QL

Quarterly fournal of
Conchology
v. 1

Whthbrawh
 Mafional Huseum

Q U A RTERLY JOURNAL

OF
CONCHOLOGY.

VOL I.

1874-78.

TOHDOn:
david bogue, 3, St. Martin's Lane, Trafalgar Square, w.C.
Leeds: TAYLOR BROS., St. Ann Street.

INDEX TO VOL. I.

ORIGINAL ARTICLES.

Abnormal form of Cylindrella Raveni-J. S. Gibbons, M.B.
PAGE.
340Alliance of the genera Ennea and Streptaxis-J. S. Gibbons, M. B.
336Annotated catalogue of Polynesian Cones-A. Garrett
353
Analogous African and West Indian Marginellæ-F. P. Marrat
Ancylus fluviatilis var. gibbosa near Leeds-W. Nelson I79 I 86
,, ,, ,, in Yorkshire-H. Crowther 215
Argiope cistellula at Weymouth - R. Damon 217
Bulimus obscurus var. alba, at Bristol-(Miss) F. M. Hele 248
Bullia rhodostoma-J. S. Gibbons, M. B. 368
Burrowing and perforating molluscs-W. D. Sutton 49
Catalogue of the land and freshwater mollusca of Northumberland and Durham-W. D. Sutton 22
Clausilia biplicata var. Nelsoni-J. W. Taylor 216
," ,, albida--J. W. Taylor 216
", " (Mrs.) J. Fitzgerald 248
Clausilia rugosa var. albida and Pupa umbilicata var. alba at Pateley Bridge-Lister Peace 36
Clausilia rugosa, var. Schlechtii, a variety new to Britain-W. D. Sutton 35
Cochlicopa tridens var. crystallina near Leeds-J. W. Taylor 29
," ,, ,, at Petersfield-C. Ashford 29
,, Iubrica var. ovata at Wakefield-J. Hebden 97
,, ,, hyalina, at Llandudno-W. D. Roebuck 248
Colonising land shells-J. S. Gibbons, M. B. 367
Conchological difficulties ; or Species versus Varieties-Ed. Simpson 93
Description of a new species of Conus-E. A. Smith, F.Z.S. 107
", ", ," , 202
,, some new species of land and freshwater shells, and remarks on other species found in Japan-EE. A. Smith, F.Z.S. 118
Description of five new species of Marginclla-F. P. Marrat 136
,, new species of E. African land shells-J. W. Taylor 251, 280
,, a new species of Planorbis-W. Nelson 379
,, two new Gastropods-W. Doherty 341
,, a new species of Pupa-C. R. Judge 343
,, new species--F. P. Marrat 204

iii.

Description of a new form of Gladius-F. P. Marrat
PAGE.
244
244,, new species of Achatina-E. A. Smith
Distribution of Crepidula aculeata-J. S. Gibbons, M.B. 346 416
Genus Eatonia 97
Geographical distribution of the marine gastropoda on the South and East coasts" of Africa-J. S. Gibbons, M. B. 233
Habits and habitat of Helix revelata-R. Rimmer 206
Helix aspersa monst. sinistrorsa, at Bristol-(Miss) F. M. Hele 248
,, cantiana-J. S. Gibbons, M.B. 369
,, Dehnei-J. W. Taylor 217
,, hispida var. albida-J. W. Taylor 216
,, hortensis monst. sinistrorsa, at Bristol-(Miss) F. M. Hele 248
,, lamellata-R. Rimmer 265
,, lamellata at Huddersfield-J. Whitwham 29
,, obvoluta--Theo Godlee 67
,, Pisana-R. Rimmer 266
,, Pisana-G. S. Tye 230-333
,, rotundata var. alba at Conisbro' Castle-Geo. Taylor 21
,, virgata monst. sinistrorsa in Yorkshire-L. Peace 174
Land shells of Capri-(Mrs.) J. Fitzgerald 249
," the Isles of Scilly-W. H. Hatcher 138
Leeds Conchological Club 185
Limax gagates at Hastings-J. W. Taylor... 245
Limnæa peregra var. albida near Askern, Yorks.-Lister Peace 174
List of shells taken at Tenby, Pembrokeshire, at the end of September 1872,-G. S. Tye 30
List of land and freshwater shells of Banbury, Oxon-D. Pidgeon 54
,, the mollusca of the Birmingham District-G. S. Tye 57-68
,, marine shells of Hastings-A. W. Langdon 89
,, land and freshwater shells collected in the neighbourhood of Wakefield-J. Hebden 3
,, the shells taken at Guernsey, Sark, and Herm-A. H. Cooke and H. M. Gwatkin; M.A. 321
,, land and freshwater shells found in the neighbourhood of Ackworth, Yorkshire-C. Ashford 19
,, land and freshwater shells collected at Erith, Kent-Harry Leslie 33
,, the land and freshwater shells of Trinidad, showing the distribution-R. J. Lechmere Guppy, F.L.S., F. G.S., C.M.Z.S. 109

iv.

List of shells from Heidelberg--J. E. Daniel
PAGE.,, land shells collected on Fitzroy Island, with notes on theirgeographical range-John Brazier, C.M.Z.S., \&c.268
,, West African shells-F. P. Marratt 38 !
,, shells of Iowa-(Prof.) F. M. Witter 382
,, West African marine shells-F. P. Marratt 237
Local shells near Wakefield--George Taylor 92
Mollusca of Cooper's Hill-Edward Simpson 65
Mollusca of Santa Rosa Island, California, U.S.-L. G. Yates 182
Molluscan threads-G. S. Tye 401
Note on the habitat of Neritina tristis-C. P. Gloyne 37
,, Helix pulchella-H. Hemphill 128
,, Limnæa stagnalis-W. Nelson 216
,, Bulimus Goodallii-J. E. Daniels 246
, Clausilia biplicata var. albida - J. E. Daniels 247
,, Cylindrella Raveni-J. T. Marshall 380
,, the shells of Guernsey-J. T. Marshall 380
,, Geographical distribution of terrestrial mollusca-W. F. Petterd 394
Notes on the genus Cylindrella-C. P. Gloyne 5 I
,, genus Bourciera-T. Bland 128
,, genus Partula-C. P. Gloyne 337
Notes on the occurrence of rare and local shells in unrecorded localities -W. G. Blatch 129
Notes on the identity of various European Helicidæ-C. P. Gloyne I 33
Occurrence of Zonites glaber at Folkestone-(Mrs.) J. Fitzgerald 29
,, Limnæa glutinosa, near Sandwich-(Mrs.) J. Fitzgerald 51
,, Gadinia reticulata in South Eastern Polynesia--A. Garrett 335
,, Crepidula aculeata in the Marquesas Islands-A. Garrett 335
On Varieties of Paludina vivipara and Planorbis glaber-R. M. Lloyd 6
On the occurrence of Cochlicopa tridens var. crystallina, in the neighbourhood of Birmingham-G. S. Tye 7
On the difficulties of recognising " named varieties" according to the accepted authorities-T. Rogers 17
On South Australian marine shells-G. F. Angas, F.L.S., C.M.Z.S. 178
On the habits of Helix fusca-C. Ashford 180
On certain species of Littorina-J. S. Gibbons, M.B. 339
Pholas crispata, L., boring in metamorphic rocks-J. S. Gibbons, M.B. 369
Remarks on the South Australian Helices, with a notice of all species known to present date-G. F. Angas, F.L.S., C.M.Z.S. 134

