Tech. Note 1562

WHOI DOCUMENT COLLECTION

TROBICO CEL TN no. N-1562

title: REPAIR SYSTEM FOR DAMAGED COATINGS ON NAVY ANTENNA TOWERS - PART II

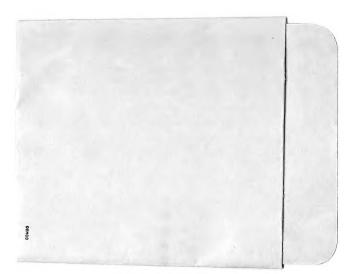
author: L. K. Schwab and R. W. Drisko, PhD

date: October 1979

Sponsor: Naval Facilities Engineering Command

program nos: YF54.593.012.01.004

417 ,N3


NO. N1567

NAVAL CONSTRUCTION BATTALION CENTER Port Hueneme, California 93043

Approved for public release; distribution unlimited.

REPORT DOCUMENT	ATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM						
. REPORT NUMBER	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER						
TN-1562	DN687042							
TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVEREN						
REPAIR SYSTEM FOR DAMA	GED COATINGS ON	Final; Oct 1977 – Sep 1978						
NAVY ANTENNA TOWERS -		6. PERFORMING ORG. REPORT NUMBE						
		- PERFORMING ORG. REPORT NUMBER						
AUTHOR(S)	8. CONTRACT OR GRANT NUMBER(S)							
L. K. Schwab and R. W. Drisko								
PERFORMING ORGANIZATION NAME AND		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS						
CIVIL ENGINEERING LABOR		62761N;						
Naval Construction Battalion C Port Hueneme, California 9304	YF54.593.012.01.004							
I. CONTROLLING OFFICE NAME AND ADDR		12. REPORT DATE						
Naval Facilities Engineering Con		October 1979						
Alexandria, Virginia 22332		13. NUMBER OF PAGES						
4. MONITORING AGENCY NAME & ADDRESS	(if different from Controlling Office)	15. SECURITY CLASS. (of this report)						
		Unclassified						
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE						
DISTRIBUTION STATEMENT (of this Report Approved for public DISTRIBUTION STATEMENT (of the abstra	release; distribution unlir							
Approved for public	release; distribution unlir							
Approved for public	release; distribution unlir							
Approved for public	release; distribution unlir							
Approved for public	release; distribution unlir							
Approved for public	release; distribution unlin	om Report)						
Approved for public	release; distribution unlin	om Report)						
Approved for public DISTRIBUTION STATEMENT (of the abstra B. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if ne	e release; distribution unlin et entered in Block 20, if different fr	om Repori)						
Approved for public	e release; distribution unlin et entered in Block 20, if different fr	om Repori)						
Approved for public 7. DISTRIBUTION STATEMENT (of the observe 8. SUPPLEMENTARY NOTES 5. KEY WORDS (Continue on reverse side if ne Coatings, surface finishing, repa	e release; distribution unlin et entered in Block 20, if different fr	om Repori)						
Approved for public 7. DISTRIBUTION STATEMENT (of the observe 8. SUPPLEMENTARY NOTES 5. KEY WORDS (Continue on reverse side if ne Coatings, surface finishing, repa	e release; distribution unlin et entered in Block 20, if different fr cessary and identify by block number irs, antenna towers, coatin	om Report)) g application, coating cleaning,						
Approved for public DISTRIBUTION STATEMENT (of the abstra S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if ne Coatings, surface finishing, repa protective coatings. ABSTRACT (Continue on reverse side if nec Coating materials and clea	e release; distribution unlin et entered in Block 20, it different fr essary and identify by block number irs, antenna towers, coatin essary and identify by block number ning and application proce	g application, coating cleaning,						
Approved for public DISTRIBUTION STATEMENT (of the abstra S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if ne Coatings, surface finishing, repa protective coatings. ABSTRACT (Continue on reverse side if nec Coating materials and clea	e release; distribution unlin et entered in Block 20, it different fr essary and identify by block number irs, antenna towers, coatin essary and identify by block number ning and application proce	g application, coating cleaning,						
Approved for public DISTRIBUTION STATEMENT (of the observe S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if ne Coatings, surface finishing, repa protective coatings. ABSTRACT (Continue on reverse side If nec Coating materials and clea developed for use in the repair of Experimental coatings were scree	erelease; distribution unlin et entered in Block 20, if different fr essary and identify by block number irs, antenna towers, coatin ning and application proce of damaged coatings on Na ened by laboratory-accele	am Report)) g application, coating cleaning, edures and equipment were vy steel antenna towers. rated testing before field exposure						
Approved for public DISTRIBUTION STATEMENT (of the observe S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if ne Coatings, surface finishing, repa protective coatings. ABSTRACT (Continue on reverse side if nec Coating materials and clea developed for use in the repair of Experimental coatings were scree In the initial field exposure, 19	erelease; distribution unlin et entered in Block 20, if different fr ecessary and identify by block number irs, antenna towers, coatin ning and application proce of damaged coatings on Na ened by laboratory-accele of 32 different coating sys	am Report)) g application, coating cleaning, edures and equipment were vy steel antenna towers. rated testing before field exposure tems provided good protection						
Approved for public DISTRIBUTION STATEMENT (of the observe S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if ne Coatings, surface finishing, repa protective coatings. ABSTRACT (Continue on reverse side II nec Coating materials and clea developed for use in the repair oc Experimental coatings were scree In the initial field exposure, 19- from corrosion for 3 years to a s	e release; distribution unlin et entered in Block 20, if different fr ressary and identify by block number irs, antenna towers, coatin essary and identify by block number ning and application proce of damaged coatings on Na ened by laboratory-accele of 32 different coating sys iteel antenna positioner in	am Report)) g application, coating cleaning, cdures and equipment were vy steel antenna towers. rated testing before field exposure tems provided good protection a marine atmospheric environ-						
Approved for public DISTRIBUTION STATEMENT (of the observe S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if ne Coatings, surface finishing, repa protective coatings. ABSTRACT (Continue on reverse side if nec Coating materials and clea developed for use in the repair of Experimental coatings were scree In the initial field exposure, 19	e release; distribution unlin et entered in Block 20, if different fr ressary and identify by block number irs, antenna towers, coatin essary and identify by block number ning and application proce of damaged coatings on Na ened by laboratory-accele of 32 different coating sys iteel antenna positioner in	am Report) g application, coating cleaning, cdures and equipment were vy steel antenna towers. rated testing before field exposure tems provided good protection a marine atmospheric environ-						
Approved for public DISTRIBUTION STATEMENT (of the observe S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if ne Coatings, surface finishing, repa protective coatings. ABSTRACT (Continue on reverse side II nec Coating materials and clea developed for use in the repair oc Experimental coatings were scree In the initial field exposure, 19- from corrosion for 3 years to a s	e release; distribution unlin et entered in Block 20, it different fr essary and identify by block number irs, antenna towers, coatin essary and identify by block number ning and application proce of damaged coatings on Na ened by laboratory-accele of 32 different coating sys iteel antenna positioner in t, 8 of 12 of the better-per	am Report) g application, coating cleaning, cdures and equipment were vy steel antenna towers. rated testing before field exposure tems provided good protection a marine atmospheric environ-						

MBL/WHOI 0 0301 0040218 6

- 11	nc	assified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Continued

provided very good protection for 15 months on two steel vortex towers in a very corrosive marine atmospheric environment. Newly developed cleaning and application procedures and equipment were tested during the latter field study. Practices by the Civil Engineering Laboratory currently recommended for coating protection of antenna towers are also presented.

Library Card Civil Engineering Laboratory REPAIR SYSTEM FOR DAMAGED COATINGS ON NAVY ANTENNA TOWERS - PART II (Final), by L. K. Schwab and R. W. Drisko TN-1562 50 pp illus October 1979 Unclassified 1. Coating systems 2. Steel tower coatings I. YF54.593.012.01.004 Coating materials and cleaning and application procedures and equipment were developed for use in the repair of damaged coatings on Navy steel antenna towers. Experimental coatings were screened by laboratory-accelerated testing before field exposure. In the initial field exposure, 19 of 32 different coating systems provided good protection from corrosion for 3 years to a steel antenna positioner in a marine atmospheric environment. In a later field experiment, 8 of 12 of the better-performing coating systems provided very good protection for 15 months on two steel vortex towers in a very corrosive marine atmospheric environment. Newly developed cleaning and application procedures and equipment were tested during the latter field study. Practices by the Civil Engineering Laboratory currently recommended for coating protection of antenna towers are also presented.

Unclassified												
SECURITY	CLASSIFICATION OF	THIS	PAGE(When	Data	Entered							

CONTENTS

										rage
INTRODU	JCTION	•••		• •	•			•	•	1
BRIEF I	DISCUSSION OF FIELD TEST ON ANTENNA PO	OSIT	ONEI	R AI	ΓP	MTC				1
LABORAT	TORY SALT-SPRAY EXPOSURE OF COATING SY	YSTE	1S		•					2
	irst Series									2 3
CLEANIN	NG AND COATING APPLICATION EQUIPMENT									3
	esign									3 4
FIELD F	EXPOSURE OF COATINGS ON VORTEX TOWERS	AT 1	PMTC							4
Co	reparation of Test Areas	•••		• •	•		•	•	•	4 5 5
PRACTIC	CES RECOMMENDED BY CEL FOR PROTECTING	ANTI	ENNA	TOV	VER	s.				6
De Su Co	ypes of Antennas	•••	•••	 	• •	· ·		•		6 6 7 7 8
COST CO	ONSIDERATIONS FOR NEW STEEL CONSTRUCT	ION	• •		•					9
SUMMARY	Y OF RESULTS AND RECOMMENDATION						•			10
ACKNOWI	LEDGMENTS		•••		•					10
REFEREN	NCES						•			10
APPEND	IXES									
	 Type and Sources of Coating Systems Series Salt-Spray Exposure Formulas of Experimental Paints Use 									37
	on Vortex Towers									40 42

INTRODUCTION

Many Navy antenna towers are located in remote locations where maintenance facilities are limited and severe environment, such as marine or tropical exposure, causes rapid, localized, coating damage. The heights and configurations of these towers permit only steeplejacks or repairmen utilizing an aerial-serving platform to reach all areas. Even then, some areas are frequently hard to reach. Repair of damaged coatings by conventional means (e.g., sandblasting and spray painting) is very costly and, in some cases, impossible because of physical limitations or environmental regulations. Dry abrasive blasting, for example, is frequently restricted because of particulate emission. Thus, the Civil Engineering Laboratory (CEL) was directed by the Naval Facilities Engineering Command to develop optimum methods for in-place repair of damaged exterior antenna coatings.

Reference 1 describes initial laboratory and field studies on antenna coating repair materials and methods. This technical note is the second and final document of the investigation, which included: (1) accelerated, salt-spray testing of experimental and specification coating systems; (2) results of 3 years of field testing of candidate materials from accelerated tests on an antenna positioner at the Pacific Missile Test Center (PMTC), Point Mugu, Calif.; (3) development of cleaning and coating techniques and equipment; (4) testing of developed coating systems and cleaning and coating techniques and equipment on two vortex towers in a very corrosive environment at PMTC; and (5) a summary of currently recommended practices for protecting antenna towers from a corrosive environment.

BRIEF DISCUSSION OF FIELD TEST ON ANTENNA POSITIONER AT PMTC

Reference 1 provides detailed information on the application and initial ratings of 32 coating systems (all consist of one coat of primer and one coat of topcoat) on an antenna positioner located at the lagoon area at PMTC. Monthly ratings were made for a total of 3 years, at the end of which, 19 of the 32 systems were providing good protection to the steel. As far as is possible, ASTM photographic standards were used to rate these specimens. Table 1 lists coating conditions after years of exposure.

Ratings at the end of 3 years for various properties generally ranged from a high of 10 (perfect) to a low of 0. Heavy chalking, common to all exterior epoxies, occurred with all the experimental coating systems. However, this condition does not result in loss of protection unless it leads to coating erosion. Some discoloration, such as yellowing or rust streaking, was evident on all systems. Systems 38 and 39 (nearest the ground) had the most discoloration; systems 16 and 23 (positioned in a more protected area) had the least. Rusting, ASTM Type I (pinpoint), was found on 13 of the 32 systems. Showing the most rusting were systems 38 and 39; while systems 11, 14, 17, 20, 21, 34, 35, 36, 37, 40, and 41 were slightly better. Systems 17, 20, and 21 exhibited peeling, and systems 11, 14, 17, and 20 exhibited cracking. Wrinkling shows on systems 34 through 41. No blistering was observed on any of the coating systems.

LABORATORY SALT-SPRAY EXPOSURE OF COATING SYSTEMS

Laboratory salt-spray testing (Method 6061 of Ref 2) is often used as a relatively quick procedure for screening coatings for ability to protect steel from corrosion. In such testing, coated panels are exposed in an enclosed chamber in an atmosphere of 5% or 20% salt spray at a temperature of approximately $95^{\circ}F$.

The results of salt-spray exposure of systems 42 through 53 were reported in Reference 1. Systems that provided above-average protection in Phase 1, plus 25 additional coating systems, are discussed in this section of this document. This group of coatings, then, form the basis for selection of those coatings that could be used for field exposure on vortex towers at PMTC.

