

UNITED STATES COMMISSION OF FISH AND FISHERIES.

Divines of fishes,
 U. 8. National Museum

PART IX.

REPORT

OF

THE COMMISSIONER

FOR

1881.

A.-INQUIRY INTO THE DECREASE OF FOOD-FISHES.
B. -THE PROPAGATION OF FOOD-FISHES IN THE WATERS OF THE UNITED STATES.
Pita

Fishes

LETTER

FROM THE

COMMISSIONER OF FISH AND FISHERIES,

TRANSMITTING,
"compliance with law, his report for the year 1881.

June 21, 1882. -Ordered to lie on the table and be printed.

United States Commission of Fish and Fisheries, Washington, D. C., March 17, 1882.

Gentlemen: I have the honor to transmit herewith my report for the year 1881, as United States Commissioner of Fish and Fisheries, embracing, first, the result of inquiries into the condition of the fisheries of the sea-coast and lakes of the United States; and, second, the history of the measures taken for the introduction of useful food-fishes into its waters.

Very respectfully, your obedient servant,

SPENCER F. BAIRD,
Commissioner.

Hon. David Davis,
President of the United States Senate, and Hon. J. W. Keifer,

Speaker of the House of Representatives.

CONTENTS.

I -REPORT OF THE COMMISSIONER.

A.-GENERAL CONSIDERATIONS.

Page.

1. Inthonectory hemams xiii
Scope of present report xiii
Increase of correspomilence xiii
Table of letters written from 1871 to 1881 xiii
Notewortliy features of the jear xiv
(1) Increase in production and distribution of carp xiv
(2) Construction of an additional carp pond xiv
(3) Introduction of transportation cars xiv
(4) Change in policy of distribution of shad xiv
(5) Increase in distribution of shad xiv
(6) Decrease in supply of Califoruia salmon xiv
(7) Experiments in hatchiner cod and Spanish mackerel xiv
(8) Exportation of fish to foreign countrios xiv
(9) Investigations looking to the retardation of the devolopment of shad eggs. xiv
(10) Work on the artificial propagation of the oyster. xiv
(11) Determination of extent of distribution and value of the tile-fish. xiv
(12) Distribution of specimens to educational establishments xiv
(13) Plans for constructing a sea-going steamer. xiv
(14) Acquisition of hadl at Woor's Holl as a permanent station for hatching cod and other sea fishes xiv
(15) Commencement of the bulletin of the Fish Commission xiv
(16) Lease of a building for the offices of the Fish Commission Σv
(17) Importation of turbot and sole XV
2. Phinchif btations of the United States Fibil Commesion xV
For investigation and research XT
(1) Gloncester, Mass. $x T$
(2) Wood's Holl, Mass x
(3) Saint Jerome, Mu x
For propagation of salmonide xvi
(4) Grand Lake Strean, Me. (Land-locked salmon) xvi
(5) Bucksport, Me. (Atlantic salmon) xri
(6) Northville, Mich. (Whitefish and tront) xri
(7) Baird, Shasta Comaty, Cal. (California salmon) xri
(8) Baird, Shasta County, Cal. (California trout) xvi
For propagation of shad xri
(9) Havre de-Grace, Md xui
(10) North Eant River, Md xvi
(11) Washington, Central Station xni
(12) Washington, Nayy-yard xvii
(13) Potomac liiver barges xrii
(14) Aroca, N. C. xvii
For propayation of carp xvii
(15) Washmgton, Monument lot xvii
(16) Washincton, Arsenal Grounds xvii
3. Agbistance henderbi to the Commission xrii
By the Executive Departments xvii
(1: Treasury Department. xri
(2) War Depaitment aviii
Page.
4. Agsibtamce nendermd to Commission-Continued.
(3) Nary Department xix
(4) Post-office Department xix
(5) Interior Department xis
(6) Department of Justice xis
By the Commissioner of P'ublic Buildings and Grounds xis
By the Commissioners of the District of Columbia xix
By railroads throughout the United States xix
By foreign steamship lines xx
By telegraph companies x
By foreign countries $x \times$
(1) Germany (saibling) x
(2) France (gourami) xx
(3) England (turbot and sole) $x x$
5. Courtesies extended by the Commisbion to foreign countries XI
Shipment of fish and eggs $\times x i$
(1) Germany sxi
(2) France xxi
(3) England xxi
(4) Scotland xxi
(5) Belgiam xxi
(6) Ecuador xxii
(7) Costa Rica xxi
(8) Mexico xxil
(9) Canada xxil
6. Fishrix exhibitions. xyii
Berlin xxi
Norfolk x
Edinburgh xxi
7. Fish Commission Bulletin xxii
Joint resolution authorizing xxiii
Contents of volume for 1881 xxii
8. The proposed steamer Albatross xsiii
Its functions compared with those of the Fish Hawk xxiii
Action of Congress xxis
Preparation of plans. xxiy
Appropriation insufticient xxis
B.-INQUIRY INTO THE HISTORY AND STATISTICS OF FOOD-FISHES.
9. Propobed investigations into the off-shore fishing-grounds of the United States xxy
General results to be looked for. xy
(1) Locating the known fishing.grounds of the United States xxy
(2) Discovery of new grounds xxy
(3) Increase in number of fishing vessels xiv
(4) Example of Norwegian Government xxyi
(5) Example of likelihood of discovering new and valuable food-fish (the tile-fisi) xyvi
(6) New grounds in Southern waters xxrii
(7) New ground for halibut xxrii
(8) Release from dependence on Canada for fish and bait xxvii
(9) The supply of the necessary demand for fish xxrii
(10) Extension of the use of the cod gill-net xxix
(11) Importance of building a suitable steamer xxix
(12) Possible solution of problem of the migration of mackerel and menhaden xxa
(13) Collecting of specimens of uatural history for schools and colleges xגх
10. The Fismery Ciensus of 1880 xxyi
Progress of the work in 1881 xxxi
Bulletins issued in 1881 relative to the fisheries xaxi
(1) Fisheries of the Pacific coast States xxxi
(2) Fisheries of the Great Litkes xxxii
(3) Fisheries of Maine xxxii
(4) Fisheries of Virginia xxsii
(5) The oyster industry xxxil
11. Ocean temperatures sxxi
Light-house observing stations xxxil
Page.
12. Biological Regearch xxxif
Embryology of food-fishes xxxir
13. The introduction of cod gill-nets xxxiy
Use made of cod gill-nets by the Norwegians xxxy
Experiments at Gloucester with nets brought from Norway. xxxy
Report of Captain Collins on his observations at the Berlin Exhibition. xxyy
Trouble and expense of getting bait xaxv:
Experiments by Capt. Geo. H. Martin xxxvi
Early successes of the Northern Eagle with nets xxxyi
Report of Niels Juel on Loffoden fisheries cited xxxvii
14. The value of fisif as food xxxviii
15. WORK vONe at WOOD's Holi, Mass., in 1881 xxyviii
Advantages as a permanent sea-coast station of the United States Fish Commission. xxxviii
Peculiarities of coast fauna already determined by local and temporary stations. xxxriii
Need of station for off-shore work and as a depot xxxviii
Reason for selectiug Wood's Holl. xxxviii
Negotiations for acquisition of land for permanent station xxxix
Work done during the season of 1881 at Wood's Holl xxxix
Courtesies of Light-House Board xxxix
Collaborators and assistants x
Results of the season's work x]
Investigations into the distribution of tile-fish Il
16. Explorations of the Fish Hawk in 1881 al
Vessels previously used xli
Work of the season of 1880 sli
Work in Albemarle Sound in 1881. xli
Work at Havre de Grace, Md., in 1881. xhi
Work in Chesapeake Bay in 1881 sli
Work at Wood's Holl in 1881 $x \mathrm{li}$
Work at Yorktown, Va., in 1881 xlii
C.-THE PROPAGATION OH FOOD-FISHES.
17. Method of distributlig Fish and eggg xlii
Distribution by messengers in small lots xlii
Facilities furnished by the railroads. xlii
Proportional adrantage of distributing large quantities xliii
Use of ordinary baggage car xliii
Preparation of a special Fish Commission car xliii
Trial with shad and carp aliv
18. SPECIES OF FISH CULTIVATED AND DISTRIBUTED IN 1881 xliv
a. The Whitefish (Coregonus albus).
The Northville station. xliv
b. The Brook Trout (Salvelinus fontinalis).
The Northville station. xlv
c. The Saibling (Salvelinus).
The Plymouth station xlv
d. The Lale Trout (Cristixomer namaycush).
The Northville station xlv
e. The Quinnat or C'alifornia Salmon (Salmo quinnat).
The McCloud River station $x \mathrm{r}$
f. The Rainbow or Califormin Mountain 'Trout (Salmo irideus).
The McClond River station xlvi
g. 'The Allantic or Tenobscot Salmon (Salmo salar).The Penobscot Riper stationsivi
h. The Schoodic or Land-locked Salnon (Salmo salar var. sebago).
The Grand Lake Stream station xlvii
i. The shred (Alosa sapidissima).
The droca station xlix
The I'otomat liver barges xlis
The Washington nary-yard station slix
The Battery Island station 1
The North East River station 1
j. The Carp (Cyprinus carpio).
The Monument station 1
Page.
19. Sifecies of figh cultivated and distributed in 1881 -Continued. The Arsenal station ii
k. The Gourami (Osphromenus olfax).
l. The Cod (Gadus morrhua). The Wood's Holl station. lii
m. The Spanish Hackerel (Cybium maculatum).The Chesapeake Bay stationliii
n. The Turbot (Ihombus maximus) and the Sole (Solea vulgaris) liii
o. The ©yster (Ostrea virginica) lvi
p. The Oregon Clam (Glycimeris generosa) lvi
D.-ABSTRACT OF THE ARTICLES IN THE APPENDIX.
20. Clagsification of articles lvii
A. General lvii
B. The fisheries lvii
©. Natural history and biological research lvii
D. Propagation of food-fishes Ivii
E.-SUPPLEMENT TO REPORT PROPER.
21. Lecture on the work of the Fisif Commission, by Prof. L. A. Lee 1viii
22. T'Ablets lxiii
Distribution of fish and eggs in 1881 lxiii
I.-Egys of Whitefish lxiii
II.-Young of Whitefish lxiii
III.-Eggs of Lake Trout Ixiv
IV.-Eggs of Eastern Brook Trout lxiv
V.-Young of Eastern Brook Trout lxiv
VI.-Eggs of California Salmon lxiv
VII.-Eggs of Califormia Trout lxv
VIII.-Eggs of Penobscot Salmon lxv
1X.-Eggs of Schoodic Saluon lxv
X.-Toung of Shad lxvi
XI.-Young of Carp lxri
23. Ligt of railroads granting fachlities to the United States Fish Commibsion in 1881. lxvii
II.-APPENDIX TO REPORT OF COMMISSIONER.
APPENDIX A.-GENERAL.
I. Z. L. Tammer. Refort on the construction, anid work in 1880, of the Figh Commishion steamer Fisi Hawk. By Lieut. Z. L. Tanner, U. S. N., commanding 3
II. Z. L. Tanner. Repoit on the work of the United States Fish Commisbion bteamer Fish Hawk, for the fear ending December 31, 1881. By Lieut Z. L. Tanner, U. S. N 55
UI. Robert G. 耳yrenforth. List of patents idsued in the United States, durixg the year 1881, relating to fish and the methoins, products, and arplications of the fisher- ifs. By Robert G. Dyrenforth, Examiner-in-chief, United States Patent Office. 87
APPENDIX B.-THE FISHERIES.
IV. G. \boldsymbol{H}_{3} rown Goode. Dosephin. Collins, R. E. Earll, and A. Howard Clark. Materials for a history of the mackebel fishery. By G. Brown Goode, Joseph W. Colling, R. E. Earll, and A. Howard Clark 91
V. Niels Juel. The Loffoden fishery in 1880. By Lieut. Niels Juel. Translated by Tarle- ton H. Bean, M. D 533
VI, Boye Strom. Extracts from Norwegian Ofpicial Statistics of fisheries for the year 1880. By Bose Strom, clerk. Translated by Tarleton H. Bean, M. D 611
VII. Harrison Wright. On the early shad fisheries of the North Branch of the Sugqueifanna River. By Harrison Wright 019
VIII. The fish supply of London. From the London Quarterly Review 643
1X. Charles W. Smiley. The extent of the uge of fish guaxo as a fertilizer. By Chay. W. Smiley i:63

APPENDIX C．－NATURAL HISTORY AN1 BIOLOGICAL RESEARCH．

XI．HI．A．Cutance．Bfological action of the salit containen in sea－watelt flom the POINT OF VIEW OF THE MAINTENANCE OF MARlNE ANiMals．By II．A．Contance 749
XII．Dohn A．TRyder．The protozoa ani protophyta coninerid as thi phimaly or in． DIRECT SOURCE OF THL FOOU OF FISHES．By Jolua A．Ryder 755
NIII．\＄．A．Forbes．The finsil foon of the Common whimitisil（Coregonus clupeiformis， Mitch．）．By Prof．S．A．Forbes 771
 of water in which young shad and egGs can ble kelt．By Frank N．Clark 783
IV．HI．®．Rice．EXPERIMENTS UPON RETARDLNG THE DEVELOPMENT OF THE EGGS OF THE SHAD， Made in 1879 at the United States shad－hatching station at Havre de Grace，Md．By H．J．Rice，Sc．D 787
N゙V1．末ohn A．IEyder．ON THE hetardation of the bevelopment of the shad（Aloga sapi－ dibsima）with obsklvationi on the egg fungus and bacteria．By John A．Rydor． 795
APPENDLX D．PROPAGATION OF FOOD－FISHES．
XVII．Esaron de selym Longchamps．Reporulation of the water－Courses in Bel－ Guym．By Baros de Selys Longchamps 815
XVII．Charles W．Giniley．A statistical heview of the probuction and distribution yo ilbblic waters of young fisil by the United States Fish Commission from its organiza－ tion in 1871 to The close of 1880．By Chayles W．Smiley，Chief of the Division of Records， statistics，and Publications 825
XIX．Charles W．shailey．Index to the distribution，Made under the auspices of the Unifel States Fish Commission，of fish in new waters of the United States，during the decade ending 1880．By Charles W．Smiley 917
NX．Emank N．Clark．Report of work at the United States Hatchery，North． vilie，Micu．，1881－82．By Frank N．Clark 1037
XXI．Livingeton gione．The report of operations at the United States Salmon－ breeling Station on the McCloud River，California，during the seabon of 1881．By Livingston Stone 1063
XXII．Livingston stone．Repont of operations at the United States thout－ponds， McCloud River，California，for the season of 1881．By Livingston Stone． 1079
XXIII．Charleg Gr．Athins．Report on the propagation of Penolbscot baimon in 1881， 1882．By Charles G．Atkins． 1085
XXIV，Charies G．Aikins．Refort on the profagation of Schoodic salmon in 1881， 1882．By Charles G．Atkins 1091
KXV．Charles W．Smiley．Statistics of the shial－hatching operatlons conducted by the Unitel States Eish Commission in 1881．By Charles W．Smiley 1107
 Fish Commission during the season of 1881－82． 1 By Marshall MeDonald 1121
XXVII．Darmanil incioonald．EXPERIMENTAL MVESTIGATION שPON COD－HATCHING AT Woov＇s Hom，Mass．，mung the wintre ok 18ヶ0－81．By Marshal McDonahd． 1127
XXVLI．Mambail MeDonald．Spanisil Mackerli，wvestigations at Cherirstone，Va．， UUIJNG THE sLMMER OF 1881．Hy Marahal Mclouatd 1131

LIST OF ILLUSTRATIONS.

DREDGING APPARATUS.

Page.
I.-Uniter States Fish Commission steamer Fish Hawh 50
II.-Port side of main deck, showing portion of hatching machinery $5 \cdot 4$
III.-Hatching eslinders, port side 54
IV.-One hatching cone, 3 hatching cylinders, 1 siphon funnel, 2\% spawn pans, 1 spawn pail, 1 spawn dipper. 54
V.-Hoisting and recling engine, from forward, looking aft 54
VI.-Hoisting and reeling engine from aft, looking forward. 54
VLI-Safety hooks, showing spring. 54
VIII. - A ccumulator, with dredging block hooked, safety look, brass washer 5.
IX.-The beam trawl ready for lowering. 54
X.-Dredge safety hook, water bottle, dredge-weight, and tangles, Chester rake dredge 54
XI.-The table sieve and cradle sieve, hopper and tray exposed 54
XII.-Main deck, starboard side, table sieve, swinging table, and collecting apparatus 54
XII.-Sounding machine, with Negrettiand Zambra deep-sea themometer descending- 54
XIV.-Sounding machine, with Negretti and Zambra deep-sea thermometer ascending. 54
XV.-Sounding machine, with Bassnett's patent atmospberic lead. 5
XVI. -The Negretti and Zambra deep-sea thermometer, with wooden frame and metal case 54
XVII.-The Miller-Casella deep-sea thermometer in and ont of case 54
XVUI.-Hilgard's ocean salinometer 54
HATCHING APPARATVS.
Figure 1.-Vertical sectional view of the aerator. 55
2.-End view of the aerator 56
3.-Nest of three hatching cones and siphon tank 57
MACKEREL FISHERY
Platk I.-Diagram showing the catch of mackerel by citizens of Massachusetts between the years 1804 and 1881, inclusive. 170
ANNELIDA CHATOPODA.
Plate I.-Eteone cinerea, Podarke cxca, Iesione agilis. 744
II.-Syllides convolata, Streptosyllis arenæ 744
MII. - Streptosyllis arenæ, Sphærosyllis brevifrons, Paedophylax hebes, Nereis tenuis 744
IV.-N゙ereis tenuis, Stauocephalus caecus 744
V.-Goniada gracilis, Spio Rathbuni, Streblospio Bonedicti Webster 744
VI.-Spiophanes Verrilli, Nicolea viridis, Pista intermedia 744
VII- L'ista palmata (Ferrill), Potamilla neglecta Jfalmgren, Thaumastoma singulare 744
VIII.-Spherosyllis longicirrata, Eulalia dubia
retarding the development of eggs of the shad.
Figune 1.-1ce-chest for shad eggs 788
2.-Tray for ice-chest 788
3.-Apparatus for using the same water over again in hatching shad 790
FISH TRANSPORTATION.
Pigler 1.-Shipping crate 1122
HATCHING APPARATUS.
Figune 1.-Apparatus for hatching buoyant fish-egge 1128

REPORT OF THE COMMISSIONER.

A.-GENERAL CONSIDERATIONS.

1.-INTRODUCTORY REMARKS.

In the report herewith presented will be found an account of the operations of the United States Fish Commission during the year ending December 31, 1881.

In entering upon a secoud decade a few changes in methods of administration have been made, some of which were rendered necessary by the expansion of the work, while others have been suggested by the experience of the first ten years. Some idea of the extent of the correspondence may be obtained from the accompanying table prepared by Mr. C. W. Smiley, in charge of the archives, showing the number of letters written each month from 1871° to 1881 , inclusive. The number received was much greater. Probably one-half of the latter were answered by printed circulars or by furnishing publicatious of the Commission.

The table may be of interest, also, as showing the increase of correspondence with succeeding years and steady expansion of the work. The decrease of the letters in 1876, the year of the International or Centennial Exhibition in Philadelphia, was due to the cessation of field-work caused by the necessary ocenpation of the time of the Commissioner, for the greater part of the year, in connection with the Government participation on the occasion in question.

Number of letter's written monthly in the office of the United States Fish Commission 1871-1881, inclusive.

Months.	1871.	1872.	1873.	1874.	1875.	1876.	1877.	1878.	1879.	1880.	1881.
January		34	109	137	105	72	156	244	223	366	365
February		65	102	82	115	69	151	132	219	492	398
March	19	41	94	138	204	106	121	252	241	631	412
April	32	27	104	247	182	67	176	401	269	411	471
May	41	44	113	173	217	74	278	334	337	410	440
June	36	48	86	133	103	61	187	310	339	515	511
July	31	97	65	129	275	102	307	173	275	486	555
Aupust	7	46	98	180	187	61	300	218	261	331	676
September	7	45	137	138	232	117	200	334	360	283	447
October.	16	26	82	167	220	11	107	228	268	305	367
November	41	86	102	132	2 ll	16	232	221	238	410	441
December	42	¢8	116	166	114	58	276	268	295	422	591
Total	272	647	1,208	1,822	2,235	814	2,491	3,115	3,325	5,067	5,67,3

Up to the present year, or for eleven years, all the office and administrative work of the Commission was carried on in the prirate resi-
dence of the Commissioner, built by him with special reference to the same, and for the use of which compensation was neither asked nor received. The accommodation thus furnished proving too contracted, an appropriation for rent of offices was for the first time made in 1881, and upon the vacant lot adjacent to the Commissioner's residence a suitable building was erected by the owner, Mr. J. O. Wilson, and occupied by the Commission in the latter part of the year. This, however, has not in any way obviated the necessity of the continued employment of the office rooms in the Commissioner's own residence.

The most noteworthy features of the year have been the following:

1. The production and distribution of German carp on a much larger scale than heretofore, in spite of the flood of February 12, which threatened to sweep away all the breeding fish.
2. The construction of an additional carp pond.
3. The construction of a car suitable for distributing fish of all kinds, and an entire change in the methods of fish transportatiou.
4. An entire change in the policy of distributing fish in public waters, whereby, instead of depositing a few fish in a great many localities, a great many fish have this year been introduced in fewer localities.
5. An unprecedentedly large yield of shad and consequent iucrease in the distribution of fry.
6. A flood in the McCloud River sweeping away all the works at that station, and which resulted in a decrease of production and distribution of California salmon and of California trout.
7. Extended experiments mpon the hatching of cod at Wood's Holl in winter, and of Spanish mackerel at Cherrystone in summer.
8. The exportation of young carp, the eggs of California and landlocked salmon, and of the whitefish, to foreign countries.
9. Important investigations into the embryology and food of fishes, and upon the retardation of the development of the eggs of shad.
10. The inauguration of experiments looking to the artificial propagation of the oyster.
11. The further investigation of the new tile-fish grounds, and the publication of instructions for the use of the cod gill-net, which had been previously introduced in the ocean fisheries upon the recommendation of the Fish Commission.

1:. The collection, arraugement, and distribution to educational institutions of a series of marine invertebrates.
13. The preparation of plans and specifications for an ocean steamer, an appropriation of $\$ 103,000$ for the construction of a vessel for deepsea research having been made by Congress.
14. The securing, with money raised by private subscription, of a large tract of land on Wood's Holl Harbor upon which to establish a station for the artificial propagation of sea-fishes, such as cod, \&c., and also for general biological research.
1.). The establishment, by act of Congress, of an annual Bulletin of
j00 pages, to be issued in numbers as well as in a bound volume, and to contain important information gathered by the Commission.
16. The leasing of a building for the offices of the Fish Commission.
17. The importation from England of living turbot and sole for the purpose of stocking the waters of the United States.

Full information upon all these topics will be found under the proper headings.
$2 .-P R I N C I P A L$ STATIONS OF THE UNITED STATES FISH COMMISSION.
A brief statement of the principal localities at which the work of the Commission was conducted during this year is here given as prefatory to a fuller discussion under each head.
A.-Invertigation and Research.

1. Gloucester.-Since Gloucester was made the summer station of 187 s , guarters have, until the present year, been maintained there under lease, at Fort Wharf, for the use of the Commission. This was considered an important point, as being one of the principal fishing ports of the Atlantic Coast, where much information in regard to the fisheries and many valuable specimens could be obtained from fishing vessels. In June of the present year Messrs. Burns \& Co., having purchased the premises, took forcible possession of the Fish Commission quarters, although the lease under which the rooms were held did not expire until Jaunary, 188\%. The Attorney-General, the honorable Wayne MacVeagh, instructed the districtattorney for Massachusetts, Judge G. P. Sanger, to take any necessary steps for maintaining the rights of the United States, but to avoid litigation it was thought best to abandon the station, although it had been inteuded to make it one of the principal points for hatching codfish and mackerel on an extensive scale. Since that time, however, Capt. S. J. Martiin has made weekly reports of the arrival of fishing vessels and the general features of the fisheries, together with daily records of ocean and atmospheric temperatures.
2. Wood's Holl.-The summer investigations by the Commission have formed an important feature during nearly every year of its history, having been conducted in its successive years at the following places: 1871. Wood's Holl, Mass.; 1872. Eastport, Me.; 1873. Portland, Me.; 1874. Noank, Comn.; 1875. Wood's Holl, Mass.; 1876. Intermitted on account of the engagement of the Commissioner at the Centennial ExLibition in Philadelphia; 1877. Salem, Mass., and Halifax, Nova Scotia; 1878. Gloucester, Mass.; 1879. Provincetown, Mass.; 1880. Newport, R. I.; 1881. Wood's Holl, Mass.

The Commissioner was in attendance at this station from July 8 to October 4. From this point dredging trips were made by the steamer Tish Hawk to the Gulf Stream and other regions of the North Atlantic.
3. Saint Jerome.-This station, located near the mouth of the Potomac River, was established during the previous year by Mr. T. B. Fer-
guson, as Commissioner of Fisheries for the State of Maryland, for the purpose of conducting experiments in regard to the artificial propagation of oysters, \&c. This year the United States Commissioner joined with the Maryland Commissioner, and the operations were under their general auspices, but under the special direction of Mr. Ferguson.
B.-Propagation of Salmonide.
4. Grand Lake Stream on the Schoodic Lakes.-The station at this place, situated not very far from Calais, Me., was inaugurated in 1875, and has proved very successful in furnishing a supply of the eggs of the land-locked salmon.
5. Bucksport, Me.-This station, located near Bucksport, and adjacent to the mouth of the Penobscot River, has been in operation since 1871 for the taking and hatching of eggs of the Penobscot or Atlantic salmon, ander the direction of Mr. Charles G. Atkins.
6. Northville.-A fish-hatching station was established at Nortbville, in 1868, by the late Mr. N. W. Clark. Since 1874 the United States Fish Commission has made use of it, and since 1880 has held it under lease. At this station whitefish, lake trout, brook trout, California trout, \&c., are hatched.
7. McCloud River Salmon Station.-This station, not far from Mount Shasta, and on a tributary of Pitt River, one of the principal branches of the Sacramento, has been in successful operation since 1872, and has turued out $70,000,000$ eggs, largely increasing the local supply of the Sacramento River, as well as furnishing eggs for shipment to the East, and to foreign countries.
8. McCloud River Trout Station.-This is located a few miles from the salmon station, and was established in 1879 for the taking of eggs of the California mountain trout.

> C.-Propagation of Shad.
9. Battery Island.-Work at this station, near Harre de Grace, Md., was carried on from May 15 to June 13, under the direction of Mr. Frank N. Clark, for the taking and hatching of eggs of the shad, and for conducting some important experiments connected with the retardation of the development of the eggs.
10. North East River, Maryland.-This station, a few miles from Battery Island, near the mouth of the Susquehanna, was operated from May 5 to June 5, inclusive, by the steamer Fish Hawk, for taking and hatching the eggs of shad, this vessel having been transferred from Avoca upon the completion of the season there.
11. Central Station.-The Centennial exhibits, which had been stored in the Armory building in Washington for several years, were this year in part removed to the new Museum building, and by authority of Congress the space thus vacated was fitted up as a central hatching and distributing station. It is abuudantly supplied with water, and from
its location, adjacent to the Baltimore and Potomac Railroad tracks, is very convenient as a shipping depot for fish and eggs. During the year permission has been obtained from the District Commissioners to extend a side track from the railroad, along the southern side of the building. It will also be ased for investigations upon fish and eggs in relation to many practical and biological questions.
12. Washington navy-yard.-This station was occupied temporarily, as in some former years, from May 4 to June 25, inclusive, for the hatching of shad-eggs, which were collected at the fisheries on the Potomac and brought thither by a steam launch.
13. Potomac River barges.-Two of the barges, one fitted as quarters and the other containing facilities for hatching, were transferred from Havre de Grace and anchored in Gunston Bay, about 20 miles below Washington. This temporary shad-hatching station was most successful, and was under the immediate direction of Mr. Marshall McDonald from April 20 to May 30, inclusive.
14. Avoca, N. C.-This was a temporary station occupied from A pril 12 to April 30 by the steamer Fish Hark, Lieut. Z. L. Tanner, U. S. N., commanding, for the taking and hatching of the eggs of shad.
D.-Propagation of Carp.
15. Carp ponds at Monument Lot.-These ponds have been maintained during the present year for the propagation of carp under the saperintendence of Mr. Rud. Hessel. The number of carp produced was larger than in any previous year. A new pond has also been constructed during the present year.
16. Carp ponds at the Washington Arsenal.-These ponds were maintained as heretofore for the propagation of the scale and mirror carp, and were under the charge of Mr. Elliott Jones, of the Ordnance Department, United States Army, until the latter part of May, when, through his transfer to another field of duty, the Commission was deprived of his services. The General of the Army, however, kindly instructed General Ayres, the commandant of the artillery station in the Arsenal Grounds, to protect the ponds and their contents from disturbance and depredation.

3.-ASSISTANCE RENDERED TO THE COMMISSION.

The act of Congress establishing the Commission directs the Executive Departments of the Government to render all necessary and practicable aid in carrying out its mission; and, as in previous years, it is $\mathrm{m} \boldsymbol{y}$ very agreeable duty to report the cordial manner in which this has been done. The most notewortly occasions for this service have been as follows:
Treasury Department-Secretary's Office.-June 1, Thomas J. Hobbs was designated to disburse the appropriation for "fish hatching S. Mis. 110——II
establishments, 1881-1882, $\$ 10,000$," and on the 15 th of November he was instructed to disburse the appropriation for the new steamer.

Bureau of Revenue Marine.-In the latter part of October a consignment of turbot and sole arrived from Europe, and in order to facilitate their immediate transportation to a place of deposit, the revenue steamer Grant, under Captain Fengar, was placed at the disposal of the Commission by order of the Secretary of the Treasury.

Light-House Board.-By instruction of the Board in previous years, many light-house keepers have continued to furnish satisfactory records of ocean temperature. November 25 the Board directed that these temperatures should also be takeu at three new places in Chesapeake Bay. May 11 the Board granted the use of a building in the buoy shed at Wood's Holl for the summer. June 15 the Board granted a three months' leave of absence to Ephraim Edwards in order that he might act as fog pilot of the steamer Fish Hawk during its stay at Wood's Holl. In March Geueral O. E. Babcock rendered important services to the steamer Fish Hawk in navigating Albemarle Sound. At the request of the Fish Commission, the Light-House Board, in the latter part of August, had the entrance to Saint Jerome's Creek properly marked with buoys.

Coast Survey.—On many occasions during the year Capt. C. P. Patterson, Superintendent of the Coast Survey, responded to requests for charts of Wood's Holl, Chesapeake Bay, Atlantic coast, as well as for copies of the Coast Pilot.

War Departhent.-June 16 the Adjutant-General of the Army announced that instructions had been given by General Hancock to the chief quartermaster of the Washington Arsenal to take charge of the carp ponds at that point.

Engineer Bureau.—In November Col. W. P. Craighill, United States engineer, Baltimore, ordered important improvements at Battery Island, such as providing a landing place for the seine; the preparation of a breakwater; laying the foundation of the hatching house; the filling of the island; and the sheathing of the basin with boards. The Ordnance Department remitted a charge for rifles and ammunition used in 1878 at McCloud River Station, the property having been lost in the flood of this year, and issued an order for duplicating the same.

Signal Office.-On many occasions during the year, the Chief Signal Officer has furnished thermometers for light-house keepers to use in taking ocean temperatures. April 27 General Hazen furnished a complete set of recording and self-registering meteorological instruments for use at Havre de Grace, and on June 27 sent Sergeant Seybooth to Harre de Grace to inaugurate the observations. During operations at Wood's Holl he furnished a series of weather reports, and gave special notice of apprehended hurricanes and storms on the coast, which were of great importance to the steamer Fish Hawk in arranging for trips to the Gulf Stream. He also authorized the stretching of telephone wires along the signal service poles at Wood's Holl.

The Navy Department.-From its first organization the United States Fish Commission has been more closely related to the Nary Department than to any other branch of the Government, and the facilities extended by it, in compliance with the law as well as in accordance with the kindly feeling of the Secretaries and of the chiefs of bureaus, have been of the utmost importance. This aid has been shown in the detail of several steamers, fully manned and equipped, for service; the loan of launches; the execution of work and of repairs at the naryyards, and in many other ways.

The experiences of 1881 have been in the same general direction; the most important occasion being the loan of two steam Jaunches, one a Herreshoff, No. 62, and the other a naval launch, No. 55, both rendering admirable service in their respective arocations; this, of course, in addition to furnishing officers and men to the Fish Hawk, the Lookont, and the launches.
The United States steamer Despatch being under orders for service in the West Indies was likely to be delayed unseasonably by waiting for the completion of repairs on her steam launch. In this emergency it gave me great pleasure to accede to a request from the chief of the Bureau of Construction and Repair to supply the Despatch with the Fish Hawk's launch and take the other in exchange when completed, as both were of the same character. No inconvenience resulted to either vessel by the exchange.

Post-Office Departhent.-At various times during the year Mr. W. L. Nicholson, the topographer of the Department, furnished postroute maps.

Interior Department.-The Commissioner of Patents has furnished copies of specifications of patents relating to the fisheries and fishery apparatus.

Department of Justice.-The Attorney. General, Hon. Wayne MacVeagh, instructed the district attorney of Massachusetts to advise with the Commissioner with reference to the interests at Gloucester and also to the acquisition of land at Wood's Holl.

Conaussioner of Public Bulldings and Grounds.-May 20, Col. A. F. Rockwell furnished the Commission with a quantity of iron fencing to be used at the carp ponds.

Distriot Connussioners.-The District Commissioners, May 31, issued a permit for extending a railroad track from the Baltimore and Potomac line to the Armory. Major Brock, Chief of Police, gave directions for removing squatters from the river front near the carp ponds. Dr. Smith Townshend, health officer, has furnished each month reports of the inspection of fresh fish for the District of Columbia.

Railroads.-At the close of this report will be found a list of railroads that have granted the privilege of carrying fish in their baggage cars during the year, in continuance of a custom which had been established for several years. The Fish Commission car having been com-
pleted in the spring, some special arrangements with reference to its rate of transportation were called for. On May 20 Mr . Isaac Hinckley, president of the Philadelphia, Wilmington and Baltimore road, offered the rate of 20 cents a mile for car and five messengers. This was shortly afterwards acceded to by the Pennsylvania Railroad, the Baltitimore and Ohio, the Chicago, Burlington and Quincy, the Boston and Albany, the Cincinnati, Hamilton and Dayton, the Flint and Pere Marquette, the Illinois Central, the Louisville and Nashville, the New York, New Haveu and Hartford, the Old Colony, the Pittsburgh, Fort Wayne and Chicago, the Terre Haute and Indianapolis, and the Vandalia line. The Union and Central Pacific railroads offered the rate of $\$ 370$ for moving the car from Council Blaffs to San Francisco.

Steamships.-The North German Lloyd steamer Donau, sailing in January, took out 20,000 land-locked salmon for Germany. December 20 the steamer for Panama took a can of carp for Arthur Morell at San José. In December the steamship Oder took 350,000 whitefish eggs for Germany.

Western Union Telegrapi Company.-January 28 the operators of the Western Union were instructed to receive and transmit at Government rates, without prepayment, the messages on official business from the messengers of the Fish Commission.

Foreign countries.-Of courtesies extended to the Commission by individuals or establishments in foreign countries, the following may be enumerated:

GERMANY-(Saibling.)-On the 23 d of January an invoice of 60,000 saibling eggs (Salmo salvelinus) arrived from Burgomaster Schuster, of Freiburg, Germany, with a toss of but 5,000 eggs. The particulars of their treatment on arrival will be found on page xLv.
france-(Gourami.)-In August an effort was made by Monsieur L. Carbonnier to send a pair of live gourami to the United States, consigned to Mr. E. G. Blackford. Unfortunately, one died on the passage and the other a short time after reaching this country. Further reference to this experiment will be found on page lit.
england-(Turbot and sole.)-In October Mr. C. L. Jackson, of Bolton, England, started 70 live soles and 35 turbot for the United States, in charge of A. Wilson Armistead. Of these, 67 soles and 29 turbot died on the passage, and there arrived, October 26,3 soles and 6 turbot. These were taken charge of by Mr. Blackford, Mr. Mather, and Mr. Phillips, who deposited them off Long Island, nearly opposite the Hotel Brighton, on the day of their arrival. Further particulars of this will be found on page LiII.
4.-Courtesies extended by the commission to foreign counTRIES.

During the present year, as in previous ones, cousiderable numbers of salnon, whitefish, and trout eggs have been sent abroad in exchange
for such species as it is considered desirable to import into the United States. Theso shipments have been generally successful, though sometimes attended with loss. This year, in addition, carp have been sent to a considerable number of countries.

Geranany.-The whitefish eggs which were forwarded December 25, 1880, per steamer Donau, to the Deutsche Fischerei-Verein, of which Herr von Behr is the president, arrived in good condition on January 10 of the present year. On the 19th of March, 20,000 land-locked salmon eggs were forwarded to the Verein by the same steamer, and again, on the Sth of October, 350,000 eggs of California salmon, also by the Donau. The California salmon eggs reached Germany in good condition, and were hatched partly at Freiburg and partly in Hungary, the latter finding their final destination in the Danube.

On the 17 th of December 20,000 eggs of lake trout were forwarded by the steamer Maine to Herr von Behr.

On the 26th of December there were shipped per steamer Oder, from New York, 300,000 whitefish eggs for the Deutsche Fischerei-Verein, and 12,000 whitefish eggs for G. L. Ebrecht, Geestemunde, near Bremen.

There were also forwarded on the same date and by the same steamer 20,000 lake-trout eggs for F. Busse, at Geestemunde, and 12,000 brooktrout eggs for G. L. Ebrecht. Mr. Busse has furnished us on previous occasions with collections of fishes from Germany from which to make plaster casts. Mr. Ebrecht has siguified his intention of forwarding blue and golden carp in return for these eggs.

France.-On the 19th of March there were forwarded per steamer Donau, via Bremen, 20,000 salmon eggs, consigued to the Société d'Ac. climatation. On the 25th of April the Société acknowledged their receipt in excellent condition, and stated that those sent in the previous year were doing well.

At the request of the secretary, M. Raveret-Wattel, there was forwarded, February 21, through the Bureau of International Exchanges a sample of Frank N. Clark's self-picking apparatus for the Socicté d'Acclimatation.

England.-Correspondence was entered into early in the year with Hon. W. Oldham Chambers, honorary secretary, in reference to his obtainiug from the Commission a consigument of eggs of the Califormia salmon, the California trout, and the laud-locked salmon. The floods in the McCloud River and the reduced number of land-locked salmon eggs, however, prevented any sending during the present year.

Scotland.-On the 9 th of November 25 leather carp were delivered in New York to A. Wilson Armistead, of Douglas Hall, neax Dalbeattie, Scotland. After a very stormy royage, he was able on the 22 d of December to announce their safe arrival. He also took home with him 30 or 40 large black bass.

Belgiuar.-Correspondence has been maintained during the jear
with Thomas Wilson, United States cousul at Ghent, looking to the introduction of the American catfish into Belgium.

Ecuador.-In May of the present year thirty carp were forwarded to E. G. Blackford, New York, who delivered them to Frederick Wesson, of 75 William street, for shipment to Ecuador. On the 21st of May they were forwarded per steamer Colon. On the 23d of Angust Mr. Wesson was able to announce that six of the carp had safely arrived and had been deposited in a lake on the estate of Señor Jijon, near Quito, although not until numerons difficulties had been overcome.

Costa Rica.-In November Hon. William Hunter, of the State Department, made application in behalf of Arthur Morrell, United States consul in Costa Rica, for a can of living carp. These were forwarded to New York December 15, and left on the steamer of December 20 for Aspinwall, consigned to Mr. Morrell, at San José, Costa Rica. Dr. Bransford, of the Navy, was a passenger on the steamer, and kindly undertook to give them the necessary supervision on the voyage.

Mexico.-Early in the year Maj. Gen. O. E. C. Ord took with him a supply of carp to the city of Mexico. News was received from him, March 10, of their safe arrival.

Canada.-As on one or two previous occasions, carp were this year sent to Samuel Wilmot, superintendent of fisheries, Newcastle, Ontario. On December 31 he reported that they reached him in good condition.

5.-FISHERY EXHIBITIONS.

Last year a full account was given of the participation of the United States in the International Fishery Exhibition at Berlin, and of the safe return of the collections. These were in due time installed in the National Museum so far as practicable. On February 18, Congress passed a bill, which had been introduced by the Hon. J. G. Carlisle, to admit free of duty the vase which was awarded to the United States Fish Commissioner. On the 28th of February this bill was signed by the President and became a law. On the 30th of March the Hon. James G. Blaine, Secretary of State, transmitted the various medals and diplomas which had been awarded to the American Exhibitors. These were forwarded to the proper persons. During the year there was held a fishery exhibition at Norfolk, England, and another was announced for Edinburgh, Scotland, in 1882, in both of which the United States Commission was asked to participate, but it was necessary to decline the invitations.

6.-FISH COMMISSION BULLETIN.

On the 14th of February Congress, by joint resolution (House resoIution No. 372), authorized the publication annually of a Bulletin of 500 pages, to contain the announcements of new observations, discov-
eries, and applications of fish-culture and fisheries. The following is a copy of the resolution:

JOINT RESOLUTION authorizing the Public Printer to print reports of the United States Fish Commissioner upon new discoveries in regard to fish-culture.

Resolved by the Senate and House of Representatives of the United States of America in Congress assembled, That the Public Printer be, and he hereby is, instructed to print and stereotype, from time to time, any matter furnished him by the United States Commissioner of Fish and Fisheries relative to new observations, discoveries, and applications connected with fish culture and the fisheries, to be capable of being distributed in parts, and the whole to form an annual volume or bulletin not exceeding five hundred pages. The extra edition of said work shall consist of five thousand copies, of which two thousand five hundred shall be for the use of the House of Representatives, one thousand for the use of the Senate, and one thousand five hundred for the use of the Commissioner of Fish and Fisheries.

This Bulletin was introduced by an article of 16 pages, accompanied by 12 plates, upon the use of gill-nets in the cod-fishery, by Capt. J. W. Collins. Of this paper 1,500 extra copies were also published and distributed in pamphlet form. There were 109 different articles published in this Bulletin, among the more important of which were the following: Observations on the food of young whitefish, by Prof. S. A. Forbes; Notes on the development of stickleback, Spanish mackerel, shad, hippocampus, and silver gar, oysters, \&c., by John A. Ryder; Notes on the cod, mackerel, and other fishes of Gloucester, by S. J. Martin; Notes on the life-history of the cel, by G. Brown Goode; Carangoid fisheries of the United States, by G. Brown Goode; The winter haddock fishery, by Goode and Collins; Changes in the fisheries of the Great Lakes, from $1870-$ '80, by C. W. Smiley; Notes on white-fish-hatching apparatus, by Frank N. Clark; Description of new species of fish, by Jordan and Gilbert; and A discussion on the disease among salmon in English waters, by Professor Huxley and S. Walpole.

7.-THE PROPOSED STEAMER ALBATROSS.

The steamer Fish Hark, of the construction and performances of which a full account has been given in the present and preceding Reports, was built to serve as a floating station for hatching the eggs of shad and other fish, experience having shown that many important stations need to be occupied only for a short time, without the necessity of a permanent establishment. Thus, by means of a vessel like the Fish Hawk, work can be begun at the South in the winter or early spring, and the vessel moved, as the season advances, to more northerly points, carrying with it, of course, all its outfit and equipment, and
able to commence operations immediately on arriving at a suitable anchorage.

Provision having thus been made to utilize all possible opportunities for the propagation of food-fishes, by the establishing of movable as well as of permanent stations, the United States Fish Commissiou has endeavored to extend its sphere of operations in other directions, so as to render its work more and more useful to the comntry.

It is well known that the interests of the nation are closely identified with the prosperity of its fisheries, their extension and development furnishing a stimulus to all the industries connected with the waters. While supplying occupatiou to a large number of persons, the amount of the fish product is increased and the cost diminished.

In this connection may also be considered the increase in the number of persons accustomed to the use of boats and vessels, and furnishing in time of need the material for supplying the vessels of the United States Navy.

Referring to the next section of the present Report for the details of desirable research and for a presentation of the importance of constructing a suitable vessel for carrying on the work, I have to announce the approbation of Congress, as shown in an appropriation of $\$ 103,000$ for the construction of a suitable steamer to be built for the use of the Fish Commission.

No Department having been designated to overlook its construction, the Secretary of the Treasury was asked to place the work under the direction of the Light-House Board, which had so ably supervised the building of the Fish Hawk. This having been granted, Mr. Charles W. Copeland was selected by the Board to prepare the necessary plans and specifications, so as to carry out the needs of the Commission. In this he had the assistance of Lieut. Z. L. Tanner, commander of the Fish Hawk, who was able to indicate important points to be provided for in connection with scientific work, as also of Engineer G. W. Baird.

The estimates of the cost of the ressel upon which the appropriation was based were made in the year 1880, but it was not until October, 1881, that it become possible to issue advertisements for proposals. By that time the price of iron and of labor had advanced very materially, and the appropriation was found to be inadequate, the bids for an iron steamer being severally as follows:
H. A. Ramsey \& Co., of Baltimore . \$129, 500

Pusey \& Jones, of Wilmington, Del 130, 800
Harlan \& Hollingsworth, of Wilmington, Del............... . . . 137,000
These figures being all far beyond the amount of the appropriation, it became necessary either to prepare plans for a smaller vessel or to defer further action until an additional appropriation could be made by Congress. The latter alternative was considered preferable.

B.-INQUIRY INTO THE HISTORY AND STATISTICS OF FOOD-FISHES.

8.-PROPOSED INVESTIGATIONS INTO THE OFFSHORE FISHERY GROUNDS OF THE UNITED STATES.

Among the most important objects of a Gorernment fishery commission is that of investigating the known fishing.grounds of a country, to determine accurately their extension and character, so as to define the circumstances and conditions under which the pursuit of the various species of fish can be prosecuted at the various seasons of the year, and also to ascertain what natural bait most attractive to the fish can be secured on the ground, and what can be most advantageously brought from a distance. This involves, also, the question of the methods of fishing most appropriate to the different localities.

A second object of such a commission should be the discovery and definition of new fishing.grounds, or such as had been previously unknown to the fishermen. Such undoubtedly exist, and from time to time are accidentally brought to light, some becoming of national importance. Incidental to this is the inquiry into the hitherto unknown winter abode of many of our valuable summer fishes, which are absent from our shores for several months of the year, as is the case with the mackerel, menhaden, bluefish, and many other species. An important corollary is to relieve the United States fishermen from their dependence upon the Canadian waters, either for fish or for bait; so that, eren with the utmost probable development of the fishery marine of this country, it may find ample occupation in the waters directly off from our own coast, from Maine to Florida.

One general result of such stimulation and development will, of course, be found in a great increase in the number of sea-going fishing-ressels and the training of their crews to maritime adventure. Norway is the only country in Europe in which the Government has come to the aid of the fishermen in any notable degree, and the result of a moderate amount of attention by the State is shown by the immense development of the fishing industry. It is well known that Norway is supported by ner fisheries to a greater extent than any other country, and that her exports constitute a great source of the fish supply of the world, her cod and herring being exported in immense quantities, not only orer the whole of Europe, but even to the West Indies, and to Central and South America. The Loffoden Islands are the great winter spawning.grounds of the cod in the North Atlantic of Europe; and here, for four or five months of each year, the fishing industry is prosecuted to its utmost extent, the product being greater than that of America, including both the British provinces and the United States.

The Norwegian Government has for many years sustained a scientific commission for the purpose of studying carefully all possible methods
of protecting and developing her fisheries, and with distinguished success. It has, howerer, not been satisfied with its labors in the known grounds, but has for several years had a large steamer engaged in a thorough search for additional fishing-grounds, and although the Norwegian seas have been traversed by her fishing-vessels for hundreds of years, each year some new locality is discovered, made known and occupied, including the previously unknown summer abode of her winter fish.

This problem, so far as the offshores of the United States is concerned, is one that is eminently worthy of the attention of the United States Fish Commission and the support of Congress in its attempt to solve it. At present the principal grounds visited by the fishermen of the United States, excepting for mackerel, are found between latitudes $41^{\circ} \mathrm{N}$. and $46^{\circ} \mathrm{N}$. , a breadth of only about five degrees, but extending eastward beyond the eastern edge of the Grand Banks. The special objects of search over these grounds are the cod and halibut; but the incessant prosecution of the business in one locality tends to diminish the supply and to lead to the inquiry for other banks not yet ascertained. A systematic investigation of the fishing-grounds will result in determining the exact depths at which the fish can be taken at different seasons of the year and the regions where this industry can be most profitably pursued.

Another, even more important, branch of the subject, is that of finding entirely new localities not previously explored. A notable instance of what may be done in this respect is seen in the case of the tile-fish, a species already mentioned. A few of these were accidentally taken by a Gloucester fishing-vessel in 1879, and like all strange fishes brought into that port, were delivered to an agent of the Fish Commission, who transmitted them to Washington. Here they were carefully investigated and found to constitute a very desirable as well as new genus and species of food-fish, and one entirely worthy of fature attention. In September, 1880, the Fish Hawk proceeded to the locality where these fish were taken, about 75 miles sonth of Newport, and discovered that this was in the western edge of the Gulf Stream. On putting down the trawl-net the sea-bottom was found to be rich in animal life, beyond any previous experience of the Commission, the mass and variety being perfectly startling, and a large number of new species being readily secured in a short time. The quantity of crabs, shell-fish, \&c., serving as food for fishes, was incalculable. The fishing-lines were then brought into requisition and the tile-fish found in abundance proportional to that of its food. The fish were then traced, in three successive trips of the vessel, along an extent of 60 miles, where they appeared to be as abundant as codfish on their banks, and were taken with even greater facility with the hook. The flesh was found to be most palatable, and to be capable of preservation by salting or drying, in the same way as the cod. A fish, therefore, which two years ago was entirely un-
known, even to the fishermen, now bids fair, when its distribution is better ascertained, to constitute a most important object of pursuit by the fishermen, and to have the especial advantage of occurring farther to the south than the localities in which the cod and halibut are abundant, and set to be equally accessible from any part of the coast. It is extremely desirable therefore that this inquiry be prosecuted so as to ascertain exactly orer what degrees of latitude the tile-fish occurs. A similar research in the waters to the south and southeast of New England will, in all probability, show much more accessible localities for the halibut and cod, especially in the winter season.

There is also a large field for investigation into new fishing-grounds off the coast of the Southern States; several fishes, such as the sea bass, the red snappers, \&c., occurring there in great abundance, while a few localities only are known.

In time these inrestigations should be continued into the Gulf of Mexico (where there are vast possibilities of fisheries not yet developed), as well as on the Pacific coast of the United States. Here scarcely anything has been done, or is known, bejond the general fact that raluable stores of food-fishes exist in the sea, though the best fishing. grounds are not yet indicated.

An incidental result of winter explorations off the middle and southern coast of the United States, will be, in all probability, the discovery of the present winter grounds of certain fishes that are abnndant near the shores only in the summer, but which are absent for from four to six months in entirely unknown winter quarters. These are especially the mackerel, the bluefish, the menhaden, the swordfish, the horsemackerel, the shad, the salmon, the Spanish mackerel, \&c. In all probability they are found in the same region with the tile-fish, as the researches of last summer showed that the food of all the fishes mentioned occurs in an inexhaustible quantity in the locality just indicated.

Norway has a very small area of ocean in which to prosecute her fisheries, compared with the United States, and a systematic inrestigation on the American side will undoubtedly produce results of greater comparative importance.

In the earlier years of the American fisheries and in the greater abundance of inshore fishes, with a comparatively slight demand in consequence of the small population of the conntry, and the difficulties of transporting the fish, it was quite possible to obtain within easy reach of our coast fish enough to meet all the requirements. Now, with a population of fifty millions of people, the great decline of the inshore fisheries, and the ability not only to transport fresh fish to any distance inland, without deterioration, but with also the growing demand for salted, dried, and canned fish, it is of the utmost importance that every facility be furnished to the fishermen in the prosecution of their business. The diminution of inshore fishing is particularly noticeable in the case of the halibut. This fish was formerly taken
with great ease in small boats all along the New England coast, and at first was considered of very little value, fish weighing a hundred pounds and over being caught and thrown back into the water as refuse, and classed in the same category with sharks, skates, and rays. Within a comparatively few years, however, the halibut has appreciated in value, and is now one of the principal objects of pursuit by the New England fishermen. The yield of this fish to Gloucester alone in 1879 amounted to over eleven millions of pounds.

In later years it has been necessary to follow the halibut into deeper and deeper waters, so that while twenty years ago it might be taken in water of 10 to 50 fathoms, it is now seldom caught in less than 100 fathoms, and deeper waters are gradually traversed up to 300 fathoms. The increasing depth reuders it constantly more difficult for the fishermen to prosecute their labors, and makes it more important that new localities be discovered.

An important result of the research herein proposed will be the release in a greater or less degree from that dependence upon Canadian waters for fish and bait, for which the United States is now paying at the rate of $\$ 800,000$ a year for twelve years, extending from 1873 to 1885. It is to be hoped that before the expiration of this period, and the meeting of a new commission, we will be in a position to decline any negotiations whatever for privileges much inferior in value to those possessed on our coast without any question of interference on the part of others. It is confidently believed that, in the discovery of new fishing banks and grounds, at a comparatively moderate distance from the coast, from Cape Cod to Florida, a large increase of the fishing fleet may be looked for, and that vessels from the ports of Jacksonville, Fernandina, Savannah, Charleston, Wilmington, Norfolk, \&c., will find ample occupation throughout the year. That this will result in a great increase of the fishery marine is unquestionable; and in the continued diminution of the number and crews of merchant vessels of the United States, the question of securing and maintaining an ample sea-faring population, is one of no small moment to the political economist. The magnitude of the present industry is shown by the fact that the fishing fleet of Gloucester alone, consists of 385 vessels of above 5 tons, manued by 4,375 individuals, in large part consisting of men from Nova Scotia and New Brunswick. More southern crews will probably be more or less eutirely American in their composition. The catch of these 385 vessels in 1880 is estimated at 129,620 barrels, or $25,924,000$ pounds, of mackerel; $9,000,000$ pounds of halibut, and $57,758,000$ of salt cod, or other salt fish-an aggregate of $92,682,000$ pounds, and this exclusive of a large quantity of other fish sold fresh. The total number of trips to secure the above-mentioned quantity of fish consisted of 1,430 to the George's Banks, 249 to the Graud and Western Banks for cod, and 261 to the same for halibut, a total of 1,940 trips. The necessity of new grounds for halibut is shown
by the fact that the number of this fish taken in 1879 was $11,336,716$ pounds, a decrease of $2,336,716$ pounds, or 20 per cent. in a single year.

An important consideration in connection with this problem of the expected fishing.grounds is the great increase in the demand for fish, consequent upon the success of the American display at the International Fishery Exposition at Berlin in 1880, as will be seen in another portion of this report. The American success was everything that could be desired, the display of this country being placed unhesitatingly at the very head of all others, although but a short time was allowed for its preparation. The quality and character of the American prepared fish attracted also deserved attention, and already engagements and contracts have been entered into between parties in Earope and the United States involving interests likely before long to amount to millions of dollars.

It may not be amiss, in this connection, to refer to the fact that the introduction by the United States Fish Commission to the American fishermen of the Norwegian system of taking codfish by means of gillnets, with glass floats, has already become of the ntmost value. Heretofore in the capture of codfish the question of bait has been the most important, ample opportunities frequently occarring for taking cod which cannot be utilized for the want of suitable bait. This rendered it necessary to resort to the British provinces for the purpose of obtaining it, and has caused almost entirely the recent difficalties between the fishermen of the two countries, which have been the subject of repeated diplomatic correspondence between the United States and Great Britain. When gill-nets can be used bait is unnecessary, and it is probable that within a few years three-fourths of the fish taken will be by gill-nets, and bait used only in localities where the net is not applicable.

The preliminary research by which the locality and relationships of the tile-fish were ascertained was prosecuted by the Fish Hawk, the fish-hatching steamer connected with the service of the United States Fish Commission. This vessel, in an interval of enforced inaction in her special work, made three trips to the edge of the Gulf Stream during the months of September and October, each time being but twelre hours on the ground. Not intended as a sea-going steamer, of course, it was not proper to run any risks, and it was simply on the occasion of a spell of settled weather that the ressel could run out one night to the grounds, spend a single day there, and return the next night, on each occasion being absent only thirty-six hours. To do the work properly requires a steamer that can remain off the coast in any weather, winter or summer. Such a ressel has been planned by Mr. C. W. Copeland, the naval constructor of the Light-House Board, in which are embodied all the requirements for a staunch sea-going ressel, as small as the service will permit, and able to do any work of this kind, and at the same time perfectly fitted for the hydrographic service of either the Coast

Survey or the Navy Department, to either of which branches of the service it can be transferred when no longer needed for the Fish Commission. The length of keel proposed is about 200 feet. Under the law of Congress she would be furnished by the Navy Department with officers and crew, otherwise not employed, so that the expense to the country will be little beyond that of construction, the ressel, of course, being available either in an emergency or permanently for the service of the Government in any Department other than that for which especially constructed. Provided with sails, such a vessel will be able to dispense with a large expenditure of coal. There is at present nothing of the kind belonging to the United States service, either in the Navy or Coast Survey, and her construction would furnish an important addition to the naval resources of the United States.

The method of research, in the interest of the fisheries, upon the proposed steamer, will consist in the use of the most approved apparatus for determinations of temperature, depths, and currents, and for collecting objects from the sea-bottom, from the surface, and for the depths midway; also in securing samples of the water at the different depths, for chemical and microscopical investigation. The temperature investigatious will be of very great importance, as the distribution and migrations of fish are influenced by the variation of temperature in the waters inhabited by them.

An important problem for solution on such a vessel is the determination of the reasons why the menhaden, within the last few years, have almost entirely abandoned the coast of Maine, and indeed the whole region to the north of Cape Cod. Upon this fishery in the Gulf of Maine depends the livelihood of some two thousand men, and the success of an investment of between one and two million dollars. If this change in the habit of the fish is likely to be permanent, the sooner the fact is ascertained the better, that the industry may be transferred to some other quarter, since now its prosecution is attended with no other result than that of serious loss to those who are concerned in it. There is no question that the cause is a physical one and capable of determination.

A similar problem is that relating to the disappearance of mackerel in the Gulf of Saint Lawrence. It was for the privilege of participating in this fishery that the United States recently paid the onerous Halifax award. If we can determine the probability of a continued absence of fish from the Gulf before the next convention to consider the value of the Canadian fisheries to the United States, it will greatly simplify the impending negotiations.

Many other similar questions may be solved by the results of a thorough scientific inquiry, and it is not impossible that we may hope to establish general principles by which the fishermen each year may know at what points to meet the incoming schools of mackerel and menhaden, and save weeks of fruitless search for them.

As incidental to the economical inquiry, but of very great interest to the naturalist, will be the collecting of objects of natural history in large quantity otherwise unattainable. The investigations already made by the inshore explorations of the United States Fish Commission have added greatly to our knowledge of the biology of the sea, and enabled the Smithsonian Institution to distribute to the principal museums and universities of the country duplicate series of objects of great educational value to them.

With the larger field of investigation which will be accessible to a sea-going steamer, this material will be vastly increased, both in quantity and variety. This is shown by the fact that during the three days, or thirty-six hours in all, spent by the Fish Hawk on the tile-fish grounds, no less than 175 different species of shells were collected, of which more than one-fourth were entirely new to science.

The scientific aspect of deep-sea research is one that has occupied the attention of the principal nations of Europe, the British Government having a few years ago sent out one of her finest frigates on a three years' voyage in the seas of all parts of the globe, the results of which proved to be of very great interest and importance.

$$
\text { 9.-THE FISHERY CENSUS OF } 1880 .
$$

In pursuance of the arrangements made in 1879 with General F. A. Walker, Superintendent of the Tenth Census, particulars of which have been given in the two preceding reports, work upon the fishery division of the census was continued during the year 1881, under the general supervision of Mr. G. Brown Goode.

The plan of operations pursued has been published as an appendix to the Fish Commission Report of 1880 , by the close of which year nearly all of the investigations were completed. The gathering of material from the eastern side of Buzzard's Bay, from the north shore of Long Island Sound, from the Pacific coast, from the shad and alewife rivers, and from the lobster, crab, and whale fisheries, extended into 1881, but was mostly finished in the early part of the year. The preparation of material for the press, which had advanced very satisfactorily in 1880 , was pushed forward with vigor in 1881.

The following publications have been made:

1. On the 24th of May a bulletin (Census No. 176) was issued under the direction of Mr. Goode. This contained four tables giving statistics of the fisheries of California, Oregon, Washington, and Alaska. It included the cod, salmon, whale, seal, fur-seal, and shore fisheries, and also the marine salt industry. The tables show the number of men, boats, vessels, and other apparatus employed, and the quantity and value of the products, for the sections considered. These figures were compiled from the returns of David S. Jordan, James G. Swan, and T. H. Bean.
2. The second instalment of results appeared in Census Bulletin 261,
dated September 1, giving the statistics of the fisheries of the Great Lakes, from the material collected by Mr. Ludwig Kumlien. This series of sixteen tables relates to the various kinds of food-fishes which are taken from those lakes, such as whitefish, tront, herring, sturgeon, pike, \&c., as well as the caviar, isinglass, and oil prepared in that region.
3. A larger bulletin (Census No. 278) covering 47 pages quarto was issued under date of November 22, 1881. It was prepared by Mr. R. Edward Earll, and contained the statistics of the fisheries of Maine. He incorporated with his own researches those of Mr. C. G. Atkins, Mr. W. A. Wilcox, and Capt. J. W. Collins. These figares relate to the cod, hake, haddock, pollock, cusk, mackerel, herring, lobster, and clam fisheries, and show the quantity and value of the fresh, dried, pickled, smoked, and canned products. The production of oil and dried sounds is also considered.
4. Under date of December 1, the statistics of the fisheries of Virginia were published in Census Bulletin No. 281. These were prepared by Col. Marshall McDonald, and include the fisheries for shad, herring, sturgeon, Spanish mackerel, bluefish, gray and salmon trout, sheepshead, crabs, clams, terrapin, and oysters, and the manufacture of oil and fertilizers from menhaden.
5. A monograph entitled "The Oyster Industry," by Mr. Ernest Ingersoll, was issued in the latter part of this year. It covers 250 quarto pages, and contains 13 plates.

Under the direction of Mr. C. W. Smiley, a series of 1,419 tables were completed and turned over to the Census Office for publication. These related to the imports and exports of fish in the United States from 1731 to the present time. This material was drawn from the State papers and other early records of the colonies and of the nation, and, since its organization, from the publications of the Bureau of Statistics of the Treasury Department.

A large amount of material ready for press, which could not be printed and issued during this year by the Census Office, was held over till another year.

10.-OCEAN TEMPERATURES.

The arrangement made with the Light-House Board in 1878, whereby the keepers of the light-houses at selected points upon the Atlantic coast have observed and recorded temperatures of the sea, has been continued during the present year, with instruments furnished for the most part by the United States Signal Office.

The points selected, as will be seen by the accompanying list, are those most favorably situated for obtaining the mean ocean temperatures along the coast. The work is done by the keepers without extra compensation, and too much credit cannot be given to them for performing this duty, in addition to that connected more directly with the LightHouse Service. Their records have been of the utmost possible impor-
tance in throwing a flood of light upon many important problems in reference to the movements and migrations of our food-fishes.
The following is a list of the light-houses (with their keepers) at which temperatures have been observed during a portion or all of the present year:
List of light-houses on the Atlantic coast at which ocean temperatures have
been taken during the year 1881, together with the number of monthly
reports made at each one.

Petit Manan light-house, Petit Manan Island: George L. Upton, Millbridge, Me
Mount Desert light-house, Mount Desert Rock: Amos B. Newman, Tremont, Me 12
Matinicus Rock light-house, Penobscot Bay: William G. Grant, Matinicus, Me 12
Seguin light-house, Seguin Island, Kennebec River: Thomas Day, Hunnerrell's Point, Me 12
Boone Island light-honse: Alfred J. Leavitt, box 808, Portsmouth, N. H 12
Minot's Ledge light-house, Cohasset Rocks, Boston Bay: Frank F. Martin, Cohasset, Mass 12
Race Point light-house, Cape Cod Bay: Heman F. Smith, Provincetorn, Mass 12
Pollock Rip light-station, entrance to Vineyard Sound: Joseph Allen, jr., South Yarmouth, Mass 8
Nantucket New South Shoal light-station, Daris New South Shoal: Andrew J. Sandsbury, Nantucket, Mass 12
Cross Rip light-station, Vineyard Sound: James F. Chase, jr., Nantucket, Mass 6
Buoy Depot, Goverument wharf, office inspector second division: Benjamin J. Edwards, Wood's Holl, Mass 12
Vinesard Sound light-station, Sow and Pigs Rocks: William H. Doane, 13 Milk street, New Bedford, Mass 11
Brenton's Reef light-station, off Brenton's Reef and Newport Harbor: Charles D. Marsh, Newport, R. I. 12
Block Island light-house, southeast end of Block Island: H. W. Clark, Block Island, R. I 12
Bartlett's Reef light-station, Long Island Sound: Daniel G. Tinker, New London, Conn 12
Stratford Shoals light-house, Middle Ground, Long Island Sound: James G. Scott, Port Jefferson, N. Y 12
Fire Island light-house, south side of Long Island: Seth R. Hubbard, Fire Island, N. Y 12
Sandy Hook light-house, entrance to Now York Bay:
James Cosgrove, 128 Rutledge street, Brooklyn, N. Y 12
Absecom light-house, Absecom Inlet:
A. G. Wolfe, Atlantic City, N. J 12
Five Fathom Bank light-station, off Delaware Bay: Capt. John Reeves, Cape May City, N. J 12
Fourteen-Foot Bank light-station, Delaware Bay:
John Lund, Wilmingtou, Del 10
Winter-Quarter Shoal light-station, Chincoteague Island: C. Lindermann, Chincoteague Islaud, Accomack County, Virginia 12
S. Mis. 110 -III
Bodie's Island light-house, north of Cape Hatteras:
Peter G. Gallop, Manteo, Dare County, North Carolina 11
Cape Lookout light-house, Cape Lookout:
Dewald Rumley, Beaufort, N. C 12
Frying-Pan Shoal light-station, Cape Fear: David W. Manson, Smithville, N. C 12
Rattlesnake Shoal light-station, off Charleston: John McCormick, Charleston, S. C 12
Martin's Industry light-station, Port Royal Entrance:
John Masson, Port Royal, S. C 12
Fowey Rocks light-house, Fowey Rocks: John J. Larner, Miami, Fla 12
Carysfort Reef light-house, Florida Reefs:
Edward Bell, Key West, Fla. (succeeded by F. A. Brost in September) 9
Dry Tortugas light-house, Loggerhead Key: Robert H. Thompson, Key West, Fla 11

11.-BIOLOGICAL RESEARCH.

The necessity of studying carefully the circumstances under which the development of the egg of the shad, salmon, \&c., takes place, and the practical bearing of definite facts on this subject, induced the Commission to add, during the year, to its working force, Mr. John A. Ryder, a prominent member of the Academy of National Sciences of Philadelphia. This gentleman having given much attention to the microscopic work connected with the development of eggs of fishes and other animals, was able to render very important assistance. His labors during the year had relation more particularly to the eggs of the whitefish, the shad, the flounder, the white perch, the California salmon, the Pe nobscot salmon, and other species. On many of these subjects he prepared elaborate memoirs, some of which have already been published by the Commission in its Bulletin for 1881, and others will be published in the Appendix of the present Report.

Mr. Ryder's inquiry extended into the phenomena of the development of shad eggs on trays covered with wet flannel, as suggested by Colonel McDonald. The results of this research have promised to largely revolutionize the entire method of transporting eggs from the river stations to the hatching-houses.

12.-THE INTRODUCTION OF COD GILL-NETS.

The introduction of gill-nets in the shore cod-fisheries during the winter of $1880-181$ created a general and widespread interest among those concerned in fishing. The use of these nets was first suggested by the Commission in the winter of 1878-79, but those first tried were not sufficiently strong for the capture of the large cod that frequent our coast in winter. This experiment has been described in an article by Mr. R. E. Earll, on the cod-fisheries of Cape Ann, published in the Report of the United States Fish Commission for 1878. He says: "The method of catching cod with gill-nets, though so successfully used by
the fishermen of Norway, has never been adopted by the fishermen of our coast. Knowing the profits derived from the use of these nets by those foreign fishermen, Professor Baird, who is ever anxious to introduce among the Americans any methods that will result to their advantage in the prosecution of the fisheries, decided to make experiments with them at Cape Ann, with a view to their introduction among our shore cod-fishermen. Accordingly he secured from parties in Norway a set of these nets and forwarded them to Gloucester to be thoroughly tested by the employés of the Commission at that place. They reached the hatchery when the pasture school was on the shore, and were set on the farorite fishing grounds a number of times. But the strength of the twine had probably been affected in transit, and the nets proved far too frail. The strong tide and rough water caused them to catch among the rocks, where they were badly damaged; while numerous holes indicated clearly that large fish had torn their way through the nets, only such being retained as had become completely rolled up in the twine. The nets were always taken from the water in bad order, but the capture of 800 pounds on one occasion, even under the circumstances, seemed to indicate that nets of sufficient strength might be used to good advantage, at least on the smooth fishing grounds along the coast."

Having made the preliminary trials with the nets, and demonstraterl that with reasonably fair chances a good catch might be obtained with them, the offer to lend the nets to any responsible fisherman who would give them a fair and thorough trial was made. The manner of setting them was also explained to any persons who applied for information.

But fishermen are somewhat conservative, and do not hurriedly adopt new ideas about catching fish. They know that they can ill afford to waste time or money on questionable ventures. Whaterer was the cause it appears that none of the fishermen showed a desire cither that wiater or the next to try the gill-nets.

When Captain Collins left for the Berlin International Fishery Exhibition in 1880 he received special instructions to study, from a practical standpoint, the Norwegiau methods of using these nets, so that our fishermen might be provided with all the information that could be ohtained. On his return he embodied the facts in a report on the methods of catching cod in Norway; giving, also, an account of the methods that have been tried by our fishermen, as these differ in some respects from those of the Norwegians. This has been published in the Fish Commission Bulletin for 1881.

Althongh the fruits of the work done by the Commission in 1878 did not immediately appear, the seed that was thus sown was destined in time to bear its legitimate fruit.
The difficulty of procuring a supply of bait is a source of great tronble to the shore fishermen, and its cost, eren when it is obtainable, is so great that oftentimes the fishermen hesitate to invest, fearing that it
may result in loss rather than gain. Such was the feeling of Capt. George H. Martin, master of the Northern Eagle, of Gloucester, during the fall of 1850 . For several years he had been engaged in the shore cod-tishery during the winter, but the prospect of getting sperling (small herring that are nsed for bait) appeared so uncertain that he lesitated about fitting out. His father, an employe of the Commission, and also an old fishermap, suggested gill-nets as a means of solving the problem. Together with several of his crew he visited the station of the Commission at Gloncester and examined the nets.

Before starting out on his first trip, he conferred with Capt. J. W. Collins, who had studied the Norwegian methods at Berlin. This resulted in his derising a plan whereby one man is enabled here to accomplish nearly the same amount of work as six in Norway. This new method is called "under-ruming;" and is found to be an improrement. Nets of 10 -inch mesh are set the same as herring nets, being suspended by hollow glass balls or floats at any required depth. They are usually left out several days at a time, the fishermen under-running them each morning, and taking out the fish that have been caught in the meshes during the night. None are caught except at night. The first trials proved successful, the Northern Eagle taking 4,000, 6,000, and 7,000 pounds, respectively, on her first three trips with nets, in spite of the weather being unfavorable. The nets first used, part of which had been lent by the Commission, were found too weak to resist the struggles of the larger cod, some of which weigh as much as 75 or 80 pounds each. The average weight of those taken in the nets is 23 pounds. Stronger nets were soon obtained, and their number was increased. At present the Northern Eagle carries 8 dories, each with a single man, who is provided with a gang of three nets, making a total of twenty-four nets for the crew. The nets are each 50 fathoms long and three fathoms deep, knit of salmon twine. Unexampled success has resulted from the use of these new nets. On a trip ending January 11 th, 35,000 pounds of cod were taken by the crew of the Northern Eagle, S,000 pounds of which were obtained in a single morning. Two other vessels, which were abseut the same length of time, fishing at the same place, but in the old way, got only 4,000 and 5,000 pounds, respectively. Later, another trip was made by the same vessel, which was even more successful, when 35,000 pounds of cod were caught in four days' fishing, 18,000 pounds being taken in one day. The catch was three times as large as that of the trawlers fishing on the same ground.

At first the nets met with the same opposition from the trawlers that trawls had from the hand-line fishermen, when they were introduced, some thirty years ago. Although at first inclined to inveigh against "building a fence" to prevent the fish from reaching the trawls, \&c., the fishermen soon began to realize its advantages. Whenever in port, the deck of the Northern Eagle would be crowded with fishermen anxious to learn about this new method of fishing. Letters from all along the
coast were receired by the Boston net factories inquiring about the cod? gill-nets. Allusion has been made to the difficulty of obtaining bait for the shore fisheries, its cost, \&c. As an instance of this, the average bait bill of a vessel in the Gloncester shore fleet for the month of I)ecember, 1850 , may be stated at $\$ 150$, and the bait bill of the schooner Phantom for fifteen days was $\$ 380$. This, added to the loss of time in seeking bait (often one-third), was a serious drawback. But the bait question is a still more important one to the bank fishermen, who have generally been obliged to seek it in the ports of the lbritish Provinees. Great stress has been laid by the inhabitants of the provinces on the importance of this privilege to our fishermen.

Gill-nets have been used in the Norwegian cod fisheries for nearly two hundred years, and with good snecess. M. Fricle, in an account of the fisheries of Normar, in 1877, says they are "quite indispensable when the cod does not bite," while, according to Mr. Hermam Baars, Die Fischerci Industrie Norweyens, Bergen, 1873, "the fatter the fish the less it is attracted by the bait, and during spawning season it searcels ever takes the hook at all. For this reason the well-to-do fisherman is usually provided with nets as well as tramls. These nets are held upright in the water by means of floats of hollow glass, the inveution of Merchant Christopher Faye, of Bergen. Sometimes, howerer, wool or cork is used. The glass floats are almost exelusively in use in all the Loffoden Islauds." The importance of the use of gill-nets in the Norwegian cod-fisheries is shown in the following extracts from the official report of the superintendent, Niels Juel (first lientenant in the nary), for 1878 , giviog the statisties, \&e., of the Loffoden Island fisheries:
"The percentage of fishermen using different apparatus was as follows: 58 per cent. used nets; 32 per cent. used lines; 10 per cent. used deep-bait. There was an increase from last year of $2,5,5$ in the number of net fishermen. There was an average of 3,925 boats employed, of which 2,154 boats, carrying 13,168 men, were engaged in fishing with gill-nets. The total eatch for 1878 was $24,660,000$ cod in number, of which upwards of $14,000,000$ of the largest were caught with nets."

The net-fishing has since increased, according to Mr. Hermann Baars, who says: "In 1879 the following enumeration was made: 2,532 boats, with crews numbering 14,322 men, fitted ont for the net-fishery." He further says that "usually the boats fishing with nets obtain the greatest net receipts, since these often sell 10,000 to 12,000 fish, 10 to 12 barrels of oil, and 10 barrels of roe, valued at 2,500 marks ($\$ 595.24$), and at least 400 marks (895.24) to each man. A net yield of 350 marks a head is considered by the trawl-line fishermen very satisfactory:" These remarkable results are obtained by fishing in open boats in the dead of winter north of the arctic circle. What may we not hope for under more farorable circumstances? Of this Mr. Baars says: "But it must be remembered that the stormy weather, which often lasts for weeks at

XXXVIII REPORT OF COMMISSIONER OF FISH AND FISHERIES.

a time in the winter months at this region, often renders it impossible for the fishermen to go out to sea. As a rule, fishing cannot be carried on more than two days in a week."

13.-THE VALUE OF FISH AS FOOD.

In a previous Report reference was made to the results of a series of elaborate chemical investigations by Prof. W. O. Atwater, of Middletown, Conn., into the absolute and comparative value of fish as food. This work has been continued during the year on an increased scale, and it is expected that his next report will contain some additional data of much interest.
14.-WORK DONE AT WOOD'S HOLL, MASS., IN 1881.

Advantages as a permanent sea-coast station of the United States Fish Commission.-From the inception of the work of the Commission in 1871 it has been the custom to select some station on the sea-coast from which to prosecute the researches required by Congress into the scientific and economical problems connected with the sea and its inhabitants; the stations, as already indicated, covering the coast from the Bay of Fundy to Long Island Sound. In this way the peculiarities of the inshores have been well determined and the geographical distribution of the fishes, mollusks, crustacea, radiates, \&c., properly marked out. In addition to the discovery of a great many new species, much light has been thrown upon the whole subject of marine zoology generally.

It is not to be supposed that everything in this connection has been learned; but the broad features have been determined, and the minor details can be safely left to local and special researches.

The acquisition of a sea-going steamer in the Fish Hawk, and the hope of obtaining a still more serviceable vessel, rendered it expedient to fix upon some point for permanent occupation where the necessary facilities for the maritime work of the Commission could be obtained. The southern side of New England was considered better than the eastern, as permitting investigation for a longer period and presenting a much richer fauna. The best conditions for the propagation of marine fishes were also found on the southern coast of New England, as fish are in greater varicty, and, so far as the winter hatching is concerned, the cold is less severe, and other circumstances generally were more favorable.

By the use of a suitable fishing smack, the fish can be brought in alice and penned up until they are ready to yield their eggs, and in this way will be exposed to much less danger from destruction by cold than proved to be the case at Gloucester.

After a careful consideration of the subject, the choice was found to lie between Newport and Wood's Holl. Newport has a great many adrantages in its accessibility, and in the very great desire manifested by its citizens to secure the presence of the United States Fish Com-
mission. A number of gentlemen, of whom Mr. J. M. K. Southwick was spokesman, offered to furuish the requisite buildings, and also the use of a suitable wharf, and otherwise to encourage the selection of the station. The Nary Department also gare the Commission a provisional invitation to establish itself on the northern end of Coasters' Harbor Island, which was not required for the purposes of the training school.

The great difficulty in the way of Newport, however, was found to be in the comparative impurity of the water, Narragansett Bay receiving the drainage of a number of large cities, such as Newport, Fall River, Bristol, Providence, \&c., and also having extensive mud bottoms and flats. The experience of the year 1880 showed that the abounding impurities would settle as a sediment upon the eggs of the fishes to be hatched and materially impair their development, as was found to be the case at Gloucester.

A totally different condition of things was found at Wood's Holl, where the water is exceptionally pure and free from sediment, and where the sudden tide rushing through the Wood's Holl passage keeps the water in a state of healthy oxygenation especially favorable for biological research. The entire lack of sewage, owing to the remoteness of large cities, and the absence of large rivers tending to reduce the salinity of the water, constitute a strong argument in its favor, and this station was finally fixed upon for the purpose in question.

The quarters occupied by the Commission at Wood's Boll, furuished by the courtesy of the Light-House Board, are too scanty for the expected work of the Commission in the future, and measures were immediately instituted to obtain foothold on the Great Harbor. Here a point of land constituting the neck of the upper harbor was fixed upon as a suitable location, affording the advantage of pure and very deep water, accessible to vessels of quite unusual draught, and immediately adjacent to the rapid tide of the passage.

Negotiations were opened with the owners of the ground, Messrs. Isaiah Spindel \& Co., and a provisional agreement made as to the price and conditions of the purchase, the details of which will be given in the next Report.

Work of the year 1881 at Wood's Holl.-Pending the permanent establishment of the Commission at Wood's Holl, as explained in the preceding section, that station was selected for the work of 1881 , and, by the renewed courtesy of the Light-House Board, the old quarters on the Light-House wharf were secured and fitted for occupation.

As the Govermment wharf was unable to furnish a berth for the steamer Fish Hawk, the private wharf of Isaiah Spindel \mathbb{E} Co. was leased for the purpose. The requisite accommodations for board and lodging for the party were obtained with consilerable difficulty, but finally the necessary arrangements were completed.

I reached the station on the Sth of July, being joined soon after by the remainder of the party.

As in previous years, Professor Verrill, of Yale College, had charge of the work connected with the marine invertebrates, and Dr. Tarleton H. Bean of the fishes, in this being assisted by Mr. Peter Parker. Other assistants were Prof. L. A. Lee, of Bowdoin College, Mr. Sanderson Smith, Mr. James H. Emerton, and others. Capt. H. C. Chester had general charge of the buildings, assisted by Vinal N. Edwards, of Wood's Holl.

During the summer the usual branches of research were prosecuted under the direction of the several chiefs, and a great deal of valuable information collected, some of which will be furnished in the form of monographic papers, and the rest presented in the pages of the Reports of the Commission or in the Fishery Division of the United States Census of 1880.

One of the most practical results of the work of the season was the inrestigation into the area of distribution and the economical qualities of the tile fish. This species was first brought to light by the casual capture of some specimens in 1879 by Captain Kirbs, of Gloncester, Mass., who carried them into that city, where they were secured by the Fish Commission, which had a station there at the time. As explained in the previous Report, the ground was investigated by the Fish Hawk in 1880, and a number of specimens captured.

During 1881 special efforts were made to defiue the limitation and area of this fish. It was found to occur ou the edge of the continental plateau, and in abuudance equal to that of codfish on the tishing banks. It is confidently beliered that a large part of the fish supply of New York and Boston could readily be furnished from this species. Careful tests were made of its qualities as a food-fish, not only on board the vessel and at Wood's Holl, but by distributing them among the New York experts, through Mr. E. G. Blackford. The reports were uniformly favorable; one gentleman characterizing the fish as having hard meat and sweet and juicy as any game fish he ever met with; another ranking it above sheeps-head, as being more juicy and better flavored.

The work accomplished by the Fish Hawk, to which a great deal of the success of the summer was due, will be referred to under a subsequent heading.

The season was closed by my departure on the 4th of October, the Fish Hawk proceeding to Washington with her collections and apparatus, stopping, however, at New Haven to discharge the packages containing specimens for Professor Verrill.

15.-EXPLORATIONS OF THE FISH HAWK.

With the exception of the years 1872 and 1876 , when the Commissioner was necessarily otherwise occupied, the Navy Department, in compliance with law, has, since 1871, furnished the Commission with a steamer for its summer work. The first detail of this kind was that of a small steam-launch in 1871. In 1873, 1874, and 1875, the steamer

Biue Light, under command of Captain Beardsley, was made use of; in 1875 the Speedrell, under command of Commander Kellogg; the same ressel again in 1878 , under command of Captain Beardsley, and again in 1879 , under command of Lieut. Z. L. Tanner.

The appropriation by Congress for a special steamer-the Fish Mawkcompleted in the spring of 1880, enabled the Commission to dispense with the naval steamer, but it gladly embraced the privilege of calling upon the Department for a detail of officers and crew.

The first service of this ressel, under command of Lient. Z. L. Tanner, was rendered at Newport in 1880, the Report of which year contains an account of her work on this occasion. The off-shore exploration, however, was limited to two or three trips, the results of which were so interesting as to induce great expectations from the renewal of these labors in 1881.

It will be remembered, as stated in the last Report, that the water deepens very slowly for a considerable distance off the coast, from Cape Cod southward; so that a depth of 100 fathoms is, for the most part, only attainable at a distance, out, of from 75 to 100 miles. This brings us to the edge of the continental plateau; and beyond that there is usually an abrupt declivity, showing rapidly deepening water.

On her expeditions in 1880 the Fish Hawk foume that the edge of this slope or declivity was occupied by an extremely rich fauna, both as to species and individuals; indeed, far exceeding in this respect any of the regions nearer the land; and the necessary arrangements were made to renew work in that vicinity during 1881.

On her return to Washington in 1880 she was sent to Point Lookout to obtain a supply of oysters for the oyster-hatching station at Saint Jerome; and the ice forming before she could return, obliged her to winter in the Norfolk nawy-yard. W.eturning, however. from that point in Febrnary, she was fitted out with shad-hatching apparatus, and on the $23 d$ of March was ordered to Aroca, a shad-fishing station at the mouth of the Roanoke River in Albemarle Somd. Here she remained until the 30th of April, carrying on her work, and obtaining many courtesies from Dr. W. R. Capehart, the owner of the station. The vessel reached Havre de Grace on the $3 \boldsymbol{d}$ of May, and was oceupied until the 5 th of Jume in hatching shad at the head of Ohesapeake Bay.

On the 1:3th of June she again proceeded to Saint Jerome to make experiments in comection with the hatching of Spanish mackerel, but started for Washington on the 2oth of June, having left her work at that place in charge of Col. M. McDonald.

Thedetails of her labors in comection with shad and Spanish mackerel will be found in the second division of this Report.

After a short stay at the nary-yard in Washington undergoing repairs, she took on board the apparatus for the deep-sea researeh, and left for Wood's Holl on the 7th of July, arriving there on the 10th.

From that time until the th of October mumerons trips were made
to the localities near the Gulf Stream, referred to as having been visited in 1880 , and many rery interesting results were secured. In the supplementary portion of this Report will be found a popular statement of this work, consisting of the substance of an address by Prof. L. A. Lee, one of the scientific party. A special list of the fishes collected during the season, prepared by Dr. Bean, is also appended.

The steamer arrived at Washington on the 12th of October, and the offer of her serrices was at once embraced by the Navy Department, in connection with the naval and military celebration at Yorktown, from October 7 to October 20. She was placed by the Secretary of the Navy at the service of the Secretary of War. Having been absent several days, upon returning to Washington, she went into winter quarters at the navy-yard, where she was thoroughly repaired and put in readiness for the work of 1882.

A full description of the vessel and her outfit, together with the details of her work during 1880 and 1881, furnished by her commander, Lieut. Z. L. Tanner, will be found in the Appendix of the present Report.

C.-THE PROPAGATION OF FOOD-FISHES.

It has already been shown that, while the original object of establishing the United States Fish Commission was the investigation of the alleged decrease of the food-fishes of the United States, during the second jear of its existence it was charged by Congress with the added duty of increasing the supply, and of stocking the waters with suitable additional species of economical value. At the present time much the larger part of the expenditure of time and money on the part of the Commission is in the last-mentioned direction.

16.-THE METHOD OF DISTRIBUTION OF FISH AND EGGS.

In the beginning of the work of the Commission, in connection with the introduction of food-fishes into new waters, it was entirely possible to cover all the service by placing the fish in cans and employing suitably trained messengers to accompany them to such points of deposit as might have been selected.

All the railroads of the country, with scarcely an exception, when applied to, gave instructions to allow the transportation, in baggagecars, free of extra charge, of the cans containing the joung fish, and granted access to the same on the part of the messengers; instructions being given, in many cases, to stop the car at stations near rivers or streams to allow the introduction of the fish therein. This was specially the case with the shad, and where the annual production amounted to but a few millions it became quite possible to accomplish all that was necessary by this means. As, however, the supply of young fish increased, partly in consequence of the increase in the scale of operations and partly from the increase in the supply, caused by the
work of the Commission, this was found to be inadequate, especially as one messenger was unable to carry satisfactorily more than ten or twelve cans, containing from 100,000 to 150,000 fish. The possibility of obtaining a larger number of fish than at first, made it practicable also to test the theory which the Commission has been gradually reaching, that the number of fish likely to survive the attacks of their enemies when planted in a river is increasingly proportionate to the total number introduced, or rather that the expectancy of destruction, in a given locality, is essentially an absolute quantity dependent upon the existing number of minnows and other predaceous fish. Thus, if the expectancy of destruction be estimated at 100,000 young fish, we will hare none left to grow up from a deposit of 100,000 fish. If, however, we introduce $200,000 \mathrm{fish}$, then we may claim a surplus of 100,000 . It is highly probable that the larger the number introduced the greater will be the percentage of survivals.

Where we can introduce a car-load of fish instead of a tenth or trentieth of that quantity, our chances of success in stocking waters are probably increased far beyond the difference in the ratio.

When the available supply of young shad increased to an extent of perhaps a million a day, for a number of days in succession, the method of transportation mentioned above proved to be entirely inadequate, and the experiment was made of filling an entire baggage-car with fish cans and forwarding it to destination, accompanied by a suitable uumber of messengers. This was done was done with the kind assistance of President Hinckley, of the Philadelphia, Wilmington and Baltimore Railroad, and subsequently of the officers of the Baltimore and Ohio Railroad.

It was in time found that eren this plan was insufficient, as it was not always possible to obtain the cars, and these were not provided with the necessary facilities for keeping the fish in good condition. It was at length determined either to build a new car, or to adapt an old ove of proper character to this express purpose, and an arrangement was finally made with President Hinckley to refit one of the best bag. gage-cars belonging to his company, and sell it to the Commission, when completed, at cost.

This car was fitted up by Mr. J. H. Ridgway, of Philadelphia, as a refrigerator car, and was prorided with living and sleeping rooms at either end for the accommodation of the messengers. It was also supplied with air-brakes, Miller platform, six-wheeled trucks, \&c., by means of which it could be moved on passenger trains.

As thus arranged, the car is capable of carrying from one to two millions of fish at a loarl and five messengers. The details of its construction will be given hereafter.

The car reached Washington from the shops on the 7th of May, and made a trial trip on the $2 d$ of June to Atlanta, Ga., with shad. Owing, howerer, to the dificulty experienced in changing the trucks at Lynch-
burg, it returned to Washingtou after depositing the fish in the James River.

On the 15th of June a load of $1,150,000$ fish was tiausported to Maine from the hatchery at Havre de Grace, and introduced successfully into the Kennebec and Mattawamkeag Rivers.

The experience of these trips suggested some additional changes, which were made in the course of the summer; and in the middle of October the car was again used, this time for distributing carp.

In December, it was determined to use the car for transporting a supply of carp to Texas, Arkansas, Louisiana, and Missouri. There were 950 applicants to be supplied in Texas alone. There were placed ou board the car forts large caus, each containing one hundred carp, and seven containing one handred and fifty carp each. There were also placed on board eighteen crates, each coutaining sixteen small tin pails. As each pail contained twenty carp, each erate wonid thus contain three hundred and twenty carp. In addition, there were three crates containing four hundred carp each. This made a total of trelve thousand carp. The car was not ready to leave, however, until January 3, 1882, when it was moved by the Peunsylvania Railroad from Washington to Saint Louis, in charge of Colonel Marshal McDonald. The first distributions were made from Saint Lonis; after which the car proceeded to Texarkana, from which point applicants in Arkansas were supplied. Similar stops were made at Shreveport, La., Sherman, Tex., Dallas, Tex., Austin, Tex., \&e. A full account of this trip, as also of a previous one to Kentucky in November, will be found in the report of Mr. McDouald in the Appendix.
17.-Species OF Fisil cultivated and distributed in 1881.
a. Whitefish (Coregonus albus).

Northville Station.-The work at this station, under the charge of Mr. Frank N. Clark, as heretofore, has been prosecuted with increased vigor. A number of improvements have been made in the arrangements for supplying water, and au increased hatching capacity has been obtained. Four new ponds (20 by 83 feet) were constructed during the summer. The total number of whitefish eggs handled during the season of 1881 -' 82 was $22,500,000$, against $14,780,000$ for the previous season. The spawn-taking operations were carried on from November 10 to December 5, the points selected being North Bass Island, Middle Bass Island, and Kelley's Island, in Lake Erie. Although the last eggs which reached the hatchery were allowed to remain in the shipping cases for ten days after their arrival, pending the fitting up of additional hatching-jars, there was no increased loss noticeable.

The Chase automatic jar was used in place of the hatching-box in the incubation of the eggs, and experiments were made with a view to obtaining a still more reliable apparatus. The "Improved Shad Hatcher" was found to give a better movement to the eggs, and useful
modifications of this and of the Chase jar were devised by Mr. Clark's assistants. One of these gentlemen, Mr. Seymour Bower, invented a new form of hatching-box which possesses adrantages.

The number of whitefish eggs shipped was 2,032,000. Shipments were made to Germany and France, and to the States of California, Connecticut, Iowa, and New Jersey. Over $17,700,000$ young fish were released in the waters of the Great Lake system, the deposits being made in Lake Michigan, Lake Huron, the Detroit River, Lake Erie, and Lako Ontario.
b. Brook Trout (Salvelinus fontinalis).

Northrille Station.-The ponds for brook trout at Northville, Mich., have been greatly cularged and improved, and four new ones have been added to the three already existing, so that their total area is now 10,674 square feet. About 140,000 eggs were obtained from the trout in the ponds during the spawning season, which lasts from the beginning of November to the middle of January. Shipments of eggs were made to France and to the Druid Hill hatchery in Baltimore; 20,000 foung fish were planted in neighboriug streams, and 30,000 were shipped Fast by the Fish Commission car. It is expected that half a million brooktrout eggs will be taken next season.
c. Saibling (Salmo salvelinus).

On Jannary 10, Mr. Schuster, Burgomaster of Freiburg, Germany, amounced that he had sent 60,000 saibling eggs by the North German Lloyds steamer Mosel, of January 8, consigned to the United States Fish Commission. These reached New York January 22. Mr. Fred. Mather took charge of them and forwarded them the next day to Mr. A. II. Powers, Plymouth, N. H., which point they reached on the 24th. The entire loss while crossing the ocean and being transported to the hatchery was but 5,000 eggs. Mr. Powers was directed to hatch them and place them in Newfound Lake, located 7 miles from Plymouth. The eggs were all hatched by February 28, with a loss in hatching of 6,515 eggs. Mr. Powers deposited 30,000 fry in Newfound Lake May 18.

Another installment of saibling eggs was announced by Herr Max von dem Borne February 3. These were lost in transit.
d. Lake Trout (Cristiromer namayeush).

Northeille Station.-While waiting for the whitefish to begin spawning, 57,000 lake-tront eggs were obtained for this station, of which 52,000 were shipped and 1,400 hatched and retained at the hatchery. Of those shipped, 20,000 were forwarded to Germany.
e. The Quinnat or California Salmon (Salmo quimat).

The McCloud River Station.-The work at this place has been under the direction of Mr. Livingston Stone, whose detailed report will be found in the Appendix. The establishment met with a serious disaster on the $3 d$ of February. January had been attended by a rainfall
wholly muprecedented in that region, the total amount for the season being placed at 109.7 inches. During the first days of February the rain continued to fall in torrents, and the McCloud River to rise at the rate of a foot an hour. During the night of February 2 the water rose abore the danger-mark, and at half-past two in the morning of February 3 the buildings of the station were swept away. All the improvements which had accumulated since 1872 were thus demolished in a night. The water reached a maximum height of 26 feet 8 iuches above its summer level.

At the instance of Senator Booth, of California, an appropriation of $\$ 10,000$ for rebuilding the station was made by Congress, March 5, and the work of restoration, beginning in May, was completed in September. At the time of the disaster the work was in charge of Mr . Myron Green. Mr. Stone reached the fishery May 19 and superintended the reconstruction, as well as the taking of eggs in the fall, which amounted to $7,500,000$. Several millions of these eggs were sent to the commissioners of various States to hatch for local waters, as well as to Canada and New South Wales. Particulars of the distribution are found in the tables appended to this report.

f. Rainbow or California Mountain Trout (Salmo irideus).

The McCloud River Station.-This fishery was first operated in July, 1879, and like the salmon station has been continuously under the direction of Mr. L. Stone. It is located near the mouth of Crook's Creek, a tributary of the McCloud River, and about 4 miles distant from Baird Post-office. The station suffered at the time of the flood from a deluge of mud which was precipitated into the ponds, and by which many of the trout were killed.

The region is subject to land slides. The steep hillsides becoming thoroughly saturated with water, whole acres are washed into the valley below. Sometimes the creek is completely dammed up thereby and the water is rendered intensely muddy. To shut off this water from the tront ponds would be as fatal as to admit it, so that the catastrophe to the trout was unavoidable. Many which were not actually killed were serionsly injured by mud getting into the gills and producing inflammation. The occurrence of the flood justas the trout were beginning to spawn made the matter still more unfortunate. Only about a thousand tront survived. From these, however, 261,000 eggs were obtained, 179,900 of which were sent to the commissioners of various States to be hatched. During October and Norember the losses of trout were made up as far as possible by fishing in the river. A new pond was also constructed for the purpose of catching the mud which was brought down by water in the rainy season. The year closed with brighter prospects for the future.

g. Atlantic or Penobscot Salmon (Salmo salar.)

Penobscot River Station.-This station, as heretofore, was carried on by the United States conjointly with the States of Maine, Massachusetts,
and Connecticut, and under the continued superintendence of Mr. Charles G. Atkins. Between June 1 and July 2 he purchased from the fishermen 514 salmon, averaging $16 \frac{1}{2}$ pounds each. These were placed in the inclosure prepared for them, to await the spawning season in October. An unusual number, 146, died during this interval, most of the deaths occurring, however, in June and July. The first eggs were taken October 26 , and, between this date and the 17 th of November, 358 fish were manipulated, of which 232 were females and 126 were males. They produced 515 pounds of spawn. The number of eggs was estimated at $2,693,009$, or an average of 11,608 eggs from each female. In August and September of this sear Mr. Atkins made an important improvement by conducting cold water from a brook through an aqueduct 1,600 feet long. The water previously received from springs near the hatchery attained so high a temperature that in former years the eggs were matured early in December. Under the new arrangement, their development was retarded antil the middle of January. The first shipments of eggs were made January 16, 1882, and continued at the convenience of the consignees until March 13, 1882. The total number of eggs shipped was $2,611,500$, of which $1,006,500$ belonged to the United States. The loss in shipping and hatching out the eggs was very slight, and 2,397,132 were actually planted, as shown by the tables. From the United States quota eggs were sent to New York, Pennsylvania, New Jersey, Minnesota, and Virginia. The full report of Mr. Atkins will be found in the Appendix.

h. Schoodic or Land-locked Salmon (Salmo salar, subs. bebago).

Grand Lake Stream Station.-Conjointly with the States of Maine, New Hampshire, Massachusetts, and Connecticut, this station was this year again occupied by the United States Fish Commission, under direction of Mr. Atkins, who commenced his work at Grand Lake, September 10, 1881.
Grand Lake is sitnated upon the western branch of the Saint Croix River, known as Schoodic River. Its water is exceedingly pure, and attains a depth of 100 feet. Its outlet, the Grand Lake Stream, is frequented by this species of salmon in October and Norember, for the purpose of spawning. As a net can be stretched across this outlet at that time, it is not necessary to hold the fish in confinement for several months, as is the case with the Penobscot salmon.

Hatchery No. 3, which was constructed last year, became the principal scene of operations this year. When originally built it was but 30 feet long. Mr. Atkins has this year added wings, which very largely increase its capacity. The nets were placed across the stream, as usual, about the middle of September. The capture of salmon began October 31. The manipulating of spawning fish continued until its completion of the season, November 19. Six hundred and fifty-three females and three hundred and seventy males, a total of 1,023 , were utilized. A total of

947,000 eggs were taken, being an average of 1,525 for each female. Between January 12, 1882, and March 10, 1882, eggs were shipped to the States which were in partnership, and, in behalf of the United States, to New York, New Jersey, Pennsylvania, Vermont, Maryland, Michigan, Iowa, Missouri, Wisconsin, and California ; in addition to these 20,000 were sent to Fred. Mather for shipment to Germany. The United States' share of eggs was 311,750 . About 215,000 eggs were retained at the hatchery, from which 213,097 young fish were hatched and planted in Graud Lake. The diary of the station, as well as full particulars of the work, have been reported by Mr. Atkins, and will be found in the Appendix. The hatching and distribution of eggs necessarily extends into the following year. This renders it desirable to anticipate dates, to some extent, in this report, in order to show the completion of the work inangurated in 1881.
i. The Shad (Alosa sapidissima).

As has already been stated on page xvi, six stations were operated for shad work this season, three of these conjointly with the Maryland Commission, the entire yield of which was $70,035,000$ 5oung shad. Of this amount $46,518,500$ were deposited in the waters near the various hatcheries and $23,516,500$ transferred to 18 different States of the Union. This yield of seventy millions was unprecedentedy large, that of 1880 falling a little short of thirty millions, and that of 1879 being less than twenty millions. This increase in production was due, first, to the increased efficiency of the methods and apparatus of the Commission; and, second, to the favorable fishing season both on the Potomac and Susquehanna Rivers.

On the afternoon and evening of May 27, President Garfield made a trip down the Potomac on board the Lookont to witness the shad operations.

The completion of a special car for the operations of the Commission gare facilities, heretofore not enjoyed, for moving a large quantity of shad to distant waters. On the 1st of June a car was loaded at Havre de Grace with one million of shad for the waters of Georgia, but, owing to the break of gauge and the impossibility of obtaining suitable trucks, the fish were deposited in the James River, at Lynchburg. On the 3d of June $1,500,000$ fry were placed in the car and cousigued to General J. R. Hawley and Dr. W. M. Hudson, for deposit in Connecticut waters. It reached Hartford on June 4, accompanied by General Hawley and Mr. Davidson, the local superintendent, and was moved by special train to Warehouse Point, $13 \frac{1}{2}$ miles above Hartford, where the fish were successfully deposited in the Connecticut River. On the 14th of June the car was again loaded, partly from the navy-jard and partly from Havre de Grace, with $1,150,000$ shad, consigned to the Maine commissioners, who had secured free freight over the Boston and Maine Rail-
road. The shad were met at Bangor by Mr. E. M. Stillwell, and a part were deposited in the Kenuebec and part in the Mattawamkeag Rivers. On the 24th of June there were placed on board the car at the Washington navy-yard $1,140,000$ shad, which were taken to Dubuque, Iowa, and deposited in the Mississippi River. The distribution to other States was by the old method of placing the fish in cans to be transierred in the baggage cars of passenger trains under the care of messengers.

Avoca Station.-Dr. Capehart having offered to furnish eggs from the sparning shad at his fishery, the Fish Hawk, was ordered, in April, to proceed, with suitable hatching apparatus on board, to Capehart Wharf, on Salmon Creek, North Carolina. The first eggs (66,000 in number) were obtained April 12, but were lost in handling. Eggs were taken nearly every day from that time to April 30 , or $5,727,000$ in all. From these $1,325,000$ fry were hatched and released in local waters on April 29 and 30. Some eggs were also transferred to the North Carolina commissioner, Mr. S. G. Worth, for hatching and deposit in other parts of the State. The season having advanced sufficiently for work farther north, the Fish Hawk was ordered on May 2 to proceed to Havre de Grace.

Potomac River Barges.-Simultaneously with that in North Carolina, work was begun the middle of April at Gunston's, on the Potomac River, Col. M. McDonald in charge. The first eggs (125,000 in number) were taken on the 20th of April, and continued to be taken in increasing quantities, the maximum being reached on May 18, at which date $4,870,000$ were secured. Over three millions were gathered May 7 and also May 24. The last were taken May 29. These eggs were hatched out with some loss, but supplied a deposit of $26,515,000$ fish in the Potomac River, and about six millions sent to other waters. The work closed May 30, at which time Colonel McDonald was transferred to the charge of the navy-yard station at Washington.

Washington Navy-Yard Station.-This statiou was opened May 4 with Frank L. Donnelly in charge, eggs being brought to it from various fishing shores on the river. The first fish were hatched May 10 , and 85,000 were transferred to Cumberland, Md., for deposit in the upper waters of the Potomac. From this station instalments of from 100,000 to 200,000 each were sent to Delaware, South Carolina, Maryland, Ohio, and Kentucky. By June 2d, $3,280,000$ fry had been produced, at which date the station was turned over to Colonel McDonald. Between June $2 d$ and June 25 th $, 3,840,000$ eggs were received from the gill-netters of the Potomac, which yielded $3,800,000$ fry. Colonel McDonald improved the opportunity to experiment in the transportation of eggs upon trays corered with moistened flannel, and reached some very satisfactory results. He succeeded in carrying the eggs forward almost to the point of hatching, while stratified in layers.

The Potomac shad work was completed July 1, and Launch No. 55, S. Mis. 110_-IV
which had been kindly lent by the Navy Department, was returned to the commandant of the yard.

Battery Island Station.—Mr. Frank N. Clark was directed to leave the Northville Station in charge of Mr. Seymour Bower and to proceed to Havre de Grace. He arrived at the station about April 15 and immediately commenced preparations for the season's work. No eggs were taken, however, until about the 10th of May. Between that time and June 13 over $15,000,000$ eggs were obtained and $13,560,000$ hatched, of which number $8,385,000$ were released in local waters and $5,175,000$ transported to other points. Included in the latter were $3,500,000$ which the Penusylvania commission took charge of and deposited in the headwaters and tributaries of the Susquehanna River. Mr. Clark conducted some extended experiments in retarding the development of the eggs of shad during the season, a report of which will be found in the Appendis. This retardation is considered very desirable as a possible solution of oceanic transportation. Mr. John A.Ryder was also present at the station during several weeks and conducted some important embryological experiments. Several papers from his pen will be found in the Appendix of this volume. On the 17 th of June the season closed at Havre de Grace, and Mr. Clark returned to Northville.

North East River Station.-The steamer Fish Hawk, upon leaving Avoca, proceeded to the North East River, where it arrived May 3. Lieut. Tanner commenced taking eggs on the 5 th of May and continued until the 4th of June with gratifying success. On the 16th of June he directed the removal of the Fish Hawk from the station then occupied to a point near the Battery in order to haul the thousand-fathom seine which had been obtained. On the 29th of May the station was visited by the Commissioners, accompanied by Major Ferguson. Lieut. Tanner obtained in all $15,444,000$ eggs. Of the young fish, over $10,000,000$ were released in the Susquehanna and about $2,500,000$ transported to other waters.

j. The Carp (Cyprinus carpio).

The production and distribution of carp has been carried on more extensively this year than in any previous one, the number of applications having also very greatly increased. Jver 7,000 applications were filed during the year, 5,758 of which were supplied with from 15 to 20 fish each; the total number of carp thus used was 143,696 . There were 1,244 additional applications filed which it was impossible to supply in the year 1881.

The Monument Station.-On the 12th of February the ponds in the Monument Lot were visited by a flood considerably exceeding anything that was ever before experienced. The water stood 9 feet above the level of the banks of the ponds, and was 4 feet deep in the guard-house. On this occasion the city was flooded even to Pennsylvania avenue, and the street in front of the Smithsonian grounds was filled with water to
so great a depth as to stop all movement of vehicles. Fortunately the water was cold enough to drive the carp to the bottom of the ponds close to the mud, so that not very many of the breeding fish escaped.

March 30 an edition of 1,000 copies of Mr. Rudolph Hessel's paper on the cultivation of carp was ordered from the Public Printer for distribution to persons applying for information. This treatise was reprinted in the London Fishing Gazette.

In April, at the request of the Commissioner, Maj. W. J. Twining, the Engineer Commissioner of the District advertised for bids for constructing an additional carp pond. B. J. Coyle \& Co. proved to be the lowest bidders, and the contract was awarded to them April 13. This action was in pursuance of an appropriation by the Forty-sixth Congress, secoud session, of " $\$ 12,000$ for the construction of an additional carp pond." Including the one in question there are now 20 acres of water devoted to the cultivation of carp. The grading of the pond was completed December 28 .

During the summer, mans fish born in 1879 spawned abundantly; indeed, in some cases, fish of 1880 produced an abundance of fry. Superintendent Hessel succeeded in the artificial impregnation of carp, having during June many thousands in his hatching-trays. Some of his young fish, only twelve and fifteen days old, acquired a length of from 3 to 4 inches.

On the 31st of May Mr. George Eckardt arrived from Germany with two cases of carp-eggs. These had been sent by his father, Mr. R. Eckardt, of Liibbinchen, with a view of testing the feasibility of transportation across the ocean. Unfortunately, the eggs were found to be dead and covered with fungus. They were packed in ice, which probably destroyed them, as they are extremely sensitive to cold. On the other hand, without ice the eggs would probably have been hatched prematurely.

In September we were confronted with the problem of distributing an enormous number of carp in small quotas to numerous applicants. An ordinary 10 -gallon milk-can had hitherto been found most suitable for their transportation in lots of twenty-five or thirty. This method, however, being expensive and not entirely satisfactory, Colonel McDonald tried the experiment in November of shipping carp in small tin pails. As the result, he found that 20 carp could be inclosed in a tin pail of 6 quarts capacity, when half full of water, and be kept alive two or three days. This led to a radical change in the methods of shipping, and a great saving of expeuse. Sixteen pails containing 20 carp each were put into a crate and sent by express almost as readily as the single 10 gallon can had been sent. In December the new car was brought into requisition, and being loaded with carp was sent to Missouri and Texas, as has been explained under that heading.

The Arsenal Ponds.-On the 4th of June Mr. Filliot Jones reported
the stock of carp in the ponds at the Arsenal the previous autumn to have been as follows:

In the large pond:
15 breeding scale carp, weighing from 2 to 3 pounds each.
1,422 scale carp, of 1879 , weighing from 5 to 20 ounces each.
In the small pond:
6 breeding leather carp, weighing from 1 pound 10 ounces to 2 pounds 1 ounce.
242 scale carp, of 1879 , weighing 5 ounces each, and
62 mirror carp, of 1879 , weighing 5 ounces each.
Λt this date Mr. Jones was ordered from Washington, and Lieutenant Smith, of the Quartermaster's Department, will hereafter, have charge of these ponds. Richard Lynch, the Arsenal gardener, has the personal oversight of them.

l. Gourami (Osphromenus olfax).

In my last Report I presented several reasons why the gourami would be a desirable species to introduce into the United States, and spoke of the efforts of the Sociéte d Acclimatation, with the aid of a French resident of Saigon, Cochin China, to supply the United States Fish Commission with this fish, as also of the arrangement made with Mr. B. B. Redding to place what might thus be obtained in a lake near San Gabriel, Cal. No result has so far been obtained from this effort.

Monsieur L. Carbonnier, of Paris, haring received some specimens from Mauritius, forwarded a pair to the United States through Captain Briand, of the French steamship line, who arrived at New York August 19. Unfortunately one of the fish had died during the passage. The other was delivered to Mr. E. G. Blackford to care for until suitable arrangements conld be made. It died, however, early in September, some ten or fifteen days after its arrival.
l. Cod (Gadus morrhua).

Wood's Holl Station.—In November, 1880, Capt. H. C. Chester went to Wood's Holl, Mass., with a view of continuing experiments in codhatching. Later in the season, Colonel McDonald was directed to take charge of the station and to test some apparatus which he had arranged. He was accompanied by Mr. John A. Ryder, who made some valuable experiments upon the embryology of the cod. Mr. Ryder's report, with numerous illustrations, will be published as an Appendix of the Report for 1882 . The experiments were somewhat limited, as ouly a single lot of spawning-fish was obtained in that locality. In one experiment with 40,000 eggs, Colonel McDonald hatched 25,000 fry. These fish were sent to Annapolis, Md., and deposited in Chesapeake Bay. An account of his operations and of the apparatus which he used will be found in the Appendix. On the 8th of March the station was closed and the apparatus returned to Washington.
m. The Spanish Mackerel (Cybium maculatum).

Chesapeate Bay.-The account of the discovery of spawning-mackerel and the work of hatching them, conducted by Mr. R. E. Earll, was given in full in the last Annual Report. In order to continue the experiments, the Fish Hawk, on the 15th of June, took on board a special outfit for hatching Spanish mackerel. On the 14 th it proceeded down the river and arrived at Cherrystone Inlet on the 15 th, accompanied by Launch No. 62, which had been ordered from Harre de Grace. The pound-nets of the fishermen were visited, and on the 17 th live eggs were taken and placed in hatching-cones. Eggs were also taken on subsequent days, but the hatching was not successful, most of the fish and eggs dying. The particulars of the work of the Fish Hawk will be found in Captain Tanner's report for the year.

On the 29th of June the Fish Hawk left for Washington, turning over the launch, however, to Col. Marshall McDonald, who had arrived to prosecute the experiments still further, with instructions to work out as fully as possible the proper methods without endeavoring to turn out any considerable number of fish during the present season. He was accompanied by Mr. John A. Ryder, who studied the embryology of the fish, and has made a somewhat full report, with four plates, upon "The derelopment of the Spanish mackerel," in the Bulletin of 1881, pages $155-172$. On the 26th of July it became necessary to return the borrowed launch to the Navy Department. The work was soon after closed, and Colonel McDonald returned to Washington. A short paper apon his work will appear in the Appendix.
n. Turbot and Sole (Rhombus maximus and Solea vulgaris).

The turbot and sole are generally considered to be the best fish in Europe, commanding a higher price than any other, exclusive of the salmon; and the question is frequently asked as to the intentions of the Commission in regard to introducing and propagating them on the shores of the United States.

By those best qualified to judge, these fish are not considered to possess any marked superiority over corresponding forms of the flat fish found in the United States, which, when properly cooked, are of very great excellence. Many persons, thoronghly familiar with the turbot and sole, who have been present at one of the famous fish dinners given by Mr. Taft, of Point Shirley, Mass., and who have tasted the Northern flat-fish (Pleuronectes americanus) and the Southern flounder (Paralichthys dentatus), as served by him, stoutly deny any and every claim of superiority in the first-mentioned fish.

Appreciating, however, the interest of the problem, which if solved would simply add to the species of desirable food-fishes in the United States without interfering with the abundance of those belonging to it, the Commission has several times made efforts to introduce both the turbot and the sole into the United States.

The first experiment of importation mas made by the United states

Fish Commission in 1878, when Mr. Fred. Mather was instructed to bring over from England thirty specimens collected by Mr. C. L. Jackson, of Bolton, England. During the voyage to Boston most of the fish perished, as it was believed, in consequence of the well-meant but inauspicious action of the boatswain of the Cunard steamer in introducing very cold water, the shock destroying the fish. Only two turbot survived, which were deposited in Massachusetts Bay.

The second experiment, also under Mr. Mather, was made in 1879. This was entirely a failure; the fish all dying, having been injured, it was thought, by the land transportation from Southport to Southampton.

In April, 1880, Captain Mortimer, of the ship Hamilton Fish, brought five sole out of nine sent by Mr. Moore, of the Derby Museum; and these were deposited by Mr. Blackford outside of Sandy Hook.

On the present occasion the Commission again had the important aid of Mr. C. L. Jackson, of Bolton, England, who undertook to collect a number of turbot and sole, and acclimate them in the tanks of the Southport Aquarium. A large number died, but those that survived appeared to be in very good condition, and were shipped from Liverpool on the Cunard steamer Parthia on October 15, in charge of Mr. Armistead. The fish were carried in two oval wooden tanks 5 feet 6 inches long, 4 feet wide, and $2 \frac{1}{2}$ feet deep, each tank sub-divided into four spaces, so as to prevent undue agitation during the passage. A cask was set on the top of each, and filled every day with sea-water, and a circulation of the water maintained thereby.
The temperature of the water at Southport on starting was $53 \frac{2}{2}^{\circ}$. During the voyage the range of temperature of the water in the tauks was from 51° to $58{ }^{\circ}$.

Starting with seventy soles and thirty-five turbot, sixty-seven soles and twents-nine turbot died on the way; three of the former and six of the latter alone surviving.

In response to an application from the Commission, the Secretary of the Treasury directed the collector of customs at New York to have the reveune-steamer Grant in readiness for the immediate transfer. A party of gentlemen interested in the experiment, consisting among others of Mr. E. G. Blackford, Mr. Barnet Phillips, Mr. John Foord, and others, were on board the Grant; and the nine fish were placed in cans and transferred to the ocean in Sheepshead Bas, just opposite the Oriental Hotel, in water about 2 fathoms deep.

It is, of course, impossible to tell what may be the fate of these fish, but the chances are very few that they will ever be heard of again.

After a careful consideration of the whole problem, it is believed that the only chance of successful experiment is to place such fish on arrival in an inclosed basin of tidal water of suitable character, where they can be fed, and guarded against any possible enemies; and where, when ripe, the egrgs can be taken and, after artificial impregnation, be hatched out in accordance with the methods adopted for the floating eggs of the sea fish. This is one of the several problems to be solved in connection
with the proposed sea-fish hatching station at Wood's Holl. The facilities there will be excellent for the purpose, and it is hoped that the experiment may be made at the earliest possible moment.

The following report of results, made by Mr. A. Wilson Armistead to Mr. C. L. Jackson, of Bolton, England, will probably be of interest:

It is with sorrow that I have now to inform you of the sad ending of nearly all the fish. However, I do not think it is by any means a lost journey for the Americans. From what I have seen, I feel satisfied the thing can be done. Inclosed you will find an account I have kept, showing changes of temperature, losses, \&c., which speaks for itself. You will notice the fish began to die very soon after leaving Liverpool, and when I examined them the first thing noticeable was their sickly appearance, and when examined more closely I could trace scars or bruises which were not observed at the Southport Aquarium.

I am now confident that the fishes must have been injured in their journey down to the landing stage from Liverpool Station, as the jolting about, owing to the bad road, was very severe, and in any future attempt that may be made, I am quite sure that this short part of the journey must be made in some other way. When the largest tank was filled with sea-water, after the carpenter had fixed the cross-pieces, all seemed right until the following day, when the sun's rays falling upon the surface of the water revealed what appeared to be small splinters, very minute, floating about, which had to be got rid of, as they might be bad for the fish by getting lodged in their gills; but I could not discover that any fish had been choked, with but one doubtful exception. This was a large turbot, and appeared as though it had been choked, but I could not find anything in the gills or about the throat to satisfy me.

As to the voyage itself, we had both rough aud fine weather. The hole in the largest tank is rather too wide. The water overflowed several times while we had rough weather, and we could only keep it filled up to the cross-pieces. I do not think the fish suffered much by the rolling about of the steamer, unless it be the fish have pressure put upon them when the steamer is heaving upward. I have thought about this a great deal, and have come to the conclusion that the fish do experience a slight pressure, not so great as to injure them, but which, if long continued, might make them sickly. The water was changed every morning, except when the temperature of the sea rose considerably when passing the Gulf Stream currents. You will see that on Monday morning, October 24, when the water in the tanks stood at 51°, in the sea it was 61°, and at 2 p . m. same day it had risen as high as 68°, so I considered it wisest to keep the water I had.

Wood, I fear, is not good for fish to lie upon. I would recommend that the tank be either charred all over inside, or a coating of Portland cement, with about two or three parts sand, which, when well set, to be thoronghly seasoned by placing it in the sea for, say, two or three months; a very thin coating would do. As to procuring the fish, in the first instance, I believe a good deal hinges upon this for making the thing a success. If caught in a trawl-net, I believe that the net should be hauled up at short intervals; this, I expect, would necessitate a trawl-boat to fish expressly for live soles or turbot, and would be more costly, but decidedly more satisfactory. Indeed, I should not like mesself to make another venture across the Atlantic unless I could be sure that the fishermen intrusted with the catching of the fish could be relied upon. The best way would be to see them caught one's self.

I do wish I had been in a position to give you a more satisfactory result. Under the circumstances, all that could be has been done. Captain McKay, John Atkins, chief officer, and Mr. Field, the purser, all connected with the steamer, have been very good to me. I am sure they are sorry for the poor result and would like to have seen the experiment successful. I liked Captain Mckay rery much, and so did all the passengers; and if ever another attempt is made with living fishes, whoover goes out with them I trust may have the same captain.

Steamer Parthia, October $26,1881$.
o. The Oyster (Ostrea virginica).

Within a few years past special attention has been paid by the Commission to various features connected with the artificial cultivation of the oyster, Major Ferguson having visited France in 1878 to study the details of the business as practiced in that country.

Reference has already been made, in the list of stations of the United States Fish Commission, to Saint Jerome as a station for the artificial cultivation of the oyster. This is located not far from Point Lookout, near the mouth of the Potomac River, and was first established by Major Ferguson while Commissioner of Fisheries of Maryland, and subsequently carried on at the joint expense of the Maryland Commission and the United States Fish Commission. Here it is proposed to establish a system of parks and other arrangements similar to those adopted in France; and, in addition, to test practically the possibilities of the artificial impregnation of the eggs of the oyster and the production of spat at will, a measure not satisfactorily accomplished in Europe.

Lieut. Francis Winslow, of the Navy Department, haring been occupied in collecting statistics of the oyster industry for the Census of 1880, continued his labors in the service of the United States Fish Commission by authority of the Secretary of the Navy. His researches will be duly published when they are completed.

By the courtesy of Mr. E. G. Blackford, of New York, a great variety of living oysters of the different breeds was imported from Europe, and placed in the hands of Mr. John A. Ryder for investigation. The special problem was to ascertain how far the European oysters, including the German, French, Portugnese, and English natives, and the green oysters, differed in character from the American; and thus to determine whether processes applicable to the former were suitable for the latter. Some very interesting facts ascertained by Mr. Ryder will be duly made the subject of a report.

p. The Oregon Clam (Glycimeris gencrosa).

On the Pacific coast there are several species of bivalve mollusks, coming under the general head of clams, which are of very great value in their localities, and which it has been thought might be profitably introduced to the Atlantic coast.

One of the most important of these is the Glycimeris generosa, known by the Indians as the Geoduck, a clam found in California, Oregon, and Washington Territory, and which reaches an enormous size, retaining, however, a great teuderness and delicacy of flesh, much more resembling that of the oyster than of the clam. Correspondence has been entered into with Mr. Henry Hemphill in regard to obtaining and shipping a quantity of these clams for experiment, but it was finally concluded that it would be better to wait the occasion of a return trip of the fish-transportation car of the Commission before attempting a sending.

Several other species of western clams are also under cousideration for a similar purpose.

D.-ABSTRACT OF CONTENTS OF APPENDIX.

18.-ANALYSIS.

In the general Appendix to this report will be found a number of separate papers treating upon matters related to the work of the Fish Commission. These are classified under four headings, as follows :

A.-General.

The first paper is by Lieut. Z. L. Tanner, and gives a thorough description of the Fish Hawk, illustrated by eighteen plates. This is followed by an account of the Fish Hawk's work during the second year; and, finally, by a list of patents issued in the United States during the year relating to fish and fisheries. The latter is by Dr. R. G. Dyrenforth, chief examiner of the Patent Office.

> B.-Fisheries.

First under this head is a paper upon the mackerel fishery, by Messrs. Goode, Collins, Earll, and Clark. It embodies all that the Fish Commission has heretofore collected upon the subject, covering some 440 pages, and provided with a special iudex. An extra edition has been issued, in pamphlet form, for distribution to persons interested in this fishery. Two translations by Dr. Bean furnish the statistics of the Norwegiau fisheries for the year 1880. There is a review of the early shad fisheries on the Susquehanna, by Harrison Wright; a reprint from the London Quarterly Review upon the fish-supply of London; and a report, by Charles W. Smiley, upon the extent to which fish-guano is used as a fertilizer in the United States.

C.-Natural History and Biological Research.

Prof. H. E. Webster and Mr. James E. Benedict, of Union College, furnish a report on the worms collected by them at the Fish Commission station at Provincetown in 1879, which is accompanied by eight plates and a special index. Messrs. John A. Ryder, and S. A. Forbes report upon the food of fishes; and Messrs. F. N. Clark, H. J. Rice, and John A. Ryder upon experiments desigued to retard the development of shad eggs, with a view to facilitate their transportation.

D.-Propagation of Food-Fishes.

Under this head will be found detailed and statistical reports upon the work of the United States Fish Commissiou in propagating and distributing food-fishes, such as shad, whitefish, trout, and several kinds of salmon, by F. N. Clark, Livingston Stone, Charles G. Atkins, and Charles W. Smiley.

E.-SUPPLEMENT TO REPORT PROPER.

19.-ON THE WORK OF THE FISH HAWK AND OF THE UNITED STATES Fisil commission duling the year 1881, by prof. leslie a. lee, OF BOWDOIN COLLEGE.*

The Fish Hawk is fully equipped with all necessary apparatus for conducting the investigations. The experience of the Commission has been so great that the apparatus for dredging, trawling, \&c., is probably more perfectly adapted for its purposes than any which has been used elsewhere. Many important improvements have been suggested from time to time by members of the Commission, and changes are continually being made. Perhaps the most important addition to the apparatus this season was in the "trawl-wings." A large net-trawl is used more than anything else for obtaining bottom animals, and it has long been supposed that many of the more active ones escaped capture by swimming to one side after being aroused by the on-coming trawl. To capture these the trawl-wings were contrived. These are light nets which are attached to rods which run out on each side from the top of the trawl. The nets are fitted within with a transverse partition, perforated in the center, which prevents the escape of the animals after they are once confined. This arrangement was a complete success, many new species being taken, by it.

But not all the energies of the Commission are devoted to the collection of specimens. Careful soundings are made by which the existing charts are often corrected. The temperature of the water is taken at all depths, particularly at the surface and bottom; and the specific gravity of the bottom water is determined. In fact a complete record is made of everything which can be supposed to have a bearing upon the subjects before the Commission.

Upon the prospect of pleasant weather the party would go aboard of the Fish Hawk and proceed directly to the southward, remaining off shore for from two to four days. Nine such trips were made during the past season. The Gulf Stream off the coast of Southern New England is situated about 100 miles from land. Its distinctness as a stream is well indicated by the soundings. The depth of the water from Gay Head outward is very uniform for nearly 90 miles, not more than 50 fathoms often occurring. Then comes the beginuing of the slope. Within 10 or 15 miles 1,000 fathoms and probably greater depths can be reached. The work of the Commission was done in depths of less than 800 fathoms.

Upon reaching suitable ground, as indicated by the soundings, the trawl or dredge would be put over and allowed to drag on the bottom for perhaps twenty minutes. Or, if fish were desired particularly, the line-trawl, similar to that used by cod-fishermen, would be set. Upon

[^0]making a haul with the net-trawl, the first thing to impress one is the wonderful abundance of life present, in both species and individucds. Nowhere in the previous history of the Commission have such results been obtained, surprising alike to the novice and the experienced. The bottom in this region is usually soft, and is composed of sand and mud, with many foraminifera, both calcareous and arenaceous. Much of the mud is brought up in the trawl, which at times must sink deeply into it. Within the trawl when it comes to the surface, the conspicuous features are the echinoderms, fishes, crustaceans, and annelids.

Of the many sorts of fishes taken, perhaps the several species of hake were the most abundant. The trawl often contained bushels of these, which, however, were usually of small size. Cod, haddock, and whiting were not so common, but good sized specimens sometimes occurred. Many of the species, particularly of the genera Careproctus and Liparis, were very soft and gelatinous, and could be preserved only by being dropped at once into strong alcohol. These occurred mostly at the greater depths, where they would naturally not be exposed to conditious requiring a more perfect protection. The most important species taken was the tile-fish. This was first discovered here in 1878 by a passing fisherman. A few were caught in 1880 by the Commission, and during the past season particularly attention was paid to this species, to determine whether its quality and abundance are such as to lead it to become an important food-fish. Trawl-lines were therefore set at different depths and localities, and special efforts were made to determine its limits. It was found to exist everywhere, from Cape Cod to Delaware (which is probably not its sonthern limit), in a depth of about 100 fathoms, and is nearly as abundant as all other kinds together. It is of large size, averaging in weight from 12 to 20 pounds, the largest taken weighing about 50 pounds. The color above is violaceous, and below light gray. On the back and sides are scattered bright yellow spots, each about an inch in diameter. What chiefly distinguishes it from other genera is the fact that it has a dorsal fleshy lobe just back of the head. It,has been named Lopholatilus chamoleontuceps Goode and Bean. The flesh is white and firm and free from bones. The quality is very fine, so that it cannot fail of becoming a good market fish. It remains now for the fishermen to develop here a new industry.

Crustacea occur in large numbers and furnish an abundant supply of food for all kinds of fishes. They are mostly northern forms. Many have previonsly been known from the Norwegian coast, and others have close affinities to northern species. Several species which Stimpson lon z ago described from single or ferr small or imperfect specimens were re-discovered in abundance and of large size. Decapods largely predominate, particularly shrimps and anomurans. Hundreds and thousands of specimens were brought up in nearly every hanl. The largest yet taken is a crab, Geryon quinquedens Smith, first described from specimens in the collection of this society, which were taken from the
stomachs of the fishes caught on our coast. This species, in life, is of a brilliant vermilion color. The carapax is often 6 inches in diameter. To some individuals were attached two species of stalked barnacles, one being the type of a new genus. An anomuran, Latreillia elegans Roux, is certainly an elegant species. The carapax is triangular in shape and rarely more than an inch in length, while the legs extend 4 or 5 inches on each side. The eyes are at the ends of stalks half as long as the carapax. The legs are banded alternately with bright red and light pink. One of the most interesting of the crustaceans was a hermit crab, Parapagurus pilosimanus Smith. This was first described in 1879 from a single specimen brought in by a fisherman from the Banks. We found it in great abundance, 500 specimens being taken at a single haul. This forms the type of a new family as well as of a new genus. It possesses characters hitherto unknown in its group, having gills in the form of papillæ instead of lamellæ as in most bermit crabs. The carcinœcium was originally a shell, as is commonly the case, but a compound polyp with a tough leathery integument soon becomes attached to the shell and extends beyond it, growing as the crab grows, often in time completely absorbing the shell. This polyp is also new to science, forming the type of a new genus. It is interesting to note that this crustacean and the polyp have never been found separated. While there are many other species of the hermit crabs in the same region, this polyp is never found upon any of them, and this crab is never protected by any other of the numerous species of polyps which abound.

Hitherto few species of Cephalopods have been found on our coast, but many new and interesting forms were taken during the past summer. The largest was Alloposus mollis Verrill, of which we took two specimens, each about three feet long and weighing 25 or 30 pounds. It belongs to the eight-armed group, and the arms are united throughout nearly their entire length by a muscular web. Its suckers are over half an inch in diameter. The body is very soft and gelatinous. It shrinks exceedingly when put into alcohol and is reduced to not more than one-third of its original weight. Such an animal would hardly seem to be a formidable enemy. This is also the type of a new genus. A species described by Sars from the Norwegian coast was taken sparingly. This closely resembles the common squid of our shores, but the tentacular arms, besides possessing the usual suckers, are supplied with horny hooks, giving it a fearful advantage in the struggles with its prey. A species described by Le Seur in 1821, Taonius pavo, also occurred, not having been seen on our coast since that time. This is well deserving of the name "goggle-eyed squid," its eyes being altogether out of proportion to the body. Fragments of the shells of the paper nautilus were frequently dredged, but the animal itself was not taken. Two or three living specimens have lately occurred on the New Jersey coast.

Each haul brought up an abundance of Echinoderms, mainly starfishes. The number of new species taken was considerable. Certain forms were so plenty that they were cast overboard again by the bushel. Many curious modifications of structure occur anong them. An interesting form, Diplopteraster multipes Verrill, is large and thick, with short arms, a rich purple above, beneath orange streaked with brown, the feet large and purple and arranged in four rows. Twenty species of star-fish were taken at one haul. Sea-urchins were not abundant, only a few species being taken. Some of these, however, were new and remarkable. Among them is a large species hitherto known only from off Florida. Several others were northern forms.

Annelids and other worms occurred in great variety. One new species was perbaps more plenty than any other form of life in those depths. It has been named Hyalinæcia artifex Verrill. In general appearance this is something like the common clam-worm, Nereis. But it secretes a tube 10 or 12 inches in length, of a horny substance, quill-like, ambercolored, sometimes one-third of an inch in diameter. The tubes containing the animal probably lie loosely on the bottom, but it is likely that the animal is sometimes able to swim about, dragging its tube behind. Often the trawl came up filled with their tubes. The large sea-mouse, Aphrodita, which is often found on our own coast, was also plentiful.

The forms of life thus far described are mostly those which have hitherto occurred only in the colder regions of the North Atlantic or those which show strong affinities to northern forms. We now come to the shell-bearing mollusca, and another wonderful varicty of forms is discovered. The alliances of some of these are with tropical species, many being represented by similar species in the West Indies. The new form of rake-dredge did good service in the collecting of shells, nearly every haul bringing up something new. Conspicuous among the new species is a Trochus-like form, Calliostoma Bairdii V. and S., by far the handsomest shell found on the Nerr England coast. This presents a decidedly tropical aspect. Two species of Solarium also occurred, both of small size. Another shell taken sparingly was Dolium Bairdii V. and S., a representative of a genus one would hardly expect here. These are all Gasteropods. The Lamellibranchs present, among many others, three genera new to the coast and remarkable for their close affinities to fossil forms. These are Diplodonta, Mytilimeria, and Pholadomya. Of the latter there is only one other living species, which occurs on the coast of Africa. Mingled with these were a large mumber of northern species of shells. In all, more than 200 species of mollusks were taken, of which more than 100 were additions to the American fauna, and nearly 75 new to science.

A surprising feature of life at the bottom is the large number of seaanemones, some being of great size. They are attached to everything.

Eren the tubes of Hyalinocia give support to a peculiar species. The larger ones hold firmly enough to the mud bottom since they are subject to no wave action.

One species of sea-pen, Pennatula aculeata Dan., was taken in great abundance on several occasions. A very delicate branching coral, Acanella Normani Verrill, often covered the net with its orange-red branches. A simple, horn-shaped coral, Parasmilia Lymani, was secured in specimens of great perfection, while another coral of exceeding delicacy was brought up more often broken than perfect. The latter was a species of Flabellum very similar to one taken by the Challenger expedition.

Thus far I have spoken only of the bottom species. The surface and intermediate depths all abound in life. The floating weed at the surface conceals among its branches many fishes and crustaceans which remain there for protection. Jelly-fishes are seen in great variety, together with a gigantic Salpa which sometimes covered the nets so as to obscure the other specimens. But little surface collecting was done, although, without doubt, that would prove exceedingly profitable.

While we consider the life of this region as a whole, sowe curious questions arise. That of coloration is one. The crustaceans are nearly all brilliantly colored, but there is no great variety in their tints. Scarlet and vermilion predominate, with some orange-red. The star-fishes, too, are gorgeous in their purple and orange. The sea-anemones are pink and orange-red. The sea-pens are deep red. Many fishes also possess the same tints. What is the reason of such gorgeous array? Professor Verrill explains it by saying that these colors render the animals invisible in the great depths. The sunlight in passing through the water loses most of its red and yellow rays by absorption before reaching the bottom, and consequently, as none of the remaining rays could be reflected from these red and yellow pigments, the animal could not be seen by others in search of prey. He suggests that these colors have been produced by a process of natural selection.

Phosphorescence, too, is an interesting phenomenon exhibited by many forms of life. The sea-anemones and sea-pens show this most conspicuously, although many others are also highly phosphorescent. The light given off by these is usually bluish or greenish, rarely yellowish. There would seem to be a connection between this fact and the brilliant coloration of the forms previously mentioned.

The mingling of two apparently distinct faunæ on the Gulf Stream slope seems to be due to two causes: the low, uniform temperature and the currents. We find here the contact of a cold polar current with the warm Gulf Stream at a depth which prevents seasonal variations. The bottom temperatures are low enough for arctic forms, and the Gulf Stream has slowly brought up from the West Indies species which have become gradually fitted to their environment. The abundance of life can be accounted for by the rapidity of circulation which keeps the bottom water purer and better fitted for supporting life than is usually
the case at such depths. With such an abundance of life for food and with the uniform temperature there seems to be a combination of couditions which may make this the region to which the migratory fishes resort in winter.

20.-TAbLES OF THE DISTRIbution of Fish and eggs.

In the following tables, numbered I to X , which have been prepared by Mr. Charles W. Smiley, and in Table XI, prepared by Col. M. McDonald, will be found the condensed record of the distribution for the year of whitefish, lake trout, brook tront, California salmon, California tront, Penobscot salmon, Schoodic salmon, shad, and carp. Fuller details will be found in various papers of the Appendix: In XX, Mr. Clark's account of whitefish and tront operations ; in XXI, Mr. Stone's account of California salmon operations; in XXII, Mr. Stone's account of California trout operations; in XXIII, Mr. Atkins' account of Penobscot salmon operations; in XXIV, Mr. Atkins' account of Schoodic salmon operations ; in XXV , the accomnt of shad operations.

Table I.-Distribution of whitefish eggs by the United States Fish Commission during season of 1881.

| States. |
| :--- | :---: | :---: | :---: | :---: |

Table II.-Distribution of young whitefish by the United States Fish Commission during season of 1881 .

States.	Destination.	Number of fish.
Michigan	Detroit River, near Detroit.	1,250, 000
	Lake Michigan, near Ladington	1, 000,000
	Lake Michigan, near Muskegon Lake Huron, near Port Huron..	$1,500,000$ $2,000,000$
	Lake Michigan, near Saint Joseph	1,500,000
New York	Near islands in Lake Erie..	3,500,000
Wisconsin	Lake Ontario, near Oswego.	
	Lake Micbigan, near Racine	$1,750,000$
	Lake Michigan, near Sheboygan	$1,750,000$
	Total	17,750,000

LXIV REPORT OF COMMISSIONER OF FISH AND FISHERIES.

Table III.-Distribution of eggs of lake trout by the United States Fish Commission during season of 1881.

States.	Destination.	Number of eggs.
	DOMEstic.	
Iowa	B. F. Shaw, Anamosa	30,000
New Jersey ..	F. Mather, Newark	2,000
	foreign.	
Germany	F. Mather, for Herr von Behr, Berlin	20,000
		52,000

Table IV.-Distribution of brook trout eggs by the United States Fish Commission during scason of 1881.

States.	Destination.	Number of egge.
Maryland....	domestic. Druid Hill hatchery, Baltimore \qquad FOREIGN.	30, 000
France .	F. Mather, for reshipment.	20,000
	Total	50,000

Table V.-Distribution of young brook trout by the United States Fish Commission during season of 1881.

States.	Destination.	Number of fish.
Maryland.Michigan.	Pond at Oakland, MdTributaries of RougeTotal	30,000
		20, 000
		50,000

Table VI.-Distribution of California salmon eggs by the United States Fish Commission during season of 1881.

States.	Destination.	Number of eggs.
	domestic.	
California.	Lenni Fish Propagating Company, Sonoma	500,000
	B. B. Redding, San Francisco	200,000
Maryland.	T. B. Ferguson, Baltimore	500,000
Minnesota	R. O. Sweeny, Saint Paul.	200, 000
Nebraska	R. R. Livingston, Omaha.	500,000
Nevada	H. G. Parker, Carson City.	50,000
New Hampshire	A. H. Powers, Plymoath	50, 000
New Jersey	Fred. Mather, Newark	500,000
	Percy C. Ohl, Plainfield	50,000
Pennbylvania.	Seth Weeks, Corry	100, 000
South Carolina.	Curtis Johnson, Saint Petersburg C. J. Huske, Walhalla...........	50,000 300,000
West Virginia........	C. S. White, Rompey.	100, 000
	foreign.	
Now South Wales ...	Zoological Society, Sydney Total	500,000
		50, 000
		3,650,000

Table VII.-Distribution of California trout eggs by the United States Fish Commission during season of 1881 .

States.	Destination.	Number of eggs..
California	B. B. Redding, San Francisco.	40,000'
Illinois	N. K. Fairbanks, Chicago	35, 000
Iowa.	B. F. Shaw, Anamosa.	35, 000
Kentucky	William Griffith, Louisville	5,000
Maryland	T. B. Ferguson, Baltimore	36,400
Michigan.	J. G. Portman, Pokagon.	6,000
Minnesota	R. O. Sweeny, Saint Paul	8,000
New Hampshir	S. Webber, Plymouth .-............	4, 000
New York...	Eugene G. Blackford, New York City	500
Pennsylvania	J. P.Creveling, Marietta	5,000
Wisconsin.	Philo Dunning, Madison	5,000
	Total	179,900

Table VIII.-Distribution of Penobscot salmon eggs by the United States Fish Commission during season of 1881.

Stater.	Destination.	Number of eggs.
Connecticat	H. J. Fenton, Windsor.	95,000
Maine.....	Charles G. Atkins, Grand Lake Stream	50,000
Minnesota ${ }^{\text {New }}$ Hampshir	R. O. Sweeny, Saint Panl A. II. Powers Plymonth	$\begin{array}{r}200,000 \\ 95 \\ \hline\end{array}$
New Jersey..	E. J. Anderson, Bloomsbury	95,000 -
New York	E. G. Blackford, New York City	344, 50 C .
Pennsylvania	Seth Weeks, Corry	100, 000
Virginia	S. F. Baird, W ashington, D.	27,000
	Total	1, 006, 50 c

Table IX.—Distribution of schoodic salmon eggs by the United States Fish Commission dur. ing season of 1881.

States.	Destination.	Number of egge.
	Dombetic.	
California	B. B. Redding, San Francieco	10,000
Connecticat	H. J. Fenton, Windsor.	5,250
Iowa..	B. F. Shaw, A namosa .	25,000
Maine	A.J. Darling, Enfleld	5,000
Maryland	T. B. Fergason, Baltimore	11,000.
Massachusetts	E. A. Brackett, Winchester	5,000
Michigan.	F. N. Clark, Northrille.	56, 750.
	J. G. Portman, Paris	25, 000
Minnesota	R. O. Sweeny, Saint Paul.	25, 000 -
Missoari......	C. H. Brownell, Saint Joseph	25,000
New Hampshir	A. H. Powers, Plymouth...	4,750
New Jersoy	Mrs. J. H. Slack, Blooms bary	22,000
New York.	E. G. Blackford, New York City	10,000.
	Seth Green, Mumford	11,000
Tennestrania	Soth Woeks, Corry	11,000
Vermont.	J. M. Haven, Rutland.	10,000
Wisconsin	M. T. Bailey, Madison	25, 000.
	porkian.	
Germany	F. Mather, for reshipment	20,000,
	Total	311, 73 C

Table X - Distribution of shad from April 27, 1881, to June 22, 1881, by the United States Fish Commission.

States.	No. of lots.	Streams stocked.	Number of fish.
Connecticut.	1	Connecticut.	1,000,000
Delaware	1	Nanticoke	940, 000
District of Columbia.	2	Potomac	205, 040
Georgia .-.....-........	6	Oconee, Ocmulgee, Flint, Little	1,800, 000
Iowa...................	1	Mississippi......	1, 106,000
Kansas	1	Missouri	200,000
Kentucky	4	Barren, Green, Kentucky, Salt	767,000
Maine	2	Kennebec, Mattawamkeag.-. .-........................	1,150,000
Marylaud	42	Choptank, North East, Patapsco, Patuxent, Potomac, Susquehanna	24, 705, 500
North Carolina	3	Haw, Salmon Crcek..	4,357, 500
Ohio	2	Maumee, Ohio.	1,020,000
Peunsylvania	3	Juniata, Susquelianua	3,500,000
Rhode Island	1	Palmers. -	500,000
South Carolina.	3	Catawba, Congaree, Perdee	620,000
Tennessee	4	Holston, Nolachucky, Tennessee, Wautaga	400,000
Texas...	5	Brazos, Colorado, Sabine, San Antonio, San Marcus	-277,000
Virginia	15	James, Potomac...........	24, 280, 000
West Virginia	1	Ohio ...	175,000
Total	97	Total.	67, 003, 000

Table XI.—Distribution of carp during the year 1881, by the Cnited States Fish Commission.*

State.							
Alabama	38	28	60	88	1,856	70	158
Arizona.	2					7	7
Arkansas	17	5	28	33	818	5	38
California	24					38	38
Colorado	9	1		1	20	18	10
Comnecticut	8	21	71	92	2,220	14	106
Dakota...	5					8	18
Delaware.	3	16	42	58	2,100	1	59
District of Columbia		1	3	4	86	7	11
Florida:	11	2	23	25	432	5	30
Georgia	04	30	380	410	7,681	133	543
Idaho.	2					2	2
Mlinois	62	23	139	162	2,844	24	186
Indiana	52	135	10	145	3,896	27	172
Indiau Territory	1		16	16	317		16
Iowa	29	1	15	16	292	28	44
Kansas.	45	5	105	110	2, 366	17	127
Kentucky	70	7	489	496	9,732	84	580
Louisiana	24	1	51	52	1,276	6	58
Maine...	6	6		6	116	5	11
Maryland	28	15	240	255	22,424	9	264
Massachusetts	10	24	3	27	745	21	48
Michigan...	20	3	37	40	1,848	9	49
Minnesota.	18	4	1	5	100	17	22
Mississippi	55	139	389	528	9, 445	97	625
Missouri .	50	2	208	210	4,126	54	264
Montana	2					2	2
Nebraska	11	6	1	7	120	8	15
Nevada.	2					2	2
New Hampshire	6	6		6	140	5	11
Now Jersey ..	19	49	21	70	1,352	11	81

[^1]Table XI．—Distribution of carp during 1881 by United States Fish Commission－Cont＇d．

State．							
New Mexico	3					6	
New York	40	140	50	190	4，616	68	258
North Carolina	56	47	115	162	3， 104	91	253
Ohio	62	172	35	207	4，258	89	290
Oregon．	13					35	35
Pennsylvania	54	209	141	350	7，256	73	423
Rhode 1sland	4	5	20	25	1，140	2	27
Sonth Carolina	26	9	236	245	11，884	11	256
Tennessee．．	46	34	165	199	4，200	55	254
Toxas．	112	15	926	941	16，580	9	950
Utah．	5	5		5	130	5	10
Vermont	3	4		4	76	2	1
Virginia．．．	68	172	304	476	11，669	30	506
Washington．．						11	11
West Virginia	21	35	41	76	1，935	6	82
Wisconsin．．．．	19 1	10	4	14 2	296 200	15 2	29
Total．	1，256	1，387	4，371	5，758	143， 696	1，244	7， 002

21．—LIST OF RAILROADS GRANTING FACILITIES IN 1881.

During the present year a large number of railroads have accorded the facilities for carrying fish in baggage cars and for stopping trains at bridges so as to deposit young fish．The list is given herewith，and the most hearty acknowledgment made of their interest and co－operation．

Alabama Great Southern Railroad Company．Charles P．Ball，general superintend－ ent，Chattanooga，Tenn．

Alabama Central Railroad Company．W．L．Lanier，president，Selma，Ala．
Associated Railways of Virginia and the Carolinas．A．Pope，general passenger agent，Richmond，Va．
Atchison，Topeka and Santa Fé Railroad．George O．Manchester，assistant general manager，Topeka，Kans．
Atlantic，Mississippi and Ohio Railroad Company．N．M．Osborne，secretary，Peters－ burg，Va．
Atlanta and Charlotte Air－Line Railway．C．J．Foreacre，general manager，At－ lanta，Ga．
Atlanta and West Point Railroad．A．J．Orme，general passenger agent，Atlanta， Ga．

Baltimore and Ohio Railroad Company．G．M．Serpell，master of transportation， Pittsburgh division；C．H．Hudson，superintendent Trans－Ohio division；W．M． Clements，master of transportation．

Boston and New York Air－Line Railroad Company．J．H．Franklin，superintend－ ent，New Haven，Conn．
Boston and Albany Railroad．C．O．Russell，superintendent，Springfield，Mass．
Boston and Providence Railroad Company．A．A．Folsom，superintendent，Bos－ $t^{\text {on，Mass．}}$
Burlington and Missouri River Railroad in Nebraska．A．E．Tonzalin，general man－ ager，Omaha．

Carolina Central Railroad．W．Q．Johnson，general superintendent，Willmington N．C．

LXVIII REPORT OF COMMISSIONER OF FISH AND FISHERIES.

Central Railroad of New Jersey. James Monre, general superintendent and engineer, Elizabeth, N. J.; F. S. Lathrop, receiver.

Central Railroad and Banking Company of Georgia. William Rogers, general superintendent, Savannah, Ga.

Central Pacific Railroad Company. F. H. Goodman, general passenger and ticket agent, San Francisco, Cal.; A. N. Towne, general superintendent.

Central Vermont Railroad Company. J. W. Hobart, general superintendent, Saint Albans, Vt.

Charlotte, Columbia and Augusta Railroad Company. T. M. R. Talcott, general manager; A. Pope, general passenger agent, Richmond, Va.

Cheraw and Darlington, and Cheraw and Salisbury Railroads. J. F. Divine, general superintendent; A. Pope, general passenger agent, Richmond, Va.

Chesapeake and Ohio Railway Company. William S. Dann, engineer and superintendent, Richmond, Va.
Chicago, Rock Island and Pacific Railroad Company. A. Kimball, general superinrendent, Davenport, Iowa.

Chicago and Alton Railroad. J. C. McMullin, general manager, Chicago, Ill.
Chicago, Saint Lonis and New Orleans Railroad Company. W. H. Osborn, president;
J. C. Clarke, vice-president and general manager, New York.

Chicago and Northwestern Railway. M. Hughitt, general manager ; Chicago, 111.
Chicago, Burlington and Quincy Railroad Company. T. J. Potter, general manager, Chicago, Ill.
Chicago, Milwaukee and Saint Paul Railway Company. W. C. Van Horne, general supernt endent, Milwankee, Wis.
Chicago, Saint Panl, Minneapolis and Omaha Railroad, North Wisconsin Railroad. E. W. Winter, general saperintendent, Saint Paul, Minn.

Cincinnati, Hamilton and Dayton; Dayton and Michigan; Cincinnati, Hamilton and Iudianapolis; and Cincinnati, Richmond and Chicago Railroads. L. Williams, general manager, Cincinnati, Ohio.
Cincinnati Sonthern Railway. S. Woodward, superintendent, Cincinnati, Ohio.
Cincinnati, Sandusky and Cleveland Railroad. D. W. C. Brown, general manager and superintendent, Springfield, Ohio.

Cleveland, Columbus, Cincinnati and Indianapolis Railway Company. E. B. Thomas, general manager, Cleveland, Ohio.

Cleveland, Mount Vernon and Columbus Railroad Company. G. A. Jones, receiver, Mount Vernon, Ohio.

Columbia and Greenville Railroad. T. M. R. Talcott, general manager; A. Pope, general passenger agent, Richmond, Va.
Connecticut River Railroad. J. Mulligan, superintendent, Springfield, Mass.
Delaware and Chesapeake Railway. O. S. Sanford, superintendent, Easton, Md.
Delaware, Lackawanua and Western Railroad. Samuel Sloan, president, Now Zork.

East Tennessee, Virginia and Georgia Railroad. John F. O'Brien, chief engineer and superintendent, Knoxville, Tenn.

European and North American Railroad. F. W. Cram, saperintendent, Bangor, Me .

Fitchburg Railroad Company. John Adams, general saperintendent, Boston, Mass.
Flint and Pere Marquette Railway. Sanford Keeler, saperintendent, East Saginaw, Mich.

Florida Central Railroad Company. W. M. Davidson, superintendent, Jacksonville, Fla.
Fort Wayne and Jackson Railroad Company. M. D. Woodford, general superintondent, Jackson, Mich.

Galveston, Harrisburg and San Antonio Railroad Company. James Converse, general saperintendent.

Galveston, Houston and Henderson Railroad. W. H. Harding, general manager, Galveston, Tex.

Georgia Railroad Company. E. R. Dorsey, general freight and passenger agent, Augusta, Ga.

Gulf, Western Texas and Pacific Railroad. M. D. Monserrate, general superintendent, Cuero, Tex.

Hannibal and Saint Joseph Railroad Company. W. R. Woodward, superintendent, Hannibal, Mo.

Hartford and Connecticnt Valley Railroad Company. Samael Babcock, president, Hartford, Conn.

Houston and Texas Central Railroad. G. Jordan, vice-president, Honston, Tex.
Indianapolis and Saint Louis Railroad Company. E. B. McClure, general superintendent, Indianapolis, Ind.

Illinois Central Railroad Company. Joseph F. Tucker, traffic manager, Chicago, III.

Internatioual and Great Northern Railroad. H. M. Hoxie, vice-president and manager, Palestine, Tex.
Jacksonville, Pensacola and Mobile Railroad. Edgar Vliet, master of transportation, Tallahassee, Fla.

Kansas City, Fort Scott and Gulf Railroad; Short Creek and Joplin Railroad; Fort Scott, Southeastern and Memphis Railroad; Rich Hill Railroad; Memphis, Kansas and Colorado Railroad; Springfield and Western Missouri Railroad; Kansas City, Lawrence and Southern Railroad, Southern Kansas and Western Railroad. L. W. Torne, general superintendent, Kansas City, Mo.

Kansas City, Saint Joseph and Council Bluffs Railroad Company. I. F. Barnard, general superintendent, Saint Joseph, Mo.

Keokuk and Saint Louis Line. H. B. Blood, general freight and passenger agent, A. L. Griffin, general superintendent, Keokuk, Iowa.

Lake Shore and Michigan Southern Railroad. Charles Paine, general superintendent, Cleveland, Ohio.

Little Rock and Fort Smith Railway. Theodore Hartman, general superintendent, Little Rock, Ark.

Louisville, Cincinnati and Lexington Railway Company. William Mahl, general superintendent, Louisville, Ky.

Louisville and Nashville Railroad. D. W. C. Rowland, general superintendent, Louisville, Ky.

Montgomery and Eufaula Railroad. William Rogers, general saperintendent, Montgomery, Ala.

Macon and Brunswick Railroad. J. M. Edwards, saperintendent and general manager, Macon, Ga.

Marietta and Cincinnati Railroad. J. H. Stewart, saperintendent, Cincinnati, Ohio.

Memphis and Little Rock Railroad. W. E. Smith, general manager, Little Rock, Ark.

Memphis and Charleston Railroad Company. John A. Grant, general superintendent, Memphis, Tenn.

Missouri Pacific Railway. A. A. Talmage, general superintendent, Saint Louis, Mo.

Mississippi and Tennessee Railroad. M. Burke, general superintendent, Memphis, Tenn.

Mobile and Ohio Railroad. A. L. Rives, general manager, Mobile, Ala.
Morgan's Louisiana and Texas Railroad. Charles A. Whitney and Co., managers, New Orleans, La.

Nashville, Chattanooga and Saint Louis Railway. J. W. Thomas, general superintendent, Nashiville, Teun.

New York, Lake Erie and Western Railroad. E. S. Bowen, general superintendent, New York.
New York and New England Railroad Company. A. C. Kendall, general passenger agent; O. M. Shepard, superintendent of transportation, Boston; J. H. Wilson, vice president.
New York, New Haven and Hartford Railroad Company. E. M. Reed, vice-president, New York.
New York, Pennsylvania and Ohio Railroad. P. D. Cooper, general superintendent, Cleveland, Ohio.
Northern Central Railway Company; Baltimore and Potomac Railroad; and Alexandria and Fredericksburgh Railway. L. P. Farmer, general passenger agent, Philadelphia, Pa.
Northeastern Railroad of Georgia. Lyman Wells, superintendent, Athens, Ga.
Ohio and Mississippi Railway Company. W. W. Peabody, general superintendent, Cincinnati, Ohio.
Old Colony Railroad Company. J. R. Kendrick, superintendent, Boston, Mass.
Pennsylvania Company. J. D. Layng, general manager, Pittsburgh, Pa.
Pennsylvania Railroad Company. L. P. Farmer, general passenger agent, Philadelphia, Pa.

Petersburg Railroad Company; R. G. Pegram, receiver, Petersburg, Va.
Pittsburgh, Cincinnati and Saint Louis Railway Company. D. W. Caldwell, general manager, Columbus, Ohio.
Philadelphia, Wilmington and Baltimore Railroad. H. F. Kenny, superintendent, Philadelphia, Pa.

Richmond and Danville Railroad. T. M. R. Talcott, general manager ; A. Pope, general passenger agent, Richmond, Va.

Richmond and Petersburg Railroad Company. Theo. D. Kline, general saperintendent, Richmond, Va.

Richmond, Fredericksburg and Potomac Railroad Company. E. T. D. Myers, general superintendent, Richmond, Va.

Savannah, Griffin and North Alabama Railroad. William Rogers, general superintendent, Savannah, Ga.

Savannah and Memphis Railroad Company. W. C. Fowler, cashier, Opelika, Ala.
Savannah and Charleston Railroad Company. C. S. Gadsden, engineer and superintendent, Charleston, S. C.

Savannah, Florida and Western Railway Company. H. S. Haines, general manager, Savannah, Ga.

Seaboard and Roanoke Railroad Company ; Raleigh and Gaston Railroad Company ; Raleigh and Augusta Air Line Railroad Company ; Baltimore Steam Packet Company; Albemarle Steam Navigation Company. John M. Robinson, president, Baltimore, Md.

Selma, Rome and Dalton Railroad. John F. O'Brien, superintendent, Selma, Ala. Southwestern Railroad of Georgia. William Rogers, superintendent, Macon, Ga.
South Carolina Railroad. John B. Peck, general superintendent, Charleston, S. C.
Saint Louis and San Francisco Railway. C. W. Rogers, general manager, Saint Louis, Mo.

Saint Louis, Iron Mountain and Southern Railway. A. W. Soper, general superintendent, Saint Louis, Mo.

Saint Paul, Minneapolis and Manitoba Railway. James J. Hill, general manager, Saint Paul, Minn.

Texas and Pacific Railway Company. George Noble, general superintendent, Marshall, Tex.

Texas and New Orleans Railroad. J. F. Crosby, vice-president and general manager, Houston, Tex.

Union Pacific Railway. Thomas L. Kimball, assistant general manager, Omaha.

Vandalia Line; Terre Haute and Indianapolis Railroad Company. D. W. Caldwell, general manager, Saint Louis, Mo.

Vicksburg and Meridian Railroad Company. E. F. Raworth, general superintendent, Vicksburg, Miss.

Wabash, Saint Louis and Pacific Railway. John C. Gault, general manager, Saint Louis, Mo.

Washington City, Virginia Midland and Great Southern Railroad. Peyton Randolph, general superintendent, Alexandria, Va.; John S. Barbour, receiver.

Western and Atlantic Railroad Company. William MacRae, general manager, Atlanta, Ga.

Western North Carolina Railroad. James W. Wilson, president, Morganton, N. C.
Western Railroad of Alabama. Cecil Gabbett, general manager, Montgomery, Ala.
West Jersey Railroad Company, passenger department. L. P. Farmer, general passenger agent, Philadelphia, Pa.

Western Maryland Railroad Company. J. M. Hood, general manager, Baltimore, Md.

Wilmington and Weldon, and Wilmington, Columbia and Augusta Railroads. A. Pope, general passenger agent, Wilmington, N. C.; John F. Divine, general superintendent.

Wisconsin Central Railroad Company. F. N. Finney, general manager, Milwausee, Wis.

A

APPENDIX A.

GENERAL.

I. - REPORT' ON THE CONSTRUCTION AND WORL IN 1880 OF THE FISH COMMISSION STEAMER FISH-HAWK.

By Lieutenant Z. L. Tanner, U. S. N., Commanding.

The U.S. S. Speedwell was put out of commission at meridian October $\because 1,1879$, and I received orders on the same day to report to Prof. S. I'. Baird, United States Commissioner of Fish and Fisheries, for duty commerted with the construction of the steamer Fish Uawk building at the establishment of the Pusey aud Jones Company, Wilmington, Del. The ressel was designed by Charles W. Copeland, consulting engineer of the light House Board, and coustructed under the supervision of the board.

1 arived at Wilmington on the 29 th and fomed the iron hull practically completed aud a portion of the wooden sheathing on. The wood-work was well advanced above the main deck, and lumber for the joiner's work dressed and prepared for putting up.

The engines were approaching completion, the boiler well advanced, and at high water, December 13 , the ressel was successfully launched. The trial trip took place February 19, 1880, with the following results :

Course-Down the Delaware River from month of Christiana Creek and return.

Duration of trial	6 hours.
Total distance	54.9 knots.
Average speed per hou	9.15 knots.
Pitch of screw	12 feet 3 inches.
Arerage revolutions pe	89.7\%.
A rerage revolutions pe	574.2.
Arerage slip, per cent	15.6.
A rerage steam	28 pounds.
Average vacuum.	21 inches.
Ship's draft forward	5 feet 9 inches.
Ship's draft aft	7 feet 2 inches.
Mean draft.	6 feet 51 inches

The engines were not stopped nor the throttle-valve moved during the trial, everything working satisfactorily, and thongh the contract ralled for a sea trial of twelve hours, it was not considered necessary to extend it to that time.

Cadet Engincer William B. Boggs was ordered to special luty in counection with the construction of machinery about the middle of Derember, 1879 , and has been on duty since that time.

The buiders completed their contract Febrinay 2.3 . lso 0 , and the
ship was turned over to the commission, but remained at the works awaiting her outfit. This depended upon a deficiency appropriation not yet passed, and which did not, in fact, become available until June 2.

I received orders from the Navy Department to assume command of the vessel on the 12th of March, 1880, and reported to Professor Baird for that duty on the above date.

The months of June and July were occupied in procuring the vessel's outfit and in the construction of her fish-hatching machinery.

Mate James A. Smith was ordered to report as executive officer, and Assistant Engineer William B. Boggs in charge of engines, on the 4th of June. Passed Assistant Paymaster George H. Read was ordered to the ship June 12, and Dr. F. C. Van Vliet joined the vessel on June 14, as medical officer.

The general description of the vessel is as follows (see Plate):
Feet. In.
Length from rabbet to rabbet on 7 feet water-line............. $146 \quad 6$
Length over all .. . 156 . 6
Breadth of beam moulded... . . . 2700
Depth of hold amidships .. 10 . 9
Shear forward 44
Shear aft ... 19
The ressel's rig is a fore-and-aft schooner with pole topmasts.
The hull below the main deck is of iron, built on Lloyd's rules for vessels of her class, and sheathed with yellow pine, from 21 to 3 inches in thickness, calked and coppered. Above the main deck the structure is of wood. She has a promenade deck extending from stem to stern, and from side to side, covered with canvas, on which are located the pilot house, captain's quarters, and laboratory.

There are five iron bulk-heads: the collision bulk-head about 20 feet from the stem, No. 2 forward of the boiler, No. 3 between the boiler and engines, No. 4 abaft the engines, and No. 5 about 9 feet from the stern rabbet, all water-tight except No. 3 .

In the hold forward of the collision bulk-head, on a platform raised about 5 feet above the keelson, is the boatswain's store-room. Abaft the bulk-head, extending aft about 10 feet, are the ice-houses, one our each side of a central passage 3 feet in width. The bulk-heads are double, with an air space of 4 inches, which is filled with sawdust, the whole interior lined with sheet tin soldered and well secured, and a lead drain-pipe in the after outboard corner of each. They have two entrances, one through a door in the central passage and another through a scuttle in the main deck.

The chain-lockers are under the ice-houses and extend across the hold, a bulk-liead amidships separating the starboard from the port chain. They are entered through a scuttle in the central passage above mentioned.

Abaft the houses are six store-rooms, three on each side, on an extension of the floor platform, with a central passage 4 feet 3 inches in width. The laboratory store-rooms are forward, one on each side, 4 feet wide fore and aft, with shelves for the reception of specimens. Abaft this, on the port side, is the navigation and equipment store-room, 9 feet 4 inches fore and aft, and abaft this the sail-room, 4 feet wide. On the starboard side, abaft the laboratory store-room, is the paymaster"s store-room, 9 feet 4 inches wide, and abaft this the bread-room, 4 feet in width, lined with sheet tin.

Next aft is the steerage, extending 15 feet fore and aft. There is a state-room in the after end, on each side, two bunks in the starboard and one in the port room; forward of the rooms are two open bunks on each side, a pantry on the starboard side forward, aud a wash-stand on the port side.

The rooms are carpeted, and are furnished with bureans, wasl-stands, lamps, \&c.; the steerage country has an oil cloth on the floor, a hanging lamp, extension table, chairs, steam heater, \&c. The entrance is at the forward end, amidships, by a ladder from the main deck.

Fore hold.-Under the steerage and store-rooms, extending 32 feet 6 inches abaft the chain-lockers, is the fore hold. The water-tanks, having a capacity of 800 gallons, are located at the after end, immediately forward of bulk-head No. 2.

Engine department.-Abaft the bulk-head, extending about 45 feet to bulk-head No. 4 , is the space occupied by the boiler, coal-bunkers, fireroom, and engines.

Loner cabin.-Abaft the bulk-head, extending 26 feet, is the lower cabin, having seven open bunks ou a side. The dispensary, wash-stand, and it wardrobe are in the forward end, amidships. The floor is coveren with an oil cloth, and the apartment is furnished with lamps, extension table, chairs, \&e.

Linen-room and pantry.-Abaft the cabin, on the starboard side, is the liuen-room; and on the port side a pantry and store-room, 6 feet 6 iuches in width fore and aft, extending to bulk-head No. 5.

The entrance to the lower cabin is aft, amidships.
Nome-room.-Abaft the bulk-head, in the stern of the vessel, is a cabin store room about 9 feet fore and aft, entered through a scuttle on the main deck.

Forecastle.-On the main-deck forward, extending 31 feet from the stern, is the forecastle, having fourteen bunks arranged in two tiers on the sides and after end.

The paint-locker is in the forward end; and the forward force-pump, windlass, compressors, and riding-bitts are located there. In the deck are the scuttles leading to the boatswain's store-room, the ice-honses aud chain-lockers. The apartment contains two sliding tables, campstools, a swiuging lamp, steam heater, \&c.

There are tro entrances, one through a door on the after end to the
main deck, another by a ladder and booby-hatch to the promenade deck.

Water-closets.-The water-closets are abaft the forecastle on each side of the fore hatch.

Main or hatching deck.-The main or hatching deck extends 47 feet aft from the forecastle. The fore hatch is on the forward part of this deck; the foremast 5 feet abaft the hatch; the steerage companiou way about 2 feet abaft the mast, and the lamp-locker abaft the companion way. The boiler hatch extends about 17 feet forward from the after bulk-head, is about 9 inches above the deck, and on it are placed the donkeypump, distributing-tanks, and, attached to the beams overhead, are the cam-shaft and attachments for working the hatching-beams.
There are three coal-scattles through the main deck on each side of the boiler hatch. A gangway port on each side abreast of the foremast, 6 feet wide, extending from deck to deck, and four swinging ports on each side 4 feet by 3 feet 4 inches, which can be opened or closed at pleasure.

The hatching machinery is located on the main deck each side and formard of the boiler hatch.

Donkey-boiler room.-There is a sliding door in the starboard side of the after main deck bulk-head, communicating with the donkey-boiler room, which extends 13 feet aft from the main deck.

The donkey boiler stands ou the starboard side forward; the steam chimney amidships, and the galley, 8 feet 6 inches by 7 feet 6 inches, on the port side. The galley door is in the after bulk-head; there is a window on the side, and auother forward, in the main-deck bulk-head. The floor is of brick laid in cement.

There is a cooking-range, coal-bunker, fresh-water pump, connecting with the tanks, a sink and ample lockers, shelves, \&e.

The distiller stands on the starboard side of the boiler hatch between the steam chimney and main-deck bulk-head. There is a ventilator, through which ashes are hoisted, in each after corner of the boiler hatch, and the deck between them and the engine-room bulk-head is composed of an iron grating, giving light and air to the fire-room. There is a vertical iron step-ladder attached to the engine-room bulk-head leading from the donkey-boiler room to the fire-room.

Engine-room.-The engine-room extends aft 11 feet from the donkeyboiler room, is 12 feet in width, and occupies the central part of the deck. There are two doors in the forward end opening into the donkey-boiler room; a door on the starboard after end into the cabin, and a stairway on the port after end communicating with the lower engine-room. The engines are worked from the upper engine-room.

Muchinist's room.-The machinist's room is on the starboard side abreast of the engine-room; has a door opening to the donkey-boiler room, a large window in the side, and two bunks. Abaft this is a room (opening into the cabin) used for members of the scientific corps; it has two bunks, also, and a window in the side.

Passage.-There is a passage 2 feet 6 inches in width on the port side of the engine-room leading from the donkey-boiler room to the cabin.

Cabin pantry.-The cabin pantry is on the port side of the above passage, 11 feet fore and aft, and about 5 feet wide; there are two large windows on the side; a door opening into the passage; shelves; lockers; racks, and other necessary appliances for a pantry on ship board.

Cabin.-The cabin is abaft the engine-room, 30 feet in length, has four rooms on a side with one bunk in each. Aft on the starboard side is the Commissioner's office. The lower cabin companion way is amidships, and a bath room and closet on the port side. Between the latter and lower cabin companion way is a passage 2 feet 4 inches in width, leading from the cabin to the bath-room and after deck.

After deck:-The after deck above mentioned is 14 feet in length and extends to the stern. The sides are open above the main rail. The spare tiller and relieving tackles are on this deck. The cabin storeroom scuttle is forward of the rudder ; the entrance to the Commissioner's oftice on the starboard side ; the lower cabin companion way amidships; the entrance to the cabin passage on the port side, and just abaft the rudder the after force-pump.

Promenade deck.-On the promenade deck, forward of the foremast, are the anchors, forward force-pump, windlass brakes, capstan, forecastle booby-hatch, fore hatch, hoisting and reeling engine, and the dredging boom, its heel attached to the foremast.

Abaft the mast is a booby-hatch covering the entrance to the main deck, and abaft that the pilot-house and captain's quarters.

Pilot-house-The pilot-house is 8 feet in length fore and aft, 10 feet in width, and has an elliptical frout. The glass windows and renetian blinds are hung with weights, and all metal work about it, or used in its construction, is brass.

There is a liquid steeriug compass on the port side forward of the wheel; a sofa, sigual-locker, and convenient receptacles for fire-works and flags on the after end. The floor is covered with lignum and ash gratiugs. The necessary bells, speaking and sounding tubes, and whistlerope are in their appropriate places.

The pilot-house is raised 26 inches above the eaptain's quarters; has a door on each side, the upper portion set with glass. There are also windors in the after end, giving an mobstructed riew fore and att, and a door on the starboard side communicating with the captain's room.

Captain's room.-The captain's room is in the deck-house, abaft the pilot-house, 9 feet 10 inches in length, fore and aft, 12 feet in width, 7 feet high, and has a sky-light 2 feet 6 inches by 3 feet 3 inches. There is a door and window on each side; a door opening into the pilot-honse in the forward end and one into the bath-room aft. There is a folding bed, a sofa, writing-desk, marble-topped burean, and book-case of black waluut. There are also drawers for charts, clothing, \&e.

Bath-room.-The captain's bath-room, 6 feet 10 inches long and 4 feet 10 inches wide, is on the starboard side of the deck-house, abaft the captain's room, and communicates with it. A door on the starboard side opens on the promenade deck. The room has two windows, one on the starboard side and one in the after end ; a bath-tub, wash-stand, mirror, \&c.
There is a state-room on the port side of the deck-house, abaft the captain's room, 6 feet 10 inches in length, 7 feet wide; the sky-light extending orer it. A door communicates with the bath-room, and another, on the port side, with the promenade deck. There is a window on the port side and one aft; a folding bed, a secretary-bureau, washstand, lamp, mirror, steam heater, \&c., in the room. The funnel is about 2 feet abaft the deck-house, the engine-room sky-light abaft the funnel.

The laboratory.-The laboratory, 10 feet 7 inches in length, 9 feet 11 inches wide, and 7 feet 3 inches high, is abaft the engine-room sky-light, and covers the entrance to the cabin. It has a book-case, work-table, specimen case, box for microscope, and the necessary shelves and drawers. There are two windows on each side, two in the forward end, and one aft. The door is in the after end.

Abaft the laboratory is the maimmast, cabin skylight, standard compass, rudder head, tiller, \&c.

Steering gear.-The steering gear consists of an iron tiller, secured to the rudder head on the promenade deck, with chains extending through sheares on each quarter. Iron wire wheel ropes are led over swall rollers on each side of the promenade deck, the after ends secured to chains and the forward ends to the after block of the sliding purchase, which consists of two single blocks, the fall leading over the barrel ot the wheel in the pilot-house.

Spars.-The vessel is schooner rigged, the foremast 49 feet in length above deck and 17 inches in diameter; mainmast 46 feet, and 14 inches in diameter; the poles 15 feet in length, the masts and poles in one stick. The fore-gaff 23 feet, and main-gaff $18 \frac{1}{2}$ feet in length, diameter 5 inches, main-boom 38 feet long and 8 inches in diameter.

Sails.-There are three sails, fore stay-sail, foresail, and mainsail, all of cotton canvas; the stay-sail of No. 2 , the foresail and mainsail of No. 3.

Anchors and chains.-There are three anchors, the largest weighing 1,525 pounds, including the stock; one 846 pounds, and one 307 pounds, stocks included. Two chain cables, one ninety fathoms $1 \frac{1}{8}$ inches, the other 75 fathoms $\frac{15}{16}$ iuch in diameter.

Boats.-The ressel has four boats; 1st, a steam cutter built by the Herreshoff Manufacturing Company, Bristol, R. I., 24 feet in length, 6 feet 9 inches beam and 3 feet 6 inches depth; weight, 2,900 pounds; capacity of coal bunkers, 560 pounds, sufficient for 28 hours' steaming at 6 knots per hour; a fresh-water tank holding 40 gallons of water, enough
for six days' steaming; she has a keel condenser which receives the discharge from the cylinder and escape valve.

Both hull and machinery are constructed of the best material. Steam is raised in a few minutes, and when under banked fires requires no attention. She is an excellent sea-boat aud has been of great service to this ship.

2d. A ten-oared cutter 24 feet 6 inches in length.
3d. A gig 26 feet 5 inches in length.
4th. A dingy 17 feet 6 inches in length.
She has also severial that-bottomed boats 18 feet in length, used for spawn taking.

Awnings and stanchions.-The promenade deck is covered with awnings fore and aft, supported by turned wooden stanchions.

ENGINES AND MACHINERY.

General deseription.-There are two propelling-screws, right and left handed, one under each counter; each screw driven by one inverted ceylinder surface-condensing engine, 22 -inch diameter of cylinder, and 27 -inch stroke of piston. The two engines are fitted on one bed-plate; the surface condenser, common to both, is located between the engines and forms a part of the framing for them.

The center of the cylinder is about $49 \frac{1}{2}$ feet forward of the stern-post; the distance between the shafts being about 8 feet 8 inches. The engines are inclined towards the ceuter line of the vessel, the cylinders at the upper end being about 36 inches from center to center athwartships. There is one overhead return-flue boiler $8 \frac{1}{2}$ feet diameter of waist and 21 feet in length, with steam chimney 6 feet 2 inches diameter outside and 10뤌 feet high.

The water of condensation is supplied by an independent steam pump.
The valre-chests are on the forward side of the cylinders, main ralres working by a link motion, the cut-off valve working on a separate face. within the main steam chest and operating by a link, one end of which is connected to an eccentric and the other to a concentric disk on thr main slaft.

The air-pumps are tronk-phunger pumps, driven by cranks on forward end of main shafts; the feed-pumps are driven from the same motion. The bilge-pump is independent.

Cylinders are 22 inches diameterand 27 inches stroke of piston; steam openings 2 inches wide by 14 inches in length; exhaust openings $3 \pm \frac{2}{2}$ inches wide by 14 inches in length. All necessary lugs, flanges, nozzles, aml lower cylinder head are cast with the eylinder, and all flanges facent. The lower ends are fitted with a small bonnet, with stufting box am! glaud, both bushed with composition; also a composition "water valve" seven-eighth inch diameter, which works either antomaticalls or by hand. Cylinders and steam chests are fitted with the necessary pipes and valves for applying the indicator, and are cased with black walnut staves, secured by brass bands and screws.

Framing.-The main frame for carrying the cylinders is the surface condenser, which is strongly ribbed and bracketed for that purpose, the outboard sides of the cylinders being supported, each by two wrought-iron columns, $2 \frac{1}{4}$ inches diameter, turned and finished. The ends of these columus are fitted to flanges of lower end of cylinders and to bed-plate, each end being fastened by two bolts $1 \frac{1}{8}$ inches diameter.

Steam chests are cast separate, fitted with faced joints and bolted to cylinders, covers planed, finished and fastened with finished bolts and case-hardened nuts. Set screws are fitted to break the joints. The cutoff ralve operates in a separate chest, which is bolted to that of the main valve.

Pass-over ralve.-To each cut-off chest is fitted a screw-valve for a pass-over valve, $2 \frac{1}{2}$ inches diameter. The valve, seat, and stem are of composition, and valve is worked by a hand-wheel in front of chest.

Relief valve.-A composition relief valve of seven-eighths inch diamcter is attached to steam chests and to exhaust connection to condenser.

Slide valves.-The valves are of cast iron, of a different texture from that of the seats and scraped to a bearing surface. The main slide valves are of the ordinary D form ; for steam openings 2 by 14 inches and for exhaust openings $3 \frac{1}{2}$ by 14 inches, and are worked by a "Stephennon" link motion. The link is case-hardened and link block composition. The link is worked by hand, by means of a pinion, quadrant and " tumbling" shaft.
Cut-off valves.-Cut-off valves are of cast iron, of the gridiron pattern, with two openings $1 \frac{1}{4}$ by 13 inches. The valve is operated by a link, one end of which is worked by an eccentric and the other end held in position by a concentric disk on crank-shaft. Steam can be cut off at points from three-fourths to one-fourth the stroke of piston. I'roper haud gear is fitted to alter the point of cut off and to hold the link in position.

Cylinder-heads.-Upper eylinder-heads are ribbed, turned, and finished. Inside of heads are recessed for nuts of piston-rods and for heads of follower-bolts. Wronght-iron eyebolts are fitted for lifting the heads and set-screws for breaking the joints; also a "traveler" for removing them.

Bed-plate.-The bed-plate or frame is of cast iron, in one piece, and extended forward to receive the pumps; is hollow, of the box form of section, $14 \frac{1}{2}$ inches in depth, and has all the necessary passage-ways for water, bosses and nozzles or flanges for pumps, pillow blocks, \&c., and flanges or lugs for bolting in place. All surfaces for flanges, pumps, hand-hold plates, and pipes are planed.

Surface condenser.-The shell is of cast iron 1 inch thick, well ribbed, strongly bracketed, and serves as a frame for the engines. The necessary seating for cylinders and for cross head slides are cast on. All joint surfaces are planed, and suitable bonnets are fitted for access to
interior, to tubes, and to all valves. The condenser is fitted with horizontal yellow metal tubes $\frac{5}{8}$ inch diameter, turned both inside and outside; cast-iron tube sheets $1: 3$ inches thick, planed, and tubes packed with "Allen's" wood packing. Condensing surface is 900 square feet. The tubes are arranged in three nests, and the condensing water passes three times through the tubes. A 31 -inch copper pipe is also fitted to convert this into a jet condenser, if necessary. There is a serew-valve 1.2 inches diameter comnecting the salt with the fresh water, as an additional feed; also a brass cock for introducing soda. A perforated castiron scattering plate is fitted above the tubes, upon which the injection water impinges.

Exhanst connections.- Lxhanst connections fiom the cylinders to the condenser are so arranged as to be independent; one engine exhansting without interfering with the other.
sterm-pipe connections.-The main steam-pipe is a single copper pipe from the boiler, with slip joint and donble poppet throttle-valve operated hy a hand-lever. The pipe branches near the engines, and there is it throttle-valve for each engine, operated independently.

A ir-pumps are horizontal trunk-plunger pumps, one for each engine, and driven by a crank upon the forward end of main shaft. Pumps are 11 inches diameter and 12 inches stroke; lined with composition; trunk, piston, valve-seats, stems, and guads of composition; valves of pure rubber; chests for receiviug and delivery valves cast with the pumps and with convenient openings for access to valves. There is also a guide cast on for slipper side of trunk.

Hot well.-There is a suitable cast-irou hot well, common to both airpumps, with vapor-pipe from top and overflow-pipe to outside of ship, with proper outboard valve. This pipe is of copper, 7 inches diameter, No. 10 wire gange; composition valve $7 \frac{1}{2}$ inches diameter, with composition seat and stem.

Circulating pump is an independent steam-pump, direct acting, of the "Davidson" pattern, $13 \pm$ inches diameter and 13 inches stroke; lined With composition; piston, valve-seats, stems, and guards of same motal; steam ryliuder same diameter as pump; pump-valves of rubber. Outboard delivery pipe is of copper, No. 12 wire gauge, and fitted with outboard valve of composition. To suction-pipe there is a branch leadings to engine-room bilge, with a separate serew-valve and "check" valve to prevent flooding. Screw-valve has an attachment for locking.

Pistons are of cast iron, double shell, ribbed, with cast-iron follower fastened by wrought-iron bolts screwed into brass bushings; follower turned and seraped to rings and piston, and fitted with eye-bolts for lifting. Packing-rings of east iron in two thicknesses, accurately turned and fitted and set out with steel springs.

Piston rods are of mild steel, 23 inches in diameter, and fastened to piston with a nut.

Feed-pumps.-To eadh engine there is fitted a feed-pmmp, worked from
the air-pump motion, 4 inches in diameter aud 12 inches stroke; composition plunger, valves, and seats; also a by-pass valve and air-vessel.

Bilge-pump is an independent steam-pump of the Davidson pattern, valves of rubber, composition seats, guards, and stems, and copper airchamber. This pump has comections throngh a "manifold" to the varions water-tight compartments; also, in the event of breakage of the auxiliary pump, can be used in lieu of that pump, haring the same connections.

Cross-heads are of wrought iron, fimished and fastened to piston-rorl by a nut secured by a "dowel." Journals are 23 inches diaineter and 31 inches long. Cross-heads move upon composition slipper slides working in a cast-iron guide. The bottom slipper has a bearing surface of 80 square inches. Both top and bottom gibs can be readily removed.

Slide-ralve stems are of mild steel; those for main valves are $1 \frac{5}{5}$ inches diameter, and cut-off valves $1 \frac{3}{8}$ inches diameter; stufting loxes and glands are bushed with composition.

Eccentrics and rods.-There are two eccentrics for each main valve. with a "Stephenson" link of wrought iron connected by the proper rods. For each cut-off ralve, there is one eccentric to one end of a link, and the opposite end of the link is held in position by a proper rod in connection with a concentric disk on the crank-shaft. This link is adjusted by a hand-lever working against an are, which is marked for the different pointe of cut-ofi. The straps are of composition, ribbed and "babbitted." Eccentric rods are of wrought irou, and connected to links so as to be adjusted for wear. Links and pins are case-hardened and link-blocks are of composition.

Connecting-rods are of wrought iron, forked at the cross-head end and finished, 5 feet 11 inches long between centers; crank-eud neck 婹 inches diameter and fork-end 23 inches diameter. Boxes for cross-head and crank-pin journals are of composition and secured by wrought-irou straps with gibs and keys; keys secured by steel set-screws.

Hoin pillow-blocks are cast with the bed-plate, and the lower part of the hox is of phosphor-bronze. After journal $6 \frac{1}{2}$ inches by 9 inches in length, forward, 5 inches by 8 incbes; pillow-block caps for after journals are $2 \frac{1}{4}$ inches thick and $7 \frac{1}{2}$ inches in width, and for forward journals $2 \frac{1}{4}$ inches thick and $6 \frac{1}{2}$ inches in width; each cap held by two bolts $2 \frac{1}{3}$ inches diameter ; caps made so as to lip over ends of blocks.

Crank-shafts are of wrought iron, forged in one piece; after journals $6 \frac{1}{2}$ by 9 inches, forward 5 by 18 inches, crank-pin journals $4 \frac{3}{4}$ inches thameter and $6 \frac{1}{2}$ inches in length.

Line-shafts are of wrought iron in three lengths, smallest diameter $6 \frac{1}{4}$ inches; covered with composition-sleeve the length of the stern-bearing. Line-sbatt couplings are of cast irou, turned and fitted and fastened by six bolts $1 \frac{1}{4}$ inches diameter and with a steel feather. Couplings of crank-shaft to line-shaft are a pair of cast-iron wheels. with
wrought-iron driving pins fastened by a cross-key in forward wheel and working free on composition bearing-plates in after wheel. The wheels are 3 feet 4 inches diameter, with mortises on periphery for turning the eugine with a pinch-bar. Thrust-bearing is on forward length of line shafting, and is a collar thrust.

Therust pillow blocks are of cast iron, with phosphor-bronze boxes and collar plates; with set-screws to adjust wear. There is also a fore-andaft fastening to receive forward thrust.

Line-shaft-pillow blocks are of cast-iron, with cast-iron caps, and fitted with phosphor-bronze for lower half of journal.

Screw-propellers are of cast iron, four bladed, 6 feet 8 inches diameter, $12 \frac{1}{4}$ feet mean pitch, and 20 inches in length fore and aft. They are keyed upon shafts by a feather key and cross-kev; ends of shafts fitted with a water-tight composition cap and fastened with composition tap-bolts to after end of hub ; also, composition caps over ends of cross-keys.

Nheft brackets supporting the after end of shafts are placed close to forward side of propellers and are of composition. Section of brackets $1 \frac{1}{4}$ by $6 \frac{1}{2}$ inches; forward and after edges rounded off; feet of brackets $1 \frac{1}{4}$ inches thick, each foot fastened by four composition bolts $1 \frac{3}{8}$ inches diameter, with countersuuk heads and screwed up on plates on inside of ship. The eyes of the brackets are boxed to receive a phosphor-bronze bushing $7 \frac{1}{4}$ inches diameter by $10 \frac{1}{2}$ inches in length, and bushing lined with lignum-vitæ, fastened to brackets with composition tap-bolts.

Stern bearing is of composition, 2 feet 8 inches in length. The outer eud has a large warped Hange, $1 \frac{1}{8}$ inches thick, to fit the counter of the ressel, and the iuner end a loose flange riveted to hull of ship. The inner ends of the stem-bearings project inboard about 10 inches and are fitted with lignum-vite staves. The inboard stuffing-boxes are of composition, riveted to hull of vessel, with a packing space of $8 \frac{1}{2}$ inches, and a loose ring fitting in bottom of packing space; packing held in place by a gland also of composition.

Ser-xalces are screw valves, with composition chambers, valves, stems, and glands. One valve for injection, $4 \frac{1}{2}$ inches diameter, one for circulating pumps, 6 inches diameter, and one for steam pump, 4 inches diameter. Chambers bolted to cast-iron forms, which are riveted to hull of vessel. All sea-valves are fitted with strainers.

Hoisting-engıne. (Plates V and VI.)-There is a hoisting-engine with double cylinders and cranks at right angles to each other; cylinders, 9 inches diameter and 9 nches stroke of piston, placed forward on hurricane deck for "trawling" purposes. The central drum holds the steel wire rope and is independent of the engine proper, connection being made by means of a friction clutch. The load on the drum is held by a friction brake. With the central drum disconnected, the two smaller drums can be used for ordinary hoisting purposes. There is also fitted au automatic guide by means of which the wire rope is neatly coiled upon the drum. Steam from either the main or anxiliary boiler may be
used, and the engine exhausts into the atmosphere through the escape pipe of the main safety-valve. There is a pan of sheet-lead fitted under the engine to receive all dripping oil or water.

Boiler is an overhead, return-flue boiler, $8 \frac{1}{2}$ feet front, $8 . \frac{2}{2}$ feet diameter of waist, and 211 feet in leugth, with water-leg furnaces; two furnaces, 6 feet 8 inches long, by $3 \frac{1}{2}$ feet wide; grate surface, 46.6 square fect; main flues, three of 11 inches diameter, one of 12 inches, and one of 15 inches for each furnace; return flues in two tiers, seven flues of $10 \frac{d}{d}$ inches diameter in each tier. The flues are welded and drawn. All outside seams, seams of steam chimney, and water-legs double riveted. Flat surfices are braced with seven-eighth inch socket-bolts $7 \frac{1}{2}$ inches from center to center. Thickness of circular part of shell is five-sixteenths inch; water-legs three-eighths inch; steam chimney of mild steel five-sixteenths inch. Fire-box and crown-sheets are aiso of mild steel, three-eighths inch thick; heads of shell and flat surfaces three-eighths inch. There are the necessary man-holes and hand-holes and double turnace doors. The boiler has been tested by a hydrostatic pressure of 6.5 pounds per square inch. The legs of the furnace part of the boiler rest upon cast-iron chairs set outside of ash pans, and under the waist. is a cast-iron saddle. The boiler is held in place by turnbuckle bolts. Under the furnaces are cast-iron pans, made in one width, for each furnace; bottom of paus five-eighths inch and one-half inch thick for all tlanges. Ash pans have a long, beveled front flange, projecting 15 iuches - from front of boiler to catch dropping fire and cinders. Grate-bars are of cast irou in two lengths, three-fourths inch thick on face and five-sixteenths inch at lower edge, with five-eighths inch air spaces. Boiler shell and steam chimney are covered with hair felt, and wool backing $1 \frac{1}{2}$ inches thick. Main and all other steam pipes are covered with hair felt \neq inch thick, with canvas backing, and painted.

Boiler attachments.-There are attached to the boiler, one steam stopvalve 7 inches diameter, one safety-valve 6 inches diameter, with connections to engine-room, and copper escape-pipe, 16 feet long; one bottom blow-valve $2 \frac{1}{2}$ inches, one surface blow-valve 2 inches, two check-valves $2 \frac{1}{2}$ inches, and one screw stop-valve, each for auxiliary and circulating pumps. All these valves are of composition, with composition glands and stems ; also four brass gauge-cocks, glass water-gange 15 inches long and salinometer.

Smoke pipe and casing.-The smoke-pipe is 42 inches diameter and 24 feet high, in three lengths of 8 feet each; tlush jointed, $2 \frac{1}{2}$-inch angleiron at top, and band $2 \frac{2}{2}$ by $\frac{3}{8}$ inches at bottom. Pipe is made of iron No. 14 wire gange, and is fitted with a proper damper. There is a casing around lower part of pipe and top of steam-drum, extending abore the hurricane deck $2 \frac{1}{2}$ feet, made of iron No. 12 wire gange, and fastened to deck with angle-iron; casing covered by an umbrella. There are six stays to smoke pipe of wire rope nine-sixteeuths inch in diameter, and secured to deck by eye bolts.

Auxiliary boiler is of the vertical fire tubular type, 48 inches diameter, and 7 feet 8 inches in height, with 106 brass tubes, $2 \frac{1}{4}$ inches outside diameter, and 5 feet 2 inches long. Boiler rests on a cast-iron frame $1 t$ inches in height. Upper end of boiler surrounded by a casing of iron No. 12 wire gange, and secured to deek by $1 \frac{1}{4}$-inch angle-iron, fastened with wood-screws. Smoke-pipe is 18 inches diameter and 18 feet in height.

The boiler was tested to 120 pounds hydrostatic pressure, and is fitted with all the necessary grate-bars, bearers, safety-valve, steam-gauge, gauge-cocks, blow-cocks, !̣nd "check-valres." This boiler can be sup. plied with water either by a Hancock "inspirator" or by the auxiliar: pump, and has the same steam connections as the main boiler. It is situated on the main deck, immediately over the fire-room.

Stect-pump.-There is one fly-wheel steam-pump with water-cylinder, 5 inches diameter and 12 inches stroke, having all the necessary connections to be used as a fire-pump, as a feed to main or auxiliary boilel from either hot-well or the sea, as a bilge-pump, as a circulating pump for Baird's distiller, and to supply hatching tanks. There is a double exhaust comection to either condenser or atmosphere. In case of fire the flow of water can be increased by combining this pump with the independent bilge pump. By means of the proper geariug, this pump works the hatching cylinders on outside of ship. The suction-pipe is comnected with the overflow-pipe from hatching apparatus, so that the same water can be used repeatedly for hatching. There is a connection on the "manifold" for suction-hose of sufficient size to supply both auxiliary and bilge-pumps. All water-pipes are of copper; steam and exhaust pipes of iron.

Miscellaneous.-There is one ash-chute for discharging ashes over side of ship; eight cast-iron deck scuttles on main deck with close corers and gratings; two iron ventilators, 16 inches diameter, to fire-room, with revolving caps, and also used to hoist ashes. The fire room is covered with rough cast-iron floor-plates one-half inch thick, and above fireroom is an open cast-iron grating for ventilation. There are steamheaters in pilot-house, and all habitable portions of the ship are fitted with the proper steam and drain pipes and valves. All heaters drain into " "trap" in fire-room, and a rapor-pipe from top of "trap" leads to escape-pipe from main safety-valve. There are the proper tanks for oil, waste, and tallow. There is a steam-whistle 6 inches diameter of bell with valve where attached to boiler. In the engine-room there are three gongs, one of 12 inches diameter, and two of 8 inches diameter, with "jingle" bell; all arranged with proper wires and pulls to pilot-house; also shield and tube to return sound to pilot-house, and a speaking tube from engine-room to pilot-house.

In the engine-rom there are two $6 \frac{1}{2}$-inch nickel-phated gatuges, one for steam and the other for vacum; two counters, one for each eugine, aml a marine clock. There are the proper oil-cups to all journals; also
proper connections for applying water to journals when necessary. A
"Baird's" distiller is in use, capable of distilling 1,500 gallons of tepid and 800 gallons of potable water per diem.

OUTFIT.
The contract for building the vessel covered only hull and machinery, the outfit being provided from a special appropriation.

Anchors, chains, hawsers, \&c., were loaned by the Bureau of Equipment and Recruiting, Nary Department.

Boats-gig, cutter, and dingy-by the Burreau of Construction and Repair.

Compasses, flags, nantical instruments, books, and chronometer by the Bureau of Navigation.

Small-arms and ammunition by Bureau of Ordnance.
Charts and Atlantic Coast Pilot were furnished by the United States Coast and Geodetic Surver.

The rarious articles of outfit were procured by open purchase at reasouable prices and have given general satisfaction.

FISH-HATCHING MACHINERY.

The fish-hatching machinery was constructed by the Pusey \& Jones Company under special contract, and consists of a Woodward steampump with water cylinder, 5 inches diameter and 12 inch stroke, capable of supplying 10,000 gallons of water per hour.

Two iron distributing tanks with a capacity of 500 gallous each are phaced forward of the pump on the boiler hatch and raised 3 feet 4 inches above the deck. (Plate II.)

There is a water connection and proper calves between the pump and tanks, with overflow and draiu pipes connecting with the general delivery for hatching machinery. There is also an arrangement of valves by which the water can be pumped back into the tauks and used as often as desired instead of discharging it overboard.

HATCHING CONES.

The number of hatching cones on board at present is thirty-six, capable of hatching $7,200,000$ shad at a time, or 200,000 each when charged to their full capacity.

The number of cones can be increased about one-third in case of necessity. The material of which they are made is copper, tinned inside, and the mountings are of brass. Their arrangement on the port side of deck will be seen by reference to the Plate. They are in sets of 4 and 6 to each frame and are hung on gimbals which permit a free motion in every direction, maintaining a vertical position even when the vessel is in violent motion.

In artificial fish hatching it is necessary to maintain a constant and
carefully graduated flow of fresh water through the vessels in which the eggs are placed for development. In the early days of this industry shad eggs were hatched in floating boxes with ganze bottoms anchored in a tide way or current which effected the necessary change of water, but they were subject to various accidents beyond the control of those having the operations in charge. A sudden squall might capsize them, a gale of wind break them from their moorings, or drift-wood carry them away, the entire charge of eggs being liable to loss or serions damage in either case.

Varions sther methods have been used with good results, but for service on shipboard, uuder all conditions of wind and weather, the cone -id thus far the most perfect appliance for hatching non-adhesive eggs, with greater specific gravity than the water in which they are developed.

To prepare for shad hatching with cones, water is pumped into the distributing tanks, which have independent connections for each set of cone frames through which the water flows by gravity into the upper or feed-pipes, where, at proper intervals, small feed-ralves are tapped in and connected to the base of the cones by a flexible hose. The feedvalves being opened, a stream of water is admitted at the bottom, rapidly filling them till near the top, where a fine wire gauze rim is encountered. Through this the water finds an outlet to the discharge connections, thence to the waste pipes at the bottom of the frames, and into the general delivery; thus establishing a steady and constant upward current.

From 100,000 to 200,000 impregnated eggs are placed in each cone and the current regulated by the feed-valves so as to give them a gentle movement, just sufficient to prevent "matting," or settling to the bottom in a mass, where they would soon become asphyxiated. The dead eggs being lighter soon accumulate at the surface, and are removed with a skimmer, sediment and other impurities being cleared from the gauze rims to allow an unobstructed flow of waste water to the discharge-pipes.

Development takes place rapidly, and the embryo is hatched in from two and a half to five days, according to the temperature of the water.

HATCHING CYLINDERS.

There are in addition to the cones eighteen hatching cylinders, which are suspended, nine on each side, from beams outside of the vessel and operated by a cam motion imparting a vertical movement of about 8 inches. (See Plate III.) They have wire-ganze bottoms, and both solid and wire-gauze covers, the former used when the cylinders are converted into transporting cans, the latter in stormy weather. The cylinders are made of heary tin and the mountings are brass.

To prepare for shad hatching they are suspended from the beam, as shown in Plate III, in such a manner that the bottoms will be constantly submerged ; from 250,000 to 300,000 impregnated eggs are placed in S. Mis. $110-2$
each cylinder and the cam moticn put in operation, which gives them a very gentle ascent, occupying about three-quarters of the revolution; the descent, being accomplished during the remaining fourth of the revolution, is made more rapid, causing the eggs to rise from the bottom and circulate freely through the water at every downward movement.
The cylinders require but little attention during the hatching process, aud, in moderately smooth weather, are undoubtedly equal, if not superior, to all other appliances for shad hatching. They can also be made a a ailable for the development of all non-adhesive eggs, no matter what their specific gravity, as the requisite motiou can be attained by simply modifying the form of cam.

Plate IV shows some of the apparatus used by the United States Commission in fish hatching: the spawn pans of marbleized iron in which the eggs are placed for impregnation; the spawn pail in which the impreguated eggs are placed for transportation to the hatching establishment; the dipper in which all eggs are measured when received on board, and the hatching cone, with goose-neck unscrewed; the three kinds of cylinders used, the large one with the solid tin body, a smaller one with a combinatiou body of copper and wire ganze, and a third with ganze body.

Between the cylinders stands a fumel, with fine wire-ganze bottom, used for siphoning water from hatching cones without removing eggs or young fish.

DREDGING MACHINERY.

The hoisting and reeling engine, the main features of which are given in the general description of machinery, stands on the promenade deck immediately forward of the foremast, as shown in the plates V and VI .

The drum, or reel, holding a thousand fathoms of steel-wire dredge rope, three-eighths inch in diameter, is carried on the main shaft of the engine and driven by friction gear. An automatic guide lays the rope fairly on the reel when hearing in. One man attends the engine, hoisting and lowering the trawl and dredge without the necessity of tonching the rope by hand.

The dredging beam is 36 feet in length and 10 inches in diameter, the heel secured to the foremast by a strong goose-neck 5 feet above the deck. The forward end, when not in use, rests in a cradle on an iron frame in which the ship's bell is suspended.

There is an iron band at the boom end for fore-and-aft guys; the topping lift band is about 3 feet from the end, and has a strong link on the under side, to which is hooked the dredging block. The topping lift is composed of two 14 -inch donble blocks and a 4 -inch manila rope. The upper block is shackled to an iron collar on the foremast 3 feet below the ejes of the rigging. There is a strong sheave in the boom inside of the lower topping-lift block, over which is rove the pendant of a tackle used for hoisting the bag of the trawl on board when the weight is too great to be managed by hand.

A composition sheave (Plate VI) is inserted in the heel of the boom, two revolutions of which are equal to one fathom of dredge rope, and attached to its shaft is a register which accurately records the amount of rope out at all times.

SAFETY-IIOOKS.

The safety-hooks (Plate VII) are designed for the purpose of detaching the trawl when from any cause, such as fouling a rock, or wreck, the tension on the dredge rope reaches the limit of safety. It can be adjusted to detach at auy point between 3,000 and 6,000 pounds by the nut on the end of the central rod. In practice we have set it to 4,000 pounds, the breaking strain of the dredge rope being 8,700 pounds. The spring and hooks being placed in the cylinder and the cap screwed on, it is ready for use.
The end of the dredge rope is spliced into the eye and the trawl shackled to the hooks, which are held in position by their shoulders pressing against the inner surface of the cylinder (Plate VIII.)

The spring is compressed as the tension increases till, the limit of safety being reached, the shoulders are released and the hooks open freely, allowing the shackle pin to slip through, detaching the trawl and relieving the rope from undue strain.
The accumulator (Plate VIII) is designed to prevent jerking strains on the dredge rope due to motion of the vessel in a sea-way, or working over a rough bottom. It is copied from that used on board the CoastSurrey steamer Blake, with slight modifications. It answers its purpose admirably and is au almost indispensable adjunct when steel-wire rope is used.

The side rods and central shaft are of steel, the ends of wrought iron. Twenty-six rubber buffers, with a brass washer between each, are placed on the central shaft under considerable pressure and secured by a nut on the upper end. A swivel link at the lower extremity carries a leading block.
The hubs of the brass washers are extended on each side, forming at collar over which the rubber buffers ride free from contact with the central shaft. This feature, introduced by Lieutenant-Commander Sigsbee, U. S. N., placed the present form of accumulator far ahead of all others for our purposes.

DREDGING BLOCKS.

The dredging block at the boom end and that seen hooked to the accumulator (Plate VIII) are all that are used. They, also, are copied from those of the Blake, except that the diameter of sheave is reduced from 18 inches to 12 inches, making the blocks much lighter.

STEEL-WIRE DREDGE ROPE.
This excellent rope was made by the John A. Roebling's Sons' Company, Trenton, N. J. It is one and one eighth inch in circumference,
composed of six strands laid around a hemp heart, each strand composed of seven galvanized steel wires (No. 19 American gauge) having no hemp heart.

Sigsbee-" Deep-sea dredging and trawling"- gives the ultimate strength of the rope as 8,750 pounds, and the breaking strain, in kinks, 4,500 pounds; weight, 1.14 pounds per fathom in air, or about one pound in sea-water.

PREPARATION FOR DREDGING.

The rope being on the reel the end is passed between the rollers of the automatic guide (Plate V), carried aloft and rove through the block on the lower end of the accumulator (Plate IX), brought down again and rove under the registering sheave in the heal of the boom, thence through the dredging block at the boom end, and spliced into the eye of the safety-hooks.

The boom is then topped up and secured over the side port by strong fore-and-aft guys, the trawl shackled to the safety-hooks and swayed up clear of the rail, a man at each end to steady it, an engineer at the hoisting engine, and the officer in charge, as shown in Plate IX, ready at the order to lower away.

TRAWLS.

The beam trawl, shown in Plate IX, is used by the Commission, and, for moderate depths, has not been equaled by any other form. Three sizes are used, the smallest with 9 feet length of beam, the second with 11 feet, and the third 17 feet, the length of net from 15 feet to 40 feet. The trawl nets are invariably provided with pockets.

The Otter trawl has been used to advantage in shoal water, over smooth bottom, when the capture of fish was the special object.

It is necessary for the successful operation of the beam trawl that it should land right side up. A capsize in moderate depths is rare, but in deep water it may be considered as among the probabilities.

To avoid the vexatious delays attending accidents of this nature, Professor Agassiz and the officers of the Blake devised a double trawl which works equally well either side up and was subsequently used on board that vessel with excellent results. It has also been used experimentally by the ressels of the Commission, but they have not heretofore operated in sufficient depths to make it a necessity.

DREDGES.

The common form of deep-sea dredge is used by the Commission, with excellent results on sandy bottoms. The form designed by the officers of the Blake, and used successfully on board that vessel, is adapted for rery soft bottoms usually encountered at great depths.

THE CHESTER RAKE DREDGE.
This arrangement of a double rake to be used in connection with a dredge of any form is shown in Plate X and is very useful in bringing
to the surface mollusks and various other forms living a few inches under the mud or sand of the bottom.

The Blake dredge is usually preferred for use with the rake as it skims over the bottom lightly, picking up what has been turned up by the rake without overloading itself with mud.

THE TANGLE BAR.

The form of tangle bar used by the Commission was devised by Prof. A. E. Verrill in 1873, and consists of an iron bar supported at each end by a fixed wheel, or iron hoop. Six chains are attached to the bar at intervals of one foot, and they are about 12 feet in length. To these chains are secured deck swabs or bundles of rope yarn at intervals of about 18 inches. The apparatus is shown in Plate \mathbf{X}, partially suspended under the main boom. It is very useful on rocky bottoms where it will capture specimens when no other device could be made available.

THE TABLE SIEVE.

Plate XI shows the table sieve, as used by the Commission. The hopper, with its coarse wire-gauze bottom, is seen in the foreground, then the fine wire-gauze tray which rests beneath it, and finally the table itself with its canvas bottom and hose from which the waste-water is conducted to the scupper. This device is peculiar to the United States Fish Commission, and has probably contributed as much towards its success in deep-sea exploration as any single implement used. To prepare the table sieve for service, the tray is placed in position, then the hopper when it will assume the form shown in Plate XII. The contents of the trawl (a mixture of mud and various forms of marine life) being emptied into the latter, a stream of water is turned upon the mass and the work of collection and assortmeut commences. The larger forms are taken from the hopper, the smaller ones from the tray, while the more minute and delicate specimens are found on the canvas bottom.

THE CRADLE SIEVE.
The cradle sieve is designed to receive the contents of the dredge, as the table sieve does that of the trawl. It is semicircular in form, as shown in Plate XI; the bottom and sides being composed of a coarse wire-ganze, lined with the same material, but very fine; the tray or hopper has also a coarse gauze bottom.

To prepare the cradle sieve for use, the hopper is placed in position and the sieve hung over the side, abreast of the dredging port. The contents of the dredge being emptied into it, a stream of water, strong or light as desired, is turned on as with the table sieve, the collection and assortment being carried on in a similar manner.

DREDGING ARRANGEMENTS, MAIN DECK.

Plate XII shows a portion of the starboard side of the main deck as arranged for dredging. The table sieve is seon standing abaft the
dredging port. On the swinging table which has been lowered from the beams overhead is a nest of hand sieves and various sizes of jars, bottles, and vials, used for preserving specimens. Deck tubs, buckets, \&c., are at hand, and a tank of alcohol is secured on the boiler hatch. The side ports are closed in the view, but if more light or air is required they can be opened and secured by iron hooks suspended from the deck beams.

SOUNDINGS AND SERIAL TEMPERATURES.

The vessels of the Commission have heretofore used the ordinary deepsea lead and line for soundings and serial temperatures, and in shoal water it answered their purpose, but in depths exceeding 100 fathoms it consumed much time and required nearly every man of the small crew to haul the lead back.

During the season of 1879 a wooden reel was improvised, on which the lead line was coiled and, by a simple attachment to the fly-wheel of the hoisting engine was hove up rapidly, requiring the services of but two men, one at the engine and one to attend the reel. This was a marked improvement over the old method, but as the work of the Fish Hawk was expected to take her into 300 fathoms or more, it was deemed advisable to substitute piano wire in place of hemp in order still further to facilitate the work of taking soundings and serial temperatures.

sounding machine.

The machine adopted is shown on a small scale in Plate X, where it is mounted at the stern in readiness for casting the lead. The reel is of cast brass 11.43 inches in diameter, and holds 600 fathoms of wire. A friction line, led through a groove common to all sounding reels, controls the motion. The cranks are thrown ont of gear and hang vertically one on each side. The register is on the left of the reel. A small ratchet wheel and pawl hold the reel in place when desired.

On the extremity of the frame is a small groored pulley of brass, working in guides and suspended by a coiled spring which allows several inches vertical play. A brass guard is fitted over the upper portion of the pulley to prevent the wire from flying off if suddenly slacked. The reel is moved by friction motion; a half turn of the right crank ahead brings them both into action, the reverse motion throwing them out, leaving the reel to revolve freely.

To prepare the machine for somnding, wind the wire on the reel, splice on two or three fathoms of stray line, reeve it over the pulley and bend on the lead and thermometer, the reel being held in position by the ratchet and pawl. Pass the friction line over the groove, reverse the pawl, attend the friction line, lowering the lead carefully to the water's edge, then set the register at zero and all will be ready for a cast. The total weight of the apparatus is 96 pounds. The ordinary leads from 12 to 20 pounds weight are used, and, if specimens of the bottom are
required, they are armed in the usual manner. This, however, is a matter of little consequence, as the dredge or trawl invariably follows the lead, from which specimens can be taken.
The machine described was parely experimental as we had no practical knowledge of sounding machines or the use of piano wire. The results were eminently satisfactory, and the little machine continued to do its work well until finally we got into depths exceeding its capacity. We then decided to have a larger one made embodying such improvements as our experience suggested; the original being relegated to the stern, whre, with Bassuett's patent atmospheric lead, it is still doing goorl service as a navigational somding machine by which we can ascertain the depths to 25 or 30 fathoms while ruming at full speed.
The improved machine is shown on Plates XIII, XIV, and XV, and its location on Plates I and IX. It is constructed on the same general plan as the original machine. The staudard which ships in the rail is of wrought iron screwed firmly into the base of the brass frame that carries the reel. The frame above mentioned is cast in one piece, is bored to receive the shaft, and has approprate lugs for the pawl and register. The reel is of cast brass, and will hold 2,000 fathoms of sounding-wire, one fathom to a turn on the first layer, increasing as the score is filled. It has also the usual friction groove, Plate XIV'. The cranks by which the reel is tumed have friction surfaces, which are brought into action by moving the right one-half a revolution ahead, the left remaining clamped, as shown in I'late XIII; or it may be held firmly in the hand. The reverse motion releases the reel, and it revolves freely without moving the cranks.

On the left of the frame, between it and the crank, is a worm-wheel which operates the register, as shown in Plate XIII. The ratchet and pawl are on the right, betweers the frame and crank.

The arm supporting the guiding pulley is of that bar-iron, its lower end riveted between lugs on the frame. The small metal block projecting from the arm is part of a tackle for suspending the reel when mounting and dismounting. The guiding puller is the same as that used in the original machine, except that it carries a small arm near the upper end of its shaft or spindle, which works through a slot in the casting, as shown in Plate XIV. A small cord is attached to the arm and made fast to the free end of the friction rope, the standing part being hooked to a small metal eye in the frame over the reel.

By this arrangement the friction is intended to act automatically in the following mamer: The machine being ready for a cast the small friction line is hauled taut before the lead is bent, and while the guiding pulley is up in its place. In this condition it requires a strong man to move the reel, but, the lead being bent and suspended, it compresses the spring and drags the pulley down sufficiently to slack the friction rope and allow the reel to move with comparative freedom; the instant the lead strikes the bottom, however, or the weight is removed from any
cause, the pulley flies ap, putting a strain on the friction rope which stops the reel at once. It acts also as a check in paying out, the friction being governed by the weight suspended on the guide pulley. The reel is kept, in a tank of oil when not in use, to preserve the wire. By a most ingenious arrangement, for which we are indebted to Mr. Tippet, draughtsman at the ordnance department, Washington navy-yard, the reel is unshipped by simply unscrewing one nut, shown in Plate XIII, on the left crank, with a chain attached to prevent its loss by falling overboard. The nut being unscrewed releases the shaft, which is drawn out leaving the ratchet, worm-wheel, and left crank in position.

With the use of the tackle one man can easily ship and unship the reel.

The comparative sizes of the ordinary deep-sea lead-line, hand-line and sounding-wire are shown in Plate XIII.

Plate XIV shows the machine in position for heaving in.
Plate XV shows the machine in poition for sounding with the Bassnet atmospheric lead, used for navigational purposes, when the vessel is steaming ahead at her usual speed.

When the machine is in place it turns freely, the guide-pulley taking the direction of the wire if, from any cause, it trends out of the perpendicular. A set-screw is provided in the rail bearing for clamping the apparatus to steady it while heaving in. Total weight of the machine, 128 pounds.

PIANO-FORTE WIRE USED FOR SOUNDING.
The steel wire used for sounding and serial temperatures was purchased of the Washburn \& Moen Manufacturing Company, Worcẹster, Mass. It is called No. 11, music, by the makers; is 0.028 of an incli in diameter, tensile strength about 200 pounds, weight .0145 of a pound to the fathom, or 14.5 pounds to the nautical mile.

The method of splicing is simple and effective. The ends of the wire, for about 2 feet, are thoronghly cleaned, and laid together with about eight turns; the ends and two or three intermediate points are wound with a fer turns of very fine wire, and covered with solder, which is smoothed with a knife or piece of sand-paper. As this form of splice is smooth, flexible, and reliable, we have tried no other.

Slack-laid cod-line is used for stray-line, and is applied to the wire in the following manner: The end of the wire is stuck twice against the lay, about six inches from the end of the line, then passed with the lay for six inches, the end stuck twice against the lay and served over with seaming twine. The wire is then passed with the lay to the end of the line, the strands trimmed down and served over with twine; a seizing is also put on over the wire first stuck against the lay. This makes a smooth and secure splice, which passes readily over the guidepulley without danger of eatching under the guard.

The Miller-Casella and Negretti \& Zambra deep-sea thermometer* have been used by the vessels of the Commission. They are both excellent instruments, but the latter possessed some notable advantages for the peculiar service required of them in the prosecution of our work.

THE NEGRETTI \& ZAMBRA DEEP-SEA THERMOMETER.

This thermometer is shown in Plate XVI; the tube removed from its, case; the rubber guards taken off and laid beside it; the messenger between them. The metal case used by the Commission and the wooden frame furnished by the manufacturers are shown. The spring and slip hooks are removed from the former, and lie beside it.

The bulb containing the mercury is cylindrical; the neek much con tracted, and the tube near it bent in a peculiar manner, with a catcle reservoir at the bend. To take the temperature the bulb is held downward, when the column of mercury in the tube will be in contact with it. To register the temperature the instrument is capsized ; the colums breaking at the bend, falls to the bottom, and the scale is then read in the usual manner, it being marked from the opposite end toward the bulb.

The tube is completely inclosed in a glass shield, which protects it from pressure, eliminating any errors that might arise from that cause; and in order to avoid sluggishness, the portion surrounding the bulb is, filled with mercury.
This thermometer, as mentioned above, registers by being capsized ${ }_{8}$ or turned with the bulb up, at the point where the temperature is to be taken; and, to accomplish this, some device is necessary by which the requisite movement will take place with certainty at the proper time.

For this purpose the manufacturers use a wooden frame containing a charge of shot, which moves freely from end to end, and is of sufticient. weight to leave the entire apparatus a slight buoyancy in sea water.

In using this instrument the end of the frame carrying the bulb is, made fast to the somding-line and is pulled down in the descent; the shot are at the lower end, and the buoyaney of the frame, added to tho friction of the water, keeps it in position.

The ascent is commenced with a quick pall of the line, which, by changing its center of gravity, causes the thermometer to capsize, the weigh: of shot transferred to the lower end and friction of the water keeping it in position. The ascent should be contimons after it commences, for if the line is stopped or slacked from any cause the thermometer is liable to reverse, giving, of course, erroneons readings.

We experienced no trouble from this canse in smooth water, but in a sea-way, with the vessels moving rapilly, the results were unsatisfactory : in fact, totally umreliable. The frames soou became water-logged in
depths of four or five hundred fathoms, which was another fruitful source of error.

The accuracy of the thermometer itself and its extreme sensitiveness made it particularly valuable to us where we required several temperatures in rapid succession at moderate depths, provided we could control its motions.

Several devices were tried, and finally a simple gas-pipe, seven-eighths of an inch inside diameter, was adopted. Several holes were drilled in the end inclosing the bulb, a slit cut in the side to expose the scale, and a pair of slip-hooks held in position by a small spring placed in the opposite end. The thermometer was then inserted; the rubber guards used to protect the shield in the wooden frame serving not only to hold it securely in place but to protect it from sudden jars, and a lanyard of cod-line, spliced into the end carrying the bulb, completed the arrangement.

THE MESSENGER.

The messenger used for capsizing the thermometer is of cast brass, evlindrical in form, with rounded ends. It is about two inches in length, one in diameter, and has a three-eighth-inch bole through its center, well rounded at the ends to prevent catching on splices. Its weight is from three to four ounces.

TO TAKE A DEEP-SEA TEMPERATURE.
Plate XIII shows both forms of the Negretti \& Zambra thermometer arranged for descent. In the modified form it is held firmly in position by the slip-hooks through which the stray-line passes.

Having attained the proper depth, and sufficient time elapsed for the thermometer to indicate the temperature, the messenger, which has been resting in its cradle under the guide-pulley, is sent down the wire and capsizes the thermometer by striking the slip-hooks and forcing them open, when, having lost its support, the instrument promptly reverses, as shown in Plate XIV, where both forms are represented as on the ascent.

All buoyancy being destroyed by substituting a metal case, the thermometer is independent of the motions of the vessel either from rolling, pitching, or drifting. The line may be stopped on the ascent or lowered again withont affecting the instrument in any way. We have taken hundreds of temperatures with the apparatus described, under varying couditions of wiud and weather, with the most satisfactory results.

THE MLLLER-CASELIA DEEP-SEA THERMOMETER.

Plate XVII shows this thermometer in its copper case used for deepsea work; also partially dismounted, to show the form of construction. The magnet seen between the two instruments is used to adjust the indices.

The following description is from Sigsbee's "Deep-sea Somuding and Dredging:"
"A glass tube bent in the form of U is fastened to a vulcanite frame, and to the latter are screwed white glass slabs containing the graduated scales. Each limb of the tube terminates in a bulb. A column of mercury occupies the bend and a part of the capillary tube of each limb.
"The large bulb and its corresponding limb, above the mercury, are wholly filled with a mixture of creosote and water; the opposite limb, above the mercury, is partially filled with the same mixture, the remain ing space therein being occupied by compressed air. In the mixture. on each side, is a steel index having a horse-hair tied around it near the upper extremity. The ends of the elastic horse-hair, being held in a pendent position by the inner walls of the tube, exert enongh pressure to oppose a frictional resistance to a movement of the index in elevation or depression. As thus described, the instrument is a self-registering maximum and minimum thermometer for ordinary use. The indications are given by the expausion and contraction of the creosote aud water mixture in the large, full bulb. The instrument is set by bringing the lotrer ends of the indices in contact with the mercury br means of a magnet provided for the purpose. Then, when, the instrment is submitted to a higher temperature, the expansion of the mixture in the large bulb depresses the column of mercury on that side, and correspondingly elevates it on the other side. A decrease of temperature contracts the mixture in the large bulb, and bs the elastic force of the compressed air in the smaller bulb a transference of the column of mercury takes place in precisely the reserse manner to that which occurs on a rising temperature. Thus the mercury rises in the left limb for a lower, and in the right limb for a higher, temperature.
"The greater the change of temperature, the higher the point reached in the respective limbs; hence, the scale on the left is graduated from the top downwards, and that on the right from the bottom upwards. The rising of the mercury in either limb carries with it the index of that limb, and on the retreat of the mercury the index remains at the highest point attained. The bottom of the index, being the part which has been in contact with the mercury, gives the point at which to take the reading."

The large bulb of these instruments is now protected from pressure by a glass shield, with which it is covered; the space between shield and bulb is nearly filled with alcohol, which acts as a transmitting medium for temperature, performing the same function as the mercury in the shield of the Negretti \& Kambra thermometer. The shield above mentioned has added much to the value of the instrument, as it has practically eliminated errors arising from varying pressures.

This thermometer has been considered the standard for deep-sea work, and where several are to be sent down on the same line, particularly to great depths, it is unrivaled. It is not as sensitive as the Negretti
\& Zambra, but, under the above conditions, a delay of a few minutes is not of great importance. The movable indices are a fruitful source of annoyance and vexatious delay. An index may, without any apparent cause, absolutely refuse to move in the tube; coaxing with the magnet is followed by lightly tapping the frame in the hand or swinging it rapidly about the head, and, if this fails, more vigorous tapping is apt to follow, with various active measures, none of which tend to improve the general condition of the instrument.

The indices are also liable to move if the instrument is subjected to rough treatment; this, however, is not of frequent occurrence with careful handling.

Most of the minor casualties to which the instrument is liable are apparent to the eye and are readily set right.

WATER DENSITIES.

Hilgard's ocean salinometer (Plate XVIII) is used by the Commission for observing the density of sea-water. We found it difficult at times to use this delicate instrument at sea, until we adopted the plan of setting it on a nicely adjusted swinging stand, which rendered it to a great extent independent of the movements of the vessel.

An excellent description of the apparatus is given by Professor J. E. Hilgard in the Coast Survey Report for 1874, and reproduced in Sigsbee's Deep-sea Sounding and Dredging, as follows:

The density of sea-water in different latitudes and at different depths is an element of so great importance in the study of ocean physics as to have caused a great deal of attention to be paid lately to its determination.

The instruments employed for the purpose have been, almost without exception, areometers of various forms. The differences of density as arising from saltness are so small that it is necessary to have a very sensitive instrument. As the density of ocean water at the temperature of 60° Fahr. only varies between the limits of 1.024 and 1.029 , it is necessary, in order to determine differences to the hundredth part, that we should be able to observe accurately the half of a unit in the fourth decimal place. This gives a great extension to the scale and involves the use of a series of floats, if the scale starts from fresh-water, or else the instrument assumes dimensions which make it unfit for use on board ship.

With a view to the comverient adaptation to practical use, this apparatus has been devised for the Coast Surrey by Assistant Hilgard.
The instrument consists of a single float about 9 inches in length. The scale extends from 1.020 to 1.031 , in order to give sufficient range for the effect of temperature. Each unit in the third place, or thousandths of the density of fresh water, is represented by a length of 0.3 of an inch, which is subdivided into five parts, admitting of an accurate
reading of a unit in the fourth place of decimals by estimation. The float is accompanied by a copper can, with a thermometer inserted within the cavity, which is glazed in front. In use the can is nearly filled with water, so as to overflow when the float is inserted, the reading being then taken with ease at the top of the liquid. For conven. ience and security two such floats and the can are packed together in a suitable case, and a supply of floats and thermometers, securely packed in sawdust, is kept on hand to replace the broken ones.

The following table has been derived from the observations of the expansibility of sea-water, made by Prof. J. S. Hubbard, U. S. N. Column II contains a table of reductions for temperature of salinometer readings to the standard of 60° Fahr. To facilitate the use of this table the following directions are given:

Record the actual observation of hydrometer and thermometer. From Column II (which is applicable to any degree of saltness within the given limits) take the number corresponding to the observed temperature, and multiply this number by the number of degrees and fractions of a degree that the observed temperature differs from 600. Apply this product as a correction, with proper sign, to the reading of the salinometer, and the result will be the reading of the salinometer at the standard temperature of 60° Fahr.

Example.-Actual reading of thermometer $=80^{\circ} .5$; actual reading of salinometer $=1.02425$.

Opposite $80^{\circ} .5$ in column II is +0.0001585 , which, multiplied by 20.5 , gives as a product +0.003249 . Add this to the observed reading of salinometer, and 1.02750 will result as the reading of the salinometer at the standard temperature.

-		-		-		\bigcirc	
50	-0.000108	60	$+0.000000$	70	+0.000145	80	+0.000158
51	-0.000110	61	+0.000130	71	+0.000146	81	+0.000159
52	-0.000112	62	$+0.000135$	72	+0.000147	82	+0.000160
53	-0.000113	63	+0.000137	73	+0.000148	83	+0.000162
54	-0.000115	64	+0.000137	74	+0.000149	84	+0.000163
55	-0.000118	65	+0.000138	\%5	+0.000151	85	+0.000164
56	-0.000120	66	+0.000140	76	+0.000152	86	$+0.000166$
57	-0.000120	67	+0.000141	77	+0.008154	87	+0.000167
58	-0.000120	68	+0.000142	78	+0.000156	88	+0.000168
59	-0.000120	69	+0.000143	79	+0.000157	89	+0.000170

A method quite different in practice for determining the density of sea-water has been suggested by Prof. Wolcott Gibbs, of Harvard University. It depends upon the determination of the index of refraction by means of an augular instrument similar to the sextant. As all navigators are familiar with the use of the sextant, and as the observation can be made without hinderance from the motion of the ship, this form of the instrument may be found to possess certain advantages.

Note in 1876.-Wheu the table of reductions for temperature above given was constructed, the investigations relative to the same subject made by Thorpe and Riicker (Royal Society's Proceedings, January, 1876) were not known. The following comparison of the results of the experiments ou the thermal dilation of sea-water, as taken from Professor Hubbard's tables, and as derived from the results of Thorpe and Rücker, shows the differences within the range of temperature covered by our table of corrections:

Temperature	Volume.	
	Hubbard.	Thorpe and Rücker.
-		
50	0.99895	0.99902
55	0.99943	0.99946
60	1.00000	1. 00000
65	1. 010667	1.0005'
70	1.00142	1.00127
75	1.002:1	1. 00205
80	1.00309	1. 00.280
85	1.00402	1.00364

DEPARTURE OF TIE VESSEL FROM WILMINGTON.

At 4 p. m. July 29, 1880, the Fish Hawk left the builder's yard for Nerport, R. I., the headquarters of the Commission for the season.

The hatching machinery was not entirely complete, but the dredging apparatus was in place, and it was considered advisable to leave at once, returning for the remainder of her hatching outfit after completing her work of deep sea exploration for the season.

The weather was clear and pleasant, with a gentle breeze from NW. The ressel attained a speed of 7 to 8 knots during the night, the engines working smoothly. Passed Cape Henlopen at 11.20 p. m., Absecon at 4.30 , and Barnegat at 8.35 a. m. July 30. The position at noon was latitude $40^{\circ} 06^{\prime}$ N., longitude $73^{\circ} 09^{\prime} \mathrm{W} ., 177$ miles from Wilmington, giving an average speed of 8.55 miles per hour.

At 5 p. m. passed Fire Islaud light-house, and between 5 and 6 ob. served azimuths of the sum on such courses as we would require during the trip for the purpose of ascertaining the deviation of our compasses. July 31, at 12.25 a. m., passed Montauk Point, at 3.30 Point Judith, at 4.15 Beaver Tail, and at $4.40 \mathrm{a} . \mathrm{m}$. anchored in Dutch Island Harbor for the purpose of cleaning and painting ship.

Monday, August 2, got under way and steamed to Newport, the headquarters of Commission, and reported for duty in connection with deepsea exploration.

The weather was unsettled and rainy during the 3 d , 4th, and 5th, slearing during the night of the latter date, and on Friday, the 6th, we left the wharf at 8.35 a . m., with the naturalists on board, for our first lredging experlition of the season. It was an experimental trip for the
purpose of testing the mechanical appliances, which were mostly new. Three hauls of the dredge and three of the trawl were taken in the channel to the westward of Canonicut Island, in from 8 to 12 fathoms of water, returning to port at 3.58 p . m.

Slight modifications were found necessary in the arrangement of leading blocks, accumulator, \&c. The sounding apparatus was easily operated by one man, doing its work satisfactorily. In fact, the experience of the day satisfied us that with the modifications mentioned abore, the apparatus would answer the purpose for which it was designed.

Six hauls of the dredge and trawl were taken on the 7th, in the channel between Fort Adams and the Dumplings, in from 17 to 27 fathoms of water. Great numbers of specimens were taken, sufficient to keep the scientific corps fully employed in the laboratory for several days.

On Friday, the 10th, the weather being favorable, the ship was swung muder steam, and azimuths taken on every point to determine the deriation of compasses.

Thursday, August 12, took six hauls of the dredge and trawl in the sound, about three miles to the southward of Brenton's Reef light-ship, in from 16 to 19 fathoms. The trawl fouled a wreck during the day, detaining us several hours in vain efforts to clear it. Failing in this, we love in all slack line and backed the engines till the dredge rope parted, losing the trawl and about 15 fathoms of rope.

Five hauls of the trawl and dredge were taken on the 13th, about 5 miles to the southward and eastward of the light-ship, in from 18 to 20 fathoms; and seven hauls on the 14th, in the vicinity of Point Judith, in from 18 to 19 fathoms. Four hauls were takeu in various localities in Narragansett Bay on Monday, the 16th, and on the 17th, eight hauls on Brown's Ledge, from 8 to 12 miles SW. by W. of the Vineyard Sound light-ship, in from 11 to 22 fathoms.

Weduesday, Angust 18, took four hauls of dredge and trawl, abont 20 miles S.SE. of Block Island, in from 27 to 29 fathoms of water. Thursday and Friday, the 19th and 20th, the naturalists were occupied in the examination and preservation of specimens. Saturday, the 21st, was foggy and rainy, the weather clearing during Sunday, and on Monday, the 23d, three hauls were taken between Narragansett Pier and Point Judith. A heary swell prevailing in that locality, we ran into Narragansett Bay, where four hauls were taken in from 11 to 15 fathoms.

Thursday, the 24 th, five hauls were taken from 1 to 3 miles to the eastward of Block Island, in from 13 to 22 fathoms, and on the following day one haul in the same vicinity, when, being overtaken by a heary squall of wind and rain, we were forced to stop work and start for portWe had heavy rain and a dense fog all the way in, the weather clearing after we reached the harbor. We were detained in port the following day by a heary swell in the sound, and, on the 27 th, finding an uncom-
fortable sea outside, we ran into the Sakonnet River and took ten hauls of the dredge and trawl between its mouth and Gould Island.

The naturalists were employed in the laboratory on Saturday, and we were detained by unfavorable weather on Monday, but Tuesday, the 31st, was more favorable, and ten hauls of the trawl and dredge were taken in the channel between the Dumplings and Beaver Tail, and various localities in Narragansett Bay, in from 8 to 27 fathoms. On the following day, September 1, ten hauls were made between the Dumplings and Beaver Tail, in from 3 to 20 fathoms. The naturalists were occupied the following day in the laboratory, and on the 3 d six hauls of the trawl and dredge were taken at the entrance to Vineyard Sound, from 3 to 4 miles to the southward of Cuttyhunk, in 17 fathoms.

At $3.30 \mathrm{p} . \mathrm{m}$. we started for Wood's Holl, arriving at 4.30 , when preliminary examinations of the harbor, \&c., were made, with a view of stationing the ship at this place for codfish hatching during the coming winter.

At $5.15 \mathrm{p} . \mathrm{m}$. left Wood's Holl, and started for latitude $40^{\circ} 04^{\prime}$ N., longitude $70^{\circ} 23^{\prime}$ W., the locality where the first tile fish (Lopho. Jatilus chamaleonticeps) were reported to have been taken. We passed Gay Head at $7.05 \mathrm{p} . \mathrm{m}$. , and slowed down to about 3 knots between that point and No Man's Land, to allow surface towing by the naturalists, which resulted in the capture of some interesting specimens. The vessel was then put at a speed of 8 knots per hour for the night, in order to reach the desired position at daylight. The wind was light to moderate from SW., but there was quite a heavy cross swell from SE. to SW., increasing as we left the land, and, during the latter part of the night the vessel was rolling and pitching in a most lively manner.

At $4.50 \mathrm{a} . \mathrm{m}$., September 4, stopped, latitude $40^{\circ} 04^{\prime}$ N., longitude 71023^{\prime} W., cast the lead in 65 fathoms' sand, and lowered the trawl with most satisfactory results. Four miles south we found 192 fathoms; eight hauls were taken during the day between the depths above mentioned.

The results were remarkable, and the temptation to seek greater depths almost irresistible, but we had 300 fathoms of dredge rope only on the reel, and were obliged to confine ourselves within moderate depths.

The bottom and intermediate temperatures were unreliable owing to the use of the Negretti-Zambra deep-sea thermometer in a sea-way, the motion of the vessel being liable to capsize it at any time. It was the results of this day's work that led us to devise some plan by which this admirable thermometer could be used under all conditions of wind and weather.

The sounding and dredging apparatus which had heretofore been used in depths of but 30 fathoms or less, worked so well that we concluded to double their present capacity by adding to the length of rope and sounding wire.

At $1.40 \mathrm{p} . \mathrm{m}$. we started for port, about 100 miles distant. The weather was clear at this time, but about 5 p . m. a heavy bank rose rapidly ahead, the wind veering to NW. At 7 p . m. the sky was entirely overcast with a light mist and drizzling rain, and at $10 \mathrm{p} . \mathrm{m}$. a dense fog closed in. The speed was reduced and the fog-whistle sounded at short intervals.

At $3.30 \mathrm{a} . \mathrm{m}$., September 5, stopped near Brenton's Reef light-ship to wait for daylight or the fog to lift; and, although frequently within a ship's length of the vessel, we could not see the lights. In fact, we saw the vessel herself for an instant only, after daylight, when we were less than a hundred feet from her. I mention this as an illustration of the density of coast fogs and the difficulties attending navigation during their prevalence.

After daylight we ran in by compass, catching an occasional glimpse of points as we passed up channel, and finally arrived at the wharf at $7.15 \mathrm{a} . \mathrm{m}$.
We were employed Monday and Tuesday, the 6th and 7 th, coaling ship; were detained by unsettled weather till the 12th, when, at 6.40 p. m., we left port for another off-shore trip.

While in port we doubled the length of our dredge rope by splicing 300 fathoms to that already on the reel, increased the length of wire on the sounding machine to something over 600 fathoms, and adopted a simple spring eatch or detaching arrangement by which the Negretti \& Zambra thermometer could be held firmly in position until the proper time to register the temperature by reversing it; this being accomplished (as explained in the description of the Negrette \& Zambra thermometer as used by us at present) by sending a small weight or messenger down on the wire, detaching the spring catch by impact, and freeing the upper end, when, being inclosed in a metal case without bouyancy, it promptly reverses, thus registering the temperature.

At $5.35 \mathrm{c} . \mathrm{m}$. on the 13th we cast the lead in 100 fathoms-latitude $40^{\circ} 02^{\prime}$ N., longitude $70^{\circ} 57^{\prime} \mathrm{W}$.-and sent the trawl down. Nine hauls were taken during the day in from 85 to 325 fathoms, within a radius of 7 or 8 miles, everything working satisfactorily in depths less than 200 fathoms; but our first attempt in deeper water resulted in numerous kinks in the rope and several turns around the trawl, which, of course, came up empty. A little caution in paying out the rope was all that was necessary, and we had no further trouble from those causes.

We had provided ourselves with a quantity of menhaden for bait, and, during the morning, set a trawl line in 126 fathoms-latitude 39° $57^{\prime} 07^{\prime \prime}$ N., longitude $70^{\circ} 56^{\prime} \mathrm{W}$.-for the purpose of catching tile-fish (Lopholatilus chamceleonticeps). The line was down 45 minutes, and on hauling it up three tile-fish were taken. Three more got off the hooks after coming to the surface and were lost. There were numerous skate and hake on the line, and the bait was gone from most of the hooks.

The line was set again in the afternoon in 250 fathoms-latitute 39° S. Mis. $110-3$
$48^{\prime} 30^{\prime \prime} \mathrm{N}$., longitude $70^{\circ} 54^{\prime} \mathrm{W}$.-without success, so far as tile-fish were concerned. There were, however, several hake and skate taken, showing that the line reached the bottom.

One of the tile-fish taken in the morning was boiled for dinner and served with egg sauce. The flesh was white and firm, bearing a strong resemblance to codfish in texture and flavor, though somewhat coarser.

Work was continued till 6 p . m., when the vessel was headed for port. It was evident, from a rapidly falling barometer and other indications, that a change of weather was impending. At nine o'clock the sky was overcast, threatening rain.

At $1 \mathrm{a} . \mathrm{m}$. on the 14th the wind veered to northwest with thick rainy weather. We made Block Island light at 1.45 , and at 2.40 were struck by a furious squall of wind and rain, with incessant thunder and lightning, followed by a dense fog. Between three and four o'clock, while passing several miles to the eastward of the island, a large pyramid of light was observed on shore, peuetrating the dense fog and illuminating our surroundings, increasing the range of vision from a few yards to at least half a mile in every direction, and toward the island to a much greater extent. We could not detect a distinct flame or discover the source of light, but learned subsequently that it was caused by the burning of a hotel. The possibility of penctrating and illuminating a deuse fog by the use of powerful lights was practically demonstrated by the occurrence above mentioned.

The wind veered to the northward and eastward, increasing rapidly, till at 7.15 , upon our arrival in port, it was blowing a gale, which continued with greater or less violence till the 16th, detaining the vessel in port.

Friday, September 17, was clear and pleasant, with light winds.
At $10.17 \mathrm{a} . \mathrm{m}$. we left the wharf with a number of gentlemen on board, and steamed up the bay, where hauls were made with the beam trawl, otter trawl, dredge, and rake dredge. Our system of sounding and taking serial temperatures, the preservation of specimens, \&c., were explained to the guests, and at $4.15 \mathrm{p} . \mathrm{m}$. we returned to port.

The 18 th and 19 th were occupied by the naturalists in preserving specimens, and we were detained on the 20th by fog.

At $9.15 \mathrm{a} . \mathrm{m}$. on the 21 st we left the wharf and steamed to the southward of Block Island, where we took five hauls of the trawl and dredge in from 11 to 19 fathoms water. A heavy southwest swell made it excessirely uncomfortable on board, and, at times, almost impossible to carry on the work. We returned to our wharf at $7 \mathrm{p} . \mathrm{m}$., the results of the day's work having been very satisfactory.

At $11 \mathrm{a} . \mathrm{m}$. on the 22 d we left for Wood's Holl with the Commissioner on board, arriving at $4.15 \mathrm{p} . \mathrm{m}$. An inspection was made with the view of establishing an experimental station for codfish hatching during the coming winter.

We left Wood's Holl at $1.15 \mathrm{p} . \mathrm{m}$. on the 23d, arriving in Newport at
$5.30 \mathrm{p} . \mathrm{m}$. , when fires were hauled to clean the boiler, and this opportunity was taken to make some needed repairs to machinery, which were completed on the 25th.

Preparations were made for an off-shore trip on the 26 th , but we were detained by unsettled weather, fogs, or strong winds till October 1, when at $4.30 \mathrm{p} . \mathrm{m}$. we left the wharf and proceeded to sea.

The local deviation of our compasses was accurately obtained and tabulated upon our arrival at the station, but later in the season it became evident that it was changing, at least, on the north and south courses, and, to ascertain the actual error, azimuths were observed on the points between S. and SW. and N. by E. to NNW., the result showing a decrease of 2° to 3° on those points.

When the above observations were completed we steamed to the south. ward, and at $5.40 \mathrm{a} . \mathrm{m}$. on the $2 d$ cast the lead and put the trawl over, in latitude $39^{\circ} 46^{\prime} \mathrm{N}$., longitude $71^{\circ} 10^{\prime} \mathrm{W}$., in between 300 and 400 fathoms, bringing up a heavy load of soft mud with but few specimens. The depth was uncertain, as the sounding-wire parted at 310 fathoms before reaching bottom.

At $8.40 \mathrm{a} . \mathrm{m}$. the trawl was cast again in latitude $39^{\circ} 46^{\prime} \mathrm{N}$., longitude $71^{\circ} 05^{\prime}$ W., in 487 fathoms, mud and small stones. A large number and great variety of specimens were brought up.

At 11.23 a . m . the trawl was cast again in $39052^{\prime} 20^{\prime \prime} \mathrm{N} ., 70^{\circ} 58^{\prime} \mathrm{W}$., 372 fathoms, bringing up mud, sand, and a ferwsmall stones.

Another haul was taken ati.10 p. m.-latitude $39^{\circ} 53^{\prime}$ N., longitude 70° $58^{\prime} 30^{\prime \prime} \mathrm{W}$.-in 365 fathoms, sand and mud; and another at $3.17 \mathrm{p} . \mathrm{m}$.latitude $39^{\circ} 56^{\prime} 30^{\prime \prime} \mathrm{N}$., longitude $70^{\circ} 59^{\prime} 45^{\prime \prime} \mathrm{W}$.-in 238 fathoms, sand and mud. The hauls were all successful, but the last was the largest of the season, both in numbers and species. The weight in the net was so great that it required considerable time and great care to land it safely on deck. This being. accomplished, we started at $5.25 \mathrm{p} . \mathrm{m}$. for port, arriving at $5 \mathrm{a} . \mathrm{m}$. on the morning of the 3 d .

The 4 th and 5th were occupied in coaling ship; the 6th in taking on board specimens of natural histors, the result of the season's work, destined for New Haven and Washiugton, and making preparations for sea.

At 6.05 a . m., October 7 th , we left Newport for New Haven, arriving at $3.50 \mathrm{p} . \mathrm{m}$., and remained over night.

The articles consigned to Prof. A. E. Verrill were delivered, and, at 7.30 a. m., October 8th, we left for New York, arriving at the navy-yard at $2.30 \mathrm{p} . \mathrm{m}$., where we took on board a supply of paymaster's stores, water, \&c.

We left at $4.20 \mathrm{p} . \mathrm{m}$. on the 12 th for Wilmington, Del., to complete the hatching machinery left unfinished on our departure in July.

The weather was clear with a moderate gale blowing from NW. It was a fair wind, however, and by hugging the coast we had comparatively smooth water till we opened out Delaware Bay, where we encountered a heary sea, which tested the strength and weatherly qualities of the vessel.

At $8 \mathrm{a} . \mathrm{m}$. on the 13th we passed inside the capes, and at $4.30 \mathrm{p} . \mathrm{m}$. arrived at the Pusey \& Jones Company's works, Wilmington, Del.

Work was resumed at once on the hatching machinery. Some slight repairs were made about the engines, and such modifications as the season's experience suggested were adopted.
The work was completed on the 13th of November, and at $8.50 \mathrm{a} . \mathrm{m}$. on the 14th we left for Washington, D. C.

The weather was unsettled, and finding cautionary signals flying at the cape we deemed it advisable to wait for a change. We anchored inside the breakwater at $4.30 \mathrm{p} . \mathrm{m}$., remaining till 7.50 p . m. the following day, when, the weather having partially cleared, and the cautionary signals lowered, we got under way and proceeded to sea.

After clearing Cape Henlopen a course was laid which would carry the vessel off shore, intending to make a depth of from 100 to 200 fathoms water by daylight, when we proposed to try the dredge and trawl.

We encountered a heavy southerly swell during the night, but it moderated towards morning, and at $9.20 \mathrm{a} . \mathrm{m}$.-latitude $37 \circ 26^{\prime}$ north, longitude $74^{\circ} 19^{\prime}$ west-cast the trawl in 56 fathoms, sand and shells. Six hauls were taken during the day, in from 300 fathoms down to 18 , with most satisfactory results; several new species were added to the marine fauna of the coast, and some were found new to science.

The last haul in 18 fathoms was taken after dark for the purpose of ascertaining whether a ater number of fish would be taken than during daylight. We saw no perceptible difference, but a single haul would hardly be significant either way.

The trawl was up at $7.30 \mathrm{p} . \mathrm{m}$. , and the vessel headed for land, passing inside the capes of the Chesapeake at $12.55 \mathrm{a} . \mathrm{m}$., the 17 th . At 10.45 a. m. we anchored off Saint Jerome Creek, and sent a party in with the steam cutter to bring out a barge belonging to the Commission, which we were directed to tow to Washington. They found her lying in a bad position, pretty well filled with water, and the tide ebbing and flowing through the open seams in her sides and bottom.

The water was finally bailed out, the worst leaks temporarily stopped, and at high tide, about $2 \mathrm{a} . \mathrm{m}$. on the 18 th, an attempt was made to tow her out; but the channel had become filled with sand, making it narrow for her to pass.

She was taken back to her old station and anchored again, and, at low tide, all our available force was put to work with shovels to widen the channel. It was high tide again between two and three o'clock in the afternoon, when we succeeded in getting her out, reaching the ship at $5 \mathrm{p} . \mathrm{m}$., having kedged off against a fresh northeast wind, and quite a heavy swell. As soon as the barge was fast astern the boats were hoisted and we got under way for the Potomac.

It was blowing a moderate gale from northeast by this time, with a drizzling rain, and the night was inteusely dark; the sea was quite rough, causing the vessel to roll heavily, and soon filling the barge with water. We had two hawsers fast to her, but one parted when we were off Point

Lookout; the other held, however, and at 7.25 p . m. we anchored in Cornfield Harbor for the night. The wind had backed to northwest by this time, and was blowing a fresh gale, causing quite a swell, but we rode it out very comfortably. Working parties were kept bailing the water out of the barge during the night.

We got under way at $6.35 \mathrm{a} . \mathrm{m}$. on the 19th, and, with the barge in tow, started for Washington.

At $8 \mathrm{a} . \mathrm{m}$. the Uuited States Fish Commission steamer Lookout steamed out of Saint Mary's River, and coming within hail informed us that she had a mail for the ship. It was still blowing fresh, with a heary swell in our exposed position, so she was directed to follow us under the lee of Piney Point, where the mail was transferred, and she was directed to make the best of her way to Washington. We were obliged to run at about half speed, owing to the bad condition of the barge, and working parties were pumping and bailing daring the day. At 5.20 p . m. we anchored off Indian Head for the night.
At $7.20 \mathrm{a} . \mathrm{m}$. on the 20th we were under way again and arrived at the navy-yard, Washington, D. C., at $1.40 \mathrm{p} . \mathrm{m}$.
The specimens of natural history and other articles consigmed to the Smithsonian Institution were landed on the 22d. We coaled ship on the 26 th and 27th.

Arrangements were made with the authorities at the navy-yard to caulk the main deck, and the crew were actively employed refitting ship until $9 \mathrm{a} . \mathrm{m}$., December 4, when we left for the Lower Potomac on duty connected with the artificial propagation of oysters at Saint Jerome Creek.

At 7.15 p . m. anchored in Saint Mary's River for the night. At 8 p . m . the Lookout arrived and anchored near this vessel. The weather was thick and rainy, with a fresh breeze from the eastward.

On Sunday morning, December 5, the Lookout went into Smith's Creek, where she could find a more secure harbor, and this vessel followed her on the morning of the 6th, the weather still rainy and unsettled, with a heavy swell in the bay.

The object of the expedition was to dredge a quantiky of oysters and plant them at the station in Saint Jerome Creek, for the purpose of investigation and artificial propagation during the following spring and summer; but unfavorable weather forced us to seek a harbor, and on the 7th the wind reered to northwest, blowing a fresh gale, with rery cold weather, ice forming rapidly. On the 9th, when the gale moderated, the oyster-pond was frozen over, obliging us to abandon the attempt to carry out the object of the expedition at that time.

It was desirable to test the practical working of our dredging apparatus, and for that purpose we put it in operation on the banks between Smith's Creek and Point Lookout for about three hours, the result being 75 bushels of oysters, dead shells, \&c., and 25 bushels of marketable oysters.

Having satisfied ourselves as to the working of our apparatus we started at 1 p . m. for Washington, anchoring at 9.20 p . m. off Nanjemoy Point for the night. The weather was clear and cold, ice making rapidly along the shores.

At daylight on the morning of the 10th we got under way and steamed up the river. At 9.30 spoke the Lookont off Quantico. They reported the river frozen above that place, and that they were unable to go any farther. We then steamed up to Stump Neck, but were obliged to return, the sharp young ice cutting the unprotected planking of the vessel's sides like a knife.

Having anchored off Quantico, the Lookout, which was short of coal, was taken alongside and a sufficient quantity transferred to her bunkers. I took the train for Washington to confer with the Commissioner as to the future movements of the vessels, and, returning at $12.30 \mathrm{p} . \mathrm{m}$. the following day, both vessels were got under way for Norfolk, Va.

There was considerable floating ice about us at this time, and the river was frozen over both above and below. The ice was not more than 2 inches in thickness, and our engines would haveforced us through it without the least difficulty, but, owing to the fact that our metal sheathing was below the water line, there was every probability that the vessel would sustain serious damage if we made the attempt.

Fortunately the Lady of the Lake, an iron steamer, was seen approaching, and following in her wake we finally reached clear water and arrived at our destination, the Norfolk navy-yard, at $7.50 \mathrm{a} . \mathrm{m}$. on the 12th, with the Lookout in company. Both vessels were carefully examined on the 13th to ascertain the damage by ice. This vessel was repaired by the naval constructor at an expense of $\$ 285$. The Lookout was repaired by our own mechanics without expense to the government.

The weather during the remainder of the month was unusually severe; navigation became very difficult in the Potomac, and considerable ice formed even in Norfolk.

We were actively employed, when the weather permitted, in painting and refitting both vessels, the work being in progress at the close of this report, December 31, 1880.

REMARKS BY MR. RICHARD RATHBUN ON THE SCIENTIFIC RESULTS OF THE SEASON'S EXPLORATIONS.

The explorations carried on in Narragansett Bay, and to the eastward and southward of Block Island, demonstrated the existence of a fauna similar to that previously discovered by the Fish Commission, in and about Vineyard Sound (1871 and 1875) and in Block Island Sound and the neighboring regions (1874), the species differing more or less, however, according to the depth and character of the bottom on which they lived. No new species of fish were found in these inshore dredgings, and most of the invertebrates obtained were identical with already known
species. Sufficiently large collections of fish and invertebrates were made to properly illustrate the fauna of the region.

The three trips of the Fish Hawk to the inner edge of the Gulf Stream slope, on September 4 and 13 and October 2, resulted in the discovery of a new and exceedingly rich marine fauna, quite excelling anything hitherto encountered by the Fish Commission off the New England coast. In fact, the region opened up by these off-shore dredgings may be fairly regarded as the most interesting and prolific of any yet explored upon our northeru coasts, both as regards the number of species found and the abundance of specimens. Several hundred species of both fish and invertebrates were taken by meaus of the dredge and beam trawl, the larger share being new additions to the fauna of Southern New England, and a considerable proportion entirely new to science. The bottom appeared to be nearly continuously covered with life, as the dredge and trawl seldom came to the surface without a load of interesting forms, demonstrating that the region was eminently well fitted as a feeding ground for fish, of which several edible species were taken by the Fish Hawk.

Attention was first called to this region in the winter of 1878-'79, by the discovery there of a new species of food-fish-the so called tile fish (Lopholatilus chamceleonticeps Goode and Bean)—by a Gloucester fishing schooner, commanded by Captain Kirby. This fish, which is quite unlike any other species occurring on the New England coast, ranges in size very much like the cod, specimens haring been taken weighing all the way from 3 to 60 pounds. Its flesh is white and firm in texture, and by many who have tried it is considered good eating. It can be salted and dried like the cod.

The main object of the Fish Hawk, in visiting this section of the Gulf Stream slope, was to ascertain the distribution and abundance of the tile fish, and the character of its feeding grounds, which, as stated abore, were found to be rery rich. A comparison of the various animals obtained from there with those brought in by the Gloucester fishermen from the great fishing banks off Nova Scotia and Newfoundland indicates that a close resemblance exists between these two regions, and very many of the species of animals are identical in both. As the tile fish cannot be taken in the dredges and beam trawls commonly used in exploring the sea bottom, an ordinary cod trawl-line, with several hundred hooks, baited with menhaden, was set for about an hour in 100 fathoms of water, on one of the trips, and three fine specimens secured, together with other species of bottom-feeding fish. Otherwise, the natural history investigations were conducted entirely by means of the dredge and beam trawl.

The bottom in the region explored, which, beyond the 75 to 100 fathom line, forms quite a rapid slope, differs considerably in character in different localities. In some places it has a smooth surface, formed of fine compact sand, with more or less mud and fragments of shells, and some-
times with small stones. In others it consists of softer mud and sand, or is covered with broken shells and great quantities of sponges, hydroids, and worm tubes. Both the sand and mud generally contain a large percentage of calcareous foraminifera, some of which are of unusually large size. The mud in some places also yields innumerable quantities of large sand-covered rhizopods, which vary greatly in form, some being irregularly branched or rudely stellate, and others simply rod-like, and measuring at times nearly an inch long.

An especial feature of several of the muddy localities was a large round worm tube, resembling a goose-quill both in texture and consistency. These tubes, which belong to a new species of the genus Hyalinocia, often came up by the thousands, sometimes composing fully half the contents of the trawl. They frequently measure over a foot in length and are nearly straight, but somewhat larger at one end than at the other. They live free upon the bottom, probably, as a rule, lying flat upon the mud, the worms being able to drag them about. These tubes afford attachment to many species of invertebrates, belonging to the groups of hydroids, actinians, and sponges. Another common inhabitant of the muddy bottoms, giving shelter to numerous species of worms, actinians, and mollusks, was the beautiful gorgonian, or bush coral, Acanella Normani, previously known from the northern fishing banks. A large cup coral of rather fragile texture, the Flabellam Goodei, occurred abundantly on some of the muddy bottoms, and was taken in large quantities, though generally in a fragmentary condition.

The mollusca were the most prolific of all the groups, as regards the number of forms taken, 175 species having been secured on the three trips. Of these, 115 species were new to the fauna of Southern New England, and 48 species entirely undescribed. Among the mollusca were 8 species of cephalopods, including 3 genera new to the New England coast. One of the species was a large and curions form of Octopus (Alloposus mollis), with the arms joined together by a web. Many fragments and several nearly perfect specimens of the paper nautilus ($A r$ gonauta argo) were obtained from the deeper hauls. Some of the species of Octopus and squids were quite abundant.

The crustaceau fauna of this region was very rich in the number of species and individuals. The majority of the forms obtained belonged to the decapoda or higher crustacea, the species of schizopoda, cumacea, and amphipoda being comparatively ferw in number. The echinoderms were represented by a large number of species, many of which were new to the region and to science. Several of the species of starfishes and ophiurans, and a species of crinoid (Antedon Sarsii) frequently occurred in such extreme abundance as to form a very conspicuous feature of the hauls. One new species of starfish, the Archaster Americamus, sometimes appeared by the thousands, and other new species, as well as several species previously known only from occasional specimens brought in from the fishing banks off Nova Scotia, were very common.

About 50 species of fish were taken in the beam trawl beyond the 100 -
fathom line, the larger proportion being new additions to the fauna of Southern New England, and including at least 5 new genera and 18 new species. One interesting form was the pole flounder, common in the deeper parts of Massachusetts Bay and the Gulf of Maine, and of which both young and adult individuals were secured.

At each dredging station, collections were made with the towing net, which is designed to scoop in the free-swimming forms, living at the surface and at intermediate depths. It was used at the surface, at depths of 5 and 10 fathoms, aud near the bottom, for the latter purpose having been attached to the dredge line a short distance above the dredge or trawl. The animals obtained by this means were mostly jelly fishes, pteropods, heteropods, salpæ worms, larval crustaceans of the higher orders, and copepods, the latter frequently occurring in countless numbers. They serve as food for the surface-swimming fish, such as the meuhaden and mackerel.

Many of the species found in this new faunal region are arctic, or belong to the colder waters of the Atlantic coast of Europe, or to the Mediterranean. Others again are more tropical, being related to southern or West Indian forms. Some of the commoner forms of crustacea and echinoderms are identical with species described from off the Florida coast. The surface species belong mainly to the Gulf Stream fauna.

The mass of material taken on these three trips was very great, filling several hundred jars, and a greater number of small bottles and homœopathic vials, as well as many large tanks. The proper working up of this material requires the expenditure of much time and labor, and while several hundred species have already been recognized and described, large quantities of the smaller and more obscure forms still a wait elaboration.

The few dred gings made November 16, off the mouth of Chesapeake Bay, in depths of 18 to 300 fathoms, gave very interesting results, especially in the greater depths, where nearly all the species secured were identical with those from the more northern localities, the character of the bottom being also the same. A large amount of material was obtained for a single day's work. All the species have not jet been worked out, but the identifications, so far as they have been made, indicate that the several groups of invertebrates are represented by about the following number of species: The mollusea by 48 species, including three species of squids and two of Octopus; the echinoderms by 19 species; the polyps by 6 species; and the hydroids by two species. The singular tabe-dwelling worm of the north, Hyalinceia artifex, was also very abundant in this region, as were other associated species of worms.

Synopsis of the steam log of the United States Fish Commission steamer Fish
Havk, for the year ending December 31,1880 .
Stroke of piston in feet.
Number of condensing cylinders............................. 2
Diameter of condensing eylinders in inches.
Mean point of steam cut-off from commencement of stroke of piston in inches 10. 89
Mean number of holes of "' throttle" valve open 2.47
Mean vacuum in condenser, in inches of mercury 23.51
Meansteam pressure in boilers, while engines were in oper- ation 26. 25
Mean temperature of engine-room 88. 8
Mean temperature on deck 58.4
Mean temperature of injection water 60.38
Mean temperature of discharge water. 85. 52
Mean temperature of feed water 86.7
Total time fires were lighted, in hours and minutes 2,333. 45
Total time engines were in operation, in hours and min- utes 437.04
Total time engines were in operation, in hours and minutes while dredging 100.15
Total number of revolutions, port engine 1, 772, 970
Total number of revolutions starboard engine 1, 394, 190
Mean number of ievolutions per minute en route 84.15
Mean piston speed, in feed, per minute 378.68
Total number of knots run 2, 825
Mean number of knots run per hour 6.56
Mean number of knots per hour en route 9.02
Tons of coal consumed for engineer department $239 \frac{175}{22} \frac{70}{40}$.
Tons of coal consumed while engines were in operation. $125 \frac{1000}{240}$
Tons of coal consumed for galley $8 \frac{1730}{24} \frac{0}{0}$
Tons of refuse$51 \frac{132}{2} \frac{2}{4} \frac{0}{0}$
Mean number of pounds of coal consumed per hour while engines were in operation 657.95
Mean number of pounds consumed per square foot of grate. 14.1
Total number of gallons of oil consumed 149.75
Total number of pounds of tallow consumed 121
Total number of pounds of wiping stuff consumed 117.75
Mean draught forward, in feet and inches $7^{\prime} 1 \frac{117}{4 \prime}$
Mean draught aft, in feet and inches $7^{\prime} 4^{\prime \prime}$
Number of screws. 2
Kind of. True.
Mean pitch, in feet and inches $12^{\prime} 3^{\prime \prime}$
Diameter of screws, in feet and inches $6^{\prime} 8^{\prime \prime}$
Length of screws, in feet and inches, parallel to axis $20^{\prime \prime}$
Number of blades 4
Mean indicated horse-power 186.7
Maximum indicated horse-power 222.92
Mean number of pounds of coal per horse-power 3.32
Maximum number of pounds of coal per horse-power 3.9

Maximum number of pounds of coal consumed per square foot of grate.	18
Maximum speed attained under steam alone, in knots per	
hour	10. 52
Number of hours maintained	$9 \frac{1}{2}$
State of sea.	Smooth.
Maximum slip of screws in per cent	17.08
Maximum number of revolutions per minute	105
Mean slip of screws in per cent	12.1

Table of distances made under steam by the United States Fish Conmission steamer Fish Hawk, for the year 1880.

Dredging and trawliug record of the United States Fish Commis
SEASON

Date．	Thermometer used．		Locality．	发	悹	先
$\begin{aligned} & \text { 1880. } \\ & \text { Aug. } 6 \end{aligned}$	N．Z． 40007 surf．； 42666 bottom，	770	Beaver Tail Light，SE．by S．，$\frac{7}{8}$ mile mag－	$10 \quad$ a．m．	Ebb	68
6		772		10．30 a．m．	．．do	72
6		773	Beaver Tail Light，S．by E．， $1 \frac{1}{8}$ mile mag	$11.45 \mathrm{a} . \mathrm{m}$ ．	．do	72
6		774	N．end Dutch Island，S．，$\frac{1}{2}$ mile mag．	$1 \mathrm{p} . \mathrm{m}$	．．do	72
6		775	N．end Dutch Island，S．， 1 mile mag．	1.35 p．m．	．．do	79
7	．．do	776	Fort Dampling，NW．by W．$\frac{1}{2}$ W．，$\frac{5}{3}$ mile mag．	$9.45 \mathrm{a} . \mathrm{m}$ ．	．．do	72
7		777		10.20 ar m ．	．do	72
7		$\begin{aligned} & 778 \\ & 779 \end{aligned}$	Fort Dampling，N．妻 E．， 800 yards	$10.40 \mathrm{n} . \mathrm{m} .$	－．do	76
7		780	Beaver Tail Light，W ， 1 mile mag	11.30 a ．m．	．．do	9
7		781	Beaver Tail Light，N．NW．， 1 mile mag．	$12 \mathrm{~m} . .$.		75
12	do	782	Beaver Tail Light，W．$\frac{3}{3} \mathrm{~N} ., 1 \frac{1}{4}$ mile mag．	$9.30 \mathrm{a} . \mathrm{m}$ ．	Floo	68
12	do	783	Brenton＇s Reef Light－Ship，N．by E．， 1 mile mag．	10.15 a ．m．		70
12	do	784	Point Judith，W．$\frac{1}{2}$ S．， $4 \frac{3}{4}$ miles mar．．．．．．	$10.50 \mathrm{a}, \mathrm{m}$ ．		71.5
12	．．．．do ．．．．．．．．．．．．	785	Brenton＇s Reef Light－Ship，N．츨 W．， $2 \frac{1}{2}$ miles mag．	$11.30 \mathrm{a} . \mathrm{m}$ ．		72
12	do	786	Brenton＇s Reef Light－Ship，N．W．$\frac{1}{2}$ W．， $4 \frac{1}{2}$ miles mag．	2.35 p．m．		74
12	do	787	Brenton＇s Reef Light－Ship，N．NW．$\frac{1}{2}$ W．， 4 miles mag．	$3 \mathrm{p} . \mathrm{m}$ ．		74
13	do	788	Brenton＇s Reef Light－Ship，N．NW．$\frac{3}{3}$ W．， 6 miles mag．	$10.40 \mathrm{a} . \mathrm{m}$ ．	Flo	
13	．do	789	Brenton＇s Reef Light－Ship，N．NW．$\frac{3}{4}$ W．， $5 \frac{1}{4}$ miles mag．	11.05 a ．m．	．do	70
13	－．．do	790	Point Judith，WV．NW．$\frac{3}{4}$ W．， $8 \frac{1}{2}$ miles mag	$11.55 \mathrm{a} . \mathrm{m}$.		70
$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & 791 \\ & 792 \end{aligned}$	Point Judith，W．NW．， $12 \frac{1}{2}$ miles mag．．．．	1．10 p．m．m．	Ebb	72
14	do	793	Point Judith，W．NW．$\frac{1}{2}$ W．， 6 miles mag	${ }_{9}^{1.50} \mathrm{a}$ m．		71
14	．．．do	794	Point Judith，W．NW．$\frac{1}{3}$ W．， 5 miles mag	9.45 a ．m．		70
14	．．．do	795	Point Judith，W．NW．$\frac{1}{3}$ W．， 4 miles mag	$10.25 \mathrm{a} . \mathrm{m}$ ．		71
14		796	Point Judith，W．NW．， $3 \frac{3}{}$ miles mag．．．．．	$11 \quad \mathrm{a} . \mathrm{m}$ ．		70
14	do	797	Point Judith，NW．by W．$\frac{3}{4}$ W．， 24 miles mag．	$11.40 \mathrm{a} . \mathrm{m}$.		70
14	．．．do	798	Point Judith，N W．by W．$\frac{3}{4}$ W．， $1 \frac{1}{4}$ miles mag．	$12.10 \mathrm{p} . \mathrm{m}$ ．		71
14	．．．．do	799		$12.30 \mathrm{p} . \mathrm{m}$.		70
16	．．．．do	800	Poplar Point Light，N．NW．$\frac{3}{3}$ W．， $2 \frac{1}{4}$ miles mag．	$11.35 \mathrm{a} . \mathrm{m}$.		63
16	．．do	801	Poplar Point Light，W．by N．， $2 \frac{3}{\text { 寺 miles }}$ mag．	$12.20 \mathrm{p} . \mathrm{m}$ ．		65
16	．．．．do	802	Half Way Rock，W．，$\frac{3}{4}$ mile mag．．．．．．．．．	2.15 p．m．		68
16		803	Half Way Rock，N．by E．$\frac{1}{2}$ E．， 25 miles mag．	$3.25 \mathrm{p} . \mathrm{m}$ ．		67
17	．do	804	Cuttyhank Light，NE．by E．， $8 \frac{3}{3}$ miles mag．	11.15 a ．m．		68
17do	805	－．．．．．do．．．．．．．．．．．．．．．．．．．．．．．	11.20 am m．		68
17	．．．．do	806 807		12 m ．		69
17		807	Cattyhank Light，NE．byE．$\frac{3}{4} \mathrm{E}$ ．， $7 \frac{3}{4}$ miles mag．	$12.50 \mathrm{p} . \mathrm{m}$.		10
17	．do	808	Cutty hunk Light，NE．by E．$\frac{1}{2}$ E．， 8 miles mag．	1.20 p．m．		70
17	．．．do	809	Cuttyhank Light，NE．by E．， 12 miles mag．	$1.55 \mathrm{p} . \mathrm{m}$ ．		70
17	．．．．do	810	Cuttyhunk Light，NE．by E．， $12 \frac{1}{2}$ miles mag．	2.15 p．m．		70
17	do	811	Cuttyhunk，NE．by E．，121 miles mag．	2.20 p．m．		69
18	．．．．do	812	Block Island Light，N．NW．$\frac{1}{4}$ W．， 20 miles mag．	11.30 ar m．		70
18	．do	813	Block Island Light，N．NW．$\frac{1}{4}$ W．， 20 miles mag．	11.55 a．m．		70
18	．．．．do	814	Block Island Light，N．NW．Ki W．， 18 miles max．	1 p．m．		72
18		815	Block Islaud，NW．by N．， 17 miles mag．．			72
23		816	Brenton＇s Reef Light－Ship，E．$\frac{3}{3}$ S．， $2 \frac{3}{8}$ miles mar	10.25 am m ．		71
23	．．．．do	817	Brenton＇s Reef Light－Ship，E．술 N．， 3	11 a．m．		72

sion steamer Fish Hawk, Lieut. Z. L. Tanner, commanding.
OF 1880.

Temperature of water, intermediate.						Character of bottom.	Wind.	Drift.	What used.
66.5				62.5	84	Sand and shells.	NE. $4 . .$.		Dredge.
66.5				62.5	81	. . .do	NE. 3		Trawl.
69.5				67	8	- . . do	NE. 2.		Dredge.
69.5				67	8	- ..do	NE. 3 ...		Trawl.
72				69	$10 \frac{1}{2}$	Sand and mud ..	N.2.....		Dredge.
72				68	12	Gravel, sand, and mud.	Calm ...		Trawl.
$67 \frac{1}{3}$				$58 \frac{1}{2}$	$27 \frac{1}{2}$	Sand and shells.	N.1.....		Dredge.
67 $\frac{1}{2}$.	$58 \frac{1}{2}$	$27 \frac{1}{2}$. . . do	N. 1.....		Trawl.
70	...			$58 \frac{1}{2}$	26	- . . do	N, $2 \ldots \ldots$		Do.
68				57\%	$22 \frac{1}{2}$ do-.......	SW. $1 .$.		Dredge.
69				$57 \frac{1}{2}$	18	- . do	SW. 1...		Trawl.
69				57	16	Sand..........	SW. $1 .$.		Do.
70				60	16	Sand and shells.	N.1.....		Dredge.
70				55	1712	Sand.............	N.2.....		Trawl.
71	-...			53 ${ }^{2}$	20	- . . do	NW. $2 .$.		Dredge.
71				542	191	- . . do .---...- . . .	NW. $2 .$.		Trawl; trawl caughtis wreck; parted rope.
71			53 $\frac{1}{2}$	19	Mud..............	NW.1..		Dredge.
71	--.			$53 \frac{1}{2}$	19	Sand and mud ..	NW. 1.		Trawl.
71	---			54	18	Sand.-.-.-.-.....	NW. 1.		Dredge.
71				54	171	...do	NW. 1.		Otter trawl.
71				541	16	- . . do	S. 1		Trawl.
71	- $-\cdot$			60	20	- .-. do-.....	S.SW.2.		Dredge.
71				54	18	- -- do .-..........	SW. $2 .$.		Trawl.
69				63	19do	SW. 3...		Dredge.
69				53	19	-... do---.	SW. 4...		Trawl.
69	--.			53	19	-...do	SW. 4...		Dredge.
69				53	19	Mud	SW. 4...		Trawl.
681				55	16.	Sand..----...-.	SW. 3.		Dredge.
66			59	123	Sand and shells .	SW. 3...		Do.
67 70	. . .			61	13	Black sand	SW. 3...		Do.
70				693	4	Sand.............	N. 3		Trawl.
71				68	$4 \frac{1}{2}$	Mud..............	NE. $1 . .$.		Do.
$70 \frac{1}{2}$ 69	\ldots			62 60	120	Sand- -	NE. $1 .$.		Do.
66	-...		-...	59	$11 \frac{1}{6}$ do	SW. 2...		Do.
66	\cdots			59	117do .-.-.-......	SW. 2...		Do.
67	--			56	14	-...do .--------.	SW. 2...		Trawl.
67				60	121do	SW.2...		Dredge.
67	\ldots			60	13do-. - .	SW.2...		Do.
67	--.		...-	52	214do	SW. 2.		Do.
67				52	21	. . . do	SW.2...	W. NW. $\frac{1}{4}$ mile	Trawl; camoup torn
67				53	193do	SW.2..-	SW. 4 milo...	Dredge.
66				46	$28 \frac{1}{3}$	do	SE. $2 . . .$.	NW. $\frac{t}{\text { mile }}$ - . -	Do.
67	-...		...	46	2812	- - . do	SE. 2....	SE. $\frac{1}{4}$ mile.....	Trawl.
72	71	57	49	46	271	... do	SE.2....	SW. $\frac{1}{4}$ milo....	Do.
72 69	71	56	49	48 66	29 8.1	... do do	$\text { S. } 2 \ldots .$ S. 2	SW. $\frac{1}{4}$ mile.... SE + mile	Chester rake dredge. Dredgo.
68				63	10	. . . do	S. $2 . . .$.	SE. $\frac{1}{4}$ mile....	Do.

Dredging and trawling record of the United States Fish Commission
SEASON

Date．	Thermometer used．		Locality．	宮	号	荘
188a						
Aug． 23	N．Z． 40007 surf．； 42666 bottom．	818	Brenton＇s Reef Light－Ship，E．$\frac{1}{2}$ N．， 34 miles mag．	$11.20 \mathrm{p} . \mathrm{m}$.		72
23	．．．do ．．．．．．．．．．．．．	819	South End Hope Isle，SE．by E．$\frac{1}{2}$ E．，$\frac{1}{2}$ mile mar．	1 p．m．		4
23	N．Z． 42666 surf．；	820	South End Hope Isle，N．NE．，$\frac{1}{4}$ mile	$1.40 \mathrm{p} . \mathrm{m}$.		76
23	N．Z． 40007 deep．	821	South End Hope Isle，N．by E．，$\frac{1}{2}$ mile	2.15 p．m．		78
23		822	mag． South End Hope Isle，NE．$\frac{1}{\frac{3}{2}}$ mile mag	$3 \text { p.m. }$		8
24	N．Z． 46400 surf．；	823	N．Light Block Island，W．$\frac{1}{2}$ S．， $1 \frac{1}{2}$ miles	12.35 p．m．		8
	N．Z． 40007 deep．		mag．			
24	．．．．do ．．．．．．	824	N．Light Block Island，SW． 1 W．， 1 mile mag．	$12.50 \mathrm{p} . \mathrm{m}$ ．		74
24	．．do	825	N．Light Block Island W．SW．${ }^{3}$ W．， 1 娄 miles mag．	$1.30 \mathrm{p} . \mathrm{m}$.		73
24	do	826	North Light，Block Island，W．NW．$\frac{1}{2}$ W．， $2 \frac{1}{2}$ miles mag．	$2.40 \mathrm{p.m}$ ．		73
24	．do	827	North Light，Block Island，W．NW．$\frac{1}{2}$ W．， $2 \frac{1}{2}$ miles mag．	$3.05 \mathrm{p} . \mathrm{m}$ ．		71
25	do	828	North Light，Block Island，SW．by W． W．， 21 miles mar．	$12.40 \mathrm{p.m}$		70
27	N．Z． 42666 surf．； 40007 deep．	829	Cormorant Rock，NW．by N．，$\frac{1}{4}$ mile mag．	$10.45 \mathrm{a} . \mathrm{m}$ ．		63
27		830	West Island，SE．by E．$\frac{1}{2}$ E．，$\frac{3}{3}$ mile mag．	11.15 am m．		4
27	．．．do	831	North end Gould Island，SW．$\frac{1}{4}$ W．， 350 yards mar．	$12.30 \mathrm{p} . \mathrm{m}$.		68
27	．do	832	North end Gould Island，W．， 150 yards	$12.45 \mathrm{p} . \mathrm{m}$ ．		70
27	．do	833	Southend Gould Island，W．， 100 yards mas．	1 p．m．		70
27	．do	834	MrcCurry＇s Point，W．SW．，${ }^{3}$ mile mag ．．	$1.30 \mathrm{p} . \mathrm{m}$ ．		63
27	do	${ }_{8}^{835}$	Mrccurry＇s Point， N .1 E．， $1 \frac{1}{4}$ miles mag．．	$1.50 \mathrm{p} . \mathrm{m}$ ．		
$\stackrel{27}{27}$		836	Black Point，W．$\frac{1}{2}$ N．，$\frac{1}{2}$ mile mag．．．．．．．．	${ }^{2.25} \mathrm{p} . \mathrm{m}$ ．		
27		837	Black Point，NW．by W．근 W．，$\frac{1}{2}$ mibo mag．	2.45 p．m．		69
27	．do	838	Woods＇Castle，W．by N．， 1 mile mag．．．．	$3.15 \mathrm{p} . \mathrm{m}$ ．		66
31	do	839	Dumplings，NW．$\frac{1}{3}$ N．， 300 yards mag．．．．	$9.50 \mathrm{a} . \mathrm{m}$ ．		67
31		840	Damplings， $\mathrm{N} . \mathrm{by} \mathrm{VW} . \frac{1}{3} \mathrm{~W} ., 100$ yards mag	$10.03 \mathrm{a} . \mathrm{m}$ ．		
31	do	841	Goat Isle Light，NE．by E．$\frac{3}{3}$ E．，$\frac{7}{8}$ mile mag．	$10.45 \mathrm{a} . \mathrm{m}$ ．		68
31	．do	842	Goatisle Light，E．NE．$\frac{1}{2}$ E．，$\frac{1}{2}$ mile mag．	$11 \mathrm{a} . \mathrm{m}$.		69
31	．．．．do	843	North end Dyer＇s Island，NE．$\frac{1}{2}$ E．，$\frac{3}{3}$ miles mag．	12 m ．		69
31	．do	844	North end Dyer＇s Island，SE．$\frac{1}{2}$ E．，$\frac{1}{4}$ mile mag．	$12.30 \mathrm{p.m}$ ．		70
31	．do	845	Pradence Light，N．$\frac{1}{2}$ W．，$\frac{3}{8}$ mile mag．	1 p．m．		70
31	．．．do	846	Prudence Light，N．by E．$\frac{3}{4}$ E．， $1 \frac{1}{2}$ miles mag．	$1.35 \mathrm{p} . \mathrm{m}$ ．		70
31	do	847	Halfway Rock，N．$\frac{1}{2}$ W．， 1 mile mag．．．．．．	$2.15 \mathrm{p} . \mathrm{m}$ ．		70
Sept．${ }^{31}$	．．．．do ．．．．．．．．．．．．	848	Bishop＇s Rock，E．，$\frac{1}{3}$ mile mag ．．．．．．．．．．．．	$3 \mathrm{p} . \mathrm{m}$ ．		69
Sept． 1		849	Fort Dumpling，W．NW．$\frac{1}{2}$ W．，$\frac{1}{4}$ mile mag．	$9.20 \mathrm{a} . \mathrm{m}$ ．		67
1	．do	850 8.51	Fort Dumpling，E．NE．$\frac{1}{3}$ E．$\frac{1}{6}$ mile mag．．	9.40 ar m.		
1		851	Beaver Tail Light，SW．$\frac{1}{4}$ W．， $1 \frac{13}{6}$ miles mag．	$10 \mathrm{a} . \mathrm{m}$ ．		
1	．．．．do	852	Beaver Tail Light，S．SW．$\frac{3}{4}$ W．，$\frac{2}{8}$ miles mag．	10.35 a ．m．		67
1	do	853	Beaver Tail Light，SW．by S．， 2 miles mag．	$10.50 \mathrm{a} . \mathrm{m}$ ．		68
1	．${ }^{\text {do }}$	854	Beaver Tail Light SW．$\frac{1}{4}$ S．， 13 miles mag．	$11.10 \mathrm{a} . \mathrm{m}$ ．	bb	69
1	．．do	855	Beaver Tail Light SW．by S．， 2 miles mag．	11.40 am m ．		70
1	．．．．do	856	Beaver Tail Light SW．$\frac{1}{2}$ W．， $1 \frac{18}{8}$ miles mag．	$12.05 \mathrm{p} . \mathrm{m}$.		69
1	．．do	857	Beaver Tail Light，W．SW．$\frac{3}{4}$ W．${ }^{1}{ }^{\frac{6}{10}}$ miles mag．	$1235 \mathrm{p} . \mathrm{m}$ ．		
1	do	858	Beaver Tail Light，W．NW．$\frac{1}{6}$ ．，$\frac{1}{3}$ mile mag．	1.05 p．m．	loo	69
3	N．Z．， 40400 surf．； 40007 deep．	859	Cuttyhunk Light，N．$\frac{1}{2}$ W．， 3 miles mag．．	$11.20 \mathrm{a} . \mathrm{m}$ ．		68
3	$\text { do } . . .$	860 861	Cuttyhunk Light，N．$\frac{1}{3}$ W．， 3 miles mag． Cuttyhunk Light，N．$\frac{3}{3}$ W．， $3 \frac{3}{3}$ miles mag．	$11.55 \mathrm{a} . \mathrm{m} .$		70

steamer Iish Hawl, Lieut. Z. L. Tanner, commanding-Continued.
OF 1880 .

Dredging and trawling record of the United States Fish Commission
SEASON

Date．	Thermometer used．	$\begin{aligned} & \text { á } \\ & \stackrel{\rightharpoonup}{c} \\ & \stackrel{y}{t} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Locality．	$\begin{aligned} & \stackrel{B}{\Xi g} \\ & \underset{B}{B} \end{aligned}$	或	
$\begin{gathered} 1880 . \\ \text { Sept. } \end{gathered}$	$\begin{aligned} & \text { N. Z., } 46400 \text { surf. } \\ & 40007 \text { deep. } \end{aligned}$	862	Cuttyhunk Light，N．， 4 miles mag ．．．．．．	$12.55 \mathrm{p} . \mathrm{m}$.		68
3	．．．dlo ．．．．．．．．．．．．．	863	Cuttyhunk Light，N．$\frac{1}{8}$ E．， $3 \frac{3}{3}$ miles mag．－	$1.40 \mathrm{p} . \mathrm{m} .$	Flood	70
3	．．do	864	Gay Head Light，S．SW．$\frac{7}{8} \mathrm{~W}$ ．， $51{ }^{6}$ miles mag．	$3.00 \mathrm{p} . \mathrm{m} .$		70
4	N．Z．， 46400 surf．； 46401 deep．	865	Lat． $40^{\circ} 05^{\prime}$ N．，long． $70^{\circ} 23^{\prime} \mathrm{W}$.	$5.40 \mathrm{a} . \mathrm{m}$ ．		71
4	．．．．do	866	Lat． $40^{\circ} 05^{\prime} 18^{\prime \prime}$ N．，long． $70^{\circ} 22^{\prime \prime} 18^{\prime \prime} \mathrm{W} .$.	6.30 a．m．		73
4	．do	867	Lat． $40^{\circ} 05^{\prime} 42^{\prime \prime} \mathrm{N} .$, long． $70^{\circ} 22^{\prime} 6^{\prime \prime} \mathrm{V}$	7.04 am m ．		75
4	．do	8688 869	Lat． $40^{\circ} 01^{\prime} 42^{\prime \prime} \mathrm{N}$ ．，long． $70^{\circ} 22^{\prime} 30^{\prime \prime} \mathrm{W} .$. Lat． $40^{\circ} 02^{\prime} 18^{\prime \prime} \mathrm{N}$ ．，long． $70^{\circ} 23^{\prime} 06^{\prime \prime} \mathrm{W} .$.	$\begin{aligned} & 8.23 \mathrm{a} . \mathrm{m} \\ & 9.27 \mathrm{a} . \mathrm{m} \end{aligned}$		75 80
4		870	Lat． $40^{\circ} 02^{\prime} 36^{\prime \prime}$ N．，long． $70^{\circ} 22^{\prime \prime} 58^{\prime \prime} \mathrm{W}$	$10.50 \mathrm{a} . \mathrm{m}$ ．		80
4	．．．do	871	Lat． $40^{\circ} 02^{\prime} 54^{\prime \prime} \mathrm{N} ., 10 \mathrm{~g}$ ． $70^{\circ} 23^{\prime} 40^{\prime \prime} \mathrm{W}$.	$11.40 \mathrm{a} . \mathrm{m}$ ．		84
4	．do	872	Lat． $40^{\circ} 05^{\prime} 39^{\prime \prime} \mathrm{N}$ ．，long． $70^{\circ} 23^{\prime} 52^{\prime \prime} \mathrm{W}$	12.45 p．m．		81
13	N．Z．， 46404 surf．； 46400 deep．	873	Lat． $40^{\circ} 02^{\prime} \mathrm{N} ., \mathrm{long} .70^{\circ} 57^{\prime} \mathrm{W}$.	$5.36 \mathrm{a} . \mathrm{m}$.		68
13	．．．．do ．．．．．．．．．．．	874	Lat． $40^{\circ} \mathrm{N}$ ，long． $70^{\circ} 57^{\prime} \mathrm{WV}$	$6.26 \mathrm{a} . \mathrm{m}$ ．		70
18	do	875	Lat． $39^{\circ} 57^{\prime} \mathrm{N}$. ，long． $70^{\circ} 57^{\prime} 30^{\prime \prime} \mathrm{IV}$	7.51 a．m．		70
13	do	876	Lat． $39^{\circ} 57^{\prime} \mathrm{N} ., \mathrm{long} .70^{\circ} 56^{\prime} \mathrm{W}$	$8.45 \mathrm{a} . \mathrm{m}$ ．		68
13	．．do	877	Lat． $39^{\circ} 56^{\prime}$ N．，long． $70^{\circ} 54^{\prime} 18^{\prime \prime}$ IV	9.40 a．m．		71
13	．．．．do	878	Lat． $39^{\circ} 55^{\prime}$ N．，long． $70^{\circ} 54^{\prime} 15^{\prime \prime}$ W	$11.00 \mathrm{a} . \mathrm{m}$ ．		72
13	．．do	879	Lat． $39^{\circ} 49^{\prime} 30^{\prime \prime} \mathrm{N} .$, long． $70^{\circ} 54^{\prime} \mathrm{W}$	$1.20 \mathrm{p} . \mathrm{mm}$.		73
13	do	880	Lat． $39^{\circ} 48^{\prime} 30^{\prime \prime} \mathrm{N} .$, long． $70^{\circ} 54^{\prime} \mathrm{W}$	$3.12 \mathrm{p} . \mathrm{m}$.		74
13	－do	881	Lat． $39^{\circ} 46^{\prime} 30^{\prime \prime} \mathrm{N} .$, long． $70^{\circ} 54^{\prime} \mathrm{W}$	$5.00 \mathrm{p} . \mathrm{m}$.		70
17	．．．do	882	İalfway Rock，N．NE．$\frac{1}{2}$ E．， 2 娄 miles mag	$10.56 \mathrm{a} . \mathrm{m}$.		68
17	do	883	Halfway Rock，NE．by N．， $2 \frac{2}{4}$ miles mag	$11.35 \mathrm{a} . \mathrm{m}$		70
17	do	884	Hope Island，NE．$\frac{1}{2}$ E．， 20 yards mag ．．．．	2.10 p．m．		72
17	do	885	Gould Island，N．by E．妻 E．，$\frac{3}{8}$ mile mag ．	$3.15 \mathrm{p} . \mathrm{m}$ ．		71
21	－do	886	South Light，Block Island，N．$\frac{3}{4}$ E．， $5 \frac{3}{3}$ miles mag．	$12.46 \mathrm{p} . \mathrm{m}$.		67
21	．．do	887	South Light，Block Island，N．． F W．， 53 miles mag．	$1.30 \mathrm{p} . \mathrm{m}$.		67
21	．．．．do	888	South Light，Block Island，N．by E．，C miles．	$2.00 \mathrm{p} . \mathrm{In}$ ．		68
21	．．do	889	South Light，Block Island，W．委 S．， 5 miles mag．	$3.50 \mathrm{p} . \mathrm{m}$ ．		68
21	．．．．do	890	South Light，Block Island，W．$\frac{1}{4}$ S．， $4 \frac{3}{4}$ miles mag．	$4.15 \mathrm{p} . \mathrm{m}$ ．		68
Oct． 2	N．Z． 46403 surf．；	891		$6.00 \mathrm{a} . \mathrm{m}$ ．		60
2		892	Lat． 39046^{\prime} N．，long． 71005^{\prime} W ．．．．．．．．．．	8.46 a．m．		64
2	N．Z． 46403 surf．； Mil－Casel．deep	893	Lat． $39^{\circ} 5 \underline{2}^{\prime} 20^{\prime \prime} \mathrm{N} .$, long． $70^{\circ} 58^{\prime} \mathrm{W}$	$11.23 \mathrm{a} . \mathrm{m}$.		63
2	．do．．．．．．－．．．．．	894	Lat． $39^{\circ} 53^{\prime} \mathrm{N} .$, long． $70^{\circ} 58^{\prime} 30^{\prime \prime} \mathrm{W}$	$1.10 \mathrm{p} . \mathrm{m}$ ．		63
Now ${ }^{\frac{2}{4}}$	－do ．．．－．．．．．．．．	895	Lat． $39^{\circ} 56^{\prime} 30^{\prime \prime} \mathrm{N} ., 1 \mathrm{long} .70^{\circ} 59^{\prime} 45^{\prime \prime} \mathrm{W}$	$3.17 \mathrm{p} . \mathrm{m}$.		62
Nov． 16	46405 surf．； 46403 doed．	896	Lat． $37^{\circ} 26^{\prime} \mathrm{N} .$, long． $74^{\circ} 19^{\prime} \mathrm{W} .$.	9.20 a．m．		52
16	. . . do do	897	Lat． $37025^{\prime \prime} \mathrm{N} ., \mathrm{long} .74018^{\prime} \mathrm{W}$.	10.10 a m．		62
16	．do	899	Lat． $37^{\circ} 22^{\prime} \mathrm{N}$ N．，long． $74^{\circ} 29^{\prime} \mathrm{W}$	$11.25 \mathrm{a} . \mathrm{m}$. $1.55 \mathrm{p} . \mathrm{m}$.		50
16	．do	900	Lat． $37{ }^{\circ} 19^{\prime} \mathrm{N} ., \mathrm{long} .74^{\circ} 41^{\prime} \mathrm{W}$	$4.00 \mathrm{p} . \mathrm{m}$.		55
16	do－－．．．．．．．．．	901	Lat． $37010^{\prime} \mathrm{N} .$, long． $75^{\circ} 08^{\prime} \mathrm{W}$	$7.15 \mathrm{p} . \mathrm{m}-$		53
Dec． $\begin{array}{r}9 \\ 9\end{array}$	N．Z． 46405 surf．； 46403 deop．	902 903	Point Lookout，SE．by E．， $3 \frac{1}{4}$ miles	9.55 ar m． 10.05 arm.		30
9	－．．．do	904	．．．do	$10.05 \mathrm{a} . \mathrm{m} .$		30
9	．．．do	905	．．do	10.15 a．m．		30
9	．．do	906	．．do	10.33 ar m．		32
9	．．do	907	．．．do	10.40 ar m．		33
9	．．de	908	－－．do	$10.55 \mathrm{a} . \mathrm{m}$ ．		36
Dec．$\quad \begin{array}{r}9 \\ 9\end{array}$	－－．do	909	．．．．do	11.07 am m ．		34
Dec． 9	．．．do	910	－－．do	11.20 a ．m．		34
9	．．．do	911	－．．．do．	11.44 a． m ．		34
9	－．．${ }^{\text {do }}$	912	．．．．do	$11.54 \mathrm{a} . \mathrm{m}$.		34
9	．．．do	913	－．．．do．	$11.08 \mathrm{p} . \mathrm{m}$ ．		36
9	．．．do ${ }^{\text {do }}$	914	．．．．do．	$12.23 \mathrm{p} . \mathrm{m}$ ．		38
9	－－．．do	915	．do	$12.38 \mathrm{p} . \mathrm{m}$. $12.47 \mathrm{p} . \mathrm{m}$.		38

steaner Fish Hawk, Lieut. Z. L. Tanner, commanding-Continued.
OF 1880.

Temperature of water, intermediate.						Character of bottom.	Wind.	Drift.	What used.
$\begin{aligned} & \text { © } \\ & \text { \% } \\ & \text { H } \\ & \text { in } \end{aligned}$	gin 号 药 10			$\begin{aligned} & \text { घ̇ } \\ & \text { دٌ } \\ & \text { مٌ } \end{aligned}$					
66	65			64	17	Sand...	SW.2...	S. \ddagger mile	Trawl.
67	65	65		65	18	Mnd.	SW. 2...	S. $\frac{1}{4}$ milo	Chester rake dredge.
67	66			65	13	Sand.	SW. 2.	S. $\frac{1}{4}$ mile	Dredge.
73	75			68	65	Sand.	Var. 2...	E. NE. $\frac{3}{2}$ mile.	Trawl.
73	74.5			68.5	65	do	Var. 1...	NE. by E. $\frac{1}{2}$ mile.	Do.
73	75			53	64do	Calm ...	E. SE, $\frac{3}{4}$ mile..	Chester rake dredge.
75	75			47	162	. do	Calm ...	NW. ${ }^{\text {a mile }}$...	Trawl.
76	75			50	158	. do	Calm		Do.
76.5	75	75		49	115	...do	Calm ...	N. NW. ${ }^{\frac{3}{4} \text { mile }}$	Do.
77	75			50.5	86	. .do	S. 1	NW. by N. $\frac{1}{2}$	Do.
69.5	70	70		51	100	Mud.	SW. 3...	$\begin{aligned} & \text { mile. } \\ & \text { NW. } \mathrm{N} . \frac{1}{2} \\ & \text { mile. } \end{aligned}$	Do.
70	70	70	64	51	85do	SWV. 2...	NW. $\frac{1}{2}$ mile...	Do.
70	71	70	69	53	126do	SW. 2-..	NE. $\frac{1}{2}$ mile....	Do.
70	71	70	69	53	120	--. do	9W. $2 \ldots$	N. $\frac{3}{}$ mile......	Do.
71	70 70	70 70	66 55	57	${ }_{1426}^{12 \frac{1}{2}}$do	SW. ${ }^{\text {SW... }}$	N. NW. ${ }^{\frac{3}{4} \text { mile. }}$	Do.
71.5 71.5	70	70 71	75	52 42	${ }_{225}^{142 \frac{1}{2}}$do	SWW. $2 . .$.		Do.
71.5	74	72		43	$252 \frac{1}{2}$do	SW. 3...	W. by N. $\frac{3}{4}$ mile	Do.
71	71	71.5		42	325	-..do	SW. 3...	W. NW. $\frac{1}{3}$ mile	Do.
65				67	123	Mad	SW. $2 \ldots$	SW. $\frac{1}{4}$ mile...-	Trawl.
65				63.5	13	. do	SW. 2...	SW. $\frac{1}{2}$ milo.	Do.
65				63.5	5	..do	SW. $3 .$.	SW. mile.	Chester rake dredge
${ }_{61} 69$	64			${ }^{65}$	16	Shell	W. 2 .	N. $\frac{1}{2}$ mile....	Dredge.
64	62			62	19	.d	W. 2	W. ${ }^{\text {a }}$ mile ..	Trawl.
64	62			62	19	. do	W. 3.	W. $1 \frac{1}{2}$ miles ...	Do.
64	62			61.5	11	Rocky	W. 3	W. SW. $\frac{1}{2}$ mile	Dredge.
04	62			61.5	11	do	W. $3 . .$.	W. SW. $\frac{1}{2}$ mile	Do.
67					310	Mad	NE. 3 .	N. $\frac{1}{2}$ mile......	Trawl; sounding wire broke at 310 fathoms.
65					487	Mud; small stones.	NE. $3 . .$.	N. NE. 2 miles	Trawl; lost lead and thermometer at surface of water.
64				40	372	.do	NE. 3	N. 1 mile......	Trawl.
64				40	365	Sand.	NE. 3.	N. 2 miles.	Do.
65				42	238	Mad.............	NE. 3 ...	N. 11 miles....	Do.
62				55	56	Sand and shells.	NW. $2 .$.	W. NW. $\frac{1}{2}$ mile	Do.
02				48	157 ${ }^{\frac{1}{2}}$	Mnd............	SW. $2 \ldots$	W. 1 mile	Do.
${ }_{61}^{62}$	\ldots			44 54	300 57	Sand	SWW. $2 \ldots$	W. 1 mile	Do.
59				56	31	...do.......-.....	SW. $2 . .$.	W. $\frac{1}{2}$ milo.....	Do.
60					18	-...do	SW. $2 \ldots$	W. $\frac{1}{3}$ mile	Do.
50	\cdots			40	3	Oyster bank....	Niv. $2 .$.	NW. $\frac{1}{}$ milo...	Oyster dredga
50				40	4	..do	NW. $3 .$.	NW. $\frac{1}{\text { mile }}$	Do.
45				40	4	do	NW. $3 .$.	N. 1 milo.	Do.
45				40	$3{ }_{2}$	do	NW.3..	N. NW. $\frac{1}{1}$ mile	Do.
45				39	$3{ }^{3}$	do	NW. $3 .$.	N. NW. $\frac{3}{3}$ mile	Do.
45				39	3	-. do	NW. 3 ..	N. NW. $\frac{1}{2}$ mile.	Do.
45 45				$40{ }^{39}$	3 3 3	Oyster rock	$\text { NW. } 2 .$	NW. 4 milo...	Do.
45	45			40	3 3 3	-...do do	NW. $2 .$.		Do.
	45			40	3do	NW.1.	N. NW. $\frac{3}{3}$ mile	Do.
	45			40	3	d	NW. 2	N. $\frac{7}{3}$ mile......	Do.
	45			40	3	do	NW. 2	N. NW. $\frac{3}{8}$ milo-	Do.
	45			40	3	. do	NW. 2	N. NW. ${ }^{\frac{1}{3} \text { milo }}$	Do.
.....	45			40 40	3 3		NWV. ${ }_{\text {NW. }}^{\text {NW. }}$	N. NW. N. NW. mile mile	Do.
				40	 do	NW. 2	N. NW. $\frac{1}{3}$ mile.	Do.

LIST OF PLATES.

Plate

Plate

Plate
Plate
I.-United States Fish Commission steamer Fish Hawk.
II.-Port side of main deck, showing portion of hatching machinery.
III.-Hatching cylinders, port side.

TV.-One hatching cone, 3 hatching cylinders, 1 siphon funnel, 2 spawn pans, 1 spawn pail, 1 spawn dipper.
Plate
Plate
Plate
Plate VIII.-Accumulator, with dredging block hooked; safety hook; brass washer.
Plate IX.-The beam trawl ready for lowering.
Plate X.-Dredge-safety hook, water bottle, dredge-weight and tangles, Chester rake dredge.
Plate XI.-The table sieve and cradle sieve, hopper and tray exposed.
Plate XII.-Main deck, starboard side, table sieve, swinging table and collecting apparatus.
Plate XIII.—Sounding machine, with Negretti and Zambra deep-sea thermometer descending.
Plate XIV.-Sounding machine, with Negretti and Zambra deep-sea thermometer ascending.
Plate XV.-Sounding machine, with Bassnett's patent atmospheric lead. Plate XVI.-The Negretti and Zambra deep-sea thermometer, with wooden frame and metal case.
Plate XVII.-The Miller-Casella deep-sea thermometer in and out of case.
Plate XVIII.-Hilgard's ocean salinometer.

INDEX.

Page.
Commissioner Page.
Compasses
Compasses 4, 6, 6, 14, 33, 41 4, 6, 6, 14, 33, 41
Compressors
Compressors 3 3
Acanella normani 38 38
Actinians 38 38
After-deck 5 5
Agassiz, Professor 18
Air-pumps 9
Alloposus mollis 38
Amphipoda 38
Anchors 5, 6, 14
Antedon sarsii 38
Appropriation bill 2
Archaster americanus 38
Argonauta argo 38
Artificial fish hatching, early methods of 15
Artificial propagation of oysters 35
Azimuth 29
Baird, S. F 1,2
Bassnett's patent atmospheric lead 21
Bath-room
18, 37, 38
Beam-trawl
Bean, Tarleton H 37
Bearer Tail Light 28, 30, 42, 44
Bedplate 8
Bilge-pump 10
Bishop's Rock 44
Black Point 44
Blake, Coast-Survey steamer 17
Blake dredge 18, 19
Block Island $29,36,42,44,46$
Boats. 6, 7, 14
Boggs, William B 1,2
Boiler 12, 13
Books 14
Brealth of steamer Fish Hawk 2
Brenton's Reef Lightship 29, 42, 44
Bristol, R. I 6
Brown's Ledge 29
Bulkheads 2
Cabin 5
Capstan 5
Captain's room 5
Cephalopoda 38
Chain-lockers 2, 3
Chains 6,14
Charts 5, 14
Chesapeake Bay 39
Chester rake dredge $18,43,45,49$
Christiana Creek 1
Chronometer 14
Circulating pump 9
Coast and Geodetic Survey 14, 17, 26
Codfish 30, 32
Connecting rods 10
Construction and Repair, Burean of 14
Copeland, Charles W 1
Copepoda 39
Coral 38
Cormorant Rock 44
Cradle sieve 19
Crank-shafts 10
Crinoidea 38
Cross-heads 10
Crustacea 38, 39
Cumacea 38
Cuttyhank Light 42, 44, 46
Cylinder heads. 8
Cylinders 7
Decapoda 38
Deep-sea exploration 28, 39
Delaware 1
Density of sea-water, observations apon 26
Depth of steamer Fish Hawk 2
Distances made by Fish Hawk. 41
Donkey-boiler room 4,5
Draft of the Fish Hawk 1
Dredge 32, 37, 43, 45, 47
Dredging and trawling record 42, 47
Dredging apparatus $16-20,28,30,35$
Dredging boom 5
Dredging trips 41
Dumplings 29, 30, 42
Dutch Island 28, 41, 42
Dyer's Island 44
Eccentrics and rods 10
Echinoderms 38, 39
Edible species 37
Engine department 3
Engine-room 4,5
Engines and machinery 7-14
Equipment and Recruiting, Burean of 14
Exhanst connections 9
Fanna of Gulf stream 37, 38, 39
Fauna of Sonthern New England 37, 38, 39
Feed-pumps 9
Fisk Commission. 18, 19, 34, 35
Fish hatching machinery 14,28
Fish Hawk, F. C. steamer 42, 47
Fishing banks 37, 38
Flabellum goodei 38
Flags 14

	Pame.	Page.		
Flounder		Nary-yard..	..22, 33	, 35, 36
Fogs	31, 32	Negrettiand Zambra deep-8ea thermometer 23, 24,		
Foraminifera	38		25, 30, 31, 42, 44, 46	
Force-pumps	3,5	New species		37, 38
Forecastle	3,5	Newfoundland		
Forehatch.	5	New Haven, Conn		33,41
Forehold	3	Newport, R. I.		, 33, 41
Fort Adams	29	Now York, N. Y.		41
Fort Dumpling	42, 44	No Man's Land.		30
Gay Head.	30, 46	Norfolk, Va		36, 41
Gibls, Wolcott	27	Nova Scotia		. 37,38
Gloucester, Mass	37	Octopus.		38, 39
Goat Isle Light	44	Off-shore dredgings		37
Goode, G. Brown	37	Ophiurans		38
Gould Island.	44	Ordnance, Bureau of		4
Gulf of Maine	39	Otter trawl.		, 45, 47
Gulf stream, trips of Fish Haw	37	Outfit.		14
Hake	31	Oyster dredge		35,47
Half-Tay Rock	2, 44,46	Oysters		35
Harrard University	27	Paint-locke		
Hatching apparatus	5,16,34	Pautry		
Hatching deck.	4	Piano-forto wire used for	。	22
Herreshoff Manafacturing Comp	6	Pillow-blocks		10,11
Heteropoda	39	Pilot-house		
Hilgard, J. E.	26	Pistons.		9
Hilgard's ocean salinometer	26	Point Judith		8, 29, 42
Hoisting engine	, 11, 16	Pole flounder		39
Hope Island.	44	Polyps.		9
Hot well	9	Poplar Point Light		42
Hublbard, J.S	27, 28	Potomac River.		, 35, 36
Hull	2	Preparation for dredging		18
Hyalinœcia	38	Promenado deck.		5
Hyalincecia artifex	39	Prudence Light		44
Hydroida	38, 39	Pteropods.		39
Ice-houses	2	Pusey and Jones company		, 14, 34
Jelly-fish.	39	Quantico, Va		36,41
Journal of dredging trips	28-36	Rathbun, Richard		38
Kirby, Captain	37	Read, George H		2
Laboratory.	6	Record of dredging and tr	operations.	42-47
Lady of the Lake, steamer	36	Rhizopods.		38
Lead and line	20,22	Riding-bitts.		3
Length of steamer Fish Hawk.	2	Rig..		
Laght-house Board	1	Roebling's (John A.) Son	an	17
Line-shafts.	10	Royal Society		28
Linen room	3	Safety-hooks		17
Log	39	Sails		6
Lookout, Fish Commission ste	35,36	Saint Jerome Creek		, 35, 41
Lopholatilus chamoleonticeps.	,31,37	Saint Mary's River		41
Lower cabin	3	Sakonnet River		30
McCurry's Point	44	Salinometer		26,27
Machinery.	5, 7-14	Schizopoda.		38
Machinist's room	4	Scientific results of seaso	orations..	36
Mackerel.	39	Screw-propellers		11
Main deck	4	Sea-valves.		11
Massachusetts Bay	39	Shad..		14, 15
Menhaden	37, 39	Shaft brackets		
Messenger	24	Shear of steamer Fish Ha		2
Microscope	6	Side valve stems		10
Miller-Casella deep-sea thermom	,25,46	Sigsbee, Lieutenant-Comm		25,26
Mollusca	38, 39	skate..		31
Narragansett Bay	29, 36	Smith, James A		2
Nautical instruments	14	Smith's Creek		35, 41
Nautilus	38	Smithsouian Institution		35
Navigation, Bureau of	14	Smoke-pipe and casing		12
Navy Department.	2,14	Sounding apparatus...	. 20-23, 29,	30, 31

Nary-yard..................................... 22, 33, 35, 36
Negrettiand Zambra deep-sea thermometer 23, 24, $25,30,31,42,44,46$

Now spect37
New Haven, Conn 41
wport,41
No Man's Land 30
Norfor,37, 38
Octopus37
Ophiurans ,
Otter trawl 7
Oyster dredge 35,47
Paint-lucker
Pantry 310, 119
Point Judith39
Polyps 39
Poplon Piver.
Preparation for dredging 18
,
Pteropods 39
Quantico, Va 6,41Read, George H2Rhizopods38
Riding-bitts. 3Ro..................................... 2,Royal Society28
Saily 17
Saint Jerome Creek 41
San Marys 41
Salinometer 6, 27S.Screw-propellers11Shad11
Shaft brackets 11
Side valve stems 10
31
Smith, James A 2Smithsonian Institution35
Sounding apparatus 20-23, 29, 30, 31

Page.	e.
Soumlings................................... 20	Tilefish $30,31,32,37$
Spars.. 6	Tippet, Mr 22
Specimens..............-.................... $29,33,35$	Towing net . 30
Speed of steamer Fish Hawk................ 1	Trawl..................... $18,31,32,33,37,43,45,47$
Speedwell, U.S. steamer...................... 1	Trawl-line................................... 31,37
Sponges 38	Trenton, N.J................................. 17
Squids .. 38,39	Trips of Fish Hawk........................... 41
Starfish 38	Valves..- 8,14
Steam-chest................................ 8	Van Vliet, F. C................................ ${ }^{\text {a }}$
Steam-pipo 9	Verrill, A.E.........-......................... 19,33
Steam-log 39	Vineyard Sound.............................. . 30,36
Steam-pump...-............................... 13	Washburn and Moen Manufacturing Co ... 22
Steerago.................................... 3	Washington, D. C $33,34,35,41$
Steering gear ${ }^{\text {e }}$	Water densities 26
Stern-bearing 11	Water-closets...-.-....... 4
Store-rooms 2,3	Weather observations...................... . $42-47$
Surface condenser........................... 8	West Island ${ }^{\text {. }} 44$
Synopsis of steam log of Fish Hawk....... 39-41	Wilmington, Del........................1, 28, 34, 41
Table sisve.................................. 19	Windlass..................................... 3 . 5
Tangle bar. 19	Wood's Castle................................ 44
Tanner, Z. L........................... 1, 37, 43,45,47	Wood's Holl, Mass 30 . 32,41
Temperature observations $20,43,45,47$	Worcester, Mass.............................. 22
Thermometers $23,27,31,42,44,46$	Young fish 16
Thorpo and Rücker, Messrs.................. 28	

United States Fish Commission steamer Fish Hawk.

Hatehing eylinders, port side.

One hatching cone, 3 hatching cylinders, 1 syphon fumel, 2 spawn pats, 1 spawn pail, 1 spawn dipper.

Hoisting and reeling engine from forward looking aft.

Safety hooks, showing spring.

Accumulator, with dredging block hooked; safety hook; brass washer.

The lieam traml ready for lowering.

Dredge safety hook, water hottle, dredge weight, and tangles, Chester rake dredge.

The table sieve and cradle sieve, hopper and tray exposed.

Sounding niachine, with Negretti and Zambra deep-sea thermometer descending.

PLATE XIV.

Sounding machine, with Negretti aud Zambra deep-sea thermometer ascending.

Sounding machine, with Bassuett's patent atmospheric lead.

The Negretti and Zambra deep-sea thermometrr, with wooden frame ann metal case.

The Miller-Casella deep-sea thermometer in and out of case.

Hilgard's ocean salinometor.
-
-

II.-A REPORT OF THE WORK OF THE UNITED STATES FISH comilission steaner fish hawk, for the year ending DECEMBER 31, 1881.

By Lieutenaxt Z. L. Tanner, U. S. N., Commanding.

At the close of my last report, December 31, 1880, the ressel was at the United States navy-yard, Norfolk, Va., where she remained until February 26. The work of painting and refitting was completed about the middle of January, and a series of experiments with the hatching machinery carried on during the months of January and February.

It was considered desirable to introduce air with the feed-water on its entrance to the hatching cones for the purpose of economizing water, and, in order to mix the two sulticiently to prevent riolent ebullition by the rapid ascent and explosion of large air bubbles at the surface, we experimented with numerous forms of simple aerators, succeeding finally, as far as practicable, withcut first reducing the feed-water to a spray.

Fi.g. 1 is a vertical sectional view of the aerator (full size). $a a$ is the outer case into which $b b$ is screwed; c, the feed-pipe comnection; d, the nozzle over which the upper end of the flexible feedpipe is attached ; ee, air-holes.

Fig. 2 is an end vier, $b b$ is the nozzle to which the feed-pipe is attached; c, feed-pipe comnection ; е еєе еєеєе, airholes.

The feed-water entrring at c and the air at $e \quad e$ meet and find their way into the bases of the hatching cones partially mixed, that is, the feed-water is impregnated with numerous small air-bubbles.

Experiments were instituted also with a view of adapting the cones to cod-fish hatching.

Shad eggs, for which the hatching apparatus on board this vessel was designed, sink rapidly and require a con-

Fig. 1. stant upward current to prevent matting or settling at the bottom in a solid mass. Cod-fish eggs, on the contrary, float upon the surface of
sea-water, continued submersion resulting in the destruction of the embryos from asphyxia.

It was necessary, therefore, to devise some means by which the requisite change of water could be efiected without establishing a coustant current in either direction. Since the
 specific gravity of cod eggs is very near that of sea water, they take the direction of its slightest movement. Admitting water at the bases of the cones as in shad hatching would soou result in packing them around the perforated plates. Were the order reversed, by introducing water at the top and discharging at the base the downward current would soon send them all to the bottom. To surmount these difficulties, if possible, the following series of experiments was inangurated:
A cylindrical tank was hung ou gimbals, occupying the place of one cone in a set of four. The long leg of a siphou was secured to the bottom of the tank, the upper end reaching the maximum water level required in the cones. The lower end of the short leg, which was five inches long, reached the minimum water level. The goose necks at the bases of the cones were so modified as to have two feed-pipe connect is; the lower end of the main feed remained attached to the goose neck, as usual; the upper end, instead of connecting with the distributing pipe, was attached to the bottom of the siphon tank. The second or auxiliary feed-pipe was substituted for the main feed, being attached to the cone by the second comection above mentioned.

Water being pumped into the distributing tanks filled the pipes and, by opening the auxiliary feed valves, a current was admitted to the base of the cones which in due time filled them to the maximum level desired, when the siphon became submerged and commenced to act. The area of its discharge being about three times that of the combined auxiliary feeds, the water level in the cones steadily fell until it reached the height of the short leg of the siphon, when, its action ceasing, it rose again to its maximum level, producing a constant rise and fall of five inches erery fifteen minutes.
The short leg of the siphon was at first cut square, but we found its action uncertain, as it was liable to suck air and water for an indefinite time, instead of breaking promptly when the water level reached its minimum. This defect was remedied by cutting the end of the short leg at an augle of about 60°.

We succeeded in establishing a steady and reliable ebb and flow in the cones by the use of this very simple and inexpensive device which, working automatically, required no extra attention. For the purpose of observation, we kept a set of cones in operation several days, closely
watching the circulation and found that the surface water remained practically unchauged, the circulation taking place in the lower portion of the cones.
To obviate this defect the auxiliary feed-pipes were removed from the base of the cones and laid in the space ontside of the perforater plates in such a manner as to give the surface water a slightly circular motion, and a feed-pipe was attached to the siphou tank, thus giving a feed at both top and bottom.

We labored under the disadrantage of having no eggs with which to experiment, but we knew their specific gravity and utilized such substitutes as small pieces of beeswax about the size of cod eggs, bread dust, \&e., which served at least to demonstrate what effect the various movements would exert on minute floating bodies.
The experiment of admitting feed water at both ends of the cones resulted in a complete change of water, but was not otherwise satisfactors, as the circular motion imparted by the surface feed caused a movement of the particles representing eggs towards the center, and, the bottom feed being converted into a discharge while the siphon was in operation, a miniature whirlpool developed sufficient streugth to draw the eggs to the bottom and thence through the discharge pipe to the tank where they were taken up by the siphon and carried to the general discharge.

Numerous experiments were tried with varying success until, finally, the following arrangement was adopted as most nearly producing the required movement:

Fig. 3.

Fig. 3 represents the nest of three hatching cones and siphon tank; \boldsymbol{a} is the distributing tank; b, the general feed pipe; c, the general discharge pipe; $d d d$, cones ; e, siphon tank ; f, siphon ; g, feed pipe; $h h$, auxiliary feed-pipes; i, discharge pipe; j, siphon discharge; k, goose neck; l, auxiliary feed connection; $m m$, aerators; n, feed valve.

The feed-pipe g remained attached to the siphon tank e, to be used in case it was required. The auxiliary feed-pipes $h h$ were again attached to the bases of the cones, and aerators, $m m$, attached to their upper ends. The water being at low level and the feed turned on, a series of air bubbles followed each other in rapid succession to the surface, causing a general movement of the water, and periodical change at the surface as well as in the lower part of the cones. There being no surface feed during the action of the siphon f, and the auxiliary feed $h h$ taking the direction of the discharge i, the water then became placid, the particles representing eggs spread over the surface, where they remained until the siphon ceasing to operate; air-impregnated feedwater again entered the cones, renewing the upward current, causing a general movement in which the surface of the eggs would be cleansed, to a certain extent, of fungus growth and other minute foreign substances liable to adhere during the process of hatching.

While the above experiments were in progress preparations were made for the reception of a quantity of impregnated eggs to be sent from Wood's Holl with which to test our apparatus practically, but, owing to the unusual severity of the weather, they failed to procure them at that station.

Arrangements were then made with a fishing schooner to deliver the entire proceeds of a trip at Hampton Roads, and, to provide for the live fish, we made two large cars, capable of receiving several bundred, intending to anchor them in some convenient locality where pure saltwater could be found.

The water at Norfolk, being impregnated with that from the Dismal Swamp region, was not suitable for our purposes. We examined numerous localities, finally selecting a sheltered spot inside the bar of Hampton Creek, near the boat-houses belonging to Fortress Monroe.

The commanding officer of that post placed one of the above-mentioned boat-houses at our disposal, and expressed a desire to render us ans assistance in his power.

Captain Gillis, quartermaster, to whom the Commission is indebted for many favors, assisted us materially in our search, giving us the benefit of his local knowledge, also tendering his services whenever we could make them available.

Our arrangements being complete, we awaited the arrival of the fisherman, but inclement weather prevented the fulfillment of his contract until the season was too far advanced for our purposes.

The Fish Hawk left Norfolk on February 26 for Washington, arriving ou the $28 t h$, when preparations were made for the hatching season.

As many of the crem as could be spared were set to work on the barges overhauling machinery, painting, \&e.

Ererything being in readiness, we left Washington on the 23d of March and arrived at Norfolk the following day, bound for Aroca, Albemarle Sound, where we were to commence the season's work of shadhatching. A few tons of coal and other stores were taken in during the day. On the afternoon of the eyth we left the nary-fard, and steaming to the lock gates made fast for the night. The following morning the wind was stroug from the northeast, giving more than an average depth of water in the canal. We passed the locks soon after daylight, and worked our way along about three miles, and finally grounded on a shoal spot and remained till high-tide, then made another mile. Starting again at high-tide in the morning, we reached North Landing and moored to the wharf for the night.

At daylight on the morning of the 28th we left the wharf aurl reached North West River, when the ressel grounded again. The light-honse steamer Tulip came to our assistance, taking a tow-line ahead, and in this mauner we finally reached the vicinity of Bell Island, where the ressel stuck fast and remained during the night. Her draught was 7 feet, and there being but 6 feet 6 inches in the channel, we found it necessary to lighten her. Work was commenced at daslight on the 29th, and eversthing morable placed in lighters, sent for the purpose by General O. E. Babcock, of the Light-House Department, and at 2.30 p. m., with the assistance of the Tulip, we passed the shoals and anchored in North River, where the stores, \&c., were taken on board from the lighters, which were towed to that place by the light-honse tender Bramble. We took on board a ton and a half of coal also, which was kindly furnished by General Babcock.

At $5.30 \mathrm{a} . \mathrm{m}$., March 30 , got under way and steamed to Salmon Creek, Aroca, Bertie County, North Carolina, and anchored near the steamboat landing.
I called at once upon Dr. Capehart, who informed me that no ripe shad had been taken yet, owing to cold weather and low temperature of the water.

Preparations for hatching were soon completed, and sparn-takers attended evers haul of the seine at the two fisheries owned by Dr. Capehart, Sutton Beach, and Scotch Mall. The schooner E. G. Pickup arrived on the morning of April 8 with 40 tons of coal which we had contracted for in Norfolk.

Westerly winds prevailed from the 1st to the Sth, causing very low water in the sound, which prevented our getting up the creek to Capehart's wharf, where the ressel was to be stationed. Fresh casterly winds sprung up on the morning of the latter date, however, and we crossed the bar without much trouble, mooring in a snug berth about 40 yards below the wharf.

As soon as the ressel was moored, the schooner was taken alongside and the coal transferred during the 9 th.

The first shad eggs were taken on the 12 th, 66,000 being procured from both fisheries. They were not in good condition, many being unripe and the milt hard; but they were put into the cones, more to test the apparatus than from any expectation of satisfactory results.

Eggs were taken on the 13 th, 14 th, and 15 th ; total number, including those of the 12 th, 283,000 . No ripe fish were found during the 16 th, 17 th, and 18 th. A fair proportion of the eggs taken were impregnated, and the development, although slow, was apparently normal, except the eyes, which were very small, barely visible to the naked eye.

The embryos from eggs taken on the 12th died on the 19th, either before or immediately after leaving the shell. The temperature of the water rauged between 50° and 58°, much too low for successful hatching. Eggs were taken again on the 19th and every day after that until the 30 th. Those taken from the 13 th to the 15 th died on the $22 d$ and 231 under similar conditions to those of the 12 th. The range of temperature was from $50 \circ$ to 64°.

From the $23 d$ to the 30 th, the water varied from 570 to 71° in the hatching cones; and although the frequent changes operated against us, a fair proportion of eggs were hatched. Five hundred thousand herring eggs were taken on the 25 th, of which about 200,000 hatched on the 30th and were deposited in the sound. Great quantities of the latter fish were taken at the fisheries, but no ripe females were found except those mentioned above.

Our work ceased at Avoca on the 30th of April, and preparations were made for immediate departure. The eggs on board were transferred to the North Carolina Commission, the young fish deposited in the sound, boats taken on board, and ship unmoored ready for an early start.

The results of the season's work at Aroca are briefly as follows : Shad eggs taken . 5, 727, 000
Herring eggs taken . 500,000

Shad eggs transferred to North Carolina Commission, 3,029,500.
The shad eggs were procured from 196 females, 189 males being used for impregnation. The average number of eggs from each female was 30,300 .

The arrangement of pipes and valves is such that water can be pumped back into the distributing tanks from the waste-pipe using it over and over as often as desired. In order to ascertain the practicability of
transporting eggs and young fish under the above conditions, we retained half a million eggs and commenced the experiment at $6 \mathrm{p} . \mathrm{m}$, April 30. The temperature rose to 68° during the night and to 71° at 10 a. m., May 1 , the water smelling badly and a large portion of the eggs dying. The cones were thoroughly cleaned, dead eggs removed, and the experiment continued.

At 5 p . m. but fers survived, and 330,000 dead ones were thrown over. board. The remainder were found dead and thrown orerboard at daylight the following morning.

At 5 a. m. on May 1 we got under way and steamed down Albemarle Sound, through Croatan Sound, Roanoke Marshes, aud down Pamlico Sound, to Hatteras Inlet, where, at 7.20 p . m., we auchored for the night. At 4.45 a . m . on May 2 got under was, with a pilot on board, and proceeded to sea by way of Hatteras Inlet. The swell on the bar was so heary that the pilot refused to take the ressel out, whereupon he was discharged and the ship proceeded to sea without one. At 8 a.m. passed Hatteras Light, Bodie's Island Light at meridian, and at 3.50 p . n. Currituck. At 8.10 p. m. passed Cape Henry, aud at 11.35 Wolf Trap. At midnight a thick fog and mist prevailed. At 10.10 j . m. on May 3 we anchored in Annapolis Roads. At 4.45 a. m. on May 4 got under way, and at $10.10 \mathrm{a} . \mathrm{m}$. arrived at Harre de Grace. At 11.40 made fast to the coal wharf, and the crew were employed during the remainder of the day in coaling ship. At $10 \mathrm{a} . \mathrm{m}$. on the 5th instant, having finished coaling, we proceeded to our station off Bull Mountain, mouth of North East River, where we anchored in 15 feet of water.
The fisheries along the shore were visited, and preparations made for hatching work. During the evening 182,000 shad eggs were takeu. On May 6 the wind was light and variable, and the weather rainy during the uight, clearing after daylight. Four hundred and sixty-two thousand shad eggs were taken during the day. On May 7 every haul of the seines at the various fishing shores was attended and gill boats visited during the evening, but no eggs were taken. No ripe fish were found in the seines, and those taken by gillers were penetrated and stripped by eels. On the 8 th 506,000 eggs were taken, and on the 9 th $1,660,000$.
No payment had been made thus far for the privilege of taking eggs. On the 9 th instant a fisherman called on behalf of the gillers, and stated that, at an informal meeting, they had decided to furnish the Commission with eggs, whether paid for it or not, but, as they were put to some inconvenience and extra labor thereby, they requested him to see if I could not procure them the usual compensation of twentr-five cents for each spawning fish.

Tickets having been received from the Commission, they were issued from the 10th instant.

On the 10th the breeze was moderate to brisk from the southward and westward, making quite a heary swell in the channel; 341,000 eggs were procured during the day. On the 11th 913,000 were taken, and
on the 12 th 979,$000 ; 664,000$ young fish were deposited in the river near the ship on the latter date. On the 13 th 265,000 eggs were taken and $1,660,000$ young fish deposited in the North East River and at the mouth of the Susquehanna.

On the 14 th 348,000 eggs were taken and 830,000 young fish deposited in the river near the ship. During the evening of the 15th there was a fresh breeze from the southward and westward. A large number of eggs were procured, but owing to the heavy swell many were spilled out of the pans and pails in the boats, leaving 357,000 as the result of the evening's work; 598,000 young fish were deposited near the ship. On the 16 th 357,000 eggs were received and 979,000 young fish deposited near the vessel. On the 17th 424,000 eggs were taken, and on the 18 th, 257,000 . On the latter date 498,000 young fish were deposited. The weather was overcast and cloudy, raining during the afternoon and evening, the wind blowing fresh from northeast, changing to west during the evening. The water was rough, making it difficult to attend the gill-boats. At $3.30 \mathrm{p} . \mathrm{m}$. the Herreshoff steam lauuch, No. 62, borrowed from the Navy, arrived from Brooklyn in charge of Mr. Robert West.

On the 19th the weather was overcast ond rainy; moderate breeze from southeast ; 423,000 eggs were received, and $1,660,000$ young shad deposited near the ship. On the 20th the weather was overcast and rainy, partially clearing during the day; moderate breeze from eastsoutheast to northeast. Large numbers of fish were taken at the beaches, but most of them were unripe and were recognized as "the May run" ; 781,000 eggs were taken during the day. On the 21st the weather was clouly, latter part rainy, with thunder and lightning, light variable breezes; 1,792,000 eggs were taken during the day. The seines in this vicinity have all cut out except two.

The following seine fisheries are located in North East River, and have been visited by our spawn-takers during the season, viz:

Carpenter's Point, west side, P. K. Barnes.
Carrot Cove, east side, Russell \& Sempers.
Bull Mountain, east side, J. C. Caruthers.
Gridiron Beach, east side, W. J. Wilson.
Gilder's Hole, east side, J. Fletcher Wilson.
Beaver Dam, James Roney.
The two last were not regularly visited.
On the $22 d$ of May 291,000 eggs were taken. Large numbers of people visited the ship, many of whom had traveled long distances for the purpose. On the $23 \mathrm{~d} 650,000 \mathrm{eggs}$ were taken and 325,000 soung fish deposited in the river near the ship. A considerable number of young fry, hatched on the 11th from eggs taken on the 7th, were retained in a cone for the purpose of ascertaining how long they could be kept alive after absorption of the yolk bag, which disappeared from the naked eye on the 15 th instant. On the 16 th the fish which had hitherto re-
mained on the surface went down from four to six inches or more, where they appeared to be feeding upon the minute particles collected on the surface of the cone. On the 23d they were still thriving, but fers dead ones having been seen. It was an undoubted fact that they were feeding aud developing normally. On the 24th 463,000 eggs were received and 313,000 young fish deposited in the river near the ship.
On the 25th 781,000 eggs were taken and 275,000 young fish deposited. The young shad before mentioned, fourteen days old, were doing well, no dead fish being noticed. The last seine in this region cut out on this date. On the 26 th $1,062,000$ eggs were taken and 406,000 young fish deposited. One of the young shad, fifteen days old, was examined under a microscope to-day. Minute crustacea were found in its stomach.

On the 27th 625,000 eggs were taken and $1,250,000$ young fish deposited near the ship. A ripe rock, the first of the season, was taken to-day, but no milt could be procured to impregnate the eggs. On the 28 th 675,000 shad eggs were taken and 500,000 young shad deposited. Mr. Capehart and his son, Dr. R. W. Capehart, owners of two great fisheries in Albemarle Sound, visited the ship and inspected the hatching operations.
On the 29tl 369,000 shad eggs were received. The small number of eggs taken may be attributed to the lateness of the tide. Shad are taken in gill-nets at or near slack-water in this locality, and when this occurs at sundown or an hour or two later many fish are takeu in the act of spawning. It should not be inferred from this that all spawning takes place at that time, but it is an undoubted fact that we take a large proportion of our eggs between the hours mentioned.

On the 30 th 50,000 eggs were taken and 375,000 joung fish deposited near the ship, and at 3 p . m., May 31, we got under way and delivered a shipment of $1,250,000$ young fry at Havre de Grace. We then steamed down the channel and anchored near Locust Point, Spesutie Island. Λ furious squall of wind and rain with thunder and lightning swept down the river from 7 to $11 \mathrm{p} . \mathrm{m}$., two inches of rain falling in the mean time.
The gill-boats aloug the west shore were visited and 106,000 eggs procured; 625,000 young fry were deposited in North East River. There was a slight freshet iu the river on June 1st, which made the water very muddy; 187,000 eggs were taken and 500,000 young fish transferred to Battery Station for shipment; 38,000 eggs were taken on the 2d, 312,500 young fish transferred to Battery Station, and 625,500 deposited near the ship.
The young fish of May 11, twenty-two days old, remaining in the cone, were sent to Washington. They were well developed and in fine condition.

On the 3d of June 50,000 eggs were taken and 125,000 fry transferred to Battery Station.
The estimate of eggs taken during the season has been on the basis of 25,000 to the dipper of $7 \frac{1}{2}$ gills. By actual count, four fluid ounces (one
gill) of impreguated shad eggs were found to contain 3,600 , that is, 900 per fluid ounce or 26,100 per dipper. A deduction of 1,100 was made for water, \&c. The above measurements were made with an ordinary apothecary's graduate, used in the medical department.

All necessary preparations having been made forleaving the Susquehanna, we transferred 300,000 shad eggs to Battery Station, and directed the Herreshoff launch, No. 62, to report to the officer in command for temporary duty.

At 9.25 a. m., June 5, we left the river for Baltimore, arriving at 2.55 p. 1 . On the following morning the ressel was hauled out on W. Skinner \& Son's marine railway, her bottom examined, copper cleaned and repaired, propellers painted, and outboard connections examined. The work was completed during the day, and on the following morning the vessel was put into the water, and at $10.35 \mathrm{a} . \mathrm{m}$. left for Washington, where we arrived at $1.40 \mathrm{p} . \mathrm{m}$. on the 8 th.

On the 10th coaled ship, and on the 13th received a special outfit desigued for hatching Spanish mackerel. As this work was to be carried on in salt water, all metallic surfaces were nickel plated in order to reduce galvanic action to the minimum. At 4.15 a . m., June $1 \stackrel{1}{\text {, }}$, we left the navy-yard and steamed down the Potomac, arriving off Saint Jerome's Creek at $3.30 \mathrm{p} . \mathrm{m}$., where we were directed to examine the channel improvements and report what progress had beeu made. Having made the required examination, we steamed off-shore two or three miles and swung ship, with port helm, under steam, observing azimuths on each point for compass error. When the circle was completed with the port helm, we ran into Cornfield Harbor and anchored for the night.

Launch No. 62 arrived from Havre de Grace at 6 a. m. on the 15th and reported for duty. At 6.15 a . m. we got under way, swung ship with starboard helm and, as soon as the observations for compass error were finished, started for Cherrystone Inlet, the launch in company, arriving at $2.30 \mathrm{p} . \mathrm{m}$.

The pound nets were visited the following morning, but no ripe fish were found, and the fishermen reported that they had seen none during the season.

We met with better success, however, on the 17 th, when 700,000 Spanish mackerel eggs were taken and placed in hatching cones with siphon attachment. A small number were placed in a marbleized pan, the water being changed every three hours. About 30 per cent. of the eggs hatched in from thirty to forty hours after impregnation, the temperature of the water ranging from 76° to $80^{\circ} \mathrm{F}$. The fry were not in good condition and were all dead within a few hours.
No eggs were procured on the 18th and 19th. On the 20th, however, we succeeded in getting 240,000, a portion of which were placed in an ordinary hatching cone and treated as shad eggs, the remainder being distributed among the various forms of cylinders. They commenced hatching twenty-four hours after impregnation, but the fry were not strong and many of them died.

We deposited 120,000 fry in Cherrystone Inlet on the 22 d and on the 23 d procured 300,000 eggs, which were placed in the various hatching apparatus on board. The temperature fell suddenly nearly ten degrees, which retarded the development, the first young fry appearing thirtynine hours after impregnation. About 60 per cent. of the eggs hatched and the fry were in much better condition than any of the previous lots.

Three hundred thousand eggs were procured on the 25th and placed in cones and cylinders. About 75 per cent. hatched, bat those in the cones soon died.

