  |  | 18,041,448 |  |
| 4/19 |  |  |  |  | 21,910,608 |  |
| 4/23 |  |  | 3,200 | 3,200 | 26,652,800 |  |
| $4 / 26$ |  |  |  |  | 30,783,344 |  |
| $4 / 30$ |  |  |  |  | 28,879,184 |  |
| $5 / 3$ |  |  | 3,200 | 3,200 | 30,505,40 | - |
| $5 / 7$ | . |  |  |  | $36,448,208$ |  |
| $5 / 11$ |  |  |  |  | 49,903,136 |  |
| $5 / 14$ | ............... | $\cdots$ |  |  | 74,895,584 |  |
| $5 / 17$ |  |  | 6,400 | 6,400 | 61,007,212 |  |
| $5 / 21$ | ............... |  |  |  | 50,438,752 |  |
| $5 / 21$ |  |  |  |  | 52,137,008 |  |
| $5 / 27$ |  |  |  |  | 83,152,764 |  |
| $5 / 31$ |  |  |  |  | 90,298,432 |  |

Table 1.-Organisms Per Cubic Meter in Plankton of Stockton Channel in 1913-(Continued)

| 1913 | Macrobiotus sp. | Nematode larva | Nematode sp. | Total <br> Miscellaneous | Total Organisms |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $6 / 3$ |  |  |  |  | 102,283,072 |
| $6 / 7$ |  |  |  | .................... | 89,267,642 |
| $6 / 11$ |  |  | .............. | $\ldots$ | 84,639,968 |
| $6 / 16$ |  |  |  |  | $66,3,51,558$ |
| 6/18 |  |  |  |  | 79,474,408 |
| 6/21 |  |  |  |  | 71,200,832 |
| 6/25 | 3,200 |  |  | 3,200 | 85,669,652 |
| 6/28 |  |  |  |  | 105,512,440 |
| 7/3 |  |  |  |  | $66,694,496$ |
| 7/5 |  |  |  |  | 36,946,240 |
| $7 / 9$ |  |  |  |  | $32,992,824$ |
| $7 / 12$ |  |  |  |  | 48,253,984 |
| 7/16 |  |  |  |  | 78,756,792 |
| 7/19 |  |  |  | 6,400 | 50,284,514 |
| 7/23 |  |  |  |  | 29,064,214 |
| 7/26 |  |  |  |  | 53,158,602 |
| 7/30 |  |  |  | 3,200 | 35,088,136 |
| 8/2 |  |  |  |  | 39,749,616 |
| S/ 6 |  |  |  |  | 31,442,432 |
| 8/ 9 |  |  |  |  | 37,449,228 |
| S/13 |  |  |  |  | 71,372,480 |
| 8/15 |  |  |  |  | 43,499,944 |
| S/20 |  |  |  | 3,200 | 50,960,344 |
| 8/23 |  |  |  |  | $49,818,048$ |
| 8/27 |  |  |  |  | 54,312,736 |
| 8/31 |  |  |  |  | $65,254,556$ |
| $9 / 2$ |  |  |  |  | 65,343,280 |
| $9 / 6$ |  |  |  |  | 77,865,920 |
| $9 / 9$ |  |  |  |  | 74,010,912 |
| 9/13 |  |  |  |  | 72,756,816 |
| $9 / 17$ |  |  |  |  | 62, 233,944 |
| 9/20 |  |  |  |  | 53,627,768 |
| $9 / 24$ |  |  |  |  | 64,570,056 |
| 9/27 |  |  |  |  | 62,673,664 |
| 10/1 |  |  |  |  | 67,484,896 |
| 10/4 |  |  |  |  | 44,854,524 |
| 10/8 |  |  |  |  | 58,332,396 |
| 10/11 |  |  |  |  | 58,491,488 |
| 10/15 |  |  |  |  | 56,239,096 |
| 10/18 |  |  | .............. |  | 52,299,264 |
| 10/22 |  |  |  | ......... ..... | 59,089,962 |
| 10/26 |  |  |  |  | $55,197,450$ |
| 10/29 |  |  |  |  | 59,191,148 |
| 11/1 |  |  | 6,400 | 6,400 | 35,026,646 |
| 11/5 |  |  |  | .......... ..... | 31,695,424 |
| 11/8 |  |  |  |  | 22,527,832 |
| 11/12 |  |  |  |  | 47,239,288 |
| 11/15 |  |  |  |  | 26,993,280 |
| 11/19 |  |  |  |  | 23,289,272 |
| 11/22 |  |  |  |  | 23,203,120 |
| 11/26 |  |  |  |  | 15,874,240 |
| 11/30 |  |  |  |  | 18,297,984 |
| 12/3 |  |  |  |  | 18,520,416 |
| 12/6 |  |  |  |  | 13,329,565 |
| 12/10 |  |  |  |  | $5,559,302$ |
| 12/14 | . |  |  |  | $7,4+2,442$ |
| 12/17 |  |  |  |  | 6,341,848 |
| 12/20 |  |  |  |  | 6,567,4,56 |
| 12/24 |  |  |  |  | 3,734,436 |
| 12/27 |  |  |  |  | $7,168,5{ }^{\text {- }}$ |
| 12/31 |  |  |  |  | 6,219,632 |

Table 2.-Organisms Per Cubic Meteie in Plankton of San Joaquin River in 1913

| 1913 | Spirillum undula | Total Bacteriaceae | Anabaena sp. | $\underset{\text { Aphanocapsa }}{\text { sp. }}$ | Glococapsa conglomerata | Glococapsa 8p. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | . . . | .... . | . . |  |  |  |
| 112 | . . | 400 |  |  |  |  |
| 119 |  |  |  | . | . . . |  |
| 125 | . . | .. . . . . | 400 |  |  |  |
| 22 | . . . | . . . . | 1,600 | . | . . . |  |
| 2'8 | . . | . .... . . |  | . | . . . | . |
| 2.15 | . . .. |  |  | . . | . . . |  |
| 2, 23 | - . . | 79,344 | . | . . |  |  |
| 3/1 |  | .. . |  |  | . |  |
| $3 / 8$ | ... - | . . | . | . | . . | 105,792 |
| $3 / 15$ | .. .. . |  |  |  | . | 1,600 |
| 2/2:3 |  | 52,896 |  |  | . . . . | 3,200 |
| $3 / 29$ | . . . |  | 264,480 | . . | . . | 3,200 |
| 4/5 | . . . | 317,376 |  | - . . | . . . |  |
| 4/13 | . . | . . | . | . . | . . . . | 6.400 |
| 4/19 | - | - . | . . |  | . |  |
| $4 / 26$ | . . . |  | . | . . . | - . | 3,200 |
| $5 / 3$ |  |  |  | . . | - . . . |  |
| 5) 10 |  |  |  | - |  |  |
| $5^{17}$ | 3,200 | 3,200 |  | . . | . |  |
| $5 / 24$ | . . . | . |  | . | - |  |
| $5 / 31$ |  |  | 42:3,168 |  | . .. . . |  |
| $6^{\prime} 7$ | 105,792 | 105,792 |  | . . | . .- | . . |
| $6^{\prime} 16$ | .. . . | .... ... | 12,800 |  | - .. . | .. . . |
| 6.21 | ... .. . . | .. . . | 6,400 | 79,344 | .. . . . . |  |
| $6 / 28$ | . . . . | .. .. . . | 502,512 |  | . . ..... |  |
| $7 / 5$ | . . ... | .... ... .... | 3,200 |  | ... . |  |
| 7/12 | .. . ... | - .. . .. | 1,904,256 | 185,136 |  | 105,792 |
| 7 -19 | . . . . .... |  | 1,692,672 |  |  | 370,272 |
| $7 / 26$ | .. . . . | .... .. . . | 1,745,568 | 528,960 | 211,584 | 581,856 |
| $8 / 2$ | . ... . | .... . | 1,533,984 | 634,752 | 3,200 | 740,544 |
| $8 / 9$ | . . .. | ..... . . ..... | 2,221,632 | 1,269,504 | 3,200 | 476,064 |
| 8/15 |  |  | 2,115,840 | 317,376 |  | 581,856 |
| 8/23 | 105,792 | 105,792 | 1,586,880 | 634,752 | 12,800 | 793,440 |
| S/31 | .. . . . | . . . | 1,163,712 | 317,376 |  | 423,168 |
| $9 / 6$ | . | . . . | 740,544 | 12,800 |  | 317,376 |
| $9 / 13$ | .. . | . . . . | 423.168 | 211,584 | ................ | 317,376 |
| $9 / 20$ | - . . . | - . .. | . . . | . . . | .. . ....... . | 423,168 |
| $9 / 27$ | . . |  | . . |  | . . . | 740,544 |
| 10/4 |  |  |  | 25,600 | . . . | 528,960 |
| 10/11 | 105,792 | 105,792 |  | 211,584 |  | 211,584 |
| 10/18 | 105,792 | 105,792 | 105.792 | . . . | .. . . | 211,584 |
| 10/26 | 105,792 | 105,792 | 12,800 | - . |  | 12,800 |
| 11/1 | . . | . . . | . . | . . | ............... | 105,792 |
| 11/8 | .. ........... |  | . . |  |  | 6,400 |
| $11 / 15$ | 52,896 | 52,896 | . . | . ..... | ............... | 158,688 |
| $11 / 22$ | , |  |  |  |  | 79,344 |
| 11/30 | . . | . . | - . | 52,896 | . . . . |  |
| 12/6 | . . | . |  |  | - |  |
| 12/14 | . | . . | 3,200 |  | . . |  |
| 12/20 | . . |  | 52,896 | - | - . |  |
| 12/27 | . . | - . . . | . . | - . | . . - | 52,896 |
| 1913 | Gomphosphaera aponina | Inactis tinetoria Agardh | Merismopedium glaucum | Microcystis sp. | Nostoc sp. | Oscillatoria formosa |
| 1/5 | . . . . | . . |  | 400 | . . . . |  |
| 1/12 |  | . | - | . . | . | 19,836 |
| 1/19 |  |  |  |  | - . | 400 |
| 125 |  |  | . . |  |  | 26,448 |
| 2/2 | . . . . | $\ldots$ |  |  | -.. - | 1,600 |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

1913
$2 / 8$
$2 / 15$
2/23
3/ 1
$3 / 8$
$3 / 15$
$3 / 23$
$3 / 29$
$4 / 5$
4/13
4/19
$4 / 26$
$5 / 3$
$5 / 10$
$5 / 17$
$5 / 24$
$5 / 31$
6/ 7
$6 / 16$
$6 / 21$
6/28
7/5
$7 / 12$
7/19
$7 / 26$
$8 / 2$
$8 / 9$
$8 / 15$
8/23
$8 / 31$
$9 / 10$
$9 / 13$
$9 / 20$
9/27
$10 / 4$
$10 / 11$
$10 / 18$
$10 / 26$
11/1
11/8
$11 / 15$
$11 / 22$
$11 / 30$
12/6
12/14
$12 / 20$
12/27

1913
$1 / 5$
$1 / 12$
$1 / 19$
$1 / 25$
$2 / 2$
$2 / 8$
$2 / 15$
$2 / 23$
$3 / 1$
$3 / 8$


| Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1913 | Oscillatoria sp. | Oscillatoria tenuis | Phormidium spp. | Stigonema sp. | Total Schizophyceae | Actinastrum hanteschii |
| 315 |  |  | 3,200 |  | 599,296 | 3,200 |
| (3)23 | 52,896 |  |  |  | 56,096 | 52,896 |
| (3)29 | 1,600 |  | 52,896 |  | 325,376 | 396,720 |
| . 15 |  |  | 1,600 |  | 4,800 |  |
| $41: 3$ |  |  | 3,200 | .............. | 64,096 | 3,200 |
| 419 |  |  |  |  | 52,896 |  |
| 4.26 | 1,600 |  |  |  | 8,003 | 12,800 |
| 53 |  |  | 79,344 |  | 185,136 |  |
| $5 / 10$ |  |  |  |  |  |  |
| 5) 17 |  |  |  | 123,168 | 846,336 |  |
| 5) 21 |  |  |  | 158,688 | 370,272 |  |
| $5 / 31$ |  | 105,792 |  | 423,168 | 952,648 | 105,792 |
| $6 / 7$ |  |  |  | 687,64S | 1,110,816 |  |
| (f) 16 | 38,400 |  |  | 38,400 | 618,560 | 6,400 |
| $6 \% 1$ |  |  |  | 105,792 | 323,776 | 3,200 |
| 628 | ............... |  | ............... | '211,584 | 981,776 | 79,344 |
| 75 |  |  |  | 52,896 | 267,680 | 3,200 |
| 712 |  |  |  | 79,344 | 3,151,512 | 185,136 |
| 719 | 3,200 |  |  | 158,688 | 6,512,808 |  |
| 726 | 3,200 |  |  |  | $3,864,608$ | 158,688 |
| $8 \cdot 2$ | 793,440 |  |  | 3,200 | 4,829,536 | 6,400 |
| \& 9 | 105,792 | 3,200 |  | 6,400 | $4,624,352$ |  |
| 815 | 105,792 |  |  | 6,400 | $4,462,464$ | 19,200 |
| S 23 | 105,792 |  | 158,688 |  | 8,211,650 | 211,584 |
| $8: 31$ | 211,584 |  | 317,376 |  | $4,773,440$ |  |
| $9 \%$ | 105,792 |  |  |  | 3,609,728 | 317,376 |
| 913 |  |  | 317,376 | 12,800 | 4,165,288 | 105,792 |
| $9 \cdot 20$ |  | . . |  |  | $3,821,312$ |  |
| 927 |  |  | 105,792 |  | 3,596,928 |  |
| 10.4 |  | 12,800 |  |  | 2,179,840 | 25,600 |
| 1011 |  |  | 105,792 |  | 647,552 | 105,792 |
| 10,18 |  |  | 105,792 | ............... | 753,344 | . . . |
| $10 / 26$ |  |  |  |  | 144,192 |  |
| 11/1 | 211,584 |  | 158,688 | 6,400 | 825,440 |  |
| 11, 8 |  |  |  |  | 12,800 |  |
| $11^{15}$ | 3,200 |  | 105,792 |  | 275,680 | 52,896 |
| $11 \cdot 2$ |  |  |  |  | 84,144 |  |
| 11/30 |  | 3,200 | 1,600 | ............... | 59,296 |  |
| $12 / 6$ |  | . | .. |  | 1,600 | $\cdots$.... |
| 12/14 |  |  | ............... |  | 3,200 | . . . |
| 12/20 |  |  | (000 |  | 54,496 | . . |
| 12 27 | 1,600 |  | 1,600 | ............... | 57,696 | . . .... . ... |
| 1913 | Actinastrum hantzschii (large) | Coelastrum microporum | Pediastrum boryanum | Pediastrum duplex | Pediastrum simplex | Raphidium polymorphum |
| 1/5 |  |  | 1,200 | 400 | ............ . |  |
| 1/12 |  |  | 800 | 400 | .............. |  |
| 1/19 |  |  | 26,448 | 2,400 |  | ...... . |
| 1/25 |  |  | 19,836 | 400 | 400 |  |
| $2 / 2$ |  |  | 24,000 | 16,000 | ............... |  |
| $2 / 8$ |  |  | 51,200 | 60,800 |  |  |
| 2/15 |  |  | 41,600 | 16,000 | 3,200 |  |
| $2 / 23$ |  |  | 79,344 | 105,792 | 1,600 |  |
| 3/ 1 |  |  | 48,000 | 19,200 | 1600 | $3,200$ |
| $3 / 8$ |  |  | 132,240 | 19,200 | 1,600 | 1,600 |
| $3 / 15$ |  |  | 185,136 | 185,136 |  |  |
| $3 / 23$ |  |  | 41,600 | 54,400 | 1,600 |  |
| $3 / 29$ |  |  | 28,800 | 3,200 | 9,600 | 105,792 |
| 4/5 | ............... |  | 105,792 | 12,800 | 1,600 |  |
| 4/13 |  |  | 35,200 | 19,200 | 1,600 | 3,200 |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)
1913
$4 / 19$
$4 / 26$
$5 / 3$
5,10
$5 / 17$
$5 / 24$
$\underset{\substack{\text { Actinastrum } \\ \text { hantzschii }}}{\text { and }}$
hantzschi

Coelastrum
microporum
$\left.\begin{array}{ccc}\begin{array}{c}\text { Pediastrum } \\ \text { duplex }\end{array} & \begin{array}{c}\text { Pediastrum } \\ \text { simplex }\end{array} & \begin{array}{c}\text { Raphidium } \\ \text { polymorphum }\end{array} \\ 132,240 & & \\ 16,000 & \cdots & 1,600 \\ 1,600 & & 1,600\end{array}\right)$
$5 / 31$
6/7
6/16
6/21
6/28
7/5
$7 / 12$
$7 / 19$
$7 / 26$
8/9
8/15
S/23
$8 / 31$
$9 / 6$
$9 / 31$
$9 / 20$
9/27
$10 / 4$
$10 / 11$
$10 / 18$
$10 / 26$
11/1
$11 / 8$
$11 / 15$
11/22
11/30
$12 / 6$
$12 / 14$
12/20
12/27
1913
$1 / 5$
$1 / 12$
$1 / 19$
$1 / 25$
$2 / 2$
$2 / 8$
$2 / 15$
$2 / 23$
$3 / 1$
$3 / 8$
$3 / 15$
$3 / 23$
$3 / 29$
$4 / 5$
$4 / 13$
$4 / 19$
$4 / 26$
$5 / 3$
$5 / 10$
$5 / 17$

| Richteriella botryoides | Scenedesmus obliquus | Scenedesmus quadricauda |
| :---: | :---: | :---: |
|  |  | 400 |
|  |  | 400 |
|  | 400 | 400 |
| . | . . . | 400 |
|  |  | 105,792 |
| . .. | - | 52,896 |
| . . . |  | 1,600 |
| . . . . | 1,600 | 12,800 |
| . | .... . . . | 3,200 |
|  | .... . | 3,200 |
| 1,600 |  | 52,896 |
|  | 1,600 | 132,240 |
| 1,600 | 3,200 | 211,584 |
| . . | 1,600 |  |
| . . . | .... . | 105,792 |
|  | 1,600 |  |
| 1,600 | . . . . | 79,344 |
| - . . . | .... | . $\cdot \cdot \cdot$ |
|  |  | 3,200 |


| Schroederia setigera | Stigeoclonium sp. | Total <br> Chlorophyceae |
| :---: | :---: | :---: |
| . . . |  | 2,500 |
|  |  | 1,600 |
| . .. |  | 29,648 |
| . . | . . . | 21,036 |
| - | . | 145,792 |
| . . . | . | 164,896 |
| . . | . | 64,000 |
|  |  | 201,136 |
| . . . | . . . | 73,600 |
| . . . | . . | 210,736 |
| . . . | . | 427,968 |
| . . | . . | 233,040 |
| . . . . | . . . | 762,096 |
| . | . . | 121,792 |
| . . . | . . | 177,792 |
| . . . | . . . . | 240,232 |
| . . . | . ${ }^{\text {a }}$ | 321,328 |
| . . . . | 3,200 | 9,600 |
|  |  | 22,400 |

Pable 2.-Organisms Per Cubic Meter in Plankton of
San Joaquin Riverin 1913-(Continued)


| 1913 | Asterionella gracillima |
| :---: | :---: |
| $1 / 5$ | 4,535,832 |
| $1 / 12$ | 945,516 |
| $1 / 19$ | S,483,196 |
| 1/25 | 932,292 |
| 2/2 | 9,283,248 |
| $2 / 8$ | 9,918,000 |
| 215 | 1,904,256 |
| 2/23 | 2,353,872 |
| $3 / 1$ | 819,858 |
| $3 / 8$ | 2,274,52 |
| $3 / 15$ | 1,005,024 |
| $3 / 23$ | 1,930,704 |
| 3/29 | 2,512,560 |
| 4 5 | 52,896 |
| 413 | 555,408 |
| $4 / 19$ | 687,048 |
| $4 / 26$ | 449,616 |
| $5 \cdot 3$ | 290,928 |
| 5) 10 | 2,803,488 |
| 517 | 158,688 |
| $5 \cdot 24$ | 211,581 |
| $5: 31$ | 1,428,192 |
| $6{ }^{6}$ | 1,216,608 |
| $\mathrm{f}^{\prime} 16$ | 3,173,760 |
| 6 '21 | 4,549,050 |

Scenedesmus obliquus
3,200
3,200
105,792
211,584
3,200
quadricauda Schroederia Stigeoclonium
105,792
12,800
$\cdots 3,200$
setigerond
setiger
sp.
sponi
spen
Ttotal
Chlorophyceae
3,200
528,960 224,384 16,000 148,992 277,270
168,288
998,528
2,160,640
3,034,272
2,997,376
1,484,288
4,827,840
8,251,776
5,539,584
5, 420,992
4,058,496
4,371,480
6,288,960
7,212,048
7,774,016
2,397,224
2,628,518
1,889,760 713,248 677,856
249,232 194,736 19,200 56,096 20,400
110,792

Cyclotella spp. 687,648
1,031,472
1,533,984 515,736 740.544
$1,295,952$
1,216,608
$2,136,496$
10,955,872
$6,030,144$
$3,967,200$
3.358,896
$2,115,840$
819,888 714,096
1,42S,192 766,992 816,3336 476,064
$1,269,504$
$1,110,816$
$1,110,816$
$2,539,008$
$2,856,384$
$1,745,565$
1,745,565
608,304

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

| 1913 | Asterionella gracillima | Asterionella gracillima (large) | $\underset{\text { alata }}{\text { Amphiprora }}$ | Bacillaria paradoxa | Cocconeis pediculus | Cyclotella spp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/28 | 4,866,432 | 2,962,176 |  | 79,344 |  | 396,720 |
| 7/5 | 608,304 | 52,896 | ............ | 396,720 | 1,600 | 423,168 |
| 7/12 |  | 79,344 |  | 1,248,848 |  | 1,269,504 |
| 7/19 |  |  |  | $8,569,152$ |  | 5,130,912 |
| 7/26 |  |  | . | 3,702,720 |  | 10,050,240 |
| $8 / 2$ |  |  |  | 21,528,672 |  | 10,261,824 |
| $8 / 9$ |  | 3,200 |  | 15,392,736 |  | 3,596,928 |
| 8/15 |  |  |  | 4,760,640 |  | 3,332,448 |
| 8/23 |  | 3,200 |  | 2,062,944 |  | 9,045,216 |
| 8/31 |  |  | 105,792 | 4,972,224 |  | 14,176,128 |
| $9 / 6$ | ...... ... . |  |  | 846,336 | 12,800 | 14,176,128 |
| 9/13 |  |  |  | 4,453,264 |  | 14,493,504 |
| 9/20 |  |  |  | 3,067,968 |  | 15,868,800 |
| $9 / 27$ |  |  |  | 1,692,672 |  | 11,954,496 |
| 10/4 |  |  |  | 1,481,088 |  | 17,783,116 |
| 10/11 |  |  |  | 528,960 |  | 49,300,272 |
| 10/18 |  | ... |  | 317,376 |  | 42,750,016 |
| 10/26 |  |  |  | 76,800 |  | 31,218,700 |
| 11/1 | 52,896 |  |  | 158,688 |  | $8,569,152$ |
| 11/8 | 6,400 | 12,800 |  | 105,792 |  | 3,702,720 |
| 11/15 | 105,792 | 12,800 |  | 19,200 |  | 3,279,552 |
| 11/22 | 1,600 | 211,584 |  | 290,928 | 1,600 | 1,533,984 |
| 11/30 | 9,600 | 52,896 |  | 1,322,400 |  | 1,246,056 |
| 12/6 | 4,443,264 |  |  | 2,909,280 | 3,200 | 795,040 |
| 12/14 | 449,616 | 290,928 |  | 2,195,184 |  | 1,216,608 |
| 12/20 | 476,064 | 79,344 | 1,600 | 555,408 | 1,600 | 1,904,256 |
| 12/27 | 79,344 |  |  | 1,216,608 | 1,600 | 1,190,160 |
| 1913 | $\underset{\text { solea }}{\text { Cymatopleura }}$ | $\begin{gathered} \text { Cymbella } \\ \text { affinis } \end{gathered}$ | Cymbella cymbiformis | Cymbella sp. | $\begin{gathered} \text { Cymbella } \\ \text { tumida } \end{gathered}$ | Diatom unidentified |
| 1/5 | .............. | ... . . | 800 |  | ... .. . ... |  |
| 1/12 | .... . .... | .... . . . | 400 | 400 |  |  |
| 1/19 |  | ... |  |  |  | 400 |
| 1/25 | 400 |  | S00 | 26,443 |  |  |
| 2/2 | 1,600 |  | 6,400 | 79,344 |  | 1,600 |
| 2/8 |  | . |  | 3,200 | 3,200 | 6,400 |
| $2 / 15$ | 6,400 | .. . | 6,400 | 6,400 |  | 3,200 |
| 2/23 | 3,200 | - | 3,200 | 52,896 |  | 1,600 |
| $3 / 1$ | 3,200 |  | 3,200 | 1,600 | 6,400 | 1,600 |
| $3 / 8$ |  | 1,600 |  |  |  |  |
| 3/15 |  | 3,200 | 6,400 |  |  |  |
| 3/23 | 3,200 | 1,600 | 3,200 |  | 3,200 |  |
| 3/29 |  | 79,344 | 9,600 |  | 3,200 | 1,600 |
| $4 / 5$ | 6,400 | 158,688 | 3,200 |  | 79,344 |  |
| 4/13 | 3,200 | 79,344 |  | . | . | 52,896 |
| $4 / 19$ | 19,200 | 79,344 | 12,800 |  |  | 1,600 |
| $4 / 26$ | 12,800 | 105,792 |  |  |  |  |
| $5 / 3$ | 12,800 | 185,136 | 3,200 |  | 185,136 | 211,584 |
| $5 / 10$ | 132,240 | 238,032 | 19,200 | ............... | 79,344 | 105,792 |
| $5 / 17$ | 44,800 | 211,584 | 12,800 |  | 264,480 | 3,200 |
| 5/24 | 32,000 | 211,584 | 12,800 | .............. | 76,800 | 317,376 |
| 5/31 | 76,800 | 899,232 | 12,800 |  | 12,800 |  |
| $6 / 7$ | 51,200 | 528,960 | 25,600 | ............... | 64,000 | 317,376 |
| $6 / 16$ | 19,200 | 211,584 | 158,688 |  | 32,000 | 6,400 |
| $6 / 21$ | 19,200 | 105,792 | 16,000 | 3,200 | 6,400 |  |
| $6 / 28$ | 12,800 | 79,344 | 3,200 |  | 3,200 |  |
| 7/5 |  | 6,400 |  |  | 3,200 |  |
| 7/12 | 9,600 |  | 3,200 | .............. | 6,400 |  |
| 7/19 |  |  |  |  | 3,200 |  |
| 7/26 | 12,800 |  |  |  | 6,400 | 3,200 |


| 1913 | Cymatopleura | Cymbella affinis | Cymbella cymbiformis | $\underset{\text { Cymbella }}{\text { sp. }}$ | Cymbella tumida | Diatom unidentified |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 83 |  | 3,200 | . . . . | ........ .. .. |  | .. . . . ... |
| \& 9 |  | 3,200 | 6,400 | . .. . . | 6,400 |  |
| 815 | 6,-100 | . . | 6,400 | . . | 19,200 | ... . . |
| S 23 |  | . |  | . . |  |  |
| \& 31 | 12,800 |  |  | . . | 211,582 | . . . ... |
| 9) 6 |  | 105,792 |  | . . . | - | . . . .. |
| $91: 3$ | 12,800 | . . | 25,600 | . . . . | . . | . . .. . |
| 920 | 12, 200 |  |  | $\cdots$. . | . |  |
| 9.27 | 12,800 |  | 12,800 | . . . . |  | . . . |
| 10 t |  | 211,584 |  | . |  | . |
| 10,11 | . | 211,584 | 12,800 | . . | 12,800 |  |
| 10, 18 |  | 105,792 |  | . . . | 25,600 |  |
| $10 / 26$ |  |  | 12,800 | . | .... |  |
| 11/1 | 6,400 |  | 6,400 |  | 6,400 |  |
| 11/8 | 12,500 |  | 6,400 | . | 19,200 |  |
| 11/15 |  |  |  |  | 52,896 |  |
| 11/22 | 1,600 | - . | 6,400 |  | 3,200 | , . |
| 11/30 | 3,200 | - . |  | . | 32,000 |  |
| 12/6 |  |  |  |  |  | .. . |
| 12 14 |  | 1,600 | 3,200 |  |  |  |
| 12:20 | 9,600 |  | 3,200 |  | 3,200 | - . |
| 1227 | - . | 1,600 | . . | - . .... | . | . .. |
| 1913 | Epithemia ocellata | Eunotia sp. | Fragillaria capucina | Fragillaria crotonensis | Fragillaria sp. | Gomphonema constrictum |
| 1/5 | .. .. | .. . . |  | . . . . |  |  |
| 1/12 | . . . | ... . . . | 400 |  | . | . |
| $1 / 19$ | . . . | .. . . . . | 2,400 |  | . |  |
| $1 / 25$ |  | . .. | 839,672 | . | - | 400 |
| $2 / 9$ | . . | . . . | 9,600 | . | . . |  |
| $2 / 8$ | . . . | .. . | 6,400 |  |  |  |
| 2/15 |  | - .. . | 12,800 |  |  | . |
| 2/23 |  | . . | 12, 200 |  | . |  |
| $3 / 1$ | 12,800 | . . | 12,800 |  | - . |  |
| $3 / 8$ | . ${ }^{2}$ | - . | 16,000 | . |  |  |
| 3/15 | 3,200 | - | 28,800 |  |  | . |
| 3/23 | 3,200 |  | 132,240 | 1,600 |  |  |
| 3 (29) | 3,200 |  | 35,200 | 6,400 |  |  |
| 45 | 6,400 | . | 22,400 | 1,600 |  | 52,896 |
| 413 | 3,200 | . | 79,34.4 |  | 1,600 |  |
| 419 | 3,200 | . | 105,792 |  |  |  |
| 426 |  |  | 158,688 |  |  | 52,896 |
| $5 / 3$ | 3,200 |  | 158.688 | 52.596 | $155,685$ |  |
| 510 | 6,400 | . | 79,344 |  | 105,792 | 79,344 |
| 517 | 105,792 | . | 19,200 |  |  | 3,200 |
| $5: 4$ | 6,400 |  | 19,200 |  | . | 158,688 |
| $5: 31$ | 423,168 |  | 12,800 |  |  | 317.376 |
| 6/ 7 | 51,200 | 105,792 | 51,200 |  | 528,960 | 317,376 |
| $6 / 16$ | 12,800 |  | 19,200 | . |  | 158,688 |
| 6/21 | 1,600 |  | 22,400 |  |  | 1,600 |
| $6 / 25$ | 11,200 |  | 79,344 |  |  | 1,600 |
| 7/5 | 3,200 |  | 6,400 |  | 6,400 1,600 |  |
| 7/12 | 1,600 |  |  |  | 1,600 |  |
| $7 / 19$ | 6,400 |  | 6,400 |  | . | . |
| 7/26 | 3,200 |  | 6,400 |  | - | 3.300 |
| $8 / 2$ | 6,400 |  | 6, 400 |  |  | 3.200 |
| 8/9 | 12.800 |  | 6,400 |  | 3,200 | . |
| $8 / 15$ | 6,400 |  | 6,400 |  |  |  |
| 823 |  |  |  |  | 6.400 |  |
| 8/31 | 12,800 |  |  |  | 105,792 |  |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

1913
$9 / 6$
$9 / 13$
$9 / 20$
$9 / 27$
$10 / 4$
$10 / 11$
$10 / 18$
$10 / 26$
$11 / 1$
$11 / 8$
$11 / 15$
$11 / 22$
$11 / 30$
$12 / 6$
$12 / 14$
$12 / 20$
$12 / 27$
1913
$1 /$
$1 / 1$
$1 / 1$
$1 / 2$
$2 /$
$2 /$
$2 / 2$
$2 / 2 / 2$
$3 /$
$3 /$
$3 / 1$
$3 / 2$
$3 /$
$4 /$
$4 / 1$
$4 / 19$
$4 / 2$
$5 /$
$5 / 10$
$5 / 1$
$5 / 21$
$5 / 31$
$6 /$
$6 / 16$
$6 / 21$
$6 / 2$
$7 /$
$7 / 12$
$7 / 19$
$7 / 26 / 2$
$8 / 8 / 9$
$8 / 15$
$8 / 23$
$8 / 3$
$9 /$
$9 / 13$
$9 / 20$
$9 / 27$

1/5
$1 / 12$
1/19
1/25
2/ 2
2/8
2/15
2/23
3/1
3/8
$3 / 15$
$3 / 23$
$3 / 29$
$4 / 5$
$4 / 13$
$4 / 19$
4/26
$5 / 3$
$5 / 10$
$5 / 24$
$5 / 31$
$6 / 7$
$6 / 21$
$6 / 28$
$7 / 5$
$7 / 12$
$7 / 19$
$8 / 26$
$8 / 2$
$8 / \stackrel{2}{9}$
8/15
8/23
$9 / 6$
9/13
$9 / 20$
9/27

| Epithemia |
| :---: |
| ocellata |

25,600

12,800
12,800
6,400

3,200
9,600
52,806

| Eunotia <br> sp. | Fragillaria <br> capucina |
| :---: | :---: |
| $\cdots$ | 105,792 |

105,792

| Fragiliaria <br> crotonensis | Fragillaria <br> sp. | Gomphonema <br> constrictum |
| :---: | :---: | :---: |
| 105,792 |  |  |
| 52,896 |  |  |
| 9,600 |  | 1,600 |

Gomphonema Gyrosigma Gyrosigma

| Gyrosigma scalproides | Mastngloia | Melosira granulata |
| :---: | :---: | :---: |
|  |  | 26,448 |
|  |  | 19,836 |
|  |  | 30,060 |
| 13,224 |  | 85,956 |
| 1,600 | . . | 608,304 |
| 1,600 |  | 502,512 |
|  |  | 634,752 |
| 52,896 |  | 1,42S,192 |
|  |  | 343,824 |
|  |  | 925,680 |
|  |  | 3,438,240 |
|  | 6,400 | 1,877,808 |
|  | 3,200 | 1,533,984 |
| 52,896 |  | 396,720 |
| 3,200 |  | 3,808,512 |
|  |  | 7,696,368 |
| 1,600 |  | 6,056,592 |
|  | $\ldots$ | 1,243,056 |
| 52,896 |  | 1,586,880 |
| 105,792 |  | 3,491,136 |
| 3,200 |  | 2,274,528 |
|  | . | 4,566,432 |
|  | ...... | 4,654,848 |
|  |  | 3,279,552 |
|  |  | 8,198,880 |
| 3,200 |  | 19,016,112 |
|  |  | 11,372,640 |
|  |  | 19,994,688 |
|  |  | 27,294,3:36 |
| 12,800 |  | 26,871,168 |
| 476,064 |  | 65, 273,664 |
| 846,336 | . | 61,465, 15: |
|  | . . . . | 74,636,256 |
| . | . . . | 169,478,784 |
| - . | , . | 141,443,904 |
| . . | - | 180,057,981 |
| . . . | - . | 101,242,944 |
| . . . . | . . ... | 98,809,728 |
| . .. ... | . ... ....... | $55,646,592$ |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

| 1913 |  |
| :--- | :--- |
| 10 | 1 |
| 10 | 11 |
| 10 | 18 |
| 10 | 26 |
| $11 /$ | 1 |
| 11 | 8 |
| 11 | 15 |
| 11 | 22 |
| 11 | 30 |
| 12 | 6 |
| 12 | 14 |
| 12 | 20 |
| 12 | 27 |

1913
$1 / 5$

1/12
1/19
1/25
2/2
2/8
$2 / 15$
2,23
$\begin{array}{ll}3 & 1 \\ 3 & 8\end{array}$
$3 / 15$
3/23
$3 / 20$
$4 / 5$
$4 / 13$
4/19
4/26
$5 / 3$
$5 / 10$
$5 / 10$
$5 / 17$
$5 / 24$
$5 / 31$
$6 / 7$
$0 / 16$
621
$\begin{array}{r}6 \\ 7 \\ \hline\end{array}$
712

| 719 |
| :--- |
| 7 |

8
8.2
$8 \quad 9$
$8 / 15$
$8 / 23$
S/31
$9 / 6$
$9 / 13$
9/20
$9 / 27$
$10 / 4$
10/11
$10 / 18$
$10^{\prime 2} 6$

| Gomphonema <br> s. <br> 105,792 | Gyrosigma <br> acuminatum |
| :---: | :---: |
| 105,792 |  |,$\quad 423,168$

Gyrosigma
Kuitzingii
105,792
105,792
211,584
12,800
$10 \overline{5}, 792$
52,896
6,400
1,600
79,344
3,200
1,600

| Navicula |
| :--- |
| affinis |

$\cdots \cdots$
$\cdots \quad 19,836$

$\underset{\text { scalproides }}{\text { Gyrosigma }} \quad$| Mastogloia |
| :---: |
| braunii |

Navicula
alpestris

Navicula
bacillum

Melosira granulata
45,914,928
73,852,86 $\frac{1}{2}$
25,505,920
$12,483,453$
12,007,392
4,178,784
1,481,088
3,041,520
14,176,128
$2,142,288$
608,30.1
846,336
661,200

Navicula
didyma

3,200
19,344
185,136
105,792
158,688
105,792
449,616
264,480
290,928
185,136
528,960
581,856
502,512
634,752
1,163,712
634,752
1,216,608
793,440
317,376
238,032
449,616
132,240
238,032
105,792
158,188
158,688
15S,688
12,800
05,792
211,584
105,792
105,792

211,584

|  | 264,480 | . |  |
| :---: | :---: | :---: | :---: |
| 1,600 | 79,344 | .. . . |  |
| 1,600 | 105,792 | . | 3,200 |
| 105,792 | 52,896 | . . . . |  |
| 6,400 | 52,896 | .. . |  |
| 1,600 | 1,600 |  | 52,896 |
|  | 79,344 | 238,032 | 52,896 |
| 3,200 | 79,344 | 185,136 | . . ..... |
| 52,896 | 79,344 | 185,136 |  |
| 52,896 | 185,136 | 343,824 | - |
|  | 3,200 | 793,440 |  |
|  | 264,480 | 634,752 |  |
| . ... .. | 899,232 | 1,005,024 | . ..... |
| . ... | 317,376 | 1,322,400 |  |
|  | 317,376 | 581,856 |  |
| 3.200 | 3,200 | 211,584 | 1,600 |
| 79,344 | 3,200 | 79,344 | 1,600 |
|  | 52,896 | 79,344 |  |
|  | 52,896 | 52,896 |  |
|  |  | 105,792 |  |
|  | 3,200 |  |  |
|  |  | 105,792 |  |
|  |  | 105,792 | 3,200 |
|  | 3,200 | 158,688 |  |
|  | 264,480 |  | 3,200 |
|  |  | 105,792 | 211,584 |
|  | 317,376 | 317,376 | . . . .. |
| . | 12,800 | 740,544 | ... . |
|  | 105,792 | 211.584 | ... .- |
|  |  | 105,792 | ... .. |
|  | 211,58. | 105,792 | $\ldots$ |
|  |  | 211,584 | ... . .. |
|  |  | 211,58. |  |
|  | $\ldots$. | 317,376 | ...... ..... |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)
1913
$11 / 1$
$11 / 8$
$11 / 15$
$11 / 22$
$11 / 30$
$12 / 6$
$12 / 14$
$12 / 20$
$12 / 27$

|  |  |
| :---: | :---: |
| granulata <br> (small) | Melosira varians |
| .... . ... | 211,584 |
|  | 105,792 |
| ... . | 12,800 |
|  | 19,200 |
|  | 52,896 |
|  | 79,344 |
| . . | 52,896 |
| .. . | 12,800 |
|  | 423,168 |

1913
$1 / 5$

1/12
1/19

| Navicula dubia | Navicula gracilis | Navicula | Navicula viridis | Nitzschia acicularis | Nitzschia angularis |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 59,908 | 400 | 39,672 |  |
|  |  | 800 | 800 | 39,672 |  |
|  |  |  | 13,224 | 19,836 |  |
| ... .. . | 72,732 | 13,224 | 1,200 | 59,508 | 400 |
|  | 158,688 |  | 3,200 | 185,136 | 8,000 |
|  | 185, 136 | 3,200 | 3,200 | 52,896 | 6,400 |
| .... | 105,792 |  |  | 105,792 | 3,200 |
|  | 105,792 | 1,600 | 1,600 | 52,896 | 6,400 |
| .. . . | 132,240 | 80,944 | 6.400 | 52,896 | 3,200 |
|  | 1,600 | 105,792 | 3,200 | 133,840 | 6,400 |
|  | 423,168 | 1,600 | 6,400 | 105,792 | 9,600 |
|  | 343,824 | 1,600 | 6,400 | 1,600 | 3,200 |
|  | 264,480 | 4,800 | 6.400 | 264,480 | 3,200 |
|  | 423.168 | 3,200 | 19,200 | 132,240 | 132,240 |
|  | 317,376 | 105,792 | 6,400 | 80,944 |  |
| - | 793,440 |  | 3,200 | 105,792 | 79,344 |
|  | 581,856 | 3,200 | 3,200 | 608,304 | 3,200 |
|  | 290,928 |  | 132,240 | 158.688 | 105,792 |
|  | 661.200 | 79,344 | 185,136 | 52,896 | 79,344 |
|  | 1,745,568 | 16,000 | 38,400 | 105,792 | 211,584 |
|  | 1,586,880 | 161,888 | 158,688 | 264,480 | 32,000 |
|  | 1,110,816 | 105,792 | 211.584 | 1,005,024 | 25,600 |
|  | 1,216,608 | 105,792 | 96,000 | 1,216,608 | 64,000 |
| 3,200 | 634,752 |  | 19,200 | 581,856 | 19,200 |
|  | 132.240 |  | 3,200 | 528,960 | 9,600 |
|  | 185.136 |  | 25,600 | 581,856 | 12,800 |
|  | 264,480 | 4,800 | 3,200 | 370,272 |  |
|  | 528,960 | 3,200 | 6,400 | 264,480 | 3,200 |
|  | 423,168 |  |  | 740,544 |  |
|  | 846,336 | 6,400 |  | 423,168 |  |
| 12,800 | 793,440 |  | 19,200 | 476,064 |  |
|  | 1,639,776 | - . | 12,800 | 158,688 | 105,792 |
|  | 2,750,592 |  | 3,200 | 317,376 |  |
| 158,688 | 3,649,824 | . |  | 370,272 |  |
|  | 3,596,928 | - . | 105,792 | 846,336 |  |
|  | $2,644,800$ $1,798,464$ | - . . . | 25,600 | 1,057,920 |  |
|  | 1,269,504 | - . | 2,000 | 317,376 | 12,800 |
|  | 846,336 | \% | 211,584 | 317,376 |  |
|  | 740,544 |  | 25,600 | 846,336 |  |
|  | 1,481,088 |  | 12,800 | 634,752 |  |
|  | 423,168 | 105,792 |  | 528,960 |  |
| 105,792 | 423,168 |  | 25,600 | 42:3,168 | - |
|  | 52,896 |  | 12.800 | 264,480 | $\cdots$ |
| . | 211,584 | - . | 6,400 6,400 | 105.792 | - . |
| ... . .. .. | 185,136 | ..... ... .. | 6,400 | 52,896 | ... . |

Table 2.-Organisms Per Cuhic Meter in Plankton of San Joaquin Rever in 1913-(Continued)

| 1913 | Navicula dubia | Navicula gracilis | Navicula sp. | Navicula viridis | Nitzschia acicularis | Nitzschia angularis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $11: 30$ |  | 476,06-4 | . . | 3,200 | 52,896 | . . |
| 126 |  | 396,720 |  |  | 79,344 | - |
| 1211 |  | 132,240 |  |  | 158,685 |  |
| 12 20 |  | 185, 136 |  |  | 1,600 |  |
| 12:3 |  | 264.480 | 6,400 | 3,200 | 52,596 | . |
| 1913 | Nitzschia sigma | Nitzschis sigmoidea | Nitzschia sp . | Nitzechia vermicularis | Pleurostauron parvulum | IRhopalodia gibba |
| 1/5 |  | . . |  | 400 | 238,032 |  |
| 112 |  |  |  |  | 145,464 |  |
| 1/19 |  |  | 79,344 |  | 2:38,032 |  |
| 1,25 |  | 400 | 23,436 |  | 522,348 |  |
| $2 / 3$ |  |  |  | 4, NO 0 | 396,720 |  |
| $2 / 8$ | 1,600 |  |  |  | 476.064 |  |
| 215 |  | 3,200 |  | 12,500 | 423,168 | . |
| 2.23 | . | 1,600 |  | . . . | 238,032 |  |
| 31 |  | 52,896 |  |  | 264,480 |  |
| 3 ' 8 |  | 1,600 |  | 1,600 | 502,512 |  |
| 3,15 |  |  |  | 3,200 | 317,376 |  |
| $3 / 23$ |  | 3,200 | 1,600 |  | 476,064 | . |
| 3/29 |  | 79,344 |  | 9,600 | 581,856 | . . . |
| $4 / 5$ |  | 3,200 | 52,896 |  | 343,824 |  |
| 4/13 |  | 79,344 | 52,896 |  | 502,512 | . |
| 4/19 |  |  | 155,688 |  | 132,240 | . |
| $4 \times 26$ | 6,400 | 52,896 |  |  | 661,200 | .... . .. |
| $5 / 3$ | 3.200 | 9,600 | 343,824 |  | 449.616 | . |
| 510 | 52,596 | 52,896 | 52,896 |  | 132,240 |  |
| $5 / 17$ | 211,5心4 | 12,800 | 108,992 | ( 3,400 | 687,648 | . |
| $5 / 24$ | 3,200 | 6,400 | 423,168 |  | 793,440 | . |
| 5/31 | 317,376 | 105,792 | 899,232 | . . .. | 1,216,608 | . .. |
| $6 / 7$ | 317,376 | 105,792 | 317,376 |  | 793,440 |  |
| $6 / 16$ | 6,400 | 12,800 | 214,784 | 6,400 | 211,584 | 6,400 |
| $6 / 21$ | 3,200 | 3,200 | 52,896 |  | 79,344 | 3,200 |
| 6 68 | 3,200 | 6,400 | 52,896 |  | 1,600 | . . . . |
| 75 |  | 6,400 | 1,600 | 3,200 | 1,600 |  |
| $7^{\prime} 12$ |  |  | 185,136 | 1,600 | $13: 2,240$ |  |
| 719 |  |  | 158,688 |  | 3.200 |  |
| $7 / 26$ |  |  | 3,200 | 6,400 | 264,480 |  |
| $8 / 2$ | 6,400 |  | 370,272 | 6,400 | 10.7,792 |  |
| $8 / 9$ | 105,792 |  | 476,064 |  |  |  |
| $8 / 15$ | 105,792 |  | 370,272 | 6,400 | 105,792 | -. |
| $8 / 23$ | 211,584 |  | 2,539,008 | 105,792 |  | . |
| $8 / 31$ | 105,792 |  |  | 25,600 | 105,792 |  |
| $9 / 6$ | 105,792 |  |  | 423,168 | . |  |
| 9/13 | 105,792 |  | . | 317.376 |  |  |
| 9, 20 | 105,792 |  |  | 211.584 |  |  |
| 9,/27 | 105,792 |  |  | 105,792 | 317,376 |  |
| 10/4 | 317,376 |  |  | 12,400 | 211,584 | -. |
| 10/11 |  |  |  | 12,800 | 317.376 |  |
| 10/18 | 12,800 |  | 12,800 | 51,200 | 105,792 |  |
| 10/26 |  |  |  |  | 12,800 | , . |
| 11/1 |  |  |  | 12,400 | 52,896 | . . . |
| $11 / 8$ |  |  |  | 6,400 | 2,896 | . |
| $11 / 15$ |  |  |  | 6,400 | 52.896 |  |
| $11 / 22$ | 3,200 |  |  |  | 158,688 | . |
| 11/30 | 3,200 | 1,600 |  |  | 132,240 | . . . |
| 12/6 | 1,600 |  |  | . | 52,896 | . |
| 12. 14 | 3,200 |  |  |  | 238,032 | . . . . . |
| $12 / 20$ | 3,200 |  |  |  | 158,688 | . . |
| 12,27 | 3,200 |  |  |  | 211,584 | . . . ... . |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

| 1913 | Stauroneis phoenicenteron | Surirella sp . | Synedra radians | Synedra ulna | Tabellaria sp. | Total <br> Bacillariaceae |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 |  | 800 | . . . | 125,6\% 8 | 400 | 5,809,536 |
| 1/12 | 400 | 400 |  | 59,508 |  | 2,251,768 |
| 1/19 |  | 34,260 | . | 469,452 |  | 10,974,996 |
| 1/25 | 400 | 73,108 |  | 178,524 |  | 2,663,576 |
| 2/2 |  | 120,192 |  | 290,928 |  | 11,996,848 |
| 2/8 |  | 83,200 |  | 264,480 |  | 12,933,536 |
| 2/15 | 3,200 | 118,400 |  | 238,032 |  | 5,016,736 |
| 2/23 |  | 67,200 |  | 264,480 |  | 6,856,748 |
| 3/ 1 |  | 264,480 |  | 185, 136 |  | 13,325,744 |
| $3 / 8$ |  | 211,584 | . | 370,272 |  | 11,019,120 |
| $3 / 15$ |  | 264,480 |  | 581,856 |  | 10,801,04) |
| 3/23 |  | 211,584 |  | 290,928 |  | 9,134,064 |
| $3 / 29$ |  | 264,480 | . . | 370,272 | .. | 14,115,040 |
| $4 / 5$ |  | 555,408 |  | 661,200 | . | 5,260,608 |
| 4/13 |  | 185,136 | . | 687,648 | . . .... | 8,892,336 |
| 4/19 |  | 555,408 |  | 502,512 | . | 14,298,672 |
| 4/26 |  | 211,58 4 |  | 211,584 |  | 11,305,248 |
| $5 / 3$ | 3,200 | 1,084,368 |  | 502,512 | . | 7,678,572 |
| $5 / 10$ | 3,200 | 978,576 | . . | S19,888 |  | 10,505,408 |
| 5/17 | 211,584 | 1,798,464 | $\cdots$. | 8199,23: |  | $16,196,258$ |
| $5 / 24$ | -12,800 | 63.4,752 |  | 740,544 |  | 11,764,928 |
| 5/31 |  | 793,440 |  | 687,648 | $\cdots$ | 21,702,976 |
| $6 / 7$ |  | 1,428,192 |  | 687,648 |  | '22,407,344 |
| $6 / 1$ ) |  | 793,44) | . | 423,168 |  | 16,107,296 |
| 6/21 |  | 290,923 |  | 211,584 |  | 19,785,26 $\ddagger$ |
| 6/28 | 6,400 | 528,960 |  | 290,923 | 6,400 | 29,8;34,352 |
| $7 / 5$ | 3,200 | 158,688 |  | 79,344 |  | 14,174,332 |
| 7/12 |  | 581,856 |  | 158.688 |  | 25,030,060 |
| 7/19 |  | 423,168 | 476,064 | 105,792 | 3,200 | 43,575,008 |
| 7/26 | 3,200 | 952,128 | 370,272 | 211,584 |  | $44,644,3.52$ |
| 8/2 | 3,200 | 2,539,008 | 370,272 | 317,376 | 3,200 | 102,741,536 |
| $8 / 9$ |  | 4,707,744 | 105,792 | 317,376 | . ......... | 90,369,664 |
| 8/15 | 12,800 | 1,745,568 | 370,272 | 105,792 |  | 90,117,192 |
| 8/23 |  | 2,010,048 | 476,064 | 211,584 |  | 193,347,650 |
| 8/31 |  | 2,327,424 | 1,057,920 | 4,866,432 |  | 178,086,636 |
| $9 / 6$ |  | 1,269,504 | 1,057,920 | 2,750,592 |  | 211,605,800 |
| $9 / 13$ |  | 1,481,088 | 211,584 | 6,463,312 |  | 132,958,752 |
| $9 / 20$ | 12,800 | 846,336 | 317,376 | 1,904,256 |  | 123,920,832 |
| $9 / 27$ |  | 1,163,712 | 317,376 | 1,269,504 | . | 74,461,376 |
| 10/4 |  | 925,128 | 423,168 | 2,433,216 |  | 72,648,572 |
| 10/11 |  | 1,269,504 | 634,752 | 2,327,424 |  | 132,110,672 |
| 10/18 |  | 634,752 | 105,792 | 846,336 |  | 71,980,864 |
| 10/26 | 12,800 | 1,163,712 | 317,376 | 634.752 | . .-........ | 47,266,700 |
| 111 |  | 423,168 | 423,168 | 476,064 |  | 22,980,76S |
| 11/8 | 6,400 | 952,128 | 52,896 | 158,688 |  | 10,205,536 |
| 11/15 |  | 83,200 | 52,896 | 105,792 |  | 5,766,976 |
| 11/22 |  | 423,168 | 185,136 | 158,688 | . | 6,4.51,616 |
| 11/30 |  | 317,376 | 1,600 | 158,688 |  | 18,058,240 |
| 12/6 |  | 185,136 |  | 317,376 | - . | 11,466,384 |
| 12/14 | 3,200 | 238,032 | 132,240 | 185.136 |  | 6,252,552 |
| 12/20 |  | 264,480 | 52,896 | 132,240 | ............... | 4,821,440 |
| 12/27 |  | 528,960 | 1,600 | 264,480 |  | $5,190,960$ |
| 1913 | Algae unidentified | Closterium acerosum | Closterium acuminatum | Closterium rostratum | Mougeotia sp . | Spirozyra protecta |
| 1/5 |  |  |  |  | 800 |  |
| 1/12 |  |  |  |  |  | 2,800 |
| 1/19 |  |  |  |  | 400 |  |
| 1/25 |  | 1,600 |  |  | ... | . . . |
| 2/2 | . | 1,600 |  |  |  | . . . ...... |

# Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued) 

| 1913 | Algae unidentified | Closterinm acerosum | Closterium acumimatum | Closterium rostratum | Mougeotia sp. | Spirogyra protecta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 / \mathrm{s}$ |  | 3,200 |  |  |  |  |
| 2.15 |  | 6,400 |  | . ....... ... |  |  |
| 2, 23 | 1,600 | ......... |  | ... ... . |  | 3,200 |
| 3.1 | 1, |  |  |  | 1,600 |  |
| 3 8 | .. .. ... ... | 3,200 | $\cdots$ | ... . .. |  | .. ... |
| 3,15 | .. .. . .. | , | . . . |  | .. |  |
| $3 / 23$ | .. . .. ... . |  |  | 1,600 | . .. . ... | 3,200 |
| $3 \cdot 29$ | .... . ... |  |  |  |  |  |
| 4.5 | .. .. . .. | 6,400 |  | . . . | 3,200 | 238,032 |
| 413 |  |  |  |  |  |  |
| +19 | .. ... . . . | 3,200 |  | .... .. . . |  |  |
| 426 |  |  |  |  |  |  |
| 5) 3 |  |  |  | .... ... . | 3,200 |  |
| $5 / 10$ |  | 3,200 |  |  |  |  |
| $5 / 17$ |  |  |  | .. . |  | 6,400 |
| $5 / 24$ |  | 6,400 | . ... | ... | .... . .. .... |  |
| $5 / 31$ |  | 12,800 | ... .... | ...... . | .. . | :.. .. |
| 6/ 7 | .. |  | .. . . | .. .. . . | ..... ..... |  |
| 6/16 |  |  |  |  |  |  |
| $6 / 21$ |  | 3,200 |  |  |  |  |
| $6 / 28$ |  | 12,800 | 3,200 |  |  |  |
| $7 / 5$ | .... .... | 3,200 |  |  | 3,200 |  |
| 7/12 | ..... |  | 6,400 |  | 555,408 |  |
| 7/19 |  | 6,400 |  |  | 370,272 |  |
| 7,26 | .. . . .. . ... | 12,800 |  |  | 476,064 | .... |
| 8.2 |  | 25,600 | 12,800 |  | 370,272 | ... |
| 89 | .. . $\cdot$ | 38,400 |  |  | 581,856 |  |
| 815 |  |  |  | 3,200 | 2,591,904 |  |
| 8/23 |  | 19,200 | ... ${ }^{\text {. }}$ |  | 2,380,320 | . |
| 8/31 | . . . | 12,800 | . .. . . . | 211,584 | 4,347,472 |  |
| $9 / 6$ |  | 64,000 |  |  | 211,58 | - . . |
| 9/13 |  | 38,400 | . .. . |  | 952,128 |  |
| $9 / 20$ |  | 12,800 |  | 105,792 | 317,376 |  |
| $9 / 27$ | . | 25,600 |  |  | . |  |
| $10 / 4$ |  |  |  | 105,792 |  |  |
| $10^{\prime} 11$ |  | 25,600 | . . |  | 317,376 |  |
| $10 \cdot 18$ |  |  |  | $\cdots$ |  |  |
| 10,26 |  |  |  |  | -. . . . |  |
| 11/1 |  | 6,400 | . |  | - . |  |
| 11/8 |  |  |  |  |  |  |
| 11 T5 |  |  |  |  | 158,688 |  |
| 111/22 |  | 3,200 |  |  | 1,600 |  |
| 11.30 |  | 3,200 |  | 1,600 |  |  |
| 12/6 |  | 3,200 | . | - . | , |  |
| 12.14 |  | 3,200 |  |  |  |  |
| 1220 |  |  |  | 3,200 |  |  |
| $12 \times 7$ | .. | 1,600 |  |  | 1,600 | 79,344 |
| 1913 | $\begin{gathered} \text { Spirogyra } \\ \text { sp. } \end{gathered}$ | Staurastrum | Staurastrum sp. | $\begin{gathered} \text { Total } \\ \text { Conjugatae } \end{gathered}$ | $\begin{gathered} \text { Total } \\ \text { Chlorophyll } \\ \text { bearing } \end{gathered}$ | Total Algae |
| $1 / 5$ | 800 |  |  | 1,600 | 5,814,336 | 5.813 .936 |
| 1/12 |  |  |  | 1,800 | 2,278,204 | 2,275,804 |
| 119 | 1,200 |  |  | 3,200 | 13,272,348 | 11,005,244 |
| 125 | 19,836 | - . |  | 21.436 | 3,660,576 | 12.733 .296 |
| 2. 2 |  |  |  | 1,600 | 13,769,920 | 12,047,440 |
| $2 \cdot 8$ |  |  |  | 23,036 | 16,125,644 | 13,124,668 |
| 215 |  | 6,400 |  | 12,800 | 8,114,160 | 5,146,432 |
| 223 |  | 3,200 |  | 8,000 | 9,711,436 | 7,198,124 |
| 31 |  |  |  | 1,600 | 14,171,888 | 13,400,944 |
| 3, 8 |  | 6,400 |  | 9,600 | 11,555,584 | 11,348,448 |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

| 1913 | Spirogyra <br> sp. | sitaurastrum A | Staurastrum sp . | Total <br> Conjugatae | $\underset{\substack{\text { Chlorophyll } \\ \text { bearing }}}{ }$ | $\begin{aligned} & \text { Total } \\ & \text { Algae } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3/15 | 1,600 |  |  | 3,200 | 11,562,384 | 11,291,504 |
| 3/23 | 3,200 |  |  | 11,200 | 10,227,840 | 9,487,296 |
| 3/29 |  | 3,200 |  | 6,400 | 16,907,98t | 15,208,872 |
| $4 / 5$ | 3,200 | 1,640 |  | 252,432 | 5,806,320 | 5,957,00s |
| 4/13 |  |  |  |  | 9,506,848 | 9,134,224 |
| 4/19 |  |  |  | 3,200 | 14,702,392 | 14,595,000 |
| $4 / 26$ |  |  | 1,600 |  | 11,812,464 | 11,634,576 |
| $5 / 3$ |  |  |  | 6,400 | 8,145,788 | 7,879,70S |
| $5 / 10$ |  |  |  | 3,200 | 10,720,192 | 10,508,608 |
| 5/17 |  |  |  | 6,400 | 17,202,816 | 17,074,624 |
| $5 / 24$ |  |  | 3,200 | 9,600 | 12,260,192 | 12,148,000 |
| 5/31 |  |  |  | 12,800 | 24,202,408 | 23,197,384 |
| $6 / 7$ |  |  |  |  | 24,771,432 | 23,848,336 |
| 6/16 | 6,400 |  |  | 12,800 | 17,318,816 | 16,754,656 |
| $6 / 21$ |  |  |  | 6,400 | 20,548,016 | 20,26 1,432 |
| 6.28 |  | 1,600 |  | 17,600 | 31,173,494 | 31,110,998 |
| 75 |  | 52,896 | 1,600 | 60,896 | 15,385,292 | 14,671,196 |
| 7/12 |  | 105,792 |  | 667,600 | 30,992,964 | 29,847,700 |
| $7 / 19$ |  | 12,800 | 3.200 | 392,672 | 58,626,280 | 52,641,128 |
| 7/26 |  | 158,688 | 3,200 | 653,952 | 60,004,896 | 52,222,784 |
| 8.2 |  | 6,400 | 423,168 | 838,240 | 114,102,688 | 111,419,488 |
| $8 / 9$ |  | 476,064 | 105,792 | 1,205,292 | 100,712,962 | 97,689,996 |
| 8/15 |  | 211,584 | 317,376 | 532,160 | 101,975,404 | 99,939,656 |
| 8,23 |  | 423,168 | 423,168 | 865,536 | 214,321,570 | 210,785,834 |
| $8 / 31$ |  | 317,376 |  | 5,206,60s | 196,911,420 | 193,606,268 |
| $9 / 6$ | 12,800 | 211,584 | 317,376 | 817,344 | 226,118,120 | 221,453,864 |
| $9 / 13$ |  | 740,544 | 105,792 | 1,836,864 | 148,511,000 | 143,032,200 |
| $9 / 20$ |  | 1,057,920 | 105,792 | 1,599,680 | 137,1.10,848 | 13,3,713,304 |
| $9 / 27$ |  | 740,544 |  | 76t, 144 | 90,015,440 | 8.5,113,408 |
| 10/4 |  | 211,584 | 105,792 | 42:3,068 | 90,2:24,744 | 82,463,52s |
| 10/11 |  | 211,584 | 10., 792 | 660,350 | 147,152,542 | 141,298,382 |
| 10/18 |  | 105,792 |  | 105,792 | 84,014,960 | 75,340,016 |
| 10/26 |  |  |  |  | 58,621,362 | 50,145,202 |
| 11/1 |  |  |  | 6,400 | 29,859,648 | 25,702,368 |
| 11/8 |  |  |  |  | $14,369,824$ | 10,931,584 |
| 11/15 |  |  |  | 62,688 | 11,064,384 | 6,836,096 |
| 11/22 |  | 1,600 |  | 6,400 | 13,861,008 | 6,791,392 |
| 11/30 |  | 1,600 |  | 9,600 | 22,768,336 | 18,321,872 |
| 12/6 |  |  |  | 3,200 | 16,767,936 | 11,490,384 |
| 12/14 |  | 1,600 |  | 4,800 | 9,313,272 | 6,316,648 |
| 12/20 |  |  |  | 5,200 | 7,212,112 | 4,901,536 |
| $12 / 27$ |  |  |  | 80,944 | 6,237,032 | 5,440,392 |
| 1913 | Ceratium hirundinella | Cercomonas crassicauda | Chlamydomonas sp. | $\underset{\mathrm{sp}}{\text { Chromulina }}$ | Dinobryon sertularia | Eudorina elegans |
| 1/5 |  |  |  |  |  | 400 |
| 1/12 |  |  |  |  |  | 2,800 |
| 1/19 |  |  |  | 2,22x,244 |  | 2,000 |
| 1/25 |  |  |  | 826,500 |  | -800 |
| $2 / 2$ |  |  |  | 1,424,192 |  | 30,800 |
| $2 / 8$ |  |  |  | 2,962,176 |  | 22,400 |
| 2/15 |  |  |  | 2,856,354 |  | 19,200 |
| 2/23 |  |  |  | 2,300,976 |  | 158,688 |
| $3 / 1$ |  |  |  | 740,544 |  | 22.400 |
| $3 / 8$ |  |  |  | 52.896 |  | 28,800 |
| $3 / 15$ |  |  |  | 52,596 | 1,600 |  |
| $3 / 23$ |  |  |  | 290,928 |  | 158,685 |
| 3/29 |  |  |  | 978,576 | 3,200 | 502,512 |
| 4/5 | . | - . |  | 105,792 |  | 6,400 |
| 4/13 |  |  |  | 158,688 |  | 25.600 |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

| 1913 | Ceratium hirundinella | Cercomonas crassicauda | Chamydomonas sp. | Chromulina sp. | Dinobryon sertularia | Fudorina elegans |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $4 / 19$ |  |  |  |  |  | 3,200 |
| 4/26 | ............... |  |  | 52,896 |  | 16,000 |
| $5 / 3$ | ............... |  | ............... | ............... |  |  |
| 5.10 |  |  |  |  | 158,685 |  |
| $5 / 17$ |  |  |  | 3,200 | 12,800 | 6,400 |
| $5 / 24$ |  |  | 105,792 |  |  | 3,200 |
| 5) 31 |  |  |  |  |  |  |
| $6 / 7$ | 12,800 |  |  | 105,792 | 12,800 | 51,200 |
| $6 / 16$ |  |  |  | 26.4,480 | 158,688 | 25,600 |
| $6 / 21$ |  |  |  | 158,688 | 3,200 | 61,000 |
| 6 |  |  |  |  |  | 3,200 |
| $7 / 5$ |  |  | ............... | 55,5,408 | ............... | 105,792 |
| 7/12 | 1,600 |  |  | 555,408 |  | 502,512 |
| 7/19 |  |  |  | 5,818,560 |  | 44,800 |
| 7/26 |  | 3,200 |  | 6,82'3,584 |  | 317,376 |
| $8 / 2$ |  |  | 3,200 | 2,010,048 |  | 105,792 |
| 8/9 | 6,400 |  |  | 1,057,920 |  | 1,481,088 |
| 8/15 |  |  |  | 1,481,088 |  | 6,400 |
| S/23 |  |  | 3,200 | 3,067,968 |  | 19,200 |
| 8/31 | 12,800 |  | 317,376 | 2,644,800 | ............... |  |
| $9 / 6$ |  |  |  | 3,808,512 |  | 211,584 |
| 9/13 | 25,600 |  |  | 4,241,680 |  | 38,400 |
| $9 / 20$ |  | 105,792 |  | 2,644,800 |  | 38,400 |
| $9 / 27$ |  |  | 105,792 | 4,347,472 |  | 12,800 |
| $10 / 4$ |  |  |  | 7,088,064 |  | 25,600 |
| 10/11 |  |  |  | 5,183,808 |  | 25,600 |
| 10/18 |  |  |  | 7,722,816 |  |  |
| 10/20 |  |  |  | 8,251,776 |  | 105,792 |
| 11/1 |  |  |  | 3,914,304 | 6,400 | 105,792 |
| 11/8 | ............... | .............. |  | 2,962,176 | 105,792 | 52,896 |
| 11/15 |  |  |  | 3,914,304 |  | 52,896 |
| $11 / 22$ |  |  |  | 6,717,792 | 132,240 | 3,200 |
| 11/30 |  |  |  | 4,231,680 |  | 52,896 |
| 12/6 |  |  |  | 5,183,808 | 1,600 | 12,800 |
| 12/14 | ............... |  |  | 2,988,624 | , | 3,200 |
| 12/20 |  |  |  | 2,142,288 |  | 3,200 |
| 12/27 |  |  |  | 793,440 |  |  |
| 1913 | Euglena viridis | Flagellate unidentified | Hemidinium nasutum | Pandorina morum | Peridinium cinctum | Phacus pleuronectes |
| 1/5 | .. . ...... | ....... . . . . | . . . . | ... . . | . . . . . . . | ... . .. |
| 1/12 |  | .. ... . . |  |  | .. . . . . |  |
| 1/19 | .. . . . .. | ..... . . | . . . | 400 | . ... . |  |
| 1/25 | . . . ... . | .... . . | . . . | 800 | - . . . . |  |
| 2/2 | - . ... | ... . | . . . | 4,800 | . ... | . |
| 2/8 | ..... . .... | .. . . . | . . . | 3,200 | . . . | . |
| 2/15 | ... . . . |  | . . | 12,800 | . . . | . . . . . |
| 2/23 | . ... . | 1,600 | . . . . | 19,200 | . . . . | $\cdots$. |
| 3/1 | . . . . | 3,200 | . . . . | 3,200 | . . . . | . . . . |
| $3 / 8$ | . .. . . . | . .. . . . . | . . . | 1,600 | . . . . |  |
| $3 / 15$ | . . . . . | .. . .. . . | .. . | 3,200 | . . . . . |  |
| 3/23 | . . . . | . . . | . . . . . | 79,344 | .. . . . . |  |
| $3 / 29$ | - . . . | .... $\cdot$. | .. . . | 79,344 | . . . | . .. |
| 4/5 | . .. . . |  | . . . |  | . . . . | . . |
| $4 / 13$ | . . . ... | .. | . . . | 3,200 | ... . . . |  |
| 4/19 | . . . . |  | . . | 1,600 | - . . . . | . . . . |
| 4/26 | . . . . | 3,200 | . . . |  | . . . . | . |
| $5 / 3$ | . . . | 1,600 | $\cdots$. |  | - . . | . |
| $5 / 10$ |  |  |  |  |  |  |
| $5 / 17$ | . | 3,200 | . . . |  | . . . |  |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)
1913
$5 / 24$
$5 / 31$
$6 / 7$
$6 / 16$
$6 \cdot 21$
$6 / 28$ 75 $7 / 12$ $7 / 19$ $7 / 26$ 8 2 $8 / 9$ 815 S, 23 N/31 $9 / 6$
$9 / 13$
$9 / 20$
9/27
$10 / 4$
10. 11
$10 / 18$
$10 / 26$
11/1
$11 / 8$
$11 / 15$
$11 / 22$
11/30
$12 / 6$ 12/14 $12 / 20$ 12/27
1913
$1 / 5$
$1 / 12$
$1 / 19$
$1 / 25$
$2 / 2$
$2 / 8$
$2 / 15$
$2 / 23$
$3 / 1$
$3 / 8$
$3 / 15$
$3 / 23$
$3 / 29$
$4 / 5$
$4 / 13$
4
$4 / 26$
$4 / 3$
$5 / 3$
$5 / 10$
$5 / 17$
5

| Euglena <br> viridis | Flagellate <br> unidentified |
| :---: | :---: |
| $\cdots$ |  |
| 211,581 | $\cdots$ |
| 3,200 |  |

Hemidinium Pandorina Peridinium Hemidinium
nasutum $\begin{gathered}\text { Pandorina } \\ \text { morum }\end{gathered} \quad \begin{gathered}\text { Peridinium } \\ \text { cinctum }\end{gathered} \quad \begin{gathered}\text { Phacus } \\ \text { pleuronectes }\end{gathered}$ viridis



105,792
105,792

211,584
528,960

| 6,400 | 52,896 | $\ldots$ |
| ---: | ---: | ---: |
| 6,400 | 52,846 | $\ldots 2,896$ |
| 52,896 | $\ldots \ldots \ldots \ldots$ | 1,600 |
| 52,496 |  |  |
| 3.200 |  |  |
| 6,400 |  |  |

Platydorina
caudata
Pleadorina californica

Pleodorina Pteromonas

Trachelomonas Trachelomonas euchlora volgensis

66,120
1,600
52,896
132,240
79,344
79,344 132,240
52,896
79,344
52,896
132,240
52,896
3,200
211,584

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Cotinued)

| 1913 | Platydorina caudata | Pleodorina californica | Pleodorina <br> illinoisensis | $\begin{gathered} \text { Pteromonas } \\ \text { sp. } \end{gathered}$ | Trachelomonas euchlora | Trachelomonas volgensis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/2S | . . . | ... . . | .. .. .. . | ..... . . | . . . . . | . . . .. |
| 7/5 | .. . . . |  | ... . | ... . | ... . . . | .. . . . . |
| 7/12 | . . . | 3,200 | .... . . | . . . . | . . . | . . . |
| 7/19 | ... | 12,800 | .... . |  | . | - - |
| $7 / 26$ | 6,400 | 158,68S | . . .. .. | 158,685 | . . .. | . .. . .... |
| S/2 | 19,200 | 158,688 | .. $10{ }^{\circ}$ | . . . | . . . | . . .. |
| $8 / 9$ | 38,400 | 105,792 | 6,400 | . . . | .... . . . | . . . . |
| 8/15 | 12,800 | 158,688 | . . . | - . . ... | . . .. . . | ... .. . . . |
| 8/23 | 12,800 | 10.),792 |  | . . . . | .. - . . .. | . |
| 8/31 | 12,800 | 211,584 | . . . | . | .. . . |  |
| $9 / 6$ |  | 89,600 | . . . | . . . | . . . | 105,792 |
| $9 / 13$ | 64,000 | 51,200 | . | . . | . . . . |  |
| 9/20 |  | 12,800 | . . . . | . | . . . | 10\%),792 |
| 9/27 | 12,800 |  | . | . |  |  |
| 10/4 |  | 12,800 |  |  | . |  |
| 10/11 |  |  | . | 105,792 |  |  |
| 10/18 | . |  |  |  | . . . . . | 105,792 |
| 10/26 |  | 12,800 | . . | . |  |  |
| $11 / 1$ | 6,400 | 6,400 |  |  |  |  |
| 11/8 |  | . . | 6,400 | . . |  | . . . |
| 11/15 |  | . . | . . |  |  |  |
| 11/22 | -.............. | ............... |  |  | 1,600 | 1,600 |
| 11/30 |  | , . |  |  |  | 105,792 |
| 12/6 |  | . |  |  |  |  |
| 12/14 |  | . . . . . | . |  |  |  |
| 12/20 | . | .... . | . |  |  |  |
| 12/27 |  | . . . |  | 1,600 | . . | . . . . . |
| 1913 | Trachelomonas volvocina | Volvox aureus | Total <br> Mastigophora | Amocba proteus | Amoeba radiosa | Arcella vulgaris |
| 1/5 |  |  | 400 |  | . . |  |
| 1/12 |  |  | 2,800 |  | . | - .. |
| 1/19 | 33,060 |  | 2,264,104 |  | , |  |
| 1/25 | 33,060 |  | 927,280 |  |  | - ./ |
| $8 / 2$ | 79,344 |  | 1,622,480 |  | - . | , .. . . |
| 2/8 | 1,600 |  | 3,000,976 |  |  | . |
| 2/15 | 79,344 |  | 3,02S,52S |  | - .. | - . ${ }^{\text {- }}$ |
| 2/23 | 52,896 |  | 2,592,656 | . | . - . - | - . |
| $3 / 1$ | 1,600 |  | 770,944 |  | . . | . . . |
| $3 / 8$ |  |  | 217,136 |  | . |  |
| 3/15 | 132,240 |  | 270,880 |  | . | . . |
| 3/23 | 183,136 |  | 793,440 |  |  |  |
| $3 / 29$ | 1,600 |  | 1,699,072 | 3,200 |  |  |
| 4/5 |  |  | 160,688 | 3,200 |  |  |
| 4/13 | 105,792 |  | 372,624 |  | - . | 1.600 |
| 4/19 | 52,896 |  | 107,392 | - . |  |  |
| 4/26 | 105,792 |  | 177,888 |  | 52, 896 | 3,200 |
| $5 / 3$ |  |  | 266,080 |  |  | . . . |
| $5 / 10$ | 1,600 |  | 211,584 | . |  | - . |
| $5 / 17$ | 105,792 |  | 131,392 |  | 3,200 | . - .. |
| $5 / 24$ |  |  | 112,192 |  |  | - . . . |
| $5 / 31$ | 317,376 |  | 1,005,024 | . |  |  |
| $6 / 7$ | 317,376 |  | 1,028,888 |  | . | 12,800 |
| 6/16 | 105,792 |  | 564,160 |  | - . | . . . |
| 6/21 | -2,896 |  | 283,55 4 |  |  |  |
| 6/28 | 52,896 |  | 62,496 | . | . | 3,200 |
| 75 |  |  | 714.096 |  |  | . . . |
| 7/12 | 1,600 |  | 1,145,264 | - | .... | ................ |
| 7/19 | 3,200 |  | 5,985,152 | ............... | .... | ........... |
| 7/26 | 211,584 | 25,600 | 7,807,712 |  |  | . . .. . |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

| 1913 | Trachelomonas volvocina | Volvox aureus | Total Mastigophora | Amoeba proteus | Amoeba radiosa | Arcella vulgaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $8 / 2$ |  | 12,800 | 2,696,000 |  |  |  |
| 8/9 |  | 6,400 | 3,029,366 |  |  |  |
| 8/15 | 158,688 |  | 2,035,748 | 3,200 | ............... |  |
| 8/23 | 264,480 | 6,400 | 3,644,928 | 528,960 | .... |  |
| 8/31 | 423,168 |  | 3,622,528 |  |  |  |
| $9 / 6$ | 317,376 |  | 4,664,256 | 211,581 |  |  |
| $9 / 13$ | 740,544 | 12,800 | 5,491,600 | ............. |  |  |
| 9/20 | 317,376 |  | 3,436,544 |  | 211,584 |  |
| 9/27 | 423,168 |  | 4,902,032 |  |  |  |
| 10/4 | 528,960 |  | 7,761,216 |  |  |  |
| 10/11 | 423,168 |  | 5,959,952 | ............... | 105,792 |  |
| 10/18 | 317,376 |  | 8,780,736 | .............. |  |  |
| 10/26 | 211,584 |  | 8,581,952 |  | 12,800 |  |
| 11/1 | 158,688 |  | 4,157,280 |  | 52,896 |  |
| 11/8 | 211,584 |  | $3,438,240$ |  |  |  |
| 11/15 | 105,792 |  | 4,281,184 |  | 158,688 |  |
| 11/22 | 158,688 |  | 7,096,616 | 3,200 |  |  |
| 11/30 | 52,896 |  | 4,446,464 | ............... | ............... |  |
| 12/6 | 79,344 |  | 5,277,552 |  |  |  |
| 12/14 | 1,600 |  | 2,996,624 | .,............. |  |  |
| 12/20 | 52,896 |  | 2,310,576 |  | 1,600 |  |
| $12 \cdot 27$ | 1, 00 |  | 796,640 | . |  |  |
| 1913 | Cyphoderia ampulla | Difflugia corona | Difflugia pyriformis | Hyalodiscus sp. | Mierog=unia socialis | Total <br> Rhizopoda |
| 1/5 |  | - . . .. |  | . . . . | $\cdots$. |  |
| 1/12 |  | . |  | - | . . |  |
| 1/19 |  |  |  |  |  |  |
| 1/25 |  |  | 400 |  |  | 100 |
| $2 / 2$ |  |  | 1,600 |  |  | 1,600 |
| 2/8 |  |  | 1,600 |  |  | 1,600 |
| 2/15 |  |  | 12,800 |  |  | 12,800 |
| 2/23 |  |  | 19,200 |  | 79,344 | 98,544 |
| 3/1 |  |  | 3,200 |  |  | 4,800 |
| 3/8 |  |  | 9,600 |  |  | 12,800 |
| 3/15 |  |  | ............... | .............. | .............. |  |
| 3/23 |  |  | ............... |  | ............... | 1,600 |
| 3/29 |  |  |  |  |  | 3,200 |
| 4/5 |  |  | 6,400 |  |  | 16,000 |
| 4/13 |  |  | 6,400 |  | .......... - | 8,000 |
| 4/19 | 52,896 |  | 79,344 |  |  | 132,240 |
| 4/26 |  | ............... | 32,000 | .............. |  | 88,096 |
| $5 / 3$ |  | . . . . . | . . . |  |  |  |
| $5 / 10$ |  | .. . .. .. |  |  |  |  |
| $5 / 17$ |  |  | 19,200 | ............... |  | 22,400 |
| $5 / 24$ | ............... |  | 6,400 |  |  | 6,400 |
| 5/31 |  |  | 634,752 | ................ |  | 634,752 |
| $6 / 7$ | 12,800 |  | 793,440 |  |  | 104,944 |
| $6 / 13$ |  |  | 158,688 | ............... |  | 158,688 |
| 1/21 | ............... |  | 211,584 |  |  | 211,584 |
| 6/28 |  |  | 185,130 |  |  | 189,936 |
| $7 / 5$ |  |  | 158,688 |  |  | 158,685 |
| $7 / 12$ | 3,200 |  | 132,240 |  | 1,600 | 146,640 |
| $7 / 19$ |  |  |  |  |  | 3,200 |
| 7/26 | ............... | ............... | 12,800 |  | 158,688 | 171,488 |
| $8 / 2$ |  |  | 6,400 |  | 15S,688 | 168,285 |
| $8 / 9$ |  |  |  |  |  | 3,200 |
| 8/15 | ............... | 6,400 | 19,200 | 3,200 | 105,792 | 131,392 |
| 8/23 |  |  |  |  | 158,688 | 1,189,312 |
| 8/31 |  | 12,800 | 105,792 | 317,376 | 211,581 | 647,552 |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Contimucd)

| 1913 | Cyphomeria ampula | Ditllugia corona | Difflugia pyriformis | $\begin{gathered} \text { Hyalodiscus } \\ \Delta p . \end{gathered}$ | Microgromia socialis | Total Rhizopoda |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9) 6 | 12.800 |  | 25,600 | . . . | 317,376 | 567,360 |
| $91: 3$ |  |  |  |  | 211,581 | 211,584 |
| $9: 20$ |  | 12,800 |  | 105, 792 |  | 330,176 |
| 927 | . | 12,800 | . . | 12,800 | 105,792 | 131,392 |
| 10/ 4 |  |  |  |  | 846,336 | 846,336 |
| 10,11 | 12,800 | . | $\cdots$ | 105,792 | 105,792 | 330,176 |
| $10 / 18$ |  |  | .. . . |  | 211,584 | 211,584 |
| 1026 |  |  | . | 105,792 | 211,584 | 330,176 |
| 11 1 |  |  |  | 52,896 | 52,896 | 158,688 |
| 118 | . . |  | 52,896 | 105,792 | ... . . . | 211,5゙S4 |
| 1115 | . | . | 5 |  | . | 158,688 |
| 11.22 |  |  | 3,200 | ... . | -.. | 6,400 |
| 11 '30 |  |  |  |  | . . . . |  |
| 126 |  |  | 1,600 | . . . . | ... | 1,600 |
| 1214 | .. .. . | 3,200 |  | .. . . . . ${ }^{\text {d }}$ | .. . . . | 3,200 |
| 12.20 |  |  | 1,600 |  | . . . . | 3,200 |
| 12,27 | 1,600 | 9,600 |  |  |  | 11,200 |

Actinophrys Heterophrys Heterophrys

| 1913 | Actinophrys sol. | $\begin{aligned} & \text { Heterophrys } \\ & \text { fockei } \end{aligned}$ | sp. |
| :---: | :---: | :---: | :---: |
| 1/5 | ... . . | ........ | . . . . |
| 1/12 | . .... | . . . . . . | . . . |
| 1/19 | . . . | .. | . . . . . |
| 1/25 | .... . . | .... . .. . | . . . . .... |
| 2/3 | . . . | .. | . . . .. |
| 2/8 | . . . | ... .. . | ... . . . |
| 2/15 | . . . | .. .. . . | .. . . . |
| $2 / 23$ | .. . . . . | . | . . .. . . |
| 3/ 1 | . .. . ... . | . . . . | . . . |
| 3/ 8 | .. . . . | ........ ... . | ..... ... $\cdot$ |
| 3/15 | . .. . . | - . .... ..... | . . |
| $3 / 23$ | . . . . | .... . . ... .. | 1,600 |
| 3/29 | . . | .... . | . . . .. |
| 4/5 | .. . . | .. . . . . | . ..... |
| 4/13 | - . | .. . . . . | - . .. . . |
| 4/19 | .. . | .... . . . | .. . . |
| 4/26 | . . . | .... . .. .. | .. . . . |
| 5/3 | . .. . | .. . .. | ... . . |
| 5/ 10 | . . . . | . . .. | - . . . |
| $5 / 17$ | . | . . . | .. ... . .. |
| 5, 24 | . . | .. . . . | .. . . . |
| 5/31 | . . . | . . . | . . . . |
| 6/7 | . . .. | .... . . . |  |
| 6/16 | . . . | .. . . | . . . |
| 6/21 | . . . | . . . . | . . . . |
| 6/28 | . . | . |  |
| $7 / 5$ | . . | . . . |  |
| 7/12 | . . | . . |  |
| $7 / 19$ | , . | . . | 158,688 |
| 7/26 |  |  |  |
| 8/2 | . | 211,584 |  |
| 8, 9 | 3,200 | 317,376 |  |
| S:15 | 6,400 | 211,584 | 105,792 |
| 8.23 | .... , | 317,376 | . |
| 8/31 | .. . |  | . . |
| $9 / 6$ | . . |  | . . |
| 9/1:3 |  | 38,400 |  |
| $9 / 20$ | 12,800 | 1,269,504 |  |
| 9.27 | 105,792 | 1,481,088 |  |

3,200
$\qquad$
$\qquad$
$\qquad$
$\qquad$

52,896

1,600 476,064

211,584 105,792 105,792 476,064 211,584 634,752 105,792 105,792

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)
1913
$10 / 4$
$10 / 11$
$10 / 18$
$10 / 26$
$11 / 1$
$11 / 8$
$11 / 15$
$11 / 22$
$11 / 30$
$12 / 6$
$12 / 14$
$12 / 20$
$12 / 27$

1913
$1 / 5$
$1 / 12$
1/19
$1 / 25$
$2 / 2$
2/8
2/15
2/23
3/1
3/8
$3 / 15$
$3 / 23$
3/29
4/5
4/13
4/19
4/26
$5 / 3$
$5 / 10$
$5 / 17$
$5 / 24$
$5 / 31$
$6 / 7$
$6 / 16$
$6 / 21$
6/28
$7 / 5$
$7 / 12$
$7 / 19$
7/26
$8 / 2$
$8 / 9$
8/15
8/23
8/31
$9 / 6$
$9 / 13$
$9 / 20$
$9 / 27$
$10 / 4$
$10 / 11$
$10 / 18$
10/26

Actinophrys Heterophrys

Heterophrys
2,962,176 317,376 12,800
12,800 105,792

Total Heliozoa

Chilodon sp.
 unidentified 400 400 1,600 6,400 1,600
6,400
79,344
1,600
1,600
185,136

105,792

Nuclearia
simplex
Pinaciophora fluviatilis

1,269,504
423,168
317,376
105,792
52,896
$1,481,088$
1,600

Colep hirtus

Cyclidium
sp.

Epistylis
sp.

3,200

3,200

12,800

52,890

3,200
476,064
423,168
426,368
429,568
317,376
211,584
634,752
144,192
1,388,096
$1,586,880$
2,962,176
1,586,850
435,968
435,968
105,792
105,792
3,200
105,792
105,792
105,792

105,792

Table 2.-Organisms Per Cubic Meter in Plankiton of San Joaquin River in 1913-(Continued)

| 1913 |  |
| ---: | ---: |
| 11 | 1 |
| 11 | 6 |
| 11 | 15 |
| 11 | 22 |
| 11 | 30 |
| 12 | 6 |
| 12 | 14 |
| 12 | 20 |
| 12 | 27 |

Total
Heliozos
$10-7,792$
52,596
$1,523,984$
1,600
3,200

sp.

12,800
Ciliate
unidentified
.
Coleps
hirtus
Cyclidium
$5.5(506$
1,5\%3,981
1,600
$3 \cdot 300$

Euplotes
harpa
Euplotes
patella

400
400
6.100

13,800
3,200
3,200
3,200
Holophry
sp.

Paramecium aurelia

Paramecium
bursaria
sp.

Epistyli: al.

1
112
119
125
2 2
28
215
$2 \cdot 3$
3/ 1
3 8
315
$32: 3$
3.29
$4 / 5$
4/13
4/19
$4 / 26$
5/3
5/10
$5 / 17$
5;21
$5 / 31$
$6 / 7$
616
6.21

625
75
712
719
726
8
(1) 9

815
823
\& :31
9 / 6
913
920
$9 \cdot 27$
104
1011
10) 18

1126
11 1
11's
1115
1122

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)
1913
$11 / 30$
$12 / 0$
$12 / 1$
$12 / 2$
$12 / 2$

## 1913

1/5
$1 / 12$
$1 / 19$
$2 / 2$
2/8
2/15
2/23
$3 / 1$
3/8
3/15
$3 / 23$
$3 \quad 29$
$4 / 5$
4/13
$4 / 19$
4/26
$5 / 3$
$5 / 10$
$5 / 17$
$5 / 24$
$5 / 31$
$6 / 7$
$6 / 16$
$6 / 21$
$6 / 28$
$7 / 5$
$7 / 12$
7/19
$7 / 26$
$8 / 2$
$8 / 9$
$8 / 15$
8/23
8/31
9/6
$9 / 13$
$9 / 20$
9/27
$10 / 4$
10/11
$10 / 18$
10/26
$11 / 1$
11/8
11/15
$11 / 22$
$11 / 30$
$12 / 6$
12/14
12/20
12/27

| Euplotes harpa | Euplotes patella | Holophrya sp . |
| :---: | :---: | :---: |
| 52,896 |  | 1,600 |
| 3,200 |  |  |
|  |  | 1,600 |

## Stentor coeruleus

Stentor niger

Tintinnidium
fluviatile

Vorticella longifilum

Vorticella
$s p$.

Prorodon
sp.

Total
Ciliata

800
80
297,328
9,600
16*2,640
148,240
$558,70 \mathrm{~S}$
110,592
529,712
439,568
303,720
$21.3,144$
379,872
216,38 +
249,232
6,400
373,472 5332,160 806,240
1,017,824 267,680 105,792 4, 800 211,584 $1,269,504$ 846,336
1,219,808
$1,481.088$
1,057,920
383,072
2,115,840
317,376
1,163,712
1,163,712 952,128 846,336
634,752
634,752
342,976
554,560
3.0 .176

121,792
1.600

60,896
9,600
137,040
6,400

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

| 1913 | $\begin{gathered} \text { Acinetar } \\ \text { sp. } \end{gathered}$ | Podophrya sp. | Sphaerophrya sp. | $\begin{aligned} & \text { Total } \\ & \text { Suctoria } \end{aligned}$ | Total IProtozoa without Mastigophora | $\begin{aligned} & \text { Total Protozoa } \\ & \text { With } \\ & \text { Mastigophora } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 |  |  |  |  |  | 400 |
| 112 | - |  |  |  |  | 2,800 |
| 1.19 | . |  |  |  | 800 | 2,264,904 |
| 125 |  |  |  |  | 1,200 | 928,480 |
| 22 |  |  |  |  | 6,400 | 1,628,880 |
| 28 |  |  |  |  | 298,928 | 8,299,904 |
| $\because 15$ |  |  |  |  | 22,400 | :3,050,928 |
| 2,23 |  |  |  |  | 261,184 | 2,853,840 |
| $3 / 1$ |  |  |  |  | 153,0.40 | 923,984 |
| $3 / 8$ |  |  |  |  | 571,508 | 788644 |
| 315 |  |  |  |  | 110,592 | 381,472 |
| 3, 23: |  |  |  |  | 5:32,912 | 1,326,352 |
| 3/29 |  |  |  |  | 435,968 | 2,135,040 |
| 4/5 |  |  |  |  | 319,728 | 456,416 |
| 4 1:3 |  |  |  |  | 221,184 | 593,808 |
| $4 / 19$ |  |  |  |  | 512,112 | 619,504 |
| 4/26 | 3,200 | ............ |  | 3,200 | 307,680 | 485,568 |
| 5/3 |  |  |  |  | 249,232 | 515,312 |
| $5 / 10$ |  |  |  |  | 6,400 | 217,984 |
| 5,17 |  |  |  |  | 395,872 | 527,264 |
| 5, 24 |  |  |  |  | 538,560 | 651,752 |
| 5/31 |  |  |  |  | 1,440,992 | 2,446,016 |
| 6.7 |  |  |  |  | 1,122,768 | 2,151,656 |
| $6 / 16$ |  |  |  |  | 426,368 | 990,528 |
| (6,21 |  |  |  |  | 370,272 | 6.53,856 |
| 6.28 |  |  |  |  | 194,736 | 257,232 |
| 7/5 |  |  |  |  | 370,272 | 1,084,368 |
| 712 | 6,100 |  |  | 6,400 | 367,824 | 1,513,088 |
| 719 |  |  |  |  | 1,907,456 | 7,892,608 |
| 7/26 |  |  |  |  | 1,017,824 | 8,825,536 |
| 8/2 |  |  |  |  | 1,811,264 | 4,507,264 |
| \& 9 |  |  | 19,200 | 19,200 | 1,929,856 | 4,959,222 |
| 8/15 | 105,792 |  |  | 105,792 | 1,724,672 | 3,760,420 |
| -23 |  |  |  |  | 1,889,760 | 5,534,688 |
| 8,31 |  |  |  |  | 2,974,976 | 6,597,504 |
| 9/6 |  |  |  |  | 1,519,488 | 6,183, 744 |
| $91: 3$ |  |  |  |  | 1,519,488 | 7,011,088 |
| 9) 20 |  |  | 25,600 | 25,600 | 2,907,584 | 6,344,128 |
| 927 |  |  | 12,800 | 12,800 | 2,683,200 | 7,585,232 |
| 104 | 105,792 |  | 38,400 | 144,192 | +,799,040 | 12,560,256 |
| 1011 |  |  |  |  | 2,551,508 | 8,511,760 |
| 1018 |  |  | 25,600 | 25,600 | 1,307,904 | 10,085,640 |
| 1026 | 105,792 |  |  | 105,792 | 1,214,912 | 9,796,86. |
| 11. 1 |  |  |  |  | 819,040 | 4,976,320 |
| 11 is |  |  |  |  | 594,650 | 4,0:32,896 |
| 1115 |  |  |  |  | 2,179,840 | 6,461,024 |
| 1122 |  |  | 3,200 | 3,200 | 132,992 | 7,202,608 |
| 1130 |  | 3,200 | 3,200 | 6,400 | 11,200 | 4,457,664 |
| 12/6 |  | 3,200 | 1,600 | 4,800 | 67,296 | 5,344,848 |
| 121.4 | 3,200 |  | ......... | 3,200 | 16,000 | 3,012,624 |
| 1220 |  |  | ............. |  | 140,240 | 2,450,816 |
| 12/27 |  | 1,600 | ........ | 1,600 | 19,200 | 815,840 |
| 1913 | Collothera egg, attached | Collothers pelagica | $\begin{aligned} & \text { Collotheca } \\ & \text { sp. } \end{aligned}$ | Total Rhizota | Rotaria neptunia | Rotaria rotatoris |
| 1 / is |  |  |  |  |  | 2,000 |
| 112 |  |  |  |  |  | 4,400 |
| 119 |  |  |  |  | 400 | 52,890 |
| 125 |  |  |  | 400 | 2,400 | 26,448 |
| $2: 2$ |  |  |  |  |  | 107,392 |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)
1913
$2 / 8$
$2 / 8$
2/5
2/23
3/1
$3 / 8$
3/15
$3 / 23$
$3 / 29$
4/5
$4 / 13$
1/19
4/26
$5 / 3$
$5 / 10$
$5 / 17$
$5 / 24$
$5 / 31$
$6 / 7$
6/16
6/21
6/28
$7 / 5$
$7 / 12$
7/19
$7 / 26$
8/2
$8 / 9$
$8 / 15$
8/23
8/31
9/6
$9 / 13$
$9 / 20$
$9 / 27$
$10 / 4$
$10 / 11$
$10 / 18$
$10 / 26$
11/1
$11 / 8$
$11 / 15$
11/22
11/30
12/6
$12 / 14$
12/20
12/27
1913
$1 / 5$
$1 / 12$
$1 / 19$
$1 / 25$
$2 / 2$
$2 / 8$
$2 / 15$
$2 / 23$
$3 / 1$
$3 / 8$


Table 2.-Organigas Per Cubic Meter in Plankton of san Joaquin River in 1913-(Comtinued)

| 1913 | IRotifer egg, winter | Rotifer egg. unidentified | IRotifer unidentified | Total Bdelloida | Anureaopsis fissa | Anurcaopsis s]. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 / 15$ |  |  | 9,800 | 88,944 |  |  |
| 3/23 |  | 16,000 |  | 185,336 |  |  |
| $3 / 20$ | ............... | ............... | 3,200 | 25,600 | ........... |  |
| 1/5 | ............... | ............... | 6,400 | 16,000 | .......... |  |
| 4/13 |  |  | 3,200 | 3,200 |  |  |
| 4/19 | ............... | 1,600 | 6,400 | 6,400 | ............... |  |
| 426 |  | 1,600 |  |  |  |  |
| 5) 3 |  |  |  |  |  |  |
| $5 / 10$ | 1,600 | .............. | 22,400 | 22.400 |  |  |
| $5 / 17$ |  |  |  | (1.400 |  |  |
| 5)/24 | 12,800 |  |  | 6,400 |  | 3.200 |
| $5 / 31$ |  |  | 12,800 | 12,500 |  |  |
| 6/ 7 | ............... |  | 12,500 | 12,800 |  |  |
| (i) 16 |  |  |  |  |  |  |
| $6 / 21$ |  |  | 3,200 | 3,200 |  |  |
| 6.28 |  |  |  | 3,200 |  |  |
| $7 / 5$ |  |  | 3,200 | 3,200 |  | 6, 400 |
| 7/12 | .............. |  | 1,600 | 4,800 | - 30, 100 | ( 3.400 |
| 719 |  |  |  |  | :38,400 |  |
| $7 / 26$ |  |  |  | 6,400 |  |  |
| $8 / 2$ | 105,792 |  | 158,688 | 174,685 | 6, 400 |  |
| S 9 |  |  |  |  | 10.5, 792 |  |
| \& 15 | 3,200 |  | 32,000 | 64,000 | 12,800 |  |
| S/23 |  |  | 12.800 | 19,200 | 10.5, 792 |  |
| S/31 | 105,792 |  | 211,584 | 224,384 | 105,792 |  |
| $9 / 6$ |  |  |  |  | 12,800 |  |
| $9 / 13$ |  |  | '25,600 | 25,600 |  |  |
| $9 / 20$ | ............... |  | 211,584 | 224,384 | 25,600 |  |
| $9 / 27$ |  |  | 105,792 | 105,792 |  |  |
| 10/4 |  |  | 105,792 | 156,992 | 12,800 |  |
| 10/11 | 25,600 |  | 38,400 | 64,000 |  |  |
| 10/18 | 38,400 |  | 211,584 | 330,176 |  |  |
| $10 \cdot 26$ |  |  |  | 12,800 |  |  |
| 11/1 | 6,400 | .............. |  | 19,200 | 6,400 |  |
| 11/8 | 52,896 |  | 12,800 | 19,200 |  |  |
| 11/15 |  |  | 6,400 | 12,800 |  |  |
| 11/22 | 1,600 |  | .............. |  | 3,200 |  |
| $11 / 30$ |  |  |  |  |  |  |
| 12/6 | 3,200 |  |  | 9,600 |  |  |
| 12/14 | - 3,200 |  | t............. | 6,400 |  |  |
| 12/20 | 1,600 |  |  | 6,400 | 1,600 |  |
| 1227 |  |  | 3,200 | 3,200 |  |  |
| 1913 | Asplanchna brightwellii | Asplanchnopus sp. | Brachionus angularis | Brachionus angularis caudatus | Brachionus budspestenensis | Brachionus calyciforus |
| 1/5 |  | ............... | ............ |  | ..... | 800 |
| 1/12 | ............... |  | ...... | 400 | ............... | 1,200 |
| 1/19 | . | ............... | ..... | 400 | .............. | 1,200 |
| 1/25 |  |  | ............... |  |  | 4,000 |
| $2 / 2$ |  | 1,600 |  |  | , | 1,600 |
| $2 / 8$ |  |  |  |  |  | 4,4,800 |
| 215 |  |  |  |  |  | 132,240 |
| 2/23 | ............ |  | . | ............... | .............. | 41,600 |
| 3' 1 |  |  |  |  |  | (i. 400 |
| $3 / 8$ | .............. | .............. |  | ............... | ............... | 3,200 |
| 3/15 |  |  |  |  |  | 19,200 |
| $3 / 23$ | ... | ............... | 6,400 | ............... | 79,344 | 16,000 |
| $3 / 29$ |  |  | 9,600 |  |  | 16,000 |
| 4/5 | 6,400 | ............... | , | ............... | ............... |  |
| 413 |  |  |  |  |  |  |

Table 2.-Organisms Per Cobic Meter in Plankton of
San Joaquin River in 1913-(Continued)

| 1913 | Asplanchna brightwellii | $\begin{gathered} \text { Asplanchnopus } \\ \text { sp. } \end{gathered}$ | Brachionus angularis | Brachionus angularis caudatus | Brachionus budapestenensis | Brachionus calyciflorus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4/19 |  |  | 6,400 | ............... | ............ | 1,600 |
| 4/26 |  |  |  |  |  | 6,400 |
| $5 / 3$ |  |  | 3,200 |  |  |  |
| 5/10 |  |  |  |  |  | 6,400 |
| $5 / 17$ |  |  |  |  |  |  |
| 5/24 |  |  | 3,200 |  |  |  |
| $5 / 31$ |  |  |  |  |  |  |
| $6 / 7$ |  |  |  |  |  |  |
| 6, 16 |  |  |  | 6,400 |  |  |
| $6 / 21$ |  |  | 6,400 | 22,400 | ...............- |  |
| $6 / 28$ | 6,400 | .............. | 3,200 | 35,200 |  |  |
| 75 |  |  | 3,200 | 105,792 | 3,200 |  |
| 7,12 | 3,200 | 3,200 |  | 714,096 | 1,600 |  |
| $7 / 19$ |  |  |  | 83,200 | 19,200 | 6,400 |
| 7/26 |  |  |  |  |  |  |
| $8 / 2$ |  |  |  | 211,584 | 105,792 |  |
| s/9 |  |  |  | 105,792 | 19,200 | 19,200 |
| 8/15 |  |  |  | 1,005,024 | 12,800 | 19,200 |
| 8/23 | ............... | ................ | 19,200 | 12,800 | 105,792 |  |
| 8/31 |  |  | 38,400 | 317,376 | ............... | 25,600 |
| $9 / 6$ |  |  |  | 25,600 | ............... |  |
| 9,13 | ............... | .............. |  | 38,400 | ... | 12,800 |
| 9/20 |  |  | 12,800 | 317,376 |  | 12,800 |
| 9/27 |  |  | ...... | 51,200 | 12,800 | 25,600 |
| $10 / 4$ |  |  |  | 38,400 | 12,800 | 38,400 |
| 1011 |  |  |  | 211,584 | 12,800 | 12,800 |
| $10 / 18$ $10 / 26$ | ................ |  |  | 64,000 |  | 25,600 |
| 10/26 | ............... | ............... |  |  | ............... | 25,600 |
| 11/1 |  |  | 6,400 | 25,600 |  | 6,400 |
| 11/8 |  |  | 52,896 |  |  |  |
| 11,15 |  |  |  |  | 6,400 |  |
| 11/22 |  |  | 3,200 |  |  |  |
| $11 / 30$ $12 / 6$ |  |  | 3,200 |  | 1,600 |  |
| 12/14 |  |  |  |  |  | 1,600 |

12. 