3

3
PAGE.
Remarks on the geographical distribution of the terrestrial mollusca
-C. P. Gloyne 283
Remarks on a dentate variety of Conulus fulvus, Drap-W. Doherty 344
Reversed form of Helix hortensis at Bristol-(Miss) F. M. Hele 92
Review of the genus Tulotoma, with remarks on the geographical dis-
tribution of the North American Viviparidæ-(Prof.) A. G. Wetherby 207
Shells of Ceylon-A. W. Langdon 71
Simultaneous occurrence of five sinistral examples of Helix aspersa- J. E. Daniel 50
Species versus Varieties-J. T. Marshall 131
,, ,, , -G. S. Tye I71
,, ,, ,, -C. P. Gloyne 175
Succinea oblonga, Drap. near Cork-C. P. Gloyne 97
Synonymy of Planorbis glaber-W. Nelson I8I
Suggestions for finding the smaller land shells-H. Laver, F.L.S. 264
Shell collecting in Curacao-J. S. Gibbons, M.B. 370
Ten days' dredging at Oban-(Rev.) A. M. Norman, M.A. 275
Variety caused by locality-J. B. Bridgman 70
White variety of Limnæa palustris near Leeds-I. W. Taylor 29
,, ,, , at Southport-E. Collier $\mathbf{1 3 9}$
Zonites glaber Studer, near Leeds - H. Crowther 215
,, ,, ,, -W. Nelson 21
,, excavatus var. vitrina Fer, near Huddersfield-J. Whitwham. 29
,, glaber near Huddersfield-L. Peace 36
REPRINTS.
A partial comparison of the Conchology of the Atlantic and Pacific coasts of North America-R. E. C. Stearns 31
Critical examination of certain species of the American continent and the West Indies, described as belonging to Helicina in Lovell Reeve's Conchologia Iconica-T. Bland 105
Description of new species of shells-G. B. Sowerby, junr. 78
Introduction of Planorbis dilatatus into the British Isles-T. Rogers 8I
Salpa spinosa of the West coast of Ireland-A. G. More 43
The Pectens, or Scallop-Shells-R. E. C. Stearns 43
The Mollusca of Europe compared with those of Eastern North America -J. G. Jeffreys, F.R.S. 8

NEW SPECIES PAGE.								
DESCRIBED IN THIS VOLUME.								
Actinobolus Africanus-Marrat				\ldots		12
Achatina a	albopicta-	mith			346
,, b	bisculpta	"	\ldots		349
, d	dimidiata	,	...	\ldots	-.	\ldots		348
,, si	simplex	,	...	\ldots	...	\ldots	...	347
,, T	Transvaale	sis-Smith		351
,, ze	zebroides	,	\ldots	347
Puliminus	5 cinereus-	Taylor	\ldots	...	\ldots	281
"	costatus	,	\ldots	\ldots		80
.,	Gibbonsi	",	\ldots	\ldots	280
,,	obesus	"	\ldots	\ldots	...	\ldots	...	
,,	olivaceus	",	\ldots	..	\ldots	23
,	tumidus	"	\ldots		254
Cionella M	Morseana,	Doherty	\ldots	.	\ldots	...		342
Clausilia b	bilabrata-	mith	\ldots	\ldots	\ldots	...		O
k	kobensis-	mith	\ldots	...	\ldots	...		2
Columbella	la cuspidat	-Marrat		242
Conus cun	neiformis-	mith		02
,, Tra	aversianus	Smith	\ldots	...	\ldots	...		107
Crassatella	a Africana	Marrat	\ldots	...		382
Drillia roso	solina-Ma		...	\ldots		239
,, filos	osa-Marra		...	\ldots	...	\ldots		
Gonaxis G	Gibbonsi-	aylor	\ldots	...		252
Gladius M	Martinii-M	rrat	\ldots	244
Helix Goo	odwinii-S	mith	\ldots	.	.	\ldots	...	119
Limnæa G	Goodwinii-	Smith	\ldots	\ldots		125
Melania N	Niponica--	mith	...	\ldots	\ldots	...		123
Marginella	a callosa-	Iarrat	...	\ldots	...	\ldots		137
Nassa inte	(Glabella) Davisiana, Marrat				...	\ldots		
	(Gibberula) nana, Marrat				\ldots	\ldots		
	(Gibberula) lucida, Marrat			\ldots	\ldots	\ldots		
	perla, Marrat			\ldots		
	precallosa (Higgins) Marrat					\ldots		
	Tyermani, Marrat			\ldots	\ldots	\ldots		36
	Warrenii, Marratinterstincta-Marrat			\ldots	\ldots	...		
			Nassa interstincta-Marrat		\ldots	\ldots		

vii.

viii.

Q U A RTERLY JOURNAL

OF

CONCHOLOGY.

INTRODUCTION.

We are glad to find that the study of the science of Conchology is becoming much more general. We are glad because we think it possesses advantages which many other sciences only possess in a smaller degree. Its objects lie around us on every hand, on mossy banks, in glassy pools, in rustling woods, in the deep sea, and on its shore. Its spoils too, are of very varied beauty of form and colour-the houses of the Mollusca-how many, very many of our fellow-men cannot boast of houses so comfortable, so convenient, so exceeding beautiful. These spoils need no elaborate preparation on the part of the collector, nor jealous care for their preservation, a plain wood cabinet, or boxes, a small round fishing net, some chip or tin pill boxes, are all that is required.

It must not be thought that the field of study is a restricted one, for besides a knowledge of the Molluscs themselves, a practical knowledge of Botany is desirable, in order to recognize on what plants they feed, and also that by recognizing the food-plant we may be on the alert to find the animal. Then an acquaintance with Geology will show upon what soils and rocks certain species are most surely found, and it will allow of an intelligent comparison with all the myriad fossil forms ; for it must be remembered that by far the largest proportion of fossil remains are molluscous. A competent knowledge of Microscopy will amply repay some amount of patience, of time, and some little cost by proving an "open sesame" to many hidden wonders. Nor should we consider the study of these lowly creatures as likely to lead to no direct useful result; for it is by the study of the lower forms of life, that we hope perhaps ultimately to discover, what is life.

In introducing the Quarterly Journal of Conchology to the public, we have been desirous of satisfying a long-felt want of students of the science. Our chief objects are two-first, to encourage and stimulate original research by freely opening our pages to all who take an interest in the science, however humble they may be, and more especially to all careful and accurate observers. Second, to bring the works of the great masters of the science within the reach of all collectors, by reprinting from time to time in our pages their more important papers which appear in the high priced publications.