We were unable to account for the loss of fry hatched in cones and the survival of those in the cylinders, unless we attributed it to galvanic action. The cones above mentioned were copper, nickel plated, and after a few hours' service in salt water the entire submerged surface was covered with a dark deposit which we thought was sulphate of nickel, to which wasattributed the great mortality among the fry hatched in the cones.

Among the cylinders used was one of block-tin, in which the largest proportion of eggs were hatched, and the fry seemed to be in better condition. In this vessel we had a light whitish deposit which we called sulphate of antimony, bat it did not seem to have an injurious effect on the eggs or fry.
One hundred thousand young fish were deposited on the 26 th, 50,000 on the 27 th , and 100,000 transferred to the Lookout on the 28th for experimental purposes.
Mr. Marshall McDonald, of the United States Fish Commission, arrived on the latter date to continue the experimental work, the Fish Hawk being required for other service. Such articles as he required were landed, launch No. 62 turned over to him, and at meridian on the 29th we left for Washington. We had at this time about 5,000 young fish which I had placed in a glass aquarium soon after they were hatched, where they had remained ninety-six hours without change of water. Very few died in the meanwhile, and those that were alive were strong and vigorous. There were about ten thousand in a hatching cylinder, and they were placed in a glass jar for transportation. They were in good condition until about 3 p . m., when we encountered a furious squall in Chesapeake Bay, with very heary thunder and incessant lightning. From that time they showed signs of distress, and before morning were nearly all dead.

We anchored for the night at Lower Cedar Point, and arrived at the Washington navy-yard at $9.50 \mathrm{a} . \mathrm{m} .$, June 30 . Active preparations were made for the summer's cruise ; hatching apparatus was landed and the dredging outfit taken on board.
The last of the young fish in the aquarium died on the 1st of July. having been one hundred and forty-four hours without change of water.
At 2.10 p. m., July 7, we left the navy-yard for Wood's Holl, Mass., passing Cape Henry at $8.40 \mathrm{a} . \mathrm{m}$. on the following day. A fresh north-
S. Mis. $110-5$
erly wind was encountered, and on the 9th a moderate northeast gale with mist, rain, aud thick fog at times, the weather clearing during the latter part. We passed Montank at 1.15 a . m. and arrived at Wood's Holl at 8.10 p . m . on the 10th. On the morning of the 11 th we went to Bristol, where we left the steam cutter for repairs, returning on the following day.

At 7.28 p . m., July 15, we left Wood's Holl, with the naturalists on board, for an off-shore trip. Speed was reduced between Gay Head and No Man's Land to allow surface towing.

At $4.10 \mathrm{a} . \mathrm{m}$. on the 16 th we cast the trawl in 44 fathoms, latitude 40° 22^{\prime} north, longitude $70^{\circ} 42^{\prime}$ west. Ten casts were made during the day between the above position and latitude $39^{\circ} 55^{\prime}$ north, longitude $70^{\circ} 47^{\prime}$ west, in from 44 to 229 fathoms. There was some delay in preparing for the first cant, but with that exception everything worked smoothly and the results of the day's work were very satisfactory. We started for port at $6.30 \mathrm{p} . \mathrm{m}$., arriving at 6.15 the following morning.

Thenaturalists were employed in the laboratory during the 18th and and 19th preserving specimens, and on the 20th we made eight hauls of the dredge and trawl in the sound between Gay Head and Vineyard Haven.
The naturalists were engaged in the laboratory until the $23 d$ and unfavorable weather detained us in port till the 29 th, when we went to New Bedford for coal, returning the following day. We were again detained by unfavorable weather till $5.40 \mathrm{p} . \mathrm{m}$. on the 3d of August, when we left for another off-shore trip. There was a thick fog during the night, but it cleared towards morning, and at 8.14 we cast the trawl in 782 fathoms, latitude $39^{\circ} 45^{\prime}$ north, longitude $69^{\circ} 44^{\prime} 45^{\prime \prime}$ west. The trawl came up foul and several fathoms of the dredge-rope were badly kinked. Seven hauls were made during the day in from 782 to 95 fathoms, between the above position and latitude $40^{\circ} 01^{\prime}$ north, longitude 69056^{\prime} west. We started for port at 8.30 p . m., and arrived at $8.30 \mathrm{a} . \mathrm{m}$. the following morning.

The naturalists were employed in the laboratory on the 6th and 7 th. At ${ }^{5} \mathrm{p} . \mathrm{m}$. on the Sth we left for an oft-shore trip. A dense fog prevailed during the night, with moderate breezes from northwest to southwest, the weather clearing towards morning.

At $6.15 \mathrm{a} . \mathrm{m}$. we set the trawl-line for tile-fish in 138 fathoms, latitude $41^{\circ} 01^{\prime}$ north, longitude $71^{\circ} 12^{\prime} 30^{\prime \prime}$ west.

A ship's boat was reported adrift about $9.30 \mathrm{a} . \mathrm{m}$., which proved to be the wreck of a mackerel seine boat having on one quarter the name G. M. Hopkins, and on the other, Hingham, Mass.

At $11.30 \mathrm{a} . \mathrm{m}$. picked up our boat and found that they had taken 157 pounds of tile-fish, the largest specimen weighing 29 pounds; several whiting, and large numbers of hake, skate, \&c., were taken. Six hauls of the trawl and dredge were made during the day in from 138 to 319 fathoms between the position given above and latitude $39^{\circ} 53^{\prime} 30^{\prime \prime}$ north,
and longitude $71^{\circ} 13^{\prime} 30^{\prime \prime}$ west. We started for port at 5.30 p . m., arriving at $6.10 \mathrm{a} . \mathrm{m}$. the following morning. There was a fresh breeze during the night, with a moderate beam sea, which caused the ressel to roll heavily at times.

The naturalists were employed in the laboratory during the 11th and 12th. One cast of the trawl was taken in Buzzard's Bay on the 13th. We were detained in port by unfarorable weather until $4 \mathrm{p} . \mathrm{m}$. on the 22d, when we left for an off-shore trip. At $4.15 \mathrm{a} . \mathrm{m}$. the following morning, we set a trawl-line with 900 hooks in 100 fathoms, latitude $40^{\circ} 03^{\prime}$ north, longitude $70^{\circ} 31^{\prime}$ west, and took 540 pounds of tile-fish, the largest weighing 32 pounds. Large numbers of skate, hake, and whiting were taken also. Many interesting specimens were taken during the day by fine towing nets, so attached to each end of the trawl-beam as to act from the time it was lowered from the ship's side till it left the water. So far as I know, this ingenious contrivance was never used before and the results were most satisfactory

Six casts of the trawl and dredge were made in from 71 to 724 fathoms between the position given above and latitude $39^{\circ} 52^{\prime} 30^{\prime \prime}$ north, longitude $70^{\circ} 16^{\prime} 30^{\prime \prime}$ west. It is doubtful whether the trawl reached the bottom in the latter depth, but several interesting specimens were found in the net, probably caught on the way down or up. We started for port at $6.50 \mathrm{p} . \mathrm{m}$. and arrived at 7.25 the following morning.

The uaturalists were engaged in the laboratory on the 25th, and on the 26 th we made a re-examination of various localities in Buzzard's Bay.

We were detained in port by unfavorable weather until the 29 th, when, the weather clearing, we left for the fishing banks off Chatham. Finding a thick fog hanging over the shoals, we anchored at Hyannis for the uight. The weather clearing, we got under way at $4.25 \mathrm{a} . \mathrm{m}$., and at 7.50 cast the trawl in 10 fathoms, Chatham Lights bearing northwest $\frac{1}{2}$ west, distant 5 miles. Twenty-one casts of the trawl and dredge were made during the day, aud at $4.30 \mathrm{p} . \mathrm{m}$. we started for port, arriving at $10.55 \mathrm{p} . \mathrm{m}$.

On the following day, August 31, we went to New Bedford for coal, returuing September \because. We were detained by gales and fog until the 7th. A peculiar atmospheric condition worthy of note was observed on the 6th instant. The weather was overcast, with a brisk breeze from southwest, moderating duriug the morning, when a thick fog set in, lasting until afternoon when it rose, and, combined with smoke, darkened the atmosphere to almost a twilight. The light was peculiarly yellow, and gave to the foliage an intensified color ; ordinary oil lamps had the color and general appearance of electric lights. The sky remained orercast after dark, but became clearer and objects resumed their natural colors.

At $8.4 \tilde{5}$ a. m., September 7 , we left port, and at 12.50 p . m. cast the trawl in 26 fathoms, latitude 41° north, longitude $70^{\circ} 49^{\prime}$ west. Nine
casts of the trawl and rake dredge were taken in from 26 to 39 fathoms between the above position and latitude $40^{\circ} 28^{\prime}$ north, longitude 70° 44^{\prime} west. The last haul was made at 8.20 p . m., completing a line frome No Man's Land to our off-shore working ground.

At $4.50 \mathrm{a} . \mathrm{m}$. the following morning we cast the trawl in 368 fathoms, latitude $39^{\circ} 40^{\prime}$ north, longitude $71^{\circ} 30^{\prime}$ west. Eight hauls of the rake dredge and trawl were made between the above position and latitude $39^{\circ} 50^{\prime} 30^{\prime \prime}$ north, longitude $71^{\circ} 23^{\prime}$ west, in from 368 to 182 fathoms. We started for port at $3.30 \mathrm{p} . \mathrm{m}$. and arrived at $3.30 \mathrm{a} . \mathrm{m}$. on the 9th, where we were detained till the 13th by the report of a storm moving along the coast from the southward.
At $4.30 \mathrm{p} . \mathrm{m}$., on the latter date, we left for an oti-shore trip. At 7.32 the following morning the trawl was cast in 93 fathoms, latitude $40^{\circ} 00^{\prime}$ north, longitude $69^{\circ} 19^{\prime}$ west. Ten hauls were made between the above position and latitude $39^{\circ} 58^{\prime}$ north, longitude $69^{\circ} 30^{\prime}$ west, in from 93 to 458 fathoms.

We started for the port at $8.30 \mathrm{p} . \mathrm{m}$., and at $7.20 \mathrm{a} . \mathrm{m}$. the following day cast the trawl in 16 fathoms between No Man's Land and Gay Head. It fonled on a rock, the sudden strain unshipping the heel of the dredging boom; it was soon replaced, however, and the trawl recovered without further damage. At $10 \mathrm{a} . \mathrm{m}$. we anchored in Wood's Holl harbor.
We were detained in port by unfavorable weather till $4 \mathrm{p} . \mathrm{m}$. on the 20th, when we left for an off-shore trip. Passed No Man's Land at 6.45. Between 8 and 9 o'clock passed through large schools of fish, probably menhaden.

At 6 a. m., the following day, we set a trawl line in 113 fathoms, latitude $39^{\circ} 58^{\prime}$ north, longitude $70^{\circ} 06^{\prime}$ west. No tile-fish were taken, and but few of the baits were disturbed. This was the first time we had failed to take more or less of this fish when we made the attempt. Three casts of the dredge and trawl were taken, when the increasing wind and sea made it impracticable to carry on work, and at $11.30 \mathrm{a} . \mathrm{m}$. we started for port, arriving at $11.50 \mathrm{p} . \mathrm{m}$.
Two casts of the trawl were made in Vineyard Sound on the $22 d$.
The colors were set at half mast on the 26 th , and the day observed in memory of the late President James A. Garfield. We were detained in port by unfavorable weather till $4.10 \mathrm{p} . \mathrm{m}$. on the 30 th , when we went to New Bedford for coal, returning at $5.50 \mathrm{p} . \mathrm{m}$. on the $2 d$ of October.
The specimens taken during the season, and material belonging to the United States Fish Commission, were taken on board during the 3d and preparations completed for leaving the station, the work of deepsea exploration at this station being finished for the season.

At 2.05 p. m., October 4, we left Wood's Holl and steamed to New Bedford to take on board a whale-boat and equipments, which had been presented to the National Museum by J. H. Bartlett \& Sons. The boat was received on the evening of the 5th, and at 5.50 the following morning we left for Bristol, R. I., arriving at 11.20, when the steam cutter
was sent on shore for slight repairs. At 5.30 a . m . the following day we left for New Eaven, arriving at 5.10 p. m. The specimens consigned to Prof. A. E. Verrill were landed at daylight the following morning, and at $9.15 \mathrm{a} . \mathrm{m}$. we left for Washington. At $3.45 \mathrm{p} . \mathrm{m}$. made fast to Bayles' wharf, at Throgg's Neck, for the night, as the weather was somewhat threatening.

At $2 \mathrm{p} . \mathrm{m}$., October 9 , we cast off and proceeded to sea. At 7.17 the following morning we cast the trawl in 130 fathoms, latitude $38^{\circ} 39^{\prime}$ north, longitude $73^{\circ} 11^{\prime}$ West. Seven hauls were made during the day between the above position and latitude $38^{\circ} 28^{\prime}$ north, longitude 73° 22^{\prime} west, in from 130 to 435 fathoms. At 5.30 p . m. started for the capes of the Chesapeake. The weather was pleasant during the day, with moderate winds, but at $\$ \mathrm{p} . \mathrm{m}$. a northerly gale rose suddenly, making it necessary to heave the ressel to until 5 o'clock the following morning, when wind and sea moderating we resumed our course, passing Cape Henry at 6 p. m., and arriving at the navr-yard, Washington, at $11.20 \mathrm{a} . \mathrm{m}$. . October 12. The specimens were landed and sent to the National Museum the following day.
The ressel having been placed at the disposal of the Hon. Robert T. Lincoln, Secretary of War, during the celebration at Yorktown, preparations were made for departure, and at $12.25 \mathrm{p} . \mathrm{m}$. on the 17 th we left for the latter place with the Secretary and party on board, arriving at $10.15 \mathrm{a} . \mathrm{m}$. on the 18 th.
The ceremonies attending the laying of the corner-stone of the monument ended on the afternoon of the 20 th , and at 5.30 p . m. we left for Washington, arriving at $1 \mathrm{p} . \mathrm{m}$. the following day, having visited Mount Vernon on the way.

We coaled ship during the 24th and 25th, returning to the navy-yard on the latter date, where we remained until the close of the year. The crew were employed during this time in giving the vessel a thorough overhauling preparatory to next season's work.

On the 29th of November we transferred our Herreshoff steam cutter and First-class Fireman William H. Lynch to the United States steamship Despatch for surveying duty in the West Indies, receiving from that vessel a cutter of the same description which was at the time unserriceable. The transfer was made at the request of the Navy Department.

Reports received from officers of the Despatch show that it performed excellent service, being at times the only steam cutter in working order: The boat received from that vessel was refitted by our crew, and at trie elose of this report was in good condition.

List of officers attached to the vessel during the year.-Lieut. Z. L. Tanner, U. S. N., commanding; mate, J. A. Smith, U. S. N.; mate, Samuel Gee, U. S. N., June 1 to December 30, inclusive; mate, C. H. Cleaveland, U. S. N., from December 31; passed-assistant paymaster, G. H. Read, U. S. N.; assistant engineer, W.B. Boggs, U. S. N.; apothecary, first-class, J. A. Kite, from March 21; paymaster's yeoman, first-class, H. E. Minkler; machinist, F. J. Barry; machinist, John Maxwell.

- po!p sisio 000 '8
 $\overline{1,369,500}$ \vdots
\vdots
\vdots
0

Record of shad-hatching on board the United States Fish Commission Stcamer Fish Huwh, Lieut. Z. L. Tanner oommanding, on tho Susquehanna River, Marylend,

Drediging and trawling record of the Vrited States Fish

Commission steamer Fish Hawk, season of 1881.

Dredging and trawling record of the United States Fish

Date	Thermometer used．		Locality．	Hour．	Tide	Temperature of air					
						先	兑				筧
$\begin{aligned} & \text { 1881. } \\ & \text { Aag. } 23 \end{aligned}$		952		11． $28 \mathrm{a} . \mathrm{m}$ ．		$\begin{gathered} \circ \\ 82 \end{gathered}$	$\begin{gathered} \circ \\ 68 \end{gathered}$	66	$\text { © } 63$	$\begin{gathered} \circ \\ 49 \end{gathered}$	${ }_{5}^{\circ}$
	face：N．Z．		$70^{\circ} 28^{\prime}$ W．${ }^{\text {W，}}$								
23	42063，deep．	053	Lat． $39^{\circ} 52^{\prime \prime} 30^{\prime \prime}$ N．，	$2.30 \mathrm{p} . \mathrm{m}$ ．		77	68	64	62	53	54
23	do	954	Lat． $39^{\circ} 53^{\prime} 3^{\prime} \mathrm{N} .,{ }^{\prime}$ ，long．	4.50 p．m		74，	68	65	63	50	53
			$70^{\circ} 18^{\prime} 30^{\prime \prime} \mathrm{W}$ ．								
26	$\begin{aligned} & \text { N. Z. 46402, sur- } \\ & \text { face; N. Z. } \end{aligned}$	955	Buzzard＇s Bay，Nye＇s Neck，E．by S．，$\frac{1}{4}$	$10.50 \mathrm{a} . \mathrm{m}$ ．	Ebb ．．	67	67t				
26	46405 ，deep． do	956	mile． Buzzard＇s Bay，Nye＇s Neck，S．SE．$\frac{3}{8}$ E．，$\frac{1}{3}$	$11.26 \mathrm{a} . \mathrm{m}$－	Ebb	71	69				
20	do	957	mile．${ }^{\text {muzzard＇s Bay，Nye＇s }}$	$11.45 \mathrm{a} . \mathrm{m}$ ．	Ebb ．．	73	691				
			Neck，S．SE．$\frac{3}{3}$ E．，$\frac{1}{8}$ mile．								
26		958	Buzzard＇s Bay，Nye＇s Neck，S．by E．	$12.20 \mathrm{p} . \mathrm{m}$ ．	Ebb ．．	75	70				
26	do	959	Buzzard＇s Bay，Nye＇s	$12.40 \mathrm{p} . \mathrm{m}$ ．	Ebb ．－	72	69				
26	do	960	Neck，S．，$\frac{1}{\frac{1}{2}}$ mile．	1.10 pm							
26			Neck，S．$\frac{3}{3} \mathrm{E}$ ．，$\frac{1}{2}$ mile．			72	$6{ }_{2}$				
	do	961	Buzzard＇s Bas，Nye＇s Neck，NE．${ }_{4}$ E．，${ }_{2}{ }^{3}$	$1.52 \mathrm{p} . \mathrm{m}$ ．	Low ．．	712	69				
26	do	962	muzzard＇s Bay，Woe．	$3.10 \mathrm{p} . \mathrm{m}$ ．	Flood．	71	68				
			fuke and island，NE．								
26	do	963	Buzzard＇s Bay；Woe－	3.40 pm ．	Flood．	70	68				
			fuke and island，SE．								
30	do	064	Chatham light，NW．	7． $50 \mathrm{a} . \mathrm{m}$ ．	Ebb	65	61	59			
30			$\frac{1}{2} \mathrm{~W}$ ．， 5 miles．								
30	－．．do ．．．．．．．．．．	965	Chatham light，NW． $\frac{1}{2} \mathrm{~W} ., 6$ míles．	8.15 a ．m．	Ebb ．．	65	61	59			
	do	966	Chatham light，NW． by W．$\frac{1}{}$ W． $6 \frac{1}{2}$ miles．	$8.40 \mathrm{a} . \mathrm{m}$ ．	Ebb ．．	65	61		54		
30		967	by W． 4 W．， 64 miles． Chatham light，NW．	$8.50 \mathrm{a} . \mathrm{m}$ ．	Ebb ．．	66	61	61			
30		968	by W．$\frac{1}{4}$ W．， $6 \frac{3}{4}$ miles． Chatham light，NW．		Ebb ．．	66	611	61			
30			by W．$\frac{3}{4}$ W．， 74 miles．		Ebb ．．			61			
	．．do	969	Chatham licht，NW．	9． 10 a ．m．	Ebb	66	612				
30		970	W．NW．${ }^{\text {W，}}$ W．， 6 miles．	$9.43 \mathrm{a} . \mathrm{m}$ ．	Ebb	67	61				
30		971		10．05 a．m．							
30		971	N．， $4 \frac{1}{4}$ miles．	$10.05 \mathrm{a} . \mathrm{m}$ ．	Ebb ．．	67					
		972	Chatham light，NW．	10.48 ar m ．	Ebb ．．	67	62				
30			by W．$\frac{7}{8}$ W．， $7 \frac{1}{2}$ miles． Chathamlight，W．NW．								
30		973	Chatham Hight，W．NW． $6 \frac{3}{4}$ miles．	11.10 ar m．	Ebb ．．		62				
	do	974	Chatham light，W．NW．	$11.30 \mathrm{a} . \mathrm{m}$ ．	Low ．．	67	62				
30		975		11． 45 a．m．	Low ．．	68	63				
30			$\frac{1}{4}$ W．， $6 \frac{1}{4}$ miles．	11． 45 a．m．	Low ．．						
	do	976	Chatham light，W．NW．	12.00 m	Low ．．	69	63				
30		977									
			Chatham light，W．NW．	12.20 p．m．	Low．．	70	64				
30		978	Chathan light，W．NTV．	$12.30 \mathrm{p} . \mathrm{m}$ ．	Low	70	64				
30											
30	d		4 W．， 6 miles． t，W．NW．	$12.40 \mathrm{~m} . \mathrm{m}$ ．	Low ．．	70	64				
	do	980	Chatham light，NW．	$1.00 \mathrm{p} . \mathrm{m}$	ow ．．	70	62				
30		981	by W．${ }^{\frac{1}{4} \text { W．，} 53}$ miles．		Flood．	65	63	63	56		
30	．．．．do		16 miles．	$2.10 \mathrm{p.m}$	Flood		$63 \frac{1}{2}$ ：	63	56		
	do	982	Lat． $41^{\circ} 36^{\prime}$ N．，long． $69035^{\prime} \mathrm{W}$	$2.45 \mathrm{p} . \mathrm{m}$－	Flood．	65	631	60	67	431	
30	do	983	Lat． $41^{\circ} 33^{\prime} \mathrm{N}$. ，long．	3.23 p．m．		642	64	62	54		
			${ }^{690} 32^{\prime} \mathrm{W}$ W，								
30			Lat． $41^{\circ} 31^{\prime}$ N．，long． $69^{\circ} 8^{\prime}$ W．	$4.07 \mathrm{p} . \mathrm{m}$.	Flood．			63	52		

Commission steamer Fish Hawk, season of 1881-Continaed.

Dredging and trawling record of the United States Fish

Commission steamer Fish Mawk, season of 1881-Continued.

Dredging and trawling record of the Onited States Fish

Date．	Thermometer used．		Locality．	Hour．	Tide．	Temperature of air					
						$\frac{\dot{4}}{4}$		$\begin{aligned} & \dot{\text { d }} \\ & \text { g } \\ & \text { d } \\ & \text { 世 } \\ & 6 \end{aligned}$			筧
1881. Sept． 21	$\begin{aligned} & \text { N. Z. } 46405, \text { sur- } \\ & \text { face; N. } \begin{array}{l} \text { Z. } \end{array} \end{aligned}$	1038	$\begin{aligned} & \text { Lat. } 39^{\circ} 58^{\prime} 00^{\prime \prime} \text { N., } \\ & \text { long. } 70^{\circ} 06^{\prime} \mathrm{W} \text {. } \end{aligned}$	$6.55 \mathrm{a} . \mathrm{m}$ ．		67	$\begin{gathered} \circ \\ 67 \end{gathered}$	$\begin{gathered} \circ \\ 68 \end{gathered}$	$\circ \circ$	$\begin{gathered} 0 \\ 49 \end{gathered}$	\bigcirc
21	do ．－．．．．．	1039	Lat． $39^{\circ} 59^{\prime} 00^{\prime \prime} \mathrm{N}$ ．， long． $70^{\circ} 06^{\prime} \mathrm{W}$ ．	9.35 am m．		$66 \frac{1}{2}$	67	68			
21	do	1040	Lat． $40^{=} 00^{\prime} 00^{\prime \prime} \mathrm{N}$ ．， long． $70^{\circ} 06^{\prime} 00^{\prime \prime} \mathrm{W}$ ．	$10.43 \mathrm{a} . \mathrm{m}$.		64	68				
22	do	1041	West Chop light，E．$\frac{1}{2}$ N．， 13 miles．	12.35 p．m．		631	65	65			
22	．do	1042	West Chop light，E．$\frac{1}{3}$ N．， $1 \frac{1}{2}$ miles．	1.17 p．m．		632	65				
Oct． 10	．．．．do	1043	Lat． $38^{\circ} 39^{\prime} 00^{\prime \prime} \mathrm{N} .$, long． $73^{\circ} 11^{\prime} 00^{\prime \prime}$ W.	7.17 ar m．		632	651	651	65	62	
10	．do	1044	Lat． $38^{\circ} 37^{\prime} 00^{\prime \prime} \mathrm{N}$ ．， long． $73^{\circ} 12^{\prime} 00^{\prime \prime} \mathrm{W}$ ．	$8.15 \mathrm{ar} . \mathrm{m}$ ．		65	66	66	65	62	53
10	do	1045	Lat． $38^{\circ} 35^{\prime} 00^{\prime \prime} \mathrm{N} .$,	$9.32 \mathrm{a} . \mathrm{m}$ ．		67	66	66	65	632	53
10	N．Z．47990，sur－	1046	Lat． $38^{\circ} 33^{\prime} 00^{\prime \prime} \mathrm{N}$ ．，	11． 14 ar m ．		66	66	65	65	61	53
	face ；N．Z． 46402，deep．		long． $73^{\circ} 18^{\prime} 00^{\prime \prime} \mathrm{W}$ ．								
10	do	1047	Lat． $38^{\circ} 31^{\prime} 000^{\prime \prime} \mathrm{N} .$,	$12.15 \mathrm{p} . \mathrm{m}$.		69	66	65	65	61	50
10	do	1048	Lat． $38^{\circ} 29^{\prime} 00^{\prime \prime} \mathrm{N}$ ．， long． $73^{\circ} 21^{\prime} 00^{\prime \prime} \mathrm{W}$ ．	$1.55 \mathrm{p} . \mathrm{m}$.		71	66	66	65	55	49
10	do	1049	Lat． $38^{\circ} 28^{\prime} 00^{\prime \prime} \mathrm{N}$ ．， long． $73^{\circ} 22^{\prime} 00^{\prime \prime} \mathrm{W}$ ．	3.30 pr m．		68	66	66	65	55	49

Record of speed of soundings of United States Fish Commission
［Lead， 18

$\begin{aligned} & \text { ت } \\ & \text { 苛 } \\ & \underset{\sim}{E} \end{aligned}$					$\begin{aligned} & 8 \\ & \text { 8 } \\ & \text { 8 } \\ & \text { 8. } \\ & \text { 8. } \end{aligned}$		$\begin{aligned} & 8 \\ & 0 . \\ & 90 \\ & 8 \\ & 8 \end{aligned}$				
	3n． 8.	m． 8 ．	m． 8.	m． 8 ．	m．s．	m． 8.	m． 8.			m． 8.	
949.	300	300									100
950	300									300	71
951	200	300								500	225
952	200	215	240	105						800	396
953.	110	050	120	110	110	110	110			800	724
954.	050	050	050	032	143	113	126			704	651
995.	105	103	102	035						345	345
996.	120	115	115	020						410	322
997.	120	115	115	020						410	322
998.	115	115	055							330	289
999.	115	120	130							405	256
1026.	205	055								300	175
1028.	105	130	115	135						525	395
1031.	100	105	$0 \stackrel{3}{5}$							240	240
1034.	120.	045								205	140

Commission steamer Fish Hawk, season of 1881—Continued.

steamer Fish Hawk, Lieut. Z. L. Tanner, U. S. N., commanding.
pounds.]

Coming up.										
$\begin{aligned} & 8 \\ & 8 \\ & 0 . \\ & \text { ㅇ․ } \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & 8=3 \\ & 8 \end{aligned}$							ت	
		m. 8.	m. s.	m. 8 .	m. s.	m. 8 .	m. 8.	m. s.	m. 8.	m. δ.
								500	500	
							310	150	500	
							320	200	930	
		130	200	130	130	140	140	120	1005	
		130	045	132	136	127	128	125	953	746
						150	125	120	435	855
					020	200	140	105	505	$\stackrel{5}{2} 5$
					020	200	140	105	505	250
						125	155	205	525	840
						130	140	145	455	50
							045	115	200	500
							120	145	635	425
						025	150	155	410	145
							028	132	200	225

S. Mis. $110-6$

Record of speed of trawling Dnited States Fish Commission

	Going down.											
								\#. 0 0 0 0 0 0 0 0				
949	m. 8. 3 00	m. 3 s. 3 00	m. 8.	m. s.	m. 8.	m.s.	m.s.	m.s.	m. 8.	m. s. 6 00 6	100	200
950	${ }_{2}^{3} 30$	3 3 10								540	71	200
951	300	300	500	430	233					1700	225	420
952	215	295	205	230	1105	450				2410	396	600
953	350	340	310	245	235	238		535	520	3330	724	885
954	232	252	211		150		420	543		2300	651	800
994 995											368 358	615 615
995 996	305 400 4	235 400	210 400	${ }_{3}^{215} 35$	205 325	215 405	0 0 0			1428 23 10	358 346	615
997	315	305	245	240	330	305	305			2125	335	700
998	245	300	230	345	400	525	030			2155	302	610
999	805	325	445	245	440	120				2500	266	550
1025	250	300	300	315	925-				2130	216	500
1026	330	245	315	230						1200	182	400
1028	340	350	315	405	245	210	225			2210	410	694
1029	350	355	235	210	310	255	230	110		2215	458	750
1030	325	325	340	645	550	120				2425	337	530
1031	345	145	210	325	240	025				1420	255	520
${ }_{1033}^{1032}$	630	415	325	405				1815	208	400
1034	615	325	235							1215	146	300
1035										1345	120	340
1036										1645	94	300
1038										1500	146	325
1039										1700	136	295
1040										2100	93	340
1043		350	450							1240	130	360
1044 1045	405 305 3	410 410	4.00 4.15	430 325						1645 3330	224 312	409 650
1045 1046	3 3 3 3	4 6 600	4.15	325	400	925	420			3330	312	${ }_{6}^{650}$
1046 1047	3 10 3 10 	600 540 540	12 5 5 15	405						2115 18	104 156	230
1048	320	445	425	400	315	310	245			1840	435	700
1049	610	315	425	320	320	230	210	200	1030	3740	435	877

steamer Fish Hawk, Lieut. Z. L. Tanner, U. S. N., commanding.

Coming up.											Remarks.
m.s.	m.s.	m.s.	m. 8.	m.s.	m. 8.	h. m.s.	m. 8.	m.s.	m.s.	h. m. 8 .	
3000 2400								400	400	800	Rake dredge.
24 1600					200	200	315	3130 320	345	715 800	Trawl.
1850				540	635	355	302	258	${ }_{3} 10$	2520	Do.
2300	410	354	356	354	331	320	317	304	329	3235	Do.
2100		322	347	327	${ }^{2} 24$	312	301	257	322	2634	Do.
2207				430	400 3 52	415 348	400 250	340 335	315 315 3		Trawl and wings.
930				445	315	315	300	245	610	2310	Rake dredge.
1520			416	345	355	350	615	340	350	2930	Trawl.
1245				500	350 4 4 4	515 3	425	355	${ }^{3} 10$	2535	Do.
700 715			-	135	430 425	325 345	315 345	250 405	255 410	1830 2010	Rake dredge.
700						430	405	425	400	1700	Do.
1520			630	730	730	10235	710	630	605	14350	D. trawl-Heavy load.
1515	245	405	320	320	330	320	320	325	2715	Trawl.
3180 1330			125	340 515	320 330	3110 410	3110 355	315 515	1800	Rake dredge.
								- 5	5	2	Do.
900											Do.
				-..--			505	355	345	1245	Do.
										1215	Rake dredge.
										1700	Trawl.
										1100	Do.
										1100	Excelsior dredge.
						325	215	300 350	310	${ }^{8} 25$	Trawl.
720			235	350	335	355	345	350	305	2435	Do.
735							120	330	300	750	Do.
2020						240	320	330	242	1215	Do.
2550 845						345 330	325 445	310 430	310 400	2925 4945	Do.
845	615	1330	530	400	345	330	445	430	400	4945	Do.

Synopsis of the steam log for the year ending December 31, 1881.

Stroke of piston, in feet 24
Number of coudensing cylinders
22
Diameter of condensing cylinders, in inches.
Mean point of steam cut-off from commencement of stroke of piston, in inches 6. 75
Mean number of holes of the throttle valve, open 3. 39
Mean vacuum in condeuser, in inches of mercury 24.02
Mean steam pressure in boilers while engines were in operation 26
Mean temperature of eugine room 92.4
Mean temperature on deck 60.1
Mean temperature of injection water 64.9
Mean temperature of discharge water 95.8
Mean temperature of feed water 83.9
Total time fires were lighted, in hours and minutes 4,68525
Total time tires were lighted for hatchings, in hours and minutes 1,433 00
Total time engines were in operation in hours and minutes 77850
Total time engines were in operation for dredging, in hours and min- utes 12109
Total number of revolutions of starboard engine 3,126,099
Total number of revolutions of port engine 3,272,441
Mean number of revolutions per minute en route 81.7
Mean piston speed, in feet per minute 387.655, 029.5
Mean number of knots per hour 6.46
Mean number of kuots per hour en route 8.4
Total weight of coal consumed for engineer department $473 \frac{1}{2} \frac{430}{440}$
Total weight of coal consumed while engines were in operation $2377_{2}^{13} 40$
Total amount of coal consumed for galley 24 .949
Total weight of refuse $83 \frac{2870}{240}$
Mean number of pounds of coal consumed per hour while engines were in operation 632
Total number of gallons of oil consumed 364. 75
Total number pounds of tallow consumed 138
Total number of pounds of wiping stuff consumed 199
Mean draught forward, in feet and inches 7 feet 3 星inches.
Mean draught aft, in feet and inches. 7 feet 7 inches.
Number of screws 2
Kind of screver true.
Mean pitch of screws, in feet and inches 12 feet 3 inches.
Diameter of serews, in feet and inches 6 feet 8 inches.
Length of serews, in inches, parallel to axis 20 inches.
Number of blades 4
Maximum indicated horse power 222. 92
Mean indicated horse power 172.85
Mean number of pounds of coal per horse power 3.9
Maximum number of pounds of coal per square foot of grate 15
Mean number of pounds of coal per square foot of grate 12.7
Maximum speed attained, under steam alone, in knots per hour 10. 33
Number of hours maintained 5
Slip of serews at maximum speed, in per cent 9.4
State of tide and sea favorable and smooth.
Mean slip of screws, in per cent. 14.9

Table of distances made under steam by the Umited States Fish Commission Steamer Fish Hawh, for the year 1881.

Date.			Distance.
${ }^{1881}$.			Miles.
$\text { Feb. }{ }_{27}^{26}$	From Norfolk to Washington.	109 60	
28		31	
Mar. 23	From Washington to Norfolk.	120	000
24	Do	80	
25	From Norfolk to Avoca, N. C.	8	
26 Do		
$\begin{array}{r}27 \\ 28 \\ \hline 8\end{array}$	-.... Do:	19	
29	-..00.	19 9	
30	...Do	47	

Table of distances made under steam, \&̧c.-Continued.

III.-LIST 0F PATENTS ISSUED BY THE UNITED STATES, DURING THE YEAR 1881, RELATING T0 FISH and THE METHODS, PRODUCTS, AND APPLICATIONS OF THE FISHERIES.

By Robert G. Dyrenforth, Assistant Commissioner of Patents, United Slates Patent Office.

FISHWAYS.

243,893. A. B. Hendryx .. 5 5ly 1881.
FLOATS.

HOOKS AND ATTACHMENTS.
236,161. C. HymersJan. 4, 1881.
237,566. E. Marion . Feb. 8, 1881.
242,866. M. D. Beach .. 14 . 1881.
243,987. J. Shields . July 5, 1881.

OYSTER CULTURE.

237,351. D. G. Weems. 1, 1881.
239,592. D. G. Weems . March 29, 1881.
249,942. V. N. Hughes
Nov. 22, 1851.
OYSTER DREDGES AND TONGS.

PISCICULTURE.

REELS.

RODS AND SINKERS.

FISH-TRAPS, NETS, AND LANCES.

237,231. W. B. Atkinson	Feb. 1, 1881.
240,630. H. E. Willard	April 26, 1881.
241,060. E. Pierce	May 3, 1881.
243,622. G. Rentz and F. H. Herzog	June 28, 1881.
244,150. J. S. Simpson	July 12, 1881.
245,251. T. F. Williams	Aug. 2, 1881.
247,179. A. Duvall	Sept. 20, 1881.

ISINGLASS, GELATINE, ETC.

9,715. I. Stanwood (reissue) . May 17, 1881.
243,685. R. Brooks.......... .July 5, 1881.

244,502. P. C. Vogellus. . .. 1918 , 1881.

FERTILIZERS.

251,628. G. B. Oakes . Dec. 27, 1881.

PRESERVING FISH FOR FOOD.

238,378. E. H. Frazier. March 1, 1881.
240,143. O. P. Johnson April 12, 1881.
240,281. A. and E. B. Squires.................................... April 19, 1881.
241,187. P. Brick ... $10,1881$.
245,679. N. Webster ... Aug. 16, 1881.
247,579. W. Plumer Sept. 27, 1881.
248,586. S. L. Goodale . Oct. 25, 1881.
250,382. F. B. Nichols and C. Thomson Dec. 6, 1881.
250,776. C. A. Bergtold Dec. 13, 1881.
9,957. G. W., G. H., and F. B. Dunbar (reissue)..... .Dec. 6, 1881.

Fish dressing and scaling machines.

242,056. J. H. Schaal and S. V. Harbaugh May 24, 1881.
249,663. M. J. Palson . Nov. 15, 1881.

miscellaneous appliances.

243,780. R. S. Jennings, submarine illuminationJuly 5, 1881.
247,445. A. Ward, oyster opener Sept. 20, 1881.
247,659-90. J. C. Rodman, minnow bucket Sept. 27, 1881.

APPENDIX B.

THE FISHERIES.

IV.-MATERIALS FOR A HISTORY OF THE MACKEREL FISHERY.

By G. Brown Goode, Joseph W. Collins, R. E. Earll, and A. Howard Clark.

ANALYSIS.

I. NATURAL HISTORY, BY G. BROWN GOODE 1
A.-Life history of the mackerel 3

1. Geographical distribution. 3
2. Migrations 5
3. Abundance 13
4. Food 15
5. Reproduction 21
6. Rate of growth and size 26
7. Enemies 27
B.-Studies of the movements of the mackerel schools 29
8. Hind on the causes of irregular movements 29
9. Hind on the causes of the alleged annual variations in the number of mackerel 35
10. Observations of American fishermen on the movements of the mack- erel schools 37
II. THE MACKEREL FISHERY OF THE UNITED STATES, BY G. BROWN GOODE AND CAPT. J. W. COLLINS 48
C.-The purse-seine fishery 48
11. The fishing grounds 48
12. The fishermen 49
13. The vessels 49
14. Apparatus and methods of fishing 52
15. Taking care of the fish 73
16. Running for the market 75
17. Landing the cargoes. 75
18. Financial profits of seining 75
19. History of the use of purse-seines 77
20. The attempted use of the purse-seine in Norwegian waters 80
D.-The mackerel hook fishery 81
21. Fishing grounds 82
22. The fishermen 83
23. The vessels 84
24. Apparatus and methods of fishing 85
25. Care of the fish 98
26. Homeward passage and disposition of the fish 102
27. Financial profits of the hook fishery 103
28. Itinerary of a mackerel voyage to the Gulf of St. Lawrence, by Maj. D. W. Low 105
E.-The mackerel gll net fishery
29. Implements, methods, and results of "mackerel dragging" 107
F.-The spring southern mackerel fishery 112
30. The fishing grounds 112

II. THE MACKEREL FISHERY OF THE UNITED STATES-Continued.

F.-The spring southern mackerel fishery-Continued.

32. Early catches of mackerel, 1878-1881...................................... 112
33. The vessels

113
34. Apparatus and methods of fishing ... 113
G.-Early methods of the mackerel fishery, 1620 to 1820 115
35. Seining mackerel with drag-seines 115
36. Drailing for mackerel... 117
III. LEGISLATION FOR THE PROTECTION OF MACKEREL 119
H.-LAWS, PETITIONS, AND PROTESTS.. 119
37. Legislation in the seventeenth and eighteenth centuries 119
38. Protests against jigging and seining in the present century 121
IV. STATISTICS OF THE MACKEREL FISHERY IN 1880, BY R. EDWARD
EARLL .. 124
I.-Tables showing statistics...................... 124
39. Table I. Vessels and men in the mackerel fishery (by ports)....... 124
40. Table II. Mackerel fleet, by States, according to fishing grounds... 126
41. Table III. Mackerel fleet, by States, according to apparatus........ 126
42. The products of the North American mackerel fishery for 1880..... 127
V. TIIE MACKEREL CANNING INDUSTRY, BY R. EDWARD EARLL... 131
J.-The development of the mackerel canning industry.............. 131
43. The methods and statistics of canning 131
VI. METHODS OF PACKING, AND INSPECTION LAWS, BY A. HOWARD
CLARK.. 137
K.-Methods of packing, and inspection Laws................................ 137
44. Methods of packing mackerel .. 137
45. Inspection laws... 147
VII. STATISTICS OF INSPECTION OF MACKEREL FROM 1804 TO 1880,
BY A. HOWARD CLARK... 162
L.-Statistics of Maine, Massachusetts, and New Hampshire, with
total statistics... 162
46. Statistics of Massachusetts 162
47. Statistics of Maine 193
48. Statistics of New Hampshire..................................... 202
49. Statistics of the United States (totals)...................................... 213
VIII. CHRONOLOGICAL NOTES, BY CAPT. J. W. COLLINS 217
M.-Fishermen's records... 217
50. Seventeenth century .. 217
51. Nineteenth century .. 218

52. Existing laws 354
53. Repealed laws.. 372
54. Inspection laws of the British Provinces 395
X. APPENDIX-THE MACKEREL FLEET ... 418
55. Vessels in the mackerel fishery in 1880 418
XI. APPENDIX-MACKEREL FISHERY IN THE GULF OF SAINT LAW-..
56. Catch of mackerel by Americans in Canadian waters 430

I.-NATURAL HISTORY OF THE MACKEREL.

A.-LIFE HISTORY OF THE MACKEREL.

1.-Geographical distribution.

The common mackerel, Scomber scombrus, is an inhabitant of the North Atlantic Ocean. On our coast its southern limit is in the neighborhood of Cape Hatteras in early spring. The fishing schooners of New England find schools of them in this region at some distance from the shore, but there is no record of their having been taken in any numbers in shoal water sonth of Long Island. A. W. Simpson states that the species has been observed in the sounds about Cape Hatteras in August, September, and October. R.E.Earll finds evidence that stragglers occasionally enter the Chesapeake. Along the coasts of the Middle States and of New England mackerel abound throughout the summer months, and are also found in great numbers in the Gulf of Saint Lawrence, where, in past years, fishermen of the United States congregated in great numbers to participate in their capture. They are also found on the coast of Labrador, though there is no evidence that they ordinarily frequent the waters north of the Straits of Belle Isle.

Captain Atwood* has expressed the opinion that they visit Northern Labrador only in seasons remarkable for the prevalence of westerly winds, and that in colder seasons they do not go so far north.

Professor Hind was told by the residents of Aillik and Kypokok, Labrador, 150 miles northwest of Hamilton Inlet, that mackerel were abundant there in 1871, and that a few were caught in cod-seines. While at Double Island harbor, some fifteen miles north of Hopedale, a French Canadian resident informed him that there is "a scattering of mackerel" on that part of the coast.
They appear also at times to have been abundant on the northeastern coast of Newfoundland, though their appearance there is quite irregular. Mackerel do not occur in Hudson's Bay nor on the coast of Greeuland. It seems probable that the natural northern limit of the species in the Western Atlantic is not far from the Straits of Belle Isle. Professor Packard, who risited this region in 1866, recorded that a few mackerel are taken in August in Salmon Bay and Red Bay, but that the Straits of Belle Isle were evidently the northern limits of the genus, while Fortin, one of the best Canadian authorities on fisheries, in his anuual report for 1864 , stated that in summer they appear in some places, such

[^2]as Little Mecattina on the adjoining coast, latitude 502_{2}^{10} north, and even sometimes enter the Straits of Belle Isle.*

Perley says that they are rarely known to visit the coast of Labrador. H. R. Storer, after carefully studying the fauna of Southern Labrador, in 1849, came to the conclusion that they were sometimes found at Little Mecattina.

In the various reports of the Canadian inspectors of fisheries on the Labrador coast from 1864 to 1870 may be found evidence that mackerel are rarely taken even on the Labrador coast of the Gulf of Saint Lawrence.
Professor Verrill, who visited Anticosti and Mingan in 1861, was unable to find any mackerel in the waters of that region, although the best methods of catching them were often used.

Some years ago mackerel were abundant in the Bay of Fundy, as many as twelve vessels from Eastport, besides others, being engaged in their capture, chiefly about Digby and Saint Mary's Bay. They have now so completely disappeared as not to form an item in the commercial record of the catch.
The species is found throughout the entire length of the Norwegian coast from the Christiana Fjord to the North Cape and Varenger Fjord, latitude 71°.

It occurs on the south coast of Sweden, and, entering the Baltic, is found along the shores of Eastern Denmark and Eastern Prussia, and also abundantly in the German Ocean and the English Channel, as well as everywhere in all parts of the British Isles, and southward to the Mediterranean, where it abounds, especially in the Adriatic. There is no record of its capture in Africa, South America, in the West Indies, Gulf of Mexico, or even about the Bermudas.

The mackerel, then, would appear to be a shore-loving fish, not addicted to wide wanderings in the ocean, and with range limited in the Western Atlantic between latitudes 35° and 56°; in the Eastern Atlantic between 36° and 71°.

[^3]2.-Migrations.

The migrations of the mackerel, the causes of their appearance and disappearance at certain seasons at different points along the coast, the causes of their relative abundance and scarcity in different years, have already been discussed by numerous writers. The subject has received special attention on account of the disputes between our own and the Canadian Government concerning the value to our fishermen of the right to participate in the mackerel fisheries in the Provincial waters.

Notwithstanding the great amount of paper which has been covered with theories to explain the various mooted questions, it cannot be said that the habits of the mackerel are understood at all better than those of other fishes which have not attracted so much attention. The most voluminous writer upon this subject has been Prof. Henry Youle Hind, who devotes many pages of his book, "The Effect of the Fishery Clauses of the Treaty of Washington on the Fisheries and Fishermen of British North America," to the attempt to prove that the mackerel which hare been at certain seasons in the past so abundant in the Gulf of Saint Lawrence and on the Atlantic coast of Nova Scotia, remain there throughout the year, hibernating in deep waters not very remote from the shore.* I have attempted to show the weakness of his argument in an

[^4]essay published in the Fifth Annual Report of the United States Commissioner of Fisheries for the year 1877, pp. 50-70. It is by no means demonstrated that certain schools of mackerel do not remain throughout the year in waters adjacent to the coast of Canada, but the weight of evidence at present seems to rest with those who believe that the mackerel are given to extensive migrations north and south along our coasts. These migrations are believed to be carried on in connection with another kind of migration which I have called "bathic migration," and which consists in a movement, at the approach of cold weather, into the deeper waters of the ocean. The menhaden and many other fishes have these two kinds of migrations, littoral and bathic. The sea-herring, on the other hand, has extensive littoral migrations and probably very slight movements of a bathic nature. In some the latter is most extended, in others the former. Anadromons fishes, like the shad and the alewife, very probably strike directly out to sea without ranging to any great degree northward or southward, while others, of which the mackerel is a fair type, undoubtedly make great coastwise migrations, though their bathic migrations may, without any great inconsistency, be as great as those which range less.

Upon this point I cannot do better than to quote from a manuscript letter from Professor Baird to the Hon. Hamilton Fish, Secretary of State, dated July 21, 1873. Having expressed certain views concerning the well known phenomenon of the migration of the herring and shad, he continues:
"The fish of the mackerel family form a marked exception to this rule. While the alewife and shad generally swim low in the water, their presence not being indicated at the surface, the mackerel swim near the surface, sometimes far out to sea, and their movements can be readily followed. The North American species consist of fish which as certainly, for the most part at least, have a migration along our coast north-

[^5]ward in spring and southward in antumn, as that of the ordinary pleasure seekers, and their habit of schooling on the surface of the water enables us to determine this fact with great precision. Whatever may be the theories of others on the subject, the American mackerel fisher knows perfectly well that in the spring he may find the schools of mackerel off Cape Henry, and that he can follow them northward day by day as they move in countless myriads on to the coasts of Maine and Nova Scotia."

The movements of the mackerel schools, like those of the menhaden, appear to be regulated solely by the temperature of the ocean.

In my essay upon meuhaden, which has just been referred to, I have attempted to show, in a preliminary way, the relations of the movements of the menhaden schools to the temperature of the water at different stations along the coast in accordance with certain crude observations, which at present constitute the only material available as a basis for such generalizations. I have there claimed that menhaden make their appearance near the shore in the spring as soon as the temperature of the water in the harbors has reached a weekly average of 50°, and that they disappear in the fall soon after the waters have agaiu cooled down to the same average temperature.

The mackerel is partial to much colder waters. They range ten to fifteen degrees farther to the north, and their southern limit is proportionally high. They appear earlier in the spring and disappear later in the fall, and their presence is nearly syuchronous with the time when the water temperatures of the harbor have reached a weekly average of $4 \tilde{5}^{\circ}$. It has been remarked that the presence of the menhaden depends upon a weekly average of the harbor temperature of 50° or more. These harbor temperatures are several degrees-it is not known exactly how many-higher than those of the open ocean at the same latitude, and there can be no question that the menhaden thrives in water as cold as 45°. Mackerel will remain active and contented in a temperature of 40°, or even less. The normal time of the departure of mackerel from the coast is, therefore, a month or two later than that of the menhaden.

There are well recorded instances of the capture of menhaden in Massachusetts Bay as late as December, and there are also many instances where macktrel have been taken not only on the New England coast, but also in the Gulf of Saint Lawrence, in mid-winter.*

[^6]S. Mis. $110-7$

Mr. John Fletcher Wonson tells me that at one time he left Gloucester on a halibut trip January 1, and January 3 or 4 on George's Bank caught a hogshead of herring and 7 or 8 mackerel in a gill-net.

The Schooner Shooting Star took a number of mackerel on George's Bank in March, 1856.*

The fishermen on George's took tinkers from the stomachs of cod-fish in February, 1878, using them for bait. Sometimes five or six were taken from one fish.

In January, 1868 or 1869, Capt. Warren Brown, of the schooner Charles Frederick, of Gloucester, caught 30 mackerel on a trawl-line set on the middle bank.

The Yarmouth Herald (Yarmouth, Nova Scotia), January 2, 1879, states that "two fine fat fresh mackerel were found among the kelp at Green Cove on Friday, December 28, 1878."
Basing their arguments upon such occurrences as these, Canadian writers have attempted to prove that large bodies of mackerel hibernate along their shores throughout the winter. It is still believed by many fishermen that the mackerel, at the approach of cold weather, go down into the mud, and there remain in a state of torpidity until the approach of warm weather in the spring. All that can be said regarding this claim is that, although we do not know enough about the subject to pronounce this impossible, American ichthyologists think they know enough to be of the opinion that it is very decidedly improbable. \dagger

* Cape Ann Advertiser, April, 1856.
\dagger It seems only fair to quote in this connection a letter printed in Forest and Stream, a leading New York journal devoted to field sports and the fisheries, in criticism of views published at the time in that paper and also in the report of the Fish Commission, part v. I feel the utmost confidence in Dr. Gilpin's statements as to facts observed, though my interpretation might perhaps be different.
"Halifax, June 19, 1878.
"Mr. Editor: In some papers published some time since in the Forest and Stream upon the habits of the mackerel, it is asserted by Prof. Brown Goode that there is no reliable evideuce of mackerel being seen upon the coast of Nova Scotia after the 25th of October, quoting me as his authority. Had ho quoted me as giving the 1st of November, 1868, when the fish market at Halifax was full, I should have felt more complimented, as I should have known he had read my paper with more attention. In summing up my remarks I stated that mackerel remain usually all November on the surface in Nova Scotia, and during mild winters linger to December. This, Professor Goode says, is not reliable as scientific evidence, because no specific dates are given. To admit this would be to destroy almost the whole mass of information compiled in the report of both the Royal and American Commissioners of English and American Fisheries. But as I am certain that Professor Goode's desire is to have the truth simply, will you allow me a place in your columns to add to my previous assertions such specific dates as I may be able now to obtain, though not admitting his principle.
"On May 23, 1875, going into the Halifax fish market, I asked generally how long are mackerel in market? I was answered, generally all through November. On asking how long in December they had known them in market, Mr. Greywire said: 'I recollect them as late as the 10 th of December. We keep our nets out to the 30 th of November. Men hire to that time. Mackerel are seen after that date, but the seas

The appearance of the mackerel schools at the approach of summer in ordinary years has been noticed somewhere in the neighborhood of the following dates: At sea, off Cape Hatteras, March 20 to April 25; off Norfolk, Va., March 20 to April 30 ; off the Capes of Delaware, April 15 to May 1; off Barnegat and Sandy Book, May 5 to May 25, and at the same date along the whole southern coast of New England, and as far east as Southern Nova Scotia, while in the Gulf of Saint Lawrence they appear late in May, and in abundance early in June.*

There appears to be a marked difference between the movements of mackerel and the menhaden, for while the menhaden are much more gradual in their approach to the shore, and much more dependent upon a small rise of temperature, the mackerel make their appearance almost simultaneously. in all the waters from New Jersey to Nova Scotia at about the same time. Stragglers, of course, appear much earlier than the dates just mentioned; a fer mackerel were observed at Waquoit, Mass., as early as April 19, 1871.

In the fall the mackerel disappear as suddenly as they came in the spring, but they have only in one instance been observed off the Carolina coast, except during the spring run. This is very probably because no fishing vessels ever visit this region later than June.

The instance referred to is the experience of Mr. Peter Sinclair, a wellknown fisherman of Gloucester, who states that he has frequently taken them in great abundance off Cape Hatteras in December, where they are not known at all in the summer season. He has found them in the

[^7]*The following letter from the skipper of the schooner Edward E. Webster is important, in that it gives the exact positions as well as the dates of some of the earliest captures in 1878, '79, '80, and '81:
"New York, April 22, 1881.
"Captain Collixs:
"Dear Sir: I have just received your letter of March 14, in which you wanted to know whereahouts I caught my first wackerel. (The first catch) in 1878, April 16, lat. $36^{\circ} 10^{\prime} \mathrm{N}$., long. $74^{\circ} 45^{\prime} \mathrm{W}$.; in 1879 , April 12 , lat. $36^{\circ} 35^{\prime} \mathrm{N}$., long. $74^{\circ} 50^{\prime} \mathrm{W}$.; in 1880, April 1, lat. $35^{\circ} 30^{\prime}$ N., long. $74^{\circ} 15^{\prime}$ W. ; in 1881, March 20 , lat. $37^{\circ} 10^{\prime}$ N., loug. $74^{\circ} 05^{\prime} \mathrm{W}$. ; and this trip we got them April 18 in lat. $38^{\circ} 38^{\prime} \mathrm{N}$., and long. $74^{\circ} 00^{\prime} \mathrm{W}$ This is our second trip this season. I have seen mackerel in lat. $35^{\circ} 15^{\prime} \mathrm{N}$., and long. $73^{\circ} 46^{\prime}$ W., which is the fartherest south I have ever seen any. I have been off Cape Lookout many times, but have never seen mackerel there.
"Yours, truly,
"SOLOMON JACOBS."
spring as far south as Charleston, and followed them from Cape Henry to the Bay of Fundy and the Gulf of Saint Lawrence.

The rery vagueness of the statements just made is evidence to show how little is actually known about the movements of these fish. The subject must be studied long and carefully before it can be understood, and the interests of the American fishermen demand that it should be thus studied.
"There is," writes Professor Baird, "no very satisfactory evidence of the occurrence of mackerel in the winter or any other season south of Cape Hatteras, and it is not given by Poey and other writers as occurring in the West Indies. A few mackerel are said to be occasionally brought into the Charleston market, and Mr. Moses Tarr, of Gloucester, thinks that some years ago he saw in the early part of March, a short distance to the southeast of Key West, a large school of mackerel. He, however, did not capture any, and it is more likely that the fish observed belonged to some other small species of the mackerel family which occasionally school like the mackerel itself, and might easily be mistaken for it. The skip-jack or leather-back may possibly have been the species referred to.
"I have been quite surprised to find the extent of belief among Massa-
their habits it must be assumed as truth that they remain in numbers during November, but are found sparingly later on our coasts. Where they are during those dates in any intermediate point from Maine to Virginia, must be left to American observers. When these blanks are filled and a generalization made their history will be more complete, a task we may well leave in the hands of the American Commissioners of Fisheries.
"Iu my paper (1865) I speak of their asserted torpidity and the story of their blindness as needing more proof before they are asserted as facts. I have had nothing to alter my opinion since. In examining the eyes of many mackerel ou May 23 and 27 and October 27 , in different years, I have found that, as in most fish, the bony orbit is much larger than the base of the eye, and that the space is filled by gelatinous substance, which may be called cellular membrane and adipose deposit to this transparent membrane arising from the outer angle of this orbit spreads half way over the pupil of the eye. It may easily be raised and defined by passing a pen-knife between it and the eye. At the inner angle there is also a similar, but much smaller, membrane, not reaching to the eye. As the mackerel appear on our coasts about the 15th of May, and these observations wero made the 23d, I do not think it can be asserted the eye is closed entirely in spring; and as the same appearance is found in September, we must admit it to be a permanent structure. An analogous membrane is found in the clupide, and doubtless other fish. On asking Thomas Loyd, our roughest and oldest fisherman: 'I don't know anything about the scales of the eyes, but I do know that, curse them, they see too sharp for us, steering clear of our spring nets,' and doubtless old Tom was right.
"On dissecting a mackerel, May 23, I found the heart first presenting the tricornered ventrical with its white aorta and deep red auricle resting upon the fringe of cœea that covered the intestines, sweeping down to the vent. The liver and stomach were both covered by the cocea. The latter was about three inches long, its upper lobe thick and round, but ending in a narrow tail or point. The cardiac end of the stomach
 the gut about an inch below the pylorus. There was but little difference in appear-
chusetts fishermen that the mackerel goes into the mud in the winter time. I have, indeed, been assured by trustworthy parties that they have known mackerel caught on eel spears when fishing for eels in the mud of Provincetown harbor.
"A similar belief is referred to by Dr. Gilpin in his paper on the mackerel in the transactions of the Nora Scotia Scientific Association, and it is difficult to refuse assent to the testimony of otherwise credible observers. There is nothing apparently in the economy of the mackerel to prevent its following the example of the sand lance, the eel, and other fish. We know that the melanora, the tench, and many other fresh-water fish have the burrowing habit, some of them being imbedded very deep in the mud at the bottom of a dried-up pond, to emerge again when the water is restored.
"The entire disappearance of mackerel during the winter season is a noteworthy fact, as we can hardly suppose that if it schooled on the surface in the Gulf Stream during that season it would not be noticed by the experienced eyes of sea captains, and we can hardly imagine that the fish would remain in the depths without an occasional rise.
ance and size betweon stomach and gut. This we may roughly sum up: Stomach and gut very simple; coeca usually large and complicated; liver small, all noteworthy facts in the study of comparative life. The fish being a male one, lobe on cither side of ivory-white; milt reached from gills to vent, slightly adhering to the sides by thin membrane, and covered by a similar one. They were divided in lobes by shallow lines, the upper lobes slightly fimbriated. On removing both entrails and milt a darkpurple space abont an inch wide extended from gills to vent beneath the back bone. This, when opened, seemed filled with coagulated blood. It had in some respects the appearance of the air bladder in the salmonidx, though wanting in the direct communication they have with the œsophagus. But this communication is also wanting in the gadidæ, where, especially in the hake, the air bladder assumes its highest form of organization. I have often found coagulation and reticulated plexi in air bladders of other fish.
"It has been asserted the European mackerel havo no air bladders, and a new genus proposed, but with more probability they have the same organization as our own, and the difference lies in the opinion whether or not it is an air bladder.
"The mackerel appear on the Atlantic coast of Nova Scotia, and almost simultaneously on the Bay of Fundy, about the 15 th of May. Nearly all spawners, male and female, perform a somewhat easterly and northerly route, disappear from tho surface in a few weeks and reappear again in September without spawn, and fat, remain in numbers during November, and very sparingly during December, coming from the eastward and then disappear. It may be asserted generalizing from observation extending over a series of 8 or 10 years, that they are irregular in their morements as regards localities, though probably not as regards ocean surfaces.
"The very great difficulty of accounting how these enormous masses of surface feeders find food after disappearing from the surface has cansed many ingenious theories, as to the question in what state and where they pass that time. These are all pleasant reading, but valuable more or less as regards the ingenuity and scientific standing of the writers. In this paper and the one I iuclose (1865) I have stated what I think are facts, and which must be accepted in the future history of American mackerel, which I hope soon to see written by that commission which has already done so much in Atlantic waters.
"BERNARD GILPIN."
"It appears to be a well-established fact that mackerel are not unfrequently found in the stomachs of cod, and possibly of halibut, taken on the George's Banks in the winter season. Perhaps the number noted would be still larger if fishermen had the time and inclination to examine more frequently than they do the stomachs of the fish captured by them.
"Another curious fact in relation to the mackerel is in respect to the membrane, the vertical edge of which is observed during the summer season on the corner of the eye. This, it is claimed, during the winter extends over the whole eye, and imparts the appearance of blindness. This the mackerel is said to possess on making its first appearance near the coast in the spring, when it extends over the greater part of the eye, thus preventing the fish from seeing the bait, and it is a matter of common remark that mackerel in the spring cannot be taken with the hook, but must be captured with the net. The membrane appears to recede with the advancing season, and during a considerable portion of the time of its abode in the north it is scarcely appreciable."

Mr. Perley, of Saint Johu, N. B., in his work upon the fishes of the Provinces, remarks that mackerel have been taken on cod-hooks in deep water, near Grand Manan, in the winter season, and there is evidence to show that a few remain on the coast. It is, however, believed that these cases are exceptional and confined to stragglers, as such instances frequently occur with all the migratory fish.

The mackerel belongs to what may technically be termed pelagic or wandering fish, as their movements, something like those of the herring, are apparently more or less capricious, though probably governed by some definite law, which has not yet been worked out. It moves in large schools or bands, more or less isolated from each other, which sometimes swim near the surface and give distinct evidence of their presence, and at others sink down into the depths of the ocean and are entirely withdrawn from obsercation. The army of fish, howerer, in its northern migration, moves along with a very broad front, a portion coming so close to the shore as to be taken in the weirs and traps along the coast of Southern New England, especially in Vineyard Sound and on Cape Cod; while at the same time other schools are met with from 20 to 50 miles, or even more, out to sea. It is, however, still a question whether the fish that skirt the coast of the United States enter the Bay of Saint Lawrence, or whether the latter belong to another series, coming directly from the deep seas off the Newfoundland and Nova Scotia coast. Until lately the former has been the generally accepted theory, in view of the alleged fact that the fishermen of the Nova Scotia coast always take the fish coming from the west in the spring and from the east in the fall.

Captain Hanson B. Joyce, of Swan's Island, Maine, one of the most expert and observing mackerel fishermen of New England, thinks that the movements of the spring schools of mackerel are very much in-
fluenced by the direction and force of the prevailing winds while the fish are performing their northerly migration. He has generally found, he says, that when there has been a continuance of strong northerly winds about the last of May and early in June, the season at which the mackerel are passing the shoals of Nantucket and George's Bank, that the schools have taken a southerly track, passing to the southward of George's Shoals and continuing on in an easterly direction to the coast of Nova Scotia, and thence to the Gulf of Saint Lawrence.

When southerly winds or calms prevail at that season the mackerel are carried into the waters of the Gulf of Maine, and in consequence are much plentier off the New England coast than in the Saint Lawrence Gulf.

On this theory Captain Josce bases his actions in cruising for mackerel, almays fishing off the New England shores when southerly winds have predominated in the spring, and going to the Saint Lawrence if northerly winds have been exceptionally strong and continuous about the last of May.
The movements of the fish, as already stated, season by season, are quite uncer ain, sometimes being rery abundant in one direction and sometimes in another, and occasionally, indeed, they may disappear almost entirely for several years, and then reappearing after a considerable absence. In some years mackerel are very abundant on the coast of the United States and at others rare; the same condition applying to the fish of the Bay of Saint Lawrence. It is not certain, of course, that this indicates an entire absence of the fish from the localities referred to, but they may, possibly for some reason, remain in the depth of the sea, or some change in the character of the animal life in it, which constitutes the food of the fish, may produce the changes referred to. A notable instance of a somewhat permanent change in the migration of the mackerel is found in the entire failure since 1876 of the mackerel fishery in the Bay of Fundy, which, a ferw years ago, cuabled a merchant of Eastport to emplor successfully as many as a dozen vessels, especially in Digly and Saint Mary's Bay, but which is now given up. There are indeed faint suggestions, in the early history of the country, of their total absence from the whole coast for several years, as was also the case with the bluefish.
3.-Abundance.

The wonderful abundance of mackerel in our waters has always been a subject of remark. Francis Migginson, in his "Journal of his royage to New England, 1629," speaks of seeing "many schools of mackerel, infinite multitudes on every side of our ship," off Cape Ann on the 26th of June; and Richard Mather, in his "journal" 1635, states that the seamen took abundance of mackerel off Menhiggin (Monhegan). In Governor Winthrop's journal, speaking of the year 1639, he remarks: "There was such store of exceeding large and fat mackerel upon our
coast this season as was a great benefit to all our Plantations, since one Boat with three men would take in a week ten hogsheads, which were sold at Connecticut for $£ 312 s .0 d$. per hogshead."

Their abundance has varied greatly from sear to year, and at times their numbers have been so fers that grave apprehensions have been felt lest they should soon depart altogether.

As early as 1670 , laws were passed by the colony of Massachusetts forbidding the use of certain instruments of capture, and similar ordinances have been passed from time to time ever since. The first resource of our State governments has always been, in seasons of scarcity, to attempt to restore fish to their former abundance by protective legislation. It seems to us at the present day absurd that the Massachusetts people should have supposed that the use of shore-seines was exterminating the mackerel on the coast of Massachusetts, but it is a fair question whether their apprehensions were not as well grounded as those of legislators of the preseut century who have endeavored to apply a similar remedy for a similar evil. In connection with the chapter on the mackerel fishery will be shown a diagram, which, by means of curves, exhibits the catch of mackerel in New England for a period of seventyfive years.
From a study of this it seems quite evident that the periods of their abundance and scarcity have alternated with each other without reference to overfishing or any other causes which we are prepared to understand. In the year 1831, $383,548 \frac{1}{2}$ barrels of mackerel were inspected in Massachusetts. In 1881 the number of barrels inspected was 269,495; to this, however, should be added 125,000 barrels caught and marketed fresh by the Massachusetts fleet, making an aggregate of 394,495 barrels. The fluctuations in the catch year by year from 1804 to 1881 are shown most instructively in a plate accompanying this report.
The total catch of mackerel by the New England fishermen in 1880 amounted to $131,939,255$ pounds; while the Canadian catch (according to official returns, barrels being estimated to contain 300 pounds, cans, one and one-balf pounds of fresh round fish) was $70,271,260$ pounds, making an aggregate of $202,210,515$ pounds. The yield of New England in 1881 is estimated to have exceeded that of 1880 by $10,000,000$ pounds. We have no means at present for estimating the decrease of the Canadian catch, but it is perhaps safe to put it at $11,000,000$. This brings the catch of 1881 to about $201,000,000$ pounds. In addition to this, at least 100,000 barrels or $20,000,000$ pounds, according to estimates from competent authority, were thrown away by the New England fleet. This brings the total weight of mackerel caught up to $221,000,000$, representing $294,667,000$ fish, if the weight be estimated at three quarters of a pound each. The catch of mackerel in the waters of Europe does not probably exceed ten per cent. of this quantity.

The stories which are told by experienced fishermen of the immense numbers of mackerel sometimes seen are almost incredible. Capt. King

Harding, of Swampscott, Mass., described to me a school which he saw in the South Channel in 1848: "It was a wind-row of fish," said he; "it was about half a mile wide, and at least twenty miles long, for vessels not in sight of each other saw it at about the same time. All the vessels out saw this school the same day." He saw a school off Block Island, 1877, which he estimated to contain one million barrels. He could see only one edge of it at a time.

Upon the abundance of mackerel depends the welfare of many thousands of the citizens of Massachusetts and Mainc. The success of the mackerel fishery is much more uncertain than that of the cod fishery, for instance, for the supply of cod is quite uniform from rear to year. The prospects of each season are eagerly discussed from week to week in thousands of little circles along the coast, and are chronicled by the local press. The story of each successful trip is passed from mouth to mouth, and is a matter of general cougratulation in each fishing community. A review of the results of the American mackerel fishery, and of the movements of the fish in each part of the season year by year, would be an important contribution to the literature of the American fisheries. Materials for such a review are before me, but space will not allow that it should be presented here.
4.-Food.

The food of the mackerel consists, for the most part, of small species of crustaceans, which abound everywhere in the sea, and which they appear to follow in their migrations. They also feed upon the spawn of other tishes and upon the spawn of lobsters, and prey greedily upon young fish of all kinds.* In the stomach of a "tinker" mackerel, taken in Fisher's Island Sound, November 7, 1877, Dr. Bean found the remains of six kinds of fishes-of the anchovy, the sand-lance, the smelt, the hake, the barracuda, and the silver-sides, besides numerous shrimps and other crustaceans. Captain Atwood states that when large enough ther devour greedily large numbers of young herring several months old. Specimens taken July 18, 1871, 20 miles south of Noman's Land, contained numerous specimens of the big-eyed shrimps, Thysanopoda, larval crabs in the zoea and megalops stages, the young of hermit crabs, the young lady crabs, Platyonichus ocellatus, the young of two undetermined Macrura, numerous Copepoda, and numerous specimens of spirialis Gouldii, a species of Pteropod. They also feed upon the centers of floating jelly-fishes (Discophores). In Gaspé the fishermen call jelly-fishes "mackerel bait."

The greed with which mackerel feed upon the chum, or ground men-

[^8]haden bait, which is thrown out to them by the fishing-vessels, shows that they are not at all dainty in their diet, and will swallow without hesitation any kind of floating organic matter.

Large mackerel often eat smaller ones. Captain Collins has frequently found young mackerel three or four inches long in the stomachs of those full grown. This is generally noticeable only in the fall, and the young fish are probably those which have been hatched in the spring.

In the fall of 1874 the writer made a trip upon a gill-net schooner to the grounds off Portland, Me., some distance to sea, for the purpose of studying the food of the mackerel, and found their stomachs full of a species of Thysanopoda and of a large copepod crustacean. The greater part of the food of mackerel consists, however, of minute crustaceans. Owing to the infinite abundance of these in the sea, mackerel probably have very little difficulty in finding food at almost any portion of the ocean visited by them, whether on the edge of the Gulf Stream or near the shore.

In an interview with Capt. King Harding, of Swampscott, one of the most experienced mackerel catchers on our coasts, I obtained the following amusing observations: He described one kind which looked like spiders, which were red, and crawled over his hand when he took them up. They look like little spiders; the mackerel are especially fond of them. At Boone Island, Maine, in July, 1850, the water all around the island was red for 100 yards from the shore; they crawled up the rock-weed on the shore until it was red. He took the sprass of rock-weed in his hand and pulled them slowly to him, and the mackerel, one and a balf pound fish, would follow in quite to the rocks. He killed three with his oar, and tried to catch some in a basket by tolling them over it, but they were too quick for him. He asked his old skipper, Capt. Gorham Babson, what they were, and was told that they were "Boone Island Bed Bugs." And, said he, "Young man, when you see this kind of bait, no matter if you don't see any fish, never leave; the fish will be there in a few days."

Then there is another kind, called "Snappers." These are white, and dart rapidly about in the water; they are doubtless small crustaceans. He says that sometimes they swim at the surface, where the mackerel follow them. A few days before ho had been standing on the stern of his vessel, and though he could see nothing under the water he knew the suappers were there about two feet below the surface, for he could see a school of mackerel swimming along, opening their mouths and taking in their food, and then letting the water out through their gills.

When the mackerel are tolled up from 12 or 15 fathoms below the surface their stomachs are often full of bait; so it is certain that these little animals swim at all depths.

Another kind of food is red, and is hot to the hands. This is called "Cayenne"; it spoils the fish.

Years ago, according to Captain Harding, mackerel did not school as they do now.

When you see pollock jumping near the shore, it is a pretty good sign that there is plenty of mackerel food.

The presence of abundance of mackerel food is indicated by the great schools of sea-birds, particularly by the flocks of phalaropes, or seageese (Phalaropus borealis), as the fishermeu call them, which congregate together, floating upon the water, and when seen in summer gives a sure sign of the presence of mackerel also.
The various invertebrate animals preyed upon by mackerel are known to the fishermen by such names as "Shrimp," "Red-seed," and "Cayenne."
"The wide-spread distribution from shore seaward of the Thysanopoda and other minute crustacea, which constitute to so great an extent the food of the mackerel and herring on our shores, was proved," writes Professor Baird, "during a trip of the 'Speedwell' from Salem to Halifax in 1877." At numerous points and at regular intervals on the way across, including the middle of the route, immense numbers of these shrimp were met with and collected by the towing net. They were found in especial abundance at Le Have Bank. These prove to be specifically identical with those found in immense quantities in Eastport Harbor at the surface.
"That these same animals occur at least as far east as the Gulf Stream is shown by the list of the collections made by Professor S.I. Smith off the Georges near the edge of the Gulf Stream, and published in the Transactions of the Connecticut Academy of Arts and Sciences, rol. iii, July, 1874."

Capt. Chester Marr, of Gloucester, confirms the statements of Captain Harding regarding the effects of "red-seed" upon mackerel; he states that when mackerel are feeding on "red-seed" the fishermen have great trouble in keeping them sufficiently long to dress them properly. Their bellies soften at once. When the weather is good and doglish are not troublesome, the common practice is to allow the fish to lie in the net until they have disposed of the food in their stomachs. Capt. Henry Willard, of the schooner "Henry Willard," of Portland, Me., carries a large net of coarse twine, which is suspended over the side of the ressel from two long booms. Into this he turns the fish aud leaves them until the seed works out.*

Captain Marr states that the "red-seed" is very troublesome to the men engaged in dressing the fish; it makes their hands very sore, often causing the blood to run. A man can clean twice as many fish in a given time if he is not annoyed by the "red-seed" in their stomachs.

Captain Marr describes another kind of mackerel food, which he calls "small brit," which, he sass, resembles young herring, which also rots

[^9]the fish. This is probably, as he supposes it to be, "white-bait" or the young of the sea herring, Clupea harengus. It is known as "eye-bait" to the Canadian fishermen.

Captain Merchant tells me that when mackerel are found with "redseed" in their stomachs fishermen are sure that they are on the right fishing grounds.
I am told by Captain Collins that it is common for many of the American fishermen to consider it a good sign of mackerel when they see floating seaweed, more especially cel grass, "chopped up," i. e., cut into short pieces, which they think is done by these fish. Perhaps there may be a good reason for this supposition, since the mackerel, while feeding on the diminutive shells with which the weeds are covered, may also bite the latter in two. The presence of gannets is also considered a good sign of mackerel.

In England the food of the mackerel is called the "mackerel mint," and this is said to consist at certain seasons of the year of the sandlants and five other fish, especially the herring and the sprat, while they have also been observed to devour, in the summer months, minute crustaceans, the swimming larvæ of tape-worms, and the embryos of the small spiral shell of the genus Rissoa, which, in its adult state, is found in great abundance upon seaweed. It was probably some animal of this kind which was referred to by Captain Harding in the statement above quoted, concerning the abundance of red-seed about Boone Island. Mr. J. F. Whiteaves has recorded a similar habit for the mackerel of the Gulf of Saint Lawrence.*

Professor Hind has pointed out certain relations which exist in the Gulf of Saint Lawrence between the mackerel and the lant, or sand-eel, which appears to be one of its most important articles of diet in these waters. I quote here in full his observations upon this subject, and also his views upon the relations of currents and tides to the presence of mackerel food, and the constant movements of the schools of fish :
"The movements of the mackerel, like those of the cod, and indeed of most species of fish, are determined at different seasons of the year by the geographical position of its food; and the first important kind of food which appears to lure the mackerel inshore, after spawning in the Gulf of Saint Lawrence, is the launce or sand-eel.
"The relation of the lannce or sand-eel (Ammodytes americanus) to the mackerel is very much greater than appears at the first blush, and resembles the relation of the herring to the cod in general, and in particular the relation of the so-called Norwegian 'Sull cod,' or launce cod, to this widespread and important bait-fish. The approach of the launce to the coast in spring is most probably the cause why the socalled spring cod fishing suddenly ceases on many banks and shoals, commencing again at different localities two and three weeks later.

[^10]"The cod leaves the banks and shoals to meet and to follow the launce as they approach the coast. In the same manner they meet and follow the caplin, guided no doubt by the peculiar odor developed by each species at the approach of the spawning season.
"But it is the labit of the sand eel of burying itself in the sand botween the tides, or in submerged sand beaches, that leads the mackerel so close inshore.
"There can be little doubt that a similar indraught and outdraught of mackerel and other fish occur in our waters when the launce leave the deep sea to approach the land, or when they return to the deep sea again. Unlike many of the shrimps and larval forms on which the mackerel feed, which are drifted to and fro by winds and currents, the launce is independent of the wind; but it is only in certain favorable localities frequented by this fish that the burying process between tidemarks, from which it derives its name, can be easily effected; hence, these resorts are not only valuable as bait grounds, but generally noted mackerel grounds, such as Seven Islands, and some parts of Bay Chaleurs, and part of the gulf coast of New Brunswick.
"This bait-fish approaches the sandy beaches fringing the shores of the gulf in the early summer months to spawn; and here the mackerel are found pursuing them while engaged in depositing their comparatively large reddish-colored ova on the sands between high and low water. Hence, during flood tide, and in the launce season, mackerel are commonly taken close inshore on these coasts, in pursuit of the launce; and the best catches are said to be made during the period of high tide, for the following reason: In dull, cloudy weather the launce buries itself in the sand left bare by the ebbing tides; but in bright, hot weather it rarely seeks the shelter of the sands except near lowwater mark, probably because the heat of the sun would be oppressire. The breadth of sandy ground in which the launce buries itself for the brief period between high and low water marks is thus dependent upon the clearness of the sky.
"A continuance of cloady weather is conducive to this kind of close inshore fishery; whereas a bright sky, and a day with a drying wind, leads the launce to select the narrow bands of sandy beach near the margin of ebb-tide, which always remain moist. In cloudy weather with a moist wind, the area in which the launce bury themselves and emerge during the incoming tide is thus very much greater than in bright, hot weather; and it is not unfrequently found by experience that the mackerel catch in such localities is much greater in clondy weather than in bright weather, because the bait ground is then far more extensive close inshore.
"As the summer adrances and the lannce retire to deep water the mackerel feed upon the free-swimming and floating embryonic forms of crustaceans; among the latter the zoea of different forms of crabs are the most common. Adalt shrimps of many species form also a large por-
tion of their food, and the infinite numbers of these forms of life which exist in the sea, from the coast line to a thousand miles from land, may be inferred from the fact that, together with fish, they form the great staple of food of seals in northern seas.
"Dr. Robert Brown states that during the sealing season in Spitzbergen seas he has taken out of the stomachs of seals various species of Gammarus (G. Sabini; G. loricatus; G. pinguis: G. dentatus; G. mutatus, \&c.), collectively known to whalers under the name ' mountebank shrimps,' deriving the designation from their peculiar agility in water.*
"These small crustaceans are found in countless numbers on the great outlying banks off the North American coast, and in the Labrador seas they are also in great profusion.
"It is of special importance to notice that very many if not all of these free-swimming creatures in the sea, from invisible microscopic forms to the largest shrimp, sink to different zones of water or rise to the surface with the variations in temperature and changes in the direction and force of the wind. In fine weather when the food is at the surface, the mackerel, the herring, and other surface feeders swim open-mouthed against the wind. Dr. Brown states that the right-whale and most of the whale species feed in a similar manner. The right-whale feeding, strims leisurely at the rate of about four miles an hour. Mackerel when feeding come often by millions, like a swiftly-moving ripple on the water, with eager staring eyes and mouths distended to entrap the floating prey. Many of the free-swimming Pteropeda are active only during the night time, sinking during the day to a certain zone of depth.
"The effect of currents and tides, assisted by winds, is to drive these free-swimming forms towards the different shores and into land-locked or sheltered bays. On the shores of the open sea a coutinued land breeze drives them far out to sea, and the fish following them will be lost to view. Off the coast of the United States the mackerel ground is not unfrequently found near the summer limit of the Gulf Stream where wide-spreading eddies prevail, caused by the meeting of the great Labrador current flowing in an opposite direction, or the surging up of the Arctic underflow. In these vast eddies the temperature is greatly reduced by the mixing of almost ice-cold water from beneath with a warm overlying stratum.
"It is here too that the free-swimming mackerel food will congregate, sometimes at the surface, at other times at different depths, dependent upon the temperature of the mixed waters. In the vicinity of the south edge of the Grand Bauk of Newfoundland the line of contact between the Arctic and the Gulf straams is sometimes very marked by the local currents which 'boil and form strong eddies.' The line of contact of the two great cold and warm currents is continually changing for hundreds of miles with the varying seasons aud under the influence of winds;

[^11]hence also the changes in geographical position and in the depth or zone of the open-sea mackerel grounds.*
"Inshore the floating and free-swimming food is drifted to and fro by winds and tides, and great accumulations are sometimes thrown up upon the beaches in windrows after storms. This floating and swimming food gathers in eddies, either near the coast line or at the junction of opposing tidal waves or currents. Hence, along sheltered and embayed coasts, confronting the open sea in the vicinity of banks where great tidal currents and eddies are formed, or in the gulf and estuary of the Saint Lawrence, where two opposite and wholly different tides dragging along the coast-line approach to meet, there will be the mackerel ground of the fishermen, but not necessarily at the surface."

The winged Pteropods very properly form an important part of mackerel food, as they sink and rise with changes of the temperature of the zone or sheet of water in which they are feeding.

5.-Reproduction.

Although little is actually known concerning the spawning habits of the mackerel compared with those of fish which, like the shad and the salmon, have been artificially propagated, it is perhaps safe to say that the subject is understood in a general way. The testimony of reliable observers among the fishermen of our coast and the coast of the British Provinces indicates that the spawning takes place in rather deep water ali along the shore from the eastern end of Long Island to Eastport, Me., along the coast of Nova Scotia, and in the Gulf of Saint Lawrence. The spawning season occurs in May in southern New England, in May and June in Massachusetts Bay, and in June in the Gulf of Saint Lawrence, and on the Bradley Banks and about the Magdalenes early in the month, and, according to Hind, on the northeast coast of Newfoundland toward the end of the month. \dagger

[^12]Capt. Benjamin Ashby, of Noank, Conn., states that in the spring of ${ }^{\prime}$ 1877 mackerel spawned in great numbers in Vineyard Sound and Buzzard's Bay. Many mackerel were taken in the pounds, and the eggs were so ripe that when the fish were thrown from the net to the boat the eggs escaped to such an extent that in cleaning out the boat afterwards he found at least half a bushel at the bottom. This was as early as the second of May, and continued through the month.

Capt. R. H. Hurlbert, of Gloucester, found the spawn running out of mackerel taken off Kettle Island, south of Cape Ann, in May and June.

Capt. Heury Webb, who owns a weir on Milk Island, under the shadow of the Thatcher's Island lights, obtains many mackerel every year in his nets. He informs me that when they first make their appearance, about the first of June, the spawn is running out of them and many of them are half through the process of spawning. The eggs will spurt from a female fish in a stream six feet long, and there is a large percentage of females in the catch, probabily two-thirds of the whole.

Lawrence some time between the 1st and the 15th of July. Have caught them in abundance and full of roe as late as the 4th and 5 th of July, and it is exceedingly rare to find spent mackerel previous to the 20 th of June. In the period when hook-and-line fishing was most prosperous, the fishermen usually planned to leave the Guif about the first week in July if they had succeeded in getting neatly a fare of mackerel previous to that time, since while the fish were spawning, or between the 1st and 15th of the month, but little could be done, as the maclserel sunk at that time, and would not readily take the hook. The fishermen, therefore, knowing that they could catch fow fish during this period, between "hay and grass," as they termed it, usually improved the opportunity thus afforded of making their passage home and refitting for another trip with comparatively little loss of time. Apparently one of the most favorite breeding grounds for mackerel in the Guif of Saint Lawrence is the area along the shores of Now Brunswick and Prince Edward Island (on the north side of the latter) lying inside of a line drawn from North Cape to Point Miscou. Bank Bradley is also a breeding-ground for mackerel of considerable importance. Thè fish seem to assemble on the grounds mentioned above during June, in a depth varying from 3 to 40 fathoms. The greater part, however, are found in a depth varying from 10 to 20 a fathoms. The spawning season being over, they usually stay on the same grounds, though later in the summer and during autumn the mackerel were formerly abundant around the Magdalenes and the bend of Prince Edward Island; when the fall migration takes place they move farther south. It is probable that large numbers of mackerel may deposit their spawn around the Magdalene Islands, though it is worthy of note that but few or no tish have been taken in that locality on hook and line during. the month of June. Cousiderable quantities are, however, caught by the gill-net fishermen early in June, though the catch has always been small compared with that formerly obtained by hook-aud-line fishing in the western part of the Bay.-J. W.. Collins.

As corroborative of the views of Captain Collins, I give the statements of Capts. Andrew Leighton and Joseph Rowe, two of the most keenly observant, and in consequence the most successful, of the old school Cape Ann "mackerel killers." The former writes to Captain Collins: "My observations are in harmony with yours." The latter remarks: "I have always thought that the mackerel in the Bay of Saint Lawrence sunk about the last of June to spawn. From the first to the middle of July was always a very dull time to catch mackerel on hooks. When the mackerel sunk they were full of spawn. When we got them again, about the middle of July, they would. have the most of the spawn out of them and be some fat."

The spawn begins to dry up after the first of August, and young fish begin to appear about the 4th of August. He thinks that it takes mackerel four or five weeks to spawn; after that they begin to grow fat, and when they are fat there is no sign of spawn to be seen, the male and female not being distinguishable.

The growth is rapid, and in about seven weeks the young fish are about four or five inches long.

Mackerel spawn abundantly in Grover's Beach at a depth of one and a half to two fathoms. The eggs are very minute and the old mackerel feed upon them greedily.

Captain Fisher, of Portland, Me., told me, in 1874, that when the mackerel come in they are almost empty and have a muldy taste. They first engage in spawning, but toward the last of June they have finished and begin to grow fat.

Captain Hurlbert caught a dozen fish off Camden July 1, 1870, which were half spawned and had spawn running out of them.

According to Mr. Wilkins, of Two Isles, Grand Manan, the mackerel spawns there on the rocks and sand in water from 1 foot to 10 feet or more in depth. This is in the first half of June. The spawn is in bunches and does not float on the water.

During the spawning season mackerel are taken in seines, as they will not bite and are then rery poor. They come again in September and October, and are then taken with the hook.

Mr. Hall, of Charlottetown, Prince Edward Island, says that mackerel spawn only once in seven years in large numbers, this period representing the interval between the successive large catches. The mackerel strike in there about the 10th of June. They spawn about the $2 d$ or 3d of July on the Bradley Bank to the north of Prince Edward Island. At that time they have been taken with spawn running out of them. They cease to bite for several weeks while spawning. One of the principal spawning.grounds on our coast appears to be on the Nantucket Shoals, where for a period of three or four weeks after their first appearance the mackerel hug the bottom and rarely take the hook. At this time there is a lull in the prosecution of the mackerel fishery, although before its beginning great quantities are taken in the purseseines far south along the coast. After the close of the spawning season the old fish are said to be very poor, but take the hook greedily along the entire coast, as also before the beginning of the spawning season; although the fish first brought to market are sold at a high price on account of their previous scarcity, it is not until after the close of the spawning season and the subsequent fattening up of the fish that they attain their highest excellence as an article of food. Fall mackerel are well understood to be by far the best fish. Storer, in his history of the fishes of Massachusetts, remarks: "From the 10th of May to the 15th of June they appear at the entrance to Massachusetts Bay, having been a few days previous at Nantucket and the Vineyard Sound.
S. Mis. $110 _$S

Nine-tenths of those first seen are males, and they are all large but poor, weighing from one pound to one pound and a half. At their first appearance they will not take the hook, and are therefore captured in seines."

The contrast between the statements of Storer and Captain Webb should be carefully noted. The former states that the early fish taken near the end of Cape Cod are mostly males. This would naturally be the case, as the females at this time are either engaged in spawning or are perhaps so weak that they would not be likely to come to the surface. At Milk Island, however, which seems to be in the middle of the spawning region, the majority of the fish are females.

We are indebted to Capt. N. E. Atwood for the most complete series of observations upon the spawning of the mackerel which has ever been made, and what he has seen he shall be allowed to tell in his own words:
"I have many seasons been engaged in fishing for mackerel in our bay with gill-nets. I watched the mackerel more particularly in regard to their time for spawning. In 1856, owing to the fact that a measure had passed the Massachusetts legislature authorizing the appointment of three commissioners to make investigations with regard to the artificial propagation of the fish, and that I expected to be named one of the commissioners, I went to the upper part of Massachusetts Bay, where it is about twenty miles broad, and I found these spawning mackerel there near the bottom. This year the mackerel came in about the middle of May; fer at first. On the 20th I went out for the first time with my drifting-nets all night in the bay; I caught 2,250 mackerel; on the following night I caught 3,520 . When I first began to catch them I observed that the spawn had come to its full size, though it was not free to run from them, not being yet fully matured. On or about the 1st of June we found that some of them were depositing spawn, and as I took them from the nets the spawn ran freely. On the 5th of June I took the mature eggs as they came from the fish and put them in alcohol, marking the date, as I cousidered this time the middle of the sparning season. (By the 10th of June the fish had all deposited their spawn, and they then proceeded to the grounds where they expected to meet with better food in order to fatten and recruit. The spawning takes place at a depth of from five to fifteen fathoms.) Thirty days after I went out in the bay and found any quantity of schools of little mackerel which were, I should think, about two inches long, though their length might have been a little less. I took a number of specimens and put them in alcohol, marking the date. Twenty-five days later I procured another lot of them which had grown to double that size. I don't mean to imply that they were twice as long, but twice as heavy. I put them also in alcohol, marking the date. The first time I subsequently went to Boston I called on Professor Agassiz and gave him the specimens. He said that he had never before been
able to ascertain these facts so clearly and so well, and that he was very much pleased with them. I watched the growth of these young mackerel all along, and I saw them grow considerably from month to month, so much so that the same fall, in the latter part of October, I caught some of them with a very small mesh net and found they had grown to a length of $6 \frac{1}{2}$ or 7 inches. I kept a small quantity of them, split, salted, and packed them, in accordance with the Massachusetts inspection law, as No. 4 's, and, since mackerel were then scarce and very high in price, I sold them for as much as $\$ 6$ a barrel."
"Much yet remains to be learned in regard to the spawning season of the American mackerel" (writes Professor Baird), "and little more is known of this except in regard to the European variety. It is, however, well established by the researches of Sars that this fish, like the cod, and many of the flat fish, \&c., spawns in the open sea, sometimes at a great distance from the land, at others closer in shore. Sars found them on the outer banks of the coast of Norway; and Mr. Matthew Dunn, of Mevagissey, England, communicates to Land and Water of his observations of mackerel found, with ripe spawn, 6 miles from the coast.*
"The fish taken in the wiers and pounds on Vineyard Sound and about Cape Cod, in the early spring, are filled with ripe spawn; and that the operation of spawning on the American coast is shown by the immense schools of small fish that are taken throughout the summer, of various sizes, from a few inches up, and from Buzzard's Bay to Portland and Penobscot Bay. No species of young fish is, at times, more abundant throughout the summer season than the mackerel.
"The egg of the mackerel is exceedingly minute, not larger than that of the alewife or gaspereau. It appears to be free from an adhesive envelope, such as pertains to the egg of the herring, and in consequence of which it agglutinates together, and adheres to gravel, the rocks, or the sea-weed at the bottom. As with the egg of the cod, that of the

* SPAWNING OF MACKEREL.

SIR: I have been again fortunate in taking a mackerel alive in the act of spawning, on the night of May 10, about 6 miles from land. A better specimen could not possibly be had, and the roe ran freely without assistance. I got a bucket of sea-water, and allowed the fish to spawn in it; for some time I had a difficulty in finding what became of it, as the globules would not reflect the light of the candle like the pilchard spawn; but by running the water into a clean bottle, and holding it to the light, I found them floating on the surface, but not so bnoyant as the pilchard roe. In this state they continued for about half an hour, and then gradually sank to the bottom; but, unlike the pilchard spawn, they retained their vitality there for more than twelve hours. With the daylight the globules could scarcely be discerned by looking directly down into the water; but on holding it towards the light in a bottle they could be seen, with that healthy, bright, silvery hue so peculiar to living ones, each marked with a dark spot in the center. Believing the pilchard spawn would have reached you, I did not send you any of these. As I sent that spawn by post, I suppose the bottle must have been broken in the post-bag.-Matthias Dunn (Mevagissey, Cornwall, May 15, 1871.) (Land and Water, May 20, 353.)
mackerel is provided with an oil globule, which makes it float nearly at the level of the surface."

I am indebted to Mr. Frederick W. True for a count of the eggs in two mackerel taken at Woods Holl, Mass., in May, 1873. One of these (No. 10512, U. S. Nat. Mus.), contained 363,107, the other (No. 15205), 393,887.

The only enumeration of mackerel eggs previously recorded is that made by Thomas Harmer, in 1764, and published in the Philosophical Transactions of London, vol. 57, p. 285. He found in one large mackerel, weighing $1 \frac{1}{4}$ pounds, 454,961 eggs; in a second, of much the same weight, 430,846 ; and in a third, weighing about 1 pound 2 ounces, 546,681 . His estimate is probably too large.

6.-Rate of growth and size.

The rate of growth of the mackerel during the first summer has been quite carefully studied by Captain Atwood; and the same authority has, perhaps, more satisfactorily than any other interpreted the facts from which may be deduced the conclusions as to their growth year by year.

Referring to the small fish, $6 \frac{1}{2}$ or 7 inches in length, which he believed to be the young of the year, caught by him in October, 1856, he says: "Fish of this size are sometimes called 'spikes,' but I do not know their proper name. The next year I think they are the 'blinks,' being one year old; the following year they are the 'tinkers,' tro years old, and the year after they return to us as the second-size, three years old. It is probable that the fish reaches its full maturity in four sears." He contimues: "The first mackerel that come in are very large and spawners, but these do not bite at the hook; and you don't catch them with the seine, because they don't show themselves. You would not know of their presence if you did not set nets for them. Wheu they are taken in nets set anywhere along the coast, at Provincetown, \&c., a good many people imagine that they are the remnant of the mackerel which were there the year before, and which have been imbedded in the mud; and when they taste these fish they fancy that they taste mud. When the next school arrives there appear mackerel of different sizes, which take the hook. They are carried to Boston market and are soid fresh in their season. They are not sold by weight, but are culled, and are denominated as follows: Large ones, second-size, tinkers, and blinks. When the large oues are worth 12 cents, the others may sell: second size, 8 cents; tinkers, 4 cents, and blinks, $1 \frac{1}{2}$ cents. These prices may fluctuate before a large proportion of one or more of the above-named kinds at the same time. Any man who is well acquainted with them will make the same culling, as there seems to be a line of demarkation between the different kinds which stands out prominently.
"Admitting this to be the fact, those that come as blinks are from
the spawn of the year before, while those which are called tinkers are from the blinks of the year previous, being the two-year-old fish; and those that are called second-size are from the tinkers of the year before, when they grow up and mix with the bigger ones, I don't know how they live, or much about them. This is my opinion about these matters. You will find fishermen tell you they think that mackerel are six or seven years in getting their growth."
Mackerel, when full-grown, are from 17 to 18 inches in length; sometimes they attain a larger size. Captain Collins has caught individuals measuring twenty-two inches. In August, 1880, a school of mackerel was taken in the vicinity of Plymouth; they weighed from three to three and a half pounds each, and were from 19 to $19 \frac{1}{2}$ iuches long. They were regarded as extraordinarily large, and a barrel of them were seut to the Fishery Exhibition at Berlin as an illustration of the perfection to which the mackerel attains in this country. Although the size just mentioned is unusual at present, in past years many thousands of barrels have been taken nearly, if not quite, as large. The size varies from year to year, sometimes very few barrels which can be rated as No. 1's being found in our waters. A No. 1 mackerel, according to the Massachusetts inspection laws, measures 13 inches from the tip of the snout to the crotch or fork of the caudal fin. The average length from year to year for the whole coast is probably not far from 12 inches in length, and a weight of twelve to sixteen ounces. The following quotations from writers of two centuries ago are interesting, since they show that large mackerel were known to the early colonists of New England:
"The mackerel, of which there is choicefull plenty all summer long; in the spring they are ordinarily 18 inches long; afterwards there is none taken but what are smaller."-Joselyn, 1675.
"The Makarels are the baite for the Basse, \& these have been chased into the shallow waters, where so many thousands have shott themselves a shore with the surfe of the Sea that whole hogges-heads have been taken up on the Sands; \& for length they excell any of other parts: they have bin measured 18. \& 19. inches in length \mathbb{E} seaven breadth: \mathcal{E} are taken with a drayee, (as boats use to pass to $\mathbb{\&}$ froe at Sea ou business,) in very greate quantities all along the Coaste.
"The Fish is good, salted; for store against the winter, as well as fresh, \& to be accounted a good commodity."*

7.-Enemies.

Captain Collins writes: "The gannet is one of the most destructive enemies of the mackerel. I have often seen these birds so heavily weighted with these fish that they were unable to rise on the approach. of the vessel until they had disgorged from two to four good sized mack-

[^13]erel. This is so common an occurrence that there are but few fishermen who have not witnessed it."
"Porpoises and whales may also be included in the list of enemies of the mackerel. It is by no means an unusual sight on the fishing grounds to see hundreds of the former rushing and leaping among schools of mackerel scattering them in every direction."
"The shark, known to fishermen as the ' mackerel shark,' is one of the principal enemies of the mackerel. I have often seen them chasing mackerel, and, when jigging was practiced, it was a common occurrence for sharks to drive off a school from alongside of a vessel."

Dogfish often hover around the outside of large schools of mackerel, and doubtless feed on them. Great difficulty is sometimes experienced in saving fish that have been inclosed in a purse-seine, owing to the immense numbers of dogfish that gather around, and in their efforts to eat the mackerel, which they see through the meshes, they bite off the twine, making large holes in the seine through which the inclosed fish escape."

The dogfish is doubtless a dangerous foe to the mackerel weakened by the act of spawning, and remaining near the bottom. An old fisherman has described to me with great animation how greedily the dogfish devour the mackerel which have become gilled in the nets, how they follow them to the surface and linger about the vessel while the process of cleaning is going on, drinking the blood of the fish as it flows from the scuppers.

Among the other principal enemies of the mackerel are the bluefish, tunny, and cod. The appearance of a school of bluefish in waters crowded with mackerel is an almost sure signal for their disappearance.
The young mackerel are eaten also by squids. Professor Verrill has recorded the following description of the maneuvers of the squid known to zoologists by the name Ommastrephes illecebrosa:
"Messrs. S. I. Smith and Oscar Harger observed it at Provincetown, Mass., among the wharves, in large numbers, July 28, engaged in capturing and devouring the young mackerel, which were swimming about in 'schools,' and at that time were about four or five inches long. In attacking the mackerel they would suddenly dart backward among the fish with the velocity of an arrow, and as suddenly turn obliquely to the right or left and seize a fish, which was almost instantly killed by a bite in the back of the neck with the sharp beaks. The bite was always made in the same place, cutting out a triangular piece of flesh, and was deep enough to penetrate to the spinal cord. The attacks were not always successful, and were sometimes repeated a dozen times before one of these active and wary fishes could be caught. Sometimes after making several unsuccessful attempts one of the squids would suddenly drop to the bottom, and, resting upon the sand, would change its color to that of the sand so perfectly as to be almost invisible. In this
way it would wait until the fishes came back, and when they were swimming close to or over the ambuscade, the squid, by a sudden dart, would be pretty sure to secure a fish. Ordinarily when swimming they were thickly spotted with red and brown, but when darting among the mackerel they appeared translucent and pale. The mackerel, howerer, seemed to have learned that the shallow water is the safest for them and would hug the shore as closely as possible, so that in pursuing them many of the squids became stranded and perished by hundreds, for when they once touch the shore they begin to pump water from their siphons with great energy, and this usually forces them farther and farther up the beach. At such times they often discharge their ink in large quantities. The attacks on the young mackerel were observed mostly at or near high-water, for at other times the mackerel were seldom seen, though the squids were seen swimming about at all hours; and these attacks were observed both in the day and evening."

B.-STUDIES OF THE MOVEMENTS OF THE MACKEREL SCHOOLS.

S.-Hind on the causes of irregular movements.

In closing this chapter upon the natural history of the mackerel, it seems appropriate to quote from the writings of Professor Hind some very important paragraphs in which he has attempted to interpret the irregular movements of the mackerel schools in our waters, and to explain the causes of the alleged annual rariation of their numbers:
"What is the proper interpretation of the movements of the mackere? from its first appearance in the spring to its disappearance in the fall? These movements vary with the geographical position of local schools of this fish. On the coasts of the United States and Nova Scotia, its annual movements resemble in all particulars those of the same species in European seas where the schools have a free and unobstracted oceas in which to seek their prey.
"In the spring, at the end of April and May, the Atlantic schools of this fish which have wintered off the coasts approach the land in separate bodies, full of spawn and poor, coming direct from winter homes where they have remained in a torpid condition, partially buried in sand or mud. After spawning, the different schools feed for a short time on the fry of fish, and as the temperature rises they go out to seas in search of free-swimming crustaceans and larval forms of food according as they are distributed by wind and tide.
"They pursue this food against the current or tide. They often feed during the night, because at that period great numbers of free-swimming larval forms approach the surface. This is one reason why mackerel schools are frequently missed by fishermen, and areas supposed to be deserted may really abound with this fish, which would be discovered
by sink-net fishing. The currents are constantly changing with the seasons under the influence of temperature and prevailing winds, hence the course of direction and depth of the food is constantly changing also.
"Sometimes it is carried far off from the land, at other times towards it, and the mackerel schools following the food move first in one direction, then in another, and range from close inshore to fifty miles and more seawards, and often, doubtless, at a considerable depth below the surface.
"The general direction of these movements, when plotted on paper, would be a series of irregular circles or elongated ellipses, the range of each school or group of schools being opposite, and often adjacent to that part of the coast where they spawn.
"As the fall approaches, owing to the diminution in the supply of their floating food out at sea, they come more inland.
"All the free-swimming larval forms of most species of shrimps, crabs, lobsters, sea-urchins, starfish, sea-worms, \&c., have disappeared in the open sea, after passing through their final transformation. But near the shore there are great numbers of other forms of life, which are developed later in the sear. Coming inshore to feed on these on the Atlantic coast, the mackerel are found by American fishermen later and later on their return vogage to the southwest, which gives rise to the impression that they are following the schools, when they are only meeting with fresh schools approaching the shore from their feeding grounds. Similar movements occur on the Atlantic coast of Nova Scotia aud Cape Breton. As winter approaches, beginning at Cape Breton in November, the different schools retire to their winter homes off the coast in deep water later and later from north to south.
"In the Gulf of Saint Lawrence, where land is, as it were, on all sides, the local schools come from their winter haunts to the banks and beaches of the Magdalens. of Prince Edward Island, in the Bay Chaleur, \&c., to spawn about the first week in June. They retire after spawning to deep water, and meet the incoming sand-lannce. They follow the sandlaunce inshore or on to banks, and for some weeks feed on these fish. When the saud-launce again retires to deep water, the season of the small crustaceans has arrived, and these by tidal action, already described, and winds, are concentrated near the coast lines of Prince Edward Island, New Brunswick, the north and south shore of the Estuary and Gulf of Saint Lawrence, and the shores of Cape Breton. On all these coasts the effect of the single and confluent tides, dragging along the coast line and retarded by it, is to produce eddies, where the freeswimming food concentrates. The course of direction of the different schools during the summer is thus dependent upon winds and tides, and their movements would, if correctly plotted, resemble long narrow ellipses adjacent to the coast, which are doubtless many times repeated.
"At the approach of winter the different schools seek their winter quarters opposite and near to the places where they spawned in the
preceding spring, as is the case of the schools on the Atlantic coasts. In these particulars their movements resemble those of different species of fish which feed and move in great schools in directions outlined by circles or ellipses throughout the period during which they are at the surface.*

[^14]"Sars has shown that this form of movement is taken by the herring on the Norwegian coast.*
"The mackerel are pursued by cod and hake, and these fish gather where offal is thrownover from vesseis on which the mackerel are cleaned. As a natural consequence the mackerel avoid the sea areas where their enemies are congregated, and fishermen attribute the desertion of the mackerel-ground directly to the throwing of offal overboard. Cod, and probably hake, follow up the scent of offal or food of any description carried by currents with remarkable facility, as may be witnessed during the process of jigging for cod in calm and clear waters. On looking over the side of the boat, with a man engaged in jigging at the bow or stern, as soon as a fish is wounded merely by the jigger and blood flows from the wound, the creature may be seen to dart here and there in pain. The neighboring fish of the cod tribe are attracted by the scent and follow the blood 'tracks' against the current, hunting their wounded comrade to the death. A fish coming across the stream of scent, immediately follows it up, and it is thus that fish offal or bait thrown overboard in the open sea, or some distance from shore, gathers the fish on the course of the current. In harbors and confined or landlocked bays, where there is no constant strong current to carry off the results of decomposition, and where the sea-scavengers are not sufficiently numerous to consume it, the effect cannot fail to be extremely prejudicial to young fry and to fish-sparn. \dagger
very rapidly from Ipswich Bay across in the direction of Cape Cod. The schools were at the surface of the water, and it is not an exaggeration to say that their speed was not less than three or four miles an hour. The schools of mackerel spread over many square miles, each body of fish was separated from the others, perhaps many hundred fathoms, but all seemed to be impelled by the same motive and were moving steadily in the same direction. These fish would bite eagerly at the hook for a few minutes at a time, but so strong was their instinct of migration that it was impossible to detain them longer than a few minutes at a time in their onward movement.

> J. W. COLLINS.

* See chart by Dr. G. O. Sars, in his report for 1874.
\dagger Fisheries of British North America, pp. 20, 21. It is difficult to see how the offal of mackerel could injure the spawn of the young fry of this fish since the eggs are known to swim at the surface of the sea, and it is presumable that the mackerel, when first hatched out, also keeps near the surface. Therefore in a depth of ten or twenty fathoms it seems extremely problematical that the welfare of either the eggs or young fish could be interfered with by the viscera thrown over from the fishingvessels. Another thing: It is well known that the waters of the Bay of Saint Lawrence swarm with small and extremely voracious crustacea-"sea-fleas"-which rapidly devour anything of this kind which is thrown into the sea. Indeed, so active are these small scavengers that codfish caught on a trawl are often completely devoured by them in three or four hours. Again, there can be no doubt but what throwing over the offal from the vessels is really beneficial to the mackerel, which feed upon it. The recent diminution in the abundance of mackerel in the Bay of Saint Lawrence, and the remarkable increase of this fish on our own shores, since the New England fleet has ceased to visit the waters of the Gulf in such numbers as formerly, seems to prove conclusively that the decrease or increase in the abundance of the mackerel is due to other causes than that of throwing over the offal which is taken from those which are caught.-J. W. Collins.
"The effect of temperature on the local movements of the mackere! may be recognized in the process employed by fishermen to 'raise' mackerel by toll-bait, and luring them seawards. The mackerel follow the bait for some distance from shore, where suddenly they cease to bite and disappear. They probably find long exposure to the warm temperature of the surface waters unsuited to their habits, and sink to a cooler zone.
"Hence the reason why a' mackerel breeze,' mixing the heated surface water with the cooler understratum, is favorable to prolonged mackerel fishing with bait. The mixing produced by agitation cools the surface and permits the fish to feed for a lengthened period."*
"The mackerel, like the herring and the cod, seeks cold water for its spawning grounds wherever the Labrador current exercises its influence. Between Block Island and Noman's Land, where the spawning grounds on the United States coast south of Cape Cod are alleged to exist, a thin wedge of the Labrador current stretches far into Long Island Sound." \dagger
"In Massachusetts Bay, where a mackerel spawning ground also exists, as also in the vicinity of Stellwagen Banks, the temperature when observed by Dr. Packard in September ranged from $41 \frac{1}{2}$ to 45 degrees, and the fauna resembled the cold-water species on each side of Jeffrey's Ledge. On George's Shoals the marine life is said by Verrill to be the same as that found in the deeper muddy parts of the Gulf of Saint Lawrence, and indicates a temperature not above 40 degrees, and probably considerably lower. Bradelle Bank, according to Mr. Whiteaves, presents the phenomenon of a small stony patch, tenanted by an assemblage of marine animals which usually inhabit very cold water, and are almost entirely surrounded by another series, which are for the most part prevalent where the bottom is warmer and more affected by surface conditions of temperature. \ddagger
"Wherever the areas are situated where young mackerel are found in the summer, we find near at hand a cold-water zone, either existing as a part of the Labrador current at the surface, or brought up from greater depths by banks and shoals. On the coast of Prince Edward Island, and in the gulf generally, the cold water lies frequently near the shore, because the diurnal tides mix the strata warmed during the daytime with the cold underlying strata. In the estuary of the Saint Lawrence Dr. Kelly found the surface temperature 57 degrees Fah. on the

[^15]9th July, but three feet below the surface it was 44 degrees, having in that short vertical space sunk 13 degrees ; at 24 feet it was 40 degrees, or 17 degrees below the surface temperature.
"The coastal waters of Massachusetts rapidly acquire an elevated temperature in June, when the waters of the Gulf of Saint Lawrence are often still ice-cold. In April, May, and June the cod and haddock resort in large numbers to the banks and reefs off Stonington, Watch Hill, No Man's Land, and other similar places, but are quite unknown there later in the summer.
"Local winds and tidal currents bring the waters of the Gulf Stream on to this coast and displace the cold waters, even at the distance of twenty or thirty miles from the shore in summer.*
"In the Gulf of Saint Lawrence the temperature of the surface in summer rarely reaches, as far as observed, the temperature of the bottom of the sea off No Man's Land, or $59 \frac{1}{2}$ to $61 \frac{1}{2}$ degrees in 11 and 18 fathoms respectively. \dagger
"Dr. Kelley records the following surface temperature in various parts of the gulf, and generally within view of the land:

Date.	Position.	Temperature of surface.
		\bigcirc
June 19, 1832	Off Point do Monts.	43
July 9, 1831	Off Anticosti.	57
Aug. Sept. 10, 2,1832	Off Anticosti. Mingan Harbor	54 53
June 28, 1832	Estuary of Saint Lawrence	8
Aug. 14, 1832	Off Kegashka	53
Aug. 15, 1832	In Kegashka Harbor.	48
Aug. 18, 1832 do.	38
$\begin{aligned} & \text { Aug. 28, } 1832 \\ & \text { Aug. } 30,1832 \end{aligned}$	do.	55
Ang. 31, 1832	Off Mingan.	51
Sept. 1, 1832	Mingan Harbor	39
Oct. 10, 1832	Near Cape Gaspé	41
Oct. 10, 1832	Off Cape Gaspé ...	43
Oct. 11, 1831	Near Mount Louis	41
Oct. 11, 1831	7 miles off............	47 46
$\begin{array}{ll} \text { Oct. } & 12,1831 \\ \text { Oct. } & 13,1831 \end{array}$	Bay of Seven Islands.	46
Oct. 14, 1831	. do	

"In the harbors of the gulf coast, and eren at a considerable distance off the land, the temperature of the surface is greatly affected by winds. A warm dry wind off the land diminishes the temperature of the surface by evaporation.
"Tidal currents have a powerful effect on the temperature of the surface over shoals near the shore, by bringing the cold water to the surface. On the 27th June, 1832, Dr. Kelley observed the temperature of the surface water over a shoal ledge which runs out a considerable distance from Mingan Harbor to be only 33 degrees; ou the previous day the water in the estuary of the Saint Lawrence being 47 or 48 degrees.

[^16]\dagger Verrill, op. cit., page 484.
"In these differences of surface temperatures, and the causes which give rise to them, we discover the reason why the mackerel retire, as the summer advances, from the warm coastal waters of the United States out to sea, where they find a stratum of water of the requisite temperature for their free-swimming food.* In the Gulf of Saint Lawrence this requisite temperature is best attained where cold substratum waters are mixed with warmer coastal waters by the tidal waves, the food being at the same time brought inshore by these currents as already described. Here it lingers, partly on account of a suitable temperature being attained, and partly because the efflux and reflux of the tides occasion a constant circular or elliptical movement of the water. Hence, while the off-shore waters on the coast of the United States alone possess the requisite degree of coolness in summer for the mackerel food, the inshore waters of the gulf acquire the degree of warmth best suited to the habits of these free-swimming creatures, which continues until late in the fall. The question of inshore and off-shore mackerel fishing grounds thus becomes, in a great measure, reduced to the different conditions of marine climate which prevail where the Labrador current is the controlling agent, or where the Gulf Stream asserts its power and influence during the summer season." \dagger

9.-Hind on the causes of the alleged annual variations in THE NUMBER OF MACKEREL OBSERVED.

"It is well known that the spawn of the herring is deposited at the bottom; and owing to the glutinous secretion binding the eggs, one to the other, it adheres firmly to everything which may happen to touch it; and masses of eggs are found to be tightly glued together. But it has been conclusively established by Professor Sars that the mackerel spawn, like that of the cod, floats; and the spawn is developed at the surface of the sea, being drifted to and fro by currents and winds, and, wholly unlike the spawn of the herring, sculpin, smelt, caplin, \&c., is at the mercy of the ever-varying currents of the ocean.
"The taking of mackerel on banks and shoals, dropping their spawn, must be accepted that the fish are ready to spawn at the place where they are then caught. The transparent floating spawn being very difficult to recognize and indeed rarely to be seen, except looked for and caught in tow-nets at the surface of the water.

[^17]"But mackerel fry are found near the land, in detached sea areas, all the way from the shores of Massachusetts to the shores of northeast Newfoundland.
"While the cod spawn on the North American coast during every month of the year wherever the temperature of the water is sufficiently low and ice does not interfere, and the herring spawn in like manner during spring and fall, when the bottom waters have acquired a certain temperature, the mackerel spawns, as a general rule, in the spring of the year, and large schools appear to be established where the Arctic current exercises its influence either as a distinct surface current, or where it is brought to the surface by banks or shoals, and thus secures the requisite coldness in the waters for the floating spawn.
"The floating spawn may be drifted by winds or tides many miles from the place where it is shed; and the birthplace of the fish will be that portion of the sea area where the young fry first issue from the egg, but not the spawning ground of the mother fish. In ordinary seasons the swing of the tides, apart from local currents, brings back twice every day the drifting surface matter, whatever it may be, near to the place from which it set out; but winds may greatly alter the course and distance to which floating ova would be drifted. Hence, except in the case of secluded bays like the Bay of Chaleurs, Pleasant Bay or Massachusetts Bay, the geographical position of mackerel fry is in a great measure dependent upon the winds which may have prevailed. A storm near the end of May or early in June on the coasts of the United States may drive foating spawn far out to sea, even into the heated waters of the Gulf Stream; and it has yet to be shown that mackerel spawn could survive the sudden and extreme change of temperature this would involve; or a continuance of southerly winds may drive the spawn on to the shore and destroy it. This occurs frequently with the spawn of those fish which are deposited near the shore, as in the case of the capelin and herring. The small size of the mackerel spawn would cause it to be unobserved, and it would be more distributed than the spawn of the herring and the capelin. The United States Signal Service charts show the course of storms and winds during the spawning season, which would produce these results.
"The relation of cod spawn to rain has been referred to elsewhere (Part I, page xii). Reasoning from analogy, which in so many instances must be for the present our only guide, the effect of rain or of a rainy month on mackerel spawn would be equally.prejudicial, by causing it to sink below the surface and be removed from those conditions of light and oxygen which are essential to the development of the embryo.
"On the other hand, the spawn might be driven in an easterly direction, or in a westerly direction, and be hatched some miles off the coast in great abundance. These new schools might attain great magnitude in three or four years, being unobserved, and might so remain for sev-
eral years, pursuing their circular feeding movements until noticed by the fishermen. The same contingencies occur in the Gulf of Saint Lawrence, and similar distribution arising from winds or tides drifting the spawn far from the spot where it was shed, often lead to the establishment of new schools of fish in different localities.
"This feature in the natural history of the mackerel has already been noticed with regard to the Bay of Fundy schools.
"The occurrence of mackerel in great abundance on the northeast coast of Newfoundland, and their subsequent disappearance, may be explained in a similar manner, and may be attributed to unfavorable meteorological conditions, which would drive the floating spawn on shore, or far out to sea. There are, however, other probable reasons for the obserred annual rariations in the schools, which will now be noticed.
"In the foregoing paragraphs it is assumed that the fluctuations in the numbers of mackerel observed by fishermen correctly interpret a phenomenon which appears to be generally recognized.
"But while it is right to receive the statement that very large fluctuations in the numbers seen usually occur, it is wrong to infer that, because the schools are not visible, proof is afforded that they do not exist. There are strong reasons for believing that during many seasons the schools escape the notice of fishermen on account of their finding their food in a lower and colder stratum of water, and more rarely coming to the surface than during other seasons. It will now be shown how a cold stratum is produced, and that, as a necessary result of the mode of its formation, it varies each year and during every month of the year in vertical position and thickness, and that it is constantly brought to or near the surface on banks and shoals within certain geographical limits. These variations in depth of suitable feeding zones throw light upon the alleged inconsistency of the appearance of the mackerel, and its selection of coastal waters in some sea-areas and off-shore waters in other areas, and variations in both during different seasons."*

10.-Observations of American fishermen on the movements OF THE MACKEREL SCHOOLS.

Since it is not practicable in this place to present a full account of the nrovements of the mackerel schools along the coast, it may be interesting to present the observations of a few reliable observers at different localities.

Captain King Harding, of Swampscott, gave me a very full account of the movements of the mackerel in Massachusetts Bay.

About the 20th of May the schools begin to draw around Cape Cod into the bay; the earliest date, in the memory of Captain Harding, is

[^18]the 11th of May. The schools continue swimming at the surface until about the middle of June, when they sink down into deep water. Now none can be taken in the seines. When they disappear they are full of spawn; when they again appear, in twelve or fifteen days, they are spawned. When any are accidentally hooked up or tolled up during the slack season they are sometimes seen to have partially spawned. When they come to the surface they form in schools and move to the eastward. These remarks apply to the large fish. Small fish may be schooling at the surface all the time. A pound mackerel in the spring is apt to have spawn in it.
"When jigging was the ordinary method of catching mackerel," writes Captain Collins, "many thousands of barrels were taken each year during or just previous to the spawning season, when the ova was well developed. It was not an uncommon occurrence for vessels to secure fares in the Bay of Saint Lawrence before the spawning season was over."

Uapt. N. E. Atwood, of Provincetown, Mass., gives the following account of the migrations and movements of mackerel:
"The mackerel comes to us from the sonth. As they are with spawn nearly mature when they arrive in our bay they probably come into the South Channel, passing east of Nantucket, then along the eastern shore of Cape Cod, then around the cape and on until they reach their spawning ground in from 15 to 5 fathoms of water, in the southern part of Massachusetts Bay, where they deposit, as I have answered in another reply."
"Mackerel leave the coast in the same manner as they came in in the spring. The mackerel is a migratory species, coming on our coast in the spring, and when the water becomes cold leaving the inshore ground and going to their winter quarters. We have no way of knowing where they are when away, but can only say they are at their winter home. The first that arrive are the largest; others come in later, but are smaller or rather a mixture of large and small fish. There are no equal intervals between the arrival of the different schools. When the fish leave our shores they go gradually, and they are several weeks passing away from our coast. The mackerel never fails to come, but often varies in abundance in different years. This may be due to the fact that the bait has taken a different course. The first run of mackerel is made up almost entirely of male fish, but the spawn of the few females that accompany them is always very nearly matured wheu they reach our coast. "I have to day (July 1, 1877) examined a quantity of mackerel brought in by a vessel, caught in another locality, and find they are about three-quarters males. Neither sex will take the hook when they first come in; they seem to have no inclination to bite until they have deposited their spawn; they then commence to feed, and in time become fat. The large spawning mackerel, after they have deposited, pass on to the north. We do not see much of them until they return late in the autumn. When they pass by here going off the coast
they do not take the hook, so we catch them in gill-nets. The second run of mackerel that comes in the early part of the season, which Dr. Mitchell, in his 'Fishes of New York,' calls Scomber grex, is the kind that takes the hook; they are, no doubt, the younger class of fish. This fish (mackerel) on its arrival swims low in the day-time; in the night it comes near the top of the water and is caught in gill-nets. We would not know they had arrived if no nets were set. The ebl and flow of the tide does not affect them. I have never seen spawn run from this fish when takeu with the hook; when spawning they do not bite in this locality. In fishing with gill-nets we see no spawn floating in the water. There are no pounds here. The mackerel does not run up from the sea into fresh water. We find no small young fish with the larger mackerel when they are spawning. Mackerel are liable to go anywhere when they are following the bait."

In his testimony before the Halifax Commission the same eminent authority stated:
"The mackerel, like some other species of fish I could name, come in poor and destitute of fat. being only number threes according to the Massachusetts inspection law; and when they reach Provincetown, those that have come in from the south have, I think, spawned at places at which they have found about the right depth of water for the purpose. I have never fished south of Cape Cod, and hence could not vouch for that; but the fish that come in east of Nantucket and South Channel do not fall in with land or a shoal channel until they strike back of Cape Cod, and, winding round, come into the southern part of Massachusetts Bay. In that locality I have fished with gill-nets for a great many seasons, at the time of their arrival, and they only last till the bluefish make their appearance. We have six or seven weeks of mackerel fishing, and generally do something considerable at it; but after the bluefish come in the mackerel leave, as that drives them all off and ruins our fishery.
"Question. When are mackerel in the finest condition off the coast of the United States, say from Cape Cod down?-Answer. I should say, taking one year with another-years differ a little-say from the middle of September to the middle of October, I could get as nice mackerel as could be procured at any time during the year, and then good mackerel, some years, can be obtained as early as the middle of August.
"Q. Is it your opinion that some of the schools of mackerel found on the coast of the United States remain there during the entire season, or do they all go north of the coast of Maine?-A. I think that the mackerel which come south of us, and then strike into Cape Cod and Massachusetts Bay, and north of that, and some of them farther eastward, come in from the deep water, where they have wintered, and strike on and back of George's Bank. This is my opinion. I consider that they come from their winter quarters all along the coast, from away down as far as Chincoteague Shoals to Newfomdland. I have no idea
that the mackerel which are on our coast in the region of Cape Cod and south of that, or anywhere near that, ever come down the coast here and pass Halifax. I have never thought that they did so; bat then I cannot bring evidence to prove that they did. I never saw mackerel between Cape Sable and Cape Canso, though I have seen some at Louisburg, on the south shore of Cape Bretou Island, when I was there once. I never saw these mackerel, but I fully believe that mackerel do come in the spring northward by Halifax, and again pass this way in the fall. But then I think that after the mackerel which pass Halifax get to Cape Sable they pass off the coast.
"Q. I wish you to state how late in the season you have successfully fished at the Magdalen Islands?-A. I could not remember the date exactly; but I should think that we never staid at these islands later than about the first of Oc:ober, though it may have been the 10th of that month; but that is about the latest period.
"Q. Have you tound mackerel good in quantity at the Magdalens as late as the finst of October!-A. I think that is the case. I believe that it was October before we left these islands the first year 1 was there; and we caught mackerel just before we left them."

Mr. A. B. Rich, of Provincetown, Mass., makes the following remarks concerning the migrations and movements of mackerel:
"Mackerel come along the coast from the south. When the water becomes cold they strike off into the depths. It is quite likely that they spend the winter at the south, at points where the water is about as cold as along the Massachusetts coast in the summer time. They are first seen in June, and steadily increase until September, when the main body makes its appearance. The first run is the smallest. Their appearance is regular and certain. In November these fish begin to leave, and withdraw by degrees. Both sexes come together and the spawn of the female seems to be mature when they first appear. Very few mackerel will take the hook at first, but do so atter the spawning season is over. Their arrival is known by their capture only, for they swim low. Very little spawn runs out of the mackerel canght with a hook, but large quantities out of those captured in nets. Mackerel are not anadromons. No small fish are seell on the breeding grounds. Mackerel seem to like deep water where the temprature is about 48° or 50°. About 20 fathoms is their usual depth."

Mr. Noah Mayo, of Boston, Mass., makes the following statements concerning the movements of mackerel:
"Mackerel come on this coast from the south, making their first appearance off Cape IIatteras and aloug the coast to Long Island. So along the Massachusetts and Mame roasts as it grows later, going into the Bay of Fundy and into the Bay of Chale ur and Gulf of Saint Lawrence. All mackerel found in the Bay of Chaleur come from the American waters. Most of them pass between George's Bank and Cape Cod on their journey from the south to their stumer resort. They leave by
the same route they came. Mackerel spend their winters either in the Gulf Stream or south of it, none being seen or canght after they leave the coast of Massachusetts. Mackerel are first seen off Cape Hatteras and along by Cape May usually about the last of April. As a rule the head of the shoals are large and the smaller come right after. From April to July they continue to come at different times. They commence leaving about the lst of November, and continne going in the same manner they had come, some earlier, some later, until into December, then they disappear. When they return in the spring they are very poor. Mackerel appear on the coast regular and certain; they never fail. In some years they are more abundant than in others. If the bait upon which they feed comes on the coast then they follow, and in proportion as the live bait is found so is the abundance of the mackerel. The sexes come together, and they spawn in about two to four weeks after they arrive. Mackerel take the hook at first as well as at any time, and both sexes are alike in this respect. Mackerel sometimes swim at the top of the water, but sometimes they cannot be seen. Birds are often attracted by them. The spawn often runs from these fish when taken by hooks, and it is frequently seen floating in the seines. Mackerel are not anadromous. Fish of all ages are found together on the breeding grounds. Mackerel are found in all sorts of water, deep and shallow, but they seem to prefer shallow water around the shore aud on the off-shore shoals. They like warm water better than cold."

Mr. Josiah Snow, of Boston, Mass., makes the following report on the movements and migrations of mackerel:
"Mackerel come on this coast from the south, first appearing off Cape Hatteras and then off Long Island Sound, so continuing along the coast. After passing Cape Cod they become fatter as the season advances. They pass along the coast of Maine into the Bay of Fundy, to the Bay of Chaleur and the Gulf of Saint Lawrence. I do not think all the mackerel found in the Bay of Chaleur follow the American coast; part of them appear to come direct from the south, striking into Chaleur through the Gut of Causo. Mackerel leave the coast in about the same manner as they come, some passing off southeasterly, some following the coast closely and going around Cape Cod. At this time, the season being so far advanced, with bad weather, vessels do not follow them. Though there are many conjectures on this point, it is my opinion that they (mackerel) spend their winter in the Guif Stream, or at the south of it. It is certain that when they leave this coast in the fall they are fat, and are very poor when they revurn in the spring. They generally spawn on our coast. Mackerel are furst seen in quantity about May 1 , and during May and June appear to be constantly coming. Perhaps a few arrived in April. As a rule the tirst to come are the larger ones, and the smaller soon after. Thoy commence leaving the shore about November 1, and continue going throngh part of December. They always appear on this coast in summer. I think more come some
years than others, because more live bait upon which they feed is found on the coast some seasons. Runs differ, some being nearly all large. and some nearly all small. I know of no differeuce in the coming of sexes; they usually spawn in about two to four weeks after they arrive. I know of no difference in the sex in taking hook; as a general thing they take the hook freely when they first come. Mackerel swim both high and low. They are seen in large 'shoals', or 'schools,' as sometimes called, and at other times they remain under water so they cannot be seen withont throwing bait to attract them. The fishermen on this coast now need to see the fish on the surface becanse they use semes altogether. Spawn does not run ont of mackerel caught by hook, nor is it seen in quantity floating in the nets. These fish never go into fresh water. Young and old come on the coast together. Mackerel prefer shallow water and shoals. The water must he quite warm to suit them."
Capt. David N. Mehlman, of Gloncester, Mass., gives the following account of the movements of mackerel :
"Mackerel come from the sonthern coast and pass through the Southern Chamel between George's Bank and Cape Cod. Thes travel eastrard, and return by the same route toward the south. It is probable that mackerel spend the winter on the coast of Florida and in the Gulf of Mexico. They are seen about Gloncester first in spring in May. and their numbers continne to increase until the 1st of July. Those fish that come first are the largest of all in size. There is no reyular interval between the appearance of different schools. About November they begin to leave this coast, aud their departure is very gradual. The appearance of mackerel is rather uncertain. Some years they are very abundant, while in others they are quite scarce. This may be in part due to the course they take in coming in, making their scarcity a matter of appearance and not a reality, and partly also to the change of the feeding-ground. Some rums are composed of all large fish, and some of all small ones. Both sexes come together, and it is quite certain that the spawn of the female is already matured when they first arrive on these shores. When the mackerel first come they are quite uncertain about taking the hook. However, after a short time both sexes take it readily. The mackerel schools swim high, and make their arrival known by their appearance at the surface. They always make a ripple, and not unfrequently attract birds. The spawn never runs out of these fish, whether caught by hook or in nets. Fish of all ages are found on the breeding.ground. Mackerel remain in phaces where the water may be very shallow or as much as 100 fathoms deep. They seem to prefer rather warm water."
Mr. Moses Pettingell, of Newburyport, Mass., presents the following report on the movements of the mackerel:
"In coming in to the shore the mackerel take a northwesterly course from the Gulf Stream off Cape IIatteras. The flrst are taken on the
elge of the Gulf Stream in April. They usually depart by the same route. The fish of the first school are seen in A pril, and are larger than those of the main body which arrives in Jume. The scbools, which are many, are sepanated by intervals of nearly a hudred miles. The appearance of mackerel is uncertain in point of time, but they never entirely fail. Mackerel will not take the hook at all times. They will sarcely take it at all for ten dars or more after they first arrive. They anally swim near the surface, and attract birds, and make a ripple. In the spring months the spawn rums out of the fish canght with the hook, lout the eqgs are never seen floating in the nets. The mackerel is not an anadromons fish; they seem to prefer shallow water and a sandy bottom"

Mr. E. J. Nealley, of Bath, Me., states that "mackerel appear to foljow the coast northerly in the spring, and to return by the same route. Mackerel are found on the coast of Maine, for the first time in the seasun at any date from the 15th to the 20th of May, and seem to increase sradually in mumber until midsummer. The first school is of large size. Different schools leave at different times, but the man body appears to separt ealy in October. Their appearance is regular and certain. They all take the hook most readily after the sparning season is over. They swim low at their first arrival, but afterward sery frequently swim at the surface. The spawn is oiten seen floating in the nets in considerable quantity. Mackerel are not anadromous. These fish seem to prefer a sandy or gravelly bottom in from 6 to 12 fathoms of water."
Mr. Beujamin F. Hinckley, of Georgetown, Me., states that "mackdrel cone along the coast from the south and go toward the east ; they return by the same ronte. They spend the winter at the edge of the Galf Stream. The first fish are seen about the middle of May, and the main body arrives about the middle of July. The first schools are largest in size. The fish continue to come in at intervals, and also leave at different times. Their appearance is certain. The female fish come first and appear to be ready to spawn. Neither sex will take the hook on first arriving, and this state of things continues for alout a month after their arrival. The first schools swim low, but the later ones swim high and attract inuch attention. The tide has nothing to do with their movements. The spawn is often scen floating in the nets in large quantity. Mackerel are not anadromons. Young fish are not found among the sparning ones. After the spawning spason is orer the fish seem to have no preference in regard to depth of water."

Mr. George B. Kemiston, of Boothbay, Me., makes the following statements in regard to the movements of the mackerel:
"They come along the coast from the west, par remaining while athers continne toward the east. They depart toward the west. About June 10 the first are seen, and after this some are always to be found antil their departure altogether. There are no regular intervals of
searcity and abundauce. They leave the shores about October 1st to the 10th, quite gradually. Their appearance is regular and certain. The small ones appear first, but they continue to improve during their stay. Their arrival is known by their capture and the ripple on the water. Mackerel are not anadromous. Their favorite resorts are about rocke in shallow water."

Mr. U. S. Treat, of Eastport, Me., makes the following report in rogard to the movements of mackerel :
"Mackerel come in from the west. Their presence is known by the ripple they make at or near the surface. They pass out toward the west, touching at the bays aud harbors. They are last seen 'in the Gulf of Mexico late in the season. They inst appear in April or Mar, and the main body arrives in Augnst and September. The largest and fattest are taken in September and October. Several schools or 'runs' come in at short intervals. They leave in Ocrober and November in a body. Their appearance is regular, although they sometimes fail to go as far north as at other times. Want of food is supposed to be the cause of this thing. The first rums are of the average size, and are poor; the later runs are of good size, and are fat. Both seses come at the same time, and the spawn in the female is well matured. Neither will take the hook readily ou first arriving. They swim high, but rarely attract birds. They leave the shores at ebb tide and return at flood tide. The spawn often runs out of the female when taken with the hook or caught in a net. The spawn is often seen floating in seines and weirs. The mackerel is not anadromous. Fish of all ages are found on the breeding grounds. These fish are fonnd in both deep and shoal water, and ou very different bottoms. The general average temperature of bays and the ocean seems to suit this fish quite well."

Prof. I. Y. Hind thus disensses their movements in the Gulf of Naint Lawrence:
"The mackerel regulanly appear at the Magdalen Islauds in the Gukf of Saint Lawrence abont one month after the first arival of the hering. The time as far as olserved duriug 1861 to 1866 inclusive, 1871 and 1873 to 1876 inclusive, varied from the 30th May to the 12th June.
"The following table shows the dates of the first appearance of the herring and the mackerel at Pleasant Bay during the years named. The anthorities are to be found in the official reports of officers engaged in the protection of the fisheries, in Captain Fortin's reports, and in other published docmments relatiug to the Canadian fisheries in the annual sessional papers.
"In Captain Fortin's report for 1853, herring are stated to have arrived about the 1st of May of that year, and the mackerel fishing to have been nearly finished on the 7th of June.

Iable showing the period and the yearly differcnces in number of doys between the first uppearance of the herring and the mackerel at the Magdalen Lslends, from 1857 to 1876.

"On the 31st May I weut inside Amherst Harbor and boarded twelve ressels engaged in mackerel fishing."-(Report of Capt. L.H. LaChance, commanding the marine police sehoouer Stella Maria. December, 1871. Sessional papers 1872 , page 158.)

The mackerel must have heen in the vicinity of the liagdalens during the last week in May, in 1871. and fishernen were the taking mackerel simultaneonsly far south and far north, or in Marthan's Vineyard, south of Cape Cod, in latitude 410 20', and Amherst Harbor, Magdaten Islauds, in latitude $46^{\circ} 20^{\prime}$, or six degrees of latitude apart.
"It will be seen from the table that generally when the herring were early the mackerel were akso eaty, and when the herring appeared late the mackerel also were late.
"In 1872 the herring came in on the $3 d$ of May, but owing to the prevalence of ice the mackerel were three weeks later than usual inshore. With this exception the greatest difference between the recorded times of the appearance of these fish inshore was thirty-one days, or abont one month.
"In all instances the large mackerel are generally full of spawn when they are first seen in the spring, and the young firy are observed a few weeks later in many parts of the gulf.
"It will be observed that in the year 1871 the mackerel were first taken at the Magdalen Islands on the 31st of May, and in 1872 they were three weeks behind their usual time. A similar difference in point of time in the first appearance of this fish on the coast of Massachusetts occurred during those years. On that coast the following differences are recorded:

WAQUOIT, MASSACHUSETTS.*
1871
April 25
1872
May 10
Difference in time- $\mathbf{1 5}$ days.
MAGDALEN ISLANDS.
1871
May 31
1872.

June 20
Difference in time-21 days.
"At the Waquoit weir the earliest mackerel would probably be taken in 1871. At Amherst Harbor the mackerel vessels were actually engaged in fishing (see L. H. LaChance-Report of the marine police schooner Stella Maria, 1871), so that the fish must have been present in small numbers perhaps some days before the fishing began, and we may conclude that the difference in time between the arrival of the schools at the two places in 1871 and 1872 was very nearly the same, and due solely to local variation in marine climate.
"According to resident Newfoundland fishermen, young mackerel have beeu seen in great numbers in the Bay of Notre Dame during the months of September and October, about three inches in leugth.
"They appear on the coasts there generally about the 20th Jnly, and during the period when mackerel were common on the northeast coast, Green Bay, at the extremity of the Bay of Notre Dane, was a noted place for swarms of mackerel fry."

To this may be added the following statement from the report for 1871 of the captain of the Camadian police schooner Water Lily :
"These fish, as a general rule, are to be found close inshore during the month of June and part of July; they then go off into deep water, their favorite resorts being on the Orphan and Bradley Banks, and from Point Miscou to North Cape, Prince Edward Island. There are some always to be found inshore, but the best fish are in deep water. From the middle of August till the end of September they are to be found more ofi the Prince Edward Island; that is to say, from North Cape to East Point, and in the bay formed ly Cape George and Cape Jack, on the Nova Scotia shore. In October, at which time the mackerel are at their prime, they again strike inshore and are to be found in great numbers on the Cape Bretoncoast from Chetican to the Judique Shoals, but their position depends a great deal on the weather in the fall of the year, as heavy gales of wind drive them off into deep waters."
In this connection I cannot refrain from quoting also an extract from a statement made to the United States House of Representatives by Hon. Calel Cushing, in 1836, which teaches us that the habits of the mackerel were very well understood nearly half a century ago, and were much the same as at the present day:

[^19]"The season for the first appearance of mackerel on those parts of our coasts where they are usually takeu is from the 20th April to the 1st of May, according as the seasou is more or less forward ; at which time they strike on the shore soundings off the capes of the Chesapeake and Delaware. Between the latter place and Egg Harbors they are usually plentiful for 15 or 20 days within a few leagues of the land, and mackerel ressels, which are on the ground seasonably, meet in general with good success, if the weather prove to be favorable; after which the mackerel move to the northeast, scattering over a large space of ground, from near the shore to the soundings inside the Gulf Stream, and extending down the coast off Long Island and Block Island to Nantucket, which they reach early in June. Sometimes they collect more in bodies off Long or Block Islands, and are plentiful for a few days, after which they proceed north through the South Channel and between the Vineyard Islands into Massachusetts Bay. They reach that bay from the 20th of Juue to the 1st of July and continue there until late in November.
"It occasionally happens that late in the year fishermen will reap a rich harvest, when the whole previous season had been comparatively muproductive. Thus it was in the autumn of 1831 , in October of that year, the mackerel struck in very near to Cape Ann. Large fleets of ressels collected in such close order as to be coutinually coming in contact. The sea being smooth, and great quantities of the bait thrown out, the fish gathered in vast numbers, and some vessels took nearly one hundred barrels in a single day. At the same time they were very abundant off Cape Cod and on Jeffrie's Ledge; and it was computed more than 70,000 barrels were taken in a single week."

TABLE SHOWING COASTWISE MOVEMENTS OF THE MACKEREL.
The following table, compiled in 1877, chiefly from the records of the United States Fish Commission, may be of interest, since it shows in a general way the dates of appearauce, greatest abundance, disappearance, and spawning at several points along the coast.

MACKEREL.
Dates of appearance, greatest abundance, departure, and spawning, principally from records of the United States Fish. Commission.

Locality.	Appearance.	Greatest abundance.	Departure.	Spawning.
Cape Hatteras	April 15-20			
Capes of Delaware .-	May 1.	May 8-12		
Barnegat and Sandy Hook.		May 15-30		
Easthainpton, N. Y ..	April	July, Norember.	Antumn	In bays in spring.
Providence, İ. I	May to September.	June..	September 15, November.	June, on soundings.
Nausbon...	May 2.........			Spawn runs abundantly, May ${ }^{\text {a }}$
Wood's Holl, Mass.	May 9.		October	Spawnrunsabundantly, May 10.
Waquoit, 1871.	April 19	May 19		

Mackerel.-Dates of appearance, greatest abundance, departure, sc.-Coutinued.

Locality.	Appearance.	Greatest abundance.	Departure.	Spawning.
Nantucket.	May 1-25		October 20, No. vember 20.	May and June, on shores.
Chatham	May 1-30.	May $20 . .$. . ${ }^{\text {S }}$		May.
Harwich	June.	Septomber and October.	November	June, spawn seen in nets.
Dennis	June		November	Do.
Provincetown	May 15-20	October, November.	November and December.	Do.
Wellfeet	June.	September and October.	Norember	
Boston.	May*	July, Sentem-	November and	May and June, spawn eren im
Newburyport	April	June, Septem. ber 20 to October 10.	December. October and November.	nets. Do.
Georgetown, Mo...	May	July 15, Sep-	September :-	Do.
Boothbay, Mo.	June 10.	July 1 , Sep.	October 1-10.	
Seguin Island, Me ...	May	July, Septem.	October and November.	Before July 1.
Eastport, Me	April and May	August and September.	$\begin{aligned} & \text { October, No- } \\ & \text { rember. } \end{aligned}$	Spawn seen in weirs.
Southern Nora Scotia	May \dagger			

*At Gloncester, May 13. 1881.
\dagger Barrington, N. S., May 14, 1881.

II.-THE MACKEREL FISHERY OF THE UNITED STATES.

C. - MGE PURSE-SEINE FISHERY.

The purse-seine has come into general use since 1850 , and with its introduction the methods of the mackerel fishery have been totally revolutionized. The most extensive changes, bowerer, have taken place since 1870 , for it is only during the last ten years that the use of the purse-seine has been at all universal. As late as 1873 and 18% a few vessels have fished with the old apparatus in the Gulf of Saint Lawrence, and also a few on the coast of New England. Such changes in the manner of fishing for mackerel have brought abont also a change in the fishing grounds. Vessels fishing in the old style were most sucecssfin in the Gulf of Saint Lawrence, but the purse-seine can be used to very much better adrantage along our own shores between Cape Hatteras and the Bay of Fundy.

The mackerel fleet in 1879 and 1880 is owned almost entirely by Mas. sachusetts and Maine, a very few vessels from New Hampshire and Connecticut also participating. The distribution of the vessels in the mackerel fleet, their tonnage, and the number of men employed, is shown in the tables, prepared by Mr. R. Edward Earll and printed below in sections 40-43.

11.-The fishing grounds.

In the spring, from March to the 1st of June, the mackerel seiners cruise between the capes of the Chesapeake and the South Shoal of Nan-
tucket. The mackerel are first encountered off Chesapeake and Delaware Bays, from 20 to 50 miles from the land, and gradually move nortaward, followed by the fleet. When off the coasts of New Jersey, long Island, and Block Island, the Cish usually draw closer in to the land, frequently approaching within one or two miles of the shore. During the summer aud fall months the principal scining ground for mackerel is in the Gulf' of Maine, from the Bay of Fundy to Cape Cod; the immediate vicinity of Mount Desert Rock, Matiuicus Rock, Mouhegran Island, Cape Elizabeth, Boon Island, and Massachusetts Bay being favorite localities. Good catches of mackerel are frequently made in summer on George's Bank and, within the ast few years, near Block Islaud. Though mackerel have, at times, been taken in seines in the Gulf of Saint Lawrence, so little, comparatively, has been done in this locality that it can scarcely be classed among the grounds generally resorted to by the mackerel seiners. In a large majority of cases the mackerel schooners which have gone to the gulf within the last four or five years have met with decided failures, and in 1880 several returned home from there without a single barrel of fish.

12.-The fishmrmen.

The mackerel fleet contains a larger percentage of American-born fishermen than any other. The 113 mackerel ressels from Gloucester are manned by 1,438 men, of whom 521 are Americans; ; 322 Provincials; 24 British, most of whom are Irish; 39 Scamdinaviaus; 6 French; and 13 Portugnese. The mackerelmen belonging to other ports in Massachusetts and on the coast of Maine have a still larger pereentage of Americans in their crews, most of the ressels being manned entirely by natives of New England. Many of the Gloucester inshermen, engaged in the mackerel fishery, are, in winter, employed in the haddock fishery, in the Georges cod tishery, or in the fresh halibut fishery. Many others, like those from Provincetown and Maine. do not go to sea iu winter. The winter herring trade is carried on almost entirely by the mackerel schooners and their crews from Gloncester and Maine, and the winter oyster business is, in the same manner, monopolized by the Cape Cod and Portland mackerel vessels, while some of them enter into the business of briuging fruit from the West Indies to the United States.

13.-THe VESSELS.

The mackerel Hect is made up of 468 ressels, which pursue this fish. ery to a greater or less extent. Of these, 235 vessels are employed exclusively in catching mackerel between March and November, though some of the fleet do not start before June or July. A large nunber of these, the best fishing vessels of New England, in winter are engaged in the haddock fishery, in the Georges fishery, in the herring trade, in the oyster trade, and in the West India fruit trade, as well as in the shore cod fishory.

There is a small fleet of vessels which, though, like their companions, designed for rapid sailing, are seldom employed in the winter, except in the herring trade to New Brunswick, on account of the shallowness and sharpuess of their hulls, which renders them unfit to encounter the heavy winter gales in the open ocean.

The mackerel ressels are, as a class, swift sailers; they carry, while engaged in this fishery, all the canvas which their rig will allow. The mamer in which their sails are managed, and the amonnt of canvas which they carry, are tully described in the chapter on the tishing vessels. The mackerel schooners, as a rule, spread more sail, in comparison with their size, than any other vessels in the world, except, perhaps, the extreme type of schooner rigged yacht, which is essentially a development of the tishing schooner.

Vessels desigued especially for the work of seining mackerel usually have a wide dack, much deck-room being necessary for the proper handling of the fish. Mans of the sehooners of 60 to 80 tons have a beam of $21 \frac{1}{2}$ feet to $22 \frac{1}{2}$ feet. But, although plenty of deck-room is considered of great importance to a mackerel ressel, even deck-room is held to be less necessary than speed. In consequence every effort has been made by the buidders to construct swift sailing schooners, and the result is that many of the ressels composing the mackerel fleet are quite abie to cope successfully with first-class yachts of the same size. The mackerel vessel is fitted for seining; (1) by placing upon ber a summer outfit of repairs and sails;* ${ }^{(2)}$) by removing the heavy cables used in winter fishing, and substituting chain cables. This change is not necessary in the case of many of the Cape Cod and Portland ressels which are employed in the oyster trade, or in the case of most of the Gloucester vessels engaged in the herring trade, since these use only chain cables at any season; (3) by the removal of gurry-pens, and all other incumbrances from the deck; (4) by the rigging of a seine-roller upon the port-quarter rail. This is a wooden roller of oak or other hard wood, 6 to 7 inches in diameter, and 6 to 8 feet long, which revolves on pivots in its ends, received into irou sockets in cleats, which are fastened to the rail. The forward end of the roller is about 3 feet aft of the main rigging.

[^20]The use of this roller is to lessen the friction between the rail of the ressel and the seine, as the latter is being hauled on deck or overhauled into the boat;* (5) by the head-box being fastened to the forward end of the house. The head-hox is a bin 10 or 12 feet long, and wide enough to receive the head of a fish barrel. In this box are stowed the heads of the barrels that happen to be on deck; (6) by placing the bait-mill on deck, and fastening the bait-box (when one is used) to the main rigging on the starboard side; (7) by nailing boards to the top timbers underneath the main rail, between the fore and main rigging. These are about 6 inches in width, and are provided with single ropes, or stoppers, 2 or 3 feet apart ; the object of these stoppers is to hold the cork rope of the seine when bronght over the rail, preparatory to bailing thetish from the seine upon the deck; (8) by taking on board an ice-grinder, these being used only on vessels which carry their fish fresh to market; (9) by clearing the hold of all bulkheads, ice-honses, or other appliances which may have been used in the course of the winter's fishery ; (10) by properly adjusting the quantity of ballast; if the vessel has been in the haddock or Georges fishery, ballast must be removed; if in the herring trade, ballast must be added ; a mackerel schooner of 60 tons will carry from 5^{5} to 20 tons of ballast, and in exeeptional cases somerhat more; (11) by an arrangement of ice-house on those ressels which intend to take their fish fiesh to market, somewhat similar to that on board the halibut fishermen; $\dagger(12)$ and by taking on boand the necessary supply

* Capt. George Merchant, jr., of Gloncester, Mass., states that purse-seines were used by the lishermen of that port for six or seven years before "scine-rollers" were put on the vessel's rails. This useful implement was tirst invented and used by Capt. Simeon Tarr, of Gloucester, about the year 1857, while he was in command of the pinkie "Andes."
\dagger 'The mackerel schooner's ice-house, as a rule, occupies the middle portion of the hold, extending from side to side of the vessel one way, and from the grub beam to the forward side of the main hatch the other way. It is separated from the other sections of the hold by bulkheads, and is divided into a number of pens similar to those in the ice-house of a halibut schooner. Each of these pens is subdivided into three parts by shelves, which are constructed, when occasion requires, by laying some boards crosswise, the ends resting on cleats which are nailed to the sides of the pens. The first shelf is put in about fifteen inches above the floor of the ice-house, and a second shelf fifteen inches above the first. The front of the pens are closed by boards which slide in grooves on the stanchions, or bulkheads. The mackerel are iced fifteen inches deep on the floor of the pen, after which the first shelf is laid and another tier of the same depth is put on that. After the second shelf is put in the fish are iced on it nearly to the deck, a coveriug of ice being put over all. In this way the fish can be kept in a better condition than if they were packed in a large bulk. If stowed in bulk the fish are jammed and soon become worthless. An aserage sized ice-house has a capacity of about 200 barrels of tresh mackerel; some ice-honses will hold 300 barrels.

Capt. Joseph Smith, of Gloucester, tells us that at present few of the mackerel vessels carry ice-grinders, since the fishermen prefer to use the ice-pick instead. Each vessel employed in market fishing is provided with from 2 to 4 ice-picks, and three men can pick up ice fast enough to supply a whole crew, even if they should ice 100 barrels or more an hour, which is about the average speed with which mackerel are taken care of. Captain Smith thinks his crew, on one occasion, iced 300 barrels in an hour and a half. About 4 tons of ice are put on $\mathbf{1 0 0}$ barrels of fresh mackerel.
of barrels.* Vessels which take their fish fresh to market carry from 175 to 250 barrels; those intending to salt their fish carry from 175 to 500 barrels, about one-third of this number being filled with salt, which is ased in curing the tist, and serves in the meantime as ballast.

Wellfeet has a three-masted schooner, the "Carrie D. Allen," employed in the mackerel fishery; her burthen is 175 tons, and she carries 25 men. \dagger

14.-APPARATUS AND METHOD OF FISHING.

(a) The seine-boat und its fittings.-The boats used by the Gloucester fleet in the purse-seine fishery are built after a peculiar model and solely for this purpose. The present form of the seine-boat was devised about the year 1857 by Messrs. Miggius \& Gifford, boat-builders, Gloucester, Mass. \ddagger The seines had previously been set from square-sterned, lapstreak boats, about 28 feet in length, and resembling in shape an ordinary ship's yawl.

The seine-boat, as now in use, resembles the well-known whale-boat, differing from it, however, in some important particulars.

The seine-boat, according to Mr. Gifford, must have three qualities: (1) It should tow well; consequently it is made sharpest forward. A whale-boat, on the other hand, is sharpest aft, to facilitate backing after the whale has been struck. (2) It should row well, and this qual-
"Vessels which carry a mackerel pocket or "spiller" are provided with outriggers on the starboard side and other necessary arrangements for its proper management. All of the seiners also have an outrigger on the port side, by the fore rigging, to fasten the seine-boat to.
\dagger The three-masted schooner " Carric D. Allen," of Welifleet, Capt. Darius Newcomb, arrived at Gloucester, June 18, 1874, with 900 barrels of mackerel. Ouly vessel of her class in the coast fisheries; 175 tons, carries 25 men.-(Cape Ann Advertiser, June 26 , 1874.)
\ddagger Capt. George Merchant, jr., of Gloncester, Mass., claims to have been the tirst to alesign and introduce the form of seine-boat now universally employed in the mackerel fishery, and which has been used to some extent in the menhaden fishery since 1857.

In 1856, while engaged in fishing for menhaden, he carried two boats, one of which was a whale-boat of the ordinary type. The latter, which he used for a "second boat," proved very serviceable-rowing and towing easily, and turning quickly-and was much better adapted for seining than the old-fashioned square-sterned seive-boats which were in general use at that time. Captain Merchant therefore conceived the idea that a decided improvement could be made in seine-boats by building them on the same general plan as the whale-boat, through making them somewhat wider than the latter, especially towards the stern, so that they would be better able to bear up the seine. Having decided on the dimensions required, Captain Merchant wrote to Mr. Higgins (now the senior partner of the celebrated boat-building firm of Higgins \& Gifford, Gloucester, Mass.), who was then at Provincetown, desiring the latter to build a boat 21 feet long and according to the plan submitted, and which should be ready for the season of 185%.

Many of the old fishermen laughed at the idea of attempting to use a sharp-sterned boat for purse-seining, declaring that it would upset while the seine was being "pursed up," that it would tow under, and making other unfavorable predictions. Notwithstanding their croakings, they soon became convinced of the good qualities of the new boat, and in the following years hastened to adopt the same kind themselves.
ity also is obtained by the sharp bow ; the whale-boat also should row well, but in this case it has been found desirable to sacrifice speed in part to the additional safety attained by having the steru sharper than the bow. (3) It should be stiff or steady in the water, since the operation of shooting the seine necessitates much moving about in the boat.

The Gloucester seine-boat of the present day is a modification of the old-fashioned whale-boat, combining the qualities mentioned abore. The average length of such a boat is about $3 \pm$ feet, its width 7 fest 5 inches, its depth amidship, 33 inches. At the stern is it phatform, measming about 4 feet, fore and aft, on which the captain stands to steer; this is 6 to 8 inches below the gunwale. Another platform exteuds the whole length of the boat's bottom, hrom the afterpart of which the seine is set. In the bow is still another platform, on which stands the man who hands the cork-line. There are four thwarts or seats, a large space being left clear behind the middle of the boat for the storage of the seimes. Upon the starboard side of the boat, near the middle, is arranged an upright iron support, about 18 inches in height, to which are attached two iron suatch-blocks used in working the purse-ropes.* Upon the cpposite side of the boat, generally near the bow and stern, hat with position varied according to the fincies of the fishermen, aro fixed in the gunwale two staples, to which are attached other suatchblocks used to secure additional purchase upon the purse-ropes. In the center of the platform at the stern of the boat is placed a large wooden pump, used to draw out the water which accumulates in larga quantities during the hauling of the seiue. The steering rowlocks, with the peculiar attachment for the tow-rope and the metallic fixtures described above, are mannfactured especially for seine-boats by Messrs. Wilcox \& Crittenden, Middletown, Conn.

Until 1872 the seine-boats were always built in the lap-streak style; since that time an improved form of smooth-bottomed boats, built with battened seam, set-work, sheathed inside with pine, and with oak frame and pine platform, has been growing in popularity. The advantages claimed for this boat by the builders are: (1) increased speed; (2) greater durability, on account of the more solid character of the woodwork and tighter seams; and, (3) less liability to catch the twine of the nets by reason of the smooth sides. It is not so stiff as a lap streaked boat of same width, but in other respects superior.

Since the general adoption of the purse seine, in the menhaden and mackerel fisheries, an account of which is given elsewhere, there has

[^21]been a grad ial increase from year to vear in the size of the seine-boats, keeping pace with a corresponding increase in the size of the seines.

In 1857 all boats were 28 feet in length. In 1872 the length had increased to 30 feet, and in the summer and fall of the same year an additional foot was added to the length. In 1873 almost all boats which were built had a length of 31 feet, a few of 32 and 33 . In 1874 almost all were 33 feet, as they were during 1875 and 1876, although some were made 35 and 36 feet. In 187734 feet is the most popular length, though one or $t w o$ - 38 -foot boats have been built. Seven, eight, or nine oars, usnally 13 or 14 feet in leugth, are used in these boats, besides a steering-oar of 16 or 17 .

These boats last, with ordinary usage, six or seven years. At the close of the fishing season they are always taken ashore and laid up for the winter in a shed or under trees, and are completely refitted at the beginning of another season.

The seine boats carried by the "meuhaden catchers" south of Cape Cod and by all the steamers are shaped like ships' yawls, square-sterned, smooth-bottomed, and batten-seamed, $: 2$ to 26 feet long and $6 \frac{1}{2}$ feet beam. They are built at New Bedfurd, New London, Greenport, and at Mystic River, and cost about \$125 each, the finest \$185. The New Bedford boats are preferred by many fishermen.

The Cape Ann fishermen stow their seines in one boat, and in shooting the seine one end of it is carried in a dory.*

The arrangement of the thwarts are especially adapted for the mackerel fishery. There is some variation, however, as to the number of these in the different sizes of boats. In the size most commonly in use at the present time (1881) there are six thwarts, five of these being forward of midships, and one $7{ }^{3}$ feet firther aft. The following are the general dimensions of the boat: 36 feet long over all; 7 feet 7 inches wide; 2 feet 8 inches decp. The bow thwart is placed 4 feet from the stem, and there is a space of 23 feet between each of the five forward thwarts. The boat is ceiled to the gumwales and platformed inside. In the bow she has a raised phatform which comes up to the level, or nearly so, of the forward thwart. to which it extends, and is bulkheaded on the after end. The stern is covered over on the top of the gunwales, forming the stern sheets, this being 3 feet long forward of the stern-post, with a bulkhead on the forward side. Forward of this again, and a little below the level of the thwarts, is another platform, 3 feet in length, also bulkheaded on the forward side; on this the seinemaster stands while steering the boat, and in it is placed the pump by which the boat is freed from water. The after portion of the boat between the two after thwarts is used for stowing the seine, this being a section $7 \frac{3}{4}$ feet long by $7 \frac{1}{4}$ feet wide. There are five rowlocks on either side, corresponding to each of the five thwarts. The purse-davit is placed on the starboard side and usually stepped in the midship thwart

[^22]near the gunwale. At present, however, an improvement has been made in placing the purse-davit by stepping it in the thwart nearer to the center of the boat, it being placed at a distance of 18 inches to 2 feet from the gunwale. It is said that by this improvement the seine can be more easily pursed up and the pursings takeu over the gunwale of the boat without the use of a pry or lever, and also that there is less probability of the boat being capsized. The boats of the most recent construction have their purse-blocks on the port side, nearer the bow and stern than formerly, the forward being 2 feet aft of the stem, and the after one close to the upper stern sheet, about $3 \frac{1}{2}$ feet from the stern-post. Galvanized iron plates, each provided with a projecting eye, are neatly fastened to the gunwale, and the snatch-blocks are hooked into these eyes.

Until recently it has been customary to build these boats with a raised garboard, in imitation of the whale-boat (whale-boats are constructed in this way by some builders), but within the present year, during 1881, Messrs. Higgins \& Gifford, before mentioned, and the principal if not the only constructors of this style of boat in the United States, hare built them with smooth garboards, which have given better satisfaction than the old style. They are remarkably well adapted for swift rowing and for towing. Both of these qualities are very desirable, especially the latter, since they are frequently towed at a rate of 10 or 12 knots. The thwarts are double-kneed but not dunnaged. The boat is steered with an oar similar to the whale-boat. On the port side are two oar rests in which the oars are placed after the seine has been shot. The after one of these is just forward of amidships, and the two are separated 8 feet.

The seine-boat is usually towed astern by a warp, a $2 \frac{1}{2}$ or 3 -inch rqpe, 20 to 50 fathoms in length. When the vessel is making a long passage the seine-boat is hoisted upon the deck. Some of the larger vessels carry tiwo seine-boats and two seines. In the largest schooners these boats are both of a large size; in other vessels, one of them is usually a small one. In addition to the seine-boats, each vessel carries two dories. One of these is usually towed astern when the vessel is on the fishing grounds; sometimes both. They are taken on deck in rough weather, when making a passage, or when not required for use in fishing.* When

[^23]a large catch is obtained at the last set of a seine for the trip, and more mackerel are secured than the barrels on board will hold, the dories are taken on deck and filled with fish. During the mackerel season it is a common occurrence to see, in any of the large fishing ports, vessels arrive with both dories piled full of mackerel.
(b) The seine.-Two kinds of seines are used. The large seine, only used in connection with the largest kind of seine-boat, is 190 to 225 fathoms in length, and 20 to 25 fathoms in depth when it is hung, being sleeper in the center of the bunt than at the extreme wings, one of which, the "luat end," is from one to ten fathoms deep, and the other, the "dory end," varies from about seven to fifteen fathoms in depth.* It is made of three kinds of twine. The "bailing-piece," which is a section of the net occupying about 10 to 12 fathoms along the center of the cork-line, and having about the same depth as length, is made of the stoutest twine. Beneath this, and composing the remainder of the bunt and extending to the bottom of the seine, is a section knit of twine a size smaller. There is also a band of large twine, 15 meshes in depth, extending along the cork-line of the seine on either side of the bailingpiece to the extremity of each wing. The remainder of the net is made of smaller twine.

A seine 200 fathoms in length is usually about 1,000 meshes deep, both in the bunt and in the wings. The strongest twine is placed at those places where the seine is subjected to the greatest strain. On the cork-line are two or three sizes of corks, the largest being placed over the bailing-piece, the smallest generally at the ends of the wings. The cork in the middle of the seine is much larger than the rest, and is painted or cquered with canvas in order that it may be easy to find the center of the net either night or day. To one end of the cork-line at the upper corner of the wing, which is first thrown out when the seine is set, is a buoy. The seine is hung to lines which are called the hanging-lines. The leadline is placed as in an ordinary seine, and is weighted with sinkers about two ounces in weight, which are attached to it at intervals varying from a few inches to several feet. The arrangement of the pursing rings and bridle is described elsewhere. In a mackerel seine of 175 fathoms the bridles are about 15 to 18 feet in length, and the rings, which weigh $1 \frac{1}{4}$ pounds and are 3 inches in diameter, are fastened to the middle of each bridle. The middle ring is on the bottom of the seine, opposite the middle cork already referred to. \dagger The purse-line extends through the rings;

[^24]its center is marked by a line tied around it or tucked through its strands, but more frequently now by a brass swivel, into which the purse-rope is spliced, and which serves the double purpose of marking the center of the line and preventing it from kinking.*

When the vessel is not searching for fish the seine is stowed on a grating forward of the house, between that and the after hatch. This grating is a frame-work, about 8 to 10 feet square, made of boards from 4 to 6 inches in width, crossing each other at right angles. The boarding is supported on a frame-work of joists. The top of the grating is 4 to 6 inches above the surface of the deck. When two seines are carried, the grating must be wider. When the seine is stowed in the boat or upon the deck, it is always "salted down" to prevent it from rotting or burning. From a bushel of salt to a barrel or more is used, according to the necessity of the case. When the seine is thus stowed, it is often protected by a canvas cover.

* The following dimensions of an average-sized deep-water mackerel purse-seine have been supplicd by Capt. George Merchant, jr., of Gloucester, Mass. :

Total length of seine when hung, 203 fathoms.
Depth, 1,000 meshes, or about 21 fathoms.
Size of mesh in all its parts, 2 inches.
Leugth of "bailing-piece" or "bunt," 500 meshes; size of twine, 12-9.
Depth of "bunt" or " bailing-piece," 500 meshes.
Length of "sides," each, 300 meshes; size of twine, 20-9.
Depth of " sides," each 500 meshes.
Length of " under," 1,100 meshes; size of twine, 20-9.
Depth of "uuder," 500 meshes.
The central section of the mackerel purse-seine, that portion composed of the bail-ing-piece, sides, and under, is generally spoken of as the "bunt," though the bunt proper constitutes only a small portion of it. Capt. Joseph Smith, of Gloucester, says that at present the whole center of the soine (including the bunt, sides, and under) is made of one size of twine, $20-12$, this portion being 1,000 meshes square.
There is sometimes considerable difference in the length of the wing and arm of one end of the seine from that of the other, though some are constructed with both ends of equal length. Many of the seiners prefer to have the bunt of their seines a little to one side of the middle of the net. In such cases the ends are, of course, of unequal lengths. It may also be mentioned that a border of stout twine (size 20-9), 15 meshes deep, extends along both the top and bottom of the wings and arms of each end of the uet.

Size of first wing, 125 yards long in the web, 1,000 meshes deep; size of twine, with the exception of that for the border, 16-6, hawser-laid; size of first arm on the same end of the net as the wing just described, 125 yards long in the web, 1,000 meshes deep; size of twine, exclusive of that in the border, 20-6, hawser-laid. Size of wing No. 2, on the other end of the net, 150 yards long in the web; depth, 1,000 meshes; twine, 16-6, hawser-iaid. Size of arm No. 2, 150 yards long in the web; depth, 1,000 meshes ; size of twine, 20-6, hawser-laid, exclusive of the border.

Captain Merchant writes: "We always use for hangings 6-thread manila right and left rope. In Boston factories they sometimes use 9 -thread manila for bridle-rope, or 'loops,' as they are occasionally called." These loops, to which the purse-rings are attached at the bottom of the seine, are one part of the hanging-rope, and are made three fathoms long, the spaces between them being the same distance. Thus it will be seen that the purse-rings are about 6 fathoms distant from each other. Captain

When looking out for mackerel the seines are generally stored in the seine-boats upon the platform arranged for that purpose between the two after thwarts. The cork-lines are stowed aft and the lead-lines forward, the seine always being set from the starboard side of the boat.

As has been stated, the small seine differs from the large seine only in its size, being from 150 to 175 fathoms in length and 10 to 12 fathoms in depth. These seines are used in shallow water, and those vessels which have gone to the Gulf of Saint Lawrence for the purpose of catching mackerel by this method have generally carried them.

Many of the large schooners carry two seines whether they have two seine-boats or not, since the deep seine cannot be used on rocky bottom in shallow water.

The seine is always passed from the boat to the vessel and vice versa over the roller upon the port side, which has already been described. To transfer the seine from the vessel to the boat requires five or more men. The operation can be performed in from fifteen to thirty minutes. To haul the wet seine from the boat to the vessel is a somewhat laborious task, but as less care is required than in stowing it in the boat, less time is usually needed to perform this operation.
(c) Bait.-Mackerel seiners usually carry a small supply of bait for the purpose of tolling the fish to the surface and, incidentally, of catching fish with the jigs when they are not schooling. Sometimes they toll the school along side and spread the seine around the vessel, and as she drifts over the cork-rope and away to leeward the net is pursed up

[^25]and the fish captured. It is often the case, too, when mackerel are moving rapidly for the men in the dory to throw bait ahead of the school, and while the fish are thus induced to stop, the seine-boat circles around them, the net is thrown out, and while yet engaged in feeding the fish are inclosed in the big purse. Many good catches are obtained in this way. The favorite bait is slivered and salted menhaden, of which each ressel usually carries five to ten barrels. Many if not all of the vessels, however, at the present time, depend entirely upon small mackerel, which they catch and salt. The bait-mill, bait-boxes, and bait-throwers are similar to those used in the mackerel hook fishery, and are used in the same manner.
(d) Methods of seining by day.-The following description of the method of seining mackerel is mainly from the pen of Mr. J. P. Gordy: When a vessel is on the fishing grounds and there are no signs of fish, if the weather is favorable, a man is stationed at the mast-head on the lookout, while the rest of the crew, excepting, of course, the man at the wheel, lounge lazily around, amusing themselves as they feel inclined. If a whale is seen blowing or a vessel is "putting out her boat," the man at the wheel steers toward them. The skipper is usually on deck directing the evolutions of the vessel, and is consulted before any change is made in the course of the vessel. When signs of fish begin to be numerons and sea geese and gannets are plenty, and whales and porpoises show themselves frequently, the "fishy men" of the crew stop lounging and begin to survey the surface of the water intently. At such times one can count half a dozen here and there in the rigging, carefully observing the movements of other vessels, if any of the fleet are in sight. "There's crooked actions, men," the skipper exclaims, meaning that some vessel in sight suddenly alters her course, and that she is either on fish herself or sees another vessel that is. When one school appears, another is likely to be seen, and when a vessel has "crooked actions," those who observe them bend their course in the direction in which she is sailing. When a man sees fish, he shouts, "I see a school." "Where?" asks the captain. The direction is indicated. "How does it look; is it a good one?" He wants to know whether they are tinkers or whether the fish seem large. If they are abundant, he will wait until he gets a "sight" at a good school. Much attention is paid by the lookouts to the manner in which the school of fish is moving. The seiners prefer those schools which are "cart wheeling,"* or going round and round in circles in a compact lody, in the act of feeding. Fish which are "cartwheeling" can be surrounded with a seine much more readily than those going straight ahead in one direction.

If the man who has found the school is not experienced, the captain examines it for himself, and if satisfied that it is a good one he shouts, "Gct in the seine boat; look alive, boys." As a pack of school-boys

[^26]jump from an apple tree when the indignant owner appears, so eleven men leap into the seine-boat one over another, as if they had meant to jump overboard but by accident had reached the seine-boat instead. The captain takes his place at the steering-oar. Two men sit on the forward part of the seine and one at the cork-line, ready to "throw out the twine" when the captain gives the word of command. The remaining seven row swiftly and silently until the fish disappear or the captain orders them to "stop rowing." All the while the captain is eagerly watching the fish, noticing which way they move and how fast. He wants, before beginning to put out his twine, to get near enough to enable him to make the wings of the seine meet aromd the school. He must, therefore, keep far enough away to prevent the head of the school from striking the seine until it is nearly pursed up. He calculates the speed of the fish, and sets the seine in such a manner that by the time the school gets thoronghly within the circle of the net he will be able to come round to the starting point and completely encircle them. If he fails in this, the wings of the seine must be towed together before it can be pursed up, and in the time thas occupied there is a chance of losing the fish. A skillful skipper rarely fails in making the ends of the seine meet. In seining on George's, or any other place where there is a strong tide, it requires much skill and judgment to set the seine in such a manner that it shall not be tripped and thrown out upon the surface of the water. Under these circumstances, to prevent "tripping," the seine should be so set that the bunt of it will be in the direction from which the tide runs; the force of the tide then aiding the act of pursing the net.

When the skipper is near enough to satisfy the conditions of the above problems he orders the men at the seine to "Put out the twine." They begin their work, the oarsmen in the mean time rowing as fast as possible. The skipper steers the boat around the school in such a manner that when the seine is fully out the cork-line approximates more or less closely to the form of a circle. Two of the men who did not get in the seine-boat now appear on the scene of action in the dory in which they have closely followed in the wake of the seine-boat until the act of setting begins. As soon as the first end of the seine has been thrown overboard they row up to it and seize the buoy at the end of the corkline, which they hold until the seine-boat has made a circle, merely rowing fast enough to keep the end of the seine in its place and to prevent it from swagging. When the seine-boat has completed its circle, it approaches the dory, which is holding fast to the buoy. When the two ends of the seine meet, the men in the dory get into the seine-boat to assist in pursing; sometimes, however, the ends do not meet, and in this case they are brought together by means of a line, about 20 fathoms in length, which is always taken in the dory and is fastened by the men in the dory to the broy and carried to the seine-boat.*

[^27]The work of "pursing up" is now to be performed with all possible speed. Until this is begun the seine is in the form of a hollow cylinder, and the fish, in order to escape, have only to dive down and swim away under the lead-line. In pursing, the bottom of the seine is to be closed np, and in this operation the saying of the men, "A man who won't puls every pound he cau and an ounce more, is not fit to be a fisherman," is fully exemplified.

The men stand six in one end of the seine-boat and seven in the other end, holding the two ends of the purse-line, which, having passed through the rings in the bridles on the lead-line of the seine, pass round the two blocks of the purse-davit and through the snatch-blocks on the opposite side of the seine-boat, one of which is forward and the other aft. One of the uses of the bridles now appears. As soon as the men in the seine-boat commence pursing up the seine the rings, which before this have been hanging downward below the lead-line, now extend the same distance laterally from this line. We have only to remember that they all extend toward each other to see that they considerably diminish the open area at the bottom of the seine. To be sure, the spaces between the bridles are open, but the fish are not likely to escape through these, for in such an attempt many of them would strike the bridles and finding such obstacles would turn, hoping to find an outlet in some other direction.

The men stand, as has been said, when pursing up the seine, six in one end of the boat and seven in the other. They are divided into three rows of three and one of four men. On the side of the boat next to the seine are two rows of men facing each other and pulling; one row on the end of the first line that passes over the blocks in the purse-davit nearest them, the other on the other end of the purse-line passing over the other block of the davit. Each end of the purse-line passes around another block, which changes the direction of the line, and two rows of men on the side of the boat away from the seine stand back to back, pulling on the purse-line, its direction having been changed by the pulleys.
As previously remarked, the seine before being pursed up is in the shape of a hollow cylinder. A strong tide may make it take the form of a hollow frustrum with a slit in the side. Its longer area is at the bottom. In such a case the slit is wider at the bottom and grows narrower toward the top, until it vanishes at a point where the two ends of the purse line bring the seine together at the pursedavit. Then the purse-weight comes into play. This is "reeved out" to the two end lines, and its weight brings the two ends of the seine together, closing up the slit and

[^28]destroying the frustrum shape of the seine. If this were not done the fish might escape at the side as well as at the bottom.*

When the seine is pursed up it is in the form of a bag, the bottom of which does not hang freely, for it is bent upward, having been drawn up by the purse-line near the side of the boat and during the operation of pursing up the boat is pulled nearly into the center of the circle made by the corks on the upper edge of the seine. Occasionally, when there is a current, the boat is brought up against the corks in the bunt of the seine. The object is now to get the fish, if they have any, into such close quarters that they may be taken on deck. To this end the larger part of the seine must be pulled into the seine-boat, and this operation, called "drying up," now begins. The seine is taken up entirely if there be no fish, partly if the school has not escaped, and the net is so drawn up that the "bailing-piece" will inclose the fish at last. The position of this part of the seine being marked by the central cork, already spoken of in the description of the seine, it is of course not difficult to bring it around the fish. The experienced fishermen can also quickly tell, either night or day, when the bunt of the seine is reached in the process of drying up, since the difference in the size of the twine of which the bailingpiece is made and that of the other parts of the net is readily detected.

If any fish have been caught, especially if the school is large, the dory, with the skipper and three or four men, go to the vessel to help the cook, who is the only man on board, to bring her alongside of the seine-boat. If the school is very large the dory is rowed to the vessel

[^29]as rapidly as possible, and the second dory is rowed back to the seine for the purpose of holding up the bunt, since a school of 500 barrels may sink both seine and seine-boat if left without assistance. This, however, rarely occurs, and it genefally happens that the school either is small enough to be dipped into the dory and to be taken to the vessel, or that the seine-boat without any assistance is capable of managing them until the vessel is brought alongside.

While the fish are being caught the cook has charge of the vessel; if it happens to be about meal time he attends to the cooking as best he can, but whether the cakes burn or not the vessel must be cared for, and he generally divides his time between the forecastle and the wheel. If he is preparing dinner, and is able to, he continues his cooking, taking charge of the vessel at the same time.

The vessel usually lays to, with the jib to windward, not far from the seine boat; and, perhaps, as the cook sits at the wheel he has a basin of potatoes before him, which he peels while he is eagerly watching every movement of the seine-boat, trying to ascertain whether his mates are successful, and, if so, to what degree.

When the dory has been rowed aboard, the men at once take measures to bring the vessel alongside of the seine-boat. The evolution of shooting alongside of a seine-boat calls into play all the skill of the steersman. The vessel must approach so near that a rope may be thrown to the men in the seine-boat, and in such a manner that she will move slowly enough not to tear the seine as it is pulled along, before the schooner is "bowsed to the windward" and her motion ceases.

The cork-line is then taken over the side of the vessel and made fast by "stoppers" along the rail. This having been done the process of drying up is resumed and the fish are gathered together in a compact body so that they can be dipped out upon the deck. When the fish are to be taken on deck the men are distributed as follows: three or four are employed in hoisting the fish by means of a large dip-net attached to the main and fore staysail halliards, the captain directs the movements of the net, holding its long handle, and, shouting "hoist" when it is about half full of fish, two men standing by the rail empty the dip-het on the deck.

When all the fish have been bailed out the seine is overhauled and salted. In the mean time most of the crew are making preparations to dress the fish. If the school is large, the crew, cook and all, unless it is just at meal time, begin the work as soon as the fish are ready; if the catch of fish is small, and there is a prospect of getting another set that day, a part of the crew take the seine out of the seine-boat to mend it, if necessary, and lay it back in an orderly form so that it may be thrown out without difficulty.

The operation of setting a seine around the school and pursing it up usually occupies from ten to twelve minutes, though it is claimed by some expert fishermen that they have done it in seven minutes. Under
unfavorable circumstances it may be nearly an hour from the time the first end is thrown out until the "pursings" are on the boat. This delay is usually caused by a strong tide, such as is generally found on Georges. The catch of a purse-seine may vary from one barrel to five or six hundred barrels. The seine may be set eight or ten times in the course of a day without getting any considerable quantity, or, perhaps, no fish, the mackerel escaping by diving under the "lead-line"; and then a more fortunate set will secure more fish than can by any possibility be taken care of by the crew of the vessel. Under such circumstances it is customary to set a flag from the main-topmast head or main peak. This is to indicate to vessels which may be in sight that more tish have been caught than can be taken care of, and that the skipper is willing to dispose of some of them. This is called "giving the seine away." Sometimes the fish are given away to be dressed on shares, and at other times they are given away without expectation of return.* An ordinary crew can dress and salt at one time about 100 barrels of small mackerel or 200 barrels of large ones. \dagger

Almost incredible quantities of fish can be taken care of in a short time. Vessels have been known to leave New York on one day and return the next day with 200 to 300 barrels of fresh mackerel, while some Gloucester vessels in the course of a week have caught and salted 500 or 600 barrels, landing two or three cargoes during that time.

It sometimes happens that when a large school of mackerel have been taken in a seine, that the fish press down so hard on the bottom of the net that the fishermen find it difficult, if not impossible, to gather in on the twine sufficiently to "dry the fish up" enough to bring them to the surface. It has been found, however, that by throwing coal ashes into the water along side of the seine the fish are caused to rise to the surface, being frightened by the whitish appearance which the ashes give to the sea. When the mackerel rise the twine can be readily drawn in. The same result is secured in another way by the menhaden

[^30]fishermen when they have a large school of menhaden in their seine alongside of the steamer. If the fish hang heavy on the twine one or two quick turns is given with the propeller and the frightened menhaden rise quickly to the surface. This method is called "whirling'em up."
(e.) Methods of seining by night.-The practice of fishing for mackerel, purse-seining in the nighttime, which has recently come into quite general use, was first attempted, so far as we can learn, in 1874. The honor of introducing this method of fishing is assigned to a number of the more enterprising captains of the mackerel schooners, and, in consequence, it is difficult to say here who should receive the credit for the innovation. As is well known to all who are familiar with the sea, the water, on dark nights, frequently exhibits a remarkably brilliant phosphorescent display. At such times objects moving in the sea can be distinctly traced by the illumination which they leave behind, and schools of fish rising near the surface can be readily seen. Indeed on some occasions so remarkable is the phosphorescence thrown out from a large school of fish that it frequently seems to light up the surrounding darkness. From this reason, and the fact that the fisherman, by long experience and close observation, can accurately determine the kind of fish which he may see sporting at night, he is thus often enabled to learn the whereabouts of certain species, such for instance, as the mackerel, and their abundance, even when they do not come to the surface during the day. The mackerel is a remarkably capricious fish, and perhaps for many days in succession its presence can not be detected in its favorite haunts while daylight lasts, and the fisherman therefore seeks for it in vain, but as soon as the sun sets and darkness appears over the sea the schools rise to the surface and the fish continue to disport themselves in this manner until near daylight when they again sink out of sight.

For many years after the introduction of purse-seines it was considered impracticable by the fishermen to catch mackerel in the night, but at last some of the more adventurous skippers, having a favorable opportunity for night fishing, and deeming it possible to catch the mackerel, made an attempt and met with even better success than they dared to anticipate. Thereafter they followed up this method of fishing whenever a good chance occurred, but as it usually resulted greatly to their personal success, as well as increased their reputation among their fellow fishermen, on account of the additional amount of fish caught, they were by no means anxious to tell that part of their catch was made in the night, since if they did so, all the other mackerel fishermen would at once come directly into competition with them. As a matter of course, however, the fact of mackerel being seined at night could not long be kept a secret, and the result was that one after another began to adopt this practice until in the fall of 1881 it reached its climax,
nearly every ressel in the fleet engaging to a greater or less extent in night fishing.*

Previous to this time the public at large were not, it seems, aware that such large quantities of mackerel were taken in the night, though it was on record that night fishing had been previously attempted, and with good results. \dagger

The method of seining mackerel in the night is as follows: The vessel being on the fishing-ground, if the night is favorable, she is allowed to sail slowly ahead while a man goes aloft to the foremast-head and keeps a lookout for the fish. If the signs are peculiarly favorable, perhaps two or more men may be aloft for this purpose. These lookouts are the men who have the watch on deck, and, not infrequently, the skipper may be one of them, his ambition to succeed often impelling him to remain up during the entire night, constantly keeping on the alert for fish and watching the movements of surrounding vessels. ' The remainder of the crew-those having a watch below-are thoroughly prepared and dressed in their oil-clothes ready to jump into the seine-boat at a moment's warning. If the fish are not seen in the first of the night, the men off duty lie down on the cabin or forecastle floors or stretch themselves on the lockers, and endeavor in this way to get what sleep they can, unless, indeed, they may be busy on deck in caring for the tish taken the night or day previous. When a school of fish is seen by the lookout, he at once shouts "I see a school!" If it is the skipper who first descries them, he gives directions to the man at the wheel how to steer in order to approach them. If not, the man who first reports the school

[^31]is asked in which direction it bears from the ressel. He also directs how the course shall be laid in order to approach close to the body of fish. In the mean time the men below, having been hurriedly awakened, rush on deck and quickly take their places in the seine-boat and dory which are towed alongside or astern. If the mackerel "show up" well and can be plainly seen by the men in the boat, the latter is cast off as soon as the vessel approaches close to the school, and the seine is set and pursed up in the same manner as has before been described; though it frequently happens that owing to the darkness of the night, it is sometimes difficult to bring the ends of the net together with such a degree of certainty and success as it is generally done in the daytime. Of late, however, the custom of carrying a light in the dory has been adopted in order that the skipper, who steers the boat, can determine the position of the end of the seine first put out and therefore be enabled to make a circle with a great deal more accuracy than he otherwise could. It often happens that fish can only be seen by the man at the mast-head, and in such cases, the vessel is usually hove to near the mackerel, and the lookout directs the men in the boat how to row in order to surround the school. Another method, we are told, has been occasionally adopted when the chance for its success is promising. If the wind is sufficiently moderate the lookout at the foremast-head may direct the course of the vessel in such a manner that nearly a complete circle may be made round the school of fish. In this case the seine-boat remains fastened to the stern and is towed along by the vessel while the men in her throw out the seine in obedience to the order given by the man at the mast-head. At the proper time she is cast off and proceeds to close up the circle by bringing together the ends of the seine. The dory is cast off and allowed to remain at the end of the seine as usual until the other end is brought around to her. An evolution of this kind, of course, requires the most skillful seamanship for its success, and also remarkable qualities of adaptability in the vessel.*

[^32]When a school of mackerel has been taken in the seine and the net is pursed up, a signal is made by the crew of the seine-boat, who have a lantern, so as to attract the attention of the men on board of the ressel who immediately bring the latter near the seine-boat. The skipper and three or four of the crew then go on board the vessel in the dory and bring the schooner along side the seine-boat, performing this evolution in the same manner as it is done in the daytime. The lantern, which is always carried in the seine-boat, enables the skipper to find her without Any trouble. Much vexatious delay and difficulty, however, sometimes occurs in consequence of the light carried by the seine-boat's crew being extinguished. In such case it is not only hard, but sometimes impossible for the men on the vessel to find the seine-boat, since on a dark, windy night she cannot be seen more than a few rods distant.

The practice of using a large lantern to attract the fish nearer to the surface of the water than they usually come, so that they can be more plainly seen, has met with decided success, and there seems strong reason for anticipating considerable improvements in this respect hereafter. In alluding to this matter a writer in the Cape Ann Advertiser, November 4,1881 , says:
"It would not greatly surprise us if the mackerel fleet, next year, were supplied with powerful calcium lights, to be carried at the masthead, and that the fishery will be extensively prosecuted in the nighttime. Surely the signs of progression are manifested in almost every branch of the fisheries, and brains are rapidly coming to the front and making themselves manifest. A year ago who would have dreamed of catching mackerel in the night time? Now it is fast becoming a reality."

As may be readily inferred this practice of night fishing is one which calls for the greatest possible amount of endurance and hardihood on the part of the fishermen who engage in it. It frequently happens, when good catches are made for days and nights in succession, that the men get no rest whatever until they are thoroughly worn out by their constant labors and vigils and are scarcely able to refrain from falling asleep even when engaged at their work. Nor is the work on the fish-ing-ground all they have to do. When a fare is obtained, all sail is made upon the vessel and she is driven as swiftly as possible for the

[^33]home port, where the fish are landed, new supplies taken on board, and again the men go to sea without, in the mean time, having an opportunity of visiting their homes or of securing the rest they so much stand in need of. So sharp is the competition in this fishery, and so eager are the fishermen to "make hay while the sun shines," that is, to improve every opportunity during the short season while the mackerel can be taken, that the only limit to their labors is when nature is no longer able to sustain the extraordinary drafts that are made upon it. The following notes written by Capt. S. J. Martin will serve to give an idea of the continued labor and consequent fatigue which the fishermen endure:
"Our mackerel fishermen have drove business this year. I know a number of cases where vessels came in in the morning with 300 barrels of mackerel [which were landed] and went out [again] the same night. The schooner "Fleetwing" caught 210 barrels of mackerel; came into Gloucester with them all on deck; hired 20 men who had them [the fish] all dressed and salted at two o'clock the following morning. The ressel's crew went home to sleep; went out again the same morning at eight o'clock.
"Schooner "William M. Gaffney" came in here with 450 barrels of mackerel, of which 150 barrels were fresh on deck. The men had not been to sleep for two days and nights, and were nodding while putting the mackerel in the barrels. They got the mackerel all salted at four o'clock in the afternoon. Captain Smith then told the men to go home and rest till morning, but to be down the first thing after breakfast, as he wanted to get the mackerel out and go to sea in the evening. This they did."

The success of the night fishing was quite marked in the fall of 1881, as has been indicated above, and as the following paragraphs will show:
"Several of the [mackerel] fleet have made night hauls recently, some of them securing as high as 200 to 300 barrels at one setting of the seine. The operations are conducted by a lookout stationed at the foremast-head of the vessel, who gives the orders to the boat's crew in charge of the seine, as in the night-time the motions of a school of mackerel cannot be seen from the boat in pursuit of the fish, nor from the deck of the schooner."-(Cape Ann Advertiser, October 21, 1881.)
"Scbooner "Henry Friend" took 140 wash barrels [of mackerel] at one haul Sunday night [October 16]."

Schooner "Phantom" went out Sunday morning, and about 11 o'clock p. m. discovered a school of mackerel on Middle Bank, and getting her seine out secured ninety wash barrels. The night was very dark, and lanterns were found necessary to conduct the seining operations and find the way back to the vessel.-(Cape Ann Advertiser, October 28, 1881.)
In regard to the night fishing for mackerel in the fall of 1881, Captain Martin writes as follows:
"Seven-eighths of the mackerel since the 10th of September have
been caught in the night. Catching mackerel in the night is done with great difficulty. Sometimes the vessel goes away from the boat. There were two such cases this fall. Schooner "Everett Pierce's" boat went out and set around a school of mackerel, and the seine was full of fish. At this time a squall of wind came and blew the lantern out, and the two men on board of the vessel lost sight of the boat. The men were in the boat from 11 o'clock at night until 5 o'clock the next morning. They were obliged to cut holes in the seine in order to let the mackerel go out so as to save the net, for if the mackerel died the seine would have been lost. The crew of the "Minnehaha," of Swampscott, had a similar experience the same night. The darker the night the better it is for seining, since the water will 'fire' more. When watching for mackerel one man is on the mast-head. He can see a school from the mast-head when he could not see it from the deck of the vessel. Sometimes the fish may be seen from the deck, but when the men get in the seine-boat they are not able to see them. A man on the masthead can see them all the time. He gives orders to the men in the boat which way it is best for them to go. Captain Martin, of the schooner "Northern Eagle," saw a school of mackerel one night. They could not see them plainly, so the lantern was held up, when the mackerel could be seen from the boat. They then set their seine and got 150 barrels of mackerel. When the fish saw the light they came nearer the surface. Sometimes when the mackerel are close to the surface it is not necessary to have a man on the mast-head since they may be seen from the deck and seine-boat. It is not very often that the mackerel come to the surface during the fall of the year. Sometimes on a calm night in summer you can hear them rushing, but not often. Catching mackerel in the night is hard work. Say, for instance, you get 200 barrels a night, and perhaps it is the latter part of the night, it will take all day to dress and salt them, head them ap, and get them below. Thus if another dark night follows, all of the men are on the lookout for another school. After looking for, perhaps, two hours, some one (most likely the man on the mast-head) gives the alarm, telling those on deck where the fish are. The vessel is then kept in the direction of the school, and as soon as they can be seen from the deck the men jump into the boat, shoving off from the vessel, while the captain stands up with the steering-oar in his hand, looking for the school. Soon he espies the fish, or the man on the mast-head sees them, and tells the men in the boat which way to go. When the captain sees them he sings out: 'I see them, boys! Pull away! Pull hard, the mackerel are going fast.' When the boat is in the right position the captain shouts, 'Give 'em twine,' and away goes the seine, three men heaving it out as fast as they can. When they are nearly around the school they sing out: 'Give them twine.' Sometimes they make a good circle so that the seine-boat and dory will meet, but it is difficult to do this in the night. When the seine comes together they haul in on the purse-line, and when the net
is pursed up and they see the mackerel, signs are made for the vessel, which comes alongside. The lines are hove from the boat and the mackerel are bailed in on deck and dressed."
(f.) The mackerel pocket, or spiller.-In 1877 the schooner "Alice," of Swan's Island, had a bag-net made of haddock ganging-line, into which the fish were transferred when there were too many to be cared for at once. This vessel began the season in the Gulf of Saint Lawrence, but caught only 200 barrels of mackerel there, and later fished on the coast of Maine, where, up to October, she had canght 1,400 barrels.

A development of this idea is the mackerel pocket or spiller, patented in April, 1880, by H. E. Willard, of Portland, Me., an article long needed in the mackerel seine fishery, and which has received from the fishermen the name of "mackerel pocket," or "spiller." It was first used by the patentee in 1878, and Capt. Geo. Merchant, jr., of Gloucester, Mass., invented and put into practical operation an improved "spiller" last year (1880), though it was not until the present summer that the advantage of its use was known to the majority of the mackerel fishermen, who have hastened to adopt it, and now more than thirty of the vessels sailing from this port are each provided with one of the pockets.

The apparatus is a large net-bag, 36 feet long, 15 feet wide, and 30 feet deep; it is made of stout, coarse twine and is attached to the side of the vessel, where it is kept in position, when in use, by wooden poles or "outriggers," which extend out a distance of 15 feet from the schooner's rail.

When distended in this manner a "spiller" will hold over 200 barrels of mackerel, which can thus be kept alive, as in the well of a smack, until the crew, who have captured them in the great purse-seines, have time to cure their catch. As is well known, it frequently happens that several hundred barrels of mackerel are taken at a single hanl. Heretofore, when such a large quantity of fish were caught, but a comparatively small portion of them could be cured by the crew of the vessel to which the seine belonged. The result was that when a large catch was made, a considerable percentage of the fish were generally "given away" to some other vessel, since if only a part of them were removed from the seine to the vessel's deck, the remainder being left in the net until the first lot were eured, the chances were nine to one that the fine twine of which the purse-seines are made would be bitten in many places by the swaming dogfish (Squalus Americanus), that bete noir of the mackerel fisher. In addition to the iujury to the net, the inclosed body of fish were thus allowed to escape and went streaming out through the numerons holes made by the keen teeth of these roracions bloodhombls of the sea, which, in their fierce and ravenous pursuit of the imprisoned mackerel, usually succeeded in robbing the fisherman of a large portion of the fruits of his labors.*

[^34]The "spiller" is only made of coarse twine, and though not entirely exempt from the ravages of the dogfish and sharks, is rarely injured by them; and now when a large school of mackerel are caught in a seine the fish are turned into the bag, from which they are "bailed out" on to the schooner's deck only as fast as they can be dressed, and in this way it frequently happens that a full fare may be secured from a single wet of the net.

The introduction of this simple net-bag will undoubtedly save to our fishing fleet many thousands of dollars, even in this the first season of its adoption.

The "spiller" invented by Mr. Willard was simply a sheet of netting 540 meshes square, bound around with rope; it is made of five sheets of twine, each 180 meshes deep and 540 meshes long. These sheets are faced together. This net, when in use, is suspended from its four corners to the side of the vessel and the outriggers, mentioned above, and hangs something like a hammock. From its shallowness, however, it was not so well adapted for the purpose for which it was designed as was the deeper bag-shaped net subsequently devised by Captain Merchant, and whick has been described above.*

The mackerel poeket is hung to $1 \frac{1}{4}$-inch rope, and on the portion of this which comes next to the vessel are strung egg-shaped wooden foats. These are only for the purpose of securing the edge of the netbag firmly to the rail of the vessel. The border of the pocket being drawn over the rail, a board is laid on top of it and held in position by sooden pins passing through both board and rail, the net being thus fastened between the two.

To the outer edge of the mackerel pocket, either Williard's or Merchant's, is attached a rope bridle, the ends of which are fastened at a distance of about 9 feet from each outrigger; a thimble is seized into the upper part of this bridle, and when the mackerel have been turned into the pocket the fore and after staysail halliards are bent into this thimble, and the outer edge of the pocket is supported thereby so as to take as much strain as possible off the outriggers, which are only 4 inches in diameter. The outer and apper corners of the "spiller" are supported by ropes which run through single blocks attached to the farther ends of the outriggers. By means of these ropes the outside edge of the pocket may be raised or lowered. When a school of macksrel has been caught in the seine, the pocket is slacked down to the eurface of the water, and its outer edge having been fastened to the

[^35]cork-rope of the seine, the fishermen gather in on the twine of the latter, and, by dexterous management, turn the whole body of fish into the bag provided for their reception, and where they cau be kept alive, as previously mentioner, until such time as they can be properly cared for. The mackerel having been transferred to the pocket, its outer edge is usually raised slightly above the water. When the ressel is rolling and there are many fish in the pocket there is often considerable strain brought to bear on the outriggers, which, however, being supported by guys or tackles to the standing rigging, rarely break. It may be assumed, perhaps, that the enormous catches of some of the mackerel schooners in the summer of 1881 are due very largely to the use of this implement. Never within the history of the fishing business of New England have so many fish been caught or so much money made by a single vessel in the mackerel season as has been the case in the year of 1581. The schooner "Alice," of Swan's Island, Maine, is reported by the secretary of the Boston Fish Bureau to have takeu 4,900 barrels of mackerel, the value of which exceeded $\$ 2 S, 000$. The schooner "Edmard E. Webster," of Gloucester, caught 4, $\mathbf{5 0 0}$ barrels of mackerel, stocking more than $\$ 26,000$. A long list of other large catches might be added in proof of the efficacy of the mackerel pocket, but for obvious reasons they are omitted here.

16. -TAKING CARE OF THE FISH.

The manner of arring for the fish is rery similar to that upon the mackerel schooners fishing in the old way with jigs, excepting that a larger quantity is likely to be taken at once, necessitating much more haste in salting or dressing them. When haste is necessary, the process of "plowing" is usually deferred until after the fish have been salted.

Mr. Gordy thus describes the method of dressing on a seining schooner: "The men engaged in dressing are divided into gangs generalls of three men each. Each gang has two wooden trays about 3 feet square and 6 or 8 inches deep; these are placed on the tops of barrels; one is called a 'gib-tub' the other a 'splitting-tub.'" *

Except on the seiners, the mackerel when caught are put into barrels, and the splitting is done apon a board laid across the top of the barrel, rather than in a "splitting-tub." One man of each gang splits, the other two gib, or eviscerate, the fish. The tab of the man who splits, of course, contains the fish to be split. With a scoop-net the splitter, or one of the "gibbers," from time to time, fills the split-ting-tub from the pile of mackerel lying upon the deck. On the side of the splitting-tray next to the "gibbers" is a board about 6 to 10 inches wide, called a "splitting-board," on which the splitter places the fish as he cuts them open. He takes them in his left hand (on which he has a mitten) round the center of the body, head from him, and with the splitting-knife splits them down the center of the back. As fast as he

[^36]splits the fish he tosses them into the tray of the "gibbers." The "gibbers" protect their hands with gloves or mittens. As fast as the "gibbers" remove the viscera, with a peculiar double motion of the thumb and fingers of the right hand, they throw the fish into barrels, which are partially filled with water; these are called "wash-barrels." If the men have time they "plow" the fish before salting them, making a gash in the abdominal cavity nearly to the skin with the peculiar knife, "the plow," provided for the purpose.

Before the fish are salted the dirty water is poured out and clean water is added. About one barrel of salt is used for every four barrels of mackerel. This is the first salting. When the fish have been salted they are placed in unheaded barrels until the weather is unfit for fishing, or the deck is filled with them, when they are carefully headed up and stowed away below.

The speed with which a large deck-load of mackerel can be disposed of by the crew is something marvelous. A good splitter will handle from forty-five to sixty mackerel a minute. In one well-authenticated case a man split sixty-seren mackerel a minute for three consecutive minutes.* A good "gibber" can handle a barrel of large mackerel in from five to seven minutes. A smart crew of fourteen men can dispose of a deck-load of large mackerel in from fifteen to eighteen hours, salting them away properly in the barrels. The smaller the mackerel the longer it takes to dress a barrel of them, the time required to handle a small or a large mackerel being precisely the same.

When the fish are to be iced and carried tresh to market they can be disposed of much more rapidly, it being simply necessary to stow them away in the hold without splitting. They are usually washed before being placed in ice, and occasionally gibbed without splitting, the viscera being drawn through the gill openings. \dagger The most rapid way of caring for the fish is to place them in barrels of ice-water. This is done for the most part in the spring or fall.

[^37]
17.-RUNNING FOR THE MARKET.

Those mackerel schooners engaged in market fishing find it desirable to make their passages with the utmost speed, but rapid passages in summer are, of course, much less dangerous than those made in winter by the haddock and halibut vessels. Great expedition is used by all mackerel vessels, since the seasou is short, and they feel obliged to take advantage of every opportunity. In the case of salted fish, however, there is no such auxiety to sell, and the chief desire of the skipper is to land his fish and to return to the fishing ground with no unnecessary loss of time.

It often happens that mackerel-catchers who are not engaged in the fresl-fish trade take a big hanl, 200 barrels or so, when they have but few barrels to put them in and scarcely any salt. In such cases it is of the highest importance to reach home if possible, or at least some large fishing port where barrels and salt can be obtained, and all the sail that can be spread or that the vessel will carry is set.

18.-Landing tie cargoes.

The mackerel are hoisted out on the wharf by a horse, the duty of the crew being to hook on the barrels and to roll them to the proper places on the wharf, af ter they are landed, where the barrels are gencrally stowed ou their hea ds ready to be opened. In seasons of abundance, and when the men have become exceedingly fatigued from their labors in catching and dressing a fare of mackerel, it is often the case that the skipper will hire a number of longshoremen to take the fish out of the vessel. At such times, too, the shoremen are employed to plow the fish, and also to assist in packing them, since the fishermen find it more profitable to hire men to do this than to remain ashore and do it themselves. For, in the mean time, they may be fortunate enough to catch a fare of two or three hundred barrels of mackerel.

In the days of hook and line fishing, the landing and packing of mackerel was carried on much more leisurely than at the present time. At first it was customary for the men composing a crew to hoist the mackerel out on the wharf by tackles; but within the last fifteen or twenty years it has been found more profitable to employ a horse for this purpose, since the work of discharging can be carried on much more rapidly than before, and with less tax upou the energies of the men. The several processes of unheading the barrels, culling, weighing, and packing the mackerel have been fully described in another chapter and need not be repeated here.

19.-Financial profits of seining.

The following tables, copied from the annual reports of the Boston Fish Bureau, show the large catches and "stocks" by the mackerel fleet in New England waters for the seasons of 1880 and 1881.

1881.
*Schooner Alice, Swan's Island, Me.................................. 4, 4, 95 28,055 23
†Schooner Edward E. Webster, Gloucester, Mass 4, 500 26,570 00
Schooner Isaac Rich, Swan's Island, Me 3, 276 15,500 00
Schooner Frank Butler, Boston, Mass 2, 600 15,000 00
Schooner Mertie and Delmar, S. Chatham, Mass 3, 005 14, 13800
\ddagger Schooner A. E. Herrick, Swan’s Island, Me 2, 280 - 13, 67400
Schooner Robert Pettis, Wellfeet, Mass 2, 580 12, 41918
Schooner Roger Williams, North Haven, Me 2, 450 12, 00000
Schooner R. J. Evans, Harwichport, Mass 3, 3, 000 12, 00000
Schooner Louis and Rosa, Boothbay, Me 3, 3, 028 11,557 46
When it is taken into consideration that these vessels are employed in fishing barely eight months at the longest, and some of them only four to six months, it will be seen that the business is an exceedingly protitable one for many of the fleet, while the greater portion make fair returns.§

[^38]
20.-History of The use of purse-seines.

The earliest record of the use of the purse-seine is the following, obtained from Capt. E. T. Deblois, of Portsmouth, R. I. :
"The first purse-seine that was made, so far as I know, was made by John Tallman the first, and Jonathan Brownell and Christopher Barker, in the year 1826. It was 284 meshes deep and 65 fathoms long. The purse-weight was a 56 -pound weight, and the blocks were the common single blocks, and they had to reeve the end of the purse-line through the blocks before they put the purse-weight overboard. The first time the seine was set there were fourteen men to help; they set around what they called a 500 barrel school of menhaden, and while they were pursing the fish rushed against the twine so hard that they twisted and snarled the net around the purse-line and weight to that extent that the men could not gather the seine up or get her into the boat again as they were, and after they had worked six hours, and quarreled over the matter, they decided to tow or warp the seine ashore at high water, and when the tide left the seine they would be able to unsnarl it, which they did the next day. It was a number of days before they could muster courage to set her again, and when they did they set around a small school with better success."

There is a general impression among the fishermen of Northern New England that the purse-seine was a development of the "spring-seine," elsewhere referred to, but this would seem to be a mistake, since the spring-seine, which really appears to have been nothing but a large sheet-net with special appliances adapting it for use on board of a vessel, was not used in New England until 1853 or 1854. There is also another tradition to the effect that the purse-seine was invented about the year 1837 by a native of Maine who had for some years been employed as a hand on a Gloucester schooner, and who conceived the idea of capturing mackerel in large numbers, and invented a seine substantially like the one now in use, which, finding the Gloucester fishermen unwilling to enter into experiments, he carried to Rhode Island, where it was used in the vicinity of Seaconnet for seining menhaden. This, would appear to be a conglomeration of errors, partly imaginary, partly based upon the circumstances already narrated by Captain Deblois.

Reference has already been made to the claim that the purse-seine was invented in Rhode Island as early as 1814. Another early allusion to this new instrument of capture was given in the following paragraph h_{3} taken from the Gloucester Telegraph of Wednesday, July 21, 18:39:
"New Fishing Tackle.-We noticed, a week or two since, the fact that Capt. Isaiah Baker, of Harwich, had recently commenced fishing with a seine of entirely new construction and with remarkable success. It was stated in the Yarmouth Register that he had cleared about $\$ 3,000$ in one week, by taking shad. A correspondent writes us from West Harwich that the fortunate captain still coutinues to make equally
'glorious hauls.' He is now in Provincetown with his seine catching mackerel, and recently took 60 barrels at one 'shoot.' This new mode of fishing bids fair to create an entire revolution in the mackerel and shad fisheries. Our correspondent says that the Vincyard Sound will soon become a great fishing ground. It is well known that all the shad, bass, mackerel, etc., which are found in Block Island Channel early in the spring pass through the sound, and it is now ascertained that with proper seines they may be caught in great abundance. With a purseseine, when mackerel are schooling or shoaling, the fishermen may run around them and inclose one lundred barrels. They will not bite at bols as in years past, but Cape Cod ingenuity has devised something to out-general them."

The purse-seine was undoubtedly a development and extension of the idea of the drag-seine supplemented by that of the gill-net used at sea in sweeping around schools of fish.

The first seine used north of Cape Cod was that carried by Capt. Nathaniel Adams, of Gloucester, in the schooner "Splendid," in the year 1850. Capt. Nathaniel Watson, of the "Raphael," began using one the same Jear. According to Mr. Luther Maddox, the earliest experiments were at Chelsea Beach. It is claimed by some that Gorham Balson, of Gloucester, had one in use as early as 1847.

The early seines were about 200 yards in length, 22 fathoms in depth, and of 21 -inch mesh, the bunts being about 250 meshes square. The twine was much heavier than that used in the present seine; the whole net weighed 600 or 700 pounds. The seine in its present form did not come into general use until about 1860 .

The rapidity with which this expensive form of apparatus has come to be generally employed in our fisheries seems almost marvelous. At the present time the total number of these nets used in the mackerel fishery is not far from 400 , valued at 160,000 dollars ; in the menhaden fishery 366 , valued at 138,400 dollars. The total value of the purseseines with the value added of the seine-boats, which really are parts of the same apparatus, cannot be less than 440,000 dollars.

Capt. W. H. Oakes states that in early days a certain kind of net was used in catching menhadeu which reached to the bottom in shallow water and which was pursed by means of ropes. Capt. George Blatchford used to go for menbaden in an old pinkie, and used one of these nets.

Captain Oakes is of the opinion that Capt. William Ratcliff, of Rocky Neck, Gloucester, was the first man who caught mackerel in deep water off-shore. He used some kind of a purse-seine, and with it in two hauls caught about 90 barrels of mackerel off Monhegan in 90 fathoms of water. Capt. George Merchant, jr., of Gloucester, writes as follows regarding the early attempts to seine mackerel in deep water. He says: "Previous to 1862 the only mackerel caught in deep water, in seines, were taken with the schools of pogies. From one to ten or twelve
hundred in number were often caught in this way, the seiners supposing that their being with the pogies prevented them from trying to escape, since pogies seldom leave the seine after it is around them, bnt we never set the seine for them (mackerel) when in deeper water than ten fathoms, our seines not being deeper than that at that time. One day in July, 1862, I lay at anchor near Boon Island, it being calm at the time. While lying there a school of mackerel came up and began to play around at the surface, not far from us. Knowing that the water was twenty five fathoms deep where the fish were, I did not go after them right away, but after they had been schooling some time I concluded to go out and look at them. I found the water to be as I had expected-twenty-five fathoms deep. I thought, however, that I would try just to see what would come of it, although the men said it would be no use, as the fish would soon disappear, but we threw out our seine and went around them, with as little noise as possible, and commenced to purse up, the men saying that the mackerel would soon go, but they did not go, but continued to school in the seine until the latter was pursed up, and the rings on the boat. Then we thought we had done something never before heard of. We took fifty barrels of large mackerel that time.
"After securing the fish I weighed anchor and ran to Richmond's Island. When I arrived there I found fifteen fishing vessels at anchor. I told them (the skippers and crems) that I had taken fifty barrels of mackerel in deep water, but they would not believe it, saying that if I had it would never be done again. But it set them to thinking, and they soon found that mackerel could be caught in deep water. The fleet of seivers began to increase from that time, and has kept growing until the present, when it amounts to about two hundred sail.* I date the catching of mackerel in deep water from the time and occurrence I have mentioned above. I was in one of the first seven ressels that sailed on seining voyages from Gloucester, Capt. Samuel Blatchford and Capt. Nathaniel Watson being the two first to try the business, and they both gave up seining, as it did not pay them."

Wellfleet, Mass., had 52 mackerel seiners in 1877. Seines were first carried by the Wellfleet vessels about 1857, but their use was soon abandoued. In 1863 to 1865 the "Mary B. Dyer" had a seine, and since that time more or less seines have been in use. In 1873 all the ressels went into this business.

The first purse-seine brought into Central Maine, writes Mr. Earll, was bought by Mr. Amherst Spofford, and taken to Damariscove in 1859 , and used with rather indifferent success until 1861; it was 130 fathoms long and 12 fathoms deep; the parties kept it on the island and took it out in small boats whenever fish were seen schooling in the vicinity. It seems that Mr. Spofford did not thoroughly understand setting it and caught but few fish.

In 1861 he sold it to Messrs. William Gray and Miles Pierce, and it was taken to Cape Newagen, where it was successfully used by carrying it out in a small boat and landing the fish on a dressing stage on shore in the same way. The next year it was put aboard a small schooner, the "Leon," and the fish landed as before in small boats to be dressed, the vessel being only large enough to carry the seine.

In 1863 the seine was put aboard the schooner "Dawning Day," 73 tons O. M., and the fish were dressed aboard. This was really the commencement of deep-water seining in this section, and the ressel did so well as to induce others to go into the business the following year.

The schooner "Niagara" was the first to provide herself with a seine in 1864, and another was bought and owned by two small vessels, the "Wild Rose" and the "Neptune," one carrying the seine and the other salt and barrels for curing the fish. This plan did not work well and was soon abandoned. The schooner "Niagara" did well from the start and has always been high line of the seiners for this section.

Georgetown sent one seiner, the "Coquimbo," in 1865, and a little later the schooner "Sunbeam," Captain McMann, but they met with poor success, and no seiners have been sent since from that port.

Westport has made two attempts at introducing seining; the first in 1872 by schooner "Jennie Armstrong," Capt. B. F. Jewett, and the second a three-masted schooner of 350 tons, the "Geo. W. Jewett," Capt. A. M. Jewett, carrying two seines and crews in 1875. Both vessels did very poorly and gave up the business after the first season.

21.-The ATtEMPTED USE OF THE PURSE-SEINE IN NORWEGIAN WATERS.

In 1878 a Gloucester vessel essayed fishing for mackerel with a purseseine on the coast of Norway. In April the schooner "Notice," Capt. Knud Markurson, departed on this mission, taking a crew of twelve men and the most approved seining apparatus. It was remarked by a writer in the Deutsche Fischerei Zeitung, of July:
"The mackerel fishermen, who have till now been in the habit of plying their trade in open but suitable boats, are, however, greatly agitated at the present moment in consequence of the arrival at Risor, some three weeks ago, of an American fishing smack, direct from Gloucester, in North America, understood to be followed by a whole fishing fleet from New England, to take part in the mackerel fishery outside the Norwegian fishing territorium. As all these American smacks are reported as provided with bag or purse nets, by means of which they are enabled to catch more fish upon one single haul than ten Norwegian boats during a whole day, it is obvious that the Norwegian fishermen will have to discard their old mode of fishing, and to have recourse to the American fishing method, if they do not want to lose all the adrantages enjoyed till now. The mackerel fishery has always been of great importance to Norway, some $7,000,000$ of these fish being on the aver-

Tho unluts in a fresh condition or salted.

age caught annually, of which number about 70,000 centners, at a value of from 600,000 to 700,000 crowns, are exported. The government is well aware of the danger threatening the public weal, and has consequently taken every possible measure in order to prevent such disastrous results as the loss by the Norwegian fishermen of the mackerel fishery. A most accurate description of the nets used by the Americans has been printed, and, with a great number of nets of this kind, made to order by the net manufactory at Bergen, distributed among the fishing population. Models of the different sorts of the fast-sailing American boats have also been obtained through the Norwegian consul at Gloucester, Massachusetts, direct from the manufacturers of such boats. The well-known industry and activity of the Norwegian fishermen, combined with the efforts of the government, will, no doubt, enable them not only successfully to hold, but to improve, their own prospects as regards the mackerel fishery by the timely adoption of the American methods and arrangements for fishing."*

The venture was, however, not a successful one. On his return home Captain Markurson stated that he had been unable to use the seine advantageously owing to the fact that the mackerel did not in those waters school together in large bodies as they do along the New England shores.

D.-THE MAOKEREL HOOK FISHERY.

The mackerel fishery at the time of its highest development, from 1820 to 1870 , was carried on almost exclusively by the use of little hooks with heavily weighted shanks, known as "mackerel jigs." For many years there were from 600 to 900 vessels, chiefly from Cape Cod and northward, engaged in this fishery; and in the year 1831 the total amount of mackerel salted in Maine, New Hampshire, and Massachusetts was 450,000 barrels.

As will be seen by an examination of the diagram, showing the yield in the mackerel fishery from 1804 to 1881, elsewhere published in this report, the quantity of fish taken from year to year has been extremely variable, but has at no other time approached the enormous quantity on record for the years 1835 and 1881.

The jig has now been almost entirely superseded by the purse-seine, and this radical change in the method of catching mackerel has caused the desertion, by the mackerel fleet, of the Gulf of Saint Lawrence, and the practical futility-to benefit our fishermen-of the fishery clauses of the Treaty of Washington. All attempts, with a very few exceptions, to use the purse seine in the Gulf of Saint Lawrence have been failures.

In 1880 the schooner "Alice," of Swan's Island, caught 700 barrels by use of the purse-seine in the gulf, but not 10 per cent. of the other vessels which risited this region, then or within the four or five previous years, paid their expenses.

[^39]The mackerel hook fishery is of the past; and this chapter must be regarded, in large part, as historical. It is by no means impossible, however, in years to come that the old method of fishing, which had many undoubted advantages over that at present employed, will be revived.

22.-Fishing-grounds.

The grounds frequented by the mackerel-hookers, as the fishermen call them, were as follows:
(a.) The Gulf of Saint Lawrence.*-In the early part of the season the favorite fishing.grounds were in the southwestern part of the Gulf of Saint Lawrence, from Cape Gaspé to the North Cape of Prince Edward Island; especially off Point Escuminac, Pigeon-hill ground, or the west shore lying along the coast from Miramichi to Point Miscou, Bank Bradley, Bank Orphan, and Bay of Chaleur. Later in the season, in July, August, and September, the principal fisheries were carried on upon the grounds just mentioned, also around the Magdaleu Islands and along the north side of Prince Edward Island. Occasionally, too, in August and September, vessels fished on the south side of Prince Edward Island from Georgetown to East Point. In September and October fishing was carried on at the Magdalens, Prince Edward Island, in the Bay of Saint George, between Cape Saint George and Port Hood, and on the northwest shore of Cape Breton from Port Hood to Cape North. Fayorite localities were about Margaree Islands and Cheticamp; also, on the east side of Cape Breton, in Aspee Bay, and about Sydney. About 1858 and 1859 several successful fares were made in the estuary of the Saint Lawrence from Cape Gaspe to Cape Chatte; and about the Seven Islands and Mingan Islands on the coast of Labrador. In the year 1877 a Gloucester schooner obtained 200 barrels of mackerel at Port-au-Port, on the west coast of Newfoundland. \dagger Bird

[^40]Rock, situated east of the Magdalen Islands, has occasionally been a farorite ground, since the mackerel taken there were almost always very large.
(b.) Gulf of Maine.-From June to November excellent fishing was to be had in various parts of the Gulf of Maine. Early in the season mackerel were taken all the way from Cash's Ledge to the Bay of Fundy; from the middle of June to September the favorite localities were in the vicinity of Monhegan Island, Matinicus Rock, and Mount Desert Rock. From about 1830 to about 1845 some fishing was done in the Bay of Fundy, north of the island of Grand Manan. When the autumnal migration of the mackerel begins the vessels follow them as they proceed southward. Favorite fishing grounds are then off Portland; later, about Boone Island, off Cape Ann, and the waters of Massachusetts Bay, and along the outside of Cape Cod, the latest catches being generally obtained off Chatham and the eastern part of Nantucket Shoals. Fishing here continues sometimes until the latter part of November.*
(c.) George's Bank.-Mackerel were in some years very abundant on George's Bank, especially on the southern portion from June to September. Later in the season the weather was generally unfavorable for fishing in this region. The mackerel caught here were recognized, as now, to be of very fine quality.
(d.) South coast of New England.-Of late years a small quantity of extraordinarily fine mackerel have been caught with jigs in the vicinity of Block Island in summer and fall. In previons years the mackerel fishery in this vicinity was chiefly carried on in the spring.
(e.) The coast of the Middle States from Montaut Point to Delaware.This fishery was chiefly carried on in May, and in many respects corresponded to the spring mackerel fishery described in another section of this chapter; this is now prosecuted with seines on the same grounds, and the fish are mostly taken to New York for sale, principally in a fresh condition, though formerly they were generally salted.
(f.) The eastern coast of Nova Scotict.-In this region, although great quantities of mackerel are sometimes taken in pounds, nets, and seines, in the early summer and fall, they are very rarely taken on the hook. About 1854 and 1855 several fares of extremely large mackerel were caught at Sable Island by Cape Cod vessels.

23.-The fishermen.

The men engaged in the mackerel hook fishery, especially in the period of its culmination, were almost exclusively natives of New England. From 1850 to 1870 the provincial element in the fleet gradually inereased. When this fishery was most prosperous not less than 10,000

[^41]were employed on board the vessels belonging to the American fleet. The vessels engaged in this fishery carried very large crews; in fact, larger than have ever been carried by other vessels. Not unfrequently a schooner of 80 to 100 tons would carry twenty men, and, in some instances, twenty-four. Among the crew were generally three or four boys, sometimes five, from ten to seventeen years of age. These boys fished from the extreme ends of the vessel; they were frequently very successful, and by the training in this fishery fitted themselves to take responsibilities in the fishing fleet at a much earlier age than otherwise would have been possible. At sixteen or seventeen years of age many of the boys ranked among the first of the crew to which they belonged, and it sometimes happened that the command of a schooner was given to the most enterprising before they were out of their teens.

24.-THE VESSELS.

Prior to 1848 the mackerel fleet was made up exclusively of the oldfashioned square-stern schooners registering from 25 tons to 80 or 90 tons, old measurement, and of pinkies registeriug from 20 to 60 tons. Newburyport had a large fleet of pinkies, registering, old measurement, from 40 to 60 tons. Most of them carried a flying jib.

From 1848 to 1850 the necessity for swifter vessels was felt, and various experiments, which are described in the chapter on the schooner, were made. From this time on all the vessels added to the fleet were of improved model, approximating, more or less closely, to the modern type of the fishing schooner. These vessels were in those days known as "sharp-shooters." As early as 1855 the character of the fleet had become very much modified, there being a large percentage of modernbuilt vessels, and the pinkies and square-stern schooners were retained only by conservatives and by the smaller ports, especially those on the coast of Maine. Many of these old vessels had by this time been withdrawn from the mackerel fishery and employed in other branches of the fisheries. As early as 1870 the old square-stern vessels and pinkies had entirely disappeared from the fleet, most of them long before that date.

The mackerel-hookers, when fitted out for fishing, had the decks clear. Upon the starboard side of the vessel were arranged line-cleats. These were in early times small narrow cleats of pine nailed to the inside of the waist, but after the introduction of finer vessels the fishermen became more careful, and substituted a complicated, ladder-like arrangement, consisting of two long horizontal strips, which were crossed by from eight to twelve shorter vertical strips or cleats, with projecting ends, an arrangement of this kind being secured between each pair of the top timbers. On the top of the rail was nailed the bait-board, in which were cut grooves arranged for the reception of a supply of jig bait, which was cut into bits ready for use; these grooves cannot be easily described. Upon the bait-board, or apon the edge of the rail, were fastened so-called "snapper cleats," ingenious contrivances, of elastic
wood or of metal, by which the lines were kept in their places while the men were fishing.

The bait-boxes were fastened on the starboard side; these were wooden troughs holding from one to seren or eight buckets of bait apiece. There were three of these bait-boxes, the largest placed outside of the rail at the foot of the main rigging, one on the quarter near the davit; the third was placed at the fore rigging. The forward and after baitboxes were usually less than half as large as the one amidship. The bait-mill was placed on deck, on the port side of the vessel, near the main rigging. During the later sears of this fishery many of the vessels carried on the deck at the foot of the main rigging on the starboard side a bait-chest divided into two compartments, the smaller one for the clam bait and the larger one for the ground menhaden bait. On such schooners as were not provided with a bait-chest, the ground bait, or chum, was kept in barrels. Two of these barrels were generally kept near the starboard main rigging, so that those who threw out the tollbait could refill the boxes with as little loss of time as possible.

The hold was left unobstructed by bulkheads; the ballast was usually gravel or pebbles and was not covered by a platform. Some vessels carried part of their ballast in barrels, throwing it overboard when the barrels were needed for fish. The number of barrels carried by a ressel would vary, according to her size, from one hundred to six or seveu hundred, part of these being filled with salt and bait. The mackerelhookers usually carried a single boat (of the yawl pattern) at the stern. Occasionally vessels going to fish on the coast of Labrador, or at the mouth of the Saint Lawrence, or even on the coast of New England, carried a number of dories or other boats, which were used by the men when they fished in the harbors.*

25.-Apparatus and methods of fishing.

(a.) The mackerel jig.-The mackerel jig is said to have been invented about the sear 1815, by Abraham Lurvey, of Pigeon Cove; according to other authority by one Thurlow, of Newburyport. \dagger It is simply a

[^42]hook, round the shank of which has been cast a plummet of lead, pewter, or tin, somewhat globular at its upper end and tapering down toward the bend of the hook. At the upper end is a hole through which a fishing line is bent. The weight of a mackerel jig has varied from a quarter of an ounce to three or four ounces at different times during the history of the fishery. At first they were made much heavier than they have been in later years. At present many fishermen, when using jigs, prefer them very small. It has been stated that each fisherman has from seven to twelve fishing cleats in his berth at the rail. On these cleats are fastened an assortment of lines with jigs of various sizes, the heaviest being used when the mackerel are biting fast, or when the wind is blowing fresh; the lightest, when the water is very smooth, or when the mackerel are "picking," or nibbling daintily.
The fishermen always made their jigs in molds of metal or soapstone, this operation being similar to the old-fashioned method of making bullets. In former days these molds were made of iron, but many of the fishermen being dissatisfied with the shape constructed them for their own use of lead. At present the soanstone jig-molds and the lead and pewter constitute a part of the outfit of a vessel.

Wheu jigs were first introduced, however, it was customary for fishermen to cast them for themselves in molds improvised in buckets of sand or asles, afterwards beating into shape the rough castings, and boring the hole for the line. This custom was prevalent on some vessels as late as 1850 . In the later years of this fishery the fishermen became very critical in the matter of jigs, and were not satisfied unless they were elegantly shaped and brilliantly polished. The lines were six or eight fathoms in length, of cotton, being either hawser or shroud laid. Of later years these have always been of cotton. In early days, when the heavier jigs were in vogue, much larger lines were used than at a later period; since 1860 it has been customary to use a kind of suood, called "snapper-line," made of strong linen thread and usually colored blue. The "snapper-lines" are from 15 to 18 inches long, one end being bent to the jig, and the other fastened to the fishing line with what is called a "water-knot." During the voyage the lines are generally' coiled up and hung upon the fishing-cleats on the waist when not in use. As has been stated, each man has from eight to twelve lines, with jigs of different sizes, fasteued to the cleats at his berth. A quantity of extra lines and hooks are carried by the vessel.
(b.) The mackerel fly-hook.-The mackerel fly-hook, formerly very popular and introduced before $18 \check{2} 0$, has been discontinued since 1860 . This is an extra hook on a ganging from 12 to 15 inches long, fastened to the jig-line 8 or 10 inches above the jig. Not being weighted, this hook floats at an angle when the jig is sinking, and by using it two mackerel are sometimes caught at once, one biting at the jig and one on the flyhook. The fly-hook went out of favor because it was liable to become entangled with the other fishing-gear.
(c.) The mackerel gaff.-The mackerel gaff is an iron rod a quarter of an inch in diameter, $3 \frac{1}{2}$ feet long, having at one end two recurved sharp points about 2 inches long and separated at the extremities by an interval of one-half to three-quarters of an inch, returuing in a line parallel with the direction of the rod. The mackerel gaff is fastened to a wooden handle about 10 or 12 feet loug, and was used when the mackerel were schooling thickly alongside of the vessel and were not inclined to tako the hook. The gaff was thrust among the fish and rapidly drawn back, often impaling one and sometimes two mackerel at a time. This implement has not been used since the introduction of seines, and but rarely during the last twenty years.
(d.) The mackerel "bob" or "bobber."-This is an instrument resembling the mackerel gaff in the manner of its use. In its rude form the bob was a stick of wood, around the end of which three or four cod-hooks, with their barbs filed off, were fastened. The same idea has since been developed in various ways, the most elaborate form being that illustrated in our plate. The bob is fastened to a string and drawn through a school of fish, impaling them in the same manner as the gaff. This instrument was discontinuell long before the gaff, and, in fact, has never been so popular. These bobs were used only when the mackerel were schooling in great numbers alongside of the vessel and refusing to bite.
(e.) Bait and apparatus for its preparation.-Bait used in the mackerel fishery is of two kinds, (1) that put upon the hooks, and (2) that thrown into the water to attract the fish.

The method of baiting the jigs which has been adopted by mackerel fishermen is somewhat peculiar, and a description of the process may be of interest in this place.

As a rule, when a mackerel schooner first arrives on the fishing ground and is about to begin fishing with hook and line, the jigs which are to be immediately used are baited with small circular pieces of pork rind, two or three of these being put on each hook. Sometimes, however, no one but the skipper uses pork-rind bait, the other members of the crew preferring to wait until some mackerel are caught from which they can procure a supply of bait for their hooks. The favorite way of baiting mackerel hooks is as follows, namely: Several thin strips about a half inch wide and three to five inches long, are cut either from the belly of the mackerel or from the lower portion of the body on either side of the anal fin.* When a sufficient number of these slices have been obtained they are cut into sections, each of which is, approximately, a half inch square. A large number of these pieces are put on the hook, completely filling the beud, after which the baits are scraped with the back of a knife in such a manner as to remove everything but the tough white skin, which, when distended in the water, forms a soft pulpy mass

[^43]about the size of the end of one's forefinger; but this can be contracted into a very small space, and thus afford the eager fish ample opportunity to secure a good hold of the hook while seeking the tempting but yielding morsel upon it. A bait of this kind will last more than an hour without being renewed, even when mackerel are biting sharply. When the fish are "picking" or less inclined to take the hook, a fisherman is often not obliged to bait his jigs more than once in a whole day. Sometimes the fishermen cut out a small circular piece from the throat of the mackerel, which they place on their look above the scraped bait. This throat piece is quite firm and for awhile prevents the soft skins composing the bait below it from being entangled on the point of the hook and thus preventing the latter from easily catching the biting fish.

In the early days of the mackerel hook fishery the toll bait chiefly used was made of small mackerel, and sometimes of large ones too when small fish could not be obtained. The viscera of the mackerel were also frequently used in the absence of better. From 1835 to 1840 menhaden came into general use, andowere subsequently always in high favor. They had, however, been in common use by Gloucester fishermen at the very commencement of the century. They were caught in gill nets. It was the custom of the Gloucester people to leave home a little after tea, set their nets off Kettle Island, and lie there till about midnight. They would then haul their nets, pick out the fish, and start off to the mackerel grounds.*
There can be no question that the custom of chopping up small mackerel for bait was detrimental to the mackerel fishery in succeeding years, and that the introduction of menhaden was a benefit to the fishery in more ways than one. As a "toll" bait for the mackerel, menhaden is believed to be better than any other fish; the mackerel seem to prefer it; and the presence in its flesh of a quantity of oil renders it especially convenient for the use of fishermen, since in the process of "chummingup," presently to be described, a small quantity of ground menhaden bait will spread over a large area of water. In the Report of the Commissioner of Fisheries, Part V, pp. 143 to 147, may be found a discussion of the comparative merits of herring and menhaden as a bait for mackerel.

The quantity of menhaden bait carried by a mackerel schooner on a trip of two and a half to three months to the Gulf of Saint Lawrence varles, according to the size of the vessel, from 25 to 40 barrels. In addition to this they were accustomed to carry 5 to 10 barrels of clams. Capt. Sylvanus Smith, of Gloucester, stated to the Halifax Commission that a vessel fitting out for a four months' trip to the Gulf of Saint Lawrence would need to be supplied with 40 barrels of pogie bait, worth

[^44]$\$ 6$ a barrel, making $\$ 240$, and 10 barrels of clam bait, worth $\$ 8$ a barrel, making \$80.*
Major Low's statement, copied from the trip-book of the schooner Oliver Eldredge, which sailed to the Gulf of Saint Lawrence August 5, 1875, arrived at Gloucester November 2, 1875, having been absent two months and twenty-eight days, obtaining 224 barrels of mess mackerel, worth $\$ 1,771.83$, shows that she fitted out with 55 barrels of slivered pogies, at $\$ 6.50$ per barrel, making $\$ 337.50$, and 7 barrels of clams, at $\$ 6$, making $\$ 42$.

In 1867, when almost the entire mackerel fleet fished with hooks, the amount of menhaden bait consumed by Gloucester alone amounted, by the estimate of Mr. Joseph O. Proctor, to 6,500 barrels, and the total consumption by the United States of mackerel bait must have exceeded 25,000 barrels. In addition to this more than 1,000 barrels of clams were used. In 1877 another estimate was made of the quantity consumed by Gloucester. The purse-seiners were then in a large majority. The whole amount consumed by a seining ressel does not exceed 5 or 6 barrels in a season. Gloucester had, in 1877, about 50 " mackerel-hookers," using about 2,400 barrels of slivers, while the seining fleet used about 600 barrels more. The entire amount of menhaden bait consumed by the mackerel fleet of the United States in 1877 did not probably exceed 8,000 to 9,000 barrels of slivers, or 24,000 to 27,000 barrels of round fish.

The menhaden used for bait in the mackerel fisheries was formerly, when a larger quantity was in demand than at present, obtained to a considerable extent from Gloucester vessels fishing expressly for menhaden in the vicinity of Cape Ann and in the Gulf of Maine.

Capt. F. J. Babson, of Gloucester, whose account of the bait fishery of Cape Ann is quoted elsewhere, states that in 1873 there were over 60,000 barrels of round menhaden taken in his district, while in the same year vessels belonging to the Maine Oil and Guano Association sold of bait 2,977 barrels; in 1874, 10,400 ; in 1877, 10,795. From the bait fisheries about Marblehead and in the vicinity of Provincetown, according to Mr. Lowry, from 1,000 to 2,000 barrels of bait were taken in 1873. At Chatham, from 1872 to 1877, the average catch was about 5,000 barrels. A large portion of all of these fish, horever, was sold to the vessels engaged in the George's Bank cod-fishery. Considerable quantities also were obtained about Salem and in the Merrimac River, a portion of which went to the mackerel fishery.

It was the custom of many of the vessels belonging to the spring mackerel fleet to devote a considerable time to obtaining a supply of bait for their own use during the summer fishery. In addition to this quite a number of vessels were fitted out each spring to go to Seaconnet and other places in that vicinity for the purpose of securing cargoes of menhaden slivers to sell to the early fleet going to the Bay of Saint

[^45]Lawrence. Cape Cod vessels were accustomed to dress their bait in a peculiar manner. They did not sliver them in the ordinary way, but salted them down "round," simply eviscerating them, cutting off the heads and the thin parts of the belly, and making slits in the sides.

These vessels obtained their bait from the pound fishermen at various points on the coast of southern New England, especially in the vicinity of Seaconnet and Rhode Island, and also from the various fishing gangs connected with the oil and guano factories.

In addition to the vessels which thas obtained supplies of bait for their own use, there was a fleet of bait vessels which annually proceeded to the same localities in the spring to obtain bait for sale to the vessels of the mackerel fleet not otherwise supplied. The number of baiters was five or six.

The price of menhaden for bait varied with their abundance. In Gloucester, in 1873, according to Captain Babson, 60,000 barrels of round fish made 20,000 barrels of slivers, worth $\$ 4$ a barrel to the producer. At Marbleheal the price in 1876 averaged $\$ 1$ for fresh and $\$ 6$ for salt bait; at Chatham, $\$ 1.50$ fresh; at Nantucket, 50 to 75 cents; and at Martha's Vineyard, 50 cents. In Narragansett Bay bait sold in 1871 for $\$ 1$ to $\$ 1.50$ per barrel, fresh. The regular price from 1867 to 1877 at the mouth of the Merrimac River was $\$ 1$ per barrel; probably 1,000 barrels of slivered fish were prepared in $\mathbf{1 8 7 6}$, which sold for $\$ 5$ a barrel. Boston and Gloucester vessels were accustomed to anchor at the mouth of the river and wait there for supplies of bait. At one time in 1877 there were probably 25 schooners waiting.

The process of slivering and salting menhaden was described in the report on the menhaden fisheries in Part V.

The manner of preparing the slivered menhaden or other fish for toll bait is rery simple, and is essentially the same as that employed in early days, when it was the custom to grind up small mackerel for bait. Captain Atwood remarked in his testimony before the fishery commission at Halifax: "We now use menhaden for bait, but when I first went fishing we did not do so; our practice then was to grind up small mackerel for the purpose. Any quantity of these mackerel were at that time to be had for the cost, and plenty are to be met there now. These fish were of no account then, and so we ground them up for bait. And when we could not obtain them we ground up what you call gurry, the inwards of fish with the gills attached. American fishermen, when they fish with hooks, use menhaden bait almost exclusively. The superiority of this over any other is proved by the fact that when they can't get menhaden they won't take any other. At first mackerel fishermen were afraid of this bait; it was a very bony fish, and they even thought that if it was cut up for bait the mackerel would get sick of it owing to the number of bones. There is a species of fish belonging to this family found on our coast which is exceedingly fat; we call them blue-backed
herrings;* and some prefer this fish for bait, as it is not so bony as menhaden, but when the mackerel got to be worth having, about everybody adopted menhaden for bait; it is the cheapest bait." \dagger
To prepare menhaden for use in the mackerel fishery, the slivers are ground up into a mush which is called "ground bait." The slivers are passed through a bait-mill, which is a machine somewhat resembling a farmer's feed-cutter. The fish are thrown into the hopper, and, by the agency of a roller operated by a crank at the side of the mill, are passed through a complicated array of sharp knives arranged upon the sides of the mill, and in spiral rows upon the roller. The bait is usually ground at night by the watch on deck. As a rule the bait is run through the mill twice in order to make it fine enough. When the vessel has no bait-mill, which at present is rarely the case, the fish are cut up with a hatchet or scalded with boiling water in a tub. Bait-mills were first introduced about the year 1822. Prior to the introduction of the baitmill all the bait was cut up at night with the hatchet, by the watch, upon a chopping-block, which was a large flat-topped piece of wood resembling a butcher's meat-block. The veterans of this fishery relate with great glee how they used to be kept awake all night by the pounding of the bait-cutter over their heads, and contrast the present usages with those of former days. When there was leisure in the day-time, three or four men would work at the block together, each chopping with his own hatchet. In this way a constant supply was kept. Bait which had been ground was packed in barrels full of pickle, and covered up.
The earlier bait-mills were very rude affairs, the teeth being common nails driven into the barrel and into the sides of the mill and broken off, leaving jagged ends which tore the bait into pieces. Later these were filed down to a point, while at the present time the teeth are arrowshaped, made of steel, and are attached to the wood by means of shanks made especially for the purpose. Bait-mills are now manufactured by various mechanics at the different ports, those made by Adolph Voss, of Gloucester, being considered among the best. The cost of a good bait-mill is from $\$ 8$ to $\$ 15$.

According to Maj. D. W. Low, the first bait-mill was made in 1820, of nails driven in lines across two wooden cylinders and then sharpened. The first one made for grinding or cutting with knives was made in 1822 by Gorham Burnham, and they were driven into cylinders in the same manner. In 1823 he commenced putting in the knives in spiral form, which form has continued in use ever since. He has made and sold in one year $\$ 1,600$ worth at $\$ 10$ each, besides making anchors and other work.

The first bait-mill taken to southern Maine was bought in Gloucester

[^46]in 1827 by Mr. John Cameron, of Southport, for use on the schooner Echo.*

The manner in which the labor of grinding bait was distributed among the different members of the crew after bait-mills came into general use varied upon different vessels. Sometimes each man had his "bait day," upon which, in addition to his regular labor of fishing, he was expected to grind bait for the use of the vessel.

When fish were abundant the quantity used might be as great as five or six barrels a day. The bait-cutter was expected to have a supply of bait ready, and when there was promise of good fishing the next day would grind what he thought would be needed for the next day's fishing during his watch at night. When he was not forehanded and the fish were abundant he suffered considerable loss, since he was obliged to work at grinding the bait while the others were fishing, and thus failed to obtain his share of the fish.

On some vessels, in order to obviate this difficulty, it was customary for each man to grind a barrel in his turn, the boys doing their share of the work by cutting the clam bait. The order of their succession was determined by their position at the vessel's rail, the man farthest forward taking the first turn. On othor ressels, if a man was not on deck in the morning to help hoist the sails, the penalty for his absence was the grinding of a barrel of bait, a task which required about an hour and a half for its performance.

When the bait has been ground it is placed in barrels or in the bait chests. The ground bait is an oily mass of yellowish color, resembling in consistency sausage meat. Before it is used water is added to it, and it is then reduced to the consistency of porridge. It now becomes a yellowish slushy liquid with an oily smell, and in this condition occupies about twice to three times the space that it did before water was added. In this condition it is sometimes called "chum" or "stosh."
(f.) Mode of fishing. -The present method employed by mackerel schooners of fishing with hook and line while the schooner lies adrift was first practiced in Massachosetts at the very beginning of the present century, and the use of toll bait began about the same time. According to Capt. Epes W. Merchant, the first man to introduce this method of tishing in Massachusetts Bay was John Story, of Rockport, about the year 1804 .

The method of "tolling" or "chumming up" the fish by the use of this ground bait resembles the process of calling up a flock of fowls by seattering corn over a large piece of ground. The oily bait is thrown over the side of the vessel, and as the latter drifts along and the bait spreads the fish are attracted by the floating particles most remote from the vessel, and swim ap toward the source of supply.

The use of toll bait originated with the shore fishermen, who crushed

[^47]the oily menhaden under foot with their heavy fishing boots, washing the pulpy mass of flesh and the oil with buckets of water out through the scuppers of the vessel. Another statement, and perhaps the most correct one, is that at first the fishermen made toll bait by boiling a codfish or haddock until it was nearly cooked, when it was taken by the tail and beaten over the sides of the boat or vessel, causing the fibers of the fish to separate in small pieces, which, considering their whiteness, made a ver'y attractive bait. This practice was still in vogue among the boat fishermen of Maine as late as 1849 and 1850 .

The process of throwing toll bait, of late in practice, may now be described. Several buckets of the ground bait are put into the boxes, the positions of which have already been described, and to it several buckets of water are added, the mass being thus reduced to a proper consistency by stirring it up with the bait-heavers, which are scoopshaped contrivances made of tin on the ends of wooden handles 2 or 3 feet in length. The vessel is "hove to" under mainsail and foresail, or sometimes under mainsail, making a square drift to leeward. One man-generally the skipper-stands forward of the main rigging with the bait-heaver and throws out the bait, something in the manner of a man sowing seed broadcast, by a sweeping motion of his right arm, seattering it over a space of 15 or 20 feet along the side of the vessel. The oily particles slowly sink and spread out under the influence of the whirling eddies caused by the receding ressel. As the ressel drifts array and one scattering of bait is on the point of disappearing from sight, another lot is thrown, and so a succession of waves of bait is left in the wake of the vessel. In the mean time the man who is throwing the bait puts out two lines and thus ascertains whether the mackerel have been attracted to the sides. As soon as the fish begin to bite, the man sings out, "Here they are!" or "Here they gnaw!" and the crew rush to their places and begin fishing.

When the fish appear, they are sometimes in small numbers and bite daintily, but often they come in immense schools and bite as fast as the hooks touch the water.*

[^48]On these occasions the deck of the ressel presents a scene of great activity and excitement.
Let us try to depict a scene in the Gulf of Saint Lawrence. We are on the deck of a clipper schooner from Gloucester, standing along with the four lower sails and the main gaff-topsail set, a fresh breeze blowing from the southwest; the sky is overcast, and the sea comparatively smooth; within the plane of vision are the white sails of some 250 schooners, most of which are hove to, a few tearing along under press of sail seeking new positions; here and there among the fleet is a vessel with a flag set at her main peak or at her main topmast head; this is to indicate that she has completed her fare and is homeward bound. Some of these are lying to, and are still fishing, while others have all sail set, and are heading for the Strait of Causo on their homeward way. A few miles to the northeast looms up the rugged shore of the Magdalen Islands, its high outline here and there broken by long stretches of sandy beach; a train of great white gannets crosses our bow, five or six of them rapidly flying close to the water; suddenly the leader disappears beneath the water, and his companions rise up for a. moment and then "plug down" head foremost after the fish which they see. The movement is perceived by other gannets, and they flock in from all directions and share the feast. As we speed along two or three of these birds, which have filled themselves to repletion, are swimming in our course, unable to rise, and, in order to escape, they disgorge their stomach-loads of fish and flap away just before the vessel reaches them. We now approach the fleet, and pass by the leeward vessels which are hove to, the starboard rails of which are lined with men exeitedly plying their lines. Our skipper stauds on the quarter with his glass to his eye, trying to determine which portion of the fleet is meeting with the best success. He selects a berth near the middle of the fleet, and thither he directs the course of the vessel by word to the steersman. We thread our way in a zigzag course among the drifting vessels, sometimes escaping by a few inches only the thrust of a jib-boom, and again almost snapping off the main-boom of some other ressel. At length we approach the selected position and heave to, coming up sharply to the wind with the mainsail hard aback. The skipper takes his position at the main rigging and begins throwing bait, at the same time putting out his lines for trial. After the vessel is hove to, the men are lounging about the deck, jet in expectant attitudes. At a little distance from the rail stands a row of barrels, one opposite the berth of each man. These are called "strike" barrels. The lines, with the jigs attached, are coiled upon the cleats or lie upon the rails, each man having examined his own and prepared it for immediate use. At last the skipper is seen to rapidly haul in his line, pulling a glittering mackerel over the rail, and, by the peculiar motion known to the fishermen as "slatting off," the fish is jerked over his right shoulder into the barrel, while the drumming of the mackerel against the bottom of
the barrel announces to the men that the fish have struck. The men rush to their positions, and a scene of great activity and excitement begins. The fish are now within four or five fathoms of the side of the vessel, but they soon come much nearer; looking over the rail we see their mottled backs as they swim to and fro alongside the vessel. The lines are shortened up as the mackerel rise, and now the time required for throwing over the jig and jerking it back with a mackerel fast to it is only a few seconds. The men throw out their lines, pull them in, and, without glancing at the fish, dexterously "slat" them into the barrels, the jigs being torn out of their mouths by the same motion which casts the line back into the water; two twists of the wrist are sufficient to accomplish this feat. The mackerel are large-"No. 1's"and in fifteen or twenty minutes the best fishermen have their barrels full. When a man's barrel is filled he springs from the rail, rolls it back towards the center of the deck, and puts an empty barrel in its place. The fish may continue actively biting for ten minutes or for several hours, but usually the sharp biting is over very soon, and the mackerel begin to "pick." Now the work is less exciting, though much more exacting upon the skill of the fishermen. When the fish are "picking," a high-line fisherman will catch quantities, and the greenhorn will catch none, and even among the most skillful fishermen there is a great difference in their success at this time.

It should be stated that all the time mackerel have been biting, four men have been actively employed in throwing bait over the side, at the same time attending to their lines like the remainder of the crew. The cook heares bait in the position farthest forward, and one of the boys in the position farthest aft, while amidships the skipper and one of the most experienced of the crew are similarly engaged.*

When the fish begin to "pick," the skipper reconnoiters for a better position, and finding that other vessels are having good fishing, orders the crew to coil in their lines and to make sail; away we go in search of another "spurt of mackerel."
The excitement among the crew, when the mackerel are biting fast, can hardly be described. When the fishing begins, the drumming of the mackerel in the empty barrels is inexpressibly cheering to the fishermen, especially if they have been unsuccessfully hunting for fish on previous days, and adds to their excitement. This sound ceases as the barrels begin to fill up, the resonance of the wood being deadened by the accumulation of fish; it is, however, from time to time repeated, as empty barrels are substituted for those which have been filled. Every man is striving to the top of his bent to catch as many mackerel as possible while the "spurt" continues, and, if possible, to catch a larger

[^49]share than any of his comrades. The emulation to be "high-line" for the day and for the season is extreme. The number of barrels caught by each man is carefully noted, for upon his relative success depends his proportion of the proceeds of the voyage and his reputation as a fisherman. In a single day a high-line fisherman has caught from 10 to 15 barrels, and since each barrel contains from 150 to 200 mackerel, the rapidity of the men's movements throughout the day may be estimated. In seven or eight hours' fishing he has probably lifted over the side 2,000 to 3,000 fish, to say nothing of throwing over his jig and bringing it back empty almost as many times more. Such cases as this are exceptional, since mackerel rarely continue biting long enough to allow such a number to be taken. At the same time, when a much smaller number is caught, the activity of the fishermen is something to be wondered att.*
The confusion and excitement is increased by the frequent snarling of the lines and the attempts to straighten them out again. As has been stated, each expert fisherman has ten or twelve lines in his berth, and changes from one to the other according to the rapidity with which the fish are biting, or the strength of the wind. Much experience and skill are necessary to enable the fishermen to make these changes understandingly. Little is said while the fishing is going on; the men lean far over the rail in strange attitudes of expectancy with one or two lines in each hand, the hands moving up and down and constantly hanling in and throwing out one of the lines at a time. When it is necessary to haul in one of the lines, the others are allowed to drop upon the rail.

We have described one phase of the life of a mackerel fisherman, but experiences like this may occur only a few times during a season. Mackerel vessels are constantly under sail, cruising hither and thither over great areas of water on the lookout for fish, heaving to and trying more frequently without than with success, except in extraordinary seasons. At night they are hove to, or, when mackerel are scarce, are making long passages from one ground to another. Information as to the location of the schools of mackerel is passed from vessel to vessel. As they meet, the vessels almost invariably speak each other and compare notes upon the position and abundance of fish.

When a vessel is seeking fish and heaves to for the purpose of tolling them up, she will continue in this position, as a rule, for about an hour, sometimes longer, when there is any prospect of success. Sometimes the mackerel, however abundant, will not rise to bait; they are very capricious; at other times in the same day they will be exceedingly voracious. One of the common tactics of the mackerel fishermen was that of rumning round a school; when the fish could be seen, the vessel would make a complete circle, surrounding them at the same

[^50]time with the line of toll bait. The effect of this maneuver was to keep the fish from moving away by placing the bait in such a mauner that whichever course they took the fish must invariably meet with and be attracted by it to the vessel's side. It frequently happened, however, that the schooling fish took no notice whatever of the toll-bait, either because they were not hungry, or were engaged in feeding upou some form of crustacea, of which they are exceedingly fond.

The practice of "lee-bowing," the method of which, so far as the management of the vessel is concerned, has been described in another place, was simply to "heave to" to the leeward of another vessel which was lying to and had a school of fish alongside, and, while so doing, to throw a quantity of bait overboard; this bait passing under the bottom of the first vessel would attract the fish, which would then follow the course of the new bait, passing to leeward under the first vessel and appearing alongside and close to the vessel which was executing the maneuver of lee-bowing. The success of this maneuver is sometimes thwarted by the crew of the first vessel throwing over such a quantity of bait that the bait thrown by the second vessel is not noticed by the fish. In this act it is frequently the custom to use a considerable quantity of chopped clams, these being considered better to "hold" the fish along. side than the menhaden bait. The clam bait is also used on other occasions to "hold" the fish, or induce them to bite more rapidly when they are supposed to be tired of the ordinary bait.
A maneuver sometimes executed by the mackerel schooner is called "springing up." This is done when the mackerel are so close to the shore that the vessel cannot lie to and drift for them. It is accomplished by bringing the vessel to anchor and then putting a "spring" on the cable, the latter, which is a stout rope, being taken to the portquarter, and the cable veered out so that the vessel lies with her port side to the wind. The fishing is then carried on on the starboard side, in the same manner as with vessels lying to.

In former years, when an extensive mackerel fishery was prosecuted in the vicinity of the Seven Islands and at the mouth of the Saint Lawrence River, much jig fishing was carried on by small boats sent out from the vessels. Each of the boats carried a small quantity of groand bait, which was used in the same manner as on the vessels. This method of fishing has also been practiced to some extent on the coast of Maine even as late as 1879.

Vessels occasionally returned home from the Gulf of Saint Lawrence to land their catch, leaving a portion of their crew to fish from small boats until their return.*

The above description of jigging mackerel has been written with

[^51]special reference to the fishery in the Gulf of Saint Lawrence, since it was here that the jig fishing was most extensively prosecuted; the methods are the same, however, as those practiced ou the New England coast.

26.-CARE OF THE FISH.

(a.) Cleaning and salting.-The manner of caring for the fish is essentially the same as that described in the preceding chapter, except that (the quantity of fish taken being much smaller, there was, of course, much more time for handling them) greater care was taken, and the fish were uniformly of better quality. Many of the Gloucester mack-erel-hookers were accustomed to divide their crew into dressing gangs of two each instead of three, as at the present time on the seining vessels, one of these men splitting and the other gibbing. It was the duty of the splitter to get the barrels, fill them with water, and, when he had split more fish than the gibber could take care of, to aid the latter in his work.*

On the seining vessel, as we have seen, the mackerel are, in most cases, heaped on the deck; on the mackerel-hookers, the tish were already in barrels, and the order of proceeding was slightly different. The splitting-board was placed on the head of one of the "strike" barrels; the fish were taken out of the barrels, split, and thrown into the gib tub, where they were handled in the ordinary manner. The process of gibbing having been completed, the fish were "plowed" and put into the second barrel, which was filled with clean water. From this barrel they were changed into the barrel in which they were salted. The process of salting is as follows: A barrel of mackerel is emptied out on deck; a "gib-keeler" is filled with salt; one of the men now throws the mackerel into the "gib-keeler," while the other man "rubs" them in the salt by taking one in each haud; the back of one is then placed to the flesh of the other, and they are thrown into the barrel with the flesh side down. They are thus salted and packed away into barrels in successive layers, each (with the exception of the bottom tier) with the flesh side down. \dagger a barrel of large mackerel can be salted in from five to ten minates.
In order to cure mackerel successfully very fine salt must be used, and every part of the fish must be touched or it will spoil. \ddagger Careless

[^52]salters sometimes leave "thumb-marks" where their thumbs touch the fish during the process of salting, preventing the access of the salt. These do not keep well.
It was customary on the "hookers" to let the mackerel remain on deck for several days after being salted, the length of time varying to a considerable extent, as it depended very much on the amount of fish taken. When the mackerel were well struck, or after they had been salted from two to five or six days, the barrels were "topped up" with fish, to make up for the shrinkage from the first salting, after which they were carefully headed up and stowed in the hold. If the men kept their catch separate, each one cut a private mark on the head of the barrel containing his fish. As a rule, the mackerel were "stowed down" whenever 40 or 50 barrels had accumulated on deck, but when fish were abundant and took the hook freely for several days in succession it often happened that more than a hundred barrels of fish would be caught before any were put below.
Capt. Epes W. Merchant, of Gloucester, informs us that the practice of salting mackerel was inaugurated at Gloncester in 1818. Scituate fishermen had begun this practice somewhat earlier. The methods of salting have not materially changed since that time. Previous to 1850 the ressels engaged in mackerel fishing were generally accustomed to carry butts, in which the fish were salted.

Capt. Chester Marr tells us that in the early days the mackerel fishermen made a practice of salting the mackerel in hogsheads, which were placed in the hold, standing on end, with stone ballast stowed in the "spaces" between them. When a vessel was loaded she would hold about 10 butts, or about 50 "wash-barrels." These butts were used until about 1850 .

[^53](b.) Mackerel plows.-The mackerel plows, to which frequent allusion has been made, are also known to the fishermen by several other names, such as rimmers, reamers, fatters, and fatting-knives, in the same and in different localities. The original olject of using these instraments may be said to have been "a trick in the trade," although the fact of their being emplosed at the present time is so well known that no one considers it any longer a secret, neither has it been for many years. The quality of mackerel is determined not only by their size, but also by the richness or fatness which they acquire as the season advances, and the opportunities for obtaining food are better than during the spring. In the spring when they approach the coasts of the Middle States and Southern New England they are in a poor and lean condition and remain in such a state until after they have deposited their spawn. After the spawning-season is over the schools then seek their favorite feeding-grounds and the fish soon begin to exhibit much improvement in their conditiou. During the month of June this improvement is first noticeable, and by the last of August, and sometimes even at an earlier date, the mackerel have arrived at their finest condition and remain so until they leave the coast in the fall. As the fish fatten, the belly, or that portion which covers the abdominal cavity, increases in thickness, and the quality of the mackerel can be more easily and certainly determined by noticing this particular portion of it than in any other manner. The mackerel are invariably split along the back from the snout to the tail in such a manner that they will lay open and flat after the viscera has been removed. It is a fact well known to persons familiar with this fish that when they are in a fat condition the sides of the abdominal cavity will crack open along the entire length when the fish are opened for the purpose of removing the viscera. The depth of these cracks or "breaks" show the relative fatness of the fish. As these cracks occur about half way from the backbone to the center of the abdominal cavity, it will be readily seen that by using an implement for making the crack a little above or nearer to the backbone than where it would naturally be and where the belly is considerably thicker,

[^54]it will give the fish the appearance of being much fatter than it really is. As previously stated, the depth of the "break" is the test of the fatness of the fish, and is the guide by which the inspectors cull them. into the different grades for market, provided always that they are of suitable size. Stringent laws have in past years been enacted in most of the New England States to regulate the method of inspecting mackerel, and the use of any artificial means to fatten them was for many years strictly prohibited. The introduction of the mackerel plow, like that of many other inventions, was the direct result of a need long felt by fishermen. Previous to its adoption it was the custom for the fishermen to attempt to improve the looks of their fish by increasing the natural break with their thumb-nails drawn along its entire length. This method was called "rubbing the mackerel." Later a few began to use the back of the point of their bait-knives or splitting-knives for this purpose, by degrees venturing to place the out a little higher than where it naturally belonged. The use of knives led to the introduction of plows, which soon came into general use, though the fishermen at first felt some hesitation about revealing the fact that their fish had been plowed.*
A comparatively poor mackerel would not open sufficiently in a natural way to pass for a No. 2, but the fishermen give them an inviting appearance to the buyer by the use of the plow, which they handle with remarkable dexterity, running the blade longitudinally along each side of the abdominal cavity with great rapidity, laying the sides of the fish open in such a manner that it may pass for a No. 2, and, perhaps, if it is of large size, a fairly fat fish may be culled as a No. 1 mackerel. It is but fair to say here that, since the general adoption of the mackerel plow as a means of "fattening" the fish, the subject is so well understood by the dealers that they demand a finer looking fish than formerly, and the consumer, therefore, actually gets as good an article as before, and one that is much more attractive. This is especially the case when the size of the mackerel is not sufficient to pass for the best quality, or No.1. A fish whose length is 13 inches and "of

[^55]suitable fatness" is required for a No. 1 , but it is easy to see that a fish of fine quality, though not exceeding 12 or $12 \frac{1}{2}$ inches, is just as good for food, notwithstanding the fact that it must pass for a lower grade and be sold for a much less price. For the past ferw years a very large portion of the mackerel caught on our coast have been "undersized," that is, not long enough to pass for the best quality, according to the inspection laws of New England; nevertheless they are in all respects quite as good as the larger and rarer grades.

As previonsly stated, the fishermen no longer make a secret of using the plow, and during the summer season, when the wharves on the eastern coast are filled with mackerel, the operators may be seen in the open air busily rimming the fish almost as fast as they can pick them up and throw them into another barrel. There are many styles of this type of knife, their patterns and designs being as varied as the fancies of those who make them. They are, with but fer exceptions, made by the fishermen; some of them are exceedingly plain and rough, while others are artistically and elaborately decorated, often with imaginary uncouth figures or with fancifully carved leaves, wreaths, \&c.

There are several knires of this character deposited in the fisheries collection of the United States National Museum, and among them is one factory-made rimmer, with a polished walnut handle and a curved iron shank about one-quarter inch in diameter; into the forward end of the shank is fitted a small cutting blade about $1 \frac{1}{2}$ inches in length, tapering to a point at the heel, and with a square-cut forward end. There are also other styles made by the fishermen, some having steel and others having copper blades, and one specimen made of wood, in the form of a human leg, the extreme end terminating in a thick-set flat foot, in the bottom of which is inserted or driven a silver three-cent piece, ground to a sharp edge, to be used as the knife or plow.

27.-Homeward passage and disposition of the fish.

When one of the vessels in the fleet has obtained a fare of fish, or the skipper decides to go home, sometimes with a partial fare, the flag is usually set at the maintop-mast or on the main peak. This custom was not so common on our coast as in the Gulf of Saint Lawrence. The fish being salted, the homeward passage was usually performed in a leisurely manner, unless indeed the return was made during the fishing season, and the skipper expected to make another trip, in which case the utmost expedition was used, and rapid passages were made. For several years it has been a common practice for vessels fishing in the Gulf of Saint Lawrence to land their fish at the Strait of Canso, or sometimes at Prince Edward Island, sending the fish home by steamer or freight vessels. This was only done when the vessel had obtained a large fare, and there was a prospect of another successful trip for fish that season. By this means ressels sometimes filled up three or four
fimes in the comse of the summer, obtaining, in some instances, as many as 1,100 to 1,200 barrels.*
28.-Financial proflts of the mackerel moor mismery.

Old-fashioned ressels were emphoyed as seiners for a number of years from Gloucester, it then being thonght by many of the fishermen that swift sailers trere not so necessary for this branch of the fisheries as for some others. In this respect, as in many other things, there has been a radical change.

The expense of fitting out with seine, boat, \&e., deterred many of the owners from sending their ressels seining, and the more conservative clung to the old method of jigging until the failure of mackerel in the Gulf of Saint Lavrence compelled them to adopt the seine or abandon the business.

As a matter of course such large stocks and enormous profits were not obtained by the seiners years ago as they have made for the past two years, 1880 and 's1. Nererthless many of them did well. But a vessel's "fit out" for jigging" cost comparatively little, and with a much smaller stock more clear money would be left than if she went seining. This, together with the fact that more or less risk is attacherl to seining, such, for instance, as losing the apparatus altogether, having the net torn, the

[^56]boat stove, \&c., served to deter the timid ones from engaging in it until compelled to.
Rapid advances in the knowledge of using the purse-seine have been made within the past few years, which no doubt has had a strong influence in changing the hook fishery into seining. For a number of years it was believed that mackerel could not be taken except in shoal water where the seine would reach bottom, and as a result of this but comparatively little could be done. More recently the practice of seining in the night; tolling the fish alongside of the vessel and then surrounding them, \&c., have added much to the profits of the fishermen.

The large net profits which were sometimes made by the mackerel hook fishermen previous to 1870 bore no mean comparison to the money cleared by the seiners of the present day, though, of course, the latter frequently get higher stocks. This, as mentioned abore, is due to the difference of the cost of fitting out of a vessel for hooking and for seining, the expense for the latter often being twice or three times as much as it would be for line fishing. The following account of some of the large mackerel stocks made by vessels engaged in fishing with hook and line we copy from the "Fishermen's Memorial":
"The largest stock made in the Bay of Saint Lawrence mackerel fishery was that of schooner "Colonel Ellsworth," Capt. George Robinson, in 1865. She was absent about five months, her net stock amounting to $\$ 13,728$.* The high-liner's share was $\$ 558$; cook's, $\$ 582$.
"Schooner "Gen. Grant," Captain Coas, in 1864, stocked, in two trips to the Bay of Saint Lawrence, $\$ 11,254.94$, clear of all expenses. \dagger The high line made $\$ 502.24$; cook's share, $\$ 638.17$.
"Schooner "Nor" Wester" the same year stocked $\$ 9,721.74$, net, in one Bay trip; the high liner making $\$ 308.60$, and the cook $\$ 486.61$.
"Schooner "Gen. Sherman," in a three months' trip to the bay in 1864 packed 612 barrels of mackerel, her net stock amounting to $\$ 9,696$. High-liner's share, \$575.06.
"Schooner "Kit Carson," in 1865, brought in 591 barrels of mackerel, having been absent about ten weeks. Her net stock amounted to $\$ 6,542$. High-liner's share, $\$ 260$.
"Schooner "James G. Tarr," in 1866, stocked \$5,824 in a nine weeks' trip to the bay. Cook's share, $\$ 331.76$.
"Schooner "Seddie C. Pyle," in 1871, packed 1,070 barrels of mackerel caught off this shore, \ddagger in addition to 18,000 southern mackerel sold fresh in New York, in the spring. Her net stock for the year was $\$ 10,561.66$. High-liner's share, \$491.35; cook's share, \$708.52.
"Schooner "Eureka," in six months' mackereling off this shore in 1868, packed 935 barrels, her stock amounting to $\$ 10,748.33$. High-liner's share, $\$ 440.52$; cook's share, $\$ 473.70$. ."

[^57]29.-Itinerary of a mackerel voyage to the gulf of satnt LAWRENCE.

(By Maj. D. W. Low.)

We go to Essex, a neighboring town on Cape Ann, six miles from Gloucester, or to the ship-yards of Gloucester, where we see on the stocks, ready for launching, a schooner of 60 or 70 tons, built in that thorough and staunch manner which makes the American fishing schooner celebrated for her sailing and seaworthy qualities required in the hazardous business she was built for.

We next find the schooner alongside of the wharf in Gloucester, where she is got ready, or "fitted," for a voyage to the Gulf of Saint Lawrence, called a "bay trip." Fifty-five barrels of porgies and seven barrels of clams, with fifty hogsheads of salt in 115 barrels, and sixteen barrels of water are stowed by her crew in her hold, on top of which are stowed 335 barrels more with their heads taken out and put inside, both head aud barrel being numbered. After the provisions, lines, hooks, \&c., are on board the flag is hoisted and she is ready for sea, having cost to that time $\$ 7,700$ for the vessel and $\$ 2,075$ for her outfits. Had she been fitted for seining her outfits would have cost $\$ 750$ more, making her total cost with outfits $\$ 10,525$.

Leaving Gloucester August 5, 1875, we proceed to the Gulf of Saint Lawrence with seventeen hands, shipped "by the berth," according to their experience as fishermen, the best fishermen getting the best berths, which are nearest to and on each side of the master. The master's berth is forward of the main rigging on the starboard side, nearly in the center of the vessel. Formerly the berths to fish, with exception of the master's and cook's, were sold at auction on board the ressel after she had started, as high as $\$ 50$ or even more being paid for first choice; the amount of the bids, called "berth mones," was equally divided among the sharesmen, they paying the amount of the excess of their bid over the average share. The cook fishes forward so as to be handy to his cooking. After each man's berth is decided upon, each one pre pares the cleats for his lines on the bulwarks under the rail at his berth. "Jigs" are run in the "jig molds," and the lines, eight to twelve to each man, are neatly put upon the cleats ready for service. After passing through the Gut of Canso (stopping there for a little wood), the vessel is ready for fishing. Lashed on the "port" side of the schooner, opposite the skipper, stands the "bait-mill," at which each of the crew, excepting the master and cook, take turns, commencing with the youngest, in grinding bait. The slivers of porgies are ground up fine, and clans are chopped with a long landled chopper, which are mixed with the porgie bait and some of it put into a box called the "bait-box" which is hung outside of the bulwarks, to the right of the master's berth, and water is added to it. After the vessel is "hove to" and she commences
to drift to leeward, the master, with a "bait-heaver," throws the bait from the bait-box into the water fore and aft the vessel to attract and draw the mackerel alongside. Some of the crem are below and others looking on, or perhaps put out a line with the skipper's to try for them. Soon the peculiar tapping of a mackerel's tail is heard on the bottom of a barrel, which, with the cry of "here ther are," from the skipper, brings every mau to his berth, and for a time the "strike barrels" standing a little in the rear and at the right of the fisherman, in which the mackerel are slat from the hooks, resound with the lively occupants. The best fishermen fishing with four and sometimes six lines each. The "spurt," however, is soon over, and after "picking" one ouce in a while the master orders "take in your lines," after which we haul in our mainsail, hoist the jib, and go on. The mackerel are then dressed, generally by gangs of three, comprising a "splitter," one to pass up the mackerel to him, and the "gibber"; the mackerel, after being split, are thrown into a "keeler," which is a shoal square box, about two by three feet square, which are put on board in nests of three; the "gibber," with mittens on to prevent getting his hands sore from the bones, opens the mackerel, takes ont the gills and entrails (which are thrown overboard after dressing the catch), and throws the mackerel into a barrel partly filled with water to soak the blood from them, which is called a "wash barrel"; after toaking, they are thrown into a keeler of salt, a feer at a time, rubbed all over in the salt, and packed in a "sea barrel," one barrel of salt (3? $3 \frac{1}{2}$ bushels) being used in packing four sea barrels; after the barrel is filled and the fish allowed to shrink it is filfed up (sometimes there is not time enough to allow it to shrink before heading up). The head of the barrel is put in reversed, on which the private mark of the eatcher is cut in to identify it when landed, after which the barrels of mackerel are stowed in the hold. Frequently, when mackerel are searce aud time hangs heary, industrious ones will "mess" their mackerel by scraping the blood from the backbone and cuting oll the heals and tails, losing by the operation thirteen pounds on a hundred, but making the mackerel bring more in the market for the lator.

During onr voyage we sometimes tried for mackerel with others of the heet one or two miles from shore, and being "hove to" together, and oceasionally picking a mackerel which, as it glistened in the sun coming over the rail, no doubt led those on shore to suppose we were getting a good catch of fish, when fifteen wash barrels would cover the whole catch for the ilcet in several hours' fishing. The latter part of October finds us on the way home, at Georgetown, Prince Edward Island, where we put in for a harbor, paying one dollar for harbor dues, and on 21 of November arrived at Gloucester, having been absent tro months and twenty-eight days, and caught 250 sea barrels of mackerel.

The mackerel are hoisted out with a horse, the crew paying for it in preference to hoisting them out by hand, as formerly. After being lanted cach man's lot is stood upon the head together, with the marked
head up. One of the cres unheads them, another pitches the mackerel as wanted into a "culling-crib," which is made about three feet wide and four feet long, with slat bottom, at each end of which stands an experienced and careful "culler," who tosses the mackerel according to their grade into "culling tubs," which hold a half barrel each; two of the crew then place the tubs when full on the platform of a beam scale where the "weigher" weighs them off, crsing out "barrel of one's," or whatever the weight or grade requires; two of the crew empty them into the "packing cribs," while the master places the account of it under the name of the catcher, and the packer with a piece of red chalk marks the head of the barrel or whatever package is used with the grade of the mackerel. Half a bushel of salt to the barrel is used in packing, after which the cooper takes them, and after putting in the head it is rolled out on the wharf by a laborer and there bored and pickled off by the "pickler." After being pickled off and bunged, they are stood upon their head and branded with the deputy inspector's name and grade of the fish; the trip is sold by the owner with the master, he acting for himself and crew; the voyage is then made up in the ordinary mamer. When the mackerel are delivered to the packer the vessel and crew are done with them as producers.

E.-THE MACKEREL GLLL-NET FISHERY.

30.-TMPLEAENTS, METHODS, AND RESULTS OF MACKEREL DRAGGING.

Considerable quantities of mackerel are sometimes caught in gillnets at varions points along the New England coast from Vineyard Sound to Eastport. For the most part, lowerer, they are taken west of Jount Desert. This fishery is carried on in two ways: The gill-nets may be anchored aud left ont over night, as is the custom about Prorincetown, or they may be set from a boat or vessel. The latter methorl is called "dragsiug"; the ressels are called "draggers," or "dratg-boats," and the fishermen "mackerel draggers."

The mackerel gill-nets are 20 to 30 fathoms long, 21 fathoms deep, with a mesh varying from $2 \cdot 2$ to ${ }^{3}$ inches. In Provincetown harbor they are set in the following manner:

About the middle of Norember the fishermen of Provincetown Bay begin to put out nets for the large mackerel on its return. On one occasion Captain Atwood had twelve nets out, five miles from land. On the last might of Norember he had taken nothing, bat on visiting the nets the next day, he found they had sunk to the bottom filled with mackerel. He, howerer, succeeded in getting up, eight, and the nets as they came to the surface looked like a sheet of silver. Three thousand three hundred and sixty mackerel were taken from these eight nets by nightfall. The next day the remaining nets were draged in and 1,700 more taken, making 5,000 fish netted at a single eateh. On an-
other occasion a catch lasted three nights, when he alone caught mackerel enough of the best quality to make sisteen barrels when packed.*

In Gloucester harbor and at other points on the coast of Massachusetts and Maine they are set in shallow water, one or both ends being anchored and their position marked by buoys on each end of the gang. When set thus in protected harbors they are ordinarily placed across the direction of the tide, usually in a cove or bight of the harbor where the mackerel are known to occur, and where they are out of the track of vessels.

The most extensive "drag-net fishery" is carried on by the vessels of Portland and Friendship, Me. The method employed by these fishermen six years ago was somewhat as follows: The vessels are small schooners of 15 to 25 tons. They usually run out from the harbor near the close of the day, timing their departure so that they will be upon the fishing grounds about sunset, except when it is necessary to go a long distance out to sea, in which case, of course, the time of starting is earlier. Reaching a locality where mackerel are supposed to be abundant the ressel is hove to, aud a gang of 10 to 20 nets is paid out. The nets are fastened together at top and bottom, and the outer end is marked by a buoy, other buoys being distributed along the gang at intervals, the junction between each pair of nets being generally marked by a keg or spar. To the last net is fastened a rope called a " net swing," corresponding to the "fleeth-rope" used by the herring fishermen of Europe. This is a rope of three inches in circumference and 60 to 70 fathoms long. It is paid out to its full length and made fast at the bow of the vessel. The foresail is then lowered down and furled, and the vessel lies head to the wind, drifting to leeward and dragging the nets as she goes. If the wind is moderate the whole mainsail is kept up, but if the breeze is fresh, or what is called a mackerel breeze, it is reefed. Under favorable circumstances the nets are allowed to remain out all night, but the fishermen in the two dories row constantly along the nets back and forth noticing the movements of the fish, and especially looking out for the approach of dogfish. When a school of dogfish approaches the nets after any number of mackerel have been gilled it is at ouce necessary to take them in less the dogiish should devour the mackerel, chew innumerable holes in the twine, and roll themselves up in it until it is so twisted and tangled that it takes the labor of days to get it in proper condition for setting again. If the fishermen are not annoyed by dogfish the nets are allowed to remain down, as has been stated, all night long, and the men in the dories constantly pick out the fish, frequently carrying their catch back to the vessel. Wheu the dogfish attack the nets they haul them in with the utmost expedition and bundle them as hurriedly as possible into the bottom of the dory, and after they have lifted them to the deck of the vessel take out the fish from among the meshes.

[^58]It is part of the duty of the men in the dories to keep a vigilant lookout for approaching vessels. The gang of nets may be more than half a mile in length, and the keel of a large vessel passing over it would be almost certain to cut it in two. When it is still weather they row toward any vessel which they may see coming and ask the men on watch to steer clear of the nets; otherwise they are obliged to staud by the nets and repair the damages as best the \dot{y}° may. Sometimes the approaching vessels are induced to stear clear of the nets by the dorymen, who hold up a lantern for that purpose. The mackerel caught in this manner are 'always carried fresh to the shore, and are intended chiefly for the supply of the markets of the large cities. They are packed in barrels, and may or may not be gibbed through the gills before reaching shore. A ressel setting a long string of nets may catch as much as fifty barrels of mackerel in a night, but ordinarily not more than five or ten barrels, frequently less. The barrels are carried on deck, and the fish are put in them as soon as they are removed from the nets. When the weather is warm the barrels are filled with ice-water. Besides the mackerel caught, considerable quantities of shad and alewives are taken in these nets. On an excursion made by one of the writers from Portland in 1873, besides six barrels of mackerel, there were caught with a small string of nets about forty fine shad, areraging two pounds each, and three or four hundred of that species of alewives known to the Portland fishermen by the names of "kyack," "catthresher," "saw-belly," or "blue-back," probably identical with the glutherring, Clupea aestivalis, of the Chesapeake basin, the summer alewive occasionally taken in New England rivers. On this occasion the mackerel were feeding extensively on various entomostraca, with which the water was filled, and which imparted to it a vivid phosphorescence all night long. The presence of these animals, and of others more minute, causes the water and the nets to "fire" in such a manner as often to render them so visible to the fish that they successfully a roid contact with the twine.

The mackerel caught at Provincetown in gill-nets are brought in by the boats, and shipped by the fishermen to Boston in ressels devoted specially to this business, the owners of which receive a percentage apon the amount of their sales.

The crew of a Maine mackerel-dragger consists generally of two to four men, the vessels being usually owned by the fishermen.

The custom of dragging for mackerel, though practiced for centuries in Europe, ${ }^{*}$ appears to have been first used in this country at Province-

[^59]town about the year 1841, where it is still prosecuted to a considerable extent in addition to the stationary gill-net fishery which has been mentioned.* At first small open boats were used, such as the one described and figured in the fishery census report under the name of "Provincetown drag-boat." About 1845 Provincetown fishermen with their boats and nets essayed dragging for mackerel in the ricinity of Monhegan, Me., and by their example this practice was introduced into Maine, and since that time it has been carried on at various points on the coast.
sometimes eighteen of these nets are attached lengthways by tying along a thick rope, called the drift-rope, and the ends of each net to each other. When arranged for depositing in the sea, a large buoy attached to the end of the drift-rope is thrown overboard, the vessel is put before the wind, and, as she sails along, the rope with the nets thus attached is passed over the stern into the water till the whole of the nets are thus thrown out. The nets thus deposited hang suspended in the water perpendicularly, 20 feet deep from the drift-rope and extending from three-quarters of a mile to a mile, or even a mile and a half, depending on the number of nets belonging to the party or company engaged in fishing together. When the whole of the nets are thms handed out, the drift-rope is shifted from the stern to the bow of the vessel, and she rides by it as at anchor. The benefit gained by the boats hanging at the end of the drift-rope is that the net is kept strained in a straight line, which, without this pull upon it, would not be the case. The nets are 'shot' in the evening, and sometimes hauled once during the night; at others, allowed to remain in the water all night. The fish roving in the dark through the water hang in the meshes of the nets, which are large enough to admit them beyond the gill-covers and pectoral-fins, but not large enough to allow the thickest part of the body to pass through. In the morning early preparations are made for hauling the nets. A capstau on the deck is manned, about which two turns of drift-rope are taken; one man stands forward to untie the upper edge of each net from the drift-rope, which is called casting off the lashings; others haul the net in with the fish caught, to which one side of the vessel is devoted; the other side is occupied with the drift-rope, which is wound in by the men at the capstan."-(The History of British Fishes, first edition, 1836, vol. 1, pp. 126, 127.)
*Capt. N. E. Atrood, at Profincetown, writes as follows in regard to the introduc. tion of the method of dragging for mackerel at Cape Cod: "As carly as I can recollect most of the mackerel taken along our coast were caught with hook and line. A ferw gill-nets were set at moorings in our harbor and along the Truro shore during the first part of the mackerel season or as soon as the fish came in. The mackerel which were then taken in nets were sent to Boston market and sold fresh, sometimes bringing good prices. As the mackerel would not bite at the hook when they first struck in we. would often get two weeks fishing before a sufficient quantity of mackerel were caught on the hook to glut the market. Buston market being at that time small and no ice used in packing, only a few fresh fish could be sold there at any one time.
"In 1841 I went to Monomoy Bay (Chatham) to fish for shad; we went out in the bay and put ont our gill-nets and drifted with them all night, if the weather would permit that mode of fishing, which we then and have alwass since called 'dragging.' On my return home to engage in the mackerel net fishers, very few had been caught in nets in our harbor, but large schools of mackerel had been passing in by Race Point and Wood End, and were going up the bay. I took my mackerel nets in the boat and and went out in the bay towards Plymouth, some two or three miles, and put them out and drifted all night; next morning I found I had got a good catch. This occurrence took plack about the 15 th of June, 1841.
"It did not take the other fishermen long to get into this new way of fishing, and since that time this method of drag-fishing has been adopted along the coast of Maine and elsewhere."

In 1873,12 or 15 vessels from 15 to 25 tons were employed at Portland; at present the number at this port is 18 , and quite a fleet of the mack-erel-draggers also belongs to the vicinity of Friendship, Me.*

Along the southern coast of Nora Scotia, and about the vicinity of the Straits of Canso, there is an extensive gill-net fishery for mackerel carried on with stationary nets, and, in a smaller degree, a similar fishery is prosecuted in some parts of the Gulf of Saint Lawrence. \dagger This fishery on the Nova Scotia coast is prosecuted when the mackerel are traversing the coast line in the spring and fall.
"During the mackerel fishing season," remarks Mr. J. Matthew Jones, "the people along shore appear to live in a state of much excitement, expecting every hour the 'runs' to come into their bays. The trareler who may desire a horse and wagon to get on from place to place will find hard work to prevail upon the people to hire one out to him with as driver. Lookouts are kept on some elerated spot so that the schools may be seen some distance off in order to give time for the fishermen to get off in their boats with the net." As at Provincetewn, these nets are anchored only at one end, the other end being left free to swing with the current. They are sometimes set as far as ten or twelve miles from the shore, in water 20 to 50 fathoms in depth, care being taken to put them as nearly as possible in those localities which are known to lie in the "track" of the mackerel.

The mackerel gill-nets are usually set with their upper lines close to the surface; sometimes, howerer, as much as " or 3 fathoms below. The position of the net in the water is regulated by the length of the buor-ropes and the weight of the sinkers. As a rule, espectially on the coast of Nora Scotia, they are, however, set close to the surface.

In this region also there has been for many years an extensive seine fishery for mackerel corresponding to that which is elsewhere referred to as having been formerly carried on, two hmotred and fifty years ago, on the shores of Cape Cod Bay. The principal points for the seine fishery are at Margaret's Bay, west of Halifax, and at Chedabucto Bay, at the eastern part of Nova Scotia.

Perley, writing in 1852, remarked: "In those harbors of Nova Scotia which are within the Straits of Canso mackerel have of late years been taken in seines capable of inclosing and securing 800 barrels, and in these seines 400 and even 600 barrels have been taken in a single sweep." ${ }^{+}$

In the same locality Perley refers to the use of the drift-nets, undoubtedly meaning the set gill-net just described, remarking, however,

[^60]that this mode of fishing is probably not so well understood on the coast of Nova Scotia as in England. He however quotes from Yarrell an account of drift-net fishing in England, which is altogether different from that used in Nova Scotia and corresponds precisely with the dragnet fishing also described in the heginning of this chapter.

It is worthy of mention that mackerel as well as herring, on the coast of Europe at the present time, are almost exclusively caught by the use of the drag-net, the only other method in use being the equally oldfashioned one of "drailing," which was abandoned by our fishermen sixty-five years ago.* The antiquated method of drailing was, however, kept up by the fishermen of the Gulf of Saint Lawrence until 1860, or perhaps even to the present time, for the purpose of obtaining mackerel for bait to be used in the cod fisheries.

F.-THE SPRING SOUTHERN MACKEREL FISHERY.

The spring mackerel fishery is in reality a branch of the mackerel seine fishery, and the methods employed in it are identical with those described in the previous section of this chapter. In this place it is necessary only to add a history of this fishery, a description of the grounds frequented by the southern fleet, and a few statistical notes.

31.-Tishing-grounds.

The fishing grounds frequented by the southern mackerel fleet lie between Cape Hatteras and the South Shoals of Nantucket. The fishing season is in the months of April and May. The first vessels go south about the middle of March or soon after; but until 1878 no mackerel were ever taken before the 1st of April. \dagger
32.-Early catches of mackerel, 1878 to 1881.

The earliest catches of the three past years are shown in the following notes:

$$
\text { early catches of mackerel in } 1878 .
$$

March 30.-Schooner "Lilian," of Noank, Conn., Captain Latham, off Chincoteague.
April 16.-Schooner "Sarah M. Jacobs," of Gloucester, Capt. Solomon Jacobs, caught her first mackerel in latitude $36^{\circ} 10^{\prime} \mathrm{N}$., longitude $74^{\circ} 45^{\prime} \mathrm{W}$.

April 18. -Schooner "Alice," of Swan's Island, Me., Capt. Hanson B. Joyce, master, caught her first mackerel 25 miles southeast from Cape May.

April 25.-Schooner "John Somes," of Swan's Island, Me., Capt. J. S. Staples, master, caught her first mackerel 50 miles southeast from Cape May.

[^61]April 12.-Schooner "Sarah M. Jacobs," of Gloucester, caught first mackerel in latitude $36^{\circ} 35^{\prime} \mathrm{N}$., longitude $74^{\circ} 50 \mathrm{~W}$.

April 13.-Schooner "Augusta E. Herrick," of Swan's Island, Me., Capt. William Herrick, caught first mackerel (130 barrels) in latitudo $37^{\circ} 37^{\prime} \mathrm{N}$., longitude $74^{\circ} 23^{\prime}$ W.

April 13.-A few fish taken by schooner "S. G. Wonson," of Gloucester, 75 miles south-southeast from Cape Henlopen.

April 14.-Schooner "Charles Haskell," of Gloucester, caught first mackerel in latitude $38^{\circ} 08^{\prime} \mathrm{N}$., longitude $73^{\circ} 57^{\prime} \mathrm{W}$.

April 19.-Schooner "Alice," of Swan's Island, Me., caught first mackerel (140 barrels) in latitude $37^{\circ} 50^{\prime} \mathrm{N}$., longitude $74^{\circ} 03^{\prime} \mathrm{W}$.
early catches of mackerel in 1880.
April 1.-Schooner "Edward E. Webster," of Gloucester, Capt. Solomon Jacobs, caught the first mackerel of the season in latitude $35^{\circ} 30^{\prime} \mathrm{N}$., longitude $74^{\circ} 15^{\prime} \mathrm{W}$.
early catches of mackerel in 1881.
March 20.—Schooner "Edward E. Webster," of Gloucester, caught the first fish of the season, and the earliest on record, in latitude $37^{\circ} 10^{\prime} \mathrm{N}$., longitude $74^{\circ} 05^{\prime} \mathrm{W}$. A second trip was canght by the same ressel on April 18 in latitude $38^{\circ} 38^{\prime}$ N., longitude $74^{\circ} 00^{\prime} \mathrm{W}$.
May 16. -The schooner "Alice," of Swan's Island, canght 30,000 mackerel off Block Island.

33.-THe VEssels.

The southern mackerel fishery is participated in by 30 or 40 of the Gloucester mackerel schooners and a number of vessels from Cape Cod and Maine. The total namber of vessels engaged in this fishery in 1879-'80 was 64 , of which 23 were from Maine ports and the remainder from Massachusetts. These are among the swiftest and best of the fleet, and are provided with the fullest amount of canvas for making a quick passage to and from the fishing-grounds. Nearly all of them have ice-houses arranged in the manner already described.

34.-Apparatus and methods of Fishing.

The apparatus is in every respect identical with that used in the summer fishery; the vessels, however, carry, as has been stated, a much smaller number of barrels than when engaged exclusively in salting the fish. The manner of fishing is the same as that already described, except that the fish being much scarcer and their movements less regular than in summer on the more northern fishing grounds, a greater amount of vigilance and perseverance is required on the part of the fishermen. This is the season of the migration of the mackerel, and it is necessary that the fishermen should understand how to follow the schools of fish as they make their way northward, even if they are out of sight for days at a time. They cruise sometimes for weeks off the capes of the Delaware and Chesapeake, sometimes venturing farther south to the latitude of Cape Lookont, though they rarely find mackerel south of the
mouth of the Chesapeake. Sometimes weeks clapse before they find the fish. After the schools have made their appearance they follow them, and when they are not visible, usually allow five to fifteen miles a day for their rorthern progress, trying to keep among them as they make their way northward. When among the fish it is a common practice of the vesseis to heave to and "jog" all night long in a northerly direction, to keep pace with the movements of the fish.

As soon as the first fare of fish is obtained, even if only a small one, the vessels make their way to New York with all possible speed; the earliest fish command much higher prices than those brought in later in the season. After mackerel become more plenty the ressels seldom go to market with less than 75 or 100 barrels, aud it is not unusual for 250 to 300 barrels, the results of one day's catch, to be taken in. The successful ressels often run into New York two or three times a week, especially when the fish are most abundant off Sandy Hook.* This method of fishing and marketing the fish is kept up until the schools have reached the shoals of Nimtucket, and the spawning season in that locality begins. At the close of the spawning season, when the fish again rise to the surface, or when the other schools are found on George's Banks and in the Gulf of Maine, the ressels resort to the ordinary method of salting their fish, onls a few continning the practice through the summer of carrying their fish fresh into the mankets of New York and Boston. Oceasionally cargoes of fresh mackerel are takeu in the spring and summer into Philadelphia, and also, later in the season, to Portland.

The spring mackerel fishers, as just described, is of comparatively recent origin, not dating back much before 1870. Twenty to thirty jears ago Netr York was smplied with fresh mackercl chiefly by Counecticnt smacks, which canght the fish with hook and line and carried them to New York alive in wells. A peculiarity of this smack fishery was that the men fished with lines fastened to poles, as anglers fish for trout. The object of having poles was to enable the fishermen to drop the captured fish alive, and without injury, into the smack's well.

Vessels belouging north of Cape Cod at that time rarely if ever sold their fish fresh, although they often went as far south as the capes of Delaware. Their fares were salted and carried to Boston or other ports in the ordinary manner.

The southern mackerel fishery was undoubtedly first prosecuted by vessels from Cape Ann; at least we have been unable to obtain relia-

[^62]ble accounts of any fishermen from other ports engaging in this fishery at an earlier date.
"Capt. John Parsons, of Rockport," writes Mr. A. Howard Clark, says "that he was one of the first to go south after mackerel from that port. He went in 1817 in the schooner 'Defiance' of 35 tons. They went as far south as Cape May, and canght 60 barrels of mackerel, all of which were taken by drailing. They had outriggers for towing their lines, and the lead sinkers weighed from 4 to 6 pounds."

An item in the Cape Ann Advertiser of May 20, 1859, remarks:
"The practice of going south for mackerel has almost died out of late years, and this jear there are but three or four ressels in the business. Some of the ressels which go in quest of bait take mackereling apparatus with them."
"The practice of going south for mackerel in spring," writes Mr. Earll, "was first begun in Maine by a Georgetown vessel, the 'Queen of the West,' Capt. Francis Lowe, in May, 1851. She was gone but a short time (four to six weeks), aud returned with a full fare, after which she proceeded to the bay. The next year the schooner 'Arcola,' Capt. Warren Low, of Georgetown, joined the 'Queen of the West' on her southern spring trip, and in 1853 three went. Booth Bay sent none south until 1897, when the '('rnosure' went, and Southport sent her first vessel sonth in 1868. In 1879 five or six went from this section. Tessels from Massachusetts, as stated above, had engaged in this fishery at even an earlier date."
G.-THE EARLY Metiods of the mackerel fishery (1620 to 1820).

35.-UATCHING MACKEREL WITI DRAG-SEINES.

The method chiefly practiced by the colonists of New Euglaud for the eapture of mackerel was that of duag-seining, and we find as early as 16.06 a record of the establishment, by Isaac Allerton, of a fishing station at Huil, wheremackerel wereseined by moonhght. There can be little donbt that the manetice of fishing with baited hooks was also early introduced, and that in the seventeenth and eighteenth centuries groups of boats might have been seen, as at the present day, clustered together in the harbors, or near the outer shores, their crews busily engaged in hauling in the tinkers, and, occasionally, larger mackerel, which during the summer season tound their way into these protected waters. It is not known when the custom of drailing for mackerel was first introduced, But it was, berond question, the common method at the close of the last and the begiuning of the present century.

In July, 1677, the records of the Plymonth colony show that the Cape Cod fisherg was let seven years, at $£ 30$ per ammm, to seine matekerel and bass, to certain individuals who are named. They were restricted
to take in the Plymouth colonists with them; and if none offer, to admit strangers.
The profits of the hire which accrued to the colony were sometimes distributed to the schools. (Mass. Hist. Collections, iii, 220.)

A writer in the Historical Society's collections gives the following description of these fisheries (vol. iv, 2d series, p. 232): "The aborginal name of this fish (the mackerel) is Wawunnebeseag, a plural term sig. nifying fatuess-a very descriptive and appropriate name. The mode of taking these fish is while the ressel is under quick way and the helm secured, when all are engaged at the long reered lines, of which it is said that one man will attend three, and it may be more. The first manner of taking mackerel was by seining by moonlight. This perhaps was first practiced by Mr. Isaac Allerton and his fishing company at Hull as early as 1626. After half a century the mode of fishing was changed to that of drailing with long lines while the vessel was under easy way; and this mode has been changed within these last twenty years (1811-1831). The mode of fishing generally practiced now is to invite the fish around the vessel while lying to by throwing out great quantities of fish cut in small pieces, and to take them with short lines held in the hand and drawn in with a single motion of the arm. By this method it is thought that thrice as many fish may be taken in a given time as by any other method. They are a capricious and sportive fish. In cloudy and even wet weather they take the hook with most avidity. They are very partial to the color of red; hence a rag of that hue is sometimes a bait. A small strip of their own flesh taken from near the tail is used with most success."
Seining mackerel with drag seines is still practiced extensively in the British provinces. That the practice was in rogue in Massachusetts less than fifty years ago is shown by the following item:
"Last week twenty barrels of mackerel were seined at one haul at Sandy Point by Captain Baker. His seine is 500 yards long. A few weeks ago he inclosed a multitude of fishes, principally menhaden shad. It is estimated that their number was 200,000 ."-(Gloucester Telegraph, June 30, 1838.)

In his history of Scituate, pp. 25-27, Samuel Deane writes: "In early times the shores of our bays were skirted with forest trees quite near to the water's edge. In the month of June, when all nature is in bloom, the volatile farina of the forest trees then floats in the air, and occasionally settles on the smooth surface of the seas. Then it is that this playful fish, attracted by this phenomenon, leaps and bounds above the surface of the water. So again, at a later season, in July and August, winged insects, carried away by the southwest winds, settle and rest on the bosom of the ocean, a welcome herald, it is said, to the mackerel-catcher. Such are the habits of many fishes; and hence the use of the fly as a bait by the augler of the trout streams."

Douglas, in 1747, says: "Mackerel, split, salted, and barreled for the
negroes in the Sugar Islands, are caught either by hook, seines, or meshes. Those by hook are the best, those by seines are worst, because in bulk they are brnised. Mackerel will not take the hook unless it have a motion of two or three knots; if quicker they will take the hook, but their jaw being tender gives way, and the mackerel is lost. There are two seasons of mackerel, spring and autumn; the autumn mackerel are the best; those of the spring appear about the middle of May, very lean, and vanish in two or three weeks."

36.-Drailing for mackerel.

Captain Atwood writes: "In my boyhood, when I caught my first mackerel, nobody thought of jigging them. We then took them in the same way as bluefish are caught. My first experience in mackerel fishing took place when I was a little boy, about 1815. I went out with two old men. One of them fished in the stern of the boat, and when it did not sail fast enough the other and myself-I was eight years old at the time-had to row, in order, by the more rapid motion of the boat, to induce the fish to bite. They would not bite unless the line was towed. Two great long poles were run out, one just forward, in such a manner that our vessel had the appearance of a long-armed spider. The poles were straight, and one line was fastened at one part, and another line on the end of the pole, in order to have them separated. This style of fishing continued until about the time when I began to go to sea, about 1820. Jigging for mackerel then commenced, bait being thrown overboard, and the fish being thus attracted alongside of the vessel, and this soon came into general use."
Capt. James Turner, of Isle au Haut, Me., who assures us that as late as 1815 the fishermen drailed for mackerel, gives the following account of this method of fishing:
"While drailing, the sails were trimmed in such a manner that, when the helm was partly down, the vessel would 'jog' along slowly, making a little leeward drift, so that the lines would trend off at a slight angle from the weather side. Each man had one line, the end of which was attached to the end of a pole that was fastened to the vessel's rail, projecting out about 8 feet at right angles with the side of the vessel. The fisherman held in his hand a hauling-line which was attached to the middle of the one fastened to the pole, so that he might know when a fish took the hook and be able to haul it in."
"About a pound of sheet lead was wound around the line a foot abore the hook. When the ressel was engaged in fishing, the man standing forward threw over a small amount of fine bait (which had previously been chopped with hatchets) occasionally, scattering it along in order to attract the fish, and keep them near the vessel."

The following paragraphs are quoted from an essay in the Fishermen's Memorial and Record Book:
"Trailing was one of the means used to catch mackerel in the olden
time, and one of our old fishermen informs us that when a lad he distinctly remembers of being out in Boston Bay, one day, in a boat with his father, when he saw a vessel which looked very strangely to his young eyes, and, boy-like, he asked his father what sort of craft it was.
"'That's a trailer, my boy, and we'll speak with him," was the reply.
"They sailed quite near, and they observed that the vessel had outriggers of long poles on each side, commencing forward at about seventeen feet, and tapering off to five feet aft. At the ends lines were fastened, about twenty fathoms long, with a sinker of four pounds, and hook below. To each of these lines was attached a bridle, reaching to the side of the vessel, where the fishermen stood to feel the bites. This particular vessel was from Hingham, and had been out four weeks without receiving even a bite, and the skipper said he was going to give it up and go home."
"The present mode of catching mackerel by drifting and tolling with bait did not come into general use until after 1812. The gear for catching, previous to that, was a white hempen bob-line, as it was called, and the style of fishing was termed 'bobbing' mackerel. These lines were some seven fathoms in length, with a leaden sinker two inches long, and shaped like a thin pea-pod. At one end was a ganging about a foot long, for the hook. Every few minutes off would go the hook, and extra hooks were always in readiness to replace those lost. This mode coutinued until the year 1816, when Abraham Lurvey, of Pigeon Cove, discovered a method of running lead around the hooks, and which were afterward called jigs. This he kept secret for many months. The hooks then in use were nearly as large as the haddock hooks of to-day. The small lines and fly-lines did not come into use until about 1823. About this time the gaff was introduced, and was abandoned after being used some ten years."*

It seems scarcely necessary to discuss more in detail the methods used during the first two centuries of the mackerel fishery of North America. In a following chapter an effiort will be made to present a chronological history of the fishery from its inception to the present time.

[^63]
III-LEGISLATION FOR THE PROTECTION OF MACKEREL.

-H.-LAWS, PETITIONS, AND PROTESTS.

37.-Legislation in the seventeenth and eighteenth centURIES.

At an early day in the history of the United States a failure of the mackerel fishery was apprehended. The following notices of legislation, copies of laws, and newspaper extracts will serve to give an idea of the state of public opinion at different periods from 1660 to the present time:
1660.-Early regulation of the mackerel fishery.-The commissioners of the United Colonies recommended to the several general courts to regulate the mackerel fishery; conceiving that fish to be the most staple commodity of the country. Few, who have not investigated the subject, have at the present day an adequate conception of the importance of this branch of productive industry.-(Freeman's Hist. of Cape Cod, Boston, 1862, vol. i, p. 239.)
1670.-Prohibition of early mackerel fishing by laws of Plymouth Col-ony.-Wheras wee have formerly seen Great Inconvenience of taking mackerell att vnseasonable times wherby there encrease is greatly deminished and that it hath bine proposed to the Court of the Massachusetts that some course might be taken for preventing the same and that they have lately drawne vp an order about the same this Court doth enacte and order that henceforth noe makerell shalbe caught except for spending while fresh before the first of July Annually on penaltie of the losse of the same the one halfe to the Informer and the other halfe to the vse of the Collonie; and this order to take place from the 20th of this Instant June.-(Plymouth Colony Records,vol. xi, 1623-1682. Laws, p. 228.)

1;84.-Prohibition of mackerel seining.-In 1680, Cornet Robert Stetson, of Scituate, and Nathaniel Thomas, of Marshfield, hired the Cape fishery for bass and mackerel. In 1684, the court enacted a law "prohibiting the seiuing of mackerel in any part of the colony"; and the same year leased the Cape fishery for bass and mackerel to Mr. William Clark for seven years, at $£ 30$ per annum.

Subsequently to 1700 , it is certain that the mackerel were very abundant in Massachusetts Bay. It was not uncommon for a vessel to take a thousand barrels in a season. The packing, as it is called, was chiefly done at Boston and Plymouth.-(Deane's History of Scituate, Mass.)
1699.-Repeal of prohibitory laves in Massachusetts.-And be it further
S. Mis. $110-14$
enacted and declared, That the clause in the act, entituled "An Act for the Regulating and Encouragement of Fishery", that henceforth no mackeril shall be caught (except for spending whilst fresh), before the first of July anmually, be and hereby is fully repealed and made void, anything therein to the contrary notwithstanding. [Passed February 8, 1692-'3.]-(Acts and Resolves of the Province of Massachusetts Bay, vol. 1, 1692-1714, p. 102.)

$$
1692 .
$$

AN ACT for the regulating and enconragement of fishery.

Upon consideration of great damage and scandal, that hath happened upon the account of pickled fish, although afterwards dried and hardly discoverable, to the great loss of many, and also an ill reputation on this province, and the fishery of it,-

Be it therefore enacted by the Governor, Council and Representatives, convened in General Court or Assembly, and it is enacted by the authority of the same,
[Sect. 1.] That no person or persons whatsoever, after the publication hereof, shall save or salt any sort of fish (that is intended to be dried) in cask or fattes, or any other way than what hath formeriy and honestly been practised for the making of dry fish, on penalty of forfeiting all such fish so salted and pickled, whether it be green or drye; the one moiety thereof to the use of the poor of the town where the offence is committed, and the other moiety to the person that shall sue for the same.

And it is further enacted by the authority aforesaid,
[Sect. 2.] That henceforth no mackrel shall be caught (except for spending whilst fresh) before the first of July annually; and no person or persons whatsoever, after the publication hereof, shall at any time or place within this province take, kill, or hale ashore any mackrel, with any sort[s] of nets or sa'ens whatsoever, on penalty of forfeiting all such mackrel so taken or haled ashore, and also all such nets or sa'ens which were so imployed; the one-half thereof to their majesties towards the support of this their government, and the other half to him or them that shall inform and sue for the same. And all justices are hereby impowered, and required to grant their warrants for the seizing of the same and the aforesaid forfeitures, or the receiving of the like value in currant money of this province. [Passed November 26, 1692.]
[Acts and Resolves of the Province of Massachusetts Bay. Vol. 1, 1692-1714, p. 71. Province Laws, 1692-3. Chap. XXXII.]
1702.-Re-enactment of prohibitory laws.

AN ACT for the reviving and re-enacting a clause in the act intituled "An act for the regulating and encouragement of fishery" that hath been for some time repealed by the General Assembly.

Whereas, in the second paragraph of the said act it is enacted "that henceforth no mackerel shall be caught (except for spending whilst fresh)
before the first of July annually"; and whereas the said clause, by an act afterwards made and passed by the general assembly [1692-3 Feb. 8.], was repealed and made void, which said repeal and the unseasonable catching of mack[a]rel thereupon hath been experienced to be very prejudicial to this province,-Be it therefore enacted by His Excellency the Governour, Council and Representatives [convened] in General Court or Assembly, and it is enacted by the authority of the same, That the said clause above-recited shall be and is hereby revived and re-enacted, and that henceforth no person or persons whatsoever shall presume to catch or cause to be caught any mack[a]rel, (except for spending whilst fresh,) before the first of July annually, on penalty of forfeiting all the mack[a]rel so caught contrary to the true intent and meaning of this act, and twenty shillings per barrel over and above for each barrel of the same; the one-half of the said forfeiture to be to her majesty for and towards the support of this her government, and the other half to him or them that shall inform and sue for the same in any of her majesty's courts of record within this province. [Passed November 11, 1702; signed by the Governor and published November 21, 1702.]-(Acts and Resolves of the Province of Massachusetts Bay, vol. i, 1692-1714, p. 507.)
38.-Protests against gigging and seining in the present CENTURY.

1838-9.-Protests against gigging.-The Boston Journal protests strongly against the barbarous method of taking mackerel called "gigging,"* and urges that it is not only liable to censure on the score of humanity, but it is also impolitic, and that if this destructive method of fishing is generally continued a few years longer it will break up the fishery. We have for a year or two past entertained a similar opinion, and probably the complaints now so frequently made by the fishermen that, though mackerel are plenty, they "will not bite," is owing to the custom of "gigging." There is hardly anything which possesses life that has so little instinct as not to become very shy under such barbarous inflictions. It is obvious that all which are hooked in this manner are not taken on board; the gig frequently tears ont, and thousands, millions of these fish are lacerated by these large hooks and afterwards die in tlfe water.-(Newburyport Herald, Gloucester Telegraph, Sept. 23,1838 .)

The following protest appeared in the Gloucester Telegraph, Wednesday, August 7, 1839, it being a quotation from the Salem Register:
"All the mackerel men who arrive report the scarcity of this fish, and at the same time I notice an improvement in taking them with nets at Cape Cod and other places. If this speculation is allowed to go on without being checked or regulated by the government, will not these fish be as suarce on the coast as penguins are, which were so plenty before

[^64]the Revolutionary war that our fishermen could take them with their gatfs? But during the war some mercenary and cruel individuals used to visit the islands on the castern shore where were the haunts of these birds for breeding, and take them for the sake of the fat, which they procured, and then let the birds go. This proceeding finally destroyed the whole race. It is many years since I have seen or heard one except on the coast of Cape Horn. In 1692 the General Court passed an act prohibiting the taking of mackerel before the first day of July annually, under penalty of forfeiting the fish so taken. In 1702 this act was revived with additional penalties-besides forfeiting the fish and apparatus for taking, 20 shillings per barrel, and none to be taken with seines or nets.
"A FISHERMAN.
"Marblefead, August 3, 1839."
1859.-Protests against the use of seines.-A petition is now before the Committee on Fisheries, in the House, to abolish the catching of mack. erel in seines on our coast. As mackerel can now be caught only in this way, and many of our people are interested in this business, it becomes highly important that any such stupid petition should be prostrated at once. Mr. Gifford has asked for a delay in the petition, and Mr. Atwood has written to show the nature of the business upon our coast. One thing is certain, if we do not take the mackerel in seines or nets we shall get none at all.-(Provincetown Banner, February, 1859.)

1870-1882.-Protest against the purse seine.-Since the general adoption of the purse-seine no year has passed without a considerable amount of friction between fishermen using this engine of wholesale destruction in the capture of mackerel and menhaden and those engaged in fishing with other forms of apparatus. Petitions to Congress and State legislatures have been made from both sides, and in some instances laws have been passed by State legislatures prohibiting the use of menhaden seines within certain specified tracts of water, such as the Chesapeake Bay. These laws, while especially antagonistic to menhaden fishing, were aimed chiefy at the purse-seine as a mêans of capture, and would doubtless have been equally prohibitory of mackerel fishing with purseseines had this been attempted within the limits. In 1878 a delegation of fishermen from Portland, Me., and Gloncester, Mass., visited Washington for the purpose of securing the passage of a law prohibiting the use of purse-seines in the mackerel fishery. In 1882 the clamors of shore fishermen, especially on the coast of New Jersey, led to the appointment of a committee of the United States Senate, which at the time of printing this report is engaged in taking testimony regarding the effect of the purse-seine upon the menhaden fishery, and incidentally upon other fisheries of the coast. The labors of this committee will probably result in the recommendation of some form of legislation which will apply, in part at least, to the mackerel fishery.

In the summer of 1882 a serious commotion was caused among the
mackerel fishermen by the announcement of the intention of a number of menhaden fishermen to employ their steamers and nets in the mackerel fishery. It was the impression among these men that the mackerel were to be used for the manufacture of oil and guano, hut this has been denied by Capt. David T. Church and other representative men, who, reasonably enough, state that they could not afford to use so valuable a fish for this purpose, and who claim that they have an undoubted right to use their steamers in the capture of mackerel for sale fresh in the markets and for pickling.

As a matter of record we reproduce the following paragraphs from an editorial in the Cape Amn Advertiser, July 14, 188\%:
"It is not a difficult matter to anticipate the result if this class of steamers engage in this branch of the fisheries. There is no reason to doubt their ability to catch almost or quite as many mackerel as they have formerly caught menhaden. Several of them are large, capable of carrying 2,800 barrels of fish in bulk. These carry a double gang of men, and apparatus to correspond. During moderate weather, when mackerel generally school the best, and sailing vessels find it difficult to move, these steamers can play around the fleet of schooners, catch almost every fish that shows itself, and carry them away to be used, not for food fish as they were intended, but for oil and guano, to enrich a few men at the expense of many."
"If the steamers were to engage in the mackerel fishery, selling their catch for food, and were obliged to spend the requisite time for dressing them, which would debar them from an overcatch and carrying them to market, thus placing them on somewhat equal footing with the other fishermen, there could be no reasonable objection to their employ. ment; but it certainly seems, in riew of this startling immovation, that some decided action should be taken by 'the powers that be' to prevent the catch of mackerel for the purpose of manufacturing oil and guano. They are altogether too valuable for such a purpose, and the risk of breaking up the schools and driving them almost entirely from our waters, as has been the case with menhaden, is altogether too great.
"Unless some action is taken, and taken at once, and stringent laws enacted, we may confidently look forward to the destruction in a few years of one of the important industries of New England and the permanent and serious injury of large communities which now derive a considerable part of their support from the mackerel fishery."
i.-Tables showing number of men, number and value of vessels, and value of product. 39.-TABLE SHOWING THE NUMBER OF VESSELS AND MEN EMPLOYED IN THE MACKEREL FISHERX. TA

mackerel		Vessels engaged in the mackerel and other fisheries.				
	年		$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { E } \\ & \text { O } \\ & \text { H } \end{aligned}$	$\stackrel{\dot{8}}{\stackrel{\text { ® }}{\text { ¢ }}}$		号
\$609, 900	3,134	233	8, 062. 15	\$352, 715	\$394, 550	1, 809

Grand total	
MAINE.	
Eastpo	
Hancock	
Tremont	
Cranberry Island	
Bluehill	
Brooklin	
Deer Islo	
Sedgwick	
Bucksport	
Swan's Island	
Isle au Haut	
Belfast	
Lincolnville	
Camiten	
North Haven	
Vinal Haven	
Rockland....	
Saint George .	
Cushing .	
Friendship	
Matinicus Island	
Waldoboro'............	
Bremen	
Bristol	
Bcothbay....	
Southport	

40．－TABLE showing the mackerel fisiling fleet of tife united states，classified by states，according to fishing grounds．＊

State．	Total．				Cape Hatteras to Gulf of Maine，inclusive．			Cape Hatteras to Liulf of Saint Law． rence，inclusive．				Block Island．			Gulf of Maine．			Gulf of Maine and Gulf of Saint Law． rence．			Gulf of Saint Law ． rence．				
		$\stackrel{+}{+}$		込		E． E． E． H H	守				戓			官		¢ \％ E ¢ －	哥			安		¢	号		
Maine New Hampshire Massachusetts Connecticut	176	$\begin{array}{rrr} 6,122.45 & 1,403 \\ 567.53 & 113 \\ 16,673.98 & 3,493 \\ 187.68 & 34 \end{array}$			$\begin{array}{cc} 20 & 1,288.70 \\ \hdashline 38 & 2,513.02 \\ \hdashline & \cdots \cdots \end{array}$			3	215． 67				201． 82	59	14611186	$\begin{array}{r} 4,197.09 \\ 567.53 \\ 11,195.60 \end{array}$	$\begin{gathered} 1,005 \\ 113 \\ 2,356 \\ \cdot . \end{gathered}$	242	$\begin{array}{r} 1,580.5 \\ \quad 187.68 \end{array}$	$\begin{array}{r} 66 \\ \hdashline 308 \\ 34 \end{array}$	$\cdots{ }^{16}$	$\begin{array}{r} 138.03 \\ 1,004.52 \\ \cdots \ldots \end{array}$	－ 201		
	11 279					3		8． 43	41																
	2																								
Total．	468	$\overline{23,551.64} \overline{5,043}$					$58, \overline{3,801.72}$		792		394.10			12	201.82		343	15，960． 22	3，474		2，051． 23	408	18	1，142．55	228
＊The figures for Massaclusetts represent the condition of the fleet for 1879；the fleets for the other States are s American vessels visited the Gulf of Saint Lawrence，some of these remaining only a few weeks．																									
41．－Table showing the mackerel fishing fleet of the united states，classified by states，according to kind of apparatus used																									
State．	Total．					Vessels using line．					Vessels using net．					Vessels using line and purse－ seine．				Vessels using purse－soine．					
	Vesscls．		Tonnage．					Vessels．		Tonnage．		Men．	Vessels．		Tonnage．		Men．	Vessels．	Tonnage．		Men．	Vessels．	Tonnage．		Men．
Maine ．．．．．．	$\begin{array}{r} 176 \\ 11 \\ 279 \\ 2 \end{array}$		$\begin{array}{r} 6,122.45 \\ 567.33 \\ 16,673.98 \\ 187.68 \end{array}$		$\begin{array}{r} 1,403 \\ 113 \\ 3,493 \\ 3 \end{array}$		1	773.63\cdots				40	562.41		137	－ 5	257． 64			$\begin{array}{r} 85 \\ 11 \\ 240 \\ 2 \end{array}$	$\begin{array}{r} 4,786.41 \\ 567.53 \\ 15,437.67 \\ 187.68 \end{array}$		$\begin{array}{r} 1,061 \\ 113 \\ 3,202 \\ 34 \end{array}$		
New Hampshire Massachusetts ．．．				4								61	28												
Connecticut ．．．																									
Tota	468				23， 551.64		5，043	81		1，673． 69				44			165	5		7． 64	52	338		， 979.29	4，410

42.-The products of the north american mackerel fishery FOR 1880. (With tables.)

From the earliest settlement of the country the mackerel fisheries have been extensively prosecuted by a large number of people living along the New England coast as well as by many of the inhabitants of the British Provinces. The catch has varied greatly from time to time, and seasons of extreme plenty have often been followed by those of remarkable scarcity. Various theories have been advanced to account for this fluctuation. Many have been inclined to attribute it to overfishing or to the apparatus employed in the fishery, while others claim that the movements of the fish are affected by natural causes, such as temperature, currents, the presence or absence of food, and the like, over which man has little or no control. Whatever the causes that influence the movements of the fish, the fact of great variation in the abundance of the species from time to time remains.
In 1804, according to the returns of the various fish inspectors, 8,079 barrels of mackerel were packed in Massachusetts, while in 1814, only 1,349 barrels were put up. In 1831 the quantity was increased to 383,658 , this being the largest amount ever inspected in the State. A period of scarcity followed, and between 1839 and 1845 the inspection returns show an average of only 67,674 barrels annually. About 1860 the fish were again abundant, and for eight years the quantity packed averaged 246,877 barrels. This period of plenty was in turn followed by one of scarcity, which culminated in 1877, at which time only 105,017 barrels were inspected, and the fishery was practically a failure, resulting in great loss both to fishermen and capitalists. Fortunately this condition of affairs is at an end, and the fishery is again in a prosperous condition; the catch of the New England fishermen at present, if we include the fish sold fresh, being larger than at any time since the origin of the fishery.

In 1880 the New England mackerel fishermen met with marked success, though those of the British Provinces were not so fortunate. By the middle of March a number of the Maine and Massachusetts vessels sailed for the South to engage in the spring fishery, and by the 20th of the following month the last of the fleet, which consisted of 64 sail, averaging 65.66 tons each, were under way. The season opened with a haul of 25,000 mackerel taken off the Virginia capes on the $2 d$ of April. These were carried to New York where they met with a ready sale at good figures. From that time mackerel were taken frequently, the fleet working northward with the fish as the season advanced, reaching Long Island about the last of April, and Cape Cod a few weeks later. The season was not a very satisfactory one for the Southern fleet, as the catch was small, and the fish were of poor quality, a majority of the vessels engaged making comparatively light stocks, while many of them scarcely paid expenses. As the summer approached, the fishing improved greatly, the fish increasing both in number and quality, and the Southern fleet
was joined by a large number of ressels from the various fishing ports. Later, as the vessels arrived from their trips to the codfish banks, many were fitted out to engage in the mackerel fishery, and by the 1st of August the fishing was at its height, the fleet numbering 468 sail, averaging a trifle over 50 tous apiece. Of this number 343 were provided with purseseines for engaging in the off-shore fisheries, while 125 fished with hook or net chiefly on the in-shore grounds. The value of this fleet, including the fishing gear and the outfits, reached $\$ 2,122,360$, and 5,043 men were employed. A little later in the season about 25 of the vessels proceeded to the Gulf of Saint Lawrence in the hope of meeting with better snccess; but few fish were seen, and the venture resulted disastrously to a large majority of them, many failing to pay expenses, while a few returned without having caught a fish. These ressels on their return at once joined the home fleet, and meeting with good success, most of them were enabled tomake good the loss which they had previously sustained.

About the 1st of July an unprecedentedly large body of mackerel entered the Gulf of Maine, many of them visitmg the shore-waters, entering the various harbors and coves, where they remained for some weeks. During their stay in these in-shore waters thousauds of men and boys engaged in their capture from small boats, and in many localities a majority of the male population participated in the fishery to a greater or less extent. The pound-nets along the southern coast of New England were peculiarly successful, while large quantities were taken in the traps and weirs between Cape Cod and Penobscot Bay. Probably not less than 10,000 people along various portions of the coast of Maine were engaged in mackerel hooking during some portion of the season, though many of them fished chiefly for pleasure, while others caught only limited quantities for home supply. About 3,500 followed the business regularly for some time, many of them realizing considerable profit from the work. In Massachusetts a similar condition of affairs existed, and thousands of persons engaged in the fishery from small boats to a greater or less extent, fully 2,000 fishing extensively for profit.

Most of the fish taken by both the ressel and boat fishermen were of uniform size and of excellent quality. Few extremely large ones were secured, while there was also a notable absence of "tinkers." Over two-thirds of the catch were branded as "twos," many of them going as "extras." During the season, which lasted till the 1st of December, nearly $132,000,000$ pounds of mackerel were taken. Of this quantity the Massachusetts fishermen caught $95,000,000$ pounds, and those of Maine secured $31,000,000$ pounds, the bulk of the remainder being taken by the citizens of New Hampshire and Connecticut. Over 75 per cent. of the entire catch was salted, about $22,000,000$ pounds were sold fresh for food, nearly $5,000,000$ pounds were used for canning, and the rest were sold for bait or for fertilizing purposes. The value of the catch, as placed upon the market, was $\$ 2,606,534$. The following table shows in detail the extent and value of the fishery for the United States during the year:

Table showing, by States, the quantity of mackerel taken by the New England fishermen in 1880, and the value of the same in the condition in which they were placed upon the market.

State.	Total.		Disposition of catch.				
			Pounds used for pickling.				
Total.	131, 939, 255	,\$2, 606, 534	103, 142, 400	4, 957,455	22, 239,400	1,100,000	500,000
Maine.	31, 694,455	659, 304	27,342, 000	1, 252, 455	$3,000,000$	100,000	
New Hampshir	2, 573, 000	48, 1×1	-, 379,600		193,400		
Massachusetts	$95,5 \pm 8,900$	3, 858, 34.3 *	72, 153, 900	$3,705,000^{*}$	18, 170,000	1,000,000	500,000
Rhode Island	89, 000	1,669			89,000		
Connecticut	1, 303, 900	24, 976	1,266,900		37,000		
Now York	750, 000	14,062		(?)	750, 000		

* Including both the fresh and salt mackerel used for canning.

As already intimated, there was a great falling off in the Provincial mackerel fisheries during the year, the bulk of the catch, which amounted to over $70,000,000$ pounds, according to the Canadian Fishery Report, \dagger being taken by the shore fishermen of Nova Scotia and Prince Edward Island. Of the entire quantity 233,669 barrels were pickled. In the Canadian report the average price of the salt mackerel is given as $\$ 9.25$ per barrel, but as the fish were much inferior in quality to the American catch, these figures are evidently incorrect. Statistics show that 105,730 barrels of the above, equal to nearly one-half of the catch, were marketed in the United States (and it is fair to presume that these were of average quality), where they were ordinarily sold at lower figures than the fish taken by the New England fleet. If we suppose the Canadian fish to be equal to those taken on our own shores (a supposition which is hardly warranted), the value of the catch, as given by the Canadian authorities, must still be reduced by $\$ 818,662$, as the average price of the New England fish during the season was only $\$ 5.75$ per barrel.

The following table shows in detail the extent of the catch for the several Provinces :
\dagger Supplement No. $: \underset{\sim}{\sim} \mid$ to the Eleventh Annual Report of the | Minister of Marine and Fisheries | for the year 1880. $工$ Fisheries Statements | for the year | 1880. Ottawa: |'Printed by MacLean, Roger \& Co., Wellington street. 1881.
Table showing the quantity and value of the mackerel taken in the Dominion of Canada in 1880, as shown by the Canadian Fishery Report.

In the tables from which the above summary has been compiled, no allowance seems to have been made for local consumption. A rough estimate of the amount used in this way would be $18,000,000$ pounds, making a total catch for the Provinces of about $88,000,000$ pounds, worth, at prices current in the United States, not far from $\$ 1,620,000$.

Mackerel are not abundant in the waters of the Newfoundland coast, and few are taken by the fishermen. The returus for the year ending July 31, 1881, show that only 181 barrels were exported. This quantity, which equals 54,300 pounds of fresh fish, doubtless represents the bulk of the mackerel taken, as few are consumed locally. Allowing an equal quantity for local consumption, we have only about 110,000 pounds, valued at $\$ 1,650$, taken by the islanders.

By combining the catch of the New England, Canadian, and Newfoundland fishermen, we have the total product of the mackerel fishery for the western Atlantic in 1880. This is found to be about $220,000,000$ pounds of round mackerel, valued at $\$ 4,228,000$. This value represents the fish as they are first placed upon the market. If the value to the consumer is desired, the figures must be nearly doubled, to include the transportation charges and the protits of the various middlemen who handle them.

V.-THE MACKEREL-CANNING INDUSTRY.

By R. Edward Earll.

J.-THE ORIGIN AND DEVELOPMENT OF THE MACKERELCANNING INDUSTRY.

43.-The methods and statistics of canning.

The first experiments in the canning of fish on the American continent were conducted at Halifax, Nova Scotia, by Mr. Charles Mitchell, a native of Aberdeen, Scotland, who came to America in 1840 to engage in this work. During his stay in Halifax he was engaged in the canning of salmon and meats of various kinds. Later he removed to the United States and continued the work, putting up lobsters, salmon, and such other fish as were thought desirable. It was in this way that the value of the mackerel as a canned fish came to be known to our people. Prior to 1850 a few were canned in Boston and small quantities were put up at the lobster canneries in the State of Maine. From that date the business has been continued on the Maine coast, though for many years it was very limited, as the qualities of the mackerel when prepared in this way were not at first fully appreciated. The trade, however, has increased slowly from year to year, until canned mackerel are now handled by the principal dealers of all of the larger cities throughout the entire country.

Prior to 1872 the only canned mackerel seen in our markets were fresh fish prepared in hermetically sealed cans by means of the ordinary pro-
cess. At this time it was found that there was a growing prejudice against salt mackerel, owing to the size and quality of the packages in which they were placed upon the market. The smallest packages known to the trade were kits holding from 15 to 25 pounds each. These contained more fish than the average family cared to purchase at a time; and after a package was once opened, unless it was properly cared for, the brine was apt to leak out, leaving the fish exposed to the air, thus causing them to rust and otherwise deteriorate.

In the fall of 1872 Mr. Edward Pharo, of Philadelphia, obtained a patent covering the packing of salt mackerel in small hermetically sealed packages.* For some time the business was very limited, but later
*We are indebted to Mr. A. Howard Clark for the following letter of specifications regarding Mr. Pharo's patent:

Lmprovement in puting up salt mackerel and similar fish.-(Letters Patent No. 132,316, October 15, 187\%.)

* * * Heretofore salt mackerel have been put up in wooden barrels, kegs, and kits. The form or kind of ressel was made necessary by the fact that it was difficult or practically out of the question to make a square water-tight box. Hence, also, the size of the package was limited; that is, no package smaller than the kit-which holds, say, about 25 pounds of tish-could be couveniently employed. The result was that many families were deprived of purchasing from first hands, as even the smallestsized package-a kit-is much too large for many persons to buy. Another objection was on the part of dealers who, not selling in bulk, were obliged to open the packages and handle the mackerel, a necessity particularly disagreeable to country dealers, who keep stocks of silk aud dry goods which are soiled by a contact with brine. The odor, too, arising from an open barrel of salt mackerel is held in extreme repugnance by many people. To obviate these sereral objections I have devised a method whereby salt mackerel can be put up in any sized packages, so as to come within the reach of persons of limited incomes, which will enable the dealer to keep on haud a stock whence no offensive odor arises, and which can be disposed of without breaking packages. My invention, then, consists in putting up salt mackerel in hermetically sealed packages, preferably in metallic boxes. The boxes are made of any size and shape, though I prefer to make them cubical in form, and of dimensions to hold, say, five, ten, or tifteen pounds of mackerel. When metal is employed in the construction of the boxes, I desigu using a wash or varnish to protect the same from the action of the pickle. When motal is not used, but instead some material which may not be acted upou by the brine, this wash may be dispensed with. Although metal is deemed the most suitable material for the boxes, India rubber or some other substance may be advantageously employed.
Besides those alrealy enumerated, another advantage of this method of putting up salt mackerel is that the purchaser pays only for what he gets. Thus a quarter barrel of mackerel is supposed to run fifty pounds, and a purchaser, in buying a package of that size, imagines that he gets that quantity. Frequently, however, the packages run short; a quarter barrel, for instance, of "repacked" containing generally only about thirty-five pounds. When, however, he buys by the pound, as he must do in this case, he pays, as already remarked, only for what he gets. Still another advantage of this method is that, as I design using only the best quality of fish, the interest of the purchaser is consulted, which is not always the case now, as the packer, not having a due regard for reputation, puts up an inferior quality of goods, and does not give full weight.

What I claim as my invention, and desire to secure by letters patent, is the hereindescribed method of putting up salt mackerel, namely, in a hermetically sealed box
the fish dealers of the principal cities began to realize the importance of this method for increasing the demand for salt mackerel, though, as far as we can learn, the fact that a patent had been issued has from the first been entirely ignored. In the spring of 1879 Henry Mayo \& Co., of Boston, engaged extensively in mackerel canning, utilizing the ordinary salt fish, which were put up in tin cans holding from five to teu pounds each. A little later a number of the principal fish dealers of Boston and Gloucester turned their attention to the business, which soon came to be very extensive. The quantity put up in 1880 was double that for 1879 , and the products for 1881 were considerably in excess of those of 1880. The present season, according to Mr. W. A. Wilcox, there is a notable falling off in the business, and the quantity canned will be quite small; the decrease being largely due to the loss occasioned by the rusting of the cans. If this difficulty can be overcome the trade seems destined to develop enormously, as the size of the package, and the convenience of handling and keeping the fish have brought them into favor among the consumers.

In the spring of 1880 parties interested in the preparation of sardines at Eastport secured a limited quantity of small mackerel, which they canned and placed upon the market as "broiled mackerel." The cans used were like those employed for the large herring which are known by the trade names of "brook-trout" and "sea-tront," and the methods of preparation were very similar. The mackerel were found in every way superior to the herring, and the demand for them has been constantly increasing to the present time.

The advantages of mackerel camning are many. Perhaps the greatest point in favor of the industry is the fact that it gives an outlet for the small mackerel, which, for canning purposes, are found superior to the larger ones. The small fish known as "tinkers" are very abundant along the New England shores, great quantities of them being taken by the fishermen, who, on account of their small size, which renders them undesirable for salting, have heretofore experienced great diftculty in finding a market for them, and have frequently been obliged to throw them away. Limited quantities are sold fresh in the larger markets, but boat fishermen living at a distance are umble to avail themselves of the opportunities offered, owing to a lack of suitable means of transportation; while the vessel fishermen find it difficult to dispose of small fish when larger ones chance to be abundant, and the price paid for tinkers is always exceedingly low. The canning of mackerel, then, is peculiarly important, in that it renders valuable for purposes of food immense quantities of otherwise worthless products. The boat fishermen are greatly benefited by the development of the industry, as with a demand for the small fish they find remunerative employment in fishing at a time when there is little else to occupy their attention.

Cooked mackerel.-Prior to 1879 , when salt mackerel were first put up in tin packages, nearly all of the canned mackerel weve packed by
parties engaged in lobster-canning, the same apparatus being used for the work. The factories are open for the canning of lobsters about the 1st of A pril, from which date to the 1st of July a large force is kept constantly busy. About this time the lobsters begin "shedding" in such numbers as to seriously interfere with the business, and the factories are often obliged to discontinue the work till late in the fall. Fortunately, however, the mackerel usually make their appearance on the coast at this season, and many of the factory-men turn their attention to packing them, thus furnishing employment to their hands during the summer months. The canneries for this work are located on the coast of Maine, and, with the exception of the recently developed canning interest in Boston, Maine has practically a monopoly of the business for the United States, though limited quantities are put up by the lobster canners of the British Provinces. As has been said, the fish usually arrive early in July, gradually nearing the shore, until, in a few weeks, they are abundant in many of the coves aud harbors of the New England coast. For several weeks during the height of the season the majority of the male population of the smaller fishing ports are engaged in hooking mackerel, a considerable revenue being derived from this work. This is especially the case in the vicinity of the canneries, where a good market is usually found for the catch. The fishing continues till early in October, when the mackerel leave for warmer waters.

In the canning of lobsters it is necessary that each factory should be provided with smacks or small vessels for gathering its supply. These usually visit the different fishing stations within a radius of 20 to 30 miles of their respective factories, gathering the lobsters from the fishermen, who would find it difficult to run them to market in their small boats. These vessels are often used in the same way for securing a supply of mackerel for the canneries. As a rule, they are ordinary sloops or schooners, but the factory at Castine is provided with a small steamer, by means of which it is enabled to cover a much larger territory, bringing the fish to the factories in excellent condition.

The catch varies greatly with the season; some sears large quantities of mackerel are taken, while again the fish are scarce, and but few are secured. The price paid along the different portions of the coast is quite uniform, the fishermen usually receiving 1 to $1 \frac{1}{2}$ cents per pound for the fish as they come from the water, though in some localities the fish are dressed by the fishermen, and in this condition bring about two cents per pound.