1913
$1 / 5$
$1 / 12$
$1 / 19$
$1 / 25$
$2 / 2$
$2 / 8$
$2 / 15$
$2 / 23$
$3 / 1$
$3 / 8$
$3 / 15$
$3 / 23$
$3 / 29$
$4 / 5$
$4 / 13$
$4 / 19$
$4 / 26$
$5 / 3$
$5 / 10$
$5 / 17$

| 1913 | Brachionus capsuliforus | Brachionus egg. attached female | Brachionus egg, attached male | Brachionus egg, free female | Brachionus patulus | Brachionus plicatilis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 524 | .... . . . . | . ... ... | ... . . |  | .. |  |
| $5: 31$ | .... ... ... | $\ldots$ | . . . | . . . . . | . . . | . .. . |
| 6, 7 | ... | .. . . |  | . . . . | . . . | .. . . . |
| 6, 16 | ..... ... . . | 6,400 | 32,000 | . . . | . . . . . | .. . .. .. . |
| (6) 21 | . .. . . . . | 3,200 | .. . . |  | . . . | . . . . . |
| 628 | ... . . . | 35,200 | . . .. | 6,400 | .. . . . | . . . |
| 75 | . .. .. . | 1,600 | . . . | 70,344 |  | .. . . .. . |
| $7 / 12$ | .. ...... . ... |  | . .. . | 52,896 | 19,200 | . . . |
| 719 | ...... ... . | 19,200 | . . | 105,792 | 25,600 | $\cdots$. |
| 7/26 |  | 6,400 | . . .. | ..... | 25,600 |  |
| S/2 | 12,800 | 3,200 | . . . | $\cdots$ | 25,600 | ... |
| S/ 9 | 211,554 |  | . . | 6,400 | . . . | . . |
| 8/15 | 25,600 | 3,200 |  | 6,400 |  |  |
| $8 / 23$ |  | 6,400 | . . . | 6,400 | 6,400 | . . . |
| 8/31 | 25,600 | 64,000 | . . . . |  |  |  |
| $9 / 6$ | 317,376 | 12,800 | - . | . . . | 105,792 | . . . |
| 9.13 | 38,400 | 12,500 | - . . |  | 12,800 |  |
| 930 | 12,800 | 38,400 | .. . . | 25,600 |  |  |
| 927 | 64,000 | 51,200 | . . . | 12,800 | 25,600 |  |
| 10/4 | 12,800 | 89,600 | - . | 64,000 |  |  |
| 1011 | 12,800 | 12,800 | . . . | - | - . | . . . |
| 10,18 |  | 317,376 | . . . | 3s, 400 |  |  |
| 10,26 | - .. ${ }^{\text {a }}$ |  |  | 25,600 | $\ldots$ |  |
| 11. 1 | 6,400 | 12.800 | . . . . . | 52,896 |  | 19,200 |
| 11 / 8 |  | .. | . . . |  |  | . . . |
| 1115 | .. . . . . | ... . | . . | 6,400 | -.. . |  |
| 11 22 | . ... . | . . . | . | - | $\cdots$. | . .. .. . |
| 11 /30 | . . . .. .. | 3,200 | - . | 52,896 |  | . . |
| 12'6 | - . ... | .. . | - . | 1,600 | 3,200 | . . |
| 12, 14 | .. .. .. .. . | ... | - .. . . | 1,600 |  | . . |
| 12,20 |  | . | . . .. |  | . . . . . | . .. . |
| 12/27 | 3,200 | ..... . | . . | 1,600 | . .. . | . . . . |
| 1913 | Brachionus urceus | Diurella egg, free | Epiphanes clavulata | Epiphanes egg, attached female | Filinia <br> egg, attached female | Filinia egg, free |
| 1/5 |  | .. . | . . . . |  | . . . |  |
| 1/12 | 1,200 | . . . . . | . . . . |  | . . . | . . . |
| 1,19 | 400 | .... | ... . |  | . . . | . |
| 1,25 | . | .. . . . | . . . . | . . | - . |  |
| 2. 2 | 3,200 | .. . |  |  |  |  |
| 2. 8 | 3,200 | . . . | . . |  | - . |  |
| 215 | 6,400 | . . . | . |  | $\cdots$ | 9,600 |
| 2 23 | .. . . | . |  |  | 3,200 | 19,200 |
| 3, 1 | . . | $\cdots$. | - . | . | 9,600 | 22,400 |
| 3.8 | . . | . | . . |  | 3,200 | 105.792 |
| 31.5 | - . . . | . | - | . | . ${ }^{\text {a }}$ | 238.032 |
| 3) 2:3 |  | . . . . |  |  | 3,200 |  |
| 3, 29 | . | . . | . . . |  | . . |  |
| 45 |  | . . . . |  | . . | - . |  |
| 413 | 1,600 |  |  |  |  |  |
| 4/19 | 3,200 |  |  | . | . |  |
| 4,26 | 3,200 | - . |  | . |  | 1,600 |
| $5 / 3$ |  | . . |  |  | . | - . . |
| $5 / 10$ | . . | . . . | - . | - |  |  |
| $5 / 17$ |  |  | . |  |  | 3,200 |
| 5.21 | 6,400 | . . | - . |  | . | . |
| $5 \cdot 31$ |  |  |  |  |  |  |
| (6) 7 | 38,400 |  |  |  |  |  |
| (6) 16 | 32,000 | 6,100 | . |  |  |  |
| 6.21 | 9,600 | .. . . . |  |  |  | 1,600 |

Table 2 -Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

| 1913 | $\begin{gathered} \text { Brachionus } \\ \text { urceus } \end{gathered}$ | Diurella <br> egg, free | Epiphanes | $\begin{aligned} & \text { Epiphanes } \\ & \text { egg, attached } \\ & \text { female } \end{aligned}$ | $\begin{aligned} & \text { Filinia } \\ & \text { egg, attached } \\ & \text { female } \end{aligned}$ | $\underset{\text { egg, free }}{\text { Filinia }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/28 | 25,600 | 79,344 |  |  | 9,600 | 1,600 |
| 7/5 |  | 158,688 | ............... | .......... |  | 1,600 |
| 7/12 | 3,200 | 1,031,472 | ............... |  |  | 238,032 |
| 7/19 | 38,400 | 476,064 | ............... | ..... | .............. |  |
| 7/26 | 12,800 | 317,376 | ............... |  |  | 3,200 |
| $8 / 2$ | 105,792 | 423,168 |  |  |  | 528,960 |
| 8/9 | 51,200 | 158,688 |  |  |  | 3,200 |
| 8/15 | 6,400 | 528,960 | 12,800 | 6,400 |  | 158,688 |
| 8/23 |  | 1,110,816 | 64,000 | 12,800 |  | 158,688 |
| 8/31 | 38,400 | 317,376 | 76,800 |  |  | 528,960 |
| $9 / 6$ |  |  | 12,800 | 12,800 | .............. |  |
| 9/13 | 12,800 | 952,128 | 64,000 | 25,600 |  | 105,792 |
| 9/20 | 12,800 |  | 38,400 | ............... | .............. | 105,792 |
| 9/27 | ............... | 52s,960 | 38,400 |  |  | 211,58 |
| $10 / 4$ | .............. | 846,336 | 12,800 | ............ | ............... | 105,792 |
| 10/11 |  | 528,960 |  |  |  | 105,792 |
| 10/18 | 12,800 | 105,792 | 12,800 | ............... |  |  |
| 10/26 | 12,800 | 25,600 |  |  |  |  |
| 11/1 |  | , |  |  |  |  |
| 11/8 |  |  |  |  |  |  |
| 11/15 |  | . . | -.. |  |  |  |
| 11/22 |  | - |  |  |  |  |
| 11/30 |  |  |  |  |  |  |
| 12/6 | $\cdots$. $\cdot$ |  |  |  |  |  |
| 12/14 | 3,200 | .............. | ............... | ............... |  | 1,600 |
| 12/20 |  |  |  |  |  |  |


| 1913 | $\begin{aligned} & \text { Filinia } \\ & \text { longiseta } \end{aligned}$ | Keratella cochlearis | $\begin{gathered} \text { Keratella } \\ \text { egg, attached } \end{gathered}$ | Keratella egg, free | Keratella quadrata | Lecane |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 | ............. | 400 |  | 1,200 | 1,200 |  |
| 1/12 |  | 1,200 | S00 | 2,400 | 1,200 |  |
| 1/19 | 400 |  | 1,200 | 19,836 | 1,600 |  |
| 1/25 |  | 1,200 |  | 33,060 | 1,200 |  |
| 2/2 | ............... | 3,200 | 1,600 | 17,600 | 20,800 |  |
| 2/8 |  | 6,400 | 16,000 | 132,240 | 22,400 |  |
| 2/15 |  | 12,800 | 6,400 | 132,240 | 6,400 | 3,200 |
| 2/23 | 79,344 | 99,200 | 25,600 | 6,400 | 6,400 |  |
| 3/1 | 57,600 | 32,000 | 12,800 |  |  |  |
| $3 / 8$ | 290,928 | 238,032 | 158,688 |  | 19,200 |  |
| 3/15 | 44,800 | 211,584 | 52,896 |  | 9,600 |  |
| 3/23 | 38,400 | 555,408 | 211,584 | 1,600 | 79,344 |  |
| 3/29 | 28,800 | 264,480 | 79,344 | 132,240 | 158,689 |  |
| 4/5 | 3,200 | 26.4 .480 | 1,600 | 79,344 | 19,200 |  |
| 4/13 | 3,200 | 105,792 | 1,600 | 79,344 | 28,800 |  |
| 4/19 |  | 793,440 | 1,600 | 185,136 | 105,792 |  |
| 4/26 |  | 132,240 | 1,600 | 3,200 | 41,600 |  |
| $5 / 3$ | 1,600 | 6,400 | ......... | 1,600 | 79,344 |  |
| 5/10 | 6,400 |  |  | 3,200 | 44,800 |  |
| 5/17 | ............. | 38,400 | ............ | 105,792 | 3,200 |  |
| 5/24 |  |  | .............. | 3,200 | 12,800 |  |
| 5/31 | 12,800 | 12,800 | ............... | 105,792 | 38,400 |  |
| 6) 7 |  | 38,400 |  | 105,792 |  | 12,800 |
| 6/16 |  | 32,000 | 6,400 | 3,200 | 158,688 |  |
| 6/21 | 6,400 | 211,584 | 9,600 | 158,688 | 9,600 |  |
| 6/28 | 57,600 | 238,032 | 79,344 | 1,600 |  |  |
| 7/5 | 3,200 | 555,408 |  | 185,136 | 12,800 | 6,400 |
| 7/12 | 9,600 | 1,798,464 | ............... | 423,168 | 3,200 |  |
| 7/19 |  | 634,752 |  | 211,584 | 57,600 |  |
| 7/26 | .............. | 25,600 | 6,400 |  | 12,800 |  |

Table 2.-Organisms Per Cubic Meter in Plankton of
San Joaquin River in 1913 -(Continued)


| $\underset{\text { Filinia }}{\text { longiecta }}$ | Keratella cochlearia 155,688 |
| :---: | :---: |
|  | 211.58 .5 |
|  | 38.100 |
|  | 25,600 |
|  | - .. |
| . | 12,800 |
|  | 1,269,504 |
| 105,792 | 2,115,840 |
|  | 2,480,112 |
|  | 846,336 |
|  | 476,064 |
|  | 449,616 |
|  | 211,5心4 |
|  | 12,800 |
| 3,200 | 3,200 |
|  | 6,400 |

Keratella Keratella Kieratella

| Kieratella quadrata | Lecane Juna |
| :---: | :---: |
| 12,800 |  |
| 12,500 |  |
| 38, 400 |  |
| 12.800 |  |
| 6.4,000 |  |
| 25,000 |  |
| . | - . .... |
| 12,800 | 12,500 |
| 211,584 |  |
| 123,000 |  |
| 52S,960 | $\ldots$ |
| 25,600 |  |
| 51,200 |  |
| 52,896 | ... |
| 6,400 |  |
| 52,896 |  |
| 3,200 |  |
| 25,600 |  |
| 3,200 |  |
| 6,400 |  |


| Notholea striata | Polyarthra trigla | Polyarthra trigla ege. attached female | Polyarthra trigla ceg. attached male | Synchacta sp. |
| :---: | :---: | :---: | :---: | :---: |
| ... . . | 800 | ... . . | .. . . |  |
|  | 2,400 | . . . | .. . . | 400 |
| 400 | 1,200 | . . | .. . . . | -400 |
| 1,200 | 2,000 | . | . . ... |  |
| 1,600 | 12,800 | . . | - .. . . . | 3,200 |
|  | 57,600 | . . . | .. . . .. |  |
| 3,200 | 19,200 | . . . . | ... . . .. |  |
| 3,200 | 6,400 | $\cdots$. ${ }^{\text {. }}$ | . ... .. . . | 9,600 |
| . . . | 12,800 | 3,200 | .. . | 3,200 |
|  | 105,792 | . . . . | . . . . | :3,200 |
| 3,200 | 3,200 | . . | . . . | 3,200 |
| 3,200 | 12,800 | . . | .. . | 19,200 |
|  | 16,000 | . . . | $\cdots$. | 16,000 |
| 16,000 | 6,400 |  | . . | . |

Trichocerca capucina

3,200

9,600
9,600
9,600
3,200
3,200
19,200

1,600
79.341
:3,200

86,400
158,688
12,800
12,800
25,600
105,792
$\begin{array}{ll}32,000 & 3,200 \\ 16,000 & 3,200\end{array}$
$16,000 \quad 3,200$
132,2.40
25,600
6,400
6,400
6.400
(i,400
12,800

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

| 1913 | Notholea striata | Polyarthra trigla | Polyarthra <br> rigla egg. attached female | Polyarthra trigla egg, attached male | Synchaeta sp. | Trichocerca |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9/6 |  | 317,376 |  |  |  |  |
| $9 / 13$ |  | 51,200 |  | ........ |  |  |
| 9/20 | 12,800 | 38,400 |  | $\ldots$ |  | 12,800 |
| $9 / 27$ |  | 12,800 | 12,800 | ............... | 12,800 |  |
| 10/4 | ............... | 25,600 |  |  |  |  |
| 10/11 |  |  |  |  |  | 12,800 |
| 10/18 | 12,800 | 76,800 |  | 211,58 1 | 115,200 | 211,584 |
| 10/26 |  | 25,600 | ............... |  | 320,000 |  |
| 11/1 |  |  |  | .............. | 264,480 |  |
| 11/8 |  |  |  | ............... | 317,376 |  |
| 11/15 |  |  |  |  | 51,200 |  |
| 11/22 | 3,200 | 52,896 |  |  | 52,890 |  |
| 11/30 |  | 25,600 | .............. |  | 22,400 |  |
| 12/6 |  | 41,600 |  |  | 79,344 |  |
| 12/14 |  | 105,792 | 3,200 |  | 79,344 |  |
| 12/20 |  | 52,896 |  | 1,600 | 105,792 |  |
| 12/27 |  | 3,200 |  |  | 79,344 | 1,600 |
| 1913 | Trichocerca iernis | Trichotria curta | Total Ploima | Total Rotifera | Bosmina longirostris | $\underset{\text { sp. }}{\text { Bosmina }}$ |
| 1/5 | .. ... . |  | 5,200 | 7,200 |  |  |
| 1/12 |  | .............. | 15,600 | 20,000 |  |  |
| 1/19 | ............... | .... | 27,436 | 81,532 |  |  |
| 1/25 |  | ............... | 45,060 | 80,308 | 800 |  |
| 2/2 |  | ............... | 73,600 | 197,392 |  |  |
| 2/ 8 |  |  | 308,240 | 385,040 |  |  |
| 2/15 |  | ............... | 516,816 | 532,816 |  |  |
| 2/23 | ..... |  | 380,144 | 472,288 |  |  |
| 3/1 | ............... | ............... | 168,000 | 201,600 |  |  |
| 3/8 | ............... | ............... | 937,632 | 1,070,528 | ............... | .......... |
| 3/15 | ............... | ............... | 737,152 | 826,096 |  |  |
| 3/23 | ............... |  | 1,022,432 | 1,210,768 | $\ldots$ |  |
| 3/29 |  |  | 733,952 | 769,552 | .............. |  |
| $4 / 5$ |  |  | 403,024 | 419,024 | ............... | 6,400 |
| 4/13 |  |  | 286,032 | 287,232 | ........ | 3,200 |
| 4/19 |  |  | 1,106,768 | 1,113,168 |  |  |
| 4/26 | . | ............... | 293,184 | 293,184 |  | 1,600 |
| $5 / 3$ | ............... | ............... | 100,14t | 100,144 | 3,200 |  |
| $5 / 10$ | .............. | ............... | 147,200 | 169,600 | ............. |  |
| 5/17 | .............. |  | 150,592 | 156,992 |  |  |
| 5/24 | ............... |  | 200,888 | 206,688 |  |  |
| $5 / 31$ | .............. |  | 182,592 | 195,392 | ............. |  |
| $6 / 7$ |  |  | 208,192 | 220,992 | $\ldots$ |  |
| 6/16 |  | ......... | 277,088 | 277,088 | . |  |
| 6/21 | ......... |  | 464,672 | 467,872 | - |  |
| $6 / 28$ |  |  | 687,168 | 690,368 |  |  |
| $7 / 5$ | 12,800 | 3,200 | 1,002,480 | 1.005,024 |  |  |
| 7/12 | 79,344 |  | 3,573,584 | 3,578,384 | 3.200 |  |
| 7/19 | 12,800 |  | 1,297,728 | 1,297,728 | 6,400 |  |
| 7/26 | 105,792 |  | 560,768 | 567,168 |  |  |
| $8 / 2$ | 38,400 |  | 1,213,216 | 1,387,904 | 6,400 |  |
| $8 / 9$ | 19,200 | 6,400 | 579,968 | 579,968 |  |  |
| 8/15 | 44,800 |  | 1,378,112 | 1,690,400 | 38,400 |  |
| 8/23 | 158,688 |  | 742,052 | 1,201,82. |  |  |
| 8/31 | 105,792 | . | 1,573,312 | 1,810,496 | 12,800 |  |
| $9 / 6$ |  |  | 1,067,328 | 1,067,328 |  |  |
| $9 / 13$ | 76,800 | ... | 1,441,920 | 1,518,720 | 76,800 |  |
| 9/20 | 211,584 |  | 903,552 | 1,179,136 | 51,200 |  |
| 9/27 | 128,000 | ............... | 685,184 | 842,176 | 25,600 |  |
| 10/4 | 64,000 |  | 794,368 | 1,220,160 | 12,800 | ..... |


| Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1913 | $\begin{aligned} & \text { Trichocerea } \\ & \text { ternis } \end{aligned}$ | Trichotria curta | Total Ploima | Total Rotifera | Bosmina longirostris | $\underset{\text { sp. }}{\substack{\text { Bosmina } \\ \hline}}$ |
| 10/11 | 64,000 |  | 637,376 | 893,376 | .. . . . |  |
| 10/18 |  |  | 2,830,016 | 3,422,976 |  |  |
| 10/26 |  |  | 3,185,792 | 3,515,968 |  |  |
| 111 |  |  | 3,949,312 | 3,981,312 | 6,400 |  |
| 11/8 |  |  | 2,168,736 | 2,194,336 |  |  |
| 11/15 |  |  | 565,664 | 629,664 | 6,400 |  |
| 11/22 |  | . | S11,040 | 817,440 |  |  |
| 11/30 |  | , | 427,872 | 427.872 |  |  |
| 12/6 |  |  | 154,544 | 164,144 | 3,200 |  |
| 12/14 |  |  | 2:39,536 | '245,936 |  |  |
| 12/20 |  |  | 159,440 | 165,840 |  |  |
| 12/27 | - |  | 95,54. | 101,744 | 6,400 |  |
| 1913 | Chydorus sp. | $\begin{aligned} & \text { sida } \\ & \text { sp. } \end{aligned}$ | $\begin{aligned} & \text { Total } \\ & \text { Cladocera } \end{aligned}$ | Canthocamptus sp. | $\begin{gathered} \text { Cyclops } \\ \mathrm{sp} . \end{gathered}$ | $\begin{gathered} \text { Nauplius } \\ \text { sp. } \end{gathered}$ |
| 1/5 |  | . . ... . | ... . |  |  |  |
| 1.12 |  | ... .. .. |  |  |  | 400 |
| 1/19 |  |  | 400 | . . | 400 | 800 |
| 1. 25 | . . . . | . . | 1,200 | . | 800 | 2,800 |
| 22 | .. . |  |  | . . |  | 9,600 |
| 28 | . . . | .... . |  | - . | - . | 3,200 |
| 215 | . . . | ... . . . . |  |  |  |  |
| $2 \cdot 23$ | . ... . . | .... .. . .. |  | - |  | 3,200 |
| 3/1 | .... . . . | .. . . . . | . . | . |  |  |
| $3 / 8$ |  |  | . | . |  | .. . |
| 3,15 |  | ..... . . |  | . |  |  |
| 3/23 | . . . . | ...... . |  |  |  |  |
| 3/29 |  |  |  |  |  | 1,600 |
| $4 / 5$ | ... . | .. ..... .. | 6,400 |  |  | 1,600 |
| 4/13 |  |  | 3,200 |  |  |  |
| 4,19 |  | ........... |  |  | $\cdots$. |  |
| 4/26 | ........ |  | 1,600 | 3,200 | .. . |  |
| $5 / 3$ | . . . | ...... . . . . | 3,200 | , | .... . ... | 3,200 |
| 5/10 | . . . . . . | .... .... .. |  |  | . . . |  |
| $5 / 17$ |  | ..... ... . | - . |  | ... . . |  |
| $5 / 24$ |  | .. . . .. . |  |  | . . . . | 12,500 |
| 531 |  |  |  |  | $\cdots$... | 25,600 |
| 6, 7 |  | . . . . |  | . |  |  |
| 616 |  |  |  |  |  |  |
| 621 | . . . .. |  | - . |  |  | 3,200 |
| 6.28 |  |  |  |  | 3,200 |  |
| 75 |  |  |  |  |  | 3,200 |
| 712 |  | .. | 3,200 |  | 3,200 | 6,400 |
| 719 |  |  | 6,400 |  | 12,800 | 6,400 |
| 7.26 |  | . . . |  |  |  |  |
| 82 |  |  | 6,400 |  | 19,200 | 6,400 |
| - 9 |  |  |  |  | 6,400 | 6,400 |
| 815 | 6,400 |  | 44,800 |  | 6,400 | 6,400 |
| 8.23 | 12,800 |  | 12,500 | 6,400 | 6,400 | 6,400 |
| S 31 |  | 25,600 | 38,400 |  | 12,800 | 12,800 |
| $9 / 6$ |  |  |  |  |  | 211.584 |
| $9 / 13$ | 12, 000 | 12,800 | 102,400 |  | 25,600 | 105,792 |
| $9 / 20$ | 12,800 |  | 51,200 |  |  | 105,792 |
| 927 | 25,600 |  | 51,200 |  |  |  |
| $10 / 4$ |  | $\cdots$ | 12,800 | , |  |  |
| 1011 |  |  |  |  | 12,800 | 25,600 |
| 10, 15 | 12,800 | - . . | 12,500 |  |  | 38,100 |
| 1026 |  |  |  | 12,400 | - . | . . . |
| 11 1 |  |  | 6,400 |  | - . |  |
| $11 / 8$ |  |  |  |  | . . |  |
| 1115 |  |  | 6,400 |  |  |  |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin River in 1913-(Continued)

| 1913 | Chydorus <br> sp. |
| :--- | :--- |
| $11 / 22$ | $\cdots$ |
| $11 / 30$ |  |
| $12 / 6$ |  |
| $12 / 14$ | 3,200 |
| $12 / 20$ |  |
| $12 / 27$ |  |


| Sida <br> sp. | Total <br> Cladocera |
| :---: | :---: |
|  | $\ldots$ |
|  | 6,400 |
|  |  |
|  | 6,400 |


| 1913 | $\begin{aligned} & \text { Total } \\ & \text { Copepoda } \end{aligned}$ | Total <br> Entomostraca | Chironomus larva | Glochidia | $\begin{aligned} & \text { Insect } \\ & \text { larva } \end{aligned}$ | Macrobiotus sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5 |  |  |  |  |  |  |
| 1/12 | 400 | 400 | - . |  |  | 400 |
| 1/19 | 1,200 | 1,600 |  |  |  |  |
| $1 / 25$ | 3,600 | 5,200 |  | 400 | 400 | 2,400 |
| 2/2 | 9,600 | 9,600 |  |  |  |  |
| $2 / 8$ | 3,200 | 3,200 | . |  |  |  |
| 2/15 |  |  |  | 3,200 |  |  |
| $2 / 23$ | 3,200 | 3,200 |  |  |  | 3,200 |
| $3 / 1$ |  |  |  | 3,200 |  |  |
| $3 / 8$ | 3,200 | 3,200 |  |  |  | 3,200 |
| $3 / 15$ | .... . |  |  |  | . | 3,200 |
| 3/23 |  |  |  |  | . |  |
| 3/29 | 1,600 | 1,600 |  |  |  |  |
| 4/5 | 4,800 | 11,200 | . . |  |  | 6,400 |
| 4/13 | .. . . . | 3,200 | . .. . |  |  | 3.200 |
| 4/19 |  |  |  |  |  | 3,200 |
| $4 / 26$ | 3,200 | 4,800 |  |  | , | 3,200 |
| $5 / 3$ | 3,200 | 6,400 |  |  |  | 6,400 |
| $5 / 10$ |  |  |  |  |  |  |
| $5 / 17$ $5 / 24$ | 12.800 | 12,500 |  |  | 6,400 | 6,400 |
| $5 / 31$ | 25,600 | 25,600 | .. | 12,800 |  |  |
| $6 / 7$ |  |  | . ... . . |  |  | . .... . ... |
| 6/16 |  |  | .. .. .. - . | 12,800 |  | ... |
| $6 / 21$ | 3,200 | 3,200 |  | 6.400 |  | - . |
| $6 / 28$ | 3,200 | 3,200 | . . | 6,400 |  |  |
| 75 | 3,200 | 3,200 | . . | 16,000 | . | - . |
| $7 / 12$ | 9,600 | 12,800 | . . | 28,800 | . | ... . . |
| 7/19 | 19,200 | 25,600 |  | 32,000 |  | . . |
| 7/26 |  |  |  |  | $\cdots \cdot$ |  |
| $8 / 2$ $8 / 9$ | 25,600 | 32,000 | ... | 105,792 |  | ... . . |
| $8 / 9$ $8 / 15$ | 12,800 | 12,800 | . . . . |  |  | $\cdots$ |
| $8 / 15$ $8 / 23$ | 12,800 | 57,600 32,000 | $\cdots \cdot$ | ... - | - . | . . . . |
| $8 / 23$ $8 / 31$ | 19,200 25,600 | 32,000 61.000 | $\cdots$ | . . |  | $\cdots$ |
| $9 / 6$ | 211,584 | 211,584 | … | 105,792 | ' | $\ldots$ |
| 9/13 | 131,792 | 23:3,792 | . . . .. |  |  |  |
| 9/20 | 118,592 | 169,792 | .... .. | . |  |  |
| $9 / 27$ |  | 51,200 | $\cdots$ |  |  |  |
| 10/4 |  | 12,800 |  |  | . |  |
| 10/11 | 38,400 | 38,400 | . . |  | . |  |
| 10/18 | 38,400 | 51,200 |  |  |  | . . |
| 10/26 | 12,800 | 12,800 | 105,792 | . . | . . | . |
| 11/1 |  | 6,400 | -. |  |  | - . ... |
| 11/8 |  |  | . . . . ... |  | . . . | . |
| 11/15 |  | 6,400 | ... . . |  | - . |  |
| 11/22 | 3,200 | 3,200 | . . | . . | . . |  |
| 11/30 | 6,400 | 6,400 |  |  | $\cdots$. | - |
| 12/6 |  | 6,400 | . . . |  | . . | . |
| 12/14 | . |  |  |  |  | -.. . |
| $12 / 20$ $12 / 27$ |  | 6,400 | 3,200 |  |  | 3.200 |

Table 2.-Organisms Per Cubic Meter in Plankton of San Joaquin Riverin in 1913-(Concluded)

| 1913 | $\begin{aligned} & \text { Nematoda } \\ & \text { sp. } \end{aligned}$ | $\begin{aligned} & \text { Oligochuete } \\ & \text { sp. } \end{aligned}$ | Water mite | Total <br> Miscellaneous | Total Organisms |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 \% |  |  |  |  | 5,821,536 |
| 112 | . |  |  | 400 | 2,299,404 |
| 119 |  | 400 |  | 400 | 13,356,680 |
| 125 | . | 1,200 |  | 4,400 | 3,751,684 |
| 22 |  |  |  |  | 13,983,312 |
| 2 s | ... . | 3,200 |  | 3.200 | 16,816,012 |
| 2.15 | ... |  |  | 3,200 | 8,672,576 |
| 2,3 | - . |  |  | 3,200 | 10,530,652 |
| 3/1 | . . . |  | , | 3,200 | 14,529,728 |
| $3 / 8$ |  |  | . | 3,200 | 13,204,020 |
| $3 / 15$ |  |  |  | 3,200 | 12,502,272 |
| 3/2:3 | 3,200 |  | - | 3,200 | 12,027,616 |
| 3/29 |  | .. . |  |  | 18,115,104 |
| $4 / 5$ | ... .. | . ... .. . |  | 6,400 | 6,850,048 |
| 4/1:3 |  |  |  | 3,200 | 10,023,664 |
| +/19 |  | ... . . |  | 3,200 | 16,330,872 |
| $4 / 26$ |  |  |  | 3,200 | 12,421,328 |
| $5 / 3$ |  | . |  | 6.400 | 8,507,964 |
| 5/10 |  |  |  |  | 10,896,192 |
| $5 / 17$ | 6,400 |  | 12,800 | 25,600 | 17,784,480 |
| $5 / 24$ |  |  |  | 12,800 | 13,031,040 |
| 531 |  | - .... . .. |  | 12,800 | 25,877,192 |
| $6 / 7$ | . .. . . | . ..... ..... |  |  | 26,220,984 |
| $6 / 16$ | . . . . | . . .. .. | $\cdots$. | 12,800 | 18,035,072 |
| $6 / 21$ | . . ... .. |  |  | 6,400 | 21,395,760 |
| $6 / 28$ | . . . . . | . . . . | 3,200 | 9.600 | 32,071,398 |
| $7 / 5$ |  |  |  | 16,000 | 16,780,444 |
| 7/12 | .. . . . | .. .. .. ... | $\cdots$ | 25,400 | 34,980,772 |
| 7/19 | ... . . . | ..... . . ${ }^{\text {a }}$ |  | 32,000 | 61,889,064 |
| $7 / 26$ | . ... . .. .. | .... .. .. .. | ... . ... |  | 61,589,888 |
| 8.2 | .... ... . .. | ..... ........ | .. . ... . | 105,792 | 117,439,648 |
| 8 - 9 | ... .. .... . | $\ldots$ | .-. | .... . ... | 103,235,586 |
| 8/15 | . .. .. .. .. | ..... . | .... | ..... . . | 105,448,076 |
| 8/23 | . . . . |  | . . . |  | 217,550,950 |
| 8/31 | .. . . | .. . .. | - |  | 201,760,892 |
| 96 | . . .. ..... | . . . |  | 105, 792 | 229,022,312 |
| 913 |  |  |  | 12,800 | 151,795,800 |
| $9 \cdot 20$ |  |  |  |  | 141,406,360 |
| $9{ }^{\prime} 27$ |  |  |  |  | 93,592,016 |
| $10^{\prime} 4$ |  | $\ldots$ |  |  | 96,256,744 |
| 1011 | . . . | . . |  |  | 150,741,918 |
| 10 / 18 |  |  |  |  | 88,902,832 |
| 1026 | - . . | . . . |  | 105,792 | 63,576,626 |
| 11 1 |  |  |  |  | 34,666,400 |
| 11/ |  | . . . |  |  | 17,158,816 |
| 11 15 | .. . . | - . |  |  | 13,933,184 |
| 11 22 | $\cdots$. | ... .. . |  | -. | 14,814,640 |
| 11/30 |  | . |  | - | 23,213.808 |
| 12/6 |  | .... . |  |  | 17,005,776 |
| 12/14 |  |  |  |  | 9,575,208 |
| 12/20 |  | .... ... .a. |  |  | 7,518,192 |
| $12 \cdot 27$ |  | ... |  | 6,400 | 6,370,776 |

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913

| 1913 | Spirillum undula | Total <br> Bacteriaceae | Anabaena sp. | $\begin{gathered} \text { Aphanocapsa } \\ \text { sp. } \end{gathered}$ | Coelosphaerium kützingianum | Gloeocapsa conglomerat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/11 |  |  |  |  |  |  |
| 1/19 | . . |  |  |  | . |  |
| 1/25 |  |  |  |  |  |  |
| 2/2 | 1,600 | 1,600 | . |  |  |  |
| 2'8 |  |  |  |  |  |  |
| 2/15 | . . . |  |  |  |  |  |
| 2/23 |  |  |  |  |  |  |
| $3 / 1$ | - . |  | 1,600 |  |  |  |
| $3 / 8$ | . . |  |  |  | $\ldots$ |  |
| $3 / 15$ | . . |  |  |  |  |  |
| 3/23 | . . | . . | 1,600 | ............... |  |  |
| 3/29 | . . . | . . . |  |  |  |  |
| $4 / 5$ | . . |  |  |  |  |  |
| $4 / 13$ | . . |  | 3,200 |  | . . . |  |
| 4/19 | . . |  |  |  |  |  |
| $4 / 26$ |  |  | 3,200 |  |  |  |
| $5 / 3$ | . . | . . | 6,100 |  |  |  |
| $5 / 10$ | ... .. . | . . . | 3,200 |  | 3,200 |  |
| 5/17 | . . |  | 16,000 |  |  |  |
| $5 / 24$ |  |  |  |  |  |  |
| 5/31 | . . |  | 1,600 |  |  |  |
| $6 / 7$ | . . . | . | 3,200 | 105,792 | .............. | .... |
| 6/16 |  |  | 9,600 | 3,200 |  |  |
| $6 / 21$ | 1,600 | 1,600 | 28,800 | 79,344 |  |  |
| $6 / 25$ |  |  | 476,064 | 185,136 | ................ |  |
| $7 / 5$ |  |  | 3,200 | 52,896 | ............... |  |
| 7/12 | 1,600 | 1,600 | 2,036,496 | 264,480 | .............. | 185,136 |
| $7 / 19$ |  |  | 4,601,952 | 105,792 | .............. |  |
| 7/26 | - . | - | 4,125,888 | 264,480 | ..... | 105,792 |
| 8/2 |  |  | 793,440 | 423,168 |  | 6,400 |
| S/ 9 |  |  | 2,697,696 | 1,163,712 | .............. | 158,688 |
| 8/1i |  |  |  |  |  |  |
| $8 / 23$ | 3,200 | 3,200 | 1,586.880 | 158,688 | 3,200 |  |
| 8/31 |  |  | 1,481,088 | .............. |  | 10.5,792 |
| $9 / 6$ | 105,792 | 105,792 | 2,539,008 |  | . . |  |
| 9/13 | . . | . . | 1692,672 | 211,584 |  |  |
| $9 / 20$ | . . . |  |  | 528,960 |  |  |
| $9 / 27$ | . . . |  | 12,800 | 12,800 |  |  |
| $10^{\prime} 4$ | . . |  | 12,800 | 12,800 | . |  |
| 10/11 |  |  |  | 211,584 |  |  |
| $10 \cdot 18$ | . . |  | 12,800 |  |  |  |
| 10:26 | - |  |  | 6,400 |  |  |
| $11 / 1$ | .. ... . . | . | 52,896 |  | 105,792 |  |
| 11.8 |  |  |  |  |  |  |
| 11/15 | 1,600 | 1,600 |  | - . |  |  |
| 11/22 |  |  | - . |  | . . . | . |
| 11/30 | . | . | - . |  | . . . | $\cdots$ |
| 12/6 |  |  |  |  |  |  |
| 12/14 | 1,600 | 1,600 | 132,240 |  |  |  |
| $12 / 20$ |  | . . . |  |  |  |  |
| 12/27 |  | . . . |  |  | .. . . . |  |
| 1913 | Gloeocapsa sp. | Gomphosphaera aponina | Inactis tinctoria Agardh | $\underset{\text { glaucum }}{\text { Merismopedium }}$ | $\begin{gathered} \text { Microcystis } \\ \text { sp. } \end{gathered}$ | $\begin{gathered} \text { Nostoc } \\ \text { sp. } \end{gathered}$ |
| 1/11 |  |  |  |  |  |  |
| 1/19 |  | . |  |  |  |  |
| 1/25 |  |  |  |  | . . |  |
| 2/2 |  |  |  | - . |  | - |
| 2/8 |  | $\begin{aligned} & 3,200 \\ & 3,200 \end{aligned}$ |  | . . |  |  |

Table 3.-Orgaxisus Per Cubic Meter in Plankton of
Smith's Canal in 1913-(Continued)

| 1913 | Glococapsa sp. | Gomphosphacra aponina | Inactis tinctoria Agardh | Merismopedium glaucun | Microcystis sp. | Nosto. sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \cdot 2 \cdot 3$ |  | 3,200 |  | .... . | . . . . |  |
| 31 | . | 1.600 |  | . . . . . | . | . |
| 3; 8 | . | 1,600 |  | . . .. . | .. . ...... |  |
| 315 | 1,600 | 3,200 | . | . .... . | . . .. .... |  |
| -3 2:3 | 79,344 |  |  | .. . |  |  |
| (3)29 | 52,596 | . . . . | . | . . . . |  |  |
| 1. ${ }^{1}$ |  |  |  | . . . |  |  |
| -1,1:3 | - .. | 1,600 | . | . .. .. . | 1,600 |  |
| $4 / 19$ |  |  |  | . . . . . | .. . ... | 3,200 |
| 4/26 | 1,600 | 158,685 |  | ... . . . | .. .. .. ... . |  |
| $5 / 3$ | 52,896 |  |  | . . |  |  |
| 510 | 1,600 |  | . | . . . . . | . . . . . |  |
| 5,17 |  |  |  | ... |  |  |
| 524 | 1,600 |  |  | . . . . |  |  |
| $5 \cdot 31$ | 1,600 |  |  |  |  |  |
| 67 | 1,600 | 6,400 | , . | .. . . . |  |  |
| 6,16 |  |  |  | - |  | 16,000 |
| 621 | 1,600 |  | . . . |  | 3,200 | 6,400 |
| 6.28 | 1,600 | . | ............... |  |  | 304,384 |
| $7 / 5$ | 1,600 |  |  |  | 158,688 | 2,062,914 |
| $7 / 12$ | 290,928 | 52,890 |  |  | 264,480 | 581,856 |
| 719 | 211.58 .4 |  |  |  | 211,584 | 1,110,816 |
| $7 \cdot 26$ | 846,3:36 | 3,200 |  |  | 370,272 | 687,648 |
| 8,2 | 476,064 |  |  |  | 211,584 | 1,216,608 |
| $8 / 9$ | 1,269,504 | 105,792 |  |  | 211,584 | 1,322,400 |
| 8/15 | 317,376 |  |  | . |  |  |
| 8.23 | 581,856 |  | 1,163,712 |  | 32,000 | 6,876,480 |
| $8: 31$ | 317,376 |  | 6,030,144 |  | 12,800 | 3,491,136 |
| $9 / 6$ | 423,168 |  | 7,93-1,400 | 12,800 | 12,800 | 740,544 |
| $9 / 13$ | 1,057,920 | 76,800 | 952, 128 |  | 64,000 | 1,057,920 |
| 9, 20 | 952,128 | 317,376 | 1,586,880 |  | 12,800 | 2,644,800 |
| $9 / 27$ | 740,544 |  | 11,319,744 |  | 25,600 | 634,752 |
| 10/4 | 740,544 |  | 423,168 |  | 317,376 | 317,376 |
| 10/11 | 317,376 |  | 528,960 |  | 211,584 | 317,376 |
| 10, 18 |  |  | 317,376 |  | 25,600 |  |
| 10/26 | 6,400 |  | ............... | ............... | 6,400 | 6,400 |
| 11/1 | 52,896 | .............. |  |  | 6,400 | 12,800 |
| 11/8 | 158,688 |  | 52,896 | 52,896 |  | 12,800 |
| $11 / 15$ | 105,792 | ............... |  | 132,240 | 52,896 | , |
| $11 / 22$ | 52,896 |  |  | 52,896 | 12,800 |  |
| 11/30 | 52,896 | ............... |  | 105,792 | . . . | . |
| 12/6 | 70,344 |  |  |  | . . . . |  |
| 12/14 | 1,600 |  |  |  |  |  |
| 12/20 | 133,840 |  |  |  | . |  |
| 12/27 |  | ... . |  | . |  | ... |
| 1913 | Oscillatoria formosa | $\begin{gathered} \text { Oscillatoria } \\ \mathrm{sp} \text {. } \end{gathered}$ | Oscillatoria tenuis | Phormidium spp. | Stigonemas sp. | Total Schizophyceae |
| $1 / 11$ | 400 |  |  |  |  | 400 |
| 1/19 | ............ |  |  | 3,200 |  | 3,200 |
| 1/25 | . ..... |  | 400 | 66,120 |  | 66,520 |
| $2 / 2$ |  |  |  | 1,600 |  | 1,600 |
| 2/8 | . ..... | ............... | 1,600 | 3,200 |  | 7,000 |
| 2, 15 | . . . |  | 79,344 | 52,896 |  | 135,440 |
| $2{ }^{2} 23$ |  |  | $\ldots$ | 185,136 |  | 188,336 |
| $3{ }^{\prime} 1$ |  |  |  | 1,600 | ............... | 4,800 |
| 3, 8 | . |  |  |  |  | 1.600 |
| $3 / 15$ |  |  | 52,596 | 52,896 |  | 110,592 |
| 3, 23 |  |  |  | 79,344 |  | 150,2S8 |
| $3 \cdot 39$ | 52,96 | . |  | 317.376 | . . . ... . | 476,064 |

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Contirued)

| 1913 | Oscillatoria formosa | Oscillatoria sp. | Oscillatoria tenuis | $\begin{aligned} & \text { Phormidium } \\ & \text { spp. } \end{aligned}$ | Stigonema sp . | Total <br> Schizophyceae |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4/5 | 3,200 | . ${ }^{\text {a }}$ | 3,200 | 79,344 | . . | 250,832 |
| 4/13 | . . . . | . . . | 1,600 | 132,240 |  | 140,240 |
| 4/19 | .. . .. | . . . | 1,600 | 105,792 | . | 110,592 |
| 4/26 | $\cdots$ | . . |  | .... |  | 163,488 |
| 5/3 | ....... . | . | 3,200 | 3,200 | . . | 68,696 |
| $5 / 10$ |  | - |  | 1,600 |  | 9,600 |
| $5 / 17$ | .... . . | . . . . | .. . . . | 52,896 | 16,000 | 84.896 |
| $5 / 24$ | . | . .. |  | .... . . |  | 1,600 |
| 5/31 |  | - .... | . | . . . |  | 3,200 |
| 6/7 | 6,400 | . ... . . . |  |  |  | 123,392 |
| 6/16 | 9,600 | 3,200 |  | 79,344 |  | 120,944 |
| 6/21 | 9.600 |  |  | 1,600 | 1,600 | 132,144 |
| 6/28 |  |  |  | 1,600 | 1,600 | 758,800 |
| 7/5 |  |  | 1,600 |  | 1,600 | 2,130,240 |
| 7/12 | 1,600 | 1,600 | 3,200 | ............... | 52,896 | 3,735,568 |
| 7/19 | 3,200 | 317,376 |  | .............. |  | 6,562,304 |
| 7/26 |  | 370,272 |  | .............. | 6,400 | 6,780,294 |
| 8/2 |  | 317,376 |  | .............. |  | 2,651,200 |
| 8/9 | 6,400 | 697,648 |  | .............. | 158.688 | 7,62:3,424 |
| 8/15 |  |  |  |  |  | 32:3,726 |
| 8/23 |  | 211,58.4 | 3,200 | 476,064 |  | 11,252,352 |
| S/31 |  | 317.376 | . . | 1,795,464 |  | 13,554,174 |
| $9 / 6$ |  |  |  |  |  | 11.662,720 |
| $9 / 13$ |  | 105,792 | ............... |  |  | $5,218,716$ |
| $9 / 20$ | . |  |  | 317,376 | 211,584 | 6,571,904 |
| $9 / 27$ |  | 105,792 | .............. | 528,960 | +........... ... | 13,380,992 |
| 10/4 |  |  |  |  |  | 1,824,064 |
| 10/11 |  |  |  |  |  | 1,599,680 |
| 10/18 | . . |  |  |  |  | 355,776 |
| 10/26 |  |  |  | ... |  | 25,600 |
| 11/1 |  |  |  |  |  | 230.784 |
| 11/8 | 6,400 |  |  |  |  | 2ऽ:3,650 |
| 11/15 | 3,200 | 1,600 |  |  |  | 295,728 |
| 11/22 |  |  | 3,200 | 52.896 |  | 171.688 |
| 11/30 |  |  |  |  |  | 158,688 |
| 12/6 |  | 52,896 |  |  |  | 132,240 |
| 12/14 |  | 1,600 |  |  |  | 135,4.10 |
| 12/20 | 9,600 |  |  |  |  | 9,600 |
| 12/27 |  | 52,896 |  |  |  | 52,896 |
| 1913 | Actinastrum hantzschii | Actinastrum hantzschii (large) | Coelastrum microporum | Crucigenia lauterbornii | Pediastrum boryanum | Pediastrum duplex |
| 1/11 |  |  |  | ........ ...... | 400 | 400 |
| 1/19 | - . |  |  |  | 6,400 |  |
| 1/25 | . . |  |  |  | 6,400 | 7,200 |
| 2/2 |  |  |  |  | 19,200 | 79,344 |
| 2/8 |  |  |  | . ......... | 32.000 | 9,600 |
| 2/1.5 |  | ............ .. | ... | . . ....... | 51,200 | 79, 344 |
| 2/23 | 3,200 |  | ........ ...... | ............... | 38,400 | 132,210 |
| 3/1 | 1,600 |  | ............... | ............... | 105,792 | 9,600 |
| 3/8 | 1,600 |  |  |  | 158,688 | 6,400 |
| $3 / 15$ | 105,792 |  |  |  | 79,344 | 79,344 |
| 3/23 | 9,600 | .............. |  | .. ........... | 158685 | 132,240 |
| 3/29 | 158,688 |  |  |  | 132,240 | 132,240 |
| 4/5 | 3,200 | .............. |  |  | 158,685 | 158,688 |
| 4/13 | 52,896 |  |  |  | 12,800 | 105,792 |
| 4/19 | 1,600 |  | ...... ...... |  | 105,792 | 23.400 |
| 4/26 | 105,792 | 26,448 |  |  | 79,344 | 105,792 |
| $5 / 3$ |  | 9,600 |  |  | 132,240 | 79,344 |
| $5 / 10$ | 6,400 | ............ | ........... | ............ | 22,400 | 12,500 |

Table 3.-Organisus Per Cubic Meter in Plankton of Smitu's Canal in 1913-(Continued)

1913
$5 \quad 17$
$5 \quad 17$
$5 \quad 24$
5
5
5
5
(i) 7
(i) 16
6. 21

628
7 5
712
7.19
7.26
$\mathrm{S} \quad 2$
$8 \quad 9$

- 15

8. 2:3
$\begin{array}{ll}9 & 6\end{array}$
$91: 3$
$9 \quad 20$
$9: 27$
10 t
$\begin{array}{ll}10 & 11 \\ 10 & 18\end{array}$
$10^{2} 26$
11/1
11 /
1115
$11 / 22$
$11: 30$
$12: 6$
$12 \cdot 14$
$12: 20$
$12 \cdot 27$
$\begin{array}{rrr}1913 \\ 1 & 11 \\ 1 / 19 \\ 1 & 25 \\ 2 & 2 \\ 2 & 8 \\ 2 & 15 \\ 2 & 23 \\ 3 & 1 \\ 3 & 8 \\ 3 & 15 \\ 3 & 23 \\ 3 & 29 \\ 4 & 5 \\ 4 & 13 \\ 4 & 19 \\ 4 & 26 \\ 5 & 3 \\ 5 & 10 \\ 5 & 17 \\ 5 & 24 \\ 5 & 31\end{array}$

Actinastrum Coctastrum Crucigenia Pantzschii Pediastrum
boryanum
Coclastrum Crucigenia microporum lauterbornii bryanum
9,600
9,600
5,600
5,896

Pediastrum duplex 12,800 1,600 6,400 25,600
105,792
22,400
211,584
396,720 925,680
1,851,360
$1,481,088$
$1,692,672$
1,375,296
581,856
2,221,632
1,16:3,712
$2,433,216$
$3,596,928$
4,241,680
2,962,176
4,559,056
$4.770,640$
$2,539,008$
$2,539,008$
$1,639,766$
$1,533,984$
634,752
132,240
185,136
185,136
105,792
52,896
52,896
9,600
52,896