First Series

Panel Preparation. Prerusted 6x12-inch steel panels were cleaned manually - first by wire-brushing and then by scrubbing in water with a medium-hard bristle brush. The panels were then dipped in methyl ethyl ketone (MEK) to remove water and allowed to dry. No desiccator large enough to hold these panels was available, so they were placed overnight in a slightly warm dry oven to prevent corrosion before use. One-half of the cooled panels received a special surface treatment before coating (see Table 2). This surface treatment consisted of brushing with the same metal conditioner and rust converter used with systems 43, 45, and 47 in the initial study (Ref 1). All coatings were primed, using a 1-inch-wide brush. One-half of each set of treated and untreated panels were machine-scribed to bare metal with an "X." This first series used MIL-P-24441 (Formula 150) epoxy-polyamide primer and MIL-P-24441 (Formula 152) epoxy-polyamide topcoat as the coating system standard. Systems 10, 12, 13, 15, 16, 18, 19, 21, 34, 35, 36, 38, 40, and 41 (Ref 1) were tested. The coated panels were placed in a 5% salt-spray cabinet and rated periodically by the same rating system used in Reference 3.

<u>Results</u>. The panels were left in the salt spray for 154 days (Table 3). At the end of this period all the scribed panels had discolored from rusting and tuberculation in scribed areas. All systems showed some blistering around the scribed areas, but systems 12, 18, 35, and 38 also had blistering elsewhere. Except for systems 21 and 38, all systems had slight undercutting. All systems, except systems 18 and 30, would probably provide several years of protection to steel under normal exterior exposure.

Second Series

Panel Preparation. Shop personnel cleaned the prerusted experimental panels by power grinding. The panels were then scrubbed in water with a bristle brush, dipped in MEK, and allowed to dry. All coatings were applied by spraying, using the experimental backpack applicator.* Systems 54, 55, 57, 58, 59, 60, 66, 67, 68, 69, and 70 comprised this series. The types and sources of the coating systems can be found in Appendix A.

<u>Results</u>. The salt-spray conditions and inspections were similar to those of the first series. All systems were exposed to salt spray for 123 days, except systems 55, 57, 67, and 70, which were exposed for only 98 days.** After 123 days, systems 69 and 70 had failed because of delamination of the topcoat from the primer. System 67 performed the best (see Table 4) showing only slight overall blistering and blistering scribe. Second best was system 57, which showed discoloration and rusting, Type I. All the other systems showed discoloration, tuberculation, and rusting scribes. Systems 55, 67, 68, and 69 showed slight blistering, and systems 54, 58, 59, 60, 66, and 68 showed undercutting.

CLEANING AND COATING APPLICATION EQUIPMENT

Three of the most common causes for coating failure on steel towers are: (1) inadequate surface preparation, (2) improper application of the coating, and (3) incompatibility of the new and previous coatings. To reduce coating failures due to (1) or (2) surface preparation and coating application equipment was investigated. As a result of the investigation, special equipment was designed and used in preparation of both the second series laboratory tests and the field tests.

Design

This special equipment, shown in Figure 1, was designed for mounting on a backpack for a painter to carry it to areas to be coated. The backpack was designed and fabricated by Advanced Coatings and Chemicals, South El Monte, Calif., under a contract awarded by CEL. Three criteria were uppermost in its design: light weight, portability, and sufficient

^{*}See section on CLEANING AND COATING APPLICATION EQUIPMENT.

^{**}The 25-day difference in exposure time of some of the panels was due to relocating the salt-spray cabinet. After relocating the cabinet, additional panels were added to the test.

power for operation. All components of the system were off-the-shelf items. On a typical backpack harness was mounted a 17x8x1/4-inch aluminum plate to which a Binks Oil-Less Air Compressor Model 34-1051 was attached. This compressor, powered by a 3/4-hp, 1,725-rpm electric motor, produced a maximum pressure of 50 psi. Surface preparation tools included a Chicago Monarch Model 25 chipping hammer/needle gun (Figures 1(b) and (c)) and a Black and Decker 16,000-rpm, air-operated disc sander (Figure 1(d)). The paint gun was a Binks Model 62 with a Binks Model 80 l-quart pot (Figure 1(e)). Six-foot long feedlines extended from the compressor to the pot and from the pot to the gun. The complete system weighed approximately 67 pounds. In the field, tower electrical outlets or extension cords to other outlets were to provide power for operation.

Results

The backpack surface preparation and paint application equipment was satisfactorily used in the laboratory to clean and coat the experimental panels. When the equipment was used for surface preparation and coating application on the antenna towers at PMTC, however, the following problems were noted: (1) the system was too heavy to use for an extended period of time; (2) electric power was not available so air pressure had to be obtained from a portable compressor; and (3) the compressor produced inadequate pressure for satisfactory cleaning with the tools. A larger portable compressor had to be used to provide the necessary pressure.

If such alternative equipment were chosen for future use, a dieseldriven air compressor could be used for both cleaning and application. A clamped, rigid line could run from the compressor at the base to the top of the antenna. Quick disconnects for attachment of a flexible pneumatic hose could be located at intervals of 20 feet. This hose could be fitted to a reel mounted on the backpack harness in place of the compressor and motor. While such an alternative system was not tested on the vortex towers, it is believed that all problems encountered with the original backpack system would be eliminated by use of such an system. For instance, a pressure hose was lifted in similar fashion with a cherry picker.

FIELD EXPOSURE OF COATINGS ON VORTEX TOWERS AT PMTC

Preparation of Test Areas

Portions of two steel vortex towers located on a beach at the western perimeter of PMTC were used as substrates for the second field exposure of antenna coating repair. These towers were erected in 1954 and have been painted three times since then. The towers are exposed to periodic wind-blown sand and salt spray from the ocean, with the lower 20 feet subject to sand abrasion at times of high wind. Large areas of the legs and chord braces had extensive coating loss and rusting. Most connectors had significant galvanic corrosion.

4

For the coating tests, all corrosion, loose coating, and dirt were removed from the 10- and 20-foot elevation test areas on each tower before application of the coatings. A pneumatic chipping hammer removed the larger areas of corrosion and loose coating; this preparation was followed by use of a grinder equipped first with coarse-grit (aluminum oxide #36) and then fine-grit (aluminum oxide #60) disks. The connectors and areas surrounding them were cleaned with a needle gun.

Two experimental coating systems were applied to each of the chord braces and their leg connectors at the 10- and 20-foot levels of each tower. Appendix B lists the formulations of the experimental coatings. The experimental backpack application equipment was used to apply systems 58, 59, and 60. All other systems were applied with a 2-inch wide brush. Appendix C lists the formulas of each two-coat system used on the towers, the material sources, and the total dry film thicknesses. In accordance with Civil Aeronautics Board Regulations, the different levels of the antennas were alternately painted red and white. Random locations on the test areas were assigned to these systems.

Coating Selection

The selection of the coating systems for exposure on the vortex towers was two-fold. First, new titanate coupling agents came to the attention of CEL personnel. Coatings containing titanate agents were formulated and exposed in a laboratory salt-spray chamber in accelerated tests discussed earlier in this document. Some of these coatings were selected for long-term exposure on the vortex towers. Second, other coatings selected had proved themselves in applications other than on antenna towers, and it was decided to determine their usefulness as coatings under tower exposure conditions.

The coating used for the standard for this exposure test was MIL-P-24441 epoxy-polyamide (150 for the primer and 156 for the topcoat).

Results

Inspection and rating of the experimental coatings were made monthly, using the ASTM rating system described previously. Exposure ratings after 15 months are shown in Table 5. At this time the coatings located at the 20-foot elevation on the tower nearest the ocean had somewhat greater deterioration than the other. A brief summary of significant effects on the exposed coatings is listed as follows:

Effect	Systems										
Chalking	All, except 63										
Discoloration	54, 56, 58, 59, 63										
Cracking	58, 62										
Slight peeling	56										
Rusting, Type I	54, 56, 57, 58, 59										
Rusting, Type II	56, 58										

The overall general protection was very good for systems 55, 57, and 60 through 65 of the 12 systems.

PRACTICES RECOMMENDED BY CEL FOR PROTECTING ANTENNA TOWERS*

Antenna towers and supporting communication equipment are widely scattered throughout the world. Many are at remote locations that have very corrosive environments (Figures 2 and 3) and very limited maintenance services available. Thus, the greatest care must be taken in siting, designing for corrosion control, and planning maintenance if vital communication systems are to be kept operable.

Types of Antennas

Most antenna towers and supporting equipment are constructed of (1) steel, which corrodes readily (Figure 4); (2) galvanized steel (Figure 5), which can provide several years of protection before requiring a coating; (3) or aluminum, which can provide many years of service uncoated but is usually coated in a severe environment. Circularly disposed (Wullenweber) antenna arrays are unique in that wood is used in much of their structural supports (Figure 6). Treated wood is generally used to prevent termite attack. All towers should be coated to provide visibility to aircraft unless acceptable warning lights are used.

Design for Corrosion Control

Faulty design is often a major factor leading to the corrosion of structures and equipment exposed to exterior weathering (Ref 4). Location, structural features, and joining require special consideration in towers and communication equipment construction.

Facilities should be located as far as possible from the sea and from winds carrying salt spray. It has been noted that towers located several miles from an ocean have their greatest degree of corrosion at 150- to 200-foot elevations where concentrations of sea salt carried by winds are greatest. Sand borne by winds may cause erosion of coatings or metal on towers. Similarly, towers should not be located downwind from sources of corrosive industrial pollution.

Box, rectangular, and tubular beams are much less susceptible to corrosion than tees, channels, and I-beams because the latter permit greater accumulations of salt, moisture, and other contaminants that accelerate corrosion or are more difficult to clean and coat. It is good practice to smooth all welds, edges, and other rough surfaces before coating to permit easier, more uniform coating application. Stairs, railings, ladders, and support trailers present irregular or inaccessible surfaces difficult to coat (Figures 7 and 8).

^{*}Based on a paper presented at USAF High Work Safety Conference at Norton Air Force Base, December 5-7, 1978.

Crevices may accelerate corrosion and are difficult to coat. Continuous welding is more costly than skip welding, but it eliminates such crevices. Riveted and bolted connections can also produce crevices. Insulation not only minimizes crevices but may also eliminate galvanic corrosion associated with contact of dissimilar metals.

Guy lines should be placed so they do not contact each other (Figure 9) or structural members during high winds. The use of protective sleeves to prevent abrasion damage by such action is not an acceptable method of preventing contact (Figure 10).

Surface Preparation for Coating Repair

Antenna towers and supporting equipment are best coated in a steel fabrication shop and then touched up later in the field, as necessary. Because of the difficulty and cost of coating assembled antenna towers, it is best to obtain as high a level of surface preparation and as good a coating as possible to start with to forestall future maintenance as long as possible. Abrasive blasting, as with almost all steel structures, is the preferred method of cleaning steel towers for coating, either before or after erection, because it produces a good surface texture for bonding (Ref 5). The different levels of surface preparation commonly used for new steel tower construction are given in Table 6.

The level of surface preparation desired depends upon (1) the type of coating to be used, (2) the severity of the environment, and (3) the length of protection desired. Exterior abrasive blasting is being restricted in some locations because of air pollution caused by particulates emitted into the atmosphere. Thus, greater use may have to be made of different methods of mechanical cleaning (Figures 1(b), (c), (d)). The Tri-Services Painting Manual (Ref 6) describes such cleaning methods as sand and power tools (brushes, grinders, sanders, hammers, chisels, and scalers) and flame and chemical cleaning. Reference 7, published by the Steel Structures Painting Council (SSPC), has standards for hand-tool cleaning (SSPC-SP No. 2) and for power-tool cleaning (SSPC-SP No. 3). Flame and chemical cleaning are not usually practical on tower structures.

Galvanized steel and aluminum are solvent-cleaned, if new, and then hand-tool-cleaned or brush-off-blasted (SSPC-SP No. 4) before coating.

Coating Selection

Coating selection is based on the properties of the coating system; some of these are discussed below.

1. Unmodified drying oil coatings wet steel surfaces very well, but cure very slowly and lack toughness and durability for tower coatings.

2. Alkyds (modified drying oil coatings) wet steel surfaces well, have good curing and protective properties, and are also rather tolerant of incompletely prepared surfaces. 3. Two types of lacquer (vinyl and chlorinated rubber) form tough, durable films and are easily topcoated because solvent in the applied coating softens the existing coating.

4. Chlorinated rubber coatings cure rapidly so that they can be utilized effectively where unpredictable rains or fogs limit times of coating application and curing.

5. Epoxies form tough, protective finishes, but the surfaces chalk freely in sunlight.

6. The polyamide-cured epoxies are more tolerant of incomplete surface preparation than other epoxies.

7. The chemically cured urethanes also produce tough coatings.

8. Aliphatic urethanes have good weathering properties and, thus, are sometimes used over epoxy primers to improve the exterior weathering of the coating system.

9. Zinc-rich coatings can give long-term cathodic protection to steel.

10. Inorganic zinc-rich coatings have better abrasion resistance than the organic zinc-rich coatings, but the latter have better topcoating properties.

Coating selection is summarized in Table 7 and discussed in more detail in Reference 8. Coatings applied in three or more coats at dry film thicknesses of 6 mils or more will give optimum barrier protection if free of voids (holidays).

Galvanizing is like a zinc-rich coating in that it also protects steel from corrosion by cathodic protection. Zinc-rich coatings weather better in marine atmospheric environments and are more easily applied and topcoated in place (Ref 9) than galvanizing. Thus, a pretreatment (wash) primer is used for alkyd systems on galvanized steel. A zinc dust-zinc oxide pigmentation rather than a zinc chromate or red lead pigmentation is generally used in alkyds that are applied over pretreatment-primed galvanized steel (Ref 6). Specially formulated epoxies can also be used over galvanized steel. It is desirable to keep a galvanized or inorganic zinc coating as a permanent primer protected by a topcoat to avoid preparing the underlying steel for coating repairs.