To obtain the best results it is necessary that the mackerel should be camed as soon as possible after they are caught. On reaching the factory the heads, tails, and entrails are removed, after which the fish are thoroughly washed and placed in strong brine, in which they are allowed to remain long enough to give them a salty flaror. They are then packed in cans which are at once carefully sealed. These are inmersed in boiling water, where they remain till their contents are thor-
oughly cooked. They are next " vented," and after cooling are sent to the paint-room, where they are dipped in thin paint or varnish, which serves to protect them from rust. When dry they are covered with attractive paper labels and packed in cases for shipment. The cans used are similar to those employed for packing fruit, being made of tin and having a cylindrical form. Two sizes are used by most of the canners. The smaller, for which there is a large demand, is $4 \frac{1}{2}$ inches in height by 3 inches in diameter, and holds about 1 pound of fish; the other is $4 \frac{1}{2}$ inches high by $3 \frac{1}{2}$ inches in diameter, and contains about $1 \frac{1}{2}$ pounds, though it is ordinarily known as a 2 -pound can. A larger size, holding 3 pounds, is sometimes employed. The loss in dressing varies from 25 to 35 per cent., according to the size and condition of the fish, while the labor of cleaning and canning costs from 18 to 22 cents per dozeu cans. Fifteen to twenty-five persons constitute an average working force for a cannery. One-half of these are women and children, who receive from 50 to 75 cents per day for their services; the remaiuder are tinsmiths and laborers, whose compensation ranges from $\$ 1$ to $\$ 3$ per day, according to agreement.
The price of canned mackerel is largely dependent upon the quantity packed during a given season. In 1880 the price at the factory was $\$ 1.25$ per dozen for the 1-pound cans, while the 2-pounds sold for $\$ 1.85$. In 1881 it is said to have been reduced to $\$ 1$ for 1 -pounds, and $\$ 1.50$ for twos.

Until 1880, as already stated, the canuing of fresh mackerel was confined almost exclusively to the lobster canneries on the coast of Maine. At this time, however, a number of Boston dealers engaged extensively in the work, and, according to Mr. Wilcox, 750,000 pounds of tresh mackerel were used for canning, the product of the canneries amounting to 480,0001 -pound and 24,0002 -pound cans, valued at $\$ 53,700$. During the same season the Maine canners purchased $1,252,455$ pounds of mackerel, from which 814,668 cans of the various brands were put up, their value at wholesale prices being $\$ 96,749$. In other portions of the country a limited quantity of mackerel, estimated at 60,000 cans, valued at $\$ 6,500$, were packed. In 1881 the Boston business had, as we are informed by Mr. Wilcox, increased enormously, and during the summer $1,764,000$ cans were put up. The quantity for Maine was increased to about $1,000,000$ cans, and that for other places doubtless reached 100,000 , making a total of $2,864,000$ cans. In 1879 the quantity for the cintire country did not exceed 900,0001 -pound cans.

Salt mackerel.-The canned salt mackerel, as has been remarked, are put up from the ordinary pickled fish. Different brands are used for this purpose. Some packers select large fish of the best quality, though a majority use standard No. 2's. In preparing them for the cans, they are carefully washed and scraped so as to give them a neat and attractive appearance. Frequently the heads and tails are removed, and, if of large size, the mackerel are cut in halves to facilitate packing. When
S. Mis. $110-15$
the can contains the proper weight of fish it is filled with strong brine and carefully sealed; after which it is labeled and packed for shipment.

No uniform standard of shape or size has been adopted in the manufacture of cans for this trade, those used being either square, oblong, or cylindrical, as the packer may think most desirable. Those oftenest seen in the markets are cylinders, 4 to 5 inches high, and 6 to 8 inches in diameter, holding from 5 to 6 pounds. Other and larger sizes, holding from 10 to 15 pounds, are frequently seen.

During the season of 1880 the wholesale price averaged $\$ 5.50$ per dozen for 5 -pound cans. The cans usually bear the brand of the deputy inspector under whose supervision they are packed, this being in accordance with the Massachusetts inspection law.

The business has from the first been confined largely to Boston and Gloucester. Mr. A. Howard Clark informs us that 100,0005 -pound cans were put up in the latter city in 1879 , and Mr. Wilcox gives 72,000 cans as the quantity packed by the dealers of the former place. In 1880, according to the same authorities, Boston parties packed 144,000 cans, and the Gloucester firms put up about 135,000 . The quantity for the entire county, including those packed in New York and other places, is estimated at 360,000 cans, valued at over $\$ 150,000$.

Broiled mackerel.-At the sardine canneries two methods have been adopted for the preparation of mackerel. The first originated with Mr. Julius Wolff, of the Eagle Preserved Fish Company. By it the fish are treated in a manner exactly similar to that employed for certain brands of sardines. They are carefully cleaned and dried, after which they are fried in oil and packed in cans with vinegar and spices. The second method, which is now extensively adopted, originated with Mr. Henry Sellmann of the Americann Sardine Company. In June of 1880 Mr . Sellmann, fearing that the increased number of canneries at Eastport, Me., would result in a scarcity of herring, decided to erect one at Camden near the mouth of the Penobscot River, where small herring were reported to be abundant. Failing to secure a sufficient quantity of herring, he turned his attention to the canning of mackerel, buying all that were offered by the local fishermen and sending daily to Bostou for au additional supply.

In preparing the fish, the heads, tails, and viscera are removed, after which the bodies are thoroughly cleansed and immersed in strong brine for a few minutes. When they have absorbed a sufficient quantity of salt they are again washed, spread upon wire trays, and placed in a tight box, where they are steamed for several minutes. The trays containing the fish are next placed in a large oven, to be thoroughly baked or broiled. On removal they are packed in oval tin boxes, holding about three pounds each, and covered with mustard, or with a dressing consisting of tomato-sauce seasoned with spices. The cans are then sealed and placed in a hot-water bath. When sufficiently cooked they are taken out aud "vented." They are then allowed to cool, after which
they are neatly labeled as "fresh-broiled mackerel," and packed in wooden cases for shipment. Mackerel prepared in this way are, on account of their delicate flavor, far superior to any of the brands of herring, and from the first the demand has been greater than the supply. Owing to the favor with which the goods were received Mr. Sellmann soon found it desirable to locate a factory at some point where a large and constant supply of fish could be depended upon. Accordingly, in the spring of 1881 he associated with himself other capitalists, and built a cannery at Gloucester, Mass., where considerable quantities of mackerel have been packed. Up to the close of the season no other factories were built for the preparation of broiled mackerel, but it is thought that in 1882 a good many persons will devote their attention to this industry. In 1880 Mr . Sellmann packed 50,784 cans, valued at $\$ 16,400$, and in 1881 the combined product of the Camden and Gloucester establishments was about 200,000 cans.

VI.-METHODS OF PACKING, AND INSPECTION LAWS.

By A. Howard Clark.

K.-METHODS OF PACKING AND INSPECTION LAWS.

44. Methods of packing mackerel.

The bulk of the catch of mackerel by the American fleet is cured in pickle, being split, and salted in barrels. Some of the salt mackerel are afterwards smoked, but this method of curing is practiced only in two or three places, and here only to a very limited extent, though in parts of Europe a large business is done in the smoked product. The European way of preparing mackerel for salting is much inferior to the American method. The fish are cut open with a knife along the belly, instead of being split down the back. The gills and entrails are taken out, and the fish are then packed, belly up, in barrels. This is a very poor way of handling mackerel, for they are not soaked, and the blood remaining in them makes them dark-colored and liable to spoil in a short time.

In previous sections of this report the manner of handling mackerel on board of the fishing-vessels has been fully described. Until about the beginning of the present century the labor of splitting and salting could be done on shore, since the fish were sufficiently abundant near the land so that boats or ressels made but short trips, disposing of their fares each day in a fresh condition. With the growth of the industry it has been found necessary to follow the fish further from land, and with the larger class of vessels employed it has for some years been more convenient and profitable to make longer trips than formerly. It has, therefore, become customary to perform much of the work of preserving the fish on board the ressels instead of on shore. After being captured, the
mackerel are immediately split, salted in barrels, with sufficient pickle to insure their preservation at least until the vessel shall arrive home, and the barrels are stowed in the hold. When a fare is secured the vessel returns to port to "pack out." The barrels of fish are at once landed on the wharf, when they are culled into grades as defined by law, and, after being properly weighed, are put up in various sized packages and distributed over the conntry. In most of the New England States there are laws that require each package to be branded by an authorized inspector, who must thus certify that it contains the designated kind, grade, and weight of fish, and that they are properly preserved. The same fish are sometimes repacked in the Western and Southern States and resold under brands different from those required by the laws of New England.

The manner of handling mackerel, though differing in some of the minor details, is essentially the same for all of the New England ports. The method described in this chapter is that .pursued at Gloncester where great quantities of mackerel are annually packed.

The barrels of fish are hoisted by hors e-power from the vessel's hold to the wharf, and are set ou end until all are ready for packing. They are next unheaded and the mackerel emptied, one or more barrels at a time, into the culling-crib,* around which stand three or more "cullers," who separate the fish into several grades, throwing them into weighing-tubs holding about 100 pounds each. After being weighed the fish are thrown into the packing-crib, and are ready to be put into barrels or smaller packages. The first two tiers in the bottom of a barrel are placed flesh up, and the successive layers back up. Over each layer is sprinkled a few handfuls of salt, using about a half bushel, or 35 pounds, to each barrel. The law requires that a barrel shall contain 200 pounds of mackerel exclusive of the weight of the pickle, and that half, quarter, and eighth barrels shall coutain proportionate quantities. Smaller packages of any size may be put up, provided the weight is properly branded thereon. The cooper now heads up the barrel and rolls it along the wharf in the proper row for each grade. It is next taken by the pickler, who bores a hole in the side and pours in some brine. For this parpose he places in the hole the pickle-tub, which is an ordinary water-bucket, with a copper nozzle in the bottom, thus making a very good funnel. The pickle is usually the same as taken from the barrel of mackerel as it comes from the vessel, being poured from the barrel into a pickle tub or butt and then dipped by the pickler. It may be strengthened by the addition of fresh salt, and is considered of the proper strength when it will float a mackerel of ordinary fatness. The barrel having been filled with pickle, the hole is plugged up, and it is then turned on end ready for branding. It is often allowed to remain for several days on its side or on end, in order to allow the fish to settle, and is then refilled with pickle. A lack of sufficient pickle is determined

[^65]by the sound produced by striking the barrel with a stick or 'ooper's hammer.

The labor of packing or putting the fish in barrels is generally done by boys from ten to eighteen years of age, who receive about 5 cents per barrel for this work, and often make good days wages as they become very expert. Captain Collins mentions one instance of a (ìlucester boy, twelve years old, who packed 491 barrels in one day, and on another occasion 143 barrels in less than four days.

The entire work of culling, weighing, packing, and piekling must be under the personal supervision of an inspector, who pats his official brand on the head of each package. This brand must state the kind and grade of fish in the package, the name of the inspector, the name of the town and State where packed, and the date of packing. In Massachusetts the year when they are put up is considered sufficient, but in Maine and New Hampshire the month must also be given. After being kept all winter, or even for a less time, the mackerel may become rusty or the pickle may leak out, so that they may require repacking and reinspection. Illegal branding by an inspector is punished by fine and removal from office.

There is very little difference in the inspection laws of the several States defining the grades of mackerel. In Massachnsetts there are five qualities, called numbers one, two, three large, three, and four. New Hampshire has the same grades. Maine laws define a grade called number three small ; that is, the same as number four of the other States. The first grade, or number one, must be mackerel of the best quality, not mutilated, free from rust, taint, or damage, and measuring not less than 13 inches from the extremity of the head to the crotch or fork of the tail. Number two are those of the next best quality, free from rust, taint, or damage, and measuring not less than 11 inches in length. Those that remain after the above selections, if free from taint or damage, and measuring not less than 13 inches in length, are number three large. The next inferior quality, free from taint or damage, and not less than 10 inches in length, are mumber three. All other mackerel free from taint or damage are called mumber four. Thode Island laws declare that "every cask of pickled codfish and mackerel offered for sale, or for exportation from the State, shall also be branded No. 1, No. 2, or No. 3, to denote the quality of such fish."

Besides the regular grades required by law, dealers are arcustomed to make other qualities, designated extra ones, extrat twos, and mess muckerel. The first named are superior both in size and fatness, and are sold at a great advance over ordinary number one fish. Extrat two mackerel are better than ordinary two, and are in all respects equal to ordinary number one fish, except in the length; these also bring an advanced price. Mess mackerel are made from any grade, but prineipally from numbers two and one fish, free from the heads and tails, and with the blood scraped off.

The size and material of packages for pickled mackerel are regulated by law. The Massachusetts statutes require that pickled fish be put up in tierces containing each 300 pounds; in barrels, 200 ponuds; half-barrels, 100 pounds, or in packages containing a less quantity, upon which the weight of the fish therein is legibly branded. Large quantities of mackerel are put up in a sort of firkin, called a kid or kit, which holds about 25 pounds, or an eighth of a barrel. Quarter-barrels are also used to a considerable extent, and for the last two or three years packers have used tin cans containing about 5 pounds of fish each.

All packages, except those containing less than 25 pounds weight, must be made of sound, well-seasoned wood, and be well hooped. The staves may be of either white or red oak, spruce, pine, or chesturt, and must be 28 inches long. The heads may be of either above kiuds of wood, planed, and when of pine must be free from sap or linots. They must measure serenteen inches between the chimes. Each tierce, barrel, and half-barrel must be well hooped with at least twelve hoops, three on each chime and the same number on each bilge. The barrels must contain not less than 28 nor more than 29 gallons; the half-barrels not less than 15 gallons, and the tierces not less than 45 nor more than 46 gallons each. Each cask must be made in a workmanlike manner, and be branded on its side, near the bung, with the name of the maker. All casks not properly made may be rejected by the inspector. New Hampshire laws require rift timber for staves. In Maine poplar staves are also allowed.

Barrels for packing fish are manufactured in various parts of New England, but most of them are made in Maine, Bangor being the headquarters for this industry. They are sent to the fishing ports either pot together ready for use or in sbooks that are made into barrels at the cooper-shops in Gloncester and other places. The demand for barrels at the fishing ports sometimes exceeds the supply, so that their value is greatly enhanced. In 1881, during the height of the season, they fiequently sold at over a dollar apiece, but the usual price for some years past has been from forty to sixty cents. Old barrels that have served one or more trips on the vessels for holding salt or fish are ofteu repaired and sold at cheaper rates.

While Trapani, Cadiz, and Liverpool salt are used in salting mackerel, Liverpool salt is more generally preferred, as it keeps the fish in better condition. The salt is taken from home by the mackerel vessels. It is carried in barrels that are stowed in the hold until occasion comes to use it, when it is emptied and the barrels are used for mackerel.

The quantity of salt required to prepare a barrel of mackerel ready for branding is about 108 pounds. On the vessel it is customary to use one and one-sixth bushels of salt for stowing down each barrel of fish, or ${ }^{\circ}$ $3 \frac{1}{2}$ bushels for three barrels. On shore one-half bushel is used for each packed barrel, and as there is a shrinkage of one-tenth in packing, we find the total quantity of salt required to produce a barrel of packed
mackerel is 108 pounds, or three pounds over a bushel and a half of salt. The entire shrinkage on mackerel from the fresh to the packed state is 33 per cent.

The cost of packing mackerel varies with the price of barrels, salt, and labor. During the war it was very high, and it continued so until about 1876 , when it was reduced to about $\$ 1.75$ per barrel. In 1880 it varied from $\$ 1.30$ to $\$ 1.50$, and in 1881 , owing to a large demand for barrels for the increased catch of ish, packing advanced to $\$ 2$ during the height of the season, and averaged about $\$ 1.75$. This cost of packing includes all the expense incurred in preparing the fish for market after they have been received from the vessel in sea-packed barrels.

The packer is generally a deputy inspector, who is also part owner of the fish to be packed and inspected. He therefore realizes a profit both in the packing and in the sale of the mackerel. In some cases, however, the packer is not at all interested as an owner. but is hired as a deputy inspector to prepare the fish for market. With a gang of men he goes to the wharf where the mackerel have been landed from the vessel, and being provided by the owners of the fish with barrels, salt, pickle, and culling and weighing apparatus, he performs the work, and charges from 50 centsto $\$ 1$ for assorting, weighing, packing, coopering, and branding. He may also make a profit on the labor in addition to his lawful inspection fee.

The inspection fee, exclusive of the labor and cooperage, is 9 cents per barrel in Massachusetts and New Hampshire, of which amount the personal inspecting officer is entitled to 8 cents and the general inspector to 1 cent. In Maine, where there is no general inspector, the fee is 7 cents per barrel. This fee is to be paid by the owner of the fish or the person hiring the inspector, and may be recovered of a purchaser.

In settling with the crew of a mackerel ressel under the old methods of capture, the share of each man depended on his individual catch of fish. At the present day, when seining is the almost miversal mode of capture, it is impossible to follow the old way of determining the shares, what the men receive depending on the total catch. One man mayreceive a half or quarter share because of his inexperience, while another mar receive a share aud a half for his unusual activity or some other reason. The extra half share, however, would be paid by the owners of the vessel as a premium for the best work.

Barrels and salt for use on the vessel are provided by the vesselowners, who also furnish the apparatus of capture and the provisions for a trip. Stock charges or the expense of bait, if it be used, harbor dues, and some other items are paid one-half by the owner and one-half by the crew. Several other items, called the crew's expenses, as the wages of a cook, the milk and water used on the trip, the cost of hoisting the mackerel from the ressel to the wharf, towing, and extra labor for scraping and tarring are paid entirely by the crew.

When the mackerel are packed and sold, the fishermen are entitled to
one-half of the net proceeds of sale, and the vessel-owners to the other half. The difference between the gross and net proceeds is the cost of packing, including the barrel and the stock charges. Thus, a trip of mackerel may be sold for $\$ 5,000$. The stock charges may be $\$ 300$ and the cost of packing $\$ 600$. The net proceeds would be $\$ 5,000$, minus $\$ 900$, or $\$ 4,100$. One half the net proceeds, or $\$ 2,050$, is the owner's share, and the other half the crew's share. From the crerr's half must be deducted the crew's expenses, which may be $\$ 150$, thus leaving $\$ 1,900$ to be divided among the men.

Prior to 1872 a settlement with the ressel's crew for a trip was not made until the mackerel were inspected and sold, which might be several months after the trip was completed. As a general rule, the res-sel-owner packed and purchased the eatch very soon after it was landed, and then, having settled with the crew, he waited for a favorable time to put the fish on the market. The crew hare, perhaps, a legal right to take their half of the fish, after deducting stock and packing charges, and may sell that half whenever they please, but in practice the owner of the vessel usually sells the fish for the crew or buys them outright. The captain of the vessel may act as agent for theowner in selling mackerel away from home.

Since 1872, and especially during the past two or three years, many trips have been sold "out of pickle" immediately after being landed. The crew at once receive their share of money, and may proceed on another trip, and the fish may not be packed and put upon the market, for several weeks, or even months. In selling out of pickle a barrel of mackerel is reckoned at 200 pounds of fish as they come from the seapacked barrel, without being drained of pickle or the salt washed off, though the fishermen sometimes complain that there is a pretty thorough draining and washing before the fish are weighed. The price paid the fisherman is so much per 200 pounds of fish, exclusive of the barrel, which is furnished by the purchaser.

Mackerel bought from the vessel out of pickle are sometimes re-sold before being properly culled and inspected according to the letter of the law. The practice of selling out of pickle is often an accommodation to the fishermen, as it does not require them to wait for weeks or months for their money. It is also often a source of considerable profit to the purchaser, who, by careful culling, may realize a far greater proportion of good grades of fish than was estimated in bnying them without being assorted.

A considerable source of profit to the dealers is the practice of buying inspected barrels of mackerel and then re-packing them, perhaps making a few more barrels of the better grades, or packing them as mess mackerel by cutting off the heads and tails and scraping off the blood. 'Where is a loss of about 25 per cent. in weight from ordinary to mess mackerel, but usually a more than proportionate increase in the value of the fish.

There has been considerable discussion as to the relative merits of mackerel taken with the purse-seine and those caught with the hook, and interesting experiments were made a few years ago to test the keeping power of the two kinds. An experienced fish-dealer of Boston states to Capt. J. W. Collins that he very carefully salted and pickled a half-barrel of each kind, using the same quantity of salt on each. He headed the half-barrels up and set them away about the 1st of October, and when he opened them about the 1st of the following March he found a marked difference between them. The flesh of the hooked mackerel was firm and in fine condition, while the flesh of the seined fish was short and mealy, retaining little or no firmness. He thinks the same difference will hold good in most cases. The same gentleman also made very careful experiments as to the comparative merits of fresh aud salt water for pickling mackerel. He salted and pickled two half-barrels, using fresh water for one and salt for the other. He put them up in the fall and opened them the following July, when he found a marked difference in them. Those filled with salt-water pickle were in excellent condition, while the others had a dirty scum on the pickle, and the flesh was dark and somewhat slimy; the skin had a whitish, discolored appearance, and the fish were thought unfit to eat. He says that in 1879 fresh water was extensively used in making pickle for fish, and thinks that when the fish are kept for any length of time they are unfit for food; hence the sale or market for pickled fish is injured.

Concerning the relative quality of hooked and seined mackerel, it appears certain, from the statements of many men of large experience, that the former are superior, and the reason is a simple one, namely, only a small quantity out of the entire school of fish is captured, and these are sarefully handled, while in seining the entire school of perhaps sereral cundred barrels is caught and the fish are necessarily allowed to remain "or a considerable time without care, so that many of them may become soft and greatly inferior in quality to fresh mackerel. With proper care the seined mackerel may no doubt be as good as the others.

There is a great difference in mackerel taken at different seasons of the year. Those caught in the early spring are very lean and shrink when pickled. As the season advances they grow fatter, and in the fall are at their best; so that the large fish taken in September and October grow heavier rather than lighter in pickle.

The care taken of mackerel in the early years of the fishery may be judged from the following instructions to the masters and crews of Massachusetts mackerel vessels, which appeared in the Gloucester Telegraph May 26, 1832. It is dated Boston, May 2, 1832, and signed James Barry, inspector-general of pickled fish:
"The mackerel fishery has already become a very important item in the catalogue of the staples of our State; and, if we may judge from its rapid progress in past years, is destined to become one of its greatest sources of wealth. Your attention is requested to the following facts and re-
marks: Mackerel should be split as soon as possible, and, after the blood has been soaked out of them, immediately salted with such salt as is suitable for the pupose; my own opinion is in favor of Liverpool or Cape Cod salt. It is necessary that it should dissolve as soon as possible. Eastport salt, so called, must not be used; it will not save the fish; it has proved destructive to fish and to meat. I have instructed my deputies not to pack mackerel struck with that kind of salt. Mackerel should be well salted in the first instance; it is a mischievous error that fishermen have fallen into by salting their fish too slack, as has often been the case; and another by using the plough, which has given to the fish a false appearance, and has been a source of mortification to the fishermen; and they have in a great many instances found fault with the iuspectors when the fault belonged to themselves in not taking that care of the fish which it was their duty to do, and which in many cases has been a ruinous business to purchasers. By a law of this commonwealth the inspector is required to throw into an inferior quality all mackerel which have been plowed, cut, or mutilated for the purpose of deception. It can be of no advantage to the fishermen, and I trust will never again be done. I have strictly forbidden any deputy inspector from packing any mackerel with the gills or entrails in them. They must be cleansed by the fishermen before they are offered for packing; otherwise they will be rejected. You must be aware how much better a fare of mackerel are, and how much more salable, when they are brought into market clean and well struck.
"My hope is that you will take this subject into your serious consideration and remedy the evils which have existed, and which I think you will do if you wish to insure the sale of your fish and have a due regard for your own interest. Those of you who are acquainted with me will do me the credit of seeking the welfare of the fishermen, which is so nearly connected with that of the inspector.
"Wishing you success in your business and prosperity in your homes, I remain, your friend and humble servant,

> "JAMES BARRY."

The following item appeared in the Boston Atlas July 15, 1845 :
"For the last twenty years scarcely a year has passed but there has something new taken place in the mackerel fishery which had a bearing on the inspection laws. The mackerel are fatter or poorer, larger or smaller, plenty or scarce, some one of which are different from the previous year, and thus it is impossible to make a law to meet all these changes in every particular. Whenever a change takes place its first operation is generally in favor of one or the other, until an alteration in the law takes place or interest dictates a remedy. Such has been the case the present season in relation to the South No. 3.
"Heretofore all mackerel taken south of Nantucket have been denominated Block Island, and considered to be of inferior quality ; so much
so that it became necessary to designate them from the North No. 3's by the word 'South.' Now it is the reverse.
"This year the fishermen found more of the middling-size mackerel at the south and in the latitude of Block Island than formerly, and, as the law did not oblige the inspector to cull these mackerel and make two numbers, the fishermen insisted upon their being packed and branded according to the letter of the law under the brand South No. 3.
"As soon as those mackerel came into market and the true condition of the fish became known the prices began to recede. Upon learning this fact, it was immediately recommended to the fishermen and inspectors to cull their mackerel and make two qualities of South No. 3, which was, I believe, generally adopted. Thus we shall have four qualities of No. 3 's, when, in fact, we ought to have but two, viz, large and small. I have thought proper to make this statement to inform the consumers and dealers in fish against any error they might be led into, supposing that all the mackerel packed in 1845 branded South are all large fish.
"E. H. LITTLE,
" Inspector-General of Fish.

"July 14, 1845."

Capt. N. E. Atwood, of Provincetown, Mass., gives the following account of the past and present methods employed for curing mackerel by salting and pickling:
"Some sixty years ago the method of catching mackerel with jig came into general use, so that in 1826 a large fleet of vessels were engaged in this branch of the fishery, fishing off the coast of Massachusetts and of Maine through the summer and autumn. Before the jig was introduced the quautity of mackerel taken was comparatively small; they were mostly caught by trailing while the vessel or boat was sailing through the waters, ouly a few being captured in nets. When the jig came into use the way of fishing on board of mackerel vessels was by hauling down the jib and laying the other sails in such a way that the vessel would drift squarely to leeward. Bait chopped fine was thrown overboard in very small quantities, so as to keep a small string of bait going from the vessel all the time, and the school of mackerel, meeting this bait, would follow it up to the ressel and bite at the jigs, so that the fishermen would not have to wait for a bite while the fish was inclined to take the hook. In this way a number of barrels of fish could be taken in a short time, and a crew of teu men could catch in an hour or two from ten to twenty barrels, sometimes more and many times much less, or very few. As soon as the fish ceased biting, the crew engaged in dressing them, making three gangs of two or three men each, one man to split the fish and two to gib. The splitter as he splits them throws them into a gib tub; the gibbers take each an empty barrel and put in it two buckets of water; they then commence to gib, taking up a single fish and opening it suddenly with a jerk, which causes them to break lengthwise along the lower end of their ribs if they are fat,
thus making a crease on each side, but if they are poor they will not break. He then takes out the entrails and gills and throws the fish into a barrel flesh down, and open; if one or more should be put in shut up the blood would not soak out. When the barrel is about level full he fills it with water, and it is then left for the blood to soak out of the fish. The gibber then fills another barrel in the same way, and so on until all the fish are dressed. After washing the decks, the next thing is to shift the fish into clean water, as that in which they have been soaking has become very bloody. Taking an empty barrel and putting in it two buckets of clean water, the fish are taken out one by one, and if any of the entrails or gills have been left in by the gibber, it is removed, so that the fish is thoroughly cleaned. At the same time that the fish are examined and cleaned the rimmer is used, plowing deeper the creases in them, which makes them look fatter, so that when the inspector culls them and puts them up ready for market they may have a larger proportions of No. 1's and and No. 2 's. The rimmers are of various kinds and shapes; some are made wholly of wood; others have the end tipped with pewter and fine teeth on the edge, so as to make the crease look rough, as though it was broken naturally; others have a knife in the end, which cuts them smoothly. There are other kinds of rimmers and other ways of rimming too numerous to mention, but the object is to make them look fatter than they really are, and therelby gain in number of fat fish or in better quality, as this crease is an indication of their fatness. After the mackerel have been in the second water a short time they are ready for salting. They are salted in tight barrels, so as to hold the pickle, which keeps them from rusting, using salt enough to preserve them well until the end of the voyage.
"When the vessel arrives at port the fish are taken out of the barrels and assorted or culled by an authorized inspector, agreeably to the Massachusetts inspection law. The inspector puts them up with his name on the barrels, and then he becomes responsible for their condition and quality. The above is the whole process of curing mackerel, and if so cured, and the barrels kept tight and full of pickle, they will keep in good condition a long time.
"While jigging was the principal way of catching mackerel they were taken in such a way ard in such quantities that they could be dressed before they became soft; but since seining has come into general use the quality of mackerel is much inferior to what they were before.
"The seining vessel may be on the fishing-ground and cruise for weeks and not get a single fish, for they may keep down and not show themselves on the top of the water. Theu a day may come when mackerel will come up and large schools of them may be seen in every direction. The seiner then throws his seine around a school, and if he is fortunate enough to inclose them, he hauls in the purse-lines, gathers in the net so as to bring the fish into a compact body, and then commences to bail them out on deck with his scoop-nets. In this way large
quantities of fish are caught in a single haul, sometimes hundreds of barrels. Having such a large quantity, and handling them so much, the men cannot dress them before they get soft. When they are dressed and salted they are headed up in barrels and brought into port, and when opened for culling and inspection they are found to be ragged and soft, and do not compare in quality with the jig mackerel of former years.
"One more fishery I will mention; that is, when the mackerel are passing off the coast late in autumn. A large number of gill nets are then set in our bay and kept there night and day. The fishermen visit them daily, as often as the weather will permit, and take out the fish that may have been caught during the night. The weather is often windy and rugged, so that they cannot go to their nets for several days. The fish are injured by remaining in the nets any considerable length of time after they are caught. Mackerel taken at this season of the year are not of the best quality, for, even if they are taken out of the nets as soon as may be, on the following morning after they have run in, and dressed at once and put in water to soak, the water is cold, and as the blood is already chilled, it will not soak out of the flesh of the fish, so that they will be dark colored. When the water becomes cold the mackerel lose their fat fast, so that those that are canght here as they are passing off late in November and early in December, many of them have little or no tat in them, however large the creases may be that have been made by the fisherman's rimmer to indicate their fatness. They are inferior fish, and often fail to give satisfaction to the parties who buy them."

> 45.-INSPECTION LAWS.

Statutes regulating the method of packing pickled fish are in force in many of the States, but the only ones governing the manner of preparing salt mackerel are those of Maine, New Hampshire, Massachusetts, and Rhode Island. Nearly the entire catch of the mackerel fleet of the United States, with the exception of fish sold fresh, is packed in Massachusetts and Maine, and thence shipped throughout the country. As there is no national law governing the proper preservation and requiring uniform grades of mackerel, it often happens that fish packed accord ing to law in New England are repacked in other States and sold under: false or misleading brands, much to the injury of the original packer.

In some of the States outside of New England, as in Pennsylvania, there have been laws requiring fish that have been legally inspected in other States, but repacked in that State, to be reinspected. The Pennsylvania law was repealed in 1874. The laws of Ohio require the inspection of all pickled fish except shad, mackerel, and herring. In New York there is a law on the statute-book which declares that pickled fish intended for foreign exportation must be inspected, but this law is entirely inoperative. The laws of Michigan permit the inspection of
fish when desired by packers. Fish-inspection laws are in force in New Jersey, Virginia, North Carolina, and Michigan, and also in the city of Chicago and some other large cities, but they do not concern the mackerel trade, except that the sale of damaged fish is generally forbidden.

We give in the appendix to this report, first, the existing laws of Maine, New Hampshire, Massachusetts, Rhode Island, and Connecticut; second, some of the repealed laws of Maine, Massachusetts, Connecticut, and Pennsylvania; and, third, the laws now in force in the Dominion of Canada, as also the old law of the Province of Nova Scotia.

In early colonial days it became necessary to enact laws for the proper regulation of the trade in fish, and to prevent deceit in packing them. Accordingly, as carly as 1651 we find that the general court of elections held at Boston ordered that in every town within its jurisdiction officers should be appointed whose duty it was to see that the barrels of tish be properly packed, containing only one kind of fish, and those well cured. Each town was to make choice of a proper person as inspector, and within one week after the choice he was to be presented betore a magistrate by the constable and take the requisite oath for the performance of his duty. Refusal to take the oath incurred a penalty of forty shillings, and another choice was made. The oath was a strong one, and required the officer to swear by the living God that he would well and truly pack all becf, pork, and other things when. required; that he would pack none but good and sound goods; that he would set his mark upon every cask thus packed ; and that he would discharge his duties according to his best judgment and conscience. The size of casks and barrels in which fish, beef, pork, \&e., were packed were regulated by law, and according to an act passed by the general court of the Province of Massachusetts in 1692 these casks must be of London assize ; puncheons, 84 gallous; hogsheads, 63 gallons; tierces, 42 gallons; barrel:, $31 \frac{1}{2}$ gallons ; and must be made of sound, well-seasoned timber, and free from sap.

If any person should illegally shift any fish that had been properly packed and branded, he must pay double damages to persons wronged thereby, and must be set in the pillory not exceeding one hour. Equally severe penalties were imposed upon violators of other sections of the inspection laws. If the master of a vessel receive provisions aboard of his vessel not properly branded, he must forfeit donble the value of all such prorisions, and the owner of the provisions must forfeit the same.

From time to time during the history of the States various inspection laws have been passed, but since there is so much sameness to them it seems unnecessary to reproduce them all.

In some of the States the appointment of inspectors has been left to the towns, while in other States they have been appointed directly by the governor. Some States have passed no general laws covering the inspection of fish, but all such regulations have been left to the cities aud towns. But throughout New England, the center of the fishing
industry, the question has been regulated by State enactments, and the appointments of the chief officers have been made by the governor, who has, however, left the appointment of deputies to the chief inspector.

Massachusetts has found it prudent to have an inspector-general, who supervises and is responsible for the numerous deputy inspectors in the seaport towns. Maine had such an inspector-general down to 1875, but the office was then abolished, and inspectors appointed in the fishing ports are now responsible to the State alone.

As early as 1816 there was an inspector-general of fish appointed in New Hampshire, whose duties were the same as of similar officers in other States.

The existing laws of Maine were passed January 25, 1871, and amended by acts passed February 24, 1871, and February 10, 1875, and provide that the governor "shall appoint, in places where pickled fish are cured or packed for exportation, one or more persons skilled in the quality of the same, to be inspectors of fish, who shall hold their office for a term of five years, unless sooner removed by the governor and council." Each inspector must be sworn and give bonds to the treasury of the city, town, or plantation where he is appointed for the faithful performance of his official duties. Iuspectors must make yearly returns to the secretary of state, showing the quantities and kinds of fish inspected. Their fees are paid by the original owners of the fish.

The law regulates the grades of mackerel under three numbers, and requires that other pickled fish as well as mackerel shall be packed in proper barrels, and no more salt put with the fish than is necessary for their preservation. No pickled fish in casks can be exported from the State, or sold within the State, except such as have been inspected according to law in this State or under the inspection laws of other States. Although, according to the requirements of the law, each inspector is expected to make annual returns to the secretary of state showing the quantities of fish inspected during the year, no such returns can be found for the years 1821 to 1864 , and for 1879 , and only imperfect ones for some other years.

The present laws of Now Hampshire were passed in 1878, and are very similar to those of Maine and Massachusetts. An inspector is appointed by the governor, and he may appoint deputy inspectors, for whom he shall be responsible. The inspector is under bond to the State treasurer for the faithful discharge of his duties, and the deputies under bond to the inspector.

The law requires that all fish pickled in barrels for exportation, and all smoked herring or alewives, shall be inspected and the barrels and boxes properly branded. It regulates the size of casks and the material from which they may be manufictured.

The inspector is required to make returns to the governor anmually of all fish inspected by him or his deputies during the year. The inspection fees are paid by the owner or person employing the inspecting
officer, and these fees are divided between the general inspector and his deputies.

Pickled fish and smoked fish intended for consumption within the State, and fish packed in kegs of less than 10 gallons, require no inspection, but they must be properly cured and packed, under the same penalty as inspected fish.

The existing inspection laws of Massachusetts provide for the appointment by the gorernor of an inspector-general of fish, who shall hold office for five years, and who shall be sworn and give bonds to the treasurer of the commonwealth in the penal sum of $\$ 10,000$, and who shall have no interest, directly or indirectly, in the cure or packing of pickled fish. The inspector-general appoints deputies in the various seaport towns, and takes bonds from them with sufficient sureties. He is responsible for their official conduct, and may remove them from office at his pleasure. The deputies are, in most cases, members of firms that are engaged in packing fish, and receive fees for inspection that are divided with the inspector-general.

The fees of the office of the inspector-general will be seen in the following extract from the Cape Anu Advertiser of April 16, 1875:
"General William Cogswell, inspector general of fish, has submitted a statement to the joint standing committee on fisheries of all the fees he has received from the office for the jast eight years. The total receipts of that period have been $\$ \geq 3,365.06$; total expenses, $\$ 4,400$; net receipts, $\$ 18,965.06$. During the eight years he has made some twentyeight different seizures of packages of mackerel, valued at $\$ 5,781.75$, from which he received, after paying expeuses, $\$ 1,446.44$, instead of $\$ 5,781.75$, which he might have insisted on had he carried out thestrict letter of the law, or an average of about $\$ 160$ a year. Average net salary per year, about $\$ 2,550$."

As these fees are paid entirely by dealers in fish, the office of inspectorgeneral is of no expense to the State.

It is provided further that "under the supervision of the inspectorgeneral and his deputies. respectively, all kinds of split pickled fish and fish for barreling, except hering, and all codfish tongues and sounds, halibut fins and napes, and sword-fish, whenever said articles are intended for exportation, shall be struck with salt or pickle in the first instance, and preserved sweet and free from rust, taint, or damage; and wheu the same are found in good order and of good quality, they shall be packed either in tierces containing each 300 pounds," \&c.

Smoked herring and alewives are also to be inspected, and the size of the boxes for smoked fish, as well as size and material for barrels used for packing pickled fish, are clearly defined.

Fish are divided in various grades, and only one kind allowed to be packed in the same package. Of mackerel there are five grades, determined by their length and quality. Other fish are divided generally into two qualities, and so branded.

There has been considerable opposition to the othice of inspector-general, and strong efforts have been made by fish-dealers to abolish the office. In Maine there has been no inspector-general since 1875 , and it is clamed by many that there is greater satisfaction among purchasers than formerly. The question has been discussed in the Massachusetts legislatue at various times, and has always resulted in the retention of the office as one that is important to the security of purchasers.

Since there is uo national law covering the inspection of fish or the protection of the packers, it is claimed by the dealers in Massachusetts that mackerel are adulterated oustide the State, so that those inspectedo in the State reach the consumer in a poorer grade. A remedy suggested is to pack mackerel as they do other merchandise, by any weight or style of packages, and brand honestly on each head, the grarle, the weight, and the owner's name, and do it in such manner as to prerent repacking without destroying the trade-mark. "Buyers will demand original packages if all such names as corer fish that correspoud to the mark on each head, and packages that have been tampered with will be rejected. There seems to be but one objection to this plan, namely, a large buyer inland might find it necessary to repack for better preserration, necessitating the breaking of the orisinal seal. But this, we apprehend, is not serious." There have been other plans suggested as substitutes for the existimg laws, but the legislature has decided that the present regulations are just and proper.

The laws of Rhode Istand provide for the election in each tomn of one or more packers of tish, who "shall see that the same have been properly pickled and properly repacked in casks, in good shipping order, with good salt sufficient in each cask to preserve such fish from damage to any foreign port." The packers give bond to the town treasurer for the faithful performance of their duties.

Every kind of pickled fish must be sorted, and one kind only be put into one cask. The casks must be "well seasoned, and bound with twelve hoops; those for menhaden and herring of the capacity to hold 28 gallons, and those for other fish of the capacity; if a barrel. to hold 200 pounds, and if a half-barrel, to hold 100 pounds weight of tisli; each cask to be full, and the fish sound and well cured."

The law provides for three grades of pickled codfish and mackerel, and imposes fines upon packers who neglect to obey the law, as well as upon any person who shifts fish from a cask after the same has been branded by the packers.

Laws for the inspection of pickled fish in Connecticutrelate to picklec? shad, and provide that they shall be "well cleansed, and pickled in strong brine, and shall remain in such brine at least fifteen lays hefore they shall be pat up for market, and shall be put in barels or half-baterels, the barrels containing 200 pounds each and the half-barrels 100 pounds each of tish." Three denominations of shad are defined, the size being determined by the number required to fill a barrel.
S. Mis. $110-16$

Inspectors are appointed by the superior court in the several comnties, and receive a fee of 20 cents per barrel for packing, heading, tlagging, pickling, and branding. "Any inspector of fish who shall inspect or brand any package of shad imported into this State shall forfeit $\$ 5$ to the State."

In the several provinces now comprising the Dominion of Canada lars have from time to time been enacted requiring all pickled and smoked fish to be properly salted, packed, and inspected before they were offered for sale. In the year 1867 the Dominion of Canada was created by the union of Upper and Lower Canada, Nova Scotia, and New Brunswick. In 1873 Prince Edward Island became a part of the confederation; so that the Dominion of Canada now includes all the provinces where fisheries are carried on, with the exception of Newfoundland, which still retains its individuality as a separate province of Great Britain. General fish inspection laws, extending throughout the Dominion, were enacted by the Dominion Parliament in 1873, but were repealed in 1874, when more complete statutes were enacted, which, with slight amendments passed in 1876,1880 , and 1881 , now regulate the manner of preparing pickled and smoked fish for exportation or for sale within the Dominion.

We give in the appendix the fish-inspection law as enacted in 1874, together with subsequent amendments; also the old law of Nova Scotia, as found in the revised statutes of that province, published in 1851.

The principal object of fish-inspection laws is to prevent fraudulent pickling. There has been a great deal of discussion concerning the benefit of these laws; some packers contend that they are hardships, while others claim that without some legislative regulations much more fraud would result and the trade in salt mackerel be reduced to a very low state. The law is a protection to both buyer and seller. It guarantees to the former a definite quality of fish, and protects the trade of the latter in that it prevents a great amount of dishonest underselling and assures to the seller a definite knowledge of the merchandise sold by his neighbor. The principal kinds of fraud in packing mackerel are short weight and wrong grades. The first kind of frand is practiced by the addition of more salt than is necessary for the proper preservation of the fish, and a corresponding subtraction in the quantity of mackerel, thus keeping the same total weight in the barrel. According to law a barrel of fish, means 200 pounds of fish, and not that weight of fish and salt. The second kind of fraud, or that of packing wrong grades, is more generally practiced, and the least liable to detection by ordinary customers. A No. 1 mackerel is plainly defined as the best quality of fish, at least 13 inches in length. A packer's notion of best quality may be as varied as the number of his customers, for, while the requisite length of 13 inches is given, there may be great difference in the degree of fatness, so that the No. 1 mackerel packed by oue firm may
be far inferior to those packed under the same number by other firms. In other grades of mackerel the same fraud is practiced, No. 3 appearing as No. 2, and No. 4 packed as No. 3. But a small part of the fraud in packing is done within the precincts of States that have inspection laws. Most of the fraud is in repacking in Western or Southern States barrels of fish that have been inspected in New England. A large quantity of fish are bought of New England packers and are by dealers West and South repacked, and the same frauds again practiced that governed the original packing of the fish. Thus mackerel that are in reality No. 3 are first fraudulently packed as No. 2 and later as No. 1. A small short weight of fish and extra quantity of salt is increased until ten barrels of fish become twelve or thirteen. Especially is this short weight liable to be practiced where whole barrels of fish are repacked in small packages containing 25 or 50 pounds, and as in most of the States outside of New England there is no law regulating the grade of mackerel and quantity required in a barrel, the dishonesty is not illegal, and can be carried on with an impunity only limited by the patience of the cus tomer.

A chief cause or occasion for fraud is, perbaps, the fact that the inspectors in States where inspection laws are in force are themselves the owners and packers of the fish. In Massachusetts only the inspectorgeneral is forbidden to be interested, directly, or indirectly in the packing of the inspected fish. Nearly all the deputies, or the men who really do the culling, weighing, and branding, are the owners and sellers of the very fish they inspect. There is little protection against fraud, therefore, save in the honesty of the man, and as the moral standard varies with differentmen, so does the degree or extent of fraud. A strictly honorable inspector would scorn to take adrantage of his authority and under the cloak of his commission cheat his customers. Some inspectors, however, have an elastic conscience that will stretch to the point beyond which there is liability of detection either by a superior officer or by a customer. Such men can make old fish appear new by scraping off some of the rust, or can from one legal grade of fish make two superior grades.

In Maine there is no inspector-general of fish, so that each inspector is responsible alone to the county or city authorities to whom he is under bonds for the faithful discharge of his official duties. For several years prior to 1875 Maine had an inspector-general, but in the year named the office was abolished as unnecessary, and inspectors became personally responsible for their acts. A loud cry was made in Massachusetts in 1874 and 1875 concerning the abolishment of the ortice of inspector-general of fish, and numerous articles appeared in the papers of the day discussing both sides of this question, and including the general subject of fraudulent packing. We quote several of these newspaper discussions to show the general spirit of the discussion. The following article appeared in the Portland (Me.) Advertiser April 4, 1874:

" To the Editor of the Advertiser:

" In your issue of March 31 I noticed an article headed 'Fish Inspectors,' from which readers not familiar with the business would receive a decidedly wrong impression, as they would infer that the inspectors of fish are in favor of abolishing the present law by which they are governed. But such is not the case. The whole difficulty seems to rest with one or two fish buyers; they are anxious to have the law repealed, and those acquainted with the fish business can easily understand the motives by which they are prompted. The fishing interest of Portland is of vital importauce, and should be protected, and every honorable influence brought to bear to encourage fishermen living east of Portland to bring their fish here to market; but if the viers of some of the fish buyers should be carried out, it is evident that not only vessels from the east would pass this port, but vessels that are owned and pack their fish here would be obliged to seek another market.
"All the regular deputy inspectors of fish in this city have presented a petition to the goveruor praying that the present manner of conducting the business under a general inspector may be continued, and the present incumbent, who has served so faithfully and impartially, may be reappointed for the usual term of five years, believing that it is the best and most judicious course to pursue both for the buyer and inspector.
"The old system, as it is termed, has been tried, and it failed to give satisfaction. Under the present law a general inspector is appointed to take the eutire charge, and he appoints his deputies, who are required to give bonds for the faithful performance of their duties. Massachusetts has the same law, and we hear no complaint.
"You state that 'by the old system deputy inspectors were appointed who were, generally speaking, connected with the fish business, and on them the responsibility rested, and at that time Portland fish stood very high.' Under the present law all the deputies are directly interested in the fish business, and they know that if these fish are not put up according to law the responsibility rests upou them. Upon whom else can they throw the responsibility? They inspect the fish and brand them, and have given bonds as the law requires. Yon 'would not imply there is deterioration in Portland fish, but yet the deputies have been inclined to be careless.' So it seems that, although the deputies have been careless, yet the fish is up to the standard! Then what reason is there for complaint? I am inclined to believe that the writer of the article was either misinformed, or else he wished to abuse the public mind with the impression that the general inspector had an exorbitant salary, and that this office entails an expense upon the merchants. The compensation of the gencral inspector last year was about three hundred dollars, and it is all paid by his deputies, who are assessed one cent per barrel for all the fish they inspect. So far as regards the quality of the fish, there is a law which definitely states what is required to constitute the different grades of fish, so that the inspector has his instructions from the law, and there
is no motive for the deputy to pack in any other way than the law directs, for he has nothing to gain, but everything to lose, providing the fish are returned to him.
"We hope the law will remain as it is, and that the governor will be pleased to reappoint for a general inspector Mr. D. L. Fernald, of Camden, who is soon to become a resident of this city.

"INSPECTOR."

An editorial in the Cape Ann Advertiser of November 28, 1874, says:
"The Boston Herald of Mouday has a lengthy article on mackerel packing, in which it argues that the recent depression of the mackerel market is owing to the frand practiced in selling short-weight packages and the making of No. 1 mackerel out of $3 ' \mathrm{~s}$, and it is charged that large spring herring have been split along the back and sold out West for mackerel, giving a large profit to those engaged in the nefarious business.
"The appointment of an inspector-general of fish purely on political grounds, without his having knowledge of the practical duties of the ofince, is denounced, as the office is one which requires the services of a practical man, who shonld devote his whole time to the work. A welldeserved compliment is given those engaged in the fish-packing business in Massachnsetts, saying that nearly all the old and reliable fish houses are as exact and careful in putting up fish now as ever; but the principal part of the frand in weight and quality of fish is perpetrated ontside of Massachusotts, and the packages marked with counterfeit Massachusetts inspectors' brands. Instances of fraud are quoted, and the Herald concludes by asserting that 'good inspection laws rigidly enfored, and a practical inspector-general, who will attend to his duties, devoting his whole time thereto, are the only means by which our mackeral trade can be sustained and extended to the gigantic proportions to which good management and honest dealing will surely bring it in the end.'
"We renture the assertion that the dealers in mackerel who wish a really good article aud send orders directly to this city have but little, if any, cause for complaint in the matter of frand in packing. Gloucester fish-packers, as a whole, have an enviable reputation in this particular; but they cannot hinder dishonorable dealers in other cities from repacking and selling short-weight packages or leau fish for fat ones, short fish for long, or herring for mackerel. Neither can they prohibit the counterfeiting of their brands or any other trickery which unprincipled dealers in States where there is no inspection law may perpetrate after receiving their stock from headquarters. All they can do is to continue packing and selling the best qualities of fish, and it will not be long ere the entire catch of this port will find its way into the hands of those who can and will appreciate fair and honest dealing. There is little fear but this fraud in mackerel-packing, will soon regulate itself, and honest dealers will reap the reward of well-doing."

The following communication, signed W. S., appears in the same paper as the preceding, under date of February 12, 1875:
"There seems to be a hitch in mackerel-an honest, clêver fish-but by the haste of somebody to overreach somebody else they fail to reach the cook South and West under an accurate denomination, and this curtails their consumption. If adulteration was chargeable to Massachusetts inspectors, a capable, efficient, and honest general inspector could remedy the evil, but we apprehend that the bulk-we will not say all, lest our communication be worthless-of the adulteration is beyond the precincts of our State.
"It appears to the writer that there are two ways to improve the mackerel trade, both within easy reach of the merchants engaged in fish commerce. First, install a general inspector familiar with fish by a practical education; and next, to go for his duty as unerringly as a bullet would, and call for the cooper and a pair of scales, and confine his business to the said cooper aud the said seales. If criticism is demanded, let it be with a note that makes one deputy less. But it is remarked, 'This is all very well for Massachusetts; we have no control beyond the limits of the State, where the chief mischief lies.' This we admit, and it is a feature that can't be remedied except by national legislation.
"A remedy we offer, that avoids necessity for State or national laws, general and deputy inspectors, as follows: Pack mackerel as they do other merchandise, by any weight or style packages, and brand honestly on each head as follows-the grade, the weight, and the owner's name, and do it in such manner as to prevent repacking without destroying the trade-mark. Buyers will demand original packages of all such names as cover fish that correspond to the mark on each head, and packages that have been tampered with will be rejected. There seems to be but one objection to this plan, namely, a large buyer inland might find it necessary to repack for better preservation, necessitating the breaking of the original seal. But this we apprehend is not serious. As at present conducted, we learn from our most intelligent and reliable fish merchants that the office of a general inspector is of no sort of benefit to the fish interest, and ought to be done away with, or place in the office some one who will execute the laws of the Commonwealth without fear or favor."

On the same date as the preceding article we find the following editorial:
"A petition is in circulation in this city, and has received a large number of signatures, for the repeal of the law providing for an inspectorgeneral of fish. The petition sets forth that 'said officer is no benefit or advantage to the fishing interests of Massachusetts, and that the fees as at present paid to said inspector-general is a tax upon the business from which the fish-producers and dealers receive no benefit.'
"Once was the time when a deputy fish-inspector's brand on mackerel had some significance, and the buyer could-rely upon it in the purchase
and selling of fish, without even opening the package. That time has gone by now, as the brands are counterfeited by dealers South and West, the fish oftentimes repacked, and poorer qualities substituted in brands branded the best. This has become a serious detriment to the business, and now there is really no further need of an inspector-general of fish. Of late years the office has become a sinecure, from the fact that it has become mixed up in politics, and given to men who know nothing of the business, and whose principal duty is to receive their fee on the number of barrels of mackerel inspected by their several deputies.
"There is need of some protection to the many well-disposed, honest men engaged in the mackerel and pickled-fish business along the seacoast. As a class they are strictly honest, and take great pains to put up their fish in the best possible manner, making a conscientious cull, which will bear strict investigation, giving a full equivalent for the price received, and securing the confidence of the consumer in all cases where they are fortunate enongh to get the original package. Very many of the first-class dealers, West and South, who have a business reputation which they value far above the few dollars which they might make in selling inferior articles, send direct to Gloucester for their goods, and in this way they get what they pay for and secure their own trade from imposition as far as may be. But it is very difficult to counterbalance the other class who make it a business to defrand. Something must be done to remedy this evil, and when the fishing inspectorship is abolished, then we hope the fishing dealers will counsel together and take immediate and active measures for self-protection. Have a law which will make it comparatively easy to convict a guilty party of fraud in brands or quality. Our correspondent, 'W. S.,' in another column, offers some practical ideas on this subject which are worthy of attention."

A correspondent writes to the Cape Ann Advertiser as follows, under date of Portland, Me., February 15, 1875 :
"I was highly gratified to read in your last issue of a movement on foot to abolish the office of general inspector of pickled fish. The strongest argument used in its favor last winter in our legislature was that our old mother, Massachusetts, had such a law and it worked well, and no one complained. Statutes, hundreds of years old, were produced to establish this fact, but all of no avail. We accomplished our purpose in defeating it, and the bill to abolish the office was passed almost unanimously. It now only awaits the goveruor's signature, and then there will be abolished a nuisance we have been obliged to suffer for thirteen years. The office expired by limitation in this State last May, and through the efforts of parties opposed to the office the governor and council were persuaded not to make an appointment, thereby giving an opportunity to appeal to the legislature. We have suffered no detriment in not having a general inspector, but have got along much better by allowing the deputies to act on their own responsibility. As a proof
of this assertion, I will state that I purchased 23,000 barrels of mackerel, and having shipped them, the only deduction called for was $\$ 12$. I assure you we feel relieved of this burden, and our friends in New York and Philadelphia are not the least afraid to trade here now, notwithstanding we have no general inspector."

An editorial in the same paper on March 5, 1875, says:
"The hearing on the petition for the abolishment of the office of general inspector of fish came before the senate committee on Friday last. Messrs. J. O. Proctor, of this city, Charles Ropes, of Salem, Franklin Snow, and others, of Boston, were present, and opposed the petition, arguing that without a general inspector there would not be any redress for buyers of pickled fish in case of fraud.
" Mr . George Steele, of this city, was presentto defend the petition, and give any information to the committee why it should be abolished. He argued that there was not the least necessity of such an office. Each packer of fish should be made directly respousible for his own brand, and should not be held accountable for pickled fish after they hare been sold and left his premises. This would afford great protection to those in the packing business. As the law now operates, it holds out inducements for unprincipled dealers to tamper with the brands, or take out mackerel and report them short weight, more especially if the price decreased after purchasing. If a packer was disposed to cheat, he could not follow it up any great length of time, as no one would purchase of him at full market rates; consequently his brand would always be at a discount, and no man having even the pretense of honor about him, could aftord to be thus classed among business men, and trickery would very soon find its level. He advocated a trade-mark Which should protect its owner everywhere in the United States, the same as patent-medicine and other trade-marks protect their owners, and make it a crime for any one to counterfeit or interfere with for improper purposes. He cited instances where such trade-marks were in themselves very valuable, as the articles they covered could always be relied upon. The paying out of $\$ 3,000$ to a general inspector of fish, Who did not know enongh of the business to cull a trip of mackerel, he considered entirely wrong. The office was not needed. Let inspectors be appointed by the selectmen of towns or mayors of cities, to be held responsible to the State authorities if need be, and all fees arising therefrom be paid into the treasuries of said towns and cities. This would be just and satisfactory. Mr. Steele met all the objections of his opponents in an able manner, and another hearing was ordered for Thursday next, when it is hoped that the entire number, or at least a majority of those who signed the petition, will attend, and by their presence and voice add testimony toward the abolishment of an office which is nothing more or less than a sinecure.
"The State of Maine has passed a law providing for the appointment by the governor of inspectors of fish in those places where pickled fish
are cured or packed for exportation, to hold office five years. These inspectors are to make annual returns to the secretary of state."

In the Advertiser of March 12, 1875, is the following letter written to Mr. George Steele, of Gloucester, by Mr. E. G. Willard, and dated Portland, Me., March 1, 1875 :
"Dfar Sir: I noticed the hearing you had Friday before the committee, in the Boston Advertiser, and was astonished to see the parties' names who were present in opposition. We had no opposition from a purchaser of fish in Maine; the opposition came from the late general inspector and a part of his deputies, who were not disposed to cull the fish according to the law of the State. With these parties we had much tronble and expensive law suits, in which we beat them; thus showing that the decision of the general inspector amounted to nothing.
"I have been in the business of purchasing pickled fish, as well as dry, the last twenty years. The past ten years I have purchased one-half of the pickled fish packed in the State.
"We had no general inspector till I had been in the business seven years. During this time we had no trouble about the cull, nor did we have any until after we got a general inspector, when trouble commenced, and grew worse and worse, till it culminated two years ago, when our business stopped altogether; no one would buy here, the cull was so poor.
"The office terminated in this State last Mas, and we were determined not to have another appointed if we could prevent it. The governor and council gave us a hearing, and thee concluded not to make an appointment; and we went on last season without a general inspector, and had no trouble. There was at much greater catch last year than the year be-fore- 45,000 barrels against 32,000 - and parties that withdrew from the market two sears ago, returned last year, and have been buying in our market since, and some 28,000 barrels were sold last week. A general inspector is a general nuisance, and no honest inspector wants a guardian.
"My ornership in fishing-vessels is large. I have an interest in twentythree vessels. The best argument to use is, let the parties opposed show any good the office is to any one; what benefit any one receives from it. Our law was a copy from sours, and a decision of the general inspector amounts to nothing; either party aggrieved can appeal to the courts, and the opinion of the general inspector amounts to no more than that of any other man, as we proved in the cases we had here. Our mackerel here are nearly all packed in barrels. Several parties here repack in halves, quarters, and kits; Dana \& Co., largely for the West. Our deputies gare no bonds last year, but will now get their commissions from the governor, and give bonds to the mayor and aldermen, or selectmen of towns, rated according to their business. In fact, we get right back where we were thirteen years ago. Our committee was unanimous at the first meeting, and the change was put right through and is now a
law; and I will guarantee that there will never be a general inspector in this State again."

The question of abolishing the office of inspector-general of fish came before the legislature of Massachusetts in April, 1875, and that office was continued. A communication in the Advertiser of June 4, 1875, in discussing the wants of Gloucester in the regulation of the trade in pickled fish, says:
"What Gloucester really wants is a closer relation between producer and customer, or, in other words, we want to sell our products directly to the man who supplies the customer. We are entitled to the profit on our goods that our advantage as producer gives us, without having to divide that profit with any middle-men. We want to bring the customer here. Now, if we are going to do a regular distributing business as well as producing, we must do it on business priuciples. We must have a regular standard quality of our goods to quote to the trade; a standard that is known and established by law, so that when your customer at a distance buys your goods without seeing them, he must know what he is buying; and further, there must be some one in position when any question shall arise on the quality of the goods, as between buyer and seller, who must settle the dispute and whose decision must be binding on both parties. This position must be filled by a person of large practical experience and sound judgment; and though you call him inspector-general or not, you can confine and limit his powers and duties to this one special duty, making him simply referee, with no power to harass or to confiscate. The interest of yourself, as well as your customers, demands such protection, which must neccessarily be mutual. We want an inspectorgeneral just that much and no more.
"Outside of this State there is practically no inspection law touching our goods. So, to more rigidly enforce the law as it stands is to enforce it against ourselves and in favor of outsiders. Any law that says to the man who packs mackerel in Gloucester, you shall put those fish only in such sized packages as are mentioned and no others, no matter if you do brand the exact weight and quality on each package, or whether your customer desires that size or another, is unnecessarily stringent and despotic; especially so when anywhere outside the State the customer can be accommodated with the same goods in just such packages as he wants. That portion of the law should be abolished. We should have the unquestioned right to put our fish in just such packages as our customers want, provided the quality and the quantity is branded on the package, as on all other kinds of provisions.
"To resume: We must not abolish the law; it is the protection our customers have a right to ask. We must not abolish the office of in-spector-general, for we need him to enforce the law in good faith as well as our customers.
"Let the law be plain and simple. Let the inspector-general be only referee for the buyer and seller, aud let any man put up his fish in just
such packages as he chooses, with the quality and quantity branded on each package. Won't this come nearer what we want than 'no law' or too much law?"

A seizure of Gloucester pickled mackerel occurred in Boston in the fall of 1875. The Advertiser of September 17, 1875, in discussing this seizure, says :
"Washing off the salt which may adhere to recent packed small mackerel, and the draining of the pickle therefrom, would, as we are informed by practical inspectors, canse the confiscation of nearly if not every barrel examined, that is, if the very letter of the law requiring 200 pounds of fish was executed. Some might not fall short but a few ounces, others as many pounds; still, whatever the shrinkage, however small, the mackerel, under the present law, could be confiscated, and thereby come into the hands of the official.
"It is full time that this law was removed from the statute books. So long as it is there and administered, it will prove, in the hands of unprincipled men, a drawback upon any place engaged in the fisheries. It affords a weapon which can be used against fish packers at any time by parties who may wish to do them an injury. Not only does the in-spector-general and his allies have a chance to seize mackerel, but purchasers anywhere and everywhere, in case of a sudden decline in prices, have only to write to those of whom they purchased:
"'Your mackerel are short weight; make me so much allowance on a barrel, or back they will come to you.' What protection has the fish dealer at headquarters, under such a law? None at all. Fish with his brand upon the barrels may come back at any time unless he will consent to settle any trumped-up claims. There would not be the least objection, if mackerel were examined on the wharves at the time of packing or shipping. That is the time to make such examination, if any. But this getting them away first is perfectly ridiculous, and altogether too one-sided to be long borne.
"Let each packer have his own brand or trade-mark. Allow them to put up such sized packages as their customers require, branding the weight in a conspicuous place, so that it cannot easily be erased. Then each man would stand or fall on his own merits. If there are any washing off the salt and draining the pickle-not because the purchaser had made complaint or had any suspicion that he was to be defrauded; but the law gives the officials liberty to seize, open, confiscate! And the latter put money in their pockets. We are not sorry that this case has occurred, for it needed something of the kind to wake up our people. They begin to see this blue law now in a light which never before dawned upon them. They begin to realize that at the instance of any jealous fish dealers out of the city-and there are such-their frauds in the business, they would soon be discovered and honest dealers benefitted, as the trade would soon learn of them and give their brands the preference. Then again, let all sales be made from the wharf or store-
house, the packages to be weighed by a sworn weigher before they are shipped, and after that to be at the risk of the buyer. Some such system as the above will have to be agreed upon ere the business can be considered a really safe one, and the sooner those engaged confer together and resolve to have the matter presented before the legislature, with a view for the abolishment of the law, the better it will be for all interested. Mackerel can be seized and tampered with until their reputation is affected, and Gloucester lose the prestige which she is gaining so rapidly. Will our business men stand that? Can they suffer it? We opine not, and they will say so most emphatically ere long."

In the spring of 1879 some amendments were made to the Massachusetts inspection laws. One of these amendments permits the packing of pickled fish in small packages of any size which are properly branded. Another amendment repealed the section that required the word "foreign" to be stamped on barrels of dutiable imported pickled fish.

The Boston Commercial Bulletin in February, 1879, discussed the reasons for abolishing the office of inspector-general, and said, "that the whole system of inspection of mackerel at the present time is a perfect farce, and rather than have it carried on as it is, it would be better for the trade and the public to have the office of inspector-general abolished, and the system done away with. In that case the packers would do their own branding; and buyers, in making their purchases, would place faith in the truthfuluess of the brand only according to the reputation of the packers."

VII. STATISTICS OF THE INSPECTION OF MACKEREL FROM 1804 TO 1880.

[By A. Howard Clark.]
L.-STATISTICS OF MAINE, MASSACHUSETTS, AND NEW
HAMPSHIRE, AND TOTAL STATISTICS.
46.-Statistics of Massachusettis.

The inspection of pickled mackerel in Massachusetts is exhibited in three statements. The first statement shows in detail the number of barrels packed in each inspection port of the State during each year from 1804 to 1881; and for the gears from 1804 to 1878, was compiled by Mr. Alexander Starbuck from the official returns deposited by the inspectorgenerals in the office of the secretary of state of Massachusetts. The statistics for the years 1879, 1880, and 1881 are from official documents, signed by the inspector-general. From a review of this statement we find that in the earlier years of the mackerel fishery nearly forty fishing ports were engaged in packing mackerel, but during recent years the business has been concentrated to a dozen or fifteen places, the
ports of Gloucester and Boston packing by far the greater part of all the pickled mackerel put up in the State.
The second statement shows the total number of barrels of each grade of mackerel packed in Massachusetts during each year from 1804 to 1881, and also the total value of each year's inspection since the year 1830 . The quantities of mackerel in this table are from the preceding table. It shows substantially the total quantity of pickled mackerel sold for exportation from the State as well as for consumption within the State; though perhaps 5 per cent. of the total number of barrels packed escapes inspection.

From a review of this statement we see that there has been a very great fluctuation in the extent of the mackerel business. The smallest number of barrels was packed in 1814, and the largest number in 1831. The year 1851 was a prosperous one, and also the jear 1870. During the past four or five years an extensive business in fresh mackerel has been developed, so that in 1881 about 125,000 barrels were sold in a fresh condition. If this quantity be added to the amount inspected, it shows a total catch by Massachusetts vessels nearly equal to that of the year 1831.

The third statement shows the number of barrels of mackerel reinspected in Massachusetts during the years 1850 to 1853, 1859 to 1876 , 1878 to 1881. It represents barrels of mackerel that are repacked in smaller packages, and may include fish already accounted for under the head of "inspected," while a very small fraction may consist of imported fish repacked. These statistics are compiled from the official documents, signed by the inspector-generals.
a Rockport was a part of Gloucester until 1840.

Port of inspection.	1804.				1805.				1806.			
	1.	2.	3.	Total.	1.	2.	3.	Total.	1.	2.	3.	Total.
Total.	1, 631 ${ }^{\frac{1}{2}}$	6,226	7, 8572	1,787	2,5181	4,228	8, 5331	2, 563 $\frac{1}{2}$	2,756	2,907	8,2261
Newburyport..	3	17		20	300	700	600	1,600	120			120
Ipswich.............												
Rockporta.........												
Manchester....												
Beverly......											2	
Salem...... Marblehead	${ }_{31} 92$			92 31	66	61		127	$67 \frac{1}{2}$	100	2	169
Medford......												
Charlestown...	3741	2, 570		2,944	5531	691	885	2, 1293	1, 2188	1,305간	1,224	3,748
Dorchester and Roxbury												
Quincy												
Weymouth ... Hingham							1, 424	2,747	${ }^{670 \frac{1}{8}}$	562	658	1, $890 \frac{1}{3}$
$\begin{aligned} & \text { Hingham ... } \\ & \text { Cohasset... } \end{aligned}$	37727	696 879		1, $1,473 \frac{1}{2}$	3071	${ }_{2}^{2664}$	1,628 614	1, 202	357 128	${ }_{244} 529$	313 591	1, 1963
Scituate.	537	879		1,416			614					
Duxbury Plymouth												
Sandwich......												
Barnstable.....												
Yarmouth												
Brewster												
Wellfleet Truro												
Provincetown					118	$12{ }^{-1}$	77	901		15	119	134
Chatham												
Harwich												
Dennis Falmouth												
Falmouth.....												
Edgartown ...												
Fairhaven......												
New Bedford Dartmouth												
Dartmouth												
Somerset...									2			2
Swansea..												
Other towns..												

［165］
Statement I．－Mackerel inspection in Massaehusett8．－Continued．

嵌	皆	篤	๕		－				罵		∞ \vdots \vdots \vdots
	∞	管				等			굳		
	－ง่	菏	\cong	${ }_{\square}^{\text {¢ }}$	！－	\％			莞		！8
	\cdots	蓇	－	${ }^{6}$	¢	風	－				
區	盛	号	\％		－	留	（\％）		澶		¢ \vdots \vdots
	∞	詈				洞			率		
	＊		\％		\％	${ }_{\text {\％}}$!ep		
	\cdots	管			－	\％	\％eno				

Statement I.-Mackerel inspection in Massachusetts-Continued.

Port of inspootion.	1810.				1811.				1812.			
	1.	1.	3.	Total.	1.	2.	3.	Total.	1.	2.	3.	Total.
Total	2,5401	4,770	5,242	12, 552 ${ }^{\frac{1}{2}}$	1,368 ${ }^{\frac{1}{2}}$	6, 023	10,0097	17,401	1,0001	2,1542	2,726	5,881
Newburyport Ipswich	57			57	28	12		40	94	73		167
Rockport							6	6				
Mancliester...												
Sererly......	45	28	1	74			15					
Marbidiea	147	$144\}$	39	$330 \pm$	1	42	10	53	$36 \frac{1}{2}$	$40 \frac{1}{2}$	24	101
Charleston												
Boston	1,0991		2,827	6,863	$557 \frac{1}{2}$	4,0162	6,15912	10,733	213	877	1,098	2,189
Quincy												
Weymouth	687								182 ${ }^{22}$	17 279	112	(1517
Cohasset.	2917	${ }_{126}^{595}$	${ }^{712}$	1, 55958	$183 \frac{1}{2}$	743¢	1,512	2,439	${ }_{1}^{1262}$	548	573	1, 2474
Scituate.												
Plymouth.							. ${ }^{\text {e }}$					
Barnstable.							
Yarmouth.												
Welltieet...												
Truro ${ }_{\text {Provineto }}$	165	169	206	540	237	221	108	620	244	115	ii2 ${ }^{-1}$	471
Harwich...												
Dennis....												
Nantueket...	-											
Edgartown..												
New Bedford.												
Dartmouth....												
Somerset....											
Swansea......					106			106				
Other towns												

Statement I.-Mackerel inspection in Massachusetts-Continued.

Port of inspeotion.	1813.				1814.				1815.			
	1.	2.	3.	Total.	1.	2.	3.	'Cotal.	1.	2.	3.	Total.
Total.	9001	1,231	1,625	3,756 ${ }^{1}$	89	5461	7032	1,339	3,2251	5,456	7, 377 ${ }^{\text {d }}$	16, 0591
Newburyport.	179	35		214	50	248	63	361	251	222	255	728
Ropkwich												
Gloucester........	4	23	64	91					72			72
Beverly												
Salem.......... Marblehead.... Medford.		1	22	23	21	20	21	431		4	5	9
Charlestown ..												
Disston..................	422	624	867	1,913	32	1991	3231	555	1,602-1 ${ }_{31}$	3,847 172	5,408	10,858 203
Quincy...........												
Weymouth									1, $1234 \frac{12}{8}$	180	1, ${ }^{2088}{ }^{\text {¢ }}$	3, ${ }^{5174}$
Cohasset...	72	1764	202	$450 \frac{1}{2}$					$1.05 \frac{1}{1}$			3, 4588
Scituate Duxbury	381.	66\%	17			1	2	3				
Duxbury......												
Sandwich.......												
Barnstable...												
Yarmouth...												
Wellileot........						9	$15 \frac{1}{2}$	213				
Truro........						19	2124	2313				
Provincetown Chatham..	8	123	300	431	41	50	66	$120 \frac{1}{1}$		19	4313	$62 \frac{1}{2}$
Harwich..												
Dennis.....												
Fanmouth......												
Nantuckot......												
Fairhaven .												
Now Bedford.												
Dartmouth..												
Westport..												
Somerset...												
Swansea...	46			48								
Oluer towns												

Statement I.-Mackerel inspection in Massachusetts-Continued.

Port of inspection 1	1816.				1817.				1813.			
	1.	2.	3.	Total.	1.	1.	3.	Total.	1.	2.	3.	Total.
Total	8,6942	9,264 ${ }^{\frac{1}{2}}$	13, 010	30,979	10,406 ${ }^{\text {a }}$	5, 2672	21,688	37, 362	14,410	11, 1621	20,775 ${ }^{1}$	46,348
Newburyporta.	983	952 ${ }^{\frac{1}{2}}$	335	2, 270 ${ }^{2}$	1, 234 ${ }^{\frac{1}{2}}$	742	7391	2,716	2,386 15	1, 555d ${ }_{2}$	2,540	6, 4818
Rockport.												
Gloucester	11	9	103	123	62	34	19	115	33	54	67	154
Manchly ${ }^{\text {Merer }}$												
Salem......					65	15	206	286				
Marblehead	46	50	47	143	84	65	2	151	233 ${ }^{\frac{1}{2}}$	186	103	522 $\frac{1}{2}$
Medford....												
Boston	-7,741	6,309	8,285	19,335	6, 421i ${ }^{\text {a }}$	3,469	14,347	24, 237 71.	7,777\%	6,850	11,58721	26,215
Dorchester and Roxbur												
Hingham..	2, 264	1, $204 \frac{1}{2}$	3, $084 \frac{4}{4}$	6,553	1,525	455	3,193	5,173	1, $945 \frac{1}{2}$	1,214	2,817	5, $976 \frac{1}{2}$
Cohasset.	4591	357	566	1,3823	4881	289	1,031	1,808 $\frac{1}{2}$	${ }_{282} 731$	$524 \frac{1}{2}$	1, 267 ${ }^{\frac{1}{2}}$	2, $5288 \frac{1}{2}$
Scituate.									282	242		
Plymouth.					30	31	110	171	96	92	229	417
Sandwich...		,	.									
Yarmouth												
Wellfieet....												
Truro												
Provincetown	$\frac{1}{2}$	95	1072	203	143	18	52	841	53	461	49	1482
Harwich												
Dennis.												
Falmouth												
Nantucket												
New Bedford Dartmouth...					136 33	37 8	$840 \frac{1}{2}$	1, 013 ${ }^{156}$	112		$105 \frac{1}{2}$	1123
Somerset..									125			125

Statement I．－Mackerel inspection in Massachusetts－Continued．

Port of inspection．	1819.				1820.				1821.			
	1.	2.	3.	Total．	1.	2.	3.	Total．	1.	2.	3.	Total．
Total	19，614	36，521 $\frac{1}{2}$	43， $975 \frac{1}{2}$	100， 111	12，455	34，811 $\frac{1}{2}$	68，3741	115， 641	7，40012	32，103 $\frac{1}{2}$	71，505 $\frac{1}{2}$	111，009 ${ }^{\frac{1}{2}}$
Newburyporta．	1，995	4，966 104	8，176 108	15， 138	999 40	3， $302 \frac{1}{2}$	6，940	11， $241 \frac{1}{2}$	$550 \frac{1}{2}$	2，911	8，655 ${ }^{\frac{1}{2}}$	12，117
Ipswich．．． Rockport	312	104	108	524	40	60	695	795	1.		3	5
Gloucester ．．	32	69	109	210	5	97	115	217	365 $\frac{1}{2}$	714	1，097	2，176 ${ }^{\frac{1}{2}}$
Manchester． Beverly．												
Salom．．．	118	67	183	368	$258 \frac{1}{2}$	$616 \frac{1}{2}$	855	1，730	428	1，800	2， $279 \frac{1}{2}$	4，507
Marblohead	598	870	854	2，322	96咅	238 $\frac{1}{2}$	6391	974	153	334	554	1，021
Medford ．．．． Charlestown												
Boston ．．．．	12，121 $\frac{1}{2}$	21，974 ${ }^{\text {a }}$	23，515	57，611	8，372 $\frac{1}{2}$	23，8017	40,755	72， 929	4，112	18，208	43，9574	66，278
Dorchester and Roxsbury．												
Quincy ．－．．．．．．．．．．．．．．．．．．．．					37	128	$137 \frac{1}{2}$	3021	5	28	1	34
Weymouth	3351	512	977	1，8241	$278 \frac{1}{3}$	512	1，127	1，917 ${ }^{\frac{1}{2}}$	16	103	$94 \frac{1}{2}$	$213 \frac{1}{2}$
Hingham ．．	2， 098	4，102	4，477	10，677	1， $218 \frac{1}{2}$	3， 036	8，598	12， $852 \frac{1}{2}$	1， $019 \frac{1}{2}$	3，297\％	5，833	10，150
Cohasset．	435	6753	－855 ${ }^{2}$	1，966	$257 \frac{1}{3}$	， 363	1，532	2，152 $\frac{1}{2}$	178 ${ }^{2}$	1，701 $\frac{1}{4}$	2，129	4， 4 ，081
Scituate．	$612 \frac{1}{2}$	1，762	2，369 ${ }^{\text {a }}$	4，744	$445 \frac{1}{2}$	1，440 $\frac{1}{2}$	2， $697 \frac{1}{2}$	4， $583 \frac{1}{2}$	2951	1，929	4，342娄	6，567
Duxbury．	391 ${ }^{\text {2 }}$	$20 \frac{1}{2}$	49	， 109	351	146	－93	274⿺𠃊⿳亠丷厂犬	．．．．．．		1．．．．．．	，－．．．．
Plymouth．	275	326	569	1，170	$272 \frac{1}{2}$	473：	1，916	2，662	98	499	1，035	1，632
Sandwich Barnstable．												
Yarmouth ．．												
Browster．．												
Wellfleet．．．												
Truro．．．．．．．												
I＇rovincetown．	106	202	201	509	1	11	165	177		1	20	21
Chathum．．．． Harwich	14	4	27	45	23	63	76	162	39	313	764	1，116
Harwich ．．．． Dennis												
$\begin{aligned} & \text { Dennis.... } \\ & \text { Falmouth } . \end{aligned}$												
Nantucket												
Edgartown．												
Fairhaven		2	5	7								
Now Bedford	583	141	456	655 ${ }^{\text {\％}}$					13	95	224	332
Dartmouth．．	$463 \frac{1}{3}$	7231 ${ }^{\frac{1}{2}}$	1，044	2，231	80，	4691	1，834	2，393	26	1681	536	7301
Somerset．									100			100
Swansea．												
Other towns．												

Statement I.-Mackerel inspection in Massachusetts-Continued.

Statement I－Mackerel inspection in Massackusetts－Continued．

Port of inspection．	1828.				1829.				1830.			
	1.	2.	3.	Total．	1.	2.	3.	Total．	1.	2.	3.	Total．
Total	63，2351	110，666 ${ }^{\text {a }}$	63，422 $\frac{3}{2}$	237，324	54， 184	77，098	94，695	225，977	47，8681	104，5691	156，025 ${ }^{\frac{1}{2}}$	308，4631
Newburyport	$\begin{gathered} 6 \\ 6039 \frac{1}{2} \\ 203 \end{gathered}$	13， $518 \frac{1}{2}$	6，1931 131	26， $391 \frac{1}{2}$	4，${ }^{4} 482$	8， 202	8， 3788	21,423 65	3， 437	11,707 83	11，052 ${ }_{47}$	26，1963 ${ }_{164}$
Gockport．												
Gloucester． Mauchester	9，7201	17，165 ${ }^{\text {b }}$	7，317 ${ }^{1}$	34，203 ${ }^{\frac{1}{2}}$	10，873 ${ }^{\frac{1}{2}}$	13， 257	13，453	37，583 ${ }^{\frac{1}{2}}$	7，761 ${ }^{\frac{1}{2}}$	16，856⿺𠃊	26， 995	51，613
Beverly．												
Satem	${ }^{636} \frac{1}{2}$	1， $840 \frac{1}{2}$	1，436 ${ }^{\frac{1}{2}}$	3，973 ${ }^{\frac{1}{2}}$	487	1，0661	1，057	2， $610 \frac{1}{2}$	1，169	2，4001	3，530 ${ }^{\frac{1}{2}}$	7，136
Marblehead	647	860늘	406 $\frac{1}{2}$	1，914	3062	$3359 \frac{1}{2}$	， 568	1，214	1993	－359	5207	1，079
Charderd．．．					251	454	1，117	1，822	436	1， $0858 \frac{1}{2}$	1，9777 ${ }^{\text {a }}$	3，499 2 2,064
Bostun．	25， 503	43，203 ${ }^{\frac{1}{2}}$	25，789 ${ }^{\text {a }}$	94，586	22， $531 \frac{1}{8}$	30， 922	32，801 $\frac{1}{2}$	86， 255	19， 823 23	39，975 ${ }^{\text {7 }}$	53， 3701	113，175
Dorchester and Roxbury												
Quincy												
Weymouth	523	2031	${ }^{64}$	${ }^{320}$	$\begin{array}{r}7 \\ \hline\end{array}$	${ }_{5}^{51}$	$\stackrel{90}{18}$	148	5 14	$\stackrel{30}{ }$	${ }_{27}^{40}$	484 819
Cohiltisit．	2， $2,954 \frac{12}{2}$		10,187 5,15	14， $392{ }^{3}$	6,897 2,348	8， 8,1488	$\stackrel{18,311}{8,465}$	14，${ }^{34,018}$	2， 2 2,438	10，570 ${ }^{5}, 431 \frac{1}{2}$	11， $27.58{ }^{\text {a }}$	－ 43,2219
Scitnate	3，556 ${ }^{\frac{1}{2}}$	7，200	4，355	15，111 $\frac{1}{2}$	2，857	4，794	4，819	12， 470	3，003	4，589 ${ }^{\frac{1}{2}}$	6，626 ${ }^{\frac{1}{2}}$	14，219
Duxbury									$83 \frac{1}{2}$	－ 572	1， 414	2， 0691
Plymouth	$422 \frac{1}{2}$	1，076 ${ }^{2}$	795	2，294	$504 \frac{1}{2}$	954	1，735	3，193 $\frac{1}{2}$	359	1，406 ${ }^{2}$	3，754	5，519 ${ }^{\frac{1}{2}}$
Barnstable	$445 \frac{1}{2}$	811	381六	1，638	618	1，237	2，473 ${ }^{\frac{1}{2}}$	4，328 ${ }^{\text {a }}$	4812	$968 \frac{1}{2}$	2，2422	3，692 $\frac{1}{2}$
Yarmouth												
Wellfeet	2，026	3，852	588	6，466	1，2372	2，236	516	3，989 ${ }^{\text {a }}$	2，0522	4，795 ${ }^{\text {d }}$	1，971 $\frac{1}{2}$	8，8193
Truro．．．．									2，	，	1,	8,81
Provincetown	4493	571	474	1，494，	$366 \frac{1}{2}$	3312	757	1，455	670	2，2288	2， $084 \frac{1}{2}$	4，983
Charwich．									32	121	295	448
Dennis．．．												
Falmouth．												
Nantucket．												
Edgartown												
Fairhaven ．												
Now Bedford	2	671	51	120 ${ }^{\frac{1}{2}}$	15	181 $\frac{1}{1}$	137	$333 \frac{1}{2}$		274	143	$490 \frac{1}{2}$
Dartmouth					231	83		106\％	$36 \frac{1}{2}$	318	116	470
Somerset．．．												
Swansea												
Other towns ．．．												

Statement I.-Mackerel inspection in Massachusetls-Continued.

Statement I.-Mackerel inspection in Massachusetts-Continued.

Statemext I.- Mackerel inspection in Ifarsachusetts-Continued.

Port of inspootion.	1837.					1838.				183.			
	1	2	3.	Total.		1.	2.	3.	Total.	1.	2.	8.	Total.
Total	24, 673	01, 027	52,557	138, 157 ${ }^{\text {d }}$	13,467	37,0631	28, 588	44, 184	110, $740 \pm$	22,2172	22,0372	30, 013	74, 2681
Nowbaryport Inswioh....	$\begin{array}{r} 5,088 \\ 20 \end{array}$	$5,7 \frac{26}{33}$	$\begin{aligned} & 4,471 \\ & 12 \end{aligned}$	$15,285$	211	$\begin{gathered} 5,7002 \\ 2 q \end{gathered}$		4, 3674	$\begin{gathered} 13,070 z \\ 25 \end{gathered}$	4,333?	1,660	2, 5923	8,586\%
Rockport.	$162+$	16,198	7,163i	32, 524	3,152	11, 582 z	7,154	5,606i	24,343	6, $273 z^{2}$	3,4674	2,684	11,4248
Manchesto		$\begin{array}{r} 68 \\ 473 \\ 188 \\ \hline \end{array}$											
${ }^{\text {Beverly }}$ Salem			13225177	$\begin{gathered} 107 \\ 1,15 \pi \\ 451 \frac{1}{8} \end{gathered}$	${ }^{120}$	$\begin{array}{r}7473 \\ 762 \\ \hline\end{array}$	$\begin{gathered} 83 \\ 309 \\ \mathbf{4 0 7} \\ \hline \end{gathered}$	27352	1, 18.8298	963	$104 z$2	$4{ }^{*}$	2452
Marblohead													
Charlesto		$\begin{array}{r} 242 \downarrow \\ 10,852 \downarrow \end{array}$	- ${ }^{46}$	22,864	-7,390	5,1762	4,3092	8, 1274	15,6132	2,790	2,7199		8,629\%
$\xrightarrow{\text { Boston }}$ Dorchest												3,1192	
Dorchest													
Weymout	$\begin{gathered} 2,034 \\ 607 \\ 6 \cdot 2 \pi \\ 46 \\ 188 \frac{1}{2} \end{gathered}$				$\begin{aligned} & 239 \\ & 412 \\ & 792 \\ & \hline 10 \end{aligned}$	$\begin{gathered} 3,0699 \\ 2,061 \\ 281 \\ 109 \\ 1041 \\ 341 \end{gathered}$	$\begin{gathered} 2,2182 \\ 1,7322 \\ 1502 \\ 159 \\ 3032 \end{gathered}$	$\begin{array}{r} 6,187 \dot{2} \\ 66,655 \\ 1,090 \\ 80 \\ 472 \\ 472 \end{array}$	$\begin{gathered} 11,478 \\ 10,592 \\ 2,3739 \\ 3,19 \\ 1,1178 \\ \cdots \end{gathered}$				$\begin{array}{r} 9,7182 \\ 7,620 \\ 1,771 \\ 1,7672 \\ 2672 \\ 618 \\ 63_{2} \\ 4,690 \\ 1,4202 \end{array}$
Cohasset.													
Scitrate.													
${ }_{\text {Ply }}$ Purbury													
Siandwich.					22			1,534					
Yarmouth	220	1, 400 2	1,197	3,590		${ }^{171}$	538	6.9	1, 668	39			
${ }_{\text {Prewrer }}$				$\begin{aligned} & 9,0441 \\ & 1,149 \\ & \mathbf{1 , 6 3 9} \\ & 151 \end{aligned}$	$\begin{gathered} 118 \\ 10 \\ \hline 10 \end{gathered}$	$\begin{aligned} & 3,315 \\ & 6,379 \\ & 2,194 \\ & 233 \\ & 243 \end{aligned}$	$\begin{gathered} 3,602 \\ 7,798 \\ 1,798 \\ 1262 \end{gathered}$	$\begin{aligned} & 3,618 \\ & 1,6462 \\ & 4,747 \\ & 103 \end{aligned}$		$\begin{array}{r} 2,0452 \\ 706 \\ 6302 \\ 1842 \\ 10 \\ 669 \end{array}$		$\begin{gathered} 2,741 \\ 1,3209 \\ 2,599 \\ 158 \\ 2 \\ 9183 \\ 9 \end{gathered}$	$\begin{aligned} & 7,755 \\ & 3,342 \\ & 4,966 \\ & 602, \\ & 20 \\ & 2,556 \end{aligned}$
Truro.													
${ }_{\text {Prorincetown }}^{\text {Chatham }}$													
Harwich.	401	16 t	-5	$291 \frac{1}{2}$	3922	553 z	9132	1,8592				
Dennis.													
Nantucket.													
Edgartown													
New Beiford			196	326									
Dartmonth	69	71											
Somerset.													
Swansca.													
Other tow													

Statement I.-Mackerel inspection in Massachusetts-Continued.

Port of inspection.	1840.				1841.				1842.			
	1.	2.	3.	Total.	1.	2.	3.	Total.	1.	2.	3.	Total.
Total.	19,3511	11,049	20,091	50,4913	23,747	10,649	21, 141	55, 537	29,363	22,496	23,684	75,548
Newburyport.	2,903	1,109 ${ }^{\frac{1}{2}}$	1,797	5, 8091	2,975	1,535	2,717	7,227	3,330	1,508	2,254	7,092
Ipswich.....									630	249	194	1, 078
Rockporta.	5,487	1, $757 \frac{1}{2}$	954	8,1981	5,071	1,868	1,931	8,870	7, 701	4,868	2,766	15,335
Manchester. Beverly....	2 46	$2_{2}^{2 \frac{1}{2}}$		488	10 80	6 29	5 75	21 184	1	2	1	4
Salem Marblehead.												
Medford....												
Charlestorn	2, 986 ${ }^{1}$	1,649 ${ }^{\text {a }}$	3, 087	7,723	2,917	1,406	1,386	5,709	2, 192	2, 023	1,449	5,664
Quincy................												
Weymouth	2, 222	1,163 ${ }^{\frac{1}{2}}$	3, 743 ${ }^{\text {d }}$	7,129	2,592	756	2,901	6,248	3, 507	2,630	3,351	0,488
Cohasset.	2, 824	1, $1,109 \frac{2}{2}$	3, 103	5, 01912	1,312	723	2, 326	4,361	1,469	1,717	2, 868	6,054
Scituate.	237	112	$561 \frac{1}{2}$	$910 \frac{1}{2}$	371	237	452	1,060	258			
Duxbury	172	961	$61 \frac{1}{2}$	330	296	127	166	589	96	75	493	664
Sandwich..			- 10									
Barnstable	367 493	${ }^{4093}$	1, ${ }_{444}$	1, 91373	738 427	${ }_{169}^{276}$	829	1,843	780 845	740 6.7	1,306 815	2,826 2,337
Brewster..................................												
Truro...	$1,018{ }^{9812}$	1,096	$1,074{ }^{\text {1 }}$	2, 7888 2	2,440	1,951	3,461	6, 852	2,563	1,266	2, 250	6, 079
Provincetown	584t	7991	$709 \frac{1}{2}$	2, $086 \frac{1}{2}$	916	830	940	2, 686	2,011	1,489	932	4,492
Chatham	$115 \frac{1}{2}$	273		150	10	5	63	84	214	323	122	659
Harwich		6051	1, 496 196	3, $009 \frac{1}{2}$		489	967	2,674	1,325	1,582	1,550	4,457
Nantucket												
Edgartown Fairhaven												
New Bedford.												

Statement I.-Mackerel inspection in Massachusetts-Continued

Port of inspection.	1843.				1844.				1845.			
	1.	2.	3.	Total.	1.	2.	3.	b Total.	1.	2.	3.	c Total.
Total	32, 759	13, 088	18,604	64, 451	28,843 ${ }^{\frac{1}{2}}$	22,515	35, 023	86, $381 \frac{1}{2}$	28, 083 $\frac{1}{\text { I }}$	88, 6231	85, 506 $\frac{1}{2}$	202,302
Newburyport.	2,771	1,187	1,403	5,361	28,842 $\frac{1}{2}$	1,327	2,837	7,006 $\frac{1}{2}$	2,814	2,7543	5,493	11,061
Ipswich.........	675	227	365	1,267	8311 ${ }^{3}$	492	610	1,9331	1,211	3,7043	3, 9192	8,8343
Gloucestor.	10,489	2,987	2,852	16328	6, $147{ }^{\text {2 }}$	4,757	6,0571 $\frac{1}{2}$	16,961 ${ }^{\frac{1}{2}}$	6,824 ${ }^{1}$	22, 795	19,091 ${ }^{\frac{3}{5}}$	48,711
Manchester												
Buverly	9	2		11	2	12	7	21	14	21	19	54
Salem......										52	45	97
Marbiohoad Mr dford..									284	$253 \frac{1}{2}$	3261	6087
Chat lestown.												
Boston........	5,078	2,149	2,119	9,346	7,008	5,142	3,606	15,756	6,779	15,5871 ${ }^{\frac{1}{4}}$	12,762 ${ }^{\frac{1}{2}}$	$35,129 \frac{1}{2}$
Dorchester and Roxbury												
Quiocy . W.....												
Weymouth ...												
Cohasset.	2,314 2,306	1,017	2,597 3,039	5, 928 6,461	2, 629 1,7751	1,798	$4,943 \frac{1}{2}$ $4,266 \frac{1}{2}$	$9,370 \frac{1}{2}$ 7,858	2, $1,684 \frac{1}{2}$	8,684 $6,290 z$	6, $548 \frac{1}{2}$ 9,609	17, 5884
Scituato.	- 322	127	100	6, 549	$140 \frac{1}{3}$	1,828	283	652	1,684	, 5993	811	1,488!
Duxbury	13	9	25	47					14	42	32	85
Plymonith	153	87	176	416								
Sandwich.												
Barnstablo	665	246	510	1,421	$658 \frac{1}{8}$	526	1,090	2, 2743	398	1,978 ${ }^{\frac{1}{2}}$	1, 4153	3,7923
Yarmouth	1,040	399	957	2,396	533	545	1,333	2,411	$290 \frac{1}{3}$	2, 009 $\frac{1}{2}$	2,701 $\frac{1}{2}$	5, 001
Wellheet	3,043	1,343	1,220	5, 606	2,459	3,089	4,123	9,671	2,4305	9,3917	8,074	19,8991
Truro...	1,512	721	1,112	2, 375	1,785	$828 \frac{1}{2}$	2,070	4,683 $\frac{1}{2}$	1, 600 t	6,847 ${ }^{\text {d }}$	7,300 $\frac{1}{2}$	15, 7488
Provincetown	1, 1:1	901	1,085	3, 117	1, $077 \frac{1}{2}$	$955 \frac{1}{2}$	1, 841	3,874	980	4,397 $\frac{1}{8}$	4, 765,	10,143i
Chatham.	268	99	82	449	138	109	151/ $\frac{1}{2}$	3982	40	520	412	972
1)(mnis...	940	471	962	2,373	$816 \frac{1}{2}$	888	1,804	3,5081	8433°	2,6914	2,269	5,804
Fahmouth.												
Nantucket.												
F゙tirlaven												
Now Bedford												
Darimouth.												
Westport												
Somerset. Siwansoa												
Other towns												

Statement I．－Mackerel inspection in Massachusetts－Continned．

Port of inspection．	1846.				1847.				1848.			
	1.	2.	3.	\boldsymbol{a} Total．	1.	2.	3.	Total．	1.	2.	3.	Total．
Total．	44，430\％	70，005	65， 076	179，511\％	104，1508	76，006 ${ }^{\frac{1}{2}}$	71，760을	251，9171	113，093 ${ }_{4}$	79，979\％	107， $058{ }_{4}^{1}$	300，1301
Nemburyport．	2，787	7，657	8，3707	18，814k	5， 1615	$\because, 937 \frac{1}{2}$	0，254	23，353 ${ }^{\frac{1}{8}}$	2，2893	7，0494	16，955 ${ }^{\frac{1}{2}}$	26，294 ${ }^{\frac{8}{7}}$
Rockport．	1，960	2，907	1，519	6，386	2． 726	2，397	1，6572	6，781	3，445 ${ }^{\frac{1}{4}}$	2，9369	1，369 ${ }^{\text {a }}$	7，7503
Gloucester	8， 937	18，4007	14， 50.3	42， $301 \frac{1}{4}$	14，597\％	15，310	11， 493	41，4073	15，565 $\frac{1}{2}$	17，301 ${ }^{\frac{7}{8}}$	20，6323	53，5001
Manchester	$174 \frac{1}{2}$	275	127	577	5833	449	65	1，097				
Beverly．	01	336	117	544	332 $350 \frac{1}{2}$	330 150	84	746	$\begin{array}{r} 389 \\ 80 \end{array}$	3132	${ }_{19}{ }^{17}$	784 201
Marblehead．	105	162	1081	37.5	1663	$162 \frac{1}{2}$	951	4242	$267 \frac{1}{6}$	2184		5598
Medford．．．．												
Boston．．．．．．．．．．．．．．．．．	6，4047	7，111旨	6， $146 \frac{1}{4}$	19，6623	17，646	14，1071	7，5574	839， 312	14，41412	10， 829	11，870	37，113
Quincy ．．．．．												
Weymonth．												
Hingham．	4，097	6， 3713	7，246	17， 7143	7， 698	5，675	6， $538 \pm$	19，911 ${ }^{\frac{1}{6}}$	8，2587	4， 0264	7，5651	19，850\％
Cohasset		4． 424.	5， $83.333^{3} 8$	10,294 1,673	5， 7178	$\begin{array}{r}4,5678 \\ \hline 370 \frac{8}{8} \\ \hline\end{array}$	7，${ }_{212} 053 \frac{1}{2}$	17，368 ${ }^{\text {767 }}$	9，211亲	4， 7102	9， 515	22，967\％
Duxbury．												
Plymouth	75	92	97	264	307	245	110	662	352	468	83	903
Barnstable．	1，086 ${ }^{2}$	861	1，080	3， 627	4，620	1，5579						
Truro．．	3,255	3， 5302	4， $5510 \frac{12}{2}$	11，328 ${ }^{\text {a }}$	6，962	3，217\％	5， 410	15， 6198	9，360z	3，697 ${ }^{\text {a }}$	6，221	10，2792
Provincetow	4，14：5	4， 4288	3， $716 \frac{1}{3}$	12，7．70	12， $345 \frac{1}{8}$	6，329 ${ }^{\text {d }}$	5，187	23， 861 弚	14，919	7，734皆	8,395	31， 049
Chatham．	6313	711	443	1，7853	1，644	1， 024	$511 \frac{1}{2}$	3， $179 \frac{1}{3}$	2， $814 \frac{1}{2}$	2，206	1， 218	6， $268 \frac{1}{4}$
Harwich	475 1,5351		1，${ }^{431} 51 \frac{1}{2}$	1， 400 4,063	2，110．2	－ 9403	3， $1185 \frac{1}{2}$	$\begin{array}{r}3,1783 \\ 13,8972 \\ \hline\end{array}$	4，8623	3，208	1，651	9， 722
Falmouth．	1，530					2， 980	3， 559	13，8978	6， 1503	4， 16424	$6,066 \%$ $83+$ 88	16， 5933 年
Nantucket．									270	280	60	$610{ }^{4}$
Fdgartown									4301	604	2312	1，266
New Bedford									129	112	36	771
Dartmonth．												77
Westport．												
Somerset．												
Swansea．．												
Other towns												

Statement I.-Mackerel inspection in Massachusetts-Continued.

Port of inspection.	1855.					1856.					1857.a				
	1.	2.	3.	4.	Total.	1.	2.	3.	4.	Total.	1.	2.	3.	4.	Total.
Total..	29, 3021	91, 1225	90, 193즤	1,3385	211, 9565	89, 333\%	76, 8193	47, 981\%	178	214, 312 ${ }^{5}$	84, 5198	45,2181	38, 257d	711	168, 705
Newburyport Ipswich	1,517\% $\frac{1}{8}$	5,9151	5, 8031 $\frac{1}{8}$	4	13, 239?	5, 8025	3,927⿺𠃊	2, 399 $\frac{1}{2}$	1	12, 1305					
Rockport..	-896	2,5301	2, 3143		5,7405	1,9855									
Gloucester. Manchester	14,718	41,542 ${ }^{2}$	16,532	$341 \frac{1}{2}$	73, 134 ${ }^{\text {a }}$	44, 930긍	16,296 ${ }^{\frac{1}{2}}$	6,849z	171	68,0933					
Beverly Salem	84	274	106	2	466	$42 \frac{1}{2}$	110	102		254 $\frac{1}{2}$					
Marblehead															
Medford...															
Charlestown															
Boston..............	6,147	14,8227	22,6483	3685	43,987\%	17,335	21, 8865	14, 8455	73	54, 1404					
Quincy .-..............															
Woymoath.															
Hingham.	$420 \frac{1}{8}$	3, 0261				1,882		3,541 $\frac{1}{8}$		9,014\%					
Cohasset Scituate.	438	2,723	5,7982	58	9,018 ${ }^{\frac{1}{4}}$	2, 053	1,863	4, 036\%		7,954				
Duxbury															
Plymouth						35	54	15		104					
Sandwich						\%	54	15		104					
Barnstable Yarmouth		217					$194 \frac{1}{2}$	78	15	447					
Yarmouth. Brewster. .	95	418	$586 \frac{1}{2}$	2	1,102 $\frac{2}{4}$	$194 \frac{1}{2}$	$174 \frac{1}{4}$	$30 \frac{1}{4}$	15	399					
Wellfleet.	1,919	7,6027													
Truro..........	1, 354	1,564	11,008 3,576	308 17	$20,837 \%$ 5,511	5, $536{ }^{2}$	1,196 ${ }^{\text {9, }}$	5, 691	41 \ldots.	20,5958 2,339					
Provincetown...	537	2, 427\%	3,2643	37	6,265\%	2, 9483	3, 7672	2, 781 $\frac{1}{2}$	$30 \frac{1}{2}$	9,5284					
Harwich.	1,0779	4, $7350 \frac{1}{\text { d }}$	2, $184 \frac{1}{4}$		3,1558 11,7361	\% 8603	2, 167 4,6931	1,3847	.	4, 4127					
Dennis ..	1,723	4,080 ${ }^{3}$ 3,243 $\frac{1}{2}$	$6,646 \%$ 4,660	$104{ }^{32}$	$11,7361 \frac{1}{2}$ $8,731 \frac{1}{8}$	3,0719 2,0664	$4,693 \frac{1}{8}$ $3,939 \frac{1}{4}$	$2,256 \frac{1}{4}$ $2,360 \frac{1}{4}$...	10,0201 8,3654					
Nantucket															
Edgartown															
Fairhaven.															
New Bedford															
Dartmouth.															
Westport										,
Somerset															
Other towns															-

Statement I．－Mackerel inspection in Massachusetts－Continued．

Port of inspection．	1858.					1859.					1860.																			
	1.	2.	3.	4.	Total．	1.	2.	3.	4.	Total．	1.	2.	3.	4.	Total．															
Total： Newburyport	75，347198	21， 9299	32，33213	1，992 ${ }^{\text {8 }}$	131，602 ${ }^{\text {5 }}$ 5	61，330	12，080즐	22，207t	4，1188	99，7153	58，8282	122，837	50，578	3，441	235，685															
	5，169备	1，453 ${ }^{\text {g }}$ 矿	2，431	3513	9，089 ${ }_{\text {¢ }}{ }^{\text {¢ }}$	4， 2193	1，0334	1，536 ${ }^{\frac{1}{2}}$	629	6，851者	3，5827	1，753	1，3828	85	6，8051															
Ipswich．．．	$\begin{gathered} 2,645 . \\ 39,948+8 \end{gathered}$	$\begin{aligned} & 75414 \\ & 6,77728 \end{aligned}$	$\begin{array}{r} 73016 \\ 9,502 \mathrm{rb} \end{array}$	$\begin{gathered} 212 \\ 260{ }^{2} \end{gathered}$	$\begin{array}{r} 4,1522_{6}^{8} \\ 56,489 \frac{8}{18} \end{array}$	$\begin{array}{r} 1,6833 \\ 41,254 \frac{3}{6} \end{array}$	$\begin{array}{r} 3762 \\ 5,947 \frac{1}{2} \end{array}$	$\begin{array}{r} 643 \\ 9,7642 \end{array}$	$\begin{array}{r} 301 \\ 2,698 \end{array}$	$\begin{array}{r} 3,0043 \\ 59,664 \frac{8}{5} \end{array}$	1,60837,407	$\begin{array}{r}3,096 z \\ 42,059 \\ \hline \ldots . .\end{array}$	$\begin{gathered} 870 \\ 17,108 \end{gathered}$	$\begin{array}{r} 37 \\ 816 \end{array}$	$\begin{array}{r} 5,561 \frac{7}{\mathrm{I}} \\ 97,902 \end{array}$															
Gloucester																														
Manchester						35	61	61	$\frac{1}{2}$	481	177	55	41		237															
Marblehea Medford．．																														
Charlestown	17175	7512	－ 392	1，467	35，5478	1，100t	4834	1，1091	2301	2，9232	5， 0551	20，2197	5，7498	1，102？	32，127															
Werraouth Hingham．		6161 令	1，441 ${ }_{\text {¢ }}$	24렬	3，0078 ${ }^{\text {8 }}$	1，524	5717	1，477	178	3，5905	${ }^{712}$	7，478	3，3672	2161	11，7739															
Cohasset．	1，27118	479	1，3751矿	$2{ }^{10}$	$3,1288^{\text {88 }}$	1，127 ${ }_{\text {\％}}$	185 ${ }^{3}$	921	9	2，244 ${ }^{3}$	1，271				11，980															
Barnstable Xarmouth．			78		388	171	82	38		291	154%	352 年	126		633															
Wellfleet			$\begin{aligned} & 1,961 \\ & 650 \\ & 1,72218 \\ & 45416 \\ & 1,968 \frac{1}{16} \\ & 1,128_{18}^{4} \end{aligned}$	$\begin{gathered} 1 \\ 137 \\ 4778 \\ 28 \\ 289 \\ 5 \\ 5 \end{gathered}$		$\begin{aligned} & 3,8447 \\ & 622 \\ & 2,739 \\ & 2147 \\ & 1,907 \frac{7}{8} \\ & 853 \frac{1}{8} \end{aligned}$	$\begin{array}{r} 1,3917 \\ 953 \\ 863 \frac{7}{8} \\ 69 \\ 528 \frac{3}{8} \\ 424 \frac{7}{8} \end{array}$	$\begin{array}{r} 2,272 \frac{1}{6} \\ 40058 \frac{1}{2} \\ 1999 \frac{2}{2} \\ 6699 \frac{1}{2} \\ 1,108 \frac{1}{2} \end{array}$	$\begin{gathered} 243 \frac{1}{2} \\ 216 \\ 216 \\ 25 \hbar \\ 92 \frac{2}{2} \\ 220 \frac{1}{2} \end{gathered}$		$\begin{gathered} \dddot{2}, 297 \\ 113 \\ 2,612 \frac{5}{8} \\ 725 \frac{1}{8} \\ 1,9114 \\ 1,188 \frac{3}{8} \end{gathered}$	$\begin{array}{r} 17,509 \frac{6}{8} \\ 12,017 \frac{3}{8} \\ 2,4137 \\ 5,337 \frac{3}{8} \\ 3,687 \frac{3}{8} \end{array}$	$\begin{aligned} & 6,916 \\ & 424 \\ & 4,465 \\ & 1,364 \frac{1}{8} \\ & \mathbf{8}, 599 \\ & 2,084 \end{aligned}$	627	27,35012862$19,330 \frac{1}{2}$4,5132$a 9,8802$7,094															
Provincetown														235 10																
Chatham．														32																
${ }_{\text {Harwich }}^{\text {Dennis }}$														133 \％																
Falmouth																														
Nantucket																														
Fairhaven New Bedfor																														
Dartmouth．																														
Westport．																														

Statement I.-Mackerel inspection in Massachusetts-Continued.

S. Mis. $110-18$
Statement I.-Mackerel inspection in Massachusetts—Continued.

Port of inspection.	1864.					1865.					1860.				
	1.	2.	3.	4.	Total.	1.	2.	3.	4.	Total.	1.	2.	3.	4.	Total.
Total	63,3834	137, 7463	33,2123	142	274, 3574	153, 723	63,562]	39, 2663	2445	256, 796z	150, 322\%	36,31918	44,78485	269릴	${ }^{231,696{ }^{78}}$
Newburyp	2,630 ${ }^{\text {2 }}$	4,3193	8071		7,8078	4,7554	2, 46778	1,1219		8,3443	4,9145.5.	955品	1,5963	2	7,468
	-1,8917	$\frac{2,4833}{73,001+5}$	$\begin{gathered} 592 \underline{2} \\ 13,866 \frac{1}{2} \end{gathered}$	81		-3,912\%	1,5876 28,3788	$\begin{aligned} & 2466 \\ & 13,995 \end{aligned}$	28	$\begin{array}{r} 5,746{ }^{2} \\ 141,575= \end{array}$	$\begin{array}{r} 5,065 \\ 80,245 \end{array}$		$\begin{aligned} & 759 \frac{1}{2} \\ & 12,978 \end{aligned}$	$2 \frac{1}{2}$	$\begin{array}{r} 7,562 \\ 112,856 \% \end{array}$
$\frac{\text { Manchester }}{\text { Beverly }}$	72	$124 \frac{1}{3}$	20		2171	941	21	1		110. ${ }^{\text {d }}$					
Marblohead															
Charlestown														47	46, 13218
Boston	7,2688	11, 327 \%	4,1583	11	23,356立	17,080 ${ }^{\text {\% }}$	12,635\%	6,6704	124	36,399	28,197\%	9,901	, 986	4	40,13218
Quincy................															
Hingham.	${ }^{1,7650}$	-	$\begin{gathered} 1,863 \\ 2,8182 \end{gathered}$	1	${ }_{8}^{8,12929}$	- ${ }_{\text {2, 169 }}^{3,434}$	${ }_{1}^{1,671}$	$\begin{array}{r} 1,860 \\ 3,726 \frac{1}{2} \end{array}$	$4^{\frac{1}{2}}$	$\begin{aligned} & 5,7014 \\ & 9,0288 \end{aligned}$	2,8548	1,4333	$\begin{gathered} 2,232 \\ 3,505 \end{gathered}$	$5 \frac{1}{2}$	7,43412
Sociasset															
Dusbury.														
Plymouth															
Barnstable															
${ }_{\text {Yarmouth. }}$															
Wellideet.	7,207i	16,720	2,847		26,774\%	7,928	5,522	4, 085 t		17,5368	7,120 ${ }^{\text {a }}$	3,2678	5,426	20,	15,834
${ }_{\text {Truro }}$....		10,215			17,822	6,509\% ${ }^{\text {7 }}$	5,756\% ${ }^{6 \frac{1}{2}}$	4, 949		17,403 ${ }^{15}$					14,8948
Chatham.	2,496\%		${ }_{1}^{1,0633}$	$3 \frac{1}{2}$	7,0488	${ }_{3}^{2,697}{ }^{\text {, }} 470$	1, 94412	- 5144	4.	${ }_{5}^{4,13373}$	${ }^{1,812}$, 108	${ }_{6962}^{166}$		${ }_{128}^{132}$	${ }_{5}^{2,9468}$
Deurwich	.2,9037				7,7118 ${ }^{\text {6,888 }}$		li,1,3417 1,1578	1, ${ }_{916}$	6	4, ${ }^{5,8903}$	${ }^{3} 1,718{ }^{\text {a }}$	${ }_{324}^{696}$	${ }_{1}^{1,3868}$	124	-3,391
Falmouth.						5583	240	96		894	$868 \pm$	2024	419	4	1,4939
Eldgartown															
Fairlaven...															
Dartmouth...											3078	89	171	$1 \frac{1}{1}$	568%
W estport.															
Sworerset															
Other towns......															
ther towns..															

Statement I.-Mackerel inspection in Massachusetts-Continned.

Port of inspection.	1867.					1868.					1869.				
	1.	2.	8.	4.	Total.	1.	2.	3.	4.	Total.	1.	2.	3.	4.	Total.
Total	122, $808{ }_{16}$		41,0482 ${ }^{\text {b }}$	4188		93, 0911	42, 26327	44,07723	625	180, 05668	${ }^{72}, 924$	92, 0193	65, $717 \frac{18}{}$	3,5497	234, 210\%
Newhuryport	3, 2x $3^{\text {\% }}$	1,6263	2, 5488	11	7,4691	2, 580\%	$533 \frac{1}{3}$	2, 08222 ${ }^{2}$		5, 19619,	1, 21818	1,953\%	3, 0081	39	6,2188
(eater	483138 $78,0622^{4}$	$1,7027$	-4304		$6,4798$	$3,147$	\cdots			$5,2603$		$\cdots, 168$	1, 839 ${ }^{\text {a }}$	12.	$5,922$
Glourester Manchester	78, 062 ${ }^{\text {a }}$		8, 507 ${ }^{\text {d }}$	20난	103, 917 霉	50, $65 z_{18}^{9}$	14, 2093	$10,495 \frac{1}{2}$	160	75, 517 ${ }^{3}$ 3	37, 153	36, 505.	18,4938	882 ${ }^{\text {b }}$	93, 1203
Beverly	9	1			93	2,285	382 2	193才		2,861	1, 050ı	1,083:	2298	61	
Marblehead														OL	2, 369
Charlestown															
Bostoni.	8,437 ${ }^{\text {7 }}$	5,212	4,7774	14.	18, 440건	14, 1172	7,2848	8,700 ${ }^{\text {d }}$	186ı	30,288	10, 4572	13,156؛	9,742	7793	34, 1355
Quiney. ${ }^{\text {Q }}$ Wermouth															
Hingham Colasset	2,245	1,3501	2,2007	\%	5,797	1,323z	2, 2309	2,3+29	171	5,9147	1,3i0 ${ }^{2}$	3,01ij	2,1168	563	6,5295
Cohasset	3,093														
Duxbury															
Sandwich															
Barnstable															
Yarmouth			22		22										
Welliteet	8,0872\%	$8,617 \frac{17}{60}$	6,8403		23,51598	4,1293	3,602\%	3,608	$20 \frac{1}{1}$	11,355 ${ }^{\text {g }}$	5,5331	11, 206	$10,380 \%$	685	27, 7785
${ }_{\text {Provincetow }}$			4,5798	278	17,3927										23,9988
Chatham.	1, 425	150	7248	${ }^{13}$	2,3139	1,1159	4850	850	5	${ }^{2}$ 2. 456	$88{ }^{\circ}$	1. 2944	1,305	1685	3,6532
${ }_{\text {Henwis }}^{\text {Harwi }}$	${ }^{2}, 8868$	1, $1,234 \frac{1}{4}$		${ }_{1}^{29}$		2, ${ }_{1}^{24018}$	1, $1,59333^{2}$	$\xrightarrow{2,630} 1,973{ }^{2}$				3.463.		105ı	
Falmeuth.															
Edgartown	1,4454	391%	1,0439	12 $\frac{1}{2}$	2, 89238	992 \% ${ }^{\text {\% }}$	7335.	979ํㅜㄹ	47	2, 7521	7463	1,499	6303	531	2, 335
$\stackrel{\text { Fairhaven }}{\text { New }}$,							
1)artmouth	179	14	1223		315	82	43 y	1i29		2388	268	751	50		15̈2i
Somersiet															
Swansea															
Other towns															

Statement i.-Mackerel inspection in Wassachusetts-Continued.

Statement 1.-Hackerel iisppection in Massachusetts.-Continued.

Statement I．－Mackerel inspection in Massachusetts－Continued．

Port of inspection．	1876.					1877.					1878.				
	1.	2.	3.	4.	Total．	1.	2.	3.	4.	Total．	1.	2.	3.	4.	Total．
Total	30， 8 滔	96， $77212 \frac{1}{2}$ \％	93，481 $1 \frac{1}{23}$	4，8184	225，94217	18， $015 \frac{4}{6}$	37， 2866_{4}^{23}	37，70098\％	12，094 ${ }^{\text {¢ }}$	105， 0977^{7}	14，0947	48，1705	70，175 $\frac{1}{\text { ¢ }}$	11，785 $\frac{1}{2}$	144， $226{ }^{1}$
Newbursport．	1，0w－	1，4073	1，515 ${ }_{8}^{3}$	26	3， 981 15	$516 \frac{7}{8}$	$768 \frac{3}{8}$	1573	23	1，465 ${ }_{8}^{5}$	47178	7443	$228 \frac{1}{8}$	$24 \frac{1}{2}$	1，469 ${ }^{1}$
Rockport	$7{ }^{-}$	－2，66．54	2，083	156	5，610	194	5991	459	26.5	1，447 ${ }^{3}$	116安	$259 \frac{1}{2}$	$421 \frac{1}{2}$	178	975
Gloncester	14，08	$45,3122^{3} 8$	33， 10914	2，916 ${ }^{\frac{1}{8}}$	95， 42133	9， $842 \frac{1}{2}$ ？${ }^{\text {g }}$	19，518 ${ }_{1}^{13}$	$14,9633_{2}$ \％	4， 7199^{3} 3 ${ }^{\text {a }}$	49，c44 ${ }^{2}$	7，152 ${ }^{\text {3 }}$	22，088	23，381	3，119 ${ }^{\text {d }}$	55，741旨
Manchester															
Severly															
Marblehead															
Medford．															
Charlestown Buston ．．．．	4，862 ${ }^{\text {\％\％}}$	$12,8900^{17}$	18，1753	455	36，38313 ${ }^{3}$	3，37939	6，44149	9，6176	3，7421	23， 182	3，105	10，369	18，637 ${ }^{1}$	4，550	36，661 $\frac{1}{8}$
Dorchester and Roxbury															
Quincy ．7．．．．．．．．．．．．．．．															
Hingham．															
Cohasset．	$520{ }^{3} 8$	2，142\％	4，147\％	$177 \frac{1}{2}$	6，9889\％	$230 \frac{1}{6}$	783 2\％	1，832 $\frac{1}{2}$	49	2， $895{ }_{2}{ }^{3}$	$266 \frac{1}{6}$	948 ${ }^{\frac{1}{2}}$	2，461	153	3， $828{ }_{4}^{3}$
Dusbury．															
Plymouth		8	20		$28 \frac{1}{2}$										
Sandwich．	389	399	$900 \frac{3}{8}$	342	1，723 ${ }^{\frac{7}{8}}$	3593	109	75	25	5683	221	47	132 ${ }^{\frac{1}{4}}$	132	215
Yarmouth												4	102	10．	
Brawster．															
Welltheet Truro．．．．	3，4613	16，625 ${ }^{1}$	17，7031	490	38，2803	1，033	3，138	4，331－$\frac{1}{2}$	827	9，3293	1，282 $2 \frac{1}{2}$	6，493 ${ }^{\frac{1}{2}}$	11，2213	1，206	20，203 ${ }^{2}$
Provincetown	2． 42617	7，7973	6，293	$414{ }_{8}^{1}$	16， 93114	1，1283	2，715	1， $826 . \frac{1}{2}$	1，777⿺	7，4472	$438 \frac{1}{4}$		3，555	$786 \frac{1}{2}$	
	（ $\begin{array}{r}7013^{3} \\ 2,230 ⿳ 亠 丷 厂\end{array}$	$1,8.5 .5$ $4,913.3$	1，${ }^{\text {6，}}$ ， $7444 \frac{1}{4}$		$\begin{array}{r}\text { 4，4832 } \\ 13,933 \\ \hline 18\end{array}$		－ 640	－ 831			$5902 \frac{3}{2}$	1， $2,424 \frac{1}{2}$	1，${ }_{5}, 84851{ }^{\frac{1}{2}}$	149	3， $951 \frac{1}{2}$
Denmis ．．．．．．．．．．．．．．．．．	－， 23.45	4， 70.364	6， 861	104	$\begin{array}{r} 13,933 \frac{3}{3} 8 \\ 2,175 \frac{3}{10} \end{array}$	617 5168 1				$\stackrel{\text { S，}}{1,3755_{5}^{1}}$	239 ${ }^{507}$	2， $1,102{ }^{\text {2 }}$		${ }_{866}{ }^{\frac{1}{2}}$	9， $4,7197 \frac{1}{3}$
Falmonth．															
Edgartown															
Fairhaven															
New Bedford															
Dartmouth															
Somerset．．．															
Swausca．															
Other towns．															

Statement I．－Mackerel inspection in Massachusetts－Continued．

Port of Inspection．	1879.					1880.					1881.				
	1.	2.	3.	4.	Total．	1.	2	3.	4.	Total．	1.	2.	3.	4.	Total
Total．	9，0255	91，113 $\frac{1}{2}$	54， 8061	3524	155，297\％	20，4531	104，434 $\frac{1}{2}$	99，554\％	19，5163	243， 9583	15，5981 ${ }^{\frac{1}{2}}$	139，586	98，861需	2，127결	256，1731
Newbaryp et	58	1，0041	528 $\frac{1}{2}$		1，591	153 $\frac{1}{2}$	445	1368		734%					
Ipswich．．．	35	141 $\frac{1}{2}$	27		172 ${ }^{1}$	62	4387	219	2：97	958\％	91	2375	44		291
Gloncester	2，737	33，983	11， 574	3474	48， 643	11，247\％	58,348	38，8338	8，4188	116，847	8，456 $\frac{1}{8}$	70，300 $\frac{1}{8}$	32，4963	1，950 ${ }^{\text {z }}$	113，203 $\frac{7}{8}$
Beverly．															
Salem ．－．															
Marblehead															
Medford．．															
Charlestown															
Boston．．．．．．．．．．．	3，3421	29，742	20，779	．．．	53，863\％	4，4968	21，4647	23，4383	4，5671	53，9673	5，537\％	43， $105 \frac{1}{2}$	28，427	129	77，199 ㄱ8ㅇ
Quincy ．．．．．．．．．．．．．．．．．															
Weymouth－															
Hinglam...															
Cohasset． Scituate	124	3，2891	1，5671／		4，981	431㡲	3，2011	2，877⿺	127	6，6374	1631	3，6827	4，1614	3	8，0103
Daxbury															
Plymouth															
Sandwich．．															
Barnstable	242k	801	287		$351 \frac{1}{2}$	$44 \frac{1}{8}$	$350 \frac{1}{2}$	4591 $\frac{1}{2}$		8537					
Xarmouth Brewster															
Wellfleet．	4261	10，070	6，4453	5	16，947	1，460 $\frac{1}{2}$	9，420 $\frac{1}{2}$	13，7954	4，703	29， 3792	$740 \frac{1}{2}$	13， 810	16，647 ${ }^{2}$	28	31，226
Praro ．．．．．．．	3508	2，468	1，741子		4，559\％	55.7	2， 060 z	2，556z	192 z	5，3623	$122\}$	2，6373	$3,476 \frac{1}{4}$	17	6，2523
Chatham ．．．．	312 $\frac{1}{2}$	2，548	2，863		5， $723 \frac{1}{2}$	$435 \frac{1}{2}$	2， $561 \frac{3}{4}$	3，835	421	7，252	234	3，251 ${ }^{\text {a }}$	5，615	17	9，100
Harwich.	1，1833	5，235	5，921	．．．．	12， 3393	1，131 ${ }^{\text {a }}$	4，1603	10，513	431	16，245	$335 \frac{1}{2}$	2，561音	7，993		10，8897
Dennis	244	2，551	3，330		6，1：5	437	1，973	2，890	4171	5，718t					
Fantucket															
Edgartown															
Fairhaven．															
New Bedford．															
1）artmotth．．															．
Westport															
Somerset．															
Swansea ．．．															
Other iowns		．．．．．．．．	．．．．．．．												

MACKEREL INSPECTION IN MASSACHUSETTS.

Statement II.-Showing the total number of barrels of each quality of pickled mackerel inspected in Massachusetts from 1804 to 1880, and the total value of each year's inspection from 1830 to 1880.

Statement II.-Showing the total number of barrels inspected, \&c-Continued.

		Barrols of mackerel inspected.					Total value.
		1.	2.	3.	4.	Total.	
1877.		18,015	37, 28623 ${ }^{2}$	37,70037	12,094?	105, 097\%	\$1,137, 516
1878.		14,094\%	48,1705	70, 175 ${ }_{8}$	11,785 ${ }^{\frac{1}{2}}$	4144, 226t	1, 034, 144
1879.		9, 025\%	91, 113 ${ }^{\frac{1}{3}}$	54, $806 \frac{1}{4}$	352 d	*155, 297 I	892, 957
1880.		20,4533	104, $434 \frac{1}{3}$	99, 554.	19,5163	243, 958	1,474,152
1881.		15, 598 $\frac{1}{2}$	139,586	98, 861 ${ }^{\text {2 }}$	2, 127 ${ }^{\text {2 }}$	256, 173 ${ }^{\frac{1}{8}}$	1,601, 081

\boldsymbol{a} The reports of the Boston fish bnrean give the number of barrels packed in Mrassachasetts in $1878,144,205$ barrels ; in $1879,156,125$ barrels; in $1880,255,986$ barrels ; in $1881,269,495$ barrels. These figures for 1880 and 1881 are probitbly nearer than the inspection returns to the actual product of the fishery, since some 5 per cent. of the catch escapes inspection.
MACKEREL REINSPECTION IN MASSACHUSETTS.
Statement III.-Showing the number of barrels of each quality of pickled mackerel reinspected in each port of Massachusetts from 1850 to 1881.

a Includes 25 barrels No. 1, and $37 \frac{1}{2}$ barrels. No. 2, reinspected at Wellfleet.
Includes 7\% barrels No. 1, and 1 barrel No. 2, reinspected at Beverly e Includes $\frac{1}{2}$ barrel No. 3 reinspeoted at Salem.

47.-Statistics OF MAINE.

The mackerel inspection of the State of Maine is exhibited in two statements, showing the total number of barrels of pickeled mackerel packed within the State for a series of years.

The first statment shows in detail the number of barrels of each grade of mackerel inspected in the several inspection ports of the State during the years 1804 to 1820 , and from 1864 to 1878 , and was compiled by Mr. Starbuck from the original returns of the inspectors, deposited in the office of the secretary of state. Until the year 18:20 Maine was a district of Massachusetts, but since that year has been a separate State. For the years from 1820 to 1864 the original returns could not be found, and it is probable that the returns of many years between 1864 and 1878 exhibit not more than 50 per cent. of the actual number of barrels of mackerel packed in the State.

The second statement shows the total number of barrels of each grade of mackerel packed in the State during a series of jears, and is compiled from the following sources: 1804 to 1820 , from the official inspection returns; 1825, 1834, 1836 to 1838, and 185̃1, from Sabine's report on the American fisheries; 1861 to 1878 , from the official inspection returns; 1879 to 1881 , from the annual reports of the Boston fish bureau.

A review of the statement indicates that the mackerel industry of the State was more extensively prosecuted in 1881 than during any previous year.
MACKEREL INSPEC'I'ION IN MAINE.
Statement I.—Showing by ports the number of barrels of each quality of pickeled mackerel inspected in Maine from 1804 to 1820, and from 1864 to 1878.

Port of ingeretion.	1804				1805.				\%eos.				1807.				1808.				1809.			
	1.	2.	3.	Total.	1.	2.	3.	Total.	1.	2.	3.	Total.	1.	2.	3.	Total.	1.	2.	3.	Total.	1.	2.	3.	Total.
Total	19	203		222	212	158	33	403	130	116t		2463	406 ${ }^{\frac{1}{3}}$	424	769	1,5991	43	66		109	14	223	4	40는
Eastport	16	167	...		203	158	33	394	97	12	109	7	22		29		$\cdots \cdots$ ${ }^{7}$		
Frankfort.																								
Cranberry Isle																								
Swan's Isiand																								
Deer Isle																								
$\underset{\substack{\text { Castine... } \\ \text { Orland... }}}{ }$																								
Buclsport																								
Brewer Bangor.									\ldots															
Hampden				\ldots																				
${ }_{\text {B }} \begin{aligned} & \text { Belfast, } \\ & \text { Camden }\end{aligned}$																								
Nortl Haven																								
Vinalhaven..																								
South Thomas													...											
Matinicus																								
$\underset{\text { Booth Bay }}{\text { Southport }}$																		
Westport.																							
Georgetown												
Phippsburg.																.								
Harpswell.																								
Portland.	3	${ }^{36}$		39	9			9	33	1042		137술	39931	402	769	1,570 ${ }^{1}$	43	66		109	14	151	4	33

Statement I.-Mackerel inspection in Maino-Continued.

Yort of inspection.	1810.				1811.				1812.				1813.				1814.				1815.			
	1.	2.	3.	Total.	1.	2.	3.	Total.	1.	2.	3.	Total.	1.	2.	3.	Total	1.	2.	3.	Total.	1.	2.	3.	Total.
Total	72	380	44	498	100	186	203	489	134	497	248	8793	463	142	15	76			10	10	75	72	24	171
Eastport	25	234		249	2	33	37	72	56	214	73	343												
Lubec Frank																								
Cranborry Isle																								
$\frac{\text { Mount Lesert }}{\text { Swan's Island }}$																								
Deer Isle..																								
Castine																							
Bucksport									3	4		7									421			$4{ }^{3}$
${ }_{\text {Brower }}$													2			2								
Hampden													2			2								
Belfast....					…	…..				.			.	.									
North Haver				.																				
Vinalharen......														-							$3 \frac{1}{2}$	18	17	388
Thomaston-.....																								
Matinicus.							.			,		.		.	,									
														
Westport...																								
Georgctom										
Phippsbirg																					5			5
Haphawell Portland...	47	156	44	247	98	153				279					15	74								
			4	24					75	279	1701			142	15	7			10	10	24	54	7	

Statement I.-Mackerel inspection in Maine-Continned.

Port of inspection.	1816.				1817.				1818.				1819.				1820.			
	1.	2.	3.	Total.	1.	2.	3.	Total.	1.	2.	3.	Total.	1.	2.	3.	Total	1.	2.	3.	Totel
Total..	274	53	2	329	300	230	90	620	381	170	311	862	999	2,557	1,766	5,322	1653	7881	4,037	4,991
Eastport.						14	6	23	17818	101	$\begin{array}{r}57 \\ 105 \\ \hline\end{array}$	588	57 17	38 61	45 177	140 255	431	42		$85 \frac{1}{2}$
Frankfort.					59	10		69	2	10	1	18	29	10	33	72				
Cranberry Islo.													66	29	10	105				
Swan's Island..																105				
Deer Islo..													111	20	5	136				
Castino.	46	6	52		175	13	...	188					733	1023	273	449
Orland ${ }^{\text {Bucksport }}$	72	4		76	36	6		42	108\%	46	62	210,	199	183	116	498\%	3	40	167	210
Brower.					17	1		18												
Bangor	8			8	19	2		21												
Hampdon.					14			14												
Belfast.																			
Camden. North												101	104	70	275	21	38	162	221
Vinalhaven..																				
South Thomaston																				
Thomaston..									2	3		5					5	10		15
Matinicus .																				
Booth Bay.																				
Southport																				
Westportl.											
Georgetown						$1 \frac{1}{2}$		13					21	20	13	54	13	26	219	258
Phippsburg																				
Harpswell																				
Portland.	148	43	2	183	152	1953	84	431 $\frac{1}{2}$	64	871	86	2371	398	2,092	1, 296⿺	3,786 ${ }^{\frac{1}{2}}$	$6 \frac{1}{2}$	530	3,216	3, 762 d

Statement I.-Mackerel inspection in Maine-Continued.

Statement I．－Mackerel inspection in Maine－Continued．

Port of inspection．	1867.					1868.					1869.				
	1.	2.	3.	4.	Total．	1.	2.	3.	4.	Total．	1.	2.	3.	4.	Total．
Total．．	21， $060 \frac{7}{8}$	8，043	4， 320 咅	250知	33，675 $\frac{1}{\frac{1}{8}}$	17， $946{ }^{7}$	6，363	4，464）		28，774 ${ }^{\text {I }}$	13，614 ${ }^{\text {\％}}$ \％	12， $410{ }_{1}{ }^{3}$	10， $201{ }_{2}^{1 \frac{1}{6}}$	0397	37， 1661
Eastport	24	28			52										
Frankfort．						260	128	83		471					
Cranberry Isle															
Mount Desort．															
Swan＇s Island．	$74 \frac{1}{2}$				74 $\frac{1}{2}$										
Deer Isle．．．	2，816	1，508	1， 059	41	5，424	1， 3188	$695 \frac{1}{2}$	$206 \frac{1}{2}$		2， 2208	1，844	1，1193	391	1082	3，4631
Castine．．．	352	198	142		692	145		20							
Orland ．．．． Bucksport．															
Brewner．．．															
Bangor ．．															
Hampden．															
Belfast ．．	2067	125	64	13	40812	$230 \frac{1}{2}$	961	52		3789	104		46		242
Camdea ${ }^{\text {North Haven }}$	1， $062 \frac{2}{2}$	$548 \frac{1}{2}$	100		1，711	916	632	39		1，587	163．$\frac{1}{2}$	2973	811	$24 \frac{1}{4}$	566
North Haven．．．．．	¢，88	222	201		951		$214 \frac{1}{2}$								
Vinalharen．．．．．．	35	47	4				112	4		$2 \% 1$	2	91	312		15
Thomaston．．．．．．．															
Matinicus．															
Borth Bay	1， $9811 \frac{1}{2}$	64931	$281 \frac{1}{2}$	${ }^{35}$	2， $9477 \frac{1}{2}$	2，4688	$786 \frac{1}{4}$	384		3，6387	1， 8178	1，690 ${ }^{8}$	1，355	56	4，979\％
Wouthport	1， 1780	178⿺𠃊⿳亠丷厂犬	226．	46年	1,630 60	${ }_{55}^{821}$	129룬	$366{ }^{\frac{1}{4}}$		$\begin{gathered} 1,3166^{2} \\ \hline \end{gathered}$	$49 \overline{5}^{\circ} \mathrm{s}$	4391	151	10	1，096 ${ }^{3} \mathrm{~s}$
Georgetown															
Bath．															
Phippsburg															
Harpswell．	$\begin{aligned} & 346 \\ & 12,396 \frac{3}{8} \end{aligned}$	4， $1581 \frac{1}{2}$	［61 ${ }^{61818}$	${ }_{891}^{26}$	19，048981 ${ }^{\text {5 }}$	11，016 ${ }^{8}$	3，534	3，023		17，5737	9，126 ${ }^{8}$	8，762 ${ }^{\text {\％}}$	8，173 ${ }^{\text {\％}}$	741	26，803 ${ }^{\frac{1}{6}}$

Stateatent I.-Mackerel inspection in Maine-Continued.

P Port of inspection.	1870.					1871.					1872.				
	1.	2.	3.	4.	Total.	1.	2.	3.	4.	Total.	1.	2.	3.	4.	Total
- Total.	13, $135{ }^{3} 8$	32, $613{ }_{1}^{3}$	6, 2055		52, $304 \frac{1}{18}$	23, 391127	18,4172\%	6, 7933		48, 603 \% ${ }_{\text {明 }}$	10,013 ${ }_{5}$	6, 1624 ${ }_{5}$	5,626	371	22,178
Eastport	$60 \frac{1}{2}$	223	30		3131									
Frankfort						250	200	50		500					
* Cranberry Mound															
Deer Isle.....	1,07919\%	2, 4144	1,093\%		4,58713	1,48-2	1,264	118		2, $864 \frac{1}{2}$					
Orastine															
Bucksport															
Brewer...															,
Bangor... Hampden															
Hampden															
Camden.	2759	1,7018	513		2, 490	1,101	1, 055 2	$650 \frac{1}{2}$		2,807	$463 \frac{1}{2}$	454	1743		1,092
North Haven.	802	$1{ }^{170}$	$18 \frac{1}{1}$		${ }^{569}$	$110{ }_{10}{ }^{\text {8 }}$	125	17		$252{ }_{18}{ }^{\text {¢ }}$	275 ${ }^{\text {\% }}$	i4	2		351
Vinalharen	$1 \frac{18}{4}$	2714	$4 \frac{1}{2}$		$33 \frac{1}{2}$										
South Thomaston	${ }^{4} 78$	14	3		21_{170}^{7}	391	171 ${ }^{\frac{1}{2}}$			56					
Thomaston..	$57{ }^{\text {? }}$ 8	155d ${ }^{\text {3 }}$	3		216	6782	151			$829 \frac{1}{2}$	11972		171		
Booth Bay	1,337 ${ }^{\circ}$	3, 2999.	$471 \frac{1}{2}$ 29		5, 108\%	2, 719 ${ }_{86 \frac{1}{2}}$	1,864 $966 \frac{1}{4}$	668 215		${ }_{2}^{5,2512}$	1,070 899	570 576	528 929		
Southport.	230 8		29		${ }_{67} 75$	${ }^{8649} 4$	${ }^{9660 \frac{1}{2}} 10$	215 12		2, 1636	899			113	
Georgetown											35	$7 \frac{1}{2}$	2	1	452
Phippsburg												${ }^{3}$			5
P'ortland.	9, 827 7	23, 597 18 ${ }^{\text {9 }}$	4,3788		37, 804\% ${ }^{\text {\% }}$	16,096 ${ }^{\frac{7}{10}}$	12,671 $\frac{1}{2} 7$	5,063 4		33, 831告	7,149	$4,450{ }_{2}{ }^{8}$	3,973	257	15, 8294

Statement I.-Mackerel inspection in Maine-Continued.

Port of inspection.	1873.					1874.					1875.				
	1.	2.	3.	4.	Total.	1.	2.	3.	4.	Total.	1.	2.	3.	4.	Total.
$\begin{array}{r} \text { Total. } \\ \substack{\text { Eastport } \\ \text { Tubw }} \end{array}$	12,7693	6, 845 ${ }^{\text {2 }}$,	2,579	22, 193128	25, 1933	14,326	4,222	43, 7413	2,221	1,4331	5,848	9, 502
	Lubec.														
Frankfort .															
Mount Desert.															
${ }^{\text {Buacksport.}}$															
Brewer..															
Hanpden															
Camden		240	1002			1,006 ${ }^{\text {a }}$	$524 \frac{1}{2}$	188		1,7181					
Vinalhaven															
Matinicus.	${ }_{170}^{1372}$	10을			${ }_{170}^{148}$						84	6 ${ }^{2}$			$90 \frac{1}{2}$
Phippsbarg															
Portiand	9,591	5,823z	2,129		17,544 ${ }^{10}$	17,4963	11,392	2,700를		31, 8897	2,067	1,417	a5, 848		9,332

$a 3,201$ barrels of these are No. 3 emall, same as No. 4 in Massachusetts.

Port of inspection.	1876.					1877.					1878.													
	1.	2.	3.	4.	Total.	1.	2.	3.	4.	Total.	1.	2.	3.	4.	Total.									
Total.	1, 90. $-\frac{1}{2}$	9, 2932	11, 2303		22, 4291	2,7023	9, $9411 \frac{1}{2}$	9, 4231 ${ }^{\frac{1}{2}}$..	2.3, 1573	1,4783	5,874	16, $082{ }_{1}{ }_{1}{ }^{1}$		23,4343									
Enatport ..																								
Frankfort.																								
swan's Island. Mount Desert.																								
Bucksport Brewer.																								
Brewer'..																								
Manpulen																								
Thomaston																								
											Matinicus													
Booth lay						$533 \frac{1}{2}$	1,068	-1,5301		3, 138	150	1,125	3, 729		5, 004									
Westport Georbstown																								
GeorgutownBath																								
Phippoburg													7		28									
Porthand..	1,518	7,456	99, 701		18,675	2,162	8,383	h6, 687		17, 232	1,288	4,544	1, 600_{12}^{1}		17, $427 \frac{1}{3}$									
a 204 barrels N $b 6$ barcels "ox c 1 barrel No. 3 d 762 L herds N. e 24 barrels Na	$\begin{aligned} & \text { large; } 8 \text {, } \\ & \text { "all. } \\ & \text { ars. } 294 \\ & \text { mall. } 9, \end{aligned}$	$5 \frac{1}{2}$ barre barrels	No. 3* No. 3, mid	$566 \mathrm{ba}$ $\text { le; } 24$	ols No. 3, arrels No	small.		$\begin{array}{ll} f & 1, \\ g & 3, \\ h \end{array}$	00 ba 055 ba 8 barr , H	$\begin{aligned} & \text { s No. 3, s } \\ & \text { is No. } 3 \text {, } \\ & \text { No. 3, sm } \\ & \text { in } 3 \text { larts } \end{aligned}$	11. 11. 3,531! 1	rly No	smail.											

Statement I.-Mackerel inspection in Maine-Contimed.

MACKEREL INSPECTION IN MAINE．

Statement II．－Showing the tolal number of barrels of each quality of pickled mackerel inspected in Maine from 1804 to 1820，and from 1864 to 1881.

Year．		Barrels of mackerel inspected．				
		1.	2.	3.	4.	Total．
		19	203			222
1805		212	158	33	．．．．．．	403
1806		130	$116 \frac{1}{2}$			2463
1807		4061 立	424	769		1， 599 ？
1808			66			109
1810		14 72	380	44		403
1811		100	186	203		489
1812		134	497	$248 \frac{1}{2}$		$879 \frac{1}{2}$
1813		461	143	15		76
1814				10		10
1815		75		24		171
1×16		274	53	2		329
1817		300	230	90		620
1818		381	170	311		862
1819		999	2，557	1，766		5，32\％
18：0		165 $\frac{1}{2}$	7881	4，037		4，991
18：5						33， 065
1834						40， 661
1836						25， 228
1837						22，462
18.38						24，312
1851						31，472
1864		14，677	30，1714	4， $881 \frac{1}{2}$	$67 \frac{1}{2}$	
1863		34，7057	13， 868	5，635	6^{6}	54， 215
1866		31，711	$6,1413^{3}$	6，7563	183	44， 6271
1867			8,043	4，320	$250 \frac{5}{8}$	33， $675 \frac{1}{8}$
1868		17， 9468	6， 363	4，4648		28， $744 \frac{3}{5}$
18699		$13,6143^{3}$ $13,135 \%$ \％ \％	12，410 ${ }^{7}$	10， $201 \frac{1}{13}$	9393	37，166 ${ }_{5}$
1871		13， $13.391{ }^{\frac{3}{7}}$	32， $618.3{ }^{\frac{1}{7}}$	6， 6935		48，603 ${ }^{\text {²0 }}$
1872		10， $013{ }^{\frac{1}{2}}$	6，162 ${ }^{\text {尔 }}$	5， 626	371	22， $173{ }^{20}$
1873		12， $769{ }_{5}^{3}$	6， 845	2，579		22，19313 ${ }^{3}$
1874		25，193年	14，326 ${ }^{\text {2 }}$	4，222		43， 741 旁
1875		2， 221	1，433	5，848		9， $502 \frac{1}{2}$
1876		1， $9055 \frac{1}{8}$	9,293 \％	11，23012		${ }_{2}^{22,429 \frac{1}{2}}$
1877		5，7923	9，941 ${ }^{\frac{1}{2}}$	9， 423 2 ${ }^{\frac{1}{2}}$		22，1573
1878		1，478\％	5，874	16， $08{ }^{\frac{1}{12}}$		a 23,434
1880						b58， b 86,398
1881						b116， 762

a The returns of the Boston Fish Bureau give the inspection this year 48.263 barrels．
b From returns of the Boston Fish Burean．The State inspection returns for 1879 could not be found． For 1880 the returus by the inspectors to the secretary of state give the number of barrels at $72,714_{2}^{7}$ ， which is believed to be inaccurate．

48．－Statistics of NEW HAMPSHIRE．

The statistics of mackerel inspection in New Hampshire are in a single statement which shows the total number of barrels of mackerel packed in Portsmonth，the only inspection port of the State，during the sears 1830 to 1852,1861 to 1881 ．These facts are compiled from the following sources： 1830 to 1852，from Sabinc＇s Report on the American Fisheries； 1861 to 1877，from original returns of inspectors copied by Mr．Starbuck； 189 to 1881，from official documents signed by the secretary of state of Ner Hampshire．In a foot－note is given the number of barrels packed in the State during the years ending December 31， 1878 to 1881，as re－ ported to the Boston Fish Bureau．

Statement showing the total number of barrels of pickled mackerel inspected in New Hampshire from 1830 to 1852, and from 1861 to 1881.a

Sear.	Barrels.	Year.	Barrels.	Year.	Barrels.
1830	20,300	1845	1,075	1867.	572
1831	21,450	1846.	1,369	1868.	
1832	21,700	1847.	2,008	1869.	157
1833	19,375	1848.	2,400	1870	3,700
1834	18, 200	1849	$\because, 867$	1871	2, 071
1835	15, 300	1850.	3,125	1872	1,878
1836	9,4.50	1851.	3,073	1873	2, 398
1837	5,225	1852.	2,140	1874	5,519
1838	3,420			1875.	3,415
1839	700	1861.	97	1876	5,351
1840	630	1863	15	1877.	643
1841	1,100	1863.	65	1878	b2,252
1842	1. 0.50	1864.	300	1879	63,435
1843	1,175	1865	45	1880	65,967
1844	1,240	1866.	200	1881.	65, 385

a The inspection year ends on May 1, from 1869 to 1877 , aud on June 1 in subsenucnt years.
b The annual report of the Boston Fish Bureau gives the number of barrels packed in New Hamp shire in fears ending December 31, $1878,4,000$ barrels; 1879, 6,2:5 barrels; 1880, 7,350 barrels; 1881, 5,400 barrels.

49.-Statistics of the united states.-Totals.

The mackerel industry of the United States, as far as pickled mackerel is concerned, is exhibited in a series of statements which show the total number of barrels packed in the United States, and the imports of mackerel from the Dominion of Canada. Several statements gathered from Canadian sources are also included to show the mackerel industry of the United States as compared with that of Canada.
Statements I to III show the number of ressels employed by the New England States in the Bay of Saint Lawrence and American coast fisheries, and the total catch of salt mackerel loy these fleets during the years 1879,1880 , and 1881.

Statement IV shows the quantity and value of pickled mackerel produced by the fisheries of the United States for the years 18:31, 1834 to $18.35,1851,1864$ to 1851 . From this statement it appears that more mackerel were packed in the year 1881 than in any year, with the exception of 1831, in the history of this fishery. If to the quantity of mackerel salted there be added the quantity sold in a fresh condition, which was from 150,000 to 175,000 barrels, the total catch of mackerel by the American fleet in 1881 represents not less than $150,000,000$ pounds of romed fish, a larger amount by $30,000,000$ pomels than was ever before taken in a single year.

Statement V shows the total quantity and ralue of pockled mackerel produced by the fisheries of the United States as compared with the production of Canadian fisheries during the years 1873 to 1880, from which it appears that during this period the United States have produced $1,809,333$ barrels, valued at $\$ 16,083,453$, and the Canadian fisheries have produced $1,320,217$ barrels, valued at $\$ 12,717,576$, making the total for both countries $3,129,050$ barrels, valued at $828,801,029$. Of the American production not over 260,000 barrels, valued at about
$\$ 2,500,000$ were taken by American vessels in the Bay of Saint Lawience.
Statement VI shows the number of barrels of pickled mackerel received at Boston from United States and foreign ports during each month of the years 1878 to 1881 , also the total receipts during the year 1877. From this statement it appears that the mackerel industry of Boston is increasing in importance, especially in the receipts of Americin mackerel.

Statement VII shows the price per barrel of the several grades ot mackerel during the first week of September in each year from 1830 to 1881. These values may perhaps be generally taken as the average value for the year, though in some years, as in 1881, the price rapidly increased later in the year, when a large part of the product was placed upon the market.

Statement VIII shows the number of barrels of pickled mackerel imported from the British North American provinces during the years $18 \rightleftarrows 1$ to 1841 , and from 1850 to 1881, also the value of each year's importation from 1850 to 1881.

Besides the quantity of mackerel imported in 1872 from these prorinces there were 1,504 barrels, valued at \$11,214, received from England, Scotland, British West Indies, France, and Portuguese possessions, making the total importation 79,235 barrels, valued at $\$ 449,625$. In the year $1873,1,191$ barrels mackerel, valued at $\$ 4,679$, were received from the Danish West Indies and England, making the total importatiou for that year 90,889 barrels, valued at $\$ 610,457$. The entire importation of pickled mackerel for the years subsequent to 1873 has been from the British North American provinces.

The quantities of dutiable mackerel imported since June 30, 1873, and included in the tabulated statement, are as follows: 1874, 190 barrels, \$1,550; 1875, 59 barrels, $\$ 553 ; 1876,7$ barrels, $\$ 48 ; 1877,14$ barrels, $\$ 148 ; 1878,6$ barrels, $\$ 67$; 1879, 2 barrels, $\$ 14$; 1880, none specified; 1881,9 barrels, $\$ 97$; total, 287 barrels, $\$ 2,477$. The quantities of pickled mackerel imported from the provinces free of duty under the treaty of Washington since June 30, 1873, are as follows: 1874, 89,503 barrels, $\$ 800,920 ; 1875,77,479$ barrels, $\$ 584,283 ; 1876,76,531$ barrels, $\$ 695,412$; 1877, 43,066 barrels, $\$ 372,260 ; 1878$, 102,148 barrels, $\$ 907,246 ; 1879$, 101,420 barrels, $\$ 649,721$; 1880, 112,468 barrels, $\$ 493,059 ; 1881,120,288$ barrels, $\$ 614,729$; total, 722,903 barrels, $\$ 5,117,630$.
Statement IX shows the quantity and value of pickled mackerel imported into the United States from the British provinces during the years 1856 to 1872 , being the time of the operation of the reciprocity treaty, and from the close of that treaty to the beginning of the treaty of Washington. The statement also shows what would have been the duty on these imports during the period of reciprocity. These statistice are compiled from sheets published by W. R. Clark, and believed to be copied from United States custom-house returns.

Statement X shows the quantity and value of foreign pickled mackerel entered for consumption in the United States during the jears ended June 30, 1872 to 1881. Comparing this Statement with statement VIII, it appears that the total imports from the Dominion of Canada, from 1872 to 1881 , amount to $\$ 90,619$ barrels, valued at $\$ 6,164,295$, and the total consumption of Canadian mackerel during the same period amounts to 836,218 barrels, ralued at $\$ 5,900,649$. This shows that nearly the entire importation of foreign mackerel is cousumed in this country; and such would naturally be the case since the imports are the best qualities of Canadian mackerel that are too fat for export to the West Iudies or other foreign countries.

Statements XI to XV, inclusive, show the production of mackerel by the fisheries of the Dominion of Canada, and the exports of mackerel from that country duriug a series of years. They are compiled from the annual reports of the department of marine and fisheries of the Dominion of Canada, the documents and proceedings of the Halifax Commission, and a report by United States Consul-General Jackson, of Halifax, on the fisheries of Canada, and their value to the United States, printed in commercial reports of the Department of State for January, $1 S 81$.

The first three of these statements show the total value of pickled and fresh mackerel, the value of mackerel exported to all countries, and the value of mackerel exported to the United States during the period from 1873 to 1879. From these statements we see that the production is valued at $\$ 10,654,528$, and the exports amount to $\$ 5,481,493$, of which the United States receives nearly three-fourths, or $\$ 4,090,139$ worth. Of the entire production only $\$ 115,918$ worth of fresh or canned mackerel is inchuded, of which $\$ 26,018$ worth was exported to the United States, as follows: 1573 , none specilied; 1874, from Nova Scotia, 26,390 pounds fresh, $\$ 2,689$; 1875, from Nova Scotia, 1,008 pounds fresh, $\$ 126 ; 1876$, from Nova Scotia, 22,760 pounds fresh, $\$ 4,632$; 1877, from Nova Scotia, 8,976 pounds preserved, $\$ 1,051$; from New Brunswick, 703 pounds fresh, $\$ 62 ; 1878$, from Nora Scotia, 54,200 pounds fresh, $\$ 1,266,4,365$ pounds preserved, \$4,287; from New Brunswick, $87,8.83$ pounds fresh, $\$ 5,099,9,448$ pounds preserved, 8693 ; from Quebec, 10,738 pounds fresh, $\$ 654 ; 1879$, from Nova Scotia, 39,700 pounds fiesh, $\$ 2,632,266$ pounds preserved, $\$ 818$; from New Brunswick, 32,786 pounds fresh, $\$ 2,009$; total value, $\$ 26,018$.

The total yield of fish and fish products, by the fisheries of Canada, from 1873 to 1879 , as given in official documents, was valued at $\$ 82,094,962$, of this amount $\$ 40,802,322$ worth was exported to all comntries, including $\$ 11,695,530$ worth exported to the United States.

Statement XIV shows the quantity and value of mackerel produced by the Canadian fisheries from 1869 to 1880, including those of Prince Edward Island since its entry into the Dominion in 1873.

Statement XV shows the quantity and value of pickled mackerel exported from the Dominion of Canada to the United States from 1873 to 1879 , also from Prince Edward Island from 1857 to 1873 , and from

Newfoundland from 1853 to 1876. From this statement it appears that the total exports of pickled mackerel to the United States amounts to 528,272 barrels, valued at $\$ 4,068,925$. Comparing this quantity and value with the imports into the United States during the same period as given in Statement VIII, by the United States Bureau of Statistics, we find the imports amount to 580,123 barrels, valued at $\$ 4,618,000$. Part of the discrepancy between those two statements may be accounted for from the fact that the United States returns are for the fiscal years ended June 30, while the Canadian returns may be for the caleudar years.

NEW ENGLAND MACKEREL FLEET, 1879.

Statement I.-Showing the mumber of vessels and their catch of salt mackerel in the Bay of Saint Lawrence and American shore mackerel fisheries for the season of 1879, as reported to the Boston Fish Bureau.
[Compiled from annaal report for 1879.]

[^66]NEW ENGLAND MACKEREL FLEET, 1880.
atch of satt mackerel in the Bay of Saint Lawrente, the Vew England shore, and the Southern
the scason of 1880 , as reported to the Boston Fish Bureau.
[Compild from annual mort for 1880.]
Barrels of mackerel.

Bay.	New England shore.	South.	Total.		Bay.	$\begin{gathered} \text { New } \\ \text { England } \\ \text { shore. } \end{gathered}$	South.	Total.	Remarks.
4	5	3	12	110		738		738	3,88.5 harrels packed at other ports.
1	5	1	7	96	50	706		756	6,269 barrels packed at other ports.
15	61	34	110	1,650	2, 189	124,477	2,954	129,620	Includes other than home fleet.
5	31		36	530	2,158	51, 844		54, 002	heveral bessils packed in addition to lome fleet.
1		6	7	100	390	5,8.56	600	6.846	
6	5	20	31	450	30	28,707	500	29.237	
	4	3	7	105	4,863	205	5,008	
....	1	5	${ }^{6}$	87		6, 230	1,000	7, 230	
	5	6	11	180	-. .-	12, 838	1,000	13, 838	
	${ }_{6}^{7}$	3	10	160		7.691	1460	8, 151	
	2		2	30		500		500	
32	126	81	239	3,498	4,817	244,450	6, 719	255, 986	
2	$\stackrel{2}{9}$	6	10	145					All packell from home.
	2	2	4	56					All packed from home.
	3		3	39		1,421		1,421	
	1	5	${ }_{6}^{6}$	90			1,400	1,400	Vessels partly packed away from homo.
	12	4	16	235		3,300	700	4,000	Many of them packed away from iome.
	5		5	70		3,100	3,100	Part packed from home.
		1	1	15					1,240 barrels packed away from home.
......	50	.. $\cdot \cdots$	50	730	2, 48.4	73, 933	-	76,417	Many vessels in addition (1) home tlent iveluded.

Bay.	New England shore.	South.	Total.		Bay.	New England shore.	South.	Total.	Remarks.
4	5	3	12	110		738		738	3,88.5 harrels packed at other ports.
1	5	1	7	96	50	706		756	6,269 barrels packed at other ports.
15	61	34	110	1,650	2,189	124, 477	2, 954	129, 620	Includes other than home fleet.
5	31		36	530	2, 158	51, 844		54,002	several vessils pateked in addition to home fleet.
1		6	7	100	390	5,8.56	600	6.846	
6	5	20	31	450	30	28,707	500	29, 237	
	4	3 5	7	105		4,863	${ }_{1}^{205}$	5, 0068	
....	1	5	${ }^{6}$	87		6, 230	1,000	7, 230	
	5	6	11	180		12, 838	1,000	13,838	
	7 2	3	10	160 30		7,691	460	8, 151	
32	126	81	239	3,498	4,817	244, 450	6,719	255, 986	
2	$\stackrel{2}{2}$	6	10	145	.				All packed from home.
	$\stackrel{2}{3}$	2	4	56					All packed from homo.
	3		3	39		1,421		1,421	
	1	5	${ }_{6}^{6}$	90			1,400	1,400	Vessels partly packed away from homo.
	13	4	16	235		3, 300	700	4,000	Many of them packed away from iome.
	5		5	70		3,100		3, 100	Part packed from home.
		1	1	15					1,240 barrels packed away from home.
......	50	50	730	2, 48.4	73, 933	,	76,417	Many vessels in addition ti) home tlent iveluded.

Vessels.					Barrels of mackerel.				Remarks.
Bay.	Now England shore.	South.	Total.		Bay.	$\begin{aligned} & \text { New } \\ & \text { England } \\ & \text { shore. } \end{aligned}$	South.	Total.	
4	5	3	12	110		738		738	3,88.5 harmels packed at other ports.
1	5	1	7	96	50	706		756	6,269 barrels packed at other ports.
15	61	34	110	1, 650	2,189	124,477	2, 954	129, 620	Inclutes other than home fleet.
5 1	31		36	530	2,158	31.844		54.000^{2}	sureral vessids packed in addition to home fleet.
1		6	7	100	390	5,8.56	600	6. 846	
6	4	20	31	450	30	28,707	500	29.237	
	4	${ }_{5}^{3}$	7	105		4,863	205	5.008	
.	1	5	${ }^{6}$	87		6, 230	1,000	7, 230	
...	5	6	11	180	12, 838	1,000	13, 838	
	7 2	3	10 2	100 30	7. 697	460	8, 151	
32	126	81	239	3,498	4,817	241,450	6,719	255, 986	
2	2	6	10	145					All packed from bome.
	$\stackrel{2}{3}$	2	4	56 39					All packed from home.
	1		${ }_{6}^{3}$	39 90		1,421		1,421	
	12	4	16	235		3,300		4,000	Many of them packed away from iomes.
	5		1	70		3,100		3, 100	Part packed from home.
	50	1	50	730	2, 48.4	73, 933		16,417	1,240 barrels packed away from home. Many vessels in addition to home the t included.
2	, 75	18	95	1,380	2,484	81, 754	2,100	86,338	
	4	4	8	110		6,750	600	7,350	
34	205	103	342	4,988	7,301	332, 954	9,419	349,647	Inspected barrels.

All packed from bome.
All packed from home.

Vessels.					Barrels of mackerel.				Remarks.
Bay.	Now England shore.	South.	Total.		Bay.	$\begin{aligned} & \text { New } \\ & \text { England } \\ & \text { shore. } \end{aligned}$	South.	Total.	
4	5	3	12	110		738		738	3,88.5 harmels packed at other ports.
1	5	1	7	96	50	706		756	6,269 barrels packed at other ports.
15	61	34	110	1, 650	2,189	124,477	2, 954	129, 620	Inclutes other than home fleet.
5 1	31		36	530	2,158	31.844		54.000^{2}	sureral vessids packed in addition to home fleet.
1		6	7	100	390	5,8.56	600	6. 846	
6	4	20	31	450	30	28,707	500	29.237	
	4	${ }_{5}^{3}$	7	105		4,863	205	5.008	
.	1	5	${ }^{6}$	87		6, 230	1,000	7, 230	
...	5	6	11	180	12, 838	1,000	13, 838	
	7 2	3	10 2	100 30	7. 697	460	8, 151	
32	126	81	239	3,498	4,817	241,450	6,719	255, 986	
2	2	6	10	145					All packed from bome.
	$\stackrel{2}{3}$	2	4	56 39					All packed from home.
	1		${ }_{6}^{3}$	39 90		1,421		1,421	
	12	4	16	235		3,300		4,000	Many of them packed away from iomes.
	5		1	70		3,100		3, 100	Part packed from home.
	50	1	50	730	2, 48.4	73, 933		16,417	1,240 barrels packed away from home. Many vessels in addition to home the t included.
2	, 75	18	95	1,380	2,484	81, 754	2,100	86,338	
	4	4	8	110		6,750	600	7,350	
34	205	103	342	4,988	7,301	332, 954	9,419	349,647	Inspected barrels.

The New England shore flect mentioned abore are only the ressels that fish nowhere else; to which ma

Bay.	New England shore.	South.	Total.		Bay.	New England shore.	South.	Total.	Remarks.
4	5	3	12	110		738		738	3,88.5 harrels packed at other ports.
1	5	1	7	96	50	706		756	6,269 barrels packed at other ports.
15	61	34	110	1,650	2,189	124, 477	2, 954	129, 620	Includes other than home fleet.
5	31		36	530	2, 158	51, 844		54,002	several vessils pateked in addition to home fleet.
1		6	7	100	390	5,8.56	600	6.846	
6	5	20	31	450	30	28,707	500	29, 237	
	4	3 5	7	105		4,863	${ }_{1}^{205}$	5, 0068	
....	1	5	${ }^{6}$	87		6, 230	1,000	7, 230	
	5	6	11	180		12, 838	1,000	13,838	
	7 2	3	10	160 30		7,691	460	8, 151	
32	126	81	239	3,498	4,817	244, 450	6,719	255, 986	
2	$\stackrel{2}{2}$	6	10	145	.				All packed from home.
	$\stackrel{2}{3}$	2	4	56					All packed from homo.
	3		3	39		1,421		1,421	
	1	5	${ }_{6}^{6}$	90			1,400	1,400	Vessels partly packed away from homo.
	13	4	16	235		3, 300	700	4,000	Many of them packed away from iome.
	5		5	70		3,100		3, 100	Part packed from home.
		1	1	15					1,240 barrels packed away from home.
......	50	50	730	2, 48.4	73, 933	,	76,417	Many vessels in addition ti) home tlent iveluded.

 $2,100 \quad 86,338$

returncd from their unsuccessful erniso in those waters, making the total shore fleet 342' sail.

massachusetts.
MASSACHUBETTS.
Newburyport.................
Newburyport
Provincetown
Chatbam......
I)emis.

Swan's Isle
Deer Islo..
Comenc....
North Have
Booth Bay
Southrort...
Sedgwiek.
Portland...

34 203 - 103

NEW ENGLAND MACKEREL FLEETS, 1881

Statement III.-Showing the number of vessels and their catch of salt mackerel in the Bay of Saint Lawrence, the New England shore, and the Southern [Compiled from annual report for 1881.]

 returned from their unsuccessful cruise in those waters, making the total shore fleet two hundred and ninety-eight sail.

MaCkerel Fishery of the united states.

Statement IV.-Showing the number of barrels and ralue of pickled mackerel produced by fisheries of the United States for the years 18:11, 1834 to 1838, 1851, 1864 to 1881.*

Years.		Massachusetts.	Maine.	New Hamp. shire.	Total quantity and value.	
		Barrels.	Barrels.	Barrels.	Barrels.	Value.
1831		283, 548 ${ }^{\text {a }}$	44, $951 \frac{1}{2}$	21,450	449, 950	\$1, 862, 793
1834.		252, 879.3	40, 661	18,200	311, 740 ${ }^{\frac{1}{2}}$	1, 437, 123
1836		174, 410	25, 223	9, 450	209, 088	1,520,069
1837		138, 157 ${ }^{\frac{1}{2}}$	22,462	5,225	165, 8443	965,214
1×38		110, $740 \frac{1}{4}$	24, 312	3, 4:0	138,472.	1,156, 243
1851		329, $244 \frac{1}{8}$	31,472	3, 073	363, 789 ${ }^{\text {¢ }}$	2, 484, 679
1864		274, 357	49,797 ${ }^{\text {a }}$	300	324, 4543	7, 001, 098
1865		256, $796 \frac{2}{3}$	54, 215\%	45	311, 056\%	5, 729, 851
1866		231,696 ${ }^{7}$	44, 627 ${ }^{\text {a }}$	200	276, 52318 ${ }^{\text {2 }}$	5, 161, 261
1867		210,31415		572	244, 5013	3, 174, 130
1868		180, 050 ${ }^{\frac{1}{2}}$	28,774		208, 830륭	2, 924, 987
1869		234, 2108	37, 166\%	157	271,5343	3, 76 2,985
1870		318, $521{ }^{3}$	52, 3012\%	3,700	374, 525.5	4, 400, 563
1871		259, 416	48, $603 \frac{9}{29}$	2, 071	310, 091 ${ }^{\frac{1}{3}}$	2, 668, 851
1872		181, 956 6_{80}^{10}	22, 173	1, 878	206, 007 ${ }^{\text {¢ }}$,	2, 205,761
1873		185, 748 ${ }_{\text {¢ }}$	22, $1931 \frac{13}{4}$	2, 398	210, $350 \frac{3}{20}$	3, 167, 948
1874		258, 37915	43, $741 \frac{1}{4}$	5,519	307, $640 \frac{1}{18}$	3, 163, 701
1875		130, $062 \frac{2}{\frac{7}{6} \text { b }}$	9, 502 2	3, 415	142, 980 ${ }^{\frac{2}{8} \text { b }}$	1, 439, 315
1876		225, 942 $2 \frac{17}{7}$	22,429	5,351		1, 853, 103
1877		105, 097 ${ }^{78}$	22, 1574	643	127, $8988_{\text {E\% }}$	1, 384, $2: 3$
1878		144, 205	48,263	4,000	196, 468	1, 408, 675
1879		156,125	58, 249	6, 225	220, 599	1, 208, 494
1880		255, 986	86,338	7, 350	349,674	2, 398, 004
1881		269,495	116, 762	5, 400	391,657	2, 447, 556

[^67]
MACKEREL FISHERY OF THE UNITED STATES AND OF THE DOMINION OF CANADA.

Statement V.-Showing the number of barrels and ralue of pickled mackerel produced by the fisheries of the United States from 1873 to 18×1, and by the fisheries of the Dominion of Canada from 1873 to 1880.

Year.	United States.		Dominion of Canada.		Total.	
	Barrels.	Value.	Barrels.	Value.	Barrels.	Value.
1873.	$210,3500_{28}^{-3}$	\$3,167, 948	159,530	\$1,615, 552	369, $880 \frac{3}{20}$	\$4, 783, 500
1874.	307, 64018	3, 163, 701	161, 096	1,559,551	468,73613	4,723, 252
1875.	142. 980 詨	1,439,315	123, 654 ${ }^{\frac{1}{2}}$	1,236,545	266, $634 \frac{7}{\text { \% }}$	2, 675, 860
1876.	253, 7222^{67}	1, 853, 103	104, 356	992, 794	358, $0788_{\text {E }}^{\text {b }}$	2, 845,897
1877	127, $898{ }_{28}{ }^{\text {g }}$	1,384, 223	163, 916	1, 639, 160	291, $814{ }_{2}^{2}$	3, 023,383
1878.	196,468	1,408, 675	183, 919	1, 766, 226	380, 387	3, 174, 901
1879	220, 599	1, 268,444	${ }^{190}, 076 \frac{3}{2}$	1, 745, 490	410, $675 \frac{3}{2}$	3, 013,934
1880	349, 674	$2,398,044$	233, 669	2, 162, 258	583, 343	4,560,302
1881	391, 657	2, 447, 556				
Total 1873 to 1881.	2, $200,690{ }_{5}^{36}$	18, 531, 009				
Total1873 to 1880.	1, 809, 333 \% ${ }^{3}$	16, 083, 453	1,320,217	12,717, 575	3,129, $550 \frac{3}{3} 8$	28,801, 029

MACKEREL INDUSTRY OF BOSTON，MASS．

Statement VI．－Showing the number of barrels of pickled mackerel received in Boston from home and foreign ports，from 1877 to 1881，as reported to the Boston Fish Bureau．
［Compiled from annual reports of Boston Fish Bureatu．］

	1877.		1878.		1879.		1880.		1881.	
	逑密				为号	$\begin{aligned} & \text { Ex } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		惑范	令突	
January			272	480	611	1，484	117	3，576	211	1，179
February			371	1，132	1，417	1，490	709	3，947	1，202	2，065
March			842	1，555	3，868	4，577	331	2， 012	3，252	7，269
April			740	50	1，606	1，878	184	138	464	4，482
May			3， $379 \times$	2，160 ${ }^{*}$	1，183	95	945＊	178	2， 161	1，725
June			2， 299	5，037	2， 843	779	1，679	6， 283	3， 269	2，366
July ．			774	5，341	1，505	6，450	4， 160	8，222	10， 943	5， 766
August			5，472	21，495	5， 158	12， 290	10， 158	14， 891	12， 678	3，931
Septembe			4，533	12， 109	5， 035	13， 878	9，412	19，713	20，868	12，903
October．			7，025	15，092	4，934	25， 600	4， 934	30， 033	10，391	11， 500
November			5， 039	9，383	2，425	12， 180	2，425	11，532	6，574	5，356
December			1，437	4，405	3， 233	3，512	1，701	5，205	1，640	3，259
Catch of Boston flect	$(20,139)$		32，458		49，413		54，002		69，669	
Total	55，668	86， 356	64，339	78，689	83， 231	81，213	90，763	105， 730	143， 319	61，850
Grand total．	142，	021	143 ，	028	167	444	196，	493	205	172

＊New．

price of mackerel in massachusetts．

Statement VII．－Showing the price per barrel of each grade of pickled mackerel in the first week of September，from 1830 to 1881.
［Compiled from the files of the Gloucester Telegraph and the Cape Ann Advertiser．］

UNITED STATES IMPORTS OF PICKLED MACKEREL.

Stathaent VIII.-Showing the number of barrels of pickled mackerel imported thto the Cinited States from the British North American Provinces from 1821 to 1841, and from 1850 to 1881, and also the value of same from 1850 to 1881.*

Year.	Barrels.	Year.	Barrels.	Year.	Barrels.	Value.	Year.	Barrels.	Value.
		1834	223	1850	75, 326	\$335, 309	1866	56,613	\$528, 270
		1835	8,153	1851	102, 394	548, 553	1867	77, 503	675, 986
		1836	6,037	185\%	78,334	327, 613	1868	41,655	364,429
$18 \% 1$	7	1837	1,256	1853	54,407	329, 216	1869	29,701	327, 079
1822	357	1838	183	1854	61,815	470,916	1870	30,712	346,956
$18 \% 3$	67	1839	7,046	1855	80, 012	$4 \div 7,283$	1871	20,333	254, 986
1824	790	1840	11,823	1856	62,606	492, 802	1872	77, 731	438,410
1825	242	1841	10,877	1857	49,477	457, 074	1873	89,698	605, 778
18.6	87			1858	67,345	664, 852	1874	89,693	802,470
1827	39			1859	49, 086	565, 029	1875	77, 538	385, 836
1828	38			1860	63,549	588, 969	1876	76,538	695,460
1829	95			1861	38,023	269, 399	1877	43, 080	372, 408
1830	391			1862	37, 710	247, 678	1878	102, 154	907, 313
1831	4,552		1863	62, 767	402, 178	1879	101, 423	649, 735
1832	32			1864	80,665	599, 109	1880	112,468	493, 059
1833	20			1865	120, 067	957, 411	1881	129, 297	614,820

[^68]UNITED STATES IMPORTS OF PICKLED MACKEREL
Statement IX.-Showing the quantity and value of pickled mackerel imported into the Tinited States, \&c.-Contimued.

Year.	Maryland.			Boston.*			Portland.*			Total.		
	Barrels.	Value.	Duty.	Barrels.	Value.	Duty.	Barrels.	Value.	Duty.	Barrels.	Value.	Duty.
1855				61,513	\$391, 625	\$123, 026	889	\$5,463	\$1,778			
1856	9,636	\$60, 204	\$19, 27	44, 956	349, 6 6 3	89, 912	214	1,406	428	62, 606	\$492, 803	$\$ 125,212$ 98,954
1857.	3,312	27,125	(6, 6: 4	30,794	273,830	61,588	109	-972	218	49, 477	457, 074	98,954 134
1858	4,850	37, 635	9, 700	32, 522	377, 650	65, 044	340	2, 197	680	67, 345	664, 8552	134, 690
1859	1,847	21, 339	3,694	41,572	390,915	83, 144	441	1, 649	882	49,086	565,029 $-88,969$	98,172 127,098
1860.	$\because, 305$	16, 738	4,610	40,816 17,179	374,050 90,046	81,632 34,358	148	1, 993	464 296	63,549 38,023	588, 969 269,399	127, 7698
1861	2,673 2,213	14,606 12,838	5,346 4,426	17,179 14,704	90,046 87,768	34,358 29,408	148	523 928	296	38,023 37,710	269,399 247,678	76,046 75,420
1263	2,162	11,7\%1	4, 3:4	35,048	211, 253	70, 096	425	2, 603	850	62,767	402, 178	125,534
1864	966	5,612	1,932	45,714	308, 878	91,428	2, 980	24,747	5,960	80, 665	599, 109	161,330
1865	4,466	33,517	8,932	67, 300	524,998	134, 600	95	991'	190	120, 067	957, 411	240, 134
1866	5.34	4, 387	1,068	38,52?	363, 910	77, 044	442	3,773	884	56,613	582, 270	113,226
1867	1,487	12, 8.87	こ, 974	29,176	259, 186	58,352	155	1,308	310	59,219	517, 533	118,438
1868.	$16: 3$	2, 14.5	326	16,102	156, 847	32, 204	3,318	33, 275	6, 636	38, 014	349, 181	76, 028
1869.	188	1,803	376	18, 343	186, 821	36, 686	1,365	17, 563	2,730	29,701	327, 079	59, 402
1870.	736	11,508	1,472	14, 716	164, 508	29,432	2, 610	30, 017	5,220	30,712	346,956	61, 424
1871.	1,141	12, 908	2, 282	15,900	109,578	31, 800	1, 223	11,725	2, 446	29,333	254, 986	58, 666
1872.	778	4,238	1,556	35, 437	221,935	70,874	2, 763	14,886	5,526	$62,82.4$	401, 777	125, 648
	39,457	$\because 93,191$	78,914	600,314	4,843, 461	1, 200,628	17, 973	156, 019	35,946	937, 711	8, 024, 284	1,875,422

* rncluded under Massachusetts and Maine.

CONSUMPTION OF FOREIGN MACKEREL IN THE UNITED STATES.

Statement X.—Showing the number of barrels and value of foreign mackerel entered for consumption in the United States, 1872 to 1881.
[Compiled from reports of United States Bureau of Statistics.]

Year ended June 30-	Free of duty.		Dutiable.		Total.	
	Barrels.	Value.	Barrels.	Value.	Barrels.	Value.
1872			39,572	\$247, 79678	39,572	\$247, 79675
1873				${ }^{523,3572505}$	70,651 ${ }^{7}$	${ }_{807} 523,3577^{25}$
1875	89, 376	\$793,764	1, $496{ }_{41}$	13, 325	90,873 ${ }^{\text {a }}$	807,089 587,349
1876	76,582 ${ }^{88}$	695, 847	16	70	76, $5988^{\text {P5 }}$	695, 917
1877.	44, 169 ${ }^{\frac{1}{2}}$	373, 792 9 \% 8	81	105	44, 178	373, $8977_{108}^{\text {308 }}$
1878	101, 995	907, 013	6	67	102, 001	907, 080
1879	101,450	650, 0488183	${ }_{2}{ }^{838}$	$199^{5} 5$	101, 452 $\frac{63}{108}$	650, 06718
1880	112, 385 ${ }^{\text {d }}$	492, 80748	12		112, 3972	492, 9341818
1881	120, 352 $\frac{1}{2}$	615, $063{ }_{\text {1 }}^{10}$	$8 \frac{1}{2}$	988_{100}^{50}	120, 361	615, 1611_{180}^{180}
Total Duty paid	724, 403 ${ }^{\text {380 }}$	5,115, 160 ¢ $_{\text {¢ }}$	$\begin{aligned} & 111,8147_{3}^{3} \\ & \$ 223, \\ & \hline \end{aligned}$		836, 218 - ${ }_{\text {¢ }}$	

Note.-All the consumption of foreign mackerel as given in the above table for the year 1877, and subsequent to that time, and nearly all, if not the entire consumption for the year prior to 1877 , is the product of the British North American provinces.

MACKEREL FISHERY OF THE DOMINION OF CANADA.

Statement XI.--Showing the total value of the production of the mackerel fishery of the Dominion of Canada, 1873 to 1879.

MACKEREL EXPORTS OF THE DOMINION OF CANADA.
Statement XII.-Showing the total ralue of mackerel exported from the Dominion of Canada to all countries, 1873 to 1879.

Year.	Quebec.	Nova Scotia.	New Brunswick.	Prince Edward Island.	Total.
1873	\$2,076	\$673, 894	\$10,232	\$29, 830	\$716, 032
1874.	984	615, 992	25,123	73, 329	715, 428
1875	953	509, 117	30, 338	252, 839	793,247
1876	206	582, 155	56, 979	108, 332	747, 672
1877	65	442, 306	46,179	98,383	586, 933
1878	1,078	677, 550	85, 239	279,568	1, 043,435
1879	1,665	651, 037	83, 946	145, 098	881,746
Total 1873 to 1879	7,027	4, 152, 051	338, 036	987, 379	5, 481, 493

[215] HISTORY OF THE MACKEREL FISHERY.
MACKEREL EXPORTS OF THE DOMINION OF CANADA.
Statement XIII.-Showing the total value of mackerel exported from the Dominion of Canada to the United States, 1873 to 1879.

Year.	Quebec.	Nova Scotia.	New Brunswick.	Prince Edward Island.	Total.
1873.	\$940	\$502, 226	\$10, 232	\$20, 440	\$533, 838
1874	984	518, 809	25, 123	73, 279	618,195
1875	860	242, 704	28,978	251, 232	523, 774
1876	206	415, 143	56, 274	108,332	579, 955
1877	21	216, 170	46, 023	97, 359	359, 573
1878	1,088	473, 571	84, 682	279,402	838, 743
1879	1,394	406, 024	83, 605	145, 038	636, 061
Total 1873 to 1879	5,493	2, 774, 64\%	334, 917	975, 082	4, 090, 139

S. Mis. $110-20$
MACKEREL FISHERY OF THE DOMINION OF CANADA.
Statement XIV.-Showing the quantity and value of mackerel produced by the fisheries of the Dominion of Canada, 1869 to 1880, including Prince Ed-

Year.	Quebec.			Nova Scotia.			New Brunswick.			Prince Edward Island.			Grand total.			
	Pickled mack. erel.			Pickled mackerel.			Pickled mackerel.			Pickled mackerel.			Pickeled raackerel.			
		®			感			$\stackrel{\text { ® }}{\text { ® }}$			总			¢		
1869.													51, 011	\$530, 110		\$530, 110
1870	3,677	\$36,770		85,254	\$1, 023, 048		3,282	\$39,384					92, 213	1,099,202		1,099, 202
1871*	7,638	76, 380		128, 028	1, 220,333		4,639	56, 603					140, 305	1,349,682	\$3, 634	1,353, 316
1872.	1,759	17, 590		115, 833	1, 624, 894		2,217	32, 728					119, 439	1,665, 110	10, 102	1, 675, 212
1873.	6,170	61, 700		141, 005	1, 410, 050	\$1,626	3,229	32, 290	\$3,157	9,126	\$111, 512		159,530	1, 615, 552	4,783	1,620,335
1874	7,278	72, 780		122, 258	1,222,580	12, 069	4,243	42,430	8,850	27,317	221, 761		161, 096	1,559,551	20,919	1,580,470
1875				91, 235									123, 654	1,236,545	9,207	1,245, 752
1876	4,975	49, 750		70, 964	709,640	4,623	3,034	30, 340	270	25,383	203, 064		104, 356	1.992,794	4,893	-997,687
1877.	5,343 $\frac{1}{2}$	53, 435	\$144	113, $638 \frac{1}{2}$	1, 136, 385	18,745	4,472	44,720	9,756	40,462	404, 620		163, 916	1,639, 160	28,655	1,667,815
1878	8,659	86,590	770	126, 698	1,296, 980	10,631	9,080	90, 800	6,572	36, 482	291, 856	\$120	183,919	1, 766, 226	18,093	1,784, 319
1879.	7,5521	60,420		101, 559	1,015,590	4,050	10, 880	108, 800	5,876	70, 085	560, 680	2,784	190, 076 $\frac{1}{2}$	1,745, 490	12, 660	1,758,150
1880.	5,017	40,878		126, 432	1,264,320	6,048	19,650	196, 500	9,964	82,570	660,560	696	233, 669	2,162, 258	16,708	2, 178, 066

MACKEREL EXPORTS OF BRITISH PROVINCES.

Statmment XV.-Showing the quantity and value of pickled mackerel exported to the United States from the Dominion of Canada, 1873 to 1879, also from Prince Edward Island, 1857 to 1873, and from Newfoundland, 1853 to 1876.

Year.	Quebec.		Nova Scotia.		New Brunswick.		Prince Edward Island.		Newfound land.		Total.	
	$\frac{\dot{0}}{\text { ®i }}$	-	会	¢	\%	-	$\frac{\square}{\square}$	-	$\stackrel{9}{3}$	官		¢
1853.									10	\$48		
1854.									19	144		
1855.												
1856..												
1857.							3, 048	\$25, 000				
1858.							4,078	38,440				
1859							3, 243	33, 890				
1860							3,471	36,760				
1861							1,143	11,525				
1862							2, 321	19,320	170	1,016		
1863.							3,402	27, 045				
1864							6,583	42,775	158	950		
1865							16,530	181, 675	4	24		
1866							13, 413	$\begin{array}{r}79,990 \\ \hline 110,195\end{array}$				
1867.							12, 302	119, 195	17	102		
1868.							11,686	161,836 109,625	9	54		
1870							13, 960	176,280	864	6,912		
1871.							17, 216	146, 925	916	7,328		
1872							9, 126	111,512	244	1,952		
1873.	106	\$940	77, 420	\$502, 226	1,276	\$10, 232	2,528	20,440	28	196	81, 330	\$538, 838
1874	164	984	58, 385	516, 120	2,561	25, 123	6,583	73, 279			67, 693	615,506
1875	146	860	35,568	242, 578	3,375	'28, 978	31,466 13,276	251,232 108,332			70,555 69,841	523,648 575,323
1876	36 3	206	49,407 27,285	410,511 215,119	7,122 5,049	56,274 45,961	13,276 10,867	$\begin{array}{r}108,332 \\ 97 \\ \hline\end{array}$			69,841 43,204	575, 460
1878.	71	434	61, 812	473, 018	7,437	78, 890	31, 702	279,402			101, 022	831, 744
1879.	223	1,394	65, 949	402,574	9,952	81,596	18,526	145, 038			94, 655	630,602

VIII.-MATERIALS FOR A CHRONOLOGICAL HISTORY OF THE MACKEREL FISHERY OF NORTH AMERICA.

M.-Extracts from records and reminiscenses of fishernen.

50.-SEventeenth century.

The mackerel fishery has been of great importance to the United States both from a commercial standpoint and as a motive for the formation of treaties with the Government of Great Britain and the establishment of rates of tariff intended to regulate the importation of mackerel from the British provinces. Its history from year to year has been so varied, the conditions under which it was prosecuted in successive years so changeable, that it seems worth while to present here a series of notes chronologically arranged which have been gathered from various sources and which illustrate the changes in method and in result which have been recorded by observers from 1620 to the present time.

1629 to 1635.-Abundance of hackerel on the coast of new england in the first half of the seventeentil century.

Francis Higginson, in his "Journal of His Voyage to New England," 1629 , speaks of seeing "many schools of mackerel, infinite multitudes,
on every side of our ship" off Cape Ann, June 26. [Young's Chronicles, 232.] Richard Mather, in his "Journal," 1635, speaks of the seamen taking abundance of mackerel off Menhiggin (p.470).

1671.-Early fishing on cape cod.

In 1671 the code of laws for the government of the colony was revised and ordered to be printed under the title of "The Book of the General Laws of the Inhabitants of the Jurisdiction of New Plymouth." Under these laws, or "General Fundamentals," as they were called, provisions were made, as, has been suggested, "for the better improving of fishing for mackerel, \&c., at the Cape." Penalties were imposed for taking them at other than specified times, licenses were to be granted, \&c., \&c. It was now "ordered that the charges of the free schools, $£ 33$ per annum, shall be defrayed by the treasurer out of the profits arising from the fishing at the Cape until such time as the minds of the freemen be known concerning it."

At this time, also, "certain persons belonging in Hull petitioned the government for permission to fish at Capo Cod for mackerel, they having discovered a new method of fishing with nets by moonlight." (Freeman's Hist. of Cape Cod, Boston, 1862, vol. i, p. 266.)

1677.-Rental of the cape cod fishery.

In July, 1677, the records of the Plymouth colony show that the Cape Cod fishery was let for 7 years, at thirty pounds per annum, to seine mackerel and bass, to certain individuals who are named. They were restricted to take in the Plymouth colonists with them, and if none offer, to admit strangers.

The profits of the hire which accrued to the colony were sometimes distributed to the schools.-(Massachusetts Historical Collections, iii, p. 220.)

51.-Nineteenth century.

1802.-MACKEREL FISHING IN CAPE COD BAY.

The following paragraph is taken from the Gloucester Historical Col. lections, vol. viii, 1802, p. 199 :
"Provincetown, 1802.
"The first mackerel which are taken to Boston market in the spring are taken in the harbor and yield a handsome profit, though the Boston marketmen purchase them at about $\frac{1}{4}$ of what they are sold for. 300 barrels are every jear pickled and sent to Boston. The mackerel, bass, and herring are caught with seines, of which there are about 50 in the town, and which cost $\$ 100$ each. Another seine, worth six dollars, is made use of for catching mackerel in the spring, and herring for bait."

1804-1832.-Price of mackerel in boston market.

The average price of fresh mackerel in Boston market from 1804 to 1822 was six to eight cents apiece, sometimes ten; they were always sold by counts.-(Captain Merchant.)

1S04.-SHORE MACKEREL FLEET OF CAPE ANN.

"From 1804 to 1822," remarks Capt. E. W. Merchant, of Gloucester, "Cape Ann had a considerable fleet of vessels engaged in the shore mackerel fishery for the sole purpose of supplying the Boston market; seven or eight from Gloucester Harbor, seven or eight from the north side of the Cape." Thes preserved their fish in a peculiar way, which will be described under the proper heading.

It is stated that the first shore mackerel fishing was prosecuted by the small boats, about the year 1800. The mackerel were caught mostly on the Inner Bank, and carried fresh to Boston market through the summer. Only the largest were saved, and these were sold for 5 or 6 cents apiece, and sometimes as high as 10 cents. Each boat was ballasted with pebbles; on this were placed hogshead tubs, each having a hole with a plug in it. These tubs were filled with salt water, and as soon as the mackerel were dressed they were put into the tubs, and the water changed every hour by drawing the plugs and allowing it to run off, until sufficient were caught to start for market, the changing of the water continuing until the boat arrived above the Castle, where it is said the water loses its coolness. The great object after catching the mackerel was to get them to market before daylight, in order to have the cool of the morning to sell them in. If a boat with three men and two boys stocked fifty dollars a week, it was considered satisfactory.

1804. -THE INTRODUCTION OF HAND-LINING FOR MACKEREL FROM THE DECKS OF VESSELS.

According to Capt. E. W. Merchant, the first man to introduce this mode of fishing was John Story, of Rockport, about the year 1804.

1818-1821.-The first voyages made for the purpose of salting mackerel was in the summer of 1818 , by Capt. Simeon Burnham, in the schooner "President," on a trip to Cashe's; consequently to Captain Burnham belongs the honor of being the pioneer in this branch of the fisheries. It was considered quite an important erent at the time, so much so that Capt. Benjamin Tarr was hired to go as navigator. Serenty barrels were caught on this trip, and thes were packed in Boston. Two years after, this branch began to increase, and in 1821 several other jiggers* were added to the fleet. They carried six hands, and were absent about a week. The jiggers were stowed with butts and washbarrels, and no mackerel were headed up on board until about 1820 . In 1821, Samuel Wonson, Elisha M. Oakes, Robert Marston, Simeon Burnham, Samuel Brown, Nathaniel Blatchford, John Wonson, George

[^69]Wonson, James Merchant, Epes Merchant, were the skippers of the jiggers which comprised the chief part of the mackerel fleet. These jiggers ranged in tonnage from twenty-seven to forty-five tons. Prior to 1818 there were but few mackerel packed in Gloucester, that part of the business being mostly done in Boston. Moses Gilbert was the only inspector in town until 1828, and his accommodations were quite limited. At this date several other inspectors were appointed, and the mackerel fishery began to assume quite a business importance.-(Fisherman's Memorial and Record Book.)

1815.-THE HingHam mackerel Fishery.

In 1815 there were packed in Hingham 5,615 barrels mackerel, and in 1828, 32,313 barrels. There were 54 vessels employed, some for the season and some for a shorter time. There were 15 employed for the whole season, averaging 1,027 barrels each. The average number of hands were 8 to each vessel, making 432 in the whole. The quantity of salt used in striking and packing, allowing 18 hogsheads to 100 barrels, would be about 6,000 hogsheads.

There is a company formed in this town who carry on this fishing to some extent, besides several vessels fitted out by individuals. We understand there is a mackerel company in Welffleet, in this county, extensively engaged in this fishery. We would like to hear with what success.-(Barnstable Journal, July 16, 1829.)

1815.-Invention of the mackerel Jig.

The mackerel jig is said to have been invented about the year 1815 by Abraham Lurvey, of Pigeon Cove, Cape Ann; according to other authority, by one Thurlow, of Newburyport.

1817.-Beginning of the southern mackerel fishery.

Capt. John Parsons, of Rockport, Mass., went South after mackerel in the schooner Defiance; went as far sonth as Cape May, and took 60 barrels of fish, all of which were caught by drailing.

1821.-THE Large vessels of the gloucester fleet.

About 1821 the fleet began to enlarge. The "Volante," of 37 tons, a pinkie built by Mr. Epes W. Merchant, was considered a very large vessel ; then came the Independence, and afterwards the Columbus, a square-sterned vessel of 43 or 44 tons, built by George Friend, which was considered a very large vessel. These vessels went after mackerel to salt. Prerious to that the entire Gloucester fleet had 'tended the fresh-fish market. Plymouth, Scituate, and Cohasset began salting mackerel in advance of Gloucester.-(Statement of Capt. E. W. Merchant.)

1818-1836.-MACKEREL FISHERY OF HINGHAM.

Mackerel Fishery.-We believe the extent to which this fishery is carried on from the towns of Massachusetts is not generally known. For ourselves we were not aware of it and of the importance of encouraging this branch of industry, which not only furnishes the means of employment to a large number of persons, but is of great consequence to the commercial interests of the country in affording a good nursery for seamen. We have seeu a pamphlet recently printed containing "A statement of the quantity of mackerel packed from Hingham vessels from 1818 to 1828 inclusive." It appears from this statement that there has been in that town a gradual increase during the above period of ten per cent. a year. In 1815 the number of barrels packed in that town was 3,615 ; in $1828,33,313$. During the last year 54 different vessels were employed from that place in the business, some for the season and some for a shorter period. There were 15 employed the whole season, averaging 1,027 barrels each, the highest vessel having packed $1,728 \frac{1}{2}$. The average number of persons was 8 to each vessel, making 432 in the whole, to which if the number employed in coopering, packing, \&c., be added, would exceed 500 . The quantity of salt used in salting and packing, allowing 18 hogsheads to 100 barrels, would be nearly 6,000 hogsheads.

The number of barrels packed in that town during the above period of years, $225,331 \frac{1}{2}$. The salt consumed for the same, 45,559 hogsheads.

We have been informed that this fishing is carried on at Scituate, in this county, about as largely as in Hingham, and several vessels from other towns in this vicinity on the bay.

A bill is now before the legislature of this State which provides for the repeal of the law requiring a reinspection of mackerel packed in other States when brought into this market.-(Gloucester Telegraph, July 18, 1829.)
1821.-Mackerel-fishing with the hook commenced in the province of Nova Scotia, and was prosecuted with great success in some of the harbors of the Bay of Fundy.-(Journal and Proceedings of the House of Assembly of the Province of Nova Scotia, 1857, Appendix 75.)
1822.-First mackerel voyages froni cape ann to george's BANKS.

In the year 1822, Capt. William Marshall caught a few mackerel on George's, which were the first, so far as we can ascertain, ever caught there by a Cape Ann skipper. Mackerel have been caught there every sear since, more or less, and rank in quality among the best.-(Fisherman's Memorial and Record Book.)

1823.-Introduchion of the mackerel Gaff.

The mackerel gaff' was introduced about 1823.-(Fisherman's Memorial and Record Book.)

1823.-INTRODUCTION OF BAIT-MILLS.

Bait-mills were first generally used by the Massachusetts mackerel fishermen about 1823. Previous to that time toll-bait had been cut with hatchets.

1825.-Mackereling in the gulf of Maine.

In 1825, Captain Merchant went mackereling in the "Hornet," a schooner of 52 tons. The season began May 15, the vessel having been previously engaged in cod-fishing. During the season the crew of 7 men and a boy landed and packed 1,304 barrels. They caught 700 barrels in Massachusetts Bay in seven weeks' time, and packed them in Boston. The season continued until the 24th of November, and by that time the crew were entirely worn out by their continued labor. A considerable number of vessels in this same year packed from 1,000 to 1,300 barrels each. The proceeds of the season's work exceeded $\$ 2,700$, the crew making about $\$ 350$ or $\$ 400$ each. The vessel cost about $\$ 1,300$, when fitted for the work at the beginning of the season.

According to Captain Merchant the crews of mackerel vessels of Gloucester have made from $\$ 100$ to $\$ 400$ to the man during his experience of sixty years. In war times their average returns were about $\$ 400$ each.-(Reminiscences of Captain Merchant.)

1825 and 1831.-Mackerel fishing from cape ann.

The seasons of 1825 and 1831 were the greatest known for mackerel up to this date. Vessels not over 50 tons landed upwards of 1,300 barrels, averaging through the fleet about 800 . Mackerel continued in Boston Bay, near the land, in the year 1825, until the 4th day of December, the crew of schooner "Frances Elizabeth" having caught 12 washbarrels on that day. The catch was not so large as in '31, to each vessel, but the aggregate was much larger, and the mackerel of a better quality. These fish were so plenty that the fishermen devoted the day to catching and the greater portion of the night to landing and dressing, and were completely worn ont with their arduous labors. One morning during the first week in December, while the fleet were some ten miles off Eastern Point, the mackerel failed to come to the surface, after the usual throwing of bait. This was a pretty sure sign that they had gone, and the fishermen, whose sore hands and tired bodies bore evidence of the work they had accomplishedin mackerel catching, were heartily glad that at last the fish had taken themselves off, and many of the fleet hoisted their flags as a token of their rejoicing over the event of the mackerel's departure. The price of mackerel this year was $\$ 5.50$ for 1 's; $\$ 3.50$ for $2 \mathrm{~s} ; ~ \$ 2.50$ for 3 's, and out of this, $\$ 1.25$ was paid for packing.-(Fisherman's Memorial and Record Book.)

1815 TO 1820.-A MACKERELING TRIP IN THE EARLY DAYS OF THAT FISHERY.
"I was ten fears old when I made my first fishing trip. We went to Cashe's in a deck-boat of 20 tons. Capt. Daniel Robinson was skipper and I was cook. There were six of us, all told. We went at the halves, and all shared alike, the privilege of cooking and the glory of being skipper being considered in those days ample compensation for any extra labor or responsibility. We took about 40 barrels of mackerel, saving only the large bloaters, which we slat into the barrels; the small fish we slat into the lee scuppers and stamped them up with our boots for bait with which to toll the fish. Afterwards we chopped bait with a hatchet, until Gunnison, of Newburyport, invented the bait-mill, a godsend to the fishermen, who could now smoke and spin yarns while on watch, instead of chopping bait. A story is told on the best of authority, of one skipper, Andrew Burnham, who had been a great 'killer' in his time, that after the bait-mill came into use he was unable to sleep without the sound of the hatchet chopping bait, to which he had been so long accustomed. It is said that they tried pounding on the anchor stock, and tramping with their big boots on deck above his head, but all to no avail. There was an element lacking in the noise they made, and he wooed the somnolent god to no effect, and was obliged to retire to private life on a farm, in the 'second parish', I believe.
"We cooked in the old-fashioned way, in a brick fireplace with a brick chimney, and a wooden smoke-stack or funnel, which was intended to carry off the smoke, but did not always do so. The crane, pot-hook, Dutch oven, and trencher were all there, and all brought into use, as I well remember. We baked short-cakes on the trencher, bread in the Dutch oven, and hung our kettle on the crane, with the pot-hook, to make coffee or tea.
"We had fine weather, and everything passed off fincly except the smoke, which refused to pass off at all, and under a less resolute commander than Skipper Robinson would doubtless have assumed command altogether. No casualties occurred except the burning of a few shortcakes, while 'Bijah (it being his first royage) paid tribute to father Neptune, and was himself again. We were gone three days. Arriving ou the fishing grounds we made but one 'berth,' catching and dressing until everything was full, when we hoisted the foresail, for jib we had none, and bore away for 'Squam, arrived in the chaunel, dropped anchor, furled the sails, and went home to see the follss."-(The Old-time Fishery at'Squam, by Gideon L. Davis, in the Fisherman's Own Book, pu. 41, 42.)

1819 TO 185̃9.-REMINISCENCES OF "UNCLE" GEORGE DAVIS CON• CERNING THE EARLY MACKEREL FISHERIES OF ANNISQUAJI.FIRST BAIT-MILL ON CAPE ANN.-SOUTHERN MACKEREL FISHERY, ETC.
" Uncle" George Davis, of Amnisquam, Gloucester, says that in 1821 he helped make the first bait-mill that was ever made in Gloucester.

They had been inade in Newburyport in 1820. At that date, or about 1824 , there were six vessels of from 40 to 50 tons went as far south as New York for mackerel.
"I commenced mackerel fishing in 1819; built a pinky and went south; chopped our bait; worked sometimes all night; called 125 to 150 barrels a good trip for three or four weeks; sold no mackerel fresh in those days; all salted. The first trip was usually sold in New York; the next one brought home to Gloncester. In 1859 'Squam had twenty-five to thirty sail of mackerel catchers. Shore fishing was then first rate." (Notes of A. Howard Clark.)
1828.-CLOSE OF THE MACKEREL SEASON.—POOR SUCCESS OF THE FISHERY.

The mackerel fishery is about terminated for the season, and we are sorry to say that anticipation in this article has not been realized. We believe other towns make a like complaint in regard to the failure of the fall fares. This will necessarily enhance the prices, and in part balance the failure in the number caught. The loss, however, falls upon those who are immediately engaged in taking them, and consequently deprives them of that on which they depend for a livelihood, as they seldom hold on in order to speculate.-(Gloncester Telegraph, November $22,1828$.)

> 1828.-THE MACKEREL FLEET.

The Gloncester Telegraph, June 21, 1828, states that from three hundred to four hundred mackerel ressels were often seen at anchor in Gloucester Harbor at one time.
1830.-FIRST VOYAGE FROM GAPE ANN TO THE GULF OF SAINT Lawrence.

The first trip to the Bay of Saint Lawrence for mackerel, from this port, was made in 1830, by Capt. Charles P. Wood, in the "Mariner." She was absent but four weeks, and came in full of large fat mackerel. This created quite an excitement among the fishermen, and the next season the Bay fishing commenced in good earnest. The vessels at first made but one trip, and finished up their season's work on this shore. Two hundred and fifty barrels was considered a good trip for a vessel of forty or fifty tons. As soon as the business was found to be profitable, vessels of a larger class were added to the fleet, and it has gradually increased from sear to year until the present time.-(Fisherman's Memorial and Record Book.)
1830.-Comparative scarcity of small mackerel in massachuSETTS BAY PREVIOUS TO 1830.

Captain Merchant, of Gloucester, states that small mackerel were very searce in Massachusetts Bay until 1830., He also says that small
mackerel always lead the large ones in their approach to the coast. When he was in the habit of fishing on George's he went there about the first of June, and always canght "finger mackerel" before the large ones.-(Notes on the Mackerel Fisheries, by G. Brown Goode.)

1832.-Markets for mackerel.

In 1832 the demand for mackerel was much greater than the supply, according to Captain Merchant. Philadelphia bought two-thirds of the entire catch of Gloucester, which amounted to 320,000 barrels.
1826.-The following account of a mackerel royage on the coast of New England in 1826 is from the pen of N. E. Atwood:
"The first year that I fished for mackerel on this coast was in 1826, and haring changed from the laborious and exposed business of codfishing on the Labrador coast, I took a good deal of notice of what passed, and, consequently, I still remember a good deal about the voyage. We sailed from Provincetown on the 28th of June, and went down to a point some twenty leagues northeast of Cape Cod.
"On the day following we saw one school of mackerel, and, getting into it, we threw out bait, and caught, well, some 3 or 4 barrels. That was the first school which we met with; and this happened on the 29th of June. It was the last school we saw until the 13th of September, my birthday; this was a very large school. In five weeks we caught 238 barrels of mackerel, and, although it was early in the season, still thes packed very well. After ther were packed we went out again and secured 250 barrels where we saw the school of mackerel on the 13th of September."

1827.-Price of mackerel.

In 1827-'28, according to Capt. William H. Oakes, the price of No. 1 mackerel ranged from $\$ 4.50$ to $\$ 5.50$ per barrel, while No. 2's sold for $\$ 2.50$.
182S.-MACKEREL, SALES, PRICES, ETC.

A large quantity of mackerel are afloat amounting, perhaps, to 1,500 barrils. The sales have been extensive, though at rather lower pices. The current rates have been $4 \frac{3}{4}$ to $\frac{7}{8}$ for 1 's and 2 's, and in some cases $\$ 5$.(Gloucester Telegraph, April 19, 1828.)

1828.-Scarcity of mackerel.

Our fishing vessels the past week have returned with very few mack. erel. Some have brought in only 25 or 30 barrels after being absent a week or ten days. What have been caught were packed out as No. 3's, and rery likely the fish have struck off in order to fat for No. 1's and 2'sWe advise dealers to hold on to what they have, as there is likely to be a scarcity this season.-(Gloucester Telegraph, July 12, 1828.)
1832.-Failure of mackerel on the western coast of nova scotia.-miportance of the american mackerel fishery.

So far this fall the mackerel fishery on our western shore has been an entire failure. Some idea may be formed of the extent to which this fishery is carried on from the United States by the circumstance of 360 vessels having left the port of Gloucester for that purpose on the night of the 28th ultimo.-Halifax, November 20.-(Gloucester Telegraph, December 1, 1832.)

1833.-DISINCLINATION OF MACKEREL TO TAKE THE HOOK.

These fish [mackerel] are taken in much less quantities this season thus far than usual. The complaint of the fishermen is not so much that they can't find mackerel, but that they "won't bite" when they find them. This again makes the salt manufacturer complain that his commodity is less wauted, and consequently the price is reduced; and when our fishermen and salt makers are disappointed and have hard luck makes sorry times on Cape Cod. Some of our shoresmen, however, the onion growers, have good crops and they obtain a fair price for them at market. And the sea-serpent, or something else, has driven on shore upou the cape, at several places, a considerable number of black fish, the blubber of which makes very good oil, and some of these fish have a considerable quantity of it.-(Barustable Patriot, August 28, 1833.)
1833.-Great abundance of mackerel in massachusetts bay.

Mr. S. B. Brown, writing of the early fisheries of Gloucester, says: "The next year [1833] I went to Gloucester, hunted up my old skipper, who was still master of the same boat, and went with him that season.
"I recollect well the great school of mackerel that struck Middle Bank that year. September 22, at 10 o'clock at night, there were some two hundred sail at anchor, 25 miles southeast of Eastern Point light, in a dead calm, when our skipper sang out, 'Here they are, boys,' at the same moment every ressel in the fleet commenced the catch. We fished for three days, and filled everything, even our boat, and struck on deck until we were in fish knee deep. Then, a breeze up, we ran in and packed out 280 barrels, and returned to the bank just as the wind left us. We fished three days more when they struck off as suddenly as they had come."-(Fisherman's Own Book, page 197.)
1834.-Mackerel fleet in the gulf of saint lawrence.

According to Captain Atwood the fleet of American mackerel catchers in the Gulf of Saint Lawrence, in 1834, consisted of six vessels, three of which belonged at Provincetown. They secured full fares, and returned in a very short time.
1834.-Scarcity of mackerel on the new England coast.

The Gloucester Telegraph of September 3, 1834, copies the following extract from the Hingham Gazette:
"A Halifax paper states that herring and mackerel are very plenty this season. Our fishermen have never found mackerel more scarce than during this season. We hope the fall fishing will be more productive."

1835.-Inspection of no. 4 mackerel begun.

Tinkers.-The legislatare has concluded that the little fry caught by our mackerel fishermen, commonly called "Tinkers," shall be separated from those of a larger growth and packed by themselves, and branded No. 4. The distinction between No. 3 and No. 4 will be, we suppose, only in the size of the fish, without regard to the fatness. Something was said about making all those No. 4 which should be less than six inches long from tip to tail, but it was finally left rather indefinite, so that each inspector will have to exercise his own discretion and judg. ment as to what constitutes a "tinker."-(Barnstable Patriot, October 21, 1835.

1835.-CAPT. N. E. Atwood's Experience in the mackerel fish-

 ERIES OF THE GULF OF SAINT LAWRENCE."In 1842 I was first master, and in 1835 I first came to the gulf for mackerel. When we arrived there we could hear of no mackerel anywhere. We went toward the Magdalen Islands, and about 8 miles off from them to the southwest we got a large number of mackerel the first day we were there. This induced us to fish in that vicinity, and we fished between that and the west head of the islands, as we call it, or Deadman's Island, as it is sometimes called.
"Q. Is that part of the Magdalen Islands?-A. Yes; it is the west end of them. We fished there all that trip, and the result was that we got about 180 barrels, speaking in round numbers. The crew received a large share, and did much better than those tished to the westward that season.
"During my first year in the Gulf of Saint Lawrence, when we got 180 barrels, we fished at the west end of the Magdalen Islands, and when we set out to go home, the wind freshened from the southward, and we struck in somewhere near St. Peter's Sandhills, as we called the place, and while reefing the foresail, we hore the ressel to, and I threw out a few shovels full of bait. Mackerel came up, and seemed to be very abundant, but we only caught about half a barrel. Night came on just as soon as the foresail was reefed, and hoisting it up, we hauled in the hand-lines instead of anchoring there, and went about along shore, hove to, and let the vessel drift off. Next day we got back to Pleasant Bay, Magdalen Islands. That was all we got
there that voyage, and we never fished anywhere, or caught any mackerel on the Prince Edward Island side, or anywhere within the restricted limits, until 1842. During that jear I was passing Port Hood late in the afternoon-it was just nightfall-when I hove to and tried the school, and I do not think that I was at the time three miles offshore I did not fish there over a day, and we obtained a few mackerel, perhaps six or seven barrels. When I came to talk with the crew, some said we were 6 miles offshore, and some 4 miles, and so on; but I will tell you what I thought about it: this was, that if a cutter came along he would take me, so I considered that I did not need to stay there. Soon after dark I discovered a vessel running down apparently towards the Strait of Canso, and hauling up for us. I was afraid she was a cutter, and I was then very sorry that I had obtained any mackerel there. She happened, however, not to be a cutter, and I got away the next day. This was all the mackerel I ever caught within the three-mile line."(Testimony of Captain Atwood before Halifax Commission.)

1836.-Prices of mackerel.

Sales of mackerel at $\$ 9$ for No. $1, \$ 8$ for No. $2, \$ 4.25$ to $\$ 4.50$ for No. 3, per barrel, purchaser paying inspection.-(Gloucester Telegraph, June 8,1836 .)

1836. -UNUSUAL SCARCITY OF MACKEREL.

The Barnstable Patriot says: We learn from Wellfleet that the mackerel fishermen which have arrived at that place within two weeks have got unusually small fares, averaging less than 50 barrels each.-(Gloucester Telegraph, July 6, 1836.)

1836.-A PROTEST AGAINST BOBBING OR " GIGGING" MACKEREL.

The Boston Journal protests strongly against the barbarous method of taking mackerel, called " gigging," and urges that it is not only liable to censure on the score of humanity, but is also impolitic, and that if this destructive method of fishing is generally continued a few years longer, it will break up the fishery. We have for a year or two past entertained a similar opinion, and probably the complaints now so frequently made by the fishermen that, though mackerel are plenty, they will not bite, is owing to the custom of "gigging." There is hardly anything which possesses life that has so little instinct as not to become very shy under such barbarous inflictions. It is obvious that all which are hooked in this manner are not taken on board; the gig frequently tears out, and thousands, millions of these fish are lacerated by these large hooks, and afterwards die in the water.-Newburyport Herald.(Gloucester Telegraph, September 3, 1836.)

1836.-ONE OF THE GREAT MACKEREL-FISHING STATIONS.

The principal business of the place [Sandy Bay, now Rockport, Mass.] is the bank, bay, shore, and mackerel fisheries, which, with the freight-
ing, employ probably not less than six or seven hundred hands. More mackerel is usually taken by them than by any other people on the coast.-From the Salem Landmark.-(Gloncester Telegraph, September 14,1836 .)

1836.-Small catch of mackerel.

From present appearances the number of mackerel taken this year will fall short some hundred barrels of the last year's catch. There are mackerel enough, we are told, but they do not bite freely. Some fishermen have abandoned the mackerel fishery entirely and taken out codfishing papers.-Democrat.-(Gloucester Telegraph, October 1, 1836.)

1836.-ACTIVE DEMAND FOR MACKEREL.

The demand for mackerel has been very active, and in consequence of a limited supply, prices have advanced. Sales of No. 1, \$9.75@\$10; No. 2, \$8.75@\$9; No. 3, \$6.-(Gloucester Telegraph, October 12, 1836.)
The supplies [of mackerel] are very light and prices have again advanced. No. 1 at $\$ 10 \oslash \$ 10.50$, No. 2 at $\$ 9$, No. 3 at $\$ 6.50$. One thousand barrels, principally Nos. 1 and 2, were taken out of our market on Monday.-(Gloucester Telegraph, October 19, 1836.)

1836.-CAPTAIN ATwoOD's EXPERIENCE IN THE MACKEREL FISHERY OF THE GULF OF SAINT LAWRENCE.

Q. Where did you fish during the remainder of the six years?-A. The next year, 1836, was my second year there at the Magdalen Islands, I having done so well there the years previous. I want it to be understood that I was in a small vessel with a small crew.
Q. Perhaps you will give the tonnage and the number of the crew? - Λ. Her tonnage was 59 , with the then reckoning, but now it would be called less than 40 . We went direct that year to the Magdalen Islands, and we found that there had been some mackerel caught there, but none within a few days of that period; and as we had heard that mackerel were sometimes taken at Newfoundland, we bore up and went over there. The next day after our arrival we tried near Cape St. George, but though we tried all day, we never saw one, and so we returned to the Magdalen Islands, and remained there during the fishing term until we obtained a full cargo-225 barrels. We afterward proceeded westward, and found that vessels which had been fishing about Prince Edward Island, and further up, on Bradley Bank and elsewhere, had done better than that; but we were satisfied; our royage suited us, and we had got all we wanted.-(Proceedings Halifax Commission.)

Extent of massacidusetts fisheries for 1837.

In 1837 there were employed in Massachusetts in the cod and mackerel fisheries 1,290 vessels, manned by $11,146 \mathrm{men}$, and the fish taken were valued at $\$ 3,208,559$; about one-half of these were in the cod fish-ery.-Gloucester Telegraph, February 20, 1839.-(From the report of the Washington Commission on Salt Bounty.)

1837.-Poor doings of the mackerelmen.

The vessels from Cape Sable and the Western Banks have generally brought in good fares. The mackerel fishermen have not done so well. -Yarmouth Register.-(Gloucester Telegraph, July 4, 1837.)
1837.-SUCCESS OF THE CAPE COD AND CAPE ANN MACKERELMEN.

The Barnstable Patriot says: "Since 'hard times' have become the universal topic of conversation throughout the Union, if not the world, it affords us no little pleasure to find that the fishermen of Cape Cod have been blessed with large discounts from their farorite banks. We learn that five mackerelmen who have packed their fares in this town, have already caught 1,600 barrels for the quarter ending in July. During the same time last season there were less than 700 barrels."
" We have heard of several excellent fares having been brought in by our mackerel fishermen, within two or three weeks past; and, although the fish are reported rather scarce, yet the season promises well so far." -(Gloucester Telegraph, August 5, 1837.)

1837.-A big school of mackerel in portsmouth and glouCESTER HARBORS.

Nearly 400 barrels of mackerel were taken in Portsmouth Harbor, daily, for two or three days last week. It is not asual for them to be found there. Mackerel have been plenty for several days past just off Eastern Point, in this harbor, but we do not learn that any considerable quantity has been taken.-(Gloncester Telegraph, August 26, 1837.)

1837.-Boat fishing in maine.

We learn that not less than 90 barrels of mackerel were brought into our harbor on Thursday, in open boats.-Kennebunk Gazette.-(Gloucester Telegraph, September 13, 1837.)

1837 to 1841.—Sdardity of mackerel; introduction of night FISHING.

Captain Merchant, of Gloucester, informs me that there was a great scarcity of all kinds of mackerel from 1837 to 1841. He had at that time eight vessels engaged in this business, the smartest of which ouly packed 70 barrels, in the season of 1837. Mackerel continued scarce until 1841. At last the skippers became discouraged, and this year they went to Georges' in search of fish. They found there large schools of mackerel, which would bite only at night. Vessels would catch 30 or 40 barrels in a night when it was so dark that they must needs have lanterns to see their lines. These night schools were a godsend to Gloucester. Such habits had never been observed before that time nor since.

In 1837, according to Captain Merchant, the vessels did not get enough mackerel to cover the bottoms of theirtubs. In 1841, mackerel struck in great abundance; there were oceans of "tinkers."-(Notes on the Mackerel Fisheries, by G. Browa Goode.)

1837. -Fall mackerel fishery at portsmouth.

Nearly 400 barrels of mackerel were taken daily (with hand lines) for two or three days last week in Portsmonth Harbor; also plenty off Eastern Point.-(Gloucester Telegraph, August 26, 1837.)

1837-1838.-MACKEREL FISHERY OF HINGHAM.

The Hingham Gazette says, luring the past jear (1836) 49 vessels have been engaged in the mackerel fisheries; number of barrels taken, 14,436 . In 1835,57 vessels were engaged in the business; number of barrels taken, 15,398 . During the past year several vessels formerly in the mackerel fisheries have been fishing for cod.-(Gloucester Telegraph, January 5, 1837.)

In Hingham during the past year 57 vessels have been engaged in the mackerel fishery; the catch was 17,134 barrels. In 1836, 49 vessels; catch, 14,436 barrels. In 1835, 57 vessels ; catch, 15,398 barrels.-(Gloacester Telegraph, January 3, 1838.)
1838.-FALL mackerel in cape cod bay.

Mackerel were abundant in Cape Cod Bay. On September 8 it is estimated that 3,000 barrels of mackerel were taken in Barnstable Bay; one vessel took 70 barrels.-(Glouctster Telegraph, September 12, 1838.)

1838.-Catch of mackerel for massachusetts.

Returns of mackerel packed in this State up to January, 1839, all the packages reckoned in barrels; also, the number of vessels, tonnage, men and boys employed.

	$\begin{aligned} & \text { Barrels } \\ & \text { No. } 1 . \end{aligned}$	$\begin{aligned} & \text { Barrels } \\ & \text { No.2. } \end{aligned}$	Barrels No. 3.	Vessels.	Tons.	Men and boys.
Gloucester.	11,582	6, 854	5,796	245	11,699	1,831
Boston	5, 301	4,307	6,128	162	9,761	1,315
Newbaryport	5,709	3,000	4,316	99	4,876	772
Hiogham..	3, 040	3,218	6, 188	51	3, 051	522
Welltieet	3,314	3,609	3,617	72	2,777	449
Cohasset	2,052	1,729	6, 665	47	2,637	439
Provincetown	2,203	1,797	4,748	70	3,492	546
Barnstable.	1,000	1,365	1,533	11	739	129
Truro.	677	800	1,645	19	638	119
Scituate	781	502	1,091	25	1,632	225
Yarmouth	470	539	659	10	697	106
Salem.	748	309	273	11	690	104
Plymouth	340	305	472	7	240	58
Dennis...	391	605	913	6	335	62
Chatham.	223	127	103	7	320	46
Duxbury.	110	159	80	8	284	40
Marblehead	76	40	52	5	425	55
Beveriy.	35	63	32	1	40	9
Ipswich.	2	13	9	1	46	6
	38,054	29,341	44,320	857	44,381	6,833
1837.	26,830	61, 940	52,541			
1836.	54, 016	60,569	58, 883			

Total for 1838	Barrels. 111, 815
Total for 1837	141,311
Total for 1836	173,4

(Barnstable Patriot, January 16, 1839.)
1838.-THE SPRING FISHERY.

The Philadelphia Daily Advertiser states thatlarge quantities of mackerel have been taken during the last month, within 10 or 15 miles of Cape Henlopen. One boat from Portland took in one day 45 barrels.(Gloucester Telegraph, July 21, 1838.)
1838.-Scarcity of mackerel in gulf of saint lawrence.

Arrived, schooner Metamora, from Bay Chaleur, with 13,000 [cod] fish. Reports tish plenty, but mackerel very scarce; could not obtain them in sufficient quantities for bait.-(Gloucester Telegraph, July 25, 1838.)
1838.-Excellent quality and abundance of mackerel in masSACHUSETTS BAY.

Our oldest fishermen have never known the seasou when fat mackerel were so plenty about our shores as they have been for a week or two past. On Sunday last (in these times people will fish on Sunday) at least 150 barrels were taken just off the shore opposite Eastern Point, by wherries and a few larger craft; and for size and fatness, the samples which came under our observation were altogether superior to any we had ever before seen. One of these beauties was exhibited by a gentleman, which weighed upwards of three pounds, and the fat upon him measured an inch in thickness.-(Gloucester Telegraph, September 12, 1838.)

The [mackerel] fishermen have brought in larger fares the last week. The vessels that have cruised around the shores of the Cape, have taken from 100 to 150 barrels during the last four weeks. The ressels in the Bay of Fundy are reported doing well; those off Mount Desert and the eastern shore have taken very few fish.-(Yarmouth Register.)

1838.-Prosperity of the mackerel fishery.

"The Fishing Business.-Joyfully do we announce prosperity in this line of the business. Our bay seldom exhibits its late appearance, during the week past, from our office window. Oftentimes we could numerate 100 sail of fishermen, and on Saturday, Monday, and Tuesday last, 200 to 250 sail were counted, making a splendid sight. Mackerel have bitten for the past week remarkably well. Considering the industry and enterprise which lie at the root, no more imposing appearance can be witnessed than that of 200 or 250 sail of vessels spreading their bleached canvas to the wind, and gliding gently along on the coast. On Saturday we understand that the schooner 'Roxana,' of Wellfleet, was run afoul of by the 'Columbia,' of Dennis, by which accident she was dismasted. We u not learn that any other serious injury was sus-tained."-(Barnstable Patriot, September 12, 1838.)

OVERFISHING DESTROYING THE MACKEREL FISHERY.

After commenting on the great demand for mackerel in the West, it (the Newburyport, Herald) says: "It appears now almost reduced to a certainty that the time is not distant wheu, if we are not compelled in a great measure to abandon the business, it will be prosecuted as an uncertain one, and by a greatly decreased number of vessels and men. There is of late not more than one successful season out of four."(Gloucester Telegraph, August 18, 1838.)
1838.-Captain atwood's experience in the mackerel fisherIES OF THE GULF OF SAINT LAWRENCE.

My brother and I bought a little vessel and fished around hoine, and we finally concluded to go to the Bay of Saint Lawrence. We did so, and stopped there some six weeks.
Q. When was that?-A. In 1838. We stopped only six weeks, and we got only about twenty barrels.
Q. Where?-A. We were at the Magdalen Islands all the time. We had poor sails and a poor vessel, and we found it much safer about the Magdalen Islands. We always considered it safer than in the bight of Prince Edward Island.
Q. And twenty barrels were all that sou got that year ?-A. Yes. We came home about the 20th of September. We went to the bay in August, and we remained there, I think, about six weeks.-(Proceedings Halifax Commission.)
1838.-Appearance of mackerel in barnstable bay.

Mackerel have made their appearance in the bay (Barnstable Bay) in considerable quantities. On Thursday we saw from the Highland a fleet of about 100 sail lying from Gurnet to Manomet, making a beautiful appearance. They were apparently taking fish. We noticed also a great number of small boats among them. We learned at Plymouth that boat fishing had been a very good business for the last week or two, some individuals clearing $\$ 30$ per day each. The mackerel taken are of the best quality. * * *-(Hingham Patriot.)

Provincetown, September 9.-The mackerel fishermen are doing well. It is estimated that 3,000 barrels were taken in Barnstable Bay on Friday last. One ressel took 70 barrels on that day.-(Gloucester Telegraph, September 12, 1838.)

1838.-A BIG Fleet in barnstable bay.

The mackerel fishermen have continued to do a little better of late, though we suspect not near as well as is generally supposed. We have been informed, on what we esteem good authority, that the average number of barrels taken on Friday last would not exceed ten per vessel,

Some, it is stated, procured large fares (such, for instance, as the Ino, which took 150 wash-barrels), while others did not catch a fish. For a week or two past the bay has been thronged with fishermen. On Tuesday last 280 sail could be distinctly seen.-Yarmouth Register.-(Gloucester Telegraph, September 19, 1838).
1838.-SCARCITY OF MACKEREL IN BAY SAINT LAWRENCE.

Captain Morgan, of schooner "Cossack," of Beverly, cod-fishing from the Bay Chaleur, arrived here yesterday, reports that he was in the harbor of Castle Rock (?) the 25th August, with 120 sail of mackerel catchers. Mackerel were scarce, and none of the vessels in the harbor exceeded 30 barrels, except two. Captain M. left the Gut the 3d of September; saw a large number of vessels every day, but could hear of no vessels doing well.-(Gloucester Telegraph, September 22, 1838.)

1839.-Abundance of mackerel in the bay of fundy.

The Saint Andrews Standard says: "Our bay and coves have been literally swarming with mackerel during the past week. Large quantities have been caught in the weirs at Bocabec and along the shores." The fishermen along our coast complain that the mackerel have all gone away. It appears from the above that they are on a visit to the British provinces.

1839.-MACKEREL FISHING FROM CAPE ANN.

Cape Ann, says the Telegraph, as everybody knows, has always taken the lead in the mackerel fishery, having a much larger number of vessels engaged in it than any other place; and the crews have in times past made their calculations to land by this time and have landed their 200,250 , or 300 barrels each, whereas the largest fare that has been brought in this season is 73 barrels, and the whole catch packed out probably does not exceed 500.-(Barnstable Patriot, September 4, 1839.)

1839 and 1840.-Captain Atwood's experience in the mackerel FISHERY.

In 1839 I went in my own vessel, the "Lacy Mary," which was the one in which I first went to the bay, to the Grand Bank. Mackerel were scarce, and the prospect was discouraging, so I went cod-fishing, curing the fish myself. I then hauled the vessel up and did not go for mackerel until 1840. I did not then go to the Grand Bank, and having no fish to cure I had to go mackereling somewhere. There was at the time no encouragement to fish for mackerel, either on our coast or in the Gulf of Saint Lawrence, and as people had told me stories about mackerel being found at the Azores, I was induced to fit out and go there.
Q. Did you get any mackerel at the Azores?-A. No.-(Proceedings Halifax Commission.)
1841.-DOINGS OF THE CAPE COD AND CAPE ANN FLEETS.-NIGHT FISHING A NEW FEATURE IN THE MACKEREL FISHERY.

The quantity of mackerel taken the present season is, thus far, not materially different from the quantity caught last year. A few vessels from Barnstable, Yarmouth, and Dennis, have been more successful, but this is by no means the case with vessels generally.-(Yarmouth Register.)
Mackerel are reported to be more plenty the present than they have been the last two or three years past; but our fishermen do not seem to meet with much success in taking them. It is somewhat remarkable that thus far the present season nearly all the mackerel that have been caught have been taken in the night, while heretofore this tish has scarcely ever been known to bite after sundown.--(Gloucester Telegraph, July 21, 1841.)

There have been but few arrivals of mackerel this week, for which a ready demand has been experienced, and prices are consequently a shade higher, No. $1, \$ 11.50$; No. 2, $\$ 10.25$; No. $3, \$ 5.75$ and $\$ 6$ per barrel.(Ibid.)
1841.-A curious reason given for the scarcity of mackerel

A correspondent suggests as a cause for the searcity of mackerel the general practice of using "hardhead" [menhaden] for bait, the sharpbones of which fish kill the mackerel that feed upon it. The suggestion is worthy of consideration, at least.-Yarmouth Register.-(Gloucester Telegraph, January 30, 1841.)

1841.-First fare of the season.

A fare of 66 barrels of mackerel, the first arrival this season, came up from an outport.-(Gloucester Telegraph, June 16, 1841.).
1841.-Discouraging prospects for the mackerelmen.

Two vessels arrived this week from mackereling, absent over three weeks, without obtaining one barrel of mackerel. The prospects for the mackerel fishermen this year are unusually discouraging.-(Gloucester Telegraph, August 7, 1841.)
1841.-THE MACKEREL FISHERY.-WHAT WERE CONSIDERED GOOD FARES IN 1841.

Several of the mackerel fishermen from our vicinity, who were unusually successful during the first part of the season, have recently returned with very small fares. Many of our most experienced fishermen are ncluded in the number, who give as their opinion that the
number of mackerel rapidly diminishes every year.-(Yarmouth Register.)

Two of the Gloucester ressels have recently come in with tolerable fares-good, indeed, they may be called in the present state of the fisheries. We have heard of one vessel with 90 and another with 120 bar-rels.-(Gloucester Telegraph, August 11, 1841.)

1841.-Favorable reports from gulf of saint lawrence.

Favorable accounts have been received from Bay Chaleur, and full fares are expected from the fishery in that quarter.-(Gloucester Telegraph, August 11, 1841.)

1841.-Alaost total failure of the mackerel fishery.-Bad RESULTS THEREFROM.

The Gloucester Telegraph says that nearly the whole fleet from that port were returning, and mostly without mackerel.--(Philadelphia Gazette.)

So unfavorable has been the mackerel fishery the present season (and it was nearly as bad the last and preceding years) that most of those who have been actively engaged in it have not carned enough to carry themselves and families through the winter. Indeed, we heard one indiridual remark the other day that he himself had seen a hundred fishermen who, after all the toil, privations, and dangers they had endured during the whole fishing season, had not a dollar coming to them, or either of them, now that they have returned to their homes and families. We have heard of a firm who, upon settling up the voyages of their vessels, paid to the crew of one $\$ 1.43$ each man-to that of another a little more, and to others nothing. And such has been the general result of the fisheries for the season just closed. * * * It would have been better for their owners, in a pecuniary point of view, had most of our fishing vessels been suffered for the last two or three years to remain at the wharves, instead of being sent either to the banks or down to the bay * * *.-(Gloucester Telegraph, November 17, 1841.)

The whole of the bay fleet are now in [the last two arrivals brought home 90 and 80 barrels of mackerel, respectively, besides from 100 to 200 quintals of codfish. Four Gloucester vessels reported as seized and condemned at Halifax for alleged violations of the treaty].-(Ib.)

1843.-ARRIVALS FROM GEORGE'S.

Six schooners, reported in Gloucester Telegraph of August 10, 1842, arrived from George's Bank with fares of mackerel ranging from 20 to 140 barrels each. August 18, five schooners from George's with fares varying from 25 to 120 pounds.

1842.-SUCCESS OF THE SOUTH SHOREMEN.

We learn from a friend at Plymouth that the cod and mackerel fishermen at that place have been unusually successful thus far this sea-son.-Bay State Democrat.-(Gloucester Telegraph, August 27, 1842.)

1842.-ARRIVAL OF MACKEREL CATCHERS

For the week ending September 7, 1842, eight mackerel schooners are reported in thẹ Gloucester Telegraph, with fares ranging from 5 to 126 barrels, the total being 416 barrels, or an average of 52 barrels each.
The following vessels [23 in number] have arrived since our last Wednesday's paper, with fares varying from 10 to 100 barrels and upwards. The above are the fleet that sailed from the 1st to the 10th of August.-(Gloucester Telegraph, September 14, 1842.)

> 1842.-Poor success of the bay men.

Arrived 24th, schooner "George Parker," from Bay Chaleur, 8 barrels mackerel. The G. P. brings accounts of Gloucester vessels, three months out, with less than 30 barrels.-(Gloucester Telegraph, October 26, 1842.)
1842.-SCARCITY OF FALL MACKEREL ON NEW ENGLAND SHORE.

No mackerel of consequence have been canght the last three weeks.(Gloucester Telegraph, October 8, 1842.)

Arrived 20 th, about 150 sail of mackerel fishing vessels; report mackerel very scarce, none having been taken for the past fortuight.-(Gloucester Telegraph, October 22, 1842.)
1843.—UNFAVORABLE OUTLOOK FOR THE MACKEREL FISHERY.

A writer in the Gloucester Telegraph of August 30, 1843, says: "At the present date the catch of mackerel falls far short of last year's, but it is very uncertain how it will terminate. The prospect is considered by our most experienced fishermen as not encouraging."

> 1843.-SUCCESS OF THE HINGHAM FLEET.

We are happy to hear that this business, so important to our town, bids fair to be more successful this season than it has been for many years. Our mackerel vessels are returning with fuller fares than usual at this season of the year, some of them lately arrived having brought in from 80 to 100 barrels.-Hingham Patriot.-(Gloucester Telegraph, July 15, 1843.)

1843.-Abundance of maciierel on nova scotia coast.

The Halifax papers state that the coast of Nova Scotia is now visited by mackerel and herring in larger quantities than ever were known at this season. In the Straits of Canso the people are taking them with seines, a circumstance without a parallel for the last thirty years.(Gloucester Telegraph, August 16, 1843.)
1843.-SCARCITY OF MACKEREL IN NOVA SCOTIA.

Captain Stephens, the commander of one of the provincial revenue cruisers, published a letter in the last Acadian Recorder, which states that * * * the mackerel fishery in the spring proved remarkably unsuccessful, not more than 500 barrels having been taken, where upwards of 23,000 barrels were obtained last year. The subsequent catch has, however, been more abundant.-(Newburyport Herald, September, 1843.)
1843.-SMALL CATCH OF MACKEREL BY THE NEW ENGLAND FLEET.

Mackerel sell on arrival at last week's quotations. (No. $1, \$ 10$; No. 2, $\$ 8$; No. $3, \$ 5.75$ per barrel.) There has been no great accumulation this week, and we quote the article as before. The catch will probably fall one-fourth to one-third short of what it was last year.-(Gloucester Telegraph, October 30, 1843.)

1843.-FAILURE OF THE MACKEREL FISHERY.

The mackerel fishery, says the Hingham Gazette, has thus far proved a poor business. Some vessels arrive in port with hardly fish enough to pay the expenses of the trip.-(Barnstable Patriot, October 4, 1843.)

1844.-DOINGS OF THE MACKERELMEN; POOR CATCH.

The mackerel fishermen have done but little lately. Most of the vessels heard from are clean, or nearly so. So says the Yarmouth Register.(Gloucester Telegraph, July 24, 1844.)

The mackerel fishermen have been very unsuccessful for the last two months, the catch, which commenced well in the early part of the season, having suddenly declined. A schooner arrived at this place on Tuesday from a six weeks' cruise, with only six barrels of mackerel on board.-Yarmouth Register.-(Gloucester Telegraph, August 21, 1844.)

1844.-The MACKEREL FISHERY OF HINGHAM.

The Hingham Patriot publishes a list of 23 vessels from that port which have been employed in the mackerel fishery during a part or the whole of the last summer, with the number of barrels of mackerel packed by each, amounting in all to 8,097 barrels, or an average of 356 barrels to each vessel. There are five other vessels owned in Hingham, whose names are not given, which packed 1,170 barrels, making in all 9,267 barrels.-(Gloucester Telegraph, November 27, 1844.)
1845.-A GOOD HAUL.

We learn that Holmes \& Co., at Manomet Ponds, who were seining for menhaden, on Thursday afternoon last, in drawing their seine, found they had inclosed about a hundred barrels of mackerel. Barrels and
salt were sent from town yesterday morning for the purpose of packing them.-(Plymouth Memorial, July, 1845.)

1845.-MaCkerel abundant in gloucester harbor.

For a few days past our harbor has been filled with mackerel, and on Monday about 400 barrels, it is estimated, were taken in seines, vessels, boats, and on the wharres. Upwards of a hundred barrels were taken in a seine at one haul. Considerable many were taken yesterday, but not in such quantities as on Monday. The visit of this fish to our harbor has afforded rare sport to such of our inhabitants who have never been a mackereling, but it will not last long, as the fish will take a start off in a day or two.-(Gloucester Telegraph, July 9, 1845.)

1845. -Canning of mackerel.

In an extract from the Eastport Sentinel, published in the Gloucester Telegraph of August 30,1845 , mention is made of the packing at Eastport, by Messrs. Treat, Noble \& Co., of 3,000 cans of fresh mackerel.
1845.-Mackerel in the bays of maine ; a big Haul at provINCETOWN.

Our piscatory visitors have nearly all left us and gone "down east." The Belfast Signal, of Thursday last, states that mackerel are quite plenty in that bay.

The Yarmouth Register is informed that at Provincetown, week before last, they seined about 1,000 barrels of mackerel at one haul. Those who took them gave half for dressing, but they were enabled to save only 500 barrels.-(Gloucester Telegraph, July 23, 1845.)
1845.-ABUNDANCE OF MACKEREL ON THE NEW ENGLAND COAST.

So many mackerel have not made their appearance in our bay [Ipswich Bay] for many years before; while the fishermen who have gone down to the Bay Chaleur, the principal place of the fishery, have had less success.

It will be seen by an item in the ship news, that the Gloucester fishermen, who came in full at the close of the week, report about 500 vessels busily engaged in fishing in the bay. The mackerel brought in now are mostly branded small No. 2.-Newburyport Herald.-(Gloncester Telegraph, September 20, 1845.)
1845. - NO MACKEREL ON GEORGE'S.

Arrived at Hyannis 9th, schooner "Resolve," and two other mackerel catchers from George's Bank; absent ten days; caught nothing.-(Gloucester Telegraph, September 16, 1845.)

1839 to 1846.-Nova Scotia fisheries.

'The exports of mackerel from the port of Halifax during the years 1839 to 1846 inclusive, show that considerable attention was given to this fishery on the coasts of Nova Scotia thirty years ago.*

No. of barrels.
1839 19, 127
1840 25, 010
1841 35, 917
1842 54, 118
1843 71, 854
1844 50,698
1845 38, 320
1846 82, 645
1847.-SCARCITY OF MACKEREL.

The catch of mackerel thus far this season, says the Gloucester Telegraph, has been small in comparison with that of the two past years. The number of barrels taken on the coast has greatly diminished, and the prospects being so unfavorable, many of our vessels have gone to the Bay Chaleur. The fares that have arrived at this port are readily sold at good prices as soon as landed, and are immediately shipped to the great markets of New York and Philadelphia.-(Barnstable Patriot, October $6,1847$.)

1847.-UnProfitableness of the mackerel fishery.

Mackerel fishing has not prospered to such a degree as the cod-fishery, none of the small number of crafts engaged in the business from this port, having obtained a full cargo.-(Barnstable Patriot, October 13, 1847.)

1847.-Abundance of mackerel about sable island.

Mackerel were very abundant in the vicinity of Sable Island, and the fisheries committee of the house of assembly of Nova Scotia urged the granting of a bounty to all vessels engaged in the deep-sea mackerel fishery. This was not adopted.-(Journal and Proceedings of the House of Assembly of the Province of Nova Scotia, 1857, Appendix 75.).

1845 to 1848.-Importance of the mackerel fishery.

From the Barnstable Patriot we quote the following review of the mackerel fishery of Massachusetts from 1845 to 1848:
"The yearly inspection of returns of mackerel, show plainly that there is no more important branch of the fishing business carried on in this

[^70]State than the mackerel fishery. From 1831 to 1840 , the depreciation in the catch was 333,225 barrels; and from 1840 to 1845 , the increase was only 36,270 barrels, during which, a period of thirteeu Jears, the business had become nearly prostrated, and with it nearly all those who were engaged in it. In 1845, unexpectedly large shoals of mackerel ap peared on our coast between Cape Ann and Cape Cod, of a small, uni form size, about 12 inches in length, but very fat. Owing to these fish being so near home, but little or no time was lost by the fishermen in going ont and returning with full fares, except the delay in procuring' barrels to put their fish in. At the close of the season the inspection returns showed an increase of 116,122 barrels from the previons year. This gave an impulse to the business.
"In 1846 this great shoal of mackerel did not returnagain on our coast, which disappointed the hopes of the fishermen, especially those who depend upon their small boats for a living. At the close of the season the catch had fallen off 28,439 barrels. Not being so easily discouraged by this depreciation in one year, they entered into business with renewed energy and enterprise, and were crowned with great success during the next year. In this year, 1847 , the fishermen did not find any mackerel ou our coast of much account, until late in the season, when a large school appeared off Cape Cod, called the 'Chatham school,' from which great quantities have been taken of the best mackerel that have been in the market for many years. All other mackerel, elsewhere, bore no comparison with these, either for size, fatuess, or goodness. Unfortunately. liowever, for the Newburyport and Gloucester fishermen, they wert neany all in the Bay of Chaleur; for the mackerel which they brought home were of au inferior quality. This great difference between the two kinds cansed much complaint, and created for a time some little excitement and feeling among the dealers botli at home and abroad, Which resulted in establishing a greater confidence in the different brands, and a more uniform call, and a higher standard of inspection in 1.348.
"The inspection returns in 1848 show that the increase is 67,548 barrels. More than one-half of this number are No. 3, and only one-quarter are No. 1. This great increase of No. 3 is owing chiefly to the mackerel which came from the Bay of Saint Lawrence, denominated 'Bay Chaleur', being a poorer quality thau those taken on our coast. For the last two or three years the mackerel in that quarter have been depreciated gradually both in size and quality. Formerly the best mackerel we had in the market came from that place, and they demanded the highest price, and were rery much sought after, on account of their superior size and fatness.
"At one time the George's mackerel were all the rage, on account of their size; but within the past two years the Chatham mackerel have taken the lead, with the exception of that extraordinary fat school which appeared off Gloucester early in September. The mackerel taken from this school are said to be superior in size and fatness to any ever before
or since taken by our fishermen. It is estimated that there were upwards of 50,000 barrels taken from this school by our fishermen in the course of ten or fifteen days, which inspected nine-tenths No. 1, and this accounts for the increase in their number ; otherwise there would have been a great deficiency in this branch.
"The increased consumption of No. 1 mackerel up to this time had been fully equal to the supply, according to the best information obtained on the subject; but the Nos. 2 and 3 mackerel coming more directly in competition with the English fish, on account of the low rate of duty, it is fair to calculate that the prices will rule much lower than the usual difference between the No. 1 and 2, especially in those years of a large catch.
"The English mackerel which have come into this market under the brand of No. 2 are of a fair quality, but none are fat enough to make No. 1, compared with the present standard of our inspection; therefore there will be less inducement for the trade to speculate in English mackerel with a view of reinspection, as formerly."-(Barnstable Patriot, January 31, 1849.)

1848.-LARGE SCHOOL OF MACKEREL IN THE SOUTH CHANNEL.

The largest school of mackerel Captain Harding ever saw was in the south channel about the year 1848. It was a winrow of fish. It was about half a mile wide and at least 20 miles long, for ressels not in sight of each other saw it at about the same time. All the vessels out saw this school the same day.
1848.-ABUNDANCE OF MACKEREL IN THE GULF OF SAINT LAWRENCE.

A gentleman who came up from Point Escuminac a few days ago says that the Prince Edward Island Gazette informs us that during the last fortnight there have been from 40 to 50 American schooners about two miles from the Point, the crews of which had been busily engaged in catching mackerel, and so abundant are the fish that they have hired persons from the shore to assist them. Some of them had 300 barrels on board.-Halifax paper.-(Barnstable Patriot, September 20, 1848.)
1848.-ImMENSE SCHOOLS OF MACKEREL OFF CAPE ANN.-SUPPOSED EARLT DEPARTURE.

The mackerel which were reported in such immense schools off Cape Ann week before last have been completely broken up or quitted the shores. The vessels took but a few last week. It is about time for mackerel to make their annual visit to the shores of Cape Cod. We have no fear that our fishermen will fail to bait them well and see that they dou't suffer for want of salt.-(Barnstable Patriot, October 4, 1848.)
1848. - A LATE SCHOOL OF MACKEREL OFF CAPE COD, AND GREAT ABUNDANCE.

In 1848 large mackerel kept in close to Cape Ann. Two hundred and fifty vessels. Pilot found them abundant 26 th November off Threelight Nauset. One hundred and fifty vessels.

Captain Wixon, schooner "Hamilton," of Dennis, in debt $\$ 250$ September 15, and towards the end of the seasou made three trips (November) without taking off his oil clothes; made $\$ 900$.

1849.-SCARCITY OF MACKEREL IN THE EARLY SUMMER.

The vessels that have arrived in this vicinity from mackerel voyages have brought in very small fares. The Yarmouth and Dennis tleets, which have just arrived from a two months' cruise, have packed, at an average, about 50 barrels to each vessel.-(Barnstable Patriot, June 27,1849 .)

1849.-Abundance of mackerel off the coast of maine.

Mackerel catching.-A fleet of nearly 200 vessels, says the Portland Advertiser of the 13th instant, was in the offing on Wednesday after mackerel. The mackerel were very abundant, and took the bait well in round the shores and reefs.-(Barnstable Patriot, July 25, 1849.)

1849.-The mackerel fishery.

About 150 fishing vessels came into our harbor on Saturday p. m., 21st July, there being an appearance of a storm coming on. This was quite an unusual circumstance for this period of the year, as the mackerel are not in any quantity off our cape until the latter part of August and during the months of September and October. These vessels, we learn, had on board from 10 to 40 wash-barrels each, which they had taken during the previous week or ten days, which was rather slim doings.

There had been two arrivals this season from Bay Chaleur, and althongh they had an average fare, the men employed made poor wages in consequence of the low price of the article. We understand that but few vessels have gone to the bay this year, in consequence of the poor luck they have experienced at that place for a few years past.-(Glouces. ter Telegraph, August, 1849.)

1849.-A big fare from the bay.

September26,1849, the schooner "Canton," Capt. Edward Watson, was reported arrived at Gloucester Monday week from Bay Chaleur, with 600 barrels mackerel, the largest number of barrels ever caught and brought into that port by one ressel up to that time. The "Canton" was

100 tous burden, manued by 18 hands, and had been absent three months. She reported very few ressels at the bay, and the prospect good. The whole Gloucester fleet at that time were on this coast, and were doing very poorly, and the prospects were not favorable for a heavy catch. At Gloucester there were 200 sail of Cape Cod vessels at anchor in the harbor, and many ressels had arrived at that port, absent four or five weeks, with only 40 barrels of markerel. The trips averaged about onethird No. 1.

1849.-FALL MACKEREL FISHERY OF CAPE COD BAY.

The mackerel fishermen in several of the towns of the Cape during the months of October and November brought in good fares, which has helped to make up for an otherwise poor season's business. We learn that the mackerel caught off Chatham by fishermen in the south part of Dennis and Harwich during these months amount to more than $\$ 100,000$. The vessels packing at the new establishment of Messrs. Fred. Scudder \& Co., in the south part of this town, caught during the same time mackerel to the amount of more than $\$ 10,000$, and several vessels packing at Messrs. Baxter \& Bragg's returned with some thousauds in value. All this was earned after many of the vessels of the Cape had hauled up.-(Barnstable Patriot, December 12, 1849.)

1849.-Reminiscences of capt. J. W. Collins.

The mackerel off the New England shore in 1849 were all large fish and fairly abuudant. That summer I made my first trip mackerel fishing, going out as one of the crew of the pinkey Walker. We fished off Mount Desert Rock, and caught 40 barrels of fine, large mackerel in three or four weeks. At that time each one of the crew was provided with a hogshead tub to strike their fish in ; the mackerel were salted in butts, which were stowed on their heads in the hold, the catch of each one of the crew being counted by the splitter and placed to his credit. The pinkies of those days had no cabin aft, all hands sleeping in a dingy little cuddy forward, where the meals were also prepared and eateu.
1850.-SCARCXTY OF MACKEREL.-INFLUENCE OF BLUEFISH ON THE movements of mackerel.

The following extract, copied from the Newburyport Herald by the Gloucester Telegraph of September 4, 1850, gives an idea of the mackerel fishery at that date:
"We have never known fresh mackerel so scarce in this market in the season for them as they have been this year. Up to the present time no good mackerel, suitable for the table, have found the way here; and considering how very desirable they are in dog days as an article of food, it is quite a calamity to the lovers of good fish. Some attribute the scarcity of mackerel in our bay to the presence of the bluefish,
which within a few years have visited our shore and rivers in great abundance. From the movements of the bluefish in our rivers, and their savage treatment of the smaller tish which come in their way, we are not surprised that the mackerel should give them a wide berth.
"Fresh mackerel are not very scarce here, but the amount of fares of salted ones this season have been rery small. Yesterday made thirteen days since we had an arrival of a fishing craft with mackerel of any description, either from our bay or from the Bay Chaleur. We think ther caunot be plenty upon any of the usual fishing-grounds.
"If they are not taken more plentifully in course of the next six or eight weeks, the catch must be very limited and the season an unpropitious one for those engaged in the mackerel fishery."

180̃0.-Remintscences of capt. J. W. COllins.

In 1850 I went as one of the schooner "Mercy and Hope" to the Gulf of Saint Lawrence, starting on our trip about the 1st of Juwe. The mackerel were large that year in the Gulf, but not very abundant. The fishing-grounds over which we cruised the most were round Gaspe, Bonarenture, Bay of Chaleur, off Point Miscou, the West Shore, and around the north cape of Prince Edward Island, and on Banks Bradley and Orphan. We were absent from home sixteen weeks, and succeeded in taking only 175 barrels of mackerel with a crew of eleven men, all told.

In the fall of the same year I shipped in the schooner "Three Sisters," and we fished from Portland to Chatham. An enormous school of mackerel was found by the fleet off Cape Cod, near Chatham, that fall, some time from the 1 st to the 15 th of November. The fish, which were exceedingly fine and large, took the hook very readily, and large catches were made by most of the vessels, some of them succeeding in obtaining a full fare in three or four days' fishing.

The fleet was a very large one, and was estimated to be about 700 sail. Sharp vessels were then just coming into use, and the "Mary S. Wonson," "Jennie Lind," and a few others of that class were looked upon as very remarkable for their beauty and speed. We did not reach the fleet until the "spurt" was nearly over, and, in consequence, did rather poorly. Our skipper, feeling rather chagrined at his ill luck, determined to stay on the fishing-ground in hopes that he could catch some fish from a later school. In this, however, he was disappointed, since we caught no mackerel of any importance, though we did not leave the fishingground off Chatham, except for a harbor in stormy weather, until the 5th day of December.
1850.-SLIM DOINGS OF THE CAPE COD FISHERMEN.

Our mackerel fishermen, we regret to say, are doing a very slim business this year. A gentleman who has lately made a tour of the Cape informs us that there are not at present 2,000 barrels of mackerel in the
country. Two years ago, at the same season of the year, he counted over 20,000 barrels on the wharves of the Cape. A much larger fleet is now engaged in the business than at that time, and its failure this year would greatly depress our enterprising capitalists. We hope, however, that that last resort of our fishermen, the school "off Chatham," will not disappoint their reasonable expectations.-Yarmouth Register.(Gloucester Telegraph, October 12, 1850.)
1850.-Scarcity of mackerel off cape ann in late autumn, ARRIVALS FROM BAY, PRICES, ETC.

The arrivals of mackerel the previous week have been very small. Our vessels are doing nothing. Many of them for the last ten days have not salted one barrel. There are now in this port some 200 sail of mackerel vessels waiting for the fish to come on this coast.

There have arrived from Bay Chaleur since our last report about 1,800 barrels, and sales have been made at $\$ 8.75$ for No. $1, \$ 7$ for 2 s, and $\$ 5.12 \frac{1}{2}$ for '3's. There now remain about 1,200 barrels in first hands, which are held at higher prices.

There are now but 16 ressels to arrive from the bay, and five which have just sailed for that place.-(Gloucester Telegraph, October 26, 1850.)

The arrivals at this port since our last have been very light. The catch in Massachusetts Bay and on the coast of Maine has entirely failed for the last month past. There have been received from the Bay Chaleur this week about 400 barrels. Within a few days more desire is manifested to purchase, and sales have been made at $\$ 9$ for $1, \$ 7$ for $2, \$ 5.12 \frac{1}{2}$ for 3 , and $\$ 4$ for 4 , leaving but few in first hands, which are held at higher prices.-(Gloucester Telegraph, November 6, 1850.)

1850.-QUICKEST BAY-TRIP EVER MADE.

The clipper schooner "E. W. Merchant" arrived from the Bay Chaleur on Friday last with about 200 barrels of mackerel, having been absent from this port only 27 days, which is the quickest trip ever made from this place. Beat that who can.-(Gloucester Telegraph, November 20, 1850.)
1850.-Close of the mackerel season.-Last arrival from THE BAY.

The mackerel season has about ceased. The vessels are now hauling up as fast as they arrive. For the last two months not enough has been caught by the Massachusetts Bay fishermen to pay the outfits for the time. The last vessel from the Bay Chaleur arrived on Friday last.(Gloucester Telegraph, November 20, 1850.)

Our mackerel season has closed with the Massachusetts Bay fishermen with a smaller catch than any season since 1841. The few vessels that were so fortunate as to go to Bay Chaleur have made fair royages. (Gloucester Telegraph, November 27, 1850.)

1841 to 1851.-Captain Atwood's experience in the mackerel FISHERIES.
"I went again to the Gulf of Saint Lawrence in 1841, when we tished off the Magdalen Islands. We got about 100 barrels of very excellent mackerel. They were about all No. 1's, I think; there were very few No. 2's. The next year I also went in the same "Lucy Mary" to the Gulf of Saint Lawrence, fishing off the Magdalen Islands. I was in the bay in 1841 and 1842. We staid there until the end of the season, but secured only 60 barrels. I was then master-that is, my brother was not with me, and I was master of the vessel. I went home with 60 barrels. This was my experience in the Gulf of Saint Lawrence up to 1842. I was there since, in 1851, when I was in a schooner called the "William Gray," 58 tons. She was a small and dull-sailing vessel. I thought we would be much safer off the Magdalen Islands, and so I went there, as I had done during previous years. I staid there until the middle of September, but was not very successful, getting only 90 barrels; so I concluded to go over to Prince Edward Island and try there. I did so, and the next day after my arrival I found that I was in more danger at this place than at the Magdalen Islands, for I was that day cast away, and I lost my vessel.
"Q. When was this?-A. In 1851. I was cast away on Fish Island, at the entrance to Malpeque Harbor.
"Q. Was this in the great gale, or previously ?-A. It was two weeks before the great gale. I cleared up my wreck, saved what I could, took the mackerel out, and shipped for home, going on board another ressel. I was off the mouth of Saint Peter's Harbor when the great gale came on, and we were then cast away again. So I was cast away twice in a fortnight. This seemed to prove to my mind that Prince Edward Island was more dangerous than the Magdalen Islands.
"Q. You speak of fishing at the Magdalen Islands being safer than at Prince Edward Island; explain why it is that you think so ?-A. Suppose we were at the Magdalen Islands and it looks stormy. If the wind is blowing on shore where we are, we just run round to the other side of the islands and anchor under the lee. If the wind blows up and it becomes stormy, we are there very comfortable, and night or day we hold ourselves in readiness to get under way and get to the other side again in case the wind should happen to change. Thus I have been round and round the islauds time and time again.
"Q. Are the Magdalen Islands regarded by the American mackerel fishermen as a safe place?-A. Yes, I think so.
"Q. And as safe as any in the Gulf?-A. I think so; to a person well acquainted with them, they are considered as safe as any part of the Gulf, and I consider them, for my part, safer. I do not know that everybody is of the same opinion, but I think this would be the case if they are thoroughly acquainted with the matter."-(Statement of Captain Atwood before the Halifax Commission.)
S. Mis. 110 - 22

1851.-Cape Cod towns built up by their fisheries.

Wellfleet, like Provincetown, says the Yarmouth Register, is almost entirely built up by the fisheries. Last year some 17,000 barrels of mackerel were packed in the town, and a large quantity of cod and other fish were brought in by Wellfleet vessels. * * *-(Gloucester Telegraph, June 4, 1851.

1851.-GOOD CATCH AT YARMOUTH, NOVA SCOTIA.

The Yarmouth (N. S.) Herald states that large quantities of mackerel have been taken in that vicinity.-(Gloucester Telegraph, June 18, 1851.)

1851.-Small receipts of hackerel and unusual scarcity.

Mackerel continue to come in slowly, and have been sold at $\$ 4.75$ per barrel for new No. 3.-(Gloucester Telegraph, July 9, 1851.)

The quantity of mackerel taken by our fishermen so far this season has been unusually small. During the last fifteen days less than 200 barrels have been packed, which includes only $2 \frac{1}{2}$ barrels fat mackerel. About 75 sail of Cape Cod fishermen made a harbor here on Wednesday, who report mackerel uncommonly scarce for the season.-(Gloucester Telegraph, July 12, 1851.)
1851.-Big mackerel catch at nova sootia.-yankee clippers
at gaspe.

From Halifax papers we learn that the catch of mackerel off the eastern coast of Nova Scotia has been very great this season.

The Gaspé Gazette of July 10 says: "Great numbers of American schooners are busily engaged catching mackerel in our waters. Nineteen handsome looking Yankee clippers, some of them with their colorsflying, as if in mockery of the Canadian Government, might have been scen the other day from our office windows, fishing within a short distance from land."-(Gloucester Telegraph, July 26, 1851.)
1851.-ARRIVAL OF BAY MACKEREL.

Mackerel have been arriving more freely within a day or two from Bay Chaleur, and prices are a shade lower.-(Gloucester Telegraph, September 20,1851 .)
1851.-Extraordinary large and fat mackerel from sable island.

A gentleman yesterday assured us that he had seen in the stores of H. Lyle, esq., mackerel taken at Sable Island a short time since that had at least an inch thickness of fat on them. Some of these delicious fish weighed as much as 7 pounds! -Halifax Chronicle.-(Gloucester Telegraph, October 8, 1851.)

1851.-TERRIBLE DISASTER TO THE BAY FLEET.

In the Gloucester Telegraph of October 11, 1851, is reported a dispatch from B. H. Norton, esq., United States consul at Pictou, Nova Scotia, which states that 100 sail of American vessels (all mackerel catchers) and probably more than 300 lives were lost in the Gulf of Saint Lawrence, principally on the north side of Prince Edward Island, in a terrific northeast gale, which had swept with almost unparalleled violence the waters and coasts of that region on the $3 d$ and 4 th of October. The Telegraph of October 25 gives the loss of lives, as then ascertained, as 100.

1851.-Reminiscences of capt. J. W. COLLINS.

In 1851 the mackerel, though abundant off the New England shore, were of small and medium size, and were so low in price that the majority of the fleet went to the Bay of Saint Lawrence, where large fish could be obtained. About the 1st of July I shipped in the schooner "Brutus," about 40 tons, old measurement, and made a trip mackerelfishing in the Bay of Fundy. Haring obtained a fare in four or five weeks, we packed out in Portland, and thinking we might do better elsewhere, we went to the Bay of Saint Lawrence. There we caught a trip of 160 barrels in about three or four wecks' time, taking these almost wholly in and about the bend of Prince Edward Island, a large part of them near Malpec. We left the fishing-ground on our return home about the last of September, just in time to escape the terrible gale which wrought such devastation among the large fleet of American mackerel schooners which at that time were in the bend of Prince Edward Island. It is now a matter of history that the northern shore of this island was strewn with the wrecks of ressels and bodies of drowned fishermen which were lost in this October gale. Never before had such a terrible disaster occurred to our fishing fleets. So great, indeed, was the loss of American vessels that this particular gale has been known to the residents of that province as the Yankee gale.

1851.-VESSELS IN the mackerel fleet.

The following table, compiled by Mr. Alexander Starbuck from official records, gives the number of vessels, tonnage, and number of men in the crews of the mackerel vessels composing the fleet in 1851:

	Ports.	Number of vessels.	Tounage.	Number of crew.
	Massachubetts.			
Boston		7	596	85
Beveriy		12	761	97
Barnstable		28	1,918	339
Brewster..		4	259	47
Charlestown		2	74	14
Chatham		19	1,346	230
Cohasset		44	2,885	561

*One of the writers, who was familiar with the mackerel fishery at this time, takes the responsibility of saying that there were probably 200 vessels on the coast of Maine in 1851 engaged in the maokerel fishery, and that Mr. Starbuck's table in this respect is incomplete.

> 1852.-FIrst MACKEREL OF THE SEASON.-PRICES.

Several lots of new No. 3 have been received, the first of the season, and sales hare been made at $\$ 5.50$, and some a shade under.-(Gloucester Telegraph, June 9, 1852.)
1852. -Mackerel reported plenty at western nova scotia.

The Yarmouth (N. S.) Herald of the 5th instant says: "We rejoice to learn that the mackerel fishermen [gill-netters] at Tusket Islands and other parts of the coast between Yarmouth and Cape Sable have taken good hauls within the last few days."-(Gloucester Telegraph, June 19, 1852.)

1852.-SUdCessful seining at isle of shoals.

Great quantities of these fish [mackerel] have visited our shores the past few weeks, and the fishermen at the Shoals have been doing a smart business. These fish are rather shy of the hook, bat are taken in seines
in great numbers. One or more fishing-smacks may at all times be seen at Star Island or Smutty Nose, waiting for a freight of mackerel for Boston market. The masters of these vessels, as soon as a good haul is made, purchase the mackerel of the fishermen as soon as they are taken from the net, and immediately set sail for Boston, where they arrive by the time the splitters have prepared the fish for market. Five or six thousand are frequently taken at one haul of the seine, and sell at from $1 \frac{1}{4}$ to $2 \frac{1}{2}$ cents apiece. Several seine-owners have already made $\$ 1,000$ each since the coming of these fish, and those engaged in setting and hauling not infrequently bag $\$ 10$ or $\$ 15$ for a day's work. * * *-Portsmouth Messenger.-(Gloucester Telegraph, July 31, 1852.)
1852.-First seizure of an american vessel for fishing off PRINCE EDWARD ISLAND.

Schooner "W. R. Burnham" has arrived at Boston from Prince Edward Island, having on board two of the crew of schooner Lion, of Brooklyn, which ressel was taken into Charlottetown by the Nova Scotian armed cutter Telegraph for violation of the treaty. This is the first instance of seizure for fishing off Prince Edward Island.-(Gloucester Telegraph, August 11, 1852.)
1852.-Brtisish cutters in bay of saint Lawrence disguised TO INSURE THE CAPTURE OF AMERICAN SCHOONERS.

An exchange paper says: "Captain Whitmore, of Deer Isle, Maine, states that the commanders of the British cruisers in the Bay of Saint Lawrence are in the habit of disguising their vessels as fishermen, so as to decoy the American vessels within their reach, when they become fishers of men and of prize-money. This is true; and some of the tricks resorted to in years past by some of the provincial officers would disgrace any sailor. The present year the colonial vessels are said to look more like common merchant vessels than armed cruisers, and are distinguished from others only when they have the pennant up, which is not always the case."-(Gloucester Telegraph, October 18, 1852.)
1852. - A merican mackerel schooners not permitted to fish in BAY CHALEUR, AND OTHERWISE ANNOYED BY BRITISH CROISERS.

Schooner "Mary Niles," Captain Pool, arrived yesterday from the Bay of Saint Lawrence. Captain Pool informs us that the steamship "Derastation" will not allow the fishermen to fish in the Bay of Chaleur. He and others were driven out. There were plenty of fat mackerel there, six and seven miles from the shore, and had he been allowed to fish he could have filled his vessel with three or four hundred barrels, whereas he only brought home one hundred. The captain of the "Devastation" told Captain Pool that he should not allow them to fish in the Bay of Chaleur, or within three miles of any of the bays.

The officers of the steamer were making every effort to catch the vessels, and resorted to many tricks in order to entrap them. Captain Pool states that the steamer had several times come suddenly round Point Miscou (in order to catch the American fishermen unawares). Among other things, the officers of a cutter, when they boarded a vessel, even if she were six or seven miles from the shore, would feel of the fishing-lines to see if they were wet.-(Gloucester Telegraph, August 21, 1852.)
1852.-SCARCITY OF MACKEREL.

The Gloucester Telegraph says returns of mackerel at that port for the past year fall short full one-half of what the receipts were last year; cause, trouble with the English. Prospects for remainder of season not favorable, and if vessels now out return with more than half a fare it is more than is anticipated.-(Barnstable Patriot, August 28, 1852.)
1852.-ARRIVALS FROM THE BAY.-REPORTED INTERFERENCE OF BRITISH CRUISERS.

There have been several arrivals from the Gulf of Saint Lawrence since our last, and they confirm our previous statements in regard to not being allowed to fish in the Bay of Chaleur. * * * These ressels were obliged to return home without obtaining a full fare; could they have fished in the Bay of Chaleur they would have filled their vessels with fat mackerel. * * *-(Gloucester Telegraph, August 25, 1852.)

1852.-A SCHOOL OF MACKEREL OFF CAPE ANN.

Quite a "school" of mackerel have been around our shore during the week past, and our Rockport friends have reaped a rich harvest. Some of the boats from our harbor have taken large quantities, but we understand they had struck off yesterday.-(Gloncester Telegraph, August 28,1852 .)

1852.-Reported scarcity of mackerel in the bay.

Two or three vessels have arrived since our last, but they bring no news of importance, except a scarcity of mackerel.-(Gloucester Telegraph, September 18, 1852.)

1852-The mackerel season drawing to a close.-SMall catch of the fleet due to trouble in bay of saint Lawrence.

The fishing season for mackerel is fast drawing to a close, and there are but few weeks left before the vessels will be hauled up. The returns of mackerel this year at this port fall short full one-half of what the receipts were at this time last year. This, owing mainly to the trouble at the Bay of Saint Lawrence, the vessels being obliged to keep farther from the shore than they heretofore have done, for fear the offi-
cers of the cutters would say they were within the limits, and seize them. Not being allowed to fish in the Bay of Chaleur is another cause, as our vessels in years past have sometimes obtained full fares there, and would have done so this year could they have fished in that bay, as it was full of mackerel. Last year at this time many of the vessels had returned from their second trips, but now there are many who have not returned from their first, and there will be bat few who will make more than two.

The prospect for the remainder of the season is not very favorable, and if those vessels now at the bay return with more than half a fare, they will do better than is now anticipated. The fish at this season tend mostly in-shore, and at the best fishing-grounds there are two or three cutters who will keep the Americans off, and they will therefore not be able to do much.

The quality of mackerel this season has been different than for a fem years past. Those brought from the bay have been very large and handsome, and commanded high prices; while those taken off our coast have been smaller and not of so good quality. Sales have been made this week of several trips of bay mackerel at the following rates: No. 1 's, $\$ 12 ; 2$'s, $\$ 10 ; 3$'s, $\$ 6.75$. Shore mackerel have brought $\$ 95, \$ 7 \frac{5}{3}$, and $\$ 5 \frac{1}{2}$ for the three Nos.-(Gloucester Telegraph, September 25, 1852.),

1852.-LOSS OF MANY MAOKEREL SCHOONERS IN THE BAY.

The Gloucester Telegraph of October 30, 1852, reports the loss of 21 vessels at Souris, Prince Edward Island, in a heavy gale which took place on the 15 th of that month. The vessels went into that harbor with the wind NE., but it shifted suddenly round to the SSW., and they could not get out.

1852.-Reminiscences of capt. J. W. COLlins.

In the spring of 1852 I went south on a mackerel trip in the schooner "Science," of about 50 tons, old measurement. We started about the 1st of May, and were gone four or five weeks, bringing to Boston a fare of 45 sea-packed barrels. Our fishing ground was from Barnegat to Elock Island, though we caught but few mackerel south or west of Fire Island. At this time all of the vessels belonging to Northern New England ports salted their spring catch of mackerel, and generally packed them north of Cape Cod. A considerable number of sloop smacks, belouging at Noank and New London, Conn., engaged in the spring mackerel fishery to supply the New York market, taking the fish in alive in their wells. Their crews fished with poles, as anglers do for trout, being thus enabled to drop the mackerel into the well without touching them, even from the extremities of this vessel. In June we went to the Bay of Saint Lawrence, where we caught about 150 barrels, being absent from home nearly seven weeks. The mackerel were of large size that year in the Gulf of Saint Lawrence, but not very abun-
dant. Off the New England coast they were very plentiful and in fine condition, though of medium size, scarcely any, or none, being large enough to pack for No. 1's. After returning from the Gulf we tished off the New England coast from Mount Desert Rock to Cape Cod, though we did the best off and around Monhegan Island during the month of August and early in September. At that time a large fleet was fishing off the Maine coast.
1852.-MACKEREL FISHERY OF NEW BRUNSWICK IN 1852.

Perley, in his Report on the Fisheries of New Brunswick for 1852, says: "It must be considered settled that the mackerel fishery as a branch of business cannot be said to exist in New Brunswick, although the eastern shores of the province and the whole Bay of Chaleur offer the greatest facilities and most abundant supply of fish.
"It is highly desirable that something should be done to encourage and promote this fishery, which evidently offers such ample reward to the energy, enterprise, and industry of the people."-(Page 16.)
1853.-THE ARMAMENT IN PROVINCIAL WATERS FOR BREAKING UP the american mackerel fishery.

The St. Johu New Brunswicker, of the 31st ultimo, announces the arrival at St. John of H. M. ketch "Netley," which is to be stationed in the Bay of Fundy for the protection of the fisheries this season. H. M. screw steamship "Plumper," fitting out in England, is also expected to be stationed in the bay. H. M. steamers "Basilisk," "Vixen," and "Devastation" are to be stationed at Newfoundland and in the Gulf; and four brigantines or schooners are to be immediately fitted out at Halifax for the Gulf, each under the command of a lieutenant in the navy, with twenty-five picked men in each from the flag-ship "Cunberland." These vessels, says the Brunswicker, with other arrangements for an efficient boat service at several of the most favorable resorts in the Gulf for American mackerel fishers, will doubtless prove the means of preventing encroachments this season, and tend greatly to break up the American mackerel fishery in the Saint Lawrence.-(Gloucester Telegraph, June 4,1853 .)

1853.-MAOKEREL IN WESTERN NOVA SCOTIA.

The Yarmouth Herald says: "We are glad to hear that mackerel have been abundant at the Tusket Islands during the past week. In two days two seines secured over 600 barrels. Within the last few days a considerable quantity of small mackerel and fat herring have been caught in this harbor."-(Gloucester Telegraph, July 16, 1853.)
1853. -FIRST ARRIVAL FROM THE BAY—REPORTED SCAROITY OF MACKEREL.
The "Leonard McKenzie" arrived at this port on Sunday from the Bay of Saint Lawrence; reports mackerel as not being very plenty, and the vessels were not doing much.-(Gloucester Telegraph, July 20,1853.)

1853.-MAOKEREL IN GLOUOESTER HARBOR.

A large school of mackerel has been in our harbor this week, which has given our shore fishermen a good benefit, and many of them have improved it. The fish are larger than those here a week or ten days previous.-(Gloucester Telegraph, July 30, 1853.)

185̃3.-SUCCESSFUL PURSE-SEINING ON NEW ENGLAND SHORE.

The Newburyport Union states that the schooner "Ada" [arrived] at that port on Wednesday with 320 barrels of mackerel. This is her second trip in our bay, in both of which she has taken 560 barrels; most of them have been caught with a seine. What other mackerel vessel has done as well as that this year?-(Gloucester '「elegraph, August 3, 185̄3.)

The Newburyport Union states that the schooner "Ada" has completed her third trip in eleven days, with 300 barrels, making a total of 850 barrels in less than two months. We do not recollect that any ressel from this place has ever done so well before; and at the present prices of mackerel she will pay a handsome profits to her owners.-(Gloucester Telegraph, August 13, 1853.)

1853.-ARRIVALS AND REPORTS FROM THE BAY.

There were several arrivals yesterday from the Bay of Saint Lawrence.

* * * In some parts of the bay mackerel were plenty, in others they were scarce.-(Gloucester Telegraph, August 17, 1853.)

1853.—SUGGESS OF THE SWAMPSCOTT MACKEREL SEINERS.

The schooner "Romp" and the schooner "Vanguard" of Swampscott arrived home last week, having been engaged in mackerel fishing off Boone Island a few days past with remarkable success. One of the boats took at one haul of the seine ninety-four wash-barrels of mackerel. In one day she took 155 barrels.-Lynn Bay State.-(Gloucester Telegraph, Aagast 31, 1853.)

1803.-RECEIPTS AND PRICES.

Mackerel remain without change. The arrivals continue moderate for the seasen. Sales of large for $\$ 13.00, \$ 11.50$, and $\$ 8.12 \frac{1}{2}$, and shore at $\$ 11.75$, $\$ 9.72$, and $\$ 7.50$ per barrel.-(Ib.)

1853.-Extrene high prices consequent upon the scarcity of MACKEREL.

The scarcity of this article (mackerel), and the poor prospect, both in the bay and off our coast, has caused the prices to reach a higher point this season than ever before known. A trip which arrived on Saturday morning, was taken up at $\$ 15 \frac{1}{8}$ per barrel for No. 1 's, and other numbers in proportion.-(Gloucester Telegraph, September 11, 1853.)

Quite a number of vessels have arrived since our last from the Bay of Saint Lawrence. * * * Fish are reported scarce, and but few of the vessels are doing anything.-(Ib.)

1853.-THE SHORE FLEET.

Our harbor was filled up on Thursday with about 200 sail of fishing vessels. It was the largest fleet which has been in thisseason. * * * -(Gloucester Telegraph, October 8, 1853.)
1853.-Destructive gale and loss of vessels at the bay.

The Gloucester Telegraph of October 8, 1853, contains a report of several mackerel schooners in the Bay of Saint Lawrence during a heary gale which occurred on the 29th of September.

> 1853.-ARRIVALS FROM THE BAY.

About 25 vessels have arrived home from the Bay of Saint Lawrence since Saturday morning. They bring no news of importance, but all report stormy weather and a scarcity of mackerel.-(Gloucester Telegraph, October 26, 1853.)

1853.-Review of the mackerel fishery for 1853.

The season for mackerel is fast drawing to a close, but about six weeks remaining before the vessels will be hauled up. Present appearances indicate that the catch will be very small compared with last year. At this port not more than one-third as many mackerel have been packed as there were up to this time last year. The vessels which return from the bay do not average half a fare, and those which are fishing off this coast are doing no better comparatively. There are no mackerel around our Capes, which is unusual at this time of the year. This scarcity of the article has carried the price up higher than ever before known, and the tendency is still upward. Sales have been made in town, this week, of bay mackerel at $\$ 15 \frac{3}{4}$ for No. 1 's, $\$ 133_{4}$ for 2 's, and $\$ 8 \frac{1}{8}$ for 3 's; shore do. at $\$ 14$ for 1 's, $\$ 10 \frac{3}{4}$ for 2 's, $\$ 7 \frac{1}{2}$ for 3 's, and $\$ 5 \frac{1}{8}$ for 4's.-(Gloücester Telegraph, October 5, 1853.)

180̃3.-Remtiscences of capt. J. W. collins.

In June, 1853, I went to the Gulf of Saint Lawrence, in the schooner "Valiant," leaving home about the middle of June. The mackerel were large that year in the Gulf, but rather scarce. Some of the vessels succeeded, however, in getting fine fares, but we were not so fortunate, since we brought back only 60 barrels of mackerel, though absent from home six weeks. Medium-sized mackerel were quite plentiful off the coast of Maine in August and September, and some of the ressels did
quite well. A curious thing, however, in connection with the shorefishery that year was, that while mackerel could be caught to a considerable extent close into the shores of the out-lying islands and around the ledges, but comparatively few could be taken farther out to sea. The consequence was that many of the vessels were provided with boats in which the fish were caught. This was especially the case with those fishing round Monhegan Island, where a small fleet of vessels lay in the harbor, and the crews went out in boats round the island, catching the mackerel close into the rocks. The vessel I was in was one of this fleet. On several occasions we found excellent good fishing in our boats, frequently not more than a stone's throw from the surf on the shore.
1853.-SUCCESS OF THE SPRING MACKEREL FISHERY ON THE COAST of the united states.

Several mackerel catchers have returned to Provincetown to pack, with liberal success. A large quantity of mackerel have been caught in and about the harbor in nets-prospect for fishing remarkabls good.(Barnstable Patriot, May 31, 1853.)
1853.-NEWBURYPORT VESSELS IN THE GULF OF SAINT LAWRENCE.

The Newburyport Herald, of Friday a. m., has a letter dated Cascumpeque, Prince Edward Island, September 15, which says:
"It is blowing a gale from the northeast, and this harbor is full of vessels, say 120 sail. Hereby I send you a memorandum of Newburyport vessels and their catch of fish. These vessels are all here in the harbor: 'Gentile,' 230 barrels; 'Paragon,' 100; 'Arctic,' 190; 'Equator,' 130; 'Lydia,' 370; 'Palm,' 60; 'M. C. Ames,' 20; 'Angelia,' 70; 'Ada,' 12; there is quite a fleet near Gaspe and some at East Point. As a general thing the fleet has been unfortunate."-(Barnstable Patriot, October 4, 1853.)
1854.-Abundance of mackerel on the new england coast.

Mackerel were unusually plenty on the coast this year. Old fishermen declared them to be more so than at any other time within twentyfive years. Considerable quantities were taken from the wharves in Lynn.-(History of Lynn, Lewis \& Newhall, p. 439.)

Mackerel.-Welearn from the Salem Register that mackerel continue abundant in the waters near the city. On Tuesday week, a leviathan of the mackerel species, three pounds in weight, was caught near Black Rock, and on the same day two others weighing five pounds each, were captured off Tompkins Island.

A correspondent of the Herald says that mackerel had made their appearance in great numbers during the past week at Danversport, and they have been caught by the bushel from the wharves and boats.(Barnstable Patriot, August 8, 1854.)

1854.-REMINISCENCES OF CAPT. J. W. COLLINS.

In July, 1854, I again went on a mackerel trip to the Gulf of Saint Lawrence in the pinkey "Julia Ann." The Gulf mackerel that summer were large, though rather scarce on the greater part of the fishing grounds. A fleet of about fifty sail, of which our vessel was one, did remarkably well in August on a small spot of shoal ground lying off to the southwest of Cape Gaspé, and known to the local fishermen as Yankee Bank. Instead of fishing here as in the usual manuer, by lying to and drifting, the vessels were all brought to anchor at a short distance from each other, and, while fishing, lay sprung up. As a rule the mackerel would take the hook only at night and early in the morning, at which times they would bite, perhaps, for an hour or two, while during the middle of the day scarcely one could be caught at all. The weather at this season was exceptionally fine, and the fleet lay for some weeks contentedly at anchor. Each morning more or less mackerel would be taken, and when they ceased biting, these were dressed and salted. In the same manner the fishermen were almost always sure of a "sundown spurt." Many of the vessels did excellently well, catching more than 200 barrels of fine large mackerel, for which they obtained a high price, and we, ourselves, succeeded in taking over a hundred barrels, with a small crew of nine or ten men. This amount, together with the fish we had previously canght, made us up a fine fare of 150 barrels, for which we obtained a high price. This year the schooner "Game Cock," of Hingham, was provided with a peculiar form of spring seine, by which it was expected that a school of mackerel which had been tolled alongxide of the vessel might all be canght at one time in the net. The schooner was provided with long outriggers, from the bow and stern, by means of which the net could be drawn outward from her side, underneath the fish, in such a manner that they might be inclosed in a bag of netting-the edges of which would be at the water's surface-before they would be aware of it. This contrivance did not, however, succeed very well, and no attempts were made to use it, that I am aware of, after this summer in the bay.

1854.-POOR QUALIT OF THE MACKEREL TAKEN IN THE GULF OF SAINT LAWRENCE.

The Gloucester Telegraph says that "in previous years the quality of mackerel taken at the Bay of Saint Lawrence has been mostly large and fat, but this year it has been different. In 1853 Gloncester returned over 20,000 barrels of No. 1 mackerel. This year there will be returned scarcely 5,000 of that No. 1 "-(Barnstable Patriot, December 26, 1854.)

> 1855.-MACKEREL FISHERY OF CAPE COD.

Several mackerel fishermen arrived at different harbors on the Cape last week, having from 150 to 180 barrels each. The prospect of the fishermen is generally very good.-(Barnstable Patriot, August 28, 1855.)

1855.-SPRING FISHING/IN BARNSTABLE BAY.

For a week past our bay has been enlivened with the presence of quite a fleet of vessels and boats, engaged in taking mackerel. They are quite abundant, and the most encouraging fares are realized. Yesterday a fleet of nearly two hundred sail was in sight from our office, and we learn that most of the crews have averaged some thirty barrels per day for some days past. Persons in boats have, in many instances, taken several barrels, and last week Capt. Ainsley Howes, of Dennis, took seven barrels in a single day. These are lucky times for our fisher-men.-(Barnstable Patriot, May 20, 1855.)

1855.-Reported abundance of mackerel south.

The Newburyport Herald learns from one of the crew of the schooner "Flying Cloud," who arrived home by land on Friday, that all the vessels were rapidly filling up, and that the catch of mackerel out south, this year, will be greater than for many years past. He reports the mackerel to be of large size and of good quality, the coves and harbors being literally swarming with them.-(Gloucester Telegraph, June 6, 1853.)

1855.-EIRST ARRIVAL FROM THE SOUTH.

The schooner "Leader" arrived at Newburyport on Saturday. The Herald says that this is the first of the fishing vessels arrived from the southern coast. The fleet are reported as doing a fair business. The "Leader" packed out 104 barrels. Ouly $\$ 6$ per barrel offered for the catch.-(Gloucester Telegraph, June 13, 1855.)
18j5.-Only hoderate fares obtained by the southern fleet.
The Newburyport fleet of southern fishermen are fast arriving home with moderate fares, and, at the present prices of mackerel, making but small protits. Several of them by falling in with fish off Cape Cod, on their way home, were able to add something to voyages that otherwise would not have paid.-(Gloucester Telegraph, June 27, 1855.)

1855.-ARRIVALS FROM THE BAT-UNPROFITABLE TRIPS.

Several vessels have arrived within a few days from the Bay of Saint Lawrence with tolerable trips of mackerel, so far as quantity is concerned, but the quality is poor, and the price is so low that hardly one of them will pay their expenses. This, however, is better than last season, when many of the vessels came home with ouly from 15 to 40 barrels each.-(Gloucester Telegraph, August 1, 1855.)

The Newburyport Herald states that the fishermen of that port are fast arriving from the Bay of Saint Lawrence with about average fares, and report the fleet not to be doing more than that. If prices keep up they will barely make a living business, and if they decline the fishermen will come out at the close of the season where they have often been of late years, without enough, take the fleet together, to square their bills.-(Gloucester Telegraph, October 3, 1855.)

1855.-LARGE HAULS IN HALIFAX HARBOR.

The Halifax Colonist of the 3d instant says: "Large hauls of mackerel have been taken, within the last few days, along the shores from the head of the Basin to Portuguese Cove, wherever there was a seine set. Some of these fish will make superior No. 1's, and the quantity taken is valued at a very large sum of money."-(Gloucester Telegraph, November 14, 1855.)
1855.-The baymen.

All of the bay vessels have now arrived home but three, and those, we understand, are on their way. A larger quantity of mackerel has been taken this year than last, and some of the vessels have made a good year's work, but the average of the vessels is not much better than it was in 1854, the expenses of the business being so high and the quality of the mackerel being so low. The season closes later this year than usual, some of the packers having several trips still on hand to pack out.-(Gloucester Telegraph, November 28, 1855.)

1855.-REMINISCENCES OF CAPT. J. W. COLLINS.

The spring mackerel on the southern coast, in 1855 , were small, averaging 12 inches or less in length. They were fairly abundant, but being so small, and also very poor, were low in price and scarcely worth catching.

In the summer mixed mackerel were very abundant in the Gulf of Saint Lawrence. It should, however, be mentioned that but few of these were of large size, that is, of suitable size to cull as No. 1 fish. The great majority of the mackerel were of small size, ranging in leugth from $10{ }_{2}^{1}$ to 12 inches. These were exceedingly plentiful, and, especially during the early part of the season, took the hook very readily, so that some of the vessels succeeded in obtaining full fares in a very short time, in fact, in some cases the only limit being the time required by the crews to catch and dress the fish.

I went south early in May in the schooner "Matilda," about 45 tons, old measurement. We fished principally at Sandy Hook and along the back side of Long Island. The best day's fishing (about 30 wash-barrels) was obtained a little to the westward of Montauk Point. We were absent about four weeks, bringing to Boston a fare of about 50 barrels of salt mackerel.

About the middle of June I went to the Gulf of Saint Lawrence in the same vessel. Our skipper had been one of the "lucky ones" who had succeeded in getting a fare of large mackerel on Yankee Bank the previous summer, and being fully impressed with the idea that he could again do the same, and thinking the small mackerel lrardly worth saving, he made it a rule to throw away all but the largest fish during the first part of the trip; it often happened that, from a catch of twenty to
twenty-five barrels, we would not save more than two or three barrels. The result of this was that a large part of the best fishing season passed away almost unimproved by us. In the end, after four months absence, we had to return home with only 160 barrels of mackerel, considerably less than a full fare.
1856.-Relative importance of the shore and gulf of saint LAWRENOE MACKEREL FISHERIES.

According to the Cape Ann Advertiser, the shore mackerel fishery in 1856 was very unsatisfactory, the mackerel refusing to take the hook. The bay fishery was fairly successful.
1856.-THE MACKEREL FISHERY OF NEW ENGLAND.

The Gloucester Advertiser of January, 1857, reviews the season of 1856 in the following manner:
"The first trips to the bay were very successful, and the prospect to the 1st of September very encouraging. The catch of mackerel exceedingly large. Mackerel, however, have rated low, and the poor success of the last trips to the bay proved very disastrons, and rendered the closing up of the season's work very poor. Many of the vessels have not paid their current expenses, and empty barrels and salt are left on the owners' hands."

1856.-REMINISCENCES OF CAPT. J. W. COLLINS.

In the summer of 1856 the small mackerel which were found the year before in the Gulf of Saint Lawrence had increased in size so that they ranged in length from about twelve to twelve and a half inches; though at this time, scarcely any large fish were found in the schools. In July I went on a mackerel trip to the Gulf in the schooner "Good Intent." After trying a week round the northern part of Prince Edward Island and on Bank Bradley, we went to the Magdalen Islands, where, about the eastern end of the group, we found mackerel abundant, and succeeded in obtaining a full fare in two or three weeks. After returning home and packing out our trip, we fished off the New England shore but found mackerel rather scarce, and, like those in the Gulf, of medium size. Many of the vessels did excellently well mackerel fishing in the Gulf of Saint Lawrence this year, bringing home two full fares.
1857.-Slim doings of the southern fleet.

Accounts from the southern fisheries have been received. The Boston Traveller says the catch has been very slim. A few ressels from Newburyport were reported. The "Atlas" had the largest number, 80 barrels; "Roanoke," 24; "Tyro,"10. The two first weeks of this month being considered the best of the fishing season in those waters, there is
a slight chance of their being able to increase their catch sufficient to meet their expenses. As a general thing the southern fishery does not pay to follow. The fleet to these waters every year diminishes, and will eventually be abandoned.-(Gloucester Telegraph, June 10, 1857.)
1857.-Tife price of mackerel enhanced by the demand for shipments to california and australia.

The active demand for mackerel for shipment to California and Australia, says the Boston Traveller, and the comparatively small catch thus far has caused an upward tendency in prices, and speculators are now paying for No. $2 \$ 12.50$, large 3 's $\$ 9$, and small 3 's $\$ 8$ per barrel, which are higher prices than we have ever before known. Heretofore Philadelphia has controlled the market for these fisth, but the New Forkers are now attempting to get this trade in their hands, and it is resulting very favorable to the fishermen. As new markets are being opened for shipment, an impetus will be given to this branch of business heretofore unknown. Additions are making to the fleet in all our fishing ports, and upon the arrival of the baymen there is considerable competition by the New York and Philadelphia agents to secure fares.

* * * -(Gloucester Telegraph, August 5, 1857.)

1857.-Unfavorable reports from the bay.

A vessel arrived from the Bay of Saint Lawrence yesterday reported that the vessels have done but little during the last four or five weeks. Mackerel were scarce and the weather very rough. During one fortnight but two days were obtained in which the vessel could go out to fish. Some of the vessels were coming home with half fares.-(Gloacester Telegraph, October 3, 1857.)

1857.-Mackerel schooners stranded in the bay.

A dispatch received in town this morning reports that eleven [Gloacester] vessels went ashore at Cheticamp last Thursday * * *(Gloucester Telegraph, November 3, 1857.)

1857.- High Line of the mackerel fleet.

Capt. George Janovin, of the schooner "Eleanor," which arrived jesterday, has made three trips to Bay Chaleur, and packed out 660 barrels of mackerel. This being the largest fare caught, Captain Janovin will be entitled to wear the laurels for this season.-(Newburyport Herald. -(Gloucester Telegraph, November 14, 1857.)

1857.-Reminiscendes of capt. J. w. collins.

This was another year when mackerel were plentiful in the Gulf of Saint Lawrence, and at this time a considerable percentage of them
were of suitable size to be packed for large fish. As in previous years a large fleet of vessels went to the Gulf. In July I went to the bay in the pinkey "Rinaldo," 33 tons, old measurement. We fished principally along the north shore of Prince Edward Island from Eastern Point to Cascumpec. We succeeded in getting a full fare of mackerel-about 150 barrels-in five or six weeks, with a crew of seven men all told. I left the "Rinaldo" in the Strait of Canso on her return home, and shipped on the schooner "Mary Ellen," of Truro, Massachusetts, and returned again to the Gulf. During September and the first part of October, we fished on the north side, or in the waters termed the Bend of Prince Edward Island, mostly in the vicinity of Malpec, where was gathered a fleet of 200 or 300 sail of American mackerel schooners. Mackerel were fairly abundant in that locality, and many of the fleet did well. Having secured enough fish to complete our fare early in October we left the Bay and came home. After packing ont our fish we engaged for a few weeks in fishing on the New England coast, though with indifferent success. The mackerel off our own shores that fall were mostly of small size and not very plentiful. The vessels that arrived home with their fares early in the fall were much more fortunate than those coming in at a later date, since the price of mackerel was very much affected by the financial panic, which occurred during that autumn. I left the "Mary Ellen" a couple of weeks before the close of the season and went home. But little was done, however, at mackerel-fishing late in the fall.
1858.-EARLY START FOR THE BAY.-INCREASE IN THE BAY FLEET.

Several vessels have already started on their first trip to the bay; and active preparations are now being made for the fitting out of others, which will be ready to sail in the course of a fortnight. The bay fleet will be larger this season than last by some thirty sail.-(Cape Ann Advertiser, May 22, 1858.)

1858.-ARRIVAL OF BAYMEN.-SCARCITY OF MACKEREL.

Since our last issue there have been several arrivals from the Bay with average fares. They report mackerel scarce when they left.-(Cape Ann Advertiser, July 31, 1858.)

185̃.-EARLY START FOR THE BAY.-POOR SUCCESS OF THE SOUTHERN FLEET.

The George's fishing has been very dull for the last month or six weeks, and a large portion of the fleet are now in port, painting up and getting ready for the bay. It is calculated that by the last of the month two-thirds of the fleet will be there or on the way. This is earlier than usual, and-we trust they will return with full fares.
S. Mis. $110-23$

Several vessels have arrived within a few days from the South, where they have met with poor success, getting few mackerel. Our vessels have never been very successful in the spring mackereling at the south.(Gloucester Telegraph, June 2, 1858.)
The Yarmouth Register reports that the fishermen who have this spring made their usual trips to the southeru waters have met with poor success, the best returning not over 25 barrels. Those who have arrived report the whole mackerel fleet as doing a poor business.-(Gloucester Telegraph, June 16, 1858.)

1858.-Tite shore fleet off cape ann.

Quite a large fleet of mackerel catchers have been visible a few miles off the Cape during the past week. Several of them have done well; one vessel we learn having caught sixty wash-barrels in one day, others have taken twenty-five. They report mackerel plenty, but unusually shy of the hook.-(Cape Ann Advertiser, October 9, 1858.)
1858.-A GOOD bay trip.

One of our vessels recently returned from the bay with a fare, the proceeds of which amounted to $\$ 4,234$.-(Cape Ann Advertiser, November 25,1858 .)

1858. -LASt arrival from the bay.

The last of the bay fleet that is expected to arrive has made her appearance, and the mackerel season has closed.-(Cape Ann Advertiser, December 3, 1858.)

> 1858.-A BIG DAY'S WORK.

The Portland Argus states that one day last week two men engaged in fishing off that harbor caught mackerel which they sold for the sum of $\$ 90$. The weight of the mackerel caught was about 1,500 pounds.(Gloucester Telegraph, June 26, 1858.)

1858.-MACKEREL PLENTY OFF NEWBURYPORT.

Mackerel are now schooling in abundance in Newburyport Bay. The schooner Coral seined one day last week, in the vicinity of the Isle of Shoals, 30 barrels.-(Ib.)

> 1858.-Small spring catch.

The Hyannis Messenger says that the catch of mackerel up to the present time has not been a quarter of what it was last year.-(Gloucester T.elegraph, July 3, 1858.)
1858.-The spring fishery at the magdalen islands.

We subjoin an extract from a letter dated Port Amherst, Magdalen lslands, 7th June.

We are now taking large quantities of mackerel; in fact the greatest quantity ever taken here will be this spring. Abont 50 sail of strangers are now fishing here. * * *-(Gloncester Telegraph, July 7, 1858.)
1858. -THe bay mackerel fleet frovi gloucester harbor.

Two hundred and twelve of the fleet have gone to the Bay of Saint Lawrence, and are manned by 2,550 men and boys.-(Gloucester Telegraph, July 24, 1858.)

1858.-SLLA DOtNGS of the marly bay fleet.

Schooner "John Gerard," from Bay Chaleur, mackereling, arrived at Newburyport 21 st instant, and reports sailing with a leet of 25 vessels, the largest catch of which was 80 barrels. As none of the fleet have arrived here, it is supposed they are Cape Cod or eastern ressels. Our skippers prefer staying the whole season in the bay to coming home with fares of 80 barrels and less.-(Gloncester Telegraph, August 25, 1858.)

Several vessels direct from the bay have arrived at Hingham and Cohasset the past week, with very slim fares, the highest catch being about 150 barrels. They report mackerel plenty but will not bite.Gloucester Telegraph, September 8, 1858.)

1858.-The mackerel fishery alaiost a failure.

The mackerel fishery seems to hare been almost a complete failure so far this season, the number canght being small, and the fish small and poor. We trust something better may result from the fall fishing.Provincetown Banner.-(Gloncester Telegraph, September 15, 1858.)
1858. -THE BAY MACKEREL FISHERY.

Though our vessels are not bringing full fares, the mackerel are very fine, all large and fat.-(Gloucester Telegraph, September 25, 1858.)

1858. - Partial failure of the mackerel fisifery.

There is little hope now that any turn in the fisheries will render them profitable this year; but the latest accounts from the Bay of Saint Lawrence are more favorable, and those vessels that succeed in taking full fares-since the mackerel are uncommonly good and the prices higher-will do well. On our shore the mackerel fishing is not much, but the vessels here employed in pollock catching have the promise of a good season. The fish that have annually struck into our bay in
large schools for some years past, are now plenty.-Newburyport Her-ald.-(Gloucester Telegraph, October 13, 1858.)

1858.-Mackerel market.-DOINGS OF THE SHORE FLEET.

Since last reported the market has been inactive. The shore fleet of mackerel catchers do not report any success. Last sales at $\$ 12.50$, $\$ 10.50$, and $\$ 8.31$, for Nos. 1, 2, and 3.-(Gloucester Telegraph, October 27, 1858.)

The Yarmouth Register reports the arrival last week of a fleet of some 50 sail of fishermen at Wellfleet, with from 10 to 25 barrels each. They sailed again on Tuesday for another three weeks' cruise, and if not more fortumate their gross earnings will be rery small.-(Gloucester Telegraph, November 3, 1858.)

Over 100 sail of mackerel catchers, says the Provincetown Banner, tarried in our harbor over Sunday. As yet they have not paid their way, but still have a faint hope to do something before winter sets in. *** -(Gloucester Telegraph, November 10, 1858.)

1858.-Success of the gloucester baymen.

Before the last of the present mouth the last of our fishing fleet will have returned and the season will be finished. Some time since, in the midst of discouraging news from the bay fleet of mackerel catchers, we ventured to predict that they would bring at least one full fare of mackerel which would command high prices. All that have returned up to the present writing have proved the truth of our prediction, and those which are yet to come-about 75 sail-if the last news be reliable, will bring average fares. * * * But reports from other places seem to indicate that the business has been almost a failure this season. The Cape Cod fishermen, especially, as we learn, hare been peculiarly unfortunate. Their vessels sent into the bay early, but the poor prospect discouraged them, and they returned home to meet the same hard luck, and unless they meet with remarkable success in the few days that remain of the season, vessels and crews will be deeply in debt.-(Gloncester Telegraph, November 13, 1858.)
1858.-The top and bottom of the mackerel fishery.

One of our ressels recently arrived from the bay with a fine fare, the total proceeds of which amounted to $\$ 4,234$. As a contrast to this we will mention the fact that one which had been absent a number of weeks brought home only 37 barrels.-(Gloncester Telegraph, November 24,1858 .)

1858.-LAST ARRYVAL FROM THE BAY.

The last of the bay fleet that was expected to arrive made her appearance on Saturday.-(Gloucester Telegraph, December 1, 1858.)

The whole bay fleet of Newburyport, comprising upwards of fifty ressels, hare returned for the season. The Newburyport Herald says this has been a very hard year for the fishermen, and adds: "The result of this season may be bricfly summed up. The schoouer, Young America, takes the lead, having packed out 500 barrels, stocking $\$ 6,150$. But seven vessels have more than paid their expenses ; six others have barely met their expenses, and the remainder hare sunk money."(Gloucester Telegraph, December 4, 1858.)

1858.-Reminisoences of capt. J. W. Colllins.

Early in June I again started for the Gulf of Saint Lawrence on a mackerel trip on the schooner "Good Intent." During June and the early part of July, we fished along the west shore from Point Miscou to Richibucto; around the north cape of Prince Edward Island, and on Bank Bradley. Mackerel were found most plentiful during June and early July about Point Escuminac and in Miramichi Bay. On one occasion in June the schooner "Governor," of Deer Isle, Maine, with a crew of 12 men, caught more than a hundred wash-barrels in Miramichi Bay, and nearly every vessel in the fleet, which numbered 40 to 50 schooners, did well. About the middle of July we went down to the east point of Prince Edward Island where our skipper had secured a good fare of fine mackerel the sear previous. Here we continued to cruise for five or six weeks, going as far up the north side of the island as Saint Peters, and as far as Surrey and Georgetown on the south side. We found mackerel scarce, however, in that locality, and were obliged to return home with a small fare of about 150 barrels; though vessels fishing at the Magdalens secured full fares in a much less time. There was a large fleet fishing off the New Eugland coast that fall, and we also engaged in the shore mackerel fishery after packing out our bay trip. Mackerel were not abundant, however, off our own coast, and we did rather poorly. In October I left the "Good Intent," which wasabout to haul up, and shipped in the schooner "E. W. Merchant," of Gloncester, in which I continued for about three weeks. During that time we fished all the way from Cape Ann to Chatham, including Middle Bank and Barnstable Bay. Our success, however, was limited, since we caught only about 30 barrels of mackerel. The "Merchant" was the first real clipper-schooner in which I had sailed. Her performances seemed to me, at that time, quite wonderful.

185S.-SUCCESS OF THE GILL-NET MACKEREL FISHERY IN CAPE COD BAY.

The Provincetown Banner of early December, 1858, contained the following paragraph:
"Fat mackerel.-The bay was visited last week with one of the
finest schools of mackerel that was ever known to enter these waters. Those who set nets on Thursday and Friday uights were exceedingly fortunate. On both of those nights every net meshed more or less fish, while some of them were so loaded with mackerel as to sink; some men took as high as 1,500 in one night from their nets. These mackerel are large and fat, packing about 200 per barrel. All those fish do not take the hook at this season of the year; those who expect a share of them are under the necessity of providing themselves with nets. To knit these affords employment during the winter to those who follow the business or are hired by them. The success of those who have supplied themselves with this apparatus for taking these mackerel is an incentive to others, who have neglected to provide it, to spend their leisure moments in furnishing themselves with the means of obtaining a share with their neighbors in future years. While the profits of the mackerel taken in the bay last week will not in all cases, perhaps, fall into the hands of the most needy, they will be quite generally distributed and many, both in this town and Truro, are to be congratulated most heartily on their good fortme. Last night 2,000 mackerel were taken off here in three nets-a great haul."-(Barnstable Patriot, December 7, 1858.)

1859.-DECLINE OF THE sOUTHERN MACKEREL FISHERY.—SMALL FLEET FROM GLOUCESTER.

The practice of going south for mackerel has almost died out of late years, and this year there are but three or four vessels in the business. - Some of the vessels who go in quest of bait, however, take mackereling apparatus with them, to use in case they should be so fortunate as to fall in with a school.-(Cape Anu Advertiser, May 20, 1859.)
1859.-Growing iniportance of gill-net fishing at cape cod.

Net mackereling seems to be a growing and important business. The absence of the bluefish in the bay seems to be hailed with inward satisfaction by the citizens of Provincetown, and they confidently predict the return of the palmy days of profitable boat and net fishing, and the consequent thrift to their town if this piratical enemy of almost every other species of fish has taken his final departure from their waters.(Cape Ann Advertiser, July 1, 1859.)

1859. -Siding Mackerel fishing.

Schools of mackerel reported in Boston Bay June 5 - $\mathbf{1 0}$, 185̃9. Several vessels returned from the south with good fares. Fleet has been small, but those that have been engaged in this southern fishery did better than the average of seasons. Largest catch, 140 barrels of small mackerel, selling at \$9.50.

Habits of Fish.- Mackerel fishermen once found fish inclined to take the hook, as bluefsh, by trawling. Late years they take the hook as soon as it is thrown into the water, and a vessel needs but a few hours for a full supply if they will "bite." Now it would seem that the water may be full of them and not one of them can be taken by the hook. At the present, in Provincetown Harbor, none are taken by the hook, while the whole harbor is crowded full of them. The introduction of nets has been a great gain in the way of taking them, and it is predicted by some that mackerel will soon be taken upon this coast only by nets. However this may be, it would seem that a change of mackerel would render it desirable that there should be the corresponding change in the mode of taking them.-(Barnstable Patriot, June 28, 1859.)

Our Provincetown neighbors seem to have a special benefit this season. The harbor is crowded full of mackerel, and though they will not take the hook, they are aboudantly meshed in the nets which are set for them. Some nights as many as two thousand fish have been taken in the nets of a single man.-(Cape Ann Advertiser, July 1, 1859.)
1859.-Fitting AWAY OF TIIE BAY FLEET:-A NEW FEATURE IN THE MACKEREL FISHERY OF TAE GULF OF SAINT LAWRENCE.

Most of our vessels are making preparations for the bay. The prospects of a good season's work are very flattering, and the number of vessels this season will exceed that of last by a large number.

Some of the mackerel fleet in the bay fishery will take dories this season. This is a new feature, and will doubtless prove an advantageous one. Quite a large fleet of cod fishermen are now fitting for bay mack-ereling.-(Cape Ann Advertiser, May 20, 1859.)
1850.- REpORTED ABUNDANCE OF MACKEREL IN MASSACHUSETTS BAY.-SUCCESS OF THE SOUTHERN FLEET.

Large schools of fresh mackerel have been reported in Boston Bay the past week. Several of our mackerel catchers have returned from the south with good fares. The fleet at the south has been very small, but those that have been there do rather better than the average of seasons. The largest catch yet landed has been 140 barrels of small mackerel. It will be seen by our market quotatious that they bring a good price.-(Cape Ann Advertiser, June 10, 1859.)
1859.-SUCCESSFUL USE OF THE PURSE-SEINE OFF CAPE ANN.SCIOOLS OF MACKEREL IN GLOUCESTIER HARBOR.

Last week large quantities of mackerel were seined by vessels on the north side of the Cape.

Our harbor has been visited by schools of mackerel the present week, but they do not take to the hook.-(Cape Amn Adrertiser, July 1, 1859.)
1859.-A SCHOOL OF MACKEREL in GLOUCESTER HARBOR.-ARRIVALS FROM THE BAY.-PROSPECTS.

A large school of mackerel in the harbor yesterday, near Day Bar; large and fat; several dories took good loads with hook and line; schooner "Jane," of Swampscott, seined a good number.

Twelve vessels arrived from the bay with moderate fares the past week. They do not speak very encouragingly of the fleet, many of the vessels having done nothing, and others have succeeded in getting from 50 to 100 barrels. Probably the whole fleet in the bay will not average 50 barrels apiece.

Our fishermen, however, are not discouraged, but rely on making better trips in the fall.-(Cape Ann Advertiser, August 19, 1859.)

1859.-MACKEREL FISHING IN THE BAY.-PRICES, ETC.

Within the last three days 12 vessels have arrived from the bay, averaging 140 barrels each. The fleet generally have not been very successful. Sales yesterday at $16,13 \frac{1}{2}$, and $8 \frac{1}{2}$ for 1 's, 2 's, and 3 's.-(Cape Ann Advertiser, August 19, 1859.)
The prospect for a successful fishing seasou in the bay is quite encouraging. * * * If the second trip to the bay should prove successful, the business of the year will wind up profitably, and our owners beprepared to commence winter fishing.-(Cape Ann Advertiser, August 26,1859 .)

1859.-The bay and shore fleets.

There are about 240 sail of vessels yet to arrive from the bay; a few have arrived; report very rough weather; no chance to fish for a month past, and the prospect for a fall catch rather discouraging; a few ressels reported with good trips; some have had bad luck (50 to 75 barrels), and will probably hold on till late in November.

The shore fleet have done nothing the past week, as the weather has been very cold and blustering. The prospect now is that unless mackerel make their appearance off Chatham, the fall catch will be small indeed. Some of the mackerel-catchers have gone into pollock-catching, meeting with good success.-(Cape Ann Advertiser, October 28, 1859.)

> 1859.-REMINISCENCES OF CAPT. J. W. COLLINS.

Early in June, 1859, I left the brig "Houston," in which I had made a coasting trip, in Providence, R. I.; went on to Gloucester and shipped in the schooner "Arcturus" for a trip to the Gulf of Saint Lawrence. This schooner was then on the stocks, but was launched in a few days, made ready for sea, and we started for the bay. The mackerel were of large size in the Gulf that year, but exceptionally scarce. On our first trip we cruised over nearly all of the fishing-grounds that are usually frequented at that season, and although our vessel was commanded by one of the most expert skippers then sailing from Gloncester,
we obtained only 100 barrels of mackerel-considerably less than half a fare. We left the bay in August on our return home, and haring packed out our fish and refitted, returned again for a fall trip. We succeeded in catching 150 sea-packed barrels that autumn, which was more than an average for the fleet. The price of mackerel was good, since, to the best of my recollection, we got $\$ 14.50$ per barrel for our No. 1 fish. My own share for the season's work, from the 1st of June to November, amounted to $\$ 150$. The mackerel were also searce on our own shore so far as I can remember, and nearly all of the New England fleet resorted to the Gulf of Saint Lawrence. Several vessels secured excellent fares of fine large mackerel in the summer of 1859 along the south shore of the Saint Lawrence between Cape Gaspe and Cape Chatte, the best catches being obtained in the vicinity of the Magdalen River and Mount Louis. Captain Peter Sinclair, in the schooner, "C. C. Davis," did excellently well, perhaps better than any others, bringing home a full fare of extra large mackerel, for which a high price was obtained. These fish were taken chiefly in boats which went out from the vessel and caught the mackerel close into the rocks and along the reefs making out from either side of the coves. In some instances when the mackerel played in to the coves, where the vessels lay at anchor, the fishing was carried from the decks of the schooners which were sprung up for the purpose. We had also cruised along this coast in July, but the mackerel not then having arrived on the shore in any numbers, our skipper fearing to remain longer, decided to return to the more frequented fishing-grounds in the lower part of the Gulf. An incident transpired, however, before leaving this section that may be worthy of mention here. Failing to find the mackerel inshore tre one day stood off between Magdalen River and Anticosti Island, where we caught 17 barrels of fine large fish. It is altogether probable that these mackerel were a part of the school that a short time thereafter were found close in to the shores.
1859.-Prices for madkerel daught in 1858.

Mackerel, no sales reported some small lots are held at \$16.25 and \$14.26, Nos. 1 and 2.-(Cape Ann Advertiser, May 13, 1859.)
1859.-A GOOD TRIP FROAI THE BAY.-BIG STOCK.-OTHER ARRIVALS. prices, etc.

Schooner "C. C. Davis" from the Bay Saint Lamrence, arrived sesterday with 250 barrels of large mackerel. Advices from the fleet there are a little more favorable.-(Cape Am Advertiser, November 4, 1859.)

Schooner "C. C. Daris" made good trips-two trips to the bay, packiug 535 barrels, sold for $\$ 7,487.74$, leaving over $\$ 6,400$ net profit after deducting expenses. Add to this $\$ 5,600$ made in tishing, and we have the handsome net stock of over $\$ 12,000$ in a single season. Who can beat this?

About 100 sail of baymen have arrived the past week, and our streets have presented a lively appearance. Clothing dealers doing a good business. There are now some 50 or 60 sail to arrive. Some do poorly. One arrived with 20 barrels, another with only 8 barrels. The catch will fall greatly below last season. The shore fleet have mostly given up. Mackerel season is about over, and the fleet will soon haul up. Prices of mackerel : $\$ 14.50$ and $\$ 14.75$ for 1 's, $\$ 12.50$ and $\$ 12.75$ for 2 's.(Cape Ann Advertiser, November 18, 1859.)
1859.-A LATE SCHOOL IN MASSACHUSETTS BAY AND AT CAPE COD.

Mackerel again made their appearance in our waters last week, and the few vessels who were fortunate enough to be out succeeded in doing a pretty good business, some of them taking as high as 60 barrels. Some vessels which had been hauled up fitted out again, and will be ready to try them as soon as the weather is suitable. It is rather late in the season, however, to expect any great number of mackerel will be taken, but if there be any catch the Gloncester boys will be on hand to get their share of them. Mackerel quiet the past week. Prices $\$ 14.50$ for 1's, $\$ 12.50$ for 2's.-(Cape Ann Advertiser, November 25, 1859.)

1859.-Mackerel market for 1859.

Boston, January 4, 1860.-Mackerel have sustained very full prices throughout the year, and have been quite steady. In January last prices ranged from $\$ 15$ to $\$ 16$ for No. 1 's, $\$ 14$ to $\$ 14.50$ for No. 2 s, and $\$ 9.75$ to $\$ 10$ for No. 3 's, and they were the current rates for the first four months of the year. In May prices advanced for No. 1's and No. 2 's, and ruled at $\$ 16.75$ to $\$ 17$ for No. 1 's, $\$ 15$ to $\$ 15.50$ for No. 2 's, while No. 3's were sold at $\$ 9.50$ to $\$ 9.55$ a barrel. The first arrival of new No. 3's sold at $\$ 10.25$ to $\$ 11$, but prices soon declined to $\$ 8$ and $\$ 9$. The principal sales for some months past have been $\$ 14.50$ to $\$ 15.50$ for No. 1 's, $\$ 12$ to $\$ 14$ for No. 2 's, and $\$ 9.50$ to $\$ 10$ for No. 3 's, closing firm for all kinds. Mild weather prolonged the fishing season later than usual, but it is believed that the catch this year will fall short of the last.

The highest and lowest prices for some years past have been as follows:

	No. 1.	No. 2.	No. 3.
1859	\$1400 to \$1700	\$1150to \$15 50	\$8 00 to \$11100
1858	900 to 1600	890 to 1400	500 to 1100
1857	800 to 1400	700 to 1300	650 to 900
1856	900 to 1600	700 to 800	475 to 525
1855	1300 to 1800	700 to 1000	350 to 500

Two ressels, "Charger" and "Fleetwing," the first of the season, sailed from this port for Bar of Saint Lawrence Wednesdar [May 23]. About 20 sail will be ready next week, and in a few weeks the greater portion of the fleet will be readr.-(Cape Amn Advertiser. May „5, 1860.)

1860.-THE NEWbURYport Mackerel Fleet.

The Newburyport Merald. April, 1860, states that the bas fleet has nearly abandoned the mactice of going south for mackerel in the early spring. But two schooners are fitting out, the "Lola Montez" and the "Eleanor," and thes are stimulated be the high price offered for " ": " $\$ 10$ a barrel. Labrador fleet has usually been successful. Woukt not par for a single year, from great cost of outfits, but those who continue for sereral years, till nets and other outfits are used up, find it remmerative.

```
1860.- A proposed innovation in the mackerel fishery.
```

There is talk of organizing a company for the purpose of fitting out a ressel to engage in the mackerel fishery of the North Sea.-(Cape Ann Advertiser, March 23, 1860.)
1860.-First arrival froni the bay.-REported small catch.gackerel plenty on new england coast.

Schooner "Light of Home" arrived from the hay with 70 harrels: been gone ten weeks. This is the first arrival of the season, and a little earlier than usual. Hare reports for the following ressels: "St. Clour," 125 barrels; "Cyrena Ann," 125; "J. J. Burns," 120; "Anglo Saxon," 100; "North Star," 100; "Flor"a Temple," 80; "Electric Flash," 90; "Oronoco," 25; "Shooting Star," 75; "Chas. MeDonald," 75; "Saint Louis," 90. The fleet will probably arerage about 60 barrels. "Light of Home" will fit for another trip.

Shore mackerel quite plents to the eastward; one ressel from the Point has caught 90 barrels on the hook.-(Cape Ann Advertiser, Angust 3, 1860.)

1860.-Mackerel abundant off cape ann.-A good oatch.

Large quantity of mackerel taken off Rockport on Saturday last. One seine obtained 225 barrels of pretty fair mackerel, while quite a number of barrels mere caught by dory fishermen. Quite a streak of luck.-(Cape Ann Adrertiser, July 13, 1860.)
1860.-ABLNDANCE OF MACKEREL OFF THE MAINE COAST-—C'ARCITY IN THE BAY.

The shore fleet have met with a streak of luck quite unprecedented. mackerel of good size swarming the easteru shores of Maine, and take
the hook very readily; largest haul is 160 bbls. broughtin by the "Electric Flash," all caught on the hook in about ten days. Glad of the luck, because for many years they have done poorly. Bay fleet advices report mackerel scarce.-(Cape Ann Advertiser, August 10, 1860).

1860.-Arrivals from the bay and shore fleets.

Eighteen vessels arrived from the bay during the past week, bringing in 1,743 barrels to a vessel, averaging 97 barrels to each vessel; 12 of shore fleet arrived with 1,305 barrels-108 barrels to a vessel. From the bay 9,000 barrels less this year than last. Many have not paid their outfit bills. Shore fleet lave done a little better, but not first rate.
Quite a number of the Cape Cod mackerel fleet in the harbor yesterday ; brisk trade retailing mackerel at 5 cts. lb.-(Cape Ann Advertiser, September 14, 1860).

1860.-ARRIVAL OF SOME OF THE BAY FLEET.

Since our last 12 vessels have arrived from the bay with an afgregate of 1,377 barrels of mackerel.-(Cape Ann Advertiser, August 24, 1860.)
1860.-Good catch of a COHASSET HOOKER OFF THE NEW ENGIAAND COAST.

Schooner "Harriet Torrey," of Cohasset, canght 1,500 barrels of mackerel in 1860. Wm. Berdick, of Cohasset, caught 137 barrels with his own hook, which will clear, above expenses, $\$ 548$. Shore fleet have all done well. Bay fleet have done poorly.-(Contemporary record.)
1860.-Reminiscences of capt. J. W. collins.

In July, 1860, after returning home from a cod-fishing trip to Cape North I went to the Gulf of Saint Lawrence on a mackerel cruise, in the schooner "Ocean Traveller" of Gloucester. Leaving home about the 1st of July, we passed through the Strait of Canso on the 5th, passed up along the north side of Prince Edward Islaud ; along the west shore, crossed Bank Orphan, fished around Bonaventure, and up by Cape Gaspe and Cape Rozier without finding mackerel enough to induce us. to remain in any one place, thongh we tried frequently on our way. In the cove at Cape Rozier we auchored, with a number of other vessels, and succeeded in catching $2 l$ barrels at a spring in three or four days, getting a fer mackerel each morning and evening. Influenced by the success which had been met with by several vessels the previous year allong the southern shore of the Saint Lawrence we, as well as many others of the mackerel-catchers, went there fitted for inshore fishing, taking along with us four or five dories in addition to our yawl-boat which was carried at the stern. Leaving Cape Rozier, where the mackerel had ceased taking the hook, we ran up around the coast to Magdalen Liver, where we stopped and tried for mackerel. We continned to cruise
along the shore for about five weeks, going as far north as Mount Louis, but met with extremely poor success; so much so, indeed, that after being in the bay nearly six weeks we had taken only 27 barrels of mackerel, includ. ing the 21 barrels caught at Cape Rozier, of which mention has been made above. At last, feeling fully convinced that mackerel would not strike in on the south shore of Saint Lawrence, and the advanced season and state of the weather warning us of the risk of remaining any longer ou that coast, we proceeded south and began fishing around the Magdalen Islands, where, in about three weeks, we succeeded in catch. ing enough mackerel to make us up a fare of 125 sea-packed barrels, which, for the time and place, was much better than an average. For the No. 1 mackerel on this trip (a large percentage was No. 1's) we obtained $\$ 18.50$ per barrel. My own share for the trip was $\$ 124.25$. After returning home and packing out our bay trip, we engaged in the mackerel fishery off the New England coast. The contrast this year between the Gulf of Saint Lawrence and the New England coast was quite remarkable, since in the former the mackerel were almost all of large size and very scarce, as has been shown, while on our own coast mackerel were of medium size, averaging about 12 inches long, and very abondant. After returning from the bay we made two trips, taking altogether 275 seapacked barrels of mackerel. For the first fare of 175 barrels we got $\$ 8.50$ per barrel ; but for the last trip the price was lower. A large portion of the mackerel catchers were fishing off the New England coast during the summer and autumn, and it is perhaps safe to estimate that at one time a fleet numbering five or six hundred sail were engaged in fishing for mackerel in Barnstable Bay. The mackerel at one time during the fall were exceedingly abundant off Truro and Wellfleet. This was very advantageous to the fishermen, since in this partially sheltered bay fishing could be carried on much longer than in other places, and, consequently, a great amount of mackerel were taken. But little was done, however, outside of Cape Cod along its eastern shore, from the Highland to Chatham, as has been the case in other years. The mackerel which had remained for several weeks in Barnstable Bay, when once outside of Race Point and on their way south, moved so rapidly that but comparatively few were taken.

1860.-SUCCESSFUL USE OF THE PURSE SEINE OFF CAPE ANN.

A large quantity of mackerel were seined off Rockport on Saturday last. One seine obtained 225 barrels of pretty fair mackerel, while quite a number of barrels were caught by dory fishermen.-(Cape Ann Advertiser, July 13, 1860.)

Small catch by the newburyport fleet at the soutir.

Southern fleet have all returned, and are now fast leaving for the Bay of Chaleur. Catch sonth small. "Sarah Jane" took 112 barrels of mackerel, and 50 of bait. Largest catch.-(Newburyport Herald, June 28, 1860.)

Hook and line fisiting off the new england coast.

The shore fleet.-The largest trip brought into this port is by the "Sunnyside," 200 barrels, after an absence of three weeks. Schooner "Ripple" arrived lately with 100 barrels in 10 days.-(Cape Ann Advertiser, August 24, 1860.)

1860.-Spring and gulf mackerel fishery.

The Cape Ann Advertiser of May 4, 1860, remarks:
"A few vessels have started for the sonth to prosecute the mackerel fishery. The number will be less thau any previous season, owing to the ill-success of this branch of the fisheries of late. A large number will leave for Bay Chaleur the latter part of May and early in June, as the George's fishery is not very profitable at present."

1860.-Tife southern mackerel fleet.

The Cape Ann Adrertiser of June 8, 1860, announces that six vessels had arrived since the last issue of the paper, the average being 100 barrels, and the prospect very good.

1860.-Spring and GUlF mackerel fishery.

The Cape Amn Advertiser of June 15, 1860, states as follows:
"The southern fleet have nearly all arrived home and are fitting away for the bay. Late arrivals report the mackerel as being very small, the large ones having struck off to other waters; evidently the mackereling season at the south is about over. Vessels did better than last sear."

> 1860.-Fishing on the coast of maine.

Mackerel of good size are swarming the easteru shores of Maine, and take the hook very readily. The largest haul brought into this port is 160 barrels, by schooner "Electric Flash," all caught on hook in about. ten days.-(Cape Ann Advertiser, August 10, 1860.)
1860.-The fall mackerel fishery in cape cod bay.

The Gloucester Telegraph of December 19, 1860, quotes from a recent number of the Yarmonth Register to the effect that mackerel had never been more numerous in Cape Cod Bay than during the four preceding weeks. They would not bite, but were caught in great abundance in uets. One man took from his nets set in Provincetown Harbor 3,000 mackerel, valued at 7 cents apiece.

November 23, mackerel were very abuudant off Billingsgate Point. The Yarmouth Register' stated that they were being takeu in Cape Cod Bay in the latter part of November in large numbers.

On November 24 the Lieutenant's Island weir, at South Wellfleet,
captured 118 barrels at one tide.-(Gloucester Telegraph, November 28, 1860.)

Mackerel of medium size were this fall exceedingly abundant thoout Cape Ann and other points along the coast of Easteru New England.

In October there was a large fleet of perhaps 300 sail in Barnstable Bay. The vessels had followed the mackerel from Portland to Cape Ann and across Massachusetts Bay.-(Captain Collins.)

1860.-Mackerel in the gulf of saint lawrence.

In 1860 mackerel were quite scarce in the Gulf of Saint Lawrence, though of large size. Nearly all of the vessels which went to these waters early in the season fished off the coast of New England in the fall. No. 1 bay mackerel were sold at $\$ 18.25$ a barrel, and No. 2 's, taken off the New England shore, sold for from $\$ 7$ to $\$ 8.50$ per barrel.

> 1860.-SPRING MACKEREL FISHERY.

Southern mackerel.-Six vessels have arrived from the south since our last issue with very good fares, averagiug abont 100 barrels to a vessel. They report the prospect good. * * *-(Barnstable Patriot, June 12, 1860.)

> 1861.-FAle mackerel fishery at cape ann.

Five weir-loads were taken in a seine off Rockport, at one haul, August 28.-(Cape Aun Advertiser, August 30.)

1861.-First mackerel taken.

The first mackerel of the season was taken May 20.-(Cape Ann Advertiser, May 24, 1861.)
1861.-Notes on southern fishery.-SCarcity of mackerel.

Reports from Newport last week, says the Newburyport Herald, state that fish are very scarce, and that 60 barrels is the largest fare yet caught. Many of the vessels have caught but 20 barrels. They are determined to persevere, but it is evident unless they meet with an unusual "streak of luck," the business will prove a losing one. A large fleet of Cape vessels were in Newport on Sunday week, with small fares on board.--(Barnstable Patriot, June 11, 1861.)

1861.-SPRING MACKEREL FISHERY IN CAPE COD BAY.

Mackerel.-The mackerel fishery in the vicinity of Barustable Harbor has been doing a good business for some days past. Several of the boats have taken 3,000 each, and yesterday a new school came inshore, increasing their prospects for a profitable spring business.-(Barnstable Patriot, May 28, 1861.)

The mackerel fleet.-Sixty barrels, the largest trip caught yet. -(May 31, page 2, column 2, Cape Amn Weekly Advertiser, 1861.)

1861.-UNFAVORABLE NEWS FROM THE SOUTHERN FLEET.-SAILING OF THE FIRS'I OF THE BAY FLEET.

Schooner "Shooting Star" arrived from the south on Tuesday, with 60 barrels mackerel; reports poor catch for most of the fleet; one or two have above 80 barrels.

About a dozen of the fleet have sailed for the bay, and quite a number are fitting away and will sail in a few days. Last year at this time there were many more vessels on their way to the bay than the present season.

There is yet a large stock of last year's catch on the wharves. Last year the catch of the previous season was exhansted long before June. -(Cape Ann Advertiser, June 7, 1861.)
1861.-A BIG SCHOOL OF MACKEREL IN GLOUCESTER HARBOR.GOOD CATCH OFF ROCKPORT.

A large school of mackerel made their appearance in the harbor on Wednesday afternoon; some twenty boats were present, and there was quite a successful catch; many of the mackerel were of good size.

Five wherry-loads of mackerel were taken in a seine, off Rockport, at one haul, on Wednesday of last week.-(Cape Ann Advertiser, August 30,1860 .)

> 1861.-FIRST ARRIVAL FROM THE BAY.

Schooner "Arcturus" arrived from the bay on Tuesday, with 240 barrels mackerel, absent six weeks. This is the first arrival of the season from the bay, and is somewhat earlier than usual, as vessels rarely arrive before August 1.-(Cape Ann Advertiser, July 19, 1861.)

1861.-Qutck bay trips.

Schooner "Joseph Story" returned from the bay ; gone but little over four weeks; returning with a good fare. Schooner "Queen of the West," gone five weeks. These we believe are the shortest bay trips that were ever made from this port, the usual time of making a voyage being from ten to twelve weeks, and sometimes longer. Eight weeks is considered good time for a vessel in the bay fishing.
The mackerel, which have been schooling off this shore the past month, have struck off to other waters, consequently our market has been without its usual share of fresh mackerel of late.-(Cape Ann Advertiser, August 23, 1861.)
1861. -A FALL SCHOOL ON THE NOVA SCOTIA COAST.

We are pleased to hear that large quantities of mackerel have made their appearance along our shore, and hundreds of barrels taken by our fishermen.-Halifax Express.-(Cape Ann Advertiser, September $20,1861$.
1861.-THE SHORE FLEET.-ITS SUCCESS.-liEPORTED SCARCITY OF MACKEREL IN THE BAY.

Three hundred sail of fishermen in the harbor last Saturday ; the fleet have done well of late, and report mackerel of good quality and quite plenty. Advices from the bay report mackerel scarce.-(Cape Ann Advertiser, October 11, 1861.)

The shore fleet did well last Saturday; some of the vessels got 90 wash-barrels. Quite a number got 30 to 50 wash-barrels of large, fat mackerel. Some 20 sail from the bay hare arrived during the week, and report hard luck. The mackerel season, take it all in all, has not proved rery profitable this year.-(Cape Ann Adrertiser, October 25, 1861.)
1861.-Close of the mackerel season.-advance in prices.

The mackerel fishing business is closed for the season; vessels are hauling up. The eatch this season has been 25 per cent. below that of last year, and prices have ruled very low. Within a few weeks prices have advanced.

No. 1 mackerel, which were worth ouly $\$ 7$ per barrel October 25 , at this date sold for $\$ 13$. No. 2 's, now selling for $\$ 9$, brought only $\$ 5$ in October.-(Cape Ann Advertiser, November 23, 1861.)

> 1861.-REMINISCENCES OF CAPT. J. W. COLLINS.

In the smmmer of 1861 medium-sized mackerel were very abundant off the New England coast, and some of the hookers obtained a catch of about 1,000 barrels or more, though the price was so extremely low, owing to the distracted condition of the country at the beginning of the war, that the fishermen obtained but little remuneration for their labor. Large mackerel were exceedingly rare, however, and as a consequence of much greater value than the smaller ones. In the Gulf of Saint Lawrence, also, mackerel were fairly plentiful, and there being a greater percentage of large fish, some of the vessels did much better, financially, than those which tished ofí our own shore. This was especially the case with those which remained late in the bay, or made their home passages in a leisurely manner, since, during November, the prices advanced rery rapidly, so much so, indeed, that mackerel nearly doubled in value in the short space of two or three weeks. On the 16 th day of August I left Rockport, for the Gulf of Saint Lawrence, in the schooner "Sarah B. Harris." At first we fished about the Magdalen Islands S. Mis. $110-24$
and the north side of Prince Edward Island, and around its eastern point. Later in the fall we obtained some very good catches of mackerel off Cape Saint George, where there was a large fleet collected. Other vessels, however, about the same time, took a considerable quantity of mackerel about Margaree Island and Cheticamp. We left Port Hood for home on the 1st day of November and met with very boisterous weather, causing us to lay in harbor on the Nova Scotia shore for some days. Our passage was also further retarded by strong headwinds, while at sea, so that we did not arrive home until the 19th day of November. In the mean time, while we had been making our passage, mackerel had risen from $\$ 7.50$ to $\$ 12$ per barrel, and by the time we were ready to sell we were able to get $\$ 13.50$ for our best fish. My own share amounted to $\$ 100$, which was a sum rarely obtained from one trip by any fisherman in 1861.
1862.-Ungertainty of the mackerel fishery compared with
that for cod.

Some of the Georgians make shares of $\$ 30$ to $\$ 50$ per man.
The mackerel fishery is quite uncertain, and if the fishermen make a poor season's work at mackerel, then George's Bank is made to discount, and from this source they draw the cash, in the shape of codifish and halibut.

George's Bank furnishes them with the ready cash, promptly paid, and dollars would be scarce indeed among them, were it not for this source of revenue.-(Cape Ann Advertiser, March 7, 1862.)
1862.-SOUTHERN MAOKEREL FISHERY.-FITTING AWAY OF THE FLEET.

Quite a number of vessels are now being fitted out to prosecute the early mackerel fishery in southern waters. This branch of the fisheries has been prosecuted for several years past with but indifferent success. the vessels not making enough to pay for their outfit The vessels engaged in this business do not follow the George's fishing, but spend a month or six weeks in Southern waters, prior to going to the bay, in order to help make out a good season's work. The mackerel are generally small and poor, and the prices realized are not very lucrative. (Cape Ann Advertiser, April 25, 1862.)
1862.-Vessels and men engaged in the gloucester mackerel fisheries.

About 350 sail of ressels engaged in the fishery, from this port, averaging twenty men to a ressel, making an aggregate of more than 4,000 men that are required to man the fleet.-(Cape Ann Advertiser, May 8, 1862.)

1862. - Fleet fitting For the bar.-SUCCESS of the soutuern MACKEREL FISMERY.-LARGE FLEET IN GLOUCESTER.

Quite a large flect of vessels will be ready to start for the bay immediately after the 4th.

The southern mackerel fleet have mostly returned from their first trips with average fares, and many have gone on a second trip, as mackerel are plenty.

Shore mackereling will be prosecuted quite extensively this season. Large fleet of mackerelmen were in port on Wednesday, mostly southshore ressels fishing on the shore. It is unusual to see a fleet of mackerel catchers in our harbor at this time of jear.-(Cape Ann Advertiser, June 27, 1862.)
1862.-THE EARLY bAY FLEET.

Quite a number of vessels are fitting for an early trip to the bay; will be ready to start June 1 ; nöarrivals yet from the southern mackerel fleet.-(Cape Ann Advertiser, May 23, 1862.)
1862.-The mackerel fishery in the gulf of saint latwrence.FAVORABLE REPORTS.

Advices from the bay report vessels doing well. July 1 "Bridget Ann" had 150 barrels; "Cyrena Ann," 175; "Wide Awake," 130; "Electric Flash," 120; "Ocean Gem," 60. Weather unfavorable the past fortnight, and the mackerel taken thus far were rather poor.-(Cape Ann Advertiser, July 25, 1862.)

1862.-First arrival fromit the bay.

One fare of 200 barrels of mackerel has arrived from the bay. Sold at $\$ 4 \frac{7}{8}$ and $\$ 3 \frac{7}{8}$ per barrel for large and medium 3's. The shore fleet have not done much of late.-(Cape Ann Advertiser, July 18, 1862.)
1862.-Good fares from the bay.-prices and quality of mackerel better than in 1861.

There has been quite a number of arrivals from the bay during the past fortnight, bringing in good fares. The quality of mackerel is said to be vastly superior to those of last season, and the prices are higher than last year.-(Capo Amn Advertiser, September 12, 1862.)
1862.-Mackerel abundant in ipswicil bay and at cape cod.ten arrivals from the bay.

Shore mackereling good the past week. Ipswich Bay has been swarming with mackerel, and the mild, pleasant weather has been very favorable. Λ large school of mackerel have made their appearance at Cape Cod. Previous to the present month the catch has been small. Bay
trips arrive slowly, as most of the fleet will remain late in order to fill up with fat mackerel.-(Cape Ann Advertiser, October 10, 1862.)

Mackerel were quite plenty in the bay on Wednesday, and the shore fleet did a good day's work, some of them catching as high as 70 washbarrels. The mackerel are quite large, and the best of them sell readily at $\$ 11$ per barrel.-(Cape Ann Advertiser, October 17.)