Schroederia setigera

$$
1,600
$$

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued)

| 1913 | Pediastrum simplex | Raphidium polymorphum | Richteriella botryoides | Scenedesmus obliquus | Scenedesmus quadricauda | Schroederia setigera |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/28 | 1,600 |  |  | 3,200 | 264,480 |  |
| 7/5 |  | 1,600 |  | 3,200 | 105,792 | - . . ${ }^{\text {r }}$ |
| 7/12 | 52,896 | 1,600 |  | 3,200 | 290,929 |  |
| 7/19 | 32,000 | 3,200 | . . |  | 158,688 |  |
| $7 / 26$ | 6,400 | 3,200 | $\ldots$. | 105,792 | 317,376 | 3,200 |
| 8/2 | 105,792 | 3,200 |  |  | 476,064 |  |
| 8/ 9 | 105,792 | 3,200 | - . | 3,200 | 370,272 |  |
| 8/15 | 105,792 |  |  |  | 899,232 |  |
| 8/23 | 158,688 | 370,27.2 | 105,792 | 158,688 | 528,960 | . |
| 8/31 | 105,792 | 317,376 |  | 12,800 | 846,336 |  |
| $9 / 6$ | 528,960 |  | 952,128 | 423,168 | 1,163,712 |  |
| $9 / 13$ | 12,800 | 211,584 | 25,600 | 211,584 | 528,960 |  |
| 9/20 | 211,584 |  | 317,376 | 105,792 | 846,336 |  |
| 9/27 | 25,600 | 224,384 |  | 423,168 | 1,269,504 |  |
| 10/4 | 12,800 | 211,584 |  | 105,792 | 2,115, ${ }^{1}+4$ |  |
| 10/11 | 211,584 | 105,792 |  | 423,168 | 1,692,672 | 211,584 |
| 10/18 |  |  |  | 211,584 | 846,336 | 52,896 |
| 10/26 | 12,800 | 52,896 |  | 317,376 | 1,110,816 |  |
| 11/1 | 6,400 | 52,896 | . | 211,584 | 1,216,60S |  |
| 11/8 |  | 211,584 |  | 158,688 | 846,336 |  |
| 11/15 |  | 132,240 |  | 105,792 | 687,648 |  |
| 11/22 | 3,200 | 1,600 |  | 3,200 | 290,928 | 1,600 |
| $11 / 30$ | 1,600 | 79,344 |  | 1,600 | 158,688 |  |
| 12/6 |  | 1,600 |  |  | 6,400 |  |
| 12/14 | . . | .... . .. . | . | 3,200 | 3,200 |  |
| 12/20 |  |  | - . | 1,600 | 1,600 | . |
| 12/27 | 1,600 | 132,240 | - . | . . .. . | 52,896 | . . . |
| 1913 | Total Chlorophyceae | Asterionella gracillima | Asterionella gracillima (large) | Amphiprora alata | Amphora coffaeformis | Bacillaria paradoya |
| 1/11 | 1,200 | 773,604 | . 1,000 | . . . |  | 2,000 |
| 1/19 | 9,600 | 6,083,040 | 1,600 | - . |  | 4,800 |
| 1/25 | 14,000 | 3,153,924 |  |  |  |  |
| $2 / 2$ | 100,144 | 5,183,808 | 1,600 |  |  | 4,800 |
| $2 / 8$ | 48,000 | 9,997,344 | ... . . . |  |  |  |
| 2/15 | 237,936 | 2,062,944 | . | 1,600 |  | 6,400 |
| 2/23 | 257,98.4 | 2,644,800 | . |  |  |  |
| 3/1 | 129,792 | 1,666,224 | . |  | . | 3,200 |
| 3/8 | 302,128 | 1,481,058 |  | 132,240 |  | 3,200 |
| 3/15 | 280,480 | 1,295,952 | 26,448 |  |  | 25,600 |
| 3/2.3 | 388,864 | 1,137,264 | 79,344 | 3,200 |  | 6,400 |
| 3/29 | 795.040 | 3,702,720 | 158,688 | 1,600 |  | 132,240 |
| 4/5 | 431,168 | 211,584 |  | 238.032 |  | 158,685 |
| 4/13 | 174,688 | 793,440 | 132,240 | 1,600 |  | 105,792 |
| 4/19 | 316,528 | 343,824 | 52,896 | 52,896 |  | 132,240 |
| 4/26 | 479,264 | 581,856 | 105,792 |  |  | 18.5,136 |
| 5/ 3 | 389,472 | 28,800 | .. . . | . |  | 41,600 |
| $5 / 10$ | 125,744 | 3,623,376 |  |  |  | 9,600 |
| $5 / 17$ | 27,200 | 608.304 | 502512 | 3,200 | . | 12,800 |
| $5 / 24$ | 19,200 | 185,136 | .... . . | . . | . | 3,200 |
| $5 / 31$ | 118,592 | 105,792 |  |  |  |  |
| $6 / 7$ | 180,240 | 819,888 | 1,031,472 |  | . | 16,000 |
| 6/16 | 116,992 | 2,353,872 | 2,803,488 | - | . | 12800 |
| 6/21 | 211.584 | 3,067,968 | 3,120,86 4 |  | . | 6,400 |
| $6 / 28$ | 746,944 | 899,232 | 502,512 | 1,600 | . . . . | 38,400 |
| $7 / 5$ | 597,856 | 238,032 | .... | 1,600 |  | 12.800 |
| 7/12 | 1,644,576 |  | 1,600 | 105,792 | $\cdots$ | 1,428,192 |
| 7/19 | 2,593,408 |  | .. .. . | .. . . | - . | 1,904,256 |
| $7 / 26$ | 2,577,408 | ... . | .... . . . | . ... . . . | .... ... | 5,183,808 |
| 8/2 | 2,548,503 | ....... . | ... . . .. | .... . .. . | . .. . | 4,760,640 |

# Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued) 

| 1913 | $\begin{gathered} \text { Total } \\ \text { Chlorophycese } \end{gathered}$ | Asterionella gracillima | $\underset{\substack{\text { Asterionella } \\ \text { graillimai } \\ \text { (large) }}}{\text { ancen }}$ | $\underset{\text { alata }}{\text { Amphiprara }}$ | Amphora coffaeformis | Bacillaria paradoxa |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| </ 9 | 2,194,336 |  |  |  | 12,800 | 14,493,504 |
| S/15 | 2,168,736 |  |  | 211,584 |  | 3,200 |
| 8/23 | 4,562,256 | 3,200 |  |  |  | 2,002,944 |
| S/31 | 6,042,944 |  |  |  |  | 1,057,920 |
| $9 / 6$ | 7,606,924 |  |  |  |  | 423,168 |
| 9/13 | 6,068,548 |  | $\ldots$ | 105,792 |  | 1,798,464 |
| 920 | 6,674,876 |  |  |  |  | 6,241,728 |
| 9 '27 | 6,292,928 |  |  |  |  | 2,221,632 |
| 10, 4 | 9,222,112 |  |  |  |  | 2,327,424 |
| 1011 | 9,133,712 |  |  | 105,792 |  | 740,544 |
| 1018 | 4,337,472 |  |  | 105,792 |  | 423,168 |
| 10/20 | 3,466,640 | 52,896 | .... |  | $\cdots$ | 211,584 |
| 11/1 | 3,355,248 |  | 6,400 | ........ . . |  | 105,792 |
| 11/8 | 1,811,264 | 6,400 | 52,896 | .. . ... | ... | 102,400 |
| 11/15 | 1,112,416 | 22,400 | 158,688 |  |  | 28,800 |
| 11/22 | 579,408 | 79344 | 185,136 | ... | ..... | 370,272 |
| 11/30 | 364,624 | 1,600 | 1,600 |  |  | 290,928 |
| 12/6 | 67,296 | 5,316,048 |  | 1,600 |  | 1,613,328 |
| 1214 | 59,296 | 1,877,808 | 6:34,752 | ..... | 1,600 | 740,544 |
| 12 '20 | 12,800 | 238,032 |  |  |  | 502,512 |
| 12/27 | 242,832 | 158,688 |  |  |  | 264,480 |
| 913 | Cocroneis pediculus | Cocconeis sp. | Cyclotella spp. | $\underset{\substack{\text { Cymatopleura } \\ \text { solea }}}{ }$ | $\begin{gathered} \text { Cymbella } \\ \text { affinis } \end{gathered}$ | Cymbella cymbiformis |
| 1/11 |  |  | 146,264 | ... .. . . |  |  |
| $1 / 19$ |  |  | 1,560,432 | .... .. .. | . . . . |  |
| 1/25 | ... ... |  | 958,740 | .... | ..... . .. . | 1,600 |
| $2 / 2$ | . . .. . ... |  | 1,137,264 | 1,600 | .... . . . . | .... . . . |
| 2/8 |  | . | 1,481,088 |  | . |  |
| 2/15 | . .. . |  | 1,798,464 | ... . | . . ... | 22,400 |
| 2/23 |  |  | 6,506,208 |  |  |  |
| $3 / 1$ | 1,600 | 1,600 | 16,794,480 | 6,400 | 12,800 | 52,896 |
| $3 / 8$ | $\ldots$.... |  | 6,109,488 | 6,400 |  |  |
| 3/15 |  | $\cdots$ | 4,839,984 | 3,200 |  | 6,400 |
| 3/23 |  | . . | 3,491,136 | 3,200 |  |  |
| 3/29 | 1,600 | .. . ... . | 4,496,160 | 9,600 | 52,896 | 9,600 |
| $4 / 5$ |  |  | 1,322,400 | 3,200 | 1,600 | 6,400 |
| $4 / 13$ |  | 52,896 | 1,745,568 | 12,800 | 3,200 |  |
| 4/19 | . . | . .... ... . | 3,358,896 | 6,400 |  | 3,200 |
| 4/26 |  | . . | 2,062,944 |  | 105,792 |  |
| 5 3 |  |  | 3,782,064 |  | 1,600 |  |
| 5:10 | 1,600 |  | 1,533,984 |  | 52,896 |  |
| $5 \cdot 17$ |  |  | 2,248,080 | 3,200 | 1,600 | 3,200 |
| $5 \cdot 24$ |  | . ... | 899,232 |  | 3,200 | 3,200 |
| 5/31 |  |  | 581,856 |  |  |  |
| $6 / 7$ | . . | ... . . | 819,888 |  | 3,200 |  |
| 6/16 |  |  | 1,295,952 | 3,200 | 3,200 | .... ${ }^{\text {a }}$ |
| 6/21 | . |  | 1,560,432 |  | 1,600 | 3,200 |
| 6/28 | . |  | 3,649,824 | 3,200 | 1,600 |  |
| 7.5 |  |  | 3,226,656 | . . | 1,600 |  |
| $7 / 12$ |  | $\cdots$ | 5,316,048 |  | 3,200 |  |
| -19 | . |  | 7,405,440 |  | . .... . |  |
| 7/26 | . |  | 8,410,464 | 19,200 | ... . | 6,400 |
| $8 / 2$ | . |  | 10,367,616 |  |  |  |
| $8 / 9$ |  |  | 6,823,584 | 3,200 |  | 6,400 |
| 8/15 |  |  | 7,669,920 | 6,400 | .... . . |  |
| 8/23 | 3,200 |  | 13,594,272 | 25,600 | ... ... ... |  |
| 8/31 |  | . | 14,281,920 |  | . . . . | 12,800 |
| $9 / 6$ |  |  | 12,906,624 | 25,600 | .. | 25,600 |

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued)


| Cocconeis pediculus | Cocconeis | Cyclotella spp. | Cymatopleura solea | $\begin{aligned} & \text { Cymbella } \\ & \text { aftinis } \end{aligned}$ | Cymbella cymbiformis |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .... ... .... |  | 9,521,292 | 12,800 |  |  |
| . . . | .. . | 15,128,256 |  |  | 12,800 |
| . . | . . .... | 17,773,056 | . |  |  |
|  |  | 22,765,328 |  |  |  |
|  | .. ... .. . | 22,342,160 | - ... . | 105,792 |  |
| 105,792 |  | 24,667,584 | .. . ${ }^{\text {a }}$ |  | , |
| . | .. . . | 39,407,520 | 6,400 | 52,896 |  |
| . ... .. | ... .. . . | 13,48S,480 | 6,400 |  | 6,400 |
| .......... . |  | 6,559,104 | .... . | 6,400 | 12,800 |
|  |  | 2,697,696 |  |  | 3,200 |
| 1,600 | . . | 2,540,608 | -.. . | 1,600 | 12,800 |
| . . . | . . . . | 2,196,784 |  | 1,600 | 3,200 |
|  |  | 2,327,424 | 6,400 | 52,896 |  |
| . | ..... .. ... | 1,297,552 | 6,400 | . . |  |
| , | ............... | 1,533,984 | 12,800 |  | 6,400 |
| ............... | ............... | 1,719,120 | - .. | 52,896 |  |
| Cymbella pusilla | Cymbella prostrata | $\underset{\text { sp. }}{\substack{\text { Cymbella }}}$ | Cymbella tumida | Diatom unidentified | Epithemia ocellata |
| .. . . | .... | 800 | . . | . |  |
| - . . | - .. . . . |  | .. . .. |  | . |
| . . |  | 1,600 | $\cdots$ | 3,200 | .. . |
| 1,600 | . |  | . . | 79,344 | - |
| 1,600 |  | 1,600 | . |  |  |
| .. . | . | 3,200 |  | 3,200 | 3,200 |
|  |  |  | 3,200 | 52,896 | 3,200 |
| 1,600 |  |  | 6,400 |  | ... . |
|  | . . | . |  | 52,896 | - . |
|  | . | . | 3,200 | 1,600 |  |
| . |  | . |  | 1,600 | 3,200 |
|  | , . |  | 1,600 |  | 52,896 |
|  |  |  | 3,200 | 79,344 | .. . |
|  | . | 1,600 | 9,600 |  | . |
|  |  |  | 3,200 |  |  |
|  |  |  | 3.200 |  | 3,200 |
|  | 3,200 |  |  |  | 6,400 |
|  | 3,200 |  | 6,400 | . | 9,600 |
|  | . . |  | 1,600 |  | 3,200 |
| . |  |  | 1,600 | . . |  |
|  |  | . | 52,896 | . . | 3,200 |
| . |  | . | 6,400 |  |  |
| - | . . |  | 12,800 | . | 12,800 |
| . | . | ............ | 6,400 |  |  |
| . |  |  | 6,400 |  |  |
| - |  | . |  |  | 12,800 |
| . |  |  | 12,800 |  |  |
|  |  |  | 12,500 | ............. | 12,800 |
| . $\cdot$ | . . | . | . |  |  |
| . . |  | . | . |  | 12,800 |
|  |  |  |  |  |  |

# Table 3.-Organisms Per Cubic Meterin Plankton of Smith's Canal in 1913-(Continued) 

| 1013 | Cymbella pusilla | Cymbella prostrata | $\underset{\text { sp. }}{\text { Cymbella }}$ | Cymbella tumida | Diatom unidentified | Epithemia ocellata |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 18 |  | . . . | - | 12,800 | ... . . |  |
| 1026 | . . |  |  |  |  |  |
| 11,1 | . . . | .. . ... | . . | -. ${ }^{\text {a }}$, | .. .. | 6,400 |
| 11 ! 8 |  | . . | . | (6,400 |  |  |
| 11 15 | . . | . .. . |  |  | .. . . |  |
| 11 2\% | . . | . | . | 1,600 | . . . | 6,400 |
| 11/30 | . . . | . . . | . | - | . . . | 1,600 |
| 12/6 | . . | - .. | . | 6,400 | .. . .. . | 9,600 |
| 12/14 | . . | . . |  | , | .. .. .. . |  |
| 12/20 | . .. .. . | . .. . |  |  | . | 6,400 |
| 12/27 |  |  |  |  |  | 6, 400 |

Fragillaria
capucina
1,200
9,600
19,836
19,600
6,400
52,896
16,000
9,600
9,600
79,344
79,344
22,400
185,136
79,344
79,344 6,400
158,688 9,600 12,800 12,800 19,200 1,600 3,200 28,800
105,792 3,200 9,600 3,200 6,400 6,400

6,400
6,400

1913
1/11
1/19
1/25
$2 / 2$
$2 / 8$
$2 / 15$
$2 / 23$
3/ 1
/15
$3 / 23$
$3 / 29$
$4 / 5$
$4 / 13$
4/19
4/26
$5 / 3$
$5 / 10$
$5 / 17$
$5 / 24$
$5 / 31$
$6 / 7$
6/16
$6 / 21$
$6 / 28$
$7 / 5$
$7 / 12$
7/19
$7 / 26$
$8 / 2$
$8 / 9$
$8 / 15$
8,23
8.31
$9 / 6$
$9 / 13$
$9 / 20$
$9 / 27$
$10 / 4$
$10 / 11$
10/18
$10 / 26$
11/1
$11 / 8$
$11 / 15$
$\underset{\text { sp. }}{\text { Eunotia }}$
Eunotia
flexuosa

$\cdots$
crotonensis

Fragillaria
400

3,200
3,200
Gomphonema constrictum

3,200

1,600
$1,600 \quad 1,600$
1,600
1,600

1,600

6,100

105,792
105,792
105,792

12,800
6,400
52,896
6,400

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued)

| 1913 | Eunotia flexuosa | $\underset{\text { sp. }}{\text { Eunotia }}$ | Fragillaria capucina | Fragillaria crotonensis | Fragillaria sp. | Gomphonema constrictum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11/22 |  |  | 6,400 | 3,200 |  |  |
| 11/30 |  | ............... |  |  |  | 1,600 |
| 12/6 |  |  | 3,200 |  | 1,600 |  |
| 12/14 | 1,600 |  |  |  |  |  |
| 12/20 | 6,400 |  |  |  |  |  |
| 12/27 | ............... | 1,600 | 3,200 | ............. | . | . . . . . |
| 1913 | Gomphonema olivaceum | Gomphonema sp. | Gomphonema subclavatum | Gyrosigma acuminatum | Gyrosigma kiitzingii | Gyrosigma scalproides |
| 1/11 |  | . . . . | . . . . | .. . . . | 400 |  |
| 1/19 |  |  |  |  | 3,200 |  |
| 1/25 |  |  |  |  | 800 |  |
| 2/2 |  |  |  | . | 6,400 |  |
| 2/8 |  |  |  |  | 6,400 |  |
| 2/15 |  |  |  |  | 105,792 | . . . |
| 2/23 |  |  |  | 3,200 | 3,200 |  |
| 3/1 |  | . |  | 52,896 | 105,792 |  |
| 3/8 |  |  |  |  |  |  |
| 3/15 |  |  |  |  | 3,200 | 1,600 |
| 3/23 |  |  |  |  | 3,200 | 132,240 |
| 3/29 |  |  |  | 1,600 | 132,240 | 1,600 |
| 4/5 |  | 1,600 | .............. |  | 79,344 |  |
| 4/13 |  |  |  |  | 9,600 |  |
| 4/19 |  |  |  |  | 79,344 | 1,600 |
| 4/26 |  |  |  |  | 6,400 |  |
| $5 / 3$ |  |  | ............... |  | 3,200 | ......... |
| $5 / 10$ |  |  |  | . | 3,200 |  |
| $5 / 17$ |  | 1,600 | .............. |  | 1,600 | 1,600 |
| $5 / 24$ |  |  |  |  | 12,800 | 3,200 |
| $5 / 31$ |  |  |  |  |  |  |
| $6 / 7$ | 1,600 |  |  |  | 12,800 | 52,896 |
| 6/16 | , |  |  |  | 12,800 |  |
| 6/21 |  |  |  |  | 9,600 | 1,600 |
| 6/28 |  |  |  |  | 12,800 | 1,600 |
| $7 / 5$ |  |  |  | 1,600 | 3,200 |  |
| 7/12 |  |  |  |  | 105,792 | ............ |
| 7/19 |  |  |  |  | 32,000 |  |
| 7/26 |  |  |  | ............... | 476,064 | 6,400 |
| $8 / 2$ |  |  |  |  | 158,688 | 317,376 |
| $8 / 9$ |  |  |  |  | 211,584 | 1,481,08S |
| 8/15 |  |  |  | 211,584 | 105,792 | 1,005,024 |
| 8/23 | 3,200 |  |  | 105,792 | 370,272 | 2,697,696 |
| 8/31 |  |  |  | 211,584 | 317,376 | 1,586,880 |
| 9/6 |  |  |  | 105,792 | 423,168 | 740,544 |
| $9 / 13$ |  |  |  |  | 211,584 | 317,376 |
| $9 / 20$ |  |  |  | 317,376 | 105,792 | 317,376 |
| 9/27 |  |  |  | ............ | 12,800 | 211,584 |
| 10/4 |  |  | 12,800 |  | 105,792 | 317,376 |
| 10/11 |  |  | 105,792 | ............. | 38,400 | 211,584 |
| 10/18 |  |  | 105,792 |  |  | 105,792 |
| 10/26 |  |  |  | 105,792 | 12,800 | 423,168 |
| 11/1 |  |  |  | . |  | 6,400 |
| 11/8 | ............... | ............... | ............... | ............... | 105,792 | 158,688 |
| 11/15 |  | ............... | ............... | ............. | 6,400 | 79,344 |
| 11/22 | ............... | ............... | ... |  | 52,896 | 132,240 |
| 11/30 |  |  |  | 9,600 | 6,400 | 3,200 |
| 12/6 | - | ............... | ............... |  | 52,896 | 52,896 |
| 12/14 |  |  |  | … ${ }^{\text {a }}$ | 52,896 |  |
| 12/20 |  |  |  | 3,200 | 6,400 | 52,896 |
| 12/27 |  | .............. | ........... |  | 3,200 | 105,792 |

# Table 3.-Organisms Per Cubic Meter in Plankton of <br> Smitis Canal in 1913-(Continued) 

| 1913 | Melosira granulata | $\underset{\substack{\text { Melosira } \\ \text { (smatall) } \\ \text { (smulat }}}{ }$ | Melosira varians | Navicula | Navicula alpestris | Navicula |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 111 |  |  | 4,800 |  |  |  |
| 119 | 1,600 |  | 211,584 | 1,600 |  |  |
| 125 | 119,016 |  | 19,886 |  |  |  |
| 22 | 449,616 | .. | 9,600 | 1,600 |  |  |
| 28 | 952,128 | ... | 25,600 |  |  |  |
| 215 | 899,232 |  | 264,480 |  |  |  |
| 23 | 1,560,432 |  | 9,600 |  |  |  |
| 31 | 687,648 |  | 264,480 |  | 1,600 |  |
| $3 / 8$ | 1,084,368 |  | 105,792 |  |  |  |
| 3.15 | 4,152,336 |  | 185,136 | 6,400 | 105,792 |  |
| $3 / 23$ | 1,877,808 | 6,321,072 | 423,168 | 105,792 | 105,792 |  |
| $3 / 29$ | 2,353,872 | 9,045,216 | 396,720 | 1,600 | 132,240 | 185, 1:36 |
| $4 / 5$ | 872,784 | 132,240 | 105,792 |  | 1,600 |  |
| 4/13 | $5,104,464$ | 740,544 | 158,688 | 185,136 | 79,344 |  |
| $4 / 19$ | 5,765,664 | 634,752 | 9,600 | 1,600 | 79,344 |  |
| 4.26 | 9,203,904 | 581,856 | 238,0:32 | 79,344 | 3,200 | 79,344 |
| $5 / 3$ | 1,560,432 | 211,584 | 79,344 |  |  | 105,792 |
| 5/10 | 2,010,048 | 158,688 | 105,792 |  |  | 52,896 |
| 5.17 | 3,649,824 | 105,792 | 79,344 |  | 1,600 | 132,240 |
| $5 / 24$ | 3,279,552 |  | 19,200 | - . | 52,596 | 3,200 |
| 5,31 | 1,454,640 | 1,600 | 3,200 | . . . |  | 3,200 |
| 6,7 | 5,078,016 |  | 6,400 |  | 1,600 | 52,896 |
| 6,16 | 6,426,864 | .... . . . | 79,34.4 | . . | 1,600 | 52,896 |
| $6 / 21$ | 8,119,536 | .... .... .. . | 132,240 | - . |  | 52,896 |
| $6 / 28$ | 14,652,192 | .... . . ... .. | 6,400 | . . . | 3,200 | 1,600 |
| 75 | 9,891,552 | .. .. .. . . | 185,136 | . . . |  | 52,896 |
| $7 / 12$ | 16,503,552 | ..... . .. ... | 158,688 | .. . . . | 1,600 |  |
| $7 / 19$ | 13,647,168 | ...... .. ..... |  | $\cdots$... |  | 105,792 |
| 7/26 | 24,437,952 | ..... ...... ... | 12,800 |  |  | 3,200 |
| $8 / 2$ | 34,170,816 | .... . . . | 6,400 | $\cdots$ | 3,200 | 105,792 |
| 8/9 | 64,321,536 | .... ..... . ... | 158,688 |  | 3,200 | 211,584 |
| $8 / 15$ | 86,643,648 | ..... . ..... | 211,584 |  |  | 3,200 |
| 8,23 | 84,845,184 | ......... ... . | 105,792 | . | 105,792 |  |
| 8,31 | 88,971,072 |  |  |  |  |  |
| $9 / 6$ | 193,810,944 | $\cdots$ | 25,600 | ... . . . | 211,584 | 105,792 |
| 9113 | 75,439,744 | $\ldots .$. |  |  |  | 211,584 |
| 9,20 | 127,912,576 | .... $\ldots$. | 317,376 | … ... . |  | 105,792 |
| 9/27 | 72,265,984 | . . ... . .. |  | . . . |  | 211,584 |
| 10/4 | 53,214,576 |  | 105,792 |  | 105,792 |  |
| 10/11 | 60,524,224 | . | 12,800 |  | 211,584 | 105,792 |
| 10/18 | 27,515,968 |  | 105,792 |  |  | . . . . |
| 10/26 | 22,057,632 | . . . .. .. | 6,400 |  | 105,792 |  |
| 11/1 | 15,445,632 |  | 6,400 |  |  |  |
| $11 / 8$ | 6,612,000 |  | 19,200 |  |  | 103,792 |
| 1115 | 2,697,696 |  | 3,200 |  |  | 1,600 |
| 11/22 | 2,115,840 |  | 52,896 |  | 52,596 |  |
| 11/30 | 3,914,304 | ... | 6,400 |  | 3,200 |  |
| 12/6 | 2,327,424 |  | 79,344 |  | 52,896 | 1,600 |
| 12/14 | 1,507,536 |  | 52,596 |  |  | 79,344 |
| 12/20 | 661,200 |  | 25,600 |  | 1,600 |  |
| 12/27 | 1,110,816 |  | 185,136 |  |  | 52,896 |
| 1913 | Navicula didyma | Navicula dubia | Navicula gracilis | Navicula sp. | Navicula viridis | Nitzschia acicularis |
| 1/11 |  |  |  |  | - . ... |  |
| 1/19 |  |  |  | 52,896 |  | 80,944 |
| 1/25 |  |  | 800 |  |  | 59,508 |
| 2/2 |  |  | 158,688 | 1,600 | 4,800 | 185,136 |
| 2/ 8 | 3,200 |  | 158,688 | 1,600 |  | 158,688 |

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued)

| 1913 | Navicula didyma | Navicula dubia | Navicula gracilis | $\begin{aligned} & \text { Navicula } \\ & \text { sp. } \end{aligned}$ | Navicula viridis | Nitzschia acicularis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2/15 | 3,200 | .... . .. | 264,480 | 79,344 | 12,800 | 132,240 |
| 2/23 |  | . | 6,400 |  | 3,200 | 79.344 |
| $3 / 1$ |  | - . | 290,928 | 105,792 | 1,600 | 158,688 |
| $3 / 8$ | 1,600 |  | 185,136 | S2,544 | 3,200 | 79,344 |
| $3 / 15$ |  |  | 290,928 | 3,200 | . . | 105,792 |
| $3 / 23$ | 3,200 |  | 290,928 | 1,600 |  | 211,584 |
| $3 / 29$ | 1,600 | . | 476,064 | 1,600 | 1,600 | 343,824 |
| $4 / 5$ |  |  | 581,856 | 4,800 | 6.400 | 2,38,032 |
| 4/13 |  |  | 185,136 | 6,400 | 3,200 | 264,480 |
| $4 / 19$ |  |  | 238,032 | 1,600 | 3,200 | 264.480 |
| $4 / 26$ | 1,600 |  | 608,304 | 3,200 |  | 476,064 |
| 5/3 |  | , | 105,792 |  | 1,600 | 52,896 |
| $5 / 10$ |  |  | 132,240 | 3,200 |  | 105.792 |
| $5 / 17$ |  | . | 158,688 |  | 3,200 | 211,584 |
| $5 / 24$ |  |  | 211,584 |  | 3,200 | 185,136 |
| $5 / 31$ |  |  |  |  |  | 132,240 |
| $6 / 7$ | - . | . | 317,376 |  | 3,200 | 211,584 |
| 6/16 |  |  | 370,272 | 3,200 | 3,200 | 846,336 |
| $6 / 21$ |  |  | 79,344 | 6,400 |  | 661,200 |
| $6 / 28$ |  |  | 185,136 |  |  | 1,005,024 |
| $7 / 5$ |  |  | 1,600 |  |  | 819,885 |
| $7 / 12$ | 52,496 |  | 634,752 |  | 3,200 | 608,304 |
| 7/19 |  |  | 105,792 |  |  | 793,440 |
| 7/26 |  |  | 1,798,464 | 3,200 | 12,800 | 687,648 |
| 8/2 |  |  | 740,544 |  |  | 793,440 |
| S/ 9 |  | 6,400 | 2,062,944 |  | 12,800 | $6.34,752$ |
| 8/15 |  |  | 49,722,240 |  | 6,400 | 158,688 |
| 8/23 | . . |  | 3,385,344 |  | 6,400 | 423,168 |
| S/31 |  | 105,792 | 2,644,800 |  |  | 3,067,968 |
| $9 / 6$ |  |  | 1,904,256 |  |  | 3,385,344 |
| $9 / 13$ | . |  | 423,168 |  | 12,800 | 1,269,504 |
| 9/20 |  |  | 2,327,424 |  |  | 528,960 |
| $9 / 27$ |  |  | 1,375,296 |  | 12,800 | 1,481,088 |
| 10/4 |  |  | 952,128 |  | 25,600 | 523,960 |
| 10/11 |  |  | 1,163,712 | . . |  | 211,584 |
| 10/18 |  |  | 740,544 |  |  | 211,584 |
| 10/26 |  | 52,896 | 317,376 |  |  | 105,792 |
| 11/1 |  | 105,792 | 52,896 |  |  | 158,688 |
| 11/8 | 52,896 | . . | 158,688 |  | 6,400 | 317,376 |
| 11/15 |  | . . | 52,896 | 3,200 | 6,400 | 502,512 |
| 11/22 |  |  | 185,136 |  | 9,600 | 211,584 |
| 11/30 | 3,200 |  | 158,688 |  |  | 290,928 |
| 12/6 |  | - 1,000 | 370,272 | 6,400 | 52,896 | 502,512 |
| 12/14 |  | 1,600 | 158,688 |  | 3,200 | 132,240 |
| 12/20 |  |  | 185,136 |  |  | 79,344 |
| 12/27 | 3,200 | . | 317,376 | . | 3,200 | 132,240 |


| 1913 | Nitzschia angularis | Nitzschia sigma | Nitzschia sigmoidea | Nitzschia vermicularis | Pinnularia acrosphaeria | Pleurostauron parvulum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/11 |  |  |  |  | . . | 39,672 |
| 1/19 |  |  |  | 1,600 |  | 317,376 |
| 1/25 |  |  |  |  |  | 72,732 |
| 2/2 | 9,600 |  |  | 3,200 | . | 264,480 |
| 2/8 |  |  | 1,600 | 52,896 |  | 211,584 |
| 2/15 | 6,400 |  |  | 105,792 | 9,600 | 158,688 |
| 2/23 | 3,200 |  |  | 9.600 |  | 211,584 |
| 3/1 |  |  | 9,600 | 3,200 | . | 740,544 |
| 3/8 | 3,200 | 1,600 |  | 1,600 | . . | 290,928 |
| $3 / 15$ | , | .... . . ..... | 79,344 | 6,400 | . . | 476,064 |

> T'able 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913 -(Continued)

| 1913 | Nitzuchia angularis | Nitzschia sigma | Nitzschia sigmoidea | Nitzschia vermicularis | Pinnularia acrosphaeria | Pleurostauron parvulum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 23 | 3,200 |  | 3,200 | . . . . . |  | 370,272 |
| 329 | 3,200 | . | 52,896 |  |  | 42'3,168 |
| 45 |  |  | 52,896 | 3,200 | . . . . .. | 343,824 |
| 413 |  | 12,800 |  |  |  | 581,856 |
| 419 | 6,400 | 3,200 | .. . . | . . . |  | 211,584 |
| $4 / 26$ |  | 3,200 |  |  |  | 132,240 |
| $5 / 3$ | . | 3,200 | .. . .. . |  | . | 211,584 |
| $5 / 10$ | . ${ }^{\text {a }}$ |  |  | - . ${ }^{\text {a }}$ | . . | 211,584 |
| $5 / 17$ | 3,200 | :3,200 |  | 3,200 |  |  |
| $5 \cdot 24$ |  | 6,400 | . . . | 6,400 |  | 132,240 |
| 5,31 |  |  |  |  |  |  |
| 6) 7 |  | 3,200 | . |  | . | 1,600 |
| 6/16 | 12,800 |  |  |  | $\cdots$. 10 | 158,688 |
| $6 / 21$ | 1,600 | 1,600 | 6,400 | 3,200 | 1,600 | 52,896 |
| 6, 28 | 3,200 |  | . . . | 1,600 |  |  |
| 75 |  | . |  | 6,400 |  |  |
| 712 | 9,600 | $\cdots$. | . | 79,344 | - . .. | 52,896 |
| 719 |  |  |  |  |  | 158,688 |
| $7 \cdot 26$ | 25,600 |  | - . |  | . | 158,688 |
| $8 / 2$ |  | 6,400 | . . | 3,200 | , | 3,200 |
| 8, 9 | 6,400 | 264,480 |  |  |  | 158,688 |
| 8,15 | 105,792 | 105,792 | . | 105,792 |  | 105,792 |
| 823 | 6,400 | 211,584 |  | 158,688 | - . | 158,688 |
| $8 / 31$ |  | 317,376 | , |  | . . . | . . . |
| $9 / 6$ |  | 211,584 |  | 105,792 |  |  |
| $9 / 13$ | 12,800 | 211,584 | . | 105,792 |  | . |
| 9.20 |  | 105,792 | . |  |  |  |
| $9 / 27$ |  | 211,584 |  | 211,5心4 |  | 105,792 |
| 10/4 | 12,800 | 105,792 | - | 35,400 |  | 105,792 |
| 10/11 | 12,800 |  |  | 12,800 | . |  |
| 10/18 |  | 12,800 | . . | 12,500 | - $100^{\circ}$ | 105,792 |
| 10/26 | 12,800 | ... | . . .. . |  | 6,400 | 52,896 |
| 11/1 |  | 52,806 |  | 6,400 | . . . | 52,896 |
| 11/8 | 52,896 | 12,800 | , . . |  | $\cdots$. | 211,58 ${ }^{\text {2 }}$ |
| 11,15 |  | 1,600 |  |  | . | 52,896 |
| 1122 | 3,200 | 6,400 | . | 6,400 | . . | 1,600 |
| 11/30 | 3,200 |  |  |  |  | 105,792 |
| 12/6 | 3,200 | 52,896 |  |  |  | 132,240 |
| 12/14 | .......... | 52,896 |  |  |  | 52,896 |
| $12 \cdot 20$ |  | 9,600 | . . . |  |  | 52.896 |
| 12/27 |  | 3,200 |  | 6,400 | . $\cdot$ | 185,136 |
| 1913 | Stauroneis phoenicenteron | Surirella sp. | Syncdra radians | Synedra ulna | Total <br> Bacillariaceae | Closterium acerosum |
| 1/11 |  | 400 | . | 26,448 | 995,988 | . |
| 119 |  | 17.600 | . | 449,616 | 8,850,184 |  |
| 125 |  | 5,600 |  | 469,452 | 4,852,644 | 3,200 |
| 2/2 |  | 65,600 |  | 343,824 | 7,847,616 | 3,200 |
| $2 / 8$ |  | 19,200 |  | 238,032 | 13,286,048 | 1,600 |
| 2'15 |  | 114,544 |  | 34,3,824 | 6,526,064 | 3,200 |
| 233 |  | 94,496 |  | 396,720 | 11,554,384 | .. . |
| 3) 1 |  | 132,240 |  | 502,512 | 21,603,120 |  |
| $3 / 8$ |  | 48,000 |  | -290,928 | 10,066,896 | 6,400 |
| 3.15 |  | 158,688 | - | 793,440 | 12,653, 4 4 | 3,200 |
| 3 23 | . | 132,240 |  | 238,032 | 15,174,656 | . . . |
| 3/29 |  | 185,136 | . . | 476,064 | 23,028,112 |  |
| 4/5 |  | 132,240 |  | 370,272 | 5,009,024 | 3,200 |
| 413 | 3,200 | 185,136 |  | 528,960 | 10,329,424 | .. . |
| 4.19 |  | 79,344 |  | .123,168 | 11,761,264 | - |

Tatle 3.-Organisms Per Cubic Meter in Plankton of
Smith's Canal in 1913-(Continued)

| 1913 | Stauroneis phoenicenteron | Surirella sp. | Synedra radians | Synedra ulna | Total <br> Bacillariaceae | Closterium acerosum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4/26 |  | 54,400 | . | 185,136 | 14,915,728 | 6,400 |
| 5,3 |  | 35,200 |  | 6,400 | 6,323,232 |  |
| $5^{\prime} 10$ |  | 105,792 |  | 317,376 | 8,531,408 |  |
| $5 / 17$ |  | 158,688 |  | 185,136 | 8,256,480 |  |
| 5/24 |  | 60,800 |  | 105,792 | 5,198,768 |  |
| $5 / 31$ |  |  |  | 1,600 | 2,285,728 |  |
| $6 / 7$ | 1,600 | 132,240 |  | 132,240 | 8,722,096 |  |
| $6 / 16$ | 3,200 | 79,344 |  | 238,032 | 14,880,432 |  |
| 6/21 |  | 211,584 |  | 238,032 | 17,599,024 | 3,200 |
| 6. 28 |  | 105,792 |  | 1,190,160 | $22,537,552$ |  |
| $7 / 5$ |  | 132,240 |  | 343,824 | 15,092, 112 |  |
| 7/12 |  | 449,616 |  | 343,824 | 26,131,376 | 6,400 |
| 7/19 |  | 211,584 | 105,792 | 158,688 | 24,800,128 |  |
| 7/26 |  | 1,428,192 | 793,440 | 267,680 | 43,673,600 | 12,800 |
| 8 2 |  | 687,648 | 264,480 | 211,584 | 53,816,832 | 6,400 |
| $8 / 9$ |  | 4,125,888 | 158,68 |  | $95,438,683$ | 37,400 |
| 8,15 | 3,200 | 1,586,880 | 476,064 | 370,272 | 149,512,496 |  |
| 8/2:3 |  | 2,274,528 | 1,057,920 | 158,688 | 113,258,240 | 12,800 |
| 8/31 |  | 1,163,712 | 528,960 | 4,125,888 | 118,406,848 | 38,400 |
| $9 / 6$ |  | 634,752 | 423,168 | 3,508,512 | 220,996,096 | 76,800 |
| 9/13 |  | 211,584 | 423,168 | 5,924,364 | 96,437,784 | 12,800 |
| $9 / 20$ |  | 634,752 | 317,376 | 2,856,38 4 | 157,322,752 | 25,600 |
| $9 / 27$ |  | 528,960 | 1,586,880 | 2,539,008 | 99,961,216 |  |
| 10. 4 |  | 423,168 | 1,269,504 | 1,904,256 | 84,452,672 |  |
| 10/11 |  | 317,376 | 846,336 | 2,221,632 | 89,303,502 | 12,800 |
| 10/18 |  | 740,544 | 634,752 | 1,692,672 | 57,291,968 |  |
| 10/26 |  | 634,752 | 158,688 | 476,064 | 64,325,240 | 12,800 |
| 11/1 |  | 476,064 | 158,688 | 370,272 | 30,671,584 | 6,400 |
| 11/8 | 52,896 | 528,960 | 264,480 | 528,960 | 15,042,976 |  |
| 11.15 |  | 52,896 | 211,584 | 158,688 | 6,757,696 | 3,200 |
| $11 / 22$ |  | 185, 136 | 52,896 | 79,344 | 6,35 , 424 | 6,400 |
| 11/30 |  | 158,688 | 52,896 | 132,240 | 7,324,400 | 3,200 |
| 12/6 | 3,200 | 264,480 |  | 290,92S | 13,506,832 | 3,200 |
| 12, 14 |  | 105,792 |  | 238,032 | 7,003,072 | 3,200 |
| 12/20 |  | 264,480 | 132,240 | 105,792 | 3,890,112 |  |
| 12/27 |  | 79,344 | 1,600 | 185,136 | 4,581,056 | $\ldots$ |
| 1913 | Closterium acuminatum | Closterium rostratum | $\underset{\text { sp. }}{\text { Cosmarium }}$ | Mougeotia sp. | Spirogyra protecta | $\text { Staurastrum }_{A}$ |
| 1/11 | . | . . |  |  | 1,200 |  |
| 1/19 |  |  | . . | 1,600 | 6,400 |  |
| 1,25 | . |  |  | 400 |  |  |
| $2 / 2$ |  |  |  |  | 1,600 |  |
| 2/8 |  |  |  |  |  |  |
| 215 |  |  |  |  |  | 1,600 |
| 2/23 |  |  |  | 1,600 |  | 79,344 |
| 3/1 |  |  |  |  |  |  |
| $3 / 8$ |  |  |  |  |  | 185,136 |
| 3/15 | . |  |  |  | 3,200 | 6,400 |
| 3/23 | . | . | . |  |  |  |
| 3/29 |  |  |  |  |  | 52,896 |
| $4 / 5$ |  |  | 1,600 | 1,600 | 6,400 |  |
| $4 / 13$ | 1,600 |  |  | 1,600 |  |  |
| $4 / 19$ | , . |  |  |  |  |  |
| 4,26 |  |  |  |  |  | 1,600 |
| $5 / 3$ |  |  | . |  |  |  |
| $5 / 10$ |  | . |  |  | 1,600 |  |
| $5 / 17$ |  |  |  | 3,200 |  |  |
| $5 / 24$ |  |  |  |  |  |  |

# Table 3.-Organisus Per Cubic Meter in Plankton of Smitis's Canal in 1913-(Continued) 

1913
$5 / 31$
$6 / 7$
$6 / 16$
$6 / 21$
$6 / 28$
$7 / 5$
$7 / 12$
$7 / 19$
$7 / 26$
$8 / 2$
$8 / 9$
$8 / 15$
$8 / 23$
$8 / 31$
$9 / 6$
$9 / 13$
$9 / 20$
$9 / 27$
$10 / 4$
$10 / 11$
$10 / 18$
$10 / 26$
$11 / 1$
$11 / 8$
$11 / 15$
$11 / 22$
$11 / 30$
$12 / 6$
$12 / 11$
$12 / 20$
$12 / 27$



| $\underset{s p .}{\text { Cosmarium }}$ | Mougeotia sp. | Spirogyra protecta | Staurastrum . 1 |
| :---: | :---: | :---: | :---: |
| . . | 1,600 |  |  |
| . | 9,600 | .. |  |
| 1,600 |  |  |  |
|  |  |  | 52,896 |
|  |  |  | 105,792 |
|  | 238,032 |  | $13: 2,240$ |
|  | 211,584 |  | 12.800 |
|  | 42:3,168 | . | 105, 792 |
|  | 264,480 | . | 105, 792 |
|  | 1,322,400 | . | 317,376 |
|  | 3,200 |  | 3,200 |
| $\qquad$ | 3,967,200 |  | 105,792 |
|  | 4,866,432 |  |  |
|  | 1,586,880 |  | 211,581 |
|  | 317,376 |  | 423,168 |
|  | 105,792 |  | 3,067,968 |
| ............... |  |  | 317,376 |
|  | 105,792 |  | 423,168 |
|  |  | .............. | 528,960 |
| ............... |  |  | 25,600 |
| ............... | 52,896 |  | 204,480 |
|  |  |  | 12,800 |
|  | 211,584 |  | ... |
| ............... | 52,896 |  | 3,200 |
|  | 1,600 |  | 3,200 |
|  |  | 3,200 | 3,200 |
|  |  | 3,200 | 1,600 |
| . |  | 6,400 |  |


| Staurastrum sp. | Total <br> Conjugatae |
| :---: | :---: |
|  | 1,200 |
|  | 8,000 |
|  | 3,600 |
|  | 4,800 |
|  | 1,600 |
|  | 4,800 |
|  | 84, 144 |
|  | 191,5:36 |
| ............... | 12,800 |
|  | 100,000 |
|  | 52,896 |
|  | 12,800 |
|  | 3,200 |
|  | 8,000 |
|  | 1,600 |
|  | 3,200 |
| ............... | 3,200 |
| ............... | 1,600 |
| ............... | 9,600 |
|  | 9,600 |
|  | 4,800 |
| ............... | 52,896 |


| $\begin{array}{c}\text { Total } \\ \text { Chlorophyll } \\ \text { bearing }\end{array}$ | Total |
| ---: | ---: |
| $91 g a \mathrm{c}$ |  |$)$


| Ceratium hirundinella | Cercomonas crassicauda |
| :---: | :---: |
| ............... | ... |
| .............. | ............... |
|  |  |
|  |  |
| $\cdots$ |  |
| - |  |
|  | ................ |
|  |  |
| .............. |  |
| ........ |  |
| - |  |
| - |  |
| ................ |  |
| ............... | ............... |
| .............. | .............. |
| ... |  |
|  | 3,200 |
|  | 3,200 |
|  | 3,200 |

Table 3.-Organisks Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued)

| 1913 | Staurastrum sp. | $\begin{gathered} \text { Total } \\ \text { Conjugatae } \end{gathered}$ | $\begin{gathered} \text { Total } \\ \text { Chlorophyll } \\ \text { bearing } \end{gathered}$ | Total | Ceratium hirundinella | Cercomonas |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/5 |  | 108,992 | 19,267,600 | 17,929,200 |  |  |
| 7/12 |  | 383,072 | 33,831,696 | 31,896,192 |  |  |
| 7/19 | 211,584 | 435,968 | 36,948,320 | 28,391,508 | 6,400 |  |
| 7/26 | 105,792 | 652,952 | 58,738,174 | 53,684,254 |  |  |
| $8 / 2$ | 317,376 | 694,048 | 62,336,096 | 59,710,588 |  |  |
| 8/9 | 105,792 | 1,789,368 | 111,133,112 | 107,045,816 |  |  |
| 8/15 |  | 115,392 | 161,112,670 | 152,120,350 |  |  |
| 8/23 | 317,376 | 4,508,960 | 138,246,256 | 133,585,008 |  |  |
| 8/31 |  | 4,917,632 | 147,390,462 | 142,921,598 |  | 105,792 |
| $9 / 6$ | 528,960 | 830,144 | 247,981,772 | 241,201,676 |  |  |
| $9 / 13$ |  | 859,136 | 114,001,764 | 108,584,184 | 12,800 |  |
| 9/20 |  | 3,199,362 | 177,590,200 | 173,768,894 |  |  |
| $9 / 27$ | 105,792 | 423,168 | 125,264,912 | 120,058,304 |  | 105,792 |
| 10/4 |  | 488,960 | 101,844,750 | 95,987,808 |  |  |
| 10/11 |  | 554,560 | 104,095,392 | 100,591,454 |  |  |
| 10/18 | 211,594 | 237,184 | 65,078,781 | 62,222,400 |  |  |
| 10/26 |  | 330,176 | 70,077,512 | 68,147,656 | 52,896 |  |
| 11/ 1 |  | 19,200 | 38,316,112 | 34,276,816 |  |  |
| 11/8 |  |  | 22,222,3336 | 17,137,920 |  |  |
| 11/15 |  | 214,784 | 11,703,204 | 8,382,224 |  |  |
| 11/22 |  | 62,496 | 16,219,536 | 7,168,016 |  |  |
| 11/30 |  | 14,000 | 11,808,016 | 7,861,712 |  |  |
| 12/6 |  | 9,600 | 16,429,664 | 13,715,968 |  |  |
| 12/14 |  | 11,200 | 10,081,776 | 7,210,608 |  |  |
| 12/20 |  |  | 6,232,912 | 3,912,512 |  |  |
| 12/27 |  | 6,400 | 7,511,136 | 4,883,184 |  |  |


| 1913 | Chlamydomona | Chromulina sp. | $\begin{aligned} & \text { Cryptomonas } \\ & \text { sp. } \end{aligned}$ | Dinobryon sertularia | Eudorina | Euglena viridis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/11 |  |  |  |  | 1,200 |  |
| 1/19 | .......... | 1,005,024 |  |  | 8,000 |  |
| 1/25 |  | 1,500,924 | ........ |  | 3,200 |  |
| 2/2 |  | 952,128 | ............... |  | 105,792 | 52,896 |
| 2/8 | 52,896 | 3,782,004 | ............... |  | 16,000 |  |
| 2/15 |  | 3,253,104 |  |  | 9,600 | 3,200 |
| 2/23 |  | 5,527,632 |  | 3,200 | 32,000 | 6,400 |
| 3/ 1 |  | 846,336 |  |  | 44,800 |  |
| 3/ 8 |  | 105,792 |  |  | 35,200 |  |
| 3/15 |  | 396,720 |  | 1,600 | 60,800 |  |
| 3/23 | ............... | 1,322,400 |  |  | 211,584 |  |
| 3/29 |  | 634,752 |  | 1,600 | 264,480 |  |
| 4/5 | .......... | 79,344 |  |  | 3,200 |  |
| 4/13 | .......... | 158,688 | ............... | 1,600 | 32,000 | 3,200 |
| 4/19 | .............. | 185,136 |  |  | 3,200 |  |
| 4/26 | .............. | 238,032 |  |  | 12,800 | 1,600 |
| $5 / 3$ | ............... | 290,928 |  | 52,896 |  |  |
| 5/10 | ............... | 105,792 |  | 105,792 | 6,400 | 1,600 |
| 5/17 |  | 105,792 |  |  | 49,000 |  |
| 5/24 | 1,600 | 1,600 | ............... | 52,896 |  | 3,200 |
| 5/31 |  |  |  | 52,890 | 3,200 |  |
| $6 / 7$ | .............. | 52,896 |  | 105,792 | 28,800 |  |
| $6 / 16$ |  | 79,344 |  | 16,000 | 22,400 | 3,200 |
| 6/21 | ..... | 105,792 |  |  | 79,344 |  |
| 6/28 | ............. | 1,600 |  | 1,600 | 16,000 |  |
| $7 / 5$ | ............... | 793,440 | . | 1,600 | 6,400 | 52,896 |
| 7/12 |  | 1,401,744 | .............. |  | 185,136 | 79,344 |
| 7/19 | ............... | 2,486,112 | .............. | ............. | 51,200 | 3,200 |
| 7/26 |  | 3,702,720 |  |  | 105,792 | 158,688 |

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued)

| 1913 | Chlamydomonas sp. | Chromulina sp. | Cryptomonas sp. | Dinobryon sertularia | Eudorina elegans | Fuglena viridis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $8 / 2$ | ... .. | 2,380,320 |  |  | 32,000 |  |
| S/9 | . . | 1,957,152 | . . . . | . . . . | 1,163,712 | 3,200 |
| \& 15 |  | 8,569,152 | ....... .... |  |  |  |
| S 23 | . . . | 4,231,680 | . . . |  | 6,400 | 3,200 |
| 831 |  | 3,279,552 | . | . . . |  | 105,792 |
| $9 / 6$ | . | 5,183,808 | 105,792 |  |  | 105,792 |
| $9 / 13$ | . . . . | 5,078,016 | . . | .. . | 25,600 | 105,792 |
| $9 \cdot 20$ | . . . | 2,750,592 | . .... . | .. . | 317,376 |  |
| $9 / 27$ | ............... | 4,453,264 | ............... |  | 105,792 |  |
| 10 ! 4 | . .. | 5,501,196 |  |  | 25,600 |  |
| $10^{\prime} 11$ |  | 2,644,500 | . | . | 105,792 |  |
| 10/18 | . | 2,856,384 |  |  |  |  |
| 10/26 | . . | 1,639,776 |  | .. | 6,400 |  |
| 11/1 | . . | 3,438,240 | .. . . | .. | 211,584 |  |
| $11 / 8$ |  | 4,601,952 |  | 52,896 | 105,792 |  |
| $11 / 15$ | . | 3,094,416 |  |  | 3,200 |  |
| $11 / 2{ }^{\prime 2}$ |  | S,727,840 | 1,600 | 3,200 | 22,400 | . . |
| $11: 30$ |  | 3,623,376 | 52,806 | 52,896 | 9,600 | - |
| 12/6 |  | 2,512,560 |  | 3,200 | 52,896 |  |
| 12/14 |  | 2,962,176 | 1,600 |  | 52,896 |  |
| 12/20 |  | 3,253,104 | ............... |  | 9,600 |  |
| 12,27 | ....... | 2,486,112 | . . . . | . . . | 6,400 | . ... |


| 1913 | Flagellate unidentified | $\underset{\text { nasutum }}{\text { Hemidinium }}$ | Mallomonas sp . | Pandorina morum | Peridinium cinctum | $\begin{aligned} & \text { Peridinium } \\ & \text { sp. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 11$ | . . . . | . . . | . . |  | . . ..... | .. |
| 119 |  |  | ................ | 1,600 | . . |  |
| 1/25 | 1,600 | . . | . . | 2,400 | . .. |  |
| $2 / 2$ | 52,896 | . . . |  |  | . . . |  |
| 2/8 | . . . | . . | . . . ... | 22,400 | . . |  |
| 2/15 | . . |  |  | 3,200 | . . . . | - .. . . |
| 223 | - . |  |  | 25,600 | . . . | 6,400 |
| 31 | . . . |  |  | 6,400 | , . |  |
| $3 / 8$ | . .. |  |  | 9,600 | . . . | ... . ... |
| 315 | . . | . ......... |  | 132,240 | . . |  |
| $3 / 23$ |  |  |  | 79,344 | .. . |  |
| 3/29 | 79,344 | ............... |  | 105,792 | . .... | .. . $\cdot$ |
| $4 / 5$ | 79,344 |  |  | 3,200 | . . . . | . . . |
| 413 | . .- |  |  |  | . . . |  |
| 4/19 |  |  |  |  |  |  |
| 4/26 | 1,600 |  |  | 3,200 | 52,896 |  |
| $5 / 3$ | 1,600 | .. . . | - ... | 185, 136 | . | . . |
| 5/10 | 1,600 | . . . |  |  | . . .. . ... | .. . ...... |
| $5 / 17$ | 3,200 | -. | 3,200 | 6,400 | . . . | ... .... |
| $5 / 24$ | . . .. . . | . . | . . | 3,200 | . . . .. | . .. . |
| $5 / 31$ |  |  |  | 3,200 |  |  |
| 6.7 | .. . | - . | 1,600 |  | - . . | 52,896 |
| $6 / 16$ | . . |  |  | 3,200 | . | . . ... |
| 6.21 | . . | , . | . . |  | - . . | . . . |
| 6.28 |  |  | . . |  |  |  |
| 75 |  |  |  | 1,600 | 105,792 |  |
| 712 | . . | . |  | 3,200 | . . | 1,600 |
| 719 | . |  | 6,400 |  | - 3 |  |
| 7.26 | . . |  |  | 6,400 | 3,200 | - .... |
| 8 ¢ 2 | . | 158,688 | . . . . | 3,200 | .. . . | . .. .... |
| $8 / 9$ |  | 264,480 |  |  | .. ..... | . . ...... |
| 815 |  |  | . |  | . .. . ... | . . .. ..... |
| S 2 3 |  |  |  |  | - ... |  |
| 8 *31 |  | 105,792 |  | 105,792 |  | .... ......... |

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued)


Phacus pleuronectes

Pleodorina illinoisensis

Pteromonas sp.