If aluminum structures are to be coated, an appropriate pretreatment (wash) primer, a zinc chromate alkyd primer, and an alkyd topcoat can be used (Ref 6). Even greater protection will be received from a coating system of pretreatment primer, epoxy primer, and aliphatic urethane topcoat.

Coating Antenna Guy Lines

Galvanized steel wire ropes are usually used to guy antennas and other towers, although aluminum-coated wire may be more corrosionresistant when proper precautions are taken (Ref 10). In a CEL study (Ref 11), thin preservatives formulated to penetrate galvanized steel guy lines provide only temporary protection, especially if applied after weathering of the guy lines. A petrolatum paste which encapsulates the guy line to provide a protective barrier seems more practical. CEL and the Naval Radio Station (I), Cutler, Maine (Ref 12), developed equipment (Figure 11) for the remote cleaning and coating of large diameter (1 to 3-1/4 inches) guy lines with petrolatum paste. A nylon brush (Figure 12) was used for cleaning the line on the ascent (Figure 13) and coating on the descent. This equipment is still performing very satisfactorily at Cutler, Maine.

Fiberglass-reinforced epoxy rods (Figure 14) are frequently used on circularly disposed (Wullenweber) arrays (Figure 6) or other systems where high dielectric strength, high tensile strength, and low elongation are required. If their protective coating is lost by weathering and the glass fibers are exposed, a loss in strength can result. It is normally a better investment to replace than recoat such deteriorated rods. Also, the weakest component is the end connector (Ref 13); therefore, protective coatings are especially important in this area.

COST CONSIDERATIONS FOR NEW STEEL CONSTRUCTION

Although life cycle coating costs associated with steel antenna towers vary widely with antenna design, remoteness from populated areas, and severity of environment, some conclusions can be made of the cost effectiveness of different coating procedures on new construction. On existing structures, coating maintenance procedures are largely determined by the type and condition of existing coatings. Reference 7 provides much practical information on the repair of existing coatings.

Surface preparation and priming of steel tower components is best done in a fabrication shop under controlled conditions. This results in a better quality product and reduces costs, even if touchup of damaged coatings is required in the field before erection of the tower. In Table 8 surface preparation and primer costs in a fabrication shop are compared to those in the field*. Costs of surface preparation and priming are much higher after tower erection (at least double on high towers).

Initial costs may be deceiving. Table 9 lists available cost data for five coating systems appropriate for antenna towers. Although the alkyd system is the cheapest of the five, it will ordinarily provide the shortest protection in a severe environment. Table 10 lists typical costs and service lives of these five coating systems in an industrial environment. It can be seen that in such moderate or in severe environments, the alkyd system would be the least cost effective.

In selection of a coating system for new construction, ease and cost of coating maintenance should be of great importance. A zinc-rich system will usually be the most cost effective if the zinc-rich primer

*If permitted.

becomes permanent so that little bare steel is ever exposed. If significant areas of steel will require spot cleaning and recoating, an alkyd or epoxy-polyamide system that is relatively tolerant of incompletely cleaned steel have advantages. Vinyl and chlorinated rubber systems are more easily topcoated than other systems because they are lacquers. Obviously, all significant factors must be considered before an optimum coating and procedure can be chosen for steel antenna towers.

SUMMARY OF RESULTS AND RECOMMENDATION

Most of the experimental paints exposed on the antenna positioner at Point Mugu provided excellent protection for 2 years in a marine atmospheric environment. These results correlated well with those from accelerated laboratory (salt-spray) testing.

After 6 months of field exposure, eight out of nine experimental coatings containing a butyl titanate corrosion-inhibiting agent provided very good protection. The performances of these materials will be monitored periodically so that results can be used in field tests when the opportunity arises.

The backpack equipment seem too heavy and too underpowered to be practical for field use. Reducing the weight by design change or lighter materials appears infeasible. The use of an air compressor on the ground with hose lines connected to the backpack appears to be a feasible alternative for this equipment.

It is recommended that the coatings and cleaning methods developed in this investigation be field-tested on a full scale if the opportunity arises.

ACKNOWLEDGMENTS

The assistance of CEL personnel Messrs. R. Staples and L. Underbakke in preparing the experimental specimens is gratefully acknowledged.

REFERENCES

1. Civil Engineering Laboratory. Technical Note N-1516: Repair systems for damaged coatings on Navy antenna towers - Part 1, by L. K. Schwab and R. W. Drisko. Port Hueneme, Calif., Mar 1978.

2. General Service Administration. Federal Test Method Standard 141a: Paint, varnish, lacquer, and related materials; methods of inspection, sampling, and testing. Washington, D.C., Sep 1965.

3. Naval Civil Engineering Laboratory. Technical Report R-786: Performance of ten generic coatings during 15 years of exposure, by C. V. Brouillette and A. F. Curry. Port Hueneme, Calif., Apr 1973. 4. L. D. Perrigo. "Fundamentals of corrosion control design," 12th Western States Corrosion Seminar, National Association of Corrosion Engineers, Katy, Tex., 1978, pp 6/1-6/11.

5. Civil Engineering Laboratory. Techdata Sheet 79-04: Surface preparation for coatings, by R. W. Drisko. Port Hueneme, Calif., Apr 1979.

6. Naval Facilities Engineering Command. NAVFAC MO-110: Paints and protective coatings. Philadelphia, Pa., Jan 1969, p. 233.

7. Steel Structure Painting Council. Steel structures painting manual, Vol 2 Systems and specifications, J. D. Keane, ed. Pittsburgh, Pa., 1973, p. 351.

8. R. W. Drisko. "Introduction to protective coating," 12th Western States Corrosion Seminar, National Association of Corrosion Engineers, Katy, Tex., 1978, pp 7/1-7/6.

9. C. G. Munger. "Practical aspects of coating repair," paper presented at Corrosion/79, National Association of Corrosion Engineers, Katy, Tex., 1979, p. 38.

10. J. Larsen-Badse and F. Brackett. "Performance of galvanized and aluminum coated wire strand in marine atmosphere," Materials Performance, vol 9, no. 12, Dec 1970, pp 21-24.

11. Civil Engineering Laboratory. Technical Report R-777: Deterioration of guy lines, by R. W. Drisko. Port Hueneme, Calif., Oct 1972.

12. R. W. Drisko. "Equipment for remote coating of tower guy lines," Materials Performance, vol 16, no. 2, Feb 1977, pp 45-47.

13. Civil Engineering Laboratory. Technical Note N-1321: End connectors for glass reinforced plastic (GRP) antenna guy rods, by H. P. Vind and R. W. Drisko. Port Hueneme, Calif., Jan 1974.

14. G. H. Brevoort and A. H. Roebuck. "Simplified cost calculations and comparison of paint and protective coating systems, expected life, and economic justification," paper presented at Corrosion/79, National Association of Corrosion Engineers, Katy, Tex., 1979. (NACE paper no. 37)

	Remarks			Wrinkling
4	Blistering		10	10
	Rusting Type I	$^{+01}_{++}$	10	-6 -
	Scaling Flaking Peeling	10 10 10 10 10 10 10 10 10 10	10	10
	Alligatoring Checking Cracking	01 01 01 01 01 01 01 01 01 01	10	10
	Chalking	~~~~~	2 0	5 2
0	Discoloration	5 ∞ 5 5 6 ∞ ~ % [∞] ~ 9 5 0 0 1 5 5 5 8 ∞ ~ % ∞ ~ 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8+ 6+	8/8
	General Protection		10	-6
	Coating System	10 11 11 11 11 11 11 11 11 11 12 12 13 23 23 23 23 23 23 23 23 23 23 23 23 23	32	34

continued

Ratings of Coatings on Antenna Positioners After Three Years of Exposure at PMR, Calif. Table 1.

nued	
Continue	
1.	
Table	

Remarks	Wrinkling Wrinkling Wrinkling Wrinkling Wrinkling Wrinkling
Blistering	0 0 0 0 0 0 0 0
Rusting Type I	2020 2020 2020 2020 2020 2020 2020 202
Scaling Flaking Peeling	99999999
Alligatoring Checking Cracking	10 11 10 10 10 10 10
Chalking	~ ~ ~ ~ ~ ~ ~ ~ ~
Discoloration (7/7 7/-77 6/6 6/7 3/7 6/6
General Protection	
Coating System	35 36 37 38 38 39 40 41

Dry Film Thickness (mil)		5-6	4-5	5-6	5-6	4-6	4-6	4-7	5-6	3-5	4-7	4-5	9	5-6	5-7	(continued)
Surface Treatment ^a		I	1	2	2	T	1	2	2	1	1	1	2	2	2	
Topcoat	First Series	MIL-P-24441-152 ^b	MIL-P-24441-152 ^b	MIL-P-24441-152 ^b	MIL-P-24441-152 ^b	Epoxy, amíne-cured	Epoxy, amine-cured	Epoxy, amine-cured	Epoxy, amine-cured	MIL-P-24441-152 ^b	Chlorinated rubber	Epoxy, polyamide-cured	Chlorinated rubber	MIL-P-24441-152 ^b	Epoxy, polyamide-cured	
Primer	Firs	Epoxy, amíne-cured	MIL-P-24441-150 ^b	Epoxy, amine-cured	MIL-P-24441-150 ^b	Epoxy, amine-cured	MIL-P-24441-150 ^b	Epoxy, amine-cured	MIL-P-24441-150 ^b	Zinc-zinc alloy in medium oil alkyd	Zinc-rich chlorinated rubber	Zinc-zinc alloy in medium oil alkyd	Zinc-rich chlorinated rubber	Zinc-zinc alloy in medium oil alkyd	Zinc-zinc alloy in medium oil alkyd	
System No.		10	12	13	15	16	18	19	21	34	35	36	38	40	41	

Table 2. Laboratory Salt-Spray Exposure

Table 2. Continued

Surface Dry Film Treatment a (mil)		6.1	5.7	3 2.0	3 5.6	3 7.5	6.5	9.0	3 4.7	3.9	6.3	6.3
Surf Treat												
Topcoat	Second Series	TT-E-789 Class A	Epoxy-urethane	MIL-C-81773	MIL-C-81773	MIL-P-24441-152 ^b	Epoxy urethane	Epoxy urethane	MIL-P-24441-151 ^b	MIL-C-81773	Chlorinated rubber	Epoxy-urethane
Primer	Sec	Alkyd	Zinc-rich chlorinated rubber	Zinc-rich chlorinated rubber	Epoxy-urethane	Epoxy-urethane	Epoxy-urethane	MIL-P-24441-150 ^b	Zinc-rich chlorinated rubber	Zinc-rich chlorinated rubber	Zinc-rich chlorinated rubber	Zinc-rich chlorinated rubber
System No.		54	55	57	58	59	09	99	67	68	69	70

^al = Hand wire-brushed 2 = Hand wire-brushed, treated with manganese phospholene no. 7 3 = Mechanical grinding

^bMIL-P-24441 is epoxy-polyamide.

Table 3. Panel Ratings of First Series of Coating Systems After 5% Salt Spray Exposure

	Under- Blistering			10 10 10 6.1 Rust stain from	10 10 8/M ^d scribe and note in top	10 10 8/M "	10 10 8/M	10 10 ⁻ 8/M	10 9 ⁺ 8/M "		10 10 4.5 Rust stains from series	10 10 10 Rust stain from		10	× 6	6		10 10 5.5 Rust stains from scribe and hole in top	10 10 10	10 10	10 10 9 ⁺	10 ⁻ 9/M	10 9 ⁺ 6-8/H ^d "
- sa		n Scribe		+6		9-			-6 +		6	6		<u>ہ</u>				10-		+6		6	
Rating for Following Properties -	ing Tubercu-	Type II lation	System 10	10 10	10 10 ⁻		10 9-	10 9 ⁻	10 8 ⁺	System 12	10 10	10 10		01 01		10 8-	System 13	10 10	10 10	10 10 ⁻	10 9+	10 9-	
ing for Fol	Rusting	Type I		10	10	10	10-	10 ⁻	10		10	10^{-}	1	101	10	10^		10	10	10	10	107	10 ⁻
Rat		Flaking, Peeling		10	10	10	10	10	10		10	10		1 1	10	10		10	10	10	10	10	10
	~	Checking, Cracking		10	10	10	10	10	10		10	10	*	01 01	10	10		10	10	10	10	10	10
		Chalking		10	10	10	10	10	10		10	10	ç	1 10	10	10		10	10	10	10	10	10
	Discolor-	ation		6+	+6	9+	6+	6+	6		+6	6+	+0	ه ^ب	o † ∞	*8		10 ⁻	9+	9+	9+	+6	+6
	General	Protection		10	10 ⁻	10	9+	6+	+6		10	10	107	o1 +0	, +6	-6		10	10	107	10-	6+	6+
	Exposure (days)			4	35	63	92	118	154		4	35	(60 60 60	118	154		2	35	63	92	118	154