In addition to these two chief objects, we shall endeavour to point out the great importance of, and to promote the study of the geographical distribution of species. By a systematic inquiry into this subject, in which but little has been done, we believe many interesting phenomena will be discovered, bearing on the habits, food, and perhaps the origin of varieties. We must strongly urge the formation of local lists in every district. We shall always be glad to make them public. We may shortly be able to propose a scheme which will give a more organized character to this important work.

We hope that our pages may also afford a means for comparing results on the part of students, for encouraging the undertaking of combined and definite work, and also afford a means of general communication.

Thus far as regards present students, but is it too much to hope that we may be the means of inducing others to take up the study? We cannot, it is true, offer any "fierce exciting joys" in its pursuit, but to those who wish a change from the bustle and haste of life, and from the feverish excitement of political and social strife, we can promise quiet, refreshing enjoyment-country rambles in the summer time-long nights in winter, arranging, studying, tabulating, and recording results, and comparing them with those of other collectors. In accepting this escape from the turmoil of ordinary life, we need not fear we shall lose our interest in our fellow men, in their well-being and progress, but we hope shall each be able to say-
"I love not man the less, but nature more
From these our interviews in which I steal
From all I was, or am, or may be, and mingle with the universe and feel What I can ne'er express, yet cannot all conceal."

By JOSEPH HEBDEN.

This List of Shells is the result of several years' collecting, and for much valuable information, I am indebted to my friends Messrs. Wm. Lund and G. Taylor, the former of whom was for many years a most assiduous and successful conchologist.

It might have been made much more extensive but for the desirability of restricting the area of the district.

Sphærium corneum L.-Common in the ponds and canals throughout the district.

Sphærium rivicola Leach.-Plentiful in the Barnsley and Stanley canals.

Sphærium ovale Ferussac.-This local species is plentiful in the canal near Stanley, and is met with more rarely in the Wakefield and Barnsley canal.

Sphærium lacustre Muller.-Occurs in the Barnsley canal, plentiful in a pond at Sandal.

Pisidium amnicum Muller.-Common in the Barnsley and Stanley canals.

Pisidium fontinale Draparnaud.-Pond at Sandal.
Pisidium fontinale var. Henslowana Shepp.-Barnsley canal.

Pisidium fontinale var. pulchella Jenyns.-Barnsley canal.
Pisidium nitidum Jenyns.-Found in ponds throughout the district.

Unio tumidus Phillipson.-In the canal near Barnsley.
Unio tumidus var. radiata Jeffr.-Plentiful in the canal at Heath.

Unio pictorum L.-Moderately common in the Barnsley and Stanley canals.

Anodonta cygnea L.-Common throughout the district.
Anodonta cygnea var. radiata Muller.-In the lake at Nostell Priory.

Anodonta anatina L.-Occurs in the canal near Barnsley.
Anodonta anatina var. radiata Jeffr. - Canal, nr. Barnsley.
Dreissena polymorpha Pallas.-Plentiful in the Barnsley canal, Wintersett Reservoir, and New-miller-dam.

Neritina fluviatilis L.-Common in the Wakefield and Barnsley canal.

Paludina vivipara L.-Common in the Wakefield and Barnsley canal, and more rarely in a stream near Sandal Castle.

Bythinia tentaculata L.-Common throughout the district.
Bythinia tentaculata var. decollata Jeffr.-Found plentifully at Kirkthorpe.

Bythinia Leachii Shepp.-Found commonlyamongst decaying sedges at the sides of the Wakefield and Barnsley canal.

Valvata piscinalis Muller.-Moderately common in the Wakefield and Barnsley canal.

Valvata piscinalis var. subcylindrica Jeffr.-River Went, near Ackworth.

Planorbis nitidus Muller.-Found at Kirkthorpe and Hemsworth.

Planorbis nautileus L.-Common at Ossett and Cold Hiendley.

Planorbis nautileus var. cristata Draparnaud.-Occurs with the type.

Planorbis albus Muller.-Various places round Wakefield.
Planorbis albus var. Draparnaldi Shepp.-Very fine specimens of this local variety from a pond at Sandal.

Planorbis spirorbis Muller.-Common throughout the district. A beautiful white variety occurs at Dirtcar

Planorbis vortex L.-Very common throughout the district, with P. spirorbis.

Planorbis carinatus Mitler.-Common in the Wakefield and Barnsley canal. A dwarf form occursin a pond nr. Sandal Castle.

Planorbis complanatus L.-Common throughout district.
Planorbis corneus L.-Abundant in a pond at Castleford. Evidently introduced.

Planorbis contortus L.-Very abundant in ponds at Castleford and near Frystone Hall.

Physa hypnorum L.-Common in a ditch at Stanley, where the specimens are very fine ; more rarely at Cold Hiendley. Very common at Horbury.

Physa fontinalis L.-Common in the Barnsley canal, and in nearly every stream throughout the district.

Physa fontinalis var. oblonga Jeffr.-Common in the River Went at Ackworth.

Limnæa peregra Muller.-In a ditch at Stanley, common.
Limnæa peregra var. ovata Draparnaud.-Barnsley canal.
Other forms of this most variable species occur throughout the district.

Limnæa auricularia L.--Occurs in canals at Horbury and Walton, and in the Cold Hiendley and Hemsworth dams.

Limnæa stagnalis L.-Barnsley canal. Very fine specimens at Kirkthorpe.

Limnæa stagnalis var. fragilis L.-Abundant in a stream near Castleford.

Limnæa palustris Muller.-In a pond on the canal side near Heath Bridge.

Limnæa palustris var. elongata Jeffr.-Occurs in the same pond.

Limnæa palustris var. tincta Jeffr.-Barnsley canal.
Limnæa truncatula Muller.-Common in ditches throughout the district.

Limnæa truncatula var. elegans Jeffr:-Standbridge, near Sandal.

Limnæa glabra Muller.-Very abundant in a pond at Havercroft where the specimens are small. Common near Ossett.

Limnæa glabra var. elongata Jeffr.-Common and very fine at Ossett, amongst which are numbers of decollated specimens

Ancylus fluviatilis Muller.-Common at Kirkthorpe.
Ancylus fluviatilis var. Capuloides Jan.-This local and rare variety occurs in the River Went, near Ackworth, also in a small stream near Sandal Castle.

Ancylus fluviatilis var. albida Jeffr.-Pugneys.
Ancylus lacustris L.-Barnsley canal occasionally, plentiful in a pond at Cold Hiendley.

Arion ater L.-Common throughout the district.
Arion flavus Fer.-Common throughout the district.
Limax gagates Drap.-Bridge at Fall Ing.
Limax flavus L.-Common throughout the district.
Limax agrestis L.--Common.
Limax arborum Bouch.-Chant.-Occurs at Haw Park.
Limax maximus L.-Common throughout the district.
Succinea putris L.-Common throughout the district.
Succinea elegans Risso.-Common at Ackworth.
Vitrina pellucida Muller:-Common throughout district.
Zonites cellarius Muller.-Common throughout district.
Zonites alliarius Muller.-Common throughout district.
Zonites nitidulus Drap.-Common throughout district.
Zonites nitidulus var. nitens Michaud.-Beautiful pinkish white coloured specimens of this variety occur at Newton.