Syncrypta volvox

52,896
3,200 1,600

## 3,200

6,400
$\begin{array}{lr}32,000 & 12,800 \\ 64,000 & 105,792\end{array}$

25,600
$\begin{array}{ll}12,800 & 51,200 \\ 76,800 & 12800\end{array}$
$12,800 \quad 105,792$

12,800

# 'Thale 3.-Organigms Per Cubic Meter in Plankton of Smitu's Canal in 1913-(Continued) 

| 1913 | Phacus pleuronectes | Platydorina caudata | Pleodorina californica | Pleodorina illinoisensis | Pteromonas sp. | Syncrypta volvox |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10/11 |  |  |  |  |  |  |
| 10/18 |  |  | - | .... ..... . | ... . . . | .. . . . . |
| 10/26 |  |  | 12,500 |  |  |  |
| 111 | . | 6,400 |  | 6,400 | . . | . .. . |
| 11/8 |  |  |  |  |  |  |
| 11/15 | - 5 | . . | 9,600 | 3,200 | ... . | . . . |
| 11/2: | 52,896 | .. . | . . . | 6,400 | .. . ... | . . . ... |
| 11/30 | 1,600 |  |  | . .. . . | . | - .. . |
| 12/6 | .... . | . . . | . . . | . . . . | .. .. . | . . . . |
| 12/14 |  |  |  |  |  |  |
| 12/20 |  | -............... | . . | ..... . |  |  |
| 12/27 | ............... |  |  | . . .. | . .. .. |  |
| 1913 | Synura uvella | Trachelomonas euchlors. | Trachelomonas volgensis | Trachelomonas volvocina | Yolvox globator | Total <br> Mastigophora |
| 1/11 |  |  |  |  |  | 1,200 |
| 1/19 |  |  |  | 52,896 |  | 1,067,520 |
| 1/25 |  | 400 |  | 33,060 |  | 1,541,984 |
| 2/2 |  |  |  | 105,792 |  | 1,269,504 |
| $2 / 8$ |  | 52,896 |  | 211,584 |  | 4,137,840 |
| $2 / 15$ |  | 52,896 |  | 290,928 |  | 3,665, 524 |
| 2/23 |  | 1,600 |  | 79,344 |  | 5,682,176 |
| 3/1 |  | 52,896 |  | 79,344 |  | 1,029,776 |
| 3/8 |  |  |  | 317,376 |  | 467,968 |
| 3/15 |  | 105,792 |  | 211,584 |  | 911,936 |
| 3/23 |  | 132,240 |  | 79,344 |  | 1,824,912 |
| 3/29 |  | 105,792 |  | 105,792 |  | 1,297,552 |
| 45 |  |  |  |  |  | 165,088 |
| 4/13 |  | 158,688 |  | 52,896 |  | 407,072 |
| 4/19 |  | 52,896 |  | 1,600 |  | 242,832 |
| 4/26 |  | 132,240 |  | 132,240 |  | 574,608 |
| $5 / 3$ |  |  |  | 132,240 |  | 662,800 |
| $5 / 10$ |  |  |  | 105,792 |  | 330,176 |
| $5 / 17$ |  |  |  | 1,600 |  | 169,192 |
| 5/24 |  |  |  | 79,344 |  | 141,840 |
| $5 / 31$ |  |  |  | 105,792 |  | 165.088 |
| $6 / 7$ |  | 132,240 |  | 52,896 |  | 427,120 |
| $6 / 16$ |  |  |  | 1,600 |  | 167,440 |
| 6/21 |  | 52,896 |  | 79,344 |  | 373,472 |
| $6 / 28$ |  | 132,240 |  | 158,688 |  | 310,128 |
| 7/5 |  |  |  | 370,272 |  | 1,338, 400 |
| 7/12 |  |  |  | 264,480 |  | $1,937,104$ |
| 7/19 |  | 3,200 |  |  |  | 2,556,512 |
| 7/26 |  | 370,272 |  | 581,856 |  | 5,053,920 |
| S/ 2 |  |  |  |  |  | 2,62 2,408 |
| 8/9 |  |  |  | 528,960 |  | 4,087,296 |
| 8/15 |  |  |  | 423,168 |  | 8,992,320 |
| 8/23 | 105,792 |  |  | 317,376 |  | $4,664,448$ |
| 8/31 |  |  |  | 740,544 |  | 4,468,864 |
| $9 / 6$ | 105,792 |  | 105,792 | 634,752 | 12,800 | 6,885,888 |
| $9 / 13$ |  |  |  |  |  | 5,417,600 |
| 9/20 | . | . |  | 317,376 |  | 3, \%21,306 |
| 9/27 |  |  |  | 423,168 |  | 5,206,608 |
| 10/4 |  |  |  | 317,376 |  | 5,856,972 |
| 10/11 | 12,800 |  | 105,792 | 211,584 |  | 3,503,936 |
| 10/18 |  |  |  |  |  | 2,856,384 |
| 10/26 |  |  |  | 211,584 |  | 1,929.856 |
| 11/1 |  |  |  | 211,584 |  | 4,039,296 |
| 11/8 |  |  | 105,792 | 211,584 |  | 5,084,416 |
| 11/15 |  |  |  | 211,584 |  | $3,3222,600$ |

Table 3.-Organisms Per Cubic Meter in Plankton of
Smith's Canal in 1913 - (Continued)

| Synura uvella | Trachelomonas euchlora | Trachelomonas volgensis | Trachelomonas volvocina | Volvox globator | Total Mastigophora |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . . . | -.. . . |  | 211,584 |  | 9,051,520 |
|  | .. . . | $1,600$ | 185,136 |  | 3,946,304 |
| 1,600 | $\cdots$ | $1,600$ | 132,240 | 3,200 | 2,713,696 |
|  |  |  | 52,896 |  | 2,872,768 |
| 1,600 | .... |  | $52,896$ |  | 2,320,400 |
| . | - ... | 3,200 | 132,240 | . . . | 2,627,952 |
| Amoeba proteus | Amoeba radiosa | Arcella <br> vulgaris | Cyphoderia ampulla | Difflugia corona | Difflugia globulosa |
| $\cdots$ | $\cdots$ | 3,200 | . . |  |  |
| $\cdots \cdot$. | .. ... | . . |  |  |  |
| - | $\cdots$. |  |  |  |  |
| . . | ... . | . . | 6,400 |  |  |
|  |  | . | . | .. |  |
| . . . |  |  | 3,200 |  | 3,200 |
| . . . | - . | 3,200 |  |  |  |
| - | - |  | - . |  | . |
| - | ....3,200 | - | . | . |  |
| - $\cdot$ | - . | - |  |  | . |
| 1,600 | . |  |  |  | . . |
| - . |  | 12,800 |  |  |  |
| … | 1,600 |  | 6,400 |  |  |
| . .... . | $\begin{array}{r} 105,792 \\ 3,200 \end{array}$ |  | 6,400 |  |  |
| . . |  |  | 6,400 |  |  |
| 12,800 | 3,200 | 6,400 |  |  |  |
| 12,800 | 105,792 | . |  | 12,800 |  |
| $\cdots$ | 423,168 | 12,800 |  |  |  |
| 105,792 |  | . |  | . |  |
| 52,896 | $\begin{array}{r} 105,792 \\ 52,896 \\ 52,896 \end{array}$ | 52,896 |  |  | . |
| . . . . |  |  | . | 6,400 |  |
| - | $\cdots$ |  |  |  | , |
| $\cdots \cdots$ |  |  |  |  | $\cdots$. |
| . . | - |  | , | . | . . |
| . . | - 52,596 |  |  |  |  |

```
'Tablef 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued)
```

| 1013 | Difflugia pyriformis | Hyalodiscus sp. | Mierogromia socialis | Trinema enchelys | Total Rhizopoda | $\underset{\text { sol. }}{\text { Actinophrys }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/11 |  |  |  |  |  |  |
| 1/19 | . . | . . |  | . | 3,200 |  |
| 1:25 | 800 |  |  |  | 800 |  |
| $2 \quad 2$ | 1,600 |  |  |  | 1,600 |  |
| $2 / 8$ | 12,800 | . |  | . . . | 12,800 |  |
| 21.5 | 22,400 | . . | . |  | 28,800 |  |
| $2 \cdot 23$ | 6,400 | . . | 1,600 | . . | 11,200 | . . |
| $3 / 1$ | 1,600 | . | . | . | 4,800 | . |
| $3 / 8$ | 6,400 |  |  |  | 11,200 |  |
| 315 | 79,344 |  | 1,600 |  | 87,344 |  |
| $3 / 23$ | 3,200 |  | 1,600 | . . | 6,400 |  |
| $3 / 29$ |  | . |  | .. | 6,400 | .... |
| $4 / 5$ | 12,800 |  |  | .. . . | 16,000 |  |
| 4.13 | 16,000 | .. . . | 1,600 | . . . | 17,600 | - |
| $4 / 19$ | 211,584 | . . | 1,600 |  | 213,184 |  |
| 4/26 | 238,032 | . . | 105,792 | . | 348,624 |  |
| 5/3 | 79,344 |  |  | - | 79,344 | . |
| 5/10 | 32,000 | . . . | . . | . | 32,000 |  |
| $5 / 17$ | 79,344 | . . . | . | .. | 79,344 | - |
| $5 / 24$ | 140,800 | -. | . |  | 140,800 | 6,400 |
| $5 / 31$ | 264,480 | . . . |  | . . . | 266,080 |  |
| $6 / 7$ | 132,240 | - | 3,200 |  | 138,640 | 79,344 |
| $6 / 16$ | 105,792 | . . | . .. . . |  | 105,792 |  |
| $6 / 21$ | 105,792 | . . . |  |  | 105,792 | 12,800 |
| 6/28 | 317,376 | .. ... . . . . | 1,600 |  | 331,776 | 3,200 |
| 7/5 | 2388,032 | . .. . . . |  | . | 241,232 | . . .. |
| $7 / 12$ | 105,792 | . . . | 52,896 |  | 220,584 | - . ... |
| 7/19 | 3,200 | . . . . . | 3,200 | . | 6,400 | .. . . |
| 7/26 | 6,400 |  | 3,200 |  | 124,992 | . .. . |
| $8 / 2$ | 6,400 | .. . . . | 3,200 |  | 12,800 | . . ... ... |
| $8 / 9$ | 6,400 |  |  |  | 12,800 | .... . ..... |
| $8 / 15$ | .. | . . . |  | 5,501,184 | 5,501,184 | . . . . ... . |
| 8/23 |  |  | 423,168 |  | 448,768 | .. . . |
| 8/31 | . . | 317,376 |  |  | 647,552 |  |
| $9 / 6$ | . . | 317,376 | 1,163,712 | 105,792 | 2,022,848 | 105,792 |
| $9 / 13$ | . . | 105,792 | 211,584 |  | 422,168 | , |
| $9 / 20$ |  |  | 317,376 | . . . | 740,544 |  |
| 9/27 |  |  | 105,792 | .. . . . | 118,592 | 12,800 |
| 10/4 |  | 211,584 | 528,960 |  | 753,344 | 211,584 |
| 10/11 |  |  | 211,584 | 105,792 | 317,376 | 317,376 |
| 10/18 | . |  | 105,792 |  | 211,584 |  |
| 10/26 |  | 105,792 | 264,480 | .. | 476,064 |  |
| 11/1 |  | 52,896 | 105,792 |  | 264,480 | . . |
| 11/8 | . | 52,896 | 52,896 | 105,792 | 105,792 | . . |
| 11/15 |  |  | .. . | . . .. | 1,600 |  |
| 11/22 | . . | . |  |  | , | - |
| $11 / 30$ |  |  |  | 1,600 |  |  |
| 12/6 | 1,600 |  | . | 1,600 | 1,600 |  |
| $12 / 14$ | 3,200 |  |  | , | 3,200 | - . . .. |
| 12/20 |  |  |  |  |  |  |
| 12/27 | $\cdots$ | . - |  | 3,200 | 1,600 |  |
| 1913 | $\begin{aligned} & \text { Heterophrys } \\ & \text { fockei } \end{aligned}$ | Nuclearia simplex | Pinaciophora fluviatilis | Raphidiophrys clegans | Total <br> Heliozoa | Ciliate unidentified |
| 1/11 |  |  |  |  |  | . . . . |
| 1/19 |  | . . . |  | . . . | . . | . . . . . |
| 1/25 |  |  |  |  |  |  |
| 2/2 |  |  |  |  | . | 1,600 |
| $2 / 8$ |  |  |  | . . .. |  | 9,600 |

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued)

1913
$2 / 15$
$2 / 23$
3/ 1
$3 / 8$
$3 / 15$
3/23
3/29
4/5
4/13
4/19
4/26
$5 / 3$
5/10
5/17
$5 / 24$
$5 / 31$
$6 / 7$
$6 / 16$
$6 / 21$
6/28
$7 / 5$
$7 / 12$
7/19
$7 / 26$
$8 / 2$
8/ 9
8/15
8/23
8/31
9/6
$9 / 13$
$9 / 20$
9/27
10/ 4
$10 / 11$
10/18
10/26
11/1
11/8
$11 / 15$
$11 / 22$
$11 / 30$
12/6
12/14
12/20
12/27

| Heterophrys fockei | Nuclearia simplex | Pinaciophora fluviatilis | Raphidiophrys elegans | Total <br> Heliozoa | Ciliate unidentified |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . ... . . | .... . . . . | .. | .... |  | 1,600 |
| . . . | .... . | .. . .. . | . . . | 3,200 | 1,600 |
| . . . | . . . | . . | . .. . | . . .. | 1,600 |
| . . . . . . . | $\cdots$ | $\cdots$. . | . $\cdot \cdots$ |  | 52,896 |
| . | 1,600 | .. . |  |  | 9,600 |
| . . . . | .... . .. . | . . . . | . - . |  |  |
| . | $\cdots \cdot$ | - - | . . . . | . ... .. | 12,800 |
| - . . . | $\cdots$ | ... | 1,600 | 1,600 |  |
| . . . | ... | . . . | 79,344 | 79,344 |  |
| . . . | . . | . | 1,600 | 1,600 |  |
| . . . | ... . | . . |  | 25,600 | 3,200 |
| . . . | ..... . . | .. . . | - $11,00{ }^{\circ}$ | 6,400 | . . . |
| . |  | . ... | 41,600 | 41,600 | . |
| . . |  | . . . |  | 79,344 | . |
| . .. . | .... | . . . | 1,600 | 1,600 |  |
| . . . |  |  |  | 12,800 | . . |
| . . . | . | . . . | 105,792 | 108,99: | . .. |
| . . . |  | . | 79,344 | 79,344 |  |
|  | 52,896 | . . | 264,480 | 264,480 |  |
| 211,581 |  |  | 423,168 | 634,75: | . |
| 211,584 |  | - .. . | 317,376 | 528,960 | $\ldots$. |
| 211,584 |  |  | 687,648 | 899,232 |  |
| 211,58 4 | . | . | 105,792 | 317,376 |  |
| - . |  |  | 1,005,024 | 1,005,024 |  |
|  | 317,376 |  | 211,584 | 211,584 |  |
| 105,792 | 317,376 |  | 211,584 | 423,168 |  |
|  | 105,792 | . |  |  |  |
| 423,168 | .. . | . . . |  | 423,168 |  |
| 317,376 |  |  |  | 541,760 |  |
| 2,962,176 | 12,800 |  | . | 3,173,760 |  |
| 211,584 |  | 1,269,504 |  | 1,798,464 |  |
| 105,792 | . | 528,960 |  | 634,752 | . . |
| 52,896 | . . | 423,168 |  | 476,064 |  |
|  | . . . | 158,688 | 52,896 | 211,584 |  |
| . . . | . . | 105,792 | 687,648 | 799,840 | . |
| . . | . | 1,600 | 1,216,608 | 1,218,208 |  |
| , . | , | $\cdots$ |  |  |  |
|  |  | - - |  |  |  |
| $\cdots$ | 1,600 | - . | . |  | . . |
| $\begin{gathered} \text { Cyclidium } \\ \text { sp. } \end{gathered}$ | Didinium nasutum | Euplotes harpa | Euplotes patella | Halteria grandinella | Hastatella radians |
| . | - . | $\cdots$. |  | . |  |
| . | . | -. | . |  |  |
| . | . |  |  |  |  |
| . . . . | . . | 6,400 |  | 3,200 |  |
| . . | - | 3,200 | 9,600 | 3,200 | 3,200 |
| . . | . 3,200 | 3,200 |  | , |  |
| . | 3,200 | 3,200 | - 300 | - .. | . |
|  |  | 9,600 | 3,200 | ........ .. . | . . . ....... |

# Table 3.-Organisms Per Cubic Meter in Plankton of Smiti's Canal in 1913-(Continued) 

1913
0
${ }_{3}{ }^{\prime} 23$
$3: 9$
45
413
$+19$
426
5): 3
$5 / 10$
$5 / 17$
$5 / 24$
$5 / 31$
6/ 7
$6 / 16$
6/21
$6 / 28$
75
$\begin{array}{ll}7 & 12 \\ 7 & 19\end{array}$
$7 / 26$
S/2
$8 \quad 9$
815
8.23

8/31
9/ 6
9/13
$9 / 20$
$9 / 27$
$10 / 4$
$10 / 11$
$10 / 18$
$10 / 26$
11/1
$11 / 8$
$11 / 15$
$11 / 22$
$11 / 30$
12/6
$12 \cdot 14$
12/20
12/27
1913
$1 / 11$
$1 / 19$
$1 / 25$
$2 / 2$
$2 / 8$
$2 / 15$
$2 / 23$
$3 / 1$
$3 / 8$
$3 / 15$
$3 / 23$
$3 / 29$
$4 / 5$
$4 / 13$
$4 / 19$

| Holophrya sp. | Paramecium aurelia | Paramecium bursaria | Prorodon sp. | Stentor coeruleus | Stentor niger |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . | - |  |  |  | .. . |
| -. | 1,600 |  |  | 800 |  |
| . |  |  |  |  | $\cdots$. |
| 1,600 |  |  | 1,600 | - | 3,200 |
| 3,200 |  | . | 1,600 |  |  |
| 3,200 | 3,200 | . |  |  | 6,400 |
| 3,200 | . . | . |  |  |  |
| 3,200 |  |  | 1,600 |  | 3,200 |
|  | - . | - . |  |  | 3,200 |
| 105,792 | . . |  |  | . |  |
| $105,792$ | . . | - . |  |  |  |
| $1,600$ | . . . | - .. | 1,600 | . . . |  |

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued)
1913
$4 / 26$

4/26
$5 / 10$
5/17
$5 / 24$
5/31
$6 / 7$
6/16
6/21
$6 / 28$
$7 / 5$
7/12
7/19
$7 / 26$
$8 / 2$
8/9
S/15
$8 / 23$
8/31
$9 / 6$
$9 / 13$
$9 / 20$
$9 / 27$
10/4
$10 / 18$
10/26
11/1
11/8
11/15
11/22
$11 / 30$
$12 / 6$
12/14 $12 / 20$
12/27
$\left.\begin{array}{rccccc}\begin{array}{c}\text { Holophrya } \\ \text { sp. }\end{array} & \begin{array}{c}\text { Paramecium } \\ \text { aurelia }\end{array} & \begin{array}{c}\text { Paramecium } \\ \text { bursaria }\end{array} & \begin{array}{c}\text { Prorodon } \\ \text { sp. }\end{array} & \begin{array}{c}\text { Stentor } \\ \text { coeruleus }\end{array} & \begin{array}{c}\text { Stentor } \\ \text { niger }\end{array} \\ \ldots & \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\end{array}\right)$

Table 3.-Organisms Per Cumic Meter in Plankton of Smith's Canal in 1913-(Continued)

| 1913 | Tintinnidium fluvistile | Vorticella longifilum | Vorticella 8 p . | Total Ciliata | $\begin{gathered} \text { Acineta } \\ \text { sp. } \end{gathered}$ | Sphaerophry sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5 / 31$ |  |  | 238,032 | 239,632 |  |  |
| 6/ 7 |  |  | 211,584 | 213,184 | .. ............. | .... ...... |
| 6/16 |  |  | 211,584 | 213,184 | .. ............ | . . .. . |
| 6/21 |  | 3,200 | 449,616 | 454,416 |  |  |
| 6/2S |  | 6,400 | 423,168 | 440,768 | . . ...... |  |
| $7 / 5$ |  |  | 581,856 | 634,752 | .... |  |
| 7/12 |  |  | 793,440 | 1,084,268 | ..... ...... |  |
| 7/19 |  |  | 581,856 | 588,256 |  |  |
| 7/26 |  |  | 952,128 | 955,328 | 105,792 |  |
| 8/2 |  |  | 1,533,984 | 1,639,776 | ..... . ${ }^{\text {d }}$ |  |
| 8/9 |  |  | 952,128 | 1,166,912 | 6,400 | 6,400 |
| 8/15 |  |  |  | 3,200 | . . . . . |  |
| 8/23 |  |  | 105,792 | 211,584 |  |  |
| 8/31 |  |  | 1,798,464 | 2,327,424 | 105,792 |  |
| $9 / 6$ |  |  | 634,752 | 2,551,808 | . . . .... | 38,400 |
| $9 / 13$ | 211,584 |  | 211,584 | 952,128 | $\cdots$ | 12,800 |
| $9 / 20$ |  | 105,792 | 846,336 | 1,269,504 | .. .. .. .. .. |  |
| 9/27 | 105,792 |  | 634,752 | 804,544 | ..... . . |  |
| 10/4 | 105,792 | 12,800 | 423,168 | 1,282,304 | ..... |  |
| 10/11 | .............. |  | 528,960 | 964,928 |  | 64,000 |
| 10/18 |  |  | 740,54.4 | 740,544 | . | 12,500 |
| 10/26 |  | 25,600 | 581,856 | 618,856 | . | 6,400 |
| 11/1 | 6,400 |  | 105,792 | 249,984 |  |  |
| 11/8 |  |  | 158,688 | 408,772 | .. . . | . . . . |
| 11/15 |  |  | 52,896 | 261,184 | .... .... .. | .... .. ..... |
| 11/22 |  | 3,200 | 3,200 | 108,800 |  | ... . |
| 11/30 | 1,600 |  | 132,240 | 148,040 | ..... ... . |  |
| 12/6 |  | 9,600 |  | 130,544 |  | 3,200 |
| 12/14 |  | 3,200 | 1,600 | 59,296 | . . .... | . .. ..... ... |
| 12/20 |  |  | 79,344 | 138,640 | ..... .. .. |  |
| 12/27 | 9,600 | 1,600 | 1,600 | 73,696 |  |  |


| 1913 | Total Suctoria | Total Protozoa without Mastigophora | Total Protazoa with Mastigophora | Collotheca egg, attached | Collotheca pelagica | Collotheca sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/11 |  |  | 1,200 | . . . | . .... .. | .. . . . ... |
| 1/19 |  | 3,200 | 1,070,720 | .. . . . .. | . . . .. ... | .. .. . ...... |
| 1/25 |  | 3,200 | 1,545,184 | .. . .. .. | . . . ... | . . . 4 . |
| 2/2 |  | 3,200 | 1,272,704 | .. . . |  | . . ...... |
| $2 / 8$ |  | 24,000 | 4,161,840 | . . | . | . . . . . |
| 2/15 |  | 43,200 | 3,709,024 | .. . . | $\cdots$. | . . . |
| 2/23 |  | 42,600 | 5,724,776 | . . | . | .. . . |
| 3/1 |  | 12,800 | 1,042,576 | . . . | - .. | - . .. |
| $3 / 8$ |  | 36,800 | 504,768 | . . . | ... . .... | . . .. .. .. |
| 3/15 |  | 159,440 | 1,071,376 | ... . . |  | - . - . |
| 3/23 |  | 54,400 | 1,879,312 | . . | ... . .. | - . . . . |
| 3/29 |  | 19,200 | 1,316,752 | . . . | - . ..... | ... .. |
| 4/5 |  | 124,992 | 290,080 | $\cdots$. |  | - . .. . |
| 4/13 |  | 137,792 | 544,864 | . | . . . | . . . |
| 4/19 |  | 219,584 | 462,416 | - . . | - .. | ... ... |
| 4/26 |  | 464,016 | 1,039,624 | $\cdots$. | . | . . . . . |
| $5 / 3$ |  | 163,488 | 826,288 | . |  | - . .. |
| 5/10 |  | 139,392 | 469,568 | .. .. | . . .. .. |  |
| $5 / 17$ |  | 273,232 | 442,424 | . . | - . | . .. . ... |
| 5/24 |  | 361,98.4 | 503,824 | . . | . | . . . . |
| 5/31 |  | 547,312 | 712,400 |  |  | . . .... . |
| $6 / 7$ |  | 431,168 | 858,288 | . |  | - . ... ..... |
| $6 / 16$ |  | 320,576 | 488,016 | . . . . | .. . |  |
| $6 / 21$ |  | 573,008 | 946,480 |  |  | - . . |
| 6/28 |  | 881,536 | 1,191,664 | . ... ......... | .............. | .. . ......... |

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Continued)

| 1913 | $\begin{aligned} & \text { Total } \\ & \text { Suctoria } \end{aligned}$ | Total Protozoa without Mastigophora | Total Protozoa Mastigophora | Collotheca egg, attached | Collotheca pelagica | $\begin{aligned} & \text { Collotheca } \\ & \text { sp. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/5 |  | 955,328 | 2,293,728 |  |  |  |
| 7/12 |  | 1,569,432 | 3,506,536 |  |  |  |
| 7/19 |  | 1,229,408 | 3,785,920 |  |  |  |
| 7/26 | 105,792 | 1,715,072 | 6,768,992 |  |  |  |
| $8 / 2$ | 44,800 | 2,596,608 | 5,222,016 |  |  |  |
| 8/9 | 12,800 | 1,509,888 | 5,597,184 |  |  |  |
| 8/15 |  | 5,504,384 | 14,496,704 |  |  |  |
| 8/23 |  | 1,665,376 | 6,329,824 | 25,600 | 19,200 |  |
| 8/31 | 105,792 | 3,292,352 | 7,761,216 |  | 12,800 |  |
| 9/6 | 38,400 | 5,036,224 | 11,922,112 |  |  |  |
| $9 / 13$ | 12,800 | 1,387,096 | 6,904,696 | 51,200 | 51,200 |  |
| 9/20 |  | 2,433,216 | 6,254,522 | 38,400 | 51,200 |  |
| 9/27 |  | 1,464,896 | 6,671,504 |  |  |  |
| 10/4 |  | 5,209,408 | 11,066,380 | 105,792 | 12,800 | 211,58 |
| 10/11 | 64,000 | 3,144,768 | 6,644,704 | 423,168 |  | 153,60 |
| 10/18 | 12,800 | 1,599,680 | 4,456,064 | 25,600 | 64,000 |  |
| 10/26 | 6,400 | 1,577,384 | 3,507,240 | 52,896 | 105,792 |  |
| 11/1 |  | 726,048 | 4,765,344 |  | 12.800 |  |
| 11/8 |  | 1,314,404 | 6,398,820 | 52,896 | 52,896 |  |
| 11/15 |  | 1,480,992 | 4,803,592 |  | 3.200 |  |
| 11/22 | 3,200 | 112,000 | 9,163,520 | 6,400 | 3,200 |  |
| 11/30 |  | 148,040 | 4,094,344 |  |  |  |
| 12/6 | 3,200 | 135,344 | 2,849,040 |  |  |  |
| 12/14 |  | 62,496 | 2,935,264 |  |  |  |
| 12/20 |  | 138,640 | 2,459,040 |  |  |  |
| 12/27 |  | 75,296 | 2,703,248 |  |  |  |


| 1913 | $\begin{gathered} \text { Total } \\ \text { Rhizota } \end{gathered}$ | Rotaria neptunia | $\begin{aligned} & \text { Rotaria } \\ & \text { rotatoria } \end{aligned}$ | Rotifer egg, winter | $\begin{gathered} \text { Total } \\ \text { Bdelloida } \end{gathered}$ | Anuraeopsis egg, attached |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 11$ |  |  | 1,600 |  | 1,600 |  |
| 1/19 |  |  | 36,800 |  | 46,400 |  |
| 1/25 |  | 3,200 | 19,836 |  | 23,036 |  |
| 2/2 |  | 1,600 | 11,200 |  | 22,800 |  |
| $2 / 8$ |  |  | 35,200 |  | 48,000 |  |
| 2/15 |  |  | 80,000 | 6,400 | 92,800 |  |
| $2 / 23$ |  | 3,200 | 35,200 |  | 44,800 |  |
| $3 / 1$ |  |  | 79,344 |  | 98,544 |  |
| $3 / 8$ | 3,200 | 3,200 | 185,136 |  | 236,336 |  |
| 3/15 |  |  | 28,800 | 3.200 | 38,400 |  |
| 3/23 |  | 3,200 | 64,000 |  | 68,800 |  |
| 3/29 |  |  | 60,800 |  | 60,800 |  |
| $4 / 5$ |  |  | 16,000 |  | 22,400 |  |
| 4/13 |  |  | 6,400 |  | 9,600 |  |
| $4 / 19$ |  |  | 19,200 |  | 20,800 |  |
| 4/26 |  |  |  |  | 6,400 |  |
| $5 / 3$ |  |  | 3,200 | 6,400 | 4,800 |  |
| 5/10 |  |  | 1,600 |  | 1,600 |  |
| 5/17 | . ... . . ... | 3,200 | 12,800 |  | 32,000 |  |
| $5 / 24$ |  |  |  | 3,200 | 6,400 |  |
| 5/31 | ..... ....... |  | 9,600 |  | 168,288 | . . ${ }^{\text {r }}$ |
| $6 / 7$ | - .. . . |  |  |  | 9,600 |  |
| $6 / 16$ |  |  |  |  |  | .. . |
| $6 / 21$ | .... ..... |  | 6,400 |  | 6,400 | .... |
| 6/28 | ............ |  |  |  |  |  |
| $7 / 5$ |  |  | 6,400 | 3,200 | 112,192 |  |
| 7/12 | .......... .... |  | 52,896 | 6,400 | 105,792 | . . . . . . |
| 7/19 | .............. |  |  |  | 3,200 | ... . |
| 7/26 | .... |  |  | 6,400 | 158,688 | ..... . |
| 8/2 |  | 12,800 | 6,400 |  | 177,888 |  |

> Table 3.- Organisms Per Cubic Meter in Plankton of Smith' Canal in 1913-(Continued)

| 1913 | $\begin{aligned} & \text { Total } \\ & \text { Rhizota } \end{aligned}$ | Rotaria neptunia | $\begin{gathered} \text { Rotaria } \\ \text { rotatoria } \end{gathered}$ | Rotifer egg, winter | Total Bdelloida |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8/9 |  | 32,000 | 38,400 | .... ... ..... | 76,800 |
| 8/15 | 3,200 |  |  |  |  |
| S/23 | 44, 4,00 | 12,800 | 19,200 |  | 249,984 |
| \$/31 | 12,800 |  |  |  | 25,600 |
| $9 / 6$ |  |  |  |  | 105,792 |
| 9/13 | 102,400 |  |  |  | 211,584 |
| 9/20 | 89,600 |  | 12,800 | 105,792 | 224,384 |
| 9/27 |  | 12,800 | 12,500 | .. . . | 89,600 |
| 10/4 | 330,176 |  |  |  | 25,600 |
| 10/11 | 576,768 | 12,800 |  | .. . .. | 51,200 |
| 10/18 | 89,600 |  | 12,800 | ..... | 12,800 |
| 10/26 | 158,688 | 12,800 | 6,400 |  | 72,096 |
| 11/1 | 12,800 | 52,896 | 6,400 |  | 59,296 |
| 11/8 | 105,792 | 12,500 | 6,400 | 6,400 | 25,600 |
| 11/15 | 3,200 | 3,200 | 12,800 | 3,200 | 16,000 |
| 11/22 | 9,600 | 3,200 | 6,400 | 52,896 | 9,600 |
| 11/30 |  |  | 6,400 | 3,200 | 6,400 |
| $12 / 6$ |  | 3,200 |  |  | 3,200 |
| 12/14 |  |  | 3,200 |  | 3,200 |
| 12/20 |  |  |  |  |  |
| 12/27 |  | 6,400 | 9,600 |  | .... |



Anuraeopsis
Anuracopsis
sp.
$\begin{array}{ccc}\text { Asplanchna } & \text { Brachionus } & \begin{array}{c}\text { Brachionus } \\ \text { angularis } \\ \text { brightiwellii }\end{array} \\ \text { angularis } & \text { caudatus }\end{array}$
$1 / 11$
$1 / 19$
125
2 2 2
2/ 8
$2 / 15$
$2 / 23$
$3 / 1$
3.8
3.23

3/29
4.5
$4 / 13$
$4 / 19$
4/26
$5 / 3$
$5 / 10$
$5 / 17$
$5 / 24$
$5 / 31$
$6 / 7$
$6 / 10$
$6 / 21$
$6 / 28$
$7 / 5$
$7 / 12$
$7 / 19$
$8 / 2$
$8 / 9$
$8 / 15$
$8 / 23$
$8 / 23$
96

Brachionus budapestenensis

9,600

6,400
38,400
6,400
6,400

Table 3.-Organisms Per Cubic Meter in Plankton of Smitu's Canal in 1913-(Continued)

|  | Anuraeopsis |
| :---: | ---: |
| 1913 | fissa <br> $9 / 13$ |
| $9 / 20$ | 64,000 |
| $9 / 27$ | 317,376 |
| $10 / 4$ | 12,800 |
| $10 / 11$ |  |
| $10 / 18$ | 105,792 |
| $10 / 26$ |  |
| $11 / 1$ | 6,400 |
| $11 / 8$ | 6,400 |
| $11 / 15$ | 1,600 |
| $11 / 22$ | 52,896 |
| $11 / 30$ | 1,600 |
| $12 / 6$ |  |
| $12 / 14$ |  |
| $12 / 20$ |  |
| $12 / 27$ |  |


| Anuraeopsis sp. | Asplanchna brightiwellii | Brachionus angularis | Brachionus angularis caudatus | Brachionus budapestenensis |
| :---: | :---: | :---: | :---: | :---: |
| . . . |  |  | 422,400 | 12,800 |
|  |  | 12,800 | 25,600 |  |
|  | 12,800 |  | 64,000 |  |
|  |  | ............... | 38,400 | 38,400 |
|  |  |  | 25,600 |  |
|  |  |  | 211,584 | . |
|  | ............... |  | 6,400 | . . |
|  |  |  | 19,200 | . |
| . |  | 6,400 |  |  |
| ............... | 6,400 | 3,200 |  |  |


| 1913 | Brachionus calyciforus | Brachionus capsuliforus | $\begin{aligned} & \text { Brachionus } \\ & \text { egg; attached, } \\ & \text { female } \end{aligned}$ | $\begin{aligned} & \text { Brachionus } \\ & \text { egg; attached, } \\ & \text { male } \end{aligned}$ | Brachionus egg; free, female | Brachionus egg; iree, male |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/11 | . |  |  |  | 1,200 |  |
| 1/19 | 6,400 |  |  | 3,200 | 1,600 |  |
| 1/25 | 3,200 |  | 1,600 | 800 | 1,600 |  |
| 2/2 | 1,600 | 1,600 |  |  | 3,200 |  |
| $2 / 8$ | 38,400 |  | 9,600 |  | 3,200 |  |
| $2 / 15$ | 185,136 |  | 238,032 | 3,200 | 6,400 |  |
| $2{ }^{2}$ | 48,000 | ............ | 28,800 |  | 3,200 | 1,600 |
| 3/1 | 6,400 | ............ | 9,600 |  |  |  |
| $3 / 8$ | 38,400 | ............ | 9,600 | 158,688 | 9,600 |  |
| 3/15 | 9,600 |  |  |  | 3,200 | 6,400 |
| $3 / 23$ | 41,600 | 6,400 | 22,400 |  | 9,600 |  |
| 3/29 | 6,400 |  |  |  | 52,896 |  |
| 4.5 | 6,400 |  |  |  | 3,200 |  |
| 4/13 | 3,200 | .............. | .......... | $\ldots$ |  |  |
| 4/19 |  |  |  |  |  |  |
| 4/26 | 1,600 | 3,200 |  |  |  |  |
| $5 / 3$ | 6,400 | 3,200 | 9,600 | .... | 1,600 |  |
| $5 / 10$ |  |  | 3,200 |  |  |  |
| 5.17 | 9,600 | 3,200 | 12,800 | 9,600 |  |  |
| $5 / 24$ |  | 3,200 | 9,600 |  |  |  |
| $5 / 31$ |  |  | 3,200 |  | 52,896 |  |
| $6 / 7$ | ............... | 3,200 |  | ............ | 6,400 |  |
| 6/16 |  |  | 12,800 |  | 1,600 |  |
| 6/21 |  | .......... | 6,400 |  |  |  |
| $6 / 28$ | 3,200 |  | 22,400 |  | 1,600 |  |
| $7 / 5$ | .............. |  | 12,800 | 6,400 |  |  |
| $7 / 12$ |  | 52,896 | 79,344 |  | 158,688 |  |
| $7 / 19$ | 19,200 |  |  |  |  |  |
| 7/26 | 6,400 |  | 25,600 |  | 105,792 |  |
| $8 / 2$ | 105,792 | 6,400 | 19,200 |  | 12,800 |  |
| 8/9 | 6,400 | 317,376 | 32,000 | 44,800 |  |  |
| 8/1.5 |  | 3,200 |  |  | 158,688 |  |
| 8/23 |  | 6,400 |  | ......... | 3,200 |  |
| 8/31 | 317,376 | 12,800 | 76,800 | ......... | 317,376 |  |
| $9 / 6$ |  | 12,800 | 12,800 | $\ldots$ | 105,792 |  |
| $9 / 13$ | 51,200 |  | 64,000 |  | 317,376 |  |
| 9/20 | 25,600 |  |  |  |  |  |
| 9/27 | 211,584 | 25,600 | 51,200 | .............. | 12,800 |  |
| 10/4 | 211,584 | 25,600 | 317,376 |  | 211,584 |  |
| 10/11 | 204,800 |  | 256,000 |  | 317,376 |  |

Table 3.-Organisms Per Cubic Meter in Plankton of
Smitis Canal in 1913-(Continued)

| 1913 | Brachionus calyciflorus | Brachionus capsuliforus | $\begin{aligned} & \text { Brachionus } \\ & \text { egRiattached, } \\ & \text { iemale } \end{aligned}$ | $\begin{aligned} & \text { Brachionus } \\ & \text { ceg: attached } \\ & \text { male } \end{aligned}$ | Brachionus exg; free, female |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10.18 | 12,800 |  | 105,792 |  |  |
| 10/26 | 32,000 |  |  |  | 105,792 |
| 11/1 | 12,800 |  | 6,400 | .. . | 6,400 |
| 11/8 | 12,800 | . |  | .. . |  |
| 11/15 | 3,200 | 1,600 |  | ... . |  |
| 11/22 | 3,200 | . . . |  | . . | 132,240 |
| 11/30 |  |  |  |  | 3,200 |
| 12/6 | . . . |  |  | . | 3,200 |
| 12/14 |  |  |  | . . | 3,200 |
| 12/20 |  |  |  |  |  |
| 12/27 | .. . . |  |  | $\cdots$ | 1,600 |

Brachionus
egg: free. male

Epiphanes Epiphanes egg, attached,
clavulata
female


Brachionus plicstilis urceus

Diurella egg, free

403
1,600
2,400
800
1,600
3,200
9,600
12,800
3,200
3,200
3,200
3,200
… ..... ..... 3,200

3,200
$\cdots 3,200$
3,200
3,200
22,400
238,032
9,600
22,400
105,792
6,400
6,400
19,200
12,800
6,400
6,400
0

12,800 $\quad 370,272$
$12,800 \quad 846,336$
38,400
528,960
528,960
634,752
211,584
105,792
$6,400 \quad 6,400$
158,68

3,200
76,800

128,000
12,800
76,800 38,400
12,800
25,600

52,896

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Conlinued)
1913
$11 / 22$
$11 / 30$
$12 / 6$
$12 / 14$
$12 / 20$
$12 / 27$
Brachionus

patulus \begin{tabular}{c}
Brachionus <br>
plicatilis

$\quad$

Brachionus <br>
urceus

$\quad$

Diurella <br>
egg, free

$\quad$

Epiphanes <br>
clavulata

$\quad$

Eggiphanes | egtached, |
| :---: |
| female | <br>

$\ldots$
\end{tabular}

| Filinia egg, attached, female | Filinia egg, attached, male | $\begin{aligned} & \text { Filinia } \\ & \text { egg, free } \end{aligned}$ | Filinia longiseta | Keratella cochlearis | Keratella egg, attached |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ., . |  | . | 800 |  | 400 |
| . . | . |  |  | 4,800 | 4,800 |
| . . | . |  |  |  | 2,400 |
| . . |  |  |  | 6,400 | 3,200 |
| . . . | . . .. . |  | 3,200 | 3,200 | 1,600 |
| . 000 |  |  | 1,600 | 35,200 | 19,200 |
| 16,000 |  | 6,400 | 92,500 | 60,800 | 16,000 |
| 3,200 | $9,600$ | 9,600 | 44,800 | 79,344 | 9.600 |
| , | $3,200$ | 185,136 | 60,800 | 80,000 | 12,800 |
|  |  | 158,688 | 57,600 | 317,376 | 132,240 |
| 22,400 | . . | 158,088 | 99,200 | 634,752 | 370,272 |
| 6,400 | . . | . | 32,000 | 476,064 | 211,584 |
| ... . | . . .... |  | 3,200 | 238,032 | 1,600 |
| ... . . | . . | . . . | 3,200 | 264,480 | 52,896 |
| ... . |  |  | 6,400 | 502,512 | 238,032 |
| .. . . . | . . . |  | 1,600 | 264,480 | 52,896 |
| . . | . . | 79,344 | 9,600 | 423,168 | 185,136 |
| .. . . | .. . |  | 6,400 | 83,200 | 6,400 |
| .. . . | . . | 1,600 | 19,200 | 79,344 | 3,200 |
| . . . | . . | 79,344 | 3,200 | 25,600 | 3,200 |
| . . . | . . |  | , | 687,648 | 79,344 |
| . .. . . . | . . | 9,600 | 9,600 | 105,792 | .. . . . |
| . . . |  |  | 3,200 | 32,000 |  |
| ... . . | .. .. . | 158,688 | 3,200 | 105,792 | 3,200 |
| .. . . | .. . . | . . | 105,792 | 264,480 | 105,792 |
| ... . | . . |  | 22,400 | 449,616 | 16,000 |
| . . . |  | 132,240 | 12,800 | 1,824,912 | 1,600 |
| . . | .... . |  |  | 317,376 | 19,200 |
| - . |  |  | 6,400 | 44,800 | 25,600 |
| . . |  | $211,584$ | , | 19,200 | ... . . |
| . . | . | 211,584 |  |  | .. . .. . |
| - . | . |  |  | 6,400 | . |
| $\cdots$ | . . | $\begin{aligned} & 158,688 \\ & 423,168 \end{aligned}$ | . . | $\cdots$. | , |
| . . . | . . . | 105,792 |  | 51,200 |  |
| $\cdots$ | $\cdots$ | , |  | $\cdots$ | - |
| . | . | 211,584 |  | 25,600 |  |
| - . | ... . | 105,792 | 12,800 | . . . | 25,600 |
| - . | - . |  |  |  | 211.584 |
| . . . | . . | 211,584 |  | 1,269,504 | 105,792 |
| . . . | $\cdots$. | . . . |  | 3,173,760 | 687,648 |
| .. . | $\cdots$. | .. |  | 4,549,056 | 1,586,880 |
| . . | . | - . | , . | 793,440 | 317,376 |
| - 200 | . |  |  | 317,376 | 79,344 |
| 3,200 | . . | 1,600 | . . | 343,824 | 238,032 |
| - | . . . | . . . |  | 52,896 | 19,200 |
| . .. . | . . | . |  | 52,896 | 16,000 |
| . . . | ... . | .. .. . . . |  | 3,200 | 52,896 |
| . | . ... | - 1,600 | . . . | ......... .. . . | ......... . |

Table 3.-Organisms Per Cubic Meter in Plankton of
Shitits Canal in 1913-(Continued)

| 1913 | Keratella eqge, free | Keratella quadrata | Notholea | Polyarthra trigha | Polyarthra <br> tricla egr: attached, fermale | $\underset{\text { sp. }}{\substack{\text { Synchaeta }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 11$ | 2,000 | 1,600 |  |  |  |  |
| 1/19 | 1,600 | 8,000 |  | 3,200 |  | 1,600 |
| 1/25 | 19,836 | 8,000 | 1,600 | 19,830 |  | 8,000 |
| $2 / 2$ | 79,344 | 6,400 | 1,600 | 1,600 |  | 1,600 |
| $2 / 8$ | 185,136 | 132,240 |  | 211,584 |  |  |
| $2 / 1.5$ | 185,136 | 25,600 | 6,400 | 132,240 |  |  |
| 2/2:3 | 12,800 | 6,400 |  | 12,800 |  | 6,400 |
| $3 / 1$ |  | 6,400 |  | 9,600 |  | 9,600 |
| $3 / 8$ |  | 3,200 |  | 3,200 |  | 156,800 |
| 3/15 |  |  | 6,400 |  |  | 3,200 |
| 3/2:3 | 343,824 | 79,344 |  | 12,800 |  | 25,800 |
| 3/29 | 211,584 | 9,600 | 1,600 | 1,600 |  | 12,800 |
| $4 / 5$ | 52,896 | 132,240 | 3,200 | 6,400 |  | 16,000 |
| 4/13 | 79,344 | 25,600 |  | 6,400 |  | 6,400 |
| $4 / 19$ | 105,792 | 19,200 | 3,200 | 38,400 |  | 22,400 |
| 4/26 | 3,200 | 28,800 |  | 73,600 |  | 3,200 |
| $5 / 3$ | 158,688 | 28,800 |  | 48,000 | 3,200 | 44,800 |
| 5/10 | 22,400 | 19.200 |  | 16,000 |  | 3,200 |
| $5 / 17$ | 79,344 | 105,792 | . | 25,600 |  | 108,800 |
| $5 / 24$ |  |  |  | 3,200 |  |  |
| 5/31 | 317,376 | 3,200 |  | 76,800 |  | 608,304 |
| $6 / 7$ | 3,200 | 6,400 |  | 9,600 |  |  |
| 6/16 |  |  |  |  |  |  |
| 6/21 | 52,896 | 6,400 |  | 19,200 |  | 3,200 |
| $6 / 28$ | 158,688 | 185,136 |  | 79,344 |  | 370,272 |
| $7 / 5$ | 264,480 | 3,200 | . . . ... | 12,800 |  | 35,200 |
| 7/12 | 661,200 | 79,344 |  | 370,272 | 1,600 | 52,896 |
| 7/19 | 317.376 | 19,200 |  | 25,600 |  |  |
| 7/26 | 3,200 | 108,800 |  | 51,200 |  |  |
| $8 / 2$ | ... . | 105,792 |  | 211,584 |  | 6,400 |
| $8 / 9$ | . | 70,400 | $\ldots$ | 105,792 | .... | 12,800 |
| 8/15 |  | 44,800 |  | 6,400 |  |  |
| 8/23 |  | 25,600 |  | 105,792 |  | 6,400 |
| 8/31 | 317,376 | 12,800 |  | 128,000 | 12,800 | 211,584 |
| $9 / 6$ |  | 25,600 |  | 3S,400 |  | 35,400 |
| 9/13 | 317, 76 | 51,200 |  | 15,3,600 |  | 12,800 |
| $9 / 20$ |  |  |  | 423,168 |  |  |
| 9/27 |  | 211,584 |  | 89,600 | . | 211,584 |
| $10 / 4$ $10 / 11$ |  | 211,584 |  |  |  |  |
| $10 / 11$ $10 / 18$ |  | 423,168 | - | 12,800 |  | 423,168 |
| $10 / 18$ $10 / 26$ | 211,584 | 317,376 |  | 105,792 | .............. | 211,584 |
| 10/26 | 264,480 | 158,688 | 6,400 | 6,400 |  | 264,480 |
| 11/1 | 423,168 | 105,792 | 12,800 |  | . . . ..... | 211,584 |
| 11.8 | 52,806 |  |  |  | ............... | 370,272 |
| 11/15 | 52,896 | 3,200 |  |  |  | 52,896 |
| 11/22 | 132,240 | 6,400 |  | 6,400 |  | 105,792 |
| 11/30 | 1,600 | 6,400 |  | 12,800 | 3,200 | 105,792 |
| 12/6 |  | 1,600 |  | 264,480 | 3,20) | 79,344 |
| 12/14 | 6,40 | 79,344 |  | 6,400 |  | 238,032 |
| 12/20 | 6,400 | 6,400 |  | 1,400 | . | 25,600 |
| 12/27 | 3,200 | 3,200 |  | 3,200 | .............. | 185,136 |
| 1013 | Trichocerca capucina | Trichocerea iernis | Total Ploima | $\begin{aligned} & \text { Total } \\ & \text { Rotifera } \end{aligned}$ | $\begin{aligned} & \text { Bosmina } \\ & \text { longirostris } \end{aligned}$ | $\begin{aligned} & \text { Chydorus } \\ & \text { sp. } \end{aligned}$ |
| 1/11 |  | . . . . | 6,800 | 8,400 | . ... . . |  |
| 1/19 |  |  | 36,800 | 83,200 | ... . . . |  |
| 1/25 |  |  | 71,272 | 94,308 | . . . . | 800 |
| $2 / 2$ |  |  | 108,144 | 130,944 |  |  |
| $2 / 8$ |  |  | 481,520 | 529,520 | .... .. . . |  |