The Nerwburyport Herald says: "The mackerel have been swarming in our bay for the last ten days; 200 vessels and any number of small boats were fishing. Vessels take from 5 to 40 barrels apiece. On Tuesday the fleet numbered 4,000 vessels, and the fish were so plenty that the 'Live Yankee,' with only 4 hands, brought in 10 barrels."-(Barnstable Patriot, October 14, 1862.)

1862.-A BIG CATCH BY A HOOKER.

Schooner "Nor" Wester" arrived from the Bay of Saint Lawarence yesterday. The day before leaving she took 123 wash-barrels of mackerel, the value of which is $\$ 1,000$.-(Cape Ann Advertiser, July 14, 1862.)

1862.-Reminiscences of capt. J. W. collins.

In the season of 1862 mackerel were quite plentiful in the Gulf of Saint Lawrence, where the larger part of the fleet were engaged in this fishery. Off our own coast there was a school of mixed mackerel-much the greater portion being undersized-while among them were some very large fish. After making two trips' cod fishing to George's I took charge of the schooner "Hattie Lewis" and sailed for the Gulf of Saint Lawrence on a mackerel trip early in June. We fished principally on Bank Bradley, about the North Cape of Prince Edward Island, off Point Miscou and in the vicinity of Point Escuminac, taking a part of our fare, however, in the latter locality. On our first trip we caught 208 sea-packed barrels, which were nearly all No. 3 's, and started for home early in July. After landing our fish we went back on a second trip to the Gulf; obtained a fare of 200 barrels and left the bay early in October. In the latter part of the fall we fished off Cape Ann and around Cape Cod. On one occasion we found mackerel quite plenty off Chathan and got 50 wash-barrels in one day; though the majority of these were undersized fish there were a few among them remarkably large; some specimens which I weighed, after they had been salted for a number of weeks, turned the scales at $2 \frac{1}{2}$ pounds. The following day we could find no fish in the same locality but struck mackerel in the afternoon about 25 miles in a southerly and easterly direction from Chatham, nearly down off the fishing-rip. These fish, which were moving quite rapidly in a southerly direction, were quite different from those caught the day before, since we did not find any large sized ones among them. On the third day the mackerel were gone, and although we ran to the southward 15 or 20 miles farther we
did not succeed in finding them. I have never, at any other time, with the experience of twenty-five years in the mackerel fishery, caught mackerel so far south in the fall as we did on this occasion. The exact date of this last catch I do not now remember, and can only say that it was some time about the middle of November.

1863.-First macikerel in massachusetts bay.

The first mackerel were taken in the vicinity of Gloucester May 26.

> 1863.-Southern Mackerel fishery.

There will be but fer vessels engaged in this branch of the fishery the present season, owing to the low price of poor mackerel and the great expense which attends fitting out vessels for this business. Salt which sold last year for $\$ 2$ is now worth $\$ 4$ per hogshead. Barrels have also advanced considerably; in fact, everything in shape of outfits for mackerel trips has nearly doubled in price. There is but one vessel fitting away at the present time, and we are informed that not more than six vessels at most will prosecute the business this season.-(Barnstable Patriot, June 9, 1863.) In May, 1863, the southern mackerel fleet was reported as doing a good business. The first vessels came into Gloucester June 1; average, i00 barrels each, which sold for $\$ 9$ and $\$ 6$.

1863.-NEWBURYPORT MAACKEREL FISHERY.

The mackerel fleet have all arrived with good fares, which have all commanded good prices. We have had fewer vessels in the bay this season than for several years before; we think only eleven. The business had been too poor, the wages and outfits were too high, and there was at one time great danger from Confederate pirates, but the business has been very prosperous to those engaged. Other places have also fewer vessels this season; the aggregate catch, therefore, notwithstanding the success that has attended them, will be small, and consequently the market is very active. The number of barrels packed here will not be far from 6,000 . As we are constantly having new markets open for our fisheries, the prices will be likely to advance even upon the present high rates. The last sales were $\$ 28$ for mess, $\$ 12.25$ for 1 's, $\$ 10.25$ for 2 's, $\$ 8$ for large 3 's, and $\$ 5.56$ for small 3 's. Captain Brown, of the "Sea Spray," considering the time engaged, made the best trip, stocking \$6,200.-(Barnstable Patriot, Norember 17, 1863.)

1863.-DEARTH OF EXPERIENCED MACKEREL FISHERMEN.

In 1863 there was a decided dearth of experienced fishermen at Gloucester and other New England ports on account of the numerous enlistments in the Arms. The three hundred vessels fitted out that year for the mackerel fishery in the Gulf of Saint Lawrence were obliged to fill up a large portion of their quota of 4,000 men from green hands.
1863.-REMINISCENOES OF CAPT. J. W. COLLINS.

In the summer of 1863 mackerel were abundant in the gulf of Saint Lawrence and comparatively scarce on the New England coast. In July I started from Gloucester in the schooner "Sea-Witch" on a mackerel trip to the Gulf. We fished about Bank Bradlev, North Cape of Prince Edward Island, and the Magdalens, securing a full fare of 250 barrels in four weeks. The last catch of the trip was made off to the eastward of Entry Island, Magdalens; we got more than 60 wash-barrels; not only enough to fill all the barrels we had on board, but also our yawl-boat and every other recoptacle we could find which would hold the fish. Returning again to the Gulf on our second trip, we found good fishing off the Magdalens for a few days, when, the mackerel slacking off, we ran down to Syduey, on the east side of Cape Breton Island, where the year previous some of the mackerel catchers had obtained good fares. There we also met with good success, as did the fleet of some 60 or 70 vessels which were fishing in that locality. Again we obtained a full fare of 275 barrels in about four weeks' fishing. After returning home and packing out our mackerel we spent the remainder of the fall, some four or five weeks, in fishing off Cape Ann and Cape Cod, but mackerel being scarce we succeeded in taking only about 30 barrels. The fleet off our own coast engaged in the mackerel fishery that fall compared with that in the Gulf of Saint Lawrence was small and unimportant.

1864.-HARWIGHPORT MACKEREL FISHERY.

Our mackerel catchers are beginning to report themselves. The following schooners have arrived at Harwich Port: The "Diadem," Robbins, with 90 barrels; "D. Ellis," Baker, 110 barrels; "Prince Laboo," Nickerson, 175 barrels; "E. S. Hammond," Cahoon, 150 barrels; "S. Smith," Taylor, 110 barrels; the "Electric Spark," Godfrey, 125 barrels. Others are expected soon, besides several George's fishermen, which are reported to have good fares.-(Barnstable Patriot, June 13, 1864.)

1864.-MACKEREL FISHERY.

OUR bAy fleet.-About twenty-five of our bay fleet have arrived since our last issue, bringing full fares, and several fares have been sent home by vessels remaining in Bay Saint Lawrence. The prospects seem good for a fair season's catch. The market is active, mackerel being in demand at prices much in advance of those of any year within the memory of the oldest inhabitant. The expense attending the prosecution of this business is larger by one-half than in ordinary times, all kinds of vessel's gear and supplies of every description being held at enormous rates, and unless good prices for fish are sustained there will be but a small margin for profit. But with present prices and good luck in the way of a catch, we may set the season as a good one.-(Barnstable Patriot, September 13, 1864.)

1864.-MaOKEREL FISHERY IN THE GULF OF MAINE.

Mackerel appeared on the coast in great abundance during the early part of the autumn. The crew of the little fishing schooner "Minnehaha," of Swampscott, on the 18th of September, off Boone Island, caught 350 barrels, and the crew of the "Flying Dart," of the same place, at another point, took 130 barrels in some four hours.-(History of Lynn, Lewis \& Newhall, p. 478.)

1864.-GULF OF SAINT LATVRENCE MACKEREL FISHERY.

From the bay.-Quite a number of baymen have arrived the present week, and a large portion of the fleet are on their way home. They report mackerel very scarce for the present month and but little doing. In view of these facts the market has been a little more active for the past week, and quite a number of transactions have been effected at $\$ 12$ and $\$ 15$. Shore has also adranced in price, and the prospect now is that still better prices will be obtained the coming month. Mackerel are a staple, and there will doubtless be quite an active demand for them daring the fall and winter months. Our fishing firms acted very wisely in not sacrificing their mackerel at panic prices, as we believe they will yet obtain a fair equivalent for them and be enabled to make a very good season's work.-(Cape Ann Advertiser, October, 1864.)

1864.-REMINISCENCES OF CAPT. J. W. COLLINS.

Mackerel have rarely or never been more abundant in the Gulf of Saint Lawrence than they were in 1864, while on the New England coast but little was done in this fishery. I sailed for the bay for mackerel in the schooner "Sea-Witch" early in July, passing through Canso about the 10th of the month. We fished over the same ground that we did on the first trip the previous year, obtaining a full fare of about 275 barrels short of four weeks. We were absent from home five weeks and three days. My own share, exclusive of captain's commission, was $\$ 175$. We returned again to the bay. Having secured another fare about the last of September, and learning that the prospect on our own coast was poor, we went to the Strait of Canso, where we shipped 200 barrels of our fish on board a freighter and sent them home, while we refitted and returned again to the bay. During the last of September and early part of October the weather was stormy and the mackerel did not appear to take the hook so well as they had previously. A few of the ressels, however, in the mean time, had found very good fishing off Cheticamp, but that locality being so dangerous in the fall, when heavy gales are liable to come on very suddenly, and losses had so frequently occurred in previous years, that the fishermen, as a rule, did not care to take the risk of venturing on that inhospitable shore. For about two weeks after refitting in Canso we did poorly, getting only 60 barrels mackerel, but immediatels after we, together with 50 or 60 other vessels, struck a
heavy body of mackerel at Margaree, on the north shore of Cape Breton Island. Our vessel was small, being 49 tons, new measurement, but with a crew of ten men we caught 100 wash-barrels the first day at Margaree, while several of the larger schooners, carrying crews from sixteen to nineteen men, secured catches ranging all the way from 100 to 150 wash-barrels. Strong winds and stormy weather prevented us from fishing for a couple of days after this, but in the two or three fine days which occurred during the week we succeeded in obtaining more than enough mackerel to fill all the barrels we had on board. Our catch for the season, from July to October 20, amounted to about 775 seapacked barrels. Some of the largest vessels of the fleet, which remained in the bay the entire season, landing their fish and refitting at Canso, were reported as catching 1,200 or 1,500 barrels. These vessels, however, began their season's work early in June. The great abundance of mackerel brought down the prices very much in the fall, so that No. 1 fish, which brought more than $\$ 20$ per barrel at midsummer, were sold for about $\$ 14$ in November.
In the chapter on "Financial profits of the mackerel hook-fishery," printed above, may be found an account of several large stocks made by vessels fishing in the Gulf of Saint Lawrence in 1864.
1865.-First arrivals from the bay of saint lawrence.

There have been five arrivals from the Bay of Saint Lawrence the present week, all bringing good fares. The mackerel are mostly 3's and will meet with a ready sale, as the market is quite bare. The prospect for a successful season's catch is most encouraging.-(Cape Ann Advertiser, July 21, 1865.)
1865.-AbUNDANCE OF MACKEREL ON THE COAST OF MAINE.-BIG CATCHES WITH A PURSE SEINE.

The Portland Argus of Wednesday says that mackerel were never more plents than at present. A vessel went out last Thursday and secured 110 barrels, returned to Portland, discharged, and was off again on Saturday. On the latter day she secured 120 barrels. They were caught by seining, and the top of the water is said to be literally covered with fish.-(Cape Ann Advertiser, July 21, 1865.)

> 1865.-Arrival of baymen.-Prices.-THE Shore fleet.

The baymen have arrived pretty freely the past week, with good fares. The mackerel are mostly poor, and do not bring very remunerative prices. Last season the first trips were sold at $\$ 13$ and $\$ 11$ for the large and medium 3 's; this year they have been sold for $\$ 8.50$ and $\$ 6.50$. Most of the vessels will return home to refit instead of landing their mackerel at the bay, as was the case last year-a project which resulted very unfavorably to those engaged in the business, as the expense of
freighting the mackerel home and the bad condition in which most of them were in on their arrival here materially lessened the profits of the voyage. Fat mackerel have not yet made their appearance in the bay. The shore fleet are doing moderately well, and the mackerel areof much better quality than those brought from the bay.-(Cape Ann Advertiser, Angust 4, 1865.) Twenty-four hundred and three barrels of mackerel have arrived here from the bay this week, having been freighted home. They bave found a ready market.-(Cape Ann Advertiser, September 29, 1865.)

The bay fleet have come home along quite freely the present week, some hundred sail having arrived in port, and the balance are now on their way home. Although the weather of late has been such that but few mackerel have been caught, yet the fleet, on the whole, will make very good trips, and the season wind up prosperously for those engaged in the business. Mackerel are now selling at very fair prices (No. 1 at $\$ 16.50$, No. $2, \$ 13.50$), and the prospect is that they will advance rather than decline. The shore fleet have not done much of late, but they may have a streak of luck yet if the weather continues favorable.-(Cape Ann Advertiser, November 3, 1865.)

The baymen have all arrived home, the last of the fleet arriving yesterday. Last year at this time there were 35 sail in the bay, the last vessel arriving as late as the 12th of December.-(Cape Ann Advertiser, November 17, 1865.)

1865.-AbUNDANCE OF MACKEREL IN IPSWICH BAY.

A large school of extra fat mackerel have made their appearance in Ipswich Bay, and the fishermen are paying their respects to them in a most complimentary manner. They are real "bloaters," and fetch the highest price. The weather is all that can be desired, and the fishermen will take every advantage which the season offers. The shore fleet are doing better and the mackerel are working up this way.-(Cape Ann Advertiser, October 6, 1865.)

1865.-REMINISCENCES OF CAP'T. J. W. COLLINS.

The year of 1865 was another remarkable season in the mackerel fishery of the Gulf of Saint Lawrence, and in this respect it almost rivaled the previous year. About the middle of June I sailed for the bay in the schooner "Mary Ellen," hailing from Halifax, Nova Scotia, bat owned in the eastern part of the province. We caught three fares of mackerel during the summer, making a total of above 900 barrels. The fish during the early part of the year were, as usual, found most plentiful about the North Cape of Prince Edward Island, along the west shore and on Bauk Bradley. I recall one occasion, while lying becalmed between North Cape and Point Escuminac, of seeing a
remarkable display of schooling mackerel. As far as the eye could extend from aloft, in every direction not bounded by the land, large bodies of mackerel could be seen at the surface of the water like darkened spots on a disk of silver. The previous year I had witnessed such a display on the north side of the eastern point of Prince Edward Island, when, for at least a distance of 20 miles up and down the island, and, perhaps, even farther, mackerel could be seen schooling in great bodies at the surface of the water; their frequent rushing sounding like the noise made by heavy showers striking on the water. For a greater part of the month of Angust and until the middle of September, in 1865, the weather was extremely rough in the bay, and the mackerel catchers were, in consequence, preveuted from fishing a considerable portion of the time, the catch during this period being slight compared with other portions of the season. During the fall an immense school of biting mackerel were found on the north side of Prince Edward Island along its entire extent, but more especially in the vicinity of Malpec, where had gathered a fleet of perhaps 300 or 400 sail of vessels. Indeed, so abundant were the mackerel off Malpec in October, and so eagerly did they take the hook, that some of the schooners secured almost a full fare in a few days' fishing. The only trouble was to be able to catch and care the fish fast enough, and at the same time secure an opportunity of stowing them below. Nearly every vessel in the fleet could be seen with their decks filled with barrels of fish, which were stowed in every available place. Great risks, too, were taken by the fishermen in remaining on the fishing-grounds at night, since at that season a heary gale was liable to spring up at any time, and should they have been caught on a lee shore in their lumbered-up condition there is no doubt but what the result would have been extremely disastrons. As it was, however, no losses were met with in this case. The last important catches of the season were obtained between the castern point of Prince Edward Island and the Cape Breton shore, at which time the fish were moving very rapidly to the southward. There can be no doubt bat that this school of mackerel could have been followed much farther had the weather not obliged the fishermen to seek shelter.

In the paragraph on the financial profits of the hook-fishery is an account of the "Kit Karson" bringing home to Gloucester 591 barrels of mackerel on her first trip, which she made in about ten meeks. Her net stock amounted to $\$ 6,542$.
1866.-REPORTED ABUNDANCE OF MACKEREL ON THE NEW ENGLAND COAST.

Mackerel are reported to be quite plenty. A large fleet of vessels are engaged in taking them. Quite a number of them have been taken in nets by the fishermen in some of the lower Cape towns.-(Barnstable Patriot, June 12, 1866.)
1866. -The outlook for the bay of saint lawrence fishery.

The mackerel fishery in the Bay of Saint Lawrence will be quite extensively prosecuted the coming season, notwithstanding the repeal of the reciprocity treaty. From 30 to 40 sail of ressels will be added to the fleet, and although the business will be attended with considerable risk; yet our fishermen are not scared at trifles; they will keep a sharp lookout for English cruisers and get good trips in spite of them. A few overventuresome ones may get seized, but we believe the most of the fleet will come out all right; strict vigilance will be required, and we think our fishermen will not be caught napping. The mankerel, in the first part of the season, are mostly caught outside of the prescribed limits; but it is in the fall of the year, when the fish play in round shore, that most of the difficulty is apprehended.-(Cape Ann Advertiser, April 13, 1866.)

> 1866.-THE SPRING FISHERY.

Quite a large fleet of vessels from this port are now engaged in the menhaden and early shore mackerel fishing, and are meeting with fair success. The early bay mackerel fishery will be quite extensively prosecuted, and the fleet will sail earlier than last season. Several vessels are now fitting away and will leave the latter part of this month. No serious trouble is apprehended from the provincials.-(Cape Ann Advertiser, May 18, 1866.)

1866.-First start of the bay fleet.

The first of the bay fleet sailed on Tuesday and others will soon follow. It is about three weeks earlier than they started last season.-(Cape Ann Advertiser, May 25, 1866.)

Considerable activity now prevails at our wharves in fitting out vessels for the bay. Having finished their George's fishing they are now discharging their ballast and having a general overhauling and painting up, which usually occupies about a fortnight. With the new vessels added to the fleet the present season we shall have about 400 sail in the business (from Gloucester)-the largest number that ever sailed from here. A few of the vessels have already left, and by the last of this month we shall have quite a large fleet in the bay. Some of the vessels will probably make three trips if they are fortunate enough to find mackerel plenty and are not molested by English cruisers.-(Cape Ann Advertiser, June 8, 1866.)
1866.-THE SOUTHERN FLEET.

A mackerel fleet of a hundred ressels, with a thousand men, rendezvoused in the harbor of Newport, R. I., last Friday.-(Cape Ann Advertiser, June 1, 1866.)

The fleet of southern mackerel catchers have mostly arrived home with moderate fares. The highest trip we have heard of is 175 barrels, but the fleet will not average more than 150 barrels to a vessel. Good prices are obtained and they will make a fair business of it.-(Cape Ann Advertiser, June 15, 1866.)

The southern mackerel fleet have mostly arrived home with light fares; sales of large and medium 3's at $\$ 12.50$ and $\$ 11.50$.

1866.-SCARCITY OF MACKEREL IN THE BAY EARLY IN THE SEASON.

Recent advices from the bay state that mackerel are very scarce and the fleet have done nothing as yet. Last year the mackerel made their appearance there quite early, and the first vessels arrived home about the 1st of July with good fares.-(Cape Ann Advertiser, June 29, 1866.)

1866.-American vessels permitted to fish in canadian waTERS ON PURCHASE OF A LICENSE.

The honorable Sir Frederick W. A. Bruce, the British minister, accredited to this government, by an official note of the 24th instant, announces that the Governments of Nova Scotia and New Brunswick have agreed that the possession of a license issued by Canada to fish shall entitle the holder, during the season of 1866 , to fish in the waters of New Brunswick and Nova Scotia as well as in those of Canada; the holder of a license from the Government of Nova Scotia or New Brunswick, if any such shall be issued, being entitled to fish in Canadian waters as well as New Brunswick.

The notification is supplemental to one issued early in June, by \mathbf{P}. Foster, esq., commanding the Canadian Government schooner "La Canadienne," employed in protecting the fisheries, who was authorized to issue fishing licenses on the payment of 50 cents per ton measurement of the vessel to which they were granted, to remain in force during the season, and conferring the same rights, so far as Canadian fisheries were concerned, as were conferred by the reciprocity treaty to the United States fishermen.-(Cape Ann Advertiser, June 29, 1866.)
1866.-UNUSUAL SCARCITY OF MACKEREL IN THE BAY, PRICES, ETC.

The baymen have about all sailed, and our warves and railways now present a very quiet appearance. It is full time that some of the early fleet were at home, but as mackerel have been unusually scarce the present season there will probably be few arrivals before August, when business about the wharves will be more lively. Last year most of the fleet arrived home in July with good fares, and many of the vessels made three trips, but the prospect now is that the first fares will be light and prices rule much higher than last season. The shore fleet pick up a few mackerel, and they are readily disposed of at very remunerative prices, which are steadily advancing, showing in very light receipts.

We quote Nos. 1,2 , and 3 , at $\$ 18, \$ 16$, and $\$ 13$.-(Cape Ann Advertiser, July 20, 1860.)
1866.-FIRST ARRIVAL FROM THE BAY.

Schooner "Wingaersheek" arrived at Annisquam on Friday last (July 20) from the bay with 313 barrels of mackerel. This is the first arrival of the season, and the mackerel were in good demand. The 2's were sold for $\$ 16$ and 3 's for $\$ 13$. This is quite an advance over the price obtained for the early trips last year, when they were sold for $\$ 11.62$ and $\$ 8,50$. Other vessels are daily expected to arrive, and as mackerel are scarce the trips will be in good demand and bring very remunerative prices.-(Cape Ann Advertiser, July 27, 1866.)

1866.-THE BAT MACIKEREL FISHERY.

Since our last issue 14 vessels have arrived from the bay, averaging about 200 barrels apiece. They report seeing plenty of mackerel, bat they were rather backward about biting. Most of the vessels that have been spoken have from 150 to 200 barrels, and the prospect for the fall catch is considered very good. Out of nearly 400 sail of vessels in the business, but 20 have as yet arrived home, and during the coming three weeks there will undoubtedly quite a large number arrive to fit away for their fall trips. Some of the fleet, in order not to lose any time, will ship their mackerel home by the steamers and refit from there. Prices have slightly declined the present week, but there are so few mackerel in the market that they will have a tendency to advance rather than decrease in price. Shore mackerel continue scarce, and are in good demand.-(Cape Am Adrertiser, August 10, 1866.)

> 1866.-A BIG HAUL IN A PURSE-SEINE.

Schooner "Oconee," engaged in shore mackereling, arrived at this port on Monday with 240 barrels of mackerel, which she obtained in three seinings. At the third haul it was estimated that there were 500 barrels in the seine, and the pressure was so great that it burst while drawing it up, and a large portion of the mackerel escaped. They succeeded, however, in saving about 140 barrels, all large and fat. The "Oconce" was absent but ten days, and will make a very handsome stock.-(Cape Ann Advertiser, August 17, 1866.)

1866.-Comparative scarcity of mackerel.

Twenty-one vessels have arrived from the bay since our last issue, making a total of 79 that hare thus far arrived home, learing about three-quarters of the fleet that will make but one trip. There is quite a marked difference in the appearance of our wharves at the present time compared with last season. Here and there a vessel may be seen discharging her mackerel, but most of the wharves have decidedly a
deserted appearance. Last year at this time abont all of the baymen had arrived from their first trips, and the cullers, coopers, and packers were up to their eyes in business. Should the ressels succeed in getting good trips this fall, they will make a fair season's work if mackerel continue at present prices; but the aggregate catch will fall far short of last year's, and the business prove far less lucrative. The shore fleet have met with rather poor success the past fortnight, and but few mackerel have been landed.-(Cape Ann Advertiser, August 31, 1866.)

1866.-MACKEREL IN GLOUCESTER HARBOR.

Mackerel have been quite plenty in our harbor the present week, and the small boats have done a very good business in catching them. Some of them were very large and fat.-(Cape Ann Advertiser, September 7, 1866.)

1866.-Decided advance in prices.

The market continues firm and prices are greatly advanced on those of last season. No. 1 are $\$ 6$ higher; No. 2 show an increase of $\$ 5$ and No. 3, \$3.75.

About 2,000 barrels (bay) in the market. Last sales at $\$ 22.50, \$ 17.50$, and $\$ 13.25$ for Nos. 1, 2, and 3. Shore in light receipt ; sales of No. 1 at \$22.75.-(Ibid.)

1866.-THE MACKEREL FISHERY.

There have been 42 arrivals from the bay since our last issue, the vessels averaging about 200 barrels apicce. About one-third of the fleet have now arrived home from their first trips, and as the season has now become so far advanced there will probably be but few, if any, more arrivals for the present, as it will be too late to return for a second trip. Mackerel have slightly declined the past week, owing to the late arrivals, but the probability is the prices will again advance, as the stock on hand will not begin to supply the demand constantly being made on our market. Some of the shore fleet have done pretty well of late, but the seiners have not met with very good luck.-(Cape Ann Advertiser, September 14, 1866.)
1866.-Rougil weather in the bay.-The fleet expeoted home.

There have been seven arrivals from the bay the past week, one at Annisquam from her second trip, and six at this port from their first trips. They report very rough weather in the bay the past month, and there is scarcely one day out of a week that is suitable for fishing. The vessels that have arrived home during the past fortnight will not return for a second trip, but will make up their season's work on this shore. The shore mackerel fleet have not done much lately, but there is yet opportunity of doing something next month should the mackerel continue on the coast.

It will be busy times on our wharves next month, as there are upwards of 300 sail of baymen that will probably arrive home during October, and the work of culling, packing, coopering, \&c., will call for quite a large force of men.-(Cape Anu Advertiser, September 28, 1866.)

> 1866.-THE SHORE MACKEREL FLEET.

The shore fleet of mackerel catchers, numberiug about 400 sail, have been off the Cape the present week, the mackerel having struck this way. On Saturday last there was pretty good fishing in Ipswich Bay, and some of the vessels did well. There does not appear to be a large body of mackerel off shore, but they cruise in single schools, which is not so favorable for a big catch. On Tuesday afternoon about 100 sail came into our harbor and remained over night, leaving at daylight on Wednesday morning. They report mackerel rather shy, but consider the prospect good.-(Cape Ann Advertiser, October 5, 1866.)

1866.-SUCCESS OF THE SHORE FLEET.

The shore mackereling fleet found rery good fishing on Saturday, Sunday, and Monday, in Ipswich Bay, some of the vessels catching as high as 40 and 50 wash-barrels of large fat mackerel. Monday night it commenced blowing heavily, and the larger portion of the fleet came into our harbor, where they remained through Tuesday.-(Cape Ann Advertiser, October 12, 1866.)

1866. - SUNDAY KEEPERS.

About 100 sail of the mackerel fleet, designated as "Sabbath-keepers," lay at anchor on Sunday evening on the verge of the outer harbor, stretching across from Norman's Woe to the Point. At early dawn they made sail and joined the remainder of the fleet off Rockport.-(Ibid.)

1866.-High Line of the fleet.

The schooner "Waterfall," of Southport, Me., claims the flag for being "high line" of the fishing fleet this season. Her fare since the 10th of June last is 810 barrels of mackerel, about two-thirds of which are No. 1's. Whether or not any of the Cape Ann ressels will exceed this remains to be proved.-(Cape Ann Advertiser, October 12, 1866.)

A paragraph is going the rounds of the papers stating that schooner "Lucy J. Warren," of Deer Isle, Me., is "high line" of the bay fleet this season, having landed 846 barrels of mackerel since June 17.

We happen to know of two vessels belonging to this port that have done much better than that, viz, schooner "Electric Flash" has landed 923 barrels of mackerel in two trips to the bay, and the "Wildfire" has landed 875 barrels. The "Electric Flash" consequently has the honor of being "high line" of the bay tleet the present season.-(Cape Ann Advertiser, November 2, 1866.)

1866.-ARRIVAL HOME OF THE BAYMEN.

The baymen have come in quite freely the past week, 93 sail having arrived since our last issue. The vessels that have been absent all the season bring in pretty good fares, but the second trips are rather slim, some vessels bringing in as low as twenty-five barrels. We should judge the aggregate catch would prove full one-third less than last season, but the increase in price will probably make up the deficiency in catch, so that the trips will average about as well as last year. There are now about sixty vessels to arrive, which will close up the business for the season. Prices continue firm at $\$ 18$ and $\$ 16$, and the market is quite active.

The prospect now is that the supply for fall and winter consumption will prove far less than the demand, and that prices will advance rather than decline.-(Cape Ann Advertiser, November 2, 1866.)

> 1866.-REMINISOENCES OF CAPT. J. W. COLLINS.

In the spring of 1866 I engaged in the southern mackerel fishery, in the schooner "Lizzie F. Choate," starting on our trip early in May. We fished principally about the south side of Long Island, from Sandy Hook to Montauk, and in the vicinity of Block Island and Noman's Land. Mackerel that spring were not inclined to take the hook very readily, and therefore we obtained only a small fare of about 45 or 50 barrels. We were absent from Gloucester about four weeks, part of which time was occupied in obtaining a supply of menhaden at Seaconnet River, to be used for mackerel bait in the Gulf of Saint Lawrence during the summer.

After returning from the south we went to the bay, where we arrived about the middle of June. On our first trip we fished almost exclusively between Bonaventure and Prince Edward Island-that is to say, on Bank Orphan and Bank Bradley; off North Cape of Prince Edward Islanc; along the west shore, from Point Escuminac to Point Miscou, and to a linited degree in the Bay of Cableur. We succeeded in catching 275 barrels of mackerel, arriving heme about the beginning of September. We reached the bay on our second trip on the 13th day of September, proceeding immediately to the Magdalen Islands, where in five days we caught 115 barrels of fine fat mackerel. After that the fish discontinued biting in the vicinity of the Magdalens, and we ran across to the north side of Prince Edward Island, about North Cape and in the vicinity of Malpec, where mackerel were found quite abundant, and where a fleet of about 300 sail had collected. Here we did quite well, so that when we had been in the bay eighteen days we had between 250 and 300 barrels of mackerel. At this time we were off Malpec, and a strong blow from the southwest having come on, we went in there with the fleet (which ummbered about 250 or 300 sail) for the purpose of filling water, which we stood much in need of, expecting,
as a matter of course, that we would be able to return to the fishingground in one or tro days at the farthest. The wind came out from northeast on the following day, and continued in an easterly direction almost uninterrupted for nearly two weeks. All of the ressels, including our own, were kept in harbor almost as if we had been in prison. During the time, however, the fleet managed to get out for a few hours on one or two occasions, but an easterly wind springing up before the vessels had an opportunity of getting an offing compelled them to run back again in the harbor, since it would have been extremely hazardons, to say the least, at this season of the year, to have remained out during the night on a lee shore so notorionsly dangerous as that on the north side of Prince Edward Island. Though the easterly winds were not so extremely heavy, their long continuance made a heary swell, which broke with great violence across the bar at the entrance to Malpec Harbor, and rendered any attempt to get out exceedingly risky. On one occasion a vessel which started to pass the bar with a light breeze was carried into such shoal water by the current and undertow that she grounded on the sand, and was only saved from destruction by the efforts of her own and the crews of various other vessels.

While this large fleet was thus kept in harbor, a smaller number of ressels, some 30 or 40 , which were around the north cape of the island, succeeded in obtaining a very large catch of mackerel, nearly every one of these vessels getting a full fare in two weeks. By the time the larger fleet was able to leave Malpee the schools of mackerel in that vicinity and about North Cape had evidently departed, and the vessels scattered in different directions, according to the judgment of the several skippers, some of them going to the Magdalens and the others in the direction of the east point of Prince Edward Island and the north shore of Cape Breton. However, by this time it was late in the season, and the weather had become so boisterous that fishing could be carried on only on occasional days. A few good catches of mackerel were obtained about the Magdalen Islands after this, which practically finished the season's work. On the whole, we secured a fare of 315 barrels, and left the bay about the 20th of October. The mackerel caught in 1866 were of large size aud of good quality, but were far less abundant than during the previous year.

1867.-The spring mackerel fishery.

The southern mackerel fishery is being prosecuted by the usual number of vessels, and late advices represent the prospect as good. Some of the fleet are landing their mackerel fresh, and obtain very good prices. Mackerel are also reported very plenty off Cape Cod, and some pretty big hauls have recently been made by the Provincetown seiners. The prospect for the shore mackereling fleet is certainly most encouraging.

The bay mackerel fishery will be quite extensively prosecuted the present season, but the vessels will not engage in it so early as they did
S. Mis. $110-25$
last year. But few, if any, of the fleet will sail before the middle of June.

There will probably be some 400 sail of vessels employed in the business from this port.-(Cape Ann Advertiser, May 24, 1867.)

1867.-ALARGE BAY FLEET.

Considerable activity now prevails at our wharves and railways, as the early mackerel fleet are getting ready to start, and in about a fortnight quite a number of vessels will be on their way to the Bay of Saint Lawrence.

We shall have the largest fleet of vessels engaged in the bay fishery this season that has ever prosecuted it, and most of them will make two trips. • The shore mackerel fishery will also be extensively prosecuted.(Cape Ann Advertiser, June 7, 1867.)

1867.-UNUSUAL SUCCESS OF THE SOUTHERN FLEET.

The southern mackerel fishery has proved very successful this season. The fleet have arrived home with good fares, averaging about 200 barrels each. Most of the vessels are now absent on their second trip, and the prospect is said to be very encouraging. It is seldom that the fleet make but one trip out south, but this year mackerel are sufficiently plently in those waters to warrant the undertaking. We learn that one vessel has arrived at Newburyport with a second fare, having landed upwards of 500 barrels on both trips.-(Cape Ann Advertiser, June 14, 1867.)

1867.-The BAY FLEET.-SCARCITY OF MACKEREL.

Some 50 sail of vessels have left for the bay this week and others will speedily follow. In the course of a fortnight there will be from two to three hundred sail of vessels in the business.

Advices from the early bay fleet represent mackerel rather scarce, and the prospect not very encouraging. The highest trip reported was 50 barrels.-(Cape Ann Advertiser, July 12, 1867.)
1867.-A GOOD SCHOOL ON GEORGE'S.

Mackerel have been quite plenty on George's lately, and those of the fleet who were lucky enough to be there did well. About a dozen vessels have arrived, averaging about 200 barrels each, which were quickly disposed of at remunerative prices.-(Cape Ann Advertiser, August 2, 1867.)
1867.-American mackerel schooners fishing in the gulf of saint lawrence required to pay license to the canadian government.

In 1867, after the expiration of the "reciprocity treaty," the Canadian Government imposed a tax of 50 cents per ton ou all American ressels
for the privilege of participating in the inshore fisheries of the Dominion. For this sum a license was granted which, for the purpose above specified, continued good for the year. Afterwards this tax was increased to $\$ 2$ per ton.

Capt. Fitz J. Babson, collector of customs of Gloucester, Mass., writes: "This tax was considered as an onerous burden by American fishermen, but was submitted to, more in order to prevent capture and confiscation than for the fishing privileges accorded; upon the increase of this tax American vessels generally refused to pay it, preferring rather the risk of annoyance and capture."
1867.-FIRST ARRIVAL FROM THE BAY.-REPORTED SCARCITY OF MACKEREL.

Schooner "Addie MI. Story" arrived from the Bay of Saint Larrence on Tuesday, with 250 barrels of mackerel, having been absent about eight weeks. This is the first arrival of the season. Captain Rowe reports mackerel scarce and the fleet not doing much. The prospect now is that most of the vessels will make but one trip.-(Cape Ann Advertiser, August 9, 1867.)

> 1867.-ARRIVALS FRON THE BAY.

Seventeen ressels have arrived from the bay since our last issue, making twenty in all this season-less than one-half the number that had arrived last jear up to this time. About 3,500 barrels have thus far been landed, which is exceedingly slim doings. The fleet come along very slowly, and the prospect now is that a large proportion of them will make but one trip.-(Cape Ann Advertiser, August 23, 1867.)

Fifty-three ressels have arrived from the bay during the past week, leaving about twenty sail to come. About 12,000 barrels of mackerel have been brought in by the above fleet, averaging 236 barrels to a ressel, most of which have been in the bay all the season, making but one trip. The market is rather quiet the present week and buyers are not disposed to purchase very freely. Holders are firm at $\$ 15$ for No. 1's, although a few lots caught early in the season have been sold at \$14.-(Cape Ann Advertiser, November 8, 1867.)

Forty vessels have arrived from the bay since our last issue, bringing about 8,000 barrels of mackerel.-(Ibid.)

Thirty-eight vessels, with a total of 7,000 barrels of mackerel, had arrived from the Bay of Saint Lamrence during the month of August.(Cape Ann Advertiser, August 30, 1867.)

1867.-GOOD MACKEREL FARES FROM GEORGE'S.

Schooner "B. K. Hough" arrived from George's last Friday and the "Kearsarge" on Monday, with full trips of mackerel. These ressels have made two trips to George's the present season, landing in the aggregate 1,180 barrels of mackerel.-(Cape Ann Advertiser, September $6,1867$.)
1867.-SMALL CATCH OF MACKEREL BY THE BAY AND SHORE FLEETS.

Mackerel still contiune very scarce, and the receipts of both shore and bay are very light. The easteru fleet are doing but little, and the prospect of a successful fall catch is anything but encouraging. About 2,200 barrels have arrived from the bay the past week, which have been quickly taken at advanced prices. We quote sales of No. 1's at $\$ 21.50$ to $\$ 21$; No. 2 's, $\$ 13.50$ to $\$ 13.25$. Shore very scarce with slight advance. Least sales of No. 1's at $\$ 15.50$; No. 2, $\$ 13.25$. The mackerel catch this season will probably be fully one-third less than that of last.(Cape Anu Advertiser, September 27, 1867.)

boys in the mackerel fishing.

James S. McDonald, about fourteen years of age, has caught the present season 36 harrels of mackerel, and James Babson, fifteen years of age, 40 barrels.-(Ibid.)

1867.-Higii line of the mackerel fleet.

The Nemburyport Herald states that the schooner "Tanny" takes the palm for this season among the mackerel fleet, having landed 910 barrels, which stocked $\$ 13,000$--(Cape Ann Advertiser, November 15, 1867.)

1867.-Review of the mackerel fisheries.

The shore mackerel and seining business has been largely engaged in, but has proved far less remunerative than last year. The southern fleet did remarkably well; but the shore fleet has not done as poorly for many years.

The bay mackerel fishing has proved rather unprofitable the present season. Less than one-third of the fleet have made two trips, and the catch will fall far short of last year.-(Cape Aun Advertiser, November 22, 1867.)

1867.-REMINISCENCES BY CAPT. J. W. COLLINS.

Toward the latter part of May, in 1867, I started on a mackerel trip to the Gulf of Saint Lawrence in the "Lizzie F. Choate." We arrived in the bay about the 1st of June ; but, notwithstanding we cruised over all the fishing-grounds usually resorted to at this season, we failed to catch any mackerel until about the middle of the month, and none were taken by other vessels, so far as we could learn, any earlier. Mackerel that year were all large size, as during the two previous seasons, but were apparently not so plentiful as the year before. We fished on the ground usually resorted to in the early summer, but obtained the best catches in the deep water between Bank Orphan and Bank Bradley, where, on one occasion, tre took, in a single day, 50 or 60 barrels of
mackeref. Having obtained a fare of 300 barrels about the middle of August, we returned home, arriving in Gloncester on the 26th. We packed out our fish and again went back to the bay on a second trip. After arriving in the bay the second time we fished principally about the Magdalens and the north shore of Prince Edward Island, especially in the vicinity of Malpee, and the North Cape of the island. On one occasion during the fall, while fishing near Cascumpee with a large fleet, a swart northwest gale came on very suddenly in the afternoon, aud most of the Hect went into Malpec. We also made an attempt to enter the harbor, but owing to the crowded condition of the vessels in the channel and the danger of being ingured by a collision, decided to run ont again and lay by for the night, which we did. During the night the iron plate on the stem to which our jibstay set up, was carried away and obliged us to go into harbor the following day for repairs. We were detained in Malpec several days on account of the strong winds and stormy weather. After leaving the harbor we ran up toward North Cape, trying the ground with the fleet, but failed to find mackerel in satisfactory numbers. We therefore ran across to the Magdalens, where we continued fishing with indifferent success until well into October. Being caught out in a northeast gale, which came on suddenly one afternoon, we had our sails badly torn, and were obliged to run across the following day to Port Hood for shelter, from which place we proceded to Canso for repairs and to land a sick man. Leaving Canso, we ran across again to the Magdalens; lout not finding any mackerel, returned to Port Hood. In the mean time, during the four or five days while we had been absent at the Magdalens, a fleet of vessels had fom mackerel exceedingly abminnt about Margaree Island and Cheticamp, on the north side of Cape Breton, and had obtained exceediugly large catches, in some instances almost entire fares having been caught in this short time. The day on which we arrived at Port Hood, with other vessels from the Magdalens, the wind was northeast, blowing a strong breeze, and most of the ressels which had been engaged in fishing along the Cape Dreton shore ran into Port Hood for a harbor. On the following day, the wind having changed to the southwest, we, together with many of the other ressels, rau down to the northeastward, along the Cape Breton shore, past Margaree, to Cheticamp, where we found a flcet of about 75 sail of schooners busily engaged in catching mackerel, which were biting eagerly just off the mouth of the harbor. Although we did not reach the fleet montil about noon, and had cousequently but few hours to fish, we succeeded in taking 75 wash-barrels of fine large mackerel. That night most of the fleet lay to off Cheticamp, preferriug to do this instead of anchoring in this one-sided and extremely unsafe harbor. On the following morning it was found that the body of mackerel had changed its position considerably, and the fish were first found off the eastern ent of Cheticamp Island some six or seven miles from where they had been taken the previons afternoon. By this time a
fleet of 250 sail or more had gathered on the fishing-ground; the wind blew a smart breeze from the southwest, and the mackerel, which were near or at the surface, were moving northeastwardly in the direction of Cape North. The fishermen, feeling that it was their last chance of the season to obtain any fish, made every possible effort to improve the opportunity, and the scene soou became wild and exciting in the extreme. The ressels crowded closely in masses wherever the fish were biting best, the eagerness of the fishermen rendering them in many instances reckless to a fault; booms and bowsprits were carried away; sails were torn; boats smashed up; and in some cases the broadsides of vessels were crushed in, leaving them almost in a sinking condition off a rockbound and dangerous coast many miles from any safe harbor. Though the mackerel bit very eagerly while alongside the vessel it was impossible to detain them in their onward course for any length of time. The consequence of this was that the vessels were in constant motion, shifting continually to leeward in the direction which the fish were going. Most of the vessels obtained good catches, and we succeeded in taking about 50 wash-barrels during the day. That night a considerable portion of the fleet passed around Cape Breton, but, owing to the strong winds which prevailed for several days thereafter, no reasonable opportunity was offered for pursuing the mackerel any farther, and the vessels were obliged to seek shelter in Syduey Harbor, the season by this time becoming so far advanced that there was no reasonable prospect of any more mackerel for the year; therefore, as soon as the state of the weather permitted, most of the vessels started for home. We arrived in Gloucester early in November with a fare of 375 barrels.

1868.-THE SPRING MACKEREL FISHERY.

The southern mackerel fishery will be extensively prosecuted the present season. Some of the fleet have already commenced to fit away, and by the latter part of the month there will be quite a large fleet in readiness to start.-(Cape Aun Advertiser, April 4, 1868.)

The southern mackerel fleet hare abont all sailed. There are from 40 to $\tilde{0} 0$ vessels in the business this season-a much larger number than have ever prosecuted it before.-(Cape Ann Advertiser, May 8, 1868.)

The prospect of a successful catch of mackerel by the southern fleet is quite encouraging. One vessel arrived at New York on Friday, after two days' absence, with 10, 000 mackerel in number; another had taken 50 barrels in a week's cruise.-(Cape Am Advertiser, May 22, 1808.)

The fishermen are having a lively time of it in Barnstable Bay. On Monday 5,500 mackerel were taken, which were shipped to Boston.

Three hundred Darrels of mackerel passed over the Cape Cod Railroad, Tuesday and Weduesday of last week, for New York and Boston, caught by the Cape fishermen.-(Cape Am Advertiser, May 22, 1868.)
1868.-IncRease in tHe price demanded por license to fish IN BRITISII WATERS.

Information las been receved at Ottarra from England that the British Govermment has agreed to fix the tax on American ressels fishing in Canadian waters at $\$ 2$ per ton, and that the three warnings heretofore required to be given to American fishing vessels will be dispensed with. * * * Our fishermen would not object to a reasonable tax, but $\$ 2$ per ton is altogether too much.-(Cape Anu Advertiser, May $15,1868$.
1868.-First ARrivals of the southern fleet.

Two eastern ressels have arrived at this port from the south the present week with about 150 barrels of mackerel each. These are the first arrivals of the season, and the mackerel met with very ready sales. None of the Gloucester fleet have as yet arrived.-(Cape Ann Advertiser, June 5, 1868.)

1868.-MACKEREL PLENTY OFF BOSTON.

Mackerel have been quite plenty in the bay (Massachusetts Bay) the past week. The school has mostly tended off Bostou harbor, and there has been a large catch. They have been retailed for 3 cents each, and the demand has been quite lively.-(Ibid.)
1868.-The macherel fishery ; fitting away of the bay fleet; SEINING TO BE TRIED IN THE BAY.

The George's fishery is now slacking up at little and some of the vessels are hauling off, preparatory to fitting away for the bay of Saint Lamrence. A few of the tleet have already sailed, and by the last of the month there will be quite a number of vessels on their way there. The bay fleet will be quite as large as it was last season. * * *. A new feature will be introduced in this branch of the fisheries this season; that of seining. Some seren or eight vessels are to engage in the business, which it is expected will prove rery remunerative. It is an experiment that has never tried, but we see no reasou why it should not prove as successful as seining on this shore. Should the ressels which are to engage in it find it profitable, it will no doubt be more extensively engaged in another season.

The southern tleet having had very bad weather through the month of May, are rather backward on their trips this season, and but few of them have arrived home. Another week will probably bring along most of the fleet in time to fit for the bay.-(Cape Am Advertiser, June 12, 1868.)

> 1868.-TIE SOUTHERN FISHERy.

Some fourteen sail of ressels have arrived from the sonth the present week with good fares of mackerel, averaging aloont 200 barrels ecah.

The mackerel sell readily at remunerative prices (from $\$ 6.50$ to $\$ 9.75$), and the business bids fair to prove as successful as last season. Some of the vessels have sailed on second trips, but most of the fleet will fit away for the bay on their arrival home.-(Cape Ann Advertiser, June $19,1868$.
Schooner "Cyrena Ann" arrived from a southern mackereling cruise on Tuesday, with 325 barrels of mackerel. About 100 barrels of the trip were taken on George's, which were of good size, and the first caught there this season. Captain Elwell has been absent about six weeks, and the vessel will probably stock rising $\$ 3,000$. This is the best mackerel trip of the season.-(Cape Am Advertiser, July 3, 1868.)
1868.-A GOOD TRIP FRON GEORGE'S.

Schooner "Mand Muller" arrived from George's yesterday with 200 barrels of mackerel, having been absent about three weeks. She spoke several of the Gloucester fleet on the banks, all of which are doing well.-(Cape Ann Advertiser, July 31, 1868.)

1868.-Unfayorable reports fron the bay.

The reports from the bay are not so encouraging as could be desired. Mackerel are scarce, and the fleet doing little. The catch last season showed considerable falling off from the previous year, and appearances would seem to indicate a light catch this season.-(Ibid.)

> 1868.-MACKEREL ABUNDANT ON GEORGE'S.

The mackerel fleet on George's are meeting with excellent luck of late, and some very good fares have been landed the last week. The mackerel are of good quality, and the vessels are doing nuch better than those that have gone to the bay. One vessel which started for the bay stopped to try for mackerel on the banks, and returned home on Monday, with 230 barrels. The eastern shore fleet are also doing better of late, and the prospect now is that the home-catch will prove far more remunerative than the bay the present season.-(Cape Ann Advertiser, August 7, 1868.)

Excellent success of one of the shore fleet.

Schooner "Eureka" is high line of the mackerel fleet from this port, having already landed 800 barrels thas far this season. She has made four trips and her net stock is $\$ 904$.-(Ibid.)
1868.-First arrivals frone the bay.-reported scarcity of MACKEREL IN THE GULF.-PRICES.

Schooner "A. H. Wonson" arrived from the Bay Saint Lawrence yesterday with 200 barrels of mackerel, having been absent nine weeks. This is the first arrival of the season, and is about a week later than
the first arrival last year. Captain Webber reports mackerel very scarce, and the fleet not doing much. He heard of no vessel having over 100 barrels.-(Cape Amn Advertiser, August 14, 1868.)

Schooner "Sargent S. Day" arrived from bay, on Wednestay, with 125 barrels of mackerel, having been absent since the 1st of June. This is the second arrival of the season, and rather a poor fare; but there are many of the fleet who have not done as well as this. * * * Last year 38 sailing vessels arrived during the month of August, averaging about 180 barrels each. The scarcity of mackerel causes prices to rule higin, and bay 1 sell at $\$ 25.25$, against $\$ 18$ last season. The shore fleet bring in some pretty good fares lately, which meet with ready sale.-(Cape Ann Advertiser, August 21, 1868.)

1868.-ARRIVALS FRON THE BAY.

Twenty-one vessels have arrived from the bay since our last issue, averaging about 150 barrels each. The total number of arrivals thus far this season is 41 , and an aggregate of 6,000 barrels of mackerel, against 65 ressels and 13,000 barrels up to this time last year-quito a large falling off.-(Cape Ann Advertiser, September 11, 1868.)
1868.-AMERICAN VESSELS NOT TROUBLED BY ENGLISII CRUISERS IN THE BAY.

Thus far, the mackerel fleet fishing at the bay have not been troubled by English cruisers. There seems to be a good feeling prevalent in that quarter, and the American fishermen catch mackerel whenever and wherever they can prevail upon them to take the hook.-(Ibid.)

1868.-Mackerel in gloucester Harbor.

Mackerel made their appearance in our harbor on Saturday for the first time this season. They were of small size. The schools have also shown themselves several times this week.-(Cape Amn Advertiser, September 18, 1868.)
1868. -The baymen.-Doings of the shore and george's fleet.

There have been but few arrivals from the bay the past week, as those of the fleet that intend making two trips have about all arrived home. Sereral of the ressels which had small fares have shipped them by steamer, and refitted there for a second trip. Less than one-fifth of the fleet will make two trips, and there will be a great falling off in the catch from last season, providing all the vessels get full fares this fall. About 1,000 barrels of shore have arrived the past week, but the George's fleet have done nothing, the mackerel having left the banks.(Ibid.)

1868. -INFLUENCE OF THE MACKEREL FISHERY ON THE WELFARE OF THE FISHING TOWNS.

The success of the mackerel fleet, both at the bay and off-shore, is looked forward to with deep interest. There is much depending upon the fall catch.-(Cape Amn Advertiser, September 15, 1868.)

1868.-SCARCITY OF MACKEREL ATTRIBUTED TO BLUEFISH.

Bluefish have been unusually plenty on this coast the presen season, and the fishermen attribute the seareity of mackerel to this fact. They are great destroyers of smaller fish, especially of mackerel, and whenever they come, the "small fry" get away as soon as possible.-(Cape Anu Advertiser, September 25, 1868.)
1868.—SUCCESSFUL CATCHES MADE BY THE SEINERS OFF THE NEW ENGLAND COAST.-UNFAVORABLE NEWS FROM THE BAY.

The weather the past week has been very favorable for the shore fleet, and the seiners have had pretty good luck, some of them taking from 100 to 150 barrels in one day. The mackerel, however, do not take the hook very readily. They are of large size, and if the good weather holds on the fleet will yet have an opportunity of making up a fair season's work. The baymen are picking up a few mackerel when the weather is favorable; but the catch there will not be large, and those vessels that succeed in making even one good trip will be fortunate. Late advices from there are not very encouraging.-(Cape Ann Advertiser, October 2, 1868.)

1868.-ARRIVALS FROM THE BAY.-SLIM DOINGS.

Fifty-six sail of vessels have arrived from the bay since our last issue, most of them with light fares. There are upwards of $\mathbf{1 0 0}$ sail yet to arrive, most of which will be along by the middle of the month. So far as we can learn the vessels will average about 150 barrels each, which is rather slim doings for those that have been down there all the season. There will be quite a falling off in the catch-fully one-half.-(Cape Am Advertiser, November 6, 1868.)

A large portion of the bay fleet have arrived the present week, learing about 10 sail to come. In consequence of the light catch the market is very active, and fares are sold as soon as landed. Prices are improring, sales yesterday being effected at $\$ 22$, and the probability is that they will go still higher.-(Cape Ann Advertiser, November 13, 1868.
1868.-SAD RESULTS OF THE FAILURE OF THE MAOKEREL FISHERY in 1868.

The mackereling season is rapidly drawing to a close, and with some few exceptions the profits are on the wrong side of the ledger. Every-
thing has been done within the power of mortals to render the season a successful one. The vessels have been on the ground early and late, and in some instances days have merged into weeks withonthaving a real lively catch. This has been exceedingly discouraging, no one can deny.

That there are very many families in this town who have no money wherewith to support life the coming winter, on account of the poor returns of the mackerel season, is also a fact that stares us in the face in these dull and cheerless days of November. * * * The fishermen with families dependent upon them for bread are eager and ansions to be earning. It is no fault of theirs that they have not a balance of two or three hundred dollars whereby to meet the wants of their families. They did their best and failed. Such men are deserving of praise and substantial encouragement.

Let us hope that winter fishing will yield good returns; and it hardly seems possible that there can be another unsuccessful mackereling season to follow in the footsteps of the past three years.-(Cape Am Advertiser, November 13, 1867.)

1868.-Reminiscences of capt. J. W. Collins.

During the early part of 1868 I was engaged in the cod fisheries on George's and Western Bank; but leaving this fishery, I started for the Gulf of Saint Lawrence on the schooner "Glenwood" in July. We fished about the north side of Prince Edward Island, on Bank Bradley along the west shore, in the Bay of Chaleur, and about the Magdalens. Mackerel were large, but perceptibly scarcer than for a number of years previous. Having obtained a fare of over 200 barrels, we returned home in the latter part of August to pack out our fish and refit for a second trip to the bay. On our second trip we fished chiefly about the Magdalens, though to some extent off east point of Prince Edward Island and along the north shore of Cape Breton. We obtained a fare of good barrels, and arrived home about the middle of November.

1868.-Mackerel fishery on the french coast.

The mackerel fishing on the French coast is at present exceedingly good. Two smacks have just returned to Dieppe, oue mith 12,060 fish and the other with 18,525 . Also a boat belonging to lioulogne has brought in nearly 18,000.-(Barnstable Patriot, May 12, 1868.)
1869.-AMERICAN vessels in the Gule of saint latrence.

The following statement of the number of fishing ressels in the Gult of Saint Lawrence mackerel fishery and the American shore mackerel fishery, was submitted by David W. Low to the Halifax Commission:*

Parrels.
194 vessels in Gulf, average catch 209 barrels.. 40, 546
151 vessels off shore, arerage catch 222 barrels ... 33, 552
Mackerel caught hy boats and some eastern vessels, packed in Gloucester 19, 028

* Documents and Proceediugs Halifax Commission, 1877, U. S. edition, p. 2595.

Three thousand mackerel were taken in the last weir at Provincetown in two nights.-(Provincetown Advertiser, June 23,1869 .)

> 1869.-FALL FISHERY IN CAPE COD BAY.
M. L. Adams caught, on Thursday morning in his weir, eight tons of mackerel, and Thursday erening, 2,200 mackerel.-(Provincetown Advertiser, November 10, 1869.)

1869.-Higit PRICE FOR MACKEREL.

Bay mackerel have advanced to $\$ 28$ per barrel, $\$ 1.10$ more than they sold for last year at this time.-(Cape Ann Advertiser, April 30, 1869.)

> 1869.-FRESH MACKEREL IN BOSTON.

Fresh mackerel have made their appearance in Boston market the past week, and are selling for 30 aud 35 cents apiece.-(Cape Ann Advertiser, May 7, 1869.)
1869.-GOOD CATCHES OF THE PROVINCETOWN GLLL-NETTERS.

The several Provincetown mackerel fishermen, which have been rendezronsing in Barnstable Harbor, have been very successful the past week. On some days they have averaged 2,000 [mackerel] to a boat. They are taken by nets.-(Cape Ann Advertiser, May 14, 1869.)
1869.-EARLY APPEARANCE OF MACKEREL OFF CAPE ANN.-GOOD CATCHES BY THE SEINERS.

Mackerel have bcen quite plenty off this shore the past week, and the seiners have made some pretty good hauls. One vessel belonging to this port took as high as 120 wash-barrels on Monday ; and others from 20 to 50 wash-barrels. None of the southern fleet have as yet arrived. One Gloncester vessel has been into New York with a small fare which were sold for $\$ 500$. Mackerel are earlier than usual offshore this season, and the prospect for the home fleet is very encouraging.-(Cape Ann Advertiser, May 28, 1869.)
1869.-First arrivals froni tire soutim.-prices.

Schooner "Hattie Lewis" arived at this port on Saturday, from the sonth, with 205 barrels of mackerel, and the "Northern Light" on Wednesday with 50 barrels. Yesterday the schooner "Colorado" arrived with 250 barrels, and others of the fleet are daily expected. These are the first arrivals of the season, the mackerel selling for $\$ 8$ and $\$ 10$ per barrel. The reports from the fleet do not indicate a rery heary catch thus far, but there is yet time for the vessels to make fair trips before fitting for the bay.-(Cape Ann Advertiser, June 4, 1869.)

1869.-Big CATCI iN A WEIR AT CAPE COD.

About 100,000 mackerel were taken in the "Philip, Smith weir," at Eastham, week before last, netting the owner about $\$ 7,000$. So says the Barnstable Patriot.-(lbid.)
1869.-Effect of the reciprocity treaty on nova scotia.

The Halifax Chronicle, in speaking of the great need of a reciprocity between the Dominion and the United States, has the following signiticant article:

Our rulers should have common sense enough to cease prating about the Dominion dignity, aul to make some strong effort to renew the reciprocity treaty, the abrogation of which has reduced this country and the other maritime provinces to a state of comparative destitution. From the making of the reciprocity treaty until its abrogation, Nora Scotia increased in wealth and population at a most extraordinary rate; from its abrogation until the present we have retrograded with the most frightful rapidits. Want of a good market has depreciated the value of our coal mines, has nearly pauperized our fishermen, farmers, and miners, and should this want not be supplied in the only way it can be, by a new treaty with the United States, Nova Scotia will in five years be one of the least desirable countries to live in on this continent.-(Cape Ann Advertiser, July 2, 1869.)

1869.-THE BAY FISHERY.-GOOD CATCII ON GEORGE'S.

A dispatch was received in town on Monday by the owners of schooner "Finance," stating that she had landed 260 barrels of mackerel. Some good fares of mackerel have also been taken on George's lately.-(Cape Ann Advertiser, July 30, 1869.)

- 1869.-First arrival from the bay.

Schooner "Carleton" arrived from the bay on Wednesday, with 300 barrels of mackerel. This is the first vessel that has arrived from there this season. The "Carleton" made her trip in less than six weeks.(Cape Ann Advertiser, August 20, 1869.)
1869.-ARRIVAL OF THE BAYMEN.-INFERIOR QUALITY OF BAY MACKEREL.-PRICES.-SUCCESS OF THE SHORE FLEET.

The bay fleet have not come along very freely the present week, but nine vessels having arrived since our last, making 22 in all that havo arrived thus far this season. The fares average about 250 barrels, and the mackerel are of fair quality, but not so fat as those caught on this shore, and do not bring so good prices. Bay ones have been sold the present week for $\$ 18$ per barrel, $\$ 4$ less than the first trips that were brought in. Some of the fleet have shipped the mackerel home
by steamer and refitted in the bay for another trip in order to save time, and the prospect for the fall catch is considered very good. A large portion of the fleet went into the bay late in July, and will make but one trip. The shore fleet are doing fairly of late, and the mackereling season bids fair to be a successful one.-(Cape Ann Advertiser, September 10, 1869.)

1869.-High Line of the bay fleet.

Schooner "Finance," of this port, has recently landed her second fare of mackerel, 250 barrels, at Charlottetown (Prince Edward Island), making in all 510 barrels landed thos far. On her last trip she took 130 wash-barrels in one day. She is now out on her third trip, and bids fair to make a great season's work.-(Cape Ann Advertiser, September 17, 1869.)

> 1869.-SUCCESS OF THE WELLFLEET SCHOONERS.

The mackerel catchers of Wellfleet have done remarably well. Sixteen thousand barrels have been landed on the wharves, and 3,500 barrels are now afloat.-(Ibid.)

1869.-The baymen.

Seven of the bay fleet have arrived since our last issue, bringing about 1,700 barrels of mackerel.-(Ibid.)

1869.-Great disaster to the shore mackerel fleet.

A terrific hurricane swept the coast of New England on the 8th of September, causing great loss of life and property in the mackerel fleet. The gale came on so suddenly and unexpectedly that the vessels were not able to reach a harbor in time to escape its fury, and being caught on a lee shore many of them were driven ashore. The Cape Ann Advertiser of September 10 and 17 gives detailed accounts of the losses.

1869.-Small fall catch in the bay.-Light fares brought home by baymen.

The prospect in the bay in the early part of the season for a successful catch of mackerel was most excellent, as many of the vessels obtained good fares on their arrival there; but the September catch fell off amazingly, and for the past month the vessels have done nothing at all.-(Cape Ann Advertiser, October 28, 1869.)

The bay fleet have mostly arrived home, there being but about forty sail now absent. The fares brought in are very light, ranging from 20 to 100 barrels, and the market is quite firm at advanced prices. No. 1's. are selling the present week at $\$ 25$ per barrel, and No. 2's at $\$ 15$.

Shore mackerel are out of the market. The last sales of No. 1's were made at \$26.-(Cape Ann Advertiser, November 12, 1869.)

1869.-REMINISCENCES OF CAPT. J. W. COLLINS.

Having spent the greater part of the fishing season in the pursuit of codfish on George's, Western Bank, Cape North, and the Gulf of Saint Lawrence, I did not engage in the mackerel fishery in 1869 until August, when I went to the bay in the "Glenwood." We fished principally about the Magdalens and along the west shore between Escuminac, Point Miscon, and off the North Cape of Prince Edward Island. The best catch of mackerel which we obtained was in Miramichi Bay, eight or ten miles off shore, about the middle of September. At this time we had taken, in three or four weeks' fishing, 140 barrels of fine large mackerel, notwithstanding the fact that these fish were still less abundant than they had been the previous season. A strange thing occurred in the mackerel fishery of the Saint Lawrence in the fall of 1869, since the wackerel appeared to leave the bay much earlier than usmal. After the middle of September but few fisk were obtained by any of the fleet, and none secured large catches. Though we remained in the bay until the middle of October or latex, and made every effort to catch fish on all of the priucipal grounds, yet we succeeded in taking only five barrels in addition to what we previously had, and this amount was a fair average for the fleet. Some four or five ressels, as it was reported, caught 30 or 40 barrels each off the North Cape of Prince Edward Island about the last of September or beginning of October; but, so far as I was able to learn, no other catches of importance were made after the middle of September. The vessels that went to the bay early enough to obtain reasonably good fares before the mackerel left the fishing-grounds were partially remunerated for the loss of time by the advance in the price of the fish, which resulted from the small catch.

1870.-SMALL NUMBER OF NEWBURYPORT VESSELS ENGAGED IN THE SOUTHERN MACKEREL FISHERY.

The Newburyport Herald of the 29th ultimo says: "The southern fleet will be remarkably small this season, some of the vessels which usually go south engaging in the herring fisheries at the Magdalen Islands. This business is thought by some to be more profitable than the early mackereling trips."-(Gloucester Telegraph, May 7, 1870.)
1870.-SUCCESS of the gillenet fishery in barnstable bay.

The Cape Cod Gazette says: "Six mackerelmen have been doing a brisk business in meshing mackerel in the bay off Sandwich."-(Gloucester Telegraph, May 18, 1870.)

SUCCESS OF TWO "SOUTH-SHORE" VESSELS.

Schonner "Isaac Somes," of Harwich, with a crew of 19 men, has landed this season 1,800 barrels of mackerel; stocked, $\$ 15,875$; average stock among the crew, $\$ 886$.

Schooner "Mary B. Taylor," of the same port, with a crew of 23 men, landed 1,912 barrels of mackerel ; stocked, $\$ 17,400$; arerage stock anong the crew, $\$ 756.30$.-(Gloncester Telegraph, November 23, 1870.)

1870.-NOTES ON THE SOUTHERN MACKEREL FISHERY.

A Newport correspondent says that "the mackerel fleet as yet, according to the most reliable news, have done but a slim business. Some 30 sail of vessels were at Newport on the 17th instant, ready to proceed to sea, having obtained bait from the Vineyard Sound fish weirs."(Gloucester Telegraph, May 25, 1870.)

1870.-First arrival from the south.

The schooner "Geo. S. Low" is the first to arrive from the southern mackereling grounds, bringing 190 barrels of mackerel of good quality for the season.-(Gloucester Telegraph, May 28, 1870.)

1870.-SuCcess of the southern mackerel fleet.

The southern mackerel fleet are meeting with a very fair success. There have been four arrivals at this port, bringing good fares. Nantucket reports an arrival with 137 barrels, and the Newbursport fleet have averaged over one hundred barrels each so far this season.(Gloucester Telegraph, June 4, 1870.)

1870.-REPORTED SMALL CATCII OF MACKEREL IN THE GULF OF SAINT LAWRENCE.-PROFITABLE SHORE FISHING.

News from the Bay of Saint Lawrence indicates that the mackerel catch has been small so far this season, althongh large schools are rejorted in the waters about Prince Edward Island. The shore mackercling business contimues to prove profitable, and this, with the troubles in the bay, will have a tendency to diminish the number of vessels pursuing the bay fishing this season.-(Gloucester Telegraph, July 16, 1870.)

1870.-Abundance of mackerel in gloucester Harbor.

A school of mackerel was in our harbor yesterday. They took to the hook well, and good fares were secured by anything in the shape of a boat.-(Gloucester Telegraph, August 10, 1870.)

> 1870.-Fishing in massachusettis bay.

The Yarmouth Herald, of last Friday, says: "Mackerel are taken in considerable quantities in our bay, and cod and bass in our weirs."(Gloucester Telegraph, May 18, 1870.)

On Monday of last week the Swampscott fishermen made a good haul of mackerel off Egg Rock. One schooner took a fare of 80 barrels, another of 75, and six others made good trips. Some of the drag-boats brought in from six to eight hundred mackerel apiece from their net-fishing.-(Gloucester Telegraph, Juue 8, 1870.)

1870.--FALL FISHING IN BARNSTABLE BAY.

The Provincetown netters last week canght considerable quantities of mackerel in Barnstable Bay; 25,000 were sent to Boston by the steamer on a recent trip.-(Gloncester Telegraph, November 23, 1870.)

1870.-SPRING MACKEREL FISHERY.

Mackerel are finding their way along the coast in considerable numbers. On Friday one of our fishing schooners arrived with a fare of 35 barrels which had been taken that day in her seine. The mackerel were large and haudsome, though not fat.-(Gloucester Telegraph, Mar $25,1870$. .

1870.-Fisiling in massachusetrs bay.

Mr. William Stone, of Swampscott, had unusually good luck in his netfishing week before last, making, including Monday's and Tuesday's catch, over $\$ 200$ by the sale of mackerel landed by himself from a doryduring eight days. On Tuesday he caught over 500 , which netted him 6 cents apiece.-(Gloucester Telegraph, June 15, 1870.)

1870.-SPRING MACKEREL FISHERY IN CAPE ANN BAY.

The fishermen at Scusset one day last week took 15,000 mackerel.(Barnstable Patriot, May 31, 1870.)
1870.-First mackerel in massachusette bay.

Capt. Miles Blanchard, of Swampscott, caught some fine mackerel in the bay on Friday, the first of the season.-(Gloncester Telegraph. May 18, 1870.)
1870.-THE MACKEREL FLEET'.

On one occasion 625 mackerel schooners were anchored in the harbor at Gloncester.
1870.-The mackerel fisheri.

The Portland Press of the 10 th says that for ten days past the mackcrel fleet had not met with a single mackerel until Friday moruing, when they encountered great schools of them about 80 miles off the Cape. They had great luck, and for the next week we may expect they will spend the nights with us. The harbor is packed with their ressels; some 400 sail arrived in the harbor yesterday afternoon, presenting a splendid sight as they came past the breakwater under full canvas at race-horse speed.-(Gloncester Telegraph, September 14, 1870.)
1870.-The mackerel fishery of the gulf of saint lawrexte.

A fishing schooner arrived at Booth Bay on Sunday from the Bay Saint Lawrence with a fare of 380 barrels of mackerel.-(Gloucestir Telegraph, October 15, 1870.)
S. Mis. 110--26

1870.-SUCCESS OF THE SWAMPSCOTT MARKET FISHERMEN.

One of the Swampscott fishing vessels, last week, with a captain and three men, canght more than 4,000 mackerel, some of which were sold on the beach for 20 cents each. Another caught 4,800; another, 4,000; one man alone, 900 ; a man and his sou, 1,600 ; another man and his son, 1,400 ; and a single man and his dory, 800 .-(Gloncester Telegraph, October 19, 1870.)
1870.-Gill-Netting at dennis.-néw york prices for fresh MACKEREL.

The mackerel-netters of Deunis made one or two good hauls, and but for the unfarable weather last week would have done well, the prices of fresh mackerel in New York leing from 18 to 20 cents apiece. (Gloucester Tel graph, November 23 , 1870.)

1870.-The mackerel fishbry fhom gloucester.

Fifty-nine vessels pursued the southern mackerel fishery in the spring, seven of them making two trips. Good fares were secured and the fleet was free from accident. The shore mackerel fleet was unusually large during the summer months, aud proved successful. One ressel was lost in the business, the schooner "Day Star," 40.46 tons burdeu. The bay fleet was a very small one, owing to the difficulties apprehended aud experienced from the course pursued by the Dominion authorities. This business met with serions embarrassments by the seizure of four of our vessels and the threatened seizure of others, and the business as a whole did not prove protitable.-(Gloucester Telegraph, November 19, 1870.)

1870.-General discussion of the mackerel fishery.

The southern mackerel season was closed up during the early part of the month of July, eipht vessels arriving home from the south during the first tell days of the month, six of which were from a second trip. The whole number of ressels reported as making southern trips in pursuit of mackerel this season was 59 , of which number seven made two trips each. These vessels met with a very fair success, and found a ready market for their eatch on their arrival home.

The eastern mackerel tishing was actively pursued during the month. and a large proportion of the flect secured excellent fares. The number of fares landed at this port in July was about 80, and the market has been guite active, and the stock has been kept well reduced. Some 20 ressels have also been engaged in sening along the eastern shore, ostensibly for porgie bait, lat some of them have made good hauls of mackerel in their seines, and have made good trips.

The Bay of Saint Lawrence fleet has been constantly angmented, and
so far as is known has been free from molestation by British cruisers of late. The fleet now in the bay is quite respectable in point of numbers, though probably not as large as the last few years.-(Gloncester Tele- graph, August 6, 1870.)

The shore mackerel fishing is now at its height, and employs a large fleet from the Cape Amn and Cape Cod fishing towns. During the month of August 117 Gloncester vessels were reported ats arriving from mackereling cruises east, 11 of which arrived twice, making a total of 128 fares of shore mackerel landed at Gloncester in August, against some 80 fares in July. Besides these, 17 ressels engaged in seining arrived during the month, many of which had secured good fares of mackerel. There were 20 arrivals from seining in July. The fleet has met with good success, although as a rule the mackerel have not been of a very good quality. The last week or two, however, has shown an improvement in the quality of the smaller grades, and the disparity of prices between the ones and twos will probably soon be lessened. No. 1 mackerel have commanded good prices, ruling from $\$ 2 y$ to $\$ 26$ per bar rel for shore, but most of the 2 's have been closed out at $\$ 9.75$ per barrel, and 3 's have ruled at $\$ 6$ per barrel since the 1st of July. The arrivals from the bay have not been numerous. Only 10 vessels have arrived here this season, and these have met with a moderate success, averaging about 200 barrels each. The bay mackerel received have been of good quality, and sold at $\$ 24$ to $\$ 25$ per barrel for No. 1's; $\$ 12.50$ to $\$ 13$ for 2 's, and $\$ 10.50$ for 3 's.

Last year the number of arrivals from the bay to this date was 13 . In 1868 only 8 vessels arrived in August. In 1867 there were 51 arrivals, and in 186684 arrivals from the bay previous to this date. The average fares of the bay fleet arriving previous to September, last year, was about 290 barrels. The Portland fleet are doing about the same as the Gloucester vessels, 13 arrivals having been reported, with a total catch of 2,384 barrels.

Letters received at Newburyport state that 9 ressels belonging to that port had fares on the 15th ultimo ranging from 20 to 110 barrels, and averaging $55 \frac{1}{2}$ barrels each, and there has been one arrival from the bay, at Newburyport, with only 80 barrels. Three vessels have arrived at Booth Bay from the bay, averaging less than 150 barrels each.-(Gloucester Telegraph, September 3, 1870.)

1870.-Reminiscences of capt. J. w. collins.

In the summer of 1870 I started on a mackerel trip to the Gulf of Saint Lawrence, about the middle of June, in the new schooner "Alice G. Wonson." We reached the fishing ground about the 25 th of June. The mackerel in the Gulf of saint Lawrence were large, but very scarce. and they did not seem to tatten so rapidly as in previous years. We returned home in August after an absence of eight or ten weeks, with a fare of 175 barrels of mackerel, which brought a high price, our No.

1 fish selling for $\$ 22.50$ per barrel. After packing out our bay trip we engaged in the mackerel fishery off the New England coast, fishing all the way from Mount Desert Rock to Cape Cod, though we caught but few mackerel east of Monhegan. The fish off our own shore in 1870 were of medium size, the greater portion packing for No. 2's. Mackerel were abundant, but did not seem inclined to take the hook very readily until they began moving to the westward along the coast toward Cape Ann and Cape Cod. Good catches were obtained off Boone Island, $\mathrm{I}_{\mathrm{p}} \mathrm{s}$ wich Bay, and in Massachusetts and Barustable Bays. We made two trips off shore, securing a catch of about 300 barrels.

1870.-The mackerel fishery of the saint Lawrence.-hostilITIES OF CANADIANS CAUSES LOSS TO AMERICAN VESSELS.

The following extract from the Gloucester Telegraph shows the condition of the Bay of Saint Lawrence mackerel fishery during the year 1870 :
"The Bay of Saint Lawrence mackereling season has closed, and the ill success of this branch of our industry is apparent at a glance. The hostile attitude of the Dominion Government had a tendeucy to deter many ressels from engaging in this fishing, so that the early fleet in the bay was quite small, and the success of the shore fleet later in the season tended to still further decrease the number of vessels engaging in the bay fishery, so that our fleet was smaller than for many years. The whole number of vessels reported as making bay trips this year is but so, only three of which made two trips each, and none were allowed to ship mackerel home; whereas, last year, there were 194 vessels employed in the bay fishery, 21 making two trips, and 33 shipping their early trip? home, and refitting in the provincial ports.
"Four Gloucester ressels were seized this season by the Canadian authorities on the pretense of mulawful fishing; one of these was released under a bond to pay whaterer damages were found by the courts; one was condemued and repurchased by her owners at a cost of nearly $\$ 3,000$, and two remain in the hands of the provincials."-(Gloncester Telegraph, November 16, 1870.)

1871.-LACK OF INTEREST IN THE MACKEREL FISHERY EXHIbITED BY CANADIAN FISHERMEN.

Mackerel Fisilery.-Gaspe division.

"In a special report on the duties performed by 'La Canadienne" in connection with the marine police, I shall have the honor of speaking of mackerel fishing by foreign schooners. This pursuit is not much followed by our own tishermen, and has steadily decreased since 1869. The fish did not come near the shores, and not more than 100 barrels were caught in Bay des Chaleurs. It was more abundant in Gaspe Bay, the catch being 400 barrels over that of last year. Cod-fishing is the main occupation of the people in this division. This fish was so
abundant, and the price of mackerel so low, that this may account for their not atteuding to the latter."-(Report of the cruise of the govermment schooner "La Canadienne," in the River and Gulf of Saint Larrence, for the season of 1871, under command of N. Lavoie, esq., fishery officer. Annual report of the department of marine and fisheries, for the year euding 30th June, 1871, Appendix C, pages 19, 20.)

Watsineeshoo District. Felix Sylvestre, overseer.

- Mackerel abundant, but the fishermen of this division do not follow this fishing."-(Synopsis of fishery overseers' and guardians' reports in the Proviuce of Quebec, for the season 1871. Annual report marine and fisheries, 1871, Appendix H, page 72.)

Moisie Division. F. Thivierge, overseer.
Mackerel were abundant. The fishermen in this division do not, however, in general, follow this fishing, but one man took 64 barrels. lli. . 1. 71.)

Pabos Division. James M. Remon, overseer.
In the mackerel fishing nothing is done beyond taking what is required for bait.-(lb., p. 67.)

Anticosti Division.

- Althongh mackerel are very abondant around the island they are not much sought after, and only 20 barrels were caught at Salmon River."-(Report of N. Lavoie, commander government schooner "La Canadienne," of a cruise in the River and Gulf of Saint Lawrence, 1872. Annual Report, marine aud fisheries of Canada, $18: 2$, Appendix B.)
1871.-INFERIOR QUALITY OF MACKEREL TAKEN in CANADIAN WATERS.

The following is taken from letters furnished by the county overseers of Nova Scotia to Mr. Rogers, the fish-officer of the province:

- I am happy to be able to report a very large increase in the quantities of almost all kinds of fish taken this year, and although prices have ruled much lower for most descriptions, the aggregate value is more than one million dollars over the presious year. Mackerel, particularly, show a very large increase, but being mostly the early runs, they are inferior in quality."-(Report of W. H. Venning, esq., inspector of tish for Nova Scotia and New Brumswick. Anumal report marine and tisheries, 1871, Appendix N.)
1871.-BAD SEASON FOR MACKEREL IN TIE GULF OF SAINT LAWRENCE.

These fish struck in on our shores about the middle of June in large quantities, and the first catches were taken in a very short time, some ressels taking 200 barrels in three meeks; but the fish were poor, not
making more than threes when culled. After that the catch was moderate, and I do not think that more than 30,000 barrels of mackerel were taken by the whole fleet. It has been a bad year for mackerel, the market prices, as a rule, being one-half below the average prices, and great numbers of American ressels were laid up by their owners, for the reason that the outlay required for fitting the vessel out for fishing being more thau the proceeds of the summer work.-(G. V. Story, commander mariue police schooner "Water Lily," Pictou, November 27, 1871.)

The mackerel fishery.-The Gloucester Telegraph says that the latest news from the Bay of Saint Lawrence reports a large number of American vessels on the fishing-grounds between Saint Margaret's and East Point, with mackerel scarce at the time. At Rustico mackerel catching was slack, and had been for a fortnight, though the few caught were larger than the earlier school. Mackerel were reported plenty at Port Daniel and East Point. All the fish were east of Rustico, and the Cascumpec boats reported neither codfish nor mackerel west. Sixty sail of vessels were reported at Magdalen Island on the $3 d$ instant, with mackerel scarce, and reports from Bradley's, three days later, represent fish "few and far between."-(Boston Journal, August 26, 1871.)
1871.-REAPpearance of mackerel on the labrador coast
after forty years' absence.
"Mackerel, which for the last 40 years had disappeared from the waters of the coast of Labrador, returned this season and in as great abundance as formerly. I have seen as many as 400 or 500 barrels caught in one haul of the seine at Bonne Esperance and Meccatina. Several schooners loaded at Seren Islands. Mackerel remained two months in the bay during the winter. A much larger quantity than was needed for their own use was caught at several ports along the coast, but prices were very low. There is no doubt that if codfish and mackerel continue to visit the waters of this division in as large numbers as they did this year, the coast of Labrador will assume an importance which may become superior to that of the Gaspe division."-(Report of the cruise of the govermment schooner "La Canadienne," in the River and Gulf of Saint Lawrence for the season of 1871, under command of N. Lavoie, esq., fishery officer. Annual report of the department of marine and fisheries for the year ending 30th June, 1871, Appendix C, page 26.)

> 1871.-Abundance of mackerel at small point, me.

The Bath (Me.) Times says that on Thursday, Small Point Harbor was thronged with mackerel, the like of which was never known, and countless thousands of them were caught in seines, nets, and with hook and line. One fishing vessel secured a thousand barrels. Other vessels got several hundred barrels, and the citizens in that vicinity made free with that "school" without consulting the teacher.-(Germantown Telegraph, August 16, 1871.)
1871.-NOTES ON THE MACKEREL FISHERIES, ETC., OF THE PROYINCES OF NEW BRUNSWICK AND NOVA SCOTIA.

In his report for 1871 Mr . Veming states that Mr. John Fitgereald. overseer for the western district, says: "The madekel wits more productive this year than it has been for the last ten years, but the guality was very poor. The fall mackerel have been a total fallure; and as this fish, if of tirst quality, would bring a high price, the loss has been seriously felt by the fishermen. The mackerel that have been canght this year have brought a very low price, hut when the large quantite taken is considered, the fishermen have no reason to complain."

Mr. Daniel Dimock, overseer for the eastern district of Lanenburg, says: "The shore fisheries in this district have been productive. more especially the mackerel."

In same report, Mr. Veming also stated that, "Overseer James A. Tory, of Cuysborongh Connty, says with reference to his district: 'The fisheries as a whole have been good this season, especially for mackerel, and although prices have ruled low they will compare favorably with the past.'"

In same report Mr. Venuing further states that. "Mr. Francis Quinan, the officer in charge of Cape Breton County, reports as follows: 'The total quantity of fish taken is considerably above that of former years. The run of mackerel was abundant, but of small size; the large brands were conspicuons by their absence; No. :3's maled, and of their kind were good, but the price realized in our markets was less than in years past.'"-(Report of W. H. Veming, esq., inspector of fisheries for Nova Scotia and New Brunswick. An. Rep. Mar. and Fish.. 18i1, Appendix N.)

1871.-THE MACKEREL FISHERY.

The Cape Ann Adrertiser of September 1 gives the following account of the mackerel fishery in 1871:
"The fismeries.-The bay fleet come along slowly. There have been but eleven arrivals thus far, the ressels averaging about 300 barrels each. The quality of the mackerel is not as good as those taken off this shore, and but few number ones have as yet been landed, but the catch of the present month and next will, no donbt, average much better. Prices rule low, considering the small number of barrels landed this year, and it will require pretty large fares to realize a paying season's work. Late advices from the bay report mackerel scarce.
"The shore fleet have done rather a slim business the past month. Some of the seiners have made some good trips, but the hookers, with a few exceptions, have done very poorly, the mackerel not inclining to bite. Had it not been for the seiners the market would have been bare of shore mackerel ; as it is, the catch has not been half as large as it was up to this time last year. The mackerel average mostly ones and are very large and fat, the quality being much better than those caught off
this shore last year, but the prices rule much lower. No. 1's are selling the present week for $\$ 11.25$ per barrel, less than one-half the price they brought at this time last year. Unless mackerel come in more freely than they have, the season's catch will be light and prices must necessarily advance.
"The George's fishery has been prosecuted through the season by a much larger fleet than usual, and most of them have realized very good fares. The catch is greatly in excess of that of last year, and although the prices have not been as remumerative, still the increase in catch will more than make up the difference, and the vessels engaged in this branch of the fisheries will make a very good season's work.
"The Grand Bank halibut fleet have brought in rather light fares of late, and prices have ruled low. About thirty sail of vessels are now engaged in this branch of the fisheries, and the business, as a whole, has proved but moderately successful." (Boston Journal, September 22.)
"Bay saint lawrence mackerel fishery.-The mackerel fishery for this season is rapidly drawing to a close. The shore fleet are doing but little, and may soon be expected in our waters for a week or two, preparatory to windiug up the business for the year. The news from the bay indicates a scarcity of mackerel, and, as rough weather may soon be expected, a large portion of the fleet will soon be along. The number of arrivals from the bay reported at Gloncester this season has been fifty-two. The fares have been comparatively small, and the fotality poor, while prices have ruled much lower than the past few years. The fares of 31 Gloucester vessels have been reported, ranging from 160 to 450 larrels, and averaging 247 barrels, which will probably he about the average of the fleet. Sixteen of the Portland fleet show an average of 211 barrels, and 11 of the Newbryport fleet show an average catch of 192 barrels. The average catch of the fleet from other fishing towns, so far as reported, is equally small; Booth Bay 227 barrels, North Haven 160, Wellfleet 140, Belfast 110, and New London 235. A Salem vessel has lauded 307 barrels, and one Frankfort vessel is reported with a eatch of 312 barrels and another with 620. Nineteeu vessels reported at Port Mulgrave show an average catch of 200 barrels." (Gloucester Telegraph, August 27.)

1871.-Fall mackerel fishery in cape cod bay.

Demis.-On Wednesday a. m. (Sth) the fishermen took 300 to 800 mackerel each in nets.

Barnstable.-Smith Bros. canght 1,200 yesterday (14th).-(Provincetown Advertiser, November 15, 1871.)
1871.-In the Cape Ann Advertiser, of July 28, are the following remarks upon the mackerel fishery:
"The mackerel season has now commenced in earnest, and good raturns are anticipated, as the season bids fair of being a prosperous one. The prospect at the bay is very encouraging, many of the fleet
having already landed good fares. American vessels are subject to the same treatment as last year, if caught fishing within the limits; but they hare liberty to ship mackerel home, and purchase supplies this season, which will greatly add to their chances of making a good year's work.
"The skippers will undoubtedly keep a sharp lookout and give the Dominion cruisers a wide berth, and we do not anticipate any difficulty in those waters at present. Later in the season, when the mackerel tend in shore, it may be a little more difficult to obtain a fare, but we do not believe that the Dcaninion crtisers intend to annoy American fishermen in the manner which characterized last season.
"The treaty has not been signed by the Dominion Government as ret, consequently it will not take effect this season. It is erident that the price of mackerel will not rule as high as last year, which will tend to bring about quick sales, as people can afford to eat these fish when the price is brought within their means, and the prospect for a lively market is quite encouraging.
"Altogether, the mackerel season, both off shore and at the bay, prom ises well, and we hope that good trips will crown the efforts of all engaged in this branch of the fisheries."-(Boston Journal, Juls 29.)

1871.-REMINiscences of aAPT. J. W. COLLINS.

I was engaged in the halibut fishery during the season of 1871 until August, when I fitted out for a mackerel cruise off the New England roast, still being the same vessel in which I had sailed the previous season. The mackerel were comparatively scarce in the fall off shore and disinclined to bite. We sncceeded, however, in catcling 175 barrels with hook and line, which was much better than the average for the time we were engaged. The last two days' fishing which we had were off Chatham. The first of the two days we caught 50 barrels betreen Nausett and Chatham, and the following day we obtained 30 wash-barrels more about 15 or 20 miles ESE. from Chathan Light. The fish at that time moved very rapidly in a southerly direction.

Many of the seiners obtained large catches during the fall, but as we were fishing with hook and line it frequently happened that we could get few or no mackerel, even where they were most abundant, and the seiners were filling up.

1872.-Good lutck of some of the mariet fishermen.

On Friday of last week the schooner "Yankee Lass," Captain Brown, took 60 barrels of mackerel off the Highlands of Cape Conl, and sold them in Boston the next day for $\$ 1,500$. A few weeks before the same ressel sold $\$ 1,200$ worth, which she caught in a single day. Another ressel made $\$ 2,520$ in a couple of days. In all these cases the market was bare of mackerel, and hence the high prices obtained. The fore-
going fares were sold fresh without dressing.-(Gloucester Telegraph. October 12, 1872.)

1872.-Mackerel fishery of provincetown.

The Provincetown mackerel fleet, in the early part of last week, after a trial of two days without finding mackerel, broke in small squadrons and sought their home ports to haul up, or to engage in other pursuits. It has hovered around Provincetown, and been in the harbor since August, taking but few fish. Inquiry at the packiug establishments discloses the fact that the entire catch of that part of the fleet hailing from Provincetown will not much exceed 12,000 barrels. In 1870 the catch packed 37,552 barrels, aud in 1871 it was 24,918 barrels. From information received, the opinion prevails that the falling off in the catch of the whole fleet will not be less than that part of it sailing from Provincetorn. A rery few ressels using seines have been successful. but those depending upon the hook and line, constituting much the largest part, will not, as a whole, realize a sum sufficient to pay ex-penses.-(Cape Ann Light and Gloucester Telegraph, May 31, 1874.)
1872.-Mackerel on the south coast of nova scotia.
H. S. Jost, esq., overseer for the western district of Lumenburg County, Nora Scotia, reports that mackerel are of a better ruality than those taken in 1871, and have generally been sent to the United States. where a fair price has been obtained for them. The hitherto nucertain fares in the North Bay mackerel fishing has had the effect of cansing most of the Nova Scotia vessels to seek other employments this fall.(Report of W. H. Veming, inspector of fisheries for Nova Scotia and New Brunswick. An. Rep. Mar. and Fish., 1872, Appendix N.)
1872.-DISINCLINATION OF THE CANADIAN FISIIERMEN TO ENGAGE IN CATCIING MACKEREL.

Mackerel fishing is pursued ouly to a very limited extent in Gaspe Bay since the repeal of the reciprocity treaty, the few accidently caught in herring nets being used as bate for cod; and even uuder reciprocity this kind of fishing was entirely in the hands of Americans, the Gaspe fishermen not catching the fish even for local consumption. For the space of about one month this summer mackerel was very abundant in Gaspe Bay, some catching as many as 1,700 in one day. Mackerel as well as salmon sold fresh, but prices being low, fishermen considered it more advautageous to engage solely in the more remunerative pursuit of cod-fishing. During September and October prices ruled higher, but mackerel had then left the bay.-(Report of N. Lavoie, commander of government schooner "La Canadienne," in a cruise in the River and Gulf of Saint Lawrence, 1872. An. Rep. Mar. and Fish. „1872, Ap. pendix B.)

1872.-A BIG TRIP FROM GEORGE'S.

Schooner "Volunteer," Captain Smith of this port, arrived from George's on Friday with 340 barrels of mackerel, which were seined on the bank. This is the largest fare brought in this season, and the mackerel were all large and fat.-(Cape Ann Advertiser, Angust 16, 1872.)
1872.-A BIG SCHOOL OF MACKEREL-SUCCESS OF THE SEINERS.

Schooner "Judith Amm," of this port, recently came across a big school of mackerel off Thatcher's Island, and had such a heavy draught of them that they were obliged to cut the purse-rope of the seine in order to save it. Out of the lot, estimated at 1,000 barrels, they succeeded in saving only 40 barrels.

Sereral of the mackerel seiners had quite a streak o' luck last week, which will very materially help out their season's rork.

Schooner "Isaac Somes," Capt. E. H. Taylor, was absent from Harwich Port thirty hours, and during that time seined 250 barrels of mackerel. This is reported as the largest catch in the shortest time this season.-(Cape Ann Advertiser, September 13, 1872.)
1872.-REMINISCENCES of CAPT. J. W. COLLINS.

In August, 1872, I went to the Gulf of Saint Lawrence on a mackerel trip in the "Alice G. Wonson." Mackerel were large though scarce, and as a result we cruised over nearly the whole of the fishing grounds in the Gulf from Bonarenture to Cape Breton. We did not succeed in obtaining any great catches, neither did we hear of many being taken. However, we secured a fare of 250 barrels of fine mackerel, for which a fair price was obtained, making the rorage, on the whole, a reasonably profitable one.
1873.-The Passage of the fisheries bill-anticipation of its being injurious to american fishermen.

The bill to carry into effect the fishery provisions of the treaty of Washington, passed the House Mondar by an unexpectedly strong vote, 145 yeas and 30 nays. The only amendment, which was offered by Mr. Buffinton, delays the date on which the duties on fish from the provinces are removed until July 1 , and was agreed to both by the Committee on Foreign Affairs aud by the State Department. General Butler opposed it, and denounced the treaty as very unfair to the United States. President Grant sent a special message to the Senate and House, in which he urged the passage of the bill. It will go into effect July 1. There are grave apprehensions that we have paid dearly for the whistle in the admission of foreign fish duty free; and the provincial fishermen have thus obtained great advantages over the American, both on the lakes and sea-coast. Be that as it may, there is no help for
it now, and ere the end of the present year we shall probably know whether or not we can catch and sell tish under the disadvantages of this treaty as cheaply as our neighbors in the provinces can with the great advautages it affords them.-(Cape Ann Advertiser, February 28, 1873.)

1873.-SAILING OF THE FIRST OF THE SOUTHERN FLEET.

A portion of the southern mackereling fleet have sailed the present week, and others will soon follow.-(Cape Ann Advertiser, April 18, 1873.)

Two of the Newburyport schooners sailed on the 17th instant, for the south, on a mackereling cruise.-(Cape Ann Advertiser, April 25, 1873.)
1873.-First arrival of fresh mackerel in new york market.

The first fresh mackerel of the season were carried into New York on Thursday (May 1) of last week, by a Chatham schooner. She had 25,000 , which were sold at 20 cents apiece.-(Cape Ann Advertiser, May $9,1873$.)

1873.-A BIG FIRST TRIP.

Schooner "Fleetwing," of this port, carried into New York ou Tuesday 52,000 fresh mackerel, which were sold for $\$ 2,657$.-(Il.)

1873.-First mackerel caught off cape ann.

May 20, schooner "Sea Foam" caught about 200 mackerel, which, being the first catch of the season off Cape Ann, sold for 10 cents apiece. Last season the same vessel also brought in the first fare of mackerel, having been fortunate in securing 120 barrels on the 22 d of May, which sold for $\$ 2.50$ per hundred.-(Cape Ann Advertiser, May $23,1873$.
1873.-First arrival in gloucester of the southern fleet.GOOD PRICES.

Schooner "Emma Jane" arrived home from the south on Tharsday last (May 19) with 170 barrels of mackerel, which were sold for $\$ 9.25$ and $\$ 7.25$ per barrel. First arrival of the season.-(Cape Ann Advertiser, May 30, 1873.)

1873.-First start of the bay fleet.

The first of the bay fleet sailed on Tuesday (June 3), and others will soon follow. Some 30 sail will be on their way by the middle of the month.-(Cape Ann Advertiser, June 6, 1873.)

1873.-SPring MACKEREL FISHERY.

The fishing season has fairly commenced in Long Island waters, in the Great South Bay, and the other bays on the south side. Large num-
bers of bluefish, weakfish, and mackerel are taken daily. On Friday and Saturday the fishermen found it impossible to dispose of their catches, and most of those who had loads of mackerel were obliged to cast anchor and salt them. On Friday the fishing company at Southold caught 100,000 at one haul.-(Cape Aun Light and Gloucester Telegraph, Gloucester, Mass., May 31, 1873.)

1873.-TIIE SOUTHERN MACKEREL FLEET AT NEWPORT.

One hundred and fifty sail of mackerel catchers put into Newport Harbor on the 5th instant, in consequence of thick weather. They report mackerel more plenty of late, the catch the previous days averaging about 25 barrels to a vessel.-(Cape Ann Advertiser, June 13, 1873.)
1873.-THE SOUTHERN MACKEREL FISHERY.-PRICES.-THE BAY FLEET.

The Newport southern mackereling fleet has been doing only fairly. The "Miautonomoln" has taken three fares of fresh mackerel, caught by seine, into New York, of 45,000 fish ; the "Lizzie Thompson" has taken there two fares of 13,000 fish, and the "G. W. Brown" has taken two fares of 25,000 , making in all 83,000 fresh mackerel takeu into New York by Newburyport vessels. One firm has received $\$ 2,000$ for fresh mackerel sold, and has about the same amount to come.

By the hook the schooner "Matilda" has canght 12,000, and the "John Gerard" 8,000, and these also have been carried into New York.

The southeru mackerel fleet, as a whole, have not done so well this season as last. A large proportion of the fleet have sold their nackerel fresh in New York, and some of the seiners have made good stocks; but the hookers have done very slim. Some fourteen sail have thus far arrived home, averaging about 100 barrels. The market being bearer of old mackerel, the new stock have been in good demand, recent fares selling at $\$ 10.25$ and $\$ 8.25$ per barrel, with prospect of advance on these prices. A largo fleet will visit the Bay of Baint Lawrence the present season. The early fleet have already sailed, and by the 1st of July there will probably be a humdred ressels in readiness to start. The shore mackereling fleet will be smaller than that of last season, and comprised mostly of seiners.-(Cape Ann Advertiser, June 13, 1873.)

1873.-TIIE FIRST FARE FRON GEORGE'S.- Λ GOOD HAUL.

Schooner "Mary Odell," of this port, arrived from George's on Monday with 240 barrels of mackerel, the first fare from there this season. They lost most of the first haul they made in consequence of a shark going through the seine just as they had commenced bailing out. After repair. ing the seine, they made another immense haul, filling all their barrels
and the dories, and let as many more go, being unable to take care of them. The mackerel were of large size and excellent quality, and the trip proved a profitable oue.-(Cape Ann Advertiser, July 18, 1873.)

1873.-A GOOD SHOCK IN THE SHORE FISHERY.

Schooner " 1saac Somes," of Harwich Port, engaged in the shore mackerel fishery, has stocked about $\$ 7,500$ thus far this season, and is high line of the fleet from that port.-(Cape Aun Advertiser, July 25, 1873.)

> 1873.-Anotuer big george's trip.

Schooner "Eddie Pierce" arrived at Boston last week, from a three weeks' cruise, with 550 barrels of George's mackerel. She stocked $\$ 6,000$ for the trip-pretty good returns for a short voyage.-(Cape Aun Advertiser, August 8, 1873.)
1873.-SHORE AND BAY FISHERIES, PRICES, ETC.

The mackerel catch off this shore still continues light for the season. Nineteen seiners have arrived since our last issue, five of which were from George's, and brought in good fares. The total catch for the past week has been about 2,500 barrels, which have been sold at $\$ 20$ and $\$ 19$ for No. 1's; \$12.75 and \$13 for No. 2's. Schooner "Highflyer" arrived from the Bay of Saint Lawrence on Tuesday (August 5)-the first arrival of the season, and a week earlier than the first arrival last year. She brought in 225 barrels. Others of the fleet are on their way home, and daily expected. Two fares have been sent home per steamer. The quality of the mackerel taken at the bay early in the season is not as good as those taken off this shore, but those caught the past three weeks are said to be much fatter.-(IU.)
1873.-The mackerel fleet of newburyport, past and present.

The Newburyport Herald says: Our mackerel fleet, which numbered 140 vessels forty years ago, is now reduced to about 20.-(Cape Ann Advertiser, August 15, 1873.)

1873.-Light catch in the bay.

On July 29 there were in the harbor of Georgetown, Prince Edward Island, about 50 sail of American mackerel schooners. The highest catch reported among them was 200 barrels, and the average fares of the whole fleet was estimated at 150 barrels. The catch of mackerel in the Gulf of Saint Lawreuce has, up to this time, been light. The fish appear to be abundant, but do not bite freely.-(Ib.)
1873.-AN OLD VESSEL MAKES A LARGE STOCK IN THE SHORE MACKEREL FISHERY.

Schooner "I. H. Horton," which recently arrived at Wellfleet from George's, has caught and lauded 1,402 barrels of mackerel, stocking
$\$ 14,023$, having been employed two months and ten days. This is the largest stock made in the mackereling business firom any port this reason. The schooner is twenty-three years old, and owned by Capt. I. I. Horton, of Eastham.-(Cape Ann Adrertiser, August 29, 1873.)

Schooner" I. H. Morton"has recently arrived from her fourth trip, with 282 barrels of mackerel. The "Horton" has now landed 1,664 barels, making her stock in three months \$18,425-(Cape Am delvertiser, Sep)tember 12, 1873.)

1873.-Destructive gale in the gulf of saint lawrence.

In the Cape Aun Advertiser of September 5, 1873, 36 Gloucester mackerel schooners were reported driven ashore in the huricane of August $2 \pm$ and 95 , causing the loss of thirty-six lives. Besides these many vessels and lives were lost from other ports engaged in the mackerel fishery of the Bay of Saint Lawrence.
1873.--SCARCITY OF MaCKEREL OFF NEW ENGLAND COAST.-ARRIVals Fronl bay, higil prices, etc.

Mackerel still continue very scarce off this shore, and some of the seiners have abandoned the business aud fitted away for the bay. With the exception of a haul by one of the Swampscott boats, and one by a Harwich schooner Saturday on Jeffiries, there have been no mackerel seined off this shore the past week. One George's fare of 240 barrels arrived on Tuesdas, which were quickly taken up at $\$ 23.50$ per barrel for No. 1, the highest price obtained this season. No. 2 sold for $\$ 13$.

Six bay fares, about 1,200 barrels, have arrived the past week, which have met with quick sales, No. 1's selling for \$14.50 and \$15 per barrel. The market was never so bare of mackerel at this season of the year, and the supply for the fall and winter trade bids fair to be a meager one.-(Cape Aun Advertiser, September 12, 1873.)

1873. - A SCHOOL OFF CAPE COD.

A school of mackerel struck the waters ofi C'ape Cod last week. A Harwich schooner took 100 barrels, and other vessels shared in the good luck.-(Cape Anu Advertiser, October 31, 1873.)

1873.-Arrival hone of the bay fleet.

The bay fleet have come in freely the past week, $6: 3$ ressels having arrived since our last issue, averaging good fares. This leaves about 30 sail yet to come, most of which will be along before the close of another week. The vessels arrive on a dull market, and but few of the late fares have been sold, as holders are not desirons to sadrifice their mackerel at the prices at present offered, unless actaally forced to do so. The stock in the market is held at $81 t$ and $s L^{2}$ for Nos. 1 and 2 , which prices, if not higher, will no doubt be realized ere many weeks elapse.-(Cape Ann Advertiser, November 14, 1873.)

1873.-THE GLOUCESTER MACKEREL FISHERIES.

The southern fleet in the spring was of usual size-embracing 54 vessels-and fairly successful, marketing their early catch in New York at good prices.

The summer fishery off the shores of Maine, New Hampshire, and Massachusetts was of respectable size, and mostly engaged in seining of mackerel, with a very good average success, although a few vessels did not pay expenses. Fighty-six vessels engaged in this business. Schooners "Beloidem" and "Empire State" were lost in this busiuess.

The Bay of Saint Lawrence fleet was unusually large, consisting of 185 vessels, against 60 last year. The catch was good, and the business would have proved quite successful but for the disastrous gale in August, by which so many vessels were wrecked or temporarily disabled in the height of the fishing season, materially reducing the receipts. Of the 185 Gloucester vessels engaged in this fishery 10 were wrecked, and are total losses, and three remain ashore at the Magdalen Islands, but are not abandoned. Twenty-six ressels made two bay trips each during the season, and the whole number of fares received at Gloucester this season will be 198 against 65 last year.-(Glonicester Telegraph, November 19, 1873.)

1873.-Reminiscences of capt. J. w. collins.

During the first part of 1873 I was engaged in the haddock and cod fisheries. About the 25 th of August I started from home on a macke. rel trip to the Gulf of Saint Lawrence, still being in the same ressel in which I had sailed the three previons years. We arrived in the bay soon after the first of September and immediately proceeded to the Magdalens. There we had an opportunity of witnessing the great destruction which had been wrought by the hmricane of the 24th and 25th of August. At the head of Pleasant Bay, and in Harbor Le Barre, some 20 or 25 sail of American mackerel schooners were driven high up on the sand; many of them lying in such positions as to render it extremely doubtful if they could be again got atloat. Many vessels were also stranded on Prince Edward Island, some being lost with all hands, while the crews of others were fortunate enongh to escape. Some of these schooners we had an opportmity of seeing later on our trip. I have taken occasion to allude to this gale here, since it was one of the most disastrous which our mackerel fleet has ever encountered, resulting in very great loss of life and property. The mackerel were scarce in the bay during the fall of 1873 , and though mostly of a large size were not so fat as might be expected. We fished most of the time about the Magdalen Islands, visiting, however, other points of the bay more or less frequently. We succeeded in obtaining a fare of 208 barrels, and returned home about the middle of November.
1874.-The southern mackerel fishing.-Light farles brought IN.

Southern mackerel fleet are arriving home, averaging light fares. The largest of the season, 300 barrels, was brought in by schooner "Falcon" on Wednesday, June 3 ; the trips will not arerage over 140 barrels. The business has been overdone this year.-(Cape Ann Advertiser, June 5, 1874.)

1874.-THE SPRING MACKEREL FISHERY.

The Cape Ann Advertiser of June 12, 1874, states that daring the past week twenty vessels belonging to the southern mackerel fleet had arrived with light fares, the average quantity being 100 barrels.

1874.-Fishing in the gulf of maine.

The Cape Ann Advertiser of September 25, 1874, states that there are from eight to nine hundred mackerel vessels between Portland and Mount Desert; the certch is light.
1874.-SUCCESSFUL GEORGE'S TRIP.

Schooner "Florence E. Tower," Captain Frye, arrived at Boston on Saturday (June 27), from a mackerel cruise to George's Bank. She brought in 450 barrels, the fare which has arrived at that port this season. * * Most of the fish were of good quality. Her trip this time was four weeks.-(Cape Ann Advertiser, July 3, 1874.)

1874.-High Line of tee Seining fleet.

Capt. Hanson B. Joyce, of Swan's Island (Maine), is high line of the seining fleet this season. Landed to 9 th October 2,300 barrels of mackerel, the largest number ever landed. A small craft of 52 tons still follows the trade, and may get another haul.-(Cape Ann Advertiser, October 16, 1874.)

ANOTHER GOOD CATCH.

Schooner "John Atwood," of Provincetown, had landed up to October $9,1874,2,000$ barrels mackerel. She took in all 2,100 barrels; was high line of the Provincetown fleet.-(Ib.)

LATE CATCH OF MACKEREL OFF CAPE COD.

Schooner "Willie B. Wilbur" took with the hook 20 barrels of fine mackerel off Race Point November 18, 1874.

> 1874.-A QUICK TRIP.

Schooner "Florence Nightingale" left Swampscott Monday morning, August 24, on a market fishing cruise and arrived in Boston the next S. Mis. $110-27$
morning, August 25 , with 350 barrels of mackerel, worth at least $\$ 2,500$ -a good day's work.-(Cape Ann Advertiser, August 28, 1874.)

ONE OF THE LUCKY VESSELS.

Schooner "Daniel Masey," of Portsmonth, N. H., has landed 1,800 barrels of mackerel up to August 25, and claims to be high line of the fleet.-(Cape Ann Advertiser, September 11, 1874.)

1875.-THE FIRST APPEARANCE OF MACKEREL.

One of the first mackerel fares caught by the mackerel fleet was taken April 20, 1875, by the schooner "Cora E. Smith," of Gloucester; and sold at New York for $\$ 15$ per 100 .

On June 6 a Newburyport vessel arrived at New York with 25,000 mackerel.
1875.-American vessels in the gulf of saint lawrence.

The following statement of the number of fishing vessels in the Gulf of Saint Lawrence mackerel fishery and the American shore mackerel fishery was submitted by David W. Low to the Halifax Commission:
Mackerel inspected in Gloncester .. 93, 126
58 vessels in Gulf, average catch 191 barrels... 11, 078
117 vessels American shore, average catch 409 barrels............................. 47, 853
58, 931
The average catch is based on the average catch of 84 vessels from 17 firms in 1869, and 28 vessels in bay and 62 vessels off American shore from 20 firms in 1875. These firms have done better than the rest.-(Docs. and Proc. Пalifax Com., 1877, U. S. edition, p. 2595.)

1875.-First mackerel of the season.

The first catch of mackerel was brought to New York last week. The fish were of good size, but had not yet acquired that primeness and excellence of savor which mackerel only acquire in colder waters. The fish were struck south of Cape Henry, and now some twenty smacks are in search of the coming shoals.-(B. Phillips, in New York Times, May $9,1875$.)

1875. -Fisifing in the gulf of maine.

One ressel took 250 barrels of mackerel off the point at Provincetown, Saturday afternoon.-(Provincetown Advocate, October 6, 1875.

1875.-Sailing of the soutiern fleet.

A large part of the George's fleet have fitted out to go south, mackereling.

Several of the south mackerel fleet have sailed, and the balance will follow in a few days. They will tend New York market, selling their fish fresh.-(Gloucester Telegraph, April 21, 1875.)
1875.-FIRST FARE OF MACKEREL FOR THE SEASON-A BIG STOCK.

To a Portland schooner, the "Georgie Willard," belongs the credit of landing the first fare of mackerel this season. The "Willard" arrived at New York on Friday (April 30) and landed her catch of 22,000 mackerel, stocking over $\$ 4,000$.

1875.-THE SPRING FISHERY.

The southern mackerel fleet are meeting with eair success. Last week, Monday, the schooners "Bell of the Bay," and "Bloomer" arrived at New York with 200 barrels each, and schooner "Roger Williams" with 700 barrels. The "Bell of the Bay" had been out eight days, "Bloomer" forty-eight hours, and "R. Williams" three days. On Wed nesday the "William S. Baker" (six days out) arrived with 220 barrels. The first vessel to arrive home with a southern mackerel fare was the "Pathfinder" (on Friday), with 280 barrels. Schooner "James A. Stetson" arrived from a southern trip on Sunday, with 250 barrels of mack-erel.-(Gloucester Telegraph, May 26, 1875.)

1875.-A GOOD OATCH AT NEWPORT.

A fishing gang near Newport, Thursday, with a purse seine, passed it around a school of fish, supposing them to be menhaden. The result of their haul proved to be upwards of 14,000 mackerel, which were sold from 10 to 15 cents apiece.-(Gloucester Telegraph, June 9, 1875.)
1875.-SMALL CATCH OF MACKEREL IN JUNE.

Only 53 mackerel arrivals were reported for the month of June, with a total catch of some 7,000 barrels, less than one-half of the receipts for the corresponding month last year.

Mackerel, notwithstanding the lessened receipts, have sold at some two dollars less than last June.-(Gloucester Telegraph, July 14, 1875.)

1875.-SmaLL BAY FLeet.

The Gloucester bay fleet will be smaller this season than for many years.-(Gloucester Telegraph, July 21, 1875.)
1875.-SCARCITY OF MACKEREL OFF SHORE-BIG FLEET ON GEORGE'S.

The schooner "Mary B. Tower," from George's Bank, arrived at Boston 2Sth ultimo, after an absence of thirty weeks, with 140 barrels of mackerel. She reports fish very scarce. Sererel ressals had been out a month without taking anything worth reporting. Many of the ressels which had been cruising off the coast of Maine, fiuding no fish, put off for the Banks. There were about 200 sail on George's on the 27th ultimo.-(Gloucester Telegraph, August 4, 1875.)

1875. - First arrival from the bat.

One arrival has been reported from the Bay of Saint Lawrence the past week, the first of the season, with 241 barrels.-(Gloucester Telegraph, September 1, 1875 .)
1875.-SCARCITY OF MACKEREL IN THE BAY.-THE FLEET AT THE MAGDALENS.

The Prince Edward Island Times reports no great catches of mackerel this season about the island. The catch will not be above twothirds of that of last year, but of superior quality. Reports from all quarters speak of a small catch.-(Ib.)

But few mackerel are taken. Nothing has been done at Bay Chaleur or Gaspe. The American fleet in the bay almost wholly surround Magdalen Islands.-(Gloucester Telegraph, September 16, 1875.)

1875.-ARRIVAL OF THE SHORE FLEET.-SMALL NUMBER OF ARRIVALS FROM THE BAY.

The mackerel fleet have mostly arrived from the eastern coast-56 having been reported last week-and are now engaged upon the Cape Cod shore, meeting with moderate success in the capture of small mackerel. One arrival has been reported from Bay Saint Lawrence, making three bay arrivals this season, against 31 arrivals up to Uctober 1 last year. The mackerel fleet were reported off Plymouth on Saturday, and on Sunday there were 100 sail on Middle Bank, apparently doing well.-(Gloncester Telegraph, October 6, 1875.

1875.-Mackerel passing Cape cod.-A Good haul.

On Tuesday, the 5tl instant, immense shoals of mackerel were seen passing down by Highland Light (Cape Cod), and were even so near shore that a stone might have been thrown among them from the beach. The schooner "Nellie T. Campbell" threw her seine around a school and scooped up many more barrels than she could handle, and after filling her decks full signaled to another ressel to come and take what remained in the net.-Gloucester Telegraph, October 20, 1875.)

> 1875.-A BIG HAUL AT NEWPORT.

A school of large mackerel were reported off Newport last week, and 125,000 in number, large ones, were seined on Tuesday.-(Gloucester Telegraph, November 3, 1875.)

1875.-High price of bay mackerel.

At Newburyport last week bay mackerel were sold from $\$ 24$ to $\$ 26$ per barrel for choice mess; $\$ 17.50$ to $\$ 18$ for No. 1's; $\$ 14$ to $\$ 16$ for 2 's, and $\$ 9, \$ 11$, and $\$ 14$ for No. 3 's.-(Ib.)

1870 TO 1876, INOLUSIVE.-THE MACKEREL FISHERIES OF PROVINCE. TOWN, MASS.

"Going back to 1870 , we had that year 41 ressels engaged in mackerel fishing, not one of which went into the Gulf. They all fished on our coast. The aggregate quantity of mackerel which they all packed was 37,552 barrels. In 1871 we had still 41 ressels, which still continued to fish on our coast, having done pretty well there the year before. None went to the Gulf. The aggregate catch which these ressels packed amounted to 24,918 barrels. In 1872 we had 36 vessels, of which 3 went to the Gulf of Saint Lawrence, leaving 33 fishing on our own coast. These 36 vessels packed out 16,303 barrels, and the 3 vessels which went to the Gulf packed out 785 barrels, making an arerage per ressel of $261 \frac{3}{4}$ barrels.
"In 1873, when the Washington treaty went into effect, as we intended going to the bay, having now no fear of the cutters, we enlarged our bay fleet, and so 6 went there that year instead of 3 . Two of these 6 , or one-third of them, were lost in the gale in which so many ressels were lost. The vessels lost were the schooner "Helen M. Woodward," off the Magdalen Islands-the vessel was a total loss-and the "Carrie P. Rich," off North Cape, Prince Edward Island ; vessel and crew total loss.
"The latter went to the bay early in the year, and she had shipperd some mackerel home betore the gale took place. She was lost, with ali she had on board. The whole catch of these six ressels that year was 845 barrels. In 1873 we had 38 vessels, and their total catch was 15,772 barrels, including the 845 barrels mentioned. In 1874 we had 35 vessels engaged in the mackerel fishery, and they packed out 23,098 barrels. Three vessels went to the Gulf, bringing home 590 barrels, which are included in the total catch of the 35 ressels, 23,098 . In 1875 we had 37 vessels, which packed out 10,613 barrels. Two of them went to the Guif, and they brought home 270 barrels, which are included in the gross amount stated.
"In 1876 we had 32 vessels, whose total catch was 16,150 barrels. Two of them went to the Gulf of Saint Lawrence, bringing home 202 barrels, which are included in the 16,150 . These totals make a grand total of 144,406 barrels, of which 2,692 were caught in the Gulf of Saint Lawrence in 16 voyages during the several years I have named. The average catch of these ressels since 1872 , and since the fishery clause of the Washington treaty went into effect, was 146_{3}^{1} barrels per vessel, and prior to that the arerage was $261 \frac{1}{3}$ barrels per vessel, in the Gulf of Saint Lawrence."-(Statement of Captain Atwood before the Halifax Commission.)

> 1876.-THE SOUTHERN FLEET.

About 90 Gloncester and Cape Cod schooners, employed in the mackerel fishery, were reported off Lewes, Del., on Thursday of last week.(Cape Ann Advertiser, May 12, 1876.)

1876.-First american vessels in the bay.-FAILURE OF SPRING mackerel at the magdalens.

The first American mackerelmen in the bay arrived at Port Mulgrave [Canso] on the 13th instant. The first Gloucester schooner in the bay, the General Grant, arrived the next day.

Advices from Magdalen Islands on Monday report net mackerel fishing a failure.-(Cape Ann Advertiser, Juwe 23, 1876.)

1876.-A school of mackerel in the eel grass.

A school of mackerel became entangled in the eel grass in Chauncy's Creek, near Portsmouth, the other day, and about 30 barrels were taken by hand.-(Cape Ann Advertiser, July 4, 1876.)
success of a gloucester schooner in the mackerel fishery.
Schooner "Argonaut," Capt. E. A. Horton, landed from May 15 to July 21, 1876, 825 barrels of mackerel.-(Cape Ann Advertiser, July 21, 1876.)

1876.-Extinction of the hingham mackerel fishert.

Mackerel fishery at Hingham, Mass., once gave employment to 65 vessels; now extinct.-(Cape Aun Advertiser, January 28, 1876.)

1876.-MaCkEREL FISHERY IN MASSACHUSETTS BAY.

The Swampscott shore fleet, up to the 5th of June, was said to hare had success. The best day's catch landed was 1,000 barrels; this amount of course refers to the catch of the whole fleet.
1876.-The mackerel fisiery in the gulf of saint lawrence.

The first American mackerel vessels arrived at Port Mulgrave June 13, 1876; one from Boston, and one from Booth Bay. The first Gloucester vessel arrived on the 14th. A fair catch of mackerel was reported at Canso; on the 16th of June mackerel were reported on both sides of the Gulf.
1876.-THE SOUTHERN MACKEREL FLEET.

The Cape Ann Advertiser of June 19, 1876, remarks: "The southern mackerel fleet have met with good success of late, and alarge fleet have arrived the present week, bringing fares of 200 to 400 barrels. There has been a reduction in price."

> 1876.-The gulf mackerel fishery.

The Halifax Chronicle states that in 1874 there were 74 vessels en gaged in the mackerel fishery from that city.

In the Gulf of Saint Lawrence, in 1876, the schooner "Samuel Davis," of Halifax, was high line, having landed 252 barrels of sea-packed mackerel.

1876.-THE SPRING MACKEREL FISHERY.

Thirteen vessels of the Gloucester fleet were at Lewes, Del., April 22. At the same place, May 4, there were 90 vessels from Cape Cod and Gloucester. The Cape Ann Advertiser, of May 19, aunounced that the earliest sales, amounting to about 400 barrels, brought $\$ 4$ a barrel in New York; the catch so far having been very light.

1876. -FALL MACKEREL FISHERY.

Eleven hundred and eighty-five barrels of mackerel were landed at Boston September 25 ; 700 barrels September 27 ; 1,200 barrels September 29. They were chiefly taken off Minot's Ledge, and sold at 12 to 14 cents for large, 3 to 4 cents for clinchers, and $1 \frac{1}{2}$ cents for blunts.

An enormous school a mile long and half a mile wide was struck by fishing boats off New Loudon, October 30, and though many of the nets had to be cut, because of the excessive weight of fish, 300,000 fish, worth $\$ 10,000$, were taken.

A gang from Wilcox's fish-works at Quiambog surrounded off Watch Hill, September 29, what they supposed to be a large school of menhaden. When the net was hauled they proved to be mackerel; 120,000 of them were No. 1's; they weighed from $1 \frac{1}{2}$ pounds to 3 pounds each, and, at 5 cents apiece, were worth over $\$ 5,000 .-$ (Cape Ann Advertiser, October 6, 1876.)
Smith \& Horton, of Eastham, caught about 2,000 barrels of mackerel in their weirs Friday, November 3. They were large fish. One hundred and twenty-five cart-loads were taken out, still leaving many more to be secured.-(Cape Ann Advertiser, November 10, 1876.)

Mackerel plenty November 13-14 at Vineyard Haven. Small boats have been catching them for two or three days.-(Cape Ann Advertiser, November 17, 1876.)

1876.-Big trips of new england vessels.

Schooner "Daniel Marcy," Capt. Abraham Cahoon, jr., of Harwich, arrived at Portsmouth 1st September, 1876 , with 410 barrels mackerel, making total catch for the season 1,500 barrels. Captain C. claims to have been high line for 15 years.

Schooner "Alice," of Swan's Island, packed out 2,700 barrels of mackerel this year, and made another haul of 300 barrels, giving her a catch of 3,000 barrels for the season. She claims to have beaten the "Mary Odell," of Gloucester, and to stand high line in the New England fleet.

Schooner "Rebecca M. Atwood," of Portland, has landed over ",600 barrels at her home port this season.

Schooner "Mary Odell," Capt. Geo. McLean, made a large haul of fat mackerel in Barnstable Bay last week, taking from her seine 300 bar-
rels, which were all that her crew could handle, besides giving away 110 barrels to the crew of a Boston schooner, and losing several hundred barrels through a break in the seine. She had already landed 2,200 barrels, stocking $\$ 11,000$ net (the crew sharing $\$ 436.96$ each), up to September 22, and the next week landed two fares, one of 200 or 300 barrels; during the past week she has made two trips into Boston. Her stock for the season is probably double that of the schooner "Alice."-(Cape Ann Advertiser, October 6, 1876.)

1877.-THE SPRING FISHERY.-ARRIVALS OF FRESH MACKEREL IN NEW YORK.

The early arrivals at New York the middle of last week landed good fares, and prices were good considering the almost simaltaneous arrivals of nine ressels on Thursday and Friday. The schooner "Mary Odell" was the first to arrive, followed closely by the schooner "Seth Stockbridge" with 35,000 mackerel in number. The schooner "Madawaska Maid" came next with 180 barrels, and the rest of the fleet had from 100 to 150 barrels each. The market opened with sales of large mackerel at 12 to 15 cents, but soon fell to 10 cents for extra large, 8 cents for large, 5 cents for tinkers, and 3.2 cents for flinks.-(Cape Ann Advertiser, May 4, 1877.)
1877.-A NOVA SCOTIA SCHOONER BOUND SOUTH FOR MACKEREL.THE TABLES TURNED.

Now that our Bay of Saint Lawrence fleet has dwindled to comparative insignificance, and no longer throw the bait that keep the waters swarming with mackerel, it looks as if the Nova Scotia fishermen would have to resort to American waters for a catch. One provincial vessel was in port a few weeks since bound south in pursuit of mackerel.(Cape Anu Advertiser, May 25, 1877.)

1877.-A GOOD CATCH IN NOVA SCOTIA WEIRS.

A good mackerel catch is reported along the western shore of Shelburne County, N. S. Some traps have taken over 1,000 barrels, and all others are doing well.-(Cape Anu Advertiser, June 29, 1877.)

1877.-A Lucky haul at Provincetown.

The keeper of Wood End Light, with the assistance of his wife, seined 4,500 mackerel the other day, which sold for \$150.-(Ib.)

> 1877.-A LARGE CATCH IN A CAPE COD WEI.

The Yarmouth Herald reports that upwards of 1,400 barrels of mackerel have been taken from the Sandford fish-trap this season; value not far from $\$ 7,000$.-(Cape Ann Advertiser, July 20, 1877.)

1877.-DOINGS OF THE SHORE FLEET.-SMALL CATCH.

The Boston Fish Bureau reports the catch of the shore fleet to Au gust 1 at 34,657 barrels, against 113,246 barrels at the same time last. year. The July catch was 6,614 barrels, against 81,193 in July, 1876. The reports from the fleet continue unfavorable, nothing being done except in the neighborhood of Block Islaud. The vessels there are reported with fares ranging from 25 to 160 barrels each. The schooner "Alice," of Boston, arrived at that port Wednesday, with 170 barrels large mackerel, caught off Block Island, the result of four weeks' fishing.(Cape Ann Advertiser, August 3, 1877.)
1877.-A BIG CATCH OF MACKEREL ON THE NOVA SCOTIA SHORE.

The Halifax Herald reports a mackerel strike in the vicinity of that city. At Tom's Bay the boats lauded over 300 barrels, which will arerage No. 2. At Upper Prospect the catch areraged from 30 to 300 barrels to a seine, over 1,000 harrels being taken the first day after the fish struck in. The reports from all the coves in the vicin ty were en-couraging.-(Cape Anu Advertiser, August 17, 1877.)

1877. -Syall catches of the mackerelmen.

The prospects of the mackerel fleet do not brighten. Out of 18 arrivals from off shore the past week the only fares worth mentioning are 125 barrels in the "Argonaut," canght off Block Island, and io barrels in the "Volunteer," the rest of the fleet realizing less on a two or three weeks' trip than is often the result of a half hour's good fishing. The nems from the bay is not of an encouraging character. There have been six arrivals at this port to date this season, with au arerage of about 200 barrels each, which does not give the prospect for the rest of the fleet a flattering aspect.-(Cape Aun Advertiser, Angust 31, 1877.)
187\%.-Failure of the bay macherel fishery.-the fare of
THE HIGII LINE OF THE BAY FLEET COST MORE THAN IT CAJE
TO.
Recent arrivals from the Bay of Saint Lawrence report the mackerel fishery a failure there, as well as on our own shores, and some of the vessels had not seen a mackerel for a fortnight before leaving the bay. The vessels already arrived, representing the portion of the fleet meeting with the best success, report an average catch of 183 barrels, which would not be more than half a fare in ordinary seasons, and will not pay the expenses of the voyage, even at the present high prices. Uuless the majority of the fleet still remaining in the bay find better fishing this month, which is not deemed probabie, most of the ressels will be obliged to return empty, and the mackerel fishery will prove a lamentable failure this season.

The masters of the vessels returning from the Bay of Saint Lawrence agree in the opinion that the mackerel have left the bay, and that the
fall fishery will be a failure. The schooner "Cayenne" is high line of the fleet, and of her fare of 320 barrels sea-packed mackerel, only 45 barrels were caught within the three-mile limits. The vessel was chartered, and for two months the charter was $\$ 450$; the use of seines and boats was $\$ 300$ more, and the outfit of provisions, \&c., $\$ 450$; the crew were on shares, but, at the rates paid those hired by the month, their wages would amount to $\$ 960$; to this add the captain's wages, $\$ 150$; insurance on seines and boats, $\$ 30$; salt used, $\$ 140$; bait, $\$ 162.50$; and expenses of barrels, packing, \&c., $\$ 525$, and we have a total expense of $\$ 3,117.50$. The fare packed out 300 barrels, which sold for $\$ 2,845$, leaving a net loss on the trip of $\$ 272.50$. With such a record for the high line it will be readily seen that the failure of the majority of the fleet to secure fares will entail a serious loss upon this industry.-(Cape Ann Advertiser, September 7, 1877.)

1877.-Slim doings of the mackerel fleet.-The high liners.

The shore mackereling fleet continue in the neighborhood of Cape Cod, meeting with indifferent success, and it becomes more and more apparent that the mackerel stock for 1877 will be the smallest kuown for years. Scarcely a vessel employed in this business will pay expenses. * * * The schooner "Alice," of Swau's Island, is high line of the mackerel Heet, having caught rising 1,400 barrels this season. The new schooner "William M. Gaffiney" has made the best stock, her catch having realized about $\$ 10,000$ since she came from the stocks, April 16.

The bay fleet report no catch of consequence since the gale a month ago. The prospect is that many of the vessels will be compelled to come home with very light fares.-(Cape Ann Advertiser, October 26, 1877.)

1877.-Unprofitableness of the mackerel fishery in the gulf of saint lawrence from 1873 to 1877.

The Bay of Saint Lawrence mackerel fishery to the Gloucester fleet has been a growing failure for many years, both in the number of vessels prosecuting it and in their catch. Exceptional trips have been made at a profit, yet the average vessel has prosecuted it yearly with considerable loss.
In proof of which, take an average bayman for an average season's fishing. Her expense account will average at least $\$ 2,600$ (without charging interest on vessel and outfits, or for depreciation on hull, or any partial loss not covered by insurance). She must catch 400 barrels of packed mackerel, worth an average price of $\$ 13$ per barrel, to pay her expenses. Any less number of barrels than 400 would only lessen the amount of her bills by the salt not used. The packing of a less number of barrels and the master's commission on decreased amount of stock, the wear of the sails, rigging, cables, \&c., would be the same; the crew must be fed; the bait would be used in trying for fish; so that any one
can estimate the loss to an average vessel whose catch or its value varies from the above estimate.

Of 19 firms, including those that have been most successful in the Bay of Saint Lawrence mackerel fishery, with 81 vessels employed in that ishery in 1873, their average catch was 283 barrels to each vessel. In 1874 , with 46 vessels, 358 barrels was the average; in 1875 , with 20 vessels, 195 barrels was the average ; in 1876 , with 17 vessels, 124 barrels was the average; in 1877, induced by the encouraging reports sent from the Straits of Canso and other places, the fleet to the bay from the same firms was increased to 28 ressels, with still more disastrous results, the catch of those that have arrived or been heard from being far below that of last year, proving now to a certainty that the prosecution of tho mackerel fishery in the Gulf of Saint Lawrence by American vessels is a complete and utter failure.

The same firms, during the above jears, with 55 vessels employed on the Aimerican shore, in 1873 averaged a catch of 350 packed barrels of mackerel each; in 1874,63 vessels averaged 554 barrels ; in 1875,54 ressels averaged 381 barrels; in 1876, 57 vessels averaged 674 barrels.(Cape Ann Advertiser, November 2, 1877.)
1877.-LARGE SCHOOLS OF MACKEREL SEEN OFF THE NEW ENGLAND COAS'I.

The largest school Captain Harding ever surrounded and kept with his seine amounted to 300 barrels. In 1877 he lost a school off York, Me., which filled his net full. He saw a school off Block Island in 1877 which he estimated to contain $1,000,000$ barrels. He could see only one edge of it at a time.

1877.-Mackerel fishery in cape cod bay.

Mackerel struck last week in unusnal abundance. The like has not been known for years. The day will be remembered as "mackerel day" for a good many years.-(Provincetown Banner, July 18, 1877.)

1878.-MACKEREL FISHERY OF NEW ENGLAND.

Mackerel fishery.-The Bay of Saint Lawrence mackerel fishery by the American fleet opened last year Jume 7, when the first vessel arrived, and closed November 30, when the last vessel sailed for bome. The whole number of vessels in the bay was 273 , of which 125 or $42 \frac{2}{5}$ per cent. were from Gloucester. Wellfleet sent 29 ; Portland 15 ; Boston 24; Booth Bay 12; Newburyport 10; Swau's Island 8; Provincetown 8; Rockport, Deer Isle, North Haven, Southport, and Bremen, 5 each; Camden and Cohasset, 3 each; Salem, Rockland, and Dennis Port, 2 each; Danversport, Essex, Harwich, Brooklin, Orleans, Truro, Belfast, Sedgwick, Hingham, Swampscott, Portsmonth, Vinalhaven, New London, Bristol, and Perth Ambor, 1 each. Of the Gloncester fleet, 118 vessels are reported to have taken 28,847 barrels. Of these

8,735 barrels, of a value of $\$ 36,725$, were caught within the three-mile line. Taking this as a basis, and the American catch in the bay last year was 66,749 barrels of mackerel, of which 20,202 barrels, of a value of $\$ 84,848$, were taken within the three-mile line, for which latter privilege we have paid $\$ 450,000$ in cash (without including interest), and probably as much more in remission of duties.-(Provincetown Banner, January 30, 1879.)

1878.-NOTES ON THE MACKEREL FISHERY.

The southern mackerel fishery.-The fish dealers of Boston are exercised over the early catch of mackerel, which they think diminishes the later supply and affects the market unfavorably. It would be difficult to prove that the catch or market are influenced either by the early fishery, or by the use of seines, as many contend. The demand for the first firesh mackerel of the season gives the business promise of success, and the quantity packed is not likely to interfere with the sale of the small stock of better quality fish remaining on the market from last year's catch. The Southern mackerel fishery will be followed by the usual fleet as the season advances. Quite a number of vessels are fitting away, aud the "Moses Adams," Captain Jacobs, the pioneer of the Heet, sailed for the South Saturday. Schooners "Seth Stockbridge," "Crest of the Wave,"'"Smuggler," "Ada R. Terry," "Lizzie," and "Na, mari," have sailed the present week. Others are busy fitting out. The fleet will comprise some 60 sail.

The first southern mackerel caught last year was by the schooner "Seth Stockbridge," Capt. James Anderson, who arrived in New York, April 25 , with 35,000 in number. The mild winter gives promise that the first catch this year will be somewhat earlier.-(Cape Ann Bulletin, March 20, 1878.)

1878.-Arrival of mackerel on george's bank.

Mackerel appeared on George's Bank about the 1st of June. The Cape Ann Advertiser of June 7 states that twelve barrels caught there were received at Edgartown the previous week.

> 1878.-Spring mackerel fishery.

There were about one hundred and fifty sail of mackerel catchers at Nemport on Thursday week, and the "high line" was 150 barrels.(Cape Ann Advertiser, May 10, 1878.)

1878.-The earliest catch of mackerel.

The schooner "Lilian," of Noauk, Captain Latham, took 40 barrels small and large mackerel off Chincoteague March 30. This was the first catch of the season and the earliest ever known on our own coast, excent in 1831.

1879.-FALL FISHERY OF CAPE COD BAY.

Mackerel were abundant in Provincetown Harbor on November 22, 1879; one boat caught 1,400 in set-nets.-(J. H. Blake, Cambridge, Mass.)

1879.-SHORE FISHERY IN CAPE COD BAY.

A large school of mackerel came into our bay last week, and many of the vessels get good hauls with their seines, from 120 to 160 barrels; besides that, some of the hook fishermen got from 10 to 30 barrels. They were caught along the Plymouth shore, and from that northward close in to the land. For some days past the wind has been blowing too strong for fishing. A few mackerel are being taken here in gill-nets by our shore fishermen. Some of the fishermen that set bluefish nets got from 60 to 90 large fat bluefish to a man.-(Letter of N. E. Atwood, October 27, 1879.)

Notes on the shore mackerel fishery of 1878.
The first mackerel of the season.-Three weeks earlier than last year.The schooner "Lillian" arrived at Lewes on Friday, from a southern mackerel cruise, with ten barrels of fresh mackerel, the first of the season. They found a ready sale at 20 cents each for large, 15 cents for medium, and 10 cents for tinkers. The first arrival last year was the schooner "Seth Stockbridge" of this port, April 25, with 35,000 in number.

The "Lillian" belongs in Noank, Conn., a small port near New London, and sailed March 12th. She reports seeing a good many tinkers, but there was a rough sea and high winds at the time. The mackerel caught by the "Lillian" were mostly small and were sent to New York from Lewes, Del., by steamer, in water. There have been no other receipts at New York or elsewhere so far as reported.-(Cape Ann Bulletin, April 6, 1878.)

Tite macierel fishery.-The early appearance of mackerel this season, and the fact that they are already of quite good size and quality, give promise of a successful shore catch, but it is already evident that prices must rule low in order to compete with the present low prices of all sorts of provisions. Last year the first receipts of fresh mackerel were April 25, and the first receipts of salt mackerel May 4. This year there were fresh mackerel on the New York market April 5, a few being taken off the Delaware coast and forwarded by steamer, and the first fare received arrived on the 12th, quickly followed by others, so that within a day or two there were two thousand "wash-barrels" on the market. The first receipt of new salt mackerel this season was April 22d, and during the [last] week 500 barrels were landed at New York, 450 at Harwich, and about 25 at Boston.-(Cape Ann Advertiser, May 3, 1878.)
New fishing enterprise.-The schooner "Notice," of this port, owned in part and commanded by Capt. Knud Markurson, cleared on

Monday for an experimental fishing trip on the coast of Norway. Captain Markurson is familiar with the fishing grounds of the North Sea and with our improved methods of mackerel fishing, which ought to give him success in a field where the operations have heretofore been confined to old-time methods. He takes out a crew of twelve experienced men and will doubtless dispose of his catch in European markets. The "Notice" is a fine ressel of 66.50 tons burden, Gloucester built, nine years old, and thoroughly fitted for mackereling. This voyage is the fulfillment of an old project, which was first broached eighteen years ago, when the mackerel fishery of New England was at a low ebb, but Captain Markurson is the first to overcome the difficulties surrounding such an undertaking and to make the venture. The present time seems a favorable one for the experiment, and we wish the enterprising master and crew abundant success in striking out in this new field of iudustry.-Cape Ann Advertiser.-(St. John's Chronicle, May 17, 1878.)

Migrations.-THE prospect of Mackerel in the bay.-A gentleman from Halifax informs us that a pilot of trenty-five years' experience on the Nova Scotian shore, states that he never saw such a large body of mackerel off that coast as he has seen this season. They were en route for the bay, and there onght to be a good catch there this season.-(Cape Ann Adrertiser, June 21, 1878.)

The bay fleet. -The first installment of the Bay of Saint Lawrence fleet have about completed their preparations, and quite a number of the fleet have already sailed. The prospect for mackerel in this region is said to be much better than in the last few years, a large body being reported as passing Nova Scotia on their way thither. The fleet will go prepared to fish with either seines or hand-lines, and it is hoped that their efforts to secure large fares will prove successful.-(Cape Ann Bulletin, June 26, 1878.)

1878.-NOTES ON THE MACKEREL FISHERIES IN THE GULF OF SAINT LAWRENCE, AND OFF THE NEW ENGLAND COAST.

Late advices from the bay report schooner "Jacob Bacon" high line of the fleet, 225 barrels mackerel, schooner "Ratler" coming next with 125 barrels, and a few other fares ranging from 40 to 80 barrels. The "Charles Haskell" left the bay after three days' unsuccessful fishing, and picked up a fare of 100 barrels shore tinkers on the way home, where she arrived Monday. The "C. B. Manning" arrived from a shore trip Tuesday with 80 barrels of inferior quality. Schooner "Smuggler" arrived yesterday with 130 barrels small mackerel. The only large mackerel landed here were taken by schooner "Mary Odell" a few days ago, on the Block Island fishing grounds. She brought in a fare of 25 barrels mixed mackerel, of which 15 barrels were extra l's, and sold at a fancy price. The whole number of mackerel arrivals for the week has been 9, but there have been no other fares of consequence.-(Cape Ann Advertiser, July 19, 1878.)

The BAy Fleet.-The schooner "Jacob Bacon" of this port, Capt. William Gray, employed in the Bay of Saint Lawrence mackerel fishery, has shipped home by steamer to Boston, from Port Hawkesbury, 222 barrels good mackerel. A few other ressels are reported with fares from 200 to 300 barrels, of good quality, and the prospect is considered more favorable than heretofore this season.-(Cape Aun Advertiser, July 26, 1878.)

Schooner "Golden Hind" arrived from a Bay Saint Lawrence trip on Wednesday, being the second arrival of the season, but there are others on the way, to arrive in a day or two. The later reports from the bay indicate an improvement in quality and catch, and it is not too late to hope for profitable returns before the season closes. The weather has been rough of late, and unfavorable for fishing, but some good fares are reported. The "Golden Hind" brought 280 barrels mackerel, 100 barrels of which were taken at one haul of the seine off North Cape.

The shore mackerel fleet continue to meet with ill saccess, and there is little hope for improvement until the mackerel turn southward in the fall. The number of arrivals the past week has been 12 and the receipts some 500 barrels. There is a fair stock on the market, but the call for inferior grades is light.

1878.-MOVEMENTS OF THE FISHONG FLEET.

Schooner "David F. Low," Captain Chisholm, arrived home from the Bay of Saint Lawrence on Wednesday, with a fare of 200 barrels good mackerel, being the first arrival and first receipts of bay mackerel at this port this season. Two other vessels fitted for the bay arrived home before the "Low," but neither of them stopped to make a trip, although one secured 19 barrels before leaving to make up a fare of shore mackerel on the way home. One fare of bay mackerel mas received at Boston, last week, by steamer, sent home by schooner "Jacob Bacon," and sold without culling or packing, averaging about 187 pounds to the sea barrel, at $\$ 9$ per barrel, which would be equivalent to about $\$ 11$ packed. The first arrival at this port from the bay, last jear, was the schooner "Eastern Queen," August 15.
The shore mackerel fleet have abandoned the Block Island grounds, having made a much smaller catch there than last year. There were somesixty sail engaged in the business, and most of them secured from 3 to 20 barrels of extra large mackerel, which brought about $\$ 26$ the barrel. The fleet continue to bring in moderate fares of tinker mackerel, and there are about 1,000 barrels on the market, for which there is little demand. Number of shore arrivals the past week, 12 ; receipts, 1,550 barrels.-(Cape Ann Advertiser, August 2, 1878.)

The arrivals for the past week have given a more hopeful aspect to the fishing outlook, and our wharves have presented the busy appearance which characterized them in more prosperous season. The arrivals have not been numerous, numbering 56 in all, but some
very good fares have been landed in the several departments of fishing followed by Gloucester vessels. The receipts of bay mackerel, 1,400 barrels, fill a want that has long been felt, and indicate a much better prospect for successful ventures in this line than was anticipated a few weeks ago. There have been 5 bay arrivals, the schooner "Ellen M. Adams" being high line, with rising 400 barrels of good qual. ity, and the "Ralph E. Eaton" coming next about 300 barrels. The shore fleet continue to report a scarcity of large mackerel, though a fen 2 's and and large 3 's, are culled from most of the trips. The number of arrivals for the week has been 6 , and the receipts about 600 barrels. Schooner "Joseph Garland" bronght in a fare of 240 barrels, the "Fleetwing" 190, the other fares being in moderate amounts.-(Cape Ann Advertiser, August 16, 1878.)
Fish of all kinds have been in fair receipt the past week, but the market continues firm except in mackerel, which are somerwhat unsettled, though no concessions have been made from the inside rates quoted last week. The receipt of 12,000 barrels Provincial-caught mackerel at Boston last week went far to stipply present demands, but there is no considerable accumulation of stock on this market. The number of bay arrivals for the week has been 9 , bringing 2,800 barrels, and 624 barrels have been received by freighters. Shore arrivals 6 , with a catch of 650 barrels.-(Cape Ann Advertiser, August 30, 1878.)
1878.-SMALL CATCHES OF MACKEREL AT BLOCK ISLAND AND IN THE GULF OF SAINT LAWRENCE.

The mackerel fishery.-A large mackerel fleet, including a number of Gloucester vessels, put into Newport harbor on Saturday, and report the catch of mackerel very light, in some instances scarcely sufficient to feed the crew. The fleet sailed again on Monday.

There is no news of especial encouragement from the bay fleet. Mackerel put in an appearance there several weeks earlier that usual, and the boat and net fishermen met with good success for awhile, but the capricious fish seem to have abandoned their old haunts before the arrival of the American fleet.-(Cape Ann Advertiser, June 28, 1878.)

1878.-FTRST ARRIVAL OF MACKEREL IN BOSTON.

Schooner "Ellen M. Adams," of the southern mackerel fleet, arrived in Boston yesterday afternoon with 70 barrels of mackerel, which is the first arrival of the season at that port.-(Cape Ann Bulletin, Wednesday, April 24, 1878.)

1878.-First arrival of mackerel at gloucester.

The schooner "Marion Grimes" arrived home from a southern mack-erel-trip, on Wednesday, with about 250 barrels of mackerel, being the first of the fleet to arrive at this port. Her catch was of good quality,
running nearly all large 3 's, and was sold immediately upon her arrival at $\$ 5.50$ per barrel, with barrel, out of pickle.-(Cape Ann Advertiser, May 10, 1878.)
1878.-First fare of fresh mackerel at portland for the SEASON.
The first fare of fresh mackerel at Portland, 60 barrels, received last week, retailed at 5 cents per dozen.-(Cape Ann Advertiser, June 7, 1878.)
1878.-The Mackerel Fishery in the gulf of saint Lawrence.

The bay mackerel fleet.-Our correspondent at Port Mulgrave writes as follows under date of last Saturday:

We have had very stormy weather of late in the North Bay, and the mackerel fleet has done nothing since the 15th. Late arrivals report the prospect good with the hook, but the mackerel do not school lately. The arrivals at the several stopping places hereabouts, since the 15th, have been as follows:

Gloucester-"Bloomer," 70 barrels; "Cora E. Smith," 250; "Chocorua," 235; "Commonwealth," 430; "Jacob Bacon," 278.

Boston-"M. B. Tower," 400.
Wellfteet-"Gertrude Summers," 345 ; "Merrimac," 307; "Nellie M. Snow," 365; "Sarah E. Smith," 306.

Harwich-"Nettie Moore," second trip.
Cohasset-"Katie Hall," 300.
Suan's Island-_"Augusta E. Herrick," 478; "Alice," 715; "Queen of the West," 270.

Boothbay-"Alice C. Fox," 275 ; "E. K. Dresser," 320.
Portland—"Venelia," 336.-(Cape Anu Adrertiser, August 30, 1878.)
1878.-Revieti of the mackerel fishery of the gulf of saint LAWRENCE.
The Cape Ann Advertiser gives the following review of the Bay of Saint Lawrence mackerel fishery during 1878:

The Bay of Saint Lawrence mackerel fishery by the American fleet, last year, opened June 7, when the first vessel arrived, and closed November 30, when the last of the fleet sailed for home. The whole number of vessels visiting the bay was 273 , of which 125 or $45 \frac{2}{5}$ per cent. were from Gloucester ; Wellfleet sent 29, Portland 15, Boston 14, Booth Bay 12, Newport 10, Swan's Islaud 8, Provincetown 8, Rockport, Deer Isle, North Haven, Southport, and Bremen 5 each, Camden and Cohasset 3 each, Salem, Rockland, and Denuis Port 2 each, Danversport, Harwich, Essex, Brooklyn, Orleans, Truro, Belfast, Sedgwick, Hingham, Swampscott, Portsmouth, Vinalhaven, New London, Bristol, and Perth Amboy 1 each. Of the Gloncester fleet 118 ressels are reported to have taken 28,847 barrels; of these, 8,735 barrels, of a value of $\$ 36,725$, were caught within the three-mile line. Taking this as a basis, and the American
S. Mis. $110-28$
catch in the bay last year was 66,749 barrels of mackerel, of which 20,202 barrels, of a value of $\$ 84,848$, were taken within the three-mile line, for which latter privilege we have paid $\$ 450,000$ in cash (without including interest) and probably as much more in remission of duties.(Cape Aun Advertiser, January 10, 1879.)

1878.-Review of the new england mackerel fishery.

The annual report of the Boston Fish Bureau for 1878 gives the following review of the mackerel fishery for that year :

The season opened unusually early. Schooner "Lillian," sailing March 12 , landed the first fresh mackerel April 6 , followed a few days later by 50 sail, with from 100 to 150 barrels each of mixed fish of poor quality, the early catch resulting, as usual, in a loss to nearly all as well as an injury to the trade. We hope to see its discontinuance in the future. The catch early gave promise of being larger than for years, very soon fell off, and was followed with fluctuation and but partial success off our own shores as well as in the Gulf of Saint Lawrence, a large fleet going there doing worse than those that remained near home, the fish proving of inferior quality in either case. The value of the fisheries in English waters to the United States the past season is not far from 6,200 barrels of mackerel of not over $\$ 5$ a barrel value, the total Bay or Gulf of Saint Lawrence eatch of fish being 62,000 barrels, not over 10 per cent. of which was taken within the three-mile limit. The total Massachusetts catch was 144,205 barrels, a gain of 39,187 barrels over 1877 , the shrinkage in value making the catch no more profitable. Total receipts in Boston in 1878, 143,028; in 1877, 142,024. Never in the memory of the oldest dealers has the price been as low on inferior grades as this season, while the average price has not been as low in twenty or more years. Choice mackerel having been scarce all the season, have sustained a good price, a wide margin from the highest to the lowest ranging from $\$ 25$ down to $\$ 1.50$ per barrel.
1879.-FAILURE OF THE GULF OF SAINT LAWRENCE MACKEREL FISHERIES.

Gloucester, Mass., August 19, 1879.
Advices from Collector Babson, who is cruising in the Bay of Saint Lawrence, represent that mackerel fishing in the bay this season is a complete failure. Many firms are going out of the business.-(New York Herald, August 19, 1879.)
1879.-Abundance of mackerel off The new england coast, and scarcity in the bay.

Bath, Me., August 28, 1879.
Dear Sir: It may interest you to know the present condition of the Portland mackerel fisheries, as I learn it from conversation with several of the more prominent dealers of the place.

They say that mackerel have not been so plenty off the Maine coast for a number of years. A large fleet of vessels are fishing between Portland and Mount Desert Island, taking mostly large No. 2's, and all very fat. The vessels "fill up" in from ton days to two weeks, sometimes bringing in a deck load beside. A good many vessels from different parts of the State, and some from Cape Ann, are packing in Portland at $\$ 1.25$ per barrel. All the packing houses are kept busy, and it is estimated by Mr. E. G. Willard that they have packed over 7,000 barrels in the three weeks ending August 23. Of these he has bought and shipped over 6,000 barrels to parties in New York.

The price for 2 's three weeks ago was $\$ 5$, but under the heavy receipts, prices have gradually fallen, until Saturday they were selling at $\$ 4.12 \frac{1}{2}$, and Mr. Willard thought that Monday they would reach $\$ 4$.

Vessels fishing in the bay have done very poorly, and have mostly returned with "broken trips," or filled up on their way home, off this coast. Mr. Charles A. Dyer gives me the following: Schooner "M. E. Torrey" arrived home about August 1 from a mackerel trip in English waters. She was gone five weeks at au expense for outfit of $\$ 470$. She brought home 200 barrels of fish that sold at $\$ 3$ per barrel net, of which the crew took one half. This left a loss to the vessel of $\$ 170$ in money, beside loss of time and general wear. This represents a fair average, he thinks, of vessels in English waters in 1879.

During the same time of schooner "M. E. Torrey's" trip the schooner "Alice" landed from American waters 700 barrels of better fish, and stocked $\$ 2,500$.

I know of but one Portland vessel in the bay at the present time, and she has not been heard from since June 25, when she had 20 barrels.

Very truly, yours,

R. E. EARLL.

Prof. G. Brown Goode, United States Fish Commission, Provincetown, Mass.

1879.-Macikerel fisheries of the gulf of saint lawrence.

The following observations on the mackerel fishery in the Gulf of Saint Lawrence are from the report of Collector F. J. Babson and Alfred D. Foster, esq., who visited the provincial inshore fisheries in the United States steamship "Kearsarge" in the summer of 1879:
"The principal fishery followed by the American fishermen in the waters of the Gulf of Saint Lawrence is the mackerel fishery. * * * Previous to the reciprocity treaty of 1854 the mackerel fishery was almost wholly in the hands of the Americans, the provincial fishermen confining themselves entirely to the cod-fishery. This treaty, by opening the markets of the United States to Canadian fish, stimulated this industry, until now Canadian fishermen engage in this fishery on all the coasts of the maritime provinces. The methods of taking mackerel in use by the Canadian and American fishermen differ widely. The Canadians fish
in small boats, going out a short distance only from the shore, returning to their homes each night, and using hand lines alone. In Prince Edward Island there were engaged in these fisheries during the year 1878 1,175 boats and only 17 vessels.
"Professor Hind, in his confidential report to the Canadian Governmeat upon the effect of the Washington treaty on Canadian fisheries, speaking of the difference in the modes of fishing used by the Canadians and Americans, says: 'Mackerel catching is a special industry, and requires sea-going vessels. The boat equipment so common throughout British-American raters is wholly unsuited to the pursuit of the mackerel so largely carried on by United States fishermen. Immense schools of mackerel are frequently left unmolested in the Gulf and on the coast of Newfoundland, in consequence of the fishermen being unprovided with suitable vessels and fishing gear.?
"The size, quality, and number of mackerel in the Gulf vary exceedingly in different years, sometimes being a mixed quality of large and small, and at other seasons being very poor and of little value. During the present season the mackerel taken in the Gulf have been smaller and poorer than ever before, and will hardly pay even the Canadians themselves for taking them. At Prince Edward Island mackerel can be bought for about $\$ 1$ a barrel unpacked, while packed, salted, and delivered in Boston they cannot be sold for more than \$3, and the dealers there have refused to advance more than $\$ 2$ upon the mackerel consigned to them. Indeed, the managers of some of the largest fishing establishments upon the island have this summer given up the mackerel tishery aud turned their attention entirely to catching cod for the West India market, considering that after paying the expense of packing and transporting the mackerel there was no margin left for any profit.
"The number of American vessels in the Gulf varies very much each year. There have been seasons previous to the treaty of Washington when as many as 500 ressels were in the Gulf at one time, but since the treaty has been in operation the number has greatly diminished. By the official record kept by the collector of customs at Port Mulgrave in the Gut of Canso, there appear to have been in the Gulf in 1873,254 vessels; 1874, 164 vessels. This record for the years 1875 and 1876 was demanded by the counsel of the United States at the Halifax Commission, but was refused by the British counsel, although it was admitted that the records were in their possession. The eridence produced by the United States shows that during those years there were not more than 100 ressels in the Gulf. There were in 1877, 60 vessels; 1878, 273 vessels; 1879, 44 vessels.
"Of the vessels in the Gulf in 1879, 24 are reported as having obtained 7,045 barrels, an average of 293 barrels each, which would make for the whole fleet, 13,905 barrels taken by American vessels in the Gulf in this year. If one-half of the fish were caught within three miles of the shore, which is a very large estimate, the value of the Canadian inshore
mackerel fishery to the United States in 1879 was only $\$ 6,860$-this is calculating the value of the fish at the price for which it can be purchased. unpacked in Prince Edward Island, and making no allowance for the expense of catching the mackerel. In 1878 more American vessels went to the Gulf than any year since the treaty has beeu in operation. Early in the season the fishing was poor upon the United States coast, and many vessels went to the Gulf in hope that they would find the mackerel there, but most of them returned at ouce and did much better on the American shore. The whole American catch in the Gulf, in 1878, was only 61,923 barrels, while 134,545 barrels were taken on our own coast. Every vessel engaged in the Gulf mackerel fishery during the last two years has lost money.
"On Friday, August 15, we left Prince Edward Island for the Magdalen Islands, arriving there the evening of the 16 th . Under the convention of 1818 the American fishermen have the right to fish on the shores of the Magdalen Islands, without any restriction as to distance. Situated in the center of the Gulf of Saint Lawrence, these islands were formerly the resort of large bodies of mackerel, which remained there all summer, and until the last few years American vessels found around these islands the best fishing places in the Gulf.
"Mr. Fox, the collector and fishery overseer of the Magdalen Islands, testified before the Halifax Commission that in 1861 he counted 500 American schooners engaged in fishing near the islands. When we satw him there, this summer, he informed us he had not seen a single United States vessel. In 1877 about 30 vessels fished near the islands; is 1878 , only 20 , and noue of these did well. This year the mackerel catch at the islands has been a failure; very few have been taken by the inhabitants, and they were all small, not exceeding 13 inches in length. * * * The great dependence of the Canadian fishing industry upon the markets of the United States for the sale of their fish, and the great benefit which they receive from the remission of duties, clearly appear from the returns. Nearly one-half of all the fish exported from Canada goes to the United States, while of mackerel alone nearly fourfifths of the entire exportation is to the United States. In 1877, 102,698 barrels of mackerel were exported to the United States, and only 28,503 barrels to all other countries. Practically, the United States is the only market for the best qualities of mackerel, and if a prohibitory duty should be imposed, the fishery would be almost abandoned by the Canadians. If an average duty of 20 per cent. had been imposed on Canadian fish, more than two millions of dollars would have been received by the United States since the treaty of Washington came into force.**

1879.-High Line of the mackerel fleet.

Schooner "Ada R. Terry," of this port, Capt. Russell D. Terry, master, has landed this season 4,150 barrels mackerel, and her net stock is

[^71]$\$ 10,970$, sharing $\$ 363$ to a man, making her high line of the mackere] fleet from New York to New Brunswick.-(Cape Ann Advertiser, December 12, 1879.)

1879.-REview of the new england mackerel fishery.

In the annual report of the Boston Fish Bureau for 1879 is the following concerning the mackerel fishery:

With few exceptions the spring catch is followed only at a loss, the past season proving no exception. The first to arrive generally realizing a handsome sum, induced the usual number, serenty-five sail, to go south, sailing in March and April. The first to report, schooners "Ellen M. Adams" and "Sarah M. Jacobs," taking 150 and 120 barrels of mixed size and poor quality, on April 13. But a small amount of the spring catch was cured. First fare of salt mackerel landed by schooner "Cora E. Smith," May 3. As the season advanced and the fish reached our New Eugland coast, finding an abundance of their natural food, they rapidly improved in condition and remained plenty all the season, and much later than for years past, having been taken as late as December 19. The catch is particularly noticeable for its superior quality, much better than for years, as well as for its uniform size, being mostly 2 's and 3 's, with very few 1's; and the absence of the very small, or No. 4 's, of the two previous years gives promise of a size larger, or at least a fair amount of large fish the coming season. While the early-caught, poor fish realized but $\$ 2.50$ a barrel, as they improved in quality the demand and price also increased, the average price being $\$ 16, \$ 6$, and $\$ 3.50$, for 1 's, 2 's, and 3 's. Late in the season our shores were visited by the largest mackerel ever seen, of most excellent quality, measuring from 16 to $19 \frac{1}{4}$ inches long, weighing from 13 to 3 pounds each, readily selling from 25 to 30 cents each, and from $\$ 35$ to $\$ 40$ per barrel, cured. Our North Bay fleet was, fortunately, very small, only 42 sail from New England, averaging 257 barrels; aggregate catch 10,796 barrels of small and very inferior fish, one vessel securing but 25 barrels all the season; while the shore fleet, much smaller than usual, numbering 283 sail, averaged 740 barrels; the average shore catch 209,803 barrels. Total catch of the Massachusetts fleet, 156,125 barrels, against 144,205 barrels in 1878. As to the relative value of the mackerel fishery off the New England coast as compared to those in provincial waters, it will be noticed our catch began in April, euding the middle of December, three-fourths of a year. It is now in contemplation sending vessels south to prosecute this branch the remainiug three months, making our catch perennial, while the provincial catch, with favorable weather, lasts about four months. [The receipts of fresh mackerel in Boston in 1879 were 11,724,943 fish in number. This is in addition to the receipts of salt mackerel.]
1880.-The southern mackerel fishery.-Early catches.-The FLEET FOR 1880.
The tendency in the mackerel fishery is to carlier trips from year to year, the use of seines enabling the fishermen to secure a catch as soon
as mackerel put in an appearance and before they are ready to take the hook, and the ready market for the first fresh mackerel proving a temptation to enterprising fishermen. The first receipts in the New York and Philadelphia markets in 1875 were April 30 ; in 1876, April 24 ; in 1877, April 25 ; in 1878, April 5; and in 1879, April 14. This year the pioneers of the fleet sailed a month earlier than usual, hoping by going farther South to make an early catch, and quite a respectable fleet are now in southern waters, awaiting the first appearance of mackerel. The following vessels comprise the fleet sailing in March :

Boston.—Schooner "G. W. Bentley," 1.
Booth Bay.--Schooners "Alice G. Fox," "Cyrena Ann," "Oynosure," "Lettie S. Reed," "Louis and Rose," 5.

Chatham.-Schooners "Leila Linwood," "Willie Irving," 2.
Dennis.-Schooners "Charlotte Brown," "Cora Louise," "Mary Doane," "Quivet," "Titmouse," "Willie Parkman," 6.

Gloucester.-Schooners "Bounding Billow," "Chocorua," "Crest of the Wave," "Charles Haskell," "Earnest F. Norwood," "Frank A. Smith," "Golden Hind," "Goldsmith Maid," "Fred. L. Webb," "Fred. P. Frye," "Ellen M. Adams," "Edward E. Webster," "Fleetwing," "Helen M. Crosby," "Joe Hooker," "John W. Bray," "Joseph Garland," "Herald of the Morning," "Marion Grimes," "M. L. Wetherell," "Onward," "Ossipee," "Piscataqua," "Reporter," "Wide Awake," "William S. Baker," "Edward Everett," "Falcon," "Georgianna," "Isaac Patch," "Mary O'Dell," "Madawaska Maid," "Oceanns," "Rattler," "Sarah M. Jacobs," 35.

Harwich.—Schooners "Kate Florence," "Nettie Moore," "Phebe and Emma," "Chas. H. Kelly," "Isaac Somes," 5.

Newburyport.-Schooners "George W. Brown," "Lizzie Thompsou," "Miantonomah," 3.

Portsmouth.—Schooners "Gov. Goodwin," and "Daniel Marcy," 2.
Portland.-Schooners "Georgie Willard," "Maggie W. Willard," 2.
Swan's Island-Schooner "Alice," 1.
Total, 62.-(Cape Ann Advertiser, April 10, 1880.)
1880.-First arrival of fresh mackerel in new york.

Fresh mackerel-The first fare of fresh mackerel the present season was landed at New York, Saturday, by schooner "Edward E. Webster," Capt. Solomon Jacobs, of this port. She brought in a fare of 20,000 , which were sold at 8 cents apiece, making her stock \$1,600.-(Cape Ann Advertiser, April 7, 1880.)

1880.-The largest mackerel ever seen.

Some of the mackerel taken at Block Island Monday, July 25, weighed 3 pounds 2 ounces, the largest ever seen.-(Cape Ann Advertiser, Angust 6, 1880.)
1880.-ABUNDANCE OF MACKEREL.-GOOD FARES.

Large schools of large mackerel were reported off Mouhegan on Sunday. Five vessels did well.
Schooner "Alice" of Swan's Island is reported high-line of the bay mackerel fleet, having landed and sent bome three fares.

The schooners "Gov. Goodwin," "Helen F. Tredick" and "Anna M. Nasl" of Portsmouth, arrived on Tuesday with 400 barrels of the largest mackerel ever brought to that port. They arerage less than 100 to the barrel. For several days past the water off the harbor has been literally black with mackerel, those at the bottom crowding toward the top. Fishermen report nothing like it for years.-(Ibid.)

1880.-Millions of mackerel on the new england coast.

The vast strike-in of mackerel all along our coast is really phenomenal. Nobody remembers anything like it. Thousands were caught yesterday and the day before, even without bait, as if mackerel were as simple as "Hancock Union soldiers" who snap at a bare rebel hook. Every boat, from the craziest old dory to the fashionable yacht, is pressed into service, and there are as many "kits" going to Boston and Lynn, and Salem and Gloucester, as the unwary boy supposes are on their way to St. Ives, when the famous problem of Pike's old arithmetic is propounded. From any look-out the schools can be seen on the surface of the water, hunting around for somebody to catch them, like bummer politicians seeking for bids. The theory that the mackerel had been depopulated in our waters is annihilated. There are still as good fish in the sea as ever were caught, and apparently more of them. It is said that the mackerel are pursued by the bluefish and the bluefish by the sharks. What is after the sharks is not stated. But our thanks are due to the bluefish in the first degree. They are the mackerel schoolmaster, and the success of our fishermen is due to the fact that the schoolmaster is abroad in the waters.-(Lowell (Mass.) Courier, July 16, 1880.)

1880.-Mackerel fishery of gloucester.

The records of the United States Fish Commission at Gloncester, Mass., show that the total number of fares of salt mackerel landed at that port in the year 1880 was 722 , of which 25 fares were from the bay of Saint Lawrence in American vessels. The total receipts of salt mackerel were 135,774 sea-packed, equal to about 122,200 inspected barrels of 200 pounds each, making the total weight of the fish $24,440,000$ pounds in the salt state, which is equivalent to $36,660,000$ pounds of round or fresh mackerel. The receipts of 135,774 sea-packed barrels include 125,214 barrels taken by Gloucester vessels, 6,890 barrels taken by vessels from other New England ports, 505 barrels taken off the United States coast by the schooner "Lertie" of Nova Scotia, 3,623 barrels caught by boats and traps at Gloucester Harbor, and 3,437 barrels taken
by United States vessels in the bay of Saint Lawrence. The receipts by months were as follows: April, 7 barrels; May, 3,977 barrels; June, 1,730 barrels ; July, 19,105 barrels ; August, 28,030 barrels; September, 39,534 barrels ; October, 30,906 barrels; November, 12,395 barrels.

The Cape Am Advertiser record for the year 1880, gives the follow. ing facts concerning the mackerel fishery of Gloucester in that year :
The mackerel industry employed 175 vessels and about 2,500 men; the number of vessels engaged in no other fishing branch for the year was 90 . Fifteen were employed in mackereling and the shore fishery ; 27 in mackereling, the herring and shore fisheries; and 38 in the mackerel, Georges and bank fisheries, \&c. * * * The Block Island mackereling fleet comprised 15 vessels, the Southern fleet 34, and the Bay of Saint Lawrence fleet 15 , all of which were successfully engaged in the offshore mackerel fishery. Most of the southern fleet disposed of their catch, in large proportion fresh, in the Philadelphia, New York, and Boston markets; the bay of Saint Lawrence trips were failures; the Block Island catch was smaller than in 1879; but the shore catch was larger than for many years, and proved profitable. The total catch is estimated at 129,620 barrels.-(Cape Ann Advertiser, January 14, 1881.)

1880.-REVIEW OF THE NEW ENGLAND MACKEREL FIsHERY.

In its review of the New England fisheries for the year 1880 the Boston Fish Bureau has the following concerning the mackerel fishery :

The season opened by the early, or southern, fleet sailing in March. Firsteatch reported by schooner "Edward E. Webster," 25,000 fish, April 2. The record of the fleet will be found in the report of the various tleets, and shows another financially disastrous early catch, some of the vessels returning without fish, very few with profit. We have in previous reports mentioned the injurious effects of this brauch of the catch, even when followed at a profit, a large catch of poor fish injuring the demand later in the season. The past few sears fully demonstrates that the sooner the early catch is abandoned the better it will be for all interested. The first catch in the weirs at Cape Cod April 26 ; lirst new salt mackerel arrived at Boston May 10. The market for a new stock ranged from $\$ 5$ to $\$ 6$, vessels doing only fairly up to July 1 , the fish and fleet being scattered from Cape Cod to Jeffrey's Banks. Early in July an unprecedented large body of mackerel appeared in Massachusetts Bay, at our very doors. The oldest dealers and fishermen report never having known them so plentiful. They continued in the bay until the close of the season in December, during which time the entire fleet did well, while many of them made remarkable "stocks," as will be seen in the reports of individual vessels. The catch was noticeable for the absence of large and very small fish, its excellent quality, however, causing an active demand for immediate consumption. The catch in the North Bay and provincial waters by the American fleet was almost an
entire failure, numerous vessels returning without a single barrel. Fortunately, but a small number of vessels visited those waters, and, not finding fish, returned in time to secure enough of the home catch to save them from a disastrous season. The total catch of inspected barrels by the Massachusetts fleet is the largest since 1874, amounting to 255,986 barrels. This season's catch has been exceeded but ten times since 1864 . The total catch by the New England Hleet is 349,674 inspected barrels, a gain over the previous year of 99,861 barrels on the Massachusetts catch, and total gain of 129,075 barrels. In addition to our own large catch there has beenimported from the provinces 105,730 barrels, against 84,213 the previous year.

The total amount of mackerel received in Boston during 1880 from domestic and foreign ports, with home catch, 196,493 inspected barrels.

Our report and table of receipts, number of vessels, and crew, having been confined to salt or cured fish, we wish briefly to call attention to the importance and steady growth of the fresh-fish business, * * * the abundance of mackerel at our doors most of the season resulting in the receiving and distributing throughout the country of 75,000 barrels of fresh mackerel. Day after day, for weeks, from 1,000 to 2,000 barrels were received. Notwithstanding this unusually large production, all were used fresh. For the first year in the history of the business not a week during the year has passed but fresh mackerel could be bought at reasonable prices.

1881.-What our government paid for.

Inshore catch of mackerel in the Bay of Saint Lawrence by the Gloncester fleet this year, 18 barrels. That's what we helped to pay a twelfth of $\$ 5,500,000$ for for this year's fishery. Our herring and bait and ice and other supplies we buy at a profit to the provincials, who send thousands of barrels of mackerel and quintals of codfish to the American market free of duty, in competition with the American fishermen.(Cape Ann Advertiser, October 14, 1881.)

1881.-THE MACKEREL FISHERY OF GLOUCESTER.

The records of the United States Fish Commission at Gloucester, Mass., show that the total number of fares of mackerel received at that port in 1881 was 713 . The total number of sea-packed barrels of mackerel landed was 165,497 , equal to 148,948 inspected barrels of 200 pounds each, equal to $29,789,600$ pounds of salt mackerel, or $44,684,400$ pounds in a fresh condition. The entire catch, with the exception of one fare of 48 barrels from the Bay of Saint Lawreuce, was taken off the United States coast.

The records of the Cape Ann Advertiser for the year 1881 show that the Americau mackerel fleet from Gloucester numbered 149 vessels, 81
of which confined their operations for the year to this department, and the total receipts of salt mackerel were 163,851 sea-packed barrels.(Cape Ann Advertiser, January 6, 1882.)

1881.-REVIEW OF THE NEW ENGLAND MACKEREL FISHERY.

The annual report of the Boston Fish Bureau for 1881 has the following review of the mackerel fishery for that year :

The catch opened unusually early, schooner "Edward E. Webster," on March 21, taking the first fare, 32,700 mackerel, 800 of which were large, balance medium and small. The first fare of new salt mackerel arrived in Boston May 9, one day earlier than in 1880, schooner "Roger Williams" landing 240 barrels that were caught off the Jersey coast. May 10, schooner "J. S. McQuinn" arrived with the first fare of fresh mackerel, 200 barrels, caught southeastfrom Sandy Hook. First cargo arrived fresh same date in 1880. May 4th the first catch was made in the weirs at Cape Cod; previous year on April 26th. March 25 schooner "Lizzie K. Clark" was capsized by a squall and lost, 20 miles from Barnegat; the crew were saved. This was the only mackerel vessel lost during the season. Although the season opened early the catch of cured mackerel reported at this office during the season, up to November, was as follows: May, 1,670 barrels; June, 38,683; July, 81,748; August, 70,424; September, 71,643; October, 57,268.

A light catch in November brought the season to an early close, the total catch of the New England fleet of 298 sail being 391,657 barrels, of which 269,495 were packed and inspected in Massachusetts-a gain in Massachusetts inspection of 19,534 barrels over 1880 . This amount has been exceeded but five times in seventy-cight years.

As will be noticed, the catch off the New England coast opened a little later than usual, and continued good all the season, with the exception of 470 barrels, the entire catch being taken off the United States coast. The size and quality were of an average, with more No. 1's, aud an absence of the very small, or No. 4. The price opened low, the first sale recorded being at $\$ 4.50$ a barrel for large, $\$ 3.75$ for medium, falling off in June to $\$ 4$ for packed, or early 3 's; inspected 3 's, 2 's, and 1's selling through the season as follows: July, $\$ 3.25, \$ 3.50$ for 3 's ; \$5.25, $\$ 5.50$ for 2 's. August, $\$ 3.25$, 3 's; $\$ 5$, 2's. September, $\$ 4.25,3$'s; $\$ 6.50$, $2 ' s ; \$ 16,1$'s. October, $\$ 6, \$ 8$ to $\$ 9, \$ 18$. November, $\$ 6.50, \$ 9, \$ 19$. December, $\$ 7.50,3$'s; $\$ 9$ to $\$ 10,2 ' \mathrm{~s} ; \$ 20,1$'s.

The catch in provincial waters being a failure, our imports show a falling off of 43,880 barrels. Fortunately very few American vessels visited them, securing only 470 barrels; they returned home in season to make a good record.

Besides the large quantity of mackerel that were salted, many thousand barrels were sold in a fresh condition. In Boston 2,200,000 and in Gloucester about 650,000 one-pound cans of fresh mackerel were put ap.

IX.-APPENDIX-INSPECTION LAWS.

Compiled by A. Howard Clark.
52. EXISTING LAWS.

Maine.

Inspectors of pickled fish to be appointed. Act February 10,1875, section 1.
The governor, with advice of the council, shall, from time to time, as occasion may require, appoint in each city, town, and plantation in this State, where pickled fish are cured or packed for exportation, one or more persons skilled in the quality of the same, to be inspectors of fish, who shall hold their office for a term of five years, uuless sooner removed by the governor and council.

Bond for the performance of their duties. Ibid., section 2.
Every such inspector, before entering upon the duties of his office, shall be duly sworn, and shall give bonds with sufficient sureties to the treasurer of the city, town, or plantation, for which he is appointed, to the satisfaction of the mayor and aldermen of the city, the selectmen of the town, and the treasurer of the plantation, in the penal sum of not less than five hundred nor more than five thousand dollars, for the faithful performance of his official duties; and such municipal officers shall, at least once a year, examine the bonds given by said inspectors, and if that of any inspector is not in their opinion sufficient, they shall forthwith notify him, and if he for thirty days after such notice neglects to give a bond satisfactory to them, they shall give information thereof to the governor, and he shall remove such inspector from office.

$$
\text { Annual report of inspectors. Ibid., section } 3 .
$$

Every inspector shall, on or before the tenth day of December, annually, make a return into the office of the secretary of state of all fish by him inspected during the year preceding the first day of December, designating the quantities, kinds, and qualities of pickled fish, and the secretary shall publish the same immediately after in the State paper.

Relief of persons injured by neglect of inspectors. Ibid., section 4.
Any person injured by the neglect or misdoings of any inspector, on tendering to such treasurer a reasonable indemnity against the costs, shall be entitled to bring an action on such inspector's bond in the name of the treasurer, for his own use, and to have a copy of the bond therefor; and if judgment shall be rendered thereon for the plaintiff, execution shall issue for the sum found due to the person for whose
use such action is brought, and the sum awarded in damages shall be entered by the clerk of the court on the original bond, to remain in the custody of the treasurer.

Qualities of fish. Moid., section 5.

Every inspector who inspects any kind of fish that are split or pickled for packing, shall see that they are in the first instance free from taint, rust, or damage, and well struck with salt or pickle; and such of said fish as are in good order and of good quality, shall be pickled in tierces, barrels, half-barrels, quarter-barrels, and tenths of barrels, or kids; each tierce containing three hundred pounds, each barrel two hundred pounds, and so on in that proportion; and the same shall be packed in good clean coarse salt sufficient for their preservation; and then each cask shall be headed up and filled with clear, strong pickle, and shall be branded by the inspector with the name and quality of the fish therein. Mackerel of the best quality, not mutilated, measuring, when split, not less than thirteen inches from the extremity of the head to the crotch or fork of the tail, free from taint, rust, or damage, shall be branded number one; the next best quality, being not less than eleven inches, measuring as aforesaid, free from taint, rust, or damage, shall be branded number two ; those that remain after the above selection, free from taint or damage, and not less than thirteen inches, measuring as aforesaid, shall be branded number three, large; those of the next inferior quality, free from taint or damage, not less than ten inches, measured as aforesaid, shall be branded number three ; all other mackerel, free from taint or damage, shall be branded number three, small. The inspector shall brand, in plain letters, on the head of every such cask, the weight, the initials of his Christian name, the whole of his surname, the name of his town, and the letters Me., an abridgment of the month and the year, in figures, when packed.

Quality and size of casks or barrels. Tbid., section 6.

All tierces, barrels, and casks, which are used for the purpose of packing pickled fish, shall be made of sound, well-seasoned white oak, white ash, spruce, pine, chestnut, or poplar staves, with heading of either of such kinds of wood, sound, well planed and seasoned, and when of pine to be free of sap, and the barrels to be hooped with at least three strong hoops on each bilge, and three also on each chime; the barrel staves to be twenty-cight inches in length, and the heads to be serenteen inches between the chimes, and made, in a workmanlike manner, to hold pickle.

Packing of alewives or herring. Branding. Ibid., section 7.
Every inspector who inspects pickled alewives or herring, packed Thole or round, shall see that they are struck with salt or pickle, and
then put in good casks of the size and material aforesaid, packed closely therein, and well salted, and the casks filled with fish and salt, putting no more salt with the fish than is necessary for their preservation; and the inspector shall brand all such casks with the name of the inspected fish as aforesaid, but in no case shall the inspector brand the casks unless the fish contained therein shall have been packed and prepared under his immediate supervision.

Fees for inspecting and branding. Ibid., section 8.

The fees for inspection and branding, exclusive of cooperage, shall be for each barrel seven cents, and all such fees shall, in the firstinstance, be paid by the original owners of the fish, but such owners shall be entitled to recover the amount thereof from the party purchasing or receiving the same, under the marks and brands aforesaid, and in addition to the price thereof.
Penalty for selling uninspected pickled fish. Revised Statutes, 1871, chap. 40, sec. 13.
If any person sells in this State, or exports therefrom, any fish in casks not inspected, packed, and branded, as aforesaid, or any tainted or damaged fish, known to be such, except good and wholesome fish packed in kegs of less thau ten gallons, or pickled or dry fish imported into this State from some other State or country lawfully inspected and branded there, he shall forfeit ten dollars for every hundred-weight thus sold or exported.

Certificate required for shipment of pickled fish. Ibid., section 14.
No pickled fish in casks shall be shipped from this State, unless the master or owner of the vessel produces to the officer authorized to clear the vessel a certificate from the inspector that the same have been inspected, packed, and branded according to law ; and the certificate shall express the number of tierces or casks thus shipped, the kind and quality of fish they contain, the name of the master and owner and that of the vessel into which such fish are received for exportation; and shall take and subscribe the following oath before the officer as aforesaid:
"I, A B, do swear, according to the best of my knowledge and belief, that the certificate hereunto annexed contains the whole quantity of pickled fish packed in barrels or casks on board the -_, _ _ , master; and that no pickled fish are shipped on board said vessel for the ship's company, or on freight or cargo, but what are inspected and branded according to the laws of this State, or exempted by the provisions thereof: So help me God."

Penalty for transporting uninspected pickled fish. Ibid., section 15.
If any person lades or receives on board any vessel or other carriage, for transportation from this State, any pickled fish, or cured or salted.
whole fish, packed or not packed, not inspected and branded as aforesaid, except such as is described in the exception of section thirteen, he shall forfeit at the rate of not less than five nor more than ten dollars for every hundred pounds thereof; and any justice of the peace may issue his warrant to the proper officer, directing him to seize and secure any such prohibited fish, and convey it to any inspector within a convenient distance for inspection ; and every person refusing to gire necessary aid in the service of such warrant, when required by the officer, shall forfeit five dollars to the person suing therefor in an action of debt; and such inspector shall open, inspect, pack, and brand such fish according to law and detain the same till all lawful charges of seizure and inspection are paid.

Penalty for illegally branding or mixing. Ibid., section 16.
If any person takes from a cask any pickled, cured, lawfully inspected and branded, and substitutes therefor or fraudulently intermixes other fish; or any inspector marks any cask out of his town, or which he has not inspected, packed, and prepared himself according to law ; permits other persons unlawfully to use his brands; or willfully and fraudulently uses the same hmself after the expiration of his commission, he shall forfeit twenty dollars for each cask or box so dealt with.

Recovery of penalties. Ibid., section 17.
All the penalties aforesaid, not otherwise herein appropriated, may be recovered in an action of debt, half to the use of the person suing therefor, and half to the town where the offense is committed.

Branding of smoked herring. Laws of 1871, passed February 24.

Be it enacted, \&e.
Hereafter no inspection of smoked herring shall be required in this State, but all smoked herring put up in boxes or casks for sale in this State shall be branded on the cask or box inclosing them with the first letter of the Christian and the whole of the surname of the person putting up the same, and with the name of the State and the place where such person lives, and all such fish offered for sale or shipping not thus branded shall be forfeited, one-half to the use of the town where the offense is committed, and the other half to the person libeling the same; and all laws and parts of laws inconsistent herewith are hereby repealed.

NEW HAMPSHIRE.
(General laws of New Hampshire, 1878.)
Appointment and qualification of inspectors and deputy inspectors. Chap. 124, Section 1-4.
Inspectors of Hour, beef, and pork, of potash and peariash, of butter and lard, of hops, and of fish, shall be appointed by the governor, with
the advice and consent of the council, and shall hold their offices for the term of five years, unless sooner removed by the governor and council.

Each inspector, before entering upon the duties of his office, shall give bond to the State, with sufficient sureties, to the satisfaction of the treasurer thereof, in the sum of two thousand dollars.

Each inspector shall appoint so many deputy-inspectors as may be necessary, removable at his pleasure, and for whom he shall be answerable, who shall first give bond to him, with sufficient sureties, in a sum not exceeding one thousand dollars, and shall once in six months, or oftener if requested, make such returns to him as he may require.

All oaths required to be taken by any deputy may be administered by the inspector, and all oaths required to be taken in the inspection of provisions or merchandise may be administered by the inspector or any deputy, or, in either case, by a justice.

If a vacancy shall occur in the office of inspector, his deputies shall continue to perform their duties and shall possess the same powers and be subject to the same liabilities as if no vacancy had occurred, until an inspector shall be appointed and duly qualified.
The word "inspector" in this title may include deputy inspector.
Pickled fish to be well preserved. Chap. 129, sections 1, 2.
The inspector of fish or some deputy shall see that all kinds of split pickled fish and fish for barreling, intended for exportation, have been well struck with salt or pickle in the first instance, and preserved free from rust, taint, or damage.

Such fish as are in good order and of good quality shall be packed in tierces, barrels, or half-barrels; the tierces to contain three hundred pounds, the barrels two hundred pounds, and the half-barrels one hundred pounds of fish each, and shall be packed with good clean salt, suitable for the purpose; and the casks, after being packed and headed, with the fish aud sufficient salt to preserve the same, shall be filled with a clear strong pickle.

Qualities of pickled fish. Branding. Ibid., sections 3-5.
Each cask shall be filled with fish of one and the same kind, and shall be branded "salmon," "shad," "alewives," "herring," or as the case may be; those of the best quality, caught in the right season, to be most approved and free from damage, shall be branded "cargo number one"; those which remain after the best have been selected, being sweet, free from taint, rust, or damage, shall be branded "cargo number two"; and the thinnest and poorest of those that are sweet and wholesome shall be branded "cargo number three."

There shall be four numbers of mackerel: Those of the best quality, not mutilated, measuring not less than thirteen inches from the extrem-
ity of the head to the fork of the tail, free from rust, taint, or damage, shall be branded "number one." The next best quality, being not less than eleven inches, measuring as aforesaid, free from rust, taint, or damage, shall be branded "number two." Those that remain after the above selections, if free from taint or damage, and not less than thirteen inches, measuring as aforesaid, shall be branded "number three, large." Those of the next inferior quality, free from taint or damage, shall be branded "number three." All other mackerel free from taint or damage shall be branded "number four."

The inspector shall also brand, in plain, legible letters, on the head of every such cask, the initials of his Christian name and the whole of his surname, the name of the town for which he is appointed, and the abbreviation N. H. All mackerel shall also be branded on each cask with the month in which the same are packed.

Inspection of smoked alewives or herrings. Ibid., sections 6-8.
All herrings or alewives intended to be smoked and packed shall be sufficiently salted and smoked to cure and preserve the same, and afterward closely packed in the boxes in dry weather.

- All smoked alewives or herrings shall be divided and sorted by the inspector or some deputy, and denominated, according to their quality, "first sort" or "second sort." The "first sort" shall consist of all the largest and best-cured fish; the "second sort" of the smaller but wellcured fish; and in all cases all fish which are belly-broken, tainted, or scorched, slack-salted not sufficiently smoked shall be taken out as refuse.

Each box of alewives or herrings so inspected shall be branded on the top by the inspecting officer with the initials of his Christian name and the whole of his surname, the name of the town where it was inspected, with the abbreviation N. H., the quality, whether "first sort" or "second sort," and the month and year in which they were so branded.

Quality and size of package for pickled fish. Ibid., section 9.
All tierces, barrels, and half barrels used for packing or containing pickled fish shall be made of sound, well-seasoned white oak, ash, red oak, spruce, pine, or chestnutstaves, of rift timber, with heading of either of said kinds of wood, well planed, sound, and well seasoned, the heading of pine to be free from sap; and shall be well hooped with at least three good and strong hoops on each bilge, and three hoops on each chime; the barrel staves shall be twenty-eight inches in length, and the heads seventeen inches between the chimes; the barrel shall contain not less than twenty-nine nor more than thirty gallons, the half barrels not less than fifteen gallons, aud the tierces not less than forty-five nor more than forty-six gallous, and each cask shall be made in a workmanlike manner to hold pickle, and shall be branded on the side thereof, near the bung, with the name of the maker or owner.
S. Mis. $110-29$

Quality and size of boxes for smoked fish. Ibid., section 10.
All boxes used for packing and containing smoked alewives or herrings shall be made of good, sound boards, sawed and well seasoned, the sides, top, and bottom of not less than half-inch boards, and the ends of not less than three-quarter-inch boards, securely nailed with wrought or cut nails, and shall be seventeen inches in length, eleven inches in breadth, and six inches in depth, in the clear.

Branding-irons to be furnished the inspector. Ibid., section 11.

Every persou having fish for packing or pickling, either in bulk, casks, or boxes, to the amount of twenty barrels or forty boxes in one season, shall furnish the inspector, or one of his deputies, with a brand-ing-iron containing the initials of the owner's Christian name and the whole of his surname; and the inspecting officer shall cause such name to be fairly branded on the head of every cask and on one end of every box of fish inspected for such person. If he shall refuse or neglect to furuish such brand, he shall forfeit three dollars for such neglect or refusal.

$$
\text { Inspection of fish packed whole. Ibid, section } 12 .
$$

All small fish which are usually packed whole with dry salt shall be put in good casks, of the size and materials above required for pickled fish, and shall be packed close, edgerwise, in the cask, and well salted; the casks shall be filled with the fish and salt, putting in no more salt than is necessary for the preservation of the fish; and the inspecting officer shall brand each cask with the name of the fish and the quality thereof, whether " first sort", or "second sort," as in the case of smoked fish aforesaid.

Annual report of inspectors and their deputies. Ibid., section 13.

The inspector shall make return to the governor annually, on or before the first Wednesday of June, of all the fish of every kind, whether in casks or boxes, which have been inspected by him or his deputies during the year preceding; and each deputy shall seasonably furnish said inspector with a return of all the tierces, barrels, half barrels, and boxes by him inspected and branded since his last return.

Fees for inspection of fish. Ibid., sections 14, 15.
The fees for inspecting and branding each cask or box of fish as provided by this chapter shall be, for each tierce, fourteen cents; for each barrel, nine cents; for each half barrel, five cents; for each smaller cask or box, three cents; for nailing each cask or box, one cent, exclusive of the labor of packing and coopering; and twenty-five cents for each certificate thereof given; and the general inspector shall have and receive from his deputies the sum of four cents for each and every
tierce, and one cent for each barrel or box, and one half cent for each half barrel or smaller quantity so inspected and branded by any of his deputies.

These charges shall be paid by the owner or person employing the inspecting officer, and may by such person be recovered of the subsequent purchaser or exporter, in addition to the purchase or cost of the fish.

Certificate required for shipment of pickled or smoked fish. Ibid., sections 16, 17.

No pickled fish or smoked alewives or herring shall be shipped or exported by water from this State in casks or boxes unless the owner or master of the ressel shall produce to the collector, or other officer authorized by the laws of the United States to clear vessels out, a certificate from the inspector or some deputy that such fish has been inspected, packed, and branded according to law, together with the number of tierces, barrels, half barrels, and boxes thus shipped, the kind and quality of fish they contain, the name of the vessel in which such fish are received for exportation, and the owner or master thereof.

The master or owner, on producing such certificate to such officer, shall take and subscribe the following oath: "I, A B, of -_—, do swear, according to the best of my knowledge and belief, that the certificate hereunto annexed contains the whole quantity of pickled and branded fish, smoked alewives, and herrings on board the ___, __, master, and that no fish is shipped on board said vessel for the ship's company, or on freight or cargo, but what is inspected and branded according to law. So help me God."

Penalty for transporting uninspected fish. Dbid., sections 18, 19.
If any person shall put or receive on board any vessel or other carriage of conveyance, to transport the same from this State, any pickled or whole fish, or any smoked alewives or herrings, packed in casks or boxes, which are not inspected and branded according to law, he shall forfeit not less than two dollars nor more than ten dollars for every hundred pounds of pickled or whole fish, and one dollar for each box of smoked alewives or herrings so uninspected.

If any pickled or barreled fish, smoked alewives or herrings as aforesaid, shall be put on board any vessel, boat, or carriage of conveyance, with intent to sell or export the same contrary to law, any justice may issue his warrant to the sheriff, his deputies, or a constable, requiring such officer to seize and secure said fish, and carry them to the inspector or deputy nearest to such vessel, boat, or carriage, who shall open and inspect, pack, and brand the same as is provided in this chapter, and shall detain the same until the expense and charges of seizure, inspection, packing, and all other charges arising from such seizure shall be paid.

Penal'sy for illegally banding or repacking. Ibid., sectious 20, 21.
If the inspector or any deputy shall brand any cask or box the contents of which he has not inspected, packed, salted, coopered, and nailed according to the provisions of this chapter, or shall permit any other person to use his brands in violation or evasion thereof, he shall forfeit twenty dollars for each cask or box so branded, and shall also be removed from office.

If any person shall intermix, take out, or shift any inspected fish, packed and branded as aforesaid, or shall put in other fish for sale or exportation, he shall forfeit five dollars for each cask, package, or box so altered; and if any casualty shall render it necessary to repack a cask or box of inspected fish it shall in all cases be done by an inspector.

Penalty for selling tainted or damaged fish. Ibid., sections 22, 23.
If any person shall sell or export, or cause to be sold or exported, within or from this State, any tainted or damaged pickled fish, or smoked alewives or herrings, he shall forfeit three dollars for every hundred weight of such pickled fish, and one dollar for each box of such smoked alewives or herrings which shall be thus sold or exported.

Packing of shell-fish. Ibid., section 23.
All shelled clams or other shelled fish used for fish bait, hereafter offered for sale, shall be put in barrels or half barrels of the description required for pickled fish; and the casks shall be filled full and salted sufficiently to preserve the same; if any person shall offer for sale any shelled fish, aforesaid, not packed agreeably to this section, he shall forfeit for each offense two dollars.

Packing of fish for consumption within the State. Ibid., section 24.

All kinds of pickled fish which are packed in tierces, barrels, or half barrels, and all smoked alewives or herrings packed in bozes, for consumption in this State, and which are not subject to be inspected and branded as provided in case of exportation, shall, however, be packed with only one kind of fish in each cask or box, and there shall be the same weight in each cask as hereinbefore provided; and for intermixing different kinds of fish in the same cask or box, or for short weight in any cask, the owner or seller shall forfeit the same sum hereinbefore provided for the like offense is such fish were inspected.

Fish packed in small kegs exempt from inspection. Ibid., section 25.
Nothing in this chapter shall extend to fish packed in kegs of less than ten gallons.
(General statutes of Massachusetts, 1859 , with subsequent amendments.)
Appointment and qualification of inspector-general and deputies. Chap. xlix, sections $1,2,33,34$.

There shall be inspectors-general of butter and lard, fish, hops, leather, and pot and pearl ashes appointed by the governor, with the advice and consent of the council, for the term of five years, from the time of their respective appointments, unless sooner removed by the governor and council, who, before entering upon the duties of their respective offices, shall be sworn. The inspectors-general now in office shall hold their offices according to the term of their respective commissions, unless sooner removed. -

Each inspector-general may appoint deputy inspectors, removable at his pleasure, who shall once in every six months make such returns to him as he requires to carry into effect the provisions of this chapter.

The iuspector-general of fish shall give bond with sufficient sureties to the treasurer of the commonwealth in the penal sum of ten thousand dollars, and shall have no interest directly or indirectly in the cure or packing of pickled fish.

He may appoint deputy inspectors in every seaport or other town where such fish is packed for exportation, for whose official conduct he shall be answerable. He shall take bonds of each of them with sufficient sureties, and shall receive from each deputy an excise or fee for his commission and bond of one dollar, and no more. The deputies shall be sworn either before the inspector-general or some justice of the peace.

Pickled fish to be well preserved and packed. Ibid., sections 35, 36.
The inspector-general and deputy inspectors shall inspect all fish for the inspection of which provision is made in this chapter.

Under the supervision of the inspector-general and his deputies, respectirely, all kinds of split pickled fish and tish for barreling except herrings, and all codfish tongues and sounds, halibut fins and napes, and sword-fish, whenever said articles are intended for exportation, shall be struck with salt or pickle in the first instance, and preserved sweet and free from rust, taint, or damage ; and, when the same are found in good order and of good quality, they shall be packed either in tierces containing each three hundred pounds, in barrels containing each two hundred pounds, in half barrels containing each one hundred pounds,* or in packages containing each less than one hundred pounds, on which

[^72]the number of pounds therein shall be plainly and legibly branded. Every cask, kid, or package shall be packed with good, clean salt suitable for the purpose, and, after packing with sufficient salt to preserve its contents, shall be headed or well secured, and filled up with a clean, strong pickle.

Qualities of pickled fish. Ibid., section 37.
There shall be five qualities of mackerel, three of salmon and shad, and two of other kinds of pickled fish. Mackerel of the best quality, not mutilated, measuring not less than thirteen inches from the extremity of the head to the crotch or fork of the tail, free from rust, taint, or damage, shall be branded number one. The next best quality, being not less than eleven inches, measuring as aforesaid, free from rust, taint, or damage, shall be branded number two. Those that remain after the above selections, if free from taint or damage, and not less than thirteen inches, measuring as aforesaid, shall be branded number three, large. Those of the next inferior quality, free from taint or damage, not less than ten inches in length as aforesaid, shall be branded number three. All other mackerel free from taint or damage shall be branded number four. Those salmon and shad which are of the best quality for family use, free from rust or damage, shall be selected for number one and number two, the best of them selected and branded number one, the residue, number two ; all that remain, free from taint, and sound, shall be branded number three. Of all other pickled fish, the best which are free from taint and damage shall be branded number one, those that remain, free from taint, and sound, number two.

Penalty for illegally packing. Ibid., section 38 ,

Each cask, kid, or package shall be filled with fish of the same kind, or parts of the same kiud of fish; and whoever intermixes, takes out, or shifts any inspected fish which are packed or branded as aforesaid, or puts in other fish for sale or exportation, shall forfeit fifteen dollars for each package so altered. If any casualty renders it necessary to repack a cask of inspected fish, it shall in all cases be done by an inspector of such fish.

Branding of packages. Ibid., section 39.

The inspector shall brand in plain, legible letters, on the head of each cask of fish inspected by him, the denomination of the fish packed or repacked therein, the initials of his Christian name and the whole of his surname, and, if a deputy, the name of the place for which he is appointed, the letters Mass., and the year in which the fish are packed; and shall also, when, in his judgment, it may be necessary, nail in a suitable manner any cask in which fish are packed.

Pickled fish inspected elsewhere not subject to reinspection. Ibid., section 42.
Pickled fish, duly inspected in the State or country in which it is packed, shall not be subject to reinspection in this State.

Inspection of fish packed whole. Ibid., section 43.
Small fish, which are usually packed whole with dry salt or pickle, shall be put in good casks of the size and materials required in this chapter for the packing of split pickled fish, and shall be packed close in the cask and well salted; the casks shall be filled full with the fisk and salt, and no more salt shall be put with the fish than is necessary for their preservation, and the casks containing such whole fish shall be branded with the denomination of the fish, and a like designation of the qualities as is before prescribed in this chapter in respect to the qualities of other pickled fish.

Quality and size of packages for pickled fish. Ibid., sections 44, 45.
Casks used for packing or repacking pickled fish intended for exportation, except casks containing less than twenty-five pounds weight, shall be made of sound, well-seasoned white oak, ash, red oak, spruce, pine, or chestnut staves, of rift timber,* sound and well seasoned, with heading of either of said kinds of wood, and when of pine such heading shall be free from sap and knots, and be planed; the barrels, half barrels, and tierces shall be well hooped with at least three good hoops of sufficient substance on each bilge, and three hoops of the like quality on each chime ; the barrel-staves shall be twenty-eight inches in length, and the heads shall be seventeen iuches between the chimes; the barrels shall contain not less than twenty-eight nor more than twenty-nine gallons each; the half barrels not less than fifteen gallons each; and the tierces not less than forty-five nor more than forty-six gallons each. Each cask shall be made in a workman-like manner, and branded on its side, near the bung, with the name of the maker.
The inspector-general or his deputies shall strictly examine and iuspect all casks in which they may be required to pack fish; and shall reject such as are not made in a substantial manner and according to the provisions of this chapter.

Fees for inspection of pickled fish. Ibid., sections 46, 47.
The fees for inspecting and branding, exclusive of cooperage, shall be, for each tierce fourteen cents, each barrel nine cents, each half barrel six cents, each cask of a smaller denomination three cents, and, in addition to the fees aforesaid, one cent for each cask nailed as before provided; and all fees shall in the first instance be paid by the original

[^73]owner of the fish, or by the person employing the inspector, and may be recorered by them respectively of the person who afterwards purchases or exports the same.

The inspector-general may receive from each of his deputies for every cask of fish inspected by him the following fees: For each tierce four cents, for each barrel one cent, for each half barrel,* and all packages less than one hundred or more than fifty pounds, one-half cent, and on all packages of fifty pounds and less, one-quarter of a cent each.

Inspection of smoked alewives or herrings. Ibid., sections 48-52.

Alewives or herrings intended to be packed for sale or exportation, shall be sufficiently salted and smoked to cure and preserve the same, and afterwards shall be closely packed in boxes in clear and dry weather.

Smoked alewives or herrings shall be divided and sorted by the inspector or his deputy, and denominated, according to their quality, number one and number two. Number one shall consist of all the largest and best cured fish; number two of the smaller but well-cured fish; and in all cases those which are belly-broken, tainted, scorched, or burnt, slack-salted, or not sufficiently smoked, shall be taken out as refuse.

Boxes made for the purpose of packing smoked alewives or herrings, and containing the same, shall be made of good sound boards, sawed and well seasoned ; the sides, top, and bottom of not less than half-inch, and the ends of not less than three-quarter inch, boards securely nailed, and shall be seventeen inches in length, eleven inches in breadth, and six inches in depth, in the clear, inside.
Each box of alewives or herrings inspected shall be branded on the top by the inspecting officer with the first letter of his Christian name, the whole of his surname, the name of the town where it was inspected, with the addition of Mass., and also with the quality of number one or number two. Herrings taken on the coasts of Nova Scotia, Newfoundland, Labrador, or Magdalen Islands, and brought into this State, shall also be branded with the name of the place or coast where taken.

The fees for inspecting, packing, and branding, shall be five cents for each box, which shall be paid by the purchaser; and the inspectorgeneral may require from his deputies one cent for each box inspected, packed, and branded by them.

Annual report of fish inspected. Ibid., section 53.
The inspector-general shall, in the month of January, annually, make a return into the office of the secretary of the commonwealth, of all the

[^74]fish inspected by him and his deputies during the year preceding the first day of said January, designating the quantities, kinds, and qualities of pickled and smoked fish, respectively, and distinguishing the quantities, linds, and qualities of pickled fish of a first inspection from those reinspected; and the secretary shall, as soon as may be after receiving such returns, cause the same to be published in any newspaper in Boston authorized to publish the laws of the commonwealth.

Penalties for selling or transporting uninspected fish. Ibid., sections 54-56.
No smoked alewives or herrings shall be exported from this State, unless inspected and branded as aforesaid, under a penalty of two dollars for each box exported; nor said alewives or herrings be taken from a box, inspected and branded as aforesaid, and replaced by others of an inferior quality, with intent to defraud any person in the sale of the same, under a penalty of five dollars for each box so changed; provided, that all smoked herrings and alewives, arriving from any other State in the United States and having been there inspected, may be exported in a vessel from this State without being reinspected.

Pickled or smoked fish, which has not been inspected and branded according to the provisions of this chapter, put on board of a boat or vessel, or into a carriage of conveyance, with the intent that the same shall be sold within, or exported from, this State, shall be forfeited, and the inspector-general or a deputy may seize and libel the same.

If a master of a ressel or other person puts or receives on board of a vessel, or in a carriage of conveyance, for transportation from this State, pickled fish, or smoked fish, not inspected and branded as provided in this chapter, he shall forfeit a sum not exceeding ten dollars for every hundred pounds of such fish, and in the same proportion for any other quantity.

Penalty for selling tainted or damaged fish for food. Ibid., section 57.
Whoever sells within this State or exports therefrom tainted or damaged fish, unless with the intent that the same shall be used for some other purpose than as food, shall forfeit the sum of ten dollars for every hundred pounds of such fish, and in the same proportion for any other quantity; and upon a trial in such case the burden of proof shall be upon the defendant to show for what purpose such fish was so exported or sold.

Penalty for illegally branding. Ibid., section 58.

If the inspector-general, or a deputy inspector, brands a cask or package of fish, the contents of which he has not duly inspected, packed, salted, or coopered, or permits any other person to use his brands, in violation or evasion of the provisions of this chapter, he shall forfeit twenty dollars for each offense, and be liable to removal from office.

Quintal defined. Ibid., section 59.
When fish are sold by the quintal, it shall be understood to mean a quintal of one hundred pounds avoirdupois, and all contracts concerning fish sold in this manner shall be construed accordingly.

Packing of clam bait. Act of 1867, chap. 347, section 1.
When clam bait is sold by the barrel, it shall be construed to mean a fish-barrel of not more than twenty-nine, nor less than twenty-eight gallons of clams and not over three gallons of pickle. If a disagreement arises between the purchaser and seller respecting the quantity in a barrel, either party may call on an inspector of fish and have the barrel measured; and if it does not contain the aforesaid number of gallons of clams, the seller shall receive pay for the number of gallons it contains, and shall pay the expense of measuring and coopering, otherwise the purchaser shall pay such expense.

Right of inspectors to enter premises. Act of April 1, 1879, section 3.
The inspector-general of fish or some one deputy especially thereto authorized by him for that purpose, shall have the right to enter at all reasonable times, upon any wharf, and into any store, warehouse, or other place, where the packing of pickled fish is carried on in this State, for the purpose of inspecting, examining, and supervising the packing and inspecting of such fish, and to examine and weigh any package of such fish, for the purpose of ascertaining if the same are fit for exportation, in accordance with the requirements of the law.

RHODE ISLAND.

(General Statutes of Rhode Island, 1872.)
Election and qualification of packers of fish. Chapter 34, sections 1, 18; chapter 102, section 2.

The electors in each town shall, annually, on their town election days, choose and elect * * * one or more packers of fish, * * *.

Every packer shall give bond to the town treasurer of the town in which he shall be appointed, in the sum of one thousand dollars, with sufficient surety or sureties, to the satisfaction of such town treasurer, for the faithful performance of the duties of his office.

Duties of packers of fish. Chap. 102, section 1.
In every town in which pickled fish are packed up for sale or exportation from the State, the packers of such town shall see that the same have been properly pickled; that they are properly repacked in casks, in good shipping order, with good salt, sufficient in each cask to preserve such fish from damage to any foreign port.

Casks to contain only one kind of fish. Ibid., section 3.
Pickled fish, whether codfish, mackerel, menhaden, herrings, or other fish, shall be sorted, and one kind only be put into one cask.

Dimensions of casks; how filled ; branding. Ibid., sections 4, 5.
Every cask shall be well seasoned and bound with twelve hoops; those of menhaden and herrings of the capacity to hold twenty-eight gallons; and those for other fish of the capacity, if a barrel, to hold two hundred pounds, and if a half barrel, one hundred pounds, weight of fish; each cask to be full, and the fish sound and well cured.

Every cask, being first searched, examined, and approved by a packer, shall, when packed or repacked for exportation, be branded legibly on one head with the kind of fish it contains, and the weight thereof; or the capacity of the cask, with the first letter of the Christian and the whole of the surname of the packer, with the name of the town, and with the words "Rhode Island," in letters not less than three-fourths of an inch long, to denote that the same is merchantable and in good order for exportation.

Qualities of fish. Ibid., section 6.

Every cask of pickled codfish and mackerel offered for sale, or for exportation from this State, shall also be branded No. 1, No. 2, or No. 3, to denote the quality of such fish.

Fish brought from other States, by fishermen, \&c., excepted. Ibid., section 7.
Nothing in this chapter contained shall hinder any fisherman or owners of fish, coming to this State from their fishing trips, from selling or reshipping their fish to any other of the United States without being packed into barrels or half barrels.

$$
\text { Penalty for illegally selling fish. Ibid., section } 8 .
$$

Every person who shall offer for sale in or attempt to export from this State any pickled fish which have not been approved by a sworn packer, or in casks which are not branded as aforesaid, shall forfeit fifty dollars for each offense.

Penalty for illegally packing or branding. Ibid., section 9.
Every person who shall shift any fish from any cask after the same has been branded by the packer, and shall offer to sell or export the same from this State, or shall brand any cask into which the same shall be shifted, or shall brand any cask with the branding-iron of a packer, or with any iron made in imitation thereof, shall forfeit not less than thirty dollars nor more than one hundred and sixty dollars for each offense.

Penalty for fraud. Ibid., section 10.
Every packer who shall be guilty of any fraud or neglect in packing any fish contrary to this chapter, or shall brand any cask not thoroughly examined according to the provisions thereof, shall forfeit fifty dollars for each offense.

Fees of packers of fish. Ibid., section 11.

The packers of fish shall be paid for opening, assorting, inspecting, weighing, pickling, packing, or repacking, heading up, nailing, and giving a certificate, if pickled codfish or mackerel, twenty cents for every barrel, and fifteen cents for every half barrel, by the owner thereof: Provided, That for all pickled codfish or mackerel which have been inspected in some one of the United States, and which shall not, in the judgment of the packer, require repacking, the said owner shall pay to the packer twenty cents only, for unheading, inspecting, reheading, branding, nailing, and giving a certificate thereof; and for all other except codfish and mackerel, the owner thereof shall pay the packer twenty-five cents for every cask.

CONNECTICUT.

(Revised Statutes of Connecticut, 1875.)
Appointment and qualification of inspectors. Title 16, Chapter XV, section 17.

The superior court in the several counties may appoint in each town therein not exceeding fifteen inspectors and packers of fish, and shall take a bond of every person so appointed, for the faithful discharge of his duty, in the sum of one hundred dollars, payable to the county treasurer; and the clerk of said court shall give a certificate of his appointment to each inspector, who may exercise the duties of his office in any town in such county.

Packing of pickled shad. Ibid., section 18.

All pickled shad intended for market shall be split and well cleansed and pickled in strong brine, and shall remain in such brine at least fifteen days before they shall be put up for market, and shall be put up in barrels or half barrels, the barrels containing two hundred pounds each, and the half barrels one hundred pounds each, of fish well packed, with a sufficient quantity of salt, and filled with strong brine; and shad so put up shall be of three denominations, to wit: Shad number one, to consist wholly of shad well saved, free from rust or any defect, with the head and tail cut off and the backbone taken out, each barrel to contain not more than eighty shad, and each half barrel not more than forty. The second denomination shall be shad number two, to consist wholly
of those well saved, trimmed, pickled, and prepared for packing, in the same manner as shad number one, each barrel to contain not more than ninety shad, and each half barrel not more than forty-five. The third denomination shall be shad number three, to consist of such as will not answer for either of the two former numbers, well saved, with the heads taken off; and erery inspector, who shall inspect and brand the same, shall designate by each brand the quality, weight, and kind of fish contained in each barrel and half barrel branded by him, the year when it shall have been inspected, in figures, the word "Conn." and his own name and the name of the town where said fish was put up.

$$
\text { Quality and size of fish barrels. Ibid., section } 19 .
$$

All barrels and half barrels containing fish shall be well made, of good seasoned red oak, white oak, or chestnut timber, and each tierce made with twelve hoops; and each barrel shall be of the capacity of from twenty-eight to thirty gallons, and each half barrel of the capacity of fifteen gallons and a half.

Imported shad not to be inspected. Title 20, Chapter XII, section 10.
Any inspector of fish who shall inspect or brand any package of shad imported into this State shall forfeit five dollars to the State.

Inspection fees. Title 13, Chapter XXVIII.

Inspectors shall receive for packing, heading, flagging, pickling, and branding each barrel of fish, twenty cents, and for each half barrel, ten cents.

Penalty for fraud by inspectors. Title 20, Chapter XII, section 12.
Every legally-appointed inspector or packer of fish who shall be guilty of any fraud or neglect, for which no other penalty is specifically prescribed, shall forfeit six dollars for every offense ; and every such inspector or packer who shall mark or brand any cask containing fish which has not been actually inspected by him, or shall put a false brand upon any cask inspected by him, shall forfeit ten dollars.

Penalties for illegally repacking or exporting. Ibid., sections 13, 14.
Erry person who, after the inspection and branding of any cask containing fish, shall fraudulently take out or change any part of the contents thereof, or put into it any fish not inspected, shall forfeit twenty dollars.

Every person who shall export, or ship for exportation, to any foreign port, any fish not put up, inspected, and branded according to law, and the master of every vessel, knowingly having on board his vessel any such fish not so put up, inspected, and branded, shall forfeit the follow-
ing sums : The owner, exporter, or shipper, shall forfeit six dollars for every cask containing fish; and every master of a vessel shall forfeit for every such cask on board, three dollars; but fish brought from another State, and inspected and branded in the State in which they were put up for market, conformably to its laws, and accompanied with such evidence thereof as such laws require, may be exported from this State without any reinspection.

53. REPEALED LAWS.

MAINE.

Until the year 1820, Maine was a province of Massachusetts and subject to the same laws, but in that year the province became a separate State and made its own laws. The fish inspection laws enacted by the State of Maine were very similar to those of the mother State. The first law was approved March 22, 1821, and is entitled "An act to provide for the packing of pickled and smoked fish." It reads as follows:

Appointment and qualification of inspectors.

Be it enacted by the Senate and House of Representatives in Legislature assembled, That the governor, with the advice of council, is hereby authorized and directed to appoint and commission, during his pleasure, in each town and plantation in this State where pickled fish or smoked alewives and herrings are cured or packed for the purpose of exportation, one or more suitable person or persons inspector or ins pectors of pickled fish and smoked alewives and herrings, who shall be well skilled in the quality of the same, and who, before he enters on the duties of his office, shall be sworn to the faithful discharge thereof, and shall give bond with sufficient sureties to the treasurer of the town or plantation in which he is appointed, in the penal sum of not less than five hundred nor more than one thousand dollars, for the faithful performance of the duties of his office. And the selectmen of towns and assessors of plantations, in which such inspectors shall be appointed, shall annually examine the bonds given as aforesaid, and if the boud of any such inspector shall by them be considered insufficient, they shall forthwith notify such inspector of the same, and if any inspector shall for thirty days after such notice neglect to give bond as aforesaid to the satisfaction of such selectmen or assessors, it shall be their duty to give information thereof to the governor, who shall remove sach inspector and appoint some other person to such office. And any person injured by the neglect or misdoings of any such inspector shall be entitled to a copy of snch bond, and shall have a right to bring an action thereon in the name of such treasurer for his own use aud benefit; and on producing the origiual in court and obtaining judgment thereon, execation shall issue for such sum ouly as shall be found due in damages to the person for whose use any such action shall be brought; and
the amount thereof being entered by the clerk of the court on the original bond, the same may be delivered back (by leaving a copy) to the treasurer from whom the same was received.

Material and sizes of casks for pickled fish.

2. Be it further enacted, That all barrels, half barrels and tierces which shall be made or used for the purpose of packing, or containing pickled fish, shall be made sound of well-seasoned white oak, ash, red oak, spruce, pine, or chestnut staves, of rift timber, with heading of either of the said kinds of wood, sound, well-seasoned and the pine heads free from sap : eaid heading to be well planed; the barrels, halfbarrels and tierces to be well hooped, with at least three hcops on each bilge and three hoops on each chime, all of which shall be good hoops of sufficient substance, the barrel staves to be twenty-eight inches in length, and the heads to be seventeen inches between the chimes; and to contain not less than twenty-nine nor more than thirty gallons; and barrels, half-barrels and tierces shall be branded on the side of the cask near the bung with the name of the maker or owner of said cask, and shall be made, in a workmanlike manner, to hold pickle; the half barrels to contain not less than fifteen gallons, and the tierces to contain not less than forty-five nor more than forty-six gallons: Provided, however, That nothing contained in this act, shall extend to fish packed in kegs of less than ten gallons.

Material and size of boxes for smoked fish.

3. Be it further enacted, That all boxes which shall be made for the purpose of packing smoked alewives or herrings and containing the same, shall be made of goed sound boards, sawed and well seasoned, the sides, top, and bottom of not less than half-inch boards, and the ends notless than three-quarters of inch boards, securely nailed with not less than cight sixpenny nails, and sixteen fourpenny nails to each box, and the top of each box to be planed, and shall be seventeen inches in length, eleven inches in breadth, and six inches in depth in the clear, inside. And all alewives or herrings intended to be smoked and packed shall be sufficiently salted and smoked to cure and preserve the same; and afterwards closely packed in the boxes, in clear and dry weather.

Qualities of pickled fish. Branding.

4. Be it further enacted, That it shall be the duty of the inspector to see the salmon, mackerel, shad, and all other kinds of split pickled fish, or fish for barrelling, have been well struck with salt or pickle in the first instance, and preserved sweet, free from rust, taint or drmage. And such fish as are in good order, and are of a good quality, shall be packed in tierces, barrels or half barrels; the tierces shall contain three hundred pounds, the barrels shall contain two hundred pounds, and the
haltbarrels one hundred pounds of fish each; and the same shall be packed with thirty-five pounds of good and clean coarse salt, suitable for the purpose, to each barrel; and said casks after being packed and headed up with the fish and sufficient salt to preserve the same, shall be filled up with a clear strong pickle, and shall be branded salmon, mackerel, shad (or as the case may be); those of the best quality, caught in the right season, to be most approved and free from damage, shall be branded Cargo No. 1; those which remain after the best have been selected, being sweet and free from taint, rust or damage, shall be branded Cargo No. 2; and there shall be a third quality, which shall consist of the thinnest and poorest of those that are sweet and wholesome, which shall be branded Cargo No. 3. And the inspector shall also brand in plain legible letters on the head of each and every cask, in which inspected merchantable fish or whole fish are packed or repacked, the weight, and initials of his Christian name, with his surname at large, the name of the town for which he is appointed, and the word "Maine" annexed; and each cask shall be filled with fish of one and the same kind; and if any person shall intermis, take out or shift any inspected fish which are packed and branded as aforesaid, or put in other fish for sale or exportation contrary to the true intent and meaning of this act, he or they shall forfeit and pay fifteen dollars for each and every package so altered: Provided, however, if any casualty shall render it necessary to repack a cask of inspected fish, it may in all cases be done by an inspector of such fish. And if any person shall sell or export or cause to be sold or exported, within or from this State, any tainted or damaged fish, he shall forfeit and pay ten dollars for every hundred weight that shall be thus sold or exported.

Packing and branding of codfish, halibut, \&c.

5. Be it further enacted, That all codfish, haddock, hake, pollock, and halibut, pickled, and hereafter offered for sale, shall be packed in casks of the contents required by the second section of this act, each barrel to contain two hundred and twenty-five pounds, and each half barrel to contain one huadred and twelve and a half pounds, agreeably to the rules of packing in the fourth section of this act, with sufficient salt to preserve the same. And it shall be the duty of the inspectors to brand with plain and legible figures, the weight of the aforesaid five kinds of fish, in addition to the brands required by the fourth section of this act.

Packing and branding of small fish.

6. Be it further enacted, That all small fish which are usually packed whole with dry salt, shall be put in good casks of the size and materials mentioned in the second section of this act; said fish shall be packed close in the cask, and well salted; the casks shall be filled full with the fish and salt, putting no more salt with the fish than is neces-
sary for their preservation; and the inspector shall brand all casks containing such inspected whole fish with the name of the cish, and the quality as described in the fourth section of this act.

Inspection of smoked alewives or herring.

7. Be it further enacted, That all smoked alewives or herrings shall be divided and sorted by the inspector, and denominated, according to their quality, first sort and second sort; the first sort shall consist of all the largest and best cured fish, of not less than eight inches long; second sort, of the smaller but well cured fish, of not less than seven inches long; and in all cases the following shall be taken out as refuse: all those which are belly-broken, tainted, scorched, or burnt, slacksalted, or not sufficiently smoked. And each box of alewives or herrings so inspected shall be branded on the top, by the inspecting officer, with the first letter of the Christian name and the surname at length of the inspector who inspected the same; and in like manner the name of the owner thereof, with the name of the town where it was inspected, with the addition of "Maine," and also with the quality of first sort or second sort.

Certificate required for shipment of pickled and smoked fish.

8. Be it further cnacted, That no pickled fish in casks, and no smoked alewives or herrings in boxes, shall be exported from this Stato by water, unless the master or owner of the ressel shall produce to the collector or other officer authorized by the United States to clear out ressels, a certificate from the inspector that the same has been inspected, packed, and branded according to the directions of this act; and the certificate shall express the number of barrels, half barrels, and ticrees, and the number of boxes thus shipped, the kind and quality of the fish they contain, with the name of the master and owner, and the name of the vessel in which such fish are received for exportation. And such master or owner of every vessel shall take and subscribe the following oath or affirmation before the officer authorized as aforesaid:

I, A B, do swear, (or affirm as the case may be), according to the best of my knowledge and belief, that the certificate hereunto annexed, contains the whole quantity of pickled and barreled fish and smoked alewives and herrings on board the -, - master ; and that no fish, smoked alewives or herrings are shipped on board said vessel, for the ship's company, or on freight or cargo, but what are inspected and branded according to the laws of this State. So help me God: or this I do under the pains and penalties of perjury (as the case may be).

Shipment of uninspected fish.

9. Be it further enacted, That if any pickled or barreled fish, or any smoised fish shall be put on board of any boat, vessel, or carriage of con
S. Mis. 110-—30
veyance, within this State, with intent to sell or export the same, unless said fish shall have been inspected and the casks and boxes containing the same shall have been branded agreeably to the provisions of this act, it shall be lawful for any justice of the peace in the same county, upon complaint made to him, to issue his warrant to the sheriff or his deputy, or to any constable of the town where such boat, vessel, or carriage of conveyance may be, requiring them respectively to seize and secure said fish, and carry the same to the inspector nearest the place where said boat, vessel, or carriage may be; and said inspector is hereby authorized and required to open and inspect and to pack and brand the same in the same manner as is prescribed in this act. And it shall be lawful for said inspector to detain the said fish until the expenses and charges of seizure, inspection, packing, and all other charges arising from such seizure, shall be paid. And it shall be the duty of every person, when required, to give necessary aid to the officer having such war rant, on pain of forfeiting five dollars for his refusal, to be recovered by action of debt, or on the case, before any court proper to the same; and by any person who will prosecute therefor.

Inspection of imported pickled and smoked fish.

10. Be it further enacted, That no pickled or smoked fish, which shall be brought into this State from any other State or government, shall be sold or offered for sale before the same shall have been regularly inspected according to the provisions of this act; and each and every person who buy or sell, or offer for sale [any] pickled or smoked fish which shall be brought into this State from any other State or government, before the same is regularly inspected as aforesaid, shall severally forfeit and pay five dollars for each and every handred pounds' weight so bought or sold; to be recovered by any person who shall prosecute for the same, by action of debt, or on the case, before any court proper to try the same.

Penalty for handling uninspected fish.

11. Be it further enacted, That if any master of a vessel, or other person, shall put or receive on board any vessel or other carriage or conveyance to transport the same from this State, any pickled or whole fish packed in casks which are not inspected or branded in manner by this act prescribed, he or they, on conviction, shall forfeit and pay not less than five dollars nor more than ten dollars for each and every hundred pounds of such uninspected fish.

Penalty for exporting uninspected smokod fish.

12. Be it further enacted, That no smoked alewives or herrings which shall not have been inspected and branded agreeably to the provisions of this act shall be exported from this State, ander a penalty of two
dollars for each box so exported; nor shall any alewives or herrings be taken from any box so inspected and branded and others of an inferior quality be put in their place, with intent to deceive or defraud any person in the sale of the same, under a penalty of five dollars for each box so changed.

Penalty for illegal branding.

13. Be it further enacted, That if the inspector shall brand any cask, the contents of which he has not inspected, packed, salted, and coopered, or any boxes of smoked alewives or herrings which he has not inspected, packed, and nailed, according to the true intent and meaning of this act, or if he shall permit other persons to use his brands in violation or evasion theroof, he or they so offending, shall forfeit and pay, for every cask and box so branded, the sum of twenty dollars.

Branding-irons. Fish for home consumption, etc.

14. Be it further enacted, That all persons within this State who shall have fish for packing and pickling, either in bulk or in casks, to the amount of twenty barrels in one season, shall furnish the inspector with a branding-iron, containing the first letter of the owner's Christian name and his surname at large, and the inspector shall cause the names of sach owners to be fairly branded on the head of every cask of their inspected fish; and if any such owner of fish shall refuse or neglect to furnish such brand he shall forfeit and pay for such neglect and refusal not less than five dollars nor more than twenty dollars; and all kinds of pickled fish which are packed in tierces, barrels, or half barrels for consumption within this State, and which are not subject to be inspected and branded as provided for exportation, shall, however, be packed with only one kind of fish in each cask, and there shall be the same weight in each cask as is provided by the fourth section of this act; and for intermixing different kinds of fish in the same cask, or for short weight in any cask, the owners or venders shall be subjected to the same penalties and forfeitures as are provided by this act for the like offense in the inspected pickled fish.

Disposition of penalties.

15. Be it further enacted, That all penalties and forfeitures arising by force and virtue of this act, except the penalties of five dollars mentioned in the ninth and tenth sections of this act, shall be recovered by action of debt in any court proper to try the same; one moiety thereof for the use of the town or plantation wherein the offense shall be committed, and the other moicty to him or them who shall sue for the same.

Payment of fees.

16. Be it further enacted, That the charges for certificates, inspecting, and branding shall be paid by the exporter or purchaser, in addition to
the purchase or cost of the fish; and bills for the legal fees of inspection and certificates shall, in the first instance, be paid by the original owner of said fish, or by the person employing the inspector; and all such owners or employers arehereby empowered to demand and recover the amount of said bills from the subsequent purchaser or exporter.

Inspectors now in office.

17. Be it further enacted, That the inspector and his deputies, legally appointed and now in office, shall continue to hold and enjoy their respective offices until the tenth day of April next.

Inspectors to give bonds.

18. Be it further enacted, That every inspector of fish appointed in this State shall, on being qualified for such office, pay to the treasurer of the town or plantation in which he shall reside five dollars; and it shall be the duty of such treasurers to pay over all moneys so received to the treasurer of this State on or before the twentieth day of January annually.

Inspection fees.

19. Be it further enacted, That the inspectors shall be paid for each certificate for exportation seventeen cents, and for inspecting and branding each and every cask of fish, as directed by this act; for each tierce ten cents, for each barrel seven cents, for each half barrel four cents, for each box of smoked herrings or alewives two cents, exclusive of the labor and expense of packing and coopering; and the fees for inspecting and the expense for packing and coopering shall be paid by the seller.

The following act additional to the preceding law was passed January 29, 1822:

Inspection of smoked herrings.

Be it enacted, \&c., That, from and after the passing of this act, the several inspectors of fish in this State shall be authorized to inspect smoked herrings, scaled and cured in a superior manner, and packed in boxes eighteen inches long, nine inches wide, and seven inches deep in the clear, which boxes shall be made and branded on the cover, in the same manner as other boxes for herring are now made and branded, excepting that, instead of first or second sort, the word scaled shall be inserted. And the inspection and exportation of said herrings shall be subject to the same laws and regulations as are prescribed by law for other herrings.

On February 8, 1822, the following law was passed:

Inspection in places where no inspector resides.

Be it enacted, \&c., That where it shall be necessary to have fish inspected in any town or plantation where no inspector resides, it shall
be lawful for any inspector within the county to inspect and brand the same in such town or plantation.

The following law was passed February 25, 1824:

Inspection of imported fish.

Sec. 1. Be it enacted, \&ec., That all butter, lard; pickled, dry, or smoked fish, beef, and pork, or other salted provisions that may have been inspected in any other of the United States, may be exported from any port in this State to any foreign port without its being subject to reinspection, any law to the contrary notwithstanding.

The following law passed February 2, 1828 :

Inspection of shad.

Be it enacted by the senate and house of representatives, in legislature assembled, That, from and after the passing of this act, it shall be the duty of the several inspectors of fish in this state to brand shad barrelled as specified in the fourth section of an act, passed the twentysecond day of March, one thousand eight hundred and twenty-one, as follows, viz: Those of the best quality, caught in the right season, to be most approved and free from damage, having their tails cut off and back hones out, shall be branded "Cargo Mess"; those which remain after the best have been selected, being sweet and free from taint, rust, or damage, with their back bones in, and tails on, shall be branded "Cargo No. 1"; and there shall be a third quality, which shall consist of the thinnest and poorest of those that are sweet and wholesome, which shall be branded" Cargo No. 2"; anything contained in any act to which this is additional, to the contrary notwithstanding.
The following additional law regulating the inspection of smoked herring was passed February 12, 1831:

1. Be it enacted, \&e., That from and after the passage of this act, the several inspectors of fish in this state shall be anthorized to inspect smoked herring scaled and packed in boxes eighteen inches long, nine inches wide, and seven inches deep in the clear, which boxes shall be made (except as to dimensions) in the manner provided by law for pickled and smoked fish, and in addition to the brand now required by law, there shall be branded upon the cover of said boxes, first sort, or second sort scaled herring (as the quality may require), first sort to be not less than eight inches long, and second sort not less than six inches and a half long, and cured in a superior manner.
2. Beit further enacted, That the inspection and exportation of said herrings shall be subject to the same regulations as are prescribed by law for pickled and smoked fish, and that the act passed January twentyninth, in the year of our Lord one thousand eight hundred and twentytwo, entitled " An act in addition to an act to provide for the packing
and inspection of pickled and smoked fish," be and the same is hereby repealed.

The Massachusetts inspection laws passed in 1810, provided for the appointment of an inspector-general of pickled and smoked fish. This law applied to the province of Maine until the separation in 1820. The new law then passed by Maine did not require an inspector-general, but provided for the appointment of inspectors in the several fishing towns of the State. This method of inspection continued until March 14, 1862, when the following law was passed:

Appointment and duties of inspector-general and deputies.

1. The governor with advice of the council shall appoint an inspectorgeneral of fish, removable at pleasure, who shall be commissioned for a period not exceeding two years, and he shall be sworn and give bond with sufficient sureties in the sum of six thousand dollars to the treasurer of state for the faithful discharge of his duties before entering thereon.
2. The inspector-general shall appoint one or more deputies in every town in this state where pickled tish or smoked herrings and alewives are cured or packed for exportation, who shall be responsible for their neglect or misconduct while acting under him, and when the office of inspector-general becomes vacant, they may continue to discharge the duties of the office until a successor is appointed, and they shall be accountable to the state.
3. Every deputy shall be sworn by the inspector-general or by a justice of the peace, and give bond to the inspector-general with sureties to his satisfactiou for the faithful performance of his duty, and the boud shall be so expressed as to enure to the use of the state for the time the deputy exercises his duties during a vacancy in the office of inspectorgeueral.
4. Each deputy shall pay to the inspector-general one dollar, as an excise fee for his bond and commission, and the inspector-general may receive from each of his deputies for every cask of pickled fish inspected by him the following fees: For each tierce, four cents; for each barrel, one cent; and every smaller package, one-half cent.
5. The inspector-general shall, in the month of January anuually, make a return into the office of secretary of state, of all the fish inspected by him and his deputies during the year preceding the first day of said January, designating the quantities, kinds, and qualities of pickled and smoked fish respectirely, and the secretary shall publish the same, as soon after as may be, in the state paper, and the inspector-general may require returns of his deputies as often as he sees fit.
6. All acts and parts of acts inconsistent herewith are hereby repealed.

On March 24, 1864, the following amendment to the fish inspection. laws was approved :

Inspection of mackerel.

1. Chapter forty, section five, of the Revised Statutes is hereby amended by striking out all in said section after the word "therein" in the thirteenth line, and inserting mackerel of the best quality, not mutilated, measuring not less than thirteen inches from the extremity of the head to the crotch of or fork of the tail, free from rust, taint, or damage, shall be branded number one. The next best quality, being not less than eleven inches, measuring as aforesaid, free from rust, taint, or damage, shall be branded number two. Those that remain after the above selections, free from taint or danage, and not less than thirteen inches, measuring as aforesaid, shall be branded number three large. Those of the next inferior quality, free from taint or damage, not less than ten inches in length, as aforesaid, shall be branded number three. All other mackerel free from taint or damage shall be branded number three small. The inspectors shall also brand in plain letters on the head of every such cask the weight, the initials of his Christian and the whole of his surname, the name of his town, and the letters Me., an abridgement of the month, and the rear, in figures when packed. The inspectorgeneral of fish shall have no interest, directly or indirectly, in the cure or packing of pickled fish.

Tern of office of inspector-general lengthened.

2. Chapter ninety-nine, section one, of the public laws of eighteen hundred and sixty-two is hereby amended by striking out the word "two" and and inserting five.
3. This act shall take effect when approved by the governor.

The present fish inspection laws of Maine were passed February 10, 1875, and abolish the office of inspector-general, which was created in 1862. Each fishing port is now provided with its own inspectors.

massachuserts.

Various inspection laws regulating the packing of pickled fish have been in force in Massachusetts since early colonial days. The following law was passed in May, 1651:

Att a Gennerall Courte of Elecẽons, held at Boston, 7th May, 1651.
For preventing the deceipt of any person in packing of fish, beifis and porke to be putt to salie in this and other jurisdictions, itt is therefore ordered by this Courte and the authoritje thereof, that in every towne whin this jurisdicon where any such goods are packed up for sale, the gager of that tome, or of the toune wherein it is putt to sale, or shipt, shall see that it be well and orderly performed, that is to say, beife and porke, the whole halfe or quarter together, and so proportionably, and the best be not left out ; and for fish, that they be packit
all of one kind, and that all caske so packt, be full, and sound and well seasoned setting his seale on all caske so packt, for which he shall receive of the owners, for so packing and sealing, fower shillings \mathbf{p} tunne; but if the gager do only veiw them, and find them good and sufficjent, he shall set his seale vppon them, and have one shilling p tunne for so doing; and if such goods so packt shall be put to sale packt vp in caske without the gagers marke, he shall forfeite the said goods so put to sale, one-half to the informer, the other to the countje treasury, and whereas notw ${ }^{\text {ith }}$ standing the former law provided, tit. caske and coopers, page the sixth, much damage is still sustained by marchants and men of trade, through insufficiencie and vendue assize of caske, itt is therefore further ordered by the authorytie of this courte, that wheresoever any new caske are found put to sale being defective either in workmanship, timber, or assize, as in that law is provided vppon due proofe made before any one magistrate, the said caske shall be forfeited to the informer, and the workmen for his default shall pay tenn shillings a tumn forthwith, to the use of the countye and so proportionable to any greater or lesser caske; and becawse there may be no neglect in the choice of a gager to prevent the abuses in this or any other lawe exprest, itt is further ordered by the authorytie aforesajd, the every toune within this jurisdicẽon wherein any caske are made shall yecrely make choice of one fitt man for that worke and imploiment, who, being presented by the constable within one weeke after the choice made, before any one magistrate, shall take the oath belonging to his place, which if he shall refuse, he slall pay the some of forty shillings, and another to be chosen in his roome; as also the toune or constable shall either of them suffer the like poenaltie for the neglect of this order, any other lawe, custome or order to the contrary notwith. standing.-(Records of Massachusetts, Vol. IV, Part I, p. 39.)
In 1652 another law was passed as follows:
Att the second Sessions of the Generall Court, held at Boston, the 19th of Oct. 1652.

Vppon sundry information of sundry abuses which may arise, and thereby reproach redound to the countrje, by packing of beife, porke in caske that is not full gage, although the packer doe carefully fill the same, as the lawe provides, it is therefore ordered by this Courte: that henceforth every packer shall see that all caske he packs any beife, pork mackerill, fish or any other goods in comitted to his care, be of true and full asize and gage, and that he packes the same in no other caske whatsoever on penaltie of tenn shillings for every caske by him packed that is or shall be defective in that respect, one halfe to the informer, and the other half to the countrie. This order to be the next day publisked, and posted vp in Boston and Charles Toune, and, by the first opportunitie, in Salem and Ipswich.
The oath for packers of beife \&c-
Whereas, you AB, are chosen a packer of beife porke and other
things for the toune of B:, you doe here sweare by the living God that you will well and truely packe, all beife, porke, and other things when you shall be thereunto required; you shall packe no kinde of goods but such as are good and sound nor any goods in any caske that is not of a just and full gage; you shall also sett your particular marke vpon all caske packed by you; and in all things propper to the place of a packer you shall faithfully discharge the same, from time to tjme, according to your best judgment \& conscjence, So helpe yon God.-(Records of Massachusetts, Vol. IV, Part I, page 105.)

The following law was passed November 8, 1692:
AN ACT for regulating the assize of cask, and preventing deceit in packing of fish, beef, and pork for sale.

Be it ordained and enacted by the Governour, Council and Representatives in General Court assembled, and by the authority of the same.

Sec. I. That from and after the first day of December next, all sorts and kinds of tight cask used for any liquor, fish, beef, pork, or any other commodities within this, their majesties' province, shall be of London assize; puncheons, eighty-four gallons; hogsheads, sixty-three gallons; tearses, forty-two gallons; barrels, thirty-one gallons and a half; and made of sound, well-seasoned timber, and free from sap. And that fit persons be appointed, from time to time, in all places ueedful to view and gage all such cask; and such as shall be found of due assize shall be marked with the gager's mark, who shall have for his pains four pence per tunn; and every cooper shall set his distinct brand-mark on his own cask, on penalty of forty shillings. And whosoever shall put to sale any new cask, being defective either in workmanship, timber, or assize, as aforesaid, upon proof thereof, made before one justice of the peace, he shall forfeit such cask and be fined forty shillings.

And be it further enacted [Sect. 2], That the justices of the peace, at their first general quarter sessions, to be holden in each respective county within this province, shall yearly, in every town needful thereof, choose and appoint a fit person or persons to be gagers and packers, and then to swear to the due execution of their office; which, if any person so appointed shall refuse, he shall pay the sum of forty shillings, and another shall be chosen and appointed in his stead. And every gager and packer shall take care that all cask in which he packs beef, pork, mackerel, fish, or other goods committed to his care, be of true and full assize, and that he pack the same in no other cask whatsoever, on penalty of ten shillings for every cask by him packed, that is or shall be defective in that respect. And if any of the before mentioned provisions shall be packed into half barrels or firkins, the same shall be made in proportion to the assize aforesaid, and be marked by the packer.

And for the preventing of fraud and deceit in the packing of pickled fish, beef, and pork to be put for sale,

Be it further enacted [Sect. 3], That in every town where such goods are packed up for sale, the gager or packer of such town, or of the town wherein they are put to sale or shipped, shall see that it be well and orderly performed; that is to say, beef and pork, the whole half and quarter, and so proportionably that the best be not left out; and so fish and mackerel, that they be packed all of one kind; and that all casks so packed be full, and the fish sound and well seasoned, setting his seal on all casks so packed; and he shall receive of the owners for so packing and sealing, four shillings per ton. And if any such provisions be put to sale or shipped off without the packer's mark, they shall be forfeited.
[Sect. 4.] And it is further enacted, That all sorts of green or pickled fish, sturgeon, or flesh that shall be put up for transportation to a foreign market shall be searched, surveyed, and approved by a sworn packer, who shall take strict care that the same be put in tight cask of full gage, salted with suitable salt. Aud such as shall be so saved, and for its condition found merchantable and full, the packer stall seal with such brand-mark as shall be assigned to the town, and such other cut-mark added as may denote the sort of provision and the time when packed. And all such otber provisions as the packer shall find wholesome and useful, though for its quality it be not merchantable, he shall cause to be well packed, salted, filled, and sealed with the letter R, and such other letters as may signifie the town, specie, and time of packing. And if any master of a ship or other vessel, or any officers or mariners belonging thereto, shall receive such provisions not marked and sealed, as aforesaid, aboard any of their ships or vessels, he or they who shall offend therein, shall forfeit double the value of all such provisions; and he that owns the provisions shall forfeit the same. And if any cooper or other person shall shift any fish or flesh, either on board or on shore, after the same has been so sealed and marked by the packer, and ship and export the same, the packer having not allowed thereof, and anew sealed and marked the cask whereinto such provisions are shifted, all persons acting, ordering or assisting therein, shall be set in the pillory, not exceeding one hour, and shall likewise pay double damages to persons wronged thereby.

And it is further enacted [Sec. 5], That when any such provisions have lain above three months under the packer's mark, betwixt the months of May and October, they shall again, upon exportation or sale, be viewed or searched by the packer; that is to say, so many of them as may probably discover the condition of the whole; and if any be decayed or deceitfully dealt with, the packer shall cull and repack the same, so as to distinguish and mark them for merchantable or refuse, according to their condition. And if those who ship or export any such provision shall neglect or refuse such second search or survey, the packer is hereby ordered and impowered to deface his former mark, and for so doing shall be paid as if he had repackt the same. And if the
owner refuse to satisfie the packer, such packer shall have redress on complaint to any justice of the peace, who is hereby impowered to compel the payment thereof by distress.
[Sec. 7.*] That all fines, penalties, and forfeitures, arising by force and virtue of this act, shall be the one-half to their majesties toward the support of the government of this province, and the other half to him or them that shall inform and sue for the same in any of their majestie's courts of record within this province.
Be it further enacted [Sec. 8], That there be a measurer of salt and culler of fish in every seaport town within this province, to be appoiuted as aforesaid, who being likewise sworn for the faithful discharge of that office, shall cull all merchantable fish and measure all salt that shall be imported and sold out of any ship or other vessel, and shall have three half-pence for every hogshead of salt by him so measured, to be paid, the one-half by the buyer, the other half by the seller. And one penny per quintal for every quintal of merchantable fish by him culled, to be paid, one-half by the buyer and the other half by the seller. (Acts and resolves of the Province of Massachusetts Bay, Vol. I, 1692-1714, p. 49.)

Between the years 1692 and 1784 varions other laws similar to the preceding were euacted. A comprehensive law was passed on November 9,1784 , by which the selectmen of the town, in the commonwealth of Massachusetts, were authorized to choose and appoint searchers and packers of dry and pickled fish desigued for exportation from the State. In this law it is provided that each barrel of pickled fish must contain a sufficient quantity of salt for their preservation; that mackerel and other barrelled fish be packed all of one kiud and in casks well seasoned, containing not less than thirty gallons, and the casks be full and properly branded with the name of the fish therein.

The law of March 6, 1810, which repealed all previons enactments on the same subject is a very minute and important one. It provides for the appointment of an inspector-general and deputy inspectors. The former is required to give bonds to the treasurer of the State for the faithful discharge of his duties. The deputies must give bonds to the inspector-general, and he is held responsible for them. In this law we find the qualities of fish more definitely described than in earlier laws. The section on this subject requires that barrels containing pickled tish "shall be branded salmon, mackerel, shad (or as the case may be); those of the best quality, caught in the right season, to be most approved and free from damage, shall be branded Cargo No. 1; those which remain after the best have been selected, being sweet aud free from taint, rust, or damage, shall be branded, Cargo No. 2; and there shall be a third quality, which shall consist of the thinnest and poorest of those that are sweet and wholesome, shall be branded, Cargo No. 3; and the inspector shall also brand in plain, legible letters, on the head

[^75]of each and every cask in which inspected, merchantable fish, or whole fish are packed, or repacked, the initials of his Christian name, with his surname at large, the name of the town for which he is appointed, and Mass. annexed for Massachusetts.

The act passed by the Massachusetts legislature March 28, 1834, says:

SEC. 1. Be it enacted, etc., That the inspector-general, or his deputies, shall not be required to brand upon the casks in which mackerel may hereafter be packed, the owner's name, nor the word "cargo."

SEc. 2. That the second and fifth sections of the act passed March fourteenth, one thousand eight hundred and thirty-one, entitled "An act in addition to several acts regulating the inspection of pickled fish," are hereby repealed.

Sec. 3. That the inspector-general, or his deputies, shall brand upon every cask of mackerel inspected by him or them the year in which the same is packed; and upon all No. 3 mackerel, that are usually denominated southern or Block Island mackerel, and all others of a similar quality and description the word "South"; and upon all other No. 3 mackerel, the word "North." Provided, however, that the inspectors shall receive no additional compensation therefor.

SEc. 4. That it shall be the duty of the inspector-general, or his deputies, when mackerel are presented to him or them for inspection, to select those of the best quality, and such as are fit for family use, for No. 1; those of the next best quality, being fat, free from damage, of suitable size, and not cut or mutilated in any manner for the purpose of deception, for No. 2; and all others for No. 3, and to brand the casks in which they are packed, accordingly.

SEC. 5. That all acts or parts of acts inconsistent with the provisions of this act, are hereby repealed.

The Revised Statutes of 1835, in defining the qualities of pickled fish, say:
"There shall be four qualities of mackerel, three of salmon and shad, and two of other kinds of pickled fish; those mackerel of best quality for family use, not mutilated, of suitable size, free from rust or damage, shall be number one and number two, the best of those selected and branded number one, the residue number two; those remaining after this selection, of usual size, free from taint, and sound, shall be branded number three; and those of this number that are of the description called Block Islaud mackerel shall also be branded with the word south; all small-size mackerel, free from taint, and sound, remaining after the above selections, shall be branded number four; those salmon and shad which are of the best quality for family use, free from rust or damage, shall be selected for number one and number two, the best of them selected and branded number one, the residue number two; all that remain, free from taint and sound, shall be branded number three; of all other pickled fish the best, such as are free of taint and damage,
shall be branded number one; those that remain free from taint, and sound, number two."
The act of March 31, 1846, defines the grades of mackerel under four numbers, and reads as follows:
"Sec. 1. From and after the passing of this act there shall be four numbers of mackerel: Those of the best quality, not mutilated, measuring not less than thirteen inches from the extremity of the head to the crotch or fork of the tail, free from rust, taint, or damage, shall be branded number one. The next best quality, being not less than eliven inches, measuring as aforesaid, free from rust, taint, or damage, shall be branded number two. Those that remain after the above selections, if free from taint or damage, and not less than thirteen inches, measuring as aforesaid, shall be branded number three large. Those of the next inferior quality, free from taint or damage, not less than ten inches in length, as aforesaid, shall be branded number three. All other mackerel, free from taint or damage, shall be branded number four.
"SEc. 2. The inspector-general shall not have any interest, directly or indirectly, in the cure or packing of any pickled fish, except so far as a faithful performance of his duty requires.
"Sec. 3. The act in addition to an act regulating the inspection of pickled fish, being the one hundred and fifty-fourth chapter of the statutes of the year one thousand eight hundred and thirty-six ; the act concerning the manufacture of barrels for pickled fish, being the fortysecond chapter of the statutes of the year one thousand eight hundred and fifty-four; and also so much of the third section of the twenty-eighth chapter of the Revised Statutes; as is inconsistent with this act, are hereby repealed."

In 1850 the following law was enacted in Massachusetts, requiring that dutiable imported pickled fish be branded with the word "foreign." This law was repealed by act April 1,1879. It had become quite unimportant, since nearly all fish requiring such branding were those from the British provinces, which, by the treaty of Washingtou, had been admitted free of duty for several years. The law reads as follows:
"Pickled fish of foreign catch, on which an import duty is laid by the laws of the United States, which is brought into this State and here inspected or reinspected, shall, in addition to the brand mentioned in the preceding sections, be branded with the word 'foreign' on the head of each cask, barrel, or package, in letters not less than one inch in length, and separate and distinct from the other brands.
"If an inspector of fish inspects or reinspects any fish of foreign catch so imported and brought into this State, and refuses or neglects to comply with the requirements of the preceding section, he shall forfeit and pay for such refusal or neglect fifteen dollars for every cask, barrel, or package so neglected."

CONNECTICUT.

The following fish-inspection law was enacted in Connecticut May 31, 1822, and appeaxs in the Revised Statutes of 1849 :
"Be it enacted, \&c., All pickled shad, codfish, or mackerel, intended for market, shall be split and well cleansed, and pickled in strong brine. Shad and codfish shall be in such brine at least fifteen days, and mackerel at least forty-eight hours, before they are put up for market, and shall be put in barrels or half-barrels, the barrels containing two hundred pounds each, and the half-barrels one hundred pounds each, of fish well packed, with a sufficient quantity of salt, and filled with strong brine. And shad so put up shall be of three denominations, viz: Shad No. 1 to consist wholly of shad well saved, free from rust or any defect, and the head and tail cut off, and the backbone taken out; each barrel containing not more than seventy-two shad, and each halfbarrel not more than thirty-six shad. The second denomination shall be shad number 2 , to consist wholly of well saved, trimmed, pickled, and prepared for packing, in the same manner as shad number 1; each barrel containing not more than eighty-two shad, and each half-barrel not more than forty-one shad. The third denomination shall be shad number 3 , to consist of shad that will not answer for either of the two former numbers, well saved, with the head taken off; and said barrels and half-barrels of fish shall be inspected and branded in the manner hereinbefore prescribed for inspecting beef and pork; and the inspector who shall inspect or who shall brand the same shall designate by each brand the quality, weight, and kind of fish contained in each barrel and half-barrel branded by him, and also his own name, and the name of the town where said fish was put up.
"All barrels and half-barrels containing fish for market or exportation shall be well made of good seasoned red oak, white oak, or chestnut timber; and each tierce made with twelve hoops ; and each barrel shall be of the capacity of from twenty-eight to thirty gallons, and each halfbarrel of the capacity of fifteen gallons and a half."

PENNSYLVANIA.

Laws regulating the inspection of pickled fish were enacted in Pennsylvania in 1835 , and, with subsequent amendments, were in force until 1874, when they were repealed by the adoption of a new constitution that abolished the office of State inspector, and left the regulation of the trade to the several cities and towns. Philadelphia has for many years been a large market for pickled mackerel and other fish. Large quantities are received here from the North, and, after being repacked, are distributed over the State, especially in the mining regions.

A leading fish-dealer of Philadelphia writes as follows :
"Fish-inspection laws were in force in Pennsylvania until the adoption of the new constitution in 1874 , since which time we have had no
law governing the same. Two different bills have been before the legislature, both of which failed; we remonstrated against both, as they discriminated against us. Under one section of the law as it existed until 1874 any man in a bordering State could pack goods any weight he saw fit and sell them in Pennsylvania. No local law will remedy the defect. The only way to correct the abuse is by a general law requiring the weight and grade stamped on each package, and failure thereof to be punished by penalty. This would require no inspector, as a violation could be tried and determined before a justice or United States commissioner, the same as any misdemeanor. Such a law would be hailed with delight by every honest dealer, and leave no argument for the dishonest ones. From the passage of the law, in 1860, until the repeal of the same, in 1868, our house had their smaller packages put up down East, rather than encourage the inspector, which was only in name, no inspecting being done. He would walk into the counting-house, ask how many packages had been made, take what you gave him, and move on. In conversation with a merchant on this subject he told me of an instance where the inspector collected $\$ 3.50$ fees, and the firm after ward admitted to packing 2,700 packages."

We give below the law as it stood on the statute-books of Pennsylvania at the time of the abolishment of inspection laws, in 1874:

Appointment and qualification of inspector and his deputies. Act of March 27,1860 , sections $1,2$.

1. The governor shall appoint, for the term of one year, an inspector of pickled fish in and for this commonwealth, who shall give a bond, with sufficient sureties, to the treasurer of the State of Pennsylvania, in the penal sum of ten thousand dollars, who shall have all and singular the powers and authorities and be subject to all and singalar the duties and liabilities of such office.
2. Said inspector may appoint depaty inspectors for the city and county of Philadelphia, and in such other cities or towns in this commonwealth where pickled fish is packed or repacked, and shall be answerable for their official conduct, and shall take bonds from each of them, with sufficient surety, in such sum as shall be judged sufficient, and the said deputies shall be sworn, either before the said inspector or some alderman or justice of the peace, to the faithful discharge of their duty.

When pickled fish need not be reinspected. Ibid., section 3.

3. Pickled fish which shall have been duly inspected in the State or country in which they were packed shall not be subject to reinspection in this State: Provided, That such fish are sold or exported in the original packages, without being repacked.

Duties of inspectors. Penalties for intermixing. Ibid., section 4.
4. From and after this act shall go into effect the inspector or his deputies shall see that all kinds of split pickled fish for barreling or repacking, intended for sale or export, except herring, haddock, pollock, or codfish, have been well struck with salt or pickle in the first instance, and preserved sweet, free from rust, taint, or damage; and such fish as shall be found in good order, and of a good quality, shall be packed or repacked in tierces containing each three hundred pounds of fish, or in barrels containing each two hundred pounds, or in half-barrels containing each one hundred pounds, or in quarter-barrels containing each fifty pounds, or in eighths of a barrel or kids, twenty-five pounds; each cask shall be filled with fish of one and the same kind; and if any person shall intermix, take out, or shift any inspected fish which have been packed or branded agreeably to the provisions of this act, or put in other fish for sale or exportation, contrary to the true intent and meaning of the provisions of the same, such person shall forfeit fifteen dollars for each package so altered : Provided, however, That if auy casualty shall render it necessary to repack a cask of inspected fish, it shall in all cases be done by an inspector of such fish.

Packing and repacking. Ibid., section 5.

5. All fish that shall be packed or repacked in accordance with the fourth section of this act shall be so packed or repacked with good ant cleau salt, suitable for the purpose; and after packing said fish with sufficient salt to preserve them, and heading said casks, they shall lee filled up with a clear, strong pickle.

Qualities of fish. Ibid., section 6.

6. There shall be four qualities of mackerel, three of salmon and shad, and two of other linds of pickled fish; those mackerel of best quality, for family use, not mutilated, measuring not less than thirteen inches from the extremity of the head to the crotch or fork of the tail, free from rust, taint, or damage, shall be branded number one; the next best quality, being not less than eleven inches, measuring as aforesaid, free from rust, taint, or damage, shall be branded number two; those that remain after the above selections, that are free from rust, taint, or damage, shall be brauded number three large ; those of the next inferior quality, free from taint or damage, not less than ten inches in length, as aforesaid, shall be branded number three. All other mackerel, free from taint or damage, shall be branded number four.

Salmon and shad. Ibid., section 7.

7. Those salmon and shad which are of the best quality, for family use, free from rust, taint, or damage, shall be selected from number one and number two; the best of them selected and branded number one,
the residue number two ; all that remain. free from taint, and sound. shall be branded number three.

Quality and size of casks. Ibid., section 8.
8. All casks used for packing or repacking pickled fish intended for sale or exportation shall be made of sound, well-seasoned white oak, ash, red oak, spruce pine, or chestnut staves, of rift timber, with heading of either of said kinds of wood, and if of pine, shall also be free from sap and knots, and shall be planed; the barrels, half-barrels, and tierces shall be well hooped, with at least three good hoops of sufficient substance on each bilge, and three hoops of the like quality on each chime; the barrel staves shall be twenty-eight inches in length, and the heads shall be seventeen inches between the chimes; the barrels shall contain not less than twenty-eight gallons nor more than thirty gallons each; the half-barrels not less than fifteen gallons each, and the tierces not less than forty-five nor more than forty-six gallons; and each cask shall be made in a workmanlike manner.

Inspection of casks. Act of March 27, 1860, chapter 289, section 9.
9. The inspector or his deputies shall strictly examine and inspect all casks in which he or they may be required to pack any fish, and they shall reject all such as are not made in a substantial manner and according to the provisions of this act.

Branding of casks. Ibid., section 10.
10. The inspector or his deputies shall brand, in plain, legible letters, on the head of each cask of fish inspected by them, or either of them, respectively, the denomination of the fish packed or repacked therein, the initials of the Christian name, and the whole of the surname of the inspector or his deputy, as the case may be, the name of the city or town for which such depaty is appointed, the letters "Penn." (for Pennsylvania), and the year in which the fish were packed. All fish of foreign catch which shall be brought into this State, and which shall be repacked, shall be inspected or reinspected, and in addition to the brand as required by this act, shall be branded with the word foreign on the head of each cask containing such inspected or reinspected fish, in letters not less than one inch in length, and separate and distinct from the other brands.

Inspection fees. Ibid., section 11.
11. The fees for inspecting and branding, exclusive of cooperage, shall be, for each tierce, twelve cents; each barrel, eight cents; each half-barrel, five cents; each cask of any smaller denomination, three cents; and in addition to the fees aforesaid, one cent for each cask that
S. Mis. 110
shall be nailed, which shall be done in a suitable manuer, when in their judgment it may be necessary.

Seizure of uninspected fish. Appropriation of proceeds. Ibid., section 12.
12. If any pickled fish which have been repacked, and not inspected or reinspected and branded according to the provisions of this act, shall be put on board of any boat or ressel, or into any carriage of conveyance, with intent that the same shall be sold within or exported from this State, the inspector, or any deputy, may seize and libel the same; and if upon trial it shall appear that such seizure was lawful, the fish so seized shall be decreed to be forfeited, and shall be sold and disposed of at public sale to the highest bidder; and the net proceeds, after paying the necessary expenses, shall be paid as follows: One-half to the overseers or guardiaus of the poor in the county where seized, and the other one-half to the inspector, or his deputy, who shall have caused the same to have been seized.

Penaltyfor illegal selling or branding. Ibid., section 13.
13. If any person or persons shall sell within this State, or shall export therefrom, any pickled fish which have been packed or repacked therein, and not duly inspected according to the provisions of this act, shall forfeit the sum of ten dollars for every hundred pounds of such fish thus sold or exported, to be recovered in any court of this State haviug competent juisdiction. Any person using a brand for the purpose of branding casks of fish in imitation of those used by the inspector or his deputies, or in imitation of those used by the inspectors or their deputies in other States or foreign countries, or who shall counterfeit, forge, or fraudulently impress, or make the brand-mark, or any number or other mark of auy such inspection, upon any cask of fish subject to inspection, or shall fraudulently alter, deface, conceal or erase any inspection mark duly made, shall, for every such offence, be deemed guilty of a misdemeanor, and be punishable by a fine not exceeding one humdred dollars, at the discretion of the court having jurisdiction of the offence.

Rcpcaling clause. Ibid., section 14.
14. All the acts heretofore in force, regulating the inspection of salted or pickled fish, which are inconsistent herewith, be, aud the same are hereby, repealed.-(Approved, March 27, 1860.)

Name of packer to be branded.* Act of April 15, 1835, section 70.
SEC. 70. Every brand and half-barrel of salted fish, liable to inspec-

[^76]tion as aforesaid, shall be branded with the initial letter of the Christian name, and surnome at full length, of the person or persons putting up the same, or the person selling the same, under penalty of seventyfive cents for every such cask.

Mode of inspection. Ibid., section 72.

15. Every cask containing salted fish, liable to inspection as aforesaid, shall be inspected by opening, and, if necessary, by umpacking and repacking the same, so that the inspector may judge of the soundness and true package of the fish, as well as of the conteuts of the cask.

Branding of unmerchantable fish. Ibid., section 74.
16. If the inspector shall, upon examination find any barrel or halfbarrel, containing salted fish, not to be of the proper description, or if he shall find the fish not to be merchantable as aforesaid, he shall erase and effectually deface therefrom the brand-marks; and if the same cannot be made merchantable, as aforesaid, by salting, pickling, repacking, and coopering, it shall be the duty of the inspector to inpress distinctly, upon each barrel or half-barrel, a mark of condemnation, in the manner following : 1. If such fish shall be inspected at Philadelphia, the inspector shall impress upon one of the heads of such cask the mark of a cross (thus, X), each stroke of which cross shall be at least two inches and a half in length; 2. If such fish shall be inspected at the city of Pittsburg, or the borough of Columbia aforesaid, the inspector shall cause the casks to be marked on the bilge with a broad arrow (thus, \dagger), or, if required, secure them for future examination, which examination the owner or person selling the same shall procure to be made within four days.

Fish may be branded after penalty incurred. Ibid., section 76.

17. Provided, That if any fish shall be laden for exportation, or shall be sold and delivered as aforesaid, without being so branded, the inspector may, after the penalty for such neglect shall have been paid, brand the same with his own name, and he may demand and receive therefor, from the person so lading or selling and delivering the same, the sum of six cents for every such cask.

Penalty for fraudulent packing. Ibid., section 78.
18. If any salted fish, liable to inspection as aforesaid, shall be found, upon the examination thereof by the inspector, to be fraululently packed, either by the use of improper or unfit substance, or by the intermixture or use of fish of different qualities, the owner thereof or his agent shall forfeit and pay for each and every such cask the sum of tive dollars.

When fish must be reinspected. Ibil., section 79.
19. Salted fish liable to inspection, as aforesaid, shall, if they have remained on hand unsold or not exported during six months after the in specting and branding thereof, as aforesaid, be again examined by the inspector, and if found to be unsound shall be subject to the regulatious provided for the case of salted fish which have not been inspected.

$$
\text { Casks must be filled. Ibid., section } 80 .
$$

20. Every cask of salted fish liable to inspection shall be filled up by the owner thereof or by persons employed by him for that purpose, and be packed or repacked by him or them, as the case may be, and in all respects completed in such manner as the inspector shall require or direct, under penalty of one dollar for each and every cask.

Fees for cooperage. Ibid., section 83.
21. The inspectors aforesaid may also demand and receive such other and further allowance and compensation as shall be reasonable and customary to allow for the expense and trouble of cooperage in putting each cask of salted provisions into good and perfect order and condition.

Cooperage may be done by owners. Ibid., section 84.

22. Provided, That the owner of any salted provisions, as aforesaid, or his agent, may employ any person, other than the said inspector, to do the cooperage necessary to put the same in good merchantable order and condition, as aforesaid, and in such case the said inspector shall not be entitled to any allowance on account of such cooperage.

Fees for unmerchantable fish. Ibid., section 85.
23. The inspectors aforesaid may demand and receive from the owner, possessor, or person selling any salted provisions, as aforesaid, which shall be adjudged to be unmerchantable, or not in the condition required by law for sale or exportation, the same fees as if the same had been adjudged to be merchantable and fit for sale or exportation.

On April 13, 1868, a law was approved which repealed the inspection laws theretofore in force.

On June 2, 1871, the repealing act of April 13, 1868, was repealed, and the inspection laws of 1860 thereby re enacted.

In 1874 the new State constitation was adopted, which abolished all inspection laws in Pennsylvania.

54. INSPECTION LAWS OF THE BRITISH PROVINCES. DOMINION OF CANADA.

[37 Victoria, Chapter XLV; Assented to 26th May, 1874.]

AN ACT to make better provisions, extending to the whole Dominion of Canada, respecting the inspection of certain staple articles of Canadian produce.

GENERAL PROVISIONS.

Governor may appoint inspectors of certain articles, and at what places.

1. The governor in council may, from time to time, designate the several cities, towns, and other places, or inspection divisions in Canada at and for which, respectively, it is expedient to appoint inspectors of the several articles hereinafter mentioned, or any of them; and the governor may, from time to time, determine the limits of such inspection divisions, and appoint, at and for such cities, counties, towns, places, or divisions, an inspector of any of the following articles, that is to say: Flour and meal; wheat and other grain; beef and pork; pot ashes and pearl ashes; pickled fish and fish oil; butter; leather and raw hides. Such inspectors shall hold office during pleasure, and shall act, respectivel 5 , within such local limits as the governor in council may assign to them; and they and their deputies shall be appointed only from and among duly qualified persons, certified as such by the examiners hereinafter mentioned.

Boards of examiners of inspectors.

2. The board of trade at each of the cities of Quebec, Montreal, Toronto, Kingston, Hamilton, London, Ottawa, and St. Johu, N. B., and the chamber of commerce at the city of Halifax, shall annually appoint, in the said cities, respectively, and the governor may from time to time appoint in any county in the Dominion, or for any inspection division, five fit and skilful persons, any three of whom shall be a quorum, for each class of articles to be inspected at such city or county, to examine and test the ability and fitness of applicants for the office of inspector or deputy inspector of such articles ; and no person shall be appointed such inspector or deputy inspector who has not been examined by and received a certificate of qualification from the proper board of examiners: Provided always, That the governor may, in his discretion, appoint as an inspector under this act, without a new examination, any person who has been an inspector of the same article under any act hereby repealed. And the board may, at any such examination, permit the attendance of any person or persons of experience and skill in the subject of such examination, and allow them to propose questions pertinent thereto to the examinee, in order to test his knowledge and skill.

It shall be the duty of every such board to grant such certificates,
and such only, as to the qualification of the candidates who present themselves for examination as the knowledge and proficiency of such candidates may require or justify.

Examiners to take oath.

3. Each such examiner shall, before acting as such, take, before some justice of the peace, an oath in the following form, or to the same effect:
"I, A B, do swear that I will not, directly or indirectly, personally or by means of any person or persons in my behalf, receive any fee, reward, or gratuity whatsoever, by reason of any function of my office of examiner of applicants for the office of inspector or deputy inspector of —_, except such as I may be entitled to receive by law, and that I will therein well and truly, in all things, act without partiality and to the best of my knowledge and understanding. So help me God."

Which oath shall remain in the custody of the justice administering it.

Inspector not to trade in articles which he inspects.
4. No inspector shall deal or trade in, or have any interest, directly or indirectly, in the production of any article subject to inspection by him, or sell or buy any such article (except for the consumption of himself and family), under a penalty of two hundred dollars for any offence against this section and the forfeiture of his office.

Inspector to take oath of office.

5. Each inspector shall, before acting as such, take and subscribe, before some justice of peace, an oath of office in the form or to the effect following:
"I, A B, do solemuly swear that I will faithfulls, truly, and impartially, to the best of my judgment, skill, and understanding, execute and perform the office of an inspector; and that I will not, directly or indirectly, by myself or by any other person or persons whomsoever, manufacture or prepare, deal, trade in, or sell, or buy, except only for the cousumption of myself and family, and (insert the description of the articles he is to inspect) on my account, or upon the account of any other person or persons whom soever, while I continue such inspector. So help me God."

Deputy inspector to have no interest in articles he inspects.—Oath of office.
No deputy inspector shall have any direct or indirect interest by himself or by any person whomsoever, in any article inspected by him.

Deputy inspector to take oath of office.
Every deputy inspector shall, before acting as such, take and subscribe before some justice of the peace, the following oath:
"I, A B, do solemnly swear that I will faithfully, truly, and impar-
tially, to the best of my judgment and skill and understanding, execute and perform the office of a deputy inspector of ——, and that I will not inspect, brand, or certify to the quality of any article or thing in which I have any direct or indirect interest on my own account, or upon the account of any persou whomsoever, while I continue to hold office as a deputy inspector. So help me God."

Such oaths shall remain in the custody of the justice administering them, and any copy thereof certified by the said justice shall be prima facie evidence of such oaths.

Security to be given by inspector or deputy.

6. Each inspector or deputy inspector shall, before acting as such, give security for the due performance of the duties of his office, in such sum as the governor may direct, by boud to Her Majesty, with two sureties to the satisfaction of the governor, to be bound jointly and severally with them, in the form and subject to the provisions prescribed by law relative to the security to be given by persons appointed to offices of trust in Canada, and such bond shall avail to the Crown, and to all persons aggrieved by any breach of the conditions thereof, and such bond shall remain in the custody of the secretary of state of Canada; and any copy thereof certified by him shall be prima facie eridence of such bond, and of the contents and tenor thereof, and such copy shall be furnished when required, on payment of a fee of one dollar.

Appointment of deputy inspectors when required.

7. Each inspector may, and shall, when thereunto required by the governor, in any inspection division, or by the boards of trade in any of the before-named cities, appoint a deputy, or so many deputies as may be necessary, for the speedy and efficient performance of the duties of his office ; such assistants being duly examined and sworn and giving security, as above provided; and they shall be held to be deputies of the inspector for all the duties of his office, and their official acts shall be held to be official acts of the inspector, and he shall be responsible for them as if doue by himself; and each deputy inspector shall make such returns and reports of his official acts as shall be required of him by the inspector whose deputy he is.

Duties and tenure of office of deputy inspector.

8. The said deputies shall respectively be paid by, and shall hold their offices at the pleasure of the inspector; and no such inspector shall allow any person whomsoever to act for him about the duties of his office, excepting only his sworn deputy or deputies, appointed as aforesaid.

Deputy to act on death of inspector.

9. In the event of the death of any inspector, his senior deputy inspector shall perform all the duties of the inspector until his successor is appointed.

Returns or reports of official acts, under regulations to be made by governor in council.

10. The governor in council may, from time to time, require any and every inspector to make such returns or reports of his or their official acts to any public department or officer, board of trade or municipal authority, and in such form and containing such particulars and information as he may deem expedient, and may, from time to time, by order in council, make such regulations for the governance of inspectors under this act, or any of them, and of parties employing them as such, as he may think proper, and may, by such regulations, impose penalties not exceeding fifty dollars to any person offending against them; and any copy of such regulations printed in the Canada Gazette shall be prima facie evidence of any such regulations, and that they are then in force; and such regulations not being contrary to or inconsistent with this act shall be obeyed by such inspectors and parties employing them as if embodied in this act; and any offence against them shall be deemed an offence against this act and punishable as such.

Disputes touching inspection, how settled, where there is no board of trade or chamber of commerce.

11. If any dispute arises between any inspector or deputy inspector and the owner or possessor of any article by him inspected, with regard to quality and condition thereof, or relating in any respect to the same, then, upon application by either of the parties in difference, to any justice of the peace for the place in which such inspector or deputy inspector acts, such justice of the peace shall issue a summons to three persons of skill and integrity, one to be named by the inspector or deputy inspector, another by the owner or possessor of the article in question, and the third by such justice of the peace (who, failing the attendance of either of the parties in difference, shall name for him), requiring such three persons forthwith to examine such article and report their opinion of the quality and condition thereof under oath (which oath the justice of the peace shall administer), and the determination, or that of the majority of them, made in writing, shall be final and conclusive, whether approving or disapproving the judgment of the inspector or deputy inspector, who shall immediately conform thereto, and brand or mark such article, or the package containing the same (as the case may be) of the qualities or condition directed by the determination aforesaid; and if the opinion of the inspector or deputy inspector be thereby confirmed, the reasonable cost or charges of re-examination (to be ascertained by the said justice of the peace) shall be paid by the said owner or possessor of the article in question, and, if otherwise, by the inspector or deputy inspector: [Proviso, for the re-examination of flour and meal in cities where there is a board of trade or chamber of commerce.]

Whenever any difference arises between inspectors as to the true
quality or grade of any article inspected by one of them and re-inspected by another, such difference shall be definately determined by reference to such board of arbitration or other authority as the governor in comcil may appoint for that purpose.

Fees for re-examination, how to be fixed.

12. The council of the board of trade, or chamber of commerce, if there be one, for each of the said cities or places where inspectors are appointed, and, if not (or in case such council fails to make such tariff, the governor in council) shall, from time to time, make a tariff of the fees and charges to be allowed for such re-examination and all services and matters connected therewith, and may also establish rules and regulations for the government of the persons re-examining any article on appeal from the decision of the inspector or deputy inspector; and all such fees shall be payable before the delivery of the bill of inspection, or the re-delivery by the inspector of the articles inspected, on which he shall have a special lien for such fees.

Penalty in case of neglect or refusal of inspector to act.

13. If any inspector or deputy inspector refuses or neglects on application to him, made personally or by writing, left at his dwelling-house, store, office, or ware-house, on any lawful day, between sumrise and sumset, by any owner or possessor of any article which such inspector or deputy inspector is appointed to inspect (such inspector or deputy inspector not being at the time of such application employed inspecting elsewhere) forthwith, or within two hours thereafter, to proceed to such inspection, heshall, for every such neglect or refusal, forfeit and pay to the person so applying, twenty dollars over and above all the damage occasioned by such refusal or neglect to the party complaining, recoverable in a summary way before any one justice of the peace, on the oath of one credible witness other than such complainant.

As to fraudulent alteration or imitation or use of, \&c., of inspector's marks, $\mathbb{d e}$.
14. Any persou who, with a fraudulent intention, alters, effaces, or obliterates wholly or partially, or causes to be altered, effaced, or obliterated any inspector's brands or marks on any article having undergone inspection, or on any package containing any such article, or comnterfeits any such brand or mark, or brands, impresses, or otherwise marks thereon any mark purporting to be the mark of any inspector or of the manufacturer or packer of such article, either with the proper marking instruments of such inspector, manufacturer or packer, or with counterfeit imitations thereof, or empties, or partially empties, any such package marked, after inspection, in order to put into the same any other article (of the same or any other kind), not contained therein at
the time of such inspection, or uses for the purpose of packing any article, any old package bearing inspection marks, or (not being an inspector or deputy inspector of any article) brands or marks any package containing it, with the inspector's marks, or gives any certificate pur. porting to be a certificate of inspection of any article; and any person who being in the employ of any inspector or deputy inspector, or of any manufacturer or packer of any article subject to inspection, hires or lends the marks or marking instruments of his employer to any person whatever, or counives at, or is privy to any fraudulent evasion of this act with respect to any such marks as aforesaid, shall, for such offence, incur a penalty of forty dollars; and any inspector or deputy inspector who inspects or brands or marks any article out of the local limits for which he is appointed, or hires out or lends his marking instruments to any person whomsoever, or gives any certificate of inspection without having personally performed the inspection, or any willfully false or untrue certificate, or comnives at or is privy to any fraudulent evasion of this act, shall, for each such offence, incur a penalty of one hundred dollars, and shall forfeit his office, and shall be disqualified from ever after holding the same.

Assuming title of inspector or deputy inspector without authority.

15. Any person not thereunto duly authorized under this act, who in in any manner whatever assumes the title of inspector or deputy inspector, or issues any bill, certificate, or declaration purporting to establish the quality of any pot-ashes or pearl-ashes, flour or meal, beef or pork, grain, pickled fish or fish oil, butter, leather, or raw hides, shall, for such offence, incur a penalty not exceeding one hundred dollars.

Penalties, how recovered and applied.

16. Every penalty and forfeiture imposed by this act, or by any regulation made under it, not exceeding forty dollars, shall, except when it is otherwise herein provided, be recoveable by any inspector or deputy inspector, or by any other person suing for the same, in a summary way before any two justices of the peace for the place, in their ordinary or other sessions, and shall, in default of payment, be levied by warrant of distress, to be issued by such justices against the goods and chattels of the offender; and where such penalty or forfeiture exceeds forty dollars it may be sued for and recovered by any such inspector, deputy inspector, or any other person, by bill, plaint, information, or civil action, in any recorder's court, or in any court having jurisdiction in ciril cases to the amount, and may be levied by execution as in case of debt. And the moiety of all such penalties (except such as may be herein otherwise applied) when recovered shall belong to the Crown for the public uses of the Dominion, and the other moiety shall belong to and be paid to the inspector, or deputy inspector, or other person suing for the same.

Limitation of time for commencing suits under this act.
17. Any action or suit against any person for anything done in pursuance of this act, or contrary to its provisions, shall be commenced within six months next after the matter or thing done or omitted to be done, and not afterwards; and the defendant therein may plead the general issue, and give this act and the special matter in evidence, and at any trial therein, and that the same was done under this act; and if it appears so to have been done, then the judgment shall be for the defendant; and if the plaintiff is non-suited or discontinues his action after the defendant has appeared, or if judgment is given against the plaintiff the defendant shall recover treble costs and have the like remedy for the same as defendants hare in other cases.

Payment of cost of inspection, when article is sold subject to inspection.
18. In all cases where any article is sold subject to inspection, the person applying to the inspector shall be entitled to reimbursement of the cost of inspection from the vendor, if such applicant be not himself the vendor, unless an express stipulation to the contrary is made at the time of the sale, or of the agreement to submit to inspection; and such agreement to submit to inspection shall imply a warranty that the article in question is of the quality for which it is sold, and that all the requirements of this act have been complied with as to such article and the packages in which it is contained, unless it be otherwise expressly stipulated.

Inspection not always compulsory.-Lien for fees.

19. Nothing in this act shall oblige any person to cause any article to be inspected, unless such inspection is expressly declared to be compulsory, but if inspected, it shall be subject to the provisions of this act, and shall not be brauded or marked as inspected unless the said provisions have been in all respects complied with, with respect to such article and the packages in which it is contained. Inspectors and their deputies shall be paid their fees upon the articles inspected by them by privilege and preference over all other creditors, and may retain possession of the articles inspected until the fees to which they are entitled under this act shall have been paid.

The governor in council may make regulations whenever he deems it necessary to do so, for the apportionment of the fees paid under this act between the inspectors and their deputies, and for providing for the payment of fees to the examiners appointed under this act by parties who present themselves for examination; and every such regulation may be rescinded or varied from time to time.

Inspection lavo of 1873 repealed.

20. The act passed in the session held in the thirty-sisth year of Her Majesty's reign, intituled " $A n$ act to amend and to consolidate and to ex-
tend to the whole Dominion of Canada, the laws respecting the inspection of certain staple articles of Canadian produce," is hereby repealed, except that such repeal shall not effect the repeal of any former act or provision of law, any liability incurred, any bond or security given, ans action, suit, or proceeding pending, any penalty, forfeiture, or punishment incurred for any offence committed, any appointment made in council, regulation, or order made or given and not inconsistent with this act, or anything lawfully done before this act comes into force; and if, in any contract made before the coming into force of this act, it has been stipulated that any article therein mentioned, shall be subject to inspection, then, unless the contrary be clearly expressed, the intended standard of quality of such article shall be understood to be that established by the laws in force at the date of such contract; and if the inspection is made after this act is in force, it shall be made according to standard established.

SPECIAL PROVISIONS RESPECTING THE INSPECTION OF PICKLED FISII AND FISH OILS.

Inspector to provide branding irons.

61. Every inspector shall provide himself with proper branding irons, or stencil plates, for the purpose of branding or marking such casks, barrels and boxes as may by him be inspected pursuant to this act; and it shall be the duty of each inspector to know that all his deputies are duly provided in this respect.

Inspecting must be in presence of inspector.

62. The inspecting, culling, classing, weighing, packing and branding or marking of any fish or oil shall be done in the immediate presence and sight of an inspector or deputy inspector.

Duty of inspector.—Size and material of packages.

63. It shall be the duty of the inspector or deputy inspector to see that all kinds of split, whole, pickled or salted fish, intending for packing or barrelling, and submitted to him for inspection, have been well struck with pickle and salt, in the first instance, and preserved sweet, free from taint, rust, salt-burn, oil or damage of any kind; and all fish or oil intended for market or exportation, and branded or marked as inspected and merchantable, shall be well and properly packed, in good tight and substantial packages or casks-except green codfish packed without pickle, which may be packed in barrels or packages which are not tight; and all other packages shall be made of the materials and in the manner following:

Tierces, barrels, and half-barrels shall be made of sound, well-seasoned
split or sawed staves, free from sap, and in no case to be of hemlock, and the heading shall be of hardwood, pine, fir, or spruce, free from sap, and planed on the outside, and shall be at least three-quarters of an inch in thickness. Staves for salmon and mackerel barrels shall be twenty nine inches in length, and the heads between the chimes seventeen inches. Staves for barrels for herring shall be twenty-seven inches in length, and the heads between the chimes shall be sixteen inches; and the bung staves of all such barrels shall be of hardwood. All casks shall be hooped with not less than twelve sound, good hoops, of not less than one inch in width at the large end for all tierces and barrels, and in no case to be of alder. The makers of all tierces, barrels, and half-barrels, shall brand the initials of their Christian names and their whole surnames, and also the letters S. M. or H., according as the package may be intended for salmon, mackerel or herrings, at or near the bung staves, under a penalty of twenty cents for every package not so branded.

All enpty packages shall be subject to the inspection and approval of the inspector or his deputies, who shall brand or mark the word "condemnet" immediately after the maker's name on all packages that will not pass inspection.

In what cases and places inspection shall be compulsory.
64. The inspection of all pickled fish cured for market or exportation, and of all fish-oils, codfish tongues, or codfish sounds, cured for such purpose, and contained in any such packages as are hereinafter mentioned, shall be compulsory in every province of the Dominion, except Manitoba and British Columbia, at any place where an inspector is appointed by law ; and if any such pickled fish, fish-oils, or other articles aforesaid, in any such package as aforesaid, is sold, or offered for sale, or exported, or shipped, or laden in any vehicle for exportation, or otherwise offered to be exported in or from any place within any province of Canada, except British Columbia or Manitoba, for which an inspector or deputy inspector has been appointed, without being inspected under this act, the persou so selling or offering it for sale, or exporting it, or offering it for exportation, shall incur a penalty of not less than one dollar and not more than five dollars for each such offence.

Inspection to be in accordance with this act.

65. All Pickled fish cured for market or exportation, and all fish-oils, codfish tongues and codfish sounds, shall be inspected, weighed, or gauged, and branded or marked, only in accordance with this act ; and all green codfish, in boxes or packages, shall be inspected and culled, and a certificate of inspection for the latter, stating the quality and quantity thereof so inspected, and shipped on board any vessel, shall be granted by any inspector or depaty inspector.

Qualities of fish.-Manner of branding.

66. The various kinds of fish to be inspected under this act, shall be branded or manked of the following denominations respectively :
67. Salmon to be branded or marked "No. 1," shall consist of the largest or best and choicest kind, being well split, the blood being well washed out before being salted, well cured, in the best condition, and in every respect free from taint, rust, or damage of any kind.

Those to be branded or marked "No. 2." shall comprelend the best salmon that remain after the selection of the first quality, and shall be good, sound, well split and cured fish, in the best coudition, and in erery respect free from taint, rust, or damage of any kind.

Those to be branded or marked "No. 3," shall consist of those that remain after the selection of the first two qualities, but must be good, sound fish, and in every respect free from taint, rust, or damage of any kind.
2. Mackerel to be branded or marked "mess mackerel," shall consist of the best and fattest mackerel, being well split, having the blood well washed out before being salted, well cured, in the best condition, and free from taint, or rust, or damage of any kind, and shall be such as would have measured not less than fourteen inches, from the extremity of the head to the crotch or fork of the tail, and shall have the head and tails taken off.

Those to be branded or marked "Extra No. 1" shall consist of the best and fattest mackerel, being well split, having the blood well washed out before being salted, well cured, in the best condition, and free from taint or rust or damage of any kind, and shall measure not less than fourteen inches from the extremity of the head to the crotch or fork of the tail.

Those to be branded or marked "No. 1" shall consist of the best and fattest mackerel, being well split, having the blood well washed out before being salted, well cured, in the best condition, and free from taint, rust, or damage of any kind, and shall measure not less than thirteen inches from the extremity of the head to the croteh or fork of the tail.

Those to be branded or marked "No. 2 " shall comprehend the best mackerel that remain after the selection of the first qualities, and shall be properily split and washed. well cured, and in every respect free from taint, rust, or damage of any kind, and shall be divided into two qualities, those from thirteen inches and upwards, not being sufficiently fat to make No. 1, being branded No. 2 large, and those from eleven inches up to thirteen inches shall be branded No. 2 .

Those to be brandes or marked "Large No. 3 " shall consist of good, sound mackerel, properly washed, well cured, and free from taint, rust, or damage of any kind, and shall measure not less than thirteen inches from the extremity of the head to the crotch or fork of the tail.

Those to be branded or marked "No. 3 " shall consist of good, sound
mackerel, properly washed, well cured, and free from taint, rust, or damage of any kind, and shall measure eleven inches and upwards from the extremity of the head to the crotch of the tail.

All macherel under eleven inches in length, of good, sound quality, and free from taint and rust, or damage of any kind, shall be branded or marked with the words "Small Spring" or "Small Fall" in the place of a number.

All short, sumburnt, or ragged mackerel, of whatever dass and not otherwise defective, shall be branded and marked "No. 4."
3. Herrings, Gaspereaux, and Alewives to be branded or marked "No. $1 "$ shall consist of the largest and best fish, well struck with salt, thoroughly cured and clean, and bright in colour ; and those to be branded or marked "No. 2" shall comprehend the best herrings that remain after the selection of the first quality.

All undersized herrings to be branded or marked "No. 3 " with the word "Small" in addition to the other brands or marks.

All ripped herrings shall be branded or marked with the word "Round" in addition to other brands or marks.

All herrings that are not gibbed or ripped shall be branded or marked with the word "Gross" in addition to other brands or marks.

All spring-canght herrings shall be branded or marked with the word "Spring" in addition to other brands or marks.

The above shall be well cleaned and cured, and in every respect fiee from rust, taint, or damage.

Herrings that are caught at the Magdalen Islands, Baie des Chaleurs, Labrador, or Newfoundland, and brought into port in Canada in bulk and packed in Canada, shall be branded or marked "Magdalen Islands," "Bay des Chaleurs," "Newfoundland," or "Labrador," respectively, in addition to other brands or marks.

Herriugs packed and inspected in Newfoundland and imported into Canada shall be marked or branded "Newfoundland" without further inspection:
4. Smoked herrings to be branded or marked "No. 1" shall comprehend the best and fattest fish; and those to be branded or marked "No. $2 "$ shall consist of the poorer, smaller, and inferior fish; both of these qualities shall be well smoked, free from taint, and not burut or scorched; and no red or smoked herrings shall be so branded or marked, muless they be well and sufficiently saved and cured, and carefully packed in good and substantial barrels, or half-barrels; and if in legs or boxes, the same shall be of well-seasoned boards, the sides, top and bottom of not less than half an inch in thickness, and the ends at least threequarters of an inch thick ; and the inside measurement of each box shall be eighteen inches long, and nine inches broad, and eight inches deep, well nailed, and the tops or covers smoothed; tainted, hurnt, scorehed and badly smoked herrings, shall be considered "refuse," and may be branded or marked as such without any character.
5. Sea trout to be branded or marked "No. 1" shall consist of the largest, best, and fattest kind, being well split, and in every respect free from taint, rust, or damage of any kind.

Those to be branded or marked "No. 2" shall comprehend the best trout that remain after the selection of the first quality, and shall be good sound fish, free from taint, rust, or damage of any kind.
6. Lake and salmon trout to be branded or marked "No. 1, Lake" shall consist of the largest and fattest fish, and be free from taint, rust, or damage.

Those to be branded or marked "No. 2, Lake" to be the next best fish, free from taint, rust, or damage.
7. White fish to be branded or marked "No. 1" shall consist of the largest and fattest kind, cured in good condition, and be in every respect free from taint, rust, or damage; "No. 2 " shall consist of those that remain after the selection of the first quality, and be free from taint, rust, or damage.
8. Green codfish in barrels, with or without pickle, to be classed "No. 1 " shall consist of the best and fattest, being well split and cleansed, well cured, in first-rate condition ; and in every respect free from taint, salt-burn, rust, or damage of any kind, and shall measure at least fifteen inches to the crotch of the tail.

Those remaining after the selection of the first quality, to class "No. 2 ," shall be sound, well-cured fish, and free from taint, salt-burn, rust, or damage of any kind.
9. All other kinds of fish not enumerated herein, and belonging to denominations specified by this act, such as ling, hake, haddock, pollock, catfish, halibut, shad, bass, eels, codfish tongues and codfish sounds, in casks or barrels, shall be branded or marked as such, and must be sound and well cured, free from taint, salt-burn, rust, or damage of any kind.
10. Small fish, which are usually packed whole, with dry salt or pickle, shall be put into good casks of the size and materials required by this act for the packing of split, pickled fish, and shall be packed close, edgeways in the casks, and properly salted with good, coarse, wholesome, dry salt, and the casks shall be filled fall with the fish and salt, and no more salt shall be put with the fish than is necessary for their preservation; and the casks containing such whole fish shall be branded or marked with the denomination of the fish, and a like designation as is prescribed by this act in respect of the qualities, \&c., of other pickled fish.
11. All rusty or sour fish, of whatever kind or class, shall be branded or marked with with the word "rusty" or "sour" in addition to other brands or marks.
12. No foul or tainted fish, or fish mutilated for the purpose of concealing marks and appearances of illegal capture, or unsizeable, shall pass inspection ; and it shall be the duty of every inspector or deputy
inspector to seize, and any magistrate may confiscate to Her Majesty, all fish found or exposed for sale having beeu killed or captured during prohibited seasons or by unlawful means, and all fish at any time offered for sale or barter, or attempted to be exported, whilst in an unwholesome condition.
13. Fish kuown as pickled lish, that may be cured in bulk, if not inspected and certified as aforesaid, and afterwards packed in barrels, shall be branded or marked with the word "bulk" in addition to other brands or marks.
14. Each cask or package of fish shall contain fish of the same kind, or parts of the same kind and quality, properly packed in separate layers, and on every layer of fish so packed in the cask, a sufficient quantity of good, clean, suitable salt, free from lime, shall be properly placed, and in like proportion for other packages, at the discretion of an inspector or deputy inspector; and after the cask shall have been properly packed and headed it shall be filled with clean pickle, strong enough to float a fish of the kind so packed.
15. Should it appear to any inspector, or deputy inspector, that a portion of the tish inspected by him is sound, and another portion unsound, he shall separate the sound from the unsound, repack the sound fish, and mark or brand the same according to its quality; and such portion as the inspector judges incapable of preservation he shall condemn as bad, and mark "refuse," in addition to other marks.
16. If any casnalty renders it necessary to repack inspected fish it shall in all cases be done by and in the presence of an inspector or deputy inspector; and any other person attempting to repack or brand or mark the same shall be liable to a penalty of not more than twenty dollars for every such offense.
17. When any fish, branded or marked by a deputy inspector, proves unequal in quantity or quality to that which may be indicated by the brand or mark, or deficient in any way of the requisites prescribed by this act, the inspector may cause the same to be reinspected; and if it appear that the defect arose from the condition of the fish, or the bad quality of the cask, or the bad packing or pickling of the fish at the time of the inspection, he may recover the cost and charges of such reinspection from the deputy who branded or marked the same.
18. Pickled fish, duly inspected, packed and branded or marked, and oils, inspected and branded or marked under this act, at any place in the Provinces of Nova Scotia, New Brunswick, Quebec, Ontario, or British Columbia, shall not be subject to reinspection within the Dominion, except only in cases already provided for in this act.
19. Each tierce shall be three hundred pouuds, and each half tierce one hundred and fifty pounds; each barrel shall be two hundred pounds, and each half-barrel one hundred pounds; each quintal shall be one hundred pounds; each draft shall mean two hundred pounds; and each box of herrings shall contain twentr-five pounds. In each of the above
S. Mis. $110-32$
instances the weight shall be clear avoirdupois, exclusive of salt and pickle.
20. There shall be branded or marked on the head or butt of each cask of pickled or dry-salted fish, in plain, legible letters after the same has been inspected, culled, classed, weighed, and packed, in accordance with this act, the description of the fish, the weight and quality contained in the package, the initials of the Christian name or names, and the whole surname of the inspector or deputy inspector by whom the fish was inspected, and the name of the place where he acts as inspector, and the month and the year of inspection.

Standards of fish oils, how fixed and kept.

67. The boards of examiners of inspectors of fish and fisk oils shall fix and have in charge the standard of fish oils in Nova Scotia, New Brunswick, Quebec and Ontario, respectively; and the same shall be classified and branded or marked according to such standards, as follows:
68. Whale oil shall be free from adulteration of every kind, and shall be branded as such with the class according to quality appointed by standard-if No. 1, "Pale"; if No. 2, "Straw"; if No. 3, "Brown."
69. Seal oil shall be free from adulteration of every kind, and shall be branded as such, with the quality per standard-if No. 1, "Strictly Pale"; if No. 2, "Pale"; if No. 3, "Straw"; if No. 4, "Brown"; if No. 5, "Dark Brown."
70. Porpoise oil shall be free from adulteration of every kind, and shall be branded as such, with the quality per standard-if No. 1, "Pale"; if No. 2, "Straw"; if No. 3, "Brown."
71. Cod oil shall be free from adulteration, and be branded as suchfirst quality, "A"; second quality, "B."
72. Herring, hake, pollock, and dog-fish oil, and all other oils, shall be branded as such-first quality, "A"; second quality, "B."
73. An inspector or deputy inspector shall determine the gauge of each cask, and the outs thereof, and shall mark the same on the cask; and the barrels shall be in good order and condition, sound and staunch, and shall be made of hard wood, and if any cask or casks be found to contain water or other adulteration, such shall be scribed or branded by the inspector or deputy inspector on the cask.
74. Casks containing fish oils shall be scribed or branded with such quality, the month and the last two figures of the year when inspected, the initials of the Christian name or names, and the entire surname of the inspector, and also the place of inspection, and the initial letters of the name of the province in which it was inspected.
75. The designation "Fish oils" in this act shall include whale, seal, porpoise, cod, herring, sturgeon, siskawitz, and all other kinds of oil dericed from fish and marine animals.
76. Every inspector or deputy inspector who shall inspect and brand or mark any cask or package of pickled fish, in bulk, or any tish oil, in accordance with the provisions of this act, shall be entitled to fees at the following rates, which shall be paid by the original owner, or the person who employed him in the first instance:
i. For each tierce of salmon, stmon-trout, or sea-trout, fifteen cents;
77. For each halt-tierce ot salmon, salmon-tront, or sea-tront, ten cents;
$\grave{\varrho}$. For each barrel of mackerel, ten cents ;
78. For each half-barrel of mackerel, tive cents ;
79. For each barrel of herring, five cents ;
80. For each half-barrel of herring, three cents;
81. For each barrel of shad, ten cents;
82. For each half-barrel of shad, seven cents;
83. For each barrel of whitefish, ten cents;
84. For each half barel of whitefish, seven cents;
85. For each barrel of pickled codfish, hake, haddock, or catfish, five cents;
86. For each half-barrel of pickied codfish, hake, haddock, or catfish, three cents;
87. For each barrel of dry-salted codfish, hake, haddock, catfish, ling, or pollock, five cents;
88. For each half-barrel of dry-salted codfish, hake, haddock, catfish, ling, or pollock, three cents;
89. For each barrel of bass, ten cents;
90. For each half-barrel of bass, seven cents;
91. For each barrel of cod tongues, cod sounds, halibut, or eels, ten cents;
92. For each half-barrel of cod tongues, cod sounds, halibut, or eels, seven cents;
93. For inspecting, gauging, and branding each puncheon of oil, twenty cents;
94. For inspecting, gauging, and branding each hogshead of oil, fifteen cents;
95. For inspecting, gauging, and branding each tierce of oil, twenty cents;
96. For inspecting, gating, and branding each barrel of oil, fifteen cents;
97. The foregoing rates shall be reckoned exchsive of salt, pickle, cooperage, storage, and labour, employed in washing, rinsing, cleaning, nailing, screwing, or repacking and pickling any fish;
98. For brandiug or marking Newfoundland fish which have been inspected in Newfoundland, two cents per berrel;
99. For inspecting empty packages, one cent:

Provided, always, that any person cansing his fish or oil to be in-
spected, may employ at his cost and charge a cooper to attend upon and assist the inspector or deputy inspector in the performance of his duty, in which case the inspector or deputy inspector shall not be allowed any charge for cooperage, and the cooper so employed shall be governed and guided solely by the directions which he receives from the inspector or deputy inspector, with respect to any fish or oil by him inspected, and not by any other person whomsoever.

Where inspections shall be effected.

69. Fish and fish oil may be inspected eitber at the place where they are packed or manufactured, or at the place of sale within the Dominion.

When not inspected at place of packing and when at place of sale.
70. When fish are not inspected at the place of packing, the packer's name and the quality of the fish must be marked in paint on each barrel, half-barrel or package; and when they are inspected at the place of sale, the inspector shall empty out ten packages in each hundred of the lot submitted to him for inspection, aud such inspection of ten out of every hundred shall regulate the grade of tish so submitted for inspection.

Bill of inspection.

71. So soon as aly fish is inspected, a bill of inspection shall be furnished by the inspector or deputy inspector, specifiying the quality as ascertained by inspection, and whether each package contains the weight prescribed by this act, with the name of the packer and of the inspector at the place of packing.

As to fish landed from United States vessels for reshipment there.
72. This act shall not apply to fish landed at any port of the Dominion from United States fishing vessels for the purpose reshipment to the United States, unless the owners of such fish wish them to be inspected: Provided always, that such fish, if so reshipped without being inspected, shall not be branded or marked.
[39 Victoria, 1876, Chapter XXXIII.]
AN ACT to amend the act to make better provision, extending to the whole Dominion of Canada, respecting the inspection of certain staple articles of Canadian produce.

$$
\text { [Assented to } 124 \text { th April, 1876.] }
$$

Her Majesty, by and with the advice and consent of the Senate and Honse of Commons of Canada, enacts as follows :

1. Section sixty-three of the act of thirts-seventh Victoria, chapter fort y -five, cited in the title of this act, is bereby amended by striking
out the words "one inch in width at the large end," and inserting iu place thereof the words "five-eights of an inch at the small eud."
2. Section sixty-four of the act cited in the title of this act is hereby repealed, and the following is substituted in place thereof:
" 64 . The inspection of all pickled fish cured for market or exportation, and of all fish oils, codfish tongues, or codfish sounds, cured for such purpose and contained in any such packages as are hereiuafter mentioned shall, whenever such pickled fish, fish oils, or other articles as aforesaid, are removed beyond the limits of the inspection district in which they are pickled or packed, be compulsory in every province of the Dominion (except British Columbia and Manitoba), where an inspector is appointed by law: and if any such pickled fish, fish oil, or other article as aforesaid be sold or removed for sale beyond the limits of such district, or shipped or laden in any vehicle for removal, or offered to be removed from any district or place within the Dominion, except Manitoba and British Columbia, without being inspected under this act, the person so selling or removing the same, or offering the same for sale or removal, shall incur a penalty of not less than oue dollar and not more than five dollars for each and every such package."
3. Subsection four of section sixty-six of the said act shall be amended by adding the following words to the first paragraph:
"And every such box of smoked herrings shall contain at least twenty pounds of fish, aud half-boxes shall be twenty-two inches long, four inches deep and eight inches wide, and to contain not less than ten pounds of fish."
4. Subsection eight of the said sixty-sixth section shall be amended by adding the following :
"Erery barrel of pickled codfish shall contain two hundred pounds of fish, and every half-barrel one hundred pounds of tish."

43 Victoria, 1880, chapter XX.
AN ACT to amend "The general inspection act, 1874," and the act amending it.
[Assented to 7th May, 1880.]
In amendment of "The general inspection act, 1874," and the act amending it, passed in the thirty-ninth year of Her Majesty's reign, and chaptered thirty-three: Her Majesty, by and with the advice and consent of the Senate and House of Commons of Canada, enacts as follows:

1. The sixth section of the act first above cited is hereby amended by striking out the word "governor" in the fourth line, and inserting in lien thereof the words "minister of inland revenue."
2. The sixty-fifth section of the said act first above cited is hereby amended by inserting after the word "pickled" in the first line thereof, the words "and smoked."
3. The sixty-eighth section of the act first above cited is hereby amended by inserting after sub-section eight the following paragraphs:
"(a) For each box of smoked herrings, two cents;
" (b) For each half-box of smoked herrings, one cent;
" (c) For each quarter-box of smoked herrings, one-half cent."
4. The sixty-third section of the act first above cited is hereby amended by inserting the following paragraph, following the second paragraph of the said section:
"Barrels of the following dimensious may also be used for a special quality of fish, that is to say: The stave shall be twenty-eight inches long, the head serenteen between the chimes; the chimes to be one and a quarter inches; the head three-fourths of an inch in thickness, and the bung stave shall be of hard wool. Every such barrel shall be branded with the words 'special size.'" * * *

> [44 Victoria, 1881, chapter 52.]

AN ACT to amend "The general inspection act, 1874," and the acts amending it.
[Assented to 21st March, 1881.]
Her Majesty, by and with the adrice and consent of the Senate and House of Commons, enacts as follows:

1. The act passed in the forty-third year of Her Majesty's reign intituled " An act to amend 'the general inspection act, 1874,' and the act amending it," is hereby amended by repealing the tariff of fees to be collected for the inspection of smoked herring, contained in the third section of the said act, and substituting the following:
(a) For each box of smoked herrings, one cent;
(b) For each half-box of smoked herrings, one half cent;
(c) For each quarter-box of smoked herrings, one-quarter cent.

nova scotia.

(Revised Statutes of Nova Scotia, 1851, chapter 85.)
On the regulation and inspection of provisions, lumber, fuel, and other muerchandise.

FISH.

Appointment of inspectors.

1. The governor in council shall appoint in every county a chief inspector of pickled tish therein, who shall be sworn into office and shall give a bond, with two sureties, in five huodred pounds, to Her Majests, for the faithful discharge of his duty. He shall not engage nor have auy interest, direct or indirect, in the curing or packing or the sale of pickled fish, under a penalty of one hundred pounds and forfeiture of hisoffice; and any person who shall act as inspector or deputy inspector
without having been duly appointed and sworn, shall forfeit fice pounds for each offence.

Chief inspector to appoint deputies.

2. Every chief inspector shall appoint a sufficient number of deputies to act under him during pleasure, and shall be responsible for their official conduct, and shall take a bond from each of them in fifty pounds, with sureties; and every such deputy shall be sworn to the faithful discharge of his duty in the same manner as the chief inspector.

Qualities of fish.

3. There shall be three qualities of mackerel, three of salmon, two of other kinds of pickled fish, and two of smoked herrings.

Mackerel of the quality number one shall consist of the best and fattest fall mackerel, having had the blood well washed out prerious to being salted, and being properly soaked, well cured in every respect, free from taint, rust, or damage, well split, and being of the best kind and in the best condition, and measuring not less than fifteen inches from the extremity of the head to the crotch of the tail; such mackerel shall be branded "mackerel number one," and if scraped shall be branded "mackerel number one, extra."

Mackerel of the quality number two shall consist of the best fall mackerel which shall remain after the selection of the first quality, beang properly soaked, the blood washed out, well cured, and in every respect free from taint, rust, or damage, well split, and measuring not less than twelve inches from the extremity of the head to the crotch of the tail ; and such mackerel shall be branded "mackerel number tro," and if scraped shall be branded "mackerel number two, extra."

The quality to be branded number three shall consist of good, sound mackerel, properly soaked, the blood washed out, well cured, well split, and in every respect free from taint, rust, or damage ; and all mackerel less than ten inches in length shall be branded "small," and all rusty fish, without reference to quaiity, shall be branded "rusty."

Salmon to be branded "No. 1" shall consist of the best and fattest kind, having all the blood well washed out previous to its being salted, and being well cured, well split, and in every respect free from taint, rinst, or damage, being fish of the best kind and in the best condition. Those to be branded "No. 2 " shall comprehend the best salmon that remain after the selection of the first quality; aud those to be branded "No. 3 " shall consist of other salmon ; but both of the last-mentioned qualities shall be, nevertheless, sound, good fish, blood well washed out, well cured, well split, and in every respect free from rnst, taint, or damage.

The quality of herrings, alewises, or other pickled fish to be branded "No. 1" shall consist of the fattest and best fish; and the quality to be branded "No. 2 " of the poorer, thinner, and inferior fish, and both of
the qualities shall be carefully cured and cleansed, and in every respect free from taint, rust, or damage.

Smoked herrings branded "No. 1" shall comprehend the fattest and best fish ; and those branded "No. 2 " the poorer, thinner, and smaller fish. They shall be sweet and well-cured and smoked.

Quality, dimensions, and capacities of casks and boxes.

4. Barrels and half-barrels in which pickled fish is intended to be packed shall be made of sound, well-seasoned staves, free from sap, and the heading shall be of hard wood, pine, or spruce, smooth on the outside, and shall, as well as the staves, be at least three-quarters of an inch in thickness, but if hardwood the staves may be five-eighths of an inch in thickness. Stares for mackerel and salmou shall be tweuty-eight inches in length, and the heads, between the chimes, sixteen inches; and the bung-stave shall always be of hard wood; the casks shall be well-hooped with at least four hoops on each bilge and four on each chime. Mackerel and salmon barrels shall contain not less than twentyeight nor more than twenty-mine gallons, and barrels for herring and alewives not less than tweuty-six nor more than twenty-seven gallous, aud the tierces and half-barrels shall contain a quantity proportionate thereto. The makers shall brand their names on every barrel and halfbarrel under a penalty of five shillings for each cask.

Boxes for smoked herring shall measure on the inside eighteen inches in length, twelve in breadth, and six in depth; or eighteen inches in length, nine in breadth, and eight in depth; and shall be strong, wellmade, sufficiently seasoned, and the covers well-planed or shaved.

Casks to-contain certain quantities of fish and salt.
5. Casks shall contain the quantity of fish hereinafter prescribed for each, respectively, over and above the salt and pickle necessary to preserve the same, that is to say: a tierce, three hundred pounds; a barrel, two hundred pounds; a half-barrel, one hundred pounds. Each barrel shall contain two pecks of salt, clean and suitable for the purpose; and every tierce aud half-barrel shall contain a like proportion.

Pickled and smoked fish to be inspected before exportation.

6. All pickled fish intended for exportation in tierces, barrels, and half barrels, and all smoked herrings intended for exportation or sale, shall be first inspected, and the cask or box branded on the head thereof by an inspector in plain legible characters, with the description of the fish, the number of the quality and the weight, the initials of the Christian names and the whole suruame of the actual inspector, the name of the town or place where he acts as inspector, the capital letters "N.S.," for Nova Scotia, and the year of the inspection.

Certificates of inspection; fine for exportation without.
7. The person who shall hare actually inspected any pickled fish shall grant a certificate of such inspection, which shall be given to the proper officer before any vessel on board which the fish may be laden shall be cleared out. Any person exporting pickled fish in tierces, barrels, or half-barrels, contrary to this section, shall forfeit five shillings for every such cask.

Smoked herrings liable to seizure if not inspected.
8. Smoked herrings shipped or sold without having been duly inspected and branded may be seized under a warrant of a justice of the peace, to be given upon information uuder oath.

Instructions for curing and packing fish.
9. All inspected pickled fish, whether split or otherwise, shall be well struck or salted in the first instance, and the qualities shall be those prescribed in the third section. Each cask shall be filled up with fish of the same kind and quality, properly packed and headed up, with the requisite number of hoops thereon. The fish shall be very carefully sorted and classed, according to their respective numbers and qualities, and then weighed, and on every layer of fish, as packed in the barrel, the quantity of salt hereinbefore prescribed shall be regularly placed. Herrings and alewives, whether split or round, and all number three mackerel, shall be packed with coarse salt. Smoked herrings shall be carefully packed, each box with fish as nearly as possible of the same size, laid in the same direction, and not across one another, and so stored as to completely fill the package.

Damaged fish not to be inspected.

10. Tainted or damaged pickled fish, or smoked herrings, shall on no account be permitted to pass inspection.

Fish to be sorted, inspected, and branded in inspector's presence.
11. The sorting, weighing, inspecting, and branding of any package of pickled fish or smoked herrings shall be done by or in the sight of an inspector thereof, and if any casualty render it necessary to repack a cask of inspected pickled fish in any place, it shall in all cases be done by an inspector of pickled fish, if one be resident within five miles thereof.

Inspectors, when to attend; manner of inspection.
12. Every chief inspector, by himself or his deputy, shall inspect all pickel fish under the provisions of this chapter when ten casks are ready for his inspection, and he is required so to do under a penalty of twenty pounds for every default, unless his residence be more than fire
miles from the place where his attendance may be required; and shall likewise inspect all tierces, barrels, and half-barrels which are intended to contain pickled fish, and condemn all such as shall not be conformable to these provisions, and brand those he shall approve upon the bung-stave with the initials of his name.

Smoked herrings, how inspected.

13. Inspectors of smoked herrings shall inspect, and, when necessary, shall cull and repack every box thereof which is intended for sale or exportation, and shall for that purpose open, and, after inspecting, reclose and brand the same as hereinbefore directed.

Fees of inspectors, and how paid.
14. Evers inspector actually performing the duty shall be entitled to receive the following fees for inspecting and branding, viz: For every tierce, nine pence; for every barrel, five pence; and for every half-barrel, two pence half penny; to be paid one-half by the buyer and the other by the seller; and for each empty cask, one penny, to be paid by the seller. For every box of smoked herrings, one penny-half-penny; and for culling and repacking the same, when necessary, two pence-halfpenny in addition.

Returns of chief inspectors, how made.
15. Erery chief inspector shall make a return to the provincial secretary of all the pickled fish inspected by him or his deputies; the same to be made up to the last days of March, June, September, and December, in each year, and delivered within one month thereafter.

Deputy inspectors to account to chief inspectors.

16. The deputy inspectors shall account to the chief inspector under whom they act once in every three months, or oftener if required, for all fish inspected and the fees received by them therefor ; and shall pay over to him one-fifth of the same.

Fine for allowing unauthorized parties to inspect fish, and for lending branding irons.
17. No person other than an inspector shall sort, weigh, inspect, brand, or alter any tierce, barrel, or half barrel of pickled fish intended for exportation, unless in the presence and sight, and by the authority of an inspector; and any inspector who shall suffer any person so to act, or shall lend his branding irons in violation or evasion of this section, shall forfeit ten pounds for every offence.

Fine for acting without authority.

18. If any person not duly appointed and sworn shall act as an inspector of pickled fish, he shall for every offence forfeit twanty pounds.

Counterfciting brands, or shifting fish improperly, punishable by fine and imprisonment.
19. Any persou counterfeiting or using the brand of an inspector of smoked herrings, or being accessory thereto, or shifting any smoked herrings which shall have been packed and branded, or putting in other fish, contrary to or in evasion of these provisions, shali be punished by fine or imprisonment, at the discretion of the court before whom he may be convicted.

Fine for intermixing or improperly exporting pickled fish.
20 . If any person shall take out, shift, or intermix any inspected pickled fish which have been duly packed or branded, or shall canse to be exported, in tierces, barrels, and half barrels, pickled fish not duly inspected and branded, or any such cask not duly inspected and branded he shall forfeit five shillings for every such cask.

Forfeiture upon masters of vessels for receiving on bourd uninspected smoked herrings.
21. If any master or commander shall receive on board his vessel any smoked herrings which have not been duly inspected and branded, for the purpose of conveying the same ont of the tomnship, wherein they were cured, he shall forfeit the value thereof; but no such forfeiture shall exceed fifty pounds for any one offence.

Actions for misconduct of deputies; liability of inspector in such cases, and his redress.
22. All actions for the recovery of peualties or damages on account of the misconduct or neglect of any deputy inspector may be prosecuted either against such deputy or the chief inspector under whom he acts, who shall have his remedy against the deputy, either upon the bond giren by him or by action on the case for damages; and in every such action the judgment recovered against the chief inspector shall be evidence of damages against such deputy or his sureties, if the deputy shall have had due notice of the action brought against the chief inspector.

Inspected casks may be reinspected; deficiencies, how supplied.
23. When any cask of pickled fish branded by a deputy inspector shall prove unequal in quantity or quality to that which may be iudicated by the brand on the cask, or deficient in any of the requisites hereby prescribed, the chief inspector may cause the same to be reinspected; and if it appear that the defect arose from the condition of the fish or the bat quality of the cask, or the bad packing or pickling of the fish at the time of the inspection, he may recover the costs and charges of such reinspection from the depaty who branded the same.

FISII OIL.

Casks of fish oil, how branded.

24. On every cask of fish oil ganged shall be branded or ent with a double iron the initial letters of the Christian name of the gager, and the whole of his surname, and the word "cod," "dog," "whale," "seal," or whatever word will express the description of the contents.

Gauger's duty and fees.
25. No ganger siall be compelled to leave his residence to gauge a less quantity than five barrels; and the fees for gauging shall be at the rate of one shilling a puncheon or ninepence a barrel.

Fine upon gauger for misconduct.
26. Any gauger who shall falsely brand any cask of fish oil shall, for every gallon, forfeit sixpence.

Fine for acting as a gauger without authority.
27. If any person shall act as a public ganger of fish oil without having been duly appointed and sworn, he shall, for every offence, forfeit five pounds.

X. APPENDIX.-THE MACKEREL FLEET.

55. VESSELS ENGAGED IN THE MACKEREL FISHERY IN 18: 0.

The following alphabetical list shows the vessels engaged in the mackerel fishery in 1880; the rig, tonnage, number of crew, apparatus of capture, fishing grounds frequented, and the home port of each vessel beingshown separately. The list includes 468 vessels, valued at $\$ 1,027,910$, or an average of $\$ 2,196$ each. To this quantity should be added $\$ 1,094,450$, or $\$ 2,339$ per vessel, which represents the value of the provisions, boats, nets, salt, barrels, and other necessary apparatus and ontfit. This brings the total capital invested in the mackerel-fishing fleet up to $\$ 2,122,360$, exchnsive of the shore property for packing and storing the catch. The total tonnage of the fleet is $23,551.64$, or an average of 50.32 to the vessel. The regular seining vessels carry from 12 to 16 men, while the crews of the smaller craft range from 2 to 6 ; the total number of persons employed on the vessels is 5,043 .

Of the entire fleet, 235 sail are employed exclusirely in the mackerel fishery, while 233 fish for cod and other species in the spring and fall, engaging in the mackerel fishery during the height of the season only. Three-fourths of all the vessels, or 343 sail, are provided with purse-
seines, $\check{5}$ of them carrying, in addition, a supply of jigs for occasional use. Of the remainder, 81 fish with hook and line, and 44 are provided with gill-nets.

The principal fishing grounds are the off-shore waters between Cape Hatteras and Sandy Hook, the Block Island region, the Gulf of Maine, and the Gulf of Saint Lawrence. According to the list, 64 vessels fished along various portions of the coast between Cape Hatteras and Mount Desert Island, on the coast of Maine, 6 of them going to the Gulf of Saint Lawrence for a few weeks. Twelve small craft fished regularly in the waters about Block Island, 343 remained constantly in the Gulf of Maine, 31 others divided their time between the Gulf of Maine and the Gulf of Saint Lawrence, and the remaining 18 fished wholly in British waters. As the fleet for a few of the Massachusetts ports is shown for 1879, the above facts do not represent the actual condition of affairs in 1880 ; for during the last-named year not over 25 American vessels entered provincial waters.

Massachusetts furnishes over half of the entire mackerel fleet, heading the list with 279 sail, valued at $\$ 750,895$. Maine comes next with 176 ressels, worth $\$ 233,715$. New Hampshire has 11 sail, valued at 29,300 ; while the Comecticut fleet consists of 2 large schooners, worth $\$ 14,000$. The four principal mackerel-fishing ports are Gloucester, Portland, Wellfleet, and Boston, these sending 113, 46, 34, and 25 vessels, respectively.

Name of vessel.	${ }^{*}$ Descripton of	'Tomage	No. of crew.	Mode of fishing.	Where fishing.	Where owned.
					- -	
Abbie Frankfort	Schooner	70. 50	12	Purse-seine	Gulf of Maine	Wellfleet, Mass.
*Aberdeen	.. do	70. 12	12		Gulf of Saint Lawrence and Gulf of Main	(rloncester, Mass.
*Actress	do	39.28	12	do	Gulf of Maine	Boston. Mass.
Ada R. Terry	do	69.29	14	do	Cape Hatteras to Gulf of Maine, inclusiv	Glocester, Mass.
Adder	do	12. 38	5	Hand-line	Block Istand.	Denuis, Mass.
Addie F. Cole	do	76. 30	15	Purse-seine	Gulf of Maine	Wellfleet, Mass.
* Adclia Hartwell	do	60. 29	14	Hand-line.	Gulf of Saint Lawrene	Gloncester, Mass.
A gnes belle		29. 76	11	P'urse-seine	Gulf of Maine	Cramberry Islands, Me.
A. II. Lemuex.	do	72. 51	15	$\cdots \text {. }$		Portland, Me.
- Alabama.	do	26.16	10	do		Marblelead, Mass.
Alaska		52.42	14	do	do	Southport, Me.
Albert II. Mamdins	do	64. 33	14	do	Cape Hatteras to Gulf of Maiue, inclusiv	(iloncester, Mass.
* Alfarata	do	55.:22	12	do	Gulf of Maine	
Nice	do	29. 54	16		Cape Hatteras to Gulf of Maine, inchusiv	Siran's Island, Me.
Alıe	do	88. 81	16	do	Gulf of Maine	Boston. Mass.
Alice C, Fox	do	62. 21	14	do	Cape Matteras to	Booth Bas, Me.
Nlice Mr. Gould	do	${ }^{60} \mathbf{7 1}$	12	do	Gulf of Saint Lav	P'ortland, Me.
Alice P', Higgins.	do	91.93	15	do	Gulf of Maine	Wedlfleet, Mass.
* Alices. Hawkes	do	63.62	12	do		Swampscott, Mass.
Allen H. Joncs	do	47. 10	10		do	Muxhury, Mass.
${ }^{*}$ Allio Cook	do	5. 35	2	Haud-line	Block Island	Harwich, Mass.
* Amelia.	do	12. 83	4		Coast of Maine	Saint George, Me.
* A mas Cutter	do	60.35	12	Purse-seine	Gulf of Maine	Gloucester, Mass.
Amy Wixom		47.43	13	...do		Dennis, Mass.
Amia II Frye	do	67.40	15	do	Cape Hatteras to Gulf of Maine, inclu	Gloucester, Mass.
Anma M. Nasla	do	80. 61	14		Gulf of Maine....	Portsmouth, N. H.
Annie Letwis	do	53.01	12	. do	Cape Hatteras to Gulf of Maine inclusi	Portland, Me.
Anni- Sargent ..	do	66. 66	14	Havdo	Gult of Maine	Do.
Ammie V. Thomas	do	10. 21	3	Hand-line	Coast of Maine	North Haven, Mo.
- Ammis	do	13. 64	3	Gilid. ${ }^{\text {do. }}$	Block Island	Dennis, Mass.
Ann Maria		23. 93	$\stackrel{\square}{14}$	Gill-net	Coast of Maine and Massachuset	Friendship, Me.
Asa H. Perver		58.27 98.31	15			Boston, Mass. Wellfeet, Mass.
A.S. Wiley	do	81.10	16	. do	do	Moston, Mass.
* Athas	do	13. 87	5	Iand-line	Coast of دtilin	Isle au Maut, Me.
Augusta E. Herrick		99. 58	15	Purse-seine	Cape Hatteras to Gulf of Maine, inclasiv	Swan's Island, Me.
Badoura...	do	13. 88	3	Hand-line.	Coast of Majne	Do.
* Bauner ...		17. 46	3	do		Deer 1slo. Me.
Batio Pierce		94.89	16	Purse-seine	Gulf of Maine	Bostnn, Mass.
B. D. Haskins	. do	56.69	12do ...	Gulf of Saint Lawrence and Gulf of Maine	Gloucester, Mass.

为

(

13. D. Prince
Bloomer

List of American ressets engaged in the mackerel fishery in 18R0-Continued.

Name of vessel.	$\begin{aligned} & \text { Description of } \\ & \text { rig. } \end{aligned}$	Tonnage.	No. of crew.	Mode of fishing.	Where fishing.	Where owned.
Corporal Trim.	Schooner ...	58.96	13	Purse-seine	Cape Fatteras to Gulf of Saint Lawrence, inclusive	Sman's Island, Me.
Cosmopolitan..	do	41. 58	11		Cape Hatteras to Gulf of Maine, inclusive.......	Saint George, Me.
Cosmopolitan	do	51.38 47.19	12	do	Gulf of Maine	Portland, Me.
*COosmos.....	do	47.19 16.74	12	Gill-net.	Coast of Maine...	Swampscott, Mass. Portland, Me
Crest of the W	. .do	71. 38	15	Parse-se	. . do	Gloucester, Mass.
*Crown	do	6. 08	3	Hand line	Coast of Maine	Vinal Haven, Me.
Crown Point	do	103. 20	15	Hand-line and purse-s	Gulf of Saint Lawrence	Newburyport, Mass.
Cynosure..	.do	72. 74	15	Purse-seine.	Cape Hatteras to Gulf of Maide, inclusi	Booth Bay, Mie.
- Cyrena Ann	do	60.62	12		Gulf of Maine	Do.
Dacotah	do	60. 44	12	do	Cape Hatteras to Grulf of Maine, inclusive	Gloucester, Mass.
*Daniel McFhee	do	115.28 55.56	17	do	Gulf of Main	Portsmouth, N. H.
Daniel Simmons	. do	69.76	16	to	do	Harwich, Mass.
*David A. Osier.	do	25.84	10	do	do	Gloucester, Mass.
David Brown, \mathbf{j}	do	62.69	12	do do	North Haven, Me.
David F. Lowe	do	60.72	14	. ${ }^{\text {do }}$		Gloucester, Mass.
*David J. Adams.	do	69.86	14	do	Do.
* David Sprague	.do	29. 23	3	Hand-line	Coast of Maine and Massachusett	Harwich, Mass.
*Davy Crockett	do	84.97	14	Purse-seine	Gulf of Maine	Gloucester, Mass.
D. B. Webb.	do	76.53	15	. . do	do	Deer Isle, Me.
* Difiance..	- C do ${ }^{\text {do }}$	18.97	12	Hand-line	Coast of Maiue and Ma	Portland, Me.
* Delaware		11. 48	3	Gill-net	Coast of Maine.	Fortland, Me.
Delia Maria	. do	55.75	12	Purse-sein	Gulf of Maine	Gloucester, Mass.
Dictator.	. do	90.92	16dodo	Harwich, Mrass.
* Dreadnaught	. do	4.2. 29	13	do		Portland, Me.
Dreadnaught do	12.63	5	Gill-net.	Coast of Maine	Do.
* D. W. Hammond	do	59.44	12	Purse-sein	Gulf of Maine	Barnstable, Mass.
* E. A. Horton.	do	21.75	3	Hand-line	Coast of Maine	Swan's Island, Me.
* E. A. Horton. E. A. Lombard		66. 46	13	Purse-spine	Cape Hatteras to Gulf of Maine, inclusire	Gloucester, Mass.
*Eastern Stato	- l ..do	6.6. 27	14	do	Gulf of Maine.	Truro, Mass.
*E. A. Williams		33. 92	11	do	Gulf of Maine	Mristol, Me.
Eben Dale	. .do	57.99	12	do		
Eclipse.	. do	4.9. 69	12	do	do	Gloncester, Mass.
* Eddie A. Minot	. ${ }^{\text {do }}$	15. 39	4	Gill net	Coast of Maine	Portland, Me.
* Edith Bean.	. do	17. 22	5	Ifand-linedo	North Haven, Me.
Edith L. Couly		58. 90	14	Purse-seine	Cape Hatteras to Gulf of Maine, inclusiv	Rockport, Mass.
Edmund Barke Edward Everett	do	41. 41	10	Hand-line and purse-s	Gnlf of Saint Lawrence	Newburyport, Mass.
Edward H. Norton	do	51.84	14	Purse-seine	Cape Hatteras to Gulf of Saint Lawreuce, inclusive. Gulf of Maine.............................	Gloucester, Mass.
Edward Rich	do	74.10	15	dodo	
Effie T Kemp.	. .do	62.94	15		do	Do.

 $\vdots \vdots \infty \vdots:$
 lla Nasu．．．．禺

筞 Eva May ．．．．．．． Excesini．．．． ＊Fairy Queen．
 Farorite．
戠 \qquad Flora Tewplo．．．．．．．．．．． Flonine F．Nickerson． Flvine Cloud
Flyins Dart
 Frank Putkr．．．．． Frak Skillings
Frad．Weblit． Fred Priflise Carland General Lyou．．．．
－Geneva Mertis S．Mis． 110 33
List of American vessels engaged in the mackerel fishery in 1880-Continued.

Gulf of Maine	Portland, Ma.
do	Booth Bay, Me.
...-. . do	Rocklaud, Mo.
....... do	Welltreet, Mass.
do	Matinicus Lsland, Me.
Coast of Maine and Massachusetts	Gloucester, Mass.
Gulf of Saint Lawrence and Gulf of	Deer Isle, Me.
Gulf of Main	Gloucester, Mass. Io.
do	Harwich, Mass.
Gulf of Saint Law	(rloucester, Mass.
Coast of Maine	Vinal Haven, Mo.
Cape Hatteras to	Portland, Me.
Coast of Maine	Deer Isle, Me.
Cape Hatteras to Gulf of Maine, inclusive.	Gloucester, Mass.
Gnlf of Saint Lawrences	Do.
Coast of Maine and Massachuset	Do.
Gulf of Maine	Southport, Me.
Cape Hatteras to Gulf of Matne, inclusivo	Glouctster, Mass.
Gnlf of Maine	Swampscott, Masa.
	Portlind, Me.
Cape Hatteras to Gulf of Saint Lawrence, inclusíve.	Gloucester, Masa,
Gulf of Saint Lawrence and Gulf of Maine.......	Ion.
Gulf of Maino	Marwich, Mass.
	Camiden, Me.
Block Island and Gulf of	Boston, Mass.
Gulf of Main	Provincetown, Mass.
-do	Hingham, Mass.
Cape Hatteras to Gulf of Maine, i	Gloncester, Mass.
...... do	Sman's Island, Me.
. . do	((lonteest?r, Mass.
Galf of Maino	Portsmouth, N. H.
Cape Hatteras to Galf of	Gloucester, Mass.
Gall of Maine	Rockport, Jass.
Gulf ot Saint Lawrenco and Gulf of Maine	Newburyport, Mass.
Gulf of Maine.	Frientship, Me.
Coast of Main	North Haven, Me.
Gulf of Main	Rockport, Mass.
. do	Portland, Me.
do	Harwich, Mars.
do	Toothbay, Me.
. do	Cohasset, Mass.
Coast of Maino	Bristol, Me.
Gulf of Maine	Booth Bay, Me.
do	Swampscott, Mass.
. do	Chatham, Mass.
. do	Do.
Cape Hatteras to Gulf of Maine, inclus	Booth Bay, Me.
Gulf of Maine	Do.
Coast of Maine and Massachusetts	Gloncester, Mass.
. $=10$	Friendship, Me.
Cape Hatteras to Gulf of SaintLawrence, inclusive.	Deer Isle, Mo.

웅
List of American vessels engaged in the mackerel fishery in 1880—Continued.

Name of vessel.	Description of rig.	Tonnage.	No. of crew.	Mode of fishing.	Where fishing.	Where owned.
* Little Annie.	Schooner	18.87	4	Hand-line.	Coast of Maine	Deer Ysle.
*Little Lizzie	. . do	60.04	14	-....do	Coast of Maine and Massachusetts	Harwich, Mass.
*Little Nellie	do	14. 90	3	Gill-net..	Coast of Maine	Portland, Me.
Lizzie		13. 75	5	Gand-line	Block Ioland...	Denuis, Mass. Portland Mo
*Lizzie Bradley		17.00	5	Gill-net...	Coast of Maine	Portland, Me.
*izzie D. Baker	do	75. 93 43.54	14	Purse-seine	Gulf of Maine	Wellfleet, Mass.
*Lizzie D. Saunder	do	13.71	4	Gill-net	Coast of Maine	Portland, Me.
Lizzie Poor	do	51.50	14	Purse-8eine	Gulf of Maine	Do.
Lizzie Smith	do	77.21	15do		Wellfleet, Mass.
Lizzie Thompson	do	70.89	15		Cape Hatteras to Gulf of Maine, inclusive	Newburyport, Mass.
Longwood	do	65. 79	15	do	Gulf of maine	Boston, Mass.
Lottie \ldots.....	do	5. 74		Hand-line	Coast of Maine	Deer Isle, Me.
Lucy J. Keeler.	do	59:00	14do		Swan's Island, Me.
Lucy N. Jenkinge	do	73.33	15	do		Wellfleet, Mass.
${ }^{*}$ Luey R. Day	.do	57.90	14	do	do	Boston, Mass.
* Luther	do	19.73	3	Hand-lin	Coast of Maine	Vinal Haven, Me.
Lydia do	12. 60	4	P...do	Block Island.	Dennis, Mass.
*Lydia A. Davis	. do	14. 68	14	Purse-seine	Golf of Maine	Nowburyport, Mass.
Aradawaska Maid	do	63. 08	14	. . . do		Gloucoster, Mass.
* Magellan Cloud	do	15.10	6	d	Coast of Maine and Massachusetts	Do.
Maggie Power	do	60.92	12	do	Cape Hatteras to Gulf of Maine, inclusive........	Portland, Me.
Maggie W. Willard		46.44	12	. do		
* Margaret Leonard	. do	33.31 61.13	15	. .do	Gulf of Maine	Boston, Mass.
* Margie Smith Maria Webster	. do	61.13 58.15	15	. do	do	Gloucester, Mass. Wellfleet, Mass.
* Marion	do	23.24	5	Hand-line	Coast of Main	Deer Isle, Me.
Marion Grimes	do	61.36	14	Purse-seine	Cape Hatteras to Gulf of Saint Lawrence, inclusive	Gloucester, Mass.
* Martha C.	do	79.16	14	do	Gulf of Maine	Do.
* Martha D. McLa	.do	46.97	12		Gulf of Saint Lawrence and Gulf of Maine	Portland, Me.
* Martha Emma	do	22. 08	${ }_{6}$	Hand-line.	Coast of Maine	Belfast, Me.
* Martha Jane	do	16.89	6	Purse-svine	Coast of Maine and Massachusetts	Gloucester, Mass.
Mary and Emma		18.01		Hand-line	Block Island.	Dennis, Mass.
Mary Doane.	do	72.10	16	Purse seine	Gulf of Maine	Harwich, Mass.
* Mary Elizabeth	do	22.51	8	Gill-net	Coast of Maine a	Gloucester, Mass.
* Mary Ellen...		54.11	12	Purse-sein	Gulf of Maine	Rockport, Mass.
* Mary E. Smith		33.74 6.00	2			Ncwburyport, Mass.
${ }^{\text {* Mary Etta. }}$	Sloop	6. 00	2	Hand-line	Coast of Maine	Bristol, Me.
Mary Eva Mary E. Whar	Schooner	61. 11	15	Purse-8ein	Gulf of Maine	Provincetown, Mass.
Mary Fernald		80.27	14		Gulf of Saint Lawrence and Gulf of Maine	Rockport, Mass.
*Mary Jane	do	13. 54	3	Gill-net	Coast of Maine and Massachusetts	Friendship, Me.

禹 동 . C .88
s. 'ssems 'ᄀTods.mquan Portland, Me.
Provincetown, Mass. Swampscott, Mass.
 Gloucester, Mass. Portland, Me.
Do. Cobasset, Mass.
Boston, Mass.
Essex, Mass.
Wellfeet, Mass. Dennis, Mass. Portland, Me.
Wollileet, Mass.芸
 *ssIK ‘xazşanoty Gloucest Decr 1sle, Me. Gloncester, Mass.
Booth Bay, Me. Boothis, Mass.
Doston, Mass

 'SSEIV ‘xว1820noID Harwich, Mass.

Gulf of Maine and Gulf of Saint Lawrence.
Gulf of Maine :
Purse-soino

Coast of Maino and Massachusetts.

 Gulf of MaineCoast of Maine

Gulf of Saint Lawrenco and Ginlf of Maine Gulf of Saint Lavrence aud Gulf of Maine Gulf of Maine

Coast of Maine and Massachusetts.........
Gulf of Saint Lawrence and Gulf of Maine Cape Hatteras to Gulf of Maine, inclusive. Gulf of Saint Lawrence and Guld of Maine
 픅
है
$=$ Saint Lairrenco and Guif of Maine Cape Matteras to Gulf of Maine, inclusive

List of Amerioan vessels engaged in the mackerel fishery in 1880-Continued.