Zonites purus Alder.-Occurs at Haw Park.
Zonites purus var. margaritacea Seffr. - Common throughout the district.

Zonites radiatulus Alder.-Rare at Sandal Castle.
Zonites nitidus Muller.-Stanley and Cold Hiendley, locally abundant.

Zonites excavatus Bean.-Common at Haw Park and at Butlcliffe Wood.

Zonites crystallinus Muller.---Commonthroughout district.
Zonites fulvus Muller.-Scarce throughout the district.
Helix aculeata Muller:-Common at Haw Park, and occurs sparingly throughout the district.

Helix aspersa Muller.-Common throughout the district.
Helix nemoralis L.-Common throughout the district.
Helix nemoralis var. hortensis Muller.-Common throughout the district.

Helix nemoralis v.hybrida Poi.-Occasionally at Newton.
Helix nemoralis var. major Fer.-Chevet, rare.
Helix nemoralis var. minor Jeffr:-Rather common at Stanley.

Helix Cantiana Montagu.-Canal side near Walton, and at Chevet Lane. At the latter locality specimens are scarcer and of less size than formerly.

Helix rufescens Pennant.-Common throughout district.
Helix rufescens var. albida Jeffr.-Very rare, one specimen near Crofton Station.

Helix rufescens v. minor Jeffr.--Rather commonnr. Chevet.
Helix hispida L.-Common throughout the district.
Helix virgata Da Costa. - Very local, only occurring on and about a railway bridge near Oakenshaw.

Helix caperata Mont.-Common throughout the district.
Helix caperata var. ornata Picard.-Occurs along with the type, frequently.

Helix caperata var. subscalaris Jeffr.--Rare, one specimen on Sandal Castle Hill.

Helix caperata var. Gigaxii Charp.-Frequently met with in Chevet Lane.

Helix ericetorum Muller.-Sandal Castle Hill, where I also found a scalariform specimen.

Helix rotundata Muller:-Common throughout the district.
Helix rotundata var. alba Moquin-Tandon.-My friend, Mr. G. Taylor, has taken three specimens of this rare variety near Ossett.

Helix pygmæa Drap.-Scarce at Haw Park and other places in the district.

Helix pulchella Muller.-Common in a quarry at Oakenshaw and New-miller-dam.

Helix pulchella var. costata Muller.-Occurs plentifully with the type at Oakenshaw.

Bulimus obscurus Muller:-Rare at Sandal Castle Hill.
Vertigo pygmæa Drap.-Rare, occurs at Dirtcar, where the specimens have four teeth.

Clausilia rugosa Drap.-Occurs at Sandal, Newmarket, and Woodlesford.

Cochlicopa lubrica Muller.-Haw Park.
Cochlicopa lubrica var. lubricoides Fer.-Haw Park and Sandal Castle Hill.

Acme lineata Drap.-Living specimens of this rare Mollusk were found in decaying timber on the canal side, near Haw Park, by myself and Mr. Wm. Lund.

Sandal Common, Near Wakefield, Dec. 26 th, 1873.
On Varieties of Paludina vivipara and Planorbis gla-ber.-Having been sofortunateduring the past year as to find a new and distinct variety of each of these fresh-water Shells, which have been kindly determined for me by Mr. J. G. Jeffreys, F.R.S., I send a description of them for the information of your readers.

Paludina vivipara var. atro-Purpura.-Shell same shape as the normal form, but of a black colour, which, when viewed by transmitted light, is dark purple, being in fact the same colour as the bands of other specimens which occur with it. I found it in thecanal at Pontypool this spring in numbers, together with the type and the variety unicolor; and besides this, there were with them all intermediately coloured ones, between unicolor and atro-purpura; these evidently being the ends of a series, unicolor being that in which all traces of the bands have vanished, and atro-purpura that in which they have so spread themselves as to have entirely obliterated all traces of the green ground colour of the typical shell.

Planorbis glaber var. compressa-Shell more concave below than in the type, and only depressed in the centre on the upper side, the whorls also are rounder and do not increase so quickly, making the whole shell more compact. Found in the neighbourhood of Birmingham.-R. M. Llovd, 60, Villa-road, Handsworth, Birmingham, December 18th, 1873.

ON THE OCCURRENCE OF COCHLICOPA TRIDENS

 var $C R Y S T A L L I N A$, Dupuy, IN THE NEIGHBOURHOOD OF BIRMINGHAM.
By G. SHERRIFF TYE.

Any interested reader turning to page 291, vol. I. of Mr. Jeffreys" "British Conchology," will there find recorded the occurrence of this lovely little shell at Weoley Castle. [In Mr. Jeffrey's book spelt "Wheeley."] I believe the original spot from whence the shells here indicated were taken, is in a garden now attached to a farm-house. A short distance from this spot my friend Mr. Nelson, after diligent search, was rewarded by finding two or three shells, shewing much to our mutual satisfaction, that this charming variety still inhabits the locality.

Having hitherto looked upon it as a rarity, I consider myself fortunate in having since found it in three other places in the Birmingham district. First at Perry Bar, secondly at Hamstead, at the former place I found an interesting variety of a pale whitish yellow colour, more opaque than crystallina, but brilliant. Hamstead furnished the greatest number of the crystalline variety. My friends, Messrs. Nelson and Lloyd and myself, obtained amongst us nearly two dozen shells, yet left many young to furnish a progeny for future collectors.

The third habitat is Dudley, where, on a pleasant day in April this year, Mr. Lloyd and myself found it in company with C. lubrica and Carychium minimum in the still romantic grounds of Dudley Castle.

These three localities are all in the county of Stafford, and their distance from Birmingham is as follows:-Perry Bar, $2 \frac{1}{2}$ miles; Hamstead, $2 \frac{1}{2}$ miles; Dudley about 8 miles. Weoley Castle is in Worcestershire, and is situated about $4 \frac{1}{2}$ miles from Birmingham.

A single specimen has also been taken by Mr. Shrive, near Knowle, Warwickshire.
C. tridens is distributed throughout the neighbourhood of Birmingham, occurring abundantly in many places and sparingly in others; indeed a collector searching for it in almost any "likely looking" locality would hardly be disappointed, yet it appears to be much less plentiful in other districts.

It would be interesting to learn the distribution of this species in Great Britain. The records of its occurrence in our eastern counties are rare, and it is doubtful whether it inhabits Scotland or Ireland. Mr. Jeffreys has recorded one locality for it in Wales.

It may be looked for at the roots of grass (i.e., at the base of the blades) or in the middle of thick tufts, among moss, or under
herbage or stones in rather damp places "all the year round," but early in the year, if the weather be mild, is the best time, before vegetation gets too luxuriant and Phobus too powerful, for our little Cochlicopa, like many others of our native mollusks, is no "feather-bed soldier" but bestirs himself ere yet the last snow has departed before the soft breath of spring.

Unlike its brother C. lubrica, C. tridens has a limited foreign disti ibution, being only reported from France and Germany, while the former has a world-wide distribution.