Table 3.-Organisms Per Cubic Meter in Plankton of
Smith's Canal in'1913-(Continued)

| 1913 | Trichocerca capucina | Trichocerca iernis | Total Ploima | Total Rotifera | Bosmina longirostris | $\begin{gathered} \text { Chydorus } \\ \text { sp. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2/15 | .. .......... . | .. . . . . | 811,344 | 934,144 | . . . | . .. . |
| 2/23 | ......... . |  | 324,800 | 369,600 | . . . |  |
| 3/ 1 | ...... . . | . .. | 200,944 | 299,488 | . . . |  |
| 3/8 | . .. .. . . |  | 737,424 | 976,960 | . . |  |
| $3 / 15$ | . .. . . |  | 696,304 | 734,704 | -.. 20 | . |
| $3 / 23$ | . . |  | 1,693,792 | 1,762,592 | $\because 200$ |  |
| 3/29 | . . |  | 1,025,728 | 1,086,523 |  |  |
| 4/5 | . . |  | 466,368 | 488,768 |  |  |
| 4/13 |  |  | 441,520 | 451,120 |  |  |
| 4/19 |  |  | 958,336 | 979,136 | 6,400 |  |
| 4/26 |  |  | 432,576 | 438,976 |  |  |
| $5 / 3$ |  |  | 1,011,136 | 1,015,936 |  |  |
| $5 / 10$ |  |  | 179,200 | 180,800 |  |  |
| 5/17 | 6,400 |  | 506,080 | 5338,080 | . |  |
| $5 / 24$ |  |  | 204,144 | 210,544 | . |  |
| 5/31 | 3,200 | 12,800 | 2,377,584 | 2,545,872 | . |  |
| $6 / 7$ |  |  | 179,392 | 188,992 | ... . |  |
| 6/16 |  |  | 83,200 | 83,200 | . |  |
| $6 / 21$ |  | 6,400 | 434,176 | 440,576 | . |  |
| 6/28 | 9,600 | 16,000 | 1,540,288 | 1,540,288 | . |  |
| 7/5 | 3,200 | 79,344 | 1,022,432 | 1,134,624 | 3,200 |  |
| 7/12 | 3,200 | 185,136 | 4,896,784 | 5,002,576 | 4,800 |  |
| 7/19 | -. 0 | 3,200 | 959,840 | 963,040 | .. 10 | . .... |
| $7 / 26$ | 6,400 |  | 54,4,384 | 703,072 | 6,400 |  |
| 8/2 | 6,400 | 19,200 | 1,466,400 | 1,644,288 | 6,400 |  |
| 8/9 |  | 32,000 | 1,398,816 | 1,475,616 | 12,800 |  |
| S/15 |  |  | 219,488 | 219,488 | 32,000 |  |
| 8/23 | . | 211,584 | 1,604,384 | 1,899,178 | . ${ }^{\text {d }}$ | 12,800 |
| 8/31 | . .. . | 211,584 | 4,086,720 | 4,125,120 | 12,800 |  |
| $9 / 6$ |  | 38.400 | 1,047,744 | 1,153,536 | 38,400 |  |
| $9 / 13$ |  | 211,584 | 2,412,096 | 2,726,080 | 38,400 |  |
| $9 / 20$ | 12,800 | 51,200 | 916,352 | 1,230,336 | 51,300 |  |
| $9 / 27$ |  | 740,544 | 2,727,626 | 2,817,226 | 12,800 |  |
| 10/4 |  | 423,168 | 2,269,450 | 2,625,226 | 12,800 |  |
| 10/11 |  | 105,792 | 2,217,472 | 2,815,440 | 25,600 |  |
| 10/18 |  | 12,800 | 3,000,576 | 3,102,976 |  |  |
| 10/26 |  | 6.400 | 4,725,248 | 4,956,032 | - . |  |
| 11/1 |  |  | 7,006,176 | 7,078,272 |  | 52,896 |
| 11/8 |  |  | 1,565,984 | 1,697,376 |  |  |
| 11/15 | . |  | 515,312 | 534,512 |  |  |
| 11/22 |  |  | 1,091,520 | 1,110,720 | . | 9,600 |
| 11/30 |  |  | 209,888 | 216,288 | . |  |
| 12/6 |  |  | 420,720 | 423,920 | . |  |
| 12/14 |  |  | 389,472 | 392,672 |  | 3,200 |
| 12/20 |  |  | 44,800 | 44,800 | . |  |
| 12/27 |  | . . | 197,936 | 197,936 | - . |  |


| 1913 | $\begin{aligned} & \text { Sida } \\ & \text { sp. } \end{aligned}$ | Total Cladocera | Canthocamptus sp. | Cyclops sp. | Nauplius sp. | Total <br> Copepoda |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/11 |  |  |  |  |  |  |
| 1/19 |  |  |  | 1,600 | 1,600 | 3,200 |
| 1/25 | . | 800 |  |  | 3,200 | 3,200 |
| 2/2 | . |  |  | 3.200 | 6,400 | 9,600 |
| 2/8 | . . | . |  | 3,200 | 3,200 | 6, 400 |
| 2/15 |  | . | 3,200 | . . | - . | 3,200 |
| 2/23 | . . | .. . . | . . | . . . | 3,200 | 3,200 |
| 3/1 | $\ldots$. | $\ldots .$. | . .. . |  | . . | . . . |
| $3 / 8$ |  | .... . |  | .. . | . . |  |
| $3 / 15$ | .... .. | .... . . | 3,200 | . . | ... | 3,200 |

Thale 3.-Organisms Per Cubic Meter in Plankton of Smitu's Canal in 1913-(Continued)

| 1913 | $\underset{\text { sp. }}{\substack{\text { Sida }}}$ | Total Cladocera | Cauthocamptus ep. | $\underset{\substack{\text { cyp. } \\ \text { cps. }}}{ }$ | Nauplius 8 p . | Total Copepoda |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3. 23 |  | 3,200 |  |  |  |  |
| 3.29 |  |  | 3,200 |  | 1,600 | 4,800 |
| 45 |  |  |  |  | 3,200 | 3,200 |
| 4/13 |  |  |  | 3,200 |  | 3,200 |
| $4 / 19$ |  | 6,400 |  |  | .. ... |  |
| 4/26 |  |  |  |  |  |  |
| $5 / 3$ |  |  |  | 3,200 | 9,600 | 12,800 |
| $5 / 10$ |  |  |  | 3,200 |  | 3,200 |
| 5/17 |  |  |  |  |  |  |
| 5, 24 |  |  |  | 3,200 | 9,600 | 12,800 |
| $5 / 31$ | 6,400 | 6,400 |  | 3,200 | 9,600 | 12,800 |
| $6 / 7$ |  |  |  | 3,200 | 16,000 | 19,200 |
| 6/16 |  |  | . | 9,600 |  | 9,600 |
| 6/21 |  |  |  | 9,600 | 3,200 | 16,000 |
| $6 / 28$ | 3,200 | 3,200 |  |  | 9,600 | 9,600 |
| $7 / 5$ |  | 3,200 |  | 3,200 |  | 3,200 |
| 7/12 | 19,600 | 24,400 |  | 24,400 | 6,400 | 30,840 |
| 7/19 | 6,400 | 6,400 |  |  | 6,400 | 6,400 |
| $7 / 26$ |  | 6,400 |  | 25,600 | 25,600 | 51,200 |
| $8 / 2$ | 12,800 | 19,200 |  | 12,800 | 6,400 | 19,200 |
| $8 / 9$ |  | 12,800 |  | 44,800 | 19,200 | 64,000 |
| 8/15 |  | 32,000 |  |  |  | 32,000 |
| 8/23 |  | 12,800 |  | 6,400 | 12,800 | 19,200 |
| 8/31 | 12,800 | 25,600 | 12,800 | 25,600 | 25,600 | 64,000 |
| 9/6 |  | 38,400 |  |  | 12,800 | 12,800 |
| $9 / 13$ |  | 38,400 |  |  | 25,600 | 25,600 |
| $9 / 20$ |  | 51,200 |  |  |  |  |
| $9 / 27$ |  | 12,800 | 12,800 | 105,792 |  | 118,592 |
| 10/4 | .. . . | 12,800 |  |  | 25,600 | 25,600 |
| 10/11 |  | 25,600 | , |  | 12,800 | 12,800 |
| 10/18 | . . . |  |  | . |  |  |
| $10 / 26$ $11 / 1$ |  |  |  |  | 6,400 | 6,400 |
| 11//8 | 6,400 | 59,296 |  | - . | . | .. . . . . |
| 111/15 |  |  |  |  | - ${ }^{\text {- }}$ | $\cdots$ |
| 11/22 |  | 9,600 |  | . . | - . |  |
| 11/30 |  |  |  | .. |  | . |
| 12/6 |  |  |  |  |  |  |
| 12/14 |  | 3,200 |  |  |  |  |
| 12/20 | - |  |  | 1,600 | 1,600 | 3,200 |
| $12 / 27$ |  |  |  |  |  |  |


| 1913 | Total <br> Malacostraca | Total <br> Entomostraca | Glochidia | Macrobiotus $\mathrm{sp} .$ | $\begin{aligned} & \text { Nematode } \\ & \text { sp. } \end{aligned}$ | Total <br> Miscellaneou | $\underset{\text { Organisms }}{\text { Total }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/11 |  |  |  |  |  |  | 1,008,388 |
| 1/19 | 20 | 3,220 |  |  | 4,800 | 6,400 | 10,034,524 |
| 1/25 |  | 4,000 |  |  | S00 | 800 | 6,611,056 |
| 2/2 |  | 9,600 |  | 1,600 |  | 1,600 | 9,370,608 |
| $2 / 8$ |  | 6,400 |  |  | 3,200 | 3,200 | 18,043,608 |
| $2 / 15$ |  | 3,200 |  |  |  |  | 11,550,608 |
| 2/23 |  | 3,200 |  |  |  |  | 17,982,424 |
| $3 / 1$ |  |  |  |  |  |  | 23,079,776 |
| $3 / 8$ |  |  |  |  | 3,200 | 3,200 | 12,047,088 |
| 3/15 |  | 3,200 |  |  |  |  | 14,866,400 |
| 3/23 |  | 3,200 |  |  | 6,400 | 6,400 | 19,465,312 |
| 3/29 |  | 4,800 | 1,600 |  |  | 1,600 | 26,761,792 |
| $4 / 5$ |  | 3,200 |  |  |  | 6,400 | 6,492,272 |
| 4/13 |  | 3,200 |  |  |  |  | 11,646,736 |
| 4/19 |  | 6,400 |  | 1,600 |  | 1,600 | 13,637,936 |

Table 3.-Organisms Per Cubic Meter in Plankton of Smith's Canal in 1913-(Concluded)

| 1913 | Total <br> Malacostraca | Total <br> Entomostraca | Glochidia | Macrobiotus sp. | $\underset{\text { sp. }}{\text { Nematode }}$ | Total <br> Miscellaneou | Total <br> Organisms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4/26 | . . |  | ........... |  |  |  | 17,044,080 |
| 5/ 3 | . . | 12,800 | ............ | ... |  | ........... | 8,636,424 |
| $5 / 10$ | . . . | 3,200 | . | ............ |  | ........... | 9,321,920 |
| $5 / 17$ | . . |  |  |  |  |  | 9,352,280 |
| $5 / 24$ |  | 12,800 | ........... |  |  |  | 5,949,936 |
| $5 / 31$ |  | 19,200 |  |  |  |  | 5,686,592 |
| $6 / 7$ |  | 19,200 | ........... |  |  |  | 10,101,808 |
| 6/16 | - - | 9,600 | ..... . |  |  |  | 15,708,784 |
| $6 / 21$ |  | 16,000 | ........ |  |  |  | 19,352,112 |
| 6/28 | ........... | 12,800 |  |  |  |  | 26,840,944 |
| $7 / 5$ |  | 6,400 |  |  |  |  | '21,363,952 |
| 7/12 |  | 55,240 | 3,200 |  |  | 3,200 | 40,626,488 |
| 7/19 |  | 12,800 |  |  |  |  | 39,153,568 |
| 7/26 |  | 57,600 | 6,400 |  |  | 6,400 | 61,220,318 |
| $8 / 2$ |  | 38,400 |  | 6,400 |  | 6,400 | 66,621,792 |
| 8/9 |  | 76,800 | 6,400 |  |  | 6,400 | 114,201,816 |
| 8/15 |  | 32,000 |  |  |  |  | 166,868,542 |
| 8/23 |  | 32,000 | 6,400 |  |  | 6,400 | 141,852,410 |
| 8/31 |  | 90,600 |  |  |  |  | 154, 898,534 |
| $9 / 6$ |  | 51,200 |  |  |  |  | 254,328,524 |
| $9 / 13$ |  | 64,000 |  |  |  |  | 118,178,940 |
| 9/20 |  | 51,200 |  |  |  |  | 181,305,952 |
| 9/27 |  | 131,392 |  |  |  |  | 129,678,426 |
| 10/4 |  | 38,400 | $\ldots$ |  |  |  | 109,717,814 |
| 10/11 |  | 38,400 |  |  |  | 105,792 | 110,191,392 |
| 10/18 | . |  |  |  |  |  | 69,781,440 |
| 10/26 |  | 6,400 |  |  |  |  | 76,617,328 |
| 11/1 |  | 59,296 |  |  |  |  | 46,179,728 |
| 11/8 |  | ........ |  |  |  |  | 25,234,116 |
| 11/15 |  |  |  |  |  |  | 13,720,308 |
| 11/22 |  | 9,600 |  | ........... |  |  | 17,451,856 |
| 11/30 |  |  |  |  |  |  | 12,172,344 |
| $12 / 6$ |  |  |  |  |  |  | 16,988,928 |
| 12/14 | . | 3,200 |  |  |  |  | 10,538,544 |
| 12/20 |  | 3,200 |  |  |  |  | 6,416.352 |
| 12/27 |  |  | ........... |  |  | 3,200 | 7,787,568 |

Table 4.-Plankton Organisms Per Cubic Meter in Stockton Channel, Daily Series in 1913

| 1913 | Spirillum undula | Total <br> Bacteriaceae | Anabaena sp. | Aphanacapsa sp. | Glococapsa conglomerata | Gloeocapsa sp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/5 | 105,792 | 105,792 |  | 476,064 |  | 264,480 |
| 7/6 |  |  |  | 952,128 |  | 3,200 |
| 7/7 |  |  |  | 528,960 |  | 370,272 |
| 7/8 |  |  | 105,792 | 793,440 | 528,960 | 211,584 |
| 7/9 |  |  | 158,688 | 687,648 | 38,400 | 370,272 |
| 7/10 |  |  | 528,960 | 634,752 | 846,336 | 158,688 |
| $7 / 11$ |  |  | 528,960 | 634,752 | 740,544 | 476,064 |
| 7/12 |  |  | 1,163,712 | 1,005,024 | 899,232 | 581,856 |
| 7/13 |  |  | 370,272 | 1,745,568 | 1,005,024 | 476,064 |
| 7/14 |  |  | 634,752 | 1,428,192 | 581,856 | 1,639,776 |
| 7/15 |  |  | 264,480 | 1,163,712 | 899,232 | 1,586,880 |
| 7/16 |  |  | 846,336 | 1,216,608 | 158,688 | 1,375,296 |
| 7/17 |  |  | 581,856 | 793,440 |  | 740,544 |
| 7/15 | 3,200 | 3,200 | 3,200 | 211,584 |  | 211,584 |
| 7/19 |  |  | 581,856 | 158,688 | 3,200 | 528,960 |
| $7 / 20$ |  |  | 12,800 | 3,200 |  | 476,064 |
| 7/21 |  |  | 3,200 | 105,792 |  | 264,480 |
| $7 / 22$ |  |  | 211,584 | 3,200 |  | 264,480 |
| 7/23 |  |  | 105,792 | 6,400 |  | 264,480 |
| 7/24 |  |  | 6,400 | 3,200 | 3,200 | 158,688 |
| 7/25 | 3,200 | 3,200 | 211,584 |  | 6,400 | 317,376 |
| 7/26 |  |  | 211,584 | 264,480 |  | 1,005,024 |
| 7/27 |  |  | 158,688 | 264,480 | 211,584 | 1,057,920 |
| 7/28 |  |  | 211,584 | 105,792 |  | 634,752 |
| 7/29 |  |  | 211,584 | 105,792 |  | 793,440 |
| 7/30 |  |  | 158,658 | 211,584 | 3,200 | 317,376 |
| 7/31 |  |  | 6,400 |  |  | 423,168 |
| 8/ 1 |  |  | 105,792 | 6,400 |  | 317,376 |
| 8/2 | 3,200 | 3,200 |  | 3,200 |  | 105,792 |
| 8/3 |  |  | 211,584 | 12,800 |  | 634,752 |
| $8 / 4$ |  |  | 3,200 | 158,688 |  | 105,792 |
| 1913 | Gomphosphaera aponina | Merismopedium glaucum | Microcystis sp . | Nostoc sp. | Oscillatoria sp. | Oscillatoria tenuis |
| 7/5 |  |  | 12,800 | 793,440 |  | 12,800 |
| 7/6 |  |  | 155,688 | 320,576 |  |  |
| $7 / 7$ |  |  | 3,200 | 743,744 |  |  |
| 7/ S |  |  | 317,376 | 1,428,192 | 105,792 | 158,688 |
| $7 / 9$ |  |  | 105,792 | 687,648 | 105,792 |  |
| 7/10 |  |  |  | 740,544 |  |  |
| $7 / 11$ |  |  | 211,554 |  |  | 211,584 |
| $7 / 12$ |  |  | 264,480 | 476,064 | 3,200 | 370,272 |
| 7/13 |  |  | 264, 480 | 373,472 | 476,064 | 3,200 |
| $7 / 14$ |  |  | 264,480 | 793,440 | 105,792 | 370,272 |
| $7 / 15$ | 3,200 |  | 370,272 | 1,057,920 | 370,272 | 3,200 |
| 7/16 |  |  | 317,376 | 793,440 | 211,584 |  |
| 7/17 |  |  |  | 1,375,296 | 317,376 | 1,110,816 |
| 7/18 |  |  | 264,480 | 423,168 | 370,272 |  |
| $7 / 19$ |  |  | 264,480 | 740,544 | 370,272 |  |
| 7/20 |  |  | 3,200 | 214,784 | 211,584 |  |
| $7 / 21$ | 3,200 |  | 211,58. | 317,376 | 1,269,504 |  |
| 7/22 |  |  | 3,200 | 264,480 | 370,272 | 105,792 |
| 7/23 |  |  | 264,480 | 171,488 | 317,376 | 105,792 |
| $7 / 24$ |  |  | 158,688 | 740,5 4 | 158,688 | 476,064 |
| $7 / 25$ | 3,200 |  | 3,200 | 528,960 | 370,272 | 370,272 |
| 7/26 |  |  | $26.4,480$ | 52S,960 | 476,064 |  |
| $7 / 27$ |  |  | 105,792 | 330,176 | 317,376 | 3,200 |
| 7/28 | 6,400 |  | 317,376 | 746,336 | 528,960 | 105,792 |
| 7/29 |  | 3,200 | 105,792 | 581,856 | 158,688 | 476,064 |

Table 4.-Plankton Organisms Per Cubic Meter in Stockton Channel, Daily Series in 1913-(Continued)

1913
$7 / 30$
$7 / 31$
$8 / 1$
$8 / 2$
$8 / 3$
$8 / 4$

Phormidium
spp. $\quad \begin{gathered}\text { Rivularia } \\ \text { sp. }\end{gathered}$
$7 / 5$
7/6
7/ 7
7/8
7/9
$7 / 10$
7/11
$7 / 12$
7/13
7/14
$7 / 15$
$7 / 16$
$7 / 17$
/ 18
7/19
$7 / 20$
$7 / 21$
$7 / 22$
7/24
$7 / 25$
7/26
$7 / 27$
7/28
$7 / 29$
$7 / 30$
7/31
8/ 1
$8 / 2$
8/ 3
8. 4
1913
$7 / 5$
$7 / 6$
$7 / 7$
$7 / 8$
$7 / 9$
$7 / 10$
$7 / 11$
$7 / 19$
$7 / 13$
$7 / 1$
$7 / 15$
$7 / 10$
$7 / 17$
$7 / 18$
$7 / 19$

Gomphosphaera Merismopedium Microcystis aponina glaucum

3,200
. .
3,200 .. 211,584

317,376
$\cdots \quad 264,480$
$\begin{array}{rr}3,200 & 105,792 \\ 6,400 & 3,200\end{array}$ 3,200
3,200
Oscillatoria
sp.
317,376
740,544
317,376
476,064
370,272
476,064

| Oscillatoria |
| :---: |
| tenuis |

$\cdots 317,376$
158,688
3,200
211,584
211,584
Coelastrum
microporum
6,400
105,792
158,688
26,480
158,688
3,200
105,792
158,688
423,168
211,581
15,688
105,792
158,688
3,200
105,792
105,792
105,792
$\cdots 211,584$
$\cdots 105,792$
476,064
158,688
6,400
158,688
211,584
$\cdots 264,480$
105,792
211,584
211,584

| Lagerheimia wratislaviense | Pediastrum boryanum | $\begin{aligned} & \text { Pediastrum } \\ & \text { duplex } \end{aligned}$ | Pediastrum simplex | Raphidium polymorphum | Raphidium pyrenogerum |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 476,064 | 3,200 |  |  |
|  |  | 846,336 |  |  | 3,200 |
|  |  | 52s,960 |  |  | 105,792 |
|  |  | 1,269,504 |  | 264,480 | 370,272 |
|  | 6,400 | 1,005,024 |  | 105,792 | 3,200 |
|  | 105,792 | 793,440 |  |  | 158,688 |
|  |  | 1,110,816 |  | 3,200 |  |
|  |  | 1,269,504 |  | 3,200 |  |
|  | 105,792 | 899,232 |  | 264,480 |  |
| 3,200 |  | 793,440 |  | 211,584 | 158,688 |
|  |  | 740,544 |  |  | 105,792 |
|  |  | 793,440 | 12,800 | 105,792 | 158.688 |
|  |  | 1,005, 024 |  | 6,400 |  |
|  |  | 634,752 |  | 3,200 | 3,200 |
|  | 12,800 | 740,544 |  | 3,200 |  |

Table 4.-Plankton Organisms Per Cubic Meter in Stocktox Channel,
Dally Series in 1913-(Continued)

| 1913 | Hagerheimia wratislaviense | Pediastrum boryanum | Pediastrum duplex | Pediastrum simplex | Raphidium polymorphum | Raphidium pyrenogerum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 720 |  |  | 211,58. | 6,400 |  |  |
| 721 |  | 12,800 | 211,584 | 3,200 |  | 3,200 |
| 720 |  |  | 476,064 | 12,800 |  | 158,688 |
| 723 |  | 6,400 | 6334,752 | 158,688 | 3,200 | 3,200 |
| 724 |  | 105,792 | 528,960 | 105,792 |  | 105,792 |
| 725 |  |  | 317,376 | 19,200 | 3,200 | 158,688 |
| 726 |  | 6,400 | 793,440 | 19,200 | 3,200 | 264,480 |
| 727 | 3,200 |  | 793,440 | 6,400 | 3,200 | 105,792 |
| 725 |  |  | 634,752 | 25,600 | 6,400 |  |
| 729 |  | 19,200 | 740,544 | 12,800 |  |  |
| 730 | - | .......... | 740,544 | 3,200 |  | 3,200 |
| 7 731 |  |  | 528,960 | 105,792 |  | 3,200 |
| \& 1 |  |  | 423,168 | 6,400 | 105,792 | 158,688 |
| S. 2 |  | 3,200 | 476,064 | 6,400 |  | 105,792 |
| $8 \cdot 3$ |  |  | 634,752 | 12,800 | 158,688 | 370,272 |
| $8 / 4$ |  | 6,400 | 740,544 |  |  | 264,480 |
| 1913 | Scenedesmus obliquus | Scenedesmus quadricauda | Schroederia setigera | Total Chlorophyceae | Asterionella gracillima | Amphiprora |
| 7/5 | 158,688 | 370,272 |  | 1,021,024 |  | 3,200 |
| 7/6 | 3,200 | 687,648 |  | 1,649,376 |  |  |
| $7 / 7$ | 476,064 | 634,752 | 3,200 | 1,907,456 | 105,792 |  |
| 7/8 | 370,272 | 1,163,712 |  | 3,702,720 |  | 3,200 |
| $7 / 9$ | 211,584 | $63 \pm, 752$ |  | 2,131,840 |  |  |
| 7/10 | 370,272 | 1,057,920 |  | 2,489,202 |  | 3,200 |
| $7 / 11$ |  | 1,005,024 | 3,200 | 2,228,032 |  |  |
| $7 / 12$ | 211,584 | 476,064 |  | 2,138,232 |  | 3,200 |
| $7 / 13$ | 211,584 | 1,005,024 | 105,792 | 3,014,072 |  | 3,200 |
| $7 / 14$ | 528,960 | 1,057,920 |  | 2,971,776 |  | 3,200 |
| $7 / 15$ | 264,480 | 264,480 | 158,688 | 1,699,07 ${ }^{\text {2 }}$ | 3,200 |  |
| $7 / 16$ | 423,168 | 1,375,296 |  | 3,080,768 |  |  |
| $7 / 17$ | 264,480 | 899,232 | 158,688 | 2,704,096 |  | 3,200 |
| 7/18 | 317,376 | 423,168 | 264,480 | 1,668,576 |  |  |
| 7/19 | 528,960 | 952,128 |  | 2,462,624 |  | 6,400 |
| $7 / 20$ | $\therefore 200$ | 264,480 |  | 597,856 |  |  |
| 7/21 | 158,688 | 158,688 | 158,688 | 819,040 |  |  |
| $7 / 22$ | 476,064 | 423,168 | 3,200 | 1,655,776 |  | 3,200 |
| $7 / 23$ | 105,792 | 581,856 | 105,792 | 1,817,664 |  |  |
| $7 / 24$ | 317,376 | 793,440 | 3,200 | 1,963,552 |  |  |
| $7 / 25$ | 211,584 | 899,232 | 158,688 | 1,880,160 |  |  |
| $7 / 26$ | 687,648 | 1,005,024 | 105,792 | 3,470,240 |  | 3,200 |
| 7/27 | 740,544 | 1,692,672 | 105,792 | 3,715,520 |  | 105, 792 |
| $7 / 28$ | 370,272 | 1,481,088 | 3,200 | 2,550,102 |  | 6,400 |
| 7/29 | 476,064 | 687,648 |  | 2,306,528 | . |  |
| 7/30 | 317,376 | 634,752 | 3,200 | 1,919,256 | . | 3,200 |
| 7/31 | 3,200 | 581,856 | 3,200 | 1,229,408 |  | 105,792 |
| 8/1 | 634,752 | 1,005,024 | 3,200 | 2,617,504 |  | 3,200 |
| 8/2 | 105,792 | 899,232 | 3,200 | 1,710,872 |  |  |
| 8/3 | 264,480 | 423,168 |  | 2,101,34.4 | ........ |  |
| 8/ 4 | 264,480 | 846,336 |  | 2,337,024 | ........ |  |
| 1913 | Bacillaria paradoxa | Cyclotella kutzingii | Cyclotella operculats | Cymbella affinis | Cymbella cymbiformis | Cymbella tumida |
| $7 / 5$ |  | 370,272 | 13,911,648 | .............. |  |  |
| 7/6 |  | $740,5.4$ | 8,780,736 | ............... | ........... |  |
| $7 / 7$ |  | 211,584 | 11,901,600 | ............... | ........... |  |
| 7/8 |  | 1,005,024 | 12,906,624 | - |  |  |
| 7/9 |  | 264,480 | 12,060,288 |  |  |  |
| 7/10 |  | 581,856 | 13,858,752 | ............ | ............. | - . |

Table 4.-Plankton Organisms Per Cubic Meter in Stockton Channel, Daily Series in 1913-(Continued)
1913
$7 / 11$
$7 / 12$
$7 / 13$
$7 / 14$
$7 / 15$
$7 / 16$
$7 / 17$
$7 / 18$
$7 / 19$
$7 / 20$
$7 / 21$
$7 / 22$
$7 / 23$
$7 / 24$
$7 / 25$
$7 / 26$
$7 / 27$
$7 / 28$
$7 / 29$
$7 / 30$
$7 / 31$
$8 / 1$
$8 / 2$
$8 / 3$
$8 / 4$
1913
$7 / 5$
$7 / 6$
$7 / 7$
$7 / 8$
$7 / 9$
$7 / 10$
$7 / 11$
$7 / 12$
$7 / 13$
$7 / 14$
$7 / 15$
$7 / 16$
$7 / 17$
$7 / 18$
$7 / 19$
$7 / 20$
$7 / 21$
$7 / 22$
$7 / 23$
$7 / 24$
$7 / 25$
$7 / 26$
$7 / 27$
$7 / 28$
$7 / 29$
$7 / 30$
$7 / 31$
$8 / 1$
$8 / 2$
$8 / 3$
$8 / 4$
Bacillaria
paradoxa
12,800
158,688
3,200
12,800
6,400
57,600
6,400
12,800
6,400

6,400
211,584
51,200
1

| Cyclotella <br> kintzingii | Cyclotella <br> operculata |
| :---: | ---: |
| 370,272 | $13,118,208$ |
| 211,584 | $16,556,448$ |
| 476,064 | $26,448,000$ |
| 846,336 | $37,291,680$ |
| 634,752 | $36,022,176$ |
| 423,168 | $45,331,872$ |
| 528,960 | $46,178,208$ |
| 317,376 | $31,949,184$ |
| 264,480 | $24,014,784$ |
| 105,792 | $14,070,336$ |
| 105,792 | $16,133,280$ |
| 105,792 | $18,672,288$ |
| 158,688 | $11,584,224$ |
| 105,792 | $13,647,168$ |
| 211,584 | $13,964,544$ |
| 581,856 | $16,768,032$ |
| 793,440 | $18,143,328$ |
| 952,128 | $16,820,928$ |
| 317,376 | $16,397,760$ |
| 952,128 | $14,916,672$ |
| 740,544 | $17,032,512$ |
| $1,163,712$ | $16,186,176$ |
| $1,692,672$ | $13,224,000$ |
| $1,692,672$ | $12,271,572$ |
| $1,269,504$ | $10,579,200$ |


| Cymbella affinis | Cymbella cymbiformis | Cymbella |
| :---: | :---: | :---: |
| - |  |  |
|  |  |  |
| $\cdots$ |  | 3,200 |
| 12,800 |  | 0 |
| ... |  |  |
| . . | ..... |  |
| - . |  | 3,200 |
| $\cdots \cdot$ | 6,400 | ............. |
| - . | $\begin{aligned} & 6,400 \\ & 3,200 \end{aligned}$ |  |
| - ${ }^{\text {. }} 3,200$ | - .... |  |
| $\cdots$ |  | 6,400 |
| , | . . |  |
| . | . |  |
| . | . . |  |
|  | . | $\cdot$ |
| - | $\cdots$ | . |



Table 4.-Plankton Organisms Per Cubic Meterin Stockton Channel, Daily Series in 1913-(Continued)

| 1913 | Navicula bacillum | Navicula gracilis | Nitzschis acicularis | Nitzschia slgma | Nitzschia vernucularis | Pleurostauron parvulum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 j | 3.200 |  | 4,284,576 |  | ... . |  |
| 7 ( | 3,200 | 3,200 | 2,750,592 | . . | . . . |  |
| 77 |  |  | 4,337,472 | . . | . ... . | . |
| 7 S |  | 105,792 | 3,967,200 |  | . . . |  |
| 79 |  | 3,200 | 2,909,280 |  |  |  |
| 7 10 |  | 158,688 | 4,760,640 | 3,200 | - | 3,200 |
| $7 / 11$ |  | 3,200 | 5,448,288 | . . | . |  |
| $7 / 12$ | 3,200 | - 158,088 | 4,866,432 |  | …, 100 |  |
| 7/13 |  | 158,688 | 6,083,040 |  | 6,400 |  |
| $7 / 14$ |  | 264,480 | 5,130,912 | 3,200 |  |  |
| 7/15 |  | 105,792 | 4,496,160 | 3,200 | .. . |  |
| 7/16 | 105,792 | 370,272 | 5,025,120 |  |  |  |
| $7 / 17$ | 158,688 | 370,272 | 5,183,808 | 112,192 | 3,200 |  |
| 7/18 |  |  | 3,914,304 |  | .. . | . . . |
| 7/19 | $\cdots$. | 211,584 | 4,125,888 |  |  |  |
| $7 / 20$ | . | 3,200 | 2,062,944 | 6,400 |  |  |
| 7/21 |  | 3,200 | 2,697,696 |  | $\cdots$. ${ }^{\text {a }}$ |  |
| $7 / 22$ | . . . . | 158,688 | 2,697,696 | 3,200 |  | - .. |
| 723 | . . . | 3,200 | 2,380,320 |  |  |  |
| 7.24 | - . | 105,792 | 2,909,280 | 3,200 | $\cdot$ |  |
| 7/25 | . | 105,792 | 4,231,680 |  |  |  |
| $7 / 26$ |  | 423,168 | 6,982,272 | 3,200 | - | . |
| 7, 27 | 105,792 | 476,064 | 9,309,696 | 3,200 | - 400 |  |
| 7/28 |  | 370,272 | 7,088,064 | 3,200 | 6,400 | 3,200 |
| 7/29 | 3,200 | 317,376 | 6,030,144 | 264,480 | .. . . | 3,200 |
| 7/30 | . . . | 370,272 | 3,755,616 |  |  |  |
| 7/31 |  | 264,480 | $4,813,536$ | 19,200 | . . . . |  |
| 8/1 | 105,792 | 211,584 | 3,544,032 | . . | . . | . . . . |
| $8 / 2$ | 3,200 | 264,480 | 3,385,344 | 6,400 | . . | . . ........ |
| $8 / 3$ | 3,200 | 3,200 | 3,226,656 |  |  |  |
| $8 / 4$ | 3,200 | 317,376 | 3,702,720 | . . . . . | 6,400 | .. . ... . . . |
| 1913 | Surirella sp. | Synedra radians | Synedira ulna | Total <br> Bacillariaceae | Closterium rostratum | Mougeotia sp. |
| 7/5 |  |  | 423,168 | 20,001,088 | ........ |  |
| 7/6 | .. | ...... . ... . | 370,272 | 14,397,312 | . . . . . | .... . . . . . |
| 7/7 | ... . . | .. . . . . . . . | 952,128 | 18,619,392 | . . | . . ..... |
| $7 / 8$ |  |  | 899,232 | 20,374,560 | ... . . | . .. . . |
| $7 / 9$ | 6,400 | .. . .. .... | 476,064 | 17,204,000 | $\cdots$. |  |
| 710 |  |  | 581,856 | 21,749,856 | - . . |  |
| $7 / 11$ | - |  | 370,272 | 21,743,456 | . .. | 3,200 |
| $7 / 12$ |  |  | 423,168 | 24,761,728 | . . | 3,200 |
| 713 |  | 5,501,184 | 740,544 | 40,709,024 |  | 3,200 |
| 714 |  | 5,765,66 ${ }^{4}$ | 637,952 | 51,741,888 | 3,200 | 317,376 |
| 715 | 3,200 | 4,284,576 | 846,336 | 47,625,600 | 3,200 | 3,200 |
| 7/16 | 3,200 | 4,496,160 | 634,752 | 58,002,816 | . .. . | 3,200 |
| 7/17 | 19,200 | 3,279,552 | 1,110,816 | $59,463,008$ | . . | 3,200 |
| 718 | 6,400 | 1,322,400 | 317,376 | 39,790,592 | .... |  |
| $7 / 19$ |  | 634,752 | 317,376 | 31,801,600 |  |  |
| $7 / 20$ | 12,800 | 528,960 | 264,480 | 17,543,776 | .. . | 6,400 |
| $7 / 21$ | 3,200 | 528,960 | 476,064 | 21,127,904 | .. . |  |
| $7 / 22$ | 12,800 | 793,440 | 370,272 | 25,045,40S | - . |  |
| $7 / 23$ | 3,200 | 581,856 | 528,960 | 16,675,040 | . . . | 3,200 |
| 7/24 | 12,800 | 370,272 | 476,064 | 20,863,424 |  |  |
| 7/25 | 6,400 | 476,064 | 211,584 | 20,387,360 | 3,200 | 105,792 |
| 7/26 | 105,792 | 899,232 | 687,648 | 29,637,760 |  |  |
| $7 / 27$ | 12,800 | 687,648 | 793,440 | 32,809,824 | ... . | 158,688 |
| $7 / 28$ | 6,400 | 476,064 | 899,232 | 29,918,240 | ... 3200 | 3,200 |
| 7/29 | 12,800 | 1,005,024 | 899,232 | 27,263,840 | 3,200 | 3,200 |

Table 4.-Plankton Organisms Per Cubic Meter in Stochton Channel,
Daily Series in 1913-(Continued)

| 1913 | $\begin{gathered} \text { Surirella } \\ \text { sp. } \end{gathered}$ | Synedra radians | Synedra ulna | Total <br> Bacillariaceae | Closterium rostratum | Mougeotia sp . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/30 | 6,400 | 423,168 | 528,960 | 23,495,424 | 3,200 |  |
| 7/31 | 6,400 | 476,064 | 370,272 | 25,745,856 | 6,400 |  |
| 8/1 | 105,792 | 846,336 | 423,168 | 23,766,304 | 3,200 |  |
| $8 / 2$ | .. | 370,272 | 423,168 | 23,354,240 | . . . | . |
| 8/3 | 12.800 | 370,272 | 634,752 | 22,967,968 |  |  |
| $8 / 4$ | 25,600 | 793,440 | 211,584 | 20,630,944 | 3,200 | 105,792 |
| 1913 | Staurastrum | Staurastrum sp. | Total Conjugatae | Total Chlorophyll bearing | Total Algae | Cercomonas crassicauda |
| 7/5 | 3,200 |  | 6,400 | 24,657,440 | 22,693,888 |  |
| 7/6 | . . . | 3,200 | 3,200 | 20,518,752 | 17,699,264 |  |
| $7 / 7$ | . . | .. . | . . . | 25,811,552 | 22,384,608 |  |
| $7 / 8$ |  |  |  | 31,487,424 | 27,727,104 |  |
| 7/9 | 6,400 |  | 6,400 | 24,516,656 | 21,506,480 |  |
| $7 / 10$ |  | 3,200 | 3,200 | 31,763,090 | 27,521,810 |  |
| 7/11 | . | .. . . | 3,200 | 30,378,304 | 26,778,176 |  |
| 7/12 | . |  | 3,200 | $37,862,232$ | 31,667,000 |  |
| $7 / 13$ |  |  | 3,200 | 56,860,504 | 48,450,040 |  |
| $7 / 14$ |  |  | 320,576 | 68,840,096 | 60,852,800 |  |
| 7/15 |  |  | 3,200 | 62,240,896 | 55,047,040 |  |
| $7 / 16$ | 6,400 | .. . | 9,600 | 71,364,608 | 66,012,512 | 3,200 |
| 7/17 |  |  | 3,200 | 72,392,032 | 67,089,632 |  |
| 7/18 | 3,200 | 3,200 | 6,400 | 48,292,352 | 42,953,056 |  |
| $7 / 19$ |  | . . . |  | 43,953,794 | 36,912,226 |  |
| 7/20 | . . | . . .. . | 6,400 | 22,560,800 | 19,069,664 | . |
| $7 / 21$ |  |  |  | 27,722,208 | 24,227,872 |  |
| 7/22 | 6,400 | . | 6,400 | 30,423,104 | 27,930,592 | . |
| 7/23 |  |  | 3,200 | 23,044,054 | 19,758,112 |  |
| 7/24 | 3,200 | 3,200 | 6,400 | 27,956,192 | 24,538,848 |  |
| 7/25 |  |  | 108,992 | 27,893,696 | 24,190,976 |  |
| 7/26 | . | 3,200 | 6,400 | 44,063,882 | 35,865,002 |  |
| 7/27 | .. 0,400 | ... . . | 158,688 | 45,490,368 | 39,133,248 |  |
| 7/28 | 6,400 |  | 9,600 | 42,223,606 | 35,234,934 |  |
| 7/29 | 6,400 |  | 12,800 | 39,375,328 | 32,019,584 |  |
| 7/30 | ..... . ..... | . | 9,600 | 31,213,344 | 26,967,86.4 | 3,200 |
| 7/31 | ..... . ..... | ..... .. . .... | 6,400 | 33,447,776 | 29,057,408 |  |
| $8 / 1$ |  | .... . . | 3,200 | 34,225,216 | 27,821,600 |  |
| $8 / 2$ | . | .... 900 |  | 30,601,496 | 25,771,960 |  |
| 8/3 |  | 3,200 | 3,200 | 32,774,432 | 27,104,960 |  |
| $8 \cdot 4$ | 6,400 | 3,200 | 118,592 | 31,681,322 | 24,312,778 | . . . |
| 1913 | $\begin{gathered} \text { Chilomonas } \\ \text { sp. } \end{gathered}$ | Chlamydomonas sp. | Chromulina sp. | Eudorina elegans | Euglena viridis | Hemidinium nasutum |
| $7 / 5$ |  | . . | 634,752 |  | 3,200 |  |
| 7/6 | . . | . . . | 1,428,192 | 6,400 |  |  |
| 7/7 | - . | . . | 2,221,632 | 6,400 | 3,200 | . . |
| 7/8 |  | . . . | 3,385,344 | 57,600 | 105,792 |  |
| 7/9 |  | .. . | 2,486,112 | 19,200 | 211,584 | - .. |
| $7 / 10$ | $\cdots$ | . | 3,596,928 | 3,200 | 3,200 |  |
| 7/11 | .. . .. | .. . . | 3,120,864 | 3,200 | 105,792 |  |
| 7/12 | . . |  | 4,919,328 | 6,400 | 793,440 |  |
| 7/13 | , |  | 6,664,896 |  | 1,057,920 | . |
| 7/14 |  |  | 7,088,064 | 158,688 | 370,272 | - |
| 7/15 | . .. . . |  | 6,188,932 |  | 634,752 | - |
| $7 / 16$ | . . |  | 5,183,508 | 6,400 | 158,688 | . |
| 7/17 |  |  | 4,866,432 | 6,400 | 423,168 |  |
| 7/18 |  | 105,792 | 4,760,640 |  | 476,064 | . |
| 7/19 | ... . . | 05,792 | 6,929,376 |  | 6,400 | . |

Table 4.-Plankton Organisms Per Cubic Meter in Stockton Channel, Daily Sebies in 1913-(Continued)

| 1913 | Chilomonas | Chlamydomonas sp . | Chromulina 8 p . | Eudorina elegans | Euglena viridis | Hemidinium nasutum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7.20 | . | . ... ... | 3,015,072 |  | 476,064 |  |
| $7 / 21$ | . . | .. . . . | 2,856,384 |  | 634,752 |  |
| 7 22 |  |  | 2,274,528 | 3,200 | 211,584 |  |
| 7, 2:3 | . | . . | 3,173,740 |  | 105,792 | . |
| 7 7 4 | . | . . | 2,750,592 |  | 476,064 |  |
| 725 | . . |  | 2,803,488 | ............... | 423,168 |  |
| $7{ }^{\prime 2}$ |  | . | 7,299,648 |  | 370,272 |  |
| $7{ }^{2}$ | . | - . | 5,395,392 | 6,400 | 634,752 |  |
| 728 | . | , . | 6,347,520 |  | 423,168 |  |
| $7 \cdot 29$ |  |  | 4,496,160 |  | 42:3,168 | 2,327,424 |
| 7.30 |  |  | 3,279,552 | 6,400 | 423,168 | 528,960 |
| $7 / 31$ |  |  | 3,385,344 |  | 158,688 | 846,336 |
| $8 / 1$ | 3,200 |  | 3,649,824 |  | 264,480 | 2,456,112 |
| $8 / 2$ |  |  | 3,967,200 |  | 105,792 | 6,34,752 |
| $8 / 3$ | 3,200 |  | 4,919,328 |  | 3,200 | 634,752 |
| $8 / 4$ | , | 3,200 | 5,130,912 |  | 12,800 | 1,639,776 |
| 1913 | Mallomonas sp. | Peridinium cinctum | Pleodorina californica | $\begin{aligned} & \text { Pteromonas } \\ & \text { sp. } \end{aligned}$ | Synura uvella | Trachelomona euchlora |
| 7 \% 5 | 3,200 | 1,005,02t |  | 158,68s |  |  |
| 7 7:6 |  | 581,856 | 6,400 | 211,584 | 15S,688 |  |
| 77 | ................ | 634,752 | . . . | 32,000 | . . |  |
| $7 / 8$ |  |  |  |  |  |  |
| 7.9 |  | 3,200 |  | 32,000 |  | . |
| 710 | . | 105,792 | . .. . | ... . |  |  |
| 711 | . |  |  | . . . . | . |  |
| 712 | . | . . . | . . | . . . | . |  |
| 713 |  |  |  | ... |  |  |
| 7/14 | , . | 264,480 | . . . | . |  | , . . |
| $7 / 15$ | . | .... . |  | . . |  | - |
| 7/16 |  | . . . . | - .. . | . |  | - |
| $7 / 17$ | 3,200 | . . . |  | . . . |  | . |
| $7 / 18$ | . . | .... . . . . | . . .. . . | -. . . |  | . . . |
| $7 / 19$ | . . | . . . . | . ... . . | . . | . . |  |
| 7/20 | . | .. . |  |  |  |  |
| $7 / 21$ | , | . | . . | . . . |  |  |
| $7{ }^{\prime \prime 2}$ | . | . | . . |  |  |  |
| $7 \times 3$ | . | . . . . | . . . . |  |  | 3,200 |
| $7{ }^{\prime 2}$ | . |  | . . | 32,000 | . |  |
| 725 |  | 317,376 |  | 3,200 |  | . |
| $7 / 26$ |  | 317,376 |  | 105,792 |  |  |
| $7{ }^{\prime} 27$ | . | 105,792 |  | 3,200 |  |  |
| 728 |  | 6,400 |  |  |  |  |
| 729 |  | 105,792 |  |  |  |  |
| 7 7.30 | . | 3,200 |  |  |  |  |
| 7 7.31 | . |  |  |  |  |  |
| $8 / 1$ |  |  |  |  |  |  |
| $8 / 2$ |  | . . . | 6,400 |  | 3,200 | 3,200 |
| 8, 3 |  | . . . . | ... |  |  |  |
| $8 / 4$ | - | $\cdots$ - . | . ... | ............... | ............ | 211,58 |
| 1913 | Trachelomonas volvocina | Total <br> Mastigophora | Amocba radiosa | Difliugia pyriformis | Microgromia sociatis | Total Rhizopoda |
| 7/5 | $26.4,480$ | 2,069,344 |  | 211,584 |  | 224,384 |
| 7/6 | 317,376 | 2,819,488 | 3,200 | 476,064 |  | 479,264 |
| 7/7 | 528,960 | 3,426,944 |  | 264,480 | 3,200 | 267,680 |
| 7/8 | 211,584 | 3,760,320 | 3,200 | 12,800 | ............ | 19,200 |
| 7/9 | $26.4,480$ | 3,016,576 |  | 264,480 |  | 270,880 |
| 7/10 | 528,960 | 4,241,280 |  | 3,200 |  | 3,200 |

Table 4.-Plankton Organisms Per Cubic Meter in Stockton Channel,
Daily Series in 1913-(Continued)

| 1913 | Trachelomonas volvocina | Total <br> Mastigophora | Amoeba radiosa | Difflugia pyriformis | Microgromia socialis | Total Rhizopoda |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/11 | 370,272 | 3,600,128 | .. . . | .. . . |  |  |
| 7/12 | 476,064 | 6,195,232 | . . ... . . | .... . | .. . . | 3.200 |
| 7/13 | 687,648 | 8,410,464 | .. .. . . . | .. |  | 3,200 |
| $7 / 14$ | 105,792 | 7,987,296 | . |  | 3,200 | 6,400 |
| 7/15 | 370,272 | 7,193,856 | - |  |  | 3,200 |
| 7/16 |  | 5,352,096 | . . . |  | 3,200 | 112,192 |
| 7/17 |  | 5,302,400 |  | 6,400 |  | 12, 200 |
| 7/18 |  | $5,342,496$ | . . . | 6,400 | . . | 9,600 |
| 7/19 | .. .. | 7,041,568 |  | 3,200 | . | 6,400 |
| 7/20 |  | 3,491,136 |  | 105,792 | . | 108,992 |
| 7/21 | 3,200 | 3,494,336 | . . | 6,400 | . . | 6,400 |
| 7/22 |  | 2,492,512 |  |  |  |  |
| 7/23 | 3,200 | 3,285,952 |  |  | 105,792 | 105,792 |
| $7 / 24$ | 158,688 | 3,417,344 |  | 105,792 | 105,792 | 370,272 |
| 7/25 | 15S,688 | 3,705,920 |  | 158,688 |  | 158,688 |
| 7/26 | 105,792 | 8,198,880 |  | 264,480 |  | 267.680 |
| 7/27 | 211,584 | 6,357,120 |  | 211,584 | 3200 | 217.984 |
| 7/28 | 211,584 | 6,988,672 | . | 6,400 | 3,200 | 12, 500 |
| $7 / 29$ | 3,200 | 7,355,744 | - | 105,792 |  | 211,584 |
| 7/30 |  | 4,244,480 |  |  | 3,200 | 3,200 |
| 7/31 | - .. | 4,390,368 |  | 3,200 | . | 6,400 |
| 8/1 |  | 6,403,616 |  |  |  |  |
| 8/2 | 105,792 | 4,832,736 |  |  |  |  |
| 8/3 | 105,792 | 5,669,472 | . |  | 158,688 | 158,688 |
| $8 / 4$ | 370,272 | 7,368,544 | .. | . . | 105,792 | 105,792 |
| 1913 | Heterophrys fockei | Raphidiophrys elegans | Total <br> Heliozoa | Holophrya sp. | $\begin{aligned} & \text { Prorodon } \\ & \text { sp. } \end{aligned}$ | Tintinnidium fluviatile |
| $7 / 5$ |  | 528,960 | 528,960 | 158,688 | . . |  |
| 7/6 | . | 740,544 | 740,544 | 105,792 |  |  |
| 7/7 |  | 846,336 | 846,336 | 158,688 | . . |  |
| 7/8 | . | 1,110,816 | 1,110,816 | 105,792 | . |  |
| 7/9 | . | 846,336 | S46,336 | 211,584 | . . . |  |
| 7/10 | . .. | 370,272 | 370,272 | 211,584 | . . . |  |
| 7/11 | . . | 423,168 | 423,168 | 423,168 | . . | . |
| 7/12 |  | 158,688 | 158,688 | 3,200 |  | . |
| 7/13 | .... | 1,110,816 | 1,110,816 | 211,584 |  |  |
| 7/14 | - .. . | 1,005,024 | 1,005,024 | 105,792 |  |  |
| 7/15 | .. . . | 370,272 | 370,272 | 528,960 |  |  |
| 7/16 | . .. . | 528,960 | 528,960 | 6,400 | . . |  |
| 7/17 | - | 158,688 | 158,688 | .............. | $\ldots$ |  |
| 7/18 | . | 211,584 | 211,584 |  |  |  |
| 7/19 |  | 370,272 | 370,272 |  |  |  |
| $7 / 20$ | 6,400 | 105,792 | 112,192 | 3,200 |  |  |
| $7 / 21$ | 105,792 | 264,480 | 310,272 | 264,480 |  |  |
| $7 / 22$ | .. . . . | 317,376 | 317,376 | 3,200 | -. | . |
| $7 / 23$ | .. | 317,376 | 317,376 |  |  |  |
| 7/24 | . . | 317,376 | 317,376 | - 3,200 | 3,200 |  |
| 7/25 | . . | 105,792 | 105,792 | 264,480 |  |  |
| 726 |  | 370,272 | 370,272 | 211,584 |  |  |
| 7/27 |  | 476,064 | 476,064 | 317,376 |  | . |
| 7/28 | 105,792 | 423,168 | 528,960 | 158,688 |  |  |
| 7/29 | . ${ }^{\text {d }}$, | 528,960 | 528,960 | 158,688 | .............. |  |
| 7/30 | 44,800 | 370,272 | 415,072 | 105,792 |  | 105,792 |
| 7/31 | 105,792 | 476,064 | 581,856 | 105,792 | 3,200 | 105,792 |
| 8/ 1 | 6,400 | 687,648 | 694,048 | 264,480 |  | 3,200 |
| 8/2 | 528,960 | 1,269,504 | 1,798,464 | 105,792 |  |  |
| $8 / 3$ | 528,960 | 740,544 | 1,269,50t | 3,200 |  | 6,400 |
| S/ 4 | 317,376 | 952,128 | 1,269,504 | 158,688 |  | 6,400 |