16

	Remarks			Few pin point rust spots	Rust stains from	scribe and hole in top			"			Rust stain from	scribe and hole in top		2		=	:		Rust stain from scribe and hole in top					
	Dry Film Thisbass	(mils)		5.8								5.0								4.5					
	Blistering	Scribe		10	10		10	10 ⁻	10 ⁻	6/F		10		10	10	10	6-8/F	6-8/F		10	10	10	+6	2-6/M	2-6/M
	Under-	cutting		10	10		10	10^{-1}	10^{-}	+6		10		10	10	10	10	+6		10	10	10	10	+6	6+
	Blictering			10	10		10	10	10	10		10		10	10	10	10	10		10	10	10	10	10	8/M
	Rusting	Scribe		6	6		6	6	6	-6		10-		10	6	6	6	-6		6	-6	8	8	ø	7
Rating for Following Properties –	Tubercu-	lation	System 15	10	10		10	6+	6+	6	System 16	10		10	6	9+	-6	*8	System 18	10	10	-6	8	8	7
llowing Pr	Rusting	Type I Type II	Syste	10	10		10	10	10	10	Syste	10		10	10	10	10	10	Syste	10	10	10	10	10	10
ng for Fo	Rus	Type I		10^{-}	107		10	10	10^{-}	10		10		10	10	10^{-1}	10	10		10	10^{-}	9+	6+	9+	8+
Rati	Scaling,	Peeling		10	10		10	10	10	10		10		10	10	10	10	10		10	10	10	10	10	10
	Alligatoring,	Cracking,		10	10		10	10	10	10		10		10	10	10	10	10		10	10	10	10	10	10
	Challena	CITATALINE		10	10		10	10	10	10		10		10	10	10	10	10		10	10	10	10	10	10
	Discolor-	ation		6	6		6	6	6	6		10-		10^{-}	6+	6+	+6	6+		9+	6+	6	8+	8	7*
	General	Protection		10 ⁻	10 ⁻		10 ⁻	10 ⁻	9+	6+		10		10	9+	9+	9+	6+		10	10 ⁻	6+	9-	8+	-8
	Exposure (days)			7	35		63	92	118	154		7		35	63	92	118	154		7	35	63	92	118	154

(continued)

Table 3. Continued

17

Table 3. Continued

	Remarks			Rust stains from scribe and hole in top	-	2	2	2	:		Rust stains from scribe and hole in top							Rust stains from	scribe and hole in top			2		(continued)
	Dry Film Thickness	(mils)		5.3							5.8							4.9						
	Blistering	Scribe		10	10	10	10^{-1}	W/6	4/H		10	10	10	10 ⁻	10 ⁻	6/F		10	ç	10	6	2-4/F	2-4/F	
	Under-	cutting		10	10	10	10	10	+6	1	10	10	10	10	10	10-		10	+0	6 + 0	. +6	9+	-6	
	Blictering	DIIPUT		10	10	10	10	10	10		10	10	10	10	10	10		10	ç	10	10	10	10	
	Rusting	Scribe		10 ⁻	10 ⁻	10-	10 ⁻	+6	6+		6	6	6	-6	-6	ø		10	I U	× *	+00	00	80	
Rating for Following Properties -	Tubercu-	lation	System 19	10	10	10	10 ⁻	6	6	System 21	10	10	10	6	6	-6	System 34	10	10	2 0	-6	80	8	
lowing Pr	Rusting	Type II	Syste	10	10	10	10	10	10	Syste	10	10	10	10	10	10	Syste	10	0	10	10	10	10	
ng for Fo	Rus	Type I		10	10	10	10 ⁻	10 ⁻	6+		10-	10^{-}	107	10	+6	+6		10	0	10	10	10 ⁻	6	
Rati	Scaling,	Peeling		10	10	10	10	10	10		10	10	10	10	10	10		10	10	10	10	10	10	
	Alligatoring,	Cracking		10	10	10	10	10	10		10	10	10	10	10	10		10	ç	0 C	10	10	10	
	Challena	CHAIKING		10	10	10	10	10	10		10	10	10	10	10	10		10	1	10	10	10	10	
	Discolor-	ation		10	10 ⁻	10-	6+	9+	6+		+6	6+	6+	6+	6+	-6		6+	+0	× +6	6+	9+	6+	
	General	Protection		10	10	10^	10-	+6	6+		10-	10^{-1}	+6	6+	6+	6		10	101	10_	10 ⁻	9+	6+	
	Exposure (days)			2	35	63	92	118	154		7	35	63	92	118	154		2	25	<i>c c</i>	92	118	154	

	Remarks				Rust stain from		"	"			Rust stains from scribe and hole in top	"		"		**			Rust stains from scribe and hole in top		н	n	2	(continued)
	Dry Film	(mils)		5.3							4.4							6.1						
	Blistering	Scribe		10	10	10	10	10	2-6/F		10	10	6	8	2-4/M	2-4/H		10	10	10	10	10	10	
	Under-	cutting.		10	10	10	10	10	10		10	10	+6	9+	6	80		10	10	10	10	10	10	
	Dictoring	Amostic		10	2-4/H	2-8/H	2-8/H	2-8/H	2-8/H		10	10	6	10	10	10		10	2-4/H	2-6/H	2-6/H	2-6/H	2-6/H	
	Rusting	Scribe		10	10	10	10	10	10 ⁻		6	9+	6	8+	8+	8		10	10 ⁻	10^{-}	10^{-}	10^{-}	+6	
Rating for Following Properties –	Tubercu-	lation	System 35	10	10	10	10	10	10	System 36	10	10	6	-6	8	8	System 38	10	10	10	10	10	107	
llowing P1	Rusting	Type II	Syste	10	10	10	10	10	10	Syste	10	10	10	10	10	10	Syste	10	10	10	10	10	10	
ng for Fo	Rus	Type I		10	10	10	10 ⁻	+6	6		10	10	10	10	10	10		10	10	10^{-}	10	9+	6	
Rati	Scaling,	Freeling		10	10	10	10	10	10		10	10	10	10	10	10		10	10	10	10	10	10	
	Alligatoring,	Cracking,		10	10	10	10	10	10		10	10	10	10	10	10		10	10	10	10	10	10	
		CITAIKIIIB		10	10	10	10	10	10		10	10	10	10	10	10		10	10	10	10	10	10	
	Discolor-	ation		10	10^{-}	10-	10-	10^{-}	10-]	+6	9+	9+	6+	+6	- 6		10	10	10	10^{-1}	6+	+6	
	General	Protection		10	10	10	10^{-}	6+	6		10	10	+6	6+	6+	+6		10	10 ⁻	10-	10	8+	8	
	Exposure (days)			2	35	63	92	118	154		7	35	63	92	118	154		7	35	63	92	118	154	