Name of vessel.	Description of rig.	Tonnage.	No. of crew.	Mode of flshing.	Where flishing.	Where owned.
*Ralph E. Eaton	Schooner..	68.96	15	Purse-seine	Gulf of Maine	Gloucester, Mass.
Ramblerdo	66. 91	14do	Cape Hatteras to Gulf of Maine, inclusive.	Do.
Rattlerdo	83.72 78.29	14	do	Gnif of Saint Lawrence and Gulf of Maine	Do.
Rebecca J. Evansdo	78. ${ }^{29} 13$	17 5	Hand-lin	Gulf of Maine	Harwich, Mass.
* Reform	.do	16.73	4	Gill-net	Coast of Maine	Bremen, Me.
* Reporter	. ${ }^{\text {do }}$	83.61	14	Purse-seine	Gulf of Maine	Gremen, Me.
* Reserve	. do	5. 60		Hand-line.	Coast of Maine	Vinal Haven, Me.
*Rhoda Ann	do	10. 70	5	.do		North Haven, Me.
Richard S. Newcomb	do	69.66	14	Purse-seino	Gulf of Maine	Boston, Mass.
Right Lising Star	do	59. 10	14	do		Do.
* Rising Star......	do	29.48	7	do		Duxbury Mass.
Robert D. Rhodes	do	60.91	13	...do	Gulf of Maine, inclusive	Soutbport, Me.
Robert Ripley ...	do	48.05 56.03	13	. ${ }^{\text {do }}$	Cape Hattoras to	Canden, Me.
Rosedale	do	83.69	14	. do	Gulf of MIaine	Borth Haven, Me.
* Rozella	.do	36.53	10	do		
* Rover's Brid	do	20.13	6	do		Cranberry Islands, Me. Portsmouth, N. H.
+ Roval Tiger	do	11.34	4	Gill-net	Coast of Maine	Booth Bay, Me.
Rushlight	do	66. 98	14	Purse-seine	Gulf of Saint Lawrence and Gulf of Maine	Gloucester, Mass.
S. A. Parkhurst	. do	53.35	12do	Gulf of Saint Lawrence	Salem, Mass.
*Saragossa	do	30.95	10	do	Gulf of Maine.........	Portland, Me.
* Sarah B. Harris	do	54.21		. do do ...	
* Sarah C. Wharff	do	51.43	12	do		Gloucester, Mass.
*Sarah E. Babson	do	49.10	15	. do	Gulf of Saint Lawrence and Gulf of Maine	Newburyport, Mass.
Sarah E. Smith.		56.15	13	. do	Gulf of Maine	Wellfieet, Mass.
Sarah M. Jacobs	do	80.04	15		Cape Hatteras to Gulf of Maine, inclusive	Gloucester, Mass.
* Seatellite...	do	22.25	8	do	Gulf of Maine	Rockport, \tass.
* Soa Flower	. 10	36. 13	8	Hand-line.	Coast of Maine	Belfast, Me.
*Sear Foam.	do	73.19	12	Purse-seine	Gulf of Maine	Barnstable. Mass.
Sea Spray...	do	52.49	13do	Gulf of Saint Lawrence and Gulf of Maine	Eastport, Me.
* Sea Queen * Senator...		18.44	4	Gill-net	Coast of Maine	Cushing, Me.
* Silk Worm	. do	13. 26	4	Hand-rine		Brooklyn, Mo.
* Siloam.	do	9.56	5	Hand-line	Block Island	Cushing, Me.
* S. L. Foster	.do	48.14	12	Purse-seine	Gulf of Maino	Cranherry Islands, Me.
Starlight........	do	10. 38	3	Hand-lino..		Cranherry Islands, Me.
* Star of the East	do	56.13	11	Purse-seine	Gulf of Maine	Gloucester, Mass.
Stella Sherman * Storm King.		92.49	14do	do	Boston, Mass.
Stowell Sherma	do	36.46 92.49	8			Duxbury, Mass.
*Sunbeam	do	97.68 27	10			Orleans, Mass.
*Susan	do	15. 64	4	Hand-line	Coast of Main	Tremont, Mo. North Haren Me.

XI. APPENDIX.-STATISTICS OF THE MACKEREL FISHERY IN THE GULF OF SAINT LAWRENCE.

56. THE CATCH OF MACKEREL BY AMERICAN SCHOONERS IN CANADIAN WATERS, 1873-1882.

The following statement, prepared by Colonel David W. Low, of Gloucester, shows the extent of the mackerel fishery as pursued by American vessels in the Gulf of Saint Lawrence since the year 1873. The number of vessels and their catch in the years 1873 to 1877 , inclusive, is compiled from the reports of the collector of customs at Port Mulgrave, Nova Scotia; the number of vessels in 1878 and 187:) is from the same authority; the catch for 1878 and subsequent years and the number of vessels in 1880 and 1881 is from reports of the Boston Fish Bureau. The estimates of value and the catch within the three mile limit are from authentic sources. The value includes the labor of crews "messing" some of the fish by soaking, scraping, and cutting off their heads, thus increasing their market value. The quantity of mackerel caught within the three-mile limit, one-third of the total catch, is considered by competent authorities to be a very liberal estimate. The unusual number of vessels in the gulf in 1878 was cansed by false reports and telegrams of great quantities of mackerel there. American vessels in the gulfmackerel fishery must average four hundred barrels of mackerel each at ten dollars per barrel to pay the expenses of outfit, insurance, depreciation of vessel, crew's share, and master's commission.

The mackerel fishery by American vessels in the Gulf of Saint Lawrence for tho years from 1873 to 1881, inclusive.
[Compiled by Col. David W. Low.]

Yearly arerage catch per ressel, 238.

ALPHABETICAL INDEX.

Page.
Abundance of mackerel 13, 14, 15
in Bay of Fandy, 1839 234
on George's Bank, 1868 302
in Gloucester Harlor, 1845. 239
in Gloucester Harbor, 1866 292
in Gloucester Earbor, 1870... 310
in Gulf of St. Lawrence, 1848. 242
in Gulf of St. Lawrence, 1863. 284
in Ipswich Bay 287
in Ipswich Bay and at Cape Cod 281, 282
in Maine bays, 1845 239
on Maine coast, 1849 243
on Maine coast, 1860 273
on Maine coast, 1865 280
off Malpec, 1865 288
in Massachusetts Bar, 1833 226
in Massachusetts 13ay, 1859 269
in Massachusetts Bay, 1868 301
in Massachasetts Bay, 1880 351, 352
off Monhegan Island, 1880 350
off New England coast, 1629 -'35 217
on New England coast, 1815. 239
on New England coast, 1854. 257
on Now England coast, 1860. 273
on Now England coast, 1866. 293
on Now England coast aud scarcity in the bay, 1879.... 344, 345
on Nova Scotia coast, 1843. 237
about Sable Island, 1847. 240
at Small Point, Maine, 1871 310
Adams, M. L 306
Adriatic, mackerel in 4
Agassiz, Professor 24
Allerton, Mr. Isaac 115, 116
American fishery, importance of, 1832. 226
schooners annoyed by British cruisers in Bay of Chalour, 1852 251, 252
versels not annored by British cruisers in the bay, 1868 303
vessels in Gulf of St. Lawrence, 1869 305
vessels in Gulf of St. Lawrence. 1875 328
Amherst Harbor. 45, 46
Ammodytes americanus 18
Anadromous fishes 6
mackerel never. 40, 43, 44
Anderson, Capt. James 338
Ann, Cape $47,83,241,276,282,28$
Annisquam 201
Anticosti 4.315
Page.
Apparatus and methods of fishing ...52,73, 85, 98 , 113, 115
Appearance in Barnstable Bay, 1838 234difference in the time of, atthe Magdalen Islands andat Waquoit, Mass.46
Appendix 354
Arrivals from Chaleur Bay, 1850 246
from George's Bank, 1842 236
on George's Bank, 1878 338
from St. Lawrence Bay, 1853 255, 256
1867. 297
1868 303
high prices, \&c., 1873 325
prospects, 1859 270
slim doings, 1868 304
unprofitable trips, 1855 259
and shore fleets, 1860 274
Λ shby, Capt. Benj 22
Aspee Bay 82
Atwood, Capt. N. E.. 3, 15, 24, 26, 38, 82, 91, 107, 108,$110,117,122,145,225,226,331$experiencoin mackerelfisheries, 1839-1840..234
1841-1851.. 247
experience in St. Law- rence Gulf fisheries, 1835, $1838 \ldots . .227,228,229,233$
Babson, Capt. Fitz J 89, 297, 345
Capt. Gorham 16, 78
Bad season in Gulf of St. Lawrence, 1871. . 315, 316
Baird, Prof. S. F. 5-6, 10, 17, 25
Bait 58-59
amount consumed 89
and apparatus for its preparation 87-82
price of 90
fish 19
mill 91, 92
mill, first on Cape Ann 223, 224
mill, introduction of, 1823 222
Baker, Capt. Isaiah 77, 116
Baltic 4
Barker, Christopher 77
Barnegat 8, 25î
Barnstable Bay 276, 300, 314
mackerel flect in, 1838 233
Harbor. 308
Barry, Hon. James 101, 143, 144
Basse 27
Bathic migration 6
Baxter and Bragg 244
Bay fishery, $18 \overline{5} 8$ 205
1866 291
1869 307
Page.
Bay fleet, 1867 296
1873 323
1878 340, 343
arrival home of, 1873 325
disaster to the, 1851 249
the early, 1862 281
1858 265
first start of, 1866 289
1873 322
fitting away of, 1859 269
1868. 301
from Gloucester, 1858 265
increase in the, 1858 263
a large, 1867 296
sailing of the first of the, 1861. 278
small, 1875 329
Baymen, 1855 260
1868 303
1869 308
arrival of, 1858 263
1865 286-287
1866 294
1869 307
light fares of, 1869 308
poor success of, 1842 237
Bay of Chalear, big fare in, 1849 243
poor luce in, 1849 243
Bay trip, quickest ever made, 1850 246
Bean, Dr. T. H. 15
Belle Isle, Straits of. 3-4
Berdick, William 274
Bermudas. 4
Billingsgate Point. 276
Bird Rock 82, 83
Birds, attraction for. 41,43
Black Rock 257
Blanchard, Capt. Miles 311
Blatchford, Capt. Henry 53
Nathaniel 220
Capt. Sam'l 79
Blindness 10,12
Blinks 26
Block Island. . . . 33, 47, 49, 144, 145, 253, 294, 333, 32.4, 341, 349
Block Island, largest mackerel off, 1880 349
fleet. 351
Boat-fishing in Maine, 1837 230
Bobbing mackerel. 118
Bonaventure 245, 274, 294, 321
Bonne Esperance 318
Boone Islund. $16,18,49,79,83,314$
Bed Bugs 16
Booth Bay 311
Boston 114,339
Bay 268
mackerel industry, 1877-1881 210
Boys in the mackerel fishing. 298
Brackett, Mr. Thomas 9
Bradelle Bank 33
Bradley Lank.......21, 22, 23, 46, 82, 245, 261, 267, 282284, 287, 294, 298
Breeze, a mackerel 33
Breton, Cape. 82, 295, 321
Island 30, 31, 40
Brevoortia tyrannus 88
British cutters in Bay of St. Lawrence dis- gaised to insure the capture of Ameri- oan schooners, 1852 251
British provinces, mackerel exports, 1873-
1879, 1857-1873, 1853-1876 217
Broiled mackerel 136, 137
Brown, Dr. Robert 20
Samael 219
Capt. Warren 8
Brownell, Jonathan 77
Bruce, Sir Frederick W. A 290
Buffington, Mr 321
Burnham, Andrew 223
Gorham 01
Capt. Simeon 219
Butler, General 321
Bazzard's Bay. 22, 25
Cahoon, Capt. Abraham 336
Caiss, Edward 85
Camden 23, 136
Cameron, Daniel $82,85,88$
Mr. John 92
Canada fishery, 1873-1879 214
including Prince EdwardIsland, 1869-1880216
mackerel exports, 1873-1879 214, 215
Canadian fishermen, disinclination for mackerel catching, 1872.... 320fishermen, lack of interest ex-hibited by, 1871............... 314, 315
fishing industry, dependeace on the United States 347
Canning, 1845 239
industry, origin and develop.ment.131-137
methods and statutes of. 131-137
Canso 299
Gut of 41, 346
Strait of......31, 94, 102, 103, 111, 263, 274, 285:299, 336
Cape Ann, fishing off, 1825 and 1831 222
1839 234
Cape Cod12, 24, 32, 41, 128, 241, 245, 282, 284 Bay, fishing in, 1802 218
1855 258
1869 308
1877 337
large schools off, 1848 243
Capture, dates of 9, 10
latitude of. 9
Care of the fish 98-100
Cargoes, landing the 75
Carolina coast. 9
Cascumpeo. 299
Cashes Ledge 83
Cat-thresher 109
Cayenne 16, 17
Chaleur, Bay of.. 19, 40, 82, 239, 241, 245, 262, 265, 294
Charleston 10
Charlottetown 251, 308
Chatham 83, 89, 110, 241, 244, 319
Chatte, Cape 82
Chauncy's Creek 332
Chedabucto Bay. 31, 111
Cheticamp 82, 280, 286, 299

Page.
Disoppearance 11
Discophores 15
Disinclination to take the hook 226
Dissection 10,11
Dogfish 28
Double Island Harbor. 3
Drag-net fishery, the most extensive. 108, 109
Drag-seining 116
Drailing for mackerel. 117, 118
Drift-net fishing 109, 110
Duffy, Mr. William 9
Dunn, Mr. Matthew 25
Dyer, Mr. Charles A 345
Earll, Mr. R. E.......................3,79, 85, 88, 131, 345
Early appearance off Cape Ann, 1869. 306
catches, 1871-1881 112,113
1878. 338
days, Cape Ann mackereling trip, 1815-'20 243
fishing off Cape Cod, 1671 218
methods of the mackerel fishery 115-119
start for the bay, 1858 263
1860 273
East Point (Princo Edward Island).......46, 82, 257
Eastport, Me 21, 107, 136
Egg Rock 310
Eggs, mackerel 25, 26
Elizabeth, Cape 49
Enemies 27-29
English Channel 4
Escnminac Point 82, 242, 267, 282, 287, 294, 300
Essex 105
Existing lams 254-373
Failare of bay fishery, 1877 335
the fishery, 1843 238
almost total, 1841. 236
sad results of, 1868. 304, 305
mackerel on George's Banks,1845.-........... 239
Western coast,Nora Scotia,1832..............226
Saint Lawrence Gulf fishery, 1879 344
Spring mackerel at the Magda lens, 1876 332
Fall fishery at Cape $A n n, 1800$ 277
in Barnstable Bay, 1870 311
Cape Cod Bay, 1849 244
1860........ 276, 277
1869. 306
187 318, 319
1879. 339
mackerel in Cape Cod Bay, 1838. 231
school on Nova Scotia coast, 1861. 279
Fattening the fish 100,102
Fees of the inspectorgeneral 147,162
Financial profits of the mackerel hook fishery 103-105
Fire Island 253
First American ressels in tho bay, 1876.. 332
appearance, 1875 328
arrival from the bay, 1860 273
1861 293
1862 381

First arrival from the bas, 1865 $\begin{array}{r}\text { Page. } \\ 286\end{array}$	$\begin{array}{cc} & \text { Page. } \\ \text { mackerel in Boston, } 1860 \text {........... } \\ 208\end{array}$
1866 291	mackerel, first arrival in New York -
1867 - 297	market, 1873...................... 322
1868.......... 302	1877 - 332,333
1869 307	1880...................... 349
1875 330	mackerel, first fare at Portland, 1878. 343
scarcity re-	Frye, Captain 327
ported,1853. 254	Funds, Bay of............ $4,10,40,41,49,83,249,254$
in Boston, 1878-. 342	Gaff-........................ 87
at Gloucester, 1878 342, 343	introduction of, 1823................. 221
from the south, 1855......... 259	Gammuras dentatus- 20
1869.......: 306	loricatus 20
1870.......- 310	mutatus....................... 20
fare from George's, good haul, 1873 . 333	pinguis.-.-.....--............. 20
of the season, a big stock, 1875. 329	sabini 20
mackerel caught off Cape Ann, 1873. 322	Gannets.................................... 18.27
in Mass. Bay, 1863. . 283	Gaspe...................................... $15,245,257$
$1870 \ldots \ldots$.	Bay.................................. 320
of the season, 1852 250	Саре 82, 258, 274
taken, 1861............... 277	Gaspereau 25
seizure of an American	General discassion of fishery, 1870........ 312, 313
vessel for fishing off	Geographical distribution................. 3 .4
Prince Edward Island,	George, Cape 40
1852.................... 251	George's Bank . $7,8,49,83,236,239,280,282,296,297$,
voyages from Cape Ann to	302, 309
George's Bank, 1822.... 221	bank, large floet on, 1875 329
voyages from Cape Ann to	large baul on, 1873........ 324
Gulf of Saint Lawrence,	lig trip from, 1872. . 321
1830.................... 224	George's, good catch on, 1869. . 307
Fish, Hon. Hamilton...................... 0	good fares from, 1867 297
Island 247	good trip from, 1868 303
taking care of. $73-75$	large school on, 1867............. 206
Fisher, Captain 23	shoals -.....-.-................... 33
Island Sound 15	Georgetown (Prince Edward Island)...... 82, 106
Fisheries, 1871............................. 317, 318	German Ooean 4
bill, passage of, 1873 321, 322	Gibbers....................................... . 73,74
Fishermen49, 43,84	Gifford, Mr.................................. ${ }^{\text {. }}$ 52, 123
continued labor and fatigue of. 69,70	Gigging, protest against, 1836 228
death of experienced, $1863 \ldots .283$ extracts from records and rem.	and seining, protest against in present centary \qquad
iniscenses of 217	Gilbert, Moses............................... 220
Fishery, 1870 311	Gill-net fishery 107,113
almost a failure, 1858 265	in Barnstable Bay, suocess
partial failure of, 1858 26.5, 266	of, 1870 300
Fishing grounds $21,48,49,82,83,112$	at Cape Cod, growing im-
Fitzgerald, Mr. John 317	portance of, 1859........ 268
Fleet for 1828 224	in Cape Cod Bay, success
1870 311	of, 1858.................. 267, 208
1880 349	Gill-nets, large oatches in 107, 108
at the Magdalens, 1875............ 330	Gill-netters from Provincetown, good
expected home, 1866 293	catches of, 1869................................ 308
fitting for the bay, 1862........... 281	Gill-netting, advantages of, 1859.......... 269
in Barnstable Bay, 1860 275	at Dennis, 1870 312
in Gloncester, 1862................. 281	Gilpin, Dr.................................. . 8,10
movements of, 1878................ 341, 342	Giving the seine away..................... 04
in Saint Lawrence Gulf, 1834 236	Gloucester................................... 241,283
Fly-hook.................................... 86	baymen, success of, 1858....... 266
Food......................... 15, 16, 17, 18, 19, 20, 21	figheries, 1873.................. . 326
Foreign mackerel, United States consump-	fishery, 1870.................... 312
tion of, 1872-1881......................... 214	1881 352,353
Fortin..................................... 3, 34	fleet, the large reasels in, 1821.. 220
Foster, Alfred D 345	Harbor, mackerel in, 1853...... 255
Fox, Mr..................................... 346	large school in, 1861... 278
Fraudulent packing..................... 152, 153, 155	Goode, G. Brown5, 6, 8, 224, 345
French coast, fishery on, 1868.............. 305	Gordy, Mr. J. P............................. 50.73
Fresh-fish business, steady growth of, 1880 352	Grades of mackerol........................ 139

mackerel in Boston, 1860 208
mackerel, first arrival in New York
market, $1873 . ~$
32
1877 332,333
1880............................. 349

Frye, Captain 327
Fundy, Bay of............. 4, 10, 40, 41, 49, 83, 249, 254
Gaff 87
introduction of, 1823..................... 221
Gammuras dentatus 20
loricatus 20
mutatus............................ 20
pinguis.............................. 20
sabini 20
Gannets... 18,27
Gaврє.. $15,245,257$
Bay... 320
Gasp
General discassion of fishery, 1870........ 312, 313
Geographical distribution..................... 3, 3
George, Cape 40
George's Bank . $7,8,49,83,236,239,280,282,296,297$,
2, 309
large baul on, 1873........ 324
good catch on, 1869 307
ood fares from, $1867 \ldots \ldots \ldots$
large school on, 1867.............. 206
shoals 33
Georgetown (Prince Edward Island)...... 82, 106
German Ocean 4
Gibbers ... 74
Gigging, protest against, 1836 228
and seining, protest against in $121-123$
Gilbert, Moses.................................... 220
Gill-net fishery 107, 112
in Barnstable Bay, suocess
of, $1870 \ldots$.
at Cape Cod, growing im-
portance of, 1859........ 268
in Cape Cod Bay, success
of, $1858 \ldots267,208$
nets, large ontches in 107, 108
thers from Provincetown, good
catches of, 1869................................... 308
at Dennis, 1870 312
Gilpin, Dr.. 8, 8,10
Giring the seine away........................... 04
Gloucester. ... 241, 283
baymen, success of, 1858....... 266
fisheries, 1873..................... 320
fishery, 1870......................... 312
1881 352, 353
fleet, the large ressels in, 1821.. 220
Harbor, mackerel in, 1853...... 255
large school in, 1861... 278
Goode, G. Brown5, 6, 8, 224, 345
Grades of mackerol............................. 189
Pago.
Pago.
Grand Manaд................................... 12,23
Grant, President 32183
Gray, Capt. William. 80,341
Green Cove 8
Greenport 54
Grey, Capt. John 85, 92
Greywire, Mr8
Growth and size, rato of 26, 27
Gulf fishery, 1876 334
Gulf of Maine, fishing in the, 1874 327
1875 228St. Lawrence, close of season, 1852. 252, 253American vessels in,1873-1881429
poor quality of fish, 1854 258
fishing in, 1859 270
good fares, 1862 281
arrivals from, 1859 271, 272
Gunnison 223
Halifax 40,131, 240
Halifax Harbor, large haals in, 1855. 260
Hall, Mr 23
Hamilton Inlet3
Hand-lining from decks of vessels, intro-
219-220
Harbor temperatures 7
Harding, Capt. King...7, 14, 15, 16, 17, 18, 37, 38, 242Harger, Oscar.28
Harwich 339
Harwichport fishery, 1864 284
Hatteras, Cape 3, 9, 10, 112
Henlopen, Cape 113
Henry, Саре 7,10, 328
Herrick, Capt. William 113
Hibernation 5, 8
Higgins, Mr 52
Higgins and Gifford 55
Higginson, Francis. 13
High line of the bay fleet, 1869 308
fleet, 1857 202
1866. 293
1867 298
1879. 347, 348
Provincotown fleet, 1874. 327
seining fleet, 1874 327
price of bay mackorel, 1875 330
for mackerel, 1868 306
Hinckloy, Mr. Benjamin F. 43
Hind, Prof. स. Y 3, 5, 18, 21, 44, 346
on the causes of the al-leged annual variationin the number of mack-erel observed.35, 37
on the causes of irrega- lar movements 29-35
Hingham 265
fishery, 1815 220, 221
1837-'38 231
1844 238
extinction of, 1876 332
fleet, success of the, 1843 237
Holmes \& Co 238
Homeward passage and disposition 102-103Page.
Last arrival from the bay, 1858 264-266
Late school in Massachusetts Bay and at Cape Cod, 1859 272
Latham, Captain 112, 338
Latitude, range of
315, 316, 320 Lavoie, N. 315, 316, 320
Laws, petitions, and protests 119
Le Barre Ilarbor 326
Lee-bowing 97
Legislation for the protection of mackerel. 119, 123 Le Have7
Bank 17
Leighton, Capt. Andrew 22
Lewes, Del 331, 339
License required by Can adian Government from American vessels fishing in Grulf of St. Lawrence, 1866, 1867 290, 296, 297
Life-history of the mackerel 3-29
Line-fishery, exceptional hauls 96
List of American vessels engaged in the mackerel fishery, 1880 420-429
Little, E. H 145
Long Island 21, 49, 260
Sound 41
Lookout, Cape 113
Loss of many schooners in the Bay, 1852.. 253
Low, Maj. D. W $89,91,105,305,32$
Lowe, Capt. Francis 115
Lowry, Mr 89
Loyd, Thomas 10
Lacky hanl at Provincetown, 1877 333
streak 82
vessels, 1875 328
Lanenbarg 317
Larvey, Abraham $85,118,220$
Lyle, H. M 248
Mackerel hook fishery 81-107
Mackerelmen, discouraging prospects for, 1841......................... 235poor doings of, 1837 230230
1844 238
Mackerel pocket 17
mint 18
shark 28
Macrura 15
Maddocks, Capt. Joseph 82
Maddox, Mr. Luther 78Magdalen Islands. . . $21,22,30,31,40,82,94,247,261$,$280,284,294,295,299,309,326$River271, 274
Maine coast, flshing on the, 1860 276
Gulf of 49, 83
fishery, 1864 285
mackereling in, 1825 222
Malpec $249,288,294,299$
Manomet Ponds 238
Margaree Islands 82, 280, 286, 299
Margaret's Bay 111
Market fishermen, good lack of, 1872 319-320for mackerel, 1832................... 225
1858225
1859 272
running for the 75
Markarson, Capt. Knud 80, 81, 339, 340
Marr, Capt. Chester 17, 99

Marshall, Capt. William 221
Marston, Robert 213
Martha's Vinejard 45
Martin, Capt. S. J 69, 70, 71, 72
Martinlicus Rock 49,83
Massachusetts Bay 314
fishery, 1876 832
fishing in, 1870 310-311
catch of mackerel for 1838. 231
fisheries, extent of, 1837 229
fleet, $\mathbf{1 8 8 0}$ 418-419
Mather, Richard 13
May, Саро 41, 112
Mayo, Menry \& Co 133
Mr. Noah 40
McLain, Captain 76
McLean, Capt. Geo 337
McMann, Captain 80
Moccatina 310
little. 4
Mediterranean 4
Mehlman, Capt. David N 42
Monhaden 7
Menhiggin 13
Merchant, Capt 85, 218, 219, 220, 222, 224, 225
Capt. Epes W 92,99
Capt. George,jr 52, 57, 71, 78
James 220
Merrimac River. 89
Methods of curing, past and present 145, 147
Mexico, Gulf of 4
Migrations. 5-6-12, 31, 32
northerly 12, 13
Milk Island 22, 24
Mingan 4
Islands (Labrador) 82
Miramichi 82
Bay 267, 309
Miscou Point $22,46,82,245,282,294$
Mitchill, Dr 39
Mr. Charles 131
Mode of fishing 92-98
Moisie. 315
Monhegav, Me. 110
Island. 49, 83, 254
Montank 294
Point. 83
Morgan, Captain 234
Mount Desert Island. 107, 345
Rock. $49,83,244,254,314$
Mount Louis 271, 275
Movements of macke rel, influence of blue- fish on, 1850 244,245
Movements of the mackerel schools, ob- servations of American fishermen 37, 41
Mulgrave, Port 332, 346
Mystic River 54
Nantucket 13
Shoals 112
Nealley, Mr. E. J 43
New Bedford 54
New Brunswick 22,50
fishery, 1852 254
and Nova Scotia fisho-
ries 1871, 317
[437] REPORT OF COMMISSIONER OF FISH AND FISHERIES.

號Phalaropes17Philadelphia114
Phillips, Mr. Barnet 5Pictou (Nora Scotia)249
Pierce, Miles 80
Р2дeon-ha ground15
Pleasant Bay 320
Henty off Newluryport, 1858. 264
ora Scot 250
Plows 100-102
Poey 10
Pogies 79
Pool, Captain 251, 252
Porpoises 28Porlland$25,83,245,345$
Portsmonth and Gloucester Harbors, big schools in, 1837 230
Prices 26
82238
1850 2461859270, 271, 272
18290, 291
1868 ,
1873 322
drance im, 186 2
in Boston market, 1804-1832 218enhanced by the demand for ship-ment to California and Anstralia,1857262
for fres mackerc, Now York, 1810.210
Prince Edward Island 22, 23, 33,$287,288,294,295,299,309,326,346,347$
Proctor, Mr. J. O , 158Prospect, Upper333
Provincetown 7, 26, 28, 239, 248sive331
Ashery, 187210, 269, 276
Prussia (Eastern)20, 21
Purse-seine, attempted use of, in Norwe-big catches with, 1865286
big haul in a, 1866 291
Parse-seine, dimensions of an average-size

Page.deep-water

history of the use 78,80
protest against the use 122
successful use of, off Cape Ann, 1859 269
saccessful ase of, off Cape Ann, 1860 275
Purse-seining, successful, on New Eng- land shore, 1853 255
Pursing ap 61
Quick trip, 1874 327
Qaick bay trips, 1861 278
Quinan, Mr. Francis 317
Race, Point 327, 328
Ratcliff, Capt. William 78
Reappearance on the Labrador coast after
40 years' absence, 1871 316
Receipts and prices, 1853 255
Reciprocity treaty, effect of, on Nova Scotia, 1869 307
Red Bay 3
seed 17
Re-enactment of prohibitory laws, 1702.. 120, 121Refusal of mackerel to take the hook atall times 38-40,42-44Reinspection, pickled mackerel, Massa-chnsetts, 1850-1881192
Remon, James M 315
Rental of Cape Cod fishery, 1677 218
Ropeal of prohibitory laws in Massachu- setts, 1692. 119-120
Repealed, inspection laws, Maine 372-381
Massachusetts 381-388Pennsylv ania, 388-395
Reprodaction 21-26
Reriow of fishery for 1853 256
Rhode Island 30
Rich, Mr. A. B 40
Richmond's Island. 79
Rideing, Mr. William H 5
Risor 80
Rissoa 18
Robinson, Captain Daniel 223
Rockport, Mass., large fishing station, 1836 238, 229Ropes, Charles158
Rough weather in the bay, 1866 292
Rowe, Capt. Joseph 22
Rozier, Cape 274, 275
Rastico 316
Sable, Cape 40, 230, 250
Island
Salem 89
Sales, 1867 298
1881 353
prices, \&c., 1828 25
Salmon Bay 3
135, 136
Salt mackerel
fishery of Gloucester, ro ceipts for 1880............ 350,351
Salting the fish 98, 99, 219
Sandy Hook 9,114, 260, 294
Point. 116
Page.
Sars, Professor 25,35
Scarcity, 1828 22532
1836. 228
1837-1841 230
1847. 240
1850. 244
1852 252
1858 263
1861 277
1867. 296, 297
off Cape Ann in late aatumn,
1850. 245,246
attribated to bluefish, 1868 304
comparative, 1866 291, 292
cariós reason for, 1841 235
in early summer, 1849 243
and extreme high prices, 1853 255
on New England coast, 1834 227
-325
in Nova Sootia, 1843 238
in St. Lawrence Bay, 1838 234
1860....... 273, 274
1875 330
early inthe sea-son,1866. .- 290,
Gulf, 1838 232:
1860 277
1868 302, 303
off shore, 1875 329
reported in St. Lawrence Bay, 1852 252
reported in St. Lawrence Bay, 1861 279
unusual, in St. Lawrence Bay, 1866 290, 291
fall mackerel on New England shore, 1842 237
small mackerel in Massachusetts Bay previous to 1830 224, 225
School, large, 1872 321
of Cape Anv, 1852 252,
of Cape Cod, 1873 325
in the eel grass, 1876 332
Schooling mackerel, display of, 1865 288)
Schools in Gloucester Harbor, 1859 269, 270
1868 303:
Schooners stranded in the bay, 1857. 262
Scomber grex 39
Scadder, Fred., \& Co 244
Seaconnet, R. A 77, 89, 90
Sea-fleas 32
herring 6
Season good for mackerel, 1864 284
Sea-urchins 30
Sea-worms. 30
Seine 56, 58
cost of 103, 104
boat, and its fittings 52, 56
boats, price-list of. 55
Seiners, good catches by, 1869 306
success of 321
Swampscott, 1853 255

$\begin{array}{ll} \\ \text { Seining by day, methods of } & \text { Page. } \\ \text { 59,65 }\end{array}$	$\begin{array}{rrr} & \text { Page. } \\ \text { Southern fishery, decline of, 1859........ } & 268\end{array}$
Seining by day, methods of 75,76	early catches, $1880 \ldots . .348,349$
by night, methods of............. 57, 55-71	notes on, 1861.......... 277
prohibition of, 1864............... 119	1870.......... 310
successful at Isle of Shoals, 1852.. 250, 251	1878.......... 338
to be tried in St. Lawrence Bay,	success of, $1862 \ldots \ldots . .281$
1868............................. 301	fishing, light fares, 1874.
vessels fitted for................... 50	fleet, 1860
Sellman, Mr. Henry........................ 136	1866....................... 289,290
Seven Islands, Labrador 19, 19, 82, 97	1876........................ 331,334
Shore and bay fisheries, prices, \&c., 1873. 324	1880.
fishery in Cape Cod Bay, 1879...... 339	first arrivals of, 1868...... 301
a good stock in the, 1873.... 324	in Glouces.
notes on the, 1878 339	at Newport, 1873.......... 323
fleet, 1853............................ 256	poor success of, 1858..... 263, 264
1865 286,287	poor success of, 1808...... -63, 328
1866............................ 293	sailing of, 1875........... 328
off Cape Ann, 1804............. 219	the first of the, 29
1858............ 264	1873......... 322
arrival of the, small number of	im doings of, 1856....... 261, 262
arrivals from the bay, 1875. 330	suocess of, 1859 269
doings of the, 1858............ 266	0
great disasters to the, 1869.... 308	unfavorable news from,
ill success of the, $1878 \ldots . . .$.	278
small catch by the, 1877...... 333	unusual success of, 1867.
success of, 1861............... 279	limit of mackerel.
1866............... 293	South shore vessels, success of, 1870...... 309, 310
1869............... 307	Spawn 35.36 3 .
and George's fleet, doings of the, 1868303	effect of rain on.
Shore-loving fish	temperature on........... 36
Shoremen, South, success of, 1842 237	Spawning season.................... .21, 22, 23, 24, 25
Simpson, A. W............................. 3	Spikes .. 26
Sinclair, Capt. Peter 9, 271	Spirialis Gouldii............................ ${ }^{15}$
Skip-jack 10	Splitters . 73,74
Small catch, 1836........................... 229	Spofford, Mr. Amherst. 79
1860.......................... 273	Spring fishery, 1838
in June, 1875................. 329	1859 268
by Newbaryport fleet at the	1860 277
South, 1860................ 275	1861...................... 278
by New England fleet, 1843 . 238	1866
of St. Lawrence Bay and	1867...................... 295
shore fleets, 1867.......... 298	1868...................... 300
in St. Lawrence Gulf, 1870 .- 310	1870....................... 311
catches at Block Island and in Gulf	1873 322, 323
of St. Lawrence, 1878...... 342	1874....................... 327
of the mackerelmen, 1877.. 334	1875 329
fall catch in the bay, 1869.......... 308	1875........................ 334
fleet from Gloucester, 1859.......... 268	1877....................... 332
receipts and unusual scarcity, 1851. 248	$1878 . ~ 338 ~$
spring catch, 1858:.................. 264	in Cape Ann Bay, 1870... 311
Smith,	Barnstable Bay, 1855... 259
Capt. Henry 0..................... 82	Cape Cod Bay, 1861 277
John............................... 27	at the Magdalen Islands,
Capt. Joseph 51, 56, 67, 68, 69, 112	1858.....................- 600
S. I................................ 28	on the United States coast,
Capt. Sylvanus 88	
Snappers.................................. 16	Spring and Gulf fishery , , 276
Snow, Mr. Josiah 41	seine................................- 119 . 115
South Channel, large schools in, 1848 242	Southern fishery 112,115
Southern Channel......................... 42, 47	Springing up................................ 97
fishery, 1862..................... 280	Squalus americanus. ${ }^{\text {. }}$. 11
1863.................... 283	St. George, Bay of........................... ${ }^{\text {. }}$ 82, 282
1068..................... 301, 302	Cape 82,280
1873...................- 322	St. Margaret's................................
beginning of, 1815...... 220	St. Mary's Bay ${ }^{\text {a }} 13$

Page,
St. Lawrence Bay fleet, 1880....... 351 fishery, hostilities of Canadians cause loss to American res. sels, 1870.. 314 outlook for, 1866.289
small catch, 1871.318
Gulf, favorable reports from, 1862 281
fisheries of 1879 345-347
fishery, 1870 311
1876. 332
a new feature in, 1859 269
review of,1878........surface temperaturesin343-344
and New England coast fisheries, 1878. 340
34
247
112251
Staples, Capt. J. SSt. Peter's HarborStar Island
30
fish
202
202
Starbuck, Mr
Statistics of the inspection of mackerelfrom 1804 to 1880162, 217
the mackerel fishery in 1880. 123, 125
Maine 193
Massachusetts 162, 163
New Hampshire 202
United States 203-206
Steele, Mr. George 158,159
Stellwagen Banks 33
Stone, Mr. William 311
Stoningtor 34
Storer, H. R 4, 23, 24
Story, G. V 316
John 92, 219
Studies of the movements of the mackerel schools 29-48
Success of the Cape Cod and Cape Ann mackerelmen, 1837 230a Gloucester schooner, 1876
Successful bay trips, 1858 264382
day's fishing, 1858. 264
George's trip, 1874 327
Sull cod. 18
Summer limit 20
Sunday-keepers, 1866. 293
S wampscott market fishermen, success of, 1870 312
Swan's Island 113
Sweden, soath coast of 4
Sydney 82, 284
Harbor 300
Sylvester, Felix 315
Table of quantity and value of Canadianfisheries,1880.130
Table of quantity and value of New Eng. land fisheries, '80 129
showing coastwise movements of the mackerel 47, 48
the period and yearly dif-
ference in number of days between the first appear- ance of the herring and the mackerel at the Mag. dalen Islands from 1857 to 1876 45
Tackle, new fishing 77
Tallman, John 77
Tarr, Capt. Benj 219
Mr. Moses. 10
Temperatare, effect of, on local movements of mackerel. 33, 34
variations in. 20
Terty, Capt. Russell D. 347
Thomas, Nathaniel 119
Thurlow 85
Thysanopoda $15,16,17$
Tides, effect of 20
Tinkers 26
Tolling or chamming up 92
Tom's Bay 333
Tory, James A 317
Towns of Cape Cod built up by their fish. eries 248
Treat, Mr. U. S 44
Treat, Noble \& Co. 238
Turner, Capt. James. 117
Tusket Islands. 250
United States and Canada fishery, 1873- 1881, 1873-1880 209
fishery 48
fishery, 1831, 1834-1838, 1851, 1864-1881 209
imports pickled mackerel, 1824-1841, 1850-1881 211, 213
Unprofitableness of the mackerel fishery, 1847 240
of the St. Lawrence Gulf fishery, 1873-1877 336
Varanger Fjord 4
Venning, W. H 315, 317, 320
Verrill, Professor. 4, 28, 33
Vessels $49,52,84,85,113$loss of, by destructive gale at St.Lawrence Bay, 1853256
in the mackerel fleet, 1851. 249, 250
and men engaged in the Glouces- ter fisherý, 1862 280
Vineyard Haven 336
rslands 47
Sound 12, 22, 107
Voss, Adolph 91
Waquoit, Mass 9
Watch Hill 34, 334
Watson, Capt. Edward. 243
Capt. Nathaniel 78, 79
Webb, Capt. Henry 22, 24
Weir at Cape Cod, big catch in a, 1869 307
1877. 333
[441] REPORT OF COMMISSIONER OF FISH AND FISHERIES. 531
Page. Page.
Weirs, good catch in Nora Scotia, 1877.... 333
Weirs, good catch in Nora Scotia, 1877.... 333 Winds and tides, effects of Winds and tides, effects of 36, 37 36, 37
Winthrop, Governor. 13
schooners, success of the, 1869.. 308 30,31South276
West Indies 4, 10
Whales 28
White, Mr 9
Whiteaves, Mr. J. F 18, 39
Whitmore, Captain 251
Wilcox, Mr. W. A 133, 135
Wilkins, Mr 23
Willard, Mr. E. G $72,159,345$
Capt. Henry 17
Wintering, place of. 40,43
Wixon, Captain 243
Wolff, Mr. Julius 136
Wonson, George 220
John 8, 220
Samuel 213
Wood, Capt. Charles P 224
Yarmouth 250
N. S., good catch at, 1851 248
Young mackerel, growth of. 24, 25

V.-THE LOFFODEN FISHERY IN 1880.*

By Lieut. Niels Juel.

The following report concerning the Loffoden fishery in 1880 was prepared for His Majesty the King, by Niels Juel, first lieutenant in the navy, chief inspector of that fishery:

The work of inspection continued from January 16 to April 14, over the region from Loffoden to Guldvigen. The force consisted of 8 officers, 1 inferior officer, 2 mates, 3 foremen, 21 seamen, and 1 cook. Its distribution is shown in the annexed Table I. The time of its arrival at Loffoden was as follows: January 16, the chief inspector and 2 men. January 18, 1 officer and 4 men. January 25,3 officers and 20 men. February 1,7 officers and all the men. February 3, the entire inspection force.

Since, at the close of the month of January this year, fewer boats than usual had arrived, only 1,800 against 3,100 in 1879, and 2,200 in 1878, no serious detriment followed from the small inspecting force at the beginning of the fishery. The inspecting party was not ordered to meet earlier simply because of the scantiness of the appropriation. It will at the same time be unfortunate if such an arrangement be established as a rule; the fact that there was no further injury to the preservation of order or the service in general this year was simply because of the circumstance that from the 20 th of January to the end of the month there were only three days in which the weather allowed the fishermen to cross West Fjord. Because of the steamer's schedule, the chief inspector, together with the officers and men, departed on the 13th of April, with the exception of one officer, who remained at stations in Flakstad until the inspection closed at midnight on the 14th. The officers were employed on the average seventy-eight days, and the men eighty-six, or, if the traveling-days be excluded, seventy-nine days. The pay of the inspecting force amounted to 140 crowns ($\$ 37.52$) daily. The average combined pay of the officers was 624 crowns ($\$ 167.23$), and of the crew 185 crowns ($\$ 49.58$).

[^77]Table I.-Distribution of the inspecting force.

In the report of last year, pages 5 to 9 , as well as in the estimate for 1881, I set forth strongly the necessity of an increased appropriation, partly because the inspection force is at present inadequate for the greatly increased labor of late years, partly because the wages are too low, absolutely as well as relatively to the requirements which ought to be found in the personnel of the inspection, and in part because many expenses, such as hoisting siguals, placing beacons, lodging for the men, together with printing the report, amounted to not a little. I cannot sufficiently insist upon it that the claim which has been made for an increased appropriation has not been called forth by a desire to make the inspection more absolutely effective, but it is based upon the necessity of taking such measures as will prevent its retrograding as an institution, and it is doing this now, because the increased number of people and the exigencies of the times demand a larger force as well as increased capability and activity in it. From Table II it will be seen that while the proportion between the inspecting force and the total number of fishermen, mariners, and other tradesmen was, from 1861 to 1862, as 1 to 500 , it was in 1880 as 1 to 840 .

Under the last two heads are given the cost of the inspection, which has always been set forth as so considerable, deducting what was paid into the treasury in the shape of fines or for telegrams. Herefrom it will be seen that this has been from .82 to 1.33 crowns (22 cents to 36 cents) for each adult male who has been present during the fishing. If one compares the expenses of the inspection with the other expenses during the fishery he will find out that last year the loss of implements was 83 times as great as the cost of inspection; the cost of bait was 10 times as great as the cost of inspection; the wear and tear of skinclothing was 10 times as great as the cost of inspection; the wear and tear of bed-clothing was twice as great as the cost of inspection.

If we remember that the inspection, whose operations include vessels in Loffoden, together with the mercantile class in many parts of the country, never costs one-half as much as the wear and tear of the fishermen's bed-clothing may be estimated at, the sum of 23,000 crowns ($\$ 6,164$) seems insignificant. In comparison with the duties its cost was nearly the same as the import duties upon the sugar and coffee which were consumed during the fishing, and a couple of thousand crowns (\$536) less than the duties upon fish imported.

Some have thought that the inspecting party might facilitate its work by associating with it a voluntary inspection by the people similar to that established at Söndmöre by a law of June 6,1878. The chief duty of this inspection shall, according to law, consist in "seeking by injunction and warning to prevent as far as possible" violation of law at sea. How far the public morals will be improved hereby is, however, doubtful, for it is not through ignorance or lack of warning that offenses are committed at sea, butbecause the fisherman knows that it is extremely difficult to get full proof of them. Even if information to the police be
made a duty of citizenship it still lacks the great essential to its promised utility, namely, the ability to procure conclusive proof; for this as a rule can be brought by the injured party alone, and often not by him, a thing of which the police records can furnish abundant examples. I cannot see that an inspection by the people, that is to say, organized in the manner proposed, can make any change in the existing state of things, because there is now just as little want of injunction and warning as of announcements. On the contrary, the result of it will probably be that when either ar single trade or people from a particular district are present in a large majority in most of the stations they will tyrannize over those more weakly represented. So far as I have learned, the plan is based upon an opinion of certain people, but I think that where such is found it involves the idea of self-management, while in the legal method is found no trace of such an idea beyond the formal condition that there shall be a choice.

The inspection imposed in all 152 fines. The nature of the offenses is set forth in the annexed table III, which also contains a statement of the fines imposed by the inspection during the last five years. The number of fines this jear is somewhat smaller than that of last year. The diminution occurs especially in transgressions of section 10 , which is because of the fact that the fines were all imposed for individual infractions of one portion of that section; also in transgressious of section 11, which is for the reason that there was only one fishing-sea, and its limits were better known than last year when this division first took place.

The matter of making arrests (page 13 in the report for 1879) and of authority for sending vagrants to a house of correction (same report, pages 74 and 75) will probably be decided in the course of the year.

Table III.

Offenses.	Number of fines received or imposed.				
	1876.	1877.	1878.	1879.	1880.
Fines, total	334	*197	188	182	152
These consisted of:					
For disturbing the peace, § 6	17	24	36	25	32
For breaking the harbor regrlations, § 7	9	$\stackrel{3}{2}$	5	1	4 3
For fishing too early or too late, \& 10	213	104	55	99	65
For settine in unlawful waters, § 11	10	25	35	25	8
For sabbath breaking, § 12		1			
For throwing out ballast, § 13			1		1
For sailing in spite of warning, § 15	1	1			
For improper clearance, § 16.	16	7	19	11	8
For sailing on a holiday, \$ $19 . .$. .	8	3	15	2	1
For improper treatment of rescued gear	${ }_{31}^{2}$	2	3	1	1
For unlawful sale of whisky.	13	16	3	6	16
For unlaw fal sale of beer and wine	12	1	5	3	11
For unlawful sale of other articles		2	5	3	1
Fines received by amicable arrangement in private matters.	18	29	20	20	13
Private matters otherwise treated, which are on the record.	162	252	257	428	368

[^78]The fines amounted to 2,224 crowns ($\$ 596.03$), of which 1,126 ($\$ 301.77$) fell to the state treasury, 549 ($\$ 147.13$) to various local treasuries, and $549(\$ 147.13)$ to the inspecting force as their share.

By amicable adjustment in private affairs were received 13 fines, amounting in all to 144 crowns ($\$ 32.59$), of which 66 ($\$ 17.69$) went to the poor-fund, $2(\$ 0.54)$ to the reading-room in Stamsund, and $76(\$ 20.37)$ to the projected reading-room in Henningsvar.

The inspecting force investigated and put on the register 188 private cases concerning fishery business exclusively and also 180 other private disputes.

Law Candidate Marcus Hegge Parelius, an attorney of the superior court, acted as judge extraordinary. The number of cases for this year and the four immediately preceding it is stated in table IV below :

Table IV.

Cases.	Cases managed by the judges.				
	1876.	1877.	1878.	1879.	1880.
Total.	33	28	29	35	49
Of these were:					
${ }_{\text {Examinations }}^{\text {Police cases... }}$	16 15	19 4	15 9	21 5	${ }_{17}^{18}$
Declarations.		1	${ }_{2}$	3	3
Protests....	2	2		1	${ }_{2}^{2}$
Tax cases........	2				2
Private disputes.		1	1	2	5
Number of cases relating to :					
Theft -................	12	11		9	13
Concealing goods found	2	1	1	${ }_{3}^{4}$	
Chapter 18 of criminal laws		2	1		
Other crimes	2	4	1	5	5

Of the five examinations included under "other offenses," four related to assault and one to opening letters. Of the examinations, 9 were decided and the rest closed. Of the police cases, three were adjudged and the rest settled after the fine was agreed upon. Two police cases were transferred for treatment outside the inspection district, since the parties concerned left before the judge found time to dispose of the cases. Of the cases before the special court, four were decided and one was settled after legal adjustment. Eleven public cases announced for the associate judge were sent to the superior court because time did not allow their treatment during the fishing season. Of these, seven related to theft and four to fraud. Of eight old cases which were sent from the superior court for continuation, time allowed the disposal of only one.

From the above it will be seen that the judge has disposed of more than one-half as many cases as the average of the four preceding years, four times as many as the average from 1872 to 1875 (see report for 1879 , page 14), also nearly one-half as many as the two judges combined from 1860 to 1871. Eighteen examinations and two police cases, for lack of
time to dispose of them during the fishing, were sent orer to the common court, to which, for the same reason, a not inconsiderable number of special-court cases were referred. The management of the examinations by the common court will cost much more to the public treasury than by the associate judge; the chief inspector for two years has proposed to act on the budget, and during the fishing this year applied for it. On account of these increased expenses for the criminal fund the superior magistrate in the district of Nordland, so far as I know, has undertaken to obtain, through the department of justice, the necessary judicial assistance during the fishery. If such help can be had in this way it will be unnecessary to apply for any associate judge until the fishing begins. In the contrary event I cannot sufficiently emphasize the necessity of appointing such a one as soon as the number of cases demands it, although there is no license.
A. J. Sand, director of inspection in the district of Skroven and Östnæsfjord, brought, as physicians, O. Ch. Chr. Eger, district physician in Vaagen and the rest of the districts of Svolvær, Vaagen, and Hopen, U. F. M. Poppe, of the medical corps of Henningsver district, Medical Candidate H. Kjlesberg of the Ure and Stamsund districts, D. F. Schumacher, district physician in Buksnæs in the district of Balstad, and H. Ommundsen, district physician of Flakstad and its dependencies. From March 20 Medical Candidate E. Rode took charge for a week of the medical inspection in Svolver district, and later of Hopen district also. From February 23 Ch. A. Sellæg, district physician in Ofoten, took charge of the medical inspection in Værö and Röst.

The table below shows the number of sick treated in the different medical districts:

	Medical district.	Sick treated.		
		Total.	Of these are-	
			In theinfirmary.	Dead.
Skroven.		294	18	3
Svolvier.		53	1	
Vaagene		856	127	9
Henningsvaer		1,732	85	7
Stene		414	80	6
Balstad		355	52	5
Flakstad		392	13	1
Grand total		4,096	376	31

The number of patients in proportion to the fishermen, seamen, and other tradesmen present was larger than in any of the four preceding years, namely, 13.5 per cent. The number of cases of diarrhœa, chills and fever was greater than usual. The cases of chills may possibly in part be attributed to the want of proper house-room, since, on account of the overcrowding in many places, it was necessary to house the incoming fishermen in lofts and cow-houses (even pig-pens and summer cow-pens were not refused). The diarrhœa indeed had its origin partly
in the same condition, partly also in the want of suitable drinking-water. Of exanthematous typhus 2 cases occurred, and of typhoid fever 77, of which 8 ended fatally. There were 54 cases of inflammation of the lungs, with 5 deaths. The other causes of death were: Incarcerated hernia, 4 ; paralysis of the brain, 3 ; inflammation of the brain, 2 ; acute diarrhœa, 2; dropsy, 2 ; epidemic cerebro-spinal-meningitis, 1 ; rheumatic fever, 1 ; twisting of the gut, 1 ; senile inflammation, 1 ; and gangrene 1 .
The table following shows the number of cases of nervous fever and lung-inflammation treated at the Loffoden fishery since 1860. Through the generosity of the medical office the returns are now complete for the whole time, and they are here given entire.

Year.	Totals.			Year.	Totals.		
	Nerrous fever.	Inflamma. tion of the lungs.	Deaths.		Nervous fever.	Inflamma. tion of the lungs.	Deaths.
1860..	21	- 19	13	1872..	23	12	4
1861.	12	20	23	$1873 \dagger$.	54	18	10
1862.	16	31	15	1874 +-	146	17	13
1863.	122	57	23	1875.	56	18	
1864.	102	34	15	1876.	28	140	46
1865.	83	19	9	1877.	6	38	9
1866.	26	16	13	1878.	8	51	17
1867*	59	33	19	1879.	55	38	15
1868.	106	24	14	1880..	72	54	31
1869..	88	11	17				-
1870.	69	28	4	A rerage			15.9
1871...	47	14	9				

Thus disease has claimed an average of 16 yearly, or 68.7 in 100,000 , while the sea and accidents have taken off $25 \frac{1}{2}$, or 110 in 100,000 . Of deaths there have occurred also during the Loffoden fishery through disease 1 for about every 1,500 of the population, through shipwreck 1 for every 900 men. Judging from statistics also, we must be prepared next year for a greater number of cases of nervous fever.

Venereal disease has increased, not only in the number of cases, but also in proportion to the fishing population. The inspection seeks in this matter, as far as possible, by controlling it, to prevent the spread of the plague, and next year it will also institute legal proceedings against any one who, being known to have this disease, communicates it to another.

The prevailing diseases have been:
Catarrh of the air-passages. 481
Other acute catarrhal affections 216
Diarrhœa... . . 450
Cardalgia and chronic gastritis 346
Swollen fingers... 289
Wounds (vulnera)........... 226
Eye diseases. 208
Simple fever. 182
Chronic rheumatism 148
Nervous disorders 143
Boils, abscesses 139
Bruises and sprains 131
Senile inflammation. 74
Total 3,033

Or three-fourths of all the sick treated.
Table V below shows the proportion, for the last five years, which the prevailing diseases have borne to the size of the fishing population. On the average there have been treated yearly:
For cardalgia and chronic gastritis, 12 in every 1,000 men.
For catarrh, 18 in every 1,000 men.
For diarrhæa, 10 in every 1,000 men.
For swollen fingers, 9 in every 1,000 men.
For wounds (vulnera), 6 in every 1,000 men.
For chronic rheumatism, 6 in every 1,000 men.
The difference has been greatest in the cases treated for catarrh of the air-passages, namely, from 6 to 16 in 1,000 . The number of swollen fingers was smallest in 1878, which was due in part to the fact that the number of line-fishermen was smaller that year than in the others, but when compared with the two preceding years it must of course be attributed principally to the attention paid to the need of speedy treatment of the cuts which produce the inflammation; and when 1878 is compared with the two following years, it appears as if the so-called wound-varnish, whose distribution was opposed by all the doctors, has played an important part in securing the low number of this and a part of the following year. If we compare the number of swollen fingers with the number of line-fishermen, who are most afflicted by them, we shall see that there were, in 1876, 29 cases to every 1,000 line-fishermen; in 1877, 26 cases to every 1,000 line-fishermen ; in 1878, 20 cases to every 1,000 line-fishermen; in 1879, 23 cases to every 1,000 line-fishermen; and in 1880, 28 cases to every 1,000 line-fishermen.

I think, therefore, that the attention not only of the fishermen, but also of the chemists, should be urgently directed to this important matter, since the wound-dressing which the royal apothecary, Ditten, distributed gratis in 1878 and part of 1879 was not entirely satisfactory.

Table V.

Prevailing diseases.	1876.	1877.	1878.	1879.	1880.
	Per cent.	Per cent.	Per cent.	Percent.	Per cent.
- Cardalgia and chronic gastritis	1.2	1.0	1.3	1.5	1.1
Bronchial catarrh......	1.6	0.6	0.9	1.2	1.5
- Other catarrhal affections	0.7	0.6	0.6	0.5	0.7
Inflammation of the lungs	0.6	0.2	0.2	0.1	0.2
Diarrhøa.....	0.6	0.6	1.6	1.0	1.4
Eye disease	0.4	0.6	0.6	0.7	0.7
Nervous disease	0.5	0.4	0.7	0.7	0.5
Swollen finger.	1.1	1.0	0.6	0.7	0.9
, Chronic rheumatism	0.6	0.9	0.6	0.5	0.5
Wounds (vulnera).	0.5	0.5	0.6	0.5	0.7
. Senile inflammation		0.2	0.5	0.2	0.3
Treated in all	12.2	11.0	12.0	12.8	13.5

Cases of sickness each month.

Medical district.	Cases treated.				
	January.	February.	March.	April.	Total.
Skroven.	13	120	131	30	294
Svolvær....	24	247	53 413	172	538
Henningsvær	155	685	748	144	1,732
Stene....	14	148	201	51	414
Balstad.	27	133	142	53	355
Flakstad	28	83	163	118	392
Væro and Röst					44
Total..	261	1,416	1,851	568	4,140
		4,096			

Væro and Röst do not belong to the inspection district. As will be seen, the physician in Svolvær, during the single week of his practice there, had more patients than the doctor at Væro and Röst in the space of seven to eight weeks. Under ordinary circumstances the medical attendance during the Loffoden fishery is sufficient, except in Vaagen, during the East Loffioden fishing, when it will be desirable to have two physicians present from the middle of February to the close of March. (See report for 1879, page 16.) The table below shows the number of sick treated in the hospitals. In the middle of March these were inspected by the director of the civil medical department:

Hospital.	Hospital patients.				
	January.	Febraary.	March.	April.	Total.
Skroven......	..	9	8	1	18
Kabelvaag ...					128
Henningsvær	6	36	39	4	85
Stene.........		${ }_{13}^{26}$	43	11	80
Gravdal	3	13	25 7	11 2	52 13
Total...					376

Altogether 9.2 per cent., or one-eleventh, of the sick were placed in the hospital.

For the remaining details of this subject I venture to present the annexed Table VI, which contains a statement of the cases of sickness treated by the doctors. This, as well as the two preceding tables, was kindly prepared by the medical office:

Table VI.-Summary of the cases treated by the physicians during the Loffoden fishery, 1880.

	Total.	
	Treated.	Died.
Exanthem, typhus	2	
Typhoid fever ...	77	8
Cerebro-spinal meningitis, e	1	1
Simple fever	182	
Chicken pox...	5	
Scarlet fever	1	
Erysipelas	1	
Diphtheritic inflammation of	4	
Kusma..	22	
Bronchial catarrh	487	
Other acute catarrhal affecti	221	
Inflammation of lungs	54	5
Plenrisyi...........	31	
Spitting of blood...........	${ }_{6}$	
Consumption. ..	9	
Heart disease, palpitation	12	
Ague	1 $\times \quad 47$	1
Chronic rheumatism	148	
Muscular rheumatism, contr	15	
Sting (stitch ${ }^{\text {a }}$)	72	
Acute diarrhoe	450	2
Other acute affections of the	56	1
Cardalgia, chronic gastritis	348	
Scurvy	1	
$\stackrel{\text { Nrervous disorders }}{ }$	144	3
Mental diseases.	3	
Dropsy, Morbus Brighti	5	2
Disease of urinary organs	14	
Skin disease	92	
Worms .	4	,
Syphilis	5	
Gonorrhœa, urethritis	28	
Wounds (vulnera).....	233	
Eractures and luxations	13	
Bruises and sprains...	134	
Senile inflammation, vakrom	74	1
Disease of bones and joints	66	
Lymfangit, phlebitis.	5	
Swoilen fingers	297	
Boils, abscesses, ulcers	139	
Furuncles, carbuncles Gangrene	57	1
Burns	19	
Frostbites	36	
Eye diseases.	213	
Ear diseases	75	
Nasal affections, epistaxis	11	
Tumors	10 25	4
Diseases not indicated	116	
Other affections.	12	
Total.	4, 140	31
Teeth extracted	116	
Number of hospital cases	376	

The county council of Nordland last year placed at the disposal of the superior magistrate of that district the necessary funds for improving the management of the water supply, and the county also will hereafter pay interest on the money borrowed from the medical fund , 18,800 crowns- $\$ 5,038.40$-in 1878). Moreover, I think it proper to call attention to the sums which are supplied from the medical fund for the expenses of the council incurred for vaccination, midwifery, and treatment of mental disorders.

For extraordinary clerical service during the fishery, were present 0 . S. Revers and L. A. Meek, assistant diocesau clergymen.
S. Nilssen, parish clerk of Melö, taught school forty-four days in Stamsund. The number of pupils was upwards of 60 , most of them from Stegen and Lenvig. The course of study was the same as last year. The school-day, as a rule, was four hours. In Henningsvær school was established also, but the attendance was small. Since education is not compulsory, the patronage depends largely on the interest which the teachers can awaken in the school. On account of the not inconsiderable number of boys who are present during the Loffoden fishery, without taking any direct part in it, I think that a modification of the system of instruction for the fishing season is worthy of closer consideration. The time of these boys, to be sure, is partly occupied in baiting lines, cleaning, and cooking; but still a portion of them remain in idleness. The matter must, however, rest until we learn their number, and I shall undertake an enumeration next year.

There are chapels now in Svolvær, Vaagen, Hopen, and Stamsund, whilst in Ure one is being constructed. Churches are found in Kirkevaag, Henningsvær, Valberg, Stene, Gravdal, and Moskenæs. The following table gives the expenses of the chapels, the contributions by which they are erected, and also their debt:

| Place. | | |
| :--- | :--- | :--- | :--- | :--- |

As a building fund for proposed chapels was collected: In Skroven, 1,700 crowns ($\$ 455.60$); in Balstad, 140 crowns ($\$ 37.52$); and in Nufsfjord, 300 crowns ($\$ 80.40$).

There is at present one reading room (in Stamsund). One is being built in Ure, and in Henningstær 1,200 crowns ($\$ 321.60$) have been collected for a prospective reading room.

Libraries are to be found in Henningsvær, Stamsund, and Svolvær. In the last two places, however, the number of books is yet very small. In 1878 the county council of Nordland granted to each hospital 50 crowns ($\$ 13.40$) from the medical fund for the purchase of books. In 1879 the grant was extended also to the wards in Loffoden. It is very desirable to repeat this grant for many years to come, in which case, however, I think it is proper to advise that the purchase of books be
made according to a fixed plan, such as that established by direction of the diocese.
From the foregoing it would seem evident that there is a want of houses of worship in the larger places as well as in those more remote which are destitute of churches, since there are at present only five built and three projected. As the financial condition of the common people at present is discouraging, partly on account of low prices last year in Loffoden, and in part because of the unsuccessful herring fishery, and as we cannot expect to find among fishermen who move quickly from one place to another the same social spirit as in a settled community, there exists a state of financial depression in nearly all the churches. Here is, therefore, a proper object of public assistance. The want is greatest in Skroven, where as many as 3,000 people can often be assembled, and where all divine service hitherto has of necessity been held in the open air. Next in want is Nufsfjord, whose annual complement is nearly 400 men, and from which the distances to church are both long and tronblesome. In this connection I think it proper to add that it will certainly be most prudent to make the contribution from the state contingent upon public control over the use of the chapels, which has not been the case hitherto.

Libraries have come to be appreciated of late, and their utility is incontestable. That they have not become general is principally because only a few places have taken the initiative in this matter. Not only should money be collected, but building should be entered upon, and the house once finished should be, during its use in the fishing-season, cared for by heating, lighting, and cleaning it as well as by providing newspapers and books. The fisherman, because of his occupation, cannot easily furnish anything except money. At the same time it certainly is essential that these libraries be subject to a wise control, for they may easily degenerate and become an injury instead of a source of use and comfort. I find this matter of such importance both for the fishermen and the public that I believe I should call attention to it, since the idea is a sound one, though it will hardly be initiated by the fisherman himself, and since unity in action will accomplish the end more quickly and surely.

The telegraph corps consisted of 23 operators, divided among 9 fixed and 3 field stations. On account of the fishing, the force at Lödingen station was augmented during the fishing-season by 2 operators. Of the 9 fixed stations the following 5 are open throughout the year: Svolcær, Vaagen, Henningsver, Balstad, and Sörvaagen. Of the remaining stations the field station in Stene is closed on the 14th of April, and the stations in Skroven, Hopen, Ure, and Reine close April 30 after the service ends. Stamsund station is kept in operation later. During the fishing the Digermul field station is moved to Vaterfjord (Östuresfjord) on March 15, and on the 30th from there to Stene, where it is opened on the $2 d$ of April.

Table VII shows the number of telegrams sent and received at the above-named 12 stations between January 1 and April 30. The statement is a summary kindly communicated by J. B. Lie, inspector in the district of Tromsö:

Table VII.

Stations. ${ }^{\text {d }}$		Number of telegrams dispatched from January 1 to April 30.									
		January.		February.		March.		April.		Total.	
				$\stackrel{\dot{\Delta}}{\stackrel{\rightharpoonup}{\mid}}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \text { B } \end{aligned}$	-	薄	苞	1880.	1879.
Digermulen	0	18	17	20	24	138	116	93	62	488	147
Skroven.	3	30	28	342	193	874	541	245	185	2, 438	2,087
Svolvær	?	351	266	708	448	1,594	1,084	641	487	5, 579	4,316
Vaagen	,	327	212	961	539	1,690	1, 080	819	539	6, 167	6,032
Hopen		74	46	475	181	477	352	188	120	1,913	2,011
Henningsvar	${ }^{3}$	271	197	776	474	1,050	949	559	371	4,647	5,626
Stamsund...	13	184	109	700	374	1,112	1,096	320	284	4, 179	3, 530
Ure ...		25	13	95	76	239	243	84	70	845	651
Balstad		236	144	345	188	614	425	378	278	2, 608	2, 259
Snnd.	$1 \frac{1}{2}$	21	25	126	97	302	263	267	200	1,301	1,132
Reine	1	35	16	95	83	215	218	198	173	1,033	1,011
Sörvasgen	$\frac{1}{2}$	55	58	218	116	265	197	247	185	1,341	1,398
		1,627	1,131	4,861	2,793	8,570	6,564	4,039	2, 954	32,539	30,200
		2,758		7,654		15,134		6, 993		+ 2, 339	

For comparison the number of telegrams dispatched during the fish-ing-season in the last three years is appended:

Month.	Nnmber of tolegrams.		
	1878.	1879.	1880.
Jannary..	3,472	${ }_{5}^{2,710}$	$\xrightarrow{2,758}$
March....	11, 713	13, ${ }^{2}$ 244	15, 134
April	7, 132	8,795	8,993
Total	30, 200	30, 212	32, 539

The number of telegrams exceeds that of last year by 2,300 . The increase is marked at stations in East Loffoden, and, as to time, during the month of March.
In my report for 1878, as well as in that of 1879, I stated that the number of lines was too small for the amount of correspondence, a view which was shared by the telegraph department, which therefore in both of these years solicited Parliament for the necessary license to establish a new wire between Ure and Henningsvær, but in vain. I must therefore this year again emphasize the necessity of this line, for under existing circumstances the detention of messages, which is essentially due to the want of a sufficient number of wires, is frequently highly perceptible and has occasioned considerable loss of both time and inoney.
S. Mis. $110-35$

At any rate the number of lines is far from adequate to the amount of correspondence, a condition which should in justice be secured for a business so important to the country.

The table following shows the number of telegrams sent and received annually from 1870 :

Year.	Tolegrams.			Pormanentstations.	
	Sent.	Received.	Total.	Number.	Open all the year.
1870	10,000	7:800	17,800	8	2
1871	10, 300	7,500	17,800	
1872	11,600	7,600	19, 200		
1873	12,800	9, 000	21,800	.-	
1874	14,800	10,900	25, 700	.	
1875	17, 700	12, 400	30, 100	.	
1876	22,100	16, 600	38,700		
1877	26, 200	18,600	44,800		
1878	24, 200	17, 500	41,700	9	5

From January 16 to April 14, 90 days, Loffoden has been called at by 114 line steamers besides local vessels. Of these there were-

Northward bound.
Packets en route from-
Bergen to Hammerfest
4
Bergen to Vadsö ... 2
Hamburg to Vadsö. 7
Kristiania to Tromsö 14
Total 27
Private vessels between-
Bergen and Tromsö 10
Bergeu and Vardö 4
Bergen and Vesteraalen.. . . 9
Bergen and Loftoden .. 2
Kristiania and Vardö 1
Loffoden and Vardö.. 3
Total 29

Southward bound.

Packets between-
Hammerfest and Bergen 3
Hammerfest and Hamburg... 5
Vadsö and Hamburg .. 7
Tromsö and Kristiania . 13
Total... 28
Private vessels between-
Tromsö and Bergen 11
Vardö and Bergen 3
Vesteraalen and Bergen 10
Loffoden and Bergen 2
Vardö and Kristiania 1
Vardö and Loffoden 3
Total 30

Of the 27 north-bound packets 14 were delayed from one-half day to three days, as follows: 5 times, one-half day; 4 times, one day; 1 time, one and one-half days; 3 times, two and one-half days; and 1 time, three days.
In January occurred 4 detentions; in February, 6 , and in the first half of March, 4.

Of the 19 packets, which in this space of time called at Loffoden, going north, 14 also were detained, or, if we overlook delays of a half day, 9 (one-balf). The cause of these detentions was stated to be storms and fog. But since, at the season mentioned, one can never calculate on continuous good and clear weather, or on moonlight, the real reason must be sought for in the rontes, which are established for speed; besides, I think that to make the service adequate it will be necessary to put one more vessel in commission. This will cause the steamship company concerned, or the state, an increased outlay. The results of the delays of the packets are felt at present not only in the principal route, but also in its numerous branches in the fjords and out to the sea-islands; and if we take into consideration the inconveniences which are associated with a sojourn at the calling-stations, where there may often be a want of accommodation, and where one must often keep a constant lookont because he cannot tell when the delayed steamer may arrive, as also the waste of time each delay causes, the saving or the occasional speed one may reach by a forced route will hardly counterbalance the indirect tax which this, through the above-named conditions, puts upou the population of Nordland and Tromsö. I must therefore this year also emphasize the universal, aud, according to my judgment, rightỉul desire for a more regular steamer service.

The matter of the pay of country postmasters, according to information obtained, will be adjusted by the marine and mail department of the Royal Norwegian Government at the beginning of the fiscal year.

In 1879, 4 beacons were erected and 20 moorings for vessels were placed within the inspection district.

Up to and including 1875 were found in the inspection district 8 lighthouses, 7 beacons, and 407 moorings; in 1876 were established 5 beacons; in 1877, 6 beacons, 22 moorings; in 1875, 11 beacons, 12 moorings; in 1879,4 beacous, 20 moorings. Total at end of 1879,8 light-houses, 33 beacons, and 461 moorings on a coast stretch of 14 (Norwegian) miles.

When the work proposed by the chief inspector this year is accomplished, and this will probably require a couple of years, the number of beacons and moorings may be considered sufficient. The proposed fixing of rings I have not been able in many places to recommend, since, in the case where a vessel lies moored for a long time, bow and stern, and this forms the majority as a rule, I regard it a matter of vital importance for a vessel to establish the mooring in a convenient place ashore, especially as this work can be accomplished with ease and with moderate expense. With two rings, a drill, and a hammer, a mooring may be placed in one hour, or at the most two hours, and I should regard it a wise precaution if the insurance companies require that these articles form a part of every vessel's outfit.

Last year Gloppen light (Sörvaagen) was changed from the sixth to the third class. Thereby Balstad light has become less important as a range light for West Fjord, and since it will also be more useful as a guiding light to Balstad, the liglt-house board has taken into consideration the question of its removal.

The appropriation of 27,900 crowns ($\$ 7,477.20$) for inspection during the fiscal year will probably be spent. At the same time, of this amount will be returned to the public treasury: Fines, 1,126 crowns ($\$ 301.77$); for telegrams, 3,200 crowns ($\$ 857.60$).

The appropriation of 1,200 crowns ($\$ 321.60$) for extraordinary expenses of inspection in Rast Sound was not used.

The implements saved and not required during the fishing are preserved in Svolvær and Sund. The disbursements amounted to 656.26 crowns ($\$ 167.57$), exclusive of the pay of the inspecting force, and the receipts were $1,195.75$ crowns ($\$ 320.46$), of which 935.45 crowns ($\$ 250.70$) arose from auction sales of implements saved over from last year.

The correspondence-record of the chief inspector shows, for the term, 1,610 outgoing and 870 incoming issues, including telegrams. The office work, which is done exclusively by the chief of inspection, is thus considerable. Besides, the chief inspector is accountant as well as writer of responses which are made in fishery matters to the Government, as well as to private individuals, (partly also in affairs which lie outside of the domain of the Loffoden fishery), involving much labor.

As I pass on to the report of the fishing itself and its progress, I may remark that the statistical data are repeated in most cases for the last 5 years, in order that the administration, scientists, legislators, fishermen, and merchants may have the summary needed; for a report which deals exclusively with a siugle year's fishing, and which is published a long while after the end of the fishery, will be valuable only historically. Althongh I have labored towards this end for the space of 5 years, the report will not, until 1881, take the form which I think it ought to have in order to be useful. I have, for instance, in prosecuting this work during the year, been able to dispose of the months of October, November, and December only.

The arrival of the fishermen was delayed by stormy weather in the
last third of January and the beginning of February．On the first of February，consequently，not more than one－third of the fleet was present． The majority arrived between the 8th and the 14th，at which latter date not quite two－thirds had come out．At the close of the following week the fleet was assembled．Those which arrived late were partly deep－ water fishermen，partly fishermen from neighboring districts，who went to Loffoden for the sake of the Östnæsfjord fishing，and partly fishermen． who had previously carried on winter fishing in home waters．

The Finmark fishermen，as usual，begun to clear at the end of March； however，because of the fear of low prices，fewer than common were destined at first for Finmark waters．The cessation of the fishing in Östnæsfjord before Easter，and in East Loffoden immediately after， soon gave an opportunity for a general break－up in the first 8 days of April，after which time scarcely a single foreigner was fishing east of Balstad．Westward，nearly 1,000 boats were engaged．

Table VIII shows the number of boats which were present in the different inspection districts at the close of each week．For the weeks ending February 14 and March 20 there is given besides a special state－ ment for the different methods，wherefrom it will be seen that nine－ tenths of the line fishermen had come in the middle of February， against only a little over seven－tenths of the net fishermen；whereas the opposite proportion existed last year．Of the deep－water fishermen， as usual，only a little more than one－half had arrived．

Moving（shifting berth）during the fishery occurred to a greater ex－ teut in the latter half of February from East to West Loffoden，where， however，some were obliged to sail as far west as Reine for want of house room in the remaining stations；in the first half of March，also， they moved from Ure，Stamsund，Henningsvær，and a part of Hopen， to the more easterly stations and to Östnæsfjord．

Table VIII．

Week ending－			$\begin{aligned} & \text { B } \\ & \text { B } \\ & 0, ~ \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 鬼 } \\ & \text { 号 } \\ & \text { 员 } \end{aligned}$		$\begin{aligned} & \text { 离 } \\ & \text { en } \end{aligned}$			息			旡	莒
January	8					${ }_{160}^{120}$		70 160		112			900
January ${ }^{\text {Janary }} 31$			50	${ }_{35}$	120		${ }_{530}$	200	60	260	165	130	
February 7			110	40	280	300	650	350	70		${ }^{170}$		2，360
February 1		115	315	225	${ }^{690}$	590	1，000	500	125	380	230	75	4，445
Netters			115	63	360	220	410	330	25	40	70		
Liners		100	94	127	80	270	400	130	100	340	160	240	2，041
${ }_{\text {Deep water }}$		90	106 430	35 380 38	250 830	100 680	190 1,040	40 670	170	340			721 5,190
Febraary 28		30	440	300	${ }^{860}$		1,050	780	${ }^{190}$				5， 250
Mareh 6			170	110	620 800	${ }_{720} 67$	1，100	1，050	300 200 20	400 380	45		5,270 5 730
$\frac{\text { March }}{\text { March }}$		150 400	300 700	500 700	800 950	720 460	1,070 770	900 600	220 160	380 360			5，${ }^{5} 750$
Netters													
Liners													2，358
Deep wat													1，183
March， 27			600 350	620 300	950 900	520 500	810 750	4	${ }_{175}^{170}$	50			5，070 4,410
April 10.			100	20	200	90	450	100	80	340			2，100
April 1											， 000		1，100

Table IX states the number of boats present at the close of each halfmonth during the last 5 years. In the table also is given the time of the Easter holiday, from which it will appear that it has had less to do with the departure of the fishermen than persons generally are disposed to think it has.

Table IX.

Table X is a statement of the number of sailors engaged up to March 16, their nativity and distribution with regard to the different kinds of gear, also the number of servants. As usual, the majority of the night-line fishermen in East Loffoden became day-line fishermen in March; just as many of the deep bait men employed lines after their arrival at Loffoden.
Table X.

recapitulation.

The total number of fishermen was 27,232 ，representing 5,753 crews， which is the largest force recorded in Loffoden．Compared with last year the increase is $1,676 \mathrm{men}$ ，or 471 crews；and，as compared with 1872，when the fleet was the smallest， $\mathbf{1 0 , 4 5 9}$ men，representing 2,107 crews，or 58 per cent．

Table XI gives the number of fishermen from the different parishes for the last five years，as well as the relative proportions in the parishes．

Table XI．

Year．	Number of native fishermen．													
	$\begin{gathered} \text { South } \\ \text { Trondhjem } \\ \text { District. } \end{gathered}$		NorthTroadhiem District．		$\begin{aligned} & \text { Sonth } \\ & \text { Helgeland } \\ & \text { Parish. } \end{aligned}$		$\begin{gathered} \text { North } \\ \text { Helgeland } \\ \text { Parish. } \end{gathered}$		Salten Parish．		$\begin{aligned} & \text { Loffoden } \\ & \text { and Vestera- } \\ & \text { alen Parish. } \end{aligned}$		Tromsï	
	离	葛	岡	淢	雪		害	＋ 苞 ¢	㔄	㵄	鞄	苞	兑	1淢
1876.	577	3	360	2	3，586	17	2， 104	10	5，213	24		21	5，005	
	619		390		3，747	18	2，126		5， 110		4，464		4，778	
1878		－	421		4，045		2，440	11	${ }^{5,470}$		4，391	19	5，137	
1880.	1，341	5	${ }_{874}^{601}$	3		17	2，462	10	${ }_{6}^{6,248}$	23	${ }^{\mathbf{5}, 491}$	20	5， 6,095	2
Increase in 5 years．	764	132	514	143	1，054	29	358	17	1，035	20	1，053	24	1，090	22
Increase over last year．	141		273		310		200		225		693	．．	298	

The mass of the Loffoden fishermen（ 23 per cent．）are from Salten and from Senjen and Tromsö， 22 per cent．Next come Loffoden and Ves－ teraalen with 20 per cent．，South Helgeland with 17 per cent．，North Helgeland with 9 per cent．，and，finally，the two Trondhjem counties with 8 per cent．jointly．This proportion has been kept comparatively unchanged of late years．In the beginning of the sixties，on the con－ trary， 14 to 16 per cent．of the Loffoden fleet was from Northern Helge－ land，and only 15 to 17 per cent．from Loffoden and Vesteraalen．The increase，so far as Loffoden and Vesteraalen are concerned，is caused partly by a larger ratio of hired men in Flakstad and Buksnæs，partly by a considerably increased fishing fleet from Hadsel．The decrease from North Helgeland is due chiefly to Næsne and Rödö，whose fleets now carry ou fishing from home stations to a greater extent than formerly．

For five years the increase of fishing at Loffoden has been greatest from the Trondhjem counties，reaching 132 and 143 per cent．；next from South Helgeland， 29 per cent．From the remaining bailiwicks the growth has been about 20 per cent．

In Table XII are named the districts from which the Loffoden fleet has been increased by over 50 men or diminished by more than 15 since last year．It will be seen that there has been a gain in nearly it per cent．of the districts．

Table XII.

Parish.	

Table XIII states the relations of the different modes of fishing during the last five years. Compared with last year, net-fishing has diminished and line-fishing increased, a result of the poorer net-fishery last year.

Table XIII.

	Year.	Percentage of fishermen.		
		Netters.	Trawl-line fishermen.	Deep-bait men (handlines).
1876.		43	45	12
1877.		50	41	9
1878		58	32	10
1879.		56	33	11
1880.		49	38	13

Table XIV shows the ratio for the different districts. In five years the number of netters has varied as follows:

In South Helgeland, between 41 and 55 per cent., or 14 per cent.
In North Helgeland, between 77 and 89 per cent., or 12 per cent.
In Salten, between 51 and 63 per cent., or 12 per cent.
In Loffoden and Vesteraalen, between 20 and 44 per cent., or 24 per cent.

In Senjen and Tromsö, betweeu 44 and 57 per cent., or 13 per cent.
In the first two years of the five-year period this method increased, and in the last two it fell off. By next year it will probably increase
somewhat again. The great difference between Loffoden and Vesteraalen districts, their proportion being double that of the others, is owing to the fact that net-fishing gradually decreased from 65 per cent. in 1862 to 9 per cent. in 1870. Later, in 1874, it advanced to 33 per cent., but in the following year it again fell off to 22 per cent.

Table XIV.-Percentage of the population.

Table XV, following, shows the changes in the use of the various methods during the last twenty one years.

In all Loffoden net-fishing has varied between 34 and 66 per cent., or 32 per cent.; line-fishing has varied between 21 and 55 per cent., or 34 per cent.; deep-bait fishing has varied from 8 to 14 per cent., or 6 per cent.

The variation in net-fishing was as follows: In South Helgeland from 38 to 79 per cent., or 41 per cent.; in North Helgeland from 69 to 90 per cent., or 21 per cent.; in Salten from 33 to 65 per cent., or 32 per cent.; in Loffoden and Vesteraalen from 9 to 49 per cent., or 40 per cent.; in Senjeu and Tromsö from 33 to 65 per cent., or 32 per cent.

The variation in trawl-line fishing was: In South Helgeland from 4 to 43 per cent., or 39 per cent.; in North Helgeland from 3 to 19 per cent., or 16 per cent.; in Salten from 25 to 63 per cent., or 38 per cent.; in Loffoden and Vesteraalen from 49 to 90 per cent., or 41 per cent.; in Senjen and Tromsö from 29 to 60 per cent., or 31 per ceut.

Deep-bait fishing with hand lines has varied: In South Helgeland between 13 and 24 per cent., or 11 per cent.; in North Helgeland between 3 and 15 per cent., or 12 per cent.; in Salten between 3 and 12 per cent., or 9 per cent.; in Loffodeu and Vesteraalen between $\frac{1}{2}$ and 4 per cent., or $3 \frac{1}{2}$ per cent.; in Senjen and Tromsö between 4 and 14 per cent., or 10 per cent.

A regularity in this change from one method to another, which promises to become permanent, has been observed only in the two Trondhjem counties, where net-fishing has gradually replaced deep-bait fishing, and in South Helgeland, where trawl-line tishing has, by degrees, increased while net-fishing has fallen off.

Table XV.-Percentage of fishermen.

	Variation between the modes of fishing from 1860 to 1880.					
	Netters.		Trawl-line fishermen.		Deep-bait fish. ermen.	
	Maximam.	Minimum.	Maximum.	Minimum.	Maximum.	Minimum.
Combined Loffoden fishermen	66	34	55	21	14	8
South Trondhjom District	53	12	6	0	80	47
North Trondhjem District..	58	20	7	0	74	38
South Helgeland Bailiwick	79	38	43	4	24	13
North Helgeland Bailiwick	90	69	19	3	15	3
Salten	65	33	63	25	12	3
Loffioden and Vesteraalen	49	9	90	49	4	0.6
Senjon and Tromsö......	65	33	60	29	14	,

Table XVI shows the increase or diminution since last year (marked with the sign-) in the number using the different methods. With the exception of a slight increase in the Trondhjem counties, the number of net-fishermen has everywhere decreased; the number of line and deepbait fishermen (hand-liners), on the contrary, has increased.

Table XVI.-Number of men.

District.	Increase or decrease in methods since last year.		
	Net.	Trawl- line.	Deep bait.
South Trondhjem County	48	- 6	99
North Trondhjem County.	- $\begin{array}{r}48 \\ -118 \\ \hline\end{array}$	10 190	${ }_{238}^{215}$
North Helleland Bailiwick.	- ${ }^{-1185}$	${ }_{37}$	${ }_{68}$
Salten Bailiwick	-197	450	-28
Loffoden and Vesteraalen Bailiwick	-141	768	66
Senjen and Tromsö Bailiwick.	-202	284	146
Total.	-867	1,733	832

In the last column of Table \mathbf{X} is stated the number of hired men employed in the different districts. Table XVII gives the number in the various counties and bailiwicks for the last three jears. In South Trondhjem County, and in Loffoden and Vesteraalen Bailiwick, the number was increased by 700 and 9 per cent., respectively; in Senjen and Tromsö Bailiwick it was diminished by 14 per cent.; the remaining places were unchanged.

Table XVII.

District.	Hired men.		
	1878.	1879.	1880.
South Trondhjem County	5	18	145
North Trondljem County:	57	84	79
Soath Helgeland Bailiwick.	897	1,027	1,072
North Helgeland Bailiwick.	573	668	670
Loffoden and Vesteraalen Bailiwick	1,182	1,511	602 1,649
Senjen and Tromsö Bailiwick......	1,140	1,511	$\begin{array}{r}1,649 \\ \hline 196\end{array}$
Total	3,307	4,131	4,413

Table XVIII gives the number of hired men for the last three years in the districts which have more than 100 . The increase has been greatest in Buksuæs and Vegö, whose population almost exclusively fishes from Balstad (Buksnæs). The increase from Tjötö is due to the fleet therefrom fishing at Henuingsvær.

Table XVIII.

District.	Number of hired men.		
	1878.	1879.	1880.
Stadsbygden ...	2	17	105
Vegö........	112	136	180
Alstahaug.		143	130
Stamnes ..	234	121	112
Herö............	76	106	116
Tjötö..............	265	314	334
Vefsen	134	- 137	117
Hemnæs.	154	145	182
Næsne...........	280	299	267
Gildeskaal	104	116	134
Skjarstad	63	108	142
Flakstad.	272	437	430
Buksnæs	469	588	691
Vaagen.	209	236	241
Hadsel	171	153	176
Total .	2,545	3, 056	3,357

Table XIX shows the number of fishermen engaged at the different stations up to March 16, and their division according to the various modes of fishing. In Brettesnæs there were very few. In Kabelvaag there were 360 men less than last year, probably from the want of accommodations beyond Branden.

In most other places the fleet was larger than last year, especially in Henningsvær, which had 511 men more; in Stamsund, which had 312 men more; in Svolvær, which had 237 men more.

All the stations had a full fleet; consequently, during the shiftings, they became crowded.

Table：XIX．

In Table XX is stated the relation between the number of fishermen and the catch for the different groups of stations in the last five years．

Table XX．

Region．	Relation between the number of fishermen and the catch．									
	1876.		1877.		1878.		1879.		1880.	
		水		氷		水	号	霔	苍	完
Raftsundet	Per ct. 4	Per ct．	Per ct． 5	$\begin{gathered} \text { Per ct } \\ 3 \end{gathered}$	Perct．	Perct．	Perct．	Ier ct．	Perct．	Per ct．
Brettesnæs－Hopen	52． 5	46	46	44	52	42	47.5	34	45.5	52
Menningsvar ．．．．．	18	15.5	18	18	18	22	18.5	21	19.2	16． 6
Oerne－Ure．．．．．．．．．．．．．	8	11	12	15	12	16.4	18	18	19	12.4
Brandsholmene－Nufsfjord．．	9.5		8	10	8	9.8	8	13	8.3	9
Næsland－Lofotodden ．．．．．．．	8	13.5	10	9	10	9.8	8	14	8	10
Eastward of Henningsvær．．	56.5	49	51	47	52	42	47.5	34	45.5	52
Westward of Henningsver．	25.5	35.5	30	34	30	36	34	45	35.3	31.4

Eighteen hundred and eighty was the only year for five years in which the catch eastward of Henningsvar was proportionately larger than the registered population．Previous to that there was a marked difference between East Loftoden and West Loffoden fishing．There has been no such decided distinction of late years．

In 1876 the principal fishing was from Skroven eastward，and from Sund westward；in 1877，from Stamsund eastward；in 1878，from

Vaagene to Ure; in 1879, from Henningsvær westward, and partly in Skroven; in 1880, from Hopen eastward, and to some extent westward also.
The reason that the catch in East Loffoden is proportionally so large is, that nearly 500 boats, which had been engaged at stations farther west, participated here during ten to twelve days. The shares have, on the contrary, averaged larger from Balstad westward. The proportion between the number of fishermen and the catch has for fice years given the following average:

Thus it appears that fishing has been comparatively better the farther west we go. The considerable number of small boats which from fear of the sea lie in East Loffoden has naturally contributed to the relatively light catch here. Moving during the fishery (shifting berth) has also had its influence in this number, not sufficient, however, to destroy the proportion entirely, especially westward of Urebjerg, since the shifting to or from this station is inconsiderable. It is evident that the table gives a correct expression of the proportion, because wherever there is, during one year, any gieat disproportion between the number of fishermen and the catch, this shows itself in the size of the fleet present there the next year. The same holds good also with regard to the choice of implements. Statistics prove, on the contrary, that in both respects it is impracticable to base jadicious plans for the coming year's fishing upon the results of the foregoing year.

In last year's report, page 55 , I directed attention to the comparatively good catch westward of Urebjerg from and during the year 1871, and I stated, as a proof of the profitable industry here, that hired heip, in spite of the larger expenses of fitting out, had shown a considerable increase. This year the force in the region from Brandsholmene to Balstad is increased by 207 men, of which 85 was an addition to the number of hired men, and in the Flakstad stations there is a gain of 222 and 18 men respectively. Although the catch has beeu proportionally smaller this year than in most preceding sears, I think I am justified in drawing the attention of fishermen to the more uniform annual fishery in these stations than in most of those lying farther to the eastward.

Table XXI shows the distribution of the fishermen in the different stations by districts. Of the large force of 6,100 men from Senjen and Tromsö this year, 73 remained west of Urebjerg, 9 of these west of Sund.

The increased frequenting of these stations has been perceptibly noticed from Salten and especially from Folden and Gildeskaal．The fleet from Örlandet，Stadsbygden，Melö，and part of Alstadhoug continue，as usual， ahnost exclusively in Henningsvær ；the fleet from Vegö，in Balstad； that from Belfjorden and Veieren，west of Sund；and the force from Tjötö and Gildeskaal，partly in Henningsvær，partly in Flakstad sta－ tions．Of the fishermen south of Brönö only 26 remained westward of Urebjerg．

Table XXI．－Statement of the distribution of fishermen from the different districts at the various stations．

District．		$\begin{aligned} & \text { d } \\ & 0 \\ & D \\ & 0 \\ & 6 \\ & \text { B } \end{aligned}$							$\begin{aligned} & \text { a } \\ & \text { © } \\ & \text { en } \\ & \text { o } \end{aligned}$				宽	$\begin{aligned} & \infty \\ & \hline \end{aligned}$		$\begin{aligned} & \text { rig } \\ & \underset{\sim}{c} \\ & \text { 感 } \end{aligned}$		宮	$\begin{aligned} & \dot{9} .0 \\ & \text { © } \\ & \text { R2 } \end{aligned}$			¢	Total．
Soggendal																							3
Haugesund																							8
Sund																							2
Bergen																							5
Davigen																							5
Selö．．．																							8
Aalesand																							8
Örskong．																							3
Molde．．																							3
Eid．．																							3
Gryten																							3
Christianssund																							12
Throndhjem．																							29
Orkedalen．．																							3
Hitteren																							33
Hevne																							3
Stadsbygden																							403
Rissen ．．．．．．																							10
Orlandet																							389
Bjugn																							203
Aafjord																							203
Björnör																							65
Lexvigen．																							52
Stördalon																							11
Vierdalen																							2
Stenkjxer																							3
Ytteröen																							37
Inderöen																							12
Sparboen																							6
Stod ．																							3
Beitstaden																							20
Namsos																							19
Fosnaes．																							12
Fladanger																							23
Nizro．．．																							226
Kolvereid																							127
Lekö																							321
Bindalen										－－．													302
Brönö																							866
Velfjorden																							111
Vegö．．．．．																							496
Alstahaug																							433
Stamnæes．																							469
Herö																							587
Tjötö．																							905
Veasen																							471
Mo...																							201
Ranen．																							4
Hemnas																							505
Næsne																							926
Donnæs																							67
Larö																							284
Rödö																							224
Melö																							251
Gildeskaal																							591

Table XXI.-Statement of the distribution of fishermen, \&c.-Continued.

Table XXII gives the number of vessels present in the different inspection districts at the end of each week. Lodging vessels, vessels laid up, and passenger vessels are not included in this enumeration, but only merchantmen. After March 16, 27 vessels arrived, 7 of them at Hopen and 17 at Sörvaagen inspection district.
S. Mis. $110 — 36$

Table XXII．－Number of merchant vessels present．

Week ending－	$\begin{aligned} & \text { 䯧 } \\ & \text { 咅 } \\ & \text { 咅 } \end{aligned}$	震	$\begin{aligned} & \text { 炭 } \\ & \frac{b}{b} \end{aligned}$					莒	$\begin{aligned} & \text { 喜 } \\ & \frac{\text { d }}{M} \end{aligned}$	吕	号	Total．
January 24						${ }_{78}^{17}$						
frimuaruary		${ }_{8}^{9}$	${ }_{10}^{6}$	$\frac{2}{9}$	${ }_{14}^{6}$		19					
February 14.	3	${ }_{22}^{17}$	41 50	${ }_{73}^{54}$	${ }_{77}^{84}$	${ }_{135}^{145}$	${ }_{87}^{85}$					－454
Fobruary ${ }^{\text {P }}$	1	10	${ }_{51}^{51}$	${ }_{8}^{80}$	${ }_{78}^{73}$	cis	${ }^{97}$	${ }^{166}$	24			${ }_{\substack{387 \\ 543 \\ 543}}$
March 13．：	5	13	70	${ }_{61}{ }^{60}$	${ }_{69}{ }_{6}$	122	115	${ }_{23}^{20}$	${ }_{40}^{40}$			${ }_{587}^{588}$
March 7 \％		${ }_{70}$	${ }_{111}^{101}$	100	90	68	${ }_{44}^{69}$	13	${ }_{27}$	56		${ }_{467}^{61}$
${ }_{\text {Apreil }}^{\text {April }}$				70 30	${ }_{37}^{75}$	${ }_{50}^{90}$	${ }^{56}$	1	${ }_{25}^{29}$			

Table XXIII shows the number of merchant vessels present for each half month during the last five years．From this it will be seen that the majority of the vessels came out earlier this year than usual，and also that they left earlier than last year，since only half of them remained at the close of the first week in April．

Table XXIII．－Number of merchant ressels present．

Date．	1876.	1877.	1878.	1879.	1880.
Middle of January				15	
Beginning of Febrtary	80	120	80	140	60
Middle of February．．	300	340	240	280	455
Begiuning of March	370	450	530	560	53
Middle of March	460	550	630	600	590
End of March	360	530	610	600	500
Find of first week in April．		500	530	480	300

Table XXIV contains a statement of the number of merchant vessels and passenger ressels（Bygdefarere）present in Loffoden March 16，also their home port，rig，draft，and complement of men．In the last column is given the number of lodging vessels and vessels laid ap．Of these last， 33 were from Loffoden aud Vesteralen，of which number three or four have been previously included among the passenger vessels，and the rest among the merchantmen．The total number of vessels here March 16 was 676 ，with a combined tounage of 350,000 tous and a force of 2,932 men，including the captains，this being the largest number of vessels known to have been assembled in Loffoden．

Table XXIV.-Number of vessels present March 16.

* Three of which traded.
\dagger Both traded.
Table XXV states the number of merchant vessels fitted out since $\mathbf{1 8 6 0}$ from the towns and country districts most interested in the Loffoden fishery. The number of coastiug vessels at the close of 1876 , according to official statistics, was as follows: from Bergen 59, from towns in Romsdal District 71, and from Trondhjem 27; but the majority of the merchant vessels fitted out in the towns belonged in country districts. The total number of coasters in Romsdal District was 169, of which 102, or 60 per cent., were in Loffoden this year; 67 per cent. of the coasters in Nordland District and 33 per cent. of those in the district of Tromsö were in Loffoden.

Table XXV.

Table XXVI gives the proportion between the fleets from towns and country districts since 1860 . While the great majority of the merchant vessels up to 1876 were fitted out in country districts, the reverse bas been the case of late years.

Table XXVI.-Number of vessels.

		Merchantmen.			
	Years	d 0 0 0 0 0 0	E E E 雷	N	
1860.		200	237	437	64
1861.		170	208	378	66
1862.		149	196	345	58
1863.		158	205	363	48
1864.		146	204	350	50
1865.		148	226	374	49
1866.		121	218	339	38
1867		126	227	353	34
1868		151	262	413	32
1869.		145	200	34.5	32
1870		130	195	325	$\checkmark 6$
1871.		186	211	427	36
1872.		158	170	328	33
1873.		141	211	352	38
1874.		156	214	370	34
1875.		215	207	422	31
1876.		211	245	456	36
1877.		292	265	557	40
1878		329	302	631	37
1879		311	304	615	4
1880.		338	*253	591	42

Table XXVVII a shows the distribution of vessels at the different sta－ tions on the 16 th of March．

Table XXVII a．－Number of vessels present March 16.

Fishing－statiou．			$\begin{aligned} & \frac{8}{6} \\ & \frac{0}{6} \\ & \frac{0}{\sqrt{n}} \end{aligned}$	$\stackrel{\stackrel{x}{y}}{\stackrel{y}{E}}$					岕
Qostnæafjorden	1	1	1	32	3		1		39
Svolvær．．．．．	1	2	1	42	24	2		4	76
Skroven．．．		5	3	${ }^{6}$	3		2	2	21
Kabelvaag		4		18	3				25
Storraagen．．		4		26	8	4	1	2	49
Orsvagg ．．．		1	1	12	3	4	1		${ }_{12}$
Orsnæes ${ }_{\text {Hopen }}$			$\frac{1}{2}$	${ }^{6}$	3		1	1	12
Hopen ．．．．．．．		3 10	4	24	5 20	14	1	15	36 147
Skokkelvigöerno				1					1
Stamsund ．．．．．．．		5	3	43	14	2	7	2	76
Stene		4	\because	9	8	1	4	2	30
Wre		3	1	13	4		1		22
Bulstad．		1	1	26	5	$7 \times$	3	4	47
Nufsfiord		1	2	9	4	1	1		18
Land．．．．．				8	3		${ }_{2}^{2}$	1	14
Reine		1	2	8	3	3	2	1	20
Sörragen				6	1	4	2	7	20
Total．	2	45	24	367	114	42	39	43	676

＊Five of these traded．
The table below（XXVII b）shows the number of lodging vessels，or vessels laid up，and also their tonnage．

Table XXVII b．－Lodging vessels，or vessels laid up，March 16.

Fishing－stations．		$\begin{aligned} & \dot{\Delta} \\ & \stackrel{\Delta}{6} \\ & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$$			岕	
Svolvær						4	
Skroven			1		1	2	650
Storvaagen．				2		2	1，100
Orsvaag			1			1	250
Orsnes．				1		1	6000
Hopen ．．．．．．．．				1		1	450
Henningevær．	2	5		6		15	8，030
Stamsund ．．．				2	．．．	2	1，600
Stene．				2		2	1，000
Balstad				4		4	2,400
Innd				1		1	600
Peine					1	1	300
Sõrvargen．．．		2		3		7	2，500
Total．	2	7	3	23	10	43	19，480

Table XXVIII states the percentage of merchant ressels present in the groups of stations named below during the last five years．

Table XXVIII.-Merchant vessels present March 16.

Region.	1876.	1877.	1878.	1879.	1880.
Raftsundet	Per ct.	Per ct.	Per ct.	Pcr ct.	Per ct.
Brettesnæs-Hopen	54	45	51	42	44
Henniogsvier	16	18	22	29	20
Öerne-Ure	10	18	16	16	$\because 1$
Brandsholmene-Nutsfjord	7	7	6	7	9
Naesland-Lofotodden.	10	7	4	6	6
Eastward of Henningsvær	57	50	51	42	44
Westward of Henningsver	27	32	26	29	36
Number present in Ostnæsfjord.	12	9	1		39
Number present in Raftsundet.	15	7			

Table XXIX shows the number of vessels that traded during the fishery. The places whose vessels have not traded are omitted from the table. These are: Farsund, Stavanger, Florö, and Nordmöre, with a total of 15 vessels. One column shows how many vessels have traded, and the individual vessels which have dealt in two or more of the articles mentioned in the table are reckoned under each of these. Deducting the three passenger vessels from Helgeland and two from Lofoten and Vesteraalen, which have engaged in trading, 119 vessels or 20 per cent. of the 591 merchant vessels carried with them trading goods. Including the 30 merchant vessels from Loffoden, which were laid up, and which are omitted this year, the proportion becomes 19 per cent. In 1878 the numbér was 114 , or 15 per cent. ; last year 148 , or 24 per cent. Of the vessels from Trondhjem 48 per cent. traded, and of those from Helgeland 29 per cent.

Table XXIX.-Number of trading vessels.

Home port.	Total number of merchant	number which tladed.							
		General trading:	Trading goods.						
								荡	$\begin{aligned} & \dot{t} \\ & \text { i } \\ & \text { B } \\ & \text { B } \\ & 0 \end{aligned}$
Haugesund.	9	1						1
Söndhordland	20	2				2			
Hardanger	13	1				1			
Bergen...	110	17				12		${ }_{5}^{6}$	
Aalesund	27	5						5	
Molde Romsdalen	12	1				1			
Romsdaleu ...	61	1				1	2		
'Trondhjem...	79	38	10	15	19	6	2		
Örlaudet and Fosen	27	4		1				3	
stenkjier ..	6	2			2	2			
Levanger.	1	1	1.			1			
Troudhijemsfjorden	2	1			1				
Namsos	6	2		1					1
Namdaleu	19	2	1			1			1
Helceland	58	20	7	6	6	3	2	1	2
Bodö.....	12	1		4					
Salten...................	69	8	3	4	1	1			
Loffoden and Vesteraalen	11	9	${ }_{2}^{2}$	2	5	2	1	1	
Senjen and Tromsö	32	5	2	2	2			1	.
Tromso.	1	1						1	
Tutal		124	26	32					4

Table XXX gives the number of＂other＂ontside industries attracted to Loffoden by the fishing．

Table XXX．－Other outside industries represented March 27.

Trade．	留	范		㵄				－	碼		\＃
Merchants	20	19	62	2	26	90	3	3	4	3	
Watchmakerse．	2	1	7	2	9	4	2		4	6）	37
Gold and silver smiths	1		5		2				1		9
Otber mechanics．．．．	5	2	19	2	8	14	1	1	3	9	64
Photographers	1	1	3	1	5	2			\because	2	17
Laborers．	18	10	10		65 ＋：	13	1	2	6		125
Splitters	8	8	21	4	13	2		2			58
Wholesale buyers ．．．	28	45	80	39	110	42	20	6	18	22	410
Eating－honse keepers	1	5	$20{ }^{\text {¢ }}$		1	5					32
						1					9
Panorama exhibitors．											
Acrobats，se．．．．．．．．．．			7			1					
Without regular work	2	$4{ }^{\text {＊}}$	20	1	4						31
Total．	86	95	262	51	250	104	27	14	38	42	969
＊Two of whom were women． \dagger Fifteen of whom were women．											

For comparison with preceding years is appended，in Table $\mathcal{X N X I}$ ，the number of＂other＂outside trades for the last five years．The number of dealers，including watchmakers，most of whom sell watches，was diminished by 32．The number of wholesalers was increased by 55，and of mechanics by 22 ．The number of photographers increased from it in 1876 to 17 ．

Table XXXi．

Herein are included those who belong in Lofloden．
Table XXXII shows the kinds of wares used in trade．As will be seen，only one man dealt in general retail goods，and 26 handled dry goods exclusively．The remainder，for the most part，sold chandler＂s wares and readr－made clothing，in connection，thongh to a small extent， with dry goods．All of the watchmakers and，so dim as I know，about 15 of the dry－goods dealers had district licenses．Twelve such new licenses were issued this rear－1 in Skroven，s in Vaagen． 1 in Hen．
ningsvær, and 2 in Balstad; 5 of these were granted to residents. The number of dealers this year was:
Residents 58
Inc mers'. 162
From vessels 124
Watchmakers . 30
Goldsmiths . 9

Abstract

Total 383

or 1 for every 80 men who were present during the fishery.
Table XXXII.-Number of incoming tradesmen.

Table XXXIII states the number of persons who were entitled to sell spirituous liquors. The number is about the same as last year, that is, one for every 460 men present during the fishery.

Table XXXIII.

Table XXXIV gives the number of days，Sundays and holidays in－ oluded，from January 16 to April 14，wherein the weather，either wholly or in part，prevented the fishermen from setting or hauling their imple－ ments．Altogether，in East Loffoden during 43 per cent．，and in West Loffoden during 48 per cent．of the fishing season the weather was such as to interfere with the business．This sear，also，most of the unfavor－ able days occurred in periods，for instance，from January 20 to February 5，from March 4 to 14，and from March 30 to April 4.

Table XXXIV．

Month．	Detained by weather between Jannary 16 aud April 14.	
	East Loffoden．	West Loffoden．
	Whole day．Part of day．	Whole day．Part of day．
January	8 －${ }^{-1}$	10
February	$5 \quad 7$	9 － 9
March ．	5.7	6 \％ 7
April ．	$3 \quad 2$	3 3
Total	21.18	28 15

Table XXXV gives the number of days of detention in port，because of bad weather，in the different inspection districts：

Table XXXV．－Days of detention in port on account of weather from January 16 to April 14.

Inspection district．	Januars．February．				March．		April．		Total．	
	$\stackrel{y}{3}$	5	$\frac{3}{9}$	Eic	空	范	会	等	－	它
Skroven	9	1	5	7	5	7		5	19	20
Svolrar．	6	4	4	6	2	9	2	3	14	22
Vaagene	7	3	5	7	5	7	3	2	20	19
Hopen．	9	1	5	7	6	6	3	2	23	16
Henningsver	8	2	4	8	6	8	$\stackrel{ }{2}$	3	20	21
Stamsund．．．	10		6	7	7	7	3	3	25	17
Ure．	10		8	4	5	9	3	3	26	16
Malstad．	10		11	6	7	8	4	2	32	16
Lnnd．．．	9		10	5	6	5	4	2	29	13
cörvangen	9	1	9	5	4	8	4	2	26	16

The report for 1878 and for 1879 contains a similar table，and I ren－ ture to repeat this year also what I have previously mentioned with reference to this subject，since certain persons still seek to maintain the opinion that the fishermen should be prohibited from going to sea unless the weather allows all of them to use their implements．The essential hindrances to the enforcing of such a general provision in practice are， first，that＂sea－weather＂may be differently construed by difierent per－ sons，and，second，that fishermen not only from different stations but also from different inspection districts，where there may be permanent
differences in the stations, often have their implements placed in the same waters. It will frequently happen, therefore, that while one fish. erman, who lives in a certain place, is legally entitled to haul his gear, another one who has his gear in the same waters may be forbidden to do so, because he lives at a different station. It is especially during the so called partial sea-weather that so many different conditions, such as size of boat and crew, ability of the men, and their acquaintance with the water, distance of the gear from shore, situation of the place, currents, direction of the wind, coudition of the fishery, \&c., are to be considered in deciding to what extent the implements can be used, that the question can be settled only by the boatmen themselves.

Table XXXVI shows the average number of entire and partial stormbound days since 1875 . This year the weather has been nearly like the average of the last five years, and somewhat better than the average of the last four. On the other hand, the rongh weather which occurred at the close of January and the beginning of February, during certain days, was unusually severe. The water, especially, was very high.

Table XXXVI.-Average number of storm-bound days, partial and entire, from January 16 to April 14.

Altogether 15 boats and oue vessel were lost, in which six men perished while 71 were saved. The cause of the loss of the ressel at Henning. sver was dead calm combined with swell and current. The vessel was crushed, but the crew, consisting of five men, was saved. By other: accidents three men were lost-one in Kabelvaag by a chance shot, ons in Stamsund while trying in a state of intoxication to cross a foot-bridge. and one in Balstad through the sinking of his overloaded boat. Of those who perished by shipwreck at se, five lived in Stamsund, ant one in Moskenres. The fishing season just closed has been the mosi fortumate since 1860 with regard to loss of human life at sea. The number of shipwrecks, on the other hand, was nearly as large as in 1876 and 1878 , when 43 and 10 men were lost, respectively, and at the same tim. considerably larger than in 1875, when 17 men were lost. Table XXXVII states the time, place, cause, \&c. (of loss), since 1875. This is based upon a form employed by pastor Eilert Sundt, in his time, and
according to which the explanations of shipwrecks occurring of late years are recorded. In these six years 95 persons were lost by shiywreck, 21 by other accidents, and 282 were rescued; so that 75 per cent. of the shipwrecked were saved.

Table XXXVII

Table XXXVIII shows the mode in which the shipwreck took place, the cause so far as this has been ascertained, and the size of the boat. Of the 51 shipwrecks which have occurred in the last three years, 21, or 41 per cent., were caused by wind storms; 15 or 30 per cent., by heavy sea, and 9 , or 18 per cent., by collision. Nearly the half (25) might have been avoided. Sixteen of these, or 64 per cent., were due to carelessness; 7 , or $2 S$ per cent., to rashness. Shipwreck occured most frequently among line-boats, between four and fire ont of every 1,000 boats, which is a natural result of the business. Among net and deep-sea boats, there are two or three shipwrecks to every 1,000 boats.

Table XXXVIII．－Loss of boats．

Year．	Mode．						Cause assigned．							
				获			$\begin{aligned} & \underset{\text { B }}{\substack{0}} \\ & \hline \end{aligned}$						$\begin{aligned} & \dot{8} \\ & \text { 号 } \\ & \text { N } \\ & \text { 嵒 } \end{aligned}$	离
1878.	14.5	5			1		8	4	2	1	1			
1879.	22 7	7	3		1	2 l	11	8	3					
1880.	15 － 3	9	3				6	4	2					
Total	51	21	9	1	2	2， 1	25	16	7	1	1			
Por cont＊．	30	41	18	2	4	4 ｜ 2	50	64	28	4	4			

Table XXXIX shows the temperature of the air at Svolvar in degrees Celsius．

Table XXXIX．

For comparison with the preceding years is here given the mean temperature at midday for each half month since 1877.

Table XL.

Thns the mean temperature has been nearly the same as in 1878 , whereas it has been one-half degree higher than in 1877, and nearly one degree higher than last year. The greatest cold, as in 1877, occurred in the latter half of February. While the severest cold in 1878 and 1879 was in the first half of this month, the temperature during the corresponding period this year was 2.0 degrees higher thau in 1877; 2.3 degrees higher than in 1878 ; and 6.4 degrees higher than in 1879.

Comparing the air temperature with the fishing we find that the best catch was in the month of Febrnary: In 1877, during the third and fourth weeks* (the coldest); in 1878, during the second and fourth weeks (the coldest); in 1879, during the first and fourth weeks (the coldest and the warmest, especially the latter); in 1880, during the third and fourth weeks (the coldest).
Thus in these four years the best fishing in February has oceured in the last eight days of the month, which probably is simply a plain result of the time. The best fishing has occurred during the greatest cold. The air temperature, either at the time of the best fishing or during the days immediately preceding, appears, however, to have had no influence on the result of the fishery.

As a coutimation of, and a necessary addition to, the observations of water temperature secured by the inspector during the winter of 1879 , the telegraph inspector in Tromsö district, J. B. Lie, continned these at Lödingen, at depths of 30 and 100 fathoms, from May to December, both inclusive; 36 series of observations were taken at depths of 30,36 , and 100 fathoms. These are here given entire, since they are unique and of geueral interest. The inspector has kindly promised to have these observations continued this year at Lödingen and Sörvaagen.

[^79]Table XLI．－Observations made by direction of J．B．Lie，telegraph inspector in Tronsö̈ District．

Table XLII．

	$\begin{aligned} & \stackrel{\oplus}{\Xi} \\ & \stackrel{\text { ® }}{2} \end{aligned}$	号	Wind．			Temperature of water．												Remarks．
						30 fathoms．				100 fathoms．								
				$\begin{gathered} \text { © } \\ 0 \\ 0 \\ i \end{gathered}$					$\begin{gathered} \text { di } \\ \text { giv } \\ \text { 范 } \end{gathered}$	荧	唓						淢	
July ．．．．		19.6		0 0	1	13.0	110.5			9．8		6． 0	5.8	6． 0	6.2	6.4	6.5	
		14.6		3	1					12.0	11.8	8.0						
	11	10.8	NW．	2	3 6		579			8.7	8.0		5.7	5.8	6.0		6.5	
		17.2	NE．	2	$\mid 10$		5				9.2	7.3	5． 9	5.7			6.6	
		17.6	NE．	2	1	10.0	0		6.0	．．．．								
		23.6		0	10	11.9	971			13.0	9.5		5.8					
		15．8	S．	1	6					12.8	9.0		5.7		6.1		6.5	
		23.7		0	0	12.6	6.9 .4			14.0	10.5		6．9	6.0	6． 2	6.4	6.6	
Average				．．．	．．	．．．．		．．	．．．	11.4	9.5	6． 9	5.8	5.8	6.1	6.3	6.5	

Table XLII-Continued.

Note.-The observations at 30 fathoms were made a cable's length from Lödingen light, thone at 100 fathoms in the midlle of the fiord. All the observations were taken in the afternoon.

Table XLIII shows the mean temperature of the water for each half month, also the mean temperature of the air at 2 o'clock p. w... which last was kimdly communicated by Dean Ib. Kokk from daily observations made by him in Lodingeu. All the temperatures are given in degrees of Celsius. From the obselvations it will be seen: First, that the summer heat has had little influence on the water temperature at depths greater than 40 fathoms and none at all at depths of more than 50 fathoms, at which depth the water has been uniformly 6 degrees if we except the slight deviations occasionally produced by the sinking of the surface water cooled during winter, bearing in mind, also, that three
months, from the close of April to the end of July, elapse before the water recovers from the effects of the winter temperature. At the bottom, in 100 fathoms, the temperature has been constantly about 6.4. It is further evident from this table that the water has not begun to grow cool before October, and also that the cooling has not occurred gradually, but has been rather uniform thronghout until the middle of December, also that a somewhat shorter time is required to effect the normal winter condition-the coldest water at the surface and a gradually increasing temperature towards the bottom-than is required in summer to produce the opposite condition-the warmest water at the surface and a decreasing temperature downward. After the middle of December the decrease of temperature has been slower. The water has been warmest from the middle of September to the beginuing of October; the temperature daring this time has been uniformly between 10 and 11 degrees from the surface down to a depth of 70 fathoms. The fact that the temperature of the stratum of water lying between 30 and 70 fathoms increased so considerably in the space of three weeks can only, so far as the uppermost portion is coucerued, be ascribed to the direct influence of the warm water lying above it, if we admit that its greater saltness makes it a better conductor of heat; but may certainly be explained more readily by an afflux of warm water, probably from the shallow places in Ofotfiord.

Table: Nl.

The temperature of the water has been taken daily at the surface and at depths of 5 aud 10 fathoms. The results are set forth in Table XXXIX. The lowest temperature at the bottom and surface was 0.5 (in the begiming of March). The difference between the lowest weekly mean temperature at 10 fathoms last year and this year was only 0.2 at the surface and nothing at the bottom. The highest temperatures were 3.5 and 4.0 (beginning of February). Regular observations at greater depths, 30 and 80 fathoms, were not taken, for want of time. In all 38 series of observations were taken in 30 fathoms, and 40 at greater depths, against 63 and 58 last year. The same instruments were used in taking the observations as last year, namely, 2 Negretti and Zambra thermometers, which were kindly lent to the inspection party by the Meteorological Institute. The same instruments were used by Inspector Lie also. As the division into degrees is not very fine, an error in reading of $\frac{1}{4}$ degree is, of course, not rare. There appear, however, to be no more serious errors of observation. The observations were made first at the surface and gradually downwards towards the bottom.

Table XLIV.

Table XLV.

Table XLVI a.

Table XLVI b.

As the observations at Lödingen in May, last year, agreed in the main with those taken at Loffoden in April, so also the observations at Iödingen on the 5th of January, this year, give the same result as in Srolver on Jamary 30 ; therefore the observation of the temperature of the water which has been conducted from Jannary, 1879, to April, 1880, may be regarded as a continuous series.

The observatious this year, as well as last, show that, as a rule, there is a rather sharp limit between a colder and a warmer stratum of water, while the mass of the layer increases and diminishes considerably in a comparatively short time. This fall of temperature appears not to have extended to as great depth as last year ; the lowest temperature observed at 60 fathoms was 2.15 , and, at 50 and 40 fathoms, 1.75 , while this year the temperatures were $5.25,4.00$, and 2.50, respectively. In February and March a temperature as low as 2.25 has not been observed farther down than 20 fathoms from the surface in 80 fathoms of water, and it has been noticed only twice in the same depth of water 35 fathoms from the surface. It is possible, however, that observations taken between the $3 d$ and the 10 th of March would have given a different result ; for the water appears to have been coldest this year at that time, although, because of the frequent and sometimes considerable changes at different depths, it is difficult to arrive at a definite conclusion about the subject.

Concerning the influence of the temperature of the water upon the fishery, allow me to state the arguments for and against this assumption.

The following statements favor the assumption :

1. This year the tish were always found either near the surface or in comparatively shallow water, and since the temperature at these depths was both rather uniform and rather high, at all events, in comparison
with last year, it is not improbable that the fish have been influenced thereby in their choice of locality.
2. Since fishing begun at Islændingen, the lower part of Sundströmmen, the temperature at 20 and 20 fathoms was $4 \frac{3}{4}$ degrees. The floating implements placed 25 fathoms from the surface, and the bottom implements set in 25 fathoms, took plenty of fish, while nets placed on the bottom in 60 to 80 fathoms, where the temperature was six degrees, caught almost nothing. The same thing occurred in Östnesfjorden and Svolver during the fishing there. Many of the net-fishermen floated only a portion of their nets, and allowed the rest to remain on the bottom, and the catch was generally good in the floated portion, and exceedingly light in the bottom nets.
3. The excellent fishery at Stamsund and stations farther west at the close of Febrnary was associated with a rise in the water temperature, which, from 2.50 at a depth of 35 fathoms on the 21 st, increased on the 25 th to 4.50 in 30 fathoms, and 3.50 in 20 fathoms. The same was true of the good fishing which begun in Östlofoten March 10. The fishing mentioned in Buksuresfjorden under "Fishing at the different stations," and also the advent of cod which was noticed, March 17, between Stamsund and SkokEelvigöerne, occurred at a time when the warm stratum of water had descended to 20 fathoms from the surface.

The conclusion which I reach from these observations is, that the temperature which appears best adapted to cod is between $3 \frac{1}{2}$ and $4 \frac{1}{2}$ degrees.

The circumstances which disprove the influence of the temperature of the water are the following:

1. Since there were some fish in the seines, though in smaller and comparatively unimportant numbers, it follows that a temperature of 5 to 6 degrees is, at all events, not a barrier to the presence of cod.
2. Although the good fishing westward of Stamsund begun with as temperature of 4 degrees in 30 fathoms, it remained good, and in the early part of March it was even unnsually good here as well as at Gemsöströmmen, though the temperature gradually decreased to 13 degrees in 20 fathoms and 2 degrees in 35 fathoms-which again seems to indicate that comparatively cold water is not prejudicial to the thriving of cod.
3. The fishing, which was excellent at Sund March 10, was poor on the 11th, though the temperature conditions were the same on both days; so this appears to be no assurance of a permanently good fishery.

It is shown by the combined observations also that some good fishing has taken place in depths where the water temperature varied from 2 to 5 degrees. Since this is the greatest variation which has been observed during the winter on the banks, aud since the taking capacity of a net is only 3 to 4 fathoms perpendicularly, I conclude that the temperature of the water does not play the role in the fishing that one would suppose, at first consideration, should be ascribed to it. Examinations of the temperature of the cod itself at different depths would have been interesting, but I had no thermometer which was suitable therefor.

The observations this year have indeed been few, although they were begun the same day or the day after the fishing commenced. Although the frequent and sometimes considerable and irregular falling and rising of the warm water scarcely allow any hope of a practical result, and in spite of the little encouraging couclusions whereto the year's observations have led, it is my intention to continue these observations as far as time allows.
Table XLVII shows how many livers made a barrel at different times during the fishers. The numbers above the line indicate those taken in, nets, below the line those canght by lines. Compared with the four preceding years the fish this year have been distinctly fatter, and, especially, they have retained their fatness longer than usual. The increased proportion of liver in the districts of Stamsund and Sörraagen at the close of February was associated with the excellent fishing there, and seems to indicate a new arrival (of fish). The stated proportion of liver at the end of the first week of March to the quantity of fish has not been so great in any of the four preceding years at the same time; and one may possibly, from this longer-retained proportion of liver, draw the conclusion that the East Loffoden fishery in March is due to the incoming of new fish and not to an afflux from West Loffoden. The observations are, however, highly uncertain, aud cannot be otherwise; so it is difficult to base any decision upon them. On the average 385 cod are estimated to have yielded one barrel of livers, or 78 pois (0.65 barrel) of oil. According to the inspection tables, the proportion between fish and liver has been as follows:

	Cod.		Cod.
1869)	450	1875	440
1870	350	1876	415
1871	400	1877	425
187?	3.50	1878	420
1873	390	1879	420
1874	. 400	1880	385

An average of 400 to the barrel of liver and 600 to a barrel of oil.
Table XLVII.-Number of livers ina barrel.

Table XLVII．－Number of livers in a barrel－Continued．

Weok ending－		蔽	范		惖	$\begin{aligned} & \text { \& } \\ & \text { © } \\ & \text { © } \\ & \text { E } \\ & \text { E } \\ & \text { © } \end{aligned}$	宫	号		
Febrnary 23	350	350	300		－\％．	300		．	350	300
	450	450	350			350			400	400
March 6				320	350					300
				370	430					350
March 13			350	350		350	350	400	400	400
			400	450		400	400		450	500
March 20	400	400	400	400	400	400	300			500
	450	500	500	550	500	500	350			60
March 27				400		480	350	450	450	
				500		550	450	500	500	
April 3				420	450		400	．．．	500	
				550	600		480		550	
April 10				480		480			550	
				0		600			600	

Table XLVIII states the prices of net and line fish at different times during the fishing．The average price is assumed to have been about 15 öre for net fish，about 13 for line fish， 12 for deep－water fish，and in gen－ eral，13．70．Since 1860 there has ouly once been a lower price；this was in 1868，when the average was 13.33 ．

TABLE XLVIII：－Prices of fish（in öre）．

Weok ending－		$\begin{aligned} & \ddot{8} \\ & 0 \\ & 0 \\ & 0 \\ & b \end{aligned}$	易					官	恶	策
January 17						12			0	．．．．
January 24				14						
January 31		14			12		0 10			．．．．－
February 7		$\frac{16}{14}$	12	$\frac{15}{14}$			$\frac{0}{13.5}$	12	．．．．．	．．．．
February 14	14		$\frac{16}{12}$	16	18	17	16	14		14
			12	14	16	14	15	13		12
Fehrnary 21		$\frac{17}{15}$	17	17	19		17.5	16.5		
		15	16	15	17		16	15.5		
February 28			18	17		18	18	$\frac{18}{16}$	15	16
			16	16		16	16	16	14	12
March 6		． 18	．．．．		$\frac{18}{16}$		15	14		
March 13	10	16 15	17	14－16	16 17		13 14	13	14	15．5
March 13	9	13	16	10－12	15		13	15	12	12
March 20	14	13	12	12－13	15	16	16		14	14
	10	10	10	10－11	13	14	14	……	13	12
March 27		16	14	12－14	13	15	14.5	－ 14		1.5
March 2		12	13	10－11	11	14	13	12		17
April 3			$\frac{12}{11}$	13－15			16		14.	13.5
			11	10－11			15		13.14	12
April 10.			14	0	14	12	16	17		17
			13	10－11	12	10	14	15		12

Table XLIX gives the prices of the other fish products and of bait. The prices of roe have been somewhat higher, of liver a little lower than in the last few rears. According to these prices the value of one tish round has been 20.8 öre. Bait has commanded an unusually high price.

Table XLIX.-P'rices (in öre).

- This probably means so many ore per tish by the barrel and so many por head by the million.-Tre.

Table L gives the Loffoden prices and the export values since 1873. Tp to and for 1577 the export values are taken from the official statisties; for 1878 and 1879 they are quoted from the generous communication of the supervisor of the merehants' elerks in Bergen. According to this statement the export prices have been-

Of the total export of roe 15 per cent. is assumed to be of the second quality. The cost of split cod may be estimated at 8.8 crowns ($\$ 2.36$) per 1,000 .

Table L.-Prices.

Year.	Fish.			Roe.		Liver.		
		Export price.		Loffoden price.	Export price.	Lofforlen price.		Export price.
		Split cod.	Dried cod.			For medici nal oil.	For other	
	Per hundred.			Per bartel.				
1873.	\$6 21	\$9 29	\$5 91	\$9 18	\$13 18	\$6 48-\$7 56	\$648	\$9 61
1874.	648	972	575	\$11 88-12 42	1523	756-864	\$5 40-5 94	904
1875.	594	875		8 64-10 80	1145	6 48-7.56	540	869
1876.	540	1134	645	864	-1196	7 29-877	$432-540$	964
1877.	594	848	618	$702-864$	715	6 21-864	${ }^{5} 40$	910
1878.	540	929	*575	$432-486$	772	$486-756$	4 59-4 86	842
1879.	468	713	* 475	$480-594$	745	$486-648$	3 78-4 86	721

*Round fish only.
Table LI shows the yield of fish in the Loffoden tishery at the close of each week for the last five years. In this, as also in the following tables, certain items are wanting for 1878 , since it has been hitherto impossible to obtain a statement of medical taxes for this year.

Table LI.-Yield of Loffoden fishery.

Table LII shows the combined yield of the different fish products since 1873. The yield of fish in millions will be seen to correspond nearly with the number of thonsand barrels of roe. This year the inspection estimates 34 per cent. more roe proportionally than for the preceding year. How far 1870 has been exceptional, or the estimate of the inspection has been erroneons, can, however, not be determined until the close of the year.

Table LII.

Year.	Total.	Yield of Loffoden fishery, including the fishing after April 14.						
		Embracing-		Heads.	Roe.	Oil.		Value in million crowns.
		Split cod.	Dried cod.			Medicinal.	Other oil.	
	Millions.				1,000 barrels.			
1872.	18.2	10.7	7.5	4.7	19	0.7	33	5.1
1873..	19.5	12.4		4.8	18	0.5		6. 0
1874.	16.0	10.9	5.1	5.5	15	0.4	27	5.1
1876.	23.2	15.5 18.0	7.7 5.5	14.5 13.5	${ }_{24}$	0.9	35	7.2
1877.	29.5	25.3	4.2	15.0	29	4.4	36	8.8
1878.			3.7	18.0		3.0		
1879.	25.3	21.6	3.7	21.0	26	2.7	36	6.0

Table LIII gives the yield of the rest of the fisheries in the districts of Nordland and Tromsö. The fact that the quantity of oil in 1879 was twice as great as in 1876 , though the yield of fish from the summer and antumn fisheries was the same, is due, in part, to the circumstance that the home consumption of fish in 1879, because of the unsuccessful herring fishery, was cousiderably greater, which, as a matter of course, has had its influence on the quantity exported; and in part to the very small fishery at Finmark in 1876, which again affected the export of oil from Tromsö, some of whose fishermen bring home livers. This and the prec ding table I have worked out trom a critical examination of the diflerent fishery reports, and I believe that even if there be found some errors of judgment, the statements may be regarded as tolerably correct in the main features and in relation to the amonnt of the different items.

Thale LiII.

Yield of the fisheries in Nordland and Tromsio districts, excluding the Loftoden tishery.

Winter and spriug fishery.

Table LIV shows the inspector's statement of fish, roe, livers, and medicinal oil at the close of each week, also the number of fishing days. In the quantity of liver is not included that portion which is used in the manufacture of medicinal oil. Only a day on which there is tishing throughout the Loffoden Islands is considered an entire fishing day. The best yield in proportion to the number of fishing days and the size of the fieet was during the week from March 7 to March 13 (the most fish taken); the next best was in the week from March 14 to March 20. In January and February there were caught $6,000,000$ (22.7 per cent.); in March, $18,500,000$ (69.8 per cent.) ; and in April, 2,000,000 (7.5 per cent.). The number of fishing days from January 11 to April 14 made ap 59 per cent. of the whole time.

Table LIV.- Heckly statement of the yiteld.

Werk ending	1,000 fish.			1,000 barrels.			Fishing-days.	
	Total catch.	Salted.	Weok's cateb.	Liver.	$\begin{array}{\|} \text { Medicinal } \\ \text { oil. } \end{array}$	Roe.	Whole.	Part.
January . 17	100						5	
94	150	-.......	50				1	
31	170		20					1
February - 7	509		330	1. 6		1.4	1	3
14	1,600	-----	1,100	5. 0	0.9	3.7	3	2
$\because 1$ 28	3,000		1,400	9.1	0.4	7. 2	1	4
March $\quad \begin{array}{r}28 \\ 6\end{array}$	6,000		3,000	18.0	1.0	14.0	4	1
March ... 6	9,250	6,000	3, 250	35.0	1.5	20.5	2	3
$\begin{array}{r}13 \\ 20 \\ \hline\end{array}$	13,250	9,750	4,000	36.0	2.0	26.5		4
20 27	22,500	18, 250	8,750	54.5	2.5	34.0	6	
April $\begin{array}{r}27 \\ 3\end{array}$	23,500	19,750	1,500	57.0	3.0	34.5	1	2
April … $\begin{array}{r}3 \\ \\ \\ \\ \\ \\ \\ \\ \hline\end{array}$	24,500	20, 750	1,000	59.0		35. 0	1	1
	$\because 6,000$ 26,500	22, 250	1,500	62.0	3.1		4	3
	26,500	22, 750	500	63.0			2	1
				Oil, 41.0			31	25

Table LV shows the yield of fish, liver, medicinal oil, roe, and heads ased for the manufacture of guano in the different inspection districts.

Table LV.-Distribution of the catch by inspection distriets.

Inspection district.	1,000 fish.				1,000 barrels.			
	Total.	Salted.		$\begin{aligned} & \text { Dried } \\ & \text { fish. } \end{aligned}$	$\frac{\square}{4}$		¢	
		Ashore.	At sea.					
Skroven*	2,050	280	1, 670	100	4.9	0.350	1.8	1.5
Svolvær.	4,000	390	3,400	210	8.9	0.330	3.4	2.5
Vaagene	4, 500	410	3, 980	110	9.6	0.815	3. 3	3.2
Hopen Henningsve	3,250 4,400	520	$\stackrel{2}{2,660}$	70	6.8		3.8	2.2
Stamsund.	4,400 2,570	540 640	3,360 1,650	500 280	10.3	${ }_{0}^{0.800}$	8.5	3.7
Ure.......	2, 710	640 150	1, 650	280 200	7.2	0.670	4.0 1.4	2.0
Balstad	1,820	110	1, 030	680	4.2	0. 100	3.3	1.5
Sörvaagent	3,200	290	1,310	1,600	9.2		5. 5	1.5
Total.	26,500	3,330	19,420	3,750	63.0	3. 065	35.0	18.3
* Amount for Ostuæsfjord	1,230	110	930	190	2.8		1.2	
Amount for Nufsfjord.	580	60	330	190	1.8		0.8	

Table LVI gives the catch of fish by the different methods.
Table LVI.-Field by the different methods.

| Inspection district. |
| :---: | :---: |

Table LVII shows the proportion between the different kinds of fishermen and the yield of the methods in the last five years. In the last three years the use of lines has given proportionally the best vield. A eomparison of the last nine years shows that the use of lines has given the most certain yield, since there were only two years- 1876 and 1877 -wherein the catch was proportionally small in relation to the number of line-fishermen, while the use of nets has furnished a relatively small yield in six of the nine years.

Table LVII.

Table LVIII shows the yield of the guano factories in the last five years. This year a factory was erected with English capital in Brettesnes, while the Norwegian fish-guano company (Lerosen factory) was dissolved.

Table LViII.

Year.	Yield of guano factories.					
	Sauöen.	Lerosen.	Lyngvær.		Total.	Heads consumed.
			Guano.	Fish meal.		
	Sacks of 200 pounds.			2-pound packages.	200 -pound sacks.	Millions.
1875	11,650	8,000	4, 000			
1877	10,000 9	9,960	3,100	1,900	23,060	14.0
1878.	$\begin{array}{r}9,880 \\ 13,500 \\ \hline\end{array}$	8,630 6,150	4,080	2, 420	22,560	13.7
1879	13, 1600	6,150 7,600	$\stackrel{\text { 2, }}{2}$, 340	1,200 1,500	21, 869	13.2
Average					20,640	16.0
Average	12,350	8,070	3,140		23,550	10 B

Of medicinal oil manufactories there are now two in Skroven, one in Svolvaer, two in Kabelvaag, two in Henningswar, and one in each of the stations Stamsund, Stene, and Balstad. Altogether they can utilize about 500 barrels of livers daily.

For consumption during the fishery are used 750,000 fish. For use at home fully 250,000 are sent. This million is not included in the foregoing statement.

According to the statement of the treasurer of the medical fund, the medical taxes for 1879 amometed, in the comnties of Norland and Tromsö, to $95,129.33$ crowns ($\$ 25,494.65$), divided as follows:

187,977 times 120 split cod, $22,521,240$ fish..	$\begin{aligned} & \text { Crowns. } \\ & 25,023.60 \end{aligned}$	$\begin{aligned} & \text { Dollars. } \\ & 6,70632 \end{aligned}$
26,370 vogs of salted fish in vessel	293.00	7852
715,013 vogs of dried cod,* 19,386,351 fish. .	2:',933. 77	6, 41425
271,706 barrels herring.	18, 113. 73	4,854 48
597 barrels other salted fish	39.80	1067
64,898 barrels oil.	2-, 959. 20	6,957 06
35,325 barrels roe	1, -76. 23	47335
	95, 129.33	$25,494 \cdot 65$

For bait it is estimated that there were consumed 16,000 barrels of salted and 40 barrels of fresh herring, 8,000 barrels of cuttle fish, and 1,300 barrels of mussels, the combined value of which was 400,000 crowns (\$107,2(0).

The aggregate gross yield of the Loffoden fishery is worth a little over 5,500,000 crowns ($\$ 1,474,000$).

Table LIX gives the average share which has generally fallen to the different methods of fishing, also the greatest share, as far as known to the inspection officers. The average share was 200 crowns ($\$ 53.60$).

[^80]The average was, in 1874,270 crowns $=\$ 72.36$; in 1875,390 crowns $=$ $\$ 104.52$; in 1876,305 crowns $=\$ 81.74$; in 1877,410 crowns $=\$ 109.88$; in 1878,300 crowns $=\$ 80.40$; and in 1879,240 crowns $=\$ 64.32$.

Wages of hired men were from 100 to $1 \because 0$ crowns ($\$ 26.50$ to $\$ 3.16$) and expenses. In East Loffoden they were oceasionally reduced to so crowns (\$21.44).

Table Lix.

Luspection district.	A verage share.			Highest share.		
Skroven	\$64 32	W18 ${ }^{2} 4$	\$2680			
Svolvier ..	5360 75 04		3752 3216	$\$ 9948$ 16080	$\$ 85$ 5360 60	\$533 60
Vaagene.....	7504 6432	4824	${ }_{34} 81$	13480	10720	\$38 60
Mореи........	5360	4288	3216	10720	8576	
Stamsund St.	5896	5623		115	6968	
Ure	4884	4556 6968	7504	8040	
Balstad...	6968 8040	69 72 76			10720	
Nufsfiord.	8504	7504		9380	14204	
Rund.	8040			81812	107% 125 120	
Sürvagen .		7504			112 56	
Moskenes...	5896	8040		6161	12596	

The loss of implements has been distinctly smaller than last year, especially so far as mets are concerned. In Skoven only one link was lost, and in Mopen ten to twelve, while, on the other hand, an individnal in Kabelvaag has lost two settings. The loss of limes has been proportionally greater in Henningsvaer and Balstad. The loss is everywhere attributed to a current, which set west ward with umasmal strength in the latter half of February. In the beginning of Mareh it set eastward. From many places comes the complant that the implements are too lighty weighted, both lines and nets, and at desire bas been expressed that the law-making power should interfere. In order that the weights, which are at present insumidient, may be satisfactory they must be so heary as to materially inerease the labor of the ordinary daty business, so that it is donbtful how far they will secme any eorresponding advantage. There was at one time an association in Stamsund whose members pledged themselves to use anchor-stones of a fixed weight; but, so far as I remember, it existed only one year, and I am not aware that the experiment was repeated.

Of thating implements floating lines were used exceptionally in Lant Loffoden and more commonly than before in West Loffoden. Floating nets were used only a little westward of Storvatgen, and then mets floated under water were always employed. Wastward nearly one fourth of the men used surface-floating nets.

The Loffoden fishery this year has been next to the greatest known,
as the number of fish canght was at least $27,500,000$, including what were used during the fishing and carried in for use at home. It exceeds the catch of the preceding year ly one million, and is ouly a little over a million less than the catch of the rich year of 1875, when the yield to April 14, was $28,750,000$. For individual fishermen, on the contrary, the yield was smatler than in any preceding year since 1869 , if we except 1869. The arerage catch, excluding what was used during the fishing or at home, was 970 cod for each fisherman, or 100 fish fewer than the average from 1869 to 1.79 , both inclusive, while the average price, 20.8 öre for a round fish, is smaller than at any time during the period named. In order that the fishermen, at the prices of the year, should have a net profit of 100 crowns ($\$ 26.80$), the catch should have been somewhat over six millions greater, or $33,600,000 \mathrm{in}$ all.

Table LX shows how the gross expenses of the fishery, $5,500,000$ crowns ($\$ 1,474,000$), were divided among the different items of expense.

Table LX.

The costs are divided as follows: For implements, $2,010,000$ crowns, or $: 36.5$ per cent.; personal expenses of fishermen during the fishery, $2,070,000$ arowns, or 37.5 per cent.; and only one-tourth part, $1,440,000$ crowns, or 26 per cent, remains for the support of the family and other expenses at home, partly during and partly outside of the fishing season.

The course of the fishery was, in the main, as follows: As early as the begimning of January a considerable number of cod appeared to be present from Vaageu westward, particularly at Stamsund and westward from Sund. Fishing was carried on, however, by several resident fishermen. In the middle of January 900 boats had arrived; but bad weather almost totally prevented work for the rest of the month and during the early part of February. From the middle of February to the 9th of March was the height of the fishing season from Henningsvær westward, and the fishing was partly good from February 24 to March 4, while it was poor eastward, except at Hopen February 27 and 28 and March 1, when it also became to some extent good here, especially with
trawl-lines. On the Sth of March exceptionally good fishing began at all stations from Hopen eastward to and including Östnresfjord; westward there was good fishing, also, everywhere until the 10th, when it became poor at stations from Balstad westward; at the remaining stations the good fishing continued until the 10th, after which date it was poor everywhere. In East Loffoden there was an especially good fishery from March 14 to the 20 th, during which week $8,750,000$ fish were taken, the largest week's catch known to have been made. The East Loffoden fishing closed, so far as Östursfjord is concerned, on the 20th, and at the remaining stations abont a week later. At the close of March fishing began again to be sufficiently good, though irregular, from Hewningsvier westward. It was, however, not permanent, except at the first-named station and in the region from Sund westward, where it was quite good even until the middle of April.

A peculiarity of this year's tishery was that the cod almost from the beginning remained near the shore; besides, they were found mear the surface, and most of the fishing was done at depths of 30 to 40 tathoms, and sometimes less. Their presence in not inconsiderable numbers was proven, also, in many places inside the reef, where they ordinarily seldom appear, as at Islandingen, near Sund, and in varions coves of Buksnasfjord. On a voyage from Stamsund to Babberg Islands, on March 17, the inspection employés observed in many places, where the depth allowed the bottom to be seen, fish as large as cod, all of which were moving northward and towards the land.

Table LXI gives the percentage of fishing days on which there has been good fishing in the different inspection districts.
'Table LXI ${ }^{\prime}$.

Per cent. of good fishing days from January 16 to April 12.

* Not used fiom the middle of March.
\dagger Little nsed.
The course of the fishery this year appeas at first view to indicate a movement of the sehools of fish first from east to west, then from west to east, and finally again from east to west, since the fishing, which was
tolerably good everywhere in the first half of February, was so in the second half and until March 8, almost exclusively from Henningsvæer westward; later, on the contrary, and until the close of the month, that is, from the 15 th, almost entirely from Hopen eastward. The following facts, however, antagonize this opinion :

1. Fishing began at all the easterly stations on the same day.

2 . It continued in West Lofforlen with a good yield many days after it had begun in East Loffoden.
3. It closed in West Loffoden at the same time at the majority of the stations.

If there was a marked advance from west to east this should have been shown by an increased fishery from west to east, if only for a short time. Of course from March 4 to the 14 th there was no common fishing day, and four whole days were spent ashore, the 6th, 7th, 9th, and 13th, so that it was difficult to follow the course of the fisbery. An advance should, moreover, have secured an exceptionally good catch for the implements employed; but this was not so marked as to be conclusive. No relation betweer the fishing at the different stations, therefore, can be shown this year with certainty. In order to reach a conclusion, if possible, in the future, I shall continue the detailed records of the fishery which I begun in 1878. In the following table is given a syoopsis of the course of the fishery during the last three years:

Table LXI b.

Time.	1878.	1879.	1880.
First half of Febrnary.	Eastward of Henningsvær, to and including Svolvier, Raftsundet.	Henningsrar to Balstad.	Westward of Sund. Ordinarily quite grood lino fishing everywhere.
Second half of February.	Eastward of Henuings. vaer, to and including Svolver.	Henningsvar to Stamsund, and part of Skroven.	Westward of Hennings. ver.
First half of March	Ure to Hopen.	Good fishing every. where.	To the 8th, westward of Henningsver; from the 8th, eastward of Hopen, to and including Ostnæesfjord.
Second half of March ..	Balstad to Vaagen	Westward of Hen. ningsvær.	Eastward of Hopen, to and including Ostnæstjord.
April	Westward of Stamsund.	Westward of Balstad	Henmingsvar, and westward of Sund.

Since the conditious in Raftsundet, Östnæsfjorden and Gimsöströmmeu appear to be, in a measure, similar, I have examined the fishery in these places of late years, as far as there was any to investigate, when I have had the materials to work upon. From the following table it will be seen, meanwhile, that there is no regularity here, as one year there may be fishing in all of the three places, lluring another year in only one of them. As is well known, all experienced fishermen have fixed signs by which they believe they can foretell the course of the fishery. Though such rules of experience are generally based only on observations within an extremely limited circle, they may possibly have some valne, wherefore I seek, as far as possible, to confirm their correctness or incorrectness.

Table LXI c.

Year.	Condition of the fishery.		
	Raftsundet.	Östnæsfjorden.	Gimsöströmmen
1866	Quite good during the first half of March.	Excellent from the end of February to the end of March.	
1868.	Almost nothing taken	Good fishing from the end of February to the end of March.	Excellent from the Ith to the 28th of Marsk.
1875 ...	Excellent fishing from the middle of February to		Small fishery.
${ }^{\circ} 1876$	Good, partly excellent, about	Small in February .	Nothing takers.
1877.	Good, partly excellent, from the 5th of March to the beginning of April.	Partly good line fishing during the last half of March.	Quite good in the maidiale or March, espocially fom Stamsumi.
1878	Quite gool about the middle of February.	Small line fishery in the middle of March.	Good, partly excellezt, fish ing some days in the earl part and middle of March.
1879.	Nothing caught.	Almost nothing taken	Good, partly excellen $\hat{6}$, δ day from the middle of Mareh.
1880	do	Excellent fishing from the 8th to the 20th of March.	Good, partly scellezt at the close of February and the beninning of Maish.

Comparing the catch of each fisherman for some years past, we find the following averages:

Cod to eacluman.

In 1871...... 1,000

In 1873. 1,130
In 1874 .

In 1876 ... 1,080
In $1877 \ldots .$. 1,310
In $1878 . .$. 1,090
In $1879 . .$. 980
In 1880 . 940
An average of 1,060 cod to each man.
The difference between the highest and lowest catch was 490 cod.
From this number, however, we cannot draw any couclusion, as the place where the fishing was done, the number of fishing days, the time at which these days fell, and the time of the arrival of the fleet have considerable influence upon the eatch, and the data are accurately determined for the last four years only. Of really excellent fishery years there appear to have been only two during this twelve sears period, 1875 and 1875 ; and of poor years there were also two, 1869 and 185.4.

The fishing at the different stations was as follows:
Brettesnces.-Here there was no fishing.
Skroven.-Inner side (east side). In February there was, in part, sa good catch here with nets as well as with lines. There appears, however, to have beeu no important fishery. West side. In January the S. Mis. $110-38$
fishing was exceedingly small. In February and in the beginning of March it was irregular and light except with trawl-lines during the second and third weeks of February, when these implements brought good and occasionally even excellent results. From the 10th of March to the 22d, on the other hand, the fishing was exceptionally good for all of the implements. At the close of the month it declined, and in April it was poor. The principal fishing this year was at "Höla."

Svolvcer.-Trawl-lines were first used December 30, and were hauled on the day following with a catch of 13 cod. The next attempt was made January 10 by three boats, which took 2,8 , and 11 cod respectively. At the close of January the catch amounted to 100 for each boat employed. In February and March the trawl-line fishing was irregular and light as a rule until the 8th, from which time it was uniform and good, sometimes excellent, almost to the close of the month. In April it was light again.

Nets were first used February 9. They were set on the 11th, and caught from 100 to 400 . On the 12th the catch of nets set at night was from 100 to 700 . If we except the 19 th , when nets set at night exceptionally took 800 , the fishery was irregular and light until March 8th, from which time it was excellent until the close of the month.

Deep-bait and day-line fishing were poor during the whole time except from the 8 th to the 31st of March, when the boats frequently got two or three loads daily.

Östnasfjorden.-Here the fish were found in January as well as in February, and were caught at Langestrand, even in quite large numbers, in the second week of February, especially with day lines. At the close of February and in the beginning of March the fishing was extremels uncertain until the 8th, at which date it became excellent, and continued so until the 20tin, when it suddenly ceased. Thus on the 19 th the catch in nets amounted to 2,000 , and on night lines, 600 ; on the 20th these implements caught 900 and 80 respectively. The 21st was Sunday. On the 22d the fishing was extremely uncertain; on the 23d the nets and day lines were not once attempted, and the catch on trawl-lines was from none to 15.

Although the fish disappeared suddenly from Östnæsfjord, they remained in the neighboring district of Svolvær eight days longer; since as late as the 27 th as many as 1,200 were caught in nets set at night, and as many as 400 on trawl-lines. The 28th and 29 th were holidays. On the 30th the fish here, also, suddenly disappeared; the catch in nets set at night was from 5 to 50 . As usual, there were some herring in the fjord.

Vaagene.-The lines set at night, six in number, were hauled for the first time on the 9 th of January, and took from 50 to 150 cod per boat. In the first half of February this fishery became, towards the close, irregular, but quite good. Later it was poor until March 8, from which date boats as a rule returned with full loads until the close of the month. In April again it was poor.

Nets were first used January 16 by four boats, which caught 100 cod. In February there was occasional goorl sea weather, as on the 7 th, when the average catch was 300 , and from the 14 th to the 21st. During the remaining time the fishing was poor, except from March 8 to the 21st, when it became good-in part excellent. On the last-named day the nets took as high as 1,400; on the next sea-going day, April 5,50-1,200, being an average of 300 ; on the 6 th, on the contrary, from none to 150 .

The deep-bait and day-line fishing in February were somewhat better than in the districts previously named. In the plentiful period, from March 8 to 31, there were, howerer, some days, for instance, the 20th, 27 th, and 31 st, on which the fishing with this apparatus was poor, though the other implements did well.

Hopen.-Trawl-lines were first used on the 7 th of January with a catch of 100 cod. During the rest of the month the catch varied from 20 and 30 to 150 . From the 6th of February to the end of March, the trawl-line fishing was uniformly good, often excellent, if we except certain days in the beginning of the last-named month. Thus on the first of March the average catch was 350 fish; from the second to the fourth, on the contrary, only from 70 to 100 , whereupon the fishing became uniformly good again, sometimes excellent.

Four nets were first used January 22, and took from 8 to 150 fish. In January and the first half of February the fishing was irregular, mostly poor; during the rest of the month, on the other hand, though generally irregular, it was mostly good. From March 8 to 31 it was uniformly good, though not so excellent as in the more easterly stations.

Deep-bait and day-line fishing, with occasional short interruptions, were next best from the middle of February to the close of March.

The rare occurrence on January 30 is stated of a great school of large and small coal-fish (Merlangus carbonarius) inside of "Bikja."

Henningsvar.-Four lines were set for the first time January 8. They were hauled on the 10 th , when the highest catch was 150. In February the fishing increased and continued uniformly good, especially at the close of the month, until the middle of March, whereupon it became irregular, mostly poor. In April it increased again, and remained quite good until the middle of the month, when it ceased.

Nets were hauled for the first time, January 22, with a catch of $40 \operatorname{cod}$; the second time, January 28, with a catch of 250 cod. As the line fishing increased in February, so also did the net fishing, but the latter was more uniform. The best fishing occurred at the end of February and in the beginning of March. From the middle of March to the close of the fishery it was, with some exceptions, rather irregular and mostly poor.

Day-line and deep bait fishing became good, sometimes very good, at the end of February and the beginning of March. The rest of the time they were poor, and ceased in some places entirely from the middle of March, when the majority of the boats shifted eastward.

Gimsöströmmen.-Fishing was good here from the middle of Feb-
ruary until near the middle of March, sometimes excellent during certain days at the beginning and end of the months named.

Stamsund.-Four lines set at night were hauled for the first time, January 10, near shore with a catch of 30 to 80 cod. During the four sea-going days which occurred in the week between the 11th and the 17th of January, the catch was uniformly good, up to 300 per boat. Between the end of January and the middle of February there were nearly two days of poor fishing; from the middle it remained good until towards the middle of March. Later it was irregular and poor.

Nets (set two or three nights) were first hauled January 17, and they took from 300 to 950 cod. If we except the close of the second week of February, this mode of fishing was good until the middle of March, whereupon it becane poor, and so remained for the rest of the fishery.

Deep-bait fishing was good at the end of February and the beginning of March.

Ure.-Lines (set at night) were hauled first on the 8th of January with a yield of 40 to 50 cod, which catch on the following week increased to about 100 on two to three tubs of trawl. From the beginning of February to the middle of March fishing was uniformly good; later, with the exception of a couple of days at the close of the last-named month, on the contrary, it was poor.

One net set January 28 was first lifted February 4 and caught 12 cod. On the 5th two boats hauled one which was set at night, and they took 8 and 13 , respectively. From February the fishing was nearly as in Stamsund, and likewise here during the last week of February and the early part of March it was excellent.

Day lines, which went into use in the beginning of March, did well until the middle of the month.

Balstad.-In the second week of February line fishing was variable and poor, but after that quite good until the middle of March. At the close of this month and in the beginning of April there was some good sea going weather also.

Net fishing begun with March and then became quite good, and for a few days even very good, until the middle of the month.

In the middle of February cod were observed iu Buksnæsfjord, as the native fishermen canght on uight lines as well as day lines from 5 . to 30 fish. There was no fleet up there, however, before the middle of March. Nets and lines set on the 16th in Gravdal Bay and Gjerstad Cove were hauled on the following day with a catch of 100 to 150 . On the 18th the fishing was quite good, especially with nets, but extremely variable. On the 19 th and 20th many fishermen gathered and succeeded well with nets-on the 20th exceedingly well even with day lines, while the night-line fishery was small. On the 22d the fishing was ended. Since small herring were seen at the same time in the fjord, the cod are supposed to have followed them. The cause of this fishery can hardly be ascribed exclusively to the herring, since these were present in large schools as well before the cod appeared in any
abundance as after the close of the fishing. The fishing took place in from 16 to 30 fathoms of water.

Sund.-Lines were first used January 6, and caught from 50 to 100 cod. Later the fishing was done farther in, and the catch here appeared to be somewhat more uniform. In February and until March 11 the fishing was evenly good; later it was poor, until the close of the mouth, when it again became good. In April it was variable, mainly good, until the 9 th, when it began to be small.

Nets were first used by two boats January 28, with a catch of 200 cod. After that this fishery became about like the line fishery.

On the 6th of March fish were observed at "Islændingen" (the lower part of Sundströmmen). In the following week fishing was carried on here by all kinds of implements; but the catch was extremely irregular, because the weather was unfavorable to the business.

Sörvaagen.-Trawl-line fishing here was somewhat better, net fishing somewhat smaller, than at Sund.

Table LXII shows the catch at the remaining cod fisheries which were of any importance.

Table LXII.

*Oil.
$t 4,500$ barrels of this was medicinal oil.
Table LXIII gives the yield of the winter and spring fisheries for the last five years, and the aggregate export, reckoning 50 fish to the hun-dred-weight of split cod and 75 of dried cod.

Table LXIII.
[In millions.]

Tables LXIV to LXXII show the export of cod from Norway, Can. ada, St. John's (Newfoundland), the United States, Iceland, France, Scotland, and Holland from 1872 to 1878. Thus from the fish-exporting places returns are wanting from St. Pierre and Miquelon (Newfoundland) and the Faroe Islands only.

In the report for last year the export from Canada in 1876 is erroneously stated.
In the United States the fiscal year is reckoned from July 1 to June 30. In the other places, on the contrary, from January 1 to December 31 .

In the Scotch fishery statistics it is not stated specially to what country the export was made. After comparing it with the English trade statistics, I believe that I have committed no important error in stating that the export to "the continent" went exclusively to Spain, and that to "places outside of Europe" to the British West Indies.

For Iceland, no official statistics are known to me, and I have taken as the basis of my calculation the export to Denmark and statements from a private iudividual for 1878 and 1879. According to an article by Hen. M. Lindeman, in Dr. A. Petermann's Mittheilungen, 60th part, the total export was:

	Split cod.	Dried cod.
1873.	Pounds. $6,500,000$	Pounds. $230,000$
1874.	8, 700, 000	270, 000
1875	5,900, 000	190, 000

My estimate was too high.*

[^81]Nor am I in possession of any official statistics for the Faroe Islands. According to the author named above, the export was-

	Split cod.	Dried coll.
1868.	Pounds. $1,700,000$	Pounds. 150,000
	2, 200, 000	170, 000
1871.	$3,700,000$ $3,300,000$	140,000 30,000
1872.	2, 900,000	20, 000
1873.	2,900, 000	80,000
Average	2,780, 000	100, 000

or not quite one and one-half million fish $(1,465,000)$ yearly, one-third of which were shipped to Denmark.

From Belgium was carried on a not unimportant bank fishery in the North Sea, though of late years not to the same extent as formerly. The catch, which for the most part was consumed within the country itself, was-

	Barrels.
In 1872.	10,400
In 1873	11,500
In 1874.	11, 300
Iu 1875	9, 700
In 1876	9, 200
In 1877	9, 400
In 1878.	9,200
In 1879	7, 600

An average of 9,800 barrels, or about oue-half million fish yearly.
The export from Newfoundland must be greater than is given in the tables from St. John's. According to a statement received during the negotiations on the occasion of the fishery treaty between the Uuited States and Canada the amount exported from the region extending from the Rameau Islands to Cape Race, and therefrom northward to Twillingate, was, in

> Quintals.

1868 829, 000

1869
791, 000

1870
915, 000

1871
928, 000

1872

847, 000

1873 ... 983,000
1874
1, 183, 000
An average of 925,000 quintals. For the last three years the arerage was $1,004,000$ quintals, or $102,400,000$ pounds, while the export from St. John's for the same time is given by the Commercial Journal as $76,300,000$ pounds; the difference, $26,100,000$ pounds, must have been sent out from other places on the coast. Since this discrepancy is considerable, and since Newfoundland competes with Norway in the English, Spanish, Portuguese, and Italian markets, the accuracy of the statement has considerable importance for Norwegian exporters, wherefore I veu-
ture to ask that inquiry may be made through the consulate as to whether and to what extent there is opportunity to obtain statements of New foundland's total export.

According to French reports the participation of St. Pierre and Miquelon in the Newfoundland fishery has increased not inconsiderably. I have, however, seen no report of the amount exported, wherefore I venture to beg that information in this respect may also be procured, iso far as these places are concerned, through the consulate in Quebec.

The yield of the French fisheries is, for the greatest portion of the :amounts given, from the weight of fish in salt. The bulk of the exported portion, however, is dried.

The yield of the fishery of the United States for 1876 and 1879 is stated to be only one-half that of the two preceding years. To judge from the number of incoming fishing vessels the reports for 1876 and 1877 canmot be correct.

Table LXIV.
[Times 100,000 pounds.]

Whers to.	Export of split cod from Norway.								
	1872.	1873.	1874.	1875.	1876.	1877.	1878.	Average.	$1879 .$
Ereat Britain and Ireland.	24.0	16. 2	21.3	40.5	43.9	58.3	20.3	32.1	38.7
Hamburg and Bremen.	20.7	24.9	25.5	36. 2	33.1	66.1	63.6	38.6	62.1
Portugal	41. 2	27.1	16. 1	55.3	58.7	121. 7	146.6	66.7	105.4
Spais.	465.5	422.2	463.7	515.9	474.2	582.8	531.8	493.7	643.9
Italy and Austria...........	1.7	0.9	0.7	19.8	10.6	29.4	18.1	11.6	17.5
Holland --..................	0.7	1.0	0.2	0.7	0.7	1.0	0.4	07	0.5
West Indies	39.9	54.2	63.9	43.4	35.1	50.5	32.0	45.6	23.1
Brazil	13.1	10.9	5.9	19.5		3.9	3.2	8.1	
Dider countries	12.9	2.1	2.2	5.3	4.5	3.5	3.4	4.8	2.3 "
Total.................	619.7	559.5	599.5	736.6	660.8	917. 2	819.4	701.8	893.5
Million fish, estimating 50 ser lundred-weight.	31.0	28.0	29.8	36.8	33.0	45.9	41.0	35.1	44.7

*'To France 1.8; to Deamark 0.2.
Table LXV.
[Times 100,000 pounds.]

Where to.	Export of dried cod from Norway.								
	1872.	1873.	1874.	1875.	1876.	1877.	1878.	Average.	1879.
isweden	69.0	70.9	64.4	70.6	79.6	80.2	63.2	71.1	45.1
Denmark.-....-...........	3.9	4.8	9.1	7.5	5.2	8.5	7.9	6.7	1.7
Great Britair and Ireland.	6.1	3.8	4.1	5. 2	4.5	3.1	4.2	4.4	7. 2
Russia and Finland.	21.2	25.4	30.5	38.9	34.3	26.4	32.1	29.8	28.3
Tiermax perts on the Baltic.	0.8	1.9	2.6	1.4	1.0	1.0	2.0	1.5	0.9
Tambrirg and Bremen	3.3	4.8	4.1	7.0	6.0	6.1	6.0	5.3	13.1
Holland.	48.3	69.5	57.0	61.5	71.1	59.5	57.0	60.6	67.6
Belgiuma	15.9	$2 \geqslant .0$	19.9	24.4	18.9	21.6	14. 7	19.5	18.1
IFrance	1.0	3.3		3.3	3.0	4.7	4.3	2.8	2.0
:Spain	4.5	3.8	16.7	9.1	1. 2	6.1	12.6	7.7	7.6
Italy rad Austria	173.0	151.2	176.8	187.4	166.8	205.1	114.4	167.8	220.0
Tunibed States.		0.2	0.2	0.5	0.1	0.1	0.6	0.2	0.8
Wert radies	0.3	0.5	0.8	0.5	0.5	0.1	0.6	0.5	0.4
Cbina	2.6	5.2						1.1	
Otber countries	0.5	0.6	0.1	0.1	1.4	0.1	0.7	0.5	
Tetal...................	350.4	367.9	385.6	417.4	393.6	422.6	320.6	379.7	412.8
Million fisf, estimating 75 par hundred-weight.	26.3	27.6	28.9	31.3	29.5	31.7	24.0	28.5	30.9

Table LXVI.

[Times 100,000 pounds.]

Where to.	Export of split cod from Canada.								
	1872.	1873.	1874.	1875.	1876.	1877.	1878.	$\begin{aligned} & \text { Aver. } \\ & \text { age. } \end{aligned}$	1879.
Great Britain and Ireland.	21.9	26.5	32.7	20.1	10.7	17.9	18.0	21.1	40.1
Portugal	20.2	31.1	35.5	8.0	14.0	12.2	10.7	18.8	24.0
Spain	5.4	5.5						1.8	
Italy -	52.2	43.6	45.5	38.9	31.7	35.1	33.5	36.2	42.8
Anstria.................						2.3	2.3	0.2	2.3
United States	19.9	47.6	70.6	44.7	43.2	91.1	87.5	57.8	82.2
Newfoundland.				1.2	7.3	1.2	18.2	4.0	6.3
British West Indies.					${ }^{216.2}$	(263.2	[265.9		
Spanish West Indies					- 154.9	- 189.6	181.5		
French West Indies.:-					- 51.2	- 42.7	55.9		
Hollandish West Indies... Danish West Indies.	544.5	474.3	544.4	512.1	5 --...	¢ $\begin{aligned} & 0.1 \\ & 3.1\end{aligned}$		504.7	583.3. 7
Hayti					11.7	(3.3 .3	4.3		1.6
Guiana.			27.9		31.8	32.7	25.5	16.8	29.5
South America	39.3	28.8	36.7	44.1	59.0	71.8	78.4	51.3	68.6
Madeira.					3.0	6.4	3.4	1.8	0.3
Africa.					0.3	0.1			
Other countries	4.5	11.6	4.0	2.6	1.5			3.5	
Total.	707.9	690.6	797.3	671.7	641.9	776.8	790.0	725. 2	881, ${ }^{*}$
Million fish	35.4	34.5	39.9	33.6	32.1	38.8	39.5	36.3	44.1
Catch ...	41.0	44.9	40.7	38.1	42.3	41.6	46.0	42.1	57.3

* 315.6 of these in the first 6 months, 565.8 in the last 6 months.

Table LXVII.

[Times 100,000 pounds.]

Where to.	Split cod exported from St. John's.								
	1872.	1873.	1874.	1875.	1876.	1877.	1878.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$	1879.
Great Britain and Ireland -	24.5	47.7	42.3	24.9	24.9	43.0	39.4	35.4	48.3
Portugal	87.1	85.2	109.4	104.7	87.9	67.8	89.6	90.2	125.0
Spain.	180.8	236.2	229.6	134.5	156.6	112.4	79.5	160.4	138.1
Italy	10.1	13.7	49.0	25.9	27.3	22.7	30.3	25.6	43.2
United States	8.2	8.6	17.1	3.1	3.8	5.3	10.3	8.1	17.8
Canada	2.3	21.3	15.4	0.5	1.5		2.1	6.2	7.1
British West Indies	68.4	75.1	91.9	67.4	58.3	66.5	50.4	68.3	57.6
Brazil.	221.3	235.8	285. 5	244.5	204.7	265.1	242.0	242.7	346.6
Other countries	35.2	43.6	51.5	49.3	13.3	26.1	19.7	34.1	15.3
Total	637.9	767.2	884.7	654.8	578.3	609.0	563.3	670.7	799.0
Million fish, estimating 50 to a hundred-weight.	31.9	38.4	44.2	32.7	- 28.9	30.4	28.2	33.5	39.9

Table LXVIII.
[Times 100,000 pounds.]

Where to.	Export of dried and smoked cod from the United States.				
	1876.	1877.	1878.	Average.	1879.
Great Britain and Ireland		0.4	1.1		9.9
Hamburg		0.1			
Newfoundland and Labrador....	2.7	11.8	25.6		0.4
Canada.	21.3				18.6
West Indies					2.0
Honduras and British West	3.8				6.5
Indies.	5	1	17.0		
Danish West Indies..........	16.5 0.1	15.1	17.0		
Porto Rico.	\} 150.4 7.5	143.1	157.2		2.5 $5 \begin{aligned} & 3.6 \\ & 1.3\end{aligned}$
Hayti	(${ }^{\text {81.5 }}$	63.3	157.2 94.7		. 74.0
Cuba.	14.5.	18.9	7.3		25.7
French West Indies...	19.2	20.3	21.6		20.8
Hollandish West Indie	(19.1)	25.5	16.6		0.4
British Guiana.	1.2				0.9
Hollandish Guiana					15.7
Brazil.	0.3		0.3	0.2	0.5
South America.	1.0	1.8	1.4	1.4	11.0
Other countries		4.9	8.0	4.3	8.2
Total	178.0	161.9	193. 6	177.8	200.0
Million fish, estimating fifty to a	8.9	8.1	9.7	8.9	10.0
hundred-weight.					
Yield of the cod fisheries, in hundred-weights.	728	735.4	306.1		325.1
Number of fishing vessels arriving.		461	732		752
Draught in tons..................		19,000	26,700		29,900

Table LXIX.
[Times 100,000 pounds.]

Year.	Denmark-dried and dry-salted cod.						
	Imported.					Exported.	Consumed.
	Faroe Islands.	Iceland.	Greenland.	Other countries.	Total.		
1872	9.6	21.0	0.4	2.4	33.4	10.2	23.2
1873	8.3	19.7		5.2	33.2	9.2	24.0
1874	8. 1	22.8	0.3	6.7	37.9	12.6	25.3
1876.	13.9	18.0	0.5	3. 0	35.4	7.6	27.8
1877	10.5	35. 6		5. 5	51.6	13.9	37.7
	10.0	35.0					

Remark. In 1879 there was exported from Iceland 200,000 pounds of dried cod and $12,500,000$ pounds of split cod, to the following places:

Pounds.
Spain . 6,850,000
Copenhagen . 3, 650,000
Great Britain and Ireland . 2,000,000
$12,500,000$
From the Faroe Islands were exported in $18792,000,000$ pounds of split cod and 100,000 pounds of dried cod.

Table LXX．
［Times 100,000 pounds．］

Destination．	Salted and dried cod exported from France．							
	1872.	1873.	1874.	1875.	1876.	1877.	1878.	A rerage．
Great Britain and Ireland．．	0.1				0.5			0.1
		7.4		3.1	3.2		3.3	2.8
Italy and Austria	43.2	38.4		42.6	37.7	27.2	34.7	37.3
Algiers．．	7.1	9.8		7.1	9.7	10.6	12.0	9.4
Greece．	13.4	15.9		6． 8	11.0	3.8	10.3	10.2
Turkey and Egypt	6.8	6.4		4． 5	4.0	2.8	3.9	4.7
West Indies	0.3	8.5		1.0		5.7	1.6	2.8
South America	2.8	0.2						0.5
Other countries．	3.9	5.4		10.0	3.7	10.6	11.1	7.4
Total	65.6	92.0	114.0	75.1	69.8	60.7	76.9	79.2
Million fish，estimating 50 to a hundred－weight．	3.3	4.6	5.7	3.8	3.5	3.0	3.8	4.0
Yield：								
Dried．	148.0	127.8	123.2	858．0	101.0	83．1	673.4 81.8	605.2 107.4
Other products ．．．．．．．．．．．．．．．．	18.3	18.9	23.1	22.5	17.5	19.3	22.3	20.3
Total	782.2	814.9	728.9	667.6	667.6	691.7	777.5	732.9

TABle LXXI．
［Times 100,000 pounds．］

Year．	Split cod，exported from Scot－ land．				
	Destination．			Total．	
	寄	$\underset{\text { (Euxope.) }}{\text { The Continent }}$			
1872				53.6	
1873	38.4	23.1	8.6	70.1	
1874	30.3	21.3	9.4	61.0	4.5
1875	43.5	25.7	12.7	81.9	5.8
1876.	28.9	25.0	5.9	59.8	3.5
1877.	41.2	23.3	8.9	73.4	6.0
1878.	42.9	40.3	11.8	95.0	0.2
Average．．．．．．．．．．．．．．．．．．．．．．．．．	37.5	26.4	9.5	70.7	5.2
Millions of fish，estimating 50 per bundred－weight	1.9	1.3	0.5	3.5	．．．．

Table LXXII．
［Times 100,000 pounds．］

Year．	Cod，salted，in barrels，ex－ ported from Holland．			
	$\begin{aligned} & \text { 粡 } \\ & \text { 品 } \end{aligned}$	莭	E゙	
1872.	8.1	4.8	12.9	1.4
1873.	10.9	5.9	16.8	1.7
1874.	5.4	8.1	13.5	1.4
1875.	5.1	6． 5	11.6	1.4
1876.	10.6	8.3	18.9	1.4
1877.	10.8	8.7	19.5	1.7
1878.	6.7	5.3	12.0	1.4
Fish，Arerage estimating 17 per hundred－we	$\begin{array}{r} 8.2 \\ 139,400 \end{array}$	6.8 115,600	$\begin{array}{r} 15.0 \\ 255,000 \end{array}$	1.5

Table LXXIII contains a summary of the annual export. Including the Faroe Islauds, the total was $154,500,000$ yearly, of which $28,500,000$ was dried cod, and $126,000,000$ split cod. Of the whole amount, again, $75,000,000$ were caught in European and $79,500,000$ in American waters. The amount exported was greatest from Norway, $63,600,000$, or 41 per cent.; next from Canada, $36,300,000$, or $23 \frac{1}{2}$ per cent.; next from St. John's, $33,500,000$, or $21 \frac{3}{4}$ per cent.; next from United States, $6,800,000$, or $4 \frac{1}{2}$ per cent. ; next from Iceland, $5,000,000$, or $3 \frac{1}{4}$ per cent.; next from France, $4,000,000$, or $2 \frac{1}{2}$ per cent. ; next from Scotland, $3,500,000$, or $2 \frac{1}{4}$ per cent. ; next from Faroe Islands, $1,500,000$, or 1 per cent.; finally from Holland, 300,000 , or $\frac{1}{4}$ per cent.

Table LXXIII.

Where from.	Total export in millions.							
	1872.	1873.	1874.	1875.	1876.	1877.	1878.	Average.
Norway: Dried cod..	26.3	27.6	28.9	31.3	29.5	31.7	24.0	28.5
Split cod.	31.0	28.0	29.8	36.8	33.0	45.9	41.0	35.1
Canada	35.4	34.5	39.9	33.6	32.1	38.8	39.5	36.3
St. John's	31.9	38.4	44.2	32.7	28.9	30.4	28.2	33.5
United States	5. 0	5.0	5.0	6.1	8.9	8.1	9.7	6.8
Iceland	4.5	4.5	5.0	5.0	4.0	5. 6	5.6	5.0
Frauce	3. 3	4.6	5.7	3. 8	3.5	3. 0	3.8	4.0
Scotland	2.7	3.5	3.0	4.1	3. 0	3.7	4.7	3.5
Holland, barreled fish	0.2	0.3	0.2	0.2	0.3	0.3	0.2	0.3
Total split cod	114.0	118.8	132.8	122.3	113.7	135.8	132.7	124.5
Total of fish	140.9	146.4	161.7	153.6	143.2	167.5	156.7	153.0

Table LXXIV gives a summary by weight of the split cod imported, and Table LXXV by number. The amount of dried cod imported is stated in Table LXV. The importation of cod during the last seven years has varied as follows: In the West Indies, $4,900,000(35,300,000$ to $40,200,000)$; in Spain, $3,600,000$ ($35,500,000$ to $39,100,000$); in Brazil, $4,400,000(10,200,600$ to $14,600,000)$.

In Portugal, Germany, and Denmark the importation has been steadily increasing. In most other countries the amount consumed appears to be tolerably uniform year by year. When the amount imported exceeds the average one year, it falls below it during the next two. The considerable increase in the manufacture of split cod which has taken place in Loffoden of late years, namely, from $10,000,000$ to $11,000,000$ in the beginning of the seven-year period to donble that amount at the end of the period, exceeds by a couple of millions the difference between the lowest and the highest amount imported by the two countries (Spain and the West Iudies) which consume three-fifths of the split cod, and one-half of all the cod in other forms which come upon the market.

The exports have varied as follows: From Norway, dried cod, 7,700,000 $(24,000,000$ to $31,700,000)$; split cod, $17,900,000(28,000,000$ to $45,900,000)$; total, 22,000,000 (55,600,000 to $77,600,000)$. From Canada, 7,800,000
$(32,100,000$ to $39,900,000)$; from St. Johu's, $16,000,000(28,200,000$ to $44,200,000)$; from United States, $4,700,000(5,000,000$ to $9,700,000)$; from Iceland, $2,500,000(3,100,000$ to $5,600,000)$; from France, 2,700,000 (3,000,000 to 5,700,000); from Scotland, 2,000,000 (2,700,000 to 4,700,000); from various countries, $26,600,000(140,900,000$ to $167,500,000)$.

Table LXXIV.

Destination.	Total import (of split cod). Times 100,000 pounds.								
	1872.	1873.	1874.	1875.	1876.	1877.	1878.	Arer- age.	要会
West Indies.	751.1	714.7	803.6	751.0	705.6	780.7	765.5	753.2	37.7
Spain	732.7	754.4	772.6	746.2	711.0	781.5	717.9	745. 2	37.3
Brazil	234.4	246.7	291.4	264.0	205.0	269.0	245.5	250.9	12.5
Portural	148.5	143.4	161. 0	168.0	160.6	201.7	246.9	175.7	8.8
Great Britain and Ireland.	109.1	138.8	138.6	142.0	118.9	173.6	184.7	136.5	6.8
Italy and Austria	107.2	96.6	132.5	127.2	107.3	116.7	118.9	115.2	5.8
United States	28.1	56.2	87.7	47.8	47.0	96.4	97.8	65.9	3.3
South America	42.1	29.0	36.7	44.1	60.0	73.6	79.8	59.2	2.6
Germany - -	22.3	26.9	28.2	38.4	35.9	69.1	65.4	40.9	2.0
Denmark	30.6	28.0	30.9	35.4	31.9	, 46. 1	45.0	35.4	1.8
British Guiana			27.9		33.0	32. 7	25.5	29.8	1.5
Mediterranean	27.3	32.1	24.3	18.4	24.7	17.2	26.2	24.3	1.2
Cauada.	2.3	21.3	15.4	0.5	22.8	11.8	27.7	14.5	0.7
New foundland				1.2	10.0	1.2	18. 2	4.4	0.2
Other coantries	62.5	68.7	71.1	74.8	28.2	51.6	45.6	57.5	2.9
Tota	2298.2	2346.8	2621.9	2459.0	2301.9	2722.9	2660.6	2501.6	125.1
Millions of fish.	114.9	117.3	131.1	122.9	115.1	136.1	133.0	125.1

Table LXXV.
[Millions of fish.]

Country.	Total import (of split cod).							
	1872.	1873.	1874.	1875.	1876.	1877.	1878.	$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$
West Indies	37.6	35.7	40.2	37.6	35.3	39.0	38.2	37.7
Spain.	36.6	37.7	38.6	37.3	35.5	39.1	36. 0	37.3
Brazil...	11.7	12. 3	14.6	13.3	10.2	13.4	12. 3	12.5
Portugal	7.4	7.2	8. 0	8.4	8.0	10.1	12.3	8.8
Great Britain and Ireland	5.5	6.9	6.9	7.1	5.9	8.7	6. 7	6.8
Iialy and Austria.	5.4	4.8	6.6	6.4	5.4	5.8	5.9	5.8
United States.	1.4	2.8	4.4	2.4	2.3	4.8	4.9	3.3
South Anerica	2.0	1.4	1.8	2.2	3.0	3.7	4.0	2.6
Germany .	1.1	1.3	1.4	1.9	1.8	3.5	3.3	2.0
Denmark	1.5	1.4	1.5	1.5	1.6	2.3	2.2	1.8
British Guiana			1.4		1.6	1.6	1.3	1.5
Mediterranean		1. 6	1.2	0.9	1.2	0.9	1.3	1. 2
Canada.	0.1	1.1	0.8		1.1	0.6	1.4	0.7
Newfoundland.				0.1	0.5	0.1	0.9	0.2
Other countries	3.1	3.4	3.6	3.7	1.4	2.6	2.3	2.9
Total	114.8	117.6	131.0	122.7	114.8	136.2	133.0	125.1

Table LXXVI contains a summary of the total import. Of the whole quantity exported, $57,600,000$, or 37.4 per cent., went to America; $92,000,000$, or 59.9 per cent., to Europe ; and $4,000,000$, or 2.6 per cent., to unknown places.

The most important markets were: Spain, which receired $37,900,000$, or 24.7 per cent.; West Indies, which received $37,700,000$, or 24.5 per cent.; Italy and Austria, which received $18,400,000$, or 12 per cent.; Brazil, which received $12,500,000$, or 8.2 per cent.; Portugal, which received $8,800,000$, or 5.8 per cent.; Great Britain and Ireland, which received $7,200,000$, or 4.7 per cent.; Sweden, which received $5,300,000$, or 3.4 per cent.; Holland, which received $4,500,000$, or 2.9 per cent.

Table LXXVI.

I shall furnish, toward the close of the sear, to one of our newspapers, tables of export in 1879, just as I did last year. With these statistics, and a general abstract of the year's fisheries as a starting-point, one will have a tolerably accurate basis for judging the state of affairs in 1881. It will, therefore, be very useful if the consuls render, as soon as the fishery in a country ends, and also concerning the autumn cod fisheries, a short report on its results-that is to say, whether it has been unsuccessful, tolerably good, or good. According to the material which lies before us, the exports for 1879 will presumably exceed those of all preceding years. The effects hereof will be traced in 1881 , and, since the Norwegian fisheries have given an unusually good yield this year, the prospects of fair prices during the coming Loffoden fishing are not promising, even if the other fisheries should reach the results of an average year.

INDEX.

Page.
Cod, catch of, perman 61
dried $53,54,56,65-68,70-72$
exports and imports of 66-74
exports of, from Norway 68
movements of 58, 59, 60, 64
price of 51, 52
Cod fisheries, products of, in 1880 65
heads 51, 53, 54, 56
liver oil $.49-51,53,54,56,65$
roe 51-54, 56, 65
salted 65, 71
split. 71-73
trade of the world 72-74
Commercial journal 67
Copenhagen 70
Cost of fishery inspection 3
Currents 57
Cuttlefish, price of 51, 56
Davigen 19, 28
Day line fishery. 59, 63, 63, 64
Deaths 6, 7, 10, 38, 39
Deep-bait (hand-line) fishery......17-19, 22-24, 26,55, 57, 62-64
Deep-water fish 50
Denmark 67, 68, 70-74
Digermulen 13
Diseases among fishing popalation 6, 7, 8, 10
Donnæs 19, 28
Dverberg 19, 28, 65
Dyrö 19, 29
East Loffoden $13,37,49,57,59,60$
Easter holidays, fishing during 18
Education 5, 11, 12
Eger, O.Ch.Chr 2, 6
Egypt. 71
Eid 19, 28
England 66
Expenses of fisheries 3, 58
Export prices of fishery products 51,52
Exports, statistics of 66-72
Faroe Islands $66,67,70,72$
Farsund 31, 34
Fines 4, 5
Finmark $17,19,20,53,65,66$,
Fisheries, condition of, in $1880 . .17,19,23,25,26,35$$38,51,54,56,57,61-65$
fleet in .2, 17-20, 26, 30-34, 38-40
history of $21,23,25,26,30,32,38-41$,$49,52,53,56,60,61,67$
Fisherics, influence of temperature on ... 45-48
inspection of tho 1-6
Fshermen 4-12, 17-29, 38, 39
Fishery treaty 67

Page.
Moskenæs $2,11,26,28,38,57$
Movements of cod 58, 59, 60, 62
Mussels. 51,56
Nærö 19, 22, 28
Næsland 2, 26, 27, 34
Nasne 19, 21, 22, 25, 28
Namdalen 31, 32, 34, 65, 66
Namsos 28, 31, 32, 34
Nervous fever statisticsNet fishery 17, 19, 22-24, 50, 55, 57, 59, 62-65
Newfoundland $79,70,73$
Newfoundland 69, 70, 73
exports of cod from 66, 67
Night line fishery 62, 64
Nilssen, S 11 11
Nordland
Nordland $6,10,11,15,19,20,31,53,56,66$ $6,10,11,15,19,20,31,53,56,66$
Nordmöre 31, 34, 65, 66
Norway, export of cod from 67, 68, 72
Nufsfjord $2,11,12,27,28,33,34,39,57$
Öerne 26, 27, 34
Offenses.
6, 19, 29, 44
Ofoten (and Ofotfjord) 44
Öiestad, A
Öiestad, A 56
Oil manufactories
2
2
Olsen, H
Olsen, H
2, 6
2, 6
Ommundsen, H
Ommundsen, H 19, 28
örlandet 19, 28, 32, 34
Orskoug 19, 28
Örsnæs (anủ Oksnæs) 2, 26, 27, 28, 33, 65
Orsvaag 2, 26, 27, 28, 33
Östnæsfjord. 2, 12, 17, 26, 28, 33, 34,$39,45,47-49,50,59-61,62$
Östlofoten (East Loffoden) 48
Parelius, Marcus Hegge 5
Passenger vessels 32, 33
Pay of inspecting force 1
Peterman, A 66
Poor fund 5
Рорре, U. F. M 2,6
Portugal 67-69, 72-74
Postmasters, pay of 15
Preparation of fishery products 49-56, 65
Prices of bait 51
Prices of fishery products 50, 51-52
Products of fishery. 52-55
Pioducts of fishery for 1880 65
Products of fishery, per man 26, 27, 61
Raftsund iuspection district. 17
Raftsundet (and Raftsund)......26, 27, 33, 39, 60, 61
Rast Sound 16
Reading room 5, 11
Reine. $2,12,13,26,28,30,33,57$
hospital 9
inspection district 17
Religion 11, 12
Revers, O. S 11
Rissen 19, 28
Rode, E. 2, 6
Rödö (and Lö̈dii) 19, 21, 28, 65
Rokkouress, J. J 2
Romsdal 19, 20, 31, 32, 34, 65, 66
Röst 6, 9, 65
Rufsijord 26, 39
Pussia and Finland 68, 74
Salbath-breaking ${ }^{4}$
Sailors on tishing vessels 18, 10
Saint John's, export of cod from
Page.Saint Pierre66, 68
Saltdalen 19, 28
Salten.Sand19, 22, 29
Sand, A. J 2,6
Sandsund 2, 28
Schools 11
Schooners 31, 33
Schumacher, D. F 2, 6
Scotland $.66,71,72,73$
Season for fishery 58
Sellæg, Ch. A 6
Selö. 19, 28
Senjen 21, 22, 27, 34
Senjen and Tromsö $22,23,24,25,31,34$
Shipwrecks $7,38,39,40$
Sick, number of -
Skjærstad (and Skjerstad) 19, 25, 29
Skjervö (and Skærvö) 19, 29, 65
Skokkelvigöerne. 2, 28, 33, 48
Skroven11, 12, 13, 26, 27, 28, 30, 33, 35, 37, 39, 49,
$50,56,57$
fishery record 61-62
hospital 9
inspection district 2, 17
medical district 6, 9
Sloops. 31, 33
Smacks 31,33
Soggendal 19, 28
Söndhordland 34
Söndmöre 3, 65, 66
Sortland 19, 22, 28
Sörvaagan2,12, 13, 16, 26, 28, 30, 33, 37, 39, 41, 49,
50, 57
inspection district 2, 17
record of fisbery at 65
South America 69-71, 73, 74
Sparboen 19, 28
Stadsbygden 22, 25, 28
Stamuæs 19, 25, 28
South Helgeland 19, 21-25, 32
South Trondhjem 19, 21, 23, 24,2566, 67-74
Stamsund....11, 13, 25, 26, 28, 30, 33, 37-39, 45, 47, 48,
$49,50,56,57,59,60$
fishery record 64
inspection district 2, 6, 17
Stations, fishing 2
Statistics, note on 1
Statis'zes of apparatus $19,22,24,27,59$
bad weather 37, 38
chapel expenses and debts. 11
disease and mortality 6, 10
expenses and profits of fisheries 57,58
exports 66-72
fishermen $21,22,23,25,26,28$
guano factories 56
imports. 73, 74
industries dependent on fisher- ies 35, 36
inspecting force 2
judicial proceedings. 4, 5
marine disasters 39, 40
production... 20, 27 65, 63
telegraphic business 13, 14

Page.
Trondenæs 19, 22, 29, 65
Trondhjem $19,21-25,28,31,32,34$
Turkey 71
Tysfjorden 19, 29
United States 68-70, 72-74
cod fishery of 68
export of cod from 70
Ure $\ldots . .11,12,13,26,27-30,33,34,37,39,49,50,57,60$fishers record61
inspection district 6, 12, 17
Urebjerg 27, 28
Vaаденн... 11-13, 19, 23, 25, 27, 29, 30, 35, 37, 39, 49, 5057, 58, 60
inspection district 2,17
medical district 6, 9
record of fishery at 62, 63
Værdalen 19, 28, 32
Værö. 6, 65
Væro and Röst medical district 9
Vagrants 4
Valberg (and Balberg) $2,11,19,29,59$
Value of products $22,53,55$
Vardo 14, 15, 19, 29
Vefsen (and Vessen) 19, 25, 28
Vegö 19, 25, 28
Velfjorden 19, 28
Vessels. 2,30-34
Vesteraalen $14,15,19,21-25,30,31,32,34$
Vinnem, J 2
Wages 57
Weather record 37, 38
West Fjord 1, 16
West Indies 66, 68-71, 72, 73, 74
West Loffoden 37, 49, 57, 60
Whisky and wine, unlawful sale of 4
Wislöff, Th 2
Wound-varnish 8
Wrecks 38, 38
Yachts 31, 33
Ytteröen 19, 28

VI.-EXTRACTS FROM NORWEGIAN OFFICIAL STATISTICS OF FISHERIES F0R THE YEAR 1880.*

By Boye Strom, Clerk.

5
As the introduction to the fishery statistics for the year 1878 furnishes a full summary of the results of the Norwegian fishing industry during the decade from 1869 to 1878 , I shall on the present occasion confine myself to setting forth the most important data presented by the statistics for 1880 as compared with those of 1879 and with those of the above-named decade.

The total money value of the Norwegian coast fisheries, the fishing for home use excepted, on the basis of the prices paid at the fishing-stations in 1880 , was $22,579,000$ crowns [$\$ 6,051,172]$. In 1879 the yield was somewhat less, namely, $21,340,000$ crowns [$\$ 5,719,120]$, but in the decade from 1869 to 1878 the average annual yield was $23,211,000$ crowns [$\$ 6,220,548$].
The values here quoted, which represent the annual gross receipts which the industry has yielded the fishermen, are thus divided among the different kinds of fisheries:

Fisheries.	1880.		1879.		Average 1869-1878.	
	Value.	Per cent.	Value.	Per cent.	Value.	Per cent.
Cod	\$3, 360,452	55.5	\$3, 666, 776	64.1	\$3, 731, 096	60.1
Fatherring	1, 534, 568	25.4	1,038, 232	18. 1	1,008,484	16.2
Sprat and other small herr	138,288	2. 3	69,948	1.2	90,048 349,472	1.4
Great herring.	230, 748	3.8	210,380	3.7	349,472 272,556	6. 6 4.4
Mackerel . . .	186, 528	3.1	182, 508	3.2	194, 300	3.1
Summer fishing for polloc	388, 064	6.4	367, 428	6.5	406, 556	6.6
Galmon and sea trout	102, 378	1.7	90, 048	1.6	90, 048	1.4
Lobster.	108. 540	1.8	91, 656	1.6	75, 844	1.2
Oyster	1,608		2,144		2,144	
Total	6, 051, 172	100.0	5, 719, 120	100.0	6,220,548	100.0

Of the total money value in 1880 , the sum of $5,734,000$ crowns [$\$ 1,536,712$] was produced by the cod fishery in the Loffoden inspection district, which sum is a little less than the average result of this fishery, which may be estimated at about $6,500,000$ crowns [$\$ 1,742,000]$.

As regards the catch in numbers, the cod fisheries in 1880 furnished a total yield of $68,273,000$, which not only considerably exceeds the average of the above-named decade, this having been ouly $49,200,000$,

[^82]but even surpasses the catch of the year 1877, which, until now, was the largest known. The fishery in the Loffoden inspection district yielded $27,500,000$, while in $187926,300,000$ were caught there, and the average annual catch from 1869 to 1878 was about $21,800,000$, with, however, a maximum in 1877 of $28,400,000$. The fat herring fisheries, whick ever since 1876 have been decreasing, and which in 1879 did not yield more than 443,000 hectoliters [$1,257,012 \frac{1}{2}$ bushels], increased greatly in 1880 , and yielded not less than 720,000 hectoliters [2,043,000 bushels]. Of this amount 440,000 hectoliters [$1,248,500$ bushels] were taken in Loffoden and Vesteraalen inspection districts alone, and the great majority of these-about 420,000 hectoliters [$1,191,750$ bushels]-were caught in Eidstjord.

For information concerning the prices of tish at the fishing stations is given the following tabular synopsis:

	1880	1879	1869-78
Cod fisheries (excepting with capelin)................ . per 1,000 round fish..	\$58 96	\$65 39	\$84 is
Capelin fishery (for cod) .. do . ${ }^{\text {- }}$	3055	3725	5226
	214	233	\} 154
	64 375	54 236	$3 \quad 149$
Mackerel fishery per 1,000 round fish..	3243	3002	3082
Salmon and sea trout fishery-.................................per kilogramt..	29	28	
Lobster fishery per 1,000..	9005	8174	$\ddagger 7986$
Oyster fishery per hectoliter**.	670	616	

> * One hectoliter equals 2 bushels, 3.35 pecks, or 26.417 wine gallons. †One kilogram equals 2.2046 pounds avoirdupois. \ddagger In the years 1876 -'78.

The number of men engaged in the fisheries in 1880 was as follows: The capelin fishery (for cod) employed 17,084 men against 18,996 in 1879 , and 14,200 on the average during the years $1870-1878$. In the remaining cod fisheries 63,357 fishermen took part; the number in 1879 was 64,593 , and in the decade 1869-1878 the average was about 52,000 . In the fat herring fisheries 35,130 fishermen were engaged this year as against 32,476 in 1879. During the years $1876-78$, on the contrary, the number of these fishermen was as high as 41,000 .

The average catch which fell to each fisherman for the year 1880 , compared with 1879 , was as follows.

Fish yield.	Quantity per man.		Money value per man.	
	1880.	1879.	1880.	1879.
Cod fisheries (except with capelin).	707	708	\$4181	\$46 36
Capelin fishery (for cod)..........	1,376	923	4181	3457
Fat herring fishery	1,58			3189
Mackerel fishery with drag nets	1,618	1,948	5253	

In conclusion, several tables, compiled principally from trade statistics, are given, which show the exportation of fish products since 1856 and the prices obtained for them during the jears 1871-1880.

Christiania, September 29, 1882.
Table I．－Synoptical table of the exports of fish products since 1856．${ }^{\circ}$

		 gie $\stackrel{\square}{\circ}$	 ฐ゙5		 ©s rien－
	¢	 48～is	ํํㅇํํ그ํ โ్ఞొస్ํ	｜l｜｜	 © rim－i
	$\stackrel{\infty}{\infty}$	 	ต゙ －9ํํํ		 か－ion
		 	르웅 －${ }^{-1}$		 がが一
	\％¢	 	 		
		M\％ な． 	 จoํ		 ＂， ले जल
		 	気器发 ※isio風がが	$\left\|\begin{array}{\|c\|} \hline 8 \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	오ํํํํํํํํํํํ \oplus_{∞}－
		 凩㬰－i－－ ～	 Fixaig థi．	砢	
		 สิง	井承品 がずった。 		
		 ติร	ఖ్వ్ర్ర్ర な゙ずす。 …ํ్ల	｜ray	

Table I.-Synoptical table of the exports of fish products since 1856-Continued.

FYish products.	Average amount annually.					Annual amount.				
	1856-1860.	1861-1865.	1866-1870.	1871-1875.	1876-1880.	1876.	1877.	1878.	1879.	1880.
Summary.										
			3, 679,586 40	4, 310, 86040	3,575, 25400	5, 258, 32080	3, 690, 14560	2, 786, 717 60	3, 405, 18120	$2,735,824$ $7,114,730$ 00
4-9. Cod fisheriest...			$\begin{array}{r}5, \\ 255,296 \\ \hline\end{array}$	$\begin{array}{r}6,581,329 \\ 306,109 \\ \hline 0\end{array}$	$7,645,986$ 326,048 80	$\begin{array}{r}8,082,933 \\ 324,655 \\ \hline 10\end{array}$	$8,500,87960$ 282,12360	$7,565,104$ 331,462 40	$\begin{array}{r}6,966,284 \\ 340,360 \\ \hline\end{array}$	$\begin{array}{r} 7,114,73000 \\ 351,66960 \end{array}$
10-13. Other fisheries \ddagger			255, 29680	306, 10960						
Total			8,946,697 60	11,198,299 60	11,547,289 20	13,665,909 60	12,473,148 80	10,683,28¢ 00	10,711,826 00	10,202,224 00

*In the table are not included the following articles, whose quantity and value in 1871-1880 were:

Export.	Average annual.				Annual.							
	1871-1875.		1876-1880.		1877.		1878.		1879.		1880.	
	Puonds.	Dollars.	Pounds.	Dollars.								
Smoked herring	413, 671	13,721 60	289, 967	11, 28280	60, 516	2,358 40	246, 584	9,594 40	339, 943	13, 21240	255,052 18,893	9,916 00
Fish stomachs..	3,263	32160	19,974	2, 30480	13,117 4,630	1,28640 18760	11,243 3,968	1,098880 16080	26,301 9,094	$\begin{array}{r}3,189 \\ 348 \\ \hline\end{array}$	18,817	
Fish meal..	6,658	26800	4,475	18760			3,868		, 0 ,	348	2,817	10

Table II.-Table of export prices 1871-1890.

Fish products.	Average.		Annual average.				
	1871-'75.	1876-'80.	1876.	1877.	1878.	1879.	1880.
Spring herring per hectoliter..	\$4. 33	\$5. 05	\$4. 97	\$5. 31	\$4. 62	\$4. 56	\$5. 22
Great herring do	4.82	5.49	6.01	5.78		4.82	5.36
Herring do	3. 06	3.07	3. 38		3.00		4. 29
Fat herring-............... do	3.94	4. 60	5.08	4.71	3.47	4. 69	5. 07
Sprat........................... do	1.88	1.83	1.85	1. 85	1.57	1.06	1. 88
Dried cod.................. per pound..	. 04	. 038	. 044	. 041	. 038	. 033	. 033
Split cod do 04	. 039	. 05	${ }_{11} .038$. 042	. 034	-628
Cod-liver oil........... per hectoliter.-	12.71	10. 56	12. 69	11.97	10.76	8.99	8.45
Roe do	9.91	6. 79	10.23	6.12	6. 35	5.87	5.36
Fish guano per pound..	. 023	. 019	. 022	. 018	. 019	. 019	. 018
Fresb salmon do 192	. 19	. 17	. 18	. 194	. 194	. 194
Fresh mackerel, \&c. do 023	. 027	. 028	. 029	. 025	. 025	. 025
Lobsters.................. per hundred..	8.38	10.34	10.18	9.38	10.72	10.72	10.72
recapitulation.							
Herring fishery-- products per pound..	. 02\%	. 024	. 027	. 024	. 018	. 024	. 027
Cod fishery.....................do 04	. 035	. 044	. 036	. 038	. 032	. 028
Other fishery do 039	. 057	. 062	. 064	. 057	. 051	. 054
Average per pound.	. 03	. 032	. 035	. 033	. 03	. 029	. 028

Table III.-Statement of the number of men engaged in the cod, fat herring, and mackerel fisheries in 1880, and of the yield of the combined coast fisheries, excepting the catch for home use, based upon the prices paid at the fishing-stations.

Fishermen engaged-
In cod fisheries.. 80.441
In fat-herring fisheries .. . 35,130
In mackerel fisheries 3, 719

Value of the coast fisheries:

Cod $\$ 3,360,52600$
Fat herring ... 1, 534,654 00
Sprat and other small herring .. 138,34300
Spring herring .. 230,70000
Mackerel .. 186,55800
Summer fisheries for pollock, ling, \&c *................................. 388,15000
Salmon and sea trout... 102,403 00
Lobster... 108 . 45500
Oyster.. 1,50600
Total
6, 051,297 00
Table IV.-Detailed account of the codfisheries in 1880, giving the number of fishermen and boats, and their equipment.Total number of fishermen80,441Fishermen furnished with-
Nets only 25, 809
Trawls only 16,865
Hooks and lines only 16,806
Both nets and trawls. 3,094
Nets and hooks and lines 2,518
Trawls and hooks and lines 12,258
Nets, trawls, and hooks and lines. 3, 091
Total number of boats 18,475
Boats furnished with-
Nets only 4, 156
Trawls ouly 4, 633
Hooks and lines only 4, 309
Nets and trawls 725
Nets and hooks and lines 388
Trawls and hooks and lines. 3, 663
Nets, trawls, and hooks and lines 601
Table V.-A statement of the yield of the cod fisheries in 1880, giving the number of fish taken.
Total catch 68,272, 800
Taken by-
Nets. 25, 003, 000
Trawls 23, 989, 000
Hook and line 19, 281, 000
Barrels of livers 166,626
Barrels of roe 60,860
Fish-heads sold $45,578,300$
Table VI.-Statement of the yield of the winter and spring cod fisheries in 1880, giving themoney value and the prices paid at the fishing-stations, from which the value is reckoned.
Money value:
Total value $\$ 3,360,52500$
Value of the different products:
Fish, without liver and roe 2,303, 09300
Livers 674, 61900
Roe 313, 63300
Fish-heads sold 69, 18000
Average price at fishing-stations:
Of 100 cod 338
Of livers, per barrel 405
Of roe, per barrel 515
Of 100 fish-heads 16
Estimated price of 100 round fish 493
Table VII.—Detailed statements concerning the persons, $£ 0$. engaged in, and the yield of, the fat-herring fisheries in 1880, and of prices paid at the fishing-stations.
a. Men, \&c., engaged in the fisheries:
Whole number of fishermen 35, 130
Division of fishermen:
Net 17,261
Seine 17,869
Number of boats using nets 6,443
Number of seiners 1,258
b. Yield of the fisheries, and prices:
Total catch barrele 517,874
Taken in-
Nets. barrels 148,900
Seines do 368,974
Value $\$ 1,534,65400$Average price per barrel297

Table VIII.-Defailed sfatements of the operations and the yield of the mackerel fisheries in quantity and ralue in 1880, and of the prices paid at the fishing-stations, from which the value is reckoned.
Total number of fishermen 3,719
Number using drag-nets 3, 477
Number of boats using drag-nets 966
Total number of fish caught $5,743,884$
Number caught with drag-nets $5,627,384$
Money value of the fishery \$186,558 00
Average price per 100 fish 3 24Table IX.-Statements concerning the yield of: 1. The sprat and other small herring fishery;2. The lobster fishery; 3. The salmon and sea-trout fishery, and 4. The oyster fishery,in 1880.

1. Sprat and other small herring:
Total catch, in barrels 152, 898
Money value $\$ 138,34300$
Average price per barrel* 91
2. The lobster:
Total catch 1,205, 616
Money value $\$ 108,45500$
Average price per $100 t$ 900
3. Salmon and sea-trout:
Total catch, in barrels 57, 085
Money value. \$102, 40300
Average price per barrel* 180
4. The oyster:
Total catch, in barrels 164
Money value \$1,506 00
Average price per barrel \dagger 914
*At the fishing-stations.

VII.-ON THE EARLY SHAD FISHERIES OF THE NORTH BRANCH OF THE SUSQUEHANNA RIVER.*

By Harrison Wright.

History.-There can be no doubt but that the Indians, for years before the white people thought of settling at Wyoming, canght their shad there in large quantities. Their net-sinkers, though they have for years been collected by archæologists, are still very plenty, and can be found anywhere on the flats along the river in quantities, and the fragments of pottery show unmistakable markings with the vertebræ of the shad. These, together with the fact that the early settlers saw the Indians catching shad in a seine made of bushes (called a bush-net), point to the fact that shad on the North Branch were taken in quantities by the Indians.

The Connecticut people who settled here over a hundred years ago had, in the very start, their seines, and took the shad in numbers. As near as we can learn they were the first white people who seined the shad in the North Branch.

During the thirty years' war which the Connecticut settlers had with the Pennsylvania government for the possession of this valley of Wyoming the shad supply was a greatelement of subsistence. For this, unlike the fields, barns, and granaries, couldnot be burned by the Pennamites.

An old settler says: "When we came back to the valley we found everything destroyed, and the only thing we could find to eat were two dead shad picked up on the river shore; these we cooked, and a more dejicious meal was never partaken of by either of us." One of the most bitter complaints made against the Pennamites, in 1784, was that they had destroyed the seines.

After the Revolutionary war had ended, and the troubles between the Pennsylvania claimants and the Connecticut settlers had been quieted, the shad fisheries increased in numbers and value yearly, until about the year 1830, when the dams and canal were finished and an end put to the shad fisheries.

RuN.-It would appear from the statements hereto appended that the male fish preceded the female fish by some eight to ten days in their

[^83]ascent of the river, and between the ascent of the former and that of the latter there was generally a perceptible rise in the river, and immediately following it came the large roe-weighted females in great schools.

A map of the Susquehanna River from the junction of the West Branch at Northumberland to Towanda, near the New York State line, has been prepared. Upon this are noted the localities of the fisheries with as much accuracy as was attainable from the accounts received by us. Some have probably been omitted, especially in the stretch of river from Danville to a point four miles above Bloomsburg, where we were unsuccessful in our inquiries.

At Northumberland, or just below, was Hummel's fishery ; between Northumberland and Danville there were eight fisheries, in order from Northumberland up as follows: 1. Line's Island lower fishery ; 1. Line's Island middle fishery ; 3. Smith's fishery ; 4. Line's Island upper fishery ; 5. Scott's fishery ; 6. Grant's fishery ; 7. Carr's Island fishery ; 8. Rockafeller's. The next fishery of which we have a record was the fishery of Samuel Webb, located about four miles above Bloomburg. Above this point about four miles, and six miles below Berwick, was the fishery of Benjamin Boon; the next was located just above the town of Berwick, and about a mile and a half above Berwick was the Tuckahoe fishery (this last is the same as the Nescopeck fishery mentioned in Pearce's history); the next was at Beach Haven. Between this latter place and Nanticoke Dam there were three, riz, one at Shickshinny; one just below the mouth of Hunlock's Creek, and one, called the "Dutch" fishery, on Croup's farm. Above Nanticoke there was one belonging to James Stewart, about opposite Jameson Harvey's place, one at Fish Island, and one at Steele's Ferry, called the Mud fishery. The next was on Fish's Island, three-quarters of a mile below the Wilkes Barre bridge; the next was Bowman's fishery, immediately below the Wilkes Barre bridge; the next was the Butler fishery, a little above the bridge; the next was at Mill Creek, a mile above the bridge; the next was the Monocacy Island fishery; the next Carey's ; the next was on Wintermoot Island, this last landing on the left bank above the ferry at Beauchard's ; the next was at Scovel's Island, opposite Lackawanna Creek; this and the Falling Spring fishery next above belonged to parties living in Providence, away up the Lackawanna. The next above was at Harding's, in Exeter Township; the next above was at Keeler's, in W yoming County; the next was at Taylor's (or Three Brothers,) Island; this latter fishery was no doubt the one referred to by P. M. Osterhout as being opposite McKune's Station, on the Lehigh Valley Railroad; the next was at Hunt's Ferry, circa five miles above Tunkhannock; the next was Grist's Bar, about a mile above Meshoppen; the next was at Whitcomb's Island, about a mile below Black Walnut Bottom; a half a mile above this fishery was the Sterling Island fishery, and the next above was Black Walnut, and half a mile further up was
the Chapin Island fishery ; the next was at the bend at Skinner's Eddy; the next was at Browntown, in Bradford County; the next was at Ingham's Island; the next was at the mouth of Wyalusing Creek; two miles further up was one at Terrytown; the next and last that we have any record of was at Stauding Stone, about six miles below Towanda.

Thus it will be seen that between Northumberland and Towanda there were about forty permanent fisheries.
Money value.-Our county records only go back to 1787 . We spent a whole day in searching the first volumes, in hopes that we might find some entries of transfers of fishing rights, but our search was fruitless. We have, however, found among the papers of Caleb Wright a bill of sale of a half interest in a fishery between Shickshinny and Nanticoke, called the "Dutch fishery." The price paid was £20, "lawful money of Pennsylvania," equivalent to \$53.33.*

Jameson Harvey says that Jonathan Hunlock's interest in the Hunlock fishery was worth from five to six hundred dollars per annum; it was a half interest. Henry Roberts says a right in a fishery was worth from ten to twenty-five dollars. Major Fassett's father was oue of eleven owners in the Sterling Island fishery, and his interest was valued at $\$ 100$.
Mr. Hollenback's information on the money value of the different fisheries is by far the most valuable. He says the Standing Stone fishery was worth from $\$ 300$ to $\$ 400$ per annum; the Terrytown fishery was worth about the same; the Wyalusing Creek fishery was worth about $\$ 250$ per annum ; the Ingham Island fishery $\$ 50$ less ; the Browntown and Skinuer's Eddy fisheries about $\$ 150$ per annum each.

Jameson Harvey says: "The widow Stewart, at the Stewart fishery, used often to take from $\$ 30$ to $\$ 40$ of a night for her share of the haul."
The data bearing upon this point are decidedly unsatisfactory, as they would only give to the forty fisheries an annual value of about $\$ 12,000$, a large amount for those days, yet one we beliere to be too small. The next topic, the "catch," should be taken with this one to form a basis for calculation.

Catch.-At the eight fisheries near Northumberland large numbers of shad were taken; three hundred was a common haul; some hauls ran from three to five thousand. The Rockafeller fishery, just below Danville (about the year 1820), gave an annual yield of from three to four thousand, worth from $12 \frac{1}{2}$ cents to 25 cents apiece.

Mr. Fowler says that the fishery just above Berwick was one of the most productive, aud that he has assisted there in catching "thousands upon thousands," but does not give the average annual yield. He also says that at the Tuckahoe fishery " many thousands were caught night and day in early spring," and at the Webb and Boon fisheries the hauls were immense. At the latter they got so many at a haul that they

[^84]couldn't dispose of them, and they were actually hauled on Boon's farm for manure.

At Hunlock's fishery the annual catch must have been above ten thousand. At the Dutch fishery in one night thirty-eight hundred were taken. At the Fish Island fishery, at a single haul, nearly ten thousand shad were taken. Mr. Jenkins recollects of seeing a haul at Monocacy Island-just before the dam was put in-of twenty-eight hundred. At Scovel's Island the catch was from twenty to sixty per night; at Falling Spring fifty to three hundred per night; at Taylor's Island from two lundred to four hundred per night. At Wyalusing the annual catch was between two and three thousand, and at Sanding Stone between three and four thousand. The daily catch at the Terrytown fishery was about one hundred and fifty. Major Fassett says that at the Sterling Island fishery "over two thousand were caught in one day in five hauls."

It is a plain deduction from the above facts that the fisheries down the river were much more valuable than those above. Above Monocacy we hear of no eatch over two thousand, while below that point they were much larger; and while from three to four hundred dollars seems to be the general annual value above, we find the fishery at Hunlock's, 12 miles below, was worth from a thousand to twelve hundred per ansum. The shad farther up the river appear to have decreased in numbers, yet to have increased in size, and that brings us to the next head.

Size.-The opinion seems to be general that the great size attained by the susquehanna shad was attributed to the long run up the fresh water stream (carrying the idea of the survival of the fittest). That they were of great size is beyond doubt; nearly every one who recollects them insists on putting their weight at almost double that of the average Delaware shad of to-day.

Mr. Van Kirk gives as the weight of the shad caught at the fisheries in Northumberland and Montour Counties as from three to nine pounds. Mr. Fowler says he has assisted in catching thousands weighing eight and nine pounds at the fisheries in Columbia County. Mr. Harrey, speaking of the Luzerne County shad, says: "Some used to weigh eight or nine pounds, and I saw one weighed, on a wager, which turned the scales at thirteen pounds!" Major Fassett, speaking of those caught in Wyoming County, says: "The average weight was eight pounds, the largest twelve pounds." Dr. Horton says of the shad caught in Bradford County, that he has seen them weighing nine pounds; ordinarily the weight was from four to seven pounds.

Price.-The price of the shad varied, according to their size, from $4 d$. to 25 cents, depending of course upon their scarcity or abundance, and as some of our correspondents remember the price in years when it was high, and others in those when there was a great plenty of fish, there arises what appear to be conflicting statements in their letters.

At the town meeting held at Wilkes Barre, April 21, 1778, prices
were set on articles of sale, inter alia, as follows: Winter-fed beef, per pound, $7 d$. ; tobacco, per pound, $9 d$. ; eggs, per dozen, $8 d$. ; shad, apiece, $6 d$. At one time they brought but $4 d$. apiece. A bushel of salt would at any time bring a hundred shad. At the time the dam was built they brought from 10 to 12 cents. On the day of the big haul Mr. Harveysays they sold for a cent apiece (Mr. Dana says 3 coppers). Mr. Isaac S. Osterhout remembers a Mr. Walter Green who gave twenty barrels of shad for a good Durham cow. Mr. Roberts says that in exchanging for maple sugar one good shad was worth a pound of sugar ; when sold for cash shad were worth $12 \frac{1}{2}$ cents apiece. Major Fassett says the market price of the shad was $\$ 6$ per hundred. Dr. Horton says the shad, according to size, were worth from 10 to 25 cents. Mr. Hollenback, in calculating the value of the fisheries near Wyalusing, has put the value of the shad at 10 cents apiece. In 1820 they were held in Wilkes Barre at $\$ 18.75$ per hundred. Mr. Fowler says they were worth 3 cents or 4 cents apiece.

Country supply and trade.-Every family along the river having some means had its half barrel, barrel, or more of shad salted away each season, and some smoked shad hanging in their kitchen chimneys; but not only those living immediately along the river were the beneficiaries, but the testimony shows that the country folk came from fifty miles away to get their winter supply, camping along the river's bank, and bringing in payment whatever they had of a marketable nature. They came from the New York State line, and from as far east as Easton, bringing maple sugar and salt, and from as far west as Milton, bringing cider, whisky, and the two mixed together as cider royal, and from down the river and away to the south towards Philadelphia, bringing leather, iron, \&c.

Mr. Isaac S. Osterhout says when quite a boy (1822-'23) he went with a neighbor to Salina, N. Y., after salt, he taking shad and his neighbor whetstones, which they traded for salt. The teams hauling grain to Easton brought back salt. In good seasons the supply of this latter important item always seems to have been short of the demand.

The shad, as far as we can learn, appear never to have gone up the West Branch in such quantities as they did up the North Branch, and the same may be said of the Delaware, or else the fish were of inferior quality, for the dwellers from the banks of both of these streams came to Wyoming for their supply of shad.

Mr. P. M. Osterhout tells of a firm (Miller \& McCord) living at Tunkhannock which did quite an extensive business in shad, sending the cured ones up the river into New York State, and far down the river.

Mr. Fowler says: "No farmer or man with a family was without his barrel or barrels of shad the whole year round. Besides furnishing food for the immediate inhabitants, people from Mahantango, Blue Mountains, and, in fact, for fifty miles around, would bring salt in tight barrels and trade it for shad."

Mr. Harvey says: "Boats coming up the river used to bring leather, cider, whisky, cider royal, salt, iron, \&c., and would take back shad."

Other fish.-We do not find that any other deep-sea fish (with the exception of eels) ever came up the river above Northumberland. The "Oswego bass," "Susquehanna salmon," " yellow bass," "striped bass," "Susquehanna bass" spoken of by the different correspondents appear to be the same fish, which is also sometimes called the wall-eyed pike, an excellent fish introduced into the river many years ago from Oswego Lake. They are not now as plenty as formerly, though within the past few years they have been increasing perceptibly. The other fish mentioned are nothing but the common river fish.

Effect of dams.-There is no question that the building of the dams necessary to feed the canals put a stop at once to shad fishing; all our correspondents agree that after the Nanticoke dam was finished, in 1830, no shad were ever caught above it. As to the effect of the dams on the shad fishing, the following extracts from Hazard's Register are of interest:

1829, May 9, page 304. "Lewistown, Pa., May 2. It is stated that shad are caught in much greater abundance below the dam at North Island, in the Juniata, than has ever been known at any previous time. It is supposed that the dam in the Susquehanaa immediately above the mouth of the Juniata has the effect of directing their course up the Juniata. The dam at North Island retards their farther passage, and the consequence is that the people farther up the Juniata are deprived of the luxury of fresh shad, which soabundantly falls to the lot of their neighbors a few miles lower down. But we must be content with these little deprivations by the promise of the immense advantages which are to accrue to the country from the canal."

1830 , May 8, page 304. The Sunbury Beacon of Monday the 26 th of April says: "Not less than from four to five thousand shad were caught on Saturday last within a quarter of a mile below the dam. Upwards of five hundred were taken by one dip-net, and several others averaged two and three hundred each. We understand that several hundred were caught'with dip-nets yesterday."
1831, May 14, page 318. From the Wyoming Herald: "Wilkes Barre, May 6, 1831. While the raftsmen complain of the Nanticoke dam, the boys find in it a source of amusement. The bass which ascend at this season in great numbers, stopped by the dam, offer fine sport. Indeed, hooks, half a dozen at a time, without bait, are let down and suddenly drawn up often with two or three bass hooked by the side."

And on the same page, from the Susquehanna Democrat: "A short time since great quantities of bass were caught in a small eddy formed in the river directly below the abutment of the Nanticoke dam. The fish apparently lay there in schools, and by drawing hooks through the eddy numbers were caught. On Thursday and Friday last a number of fine shad were caught in the same way. One man drew out nine in one
day, and sold them for 50 cents each. This is the first instance within our knowledge of shad being caught with a hook. We mention the fact as one altogether new, as well as to say to the down-river folks our market has not been altogether destitute of shad, though many a gentleman's table has."

We are informed that to-day the shad manage to get orer the Columbia dam only to be received in nets spread for them at the head of the sluice-way by a pack of scoundrels, awong whom, if we hear correctly, are parties connected with our State fish commission. If it were not for this we would have shad in small quantities as far up as the next dam at all events. The cutting off of this staple of fool from tens of thousands of people in this section of country could not but be a great loss, and it has been questioned if it was not greater than the benefits derived from the great internal improvements. Some slight improveinents in the sluice-way of the lower dams and a regular ladder-way in that of the Nanticoke dam; good protective lars, well enforced (with a double-barreled shot-gun for Columbia dam); certain days set for fishing along the river, and one good stocking with young shad would, we believe, give us shad in fair quantities all the way up the river.
We do not believe the expense would be very great, whereas the benefits would be incalculable. There is no doubt that the experiment is well worth trying. Luzerne County will contribute her share towards the necessary improvements.
Wilkes Barre, May 27, 1881.

1. Statement of Joseph Van Kirk, Northumberland, Pa., May 25, 1881.

My recollection of the shad fisheries dates back to the year 1820; in that year, and the succeeding two or three seasons, I tished at liockiafeller's fishery, near Dancille. In our party there were six of ns; we fished with a seine 150 yards long, and canght somewhere from : $3,0 \% 0$ to 4,000 marketable shad, weighing from 3 to 9 pounds. At that time there were eight fisheries between Danville and Line's Island, located as follows: Rockafeller's, just below Danville; next Carr's Island; next Grant's fishery; next Scott's, near where my resideuce was; next Line's Island upper fishery; next Smith's fishery; next Line's Island middle and lower fisheries. At all these points large quantities of shad were caught, and they were sold from $12 \frac{1}{2}$ cents to 25 cents apiece. I have heard of hauls containing from 3,000 to 5,000 , and 300 was a rery common haul. People came from 12 to 15 miles for shad, and paid cash exclusively for them.

Salmon, rockfish, pike, eels, suckers, and a general rariety of fish were caught in addition to shad, and we always had a ready market for them for cash. No shad have been taken since the canal was built, and all other fish have sensibly decreased since that time.

The cutting off of the shad supply was a great and serious loss to this community, from both a monetary and economic view, since this fish in
S. Mis. $110-40$
its season was a staple article of food, and employed in the taking and handling quite a large proportion of the inhabitants. This industry was wholly abolished by the erection of these dams, and thousands of dollars of capital invested in the business were instantly swept out of existence. The first fishery below this place was known as Hummel's fishery, and its reputation was good. I never fished there myself, but was well acquainted with it by the speech of my neighbors. In fact all of these fisheries were profitable investments, and the loss of them to this section of the country was incalculable. All of the fisheries mentioned above, except Hummel's, were between Northumberland and Danville. Any mention of those good old times brings up a flood of recollections, and the difficulty is, not to remember what occurred in those days, but to sift out what would be useful in this connection.

2. Statement of Henry Roberts, Falls, Pa., March 24, 1881.

I reply to your inquiries regarding shad fisheries in the Susquehauna between Tunkhannock and Lackawanna Creeks, that, according to my recollections, the first was at the head of Scovel's Islaud, opposite Lackawanna Creek; not many shad were canght here, say from twenty to sixty per night. The next was at Falling Spring; same seiue as that used at Scovel's Island; the number of shad caught here ran from fifty to three huudred per night. The next, above Falling Spring, was at Keeler's Ferry (now Smith's). This was a small fishery, and only nsed when the water was too high to fish at other points; the seine was hauled around a deep hole to bring in the shad. Thenext and only fishery between this and Tunkhannock Creek was at the head of Taylor's Islaud, or the "Three Brothers;" this was an important fishery; more shad were caught here than could be taken care of, on account of the scarcity of salt. I can speak of this fishery from experience since 1812. The catch per night ran from two to four hundred. The shareholders attended to it as closely as to their farming or other business, as it was our dependence in part for food. Shad were oftener exchanged for maple sugar than sold for cash-one good shad for a pound of sugar; large shad were worth $12 \frac{1}{2}$ cents apiece. A right in a fishery was worth from ten to twenty-five dollars. Shareholders made a practice of salting dowu more or less shad during the season. An incident in connection with shad-fishing presents itself to my mind, related ofteu by my grandmother. A party of Indians returning from a treaty at Philadelphia landed their canoes, came to herhouse to borrow her big kettle to cook their dinner in. After building the fire and hanging over the kettle they put in the shad, just as they were taken from the river, with beans, cabbage, potatoes, and onions. My grandfather, David Morehouse, one of the early Connecticut settlers, then owned the same farm I now own and occupy. I am now in my eighty-seventh year.
3. Statement of H. C. Wilson, Mount Vernon, Ohio, March 19, 1881.

An article in the Union Leader in reference to the old shad fisheries of the Susquehanna River has bronght back to my memory many things that happened in my boyhood days, among which were the old fishermen and the knitting of the shad seines. The seines were knit in sections by the shareholders, each one owning so many yards of the net, and each one receiving his share of fish according to the number of yards owned. I lived one year with Mr. Pierce Butler, where I learued to knit seines, and have never forgotten it. We used to knit on rainy and cold dars and evenings, and when the sections were all done, Dick Covert, with the help of John Scott, would knit them together and hang the seine, put on the corks and leads; this was cousidered quite a trick, and but few would undertake the job.

I remember I used to go over on the beach on the line of the Butler and Dorrance farms and help the fishermen aick up the shad, and when the luck was good was always given one to take home. 1 remember seeing the shad put in piles on the beach, and after they were all equally divided some one would turn his back and the brailman would say, "Who shall have this?" until they all received their share, one pile left out for the poor women. The boats with the seine shipped would row up to the falls, and then hauled out down by the riffles opposite where Dick Covert used to live. I think it was a bad day for the people along the Susquehanna when the shad were prevented from coming up the river; the fish would be worth more to the people than the old canal. You had better buy the canal, put a railroad on the towing-path, burst up the dams, and increase the value of all the flats above the dams, and you would not have as high water at Wilkes Barre, and there would be less damage done to property; then you would have plenty of shad and all other kinds of fish, and then I think you could afford to send some to your friends out West. I got an old fish-dealer here to seud to Baltimore for some shad last week, but they had been too long out of water and too far from home to be goorl. It used always to be said that there were no shad like the old Susquehanaa shad.

4. Statement of Alvan Dana, Kansas City, March 22, 1881.

I have no remembrance of any shad being taken at or near Sheshequin, but at Wilkes Barre I have seen them caught in seines before any bridge was built there. The nets were drawn out on the north side of the river. I don't remember to what extent was the catch, but I have often heard my mother say that immense quantities were taken in the vicinity of her father's, who lived about a mile below the old "Red Tarern," in Hanover; that at one haul 9,999 were caught; that when they had got all they could procure salt to cure, or sell for three coppers, they gave to the widows and the poor, and hung up their nets, though the shad were an plenty as ever. In 1816 I went to Owego to live, and
there became acquainted with a Mr. Duane, who was one of the men who drew the net. He said the actual number was 9,997 , but two more were added to make the figures all nines.

When the Nanticoke dam was built the shad could not come above it, and men were in the habit of fishing there with a three-pronged hook, sinker, and stout line and pole. This was sunk, and after a few minutes quickly jerked up. I caught two in that way; others had better luck; and it was reported that one man caught seventy in one day, but I think a large reduction would come neater the truth.

Probably E. Blackman, of Pittston, could give some information regarding shad fishing at Towanda and Sheshequin. Jesse Brown, long a resident of Sheshequin, and in his youth a resident of Wyalusing, I think-also Chester Park, of Athens, I presume-could give information upon the subject. The Park family kept the ferry at Athens at an early day. Both of the above named, I think, are over eighty years of age.

I have been examining some old Gleaners of 1811 and 1812, but don't find any of the spring numbers. Some years ago I gave to my son-inlaw, L. B. Wyant, of Harford, McHenry County, Illinois, a roll of Gleaners of 1811 for his museum, which he opens at "Kay's Park," on Geneva Lake, Wisconsin, in summer.

5. Statement of Alvah Fassett, Scottsville, March 10, 1881.

In regard to shad fishing, I referred to father, and received the following answers: 1st. There were two permanent fisheries, one at Sterling's Island and one below Wyalusing Falls, besides other places where they sometimes fished, viz, Grist's Bar, Chapin's Island. Whitcomb Island was also eshing ground, but not permanent. 2d. Sterling's Island was the best ground. 3d. Over 2,000 were caught in one day at five hauls. 4th. The market price was $\$ 6$ per hundred. 5th. The average weight was 8 pounds, the largest 12 pounds. 6th. They also caught suckers, yellow bass, and sunsbitches (what we call carp). 7th. None were caught after the canal and bridges were constructed, to my knowledge. Sth. The first fishing was done by the Connecticut people. Father says that in 1806 his father had a share in the Sterling fishery; there were eleven shares, valued at $\$ 100$ each. Says his father was not much of a fisherman.
5. Statement of C. Dorrance, Hot Springs, Ark., March 24, 1881.

1st. "Fix the number of fisberies and their location as far as is now practicable."
My memory carries me back to the fishery at Monocacy Island, the one below the falls, near the mouth of Mill Creek, one at Plymouth (in part a night fishery), one at or immediately below Nanticoke Falls. No dam obstructed the shad at that point then.

The fishery near Mill Creek was regarded as the main or most reliable fishery, as it could be fished at stages of water when some of the others
could not, and much the largest number of shad were taken there, sweeping as the fishermen did from the foot of the falls, nearly the entire river to the bar-drawing out upon the lands of my late father, where it was my business as a lad every evening, after school, to be with horse and wagon to receive our share of shad. No unpleasant duty, for well do I remember as they came sweeping in to the beach, the net in rainbow form. The corks indicating the position where "Captain" Bennett (father of the late Joln Bennett, esq.), would discharge his men from the sea or large boat with the outer brail, and passing out and along the net, on the discovery would shout, "Here's shad, boys; hold down the lead line; here's shad." True to the word, long before the main body of the net was drawn up to the shore we youngsters would take up the "captain's" cry, as the large shad darted back and forth between the incoming net and the shore. What think you, would not a return of such scenes start a shout from older heads?
$2 d$. "As to the money values or rental of the fisheries."
Of this I have no data from which to form an opinion. As the fisheries were established by the first settlers, joining their limited means with the land owners, forming a company there by common consent to their children, none were rented as far as my knowledge extends. Owners of rights would allow men who had none to fish for them on shares, thus extending the benefits as far as possible. Good feeling pervaded the community in those days.

3d. "Were other fish taken in any considerable quantity ; if so, what kinds?"

With the exception of an occasional striped bass, or, as they were then called, "Oswego bass," of large size (supposed to have been introduced to the headwaters of the Susquehanna from that lake), none of value were taken, as the nets were woven for large shad only.

I cannot better illustrate the value and importance of the shad fisheries at that early day to the people on the Susquehanna River than to repeat an anecdote told me long years after by a genial gentleman of New England, who in youth visited my father at his home in Wyoming.
Leaning on the front gate, after breakfast, as the little children were passing to school, each with a little basket, the universal answer from their cheery, upturned little faces was "Bread and shad," "Bread and shad" (corn bread at that).

Had that fish diet anything to do with the known enterprise of that generation? If so, would it not be well to make a strong and united effort to again introduce so valuable an element of brain material. I am greatly pleased that our society is agitating the subject of restoring the shad to the people on the North Branch, not as a luxury for the few, but for all, cheap aud faithful, and coming at a season of the year when most desirable as food, for nowhere on this continent were finer shad found than those taken from the North Branch of the Susquehanna River. The long run of the pure, cold, spring-made waters of the Susquehanna made them large, hard, and fat, nowhere equaled.

7. Statement of Hon. P. M. Osterhout, in the Tunkhannock Republican, April 15, 1881.

The first shad fishing in the Susquehama River was by the early setthers of the Wyoming Valley, who emigrated thither from Connecticut. The food of the carly emigrants was, in the main, the fish of the streams and the game on the mountains. The first seine in the valley was brought from Connecticut, and upon the first trial, in the spring of the year, the river was found to be full of shad. These emigrants had settlements along the Susquehamma from Wroming to Tioga Point, now called Athens, and each neighborhood would establish a fishery for their own accommodation. It was generally done in this way: Say ten men (and it took about that number to man a seine) would form themselves into a company for the purpose of a shad fishery. They raised the flax, their wives would spin and make the twine, and the men would knit the seine. The river being on an average forty rods wide, the seine would be from sixty to eighty rods long. The shad congregated mostly on shoals or the point of some island for spawning, and there the fisheries were generally established. Shad fishing was mostly done in the night, commencing soon after dark and contimuing until daylight in the morning, when the shad caught would be made into as many piles as there were rights in the seine. One of their number would then turn his back and another would touch them off, saying, pointing to a pile, "Who shall have this ?" and "Who shall have that?" and so on until all were disposed of, when the happy fishermen would go to their homes well laden with the spoils of the night. Between the times of drawing the net, which would be generally about an hour, the time was spent in the recital of fish stories, hair-breadth escapes from the beasts of the forests, the wily Iudian, or the Yankee production, the ghosts and witches of New England.

As early as 1800 George Miller and John McCord mored from Coxes-town-a small town on the Susquehanna about five miles above Harris-burgh-up the river in a Durlam boat, and, bringing with them a stock of goods, located at Tunkhannock, where they opened a store. They were both young men and unwarried. In the spring of the year they dealt quite largely in shad, the different fisheries of the neighborhood furnishing them with large quantities for curing and barreling. Shad were plenty but salt scarce. There was no salt except what was wagoned from the cities or from the salt works at Onondaga, N. Y., and it was not unnsual that a bushel of salt would purchase one hundred shadin fact, it was difficult to procure salt to cure them. At this time the German population in the lower counties of the State had not learned the art of taking shad by means of the seine.

There were then no dams or other obstructions to the ascent of the fish up the river, and large quantities of the finest shad in the world annually ascended the Susquehanna, many of them when taken weighing from six to eight pounds each. The distance being so long (about 200
miles) from tidewater to the Wyoming Valley, the flavor of the shad was very much improved by contact with fresh water. The Susquehanna shad were superior to the Delaware, the Potomac, the Connecticut, or the North River shad. The reason generally giren was their being so long in fresh water, which imparted to the fish a freshness and richness not found in the shad of other rivers. Then, none but the strong, healthy shad could stem the current and reach the upper waters of our beautiful river.

Miller and McCord cured and put up annually shad for the market. They boated down the river a large quantity for the times, and sold to the people on the lower Susquehanna. They also boated shad up the river as far as Newton, now Elmira; from thence they were carted to the head of Seneca Lake, a distance of twenty miles, and from there were taken to Geneva and other towns in what was then called the lake country, and sold.

There was a fishery on the upper point of the island opposite McKune's Station, on the Lehigh Valley Railroad. This island was known by the early settlers as one of the Three Brothers. There was also an important fishery at Bunt's Ferry, about five miles above Tunkhannock. Here large quantities of shad were caught every spring. This fishery was owned by tweuty rights, ten fishing at alternate nights. There was also another fishery at Black Walnut, below Skinner's Eddy. At all these fisheries more or less Oswego bass were caught, called down the river Susquehanna salnon, a most excellent fish, but they are now nearly extinct. The river ought to be restocked with that same speciess. They are a fine-flavored fish, solid in meat, and grow to 12 or 15 pounds in weight. The late George M. Hollenbeck, esq., of Wilkes Barre, told me that this bass was brought from the Oswego Lake and put into the Susquehanua at Newton, now Elmira. They were called by the old settlers swager bass. Since the building of the dams across the Susquehamua there hare been no shad caught abore the Nanticokedam. These dams also largely obstruct the passage of bass and other food fish up river. The Susquebanna is really oue of the finest streams for tish in the United States-the water pure, the bottom rocky and pebbly, affording abundant means for spawning and rearing the soung fish. The obstruction to the free passage of fish up the river ought to be removed.

Maj. John Fassett, of Winduam Township, one of the oldest citizens of that town, as was his father before him, was written to on the subject of the early shad fisheries from Hunt's Ferrs to W yalusing. He mentions the one at Hunt's Ferry, also at Black Walnut, and others at differentpoints up the river as far as Wyalusing. He says his father owned a right in the fishery at Black Walnut, which he valued at $\$ 100$; here were large numbers of shad caught, which were valued at 6 ceuts each, and would weigh from 6 to 12 pounds each. The largest one he saw weighed was 12 pounds; the writer hereof thought he had got it
pretty steep as to weight, but he was beaten by Jennison Harvey, esq., an old resident of Plymouth, Lazerne County, now of Wilkes Barre, who says that he saw a shad weighed-on a bet-that was caught in the river in the valley, and that it weighed 13 pounds. Some folks will think it a fish story. Harvey has decidedly the advantage of Major Fassett, as he had the last say.

8. Statement of Gilbert Fowler.

Berwick, Pa., February 23, 1881.
I was b ,ru February 23, 1792, in Briar Creek Township, Northumberland County, now Columbia. I write or dictate this letter on my eightyninth burthday. I have lived near the Susquehanna River ever since I was horn. My knowledge and recollections about the shad fisheries extend from Wilkes Barre to old Northumberland. The first shad fishery near my bome was Jacol's Plains. This was located just above the town of Berwick, and one of the most productive fisheries on the river. Here I have assisted in catching thousands upon thousands of the very finest shad, weighing 8 and 9 pounds, The next nearest was Tuckahoe fishery, situated about one and a half miles above Berwick, on the same side of the river. At this place many thousands were caught night and day in early spring. The next was down the river about six miles from Berwick. This was the fishery of Benjamin Boon. At this fishery I have known so many caught that they were actually hauled out by the wagon load on Benny Boon's farm for manure, so plenty were they. The next fishery was that of Samuel Webb, located about four miles this side of Bloomsburg. This was an immense shad fishery. From the banks of the river at this fishery could be seen great schools of shad coming up the river when they were a quarter of a mile distant. They came iu such immense numbers and so compact as to cause or produce a wave or rising of the water in the middle of the river, extending from shore to shore. These schools, containing millions, commenced coming ap the river about the 1st of April and continued during the months of April and May. There was something very peculiar and singular in their coming. The first run or the first great schools that made their appearance in the early spring were the male shad-no female ever accompanied them. In about eight or nine days after the male had ascended the river then followed the female in schools, heavily laden with eggs or roe. Those were much the largest and finest fish, and commanded the highest price. Those shad that were successful in eluding the seine and reached the hatching ground at the headwaters of the Susquehanna, after depositing their eggs, returned again in June and July, almost in a dying condition, so very poor were they. Many died and were found along the river shore. The young shad would remain at their hatching places till late in the fall, when they would follow the old shad to the salt water. During the summer they would grow from three to four inches in length. The Susquehanna shad constituted the
principal food for all the inhabitants. No farmer or man with a family was without his barrel or barrels of shad the whole year round. Besides furnishing food for the immediate inhabitants, people from Mabantango, Blue Mountains, and, in fact, for fifty miles around, would bring salt in tight barrels and trade it for shad. They would clean and salt the shad on the river shore, put them in barrels, and return home. The common price of shad was three and four cents each. Besides shad there were many other kiuds of food-fish. The most noted among them was the old Susquehanna salmon, weighing as high as fifteen pounds. These salmon were considered even superior to the shad and commanded a higher price. They were caught in seines, on hooks and lines, and were the sport to the gigger at night. Nescopeck Falls, directly opposite Berwick, near where the Nescopeck Creek empties into the river, was a noted place for salmon fishing with hook and line. Menstanding on the shore with long poles and lines would often, in drawing out the fish, lodge them in the branches of the trees, giving them the appearance of salmon-producing trees. The shad fisheries which I have alluded to were not common property. The owner of the soil was the owner of the fishery, and no one was allowed to fish without a permit. The owners of the fishery also had the seines, and when not using them they would hire them out to others and take their pay in shad. The seiner's share was always one-half the catch. Shad were caught both night and day in seines. At the Webb fishery I have known eleven and twelve thousand shad taken at one haul. These fisheries were always considered and used as a source of great pleasure, value, and profit, and everybody depended on them for their annual fish and table supply. It was considered the cheapest and best food by all. Immediately after the erection of the river dams the shad became scarce, the seines rotted, the people murmured, their avocation was gone, and many old fishermen cursed Nathan Beach for holding the plow, and the driver of the six yokes of oxen, that broke the ground at Berwick for the Pennsylvania Canal. The people suffered more damage in their common food supply than the State profited by her "internal improvement," as it was called. Although eightynine years old to day, I still hope to live long enough to see all the obstructions removed from one end of the noble Susquehanna River to the other, and that the old stream may yet furnish cheap food to two millions of people along its banks, and that I may stand again on the shore at the old Webb fishery and witness another haul of ten thousand shad.

9. Statement of Nelson B. Hollenback, Wyalusing, March 14, 1881.

Commencing at Standing Stone, about 10 miles from Wyalusing Village, and reaching down the road from that point to the Wyoming County line, there were five "old shad fisheries," viz:
(1) The Standing Stone fisheries. William Hank, Benjamin Brown, Cornelius Ennis, and Benjamin Bennet owned this. It was a valuable property, worth at that time from three to four hundred dollars a year.

There were from three to four thousand shad caught there annually. They caught no rock or striped bass, sturgeon, or herring there or at other fisheries in this vicinity.
(2) The Terrytown fishery. This was owned by Jonathan Terry, William Dodge, Edmund Dodge, Samuel Wells, and John Taylor, and was of about the same value as that at Standing Stone.
(3) The Wyalusing fishery, owned by John Hollenback, Benjamin Stalford, Joseph Stalford, and John Stalford. This fishery was worth about $\$ 250$ a year, with a "catch" of from two to three thousand shad.
(4) The next was the "land" fishery at the head of Ingham's Island. Joseph Ingham owned this, and it was worth about $\$ 200$ a year.
(5) Next was the Brown Town fishery, owned by Humphrey Brown, Allen Brown, and Samuel Brown, and was worth about $\$ 150$ per annum.
(6) The next and last was called the "Bend fishery," and was located near the line between Bradford and Wyoming Counties. James Quick and James Anderson owned this, and it was worth about $\$ 150$ a year.

The stoppage to the emigration of shad to this vicinity was a great loss to the people. For nearly two months every year the people for from 15 to 20 miles from the river, were bomntifully supplied.

10. Statement of George F. Horton, Wyalusing, March 3, 1881.

I spent many a pleasant day in my boyhood with the men who ran the shad fishery in the Susquehanna, near where I now live. This fishery was about two miles above the mouth of the Wyalusing Creek, at the place we now call Terrytown; formerly all was Wyalusing along here. There were other fisheries above and below us, but this the ouly one I have any personal knowledge of. The proprietors were Jonathan Terry, esq., Maj. John Horton, sr., Maj. John Taylor, Edmund Dodge, Maj. Justus Gaylord, Gilbert Merritt, William Crawford, and William Wigton. Year after sear, for a long time, these men operated this fishery, generally taking the month of May and a part of June of each year, always regaling themselves with a little good old rye, and having a fine sociable every night when counting off and distribnting the shad caught during the day. Occasionally they sent substitutes, but the fishery never changed proprietors. Some seasous they canglt largely; others not so many. I well recollect one draught or haul when they caught 500 , but ordinarily 20 to 50 at one drawing of the seine was considered good. The average per day, according to the best of my recollection, would be about 150 .

People came from the eastern part of the county, then just settling, up to Wyalusing, as far or nearly as far as from Montrose, to buy shad. The trade was quite large. Some of the time maple sugar was quite a commodity, brought down to exchange for shad.

Very few of any other kind of fish except shad were ever caught. Occasionally a striped bass, large pickerel, carp, suntish, mullet, sucker,
or a bull-head was taken; no small fish, as the meshes of the seine were large enough to let them through.

The shad were worth from 10 to 25 cents each, according to size. I have seen them caught here weighing nine pounds; ordinarily their weight was from four to seven pounds. If we could have that old shad trade here again it would make us all, if not rich, merry again. But very few are now left among us who saw those glorious old fishing days. The fishing for black bass of these days does not begin to compare with those old fishing days.

I can recollect of but one fishery between Wyalusing and Towanda, and only two between Wyalusing and Tunkhannock.

11. Statement of S. Jenkins, Wyoming.

The present inhahitants of Wyoming have but a faint idea of the value of fish to the early settlers. They performed as important a part at Wyoming as they have in the history of all new settlements. A careful study of the adrance of immigration and the settlement of new regions shows that those settlements have been guided and controlled by the streams and waters in which fish abounded, and hence were made along their shores. Fish furnished the people a plentiful and healthful supply of food, easily attainable, until the forests could be hewn down, clearings made, crops raised, and cattle could increase and multiply.

It is unquestionable that the early progress made in settling up of our country was due in a large measure to the presence of fish, which furnished food in absolute abundance in the midst of desert lands; and it would be as idle to attempt to disparage the value in the economy of those times as it would be to prove the value now beyond the mere mention of the fact.

The fish that attracted the most attention and were the most highly considered in the early times were shad. The knowledge of these excellent fish in the Susquehanna, at Wyoming, has become almost entirely historical, if not entirely so. But few persous now resident at Wyoming have a personal knowledge of the shad fisheries there aud their value to the people in the early days; and hence some of the stories told of the immense hauls of them made in "ye olden time" seem to the present generation more fabulous than real.

That we may the better understand the subject I will gire extracts from the writings of strangers, and then conclude with an account or two of our own people and what I myself have seen.

In 1779, when General Sullivan passed through Wyoming on his western expedition against the Indians, a portion of his advance were located at Wyoming from May to the last of July. Many of his offcers kept diaries, in which they noted their movements from day to day and touched slightly upon such objects of interest as attracted their attention. I will give a few extracts from these diaries relating to fish at Wyoming.

Dr. Crawford in his diary, under date of June 14, 1779, says:
"The river at Wroming abounds with various kinds of fish. In the spring it is full of the finest shad. Trout and pickerel are also plenty here."

George Grant, under date of June 23; says:
"The Susquehanna River aftords abundance of fish of various kinds ,and excellent."

Dr. George Elmer, under date of 23d June, says:
"Spent chief part of the day in fishing. Salmon, tront, suckers, bass, and common trout are plenty in the river, of which we catched a number with a seine."

Daniel Gookin, under date of 28th June, says:
"The river Susquehanna, on which this lies, abounds with fish. Shad in great plenty in the spring, as they go up to spawn. The shores are covered with these fish which have died up the river, through their too long stay in fresh water."

There were some twenty-five or thirty what we called shad fisheries within the bounds of old Wyoming. Every available point for casting out and hauling in a seine on the beach, whether on an island or on the mainland, was used as a fishery, and had its owners and its seine. The average number of shad taken at each of these fisheries in a season was from 10,000 to 20,000 , beside other fish which were caught before and after the shad made their migration.

It is given on good authority that 10,000 were caught at one haul at the Stewart fishery, about midway between Wilkes Barre and Plymouth, about 1790 . This was called the widows' haul.

The settlements, after the massacre of July 30,1778 , had so many widows and fatherless children among them that they made special provisions of bounty for them on many occasions, which were wrought out in such a way as neither to give offense nor to convey a sense of undue obligation.

Among the arrangements of this character was that of giving one of the hauls at each fishery every year, to the widows and fatherless of the neighborhood, and hence called the widows' haul. By common consent it was agreed that the widows should have a haul made of the first Sunday after the season of shad fishing commenced, and they were to have all caught, whether more or less.

This big haul was made on Sunday.
At the rate I have given, which is made up more from general information upon the subject than from statistics, the number of fish caught annually was about a half a million, which at 30 cents each would make $\$ 150,000$.

Were the Susquehanna as well stocked with shad to-day as it was a hundred years ago our keen and hungry fishermen would easily double the catch, and still, like Oliver Twist, "cry for more."

I recollect seeing, in the spring of 1826, a haul made in a cove at the
lower end of Wintermoot Island, west side, numbering 2,800 shad. When thrown out they whitened a large space upon the shore.

Being the first haul of the season, the fish were largely distributed among the people, and even after that my grandfather had a half barrel for his right as owner of the seine and fishery.
About 1831 or ' 32 , in the fall, an unusual catch of eels was made in a weir on the east side of Wintermoot Island. During one day and night 2,700 of them were caught, while many escaped from want of means to handle them and take them away as fast as they came in. Another day and night 900 of them were caught, when the basket floated off with the high water.

I herewith give fou copies of two papers in my possession bearing upon the shad-fishery question. It will be seen by one of them that the price of shad in the early times was 4 . or $4 \frac{1}{3}$ cents each; quite a different price from what they sell at in our day. Tear the dam from the Susquehanna and we shall have plenty of shad, if not at $4 d$. each :
"Be it known that I, Peter Shafer, have sold all my right in and unto all my right in the Dutch fishery, so called, below the Nanticoke Falls, so called; for and in consideration thercof I, Jacob Coole5, do promise to deliver Seventy shad, unto William Miller, on account of me, the said Peter, on or before the 20th May instant; or otherwise settle with said Miller for what I am iudebted for my part of said Seine, and likewise the said Cooley is to deliver Six gallons of Whiskey unto the said Peter, between this date and Weat harvest.
"Witness our hands this 14th day of May, 1800.
"PETER SHAFER.
"JAUOB COOLEY."
"James Fox holds an order for 725 shad drawn by George Frazer on James Stewart, date April 27.
(Indorsed on the back in these words:) Credit for 350 shad received by me. David Morgan.
(Indorsed:) Copy of Frazey's order. Henry Thomas charges the Estate with 4s. 8d., paid in Rye. Paid.

No. 40-725 shad, less received, 3ั̃0, leaves 375 shad, at $4 d .=125$ s. $=$ $\mathfrak{£} 65$ s., or $\$ 16.67$. Add interest on same $\$ 9.50=\$ 26.17$. $\quad(\mathcal{£}=\$ 2.67$.
12. Statement of Elisha Blackman, Pittston, March 22, 1881.

I see that G. Fowler, of Berwick, tells a biy fish story. I incline to think, however, that it is true. I recollect when I lived with my grandfather, in what is now South Wilkes Barre, perhaps 1798 or 1799 of last century, the great haul of shad at Nanticoke was made. I believe there were nine or ten thonsand taken. A number of seines were engaged in it, and lawsuits were the consequence. Salt was scarce and dear. Northampton men came with pack-horses loaded with salt, and returned loaded with shad. I bought and kept the public house that had been
kept by John Courtright on the Plains, Wilkes Barre Township, in the spring of 1815 . There were then two fisheries between us and the Pittstou Ferry-one at Monocacy Island landing, on the shore of Mr. Samuel Cary's land, the other starting at or near the Wintermoot Island and landing above the ferry at Blanchard's. That season I got my supply at the upper fishery; the first day's attendance was a "blank" day-few or no fish. The large schools of Mr. Fowler's times were dwindled greatly, undoubtedly because of the numerous fisheries that existed below, and the destruction of the young shad by the many eelweirs in their descent to the ocean in the fall. My time was too valuable to atteud on blank days. I left money with Mr. Joseph Armstrong, and he sent me my supply when successful. The next season (1816) the difficulty that had existed between the fishermen at Monocacy (twelve in number) and Mr. Cary, the owner of the land, was settled by giving him the thirteenth share, and ever after I got my supply from the fishery until the canal dams cut off our supply totally. It was a serious damage and inconvenience to us, as markets for fish and meat did not exist then as now. The Susquehanna shad had a far more delicious flavor than any we get now.

General Isaac Bowman, Samuel Moffit, and some of our Plains neighbors, having secured a landing on the Nommock, at the foot of Monocacy Island, fitted up a fine seine and necessary boats (canoes) and caught half a dozen shad, having fished twice as many days. I shared two, having found the whisky (before my temperance days); others outbid me, determined to taste the good of their labor. I am in my ninetieth year.

13. Statement of Isaac Thompson, Lee, Lee County, Ill., April 12, 1881.

I was born at Pittston in 1796. My father's farm lay along the side of the Susquehanna River. I lived on the farm fifty-one years. In regard to the shad fishing, as I grew up to manhood I fished many days in the shad-fishing season of the different years. The first run was the male shad-not near as good as the female. After catching the first run then if we could have a rise of water then came the female-a far better quality. The female put for the headwaters of the river, and there would spawn; then the old fish would come back down the river, and the wind would often drive them on the shore, and they would lay there rotting till they stunk. People used to come down from toward Easton, Northampton County, and bring whisky and salt, and trade for fish; also from the upper part of old Lazerne County, bringing maple sugar to trade for shad. One man by the name of Taylor bought fifteen and put them in a sack after they were cleaved, shouldered them and walked off with them. I have known upwards of a thousand caught in one day on the point of the island. As to the localities of the fisheries, there was one at Falling Spring, about four miles from where I lived, another on the point of Wintermoot Island, and the next on the side of the island between two and three miles from where I lived. They
drew ont on the beach of Samuel Cary's farm ; another just below that, I think, drew out on the farm of Crandall Wilcox; another just below the falls. Please excuse me now, as I have done as well as my memory will allow me to. We have done no fishing since Nanticoke dam was built.
14. Statement of Steuben Butler, a son of Col. Zebulon Butler, who led the patriots at the battle and massacre of Wyoming, 1778.

I was born 1789; remember the old shad fisheries in the river here very well ; was not a fisherman myself; after the run of shad had started I used to get in a boat and row up to the fishery and purchase my supply of shad and bring them down and salt them away. The price varied according to the abundance of the shad, some seasons being less expensive than others. As l recollect it, the Pettibones used to have charge of the fishery above Wilkes Barre.

15. Statement of Dr. Charles F. Ingham.

I remember the old shad fisheries in the North Branch, particularly the Butler fishery, which was on the bar opposite and a little above Union street, Wilkes Barre. Nanticoke dam was commenced in 1828 and finished in 1830, and I recollect that that ended our fishing. Although 1 saw shad caught below the dam by hooks attached to polesthink it was the year the Shamokin dam went out-yet I have never heard tell of or seen shad being caught since that time above the dam. The shad, as I remember them, were very fine and particularly large. I have seen the beach, after the drawing of the seine, for a hundred feet absolutely alive with flapping shad, each one reflecting the sunlight like a burnished mirror. I recollect having the salted and smoked shad during the fall and winter, and fine delicacies they were.

After our shad fishing was cut off a great number of salt shad were brought from Philadelphia and other points, meeting with ready sale, on account of general knowledge of their delicacy. I believe that at one time the people knew more of salt shad than they now know of salt mackerel, and more of smoked shad than now of smoked salmon.

I believe that a proper shad-way could now be put in the Nanticoke dam at an expense not to exceed $\$ 10,000$, and probably for less, without interfering with navigation.

16. Statement of Mr. Isaac S. Osterhout.

In 1820 or 1821 we caught shad in very large quantities at Black Walnut Bottom. I remember well I went with a gentleman to Salina, N. Y., after salt, as we had run out of that article very early in the season; he had a load of whetstones and I a load of shad. I could have easily gotten rid of my shad on the first day had it not been that he and

I had agreed that the whetstones should sell the shad, and vice versu. So it was several days before we got our loads of salt, as the whetstones went terribly slow.

In 1822 and 1823 I was at Hunt's Ferry, where the shad were plenty. I came to Wilkes Barre in 1830, the early part of the year-the same year the Nanticoke dam was finished; do not recollect of any shad being caught after that. I recollect of a Mr. Water Greens, who came from ${ }^{\circ}$ New England and settled at Black Walnut Bottom, giving twenty barrels of shad for a good Durham cow.

17. Statement of Miss Mary Coates.

I was born in 1803; came to Wyoming Valley to live in the year 1823. I remember very well the catching of shad in large numbers by the inhabitants and the cleaning of them along the river shore. I remember, too, that the country people came in crowds during the season from miles away and returned home laden with fish. I remember the anger of Gildersleeve's negress one day, when it was said that Gildersleeve had made her wade out into the river after shad heads. The circumstance was as follows: While cleaning the shad she had cut off the heads and placed them on a board, saving this most delicate part of the fish for herself, and while she was busy the board, covered with shad heads, was either pushed by some one or drifted out into the river, when she waded out to get it. Do not know anything of the numbers caught. The people had shad from spring to spring. I do not remember of any shad being caught after the Nanticoke dam was put in.

18. Statement of Capt. James P. Dennis.

I remember the old shad fisheries in the river. There was one just below the bridge at Wilkes Barre, drawn out on the opposite shore; this was called the Bowman fishery. I recollect ouce holding the shore brail of the seine at this point, when William Alexander held the river brail. There was a fishery on Fish's Isiand, about three-quarters of a mile below the bridge.

19. Statement of Jameson Harvey.

I was born in 1796. I remember the old shad fishing in the North Branch of the Susquehanna River very well. James Stewart had a fishery opposite my place. The big haul was made at Fish Island fishery. I recollect it very well; they didn't know how many they caught. After all were disposed of that could be the rest were thrown on the fields, and pretty near stunk us to death; they were landed on the point of the island. There were two seines on Fish Island, one owned by Nanticoke parties the other by Buttonwood parties, who took turn about fishing. The Mud Fishery was at Steele's Ferry; they drew out on Shawnee side. The Dutch fishery was below the dam on Croup's place. Below Hunlock's Creek was annther, that was called a Mud fishery. There was a fishery at Shickshinny. When the big hanl was
made the shad sold for a cent a piece; they sold as many as they could; there wasn't salt enough. In those days they didu't salt down so much pork; they depended upon the shad they caught; they gave the poor : chance after they got all they wanted. People on the West Branch used to orvn an interest in the Hunlock fishery, and a Mr. McPherson used to come in a boat to get their fish and take them back. They used to come from Easton bringing salt, with which they used to buy fish; you could get one hundred shad for a bushel of salt. Nanticoke dam was commenced in 1828 and finished in 1830. I only recollect of one shad being caught above the dam since it was put in, and that was on the flats after a big freshet. The people used to go off the bars with as many shad as they conld carry; they came in from all around in crowds; they used to camp, and salt their fish down on the banks of the river. Mr. McPherson used to take his boats back to the West Branch loaded. He traded off cider, oil, and whisky. At the time the dam was put in shad were selling for 10 cents and 12 cents each. Widow Stewart used often to take in $\$ 30$ or $\$ 40$ of a night for her share of the haul.

Huulock's, Dutch, and Mud fisheries were night fisheries. Sterwart's and Fish Island were day and night fisheries. Farmers hauling grain to Easton ofteu hauled back huudreds of bushels of salt. Boats coming up the river used to bring leather, cider, oil, salt, and iron; going back they would take shad.

McPherson and Hunlock owned the Hunlock fishery and had a large tish-house. Hunlock got as his share from five to six hundred dollars per year, besides all the shad he could use. We used to have shad until shad came again.
The owners of fish-houses used to have arrangements so that when they ran out of salt they could dry and smoke the shad, as they now do herring and salmon. Some of the shad used to weigh 8 or 9 pounds. I saw one weighed, on a wager, tarning the scales at 13 pounds; about seventy or eighty would fill a barrel. The shad improved very much coming up the river, those caught in this valley being very much larger and finer than those caught at Columbia. I remember when Shamokin dam went out the shad came up to our dam and were caught.

20. Extract from Miner's History, p. 209.

April 21, 1778.-At a town meeting prices were set on articles of sale, \&c.:

Shad, аріесе $6 \boldsymbol{.}$.
Tobacco, per 1b ... 9 . 9 .
Eggs, per doz ... 8d
21. Extract from the Susquehanna Democrat.

1818, April 17.—"Newark, N. J., April 7th, shad fishing. On Wednesday 3 shad were caught in the river Passaick. A pair of them weighed eleven pounds, and were sold to one of our public innholders S. Mis. 110-- 41
at a shilling a pound. A solitary one was canght about 2 weeks before and sold to the same innkeeper."

1819, May 14.-"Shad are this season taken in unusual numbers; they have been sold in Philadelphia as low as $\$ 4.50$ per handred and at the Potomac fisheries as low as $\$ 3$."

1820, April 21.-"At Alexandria shad is selling for $\$ 2.50$ a hundred and Philadelphia they are selling for $\$ 3$. In Wilkes Barré, notwithstanding the scarcity of money, they are held at $\$ 18.75$."

1822, Aprll 26.-"We cougratulate our friends on the prospect of soon obtaining a supply of fresh shad; about sixty were caught here on Wednesday (24th), and yesterday (25th) upwards of three hundred. We learn that at Berwick they are caught in abundance."

The above was all that could be found in a file of fourteen years, 1810-1824, bearing upon shad. In the Federalist, printed at the same time, nothing was found.

22.-Deed by Silas Smith of half his shad fishery.

Know all men by these presents that I, Silas Smith, of the township of Newport, county of Luzerne, and State of Pennsyivania, have sold unto Caleb Wright of the district of Huntington, in the county and State aforesaid, one equal half share of a fishery on the lower end of my farm, for the consideration of twenty pounds ($\$ 53.33$) lawful money of Penusylvania to me in hand paid, the receipt of which I hereby own and acknowledge. I hereby bind myself, my heirs, executors, administrators, or assigns, and every of them, by these presents, to warrant and forever defend unto him, the said Caleb Wright, his heirs, executors, administrators, or assigns, the one-half of said fishery to the only proper use and benefit of him, the said Caleb Wright, his heirs, executors, administrators, or assigns.

In witness whereof I have hereunto put my hand and seal, this fourteenth day of May, in the year of our Lord one thousand eight hundred and four- 1804 .

$$
\text { 23.-Extract from Miner's History of Wyoming, p. } 141 .
$$

"The month of February, 1773, had so nearly exhausted the provisions of the Wilkes Barre settlement that five persons were selected to go to the Delaware, near Stroudsburg, for supplies. * * * The distance was fifty miles, through the wilderness, \&c. * * * The men took each an hundred pounds of flour, and welcome was their return to their half-famished friends at Wilkes Barre. Never was an opening spring or the coming of the shad looked for with more anxiety or hailed with more cordial delight. The fishing season of course dissipated all fears, and the dim eye was soon exchanged for the glance of joy and the sparkle of pleasure, and the dry, sunken cheek of want assumed the plump appearance of health and plenty."

VIII.-THE FISH SUPPLY OF LONDON.

[From the London Quarterly Review.*]

1. Report of Spencer Tralpole, esq., Inspector of Fisheries to the Home Office, on the destruotion of fish at Billingsgate, in consequence of the alleged inadequate accommodations at Billingsgate Market. (Ordered by House of Commons to be printed July 20, 1881.)
2. Report to the Common Council from the Fish Supply Committee appointed by the Corporation of the City of London. (October 31, 1881.)
3. Minutes of evidence taken before Special Committees of the Lords and Commons upon the London Riverside Fish Market Bill. (Session of 1882.)

Nearly thirty years have passed since the publication in our pages of an article which produced no ordinary impression at the time of its appearance. In that article, having for its subject "The commissariat of London," we ask our readers to imagine that the principal meal of the day was proceeding in a well-to-do metropolitan home, and we endearored to trace to their sources the various edibles consecutively put upon the table-the fish to its ocean-bed; the flocks and herds to their downs and pastures ; the wild animal to its lair ; the game to its covert ; the fruit to its orchard ; the bread to its parent corufield-in order to point out how they are fattened, netted, trapped, captured, bagged, gathered, harvested, and conveyed to their ultimate destination, "the great red lane of London humanity."

It was natural under these circumstances that we should begin with fish. Although we devoted no more than nine pages to chronicling the operations then carried on in "Mr. Bunning's new market at Billingsgate," it could hardly have escaped the notice of an intelligent reader that "the harvest of the sea," being, as Mr. Spencer Walpole and Professor Huxley assure us, "practically inexhaustible," could not be thoroughly described, or, indeed, be more than glanced at within so brief a compass. We told our readers what fish are ordinarily brought to Billingsgate at that time; but of the fish which, were it not for the limited area and inaccessibility of London's only market, might be brought there, we said nothing. The total supply of fish sent annually to Billingsgate about the year 1853, as given in Mr. Horace Mayhew's "London Labor and the London Poor," seemed to us so enormons, that we submitted the table to an undeniable authority, who assured us that it was no orer-statement. What mould he now have said if

[^85]told that the volume of fish sent to Billingsgate was nearly three times larger in 1880 than in 1853; that within the last six years it has increased from 95,000 to 130,000 tons per aunum, and that this latter figure means a supply of 400 tons of fish for every working day, being, according to Mr. Edward Birkbeck, M. P.,, equivalent to a drove of 1,000 fat oxen entering London upon every one of 313 days in each current year?

Surprisiug as this statement may appear to many, it is nevertheless beyond a peradventure that of the cheaper and coarser kinds of fish which would enter directly into the consumption of the poorer classes an absolutely illimitable supply might be poured into the metropolis by river if a suitable market, open at all hours and accessible at all states of the tide, were available to receive it. Before showing what sort of fish market it is absolutely necessary that London should have, we propose to revea! what, at this moment, Billingsgate is. The materials for describing it lie close at hand. They may be gathered in abundance from Mr. Spencer Walpole's report to the home office; from that of the fish committee appointed by the corporation of the city of London, to which Billingsgate belongs; and, passim, from the evidence given before the two special committees of the Lords and Commons, which sat last session, to consider the "London Riverside fish market bill." Better, however, than any description would be the practical experience gained by a Londoner who had sufficient energy and curiosity to pay Billingsgate a visit between the hours of 5 and 9 upon a Friday morning, the best day in the week for seeing it to advantage. There is an Eastern saying, to the effect that the distance betreen the car and the eye is rery small, but the difference between hearing and seeing rery great. Reading is but another form of hearing and to those who care to understand what the Billingsgate monopoly means, we would recommend a visit to the famous market upon the first moruing of a week-day that may suit their convenience.

Billingsgate market (concerning the antiquity of which there is a difference of opinion between those who hold, with Mr. Walter Thornbury, that it owes its origin to Belin, a king of the native Britons, who flourished 400 sears B. C., and others who maintain, with Stow, that a man called Billing, or Beling, owned a wharf upon the same spot, presumably in Queen Elizabeth's reign) is now and has been the property of the city of London for so long a time that it is not easy to calculate the amount of revenue already brought in by it. It has a frontage to the river of 200 feet, and a superticial area of 40,000 square feet, which area affords sites to seveuteen shops and two large public houses, although, since the "Riverside fish market bill" came before Parliament, the site of one of these public houses has been voluntarily thrown into the market.

The interior of this metropolitan emporium of fish, being obviously far too narrow for the business transacted there, is divided into spaces or forms placed in such close contiguity to each other that the customers
purchasing at one form interfere with those who would fain approach its neighbor. The price charged for the forms is excessively bigh, being at the rate of 9 d . a square foot per week for each. Billingsgate is situated above that portion of the river call the Upper Pool, which carries more floating traffic than any other reach of water approaching it in size upon the face of the globe, so that the dangers of navigation to which cutters and steamers approaching the market by night are exposed exceed description. The width of the portion of the river opposite to Billingsgate left open for navigation does not exceed 200 feet. In front of the market, on the water side, there is a large floating pontoon, but the steamers are not allowed to come alongside it in order to unload, being compelled to lie off at a distance of nearly 100 feet from the market quay, and to land their fish along planks thrown out from the steamer to a barge, and from this barge to the floating pontoon. Erery pound of fish brought by steamer and landed from the river at Billingsgate is carried along these planks upon men's heads. Only two roads, one from and one to the steamers, are permitted to exist, and as the men have no choice but to follow each other it is evideutly impossible to land a large quantity of fish before the market closes at nine in the morning. The result is that fresh fish is often thrown away, because it will not keep until 5 o'clock npon the following morning. This being the plight to which fish-carrying steamers are reduced, the trials and difficulties awaiting sailing cutters entitle them to still greater commiseration. Being sharp-bottomed vessels they have to lie out in the stream, and to land their fish, at considerable expense, in barges. There were once some piles in the river to which the cutters could make fast, but the market authorities drew them. It ought, in addition, to be mentioned that the work of landing fish along the planks which we have just described is dangerous to the men engaged in it, and all the more so because during half the year it is done in the dark. Accidents happen frequently, and occasionally there is a loss of life. The unnecessary expense entailed in this manner upon those who consign fish to Billingsgate may be inferred from the fact which came out in evidence that the largest firm in the trade had in 1880 to pay $£ 4,3219 \mathrm{~s} .4 d$., and in $1881, £ 4,854,88$. 7d. for landing their cargoes, an outlay which, had it been possible for their steamers to moor at the market quay, would have been eutirely avoided, and which, of course, came ultimately out of the pockets of the consumers.
The approach to Billingsgate market from the land side is along Lower Thames street, a thoroughfare which is from twenty-eight to thirty feet wide, and along which not more than two vans can pass abreast. It follows, therefore, that only two streams of traffic can flow along it at the same time, and thus, if a van is being unpacked at the market, one of the two streams is temporarily blocked. If an accident of the most trivial kind should occur the whole of the traffic is brought to a stand still. Six vans, and no more than six, can unload side by side at
the same time. The market opens at 5 o'clock a. m., before which hour no fish is allowed to be sold. As there are no vacant spaces or "laybyes," for carts, for costermonger's barrows, and for vans, the streets adjoining the market are completely blocked as the hour of $5 \mathrm{a}: \mathrm{m}$. approaches. The scene is of a nature to fill the spectator who witnesses it for the first time with wonder that, in the largest and most civilized capital upon the face of the globe, such a disgraceful anachronism should have been tolerated for so a long a time. Every lane and street leading to Lower Thames street is choked with costermonger's barrows and with fishmonger's carts, which extend as far as Cannon Street Arch, King William street, Monument Yard, East-cheap, and ‘Tower Hill. The market, as we have already laid, closes at $9 \mathrm{a} . \mathrm{m}$. When the clock strikes nine the police interfere and clear all the closely-packed vehicles, sometimes amounting to nearly four thousand in number, out of the city, in order to make way for the ordinary day traffic of the streets.

The market being open for four hours only, it follows, as a matter of course, that there are many customers who cannot complete their purchases before their barrows and vehicles are driven away. The nearest points to which they cau retire are Tower Hill, Tooley street, or some other convenient spot outside the city bounds, where they wait until the fish is brought to them upon the heads of porters who charge heavy fees, and waste, into the bargin, no small amount of precious time.
So far as costermongers and fishmong ers are concerned, the Billingsgate trade ceases at $9 \mathrm{a} . \mathrm{m}$. After that hour the reign of the middleman or "bummaree" commences. It is of little moment to inquire how old this word may be, or whether, as suggested by Mr. Walter Thornbury, it is of Dutch origin, but at least it is certain that bummarees. were known to Robert Burns's friend, the antiquarian and wag, Captain Grose. We find in Jonathan Bee's Lexicon Balatronicum, or Slang Dictionary, published in 1823, that "bummaree" is defined as "the man who at Billingsgate takes the place of the salesman, and generally after 8 o'clock $\mathrm{a} . \mathrm{m}$. buys the last lot. Derived partly from mare, the sea, to which most of them have been addicted." Writing in 1853, Mr. Mayhes says: "The market opeus at 4 a . m., but for the first two hours it is attended solely by the regular fishmongers and by bummarees. As soon as these are gone the costers' sale begins. Many of the costers who deal usually in regetables buy a little fish, especially if it is cheap, on the Friday, which is the fast day of the Irish; not to mention that the wives of mechanics run short of money at the end of the week and are compelled to eke out their dinners with fish." Since Mr. Mayhew wrote these words there has been a slight change in the conduct of the market. At present the bummaree is the first to reach and the last to leave the market. He is still of great use, but not so necessary as in 1853. At that time fish were sold in large lots, which the bummaree, as a member of the Billingsgate ring, bought, and,
having broken them up into smaller lots, sold to little buyers. Now, however, the large factors sell by auction, offering only one package or box containing at most 1 cwt . of fish at a time. This lot fetches from 1 s . up to $£ 7$., according to the description and quality of fish contained in it. Thus the fishmonger and coster have a fair chance of bidding against what is called "the trade," but it is the bummaree's province to sort and divide the contents of each box into fish of different sizes for the convenience of the retailer. After $9 \mathrm{a} . \mathrm{m}$. the auctioncers are obliged to sell or throw away the fish still left on hand, and the bummarees, acting in concert, have it in their power to fix the price at which it is knocked down. The result is that many lots are "for a song," and that occasionally large quantities are thrown away, which, if retail tishmongers and costermongers could make their way to the market at any hour of the day, would iufallibly be sold at fair prices, instead of being sacrified or wasted as is now the case.

In his interesting evidence before the Lords committee, Mr. Spencer Walpole defined the position and occupation of the bummaree as follows:
"The ordinary course of business is for the wholesale salesman to sell fish to the retailer; but in Billingsgate the bummaree steps in between the iwo men. He buys the fish after maket hours from the wholesale salesman, and takes the chance of selling it in the course of the day at a profit to the retailers. Therefore, as I understand the matter, he occupies very much the same position as the man who used to be called the 'forestaller' or 'regrater' in the corn market at the beginning of the century."

Far be it from us to rail against the bummaree. As the matter now stands he fulfills rery useful functions, but it cannot be denied that his very existence is due to the deficiency and inadequacy of the market in which he conducts his operations. When a new wholesale and retail emporium has bceu established upon the river side we trust that the bummaree may emulate the example of that sagacious guard to the Edinburgh mail who gothimself converted into a stroker, and thus found a new rocation to engage his attention. At present the bummaree stands between the costermongers, who represent the poor of London, and the fish for which they are clamoring. Billingsgate has bred and nurtured him, and with the Billingsgate monopoly it is to be hoped that he too will be improved oil the face of the earth.

Two efforts, according to Mr. Walpole, have been made to divert the fish-trade of the metropolis from Billingsgate. In the first place a market was established at Hungerford Stairs. Being too far up the river and too remote from the East end it had but a brief span of existence. When we mention that a line drawn north and south across the center of London Bridge leaves a population of about one million six hundred thousand souls who live below the bridge, and about two milliou four hundred thousand souls who live above it, it will be seen
at a glance that Hungerford Stairs are not easily accessible to costermongers engaged in supplying the dense masses of poor people who dwell at the the East end. The second attempt to supplement Billingsgate was due to the generosity of Lady Burdett Contts, who caused a superb building to be constructed in East London, and gave it the name of Columbia Fish Market. It had a still shorter lease of life than its predecessor at Hungerford, the consequence being that the ancient tyrant flourished with greater vigor than ever. As time advanced the inconveniences of Billingsgate, always cousiderable, were enhanced by the increasing magnitude of the trade and by the altered conditions under which it was conducted. The railway soon began to supersede the river, and fish, instead of coming to London by water, found its road there in fast trains. It was bad enough for smacks, cutters, and steamers to thread their tortuous way to the metropolitan fish market along a river which is always choked with traffic, and through the mazes and intricacies of the "Upper Pool;" set, while the market could be reached somehow or other by water, it had become almost unapproachable by land, and it was by land that two-thirds of the fish supply of London now came to Billingsgate.
The following table of the quantity of fish delivered at Billingsgate market, or its immediate vicinity, between the years 1875 and 1880 will show the proportions of railway-borne to water-borne fish, and we shall have something to say presently as to the comparative cost of the two modes of carriage:

	1875.	1876.	1877.	1878.	1879.	1880.
Delivered by railwa	Tons. 71,367	Tons. 73, 919	Tons. 82, 771	Tons. 94,566	Tous. 9), 474	Tons. 87,884
Landed at wharves	1,473	1,259	1,698	4,903	4,338	5, 487
Water-carriage fish landed at the markot	22,109	24,247	22,790	27,300	30,080	37, 258
Total	94, 949	99,425	107,168	126, 760	126, 892	130,629

How bad the land approaches to Billingsgate have always been we have already shown, but their baduess was of comparatively slight importance so long as the bulk of the fish was brought thither by water. When, however, it became necessary to deal each year with some 90,000 tons of railway-borne fish, and to deliver them at Billingsgate through choked streets and narrow lanees which would disgrace a town of 50,000 inhabitants, the difficulties were so augmented that fish vans sometimes took eight hours to get from the Great Eastern or Great Northern Railway terminus to the market where they had to unload. Each succeeding year the block increased ; and, moreover, it was still further aggravated by the development of the trade in dried and fresh fruits. The riuit salesmen, says Mr. Walpole, like the fish salesmen, naturally congregated at the river side. The fruit arriving in the docks were landed and carried through Thames street to Pudding Lane, where most of the
fruit salesmen took premises; and the unfortunate street, which was altogether too small for the fish trade alone, was required to accommodate the fruit trade also.

It must not be supposed that the city fathers were blind to the growing inconveniences of their solitary fish market. Without going back further than twenty years we may notice that in 1862 Mr . Horace Jones, the city architect, suggested the only practicable scheme for making Billingsgate more accessible by land that has yet been laid before the common council. At an estimated cost of $£ 88,000$ he proposed to construct a new street from the corner of East-cheap and Fish Street Hill to Thames street. The common council approved, but allowed the proposition to lie on the table; and when, twelve years later, the improvement committee of the city of London sought to give effect to the city architect's plan it was found that in the interval between 1862 and 1874 the estimated cost had risen from $£ \$ 8,000$ to $£ 525,000$.

Time went on, and matters at Billingsgate proceeded from bad to worse. At length, in 15\%8, Colonel Fraser, the chief commissioner of city police, reported to court of common council that, in the phrase so much dreaded by Lorl Melbourne, " something must be done." Colonel Fraser protested emphatically that "the commerce had far outgrown the capacity of the streets for carrying it;" adding that "an overgrown business is carried on in thoroughfares or rather in lanesnot wide enough to admit more than two lines of traffic," the consequence being "that the stoppage of one vehicle for any purpose brings the rest to a standstill." The only effect produced by his energetic remonstrance was that Monument Yard was pared as a street, so that many of the fruit vans and some of the fish rans were able to find standing room there.

Nothing else of a material nature was done or attempted with a view to improving the approaches until, in 1881, the corporation of the city of London resorted, not for the first time, to the evasive measure which is invariably adopted by the House of Commons when in perplexits. They appointed a committee to inquire into the fish-supply question, and about six months later the home secretary instructed Mr. Spencer Walpole to report upon the handling and distribution of fishat Billingsgate. Both reports are now before us, and between them there is substantially no difference, although Mr. Walpole's is the abler and more searching of the two. Both agree in stating that Billingsgate is far too small and too difficuit of approach by land to fulfill the duties imposed upou it as the sole wholesale and retail market for supplying fish to a population of from five to six millions, resident within 7 miles of the Royal Exchange-that is to say, upon an area which embraces about 150 square miles of ground.

A few brief extracts from each of these important documents will be of service in elucidating the bearings of the question. From the report of the corporation's fish supply committee let us select the following passage:
"We now come to the question which directly affects the corporation
as the market authority, viz, the sufficiency or otherwise of the present accommodation of Billingsgate market, and of the approaches thereto, to meet the requirements of the present day; and when, as regards the approaches, we plainly record our opinion of their absolute insufficiency, we make no new admission, but simply indorse the oft arrived at couclusion of this court. The prior question, however, as to the market accommodation is on a different footing. On three separate occasions, within little more than a generation, the market has been enlarged or entirely reconstructed, and therefore in this direction the corporation has given practical proof of its desire to keep pace with the requirements of the metropolitan fish supply; and yet, incredible asitmay appear, not ouly the weight of evidence in this inquiry lsut the prior action of the court and a pending reference to the markets committee alike go to prove that even now additional market accommodation is absolutely necessary."

So far from it "appearing incredible" to us that additional market accommodation should be accessary, it would indeed be strange if a bit of land about twice the size of the site upon which Exeter Hall stands sufficed for the purposes to which it is now put, even if the land approaches to it were as ample and unobstrncted as those which lead to Albert Hall or Kensingtou Gardens.
Reverting, however, to the report, we desire to call special attention to the following words:
"We now approach, not without diffidence, the crucial point of our duty, viz, the course of action which we deem it wise and right to recommend to the court. The whole of the information gathered together has received our closest attention, and we have the satisfaction of reporting that we have unanimously, though, as regards some members, not without altering a previous impression, arrived at the conclusion that oue wholesale market is calculated to meet the requirements of the trade and the interests of the public. We are also of opinion that such market should be at the waterside; and, as a general principle we are further of opinion that there should be ample and sufficient approaches from all parts of the metropolis to the site of any wholesale fish market. We beg further to state that, although in our judgment the fish market ought to be at the waterside, yet, should the court be of opinion that an inlaud market for the reception and sale of railway-borne fish is also required, we in that event suggest either of the two sites, one in Farringdon road, to the north of CharterLouse street, and the other the site of the present Farringdon market, as appropriate for the purpose. Of the market itself, we are of the opinion that it slould be one based upon the same system as that at present in existence in Paris, viz, a wholesale, a semi-wholesale, and a retail market, all under one roof. We recommend that no restriction whatever should be made as to hours of business, but that the market should be free and open at all reasonable hours calculated to facilitate the reception, sale, and dis-
tribution of fish. Finally, we are of opinion that, taken in connection with our earlier remarks as to destruction of spawn, and the taking of immature fish, and also the present rates charged for railway carriage, the following have, amongst other causes, contributed to the unsatisfactory state of the fish supply, viz :
"1. The small size of the market at Billingsgate.
"2. The utterly inadequate approaches thereto.
"3. The arrangement at present existing for its management.
"We have spoken frankly, and we fully realize that our recommendations involve important and costly changes, which, however, are called for by the present condition of things."

Before proceeding to show how utterly incompatible the recommendations of the corporation's fish committee are with the further existence of the Billingsgate monoply, it seems desirable to repudiate without further delay any agreement with the allegations of this report as to "the destruction of spawn and small fish, aud the taking of immature fish." With this end in view we cannot do better than quote the words spoken at a meeting of the Society of Arts, upon the 10th of May last, by Professor Huxley, who is perhaps the highest authority in England upon such matters. In reply to a not very wise speech, complaining that the fish supply of London'was falling off and the retail price of the article increasing, and attributing the mischief to the wholesale system of trawling now in vogue, "which destroys millions of small fish, and ruins no eud of spawn," Professor Huxley rose and said that-
"He experienced much the same sensation as Rip Van Winkle must have felt when he awoke after his long sleep; for the speech he just heard was identical in spirit and almost in words with a great multitude of speeches which came before him about twenty years ago, when he had the honor of being a royal commissioner to inquire into the condition of our sea fisheries. That commission arose in this way : Mr. Milner Gibson, who was president of the board of trade, sent for him one day, and told him that a member for a northern county meant to move for a commission of inquiry into the destruction of the fisheries on the east coast by trawling, and asked him what he thought about it. He ventured to say that he thought it was all nonseuse, and that Mr. Milner Gibson had better refuse the commission. He did so, but the member beat him in the House of Commons, and he sent for him (Mr. Huxley) next day and told him he must serve on the commission. He served on it for two years, during which time a larger body of evidence came before him than had come under the eyes of most people. The complaints then made of trawlers were precisely those they had just heard; that the damage done by line fishermen was destroying a great source of the supply of men to the navy; that it was destroying the breeding of fish in the North Sea, more especially cod, whiting, and haddock; and, not only so, but it was rapidly destroying that upon which the trawlers
themselves subsisted. It came out in evidence, first and foremost, that the fishing population supplied no appreciable contingent to Her Majesty's navy. It came out, in the second place, that the charge made against trawlers, that they would destroy the spawn of the fish ordinarily canght by the long lines, had no foundation; for, although it might appear strange for him to say so, yet he believed there was no body of men more absolutely ignorant of everything relating to fish, except the catching of them, than fishermen. The first complaint which came before them was that trawlers were bringing up an enormous quantity of spawn every day in their trawls; but, upon inquiry it turned out that what was supposed to be spawn was nothing but gelatinous inhabitants of the sea, which had just about as much to do with fish as cocks and hens to do with Jumbo. With regard to the charge made agaiust trawlers of destroying spawn, he might mention that such fish as haddock and corl did not lay eggs at the bottom of the sea; their eggs floated at the top, so that it was impossible for the trawlers to destroy the spawn. Since that time there was abundant evidence to prove that, while trawlers had gone on steadily increasing, there had been no diminution in the number of col, haddock, and whiting caught. Lastly, as to the supposed injury that the trawlers were doing themselves, there was no question that up to the present moment the amount of capital invested in trawling ressels had steadily increased, and he could not understand shrewd and clear-headed people like the last speaker putting their money into a business if it did not pay expenses. He could not describe the audacity of the statements made at that time with respect to trawl fishing. Witnesses came before the commission and stated that trawled fish were unfit for human food; that they were poisonous; and one man summed up all the demerits and atrocities of trawl fish by saying that they were " mashiated," though what he meant by the remark it is impossible to say. Beyond all doubt, if anything were done to stop trawl fishing on the enormous scale on which it was now carried out in this country; it would no longer be a case of complaining of the price of fish, but ninety-one out of one hundred would not be able to buy any fish except herrings and the like, which were caught in the open sca by nets. He could not give the figures now, but he recollected it being stated some time ago that 800 trawlers hailed from the port of London, and therefore it was preposterous to talk of interfering with their fishery. No answers bad been put forward to the arguments adduced in the report to which he had referred, namely, the constant increase of capital put into the trawling business and the constant increase in the tonnage of the vessels emplosed; and to such patent facts as these, that a town like Brixham was absolutely built out of trawled fish, and the trawlers who caught the fish had trawled over a comparatively small area close to Brixham for the last 70 or 80 years, but the fishing was going on now as weil as ever."
In these words Professor Huxley was but echoing the opinions of his
former colleague, Mr. Spencer Walpole, whose views we shall presently have occasion to quote. Before doing so, however, we invite our readers to observe that the recommendations of the corporation's committee require Billingsgate, as the sole fish market of the metropolis, to possess properties which are absolutely impossible and unattaiuable under the circumstances. In the first place, its land approaches could never be made sufficient without spending a sum of money which would stagger even the city fathers, and throw their yearly budget into inextricable coufusion. Secondly, the approach by river through the Upper Pool will always present insurmountable difficulties. Thirdly, the area of the market is far too small, and cannot be increased unless the custom-house be given up to the city, which the Government has no thought of doing. So hopeless, indeed, did the retention of Billingsgate as the sole metropolitan fish market appear to be in the eyes of the civic committee that they were induced to turn their attention to other river-side sites, and specially to ono near Blackfriars Bridge, the estimated outlay upon which would have entailed an expenditure of from $£ 900,000$ to $£ 1,200,000$, not to mention that the conservators of the river would be certain to forbid its selection, on the ground of the encroachment it weuld make on the water-way. Lastly, the committee arow their opinion that neither the enlargement of the area of Billingsgate nor the establishment of additional markets at Farringdon road or elsewhere "would supersede the necessity for providing betfer approaches for facilitating the traffic in that locality." A more damaging denunciation of Billiugsgate than is supplied by the report of the corporation's own committee it would indeed be utterly impossible to conceive.

Mr. Walpole is equally explieit to the same effect. His report says:
"Fishing in the North Sea, the greatisource of the London fish supply, is carried on in two ways: (1.) By boats working in fleets on the Dogger Bank, on the Silver Pits, on the German coast, and on other favorable fishing grounds ; and (2), by boats working grounds usually nearer home, either singly or with only one or two companions. When the boats work singly and near home they are rarely away for more than twenty-four or forty-eight hours; when they work in fleets they are away for weeks and even months at a time. In the former case the boats returning to port to unload the fish sell them on the fish quay; the fish are theu packed by the buyers and sent to London by train. They are more or less exposed to the sun on the boat, and they are exposed on the fish quay; they are then packed, in ice it is true, in a truck which has perhaps been standing in the sun for some hours; they are brought up in a railway van to town and then carried in a van through the streets of London. But when the fish are caught by boats working in fleets fast steamers attend the fleet to carry the fish back to London. They are removed almost as soon as they are caught to the hold of the steamer, covered with ice, and never unpacked till the steamer reaches Billingsgate.
" It does not require much reflection to conclude that fish dealt with in this way are more likely to reach London in good order than those which are removed from the boat to the quay, from the quay to the railway van, from the railway van to the street, and from the street to the market. In fact I believe I am right in saying that no fish coming by water would be condemned if it were not for two reasons: (1.) It occasionally happens that the fleet has moved its position before the steamers arrive, and the steamers in consequence fail to find it. (2.) It also occasionally happens that the catch is so large that the steamers are unable to store the whole of it in their holds, and are forced to carry some portion of it on deck.
"It is obvious then that, except from accidental circumstances, there is and there need be no loss among the fish which reach London by water. Water-carriage is cheaper than land-carriage. A box of fish carried direct by water to Billingsgate costs $2 s$. $1 d$. for carriage. The same box carried by land costs 3 s. $9 \frac{1}{2} d$. , viz, $1 s .7 d$. , its carriage to Grimsby, and 2s. $2 \frac{1}{2} d$. , its carriage to London. It is not surprising, therefore, that as the cost by water is less and as the fish arrive in better condition, the London salesmen should prefer water-borne fish, and should look for the solution of every difficulty by a further development of the water traffic."

Mr. Walpole proceeds to give his reasons for thinking that, despite its superior cheapness, water-carriage will never entirely supersede the land-carriage of fish. He states that with a view to discouraging the land-carriage of fish some of the merchants who came before him as witnesses went so far as to propose that single-boat fishing should be prohibited by Government, and the men forced to fish in fleets. This suggestion seemed, in Mr. Walpole's eyes, to be impracticable. Fishermen are influenced by the same motives as other men. They naturally object to a system of fishing which keeps them away from their families for weeks at a time, and prefer to it a system which enables them to return home once in every twenty-four hours, even though the result may be that their fish cost a little more for carriage to London and arrive there in rather worse order. Is it possible, asks Mr. Walpole, to provide that railway-borne fish shall reach London so that a very small proportion shall be in a condition to necessitate condemnation? The witnesses who appeared before him at Billingsgate were of opinion that if inspectors were appointed at the various ports to prevent the sending forward of fish which were already bad this highly desirable consummation might be attained. But where are these inspectors to reside? If at the principal ports the fishermen would certainly resort to other ports where there are no inspectors. If, however, inspectors were established at every port and village where boats can land the expense would bo out of all proportion to the end aimed at. Nor could it be expected that the Goverument would consent to bear the charge of a duty which would primarily be of advantage to the metropolis alone. It would be
still more hopeless to ask local authorities to incur expeuse for a purpose diametrically opposed to the trade of their neighborhood. The ouly possible course seems to be to condemn in London the fish which are bad when they reach Billingsgate, and to trust to the effects of this condemnation to prevent salesmen from wasting money by sending other bad fish to London.
"If this conclusion be correct," adds Mr. Walpole, " then the state, not of Billingsgate, but of the approaches to Billingsgate, must, in my judgment, be held respousible for some portion of the loss which arises from the necessary destruction of condensed fish. I have already endeavored to describe what those approaches are. The vans arriving from the railway station, the carts of the retail dealers arriving to buy, make them almost impassable, and the system on which the traffic is, perhaps unavoidably, conducted, makes confusion almost hopeless. On general grounds it would apparently be desirable that the rans which reach the market first should be unpacked first, and should then proceed as empties to their destination. But in practice this is nerer uniformly done. The vans which arrive first may contain fish for which there is no particular demand, while the vans which are perhaps in the rear of the line may contain other fish for which there is a great demand. The vans, therefore, instead of being umpacked, are forced to move on, and thread their way through the crowded thoroughfares of London till they are able to obtain a fresh place in the line. One van, whose case was exceptionally unfortunate, returned in this way, not merely time after time, but day after day, and for eleven days. The fish which it contained were of course ultimately condemned.
"How, then, is the difficulty to be obviated which at present exists? I believe it to be impossible to obviate it till the approaches to Billingsgate are reconstructed, or the market is itself removed. A market does not deserve the name which does not afford (1) accommodation for buyers and sellers; (2) standing room, aud, where perishable articles are concerned, standing room under covered ways, for the vans which are being unpacked; and (3) easy access. Billiugsgate fulfills the first of these conditions. It wholly fails to fultill the second and third of them. A market without approaches is, in fact, as inconvenient as a house of many stories with-out a staircase. It is said that the amateur architect is apt to forget the staircase when he builds the honse. I should very much regret to call the corporation of London an amateur architect, but it has undoubtedly committed the mistake of reconstruct. ing the market and of forgetting the approaches."
We have said enough to show that Billingsgate is past praying for; nor can much sympathy be expected from the poblic with the efforts made last session by a portion of the common council to sare its life by defeating the London riverside fishmarket bill before the special committee of the House of Lords. Thanks to the refusal of Lord Salisbury and of the Duke of Richmond to sustain the two mischievous
clauses imported into the bill by the Lords' committee, and thanks also to the energetic speech of Lord Shaftesbury, these clauses were withdrawn, and there is at length a fair chance that London will shortly have a riverside fish market worthy of the largest and hungriest city in the world."

It remains for us to inquire what are the attributes and properties that a metropolitan fish emporium should possess, and to see how far they are supplied by the site at Shadwell, where it is understood that the new market authorized by the two Houses of Parliament is about to be established. What these essentials are was clearly laid down by the fish committee of the common council when they arrived at the following conclusions:

1. That one wholesale market is calculated to meet the requirements of the trade and the interests of the public.
2. That such a market should be at the water-side.
3. That there should be ample and sufficieut approaches from all parts of the metropolis to the site of any wholesale fish market.

To these three very obvious conclusions a fourth might have been added to the effect that the market should be established at a point where the river is sufficiently wide for the sailing vessels and steamers moored at the market quay to be out of the way of the stream of floating traffic which passes ceaselessly to and fro along that crowded highway of nations.
That the site at Shadwell conforms to these conditious is evident from the following arguments which were deemed irrefutable by the special committees of the Lords and Commons when brought before them last session.

1. The London riverside fish-market bill authorizes its promoters to take about eight acres of land in the parish of St. Paul, Shadwell, four acres of which they bind themselves to appropriate for the new fisk market and its approaches.
2. The site, like that of Billingsgate, is on the north side of the river; to which it has a frontage of 600 as against that possessed by the Birlingsgate of 200 feet. It lies nearly two miles below London Bridge, at a point where the Thames is 1,100 feet wide, and being situated on theedge of a bay, out of the influence of the tide, and 500 feet clear of the ordinary trafic of the stream, it euables ressels approaching it to avoid the difficult and dangerous narigation of the Upper Pool, which is noordinary advantage when we remember that the fish craft for the most part arrive in the dark.
3. The shore can be leveled so as to admit vessels of thirteen feet draught alongside the wharf at half tide. Vessels will lie next the whart, and unload direct into the market, thus avoiding the expense, delay, and danger of the present system of discharging. There is a boat ferry at either end of the site, and a steam ferry is about to be reopened at a short distance to the west. This steam ferry can make from seven to.
ten trips in an hour, and can take from seventy to ninety costermongers barrows at a time.
4. As regards the access to the market by land the streets and roads leading to the selected site at Shadwell are wide, unencumbered by ordinary traffic, and of easy gradients. Out of the eight acres acquired the market proper will occupy 75,000 square feet, or one acre and threequarters, and the rest of the property will be laid out in ample approaches and in "lay byes" for carts and barrows, and also in the erection of the necessary shops, warehouses, and buildings connected with the market.
5. On the three land sides of the market there will be a broad street, so that four-and-twenty rans can lie side by side and unload simultaneously. Not a single fishmonger's cart or costermonger's barrow will be more than 150 yards away from the center of the market, so that the porterage will be reduced to a minimum and no time will be wasted. The market will be open all day, and accessible from a very early hour in the moruing until late at night to ships approaching it by water and to costermongers approaching it by land. The maximum tolls fixed by the bill are very much lower than those charged at Billingsgate.

It will thus be seen that the Shadwell site fulfills all the conditions required by the reports of the corporation committee and of Mr. Walpole, who, having examined the spot, gave evidence in its favor before the House of Commons' committee. It should also be mentioned that no steps were takeu by the promoters of this bill to get permission from parliament to make a new fish market at Shadwell until the corporation of Loudon and the metropolitan board of works had been repeatedly urged, but in vain, to take the matter up. The want of additional market accomodations being admitted on all bands, what, it may be asked, is the corporation of London doing to supply it? With the exception of attempting to convert the fruit market at Farringdon into a fish market nothing has been or will be done; and it is admitted on all hands that an inland market of this kind will do little towards cheapening and making more abundant the coarser kinds of fish, which do not come to London by costly railway carriage but can only be brought by riser.

These details can hardly be deemed uninteresting when we remember the stake at issue and the degree to which they affect it. There is and has long been a popular impression that many of our sea-fisheries are less fecund than of yore, and that the ocean is growing more and more to deserve the epithet of "barren:" which Homer was so fond of applying to it. How far this is from being the case let the following passage from Mr. Walpole's speech, delivered before the Society of Arts upon the 10 th of last May, suffice to attest:
"You are all acquainted," he said, "with the North Sea. Vou know that it is a comparatively small sea. It is fished by English. Scotch, Norwegian, Swedish, Danish, German, Dutch, Belsian, and French tish-
ermen, and I think I could prove to you (only it is unnecessary to ge into statistics) that the fish which these fishermen are drawing from the North Sea is worth at least $£ 25,000,000$ every year. That sum, if I may translate the figures again into an intelligible language, is more than equal to the whole interest of the national debt of this country. This evening I am not concerned with the fisheries of Europe, but with the fish supply of London; and what I wish to point out to you, and what is very imperfectly understood, is the proportion of fish consumed in London which is drawn from the North Sea. I have tried to analyze the return as far as I am able to do so, and I find that, out of the 130,000 tons of fish which were received in London in 1880, in round numbers 100,000 tous came from the North Sea; that is to say that, out of every four fish which we eat in London, three came from the North Sea. Now, if this is the case, it is really essential to the subject for us to consider, however shortly, what is happening in the North Sea, because I know there is a prevalent impression that the North Sea itself and the seas of this kingdom generally are being overfished, and that they are in consequence in danger of approaching exhaustion. I am bound to say that you will hear this allegation supported on good authority in Billingsgate, and that you may also hear it in many tishing villages on the coasts of England. Now I will give you my reasons for thinking that the North Sea and the seas of this country generally are not in danger of exhaustion. In the first place the prophecy of approaching exhaustion is not a new one. It has influenced the legislature for centuries, and it may be found in our literature since the days of the Tudors. I, for one, think that when you find a series of predictions which have uniformly proved false you may pretty well afford to disregard the same predictions when they are made in our own time. You can hardly enter into a drawing-room-you certainly cannot go into any company interested in fisheries-without hearing complaints of the scarcity of soles; and I do not deny that soles were excentionally scarce last year. But I recollect that I was told myself at Scarborough forty-five years ago, in the year in which the Queen came to the throne, that a fisherman landed at Scarborough with a pair of soles, which he placed on the pier and said: 'There are the two last soles in the North Sea.' I do not deny that scarcity may occur again, as it undoubtedly occurred last year. But I regard such scarcities as temporary accidents and not as any permanent failure of the great source of fish supply."

Mr. Walpole then reminded his hearers that, like all other animals, man included, fish have a tendency to produce their numbers in greater ratio than their food is generated, and consequently the natural waste which is always going on in the sea is far more exhansting than any effect that multitudes of fishermen produce upou the fish. In the same way a warm or a cold summer has an enormons influence upon the abundance or upou the scarcity of awimal and vegetable life. Some years, for ininstance, we talk of a plague of flies, of caterpillars, or of gnats. The
same thing goes on in the sea, and the minute forms of life upon which the fish feed are affected by the warmth or cold of particular years. When there is a defective production of these forms of alimentary life the fish are obliged to scatter in search of food, and are not collected together so as to be easily caught by the net or traml. In conclusion, Mr. Walpole pointed out that, although man is singularly deficient in statistics bearing upon fish, it is possible to reason in some measure from the particular to the universal by examining the details of the herring fishing, with which we are more or less acquainted.
"We know," he continued, "that the Scotch fishermen on an average take one thousand million herrings a year. We know also that the Norwegian fishermen take from the North Sea another one thousand million herrings per aunum, while 1 am sure that other fishermen who work the North Sea take at least another one thousand million. Therefore we may assume that the fishermen of Europe draw three thonsand millions of herrings amually from the North Sea. I think it beyond doubt that the predacious fisk and birds kill as many herriugs amnally as fishermen do, and therefore man and other enemies draw six thonsand millions of herrings a year from the North Sea. Now I do not suppose that any one with the least acquaintance with the subject would say that all these enemies of the herring catch one in every hundred; but, to put myself beyond all possibility of error, I will assume they catch one in every two. Then at the end of the year the account must be, six thousand millions of herrings taken and six thousand millions left. Assuming that of those left half are females it is obvious that to maintain the stock these females must produce two herrings apiece to make twelve thousand millions next year. But a female herring does not lay two eggs; she lays from 20,000 to 30,000 . Assuming that she lays 10,000 eggs, it is obvious that nature intends out of every 5,000 she lays that 4,999 should die. If it were not so the whole sea would be full of herrings."

The conclusion at which Mr. Walpole arrived is that "the North Sea is practically inexhaustible." These are encouraging words, and they are borne out by the evidence of Mr. Kobert Hewett, who is the managing director of Hewett \& Co., a limited company which owns eight steamers and sixty fishing smacks of its own, and has in addition nearly one hundred other fishing smacks under mortgage, and about thirty more associated with it. Mr. Hewett deposed that since 1864 the company which he manages-
"Hare bronght much more wet trawl fish to Billingsgate than any other firm or company; that the fleet under his control consists of 183 smacks; that the fleet fish during the night and in the moruing put their catch, which is packed in boxes containing about ninety pounds of fish each, on board the steamers which wait upon them ; that the boxes when taken on board the steamers are immediately put into the hold and buried in ice, and are thus brought direct to Billingsgate; that on
arriving at Billingsgate the fish, on the opening of the market at 5 a . m., is taken out of the hold, carried ashore, and sold box by box; that the amount realized by Hewett \& Co. for wet trawl fish sold at Billingsgate during the last seven years amounts collectively to $£ 1,210,409$; that in the trade wet trawl fish are divided into two classes, prime and offal; that the prime consists of turbots, brill, soles, John Dorey, and red mullet; and offal of plaice, haddock, cod, skate, roker, whiting, sturgeon, hake, dabs, thornback, aud gurnard; that a very large proportion of the offal brought to market by Hewett \& Co. could not have been sent by rail, as it would not have fetched the rate charged for carriage; that if there was no water-carriage for fish to market nothing but the prime and the best of the offal would be sent to London at all."

The evidence of Mr. Hewett is deserving of special attention, because it is to him and to his father that Billingsgate is indebted for many valuable suggestions and improvements of the conduct of its trade. His father was the first to bring fish by water from the fleet in the North Sea direct to Billingsgate, and for this purpose he caused a line of fastsailing carrier cutters to be built in 1843 . Up to that time, and for many years previously, it was the custom to land considerable quantities of fish at Yarmouth, which were sent up to London by rail, while other lots were brought by river to Gravesend and despatched thence to Billingsgate by hatch-boat. From 1843 to 1864 the swift-sailing cutters worked with great success, but in the latter year they were "run off the roat," not by the railways but by steam carriers which were then started. The first ten sailing carriers were built and put on by the elder Hewett in 1843 and 1844; the first six steamers by the younger Hewett in 1864 and 1865. There are now not less than twenty-one steam carriers running to Loudon. They belong to several companies, each of them distinct from the others, and they work in connection with five large fleets in the North Sea. Nor ought we to omit mentioning that the bulk of the fish came to Billingsgate packed in baskets until 1856 , when boxes were for the first time tried by Hewett $\&$ Co. Four years later baskets had entirely died out, and in 1860 all trawl fish came to market, as they do now, in boxes containing from ninety to a hundred pounds apiece.

Enough has been said to show what weight attaches to Mr. Robert Hewett's testimony, when he affirms, "as the result of many years experience," that double the quantity of fish now sold in London could readily be disposed of if there were but proper accommodations at the riverside to receive it. It is well known, he adds, by all who deal extensively in the coarser kinds of fish, that however large the supply the demand more than keeps pace with it, and that the price is never lowered. There can, in fact, be no doubt that if, as he anticipates, Mr. Fiewett and his company can pour three or four hundred tons of roker every day into the metropolis throngh Shadwell market they will be conferring a benefit upon the poor of which it would be impossible to overstate the magnitude. Roker-by which all fish of the may fam-
ily, excepting skate, are meant-is a favorite food of the working classes, to whom it could be supplied retail at three pence or less per pound. There are medical men, among whom Sir Henry Thompson and Dr. Priestley are, we beliere, included, who hold that for delicate digestions nothing is so healthy and invigorating as a diet consisting almost exclusively of fish. But it is not in the interests of the rich that the enterprise was conceived which is about to give us a fish market with all the merits and none of the defects for which Billingsgate has long been noted. How cau the value of a constant supply of fresh fish, obtainable at about one-fourth or one-fifth of the price exacted from him for tresh meat, be estimated and appraised by the workingman? The question is more than ever significaut when it is borne in mind that there are many sions presaging a considerable rise in the price of beef, and still more of mutton, before the end of next year. According to the "Balance Sheet of the World," compiled by Mr. Michael G. Mulhall, F. S. S., Europe consumes annually 853,000 tons of meat beyond what she produces. From whence is England to derive her supplies of this precious commodity, which she produces at the rate of $1,205,000$ tous and consumes at the rate of $1,800,000$ tons per annum? To wake up our yearly deficit, amounting to about 600,000 tons, the United States have, until lately, been the most liberal of our many contributors. But beef is at this moment as dear in New York as in London, and the power of the Urited States to supply England with meat is obviously declining. The rapid growth of the American population is enongh to explain that, in a country already numbering about $55,000,000$ inhabitants, $32,000,000$ sheep and $13,000,000$ bullocks are not much in excess of that country's own wants.

Doubtless we shall receive large consigments of frozen mutton from the Anstralian colonies; but years upon years will have to expire before the contributions from that source, added to others from Brazils, the Argentine Confederation, the River Plate, and possibly from Russia, will begin to make themselves sensibly felt in this country. The greatest perplexity, in short, with which statesmen can be threateneda deficiency in one of the most essential staples of the nation's foodseems to be impending over Great Britain and Ireland. How is it to be met?

Lucan tells us in one of the finest passages of his Pharsalia, that Cæsar, upon returning to Rome, dismissed all thoughts of war from his breast, and addressed himself to the task of providing ample supplies of food for the fickle populace, conscious that it is famine alone which lashes cities into revolt, and that a "starving people knows no fear." Far be it from us to suggest that England is threatened, ever so remotely, with famine. But that beef and mutton are likely to rise in price is the undonbted opinion of our most competent anthorities, and in the face of a serious deficiency in meat we can conceice nothing more useful or more welcome than a large and sustained addition to the fish supply of London.

IX.-THE EXTENT OF THE USE OF FISH GUAN0 AS A FERTILIZER.

By Chas. W. Smiley.

In the fall of 1879 the inquiry, "Is fish guano in any of its forms used by your farmers?" was addressed to every postmaster in the United States. From 30,022 returus, the following facts have been ascertained:
I. Fish guano is not used in any of the following twenty-one States and Territories: Alaska, 1; Arizona, 34; Arkansas, 435; Colorado, 161; Dakota, 184; Idaho, 45; Illinois, 1,154; Indiana, 792; Indian Territory, 46; Iowa, 836; Kansas, 749; Minnesota, 515; Missouri, 835; Montana, 64; Nebraska, 373; Nevada, 62; New Mexico, 54; Oregon, 211; Texas, 752; Utah, 113; and Wyoming, 46. The numbers given with each political division denote the number of negative replies received to the question, the total being 7,462 , and covering every county in the divisions named.
II. In the following ten States and Territories there are indications of a very slight use of fish guano. In some cases the reporters may not have carefully distinguished between fish guano and other kinds, while others have evidently spoken of unmanufactured refuse of the fisheries. All reports that are believed to point to the use of fish in any form as a fertilizer are here quoted:

1. California.-_Shrimp shucks from San Francisco are used by Chinese gardeners to a considerable extent:" Grass Valley, Nevada County. "To some extent in regetable and strawberry culture:" Santa Clara, Santa Clara County.

The following statement by A. W. Saxe, M. D., of Santa Clara, is of interest: "I know of no one in this vicinity using fish as a fertilizer, except Judge D. C. Thomas, who was induced to try it by Mr. A. Barstow, of San Francisco. The material is mostly dried shrimps and waste of codfish and salmon. On strawberry land he uses from 300 to 400 pounds per acre. It pays well in the increased yold and fuer quality of fruit. In 1879 he used ten tons on his extensive strawberry plantation, and would have used more if he could have gotteu it. He sows it broadcast on the land after the first plowing and cultivates it into the soil. It stimulates vegetation wonderfully. It is gathered by the Chinese fishermen at or near Point Arena, in Mendocino County, put up in bales after being sun-dried and shipped to China, probably to be
used as a fertilizer but possibly as food, as there is nothing of organic nature the Chinaman will not eat. These bales weigh from 300 to 400 pounds each. The farmers in the riciuity of Point Arena have used it to some extent on wheat lands, and report it as increasing the crop from 30 to 50 per cent. At one time they used all they could get at the original price demanded by the Chinese; but the latter soon raised the price from $\$ 8$ to $\$ 12$ per ton, and it has not since been in as general use there as formerly."
"Nearly all farmers in the valley use it, obtaining it from Sacramento and Sau Francisco": Etna Mills, Siskiyou County. The foregoing constitute the affirmative reports. There are 486 negative reports on file from this State.
2. Kentucky.-"A very little used, which is obtained at our county seat, being brought from New York, Cincinnati, and Louisville": Wade's Mill, Clark County. "A little for experiment": Frankfort, Franklin County. "Very little is used, being obtained from Baltimore, Md., and Savannal, Ga.": Pulaski, Somerset County. There are 594 negative reports from this State.
3. Louisiana.-"Three hundred tons, obtained from Charleston, S. C., were used in 1880, principally by the Ames plantation": Gretna, Jefferson County. There are 205 negative reports from Lonisiana.
4. Midhignn.-"What we use we manufacture ourselves, but are ignorant of the true way of doing it": Slanee, Baraga County. "A small amount, obtained at Grand Rapids and Jackson, is used, and by 15 or 20 men": Morgan, Bay Connty. "Fishermen use fish guano on their gardens somewhat; none bought or sold here": Mackinaw City, Cheboygan County. "Winegar, Miller \& Co. use it on their farm at Martin's Island, Delta County": Escanaba, Delta County. "Only when fish are found dead on the lake shore, as is sometimes the case": Bear Lake, Manistee County. "What little is used here is bought by our farmers at Grand Rapids, 16 miles distant": South Blendon, Ottawa County. The number of negative reports from this State is 819 .
5. Mississippi.-"The fish is used as a fertilizer": Bay Saint Louis, Hancock County. "Salt water sardines are used for guano and are very plentiful": Scranton, Jackson County. There are 332 negative reports from this State.
6. OHio.-"Not in any quantity; $\$ 150$ per year is about the limit": Powhatan Point, Belmont County. "They use fish for fertilizer on the lake shore": Dover, Cuyahoga County. "Offal from fish house and worthless fish are used on the fields": Vermillion, Erie County. "Fertilizers are used quite extensively, fish guano forming a part": Barlow, Washington County. "Yes": Toledo, Lucas County. The number of negative answers from Ohio is 1,228 .
7. Tennessee.-"It is": Asbury, Knox County. "Yes, it is being used of late by quite a number of farmers. I suppose that at least 500 farmers, averaging to use 800 pounds each, and living in this vicinity,
employed it in the year 1880": Cash Point, Lincoln County. "In exceptional cases; it has not been introduced extensively": Muddy Creek, Loudon County. "It is; farmers buy it at Knoxville," Unitia, Loudon County. "Yes; four farmers used 80 tons in 1880 ; they bought it at Knoxville": Wave Hill, Union County. "Yes; about twenty-five men used 500 pounds in 1880 ; it was obtained at Richmond, Va.": Fain's, Washingtou County. There are 589 negative reports from Tennessee.
8. Washington.-"It is by those living near the sound": Kamilche, Mason County. "Carcasses of dogfish and the refuse of herring fisheries are used by gardeners on Fillalgo Island": Artondale, Pierce County. "Yes; a little": Sumner, Pierce County. "In some cases": Lowell, Snohomish County. "In some cases; as a rule, our farmers have not utilized fish guano": Olympia, Thurston County. "In limited quantities; from Cypress Island fisheries": Anacortes, Whatcom County. "There has been little fish scrap used by a few with good results": Fidalgo, Whatcom County. "It is": Semiahmoo, Whatcom County. There have 121 negative reports been received from Washingtou.
9. West Virginia.-"A little from Delaware": Capon Bridge, Hampshire County. "About two tons were used in 1880, being obtained fromx Winchester, Va.": Dillon's Run, Hampshire County. "About onefourth of all guano used here is fish guano; nearly all farmers use some kind of guano; it is obtained from Winchester, Va.": Hanging Rock, Hampshire County. At Mutton Run and other places in Hampshire County there is also evidence of the use of fish guano. "Fish guano is but little used here, though I have seen it occasionally in the market:" Kendalia, Kanawha County. "In 1880 six farmers used about five sacks each of fish guano obtained in Baltimore": Racoon, Preston County. There are also affirmative answers from Crump's Bottom, Summers County, and from Kanawha Station, Wood County. There are 381 negative reports from all parts of the State.
10. Wisconsin.-"There has been considerable fish guano used in this county; it is a valuable fertilizer in Bailey's Harbor, Gibraltar, Jacksonport, and Sturgeon Bay; they have used the culled tish with great success for several years past, but in 1880 the fishermen found market for most all kinds of fish:" Ellison Bay, Door County. "Yes:" Naugart, Marathon County. "The offal of the fisheries is utilized to some extent by the farmers near by": Menekaunee, Marinette County. Seven hundred and forty-two negative reports are on file from this State.
III. In seventeen States a somewhat extensive use of fish guano is reported. Assuming that the percentage of Territory corresponds with the percentage of affirmative and of negative replies to the question, the use of fish guano would extend over-

1. 18 per cent. of the territory of Pennsylvania.
2. 24 per cent. of the territory of New York.
3. 30 per cent. of the territory of New Hampshire.
4. 32 per cent. of the territory of North Carolina.
5. 33 per cent. of the territory of Vermont.
6. 36 per cent. of the territory of Alabama.
7. 45 per cent. of the territory of Virginia.
8. 46 per cent. of the territory of Maine.
9. 46 per cent. of the territory of Georgia.
10. 48 per cent. of the territory of South Carolina.
11. 50 per cent. of the territory of Maryland.
12. 51 per cent. of the territory of Florida.
13. 58 per cent. of the territory of New Jersey.
14. 60 per cent. of the territory of Massachusetts.
15. 69 per cent. of the territory of Delaware.
16. 79 per cent. of the territory of Connecticut.
17. 86 per cent. of the territory of Rhode Island.

Taking up each of these States by the nine sections into which they have been divided by the Post-Office Department, and specifying the number of counties in which this fertilizer is used, the percentage of territory on which it is reported would be exhibited by the following tables:

1.-Pennsylvania.

Fish guano is used in 58 of its 67 counties and on 18 per cent. of its territory:

> NORTEWESTERN, WESTERN, AND SOUTHWESTERN COUNTIES.

Per cent.
In 4 of the 5 northwestern counties .. 13
In the 8 western counties... 9
In the 6 southwestern counties ... 8

10
NORTHERN, CENTRAL, AND SOUTHERN COUNTIES.

In 5 of the 7 northern counties .. 11
In 12 of the 16 central counties ... 12
In 5 of the six southern counties... 22

In the 3 northeastern counties .. 8
In 7 of the 8 eastern counties... 16
In the 8 southeastern counties... 40

2.-New York.

Fish guano is used in all the counties of the State except Lewis and Warren, and on 24 per cent. of its territory:

WESTERN AND SOUTHWESTERN COUNTIES.!
Percent.

In 5 southwestern counties.. 13
19
NORTHERN, CENTRAL, AND SOUTIIERN COUNTIES.
Per cent.
In 3 of the 4 northern counties.. 15
In 9 central counties ... 17
In 4 southern counties .. 13

NORTHEASTERN, EASTERN, AND SOUTHEASTERN COUNTIES. Per cent. 1.3
In 4 of the 5 northeastern counties... 09
In 8 eastem counties.. 23
In 15 southeastern counties.. 40
3.-NEW Hampshire.

Fish guano is used in all the counties of this State, and on 30 per cent. of its territory :

SOUTHWESTERN COUNTIES. ${ }^{2}$
Per cent.
In 2 southwestern counties ... 30
northern, central, and southern counties.
Per cent.
In 1 northern county... 30
In 3 central counties.. 31
In 2 southern connties ... 28
29
SOUTHEASTERN COUNTIES. ${ }^{3}$
Per cent.
In 2 southeasteru counties...
4.-North Carolina.

Fish guano is used in 75 of the 94 counties of this State, and on 32 per cent. of its territory:

NORTHWESTERN, WESTERN, AND SOUTHWESTERN OOUNTIES,
Per cent.
In 3 of the 6 northwestern connties. 10
In 8 of the $1 \approx$ western connties... 19
In 9 of the 16 southwestern counties . 18

[^86]NORTHERN, CENTRAL, AND SOUTHERN COUNTIES.

Per cent.
In the 12 northeru couuties. ... 33
In 13 of the 14 central counties .. 38
In the 7 sonthern connties 41
37
NORTHEASTERN. EASTERN, AND SOUTHEASTERN COUNTIES.
Per cent.
In 11 of the 12 northeastern comnties... 60
In 10 of the 12 eastern counties ... 45
In 2 of the 3 sontheastern counties.... ... 21
42
5.-VERMONT.

Fish guano is used in all the comnties of this State, and on 33 per cent. of its territory :

NORTHWESTERN, WESTERN, ANI SOUTHWESTERN COUNTIES.

Per cent.
In 2 of the 3 northwestern connties .. 17
In 2 western connties . 14
In 1 southwestern county 28
19
NORTHERN AND CENTRAL COUNTIES. ${ }^{A}$
Per cent.
In 2 northern counties ... 40
In 1 central county ... 3 . 3
36
NORTHEASTERN, EASTERN, AND SOUTHEASTERN COUNTIES.
Per cent.
In 2 northeastern counties.. 38
In 2 eastern counties... 43

45
6.-ALABAMA.

Fish guano is used in 55 of the 66 counties of this State, and on 36 per cent. of its territory:

NORTHWESTERN, WESTERN, AND SOUTHWESTERN COUNTIES.
Per cent.
In 4 of the 9 northwestern counties .. 16
In the 5 western counties... 29
In 5. of the 7 southwestern counties . 11
19
NORTHERN, CENTRAL, AND SOUTHERN COUNTIES.
Per cent.
In the 8 northern counties. ... 47
In 7 of the 9 central counties .. 38
In 7 of the 8 southern counties... 27

NORTHEASTERN, EASTERN, AND SOUTHEASTEIRN COUNTIES.

Per cent.

In the 7 eastern counties .. 71
In 7 of the 8 southeastern counties 52

51
7.-Virginia.

Fish guano is used in 84 of the 99 counties of this State, and on 45 per cent. of its territory:

WESTERN AND SOUTHWESTERN COUNTIES. ${ }^{5}$
Per cent.
In 5 of the 7 western counties .. 26
In 9 of the 17 southwestern counties ...

17
NORTHERN, CENTRAI, AND SOUTHERN COUNTIES.
Per cent.
In 14 of the 15 northern counties .. 42
In 18 of the 20 central connties 45
In the 13 southern counties . 49

45
EASTERN AND SOUTHEASTERN COUNTIES. ${ }^{6}$
Per cent.
In 17 of the 19 eastern counties.. 88
In the 8 southeastern counties. .. 67
S.-MAINE.

Fish guano is used in every county of Maine, and on 46 per cent. of its territory. In some parts of this State lobster shells are used as a fertilizer:

$$
\text { WESTERN AND SOUTHWESTERN COUNTEES. }{ }^{7}
$$

Per cent.

CENTRAL AND SOUTILEIR COUNTIES.8
In 2 . Per cent. 64

NORTHEASTERN ANI FASTETNN.
Por cent.
In 1 northeastern county . 3
In 1 eastern county ... 76

9.-Georgia.

Fish guano is used in 99 of the 137 counties of Georgia, and on 46 per cent. of its territory:

Northwestern, Western, and southwestern.
Per cent.
In 11 of the 12 northwestern counties.. 45
In 17 of the 21 western counties .. 54
In 7. of the 16 southwestern counties... 48
Nomitaine 49
NORTHERN, CENTRAL, AND SOUTMERN COUNTIES. Por cent.
In 14 of the 19 northern counties .. 40
In 18 of the 23 central counties...-.-. .-... 55
In 8 of the 13 southern counties ... 37
44 nortileastern, eastern, and southeastern counties.

Per cent.
In 7 of the 10 northeastern counties.. 39
In 7 of the 11 eastern connties 43
In 10 of the 12 soutbeastern counties . 45
42
10.-South Carolina.

Fish guano is used in all the counties of this State except Chesterfield and Georgetown Counties, and on 48 per cent. of its territory:

NORTHWESTERN AND WESTERN COUNTIES. ${ }^{10}$

Per cent.
In 6 northwestern counties 53
In 4 western counties .. 52

NORTHERN, CENTRAL, AND SOUTHERN COUNTIES.
Per cent.
In 6 northern counties .. 47
In 5 central counties 43
In 4 southern counties ... 38

NORTHEASTERN AND EASTERN COUNTIES. ${ }^{11}$
Per cent.
In 5 northeastern counties... 44
In 3 eastern counties ... 45
44

11. - Maryland.

Fish guano is used in all the counties of this State except Alleghany County, and on 50 per cent. of its territory:

NORTHWESTERN COUNTIES. ${ }^{12}$
Per cent.
In 4 northwestern counties
29

[^87]
NORTIIERN, CENTRAL, AND SOUTIERN COUNTIES.

1'er cent.
In 3 northern counties
43

In 4 central counties .. 30
In 3 southern counties 71

NOIRTHEASTERN, EASTIERN, AND SOUTHEASTERN COUNTYES.
Per cent.
In 2 northeastern counties
52
In 3 eastern counties 52
In 4 southeasteru counties... 93
1थ.-Florida.

Fish guano is used in all but 11 of the 39 counties of this State, and 51 per cent. of its territory :

NORTIFWESTELN COUNTIES. ${ }^{1 / 3}$

Per cent.
In 7 of the 10 northwestern connties.. 40

NORTHERN, CENTRA1, AND SOUTIWESTERN COUNTIES.
Per cent.
In \boldsymbol{i} of the 1: northern counties... 31
In 6 of the 7 central counties 60
In 1 of the 2 sonthwestern counties .. ${ }^{2} 7$
39
NORTIEASTERN AND EASTEIRN COUN'IIES. ${ }^{14}$
Per cent.
In 5 northeastern connties. 65
In 2 eastern counties .. 76
13.-NEW JERSEY.

Fish guano is used in all the connties of this State, and on 58 per cent. of its territory:

NORTHWESTERN AND GOUTHWESTEIRN COUNTIES. 15
Per cent.
In 2 northwestern connties . 32
In 4 sonthwestern counties... 84 58
NORTHERN, CENTRAL, ANI SOUTHERN COUNTIES.
Per cent.

In 6 central counties.. 7
In 2 southern counties.. 100

NORTILEASTERN COUNTIES. ${ }^{16}$
Por cent.
In 4 northeastern counties ... 31

[^88]
14.-Massachusetts.

Fish guano is used in all the counties of this State, and on 60 per cent. of its territory:

northwestern, western, and southwestern counties.
Per cent.
In 1 northwestern county .. 73
In 2 western counties ... 48
In 1 southwestern county .. 80
67
CENTRAL COUNTY. ${ }^{\text {I7 }}$
Per cant.
In 1 central county . .. 38
northeastern, Eastern, and southeastern counties.
Per cent.
In 1 northeastern county .. 69
In 3 eastern counties .. 55
In 5 southeastern counties............-. .-.. 74
66

15.-DElaware.

Fish guano is used in all of the counties of Delaware, and on 69 per cent. of its territory:

NORTHERN, CENTHAL, AND SOUTIIEIRN COUNTIES. ${ }^{18}$
Por cent.
In 1 northern county ... 56
In 1 central county .. 78
In 1 soutbern county 75
16.-Connecticut.

Fish guano is used in all the counties of Connecticut, and on 79 per cent. of its territory :

NORTHWESTERN AND SOUTHWESTEIN COUNTIES. ${ }^{16}$
Per cent.
In 1 northwestern county .. 56
In 1 southwestem county . 66
61
NORTHERN AND SOUTHERN COUNTIES. 20
Per cent.
In 2 northern counties 88
In 2 southern counties ... 100

[^89]
NORTHEABTERN AND SOUTHEASTERN COUNTIES. ${ }^{21}$

In 1 northeastern county 56
In 1 southeastern county 90
17.-Rhode Island.73

Fish guano is used in all the counties of Rhode Island, and on 86 per cent. of its territory:

NORTHERN, CENTRAL, AND SOUTHERN COUNTIES. ${ }^{27}$

Per cent.
In 1 northern county 86
In 1 central county .-. . .. 67
In 1 southern county ... 92

EASTERN AND SOUTHEASTERN COUNTIES. ${ }^{23}$
Per cent.
In 1 eastern county 100
In 1 southeastern county 100

For the purpose of exhibiting in full the data from which the foregoing percentages were derived, tables will now be given showing the exact number of affirmative and of negative answers received from each county in the seventeen States under consideration and arranged by sections:

1. PENNSYLVANLA.

	Counties.	Number of replies.		
		Yes.	No.	Total.
	Central countieg (16).			
32	Blair.-	1	20	21
30	Cambria.	2	16	18
46	Center	$\stackrel{2}{3}$	27	29
56 43	Clearfield........	3 7 7	30 10	17
37	Dauphin...	6	15	21
17	Elk.........		9	9
58	Hantingdon...	1	28	29
28	Juniata........	3	12	15
58 22	Lscoming...		11	11
7	Montour....	1	4	
43	Northamberland.	7	21	28
38	Perry............	2	16	18
25	Snyder....		14	14
22	Union...	2	11	
562		37	269	306
106	Bradford....	8		
8	Cameron....	1	6 13	17
43	Clinton -.....	$\stackrel{4}{2}$	13 24	126
43	Potter......		14	14
19 69	Sullivan.....		10 33	10 36
69	Tioga...	3		
322		18	148	168

${ }^{21}$ There are no easteru counties.
${ }^{22}$ There are no northwestern, western, nor sonthwestern counties.
${ }^{23}$ There are no northeastern counties.
S. Mis. $110-43$

1. PENNSYLVANIA-Continued.

1. PENNSYLVANIA-Continaed.

	Counties.	Namber of replies.		
		Yes.	No.	Total.
	recapitulation.			
562	Ceutral countics....	37	269	306
322	Northern counties	18	148	166
152	Northeastern counties.	${ }^{7} 2$	${ }^{81}$	88
675	Southeastera counties.	130	197	327
291	Sonthern counties	34	118	152
408	Southwestern counties.	15	166	181
370	Western counties..	18	167	183
226	Northwestern counties	16	108	124
3,381		305	1,426	1, 731

2. NEW YORK.

2. NEW YORK-Continued.

3. NEW HAMPSHIRE.

3. NEW HAMPSIIIRE-Continued.

4. NORTH CAROLINA.

	Cextral counties (14).			
35	Chatham	7	10	17
18	Cumberland...		6	6
20	Davidson	3	${ }^{6}$	9
16	Duplin.......	1	10	11
13	Harnett	4	5	9
18	Johnston	7		7
20	Montgomery..	3	7	10
29	Moore	4	8	12
47	Randolph....	5	17	22
20	Sampson....	3	7	10
10	Stanley	2	2	
31	Wake	9	4	13
9	Wayne......	2	2	4
7	Wilson......	2	1	
293		52	85	137
23	Alamance..		12	14
14	Caswell	2	8	10
19	Forsyth	2	6	8
8	Franklin....	4	1	5
18	Granville...	${ }_{6}^{6}$	6	12
25	Guilford....	3	10	13
8	Nash	3	1	
14	Orange . .	1	7	8
16	Person........	1	5	6
22	Rockingham...	4	6	10
23	Stokes..........	${ }_{5}^{2}$	9	11
13	Warren.		1	
203		35	72	107
9	Bertie....	4		
6	Camden..	1	1	2
4	Chowan......		3 4	7
${ }_{9}^{9}$	Currituck....	3 3	4	7
11	Gates	3		3
17	Halifax.	7	5	12
8	Mertford.	3	1	4
7	Martin.	3	3 3	${ }_{7}^{6}$
2	Nort bampton.	2		2
5	Perquimans.	4	1	5
92		37	25	62

4. NORTH CAROLINA-Continued.

5. NORTH CAROLTNA-Continued.

5. VERMONT.

5. VERMONT-Continued.

圭	Counties.	Namber of replies.		
边		Yes.	No.	Total.
	recapitulation.			
33	Central counties	8	16	24
60	Northern counties	18	27	45
57	Northeastern counties..	13	21	34
97	Eastera counties.......	28	37	65
47	Southeastern counties.	17	14	31
35	Southwestern counties..	7	18	25
90	Western counties.......	7	42	49
78	Northwestern counties	7	35	42
497		105	210	315

6. ALABAMA.

6. ALABAMA-Continued.

7. VIRGINIA.

		central counties (20).			
35	Albemarlo		4	12	
12	Amelia		3	$\stackrel{2}{2}$	5
20	Amherst...			$\stackrel{2}{3}$	5
15	Appomattox		4	3	5 15
40	Bedford.		4	11	15
20	Buckiugham		7	7	14
22	Campbell ..		5	7	12 0

7. VIRGINIA-Continued.

8. VIRGINLA-Continued.

	Counties.	Namber of replies.		
发感		Tes.	No.	Total.
	southern countieg (13).			
19	Branswick.	3 8 8	4 9	7
20	Charlotte	8	3	9
15	Dinwiddie	4	12	18
36 6	Franklin Greenville	1	$\begin{array}{r}12 \\ 1 \\ 5 \\ \hline\end{array}$	17 17
33	Halifix	12	5 3	17
21	Henry	${ }_{5}^{3}$	4	6
23	Lunenburgh	7	3	10
26	Mecklenburgh ...	1	4	5
7	Nottoway........	1	7	8
22	Patrick......... Pittsylvania	9	7	16
41	Pittsylvania	1		3
276	SOUTHWESTERN COUNTIES (17).	61	64	125
9	Bland.......	1	5	5
11	Buchanan.....	1	8	9
19	Carroll........	2	7	9
14	Floyd...................	$\stackrel{-}{ }$	$\begin{array}{r}6 \\ 13 \\ \hline\end{array}$	8 15
24	Grayson...........	2	12	15 12
23	Lee	1	13	4
17	Montgomery...		6	6
9 10	Pulaski	2	3 12	5
22	Russell		12 9	12
19	Scott..........	1	8	8
20	Smyth		9	9
20	Tazewell......	1	14	15
26 13	Washington..	1	4	5
12	Wise		4	4
292		12	128	140
14	Alleghany	1	${ }_{16}^{2}$	$\stackrel{3}{23}$
44	Augrista....		6	6
12	Bath.......	4	5	9
22	Botetourt...	1	4	5
13	Highland.	3	6 7	${ }_{10}^{6}$
20	Rockbriage....			
142		16	46	62
	recapitulation.			
	Central counties	73	89	162
312	Northern counties......	110	15	125
198	Eastern counties........	${ }_{37}$	18	55
93	Southeastern counties .-	61	64	125
276	Southern counties .-....	12	128	140
292 142	Southwestern coanties.............	16	46	62
$\frac{18}{1,685}$		377	452	829

8. MALNE.

8. MAINE-Continued.

竒	Counties.	Number of replies.		
\%		Yes.	No.	Total.
58	Washington \qquad southern countirs (4).	31	10	41
80	Hancock.	46	13	59
33	Knox...	7	15	22
42	Lincoln	21	8	29
58	Waldo	23	19	42
213	SOUTHWESTERN COUNTIES (6).	97	55	152
48		9	23	32
80		42	${ }_{23}^{12}$	54 37
76		14	31	45
17		9	1	10
70		20	24	44
356	WESTERN COUNTIES (2).	108	114	222
33	Franklin Somerset	7	12	19
57			28	35
90		14	40	54
144	Central counties Northeastern counties Fostern counties	23	68	91
64		11	30	31
58	Eastern counties. Southern counties	31 97	10	41
$\stackrel{213}{356}$		97 108	$\begin{array}{r}55 \\ 114 \\ \hline\end{array}$	
$\begin{array}{r} 356 \\ 90 \end{array}$	Southwestern counties W estern counties......	108	114 40	$\begin{array}{r}222 \\ 54 \\ \hline\end{array}$
925		274	317	591

9. GEORGIA.

9. GEORGIA-Continued.

9. GEORGLA-Continued.

9. GEORGIA-Continued.

	Counties.	Number of replies.		
		Yes.	No.	Total.
	recapitulation.			
143	Central coanties	41	33 48	74 81
164	Northern counties	17	28	43
91	Northeastern counties	16	21	37
83	Eastern counties......	19	23	42
69	Southeastern counties ...	17	29	46
96	Southeru connties	14	15	29
68	Southwestern countios...	38	32	70
164	Western counties.......	27	33	60
		222	260	482
1,004				

10. SOUTII CAROLINA.

	central countieb (5).			
12	Clarendon	1		5
22 L	Lexington	3	4	7
16	Orangeburgh .	${ }_{2}$	2	4
9	Richland.......	${ }_{3}^{2}$		6
15				
74		12	16	28
		121463	46	582597
14	Chester ...			
14	Fairfield.........			
9	Kershaw...			
16	Lancaster...			
${ }_{23}^{21}$	Union			
	nobtheabtern Countles (5).	17	19	36
				685152
13	Chesterfield..		65577	
14	Darlington...	3		
11	Horry	8		
27	Marion	2		
	mabtern countles (3).	16	20	36
73				
			5	1028
19	Charleston....			
6 16	Georgetown	4		
	southrrn counties (4).	9	11	20
41				
		$\begin{array}{r}3 \\ 1 \\ 6 \\ 4 \\ \hline\end{array}$	84883	$\begin{array}{r}11 \\ 5 \\ 14 \\ 7 \\ \hline\end{array}$
20	Barnwell .			
12	Beaufort...			
25	Colleton ...			
	Westrin counties (4).	14	23	37
		75-96	7584	14101810
	Abbeville. Aiken Edgefleld. Newberry			
27				
40				
14				
		27	25	52
103				

10. SOUTH CAROLINA-Continued.

安	Counties.	Number of replies.		
Oin		Yes.	No.	Total.
	NORTHWESTERN COUNTIES (6).			
25	Anderson.	10	2	12
34	Greenville ...	5	0	14
29	Laurens ...	${ }_{6}^{6}$	6	12
15	Pickens...	2	6	12
36	Spartanbargh	12	7	19
160		41	36	77
	RECAPITULATION.			
74	Central counties ..	12	16	28
97	Northern counties.	17	19	36
73	Northeastern counties	16	20	36
41	Eastern counties....	9	11	20
69	Southern counties ...	14	23	37
103	Western counties..	27	25	52
160	Northwestern countied	41	36	77
617		136	150	286

11. MARYLAND.

12. MARYLAND-Continued.

免品	Counties.	Number of replies.		
eiol on		Yes.	No.	Total
	NORTHWEGTERN COUNTIES (4).			
16	Alleghany \qquad Frederick. \qquad Garrett \qquad Washington \qquad RECAPITULATION.		11	11
59		13	16	29
$\begin{aligned} & 16 \\ & 34 \end{aligned}$		1	5	${ }^{6}$
125				
		13	47	66
145	Central counties	23	35	58
180	Northern counties ...-	37	50	87
49	Eastern counties.......	14	13	27
78	Northeastern counties.	15 40	14	29
68	Southern counties	24	+ ${ }_{10}$	${ }_{34}^{43}$
125	Northwestern counties	19	47	
683		172	172	344

12. FLORIDA.

S. Mis. $110-44$
12. FLORTDA-Continued.

安	Counties.	Number of replies.		
O20		Yes.	No.	Total.
	SOUTHERN COUNTIES (2).			
12		3	8	11
	Calhoun			
9	Eiscambia.....	2	5	7
4	Franklin....	1	1	2
8	Grisiden....	4	2 1	$\underline{1}$
7	Jackson	2	1	${ }_{3}$
4	Liberty		3	3
5	Santa Rosa.		3	3
6	Walton	$\stackrel{2}{1}$	1	3 3
	Washington			
59		14	21	35
	recapitulation.			
87	Central counties......	35	23	58
92	Northern counties.	15	33	48
60	Northeastern counties.	26	14	40
23	Eastern counties......	13	4	17
2	Scutheastern counties.			
$\begin{aligned} & 12 \\ & 59 \end{aligned}$	Southern couniles	$\begin{array}{r}3 \\ 14 \\ \hline\end{array}$	21	11 35
335		106	103	209

13. NEW JERSEX.

14. NEW JERSEY-Continned.

15. MASSACHUSETTS.

16. DELAWARE.

它.	Counties.	Number of replies.		
eid		Yes.	No.	Total.
30	cemtral counties (1). Kent	14	4	18
44	New Castle	10	8	18
33	Sussex.	15	5	20
30.	Central counties ..	14		
44	Northern counties. Southern counties.	10 15	8	18 20
107		39	17	56

16. CONNECTICUT.

		4718	63	5321
76				
36	Tolland northeastern counties (1).			
112		65	9	74
56	Windham \qquad southeastern counties (1).	18	14	32
50	New London \qquad gouthern counties (2).	35	4	39
		1937		
30	Middlesex \qquad New Haven \qquad southwestern counties (1).		.	19
88		56		56
66	Fairfield \qquad northwestern counties (1). Litchfield. \qquad	29	15	44
82		27	21	48
112	Northorn counties Northeastern counties Sontheastern counties Sonthern counties Southwestern counties Northwestern counties	65181835562927	9	74
56			14	32
50			4	39
88				56
66			15	44
82			21	48
454		230	63	293

17. RHODE ISLAND.

18. RHODE ISLAND-Continued.

嵩	Counties.	Namber of replies.		
辰		Yes.	No.	Total.
6	eastern counties (1). Bristol \qquad	3		3
9	Newport..	5		5
34	Washington \qquad hecapitulation.	24	2	26
18	Central counties...	8	4	12
43	Northern counties.	30	5	35
6 9	Eastern counties	3 5		3
34	Southern counties	24	2	5 26
110		70	11	81

Recapitulation of the seventeen States that use fish guano.