Handsworth, December 18th, 1873.

THE MOLLUSCA OF EUROPE COMPARED WITH THOSE OF EASTERN NORTH AMERICA.

By J. GWYN JEFFREYS, F.R.S.

[Reprinted, by the kind permission of the Author, from the Annals and Magazine of Natural History for October, 1872.]

After mentioning that he had dredged last autumn on the coast of New England in a steamer provided by the Government of the United States, and that he had inspected all the principal collections of Mollusca made in Eastern North America, the author compared the Mollusca of Europe with those of Massachusetts. He estimated the former to contain about rooo species (viz. 200 land and freshwater, and 800 marine), and the latter to contain about 400 species (viz. iro land and freshwater, and 290 marine) ; and he took Mr. Binney's edition of the late Professor Gould's 'Report on the Invertebrata of Massachusetts,' published in 1870 , as the standard of comparison. That work gives 401 species, of which Mr. Jeffreys considered 4I to be varieties and the young of other species, leaving 360 apparently distinct species. About 40 species may be added to this number in consequence of the recent researches of Professor Verrill and Mr. Whiteaves on the coast of New England and in the Gulf of St. Lawrence. Mr. Jeffreys identified $\mathbf{r} 73$ out of the 360 Massachusetts species as European, viz., land and freshwater 39 (out of iro), and marine 134 (out of 250), the proportion in the former case being 28 per cent., and in the latter nearly 54 per cent. ; and he produced a tabulated list of the species in support of his statement. He proposed to account for the distribution of the North-American Mollusca thus identified, by showing that the land and freshwater species had probably migrated from Europe to Canada through Northern Asia, and that most of the marine species must have been transported from the Arctic seas by Davis's-Straitcurrentsouthwards to Cape Cod, and the remainder from the Mediterranean and western coasts of the Atlantic by the Gulf-stream in a northerly direction. He renewed his objection to the term "representative species." The author concluded by expressing his gratitude for the kind hospitality and attention which he received from naturalists during his visit to North America last year.

Mollusca of Eastern North America, according to Binney's edition of Gould's 'Invertebrata of Massachusetts.'

\%	Name of Species.	$\begin{aligned} & 400 \\ & \text { no } \\ & 0.0 \\ & 0.0 \\ & \text { zis } \end{aligned}$	曶	Synonyms and Remarks.
99	Lucina dentata, Wood	S		
100	Cryptodon Gouldii, Phil. (1845)	N	E	Axinuts flexuosus Mont, var. 1803.
10	Sphærium simile, Say (1816)	-		S. striatinum, Lam., 1818.
103 partumeium, , (1822)	$\stackrel{N}{N}$	E	S. lacustre, Muller, 1774.
 rhomboideum, ,"	N		Allied to S. corneum, which is European.
	(1861)	N	E	S. pisidioides, Gray, 1856. Perhaps introduced into England.
106 truncatum, Linsley	N		S. lacustre, var.
107 tenue, Prime	N		
107 securis, ${ }^{\text {a }}$	N		S. lacustre, var. Rykholtii
109	Pisidium dubium, Say (1816) Adomsi, Prime (1851)	N		P. amnicum, Mull. 1774. P. fontinale Draparnaud,
110 Adamsii, Prime (1851) compressum,	N	E	fontinale Draparnaud,
112	…... æquilaterale, .,	N		Allied to P. nitidum, which is European.
113	rugin	N		P. pusillum, var. obtusalis
113 abditum, Haldeman (1841)	N	E	P. pusillu
115 varialile, Prime ...	$\stackrel{N}{N}$		
116	ntricosu	N		Possibly someof theseNorth American species maybe reduced in number.
117	Astarte castanea, Say	N		Perhaps a variety of A. borealis, Ch.
119	sulcata, Da Costa	N	E	Including A. undata, Gould =A. Omalii, J. Sow.
121 semisulcata, Leach(1817)...	N	E	A. borealis, Ch., 1784 var.
123 quadrans, Goutd	N		A. castanea, var. nana.
124	... elliptica, Hanley	N		A. sulcata, va
125	... Banksii, Leach (1817)	N	E	A. compressa, Mt. 1803 var .
126 crebricostata, Forbes (1847)	$\stackrel{N}{\mathrm{~N}}$	E	A. depressa, Br., 1827.
127	Astarte Portlandica, Mighels	${ }_{N}^{N}$		A. compressa, var.
128	Gouldia mactracea, Linsley	N N	E	G. Crassatella.
131	Cytherea convexa, Say	N	...	G. Venus.
133	Venus mercenaria, L.	N		
135 notata, Say ...	N		V. mercenaria, var.
136	Tapes fluctuosa, Gould ...	N	E	G. Venus.
137	Gemma gemma, Totten	N	\ldots	V. mercenaria, young.
138	Manhattensis, Prime	S		
139	Cardium Islandicum, L.	$\stackrel{N}{N}$	E	
141 elegantulum, (Beck), Möll.	N	E	
143	Liocardium Mortoni, Conr-.	$\stackrel{N}{\mathrm{~N}}$		G. Cardizun.
144	Aphrodita Groenlandica, Ch. Cardita borealis, Conr: (1836).	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\mathrm{E}}{\mathrm{E}}$	
147	Arca pexata, Say	N	L	ilcata, Bruguiere, 1792
148	-... transversa, Say	N		A. pexata, var.
149	Nucula tenuis, Mont.	N	E	
150 proxima, Say	N		
152 expansa, Reeve ...	N		N. tenutis, var.
153	_..... delphinodonta, Migh	N	E	
154	Yoldia limatula, Say (1831)	N N	E	Y. artica, Sars. G. Leda. Allied to Leda lucida,
155 obesa, St.	N		Allied to Leda lucida, which is European.
156 siliqua, Reeve (1855)	$\stackrel{N}{N}$	$\underset{\mathbf{F}}{\mathrm{E}}$	L. arctica, Gray, I819.
157 thraciæformis, Storer	N	E	G. Leda.