Table 3. Continued

0
-
=
- 14
•
÷ .
0
~~~
C
-
÷.
ë.
÷.
e 3.
e
e
e
able
e

ъ

	Under- Blistering Dry Film Remarks	cutting Scribe		10 10 5.8	10     9 ⁺ 10     Rust stains from       scribe and hole in top     scribe and hole in top	10 9 ⁺ 10 "	10 8 4-6/F "	10 9 4-6/F "	10 9 4-6/F		10         10         5.3         Rust stains from scribe and hole in top	10 10 10 "	10 10 10 "	10 10 10 "	10 9 ⁺ 4-6/F "	10 0 ⁺ 4-6/F
	Rusting	_		10 ⁻	6+	9+	6	80	80		6	6	6	6	6	-0
Rating for Following Properties –	Tubercu-	lation	System 40	10	10	10	10	10	10	System 41	10	10	9+	9+	6	0
Plowing P	Rusting	Type II	Syste	10	10	10	10	10	10	Syst	10	10	10	10	10	10
ing for Fo		Type I		10	10	10	10	10	9+		10	10	10	10	$10^{-}$	10
Rat	Scaling,	Flaking, Peeling		10	10	10	10	10	10		10	10	10	10	10	10
		Cracking, Cracking		10	10	10	10	10	10		10	10	10	10	10	9
	;	Chalking		10	10	10	10	10	10		10	10	10	10	10	10
	Discolor-	ation		10	10	6+	9+	9+	6+		6+	9+	6+	6+	6+	0
	General	d		10	10	10	6+	6+	6+		10	10-	$10^{-}$	10 ⁻	6+	+0
	Exposure (davs)			2	35	63	92	118	154		2	35	63	92	118	154

o
sur
xpc
Ξ
pra
lt S
Sa
5% S
fter
IS A
tem
Sysi
gu
oati
ŭ
fo
rie
Se
puq
ecc
of S
5
ating
R
anel
Pa
e 4.
able
Ë

	Remarks						:	(*Scribe side only)				(*Scribe side only)	(*Scribe side only)	(*Scribe side only)			(*Scribe only)	(*Scribe side only)	(*Scribe side only)	(*Scribe side only)				(*One side only)	(*One side only)	(continued)
	Dry Film Thickness	(mils)		7.5						6.5						0.0						4.7				
	Blistering	Scribe		10	10	M/2-4	M/2-4	M/2-4*		10 ⁻	6+	M/2-4*	M/2-4*	M/2-4*		10	10	M/2-4*	M/2-4*	M/2-4*		10	10	F/8*	F/8*	
	Under-	cutting		10	10	, +9	-6	00		$10^{-1}$	6+	6	-6	~		10	10	6	∞	7		10	10	10	10	
	Dlictoring	Among		10	10	10	10	10		10	10	10	10	10		10	10	10	10	10		10	10	F/8	F/8	
	Rusting	Scribe		10-	+6	6	~	00		+6	6	8+	80	7+		10 ⁻	+6	-6	*8	ø		10 ⁻	$10^{-}$	$10^{-}$	10	
Rating for Following Properties -	Tubercu-	lation	1 59	10	10	10	-6	- 6	1 60	10 ⁻	6+	80	8	8	n 66	10	10	10	+6	6	a 67	10	10	10	10	
llowing Pr	Rusting	Type II	System 59	10	10	10	6	6	System 60	10	10	10	10	10	System 66	10	10	10 ⁻	10 ⁻	10-	System 67	10	10	10	10	
ng for Fo	Rus	Type I		10	10	$10^{-}$	10	10 ⁻		10^	10	$10^{-1}$	10-	10		10	10*	10	$10^{-}$	10-		10	10	10	10	
Rati	Scaling,	Flaking, Peeling		10	10	10	10	10		10	10	10	10	10		10	10	10	10	10		10	10	10	10	
	Alligatoring,	Cracking, Cracking		10	10	10	10	10		10	10	10	10	10		10	10	10	10	10		10	10	10	10	
	;	Chalking		10	10	10	10	10		10	10	10	10	10		10	10	10	10	10		10	10	10	10	
	Discolor-	ation		10	10 ⁻	-6	*8	+8	1	10-	6+	9+	9+	6+		10-	$10^{-1}$	6	6	-6		10	$10^{-}$	$10^{-1}$	10^	
	General	Protection		10	10	6	6	6		10	10	9+	∞	00		10	10	10 ⁻	6	6		10	$10^{-}$	10 ⁻	10 ⁻	
	Exposure (davs)			19	39	65	92	123		19	39	65	92	123		19	39	65	92	123		14	40	67	98	

Table 4. Continued

	Remarks						(*One side only)	(*One side only)		Few large blisters	Delamination top-	coat from primer	2	"						Failed – lost top-	coat primer one side
	Dry Film	(mils)		3.9						6.3							6.3				
	Blistering	Scribe		10	10	10	F/8*	F/8*		10	10		10	10	10		10	10	10	I	
	Under-	cutting		10	10	6+	-6	-6		10	10		10	10	10		10	10^	10	ł	
		Buistering		10	10	10	M/8	M/6-8		10	F/2		M/2-4	M/2-4	M/2-4		10 ⁻	10 ⁻	10-	I	
	Rusting	Scribe		10 ⁻	+6	6	8+	+00		$10^{-1}$	$10^{-}$		$10^{-}$	$10^{-}$	10		10 ⁻	10	10-	I	
Rating for Following Properties -	Tubercu-	lation	1 68	10	10	6+	-6	*8	1 69	10	10		10	10	10	1 70	10	10	10	I	
llowing Pr	Rusting	Type II	System 68	10	10	10	10	10	System 69	10	10		6	6	90	System 70	10	10	10	ı	
ng for Fo	Rus	Type I		10	10	9+	6	6		10	9+		-6	8	80		10	10	6	I	
Rati	Scaling,	Flaking, Peeling		10	10	10	10	10		10	10		10	10	10		10	10	10	ł	
	Alligatoring,	Cracking, Cracking		10	10	10	10	10		10	10		10	10	10		10	10	10	I	
	:	Chalking		10	10	10	10	10		10	10		10	10	10		10	10	10	I	
	Discolor-	ation		10 ⁻	10 ⁻	9+	9+	6+		10 ⁻	6+		9-	8	œ		10-	107	6	ļ	
	General	Protection		10	10	6+	-6	+8		10^	6+		-6	-8	-8		10^	10	6	I	
	Exposure (days)			19	39	65	92	123		19	39		65	92	123		19	39	65	98	

Table 4. Continued

NOTE: Definitions of abbreviations: F = few, M = medium, H = heavy.

	Remarks		Mold: Black, Blue, Green		Localized blistering						7.0% cracking														Mold: Black, Green	Localized blistering	
Total	Thickness (mils)		18	15	10	6	4	7	10	12	14	7	18	12		12	17	10	6	>20 ⁺	7	9	15	12	6	>20 ⁺	18
	Blistering			10		10	10	10	10	10	10	10	10	10		6+	10		10	*8	6+	6	10	10	10	10	10
ing	Type II (With Blistering)			10		6+	6	6	10 ⁻	10 ⁻	6+	10 ⁻	9+	10		6	10 ⁻		10	-6	-6	-6	10	10	10 ⁻	10	10
Rusting	Type I (Without Blistering)	Antenna I, Bldg 854, Inland		10	_	$10^{-1}$	9	6+	10	107	6	10 ⁻	10	10	Bldg 855	8	10		10	-8	-6	6	10	10	$10^{-}$	10	10 ⁻
Carline	Scaling, Flaking, Peeling	ntenna I, Bld		10		10	10	10	10	10	10	10	10	10	Antenna II, Bldg 855	10	10		10	6+	10	10	10	10	10	10	10
	Alligatoring, Checking, Cracking	V		10		10	10	10	$10^{-1}$	10	.9	10	10-	10		10	6		10	10	10	80	10	10	10	$10^{-}$	10
	Chalking			10		8	9	4	10	2	10	10	2	4		6	6		10	10	4	6	4	8+	10	2	4
	Discoloration			10		10 ⁻	10~	9-	10	10	6	10	10-	10		6	10 ⁻		10	6	S	10	10	10	6+	10	10
	General Protection		Failed	10	Failed	10 ⁻	6	9+	10 ⁻	10 ⁻	6	10 ⁻	10	10		8	10	Failed	10	8	-6	6	10	10	10 ⁻	10	10 ⁻
	Coating System		54	55	56	57	58	59	60	61	62	63	64	65		54	55	56	57	58	59	60	61	62	63	64	65

Table 5. Ratings of Coatings on Antennas After 15 Months of Exposure at PMTC

# Table 6. Surface Preparation Standards for Abrasively Blasted Steel

Surface Finish	NACE Standard (Ref 10)	SSPC Standard (Ref 7)	SSPC/SIS Visual Standard (Ref 7)
White Metal Blast	1	5	CSa3
Near-White Blast	2	10	CSa2-1/2
Commercial Blast	3	6	CSa2
Brush-Off Blast	4	7	CSa1

Table 7. Coatings Commonly Used on Steel Tower Structures

Generic Type	Minimum Surface Preparation Recommended	Ease of Repair and Topcoating	Important Properties
Alkyd	Commercial, but tool or brush- off may be OK	easy	Wets surface well; weathers well; protection good in most environments.
Vinyl	Commercial or near white	easy	Protection good in all environments.
Chlorinated Rubber	Commercial or near white	easy	Fast curing; pro- tection good in all environments.
Epoxy-Polyamide	Commercial	difficult*	Excellent protec- tion; chalks freely in sunlight.
Urethane	Commercial or near white	difficult*	Excellent protec- tion; aliphatic urethanes have excellent exterior weathering.
Inorganic Zínc	Near white or white	difficult*	Excellent abrasion resistance; used as preconstruction primers.
Organic Zinc	Commercial or near white	varies	More easily top- coated than inor- ganic zincs.

*Special precautions must be taken in topcoating chemically curing coatings.

	Cost (\$,	/sq ft)
Item	Field	Shop
SSPC Surface Prepara	tion	
Commercial Blast (SSPC-SP 6)	0.50	0.25
Near White (SSPC-SP 10)	0.65	0.30
White Metal (SSPC-SP 5)	0.90	0.40
Primer (Generic Typ	e) ^b	
Alkyd, Vinyl, or Chlorinated Rubber	0.10	0.06
Ероху	0.15	0.11
Zinc Rich	0.20	0.16

## Table 8. Typical 1978 West Coast Surface Preparation and Primer Costs^a

^aFrom Reference 14.

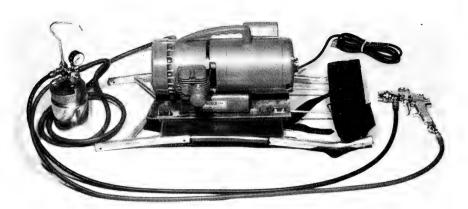
^bDoes not include cost of coating material.

	Cost of Coating System (\$/sq ft)					
Item	Alkyd	Vinyl	Chlorinated Rubber	Ероху	Zinc _b Rich	
Shop blasting ^C	0.25	0.30	0.25	0.25	0.30	
Shop priming	0.06	0.06	0.06	0.11	0.16	
Primer material	0.025	0.056	0.054	0.041	0.087	
Field application of intermediate coat	0.20	0.20	0.20	0.25	0.25	
Intermediate coating material	0.022	0.136	0.092	0.079	0.041	
Field application of finish coat	0.10	0.10	0.10	0.15	0.15	
Finish coating material	0.022	0.053	0.038	0.037	0.059	
Total	0.679	0.905	0.794	0.917	1.047	

## Table 9. Typical 1978 West Coast Costs for Coating New Antenna Towers^a

^aFrom Reference 14.

^bSelf-cure inorganic zinc primer, high-build epoxy intermediate coat, and aliphatic urethane topcoat.

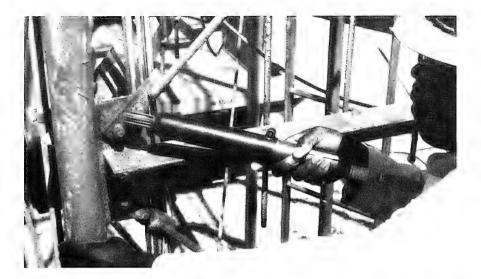

^CCommercial blast for alkyd, chlorinated rubber, and epoxy; near white blast for vinyl and zinc rich.

 d Includes \$0.10 for field touchup of damaged areas (10%).

Coating System	Relative Cost	Expected Years of Life in Industrial Environment			
	LUSL	Mild	Moderate	Severe	
Alkyd Vinyl Chlorinated Rubber Epoxy Zinc Rich	1.00 1.40 1.16 1.42 1.54	7 10 10 10 12	5 9 9 8 10	3 8 8 6 7	

Table 10. Relative Costs and Expected Service Lives of Coating Systems in Different Industrial Environments^a

^aFrom Reference 14.




(a) Paint spraying equipment attached.



(b) Chiseling.

Figure 1. Portable backpack unit.



(c) Needling.



(d) Sanding.

Figure 1. Continued



(e) Spraying.

Figure 1. Continued

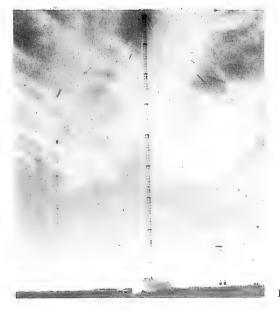



Figure 2. Antenna field.



Figure 3. Communication facility.

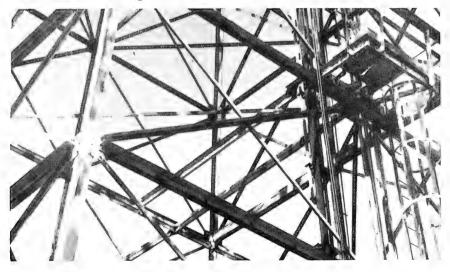



Figure 4. Rusty steel tower.



Figure 5. Paint peeling from galvanized steel.



rigure 6. Circularly disposed (Wullenweber) antenna array. (Neg #12411-70)

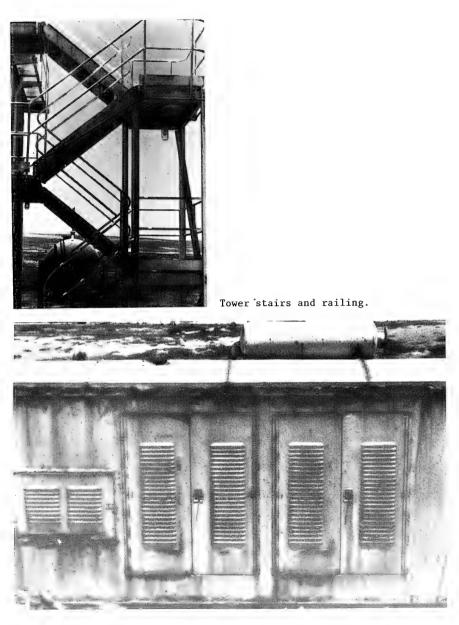



Figure 8. Trailer with support equipment.

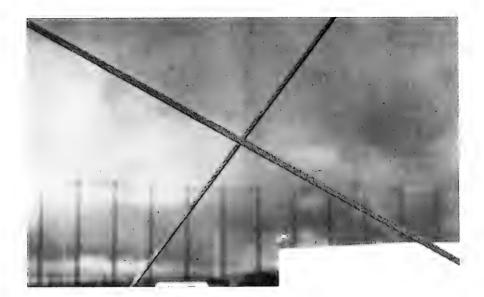



Figure 9. Crossed guy lines.



Figure 10. Crossed guy lines with sleeves.

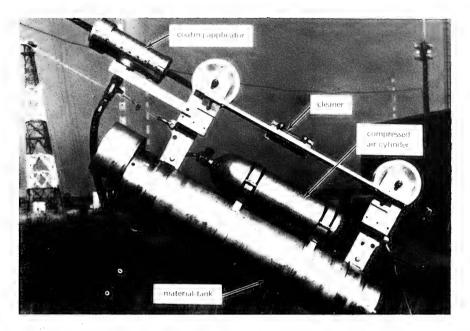



Figure 11. Equipment for remote coating of guy lines.

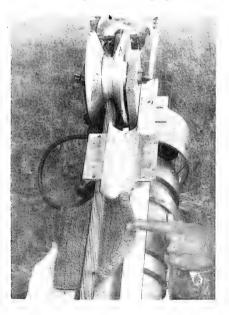





Figure 13. Equipment ascending guy line.



Figure 14. Glass-reinforced plastic guy line with dampener.

# Appendix A

### TYPE AND SOURCES OF COATING SYSTEMS USED ON SECOND SERIES SALT-SPRAY EXPOSURE

		Coating System	em			5
System No.	Primer Type	Source of Primer or Topcoat	Specification No. or Trade Name	System Components	Usea	lotal Thickness (mil)
		Proline Paint Mfg. Co. 2646 Main St. San Diego, CA 92113	MIL-P-24441-150	epoxy-polyamide	primer	0.6
66	epoxy polyamide	Advanced Coatings and Chemicals 2213 North Tyler Ave. South El Monte, CA 91733	3-1W-7	epoxy-urethane	topcoat	6.8
67	zinc-rich chlorinated	Advanced Coatings and Chemicals 2213 North Tyler Ave. South El Monte, CA 91733	6 DLP 140	zínc-rích chlorinated rubber	primer	5.0
	rubber	Proline Paint Mfg. Co. 2646 Main St. San Diego, CA 92113	MIL-P-24441-151	epoxy-polyamíde	topcoat	4.3