	States.	Number of replies.			
		Yes.	No.	Total.	
3,381	1. Pennsvlvania.....	305	1,426		18
2,930	2. New York.........	375	1,183	1,558	24
456	3. New Hampshire.	91	208	299	30
1,395	4. North Carulina ..	223	477	700	32
497	5. Vermont .-....	105	210	315	33
1, 091	6. Alabama .	175	329	504	36
1,685	7. Virginia..	377	452	829	45
925	8. Maine ...	274	317	591	46
1. 004	9. (icorgia	222	260	482	46
617	10. South Carolina.	136	150	286	48
683	11. Marçland..	172	172	344	50
335	12. Florida	106	103	209	51
686	13. New Jersey ...	259	187	446	58
768	14. Massachusetts	308	209	517	60
107	15. Delaware.....	39	17	56	69
454	16. Connecticut	230	63	293	79
110	1\%. Rhode Islaud	70	11	81	86
17, 124		3,467	5,774	9, 241	

SPECIAL AFFIRMATIVE STATENENTS FROM DELAWARE.

For the purpose of testing the matter further in a State largely reported as using this fertilizer, special questions were seut out, in answer to which the statements quoted below were obtained. Time prevented prosecuting the inquiry in other States.
"The fish guano used here is obtained out of town, and amounts to very little." J. M. Martin, Cool Spring, Sussex County.
"Mr. J. F. Price and about four otbers use 30 tons annually, which they obtain in Baltimore." P. B. Alrich, Summit Bridge, New Castle County.
"The small amount used has been obtained from W. N. Needles, 42 South Delaware avenue, Philadelphia." William G. Herring, P. M., Milford, Kent County.
"Only used here in small quantities and obtained from Philadelphia mostly." J. A. Lynch, P. M., Robbins, Sussex County.
"Several thousand tons are used in this region by hundreds of farmers and truckers who sell vegetables in the city. Nearly all dealers in fertilizers in Peunsylvania and New Jersey sell it. They buy it from ourselves and others who prepare it. It is made on the coasts of Long Island, Connecticut, and Maine. It is shipped to us in bulk, by vessels, after which we grind and bag it." Walton, Ham \& Co., Wilmington, Del.
"About one hundred tons are being used by forty farmers, among whom are W. Phillips \& Bro., Phillips Hill, Del., G. P. Hickman and J. Single, Frankford, Del. Wilgus, Derickson \& Co., Roxana, Del., and Gum \& Bro., Frankford, Del., are dealers who buy it from a manufactory at Fenwick's Island, near Roxana, Del." J. T. Long, P. M., Frankford, Del.
"Fish guano is not much used. The farmers buy spoiled salt fish in Philadelphia, and manufacture it for their own use to some extent." L. W.Lattomus, Townsend, New Castle County.
"One hundred and fifty tons are used by seventy-five farmers, among whom are Spencer A. Phillips, Millsborough, Del., John Wilgus, Roxana, Del., and Horace Hickman, Frankford, Del. Holland, Wilgus \& Co., E. Townsend, and John A. Gum are dealers, who buy mostly at Fenwick's Island, Del." J. E. Lynch, Roxana, Sussex County.
"There are two or three seines between Indian River and Fenwick's Island light-house that are hauled for fish to be used as fertilizer. Heury Hudson and William S. Evans have built a house for making the fish into guano, but the farmers here are so anxious for the fish that they go to the beach and buy them for manure before there is time to make them into guano. The fish we call 'old wives.' They are called moss bunkers, North. I have used them on my land and they are better than any guano I ever had." P. M., Ocean View, Sussex County.
"I used half a ton on strawberries last fall. It was made by the New Jersey Chemical Company, Camden, N. J., from alewives or mud shad, which are canght on the New Jersey shore." John T. Jakes, Wyoming, Kent County.
"It has beeu used on three farms, especially by Alexander Guthrie. It is brought from Wilmington." Jasper C. Way, P. M., Hockessin, New Castle County.
"Five tons are used annually by Thos. E. Woolens, George B. Dougherty, and seven or eight other farmers. They buy it from J. J. Allen's Sons, Philadelphia, Pa., and from John A. Wilson, Wilmington, Del." Charles Green, jr., Rockland, New Castle County.
"J. M. Arthurs and W. D. Wilds, Kenton, Del., sell to a few farmers here." J. B. Messick, Down's Chapel, Kent County.
"H. A. Murray, Dover, Del., formerly made it, but has engaged in other business. Those who formerly used fish guano here have discontinued it, finding by experience that other fertilizers were preferable." Julia S. Bradley, P. M., Canterbury, Keut County.
"Four or five tons are used by from five to ten persons, among whom are E. D. Hitchens and H. Hickman. T. E. Records and E. D. Hitchens deal in it, and buy it in Philadelphia and New York." D. W. Brereton, P. M., Lewes, Sussex County.

FERTILIZING PRODUCTS.

The following statement is by Mr. A. M. Wilcox, secretary of the Fish Bureau, Boston, Mass.: "During the past few years more attention has each year been given to the fertilizing qualities contained in the large amount of fish waste and scrap that was formerly, constantly being thrown away. Three of the numerous factories in and around Boston use any fish products, making a specialty of this line, utilizing all the scrap and waste from the numerous boneless fish factories, menhaden chum, and the large amount of refuse from the market fishermen, such as fish heads, all kinds of unmarketable fish, in fact everything connected with the fish that was formerly thrown away is now utilized at the fertilizing factory, the fishermen receiving quite a sum for the same.
"The process of manufacture is simple and varies but little in any of the factories, fish scrap, bone phosphate, and sulphuric acid being the main ingredients used by all. The use of this fertilizing material has shown such farorable results, the demand is constantly on the increase. Dealers give the following as the distribution from the various factories of New England during 1879:

Tons.
New York... 40,000
North Carolina 20,000
South Carolina. 20, 000
Virginia 45,000
Georgia ... 45,000
New England.. . . . 10,000
"Maryland and New Jersey take a less amount. The newer States of the West as yet care for but little if any fertilizing compounds. A large amount is also exported to the West Indies. Fourteen thousand tons were manufactured by the three factories here during 1879. The price racged from $\$ 25$ to $\$ 35$ a ton."

The proportional part of the capital and products to the credit of the fishing industry is as follows:
Capital
$\$ 100,000$
Men employed .. . 90
Value of product .. $\$ 140,000$

APPENDIX C.

NATURAL HISTORY AND BIOLOGICAL RESEARCH.

X.-THE ANNELIDA CHETOPODA FROM PROVINCETOWN AND WELLFLEET, MASS.

By Prof. H. E. Webster and James E. Benedict.

The annelids on which this paper is based were collected from June to September, 1879, by the Summer Zoological Expedition of Uuion College. Of the 90 species found, by far the greater number live between tides. Not much dredging was done, and none at a greater depth than thirty fathoms. Two visits to Wellfleet procured a number of forms not found at Provincetown. Three genera and sixteen species are described as new. Of the genera, Thaumastoma seems not to belong to any described family. Eighteen species have their northern limit extended, having been previously found only to the south of the Cape. Nerilla antennata Schmidt and Trichobranchus glacialis Malmgren are Enropean forms not previously found on our coast. Syllides Crsted is also new to our coast, and is represented by a new species. Capitella capitata has not previonsly been reported from the United States, though found further north. The figures, except figs. 95-97, were made by H. E. Webster.

Family APHRODITID E

APHRODITA (Linn.) Kinberg.

Aphrodita aculeata Linn.

Aphrodita aculeata Linn. Systema Nature, ed. xii, vol. i, p. 1084. 1767. Kinberg. Eugenies liesa, p. 3, pl. i, tig. 2. 185%.
Selenika. Das Gefiisssystem der Aphrodita aculeata, ex Niederlíndisches Archiv für Zoologie, pls. iii-iv. 1873.
Verrifl. Invertebrate animals of Vinesard Sound, in Report of U. S. Commissioner of Fish and Fisheries, Part i, p. 580. 1874.

No large specimens were taken; 20 to 2 S fathoms, saud aud shells.

Family POLYNOIDE.
 LEPIDONOTUS (Leach) Kinberg.

Lepidonotus squamatus Kinberg.

Lepidonote armadillo Leidy. Marine Invert. Fauna, R. I. and N.J., Ex. Jour. Phila. Acad., series ii, vol. iii, p. 16, pl. xi, fig. 54. 1855.
Lepidonotus squamatus Knbg. Fregatten Eugenies Resa. Zoologri, Annulata, p. 13, pl.xv, fig. 15. 1857. of the N. Y. State Museum, p. 101. 1880.
Specimens not large but abundant from low water to 29 fathoms.

NYCHIA Malmgren.

Níchia cirrosa Malmgren.

Aphrodita cirrhosa Pallas. Miscell. Zö̈l., p. 95, pl. viii, fige. 3-6 (teste Malmgren). 1766. Lepidonote assimilis Örsted. Annulatorum Danicorum Conspectus, p. 13, figs. 3, 6, 14, $32,33,37,38,45,46.1843$.
Nychia cirrosa Malmgren. Nordiska Hafs-Annulater, p. 58, pl. viii, fig. 1. 1865.
The foot of this species is not correctly figured by Malmgren. The upper ramus is not shown in the figure (l. c. fig. 1 B), but the lower rainus is represented as bluntly rounded externally. In fact the outline of the foot is very nearly that of Eunoë Örstedi MGM. (l. c. pl. viii, fig. 3 B). The lower margin of the upper ramus and the upper margin of the lower ramus are drawn out into conical, finger-shaped projections.

Not common; 29 fathoms, sand and shells.

Nychia Amondsent Malmgren.

Malmgren. Annulata Polychata, p. 131, pl. ii, fig. 4. 1867.
The same defect exists in Malmgren's figure of the foot of this species (l. c. fig. 4 B) as in the previous species.

Only one specimen was taken. Sand and shells, 29 fathoms.

EUNOA Malmgren.

Eunoa nodosa Malmgren.

Polynoë nodosa Sars. Chrístiana Vid. Selsk. Forh., p. 59, 1860.
Eunoë nodosa Malmgren. Nord. Haft-Ann., p. 64, pl. viii, fig. 4. 1865.
Einoa nodosa Malmgren. Annu. Polych., p. 132. 1867.
Only half-grown specimens of this species were found. They differ in some particulars from Malmgren's description. The elytra are less distinctly emarginate and not so nodose. However, there can be no doubt as to their specific identity.

Not common ; 12 to 30 fathoms, sand and shells.
LAGISCA Malmgren.
Lagisca rarispina Malmgren.
Nordiska Hafs-Annulater, p. 65, pl. viii, fig. 2. 1865.
Common; 12 to 30 fathoms, sand and shells.

HARMOTHOË (Kinberg) Malmgren.

Harmothoë mibricata Malmgren.

Malmgren. Nordiska Hafs-Annulater, p. 66, pl. ix, fig. 8. 1865. Annulata Polychæta, p. 134. 1867.
Verrill. Invertebrate Animals of Vineyard Sound, etc., p. 582. 1874.
Common, from low water to 30 fathoms.

LEPIDAMETRIA Webster.

Lepidametria commensalis Webster.

Annel. Chrt. of the Virginian Coast, p. 210, pl. iii, figs. 23-31. 1779.
Annel. Chæt. of New Jersey, etc., p. 103. 1879.
At Wellfleet we found Amphitrite ornata Verrill quite common in coarse gravel and mud. As usual, L. commensalis occurred in the tubes of this species, but sparingly. Most of the specimens taken were young, from one-half inch to one inch in length. In these the stont, singlepointed setæ of the upper bundle, lower ramus, had not yet appeared; the attachments of the elytra were very prominent; otherwise they did not differ trom the adult form.

Family SIGALIONIDÆ.

SIGALION Aud. and M.Ed.

Sigalion arenicola Verrill.
Proceedings of the United States National Musenm, p. 167. Nov., 1860.
This species has a close superficial resemblance to Sthenelais picta Verrill, and occupies the same stations.

Not common. Sand; low water.

STHENELAIS Kinberg.

Sthenelais picta Verrill.
Verrill. Invert. Animal of Vin. Sud., etc., p.582. 1874.
Webster. Annel. Chot. of the Virginia Coast, p. 213. 1879. Annel. Chæt. of New Jersey, p. 103. 1880.
Common at low water, in sand.

PHOLOË Johnston.

Pholoë minuta Malmgren.

Aphrodita minuta O. Fab. Fauna Grönlandica, p. 314. 1780.
Pholoë minuta Malmgren. Nordiska Hafs.-Ann., p. 89, pl. xi, fig. 13. 1865.
? Pholoë tecta Stimpson. Marine Invertebrata of Grand Manan, p. 36. 1854.
Only young specimens were found. They agreed in all respects with Pholoë minuta, save that the elytra completely covered the dorsum.

This is also the case with Stimpson's Pholoë tecta. It is probable that Pholoë tecta* is the young of Pholoë minuta.
Not common; low water; sand.

Family NEPHTHYDID䙵.
 NEPHTHYS Cuvier.

Nephthys incisa Malmgren.
Nephthys incisa Mgrn. Nordiska Hafs.—Ann., p. 105, pl. xii, fig. 21. 1865.
Nephthys ingens Verrill. Invert. Anu. of Vin. Snd., etc., pl. 583, pl. xii, figs. 59, 60. 1874.

Nephthys incisa Verrill. Check-List. 1879.
Common; 12 to 20 fathoms; mud.
Nephthys bucera Ehlers.
Ehlers. Die Borstenwürmer, p. 617, pl. xxiii, fig. 8. 1868.
Verrill. Invert. Animals of Vin. Snd., p. 583, pl. xii, fig. 58. 1874.
Not common; found in sand at low water. Very fine specimens were taken at Race Run, near Provincetown.

Family PHYLLODOCIDE.

ANAITIS Malmgren.

Anaitis speciosa Webster.

Annel. Chæt. of New Jerses, p. 104, pl. i, figs. 8, 9. 1880.
When first examined we regarded the specimens collected at Wellfleet as distinct from Anaitis speciosa ; subsequent comparison of specimens has shown that the former must be regarded as a variety of the latter. As compared with specimens from New Jersey, these have the head a little narrower; the anterior emargination of the buccal segment, with the corresponding backward curvature of the posterior margin of the head, not so well marked.

The color is variable. In front of the eighth segment the color is yellowish-white ; a dark-brown band covers the eighth segment and the anterior half of the ninth; behind this band the color is yellow or brownish-sellow; the middle third of the anterior margin of each segment is brown, while on the posterior segments this brown band runs entirely across the segment; the branchir for their inner two-thirds are yellowish-brown, outer third white; the brown band of the eighth and ninth segments includes the branchiæ, and is faintly perceptible below; body and branchiæ rith numerous flake-white specks; head white with brown specks; or the general color may be white, green replacing the

[^90]brown everywhere; the general color of the ventrum is the same as on the dorsum, though the brown or green is not so distinct.

Wellfleet; low water; on tubes of Diopatra cuprea Clpd.

Phyllodoce (Sav.) Malmgren.

Phyllodoce grgenlandica Örsted.
No adult specimens of this remarkably fine species were collected. A number of half-grown specimens were taken.

A minute, nearly spherical median papilla was seen in fresh specimens on the anterior projecting margin of the buccal segment; not visible on alcoholic specimens.

The transverse ridge between the segments is densely ciliated, and a line of long cilia runs down the outer face of the branchiæ near the posterior margin.

General color, dark green, with irregular brown markings; branchiæ brown, with light-green margin.

The anal cirri are about the length of the last five segments.
Low water, sand, to 25 fathoms, sand and shells.

Phyllodoce arense Webster.

Annel. Chæt. of New Jersey, p. 105, pl. ii, figs. 10-12. 1880.
Low water, sand, to 25 fathoms, sand and shells.

EUMIDA Malmgren.

Eumida maculosa Webster.

Annel. Chæt. of the Virginian coast, p. 215, pl. iv, figs. 38, 41, 1879. Annel. Chæt. of New Jersey, p. 106, 1880.

In the original descriqtion the anal cirri are said to arise from "stout basal articles, constituting one-third their entire length." This is a mistake; they have no basal article. Only two specimens were taken in Virginia, and but one of these had anal cirri, and these seem not to have been normal. Near the front of the head there is a slight constriction.

Low water, sand, common.

EULALIA (Sav.) Malmgren.

Eulalia gracilis Verrill.

Invert. Animals of Vineyard Sound, etc., p. 586. 1874.
Probably gracilis; though, as no figures accompany the original description, one can hardly be certain without comparison with the typical examples.

Both males and females have very long and delicate capillary setæ developed in addition to the ordinary setæ, not, as in the Syllide,
as a distinct bundle, but mixed with the ordinary setæ. They begin from the twenty-fifth to the thirtieth segment, short at first, but soon becoming as long or longer than the width of the body, while the ordinary setæ are quite short; they extend nearly to the posterior end. In the males the posterior two-thirds of the body is rounded, much swollen by the contained spermatozoa. After the twenty-fifth segment the body of the females is filled with numerous large eggs; these are very dark green, and determine the color of the body wherever they exist. The auterior part of the body has the same color as in the males and in asexual forms. This is gray, with lateral brown bands, one on each side, and with a darker brown spot at the base of each foot, both above and below.

There are three anal cirri on all forms, the odd one being median, ventral, and quite small.
Common on dredged shells, 20 to 30 fathoms; sand and shells.
Eulalia dubia n. sp.
(Pl. VIII, Figs. 101-105.)
This species we at first referred to Eulalia annulata Verrill, but when the specimens were submitted to him he decided that they did not belong to his species.

The head (fig. 101) has the lateral margins evenly rounded, with a constriction just back of the origin of the antennæ. The inferior antennæ are concealed by the superior, but are similar to them in every respect. The median antenna is a trifle less stout than the anterior, otherwise the same. Eyes two, moderately large, circular, black.

Tentacular cirrus of the first segment and the lower cirrus of the second segment equal in length; about one-half as long as the other cirri; these reach about to the fourth setigerous segment.

The branchiæ are all acute, growing progressively longer and wider from the first segment (fig. 102) to the middle of the body (fig. 103), after which they continue to increase in length, but diminish in breadth, becoming very long and narrow on the posterior segments (fig. 104). The ventral cirri undergo similar changes, but not to the same extent. The segments of the posterior half of the body are crossed by a narrow raised band.

The setæ have very short terminal articles (fig. 105); the stem terminates in a series of minute teeth, with one much larger slightly curved tooth. The proboscis is long, cylindrical, densely covered with cylindrical papillæ. Segments, deeply incised.
Body, dark green ; branchiæ, dark brown, with green margin; a dark brown spot at the base of the feet, both above and below.
The specimen from which the figure of the head was made had the head retracted, so that the first pair of tentacular cirri seem to originate beneath the head; in extended specimens the first segment is plainly
visible. Some specimens had four eyes; in this case they are all on the same straight line, the outer pair smaller than the inner.

The transverse band crossing the segments is densely ciliated, and there is a line of cilia on the posterior face of the branchiæ (after the first few segments), near the inner margin.

Common. Low water to 20 fathoms. ${ }^{\text {a }}$

ETEONE (Sav.) Örsted.

Eteone Alba Webster.

Annelida Chætopoda of New Jersey, p. 106, pl. ii, figs. 13-16, 1880.
We found this species in New Jersey, associated with Streblospio Benedicti Webster, for the most part in mussel beds, in about 15 feet of water. We found it at Wellfleet, associated with the same species, but near high-water mark, in firm mud.

Not common.

Eteone cinerea n.sp.

> (Pl. I, Figs. 1-5.)

Head convex above, flattened below, constricted just back of the origin of the superior antennæ, sides and anterior and posterior margin convex. (fig. 4.)

Antennæ stout, conical, white, one-third as long as the head.
Eyes two, minute, black, hardly perceptible in alcoholic specimens.
Buccal segment a little more than half as long as the head; from the middle of its anterior margin a small rounded papilla projects.

Tentacular cirri short; the lower a little longer than the upper, and with a sudden falling off in diameter at the outer third; inner two-thirds fusiform.

The dorsal cirri (branchiæ) have nearly the same shape throughout. On the anterior segments (iig. 1) not quite so large as on the middle segments, and closer to the foot; on the middle segments (fig. 2) remote from the foot; on the posterior segments (fig. 3) smaller even than the anterior, but not in contact with the foot; they are all thick, flattened, with nearly straight sides and bluntly rounded end. The ventral cirri are like the dorsal, but smaller.

The setæ are numerous, quite short; the stem (fig. 5) terminates in two sharp, elongated points; the appendix, three times as long as the stem, is wide at base, but narrows rapidly to a minute capillary termination.

Anal segment smooth, cylindrical, as long as the four segments preceding it, without cirri, they having probably been lost.

The anterior and posterior segments are crossed by a distinct impressed line ; the middle segments by two lines. Along the middle third the segments are longer and wider than elsewhere; the body tapering S. Mis. $110-45$
a little forwards, rapidly along the posterior third; the posterior segments are about one-third the length and width of the median. The general color is light-gray, with a few scattered brown specks; anal segment, light-green; antennæ and tentacular cirri, white.

Greatest width, 2^{mm}. Length, 28^{mm}.
Single specimen, dredged; 20 fathoms; sand and shells.

Family HESIONID压.

PODARKE Ehlers.

Podarke obscura Verrill.

Verrill. Invert. Animals of Vin. Sound, etc., p. 589, pl. xii, fig. 61, 1874.
Webster. Annel. Chæt. of the Virgn. Coast, p. 216, 1899. Annel. Chæt. of New Jersey, p. 107, 1879.
Provincetown and Wellfleet. Not common. Low water; sand and mud.

Podarke cemca n.sp.
(Pl. I, Figs. 6-8.)
We found a few specimens of Podarke differing much from Podarke obscura Verrill; it may be found to be the young of some species.

The head (fig. 6) was evenly rounded in front and at the sides; nearly straight behind; length to width as two to three; slightly convex; no eyes; antennæ arising from nearly cylindrical basal articles; posterior unpaired antenna, arising near the posterior margin, not quite so long or so stout as the others; upper (anterior) pair close to each other, near the anterior margin of the head; length (without basal articles) about equal to the length of the head; lower pair arise from the under surface of the head, just outside the upper pair; a trifle more delicate than the latter.

The first segment encroaches laterally on the head, reaching about to the middle line; it is nearly as long at the sides as the following segment, elsewhere about one-half as long.

The tentacular cirri are six on each side, not at all crowded, a single pair from each of the first three segments; they have stout and rather long cylindrical basal articles; are very variable in length; taper uniformly to a bluntly rounded apex. The feet (fig. 7) are quite large, pointed externally, much swollen at base, owing to the origin of the basal portion of the dorsal cirri.
The dorsal cirri do not extend beyond the feet, are delicate, conical; base a little swollen.
Ventral cirri given off at about the outer fourth of the foot; extend about to the end of the foot.

The segments are deeply incised, much wider than long, slightly convex, both from side to side and from before backwards.

On our specimens there were no setæ in the dorsal rami; as they were not in good condition, it seems probable that these setæ had been lost, as is often the case in Podarke obscura. The ventral setæ have the usual form; one in each bundle is very long, both in stem and appendix, those above and below it proportionately shorter as they are more remote; from 4 to 8 in each bundle.

The general color is yellowish white, crossed above and below by many transverse bands, made up of irregularly shaped, yellowishbrown spots and specks.

Width, without feet, at ninth segment, $2^{\text {mm }}$.
Length of first 10 segments, 10^{mm}.
No entire specimen was found.
Low water; sand.

HESIONE (Savigny) Quartrefages.

Hesione agilis n. sp.
(Pl. I, Figs. 9-11.)
Whe head of this species is very peculiar (fig. 6); anterior margin with a slight median convexity, otherwise straight; outer angles very broadly rounded; lateral margins concave; posterior margin very concave; posterior angles prolonged far backward, forming wide, obtusely rounded lappets.

The length of the head along the middle line is one-third the width of its anterior part, while the distance from the anterior to the posterior lateral augles is a little more than two-thirds the same leugth.

The posterior antenuæ arise from rounded projections (basal articles), lalf way between the eyes and anterior margin of the head; they are conical, a little swolleu at base, in length about double the length of the head along the line on which they stand; the auterior antennæ arise from the front margin of the head in front of and a trifle within the posterior autennæ; they have stout cylindrical basal articles, are conical, a little longer than the posterior pair.

There are two pairs of eyes, lateral ; bright red; anterior pair oval, oblique, large; posterior pair a little within the anterior, in contact with them, more or less regularly crescentic.

The tentacular cirri have the form shown in the figure, bat their length was not even approximately the same on any two specimens. The longest one figured would reach about to the fourth segment, but in some specimens one of the cirri reaches to the eighth or even to the teuth segment. Out of half a dozen specimens taken we could determine no law for the relative leugth of the cirri; nor could we even say whether, as a rule, the upper were longer or shorter than the lower.

It would seem that they are normally very long, from two to four times as long as figured, but readily lost and renewed. They have long
and stout cylindrical basal articles, and taper uniformly to a bluntly rounded apex. The feet, dorsal cirri, and setæ are all very long, and increase in length from the first segment to the middle of the body, and then as regularly decrease. The superior ramus (fig. 7) bears a dorsal. cirrus, which is as long or even longer than its foot; and a bundle of very delicate capillary setæ, as long as the cirrus, and quite numerous; the ventral ramus is just below the dorsal and projects beyond it, forming nearly one-half of the foot; it ends in a minute conical cirrus, is obliquely truncated below, and bears on its lower posterior margin a conical ventral cirrus, which projects beyond the apex of the foot by about one-half its length. The ventral ramus has a fan of compound setæ (fig. 8) which decrease in length uniformly from the upper to the lower part of the fan; the appendix of these setæ is about oue-third the length of the stem.

The anterior enlarged part of the digestive tract extends through the first four segments; it is nearly cylindrical, tapering somewhat along the posterior third; is finely but distinctly transversely striated; has a deep median dorsal longitudinal incision or depression of varying width. The transverse strix can be seen passing to the bottom of this depression in front, but behind it seems to be carried completely throuflh, giving two bluntly rounded posterior terminations to this organ. Back of this the intestine has a yellowish, granular appearance, and for six segments sends diverticula into the feet, one-third as long as the feet.

One, two, or three segments preceding the anal have rudimentary appendages. The annal segment is much like the others, bears two anal cirri, in all respects similar to the dorsal cirri. Body slightly convex above and below; colorless, except as colored by the contents of the digestive tract; tapering uniformly, but gradually, from the first segment to the last.

The largest specimen had 18 setigerous segments.
Length, 2.55^{mm}; width of middle segment, 0.25^{mm}; length of foot from middle segment, $0.36^{1 \mathrm{~mm}}$.

Found near high-water mark in sandy-mud, Wellfleet, Mass.
The width was about the same in all the specimens, but in most a number of the posterior segments had been lost.

According to the diagnosis giveu by Ehlers (Borsten., p. 187), this species is a Hesione. Ehlers does not mention a definite number of tentacular cirri. Grube, in his Annulata Semperiana, speaking of Fallacia Quatrefages, which is established as a genus because it has four pairs of tentacular cirri on each side, says that this is also the case with Hesione Savigny, as is plainly stated in the preliminary description of the genus, Système des Annelides, p. 9. Grube further claims that the figure of Hesione splendida (l. c., pl. iii, fig. 3) shows six tentacular cirri, and the basal joint of another, on each side, and remarks that the loss of tentacular cirri is common in this group.

Quatrefages has examined the specimen from which Savigny made
his description. He regards it as having but six pairs of tentacular cirri, and succeeds in complicating matters by saying that the cirri of the feet are retractile ("Pedes longiusculi, cirri retractiles"), whereas Savigny says that the tentacular cirri are retractile, a thing sufficiently hard to believe. Langerhans (Zeitschrift für Wissenschaftliche Zoölogie, p. 306, 1879) adopts Grube's view as to Hesione and Fallacia, and refers Hesione Steenstrupii Quatrefages to Halimede Ratuke ; but Halimede is regarded by Malmgren as a synouym of Castalia (Sav.) Sars, though on what grounds, if Rathke's description is in any way valid, it is hard to understand. The genera of Hesionidæ seem to be badly confused. Our specimens differ from most of the described genera in having the feet distinctly biramous, with two entirely distinct bundles of setæ. However, this is also the case with Podarke Ehlers, though expressly placed by Quatrefages among the uniramous forms.

Our specimens, though differing somewhat from the diagnoses, seem to belong to Hesione Savigny as understood by Quatrefages; and to Halimede Rathiee as understood by Langerhans; while if regard be had strictly to the original descriptions of these genera, they could hardly be referred to either.

Orsted, in his diagnosis of Castalia, assigns to it maxillæ, and figures the maxillæ of Castalia punctuta (Annulatorum Danicorum Conspectus, p. 23, fig. 65). It will be seen that similiar structures exist in our species, but they do not seem to be hard parts. We could spare only one specimen for this examination, but the parts in question appeared to be neither chitinous nor calcareous.

Family SYLLID

SYLLIDES Örsted.

We accept the genus Syllides on the authority of Professor Langerhans, never having seen the original description. Marion-Bobretzky have described a species of the same genus, referring it to Anoplosyllis Claparede. Before seeing Laugerhans's work on the Syllidæ we proposed to refer our specimens to Anoplosyllis, though we were doubtful as to the propriety of so doing.

Syllides convoluta, $n . s p$.
(Pl. II, Figs 12-16.)
Head (fig. 12) with auterior and posterior margins slightly convex; sides well rounded; length to breadth as three to two ; eyes six, bright red; anterior pair very close to the anterior and lateral margins; of the posterior pairs, those in front are largest, and external, the eyes on either side being almost in contact.

The palpi are longer than the head; coalesee along their inner third; outer margin convex ; inner margin concave; apex bluntly rounded.

A short conical cirrus, arising from the lower face of the palpi at about the middle point, extends directly downward. This is a peculiar feature, which seems not to have been previously described in any species of this family. The antennæ are claviform; the median longest, about twice the length of the head and palpi together, arising between the posterior eyes; the lateral antennæ arise very near the anterior margin of the head, just outside of the anterior eyes; they are about two-thirds as long as the median.

The tentacular cirri, in all respects similar to the lateral antennæ, arise very near the anterior margin of the segment ; the lower cirrus is a little shorter than the upper.

The buccal segment is as long as the next segment.
The dorsal cirri of the first two setigerous segments are a little more slender than the tentacular cirri, but in other respects similar to them; those on the remaining segments are distinctly articulated; they vary in length from two to four times the width of the body. There are three anal cirri, two lateral articulated, a median not articulated. The pharynx reaches to the middle or to the posterior margin of the third segment; we did not make out clearly the structure of its anterior end. The stomach is a little longer than the pharynx, very large, nearly filling the segments, which it occupies; it has the structure common to this group, but in front shows a peculiar organ, as to the character of which we made no notes in the living specimens, having probably failed to observe it. This organ is transversely oval, convex in front, concave behind, and crossed by numerous waved lines, which radiate from the middle point behind. The feet are very long (fig. 16), and bear a long, conical, or finger-shaped ventral cirrus, which points either directly or obliquely backward.

The setæ are from five to seven in each foot, and of two kinds: one (fig. 14) compound, with the appendix delicate, elongated; the other, of which there is but one in each bundle, simple (fig. 15), with a small terminal button. The longest of the compound setæ are about as long as the foot, the others from one-half to two-thirds as long.
The body is much wider in the middle than at either extremity; segments deeply incised, especially along the middle third. Two of the median segments are shown in fig. 13; these are from the same specimen as fig. 12, and are magnified to the same extent.

Body slightly convex above, nearly flat below, colorless; intestine brown, yellowish brown, or reddish brown.

Dorsal cirri and antennæ readily lost. This species throws itself quickly into a coil, very much as is the habit of Glycera (Rhynchobolus).
Length, 25^{mm}.
Greatest width, 0.2^{mm} (about).
Number of segments, 45.
Number of segments varies from 35 to 50 .
Low water, sanḍ, Race Run, near Provincetown.

Marentzeller figures the setæ of Syllis ochracea as bidentate; MarionBobretzky represent the same setæ as ending in a single point, and both writers give additional simple setæ, which do not exist on our species, but which, as figured by these authors, do not agree with each other. The compound setæ on our species do not seem to be bidentate, but this may be owing to our object-glass not being sufficiently good. Marion-Bobretzky also show a peculiar destitution of the margin of the stem, near its end, not shown by Marentzeller, and not seen in our species.

STREPTOSYLLIS, n. g.

Antennæ, three; tentacular cirri, four; dorsal cirri, partly smooth, partly articulated; œsophagus unarmed, with a circle of papillæ at its anterior end ; stomach passing directly into the intestines; setæ of two kinds, simple and compound, both kinds covered by a membrane externally; * palpi united for most of their length, turned downward so as not to be visible from above.

It will be seen that this genus agrees in some respects with Amblyo. syllis Grube (Pterosyllis Claparède), but the head is not "winged"; the setæ are very peculiar, and the dorsal cirri cannot be described either as smooth or moniliform, since both forms occur on the same specimen. It would, perhaps, be well to include the peculiar form of the setæ in the generic description. Unfortunately, we found but one species, and it seems better not to multiply characteristics on such a narrow basis.

Streptosyllis arenef, n. sp.

> (Pd. II, III, Figs. 17-23.)

Head convex, sides and front regularly rounded (fig. 17), posterior margin curved forward, posterior angles bluntly rounded. Eyes, six; anterior pair small, crescentic, just behind and outside the origin of the lateral autennæ; outer posterior pair largest, irregularly oval, in contact with the inner pair, or sometimes merged with them; inner posterior pairs small, circular.

The antennæ and tentacular cirri are never annulated, but are more or less regularly wrinkled. They vary much in form. They may taper quite regularly from base toapex, or only along their outer third or fourth, or they may be somewhat clavate. The lateral anteune arise very close to the anterior margin of the head; they are from three to four times as long as the head. The median antenna, longer than the lateral, arises a little back of the eyes, near the posterior margin of the head.

The buccal segment in alcoholic specimens, or in living contracted specimens, is about one-half as long as the next segment, but in extension it may nearly equal the length of that segment. The upper tentacular cirrus is a little longer than the lower cirrus, a little shorter than the lateral antennæ.

[^91]The palpi are large, swollen at base, united along their inner twothirds, then becoming somewhat flattened, and with their outer angle prolonged into a delicate conical cirrus (fig. 18). As noticed above, they cannot be seen in a dorsal view, being always turned directly downward.

The dorsal cirri are exceedingly variable in form, structure, and length. They may be conical or clavate; wrinkled irregularly (fig. 17); articulated with each article divided longitudinally (fig. 20); articulated without the longitudinal division; or nearly smooth (fig. 19). Their length may be less than the width of the body, or three times the width. All these variations occur on the same specimen, and without any apparent order.

The ventral cirri arise near the end of the foot (fig. 21), are short (relatively) on the first foot, but lengthen rapidly, becoming very long on the fourth segment. They are irregularly wrinkled, often with a deep constriction at the outer third or fourth. They are larger at base than the dorsal cirri of the same segment, and taper regularly to a bluntly rounded apex. They usually are directed backward, but often are coiled (fig. 20). They retain their length even on the posterior segments, and are there longer than the dorsal cirri. There are three anal cirri (fig. 19); a median, which may be as long as the ventral cirri, and two lateral, three to four times as long.

The anal segment is much narrower than the segment preceding it, convex abore and below, margin regularly rounded.
The setæ are of two kinds. In every bundle there is one long simple seta (fig. 23), straight or slightly curved, bluntly rounded at its apex, where it is covered with a membrane, which is prolonged along the seta for nearly one-fourth of its length. This seta is always in the upper part of the bundle; in length it is about the same as the stem of the compound setæ.
The compound setie are numerous, crowded, the terminal part of the stem divided into four distinct processes or lobes, between which the appendix is inserted (fig. 22). The length of the stem is always about equal to the length of the foot, and as the anterior feet are shortest, so also are the stem parts of the anterior setæ. The appendix on the anterior segments is very short, about one-half as long as the one figured, but not differing otherwise. In all the bundles a few of the short forms occur, but do not make up the bundle, as they do on the anterior segments. The appendix is covered with a membrane, which is prolonged down the sides. The œsophagus and stomach have about the same length and diameter, occupying together twelve segments. The œesophagus is strongly convoluted. The "glands" of the stomach are hexagonal, the rows very numerous; a small part of the anterior end of the stomach is without them. There are no special glands back of the stomach, but it is simply reduced in diameter, and prolonged into the intestine. The body is strongly convex above; less so below. The first segment is
about one-half the width of the 10th; from this segment the diameter is nearly uniform, save that the last few segments fall off somewhat rapidly. Body colorless in front; œsophagus light brown; stomach white; back of the stomach the body is yellowish, or light brownish-yellow, with numerous white specks.

Length of largest specimen, 8^{mm}.
Greatest width, 0.5^{mm}.
Number of segments, 55.
Low water; sand.

GRUBEA (Quatrefages) Claparède.

Grubea dolichopoda Marentzeller.

Grubea dolichopoda Marentzeller. Zur Kentniss der Adriatischen Anneliden, p. 26, pl. iv, fig. 1, 1874.
Grubea tenuicirrata Webster. Annelida Chæt. of New Jersey, p. 109 (corrected in foot-note, p. 110, to G. dolichopoda.)
Prof. Langerhans, in his monograph of the Syllide (Zeitschrift für Wissens. Zö̈l., p. 564, 1879), identifies G. dolichopoda Marentz. with G. clavata Clpd., and regards G. tenuicirrata Clpd. as a distinct species. If this conclusion is based only on the descriptions and figures given by Claparède and Marentzeller, and not on examination of the type specimens, it would seem hardly tenable. On the other hand, the differences indicated by Marentzeller between G. dolichopoder and G. temuicirrata are very slight; so slight that it seems probable that these forms are identical. There is nothing in the text to indicate that Langerhans examined specimens of G. tenuicirrata ClpD., and the differences between this species and G. clavata, as understood by him, refer mainly to the terminal points of the compound setre and to the position of the pharyngeal tooth. As to the fine points of the setæ, Claparède's figures in the Glanures are certainly not reliable; and the position of the pharyngeal tooth was not regarded as of so much consequence when he wrote his description as at the present time, when it is regarded not only as a good, but as a sufficient, generic character, at least by Langerhans in his monograph (l. c., p. 526, Syllis. -, p. 541 , OpisthosylLis). It may be further noted that Langerhans gives G. clavata four anal cirri, while G. dolichopoda Marentz. has but three.

Common on stones, shells, \&c., at low water.

SPH $\nrightarrow R O S Y L L I S ~ C l a p a r e ̀ d e . ~$

Langerhans, in commenting on the genus Spherosyllis, says that Claparède did not sufficiently insist on the coalescence of the buccal segment with the head. He therefore adds as one of the important generic characteristics this union of head and buccal segment. The species described below, from Provincetown, have the buccal segment quite distinct; this is also the case with S. fortuita Webster, from Vir-
ginia. Claparède regards the form of the cirri and antennæ, swollen, spherical at base, as a generic characteristic. That this is not valid is shown by S. fortuita and also by one of the new forms described below.

Spherosyllis brevifrons, n. sp.

(Pl. III, Figs. 24-30.)
This species belongs to the typical Spherosyllis in the form of the dorsal appendages, in the presence of numerous papillæ, and in general structure, but differs from any heretofore described in the shortness of the palpi, and from all save S. fortuita in the presence of a wellmarked buccal segment, visible from above.

The head (fig. 24) is short, very wide, almost completely fused with the palpi in front, sides rounded; middle third of the posterior margin convex, encroaching on the buccal segment; the margin, external to the middle third, slightly concave. Eyes, six; the posterior pairs widely separated; those on each side close together; the external pair semetimes crescentic, sometimes oval; the internal small, circular ; the anterior pair minute, situated just external to the bases of the lateral antennæ.

The palpi are short, coalesced, slightly emarginate in front.
The antennæ have a swollen, globular base, and a short cylindrical outer part.

The tentacular cirri are like the antenna, but a little longer.
The buccal segment, according to the state of contraction, may be from one-third to three-fourths as long as the next segment.

The dorsal cirri have also a swollen base, which forms about one-half the entire length. Sometimes the base passes gradualiy into the outer part; in this case there is usually a single constriction (fig. 26); or the hase may be separated by a well-defined constriction from the outer part, in which case the appendix may usually be regarded as composed of two articles (fig. 27).

The anal cirri (fig. 25) are stouter than the dorsal, much swollen at base, without constriction.

The ventral cirri (fig. 26) are slightly flattened, sides nearly straight, apex bluntly rounded, about one-half as long as the dorsal cirri.

In each bundle of setæ is one simple, straight, or slightly curved, seta (figs. 29, 30); the others are compound, and practically all of one kind (fig. 28), differing only in length of stem and appendix.

Pharynx occupying about three segments; stomach a little shorter than the pharynx.

Body, colorless; eyes, red.
Length, 1^{mm}.
Width, 0.17^{mm}.
Number of segments, 22.

Other specimens were larger and with more segments ; in no case did the length exceed 1.5^{mm}.

Low water; sand.
A number of specimens, which we are quite unable to separate from this species, were collected by Mr. Benedict at South Norwalk, Coun. They differ only in the length of the buccal segment, which is hardy risible dorsally. This is probably due to different states of contraction, though it seems curious that all of the Provincetown specimens should show the buccal segment plainly, and that none of the specimens from South Norwalk should show it.

Spherosyllis longicirrata, n. sp.

(Pl. VIII, Figs. 95-100.)
Head with the anterior and lateral margins (fig. 95) regularly rounded, posterior margin very slightly convex, nearly straight. The posterior part of the head, bounded in front by a curved line drawn through the bases of the antennæ, is elevated, convex, the part of the head in front of this line being thin, depressed; sometimes the depression is prolonged backward between the eyes for a varying width, giving lateral elerations, on which the four posterior eyes are found.
Eyes, six ; the two posterior pairs large, circular, nearly on the same straight line; the anterior pair very small, just in front of the origin of the lateral antennæ.
The antennæ are somewhat fusiform, irregularly constricted, bluntly rounded at apex; median antenna one-third longer than the head and palpi ; lateral a little shorter.

The tentacular cirri, dorsal, and anal cirri have the same structure as the antennæ. The dorsal cirri originate some distance within the foot, and are very long for the genus; there is usually a deep constriction at the outer third or fourth, setting off a fusiform appendix. The anal cirri may be double the length of the dorsal.
The buccal segment, in extension, is as long as the second segment.
The palpi are large, convex externally, concave internally, apex bluntly rounded, anterior third free, connected by a thick membrane along their posterior two-thirds; this membrane emarginate in front, and divided into lateral halves by an impressed line, which runs back to the head.

The pharynx occupies four segments, the stomach two.
The feet (fig. 97) are stout, nearly cylindrical, truncated externally. The rentral cirri, bluntly conical, are about one-half the length of the foot in front; behind, as long as the foot.

In each foot is a fan of compound setæ and one simple seta (fig. 100). The compound setæ are very delicate, differing from each other only in length (figs. 98, 99).

Body, colorless; stomach, white; intestines, brown or yellow.

Length, $4-5^{\mathrm{mm}}$.
Number of segments, 33.
Sexual (capillary) setæ on the male appearat the twelfth segment, and exist on all save the last $3-5$ segments.

Common at low water on shells, \&e.

P $\operatorname{EDDPHYLAX~Claparède.~}$

Pedophylax hebes, n. $s p$.

(Pl. III, Figs. 31-36.)
In this species the head (fig. 31) is very short, the width being more than double the length; the anterior angles are very broadly rounded; the anterior and posterior margins but slightly curved. Eyes, six; the anterior pair mere specks; the posterior pairs on each side very close to each other, sometimes in contact; large, circular.

Palpi very large, without indication of division above; below, a narrow sulcus; their length is more than double the length of the head.

The median antenna arises close to the posterior margin of the head, and reaches to the middle, or a little beyond the middle, of the palpi. Its form seems to be variable, but in general the inner third is narrow; the middle third somewhat enlarged; the outer part narrowed, but not so much as the basal part. The lateral antennæ are mere buds, about the size of the tentacular cirri.
The buccal segment is about one-half as long as the second segment; its cirri very short.
The pharynx, in one specimen, occupied the first five segments; the stomach three to four. In another the stomach occupied the eighth and ninth segments.

The dorsal cirri are a trifle larger than the tentacular cirri, but very small; and although the posterior cirri are a little larger than the anterior, they are always smaller than the ventral cirri. These last are conical, minute, arising from the body, within the foot, and reaching about to the apex of the foot. The feet are short, stout, fleshy.

There are two kinds of setæ, simple and compound, with certain slight form variations in each series. On the anterior segments the setæ are all compound (figs. 33, 34), short, with short appendix. At about the beginning of the middle third the simple setæ appear. These are, at first, straight, single pointed setr (fig. 35), placed dorsally, one to each bundle. On a few of the posterior segments these are replaced by shorter setæ, which have a second sharp point developed below the terminal point (fig. 36).
The anal segment is a little longer than the segment preceding it; it bears three anal cirri-a short median and two lateral-which are double the length of the median antenna. They are more or less fusiform.

The body is widest in the middle; the length and width of the mediaa segments are about equal; length of the anterior segments much less than the width.
Body gray or flesh color. According to the notes made on the living forms, one specimen had dark red eyes; another black eyes.

Length of largest specimen, 7^{mm}.
Number of segments, 44.
In confinement very sluggish, not at all inclined to move about.
From low water to 25 fathoms; sand and shells.

AUTOLYTUS (Grube) Marentseller.

Autolytus cornutus A. Agassiz.
A. Agassiz. Journal Boston Society Nat. Hist., vol. vii, p. 392, plates 9-11. 1863.

Verrizl. Invert. Animals of Vin. Snd., etc., p. 590, pl. xii, figg. 65, 66. 1874.
Wellfleet, low water, in sand.
Provincetown, 25 fathoms, sand and shells.
Not common.

NERILLA Schmidt.

(Family not determined.)

Nerilla antennata Schmidt.

Nerilla antennata Schmidt. Reise nach der Färör, p. 38, pl. iii, figs. 8, 8a. 1848. Grube. Fam. der Ann., p. 62. 1856. Claparìde. Beobachtungen, etc., p. 48, pl. xii, figs. 16-20. 1863. Dujardinia antennala Quatrefages. Hist. Nat. des Annelés, vol. iii, p. 69. 1865.

We found this species quite abundant in sand at low water. It is unquestionably Schmidt's species.

Family NEREID压.

NEREIS (L.) Cuvier.
Nereis virens Sars.
Nereis virens Sars. Beskrivelser og Jagttagelser, p. 58, pl. 10, fig. 27. 1835.
Nereis grandis Stimpson. Marine Invertebrata of Grand Manan, p. 34, fig. 24. 1853. Nereis Fankiana Quatrefages. Histoire des Annelés, vol. i, p. 153, pl.17, figs. 7-8. 1865.

Atitta virens Kinberg. Annulata Nova, p. 172. 1865.
Malmgren. Nordiska Hafs-Annulater, p. 183, et Annulata Polychæta, p. 56, pl. iii, fig. 19. 1867.

Nereis virens Efleers. Borstenwürmer, p. 559, pl. xxii, figs. 29-32. 1868.
Verrill. Invert. Animals of Vineyard Sound, p. 590, pl. xi, figs. 47-50. 1874.

Webster. Annel. Chæt. of the Virginian Coast, p. 235. 1879.
Turnbull. Anatomy and Habits of. Trans. Connecticut Academy, vol. iii. 1865.

This species we found, both abundant and large, between tides, ${ }^{\circ}$ ranging nearly to the top of high water.

At Provincetown it was the only shore Nereis, the N. limbata, so common everywhere south of the Cape, not being found at Provincetown at all, though found at Wellfleet.

Nerfis limbatia Ehlers.

Ehlers. Die Borstenwürmer, p. 567. 1868.
Verrill. Invert. Animals of Vineyard Sound, etc., pp. 318, 590, pl. xi, fig. 51. 1874. Webster. Annel. Chæt. of the Virginian Coast, p. 235, pl. vi, figs. 70.75. 1879. Annel. Chæt. of New Jersey, p. 111, pl. iii, figs. 21,22. 1880.

We found a number of specimens of this species at Wellfleet in sand and mud. All small. Not found at Provincetown at all, though carefully looked for. At Wellfleet, on some oysters lately brought from Chesapeake Bay, we found a living specimen of N. limbata.

Nereis pelagioa Linn.

This widely distributed species was common at all depths below fifteen fathoms. For synonomy up to 1868, see Ehler's Borstenwiirmer, p. 511.

Nereis pelagica Linn. Syst. Nat., ed. x, p. 654 ; ed. xii, p. 1086.
Verrill. Invert. Animals of Vineyard Sound, etc., p. 591, pl. xi, figs. 52-55. 1874.
Marentzeller. Südjapanische Anneliden, part i, p.14. 1879.
Nereis tenuis $n . s p$.
(Pl. III, IV, Figs. 37-43.)
The width of the head (fig. 37), in its widest part, nearly equal to the length; posterior two-thirds convex, with convex sides; anterior third much narrowed and flattened, and with a median depression running back to the convex part of the head.

Eyes lateral, not quite so regular in outline as shown in the figure; posterior pair a trifle larger than the anterior.
Palpi long, and with long terminal articles, the basal part being a little longer than the head.

Antennæ conical, delicate, close to each other at base, half as long as the head.

The proboscis (fig. 38) has the basal and maxillary rings of about the same length. Paragnathi small, conical, black, arranged as follows: I, wanting; II, single curved series; III, a transverse series, near the posterior margin of the ring; IV, curved line; V, three at the angles of a triangle; VI, wanting; VII and VIII, merged, forming a series, in part single, in part double.

The jaws were not completely exposed; on the part seen there were five stout, rectangular teeth.

Buccal segment a little longer than the second segment.
Tentacular cirri with long cylindrical basal articles, the posterior superior cirrus reaching about to the fourth segment, the others shorter, as shown in the figure.

The dorsal cirri arise from the base of the lingula. On the anterior segments this cirrus is as long as its lingula; it grows progressively shorter to the tenth segment (fig. 39), after which it again lengthens, becoming longer than the lingula on the middle and posterior segments.

The superior lingula and single lip of the dorsal ramus are alike in all respects; stout, conical, close together on the anterior segments, shorter and more divergent behind.

The ventral ramus has but one lip, is shorter and wider than the dorsal, somewhat flattened in front, with the lower margin concave near the apex, but further back tapering regularly.

The ventral lingula is a little shorter than the upper lingula, in all other respects similar to it; on the posterior segments (fig. 40) turned downwards.

The ventral cirrus arises from a small elevation at the base of the ventral lingula; on the anterior segments fusiform (fig. 39), further back (fig. 40) more regularly conical.

The setæ are of three kinds (figs. 41, 42, 43). Those of the upper ramus are short, hardly reaching beyond the ramus, appendix very delicate, terminal points of stem of same length (fig. 41). Those of the lower ramus in two bundles; in the upper part of the upper bundle the setæ are the same as those described above (fig. 41); in the lower part of the same bundle a ferw with short appendix (faleate), curved near the end, apex bluntly rounded (fig. 43); in the lower bundle, anterior segments, many like fig. 43, a few like fig. 42; further back the falcate setro become less numerous. In the single specimen found the setæ of the dorsal rami, after the first few segments, had all been lost. At first there is a single black acicula in each ramus; further back a second acicula, slender, uncolored, appears in the dorsal ramus.

The body was colorless except as colored by the blood, which showed through very plainly; bases of feet opaque white, this color being due to glands within them.

Length, 45^{mm}.
Width, 1.2^{mm}.
Posterior third tapering a trifle. This is the most delicate Nereis described from our coast. It is easily recognized by its extreme narrowness as compared with its length.

But one specimen was taken, off Race Run, near Provincetown; 20 to 25 fathoms, mud and sand.

Family EUNICID庣.

DIOPATRA Quatrefages.

Diopatra cuprea Claparède.

Nereis cuprea, Bosc. Hist. Nat. des Vers., Vol. i, p. 143 (teste Claparède). 1802.
Eunice cuprea Quatrefages. Hist. Nat. des Annèles, vol. i, p. 331. 1865.
Diopatra cuprea Claparède. Annel. Chét. du Golfe de Naples, p. 432. 1868.
Verrill. Invert. Animals of Vin. Sound, p. 593, pl. xiii, figs. 67, 68. 1874.

Webster. Annel. Chæt. of the Virginian Coast, p. 236. 1879. Annel. Chæt. of New Jersey, p. 115.
Found sparingly at Provincetown; very common at Wellfleet, in the harbor, at low water; sand and sandy mud.

NINOE Kinberg.

Ninoe nigripes Verrill.

Invertebrate Animals of Vineyard Sound, p. 595, 1874.
Dredged in from 12 to 20 fathoms; sand, shells.

LUMBRINEREIS (Blainville) Ehlers.

Lumbrinereis fragilis Audouin and M. Edwards.

Lumbricus fragilis Müller. Prodr. Zool. Dan. p. 216, n. 2611 (teste Malmgren). Zool. Dan. vol. 1, p. 22, pl. xxii, figs. 1-3. 1788.
Scoletoma fragilis Blannville. Dict. des Sci. Nat., Article Vers, p. 492 (teste Aud. and M. Ed.).

Lumbrinereis fragilis Audourv and M. Edwards. Littoral de la France, vol. i, p. 170. 1834.

Quatrefages. Hist. Nat. des Annèles, 'vol. i, p. 365. 1865.
Lumbriconereis fragilis Örsted. Consp. Aun. Dan. p. 15, figs. 1, 2. 1843. Danielssen, Reise, p. 50. 1857. Reise, p. 116. 1858. (teste Malmgren).

Malmgren. Annulata Polychæta, p 177, pl. xv, figs. 83-83 D. 1867.

Ehlers. Die Borstenwüvmur, p. 395. 1868.
Verrill. Invert. Animals of Vineyard Sound, p. 594. 1874.
Langerhans. Zeitschrift für wissenschaftliche Zoölogie, p. 297. 1879.

Lumbriconereis borealis Kinberg. Annulata Nova Öfvers af K. Vet.-Akad Förh, No. 10, p. 568. 1864.
Lumbriconereis madeirensis. Kinberg. l. c., p. 559 (teste Langerhans).
Very fine large specimens were dredged. Its resemblance to Ninoe nigripes Verrill is very striking.

Twenty to thirty fathoms; sand and shells.

Lumbrinereis tenuis Verrill.

Invert. Animals of Vin. Sound, etc., p. 594. 1874.
This species was not often taken. Sand, low water.

DRILONEREIS Claparède.

Drilonereis longa Webster.

Annel. Chæt. of the Virginian Coast, etc., p. 240, pl. vii, figs. 84-88. 1879. Annel.
Chæt. of New Jersey, p. 116. 1880.
Quite abundant in sand at low water.

ARABELLA (Grube) Ehlers

arabella opalina Verrill.

Lumbriconereis splendida Leidy. Marine Invert. Fauna of R. Y. and N. J., p. 10. 1855.
Lumbriconereis opalina Verrill. Invert. An. of Vin. Sound, p. 594, pl. xiii, figs. 69, 70. 1874.

Arabella opalina Verrill. Proc. Acad. Nat. Sciences, Philadelphia, for 1878, p. 299. Webster. Annel. Chæt. of the Virginian Coast, p. 242. 1879. Annel. Chæt. of New Jerses, p. 116. 1880.
Very common at low water in sand.

STAUROCEPHALUS (Grube) Ehlers.

Staurocephalus pallidus Verrill.
Verrill. Iuvert. Animals of Vineyard Sound, p. 595. 1874.
Webster. Annel. Chaet. of the Virginian Coast, p.242. 1879. Annel. Chart. of Now Jersey, p. 116. 1880.
Very rare. Only two specimens were taken. Sand; low water.
Staurocepralus ofeus n.sp.
(Pl. IV, Figs. 44, 44a-48.).
Tho head of this species is constricted just in front of the origin of the antennæ, the widest part being back of the antennæ, where the width exceeds the length; the anterior part is regularly curred, obtuse (fig. 44). There are no eyes.

The antenne are quite long, composed of about fitteen articles; increasing slightly in diameter from origin along the inner third, then tapering gradually to the end; the last three or four articles elongated.

The palpi are stout, trasversely wrinkled, canaliculate; terminal article fusiform, hluntly rounded at apex, forming nearly one-third the entire leugth.

The first two segments are about equal in length, a littlo longer than those following them.

The dorsal cirri (fig. 45) have a terminal article shaped like the corresponding part of the palpi ; they are nearly cylindrical, reach just beyond the foot.

The ventral cirri are short, fusiform, arising near the apex of the foot and reaching a little beyond it.
S. Mis. 110——6

The foot ends in three rounded lobes, of which the upper (fig. 45) is very large, the two lower small and projecting beyond the upper, divergent. The anterior feet are in length about one-half the width of the body, growing progressively longer along the anterior third, from which point their length equals the width of the segments to which they are attached.
The anal segment is about double the length of the segment preceding it. There are three anal cirri ; the lateral cirri are made up of from three to five nearly cylindrical articles, each one slightly less in diameter than the one preceding it, aud in length equal to the anal segment; the median cirrus is in all respects similar to the basal article of the lateral.

There are two linds of setæ in the upper bundle; in the upper part one to three very delicate capillary setæ (fig. 46) minutely denticulated along one edge for some distance; below these, two or three having a very peculiar form (fig. 47); these are about two-thirds as long as the first form, inner three-fourths of uniform diameter, near the end denticulated, external tooth sharp pointed, prolonged nearly in the line of the main part of the seta; external to the base of this tooth the seta becomes suddenly very delicate, capillary. These setæ may be curved, as in the figure, or straight. In the lower bundle only compound setæ (fig. 48) are found. These are arranged in a fan, growing progressively shorter from the upper to the lower part of the fan, the shortening, for the most part, affecting the appendix. With such magnifying power as we had the appendix of these setæ seemed to have the apex bluntly rounded, without tooth.

The body was convex above and at the sides, flattened below; the segments distinctly separated from each other by well-impressed lines of segmentation.

The general color was white.
Length of largest specimen, 8^{mm}.
Width, 0.5^{mmm}.
Number of segments, 51.
In young specimens the antennæ and palpi appear as mere buds. The head is larger relatively than in adults. The dorsal cirri have no basal articles, but arise, like the ventral cirri in mature forms, from the side of the foot, near the end. They moved with a perfectly nniform gliding motion, due, no donbt, to the action of cilia, without any apparent effort of the lody or feet. In a more adranced stage the palpi were clubshaped, lacking the terminal article.

Very common in sand at low water. The young forms were especially numerous.

Family GLYCERID无.

RHYNCHOBOLUS Claparède.

Reynchobolus dibranchiatus Verrill.

Abstract

Glycera dibranchiata Emlers. Borstenwürmer, p. 670, pl, xxiv, figs. 1,10-28. 1868. Grube. Jahres-Bericht der Schles. Gesell. für vater län Cultur, p. 64. 1869. Rhynchobolus dibranchiatus Verrill. Invert. An. of Vin. Sound, etc., p. 596, pl. x, figs. 43, 44. 1874. Webster. Annel. Chat. of the Virginian Coast, etc., p. 245. 1879. Annel. Chæt. of Nerv Jersey, p. 117. 1880.

Very common in sand at low water.
GONIADA Audouin and M. Edward.s.
Goniada Gracilis Verrill.
(Pl. V, Figs. 49-52.)
Eone gracilis Verrill. Invert. An. of Vin Sound, etc., p. 596. 1874.
Goniada gracilis Verrill. Proceedings U. S. National Museum, p. 174. 1879.
We found in the fine sand of the harbor, at about half-tide, a number of specimens evidently referable to Goniadta, and which we regarded as undescribed. Professor Verrill, however, regarded them as belonging to the species described by him as Eone gracilis, since changed to Goniada gracilis, as above.

The apex of the head (fig. 49) is nearly hexagonal.
The antennæ are composed of three articles, of which the inner forms over half the eutire length; the outer articles are about equal in leugth; the diameter decreases progressively ; external article very delicate.

The first and sixth segments of the head bear each a pair of minute eyes; those on the sixth segment not always demonstrable in alcoholic specimens.

The dorsal cirri on a few of the anterior segments and the rentral cirri back of the middle of the body are rounded; elsewhere they are somewhat flattened, as is, also, the lower lip of the lower ramus.

The dorsal ramus appears at the 27 th segment.
The setæ of this ramus are short, simple, a little curved at the apex.
From the 26th-30th segment the long compound setre of the ventral ramus become much elongated, the appeudix, especially, being very long and delicate. (Compare fig. 50 with fig. 52.)

This may be a sexual peculiarity; but, as all the specimens taken were sexually mature, we had no means of determining this point.

The normal color would seem to be yellowish-white; this changes to pure white in the males after the 30th, and to flesh-color, varying from light to dark, in the females, after the 20th segment. The eggs are
large, crowded, flesh-colored, determining the color of the body, in the females, given above.
In confinement they were very active, moving about rapidly, and throwing themselves into coils, atter the manner of Rhynchobolus.
Lengtl in contraction, $35-50^{\mathrm{mm}}$.
Greatest diameter-1 ${ }^{\text {wum. }}$.
They taper rapidly along a few of the anterior and posterior segments; otherwise the diameter is uniform.

Found sparingly, burrowing in the finest sand of the harbor; halftide to low water.

Family ARICIID.Æ.

ARICIA (Savigny) Audouin and M. Edwards.
aricia ornata Verrill. .
Invert. An. of Vin. Sound, etc., p. 596. 1874.
Not common. A few very fine large specimens were taken at extreme low water, in saudy mud.

SCOLOPLOS Örsted.

Scoloplos robusta.
Anthostoma robustum Verrill. Op. cit., p. 597, pl. xiv, fig. 76. 1874. Webster. Annel. Chret. of the Virginian Coast, p. 258. 1879.
All the specimens taken were small. Sand; low water.

Scoloplos fragilis.

Anthostoma fragile VErrill. Op. cit., p. 598. 1874.
Webster. Anuel. Chot. of Virginian Coast, p. 258. 1879. Of New Jersey, p. 121. 1880.
Common, especially at Wellfleet. Sand; low water.

Family OPHELIID Æ.

OPLILIA (Savigny) M. Edwards.
Ophelia limacina Sars.

[^92]Ophelia bicornis Sars．Nyt．Mag．，vol．vi，p．207．
Ophelia limacina Sars．Nyt．Mag．，vol．vii，p． 381 （teste Malmgren）．
Ophelia borealis Quatrefages．Hist．Nat，des．Ann．，vol．ii，p．273．1865．
Quite common in the sand，at low water．

AMMOTRYPANE H ．Rathke．

Ammotrypane fimbriata Verrill．
Invert．An．of Vin．Sound，etc．，p． 604, pl．xv．，fig．79． 1874.
Only one specimen was taken．Sand；low water．Wellfleet．
Family THELETHUSID雨．
ARENICOLA Lamarcl．
Arenicola marina Malmgren．
Lumbricus marinus Linn．Syst．Nat．，ed．xii，vol．i，p． 1077.
Lumbricus papillosus O．Fabricius．Fauna Grönlandica，p．283． 1780.
Arcnicola piscatorum Lamarck．Syst．d．An．sans．Vert．，p．324．Hist．Nat．An．sans． Vert．， $2 d$ ed．，vol．v，p． 580 （t．Malmgren）．
Aud．and M．Edwards．Littoral de la France，vol，ii，p．285，pl． 8，figs．8－12． 1834.
Johnston．Cat．Brit．Mus．，p．287． 1865.
Arenicola marina malmgren Anuulata Polychæta，p．188． 1867.
The specimens of this species were all collected in one locality，at Race Run，in coarso sand．We did not tind it in Prorincetown harbor or at Wellfleet，though the conditions seemed to be farorable，and we looked for it with care．At Race Run were obtained numerous speci－ mens，but they were all small．

Family CHLOR太MID太．

TROPHONIA MI．Edioards．

Trophonia affinis Verrill．

Siphonostomum afine Leidy．Marine Invert．Fanna of R．I．and N．J．，p．16， 1855. Trophonia affnis Verrill．Op．cit．，p．605，pl．xiv，fig．75． 1874.

Only two specimens were collected．Low water；sand．

Family STERNASPIDÆ．

STERNASPIS Otto．

Sternaspis fossor Stimpson．

[^93]Abundant；dredged；20－30 fathoms．

Family CHeTOPTERID风.

SPIOCHETOPTERUS Sars.

Spiochetopterus oculatus Webster.

Annel. Chæt. of the Virginian Coast, etc., p. 247, pl. viii, figs. 98-102. 1879.-Annel. Chæt. of New Jersey, p. 118. 1880.
We found this species in great numbers at Wellfleet. Here a great area of sand-flat is exposed at low water, drained by swiftly running streams. It is along the borders of these streams that this species is most abundant. Often 6 or 8 could be obtained from a single "dig" of the spade. It occured under the same conditions in Virginia and New Jersey, but much more sparingly. These three localities are the only ones reported up to this time.

Family SPIQNID $£$.

SCOLECOLEPIS Blainville.

Scolecolepis viridis Verrill.
Verrill. Invert. Animals of Viu. Sound, etc., p. 600. 1874.
Webster. Annel. Chæt. of New Jersey, p. 118. 1880.
Wellfleet. Rare, only one specimen taken. Sand, low water.
Scolecolepis cirrata Malmgren.
Nerine cirrata Sars. Nyt. Mag., vol. vi, p. 207 (teste Malmgren).
Scolecolepis cirrata Malmgren. Annulata Polycheta, p. 199, pl. x, fig. 54. 1867.
Verrill. Invert. An. of Vin. Sound, p.602. 1874.
Not common. Dredged in from 20-30 fathoms; sand.

> SPIO (O. Fabr.) Örsted.

> Spio setosa Verrill.

Verrill. Op. cit., p. 602, pl. xiv, fig. 71. 1874.
Webster. Annel. Chæt. of N. J., p. 119. 1880.
Provincetown; low water to 25 fathoms.
Wellfleet; low water, sand.
Common.

> (Spio Rathbuni, n. sp.
> (Pl. V, Figs. 53-59.)

Head oval (fig. 53), length about double the width, sides very slightly convex; anterior end divided into two rounded lobes; posterior end a little narrower than the anterior; the anterior third of the head, together
with a narrow lateral space, depressed, flattened; the remaining part of the head somewhat elevated.

Eyes small, black; rariable both in number, position, and form ; not the same in any of these respects on any two specimens.

Tentacles of the form usual in this group, rather stout, reaching back to the eighth segment, tapering slightly, the diameter at the apex being about one-half that at the base.

The buccal segment is very large, reaching in front to the anterior margin of the head; at the sides and behind exteuding far beyond the head; it has both dorsal aud ventral rami, of the same form as those of the next segment, but not quite so large.

The dorsal rami of the non-brauchiated segments consist of an anterior, low, rounded, lobe; and a posterior, somerrhat elongated and flattened, cirrus.

The ventral rami of the first ten segments do not differ materially from the dorsal rami; after the tenth segment the ventral cirri grow progressively smaller and disappear; the anterior lobe, now become lateral and transverse, is lengthened and depressed (fig. 55).

Ou the branchiated segments nothing remains of the dorsal ramus but a conical elevation from which the setro arise,

The braichie begin on the thirteenth segment (fig. 55). They are slightly wider at either extremity than in the middle, apex rery widely rounded; outer margin with a wide membrane reaching from base to apex; inner margin, as well as an elevated membranons ridge uniting the bases of the opposite branchix, with rery long, demsely crowded cilia; on the largest specimen taken there were 23 pair of branchiz followed by 15 non-branchiated segments.

The setre of the first eight segments are all capillary, mostly long and delicate; those of the dorsal rami longer than the ventral. In both rami are a few shorter setæ, somewhat wider along their inner two-thirds (fig. 56).
The dorsal seta of the branchiated region are a little shortened, but back of the brauchiæ grow long again, and are even more delicate than in front.

On the 9th segment the ventral setre are changed to hooks (fig. 58), of which there are from 4 to 7 in each rami; they project but slightly beyond the setigerous lobe, and are corered by a delicate membrane.

The anal segment ends in four short, stout, bluntly conical lobes (fig. 59). The body is flattened above, convex laterally and below. Impressed lines, running along the ventral surface, include the middlo half of this surface; these, being crossed by the lines of segmentation, furnish median ventral plates.
The extended proboscis was not scen.
The posierior margin of the month is crenulated; the anterior marg in of the baceal segment is divided by a longitudinal median incision into two rounded lobes, which may be ridely separated or elosely approximated.

Largest specimen.
Length, 10^{mm}.
Width, $0 . \tilde{o}^{\mathrm{mm}}$.
Number of segments, 49.
This species lives in delicate sand tubes; low water.
PRIONOSPIO (Malmgren) Sars.
Prionospio (species not determined).
A single specimen, too much injured for identification, was dredged in the harbor. Bottom middy, covered with dead eel-grass.

STREBLOSPIO Webster.

Streblospio Benedicti Webster.

(Pl. V, Figs. 60-64.)
Annel. Chæt. of New Jersey, p. 120, pl. v, figs. 48-50. 1880.
The head (fig. 6) is emarginate in front. The lobes of the dorsal and ventral rami do not disappear as stated in the original description, but become much smaller; the error arose from not studying transverse sections.

We found this species in great numbers at Wellflect, above the harbor, living in soft, black mud, which formed a layer, two or three inches thick, over compact sand. The tubes were placed vertically in the mud, very close together. They were not as large as the specimens found in New Jersey.

The anal segment has a shallow sucker (fig. 64), with thick, rounded margin.

SPIOPHANES Grube.

Spiophanes Verrllli nosp.

(Pl. VI, Figs. 65-72.)

Head (fig. 66) resting on the buccal segment; posterior half raised, presenting somewhat the appearance of a carina; anterior half rapidly widening, thin, depressed, with auterior angles much prolonged. Eyes four, small, black, lateral; anterior pair about on the middle line; posterior pair half way between the anterior pair and the posterior margin of the head.

We were unable to find the minute posterior antenna represented as belonging to this genus.

Tentacles (fig. 65) reaching back to the eighth segment; canaliculate, margins of canal rounded and scolloped.

The dorsal cirri on the anterior segments are wide at base, narrowed at about the middle, with their outer half conical (fig 67); the base gradually becomes more swollen, the apex more attenuated, until the middle
line is reached, when the basal part becomes smaller, the outer part longer, with a slight increase in its diameter. Back of the dorsal cirri of the anterior segments is a thin plate, with convex margin, in front of which the setæ arise. This plate exists on all segments, but after a few of the anterior becomes narrower, longer, conical (fig. 69).

The ventral cirri of the first four segments are a little smaller than the dorsal cirri; they have a straight upper, a convex lower, margin; behind them is a plate or lobe similar to the dorsal ramus; back of the fourth segment the cirrus disappears, and the ventral ramus moves gradually towards the ventral margin (fig. 69). After the fourth segment a projecting, arched plate, similar to the ventral ramus, is found about half way between the two rami.

From the sixth segment a membranous densely ciliated ridge (fig. 68) connects the bases of the opposite dorsal cirri. At first this ridge is quite low, but afterwards becomes well marked.

The dorsal setæ of the anterior segments are very long (fig. 70), delicate, margined on one edge; they shorten a little backwards, but behind the middle again increase in length.
The ventral setre (fig. 71) are shorter, more curved, and a little wider; in other respects similar to the dorsal setre. On the sixth segment the ventral setæ change to uncini (fig. 72). These project very slightly. There are a few capillary setæ at the lower end of each series of uncini. The anal segment is bluntly rounded, with two delicate filiform cirri.

On the anterior segments the dorsum is flat; the sides and ventral surface convex; further back the dorsum becomes convex; the sides nearly straight; the ventral surface flat, or slightly couvex.

General color of the bods red; head, sides of body, and feet, white. Only two specimens were found.
Length of largest specimen, 21^{mm}.
Width, 1^{mm}.
Number of segments, 82.
Found at Wellfleet, in sand, at low water.

POLYDORA Bose.

Polydora ligni Webster.

Annel. Chæt. of New Jersey, etc., p. 119, pl. v, figs. 450-47. 1880.
Our specimens were found living on the valves of Pecten irradians, their tabes occupying the spaces between the ribs.

Low water; not common.

Polydora concharum Verrill.

Proceedings of the United States National Musenm, p. 174. November, $18 \% 9$.
This large and peculiar species was very common, from near high water mark to 30 fathoms.

Family CIRRATULID \not.

CIRRATULUS Lamarck.

Cirratulus grandis Verrill.

Verrill. Invert. Animals of Vineyard Sound, etc., p. 606, pl. xv, figs. 80, 81. 1874. Webster. Annel. Chæt. of the Virginian Coast, otc., p. 258. 1879. Annel. Chæt. of New Jersey, p. 122. 1880.
Specimens rare, not large. Found under stones, at low water.

DODECACERIA Örsted.

Dodecaceria concharum Örsted.

Örsted. Ann. Dan. Consp., p. 44, fig. 99. 1843.
Johnston. Catl. Brit. Museum, p. 212. 1865.
Quatrefages. Hist. Nat. des Ann., vol. i,g p. 464. 1865.
Malmgren. Annulata Polychæta, p. 206. 1867.
Verrill. Proceedings United States National Museum, p. 178. 1879.
One specimen only. Twenty to twenty-five fathoms; sand and shells.

Family CAPITELLID平. NOTOMASTUS Sars.

Notomastus filiformis Verrill.

Verrill. Invert. An. of Vin. Sound, etc., p. 611. 1874.
Webster. Annel. Chæt. of New Jersey, p. 123, pl: v, figs. 51-54. 1880.
Very abundant at low water, in the sand.

Notomastus luridus Verrill.

Verrill. Op. cit., p. 610. 1874.
Webster. Op. cit., p. 123. 1880.
Quite common at low water; sand.

CAPITELLA Blainville.

Capitella capitata Van Beneden.

Lumbricus capitatus Fabricius. Fanna Grön., p. 279. 1780.
Capitella Fabricii Blainville. Dict. des Sc. Nat., vol. 57, p. 443. 1828 (teste Clpd.).
Lumbriconais capitata Frey and Leuck. Beiträge z. Kenntn. wirbelloser Thiere, p. 141. 1847.

Capitella capitata Van Beneden. Bull. Acad. de Belg., vol. iii, 1857, teste Claparède Claparede, Rech. Anat. Annélides des Hébrides, p. 42, pl. i, figs 9-14. 1861. Aunel. Chret. du G. de N., part ii, p. 10, pl. xxvii fig. 1. 1868.
Capitella capitata Malmgren. Annulata Polychæta, p. 207. 1867.
McIntosir. Aunclida of the cruise of the Valorous to Davis Strait, p. 507.187%.

Valla ciliata Jounston. Cat. British Worms, p.67. 1865.

We found a few specimens of Capitella, which we are not able to separate from C. capitata. Sexual setæ on the eighth and ninth segments; all segments before the eighth with capillary setæ only; after the ninth, with uncini only. On one young specimen capillary setæ were found only on three segments. Another had five segments with capillary setæ; still another had capillary setse on sereu segments, but there were a few uncini in the seventh ventral ramus.

Near high water mark, in sand.

Family MALDANID夙.
 NICOMACHE Malmgron.

Nicomacie Lumbricalis Malmgren.

Sabella lumbricalis O. Fabricıus. Fauna Grön., p. 374. 1780.
Clymene lumbricalis Sars. Fauna littoralis norvegie, vol. ii, p. 16, pl. ii, figs. 23-26. 1856.

Nicomache lumbricalis Malmgren. Nordiska Hafs-Annulater, p. 190. 1865. Annulata Polychæta, p. 209, pl. xi, fig. 60. 1867.
Dredged, 12 to 28 fathoms.

PRAXILLA Malmgren.

Praxilla elongata Tebster.

Annel. Chæt. of New Jersey, pr. 124, pl. vi, figs. 55-59. 1880.
We found this species quite common both at Provincetown and Wellfleet, living in sand and gravel. At Wellleet associated with Amphitrite ornata Verrill.

OLYMENELLA Verrill.

Clymenella torquata Verrill.

Clymene torquatus Leidy. Marine Invert. Fauna of Rhode Island and New Jersey, p. 14. 1855.

Clymenella torquata. Verrill. Invert. An. of Vin. Sound, p. 608, pl. xiv, figs. 71-73. 1874.

Webster. Annel. Chet. of the Virginian Coast, p. 258. 1879. Of New Jersey, p. 123. 1880.
Very abundant, low water, sand and gravel.

Family AMPHICTENIDAE.
 CISTENIDES MIAlngren.
 Cistenides Gouldii Verrill.

Pectinaria Belgica Gould. Invertebrata of Mass., ed. i, p. 7, pl. i, fig. 1. 1841.
Pectinaria auricoma Leidy. Marine Invert. Fanna of Rhode Island and New Jersey, p. 14. 1855.

Cistenides Gouldii Verrill. Op. cit., p. 612, pl. xvii, figs. 87, 87 a. 1874.
Webster. Op. cit. (N.J.), p. 127. 1880.
Common and very large. Low water. Wellfleet and Provincetown.

AMPHARETID雨.

MELINNA Malngren.

Melinna cristata Malmgren.

Sabella cristata Sars. Fauna littoralis Norvegiæ, vol. ii, p. 19, pl. ii, figs. 1-7. 1856. Melinna criztata Malmgren. Nordiska Hafs-Annulater, p. 371, pl. xx, fig. 50. 1865. Ann. Polych., p. 215. 1867.
Verrill. Op. cit., p. 613. 1874.
Phenacia oristata Quatrefages. Hist. Nat. des Ann., vol. ii, p. 377. 1865.
Single much injured specimen. Dredged; 25 fathoms.

Family TEREBELLID雨.

AMPHITRITE (Mïller) Malmgren.

Amphitrite ornata Verrill.

Terebella ornata Leidy.-Marine Invert. Fanna of R. I. and N. J., p. 14, pl. xi, figs. 44,45 . 1855.
Amphitrite ornata Verrill.--Invert. An. of Vineyard Sound, etc., p. 613, pl. xvi, fig. 82. 1874.

Amphitrite ornata Webster.-Annel. Chæt. of the Virginian Coast, p. 262. 1879. Annel. Chæt. of N. J., p. 127. 1880.

This species was very rare at Provincetown, but we found it in great numbers at Wellfleet, in coarse sand and mud, very near high water mark.

Amphitrite brunnea Verrill.
Terebella brunnea Stimpson.-Marine Invert. of Grand Manan, p. 31. 1854.
Amphitrite Johnstoni Maimgren.-Nord. Hafs-Annulater, p. 377, pl. xxi, fig. 51. 1865. Annulata Polychæta, p. 216. 1867.

Amphitrite brunnea Verrill.-Check-list.
Professor Verrill regards A. Johnstoni Malmgren as a synonym of T. brunnea Stimpson. Stimpson's description, however, is very imperfect. We found two specimens which agree in most particulars, though not in all, with Malmgren's tigures of A. Johnstoni. They have twenty-four segments with capillary setæ. A very fine large species, dredged in deep water by the Fish Commission, and regarded at first by Professor Verrill as A.brunnea, has twenty-five segments with capillary setæ. Our specimens of A. brunnea were found under stones, at low-water.

NICOLEA Malmgren.
Nicolea viridis $n . s p$.
(Pl. VI, Figs. 73, 74.)
The frontal membrane is very large; the tentacles numeroas and long, some of them as long as the body.

The branchir are divided from near the base, flattened, ending in short blunt subdivisions (fig. 73). The anterior branchiæ are much larger than the posterior.

The uncigerous tori on the segments bearing capillary setæ are large, projecting, convex externally; then follow eight segments, on which the tori are much smaller, and square; then three segments, apparently without seto; then a short anal segment, with crenulated margin.

No lines of segmentation can be made out in living specimens on the dorsum and sides as far back as the last segment with capillary setz; on alcoholic specimens they are faintly perceptible.
The cirri of the third and fourth setigerous segments of the male form are small, flattened, quadrangular.

The uncinate setro have one very large tooth at the apex (fig. 74).
Thebody tapers very gradually, the diameter of the last segment being about one-half that of the anterior segments.
The general color is green; anterior two-thirds with numerous irregular black specks on the dorsum and sides; these become larger and confluent on the posterior segments, forming spots or blotches. First segment crossed by a band of dark reddisu-brown specks (? eye specks), closely crowded ; tentacles light flesh-color ; branchixe with dark-brown center.
A single specimen, a male, was taken in sand, at low water.
Length, 9^{mm}.
Greatest width, 1^{mm}.

PISTA Malmgren.

In the Invertebrate Animals of Vineyard Sound, etc., Professor Verrill has described a new genus, Scionopsis, which he says is closely related to Pista, differing from that genus in the extent of the membrane on the third segment, and in the structure of the branchiæ. We found at Wellfleet a form which seems to be intermediate between Pista and Scionopsis. In the form of the uncinate setre and in the lateral membrane on the second and third segments it agrees with Pista; until closely examined the branchiæ seem also to agree with Pista, since, owing to the arrangement on the stem, they present the same peculiar form. However, in the method of branching they agree with Scionopsis. It seems best, for the present at least, to refer both this new form and Scionopsis Verrill to Pista.

Pista intermedia n.sp.

(Pl. VI, Figs. 75-78.)
The brauchio in this species arise from an elongated central stalk, the basal portion of which is naked (without branches) for a rariable length, depending upon the size of the branchix. The branches are given off from the stem very close to each other, and appear to be ar-
ranged in a very slowly ascending spiral. Each main branch subdivides close to its origin, and again divides; there is a strong tendency to terminate in a short bifurcation, one branch of which is a little longer than the other (fig. 75). The lowest main branches are the largest. They are convex externally, concave internally, directed upward and a little outward. The main branches grow rapidly shorter from base to summit, and tend more directly outward. The result of this arrangement is an egg-shaped branchia, the small end outward. There would appear to be normally four branchiæ, but none of our specimens show more than three.

The tentacular cirri are short, numerous.
The lateral membraue of the second segment is short but high ; outer margin convex; the corresponding membrane of the third segment is lower, but extends from the dorsal to the ventral surface.

The anterior ventral shields are very short; the others are variable in form; they may be square, or their length may be more or less than their width.

There are two series of capillary setæ (figs. 76, 77), the setæ not differing much from each other except in length.

The uncini of the anterior segments (fig. 78) do not differ much from those further back, and will be seen to closely resemble those of Pista cristata, as figured by Malmgren. The elongated inferior process, said by Malmgren to exist on the uncini of the first six uncigerous segments in this species, we found on all uncini. It does not seem, however, to be a process of the uncini, but a tendon or cord, derived from a membrane, which, in part at least, covers each uncinus. We were able to trace this membrane to the extent shown in fig. 78. On all the species of this family which we have had an opportunity to examine we have found a similar membrane and similar cords, when sufficient care has been taken with the preparation of the uncini for examination. It may further be noted, both as regards this species and Pista palmata, that the uncini are not simply flattened with a single series of terminal points, but that the apex is much widened, with transverse series of points, each series composed of from three to five points, corresponding to the single series seen when the uncinus is viewed from the side.

The notes on color were made by Professor Verrill. Anterior region dull olive-green dorsally, sometimes tinged with reddish, and usually with more or less distinct transverse lines of reddish between the segments, these lines less marked in front. On the sides each torns is surronnded by a broad band of dark blood-red, and above each setigerous fascicle, except in front, there is a red spot. On the sides, between the segments, are narrow pale-olive sutural bands. Ventral surface pale-olive or yellowish-green. Each ventral shield with a conspicuous red spot on the lateral borders, those on the posterior shields being connected with the lateral bands. Feet, pale greenish. Posterior portion
of body plain yellowish-green or olive green. Branchiæe greenish, or yellowish, or flesh-color with bright red blood vessels showing through.

Length of largest specimen, 75^{mm}.
Tube formed of coarse sand.
Found at Wellfleet in sand at low water.
Not common.

Pista patmata.

(Pl. VII, Fig. 79.)
Scionopsis palmata Verrill. Invert. Animals of Vin. Sound, p.614. 1874.
Scionopsis palmata Webster. Anuel. Chret. of the Virginia Coast, p.262, 1879. Of New Jersey, p. 128. 1880.

Found sparingly at low water.
The considerations that lead us to unite this form to Pista hare been stated above.

TRICHOBRANCHUS Malmgren.

Trichobranchus ?Glacialis Malmgren.
Nord. Hafs-Ann., p. 395, pl. xxiv, fig. 65. 1865.-Ann. Polycht., p. 220. 18667.
We found but one specimen of this genus, and that without branchir, and otherwise much injured. Depending mainly on the setæ, we refer it with some doubt to Malmgren's species.

Sand; low water.

POLYCIRRUS Grube.

Polycirkus exmius Verrill.

Torquea exinea Leidy. Marine Invert. Faunamof R. I. and N. J., p. 14, pl. xi, 51, 52. 1855.

Polycirrus eximius Verrill. Invert. Au. Vin. Sound, etc., p. 616, pl. xvi, f. 85, 1879.
Webster. Annel. Chæt. of the Virginian Coast, p. 263,1879. Of New Jersey, p. 128. 1880.

ENOPLOBRANCHUS Verrill.

Enoplobranchus sanguineus Verrill.
Chatobranchus sanguineus Vermill. Op. cit., p. 616,1874.
Enoplobranchus sanguineus Verrill. Check-list (advance sheets). Vebster. Annel. Chæot. of the Virginia Coast, p. 263. 1879.
Found only at Wellfleet. Sandy mud; low water; abundant.
Family SABELLIDAE.
SABELLA (L.) Malmgren. Sabella microphtialia Verrill.

Verrill. Invert. Animals of Vin. Sound, p. 618. 1874.
Webster. Annel. Chæt. of the Virginian Coast, p. 275. 1879. Of New Jersey, p. 128. 1880.

Not common. Found at low water.

POTAMILEA Malmgren.

Potamilla neglecta Malmgren.

(Pl. VII, Figs. 80-84.)

Nordiska Hafs-Annulater, p. 401, pl. xxvii, fig. 84. 1865. Aunulata Polgchæta p. 222. 1867.

The specimens, which we refer, without much doubt, to this species, were pure white, very beautiful. The ventral sulcus, contrary to the generic diagnosis, was continued on the dorsum, although seen with difficulty in alcoholic specimens. The branchial cirri were readily lost.

Length, 60^{mm}.
Diameter, 3^{mm}.
Length of branchix, $9-13^{\mathrm{mm}}$.
Length of first eight segments, 9^{mm}.
Dredged in 25 fathoms; sand and shells.

Potamilla reniformis Malmgren.

Sabella reniformis Leuckart. Archiv. f. Naturg., p. 183, pl. 3, Gg. 8. 1849 (testo Malmgren).
Sabella oculifera Leidy. Marine Invert. Fauna of R. I. and N. J., p. 13, pl. xi., figs. 55-61. 1855.
Quatrefages. Hist. Nat. des Ann@les, vol. ii, p. 461.1865.
Sabella aspersa Kröyer. Bidrag till Sabellerne, p. 19. 1856.
Sabella oculata Kröyer. Bidrag till Sabellerne, p. 22. 1856.
Sabella reniformis Sars. Christ. vid. Selsk. Forh., p. 123. 1861.
Sabella (Potamilla) reniformis Marion-Bobretzsky. Aunales des Sci. Nat., vol.ii, p. 91, pl. xi, fig. 28.1875.
Potamilla reniformis Malmgren. Anuulata Polych., p. 222, pl. xiv, fig. 77. 1867.
Potamilla oculifcra Verrill. Invert An. of Vin. Sound, p. 617, pl. xvii, fig. 86. 1874. Potamilla reniformis Verrill. Check-list.

We collected but one specimen of this species. Dredged in 25 fathoms; sand and shells.

OTHONLA Johnston.

Othonia Fabricil Johnston.

Othonia Fabricii, Jonnston. Lond. Mag. Nat. Hist., vol. viii, 181, fig. 19 (teste Malmgren and Claparède).
Fabricia Leidyi Vermill. Op. cit., p. 619. 1874.
For the remaining synonomy of the species see Malmgren, Annulata Polychæta, p. 225. Also Claparede, Annel. Chet. du Golfe de Naples, p. 151. Malmgren's rejection of Fabricia seems to be valid, and Claparède's claim for Othonia, as opposed to Amphicora, seems equally sound; but his retention of Fabricia is not desirable. On decaying wood, near high water mark.

MYXICOLA (Koch) Malmgren.

Myxicula Steenstrupi Lröyer.

Myxicola Steenstrupi Kıöyer. Bidrag til Kunds., on Sabellerne, p. 35. 1850.
Malmgren. Nord. Hafs-Ami, p. 408. 186j. Pl. xix, iig. 90. Annulata Pulycheta, p. 227. 1867.
Myxicola Sarsi Kröyer. Op. cit., p. 9. 1856.
Sars. Christ. Vid. Selsk. Forh., p. 130. 1861.
Body white or yellowish white. The anterior segments, $3-6$, may be brown, or white, or mottled. After the fourth segment there may be one, two, or three circular brown specks on the sides of each segment. These spots fail on a few of the posterior segments, but on the sides of the anal segment they are numerous, from four to twelve on ach side, according to the size of the specimen. The branchiæ are greenish yellow at base, with their outer two-thirds reddish brown, or they may be greenish white throughhout; branchial cirri of the same color as the branchiæ.

Dredged in 25 fathoms; sand and shells.

Family SERPULIDA.

HYDROIDES Gumnerus.

Hydromes dianthus Verrill.

Serpula dianthus Vermil. Invert. An. of Vin. Sound, p. 620. 1874.
Hydroides dianthus Verrill. Proc. Acad. Nat. Sci., p. 300. 1878.
Webster. Annel. Chet. of the Virginian Coast, p. 266. 1879.Of̣ New Jersey, p. 128. 1880.
Not common. Low water, on shells, ete.

SPIRORBIS Daudin.

Spirorbis borealis Daudin.
Very common at low water, on sea weed, etc.
Genus incerta sedis.
We collected a single injured specimen, which we have so far been anable to refer to any described family. It presents, however, so many peculiarities that it seems desirable to describe it as far as possible.

$$
\text { THAUMASTOMA } n \cdot g .
$$

Head rounded behind, flattened and elongated in frout; without appendages. Proboscis protrusible, digitate at extremity. No jaws. First segment with median cirrus. Dorsal setæ of first segment much elongated, directed forward. Ventral setæ of first two segment in two series; S. Mis. $110-47$
one capillary; the other stout, spinous; all other setæ capillary. Each ramus, after the first segment, furnished with a transverse plate, thin, lateral, projecting, outer margin lobed. All segments biramous.

Thaumastoma singulare $n . \dot{s} p$.

(Pl. VII, Figs. 85-94.)

Head composed of two parts; anterior two-thirds flattened (fig. 85), nearly quadrangular, slightly emarginate in front; posterior third rounded, convex, bearing two pairs of minute black eyes; destitute of appendages.

The proboscis was seen extended to a length about equal to that of the head; the incisions dividing it into lobes were observed to run back about one-half this length. In alcohol the proboscis was nearly withdrawn, showing only its anterior end (fig. 86); its inner surface was densely ciliated.

The dorsal ramus of the first segment is composed (fig. S5) of two stont, conical cirri, longer than the head; the upper of these points forward ; the lower forward and ontward; between their bases rise two distinct bundles of capillary setæ, which are directed forward, and reach beyond the head. The lower ramus of the first segment consists of it transverse, convex, fleshy lobe, terminating above in a short, stout, blunt, rounded process ; in frout of this plate are two rows of setæ; those forming the anterior series (fig. 93) similar to the posterior (fig. 92), only louger and more delicate, but still having rather the form of spines than of capillary setæ, these anterior setæ are very light colored, nearly white; the posterior series is composed of 6-8 stont yellow spines (fig. 92).

The second segment has its dorsal ramus composed of a depressed fleshy lobe (not seen in the figure, which is a front view), from which arises a fan of capillary setæ (figs. 87, 94), while in front of this lobe is a thin, projecting plate, divided along its outer margin (fig. 87) into six mequal, bluntly rounded lobes.

This lower ramus is much like the corresponding ramus of the first segment, but lacks the superior process. In this ramus is a posterior row of black spines, similar to those of the first segment, except in color, and an anterior series of very fine capillary setæ, much shorter and more delicate thau the capillary setæ of the segments behind, shorter even than the spines of the same ramus. Behnd the second segment all the setie are capillary and arise from more or less well-marked rounded lobes.

On the third segment a digitated plate runs down the side of the body, in front of both rami. It has tweuty-one lobes (fig. 88) along its outer margin, and runs from above the dorsal ramus to below the ventral. On the fourth segment there are two such lobes (fig. 89). After the fourth segment the dorsal lobe steadily shortens, till on the seven-
teenth segment (fig. 91) it is reduced to a single, flattened, tapering projection. Meanwhile the ventral lobe retains about the same size on all segments, but shows great irregularities in the number and depth of the incisions forming its lateral lobes. From the eighth segment the dorsal rami and setæ have an upward direction; on the eighth they are eren directed inward, but as this does not occur on the segments behind the eighth, it may be due to accidental distortion; in like manner the ventral rami of the eighth segment are turned (displaced ?) upward; on all segments behind the eighth the ventral setæ point directly outward, instead of obliquely downward, as on the preceding segments.

After the first two segments the setæ of both rami are much alike, but those of the dorsal rami, after the fourth segment, are much more numerous, forming a stout, closely crowded bundle.

The general outline of the body is shown in figs. $87-91$, which are half segments; it is depressed with slightly convex dorsal and median fields as far back as the sixteenth segment; here the dorsum becomes more convex (fig. 91). It is possible that this change may take place somewhat more gradually than this statement would indicate, as the dorsum is somewhat injured for a few segments anterior to the sixteenth.
No color notes were made, but as we remember it the general color was dirty white.

Length of 22 segments, 15^{mm}.
(ireatest width (at twelfth segment), $\tilde{5}^{\mathrm{mm}}$. This width diminishes a little forwards, the width of the first segment being 3^{mm}.
Dredged on a sandy bottom in about 20 fathoms.

EXPLANATIONOH PLATES.

PLATE I.

Eteone cinerea nobp.

Fig. 1.-Auterior foot, $\times 16$.
2. - Middle foot, $\times 16$.
3.-Posterior foot, $\times 16$.
4.-Head and bnceal segment, $\times 16$.
5.-Seta, $\times 300$.

PODARKE CECA n. sp.

Fig. 6.-Head and anterior segments, $\times 70$.
7.-Eighth and ninth segments, $\times 70$.
8. - Seta, $\times 450$.

Hesione agilis n.sp.

Fis. 9.-Head and anterior part of alimentary canal, $\times 45$.
10. -Foot, from middle of body, $\times 45$.
11.-Compound seta, $\times 400$.

Plate II.

```
SYlLIDES CONVOLUTA n. 8p.
```

Fig. 12.-Head and anterior segments, $\times 85$.
13.-Outline of middle segments, $\times 85$.
14.-Compouud seta, $\times 750$.
15. -Simple seta (acieula), $\times 750$.
16. -Foot, $\times 150$.

StREPTOSyllis ARENAE n.g., n. sp.

Fig. 17. - Head and first two segments, $\times 65$.
18. - Outline of under surface of head, $\times 85$.
19.--Posterior segments, $\times 35$.
20.-Foot with articulated jointed cirrus, $\times 8$.
21. Foot, to show ventral cirrus, $\times 85$.

PLATE III.

```
STREPTOSYLhIS ARENAE n. g., n. gL
```

Fig. 22.-Compound seta, $\times 400$.
23.-Simple seta, $\times 400$.
[43]

Spherosyllis brevifrons n. $8 p$.
Fig. 24. - Head and first two segments, $\times 130$.
25.-Posterior segments, $\times 130$.
26.-Foot with cirri, $\times 230$.
27.-Single dorsal cirrus with double constriction, $\times 230$.
28.-Compound seta, $\times 750$.
20.-Simple seta, $\times 750$.
30.-Simple neta, $\times 750$.

Pedophylax hebes $n .8 p$.

Fig. 31. - Head and anterior segments, $\times 85$.
32.-Posterior segments, $\times 8{ }^{5}$.
33.-Anterior compound seta, $\times 750$.
34.-Posterior compound seta, $\times 750$.
35.-Ordinary simple seta, $\times 750$.
36.-Posterior simple seta, $\times 750$.

Nereis tenuis n. 8p.

Fig. 37. - Head and first two segments, $\times 25$.
PLATE IV.

Nereis tendis n. $8 p$.

Fig. 38.-Proboscis, ventral view, $\times 25$.
39.-Foot from tenth segment, posterior view, $\times 50$.
40.-Posterior foot, posterior view, $\times 50$.
41. -Seta of dorsal ramus and upper part of ventral ramus, $\times \mathbf{7 5 0}$.
42.-Seta of lower bundle, lower ramus, $\times 750$.
43.-Seta of ventral ramus, $\times 750$.

Staurocerpales cefeus n. rp.

Fig. 44.-Head and first two segments, $\times 130$.
44a.-Lower jaw, $\times 130$.
45.-Foot from large specimen, $\times 130$.
46.-Seta, upper part of upper bundle, $\times \boldsymbol{5} 50$.
47.-Seta, lower part of upper bundle, $\times 750$.
48. - Seta, lower bundle, $\times 50$.
plate V.
Gondada graches Verrill.
Fig. 49.-Head and first segment, x 50.
50.-Anterior foot, $\times 85$.
51. - Foot from twenty-seventh segment, $\times 85$.
52.-Middle foot, $\times 25$.

Spio liathbuni n. $s p$.

Fig. 53.-Head and first two seqments, withont tentacles, $\times 65$.
$54 .-$ Foot of second segmeut, anterior view, $\times 160$.
55.-Branchiated segment, $\times 160$.
56. -Short seta, found sparingly in both rami, $\times 750$
51.-Ordinary dorsal seta, $\times 750$.
58. -Ventral uncinus. \times T50.
59.-Anal cirri, $\times-5$.

Fig. 60.-Head and first segment, without tentacles, showiug origin of branchix side view, $\times 130$.
61. - Head, dorsal view, $\times 130$.
62.-Fourth segment, transverse section, $\times 85$.
63.-Posterior segments, transverse section, $\times 85$.
64.-Posterior segments, with anal sucker, $\times 130$.
plate Vi.

Spiophanes Verrilli n. \boldsymbol{n} p.

Fig. 65.-Head with tentacles, $\times 25$.
66.-Head without tentacles, $\times 25$.
67.-Fourth segment, transverse section, $\times 25$.
68. -Sixth segment, transverse section, $\times 25$.
69.-Fifteenth segment, transverse section, $\times 25$.
70.-Dorsal seta, $\times 450$.
71.-Anterior ventral seta, $\times 450$.
72.-Ventral uncinus, $\times 450$.

Nicolea viridis n. sp.

Fig. 73.-Anterior branchia, $\times 70$.
74.-Uncinns, $\times 750$.

Pista intermedia n. op.

Fig. 75. -Single branch of branchia, $\times 35$.
76.-Long capillary seta, $\times 130$.
77.-Short capillary seta, $\times 130$.
78. - Anterior uncinns, $\times 450$.

Plate Vif.

> Pista palmata (Verrill).

Fig. 79.-Anterior uncinus, $\times 450$.

Potamilla neglecta Malmgren.

Figs. 80, 81.-Anterior capillary seta, $\times 230$.
82,83.-Anterior pointed uncini, $\times 230$.
Fig. 84.-Anterior uncinus, $\times 230$.

$$
\text { Thaumastoma singulabe } n . g ., n . \text { op. }
$$

Fig. 85.-Head and first segment, $\times 15$.
86.-Anterior end of proloseis, $\times 15$.
87.-One-half of second segment, transverse section, $\times 15$.
88.-One-half of third segment, transverse section, $\times 15$.
89.-One-balf of fourth segment, transverse section, $\times 15$.
90.-One-half of eighth segment, transverse section, $\times 15$.
91.-One-half of seventeenth segment, trausverse section, $\times 15$.

Figs. 92, 93.-Setie from first segment, $\times 85$.
Fig. 94.-Ordinary seta, $\times 85$.

PLATE VIII.

SPHEROSYLLIS LONGICIRRATA n. sp.

Fig. 95.-Anterior part of body, \times xis.
96.-Posterior segments, $\times 1: 30$.
97. - Foot with cirm, $\times 215$.
98. - Longe compound sota, terminal part, $\times \mathbf{7 5 0}$.
99.-Short compound setat, $\times 750$.
100.-Simple sita, \times т60.

EUlalia leUbia n.sp.
Fig. 101. -Head and tirst two segments, $\times 18$.
102.-Anterior foot, $\times 50$.
103.-Middle foot, $\times 50$.
104.-Posterior foot, \times 万 0 .
105. -Seta, $\times 500$.

Report U. S. F. C. 1881. -Webster. Annelida Chetopoda.
PLATE VIII.

I NDEX.

Page.

Lambriconereis splendida.................. | Page. |
| ---: |
| 23 |

Lambricus capitatus, synonym 32
fragilis, synonym 22marinas, synonympapillosus, synonym2727
Lambrinereis fragilis 22
tenuis. 22
McIntosh cited 32
Maldanidæ, family 33
Malmgren cited $2,3,4,5,11,19,22,26,27$,$30,32,33,34,3 \overline{5}, 36,37,38,39$
Marentzeller cited $13,15,19,20$
Marion-Bobretzsky cited 11, 13, 38
Melinna cristata 34
Miller cited 22, 34
Myxicola sarsi 39
steenstrupi 39 39
Nepththydidæ, family 4
Nepththys bucera 4
incisa4
ingens, synouyim 4
Nereidæ 19
Nereis cuprea, synonsm 22
grandis, synonym 19
limbata 20
pelagica 20
tenuis, description 20
virens 19
ydnkiana, synonym 19
Nerilla antennata 1, 19
Nerine cirrata 28
New genera 1, 13, 39
species , $6,7,8,9,11,13,16$,
$17,18,20,23,28,30,34,35,40$
New Jersey, specimens trom 4, 28, 30,37
Nicolea viridis, description 34
Nicomache lumbricalis 33
Ninoe nigripes 22
Notomastus filiformis 32
luridus32
Nychia amondseni \because
cirrosa, description 2
Ophelia bicornis, synonym 26, 27
borealis, synonym27
limacina 26, 27
Opheliida, family 26
Opisthosyllis, genus 15
Örsted cited $2,5,7,11,22,26,28,32$
Othonia fabricii 汶
Otto cited 27
Pædophylax hebes, description 18
Pallas cited2
Pecten irradians 31
Pectinaria auricoma. synonym 33
belgica. synonym 33
Phenacia cristata, synonym 34Pholoë minata3,4
tecta, synouym3, 4Phyllodoce arents5
grœnlaudica5
Phyllodocidse 4
Pista, description of genus 35
cristata36
intermedia, description 35
palmata 36, 37
Podarke 11
cæca, description 8
obscura 8, 9
Polycirrus eximius 37
Polydora concharum 31
ligni 31
Polynoë nodosa, synonym 2
Polynoid: 1
Potamilla neglecta 38
oculifera, synonym 38
reniformis 38
Praxilla elongata 33
Pionospio, sp 30
Provincetown, Mass., specimens from ... 1, 3, 8, 12,$17,19,20,21,22,27,28,33,34$
Pterosyllis, description of genus 13
Quatrefages cited , 10, 11, 15, 19, 22.
Race Run, specimens from$26,27,32,34,38$
Rathke, H, cited 11, 26,27
Rhynchobolus, genus of annelida 12, 26
dibranchiatus 25
Sabella aspersa; synonym 38
cristata, synonym 34
lumbricalis, synonym 33
microphthalma 37
oculata, synonym : 18
oculifera, synonym 38
reniformis, synonym 38
Sabellida, family 37
Sars cited .2, 11, 19, 26, 27, 28, 30, 32, 30
Saviguy cited $5,7,9,10,11,20$
Schmidt cited 19
Scionopsis, referred to genus Pista 35
palmata, synonym 37
Scolecolepis cirrata 28
riridis. 2
Scoletoma fragilis, synonym x
Scoloplos fragilis 20
robusta 26
Selenka cited 1
Serpula dianthus 39
Serpulidæ, family 39
Sigalion arenicola 3
Sigalionidæ, famils :
-iphonostomum attine 27
South Norwalk, Conn., specimens from 17
Sphærosyllis, description of genus 15
bresifrons 16
fortuita. 15
longicirrata 17
Spio rathbuni, description 28
setosa. 28
Spiochætopterus oculatus 28
Spionide, family 28
Spiophanes verrilli, description 3
Spirorbis borealis 39
Staurocephalus crecus, description 23
pallidus 23
Sternaspida, family 27
Sternaspis fossor 27
Sthenelais picta 3
Stimpson cited $3,4,19,27,34$
Streblospio benedicti. 7, 30

Page

相 . --

[49] ANNELIDS	OF PRO	INCETOWN, MASS.	747
	Page.		Page.
Streptosyllis arenæ, description.	13	Torquea eximea, synonym	37
Syllidæ, family.	5, 11, 15	Trichobranchus glacialis.	1,37
Syllides, genas	11	Trophonia affinis	27
convoluta, description	11	Turnbull cited	19
orsted	1	Valla ciliata, synonym	32
Syllis, genus	15	Van Beneden cited	32
ochracea	13	Verrill cited .. $1,9,3,4,5,6,8,19,20,29,23,25,26,27$,	
Terebella brunnea, synonyr	34	28,31,	37, 38, 39
ornata, synonym	34	Virginia, specimens from	5,28,37
Terebellidx.	34	Webster, Prof. H. E.	
Thanmastoma, genus, unassigned... description of genus.	1 39	Webster cited........ $3,4,4,8,15,19,20,22,23,25$,$26,28,30,31,32,33,34,37$	
singalare, description	40	Wellfleet, Mass... 1, 3, 4, 7, 8, 19, 20, 22, 27, 28, 30, 31,	
Theiethusidie, family	27	33, 34, 35, 37	

XI.-BIOLOGICAL ACTION 0F THE SALTS CONTAINED IN SEAWater from the point of view of the maintenance of Marine animals.*

By H. A. Coutance.
[Professor at the schools of naval medicine, pharmacist in chief to the Nary. and I'resident of the Academical Society of Brest.]

Marine animals are organisms of excessive sensibility, and are subject to the varied influences of the element in which they live. The disposition of the fauna of the sea is dependent on the composition of the salt water, the nature and quantity of the gases dissolved, and the temperature, force, and operation of the currents. The succession of species of marine animals in geological strata, little different from each other in the nature of the deposits, shows plainly that inthuences which appear to us but of slight importance, have governed this succession itself.

I wished to ascertain the influences which the modifications in the nature of the salts dissolved might have on the marine animals, and with this view I entered upon a series of researches for the purpose of establishing a biological parallel between these salts. My experiments have been solely devoted to the molluses of our shores, especially those which form articles of food for our population.

The sea water contains for every 1,000 grams an average of 35 grams of different salts in solution, among which chloride of sodinm appears to exercise the most important influence on animal life. The supposition is doubtless permissible that the other substances are useful to a certain limited extent, and hare, apparently at least, no hurtful influence.

[^94]I have prepared cight solutions containing 35 grams per 1,000 of distilled water, of the fellowing substances:
Solution No. 1: Chloride of sodium $\frac{35}{1000}$
No. 2: Chloride of magnesium $\frac{35}{1000}$
No. 3: Sulphate of magnesia $\frac{35}{1000}$
No. 4: Bromide of potassium J $\frac{35}{000}$
No. 5 : Ioduret of potassium $\frac{3}{1000}$
No. 6 : Chloride of potassium $\frac{35}{1000}$
No. 7: Sulphate of soda $10 \frac{3}{100}$
No. 8: Sulphate of potash $\frac{35}{1000}$

Here we hare eight solutions, each containing one of these natural elements of the sea-water, in the proportion in which it contains all of them. The sulphate of soda alone does not belong, properly speaking, to sea-water, although its elements are contained in it.

Three other solutions have been prepared, in which all the elements are found united, but in which the quantitative preponderance which in the water of the sea belongs to the sea-salt, is given (1) to chloride of magnesium, (2) to chloride of potassium, (3) to sulphate of magnesia. The following is the composition of these solutions :
Solution No. 9 :
Chloride of magnesium 27.00
Chloride of potassium . 0.75
Chloride of sodium . 3.70
Sulphate of magnesia . 2.30
Sulphate of lime. 1.50
Bromide of potassium . 0.02
Distilled water . 1000.00
Solution No. 10 :
Chloride of potassium . 27.00
Chloride of magnesium . 3.70
Chloride of sodium . 0.75
Sulphate of magnesia . 2.30
Sulphate of lime 1.50
Bromide of potassium . 0.02

Solution No. 11:
Sulphate of magnesia 27.00
Chloride of magnesium . 3.70
Chloride of potassium . 0.75
Chloride of sodium . 2.30
Sulphate of lime . 1.50
Bromide of potassium . 0.02
Distilled water . 1000.00

Another solution was composed as follows:
Solution No. 12 :
Chloride of sodium. 8
Chloride of potassium 8
Chloride of maguesium 8
Chloride of calcium 8
Besides these solutions, or means of experimentation, there were also employed:

Solution No. 13: Natural Vichy water (Célestins).
No. 14: Common water (springs at Brest).
No. 15: Natural sea-water (roads of Brest).
No. 16: Atmospheric air.
The Vichy water represented an aqueous element different from the sea-water, but rich in salts of soda. It was also necessary to compare the action of the artificial elements with that of the matural element, the sea-water, and to observe whether mollusks, well enclosed in their shells, could not live for some time in fresh water, or eren in the air.

Mefiod of experimentation.-The above solutions were poured into porcelain capsules, placed in the light at an average temperature of 120 . Every two days the evaporated water was replaced by distilled water, so as to keep the solutions in the same state of concentration. Erery day these solutions were strongly aerated and shaken, with the view of maintaining conditions analogous to those of sea-water. Mollusks recently canght were paced at the bottom of the capsules at a distance of 20 centimeters from the surface of the liquid.

Subjects of experinentation. - A very small number of species have been subjected to these physiological experiments.* They are:

The reticulated venus shell (Vemus reticulata).
The common mussel (Mytilus edulis).
The palourde (Tenus decussatu).
The common periwinkle (Littorimu vulgaris).
The buccin of the British Channel (Tritonium undatum).
By reason of their difterent organization these mollosks have given very different results. The bivalves, mussels and remoses, which can shut themselves up between their valves, have as a general rule showed greater resistance than the opereular spiral-shelled mollusiss, periwinkles and buecins. Of these the periwinkles, whose operculum can close entirely, prudently retired into the remotest coils of the spiral, and were thus better protected than the buccins, whose opening does not shut tightly, and into which the water can easily enter by the canal at the mouth of the shell.

The bivalves, which can resist exterual influences, whilst inclosed between their valves, do not by any means act in the same manner. In

[^95]artificial elements the mussel resists less than the venuses; and among these latter the reticulated venus or clovisse shows less resistance than the palourde (Venus decussata), which exhibits a remarkable degree of resistance. In the solution of sulphate of magnesia, for instance, the mussel succumbed after ten days, the reticulated veuus-shell after fifteen, whilst the palourde was still alive after sixty days. These proportions were very nearly maintained in the other solutions relatively to the duration of life in these mediums.

Below is giveu the result of these experiments as regards the palourdes (Venus decussata). Five specimens of this kind were on the 10th January, 1882, placed, under the same conditions, in each of the different solutions mentioned above. The same care was bestowed on all of them, and they were properly aërated every day. At the same time a certain number of these mollusks were placed, near to the former, in vessels containing natural sea-water.
January 10. Experiments commenced with the palourdes.
25. They succumbed in the ioduret of potassium.

February 10. They succumbed in the chloride of potassium.
15. They succumbed in the air.
18. They succumbed in the sulphate of potassium.
18. They succumbed in the common water.
20. They succumbed in the solution No. 10.
20. They succumbed in the bromide of potassium.
20. They succumbed in the chloride of magnesium.
25. They succumbed in the Vichy water.
22. They succumbed in the chloride of sodium.
22. They succumbed in the solution No. 12.
24. They succumbed in the solution No. 9.

March 10. They succumbed in the sulphate of magnesia.
10. They succumbed in the solution No. 11.
15. Some palourdes are still living in the sulphate of soda.
15. The palourdes placed in the sea-water are alive.

Observations on these facts.-It appears from these experiments that, in spite of the possibility of shutting thems lves up between their valves, the veuuses yield to the action of the surrounding mediums, since their power of resistance is not equal.

Salts of potash seem much less favorable than the salts of magnesia, and especially than salts of soda. Life ceased first in the ioduret, the bromide, the chloride, and the snlphate of potassium, and in solution No. 10, the prevailing element of which is chloride of potassium.

The salts of soda and magnesia still maintained life when the animals had succumbed in the salts of potash. Solution No. 9, for instance, the principal element of which is chloride of magnesium, preserved its inhabitants alive much longer, and the same applies to the sulphate of magnesia alone and in solution No. 11.

The resistance of the palourdes in the Vichy water shows the faror.
able action of salts of soda on the preservation of life in marine animals; for forty days the palourdes lived in this mineral water !

It was in the sulphate of magnesia and the sulphate of soda that life was sustained longest, the latter excelling the former. On the 12th March I tasted some of the Venus decussata which had been kept in sulphate of soda for sixty days, and found their flavor excellent and without any trace of a bitter flavor. This observation might prove useful in alimentary economy, as the palourde is a highly prized shell-fish, and sulphate of soda can be bought cheap.

- It is a fact worthy of remark that it was only in the solutions of sulईhate of soda and sulphate of magnesia that green algæ commenced to make their appearance at the end of sixty days. The conditions favorable to marine animal life are then apt to develop regetable life. There is nothing surprising in this parallelism, but it receives from the present circumstance a curious confirmation. One singularity appears: the solution of chloride of sodium (impure marine salt) did not sustain life as long as the solutions of salt of magnesia and sulphate of soda, and jet salt is an essential element of the sea-water. This proves that the mollusks are adapted, not to pure salt, but to that peculiar mixture which constitutes the natural sea-water; and that the secondary elements, as regards their quantity, play an important part. This gives us reason to suppose that the accidental modifications of the water of the sea during the different geological periods must have had a great deal to do with the extinction of various species.

The venus remained closed in most of the solutions, the nature of which they doubtless learned to know by opening their valves a very little. Meanwhile they occasionally put their siphons outside the shell, for instance in the sulphate of magnesia and in the sulphate of soda. In the solution of chloride of sodium and in the sea-water they had their siphons out nearly all the time.

The palourdes can live for more than a month in the air in a cool place. For about twenty days they remain shut; later they open their valves and protrude their siphons. At the least touch they draw them in and close their ralves. Then comes the moment when the striped muscles which bring the valves together have no longer the strength to do this, although the smooth muscles which retain them will still do so, when one closes the valves. In all the solutions in which these mollusks have lived these same phenomena could be observed.

The weakening of the muscles showed itself first in the striped part of the adductors, which draw the valves together, and later in the smooth part of the same muscles, which held the valves artificially closed for a constantly decreasing period.*

The Venus reticulata, or clovisses, showed the same phenomena; the order of extinction of ritality in the different solutions was the same;

[^96]S. Mis. $110-48$
but these mollusks did not live as long as the preceding ones. They succumbed a month after they had been placed in the solutions, first in the salts of potash, then in the salts of magnesia, and finally in the salts of soda.

The periminkles resisted longer than the bivalves, and showed less repugnance to sulphate of soda, in which they lived forty days.

The great buccin succumbs much quicker, as it cannot close its shell hermetrically like the periwinkles. At the end of twenty-four days it died in most of the solutions employed, especially in the salts of potash. Its life was prolonged forty-eight hours in solution No. 12, in the sulphate of magnesia, and in the sulphate of soda, but soon came to an end.

During all the time these experiments were going on, from January 10 to March 15 , the palourdes and the periwinkles lived in the sea-water of the laboratory, the Venus reticulata and the mussels not quite so long, and the buccins only a few days.

It is a very important fact, to which we direct special attention, that the salts which constitute the sea-water and the different solutions which we employed gave to the water the faculty of dissolving variable quautities of atmospheric air. We proved by direct experiments that the solutions of salts of soda retain more air when agitated by it than the solutions of salts of potash. This would, therefore, prove that the poisonous character of the salts mentioned in our experiments is caused in part by the circumstance that they do not let their solutions become sufficiently aërated; their action produced asphyxia. Thisexplains why the sulphate of potash and the sulphate of soda, neutral salts to which the mollusks are by no means adapted, act so differently upon them, the salts of potash killing them quickly and the salts of soda preserving them for some time.

From these experiments the following conclusions have been reached:

1. The saline elements of the sea-water act very differently on mollusks.
2. Every modification in the composition of the sea-water finally becomes fatal to the life of these animals.
3. Their greater or less resistance depends on their organization. Bivalves resist better than spiral shells, and in these two groups the results vary according to the different species.
4. Salts of potash are less farorable to the life of mollusks than salts of magnesia; and salts of magnesia are less favorable than salts of soda.
5. Outside of the salts dissolved in sea-water the sulphate of soda seems to possess a well-established preserving neutrality.
6. The death of the bivalves is caused by a general weakening of the muscles.
7. As the muscles can no longer either draw together or open the valves, the animal is exposed to the unfavorable or poisonous action of the element.

XII.-THE PROTOZOA AND PROTOPHYTES CONSIDERED AS THE PRIMARY 0R INDIRECT SOURCE 0F THE F00D 0F FISHES.*

By John A. Ryder.

In the course of observations made during the last few years the writer has been more and more impressed with the importance of the Protozoa and Protophytes as an indirect or primary source of much of the food consumed by man. This is notably true of what is known as fish and shell-fish food. As very striking instances of the truth of these propositions we need only to allude to the various edible species of the herring family, the shad, herring, and sardine, the gill-rakers of which are modified so as to enable them to strain the minute living or ganisms out of the water which is passed through the mouth in respiration; the menhaden or Brevoortia, which is of the same family aud swarms along our coast, and which in its turn furnishes a large proportion of its food to the edible bluefish, and so serves this tyrant of the sea as a strainer, elaborator, and accumulator, as it were, of the minuter life of the oceanic wastes which it inhabits. The oyster, in like manner, subsisting as it does entirely upon Protozoa, Diatoms, minate ciliated larræ, \&c., reminds us forcibly that for some of the most savory luxuries of the table we are indirectly indebted to the existence of countless hosts of living marine beings which can be rendered visible only with. the help of a microscope.

Comparatively few fishes appear to be able to utilize the Protozoa directly as a source of food. The most remarkable exception to this rule was first made known by Professor S. A. Forbes, of Illinois, whe found the intestines of certain joung suckers or Catostomidse packed with the shells or tests of Difflugian Rhizopods. In the Proccedings of the Academy of Natural Sciences of Philadelphia for 1881, Professor Leidy states that upon examining two slides containing some of the intestinal contents of young Myxostoma macrolepidotum and Erimyzons sucetta submitted to him for examination by Professor Forbes he was able to distinguish the shells of six distinct species of Rhizopods or testcovered Amœboid Protozoa. The habits of the fishes in question are, however, mud-loving, and since they are provided with a more or less suctorial month it is easy to understand how they might readily con-

[^97]sume large numbers of these Protozoans where the surface of the ooze of the bottoms of the streams and pools inhabited by the fishes was favorable to the propagation and healthy existence of the former.

In order to render the vast multitude of Protozoa available as fishfood it is necessary that they be consumed by larger organisms, which in their turn may be consumed by the fishes. Upon investigating the literature relating to the food of the smaller crustaceans, especially of the Entomostraca, which enters so largely into the food supplies of most young fishes and very many adult forms, I find that the almost unanimous testimony of various observers is to the effect that these creatures are largely carnivorous, and subsist mostly upon Protozoa, or the lowest grade of auimal existence. In proof of the foregoing the following extracts are here introduced.

In his Natural History of the British Entomostraca, page 6 of the introduction, Dr. W. Baird remarks: "I have no doubt that most of the Entomostraca are essentially carnivorous, and I have frequently seen specimens of Cypris in their turn, as soon as dead, attacked immediately by quantities of Cyclops quadricornis, which in a few minutes had fasttened themselves upon the dead animal, and were so intent upon their prey that they were scarcely frightened away from it by being touched with a brush. In a short time the Cypris might be seen lying at the bottom of the vessel, the valves of the shell separated and emptied of its contents. Leeuwenhoek and De Geer not only maintain that the Oyclops quadricornis lives upon animalcules, but that it even press upon its own young, a fact which I have also noticed myself. Jurine asserts that the Cyclops quadricornis is carnivorous from taste, and onls herlivorous from necessity; while the Daphnia pulex he distinctly affirms lives upon animalcules. Place a few Entomostraca, such, for example, as the Daphnic, Chirocephali, Lyncei, etc., in a vessel with pure, clear water and only some vegetable matters in it, and they gradually become languid, transparent, and finally die; but mix with this water some which contains numerous Infusoria, and the Entomostraca will then be seen speedily to assume another aspect. They become lively and active, and the opacity of their alimentary canal testifies sufficiently the cause of it. When, indeed, we consider the amazing quantity of animals which swarm in our ponds and ditches, and the deterioration of the surrounding atmosphere which might ensue from the putrefaction of their dead bodies, we see a decided fitness in these Entomostraca being carnivorous, thus helping to prevent the noxions effects of putrid air which might otherwise ensue; whilst they in their turn become a prey to other animals which, no doubt, serve their purposes also in the economy of nature."
"The food of the Lynceidse," says Baird, "consists of both animal and vegetable matter, and while they prey upon animalcules smaller than themselves they in their turn are deroured in great numbers by insects larger than they are."

According to Pritchard the Chyodorus sphacricus is the choice food of a species of a fresh water Nais which he calls Lurco. "So great is the voracity," he says, " of this creature that I have seen a middle-sized one devour seven Lyncei in half an hour."

Referring to the Daphniadoc, our author again observes: "The food of these animals, according to Straus, consists of vegetable matter, and not animal; but I have found that of two groups placed in separate vessels of clear water, the one having only particles of vegetable matter placed beside them, while with the other there were also introduced infusorial animalcules, the latter were much stronger, more active, and throve better than the former."
This appears to be very strong evidence in favor of the animalcular diet of these crustaceans. Other evidence, too, of quite as convincing a character is not wanting. Those who hare been in the habit of collecting quantities of microscopic material from ponds and ditches have frequently observed very large schools of Entomostraca in such places where the water as a rule is not absolutely stagnant, but where an abundance of duck-weed, fresh-water algæ of many kinds, as well as various water plants of the higher orders make a splendid nidus for all kinds of Monads and ciliated and Amœboid Protozoa. These are the places where Cyclops, Daphnia, and allies flourish inland in fresh water. The writer has also noticed them particularly abondant in the wide river flats near the mouth of the Susquehanna at Havre de Grace, where there are large areas many acres in extent which are covered with a luxuriant growth of Potamogeton, Anacharis, and Vallisneria, making a deuse mat of delicate stems and leaves upon which countless multitudes of Protozoa may fix themselves and abide. If in rowing through such masses of aquatic vegetation one will stop the boat and stir carefully among the plants with the hand over the side, and cautiously watch the result, one will often notice that great numbers of Entomostraca have been frightened from their leafy retreats. These are the places where young shad ought to be liberated; in such places they would find au abundance of food at an early period, or as soon as they are fitted to partake of uutriment by swallowing.

Just as we find the fresh-water forms of Entomostraca take to the shelter of aquatic vegetation at the mouths of rivers, so it appears that many of the marine forms seek protection, and probably food, under cover of the fronds of marine algæ. Here is what their most recent monographer says in relation to this point: "A large number of species haunt almost exclusively the forests of Laminarice which grow on rock y coasts at and below low-water mark; the fronds of Laminaria saccharina in particular are the favorite abode of many species." (Brady, Monog. Brit. Copep., Iutrod., i, p. 7.) Again, on page 9, he remarks "The washing of the fronds and roots of Laminarice, which may be dragged up by means of the hooked grapuels used on many coasts by kelp burners, often affords multitudes of Copepoda."

They appear in many cases to be surface swimmers. I have myself seen schools of several thousands of Daphniade of a greenish yellow color in the ditches south of Camden, N. J., swimming at the surface of the water at midday in the bright sunlight. In the vicinity of Woodbury, in the same State, my friend Mr. W. P. Seal has taken great numbers of a bright-red colored Copepod, apparently related to the genus Pontella, and perhaps undescribed. They were sufficiently abundant in some cases to impart a red tinge to the water.

Brady (Monograph British Copepoda) observes in his introduction, rol. i, page 9: "The beds of fresh-water lakes seem to be very sparsely populated with Jopepoda, and as to swimming species it may, as a general rule, be said that the weedier the pool and the smaller its exient the more abundant in all probability the Entomostraca.
"Many of the marine species pass their life apparently near the surface of the open sea, and some of these, such as Calanus finmarchianus, Gunner, and Anomolocera Patersonii, Templeton, are frequently found in immense profusion, the first-named species having been said to form a very important part of the food of the Greenland whale, and it is remarkable that in the Arctic seas not only do the Entomostraca attain an enormous development in point of numbers, but also in individual size, Arctic specimens, for example, of Calanus finmarchianus and Metridia armata being many times the bulk of those taken in our own latitude." (l.c.)

According to H. Woodward, in his article Crustacea, Encyclopædia Britannica, the fecundity of the Copepoda is truly surprising. "Cyclops quadricornis is often found with thirty or forty eggs on each side, and though those species which have but a single ovisac do not carry so many, their number is still very considerable. Jurine isolated specimens of Cyclops, and found them to lay eight or teu times within three months, each time about forty eggs. At the end of a year one female would have produced $4,442,189,120$ young! Cetochilus is so abundant both in the northern seas and in the South Atlantic as to serve for food to such an immense animal as the whale. They color the sea for many miles in extent, and when the experienced whaler sees this ruddy hue upon the ocean he knows he has arrived at the 'pasture of the whales.' They are to be seen in vast quantities off the Isle of May, in the Firth of For th, during the summer months. Many Cetacea are attracted thither, and vast shoals of fish also come to feed upon them. One anomalous type of free Copepod is the Notodelphys ascidicola, described by Allman, which is found swimming freely in the branchial sack of Ascidia communis."

The writer, in passing, would remark that he has frequently met with Copepoda swimming freely in the rentral part of the branchial space of Mya arenaria, in which the animals were probably not parasitical or commensal, but had been drawn from without into the respiratory space of the mollusk through the incurrent part of its siphon.

In the same article as previously quoted Woodward observes: "The Cladocera are chiefly fresh water, and are distributed over the whole world. Of this order the Daphnia pulex, so abundant in our [British] fresh waters, is a good example. So numerous are they in our ponds in summer as frequently to impart a blood-red hue to the water for many yards in extent. In order to realize the wouderful fecundity of this and allied genera, it is necessary to realize that when a Daphnia is only ten dass old eggs commence to be formed within the carapace, and under favorable conditions of light and temperature it may have three broods a month, or even a greater number, the larger species having as many as forty or fifty eggs at once."

The remarkable fecundity of the Copepoda explains the extraordinary abundance of the free-swimming species upon the high seas, and even bays, where vast schools of these crustaceans become, in turn, the food of vast schools of herrings, menhaden, and shad. Doubtless, the movements of these fishes on the high seas are determined by the abundance of their favorite food in various localities; that, like the whale, they seek their marine pasture of crustaceaus, as argued by Möbius. Eren larger forms of fishes, such as the huge basking shark (Cetiorhinus maximus), have their branchial apparatus adapted to capture small pelagic organisms in the same way as the Clupeoids. The prodigious numbers of herrings and menhaden is a proof of the abundance of the minute pelagic organisms upon which, with scarcely a doubt, it may be supposed they subsist. It is also not improbable that the rast schools of pelagic Entomostracans are in pursuit of still smaller protozoan pres, upon which they subsist and maintain their marvellous reproductive powers. Mosely, in his "Notes by a Naturalist on the Challenger," observes: "The dead pelagic animals must fall as a constant rain of food upon the habitation of their deep-sea dependents. Maury, speaking of the surface Foraminifera, wrote, 'The sea, like the snow-cloud, with its flakes in a calm, is always letting fall upon its bed showers of microscopic shells." Mosely records that he estimated, from experimental data, that it would take four days and four hours for a dead Salpa to fall to the bottom where the sea was 2,000 fathoms in depth. The deepsea fauna is probably well supplied with food from such sources. The researches of Mr. John Murras, of the Challenger, fully confirm, and greatly expand the significance of the views of Lieutenant Maury in relation to the destiny of the marine foraminiferal shells. Wyville Thompson, Voyage of the Challenger, I, 210, observes: "Mir. Murray has combined with a careful examination of the soundings a constant use of the tow-net, usually at the surface, but also at depths from ten to a thousand fathoms; and he fiuds the closest relation to exist between the surface fauna of any particular locality and the deposit which is taking place at the bottom. In all seas, from the equator to the polar ice, the tow-net contains Globigerince." Some of these surface Foraminifera are relatively large, Orbulina universa being as much as a fiftieth
of an inch in diameter, and hence of a sufficient size to be preyed upon by a larger arthropod. The remarkable Pyrocystis noctiluca, discovered by Mr. Murray, and nearly a millimeter in diameter, is another interesting surface form, as is also the P. fusiformis, which is allied to it. Both are phosphorescent surface swimmers, and fall within the reach of other surface animals as a probable source of food. To these may be added the curious group of the Challengerida, together with the whole of the Radiolaria, with their siliceous shells, which, in the warmer parts of the high seas, actually tinge the surface when some of the highlycolored forms are abundant. From the surface of the mid-Atlantic the Challeuger crew obtained stalked infusorians fixed to the shell of Spirula ; also an abundance of large radiolarians. Haeckel, Monograph of the Radiolaria, says the largest living Radiolaria measure only a few lines in diameter, but most of them are much smaller, and attain scarcely a tenth down to a twentieth of a line in diameter. At Saint Jerome's Creek, Maryland, in one of its arms which is now used as an oyster park, the writer found an abundance of a fresh-water Heliozoan, not specificially distinguishable from Actinophrys sol. They were found in great abundance at times on the surface of the slate collectors which had been put down for the purpose of enabling the free-swimming fry of the oyster to fix itself. This raises the question whether the freshwater protozoan fauna does not overlap the marine. The water in the situation mentioned was not simply brackish, but positively salt. In the same place great numbers of stalked and tube or test building ciliate forms of Protozoa were also found. The magnificent bottle-green Freia producta was found in the same locality in the greatest profusion. Sometimes several hundred mighthave been counted on a single squareinch of the surface of oyster shells, slates, or boards, giving such surfaces a darkgreenish or speckled tint from their numbers. Very small species of nudibranchiate mollusks (EAolis and Doris) were found creeping amongst and over the forest of Protozoa, pasturing offi of them. Amongst the tubes of the Freia, and attached to them, a small operculate Cothurnia, with a rich brown-colored test, was found in abundance, and, rarely, a very curious form of Tintinnus, with a tubular, subulate test, to the inside of which the stalk of the inhabitant was attached, at one side, about half way up from its base. The open or mouth end of the perfectly hyaline test was rery strongly toothed, or serrate. The species may be named Tintinnus Fergusonii. Another species of Freia has been detected ou the coast of New Jersey, by Professor Leidy, and, from a verbal description given me by Dr. H. C. Evarts, a species occurs in the vicinity of Beaufort, N. C. So abundant was Freia producta in Saint Jerome's Creek that I apprehend that in its free-swimming young state, previous to the time that it commenced to build its test, it afforded not an inconsiderable proportion of food to the oysters planted in some parts of those waters. Besides the Freia there were innumerable indi. viduals of Vorticella observed. One of these had a very thick brown-
ish cuticle; but for numbers these were again very greatly exceeded by the compound stalked genera of bell-animalcules. Upon the very common alga, Laminaria, these were abuudant, and upon the fronds of another alga, the Grinnellia, in three or four fathoms of water, near the middle of the Chesapeake, their number was truly astounding. In a few such places where these algæ were dredged up from the bottom, covered with innumerable colonies of protozoans, it would doubtless be much within bounds to state that there were 1,000 individual protozoan zoöids to the superficial square inch of frond surface. At this rate there would be $39,204,000$ zooids found to populate a single square rod of frond surface. Estimating the number at only 100 per square inch, which is low, and which would, I think, represent a fair average over considerable areas where the conditions of life were favorable, there would still be a stalked protozoan population of nearly four millions to the square rod. The most abundant of these compound forms was one which very much resembles Zoöthamnium alternans, Claperède, found on the west coast of Norway. The same form was again found in vast, abundance upon alge in Cherrystone River, near the mouth of the Chesapeake, during the season of 1881. Upon one occasion I found it in great abundance growing on the parts of the body of a Pinnotheres which was living in the gill cavity of an oyster, its swarmers, or young, as they were thrown off, in all probability forming part of the food sup. ply of the mollusk.

I have been interested upon several occasions to observe that the very minute stalked, collared monads, Salpingaca and Codosiga, are frequently to be found attached to the stems of the componnd colonies of bell-animalcules, or gathered about in the vicinity of the point of attachment of a single one. In such cases the monads appear to derive a benefit from the currents or vortices set up in the water by the waving of the ciliary crowns of their giant neighbors, which bring particles of food to their very doors as it were. On one occasion I found individuals of a species of Vorticella fixed to the egg-membrane of the ova of the cod. fish at Wood's Holl, Massachusetts, as had been previously obserced by R. E. Earll, and in their vicinity were several colonies of a compound stalked monad, resembling the Dinobryon of Ehrenberg. On another occasion I found something like Poteriodendron on the Zoöthamnium which covered a Pinnotheres inhabiting an oyster; but the chain of parasitism did not stop here, for on the monad as well as on the bell-animal there were rod-like bodies attached which were presumably bacteroid, as has been supposed by Stein. Stalked monads are probably much more common than has been supposed, which reminds me that I have detected the occurrence of Rhipidodendron splendidum in the bogs and ponds of New Jersey, a form which was described originally by Stein from Bohemia. Minute as the stalked monads are, they must live on still minuter beings, probably upon Microbia, or Schizomycetës, a group of fungi, now known to be the active agents in putrefactive changes
and proven in some cases to be at least the vehicles of infection in certain diseases. These organisms, which are very minute, are the first to appear in disintegrating or putrefying organic infusions. If small Protozoans, such as Paramocium, are left to die in improperly aërated water, or water otherwise hurtful to them, they are, under favorable conditions, immediately attacked by these Microbia,* which then in their turn become au indirect source of supply of food for the grades next above them, such as the free and fixed ciliate Protozoa, which feed upon monads which have themselves fed on Bacteria or Bacillus-like organisms, and so onward the matter of life takes its upward way.

The process of swallowing of many ciliate infusorians is as peculiar as it is interesting. An opening, oftenest at one side of the body, is the mouth, from which a short blind canal passes into the soft substance of the animal's body. The rapid vibration of rows of cilia in the vicinity of the mouth creates currents which set in the direction of the throat, the lower end of which is dilated into a globular space by the force of the currents produced by the cilia, in which the particles of food are rotating in the contained water. This space enlarges gradually until eventually its connection with the throat is suddenly broken by a collapse of the walls which join the globular space with the former. In this way food-vesicle after food-vesicle is taken into the body of the animalcule, from which the creature will abstract whatever is useful and cast out near the mouth whaterer is contained in the food-vesicles that is indigestible. The writer has seen the process in a number of forms, and it is not unusual to observe a dozen or more food-vesicles in the body of a single Protozoan. Many parasitic forms, however, are mouthless, such as Opalina, Benedenia, Pyrsonympha, Trichonympha, etc., where the nourishment is probably obtained from their hosts by transudation through the body-walls. In other forms again comparatively large objects are swallowed with apparent ease, judging from shells of other protozoan types which are found within their bodies. Such a form I encountered in a slightly brackish water pool near New Point Comfort, Virginia, during the summer of $\mathbf{1 8 8 0}$. It was apparently a very large species of Prorodon of an irregular cylindrical form which had in a number of instances swallowed five or six large Difflugians, Arcella vulgaris, the shells of which remained within the animal to testify to the nature of the food it had been devouring. Some other mode of swallowing such large prey is probably practiced by this large ciliate, very different from the method first described. In the same pool a very

* Or Schizomycetës, the germs of which are abundant in the surrounding air, and from which the infection in such cases is derived. In some cases it may be observed that the body of the dead Protozoan is attacked at one side, which becomes the center of multiplication, from whence the putrefactive organism multiples by germination, gradually invarting and appropriating the dead protoplasm of the organism upon which it feeds. These forms seem to have little or no power of forming living matter de novo from ammonia, carbonic dioxide, and water, but, like animals, appropriate pre-existing living matter, or such as has ceased to manifest vital phenomena.
peculiar form of hypotrichous Infusorian was detected, which was clearly very nearly allied to Chilodon cucullulus of Ehrenberg, but the dorsal, non-ciliated side of its body was not gently rounded, but flat, with a prominent crenate rim surrounding it. From this peculiarity it may be called Chilodon coronatus.

The mode of swallowing their food adopted by the fresh-water Rhizopods has been elaborately described in a few instances by Professor Leidy in his splendid monograph of this group, published by the Geological Survey of the Territories. Their food appears to be mainly regetable, and consists, for the most part, of diatoms and desmids, though a ciliated Protozoan or Rhizopod was occasionally met with in the body of Amœba. The marine Rhizopods appear to be herbivorous as well as carnivorous, remains of both Protophytes and Protozoa having been detected in their bodies. Vampyrella has been described as almost parasitic upon the clustered frustules of Gomphonema.

Some aberrant ciliated forms, like the Gastrotricha and Coleps, are somewhat peculiar in their organization, and we know little of their feeding habits.

The Suctoria or Tentaculifera, which are abundant in some places, both in fresh and salt water, appear to be indiscriminately herbivorous, as well as carnivorous. In fresh water I have met with them infesting the back of the common water leech, Clepsine, the species being apparently Podophrya quadripartita. Of marine forms I have seen but two that I could regard as distinct from each other; the one, a very common form, is the old and well-known Acineta tuberosa of Ehrenberg, with two clusters of suckers. This form I have frequently seen with diatoms which it had seized and from which it was abstracting uutriment. The other form was much larger than the preceding and appears to be identical with the species described under the name Podophrya gemmipara by Hertwig. It has the same robust stalk, with the same close transverse annular markings, the same taper, and is similar in the form of the tentacles, which are often irregularly bearded or swollen. I was enabled to observe in part its derelopment, which is also similar to that of the Helgoland species of the North Sea, abore mentioned. They were found in great abundance on the surface of the fronds of Laminaria, together with the Acineta tuberosa ; not as abundantly, of course, as the Zoöthamnium, but in sufficient numbers to make them a very considerable factor in the protozoan life found in the vicinity of New Point Comfort.

The majority of the free Protozoa and many Monads, such as Nocti luca, have scarcely been considered, but enough has beeu said, I think, to give some idea of the actual importance of the minute animal and vegetable life of the sea to make it clear that there is a most intimate relation of dependence existing between the lowest and the intermediate forms of life. Why is it, for example, that we should find the Copepoda so abundant among the Laminarialong the sea-coast? Hare
we not shown that on the fronds of these alge there exists, in most instances, almost a forest of protozoan life upon which these creatures may be supposed to pasture? We do not find the Laminaria itself eaten. Again, the foraminiferal and radiolarian fauna of the high seas appears to be in great measure, a surface fauna, according to the evidence of a number of investigators. This fact appears to have au important relation to the vast shoals of Copepoda observed at the surface of the sea by various naturalists and expeditions. It is not to be supposed, however, from what has been said, that the Copepoda are the only consumers of this vast array of individual Protozoa. Cross sections through the oyster, which the writer has prepared and mounted, show the tests of various geuera and species of diatoms mixed among the indigestible earthy matters and sediment which has been swallowed along with the food. It is probable that theoyster swallows and digests many of its own embryos, and not improbably many embryos of such forms as Bryozoa and Sponges, besides the Diatoms, Desmids, and Protozoa which make up the most of its food. Ordinarily the contents of the stomach of the oyster are too much disorganized to learn much about what it has recently swallowed, hence we are at a great loss to know just exactly of what all of its food consists. Just so with the Copepoda; they themselves are doubtless eaten by other Crustacea, these in turn by others. We saw that Doris and Eeolis pastured upon the forests of fixed Protozoa, just as Planorbis, Lymnaeus, and Physa pasture upon the Protozoa, Algæ, Diatoms, and Desmids, in fresh water. The great abundance of Copepoda and Amphipoda is, however, the best evidence of the abundance of still smaller forms adapted to furnish them with food. What multitudes of forms besides Copepoda must largely subsist upon the Protozoa and Protophytes? Of such groups we may name the Lamellibranchs, Pteropods, Worms, Bryozoa, Porifera, and, doubtless, many Cœlenterata. Some of these, notably the Lamellibranchs, could probably not exist were it not for the numerous Protozoa and Protophytes, upou which, from necessity, they are compelled to feed.

What is true of the fauna of the sea appears to be in an equally great measure true of the faunæ of fresh water ponds, lakes, and streams. Recently I investigated some Daphniada which had been kept for some time in au aquarinm; to my surprise I did not find any recognizable remains of animal food in the intestines. The latter were, however, entirely filled with a sarcode-like material, doubtless in part a digestive secretion, together with what might have in part been animal food. The vegetable food, consisting of Diatoms, unicellular Algæ, spores of Fungi, fragments of Oscillatoriæ, were so sparingly mixed with the intestinal contents that they could not be regarded as contributing much to the nutrition of the animal. The black or brown material, sometimes filling the intestine of Entomostraca, I find to consist in great part of humus, particles of quartz sand and earthy matters, which are of course indi-
gestible, being thrown out of the rent, as in Chirocpehala, in the form of cylindrical casts.

The most valuable contribution to our knowledge of the food of the fresh-water fishes of the western United States has been made by Professor S. A. Forbes, in Bulletins Nos. 2 and 3 of the Illinois State Laboratory of Natural History, for the years 1878 and 1880. With the most painstaking care the results of a rast number of examinations are recorded. He finds that the Darters, Perches, Labracida, Centrarchoids or sun-fishes, Sciænoids, Pike, Bony Gars, Clupeoids, Cyprinoids, Suckers, Cat-ishes, and Amia, both the young and adults, consume large numbers of small aquatic, and occasionally small terrestrial organisms, notably the smaller Arthropods. While many of the more voracious species, both young and adult, feed on their immediate allies, the dietary of the fishes of Illinois, according to this observer, includes Mollusks, Worms, fresh•water Polyzoa, Hydrachnidæ, insects of both mature and and larval forms; Crustacea, embracing Decapods, Tetradecapods, Amphipods, Isopods, and Entomostraca of the groups Cladocera, Copepoda, and Oscracoda; Rotifera, Protozoa, vegetable matter, and Algæ. In his first paper he also gives a list of the organisms found in the stomachs and intestines of the Pirate Perches, Gasterosteider, Atherinida, Cyprinodontider, Umbrida, Hyodontida, and Polyodontida. Both are accompanied by elaborate comparative tables, and, in an economical seuse, are of the greatest practical importance in their bearing upon fish culture.

It has, however, been known long ago that fishes consume large quantities of small Crustacea, as will be seen from the following extract from Dr. Baird's work :
"That the Entomostraca form a considerable portion of the food of fishes has long been observed, and it is very probable that the quality of some of our fresh-water fishes may in some degree depend upon the abundance of this portion of their food. Dr. Parnell informs me that the Lochlevin trout owes its superior sweetness and richuess of taste to its food, which consist of small shells and Entomostraca. The color of the Lochlevin trout, he further informed me, is redder than the common trout of other localities. When specimens of this fish have been removed from the loch and conveyed to lakes in other places the color remains, but they rery soon lose that peculiar delicacy of tlavor which distinguishes so remarkably the trout of Lochlevin. The experiment has been repeatedly tried and always with the same results. The banstickle (Gastrosteus trachinus) devours them with great rapidity, and I have seen two or three individuals clear in a single night a farge basin swarming with Daphinæ and Cyclops, etc."

The writer would also refer to articles on the food of fishes in the Reports of the United States Fish Commission for 1872 and 1873 by Professors Milner and Smith, and to papers by Widegren and Ljungman on the Conepodan food of herring. Also a paper by Dr. C. C. Abbot in the same
report, for 1875 and 1876, on the winter habits of the fishes of the Delaware. Möbius has found pieces of Algæ, besides Shells, Snails, Crabs, and fishes in the stomach of the cod. The writer has found the stomach of the sheep's-head filled with the remains of the shells of mussels and large quantities of the slender branches of the common bright red sponge, Microciona proliferum, bitten off in short fragments by the incisor-like teeth of the fish, and with the red sponge sarcode partly digested out of its skeleton. It is presumed that the sponge feeds upon protozoan life, and on account of its peculiar dentary armature the sheep's-head is singularly well fitted to pasture upon sponges and thus indirectly appropriate Protozoa as nourishment. The same remark applies to the molluscan food of this fish.

In young shad from Capehart's fishery, Albemarle Sound, said to have been three weeks old, I found the remains of a number of adult Tipuli$d a$, or crane-flies, in the intestine. This reminds me that in examining the larvæ of crane-flies some years ago I was struck with the fine comblike fringes which garnish the edges of their wide oral appendages, and which are so extended in life when the larva is in motion as to constitute a sort of basket which opens downwards and forwards apparently to strain out of the water the small organisms which constitute its food. Here again we have young shad feeding upon an arthropod which has passed its larval existence feeding in great part upon Protozoa. Westwood (Introd., ii, 511) I find makes a similar observation in regard to the larvæ of the gnat or mosquito family. He says: "The head is distinct, rounded, and furnished with two inarticulated antennæ, and several ciliated appendages, which serve them for obtaining nourishment from their food."

The fixed Tunicates are probably as dependent upon the microscopic life swimming about them in the water as the Lamellibranchs. The Barnacles in like manner, immovably fixed during their adult existence, kick their minute food into their mouths with their filiform legs, as remarked by Huxley. In Pedicellina americana, abundant in Saint Jerome's Creek, I have observed that there are rows of vibratory cilia continnous with those of the tentacles around the edge of the lophophore, which appear to lie in grooves, which blend on either side of the excentrically placed mouth. In this manner the microscopic food of this curious Bryozoan is conveyed in ciliated grooves to the mouth from all points of the oral disk. With these we may close our survey of the modes in which the protozoan grade of life is appropriated the smaller Arthropods, Pteropods, Polyzoa, Annelids, and Tunicates, but we must remember that upon these again the larger forms subsist, which are either food for each other or for man. As we pass in succession the larger forms, we may note the Lamellibranchiates, with this garniture of vibratory cilia coveriug the gills aud palps, and which carry the particles of food and sediment suspended in the water used in respiration to the mouth to be swallowed. The Clupeoids and Cetio-
rhinus with their branchial sieves are particularly noteworthy for the perfection of the apparatus of prehension, but we must not forget that the gill-rakers of all fishes, whenever developed to any extent, probably subserre a similar function. Lastly, the right-whales, with their closely ranged plates of baleen suspended from the upper jaws, forming in reality a huge strainer or filter for the large volumes of sea-water which pass through the mouth, and from which the food of these marine giants is so simply obtained, will enable us in a measure to comprehend the importance of the minute life of the world, and its indirect but important economical relation to man.

THE FOOD OF THE YOUNG SHAD.

The periods of yelk-absorption.-In a previous paper by the writer on the retardation of the development of the shad it was stated that the yelk-sack disappeared on the fourth to the fifth day after the young fish had left the egg. Although this statement is in a broad sense true, I find upon more accurate investigation that there is a small amount of yelk retained in the yelk-sack for a much longer time. It appears in fact that there are really two periods of absorption of the yelk which may be very sharply distinguished from each other. The first extends from the time of hatching to the end of the fourth or fifth day, according to temperature, during which time the most of the yelk is absorbed. The small quantity which remains after this time is not visible externally, being contained ir, a small fusiform sack, all that remains of the true yelksack inclosed by the abdominal walls, and causes little or no visible prominence on the under side of the young fish. Viewed as a living transparent object from the side, we see it in the young fish lying below the œsophageal portion of the alimentary canal immediately in front of the very elongate liver, and behind the heart, with the venous sinus of which it appears to communicate by a narrow duct formed of the anterior portion of the yelk hyboblast, which formerly corered the distended yelk-sack. The appearances presented by the living transparent objects are fully confirmed by the evidence obtained from transverse sections of embryos from ten to twelve days old. It appears that the Jelk-sack of the California salmon probably behaves in a somewhat similar manner as indicated by transverse sections. I eren find this slight rudiment of the yelk-sack in shad embryos fourteen to sixteen days old, but this seems to be about the period of its disappearance. The second period of the absorption of the yelk therefore extends in the shad over about twice that of the first, or about ten days. The first period extends to the time when the yelk-sack is no longer risible externally, the second from the time the remains of the yelk-sack become inclosed in the abdomen until its final and complete absorption. The function of the yelk-sack during the first period appears to be to build up the structures of the growing embryo; during the second, not so much to build it up as to sustain it in rigorous health until it can cap-
ture food to swallow and digest, so that it may no longer be dependent apon the store of food inherited from its parent.

The appearance of the teeth.-Minute conical teeth make their appearance on the lower jaws and in the pharynx of the young shad about the second or third day after hatching. Sections through the heads of embryos show that these teeth are derived from the oral, hypoblastic lining of the month. There are none on the upper jaw; there are four arranged symmetrically on the lower jaw, or rather Meckel's cartilage. In the throat, in the vicinity of the fifth and last branchial arch, there are tro rows of lower pharyngeal teeth, the first of six, three on a side; the last of four, two on a side. These teeth are of the same form and size as those on the jaws.

The age at which it begins to take food.-Although peristaltic contractions of the walls of the intestine of young shad may be observed soon after hatching, I have never observed food in the alimentary canal until ten or twelve days after the young fish had left the egg. At about the beginning of the second week considerable may be seen in living specimens. But the intestine is often not yet very densely packed with food even at this period. At the age of three weeks an abundance of food is found in the intestine, that portion which becomes the stomach and which extends from the posterior extremity of the liver to near the vent being greatly distended with aliment.

Upon investigating the nature of this food material we learn that it consists almost entirely of exceedingly small crustaceans, in reality for the most part of the very youngest Daphniada and Lynceidac ; only once did I find what I thought might be very small Ostracoda or Cypridac. In some instances the undeveloped larvæ of Daphnice were noticed. In a few cases green cellules were observed in the intestines of shad larvæ, resembling Protococcus, but as this material appeared to be accidental it is probably not an important element of shad food. In the young fishes the dark, indigestible remains of the food of the Daphnice always remained, together with the hard chitinous parts, as long-curred cylindrical casts which preserved the shape of the intestines of the crustaceans. In one young shad, twenty-two days old from the time of impregnation, measuring 14 millimeters in length, I estimated from a series of sections through the specimen that it must have consumed over a hundred minute crustaceans.

The oldest specimens of artificially reared shad which came into my hands were some that had been overlooked in some of the hatching apparatus at Dr. Capehart's fishery in North Carolina, where they remained for three weeks after hatching. In that time they had grown to a length of 23 millimeters, or almost one inch. The air-bladder was more developed and the stomach was more decidedly differentiated than in any previous stage. In the intestines of these I found, beside black, earthy, and regetable indigestible matter, the remains of the chitinous coverings of small larval Diptera, and the remains of a very
small adult crane-fly, besides Entomostraca allied to Lynceus. In these specimens the dorsal fin had the rays developed, the continuous median larval natatory folds having by this time disappeared.

The mode in which the young fish capture their Entomostracan prey may be guessed from their oral armature. Most fish larvæ appear to be provided with small, conical, somewhat backwardly recurved teeth on the jaws. Rathike, in 1833, described the peculiar hooked teeth on the lower jaw of the larvæ of the viviparous blenny, and Forbes has observed minute teeth on the lower jaw of the young Coregonus albus. I have also met with similar teeth on the lower jaw of the larval Spanish mackerel.

THE FOOD OF THE ADULT SHAD.

The mouth of the adult shad, as is well known, is practically toothless, and in the throat there are no functionally active teeth, as in the larvæ, so that the latter, in reality, have a relatively much better developed dentary system than their parents. The adult, moreover, probably feeds in the same way as the generality of the Clupeoids, that is to say, by swimming along with the mouth held open, as I have frequently observed is the habit of the menhaden in its native element. In this way the water which passes through the branchial filter is deprived of the small animals which are too large to pass through its meshes and be swallowed.

It is a common remark of the fishermen that it is seldom that one finds food in the stomach of the adult shad in fresh water; indeed, from personal observation, it is rare or exceptional. The writer has heard many fishermen express their belief, based on this singular fact, that this fish did not feed at all in fresh water during the spawuing season. With this unreasonable opinion I cannot coincide, and I have no doubt but that the shad feeds in fresh water, as well as in the sea, upon such small animals as are liable to be captured by its prehensile apparatus. That it does probably capture large numbers of small crustacea in fresh water the following observation will show: A spawning female, captured about twenty miles from Washington, down the Potomac, when the stomach was opened, was found to contain about a tablespoonful of Copepoda, apparently a Cyclops, and very similar to the common fresh-water species. This is the only instance in which I found a large amount of food which appeared to have been recently captured, since the carapaces and joints of the antennae and body were still hanging together, with the soft parts partially intact, showing that they had probably been recently swallowed and but partially digested. Upon examining the intestine, however, I invariably found the remains of Copepoda imbedded in the intestinal mucus, the most conspicuous and constant evidence of which was the presence of the hard chitinous jaws of these creatures. This was the invariable rule, even where there was no food discernible in the stomach. Besides the remains of Cope-
S. Mis. $110-49$
poda observed, there were almost invariably present in the intestine green cells, apparently of algous origin; occasionally there were also seen the remains of large crustaceans, possibly shrimps or Amphipods, but these were so mutilated and disorganized that the evidence of their presence is founded only upon the occurrence of single joints or frag. ments. The tests of rotifers and the shells of Diatoms of both discoidal and naviculoid forms were also observed.

Upon the foregoing facts the writer bases his conclusion that the shad does feed in fresh water.

If it were of any advantage we might speculate upon the relations subsisting between the smaller and larger aquatic and marine forms of life, but perhaps enough has been said to show that there is an extensive basis of fact to support what is implied by the title of this paper. The manifold adaptations and contrivances by which food is obtained by organisms which prey upon others, and how the tendency to accumulate the vast amount of the "physical basis of life," represented by the existing Protozoa and Protophytes is practically realized by the horles of Entomostraca and other small animals with which both fresh and salt waters teem. How these again are accumulated in appreciable quantities so as to furnish an important source of food is shown by the immense numbers, amounting to many thousands, which may be taken from the stomach of a single fish. In the case where the large quantity of Copepoda was obtained from the stomach there were probably more than 100,000 individuals of these crustaceans, which would arerage a fifteenth of an inch long and a fiftieth of an inch wide. This fact will serve to show how fine the meshes of the branchial sieve must be to prevent the prey of the shad from escaping from this remarkable collecting apparatus. The soft parts, too, of the individual crustaceans were so well preserved that one could distinguish the pigment of the eyes, the muscles, and intestine with its contents, while the vast number of their eggs mixed amongst their bodies testified to the multitudes of females which had been swallowerl. These facts would appear to indicate most positively that the fish had captured its food quite recently and after it had reached quite fresh water.

XIII.-THE FIRST FOOD OF THE COMMON WHITEFISH.

(Coregonus clupeiformis, Mitch.)

By S. A. Forbes.

In a very large lake the conditions of life are remarkably uniform. The volume of water remains, of course, constant from season to season and from year to year, and the extremes of summer heat and winter cold have but a moderate effect upon the temperature of the lake as a whole. Consequently both plant and animal life exhibit there a regularity and stability which are in remarkable contrast to their fluctuations in smaller bodies of water and on the surrounding land. Not only do the relative numbers of individuals in the various species remain about the same, but the absolute number of each must necessarily change but little, as a rule.

Such a state of affairs is eminently favorable to an exact and cconomical balance of supply and demand, of income and expenditure, of multiplication and destruction, among the inhabitants of the lake. Here every species of animal, whether predaceous or vegetarian, must find, in the surplas products of growth and reproduction among the species upon which it depends for food, a far more constant and unvarying supply for its needs than elsewhere; and the species fed upon must be subject to a far more regular drain upon their surplus numbers or unessential structures. Where there is little fluctuation there is little waste.

A system of life like this, rumning on with relatively even tenor for centuries, must of course be much less flexible than one where wide and violent fluctuation and continual readjustment are the rule; and a species in any way deeply affected will here have within itself far less recuperative power than one which has been forced again and againeach year, perhaps--to rally against the most destructive attacks as the price of its continued existence. Disturbances of the natural balance of life, of the primitive and spontaneous system of reactions by which the different groups of organisms are related, will therefore be unusually serious and lasting; and where such disturbances result from human interference, as by the yearly capture of large numbers of any important fish, it is especially desirable that artificial means of "compensation be taken to restore the disturbed balance as nearly as possible. Excessive loss will be made gool hy matural mations far more
slowly than if it occurred to a pond or river species, accustomed, as most of the latter are, to fill up rapidly enormous gaps in their numbers.

On the other hand, to multiply unduly by artificial measures any species naturally abundant in such a lake will have scarcely a less disturbing influence than to diminish its numbers in the same ratio. The relatively nice balance between the demand for food and food supply which here naturally obtains is such that an extraordinary increase in a species must soon react to diminish greatly its food resources-a fact which will then take effect on the species itself, reducing it below its natural original level; and if both excessive capture and excessive multiplication go on side by side we shall have this result finally aggravated to an extreme degree.

As fishes are caught before the end of their natural lives, but planted by the fish-culturist when young, it is evidently the food of the young which will be first and most seriously affected by overproduction. Only a part of the adults, perhaps a small fraction, will live a life of ordinary natural length, many being captured before they have attained even the average size; but a far greater number, perhaps nearly every one, must survive the earliest period and must consequently draw most heavily upon the earliest food resources of the species when these differ from those of the adult.
The above considerations are brought forward here to show the especial importance to us of a study of the system of natural interactions by which the animals of our great lakes affect each other, if we would avoid the necessarily injurious consequences of our own interference with the natural order there obtaining, and above all to show the extraordinary value of a knowledge of the food habits and food capital of the young. They apply perhaps more forcibly to the whitefish than to any other species in the lakes; because this is for several reasons the most important purely fresh-water fish of the Great Lake region, and proves to have a distinctly different food when young from that upon which it is dependent later.
According to the recent census report,* more than twenty-one million pounds of whitefish were taken in the Great Lakes in 1879, valued at over three-quarters of a million dollars, and representing nearly half the total sum derived from the lake fisheries of all kinds. These fisheries employ over five thousand men, and a fixed capital of one million three hundred and forty-six thousand dollars. When we reflect that this enormous drain upon the number of the species is necessarily, to a - considerable extent, an addition to the natural tax levied upon it by its enemies other than man, we see that there must be an artificial supply provided, or the fisheries will gradually fail.

The importance of the knowledge of the food of so valuable a species needs no demonstration, especially when we consider that, consistently

[^98]with what has been said above, it may not be difficult to overdo the work of propagation.
If the whitefish were to be multiplied indefinitely, without any attention to the character or abundance of its food supply, it would soon reach such a number that it must infringe upon its own food capital, diminish the average number of the animals upon which it depends for subsistence, and so finally indirectly cripple itself. Then the money and labor expended in its culture would be principally lost, and the last state of the species would be worse than the first. An acquaintance with the food of the young is especially necessary, because they are planted by the fish-culturist when, having already absorbed the egg-sack (the supply of food by which they are under natural conditions supported until they have time to scatter themselves widely through the water), they are in a peculiarly helpless condition, mable to wander far in search of subsistence, and compelled to find foor speedily or perish. One would say, therefore, that their alimentary resources and habits should be well and thoroughly known, that the range, period, and abundance of the organisms upon which they feed should be carefully determined, and that each locality where the young are deposited should be closely searched for the purpose of ascertaining whether their food species occur there at the time in sufficient quantity to prevent immediate starvation.

Previous studies of the food of young fishes of a variety of families, reported in the third paper of this series, had shown that, with exceptions presently to be mentioned, the earliest food of all the families studied consisted almost wholly of various species of Entomostraca and some equally minute and delicate dipterous larve. When that paper was prepared, I had, however, no opportunity to study the food of the young of any members of the family Salmonidæ, to which the whitefish belongs, neither could I learn that any such studies had been made by others; and I could only infer the same fact with regard to this family from the general character of the results obtained by the study of the other groups. Even this inference, however, was rendered doubtful by the discovery that the youngest individuals of two of the toothless families (Catostomidæ and Cyprinidæ) were not strictly dependent upon the food elements above mentioned, but were likewise able to draw upon much smaller organisms, namely, the minutest Protozoa and unicellular Algæ ; and as the adult whitefish is likewise destitute of teeth, it was not by any means certain that their young would not fall under the latter category. Upon looking up the literature of the subject, I found that, although the food of the adult had been very well made out in a general way,* only two items had been published respecting the food of the young. In the report of the United States Fish Commission for 1872-73, an assistant commissioner, Mr. J. W. Milner, made some experiments on young whitefish hatched artificially, sup-

[^99]plying them with a number of articles of food, in the hope of finding something suitable for their nourishment.
"A few crawfish," he says, "were procured and pounded to a paste, and small portions put into jar No. 1; the young fish ate it readily. They were fed at night, and the next morning every one of them was found to be dead. Jar No. 2 was supplied with bread crumbs, and the fish were seen to take small particles in their mouths; they did not die so suddenly. Jar No. 3 was supplied with sweet cream, but no evidence was afforded that the occupants fed upon it. A quantity of rainwater was exposed to the rays of the sun for the purpose of generating minute forms of life, and a teaspoonful was poured into jar No. 4, morning and evening, in the hopes that their proper food was of this character. In jar No. 5 a variety of food was provided-dry, fresh beef, milk, boiled potato, and bread. The crumbs of bread and the scrapings from the beef were all that the fish were seen to take into their mouths. They died, one after another, very rapidly, and in a few days all were dead." He further remarks: "This difficulty of procuring a suitable food for the joung whitefish has been the experience of the few fishculturists who have hatched them."

With the hope of ascertaining the natural food of these fishes, a few specimens, representing young captured in the Detroit River, and others from the hatchery, were submitted by Mr. Milner to Mr. S. A. Briggs, a microscopist, of Chicago. Four examples were examined by Mr. Briggs, two from each of the above situations. Those from the hatchery contained nothing whatever, while those from Detroit River contained numerous specimens of two species of Diatomaceæ, viz, Fragilaria capucina and Stephanodiscus niagarce. The only fact at that time known would consequently indicate that the earliest food of the species consisted of Diatomacer.

The whitefish, as is well-known, lays its eggs in the open lake in autumn, the young not appearing until early in the following spring. At this cold and stormy season, in the exposed situations where they are to be sought it is practically impossible to find the young fish; a fact which rendered the study of their earliest food a subject of unusual difficulty. There seemed, in fact, no practicable way to reach satisfactory conclusions upon it except by experiment upou individuals artificially hatched.

In December, 1880, I made an arrangement, through the kiuduess of Professor Baird, of the Smithsonian Institution, with Mr. F. N. Clark, superintendent of the United States fish hatchery at Northville, Mich., for a supply of young whitefish to be sent me at intervals from the hatchery under his control. The specimens furnished were taken from two lots. The fishes of one lot, hatched January 18, were kept in a tank in the hatchery, where they were supplied with water from a spring, which had been cooled by exposure to the air in artificial ponds before entering the hatchery, in order to retard the development of the
fry. The ordinary range of temperature in the tank was from 35° to 39°. These fishes were fed daily with a paste made by grinding small amphipod crustaceans (Gammarus) in a mortar.

The second lot, hatched January 20, was kept, unfed, in a perforated tin box, in a rivulet flowing from a spring, about 60 feet from its source. The water had a uniform temperature of 47°.
Those in the spring, being in warmer water than the others, developed much more rapidly, and it was believed that the character and sonree of this water was such as to furnish them at least a small supply of such food as young fishes are accustomed to appropriate.

Ninety specimens were received from the hatchery February 9, at which time they were three weeks old. They were thirteen mm. (half an inch) in leugth by one in depth. The egg-sac was but partially absorbed in most of the lot, but in those most advanced was represented by an oil globule back of the head. The pectoral fins were well developed, but no trace of the ventrals had as yet appeared. The single median fin extended well in front of the vent, and forwards on the back nearly to the head. The opercles did not fully cover the gills. The most highly developed specimens-those whose gill-sacs had nearly dis-appeared-had, at a short distance on either side of the symphysis of the lower jaw, a sharp, strong, raptatorial tooth, curved backwards and slightly inwards. The base of this tooth was very broad, and the point acute and slender. At a point behind each of these teeth, about half their distance from each other, was a second much smaller tooth, directed almost exactly inwards. The upper jaw was, however, wholly toothless.
These fishes were all passed under the microscope, after haring been rendered transparent, but only four of them contained anything whatever; three a little dirt, and the fourth a minute fragment of the crust of the Gammarus, with which they had been fed.
Of one hundred and eleven specimens received February 17, seventeen had taken food. I dissected nine of these and found fragments of Gammarus and nothing else. Ninety specimens from the same lot were examined February 25, and food was found in fourteen. Four of these had eaten Gammarus fragments; two, larvæ of guats; one, a small Cypris, and eight contained small fragments of the leaves and stems of vascular plants, including a bit of a netted-veined leaf and a little piece of pine wood. Thirty-nine specimens, the last of the lot, were received March 15, and food was found in fourteen. I dissected nine of these, finding fragments of Gammarus in four, a larva of a gnat, a Chironomus larva, a larva of some undetermined fly, a minute vegetable fragment, a Cyclops, a Cypris, and an undetermined Entomostracan each in one. Three hundred and forty fry from the hatching-house were examined in all, in forty-seren of which (fourteen per cent.) more or less food was discernible. Of the thirty-five dissected, eighteen had eaten Gammarus
fragments; five, minute insect larvæ; four, Entomostraca, and eight, small particles of vegetation.

Only four lots were received from the spring, on the 9 th, 14 th, 17 th, and 25 th of February, after which all died of starvation. In the first hundred only one was found which had taken food, and this had eaten a trace of filamentous Algæ and a minute fragment of the parenchyma of some higher plant, with a few diatoms. But one of the second hundred contained even a trace of food, a minute quantity of some threadlike Alga, the cells of which still contained a little chlorophyll. In the third hundred likewise, food was found in but one. This consisted of a few particles of vegetable parenchyma, doubtless derived from the decaying plant structure in or around the water. In the third lot of only forty-two specimens, six showed traces of food, consisting almost entirely of a few filamentous Algæ (including a fragment of Oscillatoria) and a little regetable parenchyma. Desmids and diatoms were observed in trivial numbers.

The total number received from the spring was two hundred and fortytwo, of which but eight were found to have eaten anything (a little over three per cent. of the whole), and these had taken only Algæ and vegetable fragments.

An example of the water of the spring sent me oontained many Algæ but no animals larger than rotifers. The water of the hatchery, being exposed in ponds of considerable size, afforded a better opportunity for the development of animal life, to which fact was doubtless due the occurrence of insect larvæ and Entomostraca in the intestines of the fishes reared in it. The situation of the spring, on the other hand, was particularly unfavorable, as it was under the hatchery, and consequently in the dark.

The observations above described on the specimens kept in spring water have but little value, for the reason that evidently very little food was contained in the water flowing through their cage. The vegetation in the streams being chiefly filamentous Algæ and the number of Entomostraca apparently trivial, very little of either vegetable or animal food could reach the little prisoners. It is not surprising, therefore, that, notwithstanding their greater age and the higher temperature of the water in which they were kept, a much smaller ratio of the specimens had taken food than of those captured in the hatchery. From the contents of their intestines we can only infer that these fishes, reduced to a desperate strait by starvation, will snatch at almost anything contained in the water. The result obtained by a study of those from the hatching-house was more siguificant, but still unsatisfactory. It seemed to indicate that in confinement whitefish fry will feed upon both animal and vegetable structures to some extent, and that they can-be induced to take minute fragments of the higher crustaceans, but not in sufficient quantity to keep them alive. The fact that animal food was more abundant than vegetable in this last lot indicates nothing of their
natural preference, since it was doubtless also more abundant in the water containing them.
More light was thrown upon the eariiest food habits of these fishes by the discovery of raptatorial teeth upou the lower jaw than by these dissections of their alimentary canals. All the families of fishes which I had previously studied, whose young were provided with teeth, were found strictly dependent at first upon Entomostraca and the minuter insect larvæ; while only those whose young were toothless fed to any considerable extent upon other forms. The discovery of teeth in the young whitefish, therefore, placed this species definitely in the group of those carnivorous when young. The fact that the adult was itself toothless interfered in no way with this inference, because other toothless fishes (Dorsoma) whose young were furnished with teeth had been found carnivorous at an early age.

The inconclusive character of the results thus far obtained made it necessary to attempt to imitate more closely the natural conditions of the young when hatched in the lake. In February, 1881, I obtained, through the kindness of Mr. Clarke, twenty-five specimens of living soung whitefish, saved from a lot which he was planting in the waters of Lake Michigan, off Racine, Wis. I succeeded in conveying these to the laboratory without loss, and there kept them for several days in a glass aquarium and supplied them with an abundance of the living objects to be obtained by drawing a fine muslin net through the stagnant pools of the vicinity. These consisted of many diatoms and filamentous freshwater Algæ, of two or three species of Cyclops, of Canthocamptus illinoisensis, and Diaptomus sanguineus among the Copepoda, and of two rather large Cladocera, Simocephalus vetulus and S. americanus. These little fishes were kept under careful observation for several days, the water in the aquarium being frequently aerated by pouring. Many of them had, however, been injured by handling, and eleven of the specimens died without taking food. It was soon evident that the larger Entomostraca (the Simocephalus, and even the Diaptomus) were quite beyond the size and strength of these little fishes, and that only the smaller Copepoda among the animals available could afford them any food at first. These they followed about from the beginning with signs of peculiar interest, occasionally making irresolute attempts to capture them. Two days after their arrival, one of the young whitefish had evidently taken food, which proved, on dissection, to be a small Cyclops. During the next two days nine others began to eat, dividing their attentions between the Cyclops above mentioned and the Canthocamptus, and on the 22 d two others took a Cyclops each and a third a Canthocamptus. One of these fishes contained still a large remnant of the eggsac, showing that the propensity to capture prey must antedate the sensation of hunger. On the 25th the fourteenth and last remaining fish captured its Cyclops and was itself sacrificed in turn. As an indication of the efficiency of the raptatorial teeth, it may be worth while to
note that I saw one of the smallest fishes make a spring at a Cyclops, catch it, give three or four violent wriggles, and drop it dead to the bottom of the tank.

As a general statement of the result of the observations made on these fourteen fishes, we may say that eight of them ate a single Cyclops each, that one took two, and another three of the same, that one took a single Canthocamptus, that two specimens captured two each of this genus, and that finally a single fish ate Cyclops and Canthocamptus both. The final conclusion was a highly probable inference that the smallest Entomostraca occuring in the lake would prove to be the natural first food of the species.

In order to test this conclusion with precision, I arranged a similar experiment on a larger scale and under more natural conditions. Through the generosity of the Exposition Company, of Chicago, I was allowed the use of one of the large aquarium tanks in the exposition building on the lake shore, and by the repeated kindness of Mr. Clarke, of Northville, Mich., I was furnished with a much larger number of living whitefish. Five thousand fry were shipped to mein a can of water, but through unfortunate delays in changing cars at intermediate points, about twothirds of these were dead when they reached my hands. Those living were immediately transferred to the tank through which the water, taken from the city pipes, had already been allowed to run for several hours. As this water is derived from Lake Michigan at a distance of two miles from the shore, and had at this time the exact temperature of the open lake, the conditions for experiment were as favorable as artificial arrangements could well be made.

Sending a man with a towing net out upon the lake with a boat, or upon the remotest breakwaters, inmense numbers of all organic objects in the water were easily obtained. After inclosing the exit of the tank with a fine wire screen, to prevent the escape of objects placed in it, we poured these collections of all descriptions indiscriminately into the water from day to day, thus keeping the tishes profusely supplied with all the various kinds of food which could possibly be accessible to them in their native haunts. From this tank one hundred fishes were taken daily and placed in alcolol for dissection and microscopic study, to determine precisely the objects preferred by them for food. These were examinerl at a later date, and all contents of the intestines were mounted entire as microscopic slides, and permanently preserved. A careful study was of course made of the organisms of the lake, as shown by the product of the towing net, and when the experiment was finally ended an equally careful examiuation followed of the living contents of the water of the tank at that time.
These fishes, like those previously described, had already reached the age and condition at which it is customary to "plant" them in the lake. The ventrals were still undeveloped, the egg-sac had nearly disappeared, the four mandibular teeth were present, and the median fin
extended from the tips of the pectorals on the belly to a point opposite the middle of the same fins on the back. In most the egg-sae did not protrude externally, being reduced in somé to a droplet of oil, but remaining in a few of a size at least as great as that of the head. The alimentary canal was, of course, a simple straight tube, without any distinction of stomach and intestine.

The sufferings of these fry in transit had doubtless weakened the vitality of the survivors, and although every care was taken to keep the water of the tank fresh and pure, about one-third of those remaining died during the progress of the experiment. The aquarium in which they were confined was built of glass, and had a capacity of about one hundred cubic feet. The temperature, tried repeatedly, stood at $42^{\circ} \mathrm{F}$. A steady current of the water of the lake was maintained through this tank, entering tbrough a rose, from which it fell in a spray, thus insuring perfect aeration.

By far the greater part of the organic contents of the water of the lake, as shown by the product of the towing-net, consisted of diatoms in immense variety, which formed always a greenish mucilaginous coating upon the inner surface of the muslin net. In this were entangled a variety of rotifers, occasional filamentous Algæ, and many Entomostraca, the latter belonging chiefly to the genera Cyclops, Diaptomus, and Limnocalanus among the Copepoda, and to Daphnia among the Cladocera.

As the Entomostraca proved to be far the most important elements of this food supply, the particulars respecting them may be properly more fully given. The smallest of all was a CJclops, then new, but since described by me under the name of Cyclops thomasi.* This little Entomostracan is only .04 inch long, by .011 wide. The next in size, and by far the most abundant member of this group, was a Diaptomus, likewise new, described in the paper just cited, under the name of Diaptomus sicilis. This appears in two forms, one evidently young in the stage just preceding the adult. Full-grown individuals were .065 inch long by one-fourth that depth. The Limnocalanus was a much larger form, evidently preying, to a considerable extent, upon the two just mentioned. All the Cladocera noticed were Daphnia hyalina, an elegant and extremely transparent species, occurring likewise in the lakes of Europe. A single insect larval form (Chironomus) should likewise be mentioned in this connection, since it had about the same size and consistence of the Entomostraca, and was consequently equally available for food.

The specimens of each of the above species from a certain quantity of these collections were counted, in order to give a definite idea of their relative abundance in the lake. The Diaptomus numbered 225, the Cyclops 75, Limnocalanus 7, Daphnia 3, and Chironomus larve 1.

[^100]It was a curious fact, however, that when the water was drawn off at the end of the experiment, more thau half the Entomostraca were Limnocalanus; a fact partly to be explained by the predaceous habit of the latter, and partly by the facts relating to the food of the fishes themselves, which are presently to be detailed.

The fry were placed in the tank and supplied with their first food on the evening of the 12th of March. On the 14th, one hundred specimens were removed, and twenty-seven of these were dissected. Twenty were empty, but the remaining seven had already taken food, all Cyclops or Diaptomus. Three had eaten Cyclops only, and six Diaptomus, while two had eaten both. Fourteen of these Entomostraca, seven of each genus, were taken by these seven fishes. From those captured the next day, twenty five specimens were examined, of which nineteen were without food. Of the remaining six, three had eaten Diaptomus and three Cyclops; five of the former being taken in all, and ten of the latter. Three specimens were next examined from those caught on the 19th of March, two of which had devoured Diaptomus and a third a single Cyclops thomasi and a shelled rotifer, Anurcea striata. The character of the food at these earliest stages was so well settled by these observations that I deemed it unnecessary to examine the subsequent lots in detail, but passed at once to the specimens taken on the 23d. Twenty-six of these were examined, and found to have eaten thirty three individuals of Cyclops thomasi, fourteen of Diaptomus sicilis, and fourteen of the minute rotifer already mentioned (Anurcea striata). Two had taken a few diatoms (Bacillaria), and one had eaten a filament of an Alga. Cyclops was found in sixteen of the specimens, Diaptomus in nine, and Anurea in eight, only two of them being empty. The amount of food now taken by individual fishes was much greater than before, one specimen dissected having eaten two Cyclops and six Diaptomus sicilis, male and female. Another had taken five Cyclops, one Diaptomus, and five examples of Anurcea striata. Still another had eaten four of the Cyclops, four Diapotomus, and one Anuræa.

Twenty five specimens were examined from those removed on the 24 th of the month, at which time the water of the tank was drawn off and all the remaining fishes bottled. Four of these had not eaten, but the twenty-one others had devoured fifty specimens of Diaptomus sicilis, forty-seven of Cyclops thomasi, fourteen of Anurcaa striata and a single Daphnia hyalina, the latter being the largest object eaten by any of the fishes. A few examples of their capacity may well be given. The ninth example had eaten six Diaptomus, two Cyclops thomasi, and one Anuræa; the tenth had taken eight Diaptomus, two Cyclops, and an Anuræa; and the twentieth, seven Diaptomus and three Cyclops thomasi. In two of these examples were small clusters of orange globules, probably representing unicellular Algæ.

Summarizing these data briefly, we find that of the 106 specimens dissected sixty-three had taken food, and that the ratio of those which
were eating increased rapidly the longer the fishes were kept in the aquarium. Only one-fourth of those examined on the 14th of the month had taken food, while more than five-sixths of those bottled ten days later had already eaten. The entire number of objects appropriated by these sixty-three fishes was as follows: Cyclops thomasi, ninety-seven; Diaptomus sicilis, seventy-eight; Anurcea striata, twenty-nine; Daphnia hyalina, one. Seven of the fishes had eaten unicellular Algæ, two had eaten diatoms, and one filamentous Algæ.
From the above data we are compelled to conclude that the earliest food of the whitefish consists almost wholly of the smallest species of Entomostraca occurring in the lake, since the other elements in their alimentary canals were evidently either taken accidentally or else appeared in such trivial quantity as to contribute nothing of importance to their support. In fact, two species of Copepoda, Cyclops thomasi and Diatomus sicilis, are certainly very much more important to the maintenance of the whitefish in this earliest stage of independent life than all the other organisms in the lake combined. As the fishes increase in size, vigor, and activity they doubtless enlarge their regimen by capturing larger species of Entomostraca, especially Daphnia and Limnocalanus.

A few words respecting the relative abundance of these species at different seasons of the year and their distribution in the lake will have some practical value. We may observe here an excellent illustration of the remarkable uniformity of the life of the lake as contrasted with that of smaller bodies of water already referred to in the introduction to this paper. While in ponds minute animal life is largely destroyed or suspended during the winter, the opening spriug being attended by an enormous increase in numbers and rate of multiplication, in Lake Michigan there is but little difference in the products of the collecting apparatus at different seasons of the year.* There is a slight increase in the number of individuals during spring aud early summer, but scarcely enough appreciably to affect the food supply of fishes dependent upon them. They are not by any means equally distributed, however, throughout the lake, my own observations tending to show that there are relatively very few of these minute crustaceans to be found at a distance of a few miles from shore, and that in fact by far the greater part of them usually occur within a distance of two or three miles out. Indeed, the mouths of the rivers flowing into the lake are ordinarily much more densely populated by these amimals than the lake itself, as has been particularly evident at Racine and South Chi-

[^101]cago. Neither are they commonly equally distributed throughout the waters in which they are most abundant, but, like most other aquatic animals, occur in shoals. In the deeper portions of the lake many species shift their level according to the time of day, coming to the surface by night, and sinking again when the sun is bright.

These facts make it important to the fish-culturist that the particular situation where it is proposed to plant the fry should be searched at the time when these are to be liberated, to determine whether they will find at once sufficient food for their support. A little experience will easily enable one to estimate the relative abundance of the Entomostraca at any given time and place, and they require nothing for their capture more complicated or difficult of management than a simple ring net of cheese-cloth or similar material, towed behind a boat. This may be weighted and sunk to any desired depth, so that the contents of the water either at the surface or at the bottom may be ascertained by a few minutes' rowing.

In conclusion, I wish again to express my great obligation to the United States Fish Commissoner, Prof. S. F. Baird, and to Frank N. Clark, superintendent of the United States hatchery at Northrille, Mich., through whom, as already stated, the specimens were derived upon which these studies were made. My best thanks are also due to the Exposition Company of Chicago, and especially to their secretary, the Hon. John P. Reynolds, for the use of a tank in the Exposition louilding, and for many courtesies received while the experiment there was in progress.

XIV.-REPORT OF EXPERIMENTS FOR DETERMINING THE SMALLEST AMOUNT OF WATER IN WHICH YOUNG SHAD AND EGGS CAN BE KEPT.

By Frank N. Clari.

June 8,1880 , I was requested to conduct a series of experiments at the shad-hatching station at Washington navy-yard, and to use as small a quantity of water as possible both for the eggs and young fish. I accordingly arranged one of the cones with an aërator attachment for Experiment No. 1.

June 9.-In the morning I placed in Cone No. 1 a portion of the eggs taken the evening before $(125,000)$, and also placed in Cone No. 2 the same number. I commenced on Cone No. 1 by running 35 gallons of water per hour. On Cone No. 2 there were 218 gallons per hour. The aërator attached to No. 1 was doing the same work the larger amount of water was doing in Cone No. 2. In the course of the day I reduced the amount of water in Cone No. 1 to 23 gallous per hour, and found the eggs had equally as good a motion as with the larger amount of water. The motion of eggs in Cone No. 1 was considered as good as in No. 2.

June 10.-Eggs were examined in both cones and found to be equally as good in Cone No. 1 as in No. 2.

June 11.-Eggs were examined in both̉ cones. In Cone No. 1, with aërator attachment, I found more fungoid growth on the unimpregnated eggs than in No. 2. They were, howerer, kept free from the good eggs by the force of air and water. In cones of eggs I have worked for the last few years I have frequently•found eggs with the fungoid growth to attach themselves to the good eggs. It was especially so when the water was quite warm. I have always found it necessary in such cases to add a greater flow of water.

June 12.-The fish were all out and appeared in as healthy a condition in Cone No. 1 as in No. 2. So far I have been unable to wote any difference in the eggs or in their hatching other than is mentioned in this report. In the evening of this day I removed 25,000 fish from each cone, leaving 75,000 in each of the cones, with same amounts of water (23 and 218 gallons). I find the fish in Cone No. 1 are not forced against the perforated tin edges as in Cone No. 2. Accordingly it is not necessary to attend to them as in No. 2, where it was absolutely necessary to brush the fish away from the edges at least once in an hour to keep them from filling the perforated tin and running over the top of the cone. This I think one great advantage.

June 13.-Fish were examined ; found them equally as good in No. 1 as in No. 2. The force of air in Cone No. 1 seems to be rather violent,
for the fish. I took the wire cloth from bottom of cone. It made a slight change in the air-bubbles, they were in finer particles.

June 14.-The fishappeared in a healthy condition. At 12 m . I arranged one of the cylinder cans with an aërator attachment for conducting air and water to the bottom of the can. The water and air passed down through the pipe, and the overflow was through fine perforated tin at the top of the can into the overflow chamber, where the water passed out.

After arranging the can I immediately put into it 50,000 young shad 48 hours old. It had not been ruuning more than ten minutes before I discovered fish were running out the overflow in consequence of the perforated tin at the overflow being too small a surface. I immediately removed the fish and informed Major Ferguson of what had occurred, and gave him my idea of what was wanted for the can. He had the cover of the can marle with a larger surface of perforated tin, and this, after putting the 50,000 fish back in the can, I found held the fish.

June 15.-In the morning I discovered the fish in Cone No. 1 appearing weak, in consequence, as I thought, of the riolence of air and water forcing them to top of cone, where the air-bubbles would break and throw the fish to one side. In the course of the day I found the fish were dying. In the can, which I shall designate as No. 3, I drew from the bottom of the can about 50 dead fish. The balance of the fish were looking well.

June 16.-There was a thorough examination made of all the different experiments. The fish in cones were found to be in about the same condition as the day before. The can, however, 1 did not find the same. During the night there had been a stoppage of the water, in consequence of which the fish were found all dead.
June 17.-The fish in Cones Nos. 1 and 2 were five days old. In Cone No. 1, with aërator attachment, the fish were dying quite fast. My opinion is still the same, that the violence of air-bubbles is too severe for the young fish, and weakens them or wears them out.

June 18.-I arranged another cone (No. 4) with aërator attachment, and immediately placed in it 100,000 eggs taken the evening before. There was an effort made to use a smaller quantity of water on this cone, but without success. As soon as the water was reduced below 23 gallons per hour the aërator would not take in air. Thus it will be readily seen the aërator will not supply the quantity of air with a less amount of water than 23 gallons per hour. This lot of eggs was examined from day to day until all were hatched, and nothing of note occurred different from No. 1.
June 19.-This morning I found the tish in Cone No. 1 all dead. The probable cause was the violence of water and air. The fish in Cone No. 2 were still doing nieely. They were turned loose in the Potomac at $6 \mathrm{p} . \mathrm{m}$. There were 40,000 young shad put in Can No. 3 to again try the aërator. The fish in Can No. 3 did very well until the third
day, when I found them dying very fast, probably from the impure water caused by the can being closed.
June 22.-I arranged Cone No. 1 with the aerator attachment, and put in 125,000 eggs taken the evening before. The same amount of water, 23 gallons, was used on this occasion as on the others. Cone No. 4 all hatched and appeared in a very healthy condition. Out of the lot of eggs in Cone No. 4 there were about 90,000 fish, making a very good percentage. I took one-half of these fish and put them in Can No. 5, runuing a smaller quantity of water than on any of the other cones. There was no aërator attached to this cone. There were 18 gallons of water per bour rumning in this cone. These cones were kept running and were examiued from day to day until June 25, when the fish were deposited in the Potomac in good condition.

June 26.-On this morning I found the eggs in Cone No. 1 all hatched. The eggs had been examined from day to day; found to be about the same as the coues hatched before. On this day I was directed to discontinue operations at the nary-yard station, to more what fish I had on hamd, about 100,000 , to the Smithsonian Institution, and to continue ms experiments there. The young fish were moved to the Smithsonian on the morning of June 27 , where they were placed in cones and cans. In Cone No. 1, with aërator attachment, I placed 20,000 ; in Cone No. 2 , 20,000 ; iu Can No. 1, with aërator attachment, 20,000 ; the balance were phaced in Can No. 2. My experiments consisted of one cone with aërator attachnent, running 23 gallons of water per hom ; Cone No. 2 , with no attachment, ruming 15 gallons of water per hour. This was afterwards reduced to 10 gallons per hour. In Can No. 1 I ram 15 gallons per hour until the rubber hose conducting the water burst, during the night of June 27 , when, of course, the dish all died. In Can No. 2 there was no change of water during the night. The next morning I found the fish all dead. The cones were examined from day to day, and at this writing, July 3, the fish in Cone No. 1 are nearly all dead. The fish in Cone No. 2 are looking well. They are seven days old to-day.

From my experiments I have come to the following conclusions:
When a small quantity of water is to be used in hatching it is absolutely necessary to use the aebrator to introduce the air with the water at the bottom of cones in order to give the eggs the motion desired. In every case where the aemator was in use, apd they were kept until the fifth day, they commenced dying, and in twenty-four or forts-eight hours all were dead. My opinion is that the violence of air-bubbles and water weakened or wore them out. When it is desired to keep the fish in cones for any length of time, and to use a small quantity of water, I should advise that a small guantity of water be run in the cone, as when it is desired to use a limited supply of water a smaller quantity can be used than with the aërator. In every case the experiment tried with the can in which no change was given the fish proved disastrous in from six to ten hours, according to the quantity of fish in the cans.

Washington, D. C., July 3, 1880.
S. Mis. $110-50$

Record of temprature observations made at Trashington, D. C., from June 9, 1880, to July 3, 1880, by Frank N. Clark.

Hate.	Cone No.1. Cone No. 2. Cone No. 3. Cone No. ${ }^{\text {a }}$												Cane No. 5.		
	$\begin{aligned} & \underset{\sim}{\tilde{y}} \\ & \text { E } \end{aligned}$	$\underset{\underset{\sim}{E}}{\dot{E}}$	$\begin{aligned} & \dot{シ} \\ & \dot{\Xi} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { g } \\ & \text { む } \end{aligned}$		$\begin{gathered} \text { ̇̇ } \\ \stackrel{\rightharpoonup}{9} \end{gathered}$	$\begin{aligned} & \text { घ் } \\ & \stackrel{y}{\mid} \end{aligned}$	$\begin{aligned} & \text { घं } \\ & \text { a } \\ & \infty \end{aligned}$		a ¢ -	cid	-	E
1880.															
Saturday, June 12	75	76	77		74	75									
Suudar, June 13....................... 76 i7 78 75 75 i5 75															
Monday, June 14.	76	77	7		76	76									
Thursday, June 24	75	76	77							75	77	78			

Note.-The cones were moved to the Smithsonian Institution Saturday evening, June 26.

* Fish all dead.
\dagger New eggs.
\ddagger Fish released.

XV.-EXPERLNENTS UPON RETARDING THE DEVELOPNENT OF EGGS OF THE SHAD, MADE IN 1879, at THE UNITED STATES shad-hatching station at havre de grace, md.

By H. J. Rice, Sc. D.

The report hereby submitted gives somewhat in detail the methods and results of the experiments in retarding the development of impregnated shad-spawn which were carried on by Mr. F. N. Clark and myself during the month of June, 1879, at the United States Fish Commission barges, near Havre de Grace, Md. These investigations were instituted principally for the purpose of ascertaining the possibility and practicability of transporting shad-spawn across the ocean, with a view to iutroducing American fish into European waters, aud all of our efforts were made with that end in view. Normally, as is well known, or as is generally considered at the present time, shad-spawn requires for its development a constant although slight motion, and a continuous exchange of fresh water. Under these conditions, whether produced uaturally or artificially, the spawn after impregnation will proceed in its development, and the young shad come to maturity, quickly or slowly according to the temperature of the water in which they are placed. With a temperature of 68° to 74° the ova will hatch out in from three to five days. If the water is of a lower temperature, or about 56°, the development will be much prolonged and the hatching take place in about eleven days. Upon an ocean voyage the great difticulty to be surmounted would be the lack of fresh water. Motion can be given to the eggs, and the temperature can be kept at any point which may be desired by means of ice, but all the water used with the eggs must be such as can be taken on board at the beginning of the trip.

The questions to be answered, then, in regard to a shipment of the kind proposed were, "Can shad ova be carried, and will they go on in their development, in stagnant water, or in water which, althongh changed as often as thonght necessary, is not absolutely fresh; or can they be carried in some other manner, as for instance in an ice-chest, as is done with some other kinds of fish-spawn, as that of the white-fish of the Great Lakes for example?" It is quite evident that if it could be shown to be possible, even with considerable care, to carry shad-ova in either of these ways, it would not be very difficult to transport any quantity which might be desired to the other side of the Atlantic, and
thus introduce there a species of fish which upon this side of the water is considered one of the table delicacies of the season. We began our experiments by endeavoring to solve the second question first. For this purpose an ice-chest was constructed under the supervision of Mr. Clark. It consisted of a covered wooden box (Fig. 1, a) about 3 feet in
 each dimension, within which was a second box or well, b, of about one-half the size of the outer one. This well opened upon one side of the chest by a box-door, c, about 5 inches in thickness, and so arranged with slats, $1,2,3,4$, upon the inside that a large or small quantity of ice could be packed in it. The well was free from the other sides of the chest all around and on top by a space of about 8 inches, and beneath it was a draver d, of about 6 inches in depth. The well could thus be entirely surrounded with
Fig. 1.-Tce-chest for shad-eggs.

Fig. 2.-Tray for ice-chest. ice, and the temperature regulated by the amount of ice placed in the chest, and by more or less completely closing the door of the well and the cover of the chest. In practice it was found that with a small amount of ice aromed the sides of the well and in the drawer and door, and a large cake upon the top of the well, an even and moist temperature could be maintained throughout the

Within the well a series of trays (Fig. 2) were placed one abore the other. They were made with wooden frames about 1 inch in thickness, and were covered upon the bottom with cotton flamel. When wanted for use the cotton-flanuel bottom of the tray was thoroughly moistened, and about 7,000 to 8,000 freshly impregnated eggs placed upon it and carefully spread out with a feather. The temperature of the eggs was then lowered very gradually until it was the same as that of the well of the chest, the chest having previously been partially filled with ice. The tray was then placed in the chest and kept at a uniform temperature during the time of the experiment. The first lot of eggs was placed in the chest on the evening of the 7th of June. This lot consisted of about 25,000 eggs which were taken fresh from the spawners and distributed upon three or four trays. The temperature was reduced very gradually to 37° when they were placed in the well, and kept at 37° and 38° until about 8 o'clock p. m. of the 9 th of June. At this $^{\prime}$ time they appear to be all dead, and the temperature was allowed to
rise to 55° which was about $10 o^{\circ}$ clock p.m. same date, when a second lot of freshly-taken eggs, of about the same number as the first, was placed in the chest.
The temperature was then allowed to sink to 480 , and kept there, not running below 47° nor above 49°. About $10 \mathrm{a} . \mathrm{m}$. of the 12 th the eggs of the first lot were fond to be all dead and were thiown away, but those of the second lot appeared to contain some good ones, and one trayful was placed in a cone of fresh running water at a temperature of about 75°. Un the third day after, or on the 15th of June, about 20 or 30 young fish hatched from this lot.

At 12 m . of the 12th, after the irayful of eggs had been transferred to the cone, a third lot of eggs was placed in the chest. These eggs had been taken on the night of the 11th and kept in a cone of fresh rumning water until the segmentation cap had entirely covered the yelk and the young fish could be seen as a dark band along the side of the vitellus. The temperature was now allowed to sink to 43°, and kept at about 45° until $6 \mathrm{p} . \mathrm{m}$. of the 14 th , when all the eggs of both second and third lots were found to be dead. Forty three degrees is thus undoubtedly too low a temperature for shad spawn; otherwise we ought to have had some live eggs in either the second lot, which furnished live ones at 48°, or in the third lot, which had been subjected to the low temperature for only about two days. On June 17th, 10 p . m., a fourth lot of freshlytaken eggs was placed in the chest, where the temperature showed 64°, and on the 20th a fifth lot was consigned to the well. In these latter ova the young fish were so far adranced as to show the eyes, protovertebræ, ear-cavity, and the heart as a single-chambered pulsatile organ. When these were placed in the chest the temperature was 55°, and it was kept at this point until the 23d, when both eggs and young fish were found to be dead. In order to keep the temperature at 55° or 56° very little ice was necessary, and it is possible that the eggs did not have moisture enough to maintain them in good condition, since thes appeared to melt down into a mat-like mass after being in the chest for ab day or so. This was not noticed, or but very slightly, in the other cases. Our only success, or partial success, with the ice-chest, then, was with that portion of the second lot of eggs which was kept at a temperature of 48°. The young fish which were hatched from these eggs were exceedingly vigorous and hearty, and when we broke camp on the 24th, or nine days after they had escaped from the eggs, they were about tiveeighths of an inch in length, with the rays of the dorsal, anal, and caudal fins well advanced, the end of the notochord turned up, very prominently, and the caudal tin slightly forked. They were abont one-third larger than some older fish which were in another cone and which had been hatehed out in the ordinary manner. In the stomachs of all of these Joung fish I found a great many shells and remains of daphniæ and other small animals, and saw them, and especially the older ones above mentioned, eat the dead of their own species.

The trials which we have thus made seem to indicate that it is impracticable to carry shad-spawn in an ice-chest, as can be done with many kinds of spawn, especially such as is laid in the fall or winter season. But it is possible that more trials and greater precautions are necessary before we can be positive in this respect, particularly as I am informed that Mr. Welcher, now of the Michigan fish commission, has kept shadspawn in an ice chest for a considerable time, and afterwards hatched out

Fig. 3.-Apparatus for using the same water over again in hatching shad.
young shad from such spawn. I an not conversant, however, with his method, nor do I know to what extent he was successful in such experiments. But judging alone from our efforts, the results seem to show that an ice-chest is seriously detrimental to the integrity of shad-ova. So far, then, as our experiments have been carried, and as regards the ice-chest, the question would bave to be answered in the negative.

Our second set of experiments were then begun for the purpose of test-
ing the feasibility of using the same water over and over again when its temperature is kept below the normal condition.

Our apparatus, Fig. 3, as arranged for these experiments, consisted of two reservoirs, a hatching-cone, and a steam-pump, and their connections. The first or supply reservoir (Fig. 3, a), was a small hogshead elevated about three feet above the floor or just above the level of the hatching-cone l, which was of the ordinary patteru, with a rim of wire sieving around the inside at the top with a gateway in it for the purpose of letting dead eggs pass off into the gutter, which ran around the top of the cone outside of the sieve rim and so into the escape-pipe. The cone was swung ou braces attached to the side of the wall, and was connected with the supply tank by means of a rubber pipe, c, passing from the bottom of the reservoir to the bottom of the cone. The second reservoir, d, was smaller than the first, and was placed under the floor and below the hatching-cone with which it communicated by means of an escape-pipe, e, passing from one side of the gutter at the top of the cone down and over the edge of the reservoir can.
The apparatus was completed by placing the two reservoirs in communicatiou by means of a long tube, f, passing through the steam-pump g and entering the top of the first reservoir. Water being placed in the large veservoir a flow would take place into the cone, and the cone when full, would overflow into the second reservoir, from whence the once-used water could be pumped back by the pump into the supply-tank, again to run its circuit through the cone. In this manner we had a constant flow of water in our cone, and as the end of the escape-pipe from the cone into the lower reservoir and that of the supply-pipe from the pump into the supply-tank were considerably above the level of the water in their respective reservoirs, there was also a slight amoant of aëration from the falling water.

The temperature of the water was regulated by keeping ice in greater or less quantity in the supply-reservoir. Our first trial of this apparasus was begun on the evening of June s. The supply-reservor and cone were filled with water from the bay and 50,000 treshly-takeu eggs placed in the cone. The temperature of the water was reduced to 45°, then allowed to rise to 52°, and kept at that temperature until the morning of the 11th, when the egg. were fonnd to be dead and were thrown away, and the apparatus thoroughly cleaned. It is probable that the low temperature of the water had its effect in destroying this lot. At $10 \mathrm{a} . \mathrm{m}$. of the 12th the reservoir and cone were refilled and a secoud lot of eggs placed in the cone. The temperature was 66°, ant was gradually reduced to 56 , and kept for the most part at that point, although on the 15th it rose to $6 t^{\circ}$, for lack of ice. consequent upon our change of locality, but was brought back to gim^{2} on the 16 th. These eggs had been taken on the night of the 11th and kept until $10 \mathrm{a} . \mathrm{m}$. of the 12 th in fresh ruming water, at $i=0$, before being placed in the cone. When placed in the cone the segmentation cap entirely corered the yelk, and the young fish, as was the case with lot No. 3 which was
placed in the ice chest, could be seen as a dark band around one side of the yelk. These eggs continued their development, or at least a goodly proportion of them did, up to the middle of the fourth day, when they were well developed, showing eyes, protovertebre, ear-cavity, and the heart as a single-chambered pulsatile organ. They appeared to be healthy and in good condition; but gradually the water became filled with sloughs and decomposing animal matter, and early in the fifth day, or by the morning of the 17th of June, the fish were all dead. The eggs were accordingly thrown away and the apparatus again cleaned and placed in readiness for a third trial.

It had become pretty evident that the trouble was in the water, and we determined to try the next time the effect of more thorough aëration upon it. Accordingly at $10 \mathrm{p} . \mathrm{m}$. of June 17 a third lot of about 50,000 eggs was placed in the cone, with the water in the supply-reservoir at 72°. By $7 \mathrm{a} . \mathrm{m}$. of the 1Sth the temperature had been brought down to 64°, and by $12 \mathrm{a} . \mathrm{m}$. to 53°. It was kept thereafter during the trial at an average of 54°. At intervals of two to three hours after the water had commenced runuing, the water in the supply reservoir and that in a second cone, Fig. 3, h, which had been arranged to receive the outflow of the first before the water passed into the second reservoir, was thoroughly agitated for five to ten minutes. This was accomplished by the use of a dipper, running the dipper down deep in the vessels and getting the water from near the bottom, then lifting the dipper high above the vessels before pouring it back, so as to give the water as much of a fall as possible. In addition to this method of purifying the water a certain quantity was taken two or three times each day froms the surface of the hatching-cone. In this manner it was intended to take of that water which had just passed over the eggs about the same quantity that would be added to the supply-tauk as fresh water by the melting of the ice, and in taking it from the hatching-cone any sloughe or dirt wbich had accumulated around the top of the cone could be included. Under this treatment the eggs progressed in their development and appeared in fine condition up to the middle of the fifth day, or one day longer than those of the second lot. At this time they were at the same stage of development as the second lot upou the fourth day; but it is to be borne in mind that the secoud lot was started in warmer and fresh water before being placed in the cone, while these passed through their eutire development in the stale water. On the afternoon of the fifth day the water, despite the constant aëration, began to have a rank, fishy odor and to foam slightly in the supply-reservoir. Notwithstanding this the eggs appeared in a good and healthy condition. On the morning of the sixth day, however, or the 23 d of June, the foam on the water was very considerable in amount and the eggs were quite noticeably affected. As much of the water as could possibly be spared was then taken off through the hatching cone, together with as much of the slough and dead material as could be separated from the goods eggs, and a filter of charcoal placed under the supply tube of the supply-
reservoir. But this did not seem to stop the death of the eggs, and in order to save the remainder they were transferred at noon of the sixth day to a cone of fresh water at a temperature of about 73°. The stalo water had, however, apparently been too injurious to them and they all finally died. It appeared to be pretty evident from this trial that while artificial aëration would increase to a certain extent the time during which the water could sustain the eggs in good condition, yet four and a half or five days were about the utmost limit of time the same water could be used over and over again. When used for this length of time the entire vitality appeared to be taken from it. This was probably from the using up of the oxygen contained in it, although the decaying organic material, sloughs, and dead eggs, of which there are always more or less mixed with good eggs, may have played a very important part in rendering the water unfit for sustaining life.

The end of the season was now at hand and good spawn was very difficult to obtain. We were thus presented from trying other methods of using the water. The next method would have been to take enongh water on board at the beginning of the experiment, in addition to that in the resercoir and cone, to enable us to give the eggs a complete change of water, drawing off the old and putting the other in its place once every three days.

If unused water-water which contains its normal anount of oxygem and which has not passed over the eggs so as to become tainted with decaying organic material-is all that is required to replace the used or partially exhausted water of the cone, then there would be no difficulty in keeping the eggs in good condition for a voyage of twelve or fifteen days, for it wonld be an easy matter to carry suflicient water in extria casks to make complete changes every three days for this length of time, or even longer. But as a trip can be made in from eight to nine days, or as that would be the length of time which would elapse before fresh water could be obtained, it would hardly be required to make over two, or perhaps three, changes. From our experience this year it seems highly probable that such an attempt would be entirely successful, and that a good proportion of eggs thas treated could be hatched out and the young fish distributed wherever it was desired to take them. In sach an experiment the larger the amount of water passing over the eggs the longer the time required to exhaust it or render it foul. If the experiment should be tried again and for the same purpose, that is, transportation across the ocean, the apparatus should be just such as would be employed on ship board, and with the supply-reservoir mado as large as could be conveniently carried. Then, by changing the water, aëration, and the use of a filter for the used water before it re-entered the supply-tank, it would seem as if success could be assured. At least, if this method cannot be made to answer the purpose it is very questionable whether any can. Sereral cones instead of one could be used, If desired, by simply connecting one cone with the next, each cone taking the outflow from the one preceding. In this case it wonld be neces-
sary to have the cones arranged in a series, each one with its top or outlet considerably higher than the one into which it flowed, as in Fig. .3 with the two cones, so that there should be sufficient motion in the water to keep the eggs stirring.

It may not be out of place to notice the fact that the eggs kept in the stale water were almost entirely free from any fungoid growth. Why these eggs should be favored in this manner is hard to say, and may be a question worthy of farther research. As regards the influence upon the development of the germ, there was a very marked difference in the two methods employed. In the ice-chest, in the case of freshly impregmated ova, segmentation would go on until the "mulberry" stage had been reached, or until a small limb or protuberance of small cells had been formed upon oue side of the vitellus. After this there appeared to be an entire cessation of all development as long as the egg remained an the chest or until the vitellus disintegrated.

In most cases disintegration or death did not take place for two or three days, and up to this time the eggs had every appearance (otherwise than that they did not develon) of being alive and in fair condition. In the cone, however, development went on regularly and slowly from the very first, and contiuued until the water became of such a nature as to fail to longer nourish the embryos.

This development was such that in about two hours the "mulberry" stage had been reached; in sixty hours the segmentation cap entirely surrounded the yelk, and the joung fish formed a prominent welt along one side of the vitellus; in seventy-two hours the eyes commenced to show ; and in one hundred and eight hours, or four and one-half days, the tail portion, or that part free from the yelk, was as long as the portion attached to the yelk, the eyes very prominent, with the crystalline jens formed, the ear-cavity forming a semi-circular depression upon the side of the body above the yelk, the protovertebre numerons, and the heart a small, single chambered body, situated just back of the head, between the yelk and anterior end of the central canal, and just beginaing to exhibit regular although somewhat spasmodic beats. In au embryo developed in fresh running water, at a temperature of 680 to 74°, those stages would be passed throngh, respectively, in four, ten, twelve, twenty, to twenty-six hours, showing a retardation in the case of the embryo kept in water at 56° of from three to three and one-half days. At this rate the young fish in the colder water ought to hatch out in about eleven to twelve days, and would probably, from their slower growth, be more hardy than those hatched in three to three and one-half days. It is to be regretted that these experiments could not have been begun earlier in the season, thus giviug plenty of time for thoroughly studying the questions and arriving at some definite results, for although it would appear as if the method last suggested might be successful, yet a trial seems to be absolutely necessary before undertaking an ocean royage.

Washington, D. C., July 3, 1879.

XVI.-0N THE RETARDATION OF THE DEVELOPMENT OF THE OVA OF THE SHAD (ALOSA SAPIDISSIMA), WITH OBSERVAtions on tile egg fungus and bacteria.*

By John A. Ryder.

Several series of experiments at different times were undertaken by persons connected with the United States Fish Commission having for their object the solution of the following problems: "Is it possible to lower the temperature of the water in which shad eggs are incubatent so as to greatly retard and prolong the process." "Is it possible to prolong the period of incubation so that large quantities of embryonized ova may be carried for long distances by land or water, so as to effectively stock distant or foreign waters?" These two queries, I think, clearly state the objects of the experiments, and also tacitly indicate the important results which would follow in case practical results should be attained.

That a decrease in temperature would impede or retard the development of ova has been known for a long time, and, without encumbering this essay with references it may be asserted as a truth based on physieal reasons and facts. Physiologists and biological philosophers, such as H. Milne-Edwards and Herbert Spencer, have recognized and discussed the influence of fluctuations of temperature on physiological processes. Every genus and perhaps even every species of tishes, in the course of the early development of its ova, appears to present some idiosyncrasy of behavior which demands that its characteristics shall be studied before it is rentured to proceed with experiments of this character. Practically the peculiarities of the orum of the shad are perhaps as well known as those of any species we are called upon to deal with.

Shadeggs after impregnation are relatively large, measuring from one-eighth to one-seventh of an inch in diameter. When first extruded from the parent fish they measure about one-fourteenth of an inch in diameter, are somewhat flattened and irregularly rounded in form : the egg-membrane, a true zona radiuta, is much wrinkled and lies in close contact with the contained vitellus. Immediately after impreg. nation this membrane becomes teuse, is filled with water which hat found its way through the membrane from the outside, and is now per-
fectly spherical, having apparently gained very much in bulk. This gain in size is, however, delusive ; it is only the wrinkled egg-membrane which has been distended with water; the citellus or true germinal and nutritive portion has gained nothing in size. The latter now lies in contact with the lowermost part of the egg-membane when the whole ovum is at rest, and is always more or less depressed from above in the form of an oblate spheroid. After the germ has been developed, which is discoidal in form and placed on the surface of the vitelline sphere, it nsually also occupies a lateral positiou on the vitellus when the ovim is at rest.

The vitellus rolls about and changes its position inside the egg membrane as the latter's position is altered. The vitellus is heavier than water. A large space filled with fluid now exists between the vitellus and membrane. No adhesive material is found on the outside of the membrane, as in the eggs of the white perch and herring, as mat be readily demonstrated with the microscope, although when first extruded they are covered with a somewhat sticky ovarian mucus. The ova are heavier than water and rapidly sink to the bottom of the ressels in which they are undergoing development. All of the hatching apparatus now used for their incubation in water is operated on the principle of a continuous flow, which keeps the ova constantly in motion. So much for the physical behavior and constitution of the shad-egg, which is necessary for the comprehension of what will be said subsequently.

It has been the experience of those intrusted with the work of looking after the artificial incubation of the of the shad that when the temperature of the water was highest the process was completed soonest, and when lowest it took a disproportionately longer time. In illustration of this fact the subjoined data, supplied by Mr. W. F. Page, are of interest, from the records which were kept at the station on the Potomac during the present spring (1881):

This series of data shows that with a fall in the temperature of the water down to 57.20 F . it took six days and four hours to complete the development in the egg; with a rise in the temperature of the water to $74^{\circ} \mathrm{F}$. the process was complete in a little less than three days. The difference in the times of hatching between lots No. 1 and 3 is 78 hours; the difference in the temperature of the water used is only $16.8^{\circ} \mathrm{F}$. Is there a limit to the possibilities of retardation? Experiment has shotw that there is. The temperature of ice-water, $38^{\circ} \mathrm{F}$., was found to be fatal at the morula or germinal disk stage of development of the shad egg, in the course of experiments made at Havre de

Grace, Md., in 1880. The cells of the germinal disk became brownish, the clearage furrows obliterated, the disk tended to spread out and become larger across. These phenomena indicated stagnation of development and death. The secoud series of experiments, conducted by what is known as the "dry method," in a refrigerator box provided with canton flannel trays, devised by Mr. F. N. Clark espectially for these experiments, gave better results. We found that the ora merely kept damp, on the trays in an air temperature of 520 appeared to develop quite normally, the only serious drawback being the rapid and more or less fatal development of fungus, the myceliun of which would soon grow over the eggs, penetrate the membranes, cause them to collapse, transform the protoplasm of the ritellus into fungus protoplasm, and kill the ova.

The following abstract from my note-book, recording what was observed in watching the results obtained from a trial of Mr. Clark's apparatus, speaks for itself, though it would facilitate the comprehension of the matter if a series of explanatory figures conld be introduced:
"Eggs taken June 8 and put into refrigerator at 90^{\prime} clock p. m. ; examined June 9 at 9 o'clock a. m. ; exposed for $1 巳$ hours to a temperature ranging from 54° to $60^{\circ} \mathrm{F}$. Clearage has advanced to the morula stage; i.e., the germinal portion of the egg is still discoidal, lies on one side of the vitellus or yelk, and has not advanced beyond the condition ordinarily reached in three hours with the temperature 720 F .
"Same lot, June $9,2.30 \mathrm{p} . \mathrm{m}$., advanced but a little bey ond the stage just described above; the germinal disk still maintains its characteristics ; development normal ; temperature $54^{\circ} \mathrm{F}$.
"Same lot, June 10, examined at $9.30 \mathrm{a} . \mathrm{m}$. ; segmentation carity developed and blastoderm forming; incipient embro making its appearance at oue side. The blastorlerm, however, does not yet cover more than half of the upper hemisphere of the vitellus, a condition ordinarily attaned in six hours with the temperature of the water at 720 F . Temperature in refrigerator box uow ranging from 5^{20} to $54^{\circ} \mathrm{F}$. Eggs of the same age, $36 \frac{1}{2}$ hours, in a hatching-jar, have the vitellus completely inclosed by the blastoderm, the embryo formed, with eyes, ears, and brain distinguishable, and the tail is budding out as a small, rounded knob at the posterior end of the embryonic axis, which curves around one side and now extends from one pole of the egg to the other, embracing an are of 180°.
"Same lot, in refrigerator, examined June 10, at 8.30 p . m., or nearly forty-eight hours after impregnation, shows that the blastoderm has grown down half way over the vit llus, like a hemispherical cap; the keel or carina has been developed. Temperature $33^{\circ} \mathrm{F}$. in refrigerator all day. Eggs in a cone of the same age, temperature of the water 65° F., have the embryos well advanced, with the tail free and as long as the portion of the body still in contact with the yelk, but the natatory fold is not developed.
"Eggs which had progressed a cousiderable way in development, so that the tail was somewhat more advanced than the stage last described, and which did not yet have the eyes pigmented, were also experimented upon at this time. In consequence it was learned that such might be suddenly transferred from the water in which they had previously been undergoing development to the damp cotton-cloth trays without injury from such sudden and continued exposure to an air temperature of 53° F. A most striking fact was that in such as had the choroid or pigmented coat of the eyes in process of development had the formation of the pigment arrested in correspondence with the general arrest of development observed.
"Returning to the eggs of the 8th June, these were examined June 11, 9 a. m. Development is still normal; the eyes are perfecting, but the perfectly normal blastoderm does not yet quite cover the vitellus, the diameter of the opening at the caudal pole, where the ritellus or yelk is still exposed, being equal to about one-serenth of the circumference of the egg. Temperature during the night $49.5^{\circ} \mathrm{F}$.
"Other lots of ova, taken on the 6 th and 7 th of June, and removed from the hatching.cones and put on the cloth trays in the refrigerator box, have been greatly retarded, but the development is normal, no abnormalities whatever having been observed. The lot taken on the Sth and put into the refrigerator on the 9th, after having been in the water for twenty-four hours, are well advanced, the tail being twice as long as the portion of the embryo's body attached to the yelk, and the fin-folds being nearly fully developed dorsally and ventrally.
"The eggs first put into the refrigerator on the evening of the 8th June now show a disposition to wrinkle, i. e., part with the water inclosed between the egg-membrane and the vitellus, and are collapsing. Perhaps this is due to evaporation."

Afterwards I abandoned the view that evaporation was the cause of the collapse and wrinkling of the egg-membranes. I am now fully convinced that it was due to the invasions of a fungus.
"Same lot of eggs of June 8 examined June 11, at 7 p.m. Blastoderm not yet quite but very nearly closed over the vitellus. Only a very small round opening at the tail of the embryo marks the point where its closure is abo't to take place. Temperature $53^{\circ} \mathrm{F}$. in refrigerator. Development normal in those which are not collapsing, after remaining seventy hours on the trays.
"June 12, 11 a. m., eggs of June 8 in refrigerator for the most part still alive. Temperature $52 \circ \mathrm{~F}$. Development has been normal up to this point; the blastoderm has closed over the vitellus, and the tail is just beginning to bud out as a rounded knob, as in twenty four to thirtysix hour embryos hatched in water ranging from 80° to $72^{\circ} \mathrm{F}$.
"Eggs of June 7, partially developed, have commenced to collapse in the refrigerator box. This appears to be due to the growth of the fungus: on the ova.
"June 13,10 a.m., examined the eggs put into the refrigerator on the night of the Sth. They are now nearly all dead. Those not affected with furgus mycelium still plump and normal in development; caudal knob but a little more prominent than when examined on the 12 th, at 11 a. m. Temperature in box $533^{\circ} \mathrm{F}$."

We may sum up the result of these experiments as follows:
After a little more than four and a hulf duys the ord of the shad exposea on cloth trays to a temperature of chout $52 \circ \mathrm{~F}$. heve not adranced further than they would have done in unter at a temperature of soo F . in "l hours, or in 30 to 36 hours in water at a temperature of 74° to $68^{\circ} \mathrm{F}$.

But after four and a half days our embryos hare not yet passed through half of their development, so that it would be safe to say that the period of incubation at this rate could be prolonged for nine days, or a period long enough to readily admit of the transportation of ora so retarded across the Atlantic to England, France, or Germanys. The bar to our complete success, howerer, was the rapid and fatai development of the fungus, which is probably a saprolegnious form identical with the one commonly productive of more or less loss in hatching ont ova in water in all the forms of apparatus which I have seen used. If attention were directed to a means of destroying the germs of these organisms I think success might be very confidently anticipated. To effect the complete destruction of the spores in the water used, and to prevent their ever coming into contact with the eggs, upon which they lodge, germinate, and grow, are the preventive measures to be adopted. These measures are, I believe, feasible, but may involve some tromble in their execution. The experiments of Tyndall and Pasteur have tanght us that it is possible to sterilize any fluid and render it absolutely free from all forms of orwanic germs by energetic boiling, taking care afterwards to exclude the germladen air by means of stoppers of cotton wool, or by hermetically sealing the vessel. Such a method would, of course, not answer in this case, as in sealing up a vessel containing the egss in sterilized water they would be smothered. The precautions which are practicable, however, are these: (1) Take care to scald and thoroughly sterilize the pans into which the fish are spawned; (2) take care to wipe the spawning fish clean, and, above all, avoid rubbing off the scales or to allow these to drop into the spawn or milt; (3) use only sterilized water to "bring up" or water-swell the eggs; (4) take care to scald out the refrigerator and cloth trays, so as to sterilize these of any germs ; (5) it would also be necessary to boil and sterilize enough water to keep the eggs and cloth trays moist during the process of retardation; (6) the sterilized water should be kept tightly covered in a clean ressel; (7) in managing the refrigerator care should be taken in opening and closing it, and in order to rentilate it the opeuing in the upper part of the chamber for the admission of air should be provided with a filter of cotton-wool ; (8) it would be necessary to scald and sterilize new cotton cloths, since these are almost always laden with germs. These precautions observed
with scrupulous care would insure success, as far as the danger from fungus is concerned, in conducting this mode of retarding development.

The second series of experiments were conducted at Washington, in association with Col. M. McDonald, this gentleman having kindly undertaken to aid in the work of experimentation, by means of various ingeuious forms of small and convenient hatching apparatus of his own devising, mostly made of glass. The method pursued consisted partly in treating the eggs for some time on the dry principle on trays, completing the incubation afterwards in the glass apparatus fed with water from a coil of tiu pipe kept under ice in a refrigerator. This enabled us to maintain the temperature of the water supply at a pretty constant point, ranging from 60° to $63^{\circ} \mathrm{F}$. It was necessary, on account of the distance which the eggs had to be transported, to use trays covered with damp cloths, on which the impreguated, water-swollen ova were carried in transit from the spawning grounds. The experiments were conducted in the basement of the Smithsonian Institution, where some of the trays of eggs were placed in a refrigerator and others put directly into the water at the temperature stated abore, using the McDonald apparatus. The results of these experiments were of greatinterestand of cousiderable value, as giviug us data for certain precautions to be observed in the conduct of future work and experimentation, as may be learned from the account of them which follows.

Colonel McDonald found it necessary to devise some ready means of transporting the ora from the spawning grounds over a score of miles down the Potomac. This necessity for an expedient proved that the transportation of ova by the dry method immediately after they had been water-swollen was possible, and that it would answer for long distances. To illustrate: some were kept on the trays in good condition for seventeen hours, in the ordinary temperature of the air, 70° to 80° F., prevailing at that season of the year (July). When the temperature of the air was up to $90^{\circ} \mathrm{F}$. it was found that the ova carried on trays and allowed to remain on them would tend to spoil quickly, as Bacteria and Vibriones were distinguishable on all the spoiled putrescent ova carefully examined under the microscope. It is therefore crident that in warm weather, in transporting ova by the dry method for long distances, it would be necessary to take certain precautions to prevent the access of the germs of such putrefactive organisms to the eggs. Essentially the same method of procedure recommended to guard against the introduction of the spores of the saprolegnious fungus to the eggs would apply here. Such precautions, however, would only be necessary where it was desired to retard the development for a long time, in case it was desired to transport the ova long distances. I think it would be found practicable to carry eggs on trays on damp cloths for a period of twentyfour to forty-eight hours without the least difficulty, provided a refrigerating apparatus was constructed in which the temperature could be kept at 60° to $65^{\circ} \mathrm{F}$.; below this temperature it would not be safe to go
for the ordinary purposes of transportation from the sparning grounds remote from the hatching stations. An important matter to attend to in the application of the above plan will be to effectively scald the cloths which are laid in the trays each time before they are again used, or else they will become the nidus of untold myriads of putrefactive germs which will lodge from the air in dust, and the retention and developmeut of which would be favored by whatever of mucus, dead eggs, egg-membranes, and blood might adhere to the cloths from one time to another.

The putrefactive germs alwars liable to be convered in the impalpable dust coustautly suspended in the air of houses in this latitude are consequently much more insidious in their approaches than the germs or spores of the saprolegnious fungus, which ordinarily causes a considerable loss of eggs in the hatching coues. The eggs attacked by the fungus in the water first turn white; the egg-membrane then shows a disposition to wrinkle or become flaccid; the mycelium or growing stage of the fungus is now in active progress. The mycelium is simply a felted meshwork of branching fungus cells, which appropriates the substance of the egg and completely envelops its membrane. In this ostage it is comparatively harmless. Afterwards from the felted mycelium threads clubshaped cellular prolongatious grow out, which radiate in all directions like the seeds ou a dandelion seed-head. In time each one of these clubshaped heads of the fungus, to the number of hundreds on every affected egg, develop a large number of spores or germs on the inside; directly the end bursts open and the minute spores swarm out of the club-shaped spore-case in great numbers. Each of the spores is capable of independent movement by means of long vibrating filaments attached to it at one end. These wander about in the water, lodge on healthy eggs, and grow on and destroy them, so it is important that infested eggs should be removed as soou as they make their appearance in the hatching apparatus. Kühne and Cohn have shown, howerer, that a temperature of $140^{\circ} \mathrm{F}$. is suthicient to kill the germs of Bacteria and other putrefactive organisms, and it is very likely that such a temperature or less than the boiling point of water, $212^{\circ} \mathrm{F}$., would be quite sufficient to clear off and kill any fungus germs which might adhere to the pans, trays, and cloths used in the transportation of ova.

The preceding account of the development, destructive growth, and maturation of the spores is from personal observations made on eggs infested with fungus in the hatching cones on the barges at Havre de Grace in 1880, aud it is only introduced here to direct attention to some possible means of staying or mitigating its ravages. I do not pretend to know the species by its botanical name. I leave its identification for the cryptogamic botanists; practically a knowledge of its life-history suffices for our purposes.

The following record of the most salient features of my observations, made in association with Colonel McDonald, is on the whole not as encouraging as the experiment made at Havre de Grace, Md., but it is of
S. Mis. $110-51$
value on account of the pathological changes or deformities which it was found were induced in embryos when they were subjected to too low a temperature. Only in the very late stages did they appear to be comparatively free from this influence tending to the production of deformities.

A lot of eggs which had the germinal disk biscuit-shaped and normally developed were placed on trays in the refrigerator in the evening, in an air temperature of $45^{\circ} \mathrm{F}$. They were found in apparently normal condition after twenty-four hours had elapsed, but had made little or no progress in development. After twenty-four hours more, or after exposure for forty-eight hours to an air temperature of $45^{\circ} \mathrm{F}$. on damp cloth trays, the germinal disk was found to be deformed and dead, being hel-met-shaped, with one or two constrictions or furrows running round it. The vitellus or yelk still retained its normal appearance, however, the vitelline spheres being clear, with the protoplasmic mesh-work enveloping them in a normal way. Of the same lot, those which were taken out of the air temperature of $45^{\circ} \mathrm{F}$. and put into water at $74^{\circ} \mathrm{F}$. hatched out normally in a good percentage, without deformities, showing that a sudden transfer to water at a much higher temperature was not attended with difficulties. The prolonged stay of forty-eight hours of the the same lot in the refrigerator at $45^{\circ} \mathrm{F}$. showed that complete arrest of development and death would supervene, and that a profound abnornormal change in the form of the germinal disk would result.

Another series of experiments with eggs kept in a temperature of $64^{\circ} \mathrm{F}$. showed the same tendency to retard development as was shown by the Harre de Grace experiments. Embryos of the same age in water at $74^{\circ} \mathrm{F}$. developed nearly twice as rapidly.

Other experiments showed that eggs which had been retarded in development at a temperature a little below $52^{\circ} \mathrm{F}$. for two days exhibited a tendency to develop abnormally. The abnormal phenomena which were noticed principally affected the notochord or embryonic axial cartilaginous rod, which had a tendency to pecome bent and twisted, while constrictions were also apt to appear, giving it an irregular, beaded, and generally misshapen appearance. Such deformities seemed to affect only the caudal portion of the notochord, the portion toward the head end of the embryo being normal in its appearance. In this way great deformities of the tail arose, so that in a microphotograph of an embryo two-thirds developed the tail, instead of being gracefully bent flatwise to one side, is abruptly bent downwards and then upwards, so as to be approximately V-shaped as seen from the side.

Sometimes the deformation of the tail would only be noticeable at its extremity; at others the deformed portion of the notochord would exteud some way forward over the yelk beyond the point where the tail originated, as it budded out from above the point where the blastoderm closed. In no instance was it observed that any deformity or disturb-
ance of the structure of the yelk took place, or that the epiblastic or hypoblastic coverings of the latter were distorted.

The epiblastic coverings of the tail, however, showed a tendency to crumple and become distorted. It was also commonly noticed tbat the epiblast showed a tendency to proliferate or throw out masses of cells in the form of irregular knob-like clusters. These increased rather than diminished in size as development progressed. No other structure of epiblastic origin took part in the tendency to become misshapen. The eyes, nasal pits, and ear capsules were normal in every respect. The heart pulsated more slowly than in embryos hatched in water of the usual temperature. This was probably due to the benumbing effects of the low temperature.

When deformed embryos were transferred to water of $74^{\circ} \mathrm{F}$. they showed no sigus of regaining their normal shape, but, on the contrary, the deformity seemed rather to be aggravated as development proceeded. This was the case also when transferred to water ranging from a temperature of 60° to $64^{\circ} \mathrm{F}$. Once established, any deformity in development seemed irremediable by any further stages which might be necessary to complete the developmental processes undergone in the egg.

In the light of these researches, taken in their entirety, it would therefore appear that 55° to $53^{\circ} \mathrm{F}$. is about the limit to which we can with safety reduce the temperature in which the ova of the shad will undergo their normal development. This temperature would give us, approximately, nine days as the longest period of incubation attainable, time sufficient, added to the four days required for the young toabsorb the yelk-sack, or thirteen days in all, to take embryos to be incubated on the route all the way across the Atlantic, or even as far as the Danube or Black Sea. Even this period may be somewhat extended, since it is possible to retard the absorption of the yelk-sack of the young fish by keeping them in water of 60° to $65^{\circ} \mathrm{F}$. A temperature of $55^{\circ} \mathrm{F}$. would probably not be injurious at this stage. I have kept the joung in water at $38^{\circ} \mathrm{F}$. for half an hour without apparent injury. They had been hatched only a short time before. The cold would benumb them, and they would lie quietly at the bottom of the ressel until restored to activity as they were warmed up in water of over $70^{\circ} \mathrm{F}$., to which they were at once transferred without harm. The muscular masses at the sides of the body were benumbed, as indicated by the quiescent behavior of the embryos. Tissue metamorphosis would be hindered by such a fall in the temperature of the water. We saw that the cold caused the pulsations of the heart to diminish in rapidity. This abatement in the activity of the forces concerned in the transformation of the stored protoplasm of the yelk into the structures of the growing embryo would be very marked in consequence of subjecting young shad to a temperature of $55^{\circ} \mathrm{F}$. By this means, reasoning from what we know of the other phases of development when exposed to like temperatures, the
absorption of the yelk might be retarded so as not to be completed for six or seven days. This would give us, added to the maximum period of incubation of nine days at $53^{\circ} \mathrm{F}$., a total of fifteen days, a period cer: tainly long enough for all practical purposes in the transportation of young fish for stocking purposes.

I would take this opportunity to remark that it must, howerer, be borne in mind that the growth of an embryo in the egg is different from the growth of the young animal after it has been hatched and begins to feed. The fish embryo has a store of food, which is inclosed in the yelk-sack, which can scarcely be said even to be transformed; it only suffers a change of place, as particle after particle of the yelk substance is removed and built up into the structures of the growing embryo. This transfer is effected through the blood, and also by apposition from below. The young growing animal in feeding must truly transform the protoplasm which it eats; it must digest it ; it is carried into the blood as chyle, and so to all parts of the body to repair the waste incident to the exhibition of life. The two processes, upon careful comparison, are wholly unlike. A fall in the temperature diminishes the rate at which this transfer of the yelk substance to the structures of the growing embryo takes place. The frequency of the pulsations of the heart decreases; consequently the yelk substance which is in contact with vascular sinuses below the embryo is not taken into the blood as rapidly. The result of all this is that the absorption of the yelk is impeded and made to minister to the development and growth in size of the soung fish for a longer period.

A few other points and I have done with this part of the subject for the present. Most steamships now use fresh water distilled by an apparatus specially constructed for the purpose. This water, provided the most ordinary care was exercised in the storage, would be well fitted to use in the process of retardation. The eggs carried on the trays ought to be occasionally sprinkled with pure sterilized water. The distilled water supplied aboard steamships answers this description fully, and almost everything is accordingly ready to our hands. To reduce the temperature of the water used in the latter stages of development, when it would be necessary to transfer the eggs to water, say on the eighth day, or after they had been for eight days on the damp trays, it would be desirable to avoid contamination of the water from the ice. To avoid this the water should pass through coils of block-tin pipe, placed in tubs, and kept filled with cracked ice; thus we could lower the temperature to at least 60° to $58^{\circ} \mathrm{F}$. The same water might be used several times over, because with care it would be so slightly contaminated with organic matter that putrefactive processes could not go on to any hurtful extent. The low temperature would also tend to arrest any tendency to putrescence. How to maintain a uniform temperature in the refrigerators, so as to guard against dangerous fluctuations of temperature, appears to me to be a matter of some difficulty,
because sudden meteorological changes, such as we sometimes experience in this latitude, would influence the working of the apparatus. The best regulator would probably be a faithful attendant. The control of the temperature of the water flowing through coils surrounded with ice is, in the light of experience, a comparatively easy matter, as it has been found that in a coil of a given length the fluctuation in the temperature will not vary more than three or four degrees, if a little attention is bestowed in regulating the flow and keeping a good supply of ice packed around the coils.

The prevention of leakage or loss of water from the apparatus would be entirely overcome, both on board cars and steamships, by the adoption of the closed glass hatching-jars, of rarious forms, devised by Colonel McDonald. They appear to be cheap, and are very economical of room. There can therefore be no objection to the iutroduction of the apparatus into vessels and railway express cars on the score that it makes oljectionable slop and slush on the floors or decks.

The foregoing, it appears to me, is an approximate solution of the problems which we set out to answer. Whether we are right another season's work ought to enable us to decide practically and finally, as we can now take up the subject intelligently. The preliminary experimental work has been completed.

LATER OBSERVATIONS ON THE RETARDATION OF THE DEVELOPMENT

 OF THE OVA OF THE SHAD.The following data supplement and contirm in a somewhat remarkable mamer the arguments put forth above. The facts there recorded were the results of experiments carried out with the help of apparatus specially designed to artificially lower the temperature of either the air or water in which the eggs were hatched. The value of the present series of observations depends eutirely upon the fact that no artificial means were resorted to for the purpose of lowering the temperature, but that the eggs experimented upon, obtained, as they were, as early as the 9th of April, were, in consequence of the then prerailing low temperature of the water, subjected to no extraordinary or artificial condition arising. from the use of a complex water or air cooling apparatus. The temperature of the water of the Potomac during the progress of the incubation of the eggs in questiou was at times as low as $48^{\circ} \mathrm{F}$., but as a rule the water then in use in the McDonald hatching.jars, the apparatus utilized in the experiment, fluctuated only between 50° and $56^{\circ} \mathrm{F}$., and even then very gradually, as the variation during any one period of twelve hours was rarely more than $1^{\circ} \mathrm{F}$. There was a gradual but very slight rise in the temperature of the water from the beginning to the end of the experiment, which covered seventeen days. This gradual rise was covered by $6{ }^{\circ}$ or $7 \circ \mathrm{~F}$., as already stated. The average temperature of the water for the whole period was $533_{4}^{30} \mathrm{~F}$., which,
as we see, was only a little above the "danger point," $52{ }^{\circ} \mathrm{F}$., if we may so call it, as indicated by my observations made in association with Messrs. McDonald and Clark last year. The results of this experiment have shown us that it is possible to retard the development of shad ova so as to prolong the period of incubation for a period five times that normally occupied in the process in the height of the spawning season, or for almost fifteen days. During my somewhat extended observations on the eggs of this species no such length of time of incubation has been recorded, nor has any one, to the best of my knowledge, recorded the fact that under such conditions of temperature the progress of the evolution of the embryo was perfectly normal, as was the case in the instance now to be described. Several persons have insisted that shad ovadeveloping in too low a temperature would be found to be imperfect, especially the eyes, which, it was said, did not apparently develop at all. The lowest temperature in which I have seen shad-ova develop normally was $49.5^{\circ} \mathrm{F}$., as recorded in my report of the experiments during the spring of 1881. Neither in those nor in the embryos which are the subject of this paper was any abnormality observed in the development of the eyes or optic vesicles.
Now for the history of the progress of the experiment and the ova. The latter were taken at one of the Potomac stations organized upon the plan proposed by Colonel McDonald. They were impregnated on the 9 th of April at 7 p. in., and brought to the Armory on trays and spread out on damp cloths by Spawntaker Jones. They were placed in one of the McDonald jars on the morning of the 10th of April, but, unfortuuately for the fullest fruition of our hopes, during the night, owing to an accidental occurrence or to the meddlesomeness of some irresponsible busy-body, too large a supply of water was turned on, causing the largest proportion of the eggs to be thrown out by way of the escape-pipe of the jar. What were then left, amounting to probably two or three thousand, had to suffice for the material for this account of their development.

On the 11th of April the temperature of the water was $57^{\circ} \mathrm{F}$. It had been about the same or a little lower on the 9th and 10th; the water of the Potomac, from which they were obtained at Ferry Lauding, was ou those dates as low at $48^{\circ} \mathrm{F}$. On the 12th the thermometer indicated a temperature in the hatching apparatus ranging from 50° to $51.5^{\circ} \mathrm{F}$. On the 13th the temperature ranged from 51° to 520 F . This was the fourth day, and sketches taken from the eggs at this time showed that the blastoderm was just about to close, a condition ordinarily attained in a temperature of $74^{\circ} \mathrm{F}$. in somewhat less than twentyfour hours. On the 14th of April the temperature was 520 to $54^{\circ} \mathrm{F}$; on the $15 \mathrm{th}, 53^{\circ}$ Fahr.; on this, the sixth day, the tail began to bud out. On the 16th the temperature was the same as on the previons day, and the tail had by this time, the seventh day, grown to about one-third the length of that of the just-hatched embryo. On the 17th, the tem-
perature was $53.5^{\circ} \mathrm{F}$; on the $18 \mathrm{th}, 51.5 \circ$ to $52 \circ \mathrm{~F}$; on the 19 th , 53° to $53.5^{\circ} \mathrm{F}$.; development still normal. On the 20th the temperature ranged from 530° to 54°; on the 21 st , 55° to $55.5^{\circ} \mathrm{F}$., and about this time, or on the twelfth day, the eyes began to show the first signs of pigmentation, becoming a shade darker than hitherto, verging toward brown. On the $22 d$ the temperature of the water was $56 \circ$, falling to 55.50 F . On this, the thirteenth das, a ferw began to hatch; the eyes were now fully pigmented and normal in their development. On the 23d the temperature of the water was 55.50 to 5.40 F . On the 24th the temperature was from 54° to $54.5^{\circ} \mathrm{F}$. During the $23 d$ and 24 th days of April the hatching continued, most of the embryos having ruptured their inclosing membraues on the 24th of April, or the fifteenth day of incubation. On the 25̃th the temperature ranged between 54.5° to $55^{\circ} \mathrm{F}$, and on this date, or the sixteenth day, a few of the ova still remained unhatched. On the 26 th the temperature was $55^{\circ} \mathrm{F}$.; all of the ova were now hatched, and no abnormalities of any sort were noticed. The embryos, however, were for the most part lost, owing, as I think, to the circumstance that the water was allowed to flow too rapidly and violently through the hatching-jar.
The behavior of the hatching.jar was most admirable, but would have been still better had there been a larger quantity of eggs put into the apparatus. The most meritorions feature of the apparatus is the almost entire non-development of the saprolegnious fungus, which causes so great a mortality in some other forms of hatching contrivances in which all of the ova are not in continual movement. The very gradual, gentle, and continual rolling movement of the ova upon each other in the jar apparently prevents the spores of the fungus from adhering. The cleanliness of the apparatus is also to be commended, whereby the use of skim-nets for cleaning is dispensed with, while the material of which it is made-glass-enables one to watch the progress of development very satisfactorily from the outside of the jar with a hand-glass or pocket lens of moderate power.

On the seventeenth day of the experiment the hatched embryos were in the condition of those normally developed at 70° to $75^{\circ} \mathrm{F}$., the yelk being ovoidal, clear, and plump. At the rate at which the development progressed it would take five times as long to absorb the bulk of the yelk of an embryo in a temperature of $53.75^{\circ} \mathrm{F}$. as at $75^{\circ} \mathrm{F}$, or about twenty-five days. This period, added to the prolonged time of incubation at $53.75^{\circ} \mathrm{F}$, would cover a space of forty days, or more than twice the time required to carry embryo shad to the farthest confines of Europe. The probability therefore, is that we have exceeded the lowest temperature practically required for this purpose, $55^{\circ} \mathrm{F}$. being a much more favorable and less dangerous temperature than that prevailing during the successful experiment of which we have just given a detailed account.

ON THE RATIONALE OF RETARDATION.
Every developing ovum is made up of certain cellular elements, each one of which is provided with a central nuclear body, which appears in the light of recent researches to be the directive dynamic center of all further changes involved in the successive cleavages undergone by the cellular elements constituting that portion of the egg immediately concerned in the formation of the embryo. The assumed disappearance of the nucleus of the egg has been proved not to take place in the act of impregnation, in not only invertebrate ova but also in vertebrate ones as well.*

The hypothetical assumption of a Cytode or Moneron stage of development in the ova of all forms by Haeckel does not, therefore, appear to be sustained by facts. These and other known facts, such as the recent observation of the metamorphoses of the nuclei of Rhizopods in the act of division (multiplication) also throws doubt on the existence of the Monera themselves, as Hensen has suggested. \dagger Nuclear networks inside of cells, as well as intraunclear networks, seem to be of almost universal occurrence, according to the researches of Flemming, Klein, the Hertwigs, Pfitzner, Fol, and others on animals and man, and by Strasburger on plants. Indeed, so strikingly is this true that Strasburger has been tempted to utter the dictum omnis nucleus e nucleo, which in English means thatall nuclei originate from pre-existing nuclei, just as formerly Schwann expressed himself to the same effect in relation to the genesis of cells. Such intracellular granular networks extending outwards from the nucleus through the protoplasm enveloping it may be seen well developed in the coarse vesicular connective tissue cells of the American orster, of which I have mounted preparations. Vastly more complex intranuclear reticuli are found in the nucleus of the unripe eggs of the common slipper-limpet, Crepidula glauca. I have seen the granular threads in these undergoing the most wonderful active changes of form. Spindle-shaped nuclei, the opposite poles of which were joined by granular threads, have been observed in the eggs of Elasmobranch fishes by Balfour. These were in the act of division, or in the diastole condition spoken of by Flemming. ©llacher has seen grauular threads radiating from the nuclei embedded in the cells of th. germinal disk of the trout in its early stages of development. These

[^102]nuclear transformations consequently occur in the cellular elements of tish embryos. These observations are further supported by the fact that both Brooks and myself have observed undoubted evidence of the rythmical nature of segmentation in fish-ova, which ought to be the fact, since it has been shown that the metamorphoses of the nuclei are likewise rythmical in character.

The metamorphoses or changes in the form and structure of the nuclens, are in large part connected with the genesis of new cells, in the successive acts of cleavage or segmentation; their metamorphoses doubtless also play an important part in the functions of rejurenescence and depuration of cells, or in the general functions, repair and waste, as well as in the excretory and secretory functions of organs. But in retardation we have nothing to do with these latter kind of nuclear metamorphosis; we are only concerned with the alternate elongation and contraction of the nucleus attendant upon the process of segmentation or the fissiparous genesis of new cells, in which the pre-existing nucleus of a cell, about to divide, elongates, becomes severed into two parts, which become, respectively, the nuclei of two new cells. In the process of cleavage it has been shown that during the act of cleavage the nucleus of the cleaving cell elongates, becomes spiudle-shaped; that the opposite poles of the spindile become, respectively, the nuclei of the two new cells resulting from the completed process of segmentation. During the active stage the two poles of the spindle are joined by a barrel or spindle-shaped series of granular threads. When the segmentation is about to be consummated these threads, half way between the poles, are found to have developed nodes or swellings; these mark the point throngh which the segmentation furrow will pass, so as to separate the old cell into two new ones. The segmentation furrow, accordingly, passes at right angles across the long axis of the spindle-shaped nuclens. As soon as the segmentation has been effected the granular threads are withdrawn from the nodal points at the place where the segmentation furrow severed them, and are finally retracted into what were formerly the two poles of the spindle. These poles are now the nuclei of the two new cells, and as soon as the grammar threads are withdrawn towards these new polar nuclear centers the latter become globular and pass into the resting stage. Afterwards they both elongate and go through the same process as here described in the course of subsequent cleavage. This alternate elongation of melei into a spindleform and contraction into aspherical form in the process of clearage has been called by Flemming the diastole and systole of the nucleus. They accompany the rhythmical phenomena of segmentation and give us a rational and philosophical interpretation of the phenomena of seg. mentation. It must, I think, be plain to any one that this is essentially a dynamic process, in which the Artisan of organization almost makes His methods of work visible.

It also affords a scientific explanation of the phenomena of retarda-
tion. Inasmuch as we have lowered the temperature of the air and water, the media in which the ova of the shad underwent their development, and find that it is retarded in consequence, we must naturally conclude that the rate of segmentation, upon which the rate of development directly depeuds, has been in some way interfered with or impeded in its progress. Since we also saw that the rhythmical metamorphoses of the nuclei were directly concerned in the process of segmentationthat in them the vis essentialis, essential force of segmentation, really resides-it appears to me that we are also really bound to conclude that the fall in the temperature has affected the acticity of this vis essentialis of the unclei, which are retarded in their metamorphoses, in consequence of which the rate of segmentation and development is retarded. This fully and clearly accounts for the resulting prolongation of the normal period of development when the temperature of the media in which the ova undergo their evolution is lowered as much as is consistent with their regular, healthful incubation.

If retardation is possible it ought also to be possible to accelerate derelopment. For centuries it has been the practice to accelerate and maintain the growth of plants in hot-houses and forcing-pits during inclement seasons of the year. This is proof enough, as far as the vegetable kingdom is concerned, that acceleration of the processes of growth, which simply means that the acceleration of fissiparous cellular proliferation or segmentation is here possible. Its philosophy is the same in principle as that of retardation; acceleration is the converse or reciprocal principle as opposed to the former. According to a table given by Mr. R. E. Earll, in his paper on the development of the cod, in the United States Fish Commissioner's report for 1878, page 724, we learn that the minimum time of incubation for the ova of this fish is thirteen days, temperature of sea-water $40^{\circ} \mathrm{F}$.; the maximum time, according to the same authority, is fifty days, temperature of sea-water $31^{\circ} \mathrm{F}$. Our own experience at Wood's Holl last winter taught us that the development of the ova of the cod was capable of being accelerated, for those in a glass cone near a warm store hatched out in a shorter space of time (sixteen days) than any others. Our power to accelerate the rate of development of the cod may be of use, as we may thereby be enabled to hatch out a large percentage of ova in a very few days. Whether the young would be as vigorous as those incubated in the natural way remains to be learned.

Acceleration, like retardation of development, is accomplished by influencing the rate of the rhythmical metamorphoses of the nuclei of the cells of the embryo. Accelerate the rate of these metamorphoses and segmentation is hastened so as to cause development to proceed more rapidly. The stimulus is heat, a mode of motion, and we are forced to believe from what has preceded that the nuclear metamorphoses are simply the specific modes of motion of the cellular life centers. The molecules of the nuclear spindles, reticuli, \&c., are made to move more
or less actively in obedience to the fluctuations in the activity of this external stimulus. All this goes without sayiug, however, that the protoplasm, which in the case of every cell iuvests the nucleus, may not also share in the process; it is but natural that it should, because free nuclei, independent of any investment of protoplasm, are unknown to histologists.

Inasmuch as the grauular particles of nuclear fibers and reticuli exhibit certain modes of motion which appear to be characteristic in the course of segmentation, and since we find that heat, admittedly a mode of motion, accelerates or retards the motion of living nuclear matter in its segmentational metamorphoses, are we not warranted in assuming both of these kinds of motion to be in a degree correlated aud interdependent? The significance of the views here set forth in their bearings upon general physiology and pathology would appear to warrant the belief that we may yet be able to solve some of the knottiest problems in biology. Their practical significance in relation to the problems which have presented themselves for solution to the Fish Commission will also be apparent.

APPENDIX D.

PROPA(:ATION OF F()OD-FISHES.

XVII.-REPOPULATION OF THE WATER-COURSES IN BELGIUY.

By Baron De Selys Longchamps.*
[Member of the Royal Academy of Belgium and president of the Senate.]

Belgium has finally decided to attempt the repopulation of her watercourses. Our river fisheries, formerly so rich, especially in salmonoids and crawfish, are in greater danger than those of almost any other country. The causes of destruction are manifold, and they can be partially overcome only by great and persistent efforts.

Our two great rivers, the Meuse and the Scheldt [Escaut], differ in their character, and consequently produce different fish. From Antwerp downward the Scheldt becomes an arm of the salty sea, and the tide can even be noticed above that city. In this portion of the river the existence of fish does not seem to be endangered by the pollution of the waters. They catch there, at the proper seasons, the Alosa finta, the Osmerus eperlanus, and the Coregonus oxyrhynchus; but the last-mentioned fish cannot be very common, for in the Brussels market I have only found it in rare cases, and mixed with the Osmerus eperlanus.

The eel (Anguilla vulgaris) and the small plaice (Pleuronectes flesus) are very common there at all times. The sturgeon (Acipenser sturio) as. cends as far up the river. In its upper parts and its tributaries towards Flanders, Hainault, and Brabant the Scheldt is fearfully polluted by the factories of Roubaix, Turcoing, Ghent, and Brussels. Formerly it was full of fish, although the fish suffered greatly from the pollution of the waters caused by the retting of flax in those parts of Flanders where this industry is carried on. ${ }^{1}$

The Meuse was celebrated for its salmon (Salmo salar), which ascended this river in order to spawn in its fresh-water tributaries which flow into it from the Ardennes and other mountainous regions on its right bank. The shad (Alosa communis) used to ascend the Meuse in spring

[^103][1]
in enormous numbers, but rarely higher than Huy. Most of the rivers which Hlow into the Meuse, the Vesdre, Ourthe, Hayoux, Bocq, Lesse, Semoi, and their tributaries, were full of trout (Salmo fario) and ombres (Thymallus vexillifer), not to mention other food-fish which are found throughout the whole middle portion of Western Europe.

This paradise of fishermen has well-nigh been destroyed. To meet the needs of boating and navigation towards France great river improvements have been made along the entire course of the Meuse. The dams in the river prevent the greater part of the salmon from ascending it. Those fish which succeed in clearing these obstacles are scarcely able to do it except by favor of high tides and occasional inundations.

As regards the shad, which not long ago gave rise to truly miraculous fisheries near the city of Liège, ${ }^{2}$ it is stopped by the dams found farther down the river; and I do not think that it will be able to clear the salmon ladders which are going to be established, let us hope under better conditions than those which have hitherto been tried. We may not indulge in the flattering hope of seeing the waters of the Vesdre again rendered sufficiently pure to support fish. They have been too strongly poisoned by the washing of wool and the dyeing establishments and cloth manufactures of Verviers.

It might not be impossible, however, to arrive at a satisfactory solution of the question by leading the polluted waters of Verviers as far as the Meuse through channels running parallel with the Vesdre. Works of this kind are now constructed, at a moderate expense, for leading the juice of the beets from the places where they are grown and first ground to the sugar-refineries, a distance of several miles. As a work of this kind on a larger scale we may mention the collecting channel of the Senne, at Brussels, and also the works constructed in England to lead the refuse water of London into the sea. This last-mentioned work has been so successful that recently trout have been caught in the Thames, where they had long since disappeared. In the water-courses of the right bank of the Thames, where the water has remained pure, trout is found, but unlicensed fishing is there carried on on a large scale.

As regards the tributaries of the right bank of the Meuse, the industries which there kill the fish are manufactures of chemicals, sugarrefineries, and to a less degree distilleries.

Excellent laws have been made for regulating the fisheries and for suppressing the mischievous destruction of fish, but as it is out of the question for us to restore the salubrity of the waters by taking measures which would render industry impossible, we must appeal to science if we wish to obtain the means for rendering healthy the poisoned waters of our rivers.

When pisciculture came into vogue, almost forty years ago, it was

[^104]thought people had solved the problem of the repopulation of our rivers. The founding of the Society of Acclimatization in France, and the establishment of the piscicultural station at Hiiningen gave the first impetus. Prior to this the King of the Belgians, Leopold I, had successfully engaged in fish culture on his estates in the Ardennes, following the old methods of the German foresters.

In 1853 M. Ernest von den Peereboom had spoken in favor of fishculture in the Chamber of Representatives. Experiments which were made at the time, but in waters very little suited to the purpose and with defective apparatus, did not prove successful.

Some time afterward a more important society of fish-culture was formed, and serious efforts were made. This society, however, only existed a short time. The mistake had been made to embrace in its work too many branches of this new science, and to attempt, moreover, the culture of oysters and salt-water fish at Nieuport, which place did not possess all the conditions necessary for such culture. People finally entertained the idea, which was widely spread at the time, that trout and even salmon could live in all the pure waters of the country and prosper, even when shut up and in a state of confinement. Hence the mistakes and finally the dissolution of the society, which was composed in great part of persons whose property was not in the region where salmonoids can live.

Although for twenty years the question may be said to have slept, from a practical point of view it has at least not been buried, for several times during this period it has given rise to public discassions and various publications. It is necessary to give a brief historical sketch of the phases through which this question has passed before its active awakening.

In 1865 and 1866 the provincial council of Brabant appointed a commission whose duties were to study the best means for purifying the water-courses, and to find means for repopulating our brooks. The late M. de Gronckel prepared the report of this commission, and stated in it that in this matter the most powerful interests centered, which it has became the duty of the authorities to protect, to harmonize, and conciliate as much as possible, above everything the interests of health and security from inundations. To this must be added, he says, a question of alimentation and national wealth, viz, that of preserving and multiplying the fresh-water fish.

The "Free Society of Emulation" of Liège, at the instance of my regretted friend, Theodore Lacordaire, professor of zoology at the Unireasity of Liège, set a prize for tue best answer to the following question: "To determine the causes which for the last tuentyyoars hatre brought about a degeneration of fish in the rivers of the prorince of Liege, and to indicate the means for remedying this state of affuirs."

The prize essay, which was printerl, came from the pen of the late Charles Lehardy de Beaulieu, a well-known and highly esteemed en-
S. Mis. $110-52$
gineer and economist. He attributes the decrease of fish to the excess of consumption over production. He strongly recommends pisciculture and a proper regulation of the ownership of water-courses, the use of which he would like to see placed in the hands of associations whose interest and perseverance would finally succeed in discovering the various causes by which the water becomes impure. He thinks that, forced by sheer necessity, people would endeavor to utilize as manure, or in some other way, the hurtful substances, which at present they find convenient to throw into the river. He cites the example of the city of Reims, where the soap water which has served for cleaning wool is used in the manufacture of gas 3.

In the same year (1866) I was a member of a commission appointed by the Government for studying on our coasts various questions relating to the sea-fisheries. This commission expressed the wish that a similar inquiry might be made relative to the fresh-water fisheries. In December, 1866 , I read, at the meeting of the division of scieuce of the Royal Academy of Belgium, an essay On the River Fisheries in Belgium, which was published, accompanied by notes and documents. ${ }^{4}$ It would be useless to give an analysis of it in this place, for it would only be a repetition of a statement of facts, which are but too well known to the public, relative to the canses of the depopulation of our rivers and the means to lessen their evil effect. The portion of the evil which must be attributed to the pollution of the water has grown considerably since that time.

The draft of a fishery law which, as I announced in a postscript, had been prepared by the Government, had to wait for fourteen long years before it was discussed and roted on by the Chamber of Representatives.

In 1879 M. Emile Gens, doctor of natural sciences and professor at the College of Verviers, published a very interesting little brochure on the protection of fresh-water fish in Belgium (De la protection du poisson d'eau douce en Belgique). The author, after having sketched in brief oatline the deplorable condition of our river-fisheries, proposes the following measures for remedying the evil: (1) Prohibition of fishing in all rivers and canals during the months of April and May: ($\left(^{2}\right.$) prohibition of fishing from September 15 to January 1 in all water-courses on the right bank of the Meuse (it is here that the salmonoids live), permitting, however, the fishing of salmou after November 15, the spawning having then taken place; (3) severe fines for employing dynamite and Cocculus indicus ; a systematized supervision of the rivers. (4) prohibition of the sale of Cocculus indicus in drug-stores; (5) prohibition of all night fishing; (6) prohibition of fishing in streams by means of

[^105]weirs or dams which lay dry for a time a portion of the bed; (7) regulating the size of meshes so as to allow all fish measuring less than 15 centimeters to escape from the nets; (8) establishing salmon-ways wherever obstructions exist of such a nature as to prevent the migration of fish; (9) prohibition of fishing with the hand, \&c.; (10) measures to prevent as much as possible the pollution of the waters by maunfactures established on their banks ; (11) serious efforts at organized fish-culture; (12) committees of surveillance, furnished with the necessary authority to prohibit fishing locally and temporarily, in the interest of the repopulating of the rivers.

In the following year (1880) M. Gens was commissioned by the Gorermment to visit the Berlin Fishery Exposition, and attend the Piscicultural Congress which opened its sessious in that city in April. His report was published in the Moniteur belge for September 19, 1880.

Our honored eolleague M. Raveret-Wattel has in the Bulletin Mensuel de la Société d'Acclimatution de France produced such an excellent and complete work that I deem it unnecessary to give an epitome of M. Gens's work on the same subject. I will confine myself to pointing out some of its details. The author mentions the fact that several essays had been written on the problem of rendering the water from manufactures harmless to the fish in those parts of the river where such waters are emptied. It is well known that the King of Saxony had set a prize for the answer to this question, which is of great interest to us in Belginm. M. Gens also mentions a simple means, which had been spoken of at the congress, of rendering small water-courses, such as those which drive mills, pure. If the dam is constructed on an inclined plane, it is sufficient to place a beam obliquely across this place, which is certainly inexpensive, and should be done in all cases. In chapter 4 he takes up the principles laid down in his pamphlet of 1879, mentioned abore, and supplements his former statement by giving a list of nearly all freshwater fish found in Belgium, which he, according to their nature, classes in three groups: those which are common to our two regions, those which are found in the mountainous region, and those which are found in the plains.

In a special chapter M. Gens treats of piscicultural establishments.
Belgium did not possess a large sheet of water combining purity, coldness, and depth, where it might be hoped that the salmonoids of the Swiss lakes could be acclimatized. To-day this is different. In order to check the temporary inundations of the Vesdre, and at the same time to supply water to the city of Verriers, whichat certain seasons suffered from the want of it, there has been constructed from one mountain to the other, near the month of the Gileppe, at the height of 241 meters above the level of the sea, a gigantic dam, 47 meters in height, which when filled bolds $12,000,000$ cubic meters of the waters of that sub-Alpine river, which receives all which flows into this dam from a forest of about 4,000 hectares called the "Hertogenwald," and from the marshy
regions called the "Hautes.Fagnes," which at their highest point rise to a height of 700 meters. The Lake of Gileppe, which has thus been formed, has an area of 800,000 square meters, and the water in the dam has a depth, varying from 25 to 45 meters.

Here I would advise the introduction of the great lake trout (Salmo lacustris) and the trout of the Alps (Salmo salvelinus), of the Coregona fera, and of certain American salmonoids which do not go into the sea, and which would find all possible levels for spawning from the dam to the river flowing in its pebbly bed and feeding the lake.

Our minister of public works commissioned M. de Clercq, chief engineer of bridges and roads, to prepare some propositions as to the best mode of repopulating the navigable rivers. The remarkable work of this skilled engineer was published in 1881.

The propositions which he makes for remedying the depopulation of our waters are classed in the following order:
(1.) To prevent the pollution of the waters.
(2.) To prohibit the destruction of sedentary fish during the spawning season, and to regulate the catching of migratory fish.
(3.) To construct fishways at all dams in the Meuse and its tributaries which are too high for the salmon to leap over.
(4.) To arrange spawning-places where the fish find all the conditions favorable to reproduction.
(5.) To engage in practical fish-culture as far as the salmonoids are concerned.

These various points are carefully treated by a man fully competent to do justice to the subject. I will quote what he says relative to the pollution of the waters, because this is, in my opinion, the principal obstacle in the way of repopulation:
"There can be no question of prohibiting industries which are closely interwoven with the general welfare of our country, but it is important to prohibit the throwing of substances into the water without having been treated in the most efficient manner for freeing it from those substances which are hurtful to fish, and at least as much so to other animals which drink this polluted water. The pollution cannot be considered as sufficiently weakened unless the waters are rendered fit for fish to live in."

There is another chapter in this work which will repay careful perusal, the one in which M. de Clercq describes in detail the construction of good salmon-ways, and indicates the defects which make some salmonways worthless. We must here point out, in a humbler sphere than the mauagement of great rivers and the interests of the salmon fisheries, the obstacle which many water-mills present to the repopulating the small streams. I refer to those mills which are placed near small watercourses in plains which have but a slight grade. When the mill is not placed on a channel branching off from the river, but blocks the river entirely, it interrupts the circulation of the fish. The level of the water will under these circumstances vary constantly: sometimes, when the
mill is at rest, it will be very high ; at other times, when all the water is utilized by the mill, it will be so low as almost to lay the river dry. Under these conditious the reproduction and the very existence of fish becomes impossible. If one takes account from another point of view, of the enormous harm which is done to rivers by the fact that the water in these water-courses is nearly always kept at too high a level, thus making the rivers marshy ; if furthermore it is remembered that mills render temporary inundations more dangerous, that great damage is done to agriculture, and finally that public health is endangered, it is to be desired that the water-mills of which I have spoken should as soou as possible, be replaced by wind-mills, or, still better, that they should obtain their motive power from a small steam-engine. ${ }^{5}$

By the provisions of the "Law of the river fisheries," passed by our Chambers towards the end of the year 1881, the supervision and preservation of these fisheries is placed in the hands of theadministration of forests. The right of fishing in navigable rivers and canals belongs to the Government, which farms out the fisheries, thus deriving a profit therefrom. Fishing with a line held in the hand, however, is free to all citizens. In other water-courses than those mentioned above the people living on the banks possess the right of fishing. The season when fishing is allowed and the implements to be used are determined by the Government, which also regulates the sale of tish. Fishing is allowed at all times to proprietors of ponds and reservoirs whose waters have no natural communication with the rivers. Boatmen are prohibited from having on board any fishing apparatus but lines. As regards the throwing into the water of hurtful substances, when not done with the object of destroying fish, it is regulated by the "Law on water-courses," previously passed by the Chambers. As, unfortunately, the carrying out of these regulatious is in the hands of provincial and communal authorities, which are elective, much remains to be desired. In my opinion the central Government ought to have charge of this supervision.

After the law ou river fisheries had been passed a member of the division of scieuce of the Royal Academy of Belgium thought that a favorable time had come for encouraging scientific researches and practical experiments in repopulating the polluted water-courses. He placed at the disposal of the Academy the sum of 3,000 francs as a prize to be given, in 1884, to the author of an essay which would indicate a satisfactory solution of this problem.

At the end of this article I shall give the conditions of this competition as they are found in the transactions of the Academy, with the view of directing to it the attention of scientists and practical pisciculturists who might feel inclined to compete for the prize.

Although the conditions mention certain local questions which spe-

[^106]cially concern Belgium, it is my opinion that any one capable of answering the principal questions could easily put himself in possession of the necessary information. I am moreover convinced that many parts of France are situated like Belgium as regards rivers whose depopulation is caused by the pollution of the water.

It was on the 1st of April, 1882 (a very appropriate day for discussing the fish question), that the Academy, by a great majority, passed the resolution to invite competition for the prize referred to above. It was not a public session, but I beliere that I shall not be guilty of an indiscretion if I state in a general manner the principal objections raised against this proposition by conscientious men of science. One of them thought that this would draw the Academy into an administrative sphere, which was not, properly speaking, its domain, and that it would look as if the Academy was under the impression that the laws of the land were not properly executed, especially that of May 7, 1877, "ou water-courses not suitable for navigation and rafting," which imposes fines on persons who throw into the water substances liable to pollute or clange it. The law also provides that owners of water-courses who have in this manner had their property injured may bring the matter into court.

Another member of the Academy remarked that he had made many researches with the view of finding a suitable and practical method for purifying the waters from manufactories, but that all these researches had failed to lead to a satisfactory end. He mentioned the evaporation of polluted water which certain manufactures are compelled to introduce, which process, however, produces a smoke having an odor which becomes almost unbearable for persons living in the neighborhood. He moreover thought that with our elective system few persons would dare to strictly carry out the necessary measures. He finally felt certain that the question was full of dangers on account of the exigencies which would arise if the present condition of the waters was made widely known, and it was stated at the same time that so far no remedy had been found for this deplorable condition.

A third member asked that statistics be prepared showing the amount of capital invested in the industries in question, aud that this sum should then be compared with the value of the fish destrosed by waters polluted by manufactures. The author of the proposition has answered, in substance, that the scientific solution of this problem comes very properly within the province of the Academy ; that there is no idea of finding fault with the administration, as, on the contrary, it was intended to call science to its aid to furnish it with the practical means of attaining the object for which the law was intended. He calls attention to the fact that the programme invites research for the purpose of finding means of purifying the water, which would make it possible for fish to live in it, with the express reservation that these remedies shall not endanger the existence of manufactures. In his opinion the value of the manufactures and that of the fish which they destroy by render-
ing the water impure are not, strictly speaking, comparable, because manufactures are pricate enterprises whilst water-courses and fish are of general use to all the inhabitants of the regions through which the rivers flow.
Soon after the Academy had passed the resolution referred to we rereived the programme of the Great International Exposition of the Products and Apparatus of Fisheries which was to open in Londou on the 1st May, 1883. It has given me great satisfaction to find in this programme two paragraphs which agree entirely with the demands of the Belgian Academy. Under Class IV (pisciculture) we read (division 39): "It is desired to show a system for destroying the hurtful effects to fish of rivers and streams impregnated with water from sewers, chemical and other products, a system illustrated by models and designs." In division 40 we read the request for the solution of a problem intimately connected with the one just mentioned, viz, "physico-chemical researches of the quality of fresh and sfa water which is hurtful to aquatic aninals," \&c.

The Belgian Government, recognizing the necessity that our country should not remain behindhand in this great movement which is going on everywhere, has appointed a commission of six members to study the questions relating to the repopulation of our water-courses.
This commission is composed of Lieutenant-General Baron Goethals, president; Baron de Selys-Longchamps, president of the Senate and member of the Academy; Willequet, member of the Chamber of Rel. resentatives from Ghent; Edouard von Beneden, professor of the University of Liège, member of the Academy; De Clercq, inspector-general of bridges and roads, Brussels; Emile Gens, doctor of natural sciences, professor at Verviers; Leyder, professor of the Agricultural School of Gemblous; Mousel, inspector of waters and forests, Arlon ; Denis, merchant pisciculturist, Brussels; and Bernard, chief of division in the department of the interior, secretary. This commission, appointed October 27,1882 , has already held sereral meetings, at each of which different communications have been made, and have led to discussions having for their object the study of the proper measures which should be taken to satisfy the wishes of the Government. We have reason to believe that this activity will not relax, and that active work will soon be begun.

Here follows the programme for competing for the prize, adopted by the Academy :

ROYAL ACADEAY OF SCIENCES, LITERATURE, AND FINE ARTS OF BELGIUM.

Class of Sciences-Extraordinary competition for 1884.

The Government has proposed and the Chambers have passed a law which has for its object the preservation of fish aud the repopulation of our rivers.

The principal obstacle in the way of attaining this end is the pollution of the water in the small streams which are not suitable for navigation or rafting, which are corrupted by solid or liquid substances thrown into the water by various manufactures, and which are hurtfal to the reproduction and existence of fish.

The Academy appeals to science to aid in the accomplishment of the objects had in view by the authorities. Accepting the proposition of one of its members, who has generously placed at its disposal the sum of three thousand francs, it requests that a thorough study should be made of the following questions, both chemical and biological:
(1.) Which are the special substances in the principal industries which when mingling with the water of small streams render them incompatible with the existence of fish and unfit for the use of man and beast.
(2.) Prepare a list of the Belgian rivers which have become depopalated from this cause, indicating the industries peculiar to each of the rivers, and give a list of the food-fish which used to live in these rivers before the establishment of the manufactures.
(3.) Indicate practical means for purifying the water before it leaves the manufactories, so as to render it fit for fish to live in, without endangering the industries, by combining the aids afforded by the construction of clearing-basins, by filtering, and by the employment of chemical agents.
(4.) Make special experiments relative to the substances which in each industry canse the death of fish; and also relative to the degree of resistance which each kind of food-fish can offer to its destruction by the causes above mentioned.

The treatises must be written legibly, and should be addressed, prepaid, to M. Liagre, permanent secretary, at the Palace of the Academy, not later than October 1, 1884. The Academy requests that all quotations should be exact. Authors will, therefore, indicate the edition and the pages from the works quoted. Illustrations will only be admitted when drawn by hand. Authors will not sign their name to their treatise, but will simply sign by some mark, which they will reproduce in a note containing their name and address. Failure to comply with this formality will prevent a person from obtaining the prize. Treatises sent in after the above-mentioned date, or those whose authors make themselves known in any way whatever, will be excluded from the competition.

The Academy deems it proper to call the attention of authors sending in treatises to the circumstance that from the time when such treatises are submitted to the Academy they are and will remain deposited in its archives. Authors, however, can have copies of their treatises made, at their own expense, by addressing their request to the permanent secretary.

XVIII.-A STATISTICAL REVIEW OF THE PRODUCTION AND DISTRIBUTION T0 PUBLIC WATERS OF YOUNG FISH, BY THE UNITED STATES FISH COMMISSION, FROM ITS ORGANIZATION IN 1871 T0 THE CLOSE OF 1880.

By Chas. W. Smiley, [Chief of the Division of Records, Statistics, and Publications.]

The following tables were prepared with a primary view to furnishing the Tenth Census with suitable summaries of the work done by the United States Fish Commission. The data have been obtained from the records of the United States and State Commissions and by official correspondence, in the name of Prof. Spencer F. Baird, with the persons to whom he ordered eggs or fish to be sent. The tables have been prepared with great care and labor. They are as full and accurate as possible under the circumstances, and may be considered as very exact. Much of the clerical work upon these tables, as well as upon the index thereto, which follows, has been performed, under my careful supervision, by Mr. Carl Brandes, Mr. S. S. Alden, and Mr. C. E. Latimer, each of whose honest and painstaking labor I desire to make public mention of.
These tables consist of four series, marked A, B, C, D.

PRODUCTION.

A. This table gives the stations operated for shad-hatching from 1872 to 1880 , inclusive. It shows a total of 41 stations operated in the 9 years. with a total production of $102,388,350$ shad, of which nearly $44,000,000$ were released where hatched, and nearly $54,000,000$ transported to other waters.
B. This series of three tables relates to the production of California salmon. The first table shows the disposition made of $50,761,000$ salmon eggs, $4,000,000$ of which were sent abroad, $15,000,000$ hatched and returned to the McCloud River, and $31,000,000$ sent overland to the Eastern States. The second table shows the success in hatching these $31,000,000$ eggs, the data being arranged by years, while the third table shows the same data arranged by States. These show an average loss of 25 per cent.

DISTRIBUTION.

C. This series of six tables summarizes by States the distributions of (1) shad, (2) California salmon, (3) Schoodic salmon, (4) Penobscot sa!mon, (5) whitefish, and (6) California tront, during each year from its commencement to 1880 , inclusive.
D. This series of six tables corresponds to the precedings series of six, and gives in detail the items which are summarized there.
States Fish Commission, $18 \hat{\sim}$ to to 1880 , inclusive.
[Note.-At some of these stations much additional work has been done by State authority, and which is therefore not included berein]

Do．
400,000 started for Ger－
many ；lost on the way．

$\begin{aligned} & 8 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 90 \end{aligned}$	8용ㅇㅇㅇㅇㅇㅇㅇㅇㅇ Oi＝	$\left\|\begin{array}{c}8 \\ 8 \\ 15 \\ 15 \\ 10 \\ 0 \\ 0\end{array}\right\|$
$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		
		$\begin{aligned} & 8 \\ & 8 \\ & \text { H } \\ & \text { G4 } \end{aligned}$

 888
88
$0-10$
Sin
$=0$

$=0$ | $\overline{8}$ | 88 |
| :---: | :---: |
| 0 | 8 |
| 0 | 8 |
| 00 | 0 |
| 0 | 0 |
| 0 | 0 |
| \vdots | \vdots |
| \vdots | \vdots |

 8
8
2
5
8
8.
8
8
8
8

8 8 8 8 0		8 8 8 0 0 0 0 0
约	88888880808080	8
$\begin{aligned} & 15 \\ & 20 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { が } \\ & \underset{\sim}{\circ} \end{aligned}$

¢	$8_{8}{ }^{11}$
$$	－

$\begin{aligned} & 888 \\ & 88 \\ & 8810 \\ & \text { 8- } \\ & \text { nin } \end{aligned}$

 $\left|\begin{array}{c|}\hline 8 \\ 0 \\ 0 \\ 0 \\ 8 \\ 0 \\ 0 \\ 0\end{array}\right|$

$7,864,600$	$20,761,400$

May 12	May 20	Pamunkey River ．．．	Fish Haul，Va	F．Mather
June 11	June 25	Hudson Riser	Coeymans，N．Y	N．Y．commissio
July 2	July 30	Connecticut River ．	South Hadley Falls，Mass	C．C．Smith
May 26	June 7	1＇otomac River．．．．．	Moxley Point，Md ．．．．．	J．Mason．
July 8	July 16	Delaware River	Point Pleasant，Pa	N．J．commissio
May 15	May 25	Potoraac River．	Freo Stone Point，Va ．．．．	J．Mason．
May 18	June 5	．．．do	Jackson City，Va ．．．．．．．．．	II．W．Welcher
May 21	May 29	．．．．do	Ferry Landing，Va	．．．dlo ．．．．．．．．．．
$\begin{aligned} & 1876 . \\ & \text { May } \\ & \hline \end{aligned}$	$\begin{gathered} 1876 . \\ \text { May } 24 \end{gathered}$	Potomac River	Ferry Landing，Va	J．W．Milner
May 9	May ： 2	Patuxent River	Bristol Landing，Md	W．H．Hines
May 10	May 31	Chesapeako Bay ．．．．	Carpenters Point，Mr	W．F．Wroten
May L_{6}	June 3	Susquehanna River ．	Swan Creek，Md．．	W．H．Hines
May 28	June 14	．．－do ．．．．．．．．．．．．．．	Havre do Grace，Md	F．N．Clark
Tune 3	June ？l	do	Fishing Battery，Md	W．Hamlen
June 1	June 10	Chesapeake Bay．．．	Swan Creek，Md	W．F．Wroten
June 12	June 20	Susquebanna River．	Iavre de Grace，Md	W．H．Hines
July 3	Aug． 5	Comnecticut River．．	South Hadley Falls，Mass．	A．D．Hagar．
$\begin{gathered} 1877 . \\ \text { May } \end{gathered}$	$\begin{aligned} & 1877 . \\ & \text { May } 20 \end{aligned}$	Susquehanna liver	Harre de（irace，Md	I＇．B．Fergusor
May 21	June 10	．．．do ．．．－．．．．．．．．．．	Spesutie Narrows，Md	do
June ${ }^{2} 6$	Aug． 6	Connecticut Rirer	South Halley Fails，Mass．	J．W．Milner
$\begin{aligned} & 1878 . \\ & \text { Apr. } \end{aligned}$	$\begin{gathered} 1878 . \\ \operatorname{May} \\ 2 \end{gathered}$	Roanoke River	Avoca，N． C	J．W．Milnur
May 15	June 4	Chesapeake Bay．．	Spesutie Narrows，Md	T．Hughlett
May 23	June 4	Potomac River．．．．	Steamer Lookout．．．．	T．B．Ferguson．
$\begin{gathered} 1879 . \\ A p r .18 \end{gathered}$	$\begin{gathered} 1879 \\ \text { May } 14 \end{gathered}$	Roanoke River		S．G．Worth
$\text { May } 16$	June 14	Chosapeake Bay	Spesutie Narrows，Md	T．B．Ferguson
Јии๐ 2	June 14	．．．．do．．．．．．．．．	Old Bay Fishery，Md．	－．do ．．－．．．．．．
${ }_{\text {May }}^{1880 .}$	$\begin{aligned} & 1880 . \\ & \text { June } 15 \end{aligned}$	Chesapeake Bay	ve de Grace，DI	uson
May $\%$	June 27	Potomat Liver	Steamer Lookout ．．．	．．lo ．．．．．．．．

RECAPITULATION.

Year.	Extreme limits of dates.	Number of stations.	Number of shad hatched by United States Fish Commission and released where they were hatched.	Transported by United States Fish Commission to other waters of the United States and there planted.	Number lost in attempting to tiansport in the United States.	Number hatched for miscellaneous purposes.	Total product of shad each year.
	June 30 to July 7	2		859,000	1, 196, 000		2,055,000
1872	Apr. 20 to July 22	7	1, 848,000	1,155, 000	20,000		$3,023,000$
1873	Apr. 24 to Aug. 15.	3	1, 530,000	3,031, 000	15,000	100, 000	3,676,000
1874.	Apr. 14 to July 30	9	9,385,550	2, 670, 000		400,000	12, 455, 550
1875.	May 8 to Aug. 5.	9	3,643,500	2, 686, 900	244, 600		$6,575,000$ 11, 183, 300
1877.	May 8 to Aug. 6	3	$6,639,300$	4, 544,000			17, 105, 500
1878	Apr. 1 to June 14.	3	8, 025,500	8,140, ${ }^{10} 000$	1, 252,500		16, 842, 000
1879	Apr. 18 to June 14.	3 2	$5,587,000$ $7,864,600$	$10,002,500$ $20,761,400$	177,000	670, 000	29,473, 000
.	棫		43, 523, 450	53, 849, 800	3, 845, 100	1,170,000	102, 388, 350

B.-Table I.-Table showing the number of eggs of Californit samon (salmo quinnat) taken at the United States station, MeCloud River, Baird, Cali-
I.-HATCIIED AND PLANTED ON PACIfIC COAST

	ㅇํㅇํㅇํ 웅클

II-CONSIGNED TO COMMISSIONERS OF STATES.

B.-Table I.-Table showing the number of eggs of California salmon, $\mathfrak{f c}$.-Continned.

B. -Table II.-Trble showing the success in transporting and hatching 31,193,000 eggs of California salmon (Salmo quinnat) taken from McCloud River, California, and consigned to commissioners of Eastern States, 187:-1880.
I.-ARRANGED BY YEARS.
1572.

State to which consigned.	Number of eggs sent fiom McCloud River.	Received at Stato hatcheries.	Loss in hatching and transporting to waters.		Foung actually introduced.	
			$\begin{aligned} & \text { Number } \\ & \text { lost. } \end{aligned}$	Per cent.	Number.	Per cent.
New Jersey .	30,000	30,000	24,000	80	6,000	20
	30,000	30,000	24,000	80	6,000	20
1873.						
Connecticut	130, 000	110.000	89,000	89 10	21,000 45,000	11
Maine ...	50,000	48,000	21,000	44	27,000	56
Massachusetts	50,000 120,000	48,000 80,000	2, 2,000	3	78,000	97
Michigan	120, 0000	600, 000	50,000	8	550, 000	92
New Jersey.	$\stackrel{2}{2} 0,000$	220,000	20, 000	9	200, 000	91
New York	170,000	170,000	169,000	99	1,000	95
Pennsylvania	170,000	40,000	2,000	5	38,000	95
Total.	1,380, 000	1,318,000	358,000	27	960,000	73

1874.

1875.						
	240, 000	240,000	40, 000		200,000 460,000	83 96
Colorado....	480,000	480, 000	20,000 21,300	$2{ }^{\frac{4}{4}}$	460,000 58,700	73
1llinois	80,000 300,000	80,000 300,000	16,000	5	28t, 000	9.
Iowa..	300,000 560000	5iv, 006)	291, 236	5	268, 764	$4 \times$
Maryland.	560,000 80	80, 000	5, 000	6	75,000	94
Massachusetts	80,000 800,000	800, 040	32, 000	4	768, 010	9
Michigan, I.	928 80000	988.000	235,300	24	752,200	16
Michigan, ${ }^{\text {a }}$ -	400, 000	400,000	100,000	25 9	-273, 000	91
New York	400,000	515, 600	27,000	1	513, 000	99
Peunsylvania.	4810, 2000	120, 100	5,000	1	115, v00	96
Rhode Island.	160, 000	160, 000	40,000	25	120000	
Utah	${ }^{3} 30,000$	320, 000	160,000	50	160.000	5
Virginia	$80,000$	$80,000$	40,000	50	40,000	50
Total	5, 608, 000	5, 423, 000	1,034,836	19	4,388, 164	8

[^107]Consigned to H. H. Thomas, Randolph, N. Y.
${ }^{3}$ Loss in hatching cotimated.
${ }_{4}$ By F. N. Clark, on account of U. S. Fish Commissiou.
B.-Table II.-Table showing the success in transporting and hatching 31,193,000 eggs, δ c.Continued.

Stato to which consigned.	Number of egge sent from McClond River.	Received at State hatcheries.	Loss in hatching and transporting to waters.		Eoung actually introduced.	
			Number lost.	Per cent.	Number.	Per cent.
Colorado	300,000	300, 000	50, 000	17	250, 000	83
Connecticut	500, 000	500, 000	22, 314	5	477, 2\%6	95
Itlinois, I	100, 000	100,000	80,000.	80	20,000	20
Illinois, 11	150,000	150, 000	12,000	8	138,000	92
Kentacky	200, 000	200, 000	153, 775	76	46,225	24
Marsland......	1, 210, 000	1,100,000	148, 000	13	95こ, 000	87
Massachusetts, I	200,000	200,000	20,000	10	180,00	90
Massachnsetts, Il 1	10,000					
Michicran ${ }^{2}$......-	500, 060	500,000	99, 100	20	- 400,900	80
Minnesota	300, 000	300, 000	152,900	51	147, 100	49
New York	90, 000	60, 000	16,800	28	43, 200	72
Pennsylvania	515,000	515, 000	38,000	7	477,000	93
Tennessee ${ }^{3}$	100, 000	-				7
Utah	50, 000	50,000	12,500	25	37,500	75
Wisconsin	100, 000	100,000	22,600	23	77,400	77
Total	4,325,000	4,075,000	828, 389	21	3,246, 611	79

1877.

Illinois, ${ }^{4}$	50,000	50,000	5,000	10	45,000	90
Ilinois, II	50,000	50,000	20,000	40	30,000	60
Illinois, III	50,000	10, 0 0	2 , 000	58	21,000	42
Iowa....	100,000	100, c.00	10,000	10	90, ru0	90
Kansas	100, 000	100, 000	1,000	1	99,0011	99
Kentucky, ${ }^{5}$	150,000	150,000	78,500	52	71,500	48
Kentucky, II	5,000					
Maryland...	400,000	380, 000	91, 400	24	2-8,600	74
Massachusetts	200, 000	200, 000	20,009	10	180,000	90
Michigan :	150, 000	100, 000	16,000	16	84, 000	84
Minnesota	250, 000	167, 500	28,850	17	138,650	83
Nebraska ${ }^{6}$	10, 000					
New Hampshire	105,000	100, 000	8,500	9	91,510	91
New Jerney	250, 000	250, 000	25, 000	10	2.5,000	90
North Carolina	350,000	350, 000	116,000	33	234, ,180	67
Ohio	250, 000	250, 000	2.5, 000	10	2:5,000	90
Pennsylvania, I	75, 000	75,000	37, 560	50	37, 500	50
Pennsylvania, II	200,000	200, 000	60, 000	30	140, 000	70
Utah	100,000	100,000	25,000	25	75, 000	75
Virsinia	100,000	100, 000	8, 100	8	923,100	92
West Virginia	10,000	10,000	125	1	9, 77.5	99
Wisconsin.	320,000	320,000	120,000	37	200, 00:	63
Total	3,275,000	$3,102,500$	724,875	23	2,377, 6 ± 5	77

1878.

[^108]${ }^{5}$ Industrial Exbibition, Lonisville, Ky.
${ }^{6}$ Consign ${ }^{\text {d }}$ to J. G. Romaine, South Bend, Nebr.
${ }^{7}$ Consigned to Dr. W. A. Pratt, Elgin, 111.
${ }^{8}$ By F. N. llark, account U. S. Fish Commission.
${ }^{9}$ Consigned to J. G. Romaine, South Bend, Nebr.
B.-Table II.-Table showing the success in transporting and hatching $31,193,000$ cogys, fu.Continued.
1.-ARRANGED BY YEARS-Continued.

18:-Continued.

1879.

Illinois	100,000	100,000	10,000	10	90,000	30
Kansas	100,000	100, 000	4,000	4	96, 000	96
Maryland	400, 000	400,000	46,577	12	353, 423	88
Minnesota	200,000	200, 000	25,000	12	175, 000	88
Missouri, I	200,000	200,000	14,000	7	186, 000	93
Missouri, II ${ }^{2}$	10,000					
Nebraska	400, 000	400, 000	100,000	25	300.000	75
Now Jersey	300,000	300, 000	20, 571	7	279,429	93
North Carolina	200, 000	200, 000	40,000	20	160,000	80
South Carolina	200,000	300, 000	113, 000	37	187, 000	63
Weat Virginia	150,000	125,000	11,250	9	113,750	91
Total	2,260,000	2, 325, 000	384,398	17	1,940,602	83

RECAPITULATION BY YEARS.

Years.	Namber of egas sent from McCloud liver.	Receised at state hatcheries.	Loss in hatching and transporting to waters.		Young actually introduced.	
			$\begin{aligned} & \text { Number } \\ & \text { lost. } \end{aligned}$	Percent.	Number.	Percent.
1872.	30,000	30,000	24,000	80	6,000	20
1873.	1,380, 000	1,318,000	358,000	27	960,000	73
1874.	4, 105, 000	3,720,000	1,081,390	29	2, 638,610	71
1875.	5, 608, 000	$5,423,000$	1,034, 836	19	4, 388, 164	81
1876.	4, 325, 000	4, 075, 060	828,3-9	21	3,246,611	79
1877.	3, 275, 000	3, 102, 500	724,875	23	2, 377,625	77
1878.	6,560,000	$6,420,000$	2, 024,903	32	4, 395, 097	68
1879	3, 450,000	3, 658,000	1, 106, 674	29	$\because, 551,326$	71
1880	2, 260,000	2,325,000	384,398	17	1,940,602	83
	31,193, 000	30,071,500	7,567,465	25	22, 504, 035	75

[^109]
B.--Table III.-Table showing the success in transporting and hatching 31,193,000 eggs, fo.-Continued.

II.-ARRANGED BY STATES.

[^110]
B.-TABLE III.-Table showing the success in transporting and hatching $31,193,000$ cggs, \&f c.-Continned.

II.-ARRANGED BY STATES-Continued.

${ }^{1}$ Boston Aquarium, for exhibition.
${ }^{2}$ By Frank N. Clark, account of U.S. Fish Commission.
${ }^{4}$ Hatched for Missouri at Anamosa. Iowa.
${ }_{6}^{5}$ Consigued to J Ed. Humes, Versailles, Morgan County, Mor; all lost in transit.
${ }^{6}$ Consigued to J. G. Romaine, South l3end, Nebr.
B.-Table III.-Table showing the success in trausporting and hatching 31,193,000
eggs, \&c.-Continued.

${ }^{1}$ Consigned to H. II. Thomas, Randolph, N. Y.
${ }^{2}$ Consisned to M. S. Fodgers, Knoxville, Tenn,
${ }^{3}$ Loss in hatchiug estimated.

13.-Mable III.-Table shouing the success in transporting and hatching 31,103,000 eggs, \&c.-Continued.

IL.-ARRANGED BY SI'ATES-Continned.

Fears.	Number of oggs sent from MeClond River.	$\begin{aligned} & \text { Received } \\ & \text { at State } \\ & \text { hatoheries. } \end{aligned}$	Loss in hatehing and transporting to waters.		Foung actually introduced.	
			Numbor lost	Per cent.	Number.	Per cont.
1877 26.-WEst Vihginla.						
1887...	10, 000	10,000	125	1	9,875	09
1878.	500,060	5.5, 000	25,000	5	500,000	95
1879	150, 000	125, 000	11,290	9	113,750	91
1880	150,000	125, 000	11,250	9	113,750	91
Cotal	810,000	785, 000	47,625	6	737, 375	94
1874 27.-WIECONSIN.						
1874.	80,000 80,000	100,000 80,000	39,000 40	39	61, 000	61
1876	100, 000	100,000	22, 600	23	40,000 77,400	77
1877.	220,000	320,000	120.000	37	200, 000	63
1878.	220,000	230, 000	30,000	13	200,000	87
3879.	200,000	300, 000	48,800	16	251, 200	84
'Total	1,100,000	1,130,000	300, 400	27	829,600	73

RECAPITULATION IBY STATES.

Total.

Loss in hatching and transmorting to waters.		Young actually introduced.	
Nimber lost.	Poremat.	Number.	Per cent.
92,100	16	472,900	84
191, 71.1	13	1, 198, 286	87
302,300	39	567, 700	61
cif, 800	8	1,013,200	92
$\because 0,1000$	5	380,000	95
23,	66	117,725	34
77,300	47	87,700	53
1, 175, 601	29	3, 264,390	71
259, 000	36	469,000	64
618,979	16	3, 249, 021	84
1,751, 7.50	6.4	875,750	36
63, 1100	16	336,000	84
110,000	18	490,000	82
[5), 000	20	200,000	80
37, 9 (\%)	8	429,540	92
2330, 371	14	$2,099,629$	84
114.790	15	835, 210	85
369, 500	33	748, 600	67
127.500	26	372, 500	74
483, 500	20	1,901,500	80
40,1009	18	180,000	82
$121,000$	(*) 30	$\begin{gathered} 212,000 \\ (\approx) \end{gathered}$	(*) 64
114,500	18	510,500	82
358, 590	28	$y_{2} \mathbf{6}, 509$	72
47, 625	6	737,375	04
300,400	27	809 , 900	73
7, 567,465	25	22,504,0:5	75

[^111]C.--TAble I.-Summary table of the number of shad (Alosa sapidissima) introduced into the waters of the different States by the United States Fish
[Note.-Nearly all of these fish were not only introduced but also hatched by the United States Fish Commission.]
Total.

 0
0.
0.
0
0
10
8
8
0
0.
0.
0
0

IRECAPITULATION，18ヶ2－1880，LY゙CLUSIV゙E．

Hatched and returned to same waters	43，523，450	
Transported and planted in new waters	53，849， 800	
	－	97，373，250
Lost in efforts to transport in the United States		$3,845,100$
Lost in efforts to transport to Germany		500，000
Used for experiments．		670，000

Grand total of shat hatched artificially by United States Fish Commission
$102,388,350$

Note．－The figures in this and the following five tables are made to agree with those in the six specific lists of distribution which follow under 1 b ．F or leat，the re－ turns were not complete when these tables were made up，and hence the figures are somewhat too small．They should be corrected by means of the various tables in the report for that year．
the he different States, as specified in
Fromern Fromeara Fromercs Fromergs From egge Fromeggs Fromeggs Fromeggs Fromeggs Total

C.-Table II.- Summary table of the mumber of Schoodir sulmon (Sinho salar subs. sebagos introduced into the waters of the different Niates by the l'nited States F'ish Commission, 1873-1880, inclusive.

State.	$\begin{aligned} & \text { From } \\ & \text { orgs of } \\ & 1873 . \end{aligned}$	From egge of 1874.	$\begin{aligned} & \text { From } \\ & \text { egga of } \\ & 1875 . \end{aligned}$	$\begin{aligned} & \text { From } \\ & \text { egigs of } \\ & 18.6 \text {. } \end{aligned}$	$\begin{aligned} & \text { From } \\ & \text { ogrgs of } \\ & 18 \pi . \end{aligned}$	$\begin{aligned} & \text { From } \\ & \text { ogrs of } \\ & 1878 . \end{aligned}$	$\begin{aligned} & \text { From } \\ & \text { egrs of } \\ & 1879 \text {. } \end{aligned}$	'Total.
California					39, 950			39,950
Counecticut		.	135,000	62, 500	16,5,000	178,715	91,000	632,215
Illinois					4,400			4,400
Indianta.					25,000		10,000	35, 000
Lowa. .					$\cdots 0,000$			20,000
Kansas						20,000	93,000	113,000
Kentucky					5,500	,	3, 0	5,500
Maine	2,000		250,000	110, 000	497,200	449,500		$1,308,700$
Maryland					40,081	26,500	16,900	83,481
Massachuset			195, 000	151,200	218,000	221, 000	176, 000	961,200
Michigan.	2,000		20,000		-3,500		20,000	71, 500
Miunesota		4,750		7,750	8,000	48,500		69,000
Now Hamps		,			20, 000	10!,000	61, 400	185,400
New Jersey					58,000	66,794		124,794
Ner York....					2,000 15,500	39,000		41, 15000
Ohio......			34,000		12,000	6,000		15,500 52,000
Pennsylvania					48,494	35,500	18,500	102, 494
Khode Island.			19,600		3,500			29, 100
South Carolina							15,000	15, 000
Vermont Vircinia			40,000		24,000			64, 000
Werginia V . ${ }^{\text {Wrgini }}$		2,500		10,500	40,300 8,500	27,350 44,419	23, 500	101. 150
Fisconsin			38,000		5, 060	37,000		80,000
Total	4,000	7,250	731,600	341,950	1,295,925	1,304,278	525,300	4,210,303

C.-Table IV.-Summary table of the number of Penobseot salmon (Salıno salar) introduced into the waters of the different Slates by the United States Fish Commission, 18721850 , inclusive.

C.-Table V.-Summary table of the number of white-fish (Coregonus allons) introduced into the waters of the different States by the United States Fish Commission, 1872-1880, inclusive.

State.	1872.	1873.	1874.	1875.	1876.	1877.	1878.	1879.	1880.	Total.
California.	25,000	25,000		20,000		300, 000		565,000		935,000
Indiana					100, 000					100.000
Iowa.					100,000					100,000
Michigan					1, 470,000				200,000	1,670,000
New Jersey								90, 000		90,000
Ohio......					600, 000					600,000
Wisconsin				100,000	100, 000					200, 000
Total...	25,000	25,000		120,000	2,370,000	300,000		655,000	200, 000	3,695,000

C.-Table VI.-Summary table of the mmber of California trout (Salmo irideas) introduced into the waters of the different States by the United States Fish Commission, 1880.

Recapitulation of young fish introduced into waters of the United States by the Cnited States Fish Commission, 1872-1880, inclusive.

Table	I. Shad.	102,388, 350
	II. California salmon	33, 922, 960
"	III. Schoodic salmon	4,210,303
"	IV. Penobscot salmon.	3,643,416
"	V. White fish	3, 695, 000
"	VI. California trout	44,002

In addition to the above there were carp distributed in 1879 and, 1880 to the number of 61,410 ; for the particulars of which see Report of 1880 , pp. xli and xlii.

Tributars of

Mobile River． Mobile River Pensacola Bay	

Alabama River
Ohoctawhatcheo．River． Ehectamlia Miver ．．．．．．． South Hanhey Falls，Mass
Sprutie Nariows，Mtd．指兄

袁营坴 \qquad水ご

Waters in which fish
were placed．

 Lonur Isiand sound
Nauratuck River
， Thames River
Chusapeakio Bay
Chesapake Bay．
 Delaw ware lbay
Chesaprato Bay
 Chemapako Buy
Chesapeake Bay亚 $: ~$
五

Date．
uly 11,1

D.-Table I.-Distribution of shad from 1872 to 1880, inclusive-Continued.

By whom transferred.	Estimate number of fish.
William P. Sauerhoft	335, 000
William P. Sauerhoff	50,000
d. W. Schuermann	110, 000
O. W. Schuerman	60,000
W. Schuerm	20,100
C. W. Schuermann	100, 000
C. W. Schuermann	200,000
Suterhoff \& Hamlen	400, 000
Sauerhoff \& Hamlen	200,000
C. W. Schuermann	600,000
Clark and Schuermann	800,000

F. N. Clark. $\quad 400,000$ 8
8
8
8
8
8 450,000

150,000 \begin{tabular}{l}
8

\hline 8

8.

8.

\hline 0.

\hline
\end{tabular} 8

8
8
8 175, 000 8
8
8

8 \begin{tabular}{l}
8

8

8

\hline

\circ

\hline 8

\hline 0

\hline
\end{tabular} --------- -Where fish were hatched.

Potomac Station Potomac Station Potomac Station Potomac Station
Potomac Station Potomac Station Potomac Station
 Potomac Station
 Potomac Station Potomac Statiou Potomac Station Potomac Station Potomac Station Potomac Station Potomac Station
 Potomac Station Potomac Station Potomac Station Potomac Station

\＆్

Juno 8，1880	Georgetown，D．C	Littie Falls of Potomac River．	Chesapeake Bay．．．
Juno 12， 1880	Washington，D．	East I3ranch of Potomac Hiver．	Potomac liver
Tuno 12，1880	Georgetown，I）．C	Little Falls of Potomac River．	Chesapeako Bay．．．
Juno 13， 1880	Washington，	East Branch of Potomac River．	Potomac River
May 2， 1879	Jefferson Co	Ocilla Iiver	Gulf of Mexico
M＂8 2，187！	Midway，Fla	Ockolockoner River	Gulf of Moxico
July 22，1075	liome，Ga	Coosa liver	Alabama livor
Jane 2,1 ¢ic	Athanta．	Chattahouch	Apalachionda liver
Junt \because ご心	Macou，Gia	Ocmulgee Riy	Altamahat River．．．
Juna 3，1876	Milledsevil	Oconee liver	Altamaha liver
May 2e， 1577	Macon，（it．	Ormulireo Ci	Altamaha Liver
May 31， 1877	Milladgevill	（beoneo lisur	Altamalia İiver
Junn ！， 1877	€ovinglon，（\％a	Ocmulveo River	Altamaha licer
July 13， 1877	Columbun and H^{2} ent Point，Ga．	Chattahoochee River	Apalachicola Xiver
July 13，1：37	TYest Point，Ga ．．．．．．．	Chattahoochee	A malachioola River
Apir ： 5,1878	Macon，（ia	Ormuldee Riv	Altamiha liver
A10\％，25， 1878	Albans，${ }^{\text {ca }}$	Flint liver	A palachicola Rivor
Niny 85.1878	Montezuma，Ga	Flint Rive	Apahachioola liver
Juna 9，1ヶ7s	Curteravild，（ia	Etowah lisar	Coosa livery
A 1 \％ $2 \times 8,1899$		Chattahoochee Itiver	Apalachicola River
\＄19，	Sturtur	Allapalia N	Suwanee liver
	Ousles，（ia	Litto Live	Suwaneo River
May 3，1－7：	M：anh，（i．1	Oemmlereo liver	Altamalia liver
May 7，1879	Covinston，Ga	Vlumamhatulen Inver	Ocmalire liser
May 7，1879	Conyers，Cia		Ocmulge liver
May 29，1879	Hahoraham Coum	J12＊alo口 Siva	Savannah Rive
M1ay－20， 1879	Gi，imestilly，Cia	Ohattahooch	Apalachicola Rivor
May 29， 1879	lessatra，（ia	（＇oomat liver	人 lahrma Firce
31 yy 25， 1880	Crecne Count	Oeones liver	Altamaha liver
May 25，1880	Covington，（ia	Y ${ }^{\text {dlow }}$ River	Oemulgeo River
M，			
％2－，1心s0	Boltomville，Ga	（hasttahoorhen	Apalachicola Kiver
－tune 13，18， 0	Milleagevillo，	Oconces River	Atammethativer
Jumo 13，1580	Abauy，${ }^{\text {a }}$ a	Flint Livor	Apalachicola Li
Jume 16，1873	sonth（＇hicazo，Ill	f＇almmet	Lake Michisam
J111 ！1021	Rockfort，Ill．	Rosk liver	Mississipni liver
duly 31， 1 こij	Fiockfond， 111	Rock Riven	Miswisspmpl Rival
Ma，${ }^{\text {a }}$ 27，1878	F＇ardow，111	K゙：ashask	Mismissippi livor
Junce 2， 1878	Hockiford，H1	Rock Siver	Misminsippi liver
Jıno 9，1878	Chameston，	Embaras İi	Wabash linver
June ！，18i8	SIarion，Ill ．．．．．	Misaisainema Ri	Wabash River
July 4，1870	Indianapolis，Ind	Whitu liser．	
Turie $30,187 \%$	Logramport，	Wabash livor	（Hion liver
1．Tune 30， 1874	Logansport，Ind	Wabanh Rivur	Ohio River
，July	Indianapolis，Ind	Whito diver	Ohiol lirer
July 30， 1874	Ellinart，Ind	Saint Josepla River	Lakn Mirhigan
Suly 31， 1874	Columbus，Ind	White River	Ohio İver．．．．

		$\begin{gathered} \stackrel{n}{\Xi} \\ \stackrel{\text { En }}{\Xi} \end{gathered}$

 $\cdots \times \infty$

Kentucky

Arnea，N．C	11．E．Onim
Aroca，N．C	H．E．Quinn
Aroca，N．C	H．E．Quinn
Aroca，N，C	II．E．Qnt
South Hadley Falls，Mass	J．W．Dilner \＆J，Mason．
South Hadley Fahls，Mass	Mason amb Clark
South Harlley Fahls，3tass，	Welsher and Griswod．．
South Manlry Fath，Mas：	11．J．Brooks
South Hathey Falls，Mans	Quinm and（4）
South Hadle j Falls，Mas＊	H．J．Rice．．
Haver do Grace，Md．．．．．	II．E．（，uinn
Havre do Grace Mal	11．E．Quinu
Moxley［＇oint．Mr	Not transfe
Moxley Point，Ma	Not transfurma
Moxley Point，Mil	Not transter ed
Moxloy Point，Mat	Not transfermer．
Moxley Point，Mat	Not tranaferred．
Moxley Point，Ma	Not tramaterrel
Moxley Pomin，Ma	Not tranatimer
Bristol Laming．Ma	Not transtiomed
Mistol Landing，Mat	Not transtier rea
Bristol Landing，Mri	Sot tamatermed．
（＇arpenter＇s Poins，Ma	Not tratarimad
Fatpenters Proint，Wh	Not transermed
Carpenter＇s Point， 21$]$	Not transferred
Carpenters l＇oint，M1．	Not transfereal
Catpenters Point sha	X X transferrel
Carpenter＇s Point，Md	Not tramsterred
Carpenters lobut，Ma	Not tramsiorred
Carpenter＇s Pooint，Ma	Not transticred
Swan Crak．Mh	Not transferred
－wan Creek，Mal	Not transferred
Swan（＇reek，M1d	
Swan Creek，Md	Not transermed
Fishing buttor attion	Not transtered ．．．．．．．．
Havro de Erace，Mal．	Andurson anul Kımiant
Swan Creek，Mad	Not transferred
Fishing Battery Station	Not tramsterred
Havre de Gatace station， No． 1.	Not transfi
Have de（irace Station， No．：	Nint trastimed
Have de Grace Station， No．2．	Not transferred
Hatyrede fiater station． No． 2.	Not transterred
Fishing 1	Not tram

$$
\begin{aligned}
& \text { Mississippi River } \\
& \text { Tensas River }
\end{aligned}
$$

Washita Iiver.
 Red Rirer
Penoliscot
Penver Atlantic Ocean
 Penobseot Rivi
I＇enobseot las

 $=$
$=$
$=0$
$=0$
$=0$

 ＂hesapeakn hy

 Gesspraker Bas

 cle！ wapodusarg

 Chuarake baty （hemalueake Ions Chesapeake Bay （＇hesapreake 13：1y
＇lensas liver．

坛 Mattawamkeag River
 0
0
0
0
0
0
0

 Pataxent River．．．．．．．
Patuxent Rivar．．．．．
Patnxant Rivar．．．．告

 Potomac liver ．．．我 Susquehanna Rivor Susquelauna River药

范

 $=$
$=$
0
 Havre de Gaace，Md Havolde（irace，Md

[^112]
茲 Washita River Mattawamkea，
Mattawamkea Potomar Piver ．．． Potomace River．．．．．．．

D.-Table I.-Distribution of shad from 1872 to 1880 , inclusive-Continued.

${ }_{\text {Slate. }}$	Date.	Hice, town,	tich fal	Tributary of-	Where fish were hatcleed.	By whom transertrcd.	
Marymat-Con.							

 -i

S. Mis. $110-54$

Edyun

 Susquelianna
Potomac River．．．． Sush River ．．．．．．． Susquelanna River
 Susquehanna liver
Susquelanna River
 Susquehanna River
Compecticut IRiver为 2
2
$=0$
0
0
0
0
0
0

势边

坔 （

苞	
気	

State.	Date.	Nearest post-office, town, or village.	Waters in which fish were placed.	Tributary of -
Massachusetts Continued.	July 30, 1877	Smith's Ferry, Mass	Connecticut River	Long Island Sound
	July 31, 1877	Smith's Ferry, Mass	Connecticut Riv	Long Island Sound
	July 31, 1877	Bridgewater, Mass	Taunton River	Narragansett Bay
	Aug. 1, 1877	Smith's Ferry, Mass	Connecticat River	Long Island Sound
	Aug. Ang. 4,1877	Smith's Ferry, Mass Smith's Ferry, Mass	Connecticut River	Long Island Sound Long Island Sound
	Aug. 7,1877	Smith's Ferry, Mass	Connecticat River	Long Island Sound
	Aug. 8,1877	Smith's Ferry, Mass	Connecticat River	Long Island Sound
Michigan	June 17, 1873	Lansing, Mich	Grand River	Lake Michigan
	June 24, 1873	Detroit, Mich	Detroit Rive	Lake Erie
	June 24, 1873	Ionia, Mich	Grand River	Lake Michigan
	June 28, 1873		Flint River	Saginaw River
	June 28, 1873	Monroe, Mich	Raisin River	Lake Erie
	June 28, 1873	Niles, Mich	Saint Joseph Riv	Lake Michiga
	June 28, 1873	Kalamazoo County, Mich	Long Lake...	Kalamazoo
	Aug. 6, 1874	Corunna, Mich	Shinwassee River	Lake Huron
Minnesota.......	Jaly 5,1872	Saint Paul, Minn	Mississippi River	Gulf of Mexico
	Aug. 5, 1874	Saint Panl, Minu	Mississippi River	Gulf of Mexico
	July 20, 1877	Saint Paul, Minn	Mississippi River	Gulf of Mexico
Mississippi	July 16, 1875	Jackson, Miss	Pearl River.	Gulf of Mexico
	June 13, 1876	Jackson, Miss	Pearl River	Lake Borgne.
	June 13, 1876	Abbeville, Miss	Yazoo River	Mississippi Ri
	June 4, 1877	Canton, Miss	Big Black River	Mississippi River
	Apr. 13, 1878	Vaughan, Miss	Big Black River	Mississippi River.
	Apr. 23, 1878	Friar's Point, Miss	Sunflower River	Yazoo River
	Apr. 23,1878	Holly Springs, Miss	Cold Water River	Yazoo River
	Apre 23, 1878	Lafayette County, Miss	Tallahatchie River	Yazoo River
	Apr. 23, 1878	Grenada, Miss	Yalabusha River	Yazoo River
	May 15, 1878	Fulton, Miss	Tombigbee Rive	Mobile Bay
	May 15, 1878	Aberdeen, Miss	Tombigbee Riv	Mobile Bay
	May 23, 1878	Meridian, Miss	Okatibee Creek	Chickasawha River
	Apr. 26, 1879	Jackson, Miss	Pearl River.	Gulf of Mexico
	May 13, 1879	Meridian, Miss	Chunky River	Chickasarwha River
	May 20,1879	Ripley, Miss	Tippah River	Tallahatchie Rive
	May 20,1879	La Fayette Coonty, Miss	Tallahatchie Riv	Xazoo River
	May 20, 1879	La Fayette, Miss.	Yocana River	Yazoo River
	May 20, 1879	Grenada, Miss	Yalobusha River	Yazoo River
Missouri.........	July 5, 1872	Washington, Mo	Missouri River	Mississippi Rive
	July 5, 1872	Hermann, Mo	Missouri Rive	Mississippi River
	June 8, 1876	Poplar Bluff, 1	Black River	Mississippi Rive
	June 9, 1876	Callao, Mo	Chariton Rive	Missouri River
	July 13, 1876	Pacific, Mo	Merameo Rive	Mississippi Ri
	Ang. 9, 1876	Kansas City, Mo	Kansas River	Missouri River

		Spesutio Narrotws, Md ..	L.
Missouri Rivo	Mississippi Li	Spesutio Narrows, Md...	L. Fairfix
James River	White River	South Hadley Falls, Mass	F. A. Ingalls
Salt Creek	Mississippi liv	South Hadley Falls, Mass	C. I. Griswold
Shoal Creek	Arkansas Rivor	Havre do Grace, Md...	C. W. Schuermann
Mississippi Ri	Gulf of Moxico	Havre de Grace, Md	F. Δ. Ingalla......
Meramec River	Mississippi Iiver	Spesutie Narrows, Md	L. Kumbien.
Big Black Rivor	White River	Spesutie Narrows, Md	L. Kumlien
Big Black River	White River	Spesutie Narrows, Md	L. Kumlien
James River.	White River	Spesutie Narrows, Md	L. Kumlien
San François	Black River	Spesutie Narrows, Md	L. Kumlien
Gasconado Ri	Missouri River	Potomat Station	S. M. Rixey
Grand Rive	Missouri River	Potomac Station	J. F. Ellis
Salt River	Mississippi Riv	Potomac Station	J. F. Ellis
Osage River	Missouri River	Potomac Station	G. G. Daven
Chariton Riv	Missouri River	Potomac Station	J. F. Ellis.
Platte Rivor	Missouri River	Potomac Station	J. F. Ellis
One Hundred and Two River.	Platte River	Potomac Station	J. F. Ellis
Nodaway River.	Missouri River	Potomac Station	J. F. Ellis
Winnipesaukee liver	Merrimac River	South Hadley Falls, Mass	Weber and Powers
Contoocook River	Merrimac River	South Hadley Falls, Mass	Weber and Powers
Alloghony River	Ohio River	Coeymans, N. Y	Soth Green
Allegheny Rive	Ohio River	South Hadley Falls, Mass	Rev.Wm. Clift
Neuse River	Pamlico Sou	New Berne, N. C	Not transferred
Nuuso River	Pamlico Sou	Ferry Landing, V	C. D. Griswold
Catawba River	Santee River	Havre de Grace, M	L. Kumlion
Noriso Rivor	Pamlico Soun	Havre de Grace, M	
Yadkin Riv	Great Pedce	South Hadley Falls, Mass	J. F. Ellis
Haw Itiver	Cape Fear Riv	South Hadley Falls, Mass	Ellis and Ing
Catawba Riy	Santee River.	South Madley Falls, Mass	F. A. Ingalls.
Contentnea Crei	Neuso Iiv	South Hadley Falls, Mass	(). D. Griswold
Tar River	Famlico Sou	South Hadley Falls, Mass	C. D. Griswold
Salmon Cree	Chowan Ris	Aroca, N.C..............	Not transferred
120anoko Riv	Albemarle Sound	Avoca, N.C	W. G. Williamson
Nouso Itiver	Pamlico Sound.	Avoca, N. ©	S. G. Worth
Mehorrin R	Chowan River	Avoca, N. C	W. G. Williamson
Salmon Cree	Chowan River	Aroca, N. ${ }^{\text {c }}$	Not transferred
Nouse Riv	Pamlico Soun	Avoca, N. C	H. E. Quinn
Tar River	Pamlico Soun	Avoca, N. C'	Thomas Tay
Salmon Ćre	Chowan River	Avoca, N. C	Not transferre
Capo Fear River	Atlantic Ocean	Aroca, N. ${ }^{\text {d }}$	Col. L. L. Polk
Salmon Creek.	Chowan River	Avoca, N. C'	Not transferred
Chowan Rive	Albomarle Sou	Avoca, N. C	Not transforred
Albomarlo So	Atlantic Ocean	Avoca, N. C	Not transferred
Roanoko Riv	Albemarlo Sound	Avoca, N. C	Vot transferred
Chowan Rivor	Albemarle Sound	Aroca, N.C	Not transforred
Albemarlo Sound	Atlantic Ocean	Avoca, N. C	Not transferred
Six Runs.	North East Cape Fear River.	Aroca, N, C	Thomas Taylor
Goshen Creek	North East Cape Fear River.	Aroca, N. C..............	Thomas Taylor

State.	Date.	Nearest post-office, town, or village.	Waters in which fish were placed.	Tributary of-	Where fish were hatched.	By whom transferred.	Estimated number of fish.
North CarolinaContinued.	Apr. 28, 1878	Avoca, N.C	Salmon Creek	Chowan River	Avoca, N.C		
	Арг. 29, 1878	Aroca, N.C	Salmon Creek	Chowan River	Aroca, N.C	Not transferred.	300,000 18,000
	May 1, 1878	A roca, N. C	Salmon Creok	Chowan River	Avoca, N. C	Not transferred	$\begin{array}{r} 18,000 \\ 45,000 \end{array}$
	May 2,1878 May 1878	Aroca, N.C...........	Salmon Creek	Chowan River	Avoca, N. ${ }^{\text {a }}$	Not transferred	200,000
	May 2,1878 June 7, 1878	Granville Countr, N.C.	TarRiver	Pamlico Soun	A voca, N.C	Thomas Taylor	150,000
	June 7, 1878	Catawba, N.C	Catawba R	Santoe River	Havre de Gra	S. G. Worth	50,000
	Apr. 18, 1879	Weldon, N.C	Roanoke Riv	Albemarle Sound	A voca, N.C.	C. J. Huske	50,000 100,000
	Apr. 21, 1879	Warsaw, N.C	Six Runs	Cape Fear River	A voca, N. C	Thomas Taylor	100,000
	Apr. 21, 1879	Rocky Mount, N	Tar Rive	Pamlico Sound	Avoca, N.C	J. A. Woodward	100,000
	Apr. 24,1879	Warsaw, N. ${ }^{\text {Pollocksvill }}$	Six Runs	- Cape Fear Rive	Avoca, N. ${ }^{\text {a }}$	C.J. Huske	100,000
	Apr. 24, 1879	Raleigh, N.	Neuse River	Pamlico Sound	Avoca, N. ${ }^{\text {a }}$,	Thomas taylor	145, 000
	A pr. 24, 1879	Avoca, N. C	Albemarle So	Atlantic Ocean	Avoca, N. C	J. P. Haywood	115, 600
	A pr. 24, 1879	Duplin County,	Six Rans.	Cape Fear River	Avoca, N.C	C.J. Huske .	
	Арг. 24, 1879	Avoca, N.C	Albemarle Sound	Atlantic Ocean	Aroca, N.C	S. G. Worth	100,000 50,000
	Apr. 25, 1879	Mount Olive, N. C	Goshen Creek	Cape Fear Rive	A roca, N.C	J. A. Woodwa	100,000
	Apr. 25, 1879	Rocky Mount, N.	Tar River	Pamlico Sound.	Aroca, N .	W. M. Russ	100, 000
	Apr. 29,1879	Weldon, N .	Roanoke Rive	Albemarle Sound	Avoca, N.	J. A. Woodwa	150,000
		${ }_{\text {Avoca, }}$ Weldon, N .	Salmon Cree	Chowan River	Aroca, N.	J. A. Woodwa	75,000
	May 2,1879	Raleigh, N.C	Neuse River	Pamlico Sound	A voca, N .	J. A. Woodwa	100,000
	May 3,1879	Branchville, N	Meherrin Ri	Chowan River	Avoca, N.C	J. A. Wood	90,000
	May 6,1879	Salisbury, N	Yadkin River	Great Pedee Rive	Aroca, N.C	Huske and Tayl	150,000 100,000
	May 9, 1879	Avoca, N. C	Salmon Creek	Albemarle Sound	Avoca, N. C	W. M. Russ.	210,000
	May 8, 1879	Avoca, N.C	Salmon Creek	Chowan River	Avoca, N.C	G. H. Williams	15,000
		A voca, N.	Salmon Cre	Chowan River	Avoca, N.C	G. H. Williams	215, 000
	May 13, 1879	Camden County, N. C	Naimon Cree	Chowan River	Avoca, N.C	W. M. Russ	250,000
Ohio	July 3,1872	Kent, Ohio	Cusahoga Riv	Lake Erie	South Hadler Falls, Mass		500, 000
	June 24, 1873	Ashtabula, Ohio	Ashtabula Riv	Lake Erie	Coeymans, $\mathrm{N} . \mathrm{Y}$. ${ }^{\text {a }}$.	J. Mason	1,000
	June 25, 1874	Eagleville, Ohi	Grand River	Lake Erie	Coeymans, N. Y	Chnse and Math	
	June 26, 1874	Fremont, Ohio	Sandusky River	Lake Erie	Coesmans, N. Y	II. W. Welsher	60, 000
	July 9, 1874	Beilefontaine, Ohi	Buckingahela Ri	Ohio River	Coeymans, N. Y.......	Mather and Vealey	75 , c00
	July 18, 1874	Elyria, Ohio	Black Riv	Ohio River	South Hadley Falls, Mass	O. M. Chase.	65,000
	June 15, 1875	Columburs, Oh	Scioto River	Ohio River	South Hadle F Falls, Mass	H. W. Welsher	65, 000
	June 23, 1875	Bayard, Ohio	Muskingum River	Ohio River	Coeymans, N .	F. N. Clark	75,000
	June 13, 1876	Janesville, Ohio	Muskincum River	Ohio River.	- Havre de Grace	In calls and F	100,000 59
	June 26, 1876	Columbns, Ohi	Scioto River	Ohio River	Havre de Grace, Mil	J. H. Klippart	
	June 9,1878	Fremont, Ohio	Sandusky Riv	Lake Eric	Havre de Grace, Md	H. E. Quinn.	60, 000
	June 7,1879	Fremont, Ohio	Sandusky River	Lake Erie	Spesutie Narrows, Md	H. E. Quinn	100,000
Pennsylvania	June 18, 1873	Fremont, Ohio	Sandusky River	Lake Erie	Potomac Station	C. W. Schuermann	200, 000
	June 18, 1873	Point Pleas		Delaware	Point Pleasant,	Not transferred..........	28, 000

D.-Table I.-Distribution of shad from 1872 to 1880, inclusive-Continued.