\%	Name of Species.	¢	遃	Synonyms and Remarks.
159	Yoldia sapotilla, Goutd (1841)..	${ }_{N}^{N}$	E	$\begin{aligned} & \text { L. hyp } \\ & \mathrm{G}, ~ L e a p \end{aligned}$
160 161 myalis, Couth Leda tenuisulcata, Couth (1838)	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$		G. Leda. L. pernula, Mull. 1770, var.
161 163	Leda tenuisulcata, Couth (1838)	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	E	L.pernula, Mull. 1770, var. L. pernula, var.
164 minuta, Fabr	N	E	Mull.
165	….. caudata, Donovan	N		L. min
167	Unio complanatus, Solander	N		
169 nasutus, Say	N		
170 radiatus, Gm.			
172 cariosus, Say	5		
173	$\ldots .$. ochraceus, Say	$\stackrel{S}{N}$		Perhaps U. cariosus, var. Unio margaritifer, L. I766
174 176	Margaritana arcuata, Bar. (1823) undulata, Say		E	Unio marganitifer, L. 1766 G. Unio.
176 177 undulata, Say marginata, Gould	S	\cdots	G. Unio. G. Unio.
178	Anodon fluviatilis, Lea	S		Dillwyn, 181 I instead of Lea Anodonta cygnea L. 1760
180	mplicata, Say	N		G. Anodonta. A. cygnea var
182	undulata, Say	S		G. Anodonta.
183	Mytilus edulis, L. .	N	E	
186	Modiola modiolus, L. .	N	E	G. Mytilus.
188 plicatula, Lam.	N		G.
190	Modiolaria nigra, Gray	N	E	
192	.. discors, L. ...		E	
193 corrugata, St.		E	
194	Crenella glandula. Tott.	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	E	
195 196	Pecten tenuicostatus, Migh\& $\mathrm{d} d$	$\stackrel{N}{N}$	E	C. faba, Fabr., 1780
198 Islandicus, Miill	N	E	
199 irradians, Lam. ...	N		
200 fuscus, Linsl. . ..			P. irradians, young.
202	Ostrea Virginiana, Lister			
203 borealis, Lam.		E	
204	Anomia ephippium, L.	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$		
204 aculeata, Gm. electrica, L.	$\stackrel{N}{\mathrm{~N}}$...	A. ephippium, var. A. ephippium, var.
$\begin{aligned} & 205 \\ & 206 \end{aligned}$ electrica, L. squamula, L.	N		A. ephippium, young.
208	Terebratulina septentrionalis Couth (1839) ...	N	E	tis
210	Rhynchonella psittacea, Gmı. ..	N	E	[L., 1764, var.
211	Waldheimia cranium, Gm.	N	E	Mull. instead of Gm. G. Terebratula.
213	Philine sinua			Allied to P. nitida, which
213 quadrata, S. Wood	$\stackrel{N}{\mathrm{~N}}$	$\underset{\mathrm{E}}{\mathrm{E}}$	[is European.
214 lineolata, Couth (1839)	N	E	P. lima, Br., 1827.
215	Scaphander puncto-striatus, Migh. Eo Ad. (1842)...	,	E	S. librarius, Lov., 1846.
216	Diaphana hiemalis, Couth (1839)	N	E	Utriculusglobosus Lov 1846
216 debilis, Goutd (1840) ...	N	E	Utriculus hyalinus, Turt., 1834.
217	Utriculus Gouldii, Couth. (1839)	$\stackrel{N}{N}$	E	
218 pertenuis, Migh. ..	N		U. Gouldit, young.
219 canaliculatus, Say			
20	Cylichna alba, ${ }^{\text {br }}$, ${ }_{\text {cryza, Tott. }}(1835)$		$\stackrel{\text { E }}{\text { E }}$	
221	Bulla incincta, Migh. ...		L	$\begin{aligned} & \text { rochl, } \\ & \text { I814, } \end{aligned}$
22 solitaria,			
223 occulta, Migh. f dd. (1842)	N	E	Cylichua striata, Br., 1827
224	Tornatella puncto-striata, $A d \ldots$			Perhaps Actaon pusillus. G. Acteon.

号	Name of Species.			Synonyms and Remarks.
226	Polycera Lessonii, D'Orbigny ...	N	E	
228	Doris bilamellata, L.	N	E	
229 tenella, Agassiz ...	N	\cdots	Perhaps D. inconspicua, which is European.
229 pallida, $A g$. (1870)	N	E	D. aspera, Alder \& Hancock, I842.
230 diademata, $A g$. (1870)	N	E	D. tuberculata, Cuvr. 1802
231 planulata, St. (1853)	N	E	D. repanda, A. \& H., 1842
232 grisea, St.	N		" Very closely allied to D. inconspicua."
233	Ancula sulphurea, St. ...	N		" Very like to Ancula cris tata," which is European
234	Dendronotus arborescens, Miell.	N	E	
236	Dota coronata, Gm.		E	
238	Eolis papillosa, L. \ldots	N	E	
240 salmonacea, De Kay (1843)	$\stackrel{N}{\mathrm{~N}}$..	Eolis bodoensis, Moll., 1842
241 Bostoniensis, Couth. ...	N	..	"Approaching closely E. coronata of Forbes,"
242 rufibranchialis, Fohnston.	N	E	[which is European.
243 pilata, Gould ...			
245 stellata, St. ...			
246 purpurea, St. ...			
246 picta, A. © H. ...	N	E	
247 diversa, Couth ...			
248 despecta, Fohniston	N	E	
249 gymnota, De Kay	N	..	" Nearly allied to E. concinna,"which isEuropean
250	Calliopæa (?) fuscata, Goitld	N		
251	Embletonia fuscata, Gould			
252	Hermæa cruciata, Alex. ${ }^{\text {a }}$.			
253	Hermæa cruciata, Alex. Ag.	S		
254	Alderia Harvardiensis, Ag_{8}.			
255	Elysia chlorotica, Ag. ...	N		
256	Placobranchus catulus, $A g$.	N		
258	Limapontia zonata, St.			
258	Chiton apiculatus, Say ...			
259 cinereus, L.		E	C. marginatus, not C. cinereus. A single speci-
260 ruber, Lowe ...		E	[men only ; questionable
261 marmoreus, Fabr.	${ }_{N}^{N}$	E	
263 263 albus, Mont. mendicarius, Migh. \& $\begin{aligned} & \text { Ad } \\ & \text { d }\end{aligned}$		E	L., not Mont.
263 264	... mendicarius, Migh. \& Ad. (1842) Amicula Emersonii, Couth	N	E	anleyi, Bean, Thorpe,
266	Dentalium dentale, L.	N		D. striolatum,
266	Entalis striolata, St. (1851)		E	Dentalium abyssorum, Sars, 1858 , var.
267	Tectura testudinalis, Mïll		E	
269 alveus, Conr.	N		T. testudinalis, var.
270	Lepeta cæca, Mill		E	
271	Crepidula fornicata, L...		E	
272 plana, Say		.	C. fornicata, var.
273 274 convexa, Say glauca, Say	$\mathrm{N}_{\mathrm{N}}^{\mathrm{N}}$		
275	Crucibulum striatum, Say			
276	Cemoria noachina, L. ...	N	E	G. Puncturella.
277	Ianthina fragilis, Deshayes	N	E	Lam., not Desh. Specific name changed to communis, 1822.