68	zínc-rích chlorínated	Advanced Coatings and Chemicals	6 DLP 63	zinc-rích chlorínated rubber	primer	3.8
	rubber	South El Monte, CA 91733	MIL-C-81773	polyurethane	topcoat	4.0
						(continued)

		Coating System	em			[ + - L
System No.	Primer Type	Source of Primer or Topcoat	Specification No. or Trade Name	System Components	Use ^a	Thickness (míl)
69	zinc-rich chlorinated	Advanced Coatings and Chemicals 2213 North Tyler Ave. South El Monte, CA 91773	6 DLP 63	zínc-rich chlorínated rubber	primer	6.3
	rubber	Mobil Chemical Co. P.O. Box 250 Edison, NJ 08817	Mobil Val Chem	chlorinated rubber	topcoat	6.2
70	zinc-rich chlorinated	Advanced Coatings and Chemicals	6 DLP 63	zinc-rich chlorinated rubber	primer	6.3
	rubber	zzıs North Iyler Ave. South El Monte, CA 91733	3-16-1	epoxy-urethane	topcoat	6.3

 $^{\mathrm{a}}\mathrm{The}$  pigment in all the topcoats for this test was white.

## Appendix B

#### FORMULAS OF EXPERIMENTAL PAINTS USED ON VORTEX TOWERS

Material	Pounds	Gallons
Field-Applied Antenna Touchup C	oating Primer:	3-1G-1
2 Nitropropane	148.86	18.00
Toluol	124.60	17.20
Epoxy Resin	85.00	8.90
Grinding Aid (Prod. 963)	2.12	0.28
Basic Lead Silico Chromate	590.00	17.30
Black Oxide	55.00	1.30
Talc	92.00	4.00
Mica	93.00	4.00
Grinding Aid (MPA-60)	5.00	0.74
Ethyl Acetate	135.36	18.00
Butyl Titanate	0.60	0.07
Vegetable Oil	106.00	13.20
Field-Applied Antenna Touchup C	oating Finish:	3-1W-7
Toluol	118.17	16.32
Epoxy Resin	76.93	7.96
Grinding Aid (Prod. 963)	5.43	0.72
Vegetable Oil	95.04	11.22
Moly White	267.00	10.86
Barium Metaborate	267.00	9.68
Talc	83.72	3.71
Mica	83.72	3.53
Grinding Aid (MPA-60)	5.43	0.81
Titanium Dioxide	181.02	5.52
2 Nitropropane	135.77	16.38
Ethyl Acetate	122.19	16.29
Butyl Titanate	0.58	0.06

(continued)

Material	Pounds	Gallons
Chlorinated Rubber Based Zinc-H	Rich Primer:	6 DLP 63
Varnish and Paintmaker Naphtha	104.04	17.00
Xylol	6.07	0.84
Bentone 38	15.00	1.00
Zinc Oxide	150.00	3.18
Methyl Ethyl Ketone	104.03	15.48
Toluol	72.30	10.00
Cellulose Acetate	97.20	12.00
Chlorinated Rubber	65.12	4.76
Dibasic Lead Phosphate	2.08	0.26
Chlorinated Olefin	52.08	4.49
Zinc Dust	1,978.00	33.88
Butyl Titanate	1.06	0.12
Chlorinated Rubber Zinc-Rick	n Primer: 6 D	LP 140
Varnish and Paintmaker Naphtha	78.22	12.79
Xylol	303.35	41.96
Chlorinated Rubber	64.32	4.70
Bentone 38	11.56	0.77
Zinc Oxide	98.77	2.09
Zinc Dust #22	2,101.78	36.00
Chlorinated Olefin	51.44	4.43
Dibasic Lead Phosphate	2.05	0.26
Butyl Titanate	>0.50	
Corrosion-Free Wet Wall Ree	i #11105: 3-1	R-13
Epoxy Resin	74.39	7.70
Vegetable Oil	91.91	10.85
Grinding Aid (Prod. 963)	5.25	0.70
Moly White	258.20	10.50
Barium Metaborate	258.20	9.36
Talc	80.96	3.59
Mica	80.96	3.42
Grinding Aid (MPA-60)	5.25	0.78
Toluidine Red	106.37	8.73
2 Nitropropane	131.30	15.84
Toluol	114.28	15.78
Ethyl Acetate	118.16	15.75
Butyl Titanate	>0.50	

Appendix C

COATING SYSTEMS USED ON VORTEX TOWERS

		Coating System	em			Totol
System No.	Primer Type	Sources of Primer	Specification No. or Trade Names	System Components	Use	Thickness (mil)
			Enjay #6262	alkyd zinc chromate	primer	18
54	alkyd	Bulgay cummical co. 8230 Stedman St. Houston, TX 77029	TT-E-489D Amendment l Class A	alkyd enamel	finish	12
55	chlorinated	Advanced Coatings and Chemicals	6 DLP 140	chlorínated rubber zínc rích	primer	15
	rubber	2213 North IYler Ave. South El Monte, CA 91733	3-1R-13	epoxy-urethane	finish	17
56	chlorinated	Advanced Coatings and Chemicals	6 DLP 140	chlorinated rubber zinc rich	primer	10
	rubber	South El Monte, CA 91733	Mobil Val Chem	chlorinated rubber	finish	10
57	chlorinated	Advanced Coatings and Chemicals	6 DLP 140	chlorínated rubber zinc rích	primer	6
	rupper	ZZIJ NOTUN IYIET AVE. South El Monte, CA 91733	MIL-C-81773	polyurethane	finish	6
c L	epoxy-	Advanced Coatings and Chemicals	3-16-1	epoxy-urethane	primer	4
8¢	urethane	2213 North Tyler Ave. South El Monte, CA 91733	MIL-C-81773	polyurethane	finish	28
C U	epoxy-	Advanced Coatings and Chemícals	3-16-1	epoxy-urethane	primer	10
л Л	urethane	2213 North Tyler Ave. South El Monte, CA 91733	MIL-P-24441-152	epoxy-polyamide	finish	6
						(continued)

System No.Primer TypeTrade Names No. or Trade NamesSpecification No. or No. or No. or No. or No. or No. or Trade NamesSpecification No. or No. or No. or No. or No. or North Tyler Ave. South El Monte, CA 91733Specification No. or North Tyler Ave. 3-1R-13Specification epoxy-urethaneUse Ims.Trade Names (mil)60epoxy- urethaneAdvanced Coatings and South El Monte, CA 917333-16-1epoxy-urethaneprimer1061epoxy- 2213 North Tyler Ave. 2213 North Tyler Ave. South El Monte, CA 91733MIL-P-24441-156epoxy-urethanefinish962epoxy2013 North Tyler Ave. 2213 North Tyler Ave. South El Monte, CA 91733MIL-P-24441-156epoxy-urethane11263epoxy2213 North Tyler Ave. 2213 North Tyler Ave. South El Monte, CA 917334-10-4epoxy-urethanefinish1264epoxy2213 North Tyler Ave. 2213 North Tyler Ave. South El Monte, CA 917333-1R-13epoxy-urethanefinish1264epoxy2213 North Tyler Ave. 2213 North Tyler Ave. South El Monte, CA 91733MIL-P-24441-156epoxy-orethanefinish1265epoxy- polyamidefrom fileepoxy-polyamideprimer141265epoxy- polyamidefrom filefor epoxy-polyamideprimer1665epoxy- polyamidefrom filefor epoxy-polyamideprimer1265epoxy- polyamidefor epoxy-polyamidefor epo			Coating System	em			
Advanced Coatings and epoxy- urethaneAdvanced Coatings and Chemicals $3-1G-1$ epoxy-urethaneprimer $2213$ North Tyler Ave. South El Monte, CA 91733 $3-1R-13$ epoxy-urethanefinish $2213$ North Tyler Ave. Chemicals $4-10-4$ epoxyprimerfinish $aepoxy$ Rdvanced Coatings and Chemicals $4-10-4$ epoxyprimerfinish $aepoxy$ South El Monte, CA 91733ML-P-24441-156epoxyprimerfinish $aepoxy$ South El Monte, CA 91733 $4-10-4$ epoxyprimerfinish $aepoxy$ South El Monte, CA 91733 $3-1R-13$ epoxy-urethanefinish $aepoxy$ finish $4-10-4$ epoxyprimerfinish $aepoxy$ South El Monte, CA 91733 $3-1R-13$ epoxy-urethanefinish $aepoxyfinish4-10-4epoxy-urethanefinishaepoxySouth El Monte, CA 917333-1R-13polyurethanefinishaepoxySouth El Monte, CA 91733MIL-P-24441-150epoxyprimeraepoxySouth El Monte, CA 91733MIL-P-24441-150epoxypolyamideprimeraepoxySouth El Monte, CA 91733MIL-P-24441-150epoxy-polyamideprimeraepoxySouth El Monte, CA 91133MIL-P-24441-150epoxy-polyamideprimeraepoxySouth El Monte, CA 91133MIL-P-24441-150epoxy-polyamideprimeraepoxySouth El Monte, MIL-P-24441-150epoxy-polyamideprimera$	System No.	Primer Type	Sources of Primer	Specification No. or Trade Names	System Components	Use	Total Thickness (míl)
urethane2213 North Tyler Ave. South E1 Monte, CA 91/33 $3-1R-13$ epoxy-urethanefinishSouth E1 Monte, CA 91/33Advanced Coatings and Chemicals $4-10-4$ epoxyprimerprimerepoxySouth E1 Monte, CA 91/33MIL-P-24441-156epoxyprimerfinishepoxySouth E1 Monte, CA 91/33MIL-P-24441-156epoxyprimerfinishdepoxySouth E1 Monte, CA 91/33 $4-10-4$ epoxyprimerfinishepoxySouth E1 Monte, CA 91/33 $3-1R-13$ epoxy-urethanefinishform cals $4-10-4$ epoxyprimerfinishepoxySouth E1 Monte, CA 91/33 $3-1R-13$ epoxy-urethanefinishform cals $4-10-4$ epoxy-urethanefinishprimerform cals $3-1R-13$ epoxy-urethanefinishprimerform fellMutecals $3-1R-13$ epoxy-urethanefinishform fellMutecals $3-1R-13$ form fellfinishform fellform fellform fellform fellfinishform fellform fellform fellform fellform	U9	epoxy-	Advanced Coatings and Chemicals	3-16-1	epoxy-urethane	primer	10
Advanced Coatings and chemicals $4-10-4$ epoxyprimerrepoxy $ChemicalsChemicalsrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxyrepoxy$	2	urethane	2213 North Tyler Ave. South El Monte, CA 91733	3-IR-13	epoxy-urethane	finish	6
$^{\text{cPOAY}}$ 2213 North Tyler Ave. South El Monte, CA 91733MIL-P-24441-156epoxy-polyamidefinish $^{\text{Advanced Coatings and}}$ Advanced Coatings and Chemicals $4-10-4$ epoxyprimer $ner$ $^{\text{epoxy}}$ South El Monte, CA 91733 $3-1R-13$ epoxy-urethanefinish $ner$ $^{\text{epoxy}}$ South El Monte, CA 91733 $3-1R-13$ epoxy-urethanefinish $ner$ $^{\text{epoxy}}$ Advanced Coatings and Chemicals $4-10-4$ epoxy-urethanefinish $ner$ $^{\text{epoxy}}$ South El Monte, CA 91733 $MIL-C-81773$ polyurethanetopcoat $ner$ $^{\text{epoxy}}$ South El Monte, CA 91733MIL-C-81773polyurethanetopcoat $ner$ $^{\text{epoxy}}$ South El Monte, CA 91733MIL-C-81773polyurethanetopcoat $ner$ $^{\text{epoxy}}$ South El Monte, CA 91733MIL-C-81773polyurethanetopcoat $ner$ $^{\text{epoxy}}$ South El Monte, CA 91733MIL-P-24441-150epoxy-polyamideprimer $ner$ $^{\text{epoxy}}$ South El Monte, CA 92113MIL-P-24441-150epoxy-polyamideprimer $ner$ $^{\text{epoxy}}$ South El Montey Industrial CtMIL-P-24441-156epoxy-polyamideprimer $ner$ $^{\text{epoxy}}$ Sol Hanley Industrial CtMIL-P-24441-156epoxy-polyamideprimer $ner$ $^{\text{epoxy}}$ Sol Hanley Industrial CtMIL-P-24441-156epoxy-polyamideprimer $ner$ $^{\text{epoxy}}$ Sol Hanley Industrial CtMIL-P-	נא		Advanced Coatings and Chemicals	7-10-7	epoxy	primer	12
Advanced Coatings and epoxy $4-10-4$ epoxyprimerprimer $epoxy$ $2213$ North Tyler Ave. South El Monte, CA 91733 $3-1R-13$ $epoxy$ $primer$ $finish$ $2213$ North Tyler Ave. South El Monte, CA 91733 $3-1R-13$ $epoxy$ $primer$ $finish$ $epoxy$ $advanced Coatings andChemicals4-10-4epoxyprimerprimerepoxy2213 North Tyler Ave.South El Monte, CA 91733ML-C-81773polyurethanetopcoatepoxy2213 North Tyler Ave.South El Monte, CA 91733ML-P-24441-150polyurethanetopcoatepoxy-polyamideProline Paint Mfg. Co.South El Monte, CA 92113MIL-P-24441-150epoxy-polyamideprimerpolyamideepoxy-folyamideprimerprimerprimerprimerpolyamideProline Paint Mfg. Co.South El Monte, CA 92113MIL-P-24441-150epoxy-polyamideprimerpolyamideprolyamideprimerprimerprimerprimerpolyamideProline Paint Mfg. Co.South El Monter, Carboline 188primerprimerpolyamideproline Paint Mfg. Co.South El Monter, Carboline 188primerprimerpolyamideproline Painter, Mo 63144MIL-P-24441-156provy-polyamideprimer$	70	cruay	2213 North Tyler Ave. South El Monte, CA 91733	MIL-P-24441-156	epoxy-polyamide	finish	15