 $\infty \times \infty$

100，000
100,000 s రికికికికికికికికికికికికికికికికికిక్

Where fish were hatched．	By whom transforred．

| South Hadley Falls，Mass | F．A．Ingalls |
| :--- | :--- | :--- |
| Havre de Grace，Md．．．．． | H．E．Quinn | Schuermann ㅌ Schuermann雨雪 F．Ellis

．
 모․ 텽 W．Schuermann ．．．．． C．W．Schnermann ．．．．．
C．W．Schnermann
L．Stone and H．W
告

 Mather and Vealey．
Chase and Brooks．完
 Brooks and Griswold
H．J．Brooks
 Griswold and Quinn A．D．Hager

[^113]

[^114]| State. | Date. | Nearest post-office, town, or village. | Waters in which fish were placed. | Tributary of- | Where fish were hatched. | By whom transferred. | Estimated number of fish. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Virginia-Contin- } \\ & \text { ued. } \end{aligned}$ | Jnne 4, 1878 | Waynesborongh, Va | South River | Shenandoah River | Steamer Lookout | W.F.Page | 150,000 |
| | Арг. 26, 1878 | Franklin, Va | Blackwater River | Chowan River | Avoca, N.C | Thomas Taylor........ | $200,000$ |
| | Apr. 26, 1878 | Suffolk, Va | Nansemond River | Hampton Roads | Avoca, N. C | W. G. Williamson | 75,000 |
| | May 2,1879 | Franklin, Va | Blackwater River | Chowan River | Avoca, N. C | Thomas Taylor | 120, 000 |
| | May 3,1879 | Franklin, Va | Blackwater River | Chowan River | Avoca, N. C | S. G. Wortb | $25,000$ |
| | $\begin{array}{ll}\text { May } & 6,1879 \\ \text { May } & \text { 7, } 1879\end{array}$ | Not.toway, Va Nottoway, Va | Nottoway River Nottoway River | Chowan River Chowan River | $\begin{aligned} & \text { Avoca, N. C } \\ & \text { A roca, N. } \end{aligned}$ | Woodward \& Williams . G. H. Williams.......... | $\begin{array}{r} 100,000 \\ 75,000 \end{array}$ |
| | May 7,1879 | Franklin, Va | Rlackwater River | Chowan River | Avoca, N.C | J. A. Woodwar | 150,000 |
| | May 7,1879 | Franklin, Va | Blackwater River | Chowan River | Avoca, N. C | W, M. Russ | 75, 000 |
| | May 7,1879 | Franklin, Va | Blackwater River | Chowan River | Avoca, N. C | W. M. Russ | 95, 000 |
| | Mas 13, 1879 | Nottoway, Va | Nottoway River | Chowan River | Avoca, N. (1)............. | Taylor \& Woo | 100,000 |
| | May 14, 1879 | Franklin, Va | Blackwater River | Chowan River | Avoca, N. C | J. F. Ellis. | 80, 000 |
| | May 19, 1880 | Petersburg, Va . | Appomattox River | James River | Potomac Station | S. M. Rixey | 100,000 |
| West Virginia... | June 6, 1873 | Ronceverte, W. V | Greenbrier River | Kanawha River | Jackson City, Va | J. W. Milner. | 30,000 |
| | June -, 1876 June 3,1879 | Piedmont, W. Va | Potomac River
 Potomac River | Chesapeako Bay Chesapeake Bay | Havre de Grace, Md | U. S. Fish Commission.. | $200,000$ |
| | June 3, 1879 | Piedmont, W. Va | Potomac River | Chesapeake Bay | Spesutio Narrows, Md... | H. E. Quinn | $200,000$ |
| | June 9,1879 | Rowlesburg, W. V | Cheat River | Ohio River. | Spesutio Narrows, Md... | L. Kumlien | $65,000$ |
| | June June 9,1879 | Grafton, W. Va ... | Tygart's Valley R | Ohio River | Spesutie Narrows, Md... | L. Kumlien | $65,000$ |
| | June 9, 1879 | Clarksburg, W. Va | W est Fork River | Ohio River | Spesutie Narrows, Md... | | $70,000$ |
| | June 13, 1879 | Hinton, W. Va | New River | Ohio River. | Spesutie Narrows, Md... | H. E. Quinn | $65,000$ |
| | June 13, 1879 | Ronceverte, W. | Greenbrier Rive | Kanawha River | Spesutie Narrows, Md... | H. E. Quinn. | $60,000$ |
| Wisconsin | June 20, 1873 | Appleton, Wis. | Fox River | Lake Michigan | Coeyman's, N. Y | J. W. Milner \& J. Mason | $70,000$ |
| | June 12, 1877 | Appleton, Wis........... | Fox River . | Green Bay.... | Spesutie Narrows, Md... | J. W. Milner. | $100,000$ |
| | * | | | | | | 97, 373, 250 |

D．－Table II．－Distribution of California salmon from 1873 to 1880，inclusive．
앙ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㄴㄴㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

$\begin{aligned} & \frac{1}{0} \\ & \text { H } \\ & \text { H } \\ & \text { H } \\ & \text { H } \\ & \text { H } \\ & \text { H } \end{aligned}$	

Nearest post－office，town，or
village．
ジ
\qquad ：$=$
 Baid，Cawn Colo号 5
6
6
6
0 E
？
E
0
0 Northford，Conn Nurham，Conn
North 13ranford， ㄹ
第
3
3
5
5
 Dow Haven，Conn

皆

©

 二云苞

运总 0
0
0.0
0.0
0.0
0.0
0.0
0.0

State.	Date.	Nearest post-office, town, or village.	Waters in which fish were placed.	Tributary of-	Where finally hatched.	Estimated number of fish.
Iowa-Continued.	Feb. 1, 1875	Cherokee, Iowa	Little Sioux River	Missouri River	Anamosa, Iowa	10,000
	Feb. 1, 1875	Le Mars, Iowa	Floyd River	Missouri River	Anamosa, Iowa	5,000
	Feb. 1,1875	Sioux City, Iowa	Floyd River	Missouri River ...	Anamosa, Iowa	5,000
	Feb. 1, 1875 Feb. 1, 1875	Webster City, Iow Pomeroy, Iowa..	Boone River Twin Lakes	Des Moines River North C'oon River	Anamosa, Iowa Anamosa, iowa	9,800 10,000
	Feb. 1,1875	Storm Lake, Iov	Storm Lake	North Coon River	Anamosa, Iowa	10, 000
	Feb. 1, 1875	Manchester, Iowa	Maquoketa R	Mississippi River	Anamosa, Iowa	${ }^{2} 200$
	Feb. 13, 1875	Tipton, Iowa.	Cedar River	Iowa Rjver	Anamosa, Iowa	4,000
	Mar. 6, 1875	Linn County, Io	Storm Spring	Mississippi River	Anamosa, lowa	4,000 8,000
	Mar. 10, 1875 Apr. 7,1875	Decorah, Iowa. Anamosa, Iowa	Upper Iowa Ri Wapsipinicon I	Mississippi River	Anamosa, Iowa	8,000 5,000
	Dec. 9, 1875	Plymouth County, Iowa	Deep Creek..	Floyd River	Anamosa, Iowa	10,000
	Dec. 11, 1875	Chickasaw County, Iowa.	Wapsie River	Mississippi Ri	Anamosa, Iowa	8,000
	Dec. 21, 1875	Winneshiek County, Iowa	Upper Iowa R	Mississippi River	Anamosa, Iowa	10, 000
	Jan. 14, 1876	Winneshiek County, Iowa	Turkey River	Mississippi River	Anamosa, Iowa	5,000
	Jan. 14,1876	Fayette County, Iowa	Volga River	Turkey River.	Anamosa, Iowa	5,000
	Jan. 15, 1876	Marion County, Iowa	White Breast Cre	Des Moines Rive	Anamosa, Iowa	5,000
	$\begin{array}{\|l} \text { Jan. 15, } 1876 \\ \text { Jan. 15, } 1876 \end{array}$	Union County, Iowa Union County, Iowa	Grand River Twelve Mile Creek	Missouri River Grand River...	Anamosa, Iowa	
	Jan. 15, 1876	Union County, Iowa	Platte River.....	Missouri River	Anamosa, Iowa	5,000
	Jan. 20, 1876	Council Bluffs, Iow	Missouri Riv	Mississippi Rive	Anamosa, Iowa	20,000
	Jan. 21, 1876	Mills County, Iowa	Silver Creek	Nishnabotany Ri	Anamosa, Iowa	5,000
	Feb. 4, 1876	Buchanan County, Iowa	Buffalo Creek	Wapsipinicon Rive	Anamosa, Iowa	5,000
	Feb. 4, 1876	Floyd County, Iowa	Red Cedar River	Cedar River	Anamosa, Iowa	3,000
	Feb. 4, 1876	Floyd County, Iowa	Little Cedar Rive	Red Cedar Riv	Anamosa, Iowa	3,000
	Feb. 21, 1876	Plymouth County, Iowa	Clear Creek	Little Sioux River	Anamosa, Iowa	
	Feb. 21, 1876		Cedar Creek	Mississippi River	A namosa, Iowa	2, 500
	Feb. 21, 1876		Iowa River	Cedar River..	Anamosa, Iowa	2,500
	Feb. 21, 1876	Mahaska County, Iow	Des Moines Ri	Mississippi River	Anamosa, Iowa	3,000
	Feb. 21, 1876	Mahaska County, Iowa	Skunk River	Mississippi River	Anamosa, Iowa	3,000
	Feb. 21, 1876	Montgomery County, Iowa	Walnut Cree	Nishnabotany Rive	Anamosa, Iowa	5,000
	Feb. 23, 1876		Iowa River	Cedar River	Anamosa, Iowa	10,000
	Mar. 1, 1876		Des Moines River	Mississippi Rive	Anamosa, Iowa	10,000
	Mar. 2, 1876	Crawford County, Iowa	Boyer River	Missouri River	Anamosa, Iowa	10,000
	Mar. 2, 1876	Missouri Valley, Iowa	Lakes	Boyer River	Anamosa, Iowa	10, 000
	Mar. 6, 1876	Henry County, Iowa	Big Creek	Skunk River	Anamosa, Iowa	5, 000
	Mar. 6, 1876	Davis County, Iowa	Fox River	Mississippi Riv	Anamosa, Iowa	2,500
	Mar. 6, 1876	Jefferson County, Iowa	Cedar Creek	Skunk River	Anamosa, Iowa	2,500
	Mar. 6, 1876	Lucas County, Iowa	Chariton River	Missouri River	Anamosa, Iowa	5,000
	Mar. 6,1876	Marion County, Iowa	White Breast Creek	Des Moines Rive	Anamosa, Iowa	5,000
	Mar. 6, 1876	Montgomery County, Iowa	Nodaway River	Missouri River	Anamosa, Iowa	5,000
	Mar. 6, 1876	Mills County, Iow	Nishnabotany R	Missouri River	Anamosa, Iowa	5,000
	Mar. 6, 1876	Montgomery County, Iowa	Walnut Creek	Nishnabotany Piv	Anamosa, Iowa	5,000

Silver Creek気 Iowa River ．．．．．．．．． Des Moines River
 Cedar River Des Moines Kiver
 Shell Rock River Ies Moines Kiver Silver Creek

昜易 Vall Lake．．．．．． Iowa River
 Middle River Maplo River．．．．．． Wapsio River ．．．．．． Wapsipinicon River
Turkey liver ．．．．．

 \qquad
0
0
0
0
0
0
0
0
0
0
0
0
0
0令
 Anamosa，lowa
Big Rock，Iowa W00000 Movep

-Continue						

S. Mis. 110

5

State.	Date.	Nearest post-office, town, or village.	Waters in which fish were placed.	Tribntary of-	Where finally hatched.	Estimnted number of fish.
Kansas-Continued	Fel). 2,1881	Solomon City, Kans	Solomon River	Smoky Hill River	Ellsworth, Kans.	3,000
	Fel), -, 1881	Salina, Kans	Saline Rirer	Smoky Hill River	Ellsworth, Kaus.	3, 000
	Feb) $\quad 2,1881$	Ellsworth, Kans	Smoky Hill liver	Kansas River... *	Ellsworth, Kans	3,000
	F(b), 2, 1881	Hays City, Kans	Big Creek	Smoky Hill River	Ellsworth, Kans.	5,000
	Feh. 2, 1881	Ellis, Kans	Big Creek	Smoky Hill Rirer	Ellsworth, Kans.	3, 000
	Feb. 2, 1×81	Fort Harker, Kans	Spring Creek	Smoky Hill River	Ellsworth, Kans	3,000
Eentucky	Jau. 6, 1876	Lexington, $\overline{\mathrm{K}} \mathrm{y}$.	Kentricky Rir	Ohio River...	Northville, Mich	2.5, 000
	Nov. 27, 1876	Jetrerson County, Ky	Floyd's Fork	Salt Piver	Louisville, Ky	1, 500
	1)oc. 7,1876	Shelby County, Ky.	Clear Creek..	Salt Rirer	Louisville, Ky	700
	Dee. ${ }^{7}$ Dece 1876	Shelljy Counts, Ky	Mulberry Creek	Salt River	Louisville, Ky	700
	Dec. 7,1876	Sheliy County, Ky	Gist Creok	Salt River	Louisville, K y	-600
	Dec. 14,1876	Hardin County, Ky	Middle Creek	Nolin Creek	Louissille, Ky	$2,000$
	Dec. 14,1876	Hart Count ${ }^{\text {H }}$, K \bar{y}	Bumgartner's Creek	Green Rivor	Louisville, Ky	1,000
	Dec. 20, 1876	Adair Comnty, Ky	Russell Creek	Green River	Louisville, K,	1,000
	Dec. 20, 1876	Boylo County, Ky	Dick's River	Kentucky River	Louisville, $\mathrm{K} y$	1,000
	Dec. 20,1876	Gairard Comnty, Ky	White Oak Creol	Dick's IViter . .	Louisille, Ky	1,000 500
	Dec. 20, 1876 Dec. 20,1876	Madison (ounty, $\mathrm{K} y$ Madison Count K, K	Silver Creek Otter Crtek.	Fentucky River Kentacky Piver	Louisville, Ky Louiscille, Ky	500 500
	Dec. 20, 1876	Lincoln Connty, KS	Hancing For	Dick's Piver ...	Louisville, Ky	1,000
	Doc. 20,1876	Cascy Comnts, $\mathbf{K} 5$.	Green River	Olio Riser.	Lomisville, Ky	1,000
	Jec. 20,1876	Lincoln County, Ky	Dick's River	Kentucky River	Louisville, $\mathrm{K} Y$	1,000
	Dec. 20, 1876	Mereer County, Ky	Salt River	Ohio River...	Louisville, Ky	500
	Dec. 20, 1876	Mercer County, Ky	Chanlin River	Ohio River	Louisville, K5	500
	Dec. 27, 1×76	Woodford Corint y, K	Dunlap's Branch	Kentucky Jiver	Louisville, Ky	1,000
	Dec. 27, 1876	Henry Counts. ky.	East and West Forks	Little Kentucky River	Lonisville, Ky	500
	Dec. 27, 1876	Menry County, K5	North and East Forlis	Floyd's Fork	Lonisville, Ky	500
	Dec. 27, 1876	Clark County, Ky	Lalbregrud Creek . .	Red River .	Louisville, Ky	200
	Dec. 27, 1876	(lark County, Kiy	Howard's Upper C'roek	Kentucky River	Louisville, K y	200
	Dec. 27, 1876	Clark County, Ky	Howard's Lower Creek	Kentucky Ricer	Louisville. EV	200
	Dec. 27, 1876	Clarl: County, Ky	Stoner Creek	Licking River	Louisville, $\mathrm{K} y$	200
	Dec. 27, 1876	(lark County, Ky	Stiode's Creek	Stoner Creek	Louisville, Ky	200
	Dec. 27, 1876	Scott. Count $5, \mathrm{~K} y$.	Big Spring Branch	North Elkhorn Rivel	Louisville, K y	300
	Dec. 27, 1876	Scott County, $\bar{K} y$	Lano's Fina......	North Elkhorn liver	Lomisrille, J y	100
	Dec. 27, 1876	Scott Count y , K Y	Cane Run.,	North Elkhorn liver	Lonisville, K V	100
	Dec. 27, 1876	Scoit Countr, Ky	McConnell's Run	North Elkhorn River	Lonisville, IV,	100
	Dec. 27, 1876	Scott Count $5, \mathrm{~K} y$	'Thomas', Spring Brauch.	North lelkhorn liver.	Lonisville, $\mathrm{K} y$	200
	Dec. 27, 1876	Scott County, Ky ..	Saunder's Spring Branch	North Elkhorn River	Louisville, Fy	200
	Jan. 2, 1877	Marion Connty, Ky	Nortis and East Fork..	Rolling Fork...	Louisville, K 5	1,000
	Jan. 2, 1877	Taylor County, K	Pittman Creek	Green Rivor	Louisville, K K	1,000
	Jan. 2, 1877	Nelson County, Ky	Rolling Fork.	Salt Iiver	Lomisrille, KT	1, 000
	Jan. 10, 1877	Laurel Comnty, Ky	Whito Oak Branch.	Littlo Rockcastle Ri	Lonisville, Kr	2, 000
	Jan. 10, 1877	Rockeastle County, Ky	Round Stone Creek	Rockeastle Rirer	Louisville, $\mathbf{K} \mathbf{Y}$	2,000
	Jan. 10, 1877	Rockeastle County, Ky	Hardin Durham's Branch	Rockcastlo River	Louisville, Kу	2,000
	Jan. 28, 1877	Green County, Ky .	Booker's Brauch	Green Iiver	Louisville, Ky	500

［43］PRODUCTION AND DISTRIBUTION OF YOUNG FISM． 867

 E Go

\qquad

 0
0.
0
0
0
0
0
0
0药
五 0
0
0
0
0

 Compring Branch ．
线话完厸 （ 5

State.	Date.	village. Nearest post-office, town, or	Waters in which fish were	Tributary of	Where finally hatched.	Estimated number of fish.
Maryland-Cont'd.	Dec. 5,1874		Bnsh Creek		Green Springs	4,000
	Dec. 5,1874	Hood's Mills, M1.	Patapsco River	Chesapeake Bay	Green Springs, M	6,000
	Dec. 9,1874	Fort Pendleton, Md	North Branch	Potomac River	Green Springs, Md	15,000
	Dec. 15, 1874	Savage, Md	Patuxent River	Chesapeake Bay	Green Springs, Md	10,000
	Dec. 15, 1874	Marsland Line,	Deer Creek....	Susquelanna Ri	Green Springe, Md	6, 000
	Dec. 15, 1870	Sarage, Mid	Little Patuxent Ricer	Patuxent River.	Baltimore, Md	7,000
	Dec. 15, 1875	Laurel, Md	Patuxent River	Chesapeake Bay	Baltimore, Md	14,000
	Dec. 21, 1875	Point of Rock	Potomac River	Chesapeake Bay	Baltimore, Md	
	Jan. 3,1876	Savage, M,	Little Patuxont Riv	Patuxent Rive	Baltimore, Md	14,500
	Jan. 5,1876	Tank, Md.	North Patapsco F	Patapsco Rive	Baltimore, M	10,000
	Jan. Jan. 5, 187876	Slatown, Md	Baltimore Water Works	Monocacy River Patapsco River	Baltimore, Md	
	Jan. 7, 1876	Glencoe, Md	Gunpowder River ..	Chesapeake Bay	Baltimore, Md	18,000
	Jan. 14, 1876	Phenix, Md	Gunpowder River	Chesapeake Bay	Baltimore, Md	30, 000
	Jan. 24,1876	Baltimore, Md	Baltimore Water Works	Patapsco River	Baltimore, Md	
	Feb. 10, 1876	Cedar Point, Md	Potomac River	Chesapeake Bay	Baltimore, Md	5,000
	Mar. 16, 1876	Aberdeen, Md	Tobacco Ran	Deer Creek	Baltimore, Md	15, 000
	Mar. 16, 1876	Aberdeen, Md	Archer's Run	Deer Creek	Baltimore, Md	
	Mar. 16, 1886	A berdeen, M	Green Spring Run	Deer Creek	Baltimore, Md	500
	Mar. 19, 1876	Sarage, Md.	Little Paturent River	Patuxent River	Baltimore, Md	6,000
	Mar. 23,1876	Hatage,	Antiotam Creek	${ }^{\text {Patuxent }}$ Rotiver	Battimore, Md	
	Mar. 23, 1876	Tank, Md	North Patapsco River	Patapsco Rirer	Baltimore, Md	2,000
	Mar. 23, 1876	Slabtown, Md	Owen's Creek	Monocacy River	Baltimore, Md	3, 000
	Mar. 23,1876	Double Pipe Creek,	Double Pipe Creek	Monocacy River	Baltimore, Md	2,000
	Mar. 25, 1876	${ }_{\text {Lort }}^{\text {Lanrel, }}$ Mendieton	Patuxent Rive	Chesaneake Bay	Baltimore, Md	6,000
	Apr. 3, 1876	Monkton, Md	Little Gunpowder R	Gunpowder River	Baltimore, Md	7,000
	Apr. 6, 1876	Ellicott Citr,	North Branch.	Patusent River	Baltimore, Md	3,200
	Apr. ${ }^{\text {Apren }}$ A 181876	Magnolia, Mr	Pinter' Ra	Bush River-	Baltimore, Md	1,000
	Apr. 17, 1876	Rowlandville, Md	Octorora Creek	Susquchanna River	Baltimore, Md	1,900
	Apr. 17, 1876	Williamsport, Md	Conococheague	Potomao Rive	Baltimore, Md	2, 000
	Nov. 6,1876	Parkton, Md Tank, Md	Gunpowder River North Patapsco	Chesapoake Bay	Baltimore, Md	30,000
	Nor 8,1876	Wakeffeld, Md	Pije Creek	Monocacy Riv	Baltimore, Md	
	Nor. 8,1876	Mechanicstown, Md	Owen's Creek	Potomuc River	Baltimore, Md	
	Nor. ${ }^{\text {Nor. }} 14.181876$	Pennsylvania Line, Md	Deer Creek	Susquctanna Rive	Baltimore, Md	
	Nor. 14, 1876	S.lkestille	Patapsco	Chesajeake Ba	Baltimore, Md	${ }_{48,000}$
	Nov. 21, 1876	Monkton, M	Little Gun	Gmpo	Baltimore	33, 600

\qquad

North Patuxent River. North Patuxent Hiver
Nosth Pitaperon Hiver.
促
D.-Table II.-Distribution of Callfornia salmon from 1873 to 1880, inolusive-Continued.

State.	Date.	Nearest post-office, town, or village.	Waters in which fish were	Tributary of-	Where finally batched.	Estimated number of fish.
Maryland-Cont'd.	Nov. 9, 1878	Mecluanicstown, Md	Owen's Creek	Patapsco Ric	Baltimore, Md	13, 000
	Nov. 11, 1888	Laurel, Md.	Patuxent River.	Chesapeake Bay Patuxent River	俍 $\begin{aligned} & \text { Baltimore, Md } \\ & \text { Baltimore, Md }\end{aligned}$	25, ${ }^{2} \mathbf{0} 500$ 12
	Nov. 11,1888	Mavaling Mo Mal	Chester River	Chesapeake Bay	Baltimore, Md	15, 000
	Nor. 13, 1888	Billsborough,	Tuckahoe Creek	Choptank River	Baltimore, Md	5,500
	Nor. 13, 1878	Sykessille, Md	${ }_{\text {Patapsco Creek }}^{\text {Gumpowder Rive }}$	Chesapeake Bay	Baltimore, Md	15,000
	Nov. 27,1878	$\frac{\text { Monkton, } \mathrm{Md}}{\text { Monkton, }} \mathrm{Mi}$	Guupowder Rive	Chessapeake Bay	Baltimore, Md	20,000 20
	Nov. 29, 1878	Fort Peadleton, Ma	North Branch.	Potomac River	Baltimure, Md	20,000
	Nor. 30, 1878	Fort Pendleton, Md	North Branch.	Potomac River	Baltimore, Md	20,000
	Dec. 1, 1878	Fort Pendleton, Md	North Branch	Potomac River	Baltimore, Md	24,500
	Dec. 2,1878	Swantou, Md M	North Branch..	Potomac River..	Baltimore, Md	20, 20000
	Dec. 6,1878	Boyds, Ma'	Ten Mile Creek		Baltimore, Md	6,000
	Dec. 6, 1878	Boyds, Md	Lonem Creek	Potomac River	Baltimore, Md	8,000
	Dec. 6, 1878	Boyds, 1 l	Brick Lodge Cre		Baltimore, Md	6,000
	Dec. 7,1878	Hillisorough Ma	Nanticacke River	Chesapeako Bay	Saltimore, Md	20,000 10,000
	Dec. 12, 1878	Mitchell's Bridge, Mid	Pocomoke River	Chesapeake Bay	Baltimore, Md	12, 000
	Dec. 12, 1878	Above Snow Hill, Md	Pocomoke River	Chesapeake Bay	Baltimore, Md	8, 000
	Dec. 12, 1878	Townson, Md.	Guapowder River	Chesapeake Bay	Baltimore, Md	20, 000
	Dec. 13, 1878	Mount Airy, Md	Patuxent River	Chesapeake Bay	Baltimore, Md	20, 000
	Dec. 14, 2878	Herring Run, M	Back River	Chesapeake Bay	Baltimore, Md	10, 000
	Dec. 17,1878	Millington, Md.	Chester River	Chesapeake Bay	Baltimore, Md	1,200
	Deo. 19, 1878	Liberty Grove, Md	Octorora Creek	Susquehanna Piver	Baltimore, Md	
	Dec. 21, 1878	Parktou, Md	Deer Creek	Susquchanna Riv	Baltimore, Md	20, 000
	${ }_{\text {Feb). }} \mathbf{F}$ 1,1879	Savage, Md	Patuxent River	Chesapeake Bay	Baltimore, Md	4,000 10,000
	Feb. 13, 1879	Millington, Md	Chester River	Chesapeake Bay	Ballimore, Md	12,000
	Feb. 21,1879	Henderson, Ma	Choptank river	Chesapeake Bay	Baltimore, 11 l	8,000
	Fob. 26, 1879	Cambridge, Md	Blackwater Rive	Tangier Sound	Baltimore, Md	3 3,000
	Feb. 26, 1879	Dorchester County, Md	Chicacomico Riv	Transquaking River	Baltimore,	
	Feb. 26, 1879	Airev's, , M17	Transquaking Rive	Changier sound.	Baitimore,	3, 000
	June 6, 1879	Airey's, Md	Patuxent River	Chesapeake Bay	Baltimore, Md	
	Oct. 30, 1879	Fort Pendleton, 1	Potomac River		Baltimore, Md	12\%, 000
	Nov. 26, 1879		North Bran	Potomac Rive	Baltimore, Md	187, 276
	Nov. 26, 1879	Parkton, Md	Big Guapowder F	Chesapeake Bay	Batimore, Md	15,000
	Nov. ${ }^{\text {Dec. }} 4.1818979$	Paurel, Md	Deer Creek	(busquehanna Riv	${ }_{\text {Paltimore, }}^{\text {Pad }}$ Maltimore,	
	Dee. 4,1899	Savage. Md	Midde Patux	Patuxent River	Baltimore, M	20, 000
	Dec. 5, 1879	Federalsuur	Nauticoke	,Chesapeake Ba	Baltimore	5,000

Trangier Sound ．．．．．．
等
苞 Wicomico River
Clisesapeake Bay

 2
0
0
0
0
0
0 4
0
0
0
0
0
0
0
0

 Chesapeake Bay．
P＇atuxent Ruver．．

 4
0
0
0
0
0
0
0

 Chesapeake Bar．．．

 Boston Bay ．．．．．．．．
Massachusets Bay
Broad Sound．．．．．．． Bast River．．．． Andover Branch．． Patapseo River
曷
0
0
0
0
0
0 Trappe liver Antietam River \because ．．．．．
苞
\vdots
0
0
0
0
0
0
0

 Great Choptank inver
Gunpowder liver ．．．．．．
Pituxent River．．．．．．． Niddle Patuxent River
 \qquad 4．
0
$=$
0
$=$
0

 0
0
0
0 4
0
0
0
0
0
0 ：曷
 4
0
0云

 0
3
3
3
3
3

D.-Table II.—Distribution of California salmon from 1873 to 1880, inclusive-Continued.

State.		Nearest postofolice, town, or	Waters in witich fish wero	Tributary of	ere finally hatel	Esetim
$\xrightarrow[\substack{\text { Magana haseset tea } \\ \text { Coninues. }}]{ }$						
		Noremer				
		Receac city, Micich				
		Cranforic County				
		Unity				

Abstract

Poktaron Creok.....
Saint Joseph Liver

D.-Table II.--Distribution of California salmon from 1873 to 1880, inclusive-Continued.

State.	Date.	Nearest post-ofice, town, or village.	Waters in which fish were	Tribatary of	Where finally hatched.	Estimated number of fish.
Michigan-Cont'd	Jan. 7,1876	Kalkaska, Mich	North Boardman Ri	Grand Traverse B	Pokagon,	8, 000
	Jan. 7, 1876	Kalkaska County,	Rapid River	Toreh Lake.	Pokagon, Mich	12,000
	Jan. ${ }_{\text {Jan }} 8,1876$	Cbarlevoix Connty, Micb	Bear Creek.	${ }_{\text {Pittle }}$ Traverse Bay	Pokagon, Mich	6, 4,000
	Jan. 12, 1876	Petoskey, Mich	Pine Lake	Lake Michigan	Pokagon, Mich	26,500
	Jan. ${ }^{\text {Jan. 12, } 1876}$		Au Sable River	Lake Huron	Pokagon, Mich	23, 230
	Jan. 13.1876	Liko Countr, Mich	Sig Star Lake	Pero Marquette	Nortavile, Mich	14, 000
	Jan. 14, 18 \%6	Charlevoix County, Mich	Bear Creek	Walloon Lake	Northrille, Mic	${ }_{30}^{16,000}$
	Jan. 19, 1876	Marquette County, Mic	Michigamee Lake	Menominee Riv	Northville, Mich	
	Jan. 19, 1876	Marquette County, Mich	Turee Lakes..	Menominee River	Northville, Mich	8, 000
	Feb. 9, 1876	Northrille, Mich	Rouge River	Detroit River	Northville, Mic	20,000
	Dec. 21, 1876	Jackson, Mich	Grand River.	Lake Michigas	Pokagon, Mich	27,500
	Dee. 25-8, 76	Holly, Mich.	Shiarassee River	Saginaw River	Northville, Mich	
	Dec. $25-8.876$	Cravford County, Mich	Au Sable River	Lake Huron	Northville, Mich	30,000
	Dec. 28,1876	Washitemaw County, Mi	Huron Pive	Lake Eri	Northville, Mi	8,000
	Nov. 18, 1877	Niles, Mich.	Private ponds	Saint Joseph River	Pukagon, Mich	300
	Jan. 2, 1878	Cass County, Mich	Pokagon Creek	Saint Joseph Riv	Pokagon, Mich	3,500
	Jan. ${ }^{\text {3, }} 1878$	Van Buren County, Mich	Sister Lakes	Lake Michigan	Pokagon, Mich	3, 000
	Jan. 10, 1878	Cass County, Mich	Indian Lake		Pokagon, Mich	2, 000
	Jan. 22, 1878	Allegan County, Mich	Dumont Lake	Kalamazoo ILiver	Pokagon, Mich	3,500
	Jan. 22,1878	Allesan County, Mich	Minor Lake	Lake Michigan	Pokagon, Mich	3,500
	Jan. 23,1878	Charleroix County, M	Wallow La	Lake Michigan	Pokagon, Mich	5, 000
	Feb. 14, 1878	Woodstock, Mich	Mallory Lake	Lake Erie ..	Pokagon, Mich	$\stackrel{\text { 2, }}{500}$
	Feb. 14, 1878	Woodstock, Mich	Tiffin River.	Maumee Rive	Pokagon, Mich	2,500
	Feb. 14,1878 Fel. 14, 1878	Paluyra, Mich Raision Centre, Mi	Palmyra Pond	Raisin River	Pokagon, Mich	
	Fel. 14, 1878	Hillsdale, Mich	Baw-Beese Lake	Saint Joseph Riv	Pokagon, Mich	3,000
	Mar. 1,1878	Watervliet, Mich	${ }_{\text {Pig Paw Paw Ri }}$	Labe Micligan	Pokagon, Mich	4, 000
	Mar. 2,1878	Benton Harbor, Mich	Ponds	Lake Michigan	$\xrightarrow{\text { Pokagou, Mich }}$ Pokagou, Mich	
	Mar. 4, 1578	Calhoun County, Mich	Torn Line	Lake Michigan	Polsagon, Mich	2,000
	Mar. 4, 1878	Woodstock, Mich	Silver Lake	Lake Erie	Pokagon, Mich	2,000
	Mar. Mar. 4,111788 188	Woodstock, Mrich Putnam, Nich	Goose Lako	Lake Erio	Pokagon, Mich	
	Mar. 4,1878	Putnam, Mich	Half Moon Lake	Huron River	Pokagon, Afich	
	Mar. 4, 1 1788	Dester, Mich	Island Lake	Huron Rive	Pokagon, Mich	2,000
	Mar. 4, 1878	Dexter, Micl	Privato pond	nton Rive	Pokagon, Mrich	1,000

 HH，青

State.	Date.	Nearest post-office, town, or village.	Waters in which fish were placed.	Tributary of-	Where flnally hatched.	Estimated number of fish.
Minnesota-Cont'd.	May -, 1875	Chisago County, M	Taylor's Falls	Mississippi Riv	Saint Panl, Minn	1,000
	May -, 1885	Hennepin Connty, M	Lake Minnet	Mississippi River	Saint Paul, Minn	500
	Jay. ${ }^{\text {Jan }}$, 18886	Blue Earth Count , Min	Lake Madison.	Misisssippi River	Seint Wiog, Minn.	${ }^{1,000}$
	May 11,1876	Ramsey County, Minn	Lake Phalon	Mississippi Ri	Red Wing, Minn.	500
	May 11,1876	Ramsey County, Minn Ramsey County, Minn	Lake Jobanna	Milssissippi River	Red Wing, Minn.	300 300
	May 11, 1876	Rameey County, Minn	Lake Valuais	Mississippi River	Red Wing, Minn.	250
	May 11,1876	Ramsey County, Minn	Lake Bir Butts	M1ssissippi River	Red Wing, Minn.	${ }_{250}^{250}$
	May 11,1876	${ }_{\text {Lamsota County, }}$ County Minn.	Lake Suntile Lut.	Missisippi Piver	Red Wing, Minn Red Wing, Minn	250 500
	May 11,1876	Dakota County, Minn.	Lake Kemmedy	Mississippi River	Red Wing, Minn.	200
	May 11, 1876	Ramsoy Connty, Minn	Lake Como	Mississippi River	Red Wing, Minn:	500
	May 11,1876	Ramsoy County, Minn.	Lake McCann'	Miesissippi River	Red Wing, Minn.	500
	May 16, 1876	Wasmugton Countv, Min	Butts Lako.	Mississippi River	Red Wing, Minn.	500
	May 16, 1876	Hennepin County, Minn	Lake Callioun	Mississippi River	Red Wing, Minn	1,250
	May 18,1876	Ramsoy County, Minn	White Bcar Lak	Mississippi Rir	Red Wing, Minn	4, 000
	May ${ }^{\text {May }} \mathbf{2 3 , 1 8 7 6}$	Rans Soy County, Minn...	Bad Eaglo La	Mresissipp	Red Wing, Minu	2,000
	May 23, 1876	Kandiyohi County, Minn	Eagle Lake.	Mississippi River	Red Wing, Minn.	1,000
		Stereus County, Minn		Pomme de Terre River	Red Wing, Minn.	
	May ${ }^{\text {May }}{ }_{23,1876}$	Wripht Count, Mim	Crow River.	Mississippi Rive	Red Wiug, Minn.	1, 1,000
	May 23,1876	Stevens County, Minn	Pomme de Terre River	Minnesora River	Red Wing, Minn	1,500
	May ${ }^{\text {May }} \mathbf{2 5 , 1 8 7 6} \mathbf{1 8 7 6}$	Grant Connty, Minn	Mustinka R	Rabbit River	Red Wing, Minn	1,000
	May 28,1876	Hennepin County, Minn	Minnetonka Lake.	Mississippi Riv	Red Wing, Minn	
	May 29, 1876	Hennepin County, Miun	Hokah Lake	Mississippi River	Red Wing, Minn	1,500
	May 29,1876	Rice County, Minn	Lake.	Mississippi River	Red Wing, Minn.	2,000
	May ${ }^{\text {May }}$ 29, 1876	Dalsota County, Mrinn Rice County, Minn	Lake Crystal	$\frac{\text { Mississippi River }}{\text { M ississip }}$	Red Wing, Minn.	
	May 29,1876	Scott County, Minn	Prior Lake.	Mississippi River	Red Wing, Minn.	20, 000
	May 29,1876	Washnagton Counts, Minn	Marine Lake.	Mississippi Rivel	Red Wing, Mrinn.	700
	May 29,1876	Washington Countre, Minn.	Square Lake.	$\xrightarrow{\text { Mississippi }}$ Mississippi Riv	Red Wing, Minn	700 600
	June 2, 1876	Ramsey Counts, Minn	Lake Turtle	Mississippi Riv	Red Wing, Minn	1,000
	June 2, 1876	Ramsey County, Minn	Lake Josephin	Mississippi Riv	Red Wing, Minn.	
	June 2,1876	Ramsey County, Minn	Lake Kingsloy	Mississippi Riv	Red Wing, Minn.	
	June ${ }^{\text {J,1876 }}$	Ranusey County, Minn		Mississippi Ri	Red Wing, Minn.	
	June 2, 1876	Scott County, Minn.	Lake.	Mississippi Riv	Red Wing, Minn	5,000
	June 2,1876	Washington County,	Brown	Mississippi	Red Wing, Minn	1,000

[^115]| |
| :---: |

$\frac{\text { State. }}{\text { Minnesota-Cont'd }}$

 シ

Roberts Lake
French La
South Cranc
Orono River
Root River
Lake Johan
Rice's P'
Bass Lake
Lake Indek
Christmas
Round Lal
Koronis L
Riplry Lak
Minnebrlle I
Clearwat
Green La
Chisago
Snake 1
cose L

 MeCarthe's Lake....
 Otter Tail River Madison Lako
Smar Lake..
Pulaski告 Ostlin Laki Cominctian Jako 0
3
3
3

	IRice Conntr. Min
	Tice Connty, Mimm
	cester, Minn
	Rochester. Mint
	Olmstead County Mimm
	Ramsey Conuty, Mimin
	Ramsey County, Minn
	Washington County, Min
	Henneprin County, Min
	Anoka County, Minm
	Meeker Connts, Mim
	Meeker County, Mimm
	Deekr Countr, Miun
	Chisago Comnty, Minn
	Chisago County, Mim
	Pine City, Jinm
	ton Counts,
	Becker County, Minn
	Hf:uwler, Minn
	Mowrhead. Minn
	Ohustrad C'ounty, Mim
	Wricht Connty, Mim
	Kandiyohi Countr, Mimn
	Kamliy ohi Conaty, Mmm
	K:mdiyohi County, Mimn
	Kandiyohi County, Atinn
	Morris, Mim
	Stureme Comity, Mimm
	Benson, Minn
	Swift Commts. Minn
	Swift Combty, Mim
	Stovens Connty,
	Mortis. Minn
	Wilkin Comnty, Mim
	Otter Tail Countw, Mi
	Bla Eath county, m
	Wrisht ('ounty. Minn.
	Wrinht County. Mi
	Ancka Comnty, Minn
	Shebrume Counts, A
	Toudd Comenty, Minn
	Shcthurne County, M
	stearns Counts, Min
	Ste., min County, Minn
	Ste:rna County, Minn

D.-TABLE II.-Distribution of California salmon from 1873 to 1880 , inclusive-Contiuned.

State.	Date.	Nearest post-office, town, or village.	Waters in which fish were placed.	Tributary of-	Where finally hatched.	Estimated number of fish.
Minnesota-Cont'd.	June 29,1877	Kasota, Minn	Minnesota Rirer	Mississippi River	Red Wing, Minn	1,500
	June 29, 1877	Sibley County, Minn	Silver Lake	Mississippi River	Red Wing, Minn.	1,500
	June 29, 1877	Sibley County, Minu.	Horse Shoe L	Mississippi River	Red Wing, Minn	500
	Juve 29, 1877	Le Sueur County, Minn	Lake Emily	Mississippi River	Red Wing, Minn	1, 000
	June 29, 1877	Blue Earth County, Minn	Lake Crystal	Mississippi River	Red Wing, Minn	1,500
	June 29,1877		Long Lake.		Red Wing, Minn	500 500
	June 29, 1877 June 29, 1877		McKinsie Lal Mary's Lake .		Red Wing, Minn	500 1,000
	June 29, 1877	Watonwan County, Minn	Saint James' Lake	Watonwan River	Red Wing, Minn	1,000 500
	Aug. 6, 1877	Scott County, Mina	Prior Lake.......	Mississippi River	Red Wing, Miun	5,000
	Spring, 1878	Blue Earth County, Minn	Minnesota River	Mississippi River	Willow Brook, Minn], 000
	Spring, 1878	Brown County, Minn	Sleepy Eye Lake	Cottunwood River	Willow Brook, Minn	1, 000
	Spring, 1878	Brown County, Minn	Clear Lake..	Minnesota River	Willow Brook, Minn	1,000
	Spring, 1878	Brown County, Minn	Hanska Lake	Minnesota River	Willow Brook, Minn	1,000
	Spring, 1878	Carlton County, Minn	Moose Lake	Kettle Piver	Willow Brook, Minn	1,000
	Spring, 1878	Carlton County, Minn	Bear Lako	Kettle River	Willow Brook, Minn	1,000
	Spring, 1878	Carlton Coanty, Minn	Cub Lake	Kottle River	Willow Brook, Minn	1,000
	Spring, 1878	Carlton County, Minn	Moose-Horn Lake	Kettle River.	Willow Brook, Minn	1,000
	Spriog, 1878	Carlion County, Minn	Chubl Lake	Kettle River	Willow Brook, Minn	1,000
	Spring, 1878	Carlton County, Minn	Hanging Horn	Kettle River	Willow Brook, Minn	1,000
	Spring, 1878	Fond du Lac, Minn	Saint Louis River	Lake Superior	Willow Brook, Minn	2,000
	Spring, 1878	Carver Conniy, Minn	Waconia Lake	Mississippi River	Willow Brook, Minn	2,000
	Spring, 1878	Carver County, Minu	Mennewasta Riv	Mississippi River	Willow Brook, Minn	500
	Spring, 1878	Dakota County, Minn	Kennedy Lake	Mississippi River	Willow Brook, Minn	1,000
	Spring, 1878	Dakota County, Minn	Lake Early ...	Mississippi River	Willow Brook, Minn	500
	Spring, 1878	Dakota County, Miun	South Branch	Vermillion River	Willow Brook, Minn	500
	Spring, 1878	Dakota County, Minn	Farquhar Lake	Mississippi River	Willow Brook, Minn	200
	Spring, 1578	Dakota County, Minn	MeGrath's Lak	Mississippi River	Willow Brook, Minn	500
	Spring, 1878	Dakota County, Minn	Twin Lakes	Mississippi River	Willow Brook, Minn	1,000
	Spring, 1878	Freeborn County, Minn	Alden Lake	Mississippi River	Willow Brook, Minn	1,000
	Spring, 1878	Freoborn County, Minn	Pickerel Lake	Mississippi River	Willow Brook, Minn	1,000
	Spring, 1878	Grant County, Minn	Patchen's Lake		Willow Brook, Minn	2,000
	Spring, 1878	Grant County, Minn	Twin Lakes.		Willow Brook, Minn	2,000
	Spring, 1878	Grant Count y, Mina..	Haskins Lak		Willow Brook, Minu	2,000
	Spring, 1878	Goodhue County, Minn	Bell Creek	Cannon River	Willow Brook, Minn	5,000
	Spring, 1878	Hennepin County, Minn	Minnetonka Lake	Mississippi River	Willow Brock, Minn	3,000
	Spring, 1878	Hennepin County, Miun	Lake Rebecca	Mississippi River	Willow Brook, Minn	1,000
	Spring, 1878	Hennepin County, Minn	Lydard Lake	Mississippi Rive	Willow Brook, Minn	1,000
	Spring, 1878	Houston County, Minu	Hokah Creek	Root River...	Willow Brook, Minn	2, 000
	Spring, 1878	Houston Connty, Minn Houston County, Minn	Silver Lake	Mississippi River	Willow Brook, Minn	2,000
	Spring, 1878	Le Sueur County, Minn	Lake Emily	Mississippi River	Willow Brook, Minn	2,000
	Spring. 1878	Le Sneur Combty, Minn	Lake Washington	Cannon River.	Willow Brook, Minm	1,000
	Spring, 1878	Le Sueur County, Minn	Lake Jetrersom . .	Cannou River	Willow Brook, Min	3,000

[^116]
S. Mis. $110-56$
D.-Table II.-Distribution of California salmon from 1873 to 1880, inclusive-Continued.
Estimated
number
of fish.

	战

昆最

 きまごぎす

的能
（品

Nebraska．
Nevada．．．．．．．．．．．．
New Hampshire

State.	Date.	Nearest post-oflice, town, or village.	Waters in which fish were placed.	Tributary of-	Where finally hatched.	Estimated number of fish.
New Jersey-Contimed.	Dec. 20, 1876	Woodstown, N. J	Salem Creek	Delaware River	New York City Aquarium	3,000
	Dec. 22, 1876	Swedesborough, N. J	Oldman's Creek	Delaware River	New York City Aquarium	2,500
	Dec. 27, 1876	Williamstown, N.J	Great Egg Harbor River	Great Egg Harb	Now York City Aquarium	3,500
	Jan. -, 1877	Wenonah, N.J	Mantua Creek...........	Delaware River	New York City Aquarium	12,000
	Jan. -1, 1877 Feb. 1, 1877	Bloomfield, N. J	Greenwood Lake.......	Walkill River...	New York Citj Aquarium	2,000
	Feb. 1, 1877	Weymouth, N.J	Great Egg Harlior River	Great Egg Harbor	New York City Aquarinio.	2,000
	Febr. Feb. 16, 1877	Brilgeton, N. ${ }^{\top}$ Burlington County, N.	Cohansey Creek	Lelaware River ..	New Fork City Δ quarium.	2, 500
	Feb. 16, 1877	Burlington County, N. J Winslow, N.	Mulicus River	Little Egg Harbor	New York City Aquarium. New York Caty Aquarium.	$\begin{aligned} & 2,000 \\ & 2,300 \end{aligned}$
	Feb. 22, 1877	Woodbury, N. J	Wootbury Creek. .	Delaware River ...	New York City Aquarium	250
	Feb. 22, 1877	Woodbury, N. J	Timber Creek ..	Delaware River	New York City Aquarium	250
	Feb. 23, 1877	Ers Marlor City, N. J	Mullicus River	Little Egg Has bor	New York City Aquarium.	2,000
	- -, 1877	Weuonal, N.J...	Mantua Creek	Delaware River	New York City Aquarium.	11,000
	Dec. 8, 1877	Cuuberland County, N.J	Maurice River	Delaware Bay	New Hope, Pa.............	3,000
	Dec. 13, 1877	Atlautic County, N.J..	Great Egg Harbor River	Great Egg Harbor	Now Hope, Pa.	6,000
	Dec. 13, 1877	Burlington County, N.J	Mullicus River	Little Egg Harbor	New Hope, Pa.	6,000
	Dec. 17, 1877	Gloucester County, N.J	Mantua Creek	Delaware River	New Hope, Pa.	$3,000^{\circ}$
	Dec. 20, 1877	Cumberland Counts, N. I	Cohansey Creek	Delaware River	New Hope, Pa.	7,000
	Dec. 20, 1877 Dec. 22,1877	Cumberland Counts, N .	Manrice River	Delaware Bay .	New Hope, Pa.	7,000
	Dec. 22, 1877	Gloucester County, N.J	Mantua River	Delaware River	Now Hope, Pa.	1,000
	Dec. 22, 1877	Gloucoster County S. S.J	Raccoon Creek	Delaware River	New Hope, Pa.	1,000
	Dec. 22, 1877	Gloncester County, N. J	Oldman's Creek	Delaware Ricer	New Hope, Pa.	1,000
	Dec. 24, 1877	Gloucester Countr, N. J	Timber Creek	Delaware River	New Hope, Pa	3,000
	Dec. 26, 1877	Burlington County, N. J	Mullicus River .	Little Egg Harbor	New Hope, Pa.	6, 000
	Dec. 29, 1877	Allowaystown, N.J.	Alloway's River	Delaware River	New Hope, Pa.	6, 000
	Jan. 3,1878	Surlingtou Countr, N .	Mullicas River	Little Ege Harbor	New Hope, Pa.	3, 000
	$\begin{array}{ll}\text { Jau. } & 3,1878 \\ \text { Jan } & 4,1878\end{array}$	Atlantic County, N. J.	Great Egg Harlıor River. .	Great Egg Harbor	New Hope, Pa.	3, 000
	Jan 4, 1878	Giloucester County, N . J	Mantua Creek	Delaware River	New Hope, Pa	1,000
	Jan 7, 1878	Cumberland County, N .	Maurice Rifer	Delaware Bay	New Hope, Pa.	6,000
	Jan. 25, 1878	('ape May County, N.J	Tuckahoe River	Great Eges Harbor R	New Hope, Pa	4, 000
	Fall, 1878	Trenton, N. J . . .	Shoemaker's Eddy.....	Delaware River	Bloomsiury, N.J	150, 000
	Fall, 1878	At:antic Comnty, N	Great Egg Harbor liver	Grat Ens Harbor	Bloomsbury, N.J	50, 000
	Fall, 1878	Salem County, N.J .	Allowdy	Delaware River.	Bloomshury, N. J	25,000
	Fall, 1878	Cumberland Count ${ }^{\text {, N. N. }}$	Marrice River..	Delaware Bay.	Bloomsbury, N.	25,000
	Fall, 1878	Gloncester Countr, N. J	Raccoon Creek	Delaware River	Bloomsbury, N. J	25, 000
	Fall, 1878	Purlingtou County, N.J	Mullicus River	Little Egg Harbo	Bloomsbury, N.J	25, 000
	Fall, 1878	Passaic County, N.J.	Grernwood Lake	(ireenwood Lake	Bloomsbury, N. J	22, 000
	Spring, 1879	Somerset County, N. J	North Branch .	Raritan River ..	Bloomsbury, N. J	30, 000
	Spring, 1879	Sonuerset Counts, N. J	Rockaway Iiiver -	Passaic River	Bloomsbury, N.J	30,000
	Spring, 1879	Bergen County, N.J.	Hackonsack River	Newark Bay.	Bloomsbury, N.J	30, 000
	Spring, 1879	Morris County, N.J	Lake Hopatcong..	Nowark Bay	Bloomsbury, N. J	5,000
	Spring, 1879		Shaungun Lake		Bloomsbury, N.J	5, 000
	Spring, 1879		Silver Lake....		Bloomsbury, N.J	3,000
	Spring, 1879	Sussex County, N. J	Swartswood Lake		Bloomsbury, N.J	10,000
			-			

ががっき， む，\＃\＃ क．

\qquad

 Silver Lake
Oneida Lake

[^117] West Canada Croek第 Ronce Fall Spruci Creek
Oswero River Fish Creok． Calodonia Spring Oako Lako Fortwille Creek
Deatwir Creok Peatwid Creek
Inglesthy Creek Sand （＇reek
D.-Table'II.-Distribution of California salmon from 1873 to 1880, inclusive-Continued.
Estimated
number
of fish.

	 훌뭉
\%	
$\begin{aligned} & \text { Waters in which fish were } \\ & \text { placed. } \end{aligned}$	
ค่	

Tamestown， N	
Danbury，N．	
ILjekorynut（rap，N．C．	
Grermanton，N．C．．．．．．	
Moraranton，N． $\mathrm{C}^{\text {c }}$	
	Morganto
Old Fort，N．${ }^{\text {S }}$	
Salisbury，N．（	
Morganton，N．	
Raluinh，N． C ．	
Mor＜ranton，N．	
	Millhwook．（）h
（astalia，（）hio	
	Bucyuns，（）
Eiaglevill	
Montoevillu，（）h	
	Wrapalioncta，O
Sidins，Olio	
Elmora，Ohio ．．．．．	
South Tolvelo．Ohio．	
（6mbucton，（）hio	
	（＇oshoctrin，（）
I＇ut－in－Bay，Ohio	
Cinstalia，（）］ios	
（ olumburs，（）hio．	
Newcomerstown，	
Toledu，（）hio	
Defiance，Ohio ．	
Iuron，（）hio	
I）ayton，（）hio	
Ccanga Count ${ }^{\text {c，Onio }}$	
Mount Vernon，Ohio．	
Licking Comnty，Ohio	
（＇astalia，Ohio．．．．．．．．	
Iremmont，（）hio．．．．．．．	
Wraterville，Ohio．．．．．．	
Toledo，Ohio．．．．．．．．	
J：rrisburir，I＇a．．．．	
Mechanicsburq，Pa．．．	
Chambersburg，Pa．	
IVper Paxton，Pa．	
Doneral，P^{\prime} a．．．	
Bulletonte，Pa	
Bellefonte，Pa ．．．．．	

ग.-Table II.-Distribution of California salmon from 1873 to 1880, inclusive-Continued.

State.	Date.	Nearest post-office, town, or village.	Waters in which fish were placed.	Tributary of-	Where finally hatched.	Estimated number of fish.
$\begin{aligned} & \text { Pennsylvania- } \\ & \text { Continued. } \end{aligned}$	Dec. 6, 1874		Conedoquinet Creek	Susguehanna River	Bloomsbury, N. J.	6,000
	Dec. 21, 1874	Easton, Pa	Bushkili Creek	Delaware River	Marietta, ¢a.....	60,000
	Dec. 22, 1874	Swatara, Pa ${ }^{\text {Williams Mill }}$	Swatara River...	Susquehanna River	Marietta, ${ }_{\text {Marietta, }}$	30,000 30,000
	Dec. Fall, 26, 1874 1874	Williams Mill, Pa	Yellow Breeches Spring Creek ...	Bald Eagle Creek	Bloomsbury, N. J	30,000 20,000
	Fall, 1874		Mahatonga Ri	Susquehanna Rive	Bloomsbury, N. J	12, 000
	Jan. 5, 1875		Buffalo Creek	Susquehanna River	Marietta, Pa..	10, 000
	Jan. 5, 1875		Pine Creek	Susquehanna River	Marietta, Pa	15,000
	Fall, 1875	Bushkill, Pa	Delaware River	Delaware Bay .	Marietta, Pa	60,000
	Fall, 1875	Reading, Pa	Schuylkill River	Delaware River	Marietta, Pa	7,000 30,000
	Fall, 1875	Williams Mill, Pa	Yellow Breeches Creek	Susquelianna River	Marietta, Pa	$\begin{aligned} & 30,000 \\ & 15,000 \end{aligned}$
	Fall, 1875	Lancaster County, Pa	Chiquesalonga Creek	Susquehanna Rive Susquehanna River	Marietta, Pa	$\begin{aligned} & 15,000 \\ & 30,000 \end{aligned}$
	Fall, 1875 Fall,	Swatara, Pa Marietta, Pa	Swatara River Columbia Dam	Susquehanna River	Marietta, Pa.	$\begin{aligned} & 30,000 \\ & 60,000 \end{aligned}$
	Fall, 1875	Donegal, Pa	Donegal Springs	Susquehanna Rive	Marietta, Pa	8,000 500
	Nov. 10, 1875 Spring, 1876		Bushkill Creek	Delaware River	Marietta, Pa	200, 000
	$\underset{\text { Spring, }}{\text { Spring, }} 1876$	Williams Mill, Pa	Yellow Breeches Creek	Susquehanna Riv	Marietta, Pa	18,000
	Spring, 1876	Marietta, Pa.....	Susquehanna River...	Chesapeake Bay.	Marietta, Pa	30, 000
	Spring, 1876	Columbia, Pa	Susquehanna River	Chesapeake Bay ...	Marietta, Pa.	50,000
	Spring, 1876		Maiden Run	Susquehanna River	Marietta, Pa Marietta, Pa	$\begin{array}{r} 5,000 \\ 15,000 \end{array}$
	Fall, Fall, 1876	Brandywine, Pa Chickies, $\mathrm{Pa} . .$.	Brandywine Creek. Chiquesalonga Creek	Delaware River	Marietta, Pa	$\begin{aligned} & 15,000 \\ & 30,000 \end{aligned}$
	Fall, 1876	Swatara, Pa	Swatara River ..	Susquehanna River	Marietta, Pa	50,000
	Fall, 1876		Stony Creek ...	Spsquehanna River	Marietta, Pa.	20, 000
	Fall, 1876	Cumberland County, Pa	Conedoquinet Creel	Susquehanna River	Marietta, Pa.	20, 000
	Fall, 1876	Harrishurg, Pa	Susquehanna Rive	Chesapeake Bay.	Marietta, Pa	$20,000$
	Fall, 1876 Fall	Wilkes Barre, Pa	Bowman's Run Maiden Creek	Susquehanna Rive Susquehanna Rive	Marietia, Pa Marietta, $\mathbf{P a}$	$\begin{array}{r} 50,000 \\ 5,000 \end{array}$
	$\begin{array}{ll}\text { Fall, } & 1876 \\ \text { Fall, } & 1876\end{array}$	Greene County, Pa		Monongahela River	Marietta, Pa	500
	Jan. 6, 1877	Bushkill, Pa		Delaware River..	Marietta, Pa.	78, 000
	Jan. 6, 1877	Lancaster County, Pa	Chiquesalonga	Susquelianna River	Marietta, Pa	32, 000
	Jan. 8, 1877	Newville, Pa...	Spring Creek	Susquehanna River	Marietta, Pa	22, 000
	Jan. 9, 1877	Newport, Pa		Juniata River	Marietta, Pa.	20, 000
	Jan. 11, 1877	Bushkill, Pa		Delaware River	Marietta, Pa	$23,000$
	Jan. 22, 1877	Perry County, Pa	Trout Run	Juniata River	Marietta, Pa	$\begin{aligned} & 22,000 \\ & 25,000 \end{aligned}$
	Jan. 25, 1877	Swatara, Pa..	Swatara River..	Susquehanna River	Marietta, Pa	$\begin{aligned} & 25,000 \\ & 15,000 \end{aligned}$
	Apr. May 11, 2, 1877	Philadelphia, Pa	Schuylkill River	Delaware River ${ }_{\text {Susquehanna River }}$	Marietta, Pa Marietta, Pa	$\begin{aligned} & 15,000 \\ & 22,000 \end{aligned}$
	May 12,1877	Marietta, Pa		Susquehanna River	Marietta, Pa	20, 000
	May 12, 1877	Marietta, Pa		Susquehanna River	Marietta, Pa	13, 000
	May 14, 1877	Lancaster County, Pa	Chiquesalonga Croek	Susquehanna River	Marietta, Pa	$20,000$
	Dec. 28, 3877	Snyder County, Cha Chllisquaque, Pa.	Penn's Creek North Branch	Susquehanna River Susquehanna River	Marietta, Marietta, Pa	$\begin{aligned} & 15,000 \\ & 10,000 \end{aligned}$

Bushkill Creek
Bowman's Creek
Bushkill Creok
Kettlo Creek
Busblill Creek
Bushkill Creek
Bushkill Creek
Schuylkill River
Yellow Breeches
Buffalo Creek
Trout Run
Bowman's Cr
Driftwood Brook
Sinnemahoning
Bushkill Creek
Juniata Riper
Pean Creek
Bushkill Cr
Yellow Breechos
Harvey's Lake
Bear Lake
Susqueliannal R
Drittwood Brook
Diiftwood Brook
Juniata River*
Slatersrille Bran
Pawtuxet River
Pawcatuck Rive
Artificial pounds
Wood Riverr
Paweatuck İiver
Slatersville Bran
Pawtuxet Iiver
Broad Riv゙r
Edisto River
Cooper Kiver
Senteca Rivor
Catawha Jiver
Jsomal liver
Packlette River
Saluda River
Edisto River
Cooper River
Enoree River
Saluda Rivor
Seneca River
Mussy Creek
Little River
Martinus Creak
'Tugaloo River
I'edee Kiver

D.-Table II.-Distribution of California salmon from 1873 to 1880, inclusive-Continued.

State.	Date.	Nearest post-offico, town, or village.	placed. Waters in which fish were	Tribatary of-	Where finally hatched:	Estimated of tish. of tish.
Sonth Carolina-Continued.	Spring, 1880		Enoree	Broad		
	Spring, ${ }_{\text {Spring, }} 18880$	Greenvile C.H., S	Seneca River	Santee River		
	Spring, 1880		Mossy Creek	Broad River		
	Spring, 1880		Little River	Broad River Savannah River		
	Spring, 1880		Tugaloo River	Savannah River		
	Spring,		Pedee Riv			
	1880	Seneca, S C	Seneca River	Sa qannah Riv		
			Wateree Rive	Santee Rive		
	1880		Saluda River	Santeo Rive		
	1880		Black River.	Pedee River		
Tennessee	Dec. ${ }^{25,1875}$	Memphis Tenn...........	Woolf River Forked Deer River..............	Savannah River		
				Mississippi Ri	Moranton, N.C..........	40,0002,200
	Dec. 10, 1876	Rumboldt, Ten		Mississippi		
	Dec. 10, 1876	Jackson, Tenn	Forked Deer River	Mississippi Rive	Baltimore, M	$\begin{array}{r} 12,400 \\ 5,000 \\ 5,000 \\ 18,400 \end{array}$
	Dec. ${ }^{\text {Dec. }} 22,1876$	Athens, Tenn.	Eastannallee River	Tennessee River	Baltimore, Md	
	Dec. - 1887	Jackson, Tenn	Forked Deor Rive	Mississippi River	Northville, Mich	
Texas......		Hempstead, Tex	Clear Creek	Brazos River	Niles, Mich	12,400$, 2,000$18000018000
	Dec. -, 1874			Colorado River	Niles, Mic	
		Hempstead, Tex	Clear Creek	Brazos River	Northrille Mich	2,18,00088
Utah		Austin, Tex		Colorado River	North ville, Mic	
		Jordan, Utah	Jordan River	Great Salt Lake	Jordan, Utah	
		Jordan, Utah	Jordan River	Great Salt Lake	Jordan, Utah	32,000 195,900 112,000
	Fav. of 181876	Weber County, Utah	Ogden River	Great Salt Lake	Jordan, Utah	112,0001,7501,750
	\| Fall of 1876	Weber County, Utah	Weber River	Great Salt Lake	Jordan, एtah	
		Cache County. Utah	Blackemith's ${ }^{\text {Brar }}$	Lower Bear River	Jordan, Utah	1,750 8,000 4,000
	Fall of 1876	Tooele County, Utah	Twin Spring Creek		Jordan, Utah	4,0002,50011,000
	Fall of 1875	Rich Countr, Ota	Upper Bear Ri	Great Salt Lake	Jordan, Utah	
		Davis County, Utah	Jerning's Po	Groat Salt Lal	Jordan, Utah	11,0004,0001,200
	Fall of 1877	Davis Counts, Utah	Jenning's Pond	Great Salt Lake	Jordan, Utah	
		Utah County, Utah	Mill Creek.	Jordan River	Jordan, Utah	1,200 $2^{2}, 000$ 16000
	Fall of 1877	Jordan, Utah	Jordan Riv	Great Salt L	Jordan, Ut	16,000 57 32,000
	Spring, ${ }^{\text {Sting }}$	Forrest Farm, Utah	Spring Creek	Jordan River	Jordan, Utah	32,0002,50044
		Tooele Connts, Uta	Twin Spring C		Jor	
	(enring, 1879	Sanpete County, Utal Salt Lake County, Ut			Jordan, Jordan,	

动总

 Rappahannork Kive
 James よivor．

New River ．．．．．
Tennesseo River．
Tennesse River

Totes Run....

$$
\begin{aligned}
& \text { Fishing Creek } \\
& \text { Fish Creek }
\end{aligned}
$$

 Potomac River
Potomac River
Potomac River Nearest post-office, town, or village.
 s家
家 unty,
¢

State.

Virginia-Cont'
West Virginia.

 White Iiver ．．．．．．．．．． Fhito River．．．．．．．．
Fox River ．．．．．．．． Oconomowoc Creek Lako Michigan
合合

 Missiswphi liver
Wisconsin liver．
Mississipul liver Red Cedar River．
Menomone．．．．．．．．．．．．．．．．．．

 abal！मomantur
 Lemonwoiy Riva
Lal Coosal River （I）．Authony）．
Mr ．Sverancu lish Lidin
lond（1）．Sykes）

皆
D.-Table III.-Distribution of Schoodic salmon from 1874 to 1880, inclusive.

State.	Date.	Locality.	Waters in which fish were placed.	Tributary of-	Where finally hatched.	$\begin{array}{\|l} \text { Number of } \\ \text { fish. } \end{array}$
Calif	1878	Nevada County, Cal	Donner Lake Sereno Lake Felch's Lake Espinoza Lake Woodward Aquarium Tulare Lake Arroyo Laguna Laguna Honda. Echo Lake	Truckee River	$\begin{aligned} & \text { San Leandro, Cal. } \\ & \text { San Leandro, Cal. } \end{aligned}$	
	1878 1878	Placer County, Cal San Mateo County, Cal				5,000 5,000 5,000
	1878	Monterey County, Cal			San Leandro, Cal.	5, 000
	1878	San Francisco, Cal			San Leandro, Cal	${ }^{500}$
	1878 1878	Tulare County, Cal Alameda County,			San Leandro, Cal ${ }_{\text {San }}$ Se.........	15,000 2,500
	1878	Alameda Countr, Cal			San Loandro, Cal.	-700
	1878	San Francisco County,			San Leandro, Cal.	,000
Connecticat	1876	E1 Dorado Connty, Cal			Westport and Waltonia, Conn Westport and Waltonia, Conn Westport and Waltonia, Conn	125000
	1876	Winsted, Conn.	Echo Lake ${ }_{\text {a }}$ Spectacle Pond...........................			
	${ }^{1876}$	Chapinville, Conn	Twin Lakes		
	1876	Lakeville, Conn				
	1876	Norfoik, Conn			Westrort and Waltonia Conn Westport and Waltonia, Conn	10,000 10,000
	1876	Litchfield, Conn	Bantam Lake...			
	1876	Veluntown, Conn	Beach Pond.		West port and Waltovia, Conn Westport and Waltonia, Conn	
	1876	East Hampton, Conn	Hampton Pond		Westport and Waltonia, Conn.Westport and Waltonia, Comn.	
	1876	Rockville, Conn	Snipsic Lake			
	1876 1876	Lyme, conn ${ }_{\text {Windham, }}$	Rogers Lake.		Westport and Waltonia, Conn. Westport and Waltonia, Coun	10,000 10,000
	1876	Salem, Conn ..	Gardiner's Lake		Westmort and Watonia,	10, 000
	1877	New Preston, Conn	Waramang Lake			
	1877	Litchfield. Conn	Bantam Lake		Westport and Waltonia, Conn Westport and Waltonia, Conn	
	1877	${ }_{\text {Lyme, }}$ Sonn.	Hog Lako		Westport and Waltonia, Conn.	
	1877	Salisbury, Conn.	Twin Lakes		Westport and Waltonia, Conn	
	1877	Lakeville, Conn.	Wononsconouuc Lake		Westnort and Waltonia, Conn-Westrort and Waltonia, Coun	
	1877	Kent, Conn	Spectacle Ponds			
	1877	Rockville, Coun	Snipsic Lake		Westport and Waltonia, Coun- Westport and Waltonia, Conn.	
	1877	East Hampton, Conn	Hampton Pond		Westport and Waltonia, Conn.	
	1877	Winsted, Conn	Long Lake			5,000
	1877	South Coventry, Conn South Windlam, Conn	Balatack Brook ...		Westport and Valtonia, Coun	
	1877	East Haven, Conn	Saitonstall Lake		Weatnort and Waltonia, Conu Westport and Waltonia, Conn	1,000
	1877	$\stackrel{\text { Branford, Conn }}{ }$	Roger's Pond		Westport and Waltonia, Coun. Westport and Waltonia, Conn	1, 000
	1877	Woodiridge, Con	Twin Lakes			
	1878	Kent, Conn	Spectacle Ponds		North Branford, Conn.........	
	1878	Sherman, Con	Square Pond		North Branford, Conn..........	5, 000
	1878	Sherman, Co	Green Pond		North Branford, Conn.......... North Branford, Conn	
	1878	Lyme, Conn	Hog Lake			10, 000

Noucosoci

nipsic Lake. Iampton Iond
 Bantam Lake. Vaumamang Lake
 Long Lake Brooks Lako. Brooks .illake Ronnd Pond Kenosha
 Iwin Lakes .
 Trenonseoponue Lake
 Sononscoponuc Lakord Springe Reservoir Long Lake. . Hog Lako. Gardinor's Iako. Tributaxy Bantam Lako Tributarmes Reservoir helrose Pond ? 0 3 3 3 3 2 3 3 Pitsquorr Pond. Logers Lako Halfway Rivar Canaan Mountain Pond Kanemiac Pomd. . Sill livor Pomeraug Iiv lerry's Pona Puarepary Lakce... Plainvile Roservoiv 13lack Pond Bolton Renervoir. Suantic Invor. Broad Buook. falmon River Colt's Keservoix I'win Lakes I'oud

D．－TABLE III．－Distribution of Schoodic satmon from 1874 to 1880 ，inchusive－Continued．
Number of
fish．
 ตค，
ドャッ゙ージ
T riose
ลิご
트ㅋㅜㅒ

感 － 0	
$\begin{aligned} & \dot{\$} \\ & \stackrel{3}{3} \\ & \stackrel{y}{2} \end{aligned}$	

윽
害
oso sesoon
 크ㅂㅜㅜ
 ，露筑会

 Baltimore，
Baltimore，
Baltimore， 0
0
0
E
世
＂
 Baltimore， Baltimore，
Baltimore，
Baltimore， $\Phi \subseteq$
S
E
末
$=0$
 co
E
E．
E
末
$=0$
 000
心．
E
틍 DE
©
E E
＝
玉

 E
号
0
0
0
0苞

等

Kennebec Rirer

浞

 C E蔡

 Tront Branch．
Pond
Winter＇s Run．
 \qquad家

范

S．Mis． 110
D.-Table III.-Distribution of Schoodic salmon from 1874 to 1880, inclusive-Continued

State.	Date.	Locality.	Waters in which fish were	Tributary of-	Where finally hatched.	$\begin{gathered} \text { Number of } \\ \text { fish. } \end{gathered}$
Maryland-Cout'd	Apr. 24, 1880	Baltimore, Md	Pond	Gunpowder River	Baltimore, Md	500
	Apr. 26, 1880	Catonsville, Md		Gwynn's Falls.	Baltimore, Md	500
	Apr. ${ }^{\text {Apr. }}$ A 28,18800	Clear Spring, Md	Mill-dam	Potomac River	Baltimore, Md	
	Apr. ${ }^{\text {Apr. }} 30,1880$	Eden, Md.	Pond	Bush River		500 500
	May 1,1880	Baltimore, Md	Patuxent Rive	Chesapeake Bay	Baltimore, Ma	500
	May ${ }^{4}, 1880$	Lon α Green. Md	Pripping sprin	Gunpowaer River	Baltimore,	200
	May 8,1880	Norrisville, Md	Pond	Deer Creek	Baltimore, Ma	500
	May 11,1880	Frederick, Md	Monocacy	Potomac River	Baltimore, Md	500
	May 13.1880	Mount Pleasant, Md	Pond	Monocace River	Baltimore, Md	500
	May 14, 1880	Denton, Md	Pond	Choptank River.	Baltimore, Md	500
	May 17, 1880	Baitimore, Md	Bush Run	Gunpowder River	Baltimore, Md	500
	May 18,1880	Sulphur Spring,	Pond	Patapsco River	Baltimore, Md	500
	May 24,1880	York Road, Md.	Pond	Gunpowder River	Baitimore, Md	500
	May 27,1880	Sandy spring, Md	Pond	Patuxent River.	Baltimore, Md	500
	$\begin{aligned} & 1876 \\ & 1876 \end{aligned}$	Sandwich, Mass..	Spectacle Pond		Winchrster, Mass	500 3.500
Massachusetts.....	1876	Winchendou, Mass	Dennison Lake		Winchester, Mass	$3{ }_{3}^{3,000}$
	1876	Lunenburgh, Mass	Unkechewalom Po		Winchester, Mass.	4,000
	1876	Lincoln, Mass	Sandy Pond.		W inchester, Mass	3, 000
	1876	Boxford Mass	Mitchell's Pond	Ipswich River	Winchester, Mass	4, 000
	1876	South Wormouth Mass	Weymamouth Great Pond		Winchester, Ma	5, 000
	1876	Pittsfield, Mass.	Pontoosuc Lake		Winchester, Mass.	
	1876	North Sandwich, Mass	Great Herring		Winchester, Mass	5 5, 000
	${ }_{1876}^{1876}$	Mendon, Mass	Nipmug Pond		Winchester, Mass	3,000
	1876	Wellesley, Mass			Winchester, Mass	3, 3 , 000
	${ }_{1876}^{1876}$	North Andover, Mass	Great Pond		Winchester, Mass	5, 000
	1876	A ${ }^{\text {dhburnham, Mass }}$	Nankeag Lake		Winchester, Mass.	5,000
	1876	Lancaster, Mass.	Ponds.......		Winchester, Mass	15,000
	1876	Sonth Carver, Mass			Winehoster, Mass	8,000 3
	1876	Cotuit, Mass.	Gates Pond		Winchester, Mass	4,000
	1876	Athol, Mass	Gates Yona		Winchester, Mass	3,000
	1876	Natick, Mass	Dug Pond		Winchester, Mass	
	1876	Winchoster, Mass	Wedre Pond		Winchester, Mass.	3,000
	1876	Winchester, Mass	Mystic Lake		Winchester, Mass	
	1876	Plymouth, Mass	Halfway Pond		Winchester, M	90, 000

 Middleton Pond动 Nine-Mile Poni Sinc-atace Pomd.
Sudbury River. Dug Pont Pummock Pond B
0
0
0

> Ponds. Island Creek Poud ILalfway Pond
 Mystic Lake..
Myed mo Pond. Wedzo Pond. (hall Pond............. 1) ennison Lake. C
0
6
6
0
0
0 Mystic Lak -.... Bear Hill Pond ... Spring Pond
Filax Pond
 Snow's Pond.
Great Poud Sintucket River.
Scitnato Ponds...
Sato Mabkeenac Lake Mabkeenac

D．－TABLE：IIL．－Distribution of Schoodic salmon from 1874 to 1880，inclusive－Continued．

Tributars of－	Where finally hatched．	Number of fish．
	Winchester，Mass．	4，000
	Winchester，Mass	8,000
	Winchester，Mass．	2， 500
	Winchester，Mass	2，500
	Winchester，Mass	5.000
	Winchester，Mass	5,000
	Winchester，Mass．	7，000
	Winchester，Mass	16， 000
	Winchester，Mass	8,000
	Winchester，Mass	6，000
	Winchester，Mass	8,000
	Winehester，Mass．	4， 000
	Winchester，Mass．	4，000
	Winchester，Mass	4,000
	Winchester，Mass	6， 000
	Winchester，Mass	10，000
	Winchester，Mass	2，000
	Winchester，Mass	2， 000
	Winchester，Mass	3,100 6,000
	Winchester，Mass	10，060
	Winchester，Mass	8 ， 600
	Winchoster，Mass	8,040
	Winchester，Mass	20，000
	Winchester，Mass	10，000
	W inchester，Mass	8，000
	Winchester，Mass	9， 000
	Winchester，Mass．	3，000
	Winchester，Mass．	20， 000
	Winchester，Mass	6，000
	Winchester，Mrss	20，000
	Winchester，Mass	3，000
－	Winchester，Mass．	3， 000
	Winchester，Mass	6， 000
	Winchester，Mass	20，000
	Winchestcr，Mass	4， 000
	Winchester，Mass	4，006
	Winchester，Mass	10， 000
	Winchester，Mass	6， 000
	Winchester，Mass	3， 000
	Winchester，Mass	3， 000
	Winchester，Mass	6， 000
harles River	Winchester，Mass．	2， 5 ， 000

Waters in which fish were
placed．

感	(1)
$\stackrel{\oplus}{\stackrel{\Xi}{む}}$	以
$\frac{\stackrel{3}{3}}{\underset{\sim}{2}}$	

은앵ㅇㅇㅇ
皆
䖝
Tw
eda Alley Lake l＇reston ．．．．． Silver Lake．．．．．．．．．．．． Jones＇Pond．．．．．．．．． Ossipee Lake．．．．．
Massabesic Lako．
Tarlton Pond．．．． Newfound Lake．
 Connecticut Lake...-
Winnipesankee Lake
 Bradford＇s Pond． Sundry Ponds
 Winnesquam Lako
Tributary of
Long Lake Sunapee Lake． Stocker＇s Pond ．．．．．．．
Jones＇Pond．．．．．．．． East Lake ．．．．．．．．．．．． Star Pond
Echo Lake ．
North Pond ．．．．．．．．．．．．．．．．．．．．．．．．．．．Connecticut Rive

$\stackrel{\Phi}{\text { ®is }}$	我		
		IVI｜I｜I｜ITIIV	
	苍		
$\stackrel{\dot{\Phi}}{\underset{\sim}{2}}$			
		$\stackrel{e}{0}$	

D.-Table III.-Distribution of Schoodic salmon from 1874 to 1880, inclusive-Continued.

［81］PRODUCTION AND DISTRIBUTION OF YOUNG FISH． 905

からからがが

Number of
需 ๗゙NL
Where finally hatched.
 Palmer's

 Tibut of Potomac River Tributary ofMonongahela River.
Monongehela River. Monongehela River Grio IRiver......... Patterson's Creek
Potomac River. Potomac River. South Branch, Potomac River
South Branch, Potomac liver New River.

Nearest post-office, town, or

| village. |
| :---: | Waters in which fish were

 Fountain at Institution for Deaf, etc.
West Fork Vest Fork.......
Wheeling Creek
Fish Creek ... Dry Fork William's Spring.
Mill Creek Mill Creek . Tributaries Greenbrier River. Oconomowoc Lake Geneva Lako.. Clear Lake
 Nagawicka Lake
Green River.... Nearest post-office, town, or
village. Romney, W. Va.................
Hampshire County, Wa...

［83］PRODUCTION AND DISTRLBUTION OF YOUNG FISIf． 907

 Penobscot River ．．．
Saint Crois liver ．
Androscogryin Iiver
Penobscot River．．．．
Penobscot Rivor．．．．
Penobscot River．．．．

> Mributarios Main Jiver L'ribuaries

 Maquoketa liver ．．．．．．．． Bear Creak
Boyer River Matio

 Mattawamkeag River
Mattawamkeng River．
Salnou Streams ．．．．．．

$$
\begin{aligned}
& \text { ジジジさ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 示 }
\end{aligned}
$$

State.	Date.	Locality.	Tributaries.	Waters stocked.	Where finally hatched.	Number of fish.
Maine-Continued	1874		Tribntaries of Baskahegan River.	Penobscot River	Bucksport, Me.	5, 000
	1874		Passadamkeag River	Penobscot River	Bucksport, Me.	10, 000
	1874	Whitney Ridge, Me. Howland, Me......	Sebovis River Sebovis River	Penobscot River	Bucksport, Me	25,000 25,000
	1874	Milo, Me...	Piscataquis Ri	Penobscot River	Bueksport, Mo	25.000
	1874	Brownville, Me	Pleasant River	Penobscot River	Bucksport, Me	15, 000
	1874	Dover, Me	Piscataquis Riv	Pcuobscot River	Sebec Lake, Me	25,000
	1874		Sebec Lake	Penobscot River	Schec Lake, Me	20,000
	1874 1874	Dobsis Stream, Me	Schoodic Lak	Saint Croix River	Dobsis Stream, M	10, 000
	$\begin{aligned} & 1874 \\ & 1875 \end{aligned}$	Howland, Me	Sebovis River	Penmaquan River	Pembioke, Me Bucksport, Me	8,613 30,000 3
	1875		Madaceunk Stream	Penobscot Riser	Bneksport, Me.	15, 000
	1875		Salmon Stream.	Penobscot River	Bucksport, Me	5, 000
	1875	Bancroft, Me	Mattawamkeag River	Penobscot River	Bncksport, Me	20, 000
	1875			Peuobscot River	Bucksport, Me	45, 000
	1876		Penquaman River	Pedobscot hiver		94,000 35,000
	1876		Denny's River		Pembroke, Me	${ }_{35,000}^{35,000}$
	1876	Surry, Me	Patten's Brook		Bucksport, Me	100, 000
	1876	Baneroft, Me	Mattawamkeag River	Penobscot River	Bucksport, Me	50,000
	1876	Kingman, Me	Mattawamkeag River	Penolscot River	Bucksport. Me	50, 000
	1876	Winn, Me.		Penobscot River	Bucksport, Me	50, 000
	1876					100, 000
Maryland..........	1875	Fort Pendleton, Mrd.	North Branch			16,000
	1875		Deer Creek	Susquehanna River	Green Sping Valley, Ma	19, 000
	1875 1875			Gunpowder River	Green Spring Valler, Md	18,900
	Mar. 23, 1880		Upper W	Patuxent river-	Green Spring Valiey, sil.	18,900
	Mar. 24, 1880	Mechanicstown, Md	Hunting Creek	Monocacy River..	Druid Hill Park, Mri.	32,000 3,000
	Apr. 5, 1880	Oakland, Md	North Fork	Potomac River.	Druid Hill Park, Mrd	10, 000
	Apr. 6, 1880	Piedmont, Md	South Fork	Potomac River	Druid Hill Park, Md	10,000
	Apr. 9, 1880	Greencastle, Pa		Conococheague Rive	1)ruid Hill Park, Md	5, 000
	Apr. 9, 1880	Gettysburgh, Pa	Rock Creek	Monocacy River	Druid Hill Park, Mu	7,729
Massachusetts....	1873			Merrimac River	İinchester, Mass.	21,450
	1873			Red Brook...	Winchester, Mass.	1,430 1,430
	1874	Palmer, Mass	Quobaug Pond	Red Brook	Westbrook, Conn	30, 000
	1874		Westfield River	Comnecticut Rive	State Hatchery	17,00e
	Spring, 1876	Cotuit, Mass	Cotuit River.		Winchester, Mass	10, 000
	Spring, $\begin{array}{r}1876 \\ 1873 \\ \hline\end{array}$	Lancaster, ${ }_{\text {Plass }}^{\text {Pontiac, Mich }}$ (Nashua River	Lake Saint Clair	Winchenter, Mass	40,000 400
Michigan	1873	()akband 'ounty, Mich	Orchard Lake	Lake Saint Clair	Clarkston, Mich	500
	1873	()aklaud County, Mich	Wall's Lake .	Lake Saint Clair .	Clarkston, Mich ..	500

D.-Table IV.-Distribution of Penobscot salmon from 1873 to 1880, inclusive-Continued

Where finally hatched. $|$| Number of |
| :---: |
| fish. |

Waters stocked.

，改
ニコニニニ

Dow River．． battonkill Crock．
Menomoneo Iiver Menomoneo Liver
Oconomowoc Lake Milwaukee Liver
Madison Lake．．． Genuson Lako．
Elkhart Lako．送
汤

 Oconomowor，Wis
Wanwatosa，W is ．

D.-Table V.-Distribution of white-fish from 1872 to 1880, inclusive.

State.	Date.	Locality.	Tributaries.	Waters stocked.	Where finally hatched.	Number of fish.
California.	1872	Lake County, Cal.		Clear Lake	State Hatchery	25,000
	1873	Lake County, Cal.		Clear Lake		25,000
	Mar. -, 1875	Tulare County, Cal		Tulare Lake	Berkeley, Cal	20, 000
	Spring, 1877	Nevada Counts, Cal		Donner Lake.	Berkeley, Cal	$75,000$
	Spring, 1877	Placer County, Cal..		Senero and other lakes Tahoe Lake...........	Berkeley, Cal Berkeley, Cal	$\begin{array}{r} 50,000 \\ 175,000 \end{array}$
	Spring. 1877	Placer County, Cal		Tahoe Lake	San Leandro, Cal	175,000 70,000
	Jan. 11, 1879	Novada County, Cal		Donner Lake	San Leandro, Cal	70,000
	Jau. 11, 1879	Nevada County, Cal		Lakes	San Leandro, Cal.	60, 000
	Jan. 18,1879	Lassen County, Cal.		Eagle Lake	San Leandro, Cal	$225,000$
	Jan. 21, 1879	Talare County, Cal		Tulare Lake	San Leandro, Cal	100,000
	Feb. 1, 1879	Sonoma County, Cal		Mark West Creek	San Leandro, Cal.	10,000
	Feb. 17, 1879	Santa Clara County, Cal		San José Water Company's Reservoir.	San Leandro, Cal.	10,000
	Feb. 17, 1879	Alameda County, Cal .		Chabot Lake.	San Leandro, Cal.	20,000
	Mar. 8,1876	Rome, Ind		Rome City Lake	Northville, Mich.	100, 000
Iowa	Mar. 1,1876	Iowa Conntr, Inwa		Clear Lako.	Northville, Mich	$100,000$
Michigan	Feb. 8,1876	Northville, Mich..		Rough River	Northville, Mich	200, 000
	Feb. 9,1876	Northville, Mich		Rough River	Northville, Mich	200, 000
	Feb. 15, 1876	Northville, Mich		Rough River	Northville, Mich.	200,000
	Feb. 19, 1876	Oak County, Mich		Walled Lake.	Northville, Mich.	$50,000$
	Feb. 19, 1876	Oak County, Mich		Strait's Lake	Northville, Mich	$35,000$
	Feb. 19, 1876	Oak County, Mich		Oxbow Lake	Northville, Mich	40,000
	Feb. 19, 1876	Northville, Mich..	ver	Yerkes Lake	Northville, Mich.	100, 000
	Feb. 21, 1876	Le Roy, Mich..		Rose Lake.	Northville, Mich	$25,000$
	Feb. 21, 1876	Fife Lake, Mich		Fife Lake.	Northville, Mich	$25,000$
	Feb. 21, 1876	Crofton, Mich.		Bass Lake	Northville, Mich	125, 000
	Feb. 21, 1876	Crofton, Mich.		Loon Lake	Northville, Mich.	125, 000
	Feb. 21, 1876	Petosky, Mich		Twin Lakes	Northville, Mich	20, 000
	Feb. 21, 1876	Petosky, Mich		Round Lake	Northville, Mich	$20,000$
	Feb. 21, 1876	Petosky, Mich		Crooked Lake	Northville, Mich.	20, 000
	Feb. 21, 1876	Cheboygan, Mich		Burt's Lake.	Northville, Mich	40,000
	Feb. 24, 1876	Dexter, Mich .		Silver Lake	Northville, Mich	12,500
	Feb. 24, 1876	Dexter, Mich		Portage Lake	Northville, Mich	20,000
	Feb. 24, 1876	Dexter, Mich		Big Portago La	Northville, Mich	20,000
	Feb. 24, 1876	Dexter, Mich		Base Lake	Northville, Mich.	20, 000
	Feb. 24, 1876	Dexter, Mich		Half-Moon Lake	Northville, Mich	20,000
	Feb. 24, 1876	Dexter, Mich		Patterson Lake	Northville, Mich.	20, 000
	Feb. 24, 1876	Dexter, Mich		Blind Lake .	Northville, Mich.	10,000
	Feb. 24, 1876	Dexter, Mich		Bruin Lako	Northville, Mich	10,000
	Feb. 24, 1876	Dexter, Mich		Island Lake	Northville, Mich	10,000
	Feb. 24, 1876	Dexter, Mich		Woodburn Lake	Northville, Mich	10, 000
	Feb. 24, 1876	Chelsea, Mich		Round Lake	Northville, Mich	7,500
	Feb. 24, 1876	Chelsea, Mich		Lowe Lake .	Northville, Mich.	10,000

5

 Now opo

S. Mis. $110-58$
D.-Table VI.-Distribution of California trout, 1880.

XIX.-INDEX TO THE DISTRIBUTION, MADE UNDER THE AUSPICES 0F THE UNITED STATES FISH COMMISSION, 0F FISH IN PUBLIC Waters of the united states, during the DECADE ENDING 1880.

By Chas. W. Smiley.

Note.-To ascertain whether fish have been deposited in any given locality, look either for the name of the stream or for names of places or counties at the headwaters of that stream. In many cases deposits were made at railroad bridges at some distance from villages or post-offices. In these cases the effort has been made to give the name of the nearest post-office. For fuller particulars of deposits, see the tables of distribution, pages 843 to 915 , inclusive, of this volume.

Abbeville, Miss., Yazoo River. California salmon, 1876; shad, 1876.
Aberdeen, Md., Archer's Run. California salmon, 1876.
Aberdeen, Md., Green Spring Run. California salmon, 1876.
Aberdeen, Md., Tobacco Run. California salmon, 1876.
Aberdeen, Miss., Tombigbee River. Shad, 1878.
Acton, Mass., Magog Lake. Schoodic salmon, 1879.
Acworth, N. H., Cold Pond. Schoodic salmon, 1880.
Adair County, Ky., Russell Creek. California salınon, 1876.
Adams Pond, Sandwich, N. H. Schoodic salmon, 1880.
Addison County, Vt. (See Ferrisburgh, Vt.; Orwell, Vt.; Salisbury, Vt.; Vergennes, Vt.)
Airey's, Md., Patuxent River. California salmon, 1879.
Airey's, Md., Transquaking River. California salmon, 1879 ; shad, 1879.
Airy Hill, Baltimore County, Md., Gwynn's Falls. Schoodic salmon, 1880; California trout, 1880.
Alabama River, Montgomery, Ala. California salmon, 1876; shad, 1876.
Alabama River. (See tributaries: Tallapoosa River and Coosa River.) Alamance County, N. C., Haw River. Shad, 1877.
Alamance County, N. C. (See Graham, N. C.)
Alameda County, Cal., Lake Chabot. Schoodic salmon, 1878; whitefish, 1879.
Alameda County, Cal., Arroyo Laguna. Schoodic salmon, 1878.
Albany, Ga., Flint River. Shad, 1878, 1880.
Albemarle County, Va. (See Shadwell, Va.)
Albemarle Sound, Roanoke River Light, near Avoca, N. C. Shad, 1879.
Albemarle Sound, Scotch Hall Fishery, Avoca, N. C. Shad, 1878, 1878, 1879.

Albert Lea, Freeborn County, Minn. Penobscot salmon, 1875; California salmon, 1875, 1876.
Alden Lake, Freeborn County, Minn. California salmon, 1878.
Allamakee County, Iowa. (See Waukon, Iowa.)
Allapahaw River, Stockton, Ga. Shad, 1879.
Allegan County, Mich., Dumont Lake. California salmon, 1878.
Allegan County, Mich., Minckler Lake. California salmon, 1879.
Allegan County, Mich., Minor Lake. California salmon, 1878, 1879.
Allegan County, Mich., Sixteen Lake. California salmon, 1879.
Allegan County, Mich., Wetmore Lake. California salmon, 1879.
Alleghany County, Md. (See Cumberland, Md.; Tannery, Md.)
Alleghany County, Va., Jackson River. California salmon, 1876.
Alleghany County, Va. (See Clifton Forge, Va.)
Alleghany Springs, Va., Roanoke River. California salmon, 1880.
Allegheny River, Salamanca, N. Y. Shad, 1872.
Allegheny River. (See tributary: Chautauqua Lake.)
Allegheny River, Westmoreland County, Pa. Schoodic salmon, 1880.
Allen Creek, Monroe County, N. Y. California salmon, 1873, 1874, 1875;
Penobscot salmon, 1875; Schoodic salmon, 1879.
Alley Lake, Renville County, Minn. California salmon, 1879; Schoodic salmon, 1879.
Alloway's Creek, Allowaystown, N. J. California salmon, 1876, 1877, 1879.

Allowaystown, N. J., Alloway's Creek. California salmon, 1876, 1877, 1879.

Almena, Mich., North Branch of Paw-Paw River. California trout, 1880.

Alone, Va., Buffalo Creek. California salmon, 1880.
Altamaha River. (See tributaries: Oconee River and Ocmulgee River.)
Amherst County, Va., Pedlar River. California salmon, 1876.
Amite City, La., Tangipahoa River. California salmon, 1876.
Amite River, Tickfaw, La. Shad, 1878.
Anacostia, D. C., pond. California trout, 1880.
Anamosa, Iowa, Hatching Ponds. California trout, 1880; Schoodic salmon, 1878.
Anamosa, Iowa, Wapsipinicon River. California salmon, 1874, 1875.
Andover Branch, Millington, Md. California salmon, 1879.
Andover, Sussex County, N. J., Strubel's Lake. Schoodic salmon, 1878.
Androscoggin County, Me. (See Auburn, Me.)
Androscoggin River, Me., tributary of. Penobscot salmon, 1873.
Anne Arundel County, Md. (See Patuxent, Md.; Sappington, Md.)
Anoka County, Minn., Crooked Lake. California salmon, 1877.
Anoka County, Minn., Round Lake. California salmon, 1877.
Anthony's Pond, Wis. California salmon, 1879.
Antietam Creek, Chewsville, Md. California salmon, 1876.
Antietam Creek, Hagerstown, Md. California salmon, 1874, 1876, 1879.

Antrim, N. H., sundry ponds. Schoodic salmon, 1879.
Appalachicola River. (See tributaries: Chattahoochee River, Flint River, and Chastatee River.)
Appleton, Wis., Fox River. Shad, 1873, 1877.
Appomattox River, Farmville, Va. Schoodic salmon, 1879.
Appomattox River, Prospect, Va. California salmon, 1880.
Appomattox Piver, Petersburgh, Va. Shad, 1878, 1880.
Appoquinimink Creek, Blackbird, Del. Shad, 1879.
Aquetong Lake, Salisbury, Bucks County, Pa. Schoodic salmon, 1878.
Arapahoe County, Colo. (See Denver, Colo.)
Arcadia, Mo., Saint Francis River. Shad, 1879.
Archer's Run, Aberdeen, Md. California salmon, 1876.
Arkadelphia, Ark., Caddo River. Shad, 1878.
Arkadelphia, Ark., Quactuto River. California salmon, 1878.
Arkansas River, Little Rock, Ark. California salmon, 1878.
Arkansas River. (See tributaries: Neosho, Little Arkansas, Cow, Walnut, Pawnee, and Spring Rivers, and Shoal Creek.)
Arlington Heights, Ill., Small Lake. California salmon, 1877.
Arlington, Md., stream. California trout, 1880.
Armstrong Lake, Hemepin County, Minn. California salmon, 1877.
Aroostook County, Me. (See Bancroft, Me.)
Aroostook County, Me., Drew's Lake. Schoodic salmon, 1878.
Aroostook County, Me., Limerick Lake. Schoodic salmon, 1878.
Arroyo Laguna, Alameda County, Cal. Schoodic salmon, 1878.
Ashburnham, Mass., Nankeag Lake. Schoodic salmon, 1876, 1877, 1878, 1879, 1880.
Ash Creek, Ellsworth, Kans. Schoodic salmon, 1880.
Asher's Creek, Taylorsville, Ky. Schoodic salmon, 1878.
Asheville, N. C., Pigeon River. California salmon, 1877.
Ashley Pond, Holyoke, Mass. Schoodic salmon, 1878, 1879.
Ashtabula County, Ohio. (See Ashtabula, Ohio.)
Ashtabula County, Ohio. (See Eaglevile, Ohio.)
Ashtabula, Ohio, Ashtabula River. Shad, 1873.
Ashtabula River, Ashtabula, Ohio. Shad, 1873.
Asnaconconic Pond, Hubbardston, Mass. Schoodic salmon, 1878, 1879.
Asnebumskitt Pond, Paxton, Mass. Schoodic salmon, 1879.
Assawampsett Lake, Middleborongh, Mass. Schoodic salmon, 1877, 1878, 1879.
Athens, Tenn., Eastanalbee River. California salmon, 1876; shad, 1876. Athol, Mass. Schoodic salmon, 1876.
Atkin's Tank, Va., South Fork of Holston River. California salmon, 1880.

Atlanta, Ga., Chattahoochee River. Shad, 1876.
Atlantic County, N. J. (See Egg Harbor City, N. J., May's Landing, N. J., Weymouth, N. J.

Atlantic County, N. J., Great Egg Harbor River. California salmon, 1879.

Atlantic, Iowa, Nishnabottomy River. California salmon, 1875.
Attala County, Miss. (See Kosciusko, Miss.)
Auburn, Me., pond. Schoodic salmon, 1879.
Audrain County, Mo. (See Mexico, Mo.)
Auglaize County, Ohio. (See Wapakoneta, Ohio.)
Auglaize River, Wapakoneta, Ohio. California salmon, 1875.
Augusta County, Va. (See Greenville, Va., Staunton, Va., Waynesborough, Va.)
Au Sable River, Crawford County, Mich. California salmon, 1874, 1876.
Au Sable River, Roscommon County, Mich. Penobscot salmon, 1873.
Au Sable River. (See tributary: Otsego Lake.)
Austin, Minn., Mill Pond. California salmon, 1877.
Austin, Texas, Colorado River. Shad, 1874, 1875, 1879; California salmon, 1874, 1876.
Avoca, N. C., Chowan River. Shad, 1878.
Avoca, N. C., near Roanoke River Light, 1879.
Avoca, N. C., Salmou Creek. Shad, 1878, 1879.
Avoca, N. C., Scotch Hall Fishery, Albemarle Sound. Shad, 1878, 1879.
Avon, Minn., Spunk Creek. California salmon, 1877.
Back River, Herring Run, Md. California salmon, 1878.
Badger River, Iowa. California salmon, 1878.
Baird, Cal., McCloud River. California salmon, 1873, 1874, 1875, 1876, 1877, 1878, 1879, 1880.
Baker's River, N. H. California salmon, 1875.
Baker's River, Plymouth, N. H. California salmon, 1878; California trout, 1880.
Baker's River, Warren, N. H. California salmon, 1876; Penobscot salmon, 1876.
Balahack Brook, South Windham, Conn. Schoodic salmon, 1877.
Bald Eagle Creek. (See tributary: Spring Creek.)
Bald Eagle Lake, Ramsey County, Minn. California salmon, 1876.
Bald Eagle River, Bellefonte, Pa. California salmon, 1874.
Balding's Mill, Ga., Chastatee River. California salmon, 1878.
Baldwin County, Ga. (See Milledgeville, Ga.)
Baltimore County, Md., Railroad Crossing of Gunpowder River. Shad, 1879.

Baltimore County, Md. (See Airy Hill, Md.; Arlington, Md.; Baltimore, Md.; Catonsville, Md.; Cockeysville, Md.; Dripping Spring, Md.; Freeland, Md.; Glencoe, Md.; Green Spring, Md.; Greenwood, Md.; Govanstown, Md.; Hampton, Md.; Hereford, Md.; Herring Run, Md.; Long Green, Md.; Monkton, Md.; Parkton, Md.; Phœnix, Md.; Pikesville, Md.; Reisterstown, Md.; Relay Station, Md.; Saint James, Md.; Towsontown, Md.; Warren, Md.; Waverly, Md.; White Hall, Md.)
Baltimore, Md., Baltimore Water Works. California salmon, 1876, 1876.
Baltimore, Md., Beaver Dam Creek. Schoodic salmon, 1879.
Baltimore, Md., Charles River. Schoodic salmon, 1879.

Baltimore, Md., Charles Street A venue Lake. Schoodic salmon, 1879.
Baltimore, Md., Druid Hill Lake. Schoodic salmon, 1879.
Baltimore, Md., Patuxent River. Schoodic salmon, 1880.
Baltimore, Md., pond. California trout, 1880; Schoodic salmon, 1880.
Baltimore, Md., Stony Run. California trout, 1880.
Baltimore, Md., stream. California trout, 1880.
Baltimore, Md., Trout Branch. Schoodic salmon, 1880.
Baltimore Water-Works, Baltimore, Md. California salmon, 1876, 1876.
Bancroft, Me., Mattawamkeag River. Penobscot salmon, 1875, 1876.
Bantam Lake, Litchfield, Conn. Schoodic salmon, 1876, 1877, 1878, 1879.

Baptist Seminary Pond, Kalamazoo, Mich. California salmon, 1875.
Barbour County, W. Va., Tygert's Valley River. California salmon, 1879, 1880.
Barnesville, Md., pond. California trout, 1880.
Barnet, Vt., Harvey's Pond. Schoodic salmon, 1876, 1878.
Barnet, Vt., Connecticut River. Penobscot salmon, 1874.
Baru's Farm, Md., Blackwater River. California salmon, 1879.
Barnstable County, Mass. (See Brewster, Mass.; Cotuit, Mass.; Falmouth, Mass.; Mashpee, Mass.; North Sandwich, Mass.; Sandwich, Mass.; Wellfleet, Mass.; Yarmouth, Mass.)
Barnum pond, Houston County, Minn. Schoodic salmon, 1879.
Baro Beeso Lake, Hillsdale, Mich. California salmon, 1878.
Barren Lake, Mich. Penobscot salmon, 1873.
Barren River, Warren County, Ky. California salmon, 1877, 1878; shad, 1878.
Barret's Pond, Wythe County, Va. Schoodic salmon, 1880.
Barrett, Kans., Clear Creek. Califoruia salmon, 1878, 1879.
Barrier Lake, Hillsdale County, Mich. Penobscot salmon, 1873.
Barrington River, Bristol County, R. I. Shad, 1875, 1877.
Barron Lake, Cass County, Mich. California salmon, 1875, 1879.
Barron Lake, Howard, Mich. California salmon, 1878.
Barry County, Mich., Carter Lake. California salmon, 1875.
Barry County, Mich., Long Lake. California salmon, 1875.
Barry County, Mich., Thorn Apple Lake. California salmon, 1875.
Barry Hunt's Lake, Rice County, Minn. Penobscot salmon, 1875.
Bartholomew County, Ind. (See Columbus, Ind.)
Bartlett's Pond, Parkersburg, W. Va. Schoodic salmon, 1878.
Barton County, Kans. (Seo Great Bend, Kans.)
Barton Pond, Barton, Vt. Schoodic salmon, 1876.
Barton, Vt., Bellwater Pond. Schoodic salmon, 1878.
Bartow County, Ga. (See Cartersville, Ga.)
Base Lake, Dexter, Mich. Whitefish, 1876.
Baskahegan, tributary of, Maine. Penobscot salmon, 1874.
Bass Lake, Crofton, Mich. Whitefish, 1876.
Bass Lake, Faribault County, Minn. California salmon, 1876, 1877.

Bass Lake, Ramsey County, Minn. Schoodic salmon, 1875; California salmon, 1875; Penobscot salmon, 1875.
Bass Lake, Washington County, Minn. California salmon, 1877.
Battenkill Creek, Manchester, Vt. Penobscot salmon.
Battery Light, Md., Susquehanna River. Shad, 1879.
Battle Creek, Calhoun County, Mich., Goquack Lake. California salmon, 1875; Schoodic salmon, 1878.
Battle Creek, Mich., Hamblin Lake. California salmon, 1876.
Battle Creek, Mich., lakes. Whitefish, 1876; California trout, 1880.
Battle Creek, Mich., Sheppard's Brook. California trout, 1880.
Bayard, Ohio, Muskingum River. Shad, 1875.
Bay County, Mich., Rifle River. California salmon, 1875.
Bay, Erie, Pa. Schoodic salmon, 1879.
Bayou Macon, Railroad Crossing, Richland Parish, La. Shad, 1879.
Baytown Lake, Wright County, Minn. California salmon, 1876.
Beach Pond, Richmond, R. I. Schoodic salmon, 1876.
Beach Pond, Volumtown, Conn. Schoodic salmon, 1876.
Bean Pond, Warner, N. H. Schoodic salmon, 1880.
Bean's Lake, Platte County, Mo. California salmon, 1880.
Bear Creek, Charlevoix County, Mich. California salmon, 1876, 1876.
Bear Creek, Iowa, Bear Creek. Penobscot salmon, 1875.
Bear Creek, tributary of, Md. California salmon, 1878.
Bear Hill Pond, Harvard, Mass. Schoodic salmon, 1878, 1879.
Bear Lake, Carleton County, Minn. California salmon, 1878.
Bear Lake, Wilkes Barre, Pa. California salmon, 1880; Schoodic salmon, 1878, 1880.
Bear River. (See tributary: Truckee River.)
Beaver Creek, N. Y. California salmon, 1873.
Beaver Creek, Sand Bank, N. Y. California salmon, 1874.
Beaver County, Pa. (See Georgetown, Pa.)
Beaver Dam Creek, Baltimore, Md. Schoodic salmon, 1879.
Becker County, Minn., Detroit Lake. California salmon, 1877; Schoodic salmon, 1875; Penobscot salmon, 1875.
Becker County, Minn. (See Frazee City, Minn.; Lake Park, Minn.)
Bel Air, Md., pond. Schoodic salmon, 1880.
Bel Air, Md., Stony Branch. California trout, 1880.
Belknap County, N. H. (See Centre Harbor, N. H.; Tilton, N. H.)
Bella Vista, Md., pond tributary to Gunpowder River. California trout, 1880.
Bell Creek, Goodhue County, Minn. California salmon, 1878.
Bellefontaine, Ohio, Buckingahela River. Shad, 1874.
Bellefonte, Pa., Bald Eagle River. California salmon, 1874.
Bellefonte, Pa., Spring Creek. California salmon, 1874.
Belleville, Ill., Kaskaskia River. California salmon, 1877.
Belleville, Ill., Mississippi River. California salmon, 1877.
Bellerille, Ill., Prairie du Pont River. California salmon, 1876, 1877.

Bellows Falls, Vt., Connecticut River. Shad, 1874, 1874, 1874, 1876.
Bellton, W. Va., Fish Creek. California salmon, 1879, 1880.
Bellwater Pond, Barton, Vt. Schoodic salmon, 1878.
Beloit, Kans., Solomon River. California salmon, 1878, 1879.
Bennington County, Vt., ponds. Schoodic salmon, 1876.
Bennington County, Vt. (See Manchester, Vt.)
Benson, Minn., Chipperra River. California salmon, 1877.
Benton, Ark., Saline River. Shad, 1878; California salmon, 1878.
Benton Creek, Fillmore County, Minn. California salmon, 1878.
Benton Harbor, Mich., private ponds. California salnon, 1878.
Benton, N. H., Long Pond. Schoodic salmon, 1880.
Bergen County, N. J., Hackensack River. California salmon, 1879.
Bergen County, N. J., lakes. Schoodic salmon, 1879.
Berks County, Pa. (See Reading, Pa.)
Berkshire County, Mass. (See Great Barrington, Mass.; Otis, Mass.;
Pittsfield, Mass.; Stockbridge, Mass.)
Berinn, Md., Herring Creek. California salmon, 1879.
Berlin, Md., Saint Michael's River. Shad, 1879.
Berlin, Md., Trappe River. California salmon, 1879, 1880.
Berlin, Mass., Gates Pond. Schoodic salmon, 1876, 1877.
Berrien County, Mich., Saint Joseph River. California salmon, 1879.
Berrien County, Mich. (See Benton Harbor, Mich.; New Buffalo, Mich.;
Niles, Mich.; Saint Joseph, Mich.; Waterrliet, Mich.)
Berry Pond, Pittsfield, N. H. Schoodic salmon, 1880.
Bertie County, N. C. (See Avoca, N. C.; Colerain, N. C.; The Mill, N. C.)
Bethany, W. Va., Buffalo Creek. California salmon, 1878, 1879, 1880.
Bexar County, Tex. (See San Antonio, Tex.)
Bibb County, Ga. (See Macon, Ga.)
Big Black River, Canton, Miss. Shad, 1877.
Big Black River, Vaughan, Miss. Shad, 1878.
Big Black River, Piedmont, Mo. Shad, 1879.
Big Black River, Poplar Bluff, Mo. Shad, 1879.
Big Blue River, Blue Rapids, Kans. California salmon, 1878, 1879.
Big Blue River, Manhattan, Kans. California salnon, 1878, 1879, 1880.
Big Blue River, Topeka, Kans. Shad, 1877.
Big Blue River. (See tributaries: Little Blue River and Black Vermillion River.)
Big Batts Lake, Ramsey County, Minn. California salmon, 1876.
Big Creek, Ellis, Kans. California salmon, 1878, 1879.
Big Creek, Hayes City, Kans. California salmon, 1878, 1879.
Big Elk River, Saint Mark's, Md. California salmon, 1879.
Big Elk River, Saintman's Mill, Md. California salmon, 1878, 1880.
Big Gunpowder River, Parkton, Md. California salmon, 1879.
Big Hatchie River, Browusville, Tenn. Shad, 1876.
Big Lake, Pine County, Minu. California salmon, 1875.
Big Lake, Sherburne County, Minn. California salmon, 1876.

Bigler Lake: (See tributary: Tahoe Lake.)
Big Paw-Paw River, Watervliet, Mich. California salmon, 1878.
Big Pipe Creek, tributary to, Union Bridge, Md., pond. Schoodic salmon, 1879.
Big Pipe Creek, Middleburg, Md. California salmon, 1879.
Big Pond, White Haven, Pa. Schoodic salmon, 1879.
Big Portage Lake, Dexter, Mich. Whitefish, 1876.
Big Rock Creek, Big Rock, Iowa. California salmon, 1874.
Big Rock Creek, Walker, Iowa. California salmon, 1875.
Big Rock, Iowa, Big Rock Creek. California salmon, 1874.
Big Rock River, Iowa. California salmon, 1879.
Big Sandy River. (See tributary : Tygert River.)
Big Slate Creek, Montgomery County, Ky. California salmon, 1877.
Big Spring Branch, Scott County, Ky. California salmon, 1876.
Big Spring Depot, Va., Roanoke River. California salmon, 1876, 1880.
Big Star Lake, Lake County, Mich. California salmon, 1876.
Big Stone County, Minn. (See Ortonville, Minn.)
Big Stone Lake, Ortonville, Minn. California salmon, 1880.
Big Wills Creek, Lebanon, Ala. Shad, 1879.
Billerica, Mass., Shawshine River. Schoodic salmon, 1877.
Bingham Lake, Cottonwood County, Minn. California salmon, 1876.
Blackbird, Del., Appoquinimink River. Shad, 1879.
Black Hawk County, Iowa. (See Waterloo, Iowa.)
Black River, Elyria, Ohio. Shad, 1874.
Black River, Poplar Bluff, Mo. Shad, 1876.
Black River, Port Huron, Mich. California salmon, 1875.
Black River, Wayne County, Mo. California salmon, 1879.
Black River, S. C. California salmon, 1880.
Black River. (See tributary: Ouachita, or Washita, River.)
Black River. (See tributary: San Francois River.)
Black River. (See tributary: Bowell Creek.)
Blacksburgh, Va., New River. Schoodic salmon, 1878.
Blacksmith's Fork, Cache County, Utah. California salmon, 1876.
Blackstone River, R. I. Penobscot salmon, 1873.
Blackstone River, Providence County, R. I. Shad, 1874, 1877.
Blackstone River. (See tributary: Slatersville Branch.)
Blackstone River, tributary of, R. I. California salmon, 1874, 1875.
Black Vermillion River, Frankford, Kans. California salmon, 1878, 1879.

Black Warrior River, Tuscaloosa, Ala. Shad, 1879.
Blackwater River, Barn's Farm, Md. California salmon, 1879.
Blackwater River, Cambridge, Md. California salmon, 1879; shad, 1879.

Blackwater River, Franklin, Va. Shad, 1878, 1879.
Blair County, Pa., Juniata River. California salmon, 1880.
Blair County, Pa. (See Tyrone, Pa.)

Bland County, Va. (See Sharon Springs, Va.)
Blind Lake, Dexter, Mich. Whitefish, 1876.
Bloody Run, McGregor, Iowa. California salmon, 1874.
Bloomfield, N. J., Greenwood Lake. California salmon, 1876, 1877.
Bloomsbary, N. J., Musconetcong River. California salmon, 1874.
Bloomsbury, N. J., Pohatcong River. California salmon, 1874.
Blue Earth County, Minn., Clear Lake. California salmon, 1877.
Blue Earth County, Minn., Crystal Lake. California salmon, 1877, 1880.
Blue Earth County, Minn., Eagle Lake. California salmon, 1876.
Blue Earth County, Minn., Lake Laura. California salmon, 1876.
Blue Earth County, Minn., Loon Lake. California salmon, 1876, 1877.
Blue Earth County, Minn., Madison Lake. California salmon, 1876, 1877.

Blue Earth County, Minn., Minnesota River. California salmon, 1878.
Blue Earth County, Minn. (See Mankato, Minn.)
Blue Earth River. (See tributary: Chain Lake.)
Blue Lake, Kalkaska County, Mich. California salmon, 1879.
Blue Ponds. (See tributary: Spring Creek.)
Blue Rapids, Kans., Big Blue River. California salmon, 1878, 1879.
Blue River, Manhattan, Kans. Shad, 1879.
Blue River, Independence, Mo. California salmon, 1880.
Bluff Creek, Bluffville, Kans. Schoodic salmon, 1880.
Boardman River. (See tributary: Salmon Creek.)
Boeuf River R. R. Crossing, Richland County, La. Shad, 1879.
Bohemia Bridge, Md., Bohemia Creek. California salmon, 1876.
Bohemia Creek, Bohemia Bridge, Md. California salmon, 1876.
Bohemia River, Cecil County, Md. California salmon, 1879, 1880.
Bohemia River, Middletown, Md. Shad, 1879.
Bohemia River, Md. Shad, 1877.
Bois des Sioux River, Forks of Otter Tail, Stevens County, Minn. California salmon, 1877.
Bolton, Conn., Bolton Reservoir. Schoodic salmon, 1880.
Bolton Reservoir, Bolton, Conn. Schoodic salmon, 1880.
Boltonville, Ga., Chattahoochee River. Shad, 1880.
Booker's Branch, Green County, Ky. California salmon, 1877.
Boone, Boone County, Iowa, Des Moines River. Schoodic salmon, 1878.
Boone County, Iowa. (See Boone, Iowa; Moingona, Iowa.)
Boone River, Iowa. California salmon, 1879.
Boone River, Webster City, Iowa. California salmon, 1875.
Boothe's Creek, Walworth County, Wis. California salmon, 1878.
Borden Pond, Fall River, Mass. Schoodic salmon, 1878.
Borgne Lake. (See tributary: Pearl River.)
Boscawen, N. H., Walker's Pond. Schoodic salmon, 1880.
Boscobel, Wis., streams. California salmon, 1877, 1878.
Botetourt County, Va., streams. California salmon, 1879.

Botetourt County, Va., tributary of James River. California salmon, 1876.

Botetourt County, Va. (See Fincastle, Va.)
Bourbon County, Ky., Elmwood Creek. California salmon, 1878.
Bowell Creek, Jefferson County, N. Y. California salmon, 1878.
Bowling Green, Ky., Green River. Shad, 1878.
Bowman's Run, Wilkes Barre, Pa. California salmon, 1876, 1878, 1879.
Box Elder County, Utah, Box Elder Creek. California salmon, 1876.
Box Elder Creek, Box Elder County, Utah. California salmon, 1876.
Boxford, Mass., Mitchell's Pond. School'c salmon, 1876, 1877.
Boyd's, Md., Brick Lodge. California salmon, 1878.
Boyd's, Md., Little Lorrem. California salmon, 1878.
Boyd's, Md., Ten-Mile Creek. California salmon, 1878.
Boyer River, Iowa. Penobscot salmon, 1876.
Boyer River, Logan, Iowa. Shad, 1878.
Boyle County, Ky., Dick's River. California salmon, 1876.
Boyne Falls, Mich., Boyne River. California salmon, 1876.
Boyne River, Boyne Falls, Mich. California salmon, 1876.
Boyne River, Charlevoix County, Mich. California trout, 1880.
Bradford, N. H., Bradford's Pond. Schoodic salmon, 1879.
Bradford's Pond, Bradford, N. H. Schoodic salmon, 1879.
Bradley Springs, Trivoli, Kans. Schoodic salmon, 1880.
Brainerd, Crow Wing County, Minn. Penobscot salmon, 1875.
Braintree, Mass., Great Pond. Schoodic salmon, 1877, 1878, 1880.
Branch County, Mich., Coldwater Lake. California salmon, 1875.
Branch County, Mich., Lake of the Woods. California salmon, 1875.
Branch County, Mich., Morrison Lake. California salmon, 1875.
Branchville, N. U., Meherrin River. Shad, 1878, 1879.
Branchville, S. C., Edisto River. California salmon, 1877.
Brandywine, Pa., Brandywine Creek. California salmon, 1876.
Branford, Conn., Roger's Pond. Schoodic salmon, 1877.
Brazos River, Hearne, Tex. Shad, 1879.
Brazos River, Hempstead, Tex. Shad, 1874.
Brazos River. (See tributary: Clear Creek.)
Breckenridge, Minn., Red River of the North. California salmon, 1875;
Penobscot salmon, 1875; Schoodic salmon, 1875.
Breckenridge, Minn., branch of Red River. California salmon, 1876.
Bremen County, Iowa. (See Waverly, Iowa.)
Brewster, Mass., pouds. Schoodic salmon, 1880.
Brick Lodge, Boyd's, Md. California salnon, 1878.
Bridgeton, N. J. Cohansey Creek. California salmon, 1877.
Bridgewater, Mass., Fall River. California salmon, 1877.
Bridgewater, Mass., Tannton River. Shad, 1876, 1877.
Bridgewater, N. H., Newfound Lake. Schoodic salmon, 1879.
Bridgewater, N. C., Linville River. California salmon, 1878, 1879.
Briggs Lake, Sherburne County, Minn. California salmon, 1877, 1878.

Bristol County, Mass. (See Fall River, Mass.)
Bristol County, R. I., Barrington River. Shad, 1875, 1877.
Bristol County, R. I., Warren River. Shad, 1874, 1875, 1877.
Bristol County, R. I. (See Warren, R. I.)
Broad Brook, Broad Brook, Conn. Schoodic salmon, 1880.
Broad Brook, Conn., Broad Brook. Schoodic salmon, 1880.
Broad River, Columbia, S. C. California salmon, 1879 ; shad, 1878, 1880, 1880.
Broad River, Gaffney City, S. O. Shad, 1875, 1880 ; California salmon, 1877.

Broad River, Hickory-nut Gap, N. C. California salmon, 1879.
Broad River, Marion, N. C. Califorvia salmon, 1877.
Broad River, Spartanburgh O. H., S. C. Shad, 1876.
Broad River, S. C. California salmon, 1880.
Broad River. (See tributary: Green River.)
Broad River. (See tributaries: Packlittle River, Enoree River, Little River.)
Broad Run, Broad Run Station, Va. California salmon, 1876. Broad Run Station, Va., Broad Run. California salmon, 1876. Brodhead, Wis., Sugar River. California salmon, 1879. Brooke County, W. Va. (See Bethany, W. Va.) Brookfield, Conn., Still River. Schoodic salmon, 1880. Brookfield, N. H., Cook's Pond. California salmon, 1879. Brooklyn, Mich., Raisin River. California salmon, 1875. Brooklyn, N. Y., Brook!yn Water-works. California salmon, 1874. Brooklyn Water-works, Brooklyn, N. Y. California salmon, 1874. Brookville, Kans., Spring Creek. California salmon, 1878, 1879. Brown County, Minn., Clear Lake. Califoruia salmon, 1878. Brown County, Minn., Hansca Lake. California salmon, 1878. Brown County, Minn., Sleepy Eye Lake. California salmon, 1878. Brown's Creek, Owen, Ill. California salmon, 1877.
Brown's Creek, Iowa. California salmon, 1875.
Brown's Creek, Washington County, Minn. California salmon, 1876.
Brownville, Tenn., Big Hatchee River. Shad, 1876.
Brown's Lake, Racine County, Wis. California salmon, 1877, 1879.
Brown's Mill Pond, Winona County, Minn. California salmon, 1878.
Brownville, Me., Pleasant River. Penobscot salmon, 1874.
Bruce Lake, Calhoun County, Mich. California salmon, 1875.
Bruin Lake, Dexter, Mich. Whitefish, 1876.
Buchanan County, Iowa. (See Independence, Iowa.)
Buchanan County, Mo., Contrary Lake. California salmon, 1880.
Buchanan County, Mo., Platte River. California salmon, 1880.
Buchanan County, Mo., One Hundred and Two River. California salmon, 1880.
Buchanan County, Mo., Missouri River. Califoruia salmon, 1880.
Buchanan County, Mo. (See Saint Joseph, Mo.)

Buckeystown, Md., pond. California salmon, 1880; California trout, 1880 ; Schoodic salmon, 1880.
Buckingahela River, Bellefontaine, Ohio. Shad, 1874.
Bucks County, Pa. (See Point Pleasant, Pa.)
Buck's Creek, Van Buren County, Mich. California salmon, 1879.
Bucksport, Me., Craig's Pond. California salmon, 1874, 1875.
Bucksport, Me., Hatching-house Pond. California salmon, 1874.
Bucyrus, Ohio, Sandusky River. California salmon, 1874.
Buel Lake, Great Barrington, Mass. Schoodic salmon, 1879, 1880.
Buffalo Creek, Bethany, W. Va. California salmon, 1878, 1879, 1880.
Buffalo Creek, branch of, Marion County, W. Va. Schoodic salmon, 1878.

Buffalo Creek, Lewishurgh, Pa. California salmon, 1879.
Buffalo Creek, Lexington, Va. Schoodic salmon, 1879.
Buffalo Creek, Marion County, W. Va. Schoodic salmon, 1878.
Buffalo Creek, Pa. California salmon, 1875.
Buffalo Creek, Alone, Va. California salmon, 1880.
Buffalo Creek, Rockbridge County, Va. Schoodic salmon, 1877.
Buffalo Creek, Buffalo Mills, Va. California salmon, 1878.
Buffalo Mills, Va., Buffalo Creek. California salmon, 1878.
Buffalo River, Hawley, Minn. California salmon, 1877.
Buffalo River. (See tributary: Lake.)
Bullitt County, Ky. (See Shepherdsville, Ky.)
Bullitt County, Ky., Knob Creek. California salmon, 1877.
Bullock County, Ala. (See Union Springs, Ala.)
Bull Run Creek, Jamestown, N. C. California salmon, 1878.
Bumgartner's Creek, Hart County, Ky. California salmon, 1876.
Buncombe County, N. C., ponds. California trout, 1880.
Buncombe County, N. C., Swannanoa River. California salmon, 1877;
California trout, 1880.
Buncombe County, N. C. (See Asheville, N. C.)
Burke County, N. C., Joln's River. California trout, 1880.
Burke County, N. C., Upper Creek, California trout, 1880.
Burke County, N. C. (See Bridgewater, N. C.; Morganton, N. C.)
Burke's Creek, Cass County, Mich. California salmon, 1875.
Burlingame, Kans., Dragoon. California salmon, 1870.
Burlingame, Kans., Lyndon Lake. California salmon, 1880.
Burlington County, N. J., Mullica River. California salmon, 1879.
Burlington, Vt., Winooski River. Shad, 1874.
Burnsides, Harford County, Md., Green Spring Run. Schoodic salmon, 1879.

Burnt Bridge, Va., North River. California salmon, 1880.
Burrellville, R. I., Wallum Pond. Schoodic salmon, 1876, 1878.
Burritt, Ill., Knapp's Creek. California salmon, 1877.
Burton, W. Va.. Fish Creek. California salmon, 1879, 1880.
Burt's Lake, Cheboygan, Mich. Whitefish, 1876.

Bush Creek, Monrovia, Md. California salmon, 1874.
Bush Creek, New Market, Md. California trout, 1880.
Bushkill Creek, Bushkill, Pa. California salmon, 1876.
Bushkill Creek, Easton, Pa. California salmon, 1874, 1878.
Bushkill Creek, Northampton County, P'a. Penobscot salinon, 1874.
Bushkill, Pa., Bushkill Creek. California salmon, 1876; Penobscot salmon, 1872.
Bushkill, Pa., Delaware River. California salmon, 1875, 1877.
Bushkill River, Easton, Pa. California salmon, 1879.
Bush River, Perryman, Md. Shad, 1878, 1880.
Bush River. (See tributaries: Plum Tree Rom and Stons Branch.)
Bush River. (See tributary: Winters Run.)
Bush Run, Fairriew, Md. Schoodie salmon, 1880; California trout, 1880.
Butler County, Kans. (See El Dorado, Kans.)
Butler County, Mo. (See Poplar Bluff, Mo.)
Butter Crcek, New Milford, Conn. Califormia salmon, 1874; Penobscot salmon, 1875.
Butternut Creek, Hillsdale County, Mich. California salmon, 1873.
Butt's Lake, Washington County, Minu. California salmon, 1576.
Cache County, Utah, Blacksmith's Fork. California salmon, 1876.
Caddo River, Arkadelphia, Ark. Shad, 1878.
Calais, Me., Keene's Lake. Schoodic salmon, 1878, 1879.
Calais, Me., Nash's Lake. Schoodic salmon, 1879.
Caldwell County, Ey., Eddy Creek. California salmon, 1877, 1878.
Caldwell County, N. C. (See Patterson's, N. C.)
Caldwell County, Tex. (See Laling, Tex.)
Caldwell, Greenbrier County, W. V., Greenbrier River. California salmon, 1878.
Caledonia County, Vt. (See Barnet, Vt.; Danville, Vt.; McIndoe's Falls, Vt.; Saint Johnsbury, Vt.; Waterford, Vt.; Wheelock, Vt.)
Caledonia, N.Y., Caledonia Spring Creek. California salmon, 1874, 1870., 1878; Schoodic salmon, 1878.
Caledouia, N. Y., Genesee River. Califoruia salmon, 1874, 1875.
Caledonia Spring Creck, Caledonia. N. Y. California salmon, 1874, 1875, 1878.

Caledonia Springs, N. Y. California salmon, 1873.
Calhoun County, Ala. (See Oxford, Ala.)
Calhoun County, Iowa, (See Pomeroy, Iowa.)
Calhoun County, Mich., Bruce Lake. Califormia salmon, 1875.
Calhom Countr, Mich.. Goguac Lalise. California salmon, 1575, 1876, 1875, 1879; Schoodic salmon, 1876.
Calhoun County, Mich., Hamblin Latre, Schoodie salmon, 1876.
Calhoun Countr, Mich., lake near Miarshall. Penobscot salmon, 1873.
Calhom County, Mich, Lyou and Gognac Lakes. California salmon, 1879.
S. Mis. $110-59$

Calhoun County, Mich., Metcalf Lake. California salmon, 1874, 1875; Schoodic salmon, 1878.
Calhonn County, Mich., Reese Pond. Schoodic salmon, 1876.
Calhonn County, Mich., Town Linc. California salmon, 1878.
Calhoun County, Mich. (See Marshall, Mich.)
Calhoun Lake, Hennepin Connty, Minn. California salmon, 1876.
Oallao, Mo., Ohariton River. Shad, 1876.
Calumet County, Wis. (See New Holstein, Wis.)
Calumet River, Kensingten, Ill. California salmon, 1874; Penobscot salmon, 1874.
Calumet River, Wildwood, Ill. Penobscot salmon, 1874.
Calnmet River, South Lawn, Ill. Penobscot salmon, 1874.
Calumet River, Sonth Chicago, Ill. Shad, 1873.
Oambridge, Md., Black Water, River. California salmon, 1879; shad, 1879.

Camden County, N. J. (See Camden, N. J.; Winslow, N. J.)
Camden, N. J., Mullica River. California salmon, 1877.
Camden County, N. C., North River. Shad, 1879.
Cameron County, Pa., Driftwood Branch. California salmon, 1879, 1880.
Cameron County, Minn., Rice County, Minn. California salmon, 1878.
Oampbell County, Va. (Sce Lynchburgh, Va.)
Camp Oreek, Fillmore County, Minn. California salmon, 1878.
Campton, N. H., tribatary of Merrimac River. Penobscot salmon.
Campton and Plymonth, N. H., Pemigewasset River. California salmon, 1876, 1878, 1879.
Oanaan Mountain Pond, Falls Village, Conn. Schoodic salmon, 1880.
Canaan, N. H., Hart's Pond. Schoodic salmon, 1880.
Oanes Run, Scott County, Ky. California salmon, 1876.
Canosia Lake, Duluth, Minn. Schoodic salmon, 1879.
Cannon River, Faribault, Minn. Califoruia salmon, 1877.
Cannon River, Owatonna, Minn. California salmon, 1877.
Cannon River, Rice Connty, Minn. California salmon, 1875; Schoodic salmon, 1879.
Oannon River. (Sce tributaries: Shields, Cedar Lake, Roberd's Lake, Bell Creek, Washington Lake, Jefferson Lake.)
Canterbary, Conn., Quinnebaug River. Shad, 1875.
Canton, Miss., Big Black River. Shad, 1877.
Cape Fear River, Lockville, N. C. Shad, 1878.
Oape Fear River, Greenesborough, Guilford County, N. C., ponds. Schoodic salmon, 1878.
Cape Fear River. (See tribatarics: Decp River, Bull Run Creek, N. Fork Deep River, Haw River, Goshen Creek, Six Runs.)
Cape May County, N. J. (See Dennisville, N. J.; Tuckahoe, N. J.)
Capo Creek, Pierce City, Mo. Calitornia salmon, 1878.
Carleton County, Minn., Bear Lake. California salmon, 1878.
Carleton County, Minn., Chubb Lake. California salınon, 1878.

Carleton Connty, Minn., Cub Lake. California salmon, 1878.
Carleton County, Miun., Hanging Ifom Take. Califormia salmon, 1878.
Carleton County, Minn., Moose Horn Lake. California salmon, 1878.
Carleton County, Miun., Moose Lake. Oalifornia sahmon, 1877, 1578.
Carnelian Lake, Stearns County, Minn. California salmon, 187 S .
Caroline Countr, Ma. (See Carter's Bridge, Md.; Denton, Md.; Feder-
alsburgh, Md.; Greensborough, Md.; Heuderson, Md.; Hillsborough, Md.)

Caroline County, Va. (See Milford, Va.)
Carpenter's Point, Md., North East River. Shad, 1876.
Oarp River, Negaunee, Mich. California salmon, 1874.
Carroll County, Md. (See Carrollion, Md.; Double Pipe Creek, Md.; Hood's Mills, Md.; Middleburgh, Md.; Mount Airy, Md.; New Windsor, Md.; Sykesville, Md.; Tauk Station, Md.; Titusburg, Md.; Union Bridge, Md.; Wakefield, Mu.; Westminster, Md.; York Road, Md.)
Carroll County, N. H. (See Brookfield, N. H.; Conway, N. H.; Madison, N. H.; Ossipee, N. H.; Sandwich, N. M.; Wakefield, N. H.; Wolfborough, N. H.)
Carroll County, Tenn. (See Huntingdon, Tenn.)
Carroll Creek, Mount Carroll, Ill. California salmon, 1878, 1879.
Carrollton, Md., pond. California trout, 1880; Schoodic salmon, 1880.
Carson City, Nev., Mexican Dam. California salmon, 1879.
Carson River. (See tributary: Mexican Dam.)
Carter's Bridge, Caroline County, Md., Great Choptank River. California salmon, 1379.
Carter County, Ky., Little Sandy River. Califormia salmon, 1878.
Carter County, Ky., Tygert River. California salmon, 1878.
Carter Lake, Barry County, Mich. California salmon, 1875.
Cartersville, Ga., Coosa River. California salmon, 1870.
Cartersville, Ga., Etowah River. Shad, 1878; Cahifornia salmon, 1878. Carthage, Mo., Spring River. California salinon, 1878, 1579.
Carver County, Minn.,.Clear Lake. California salmon, 1876.
Carver County, Miun., Mimewasta Lake. California Balmon, 1878.
Carver County, Minn., Waconica Lake. Ualifornia salmon, 1878.
Carver County, Minn., lake. California salmon, 1876.
Cary Station, Ill., Fox River. California salmon, 1879.
Cascade Branch of Patapsco River, Elk Ridge Landing, Mrd. Schoodic salmon, 1878.
Casey County, Ky., Green River. Oalifornia salmon, 1870.
Cass Connty, Ind. (See Logansport, Ind.)
Cass County, Iowa. (See Atlantic, Iowa.)
Cass: Comaty, Mich., Barrow Lake, Salmon Lake. California salmon, 1875, 1879.
Cass County, Mieh., Burke's Oreck. California salmon, 1875.
Cass County, Mich., Diamond Lake. C'alifoniat sahmon, 1876.

Cass County, Mich., Dowagiae River. California salmon, 1875, 1875, 1875.

Cass County, Mich., Indian Creek. California salmon, 1875.
Cass County, Mich., Indian Lake. California salmon, 1878.
Cass County, Mich., Millen Creck. California salmon, 1878.
Cass County, Mick., Muncy Lake. California salmon, 1876.
Cass County, Mich., Peavino Creek. California salmon, 1875, 1879.
Cass County, Mich., Pine Creek. California salmon, 1879.
Cass County, Mich., Pokagon Creek. California salmon, 1878, 1879.
Cass County, Minu., Sandy Lake. Schoodic salmon, 1879.
Cass County, Micl., Williams' Creek. California salmon, 1875.
Cass County, Mich. (See Howard, Micl.; Pokagon, Mich.)
Cass River, Saginaw County, Mich. California salmon, 1879.
Castalia, Ohio, Castalia Spring. California salmon, 1873.
Castalia, Ohio, Castalia Spring Stream. Penobscot salmon, 1873.
Castalia, Ohio, Coid Creek. California salmon, 1877, 1879.
Castalia Spring, Castalia, Ohio. California salmon, 1873.
Castalia Spring Stream, Castalia, Ohio. Penobscot salmon, 1873.
Castleton, Vt., pond. Schoodic salmon, 1876.
Catawba County, N. C. (See Catawba, N. C. ; Newton, N. O.)
Catawba, N. C., Catawba River. Shad, 1876, 1877, 1878.
Catawba River, Catawba, N. C. Shad, 1876, 1877, 1878.
Catawba River, Charlotte, N. C. California salmon, 1872.
Catawba River, Charlotte, N. C. California salmon, 1879. (See S. C.)
Catawba River, Morganton, N. C. California salmon, 1880.
Catawba River, Old Fort, N. C. California salmon, 1878, 1879.
Catawba River, tribataries of, Charlotte, Mecklenburgh County, N. C., ponds. Schoodic salmon, 1878.
Catawba River, tribataries of, Morganton, N. C., ponds. Schoodic salmon, 1878.
Catawba River, Rock Hill, S. C. Shad, 1880.
Catawba River. (See tributaries: Linville River, John's River, Upper Creek, Clark's Creek, Mill Creek.)
Catfish River. (See tributary: Mendota Lake.)
Cathance Lake, Cooper, Me. Schoodic salmon, 1878.
Catonstrille, Md., Gwynn's Falls. California trout, 1880; Schoodic salmon, 1880.
Cattaraugus County, N. Y. (See Salamanca, N. Y.)
Cave Spring Branch, Green County, Ky. California salmon, 1877.
Cayuga County, Spring Brooks. California salmon, 1879.
Cayuga Lake, IT. X. California salmon, 1874.
Cayuga Lake, N. Y. (See tributary: ${ }^{\text {Spring Creeks.) }}$
Cecil County, Ma., Bohemia River. California salmon, 1879, 1880.
Cecil County, Md., Northeast River. Shad, 1878.
Cecil County, Md., Sassafras River. California salmon, 1880.

Cecil County, Md. (See Bohemia Bridge, Md.; Carpenter's Point, Md.; De Graw's, Md. ; Elkton, Md.; Harris Dam, Md.; Liberty Grove, Md.; Northeast, Md.; Port Deposit, Md.; Rock Church, Md. ; Rowlandrille, Md.; Saint Marks, Md.; Sandy Branch, Md.; Scintman's Mill, Md.) Dedar County, Iowa. (See Tipton, Iowa.)
Cedar Creek, Richfield, Wis. California salmon, 1879.
Cedar Creek, Strasburgh, Va. California salmon, 1876.
Cedar Creek, Winchester, Va. California salmon, 1874.
Cedar Lake, Martin County, Minn. Schoorlic salmon, 1879.
Cedar Lake, Northfield, Minn. California salmon, 1877.
Cedar Lake, Rice County, Minn. California salmon, 1875, 1876, 1877, 1878 ; Schoodic salmon, 1879 ; Penobscot salmon, 1875.
Cedar Lake, Wantonwan County, Minn. California salmon, $1,379$.
Cedar Point, Md., Patuxent River. California salmou, $1876,1876$.
Cedar Rapids, Iowa, Cedar River. California salmon, 1874; Penobscot salmon, 1875 ; shad, 1878.
Cedar Rapids, Iowa, Des Moines River. Shad, 1878.
Cedar Rapids, Limn Connty, Iowa, Cedar River. Schoodic salmon, 1878.
Cedar River, Cedar Rapids, Iowa. Califorvia sahmon, 1874; Penobscot salmon, 1875; Schoodic salmon, 1878 ; shad, 1878.
Oedar River, Freeborn County, Minn. California salmon, 1875.
Cedar River, Iowa. California salmon, 1878, 1879, 1879.
Cedar River, Marion, Iowa. California salmon, 1874.
Celar River, Mower County, Minn. California salmon, 1875.
Cedar River, Springville, Iowa. Califoruia salmon, 187 y.
Cedar River, Tipton, Iowa. California salmon, 1874, 1875.
Cedar River, Waterloo, Iowa. California salmon, 1874.
Cedar River, Wilton, Iowa. Califoruia salmon, 1875.
Cedar Rock Lake, Wis. Penobscot salmon, 1875.
Central Kentucky Lunatic Asylum Pond. California salmon, 1877.
Centralia, Kans., Red Vermillion River. California salmon, 1878, 1879.
Ceutral, Va., New River. California salmon, 1874; Schoodic salmon, 1875, 1880 ; shad, 1873.
Centre County, Pa. (See Bellefonte, Pa.)
Centre Harbor, N. H., Wimnipiseogee Lake. Schoodic salmon, 1879.
Centreville, Md., Corsica River. Shad, 1879.
Cerro Gordo County, Iowa. (See Clear Lake, Iowa.)
Chabot Lake, Alameda County, Cial. Schoodic salmon, 1878; whitefish, 1879.
Chain Lake, Martin County, Minn. California salmon, 1879.
Chambersburgh, Pa., Conecocheagne River. California salmon, 1873.
Chamock Brook, Dodge County, Minn. California salmon, 1878.
Champlain Lake. (sce tributaries: Kelly Brook, Missisquoi River.)
Champlain Lake. (See tributaries: Lewis Creek, Otter Creek, Winooski
Creek, Missisquoi River, Lamville River.
Chapinville, Coun., Twin Lakes. Schoodic salmon, 1876, 1879.

Chapman, Kans., Chapman's Creek. California salmon, 1878, 1879, 1881.

Cbapman's Creek, Chapman, Kans. California salmon, 1878, 1879, 1881.

Chariton River, Callao, Mo. Shad, 1876.
Chariton River, Macon County, Mo. California salmon, 1880 ; shad, 1880.

Charles County, Md. (See Glymont, Md.)
Cbarles River, Baltinore, Md. Schoodic salmon, 1879.
Charleston County, S. C. (See Charleston, S. C.)
Charleston County, S. C., Cooper River. California salmon, 1879; shad, 1879.

Charleston, IIl., Embarrass River. Shad, 1878.
Charleston, Kanawba County, W. Va., Kanawha River. California salmon, 1878.
Charleston, S. O., Cooper River. California salmon, 1877.
Charleston, W.Va., Elk River. California salmon, 1879, 1880.
Charlestown, N. H., Connecticut River. Penobscot salmon, 1874.
Charlevoix County, Mich., Bear Creek. California salmon, 1876, 1876.
Charlevoix County, Mich., Boyne River. California troat, 1880.
Charlevoix County, Mich., Wallow Lake. California salmon, 1878.
Charlevoix County, Mich. (See Boyne Falls, Mich.)
Charlotte, Iowa, Maquoketa River. California salmon, 1874.
Charlotte Lake, Wright County, Minn. California salmon, 1877.
Charlotte, Me., Crocker's Lake. Schoodic salmon, 1878.
Charlotte, Me., Moosehorn Waters. Schoodic salmon, 1878.
Charlotte, Me., Sprague's Pond. Schoodic salmon, 1878.
Charlotte, Mecklenburgh Connty, N. O., ponds tributaries to Catawba
River. Schoodic salmon, 1878.
Charlotte, N. C., Catawbia River. California salmon, 1872, 1879.
Chase Comity, Kans. (See Cottonwood Falls, Kans.)
Chastatee River, Balding's Mill, Ga. California salmon, 1878.
Chatham County, N. O. (See Lockville, N. C.)
Chattahoochee River, Atlanta, Ga. Shad, 1876.
Chattahoochee River, Boltonville, Ga. Shad, 1880.
Chattahoochee River, Columbus, Ga. Shad, 1877, 1879.
Chattahoochee River, Gainesviile, Ga. California salmon, 1878; shad, 1879.

Chattahoochee River, Norcross, Ga. California salmon, 1877.
Chattahoochee River, West Point, Ga. Shad, 1877.
Chattanooga, Tenn., Temnessee River. Shad, 1876, 1879.
Chantauqua County, N. Y., Chantauqua Lake. California salmon, 1875.
Chantauqua Lake, Cluatanqua County, N. Y. California salmon, 1875.
Chazy River, Ellenbargh, N. Y. Penobscot salmon, 1875.
Cheat Riser, Rowlesburgh, W. Va. Shad, 1879.
Chebacoo Lake, Lssex, Mass. Schoodic salmon, 1877, 1879.

Cheboygan County, Mich. (See Cheboygan, Mich.)
Cheboygan, Mich., Buit's Lake. Whitefish, 1876.
Chelsea, Mich., Lowe Lake. Whitefish, 1876.
Chelsea, Mich., Round Lake. Whitefish, 1876.
Chenango County, N. Y., Round Lake. California salmon, 1874.
Cherokee County, Iowa. (See Cherokee, Iowa.)
Cherokee, Iowa, Little Sioux River. California salmon, 1875.
Cherry Run Depot, W. Va., Potomae River. California salmon, 1874.
Cheshire County, N. H., sundry ponds. Schoodic salmon, 1879.
Cheshire County, N. H. (See Chesterfield, N. H.; Jaffrey, N. H.; Nelson, N. H.; Rindge, N. H.)
Chester County, Pa. (See Glenlock, Pa.; Spring City, Pa.; Toughkenamon, Pa.; Uwchland, Pa.; West Grove, Pa.)
Chesterfield, N. H., Spofford Lake. Schoodic salmon, 1880.
Chester River, Millington, Md. California salmon, 1876, 1878, 1879, 1880; shad, 1878, 1879.
Chester River. (See tributaries: Audover Branch, Corsica River.)
Chestnut Pond, Epsom, N. H. Schoodic salmon, 1880.
Chestunt Poud, Northfield, N. H. Schoodic salmon, 1879.
Chewsville, Md., Dutietam Creck. California salmon, 1876.
Chickacomico River, Derchester County, Md. California salmon, 1879.
Chickacomico River, Fleming's Mill, Md. C'alifornia salmon, 1879.
Chickasaw County, Iowa. (See Fredericksburgh, Iowa.)
Chickasawha River. (See tributaries: Okatibee Creek, Chunky River.)
Chickasawha River, Meridian, Miss. Ualifornia salmon, 1876.
Ohickies, Pa., Chiquesalunga Creek. California salmon, 1876.
Chillisquaque, Pa., North Brauch Susquchanna River. California salmon, 1877.
Chippewa County, Wis., Three-Milo Lake. California salmon, 1877.
Chippewa River, Beuson, Mimu. California salmon, 1877.
Chippewa River, Mikland, Mich. Caliiornia salmon, 1875.
Chippewa River, Pope County, Minn. Califoruia salmon, 1878.
Chippewa River. (See tributary: Hassel Lake.)
Chippewa River. (See tributary: White Bear Lake.)
Chippewa River. (See tributary: Three-Mile Lake.)
Chiquesalunga Creek, Chickies, P'a. California salmon, 1876.
Chiquesalunga Creek, Lancaster County, Par. California salmon, 1875, 1877 ; Penobscot salmon, 1874.
Chisago County, Minn., Chisago Lake. California salmon, 1876, 1877.
Chisago Cotinty, Minn., Danewood Lake. California salmon, 1577.
Chisago County, Mimu., Forest Lake. California salmon, 1877.
Chisago County, Minn., Green Lake. C'alifornia salmon, 1877.
Chisago County, Minu., North Branch of Goose Ureek. California salmon, 1877.
Chisago County, Minn., Rush Lake. California salnon, 1877.
Chisago County, Minn., Saint Croix liver. California salmou, 1875.

Ohisago County, Minn., Taylor's Falls. California salmon, 1875.
Chisago County, Minn. (See Stacy, Minn.)
Chisago Lake, Chisago County, Minn. California salmon, 1876, 1877.
Chittenden County, Vt. (See Burlington, Vt.; Essex, Vt.)
Choctawhatchee River. (See tributary: Pea River.)
Choptank River, Denton, Md. Shad, 1877.
Choptank River, Greensborough, Md. Calioornia salmon, 1876; shad, 1878.

Ohoptank River, Henderson, Md. California salmon, 1878, 1879, 1880; shad, 1879.
Ohoptank River. (See tributaries: Tread Haven, Tuckahoe River, Tuckahoe Creek,Trappe River.)
Ohowan River, Avoca, N. C. Shad, 1878.
Chowan River, Coleraine, N. C. Shad, 1878.
Chowan River. (See tributaries: Salmon Creek, Meherrin River, Nottoway River.)
Chowan River. (See tributaries: Nottoway River, Blackwater River.)
Christiana Creek, Wilmington, Del. Shad, 1880.
Christian County, Ky., Little River. California salmon, 1878.
Christmass Lake, Minu. California salmon, 1877, 1880.
Chubb Lake, Carleton County, Minn. California saimon, 1878.
Chuck Creek, Temn., French Broad River. California salmon, 1876.
Chunky River, Meridian, Miss. Shad, 1879.
Church Lake, Kent County, Mich. California salmon, 1876.
Circle Lake, Rice County, Minn. California salmon, 1878.
Clackamas River, Cal. California salmon, 1877, 1878.
Clam Lake, Clam Lake, Mich. California salmon, 1876.
Clam Lake, Mich., Clam Lake. California sahnon, 1876.
Clare County, Mich., Crooked Lake. Schoodic salmon, 1878.
Clare County, Mich., Roney Lake. Schoodic salmon, 1878.
Clare County, Mich. (See Surrey, Mich.)
Clark County, Ark., Ouachita River. Shad, 1879.
Clark County, Ark. (See Arkadelphia, Ark.)
Clark County, Ky., Howard's Lower Creek. California salmon, 1876.
Clark County, Ky., Howard's Upper Creek. California salmon, 1876.
Clark County, Ky., Stoner Creek. California salmon, 1876.
Clark County, Ky., Strode's Creek. California salmon, 1876.
Clark County, Ky., Lulbregrud Creek. California salmon, 1876.
Clarksburgh, W. Va., West Fork of the Monongahela River. Oalifornia salmon, 1876; Schoodie salmon, 1879.
Clarksburgh, W. Va., West Fork River. Shad, 1879.
Clark's Creek, Newtou, N. C. California salmon, 1879.
Clay Centre, Kans., Republican River. Californias salmon, 1880.
Clay County, Kans. (See Clay Centre, Kans.)
Clay County, Minu. (See Eawley, Minn.; Moorhead, Minu.)
Clayton County, Ga. (Sce Jonesborough, Ga.)

Clayton County, Iora. (See McGregor, Iowa.)
Clayton, Del., Duck Creek. Shad, 1879.
Clear Creek, Barrett, Kans. California salmon, 1878, 1879.
Clear Creek County, Colo. (Sce Georgetown, Colo.)
Clear Creek, Farisville, Kans. Schoodic salmon, 1880.
Clear Creek, Hempstead, Tex. California sahmon, 1874, 1876.
Clear Creek, Shelby County, Ky. Calitornias salmon, 1876.
Clear Lake, Blue Earth County, Minu. California salmon, 1877.
Clear Lake, Brown County, Minn. California salmon, 1878.
Clear Lake, Cal. Whitefish, 1872, 1873.
Clear Lake, Carver County, Minn. California nahmon, 1876.
Clear Lake, Cerro Gordo County, Iowa, Clear Lake. Schoodic salmon, 1878.

Clear Lake, Georgetown, Colo. California salmon, 1874.
Clear Lake, Iowa. Whitefish, 1876; Peuobscot salmon, 1876.
Olear Lake, Minn. California salmon, 1877.
Clear Lake, Railroad Crossing, La. Shad, 1879.
Clear Lake, Sherburne County, Minu. California salmon, 1877.
Clear Lake, Waseca County, Minu. California salmon, 1876.
Olear Lake, Washington County, Mimn. California salmon, 1878.
Clear Lake, Wis. Schoodic salmon, 1879.
Olear Lake, Wis., Willow River. Californiab salmon, 1879.
Clear Spring, Md., Frantz Mill Dam. California tront, 1880.
Clear Spring, Md., Mill Dam. Schoodic salmon, 1880.
Clear Water Creek, Wright County, Mimn. California salmon, 1878.
Clear Water Lake, Minn. California salmon, 1877.
Clermont, Iowa, Turkey River. California salmon, 1875.
Olifton Forge, Va., Jackson River. Schoodic salmon, 1879.
Olifton, Kans., Republican River. California sahmon, 1880.
Clinch County, Ga. (See Stockton, Ga.)
Cline's Pond, New Jersey. Calitornia salmon, 1879.
Clinton County, Ill. (See Trenton, Ill.)
Clinton County, Iowa. (See Charlotte, Iowa; Clintou Sunction, Iowa; De Witt, Iowa.)
Clinton County, Mich., Round Lake. Califoruia salmon, 1875.
Clinton County, Mo., Smith Fork of Platte River. California salmon, 1880.

Clinton County, N. Y. (Sce Ellenburgh, N. Y.; Poru, N. Y.; West Plattsburgh, N. Y.)
Olinton County, Pa. (See Westport, Pa.)
Clinton Junction, Iowa, tributary of Mississippi River. California salmon, 1874.
Clinton River, Pontiac, Mich. California salmon, 1876.
Clinton River, Utica, Mich. California salmon, 1875.
Cloud County, Kans. (See Concordia, Kans.)
Coahoma County, Miss. (See Friar's Point, Miss.)

Cobb's Branch, Westminster, Md. Schoodic salmon, 1879.
Cobosecontee Lake, Manchester, Me. Schoodic salmon, 1879.
Cockeysville, Md., Gunpowder River. California salmon, 1878, 1879;
Schoodic salmon, 1878; shad, 1877, 1878, 1879.
Cockeysville, Md., Western River. California salmon, 1876.
Cocnochogue River, Durham, Coun. California salmon, 1874.
Codorus Creek, Pa. Penobscot salmon, 1874.
Cohansey Creek, Bridgeton, N. J. California salmon, 1877.
Cohansey Greek, N. J. California salmon, 1877.
Cohocton River, Liberty, N. Y. California salmon, 1873.
Cold Creek, Castalia, Ohio. California salmon, 1877, 1879.
Cold Pond, Acworth, N. H. Schoodic salmon, 1880.
Cold Spring Pond, Enfield, Me. Schoodic salmon, 1878.
Cold Spring, W. Va, Wheeling Creek. California salmon, 1878; Schoodic salmon, 1879.
Cold Water Creek, Oxford, Ala. California salmon, 1878.
Coldwater Lake, Branch County, Mich. California salmon, 1875.
Cold Water River, Holly Springs, Miss. Shad, 1878.
Colebrook, Conn., Farmington River. California salmon, 1873, 1873.
Colerain, N. C., Chowau River. Shad, 1878.
Coles County, Ill. (See Charleston, IIl.)
Collier's Creek, Collierstown, Va. California salmon, 1880.
Collierstown, Va., Collier's Creek. California salmon, 1880.
Colon, Mich., Sturgeon Lake. Califorvia salmon, 1876.
Colorado County, Tex. (See Columbus, Tex.)
Colorado River, Austin, Tex. Shad, 1874, 1875, 1879; California salmon, 1874, 1876.
Colorado River, Columbus, Tex. SLad, 1879.
Colt's Reservoir, Hartforl, Conu. Schoodic salmon, 1880.
Columbia, Ala., Tombigbee River. Shad, 1879.
Columbia County, Wis. (See Hartman, Wis.; Lodi, Wis.; Portage, Wis.; Poynette, Wis.)
Columbiana County, Ohio. (See Bayard, Ohio.)
Columbia, Par, tributary of Susquehaunt River. California salmon, 1876.
Columbia, S. C., Broad River. Shad, 1878, 1880, 1880; California salmon, 1879.
Columbus, Ga., Chattahoochee River. Shad, 1877, 1879.
Columbus, Ind., White River. Shad, 1874.
Columbus, Ohio, Scioto River. Shad, 1875, 1876.
Columbus, Ohio, Whetstone River. Califorvia salmon, 1878.
Columbus, 'Tex., Colorado River. Shad, 1879.
Column Lake, McHenry, Ill. California salmon, 1877.
Como Lake, Houston County, Minn. California salmon, 1878; Schoodic salmon, 1879.
Como Lake, Ramsey County, Mimu. Schoodic salmon, 1875; Penobscot salmon, 1875; California salmon, 1875, 1876, 1877.

Concordia, Kans., Republican River. California salmon, 1878, 1879, 1880.

Concord, Vt., Counecticut River. Penobscot salmon, 1874.
Conecuh River, Union Springs, Ala. Shad, 1879.
Coneloquinet Creek, Pa. California salmon, 1874.
Coneloquinet Creek, Cumberland Comty, Pa. California salmon, 1876.
Conesus Lake, Livingston County, N. Y. California salmon, 1875.
Conetquoit River, Long Island, N. Y. California salmon, 1876, 1877.
Congamond Lake, Westficld, Mass. Schoodic salmon, 1876, 1879, 1880.
Comneant Creek, Erie County, Pa. Schoodic salmon, 1880.
Connecticut Lake, Pittsburgh, N. H. Schoodic salmon, 1879.
Connecticut River, Bellows Falls, Vt. Sbarl, 1874, 1874, 1874, 1876.
Connecticut River, Charlestown, N. H. Peuolscot salmon, 1874.
Connecticut River, headwaters of, N. H. Penobscot salmon, 1874.
Conuecticut liver, ponds tributary to, Saint Johnsbury, Vt. Schoodic salmon, 1878.
Connecticnt River, Smith's Ferry, Mass. Shad, 1874, 1875, 1877.
Comecticat River, South Hadley Falls, Mass. Shad, 1875, 1876, 1877.
Connecticut River, South Vernon, Vt. Shad, 1875, 1875.
Connecticut River, tributaries of, Thompsouville, Coun. Schoodic salmon, 1878.
Connecticut River, Barnet, Vt. Penobscot salmon, 1874.
Connecticat River, Concord, Vt. Penobscot salmon, 1874.
Connecticat River, tributaries of, Comn. Penobscot salmou, 1873.
Connecticut River, MeTndoe's Falls, Vt. Penobscot salmon, 1874.
Connecticat River, Newbury, Vt. Penobseot salmon, 1874.
Comnecticut River. (See tributaries: Farmington River, West River, Conochogue River, Westfeld River, Passumpsie Iiver, Wells River, West River, Saxton's River, White River, Lamoille River, Dog River.)
Conococheague River, ChambersLurgh, Pa. California salmon, 1873.
Conococheague River, Hagerstown, Md. California salmon, 1874, 1876, 1879.

Conococheague River, Md. Penobscot salmon, 1850.
Conococheague River, Williamsport, Mid. California salmon, 1876.
Contentuea Creek, Wilson County, N. C. Shad, 1877.
Contoocook River, Contoocook, N. H. Shad, 1877.
Contoocook River, Hillsborongh Bridge, N. H. California salmon, 1878, 1879.

Contoocook River, N. II. Penobseot salmou, 1875.
Contoocook, N. H., Contoocook River. Shad, 1877.
Contrary Lake, Buchanan County, Mo. California salmon, 1880.
Conway, N. II., Walker's Poud. Schoodic salmon, 1880.
Conyers, Ga., Yellow River. Shad, 1879.
Cook County, Ill. (See Arlington Meights, Ili.; Kensington, Ill.; South Chicago, Ill. ; South Lawn, Ill. ; Wildwood, Ill.)
Cook's Lake, Linden, Mich. Whitefish, 1876.

Cook's Pond, Brookfield, N. H. California salmon, 1879.
Coon Lake, Minn. California salmon, 1877.
Coon River. (See Raccoon.)
Cooper, Me., Cathance Lake. Schoodic salmon, 1878.
Cooper River, Charleston County, S. C. California salmon, 1879; shad, 1879.

Cooper River, Charleston, S. C. California salmon, 1877.
Coosa River, Cartersville, Ga. California salmon, 1876.
Coosa River, Resaca, Ga. California salmon, 1878; shad, 1879.
Coosa River, Rome, Ga. Shad, 1875.
Coosa River. (See tributaries: Tombigbee River, Cold Water Creek, and Etowah River.)
Coos County, N. H. (See Pittsbargh, N. H.; Stark, N. H.; Stewartstown, N. H.)
Cooper Creek, Jowa. California salmon, 1878.
Cordova Station, Md., Miles Creek. Shad, 1879.
Cordova Station, Md., Wye Mills Creek. Shad, 1879.
Cornelian Lake, Stearns County, Minn. California salmon, 1877.
Cornelian Lake, Washington County, Minn. California salmon, 1876, 1877.

Corry, Pa., Hatching Ponds. Schoodic salmon, 1878; California trout, 1880.

Corsica River, Centreville, Md. Shad, 1879.
Corunna, Mich., Shiawassee River. Shad, 1874.
Coshocton, Ohio, Walhonding River. California salmon, 1877.
Coshocton County, Ohio. (See Coshocton, Ohio.)
Cottonwood County, Minn., Bingham Lake. California salmon, 1876.
Cottonwood County, Minn., Eagle Lake. California salmon, 1877.
Cottonwood County, Minn., Mountain Lake. California salmon, 1877.
Cottonwood County, Minn., String Lake. California salmon, 1876.
Cottonwood County, Minn., Welder Lake. California salmon, 1876.
Cottonwood County, Minn., Windom Lake. California salmon, 1876.
Cottonwood Connty, Minn. (See Windom, Minn.)
Cottonwood Falls, Kans., Cottonwood River. Shad, 1879.
Cottonwood River, Cottonwood Falls, Kans. Shad, 1879.
Cottonwood River, Florence, Kans. California salmon, 1878,1870, 1880; shad, 1879.
Cottonwood River. (See tributary: Sleepy Eje Lake.)
Cotuit, Mass., Cotuit River. Penobscot salmon, 1876; Schoodic salmon, 1876.

Cotuit River, Cotuit, Mass. Penobscot salmon, 1876.
Council Bluffs, Iowa, tributary of Missouri River. Penobscot salmon, 1875.

Covington, Ky., Glasser's Lakes. Schoodic salmon, 1878.
Covington, Ga., Ocmulgee River. California salmon, 1878; shad, 1877.
Covington, Ga., Ulcofanhanchee River. Shad, 1879.

Covington, Ga., Yellow River. Califon nia salmon, 1878; shad, 1880.
Cow Creek, Hutchinson, Kaus. Califorma salmon, 1878, 1679; shad, 1879.

Craig's Creek, Fincastle, Va. Schoodic salmon, 1879.
Craig's Pond, Bucksport, Me. California salmon, 1874, 1875.
Craven County, N. O. (See New Berne, N. C.)
Crawford County, Mich., R. R. Crossing, Au Sable River. California salmon, 1874.
Crawford County, Ohio. (See Bucyrus, Ohio.)
Crawford County, Wis., streams. California salmon, 1874.
Crawford, Mich., Au Sable River. California salmon, 1876.
Crawfordsrille, Ga., Ogeechee River. California salmon, 1877.
Credit Lake, Scott County, Minn. California salmon, 1878.
Crib Lake, Carleton County, Minu. California salmon, 1878.
Crisfield, Md., branch of Pocomoke Bay. California salmon, 1876.
Crittenden County, Ky., Hurricane Creek. California salmon, 1877.
Crocker's Lake, Oharlotte, Me. Schoodic salmon, 1878.
Crofton, Mich., Bass Lake. Whitefish, 1876.
Crofton, Mich., Loon Lake. Whitefish, 1876.
Crooked Lake, Anoka County, Minn. California salmon, 1877.
Crooked Lake, Petosky, Mich. Whitefish, 1876.
Crooked Lake, Surrey, Clare County, Mich. California salmon, 1878; Schoodic salmon, 1878.
Crookston, Minn., tributary of Red Lake River. California salmon, 1880.
Crouch's Creek, Jackson, Mích. California salmon, 1874.
Crouch's Fishery, Jackson, Mich. California salmon, 1874.
Crow River. (See tributaries: Green Lake, Morrison Lake, Chisago Lake, Koronis Lake.)
Crow Wing County, Minn., Brainerd. Penobscot salmon, 1875.
Crow Wing County, Minn., Withington Lake. Penobscot salmon, 1875.
Crow Wing County, Minn. (See Brainerd, Minn.)
Crystal Iron Springs, Emmittsburgh, Md. Schoodic salmon, 1878.
Crystal Lake, Blue Earth County, Miun. California salmon, 1877, 1880.
Crystal Lake, Crystal Lake, 111. California salmon, 1879.
Crystal Lake, Dakota County, Minn. California salmon, 1876.
Crystal Lake, Greenwood, Mass. Schoodic salmon, 1877, 1878.
Crystal Lake, Ill., Crystai Lake. California salmon, 1879.
Crystal Lake, Mashpee, Mass. Schoodic salmon, 1879.
Crystal Lake, Nerton, Mass. Schoodic salmon, 1877.
Crystal Lake, Ocema C'omnty, Mich. California salmon, 1879.
Crystal Springs Creek, Mich. California salmon, 1875.
Cullom's Creek, Mich. Cahifornia salmon, 1874.
Culpeper County, Va. (See Rapid Amn Station, Va.)
Cumberland County, N. J., Maurice River. California salmon, 1879.
Cumberland County, N. J. (See Bridgeton. 工̌. J., Vineland, N. J.)
Cumberland County, Pa., Coneloquinet Creek. California salmon, 1876.

Cumberland County, Pa. (See Mechanicsbargh, Pa.; Newville, Pa.; Williams Mill, Pa.)
Cumberland, Md., Potomac River. Shad, 1876, 1877, 1880.
Cumberland River, Nashville, Tenn. Shad, 1875, 1875, 1879.
Cumberland River, Pulaski County, Ky.
Cumberland River, Somerset, Ky. Shad, 1878.
Cumberland River. (Sce tributaries: White Oak Branch, Roand Stone Creek, Hardin Durham's Branch, Little River, Eddy Creek.)
Cunningham Pond, Petersborongh, N. H. Schoodic salmon, 1880.
Currant River, Doniphan, Mo. Calitornia salmon, 1879.
Cuyahoga River, Kent, Ohio. Shad, 1872.
Cuyahoga River. (See tributary: Newberry Pond.)
Dakota County, Minn. California salmon, 1876.
Dakota County, Minn., Crystal Lake. California salmon, 1876.
Dakota County, Minn., Lake Early. California salmon, 1878.
Dakota County, Minn., Farmington River. California salmon, 1875; Penobscot salmon, 1875.
Dakota County, Minn., Farquhar Lake. Califoruia salmon, 1878.
Dakota County, Minn., Kennedy Lake. California salmon, 1876, 1878.
Dakota County, Minn., McGrath's Lake. California salmon, 1878.
Dakota County, Minn., S. Branch Vermillion River. California salmon, 1878.

Dakota County, Minn., Spring Lake. Schoodic salmon, 1879.
Dakota County, Minn., Sunfish Lake. California salmon, 1876.
Dakota County, Minn., Twin Lakes. California salmon, 1878, 1880.
Dallas County, Tex. (See Dallas, Tex.)
Dallas, Pa., Harvey's Lake. California salmon, 1880.
Dallas, Tex., Trinity River. Shad, 1879.
Damariscotta, Me., pond. Schoodic salmon, 1879.
Danbary, Conn., Lake Kenosha. Schoodic salmon, 1879.
Danbury, Stokes County, N. C., Dan River. Schoodic salmon, 1878.
Dane County, Wis., Mendota Lake. California salmon, 1877.
Dane County, Wis. (See Madison, Wis.)
Danewood Lake, Chisago Counts, Minn. California salmon, 1877.
Danforth, Me., Mattawamkeag River. Penobscot salmon, 1874.
Danforth, Me., tributary of Penobscot River. Penobscot salmon, 1875.
Dan River, Danbury, N. U. California salmon, 1879.
Dau River, Danbury, Stokes County, N. C. Schoodic salmon, 1878.
Dan River, Halifax County, Va. ${ }^{*}$ Shad, 1877.
Danville, Vt., Joe's Pond. Schoodic salmon, 1878.
Dauphin County, Pa., Swatara Creek. Penobscot salmon, 1874; Oalifornia salmon, 1877.
Dauphin County, Pa. (See Harrisburg, Pa.; Upper Paxton, Pa.)
Davidson Countr, Tenn. (See Madison, Temn.; Nashville, Tenn.)
Davis County, Kans., Republican River. Shad, 1879.
Davis County, Kans. (See Junction City, Kans.)

Davis County, Utah, Jenning's Pond. California salmon, 1876, 1877.
Day Lake, Linden, Mich. Whitefish, 1876.
Dayton, Ohio, Miami River. California salmon, 1879.
Dearborn County, Ind. (See Guilford, Ind.)
Dearborn, Mich., Rouge River. California salmon, 1875.
Decorah, Iowa, Upper Iowa River. California salmon, 1875.
Deep Lake, Sand Lake, IIl. California salmon, 1876.
Deep River, North Fork of, Friendship, N. O. California salmon, 1879.
Deep River, Jamestown, N. C. California salmon, 1878, 1878.
Deer Creek, Md. Penobscot salmon, 1875.
Deer Creek, Parkton, Md. California salmon, 1878, 1879.
Deer Creek, I'ennsylvania line, Md. California salnon, 1874, 1876.
Deer Creek (Sce tributaries: Tobacco Run, Archer's Run, Green Spring.)
Deer Park, Md., Littlo Youghiogheny River. Shad, 1880.
Deer Park, Md., pond. Schoodic salmon, 1878.
Deer Park, Md., Youghiogheny Iiver. California salmon, 1877.
Defiance County, Ohio. (See Defiance, Ohio.)
Defiance, Ohio, Maumee River. California salmon, 1878.
De Gram's, Md., Octorara River. California salmon, 1879, 1880.
De Kalb County, Ala. (See Lebanon, Ala.)
Delaware County, Iowa. (See Delaware, Iowa; Delhi, Iowa; Greeley, Iowa; Hopkinton, Iowa; Manchester, Iowa.)
Delaware County, Pa. (See Brandywine, Pa.)
Delaware, Iowa, Maquoketa River. California salmon, 1875.
Delaware, Iowa, Spring Oreek. California salmon, 1875.
Delaware, Kans., Delaware River. California salmon, 1878, 1879.
Delaware Rirer, Bushkill, Pa. Oalifornia, salmon, 1875, 1877.
Delaware River, Delaware, Kans. California salmon, 1878, 1879.
Delaware River, Point Pleasant, Pa. Shad, 1573, 1874.
Delaware River, Shomaker's Eddy, N. J. California salmon, 1879, 1880; Penobscot salmon, 1879.
Delaware River, tributary of, Brandywine, Pa. California salmon, 1876.
Delaware River, tributary of. California salmon, 1874, 1875; Penobscot salmon, 1874.
Delaware River. (See tributaries: Shoemaker's Eddy, Alloway's Creek, Maurice River, Raccoon River, Pohateong River, Musconetcong River, Dennis Creek, Mantua, Salem, Old Man's, Cohansey, Woodbury, Timber, and Paulinskill Creeks, Bushkill Creek, Heitzman Springbrook, Schuylkill River, and Bear Lake.)
Delaware River, Valley Falls, Kans. California salmon, 1880.
Delh:, Iowa, Maquoketa River. California salmon, 1875.
Demopolis, Ala., Tombigbee River. Shad, 1878.
Dennis Creek, Denvisville, N. J. California salmon, 1876.
Dennison Lake, Winchendon, Mass. Schondic salmon, 1876, 1877, 1878, 1879 .

Dennisville, N. J., Dennis Creek. California salmon, 1876.
Denny's River, Me. Penobscot salmon, 1876.
Denton, Md., Choptank River. Shad, 1877.
Denton, Md., pond. Schoodic salmon, 1880.
Dent's River, Marion County, W. Va. Schoodic salmon, 1878.
Denver, Colo., Platte River. Shad, 1872.
Des Moines, Iowa, Des Moines River. California salmon, 1874, 1874; shad, 1874, 1875, 1876.
Des Moines River, Boone, Boone County, Iowa. Schoodic salmon, 1878.
Des Moines River, Cedar Rapids, Iowa. Shad, 1878.
Des Moines River, Des Moines, Iowa. California salmon, 1874, 1875; shad, 1874, 1875, 1876.
Des Moines River, Fort Dodge, Iowa. California salmon, 1874.
Des Moines River, Iowa. California salmon, 1875,1876,1878, 1879, 1879.
Des Moines River, Moingona, Iowa. Shad, 1878.
Des Moines River, Ottumwa, Iowa. California salmon, 1875; shad, 1874.

Des Moines River, Pomeroy, Iowa. California salmon, 1875.
Des Moines River, Storm Lake, Iowa. California salmon, 1875.
Des Moines River, Webster City, Iowa. California salmon, 1875.
Des Moines River, Windom, Minn. California salmon, 1877.
Des Moines River. (See tributaries: Windom Lake, Okabena Lake, Heron Lake.)
Detroit Lake, Becker County, Minn. California salmon, 1877; Penobscot salmon, 1875; Schoodic salmon, 1875.
Detroit, Mich., Detroit River. California salmon, 1876.
Detroit River, Detroit, Mich. California salmon, 1876; shad, 1873, 1874.

Detroit River, Wayne County, Mich. California salmon, 1878.
Detroit River. (See tributaries: Rouge River, Orchard Lake.)
Devil Lake, Wis. Penobscot salmon, 1875.
De Witt, Clinton County, Iowa, Silver Creek. Schoodic salmon, 1878.
Dexter, Me., pond. Schoodic salmon, 1879.
Dexter, Mich., Base Lake. Whitefish, 1876.
Dexter, Mich., Big Portage Lake. Whiteísh, 1876.
Dexter, Mich., Blind Lake. Whitefish, 1876.
Dexter, Mich., Brain Lake. Whitefish, 1876.
Dexter, Mich., Half Moon Lake. Whitefish, 1876.
Dexter, Mick., Island Lake. Whitefish, 1876; California salmon, 1878.
Dexter, Mich., Patterson Lake. Whitefish, 1876.
Dexter, Mich., Portage Lake. Whitefish, 1876.
Dexter, Mich., Silver Lake. California salmon, 1878; whitefish, 1876.
Dexter, Mich., Woodburn Lake. Whitefish, 1876.
Diamond Lake, Cass County, Mich. California salmon, 1876.
Diamond Lake, Kandiyohi County, Minn. California salmon, 1877.
Diamond Lake, Mich. Penobscot salmon, 1873.

Diamond Pond, Stewirtstown, N. I. Schoodic salmon, 1880.
Dickinson County, Kans. (See Chapman, Kans.; Solomon City, Kans.)
Dick's River, Boyle County, Ky. California salmon, 1876.
Dick's River, Lincoln County, Ky. California salmon, 1876.
Dillon's Creek, Hampshire County, W. Va. Schoodic salmon, 1878, 1879.
Dinwiddie County, Va. (See Petersburgh, Va.)
District of Columbia. (See Uniontown.)
Dixon, Iowa, Wapsipinecon River. California salmon, 1874.
Dobsis Stream, Me., Schoodic Lakes. Penobscot salmon, 1874.
Doddridge County, W. Va. (See West Union, W. Va.)
Dodge County, Minn., Mautor Brook. California salmon, 1878.
Dorlge County, Minn., Wilson Brook. California salmon, 1878.
Doe Run, Meade County, Ky. California salmon, 1877.
Dog River, Northfield, Vt. Penobscot, salmon, 1874.
Donegal Creek, Pa. Penobscot salmon, 1874.
Donegal, Pa., Donegal Spring. California salmon, 1874.
Donegal, Pa., Susquehanna River. California salmon, 1875.
Donegal Run, Lancaster County, P'a. Schoodic salmon, 1880.
Donegal Springs, Donegal Pa. California salmon, 1874.
Doniphan, Mo., Currant River. California salmon, 1879.
Dounelly Lake, Stephens Counts, Minn. California salmon, 1878.
Domer Lake, Nevada County, Cal. Schoodic salmon, 1878; whitefish, 1877, 1879.
Dorchester County, Md., Chicacomico River. California salmon, 1879.
Dorchester County, Md. (See Airey's, Md. ; Barn's Farm, Md.; Cambridge, Md.; Fleming's Mills, Md.; Linkwood, Md.)
Donble Pipe Creek, Md., Double Pipe Creek. California salmon, 1876.
Double Pipe Creek, Md., Patapsco River. California salmon, 1878.
Dougherty County, Ga. (See Albany, Ga.)
Douglas County, Mass. (See Lawrence, Mass.)
Douglas County, Minn., lakes. California salmon, 1579.
Douglas County, Minu., stream. California salmon, 1877.
Dorer, Del., Jones Creek. Shad, 1880.
Dover, Me., Piscataquis River. Penobscot salmon, 1874.
Dover, N. J., Rockaway River. Penobscot salmon, 1875.
Dowagiac Creek, Pokagon, Mich. Schoodic salmon, 1874.
Dowagiac River, Cass County, Nich. California salmon, 1875.
Dowagiac River, Mich. Penobscot salmon, 1875.
Dowagiac River, Pokagon, Mich. Califormia salmon, 1875.
Dorragiac River, Van Buren County, Mich. California salmon, 1879.
Dowagiac River. (See tributaries: William's Creek, Emerson's Creek, Cullom's Creek, Burkie's Creek, Crystal Springs Creek, Mendenhall Creek, Pokagon Creek, and Peavine Crcek.)
Doyle Creek, Florence, Kans. Shad, 1879.
Dragoon River, Burlingame, Kans. California salmon, 1880.
Drake's Creek, Hopkin's County, Ky. California salmon, 1877.
S. Mis. $110-60$

Drake's Pond, Sussex County, N. J. Schoodic salmon, 1879.
Drakesville, Morris County, N. J., Lake Hopatcong. Schoodic salmon, 1879.

Dresden, Tenn., East Obion River. Shad, 1879.
Drew's Lake, Aroostook County, Me. Schoodic salmon, 1878.
Driftwood Branch, Cameron County, Pa. California salmon, 1879, 1880.
Dripping Spring, Md., Gunpowder River. California trout, 1880; Schoodic salmon, 1880.
Draid Hill Lake, Baltimore, Md. Schoodic salmon, 1879.
Dry Fork, White Sulphur Springs, W. Va. Schoodic salmon, 1879.
Dubuque County, Iowa. (See Dubuque, Iowa; Epworth, Iowa; Farley, Iowa; Worthington, Iowa.)
Dubuque Creek, Dubuque, Iowa. Penobscot salmon, 1875.
Dubuque, Iowa, Dubuque Creek. Penobscot salmon, 1875.
Duck Creek, Clayton, Del. Shad, 1879.
Dudley Lake, Rice County, Minn. Penobscot salmon, 1875; California salmon, 1876, 1878.
Dug Pond, Natick, Mass. Schoodic salmon, 1876, 1877, 1878, 1879.
Duluth, Minn., Canosia Lake. Schoodic salmon, 1879.
Dumont Lake, Allegan County, Mich. California salmon, 1878.
Dunlap's Brauch, Woodford County, Ky. California salmon, 1876.
Dunmore Lake, Salisbury, Vt. Schoodic salmon, 1876.
Duplin County, N. C., Six Runs. Shad, 1879.
Duplin County, N. C., Goshen Creek. Shad, 1877.
Duplin County, N. C. (See Warsaw, N. C.)
Durham, Coun., Cocnochogue River. California salmon, 1874.
Durham, Conn., Pitsquog Pond. Schoodic salmon, 1880.
Durham, Conn., West River. California salmon, 1874.
Dutchess County, N. Y., Fishkill Lake. California salmon, 1874.
Dutchess County, N. Y., Furnace Pond. Schoodic salmon, 1879.
Dutchess County, N. Y., Little Thala Pond. Schoodic salmon, 1879.
Dutchess Couuty, N. Y., Long Pond. Schoodic salmon, 1879.
Dutchess County, N. Y., Silver Lake. California salmon, 1874.
Dutchess County, N. Y., Sylvan Lake. Schoodic salmon, 1879.
Dutchess County, N. Y., Upton's Pond. Schoodic salmon, 1879.
Duxbury, Mass., Island Creek Pond. Schoodic salmon, 1877.
Eagle Creek, Gallatin County, Ky. California salmon, 1877.
Eagle Lake, Blue Earth County, Minn. California salmon, 1876.
Eagle Lake, Cottonwood County, Minn. California salmon, 1877.
Eagle Lake, Kandiyohi County, Minn. California salmon, 1876, 1877.
Eagle Lake, Lassen County, Cal. Whitefish, 1879.
Eagle Lake, Washington County, Minn. California salmon, 1876.
Eagleville, Ohio, Grand River. California salmon, 1874; shad, 1874.
Early Lake, Dakota County, Minn. California salmon, 1878.
Eastanalbee River, Athens, Tenn. California salmon, 1876; shad, 1876.
East Bridgewater, Mass., Satucket River. Schoodic salmon, 1877, 1878.

East Brookfield, Mass., Furnace Pond. Schoodic salmon, 1879, 1879.
East Coon River, Iowa. California salmon, 1879.
East Hampton, Conn., Hampton Pond. Schoodic salmon, 1876, 1877, 1878.

East Hampton, Conn., Lake Pocatapang. Schoodic salmon, 1879. East Haven, Conn., Saltonstall Lake. Schoodic salmon, 1877, 1878, 1879.

East Lake, Minn. California salmon, 1877.
East Obion River, Dresden, Tenn. Shad, 1879.
Easton, Md., Miles River. Shad, 1878.
Easton, Md., tributary of Miles Creek, pond. Schoodic salmon, 1878.
Easton, Md., Tread Haven Creek. Shad, 1878.
Easton, Pa., Bushkill Creek. California salmon, 1874, 1878, 1879.
Easton, Pa., Heitzman Spring Brook. Penobscot salmon, 1873.
East Pond, Waketield, N. H. Schoodic salmon, 1879.
East River, Guilford, Conn. Penobscot salmon, 1875.
East River, Hereford, Md. California salmon, 1879.
East Skunk River, Iowa. California salmon, 1879.
Eaton County, Mich., Thorn Apple Lake. California salmon, 1875.
Eaton, Me., Mattawamkeag River. Penobscot salmon, 1874.
Echo Lake, El Dorado Co., Cal. Schoodic salmon, 1878.
Echo Lake, Franconia, N. H. Schoodic salmon, 1879, 1880.
Eddy Creek, Caldwell County, Ky. California salmon, 1877, 1878.
Eden, Med., pond. California trout, 1880; Schoodic salmon, 1880.
Edgecombe County, N. C. (See Rocky Mount, N. C.)
Edisto River, Branchville, S. C. Califoruia salmon, 1877.
Edisto River, Orangeburg, S. C. California salmon, 1879.
Edisto River, S. C. California salmon, 1880.
Egg Harbor City, N. J., Mallica River. California salmon, 1877.
El Dorado County, Cal., Echo Lake. Schoodic salmon, 1878.
El Dorado, Kans., Walnut River. California salmon, 1878, 1879; shad, 1879.

Elgin, Ill., Fox Lake. California salmon, 1875.
Elgin, Ill., Fox River. California salmon, 1874; Penobscot salmon, 1875.

Elgin, Ill., pond. Schoodic salmon, 1878.
Elgin, Ill., Twin Lake. California salmon, 1875.
Elizabethtown, Ky., Nolin Creek. Schoodic salmon, 1878.
Elkhart, Ind., Elkhart River. Shad, 1878.
Elkhart County, Ind. (See Elkhart, Ind.; Goshen, Ind.)
Elkhart, Ind., Saint Joseph River. Shad, 1874.
Elkhart River, Elkhart, Ind. Shad, 1878.
Elkhart Lake, Sheboygan County, Wis. Penobscot salmon, 1875.
Elkhorn Creek, Scott County, Ky. Shad, 1878.
Elk Ridge Landing, Md., Cascade Branch of Patapsco River. Schoodic salmon, 1878.

Elk River, Charleston, W. Va. California salmon, 1879, 1880.
Elk River, Elkton, Md. California salnon, 1876; shad, 1879.
Elk River, Md. Shad, 1877.
Elk River. (See tributary: Bohemia Creek, of Big Elk River.)
Elkton, Md., Elk River. California salmon, 1876; shad, 1879.
Ellenburgh, N. Y., Chazy River. Penobscot salmon, 1875.
Ellicott City, Md., North Branch Patuxent River. California salmon, 1876.

Ellicott City, Md., Patapsco Falls. California trout, 1880.
Ellicott City, stream. California trout, 1880.
Ellis Countr, Kans. (See Ellis, Kans.; Hays City, Kans.)
Ellis, Kans., Big Creek. California salmon, 1878, 1879.
Ellis, Kans., Smoky Hill River. California salmon, 1880.
Ellsworth Countr, Kans., Smoky Hill River. Schoodic salmon, 1879.
Ellsworth County, Kans. (See Bluffville, Kans.; Ellsworth, Kans.; Farisville, Kans.; Fort Harker, Kans.; Trivoli, Kans.; Venango, Kans.; Wilson, Kans.)
Ellsworth, Kans., Ash Creek. Schoodic salmon, 1880.
Eilsworth, Kans., pond. Schoodic salmon, 1880.
Ellsworth, Kans., Smoky Hill River. California salmon, 1877, 1878, 1879, 1880; shad, 1879.
Elm Creek, Farissille, Kans. Schoodic salmon, 1880.
Elmo Lake, Washington County, Miun. California salmon, 1879.
Elmore, Ohio, Portage River. California salmon, 1877.
Elmwood Creek, Bourbon County, Ky. California salmon, 1878.
Elyria, Ohio, Black River. Shad, 1874.
Elysian Lake, Waseca County, Minn. California salmon, 1876, 1879, 1880; Penobscot salmon, 1875; Scboodic salmon, 1875.
Embarrass River, Charleston, Ill. Shad, 1878.
Emerson Pond, Rindge, N. H. Schoodic salmon, 1880.
Emily Lake, Le Sueur County, Minn. California salmon, 1876, 1877, 1878.

Emmet County, Iowa, lakes. Penobscot salmon, 1876.
Emmet County, Mich. (See Petoskey, Mich.)
Emmittsburgh, Md., Crystal Iron Springs. Schoodic salmon, 1878.
Emmon's Creek, Mich. California salmon, 1874.
Emporia, Kans., Neosho River. California salmon, 1878, 1879, 1880; shad, 1879.
Enfield, Me., Cold Spring Pond. Schoodic salmon, 1878.
Enfield, N. H., Mascoma Lake. Schoodic salmon, 1879.
Engle Lake, Stevens County, Minn. California salmon, 1878.
Enoree River, S. C. California salmon, 1880.
Epsom, N. H., Chesnut Pond. Schoodic salmon, 1880.
Epworth, Iowa, Little Maquoketa River. California salmon, 1874.
Erie County, Ohio. (See Castalia, Ohio; Huron, Ohio.)

Erie Conuty, Pa., Conneant Creek. Schoodic salmon, 1880.
Erie County, Pal, French Creek. Schoodic salmon, 1880.
Erie County, Pa., Le Bœouf Creek. Schoodic salmon, 1880.
Erie County, Pa. (See Corry, Pa.; Erie, Pa.)
Erie Lake, Put-in-Bay, Ohio. California salmon, 1877; Penobscot salmon, 1875; Schoodic salmon, 1876.
Erie Lake, Toledo, Ohio. Whitefish, 1876.
Erie Lake. (See tributaries: Barrier Lake; Detroit River, Raisin River, Cuyahoga, Ashtabula, Grand, aud Saudusky Rivers, Castalia Spring Stream, Portage River, Maumee River, Cold Creek, Huron River, Sandusky River, Grand River, Auglaize River.)
Erie, Pa., Bay. Schoodic salmon, 1879.
Erving's Mill, W. Va., Little Kanawha River. California salmon, 1878.
Escambia County, Ala. (See Pollard, Ala.)
Escambia River, Pollard, Ala. Shad, 1878.
Escambia River. (See tributary: Conecuh River.)
Espinoza Lake, Monterey County, Cal. Schoodic salmon, 1878.
Essex County, Mass. (See Boxford, Mass.; Essex, Mass.; Georgetown, Mass.; Ipswich River, Mass.; Lyunfield, Mass.; Lynn, Mass.; Middleton, Mass.; North Andover, Mass.; Salem, Mass.; Wenham, Mass.)
Essex County, N. J. (See Bloomfield, N. J.)
Essex County, Vt. (See Concord, Vt.)
Essex, Mass., Chebacco Lake. Schoodic salmon, 1877, 1879.
Essex, Vt., Winooski River. Schoodic salmon, 1876.
Etowah River, Cartersville, Ga. California salmon, 1878; shad, 1878.
Evitt's Creek, Tannery, Md. California salmon, 1874.
Fairfax County, Va. (See Ferry Landing, Va.; Jackson City, Va.)
Fairfield County, Coun. (See Brookfield, Conn.; Danbury, Conn.; Mianus, Conn.; Newtown, Conn.; Ridgefield, Conn.; Sandy Hook, Conn.; Sherman, Conn.; Southport, Conn.; Westport, Conn.)
Fairfield Pond, Fairfield, Vt. Schoodic salmon, 1876.
Fairfield, Vt., Fairfield Pond. Schoodic salmon, 1876.
Fairview, Md., Bush River. California trout, 1880; Schoodic salmon, 1880.

Fairview, W. Va., King's Creek. California salmon, 1878.
Fall River, Bridgewater, Mass. California salmon, 1877.
Fall River, Mass., Borden Pond. Schoodic salmon, 1878.
Fall River, Mass., Sucker Brook. Schoodic salmon, 1878.
Falls Village, Comn., Canaan Mountain Poud. Schoodic salmon, 1880.
Falmouth, Mass., Fresh Pond. Schoodic salmon, 1879, 1880.
Faribault County, Minn., Bass Lake. California salmon, 1876, 1877.
Faribault County, Minn., Minnesota Lake. California salmon, 1875, 1876.

Faribault County, Minn., Minnesota River. California salmon, 1875.
Faribault, Minn., Cannon River. California salmon, 1877.
Faribault, Minn, Fox Lake. California salmon, 1877.

Faribault Lake, Rice County, Minn. Penobscot salmon, 1875; Schoodic salmon, 1875.
Farisville, Kans., Clear Creek. Schoodic salmon, 1880.
Farisville, Kans., Elm Creek. Schoodic salmon, 1880.
Farley, Iowa, Little Maquoketa River. California salmon, 1874.
Farlow, Ill., Kaskasia River. Shad, 1878.
Farmington River, Colebrook, Conn. California salmon, 1873, 1873.
Farmington River, Conn. California salmon, 1876.
Farmington River, Dakota County, Minn. California salmon, 1875; Penobscot salmon, 1875.
Farmington River, New Hartford, Conn. California salmon, 1875; Penobscot salmon, 1875, 1877.
Farmington River, Pine Meadow, Conn. California salmon, 1874, 1874.
Farm Pond, Framingham, Mass. Schoodic salmon, 1879.
Farm River, New Haven, Conn. California salmon, 1875.
Farmville, Va., Appomattox River. Schoodic salmon, 1879.
Farquhar Lake, Dakota County, Minn. California salmon, 1878.
Fauquier County, Va. (See Broad Run Station, Va.; Rectorstown, Va.)
Fayette County, Iowa. (See Clermont, Iowa; Fayette, Iowa; West Union, Iowa.)
Fayette County, Ky. (See Lexington, Ky.)
Fayette, Iowa, Turkey River. California salmon, 1875.
Fayette, Iowa, Volga River. California salmon, 1875.
Federalsburgh, Md., branch of Nanticoke River. California salmon, 1876.

Federalsburgh, Md., Nanticoke River. California salmon, 1879, 1880; shad, 1878, 1879.
Felch's Lake, San Mateo County, Cal. Schoodic salmon, 1878.
Ferguson Creek, Winona County, Minn. California salmon, 1878.
Ferrisburgh, Vt., Lewis Creek. Penobscot salmon, 1875.
Ferry Landing, Fairfax County, Va., Potomac River. Shad, 1875, 1875, 1876.

Fife Lake, Mich., Fife Lake. Whitefish, 1876.
Fillmore County, Minn., Benton Creek. California salmon, 1878.
Fillmore County, Minn., Camp Creek. California salmon, 1878.
Fillmore County, Minu., Jordan's Creek. California salmon, 1878.
Fillmore County, Minn., Kingsley Creek. California salmon, 1878.
Fillmore County, Minn., Middle Branch of Root River. California salmon, 1878.
Fillmore County, Minn., North Branch of Root River. California salmon, 1878.
Fillmore County, Minn., North Branch of Watson Creek. California salmon, 1878.
Fillmore County, Minn., Rush Creek. California salmon, 1878.
Fillmore County, Minn., South Branch of Root River. California salmon, 1878.

Fillmore County, Minn., Spring Creek. California salmon, 1878.
Fillmore County, Minn., Spring Valley. California salmon, 1878.
Fillmore County, Minn., Fenberg Brook. California salmon, 1878.
Fillmore County, Minn., Walker Creek. California salmon, 1878.
Fillmore County, Minu., Watson Creek. California salmon, 1878.
Fillmore County, Minn., Willow Creek. California salmon, 1878.
Fillmore County, Minn. (See Lanesborough, Minn.; Pilot Mound,
Minn.; Spring Valley, Minn.)
Fincastle, Va., Craig's Creek. Schoodic salmon, 1879.
Fish Creek, Bellton, W. Va. California salmon, 1879, 1880.
Fish Creek, Burton, W. Va. California salmon, 1879, 1880.
Fish Creek, Littleton, W. Va. California salmon, 1877, 1878, 1879, 1880; Schoodic salmon, 1879.
Fish Creek, N. Y. California salmon, 1873, 1874.
Fishing Creek, Wetzel County, W. Va. Schoodic salmon, 1878.
Fishing Creek, Mannington, W. Va. California salmon, 1878.
Fishkill Lake, Dutchess County, N. Y. California salmon, 1874.
Fish Lake, Wis. California salmon, 1879.
Flax Pond, Lynn, Mass. Schoodic salmon, 1878.
Fleming's Mills, Md., Chicacomico River. California salmon, 1879.
Flint County, Mich., Flint River. California salmon, 1875.
Flint River, Albany, Ga. Shad, 1878, 1880.
Flint River, Flint County, Mich. California salmon, 1875.
Flint River, Jonesborough, Ga. California salmou, 1878.
Flint River, Mich. Shad, 1873.
Flint River, Montezuma, Ga. Shad, 1878.
Florence, Kans., Cottonwood River. California salmon, 1878, 1879, 1880; shad, 1879.
Florence, Kans., Doyle Creek. Shad, 1879.
Floyd County, Ga. (See Rome, Ga.)
Floyd River, Le Mars, Iowa. California salmon, 1875.
Floyd River, Sioux City, Iowa. California salmon, 1875.
Floyd's Fork, Jefferson County, Ky. California salmon, 1876.
Floyd's Fork, North and East Branches of, Henry County, Ky. California salmon, 1876, 1876.
Fond du Lac County, Wis. (See Metomen, Wis.)
Fond du Lac, Minn., Saint Louis River. California salmon, 1878; Schoodic salmon, 1875.
Forest Lake, Chisago County, Minn. California salmon, 1877.
Forest Lake, Washington County, Minu. California salmon, 1876.
Forestville, Md., pond. Schoodic salmon, 1878.
Forked Deer River, Humboldt, Tenn. California salmon, 1876.
Forked Deer River, Jackson, Miss. California salmon, 1876.
Forked Deer River, Jackson, Tenn. California salmon, 1876; shad, 1876, 1877.
Forked Deer River. (See tributary: Middle Fork.)

Fort Dodge, Iowa, Des Moines River. California salmon, 1874. Fort Edward, N. Y., Fortville Creek. California salmon, 1874. Fort Edward, N. Y., Inglesby Creek. California salmon, 1874. Fort Edward, N. Y., Peatwig Creek. California salmon, 1874.
Fort Harker, Kans., Howard's Lake. Schoodic salmou, 1880.
Fort Harker, Kans., Smoky Hill River. California salmon, 1880.
Fort Pendleton, Md., Potomac River. California salmon, 1877, 1880.
Fort Pendleton, Md., North Branch Potomac River. California salmon, 1876, 1876, 1878; Penobscot salmon, 1875.
Fort Pendleton, Md., North Brauch Potomac River. California salmon, 1874.
Fortville Creek, Fort Edward, N. Y. California salmon, 1874.
Fortville Creek, N. Y. California salmon, 1873.
Fort Washington, Md., Potomac River. Shad, 1878, 1880.
Foss Lake, Stevens County, Minn. California salmon, 1879.
Foster, R. I., Lilly Pond. Schoodic salmon, 1876.
Foster, R. I., Searle's Pond. Schoodic salmon, 1876.
Fox Lake, Elgin, Ill. California salmon, 1875.
Fox Lake, Faribault, Minn. California salmon, 1877.
Fox River, Appleton, Wis. Shad, 1873, 1877.
Fox River, Cary Station, Ill. California salmon, 1879.
Fox River, Elgin, Ill., California salmon, 1874; Penobscot salmon, 1875.
Fox River, Ill. California salmon, 1876, 1877.
Fox River. (See tributaries: Crystal Lake, Column Lake.)
Fox River. (See tributary: Wantoma Lake.)
Framingham, Mass., Farm Pond. Schoodic salmon, 1879.
Framingham, Mass., Sudbury River. Schoodic salmon, 1876, 1877.
Franconia, N. H., Echo Lake. Schoodic salmon, 1879, 1880.
Frankford, Kans., Black Vermillion River. California salmon, 1878, 1879.

Franklin County, Kans. (See Ottawa, Kans.)
Franklin County, Ky., ponds. California salmon, 1878.
Franklin County, Ky., small streams. California salmon, 1877.
Franklin County, Mo. (See Pacific, Mo.; Washington, Mo.)
Franklin County, Ohio. (See Columbus, Ohio.)
Franklin County, Pa. (See Chambersburgh, Pa.)
Franklin County, Vt. (See Fairfield, Vt.; Franklin, Vt.; Georgia, Vt.; Highgate, Vt.; Swanton, Vt.)
Franklin, Mo., Meramec River. California salmon, 1878, 1879; shad, 1879.

Franklin, N. H., Pemigewasset River. Penobscot salmon, 1876.
Franklin Pond, Franklin, Vt. Schoodic salmon, 1876.
Franklin, Va., Blackwater River. Shad, 1878, 1878, 1879.
Franklinville, Md., Garrett County, Savage Creek. California salmon, 1874.

Frantz Mill Dam, Olear Spring, Md. California trout, 1880.

Frazee City, Minu., Otter Tail River. California salmon, 1880.
Frederick, Frederick County, Md., Monocacy River. Schoodic salmon, 1880; California trout, 1880.
Frederick, Cecil County, Mal., Sassafras River. Califomia salmon, 1876.
Fredericksburgh, Iowa, Upper Iowa River. California salmon, 187.
Frederick Counts, Md. (See Buckeystown, Md.; Emmittsburgh, Md.; Frederick, Md.; Ijamsville, Md.; Mechanicstown, Md.; Middletown, Md.; Momrovia, Md.; Mount Pleasant, Md.; New Market, Md.; Libertstown, MLl.; Point of Rocks, Md.; Slabtown, Mrd.; Unionville, Md.; Walkersville, Md.; Woodsborough, Md.)
Frederick County, Va. (See Winchester, Va.)
Freeborn County, Minn., Lake Albert Lea. California salmon, 1875, 1876; Penobscot salmon, 1875.
Freeborn County, Minn., Alden Lake. California salmon, 1878.
Freeborn County, Minn., Cedar River. California salmon, 1875.
Freeborn County, Minn., Iowa River. California salmon, 1875.
Freeborn County, Minn., Pickerel Lake. California salmon, 1876, 1878.
Freeborn Connty, Minn. (See Albert Lea, Minn.)
Freeland, Md., Gumpowder River. California salmou, 1874.
Freestone Point, Va., Potomac River. Shad, 1875.
Freestone, Va., Potomac River. Shad, 1878.
Fremont, Ohio, Sandusky River. California salmon, 1880; Penobscot salmou, 1875; Schoodic salmon, 1876; shad, 1874, 1878, 1879, 1880.
French Broad River, Church Creek, Tenn. California salmon, 1876.
French Broad River. (See tributary: Swannanoa River.)
French Creek, Erie County, Penn. Schoodic salmon, 1880.
French Lake, Rice Countr, Minn. California salmon, 1876, 1877, 1878.
Fresh Pond, Falmouth, Mass. Schoodic salmou, 1879, 1880.
Friar's Point, Miss., Suuflower River. Shad, 1878.
Frieudship, N. C., North Fork of Deep River. California salmon, 1879.
Frog Lake, Stevens County, Minn. Califoruia salmon, 1878.
Fulton, Ark., Red River. Shad, 1877, 1879.
Fulton County, Ga. (See Atlanta, Ga.; Boltonville, Ga.)
Fultou County, Ky., small streams. California salmon, 1877.
Fulton, Miss., Tombigbee River. Shad, 1878.
Fulton, N. Y., Oswego River. California salmon, 1874.
Furnace Pond, Dutchess County, N. Y. Schoodic salmon, 1879.
Furnace Pond, East Brookfield, Mass. Schoodic salmon, 1879, 1879.
Gadsden County, Fla. (See Midway, Fla.)
Gaffney City, S. C., Broad River. California salmon, 1877; shad, 1875, 1880.

Gainesville, Ga., Chattahoochee liver. California salmon, 1878; shad, 1879.

Gallatin County, Ky., Eagle Creek. California salmon, 1877.
Gardiner's Lake, Salem, Conn. Schoodic salmon, 1876, 1877, 1878, 1879.
Garrard County, Ky., White Oak Creek. California salmon, 1876.

Garrett County, Md. (See Deer Park, Md.; Fort Pendleton, Md.; Franklinville, Md.; Oakland, Md.; Swanton, Md.)
Gasconade County, Mo. (See Herman, Mo.)
Gasconade River, Jerome, Mo. California salmon, 1876, 1880; shad, 1880.

Gaston Oounty, N. C. (See Dallas, N. C.)
Gates' Pond, Berlin, Mass. Schoodic salmon, 1876, 1877.
Gavin's Lake, Stevens County, Minn. California salmon, 1878.
Geauga Oounty, Ohio, Newberry Ponds. California salmon, 1879.
Genesee County, Mich. (See Linden, Mich.)
Genesee River, Caledonia, N. Y. California salmon, 1874, 1875.
Genesee River, Livingston County, N. Y. California salmon, 1875.
Genesee River, N. Y. California salmon, 1873, 1873, 1874, 1874, 1875.
Genesee River. (See tributaries: Spring Creek, Caledonia Spring Oreek, Walter Creek.)
Geneva Lake, Geneva, Wis. California salmon, 1877, 1878, 1879, 1880. Geneva Lake, Walworth County, Wis. California salmon, 1875, 1876, 1877, 1878, 1879; California trout, 1880; Schoodic salmon, 1876, 1878, 1879; Penobscot salmon, 1874.
Geneva, Wis., Geneva Lake. California salmon, 1877, 1878, 1879, 1880.
Gentry County, Mo., Grand River. California salmon, 1880.
George Lake, Kandiyohi County, Minn. California salmon, 1877.
George Lake, Minn. California salmon, 1877.
Georgetown, Colo., Clear Lake. California salmon, 1874.
Georgetown, Colo., Green Lake. California salmon, 1874.
Georgetown, D. C., Little Falls of the Potomac River. Shad.
Georgetown, Mass., Pentucket Pond. Schoodic salmon, 1877.
Georgetown, Mass., Rock Pond. Schoodic salmon, 1877.
Georgetown, Pa., Susquehanna River. Shad, 1880.
Georgia, Vt., Lamoille River. Penobscot salmon, 1874; shad, 1874, 1875.
Germanton, N. C., Town Creek. California salmon, 1879.
Gervais Lake, Ramsey County, Minn. California salmon, 1878.
Gibson County, Tenn. (See Humboldt Tenn.; Trenton, Tenn.)
Giles County, Va., Mountain Lake. California salmon, 1876.
Gillmore's Creek, Rice County, Minn. California salmon, 1878.
Gilmore Pond, Jaffrey, N. H. Schoodic salmon, 1880.
Gist Creek, Shelby County, Ky. California salmon, 1876.
Glassborough, N. J., Mantua Creek. California salmon, 1876.
Glasser's Lakes, Covington, Ky. Schoodic salmon, 1878.
Glenburn, Me., Pushaw Pond. Schoodic salmon, 1879.
Glencoe, Md., Gunpowder River. California salmon, 1876.
Gloucester County, N. J., Raccoon Creek. California salmon, 1879.
Gloucester County, N. J. (See Glassborough, N. J.; Swedesborough, N. J.; Wenonal, N. J.; Williamstown, N. J.; Woodbary, N. J.)

Glymont, Md., Potomac River. Shad, 1878, 1878.
Goguac Lake, Battle Creek, Calhoun County, Mich. California salmon, 1875; Schoodic salmon, 1878.

Goguac Lake, Calhoun Counts, Mich. California salmon, 1875, 1876, 1878, 1879.
Goodhue County, Minn., Bell Creek. California salmon, 1878.
Goodhue County, Minn., mill-pond. California salmon, 1879.
Goodhue County, Minn. (See Red Wing, Mimn.)
Goose Creek, North Branch of, Chisago County, Minn. California salmon, 1877.

Goose Creek, Rectorstown, Va. California salmon, 1876.
Goose Creek, Stacy, Minn. California salmon, 1879.
Goose Lake, Woodstock, Mich. California salmon, 1878.
Gordon County, Ga. (See Resaca, Ga.)
Gorton's Pond, Warwick, R. I. Schoodic salmon, 1876.
Goshen Creek, Mount Olive, N. C. Shad, 1879.
Goshen Creek, Duplin County, N. C. Shad, 1878.
Gourd Neck Lake, Kalamazoo County, Mich. California salmon, 1879.
Govanstown, Md., stream. California trout, 1880.
Grafton County, N. H. (See Benton, N. H.; Bridgewater, N. H.; Campton, N. H.; Canaan, N. H. ; Enfield, N. H.; Franconia, N. H.; Holderness, N. H.; Piermont, N. H.; Plymouth, N. H.; Thornton, N. H.; Warren, N. H.; West Campton, N. H.; Woodstock, N. H.)
Grafton, W. Va., Tygart's Valley. Shad, 1879.
Graham Lake, Minn. California salmon, 1877.
Graham, N. C., Haw River. California salmon, 1877.
Granby, Conn., Salmon River. Schoodic salmon, 1880.
Grand Lake, Me. Schoodic salmon, 1876, 1877.
Grand Lake, Stearns County, Minn. California salmon, 1876, 1878.
Grand Lake, Washington County, Me. Schoodic salmon, 1878, 1879.
Grand Rapids, Mich., Perkins \& Hess Pond. California salmon, 1874.
Grand Rapids, Mich., Reed Lake. California salmon, 1876.
Grand River, Eagleville, Ohio. California salmon, 1874.
Grand River, Eagleville, Ohio. Shad, 1874.
Grand River, Ionia, Mich. Shad, 1873.
Grand River, Jackson Counts, Mich. Penobscot salmon, 1873.
Grand River, Jackson, Mich. California salmon, 1876, 1879.
Grand River, Lansing, Mich. Shad, 1873.
Grand River, Gentry County, Mo. California salmon, 1880.
Grand River Railroad Crossing, Henry County, Mo. Shad, 1880.
Grand River, tributary of, Jackson County, Mich. California salmon, 1873.

Grand River. (See tributaries: Sandstone Creek, Perkins \& Hess Pond, Crouch's Creek, Crouch's Fishery, Maple River, Round Lake, Thornapple Lake, Long Lake, Reed Lake, Church Lake, Pickerel Lake, Lamberton Lake, Soft Water Lake.)
Grand Traverse Bay. (See tributaries: North Boardman River, Rapid River, Torch Lake.)
Grand Traverse County, Mich. (See Fife Lake, Mich.)

Grant County, Minn., Huskin's Lake. California salmon, 1878.
Grant County, Minn., Patchen's Lake. California salmon, 1878.
Grant County, Minu., Twin Lake. California salmon, 1878.
Grant County, W. Va., Luney's Creek. California salmon, 1879, 1880.
Grant County, W. Va., Williams' Ponds. California salmon, 1879, 1880.
Grant County, W. Va. (See Williamsport, W. Va.)
Grant County, Wis. (See Boscobel, Wis.)
Grant County, Wis., streams. California salmon, 1874.
Grantham, N. H., Stocker's Poud. Schoodic salmon, 1878.
Grauville County, N. C., Tar River. Shad, 1877.
Grapevine Creek, Warren, Ind. California salmon, 1875.
Grayson County, Tex. (See Sherman, Tex.)
Great Barrington, Mass., Lake Buell. Schoodic salmon, 1879, 1880.
Great Bend, Kans., Walnut River. California salmon, 1878, 1879 ; shad, 1879.

Great Choptank River, Carter's Bridge, Md. California salmon, 1879.
Great Egg Harbor River, Atlantic Countr, N. J. California salmon, 1879.

Great Egg Harbor River, May's Landing. Califoruia salmon, 1876.
Great Egg Harbor River, N. J. California salmon, 1877, 1878.
Great Egg Harbor River, Weymouth, N. J. California salmon, 1877.
Great Egg Harbor River, Williamstown, N. J. California salmon, 1876.
Great Egg Harbor River, Winslow, N. J. California salmon, 1877.
Great Herring Pond, North Sandwich, Mass. Schoodic salmon, 1876, 1878.

Great Pee Dee River, Railroad Crossing, Marion County, S. C. Shad, 1878, 1880.
Great Pee Dee River. (See tributary: Yadkin River.)
Great Pond, Braintree, Mass. Schoodic salmon, 1877, 1878, 1880.
Great Pond, North Audover, Mass. Schoodic salmon, 1876, 1878.
Great River, Long Island, N. Y. California salmon, 1876, 1877.
Greeley, Iowa, Turkey River. California salmon, 1875.
Greeley, Iowa, Volga River. California salmon, 1875.
Greenbrier County, W. Va. (See Caldwell, W. Va.; Lewisburgh, W.
Va.; Ronceverte, W. Va.; White Sulphur Springs, W. Va.)
Greenbrier River, Caldwell, Greenbrier County, W. Va. California salmon, 1878.
Greenbrier River, Hinton, W. Va. Schoodic salmon, 1879.
Greenbrier River, Ronceverte, Greenbrier County, W. Va. California salmon, 1878, 1879, 1880; shad, 1873, 1879.
Greenbrier River, W. V. California salmon, 1879, 1880.
Green County, Ky., Booker's Branch. California salmon, 1877.
Green County, Ky., Cave Spring Branch. California salmon, 1877.
Green County, Wis. (See Brodhead, Wis.)
Greene County, N. Y., tributaries Hudson River. California salmon, 1878.

Greene County, Mo. (See Springfield, Mo.)
Greene County, Ga., Oconee River. Shad, 1880.
Greene County, Pa., tributary of Monongahela River. California salmon, 1876.

Green Lake, Chisago County, Minn. California salmon, 1877.
Green Lake, Georgetown, Colo. California salmon, 1874.
Green Lake, Kandiyohi County, Miun. California salmon, 1876, 1877.
Greeu Lake, Green Lake Countr, Wis. California salwon, 1874.
Green Lake County, Wis., Green Lake. California salmon, 1874.
Green Pond, Sherman, Conn. Schoorlic Lake, 1878, 1879.
Green River, Bowling Green, Ky. Shad, 1878.
Green River, Casey County, Ky. California salmon, 1876.
Green River, Hendersonville, N. C. California salmon, 1878.
Green River, McKinney's Station, Ky. Shad, 1878.
Green River, Munfordville, Ky. Shad, 1877.
Green River, Wis. Schoodic salmon, 1879.
Green River. (Sce tributaries: Middle, Bungartner's, Russell, Rough, Noling, Drakes, and Jasper Creeks.)
Greensborough, Guilford Comnty, N. C., ponds tributary to Cape Fear River. Schoodic salmon, 1878.
Greensborough, Md., Choptank River. California salmon, 1876; shad, 1878, 1878.
Greensborough Pond, Greensborough, Vt. Schoodic salmon, 1878.
Greensborough, Vt., Greensborough Pond. Schoodic salmon, 1878.
Greensburgh, Pa., Monongahela River. Shad, 1873.
Green's Pond, Oxford, Warren County, N. J. Schoodie salmon, 1879.
Green Spring Run, Aberdeen, Md. California salmon, 1876.
Green Spring Run, Burnsides, Marford County, IId. Schoodic salmon, 1879.

Green Spring, Baltimore Comntr, Md., pond tributary to Lake Roland. California tront, 1880; Schoodie salmon, 1880; pond of Samuel Shoemaker.
Greenviile Counts, S. C. (See Greeuville, S. C.)
Greenville, S. C., Saluda liver. California salmon, 1879, 1880.
Greenville, Va., South River. California salmon, 1878.
Greenwood Lake, Bloomfield, N. J. Caiifornia salmon, 1876, 1877.
Greenwood Lake, Passaic County, N. J. California salmon, 1879.
Greenwood, Md., pond. California trout, 1880.
Greenwood, Mass., Crystal Lake. Schoolic salmon, 1877, 1878.
Grenada Countr, Miss. (See Grenada, Miss.)
Grenada County, Miss., Yalabusha River. Shad, 1879.
Grenada, Miss., Yalabusha River. Shad, 1878, 1879.
Groton, Mass., ponds. Schoodic salmon, 1880.
Guadalupe County, Tex. (See Seguin, Tex.)
Guadalupe River, Seguin, Tex. Shad, 1879.
Guadalupe River. (See tributary: San Marcus River.)

Guilford, Conn., East River. Penobscot salmon, 1875.
Guilford, Conn., Limepaug Lake. Schoodic salmon, 1880.
Guilford County, N. C. (See Friendship, N. C.; Greensborough, N. C.;
Jamestown, N. C.)
Guilford, Ind., Tanner's Creek. California salmon, 1874, 1876.
Gull Lake, Kalamazoo County, Mich. California salmon, 1873, 1875.
Gull Lake, Richland, Mich. California salmon, 1878.
Gull Pond, Wellfleet, Mass. Schoodic salmon, 1877, 1878.
Gun Lake, Hillsdale County, Mich. Penobscot salmon, 1873.
Gunpowder River, Cockeysville, Md. California salmon, 1878, 1879; shad, 1877, 1878, 1879; Schoodic salmon, 1878.
Günpowder River, Dripping Spring, Md. California trout, 1880.
Gunpowder River, Freeland, Md. California salmon, 1874.
Gunpowder River, Glencoe, Md. California salmon, 1876.
Gunpowder River, branch of, Long Green, Md. California trout, 1880.
Gunpowder River, Md. Penobscot salmon, 1875.
Gunpowder River, Monkton, Md. California salmon, 1877.
Gunpowder River, Parkton, Md. California salmon, 1876, 1878.
Gunpowder River, Phœenix, Md. California salmon, 1876, 1877, 1880.
Gumpowder River, pond tributary to, Hampton, Md. Schoodic salmon, 1879.

Grnpowder River, Railroad Crossing, Baltimore County, Md. Shad, 1879.

Gunpowder River, Towsontown, Md. California salmon, 1878, 1879.
Gumpowder River, Warren, Md. California trout, 1880.
Gunpowder River. (See tributaries: Little Gunpowder River, Western River.)
Gwinnett County, Ga. (See Norcross, Ga.)
Gwynn's Falls, Airy Hill, Md. California trout, 1880; Schoodic salmon, 1880.
Habersham County, Ga., Tugaloo River. Shad, 1879.
Habersham County, Ga. (See Balding's Mills, Toccoa, Ga.)
Hackensack River, Bergen County, N. J. California salmon, 1879.
Hackensack River, tributary of, N. J. Penobscot salmon, 1874.
Hagerstown, Md., Antietam Creek. California salmon, 1874, 1876, 1879。
Hagerstown, Md., Conococheague River. California salmon, 1874, 1876, 1879.

Hale County, Ala. (See Greensborough, Ala.)
Half Moon Lake, Dexter, Mich. Whitefish, 1876.
Half Moon Lake, Putnam, Mich. California salmon, 1878.
Halfway Pond, Plymouth, Mass. Schoodic salmon, 1876, 1877, 1878.
Halfway River, Sandy Hook, Conn. Schoodic salmon, 1880.
Halifax County, N. C. (See Weldon, N. C.)
Halifax County, Va., Dan River. Shad, 1877.
Hall County, Ga. (See Gainesville, Ga.)
Halloran Lake, Ramsey County, Minu. California salmon, 1876.

Halstead, Kans., Little Arkansas River. California salmon, 1878, 1879.
Halstead, Kans., Little River. Shad, 1879.
Hamlin Lake, Battle Creek, Mich. California salmon, 1876.
Hamlin Lake, Oalhoun County, Mich. Schoodic salmon, 1876.
Hamilton County, Iowa. (See Webster City, Iowa.)
Hamilton County, Ohio. (See Cincinnati, Ohio.)
Hamilton County, Tenn. (See Chattanooga, Tenn.)
Hamott's Mill, Hampshire County, W. Va., Mill Creek. Schoodic salmon, 1879, 1879.
Hampden County, Mass. (See Holyoke, Mass.; Ludlow, Mass.; Palmer, Mass.; Springfield, Mass.; Westfield, Mass.; Wilbraham, Mass.)
Hampshire County, Mass. (See Enfield, Mass.; Goshen, Mass.; Huntington, Mass.; Smith's Ferry, Mass.; South Hadley Falls, Mass.)
Hampshire County, W. Va., Dillon's Creek. Schoodic salmon, 1878, 1879.

Hampshire County, W. Va. (See Iustitution for Deaf; Romney, W. Va.;
Hampshire County, W. Va., Mill Creek. Schoodic salmon, 1878.
Hampshire County, W. Va. (See Hamott's Mills, W. Va.; Romuey, W. Va.)

Hampshire Counts, W. Va., south tributary to Potomac River. Schoodic salmon, 1879.
Hampshire County, Wr. Va., tributaries to Potomac River. California salmon, 1879, 1880.
Hampshire County, W. Va., tributaries to Potomac River. California salmon, 1879, 1880.
Hampton Creek, S. C. California trout, 1880; Schoodic salmon, 1880.
Hampton Pond, Last Hampton, Conn. Schoodic salmon, 1876, 1877, 1878.

Hampton, Baltimore County, Md., pond tributary to Gunpowder River. Schoodic salmon, 1879.
Hancock Connty, Me. (See Bucksport, Me.; Surry, Me.)
Hancock County, W. Va. (See Fairview, W. Va.)
Hand Lake, Sherburne County, Minn. California salmon, 1876.
Hanging Fork, Lincoln County, Ky. California salmon, 1876.
Hanging Horn Lake, Carleton County, Minn. California salmen, 1878.
Hanover County, Va. (See Taylorsville, Va.)
Hansca Lake, Brown County, Minn. California salmon, 1878.
Hardin County, Iowa. (See Iowa Falls, Iowa.)
Hardin County, Ky. (See Elizabethtown, Ky.)
Hardiu County, Ky., Middle Creek. California salmon, 1876.
Hardin County, Ky., Nolin Creek. California salmon, 1877.
Hardin County, Ky., Rough Creek. California salmon, 1877.
Hardin Connty, Ky., Durham's Branch, Rockcastle County, Ky. California salmon, 1877.
Hardy County, W. Va. (See Moorefield, W. Va.)
Hardy County, W. Va., Trout Ruu. Schoodic salmon, 1878.

Hardy's Pond, Waltham, Mass. Schoodic salnon, $18: 7$ (?), 1878, 1879, 1880.

Harford County, Md. (See Aberdeen, Md.; Bel Air, Md.; Burnsides, Md.; Havre de Grace, Md.; Magnolia, Md.; Norrisville, Md.; Perrymau, Md.; Pleasantville, Md.; Savage, Md.; Swan Creek, Md.; Wilna, Md.)

Harford County, Md., Winter's Run. California salmon, 1877.
Harford County, Md., Green Spring Run. California.salmon, 1879.
Harper's Ferry, W. Va., Potomac River. California salmon, 1879.
Harriott Lake, Hennepin County, Minn. California salmon, 1876, 1877.
Harrisburg, Pil., Susquehauna River. Shad, 1879, 1880.
Harrisburg, Pa., Susquehanna River. California salmon, 1873, 1876.
Harris Dam, Cecil County, Md., Octorara River. California salmon, 1880.

Harrison County, Iowa. (See Logan, Iowa.)
Harrison County, Tex. (See Marshall, Tex.)
Harrison County, W. Va. (See Clarksburgh, W. Va.; New Salem, W. Va.)

Hart County, Ky., Bumgartner's Creek. California salmon, 1876.
Hart County, Ky. (See Mumfordsville, Ky.)
Hartford, Conn., Colt's Reservoir. Schoodic salmon, 1880.
Hartford County, Conn. (See Avon, Conn.; Bristol, Coun.; Broad Brook, Conn.; East Hartford, Coun.; East Windsor, Conn.; Farmington, Conn.; Forestville, Conn.; Granby, Conn.; Hartford, Conn.; Manchester, Conn.; Melrose, Conn.; Newington, Conu.; Thompsonville, Conu.; West Hartford, Conn.; Windsor, Comn.)
Hartman, Wis., tributaries of Wisconsin River. California salmon, 1878.

Hart's Pond, Canaan, N. H. Schoodic salmon, 1880.
Harvard, Mass., Bear Hill Pond. Schoodic salmon, 1878, 1879.
Harvey County, Kans. (See Halstead, Kaus.)
Harrey's Lake, Dallas, Pa. California salmon, 1880.
Harvey's Lake, Wilkesbarre, Pa. Schoodic salmon, 1878, 1879.
Harvey's Pond, Barnet, Vt. Schoodic salmon, 1876, 1878.
Hassel Lake, Swift County, Miun. California salmon, 1878.
Havre de Grace, Md., North East River. Shad, 1878.
Havre de Grace, Md., Spesutic Narrows. Shad, 1877 (12 deposits), 1878 (10 deposits), 1879 (15 deposits), 1880 (10 deposits).
Harre de Grace, Md., Susquehanna River. Shad, 1876, 1877,1878,1879, 1880.

Hawley, Minn., Buffalo River. California salmon, 1877.
Haw River, Graham, N. C. California salmon, 1877.
Haw River, Allamance County, N. C. Shad, 1877.
Hayes City, Kans., Big Creek. California salmon, 1878, 1879.
Hayes City, Kans., Smoky Hill River. California salmon, 1880.
Haywood County, Tenn. (See Brownsville, Tenn.)

Hazleton, Pa. Schoodic salmon, 1878.
Hearne, Tex., Brazos River. Shad, 1879.
Heart Lake, Susquehanna County, Pa. Schoodic salmon, 1880.
Heitzman Spring Brook, Easton, Pa. Penobscot salmon, 1873.
Hemlock Lake. (See tributary, Spring Brooks.)
Hempstead County, Ark. (See Fulton, Ark.)
Hempstead, Tex., Brazos River. Shad, 1874.
Hempstead, Tex., Clear Creck. California salmon, 1874, 1876.
Henderson County, N. C. (See Hendersonville, N. C.)
Henderson, Md., Choptank River. California salmon, 1878, 1879, 1880; shad, 1879.
Hendersonville, N. C., Green River. California salmon, 1878.
Hennepin County, Minu., Lake Armstrong. California salmon, 1877.
Hennepin County, Minn., Calhoun Lake. California salmon, 1876.
Hennepin County, Minn., Harriott Lake. California salmon, 1876, 1877.

Hennepin County, Minn., Hokah Lake. California salmon, 1876.
Hemnepin County, Minn., Lake Independence. California salmon, 1877.
Hennepin Countr, Minn., Lake Johnson. California salmon, 1877.
Hennepin Counts, Minn., Lydard Lake. California salmon, 1878.
Hennepin County, Minn. (See Minneapolis, Minn.)
Hennepin County, Minn., Minnetonka Lake. California salmon, 1875, 1876, 1878; Penobscot salmon, 1875; Schoodic salmon, 1875.
Hennepin County, Minn., Lake Rebecca. California salmon, 1878.
Henrico County, Va. (See Richmond, Va.)
Henry County, Ill. (See Cambridge, Ill.)
Henry County, Ala. (See Columbia, Ala.)
Henry County, Ky., East and West Forks of Little Kentucky. California salmon, 1876.
Henry Countr, Kr., North and East Branches of Floyd's Fork. California salmon, 1876.
Henry County, Mo., Grand River. Shad, 1880.
Hereford, Md., East River. California salmon, 1879.
Herkimer County, N. Y. (See Ilion, N. Y.)
Herkimer County, N. Y., Jock's Lake. California salmon, 1874.
Herkimer County, N. Y., Mud (or Hydraulic) Lake. California salmon, 1874.

Herkimer County, N. Y., Spruce Creek. California salmon, 1874.
Herkimer County, N. Y., West Canada Creek. California salmon, 1874.
Herkimer Comnty, N. Y., Woodhull Lake. Schoodic salmon, 1879.
Herman, Mo., Missouri River. Shad, 1872.
Heron Lake, Jackson County, Minn. California salmon, 1877.
Herring Creek, Berlin, Md. California salmon, 1879.
Herring Run, Md., Back River. California salmon, 1878.
Hersey Creek, Reed City, Mich. California salmon, 1874.
Hickman County, Tenn. (See Bon-Aqua, Temn.)
S. Mis. $110-61$

Hickman Creek, Jessamine County, Ky. California salmon, 1878.
Hickory-Nut Gap, N. C., Broad River. California salmon, 1879.
Higganum, Conn., Higganum Reservoir. Schoodic salmon, 1880.
Higganum Reservoir, Higganum, Conn. Schoodic salmon, 1880.
Higgin's Lake, Roscommon County, Mich. Penobscot salmon, 1874;
California salmon, 1879 ; Schoodic salmon, 1880.
High Bridge, Ky. Shad, 1878.
Highgate, Vt., Hunkerford Brook. California salmon, 1853.
Highgate, Vt., Kelly Brook. California salmon, 1873.
Highgate, Vt., Missisquoi River. California salmon, 1873.
Hillsborough Bridge, N. H., Contoocook River. California salmon, 1878, 1879.
Hillsborough County, N. H. (See Antrim, N. H.; Hillsborough Bridge, N. H.; Manchester, N. H.; Milford, N. H.; Peterborough, N. H.)

Hillsborough, Md., Nanticoke River. California salmon, 1878.
Hillsborough, Md., Tuckahoi Creek. California salmon, 1876, 1878; shad, 1878, 1879.
Hillsdale County, Mich, Barrier Lake. Penobscot salmon, 1873.
Hillsdale County, Mich., Butternut Creek. California salmon, 1873.
Hillsdale County, Mich., Gan Lake. Penobscot salmon, 1873.
Hillsdale County, Mich. (See Hillsdale, Mich.)
Hillsdale County, Mich., Saint Joseph River, headwaters of. Penobscot salmon, 1873.
Hillsdale County, Mich., Sand Creek. California salmon, 1873.
Hillsdale County, Mich. (See Somerset, Mich.)
Hillsdale, Mich., Baro Beese Lake. California salmon, 1878.
Hinds County, Miss. (See Jackson, Miss.)
Hinton, W. Va., Greenbrier River. Schoodic salmon, 1879.
Hinton, W. Va., New River. California salmon, 1879, 1880 ; shad, 1879.
Hockomocko Pond, Westborough, Mass. Schoodic salmon, 1879.
Hog Lake, Lyme, Conn. Schoodic salmon, 1877, 1878, 1879.
Hokah Lake, Houston County, Minn. California salmon, 1878.
Hokah Lake, Hennepin County, Minn. California salmon, 1876.
Holderness, N. H., Squam Lake. Schoodic salmon, 1879.
Holliston, Mass., ponds. Schoodic salmon, 1880.
Holly, Mich., Shiawassee River. California salmon, 1876.
Holly Springs, Miss. Cold Water River. Shad, 1878.
Holston River, Knoxville, Tenn. Shad, 1875, 1876, 1879.
Holston River, Smyth County, Va. Schoodic salmon, 1877.
Holston River, North Fork of Saltville, Va. Schoodic salmon, 1880.
Holston River, North Fork of, Sharon Springs, Va. California salmon, 1880.

Holston River, South Fork of, Atkins' Tank, Va. California salmon, 1880.

Holyoke, Mass., Ashley Pond. Schoodic salmon, 1878, 1879.
Holyoke. Mass., Wright Pond. Schoodic salmon, 1879.

Honeoye Falls, N. Y. Califoruia salmon, 1874.
Hontoon Lake, Oakland County, Mich. California salmon, 1875.
Hood's Mill's, Mrd., Patapsco River. California salmon, 1874, 1878, 1878, 1879.

Hood's Mill's, Md., pond. Schoodic salmon, 1878.
Hopatcong Lake, Morris County, N. J. California salmon, 1879; whitefish, 1876.
Hopatcong Lake, Drakesville, Morris County, N. J. Schoodic salmon, 1879.

Hopkins Countr, Ky., Drake's Creek. California salmon, 1877.
Hopkinton, Iowa, Maquota River. California salinon, 1875.
Horry County, S. C. (See Little River, S. C.)
Horse Shoe Lake, Rice County, Minn. California salmon, 1878.
Horse Shoe Lake, Sibley County, Minn. California salmon, 1877.
Houghton's Pond, Milton, Mass. Schoodic salmou, 1878, 1879.
Housatonic River, Conn. California salmon, 1876.
Housatonic River, New Milford, Conn. California salmon, 1875 ; Penobscot salmon, 1877; shad, 1873, 1874.
Housatonic River, tributary to, Newtown, Conn. Schoodic salmon, 1879.
Housatonic River. (See tributary: Butler Brook.)
Honsatonic River. (See tributary : Main River, Butler Brook.)
Houston County, Minn., Baruum Pond. Schoodic salmon, 1879.
Houston County, Minn., Como Lake. California salmon, 1878; Schoodic salmon, 1879.
Houston County, Minn., Hokah Creek. California salmon, 1878.
Houston County, Minn., Silver Lake. California salmon, 1878.
Houston County, Tenn. (See Temnessee Ridge, Tenn.)
Howard County, Mrd. (See Elk Ridge Landing, Mid.; Ellicott, Md.; Savage, Md.)
Howard County, Md., tributaries of Patuxeut River. California salmon, 1874.

Howard County, Mo. (See Armstrong, Mo.; Franklin, Mo.)
Howard Lake, Wright County, Minn. Penobscot salmon, 1875.
Howard, Cass Countr, Mich., Barrow Lake. California salmon, 1878.
Howard's Lake, Fort Harker, Kans. Schoodic salmon, 1880.
Howard's Lower Creek, Clark County, Ky. Califoruia salmon, 1876.
Howard's Upper Creek, Clark County, Ky. California salmon, 1876.
Howland, Maine, Seboois River. Penobscot salmon, 187.t, 1875.
Hubbardston, Mass., Asnacoucouic Pond. Schoodic salmon, 1878, 1879.
Hubbardton, Vt., pond. Schoodic salmon, 1876.
Hudson River, tributaries to, Green County, N. Y. California salmon, 1878.

Hudson River, tributary to, N. Y. Penobscot salmon, 1873.
Hudson River. (See tributaries: Mohawk, Saranac, Salmon, Chazy Rirers; Battenkill Creek; Fortssille, Peatwig, Sanquoit, West Canada, Spruce, Inglesty, Sequoit andWillow Creeks; Oriskany and Mohawk Rivers; Fishkill, Silver, Jock's, Mud, and Seneea Lakes.)

Hugh's River, Pennsborough, W. Va. California salmon, 1878.
Humboldt, Tenn., Forked Deer River. California salmon, 1876.
Humboldt, Tenn., Middle Fork of Forked Deer River. Shad, 1878.
Hummock Pond, Nantucket, Mass. Schoodic salmon, 1877.
Humphreys County, Tenn. (See Johnsonville, McEwen's Station, Tenn.)
Hunkerford Brook, Highgate, Vt. California salmon, 1873.
Hunterdon County, N. J. (See Bloomsbury, N. J.)
Huntingdon County, Pa. (See Huntingdon, Pa.)
Huntingdon, Pa., Juniata River. Penobscot salmon, 1880.
Huntingdon, Tenn., South Fork of Obion River. Shad, 1878.
Huntington, Mass., Norwich Pond. Schoodic salmon, 1877.
Huntington County, Ind. (See Warren, Ind.)
Huron County, Ohio. (See Monroeville, Ohio.)
Huron Lake, tributary to, South Lawn, Ill. Penobscot salmon, 1874.
Huron Lake, tributary to, Wildwood, Ill. Penobscot salmon, 1874.
Huron Lake. (See tributaries: Saugeen River, Au Sable River, Rifle River, Shiawassee River.)
Huron, Ohio, Huron River. California salmon, 1878.
Huron River, Huron, Ohio. California salmon, 1878.
Huron River, Monroeville, Ohio. California salmon, 1874; shad, 1874.
Huron River, Washtenaw County, Mich. California salmon, 1876.
Hurricane Creek, Crittenden County, Ky. California salmon, 1877.
Ifuskin's Lake, Grant County, Minn. California salmon, 1878.
Hutchinson, Kans., Cow Creek. California salmon, 1878, 1879; shad, 1879.

Ijamsville, Md., pond. California trout, 1850.
Illinois River, Ill. California salmon, 1876, 1877.
Illinois River, Ind., Kankakee River.
illinois River. (See tributaries: Rock River, Fox River, Kankakee
River, Geneva Lake, Elkhart, Cedar Rock, and Devil's Lakes.)
Independence, Iowa, Wapsipinecon River. California salmon, 1875.
Independence, Kans., Verdigris River. California salmon, 1778, 1879.
Independence, Mo., Blue River. California salmon, 1880.
Independence Lake, Hennepin County, Minn. California salmon, 1877.
Independence River, Iowa. California salmon, 1879.
Indiana County, Pa. (See Black Lick Station, Pa.)
Indianapolis, Ind., White River. California salmon, 1874; shad, 1872, 1874, 1875, 1879.
Indian Creek, Cass County, Mich. California salmon, 1875.
Indian Lake, Kalamazoo County, Mich. California salmon, 1775.
Indian Lake, Cass County, Mich. California salmon, 1878.
Ingham County, Mich. (See Lansing, Mich.)
Inglesby Creek, Fort Edward, N. Y. California salmon, 1874.
Inman Lake, McPherson County, Kan. Schoodic salmon, 1879; Cal. ifornia salmon, 1878, 1879.
Institution for Deaf, Romney, W. Va., pond. Schoodic salmon, 1879, 1879.

Ionia Countr, Mich. (See Ionia, Mich.)
Ionia, Mich., Grand River. Shad, 1873.
Ionia, Mich., Maple River. California salmon, 1875.
Jowa City, Iowa, Iowa River. California salmon, 1875.
Iowa Falls, Iowa, Iowa River. California salmon, 1874.
Iowa River, Freeborn County, Minn. California salmon, 1875.
Iowa River, Iowa. California salmon, 1878, 1879.
Iowa River, Iowa City, Iowa. California salmon, 1875.
Iowa River, Iowa Falls, Iowa. California salmon, 1874.
Iowa River, Marshalltown, Iowa. Penobseot salmon, 1875.
Iowa River, Mower County, Minn. California salmon, 1875.
Iowa River, Tama City, Tama Countr, Iowa. Schoodic salmon, 1878.
Iowa River (upper), Decorah, Iowa. California salmon, 1875.
Iowa River, Fredericksburgh, Iowa. California salmon, 1874.
Iowa River. (See tributary: Cedar River.)
Ipswich River, Mass. California salmon, 1877.
Irish Creek, Rockbridge County, Va. Schoodic salmon, 1877.
Iron County, Mo. (See Arcadia, Mo.)
Isabella County, Mich. (See Crawford, Mich.)
Island Creek Pond, Duxbury, Mass. Schoodic salmon, 1877.
Island Lake. Dexter, Mich. Whitetish, 1876; California salmon, 1878.
Ita wamba County, Miss. (See Fulton, Miss.)
Jackson City, Fairfax County, Va., Potomac River. Sharl, 1873, 1875.
Jackson County, Ark. (See Newport, Ark.)
Jackson County, Iowa. (See Maquoketa, Iowa.)
Jackson County, Mich. (See Brooklsn, Mich.; Jackson, Mich.)
Jackson County, Mich., Grand River. Penobscot salmon, 1873.
Jackson County, Mich., headwaters of Kalamazoo liiver. Penobscot salmon, 1873.
Jackson County, Mich., tributary to Grand liver. California salmon, 1873.

Jackson County, Minn., Heron Lake. California salmon, 1877.
Jackson County, Minn., lake. California salmon, 1877.
Jackson, County, Mo. (See Independence, Mo.; Kansas City, Mo.)
Jackson Lake, Rice County, Minn. Penobscot salmon, 1875.
Jackson, Mich., Crouch's Creek. California salmon, 1874.
Jackson, Mich., Crouch's Fishery. California salmon, 1874.
Jackson, Mich., Grand River. California salmon, 1876, 1879.
Jackson, Mich., east tributary of Kalamazoo River. California salmon, 1873.

Jackson, Miss., Forked Deer River. California salmon, 1876.
Jackson, Miss., Pearl River. Shad, 1875, 1876, 1879.
Jacksou River, Alleghany County, Va. California salmon, 1876.
Jackson River, Clifton Forge, Va. Schoodic salmon, 1879.
Jackson, Temn, Forked Deer River. California salmon, 1876; shad, 1876.
Jacksonville, Ill., lake. California salmon, 1877.

Jaffrey, N. H., Gilmore Pond. Schoodic salmon, 1880.
James River, Webster County, Mo. Shad, 1879.
James River, Lynchburgh, Va. California salmon, 1878.
James River, Richmond, Va. Shad, 1878.
James River, Springfield, Mo. Shad, 1877.
James River, tributary to, Botetourt County, Va. California salmon, 1874.

James River, tributary to, Rockbridge County, Va. California salmon, 1876.

James River, tributary to, Va. California salmon, 1874.
James River. (See tributaries: South tributary Nansemond River; Appomattox aud Rivana Rivers; Tye, Pedlar, Jackson, North, and South Rivers; Buffalo Creek; New Reservoir, and Mountain Lake streams.)
Jamestown, N. C., Bull Run Creek. California salmon, 1878.
Jamestown, N. C., Deep River. California salmon, 1878.
Jamestown, N. C., North Fork of Deep River. California salmon, 1878.
Jasper County, Mo. (See Carthage, Mo.)
Jasper River, Warreu County, Ky. California salmon, 1878.
Jefferson County, Fla., Ocilla River. Shad, 1879.
Jefferson County, Kans. (See Valley Falls, Kans.)
Jefferson County, Ky., Floyd's Fork. California salmon, 1876.
Jefferson County, N. Y., Bowell Creek. California salmon, 1878.
Jefferson County, W. Va. (See Shepherdstown, W. Va.; Harper's Ferry, W. Va.)

Jefferson County, W. Va., streams. California salmon, 1879, 1880.
Jefferson Lake, Le Sueur County, Minn. California salmon, 1878.
Jennings Pond, Davis County, Utah. California salınon, 1876, 1877.
Jennings Run, Md., Wills Creek. California salmon, 1874.
Jerome, Phelps County, Mo., Gasconade River. California salmon, 1876, 1880 ; shad, 1880.
.Tessamine County, Ky., Hickman Creek. California salmon, 1878.
Jessamine County, Ky., Jessamine Creek. California salmon, 1878.
Jessamine Creek, Jessamine County, Ky. California salmon, 1878.
Jock's Lake, Herkimer County, N. Y. California salmon, 1874.
Joe's Pond, Danville, Vt. Schoodic salmon, 1878.
Johama Lake, Ramsey County, Mimn. Califormia salmon, 1875, 1876, 1877; Schoodic salmou, 1875; Penobscot salmon, 1875.
Johnson County, Iowa. (See Iowa City, Iowa, Oxford, Iowa.)
Johnson Lake, Hemepin County, Minn. California salmon, 1877.
Johnsonville, Tenn., Tennessee River. Shad, 1879.
John's River, Burke County, N. C. California trout, 1880.
John's River, Morganton, N. C. California salmon, 1878, 1879.
John's River, Morganton, Burke County, N. C. Schoodic salmon, 1878.
Jonesborough, Ga., Flint River. California salmon, 1877.
Jones County, Iowa. (See Anamosa, Iowa; Monticello, Iowa.)

Jones Countr, N. C. (See Pollocksville, N. C.)
Jones Creek, Dover, Del. Shad, 1880.
Jones Falls. (See tributary : Stony Run.)
Jones Lake, Wayne County, Pa. Schoodic salmon, 1878.
Jones Pond, Raymond, N. H. Schoodic salmon, 1879.
Jordan Creek, Fillmore County, Minn. California salmon, 1878.
Jordan River, Jordan, Utah. California salmon, 1873, 1874, 1875, 1877; shad, 1875.
Jordan River. (See tributary: Mill Creek.)
Jordan, Salt Lake County, Utah, Jordan River. California salmon, 1873, 1874, 1875, 1877; shad, 1875.
Josephine Lake, Ramsey County, Minn. California salmon, 1876, 1876, 1877.

Juab County, Utah, Silver Creek. California salmon, 1876.
Julia Lake, Sherburne County, Minn. California salmon, 1878.
Junction Cite, Kans., Republican River. California salmon, 1878, 1879.
Juniata River, Blair County, Pa. California salmon, 1880.
Juniata River, Huntingdon, Pa. Penobscot salmon, 1880.
Juniata River, Newport, Pa. California salmon, 1877.
Juniata River, Tyrone, Pa. Californiz salmon, 1879.
Juniata River. (See tributary: Trout Run.)
Kalamazoo County, Mich., Gourd Neek Lake. California salmon, 1879.
Kalamazoo Countr, Mich., Gull Lake. California salmon, 1873, 1875.
Kalamazoo County, Mich., Indian Lake. California salmon, 1875.
Kalamazoo County, Mich. (See Kalamazoo, Mich.; Richland, Mich.)
Kalamazoo Comety, Mich., Lewis Lake. California salmon, 1875.
Kalamazoo County, Mich., Long Lake. Schoodic sahmon, 1876; shad, 1873.

Kalamazoo Country, Mich., Lyon's Lake. California salmon, 1875.
Kalamazoo County, Mich., HicMartin's Lake. California salmon, 1875.
Kalamazoo County, Mich., Portage River. California salmon, 1875.
Kalamazoo County, Mich., Putty Lake. California salmon, 1875.
Kalamazoo County, Mich. (See Richland, Mich.)
Kalamazoo, Mich., Spring Brook Oreek. Califernia salmon, 1874.
Kalamazoo Comnty, Mich., Twin Lakes. California salmon, 1875.
Kalamazoo Comnty, Mich., Wood's Lake. California salmon, 1575.
Kalamazoo, Mich., Baptist Seminary Pond. California salmon, 1875.
Kalamazoo, Mich., pond at Lunatic Asylum. California salmon, 1874.
Kalamazoo River, east tributary of, Jackson, Mich. California salmon, 1873.

Kalamazoo River, headwaters of, Jackson County, Mich. Penobscot salnon, 1873.
Kalamazoo liver, lake tributary of, lRoss, Mich. California salmon, 1873.

Kalamazoo River. (See tributaries: Gull, Goguac, Hamblin, Dumont, and Long Lakes.)

Kalkaska County, Mich., Blue Lake. California salmon, 1879.
Kalliaska County, Mich. (See Crofton, Mich.; Kalkaska, Mich.)
Kalkaska County, Mich., Log Lake. Schoodic salmon, 1876.
Kalkaska County, Mich., Rapid River. California salmon, 1876.
Kalkaska County, Mich., Torch Lake. California salmon, 1876.
Kalkaska, Mich., North Boardman River. California salmon, 1876.
Kanawha County, West Va. (See Charleston, W. Va.)
Kanawha River, Charlestown, Kanawha County, W. Va. California salmon, 1878.
Kanawha River. (See tributaries: Greenbrier River, Elk River, New River.)
Kandiyohi County, Miun., Diamond Lake. California salmon, 1877.
Kandiyohi County, Minn., Eagle Lake. California salmon, 1876, 1877, 1877.

Kandiyohi County, Minn., George Lake. California salmon, 1877.
Kandiyohi County, Minn., Green Lake. California salmon, 1876, 1877, 1877.

Kandiyohi County, Minn. (See Wilmar, Minn.)
Kane County, Ill. (See Elgin, Ill.)
Kanesiac Pond, Danbury, Coun. Schoodic salmon, 1880.
Kankakee River, Ill. California salmon, 1876, 1877, 1878.
Kankakee River, La Porte, Ind. California salmon, 1875.
Kankakee River, Michigan City, Ind. California salmon, 1876.
Kankakee River. (See tributary: Grapevine Creek.)
Kansas City, Mo., Kansas River. Shad, 1876.
Kansas River, Kansas City, Mo. Shad, 1876.
Kansas River. (See tributaries: Red Vermillion, Big Blue, Republican, Solomon, Soldier, Vermillion, and Smoky Hill Rivers; Spring, Clear, Chapman's, Wakarusa, Dragoon, and Delevan Creeks; Silver and Lyudon Lakes.)
Kaskaskia River, Belleville, Ill. California salmon, 1877.
Kaskaskia River, Farlow, Ill. Shad, 1878.
Kasota, Minn., Minnesota River. California salmon, 1877.
Keene's Lake, Calais, Me. Schoodic salmon, 1878, 1879.
Keene's Lake, Keene's Lake Stream. Califoruia salmon, 1879.
Keene's Lake Stream, Keene's Lake, Me. California salmon, 1879.
Kelly Brook, Highgate, Vt. California salmon, 1873.
Kennebago Stream, Me. Schoodic salmon, 1874.
Kenuebec County, Me. (See Manchester, Me.; Waterville, Me.)
Kennebec River, Waterville, Me. Shad, 1880.
Kennebec River, Waterville, Me. Shad, 1874.
Kennedy Lake, Dakota County, Minn. California salmon, 1876, - 1878.

Kenosha Lake, Danbury, Conn. Schoodic salmon, 1879.
Kensingtou, Ill., Calumet River. California salmon, 1874; Penobscot salmon, 1874.

Kent, Conn., Spectacle Ponds. Schoodic salmon, 1877, 187 S.
Kent, Ohio, Cuyahoga River. Shad, 1872.
Kent County, Del. (See Clayton, Del.; Dover, Del.; Milford, Del.)
Kent County, Md. (See Millington, Md.)
Kent County, Mich., Church Lake. California salmon, 1876.
Kent County. (See Grand Rapids, Mich.)
Kent County, Mich., Laberton Lake. California salmon, 1876.
Kent County, Mich., Pickerel Lake. California salmon, 1876.
Kent County, Mich. (See Ross, Mich.)
Kent County, Mich., Soft Water Lake. Califernia salmon, 1876.
Kent County, R. I. (See Warwick, R. I.)
Kenton County, Ky. (See Covington, Ky.)
Kent's Creek, Rockford, Ill. California salmon, 1877.
Kentucky River, Lexington, Ky. California salmon, 1876.
Kentucky River, Mercer County, Ky. Shad, 1878.
Kentucky River. (See tributaries: Dick's, Lane's, Cane's, and MeConnell's Rivers; White Oak, Otter, Silver, Hanging Fork, Dunlap's Branch, Lulbegrud, Howard's Upper, Howard's Lower, Big Spring Branch, Thomas Spring Branch, Saunder's Spring Branch, Hickman, Jessamine, and Elkhorn Creeks.)
Kerr's Creek Bridge, Rockbridge County, Via, North River. Califormia salmon, 1878, 1879.
Keshena, Wis., lakes. Whitefish, 1875, 1876.
Kettle Creek, Westport, Pa. California salmon, 1878.
Kettle Pond, Washington Countr, Vt. Schoodic salmon, 1876.
Kettle River. (See tributaries: Moose, Bear, Cub, Moose Morn, Chubb, and Hanging Horn Lakes.
Keyser, W. Va., Potomac River. California salmon, 1876, 1878, 1880.
Kimball Lake, Stearns County, Minn. California salmon, 1877, 1878.
Kingman, Me., Mattawamkeag River. Penobscot salmon, 1875, 1876.
King's County, N. Y. (See Brooklyn, N. Y.)
Kingsley Creek, Fillmore County, Mimn. California salmon, 1878.
Kingsley Lake, Ramsey Counts, Minn. California salmon, 1876.
Kingston, R. I., Warden's Pond. Schoodic salmon, 1878.
Kinuiconick Creek, Vanceburgh, Ky. Schoodic salmon, 1878.
Kipmuck Pond, Milford, Mass. Schoodic salmon, 1879.
Kuapp's Creek, Burritt, Wimebago County, Ill. California salmon, 1877.

Knob Creek, Bullitt County, Ky. California salmon, 1877.
Knox County, Ohio. (See Mount Vernon, Ohio.)
Knox County, Tenn. (See Knoxville, Tenn.)
Knoxville, Temn., Holston liver. Shad, 1875, 1876, 1879.
Korom's Lake, Minn. California salmon, 1877, 1879.
Kosciusko, Miss., Pearl River. California salmon, 1876.
Krameroth Pond, Ramsey County, Minn. California salmon, 1878.

Labar's Pond, Wis. California salmon, 1879.
Laberton Lake, Kent County, Mich. California salmon, 1876.
Lackawanna County, Pa. (See Scranton, Pa.)
La Crosse River, Sparta, Wis. California salmon, 1879.
La Cygne, Kans., Marais des Cygnes River. Shad, 1879.
La Fayette County, Miss. (See Abbeville, Miss.)
La Fayette County, Miss., Tallahatchie River. Shad, 1878, 1879.
La Fayette County, Miss., Yocana River. Shad, 1879.
La Fayette County, Wis., streams. California salmon, 1874.
La Fayette, Ind., Wabash River. Shad, 1880.
Laguna Honda, San Francisco, Cal. Schoodic salmon, 1878.
Lake City, Minn., Mississippi River. California salmon, 1877.
Lake County, Cal., Clear Lake. Whitefish, 1872, 1873.
Lake County, Ill. (See Sand Lake, Ill.)
Lake County, Mich., Big Star Lake. California salmon, 1876.
Lakeland, Washington County, Minn. California salmon, 1876.
Lake of the Woods, Branch County, Mich. California salmon, 1875.
Lake Park, Minn., lake. California salmon, 1880.
Lake Spring, Salem, Va. Schoodic salmon, 1880.
Lakeville, Conn., Wanonscoponus Lake. Schoodic salmon, 1876, 1877, 1879.

Lambertville, N. J. (See Point Pleasant, Pa.)
Lamine River, Morgan County, Mo. California salmon, 1880.
Lamoille River, Vt. Penobscot salmon, 1873.
Lamoille River, Georgia, Vt. Penobscot salmon, 1874; shad, 1874, 1875.

Lancaster County, Pa. (See Chickies, Pa.; Columbia, Pa.; Lancaster, Pa.; Marietta, Pa. ; Salisbury, Pa.)
Lancaster Countr, Pa., Chiquesalunga Creek. California salmon, 1875, 1877; Penobscot salmon, 1874.
Lancaster County, Pa., Donegal Run. Schoodic salmon, 1880.
Lancaster, Mass., Nashua River. California salmon, 1876; Penobscot salmon, 1876.
Lancaster, Mass., ponds. Schoodic salmon, 1876, 1877.
Lanesborough, Minn., tribatary of Root River. California salmon, 1876.
Lane's Run, Scott County, Ky. California salmon, 1876.
Lansing, Mich., Grand River. Shad, 1873.
La Porte Counts, Ind. (See La Porte, Ind.; Michigan City, Ind.)
La Porte, Ind., Kankakee River. California salmon, 1875.
La Porte, Ind., Stony Lake. Schoodic salmon, 1880.
Larned, Kans., Pawnee Creek. California salmon, 1878, 1879, 1880; shad, 1879.

- Lassen County, Cal., Eagle Lake. Whitefish, 1879.

La Sueur County. (See Kasota, Minn.)
Lauderdale County, Miss. (See Meridian, Miss.)
Laura Lake, Blue Earth County, Minn. California salmon, 1876.

Laurel County, Ky., White Oak Branch. California salmon, 1877.
Laurel, Mrl., Patuxent River. California salmon, 1875, 1876, 1878, 1879 ; shad, 1877, 1878, 1879, 1880.
Lawrence County, Mo. (See Pierce City, Mo.)
Lawrence, Mass., ponds. Schoodic salmon, 1878.
Lead Mines, Wythe County, Va., New River. Schoodic salnon, 1880.
Leaveuworth County, Kans. (See Delaware, Kans. ; Stranger, Kans.)
Lebanon, Ala., Big Wills Creek. Shad, 1879.
Le Bœuf Creek, Erie County, Pa. Schoodic salmon, 1880.
Le Mars, Iowa, Floyd River. California salmon, 1875.
Lemonweir River, Tomah, Wis. California salmon, 1879.
Lemonweir River, Tumnel City, Wis. California salmon, 1879.
Lenawee Comuty, Mich. See Palmyra, Mich. ; Raisin Centre, Mich. ; Woodstock, Mich.)
Lenawee County, Mich., tributaries of Raisin River. California salmon, 1875.

Le Roy, Mich., Rose Lake. Whitefish, 1876.
Le Sueur County, Minn., Lake Emily. California salmon, 1876, 1877, 1878.

Le Sueur County, Minn., Lake Jeffersou. California salmon, 1878.
Le Sueur County, Minn., Lake Letook. California salmon, 1879.
Le Sueur Connty, Mimn., Lake Takota. California salmon, 1879.
Le Sueur County, Minu., Lake Washington. California salmon, 1878.
Letook Lake, Le Sueur County, Minn. C'alifornia salmon, 1879.
Lewisburgh, Green Brier County, W. Va., Sinking Creek. California salmon, 1878.
Lemisburgh, Pa., Buffalo Creek. California salmon, 1879.
Lerris County, Ky. (See Vanceburgl, Ky.)
Lewis County, W. Va. (See Malkersville, W. Va.; Weston, W. Va.)
Lewis Creek, Fernsburgh, Vt. l'enobscot salmon, 1875.
Lewis Lake, Kalamazoo County, Mich. California salmon, 1875.
Lexington, Va., Buffalo Creek. Schoodic salmon, 1879.
Lexington, Ky., Kentucky River. California salmon, 1876.
Lexington, Mo., Missouri River. California salmon, 1880.
Lexington, Va., AlcKee's Spring. Schoodic salmon, 1879.
Lexington, Va., North River. California sahmon, 187T, 15 B ; Schoodic salnon, 1879.
Lexington, Va., South River. Schoodie salmon, 1879; California salmon, 1878, 1880.
Liberty Grove, Mld., Octorora Creck. California salmon, 187.4, 1878.
Liberty, N. Y., Cohocton Riiver. California salmon, 1873.
Licking County, Ohio, Licking Reservoir. California salmon, 1879.
Licking Reservoir, Licking County, Ohio. California salmon, 1879.
Licking River, Mount Sterling, Ky. Shad, 1877.
Licking River. (See tributary: Strodes Oreek.)
Lilly Pond, Foster, R. I. Schoodic samon, 1876.

Limepang Lake, Guilford, Conn. Schoodic salnon, 1880.
Limerick Lake, Aroostook County, Me. Schoodic salmon, 1878.
Lincoln Connty, Ky., Dick's River. California salmon, 1876.
Lincoln County, Ky., Hanging Fork. California salmon, 1876. .
Lincoln Countr, Ky. (See McKinney's Station, Ky.)
Lincoln County, Me. (See Damariscotta, Me.)
Lincoln, Mass., Sandy Pond. Schoodic salmon, 1876, 1877.
Linden, Mich., Cook's Lake. Whitefish, 1876.
Linden, Mich., Day Lake. Whitefish, 1876.
Linden, Mich., Round Lake. Whitefish, 1876.
Linden, Mich., Silver Lake. Whitefish, 1876.
Linkwood, Md., Transquaking River. California salmon, 1879.
Linn County, Iowa. (See Cedar Rapids, Iora ; Marion, Iowa; Springville, Iowa; Walker, Iowa.)
Linn County, Kans. (See La Cygue, Kans.)
Linsey's Creek, Grant County, W. Va. California salmon, 1879, 1880.
Linville River, Bridgewater, N: C. California salmon, 1878, 1879.
Linville River, Morganton, N. C. California salmon, 1879.
Linville River, Morganton, Burke County, N. C. Schoodic salmon, 1878.

Lisborn River, Iowa. California salmon, 1879.
Litchfield, Coun., Bantam Lake. Schoodic salmon, 1876, 1877, 1878, 1879.

Litchfield County, Conn. (See Chapinville, Conn.; Colebrook, Conn.; Falls Village, Conn.; Kent, Conn.; Lakeville, Conn. ; Litchfield, Conn.; New Hartford, Conn.; New Milford, Conn.; New Preston, Conn.; Norfolk, Conn.; Pine Meador, Conn.; Salisbury, Conn.; South Kent, Conn.; Warren, Conn.; West Winsted, Comn.; Winsted, Conn.; Woodbury, Conn.)
Litchfield, Meeker Countr, Minn. Penobscot salmon, 1875; Schoodic salmon, 1875.
Little Arkansas River, Halstead, Kans. California salmon, 1878, 1879.
Little Arkansas River. (See tributary : Lake Inıan.)
Little Blue River, Waterville, Kans. California salmon, 1878, 1879.
Little Butts Lake, Ramsey County, Minu. California salmon, 1876.
Little Elk River, Rock Church, Md. California salmon, 1878.
Little Falls of the Potomac River, Georgetown, D. C. Shad, 1879, 1880.
Little Gunpowder River, Monkton, Md. California salmon, 1876, 1876, 1877, 1878.
Little Hinkston Creek, Montgomery County, Ky. California salmon, 1877.

Little Iowa, Mower County, Minn. California salmon, 1878.
Little Kanawha River, Erwingsville, W. Va. California salmon, 1878.
Little Kentucky, East and West forks of, Henry County, Ky. California salmon, 1876.
Little Lorrim, Boyd's, Md. California salmon, 1878.

Little Maquoketa River, Epworth, Iowa. Califoruia salmon, 1874.
Little Maquoketa River, Farley, Iowa. California salmon, 1874.
Little Miami River, Sidney, Ohio. California salmon, 1875.
Little Nanticoke River, Seaford, Del. California salmon, 1880.
Little Patuxent River, Patuxent, Md. California salmon, 1575.
Little Patuxent River, Mount Airy, Mrl. California salmon, 1879.
Little Patuxent River, Savage, Md. California salmon, 1875, 1876, 1876, 1876.
Little Pedee, Nichols, S. C. Shad, 1880.
Little Pipe Creek, Westminster, Md. Schoodic salmon, 1879.
Little Red River, White County, Ark. Shad, 1879.
Little River, Christian County, Ky. California salmon, 1878.
Little River, Halstead, Kans. Shad, 1879.
Little River, Ousley, Ga. Shad, 1879.
Little River, S. C. California salmon, 1880.
Little River, Taylorsville, Va. Shad, 1878.
Little River, Trigg County, Ky. California salmon, 1877.
Little Rock, Ark., Arkansas River. California salmon, 1878.
Little Sandy River, Carter County, Ky. California salmon, 1878.
Little Sioux River, Cherokee, Iowa. California salmon, 1875.
Little Thala Pond, Dutchess County, N. Y. Schoodic salmon, 1879.
Littleton, Wetzel County, W.Va., Fish Creek. California salmon, 1877, 1878.

Littleton, W. Va., Fish Creek. California salmon, 1879, 1880; Schoodic salmon, 1879.
Little Youghiogheny River, Deer Park, Md. Shad, 1880.
Little Youghiogheny River, Oakland, Md. Schoodic salmon, 1880.
Livermore Falls, N. H., Pemigewasset River. Penobscot salmon, 1876.
Livingston County, Mich. (See Putnam, Mich.)
Livingston County, N. Y. (See Caledonia, N. X.)
Livingston County, N. Y., Conesus Lake. California salmon, 1875.
Livingston County, N. Y., Genesee River. California salmon, 1875.
Livingston County, N. Y., Spring Creek. California salmon, 1879, 1879.
Lockville, N. C., Uape Fear River. Shad, 1878.
Lodi, Wis., Spring Creek. California salmon, 1878.
Logan County, Ohio. (See Bellefontaine, Ohio.)
Logan, Iowa, Boyer River. Shad, 1878.
Logansport, Ind., Wabash River. Shad, 1873, 1874.
Log Lake, Kalkaska County, Mich. Schoodic salmon, 1876.
Long Green, Md., branch of Gmpowder River. California trout, 1850.
Long Green, Md., pond tributary to Little Gunpowder River. Schoodic salmon, 1880.
Long Island, N. Y., Conet fuoit River. California salmon, 1876, 187%.
Loug Island, N. Y., (inat River. California salmon, 1876, 1877.
Long Island Sound, N. Y., small tributaries. Penobscot salmon, 1873.

Loug Island Sound, tributary of, Queens County, N. Y. California salmon, 1874.
Long Lake, Barry County, Mich. California salmon, 1875.
Loug Lake, Kalamazoo County, Mich. Schoodic salmon, 1876; shad, 1873.

Long Lake, Minu. California salmon, 1877.
Long Lake, Minnetonka, Minn. California salmon, 1877.
Long Lake, Richlaud, Mich. California salmon, 1878.
Long Lake, Watonwan County, Minn. Schoodic salmon, 1879.
Long Lake, West Winsted, Conn. Schoodic salmon, 1878, 1879.
Long Lake, Winsted, Conn. Schoodic salmon, 1876, 1877.
Long Pond, Benton, N. H. Schoodic salmon, 1880.
Long Pond, Dutchess County, N. Y. Schoodic salmou, 1879.
Luon Lake, Blue Earth County, Miuu. California salmon, 1876, 1877.
Loon Lake, Crofton, Mich. Whitefish, 1876.
Lorain County, Ohio. (See Elyria, Ohio.)
Lord's Lake, Pontiac, Mich. California salmon, 1876; Penobscot salmon, 1873.
Lorewell's Pond, Wakefield, N. H. California salmon, 1879.
Lower Bear River. (See tributary: Blacksmith's Fork.)
Lowe Lake, Chelsea, Mich. Whitefish, 1876.
Lowndes County, Ga. (See Ousley, Ga.)
Lucas County, Ohio. (See South Toledo, Ohio.)
Lucas County, Ohio. (See Toledo, Ohio; Waterville, Ohio.)
Lulbregrud Creek, Clark County, Ky. California salmon, 1876.
Luling, Tex., San Marcus River. Shad, 1879.
Lunatic Asylum Pond, Kalamazoo, Mich. California salmon, 1874.
Lunenburgh, Mass., Unkechewaton Pond. Schoodic salmon, 1876, 1877.
Luzerne County, Pa., Beaver Lake. Schoodic salmon, 1880.
Luzerne County, Pa., Beaver Lake. Schoodic salmon, 1878.
Luzerne County, Pa. (See Dallas, Pa.; Hazleton, Pa.; White Haven, Pa.; Wilkes Barre, Pa.)
Lycoming, Pa. (See Ralston, Pa.; Williamsport, Pa.)
Lydard Lake, Heunepin County, Minu. California salmon, 1878.
Lyme, Comn., Hog Lake. Schoodic Lake, 1877, 1878, 1879.
Lyme, Conn., Roger's Lake. Schoodic salmon, 1876, 1880.
Lynchburgh, Va., James River. Califoruia salmon, 1878.
Lynch's Creek, Sumter County, S. C. Shad, 1880.
Lyndon Lake, Burlingame, Kans. California salmon, 1880.
Lynnfield, Mass., Suntaug Lake. Schoodic salnon, 1879.
Lynn, Mass, Flax Pond. Schoodic salmon, 1878.
Lyun, Mass., Spring Pond. Schoodic salmon, 1878.
Lyon County, Kans. (See Emporia, Kans.; Reading, Kans.)
Lyon Lake, Calhoun County, Mich. California salmon, 1879.
Lyou's Lake, Kalamazoo County, Mich. California salmon, 1875.

McCann's Lake, Ramsey Connty, Minn. California salmon, 1876, 1877; Schoodic salmon, 1878.
McCarthy's Lake, Stevens County, Minn. California salnon, 1877.
McCloud River, Baird, Cal. California salmon, 1873, 1874, 1875, 1876, 1877, 1878, 1879, 1880.
McConnel's Run, Scott County, Ky. California salmon, 1876.
McDonald's Run, Norrisville, Md. California trout, 1880.
McDowell County, N. C., Mill Creek. California trout, 1880.
McDowell County, N. C. (See Marion, N. C.; Old Fort, N. C.)
McGrath's Lake, Dakota County, Minn. California salmon, 1878.
McGregor, Iowa, Bloody Run. California salmon, 1874.
McHenry, Ill., Column Lake. California salmon, 1877.
McHenry County, Ill. (See Crystal Lake, Ill.; McHenry, Ill.; Richmond, Ill.; Cary Station, IIl.)
McIndoe's Falls, Vt., Connecticut River. Penobscot salmon, 1874.
McKee's Spring, Lexington, Va. Schoodic salmon, 1879.
McKinney's Station, Ky., Green River. Shad, 1878.
McKusic's Lake, Washington County, Minn. California salmon, 1876, 1877.

McKinsie Lake, Minn. California salmon, 1877.
McLeod County, Minn., Morrison Lake. California salmon, 18 if.
McMartin's Lake, Kalamazoo County, Mich. California salmon, 1875.
McMinn County, Tenn. (See Athens, Tenn.)
Macomb County, Mich. (See Romeo, Mich.)
Macomb County, Mich. (See Utica, Mich.)
Macon, Ga., Ocmulgee River. California salmon, 1878; shad, 1876, 1877, 1878, 1879.
Macon County, Ga. (See Montezuma, Ga.)
Macon County, Mo., Chariton River. Shad, 1880.
Macon County, Mo. (See Callao, Mo.)
McPherson, Kaus., Lake Inman. California salmon, 1878, 1879.
McPherson County, Kans., Inman Lake. Schoodic salmon, 1879.
McPherson County, Kans. (See McPherson, Kans.)
Madaceunk Stream, Me. Penobscot salmon, 1875.
Madelia Lake, Watonwan County, Minn. California salmon, 1876.
Madelia, Minn., tributaries of Watonwan River. California salmon, 1877.

Madison County, La., Roundaway Creek. Shad, 1879.
Madison County, La., Tensas River. Shad, 1879.
Madison County, Miss. (See Canton, Miss.)
Madison County, Tenn. (See Jackson, Tenn.)
Madison Lake, Blue Earth County, Minu. California salmon, 1876, 1877.

Madison Lake, Wis. Penobscot salmon, 1874.
Madison, N. H., Silver Lake. Schoodic salmon, 1878.
Madison, Wis., creek. California salmon, 1878.

Madison, Wis., Lake Mendota. California salmon, 1877.
Madison, Wis., pond. California salmon, 1877.
Madison County, Ky., Otter Creek. California salmon, 1876.
Madison County, Ky., Silver Creek. California salmon, 1876.
Magnolia, Md., Winter's Run. California salmon, 1876.
Magog Lake, Acton, Mass. Schoodic salmon, 1879.
Mahantonga River, Pa. California salmon, 1874.
Mahantonga River, Upper Paxton, Pa. California salmon, 1873.
Mahkunac Lake, Stockbridge, Mass. Schoodic salmon, 1878, 1879, 1880.

Maiden Run, Pa. California salmon, 1876.
Main River, Conn. Penobscot salmon, 1873.
Main River, North Branford, Conn. Penobscot salmon, 1873.
Mallory Lake, Woodstock, Mich. California salmon, 1878.
Manchester, Iowa, Maquoketa River. California salmon, 1875; Penobscot salmon, 1875.
Manchester, Me., Cobosecontee Lake. Schoodic salmon, 1879.
Manchester, N. H., Nutt's Pond. Schoodic salmon, 1879.
Manchester, N. H., Wassabesic Lake. Schoodic salmon, 1879.
Manchester, Vt., Battenkill Creek. Penobscot salmon.
Manhattan, Kans., Big Blue River. California salmon, 1878, 1879, 1880.

Manhattan, Kans., Blue River. 1879.
Manistee River, Mich. Penobscot salmon, 1873.
Manistee River, Wexford County, Mich. California salmon, 1879.
Manistee River. (See tributary: Pine River.)
Mankato, Minn. Penobscot salmon, 1875.
Mannington, W. Va., Fishing Creek. California salmon, 1878.
Manokin River, Princess Anne, Md. Shad, 1878, 1879.
Mantor Brook, Dodge County, Minn. California salmon, 1878.
Mantua Creek, Glassborough, N. J. California salmon, 1876, 1877, 1878.

Mantua River, Wenonah, N. J. California salmon, 1877.
Maple River, Ionia, Mich. California salmon, 1875.
Maple River, Iowa. California salmon, 1879.
Maple River. (See tributary: Elysian Lake.)
Maquoketa, Iowa, Maquoketa River. California salmon, 1874.
Maquoketa River, Iowa. California salmon, 1879.
Maquoketa River, Charlotte, Iowa. California salmon, 1874.
Maquoketa River, Delaware, Iowa. California salmon, 1875.
Maquoketa River, Delhi, Iowa. California salmon, 1875.
Maquoketa River, Hopkinton, Iowa. California salmon, 1875.
Maquoketa River, Manchester, Iowa. California salmon, 1874, 1875; Penobscot salmon, 1875.
Maquoketa River, Monticello, Iowa. California salmon, 1874.
Maquoketa River, Worthington, Iowa. California salmon, 1875.

Marais des Cygnes River, La Cygne, Kans. Shad, 1879.
Marais des Cygnes River, Reading, Kans. Oalifornia salmon, 1880; shad, 1879.
Marengo Countr, Ala. (See Demopolis, Ala.)
Marietta, Pa., Susquehanna River. California salmon, 1875, 1877, 1880.
Marine Lake, Washington County, Minn. California salmon, 1876.
Marion County, Ind. (See Indianapolis, Ind.)
Marion County, Kans. (See Florence, Kans.)
Marion County, Ky., north and east fork of Rolling Fork. Oalifornia salmon, 1877.
Marion County, S. O., Great Pee Dee River. Shad, 1878, 1880.
Marion County, S. C. (See Nichols, S. C.)
Marion County, W. Va., Buffalo Creek. Schoodic salmon, 1878.
Marion County, W. Va., branch of Buffalo Creek. Schoodic salmon, 1878.

Marion County, W. Va., Dent's River. Schoodic salmon, 1878.
Marion County, W. Va., Meadow Run. Schoodic salmon, 1879.
Marion County, W. Va., Prichard's Run. Schoodic salmon, 1878.
Marion County, W. Va., streams. California salmon, 1879, 1880.
Marion County, W. Va. (See Mannington, W. Va.)
Marion, Ill., Mississinewa River. Shad, 1878.
Marion, Iowa, Cedar River. California salmon, 1874.
Marion Lake, Iowa. Penobscot salmon, 1876.
Marion, N. C., Broad River. California salmon, 1877.
Mark West Creek, Sonoma County, Cal. Whitefish, 1879.
Marquette County, Mich., Michigamme Lake. California salmon, 1876.
Marquette County, Mich., Three Lakes. California salmon, 1876.
Marquette County, Mich. (See Negaunee, Mich.)
Marshall County, Iowa. (See Marshalltown, Iowa.)
Marshall County, Kans. (See Barrett, Kans.; Blue Rapids, Kans.; Frankfort, Kans.; and Waterville, Kans.)
Marshall County, Mich., Reed's Pond. Schoodic salmon, 1876.
Marshall County, Miss. (See Holly Springs, Miss.)
Marshall County, W. Va. (See Bellton, W. Va.)
Marshall, Mich., lake near. Penobscot salmon, 1873.
Marshalltown, Iowa., lowa River. Penobscot salmon, 1875.
Marshfield, Mass., North River. California salmon, 1876, 1877.
Marston Branch, Dodge County, Minn. California salmon, 1878.
Martin County, Minn., Cedar Lake. Schoodic salmon, 1879.
Martin County, Minn., Chain Lake. California salmon, 1879.
Martin's Creek, S. C. California salmon, 1880.
Mary's Lake, Mower County, Minn. California salmon, 1879.
Mary's Lake, Minn. California salmon, 1877.
Mary's Pond, Rochester, Mass. Schoodic salmon, 1879, 1880.
Mascoma Lake, Enfield, N. H. Schoodic salmon, 1879.
Mashpee, Mass., Orystal Lake. Schoodic salmon, 1879.
S. Mis. 110-62

Massabesic Lake, Manchester, N. H. Schoodic salmon, 1879.
Mattapony River, Milford, Va. Shad, 1878, 1878.
Mattawamkeag, Me., Mattawamkeag River. Shad, 1873, 1874, 1874, 1875.

Mattawamkeag, Me., Penobscot River. Shad, 1880.
Mattawamkeag River, Bancroft, Me. Penobscot salmon, 1875, 1876.
Mattawamkeag River, Eaton, Me. Penobscot salmon, 1874.
Mattawamkeag River, Danforth, Me. Penobscot salmon, 1874.
Mattawamkeag River, Kingman, Me. Penobscot salmon, 1876.
Mattawamkeag River, Mattawamkeag, Me. Shad, 1873, 1874, 1874, 1875.

Maumee Rapids, Ohio. Schoodic salmon, 1876.
Maumee Rapids, Toledo, Ohio. California salmon, 1878.
Maumee River, Defiance, Ohio. California salmon, 1878.
Maumee River, Ohio. California salmon, 1877.
Maumee River, South Toledo, Ohio. California salmon, 1877.
Maumee River, Toledo, Ohio. Penobscot salmon, 1875; Schoodic salmon, 1878, 1879.
Maumee River, Waterville, Ohio. California salmon, 1880.
Maumee River. (See tributary : Tiffin River.)
Maurepas Lake. (See tributary: Notalbany River.)
Maurice River, Cumberland County, N. J. California salmon, 1879.
Maurice River, N. J. California salmon, 1877, 1878.
Maurice River, Vineland, N. J. California salmon, 1876.
Maynard, Iowa, Turkey River. California salmon, 1875.
Mayo River, Rockingham County, N. C. Schoodic salmon, 1878.
May's Landing, N. J., Great Egg Harbor River. California salmon, 1876.

Mazeppa Creek, Mazeppa, Minn. California salmon, 1876.
Mazeppa, Minn., Mazeppa Creek. California salmon, 1876.
Mazeppa, Minn., Zumbro River. California salmon, 1878.
Meade County, Ky., Doe Run. California salmon, 1877.
Meadow's Run, Marion County, W. Va. Schoodic salmon, 1879.
Mechanicsburgh, Pa., Yellow Breeches Creek. California salmon, 1873.
Mechanicstown, Md., Owen's Creek. California salmon, 1874,1878, 1879.
Mecklenburgh County, N. C. (See Charlotte, N. C.)
Medford, Mass., Mystic Lake. Schoodic salmon, 1877, 1880.
Medford, Mass., Wedge Pond. Schoodic salmon, 1877, 1880.
Medicine Lake, Minn. California salmon, 1877.
Meeker County, Minn., Litchfield. Penobscot salmon, 1875 ; Schoodic salmos, 1875.
Meeker County, Minn. (See Litchfield, Minn.)
Meherrin River, Branchville, N. O. Shad, 1878, 1879.
Melrose, Conn., Melrose Pond. Schoodic salmon, 1879.
Melrose, Mass., ponds. Schoodic salmon, 1880.
Melrose Pond, Melrose, Conn. Schoodic salmon, 1879.

Memphis, Tenn., Wolf River. California salmon, 1875.
Mendenhall Creek, Mich. California salmon, 1875.
Mendon, Mass., Nipmug Pond. Schoodic salmon, 1876, 1879, 1880.
Mendota Lake, Dane County, Wis. California salmon, 1877.
Mendota Lake, Madison, Wis. California salmon, 1877.
Menomonee Lake, Mich. California salmon, 1876.
Menomonee River, Wis. Penobscot salmon, 1873.
Menomonee River. (See tributaries: Michigamme Lake, Three Lakes, Nagawicka Lake.)
Meramec River, Franklin, Mo. California salmon, 1878, 1879; shad, 1879.

Meramec River, Pacific, Mo. California salmon, 1876 ; shad, 1876.
Mercer County, Ky., Kentucky River. Shad, 1878.
Mercer County, Ky., small ştreams. California salmon, 1876.
Meriden, Conn., Black Pond. Schoodic salmon, 1880.
Meridian, Miss., Chickasawhatchie River. California salmon, 1876.
Meridian, Miss., Chunky River. Shad, 1879.
Meridian, Miss., Okatibee Creek. Shad, 1878.
Meris de Cygnes River. (See Marais des Cygnes.)
Merrimack County, N. H. (See Boscawen, N. H.; Bradford, N. H.; Contoocook, N. H.; Epsom, N. H.; Franklin, N. H.; Newbury, N. H.; Northfield, N. H.; Pittsfield, N. H.; Warner, N. H.)
Merrimack River, headwaters of, Woodstock, N. H. California salmon, 1877 ; Penobscot salmon, 1873.
Merrimack River, tributary of, Campton, N. H. Penobscot salmon.
Merrimack River, tributury of, Mass. Penobscot salmon, 1873.
Merrimack River, tributary of, Plymouth, N. H. Penobscot salmon, 1873.

Merrimack River, tributary of, Thornton, N. H. Penobscot salmon, 1873.

Merrimack River, tributary of, W. Campton, N. H. Penobscot salmon, 1873.

Merrimack River. (See tributaries: Nassau River, Pemigewasset, Bakers, and Contoocook Rivers, Winnipesaukee and Contoocook Rivers.)
Merry-meeting Lake, New Durham, N. H. Schoodic salmon, 1878, 1879.

Metcalf Lake, Calhoun County, Mich. California salmon, 1874, 1875; Schoodic salmon, 1878.
Mexican Dam, Carson City, Nev. California salmon, 1869.
Mexico, Mo., Salt Oreek. Shad, 1877.
Miami River, Dayton, Ohio. California salmon, 1879.
Mianus, Conn., Mianus River. Schoodic salmon, 1880.
Mianus River, Mianus, Conn. Schoodic salmon, 1880.
Michigamee Lake, Marquette County, Mich. California salmon, 1876.
Michigan City, Ind., Kankakee River. California salmon, 1876.

Michigan Lake, Buffalo, Mich. Whitefish, 1876.
Michigan Lake. (See tributaries: Calumet River, Elkhart River, Kankakee River; Boyree, Saint Joseph, Grand, and Manistee Rivers; Bear Creek, Pine Creek; Ground Neck, Minckler, Wetmore, Sixteen, Crystal, Round, Lyons, Woods, McMartin's, Lewis, Metcalf, Carter, Twin, Putty, Pine, Menomonee, Miner, Big Paw Paw, Barrow, Wallow, and Sister Lakes; Brown's Lake, Fox River; Menomonee, Oconomowoc, and Milwaukee Rivers.)
Middleborough, Mass., Assawampsett Lake. Schoodic salmon, 1877, 1878, 1879.
Middleborough, Mass., Taunton ${ }^{\circ}$ River. Shad, 1876, 1877.
Middle Branch, Fillmore County, Minn. California salmon, 1878.
Middleburgh, Md., Big Pipe Creek. California salmon, 1879.
Middlebury, Conn., Quaspaugh Lake. Schoodic salmon, 1880.
Middle Creek, Hardin County, Ky. California salmon, 1876.
Middle Fork of Forked Deer River, Humboldt, Tenn. Shad, 1878.
Middle Island Oreek, West Union, W. Va. California salmon, 1877, 1878.

Middle Patuxent River, Savage, Md. California salmon, 1879.
Middle River, Iowa. California salmon, 1879.
Middle River, Staunton, Va. Schoodic salmon, 1879.
Middlesex County, Conn. (See Durham, Conn.; East Hampton, Conn.; Higganum, Conn.)
Middlesex County, Mass. (See Acton, Mass.; Billerica, Mass.; Farmingham, Mass.; Green wood, Mass.; Groton, Mass.; Holliston, Mass.; Lincoln, Mass.; Medford, Mass.; Melrose, Mass.; Natick, Mass.; Newton, Mass.; Stoneham, Mass.; Wakefield, Mass.; Waltham, Mass.; Winchester, Mass.)
Middleton, Mass., Middleton Pond. Schoodic salmon, 1877.
Middleton Pond, Middleton, Mass. Schoodic salmon, 1877.
Middletown, Md., Sassafras River. Shad, 1879.
Middletown, Md., stream. California salmon, 1878.
Middletown, Md., Bohemia River. Shad, 1879.
Midland County, Mich. (See Midland, Mich.)
Midland, Mich., Chippewa River. California salmon, 1875.
Midland Mich., Tittabawassee River. California salmon, 1875.
Midway, Fla., Ockolockone River. Shad, 1879.
Mifflinburgh, Pa., Penn Creek. California salmon, 1879.
Miles Creek, Cordova Station, Md. Shad, 1879.
Miles Creek, pond tributary to Easton, Md. Schoodic salmon, 1879.
Miles Creek. (See tributary: Wye Mills.)
Miles River, Easton, Md. Shad, 1878.
Milford, Del., Mispillion Creek. Shad, 1879.
Milford, Mass., Kipmuck Pond. Schoodic salmon, 1879.
Milford, Va., Mattapony River. Shad, 1878, 1878.
Millbrook, Ohio, Muskingum River. California salmon, 1873.

Millbury, Mass., ponds. Schoodic salmon, 1880.
Mill Creek, Hamatts' Mill, W. Va. Schoodic salmon, 1879, 1879.
Mill Creek, Hampshire County, W. Va. Schoodic salmon, 1878.
Mill Creek, McDowell County, N. C. California trout, 1880.
Mill Creek, S. C., California trout, 1880. Schoodic salmon, 1880.
Mill Creek, Utah County, Utah. California salmon, 1877.
Mill Creek, Washington, Kans. California salmon, 1878, 1879.
Mill Dam, Clear Spring, Md. Schoodic salmon, 1880.
Milledgeville, Ga., Ocone River. California salmon, 1878; shad, 1876, 1877, 1880.
Miller Creek, Cass Connty, Mich. California salmon, 1878.
Millington, Md., Andover Branch. California salmon, 1879.
Millington, Md., Chester River. California salmon, 1876, 1877, 1879, 1880; shad, 1878, 1879.
Mill River, North Brauford, Conn. California salmon, 1874.
Mill River, Southport, Conn. Penobscot salmon, 1875, 187%.
Mill Run, Romuey, W. Va. California trout, 1880.
Mill Stream, Van Buren County, Mich. California salmon, 1879.
Milo, Me., Piscataquis River. Penobscot salmon, 1874.
Milton, Mass., Houghton's Pond. Schoodic salmon, 1878, 1879.
Milton, N. H., Tri-Echo Lake. California salmon, 1879.
Milwaukee County, Wis., Wauwatosa, Wis.
Milwaukee River, Wauwatosa, Wis. Penobscot salmon, 1873.
Milwaukee River. (See tributary: Cedar Creek.)
Minckler Lake, Allegan County, Mich. California salmon, 1879.
Mineola, Tex., Sabine River. Shad, 1879.
Mineral County, W. Va., streams. California salmon, 1879, 1880.
Mineral County, W. Va. (See Keyser, W. Va.; Piedmont, W. Va.)
Minneapolis, Minn., stream. California salmon, 1880.
Minnebelle Lake, Meeker County, Minn. California salmon, 1877.
Minnesota Lake, Faribault County, Minn. California salmon, 1875, 1876.

Minnesota River, Blue Earth County. California salmon, 1878.
Minnesota River, Faribault County, Minn. California salmon, 1875.
Minnesota River, Kasota, Minn, California salmon, 1877.
Minnesota River, Rice County, Minn. California salmon, 1875.
Minnesota River, Saint Peter, Minn. Penobscot salmon, 1875.
Minnesota River. (See tributaries: Eagle, Elysian, Loon, Clear, Saint Mary's, MeCarthy's, Bois des Sioux, Forks of Otter Tail, Madison, Hausca, Garins, Frog, Donnelly, Cedar, Alley, Preston, Letook, Takota Lakes, Watonwan, Pomme de Terre, Chippewa Rivers, Goose Creek, Saint Peter, Mankato.)
Minnetonka Lake, Hennepin County, Minu. California salmon, 1878; Penobscot salmon, 1875; Schoodic salmon, 1875.
Minnetonka Lake, Hennepin County, Minn. California salmon, 1875, 1876.

Minnetonka Lake, Minu., Long Lake. California salmon, 1877.
Minnewasta Lake, Carver County, Minn. California salmon, 1878.
Minor Lake, Allegan County, Mich. California salmon, 1878, 1879.
Mispillion Creek, Milford, Del. Shad, 1879.
Missisquoi River, Highgate, Vt. California salmon, 1873.
Missisquoi River, Swanton, Vt. California salmon, 1873; shad, 1874.
Mississinewa River, Marion, Ill. Shad, 1878.
Mississippi River, Belleville, Ill. California salmon, 1877.
Mississippi River, Lake City, Minn. California salmon, 1877.
Mississippi River, Red Wing, Minn. California salmon, 1876.
Mississippi River, Saint Louis, Mo. Shad, 1877, 1878.
Mississippi River, Saint Paul, Minn. Shad, 1872, 1874, 1877.
Mississippi River, tributary of, Avon Station, Minn. California salmon, 1877.

Mississippi River, tributary of, Clinton Junction, Iowa. California salmon, 1874.
Mississippi River, tributary of, Storm Spring, Iowa, California salmon, 1875.

Mississippi River, tributary of, Waukon, Iowa. California salmon, 1875.

Mississippi River, tributary of, Waverly, Iowa. Penobscot salmon, 1875.
Mississippi River, Wis., tributary of. California salmon, 1876.
Missouri River, Herman, Mo. Shad, 1872.
Missouri River, Mo. California salmoń, 1880.
Missouri River. (See tributaries: Boyer River, Sioux, Nishnabottomy, Little Sioux and Floyd Rivers, Stranger, Verdigris, Delaware, Osage, and Marais des Cygnes Rivers, Gasconade, Platte, Grand, Chariton, and Osage Rivers; Sugar and Bean's Lakes.)
Missouri River, Lexington, Mo. California salmon, 1880.
Missouri River, Buchanan County, Mo. California salmon, 1880.
Missouri River, Saint Joseph, Mo. Shad, 1877; California salmon, 1880.

Missouri River, tributary of, Council Bluffs, Iowa. Penobscot salmon, 1875.

Missouri River, Washington, Mo. Shad, 1872.
Mitchell County, Kans. (See Beloit, Kans.)
Mitchell's Bridge, Md., Worcester County, Pocomoke River. Oalifornia salmon, 1878.
Mitchell's Pond, Boxford, Mass. Schoodic salmon, 1877.
Mobile River. (See tributary : Alabama River.)
Modoc County, Cal. (See Clear Lake, Cal.)
Mohawk River, N. Y. California salmon, 1874, 1875.
Mohawk River, Oneida County, N. Y. California salmon, 1875.
Mohawk River, Rome, N. Y. Penobscot salmon, 1875.
Mohawk River. (See tributaries: Spring Creeks.)
Moingona, Iowa, Des Moines River. Shad, 1878.

Monkton, Baltimore County, Md., Gunpowder River. California salmon, 1877.

Monkton, Md., Little Gunpowder River. California salmon, 1876, 1876, 1877, 1878.
Monmouth Church, Rockbridge County, Va., Kerr's Creek. California salmon, 1880.
Monocacy River, Md. California salmon, 1878; Penobscot salmon, 1880.
Monocacy River. (See tributaries: Pipe, Owens, Bush, Double Pipe, and Big Pipe Creeks.)
Monongahela River, Greensburgh, Pa. Shad, 1873.
Monongahela River, tributary of, Greene County, Pa. California salmon, 1876.

Monongahela River, West Fork of, Clarksburgh, W. Va. California salmon, 1876; Schoodic salmon, 1878; shad, 1879.
Monongahela River, West Fork of, Walkersville, W. Va. California salmon, 1878.
Monongahela River, West Fork of, Weston, W. Va. Schoodic salmon, 1879.

Monongahela River. (See tributaries: Youghiogheny River, WestFork.)
Monroe County, Mich. (See Monroe, Mich.)
Monroe County, Miss. (See Aberdeen, Miss.)
Monroe County, N. Y., Allen Creek. Schoodic salmon, 1879.
Monroe County, N. Y., Spring Creek. California salmon, 1878.
Monroe County, N. Y., Watter Creek. California salmon, 1878.
Monroe County, N. Y. (See Wheatland, N. Y.)
Monroe County, Pa., several lakes. Schoodic salmon, 1878.
Monroe County, Wis. (See Sparta, Wis.; Tomah, Wis.; Tunnel Oity, Wis.)
Monroe, La., Ouachita River. Shad, 1879.
Monroe, Mich., lakes. Whiteflsh, 1880.
Monroe, Mich., Raisin River. California salmon, 1875, 1879; shad, 1873.
Monroeville, Ohio, Huron River. California salmon, 1874; shad, 1874.
Monrovia, Md., Bush Creek. California salmon, 1874.
Monrovia, Md., pond. California trout, 1880.
Monterey County, Cal., Espinoza Lake. Schoodic salmon, 1878.
Montezuma, Ga., Flint River. Shad, 1878.
Montcalm County, Mich. (See Pierson, Mich.)
Montgomery County, Ala. (See Montgomery, Ala.)
Montgomery County, Kans. (See Independence, Kans.)
Montgomery County, Ky. (See Mount Sterling, Ky.)
Montgomery County, Md. (See Barnesville, Md.; Boyd's, Md.; Rockville, Md.; Sandy Spring, Md.; Spencerville, Md.)
Montgomery County, Ohio. (See Dayton, Ohio.)
Montgomery County, Pa. (See Pottstown, Pa.)
Montgomery County, Va. (See Alleghany Springs, Va.; Big Spring Depot, Va.; Blacksburgh, Va.; Staunton Station, Va.)

Montgomery, Ala., Alabama River. Shad, 1876.
Montgomery, Ala., tributary of Alabama River. California salmon, 1876.
Montgomery, Ala., Tallapoosa River. Shad, 1877.
Montgomery County, Ky., Big Slate Creek. California salmon, 1877.
Montgomery County, Ky., Little Hinkston Creek. California salmon, 1877.

Montgomery County, Ky., Spencer Creek. California salmon, 1877.
Montgomery, White Sulphur Springs, Va., Roanoke River. California salmon, 1880.
Monticello, Iowa, Maquoketa River. California salmon, 1874.
Moorhead, Minin., Red River of the North. California salmon, 1877.
Moosehead Lake, Mount Kineo, Me. Schoodic salmon, 1879.
Moose Horn Lake, Carleton County, Minn. California salmon, 1878.
Moosehorn Waters, Charlotte, Me. Schoodic salmon, 1878.
Moose Lake, Carleton County, Minn. California salmon, 1877, 1878.
Morgan, Vt., Seymour Lake. Schoodic salmon, 1876.
Morgan County, Ill. (See Jacksonville, Ill.)
Morgan County, Mo., Lamine River. California salmon, 1880.
Morgan County, W.Va. (See Cherry Run Depot, W. Va.; and Sir John's Run, W. Va.)
Morganton, N. C., Catawba River. California salmon, 1880.
Morganton, N. C., ponds tributary to Catawba River. Schoodic salmon, 1878.

Morganton, N. C., John's River. California salmon, 1878, 1879; Schoodic salmon, 1878.
Morganton, N. C., Linville River. California salmon, 1879.
Morgantou County, N. C., Linville River. Schoodic salmon, 1878.
Morganton, N. C., South Fork River. California salmon, 1879.
Morganton, N. C., Upper Creek. California salmon, 1879.
Morris County, N. J., Lake Hopatcong. California salmon, 1879; whitefish, 1876.
Morris County, N. J., lakes. Schoodic salmon, 1879.
Morris County, N. J., Shepherd's Pond. Whitefish, 1876.
Morris County, N. J. (See Dover, N. J.; Drakesville, N. J.; Morristown, N. J.)

Morrisania, N. Y., creek. California salmon, 1876, 1877.
Morrison Lake, Branch County, Mich. California salmon, 1875.
Morrison Lake, McLeod County, Minn. California salmon, 1876.
Morristown, N. J., Whippany River. Penobscot salmon, 1875.
Moses Wood Poud, White Haven, Pa. Schoodic salmon, 1879.
Mossy Creek, S. C. Oalifornia salmon, 1880.
Moswansicut Pond, North Scituate. Schoodic salmon, 1876, 1878.
Moultrie County, IIl. (See Farlow, Ill.)
Mountain Lake, Cottouwood County, Minn. California salmon, 1877.
Mountain Lake, Giles County, Va. California salmon, 1876.
Mount Airy, Md., Little Patuxent River. California salmon, 1879.

Mount Airy, Md., North Patuxent River. California salmon, 1876.
Mount Airy, Md., Patuxent River. California salmon, 1878.
Mount Carroll, Ill., Carroll Creek. California salmon, 1877, 1879.
Mount Jackson, Va., N. Fork, Shenandoah River. Calitornia salmon, 1876.

Mount Kineo, Me., Moosehead Lake. Schoodic salmon, 1879.
Mount Olive, N. C., Goshen Creek. Shad, 1879.
Mount Pleasant, Md., pond. California trout, 1880; Schoodic salmon, 1880.

Mount Sterling, Ky., Licking River. Shad, 1877.
Mount Vernon, Ohio, Vernon River. California salmon, 1879.
Mower County, Minn., Cedar River. California salmon, 1875.
Mower County, Minn., Iowa River. California salmon, 1875.
Mower County, Minu., Little Iowa River. California salmon, 1878.
Mower County, Minn., Mary's Creek.
Mower County, Minn. (See Austin, Minn.)
Moxley Point, Prince George's County, Md., Potomac River. Shad, 1875, 1880.
Mud Lake, Iowa. California salmon, 1879.
Mud, or Hydraulic, Lake, Herkimer County, N. Y. California salmon, 1874.

Mulberry Creek, Shelby County, Ky. California salmon, 1876.
Mullica River, Burlington County, N. J. California salmon, 1879.
Mullica River, Camden, N. J. California salmon, 1877.
Mullica River, Egg Harbor City, N. J. California salmon, 1877.
Mullica River, N. J. California salmon, 1877, 1878.
Mumfordsville, Ky., Green River. Shad, 1877.
Muney Lake, Cass County, Mich. California salmon, 1876.
Muscatine County, Iowa. (See Wilton, Iowa.)
Muscogee County, Ga. (See Columbus, Ga.)
Musconetcong River, Bloomsbury, N. J. California salmon, 1874.
Musconetcong River, N. J. Penobscot salmon, 1873, 1874, 1875.
Muskegon River, Mich. Penobscot salmon, 1873.
Muskegon River. (Seo tributaries: Clam Lake, Crooked Lake, Hersey.)
Muskegon River. (See tributary : Higgins Lake.)
Muskingum County, Ohio. (See Zanesville, Ohio.)
Muskinguin River, Bayard, Ohio. Shad, 1875.
Muskingum River, Coshocton, Ohio. California salmon, 1877.
Muskingum River, Millbrook, Ohio. California salmon, 1873.
Muskingum River, Zanesville, Ohio. Shad, 1876.
Mystic Lake, Medford, Mass. Schoodic salmon, 1877, 1880.
Mystic Lake, Winchester, Mass. Schoodic salmon, 1876, 1877, 1878, 1880.

Mystic River, branch of, Mass. California salmon, 1873, 1874, 1874, 1875.

Mystic River, tributary of, Mass. Penobscot salmon, 1873.

Mystic River. (See tributary: Main river.)
Nagawica Lake, Wis. California salmon, 1879; Schoodic salmon, 1879,
Nankeag Lake, Ashburnham, Mass. Schoodic salnon, 1876, 1877, 1878. 1879, 1880.
Nansemond County, Va. (See Suffolk, Va.)
Nansemond River, south branch of Seaboard and Roanake Railroad crossing, Va. Shad, 1878, 1878.
Nansemond River, South Branch, Suffolk, Va. Shad, 1878.
Nanticoke River, branch of,Federalsburgh, Md. California salmon, 1876.
Nanticoke River, Federalsburgh, Md. California salmon, 1879, 1880; shad, 1878, 1879.
Nanticoke River, Hillsborough, Md. California salmon, 1878.
Nanticoke River, Seaford, Del. California salmon, 1876, 1878, 1880; shad, 1877, 1879, 1880.
Nantucket, Mass., Hummock Pond. Schoodic salmon, 1877.
Nash's Lake, Calais, Me. Schoodic salmon, 1879.
Nashua River, Lancaster, Mass. California salmon, 1876, 1877; Penobscot salmon, 1876.
Nashville, Tenn., Cumberland River. Shad, 1875, 1875, 1879.
Natchaug branch of Thames River, Conn. Penobscot salmon, 1877.
Natchaug River, Conn. California salmon, 1876.
Natchaug River, North Windham, Conn. California salmon, 1875.
Natick, Mass., Dug Pond. Schoodic salmon, 1876, 1877, 1878, 1879.
Neabsco Mills, Md., Neabsco River. Shad, 1878.
Neabsco River, Neabsco Mills, Md. Shad, 1878.
Negaunee, Mich., Carp River. California salmon, 1874.
Nelson County, Ky., Rolling Fork of Salt River. California salmon, 1877.

Nelson County, Va., Tye River. California salmon, 1876; Schoodic salmon, 1877.
Nelson, N. H., Newfound Lake. Schoodic salmon, 1880.
Nelson, N. H., Tolman Pond. Schoodic salmon, 1880.
Nemaha County, Kans. (See Centralia, Kans.)
Neosho River, Emporia, Kans. California salmon, 1878, 1879, 1880; shad, 1879.
Neosho, Mo., Shoal Creek. Shad, 1878.
Neosho River. (See tribataries: Cottonwood River and Doyle Creek.)
Neuse River, New Berne, N. C. Shad, 1873.
Neuse River, Neuse, N. C. Shad, 1878.
Neuse River, Wake County, N. C. Shad, 1877.
Neuse River, Raleigh, N. C. Shad, 1877, 1878, 1879.
Neuse River. (See tributary: Contentnea Creek.)
Neuse, N. C., Neuse River. Shad, 1878.
Nevada County, Cal., Donner Lake. Schoodic salmon, 1878; whitefish, 1877.

Nevada County, Cal., Sereno Lake. Schoodic salmon, 1878.

Nevada County, Cal., Tahoe Lake. Whitefish, 1879. New Berne, N. C., Neuse River. Shad, 1873.
Newberry Pond, Geauga County, Ohio. California salmon, 1879.
New Buffalo, Mich., Lake Michigan. Whitefish, 1876.
Newbury, N. H., Sunapee Lake. Schoodic salmon, 1878, 1879.
Newbury, Vt., Connecticut River. Penobscot salmon, 1874.
New Castle County, Del. (See Blackbird, Del.; Wilmington, Del.)
New Comerstown, Ohio, Tuscarawas River. California salmon, 1878.
New Durham, N. H., Merrymeeting Lake. Schoodic salmon, 1878, 1879.
Newecherwannock Lake, Wakefield, N. H. California salmon, 1879.
Newfound Lake, Bridgewater, N. H. Schoodic salmon, 1879.
Newfound Lake, Nelson, N. H. Schoodic salmon, 1880.
New Hartford, Conn., Farmington River. California salmon, 1875; Penobscot salmon, 1875, 1877.
New Haven County, Conn. (See Branford, Conn.; East Haven, Conn.; Guilford, Conn.; Meriden, Conn.; Middlebury, Conı.; New Haven, Conn.; North Branford, Conn.; Northford, Conn.; Woodbridge, Conn.) New Haven, Conn., Farm River. California salmon, 1875.
New Londou County, Conn. (See Lyme, Conn.; Salem, Conn.)
New Market, Md., Bush Creek. California trout, 1880.
New Milford, Conn., Butter Brook. Penobscot salmon, 1875; California salmon, 1874.
New Milford, Conn., Housatonic River. California salmon, 1875; Penobscot salmon, 1877; shad, 1873, 1874.
Newport, Ark., White River. California salmon, 1878; shad, 1876.
Nerrport, Me., Nerrport Pond. Schoodic salmon, 1878.
Newport, Pa., Juniata River. California salmon, 1877.
Newport Pond, Newport, Me. Schoodic salmon, 1878.
New Preston, Conn., Waremaug Lake. Schoodic salmon, 1877.
New River, Central, Va. California salmon, 1874; Schoodic salmon, 1875, 1880; shad, 1873.
New River, Hinton, W. Va. California salmon, 1879, 1880; shad, 1879.
New River, Lead Mines, Va. Schoodic salmon, 1880.
New River, Wytheville, Va. Schoodic salmon, 1877, 1878, 1880.
New River, Blacksburg, Va. Schoodic salmon, 1878.
New River. (See tributaries: Totes Run, Reed Creek, Fates Run.)
Newton, Mass., Crystal Lake. Schoodic salmon, 1877.
Newton, N. C., Clark's Creek. California salmon, 1879.
Newton County, Ga. (See Covington, Ga.)
Newton County, Mo. (See Neosho, Mo.)
Newtown, Conn., tributary to Housatonic River. Schoodic salmon, 1879.
Newtown, Md., branch of Pocomoke Bay. California salmon, 1876.
Newtown, Somerset County, Md., Pocomoke River. Shad, 1879.
Newville, Pa., Spring Creek. California salmon, 1877.
New Windsor, Md., Pipe Creek. California salmon, 1878.
New York Counts, N. Y. (See Morrisania, N. Y.)

Nichols, S. C., Little Pee Dee River. Shad, 1880.
Nicollet County, Minn. (See Saint Peter, Minn.)
Niles, Berrien County, Mich., Tinkham Lake. Schoodic salmon, 1878.
Niles, Mich., private ponds. California salmon, 1877.
Niles, Mich., Saint Joseph's River. California salmon, 1875; shad, 1873.
Nine Mile Pond, Wilbraham, Mass. Schoodic salmon, 1877.
Nine Springs Creek, Wis. California salmon, 1879.
Nipmug Pond, Mendon, Mass. Schoodic salmon, 1876, 1879, 1880.
Nishnabottomy River, Atlantic, Iowa. California salmon, 1875.
Noble County, Ind. (See Rome City, Ind.)
Noble County, Minn., Ochuda Lake. California salmon, 1877.
Noble Countr, Minn., Okabena Lake. California salmon, 1876, 1877.
Noble County, Minn., Round Lake. California salmon, 1880.
Nodaway River, R. R. crossing, Nodaway County, Mo. Shad, 1880.
Nodaway County, Mo., Nodaway River, Platte River, and One Hundred and Two River. Shad, 1880.
Nolin Creek, Elizabethtown, Ky. Schoodic salmon, 1878.
Nolin Creek, Hardin County, Ky. California salmon, 1877.
Norcross, Ga., Chattahoochee River. California salmon, 1877.
Norfolk, Conn., Smith Pond. Schoodic salmon, 1876.
Norfolk County, Mass. (See Braintree, Mass.; Milton, Mass.; Nantucket, Mass.; Sharon, Mass.; South Weymouth, Mass.; Wellesley, Mass.)
Norrisville, Md., McDonald's Run. California trout, 1880.
Norrisville, Md., pond. Schoodic salmon, 1880.
Northampton County, Pa., Bushkill Creek. Penobscot salmon, 1874.
Northampton County, Pa. (See Easton, Pa.)
North Andover, Mass., Great Pond. Schoodic salmon, 1876, 1878.
North Boardman River, Kalkaska, Mich. California salmon, 1876.
North Branford, Conn., Main River. Penobscot salmon, 1873.
North Branford, Conu., Mill River. California salmon, 1874.
North East Creek, Md. California salmou, 1880.
North East Creek, North East, Md. California salmon, 1878.
North East, Md., North East Creek. California salmon, 1878.
North East, Md., Sharon's Run. California salmon, 1880.
North East River, Cecil County, Md. Shad, 1878.
North East River, Carpenter's Point, Md. Shad, 1876.
North East River, Havre de Grace, Md. Shad, 1878.
North East River. (See tributary: North East Creek.)
Northfield Lake, Rice County, Minn. Schoodic salmon, 1878.
Northfield, Minn., Cedar Lake. California salmon, 1.877.
Northfield, Minn., Robert's Lake. California salmon, 1877.
Northfield, Minn. Schoodic salmon, 1875.
Northfield, Merrimac County, N. H., Chestnut Pond. Schoodic salmon, 1879.

Northfield, Vt., Dog River. Penobscot salmon, 1874.

Northford, Conn., West River. California salmon, 1873.
North Maquoketa River, Worthington, Iowa. Penobscot salmon, 1875.
North Patapsco River, Tank Station, Md. California salmon, 1879.
North Patapsco River, Tank Station, West. Md. R. R., Md. California salmon, 1874.
North Patuxent River, Mount Airy, Md. California salmon, 1876.
North Pond, Sandwich, N. H. Schoodic salmon, 1880.
North Pond, Stark, N. H. Schoodic salmon, 1880.
North River, Burnt Bridge, Va. California salmon, 1880.
North River, Camden County, N. C. Shad, 1879.
North River, Ker's Creek Bridge, Va. California salmon, 1878, 1879.
North River, Lexington, Va. California salmon, 1877, 1878; Schoodic salmon, 1879.
North River, Mass. Califoruia salmon, 1875, 1876, 1877.
North Rochester, Mass., Snow's Pond. Schoodic salmon, 1878.
North Sandwich, Mass., Great Herring Pond. Schoodic salmon, 1876, 1878.

North Scituate, R. I., Moswansicut Pond. Schoodic salmon, 1876, 1878.
North Scituate, R. I., Steen's Pond. Schoodic salmon, 1876, 1878.
Northumberland County, Pa. (See Chillisquaque, Pa.)
Northville, Mich., ponds. California trout, 1880.
Northville, Mich., Rouge River. California salmon, 1876; Schoodic salmon, 1878; Whitefish, 1876.
Northville, Mich., Yerke's Lake. Whitefish, 1876.
North Windham, Conn., Natchaug River. California salmon, 1875.
Norwich Pond, Huntington, Mass. Schoodic salmon, 1877.
Notalbany River, Tickfár, La. California salmon, 1876; shad, 1875.
Nottoway County, Va. (See Nottoway, Va.)
Nottoway, Va., Nottoway River. Shad, 1878, 1879.
Nottoway River, Nottoway, Va. Shad, 1878, 1879.
Nutt's Pond, Manchester, N. II. Schoodic salmon, 1879.
Oak County, Mich., Oxbow Lake. Whitefish, 1876.
Oak County, Mich., Strait's Lake. Whitefish, 1876.
Oak County, Mich., Walled Lake. Whitefish, 1876.
Oakland County, Mich., Hontoon Lake. California salmon, 1875.
Oakland County, Mich., Orchard Lake. California salmon, 1875; Penobscot salmon, 1873.
Oakland County, Mich., Lake Orion. California salmon, 1875.
Oakland County, Mich., Rouge River. California salmon, 1875.
Oakland County, Mich., Wall's Lake. Penobscot salmon, 1873.
Oakland County, Mich. (See Holly, Mich.; Pontiac, Mich.; Rochester, Mich.)
Oakland, Md., Little Youghiogheny River. Schoodic salmon, 1880.
Oakland, Md., pond. California trout, 1880; Schoodic salmon, 1880.
Oakland, Md., Youghiogheny River. California salmon, 1876.
Oak Orchard Creek, Orleans County, N. Y. California salmon, 1874.

Obion County, Tenn. (See Paducah Junction, Tenn.)
Obion River, South Fork of, Huntingdon, Tenn. Shad, 1878.
Occoquan Falls. (See tributary : Broad Run.)
Oceana County, Mich., Crystal Lake. California salmon, 1879.
Oceana County, Mich., Round Lake. California salmon, 1879.
Ochuda Lake, Noble County, Minn. California salmon, 1877.
Ocilla River, Jefferson County, Fla. Shad, 1879.
Ockolockonee River, Midway, Fla. Shad, 1879.
Ocmulgee River, Covington, Ga. California salmon, 1878; shad, 1877.
Ocmulgee River, Macon, Ga. California salmon, 1878; shad, 1868, 1877, 1878, 1879.
Ocmulgee River. (See tribataries: Ulcofanhanchee River and Yellow River.)
Oconee County, S. C. (See Seneca, S. O.)
Oconee, Ga., Oconee River. California salmon, 1876.
Oconee River, R. R. Crossing, Greene County, Ga. California salmon, 1876.

Oconee River, Milledgeville, Ga. California salmon, 1878; shad, 1876, 1877, 1880.
Oconee River, R. R. Crossing, Ga. Shad, 1880.
Oconomowoc Creek. (See tributary: Oconomowoc Lake.)
Oconomowoc Lake, Oconomowoc, Wis. Penobscot salmon, 1873.
Oconomowoc Lake, Waukesha County, Wis. California salmon, 1877.
Oconomowoc, Wis., Oconomowoc Lake. Penobscot salmon, 1873.
Octorora Creek, Liberty Grove, Md. California salmon, 1874.
Octorora Creek, Rowlandville, Md. California salmon, 1876, 1878.
Octorora River, De Graw's, Cecil County, Md. California salmon, 1879, 1880.

Octorora River, Harris Dam, Cecil County, Md. California salmon, 1880.

O'Dowd's Lake, Scott County, Minn. California salmon, 1877, 1878.
Ogden River, Weber County, Utah. California salmon, 1876.
Ogeechee River, Crawfordsville, Ga. California salmon, 1877.
Ohio County, W. Va. (See Cold Spring, W. Va.; Wheeling, W. Va.)
Ohio River, Parkersburgh, W. Va. California salmon, 1879, 1880.
Ohio River. (See tributaries: Tanner's Creek, Wabash River, White River, Floyd's Fork, Clear, Mulberry, Gut, Stoner, Pittman, Knob, Spencer, Big State, Eddy, Hurricane Creeks, Kentucky, Little Sandy, Green, Little Kentucky, Little Hinkston, South Elkhorn, Barren and Little Rivers, Rolling Fork, Booker's Branch, Cave Spring Branch, Doe Run, Licking, Cumberland, Salt, Allegheny, Buckingahela, Scioto, Black, Huron, Muskingum, Walhonding, Whitstone, Tuscarawas, Miami, Little Miama, Monongahela,Tennessee, Cheat,Tygart's Valley, West Fork, New, Hugh's, Little Kanawha, Green Brier Rivers; Castalia Springs, Middle Island, Fish, Wheeling, Sinking, Fishing, Buffalo, and Kings Creeks.)

Okabena Lake, Noble Oounty, Minn. Oalifornia salmon, 1.876, 1877.
Okatibee Creek, Meridian, Miss. Shad, 1878.
Old Bay Fishery, Md., Susquehanna River. Shad, 1879.
Old Fort, N. C., Catawba River. California salmon, 1878, 1879.
Oldman's Creek, N. J. California salmon, 1877.
Oldman's Oreek, Swedesborough, N. J. California salmon, 1876.
Olmstead County, Minn., Root River. California salmon, 1877.
One Hundred and 'Two River, Nodaway County, Mo. Oalifornia salmon, 1880; shad, 1880.
Oneida County, N. Y., Mohawk River. California salmon, 1875.
Oneida County, N. Y., Sequoit Creek. California salmon, 1875.
Oneida County, N. Y., Spring Creeks. California salmon, 1878.
Oneida County, N. Y. (See Fish Creek, N. Y.; Rome, N. Y.)
Oneida Lake, N. Y. California salmon,1874.
Onondago County, N. Y. (See Skaneateles, N. Y.)
Ontario County, N. Y., Spring Brooks. California salmon, 1879.
Ontario Lake. (See tributaries: Allen, Beaver, Fish, Caledonia, Oak Orchard, Sandy, Spring, and Springbrook Creeks; Genesee, Salmon, and Oswego Rivers; Caledonia Springs, Honeoye Falls, Conesus Lake.)
Orchard Lake, Oakland County, Mich. California salmon, 1875; Penobscot salmon, 1873.
Orange County, $\mathrm{\nabla t}$. (See Newbury, Vt.)
Orangeburgh County, S. C. (See Branchville, S.C.; Orangeburgh, S.C.)
Orangeburgh, S. C., Edisto River. California salmon, 1879.
Oriskany River, N. Y. California salmon, 1874.
Orleans County, N. Y., Oak Orchard Creek. California salmon, 1874.
Orleans County, N. Y., Sandy Creek. California salmon, 1874.
Orleans County, Vt. (See Barton, Vt.; Morgan, Vt.; Rochester, Vt.; Westmore, $\nabla \mathrm{t}$.)
Ormsby County, Nev. (See Carson City, Nev.)
Orono River, Minn. California salmon, 1877.
Ortonville, Minn., Big Stone Lake. California salnon, 1880.
Orwell, Vt., pond. Schoodic salmon, 1876.
Osage County, Kans. (See Burlingame, Kans.)
Osage River, Redding, Kans. California salmon, 1878, 1879.
Osage River, Schell City, Mo. California salmon, 1880; shad, 1880.
Osage River. (See tributary: Marais des Cygnes River.)
Osakin Lake, Todd County, Minn. California salmon, 1877.
Osceola County, Mich. (See Le Roy, Mich.; Reed City, Mich.)
Ossipee Lake, Ossipee N. H. Schoodic salmon, 1879.
Ossipee, N. H., Ossipee Lake. Schoodic salmon, 1879.
Oswego County, N. Y. (See Fulton, N. Y.; Sand Bank, N. Y.)
Oswego River, Fulton, N. Y. California salmon, 1874.
Oswego River, N. Y. California salmon, 1873, 1874, 1874, 1874, 1874; Penobscot salmon, 1873.
Oswego River, Skaneateles, N. Y. California salmon, 1874, 1875.

Otis, Mass., ponds. Schoodic salmon, 1880.
Otsego Oounty, Mich. (See Otsego Lake, Mich.)
Otsego Lake, Otsego County, Mich. California salmon, 1875.
Ottawa County, Ohio. (See Elmore, Ohio; Put-in Bay, Ohio.)
Ottawa, Kans., Wakasa River. California salmon, 1878, 1879.
Ottawa River. (See tributary: North River.)
Otter Creek, Madison County, Ky. California salmon, 1876.
Otter Creek, Vergennes, Vt. Shad, 1873, 1874.
Otter River, Minn. Penobscot salmon, 1875; Schoodic salmon, 1875.
Otter Tail County, Minn. (See Perham, Minn.)
Otter Tail River, Frazer City, Minn. California salmon, 1880.
Otter Tail, Forks of, and Bois des Sioux River, Stevens County, Minu.
California salmon, 1877.
Ottumwa, Iowa, Des Moines River. California salmon, 1875; shad, 1874.

Ouachita County, La. (See Monroe, La.)
Ouachita River, Clark County, Ark. Shad, 1879.
Ouachita River, Monroe, La. Shad, 1879.
Ouachita River. (See tributaries: Sabine, Bœuf, Caddo, and Saline Rivers, Washita.)
Ousley, Ga., Little River. Shad, 1879.
Outagamie County, Wis. (See Appleton, Wis.)
Owatonna, Minn., Cannon River. California salmon, 1877.
Owatonna River, Steele County, Minn. California salmon, 1875; Schoodic salmon, 1875; Penobscot salmon, 1875.
Owen, Winnebago County, Ill. Brown's Creek. California salmon, 1877.

Owen's Creek, Mechanicstown, Md. California salmon, 1874, 1878, 1879.
Owen's Creek, Slabtown, Md. California salmon, 1874, 1876, 1876, 1876.
Owosso, Mich., Shiawassee River. California salmon, 1875.
O:bow Lake, Oak County, Mich. Whitefish, 1876.
Oxford, Ala., Cold Water Creek. California salmon, 1878.
Oxford, Iowa, Wapsipinicon River. California salmon, 1875.
Oxford, Warren County, N. J., Green's Pond. Schoodic salmon, 1879.
Pacific, Mo., Meramec River. California salmon, 1876; shad, 1876.
Packlette River, Spartanburg C. H., S. C. California salmon, 1879.
Paducah Junction, Tenu., West Obion River. Shad, 1879.
Palmer, Mass., Quobaug Pond. Penobscot salmon, 1874.
Palmyra, Mich., Palmyra Pond. California salmon, 1878.
Palmyra Pond, Palmyra, Mich. California salmon, 1878.
Pamlico Sound. (See tributary: Tar River.)
Parker Lake, Richland, Mich. Schoodic salmon, 1876.
Parkersburgh, W. Va., Bartlett's Pond. Schoodic salmon, 1878.
Parkersburgh, W. Va., Ohio River. California salmon, 1879, 1880.
Parkersburgh, W. Va., ponds. Schoodic salmon, 1879.
Parkton, Md., Big Gunpowder River. California salmon, 1878.

Parkton, Md., Deer Creek. California salmon, 1878, 1879.
Parkton, Md., Gmpowder River. California salmon, 1876, 1878.
Pascagoula River. (See tributary: Chickasawha River.)
Passadumkeag River, Me. Penobscot salmon, 1874.
Passaic County, N. J., Greenwood Lake. California salmon, 1879.
Passaic County, N. J., Passaic River. Schoodic salmon, 1879.
Passaic County, N. J. (See Paterson, N. J.; Ringwood, N. J.)
Passaic River, Passaic County, N. J. Schoodic salmon, 1879.
Passaic River, tributary of, N. J. Penobscot salmon, 1874.
Passaic River, tributary of, Paterson, N. J. California salmon, 1874, 1875.

Passaic River. (See tributaries: Whippang River and Rockaway River.)
Passumpsic tributaries, Wheelock, Vt. Penobscot salmon, 1874.
Patapsco Falls, Ellicott City, Md. California trout, 1880.
Patapsco Falls, lake tributary to, Reisterstown, Md. Schoodic salmon, 1879.

Patapsco River, Double Pipe Creek, Md. California salmon, 18 亿8.
Patapsco River, Hood's Creek, Md. California salnon, 1878.
Patapsco River, Hood's Mills, Md. California salmon, 1874, 1878, 1879.
Patapsco River, Relay Station, Md. Shad, 1879.
Patapsco River, Sykesrille, Md. California salmon, 1876, 1875.
Patapsco River. (See tributaries: North Patapsco River, Cascade Branch, Water Works, and Owen's Creek.)
Patapsco River, North Branch of, Tank Station, Md. Califonia salmon, 1876, 1876, 1876, 1878.
Patapsco River, tributary of, Sulphur Spring, Md. California tront, 1880; Schoodic salmon, 1880.
Patchen's Lake, Grant Co., Minn. California salmon, 1878.
Paterson, N. J., tributary of Passaic River. California salmon, 1874.
Pattenburgh Creek, Raritan, N. J. California salmon, 1874.
Patten's Brook, Surry, Me. Penobscot salmon, 1876.
Patterson Lake, Dexter, Mich. Whitefish, 1876.
Patterson Lake, Putnam, Mich. California salmon, 1878.
Patterson's, Ca'dwell County, N. C. Yadkin River. California salmon, 1875, 1878, 1879.
Patuxent, Md., Little Patuxent River. California salmon, 1875.
Patuxent, Md., Patusent River. Shad, 1879.
Patuxent, Md., streams. California trout, 1880.
Patuxent River, Airey, Md. California salmon, 1879.
Patuxent River, Baltimore, Md. Schoodic salmon, 1880.
Patuxent River, branch of, Howard County, Md. California salmon, 1874.

Patusent Ruver, Cedar Point, Md. California salmon, $1576,1876$.
Patuxent River, Laurel, Md. California salmon, $1875,1876,1875,187 \mathrm{~s}$, 1878, 1878, 1879; shad, 1875, 1878, 1879, 1880.
Patuxent River, Md. Penobscot salmon, 18ī.
S. Mis. $110-63$

Patuxent liiver, Mount Airy, Md. California salmon, 1878.
Patuxent River, North Branch of, Ellicott Citý, Md. California salmon, 1876.
Patnxent River, Patuxent, Md. Shad, 1879.
Patuxent River, Savage, Md. California salmon, 1874, 1876, 1878, 1878, 1878. 1879, 1880; shad, 1879, 1880, 1880, 1880, 1880.

Patuxent River, Spencerville, Md. California salmon, 1878.
Patuxent River, Tank Station, Md. California salmon, 1878.
Patuxeut River. (See tributaries: Little Patuxent River, Middle Patuxent River and Pond, Rocky Run, Poud, Tront Branch, and Gunpowder River.)
Patuxent River, tributary of, Spencerville, Md. Schoodic salmon, 1878.
Paulinskill River, N. J. Penobscot salmon, 1875.
Paulinskill Creek, Warren County, N. J. California salmon, 1879.
Paupock Lake, Scranton, Pa. Schoodic salmon, 1879.
Pawcatuck River, R. I. Penobscot salmon, 1873.
Pawcatuck River, ponds tributarys to, R. I. California salmon, 1876.
Paweatuck River, Washington County, R. I. California salmon, 1875; shad, 1874, 1875.
Paweatuck River, tributary of, R. 1. California salmon, 1876; Penobscot salmon, 1874.
Pawnee County, Kans. (See Larned, Kaus.)
Pawnee Creek, Larned, Kans. California salmon, 1878, 1879.
Pawnee River, Larned, Kans. Shad, 1879.
Paw Paw, Mich., Paw Paw River. California salmon, 1875.
Paw Paw River, North Branch of, Almena, Mich. California tront, 1880.
Paw Paw River, Paw Paw, Mich. California salmon, 1875.
Paw Paw River. (See tributaries: Bucks Creek, Mill Stream, North Brauch of Big Paw Paw River.)
Pawtuxet River, R. I. California salmon, 1875.
Pawtuxet River, North Brauch of, sundry places, R. I. Penobscot salmon, 1876.
Pawtuxet River, R. I. Peuobscot salmon, 1873.
Pawtuset River, Providence Connty, R. I. Penobscot salmon, 1875; shad, 1874, 1875.
Pawtuset River, south Branch of, sundry places, R. I. Penobscot salmon, 1876.
Pawtuxet River, tributary of, R. I. California salmon, 1876; Penobscot salmon, 1874.
Pawtuxet River. (See tributaries: North and South Branch.)
Paxton, Mass., Asnebumskitt Pond. Schoodic salmon, 1879.
Pea River, Uniou Springs, Ala. Shad, 1879.
Pearl Lake, Stearns County, Minn. California salmon, 1876, 1878.
Pearl River, Jackson, Miss. Shad, 1875, 1876, 1879.
Pearl River, Kosciusko, Miss. California salmon, 1876.
Pearl River. (See tributary: Forked Deer River.)

Peatwig Creek, Fort Edward, N. Y. California salmon, 1874.
Peavine Creek, Cass County, Mich. California salmon, 1875, 1879.
Pecatonica River. (See tributary: Knapp's Creek.)
Pedlar River, Amherst County, Va. California salmon, 1876.
Pee Dee River, S. C. California salmon, 1880.
Pee Dee River. (See tributary: Yadkin River.)
Pelican River. (See tributary: Detroit Lake.)
Pembroke, Me. Pemmaquan River. California salmon, 1879.
Pemigewasset River, Campton and Plymouth, N. II. California salmon, 1876, 1878, 1579.
Pemigewasset Riser, Franklin, N. H. Penobscot salmon, 1876.
Pemigewasset River, Livermore Falls, N. H. Penobscot salmon, 1876.
Pemigewasset Riser, Plymouth, N. H. California trout, 1880; Penobscot salmon, 1875.
Penmaquan River, Pembroke, Me. California salmon, 1879.
Penmaquan River, Me. Penobscot salmon, 1874, 1876.
Pennsborongh, W. Va., Hugh's River. California salmon, 1878.
Penn's Creek, Mifflinburg, Pa. California salmon, 1879.
Penn's Creek, Snyder County, Pa. California salmon, 1877.
Penobscot County, Me. (See Dexter, Me.; Enfield, Me.; Glenburn, Me.; Howland, Me.; Kingman, Me.; Mattawamkeas, Me.; Newport, Me.; Whitney Ridge, Me.; and Winn, Me.
Penobscot River, Me. Shad, 1877.
Penobscot River, Mattawamkeag, Me. Shad, 1880.
Penobscot River, tributary of, Danforth, Me. Penobscot salmon, 1875.
Penobscot River, tributary of, Kingman, Me. Penobscot salmon, 1875.
Penobscot River, tributary of, Me. Penobscot salmon, 1873.
Penobscot River, Winn, Me. Penobscot salmon, 1876.
Penobscot River. (See tributaries: Craig's Pond, Mattawamkeag River, Salmon Stream, Baskahegan, Passadumkear Liver, Seboois Stream, Piscataquis River, Pleasant River, Sebec Lake, and Madaceunk Stream.)
Pentucket Pond, Georgetown, Mass. Schoodic salmon, 1877.
Perch Lake, Walworth Co., Wis. California salmon, 1878.
Pere Marquette River. (See tributary: Big Star Lake.)
Perham, Minn., Pine Lakes. Penobscot salmon, 1875.
Perkins and Hess Poud, Grand Rapids, Mich. California salmon, 187a.
Perry County, Pa. (See Newport, Pa.)
Perry County, Pa., Trout Run. California salmon, 1877.
Perryman, Md., Bush River. Shad, $18 i 8,1880$.
Perry's Pond, Southport, Conn. Schoodic salmon, 1880.
Peru, N. Y., Salmon River. Penobscot salmon, 1875.
Peterborough, N. H., Cumningham Pond. Schoodic salmon, 1880.
Petersburgh, Va., Appomattox River. Shad, 1878, 1850.
Peterson Lake, Pope County, Minn. California salmon, 1878.
Petosky, Mich., Crooked Lake. Whitefish, 1876.

Petosky, Mich., Pine Lake. California salmon, 1876.
Petosky, Mich., Round Lake. Whitefish, 1876.
Petosky, Mich., Twin Lake. Whitefish, 1876.
Phalon Lake, Ramsey County, Minu. California salmon, 1876, 1877.
Phelps County, Mo. (See Jerome, Mo.)
Philadelphia County, Pa. (See Philadelphia, Pa.)
Philadelphia, Pa., Schuylkill River. California salmon, 1877.
Phœnix, Md., Gunpowder River. Califoruia salmon, 1876, 1877, 1880.
Phœnix, Md., stream. California trout, 1880, 1880, 1880.
Pickerel Lake, Freeborn Cuunty, Minu. Califurnia salmon, 1876, 1878.
Pickerel Lake, Kent County, Minu. California salmon, 1876.
Piedmont, Mo., Big Black River. Shad, 1879.
Piedmont, W. Va., Potomac River. California salmon, 1877; shad, 1876, 1879.
Pierce City, Mo., Capo Creek. California salmon, 1878.
Piermont, N. H., Tarlton Pond. Schoodic salmon, 1879.
Pierson, Montcalm County, Mich., Whitefish Lake. Schoodic salmon, 1878.

Pigeon River, Asheville, N. C. California salmon, 1878.
Pike County, Pa., several lakes. Schoodic salmon, 1878.
Pike County, Pa. (See Bushkill, Pa.)
Pikesville, Md., pond. Schoodic salmon, 1880.
Pikesville, Md., stream. California trout, 1880.
Pilot Mound, Minn., tributary of Root River. California salmon, 1878.
Pine City, Minu., tributaries of Saint Croix River. California salmon, 1877.

Pine County, Minn., Big Lake. California salmon, 1875.
Pine County, Minn., Saint Louis River. California salmon, 1875, 1875.
Piue County, Minn., Twin Lakes. California salmon, 1875.
Pine County, Minn. (See Pine City, Minn.)
Pine Creek, Cass Countr, Mich. California salmon, 1879.
Pine Creek, Pa. California salmon, 1875.
Pine Creek, Winoua County, Minn. California salmon, 1878.
Pine Lake, Petosky, Mich. California salmon, 1876.
Pine Lakes, Perham, Minn. Penobseot salmon, 1875.
Pine Meadow, Comn., Farmington River. California salmon, 1874, 1874.
Pine River, Mich. Penobscot salmon, 1874.
Pine River, Richland Centre, Wis. California salmon, 1877.
Pine Tree Lake, Washington Comity, Minn. California salmon, 1876.
Pipe Creek, New Windsor, Md. California salmon, 1878.
Pipe Creek, Union Bridge, Md. California salmon, 1874.
Pipe Creek, Wakefield, Md. California salmon, 1874, 1876.
Pipe Creek, Westminster, Md. California salmon, 1876.
Piscataquis County, Me. (See Brownville, Me.; Dover, Me.; Milo, Me.; Mount Kineo, Me.)
Piscataquis River, Dover, Me. Penobscot salmon, 1874.

Piscataquis River, Milo, Me. Penobscot salmon, 1874.
Pitman Creek, Somerset, Ky. Schoodic salmon, 1878.
Pitaquog Pond, Durham, Conn. Schoodic salmon, 1880.
Pittman Creek, Taylor County, Ky. California salmon, 1877.
Pittsburgh, N. H., Connecticut Lake. Schoodic salmon, 1879.
Pittsfield, Mass., Pontoosuc Lake. Schoodic salmon, 1876, 1877, 1878, 1880.

Pittsfield, N. H., Berry Pond. Schoodic salmon, 1880.
Placer County, Cal., Douner Lake. Schoodic salmon, 1878.
Placer County, Cal., Sereno Lake. Schoodic salmon, 1878.
Placer County, Cal., Tahoe Lake. Whitefish, 1877.
Plainville, Conn., Plainville Reservoir. Schoodic salmon, 1880.
Plainville Reservoir, Plainville, Conn. Schoodic salmon, 1880.
Platte County, Mo., Bean's Lake. California salmon, 1880.
Platte County, Mo., Sugar Lake. California salmon, 1880.
Platte River, Denver, Colo. Shad, 1872.
Platte River, Buchanan County, Mo. California sa!mon, 1880; shad, 1880.

Platte River. (See tributary: Smith Fork.)
Pleasant Lake, Stearns County, Minn. California salmon, 1876, 1877, 1878.

Pleasant River, Brownrille, Me. Penobscot salmon, 1874.
Plum River. (See tributary: Carroll Creek.)
Plum Tree Run, Wilna, Md. California tront, 1880.
Plymouth County, Mass. (See Bridgewater, Mass.; Duxbury, Mass.; East Bridgewater, Mass.; Marshfield, Mass.; Middleborough, Mass.; North Rochester, Mass.; Plymouth, Mass.; Rochester, Mass.; South Abington, Mass.; South Carver, Mass.; West Scituate, Mass.)
Plymouth, Mass., Halfway Pond. Schoodic salmon, 1876, 1877, 1878.
Plymouth, N. H., Baker's River. California salmon, 1878; California trout, 1880.
Plymouth N. H., Pemigerrasset River. California trout, 1880; Penobscot salmon, 1875.
Plymouth, N. H., tributary of Merrimack River. Penobscot salmon. Plymouth, N. C., Roanoke River. Shad, 1875.
Plymouth River, Iowa. California salmon, 1879.
Pocatapaug Lake, East Hampton, Comn. Schoodic salmon, 1879.
Pocomoke Bay, branch of, Crisfield, Ma. California salmon, 1876.
Pocomoke Bay, branch of, Newtown, Md. California salmon, 1876.
Pocomoke City, Md., Pocomoke River. Shad, 1877.
Pocomoke River, Mitchell's Bridge, Md. California salmon, 1878.
Pocomoke River, Newtown, Mrd. Shad, 1879.
Pocomoke River, Pocomoke City, Md. Shad, 1877.
Pocomoke River, Snow Hill, Md. California salmon, 1878; shad, 1878. Pocomoke River, Whaleyssille, Md. California salmon, 1879, 1880; shad, 1879.

Pohatcong River, N. J. Penobscot salmon, 1875.
Pohatcong River, Bloomsbury, N. J. California salmon, 1874.
Point of Rocks, Md., Potomac River. California salmon, 1875, 1876 ; shad, 1878, 1879, 1880.
Point Pleasant, Pa., Delaware River. Shad, 1874.
Pokagon Creek, Cass County, Mich. California salmon, 1878, 1879.
Pokagon Creek, Mich. California salmon, 1875, 1878.
Pokagon Creek, Pokagon, Mich. California salmon, 1875.
Pokagou Mich., Dowagiac Creek. Schoodic salmon, 1874.
Pokagon, Mich., Dowagiac River. California salmon, 1875.
Pokagon, Mich., Pokagon Creek. California salmon, 1875.
Pokagon, Mich., State Hatchery Pond. California salmon, 1873, 1875; California trout, 1880.
Polk County, Iowa. (See Des Moines, Iowa.)
Polk County, Minn. (See Crookston, Minn.)
Polk County, Wis. (See Clear Lake, Wis.)
Pollard, Ala., Escambia River. Shad, 1878.
Pollocksville, N. C., Treut River. Shad, 1879.
Pomeros, Iowa, Des Moines River. California salmon, 1875.
Pomeroy, Iowa, Twin Lakes. California salmon, 1875.
Pomme de Terre River, Stevens County, Minn. California salmon, 1877, 1877, 1877.
Pomme de Terre River. (See tributaries: Foss Lake and Big Stone Lake.)
Pomparaug River. Woodbury, Conn. Schoodic salmon, 1880.
Pontchartrain Lake. (See tributaries: Notalbany River, Amite River, and Tangipahoa River.)
Poutiac, Mich., Clinton River. California salmon, 1876.
Pontiac, Mich., Lord's Lake. California salmon, 1876; Penobscot salmon, 1873.
Pontoosuc Lake, Pittstield, Mass. Schoodic salmon, 1876, 1877, 1878, 1880.

Pope County, Minu., Lake Peterson. California salmon, 1878.
Pope County, Minn., Chippewa River. California salmon, 1878.
Poplar Bluff, Mo., Big Black River. Shad, 1879.
Poplar Bluff, Mo., Black River. Shad, 1876.
Portage County, Ohio. (See Kent, Ohio.)
Portage Lake, Dexter, Mich. Whitefish, 1876.
Portage River, Elmore, Ohio. California salmon, 1877.
Portage River, Kalamazoo County, Mich. California salmon, 1875.
Portage River, Three Rivers, Mich. California salmon, 1876.
Portage River. (See tributary: Baw Beese Lake.)
Portage, Wis., Silver Lake. California salmon, 1878.
Port Deposit, Md., ponds. California trout, 1880.
Port Deposit, Md., Susquehanna River. Shad, 1879.
Port Huron, Saint Clair County, Mich., Black River. California ealmon, 1875.

Port Huron, Saint Clair County, Mich., Saint Clair River. California salmon, 1875.
Potomac River, Cherry Run, Md. California salmon, 1877.
Potomac River, Cumberland, Md. Shad, 1876, 1877, 1850.
Potomac River, East Brauch, Washington, I. C. Shad, 1880 (21 items.)
Potomac River, Ferry Landing, Va. Shad, 1875, 1876.
Potomac River, Fort Pendleton, Md. California salmon, 1877, 1880.
Potomac River, Fort Washington, Md. Shad, 1878, 1880.
Potomac River, Freestone, Va. Shad, 1875, 1878.
Potomac River, Glymont, Md. Shad, 1878, 1878.
Potomac River, Harper's Ferry, W. Va. California salmon, 1879.
Potomac River, headwaters of, Md. Shad, 1876.
Potomac River, Jackson Uity, Va. Shad, 1873, 1875.
Potomac River, Keyser, W. Va. Califoruia salmon, 1876, 187s, 1880.
Potomac River, Little Falls, Md. Shad, 1879, 1880, 1880, 1850, 1880.
Potomac River, Md. Penobscot salmon, 1875 ; shad, 1878.
Potomac River, Moxley Point, Md. Shad, 1875, 1ss0, 1880, 1880.
Potomac River, North Branch, Fort Pendleton, Md. California salmon, 1876, 1876, 187S, 187S, 1878 ; Penobscot salmon, 1875.
Potomac River, North Branch, Md. Penobscot salmon, 1880.
Potomac River, North Branch, Swanton, Md. California salmon, 1878.
Potomac River, Piedmont, Md. California salmon, 1877.
Potomac Rirer, Piedmont, W. Va. Shad, 1876, 1879.
Potomac River, Point of Rocks, Md. California salmon, 1875, 1876 ; shad, 1878, 1879, 1880.
Potomac River, Potomac Point, Md. Shad, 1878.
Potomac River, Sir John's Run, Md. Califoruia salmon, 1875, 1877, 1878.
Potomac River, South Branch, Mr. Penobscot salmon, 1880.
Potomac River, South Branch, Romney, W. Va. Schoodic salmon, 1879; California salmon, 1876.
Potomac River, South Branch, W. Va. Schoodic salmon, 1879.
Potomac River, tributaries of, IFampshire Counts, W. Va. C'alifornia saimon, $1879,1880,1880$.
Potomac River, tributaries of, liomney, W. Va. California salmon, 18is.
Potomac River, Washington, D. C. Shad, 1878, 1880.
Potomac River. Weaverton Station, Ma. C'alifornia salmon, 1876, 1878, 1878.

Potomac Kiver, W. Va. California samon, 1878, 1875.
Potomac River. (See trihutaries: Antietam Creek, Conococheague River, Evitts Creek, Wills Creek, Savage Creek, North Fork, Owens Creek, Little Lorem, Cedar Creek, South Fork, Goose River, Sheriandoah River, and Conecocheague River.)
Pottawattamie County, Iowa. (See Council Blulls, Lowa.)
Pottawatomie County, Kans. (See Wamego, Kans.)
Potter County, Pa. Schoodic salmon, 1879.
Pottstown, Pa., Schuylkill River. California salmon, 1878.

Poynette, Wis., tributary of Wisconsin River. California sálmon, 1878.
Prairie Du Pont River, Belleville, Ill. California salmon, 1876, 1877.
Preston County, W. Va. (See Rowlesburgh, W. Va.)
Preston Lake, Renville County, Minn. California salmon, 1876, 1878, 1879.

Prichard's Run, Marion County, W. Va. Schoodic salmon, $18: 8$.
Prince Edward County, Va. (See Farmville, Va.; Prospect, Va.)
Prince George's County, Md. (See Cedar Point, Md.; Forestville, Md.; Fort Washington, Md.; Laurel, Md.; and Moxley Point, Md.)
Princess Anne, Md., Manokin River. Shad, 1878, 1879.
Prince William County, Va. (See Freestone, Va.; Freestone Point, Va.; Neabsco Mills, Va.)
Prior Lake, Scott County, Minn. California salmon, 1876, 1877, 1878.
Prospect, Va., Appomattox River. California salmon, 1880.
Providence County, R. I., Pawtuxet River. Penobscot salmon, 1875; Shad, 1874, 1875.
Providence County, R. I., Blackstone River. Shad, 1874, 1877.
Providence County, R. I. (See Burrellville, R. I., Foster, R. I.)
Pulaski County, Ark. (See Little Rock, Ark.)
Pulaski County, Ky., Cumberland River. Shad, 1878.
Pulaski County, Ky. (See Somerset, Ky.)
Pulaski County, Va., New River. Schoodic salmon, 1880.
Pulaski County, Va. (See Central, Va.)
Pulaski Lake, Wright County, Minn. California salmon, 1877.
Pushaw Pond, Glenburn, Me. Schoodic salmon, 1879.
Put-in Bay, Ohio, Lake Erie. California salmon, 1877; Penobscot salmon, 1875; Schoodic salmon, 1876.
Putuam, Conn., Thames River. Shad, 1874.
Putnam, Livingston County, Mich., Half Moon Lake. California salmon, 1878.
Putnam, Livingston County, Mich., Patterson Lake. California salmon, 1878.

Putty Lake, Kalamazoo County, Mich. California salmon, 1875.
Quactuto River, Arkadelphia, Ark. California salmon, 1878, 1878, 1878.
Quamapowitt Lake, Wakefield, Mass. Schoodic salmon, 1877, 1878, 1879.

Quasepaug Lake, Middlebury, Conn. Schoodic salmon, 1880.
Queen Anne County, Md. (See Centreville, Md.)
Queen's County, N. Y., tributary of Long Island Sound. California salmon, 1874.
Queen's County, N. Y. (See Roslyn, N. Y.)
Quinnebaug River, Canterbury, Conn. Shad, 1875.
Quinnepiac River, Conn. California salınon, 1874.
Quobaug Pond, Palmer, Mass. Penobscot salmon, 1874.
Racine County, Wis., Brown's Lake. California salmon, 1877, 1879.
Raccoon Creek, Gloucester County, N. J. California salmon, 1879.

Raccoon Creek, N. J. California salmon, 1877.
Raccoon River, Iowa. California salmon, 1875, 1878.
Raisin Centre, Mich., Southard's Lake. California salmon, 187 S.
Raisin River, Brooklyn, Mich. California salmon, 1875.
Raisin River, Monroe, Mich. California salmon, 1875, 1879; shad, 1873.
Raisin River, Somerset, Mich. California salmon, 1875.
Raisin River, tributaries of, Lenawee County, Mich. California salmon, 1875.