	Name of Species.		臨	Synonyms and Remarks.
278	Adeorbis costulata, Moll	N	E	G. Mölleria.
279	Margarita cinerea, Couth	N	E	G. Trochus.
280 undulata, Sowerby (1838)	N	E	Trochues Gronlandicus, Ch., 1781.
281	. helicina, Fabr	N	E	G. Trochus.
282 argentata, Gould (1841)	N	E	Trochus glaucus, Moll. 1842
283 obscura, Couth ...	N	E	G. Trochus.
284 acuminata, Migh. \& Ad.	N		Trochus varicosus, young.
285 varicosa, $M 7$ ig $_{\circ}{ }_{\circ}^{\circ} A d(\mathbf{I} 842)$	N	E	M. elegantissima, Bean, S. Wood, 1848. G. Trochus
286	Trochus occidentalis, Mig\% \& Ad	N	E	
286 288 28	Valvata tricarinata, Say (1817)	$\stackrel{N}{N}$	E	V. piscinalis, Mull., 1774,
288 289	…. pupoidea, Gould ... Melantho decisa, Say ...	N		
292	Amnicola pallida, Haldeman	N	\cdots	G. Hydrobia.
293 limosa, Say	N		G. Hydrobia.
294 granum, Say	N	...	G. Hydrobia.
295	Pomatiopsis lapidaria, Say	S		
296	Skenea planorbis, Fabr.	N	E	
297	Rissoella ? eburnea, St.	N	...	G. Rissoa.
297 sulcosa, Migh. .	N	\cdots	G. Rissoa. One specimen only.
298	Rissoa minuta, Tott. (1834)	N	E	Hydrobia ventrosa, Mont., 1803, var.
299 latior, Migh. \& Ad.	N		
299 aculeus, Gould (1841)	N	E	R. striata, J. Adams, 1795.
300 multilineata, St. ...	N	\cdots	R. striata, var.
301 Mighelsi, St. ...			
301	exarata, St. carinata, Migh. \&o Ad.	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$		
301 302	Lacuna vincta, Mont. (1803)	N	E	L. divaricata, Fabr., 1780.
303 neritoidea, Gould (1840).	N	E	L. pallidula, Turt. 1827 var
304	Littorina rudis, Don. ...	$\stackrel{N}{N}$	${ }_{\text {E }}$	Maton, instead of Don.
306	... tenebrosa, Mont.	N	E	L. rudis, var.
398	- litorea, L....	N	E	
309	.. palliata, Say (1822)	N	E	L. obtusata, L., 1766, var. L. limata, Low, 1846.
311 irrorata, Say	S		
311 312 312	Scalaria Nov-ariglix, Couth		\ldots	S. multistriata, var.
312 313 312 lineata, Say multistriata, Say ...			
314	... Groenlandica, Ch... ...	N	E	
315	Cæcum pulchellum, St... ...	S		
316	Vermetus radicula, St.	S		
317 318	Turritella erosa, Couth (1839)...	N	E	T. polaris, Möll., 1842.
318	$\begin{aligned} & \text { rirticulata, Migh. \&o Ad. } \\ & \text { (is42) ... } \end{aligned}$	$\stackrel{N}{\mathrm{~N}}$	E	T. lactea, Möll., 1842.
319 320	Aporrhais occidentalis, ${ }^{\text {acteck }}$ Beck \ldots	$\stackrel{N}{\mathrm{~N}}$		
321	Bittium nigrum, Tott. ...	S		G. Cerithium.
322 Greenii, Ad. (1839)	N	E	Cerithiopsis tubercularis,
323	Triforis nigrocinctus, $A d$.	S		[Mont., 1803.
325	Odostomia producta, $A d$.	S		
325 327		$\stackrel{\mathrm{S}}{\mathrm{~N}}$		
327		N		
327 327 3	-..... modesta, St.	$\stackrel{N}{N}$		
328 trifida, Tott. ...	S	...	S. impressa, var.
329 seminuda, $A d$. ...	N		

~	Name of Species.		等	Synonyms and Remarks.
330	Odostomia impressa, Say (1822)	S		O. calata, Cailliaud, 1865
331	Turbonilla interrupta, $\operatorname{Tott}(\mathbf{I 8 3 4})$	N	E	Melania rufa, Ph., 1836, var. G. Odostomia.
331		S		Perhaps Turbo lacteus, L G Odostomia
332 333	Eulima oleacea, Kurtz © Menestho albula, Möll.	S		G. Odostomia. Apparently not this species,
333				which is American.
33	Velutina haliotoidea, Fabr.(1780)	N	E	V. lavigata, Pennant, 1777
335 zonata, Gould, (1841) ...	N	E	V. undata, Bruwn, 1827.
337	Lamellaria persp	N	E	
338	L	N	.	Natica catenoides, S. Wood 1848.
34 triseria	N		Natica heros, young
34 Groenlandica, Möll	N	E	Beck, fide Moll. .G. Natica
342	Natica clausa, Bdp. EoSow. (1829)	N	E	N. affinis, Gm.,
344	…. pusilla, Say	S		
344	Mamma? immaculata,	N		G. Natica.
345	Neverita duplicata, Say	S		G. Natica.
347	Bulbus flavus, Gould, (18	N	E	Natica Smithii, Brown 1839 $=N$. aperta, Lov., 1846
348	Amauropsis helicoides, Johnston (I835)	-	E	Natica Islandica, Gm. 1790
349	Pleurotoma bicárin	N	E	
-	\%... plicata, $A d$. (I	N	E	${ }^{\text {P. declivis, Lov, }}$
351	Bela turricula, Mont.	N	E	G. Ple
352	….. h	$\stackrel{N}{N}$	E	G. Pleurotoma.
353 violacea, Mighs Ad.(1842)	N	E	Defrancia Beckii, Möll., 1842. G. Pleurotoma.
354		N	E	Pleurotona Trevelyana, Turt., 1834.
355 cancellata, Migh. \&o Ad. (1842)	N	E	Defrancia Pingelii, Moll., 1842. G. Pleurotoma
355	839)	N	E	Buccinum pyramidale, Ström, 179-. G. Pleuro-
356	Columbella avara	S		
357 358 rosacea, Gould, (1840)	N	E	C. Holbollii, Beck, Möll.,
358 359 dissimilis, St.	S		184
360	Purpura lapillus	N	E	
362	Nassa obsoleta, Say	N		Subgenus Desmoulea.
364 trivittata, Say (1822)	T		N.propinqua, J. Sow., 1824
365	. vibex	S		
366	Buccinum	$\stackrel{N}{N}$	E	
		N	E	Not that species, but B. undulatum, Moll.
369	…‥ Donovani, Gray (1839)	N	E	B. glaciale, L.
370 cinereum, Say	N		G. Urosalpinx, allied to Purpura.
371	us	N	\cdots	Not that species, but F. curtus, Jeffr.
372 pygmæus, St.	N	\ldots	Not Buccinum Sabinii or Fusus Sabini, Gray.
373	itricosus, Gray	N		
 tornatus, Gould (1840)	$\stackrel{N}{N}$	E	F. despectu
375 377 decemcostatus, Say	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	E	
378 scalariformis, Gould (1840)	N	E	T. clathratus, L., 1766.