$^{\text{CPOAY}}$ 2213 North Tyler Ave. South El Monte, CA 91733 $3$ -lR-13epoxy-urethanefinishSouth El Monte, CA 91733 $3$ -lR-13epoxyprimer $primer$ $epoxy$ Advanced Coatings and Chemicals $4$ -10-4 $epoxy$ $primer$ $primer$ $epoxy$ South El Monte, CA 91733 $ML-C-81773$ $polyurethane$ $primer$ $primer$ $epoxy$ Proline Paint Mfg. Co. 2646 Main St.MIL-P-24441-150 $epoxy-polyamide$ $primer$ $primer$ $polyamide$ San Diego, CA 92113MIL-P-24441-156 $epoxy-polyamide$ $primer$ $primer$	63		Advanced Coatings and Chemicals	7-10-7	epoxy	primer	14
$ \begin{array}{ c c c c c } \hline \mbox{Hore} & \mbox{Advanced Coatings and} & \mbox{d-l0-4} & \mbox{epoxy} & \mbox{frimerals} & frimer$	40	crusy	2213 North Tyler Ave. South El Monte, CA 91733	3-1R-13	epoxy-urethane	finísh	12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	63	MAUNA MAUNA	Advanced Coatings and Chemicals	4-10-4	epoxy	primer	7
epoxy- 2646 Main St. 201yamideProline Paint Mfg. Co. 2646 Main St. MIL-P-24441-156MIL-P-24441-150epoxy-polyamideprimerpolyamideCarbolineMIL-P-24441-156epoxy-polyamidetopcoatand and and and and and and and and and	3	-Log	2213 North Tyler Ave. South El Monte, CA 91733	MIL-C-81773	polyurethane	topcoat	9
polyamidecontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontraction<	79	epoxy-	Proline Paint Mfg. Co. 26/6 Main St	MIL-P-24441-150	epoxy-polyamide	primer	18
epoxy- abolineCarboline 188epoxy-polyamideprimerpolyamide350 Hanley Industrial Ct St. Louis, M0 63144MIL-P-24441-156epoxy-polyamidetopcoat	5	polyamide	San Diego, CA 92113	MIL-P-24441-156	epoxy-polyamide	topcoat	20+
polyamide St. Louis, M0 63144 MIL-P-24441-156 epoxy-polyamide topcoat	65	epoxy-	Carboline 350 Hanley Industrial Ct	Carboline 188	epoxy-polyamide	primer	12
		polyamide	St. Louis, MO 63144	MIL-P-24441-156	epoxy-polyamide	topcoat	18

### DISTRIBUTION LIST

AAP NAVORDSTA IND HD DET PW ENGRNG DIV, McAlester, OK AFB (AFIT/LD), Wright-Patterson OH: AF Tech Office (Mgt & Ops), Tyndall, FL: AFCEC/XR, Tyndall FL: CESCH, Wright-Patterson: HO Tactical Air Cmd (R. E. Fisher), Langley AFB VA: HOAFESC/DEMM, Tyndall AFB, FL; MAC/DET (Col. P. Thompson) Scott, IL: SAMSO/MNND, Norton AFB CA: Stinfo Library, Offutt NE ARMY ARRADCOM, Dover, NJ; BMDSC-RE (H, McClellan) Huntsville AL; DAEN-CWE-M (LT C D Binning), Washington DC: DAEN-FEU-E (J. Ronan), Washington DC: DAEN-MPE-D Washington DC: DAEN-MPU, Washington DC: ERADCOM Tech Supp Dir. (DELSD-L) Ft. Monmouth, NJ: HO-DAEN-MPO-B (Mr. Price); Tech, Ref. Div., Fort Huachuca, AZ ARMY - CERL Library, Champaign IL ARMY COASTAL ENGR RSCH CEN Fort Belvoir VA: R. Jachowski, Fort Belvoir VA ARMY COE Philadelphia Dist. (LIBRARY) Philadelphia, PA ARMY CORPS OF ENGINEERS MRD-Eng. Div., Omaha NE; Seattle Dist. Library, Seattle WA ARMY CRREL Constr. Engr Res Branch, (Aamot) ARMY CRREL R.A. Eaton ARMY ENG DIV HNDED-CS, Huntsville AL; HNDED-SR, Huntsville, AL ARMY ENG WATERWAYS EXP STA Library, Vicksburg MS ARMY ENGR DIST. Library, Portland OR ARMY ENVIRON. HYGIENE AGCY Water Qual Div (Doner), Aberdeen Prov Ground, MD ARMY MATERIALS & MECHANICS RESEARCH CENTER Dr. Lenoe, Watertown MA ASST SECRETARY OF THE NAVY Spec. Assist Energy (Leonard), Washington, DC BUREAU OF COMMERCIAL FISHERIES Woods Hole MA (Biological Lab. Lib.) BUREAU OF RECLAMATION Code 1512 (C. Selander) Denver CO CINCLANT Civil Engr. Supp. Plans. Ofr Norfolk, VA CINCPAC Fac Engrng Div (J44) Makalapa, HI CNAVRES Code 13 (Dir. Facilities) New Orleans, LA CNM Code MAT-08T3, Washington, DC; NMAT 08T246 (Dieterle) Wash, DC CNO Code NOP-964, Washington DC: OP987J (J. Boosman), Pentagon COMCBPAC Operations Off, Makalapa HI COMFLEACT, OKINAWA PWO, Kadena, Okinawa COMOCEANSYSPAC SCE, Pearl Harbor HI DEFENSE DOCUMENTATION CTR Alexandria, VA DOE Dr. Cohen; Liffick, Richmond, WA DTNSRDC Code 172 (M. Krenzke), Bethesda MD DTNSRDC Code 284 (A. Rufolo), Annapolis MD DTNSRDC Code 4111 (R. Gierich), Bethesda MD DTNSRDC Code 4121 (R. Rivers), Annapolis, MD DTNSRDC Code 42, Bethesda MD FLTCOMBATTRACENLANT PWO, Virginia Bch VA FMFLANT CEC Offr, Norfolk VA GSA Fed. Sup. Serv. (FMBP), Washington DC KWAJALEIN MISRAN BMDSC-RKL-C MARINE CORPS BASE Camp Pendleton CA 92055; Code 43-260, Camp Lejeune NC; M & R Division, Camp Lejeune NC; PWO Camp Lejeune NC; PWO, Camp S. D. Butler, Kawasaki Japan MARINE CORPS HQS Code LFF-2, Washington DC MCAS Facil. Engr. Div. Cherry Point NC; CO, Kaneohe Bay HI; Code PWE, Kaneohe Bay HI; Code S4, Quantico VA; PWD, Dir. Maint. Control Div., Iwakuni Japan; PWO Kaneohe Bay HI; PWO, Yuma AZ; UTC Dupalo, Iwakuni, Japan MCDEC P&S Div Quantico VA MCRD PWO, San Diego Ca NAD Engr. Dir. Hawthorne, NV NAF PWD - Engr Div, Atsugi, Japan; PWO Sigonella Sicily; PWO, Atsugi Japan

NAS CO, Guantanamo Bay Cuba; Code 114, Alameda CA; Code 183 (Fac. Plan BR MGR); Code 18700, Brunswick ME; Code 6234 (G. Trask), Point Mugu CA; Code 70, Atlanta, Marietta GA; Dir, Maint. Control Div., Key West FL; Dir. Util. Div., Bermuda; ENS Buchholz, Pensacola, FL; Lakehurst, NJ; Lead. Chief. Petty Offr. PW/Self Help Div, Beeville TX; OIC, CBU 417, Oak Harbor WA; PW (J. Maguire), Corpus Christi TX; PWD Maint. Cont. Dir., Fallon NV; PWD Maint. Div., New Orleans, Belle Chasse LA; PWD, Maintenance Control Dir., Bermuda; PWD, Willow Grove PA; PWO Belle Chasse, LA; PWO Chase Field Beeville, TX; PWO Key West FL; PWO, Dallas TX; PWO, Glenview IL; PWO, Kingsville TX; PWO, Millington TN; PWO, Miramar, San Diego CA; PWO,, Moffett Field CA; ROICC Key West FL; SCE Lant Fleet Norfolk, VA; SCE Norfolk, VA; SCE, Barbers Point H1

NATL BUREAU OF STANDARDS B-348 BR (Dr. Campbell), Washington DC

NATL RESEARCH COUNCIL Naval Studies Board, Washington DC

NATNAVMEDCEN PWO Bethesda, MD

NATPARACHUTETESTRAN PW Engr, El Centro CA

NAVACT PWO, London UK

NAVACTDET PWO, Holy Lock UK

NAVAEROSPREGMEDCEN SCE, Pensacola FL

NAVAVIONICFAC PWD Deputy Dir. D/701, Indianapolis, IN

NAVCOASTSYSTCTR Code 423 (D. Good), Panama City FL; Code 713 (J. Quirk) Panama City, FL; Code 715 (J. Mittleman) Panama City, FL; Library Panama City, FL

- NAVCOMMAREAMSTRSTA Code W-602, Honolulu, Wahiawa HI; Maint Control Div., Wahiawa, HI; PWO, Norfolk VA; PWO, Wahiawa HI; SCE Unit I Naples Italy
- NAVCOMMSTA CO, San Miguel, R.P.; Code 401 Nea Makri, Greece; PWO, Exmouth, Australia; PWO, Fort Amador Canal Zone
- NAVEDTRAPRODEVCEN Tech. Library

NAVEDUTRACEN Engr Dept (Code 42) Newport, RI

NAVENVIRHLTHCEN CO, Cincinnati, OH

NAVEODFAC Code 605, Indian Head MD

NAVFAC PWO, Cape Hatteras, Buxton NC; PWO, Centerville Bch, Ferndale CA; PWO, Guam

NAVFAC PWO, Lewes DE

- NAVFACENGCOM Code 043 Alexandria, VA; Code 044 Alexandria, VA; Code 0451 Alexandria, VA; Code 0453 (D. Potter) Alexandria, VA; Code 0454B Alexandria, Va; Code 046; Code 0461D (V M Spaulding) Alexandria, VA; Code 04B3 Alexandria, VA; Code 04B5 Alexandria, VA; Code 100 Alexandria, VA; Code 1002B (J. Leimanis) Alexandria, VA; Code 1113 (M. Carr) Alexandria, VA; Code 1113 (T. Stevens) Alexandria, VA; Code 1113 Alexandria, VA; Code 11.
- NAVFACENGCOM CHES DIV. Code 101 Wash, DC; Code 403 (H. DeVoe) Wash, DC; Code 405 Wash, DC; Contracts, ROICC, Annapolis MD; FPO-1 (Spencer) Wash, DC; Scheessele, Code 402, Wash, DC
- NAVFACENGCOM LANT DIV. Code 10A, Norfolk VA; Eur. BR Deputy Dir, Naples Italy; European Branch, New York; RDT&ELO 102, Norfolk VA
- NAVFACENGCOM NORTH DIV. AROICC, Brooklyn NY; CO; Code 09P (LCDR A.J. Stewart); Code 1028, RDT&ELO, Philadelphia PA; Code 111 (Castranovo) Philadelphia, PA; Code 114 (A. Rhoads); Design Div. (R. Masino), Philadelphia PA; ROICC, Contracts, Crane IN

NAVFACENGCOM - PAC DIV. (Kyi) Code 101, Pearl Harbor, HI; Code 2011 Pearl Harbor, HI; Code 402, RDT&E, Pearl Harbor HI; Commander, Pearl Harbor, HI

NAVFACENGCOM - SOUTH DIV. Code 90, RDT&ELO, Charleston SC; ROICC (LCDR R. Moeller), Contracts, Corpus Christi TX

NAVFACENGCOM - WEST DIV. 102; 112; AROICC, Contracts, Twentynine Palms CA; Code 04B San Bruno, CA; O9P/20 San Bruno, CA; RDT&ELO Code 2011 San Bruno, CA

NAVFACENGCOM CONTRACT AROICC, Point Mugu CA; AROICC, Quantico, VA; Code 05, TRIDENT, Bremerton WA; Dir, Eng. Div., Exmouth, Australia; Eng Div dir, Southwest Pac, Manila, PI; OICC, Southwest Pac, Mamila, PI; OICC/ROICC, Balboa Canal Zone; ROICC AF Guam; ROICC LANT DIV., Norfolk VA; ROICC Off Point Mugu, CA; ROICC, Diego Garcia Island: ROICC, Keflavik, Iceland; ROICC, Pacific, San Bruno CA

NAVHOSP LT R. Elsbernd, Puerto Rico

NAVMAG SCE, Guam

NAVMIRO OIC, Philadelphia PA

NAVNUPWRU MUSE DET Code NPU-30 Port Hueneme, CA

NAVOCEANO Code 1600 Bay St. Louis, MS; Code 3432 (J. DePalma), Bay St. Louis MS

NAVOCEANSYSCEN Code 41, San Diego, CA; Code 5221 (R.Jones) San Diego Ca; Code 6700, San Diego, CA; Research Lib., San Diego CA

NAVORDSTA PWO, Louisville KY

NAVPETOFF Code 30, Alexandria VA

NAVPHIBASE CO, ACB 2 Norfolk, VA; Code S3T, Norfolk VA; Harbor Clearance Unit Two, Little Creek, VA NAVRADRECFAC PWO, Kami Seya Japan

- NAVREGMEDCEN Code 3041, Memphis, Millington TN; PWO Newport RI; PWO Portsmouth, VA; SCE (D. Kaye); SCE San Diego, CA; SCE, Camp Pendleton CA; SCE, Guam
- NAVSCOLCECOF = C35 Port Hueneme, CA; CO, Code C44A Port Hueneme, CA
- NAVSEASYSCOM Code OOC (LT R. MacDougal), Washington DC; Code SEA OOC Washington, DC

NAVSECGRUACT Facil. Off., Galeta Is. Canal Zone; PWO, Adak AK; PWO, Edzell Scotland; PWO, Puerto Rico; PWO, Torri Sta, Okinawa; Security Offr, Winter Harbor ME

NAVSHIPREPFAC Library, Guam; SCE Subic Bay

- NAVSHIPYD; Code 202.4, Long Beach CA; Code 202.5 (Library) Puget Sound, Bremerton WA; Code 380, (Woodroff) Norfolk, Portsmouth, VA; Code 400, Puget Sound; Code 404 (LT J. Riccio), Norfolk, Portsmouth VA; Code 410, Mare Is., Vallejo CA; Code 440 Portsmouth NH; Code 440, Norfolk; Code 440, Puget Sound, Bremerton WA; Code 450, Charleston SC; L.D. Vivian; Library, Portsmouth NH; PWD (Code 400), Philadelphia PA; PWO, Mare Is.; PWO, Puget Sound; SCE, Pearl Harbor HI; Tech Library, Vallejo, CA
- NAVSTA CO Naval Station, Mayport FL; CO Roosevelt Roads P.R. Puerto Rico; Engr. Dir., Rota Spain; Maint. Cont. Div., Guantanamo Bay Cuba; Maint. Div. Dir/Code 531, Rodman Canal Zone; PWD (LTJG.P.M. Motolenich), Puerto Rico; PWO Midway Island; PWO, Guantanamo Bay Cuba; PWO, Keflavik Iceland; PWO, Mayport FL; ROICC Rota Spain; ROICC, Rota Spain; SCE, Guam; SCE, San Diego CA; SCE, Subic Bay, R.P.; Utilities Engr Off. (A.S. Ritchie), Rota Spain