Table 4.-Plankton Organisms Per Cubic Meter in Stockton Channel, Daily Series in 1913-(Continued)

| 1913 | $\underset{B}{\text { Vorticella }}$ | Vorticella longiflum | Vorticella | Total <br> Ciliata | Total Protozoa without Mastigophora | Total, Protozor with Mastigophora |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 75 | 3,200 |  | 2,644,800 | 2,806,688 | 3,560,032 | 5,629,376 |
|  |  |  | 1,375,296 | 1,490,688 | 2,707,496 | 5,526,984 |
|  | 158,688 |  | 1,057,920 | 1,216,608 | 2,330,624 | 5,757,568 |
|  | 211,584 |  | 1,110,816 | 1,216,608 | 2,346,624 | 6,106,944 |
|  | 370,272 |  | 476,064 | 687,648 | 1,804,864 | 4,821,440 |
| 710 | 634,752 |  | 1,322,400 | 1,533,98.4 | 1,907,456 | 6,148,736 |
| 7.11 | 105,792 |  | 846,336 | 1,269,504 | 1,692,672 | 5,292,800 |
| 712 | 158,688 | . | 740,544 | 743,744 | 1905,632 | 7,100,864 |
| $7 / 13$ |  |  | $63.4,752$ | 846,336 | 1,960,352 | 10,370,816 |
| $3 / 14$ | 105,792 |  | 1,163,712 | 1,269,504 | 2,280,928 | 10,268.224 |
| 715 |  |  | 846,336 | 1,375,296 | 1,748,768 | 8,942,624 |
| 7/16 | 3,200 |  | 1,110,816 | 1,116,216 | 1,757,368 | 7,109,464 |
| $7 / 17$ |  |  | 1,163,712 | 1,163,712 | 1,335,200 | 6,637,600 |
| 7/18 |  |  | 370,272 | 370,272 | 591,456 | 5,933,952 |
| 7/19 |  |  | 1,057,920 | 1,057,920 | 1,434,592 | 8,476,160 |
| $7 / 20$ |  |  | 476,064 | 476,064 | 697,448 | 4,188,584 |
| $7 / 21$ |  |  | 370,272 | 634,752 | 951,424 | 4,445,760 |
| $7 / 22$ |  |  | 1,005,024 | 1,008,224 | 1,325,600 | 3,818,112 |
| $7 / 23$ | . |  | 476,064 | 476,064 | 899,232 | 4,185,184 |
| 724 |  |  | 899,232 | 905,632 | 1,593,280 | 5,010,624 |
| $7 / 25$ |  |  | 793,440 | 1,163,712 | 1,428,192 | 5,134,112 |
| $7 / 26$ | . |  | 1,269,504 | 1,487,488 | 2,125,440 | 10,324,320 |
| 727 |  |  | 1,957,152 | 2,274,528 | 2,968,576 | 9,325,696 |
| $7 \cdot 28$ |  |  | 1,586,880 | 1,745,568 | 2,287,328 | 9,276,000 |
| 7/29 | 476,064 | 3,200 | 2,010,048 | 2,171,936 | 2,912,480 | 10,268,224 |
| $7 / 30$ |  | 6,400 | 899,232 | 1,117,216 | 1,535,488 | 5,779,968 |
| 7/31 | . |  | 1,533,984 | 1,748,768 | 2,337,024 | 6,727,392 |
| $8 / 1$ |  |  | 1,269,504 | 1,537,184 | 2,231,232 | 8,634,848 |
| $8 / 2$ | . ... .. | . | 1,639,776 | 1,748,768 | 3,547,232 | $8,379,968$ |
| $8 / 3$ |  |  | 1,957,152 | 1,966,752 | 4,394,944 | 10,064,416 |
| $8 / 4$ |  | 3,200 | 1,692,672 | 1,860,950 | 4,236,246 | 11,604,790 |
| 1913 | Rotaria neptunia | Rotaria rotatoria | Rotifer unidentified | $\begin{gathered} \text { Total } \\ \text { Bdelloida } \end{gathered}$ | $\begin{gathered} \text { Anuraeopsis } \\ \text { fissa } \end{gathered}$ | Asplanchua brightwelli |
| 7/5 |  | 19,200 | 158,688 | 177,888 |  | 158,688 |
| $7 / 6$ |  | 25,600 | 211,584 | 237,184 |  | 57,600 |
| $7 / 7$ | 6,400 | 6,400 | 3,200 | 16,000 | 3,200 | 70,400 |
| $7 / 8$ |  | 12,800 | 6,400 | 19,200 | 6,400 | 19,200 |
| $7 / 9$ |  | 6,400 | 3,200 | 9,600 |  | 19,200 |
| $7 / 10$ |  | 25,600 |  | 25,600 | 6,400 | 89,600 |
| 7/11 | 12,800 | 3,200 |  | 16,000 |  | 51,200 |
| $7 / 12$ |  | 211,584 | 3,200 | 214,784 |  | 44.800 |
| 7/13 |  | 38,400 | 158,688 | 196,088 | 3,200 | 76,800 |
| $7 / 14$ | 3,200 | 264,480 | 158,688 | 426,368 | 3,200 | 158,688 |
| 7/15 |  | 6.400 | 3,200 | 9,600 |  | 64,000 |
| $7 / 16$ |  | 19,200 | 19,200 | 38,400 |  | 12,800 |
| $7 / 17$ |  | 317,376 | 264,480 | 581,856 |  | 19,200 |
| 7/18 |  | 6,400 | 3,200 | 9,600 |  | 105,792 |
| 719 |  |  | 158,688 | 158,688 |  | 6,400 |
| 720 |  | 6,400 | 3,200 | 9,600 | 6,400 | 12,800 |
| 721 |  | 19,200 |  | 19,200 | 6,400 | 19,200 |
| 722 |  | 19,200 | 3,200 | 22,400 |  | 25,600 |
| 723 |  | 317,376 |  | 317.376 | 6,400 | 3,200 |
| 7.24 | 6,400 | 105,792 | 3,200 | 115,392 | ,200 | 12,800 |
| 725 |  | 6,400 | 105,792 | 112,192 |  |  |
| 7 \% 26 |  | 12,500 | 25,600 | 38,400 |  | 19,200 |
| $7{ }^{127}$ | 19,200 | 6,400 | 105,792 | 131,392 | 19,200 | 38,400 |
| 728 |  |  | 211,584 | 211.584 | 6,400 | 12,800 |
| 7.29 |  |  | 105,792 | 105,792 |  | 32,000 |

Table 4.-Plankton Organisms Per Cubic Meter in Stockton Channel,
Daily Series in 1913-(Continued)
1913
$7 / 30$
$7 / 31$
$8 / 1$
$8 / 2$
$8 / 3$
$8 / 4$


Tamle 4.-Plankton Organisms Per Cumic Meter in Stockton Channel, Daily Series in 1913-(Continued)

| 1913 | Brachionus egg; attached. male | 13rachionus egg; free, female | Brachionus patulus | Brachionus plicatilis | Brachionus игесин | $\underset{\substack{\text { Diurella } \\ \text { egg }}}{ }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $7 / 19$ |  | 264,480 | . |  | 370,272 | . . . . |
| 7/20 |  | 423,168 | . . . . | . . | 740,544 | . . |
| 7/21 | . . . | 846,336 | . . . | . . | 631,752 | . |
| 722 |  | 1,057,920 |  | . . | 633,752 |  |
| 723 |  | 740,544 | . . . | . . . | 6,400 |  |
| $7 / 24$ | . . . | 528,960 |  | . . . . | 211,584 | . |
| $7 / 25$ | . .. . | 1,057,920 | .. . | . . . . | 370,272 |  |
| $7 / 26$ | . . . | 476,064 |  |  | 42:3,168 | . . . |
| 7/27 | . | 1,851,360 | . . | . | 528,960 |  |
| 78 | .. . . | 528,960 |  | . | 528,960 | 6,400 |
| $7 / 29$ | . . . | 952,128 | 3,200 | . . | 370,272 | - |
| 7/30 | . . .. | 423,168 | .. . . | . | 105,792 | . |
| 7/31 | .. . . . . | 423,168 | . |  | 158,688 |  |
| S/1 | . . . . | 528,960 | . . . |  | 423,168 | 6, 400 |
| $8 / 2$ | . . .. | 423,168 |  |  | 370,272 | 105,792 |
| $8 / 3$ |  | 158,688 | . . |  | 423,168 | 6,400 |
| $8 / 4$ | $\cdot 25,600$ | 317,376 |  | 6,400 | 317,376 | . . . |
| 1913 | $\underset{\text { brachiata }}{\text { Filinia }}$ | Filinia egy; attached. female | Filinia egg, free | Filinia longiseta | Keratella cochlearis | Keratella egg attached |
| $7 / 5$ | 3,200 | 158,688 | 370,272 | 1,375,296 | 793.440 | 211,584 |
| $7 / 6$ | . 3 , 200 | 105,792 | 528,960 | 370,272 | 211,584 |  |
| $7 / 7$ | 3,200 | 105,792 | 317,376 | 317,376 | 476,064 | 3,200 |
| $7 / 8$ |  | 3,200 | 528,960 | 264,480 | 211,584 | 3,200 |
| $7 / 0$ | . | 3,200 | 476,064 | 12,800 | 211,584 | 3,200 |
| 7/10 | . . . | .... . | 476,004 | 44,800 | 423,168 | 105,792 |
| $7 / 11$ | . . .. . . | 6,400 | 423,168 | 158,688 | 581,856 | 3,200 |
| $7 / 12$ | .... ... | , | 370,272 | 105,792 | 423,168 | 3,200 |
| 7/13 | . . . | ... | 3,200 | 158,688 | 476,064 | 105,792 |
| 7/14 | . . . | 3,200 | 105,792 | 211,584 | 476,064 | 3,200 |
| 7/15 | . ... ... ..... | .... ...... . | 158,688 |  | 158,688 | 3,200 |
| 7/16 | .. . . . . | .. ... . ... . |  | 25,600 | 12,800 | 105,792 |
| 7/17 | . .. . . . | ... . . | 105,792 | 25,600 | 32,000 |  |
| 7/18 | . . . | - 400 | 211,584 |  | 25,600 |  |
| 7/19 | . | 6,400 | 105,792 | 6,400 | 32,000 | 211,584 |
| 720 | . . . . | .. . | 105,792 | 19,200 | 158,688 |  |
| 721 | . . |  | 3,200 | 6,400 | 158,688 | 3,200 |
| 72 | . . . | . . | 105,792 | 6,400 | 105,792 | 317,376 |
| 723 | , . |  | 105,792 | . . . | 38,400 | 211.584 |
| 7.24 |  |  | 158,688 |  | 19,200 | 264,480 |
| 725 | . | .. . | 211,584 | . | 12,800 | 264,480 |
| 7/26 | . | . . | 211,584 |  | 6,400 | 264,480 |
| 7/27 | . . | . | 105,792 | . |  | 423,165 |
| -7/28 | . | - . | 158,688 |  | 6,400 | 264,480 |
| - $/ 29$ |  |  | 105,792 |  | 19,200 | 687,648 |
| $7 / 30$ | . | . . | 158,688 |  | 12,800 | 10.5,792 |
| 7/31 | . |  | 158,688 | . . | 3,200 | 317,376 |
| 8/ 1 | . . | . . | , | - . |  | 158,688 |
| 8/2 |  | . . |  |  |  | 158,688 |
| $8 / 3$ | . . . |  | 211.584 | . | 12,800 | 3,200 |
| $8 / 4$ | - | , - | 158,688 | . |  | 158,685 |
| 1913 | Keratella egg, free | Keratella quadrata | Polyarthra trigla | Polyarthra trigla egg. attached | $\begin{gathered} \text { Synchacta } \\ \text { sp. } \end{gathered}$ | Trichocerca capucina |
| $7 / 5$ | 476,064 | 1,163,712 | 158,688 | . . | 528,960 | . . . |
| $7 / 6$ | 264,480 | 317,376 | 211,584 | - . | 19,200 |  |
| 7/7 | 105,792 | 317,376 | 528,960 |  |  |  |
| $7 / 8$ | 158,688 | 687,648 | 740,544 |  |  |  |
| 7/9 | 211,584 | 264,480 | 899,232 | 3,200 | 12,800 | 3,200 |

Table 4.-Plankton Organisms Per Cubic Meter in Stockton Channel,
Daily Series in 1913-(Contimued)

| 1913 | Keratelia egg, free | Keratella quadrata | Polyarthra trigla | Polyarthra trigla ege, attached | Synchaeta sp. | Trichocerca capucina |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/10 | 317,376 | 528,960 | 1,745,568 | . . |  |  |
| 7/11 | 370,272 | 687,648 | 1,798,464 |  |  |  |
| 7/12 | 687,648 | 1,322,400 | 1,692,672 | 3,200 | 3,200 | 3,200 |
| 713 |  | 1,110,816 | 1,904,256 |  |  |  |
| 7/14 | 3,200 | 1,057,920 | 1,163,712 |  |  |  |
| 7/15 |  | 1,110,816 | 370,272 |  | 3,200 |  |
| $7 / 16$ |  | 952,128 | 687,648 |  | 6,400 |  |
| 7/17 | 211,584 | 687,648 | 38,400 | - |  | 3,200 |
| 7/18 | 105,792 | 1,322,400 | 76,800 |  |  |  |
| 7/19 | 105,792 | 846,336 | 158,688 |  | . |  |
| 7/20 | 105,792 | 1,057,920 | 89,600 |  |  |  |
| 7/21 | 158.688 | 846,336 | 158,688 |  |  |  |
| $7 / 22$ | 211,584 | 1,110,816 | 101,400 |  | 12,800 |  |
| 7/23 |  | 1,692,67 2 | 134,400 |  | 6,400 |  |
| $7 / 21$ | 105,792 | 1,163,712 | 211,584 |  | 3,200 |  |
| 7.25 | 3,200 | 2,010,048 | 470,064 |  |  |  |
| 7/26 |  | 2,062,944 | 634,752 |  |  |  |
| $7 / 27$ | 158,688 | 5,554,050 | 1,216,608 | 3,200 | 6,400 |  |
| 7/2S | 3,200 | 2,644,800 | 581,856 |  | 6,400 |  |
| 7/29 | 3,200 | 4,601,952 | 846,336 | 3,200 |  | 3,200 |
| 7/30 | 3,200 | 2,010,048 | 952,128 |  |  |  |
| 7/31 | 105,792 | 2,856,384 | 846,336 |  | 6,400 |  |
| 8/1 |  | '2,909,280 | 793,440 |  |  |  |
| $8 / 2$ | 105,792 | 1,110,816 | 793,440 | 3,200 |  |  |
| 8/3 |  | 423.168 | 264,480 | 6,400 |  |  |
| $8 / 4$ |  | 1,057,920 | 264,480 |  |  |  |
| 1913 | Trichocerca iernis | Total <br> Ploima | Total Rotifera | Bosmina longirostris | Sida | Total Cladocera |
| $7 / 5$ | 19,200 | 7,111,968 | 7,289,956 |  | 6,400 | 6,400 |
| $7 / 6$ | 19,200 | 3,229,664 | 3,466,848 |  | 32,000 | 32,000 |
| $7 / 7$ | 158,688 | 3,590,336 | 3,606,336 |  | 6,400 | 6,400 |
| $7 / 8$ | 317,376 | 5,921,656 | 5,940,856 |  |  |  |
| 7/9 | 211,584 | 5,127,720 | 5,137,320 |  |  |  |
| 7/10 | 370,272 | 6,445,024 | 6,470,624 |  | 6,400 | 6,400 |
| $7 / 11$ | 476,064 | 6,884,384 | 6,900,384 |  | 12,800 | 12,800 |
| $7 / 12$ | 317,376 | 8,578,056 | 8,792,840 |  | 6,400 | 6,400 |
| $7 / 13$ | 264,480 | 6,113,344 | 6,309,432 |  | 12,800 | 12,800 |
| $7 / 14$ | 105,792 | 5,940,352 | 6,367,720 |  |  |  |
| 7/15 |  | 4,252,384 | 4,261,984 |  | 6,400 | 6,400 |
| $7 / 16$ | 6,400 | 4,348,576 | 4,386,976 |  |  |  |
| 7/17 | 3,200 | 3,419,552 | 4,001,408 | 6,400 | 6,400 | 12,800 |
| 7/18 | 6,400 | 5,557,088 | 5,566,688 |  | 12,800 | 12,800 |
| 7/19 | 6,400 | 3,390,048 | 3,548,736 |  | 12,800 | 12,800 |
| 7/20 | 12,800 | 3,373,856 | 3,383,456 | 12,800 |  | 12,800 |
| 7/21 | 158,688 | 3,588,832 | 3,608,032 |  |  |  |
| 7/22 | 6,400 | 4,966,136 | 4,988,536 | 12,800 | 12,800 | 25,600 |
| 7/23 |  | 3,428,256 | 3,745,632 | . . . |  |  |
| $7 / 24$ |  | 3,010,176 | 3,125,568 | - . | 12,800 | 12,800 |
| $7 / 25$ | 158,688 | 6,069,000 | 6,181,192 | . . | 6,400 | 6,400 |
| 7/26 | 12,800 | 5,972,352 | 6,010,752 | . | 6,400 | 6,400 |
| 7/27 | 3,200 | 15,098,656 | 15,230,048 | . | 6,400 | 6,400 |
| 7/28 | 6,400 | 7,241,956 | 7,453,440 | . . . . |  | . . . |
| 7/29 | 6,400 | 8,434,368 | 8,540,160 |  |  |  |
| $7 / 30$ | 19,200 | 4,255,784 | 4,271,784 | 6,400 |  | 6,400 |
| 7/31 | 25,600 | 5,384,096 | 5,403,296 |  |  |  |
| $8 / 1$ | 25,600 | 5,816,864 | 5,978,752 |  |  |  |
| 8/2 | 19,200 | 3,639,032 | 3,680,632 | 6,400 | 6,400 | 12,800 |
| 8/3 | 12,800 | 1,95S,656 | 2,133,344 | 6,400 | .... | 6,400 |
| $8 / 4$ | 6,400 | 2,859,088 | 2,971,280 | . . . . | 6,400 | 6,400 |

Table 4.-Plankton Organisms Per Cubic Meter in Stockton Channel, Daily Series in 1913-(Concluded)

| 1913 | Cyclops | Nauplius | Total <br> Copepoda | Total Entomostraca | Glochidia | Total Organisms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/5 | 268,500 | 1,057,920 | 1,326,720 | 1,333,120 |  | 36,946,240 |
| $7 / 6$ | 3332,800 | 6.34,752 | 1967,552 | 999,552 |  | 27,692,648 |
| 7/7 | 317,376 | 528,960 | 846,336 | 852,736 |  | 32,601,248 |
| 7/8 | 317,376 | 793,440 | 1,110,816 | 1,110,816 |  | 40,885,720 |
| 7/9 | 370,272 | 1,163,712 | 1,533,984 | 1,533,984 |  | 32,992,824 |
| 7/10 | 230,400 | 793,440 | 1,023,840 | 1,030,240 |  | 41,171,410 |
| 7/11 | 358,400 | 740,544 | 1,098,944 | 1,111,744 |  | 40,083,104 |
| 7/12 | 740,544 | 856,336 | 1,586,880 | 1,593,280 |  | 49,153,984 |
| 7/13 | 268,800 | 1,375,296 | 1,644,096 | 1,656,896 |  | 66,787,184 |
| 7/14 | 687,648 | 1,428,192 | 2,115,840 | 2,115,840 |  | 79,604,584 |
| 7/15 | 476,064 | 1,057,920 | 1,5533,984 | 1,540,384 |  | 69,792,032 |
| 716 | 454,400 | 793,440 | 1,247,840 | 1,247,840 |  | 78,756,792 |
| 717 | 264,480 | 740,544 | 1,005,024 | 1,017,824 |  | 78,746,464 |
| 7 \% 18 | 581,856 | 581,856 | 1,163, 712 | 1,176,512 |  | 55,630,208 |
| $7 / 19$ | 687,648 | 740,544 | 1,428,192 | 1,440,992 | 6,400 | 50,284,514 |
| 720 | 581,856 | 899,232 | 1,481,088 | 1,493,888 |  | 28,135,592 |
| 7.21 | 581,856 | 1,745,568 | 2,327,424 | 2,327,424 |  | 34,609,088 |
| 7 \% | 3,173,760 | 1,692,672 | 4,866,432 | 4,892,032 | 3,200 | 41,632,472 |
| 723 | 264,480 | 1,110,816 | 1,375,296 | 1,375,296 |  | 29,064,214 |
| 724 | 264,480 | 899,232 | 1,170.112 | 1,182,912 |  | 33,857,952 |
| 725 | 423,168 | 952,128 | 1,375,296 | 1,381,696 |  | 36,887,976 |
| 726 | 264,480 | 687,648 | 952,128 | 958,528 |  | 53,158,602 |
| 727 | 476,064 | 952,128 | 1,428,192 | 1,4:34,592 |  | 65,123,584 |
| 728 | 528,960 | 793,440 | 1,322,400 | 1,322,400 |  | 53,286,774 |
| 729 | 634,752 | 1,269,504 | 1,904,256 | 1,904,256 | 3,200 | 52,735,424 |
| 730 | 317,376 | 740,544 | 1,057,920 | 1,064,320 | 3,200 | 38,088,136 |
| 7'31 | 423,168 | 581,856 | 1,005,024 | 1,005,02 4 | 6,400 | 42,199,520 |
| $8 / 1$ | 846,336 | 899,232 | 1,745,568 | 1,745,568 |  | 44,180,768 |
| $8 \quad 2$ | 581,856 | 1,322,400 | 1,904,256 | 1,917,056 |  | 39,749,616 |
| $8 / 3$ | 264,480 | 846,336 | 1,110,816 | 1,117.216 |  | 40,419,936 |
| $8 / 4$ | 317,376 | 1,163,712 | 1,481,088 | 1,487,488 |  | 40,376,336 |

Table 5.-Plankton Organisus Per Cubic Meter in Suith's Canal, Hourly Series in 1913

| $\begin{array}{ll} 1913 \\ 8 / 11 \end{array} \quad \mathrm{La}$ | Lamprocystis sp. | Total <br> Bacteriaceae | Anabaena sp. | Aphanocapsa sp. | Coelosphaerium kützingianum | Gloeocapsa conglomerata |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 A.s. |  |  | 105,792 | 264,480 |  | 52,896 |
| S A.M. |  |  | 343,824 | 158,688 |  | 6,400 |
| 9 А.м. |  |  | 52,896 | 6, 100 |  |  |
| 10 А.M. |  |  | 396,720 | 52,896 |  | 105,792 |
| 11 A.M. |  |  | 449,616 | 211,584 | 52,896 | 52,896 |
| 12 m |  |  | 449,616 | 343,824 |  | 6,400 |
| 1 P.M. |  |  | 502,512 | 158,688 |  | 105,792 |
| 2 P.m. |  |  | 1,163,712 | 105,792 |  | 52,896 |
| 3 P.m. |  |  | 1,719,120 | 502,512 |  | 52,896 |
| 4 P.M. | 52,896 | 52,896 | 1,666,224 | 211,584 |  | 52,896 |
| 5 P.M. | 52,896 | 52,896 | 3,861,408 | 158,688 |  |  |
| $5: 48$ Р.м. |  |  | 3,967,200 | 105,792 |  |  |
| 6: 40 р.м. | - 6,400 | 6,400 | 5,236,704 | 158,688 | 52,896 | 15S,688 |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Glococapsa sp . | Gomphosphaera aponina | Microcystis sp. | Nostoc sp | Oscillatoria sp. | Oscillatoria tenuis |
| 7 A.m. | 343,824 | 52,896 | 211,584 | 211,581 |  |  |
| 8 A.M. | 343,824 |  | 343,824 | 52,806 |  |  |
| 9 A.M. | 264,480 |  | 449,616 | 52.896 |  |  |
| 10 A.m. | 343,824 |  | 158,688 | 396.720 |  |  |
| 11 A.M. | 34,3,824 |  | 105,792 | 105,792 | 158,688 |  |
| 12 m | 158,688 | 158,688 | 661,200 | 459,616 |  |  |
| 1 P.M. | 766,992 |  | 264.480 | 52,896 |  |  |
| 2 Р.м. | 661,200 | 158.688 | 34:3,824 | 3,120,864 |  |  |
| 3 P.M. | 608,304 |  | 343,824 | 4,522,608 |  | 105,792 |
| 4 Р.м. | 608,304 |  | 396,720 | 5, 448,28S |  | 52.896 |
| 5 P.M. | 925,680 |  | 502,512 | 3,914,304 | 449,616 |  |
| 5:48 P.m. | . 714,096 |  | 502,512 | 2,697,690 | 502,512 |  |
| 6:10 P... | . 925,680 | 105,792 | 449,616 | $3,306,000$ | 264,480 |  |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Phormidium foveolarum | Stigonema ocellatum | Total <br> Schizophyceae | Actinastrum hantzschii | Actinastrum hantzschii (large) | Coelastrum microporun |
| 7 A.m. | 211,584 |  | 1,454,644 |  | 105,792 | 105,792 |
| S A.m. | 158,688 | 52, 896 | 1,461,010 |  | 158.645 | 105,792 |
| 9 A.M. | 158,688 |  | 984,976 |  | 264.480 | 105,792 |
| 10 A.M. |  |  | 1,454,640 |  | 343, 824 | 52,896 |
| 11 A.M. | 52,896 |  | 1,533,984 | 52.890 | 502,512 | 105,792 |
| 12 m . | 26 4,480 | 52,896 | 2,54.,408 | 6,400 | 211,584 | 158,688 |
| 1 P.M. | 264.480 |  | 2,115,840 | 52,896 | 449,616 | 52.896 |
| 2 P.M. | 343,824 |  | 5,871,456 | 52,596 | 343,824 | 6,400 |
| 3 P.M. | 211,584 |  | 8,096,640 | 52,596 | 661,200 | 19,200 |
| 4 P.M. | 26.4,480 |  | $8,701,394$ | 52,806 | 264,480 | 158,688 |
| 5 P.м. | 264,480 | 6,400 | 10,083,088 |  | 396,720 | 52,896 |
| 5:18 р.м. |  | 52,896 | 8,542,704 | 52,896 | 502,512 | 211,58 1 |
| 6:40 P.M. |  |  | 12,040,250 | 6,400 | 608,304 | 264,480 |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Pediastrum boryanum | Pe liastrum duplex | Pe liastrum simplex | Raphidium polymorphum | Raphidium pyrenogerum | nicenedesmus obliquus |
| 7 A.M. |  | 419,616 | 6,400 |  |  | 52,596 |
| 8 A.m. | 12,800 | 766,992 | 52,896 |  |  | 264,480 |
| 9 А.м. |  | 396,720 |  |  |  | 52,896 |
| 10 A.M. |  | 449,616 | 105,792 |  |  | 211.584 |
| 11 A.M. |  | 661,200 | 158,688 |  |  | 52,896 |
| 12 м. | 12,800 | 605.304 | 52,896 |  |  |  |
| 1 P.M. | 52,896 | 1,216,60s | 6,400 |  | 52,836 | 52,596 |
| 2 р.м. | 19,200 | 1,163,712 | 52,896 | 105,792 |  | 34588 |
| 3 р.м. | 12.800 | 1,110,816 | 105,792 | 52,896 |  | 312,821 |
| 4 P.M. | 105,792 | 025.680 | $52 . \times 96$ | 6,400 |  | 211.584 |
| 5 P ¢. | 158,688 | 1.5? ${ }^{\text {a }}$ - | 12800 |  |  | 264,480 |
| 5:48 Р.м. | 1. 105,792 | 1.4)1.0ヘ8 | 25,600 |  |  | 158,688 |
| 6:10 P.M. | 1. 6,100 | 1210.603 | 6, 100 | 52,896 | 105,792 | 158,688 |

Table 5.-Plankton Organisms Per Cubic Meter in Smth's Canal,
Hourly Series in 1913-(Continued)

| $\begin{array}{ll} 1913 & S_{0} \\ 8 / 11 \end{array}$ | Scenedesmus quadricauda | Schroederia setigera | $\begin{gathered} \text { Total } \\ \text { Chlorophyceas } \end{gathered}$ | Asterionella gracillima | $\begin{gathered} \text { Amphiprora } \\ \text { alata } \end{gathered}$ | Bacillaria paradoxa |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 А.м. | 158,688 |  | 673,392 | 52,890 | 158,688 | 264,480 |
| 8 s.м. | 264,480 | ............... | 1,467,440 |  | 264,480 | 211,584 |
| 9 А.м. | 105,792 |  | 661,200 | 52,896 | 502,512 | 158,688 |
| 10 A.M. | 211,584 |  | 1,031,472 |  | 502,512 | '211,584 |
| 11 A.M. | 261,480 | 105,792 | 1,295,952 | ............. | 502,512 | 60,800 |
| 12 m | 158,688 |  | 997,776 |  | 211,584 | 343,824 |
| $1 \mathrm{P} \cdot \mathrm{M}$. | 264,480 |  | 1,751,968 |  | 343,824 | 211,584 |
| 2 р.м. | 449,616 |  | 2,194,336 |  | 211,584 | 396,720 |
| 3 P.M. | 449,616 |  | 2,147,840 |  | 211,584 | 449,616 |
| $4 \mathrm{P} . \mathrm{M}$. | 396,720 |  | 1,910,656 | 52,896 | 105,792 | 343,824 |
| $5 \mathrm{P}, \mathrm{M}$. | 555,408 |  | 2,578,256 |  | 52,896 | 158,688 |
| 5:48 ¢.м. | . 588,408 | 105,792 | 2,696,848 |  | 158,688 | 343,824 |
| 6.40 P.m. | . 925,680 |  | 2,743,334 |  | 264,480 | 158,688 |
| ${ }^{1911}$ | Cyclotella <br> kützingii | Cyclotella operculata | Cymbella affinis | Cymbella cymbiformis | Cymbella tumida | Epithemia ocellata |
| 7 А.м. | 1,428,192 | 3,808,572 |  |  |  | 52,896 |
| 8 A.M. | 1,005,024 | 4,311,024 |  | 6,400 | 52,896 |  |
| 9 A.m. | 1,322,400 | 4,178,784 |  |  |  | 6,400 |
| $10 \mathrm{~A} . \mathrm{m}$. | 1,666,224 | 3,464,688 |  |  |  |  |
| 11 A.M. | 1,269,504 | 2,750,592 |  | 52,896 |  |  |
| 12 m . | 819,888 | 2,697,696 | 52,896 |  | .... |  |
| 1 P.M. | 1,719,120 | 3,623,376 |  |  |  |  |
| 2 Pram | 1,983,600 | 4,178,784 | 52,896 | .............. | 6,400 |  |
| 3 P.M. | 2,195,184 | 2,856,384 | 52,896 | .............. |  |  |
| 4 P.M. | 2,036,496 | 3,702,720 | 105,792 |  |  |  |
| 5 P.M. | 2,539,008 | 4,072,992 |  |  | 12,800 |  |
| $5: 48$ P.M. | 1,877,808 | 4,072,992 |  | . |  |  |
| 6:40 p.m. | . $1,428,192$ | 5,395,392 |  |  |  | 52,596 |
| ${ }_{8 / 11} 1913$ | Fragillaria capucina | Gomphonema constrictum | Gyrosigma acuminatum | Gyrosigma kützingii | Gyrosigma scalproides | Melosira granulata |
| 7 A.m. | 6,400 | ............... | ............... | 52,896 | 158,688 | 10,790,784 |
| 8 A.m. |  | ............... | ............... | 52,896 | 343,824 | 10,526,304 |
| 9 A.m. | ................ | ................ | .............. | ............... | 158,688 | 8,436,912 |
| $10 \mathrm{~A} . \mathrm{m}$. | ............... | ............... | ............... | ............... | 343,824 | 8,198,880 |
| $11 \mathrm{~A} . \mathrm{M}$. | ............... |  |  |  | 158,688 | 8,489,808 |
| 12 m . | ............... | 52,896 | ............... |  | 52,896 | 9,568,384 |
| 1 P.M. |  |  |  | 211,584 | 343,824 | 12,668,592 |
| 2 P.M. | 52,896 |  |  | 105,792 | 449,616 | 19,883,104 |
| 3 P.M. | 6,400 |  | 52,896 | 158,688 | 819,888 | 20,655,888 |
| ${ }_{4}{ }^{\text {P.M.M }}$ |  |  |  | 6,400 | 766,992 | 24,067,680 |
| 5 Pram |  | 52,896 | 52,896 | 396,720 | 925,680 | 34,990,704 |
| 5:48 p.m. | \%. 52,896 |  | 52,896 | 52,896 | 1,057,920 | 31,737,600 |
| 6:40 P.m. | f. ....... |  |  | 105,792 | 661,200 | $35,863,488$ |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Melosira varians | Navicula alpestris | Navicula bacillum | Navicula didyma | Navicula dubia | Navicula gracilis |
| 7 A.M. |  |  | 158,688 | 52,896 |  | 1,269,504 |
| 8 A.M. |  | 6,400 | 105,792 |  |  | 1,163,712 |
| $9 \mathrm{A.m}$. $10 \mathrm{A.M}$ |  |  | 158,688 | 52,896 | 12,800 | $\begin{array}{r}166,992 \\ 1,005,024 \\ \hline\end{array}$ |
| $11 \mathrm{~A}, \mathrm{M}$. | $52,896$ | 12,800 |  |  | 52,896 | 1,163,712 |
| 12 m |  | 52,896 |  |  |  | 819,888 |
| 1 P.M. |  | 12,800 | 105,792 |  | ............. | 872,784 |
| 2 P.m. |  |  | 105,792 |  | .............. | 1,163,712 |
| 3 PrM | 6,400 | 52,896 |  |  | .............. | 872,784 |
| 4 P.m. |  | 158,688 | 52,896 | ................ | ............... | 1,269,504 |
| 5 P.am. | 6,400 | 105,792 |  | ............... | .............. | 1,586,880 |
| $5: 48$ P.M. |  | 158,688 | 105,792 |  |  | 1,216,608 |
| 6:40 p.m. | I. | 52,896 | 52,896 | ......... | .............. | 2,142,288 |

Table 5.-Plankton Organisms Per Cubic Meter in Smith's Canal,
Hourly Series in 1913-(Continued)

| $1913$ | Navicula viridis | Nitzschia acicularis | Nitzschia sigma | Nitzschia vermicularis | Pleurostauron parvulum | Stauroneis phoenicenteron |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 A.M. |  | 449,616 | 52,896 |  | .. |  |
| S A.m. |  | 502,512 | 52,896 | 52,896 |  |  |
| 9 А.м. |  | 343,824 | 158,688 | 52,896 |  |  |
| 10 A.M. | . $\cdot$ | 158,688 |  | 6,400 | 52,896 |  |
| 11 A.M. |  | 396,720 | 343,824 |  |  | . |
| 12 m . |  | 105,792 | 158,688 |  |  |  |
| 1 P.M. |  | 264,480 |  |  |  | 52,896 |
| 2 P.M. |  | 502,512 | 158,688 | 52,896 | 52,896 | . . |
| 3 P.M. |  | 661,200 | 59,296 | 105,792 | 105,792 |  |
| 4 P.M. |  | 343,824 | 158,688 | 52,896 |  |  |
| 5 P.m. |  | 872,784 | 211,584 | 52,896 | 52,896 | 52,896 |
| 5:48 P.M. | . 6,400 | 1,322,400 |  |  | 52,896 |  |
| 6:40 P.м. | . 6,400 | 1,877,808 | 158,688 | . . . . | 52,896 | . . .. . |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Surirella sp. | Synedra <br> ulna | Synedra radians | Total <br> Bacillariaceae | Closterium accuminatum | Closterium acerosum |
| 7 A.M. | 158,688 | 158,688 | 343,824 | 29,525,024 | 6,400 | 6,400 |
| 8 A.m. | 343,824 | 211,584 | 158,688 | 17,451,424 | 6,400 | 6,400 |
| 9 А.м. | 211,584 | 396,720 | 264,480 | 17,289,844 |  | 6,400 |
| 10 A.M. | 60,800 | 608,304 | 264,480 | 17,866,704 | . |  |
| 11 A.M. | 211,584 | 396,720 | 555,408 | 17,179,664 |  | 6,400 |
| 12 m . | 80,000 | 343,824 | 105,792 | 15,688,528 |  |  |
| 1 P.M. | 158,688 | 158,688 | 502,512 | 21,719,160 |  |  |
| 2 P.M. | 396,720 | 211,584 | 714,096 | 31,129,904 |  | 19,200 |
| 3 P.M. | 608,304 | 211,584 | 502,512 | 31,307,184 |  | 25,600 |
| 4 P.M. | 502,512 | 52,896 | 714,096 | 34,769,072 |  | 6,400 |
| 5 P.M. | 449,616 | 105,792 | 264,480 | 47,514,016 |  | 52,896 |
| 5:48 P.m. | 1. 396,720 | 396,720 | 555,408 | 44,121,664 | . | 12,800 |
| 6:40 Р.м. | ฯ. 396,720 | 714,096 | 1,375,296 | $51,818,032$ |  | . . . |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Closterium rostratum | Mougeotia sp. | $\underset{\mathrm{A}}{\text { Staurastrum }}$ | Staurastrum sp. | Total Conjugatae | Total Chlorophyll bearing |
| 7 A.M. | 6,400 | 264,480 | 6,400 | 52,896 | 342,966 | 35,677,850 |
| S P.M. | 6,400 | 608,304 | 52,896 |  | 680,400 | 24,947,312 |
| 9 А.м. |  | 608,30t | 6,400 |  | 621,104 | 24,220,324 |
| 10 A.m. | 52,896 | 608,304 | 52,896 |  | 714,096 | 25,405,888 |
| 11 A.M. | 6,400 | 211,584 | 105,792 |  | 330,176 | 23,936,704 |
| 12 m . |  | 661,200 | 12,800 | 22,896 | 726,896 | 25,301,712 |
| 1 P.M. | 6,400 | 766,992 | 52,896 | .. . | 826,288 | 29,217,400 |
| 2 P.м. | 52,896 | 343,824 | 264,480 |  | 528,960 | 42,512,800 |
| 3 P.M. | 52,896 | 1,057,920 | 105,792 | . | 1,242,208 | 46,497,248 |
| 4 P.M. | 52,896 | 872,784 | 158,688 |  | 1,090,758 | 49,945,672 |
| 5 P.m. | 105,792 | 1,216,60S | 52,896 |  | 1,428,192 | 65,839,888 |
| 5:48 Р.м. | . 52,896 | 1,110,816 | 158,688 |  | 1,335,200 | 60,499,184 |
| 6:40 P.M. |  | 2,089,392 | 105,792 | 52, 296 | 2,248,080 | 73,644,688 |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Total Algae | Cercomonas crassicauda | $\begin{gathered} \text { Cercomonas } \\ \mathrm{sp} . \end{gathered}$ | Chlamydomonas sp . | Chromulina sp. | Eudorina elegaus |
| 7 А.M. 3 | 31,996,026 | . . . | . . . . |  | 2,750,592 | 211,584 |
| 8 A.M. 2 | 21,060,304 | . | - . . |  | 2,539,008 | 343,824 |
| 9 A.m. 1 | 19,557,124 | . | . |  | 2,750,592 | 396,720 |
| 10 A.M. 21 | 21,066,912 |  |  | 211,584 | 2,591,904 | 396,720 |
| 11 A.m. 20 | 20,339,776 | , | 52,896 | 105,792 | 1,719,120 | 105,792 |
| 12 m . 1 | 19,958,608 |  | 52,896 |  | 3,147,312 | 502,512 |
| 1 P.M. 2 | 26,413,256 | 52,896 | ... . |  | 1,719,120 | 211,584 |
| 2 P.M. 3 | 39,724,656 | 52,896 | . | . | 1,877,808 | 396,720 |
| 3 P.M. 4 | 42,793,872 |  |  |  | 2,142,288 | 555,408 |
| 4 P.M. 4 | 46,524,776 | 52,896 |  |  | 1,824,912 | 264,480 |
| 5 P.M. 6 | 61,656,448 | 52,896 | 52,896 | 555,408 | 2,089,392 | 608,304 |
| 5:48Р.м. 5 | .56,696,516 | .... | 105,792 | 105,792 | 2,248,080 | 555,408 |
| 6:40Р.м.6 | .68,856,096 | 52,896 | ... . . | 502,512 | 2,856,384 | 343,824 |

Table 5.-Plankton Organisms Per Cubic Meter in Smith's Canal, Hourly Series in 1913-(Continued)

| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Euglena viridis | Gonium pectorale | Hemidinium nasatum | Mallomonas sp. | Pandorina morum | Peridinium cinctum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 A.s. |  | 6,400 | 264,480 |  | 52,896 |  |
| 8 A.m. | 6,400 |  | 105,792 | - . | 105,792 |  |
| 9 А.м. |  |  | 502,512 |  | 158,688 |  |
| $10 \mathrm{~A} . \mathrm{m}$. | 158,688 |  | 608,304 |  | 52,896 |  |
| 11 A.m. |  |  | 396,720 | 52,896 | 396,720 |  |
| 12 m | 52,896 | 6,400 | 396,720 |  | 264,480 |  |
| $1 \mathrm{P} \cdot \mathrm{M}$. | 52,896 | 12,500 | 158,688 |  | 158,688 |  |
| 2 р.м. |  |  | 158,688 |  | 6,400 |  |
| 3 р.м. |  | 52,896 | 105,792 |  | 52,896 | 52,596 |
| 4 P.M. |  |  | 449,616 |  | 6,400 |  |
| 5 P.M. |  |  | 158,688 | 105,792 | 52,896 | 52,896 |
| 5:48 р..м | 105,792 |  | 52,896 |  | 19,200 |  |
| 6:40 р..м |  |  | 449,616 |  |  | 52,896 |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Platydorina caudata | Pleodorina californica | Pleodorina illinoisensis | Trachelomonas cuchlora | Trachelomonas volvocina | Total Mastigophora |
| 7 А.м. | 105,792 | 25,600 |  | 52,896 | 211,584 | 3,681,824 |
| 8 A.M. | 12,800 | 52,896 | 6,400 |  | 714;096 | 3,887,008 |
| 9 А.М. | 6,400 | 32,000 | 6,400 | 105,792 | 555,408 | 4,663,200 |
| 10 A.m. | 54,400 | 52,896 | ... | 211,584 | 608,304 | 4,338,976 |
| 11 А.m. | 105,792 | 158,688 |  |  | 449,616 | 3,596,928 |
| 12 m . | 105,792 | 60,800 | ... . . . |  | 502,512 | 5,343,104 |
| 1 P.M. | 105,792 | 67,200 |  | 52,896 | 211,584 | 2,804,144 |
| 2 р.м. | 19,200 | 158,688 |  |  | 396,720 | 2,788,144 |
| 3 р.м. | 48,000 | 32,000 | . . ... | 105,792 | 555,408 | 3,703,376 |
| 4 P.M. | 32,000 | 25,600 |  | 52,896 | 714,096 | 3,473,792 |
| 5 P.M. | 19,200 | 112,000 | 6,400 | 158,688 | 264,480 | 4,236,336 |
| 5:48 Р.м. |  | 54,400 |  |  | 555,408 | 3,802,768 |
| 6:40 p.m. | - 12,800 | 48,000 |  |  | 925,680 | 4,794,992 |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Amoeba proteus | Amoeba radiosa | Cyphoderia ampulla | Difflugia pyriformis | $\begin{gathered} \text { Hyalodiscus } \\ \text { sp. } \end{gathered}$ | Microgromia socialis |
| 7 A.m. |  | ......... .. | ..... ... . | 105,792 |  |  |
| 8 А.м. |  |  |  |  |  | 105,792 |
| 9 А.м. |  | 52,896 |  |  |  |  |
| $10 \mathrm{~A} . \mathrm{m}$. | - . . | ... . ... | 52,896 | 52,896 | - . $\cdot$ |  |
| 11 A.M. | .. .. .. |  | 52,896 | 105,792 |  | 105,792 |
| 12 m . | . . | ..... - ... | ... . . . |  |  | 105,792 |
| 1 P.M. |  | ... | . | 52,896 | 105,792 |  |
| 2 р.м. |  |  |  |  | 52,596 | 158,688 |
| 3 P.M. 4 P.M. |  | 105,792 |  | 52,896 |  | 158,688 |
| 5 р.м. |  |  |  |  | 396,720 |  |
| 5:48 р.м. | . 396,720 |  |  |  | 396,720 | 105,792 |
| 6:40 p.M. | . 396,720 |  |  |  | 925,680 | 52,896 |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | $\begin{aligned} & \text { Nebela } \\ & \text { sp. } \end{aligned}$ | Nuclearia simplex | Total Rhizopoda | Actinophrys sol. | $\begin{gathered} \text { Heterophrys } \\ \text { fockei } \end{gathered}$ | Heterophrys |
| 7 A.m. |  |  | 158,688 |  | 211,584 | . . . |
| 8 A.m. |  |  | 211,584 |  | 211,584 |  |
| 9 А.м. | 105,792 |  | 158,688 | 52,896 | 52,896 | . |
| 10 A.M. |  |  | 105,792 |  |  |  |
| 11 A.M. |  |  | 264,480 | 52,896 | 105,792 |  |
| 12 m . |  | 158,688 | 264,480 |  | 52,896 |  |
| 1 P.m. |  | 52,896 | 214,584 |  | 52,896 |  |
| 2 р.м. |  |  | 211,584 |  | 396,720 |  |
| 3 P.M. |  | 105,792 | 211,584 | 158,688 | 343,824 | 502,512 |
| 4 Р.м. |  | 52,896 | 370,272 |  | 502,512 | 502,512 |
| $5_{5} \mathrm{P}$ M |  |  | 396,720 | 105,792 | 449,616 | 766,992 |
| 5:48 P.M. | \%. | 211,584 | 1,110,816 |  | 158,688 | 343,824 |
| 6:40 р.м. | 1. 105,792 |  | 1,481,088 | $\cdots$ | 158,688 | 396,720 |

Table 5.-Plankton Organisms Per Cubic Meter in Smith's Canal,
Hourly Series in 1913-(Continued)

| $\begin{array}{ll} 19 / 11 & \mathrm{Ra} \end{array}$ | Raphidiophrys elegans | $\underset{\text { Heliozoa }}{\text { Total }}$ | $\begin{aligned} & \text { Cyclidium } \\ & \text { sp. } \end{aligned}$ | Halteria grandinella | $\begin{gathered} \text { Holophrya } \\ \text { sp. } \end{gathered}$ | $\begin{aligned} & \text { Tintinnidium } \\ & \text { Huviatile } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 A.M. |  | 211,584 |  |  | 264,480 | 105,792 |
| S A.m. | 105,792 | 211,584 |  |  | 661,200 | 502,512 |
| 9 A.m. |  | 105,792 |  |  | 1,005,024 | 211,584 |
| 10 A.m. |  |  | 105,792 |  | 1,824,912 | 502,512 |
| 11 A.M. |  | 158,688 |  |  | 1,425,192 | 661,200 |
| 12 m . | 52,896 | 105,792 |  |  | 2,195,184 | 872,784 |
| 1 P.M. | 105,792 | 158,688 | 52,896 |  | 925,680 | 264,480 |
| 2 р.м. |  | 396,720 |  |  | 555,408 | 343,824 |
| 3 р.м. |  | 1,005,02 4 | 52,896 |  | 661,200 | 105,792 |
| 4 P.M. |  | 1,005,024 |  |  | 264,480 | 52,896 |
| 5 P.M. |  | 1,322,400 |  | 52,896 | 449,616 | 52,896 |
| 5:48 Р.м. | I. | 502,512 |  | 105,792 | 52,896 | 264,480 |
| 6:40 Р.м. |  | 555,408 | 105,792 |  | 1,428,192 | 264,480 |
| 1913 $8 / 11$ | $\underset{B}{\text { Vorticella }}$ | Vorticella sp. | Total Ciliata | $\begin{gathered} \text { Acineta } \\ \text { sp. } \end{gathered}$ | Total Suctoria | Total Protozoa without Mastigophora |
| 7 А.м. |  | 1,322,400 | 1,692,672 |  |  | 2,062,944 |
| 8 A.m. |  | 3,411,792 | 4,575,514 | 6,400 | 6,400 | 5,005,082. |
| 9 А.м. | 819,888 | 1,533,984 | 2,750,592 |  |  | 3,015,072 |
| $10 \mathrm{~A} . \mathrm{m}$. | 555,408 | 2,591,904 | 5,031,520 |  |  | 5,137,312 |
| 11 А.m. | 661,200 | 2,089,392 | 4,178,784 |  |  | 4,601,952 |
| 12 m . | 1,586,880 | 2,433,216 | 5,501,184 |  |  | 5,871,456 |
| 1 P.M. | 819,888 | 1,930,704 | 3,180,160 | 6,400 | 6,400 | 3,559,832 |
| 2 p.m. | 396,720 | 2,036,496 | 2,935,728 |  |  | 3,544,032 |
| 3 р.м. | 158,688 | 1,772,016 | 2,829,936 |  |  | 4,016,544 |
| 4 P.M. | 158,688 | 1,428,192 | 1,745,568 |  |  | 3,120,864 |
| 5 P.M. | 211,584 | 925,680 | 1,487,488 | 12,800 | 12,800 | 3,219,408 |
| 5:48 р.м. | 1. 396,720 | 1,216,608 | 1,639,776 |  |  | 3,253,104 |
| 6:40 P.M. | I. 343,824 | 1,375,296 | 3,226,656 |  |  | 4,263,144 |
| ${ }_{8 / 11}^{1913}$ To | Total Protozoa with Mastigophora | Collotheca pelagica | Collotheca sp. | $\begin{gathered} \text { Ptygura } \\ \text { sp. } \end{gathered}$ | Total Rhizota | Rotaria rotatoria |
| 7 А.м. | 5,744,768 |  |  |  |  | 6,400 |
| 8 А.м. | 8,892,090 | ....... ...... | $\cdots$ - |  |  |  |
| 9 А.м. | 7,678,272 | ......... .. . . | 6,400 |  | 6,400 |  |
| 10 A.m. | 9,476,288 |  |  | .. | 52,890 |  |
| 11 A.m. | 8,198,880 | ......... .: | $\cdots$. | . . . |  | 6,400 |
| 12 m .1 | 11,214,560 |  |  |  |  |  |
| 1 P.M. | 6,363,976 | ..... .... .. |  |  |  | 6,400 |
| 2 P.M. | 6,332,176 |  |  |  |  | 19,200 |
| 3 P.M. | 7,749,920 |  | 6,400 | 6,400 | 12,800 | 52,896 |
| 4 Р.m. | 6,594,656 | 12,800 |  | 105,792 | 118,592 |  |
| 5 P.M. | 7,455,744 |  | 6,400 |  | 6,400 | 6,400 |
| 5:48 Р.м. | ค. 7,055,872 | 6,400 | 6,400 |  | 12,800 | 12,800 |
| 6:40 р.м. | 1. $9,058,136$ |  |  |  |  |  |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Rotifer unidentified | Total Bdelloida | $\begin{gathered} \text { Anureaopsis } \\ \text { fissa } \end{gathered}$ | Anureaopsis sp. | Asplanchna brightwellii | Asplanchnopus sp. |
| 7 A.M. | 158,688 | 165,088 |  |  | 6,400 |  |
| 8 A.m. | 158,688 | 158,688 | 52,896 | ... . ..... | . . . . |  |
| 9 А... | 343,824 | 343,824 | 105,792 |  |  |  |
| 10 A.m. | 158,688 | 158,688 | 105,792 |  |  | 105,792 |
| 11 A.M. | 502,512 | 508,912 |  |  |  |  |
| 12 m . | 343,824 | 343,824 | 105,792 |  |  |  |
| 1 P.M. | 158,688 | 165,088 | 52,896 | 52,896 | 6,400 | 105,792 |
| 2 P.M. | 343,824 | 363,024 | 52,896 |  | 6,400 |  |
| 3 P.M. | 52,896 | 122,192 | 6,400 | 52,896 | 6,400 | 19,200 |
| 4 р.м. | 105,792 | 105,792 |  | 105,792 | 6,400 | 6,400 |
| 5 P.M. | 105,792 | 112,192 | 19,200 | 52,896 |  |  |
| 5:48 Р.м. | M. 211,584 | 224,384 |  | 32,000 |  | 19,200 |
| 6:40 Р.м. | M. 158,688 | 158,688 | 19,200 | 52,896 | 6,400 | 52,896 |