\%	Name of Species.		砢	Synonyms and Remarks.
379		N	E	Doubtful as American.
380	Busycon canaliculatum, L.	S		
383 carica, Gm. ...	S		
385	Fasciolaria ligata, Migh. \& Ad .	N		
386 387	Ranella caudata, Say ${ }_{\text {Cerithiopsis Emersonij, }}$ Ad .	S		
387	Cerithiopsis Emersonii, $A d$.	S		G. Cerithium, not Cerithiopsis.
389	\ldots terebralis, $A d$. (I841)	S	E	C. trilineata, Ph., 1836.
390	Trichotropis borealis, Sow. ...	N	E	Broderip and Sowerby's species.
391	Admete viridula, Fabr.... ...	N	E	
394	Vitrina limpida, Gould, (1850)	N	E	V. pellucida, Mull., 1744
395	Hyalina cellaria, Miill.	N	E	G. Zonites.
396 arborea, Say ...	N	\cdots	Closely allied to Z. excavatus, but umbilicus much less open.
397 electrina, Gould (1841)	N	E	Zonites radiatulus, Alder,
398 indentata, Say ...	N		o, var. alba.
399 minuscula, Binney	S		
400 Binneyana, Morse milium, Morse	N		
401 401 milium, Morse ferrea, Morse	N		
402 chersina, Say (1821)	N	E	Zonites fulvus, Mull., 1774
403 minutissima, Lea (1841)...	N	E	Helix pygmaa, Drap., I805
404 multidentata, Binney	N		
404 lineata, Say ...	N^{N}		
406	Macrocyclis concava, Say	N		
407	Limax maximus, L. ...	$\stackrel{N}{N}$	E	
408	$\ldots .$. agrestis, L. ... \ldots	N	E	
409 campestris, Binney (1841)	$\stackrel{N}{N}$	$\underset{\mathrm{E}}{\mathrm{E}}$	L. lavis, Mull., 1774.
410	…. flavus, L. ${ }^{\text {a }}$.	N	E	
412	Helix alternata, Say ...	N		
413 striatella, Anthony	$\stackrel{N}{\mathrm{~N}}$		
415 asteriscus, Morse	${ }_{N}^{N}$		
415 labyrinthica, Say	$\stackrel{\mathrm{N}}{\mathrm{N}}$		
417 hirsuta, Say monodon, Rackett	N		
418 monodon, Rackett palliata, Say	N		
422	... tridentata, Say ..	N		
423 albolabris, Say ...	N		
424 dentifera, Binn. ..	N		
425 thyroides, Say ...	N		
426 Sayii, Binn. ...	N		
427 ? harpa, Say	N		Sweden.
428 429 pulchella, Mïll. ..	$\stackrel{N}{\mathrm{~N}}$	E	H. nemoralis, L., 1766var.
43 I	Cionella subcylindrica, L.	N	E	Perhaps that species, but described as inhabiting fresh water. Cochlicopa lubrica, Mull.
433	Pupa muscorum, L. ...	N	E	Linne's species is unascertainable. P. marginata,
433 Hoppii, Möll ...	$\stackrel{N}{N}$		
434 pentodon, Say ...	$\stackrel{N}{N}$		
435 decora, Gould ...			
436 fallax, Say ...			
437 armifera, Say ...			
$\begin{array}{r}438 \\ 439 \\ \hline\end{array}$ contracta, Say rupicola, Say			

	Name of Species.			Synonyms and Remarks.
439	Pupa corticaria, Say	N		
440	Vertigo Gouldii, Binn. (1843)	N	E	V. alpestris, Ald., 1830.
44^{1} milium, Gould ... 865 -	$\stackrel{N}{N}$		
442 Bollesiana, Morse (1865)	$\stackrel{N}{N}$	E	V. pygmaxa, Drap., 1801.
442 ovata, Say (1822) ${ }^{\text {a }}$.	$\stackrel{N}{N}$	$\underset{\mathbf{L}}{\mathrm{E}}$	V antivertigo, Drap., 1801
443 ventricosa, Morse (1865)	$\stackrel{N}{N}$	E	V. Moulinsiana, Dy., 1843
444 simplex, Gould (1840) ..	N	E	V. edentula, Drap.; 1805. S. elegans, Risso. 1826.
445	Succinea ovalis, Gould (1841)	N N	E	S. elegans, Risso. 1826. Allied to S putris, var.
446 avara, Say	N	\cdots	Allied to S. putris, var. ochracea
447 obliqua, Say (1824)	N	E	S. putris, L., 1766.
448 Totteniana, Lea	N		S. putris, var.
451	Arion fuscus, Mïll (1774)	N	E	Perhaps that species. A. hortensis, Ferussac $18 \mathbf{1 9}$.
453	Zonites inornata, Say	N		Zonites is masculine ; see
454 suppressa, Say	N		[De Montfort.
454 fuliginosa, Griffith ...	$\stackrel{N}{N}$		
457	Tehennophorus dorsalis, Binn.	N		
465	Alexia myosotis, Drap. ...	N	E	G. Melampus.
466	Carychium exiguum, Say (1822)	N	E	C. minimum, Mull., 1774.
467	Melampus bidentatus, Say ...	N	\cdots	Specific name preoccupied. M. corneus, Desh.
471	Limnæa columella, $S a y$ (1817)	N	E	L. peregra, Mull., 1774.
473 decollata, Migh.	N	\ldots	L. catascopium, var.
474 ampla, Migh. ..	N		
475	$\ldots .$. elodes, Say (1821)	N	E	L. palustris, Mull., 1774.
478 desidiosa, Say ...	N	..	L. truncatula, var.
479 catascopium, Say	S		
480 umbilicata, $A d$.	N	\ldots	Allied to
481 pallida, Ad. ...	N		L. truncatula, var. elegans.
482 humilis, Say (1822)	N	E	L. truncatula, Mull., 1774
483	Physa heterostropha, Say	N	...	More nearly allied to P . rivalis, Mat. \& Rack.than
485	,	S		[to P. fontinalis.
486	Bulinus elongatus, $S a y$ (1821)	N	E	Physa hypnorum, L., 1766.
488	Planorbis trivolvis, Say	$\stackrel{N}{N}$		
490 lentus, Say	N	\cdots	P. trivolvis, var.
491 bicarinatus, Say ...	N		
492	$\ldots .$. campanulatus, $S a y$	N		
493 hirsutus, Gould (1840)	N	E	P. albus, Mull., 1774.
494 deflectus, Say	N	..	P.albus, var. Draparnaldr
495 exacutus, Say ..	N		Allied to P. nitidus.
497 parvus, Say (1817-19)	N	E	P. glaber, Jeftr., 1828.
498 dilatatus, Gould	N	E	Perhaps introduced intc England and naturalized
499	Segmentina armigera, Say	N		G. Planorbis.
501	Ancylus parallelus, Hald.	N		Allied to A. lacustris.
502	\ldots.... fuscus, $A d$. \ldots	$\stackrel{N}{N}$		
504	Diacria trispinosa, Lesueur	N	E	G. Cavolina.
504	Psyche globulosa, Rang	N		
505	Heterofusus balea, Moll	N		G. Spirialis.
505 retroversus, Fleming	N	E	G. Spirialis.
507 509		N	E	C. papilionacea, Pall. 1766
509 510	Loligopsis pavo, Les.	N		
510	Ommastrephes sagittatus, Fér \& D'Orb	N	\cdots	Lamarck's species. G. Om
513	Loligo punctata, De Kay	S		[matostrephes.
514 516 Pealei, Les. ${ }_{\text {Spirula fragilis, St., (1860) }}$	N S		S. australis, Brug. 1789-92