- NAVSUBASE Bangor, Bremerton, WA
- NAVSUPPACT CO, Brooklyn NY; CO, Seattle WA; Code 4, 12 Marine Corps Dist, Treasure Is., San Francisco CA; Code 413, Seattle WA; LTJG McGarrah, SEC, Vallejo, CA; Plan/Engr Div., Naples Italy
- NAVSURFWPNCEN PWO, White Oak, Silver Spring, MD
- NAVTECHTRACEN SCE, Pensacola FL
- NAVWPNCEN Code 2636 (W. Bonner), China Lake CA; PWO (Code 26), China Lake CA; ROICC (Code 702), China Lake CA
- NAVWPNEVALFAC Sec Offr, Kirtland AFB, NM; Technical Library, Albuquerque NM
- NAVWPNSTA (Clebak) Colts Neck, NJ; Code 092, Colts Neck NJ; Maint. Control Dir., Yorktown VA
- NAVWPNSTA PW Office (Code 09C1) Yorktown, VA
- NAVWPNSUPPCEN Code 09 Crane IN
- NCBU 405 OIC, San Diego, CA
- NCBC CEL AOIC Port Hueneme CA; Code 10 Davisville, RI; Code 155, Port Hueneme CA; Code 156, Port Hueneme, CA; Code 400, Gulfport MS; PW Engrg, Gulfport MS; PWO (Code 80) Port Hueneme, CA
- NCBU 411 OIC, Norfolk VA
- NCR 20, Commander
- NCSO BAHRAIN Security Offr, Bahrain
- NMCB 5, Operations Dept.; 74, CO; Forty, CO; THREE, Operations Off.
- NOAA Library Rockville, MD
- NORDA Code 440 (Ocean Rsch Off) Bay St. Louis MS
- NRL Code 8400 Washington, DC; Code 8441 (R.A. Skop), Washington DC
- NSC Code 54.1 (Wynne), Norfolk VA
- NSD SCE, Subic Bay, R.P.
- NTC Commander Orlando, FL; OICC, CBU-401, Great Lakes IL
- NUSC Code 131 New London, CT; Code EA123 (R.S. Munn), New London CT; Code TA131 (G. De la Cruz), New London CT
- OCEANSYSLANT LT A.R. Giancola, Norfolk VA
- ONR (Dr. E.A. Silva) Arlington, VA; BROFF, CO Boston MA; Code 700F Arlington VA; Dr. A. Laufer, Pasadena CA PHIBCB 1 P&E, Coronado, CA
- PMTC Code 4253-3, Point Mugu, CA; Pat. Counsel, Point Mugu CA
- PWC ACE Office (LTJG St. Germain) Norfolk VA; CO Norfolk, VA; CO, Great Lakes IL; CO, Oakland CA; Code 120, Oakland CA; Code 120, Oakland CA; Code 120, Cat, Code 128, Guam; Code 200, Great Lakes IL; Code 200, Guam; Code 220 Oakland, CA; Code 220.1, Norfolk VA; Code 30C, San Diego, CA; Code 40 (C. Kolton) Pensacola, FL; Code 400, Pearl Harbor, HI; Code 400, San Diego, CA; Code 505A (H. Wheeler); Code 610, San Diego Ca; Code 700, San Diego, CA; Library, Subic Bay, R.P.; Utilities Officer, Guam; XO Oakland, CA SPCC PWO (Code 120) Mechanicsburg PA
- UCT TWO OIC, Norfolk, VA; OIC, Port Hueneme CA
- MARCORPS 1st Marine Div (LT Galvez), Camp Pendleton, CA
- U.S. MERCHANT MARINE ACADEMY Kings Point, NY (Reprint Custodian)
- USAF SCHOOL OF AEROSPACE MEDICINE Hyperbaric Medicine Div, Brooks AFB, TX

NAVSEC Code 6034 (Library), Washington DC

USCG (G-ECV) Washington Dc; (G-ECV/61) (Burkhart) Washington, DC; G-EOE-4/61 (T. Dowd), Washington DC USCG R&D CENTER Tech. Dir. Groton, CT

USDA Forest Products Lab, Madison WI; Forest Service, Bowers, Atlanta, GA

USNA Ocean Sys. Eng Dept (Dr. Monney) Annapolis, MD; Oceanography Dept (Hoffman) Annapolis MD; PWD Engr. Div. (C. Bradford) Annapolis MD; PWO Annapolis MD

AMERICAN CONCRETE INSTITUTE Detroit MI (Library)

CALIF. DEPT OF NAVIGATION & OCEAN DEV. Sacramento, CA (G. Armstrong)

CALIF. MARITIME ACADEMY Vallejo, CA (Library)

CORNELL UNIVERSITY Ithaca NY (Serials Dept, Engr Lib.)

- DAMES & MOORE LIBRARY LOS ANGELES, CA
- DUKE UNIV MEDICAL CENTER B. Muga, Durham NC
- FLORIDA ATLANTIC UNIVERSITY BOCA RATON, FL (MC ALLISTER); Boca Raton FL (Ocean Engr Dept., C. Lin); W. Hartt, Boca Raton FL
- FLORIDA TECHNOLOGICAL UNIVERSITY ORLANDO, FL (HARTMAN)

INSTITUTE OF MARINE SCIENCES Morehead City NC (Director)

- IOWA STATE UNIVERSITY Ames IA (CE Dept, Handy)
- WOODS HOLE OCEANOGRAPHIC INST. Woods Hole MA (Winget)
- LEHIGH UNIVERSITY BETHLEHEM, PA (MARINE GEOTECHNICAL LAB., RICHARDS); Bethlehem PA (Linderman Lib. No.30, Flecksteiner)

LIBRARY OF CONGRESS WASHINGTON, DC (SCIENCES & TECH DIV)

- MAINE MARITIME ACADEMY CASTINE, ME (LIBRARY)
- MICHIGAN TECHNOLOGICAL UNIVERSITY Houghton, MI (Haas)
- MIT Cambridge MA; Cambridge MA (Rm 10-500, Tech. Reports, Engr. Lib.)
- NY CITY COMMUNITY COLLEGE BROOKLYN, NY (LIBRARY)
- UNIV. NOTRE DAME Katona, Notre Dame, IN
- OREGON STATE UNIVERSITY (CE Dept Grace) Corvallis, OR; CORVALLIS, OR (CE DEPT, HICKS); Corvalis OR (School of Oceanography)
- PENNSYLVANIA STATE UNIVERSITY STATE COLLEGE, PA (SNYDER)
- PURDUE UNIVERSITY Lafayette, IN (CE Engr. Lib)
- SAN DIEGO STATE UNIV. 1. Noorany San Diego, CA

SCRIPPS INSTITUTE OF OCEANOGRAPHY LA JOLLA, CA (ADAMS); San Diego, CA (Marina Phy. Lab. Spiess)

- SEATTLE U Prof Schwaegler Seattle WA
- STANFORD UNIVERSITY Engr Lib, Stanford CA
- STATE UNIV. OF NEW YORK Buffalo, NY
- TEXAS A&M UNIVERSITY College Station TX (CE Dept. Herbich); W.B. Ledbetter College Station, TX
- UNIVERSITY OF CALIFORNIA BERKELEY, CA (CE DEPT, GERWICK); Berkeley CA (B. Bresler); Berkeley CA (E. Pearson); DAVIS, CA (CE DEPT, TAYLOR); M. Duncan, Berkeley CA
- UNIVERSITY OF DELAWARE Newark, DE (Dept of Civil Engineering, Chesson)
- UNIVERSITY OF HAWAII HONOLULU, HI (SCIENCE AND TECH. DIV.)

UNIVERSITY OF ILLINOIS Metz Ref Rm, Urbana IL; URBANA, IL (DAVISSON); URBANA, IL (LIBRARY);

- URBANA, IL (NEWMARK); Urbana IL (CE Dept, W. Gamble)
- UNIVERSITY OF MASSACHUSETTS (Heronemus), Amherst MA CE Dept
- UNIVERSITY OF NEBRASKA-LINCOLN Lincoln, NE (Ross Ice Shelf Proj.)
- UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, PA (SCHOOL OF ENGR & APPLIED SCIENCE, ROLL)
- UNIVERSITY OF TEXAS Inst. Marine Sci (Library), Port Arkansas TX
- UNIVERSITY OF TEXAS AT AUSTIN AUSTIN, TX (THOMPSON); Austin, TX (Breen)

UNIVERSITY OF WASHINGTON Dept of Civil Engr (Dr. Mattock), Seattle WA; SEATTLE, WA (OCEAN ENG RSCH LAB, GRAY); Seattle WA (E. Linger)

- VIRGINIA INST. OF MARINE SCI. Gloucester Point VA (Library)
- ALFRED A. YEE & ASSOC. Honolulu HI
- AMETEK Offshore Res. & Engr Div
- ARVID GRANT OLYMPIA, WA
- ATLANTIC RICHFIELD CO. DALLAS, TX (SMITH)
- AUSTRALIA Dept. PW (A. Hicks), Melbourne
- BECHTEL CORP. SAN FRANCISCO, CA (PHELPS)
- BELGIUM HAECON, N.V., Gent
- BOUW KAMP INC Berkeley
- BROWN & CALDWELL E M Saunders Walnut Creek, CA

CANADA Can-Dive Services (English) North Vancouver; Mem Univ Newfoundland (Chari), St Johns; Nova Scotia Rsch Found, Corp. Dartmouth, Nova Scotia; Surveyor, Nenninger & Chenevert Inc., Montreal; Trans-Mnt Oil Pipe Lone Corp. Vancouver, BC Canada CF BRAUN CO Du Bouchet, Murray Hill, NJ CHEMED CORP Lake Zurich IL (Dearborn Chem, Div, Lib.) COLUMBIA GULF TRANSMISSION CO. HOUSTON, TX (ENG. LIB.) CONCRETE TECHNOLOGY CORP. TACOMA, WA (ANDERSON) CONTINENTAL OIL CO O, Maxson, Ponca City, OK DILLINGHAM PRECAST F. McHale, Honolulu HI DRAVO CORP Pittsburgh PA (Wright) EVALUATION ASSOC. INC KING OF PRUSSIA, PA (FEDELE) FORD, BACON & DAVIS, INC. New York (Library) FRANCE Dr. Dutertre, Boulogne; P. Jensen, Boulogne; Roger LaCroix, Paris GENERAL DYNAMICS Elec. Boat Div., Environ. Engr (H. Wallman), Groton CT GEOTECHNICAL ENGINEERS INC. Winchester, MA (Paulding) GLIDDEN CO. STRONGSVILLE, OH (RSCH LIB) GOULD INC. Shady Side MD (Ches. Inst. Div., W. Paul) GRUMMAN AEROSPACE CORP. Bethpage NY (Tech. Info. Ctr) HALEY & ALDRICH, INC. Cambridge MA (Aldrich, Jr.) HUGHES AIRCRAFT Culver City CA (Tech. Doc. Ctr) ITALY M. Caironi, Milan; Sergio Tattoni Milano; Torino (F. Levi) MAKAI OCEAN ENGRNG INC. Kailua, HI KENNETH TATOR ASSOC CORAOPOLIS, PA (LIBRARY) LOCKHEED MISSILES & SPACE CO. INC. Sunnyvale CA (Rynewicz); Sunnyvale, CA (K.L. Krug) LOCKHEED OCEAN LABORATORY San Diego, CA (Springer) MARATHON OIL CO Houston TX MARINE CONCRETE STRUCTURES INC. MEFAIRIE, LA (INGRAHAM) MCDONNEL AIRCRAFT CO. Dept 501 (R.H. Fayman), St Louis MO MEXICO R. Cardenas MOBIL PIPE LINE CO. DALLAS, TX MGR OF ENGR (NOACK) MOFFATT & NICHOL ENGINEERS (R. Palmer) Long Beach, CA MUESER, RUTLEDGE, WENTWORTH AND JOHNSTON NEW YORK (RICHARDS) NEW ZEALAND New Zealand Concrete Research Assoc. (Librarian), Porirua NEWPORT NEWS SHIPBLDG & DRYDOCK CO. Newport News VA (Tech, Lib.) NORWAY DET NORSKE VERITAS (Library), Oslo; DET NORSKE VERITAS (Roren) Oslo; J. Creed, Ski; Norwegian Tech Univ (Brandtzaeg), Trondheim PORTLAND CEMENT ASSOC. SKOKIE, IL (CORLEY; SKOKIE, IL (KLIEGER); Skokie IL (Rsch & Dev Lab, Lib.) PRESCON CORP TOWSON, MD (KELLER) RAND CORP. Santa Monica CA (A. Laupa) RAYMOND INTERNATIONAL INC. E Colle Soil Tech Dept, Pennsauken, NJ RIVERSIDE CEMENT CO Riverside CA (W. Smith) SANDIA LABORATORIES Library Div., Livermore CA SCHUPACK ASSOC SO, NORWALK, CT (SCHUPACK) SEAFOOD LABORATORY MOREHEAD CITY, NC (LIBRARY) SEATECH CORP. MIAMI, FL (PERONI) SHELL OIL CO. HOUSTON, TX (MARSHALL) SOUTH AMERICA N. Nouel, Valencia, Venezuela SWEDEN Cement & Concrete Research Inst., Stockholm; GeoTech Inst; VBB (Library), Stockholm TECHNICAL COATINGS CO Oakmont PA (Library) TIDEWATER CONSTR. CO Norfolk VA (Fowler) TRW SYSTEMS REDONDO BEACH, CA (DAI) UNION CARBIDE CORP. R.J. Martell Boton, MA UNITED KINGDOM Cement & Concrete Assoc Wexham Springs, Slough Bucks; Cement & Concrete Assoc. (Library), Wexham Springs, Slough; D. New, G. Maunsell & Partners, London; Library, Bristol; Taylor, Woodrow Constr (014P), Southall, Middlesex; Univ. of Bristol (R. Morgan), Bristol WESTINGHOUSE ELECTRIC CORP. Annapolis MD (Oceanic Div Lib, Bryan); Library, Pittsburgh PA

WISS, JANNEY, ELSTNER, & ASSOC Northbrook, IL (D.W. Pfeifer)

WM CLAPP LABS - BATTELLE DUXBURY, MA (LIBRARY): Duxbury, MA (Richards) WOODWARD-CLYDE CONSULTANTS PLYMOUTH MEETING PA (CROSS, III) BRAHTZ La Jolla, CA BRYANT ROSE Johnson Div. UOP, Glendora CA BULLOCK La Canada LAYTON Redmond, WA R.F. BESIER Old Saybrook CT SMITH Gulfport, MS T.W. MERMEL Washington DC









-

DEPARTMENT OF THE NAVY

CIVIL ENGINEERING LABORATORY NAVAL CONSTRUCTION BATTALION CENTER PORT HUENEME, CALIFORNIA 93043

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

> > 1

80 - 47.004 - 277

Biological Laboratory Library U.S. Fish & wildlife Service Bureau of Commercial Fisheries woods Hole, MA 02543