Table 5.-Plankton Organisms Per Cubic Meter in Smth's Canal, Houmay series in 191:3-(Contimued)

| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | 13rachionus angularis | 13rachionus angularis caudatus | Brachionus budapestinensis | Brachionus calyciHorus | Brachionus capsuliftorus | Brachionus eqg: attached, fermale |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 А.м. |  | 1,216,608 | .. . | 158,688 | 25,600 |  |
| S A.M. | 6,400 | 2,380,320 |  | 396,720 | 12,800 | 52,896 |
| 9 A.M. |  | 2,380,320 | 6,400 | 264,480 | 41,600 |  |
| $10 \mathrm{~A} . \mathrm{m}$. |  | 1,930,704 |  | 264,480 | 105,792 | 264,480 |
| 11 A.M. | 52,896 | 1,163,712 | 6,400 | 158,68) | 67,200 | 52,896 |
| 12 m |  | 3,253, 104 |  | 211,584 | 105,792 | 52,896 |
| $1 \mathrm{P} . \mathrm{M}$. |  | 1,666,224 | 52, 296 | 80,000 | 12,800 | 52,896 |
| 2 P ¢. ${ }^{\text {a }}$ | 52,890 | 925,680 | . . | 140,800 | 19,200 | 158,688 |
| 3 P.m. |  | 555,408 | . | 158,688 | 6,400 |  |
| $4 \mathrm{P} . \mathrm{M}$. |  | 714,096 |  | 105,792 | 52,896 | $211,58 \frac{1}{4}$ |
| 5 p .м. |  | 766,992 |  | 80,000 | 25,600 | 211,5S4 |
| 5:48 P.M. |  | 1,163,712 | (6,400 | 105,792 | 25,600 | 264,480 |
| 6:10 P.M. |  | 1,586,880 | 52,896 | 158,688 | 25,600 | 396,720 |
| $1913$ | Brachionus geg; attached, male | Brachionus egz; free, female | Brachionus egg, winter | Brachionus male | Brachionus patulus | 13rachionus plicatilis |
| $7 \mathrm{~A}, \mathrm{M}$. |  | 608,304 | .. . . |  | 6,400 |  |
| 8 A.m. | 105,792 | 1,057,920 |  |  |  |  |
| 9 A.м. | 52,S96 | 343,824 | 264,480 |  | 6,400 |  |
| 10 A.M. |  | 6.1,200 | 105,792 |  | 12,400 | 2-2,896 |
| 11 A.M. |  | 343,824 |  | 52,896 | .. 12,000 |  |
| 12 m . |  | 766,992 | - . |  | 12,600 | 52,896 |
| 1 P . ${ }^{\text {M, }}$ |  | 158,688 |  |  |  |  |
| 2 р.м. |  | 105,792 | . |  | 52,896 |  |
| $3 \mathrm{P} . \mathrm{m}$. |  | 52,896 | - . | . . . | 6,400 |  |
| $4 \mathrm{P} . \mathrm{M}$. |  |  | . . |  | 25,600 |  |
| 5 Р.м. | 32,000 | 105,792 | . . |  | 6,400 |  |
| 5:48 P.M. | . 52,896 | 608,304 |  |  |  |  |
| 6:40 P.M. | . 52,896 | 343,824 | . . . | 6,400 | 6,400 | . . |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Brachionus urceus | Brachionus with parasites | $\underset{\text { egg }}{\substack{\text { Diurella }}}$ | Filinia egg, íree | $\underset{\text { longisets }}{\text { Filinia }}$ | Keratella cochlearis |
| $7 \mathrm{~A} . \mathrm{M}$. |  | 6,400 | 158,688 | 661,200 | ... | 52,896 |
| S A.M. | 25,600 |  |  | 714,096 |  |  |
| 9 A.M. | 6,400 | 105,792 | 211,581 | 555,408 | 52,896 |  |
| 10 A.M. | . . |  |  | 555,408 | 6,400 | 12,800 |
| 11 A.M. |  | . - | 52,896 | 396,720 |  |  |
| 12 m 。 |  |  | 158,688 | 766,992 |  | 6,400 |
| 1 P.M. | 6,400 | . . | 158,688 | 502,512 |  |  |
| 2 р.м. | 158,688 |  | 105,792 | 449,616 |  | 6,400 |
| 3 Р.м. | 52,896 |  | 52,896 | 105,792 |  |  |
| 4 P.M. | 6,400 | , . | 52,896 | 158,688 |  |  |
| 5 р.м. | 48.000 |  | 158,688 | 396,720 |  |  |
| 5:48 P.M. | . 12,800 |  | 264,480 | 449,616 |  | 6,400 |
| 6:40 P.M. | . 158,688 |  | 211,584 | 608,304 |  |  |
| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Keratella egg, attached | Keratella egg, free | Keratella quadrata | Polyarthra trigla | Polyarthra trigla egg; attached, female | Rotifer egg, winter |
| 7 A.M. | 52,896 | 396,720 | 211,584 | 766,992 | . . . | 52,896 |
| S A.m. |  | 396,720 | 396,720 | 1,586,880 |  | 6,400 |
| 9 A.m. | 52,896 | 502,512 | 343,824 | 2,248,080 | . | 105,792 |
| 10 A.m. |  | 766,992 | 502,512 | 1,322,400 |  | 105,792 |
| 11 A.M. | . | 449,616 | 264.480 | 1,877,808 | - | 52,896 |
| 12 м. |  | 819,888 | $26.4,480$ | 1,824,912 | 52,896 | 264,480 |
| 1 P.M. |  | 502,512 | 60,800 | 1,005,024 |  | 105,792 |
| 2 p \% | . | 819,888 | 211,584 | 1,269,504 |  | 52,896 |
| 3 P.m. |  | 661,200 | 67.200 | 1,269,50.4 | 105,792 | 158,688 |
| 4 P.M. |  | 264.480 | 52,896 | 608,304 | 158,688 | 52,896 |
| 5 P.M. | 6,400 | 608,304 | 52,896 | 766,992 | 52,896 | 52,896 |
| 5:18 P.M. |  | 714,096 | 158,688 | 1,057,920 | 105,792 | 52,896 |
| 6:10 P.M. | - 52,896 | 925,680 | '264,480 | 872,784 | 52,896 | 25,600 |

Table 5.-Plankton Organisms Per Cubic Meter in Smith's Canal,
Hourly Series in 1913-(Concluded)

| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Synchaeta sp. | Trichocerca capucina | $\begin{gathered} \text { Trichocerca } \\ \text { iernis } \end{gathered}$ | Total | $\begin{gathered} \text { Total } \\ \text { Rotifera } \end{gathered}$ | $\underset{\text { longirostris }}{\text { Bosmina }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 А.м. |  |  | 158,688 | 4,564,560 | 4,729,648 | 52,896 |
| 8 А.м. | 52,896 |  | 158,688 | 7,466,640 | 7,615,328 |  |
| 9 А.м. | 52,896 |  | 343,824 | 4,846,384 | 5,196,608 | 52,896 |
| 10 A.M. |  | 52,896 | 264,480 | 7,199,408 | 7,410,992 |  |
| 11 A.m. | 52,896 |  | 714,096 | 5,759,920 | 6,268,832 |  |
| 12 m . | 6,400 | 12,800 | 766,992 | 9,612,576 | 9,956,400 |  |
| 1 P.M. |  |  | 343,824 | 4,979,936 | 5,145,024 | 52,896 |
| 2 р.м. | 6,400 |  | 211,584 | 4,817,607 | 5,180,631 |  |
| 3 р.м. | 6,400 |  | 211,584 | 3,575,840 | 3,704,432 |  |
| 4 Р.м. |  |  | 32,000 | 2,721,600 | 2,852,992 | 6,400 |
| 5 P.M. |  | 52,896 | 25,600 | 3,512,752 | 3,631,344 | 6,400 |
| 5:48 P.m. | 158,688 |  | 211,584 | 5,471,152 | 5,708,336 |  |
| 6:40 р.м. |  |  | 264,480 | 6,199,188 | 7,357,876 | 6,400 |


| $\begin{aligned} & 1913 \\ & 8 / 11 \end{aligned}$ | Sida | Total Cladocera | Cyclops | Nauplius | Copepoda | Total <br> Entomostraca | $\underset{\text { Organisms }}{\text { Total }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 A.M. | 52,896 | 105,792 | 158,688 | 158,688 | 317,376 | 423,168 | 42,893,610 |
| 8 A.m. | 12,800 | 12,800 | 86,400 | 158,688 | 245,088 | 257,888 | 37,825,610 |
| 9 А.м. | 12,800 | 65,696 | 86,400 | 105,792 | 192,192 | 257,888 | 32,689,892 |
| 10 A.m. | 25,600 | 25,600 | 54,400 | 158,683 | 213,088 | 238,688 | 38,192,880 |
| 11 A.m. | 6,40) | 6,400 | 73,600 | 80,000 | 153,600 | 160,000 | 34,967,488 |
| 12 m . | 19,200 | 19,200 | 54,400 | 211,584 | 265,984 | 285,184 | 41,414,752 |
| 1 P.M. |  | 52,896 | 25,600 | 86,400 | 112,000 | 164,896 | 38,087,152 |
| 2 р.м. | 19,200 | 19,200 | 80,000 | 92,800 | 172,800 | 192,000 | 51,429,463 |
| 3 Р.м. | 52,896 | 52,896 | 60,800 | 12,800 | 73,600 | 126,496 | 54,374,720 |
| 4 P.M. | 52,896 | 52,896 | 60,800 | 52,890 | 113,696 | 172,992 | 56,092,520 |
| 5 Р.м. |  | 6,400 | 99,200 | 105,792 | 204,992 | 211,584 | 72,902,032 |
| 5:48 р.м | 6,400 | 6,400 | 99,200 | 52,896 | 152,096 | 158,496 | 69,619,120 |
| 6:40 Р.м | 12,800 | 19,200 | 140,800 | 105,792 | 246,592 | 265,792 | 85,531,500 |

Table 6.-Volumes of Catches, 1913

| $\begin{aligned} & \text { Date } \\ & 1913 \end{aligned}$ | Volume in cubic centimeter per $1 /$ cubic meter |  |  | Estimated percentage of plankton |  |  | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { hauls } \end{gathered}$ |  |  | $\begin{gathered} \text { Number of } \\ \text { forms } \\ \text { recorded } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | 11 | III | I | II | III | 1 | 11 | III | 1 | II | III |
| $1 /$ | 0.5 | 0.4 |  | $50 \%$ | 40\% |  | 13 | 7 |  | 30 | 31 |  |
| 1/8 | 0.55 |  | 0.55 | 50\% |  | $40 \%$ | 13 |  | 25 | 28 |  | 24 |
| 1/12 | 0.35 | 0.25 |  | $30 \%$ | $50 \%$ |  | 13 | 7 |  | 30 | 37 |  |
| 1/15 | 0.8 |  |  | $60 \%$ |  |  | 13 |  |  | 42 |  |  |
| 1/19 | 0.55 | 0.35 | 0.55 | $60 \%$ | $60 \%$ | 40\% | 8 | 7 | 13 | 43 | 45 | 41 |
| 1/22 | 0.6 |  |  | 60\% |  |  | 9 |  |  | 56 |  |  |
| $1 / 25$ $1 / 26$ | 1.0 | 0.65 | 0.45 |  | 70\% | 50\% | 9 | 6 | 25 | 39 | 60 | 46 |
| 1/29 | 0.8 |  |  | 90\% |  |  | 8 |  |  | 46 |  |  |
| $2 / 2$ | 0.85 | 0.65 | 0.6 | 85\% | 75\% | 80\% | 9 | 7 | 13 | 45 | 50 | 51 |
| $2 / 5$ | 0.95 |  |  | $85 \%$ |  |  | 9 |  |  | 48 |  |  |
| $2 / 8$ | 1.0 | 0.85 | 0.6 | $80 \%$ | 70\% | 80\% | 9 10 | 7 | 13 | 46 50 | 49 | 45 |
| 2/12 | 1.7 1.0 | 0.75 | 0.65 | $85 \%$ $80 \%$ | $60 \%$ | S0\% | 10 9 | 7 | 13 | 50 54 54 | 50 | 59 |
| 2/19 | 0.85 |  |  | 60\% |  |  | 9 |  |  | 61 |  |  |
| 2/23 | 1.55 | 0.65 | 0.6 | 70\% | $60 \%$ | 70\% | 9 | 7 | 13 | 60 | 62 | 64 |
| 2/26 | 1.65 |  |  | 60\% |  |  | 13 |  |  | 59 |  |  |
| $3 / 1$ $3 / 5$ | 1.4 3.95 | 0.65 | 0.75 | $85 \%$ $85 \%$ | 40\% | 50\% | 9 13 | 7 | 13 | 5.5 46 | 52 | 57 |
| $3 / 8$ | 5.2 | 1.4 | 0.65 | $85 \%$ | 10\% | $50 \%$ | 9 | 7 | 13 | 48 | 52 | 60 |
| $3 / 12$ | 6.8 |  |  | $80 \%$ |  |  | 16 |  |  | 43 |  |  |
| $3 / 15$ | 1.8 | 1.95 | 0.8 | 90\% | 15\% | $50 \%$ | 10 | 7 | 13 | 55 | 58 | 70 |
| 3/19 | 2.1 |  |  | $80 \%$ |  |  | 13 |  |  | 56 |  |  |
| 3/23 | 1.9 | 0.8 | 0.8 | $85 \%$ | $10 \%$ | 60\% | 9 | 7 | 13 | 63 | 74 | 70 |
| 3/26 | 1.8 |  |  | $85 \%$ |  |  | 13 |  |  | 51 |  |  |
| 3/29 | 1.85 | 0.7 | 1.0 | $80 \%$ | 15\% | 40\% | 9 | 7 | 13 | 54 | 78 | 72 |
| $4 / 2$ $4 / 5$ | 2.5 2.7 |  |  | 90\% | \% |  | 9 | 5 | 13 | 57 58 58 | 75 |  |
| $4 / 9$ | 2.4 |  |  | 95\% | \% |  | 9 |  | 13 | 54 |  |  |
| 4/13 | 1.85 | 0.5 | 0.75 | 95\% | $15 \%$ | 20\% | 9 | 5 | 12 | 62 | 70 | 67 |
| +1/16 | ${ }_{2}^{2.2}$ |  |  | $80 \%$ |  |  | 10 |  |  | 56 |  |  |
| $4 / 19$ $4 / 23$ | 2.65 2.2 | 1.85 | 0.7 | 90\% | $10 \%$ | 75\% | 13 9 | 5 | 13 | 47 | 58 | 61 |
| $4 / 23$ $4 / 26$ | 2.2 3.1 | 0.8 | 0.55 | $85 \%$ $90 \%$ | $20 \%$ | $25 \%$ | $\begin{array}{r}9 \\ 13 \\ \hline\end{array}$ | 5 | 13 | 65 70 | 68 | 71 |
| 4/30 | 2.3 |  |  | 80\% |  |  | 9 |  |  | 51 |  |  |
| $5 / 3$ | 2.1 | 3.05 | 0.65 | $65 \%$ | $4 \%$ | $50 \%$ | 9 | 5 | 13 | 53 | 58 | 63 |
| $5 / 7$ | 2.6 |  |  | $90 \%$ |  |  | 9 |  |  | 55 |  |  |
| 5/10 | 3.0 2.8 | 6.6 | 0.55 | $95 \%$ $90 \%$ | $4 \%$ | 80\% |  | 6 | 12 | 64 51 | 47 | 56 |
| 5/17 | 3.8 | 5.6 | 0.65 | $10 \%$ | $4 \%$ | $55 \%$ |  | 6 | 13 | 65 | 64 | 70 |
| 5/21 | 2.25 |  |  | 85\% |  |  | 9 |  |  | 49 |  |  |
| $5 / 24$ | 2.75 | 6.0 | 0.6 | $50 \%$ | $5 \%$ | $50 \%$ | 8 | 5 | 9 | 59 | 59 | 58 |
| $5 / 27$ | 2.95 |  |  | $80 \%$ |  |  | 9 |  |  | 58 |  |  |
| 5/31 | 3.6 | 6.7 | 0.7 | $80 \%$ | 2\% | 90\% | 9 | 3 | 13 | 53 | 52 | 46 |
| 6/ 3 | 2.9 |  |  | $95 \%$ |  |  | 9 |  |  | 58 |  |  |
| $6 / 7$ | 2.4 | 3.15 | 0.5 | 95\% | $5 \%$ | $45 \%$ | 9 9 | 3 | 9 | 54 50 | 60 | 66 |
| $6 / 11$ $6 / 16$ | 2.8 1.85 | 1.9 | 0.6 | $55 \%$ $65 \%$ | 4\% | 50\% | 9 | 6 | 13 | 50 65 | 6.3 | 61 |
| 6/18 | 2.65 |  |  | 85\% |  |  | 9 |  |  | 56 |  |  |
| $6 / 21$ | 2.8 | 1.2 | 0.6 | $90 \%$ | 10\% | 60\% | 9 | 7 | 13 | 57 | 68 | 78 |
| 6/25 | 3.45 |  |  | $92 \%$ |  |  | 13 |  |  | 72 |  |  |
| 6/28 | 3.1 | 1.95 | 0.75 | 92\% | $15 \%$ | 65\% | 13 | 9 | 13 * | 61 | 77 | 72 |
| $7 / 3$ | 2.7 |  |  |  |  |  | 9 |  |  | 56 |  |  |
| $7 / 5$ $7 / 9$ | 3.05 2.7 | 0.95 | 0.7 | $\begin{aligned} & 93 \% \\ & 85 \end{aligned}$ | $30 \%$ | 65\% | 9 | 9 | 13 | 63 59 | 66 | 72 |
| $7 / 9$ $7 / 12$ | 2.7 3.85 | 2.1 | 1.7 | 85\% $90 \%$ | $40 \%$ | 85\% | 9 9 | 9 | 13 | 59 | 82 | 94 |
| 7/16 | 3.9 |  |  | 92\% |  |  | 9 |  |  | 57 |  |  |

Table 6.-Volumes of Catches, 1913-(Concluded)

| $\begin{aligned} & \text { Date } \\ & { }_{1913} \end{aligned}$ | Volume in cubic centimeter per cubic meter |  |  | Estimated percentage of planktom |  |  | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { hauls } \end{gathered}$ |  |  | Nunber offorms recorded |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | III |
| 7/19 | 4.1 | 1.7 | 0.95 | $85 \%$ | 60\% | 80\% | 9 | 9 | 13 | 50 | 66 | 60 |
| 7/23 | 3.9 |  |  | $85{ }^{\circ} \mathrm{C}$ |  |  | 9 |  |  | 52 |  |  |
| 7/26 | 4.3 | 1.4 | 1.65 | 90\% | 90\% | 50\% | 9 | 10 | 13 | 63 | 70 | 83 |
| 7/30 | 4.5 |  |  | 92\% |  |  | 9 |  |  | 61 |  |  |
| $8 / 2$ | 4.2 | 2.3 | 1.35 | $90 \%$ | 80\% | 90\% | 9 | 9 | 13 | 66 | 88 | 76 |
| $8 / 6$ $8 / 9$ | 4.5 | 2.4 | 2.85 | 93\% | 75 |  | 9 | 0 | 13 | 52 | 83 | 08 |
| 8/13 | 4.75 |  |  | $75 \%$ |  |  | 9 |  | 13 | 75 | 8 | 9 |
| 8/15 | 5.1 | 2.3 | 1.4 | $80 \%$ | $80 \%$ | 70\% | 9 | 9 | 13 | 72 | 98 | 44 |
| 8/20 | 6.1 |  |  | $60 \%$ |  |  | 9 |  |  | 68 |  |  |
| 8/23 | 4.1 | 2.0 | 4.6 | 80\% | 85\% | 80\% | 9 | 8 | 13 | 71 | 86 | 92 |
| 8/27 | 4.6 |  |  | 95\% |  |  | 9 |  |  | 65 |  |  |
| 8/31 | 5.2 | 2.9 | 1.7 | 85\% | 90\% | 80\% | 9 | 8 | 13 | 58 | 84 | 78 |
| $9 / 2$ $9 / 6$ | 4.4 3.8 | 2.0 | 2.8 | $85 \%$ $55 \%$ | 90\% | 80\% | 9 9 | 8 | 13 | 71 67 | 66 | 85 |
| $9 / 9$ | 3.9 |  |  | $85 \%$ |  |  | 9 |  |  | 68 |  |  |
| 9/13 | 3.9 | 2.5 | 1.75 | 75\% | $55 \%$ | 85\% | 9 | 9 | 13 | 63 | 81 | 79 |
| $9 / 17$ | 3.2 |  |  | 80\% |  |  | 9 |  |  | 63 |  |  |
| 9/20 | 2.0 | 1.9 | 1.9 | 95\% | $85 \%$ | 95\% | 9 | 9 | 13 | 58 | 78 | 67 |
| 9/24 | 1.8 |  |  | 95\% |  |  | 9 |  |  | 73 |  |  |
| 9/27 | 3.15 | 2.5 | 1.55 | $95 \%$ | $30 \%$ | 90\% | 9 | 9 | 13 | 63 | 70 | 76 |
| 10/1 | 2.4 2.05 |  |  | $80 \%$ $85 \%$ |  |  | 9 |  |  | 69 |  |  |
| $10 / \stackrel{4}{8}$ | 2.7 | 1.65 | 1.8 | 85\% | 30 | 55 | 9 9 | 7 | 13 | 67 79 | 74 | 72 |
| 10/11 | 2.45 | 2.1 | 1.55 | $85 \%$ | $30 \%$ | 40\% | 9 | 8 | 13 | 70 | 74 | 73 |
| 10/15 | 4.6 |  |  | 20\% |  |  | 9 |  |  | 78 |  |  |
| 10/18 | 1.7 | 1.25 | 1.45 | $50 \%$ | 30\% | 40\% | 9 | 8 | 13 | 57 | 68 | 53 |
| 10/22 | 2.3 |  |  | $50 \%$ |  |  | 9 |  |  | 69 |  |  |
| 10/26 | 1.65 | 1.2 | 1.35 | $60 \%$ | 25\% | 40\% | 9 | 9 | 13 | 57 | 62 | 75 |
| 10/29 | 1.6 |  |  | $60 \%$ $60 \%$ |  |  |  |  |  | 78 |  |  |
| 11/ 2 | 1.15 | 1.2 | 1.2 | $60 \%$ $25 \%$ | $30 \%$ | 50\% | 9 9 | 9 | 13 | 64 54 | 76 | 71 |
| 11/8 | 0.5 | 1.3 | 1.5 | $40 \%$ | $20 \%$ | $15 \%$ | 9 | 9 | 19 | 44 | 57 | 66 |
| 11/12 | 1.25 |  |  | $30 \%$ |  |  | 9 |  |  | 69 |  |  |
| 11/15 | 0.6 | 0.8 | 0.6 | $30 \%$ | 25\% | $45 \%$ | 9 | 9 | 13 | 56 | 64 | 65 |
| 11/19 | 1.35 |  |  | 15\% |  |  | 13 |  |  | 83 |  |  |
| 11/22 | 1.3 | 0.7 | 0.95 | 15\% | $15 \%$ | $20 \%$ | 9 | 9 | 13 | 77 | 67 | 81 |
| 11/26 | 1.15 |  |  | 40\% |  |  | 9 |  |  | 64 |  |  |
| 11/30 | 1.35 | 1.1 | 0.6 | 15\% | 45\% | 25\% | 12 | 9 | 13 | 73 | 57 | 62 |
| $12 / 3$ $12 / 6$ | 1.3 0.9 | 0.8 | 1.1 | $40 \%$ $50 \%$ | $50 \%$ | $35 \%$ | 13 | 8 | 13 | 72 | 46 | 61 |
| 12/10 | 0.9 | 0.8 |  | 15\% | $50 \%$ |  | $\frac{9}{7}$ | 8 | 13 | 66 | 46 | 01 |
| 12/14 | 0.7 | 0.8 | 0.85 | $15 \%$ | 25\% | 25\% | 12 | 7 | 17 | 71 | 49 | 52 |
| 12/17 | 0.8 |  |  | 20\% |  |  | 7 |  |  | 63 |  |  |
| 12/20 | 1.9 | 0.5 | 0.65 | 15\% | 25\% | 20\% | 9 | 7 | 17 | 67 | 56 | 40 |
| 12/24 | 0.55 |  |  | $25 \%$ |  |  | 7 |  |  | 78 |  |  |
| 12/27 | 1.0 0.95 | 1.30 | 0.7 | 15\% | 15\% | 10\% | 9 | 7 | 13 | 71 50 | 54 | 51 |
| 12/31 | 0.95 |  |  | 20\% |  |  | 9 |  |  | 59 |  |  |

Daily, Station 1.

| $\begin{aligned} & \text { Date } \\ & 1913 \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $7 / 5$ | 3.05 | 93\% | 9 | 63 |
| $7 / 6$ | 2.5 | $70 \%$ | 9 | 57 |
| $7 / 7$ | 3.2 | $75 \%$ | 9 | 54 |
| 7/8 | 3.6 | $80 \%$ | 9 | 55 |
| $7 / 9$ | 2.7 | $85 \%$ | 9 | 59 |
| 7/10 | 3.4 | $90 \%$ | 9 | 54 |
| $7 / 11$ | 4.1 | $85 \%$ | 9 | 45 |
| 7/12 | 3.85 | $90 \%$ | 9 | 55 |
| $7 / 13$ | 5.05 | 92\% | 12 | 56 |
| 7/14 | 4.35 | 80\% | 9 | 64 |
| 7/15 | 4.40 | $90 \%$ | 10 | 55 |
| 7/16 | 3.9 | 92\% | 9 | 57 |
| 7/17 | 4.65 | $50 \%$ | 10 | 50 |
| $7 / 18$ | 6.4 | 90\% | 13 | 50 |
| 7/19 | 4.1 | $85 \%$ | 9 | 50 |
| $7 / 20$ | 4.9 | $92 \%$ | 9 | 52 |
| 7/21 | 4.3 | $92 \%$ | 9 | 54 |
| $7 / 22$ | 4.2 | $92 \%$ | 13 | 56 |
| 7/23 | 3.9 | 85\% | 9 | 52 |
| $7 / 24$ | 3.35 | $95 \%$ | 9 | 64 |
| 7/25 | 3.85 | 92\% | 9 | 57 |
| 7/20 | 4.3 | 90\% | 9 | 63 |
| $7 / 27$ | 5.8 | $95 \%$ | 13 | 67 |
| 7/28 | 4.45 | 95\% | 9 | 62 |
| 7/29 | 4.3 | 95\% | 9 | 64 |
| 7/30 | 4.5 | 92\% | 9 | 61 |
| 7/31 | 4.2 | $90 \%$ | 9 | 59 |
| $8 / 1$ | 3.8 | $92 \%$ | 9 | 53 |
| $8 / 2$ | 4.2 | $90 \%$ | 9 | 66 |
| $8 / 3$ | 3.7 | 95\% | 9 | 64 |
| $8 / 4$ | 3.6 | 95\% | 9 | 6.5 |

Hourly, Station IIIa.

| $\begin{aligned} & \text { Date } \\ & 1913 \\ & 8 / 11 \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 7 A.m. | 2.4 | $50 \%$ | 6 | 76 |
| 8 A.m. | 2.3 | 60\% | 6 | 74 |
| 9 А.м. | 2.3 | $70 \%$ | 6 | 75 |
| 10 A.M. | 2.5 | $50 \%$ | 6 | 73 |
| 11 A.M. | 2.4 | $50 \%$ | 6 | 79 |
| 12 m . | 2.4 | $75 \%$ | 6 | 78 |
| $1 \mathrm{P} \cdot \mathrm{M}$. | 2.07 | 80\% | 6 | 81 |
| 2 P.m. | 2.07 | $75 \%$ | 6 | 80 |
| $3 \mathrm{P} . \mathrm{M}$. | 2.07 | 85\% | 6 | 91 |
| 4 P.M. | 2.07 | 85\% | 6 | 86 |
| 5 P.M. | 2.3 | $80 \%$ | 6 | 94 |
| 5:48 P.M. | 2.3 | $85 \%$ | 6 | 86 |
| 6:40 P.M. | 2.5 | 80\% | 6 | 93 |

Table 7.


Table 7.-(Continued)


Table 7.-(Continued)


Table 7.-(Concluded)


Table 8.-Dally Collections Station I

| $\begin{aligned} & \text { Date } \\ & 1913 \end{aligned}$ | $\begin{gathered} \text { Tirme } \\ \text { of first } \\ \text { collection } \end{gathered}$ | Temperature centigrade |  | $\begin{aligned} & \text { Air } \\ & \text { conditions } \end{aligned}$ | $\begin{aligned} & \text { Water } \\ & \text { conditions } \end{aligned}$ | $\begin{gathered} \text { Anchor } \\ \text { or } \\ \text { drift } \end{gathered}$ | $\begin{gathered} \begin{array}{c} \text { Number } \\ \text { of } \\ \text { hauls } \end{array} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/5 | 11:20 A.M. | Air 132 |  | No wind; hazy | Smooth | d | 9 |
| 7/6 |  | Water Air Water | $\begin{aligned} & 26 \\ & 32.5 \end{aligned}$ | No wind; clear | Smooth | d | 9 |
| $7 / 7$ | 9:30 А.м. |  |  | Breeze; clear | Ripply | d | 9 |
|  | 8:30 A.m. | Water <br> Air <br> Water |  |  |  |  |  |
| 7/8 | 1:30 P.m. | Water <br> Air <br> Water |  | Wind; hazy | Choppy | d | 9 |
| 7/9 | 10:30 A.M. | Water <br> Air <br> Water | $\left\lvert\, \begin{aligned} & 34.5 \\ & 27 \\ & 31 \end{aligned}\right.$ | Light wind; clear | Wavy | d | 9 |
| 7/10 | 10:45 A.M. |  | $\begin{aligned} & 26 \\ & 32 \end{aligned}$ | Wind; hazy | Choppy | d | 9 |
|  |  | Air <br> Water |  |  |  |  |  |
| 7/11 | 10:45 A.m. | Air <br> Water |  | Breeze; clear | Ripply | d | 9 |
| 7/12 | 10:55 A.M. | $\begin{aligned} & \text { Air } \\ & \text { Water } \end{aligned}$ | 26.5 | No wind; clear | Smooth | d | 9 |
|  | 12:00 м. | $\begin{aligned} & \text { Air } \\ & \text { Water } \end{aligned}$ | ${ }_{29}^{27}$ | lear | Choppy | d | 12 |
|  |  |  | 27 |  |  |  |  |
| 7/14 | 10:30 A.m. | Air Water | 26 | No wind; clear | Smooth | d | 9 |
| 7/15 | 10:45 A.m. | Air Water | $\begin{aligned} & 26 \\ & 25.5 \end{aligned}$ | No wind; clear | Smooth | d | 10 |
| 7/16 | 10:45 A.m. | Air Water | 28 | Breeze; clear | Ripply | a | 9 |
|  |  |  | 26 |  |  |  |  |
| 7/17 | 10:45 A.M. | Air Water | 30.5 | Breeze; clear | Ripply | a | 10 |
| 7/18 | 2:00 p.m. | Air Water | $\begin{aligned} & 32 \\ & 26.5 \end{aligned}$ | Breeze; part cloudy | Ripply | a | 13 |
| 7/19 | 11:50 A.M. | Air <br> Water |  | Bree | Ripply | a | 9 |
|  |  |  | $\xrightarrow{29}$ |  |  |  |  |
| 7/20 | 10:00 A.M. | Air Water | 26 26 | Breeze; part cloudy | Ripply | a | 9 |
| 1 | 10:45 A.M. |  | -26 | No wind: | Smooth | a | 9 |
|  |  | $\begin{aligned} & \text { Air } \\ & \text { Water } \end{aligned}$ | ${ }_{26.5}^{27}$ | part cloudy | Smooth | a |  |
| 7/22 | 10:30 А.м. | $\begin{aligned} & \text { Air } \\ & \text { Water } \end{aligned}$ | $\begin{aligned} & 23 \\ & 25 \\ & 25 \end{aligned}$ | No wind; rain | Smooth | a | 13 |
| 7/23 | 10:30 A.M. | $\begin{aligned} & \text { Air } \\ & \text { Water } \end{aligned}$ |  | Brecze | Ripp | a | 9 |
|  |  |  | 27 25 |  |  |  |  |
| 7/24 | 10:30 A.m. | $\begin{aligned} & \text { Air } \\ & \text { Water } \end{aligned}$ | 26 | Breeze; hazy | Ripply | a | 9 |
| 7/25 | 11:30 A.M. | Air Water | $24$ | Breeze; part cloudy | Ripply | a | 9 |
|  | 12:30 p.m. |  | ${ }_{26}^{25}$ |  | Ripp | d | 9 |
|  |  | $\begin{aligned} & \text { Air } \\ & \text { Water } \end{aligned}$ | ${ }_{26}^{26.5}$ | Breeze, part cloudy. | Ripp |  |  |
| 7/27 | 10:40 A.M. | Air <br> Water | 24.5 | Breeze; clear | Ripply | a | 13 |
| 7/28 | 10:50 A.M. | Air <br> Water | 25. | Breeze; hazy | Ripply | a | 9 |
|  |  |  | 25.5 |  |  |  |  |
| 7/29 | 10:45 A.M. | $\begin{aligned} & \text { Air } \\ & \text { Water } \end{aligned}$ | $\begin{aligned} & 25 \\ & 25.5 \end{aligned}$ | Breeze; hazy | Ripply | a | 9 |
| 7/30 | 10:40 A.m. | Air <br> Water | $\begin{aligned} & 27.5 \\ & 25.5 \end{aligned}$ | Breeze; hazy | Ripply | a | 9 |
| $7 / 31$ | 11:00 A.m. |  |  | Breeze; hazy | Ripn | a | 9 |
|  |  | Air Water | $\begin{aligned} & 26.5 \\ & 26.5 \end{aligned}$ |  |  |  |  |
| 8/ 1 | 11:00 A.m. | Air Water | ${ }_{24.5}^{24}$ | Breeze; part cloudy | Ripply | a | 9 |
| 8/2 | 11:07 A.m. | Air Water |  | No wind; clear | Smooth | a | 9 |
|  | 10:50 A.m. |  | 26 |  |  |  |  |
| 8/3 |  | Air <br> Water Air <br> Water | 28.5 | Breeze; hazy | Ripply | a | 9 |
| 8/4 | 10:30 A.M. |  |  | Breeze; part cloudy | Ripply | a | 9 |
|  |  |  | ${ }_{27}^{27}$ |  | Ripply | a |  |

Table 9.-Hourly Collections, Station III $a$

| $\begin{aligned} & \text { Date } \\ & \mathbf{1 9 1 3} \end{aligned}$ | Time of first collection | Temperature centigrade |  | $\begin{aligned} & \text { Air } \\ & \text { conditions } \end{aligned}$ | Water conditions | $\begin{array}{\|} \text { Anchor } \\ \text { orif } \\ \text { drift } \end{array}$ | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { hauls } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8/11 | 7:00 A.M. | Air | 19.5 | Breeze; hazy | Ripply | d | 6 |
| 8/11 | 8:00 A.m. | Air | 20.5 | Breeze; hazy | Ripply | d | 6 |
| $8 / 11$ | 9:00 A M | Water | ${ }_{22}^{24.5}$ | Light wind, hazy | Wav | d | 6 |
| 8/11 | 9.00 A.m. | Water | 25. | Light wind, hazy | Wav | d | 6 |
| 8/11 | 10:00 A.M. | Air | 24. | Light wind; hazy | Wavy | d | 6 |
| 8/11 | 11:00 A.m. | Air | 27. | Light wind; hazy | Wavy | d | 6 |
| 8/11 | 12:00 м. | Water | 26 28 | Light wind; hazy | Wavy | a | 6 |
|  |  | Water | 26.5 |  |  |  |  |
| 8/11 | 1:00 р.м. | $\begin{aligned} & \text { Air } \\ & \text { Water } \end{aligned}$ | ${ }_{26}^{29.5}$ | Wind; hazy | Choppy | a | 6 |
| 8/11 | 2:00 P.m. | Air | 29.5 | Wind; hazy | Choppy | a | 6 |
| S/11 | 3:00 P.м. | Air | 30 | Wind; hazy | Choppy | a | 6 |
| 8/11 | 4:00 р.м. | Water | $\stackrel{26}{29.5}$ | High wind; hazy | Rough | a | 6 |
|  |  | Water | 26 |  |  |  |  |
| 8/11 | 5:00 P.м. | Air | 26 | High wind; hazy | Rough | a | 6 |
| 8/11 | 5:48 P.m. | Air | 25.5 | High wind; hazy | Rough | a | 6 |
|  |  | Water | 25.5 |  |  |  |  |
| 8/11 | 6:40 P.м. | $\begin{aligned} & \text { Air } \\ & \text { Water } \end{aligned}$ | ${ }_{25}^{20.5}$ | High wind; hazy | Rough | a | 6 |

## LITERATURE CITED

(Owing to lack of time the writer is unable to present an exhaustive bibliography. Only those references are named in the following list which were most constantly in use, all of them being in the writer's immediate possession. The writer also made frequent use of the extensive private library of Professor C. A. Kofoid, as well as the library of the University of Califormia.)

Birge, F. A., and Judat, C.
1911. The inland lakes of Wisconsin. Wisconsin Survey Bull., no. 22.

Brauer, A .
1912. Süsswasserfauna Deutschlands. XIV, Rotatoria and Gastrotricha, Jena.
Chodat, R.
1901. Beiträge zur Kryptogamenflora der Schweiz. Band I, Heft 3. Algues vertes de la Suisse, Berne, Wyss.

Clapp, W. B., and Henshaw, F. F.
1911. Surface water supply of the United States, 1909. XI, California, U. S. Geol. Surv., Water Supply Paper no. 271.

Cons, H. W.
1905. Preliminary report on the Protozoa of the fresh waters of Connec. ticut. Conn. St. Geol. Nat. Hist. Surv., Bull. no. 2.
Harring, H, K.
1913. Synopsis of the Rotatoria. U. S. Nat. Mus., Bull. no. 81.

Herrice, C. I.
1895. Entomostraca of Minnesota. Geol. Nat. Hist. Surv. Minn., 2d Rep. St. Zoologist.
Hudson, C. T, and Gosse, P. H.
1889. The Rotifera, or Wheel-animalcules, both British and foreign. 2 vols. with supplement. London, Longmans.
Izquierdo x Sanfuentes, V .
1906. Ensayo sobre los protozoos de las aguas dulees de Chile. Santiago, Cervantes.
Jennings, H. S.
1901. Rotatoria of the United States, with special reference to those of the Great Lakes. Bull. U. S. Fish Comm., 19, 1899.
1901. Synopses of North American invertebrates. XVII, The Rotatoria. Am. Nat., 35, 725-777.
1904. Rotatoria of the United States. II, Monograph of the Rattulidae, Bull. U. S. Fish Comm., 22, 1902.
Kent, W. S.
1880. Manual of the Infusoria, including a description of all known flagellate, ciliate, and tentaculiferous Protozoa, British and foreign. 3 vols., London, Bogue.
Kofoid, C. A.
1903. Plankton of the Illinois River, 1894-1899. Bull. Ill. State Lab. Nat. Hist., 6, no. 2.
1908. Ibid., 8, no. 1.

Leidy, Joserf
1879. Fresh-water rhizopods of North America. U. S. Geol. Surv. Terr., 12.

P'sscher, A.
9913. Süsswasserflora Deutschlands, Oesterreichs und der Schweiz. Hefte 1-2, Flagellatae; Heft 3, Dimoflagellatae; Heft 9, Zygnemales; Heft 10, Bacillariales. Jena, Fischer.

Pritchard, A.
1861. A History of the Infusoria, including the Desmidiaceae and Diatomaceae, British and foreign; ed. 4. London.
Reighard, J. E.
1894. Biological examination of Lake St. Clair. Bull. Mich. Fish Comm., no. 4.
Schoenichen, W., and Kalberlah, A.
1909. B. Eyferth's Einfachste Lebensformen des Tier-und Pflanzenreiches: ed. 4. Braunschweig, Goeritz.
Stokes, Alfred C.
1887. Microscopy for beginners. New York, Harper.

Tilden, Josephine
1910. Minnesota Algae. Geol. Nat. Hist. Surv. Minn, Botanical series, 8.

United States Engineering Department
1908. Survey of San Joaquin River, Stockton Channel, etc. House doc. 1124,60 cong., 2 sess., serial no. 5435.
WARD, II. B.
1897. Biological examination of Lake Michigan. Bull. Mich. Fish Comm., no. 6.
Weber, E. F.
1898. Faune rotatorienne du bassin du Léman. Rev. suisse Zool., 5, 263-785.












Station III
San Joaquin Plankton Collerting Stations
UNIVERSITY OF CATIFORNIA PUBLICATIONS-(Continued)
11. A Study of the Races of the White-Fronted Goose (Anser albifrons) occur- ring in California, by H. S. Swarth and Harold C. Bryant. Pp. 209-222, 2 figures in text, plate 13. October, 1917 ..... 15
12. A Synopsis of the Bats of California, by Hilda Wood Grinnell. Pp. 223-404, plates 14-24, 24 text figures. January 31, 1918 ..... 2.00
13. The Pacific Coast Jays of the Genus Aphelocoma, by H. S. Swarth. Pp. 405-422, 1 figure in teat. February 23, 1918 ..... 20
14. Six New Mammals from the Mohave Desert and Inyo Reginns of Callfornia, by Joseph Grinnell. Pp. 423-430.
15. Notes on Some Bats from Alaska and British Columbla, by Hilda Wood Grinnell. Pp. 431-433.
Nos, 14 and 15 in one cover. April, 191816
16. Revision of the Rodent Genus Aplodontia, by Walter P. Taylor. Pp. 435- 504 , plates $25-29,16$ text figures. May, 1918 ..... 76
17. The Subspecies of the Mountain Chickadee, by Joseph Grinnell. Pp. 505- 515, 3 text figures. May, 1918 ..... 15
18. Excavations of Burrows of the Rodent Aplodontia, with Observations on the Habits of the Animal, by Charles Lewis Camp. Pp. 517-536, 6 figures in text. June, 1918 .....
Index, pp. 537-545.
Vol. 18. 1." Mitosis in Giardia microti, by Willam C. Boeck. Pp. 1-26, plate-1. Octo- ber, 1917 .....  35
2. An Unusual Extension of the Distribution of the Shipworm in San Fran- cisco Bay, California, by Albert.L. Barrows. Pp, 27-43. December, 1917. ..... 20
3. Description of Some New Species of Polynoidae from the Coast of Call- fornia, by Christine Essenberg. Pp. 45-60, plates 23. October, 1917 ..... 20
4. New Species of Amphinomidae from the Pacific Coast; by, Christine Essen- berg. Pp. 61-74, plates 4-5. October, 1917 ..... 15
5. Crithidia euryophthalmi, sp. nov., from the Hemipteran Bug, Euryophthalmus convivus Stảl, by Irene McCulloch. Pp. 75-88, 35 text figures. Decem- ber," 1917 ..... 15
6. On the Orientation of Erythropsis, by Charles Atwood Kofoid and Ollve Swezy. Pp. 89-102, 12 figures in text. December, 1917 .....  15
7. The Transmission of Nervous Impulses in Relation to Locomotion in the Earthworm, by John F. Bovard. Pp. 103-134, 14 figures in text. January, 1918 .....  35
8. The Function of the Giant Fibers in Earthworms, by John F. Bovard. Pp. 135-144, 1 figure in text. January; 1918 ..... 10
9. A Rapid Method for the Detection of Protozoan Cysts in Mammalian Faeces, by William C. Boeck. Pp. 145-149. December, 1917 .....  05
10. The Musculature of Heptanchut maculatus, by Pirie Davidson... Pp. 151-170, 12 figures in text. March, 1918 .....  25
11. The Factors controlling the Distribution of the Polynoidae of the PacificCoast of North America, by Christine Essenberg. Pp. 171-238, plates 6-8,2 figures in text. March, 1918.75
12. Differentials In Behavior of the Two Generations of Salpa democratica Relative to the Temperature of the Sea, by Elis L. Michael. Pp. 239-298, plates 9-11, 1 fgure in text. March, 1918 .....  65
13. A Quantitative Analysis of the Molluscan Fauna of San Francisco Bay, by E. I. Packard. Pp. 299-336, plates 12-13, 6 figs. in text. Aprll, 1918... ..... 4014. The Neuromotor Apparatus of Euplotes patella, by Harry B. Yocom. Pp.337-396, plates 14-16. September, 191870
15. The Significance of Skeletal Variations in the Genus Peridinium, by A. L. Barrows. Pp. 397-478, plates 17-20, 19 igures in text. June, 1918 .....  80
16. The Subclavian Vein and its Relations in Elasmobranch Fishes, by J. Frank Daniel. Pp. 479-484, 2 figures in text. August, 1918 ..... 10
17. The Cercaria of the Japanese Blood Fluke, Schistosomn japonicum Eat-surada, by Willam W. Cort. Pp. 485-507, 3 figures in text.
18. Notes on the Eggs and Miracidia of the Human Schistosomes, by WiMamW. Cort. Pp. 509-519, 7 figures in text.Nos. 17 and 18 in one cover. January, 1919.35Index in preparation.

## UNIVERSITY OF CALTFORNIA PUBLICATIONS-(Continued)

Vol.19. 1. Reaction of Various Plankton Animals with Reference to their Dlumal Migrations, by Oaivin O. Esterly. Pp. 1-83. April, 1919

## 2. The Pteropod Desmoptcrus pacificus (sp. nov.), by Christine Essenberg. Pp. 85-88, 2 figures in.text.' May, 1918

3. Stadies on Giardia microti, by Wi山am C. Boeck. Pp. 85-136, plate 1, 19 figures in text
4. A Comparison of the Life Cycle of Crithidia with that of Trypanosoma in
the Invertebrate Host, by Irene McCulloch. Pp. 135-190, plates 2-6, 3
figures in text. October, 1919
5. A Muscid Larva of the San Francisco Bay Region which sucks the Blood
of Nestling Birds, by O. E. Plath. Pp. 191-200. February, 1919
6. Binary Fission in Collodictyon triciliatum Carter, by Robert Clinton Rhodes.
Pp. 201-274, plates 7-14, 4 figures in text. December, 1919
7. The Excretory System of a Stylet Cercaria, by William W. Cort. Pp. 275281, 1 figure in text. August, 1919
8. A New Distome from Rana aurora, by Willam W. Cort. Pp. 283-298, 5 figures in text. November, 1919
9. The Occurrence of a Rock-Boring Isopod along the Shore of San Fran
cisco Bay, California, by Albert L. Barrows. Pp. 299-316, plates 15-17.
December, 1919
10. A New Morphological Interpretation of the Structure of Noctiluca, and
its Bearing on the Status of the Cystoflagellata (Haeckel), by Charies
A. Kofoid. Pp. 317-334, plate 18, 2 figures in text. February, 1920. ..... 25
11. The Life Cycle of Echinostoma revolutum (Froelich), by John C. Johnson.
Pp. 338-388, plates 19-25, 1 text figure. May, 1920

Vol. 20. 1. Studies on the Parasites of the Termites. I. On Streblomastix strix, a Polymastigote Flagellate with a Linear Plasmodial Phase, by Charles Atwood Kofold and Olive Swezy. Pp. 1-20, plates 1-2, 1 figure in text. July, 1919

> 2. Studies on the Parasites of the Termites. II. On Trichomitus termitidis, a Polymastigote Flagellate with a Highiy Developed Neuromotor System, oy Charles Atwood Kofold and Olive Swezy. Pp. 21-40, plates 3-4, 2 figures in text. July, 1919

3. Studies on the Parasives of the Termites. III. On Trichonympla campanula
Sp. Nov., by Charles Atwood Kofoid and Olive Swezy. Pp. 41-98, plates
5-12, 4 figures in text. July, 1919
4. Studes on the Parasites of the Termites. IV. On Leidyopsis sphaerica
gen. nov., sp. novo, by Charles Atwood Kofoid and Olive Swezy. Pp.
99-116, plates 13-14, 1 figure in text. July, 1919.

.25

> 5. On the Morfhology and Mitosis of Chilomastix mesnili (Wenyon), a Common Flagellate of the Human Intestine, by Charles A. Kofoid and Olive Swezy. Pp. 117-144, plates 15-17, 2 figures in text. April, 1920

6. A Critical Review of the Nomenclature of Human Intestinal Flagellates,
Cercomonas, Chilomastix, Trichomonas, and Giardia, by Charles A. Kofold.
Pp. 145-168, 9 figures in text. June, 1920 ..... 35

Vol. 21. 1. A Revision of the Mficrotus californicus Group of Meadow Mice, by Rem
ington Kellogg. Pp. 1-42, 1 figure in text. December, 1918

2. Five Now Five-toed Kangaroo Rats from California, by Joseph Grinnell.
Pp. 43-47. March, 1919
3. Notes on the Natural History of the Bushy-Tailed Wood Bats of California, by Joseph Dixon. Pp. 49-74, plates 1-3, 3 figures in text.: December, 1919
4. Revision of the Avian Genus Passerella, with Special Reference to the Distribution and Migration of the Races in California, by H. S. Swarth. Pp. 75-224, plates 4-7, 30 figures in text. 1920
5. A Study of the Califormia Jumping Mice of the Genus Zapus, by A. Brazier

Vol.22. 1. A Quantitative and Statistical Study of the Plankton of the San Joaquin River and its Tributaries in and Near Stockton, Callfornia, in 1913, by Winfred Emory Allen. Pp. 1-292, plates 1-12, 1 text figure. July, 1920

$\frac{0}{5}$
$\frac{5}{5}$
$\frac{5}{2}$
$\underline{Z}$ institution


RARIES＂SMITHSONIAN

 SMITHSONIAN

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

2
$\frac{3}{7}$
1
0
2
2
2


LIBRARIES


INSTITUTION


S3ly甘yal7
 LIBRARIES


BRARIES SMITHSONIAN

## NVINOSHIIWS

 NSTITUTION NOILIIISNI



NOILOLILSNI
（in

BRARIES SMITHSONIAN




NOIINIIISNI
 LIBRARIES
 NOILOLIISNI－


IBRARIES


SヨI甘甘yg17 LIBRARIES


NOILRLILSNI


Nowiu


[^0]:    * This paper is published by permission of Dr. H. M. Smith, commissioner of the United States Bureau of Fisheries.

[^1]:    