Raisin River. (See tributaries: Palmyra Pond and Southard's Lake.)
Raleigh, N. C., Neuse River. Shad, 1877, 1878, 1879.
Raleigh, N. C., pouds. California salmon, 1879.
Ralston, Pa., Trout River. Penobscot salmon, 1880.
Ramsey County, Minn., Bald Eagle Lake. California salmon, 1876.
Ramsey County, Minn., Bass Lake. California salmon, 1875; Penob. scot salmon, 1875 ; Schoodic salmon, 1875.
Ramsey County, Minn., Big Butts Lake. California salmon, 1876 .
Ramsey County, Minn., Como Lake. California salmon, 1875, 1876, 1877; Penobscot salmon, 1875; Schoodic salmon, 1875.
Ramsey County, Minn., Gervais Lake. Califorma salmon, 1875.
Ramsey County, Minn., Halloran Lake. California salmon, 1876.
Ramsey County, Minn., Johanna Lake. California salmon, 1875, 1876, 1877; Penobscot salmon, 1875 ; Schoodic salmon, 1875.
Ramsey County, Minn., Josephine Lake. Ca'ifornia salmon, 1876, 1876, 187%.
Ramsey County, Minn., Kingsley Lake. California salmon, 1876.
Ramsey County, Minn., Krameroth Pond. California salmon, 1878.
Ramsey County, Minn., Little Butts Lake. California salmon, 18 6.
Ramsey County, Minn., McCann's Lake. California salmou, 15i6, 1877.
Ramsey County, Minn., McCannis Lake. Schoodic salmon, 1878.
Ramsey County, Miun., Phalon Lake. California salmon, 1576, 1577.
Ramsey County, Minn., Rice's Poud. California salmon, 1577; Schoodic salmon, 1878.
Ramsey Connty, Minn., Saint Croix River. California salmon, 1875, 1875, 1875, 1875.
Ramsey Counț, Minn., Turtle Lake. California salmon, 1876.
Ramsey County, Minn., Vadnais Lake. California salmon, 1576.
Ramsey County, Minn., White Bear Lake. California salmon, 1875, 1876; Penobscot salmon, 1875; Schoodic salmon, 1875, 1877.
Ramsey County, Minn. (See Saint Paul, Minn.)
Randolph County, Wr. Va., Tygert's Valley River. California salmon, $1879,1880$.
Randolph County. W. Va., tributaries of Tygart's Valley River. Schoodic salmon, 1875.
Rapiul Aun River, Rapid Aun Station, Va. Califormia salmon, 1878, 1859.

Rapid Amn Station, Va.. Rapid Aun River. California salmon, 18:8, 1879.

Rapid River, Kalkaska County, Mich. California salmon, 1876.
Rappahannock River, tributary of, Va. California salmon, 1876.
Rappahannock River. (See tributary: Rapid Ann River.)
Raritan, N. J., Pattenburgh Creek. Califoruia salmon, 1874.
Raritan River, North Branch, Somerset County, N. J. California salmon, 1879.
Raritan River, South Branch of, South Branch, N. J. Penobscot salmon, 1875.
Raritan River. (See tributaries: Pattenburgh Creek, Salmon Run, and South Branch of Raritan River.)
Raritan River, tributary of, N. J. Califoruia salmon, 1874, 1875 ; Penobscot salmon, 1874.
Raymond, N. H., Jones Pond. Schoodic salmon, 1879.
Reading, Kans., Marais des Cygnes River. Shad, 1879 ; California salmon, 1881.
Reading, Pa., Schuylkill River. California salmon, 1875, 1878.
Rebecca Lake, Hennepin County, Minn. California salmon, 1878.
Rectorstown, Va., Goose Creek. California salmon, 1876.
Red Brook, Mass. California salmon, 1876.
Red Brook, tributary of, Mass. Penobscot salmon, 1873.
Red Brook. (See tributary : Quobaug.)
Red Cedar River. (See tributary : Fish Lake.)
Reading, Kans., Osage River. California salmon, 1878, 1879.
Redding, Cal., tributary of Sacramento River. Penobscot salmon, 1874.
Red Lake River, tributary of, Crookston, Minn. California salmon, 1880.

Red River, Fulton, Ark. Shad, 1877, 1879.
Red River of the North, Breckenridge, Minn. California salmon, 1875; Penobseot salmon, 1875 ; Schoodic salmon, 1875.
lied River of the North, Moorhead, Minn. Cailifornia salmon, 1877.
Red River of the North. (See tributaries: Buffalo River, Detroit Lake, and Perham.)
Red River of the North, Wilkin County, Minn. California salmon, 1878.
Red Vermillion River, Centralia, Kans. California salmon, 1878, 1879.
Red Wing, Minn., Mississippi River. California salmon, 1876.
Red Wing, Minn., Skillman Pond. California salmon, 1877; Schoodic salmon, 1877.
Reed Cits, Mich., Hersey Creek. California salmon, 1874.
Reed Creek, Wythe County, Va. California salmon, 1879.
Reed Lake, Grand Rapids, Mich. California salmon, 1876.
Reed's Pond, Marshall County, Mich. Schoodic salmon, 1876.
Reese Pond, Calhoun County, Mich. Schoodic salmon, 1876.
Reisterstown, Md, lake tributary to Patapsco Falls. Schoodic salmon, 1879.

Reisterstown, Md., pond. Schoodic salmon, 1878.
Relay Station, Baltimore County, Md., Patapsco River. Shad, 1879.

Reno County, Kans. (See Hutchinson, Kans.)
Reuo, Nev., Truckee River. California salmon, 1879.
Renville County, Minn., Lake Alley. California salmon, 1879; Schoodie salmon, 1879.
Renville County, Minn., Preston Lake. California salmon, 1876, 1879; Schoodic salmon, 1879.
Republican River, Clay Centre, Kans. California salmou, 1880.
Republican River, Clifton, Kans. Califormia salmon, 1880.
Republican River, Concordia, Kaus. California salmon, 1878, 1879; California trout, 1880.
Republican River, Davis County, Kans. Shad, 1879.
Republican River, Junction City, Kaus. California salmon, 1878, 1879.
Resaca, Ga., Coosa River. Calitornia salmon, 1878; shad, 1879.
Reservoir, Richmond, Va. California salmon, 1879.
Reservoir, West Hartford, Conn. Schoodic salmon, $18 i 9$.
Rice County, Minn., Barry Iunt's Lake. Penobseot salmon, 1875.
Rice County, Minn. California salmon, 1876.
Rice Countr, Minn., Cannon River. California salmon, 1878.
Rice County, Minn., Cameron River. California salmon, 1575; Schoodic salmon, 18%.
Rice County, Minu., Cedar Lake. California salmon, 1875, 1876, 1877, 1878; Penobscot salmon, 1875; Schoodic salmon, 1879.
Rice County, Minn., Circle Lake. California salmon, 1878.
Rice County, Minn., Dudley Lake. California salmon, 1876, 1878; Penobscot salmon, 18 -5.
Rice County, Minn., Faribault Lake. Penobseot salmom, 1575; Scboodic salmon, 1875.
Rice County, Min:., Freuch Lake. California salmon, 1576, 1877, 1878.
Rice County, Minn., Gillmore's Creek. California salmon, 1878.
Rice County, Minn., Horse Shoe Lake. California salmon, 1875.
Rice Comnty, Mim., Jackson Lake. Penobscot salmon, 1875.
Rice Comuty, Minn., lake. California salmon, 1s76; Penobscot salmon, 1875.

Rice County, Mimn, Minnesota River. California salmon, 1875.
Rice Comnty, Minn., Northfield Lake. Schoodic salmon, 1875, 1878.
Rice Counts, Minn., Roberts Lake. California salmon, 1876, 1877, 1878; Penobscot salmon, 1875; Schoodie salmon, 1879.
Rice County, Minn., Shields Lake. California salmon, 1876, 18.5.
Rice Connty. Mimm, Spring Creek. California salmon, 1878.
Rice Countr, Mim., Union Lake. California salmon, 1878.
Rice County, Minn. (See Faribault, Minn.; Northfield, Mimn.)
Rice's Pond, Ramsey Counts, Minn. California salmon, 1sī ; Schoodic sahnon, 1878.
Rich County, Utah, Upper Bear River. California salmon, 1876, 1876.
Richfield, Wis., Cedar Creek. California salmon, 1879.
Richland Centre, Wis., Pine River. California salmon, 1877.

Richland County, La., Bayon Mason. Shad, 1879.
Richland County, La., Bœuf River. Shad, 1879.
Richlanı County, S. C.. Wateree River. Shad, 1880; California salmon, 1880.
Richland County, S. C. (See Columbia, S. C.)
Richland, Mich., Gull Lake. California salmon, 1878.
Richland, Mich., Long Lake. California salmon, 1878.
Richland, Mich., Parker Lake. Schoodic salmon, 1876.
Richmond, McHenry County, Ill., Twin Lakes. Schoodic salmon, 1878.
Richmond, Washington County, R. I., Beach Pond. Schoodic salmon, 1876.

Richmond, Va., James River. Shad, 1878.
Richmond, Va., Reservoir. California salmon, 1879.
Ridgefield, Conn., Round Pond. Schoodic salmon, 1879.
Rifle River, Crawford, Mich. California salmon, 1876.
Rifle River, Bay County, Mich. California salmon, 1875.
Riley County, Kans. (See Manhattan, Kaus.)
Rindge, N. H., Emerson Pond. Schoodic salmon, 1880.
Ringwood, N. J., Sheplierd's Lake. Schoodic salmon, 1879.
Ripley County, Mo. (See Doniphan, Mo.)
Ripley, Miss., Tippah River. Shad, 1879.
Ripley Lake, Meeker County, Minn. California salmon, 1877.
Ritchie County, W. Va. (See Pennsborough, W. Va.)
Rivanna River, Shadwell, Va. Shad, 1878.
Riverton, Va., Shemandoah River. Shad, 1878.
Roanoke County, Va. (See Salem, Va.)
Roanoke River, Alleghany Springs, Va. Calitornia salmon, 1880.
Roanoke River, Big Spring Depot, Va. California salmon, 1880.
Roanoke River Light, N. C. (See Aroca, N. C.)
Roanoke River, Moutgomery, White Sulphur Springs, Va. California salmon, 1880.
Roanoke River, Plymouth, N. C. Shad, 1878.
Roanoke River, Salem, Va. California salmon, 1880; shad, 1878.
Roanoke River, tributary of, Salem, Va. California salmon, 1874.
Roanoke River, tributary of, Va. California salmon, 1876.
Roanoke River, Weldon, N. C. Shad, 1878, 1879, 1879, 1879.
Roanoke River. (See tributaries: Town Creek, Staunton River, and Dan River.)
Roberts Lake, Northfiedr, Minn. California salmon, 1877.
Roberts Lake, Rice County, Minn. California salmon, 1876, 1877, 1878;
Penobscot salmon, 1875; Schoodic salmon 1879.
Robertson County, Tex. (See Hearne, Tex.)
Robeson County, N. C. (See Branchville, N. C.)
Rochester, Mass., Mary's Pond. Schoodic salmon, 1879, 1880.
Rochester, Mich., private poud. California salmon, 1878.
Rochester, Minu., Orono River. California salmou, 1877.

Rochester, Minn., South Branch of Zumbro River. California salmon, 1877.

Rockaway River, Dover, N. J. Penobscot salmon, 1875.
Rockaway River, Somerset County, N. J. California salmon, 1879.
Rockbridge County, Va., Buffalo Creek. Schoodic salmon, 1877.
Rockbridge County, Va., Irish Creek. Schoodic salmon, 187π.
Rockbridge County, Va., tributary of James River. California salmon, 1876.

Rockbridge County, Va. (See Alone, Va.; Buffalo Mills, Va.; Colliers town, Va.; Kerr's Creek Bridge, Va.; Lexington, Va.; Monmouth Church, Va.)
Rockeastle County, Ky., Hardin Durham's Branch. California salmon, 1877.

Rockeastle County, Ky., Round Stoue Creek. Califoruia salmon, 1877.
Rock Church, Cecil County, Md., Little Elk River. California salmon, 1878.

Rock County, Wis., Janesville, Wis., Milton, Wis.
Rock Creek, Rockville, Md. Califormia trout, 1880.
Rockdale County, Ga. (See Couyers, Ga.)
Rockford, Ill., Rock River. California salmon, 1874, 1875, 1879; shad, 1874, 1875, 1878.
Rockford, Ill., Kent's Creek. California salmon, 1877.
Rock Hill, S. C., Uatawba River. Shad, 1880.
Rockingham County, N. H. (See Raymond, N. H.)
Rockingham County, N. C., Moyo River. Schoodic salmon, 1878.
Rockingham, Vt., Saxton River. Penobscot salmon, 1874.
Rockingham County, Va. (See Burnt Bridge, Va.)
Rock Pond, Georgetown, Mas:. Schoodic salmon, 1877.
Rock River, Rockford, Ill. California salmon, 1874, 1875, 1879; shad, 1874, 1875, 1878.
Rock River, tributaries of, IIl. California salmon, 1876, 1877.
Rock River. (See tributaries: Madison Lake, Sugar River, Pecatonica River, Knapp's Creek, Brown's Creek, Kent's Creek.)
Rockville, Conn., Snipsic Lake. Schoodic sahmon, 1876, 1877, 1878, 1879.
Rockville, Mdl., Rock Creek. California trout, 1880.
Rocky Mount, N. C., Tar River. Shad, 1879, 1879.
Rocky Run, Md. Ualifornia trout, 1880.
Rogers Lake, Lyme, Comn. Schoodic salmon, 1876, 1878, 1880.
Rogers Pond, Branford, Comn. Schoodic salmon, 1877.
Rogers River, Wayne County, Mich. California salmon, 1879.
Roland Lake, pond tributary to, Green Spring, Md. California trout, 1880; Schoodic salmon, 1880.
Rolling Fork, North and East Forks of, Marion County, Ky. California salmon, 1877.
Rolling Fork of Salt River, Nelson County, Ky. California salmon, 187 T.

Rome City, Ind. Rome City Lake. Whitefish, 1876.
Rome City Lake, Rome City, Ind. Whitefish, 1876.
Rome, Ga., Coosa River. Shad, 1875.
Ro e, N. Y., Mohawk River. Penobscot salmon, 1875.
Romeo, Mich., private ponds. California salmon, 1879.
Romney, W.Va., Mill Run. California trout, 1880.
Romney, W.Va., Pond at Institution for Deaf, \&e. Schoodic salmon, 1879, 1879.
Romney, W. Va., South Branch of Potomac River. Schoodic salmon, 1879.

Romney, W. Va., South Fork of Potomac River. California salmon, 1876.
Konceverte, W. Va., Greenbrier River. California salmon, 1878, 1879, 1880 ; shad, $1873,1879$.
Roney Lake, Clare County, Mich. Schoodic salmon, 1878.
Roosevelt Creek, Sayville, N. Y. California salmon, 1874.
Root River, Olmstead County, Minn. California salmon, 1877, 1877.
Root River, Middle Branch of, Fillmore County, Minn. California salmon, 187 s.
Root River, tributary of, Lanesborough, Minn. California salmon, 1876.
Root River, tributary of, Pilot Mound, Minn. California salmon, 1878.
Root River, tributary of, Spring Valley, Minn. California salmon, 1878.
Root River, North Branch of, Fillmore County, Minn. California salmon, 1878, 1878.
Root River, South Brauch of, Fillmore County, Minn. California salmon, 1878.
Roscommon County, Mich., Au Sable River. Penobscot salmon, 1873.
Roscommon County, Mich., Higgins Lake. California salmon, 1879; Penobscot salmon, 1874; Schoodic salmon, 1880.
Rose Lake, Le Roy, Mich. Whitefish, 1876.
Roslyn, N. Y., streams. California salmon, 1876, 1877.
Ross, Mich., lake tributary to Kalamazoo River. California salmon, 1873.

Rouge River, Dearborn, Mich. California salmon, 1875.
Rouge River, Northville, Mich. California salmon, 1876; Schoodic sal-mon, 1878; whitefish, 1876, 1876, 1876.
Rouge River, Oakland County, Mich. California salmon, 1875.
Ronge River. ' (See tributary: Yerkes Lake.)
Rongh Creek, Hardin County, Ky. California salmon, 1877.
Roundaway Creek, R. R. crossing, Madison County, La. Shad, 1879.
Round Lake, Anoka County, Minn. California salmon, 1877, 1877.
Round Lake, Chelsea, Mich. Whitefish, 1876.
Round Lake, Chenango County, N. Y. California salmon, 1874.
Round Lake, Clinton County, Mich. California salmon, 1875.
Round Lake, Linden, Mich. Whitefish, 1876.
Round Lake, Noble County, Minn. California salmon, 1880.
Round Lake, Oceana Connty, Mich. California salmon, 1879.

Round Lake, Petosky, Mich. Whitefish, 1876.
Round Lake, Washington County, Minn. Cahfornia salmon, 1876.
Round Pond, Ridgefield, Comn. Schoodic salmon, 1879.
Round Stone Creek, Rockcastle County, Ky. Californiz salmon, 1877.
Rowan County, N. C., Yadkin River. Shad, 1877.
Rowan County, N. O. (See Salisbury, N. C.)
Rowlandville, Md., Octorora Creek. California salmon, 1576.
Rowlesburgh, W. Va., Cheat River. Shad, 1879.
Royalton, Vt., White River. Penobscot salmon, 1874.
Rush Creek, Filhnore County, Minn. California salmon, 1878.
Rush Lake, Chisago Connty, Minn. California salmon, 1877.
Rush Lake, Sherburne County, Minn. California sahon, 1878.
Russell Creek, Adair County, Ky. California salmon, 1876.
Rutland County, Vt. (See Castleton, Vt.; Hubbardton, Vt.)
Sabine River, Mineola, Tex. Shad, 1879.
Sacramento River, Tehama, Cal Shad, 1873, 1876, 1877, 1878, 1880.
Sacramento River, tributary of, Redding, Cal. Penobsent salmon, 1874.
Sacramento River, tributary of, San Francisco. Cal. California salmon, 1876.

Sacramento River. (See tributary: McCloud River.)
Saginaw County, Mich., Cass River. California sahnon, 1879.
Saginaw River. (See tributaries: Flint River, Tattabawassee River, and Cass River.)
Saint Clair County, Ill. (See Belleville, Ill.)
Saint Clair County, Mich. (See Port Huron, Mich.)
Saint Clair Lake (See tributaries: Clinton River, Lord's Lake, Black River, Orchard Lake, Wall's Lake, Whitmore Lake, Gun Lake, Barrier's Lake, and Diamond Lake.)
Saint Clair River, Port Huron, Mich. California salmon, 1875.
Saint Croix River, Chisago County, Minn. California salmon, 1875, 1s75.
Saint Croix River, lamsey County, Minu. California samon, 1875, 1875, 1875.
Saint Croix River, Stillwater, Minn. California salmon, 1876.
Saint Croix River, tributary of, Me. Penobscot salmon, 1873.
Sam Croix River, tributaries of. Pine City, Mimn. Calitornia salmon, 1877.

Saint Croix River. (See tributaries: Keen's Lake Stream, Schoodic Lakes, Silver Lake, and Emo Lake.)
Saint Francis River, Arcadia, Mo. Shad, 1879.
Saint Francis River, Wayne Comnty, Mo. California salmon, 1879.
Saint Genevieve County, Mo. (See Saist Mary's, Mo.)
Saint James Lake, Watonwan County, Minn. California salmon, 1877.
Saint James, Md., pond. California trout, 1880.
Saint Johnsbury, Vt., small ponds tributary to Connecticut River. Schoodie salmon, 1878.

Saint Jobn's Lake, Stearns County, Minn. California salmon, 1878.
Saint Joseph County, Mich. (See Colon, Mich.; Three Rivers, Mich.)
Saint Joseph, Mich., North Branch Saint Joseph's River. Penobscot salmon, 1873.
Saint Joseph, Mich., ponds. California salmon, 1875, 1878.
Saint Joseph, Mo., Missouri River. Shad, 1877; California salmon, 1880. Saint Joseph River, Elkhart, Ind. Shad, 1874.
Saint Joseph Rirer, headwaters of, Hillsdale County, Mich. Penobscot salmon, 1873.
Saint Joseph River, Niles, Mich. California salmon, 1875; shad, 1873. Saint Joseph River, North Branch, Mich. Penobscot salmon, 1873, 1873, 1873.
Saint Joseph River, Three Rivers, Mich. California salmon, 1876.
Saint Joseph River, tributaries of, Mich. Penobscot salmon, 1873.
Saint Joseph River. (See tributaries: Butternut Creek, Sand Creek, Portage River, Indian Lake, Cold Water Lake, Lake of the Woods, Morrison Lake, Barrow Lake, Muncy Lake, Diamond Lake, Sturgeon Lake, Indian Creek, Dowagiac River, Williams Creek, Pearine Creek, Pokagon Creek, Miller Creek.)
Saint Louis County, Minn., Fond du Lac. Schoodic salmon, 1875.
Saint Louis County, Minn. (See Duluth, Minn.; Fond du Lac, Mind.)
Saint Louis County, Mo. (See Saint Louis, Mo.)
Saint Louis, Mo., Mississippi River. Shad, 1877, 1878.
Saint Louis River, Fond du Lac, Minn. California salmon, 1878.
Saint Louis River, Pine County, Minn. California salmon, 1875, 1875.
Saint Malachy's Lake, Swift County, Minn. California salmon, 1877.
Saint Marks, Cecil County, Md., Big Elk River. California salmon, 1879.

Saint Mary's, Mo., Saline River. California salmon, 1879.
Saint Mary's Lake, Swift County, Minn. Calitornia salmon, 1877.
Saint Mary's River, tributary of, Mich. Penobscot salmon, 1874.
Saint Michael's River, Berlin, Md. Shad, 1879.
Saint Paul and Pacific Railroad Streams, Minn. California salmon, 1876.
Saint Paul, Minn., Mississippi River. Shad, 1872, 1874, 1877.
Saint Peter, Minu., Minnesota River. Penobscot salmon, 1875.
Salamanca, N. Y., Allegheny liver. Sharl, 1872.
Salemi, Comn, Gardiner's Lake. Schoodic salmon, 1876, 1877, 1878, 1879.

Salem County, N. J. (See Allowaystown, N. J.; Woodstown, N. J.)
Salem Creek, Woodstown, N. J. California salmon, 1876.
Salem, Mass., Suntang Lake. Schoodic salmon, 1878.
Salem, Mass., Wenham Lake. Schoodic salmon, 1878.
Salem, Va., Lake Spring. Schoodic salmon, 1880.
Salem, Va., Roanoke River. California salmon, 1880; shad, 1878.
Salem, Va., tributary of Roanoke River. California salmon, 1874.
Salina, Kans., Saline River. California salmon, 1878, 1879, 1880.

Saline County, Ark., Saline River. Shad, 1879.
Saline County, Ark. (See Benton, Ark.)
Saline County, Kans., Solomon River. Shad, 1879.
Saline County, Kans. (See Brookville, Kans.; Salina, Kans.)
Saline River, Beuton, Ark. Shad, 1878; California salmon, 1878, 1878. Saline River, Saint Mary, Mo. California salmon, 1879.
Saline River, Saline County, Ark. Shad, 1879.
Saline River, Salina, Kans. California salmon, 1878, 1879, 1880.
Salisbury, Ala., Tallapoosa River. Shad, 1878.
Salisbury, Bucks County, Pa., Aquetong Lake. Schoodic salmon, 1878. Salisburs, Conn., Twin Lakes. Schoodic salmon, 1877, 1878.
Salisbury, Md., Wicomico River. California salmon, 1879, 1879, 1880, 1880; shad, 1877, 1878, 1879.
Salisbury, N. C., Yadkin River. California salmon, 1877, 1877, 1879.
Salisburs, Rowau County, N. C., ponds tributary to Yadkin River. Schoodic salmou, 1878; shad, 1878, 1879.
Salisbury, Vt., Dunmore Lake. Schoodic salmon, 1876.
Salmon Creek, A roca, N. C. Shad, 1878, 1878, 1879, 1879.
Salmon Creek, Mich. Penobscot salmon, 1874.
Salmon Creek, The Mill, N. C. Shad, 1878.
Salmon Falls River. (See tributary: Newechewaurrock Lake, Tri Echo Lake, Lorewell's Pond, Cook's Pond.)
Salmon Lake, Cass County. California salmon, 1879.
Salmon River, Granby, Conn. Schoodic salmon, 1880.
Salmon River, N. Y. California salmon, 1873.
Salmon River, N. Y. Penobscot salmon, 1873.
Salmon River, Peru, N. Y. Penobscot salmon, 1875.
Salmon River, Sand Bank, N. Y. California salmon, 1874.
Salmon Run, N. J. Penobscot salmon, 1873.
Salmon Stream, Me. Penobscot salmon, 1874, 1875.
Salt Creek, Mexico, Mo. Shad, 1877.
Salt Lake. (See tributaries: Jordan River, Ogden and Weber Rivers, and Upper Bear River.)
Salt Lake County, Utah. (See Jordan, Utah.)
Saltonstall Lake, East Haven, Comn. Schoodic salmon, 1877, 1878, 1579.

Salt River, Shelby County, Mo. California salmon, 1880; shad, 1880.
Salt River, Shepherdsville, Ky. Shad, 1879, 1880.
Saltville, Va., North Fork, Holstein. Schoodic salmon, 1880.
Saluda River, Greenville, S. C. California salmon, 1880.
Saluda River, S. C. California salmon, 1880.
Sampson County, N. C., Six Runs. Shad, 1877.
Sampson County, N. C. (See Six Runs, N. C.)
San Antonio River, San Antonio, Tex. Shad, 1879.
San Antonio, Tex., San Antonio River. Shad, 1879.
Sand Bank, N. Y., Beaver Creek. California salmon, 1874.
S. Mis. 110-64

Sand Bank, N. Y., Salmon River. California salmon, 1874.
Sand Creek, Hillsdale County, Micl. Califoruia salmon, 1873.
Sand Lake, Ill., Deep Lake. California salmon, 1876.
Sandstone Creek, Mich. California salmon, 1874.
Sandusky County, Ohio. (See Fremont, Ohio.)
Sandusky River, Bucyrus, Ohio. California salmon, 1874.
Sandusky River, Fremont, Ohio. California salmon, 1880; Penobscot salmon, 1875; Schoodic salmon, 1876; shad, 1874, 1878, 1879, 1880.
Sandwich, Mass., Spectacle Pond. Schoodic salmon, 1876, 1877, 1880.
Sandwich, N. H., Adams' Pond. Schoodic salmon, 1880.
Sandwich, N. H., North Pond. Schoodic salmon, 1880.
Sandwich, N. H., pond. Schoodic salmon, 1879.
Sandy Branch, Cecil County, Md., Sassafras River. California salmon, 1879.

Sandy Creek, Orleans County, N. Y. California salmon, 1874.
Sandy Hook, Conn., Halfway River. Schoodic salmon, 1880.
Sandy Lake, Cass County, Minn. Schoodic salmon, 1879.
Sandy Poud, Lincoln, Mass. Schoodic salmon, 1876, 1877.
Sandy Spring, Md., pond. California salmon; Schoodic salmon, 1880.
Sandy Spring, Md., stream. California trout, 1880.
Saudy Spring, Md., pond. Schoodic salmon, 1880.
San Francisco, Cal., Laguna Honda. Schoodic salmon, 1878.
San Francisco, Cal., tributary of Sacramento River. California salmon, 1876.
San Francisco, Cal., Woodward's Aquarium. Schoodic salmon, 1878.
San Francisco County, Cal. (See San Francisco, Cal.)
San Jose Water Co's Reservoir, Cal. Whitefish, 1879.
San Marcus River, Luling, Tex. Shad, 1879.
Sau Mateo County, Cal., Felch's Lake. Schoodic salmon, 1878.
Santa Clara County, Cal., San Jose Water Company's Reservoir. Whitefish, 1879.
Santee River. (See tributaries: Broad River, Catawba River, Broad River, and Saluda River.)
Sappington, Anne Arundel County, Md., tributary of Patuxent River. 1879.

Sequoit Creek, N. Y. California salmon, 1874.
Saranac River, West Plattsburgh, N. Y. Penobscot salmon, 1875.
Sassafras River, Cecil County, Md. California salmon, 1880.
Sassafras River, Frederick, Md. California salmon, 1876.
Sassafras River, Md. Shad, 1877.
Sassaftas River, Middletown, Md. Shad, 1879.
Sassafras River, Saudy Branch, Md. California salmon, 1879.
Satucket River, East Bridgewater, Mass. Schoodic salmon, 1877, 1878.
Saugatuck River, Conn. California salmon, 1876.
Saugatuck River, Westport, Conn. Penobscot salmon, 1875.
Saugatuck River. (See tributary: Main River.)

Saugus River, Mass. California salmon, 1876, 1877.
Sauk County, Wis., Spirit Lake. California salmon, 1877.
Sauk Lake, Todd County, Minn. California salmon, 1877.
Sauk River, Stearns County, Minn. California salmon, 1877.
Sauk River. (See tributaries: Osakin Lake and Pearl Lake.)
Saunders' Spring Branch, Scott County, Ky. California salmon, 1876.
Sautaug Lake, Lynnfield, Mass. Schoodic salmon, 1879.
Savage Creek, Franklinville, Md. California salmou, 1874.
Savage, Md., Middle Patuxent River. California salmon, 1878, 1878, 1878, 1879.
Savage, Md., Patuxent River. California salmon, 1880; shad, 1879, 1880 (5 items).
Savage, Md., Little Patuxent River. California salmon, 1875, 1876, 1876, 1876.
Savage, Md., Patuxent River. California salmon, 1874, 1876, 1879.
Savage River, Swanton, Md. California salmon, 1877.
Savannah River, tributary of, Toca, Ga. California salmon, 1877.
Savannah River. (See tributary : Tugaloo River.)
Saxton River, Rockingham, Vt. Penobscot salmon, 1874.
Sayville, N. Y., Roosevelt Creek. California salmon, 1874.
Sayville, N. Y., Willow Brook. California salmon, 1876, 1877.
Scantic River, Windsor, Coun. Schoodic salmon, 1880.
Schell City, Mo., Osage River. California salmon, 1880; shad, 1880.
Schoodic Lakes, Dobsis Stream, Me. Penobscot salmon, 1874.
School Section, Washington County, Minn. California salmon, 1876.
Schuylkill County, Pa., Schuylkill River. Schoodic salmon, 1878.
Schuylkill County, Pa. (See Swatara, Pa.)
Schuylkill River, Philadelphia, Pa. California salmon, 1877.
Schuglkill River, Pottstown, Pa. California salmon, 1878.
Schuylkill River, Reading, Pa. California salmon, 1875, 1878.
Schuylkill River, Schuylkill County, Pa. Schoodic salmon, 1878.
Scintman's Mill, Cecil Countr, Md., Big Elk River. California salmon, 1878, 1880.
Scioto River, Columbus, Ohio. Shad, 1875, 1876.
Scioto River. (See tributary: Licking Reservoir.)
Scituate Pouds, West Scituate, Mass. Schoodic salmon, 1879, 1879.
Scotch Hall Fishery, N. C. (See Avoca, N. C.)
Scott County, Iowa. (See Big Rock, Iowa; Dixon, Iowa.)
Scott County, Ky., Big Spring Branch. California salmon, 1876.
Scott County, Ky., Elkhorn Creek. Shad, 1878.
Scott County, Ky., Cane's Run. California salmon, 1876.
Scott County, Ky., Lane's Run. California salmon, 1876.
Scott County, Ky., McConnell's Run. California salmon, 1876.
Scott County, Ky., Saunders' Spring Branch. California salmon, 1876.
Scott County, Ky., Thomas' Spring Branch. California salmon, 1876.
Scott County, Minn., Credit Lake. California salmon, 1878.

Scott County, Minn., lake. California salmon, 1876.
Scott County, Minn., O'Dowd's Lake. California salmon, 1877, 1878.
Scott County, Minn., Prior Lake. California salmon, 1876, 1877, 1877, 1877, 1878.
Scott County, Minn., Spring Lake. California salmon, 1878.
Scranton, Pa., Paupock Lake. Schoodic salmon, 1879.
Scranton, Pa., Tobyhanna Lake. Schoodic salmon, 1879.
Seaford, Del., Little Nanticoke River. California salmon, 1850.
Seaford, Del., Nanticoke River. California salmon, 1876, 1878, 1880; shad, 1877, 1879, 1880.
Searle's Pond, Foster, R. I. Schoodic salmon, 1876.
Sebec Lake, Me. Penobscot salmon, 1874.
Seboois River, Howland, Me. Penobscot salmon, 1875.
Seboois River, Howland, Me. Penobscot salmon, 1874.
Seboois River, Whitney Ridge, Me. Penobscot salmon, 1874.
Seguin, Tex., Guadalupe River. Shad, 1879.
Seneca, S. C., Seneca River. California salmon, 1878; shad, 1880.
Seneca County, N. Y., Seneca Lake. California salmon, 1874.
Seneca Lake, Seneca County, N. Y. California salmon, 1874.
Seneca River, Seneca, S. C. California salmon, 1878; shad, 1880.
Seneca River, S. C. California trout, 1880; California salmon, 1880,
1880; Schoodic salmon, 1880.
Sequoit Creek, Oneida County, N. Y. California salmon, 1875.
Sereno Lake, Nevada County, Cal. Schoodic salmon, 1878.
Sereno Lake, Placer County, Cal. Schoodic salmon, 1878.
Sereno Lake, Summit, Placer County, Cal. Whitefish, 1877.
Severance's Ponds, Wis. California salmon, 1879.
Seymour Lake, Morgan, Vt. Schoodic salmon, 1876.
Shadwell, Va., Rivanna River. Shad, 1878.
Shady Oak Lake, Minn. California salmon, 1877.
Sharon, Mass., ponds. Schoodic salmon, 1880.
Sharon Springs, Va., North Fork Holston River. California salmon, 1880.

Sharou's Run, Northeast, Md. California salmon, 1880.
Shasta County, Cal. (See Baird, Cal.; Redding, Cal.)
Shawano County, Wis. (See Keshena, Wis.)
Shawnee County, Kans. (Sce Silver Lake, Kans.; Topeka, Kans.)
Shawngum Lake, N. J. California salmon, 1879.
Shawshine River, Billerica, Mass. Schoodic salmon, 1877.
Sheboygan County, Wis., Elkhart Lake. Penobscot salmon, 1875.
Shelby County, Ky., Clear Creek. California salmon, 1876.
Shelby County, Ky., Gist Creek. California salmon, 1876.
Shelby County, Ky., Salt River. Shad, 1880.
Shelby County, Ohio. (See Sidney, Ohio.)
Shelby County, Tenn. (See Memphis, Tenn.)
Shell Rock River, Iowa. California salmon, 1878.

Shenandoah County, Va. (See Mount Jackson, Va.; Strasburgh, Va.). Shenandoah River, North Fork of, Mount Jacksou,Va. California salmon, 1876.
Shenandoah River, North Fork of, Strasburgh, Va. California salmon, 1876.

Shenandoah River, Riverton,Va. Shad, 1878.
Shenandoah River, South Branch of, Va. Schoodic salmon, 1877.
Shenandoah River. (See tributaries: Cedar Creek, North Fork, and South River.)
Shepherd's Lake, Ringwood, N. J. Schoodic salmon, 1879.
Shepherd's Pond, Morris County, N. J. Whitefish, 1876.
Shepherdsville, Ky., Salt River. Shad, 1879, 1880.
Sheppard's Brook, Battle Creek, Mich. California trout, 1880.
Sherburne County, Minn., Big Lake. California salmon, 1876.
Sherburne County, Minn., Briggs' Lake. California salmon, 1877, 1878.
Sherburne County, Minn., Clear Lake. California salmon, 1877.
Sherburne County, Minn., Haud Lake. California salmon, 1876.
Sherburne County, Minn., Lake Julia. California salmon, 1878.
Sherburne County, Minn., Rush Lake. California salmon, 1878.
Sherman, Conn., Greeu Pond. Schoodic salmon, 1878, 1879.
Sherman, Coun., Square Pond. Schoodic salmon, 1878.
Shetucket River, Conu. California salmon, 1874.
Shetucket River, Willimantic, Conn. Penobscot salmon, 1875.
Shetucket waters, Windham, Conn. Schoodic salmon, 1876.
Shiawassee County, Mich. (See Corunua Mich.; Owosso, Mich.)
Shiawassee River, Corunna, Mich. Shad, 1874.
Shiawassee River, Holly, Mich. California salmon, 1876.
Shiawassee River, Owasso, Mich. California salmon, 1875.
Shields Lake, Rice County, Minn. California salmon, 1876, 1878.
Shoal Creek, Neosha, Mo. Shad, 1878.
Shoemaker's Eddy, Shoemaker's, Pa., Delaware River. California salmon, 1878, 1879, 1880 (11 items).
Sibley County, Minn., Silver Lake. California salmon, 1877; Penobscot salmon, 1879.
Sibley County, Minn., Horseshoe Lake. California salmon, 1877.
Sidney, Ohio, Little Miami River. California salmon, 1875.
Silver Creek, Madison County, Ky. California salmon, 1876.
Silver Creek, De Witt, Clinton County, Iowa. Schoodic salmon, 1878,
Silver Creek, Iowa. California salmon, 1878.
Silver Creek, Juab County, Utah. California salmon, 1876.
Silver Lake, Dexter, Mich. California salmon, 1878; whitefish, 1876.
Silver Lake, Dutchess County, N. Y. California salmon, 1874.
Silver Lake, Houston County, Minn. California salmon, 1878.
Silver Lake, Kans., Silver Lake. California salmon, 1878, 1879.
Silver Lake, Linden, Mich. Whitefish, 1876.
Silver Lake, Madison, N. H. Schoodic salmon, 1878.

Silver Lake, N. J. California salmon, 1879.
Silver Lake, Portage, Wis. California salmon, 1878.
Silver Lake, Sibley County, Minn. California salmon, 1877.
Silver Lake, Silver Lake, Kans. Califoruia saímon, 1878, 1879.
Silver Lake, Stearns County, Minn. California salmon, 1877.
Silver Lake, Washingtou County, Minn. California salmon, 1877, 1879.
Silver Lake, Wis. Schoodic salmou, 1879.
Silver Lake, Woodstock, Mich. California salmon, 1878.
Sinking Creek, Lewisburgh, Greenbrier County, W. Va. California salmon, 1878.
Sinnemahoning, Potter County, Pa. California salmon, 1879.
Sioux City, Iowa, Floyd River. California salmon, 1875.
Sioux River, Iowa. California salmon, 1879.
Sioux River. (See tributary: Spirit Lake.)
Sir John's Run, W. Va., Potomac River. California salmon, 1875, 1877, 1878.

Sister Lakes, Van Buren County, Mich. California salmon, 1878.
Six Runs, Duplin County, N. O. Shad, 1879.
Six Runs, Sampson County, N. C. Shad, 1878.
Six Runs, Warsaw, N. C. Shad, 1879, 1879.
Sixteen Lake, Allegan County, Mich, California salmon, 1879.
Skaneateles, N. Y., Oswego River. California salmon, 1874, 1875.
Skeelman's Pond, Wabasha County, Minn. Schoodic salmon, 1879.
Skillmans Pond, Red Wing, Minn. California salmon, 1877; Schoodic salmon, 1877.
Skunk River, Iowa. California salmon, 1878, 1879.
Slabtowu, Frederick County, Md., Owens Creek. California salmon, 1874, 1876, 1876, 1876.
Slatersville Branch, R. I. Penobscot salmon, 1874, 1875, 1875, 1876.
Slatersville River, R. I. California salmon, 1875.
Sleepy Eye Lake, Brown County, Minn. California salmon, 1878.
Smith Fork of Platte River, Clinton County, Mo. California salmon, 1880.

Smith Pond, Norfolk, Conn. Schoodic salmon, 1876.
Smith's Ferry, Mass., Connecticut River. Shad, 1874, 1875, 1877.
Smith's Grove, Ky., pond. Schoodic salmon, 1878.
Smith's Pond, Wolfeborough, N. C. California salmon, 1879.
Smoky Hill River, Ellis, Kans. California salmon, 1880.
Smoky Hill River, Ellsworth County, Kans. Schoodic salmon, 1879.
Smoky Hill River, Ellsworth, Kans. California salmon, 1877, 1878, 1879, 1880; shad, 1879.
Smoky Hill River, Hayes City, Kans. California salmon, 1880.
Smoky Hill River, Fort Harker, Kaus. California salmon, 1880.
Smoky Hill River. (See tributaries: Saline River, Spring Creek, Big Creek, Chapman's Creek, Solomon and Salina Rivers.)
Smyth County, Va., Holston River. Schoodic salmon, 1877.

Smyth County, Va. (See Atkin's Tank, Va.)
Snipsic Lake, Rockville, Conn. Schoodic salmon, 1876, 1877, 1878, 1879.

Snow Hill, Md., Pocomoke River. California salmon, 1878.
Snow Hill, Md., Pocomoke River. Shad, 1878.
Snow's Pond, North Rochester, Mass. Schoodic salmon, 1878.
Snyder County, Pa., Penn's Creek. California salmon, 1877.
Soft Water Lake, Kent County Mich. California salmon, 1876.
Soldier River, Topeka, Kans. California salmon, 1878, 1879.
Solomon City, Kans., Solomon River. California salmon, 1878, 1879, 1880.

Solomon River, Beloit, Kans. California salmon, 1878, 1879.
Solomon River, Saline, Kans. Shad, 1879.
Solomon River, Solomon City, Kans. California salmon, 1878, 1879, 1880.

Somerset County, Md. (See Crisfield, Md.; Eden, Md.; Princess Anne, Md.; Newtown, Md.)
Somerset County, N. J., North Branch Raritan River. California salmon, 1879.
Somerset County, N. J., Rockaway River. California salmon, 1879.
Somerset County, N. J. (See Raritan, N. J.; South Branch, N. J.) Somerset County, Pa. Schoodic salmon, 1878.
Somerset, Ky., Cumberland River. Shad, 1878.
Somerset, Ky., Pitmau Creek. Schoodic salmon, 1878.
Somerset, Mich., Rasin River. California salmon, 1875.
Sonoma County, Cal., Mark West Creek. Whitefish, 1879.
South Abington, Mass. Schoodic salmon, 1876.
South Aune River. (See tributary: Little River.)
Southard's Lake, Raisin Centre, Mich. California salmon, 1878.
South Brauch, N. J., South Branch of Raritan River. Penobscot salmon, 1875.
South Carver, Mass. Schoodic salmon, 1876.
South Chicago, Ill., Calumet River. Shad, 1873.
South Coventry, Conn., Wangambourg Pond. Schoodic salmon, 1877.
South Coventry, Conn., Waramaug Pond. Schoodic salmon, 1878, 1879.
South Coventry, Conn., Waugaboniz Lake. Schoodic salmon, 1879.
South Elkhorn, Woodford County, Ky. California salmon, 1877.
South Fork River, Morganton, N. C. California salmon, 1879.
South Hadley Falls, Mass., Connecticut River. Shad, 1875, 1876, 1877, 1877.

Southampton County, Va. (See Franklin, Va.)
South Kent, Conn., Spectacle Pond. Schoodic salmon, 1876.
South Lamn, Ill., Calumet River. Penobscot salmon, 1874.
South Platte. (See tributaries: Green Lake and Clear Lake.)
Southport, Conn., Mill River. Penobscot salmon, 1875, 1877.
Southport, Conn., Perry's Pond. Schoodic salmon, 1850.

Southport, Conn., Southport Pond. Schoodic salmon, 1879.
Southport Pond, Southport, Conn. Schoodic salmon, 1879.
Southport River. (See tributary : Main River.)
South River, Greenville, Va. California salmon, 1878.
South River, Lexington, Va. California salmon, 1878, 1880; Schoodic salmon, 1879.
South River, Waynesborough, Va. Shad, 1878.
South Toledo, Ohio, Maumee River. California salmon, 1877.
South Vernon, Windham County, Vt., Connecticut River. Shad, 1875, 1875.

South Weymouth, Mass., Weymouth Great Pond. Schoodic salmon, 1876, 1877, 1878.
South Windham, Conn., Balahack Brook. Schoodic salmon, 1877.
Spartanburgh County, S. C. (See Gaffney City, S. C.; Spartanburgh, Court-House, S. C.
Spartanburgh Court-House, S. C., Broad River. Shad, 1876.
Spartanburgh Court-House, S. C., Packlette River. California salmon, 1879.

Sparta, Wis., La Crosse River. California salmon, 1879.
Spectacle Pond, Sandwich, Mass. Schoodic salmon, 1876, 1877, 1880.
Spectacle Pond, South Kent, Conn. Schoodic salmon, 1876.
Spectacle Ponds, Kent, Conn. Schoodic salmon, 1877, 1878.
Spencer County, Ky. (See Taylorsville, Ky.)
Spencer Creek, Montgomery County, Ky. California salmon, 1877.
Spencerville, Md., Patuxent River. California salmon, 1878.
Spencerville, Md., tributary of Patuxent River. Schoodic salmon, 1878.
Spesutie Narrows, Harre de Grace, Md. Shad, 1877 (12 deposits), 1878
(10 deposits), 1879 (15 deposits), 1880 (10 deposits).
Spirit Lake, Iowa. Penobscot salmon, 1876.
Spirit Lake, Sauk County, Wis. California salmon, 1877.
Spofford Lake, Chesterfield, N. H. Schoodic salmon, 1880.
Spot Pond, Stoneham, Mass. Schoodic salmon, 1878.
Sprague's Pond, Charlotte, Me. Schoodic salmou, 1878.
Spring Branch, Iowa. California salmon, 1879.
Spring Brook Creek, Kalamazoo, Mich. California salmon, 1874.
Spring Brook, Cayuga County, N. Y. California salmon, 1879.
Spring Brook, Ontario County, N. Y. California salmon, 1879.
Spring Brook, Toledo, Ohio. California salmon, 1880.
Spring Brook, Wheatland, N. Y. California salmon, 1878.
Spring Creek, Bellefonte, Pa. California salmon, 1874.
Spring Creek, Brookville, Kans. California salmon, 1878, 1879.
Spring Creek, Caledonia, Livingstou County, N. Y. Schoodic salmon, 1878.

Spring Creek, Delaware, Iowa. California salmon, 1875.
Spring Creek, Fillmore County, Minn. California salmon, 1878.
Spring Creek, Fort Harker, Kans. Schoodic salmon, 1880.

Spring Creek, Livingston County, N. Y. California salmon, 1879, 1879。 Spring Creek, Lodi, Wis. California salmon, 1878.
Spring Creek, Monroe County, N. Y. California salmon, 1878, 1878.
Spring Creek, Newville, Pa. California salmon, 1877.
Spring Creek, Oneida County, N. Y. California salmon, 1878.
Spring Creek, Rice County, Minn. California salmon, 1878.
Spring Creek, Trivoli, Kans. Schoodic salmon, 1880.
Spring Creek, Tompkins County, N. Y. California salmon, 1878.
Spring Creek, Wetmore, Kans. California salmon, 1878, 1879.
Springfield, Mo., James River. Shad, 1877.
Springfield, N. H., Star Pond. Schoodic salmon, 1879.
Spring Lake, Dakota County, Minn. Schoodic salmon, 1879.
Spring Lake, Scott County, Minn. California salmon, 1878.
Spring Pond, Lynn, Mass. Schoodic salmon, 1878.
Spring River, Carthage, Mo. California salmon, 1878, 1879.
Spring Valley, Minn., tributary of Root River. California salmon, 1878.
Springville, Iowa, Cedar River. California salmon, 1875.
Spruce Creek, Herkimer County, N. Y. California salmon, 1874.
Spunk Creek, Avon, Minn. California salmon, 1877.
Squam Lake, Holderness, N. H. Schoodic salmon, 1879.
Square Lake, Washington County, Minn. California salmon, 1876.
Square Pond, Sherman, Conn. Schoodic salmon, 1878.
Stacy, Minn., Goose Creek. California salmon, 1879.
Stafford Springs, Conn., Stafford Springs Reservoir. Schoodic salmon, 1878, 1879.
Stafford Springs Reservoir, Stafford Springs, Conn. Schoodic salmon, 1878, 1879.
Stark, N. H., North Pond. Schoodic salmon, 1880.
Star Pond, Springfield, N. H. Schoodic salmon, 1879.
Staunton River, Big Spring Depot, Va. California salmon, 1876.
Staunton River, Staunton Station, Va. ©Shad, 1875.
Staunton River, Va. California salmon, 187-.
Staunton Station, Montgomery County, Va., Stauntou River. Shad, 1875.

Staunton, Va., Middle River. Schoodic salmon, 1879.
Stearns County, Minn., Cornelian Lake. California salmon, 1877, 1878.
Stearns County, Minn., Grand Lake. California salmon, 1876, 1878.
Stearns County, Minn., Kimball Lake. California salmon, 1877, 1878.
Stearns County, Minn., Pearl Lake. California salmon, 1876, 1878.
Stearns County, Minn., Pleasant Lake. California salmon, 1876, 1877, 1878.

Stearns County, Minn., Saint John's Lake. California salmon, 1878.
Stearns County, Minn., Sauk River. California salmon, 1877.
Stearns County, Minn., Silver Lake. California salmon, 1877.
Stearns County, Minn. (See Avon, Minn.)
Steele County, Minn., Owatonna River. California salmon, 1875; Penobscot salmon, 1875; Schoodic salmon, 1875.

Steele County, Minn. (See Owatonna, Minn.)
Steers' Pond, North Scituate, R. I. Schoodic salmon, 1876, 1878.
Stevens County, Minn. California salmon, 1876.
Stevens County, Minn., Donnelly Lake. California salmon, 1878.
Stevens County, Minn., Engle Lake. California salmon, 1878.
Stevens County, Minn., forks of Otter Tail and Bois des Sioux Rivers.
California salmon, 1877.
Stevens County, Minn., Frog Lake. California salmon, 1878.
Stevens County, Minn., Gavin's Lake. California salmon, 1878.
Stevens County, Minn., Lake Foss. California salmon, 1879.
Stevens County, Minn., McCarthy's Lake. California salmon, 1877.
Stevens County, Minn., Pomme de Terre River. California salmon, 1877, 1877, 1877.
Stewartstown, N. H., Diamond Pond. Schoodic salmon, 1880.
Still River, Brookfield, Conn. Schoodic salmon, 1880.
Stillwater, Minn., Saint Croix River. California salmon, 1876.
Stockbridge, Mass., Lake Mahkeenac. Schoodic salmon, 1878, 1879, 1880.

Stocker's Pond, Grantham, N. H. Schoodic salmon, 1879.
Stockton, Ga., Allapahaw River. Shad, 1879.
Stokes County, N. C. (See Germanton, N. C.)
Stoneham, Mass., Spot Pond. Schoodic salmon, 1878.
Stoner Creek, Clark County, Ky. California salmon, 1876.
Stoney Branch, Bel Air, Md. California trout, 1880.
Stoney Run, Baltimore, Md. California trout, 1880; Schoodic salmon, 1879.

Stoney Run, Waverly, Md. California trout, 1880.
Stony Creek, Pa. California salmon, 1876.
Stony Lake, La Porte, Ind. Schoodic salmon, 1880.
Storm Lake, Iowa. Penobscot salmon, 1876.
Storm Lake, Iowa, Des Moines River. California salmon, 1875.
Storm Lake, Iowa, Storm Lake. California salmon, 1875.
Storm Lake, Storm Lake, Iowa. California salmon, 1875.
Storm Spring, Iowa., tributary of Mississippi River. California salmon, 1875.

Strafford County, N. H. (See Milton, N. H.; New Durham, N. H.)
Straits Lake, Oak County, Mich. Whitefish, 1876.
Stranger, Kans., Stranger River. California salmon, 1878, 1879.
Stranger River, Stranger, Kans. California salmon, 1878, 1879.
Strasburgh, Va., Cedar Creek. California salmon, 1876.
Strasburgh, Va., Nortb Fork, Shenandoah River. California salmon, 1876.

String Lake, Cottonwood County, Minn. California salmon, 1876.
Strode's Creek, Clark County, Ky. California salmon, 1876.
Strouble's Creek, Va. Schoodic salmon, 1878.

Strubel's Lake, Andover, Sussex County, N. J. Schoodic salmon, 1878.

Sturgeon Lake, Colton, Mich. California salmon, 1876.
Style's Pond, Waterford, Vt. Schoodic salmon, 1878.
Sucker Brook, Fall River, Mass. Schoodic salmon, 1878.
Sudbury River, Framingham, Mass. Schoodic salmon, 1876, 1877.
Suffolk County, N. Y. (See Sayville, N. Y.)
Suffolk, Va., south branch of Nausemond River. Shad, 1878.
Sugar Lake, Platte County, Mo. California salmon, 1880.
Sugar Lake, Wright County, Minn. California salmon, 1877.
Sugar River, Brodhead, Wis. California salmon, 1879.
Sullivan County, N. H. (See Acworth, N. H.; Charlestown, N. H.; Grantham, N. H. ; Springfield, N. H.)
Sullivan County, N. Y. (See Liberty, N. Y.)
Sulphur Spring, Md., pond, tributary of Patapsco River. California trout, 1880; Schoodic salmon, 1880.
Summer Hill Lake. (See tributary : Spring Brooks.)
Summers County, W. Va. (See Hinton, W. Va.)
Summit of Sierra, Tahoe, and Donner Lakes. Whitefish, 1879.
Summit, Placer County, California, Sereno Lake. Whitefish, 1877.
Sumter County, \&c., Lynch's Creek. Shad, 1880.
Sunapee Lake, Newbury, N. H. Schoodic salmon, 1878, 1879.
Sunapee Lake, N. H. Schoodic salmon, 1880.
Sunfish Lake, Dakota County, Minn. California salmon, 1876.
Sunflower River, Friar's Point, Miss. Shad, 1878.
Suntaug Lake, Salem, Mass. Schoodic salmon, 1878.
Superior Lake. (See tributaries: Saint Louis River, Twin Lakes, and Big Lake.)
Surrey, Clare County, Mich., Crooked Lake. California salmon, 1878; Schoodic salmon, 1878.
Surry, Me., Patten's Brook. Penobscot salmon, 1876.
Susquehanna County, Pa., Heart Lake. Schoodic salmon, 1880.
Susquehanna County, Pa., Tigley Lake. Schoodic salmon, 1880.
Susquehanna River, Branch of, Swatara, Pa. California salmon, 1875.
Susquehanna River, Battery Light, Md. Shad, 1879, 1879, 1879, 1879.
Susquehanna River, Chicquesalungo, Pa. California salmon,1875,1877, 1877.

Susquehanna River, Donegal, Pa. California salmon, 1875.
Susquehanna River, Georgetown, Pa. Shad, 1880.
Susquehanna River, Harrisburgh, Pa. Shad, 1879, 1880.
Susquehanna River, Havre de Grace, Md. Shad, 1876, 1877 (7 deposits), 1878 (2 deposits), 1879 (3 deposits), 1880 (11 deposits.)
Susquehauna River, Marietta, Pa. California salmon, 1875, 1877, 1877, 1877, 1880.
Susquehanna River, Md. Schoodic salmon, 1879.
Susquehanna River, North Branch, Chillisquaque, Pa. California salmon, 1877.

Susquehanna River, Old Bay Fishery, Md. Shad, 1879, 1879, 1879.
Susquehanna River, Port Deposit, Md. Shad, 1879, 1879.
Susquehanna River, Swan Creek, Md. Shad, 1876, 1880.
Susquehanna River, tributary of, Coneloquinet, Pa. California salmon, 1876.

Susquehanna River, tributary of, Chiques, Pa. Califormia salmon, 1876.
Susquehanna River, tributary of, Columbia,Pa. California salmon, 1876.
Susquehanna River, tributary of, Harrisburg, Pa. California salmon, 1872, 1873, 1876.
Susquehanna River, tributary of, Marietta, Pa. California salmon, 1876.

Susquehanna River, tributary of, Swatara, Pa. California salmon, 1876.
Susquehanna River, upper waters of, Pa. Penobscot salmon, 1880.
Susquehanna River, Watson's Island, Md. Shad, 1880 (8 items).
Susquehanna River. (See tributaries: Blackston, Pawcatuck and Patuxent Rivers, Deer Creek, Octorora Creek, Spesutie Narrows, North East, Cohocton River, Swatara Creek, Chiquesalunga Creek, Donegal Creek, Codorus Creek, Yellow Breeches Creek, Donegal Springs, Pine Creek, Coneloquinet Creek, Mahantonga River, Bald Eagle River, Buffalo Creek, Stouy Creek, Maiden Run, Bowman's Creek, Maiden Creek, Spring .Creek, Penn's Creek, Kettle Creek, Trout Run, Juniata River, Harvey's Lake.)
Sussex County, Del. (See Seaford, Del.)
Sussex County, N. J., Drake's Pond. Schoodic salmon, 1879.
Sussex County, N. J., Swartswood Lake. California salmon, 1879.
Sussex County, N. J. (See Andover, N. J.)
Suwanee River. (See tributaries: Allapahaw River and Little River.) Swan Creek, Harford County, Md., Susquehanna River. Shad, 1876, 1880.

Swannanoa River, Buncombe County, N. C. California salmon, 1877; California trout, 1880.
Swanton, Md., North Branch of Potomac River. California salmon, 1878.

Swanton, Md., Savage River. California salmon, 1877.
Swanton, Vt., Missisquoi River. California salmon, 1873; shad, 1874.
Swartswood Lake, Sussex County, N. J. California salmon, 1879.
Swatara Creek, Dauphin County, Pa. Penobscot salmon, 1874.
Swatara Creek, Pa. California salmon, 1874.
Swatara, Pa., Swatara River. California salmon, 1875, 1876, 1877.
Swatara River, Swatara, Pa. California salmon, 1875, 1876, 1877.
Swedesborough, N. J., Oldman's Creek. California salmon, 1876.
Swift County, Minn., Hassel Lake. California salmon, 1878.
Swift County, Minn., Saint Malachy's Lake. California salmon, 1877.
Swift County, Minn., Saint Mary's Lake. California salmon, 1877.
Swift County, Minn. (See Bensou, Minn.)
Syke's Pond, Wis. California salmon, 1879.
Sykesville, Md., Patapsco River. California salmon, 1876, 1878.

Sykesville, Md., stream. California trout, 1880.
Sylvan Lake, Dutchess County, N. Y. Schoodic salmon, 1879.
Tahoe Lake, Placer County, Cal. Whitefish, 1877, 1879.
Tahoe Lake, Nevada County, Cal. Whitefish, 1879.
Takota Lake, Le Sueur County, Mim. California salmon, 1879.
Talbot County, Md. (See Easton, Md.; Sherwood Mills, Md.; Trappe,
Md.; Wye Mills, Md.; Cordova Station, Md.)

Tallahatchie River, La Fayette County, Miss. Shad, 1878, 1879.
Tallahatchie River. (See tributary: Tippa River.)
Tallapoosa County, Ala. (See Salisbury, Ala.)
Tallapoosa River, Montgomery, Ala. Shad, 1877.
Tallapoosa River, Salisbury, Ala. Shad, 1878.
Tana City, Tama County, Iowa, Iowa River. Schoodic salmon, 1878.
Tama County, Iowa. (See Tama City, Iowa.)
Tangipahoa County, La. (See Amite City, La.; Tickfaw, La.)
Tangipahoa, Miss., Tangipahoa River. California salmon, 1876.
Tangipahoa River, Amite City, La. California salmon, 1876.
Tangipahoa River, La. California salmon, 1875.
Tangipahoa River, Tangipahoa, Miss. California salmon, 1876.
Tank Station, Md., North Patapseo River. California salmon, 1874, 1876, 1876, 1876, 1878, 1878, 1879.
Tank Station, Carroll County, Md., Patuxent River. California salmon, 1877.

Tanner's Creek, Guilford, Ind. California salmon, 1874, 1876.
Tanuer's Lake, Washington County, Minn. California salmon, 1878.
Tamnery, Md., Evitt's Creek. California salmon, 1874.
Tarlton Pond, Piermont, N. H. Schoodic salmon, 1879.
Tar River, Granville County, N. C. Shad, 1877, 1878, 1878.
Tar River, Rocky Mount, N. C. Shad, 1879, 1879.
Taunton River, Bridgewater, Mass. Shad, 1876, 1877.
Taunton River, Middleborough, Mass. Shad, 1876, 1877.
Taylor Countr, Ky., Pittman C'reek. California salmon, 1877.
Taylor County, W. Va. (See Grafton, W. Va.)
Taylor's Falls, Chisago Countr, Minn. Califonia salmon, 1875.
Taylorsville, Spencer County, Ky., Asher's Creek. Schoodic salmon, 1878.

Taylorsville, Va., Little River. Shad, 1878.
Tehama, Cal., Sacramento River. Shad, 1873, 1876, 1877, 1878, 1880.
Tehama County, Cal. (See Tehama, Cal.)
Tenburg Brook, Fillmore County, Minn. California salmon, 1878.
Ten Mile Creek, Boyd's, Mdd. California salmon, 1878.
Tennessee River, Chattanooga, Tenn. Shad, 1876, 1879.
Tennessee River, Johnsonville, Tenu. Shad, 1879.
Tennessee River. (See tributaries: Pigeon River, French Broad River, Eastannallee River, Holston River, North Fork of Holston River and South Fork Holston River.)

Tensas River, R. R. crossing, Madison County, La. Shad, 1879.
Tensas River, (See tributary : Bayou Macon.)
Terre Haute, Ind., Wabash River. Shad, 1878, 1879.
Terry Lake, Washington County, Minn. California salmon, 1876.
Thames River, brooks tributary to, Willimantic, Conn. Schoodic salmon, 1878, 1879.
Thames River, tributary of, Conn. Penobscot salmon, 1873.
Thames River, Putnam, Conn. Shad, 1874.
Thames River. (See tributaries: Quinnebang River, Shetucket River, Natchaug Branch, Natchaug River.)
The Mill, Bertie County, N. C., Salmon Creek. Shad, 1878.
Thomas' Spring Branch, Scott County, Ky. California salmon, 1876.
Thompsonville, Conn., tributaries of the Connecticut River. Schoodic salmon, 1878.
Thorn Apple Lake, Barry County, Mich. California salmon, 1875.
Thorn Apple Lake, Eaton County, Mich. California salmon, 1875.
Thoruton, N. H., tributary of Merrimack River. Penobscot salmon, 1873.

Three Lakes, Marquette County, Mich. California salnon, 1876.
Three Mile Lake, Chippewa County, Wis. California salmon, 1877.
Three Rivers, Mich., Portage River. California salmon, 1876.
Three Rivers, Mich., Saint Joseph River. Califoruia salnon, 1876.
Three Runs, S. C. California salmon, 1880.
Tickfaw, La., Amite River. Shad, 1878.
Tickfaw, La., Notalbany River. California salmon, 1876; shad, 1875.
Tiffin River, Woodstock, Mich. California salmon, 1878.
Tigley Lake, Susquehanua County, Pa. Schoodic salmon, 1880.
Tiiton, N. H., Winnipesaukee River. Shad, 1877.
Timber Creek, Woodbury, N. J. California salmon, 1877.
Timber Creek, N. J. California salmon, 1877.
Tinkham Lake, Miles, Berrien County, Mich. Schoodic salmon, 1878.
Tippah County, Miss. (See Ripley, Miss.)
Tippah River, Ripley, Miss. Shad, 1879.
Tippecanoe Counts, Ind. See La Fayette, Ind.
Tipton, Iowa, Cedar River. California salmon, 1874, 1875.
Tittabawassee River, Midland Mich. California salmon, 1875.
Tobacco Run, Aberdeen, Md. California salmon, 1876.
Tobyhanna Lake, Scranton Pa. Schoodic salmon, 1879.
Toceoa, Ga., tributary of Savannah River. California salmon, 1877.
Todd County, Minn., Osakin Lake. California salmon, 1877.
Todd County, Minn., Sauk Lake. California salmon, 1877.
Toledo, Ohio, Lake Erie. Whitefish, 1876, 1876.
Toledo, Ohio, Maumee Rapids. California salmon, 1878.
Toledo, Ohio, Maunee River. Penobseot salmon, 1875; Schoodic salmon, 1878, 1879.
Toledo, Ohio, Spring Brook. Califoruia salmon, 1880.

Tolland County, Conn. (See Bolton, Conn.; Rockville, Conn.; South Coventry, Conn.; Stafford Springs, Coun.)
Tolman Pond, Nelson, N. H. Schoodic salmon, 1880.
Tomah, Wis., Lemonweir River. California salmon, 1879.
Tombigbee River, Aberdeen, Miss. Shad, 1878.
Tombigbee River, Columbia, Ala. Shad, 1879.
Tombigbee River, Demopolis, Ala. Shad, 1878.
Tombigbee River, Fulton, Miss. Shad, 1878.
Tompkins County, N. Y., Spring Creeks. California salmon, 1878.
Tom's River, Va. Schoodic salmon, 1878.
Tooele County, Utal, Twin Spring Creek. California salmon, 1876.
Topeka, Kans., Big Blue River. Shad, 1877.
Topeka, Kans., Soldier River. California salmon, 1878, 1879.
Topeka, Kans., Wakarusa River. California salmon, 1880.
Toreh Lake, Kalkaska County, Mich. California salmon, 1876.
Totes Run, Wythe County, Va. California salmon, 1879.
Totes Run, Wytheville, Va. California salmon, 1880.
Town Creek, Germanton, N. C. Californiạ salmon, 1879.
Towner's Lake, Iowa California salmon, 1879.
Town Line, Calhom County, Mich. California salmon, 1878.
Towsontorn, Baltimore County, Md., Gunpowder River. California salmon, 1878, 1879.
Transquaking River, Airey's Station, Md. California salmon, 1879; shad, 1879.
Transquaking River, Linkwood, Md. California salmon, 1879.
Transquaking River. (See tributary : Chickacomico River.)
Trappe River, Berlin, Md. California salmon, 1879, 1880.
Travis County, Tex. (See Austin, Tex.)
Tread Haven, Easton, Md. Shad, 1878.
Trenton, Ill., pond. Schoodic salmon, 1878.
Trent River, Pollocksville, N. C. Shad, 1879.
Tri-Echo Lake, Milton, N. H. California salmon, 1879.
Trigg County, Ky., Little River. California salmon, 1877.
Trinity River, Dallas, Tex. Shad, 1879.
Trivoli, Kans., Bradley Spriug. Schoodic salmon, 1880.
Trivoli, Kaus., Spring Creek. Schoodic salmon, 1880.
Troup Countr, Ga. (See West Point, Ga.)
Trout Branch, Baltimore, Md. Schoodic salmon, 1880.
Trout Branch, Md. California trout, 1880.
Trout Run, Hardy County, W. Va. Schoodic salmon, 1878.
Trout Run, Perry County, Pa. California salmon, 1877.
Trout Run, Ralston, Pa. Penobscot salmon, 1880.
Trout Run, Williamsport, Pa. California salmon, 1879.
Truckee River, Reno, Nev. California salmon, 1879.
Tuckahoe Creek, Hillsborough, Md. California salmon, 1876, 1878.
Tuckahoe, N. J., Tuckahoe River. California salmon, 1876.

Tuckahoe River, Hillsborough, Md. Shad, 1878, 1879.
Tuckahoe River, N. J. California salmon, 1878.
Tuckahoe River, Tuckahoe, N. J. California salmon, 1876.
Tugaloo River, R. R. Crossing, Habersham County, Ga. Shad, 1879.
Tugaloo River, S. C. California salmon, 1880.
Tugaloo River. (See tributaries: Seneca River and Martin's Creek.)
Tulare County, Cal., Tulare Lake. Schoodic salmon, 1878; whitefish, 1875, 1879.
Tulare Lake, Cal. Whitefish, 1875, 1879.
Tulare Lake, Tulare County, Cal. Schoodic salmon, 1878.
Tunnel City, Wis., Lemonweir River. California salmon, 1879, 1879.
Turkey River, Clermont, Iowa. California salmon, 1875.
Turkey River, Fayette, Iowa. California salmon, 1875.
Turkey River, Greeley, Iowa. California salmon, 1875.
Turkey River, Iowa. California salmon, 1879, 1879.
Turkey River, Maynard, Iowa. California salmon, 1875.
Turkey River, West Union, Iowa. Penobscot salmon, 1875.
Turtle Lake, Ramsey County, Minu. California salmon, 1876.
Tuscaloosa, Ala., Black Warrior River. Shad, 1879.
Tuscaloosa County, Ala. (See Tuscaloosa, Ala.)
Tuscarawas County, Ohio. (See New Comerstown, Ohio.)
Tuscarawas River, New Comerstown, Olio. California salmon, 1878.
Twin Lake, Elgin, Ill. California salmon, 1875.
Twin Lake, Grant County, Minn. California salmon, 1878.
Twin Lake, Iowa. Penobscot salmon, 1876.
Twin Lake, Petosky, Mich. Whitefish, 1876.
Twin Lakes, Chapinsville, Conn. Schoodic salmon, 1876, 1879.
Twin Lakes, Dakota County, Minn. California salmon, 1878, 1880.
Twin Lakes, Kalamazoo Comuty, Mich. California salmon, 1875.
Twin Lakes, Pine County, Minn. California salmon, 1875.
Twin Lakes, Pomeroy, Iowa. California salmon, 1875.
Trin Lakes, Richmond, McHenry County, Ill. Schoodic salmon, 1878.
Twiu Lakes, Salisbury, Conn. Schoodic salmon, 1877, 1878.
Twin Lakes, Washington County, Minn. California salmon, 1877.
Twin Spring Creek, Tooele County, Utah. California salmon, 1876.
Tye River, Nelson County, Va. California salmon, 1876; Schoodic salmon, 1877.
Tygart's Valley River, Barbour County, W. Va. California salmon, 1879, 1880.
Tygart's Valley River, Randolph County, W. Va. California salmon, 1879, 1880.
Tygart's Valley River, Grafton, W. Va. Shad, 1879.
Tygart's Valley River, tributary of, Randolph County, W. Va. Schoodic salmon, 1878.
Tygert River, Carter County, Ky. California salmon, 1878.
Tyrone, Pa., Juniata River. California salmon, 1879.

Ulcofanhanchee River, Covington, Ga. Shad, 1879.
Union Bridge, Md., Pipe Creek. California salmon, 1874.
Union Bridge, Md., pond tributary to Big Pipe Creek. Schoodic salmon, 1879.
Union County, Pa. (See Lewisburgh, Pa.; Mifflinburgh, Pa.)
Union Lake, Rice County, Minn. California salmon, 1878.
Union Springs, Ala., Conecuh River. Shad, 1879.
Union Springs, Ala., Pea River. Shad, 1879.
Uniontown, D. C., pond. California trout, 1880.
Unionsille, Md., pond. California trout, 1880; Schoodie salmon, 1880.
Unity, Me., pond. Schoodic sahmon, 1879.
Unkechewalom Pond, Lunenburgh, Mass. Schoodic salmon, 1576, 1877.
Upper Bear River, Rich County, Utah Territory California salmon, 1876, 1876.
Upper Creek, Burke County, N. C. California trout, 1880.
Upper Creek, Morgantown, N. C. California salmon, 1879.
Upper Paxton, Dauphin County, Pa., Mahantonga River. Califormia salmon, 1873.
Upton's Pond, Dutchess County, N. Y. Schoodic salmou, 1879.
Utah County, Utah, Mill Creek. California salmon, 1876.
Utica, Mich., Clinton River. California salmon, 1875.
Vaduais Lake, Ramsey Counts, Minn. Califormia salmon, 1876.
Valley Falls, Kans., Delevan Riser. California salmon, 1880.
Valley Pond, Woodbridge, Conn. Schoodic salmon, 1877, 187 s.
Van Buren County, Buck's Creek. California salmon, 1879.
Van Buren County, Mich., Dowagiac River. California salmon, 1879.
Van Buren County, Mich., Mill Stream. California salmon, 1879.
Van Buren County, Mich., Sister Lakes. California salmon, 1878.
Van Buren County, Mich., Almena, Mich., Paw-Paw, Mich.
Vanceburgh, Ky., Kimniconick Creek. Schoodic salmon, 1sis.
Vaughan, Miss., Big Black River. Shad, 1878.
Venango, Kans., pond. Schoodic salmon, 1880.
Verdigris River, Independence, Kans. California salmon, 187s, 1879.
Vergennes, Vt., Otter Creek. Shad, 1873, 1874.
Vermillion River, south branch of, Dakota County, Minn. California salmon, 1878.
Vermillion River, Wamego, Kans. California salmon, 1875, 1879, 1880.
Vernon County, Mo. (See Schell City, Mo.)
Vernon River, Mount Vernon, Ohio. California salmon, 1879.
Verona Lake, N. J. California salmon, 1879.
Versailles, Ky., pond. Schoodic salmon, 1878.
Vigo County, Ind. (Sce Terre Haute, Ind.)
Vineland, N. J., Maurice River. California salmon, 1876.
Volga River, Fayette, Iowa. California salmon, 1875.
Volga River, Greeley, Iowa. California salmon, 1875.
Volga River, Iowa. California salmon, 1879.
Voluntown, Conn., Beach Pond. Schoodic salmon, 1876 S. Mis. $110-65$

Wabasí County, Ind. (See Wabash, Ind.)
Wabash, Iud, Wabash River. California salmon, 1876, 1876.
Wabash River, La Fayette, Ind. Shad, 1880.
Wabash River, Logansport, Ind. Shad, 1873, 1874.
Wabash River, Terre Haute, Ind. Shad, 1878, 1879.
Wabash River, Wabash, Ind. California salmon, 1876, 1876.
Wabash River. (See tributaries: Embarrass River, Mississinewa River, White River.)
Wabasha County, Minu., Mazeppa. California salmon, 1876, 1878.
Wabasha County, Minn., North Branch Zumbro. California salmon, 1878.

Wabasha County, Minn., Skellman's Pond. Schoodic salmon, 1879.
Wabasha County, Minn. (See Lake City, Minn.; Mazeppa, Minn.)
Waconica Lake, Carver County, Minn. California salmon, 1878.
Wakarusa River, Topeka, Kans. California salmon, 1880.
Wakasa River, Ottawa, Kans. California salmon, 1878, 1879.
Wake County, N. C., Neuse River. Shad, 1877.
Wake County, N. C. (See Neuse, N. C.; Raleigh, N. C.)
Waketield, Md., Pipe Creek. California salmon, 1874, 1876.
Wakefield, Mass., Lake Quannapowitt. Schoodic salmon, 1877, 1878, 1879.

Wakefield, N. H., East Pond. Schoodic salmon, 1879.
Wakefield, N. H., Lorewell's Pond. California salmon, 1879.
Wakefield, N. H., Newechewaunock Lake. California salmon, 1879.
Waldo County, Me. (See Unity, Me.)
Walhonding River, Coshocton, Ohio. California salmon, 1877.
Walker Creek, Fillmore County, Minn. California salmon, 1878.
Walker, Iowa, Big Rock Creek. California salmon, 1875.
Walker's Pond, Boscawen, N. H. Schoodic salmon, 1880.
Walker's Poud, Conway, N. H. Schoodic salmon, 1880.
Walkersville, W. Va., West Fork of Monongahela. California salmon, 1878.

Walkill River. (See tributary: Greenwood Lake.)
Walled Lake, Oak County, Mich. Whitefish, 1876.
Waller County, Tex. (See Hempstead, Tex.)
Wall Lake, Iowa. California salmon, 1879, 1879.
Walloon Lake. (See tributary: Bear Creek.)
Wallow Lake, Charlevoix County, Mich. California salmon, 1878.
Wall's Lake, Oakland County, Mich. Penobscot salmon, 1873.
Wallum Pond, Burrillville, R. I. Schoodic salmon, 1876, 1878.
Walnut River, El Dorado, Kans. California salmon, 1878, 1879; Shad, 1879.

Walnut River, Great Bend, Kans. California salmon, 1878, 1879; Shad, 1879.

Walter Creek, Monroe County, N. Y. California salmon, 1878.

Waltham, Mass., Hardy's Pond. Schoodic salmon, 1877, 1878, 1879,1880. Walworth Connty, Wis., Boothe's Creek. California salmon, 1878.
Walworth County, Wis., Geneva Lake. California salmon, 1875, 1876, 1877, 1878, 1879; Schoodic salmon, 1876, 187S, 1879.
Walworth County, Wis., Perch Lake. California salmon, 1878.
Walworth County, Wis. (See Geneva, Wis.)
Wamego, Kans., Vermillion River. California salmon, 1878, 1879, 1880.
Wangambourg Pond, South Coventry, Conn. Schoodic salmon, 1877.
Wanouscoponus Lake, Lakeville, Conn. Schoodic salmon, 1876, 1877, 1879.

Wantonwan County, Minn., Cedar Lake. Califormia salmon, 1879.
Wapakoneta, Ohio, Auglaize River. California salmon, 1875.
Wapello County, Iowa. (See Ottumwa, Iowa.)
Wapsie River, Iowa. California salmon, 1878, 1879.
Wapsie River. (See Wapsipinecon River.)
Wapsipinecon River, Anamosa, Iowa. California salmon, 1874, $\mathbf{i 8 7 5}$. Wapsipinecon River, Jixon, Iowa. California salmon, 1874.
Wapsipinecon River, Independence, Iowa. California salmon, 1885.
Wapsipinecon River, Oxford, Iowa. California salmon, 1875.
Waramaug Lake, New Preston, Conn. Schoodic salmon, 1877.
Waramaug Pond, South Coventry, Conn. Schoodic salmon, 1878, 1879.
Waramang Pond, Warren, Conn. Schoodic salmon, 1876.
Warden's Pond, Kingston, R. I. Schoodic salmon, 1878.
Warner, N. H., Bean Pond. Schoodic salmon, 1880.
Warren and Barrington Rivers, R. I. Shad, 1877.
Warren, Conn., Waramang Pond. Schoodic salmon, 1876.
Warren County, Ky., Barren River. California salmon, 1877, 1878; shad, 1878.
Warren County, Ky., Jasper River. California salmon, 1878.
Warren County, Ky. (See Bowling Green, Ky.; Smith's Grove, Ky.)
Warren County, N. J., Paulinskill Creek. California salmon, 1879.
Warren County, N. J. (See Oxford, N. J.)
Warren Countr, Pa., pond. Schoodic salmon, 1878.
Warren County, Va. (See Riverton, Va.)
Warren, Ind., Grapevine Creck. Califoruia salmon, 1875.
Warren, Md., Gunpowder River. California tront, 1880.
Warren, N. H., Baker's River. California salmon, 1876 ; Penobscot salmon, 1876.
Warren River, Bristol County, R. I. Shad, 1874, 1875, 1877.
Warsaw, N. C., Six Runs. Shad, 1879, 1879.
Warwick Pond, Warwick, R. I. Schoodic salmon, 1876.
Warwick, Kent County, R. I., Gorton's Pond. Schoodic salmon, 1876.
Warwick, Kent County, R. I., Warwick Pond. Schoodic salmon, 1876.
Waseca County, Minn., Clear Lake. California salmon, 1876.
Waseca County, Minn., Elysian Lake. California salmon, 1875, 1876, 1879, 1880; Schoodic salmon, 1875.

Washington County, D. C. (See Anacostia, D. C.; Georgetown, D. C.; and Washington, D. C.)
Washington County, Kans. (See Clifton, Kans.; and Washington, Kans.)
Washington County, Me., Grand Lake. Schoodic salmon, 1873, 1879.
Washington County, Me. (See Calais, Me.; Charlotte, Me.; Cooper, Me.; Danforth, Me.; Eaton, Me.; and Pembroke, Me.)
Washington County, Md. (See Clear Spring, Md.; Chewsville, Md.; Fairview, Md.; Hagerstown, Md.; Weverton, Md.; and Williamsport, Md.)
Washington County, Minn., Bass Lake. California salmon, 1877.
Washington County, Minn., Brown's Creek. California salmon, 1876.
Washington County, Minn., Butts Lake. California salmon, 1876.
Washington County, Minn., Clear Lake. California salmon, 1878.
Washington County, Minn., Cornelian Lake. California salmon, 1876, 1877.

Washingtou County, Minn., Eagle Lake. California salmon, 1876.
Washington County, Mimn., lake. California salmon, 1876.
Washingtou County, Minn., Lake Elmo. California salmon, 1879.
Washington County, Minn., Lakeland. California salmon 1876.
Washingtou County, Minn., McKusie's Lake. California salmon, 1876, 1877.

Washington County, Minn., Mariue Lake. California saimon, 1876.
Washington County, Minn., Pine Tree Lake. California salmon, 18.6.
Washington County, Minn., Round Lake California saimon, 1876.
Washington County, Minn., School Section. California salmon, 1876.
Washington County, Minn., Silver Lake. Califoruia salmon, 1877, 1879.

Washington County, Minn., Square Lake. California salmon, 1876.
Washington County, Minn., Tanner's Lake. California saimon, 1878.
Washington County, Minn., Terry Lake. California salmon, 1876.
Washington County, Minu., Twin Lakes. California salmon, 1877.
Washington County, Minu. (See Lakeland, Minn.; Stillwater, Minu.)
Washington County, N. C. (See Plymouth, N. C.)
Washington County, N. Y. (See Fort Edward, N. Y.)
Washington County, R. I., Pawtucket River. California salmon, 1875; shad, 1874, 1875.
Washington County, R. I. (See Kingston, R. I.; Richmond, R. I.)
Washington County, Va. (See Saltville, Va.)
Washington County, Vt. (See Northtield, Vt.; Waterbury, Vt.)
Washington County, Vt., Kettle Pond. Schoodic salmon, 1876.
Washington County, Wis. (See Richfield, Wis.)
Washington, D. C., East Branch Potomac River. Shad, 1880. (21 items.)
Washington, D. C., Potomac River. Shad, 1878, 1880.
Washington, Kans., Mill Creek. California salmon, 1878, 1879.

Washington Lake, Le Sueur County, Minn. California salmon, 1878.
Wasbington, Mo., Missouri River. Shad, 1872.
Washita River. (See tributaries: Quactuto, Sabine, Saline, and Caddo Rivels.)
Washoe County, Ner. (See Reno, Nev.)
Washtenaw Comnts, Mich., Huron River. California salmon, 1876.
Washtemaw Connts, Mich., Whitmore Lake. Penobscot salmon, 1873.
Washtenaw Connty, Mich. (See Chelsea, Mich.; Dexter, Mich.)
Watanga County, N. C., ponds. California tront, 1880.
Waterbury, Vt., Winooski River. Shaci, 1877.
Wateree Liver, Richland County, 心. C'. Shad, 1880; California salmon, 1880.

Wateree River. (See tributary: Catawba River.)
W'aterford, Vt., Style's Pond. Schoodic salmou, 1878.
Waterloo, Iowa, Cedar River. California salmon, 1874.
Waterville, Kans., Little Blue River. California salmon, $1578,1879$.
Waterville, Me., Kennebec River. Shad, 1874, 1880.
Waterville, Ohio, Mammee River. California salmon, 1880.
Watervliet, Mich., Big Paw-Paw River. California samon, 1875.
Watouwan County, Minn., Long Lake. Schoodic salmon, 1879.
Watonwan County, Minn., Marlelia Lake. C'alifornia salmon, 1876.
Watonwan County, Minn, Saint James Lake. Californiasahmon, 1877.
Watonwan Connty, Minu. (See Madelia, Mimn.)
Watonwan River, Madelia, Mimn. California salmon, 1877.
Watonwau River. (See tributaries: Madelia Lake, Bingham and Saint James Lakes.)
Watson Creek, Fillmore County, Minn. California salmon, 187 s.
Watson Creek, North Branch of, Filhore Connty, Minu. California salmon, 187s, 1878.
Watson's Islaud, Md., Susquehamma River. Shad, 1880 (8 items).
Waugabonig Lake, South Cosentry, Conn. Schoodie salmon, 1879.
Waukesha County, Wis., Oconomowoc Lake. California salmon, 1877.
Waukesha County, Wis. (See Oconomowoc, Wis.)
Waukon, Lowa, tributary of Mississippi River. California salmon, 1575.

Waushara Counts, Wis., Wantoma Lake. California salmon, 1877.
Wautoma Lake, Waushara County, Wis. California salmon, 1877.
Wawatosa, Wis., Nilwankee River. Penobscot salmon, 1873.
Waverly, Lowa, tributary of Mississippi River. Penobscot salmon, 187.5.

Waverly, Md., Stoney Run. Califomia tront, 1 \&s 0.
Wayne County, Mi:h., Detroit River. Califomia salmon, $1878,1878$.
Wayne County, Mich., Rogne River. California salmon, 1579.
Wayne Comety, Mich. (See Dearborn, Mich.; Detroit, Mich.; and Northville, Mich.)
Wayne County, Mo., Black River. California salmon, 1879.

Wayne Countr, Mo., Saint Francis River. California salmon, 1879.
Wayne County, Mo. (See Piedmont, Mo.)
Wayne County, N. C. (See Mount Olive, N. C.)
Wayne Counts, Ohio. (See Millbrook, Ohio.)
Wayne County, Pa. Schoodic salmon, 1878.
Wayne County, Pa., Jones' Lake. Schoodic salmon, 1878.
Wayuesborough, Va., South River. Shad, 1878.
Weakley County, Tenn. (See Dresden, Tenn.)
Weber River, Weber County, Utah. California salmon, 1876.
Weber County, Utał, Ogdeu River. California salmon, 1876.
Weber County, Utal, Weber River. California salmon, 1876.
Webster City, Iowa, Boon River. California salmon, 1875.
W ebster County, Mo., James River. Shad, 1879.
Webster City, Iowa, Des Moines River. California salmon, 1875.
Webster County, Iowa. (See Fort Dodge, Iowa.)
Wedge Pond, Medford, Mass. Schoodic salmon, 1876, 1877, 1880.
Wedge Pond, Winchester, Mass. Schoodic salmon, 1877, 1878, 1880.
Weitzel County, W. Va. (See Littleton, W. Va.)
Welder Lake, Cottouwood Comity, Minn. California salmon, 1876.
Weldon, N. C., Roanoke River. Shad, 1878, 1879, 1879, 1879.
Wellesley, Mass. Schoodic salmon, 1876.
Wellfleet, Mass., Gull Pond. Schoodic salmon, 1877, 1878.
Well's River, Vt. Penobscot salmon, 1874.
Wenham Lake, Salem, Mass. Schoodic salmon, 1878.
Wenham, Mass., Wenham Pouds. Schoodic salmon, 1878, 1879, 1880.
Wenham Pours, Wenham, Mass. Schoodic salmon, 1878, 1879. 1880.
Wenonah, N. J., Mantua Creek. California salmon, 1877.
Wenonah, N. J., streams. California salmon, 1876, 1877.
Westborough, Mass., Hockomoco Pond. Schoodic salmon, 1879.
West Campton, N. H., tributary of Merrimack River. Penobscot salmon, 1873.

West Cauada Creek, Herkimer County, N. Y. California salmon. 1874.
Western River, Cockeysville, Md. California salmon, 1876.
Westfield, Mass., Congamond Lake. Schoodic salmon, 1876, 1879, 1850.
Westfield, Mass., Westfield River. Shad, 1874, 1876.
Westield River, Mass. Penobscot salmon, 1874.
Westfield River, Westfield, Mass. Shad, 1874, 1876.
West Hartford, Conn., reservoir. Schoodic salmon, 1879.
West Lake, Mimn. California salmon, 1877.
Westminster, Md., Cobb's Branch. Schoodic salmon, 1879.
Westminster, Md., Little Pipe Creek. Schoodic salmon, 1879.
Westminster, Md., Pipe Creek. California salmon, 1876.
Westminster, Md., pond. California trout, 1880, 1880; Schoodic salmon, 1878, 1879.
Westmore, Vt., Lake Willoughby. Schoodic salmon, 1878.

Westmoreland County, Pa., Allegheny River. Schoodic salmon, 1880.
Westmoreland County, Pa. (See Donegal Pa.; Greensburgh, Pa.)
West Obion River, Paducah Junction, Tenn. Shad, 1879.
Weston, W. Va., West Fork Monongahela River. Schoodie salmon, 1879.

West Plattsburgh, N. Y., Saranac River. Penobseot salmon, 1875.
West Point, Ga., Chattahoochee River. Shad, i877.
Westport, Comn., Saugatuck River. Penobscot salmon, 1875.
Westport, Pa., Kettle Creek. California salmon, 1878.
West River, Durham, Conn. California salmon, 1874.
West River, Northford, Comn. California salmon, 1873.
West Scituate, Mass., Scituate Ponds. Schoodic salmon, 1878, 1879.
West Skunk River, Iowa. Califoruia salmon, 1879.
West Union, Iowa, Turkey River. Penobscot salmon, 1875.
West Union, W. Va., Middle Island Creek. California salmon. 1877, 1878.

West Winsted, Comn., Long Lake. Schoodic salmon, 1.878, 1879.
Wetmore, Kans., Spring Creek. California salmon, 1878, 1879.
Wetmore Lake, Allegan County, Mich. California salmon, 1879.
Wetzel County, W. Va., Fishing Creek. Schoodic salmon, 1878.
Wetzel County, W. Va. (See Burton, W. Va.)
Weverton, Md., pond. Schoodic salmon, 1878.
Weverton, Md., Potomac River. California salmon, 1876, 1877, 1878.
Wexford County, Mich., Manistee River. California salmon, 1879.
Weymouth Great Pond, South Wermouth, Mass. Schoodie salmon, 1876, 1877, 1878.
Weymouth, N. J., Great Egg Harbor River. California salmon, 1877.
Whaleysville, Md., Pocomoke River. California salmon, 1s7!, 1880; shad, 1879.
Wheatland, Momroe Country, N. Y., Spring Brook. California salmon, 1878.

Wheeling Creek, Cold Spring, Wr. Va. California salmon, 18i8; schoodic salmon, 1879.
Wheeling Creek, Wheeling, W. Va. California salmon, 1877.
Wheeling, W. Va., Wheeliug Creek. California salmon, 1877.
Wheelock, Vt., Passumpsic tributaries. Penobscot salmon, 1874.
Whippang River, Morristown, N..J. Penobscot salmon, 1875.
White Bear Lake, Ramsey County, Minn. Cailifornia salmon, 1875 , 1876; Penobscot salmon, 1875; schoodic salmon, 1875, 1877.
White County, Ark., Little Red River. Shad, 1879.
Whitefish Lake, Pierson, Montcalm County, Mich. Schoodic salmon, 1878.

White Hall, Md., pond. California trout, 1880.
White Haven, Pa., Big Pond. Schoodic salmon, 1879.
White Haven, Pa., Moses Wood Pond. Schoodie salmon, 1879.
White Oak Branch, Lamel County, Ky. California salmon, 1877.

White Oak Creek, Garrard County, Ky. California salmon, 1876.
White River, Columbus, Ind. Shad, 1874.
White River, Indianapolis, Ind. California salmon, 1874; shad, 1872, 1874, 1875, 1379.
White River, Newport, Ark. California salmon, 1878, 1878 ; shad, 1876.
White River, Royalton, Vt: Penobscot salmon, 1874.
White River. (See tributaries: Little Red River, Black River, Currant River, James River, Big Black River, and Genera Lake.)
White Sulphur Springs, W. Va., Dry Fork. Schoodic salmon, 1879.
Whitmore Lake, Washtenaw County, Mich. Penobscot salmon, 1873.
Whitney Ridge, Me., Seboois River. Penobscot salmon, 18:4.
Whitney's Pond, Winchendon, Mass. Schoodic salmon, 1878, 1879.
Whitstone River, Columbus, Ohio. California salmon, 1878.
Wicomico Creek, Salisbury, Md. California salmon, 1879, 1880; shad, 1877, 1878, 1879.
Wicomico River. (See tributary: Wicomico Creek.)
Wicomico County, Md. (See Salisburs, Md.)
Wilbraham, Mass., Nine Mile Pond. Schoodic salmon, 1877.
Wildwood, Cook County. Ill., Calumet River. Penobscot salmon, 1874.
Wilkes Barre, Pa, Bear Lake. California salmon, 1880.
Wilkes Barre, Pa., Bowman's Run. California salmon, 1876, 1878, 1879.
Wilkes Barre, Pa, Harvey's Lake. Schoodic salmon, 1878, 1879.
Wilkin County, Mimn., Red River of the North. California salmon, 1878.

Wilkin Comity, Mimm. (See Breckemidge, Minn.)
William's Creek, Cass County, Mich. California salmon, 1875.
William's Creek, Mich. California salmon, 1574.
Wilhams Mill, Pa., Yellow Breeches Creek. Califoruia salmon, 1874, 1875, 1876, 1878, 1879.
Williamson Comnty, Itl. (See Marion, IIl.)
Williams Pond, Crant County, W. Va. Califoruia salmon, 1879, 1880.
Williamsport, Md., Conococheague River. California salmon, 1876.
Williamsport, Pa., Trout Run. California salmon, 1579.
Williamsport, W. Va., Williams Spriug. Schoodic salmon, 1879.
Williams Spring, Williansport, W. Va. Schoodic salmon, 1879.
Williamstown, N. J., Great Egg Harbor River. California salmon, 1876.

Willimantic, Comn., brooks tributary to Thames River. Schoodic salmon, 1878, 1879.
Willimantic, Conn., Shetucket River. Penobscot salmon, 1875.
Willoughby Lake, Westmore, Vt. Schoodic salmon, 1878.
Willow Brook, Minn., ponds. Califoruia trout, 1880.
Willow Brook, Sayville, N. Y. California salmon, 1876, 1877.
Willow Creek, Fillmore Comnty, Minu. California salmon, 1878.
Willow River, Clear Lake, Wis. California salmon, 1879.
Wills Creek, Jennings Run, Md. California salmon, 1874.

Wilmar, Minn. Penobscot salmon, 1875.
Wilmingtou, Del., Christiana Creek. Shad, 1880.
Wilna, Md., Plum Tree Run. C'alifornia trout, 1880.
Wilna, Mal., Winters Run. Ualifornia salṃon, 1879 ; Schoodic salmon, 1880.

Wilson Brook, lodge County, Minu. California salmon, 1878.
Wilson County, N. C., Contentnea Creek. Shad, 1877.
Wilson, Kans., pond. Schoodic salmon, 1850.
Wilton, Iowa, Cedar River. California salmon, 1875.
Winchendon, Mass., Dennison's Lake. Schoorlic sahmon, 1876, 1877, 1878, 1879.
Winchendon, Mass., Whitney's Pond. Schoodic salmon, 1878, 1879.
Winchester, Mass., Mystic Lake. Schoodic salmon, 1877, 1878, 1880.
Winchester, Mass., Wedge Pond. Schoodic salmon, 1876, 1877, 187S, 1880.

Winchester, Va., Cedar Creek. California salmon, 1874.
Windham, Conn., Shetucket Waters. Schoodic salmon, 1876.
Windham Countr, Coun. (See Canterbury, Conn.; North Windham, Conn.; Putnam, Conn.; South Wiudham, Comn; Voluntown, Conn.; Willimantic, Conn.; Windham, Conn.)
Windham County, Vt. (See Bellows Falls, Vt.; Rockingham, Vt.; South Vernon, Vt.)
Windon Lake, Cottonwood County, Minn. California salmou, 1876.
Windom, Minn., Des Moines River. California salmon, 1877.
Windsor, Conn., Scantic River. Schoodic salmon, 1880.
Windsor County, Vt. (See Royalton, Vt.)
Winn, Me., Penobscot River. Penobscot salmon, 1876.
Winnebago County, Ill. (See Burritt, Ill.; Owen, Ill. ; Rockford, Ill.)
Winnepeg Lake. (See tributary: Red River of the North.)
Winneshiek County, Iowa. (See Decorah, lowa.)
Wimnesquam Lake, N. U. Schoodic salmon, 1880.
Winnipesaukee River, Tilton, N. C. Shad, 1877.
Wimipiseogee Lake, Centre Marbor, N. H. Schoodic sahmon, 1879.
Winnipiseogee Lake. (See tributary: Smith's Pond.)
Winona County, Minn., Brown's Mill Pond. California salmon, 1878.
Winona County, Minn., Ferguson Creek. California salmon, 1878.
Winona County, Minn., Pine Creek. California salmon, 1878.
Winooski River, Vt. • Peuobscot salmon, 1873.
Winooski River, Burlington, Vt. Shad, 1873.
Winooski River, Essex, Vt. Schoodic salmon, 1876.
Winooski River, Waterbury, Vt. Shad, 1877.
Winooski liver, Winooski, Vt. Shad, 1874, 1874.
Winslow, N. J., Great Egg Harbor River. California salmon, 1877.
Winsted, Coun., Long Lake. Schoodic salmon, 1876, 1877.
Winter's Run, Harford County, Md. California salmon, 1877.
Winter's Run, Magnolia, Md. California salmon, 1876.

Winter's Run, Wilna, Md. California salmon, 1879; Schoodic salmon, 1880.

Wisconsin River. (See tributaries: Spirit Lake, Streams, Spring Creek, Silver Lake, Lemonweir River.)
Wisconsin River, tributaries of, Hartman Wis. California salmon, 1878.
Wisconsin River, tributaries of, Poynette, Wis. California salmon, 1878.
Wisconsin River, Wis. California salmon, 1878.
Withington Lake, Crow Wing Connty, Minn. Penobscot salmon, 1875.
Wolfborough, N. H., Smith's Pond. California salmon, 1879.
Wolf River, Memphis, Tenn. California salmon, 1875.
Woodbridge, Conn., Valley Pond. Schoodic salmon, 1877, 1878.
Woodburn Lake, Dexter, Mich. Whitefish, 1876.
Woodbury, Conn., Pomparaug River. Schoodic salmon, 1880.
Woodbury County, Iowa. (See Sioux City, Iowa.)
Woodbury Creek, Woodbury, N. J. California salmon, 1877.
Woodbury, N. J., Timber Creek. California salmon, 1877.
Woodbury, N. J., Woodbury Creek. California salmon, 1877.
Wood County, Tex. (See Mineola, Tex.)
Wood County, W. Va. (See Parkersburgh, W. Va.)
Woodford County, Ky., Dunlap's Branch. California salmon, 1876.
Woodford County, Ky., ponds. California salmon, 1878, 1878.
Woodford County, Ky., South Elkhorn. California salmon, 1877°.
Woodford County, Ky. (See Versailles, Ky.)
Woodhull Lake, Herkimer County, N. Y. Schoodic salmon, 1879.
Wood River, R. I. California salmon, 1875.
Wood's Lake, Kalamazoo County, Mich. California salmon, 1875.
Voodstock, Lenawee County, Mich. Goose Lake, California salmon, 1878.
Woodstock, Lenawee County, Mich., Mallory Lake. California salmon, 1878.

Woodstock, Lenawee Comity, Mich., Silver Lake. California salmon, 1878.

Woodstock, Lenawee County, Mich., Tiffin Rıver. California salmon, 1878.

Woodstock, N. H., headwaters of Merrimack Ruver. Peuobscot salmon. 1873.

Woodstown, N. J., Salem Creek. California salmon, $18: 6$.
Woodward's Aquarium, San Francisco, Cal. Schoodic salmon, 1878.
Worcester County, Md. (See Berlın, Md.; Mitchell's Bridge, Md.; Pocomoke City, Md.; Snow Hill, Md.; Whaleysville, Md.)
Worcester Connty, Mass. (See Ashburnham, Mass.; Athol, Mass.; Berlin, Mass.; Harvard, Mass.; Hubbardston, Mass.; Lancaster, Mass.: Lunenburgh, Mass.; Mendon, Mass.; Milford, Mass.; Millbury, Mass.; Paxton, Mass.; Westborougl, Mass.; Winchendon, Mass.)
Worthington, Iowa, Maquoketa River. California salmon, 1875.
Worthington, Iowa, North Maquoketa River. Penobscot salmon, 187.
Wright County, Minn., Baytown Lake. California salmon, 1876.

Wright County, Minn., Howard Lake. Penobscot salmon, 1875.
Wright County, Minn., lakes. California salmon, 1879.
Wright County, Minn., Lake Charlotte. California salmon, 1877.
Wright County, Minn., Pulaski Lake. California salmon, 1877.
Wright County, Minu., Sugar Lake. California salmon, 187%.
Wright Pond, Holyoke, Mass. Schoodic salmon, 1879.
Wye Mills Creek, Cordova Station, Md. Shad, 1879.
Wythe County, Va., Barret's Pond. Schoodic salmon, 1880.
Wythe County, Va., ponds. Schoodic salmon, 1880.
Wythe County, Va., Reed Creek. California salmon, 1879.
Wythe County, Va., Totes Run. California salmon, 1879.
Wythe County, Va. (See Lead Mines, Va.; Wytheville, Va.)
Wytheville, Va., New Ricer. Schoodic salmon, 1877,187S, 1880.
Wytheville, Va., Totes Run. California salmon, 1880.
Yadkin River, Rowan County, N. C. Shad, 1877.
Yadkin River, Patterson's, Caldwell County, N. C. California salmon, 1878, 1878, 1879.
Yadkin River, ponds tributary to, Salisbury, Rowan County, N. C. Schoodic salmon, 1878.
Yadkin River, Salisbury, N. C. California salmon, 1877, 1877, 1879 ; shad, 1878, 1879.
Yalabusha River, Grenada, Miss. Shad, 1878, 1879.
Yarmouth, Mass., pond. Schoodic salmon, 1880.
Yazoo County, Miss. (See Vaughan, Miss.)
Yazoo River, Abbeville, Miss. California salmon, 1876, 1876 ; shad, 1876.
Yazoo River. (See tributaries: Sunflower, Coldwater, 'Tallabatchie, Yalabusha, and Yocana Rivers.)
Yellow Breeches Creek, Mechanicsburgh, Pa. California salmon, 1873.
Yellow Breeches Creek, Williams Mill, Pa. California salmon, 1874, 1875, 1876, 1878, 1879.
Yellow River, Conyers, Ga. Shad, 1879.
Yellow River, Covington, Ga. California salmon, 1878; shad, 1880.
Yerke's Lake, Northville, Mich. Whitefish, 1876.
Yocana River, La Fayette County, Miss. Shad, 1879.
York County, S. C. (See Rock Hill, S. C.)
York River. (See tributary: Mattapony River.)
York Road, Md., pond. California trout, 1880; Schoodic salmon, 1880.
Youghiogheny River, Deer Park, Md. California salmon, 1877.
Youghiogheny River, Oakland, Md. California salmon, 1876.
Youghiogheny River. (See tributary: Little Youghiogheny River.)
Zalman's, Va. (See Butfialo Mills, Va.)
Zanesville, Ohio, Muskingum River. Shad, 1876.
Zumbro River, Mazeppa, Minn. Califoruia salmon, 1876, 1878.
Zumbro River, North Branch, Wabasha County, Minn. California salmon, 1878.
Zumbro River, South Branch, Rochester, Minn. California salmon, 1877.

XX.-REPORT' OE WORK AT' THE DNITED STATES HAT(HERY, NORTHVILLE, MICH., 1881-'82.

By Frank N. Clalik.

The following report, in connection with the work of this station, for the year euding June 30,1882 , is respectfully submitted.

The work performed during the period covered by this report includes the collection and subsequent disposition of the eggs or fry proceeding from 22,500,000 eggs of whitefish (Coregomus albus); 140,000 eggs of brook trout (Salcelinus fontinalis) from the ponds of this station; about $\tilde{5}, 000$ eggs of the red-banded or rainbow trout of California (Salmo iridea), also from the ponds of this station, and 57,000 eggs of lake trout (Cristivomer namaycush); the forwarding of $7 \pi, 000$ eggs of California trout received from the United States station at Baird, Cal., and the care and disposal of the resultant fry; the forwarling of 46,500 eggs of Schoodic salmon received from the United States station at Grand Lake Stream, Me., and the distribntion of the fry; and the distribution of 1,500 young carp received from the mational carp ponds at Washington.

In addition to this work, the old trout ponds were recoustrieted and reoutlined during the months of September and October, and an additional pond built to accommodate the increamed stock of breeders. A survey of the premises was made in July, and a map of the same, showing the proposed improvements, was soon after submitted to the United States Commissioner.

For the purpose of creating a large stock of parent fish from which to supply the increasing demand for eggs of California tront, several thousand of the young of these fish were retained from the lot hatched in February and March of the present year, and 12 new tanks fitted for their temporary accommodation. Anticipating the increased accommodations required by these fish later on, excavations for three new ponds were begun in April, and these are now nearly completed.

During the first two months of the year under consideration-July dud August-no special work was carried forwad, the time being occupied with work that is, for the most part, current throughont the year. This includes the preparing and dispensmg of aliment to the growing and adult fish; devising and executing phans for their protection from poachers; affording to the relatively smaller fishes protection
from their greatest enemies-the larger ones-by keeping them assorted according to size, irrespective of age; directing and equalizing the inflow of water proportionate to the number and size of the fishes in each pond; guarding all possible avenues of escape of the fishes from one pond to another, as well as into the waste channel, and in removing the masses and collections of the ever-generating algæ floating against and clogging the screens-a source of great annoyance on hot, sunny days that are especially favorable to its formation.

At the hatchery, but little preparation for the hatching season was necessary, everything having been put in order at the close of this branch of work in April, 1881, and left in readiness to resume operations again at the proper time. The few essential preliminaries in this direction, as well as in connection with the water facilities and adjuncts, were therefore arranged in September and October, cotemporaneously with the work of revising the trout ponds.
As the estimates contemplated increased work in the way of propagating whitefish, increased hatching capacity was provided by displacing a double row of hatching-boxes with a tier of tanks, which were subsequently equipped with hatching-jars.

Possible and manifestly weak places in connection with the spring pond and its three outlets were repaired and strengthened to better guard against leakage and imminence of danger of outbursts. The discharging channels alluded to provide for drainage, for overflow, and for conveying the water to the reservoir from which the tank room is supplied. Being made of wood and laid underground, they have usually lasted not to exceed 4 or 5 years, and, in spite of their being thoroughly caulked when laid, leak more or less after a time. Then, the draught-pipe between the spring pond and reservoir must, of necessity, pierce the dam near its surface to give sufficient head of water in the hatchery, and, being so near the surface, has been lifted from its bed by upheavals of frost, the water percolating underneath. The overflow being still nearer the top of the dam is even more liable to be thus forced from position; and nothing short of constant vigilance at times has prevented the water getting sufficient start in this way to wash a gorge across the highway that creates the dam, which would soon draw the pond below the draught pipe, and thus discontinue the supply for the hatchery. The overflow in use having become quite unserviceable through age, I decided to guard against further insecurity at this point by replacing it with pipes of iron firmly imbedded in cement and gravel. This was accordingly done, and no further trouble from this source is anticipated. The drainage and draught pipes, after being thoroughly caulked, were considered safe for another season-the one just closed. But as there is now more or less leakage, which is a constant menace to the safety of the dam, and as it is important to secure immunity from danger of destroying the water power during the hatching period, these must also be replaced by iron conductors of sufficient caliber for the purpose,
surrounded by an impervious mass of cement and gravel. Until this is done it will not be possible to command the entire yield of the supplying springs, nor to dictate through what channels the water shall be discharged.

The cooling or intermediate reservoir between the spring pond and hatchery had been leaking quite too freely to be compatible with safety, so that repairs were considered essential. We therefore girted it with a 10 -inch band or rim of \because-inch planking, the water level tonching the middle of the rim, while the planks themselves are firmly held against the outer wall by spikes driven to stakes set in front. Then, a double coat of cement, lapping on the edge of this rim and covering the entire interior surface of the reservoir, was spread, thus effectually closing all possible chances for leakage. The test of eight months' use of this receptacle has shown it to be absolutely water-tight and perfectly safe.

NOTES AND TABLEA IN REFERENCE TO COLLEOTING THE SUPPLY OF WHITEFISH EGGS.

Most of the eggs laid in were secured at the "Bass" islands of Lake Erie, which are, on the whole, quite as reliable as any locality for this work. Certain other points in Lake Erie, as well as in Lakes Huron and Michigan, may show heavier catches of fish, but they are, so far as I have been able to ascertain, less prolitic of ripe fish, in proportion to the number caught. At the islands, too, ass well as at all other points, the yield of eggs from the varions fisheries is quite disproportionate to the catch of adult fish. The fact that whitefish are caught in any given locality during their nominal spawning period does not necessarily sig. nify that ripe fish will be found at such places, for the devices for their capture-the stationary trap net or portable gill-net-may not be set on or near those grounds naturally selected by the fish for the deposition of spawn, but at points in the paths or runways leading to and quite remote from the objective point of the fish in their migrations from the feeding to the spawning grounds. Fzom these nets ripe fish are found, if at all, with the exception of an occasioual straggler, in the later runs at the last of the season. Such fisheries, although quite profitable for the fishermen, are generally unreliable for the collection of spawn, especially when adverse weather compels a suspension of work before the last migrations occur.

There are certain spawning gromeds in the vicinity of the islands that can invariably be depended on. These are well known, and have become favorites with the spawn-gatherers, not only because of their reliability and certainty of being visited by schools of ripe fish, but ripe tish usually appear several days eatier than at other points, some of which furnish heavier catches. Indeed, the privilege of collecting eggs from the nets set on these fruitful grounds is so much sought after by the representatives of various fish commissions that, naturally enough, considerable rivalry for the control thereof is developed. Naturally
enough, too, the State commissions can wield a greater influence than others over net-owners, their work being practically of a local character, and carried on for the express purpose of increasing the stock of fishes by propagation.
Notwithstanding this opposition, homever, I arranged with Messrs. Snide and Fox, of North Bass Island, for the eggs from their three trapnets, which were established on spawning grounds not surpassed by any in Lake Eric. Fourteen and a half million eggs were taken from these three nets, or nearly $5,000,000$ to the net, as will be seen by referring to the tables. A glance at the tables will show also that eggs were taken here seven days earlier than at Middle Bass Island, and eight days earlier than at Kelley's Island.
Four nets were worked at each of the last two islands mentioned, the former yielding $1,000,000$ to the net and the latter about 650,000 .

During the fall season whitefish and herring comprise the great mass of fish caught at the islands, or, for that matter, throughout Lake Erie. Indeed, the combined catch of all other kinds is insignificant in comparison.

The lake remained open much later than the preceding season (1880), increasing the prorluct of the fisheries to correspond. Notwithstanding this, however, the greater demand and brisker competition of buyers combined to produce a decided adrance in prices. Thus in the fall of 1880 the fishermeu received $3 \frac{1}{4}$ to $3 \frac{1}{2}$ cents per pound for whitefish and 50 cents per hundred weight for herring, while during the period under consideration they received $4 \frac{1}{4}$ to $4 \frac{1}{2}$ cents for whitefish and 75 cents to $\$ 1$ for herring.

Pending the appearancr of ripe fish the "egg-man" must bide his time with patience, disposing of the time which would otherwise hang heavily in collecting notes by the wayside, and making frequent tours of the docks as the fish-boats come in to note the condition and catch of fish, often being compelled, through courtesy, to listen to the oftrepeated tale of some superammated fisherman, who tells what "piles" of fish he used to catch in "them days," such fabulous figures being noted as to induce the belief that the original number had increased in geometrical progression through the intervening years.

Following are the tables of spawn taking operations at North Bass, Middle Bass, and Kelley's Islaud:

AT NOHTH BASS.

	Date.	$\begin{aligned} & \text { Females } \\ & \text { used. } \end{aligned}$	Males used.	Number eggs taken.
				-
Nor. 11		1	3	
-11			10	45, 000
$1: 3$		12	18	250,000
14		34	50	640,000
16		49	60	960,000
18		45	80	950, 000
		50	70	$1,000,000$
21		90	120	$2,000,000$
2		53	100	1, 250, 000

AT NORTH BASS-Continued.

AT MDDLE BASS.

AT KELLEX'S ISLAND.

Nor. 18.	6	10	125,000
19	5	10	75, 000
20	10	18	200, 000
22	16	28	300,000
${ }_{25}^{23 .}$	42	70	850,000
26.	25	40	450,000
Dec. 1	4	10	400,000
3	4	9	75, 000
Tot			2,575, 000

The eggs were packed and convered to the hatchery in the flanneltray shipping-cases, substantially in the same manner noted in my last report (1880-'81).

At Alpena, Mich., whence I anticipated receiving a large number of eggs, a very decidedly off year for the fishermen, and in consequence for the spawn-gatherer, was experienced. The continued warm weather of October and November delayed the cooling of the water to that degree necessary to drive the fish from the deep waters to the shoals and reefs for the purpose of spawning, until near the usual time for winter to set in; so that the fishermen, fearing a repetition of the experiences of the preceding season, when winter was precipitated upon them so suddenly that a large amount of fishing appurtenances were frozen in and destroyed, entailing heavy losses, were affrighted at the first cold snap, and had relegated all their paraphernalia to winter quarters before the ebb-tide of whitefish-the fisherman's bonanzahad set in.

$$
\text { S. Mis. } 110-66
$$

In this section the first runs during the fall season are made up almost wholly of lake trout (Cristivomer namaycush), and usually a sufficient number are caught to compensate for cost of fitting up and setting the nets and current operating expenses, leaving the measure of profits to be determined by the length of time the work can hold out against the weather during the whitefish run. This would seem to be and invariably is sufficient inducement to incur the taking of great risks; but the fishermen seemed only to remember the disasters and losses of the previous season, forgetting that the early and intense cold of that period was quite exceptional. A feeling of overcaution was produced, manifested by the great haste of interested parties to consign their trappings to the protection of harbors and twine-houses. But as day after day of moderate weather-for the time of year-followed the first blizzard, they saw how premature their alarm had been, and it is safe to predict for the coming season a relapse into the other extreme of an entire disregard of the premonitions of winter.

The season could doubtless have been made a successful one for both fisherman and spawn-taker, as the weather was such as to admit of a continuance of operations long after the field was abandoned. Even as it was, fishing was carried on ten days later than last year, but should have continued still fifteen days longer to correspond with the weather and runs of fish. The number of whitefish actually brought to port at Alpena during the season was quite insignificant compared with some former years, and a very decided falling off from the average. Of course quite a large number were caught in the aggregate, from which many millions of eggs might have been obtained had there been a heavy sprinkling of ripe spawners; but only the advance guard was captured, and this is invariably made up of a great preponderance of malesmostly ripe-and a few unripe females. Just as mature spawners began to appear, a brief period of severe weather came on, nets were withdrawn as rapidly as possible, so that eggs were taken only on four days, and then in insignificant numbers, with one exception. In no other branch of the work is success or failure so dependent upon and associated with the condition of the weather.

Certain well-known and well-defined localities are sure to receive the annual visitations of hordes of whitefish laden with spawn; but as the climax of their spawning period is reached only at the verge of winter, when the elements are liable at any time to combine to prevent their capture, a considerable degree of uncertainty in regard to laying in a very large number of eggs is of necessity unavoidable.

However, I can but regard Alpena and vicinity as a favorable locality for the collection of whitefish eggs. Large numbers of the parent fish are captured, and very rarely, indeed, are the fisheries abandoned before the height of the spawning season is reached. This fact, coupled with the great fecundity of the fish, makes it a matter of comparative ease to obtain vast numbers of eggs under favorable circumstances. Having
plenty of ripe fish at command, one man can readily take two or three million eggs daily. I have taken, on more than one occasion, under partial adverse circumstances, $2,000,000$ eggs in a day. It will be seen, then, that but few days in the aggregate, at the right time, are required to secure great numbers. Indeed, taking the seasons as they average, only a suall corps of spawn-gatherers are necessary to collect any reasonable number of eggs.

Mr. Wires, with one assistant, obtained eggs as follows:
Nov. 16
Nov. 19
Nor. 20
Nov. 21
Nov. 22
Those taken November 16 were from trap-nets, the remainder from gill-nets. Besides the $1,425,000$ whitetish eggs takeu and sent on to Northville in good condition by Mr. Wires, some 60,000 eggs of lake trout were taken from 10 spawners on the last day of October, and forwarded to Northrille in good shape the day following.

Below is Mr. Wires's record of temperatures and weather observations made each day at 12 m .:

Date.				Intensity.	Condition of sky.	Remarks.
1881.	\bigcirc	\bigcirc				
Oct. 28	48	50	S.	High	Cloudy	Raining nearly all day.
	56 46	50 50	SE.	\cdots	Clear.	Went out with fishing tug Seawing.
31	48	50	N.	Light	Cloudy	- Do. ${ }_{\text {Do }}$
Nov, 1	50	50	S.	-.do	. ${ }^{\text {do }}$	Do. ${ }_{\text {Demained at }}$
	49	49	SE.	Fresh.	Cloudy	Remained at Alpena. Went out with the Seawing
3	41	48	SW.	Strong		Light snow-storm. Visited Part
4	30	47	N゙W.	do		ridge Point fishing grounds. Raining. Aboard the Seawing.
5	34	47 47	NE.			Stormy. At Alpena.
$\frac{6}{7}$	54 50	47 47	S.	Fresh	Clear Cl	Went to Scarecrow Island.
	50	47 47	SE.	very strong	Cloudy	Went to North Point. Blowing a galo; no nets lifted.
9	46	46	W	Strong......		Blowing a galo; no nets lifted. At Alpena. No spawning white-
10	38	46	W.	Fresh	...do	tish found yet. Do.
11	39	46	E.	Light	. . do	Do.
12.	43	46	W.	Strong	...do	Squalls: Aboard the fishing tug
13	41	45	NW.	Light	...do	Grayling. At Alpeua.
14	38	44	SW.	Strong	do	Snowing. At Partridge Point.
15	26	40	W.do	do	Went to fishing grounds at Os sincke.
16	36	40	W.	Light	do	First eggs of white-fish taken at
17	48	40	SW.	Very strong	. . do	Ossineke. Blowing a galp; no nets lifted.
18	30	39	TV.	Strongdo	Trap nets being taken up at Os.
19	30	38	N.	do	do	Cold rain and sleet. Aboard the
						Seawing. Storming Aboard the Seawing
21	30	37	NW.	. do		Storming. Aboard the Seawing.

Date.				Intensity.	Condition of sky.	Remarks.
1881. Nov. 22	$\stackrel{\circ}{25}$	\circ 36				Aboard the Tom Merrill.
23	46	36	SW.	Very strong .	do	Blowing a gale. Boats remained
24	18	34	W.	Strong	...do	in port. ${ }^{\text {Do. }}$
25	24	33	SW.			Blowing strong. Boats remained in port.
26 \|	30	33	NW.	-...do	. . .do	Went out with the Tom Merrill Fish in nets mostly dead; net not reset.
27	23	323	NW.	. .do	..do	At Alpena. Nets of all kinds be ing withdrawn as fast as weathe will permit
28	35	32즐	S.	do	Clear	Do.
29	48	32 立	SW.	do	. . . do	Do.
30	34	$32 \frac{1}{2}$	E.	Light		Squalls of snow and sleet.

Note.-Left Alpena for Northville December 2, arriving the day following.
OPERATIONS AT THE HATCHERY.—DISTRIBUTION OF EGGS AND FRY.
Twenty-two million five hundred thousand eggs were shipped from the spawning grounds, all arriving at the hatchery in good condition. The first lot came from the islands November 21, and the last lot from the same source December 8. Upon arrival the eggs are washed from the trays of each case successively into a tub of water, and dipped thence with a skimmer into the hatching jars. All the jars on hand were filled before the last shipment of eggs but one came to hand from the spawning grounds. Pending the arrival of a number of jars daily expected, the eggs of this lot were allowed to remain in the shipping cases, which were placed in a room varying in temperature from 38° to 55°. The jars soon came along, but some little time was consumed in fitting them up for the reception of eggs; so that ten days had elapsed from the time the eggs were arranged in the cases at the islands until their removal therefrom at the hatchery, jet no special loss on this account was shown. Up to this time the eggs remained nearly intact, although conferva had begun to develop from the dead eggs. However, a few matted chunks adhered to the trays when emptied, and these, with others rapidly forming, would soon have caused serious loss had they been allowed to remain undisturbed much longer.

For experiment, we took from this lot of eggs as soon as they reached the hatchery abont 25,000 , and placed them in a hatching box, where, of course, the water is constantly renewed, but the eggs themselves lie nearly or quite motionless on the trays. Here we allowed them to remain 7 days without removing the dead eggs. At the end of this time they had collected in masses and bunches, scarcely any remaining that were not held by the outreaching fingers of conferva. Fully one-half were already destroyed, and we succeeded in saving a portion of the
remainder ouly by agitating the collections and chunks violently in water, passing the freed eggs through a sieve. The results serve only to verify prior experiments, which show that the greatest enemy of the egg-confersa-generates much faster in water than in atmosphere of the same or even a higher temperature, and that in consequence eggs are far safer out of water than in unless provision for the removal of the conferraceous egg is made. For incubating the eggs, the Chase automatic jar was used, 136 being required at first. They were arranged as follows:

84 jars, at 175,000 each	14, 700, 000
52 jars, at 150,000 each	7, 500,000
	22, 500, 000

The number of eggs the jar will contain while in operation is in an incerse ratio to the volume of water used. When the minimum of water is used, or just barely enough to impart sufficient motion to the eggs to keep them detached, the jars will hold 175,000 eggs each. Wellfilled jars, with a gentle circulation, work much better than those partially filled and given a brisk or violent action; in fact, the former show the very best movement obtainable. But jars to be operated in this way must be perfect in form and have erenly ground tubes, otherwise no motion whatever will be imparted to a portion of the eggs. Then, too, if there is a considerable sprinkling of dead eggs-frequently the case at the beginning of the season-a gentle movement will not always prevent the putrid eggs from uniting or collecting in chunks or masses, which will settle to the bottom of the jar instead of being thrown off. For this reason "Hospital" jars have to be given a liberal supply of water in the shape of very euergetic currents.

Several experiments were made with a view to improving on the hatchers in use. The "Improved Shad Hatcher," described in Forest and Stream of June 16, 1881, was tried and found to give a more perfect morement to the eggs than the Chase jar. To secure this, however, either a greater volume or head of water was required, owing to the force of the current as it entered the jar being partially arrested in the hollow of the upright cup or cone.

To orercome this drawback, Assistant Bower adrised the use of a solid double coue, the inverted section of which would simply divert or radiate the water withont breaking its force, and by its own meight retain its position. The suggestion being acted upon, an equalized current compelling a uniform and perfect movement of the eggs was produced, with the minimum supply of water.

Into this jar or hatcher the water is introduced at the bottom ; in the Chase jar at the top, being directed to the bottom by a glass tube resting ou feet, which frequently obstruct and disconcert the currents throughout the egg-chamber. Assistant Wires succeeded in amending this defect, thereby greatly improving the efficiency of the Chase in-
strument, by using a tin tube with a wide flange or rim at the bottom, conical in shape to conform to the lower section of the above-mentioned double cone over which it was set, the cone being inverted so that the strips of tin serving as feet when used with the other jar, would raise the tube to allow the water to escape uniformly from the outer edge of its flange or rim.

Mr. Bower also fitted up a rectangular box or tank for an incubator, so constructed that the eggs rise from the center and settle down the outside, exactly reversing the jar movement. It is 12 inches wide, 13 deep, and 30 long, although its length might be extended indefinitely without disturbing or changing its operation. It is divided into upper and lower sections, and, as with the jars, a waterpressure or head is required. The desired movement of the eggs is obtained by introducing the water into the lower section, whence it is admitted to the upper section, which is the egg-chamber, through a six-teenth-inch crevice running lengthwise of the box. From either side and 6 inches from the top the partition which divides the box into two sections slants downward to converge the eggs to the center where the current forced through the crevice carries them up again to settle back, fountain-like, as before. Overflows with wire gates are provided at interrals around the top of the box. This apparatus was not tried until the eggs had already begun hatching, so that no opportunity to correct its faults by a practical test was given. It worked very well, however, although after trying it we were well satisfied that it should be given greater depth, less width, and a greater head of water. Doubtless a little more experimenting with this or a similar device will produce an incubator that will be entirely satisfactory, as the principles by which the water currents are obtained and controlled are correct ; while it would have the merit of being easily operated, and furnishing capacity for many millions of eggs at a merely nominal cost.

Spring water alone is used for hatching purposes at this station, and where it first issues from the earth raries but little from a temperature of 47°. In consequence of the very moderate weather which prevailed the past winter, our arrangemeuts for securing a lower temperaturecontinued exposure to the air before reaching the hatchery-were of little avail. The eggs, therefore, progressed very rapidly from the first until all were hatched.

The first orders for whitefish eggs to be filled were from Herr von Behr and G. Ebrecht, Germany. The eggs were packed in separate cases and started on their journey December 19, consigned to Fred. Mather, Newark, N. J., whence they were reshipped to destination. These and subsequent lots were prepared for shipping substantially as follows: First, a sufficient number of trays of canton flannel are made, also a substantial case for the same, of the proper size to allow 4 to 6 inches space all around for the packing material. The trays are then anchored in a tank of water. A quautity of eggs are transferred from
the batching vessels to a number of wire trays in the picking trough, and carefnlly feathered over to show up the dead and unimpregnated eggs, which are removed with nippers. After collecting the eggs by overturning and submerging the trays into a large tin vessel partially filled with water, they are skimmed up and measured in an 8 -ounce graduate (equivalent to 10,000 eggs) and poured thence into the shipping trays. These are then removed to the packing room, or where the temperature is between 30° and 40° Fahrenheit, tilted and drained, and the eggs spread with a feather uniformly two layers in depth, a half inch margin being left around the outside. A single fold of dampened millinet is then thrown over the eggs, and a sufficient quantity of live moss, previously picked, washed and wrung out just enough to prevent dripping or drainage, piled ou to fill the tray when rather snugly pressed down. When practicable, the trays are allowed to stand a few moments in a temperature of 27° to 32°, or until needles of ice have begun to form in the moss, then placed one above the other and firmly held to position by cleats nailed to top and bottom boards. The pack. age is then transferred to the shipping case, having a 4 -inch coating of fine, dry, hardwood shavings in the bottom, and surrounded with the same material quite firmly pressed in. The case is now soon ready for its journey, not, however, until the usnal printed instructions and precautions to express messengers are pasted to the cover, and which, if observed and heeded, would deliver the eggs to consignees in practically the same condition as when packed ninety-nine times out of a hundred.

Following is the table of shipments:

Date.	Number of eggs shipped.	Consignees.
1881.		
December 19.	300,000	E. Mather, Newark, N.J., for von Behr, Germany.
19.	12,000	F. Matber, Newark, N. J., for G. Ebrecht, Germany.
23	250,000	B. B. Redding, California.
34.	250,000	Do.
	10,000	Prof. S. F. Baixd, traskington, D. C.
January 7 --.	250, 000	F. Mather, Newark, N. J., for France.
13.	500,000	B. F. Shaw, Iowa.
16.	10,000	H. J. Fenton, Connecticut.
23.	250,000	B. B. Redding, California.
31.	100, 000	Prof. S. F. Baird, Washington, D. C.
31.	100,000	Mrs. J. H. Slack, New Jersey.
'Total	2,032,000	

I am unable to report the condition in which the transatlantic shipments reached their destination, correspondence relating thereto having been made directly with the Cnited States Commissioner, or with Mr. Mather. Indirectly, however, or from Circular No. 1, 1882, of the German Fishery Association, I learn that the whitefish eggs arrived "in the very finest condition, fine bejond comparison"; from the same source,
also, that of the 20,000 lake trout eggs shipped from Northville, December 10 , "ouly 100 were dead."

Mr. Redding reported that the two lots of a quarter million each, shipped December 23 and 24, arrived at San Leandro, Cal., ten days later, in rather poor condition ; accounted for in part by their having taken the Southern Pacific Road, which passes through a warmer climate, besides being four days longer in transit than if they had gone over the Ceutral Pacific. The third quarter-million lot, consigned from Northville January 3, arrived at San Leandro in very good condition. Mr. Woodbury, superintendent of the San Leandro hatchery, reported the hatching of 90 per cent. of this lot, and about 35 per cent. of the others, the fish being planted as follows:
Jan. 19—Donner and Tahoe Lakes. 75,000
30-Shafters Lake (Marin County) 5,000
Feb. 1-Clear Lake, Lake County 75,000
March 7-Concow Lake, Butte County 10,000
4-Lake Tahoe, Placer County 100,000
9-Clear Lake, Lake County . 100,000
10-Tadeliff Lake, Santa Cruz County 20,000
11-Lake Chabot, Alameda County 5,000
390,000
Mr. B. F. Shaw, Commissioner of Fisheries, reported that 75 per cent. of the eggs sent him for the State of Iowa hatched, and that the minnows were released in Lake Okibozi and Spirit Lake, Iowa.

Mr. Fenton reported that the $10,000 \mathrm{eggs}$ forwarded him for the State of Connecticut arrived January 20, and upon opening the package about 2,000 of them were found frozen to death. The subsequent loss was a little over 900 , leaving about 7,000 fish, which were set free in Long Lake, Litchfield County, Connecticut.

Mr. Anderson, who had charge of the hatchery of the New Jersey Commission, in which the eggs consigned to Mrs. Slack were developed, reported that the eggs reached Bloomsburg February 3, at 4.39 p . m., in very good condition. About 90 per cent. were hatched by the 11th of February, or 90,000 fish in all, of which one-half were liberated in Shepherd's Lake, and the remainder in Greenwood Lake.

At the Northville hatchery the fish began hatching from the oldest eggs January 27, and all were out by the 25th of February. At least three-fourths of them hatched between the 6th and 12th of the latter month, taxing the capacity of the receiving tanks to their utmost. Perforated tin boxes are fitted to these tanks near the overflows, to keep the fish away from the currents at that point, which would be too strong for them to resist. They are also provided with compartments which are supposed to catch the shells; but while the fish were hatching so freely, a sufficient number of shells would float over these divisions to
clog the screen-boxes every few moments, so that unremitting attention was demanded day and night to keep the outlets unimpeded.

The United States Fish Commission car, with Messrs. Ellis, Moore, and Simmons to assist in the work of distributing and planting the minnows, reached Northville February 3. Arrangements for the gratuitous transportation of the car and its messengers having previously been made with all the railroad companies, with one exception, whose lines were to be traversed, the distribution proceeded smoothly and with little expense from the initial trip, February 7, until the successful termination of the work, March 2. Much credit is due Mr. Ellis, who had charge of the trips, and also to his experienced assistants. The car itself was also a great couvenience, as well as an important and efficient factor in carrying forward this work.

Following are the railroad companies to whom acknowledgments are due for free transportation of car and messengers: The Flint and Pere Marquette; Michigan Central; Chicago and West Michigan; Milwaukee, Lake Shore and Western; Chicago and Grand Trunk; Great Western; Rome, Watertown and Ogdensburg; and Lake Shore and Michigan Southern.

Table of distribution.

Date of deposit.	Number of fish released.	Point of deposit.	Waters in which the fish were set free.
February 7.	1,500, 000	Saint Joseph, Mich	Lake Michigau.
- 8	1,500, 000	Muskegon, Mich..	Do.
13.	2, 0000000	Port Huron, Mich	Lake Huron.
16.	1,750,000	Racine, W is	Lake Michigan.
21.	3, 500,000	Oswego, N. Y .	Lake Ontari
24.	$3,500,000$	Islands of Lake Er	Lake Eric.
28	1, 000, 000		
March 2	1, 250, 000	Detroit, Mich ...	Detroit River.
Total.	17,750, 000		

TROUT-WORK.

When the trout-ponds in connection with this station were established the stock of breeding fish was comparatively small, and the ponds themselves were mere excarations irregularly outlined. At the begimning of the year under cousideration the embankments were quite unsafe, having been burrowed and undermined by muskrats, while the pondroom was quite inadequate to properly accommodate the increased stock of fishes. The work of enlarging and otherwise improving them, and the construction of an additional pond and new raceway, was therefore begun in the latter part of Angnst and carried forward to completion by the last of October, or barely in time to give the ripening spawners undisturbed possession of the new premises during their spamning season. Three new ponds were also built the following spring, as betore noted, making 7 altogether, 6 of which are 83 by 20 feet, and the other 51 by 14 , showing a total pond area of 10,674 square feet.

The ponds are planked all around, the planks being spiked to stakes driveu in front. Between and around all the ponds, and of the same height as the planking, is a pier of 'earth 8 feet wide, and across this are laid pieces of 2 by 4 firmly spiked to the stakes to which the planks are nailed. Being thus secured it is quite impossible for the earth to cave in or the sides of the pond to bend in or out. The bottom plank is set in a bed of gravel and blue clay, and a heavy body of the same material, well champed iu, backs the planking up to the top of the pier, so that the ponds are practically water-tight, while the efforts of muskrats to invade them by burrowing underneath will be futile. Each pond is usually filled to within a foot of the top, the bottom sloping gradually from the head, where the water is 18 inches in depth, to the foot, where it is 4 to 5 feet. The overflow gates of the discharging flumes are easily raised by a lever attachment at the bottom, so that the water can be drawn off in a few moments. The gates are made in sections, one or more of which can be removed to give any desired depth of water.

As quite a number of fish will spawn in the ponds instead of running up the raceways, if the former have gravel bottoms, which they should have, those in which the breeders are placed during the spawning season are divided into two sections by a temporary partition, and the bottom of the upper section covered with boards. The fish all being placed in this, but few, if any, eggs will be lost, and as fast as the fish are handled from the raceways they are transferred to the lower section. At the close of the sparning season the partition is removed.

At the mouth of the flume connecting the upper section with the raceWay a trap-gate, sprung with a string leading to the hatchery, is fitted, a simple but very useful device, for no matter how stealthily one approaches, nor from what direction, some of the fish in the raceway will detect the morement and dart back to the pond before the gate can be dropped to head them off.

The fish are given access to the raceways at all seasons of the year, and hither they resort largely at other than spawning time. A raceway fed directly from a copious spring of cold water, and given sufficient fall to create a sparkling current over its clean, gravelly bottom, affords an attractive "summer resort" to trout having admission to it, and here, in warm weather, many of them congregate, lying nearly motionless, with head up stream, for hours together. At the approach of cold weather, when an equally satisfactory temperature is found in the ponds, this practice is discontinned, except with the ripening females, which, with a heavy body.guard of males, and in response to that instinct which impels them to deposit their eggs in a current, begin to prepare spawning beds in the raceway, whence they are easily captured at the proper time for the purpose of expressing their eggs.
The breeding fish are quartered in ponds nearest the feeding springs for some time preceding the spawning season, aud, when most convenient, continuously. This gives them the least variance of temperature
obtainable, and ripens them at about the same time each season, there being but little fluctuation of temperature in these ponds at corresponding periods of one year with another.
The spawning season therefore opens almost invariably from the 1st to the 5th of November, and closes practically from the 10th to the 15th of January, although much the greater portion of the fish spawn from the middle of November to the middle of December. During the past season, perhaps a half-dozen spawned later than the latest date mentioned, and from one of these eggs were not taken until February 2.

Some 140,000 were taken altogether. The first 120,000 turned out very well, a loss not to exceed 10 per cent. occurring during incubation; but the last 20,000 showed a loss of 50 per cent., due to the plan of handling the fish from which they were taken. A majority haviug spawned, we placed the remaining fish in the raceway, and carefully examined them every morning. As a result of this repeated dipping up and inspection of the fish for several mornings in succession, we were compelled to pick away quite half of the eggs so taken-which is pretty good evidence that the less the fish are disturbed or manipulated while ripening, the better the eggs produced.

The following statement accounts for the disposition of the eggs and fry:
Total number eggs taken.. 140,000
Loss during incubation 22,000
January 10, shipped to F. Mather, for reshipment to
France ... 20,000
January 24, shipped to Druid Hill hatchery, Baltimore, Md

$$
30,000
$$

72, 000
Number fry hatched............................. 68,000
March 8 , planted in Washtenaw County, Michigan, in spring
brook tributary to river Ronge .. 10,000
March 15, planted in spring brook near the Northville hatchery,
and tributary to river Rouge... 10,00
May 8, shipped per United States Fish Commission car, in
charge of J. F. Ellis .. 30, 000
Loss on fry since hatching .. . S, 000
Fry now on hand in nursery tanks. 10, 000
68, 000
Average period of incubation, 84 days.
As our breeding force of brook trout will receive large accessions next fall from the stock of growing fishes, we confidently expect to take at least a half million eggs during the next spawning season.

HATCHING AND DISTRIBUTION OF CALIFORNIA TROUT.

On January 24, Mr. Myron Green, of the United States station at Baird, Cal., consigned to the Northville hatchery a case containing 45,000 eggs of the rainbow trout, and on February 6 a second lot of 30,000 . The first shipment reached Northville February 2, and the last February 14, both in excellent condition. Number of dead eggs picked from first lot on arrival, 615; from the last, 272; subsequent loss on eggs, about 2,600. The fish began hatching February 24, and all were out by the middle of March.

Shortly after these fish hatched an accident occurred by which 18,000 of them perished. On the night of March 21 a flooding rain-storm washed into the feeding reservoir, and thence into the tanks supplying the hatching boxes, a sufficient quantity of moss, leaves, and débris generally to almost wholly clog the screens, diverting to the overflow or waste channel the water that should have passed through the trays on which the fish were still retained. The oldest fry fared much worse than those more recently hatched, and especially those in boxes at the foot of the row, the limited amount of fresh water still rumning having become de-oxygenated before reaching them. In the head boxes, and also in an adjoining row of boxes containing fry of brook trout (of about same age, but much smaller), the loss was merely nominal. In a third row containing the Schoodic salmon, just hatched, there was no loss whatever.

I had felt that everything was secure and free from danger of acci-dents-that every precaution for the safety of the fish had been observed; but since meeting with so serious a loss from a source wholly unanticipated, I can but feel that the ouly safeguard against accideuts or insecurity lies in never leaving the fish alone, and shall, therefore, in the future, employ a nightwatch so long as fish in any considerable numbers remain in the hatchery.

Appended is a statement of distribution, \&c.:
Number eggs received from California 75, 000
Loss on eggs during incubation. 3,500
Number fish hatched 71,500
Loss by accident, as noted 18, 000
Loss of fry to date (June 30) in nursery tanks 3, 200
Fry ou hand in nursery tanks 10, 000April 28-Deposited at Beitner Station, Grand Tra-verse County, Michigau, in Boardman River,tributaryto Grand Traverse Bay3, 000
May 2-Delivered to A. C. Lanier, of Madison, Ind 3,000
May 7-Deposited by George N. Matheson, of Sarnia,Ontario, in small stream in Western Ontario, tribu-tary to Lake Saint Clair3,000

From eight adult California trout, five of which are females, all brought from California four years ago and since confined in the ponds here, we took 5,150 eggs between the 13 th and the 29 th of March, which hatched on an average in 38 days. The loss on eggs was 850 ; and ou April 26, 1,200 eggs were shipped to F. Mather for reshipment to Herr von Behr, Germany. The 3,100 fish that hatched were deposited May 16, by James R. Bull, of Saint Louis, Mo., in Murdoch Lake, Monroe County, Illinois.

Next spring we expect to take at least 100,000 eggs from the stock of California trout now on hand, that will then make their debut as spawners. About half of these fish are the progeny of the eight adult fish above mentioned. They were two years old last spring, an age at which a majority of our brook trout have always spawned, although a portion of them, perhaps one-fifth, do not until three years old. We had therefore anticipated getting a nice supply of eggs from them, but failed to find a single mature spawner. Several females were opened at rarious times through the winter, with the result of finding only minute ova to mature a year later; still, we felt confident that a few of them at least would spawn, thinking we had missed the right ones; all the more so, too, from the fact that ripe males were numerous even three or four months in advance of the regular sparning season; in fact, the eggs taken from the adult California trout were mostly impregnated with milt from the two-year-olds. Failure to obtain a single egg from these fish, of which there are at least four or five hundred females, leares little room to doubt the conclusion that the iridea seldom, if ever, spawn when two years old, at least where they are confined in ponds from infancy.

HATCHING AND DISTRIBUTION OF EGGS OF SCHOODIC SALMON.
On the 28th of February, Mr. Charles G. Atkins shipped from Grand Lake Stream, Maine, for the Northville hatchery, a case of 46,500 eggs of Schoodic or land-locked salmon. They arrived March 4, and opened up in excellent condition, only 45 dead eggs being observed ou unpacking. Prerious to hatching, 1,065 more were picked away, showing a total loss of 1,110 eggs after arrival.

The fish began to come out March 16, rather slowly for two or three days, the water being down to $43 \frac{1}{2}^{\circ}$ on an average; but on the 19th the water ran up to 54° at noon, and the fish then came out with a rush, scarcely an egg remaining the day following. Quite a number of monstrosities and imperfect fish were observed, outside of which, however, they looked unexceptionally fine. They were also exceedingly active and strong in riew of the great disproportion between their large, kidney-shaped sacs and light, slender bodies.

Soon after they began hatching, the novel spectacle of occasionally seeing the body of a fish on one side of the tray, with its sac underneath, was presented-due to the wonderful mobility of the sac, which sometimes permitted the downward current to draw it through the mesh of the tray, although four or five times larger than the aperture through which it had passed; after passing through it would soon assume its natural shape, protruding like an immense hernia, from which position the fish would be quite unable to extricate themselves. By inverting the tray and agitating in water, the soft, ductile pouch would soon pass back, releasing the fish unharmed. To overcome this diffculty, which at one time threatened to become quite annoying, the hatching boxes were reversed, so that the water passed upward through the trays instead of down, as before.

Below is the statement of distribution:
Number of salmon hatched 45,390
Imperfect and dead fish picked from hatching boxes and
nursery tanks........... 4, 540
Fish now on hand in nursery tanks................. 2, 850
April 27-Deposited in Long Lake, Mecosta County, Mich-
igan 6, 000
April 28-Deposited in Higgins Lake, Roscommon Coun-
ty, Michigan... . . 3, 000
April 27-Deposited in Chippewa Lake, Lake County, Michigan

6,000
May 1-Deposited by N. A. Osgood in Goguac Lake, near Battle Creek, Michigan, (fish shipped by express)..... 3, 000
May 3-Deposited at Piqua, Ohio, in water-works reservoir, containing 150 acres................................ 6,000
May 10-Deposited in Union Lake, township of Pontiac, Oakland County, Michigan

8,000
May 15 -Shipped per express from Toledo, Ohio, to S. E. Williams, La Porte, Ind

3,000
May 15 -Shipped per express from B. \& O. junction with the Wabash, to T. B. Wightman, Cedar Beach, Ind ... 3, 000

45, 390
The fish were all planted in excellent condition, with the exception of the last two lots. Mr. Wightman reported that the fish sent him were
all dead on arrival, and Mr. Williams that nearly all were dead when received, the remainder being deposited in a lake near La Porte.
After successfully shipping 3,000 by express to Battle Creek, using in transit three to four hours, I was not a little surprised at the nonsuccess of the other shipments; all the more so from the fact that those to Battle Creek were sent in one 10 -gallon can without the loss of a single fish, whereas with each of the other lots two 10 -gallon cans were used, which would more than offset the difference in time occupied in transit to their respective destinations. In all three consignments the water was reduced to icy coldness before starting.
The results attending these shipments, which were, to a certain extent, in the nature of an experiment, justify the conclusion that with the transportation of live fish success in one instance fails to establish a basis for calculations in other instances, where eren the conditions and circumstances are, to all intents and purposes, alike; and that the chances of failure are reduced to the minimum only when the fish are under the constant surveillance of an experienced messenger.

DIStRIBUTION OF EGGS OF LAKE TROUT. (Cristivomer namaycush.)

When Mr. Wires started for Alpena in the latter part of October to look after the collection of whitefish eggs at that point, instructions were given him to obtain, if possible, a few eggs of lake trout if he arrived too early for the whitefish work. As the few whitefish then being captured in the inshore fisheries showed little indications of spawning, Mr. Wires, on the last day of October, put out about forty miles to the gillnet fisheries, where he found the lake trout nearly all spent, but succeeded in getting 57,000 eggs. These were shipped by boat to Bay City, whence they were met by special messenger and delivered to the Northville hatchery, November 2.

The loss of eggs while in the hatchery was 3,600 ; December $10,20,000$ were consigned to Mr. F. Mather for reshipment to Herr von Behr, Germany; and on January $3,30,000$ were forwarded to Commissioner Shaw of Iowa, who reported that they arrived in prime condition January 6 and commenced hatching the day following, the total loss on eggs and fish being less than 5 per cent. The eggs were now well along in adrancement; in fact a few hatched the same day that the Iowa shipment was made; nevertheless a package of 2,000 was shipped to Newark January 7 to be transmitted by Mr. Mather to France, if their condition when received by him would warrant it; but despite their being reduced to a temperature of 310 before learing the hatchery, a few hatched on their way to Newark, and Mr. Mather, therefore, hatched the remainder, the fry being subsequently released in Culver's Lake. Sussex County, New Jersey.
The stock of embryos and alevins was now reduced to 1,400 ; and these, after the hatching and sac-consuming process was completed, were
placed in one of the largest nursery tanks, where they still remain. Less than two dozen have died since hatching; they now average 3 inches in length, and are doing remarkably well, having learned to devour the liver and kidney "hash" given them as greedily as the brook trout in the ponds.

SUMMARY OF THE WORK AND ITS COST.

Number of eggs of whitefish shipped......... $2,032,000$Number of fry of whitefish planted 17,750,000
Number of eggs of brook trout shipped 50,000
Number of fry of brook trout planted 58,000
Number of fry of brook tront on hand 10,000
Number of eggs of California trout shipped 1,200
Number of fry of California trout planted 43, 100
Number of fry of California trout on hand 10,000
Number of fry of Schoodic salmon planted 32,000
Number of fry of Schoodic salmon on hand 2,850
Number of eggs of lake trout shipped 52,000
Number of fry of lake trout on hand 1,400
Number of carp shipped 1,500Approximate cost of the work, including the constructionof seven new trout-ponds with their raceways, twelve newnursery tanks, and the cost of fish food for the year$\$ 5,000$

Temperature of Lake Erie from March 20 to June 1, 1882, taken daily at 12 m., near North Bass Island, by Chas. Hasford.

$\begin{aligned} & \text { 娄 } \\ & \text { 若 } \\ & \text { 㝕 } \end{aligned}$	㑑	dim ${ }^{\text {d }} \mathrm{g}$	
		－w］d I	
		＇u＇b 8	
$\begin{aligned} & \frac{1}{4} \\ & \frac{1}{4} \\ & \frac{1}{1} \end{aligned}$	a		जaitumyninco
		－попрәлฺ¢	
	$\begin{gathered} \text { घं } \\ \stackrel{y}{\sim} \end{gathered}$		
		＇попрәз！	
	g		
		－потุวәп！	
	a¢\＆	＇х978 11	
		－	
	$\begin{aligned} & \text { घं } \\ & \stackrel{y}{*} \end{aligned}$	${ }^{\text {［ }}$［778 ${ }^{\text {d }}$	
		－	
	立		
		－	ำ．
苞			\＆ gi

范 㡙

Report of temperature observations made at Northville，Mioh．，\＆c．－Continued．

Pars		TSMPTMTURE AT－						WIND AT－						compraiox 0x－			
		8 mm m．		1 р．m．		${ }^{5} \mathrm{p}$ ． me		8 mm		1p．m．		8p．men		8ky．			
Day of week．	Day of month．	过		守	$\begin{aligned} & \dot{8} \\ & \stackrel{\leftrightarrow}{*} \end{aligned}$	$\frac{1}{4}$	$\begin{aligned} & \text { 8 } \\ & \stackrel{y}{4} \end{aligned}$		$\begin{aligned} & \text { 曾 } \\ & \text { 首 } \end{aligned}$		宮	遃	管	$\begin{aligned} & d \\ & d \\ & \infty \end{aligned}$	$\underset{\sim}{\text { d }}$	星	
Wednesday				34 40				SE．	Light．			SE．		Cloady．		Cloady．	
Thursday		33	$\begin{aligned} & 42 \\ & 40 \\ & 40 \end{aligned}$		444445	34	46	South．	Light．	South． East．	${ }_{\text {Light．}}^{\text {Light．}}$	East．	Fresh．	Cloar Cloar．	Cloudy． Cloady．	${ }_{\text {Clear．}}$	
Friday．．		${ }_{36}^{28}$	43434	4			$46{ }^{46}$	East．	${ }_{\text {Light．}}$		Light．					Cloady．	
Saturday		${ }_{34}^{36}$			＋45			NW．	Light．	SE．		NW．	Light．	Clear．	Cloudy Clear．	cloudy．Cloudy．	
Monday		40	47	7 4 4	494444			West．	Light．	West．	Light．	West．	Fresh．	Cloudy．	Cloudy．		
Tuesday．		24	41	32 30			20 48 48 48 48	NW．	Fresh．	$\begin{aligned} & \text { NV. } \\ & \text { SE. } \end{aligned}$	Fresh．Fresh．	$\begin{gathered} \text { west. } \\ \text { NWest. } \\ \text { We } \end{gathered}$	High	Cloudy．	Cloud Cloudy	Cloudy． cloudy．	
Thursday．．		30	${ }_{41}^{41}$	${ }^{\text {＇}}$	44 47 47											Cloudy． Cloudy．	
Friday．		2126	$\begin{aligned} & 40 \\ & 41 \end{aligned}$		444350		$\begin{array}{l\|l\|l\|} \hline 26 \\ 30 & 44 \\ 30 & 42 \end{array}$	－	Light．	$\begin{aligned} & \text { NW. } \\ & \text { SE. } \end{aligned}$	$\begin{aligned} & \text { Fresh. } \\ & \text { Fresh. } \end{aligned}$	$\begin{aligned} & \text { west. } \\ & \text { NWE. } \\ & \text { SE. } \end{aligned}$	Light．	Clear．	Clear． Clear． Cloudy	Cloudy． Cloudy．	
Saturday						$\begin{array}{l\|l} 50 & 52 \\ 36 & 48 \\ \hline \end{array}$			Light．		${ }_{\text {Fresh }}$ Fresh．	SE.	Light．	${ }^{\text {Clear．}}$ Cloudy．	Cloudy．		
Monday		38 38 28	5042	－ 48	50 50				SW．	SE．		$\begin{aligned} & \text { West. } \\ & \text { NE } \end{aligned}$			Cloudy	（ Cloudy．	
Tuesday				$\begin{aligned} & 56 \\ & 42 \end{aligned}$	50	$\begin{array}{l\|l\|} \hline 38 & 48 \\ 58 & 49 \\ 58 & 51 \end{array}$		$\begin{aligned} & \text { NE. } \\ & \text { SE. } \\ & \text { SW } \end{aligned}$		俍	NE．		${ }_{\text {Light．}}^{\text {Light．}}$	Light． Light	Clear． Clear． Clear．		Clear．
Wednesday		35 34	${ }_{42}^{42}$				$\begin{aligned} & 49 \\ & 51 \\ & 47 \end{aligned}$		SWW．			West．SWW．SW．	Light．	Clear． Cloady．		Clear．CloudyClear．	
Thridayay．			42		484454			SW．		Fresh．Fresh．Light．	Fresh．		Light．		Clioar．		
Saturday		603838	45 50 8					Light．			SW．	Clear． Clear． Clear					
Sunday．					56555	64 54 60 54 53			South．	${ }_{\text {Light．}}^{\text {Light．}}$	South．		Light．	South．	Light．	${ }^{\text {Clear．}}$	${ }^{\text {clear }}$ Clear．
Monday		38 50	505050	$\begin{aligned} & 68 \\ & 66 \\ & 67 \\ & \hline-7 \end{aligned}$				Cloady									
Wednesday		48 52			56	58	54	West．	Fresh．	We8t．	Fresh．	West．	Fresh．	Clear．	Cloady．	Cloudy．Clouny．Clear．	
Thursaday．			51	${ }_{57}^{58}$	${ }_{51}^{53}$	${ }_{56}^{50}$	${ }_{50}^{51}$	WWest．	${ }_{\text {Fres }}^{\text {Fresh }}$	${ }_{\text {West．}}$	Fres	West．	Fresh．	Cloar．	Clear		
${ }_{\text {S }}$ Sturdarday		42	${ }_{48}$	52	50	50	50	NE．	Light．	NE．	Light．	NE．	Light．	Cloudy．	Cloudy．	Cloudy	
Sunday ．．．．．．．．．．．．		51	49	44	48	4	48	East．	Fresh．	East．	Light．	East．	Light．	Cloudy．	Cloudy．	cloudy	
Monday．．．		42	48	30	42	24	41	East．	Fresh．	$\stackrel{\text { East．}}{\text { ETV．}}$	${ }^{\text {Freshh }}$ Fresh	$\stackrel{\text { East．}}{\text { NWW }}$	Light．	Clouny．	Cloudy．	Clear．	
Tuesday		40 26	${ }_{41}^{47}$	－28	${ }_{44}^{41}$	${ }_{38}^{29}$	${ }_{44}^{42}$	NW：	${ }_{\text {Light．}}^{\text {Light．}}$	North．	$\underset{\text { Freshh，}}{ }$	North．	${ }_{\text {Freshig }}$ Fight．	${ }_{\text {Cloudy }}$ Clear	Clear．	Clear．	
Thursday．		22	40	42	45	46	47	NW．	Light．	North．	Light．	NE．	Light．	Cloudy．	Cloudy．	Cloudy．	
Friday ．		${ }_{86}^{30}$	4	$\stackrel{40}{48}$	${ }_{50}^{44}$	45	45 49	NEOLt．	$\underset{\text { Light．}}{\substack{\text { Light．}}}$	NE．	${ }_{\text {Light．}}^{\text {Light．}}$	NE．	${ }_{\text {Light．}}^{\text {Light．}}$	Cloar．	Clear．	Cloudy．	
Saturday																	

INDEX.

Page.
Alameda County, California 12
Alpena, Mich 5, 6, 7, 8, 19
Anderson, Mr 12
Atkins, Charles G 17
Baird, Cal 1, 16
Baird, S. F 11
Baltimore, Md 15
Bass Islands 3, 4, 5, 20
Battle Cresk, Mioh 18, 19
Bay City, Mich. 19
Behr, Herr von. 10, 11, 17, 19
Beitrer Station, Mich 16
Bloomsbary, N. J 12
Boardman River, Michigan 16
Boats 8
Bower, Seymour 9, 10
Bower's hatching-box 10
Brook trout $1,13,16,17,20$
Bull, James R 17
Batte County, California 12
California 11, 12, 16, 17
California trout 1, 16, 17, 20
Car. 13, 15
Carp 1
Cedar Beach, Ind 18
Central Pacific Railroad 12
Chabot, Lake, California 12
Chase hatching.jar 9
Chicago and Grand Trank Rallroad 13
Chicago and West Miohigan Railroad 13
Chippewa Lake, Miohigan 18
Clark, Frank N 1
Clear Lake, California 12
Clinton River, Michigan 17
Colleoting of whiteflsh eggs 3
Concow Lake, Butte County, Callfornia 12
Conferva 8, 9
Connecticat 11, 12
Coregonus albas. 1
Oost of operations 20
Cristivomor namaycush 1, 6, 19
Culver's Lake, Now Jersey 19
Deer Lake, Michigan 17
Detroit, Mich 13
Detroit River 13, 17
Distribation of brook trout egge and fry 15
Distribation of Califorais trout 10, 17
Distribation of lako trout eggs 19
Distribation of Sohoodic salmon eggs 18, 19
Distribution of whitelish egge and fry 8, 13
Donner Lake, California 12
Drainage pipes. 2

Druid Hill Hatchery................................. Page. ${ }_{15}$
Ebrecht, G 10, 11
Ellis, J. F 18
Erie, Lake 3, 4, 20
Fenton, H.J 11, 12
Fish Commission car 13, 15
Fisheries 3, 4, 5, 6, 19
Flint and Pere Marquette Railread 13
Forest and Stream, cited 9
France $11,15,19$
Free transportation of car 13
German Fishery Association 11
Germany 10, 11, 17, 19
Gill net 3, 7, 19
Gognac Lake 18
Grand Lake Stream, Maine 1, 17
Grand Tranverse County, Michigan. 16
Grayling, fishing tog 7
Great Western Railroad. 13
Green, Myron 16
Greenwood Lake, New Jersey 12
Hasford, Charles 20
Hatchery $1,2,3,5,8,12,15,16,17,19$
Hatching and distribution of Callfornia trout eggs 16
Hatching and distribation of Schoodic asl- mon 17-19
Hatching apparatus 2, 8, 9, 10
Herring 4
Higgins Lake, Michigan 18
Huron, Lake 3
Huron River 17
Illinois 17
Improved shad hatcher 9
Indiana 18
Iowa 11, 12, 18
Island Lake, Hlinois 17
Kelley's Island 4, 5
Lake County, Callfornia 12
Lako County, Michigan 18
Lako Shore and Michigan Southorn Rail. road 13
Lake trout , 20
Land-locked salmon. 17
Lanier, A. C 16
La Porte, Ind 18, 19
Litchfield County, Connectiont 12
Long Lake, Conneoticut 12
Long Lake, Michigan 18
Ludington, Mich 13
Madison, Ind 16
Maine 13
Marin County, California
Maryland 15
Mather, Fred $10,11,15,17,19$
Matheson, George N 16
Mecosta County, Michigan 18
Michigan $17,18,21,22,23,24$
Michigan, Lako.3
Michigan Central Railroad 13
Middle Bass Island 4,5
Milwaukee, Lake Shore and Western Rail- road 13
Monroe County, Illinois 17
Moore, Mr 13
Murdoch Lake. 17
-Muskegon, Mich 13
Muskrats 13
National carp ponds 1
Nets 3, 4, 6, 7, 8
Newark, N.J $10,11,19$
New York, N. Y 13
North Bass Island $.4,5,20$
North Point 7
Northville, Mich $1,7,12,13,15,16,17,10-24$
Dakland Connty, Mich 17, 18
Ohio 18
Okibozi Lake, Iowa 12

- Ontario 13,16
Operations at the hatchery 8
Osgood, N. A 18
Ossineke. 7
Oswego, N. Y 13
Outlet pipes 2
Packing of eggs 5
Partridge Point 7
Period of incubation for trout eggs 15
Piqua, Ohio 18
Placer County, California 12
Planting of whitefish 13
Ponds $1,3,13,14,20$
Pontiac, Mich. 18
Port Huron, Mich 18
Prices of fisk 4
Product of fisheries 4, 5
Raceways 14
Racine, Wis 13
Tadeliff Lake, California 12
Railroal companies furnishing free trans- portation 13
Rainbow trout 1, 16
Redding, B. B 11, 12
Reservoir 3
Rivalry between fish commissions 3, 4
Rome, Watertown and Ogdensburg Rail- coad 13
Page. 12 12
Roscommon County, Michigan 18
liouge River, Michigan 15,17
Saint Clair Lake 16, 17
Saint Joseph, Mich 18
Saint Louis, Mo 17
Salmo iridea 1,17
Salvelinus fontinalis 1
San Leandro (Cal.) hatchery 12
Santa Cruz County, California 12
Sarnia, Ontario 16
Scarecrow Island 7
Schoodic salmon $1,16,17,20$
Seawing, fishing tug 7
Shafter's Lake, California 12
Shaw, B. F $11,12,19$
Sheboygan, Wis 13
Shepherd's Lake, N. J 12
Shipments of whitefish eggs 10, 12
Shipping cases 5
Simmons, Mr 13
Slack, Mrs. J. H 11,12
Snide and Fox, Messrs 4
Southern Pacific Railroad. 12
Spawning grounds 3,4
Spawning season $4,5,6,13,14,15$
Spawn-taking operations. $4,5,7$
Spirit Lake, Iowa. 12
Spring Pond 2,3
State fish commissions. 4,12
Straits Lake, Mich. 17
Summary of work accomplished 20
Survey of hatchery 1
Sussex County, N. J 19
Tahoe Lake, Placer County, Cal 12
Temperature of ponds 14
Temperature observations $7,8,20-24$
Toledo, Ohio 18
Tom Merrill, vessel 9
Transportation car 13,15
Transportation case 10,11
Trap-net 3, 4, 7
Trout ponds 1, 13, 20
Union Lake 18
Washington, D. C 1,11
Washtenaw County, Mich 15
Wayue County, Mich 17
Weather observations 7, 8, 20-29
Whitefish 1, 2, 3, 4, 6, 7, 10, 11, 19, 20
Wightman, T. B. 18
Williams, S. E. 18,19
Wires, S. P 7, 9, 19
Wisconsin 13
Woodbury, Mr 12

XXI.-THE REPORT OF OPERATIONS AT THE UNITED STATES SALMON-BREEDING STATION ON THE McCLOUD RIVER, CALIFORNIA, DURING THE SEASON OF 1881.

> By Livingston Stone.

Hon. Spencer F. Baird:

Sir: I beg leave to report as follows: When my last report closed in October, $1880,2,000,000$ salmon eggs had been left in the McCloud River hatching-house to be hatched by the State of California for the Sacra mento River and its tributaries. These were successfully hatched and placed in the McCloud River before Christmas, when all work at this station was discontinued for the season.

Up to this time the rainfall had not been unusually large. Indeed, there had been more than the customary number of fair days until the 18th of December, when it began to rain and continued to rain eleren days in succession, the river rising on the 25 th 8 feet and 2 inches above its summer level. This was nothing extraordinary, however, and no fears or even misgivings were entertained of any disaster from flood to the fishery buildings, they being built from 18 to 19 feet above the river. There was a dense fog over the McClond River the last two days of December, but no rain, and when the new year opened the river had fallen back to within a foot and a half of its usual level.

The month of January, however, was attended by a rainfall wholls anprecedented in Northern California since its settlement by white men.*
Forty-seren inches of water fell at Shasta during this month, and in the mountains where the fishery is situated the fall must have been much greater. On the 27 th of January the McCloud had risen $12 \frac{1}{2}$ feet, but the water had been higher than that in previous years, and still no one supposed that the buildings were in danger. Again the river fell, but this time the fall was succeeded by the greatest rise of water ever known in this river before, either by white men or Indians now living. During the first days of February the rain poured down in torrents. It is said by those who saw it that it did not fall as rain usually falls, but it fell as if thousands of tons of water were dropped in a body from

[^118]JAMES E. ISAACS,
the sky at once. Mr. J. B. Camplell relates that near his house, in a caũon which is dry in summer, the water in not many minutes became 30 feet deep, and the violence of the current was so great that trees a hundred feet long were swept down, trunk, branches and all, into the river. On the 2 d of February the McCloud River began to rise at the rate of a foot an hour. By 9 o'clock in the evening it was 16 feet and 8 inches above its ordinary level. This was within 4 inches of the danger-mark, and two young men who were at the fishery, Richard D. Hubbard and Oscar Fritze, made an attempt, at the risk of their lives, to save some of the most valuable movable property in the buildings. With great courage and determination they waded through the fierce current, in the blinding rain and pitchy darkness, and rescued many valuable things, but the water around the house was then up to their shoulders and the nnequal struggle could not be long maintained. These young men are, however, entitled to great credit for succeeding in rescuing what they did from the flood on that frightful night.

The water was soon a foot above the danger-mark, and the buildings began to rock and totter as if nearly ready to fall. There was now no hope of saving them or anything in them. At half-past two in the morning of the 3d of February, they toppled over with a great crash and were siezed by the resistless current and hurried down the river.

When the day dawned nothing was to be seen of the main structures which composed the United States salmon-breeding station on the McCloud River. The mess-house, where the workmen had eaten and slept for nine successive seasons, and which contained the original cabin, 12 feet by 14 feet, where the pioneers of the United States Fish Commission on this coast lived during the first season of 1872; the hatching. house, which, with the tents that preceded it, had turned out $70,000,000$ salmon eggs, the distribution of which had reached from New Zealand to St. Petersburg; the large dwelling-house, to which improvements and conveniences had been added each year for five years-these were all gone, every vestige of them, and nothing was to be seen in the direction where they stood except the wreck of the faithful wheel which through summer's sun and winter's rain had poured $100,000,000$ gallons of water over the salmon eggs in the hatchery, and which now lay dismantled and ruined upon the flat-boats which had supported it, and which were kept from escaping by two wire cables made fast to the river bank. The river continued to rise the next forenoon until it reached a maximum height of 26 feet and 8 inches above its summer level. This, of course, is not a very extraordinary rise for a slow-moving river, but when it is remembered that the McCloud is at low water a succession of cascades and rapids, having an average fall of 40 feet to the mile, it will be seen at once what a vast volume of water must have been poured into this rapid river in a very short time, and with what velocity it must have come to have raised the river 26 feet when its natural fall was sweeping it out of the cañon so swiftly.

Those who saw this mighty volume of water at it highest point, rushing through its mountain cañon with such speed, say that it was appalling, while the roar of the torrent was so deafening that persons standing side by side on the bank cond not hear each other when talking in an ordinary tone of voice.

It must be over two centuries since the McCloud River rose, if ever, as high as it did last winter. There is very good evidence of this on the very spot where the fishery was located, for just behind the messhouse, and exactly under where the fishery flag floats with a good soutl: breeze, is an Indian grave-yard, where the venerable chicfs of the McCloud have been taken for burial for at least two hundred years, and there is no knowing how much longer. One-third of this grave yard was swept away by the high water last winter, and the ground below was strewn with dead men's bones.

Now, the fact that the Indians have been in the habit of burying their dead in this spot for two centuries proves that the river has never riseu to the height of last winter's rise within that time, for nothing could induce Indians to bury their fathers where they thought there was the least danger of the sacred bones being disturbed by floods.

When the waters subsided, it became apparent what a clean sweep the river had made. Here and there the stumps of a few posts, broken off and worn down nearly to the ground by the driftwood rubbing over them, formed the only vestiges whatever to indicate that anything had ever existed there but the clean rocky bar that the falling water had left.

The inventory showed that over $\$ 4,000$ worth of hatching apparatus, house furniture, tools, and other articles were lost or destroyed by the flood, besides the buildings themselves. The whole loss could not have been less than $\$ 15,000$.*

At the time of the disaster all communication with the outside world was shut off by the high water in the rivers. On the 6th of February, Mr. Myron Greeu succeeded with great difficulty in taking a telegram from the trout ponds to Redding, a distance of 25 miles. Mr. Green was three days in accomplishing the journey, and in several instances swam the intervening creeks, carrying his clothes on his head. As soon as the news reached Professor Baird he telegraphed to Hon. B. B. Redding, of San Francisco, to telegraph Senator Booth, at Washington, to obtain an appropriation for rebuilding the fishery. It was now almost at the close of the Congressional session, but Senator Booth succeeded in securing an appropriation of $\$ 10,000$, to be expended under the direction of Professor Baird in restoring the buildings and property destrosed by the flood. As soon as this appropriation was made Professor Baird gave me instructions to proceed at an early date to the McCloud River and enter at once upon the work of restoring the fishery.

[^119]In pursuance of these instructions I arrived at the fishery on the 19th of May, having previously arranged to have 30,000 feet of lumber delivered ou the premises before my arrival. I immediately engaged workmen and ordered material, and on Monday morning, May 23, the work of rebuilding was under full headway, with a force of upwards of twenty white men and about a dozen Indians. There being no building of auy magnitude left, we lived in teuts until the mess-house was finished, one large tent, 60 feet by 30 feet, divided by a partition into two compartments, serving for a sleeping-room and dining-room for the workmen.

We encountered one serious difficulty at the very outset in patting up the new buildings. When we first built here it was supposed that the flat or nearly flat land lying 12 or 15 feet above the level of the river was safe from high water, and we accordingly erected our buildings there, protecting them from a possible rise of 3 or 4 feet more by a very ponderous breakwater. As the water last winter rose to the almost incredible height of 26 feet above the river's natural level, we were only left the alternative of putting the buildings on the hill-tops or on the hill-sides. The first being out of the question, of course we were driven by necessity to build on the hill-sides. This involved a great deal of grading, which in turn necessitated very laborious digging and excarating, sometimes even into the solid rock. It was a long, slow, and expensive work. It was a provoking paradox that here where land was as free as air and almost as boundless, it should cost, as it did in some instances, $\$ 1,000$ an acre. It seemed at first as if we should never get through digging, but after the fom dations were all laid the work went on rapidly, and progressed without any drawbacks, excent a lack of means, until everything was done. The lack of means resulted from an attempt to accomplish with $\$ 10,000$ what could not be done for less than $\$ 15,000$, but it was work which could not be done by halves, and I concluded to go on and finish the work and trust to subsequent action of Congress for indemuification.

On the 1st of September we had on the fishery grounds a mess-house, hatching-house, and stable. We had also built a bridge 150 feet long across the river, and had added to it as usual a firmly built fence or rack that allowed the water to pass down but prevented the salmon from going up the river.

The mess-house is a well-built and nicely painted two-story house, 40 feet by 25 feet, containing a kitchen, pantry, store-room, dining-room, and men's room on the lower floor, with three large sleeping apartments on the second floor. It is well supplied with running water from a spring on the hill behind the house, so that there is always a full tank of fresh cold water in the kitchen, another tank on the second floor to be used in case of fire, and another on the porch where the men wash. This abundaut supply of cold water in this very hot climate is a great convenience, not to say luxury. The mess-honse rests ou bed-rock, well up above high-water mark, and is perfectly safe from any future flonds.

The stable is a well-built, substantial two-story building, 40 fect $\mathfrak{b} 20$ feet, with accommodations for four horses. It has two commodions store-rooms and a loft. On the north side, where it is protected from the sun in summer and the storms in winter, a shed is buit joining the barn.

The hatching house is a large, handsome, painted building so feet lons and 30 feet wide. It stands well above the danger mark of high wate?, and is provided with forty hatching troughs, each 16 feet long, furnished with seven hatching baskets, each 2 feet long, making two hundred? hatching baskes in all. These baskets will carry 35,000 salmon eggs each, giving a total hatching capacity to the whole house in round numbers of $10,000,000$ salmon eggs.

The hatching-house is provided with nine windows on each side, one window in each gable end, and tive sky-lights on the roof, all of which combined furnish a good supply of light eren on the dark, rainy days in the fall when the salmon are being hatched for the restocking of the tributaries of the Sacramento. On the east end of the house is a large shed built for the purpose of furnishing room and shelter while packing the eggs intended for distribution. The water supply for hatching the eggs is lifted to the house by a current-wheel in the river. This wheel is a fine piece of workmanship, and a credit to the builders. It is 32 feet in diameter, is furnished with thirty-two arms and thirty-two paddles, and revolves on a shaft 18 inches in diameter. It rests on two very substantially built boats, each 36 feet long and $\&$ feet wide. On these there rests, sustained on suitable supports, the current-wheel. The boats and wheel are placed at a point in the river where the current has the greatest velocity, which gives the wheel a lifting capacity of 24,000 gallons an hour.

In addition to the structures already mentioned, there was the postoffice building, which was washed off its original foundation and somewhat injured by the high water, but which had been replaced, raised higher, and somewhat enlarged. This is now used as a dwelling-house. A small store-house which survived the flood, and the spawning-house for taking the eggs, complete the list of buildings at the McCloud River salmon fishery as it is now restored.

As may be supposed, some of the methods of work employed here are of a primitive character. To illustrate this, allow me to trace the boat gunwales through their rarious stages of progress till they were framed into the boats.

The boats' ginwales were to be 36 feet long and 29 inches wide. It was therefore necessary to find a tree which would furnish a stick of good timber 37 feet long and 30 inches wide; and we hoped at first to find a tree from which could be cut a rectangular joist 30 inches by 24 inches, and 37 feet in length. The work of getting out the gunwales began, therefore, with finding the tree. With this object in view, Mr. Campleli spent three or four days in the hills hunting for a suitable
tree, but could not find one within four miles of the fishery. He did find, howerer, a tree which would furnish a stick of timber of the required length and width and 12 inches in depth. This being the largest tree that could be discovered within a reasonable distance, it was cut down. Then four men spent three days scoring and hewing the log to get it reduced to the proper dimensions and shape to be sawed into two gunwales. When this was done a saw-pit was made and the timber was hoisted on the pit. Then two men spent nearly two days sawing it in two, lengthwise, with a whip-saw, one sawyer standing under the log and one above it. We now had in the rough two solid plank gunwales of the required length, width, and depth. As they lay on the saw-pit they weighed nearly a ton apiece, and were too heavy for even ten men to move any distance, so we forded the river with a pair of horses and drew the planks down the hill-side to the river. From here they were floated down the stream and across the river to the landing nearest the point where the boats were to be built. From here they were drawn by horses again to the "ship-yard," as we called it. Then after considerable hewing and finishing they were framed into the boats, making two very solid and satisfactory gunwales. After these were got in, the same process was repeated with another tree with the same results, from which we obtained two more gunwales for the other boat. I mention these details to show that we have something more to do here when we want a thing of this sort than to go to the lumber yard and order it.
In the four gunwale planks just described there were 1,600 feet of lumber. But this was not all the work of this kind that we had to do, for before the season was over we got out from the woods over 20,000 feet of square timber.

The hatching house and the wheel, and the flume for carrying the water from the wheel to the house, were no sooner completed than the salmon began to spawn. This was in the last week of August. The first ripe salmon, indeed, was caught August 25.

This reminds me that I must mention the work that had to be done on the seining ground, a large nearly circular basin in the river, where we draw the seine for capturing parent salmon. When we left off fishing last fall the ground over which we drew the seine was smooth and safe for seining. When we examined it this spring, after the floods, it was found to have been plowed through and through by the violence of the current. Such deep cuts had been made through the former bed of the river that both bowlders and sharp points of bed rock, before entirely covered, now projected 8 or 10 feet above the general level of the river bed, and made it wholly impossible, of course, to draw the seine over them. Our attempts to draw the seine before repairing the ground resulted in getting snagged the first few times and finally tearing the net entirely in two.

The restoring of the seining gromnd being absolutely necessary, we went to work at it as soon as the mess building was completed and the
workmen had a house to eat and sleep in. We began with carefulls examining the ground by going over it with a boat, and by feeling of the bottom of the river with long poles. After finding out in this way where both the depressions and projections were, we went to work with giant powder and blasted for two or three days till we had broken up and leveled down to a great extent the projecting ledges and bowlders. We then took one of our large flat boats or scows and ran it out over the places to be filled up, and, bridging over the space between the boat and the shore, we set a force of a dozen Indians or so at work on a soft bank on the shore. The Indians with picks and shovels cut down the bank, and then with wheelbarrows carried the earth and gravel out to the scow and dumped them into the holes where the earth was needed in the seining ground. This work was carried on until all the depressions on the seming ground were filled up, and the tops of the broken rocks wholly covered over. After this was done a few hams of the net smoothed the whole place over, and the seining ground was as good or better than before.

Before proceeding further with the taking of the salmon eggs, l ought to say that a strange and fatal disease made its appearance amoug the salmon of the river about the 25th of June. We first discovered it from observing dead salmon collecting in the eddies, and others floating down the river. Dead salmon during and after the sparning seasou are common enough in the river, but to see them in June was a very unusual sight. In fact it was a sight never seen before in our ten years' experience on the McCloud. The chief peculiarity of the disease was that many, if not most, of the dying fish presented a perfectly healthy exterior. They were clean, plump, silvery fish, free from fungus and parasites, and without a mark or sign ou the surface to show that anything was wrong about them. I examined several to discover the cause of the mortality. In most of the fish that I dissected the mouth and gills seemed bealthy and intact, while the riscera were very much congested with dark blood, and the spleen was very much enlarged. Later in the season, those that I examined all had unhealthy gills. The gills in these cases were rery much abraded on the outer edges, and were almost stuck together by a slimy or gummy substance, as if the wills had been injured and had freely maturated. This was foum to be the case with many living fish which were caught in the seine. Neither of the symptoms just described were ever observed here in the salmon before this year. I preserved in alcohol several specimens of the viscera of salmon dying from this disease, and sent them to the National Museum at Washington, where an examination of them will probably throw some light upon the causes of this mysterious epidemic.

Proceeding now with the taking of salmon eggs, I will go on to say that the number of ripe salmon caught at each haul in the seine soon commenced to increase, and on the 18th of August I thought it safe to begin to collect salmon eggs for the hatching house. On that day we

Fovi $140,000 \mathrm{eggs}$, the parent salmon appearing to be very thick in the river. The next day we took 225,000 , and by September 2 we had exceeded half a million a day. The next day we took more jet, and from this time till we stopped fishing we could have taken a million a day if necessary. Ripe salmon never were so abundant before in the fishing season. We caught frequently at one haul of the seine more than we used to catch, a few years ago, in twenty-four hours. The salmon were rery large, too, the arerage weight of the spawned fish being several pounds more than last year, and the average number of eggs to the fish being 4,205 against about 3,000 in 1880 and a still smaller number in 1879. In consequence of the abundance of spawning fish, combined with their large size and arerage of eggs, the fishing season was made comparatively easy this year.

When salmon are scarce we have been in the habit of drawing the seine continuously night and day through the twenty-four hours. When they are plentiful the regular time for drawing the seine is from $4 \mathrm{a} . \mathrm{m}$. to $10 \mathrm{a} . \mathrm{m}$., and from $5 \mathrm{p} . \mathrm{m}$. to $10 \mathrm{p} . \mathrm{m}$. This year, on account of the extraordinary abundance of the fish, we frequently had to make but two or three hauls a day, and even at this rate we took all the eggs needed $(7,500,000)$ before the spawning season was half orer-a piece of good luck that never came within our experience before.

I may add here that this rast increase in the number of salmon in the river is the direct result of the artificial hatching of joung salmon at this place. For several years past the United States Fish Commission has presented to the State of California 2,000,000 salmon eggs or more each year. These eggs the State fish commission has hatched each year at its own expense and has placed the young salmon in tributaries of the Sacramento. This artificial stocking of the river has resulted in a wonderful and wholly unprecedented increase of salmon in this river. So great has been the increas ethat the annual catch of salmon in the Sacramento River is worth nearly half a million dollars more than it was seven years ago, before the hatching operations mere resorted to. This one result of the work done by the United States Fish Commission on the McCloud River would be ample compensation for all the outlay which has been made there, supposing that it were attended with no other results.

There was not much else done during the fishing season except to catch parent salmon and to collect eggs, as it takes nearly all hands to draw the seine and to take care of the eggs when taken. However, some work was done in adding conreniences to the hatching house and in preparing for shipping the eggs.

The last eggs for the regular season's supply were taken on the Sth of September, making a total of $7,500,000$. The salmon in the river on the day we left off fishing seemed thicker than ever. If they had been needed I think we could have taken $20,000,000$ eggs this season.

The time between the end of the season's spawning and the begin-
ning of the packing for shipment was devoted to the taking care of the eggs, to making crates and boxes to ship the eggs in, to picking over the moss to pack with, and to cleaning up generally for the season.

Everything went on smoothly till packing time, and without accident, with one exception. This exception, however, was one of the gravest character, and consisted of an accident to the wheel, which filled us all with consternation and alarm. It happened the 18th of September, on a remarkably quiet and pleasant Sunday morning. The white men employed at the fishery were scattered over the grounds, and there were three or four Indians about. No one had the slightest expectation of any disaster. Everything comnected with the hatching of the eggs seemed to be going on with the utmost success and safety, when suddenly, in the direction of the current-wheel, which lifts the water for the hatching house, au ominous sound of a blow was heard, followed by a crash, like the breaking of a board-then another and another-and those who happened to be in sight of the wheel saw that it had begun to break up and was rapidly going to pieces. A moment before, hardly half a dozen men could be seen. A moment after, more than twents men, white and red, were gathered on the bar opposite to where the wheel was stationed. It seemed at first as if the wheel would be torn to pieces in a moment. It was resolving at the rate of five revolntions a minute in a very rapid and powerful current. But the injury itself was the cause of its own cessation.
Though no one knows positively the cause of the aceident, it is supposed that it was oceasioned by driftwood coming down the river and catching somewhere about the wheel so as to obstruct it. The momentum of the current here being so great that it forced the wheel around, notwithstanding the obstruction, there could be but one result -the breaking up of the wheel. But, of course, after five or six paddles were broken off on one side of the wheel, there was a large space on the circumference of the wheel, where it did not reach the water at all; when this part of the wheel came around again to the surface of the water, there being no paddles to reach the current, the wheel stopped of its own accord.

As soon as the accident was discovered not a moment was lost in establishing a line of buckets from the river to the hatching house to supply water to the eggs. Every white man and Indian that could be pressed into the service was employed. and in less than ten minutes we had three lines, of eight or ten men each, bringing water from the river in buckets, tubs, watering-pots, and anything that could be found, that would hold water. This being accomplished, and the eggs released from immediate danger, I gave attention to the wheel. It appeared that seven paddles were broken off, with a portion of each arm attache?. The question now was whether the men could hold out bringing water till the wheel could be repaired. I do not know what we could have done in this emergency without the Indians; but I do not think we
could have saved the eggs except by their aid. They worked splendidly, most of them from eleven o'clock in the morning, when the wheel broke down, until four o'clock the next morning, when it was started again-seventeen hours of continuous work, with two very short interruptions, when I allowed them, three at a time, to run to the house to get something to eat. During all this seventeen hours some of them were carrying buckets of water that weighed sixty or seventy pounds oach. They did not work as if they were working merely for pay; but they worked with genuine enthusiasm. They kept in good spirits, too, till an hour or two after midnight. But about two or three o'clock in the morning it was evident that it was all they could do to keep at it. I do not think they could have held out much longer. I have seen white men look as tired as they did, but I never saw such a tired look on Indians' faces before as there was on the faces of those red heroes who saved our salmon eggs. When it is remembered that we consider 10,000 gallons of water an hour necessary to keep all the eggs in good condition, an idea may be formed of the labor that was involved in bringing the water to the eggs. I must not forget to say here that the white men worked as heroically as the Indians, though their work was not as exhausting, and I must especially mention Mr. J. B. Campbell, who took charge of repairing the wheel, and who worked with all his might from the time it broke till it was fully repaired. At four o'clock in the morning the wheel was again making its accustomed revolutions and raising the regular current of water to the hatching house. When this had been accomplished the rest of us, leaving one man to watch the wheel till breakfast time, retired to sleep the remainder of the night.

Before leaving the subject of the accident to the wheel, I will meution a contrivance which we adopted for furnishing water to the eggs, which, though very simple, saved an enormous amount of labor and is strongly recommended for any hatching house that may be unfortunate enough to have its water supply cut off for any length of time.

The device was as follows: A long, large, receiving tank was placed under the outlet of the hatching troughs so as to catch and hold the water that flowed from them. In addition to this, a line of raised spouts was erected from the outlet end of the hatching house to the filtering tank at the other end, sufficiently elevated to deliver into the filtering tank the water that was poured in at the other end. Several men then went to work at the outlet end of the house to dip the water up in buckets from the receiving tank and to pour it into the head of the elevated line of spouts. The water so dipped up flowed down the line of spouts into the filtering tank, and thence over the eggs again into the receiving tank.

In this way a constant circulation was kept up through the hatching troughs by the small stationary force of men dipping and pouring at the elevated spout. This, with the water that was also being brought from the river, formed an adequate supply, and the eggs were kept in
perfect condition all night, and, strangely enough, there was no perceptible loss of eggs during the whole time of the stoppage of the wheel, although there were $7,500,000$ salmon eggs in the hatching house.

Everything went on smoothly and prosperously after the wheel was restored, the eggs matured with less loss than usual, and on the 24 th of September they were ready to be packed for shipment. On that day we packed and crated $1,450,000$ eggs. On the next day we packed and crated $1,700,000$, and on the third day we packed and crated 450,000 , making in all 36 crates, containing a total of $3,600,000$ eggs. These were all taken to Redding in wagons and then loaded into a car as usual, nearly all the spare space in the car being filled with ice.
This car left with the passenger train for the East on Wednesday morning, September 28, and arrived at Chicago on Monday, October 3. From Chicago the eggs were distributed by the United States Express Company as follows:

Record of the distribution of salmon eggs from the United States salmon-breeding station on the McCloud River, California, during the season of 1881.

Applicants.	Destination.	Number of eggs.
T. B. Ferguson.	Druid Hill, Baltimore, Md.	500.000
R. O. Swenes	Saint Paul, Minn	200,000
R. R. Livingsto	Omaha, Nebr	500,000
A. H. Powers	Plymouth, N. II.	50,000
H. G. Parker.	Carson City, Ner.	50, 000
Seth Weeks.	Corry, Pa	100,000
C. J. Huske	Walhalla, S. C	300,000
C. S. White	Romner, W. Va	100, 000
S. Wilmot.	New Castle, Ontario	500,000
Percy C. Ohl	Plainfield, N.J.	50, 000
Curtis Johnson	Saint Petersburg	50, 000
Fred Mather.	Newark, N.J	500, 000

Besides the eggs mentioned in the above table 50,000 were sent on the 21st of September to the New South Wales Zoological Society, Sydney, New South Wales.

There were also sent, on the 28th of September, from Sacramento, by express, to Hon. B. B. Redding, California fish commission, 200,000 eggs ; and to the Lemni Fish Propagating Company, Sonoma, Cal., 000,000 eggs.

Allow me to say, in conclusion, that this closes the tenth season of the labors of the United States Fish Commission in taking salmon eggs at this station. During that period nearly $70,000,000$ salmon eggs hare been taken and distributed, and, though sometimes great difficultiesand some that appeared insurmountable at the time-have been encountered, fortune has favored us through the decade, so that every year of the ten has been a successful one.

Below will be found tables showing-
(a.) The daily record of eggs taken.
(b.) The number of fish taken in the seine.
(c.) The temperature of air and water during the season.
(1.) The various collections sent to the Smithsonian Institution. S. Mis. 110-6S

Table showing the number of female salmon spawned each day and the number of salmon eggs taken each day during the season of 1881.

Average number of eggs to fish, 4,205. Average weight of females, $11 \frac{1}{\text { है }}$ pounds.

Table giving list of specimens collected for the Smithsonian Institution.

[Catalogue of alcoholic specimens from McCloud River, California. Contributed by Livingston Stone.] No.
700. Dolly Varden trout. 1881.
701. Salmon. June, 1881.
702. Salmon. June, 1881.
703. Salmon. June, 1881.
704. Salmon. June, 1881.
705. Salmon, male. August $26,1881$.
706. Salmon, male. August 26, 1881.
707. Salmon, male. August 26, 1881.
708. Salmon, male. August 26, 1881. .
709. Jar of trout from trout ponds. 1881.
710. Jar of trout from trout ponds. 1881.
711. Salmon, female. August 31, 1881.
712. Salmon, female. August 31, 1881.
713. Salmon, female. August 31, 1881.
714. Salmou, female. August 31, 1881.
715. Jar containing-

1 split-tail fish. June, 1881.
2 young humming-birds. June, 1881.
1 beetle. June, 1881.
1 young mole. June 12, 1881.
1 young rat. June 12, 1881.
2 spleens. June 16, 1881.
1 insect. June 16, 1881.
5 lizard eggs. June 16, 1881.
716. Jar containing gills and viscera of a female salmon that died of the disease prevailing in the McCloud River during the summer of 1881. The spawn was very far advanced but not loose. August 4, 1881. Also viscera of three more. August 5, 1881.
717. Viscera of diseased salmon. July, 1881.
718. Female salmon. August 31, 1881.
719. Female salmon. August 31, 1881.
720. Head of salmon. Gills and eyes partly destroyed by fungus and healed again. July 8, 1881.
721. Jar containing-

1 rattlesnake. June, 1881.
1 king snake. June, 1881.
1 king snake. July, 1881.
1 small striped snake. July, 1881.
1 small snake. June, 1881.
1 lizard. June, 1881.
1 lizard. July, 1881.

Memorandum of nests and eggs of birds collected on the McCloud River from May 29 to June 12, 1881.

1. King oriole. Nest and young.
2. Redheaded woodpecker. Found in stump of tree.
3. Male and female linnet nest and 3 eggs. Found on rafters of barn.
4. Female blue jay. Nest found in tall live oak.
5. Flycatcher (male) and nest.
6. Humming-bird. Nest and 1 egg .
7. Cat-bird and nest.
8. Goldfinch and nest.
9. Unknown nest.
10. Unknown nest.
11. Humming-bird's nest.
12. Quail's nest. Four eggs.
13. Dove and egg. Found in hollow of ground (no other nest).
14. Quail's nest. Seven eggs.
15. Unknown nest. Three eggs.
16. Unknown nest.
17. Sundry unknown nests.
18. Oriole's nest.
19. A yellow-breasted bird and nest.
20. A yellow-bird's nest.
21. Unknown nest and egg.
22. Meadow-lark's nest and 4 eggs.
23. Unknown nest and 2 eggs.
24. Humming-bird's nest.
25. Flycatcher. Nest and 2 eggs.
26. Uuknown bird and nest. Found on ground.
27. Unknown bird. Nest and 4 eggs.
28. Bones from Cave Bear Cave, McCloud River, California. July 29, 1881.
29. Teeth, McCloud River, California. July 29, 1881.
30. Portion of skull, supposed to be that of a bear, from new chamber of Cave Bear Cave, McCloud Rirer, California. July 29, 1881.
31. Portion of jaw-bone, from new chamber of Cave Bear Cave, McCloud River, California. July 29, 1881.
32. Bones from Cave Bear Cave, McCloud River, California. July 29, 1881.

6 to 12, inclusive. Bones from Cave Bear Cave, McCloud River, California. July $29,1881$.

Table showing the number of salmon taken daily in the seine, with temperature of air and water, during the season of 1881 .
[Record of salmon operations conducted at United States Salmon Hatchery, on the McCloud River, California, from August 25, 1881, to September 9, 1881, on account of the United States Fish Commis. siou, by Livingston Stone.]

Date.	Hour.	Teuperature of -		Fish taken.		Ripe fish.	
		Air.	Surface water.	Males.	Females.	Males.	Females.
							10
26	$5.30 \mathrm{p.m}$.	70	59	200	100	$\left\{\begin{array}{c} \text { About } \\ \text { one-eighth. } \end{array}\right\}$	8
$\underline{4}$	$9.00 \mathrm{a} . \mathrm{m}$.	70	60	200	150	.. do	27
28	6. $30 \mathrm{p} . \mathrm{m}$.	65	59	250	100	- . . do...	19
29	$7.40 \mathrm{a} . \mathrm{m}$.	64	54	1:0	100	. . . do	30
29.	9. $30 \mathrm{a} . \mathrm{m}$.	72	54	150	50	... do	12
29	$5.15 \mathrm{p} . \mathrm{m}$.	78	58	100	50	. . . do	1
29	$5.45 \mathrm{p} \cdot \mathrm{m}$.			15	10	... do ...	${ }^{2}$
29	$7.10 \mathrm{p} . \mathrm{m}$.	72	60	175	75	. . . do -	11
29	$8.10 \mathrm{p} \cdot \mathrm{m}$.	63	56	200	${ }_{20}^{200}$... do	17
29	9. $15 \mathrm{p} . \mathrm{m}$.	58	56	250	250	... do	11
30	5. $20 \mathrm{a} . \mathrm{m}$. 5. 40 am.	45	54 55	150	125do	9
30.	8. $00 \mathrm{a} . \mathrm{m}$.	63	56	100	25do	12
30.	$9.30 \mathrm{a} . \mathrm{m}$.	68	54	40	40	- ...do	
30	$5.00 \mathrm{p} \cdot \mathrm{m}$.	86	56	25	25	... do	2
30	5. $30 \mathrm{p} . \mathrm{m}$.	86	56	60	30do	8
30	$7.15 \mathrm{p} . \mathrm{m}$.	66	54	30	30	-..do	14
30	$7.45 \mathrm{p} . \mathrm{m}$.	66	54	300	300	\{ $\left.\begin{array}{c}\text { About } \\ \text { one-fourth. }\end{array}\right\}$	16
30.	$9.15 \mathrm{p} . \mathrm{m}$.	55	54	150	150	-..do	10
31.	$5.00 \mathrm{a} . \mathrm{m}$.	45	56	300	300do	32
31.	$5.30 \mathrm{a.m}$.	45	56	50	50do -........	5
31.	$7.12 \mathrm{a} . \mathrm{m}$.	47	56	20	20	... do	6
31.	9. 15 arm . 5. $15 \mathrm{p} . \mathrm{m}$.	65 84	56 56	20 75	+5 do do	10
31.	$5.40 \mathrm{p} . \mathrm{m}$.	82	55	250	250	\{ $\left.\begin{array}{c}\text { About } \\ \text { one-fighth }\end{array}\right\}$	5
31.	$7.00 \mathrm{p} . \mathrm{m}$.	72	54	350	350		25
31.	$9.00 \mathrm{p} . \mathrm{m}$.	62	54	250	250	...do	10
Sept. 1	$5.00 \mathrm{a} . \mathrm{m}$.	48	53	300	300do	30
1.	6. $10 \mathrm{a} . \mathrm{m}$.	47	54	200	200 do	15
1.	$7.30 \mathrm{a} . \mathrm{m}$.	55	54	10	10do	5
1.	$9.00 \mathrm{a} . \mathrm{m}$.	62	55	50	50	... do	5
1.	$4.15 \mathrm{p} . \mathrm{m}$.	82	57	250	250 do	28
1	$4.40 \mathrm{p} \cdot \mathrm{m}$.	82	56	175	175	...do	12
	$7.30 \mathrm{p} . \mathrm{m}$.	75	56	125	125	...do..........	11
1.	$8.30 \mathrm{p} . \mathrm{m}$.	60	36	150	150	\{ $\left.\begin{array}{c}\text { About } \\ \text { onc-fourth. }\end{array}\right\}$	11
2.	5. $15 \mathrm{a} . \mathrm{m}$.	58	56	600	${ }_{600}$		51
2	6.30 am .	57	56	400	400	... do	35
2	$8.10 \mathrm{a} . \mathrm{mm}$.	60	56	150	150do	14
2	$10.00 \mathrm{a} . \mathrm{m}$.	61	56	250	250 do	13
2.	$4.20 \mathrm{p} . \mathrm{m}$.	71	56	350	350do	39
2.	$5.05 \mathrm{p} . \mathrm{m}$.	63	56	200	200	.do	17

Table showing the number of salmon taken daily in the seine, fe.-Continued.

Date.	Hour.	Temperature of -		Fish taken.		Ripe fish.	
		Air.	Surface. water.	Males.	Females.	Males.	Females.
Sept. 2..	$8.20 \mathrm{p} . \mathrm{m}$.	60	51	750	750	-... do--.	86
3...	5. 00 a. m.	50	54	250	250	. . . do	38
3.	8.20 a. m.	60	53	300	300	-... do	54
3.	$10.00 \mathrm{a} . \mathrm{m}$.	69	54	240	110	. . . do...	41
3.	$4.25 \mathrm{p} . \mathrm{m}$.	80	57	250	250	- . . do	- 45
3.	$7.40 \mathrm{p.m}$.	60	55	800	800do	118
4.	$9.10 \mathrm{a} . \mathrm{m}$.	73	55	300	300	One-half	33
4.	$10.40 \mathrm{a} . \mathrm{m}$.	80	56	250	150	.-..do	22
4.	$11.15 \mathrm{a} . \mathrm{m}$.	80	56	150	150	\{ About $\begin{gathered}\text { Ane-half. }\end{gathered}$	20
4.	4. $45 \mathrm{p} . \mathrm{m}$.	85	57	255	255	.-.do	27
4.	$7.40 \mathrm{p} . \mathrm{m}$.	78	58	400	400	Nearly all ...	137
5.	$7.30 \mathrm{a} . \mathrm{m}$.	67	56	300	300	- . . do .-.....	95
5.	$9.30 \mathrm{a} . \mathrm{m}$.	73	56	150	150	- . . do	42
5.	$11.30 \mathrm{a} . \mathrm{m}$.	80	57	25	- 25 do	6
5.	7.00 p. m.	76	60	800	400do	156
6.	$8.00 \mathrm{a} . \mathrm{m}$.	70	54	200	200	. . . do	64
6.	$10.10 \mathrm{a} . \mathrm{m}$.	80	54	200	150	- . . do	16
6.	11. $20 \mathrm{a} . \mathrm{m}$.	81	55	200	200do	21
6.	$4.40 \mathrm{p} . \mathrm{m}$.	77	58	150	150 do	20
6.	$7.35 \mathrm{p} . \mathrm{m}$.	64	55	200	200	... do	39
6.	$8.00 \mathrm{p} . \mathrm{m}$.	64	55	300	300	... do	25
7.	$5.30 \mathrm{a} . \mathrm{m}$.	52	54	200	100	-... do	13
7.	$6.15 \mathrm{a} . \mathrm{m}$.	52	54	125	125	.-. do .---.	15
7.	$7.35 \mathrm{a} . \mathrm{m}$.	57	55	110	110	.-. do	8
7.	$9.45 \mathrm{a} . \mathrm{m}$.	78	55	200	200	-...do	46
7.	11. $55 \mathrm{a} . \mathrm{m}$.	87	56	150	150	. . . do	6
7.	$2.30 \mathrm{p.m}$.	92	57	125	125 do .	9
7.	3.00 p. m.	92	57	50	50	- . . do	6
7.	$5.15 \mathrm{p} . \mathrm{m}$.	88	58	275	275	. . . do	20
7.	$5.40 \mathrm{p} . \mathrm{m}$.	73	58	100	100	. . . do	8
7.	7.15 p.m.	66	56	130	130	'... do	20
7.	8.40 p. m.	65	54	250	200do	27
8.	6. 00 a. m.	48	54	175	175	... do	28
8.	$7.50 \mathrm{a} . \mathrm{m}$.	50	54	200	150	. . . do	18
8.	9. $20 \mathrm{a} . \mathrm{m}$.	70	56	160	160 do	24
8.	$10.30 \mathrm{a} . \mathrm{m}$.	74	56	125	125	-.-. do	8
8	$11.50 \mathrm{a} . \mathrm{m}$.	87	57	115	115	-.-. do	11
8	$4.35 \mathrm{p} . \mathrm{m}$.	82	58	50	50	- . do	12
8	$5.50 \mathrm{p} . \mathrm{m}$.	80	57	50	25	-.- do	9
8.	$7.15 \mathrm{p} . \mathrm{m}$.	68	54	150	150do........	24
8.	7.50 p.m.	66	54	300	200 do	19

Table of temperatures taken at the United States salmon-breeding station, McCloud River, California, during the season of 1881.

Month.	Air.				Water.			$\stackrel{\tilde{E}}{\stackrel{y}{E}}$	Weather.
	Shade.			Sun.					
	$7 \mathrm{a} . \mathrm{m}$.	$3 \mathrm{p} . \mathrm{m}$.	$7 \mathrm{p} . \mathrm{m}$.	$3 \mathrm{p} . \mathrm{m}$.	$7 \mathrm{a} . \mathrm{m}$.	3 p . m.	$7 \mathrm{p} . \mathrm{m}$.		
Apr. 16	$\stackrel{\circ}{\circ}$	$\stackrel{2}{5}$	-	-	$\stackrel{\circ}{57}$	$\stackrel{\circ}{51}$	\bigcirc	SW.	Rain.
	48	56			50	50		SW.	Do.
18	49	56			50	50		SW.	Do.
19	49			91	51			sw.	Clear.
20 21	49	57		92	50 50	50			
22	48	58			50				Showers.
23	49	57			49	49			Rain a.m. ; clear p. m.
24	42	70		96					Clear.
25	43	74		100	50	51			Do.
26	53	79		10.	51	53		S.	Do.
27 28	49			10.5	51			S.	Do.
28 29	54 55	8		110	5	56 .6		$\mathrm{S}_{\mathrm{S}}^{5}$.	Do.
30	55	80			52			S.	Do.
May 1	80	100	5		S.	Do.

Table of temperatures taken at the United States salmon-breeding station, \&c.-Continued.

Month.	Air.				Water.			$\begin{aligned} & \text { घ } \\ & \text { n } \\ & \text { n } \\ & \hline \end{aligned}$	Weather.
	Shade.			Sun. 3 p.m.					
	$7 \mathrm{a} . \mathrm{m}$.	$3 \mathrm{p} . \mathrm{m}$.	$7 \mathrm{p} . \mathrm{m}$.		$7 \mathrm{a} . \mathrm{m}$.	$3 \mathrm{p} . \mathrm{m}$.	$7 \mathrm{p} . \mathrm{m}$.		
May $\begin{array}{r} \\ \hline\end{array}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	-.....	$\stackrel{\circ}{96}$	$\stackrel{\circ}{54}$	$\stackrel{\circ}{58}$	-	S.	Clear.
	55	84	-........	109	54	57	S.	Do.
	53	79		81	54	55		S.	Rain through night.
	56	80		96	54		.-...	S.	
	60 56	78		104	52 52	54	S.	Clear.
	56 59	68			53	55		S.	Heavy rain.
	61	65		82	54	54		S.	Clear.
	47			91	50	52		NW.	Do.
	57	84	.-..-	94 89	51	52	NW.	Do.
	56	77	89	53	56	NW.	Do.
	58	86		104	53	57		NW.	Do.
	59				54			NW.	Do.
	65	84		101	53	56	----..	NW.	Do.
		85		98		56		NW.	Do.
	56	90		106	53	56		NW.	Do.
	55	91	.-....	111	54	57	.	NW.	Do.
	58	88		100	55	58		NW.	Do.
	60	75		88 90	55	57 57		NW.	Cloudy.
	60 51	60 72		90	55 52	57 54 54		NW.	
	51	79		91°	52	55	-	SW.	Do.
	57	86		101	52	56		NW.	Do.
	57	80	82	54	56		NW.	Do.
	54	81		52	52	54	NW.	Do.
		85		100		56		SW.	Do.
	60	69			53	54			Do.
	61	79		105	52	57			Do.
June	63	84		109	55	58	SW.	Do.
	62	85		102	56	59	SW.	Heary rain; thonder.
	63 59	67 81 81		103	56 53 53	56 57 57		SWW.	Clear a. m.; rain p. m. Heavy rain at night.
	60	73			53	56		SW.	Clear.
	61	66			53	55	SW.	Do.
	53	66	, ...-		52	53	-.....	$\stackrel{\text { S }}{ }$	Do.
	55	68 77		97	52 54	54	-...	NW.	$\xrightarrow{\text { Do. }}$
	61	68				55		S.	Do.
		77		82		57		S.	Do.
		84		101	54	58		NW.	$\xrightarrow{\text { Do. }}$
	63	84			53	59			Clear.
	63	84	64	108	54	59	56	.	
	62	85		114	54	58			
		86	66	109		59	56		
	65	81 70		94 93	55	59 59	$\stackrel{\text { S. }}{\text { S. }}$	
	60	75	65	94	55	58	57	S.	
	64	82	68	108	54	58	57	NE.	
	64	89	79	110	55	58	50	NE.	
	61	90	78	114	56	60	60		
	64	94		116	57	60	-		Hazy.
	68	96	80	124	57	61	60		
	68	97	82	123	57	6112	61	NW.	
	68	84	80	103	58	$61{ }^{6}$	61	SWW.	
	60	73	69 70	84 89	57 55	59 60	58	SW.	Clear.
July $\begin{gathered} \\ 10 \\ \\ \\ \\ \end{gathered}$	54	79	74	106	55	57	57	SW.	Do.
	52	72	64	92	55	57	56	SW.	Do.
		90	71	110		57	57	NE.	Do.
	58	95		122	55	59	59	SW.	Do.
	54	87	74	111	56	60	58	SW.	Do.
	62	84	77	105	55	58	58	NE.	Do.
	62	78	77	97	55	57	56	SW.	Do.
	53	80	74	102	53	58	58	STV.	Do.
		91	81	115	56 56	60 60	59 60	NE.	Do.
	72	93	81	116	56	60	60	NE.	Do.

XXII.-REPORT OF OPERATIONS AT THE UNITED STATES TROUT PONDS, McLCOUD RIVER, CALIFORNIA, FOR THE SEAS0N OF 1881.

By Livingston Stone.

Hon. Spencer F. Batrd :

SIr: I beg leave to report as follows: At the date of my last report, December 31, 1880, everything at the trout-hatching station on the McCloud River appeared to predict an unusually prosperous season. No exertion had been spared to collect breeding fish for the ponds, and it is estimated that at the beginning of the year the ponds contained 3,000 rery large breeding trout, none of which weighed less than a pound, while half of them weighed over five, and a fer uprards of eight pounds. The average weight of the whole number was not less than three pounds. It was undoubtedly the finest collection of living trout in America, if not in the world. They would easily have yielded nearly a million eggs. But the bright promise of Christmas meek mas doomed to bring only disappointment and disaster. As I said, everything was favorable at that time. There had been no great rainfall up to the 1st of January, the trout were healthy and doing well, the water was good, the spawning time was close at hand, and the trout ponds seemed to be on the verge of a great success. But never were appearances more deceitful. In January it began to rain as it had never rained before in this region since white men came here. Four solid feet of water, lacking an inch, fell at Shasta City during this month, and here in the mountains the rainfall must have been much greater. The McCloud rose to an alarming height, but still no danger was apprehended at the trout ponds, because this station was built so far above the river, and no injury did come from the rise in the river. The mischicf that was done proceeded from an entirely mexpected source, which well illustrates the fact that in a new country like this when tronble begins no one can tell what will come next.
The calamity that befell the trout, and it was a most serious one, was ceaused directly by mud, and only indirectly by water. The enormous volume of water poured down from the sky almost literally liquified the soil on the hill-sides, so that it actually flowed down into the valleys below. In some instances on a stecp hill-side a whole acre of soil to an
unknown depth, completely saturated with water, would in this way flow down into the gulch beneath.*

The effect on the creeks into which this enormous mass of earth descends is indescribable.

The first result is that the creek is completely dammed up by the avalanche. Now, if this were a dam of dry earth the creek would rise till it overflowed the crest of the dam, and then, cutting a channel over the top, it would finally wear a gap down through the dam to its own natural level. But in this case, instead of being dry earth, the dam is almost mud, and the water above it as it rises pushes this saturated mass before it instead of waiting to rise up over it, and mingles with it, the whole commingled mass then flowing down through the cañon to the river below.

What has just been described as happening to creeks generally when land-slides occur from an excessive rainfall is what actually occurred in the stream on which the United States trout ponds are built. The consequences to the ponds were terrible. The trout-pond station was built so far above the McCloud that the river could not reach it. It was also so guarded from high water in the creek that the floods could not reach it in that direction. But for this invasion of mud no provision had been made. It had not even been dreamed of, nor did the possibility of its occurring ever enter any one's mind until it came.

As the mass of mud rolled down the creek towards the ponds nothing could be done bat to let it come into the ponds, because to shat off the mud would also shat off the water-supply from the tront, which would soon be fatal. On it came, increasing in volume till it began to fill the upper trout pond. In a very short time this pond was filled nearly to the top with mud, and then the men had to get into the pond and shovel out the mud. By the time this pond was excavated it was time

* These land-slides furnished a rude and rather novel method of determining what could be discovered in no other way, namely, the intervals at which great rains have fallen in past generations. It is as follows: The size of these land-avalanches corresponds very considerably with the amount of rainfall at the time the slide occurred. The greater the rainfall the larger the slides, so that when a very large slide is found we know that when the slide occurred there was a very large rainfall. Now, as vegetation begins very soon to cover a land-slide after it has subsided, it follows that the age of a slide occurring in past seasons can be approximated by ascertaining the age of the vegetable growth above it. For instance, if we find that a very large slide has occurred in some place we know that there must have been a very large rainfall the year that the slide moved, and if we find a tree a hundred years old growing on the slide we know that it must have been over a hundred years since the great rainfall came which made the slide.

A good illustration of this is furnished by the experience of Mr. J. B. Campbell, who found the remains of a very large land-slide on Town Creek, near Pittsburgh, about 10 miles from the fishery. The size of this slide indicated that when it occurred there must hare been as great a flood as there was last winter. Now, there was a tree growing on this slide which ou being felled was found to be two hundred years old. Wo know, therefore, that upwards of two hundred years ago there was a season when there was a very heary manfal.
to dig out the lower pond. No screens or nettings availed anything, for they became completely clogged up in a moment. This went on for eight nights and days, and so great was the accumulation of earth in the creek channel where the slide occurred that it was two weeks before the mud subsided so as not to require constant attention.

The direct mischief which it caused, of filling up the ponds, was bad enough, but the ulterior injury resulting from it was worse. This arose from the mud getting into the gills of the trout and producing an inflammation in them. Some were killed from it immediately, others survived for some weeks and even months, but succumbed at last. The total loss was very great, for when summer came there were not over a thousand fish left of the magnificent collection which the ponds contained in the fall. Those, however, which were left alive, on the 1st of June were all healthy, and no more deaths occurred after that time from inflamed gills.

During all this trying time of the floods, there were only four white men at the trout-pond station, and the labor and hardships entailed upon them were very great. These four men were Mr. Myron Green, Mr. Loren Green, Mr. Robert Radcliff, and Mr. George Hume. The energy and courage with which, for two weeks, in the solitude of these mountains and with the rain pouring down in more than torrents, they combatted with an enemy wholly unknown to them before, and which could neither be overcome nor successfully resisted, entitles them to a great deal of credit. They certainly showed no hesitation in eucountering hardships and exposure which could not be expected of them for any mere pecuniary compensation.
By the end of the month of February the rainfall had very much decreased, and, though there were times when great vigilance and care were necessary, no serious trouble occurred after the 1st of March.

It so happened that the trout began to spawn just before the time of the highest water. The spawning season opened very auspiciously, and Mr. Myron Green, who had charge of the trout ponds, sent to the railroad station at Redding on the 26th of January 75,000 trout eggs for distribution at the East.*

At this time Pit River, 7 miles south of the trout ponds, was very high, though not quite impassable, and Mr. Green succeeded, at considerable risk, in getting the eggs across the Pit. By the time they reached the Little Sacramento at Reid's Ferry this siver had become all but impassable, and no oue could be found who was willing to venture to cross it. The eggs consequently lay there several days. In the meantime the floods had spread over the whole country, and the California Pacific Railroad for a hundred miles below Redding was more or less under water. The consequence was that the tront eggs spoiled in the crates long before they could be started on their eastern journey. I know

[^120]that some dissatisfaction was felt by the eastern consignees of these eggs, but if they could realize the difficulties which had to be encountered at the other end of the route in shipping the eggs they would not want to attach any blame to any one.

It was over three weeks before the waters had subsided sufficiently to allow the formarding of any more trout eggs, and it was not till the 18th of February that Mr. Green succeeded in getting any through to Redding, Cal., which is the terminus of the California Pacific Railroad and the nearest railroad point to the McCloud River trout ponds. On the 18th of February 25,000 eggs were sent to Hon. B. B. Redding, secretary of the California Fish Commission at San Francisco. On the 19th 15,000 more were sent to Mr. Redding, and on the 23d of February 10,000 were forwarded to Mr. N. K. Fairbanks, of Chicago, Ill., and 10,000 to Mr. B. F. Shaw, of Anamosa, Iowa. From that time until May 1 Mr. Green continued at intervals to ship eggs to eastern points. There were still occasional washouts in various places on the overland roads, so that many of the eggs were sixteen or seventeen days making a journey of five, in consequence of which some lots were lost en route. On the other hand, where no delays occurred, the eggs went through in good order. There will be found appended to this report a memorandum of the distribution of trout eggs from this station.

There was one result of the land slides that made us a good deal of work, and this was that in many places portions of trails that we had built along the hill-sides slid away entirely, so that not a vestige of a path was left. This often happened where the slide itself was only a small one. There are fifteen miles of trails along the river that we keep in repair, and we had spent a good deal of time and labor upon them in order to facilitate the bringing in of the live trout that were caught for the ponds; and it was a work of no small magnitude to get these trails into good order again after the injuries cansed by the rains.

When the rebuilding of the salmon fishery began, about the 1st of June, most of the trout-pond force came down to the salmon-hatching station to assist in the work there, only one or two men remaining at the trout ponds, and their time was chiefly occupied in taking care of the breeding trout, in capturing wild ones, and in making general repairs and improvements about the place. The condition of the trout continued to improve throughout the summer, and on the 1st of September they were all in splendid condition. I may add here that their food in winter is mostly beef, venison, and dried salmon. In summer it is chiefly boiled salmon, with beef and venison, often enough to keep them in good condition.

I mentioned in my report on the salmon-hatching station that during a short period in July and in August, a large number of salmon in the McCloud River died of a mysterious disease. A good deal of alarm was felt when it was reported one morning that the disease had extended to
the trout in the river, and that they also were dying like the salmon. The alarm was a very short-lived one, however, for the mortality among the trout only lasted a fer days, and it was found upon investigation that only a very ferw trout died, and it is quite possible that these were made sick by feeding on the salmon that had died of the disease. No trout in the ponds were affected by the sickness at all, which showed at least that the canse of the mortality among the trout, whatever it was, did not extend up into the creeks.

After the season closed at the salmon-breeding station in October, the fishing for parent trout was vigorously prosecuted, and much hard work was done in repairing the trails and catching and bringing to the pouds live trout, which had to be carried in some instances several miles.

The winter's wood was also cut and brought in, and on the ditch which takes the water from the creek to the tront ponds a deep pond was sunk a short distance above the trout ponds, to catch the mud that is brought down by the water in the ditch.
No great rains fell during the fall up to the present writing (December 31). The river had not risen to any considerable extent except once, when it was 4 or 5 feet above the summer level. The breeding trout at present in the ponds are looking well, and unless there is an excessive rainfall like that of last winter there seems to be no reason why we should not take several hundred thousand eggs during the next spawning season, the beginning of which now appears to be close at hand.

Table showing the distribution of California trout (Salmo iridea) eggs from
the NcCloud River station in 1881. 1881.
Jan. 26. T. B. Ferguson, Maryland 25,000
26. B. F. Shaw, Iowa 25,000
26. N. K. Fairbanks, Illinois 25, 000
Feb. 18. B. B. Redding, California 25,000
19. B. B. Redding, California 15,000
25. N. K. Fairbanks, Illinois 10, 000
25. B. F. Shaw, Iowa 10, 000
March 4. S. Webber, New Hampshire 4, 000
14. T. B. Ferguson, Maryland 700
31. T. B. Ferguson, Maryland 10, 000
April 7. T. B. Ferguson, Maryland 700
16. J. G. Portman, Michigan 6,000
16. R. O. Sweeney, Minnesota S, 000
29. Philo Dumning, Wisconsin 5, 000
29. William Griffith, Kentucky 5, 000
29. J. P. Creveling, Pemnsylvania 5,000
29. Eugene G. Blackford, New York 500
Total 179, 900

XXIII.-REPORT ON THE PROPAGATION OF PENOBSCOT SALMON IN 1881-'82.

By Charles G. Atkins.

The routine work of the season went on with so little novelty that there is not much to report beyond the summaries of work accomplished.
It has been the ordinary practice to defer the purchase of salmon until the market price has declined to about twenty-five cents per pound. This generally happens from June 1 to 10, depending mainly on the supply of salmon from Canadian rivers.
This year the first salmon were received June 1, and the last July 2, the supply coming from the same parties and the transfer being in the same hands as the previous year. The total number bought was 514; 5 of them died in transit, and 509 were deposited in apparently good condition in the inclosure. They were of uncommonly large size, the a cerage being 16.55 pounds, as estimated by Mr. Whitmore-doubtless a very close approximation to the actual weight. This is the largest average that has occurred since the propagation of Penobscot salmon began, in 1871. It is thought by the fishermen to be the highest within their experience. The next highest since 1870 was the season of 1874 , when the average of those purchased reached 14.03 pounds. Another phenomenon worthy of notice is the fact that the average size of the fish was as great during the last days of purchase as during the earliest. The ordinary experience of fishermen is that the mean weight of the fish decreases from the beginning to the end of the season.

The mortality in the inclosure was this year remarkable, 146 being found dead. No progress has been made toward a discovery of the cause. The symptoms were, as before, an opacity of the eyes, (accompanied, doubtless, by total blinduess), subsequent protrusion and bursting of the eye, and, soon after this, of the fish. Ninety-six per cent. of these deaths occurred in June and July. This agrees with previous experience, which teaches us to expect the survival of nearly all those that reach the month of August alive. The greatest heat of the water generally occurs in August. This year the averages were as follows: from May 19 to 31, $57.8^{\circ} \mathrm{F}$. ; June 1 to 30, 59.40 F. ; July 1 to 31, 63.5° F.; August 1 to 31, 63.70 F.; September 1 to 30, 59° F.; Oćtober 1 to $31,45.8^{\circ} \mathrm{F}$. The highest temperature noted was $73 \circ \mathrm{~F}$., August 6. The mean for the first eight days of August was $70.9^{\circ} \mathrm{F}$. These averages are
based on observations made exclusively in the morning, from 5 to 7 o'clock, generally precisely at 6 . Midday temperatures were undoubtedly higher.
The recapture of the salmon in October was successfully accomplished, but four fish eluding us; 358 of both sexes were manipulated, 232 females and 126 males. The females (135 were measured) averaged 33.37 inches in length; 15.67 pounds in weight before spawning, 11.85 pounds after spawning. The males (71 were measured) had a mean length of 34.8 inches and a mean weight of 13.6 pounds. There were obtained 515 pounds of spawn, counting as afterwards ascertained, $2,693,009$ eggs. The average yield was 11,608 eggs from each female. As compared with former experience, these means are all much higher, indicating the accuracy of the estimate of weight made when the salmon were purchased. The first eggs were taken October 26, the last November 17.

At the hatching we had, previous to this season, used water directly from the brook, tapping it within 50 feet of the house. The original supply is from "Craig's Pond," a very pure natural lakelet as cold as ordinary lakes in this latitude. But a few hundred feet above the hatchery it receives the waters of some copious springs which have the effect of maintaining a high temperature in the lower part of the brook during the early part of the winter, and thereby forcing the eggs into early development. In 1879 and 1880 we were forced to pack and ship the most forward lots of spawn early in December-a very inconvenient date-and all of them were ready for shipment earlier than it is supposed would be best for the young fish, if hatched in northern localities. In the winter of $1880-81$ a temporary hatchery was constructed on the brook above the point where the springs enter, to retard the development of a portion of the spawn, and served an excellent purpose, although it was in many respects unsatisfactory. It appeared on the whole advisable to conduct a supply of cold water into the main hatchery, and an aqueduct was projected, tapping the brook above the springs. This was executed in August and September, 1881. It was built of cement mortar, laid around a wooden core four and a balf inches in diameter, the core being drawn ahead as fast as the cement set. It is believed to be practically permanent, being laid at the bottom of a trench below the reach of frost. It is about 1,600 feet long, and cost $\$ 737.30$. In the hatchery we have, therefore, a choice, during late fall and early winter, between warm and very cold water.

In 1881 the spawn was kept at first wholly in the aqueduct water, which had a mean temperature through November of $40.7^{\circ} \mathrm{F}$., and through December of $35.2^{\circ} \mathrm{F}$. The brook, meanwhile, had a temperature of $47.4^{\circ} \mathrm{F}$. in November and $41^{\circ} \mathrm{F}$. in December. The lower temperature of the former enabled us to hold back the earliest eggs until the middle of January, more than a month later than in 1880.

The first shipments were made January 16, 1882, and to suit the con-
venieuce of consignees the last of them were held until March 13. The eggs were, as usual, packed in wet moss, iuclosed in dry leaves or chaff, and forwarded by express.

The eggs rejected for lack of impregnation numbered 50,550 ; those rejected for whiteness, from time to time through the season, umbered 28,459 ; I suppose that 20 per cent of the latter may have beeu impregnated; and this gives us 56,242 as the whole number of eggs that failed of impregnation, being 2.2 per cent of those taken from the fish-surely a very satisfactory result.

The eggs remaining at time of shipment, measured out in tin cans, amounted to $2,614,000$; if to these we add those rejected, we obtain $2,693,009$ as the original number taken from the fish.

Divided pro rata among the parties supporting the establishment, the eggs were assigned as follows:

To the United States	1, 006,500
To Maine	1,147, 000
To Massachusetts	286,000
To Connecticut	172,000
Total shipped	2, 611,500

The transfer of all those eggs was accomplished with a loss of but 1,739 , of which the greater number were probably unimpregnated eggs that escaped the scrutiny given to the spawn before shipment. The hatching was also attended with excellent success at nearly all points, and as the net result of the year's work there were planted in the waters of the country $2,397,132$ salmon fry, as shown in detail in Table III.

Table I.-Schedule of breeding salmon bought at the Bucksport-Orland establishment, 1881.

Table II.-Transfer of Penobscot saimon eggs from Orland, Me., 1882.

Date.	Consignee.	Address.	Final Destination.	No.of cases.	Number of egge.			Date of unpacking.	Condition on unpacking.	No. eggs dead.
					Belonging to States.	Belonging to United States.	Total.			
${ }_{\text {Jan. }}^{1882}{ }_{16}$	A. H. Powers	Plymouth, N. H	Plymouth, N. H	1	80, 000		80, 000	Jan. 18	"Good"	39
	E. A. Brackett	Winchester, Mass	Winchester, Mass	1	40, 000		40, 000		"Good"	339
16	II. J. Fenton	Windsor, Conn ..	Poquonock, Conn	1	80, 000		80,000	Jan. 18	"Good"	17
19	E. G. Blackford	New York, N. Y	Roslyn, N. Y	2		120, 000	120, 000	Jan. 29	"Excellent	144
23	H. J. Fenton	Windsor, Conn	Poquonock, Conn	2		95, 000	95, 000	Jan. 26	"Good""	$\stackrel{26}{8}$
23 23	E. J. Anderson	Bloombury, N.J	Bloomsburr, N.J	2		95,000	95, 000	Jan. 26	"Good" .	${ }^{8}$
23	E. G. Blackford	New York, N. Y	Roslyn, N. Y	1		80,000	80, 000	Feb. 5	"Excellent	$\stackrel{37}{27}$
Feb. ${ }_{9}^{8}$	Chas. G. Atkin	Grand Lake Stream	Grand Lake Stream,	$\stackrel{1}{3}$	$\begin{array}{r} 20,000 \\ 130,000 \end{array}$	50, 000	20,000 180,000	Jan. ${ }^{\text {Jab }}$ Feb. 12	"Excellent	
	E. G. Blackford	New York, N. \mathbf{Y}	Roslyn, N. Y	1		37,500	37,500	Feb. 19	"Excellent"	93
9	A. H. Powers	Plymouth, N. H	Plymouth, $\mathrm{N} . \mathrm{H}$	3	80, 000	95, 000	175, 000	Feb. 11	"A No.1"	145
9	H. J. Fenton	Windsor, Conn	Poquonock, Con	1	85, 000		${ }^{85}, 000$	Feb. 14	"Good"...	86
13	E. G. Blackford	New York, N. Y	Roslyn, N. Y....	3		50, 000	50, 000	Feb. 19	"Excellent	115
13	Dr. R.O. Sweeny	Saint Paul, Mi	$\xrightarrow[\text { Corry }]{ }$	3		200,000 100	100,000	Feb. 17	"Good"	62
14	O. A. Dennen	Mount Kineo, M	Mount Kineo, Me	3	200, 000		200, 060	Feb. 17	"Good in fine con	50
14	A. H. Powers	Plymouth, N. H	Plymouth, N.	- 1	70,000		70,000	Feb. 15	"Good"	250
15	F.C. Hewey	Rangely, Me	Rangely, Me	3	200, 000		200, 000	Feb. 20	"Very good	15
15	J. R. Dillingham	Songo Lock, Napl	Songo Lock	- 2	100, 000		100, 000	Feb. 19	"Good"	12
16	Ellis Hanscom	Machias, Me	Machias, Me	1	30, 000		30, 000	Feb. 21	"Good"	16
16	D. H. Harmon	Norway, Me	Norway, Me	2	100, 000		100, 000	Feb. 18	"Good"	54
Mar. ${ }^{21} 7$		Enfield, Me	Enfield, Me.	5	300,000		300, 000	Feb. 22	"Good"	25
	Chas. G. Atkin	Grand Lake Strean	Grand Lake Stream,	- 1	67, 000		67, 000	Mar. 11	"Good	17
	H. J. Fenton	Windsor, Conn.	Poquonock, Conn	1	7,000		7, 000	Mar. 9	"Good"	2
7 13	A. H. Powers	Plymouth, N. H	Plymonth, N. H	1	16, 000		16, 000	Mar. 8	"Good	10
13	E. G. Blackford	Washington, D. ${ }^{\text {Work, }}$ N.	W ytheville, Roslyn, N.	1		$\begin{aligned} & 27,000 \\ & 57,000 \end{aligned}$	27,000 57,000	Mar. 17	"Excellent".	87
				47	1,605, 000	1,006,500	2, 611,500			1,739

[5] PROPAGATION OF PENOBSCOT SALMON IN 1881-82. 1089
Table III.-Planting of Penobscot salmon fry reared from eggs gathored in 1881

State.	Where hatched.	Water stocked.	Tributaries in which fry were placed.	Locality of deposit.	Dato of transfer.	Number of fish set free.
Connecticut	Poquonock	Mill River		Southport, Fairfield County		10, 000
Maine		Connecticut River	West Branch Farmington River Cold Stream	Riverton..................................		255, 459
	,dodo.		June 11	10,000 20,000
		...do			Jane 15	30, 000
		. do	Mattawamkeag River	Danforth	June 13	40, 000
		. do	. d 10	do	June 14	40,000 55,000
		. do	11	Baucroft	June 16	40,000
	do		$\because \text { テindo }$	Jure 19	40,000 22,000
	Grand Lake Stream .	Saint Crow River	Main River	Lincoln...........	June 20	22,000 266,214
	Manhias	Machias River.	Brooks and streams	Near Machias	June -	29, 800
	Mount Kineo Naples......	Kennebec River ...	Moosehead Lake and tributaries.	Cumberland County	June -	198,000 30,000
	Norway do.	Crooked River......	Ryefield Bridge...	May -	40, 000
				Steep Falls	May -	58,919 194,600
	Rangely ... Winchester	Androscoggin River Merrimac River ...	Kennevago and Rangely streams Nashua River	Rangely, Franklin County.	June 15	194,600 36,000
New Hampshire...	Plymouth.	$\cdots{ }^{\text {Soud }}$ do.	Pemigewasset River..............			334, 302
Minnerota.........	Saint Paul	Saint Louis Rive		Fond du Lac	${ }^{\text {Apr }}$ Mar 27	77,000
New York..........					May 3	70,000 59,750
	Roslyn.	Hudson River	Carr's Brook	-Warren County	May 10	59,750 35,000
		do	Balm of Gilead Brook do		40, 000
		do	Glen Brook	do		50, 000
		do	Ramont Brook	do		45, 000
		Salmon	Gulf Brook, \&c			55,000 25,000
		Samon . ${ }^{\text {a }}$	Trout Brook.	Oneida County		25,000 20,000
		Clapham's Brook		Glen Head, L.		20,500 10
		Stream tributary to		Long Island		1,000
Pennsylvania......		Delaware River	Marshall's Creek	Near Shawnee, Monroe County	Apr. 22	
			do		Apr. 24	30, 000
		.do	do	do	Apr. 25	32,417

S. Mis. $110-69$

XXIV.-REPORT ON THE PROPAGATION OF SCHOODIC SALNON IN 1881-'82.

By Charles G. Ateins.

> 1.-Preparations.

Hatchery No. 3 was the principal scene of activity during August, September, and October, 1881. The location of this hatchery is an exceedingly favorable one, and it is a matter of regret that the facilities existing at this spot were not discovered at the initiation of the establishment. The ground was, in its original condition, heavily strewn with bowlders, large and small, and beneath them were interstices through which the water of the spring stole away in such a manner as to give the impression that the supply was not only small but inconstant. It was only after the tangled maze of shrubs was torn away and part of the surface earth removed that the permanent character of the spring could be observed. Meanwhile three other sites had been occupied, and the main part of the work of developing the spawn and hatching the reserve had been for years carried on at great disadvantage with an inadequate supply of water (spring water at that), no facilities for aeration, and a liability to occasional flooding by rains. I make no doubt that all the serious losses which during the early years occasionally befell the stocks of eggs in development and transportation might have been avoided had we then possessed the facilities of hatchery No.3. Among the minor disadvantages which we might have escaped may be mentioned the labor and risk of carrying the eggs by hand from the fishing grounds over half a mile of rough road, often by night; the difficulty of guarding well the property so far out of sight and hearing; and the many weary days spent by Mr. Munson in the transfer of the young fish from the house to the stream in the month of June, amid tormenting clouds of mosquitoes and black flies. The new hatchery is at the head of a small cove that indents the west shore of Grand Lake within a few rods of its outlet, and not over 20 feet from the water's edge when the lake is full, as is always the case in June. The fish cans are taken in a boat, and easily rowed to the place of liberation, with great economy of time and effort. The fishing and spawning ground is not over 300 feet distant and almost in sight. Within stone's-throw, an excellent site for the superintendent's house has been secured, and will be occupied another season, so that the premises
will always be under surveillance. The surface of the ground presents a steep incline, of which advantage has been taken to arrange the floors of the hatchery in a descending series, with a total difference in elevation of about 11 feet. The water is introduced upon the highest of the six floors devoted to the development of the embryos, with ample room for aeration and reaeration at each plunge. The latter circumstance atones for the small minimum volume (9 gallons per minute was the lowest observed this season), and in part for the fact that it is wholly spring water. The volume is least from August to early March, after which the spring rains and the melting of the snows produce so great an augmentation that there is a great surplus during all the season of hatching the reserved spawn and growing the alevins. The minimum volume can be augmented by the introduction of water from other, not very distant, springs.

This house was founded in haste, in December, 1880, and was at first only 30 feet long and 20 wide, but this season we have added wings that increase the floor area to about 1,500 square feet. The floors have all been cemented, and the foundation walls, of massive masonry carried up to a height of from 1 to 8 feet above the ground. Cement pipes were laid to introduce the water from the principal spring, and an aqueduct, partly of bored logs and partly of assorted gravel, brings in the water from another spring 600 feet distant. This will henceforth be the headquarters of the establishment. Here the eggs will be packed for shipment, and the reserve hatched. Here will be the storerooms and workshops.

The fixtures for the development of the eggs are similar to those in use at the other houses and also at the Penobscot establishment. Plain wooden troughs are furnished with movable frames in which the eggtrays are arranged in tiers ten deep, with provision for change of water by a horizontal current. A single new feature has been introduced in the method of aeration. Two troughs are placed side by side and the water allowed to pour from one to the other nearly the whole length, exposing a very broad and thin current to the action of the air, and increasing the opportunity of aeration probably twenty-fold over that afforded by a connecting open spout 6 inches wide. In a rough way it may be estimated that by the repeated use of this arrangement in the new house a gallon of water there is fully equal in efficiency to five gallons in hatchery No. 1.

No change has been made in the location of the fishing ground or the fixtures and appliances pertaining to the work of spawning, except trifling alterations in the form and proportions of the inclosures.
2.-Fishing and spawning.

The spring fishing of 1881 was much better than usual, both as regards the numbers and size of the fish taken. Through the summer there was more rain than usual, and in August and September the lake and
the stream were higher than any year since 1875 . A sudden rise of water, owing to copious rains in August, 1880, had been followed by an abondance of fish in the stream early in September. The high water of 1881 did not have the same effect on the fish, scarcely any salmon entering the stream till after the middle of September. The inference naturally suggested is that the condition of the stream favorable to a late summer or early fall run of salmon is not so much a ligh stage of water as a sudden rise; but the phenomena observed are hardly sufficient for confident generalization. Moreover, during teu days in August the gates at the dam were closed for certain repairs on a dam at Calais, and meanwhile the flow of water was confined to that entering the canal. From August 3 to September 10 there was a fall of $5_{3}^{\frac{1}{2}}$ inches, and from September 10 to October 29 a further fall of 15_{2}^{1} inches; November 5 , a rise of 2 inches, owing to rains on the two preceding days; and after that date there was neither rise nor fall until December.
The usual nets were placed across the stream and canal about the middle of September, but no preparations for the capture of the salmon were made until October 29, when it was observed that the most forward of them had begun to form their ridds above our nets. On the night of October 31 the capture of fish began. The manipulation was delayed until November 8, when some hundreds of salmon had been collected, and a part of them exhibited great measiness, a few actually beginming to spawn in the inclosures. The work proceeded as usual until November 19, when all the salmon taken had been deprived of their spawn, and the almost entire cessation of the catch told that the season was at a close.

An accident during the work of spawning confused the different lots of fish so that the number taken from day to day cannot be stated with the usual accuracy, but the tally-book shows exactly the number of females that were manipulated, and enables me to make an estimate of the total number of males, which, I am very contident, is within 15 of the true number. According to these estimates there were taken 652 female salmon, 370 males, and one of unknorn sex-total, 1,023 . There were 621 females that yielded spawn, and the eggs obtained from them are estimated at 947,000 , being an average of 1,525 eggs from each female.
3.-Shipment of spawn.

The development of the eggs intended for earliest shipment was carried on in hatchery No. 3, the remainder being kept in the colder water of No. 2. It is from the latter that the reserve is always selected, since the retardation of their development will bring them out in the spring: much nearer the natural date than if developed in the warmer water.

The shipment of eggs began January 12 and closed March 1. The Josses up to the time of the division of the eggs, when they were cither shipped or set aside for the reserve, aggregated 87,091 , of which 62,159 are known to have been unimpregnated eggs. From this we may fix
the proportion impregnated at 92.9 per cent. Total losses before division $9 \frac{3}{10}$ per cent,-about the ordinary rate.

The eggs were shipped in the customary method-packed in wet moss, inclosed in dry moss-and sent down to Princeton, 12 miles distant, in the afternoon; thence by stage $28 \frac{1}{2}$ miles to Forest Station, the next forenoon; this part of the journey occupying about $5 \frac{1}{2}$ hours, during which the cases of eggs were exposed, with little or no protection, to the wintry blasts.

Excellent success attended the transportation, with a single exception. A case containing 32,000 eggs, addressed to Mr. Brackett, at Winchester, Mass., packed in an experimental manner, which proved to be less efficient than our ordinary mode, was partly frozen on the way, and 8,000 eggs lost. The temperature of the air at the time this package started on its $28 \frac{1}{2}$-mile ride in the open air was 20 degrees below zero. In 22 other packages (including all save three, which were not reported on), the entire number of dead eggs on unpacking was reported at 1,806 , being three-tenths of one per cent., or three in one thousand.

An attempt was made to economize in bulk, and thereby in freight charges, by the use of asbestos felt in place of moss, but it was found that bulk for bulk it was in no wise superior, while at the same time it was far heavier and more costly. The experiments tried in this connection gave results indicating that, considering only the question of bulk, the best material to save from freezing was wet moss; but if the weight and consequent freight charges be taken into account then the best material is dry moss, which is exceedingly light and as efficient as an equal thickness of asbestos felt or building-paper.
The division of the spawn available for shipment, pro rata with the contributions made by the several parties, was as follows:
United States received. 311,750
Maine received. 64,500
Massachusetts received . 107,500
Connecticut received. 107,500
New Hampshire received. ... 53,750
The distribution of the share of the United States will be seen in detail by referring to the subjoined schedule of shipments of eggs.

The hatching of spawn retained $(215,000)$ was accomplished with the insignificant loss of 212 eggs, and of the young fish but 1,691 died; 213,097 young fish were planted in Grand Lake, scattered along shore as usual.

The hatching of the transported eggs and the planting of the young fish were in most instances accomplished with less than the usual mortality. A schedule is subjoined showing the details of the planting.
4.-EXTRACTS FROM DIARY.

Grand Lake Stream, August 3, 1881.-The season has been very rainy here. The lake stands at 3 feet 11 inches on our gauge. The
water still covers our spawning-house floor, and in hatchery No. 2 it is still several inches above the tops of the troughs. Five gates are open and a great volume passing off, yet Munson thinks the water has been rising lately. The total volume of water now flowing in hatchery No. 1 is 28.6 gallons per minute. In hatchery No. 3 [only one aqueduct was. then in operation] the volume is 9.6 gallons per minute. Temperatures of water observed to-day: At hatchery No. 1, $46 \frac{1}{2}{ }^{\circ}$ F.; at hatclrery No. $3,53 \frac{1}{2}^{\circ} \mathrm{F}$. [the water here is open to sun outside the building]; at Grand Lake, at surface, near dam, $72 \frac{1}{2}^{\circ} \mathrm{F}$.
Munson says that the fish hatched out this year were by far the best he ever hatched, stronger and more active. All visitors admired them. None of the fry were planted this year below the dam. They were scattered along the shores of the lake as far as Munson's Island. A number, estimated to have been about 2,000 , were taken in a can with. six or eight gallons of water, and in turning them out a canful would stretch along several rods of shore.
Both Forbes and Munson testify to the abundance of the young of Schoodic salmon below the dam this year. They often followed and seized the hook intended for large fish. The fishing at the regular season (May and June) this year was excellent. Munson says they took very fine fish and a good many of them, and the fishermen were well: satisfied.

September 10, 1881.-Arrived from Bucksport on 9th via Big Lake. The lakes are high, but I hardly think Grand Lake is any higher than in 1875 , when, I remember, we used to run canoes down through the sluice-gate of the dam without touching. It stands now on our gauge at 3 feet $5 \frac{1}{2}$ inches, with a very light northerly wind. This, it appears, is $5 \frac{1}{2}$ inches lower than on August 3. It is now 1 inch below our spawn-ing-house floor. It is 1 foot $7 \frac{1}{4}$ inches higher than November 7, 1880. For about ten days in August the gates were all closed on account of the bursting of the Union dam in Calais. The rest of the time there have been five gates open. The water is believed to be now falling rapidly. In Big Lake the water is very high, there being but two gates. open at Princeton.

None of our nets have been put into the water yet, it appearing to Mr. Munson to be unnecessary, because the fish have not come until within a few days. None were caught until Mr. Ferguson's arrival, on the 9 th, when he took one. Crossing the bridge on the 9th I saw five of the salmon under the bark-mill. Mr. Ferguson also took two to-day, one just below the dam and one at Big Falls. I have seen several leapabove the dam.

October 6.-Third visit to Grand Lake Stream. The nets to intercept the fish in their descent have been in place since the middle of September. Work on the extension and the foundation of hatchery No. 3 is going rapidly forward.

October 26.—Arrived from Bucksport about 11 a . m. The addition to
hatchery No. 3 is nearly finished; cement floors all hard. The stream house (hatchery No. 2) has been put in order for eggs.

October 29.-We put in some of the pound nets to-day. Fish are beginning to spawn above our nets.

October 31.-To-day we put in the second pound, and are now prepared to capture fish.

November 1.-A good many fish ran into pound 2 , and were driven through into the large pound. Munson estimates them at 175 at 9 p . m.-say 30 more in the morning. About 40 fish driven in this evening. Very few salmon have got past our nets into either canal or stream.

November 2.-A pretty good run of fish this morning. Munson found in the pound what he called a female sea salmon of 12 pounds weight (afterwards found to be 36 inches long, and probably heavier than this estimate). At $10 \mathrm{a} . \mathrm{m}$. I saw a male sea salmon also within our inclosures.

November 5.-There were good runs of fish on nights of November 2 and 3. Last night about 15 salmon came in before 9 o'clock, and during the remainder of the night a very large school. Yesterday and the day before were rainy, and it cleared at 7 last evening.

November 7.-A good run of fish every night; last two nights less than a hundred each, we judge.

November 8.-To-day we begin the taking of spawn. All the fish captured prior to this date are gathered in a single large inclosure. From this stock we to-day manipulated 591 Schoodic salmon, 210 being males, 192 unripe females, 166 ripe females, and 13 spent females. The predominance of females at so early a date indicates that the majority of the 'salmon we shall catch have already entered our inclosures. It is usual to take a larger number of males until the season is well advanced, the later catches being mostly of females. The large number of auripe females taken indicates that the delay in beginning manipulation was judicious. Thirty of the females sparned ($=18$ per cent) yielded some defective eggs, commonly but very few each. This includes only such eggs as bore some visual sign of imperfection. In most cases they were chalky-white in color; in some there were only small white spots. In others there was the color and transparency of good eggs, but the yelks were collapsed and rolled together. This phenomenon has always been present with the Schoodic salmon, but no exact record made of the matter before. Besides the Schoodic salmon we handled today 2 sea salmon and 11 small togue (Salmo (Cristivomer) namaycush). The sea salmon were 1 female 36 inches long, gravid, and 1 male $31 \frac{1}{2}$ inches long. The togue ranged in length from 17 to 21 inches, being, apparently, all spent fish. The eggs taken to day $(235,000)$ are placed in hatchery No. 1.

November 11.-Spawning proceeds daily. There are more togue than usual, among the salmon; 22 of them were found to-day, all small. One salmon found to-day whose sex could not be distinguished. It measured 16 inches in length.

November 13.-First suow of the season last night-a mere trace. The temperature of the lake has falleu since November 4 from 49 to 41. Sparnning still continues. No large runs of salmon ; on night of 11th and 12tin only 25 in all. Yesterday we began to put eggs into the stream house, hatchery No. 2.

November 14.-Two nights have brought in bet 50 salmon. It appears that the seasou is drawing to a close.

November 19.-The last day of spawning. We had but 27 gravid females on hand this morning. Twenty of them yielded spawn, and they, with the 7 remaining umripe, were placed in the final inclosure, whence they are to be taken up the lake and liberated. The work of transportation begins to-day.

November 21.-The transportation of fish concluded to-day, and part of the inclosures taken from the water. The main nets are left in place for some days, to prevent the fish that have been turned loose descending the canal and stream, which many of them (perhaps 20 per cent.) attempt to do immediately after they are set free, notwithstanding they are freed one or two miles up the lake. Two inches of snow on the night of 19th. All the eggs deposited in hatchery No. 1 are transferred to No. 3, the latter, with No. 2, having ample accommodations for them.

November 22.-Returned to Bucksport, leaving everything in charge of Mr. Munson.

January 11, 1882.-Arrived from Bucksport at $8.20 \mathrm{p} . \mathrm{m}$.
Jamuary 12.-To-day I find at hatchery No. 3 that the west aqueduct is delivering 20 gallons of water per minute, and the south aqueduct 10 gallons. Munson says the volume has been about the same all the winter, except immediately after heary rains, when it was greater. We have now 485,000 eggs in the new hatchery, and 200,000 additional will be immediately brought up from the river house to hasten their development, so that they may be ready for shipment before March. Munson thinks the rate of impreguation is better than usual this year. We took a tray of lot 1 (earliest eggs), picked out 110 contiguous eggs, and found only 5 of them unimpregnated.
January 13.-Transferred 200,000 eggs from No. 2 to No. 3. These have been in very cold water, averaging a little less than 34° since they were put in the troughs in November, and their eyes are not yet formed.

January 17.-This p. m. Munson picked the unfertilized from six stacks of eggs (120,000 nearly) in two hours forty-seven minutes. He took out 6,700 white eggs, being at the rate of $40 \frac{1}{8}$ eggs per minate, no allowance being made for moving stacks back and forth, shifting trays, \&c. Such speedy work can only be accomplished by a practiced hand. The unfertilized have been induced to turn white by prerions agitation. To attempt to remove them while retaining their natural color would be tedious and uncertain.

January 18.-To day we began shipment of spawn, sending 60,000 to E. A. Brackett, Winchester, Mass., and 50,000 to H. J. Fenton, Windsor,

Conn. The outer packing of both cases was dry moss. While packing I observed that not all of the unimpregnated eggs had been removed, and there were some impregnated that were not healthy, small embryos and irregular development. I saw three or four bursted eggs. Now I cannot think that these defects are owing to any fault in our management. The inside moss in part of our boxes was rather drier than ordinary, and I think that all or most of these went to Fenton. (Both packages arrived at their destinations in good order. Mr. Brackett reported condition "excellent." Mr. Fenton said, " good, except some indented." Dead on unpacking in latter lot, 47; subsequent losses, light.)

January 23.—Shipped another lot of eggs $(32,000)$ to Mr. Brackett. 1 had a case marle on purpose for it, intending to have a space of 2 inches all around for outside packing, but by mistake it was made so shoal as to leave but $1 \frac{1}{4}$ inch above and below. I lined it with two thicknesses of asbestos roofing felt on all sides and packed the remaining space with the ordinary dry moss. The case is of half inch pine. The felt used was about $3 \frac{1}{2}$ pounds. (Without laps there would have been needed only $2 \frac{1}{2}$ pounds.) It costs in Boston 20 cents per poundhere, about 22 cents. It weighs about 1 pound per square yard, and its cost can be put at $2 \frac{1}{2}$ cents per square foot. The package weighed, in detail, as follows :

Lbs. Oz
Total of inner package. 420
Moss... . . 6
Asbestos felt... 3
Case $20 \quad 4$
Total of envelope . 30 5
Total of entire package....................................... 72 5
A package with a protecting envelope of dry moss one inch thicker than the above on all sides would weigh about 3 pounds 14 ounces more. Supposing the two modes equally efficient in protecting against cold, we save near 4 pounds weight, and corresponding amount or freight by an outlay of 77 cents for asbestos and the trouble of lining the cases with it. I believe this will hardly pay. [Subsequent experiments showed that not even the above economy of space would be effected by the use of asbestos felt, its resistance to the escape of heat being not much, if any, greater than that of an equal thickness of moss alone.] Temperature of air at $7 \mathrm{a} . \mathrm{m} ., 0^{\circ} \mathrm{F}$. It has been below zero on six mornings this month previous to this date, and once in December.

January 25.-Cold weather has shrunk the volume of water at the hatchery from 30 to 20 gallons within two weeks.

January 27.-This morning we had a smart rain for several hours; yesterday a thaw. No material change in the volume of water in the hatching-house. Grand Lake is rising ; the water is just beginning to flow on our spawning-house floor.

January 28.-Mr. Brackett writes that the case of eggs sent him on 23 d arrived at Winchester, Mass., on evening of 25 th , and on unpacking next morning were found to be "frozen through and through, with the possible exception of a small space in the center." [But this proved to be an exaggerated statement, the actual loss being 8,000 eggs out of 32,000 .] These eggs went down to Princeton on stage on 23d. Next morning, with the temperature of the air at $20^{\circ} \mathrm{F}$. below zero, and a high wind, they went to Forest on the stage, a drive of five and onehalf hours, thence to Boston by rail in a car warmed by a stove. Doubtless the freezing was accomplished before the package reached the railroad. This was the first instance of the kind that has occurred since this establishment was organized. Probably the protecting power of asbestos felt is less than I supposed.
February 2, 1882.-Experiment with packing materials.-Last night I took a box made out of an old packing-tray, 12 inches long, 9 wide, and $3 \frac{1}{4}$ deep; ends one-half inch thick; top and bottom about one-fourth of an inch; all pine, joints open, construction loose. On the bottom I put 4 thicknesses of asbestos felt, then a board one-fourth of an inch thick; then I filled it with wet moss, just such as we use in packing eggs, and pressed it in hard with my hands; then put on another quarterinch board, and finally the cover. This was put together in our shop, temperature 50° or $60^{\circ} \mathrm{F}$. The moss was from the moss storeroom, the temperature of which is from 35° to $40^{\circ} \mathrm{F}$. About 9 p . m. this box was put out of doors on our shop platform, stood on end, and there allowed to remain till $7 \mathrm{a} . \mathrm{m}$. I then took it in and opened it. The out-door temperature at $6 \mathrm{p} . \mathrm{m}$. was $+8^{\circ} \mathrm{F}$; at $7 \mathrm{a} . \mathrm{m}$. it was $+18^{\circ} \mathrm{F}$. On opening the box I found the moss frozen nine thirty-seconds of an inch on the bottom (the felted side). On the top (the board side) twelve thirty-seconds of an inch, on the side without either board or felt, threefourths of an inch. Reckoning from the inside of the cover, the penetration of the frost was, through felt and board and moss, about twentyfive thirty-seconds of an inch; through board and moss, twenty thirtyseconds of an inch; through moss alone, on narrow side, twenty-four thirty-seconds of an inch; in the latter case had the side been broader I think the frost would not have penetrated so far.
[Other experiments with packing materials were tried February 4, and the results may be stated with tolerable accuracy, thus: Asbestos felt and common building paper vary very little in conducting power, frost penetrating through five-eighths of an inch of either material, and further into wet moss, .25 to .35 inch in case of the asbestos envelope,
and .31 to .37 inch in case of the paper envelope. Dry moss is about the same as asbestos and paper, the frost penetrating through the asbestos 1.60 inch, and through dry moss, under the same circumstances, 1.62 inch. Through wet moss the frost penetrated only from .7 to .9 inch under same circumstances, showing that the latter material is more effective, bulk for bulk, than either dry moss, dry paper, or dry asbestos felt. This agrees with the results of other experiments I have tried with wet moss, yet I think the weight of the latter will forbid its employment in ordinary cases. The paper and asbestos are excluded by their cost and also by their weight. The relative weights of the sereral substances are about as follows: Asbestos felt, 82; paper, 50; wet moss, 20 ; dry moss, 3 . The comparative weights of the asbestos and paper are given exactly. Those of wet and dry moss are correct relatively to each other, but possibly a little too low relatively to the other substances. But evidently none of the other substances can rival dry moss for our purpose, when efficiency and economy are both considered.]

February 13.-The shipment of eggs, suspended since January 24, is resumed to-day.

February 22.-As in former years we measure our eggs for shipment in old corn cans, each one holding about 2,500. On 13 th instant Mr. Munson found that, filled as usual, a measure counted out 2,720 eggs; twice since then he has counted a measure full and found in one case 2,710 , and in another 2,725. The record of shipments before 13th is corrected accordingly, and since that date the measures have been filled not quite so full, with intention to have 2,500 in each as near as possible.

February 23.-To-day I examined the most forward eggs in the river house (No. 2): The eyes have not yet begun to color. To try their hardiness for packing, I took a tray of them and rapped it smartly six or eight times on the table, making the eggs rebound into the air.

February 25.-There were picked from the above tray 94 white eggs and all were unimpregnated. So I should dare to pack these eggs now.

March 1.-Shipment of eggs concluded to-day; 645,000 have been sent away, and 215,000 remain to be hatched and planted in Grand Lake.

March 3.-I returu to Bucksport, leaving Mr. Munson in charge.

> ⿹勹.-NOTES FROM MR. MUNSON'S RECORD bOok.

Hebruary 23.-The earliest eggs received from the Penobscot station commence to hatch to-day. [Two hundred and sixty-seven thousand eggs of Penobscot salmon were hatched here at the charge of Mr. Frank Todd, of Milltown, N. B., the same being furnished free by the State of Maine, to be planted in the Saint Croix, the boundary river between Maine and New Brunswick. For the hatching and expenses Mr. Todd paid the establishment $\$ 91.26$. The eggs were received in three lots, January 30, February 12, and March 11.-C. G. A.]

March 14.-First lot of Schoodic eggs begin to hatch [taken Nov. 8th, and kept meanwhile in hatcheries Nos. 1 and 3, water ranging from 48° to $34 \frac{1}{2} \circ \mathrm{~F}$. and averaging $39^{\circ} .1 \mathrm{~F}$. The time occupied has been 126 days to the commencement of hatching.]

March 16.-LLot 1 all hatched.
March 21.-Lot 4 [taken November 11] begins to hatch.
March 23.-Lot 4 all hatched.
March 25.-Moved all eggs from hatchery No. 2 to No. 3.
March 28.-Penobscot eggs received February 12, begin to hatch.
March 30.-Gates all shut down.
March 31.-Penobscot eggs received February 12, all hatched.
April 18.-Penobscot eggs received March 11, begin to hatch.
April 21.-Same all hatched.
May 7.-Lot 6 of Schoodic eggs begin to hatch. [These were taken November 14, and have been since then until March 25 in the cold water of the stream, averaging $34^{\circ} \mathrm{F}$., and from that date to the present in spring and snow water averaging $37^{\circ} \mathrm{F}$. The general average of temperature has been $34.7 \circ \mathrm{~F}$., and the total time to the commencement of hatching has been 174 days. One more day, 175 days from the beginning, will be the average time of the hatching of this lot of eggs.]

To-day, May 7. The ice broke up in Big Lake.
May 9.-Eggs taken November 14 are all hatched.
May 10.-Ice broke up in Grand Lake.
May 11.—Lot 7, Schoodic eggs, begin to hatch [taken November 16].
May 14.-Lot 7 all hatched. Lot S [taken November 18], begins to hatch.

May $15 .-L o t 8$ all out; lot 9 [takeu November 19] begins to hatch.
May 17.-Lots 9 and 10 all hatched. These are the last eggs.
May 22.-Lots 1 and 4 turned out. Also the earliest of the Penobscot fry.

May 26.-Second lot of Penobscot fish turned out.
May. 30.-The last of the Penobscot fish turned out. [In number, 266,240 ; there having been a loss of 760.]

June 15.-Three men took 84 Schoodic salmon with fly to-day: wind southwest, strong.

June 26.-The last Schoodic salmon turned out.
June 28.-Closed up.

Table I．－Spawning operations at Grand Lake Stream，Maine，November， 1881.

Date．	Fish at first handling．＊							Females spawned．			Eggs taken．	
	Total．	Males．	Females．								＋	$\begin{aligned} & \text { 世 } \\ & \text { 會 } \\ & \text { 落 } \end{aligned}$
			$\begin{aligned} & \text { Un- } \\ & \text { ripe. } \end{aligned}$	Ripe．	Spent．	Total．						
1881. Nov． 8					13	371		168		30.	Lbs．oz． 86 6.15	
－ 9	94	44	21	20		50		29		3	$12 \quad 11$	235,000 40,000
10	123	48	28	46	1	75		61		（t）	374	110，000
11	109	32	36	40		76	1	51	254	（ 9	$47 \quad 2$	130，000
12	33	12	6	15		21		101	49	10	$14 \quad 12$	116，000
14	50	17	16	15	2	33		105	101	10	598	150， 000
16	18	2	10	5	1	16		52	105	16	$37 \quad 13$	90， 000
18	15	5	2	6	2	10		56	45	11	$19 \quad 12$	47， 000
19								20	37	6	119	29， 000
	1， 051	398	311	322	19	652	1	621	601	95	3576	947， 000

[^121]Table II.-Transfer of Schoodic salmon egge from Grand Lake Stream, Maine, in 1882.

Table III.-Planting of Schoodic salmon reared from eggs gathered in 1881.

Fillmore and Olmstead Counties. Winoua County

 dodo
\qquad Milton, Strafford County.... Springfield, Sullivan County Hancock, Hillsborough County Weare, Hillsborongh County
Holderness, Grafton County. Holderness, Grafton Count
Sandwich, Carroll County
Cooper Iumford, Monroe County. Near Hawley and Carbondale Near Rutland

akes.

 ontrary L ean Lar Lake . leasant Pond Three Ponds. Star poud Kake Long Pond.............. Long fondil...............Mount Waliam Pond...... North Pond...... Strubel Lake Waters of South Side Sports Skaneateles Lake Caledonia Creek品是 Shivate pobury Pond Rutland Minnesota........... Missouri............
New Hampshire... \qquad

S. Mis. 110

XXV.-STATISTICS 0F THE SHAD-HATCHING OPERATIONS CONDUCTED BY THE UNITED STATES FISH COMMISSION IN 1881.

By Chas. W. Smiley.

From the reports of the various persons in charge of shad-hatching stations during the spring of 1881, and from the reports of messengers in charge of shipments, I have prepared a series of six tables to show the operations at each station, and the seventh for a summary exhibit. From these it will appear that $87,441,000$ eggs were obtained and hatched with an average loss of 20 per cent. A comparison with the number of shad hatched in previous years is of interest, and the constant increase gratifying.

Number of shad hatched:

Of the fish hatched, a part were deposited in waters near the several hatching stations, as follows:
Deposited in local waters:
1879........... 5, 587, 000

1880 . $7,864,600$
1881........... $46,518,500$

Of the fish hatched, the number transported to other waters was as follows:
Transported to other waters:
1879 . 10, 002, 500
1880... . . . $20,761,400$
1881......... $23,516,500$

The number of shad deposited within the waters of the different States the present year was as follows:
Connecticut 1,000,000
Delaware . 940,000
District of Columbia . 205, 000
Georgia . $1,800,000$
Iowa... $1,100,000$
[1] 1107
Kansas 200, 000
Kentucky 707,000
Maine 1,150,000
Maryland 24, 705, 000
North Carolina 4,357,500
Ohio 1,020,000
Pennsylvania $3,500,000$
Rhode Island 500, 800
South Carolina 620, 000
Tennessee 400, 000
Texas 277, 000
Virginia 24, 280, 000
West Virginia 175,000
Total 67, 002, 500

Fuller particulars of these deposits, the time, streams, places, \&c., will be found in the tables of distribution-Tables VIII and IX.

For comparison with the number of shad sent to the various States in the years 1872-'80, see summary tables published in another part of this volume.

Table I.-Record of shad-hatching operations conducted by United States steamer Fish Hawk, Lieut. Z. L. Tanner, commanding, at Capehart's Wharf, in Salmon Creek, Avoca, N. C., from April 12 to April 30, 1881.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Date.} \& \multicolumn{2}{|l|}{Ripe shad taken.} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{}

\hline \& Males. \& Females. \& \& \& \&

\hline April 12... \& 3 \& 3 \& 66, 000 \& 66,000 \& \&

\hline 13.... \& 2 \& 2 \& 66, 000 \& \& \&

\hline 14. \& 4 \& 4 \& 17, 000 \& \& \&

\hline 15... \& 1 \& 1 \& 34,
132,

1200 \& \& \&

\hline 20... \& 3 \& | 8 |
| :--- |
| 3 | \& 107,000 \& \& \&

\hline 21. \& 11 \& 11 \& 332, 000 \& \& \&

\hline 22. \& 21 \& 21 \& 649, 000 \& 149, 000 \& \&

\hline 23. \& 18 \& 18 \& 489, 000 \& 83, 000 \& \&

\hline 25. \& 28 \& 28 \& 929, 000 \& 41, 500 \& \&

\hline 26. \& 34 \& 32 \& 979, 000 \& 52, 000 \& \&

\hline 27. \& 32 \& 30 \& 931,000 \& 16,000 \& \&

\hline 28. \& 11 \& 10 \& 298, 000 \& 41, 000 \& \&

\hline 29. \& 13
5 \& 13 \& 432,000
166,000 \& 34,000

8,000 \& $$
\begin{aligned}
& 498,000 \\
& 830,000
\end{aligned}
$$ \& *3, 029,500

\hline May 1. \& \& \& \& \$00, 000 \& \&

\hline 2. \& \& \& \& 379, 000 \& \&

\hline Total \& 195 \& 189 \& 5, 727, 000 \& 1, 369, 500 \& 1,328, 000 \& 3, 029, 500

\hline
\end{tabular}

[^122]Table II.-Record of shad-hatching operations conducted by M. McDonald, at Gunston and other places on the Potomac River, under the direction of the United States Fish Commission, from April 20 to May 30 inclusive, 1881.*.

Date.								Where released in local waters. \dagger
1881.								
- ${ }^{\text {aprin }} 21$	5,000	2,479	1	125,000				
22	5,000	2,801	5	150,000				
23	5,00c	3, 597		235, 000				
25	5,000	4, 616	30	910, 000				
26	5,000	4,567	28	830, 000				
27	5,000	4,783	11	325, 000	151, 000	234, 000		Pomonkey, Md.
28	5,300 5,300	3,997 4,938	31 21	930,000 610,000	97, 000			
30	5,300	5, 046	20	570, 000		1,383, 000		Guuston, Va.
May ${ }_{2}$	5, 300	3, 761	15	400, 000	25, 000			
2 3 3	5,000 6,650	2,635	20 50	510,000 $1,420,000$	175, 000	$\begin{array}{r} 625,000 \\ 1,510,000 \end{array}$,	$\begin{gathered} \text { Gunston, Va. } \\ \text { Do. } \end{gathered}$
4	6,650	5,178.	90	2, 320,000				
5	6, 650	5,678	90	2, 225,000	50,000			
6	6,350	4, 688	50 101	1,530, 000	310,000 300	$1,130,000$ 230,000		Gunston, Va. Do.
8	6,350	5,101	101	3,090, 000	300,000 133,000	230,000		
9	6,350	4,951	51	1,565, 000	101, 000	2,887,000		Gunston, Va.
10	6, 350	4, 698	17	500, 000	100, 000	1, 834, 000		Do.
11	6,350	2,977	41	1,220, 000	119,000	1, 730, 000		Do.
12	6,350	1,907	36	1, 060,000	10,000	2, 576, 000	250, 000	Do.
13	6,350	2,909	21	620,000	650,000	40,000	250, 000	Do.
14	6,350 6,350	3,191 2,059	17	100,000 510,000	330,000		350,000	
16	6,350	2,357	46	1,360,000		2,585, 000		Gunston, Va.
17	3,650	2,840	63	1,880,000				
18	3,650	1,835	162	4, 870, 000				
19 20	3,650 3,650	1,797	27 77	800,000 $2,290,000$	1,520,000	1,125, 000		Gunston, Va.
21	3,650	1, 656	30	2, 900,000			1,000, 000	
22	4,850						300, 000	
23	3, 650	1,481	17	500, 000	545, 000		1, 100, 000	
24	3,650	1,544	107	$3,215,000$ $1,620,000$	350, 000	5,490, 000	300, 000	Gunston, V
26	2,350	1,481	$\stackrel{4}{4}$	1, 120,000		140, 000	1,000,000	Gunston, Va.
$\stackrel{27}{ }$	850	1, 554	43	1, 290, 000	200, 000		1, 000, 000	
28	850 850	1,397 826	74	2, 200, 375,000	250,000	1, 905, 000		Fort Washington, Md
30	550	1,144			870, 000	1, 096, 000	400, 000	Fort Washington, Md.
30					+1,619, 000			
Total ..	184, 150	120,047	1,470	\$43, 200, 000	7,905, 000	26,515,000	5, 950, 000	

[^123]Table III.-Record of shad-hatching operations conducted by Frank L. Donnelly, at NavyYarl Station, Potomac River, under the direction of the United States Fish Commission, from May 4 to June 2, 1881.

Date.					Messenger in charge of transfer.*
1881.					
May $\quad 4$	200,000 200,000	10,000 5,000			
	270, 000	5,000			
7	370, 000	10, 000			
,	430,000	20, 000			
10	300,000	10, 000	105, 000	85, 000	J. Frank Ellis.
12	65, 000	5, 000		460,000	G. G. Davenport.
13	100, 000	10,000	100, 000	260, 41000	Do. ${ }^{\text {D }}$, W\% Schnermann.
15	35, 000	2,000		$\begin{aligned} & 410,000 \\ & 290,000 \end{aligned}$	N. Simmons and C. W. Schuermann. C. A. Stewart and C. W. Schnermann.
17	70, 000	3,000			
18	180, 000	10, 000			
19 20	300,000	20, 000	-........	220, 000	H. E. Quinn.
20 21	865,000 450,000	65, 000	...	150, 000	C. W. Schuermann.
22				100, 000	C. W. Schuermann.
23	375, 000				
$\stackrel{25}{25}$	\$11,600,000			170,000	N. Simmons.
26				280, 000	N. Simmons and C. A. Stewart.
27 28	+720,000			500, 000	Geo. H. H. Moore
28 29	1120,000				
- 30	+355,000	$\ddagger 3,465,000$			
June 2		200,000		150,000	W. H. Jenkins, jr.
Total...	§7,730,000	3, 850, 000	205,000	3, 075, 000	

[^124]Table IV:-Record of shad-hatching operations conducted by Frank N. Clark, at Havre de Grace, Md., on the Susquehanna River, under the direction of the United States Fish Commission, from May 15 to June 13, inclusive, 1881.

Date.					$\begin{aligned} & \text { Fish transport- } \\ & \text { ed to other } \\ & \text { waters. } \end{aligned}$	Messenger in charge of transfer.*
1881.						
May ${ }_{16}^{15 \dagger}$	$6,625,000$ 275,000	504,000 64,000	4, 101,000		1,000,000	J. P. Creveling.
16 17	275,000 375,000	64,000 5,000	$1,566,000$ 100,000	$\begin{aligned} & 566,000 \\ & 100,000 \end{aligned}$	1,000,000	J. P. Creveling.
18	135, 000					
19	105. 000					
20	150, 000	25, 000	260, 000	260, 000		
$\stackrel{21}{22}$	210, 000				
$\stackrel{22}{23}$	400, 000	
24	900,000 $1,410,000$					
25	1, 705, 000	92,000	1, 048,000	48,000	1,000,000	J. P. Creveling.
26	750, 000	30,000	330,000	330,000		
$\stackrel{27}{ }$	765, 000	40, 000	365, 000	365, 000	,	
$\stackrel{28}{29}$	450,000 325,000	290,000 75,000	825,000 $1,900,000$	$\begin{aligned} & 825,000 \\ & 400,000 \end{aligned}$	1,500,000	J. P. Creveling.
30	250, 000		1,675, 000			
31		110,000	925, 000	400, 000	900, 000	C. W. Schtermann.
June $\frac{1}{2}$	50,000	75,000	100,000 260,000			

[^125]Table IV.-Rccord of shad-hatching operations, fc.-Continued.

Date.						Messenger in charge of trans fer.
$\stackrel{1881 .}{\substack{\text { June }}}$			115, 000		775, 000	C. W. Schuermann.
$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 100,000 \\ & 300,000 \end{aligned}$	10,000				
7 8	450, 000		50, 000			
8	300, 000		40, 000	90, 000		
10		150, 000				
11			150,000			
13			$\begin{aligned} & 450,000 \\ & 300,000 \end{aligned}$	*900, 000		
Total...	15, 030, 000	1,470,000	13, 560, 000	8, 385, 000	5, 175, 000	

* Remained on hand at close of daily reports; probably deposited in local waters.

Table V.-Record of shad-hatching operations conducted by Marshall Mc Donald, at NavyYard Station, Potomac River, under the direction of the United States Fish Commission, from June 1 to June 25, inclusive, 1881.*

Date.	Length in fathoms of visited-							Messenger in charge of trausfer.
	Haul. seines.	Gill-nets.						
June 1					+60,000			
2	550	7,200	471	4	75, 000	-....-.	300, 000	W. H. Jenkins, jr.
3	250	7,200	140	2	40,000			
4	250	7,200	205	13	380, 000		120,000	F. L. Donnelly.
5	250	7, 200	221	6	175, 000	150, 000		
6	250	7,200	209	10	250, 000			
7	250	7,200	153	12	370, 000	10,000	100, 000	J. F. Ellis.
8	250	7,200	139	4	75, 000		200, 000	C.J. Haske.
9		7,200				20,000	200, 000	H. E. Quinn.
10		7, 200						
11		3,200 3,200			45,000	-.-.-. - .	200,000 150,000	N. Simmons. G. G. Davenport
13		3, 200		12	330, 000		670,000	Ellis and Moore.
14		3, 200		25	450, 000			
15		3,200		10	270, 000			
16		3, 200		7	200, 000			
17		3, 200		11	290, 000	60,000		
18		3,200		6	170,000		400, 000	Quinn,Schaermann, and Simmons.
19		3,200	.	1	10,000		200,000	F. N. Clark.
20								
21		3,200		2	40,000		1, 140,000	J. F. Ellis.
22		3, 200		2	40,000		120,000	C. A. Stewart.
23		3,200						
24		3,200						
25		3,200			30,000			
Total ...	2,050	109,600	1, 538	127	3,840,000	240,000	3,800,000	

[^126]Table VI.-Record of shad-hatching operations conducted by United States steamer Fish Hawk, Lieut. Z. L. Tanner commanding, at Havre de Grace, Md., in the Susquehanna and North East Rivers, from May 5 to June 5, 1881.

Date.		Ripe shad taken.			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { on } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { 品 } \end{aligned}$		
		Males.	Females.				
May	5.	6	6	182,000			
	6.	17	17	462, 000			
	8.	21	21	506,000			
		49	47	1, 660, 000		
	10...	11	11	341, 000			
	11.	28 30	28 30	913,000 979000			
	12...	30 8	30 8	979,000 265,000		660,000 $1,660,000$	
	14.	9	9	348,000		1, 830, 000	
	15	14	12	357, 000		598, 000	.-.......
	16.	10	11	357,000		979, 000	
	17.	10	13	424,000			
	18.	9	8	257,000		498, 000	
	19.	12	14	423,000		166, 000	
	20.	20	25	781,000		
	21.	53	54	1, 792, 000			
	23....	18 17	19 23	291,000 650,000		325, 000	
	24.	14	15	463,000	313, 000	
	25.	28	31	781, 000	275, 000	
	26.	40	43	1, 062,000		406, 000	
	27.	22	22	-625,000	...-......	1, 250, 000	
		22	25	675, 000		500, 000	
	29.	10	10	369, 000			
	30. 31.	2	2	50, 000		1,000,000	
June	1.	8	8	187, 000			1, 250,000
	2.	2	2	38, 000		625, 500	500, 000
	3.	2	2	50,000			125, 000
	4.	2	2	50, 000			
							300, 000
	Total	500	524	15, 444, 000	2, 871,500	10, 085, 500	2,487,000

Table VII.—Summary of work at shad-hatching stations operated by the United States Fish Commission during the spring of 1881.

TABLE VIII.-Chronological rocord of distribution of young shad made under the direction of the United States Commissioner of Fish and Fisherics, from April 27, 1881, to June 22, 1881.

Date.	Where fish were hatched.	Number of fish-		Introduction of fish.				Transfer in charge of -
		Started with.	Actually planted.	State.	Town or place.	Stream.	Tributary of-	
April 12-30 ${ }^{2}$	Steamer Fish Hawk	*3, 029, 500	3, 029, 500					
		498,000 830,000	498,000 830,000	North Carolina ... do	Avoc	Salmon Creek	Albemarle Sound	Z. L . Tanner.
	Potomac barges	234, 000	834,000 238	Maryland..........	Pomonkey	Potomac River	Chesapeake B	M. Mo.
do	1, 383, 000	1,383, 000	Virginia	Gunstondo		M.
May	do	625,000 $1,510,000$	625,000 $1,510,000$	do	.do			Do.
	do	1, 130, 000	1, 130, 000	. .de	10		do	Do.
	do	230,000 2887000	230.000	. . . do	. . do	do	d	Do.
	do	2, $1,884,000$	$2,887,000$ $1,834,000$.do	do	do	do	Do.
	Navy-yard	85, 000	85, 000	Maryland	Cumberland		do	J. F. Ellis.
	Potomac barg	105, 000	105, 000	Dist. of Columbia.	Washingtodo	do	F. L. Donnelly.
	. Co . ${ }^{\text {d do }}$....	2, 1 171,000	1, $2,571,000$	Virgini	Gunsto		do	M. McDonald.
	Steamer Fish Hawk	660,000	660,000	Maryland.........	Havre de Grace	North East River	Susquehanna Rive	Z. L. ${ }_{\text {Tanner }}$
	Potomac barges	250,000	250,000	do	Weaverton	Potomac River	Chesapeake Bay	N. Simmons.
	Potomao barges	40, 000	40,000	Virginia	(iunston	Patuxenac River	do	G. G. Davenport.
	Navy-yard	260, 000	260,000	Maryland	Laurel.	Patuxent Riverdo	M. M. Davenport.
	Stcamer Fish Hawk	100,000 $1,660,000$	1. 10000000	Dist. of Columbia. Maryland	Washington	Potomac River		F.L. Donnelly.
	Potomac barges.	250,000	250, 000	...do	Point of Rocks	North East River	Susquebanna Riv	Z. L. Tanner.
	Steamer Fish	175, 000	175, 000	do	Relay House ..	Patapsco River do.	G. G. Davenport.
	Potomac barges	830,000 175,000	175, 000	West Virginia....	Wherling......	North East River	Susquehanna River.	Z. L. Tanner.
	Navy-yard	300,000	300,000	Maryland........	L, aurel	Patuxent Rive	Mississippi River.	J. F. Ellis.
	Steamer Fish Hawk	598,000	598, 000	- ${ }^{\text {do }}$ do.........	Havre de Grace	North East River	Susquehanna River.	N. Simmons.
	Potomac barges......	2, 585, 000	2, 585, 000	Virginia	Gunston	Potomac River	Chesapeake Bay	M. McDonald.
	Steamer Fish Hawk	$4,101,000$ 979,000	$4,101,000$ 979,000	Maryland	Battery Island.	Susquehanna Riverdo	F. N. Clark.
	Havre de Grace.	566, 000	566, 000do	Battery Island.		Cusquesanna River.	Z. L. Tanner.
	Navy-yard...	200, 000	200,000	South Carolina....	Charlotte	Catawba River	Wateree River ${ }^{\text {a }}$	C. W. Schuermann.
	$\begin{gathered} \text { Havre de Grace. } \\ \ldots \text {....do. } \end{gathered}$	$1,000,000$ 100,000	$1,000,000$ 100,000	Pennsylvania	Sunbury	Susquehanna River	Chesapeake Bay	J. P. Creveling.
	Steamer Fish Hawk	498,000	190,000	Maryland do	Battery Island. Havre de Grace	North East River...	- Sus ...do	F. N. Clark.
	Navy-yard	200,000	200,000	Kentucky	Bowling Green	Barron River	Green River	C. A. Steuart.
	\cdots.... do	220, 000	170,000	Ohio	Defiance	Maumee River	Lake Erie	H. E. Quinn.
	Steamer Fish His	166,000	166,000	Maryland.	Havre de Grace	North East River.	Susquehanna Riv	Z.L. Tanner.

C．W．Schuermann．
M．MeDonald．
F．N．Clark．
T．B．Forguson．
Z．L．Tanner．
M．MeDonald．
C．A．Steuart．
Z．L．Tanner．
C．W．Schuermann．
Z．L．Tanner，
M．McDonald．
J．P．Creveling．
F．N．Clark．
Z．L．Tanner．
F．N．Clark．
Geo．H．H．Moore．
C．A．Steuart．
N．Simmons．
Z．L．Tanner．
F．N．Clark．
M．McDonald．
Z．I．Tanner．
F．N．Clark．
 W．Schnermann
A．Steuart．熍品 ，H．Jenkins，jr．这

 G．G．Darenport －

－ロージがど
 Rolling River

 9%
 $\stackrel{\circ}{\circ}$

Navy	150， 000	0				Chesape
Potomae barg	1，125，000	1，250，000	Virginia	Gunston	Potomac River	．．．．．do
Havre de Gra	260，000	260，000	Marylan	Battery Island	Susquehanna River	
Potomac bar	1，000，000	1，000，000	．．．do	Denton	Choptank River	．．．．．do
Steamer Fish Hav	－325，000	325，000	do	Havre de	North East River	Susquehan
Potomac barg	5，490，000	$5,490,000$	Virgin	Grunston	Potomac River	Chesapeake Bay
Navy－yard	200，000	192，000	Kentuck	High Brid	Kentucky River	Ohio River
Steamer Fish	313， 000	313，000	Marylan	Havre de	North East River	Susquchanna Ri
Potomac barges	1，000，000	1，000，000	Georgia	Macon	Ocmulgee River	Altamaha River
Steamer Fish Ha	－275，000	275， 000	Maryland	Havre de	North East Rive	Susquehanna R
Potomac barge	140， 000	140，000	Virginia	Gunston	Potomac Iiver	Chesapeako Bay
Havre de Grac	1，000，000	1，000，000	Pennsylv	Mifflin．．．．．	Juniata River	Susquehanna R
do	－48，000	－48，000	Maryland	Battery Island	Susquebanna Riv	Chesapeake Bay
Stcamer Fish Ifa	406，000	406， 000	．．do	Havre de Grace	North East River	Susquehanna Riv
Harre do Grace	330， 000	330， 000	do	Battery Islan	Susquehauna Rive	Chesapeake Bay
Navy－yard	500， 000	500，000	do	Lanmel	Patuxent Ri	－．．do
－．．do．	200， 000	175，000	Kentu	Shepherds	Salt River	Rolling River
Potomac ba	$1,000,000$	850，000	Ohio	Steubenville	Ohio Rive	Mississippi Riv
Steamer Fish Hawk	1，250，000	1，250，000	Maryla	Harre de Gir	North East Rive	Susquehanna Riv
Havre de Grace	365， 000	305， 000	．．do	Battery Islan	Susquehanna Riv	Chesapeake Bay
Fort Washington	1，905，000	1，905，000	．．do	Fort Washington	Potomac River	
Steamer Fish Hawk	500， 000	500，000	do	Havre de Graco ．．	North East Riv	usquehanna Riv
Havre de Grace	825， 000	825，000	do	Battery Island．．－	Susquehanna River	Chesapeake Bay
．do	400，000	400，000	－do．．．－－			
V	1，500，000	1，500，000	Peuns	Newp	Juniata River	usquehanna Ri
Fort Washingto	1，096，000	1，096，000	Maryla	Fort W	Potomac Rive	Chesapeake Bay
Steamer Fish Haw	1，000，000	1，000，000	－do	Havredo	North East R	
Potomac barges．	1，000，000	1，000，000	Virginia	Lynchb	James	Chesapeako Bay
Havre de Grace	1，500，000	500，000	Marylan	Battery	Susquebanna Ri	do
do	1，000，000	940，000	Delawar	Seaford	Nanticoke River	do
Navy－y	200，000	200，000	Kentuck	Mumfordsvillo	Green Ri	Ohio Ris
－．．．do	200， 000	200,000	Georgia	Craw fordsville．	Oconeo Rive	Altamaha River
	220，000	2：0，000	South Carolina	Railroad Crossing．	Pedee River	Atlantic Ocean
do	150， 000	150， 000	Marylan	Laurel	Patuxent Rive	Chesapeatie Bay
Steamer Fish Hawk	625， 500	625， 500	．．do	Havrede	North East Riv	Susquehanna Rir
Havre do Graco．．．	1，000，000	1，000，000	Connerticut	Warehouse P	Connecticut River	Long Island Sound
	500，000	500，000	Fhode Islan	Warren	Palmer＇s River	Narragansett Bay
Navy－yax	120，000	120，000	Maryland	Weaverto	Potomac River	Chesapeake Bay
Havre de	100，000	100，000	．．do	Battery （sl	Susquehanna Riv	
Navy－ya	200， 000	200，000	Sonth Car	Columbia	Congaree River	Santee River
$\ldots \mathrm{d}$	200， 000	200，000	Georgia	Crawfurdsvill	Littlo River ．	Savannah River
Havre de Gr	90， 000	90， 000	Maryland	Battery Islan	Susquehanna	Chesapeake Bay
Navy－yard	100， 000	100， 000	Georgia	Albany	Flint River ．	Appalachicola
．．．．．．do do	100，000	100，000	\therefore do	Montezuma．．．．．．	Sabine do	Guif of Mo Mico
．do	150， 000	135， 000	Texas	Railroad Crossing	Sabine River	Gulf of Mexico
	58，000 32,000	36,000		IRailroad Crossing	San Marcus Ri	
do	28，000	26，000	do	do	Brazos River	
do	32， 000	30， 000	－do	do	San Antonio River	．do ．．．．．．．
do	525，000	525,000	Iain	at	Kennebec River	Itlantic Ocean

Table VIII.-Chronological record of distribution of young shad, \&c.-Continued.

Date.	Where fish were hatched.	Number of fish.		Introduction of fish.				Transfer in charge of -
		Started with.	Actually planted.	State.	Town or place.	Stream.	Tributary of-	
$\begin{array}{cc}\text { June } & 15 \\ & 18 \\ & 20 \\ & 20 \\ & 24 \\ & 24 \\ & 24 \\ & 24\end{array}$		625, 000	625,000	Maine Georgia Tennessee Kansas Iowa. Tennessee dodo	Mattawamkeag Milledgeville Johnsonville Kansas City Dabuque Union Depot Fullen's Carter's Depot	Mattawamkeag River Oconee River Tennessee River. Missouri River Mississippi River Holston River Nalachucky River Wautaga River.	Penobscot River Altamaha River Ohio River Mississippi River. Gulf of Mexico Tennessee Rirer do do	J. F. Ellis. H. E. Quinn. N. Simmons. F. N. Clark. J. F. Ellis. C. A. Steuart. Do. John Horan.
		200,000	200,000 200000					
		200, 000	200, 000					
		1,140,000	1, 106, 6000					
		70, 000	70,000					
		70, 600	70,000					
		67,353, 000	67, 003, 000					

[^127]

Date.		Where fish were hatched.	Number of fish-		Introduction of fish.				''ransfer in oharge of-	
		Started with.	Actually planted.	State.	Town or place.	Stream.	Tributary of-			
June	3		Harre de Grace.	1,000,000	1,000, 000	Connecticut	Warehouse Point.	Connecticut River..	Long Island Sound...	C. W. Schuermann.
	1 do	1,000,000	940,000	Delaware	Seaford	Nanticoke River....	Chesapeake Bay		
May	10	Navy-\ard	105, 000	105, 000	Dist. of Columbia	Washington	Potomac River do	F. L. Donnelly.	
	13		100, 010	100,0	do	do		Altamaba		
	25	Potomac barges	1,0011, 000	1,0001,000	Georgia......-	M con	Ocmulgeo River	Altamaha Rive	C. W. Schuermann.	
.June	1	Navy yard	200.000	200, 000	do.	Crawfordsvill	Oconee Rivor	$\cdots \text { do }$	N. Simmons.	
	9 do.	200, 000	200, 100	. . do	do	Little River	Savannah River	H. E. Quinn.	
	13	do	100, 000	100, 000	do	Albany	Flint River	Appalachicola River.	N. Simmons.	
	18	do	100,000	100, 000	do	Montezuma	...do	do	F. L. Donnelly.	
	18 do	200, 000	200, 000	do	Milledgeville	Oconee River	Altamaha River	H. E. Quinn.	
	24 do	1,140,000	1, 106, 000	Iowa	Dubuque	Mississippi Rive	Gulf of Mexico	J. F. Ellis.	
	20	. do	200, 000	200, 000	Kansas	Kansas Oity	Missouri River	Mississippi Rivor	F. N. Clark.	
May	18	do	200, 000	200, 000	Kentucky	Bowling Groen	Barren River	Green River	C. A. Steuart.	
	24 do	200, 000	192,000	. . . do ${ }^{\circ}$	High Bridge	Kentucky River	Ohio River	Do.	
	27	-.-- - do	200, 000	175, 000	. . do	Shepberdsville	Salt River.	Rolling Riv	Do.	
Juce	1	do	200, 000	200, 000	\cdots do	Mumfordsville	Green River	Ohio River	Do.	
	15	do	525,000	525, 000	Maine	Waterville	Kcnnebec River	Atlantic Ocean	J. F. Ellis.	
	15	Mavre do Grace.	625, 000	625, 000	. do	Mattawamke	Mattawamkeag River	Penobscot River	Do.	
April	27	Potomac barges.	234, 000	234, 000	Maryland	Pamunkey	Potomac River	Chesapeake Bay	M. McDonald.	
May	10	Navi-yard	85, 000	85, 000	do	Cumberland	do do	J. F. Ellis.	
	12	Potomac barg	250, 000	250, 000	. ${ }^{\text {do }}$	Weaverton	do	. do	N. Simmons.	
	12	Navy-yard	460, 000	460, 000	. . . do	Laurel	Patuxent River	... do....	G. G. Davenport.	
	12	Steamer Fish Mawl	660, 000	660, 000	. . . do	Harre de G	North East River.	Susquehanna River..	Z. L. Tanner.	
	13	Navy-yard	260, 000	260, 000	- . . do	Laurel	Patuxent River.	Chesapeake Bay	G. G. Davenport.	
	13	Steamer Fish Haw	1,660, 000	1, 660, 000	. 10	Havre de Grace	North East River	Susquehanna River.	Z. L. Tanner.	
	14	Potomac barges.	250,000	250, 000	do	Point of Rocks	Potomac River	Chosapeake Bay	N, Simmons.	
	14	- ${ }^{\text {co. do }}$	175, 000	175,000	- do	Relay House...	Patapsco River	-...do.............	G. G. Davenport.	
	14	Steamer Fish Hawk	830, 000	830,000	. do	Havre de Grace	North East Rivor....	Susquehanna River..	Z. L. Tanner.	
	15	Navy-yard	300, 000	300, 000	.do	Laurel	Patuxent River	Chesapeake Bay	N. Simmons.	
	15	Steamer Fish Haw	598, 000	598, 000	do	Havre de Grace	North East River	Susquehanna River	Z. L. Tanner.	
	16	Havre de Grace....	4, 101, 000	4, 101, 000	. do	Battery Island	Susquehanna River	Chesapeake Bay	F. N. Clark.	
	16	Steamer Fish Hawk	979,000	979,000	. . . do	Havre de Grace	North East River..	Susquehanna River	Z. L. Tanner.	
	17	Havro de Grare	566,000	566, 000	. do	Battery Island	Susquehanna River	Chesapeake Bay ...	F. N. Clark.	
	18	Steamer Fish Hawk	498, 000	498, 000	. do	Havre de Grace	North East River	Susquebanna River.	Z. L. Tanner.	
	18	Havre de Grace	100,000	100, 000	. do	Battery Island.	Susquehanna River	Chesapeake Bay	F. N. Clark.	
	19	Steamer Fish Mawk	166,000	166,000	do	Harre de Grace	North East River...	Susquehanna River	Z. L. Tanner.	
	20	Nars yard...	150,000	150, 000	. do	Laurel	Patuxent River.	Chesapeake Bay	C. W. Schuermann.	
	21	Ilavro do Grace	260,000 $1,000,000$	260,000 $1,000,000$. do	Battery Island	Susquelanna River	. . do	F. N. Clark. T. B. Ferguson.	

Table IX.-Geographical record of distribution of young shad, \&c.-Continued.

Date.	Where fish were hatched.	Number of fish-		Introduction of fish.				Transfer in charge of-
		Started with.	Actually planted.	State.	Town or place.	Stream.	Tributary of-	
May $\begin{array}{ll} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 29 \\ & 3 \\ & 3 \\ & 3\end{array}$	steamer Fish Hawk	325,000	325,000	Maryland	Havre de Grace	North East River.	Susquehanna River	Z. L. Tanner.
	. do	313,000	313,000do	do			Do.
	do	275,000	275,000 406,000	. do	do	d	do	Do.
	Havre de Grace	406,000 48,000	406,000 48,000	. do	Battery 1sland	Susquehanna River	Chesapeake Bay	F. N. Clark.
do	330,000	330,000	do	. . . do			Do.
	Navr-yard	500,000	500,000	. do	Laurel	Patuxent River		G. H. H. Moore.
	Steamer Fish Hawk	1,250,000	1,250, 000	. do	Havre de Grace	North East River	Susquehanna Rive	Z. L. Tanner.
	Havre de Grace.	365,000	365, 000		Battery Island	Susquehanna River	Chesapeake Bay	F. N. Clark.
	Fort Washington	1,905,000	1,905, 000	do	Fort Wrashington	Potomac Riverdo	M. MeDonald.
	Steamer Fish Hawk .	500,000 825000	500,000 825,000	do	Havre de Grace	North East River	Susquehanna Rive	Z. L. Tanner.
	Havre de Grace...	400, 000	400, 000	do	Battery Island	Susquehanna River		F. N. Clark.
	Steamer Fish Hawk	1,000,000	1,000,000	do	Havre de Grace	North East River	Susquebanna River	Z. L. Tanner.
	Fort Washington	1,096,000	1,096,000	do	Fort Washington	Potomac River	Chesapeake Bay ...	M. McDonald.
$\begin{array}{lr}\text { June } & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 4 \\ & 7 \\ & 9\end{array}$	Havre de Grace.	-500, 000	500, 000	do	Battery Island..	Susquehanna River do	F. N. Clark.
	Nary-yard	150,000	150,000	. do	Laurel	Patuxent River	…. do	W. H. Jenkins, jr.
	Steamer Fish Hawk	625,500	625, 500do	Havre de Grace	North East Riv	Susquehanna Riv	Z. L. Tanner.
	Mavy-yard	120,000 100000	120,000 1000	do	Weaverton.	Potomac River	Chesapeake Bay	F. L. Donnelly.
do	90,000	90,000	.do	Battery 1sland	Susquehanna Miv	do	
April 12-30	Avoca	3, 029,500	3,029, 500	North Caroli				S. G. Worth.*
do	498,000	498.000	...do	Avoca	Salmon Creek	Albemarle Sound	Z. L. Tanner.
30		830,000	830,000	do	do			
May	Navy-yard.	220,000	170,000	Ohio	Defiance	Maumee Rir	Lake Erie	H. E. Qainn.
	Potomac barges	1,000, 000	850,000	\ldots do	Steubenv	Ohio River	Mississippi River	N. Simmons.
	Havre de Grace	1, 0000000	1,000,000	Pennsylvania	Sunbury	Susquehanna River	Chesapeake Bay.	J. P. Creveling.
		1,000,000	1,000,000	...do	Mifflin	Juniata River	Susquehanna River	Do.
 do	1,500, 000	1,500,000		Newport	$\ldots \mathrm{d}$		${ }^{\text {Do. }}$
June ${ }^{3}$	Navy-yar	500,000 200,000	500,000	Rhode Island	Charren..	Palmer's River	N arragansett Bay	C. E. Quinn.
June		220,000	220,000	...do	Railroad Crossing.	Pedee River ...	Atlantic Ocean	C. E. Quinn.
	do	200,000	200,000do	Columbia	Congaree River	Santee River	C. J. Huske.
do	200, 000	200, 000	Tennessce	Johnsonville	Tennessee River	Ohio River	N. Simmons.
	do	60, 000	60, 000	do	Union Depot	Holston River	Tennessee Rive	C. A. Steuart.
	do	70, 000	70,000	do	Fullen's	Nolachucky River	do	Do.
	do	70, 000	70,000do	Carter's Depot	Wautaga River		John Horan.
	. do	150, 000	135, 000	Texas	Railroad Crossing.	Sabine River	Gulf of Mexico	G. G. Davenport.
 do	32, 000	30,000	\ldots.. do	Railroad Crossing.	San Marcus Riverdo	G. H. H. Moore.

$\begin{aligned} & 28,000 \\ & 32,000 \end{aligned}$	26,000 30,000		$\begin{gathered} \text { do } \\ \text {.do } \\ \hline \end{gathered}$	Brazos River		Do. Io.
1,383,000	1, 383,000	Virginia-...	Gunston	Potomac River	Chesapeako Bay	M. McDonald.
1,625,000	625,000	.. do ...-....-.....	. . . do-. . - - do.................do	Do.
1,510,000	1,510,000do.............	. do	- 10	0	Do.
1, 130,000	1, 130,000	. . . do do .	- - - . . dodo	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
$\begin{array}{r}280,000 \\ \hline\end{array}$	$\begin{array}{r}230,000 \\ \hline\end{array}$. . . do do do do do	$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
2,887,000	2, 887,000	... do ${ }^{-}$do .	- - - . . do do	Do.
1, 834,000	$1,834,000$... do do .	-.---- do	-.....-do	Do.
1,730,000	1, 730,000	. . . do do .	----- do do	- do	Do.
2,571,000	2, 571,000	- . - do	. .do.	- - . . . do do	. ${ }^{\text {do }}$	Do.
$\begin{array}{r}40,000 \\ \hline \text { ¢ } 585,000\end{array}$	40,000) 585,000	- - - do	. ${ }_{\text {do }}^{\text {do }}$dodo	.do	Do.
$2,585,000$	$2,585,000$	- . . do	. . do	-......do do	.do	I)0.
1, 125,000	1, 125,000	. . . do	- do	.-. - . do	0	10.
$5,490,000$	$5,490,000$. . . do	. do	$\begin{gathered} \text {. do } \\ \text { do } \end{gathered}$		$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
140,000	140,000	do		To..do River	.do	J. F. Ellis.,
$1,000,000$ 175,000	$1,000,000$ 175,000	Wrest Virginia....	Wynchburg	Ohmes River.	Mississippi River...	$\begin{aligned} & \text { J. F. Ellis. } \\ & \text { Do. } \end{aligned}$
175, 000	175,000	West Virginia....	Wheeling.-.........	Ohio River.	Mississippi River...	
67, 353, 000	67,003,000					

XXVI.-REPORT OF DISTRIBUTION OF CARP, DURING THE SEASON OF 1881-'82, bY THE UNITED STa'te's Fish COMHISSION.

By Marshall McDonald.

The first applications for German carp were filed in 1876, one year subsequent to the successful importation of this fish and to the establishment of breeding ponds at Druid Hill Park. The total number of applications filed during this year was 3. In 1877 the number increased to 20 ; in 1878 to 98 ; and in 1879 , when the first distribution was made, the number of applications for the year was 324 .

The fragmentary records of this first distribution show that there were distributed directly to 181 applicants 6,203 carp, being an arerage of 34 to each applicant. In addition there were distributed to State Commissiouers and agents of distribution 4,743 carp, making a total distribution for the year of 10,946 carp.

In 1850 the number sent to applicants direct had risen to 31,443 , and to State Commissioners and agents 19,021 , making a total for the season of 50,464 .

In 1881 we were confronted with the problem of distributing 160,000 fish orer a much trider geographical range and at a consequent increase in the cost per applicant.

To reliere the messenger service of the pressure of the increased work, and to reduce the cost of the distribution, recourse was had to express shipments in all cases where applicants were willing to defray the increased cost of delicering. The shipping packages first used were wood-bound tin cans, holding about eight gallons of water, and making a shipping package weighing about 65 pounds. The principal lines of express transportation promptly responded to the request of the Commissioner and arranged a tariff of reduced rates of charges to all points reached by their routes. Even at the reduced rates the cost to applicants of express delivery was quite a serious matter, ranging from $\$ 1$ for the nearest points to $\$ 6, \$ 8, \$ 10$, and $\$ 12$ for the more remote. Early in the season, by direction of the Commissiener, a half can was substituted for the can first used. This materially reduced the weight of the shipping package and the express charges in each case. Parties receiving these cans had the option of retaining them at a stipulated price or of returning them. When parties declined taking the cans, they
were, under our arrangements with the express companies, returned free.

The distribution made prior to December 15 was accomplished by the methods above indicated; meanwhile experiments were inaugurated looking to reduction both in the weight and bulk of the shipping packages.

An account of the result of these experiments will be found in Vol. I, p. 215, Bulletin of the United States Fish Commission. So satisfactory were they that early in December I was instructed by the Commissioner to take charge of the Division of Distribution, and to inaugurate, systematize, and perfect the more economical methods of distribution rendered practicable by the reduction in the cost, size, and weight of the shipping packages. The standard package adopted was a covered tin bucket having a capacity of 4 quarts. For facility of aeration several holes were punched in the cover of each bucket.

A shipping-tag with room for the address on one side and the requisite printed instructions on the other was devised by Mr. S. C. Brown, so as to inclose securely a blank postal receipt, to be filled and returned by applicant on receipt of the fish. The buckets were to be returned by the applicants in all cases, the cost of the same (20 cents) being added to the express charges, and collected from the express agent in adrance.

Where a number of buckets were to be seut to one destination, for convenience in handling and better safety in transmission, light crates were prepared, each having a capacity of 16 buckets, and weighing about 100 pounds. As from their shape several of the crates may be stacked up on each other, it is practicable to pack 1,000 fish on a floor-space not greater than that occupied by two of our ordinary transportation cans. The convenience and economy of these methods of transportation is therefore apparent.

All arrangements having been perfected and all necessary material having been collected, express shipments were made in the small buckets instead of the larger tin cans, to all points within a radius of 500
miles from Washington. The weight of the shipping packages was thus reduced from 60 pounds to about 8 pounds, with corresponding reduction in express charges.

At the time I was placed in charge of the work of distribution messenger shipments were in progress in the South Atlantic and Gulf States, portions of Georgia, Alabama, Mississippi, and Tennessee, and all of Florida being at that date (December 15) still unsupplied. The messenger lists uecessary to regulate the distribution were at once prepared, and the fish destined for the supply of Southern Georgia and Florida sent forward in charge of Mr. Newton Simmons. Mr. George II. H. Moore and Mr. F. L. Donnelly were then in the field, one in Alabama, the other in Mississippi. They were directed not to return to Washington, but to await instructions at Meridian and Jackson, Miss. To these points messenger lists and explicit instructions and the number of carp necessary to complete the distribution were forwarded by express from Washington. These bucket shipments reached them in excellent condition, and by December 24 the distribution in the sections referred to had been completed. Texas, with 950 applicants, Arkansas, Indian Territory, Western Louisiana, and Missouri, with an aggregate of 150 widely scattered applicants, still remained to be supplied. It was planned to accomplish this work by one movement of our refeigerator car No. 1. All details of the distribution were arranged before we left Washington, the roate to be trarersed definitely determined, and notices forwarded by mail to each applicant informing him at about what date to expect his fish. So far as practicable, arrangements were made by which each should receive his fish either from the car en route or from one of the messengers temporarily detached for the purpose of supplying those remote from the ronte traversed by the car. It was not thought safe to attempt to carry more than 12,000 fish in the car. It was therefore arranged to have the additional number needed forwarded by express in lots of 2,000 . Arrangements were made to have the fish rested and the water changed at Saint Louis. As these methods were novel, and the results considered donbtful by the most experienced messengers, it was thought best that I should accompany the expedition in order to enforce the observance of the necessary conditions of success and to take the responsibility of whatever failure there should be. It was thought prudent to make use of both methods of transportation. The complement of the car was therefore made up as follows: 40 large cans containing each 100 carp; 7 large cans containing each 150 carp; 18 crates containing each 320 carp; 3 crates containing each 400 carp. This made a total of 12,000 fish in the car.

The crew of the car consisted of Mr. J. F. Ellis, messenger in charge ; Newton Simmons, George H. H. Moore, M. S. Thompson, messengers; and the cook.

We left Washington at 4 p . m. Janaary 3, 1882, going through to Saint Louis on the fast express of the Pennsylrania Railroad. I did
not think it necessary to examine the fish or change the water until we reached Saint Louis, where all the cans and buckets were overhauled and the water changed except in the crates containing 400 fish each, which were left undisturbed until we reached Texarkana. The fish were all found to be in good condition and the change was made rather as a precaution than as a necessity. At Washington I had placed 100 fish in a 6 -quart bucket as an extreme test. At Saint Louis these carp showed signs of suffering and were turned over to Dr. Steedman. From Saint Louis seven buckets of fish were forwarded by express, to applicants in the first Congressional district of Iowa, who had been overlooked in the previons distribution. They reached their destination safely, though two days en route and in very severe weather.

On the 5th of January at 9 p . m. the car left Saint Louis by the Iron Mountain route and reached Texarkana the next day. On the way fish were delivered to all applicants in Arkansas who were accessible, postal notifications having beeu previously sent from Washingtou directing them when and where to meet us. At Texarkaua a complete change of water was made on all the fish. The three crates of 1,200 fish which had not been tonched since leaving Washington were found to be in fair condition, though a few were dead and the remainder apparently weak. Ther had traveled three and a half days without any change of water.

The rise in temperature as we proceeded south made it prudent to take measures looking to refrigeration. Application to the railroad authorities procured a ton of ice, which was placed in the ice-chests, and the refrigerator portion of the car maintained at a temperature of 50° from that time onward until the distribution was completed.

At Texarkana I detached Mr. Moore with a supply of fish for Shreveport, Western Louisiana, and for such applicauts in Texas as he could reach conveniently by the route he traveled. Mr. Simmons was sent with a supply for applicants along the narrow-guage road between Texarkana and Waco.

After remaining at Texarkana twenty-four hours in order to rest the fish and to give due notice of our coming, we started Sunday morning, January 8, for Sherman, Tex., delivering fish on the way to all applicants in that section of the State. Moore rejoined the car at Dallas, and Simmons at Fort Worth, while I proceeded from Sherman to the Indian Territory to supply applicants in the Choctaw Nation, and returned via Sherman to Dallas.

Dallas being the point to which the express shipments were to be sent, I had arranged to rendezrous the car and all the messengers there, and thought it best to await the arrival of all the express shipments, as it would be safer to transport the fish south in the car than to trust to their being formarded by express. The first lot forwarded from Washington came as far as Saint Louis in charge of Messenger Donnelly; there the water was changed, and the fish expressed to Dallas. Donnelly remained at Saint Louis to re-ship subsequent lots, which followed
at intervals of twenty-four hours. These shipments, amounting to about 6,000 fish (scale carp), reached Dallas in fair condition, though they were much weaker than the leather variety brought in the car, and less fitted to endure rough travel.
From Dallas the car with the full complement of messengers proceeded to Austin via Hearne, supplying as arranged all applicants along the ronte. In order to provide for supplying the numerons applicants in the vicinity of Corsicana it was found necessary to lie over at that place twelve hours, the train agent kindly making arrangements to take us up on the uext train. On reaching Anstin I was met by Mr. R. R. Robertson, the Texas Fish Commissioner, who was kind enough to take charge of the delivery of carp to applicants in that vicinity. From Austin we proceeded to San Antonio, where I remained, but sent the car on to Laredo. At Laredo Mr. Ellis was detached with enough fish to supply applicants in the extreme south of the State. From San Antonio we returned ria the Sunset route to Houston, where I left the car, and with Messenger Thompson proceeded via New Orleans to Washington. I delivered on the way fish to isolated persons who conld not be reached in any other way. Meauwlile the car proceeded to Houston and was here joined by Mr. Ellis, who had been instructed from Washington to take the car to Saint Lonis and await further orders.

The routes traveled by the car and detached messengers were planned so as to completely reach every part of the State, ad the measures taken beforehand to notify applicants were so thorough that of upwards of 800 applicants not more than 7 were unsupplied.
The fish were delivered to the applicants or their anthorized agents, or else they were left at the most accessible point and the recipient so notified.

The satisfactory issue of our work is largely due to the liberal facilities accorded us by the various lines of railroad traversed. Anything in the way of supplies or service was unfailingly rendered. Special acknomledgments are due Mr. H. MI. Hoxie, the general manager of the Saint Lonis, Iron Momnain, and Southern Railway. From Saint Louis westward until our return to that point, free transportation for car was granted ou all lines of railroad traversed by us.
The result of the work demonstrated that in making shipments loy the car-load we can carry a much greater number of fish by using small buckets instead of cans, and also that buckets can be used with great adrantage and economy in shipping by express, provided the passage does not last more than thirty-six or forty-eight hours. I am not satisfied, however, that this mode of shipment is pacticable in warm weather. This must be decided by experiments.
The State of Texas seems to possess extraordinary facilities for raising carp, and as many of the recipients went to great expense to prepare ponds it is believed that carp-rasing will soon become a valuable industry in that State.

The following summary of the distribution by States is respectfully submitted:

Summary of carp distribution for the year 1881-'82.

State.							
Alabama.	38	28	60	88	1,856		158
Arizona...		5	28	33	818	7 5	78 38
${ }_{\text {California }}$	24					38	38
Colorado.				1	20	18	19
Comnecticut	8	21	71	92	2,220	14	106
Dakota ${ }^{\text {Delaware }}$	3	16	42	58	2, 100	8	${ }_{59}^{18}$
District of Colura		1		4		7	11
Florida.	11		${ }_{28}^{23}$	25	${ }_{7}^{432}$		30
Geurgia	94	30	380	410	7,681	$\stackrel{133}{2}$	+3
Illinuis.	62	23	139	162	2,844	24	186
Indiana	52	135	10	145	3,896	27	172
Iutian 1	29		15	16	292		44
Kansas.	45		105	110	2, 368	17	127
Kentucky.	70	7	489		${ }^{9}$ 9,732		
${ }_{\text {Louisiana }}$	24	6	51	5_{6}^{6}	1, ${ }_{116}$	6 5	11
Matyland	28	15	240	255	22,424	9	264
Massachusetts	10	24	3		745	21	48
Michigan.	20	3	37	40	1,848	9	49
Minuesota.	18 55	149	189		9,445	17 97	${ }_{625}$
Missouri .	50	2	208	210	4, 126	54	264
Moutana.		-					
Nebraska	11	6	1	7	120	8.	15
New Hampshire	6	6		6	140	${ }_{5}$	1
Now Jersey	19	49	21	70	1,352	11	81
New York		140					258
North Carolina	56	47	115	162	3,104	91	253
Ohio	62	172	35	207	4,258	89	296
Oregon	${ }_{54}^{13}$						
Phode Island	54		141 20	350 25	7, 145	$\stackrel{73}{2}$	${ }_{27}$
South Carolina	26	9	236	245	11, 884	11	256
Teunessee	${ }^{46}$	34	165	199	4, 200	55	254
Texas.	112	15	9.4	941	16,580	9	950
Vermo	${ }_{3}^{5}$	4		4	130 76	${ }_{2}^{5}$	10
Virginia	68	172	304	476	11,669	30	96
Washington						11	1
Wisconstill	19	35 10				6 15	${ }_{29}^{82}$
Wyouing .			2	2	200	兂	
Total	1,256	1,387	4,371	5,758	143, 696	1,244	7,002

The number actually sent out in 1881 was fromsix to eight thousand greater than appears from the subjoined table, many having beeu distributed through agents whose reports were not available when this table was made. There should also be added the number of carp distributed in the spring of 1882 , those being of the 1881 crop and amounting to five or six thousaud. The crop of 1881 aggregated about 160,000 .

XXVII.-EXPERIMENTAL INVESTIGATIONS UPON COD HATCHING AT WOOD'S HOLL, MASS., DURING THE WINTER OF 1880-'ゝl.

By Marsifall McDonald.

In November, 1880, a station was established at Wood's Holl, Mass., with a view of continuing the experiments in cod-hatching which had been conducted at Provincetown the previous winter. Capt. II. C. Chester was in charge of station, which was equipped with engine, pumps, and reservoir for the purpose of securing coustant circulation of salt water through hatching apparatus. Having submitted to the Commissioner plans of an apparatus which it was thought would be adapted for the hatching of floating eggs, I was directed by him to proceed to Wood's Holl and conduct the experimental investigations there.

The form of apparatus first proposed was an inverted funnel, the lower end of which dipped below the surface of water contaned in the trough, upon which it rested, the supply of water being brought in by a tube at the upper or smaller end of the fumel, so that when once filled with water the column was maintained by the pressure of the air. In this way the morement of the water through the cone, or fumel, was similar to that in the ordinary upright cone used for hatching heary eggs, except that the current was from above down instead of from below up. It was supposed that the buoyancy of the eggs would counterbalauce the downward movement of the current of water, so that the eggs would be kept in suspension in the funnel. This apparatus answered rery well for a few days after impregnation of the eggs, when they were much more buoyaut than at a subsequent stage. In a short time, however, either by becoming loaded with sediment, or by actual increase of specific gravits, the buoyancy became less and less, and the eggs were carried out and lost. This apparatus, though promising in results on first appearance, proved in practice to be a failure, no eggs whatever having been hatched in it, the several lots used being entirely lost.

As all eggs require constant accessions of fresh water in order to secure development, it was evident that some form of apparatus must be had recourso to in which the water could be continually renewed without carrying off the eggs in its eftlux. These eggs being buoyant and occupying a layer at the surface of the water, it was thought that by introducing the water into the lower part of the ressel containing
them and then withdrawing it throngh the same opening the necessary change of water could be effected. In order, however, to accomplish this alternate influx and efflux of the water conveniently, it was necessary to make use of some automatic device, so that the work conld go on without the continual supervision of some expert. The method by which this was effected is shown in the accompanying sketch.

Apparatus for hatching buoyant fish eggs.
In all of the various forms of apparatus that were used at different times during the season, a certain percentage of eggs was hatched, where no accident intervened to terminate the experiment abruptly. The percentage of loss, however, was very large-much larger than conld be tolerated in any method where practical results in hatching were to be looked for. These losses were to be attributed mainly to two causes: the increase in the density of the eggs as incubation went on by the accumulation of sediment, and the inferior deusity of the water employed as compared with sea water. Could these methods have been used where water of the density of the sea was available, and where perfect means of filtration could be provided, I have no doubt but that all the forms of apparatus used would have given good results in hatching.

The largest percentage of hatching was attained in the upright glass funnels, in which the eggs, twice a day, were thoronghly washed by a jet of water, the effect being, by the attrition of the eggs upon each other, to keep the surfaces perfectly clean and to maintain their buoyancy. The percentage of hatching in the majority of the cases was very small, not more thau from 5 per cent. to 15 per cent. of the total number of eggs employed. In oue experiment with a glass funnel, containing 40,000 eggs, the water in which, from its location near the stove, was uniformly several degrees higher in temperature than the water in the
hatchery, 25,000 young fish mere obtained. These were sent in charge of special messenger to Anuapolis and deposited in the Chesapeake Bay at that point.

The range of the inrestigation at Wrood's Holl was largely limited from the fact that we were able to obtain during the time that I was there, only a single lot of spawning fish, from which, though some millions of eggs were secured, the larger part were lost, and we obtained only some four or five thousand fry. The succession of spawning fish that we had hoped for was not obtained, the extreme cold weather having prevented it. The station was accordingly abandoned, and the experiments discontinued before the appearance of the schools in Ipswich Bay. Had the station been kept opev, and the supplies of eggs obtained, which would have been available from this source, I have no doubt the result of the winter's work would have been to establish precise methods aud forms of apparatus for the hatching of the cod egg on a large scale.

In connction with this work important investigations were conducted by Professor Ryder in regard to the embryologs of the cod-fish. Results of these investigations have already been commmnicated in detail by him to the Commissioner.

XXVIII.-SPANISH MACKEREL-INVESTIGATIONS AT CHERRYSTONE, VA., DURING THE SUMMER 0F 1881.

By Marsiall McDonald.

The Spanish mackerel is the most valuable species of the salt-water fish taken in the Chesapeake Bay. It enters the capes in large schools about the 1st of June, each year, and is found in the bay during the whole summer, being taken in large quantities by the pounds on the eastern shores of Virginia, and at New Point, on the western shore, and in the uiddle ground of the Chesapeake, off Tangier Island, bs gillnet fishermen. Until the investigations of Col. M. McDonald and Mr. R. E. Earll, which were conducted at New Point during the summer of 1880, it was not known that this species spawned in the Chesapeake. As soon as the fact was announced to the Commissioner he, appreciating the importance of the discovery, later in the season sent Mr. R. E. Earll to the vicinity of Crisfield, Md., with snitable apparatus to determine the possibility of obtaining eggs in large numbers, and to study the methods and apparatus of hatching adapted to them. Mr. Earll was able to report, as the result of his investigation, that the eggs could be obtained in vast quantities, and could be hatched readily by methods requiriug little apparatus or attention on the part of the observer. The result of Mr. Earll's investigations, and of cotemporaneous investigations conducted upon the western shore by the steamer Lookout, have already appeared in the official publications of the Fish Commission.

The following season (1881) it was determined to see what could be done in the way of the artificial propagation of this species on a large scale. Accordingly, after the close of the shad hatching, the steamer Fish Hawk, in charge of Lient. Z. L. Tanner, was sent to Cherrystone, on the eastern shore of Virginia, to establish a station there; Cherrystone being selected on account of its convenience to the large pounds on the bay shore between that point and Cape Charles, in which the larger proportion of the catch of Spanish mackerel in the Chesapeake Bay is taken. It being necessary to detach the Fish Hawk for summer work along the coast, I proceeded, bs the direction of the Commissioner, to Cherrystone, in July, 1881, with instructions to establish there a shore station, and to continue the study of methods and apparatus as long as material for the purpose could be obtained.

The embryological investigations were conducted by Professor Ryder. Messrs. Sauerhoff and Walke, two of the most experienced fish-culturists connected with the work of the Commission, were detailed for service at the station. A Herreshoff launch furnished convenient means for the collection and transportation of the eggs from the pound nets to the hatching station. The methods and apparatus employed here were, in the main, those that had been used in the experiments in cod hatching the previous winter at Wood's Holl. Fair results were obtained in the use of nearly all the forms of apparatus employed. The great drawback, however, to the station was the inability to obtain eggs in sufficient numbers for the purpose of hatching. Of course, large numbers of Spanish mackerel were taken in the pounds. It was found, however, much to our surprise, that the fish were either spent or in various degrees of immaturity. Only in two or three instances were we able to secure full ripe fish. This is probably to be attributed to the fact that the pounds are mainly fished on the tirst low water in the morning. The mackerel, when unrestrained, probably spawns early in the evening. Tipe fish, therefere, taken in pound and kept confined all night, crowded and worried by other fish, would spend their eggs during the night.

If Cherrystone is, therefore, to be made a center for fish-cultural operations comected with the Spanish mackerel it will be necessary to adopt means for securing the fish independent of the pounds now fished on that shore. A pound net owned and operated by the Commission, so that it could be fished whenerer and as often as convenient, would probably give large results in the way of eggs.

In August, disappointed at the promise of eggs, which we had so confirlently looked for at Cherrystone, I made a visit to Tangier Islaud and Crisfield by one of the "run" boats carrying fish from the eastern shore of Virginia to Crisfield. At this place I had opportunity to inspect the mackerel boats fishing off Tangier Island, all of which run to Cristield with their fish in the morning after a night's fishing. In a siugle one of these boats, containing 200 or 300 mackerel, I found 52 full-ripe female fish, which would have yielded over $5,000,000$ eggs, a number larger by far than we obtained from the pounds near Cherrystone during the entire season.

Inquiry at Crisfield of the fishermen handling the Spanish mackerel showed that the ripe fish in largest numbers make their appearance in the markets there from the middle of June to the first of July, which seems to be the height of the spawning season. Indeed, it is probable that the natural spawning grounds of the mackerel are much higher up the bay than Cherrystone. All indications would seem to point to the middle ground off Tangier Island as their breeding place. If in the future it be decided to develop the work of the artificial propagation of the mackerel, I should recommend the establishment of a station at or in the viciuity of Tangier Islaud and the erection of a pound by the Commission, to be operated by its own men, for the purpose of
securing a supply of eggs. I have no doubt but that eggs in any quantity desirable may be obtained in this manner. While the practical results of Cherrystone Station were negative, yet the investigations conducted by Professor Ryder in regard to the embryology of rarious species of fish taken there were of surpassing interest. Full reports of these have already been submitted by Professor Ryder and published in the official reports of the Commission.

INDEX.

Note.-This index contains general references to the entire volume. More detailed indexes to six papers will be found at the pages indicated.
Page.
Clark, Frank N., Report of Northville Hatchery, 1881-'82 1061
Goode, Collins, Earll, and Clark, History of the Mackerel Fishery 521
Juel, Niels, The Loffoden Fishery in 1880 607
Smiley, Charles W., Distribation of Young Fish to Public Waters 917
Tanner, Z. L., Construction and Work in 1880 of the Fish Harrk 51
Webster and Benedict, The Provincetown Annelida Chretoprota 745
A Pago.
Albott, Dr. C. C 765
Acanella normani 40
Acclimatization, the Society of 817
Acineta tuberosa 763
Acipenser sturio 815
Actinophrys sol 760
Adriatic, mackerel in 94
Eolis, its food 760,764
Agassiz, Professor 20
Aeration of water used in hatch- ing 55, 783, 784, 785
Alabama, distribution to 838, 840, 843,
use of fish guano in ...666, 668, 680,681, c93
Alden, S. S 825
Aldrich, P. B., cited 693
Algiers, its fish trade 603
Alloposus mollis 40
Alosa communis 815
finta 815
sapidissima 795,838
Amia, its food 765
Ainmodytes americanus 108
Anatomy of mackerel 100
Auchovies exported from Norway. 613
Auderson, E. J 1048, 1088
Apparatus in Norwegian fisheries-589, 590, 615
on steamer Fish Hawk.. 16-28,
Arcella vulgaris 762
Archaster americanus 40
Argonauta argo 40
Arkansas, distribution to 838, 840,
Ascidia communis 758
Atherinides, their food 765
Atkins, Charles G 1091
Atwood, Capt. N. E 521
Australia, shipment of eggs to 830
Austria, its fish trade 600, 601, 603, 605,606
Aroca, N. C., shad hatching at 60,70
B.
Babcock, General O. E 59
Babson, Fitz J 521
Bailey, M. T 113
Ballière, J. B., work referred to 753
Baird, Cal 1037, 1052
Dr. W., cited 756, 765
Prof. S. F....3, 4, 521,744, 782, 825 1047, 1065, $10 \leq 8$
Anguilla vulgaris 815
Annelida chretopoda 699
Anomolocera patersonii 758
Antedon sarsii 40
Anurea striata 780, 781
Apparatus for transporting eggs and
fry 790
in mackerel fishery 142, 175,
197, 203
Bait in mackerel fishery 521
in Norwegian fisheries 583
Balfour, cited 808
Banstickle, its food 765
Barnes, P. K., fishery owned by 62
Barry, F. J 69
Hon. James, cited 191, 234
Bartlett (J. II.) \& Sons, boat pre-sented by68
Page.
Bass, Oswego, de 624, 629
Bassnett's patent atmospheric lead 23
Bean trawl $20,39,40$
Bean, Dr. Tarleton H. $39,105,533,58 \%, 611$Beaulicu, Charles Lehardy de, cited 817Behr, Herr von 1046, 1047, 1053, 1055Belgium, its fish culture and fish-eries815
its fish trade 599, 600, 606
Beneden, Edouard von 823
Benedenia, its mode of feeding 762
Benedict, James E., article by 699
Bernard, Monsieur 823
Billingsgate market, its defects 645-649
its origin 644
its size 644
its substitute 656,
657
657
its trade 644,660
Birds collected by Livingston Stone 1075
Birkbeck, Edward 644
Blackford, Engene G 1083, 1088
Blackman, Elisha; statement of ... 637
Blake dredge 19, 20,21
Block Island $31,38,44,46,48,522$
Bluefish, its food 755
Boats in Norwegian fisheries534,549,$550,551,558,592,615,616$
on Fish Hawk 8,9,16
Boggs, William B ,4,69
Bony Gars, their food 765
Booth, Senator 1065
Boston, Mass., its mackerel trade. 300
Bower, Seymour 1045, 1046
Brackett, E. A 1088, 1097, 1099, 1103
Bradley, Julia S 695
Bradley Bank mackerel fishery 522
Brady, work citel 757
Brandes, Carl 825
Brazil, its fish trade 600, 602, 604, 606
Bremen, its fish trade 600
Brereton, D. W., citer 695
Brevoortia tyramnus as bait 178
Briggs, S. A 774
Brill sold at Billingsgate market 660
Brook trout 1037, 1049-1051, 1056
Brooks, cited 808
Brosmius, its price in Norway 583
Brownell, C. H 1103
Buccin, experiments with 751
Bull, James R 1053
Burdett-Coutts, Lady 648
Butler, Benjamin F 401
Steuben, statement of 639
Byrsonympha, its mode of feeding. 762
C.
Page.
Calanus finmarchianus 758
California, distribution to 829 ,
ع38-843, 859, 894, 907, 912,1047, 1048, 1052, 1053, 1104
use of fish guano in.... 6itī
California salmon, its distribution.. 889-$8: 37,840,859,1073$
itsembryology. 767
its propagation. 82y-
8:31-837, 1063
tront, its distribution ... 842,$1052,1053,1056,1083$
its propagation ... 1037,1052, 1079
Campleell, J. B., cited 1064
Canada, its fish trade601, 602, 604, 605its mackerel fishery, \&c... 522
shipment of egres to. 830522
Canuing of mackerel. 221, 329
Canso, Strait of, mackerel fishery. 522
Canthocamptus illinoisensis 777
Capehart, Dr. W. R 59,63
Car for transporting foung fish . 1049, 1051
Carp, its distribution 1037, 1121
Caruthers, J. C 62
Catfishes, their food 765
Catostomide, their food. 773
Cayenne eaten by mackerel 106
Centrarchoids, their food 765
Cephalopods, collected by Fish Hawk 40
Cetiorhinus, its food 766,767
maximus 754
Cetochilus, its abundance 758
Challengerida, their habits 760
Chase hatching jar 1045
Chaleur, Bay of, mackerel fishing. 522
Chester rake dredge $20,45,47,49$
Chatham, Mass., mackerel fishery. 522
Cherrystone, Va., hatching opera- tions at 64,71
Chilodon cucullulus. 763
China, its fish trade. 600
Chirocephali, their food and diges- tion 756,765
Chronological history of mackerel fishery 308-444
Chyodorus sphericus 757
Clark, A. Howard. $91,156,205,226,252$Frank N .774, 777, 778, 782, 783,787,788, 797, 1037, 1103, 1110, 1113
Cleaveland, C. H., mate of the Fish
Hark 69
Clepsine, parasite of 763

Page.
Clereq, Monsieur de................. 820, 8:23
Clovisses, experiments with752, 753
Clupea æstivalis.180, 181, 199
harengus
108
Clupeoids, their food 765,766
Coal-fish 583,595
Coast and Geodetic Survey...... 16, 19, 28
Coates, Miss Mary 640
Cocculus indicus, prohibition of its sale

818
Cod, development of its eggs...... 810
international trade in. . 593-606
its food............................ 766
its movements.590-596
its price.............5‘3, 584, 611,612
its propagation 1127
its sale at Billingsyate market. 660
Norwegian fisheries for-581-586,588,
597-600,602-604, 611,616
products of fishery for, in $1880 . \quad 597$
Cape, mackerel fishery at 522
Codosiga, its feeding habits....... 761
Cogswell, General William, cited.. 240
Coleps, its feeding habits........... 763
Collins, Capt. J. W., 91-523
Colorado, distribution to829, 834, 837 840, 843,858
Conferva, how to protect eggs from. $\quad 799$, $800,1044,1045$
Connecticut, distribution to 829, 834, 837-843, 859, 894, 907, 1047, 1048, 1089, 1104, 1107, 1117 use of fish guano in .. 666, 672

692, 693
Cooley, Jacob, note given by...... 637
Copeland, Charles W 3
Copepoda, their abundance........ 41
Coregona fera....................... 820
Coregonus albus.............. 769, 842, 1037
clupeiformis 771
oxyrhynchus 815
Cothurnia, a species of............ 760
Coutance, H. A., article by....... 749
Cradle sieve, description of 21
Crane-fly eaten by shad.766, 769
Crawfish in Belginm................ 815
Crawford, Dr., cited................. 636
Crepidulat glauca..................... 808
Creveling, J. P. 1083
Cristivomer namarcush... 1037, 1042, 1055
1096
Crustacea collected by Fish Hawk. 40, 41
Currents, loss of apparatus caused by

589

Page.
Currents, their effect on mackerel food 523
Cushing, Hon. Caleb, cited. 136
Cuttlefish, its use as bait in Nor-
way 583, 588
Cyclops, its habits and fecundity.757, 758
quadricornis 756, 758
thomasi 779, 780,781
Cyprinida, their food 765,773
Cyprinodontidx, their food 765
Cypris, its enemies 756,768
D.
Dabs sold at Billingsgate market. 660
Dana, Alvan, statement of 627
Daphnia hyalina 781,779
pulex 756, 759
Daphniadse, their food and ene-mies..-............. 764-768
Daphniæ, their food and habits..756,757,758
Darling, A. J 1088, 1103
Darters, their food 765
Decapoda collected by Fish Hawk. 40
Deformities in young shad 802, 803
Delaware, distribution to $\ldots 838,840,843$,$860,1107,1117$use of fish guano in ..666,67\%,
692, 693-695
Denis, Monsieur 823
Denmark, its fish trade .. $599,600,602,606$
Dennen, O. A 1088,1103
Dennis, Capt. J. P., statement of. (40
Density of sea water 28
Diaptomus sanguineus 777
sicilis 779, 780,781
Dillingham, J. R 1088
Dinobryon parasitic on cod eggs. 761
Distribution of fish and eggs825,917,1051-1056, 1073, 1083, 1088,$1089,1103-1105,1107-1113$
District of Columbia, distribution
to. $834,843,1107,1117$
Dogfish destructive to mackerel... 118
Donnelly, Frank I 1110,1113
Doris, its food 760,764
Dorrance, C., statement of 6:8
Drag-net fishery, description of 198
Drag-seines, mackerel first caught by 205
Drailing for mackerel $\because 07$
Dredging apparatus. 7, 18-22, 30, 32, 34, $37,39,45,47,49$

Dredging operations of steamer	Page.
Fish Hawk.......... $43-49,66-69$	74-83
Drift-net fishing for mackerel ..	19
Dunning, Philo.	1083
Dyrenforth, Robert G., article by	87

E.

Earll, R. E., cited 91, 523, 761, 810
Eastport, Me., its mackerel fishery. 523
Ebrecht, G \qquad . 1046, 1047
Echinoderms collected by Fish
Hawk
40,41
Education among Norwegian fishermen .537,543,544
Eel, its abundance in Belgium 815 its abundance in the Susquehanna

625
Eger, O. Ch. Chr..................... 534,538
E. G. Pickup, schooner 59

Egypt, its fish trade 603
Ellis, J. F............................... 1049
Elmer, Dr. George, cited............ 636
England, its fish trade.............. 598
shipment of eggs to..... 830
Entomostraca, their food and enemies

756, 757
Erimyzon sucetta..................... 755
Evarts, Dr. H. C., cited............. 760
Exports of fish products from Nor-
way598-604, 613-615
mackerel from Canada. 304, 305
F.

Fairbanks, N. K 1081, 1082, 1083
Faroe Islands.............. 598, 599, 602, 604
Fassett, Alvah, statement of........ 628
Maj. John, cited........... 631
Fauna of Gulf Stream.............39, 40, 41 of southern New England. 39, 40, 41
Fenton, H. J ... 1047, 1048, 1088, 1097, 1103
Ferguson, T. B... .784, 1073, 1081, 1083, 1103
Fertilizers patented in 1881........ 88
Finland, her fish trade.............600,606
Finmark, her fish trade..549, 551, 552, 585, 597,598
Fish, international trade in598-606
its value as food............... 629,661
Fish-culture in Belgium............ 815
patents relating to ... 87
Fisheries, sea-fish not exterminated
by 652
Belgian 815
Great Lake. 1039-1042, 1055
influence of temperature on

577-580

Fish Hawk, steamer, description of. 3-30
her apparatus.... 16-28, 55-58
her dredging opera-
tions 31-41, 66-69-74, 83
her hatching opera-
tions. 55-64, 70-73, 1108, 1112,
her officers.............. 69
herspeed................ 84
her work in 1880 30-49
her work in 1881 55-85
synopsis of her steam-
$\log41-43,84$
Fishing-grounds for cod and mack-
erel39, 40, 524
Norwegian.591, 592, 599
Fishery treaty with Great Britain. 599
Fishways, patented in 1881......... 87
Flabellum goodei 40
Fleet in mackerel fishery........... 524
Norwegian fisheries. 534, 546,547,
549, 552, 558, 562, 566
Flemming cited 808, 809
Floats, patented in 1881............ 87
Florida, distribation to838,845
use of fish guano in.......666,671, 689, 690, 693
Flounders taken by Fish Hawk.... 41.
Fol cited 808
Forbes, Prof. S. A., article by .755, 765, 769,
Page. Page.
Eorbes, Mr 1095, 1096, 1097
Forest and Stream cited 1045
Fowler, Gilbert, statement of 632, 637
Fragilaria capucina 774
France, her fish trade.........600, 603, 604her mackerel fishery, 1868. 395shipment of eggs to....830, 1047,1051, 1055
Eraser, Colonel, cited 649
Wreia producta 760
Wresh fish business, its steady growth 442
Eritze, Oscar 1064
Fundy, Bay of, mackerel fishery in 524
Fungus, article on 795
preservation of eggs from .799,807
G.
Gammarus, various species of..... 110
Gannets destructive to mackerel..108, 117
Gasterosteida, their food 765
Gastrostrens trachurus 765
Gastrotricha, its feeding habits 763
Gee, Samnel 69
Gelatine patented in 1881 88
Gens. Prof. Emile, works cited...818, 819Geographical distribution of mack-erel93
Geological specimens collected by Livingston Stone 1076
Gcorge's Bank 524
Georgia, distribution to 838, 840 , $845,860,1107$ use of fish guano in ..666, 470, 684, $685,686,687,693,695$
German Fishery Association 1047
Germany, her fish trade...... 600, 604-606 shipment of eggs to.. 830,1046 , 1047, 1053, 1055
Gibbs, Walcott27
Gibson, Milner 651
Gillis, Captain 58
Gill-net in Great Lake fisheries. 1039, 1043, 1055
in mackerel fisheries 524
Globigerinæ, their abundance 759
Gloucester, its mackerel fisheries 524
Goethals, Baron 823
Goode, G. Brown 39, 91, 524
Gookin, Daniel, cited 636
Grant, George, cited 636
Ulysses S 411
Grayling, fishing tug 1043
Great Britain, its fish-trad 605
Greece, its fish-trado 603
Green, jr., Charles, cited 694
Loren 1081
Myron $1052,1065,1081$
Seth 1103
Griffith, William 1083
Gronckel, Monsieur de 817
Guano, fish, in Norway ..586, 587, 588, 613,615
in the United States..663-695
Gulf Stream, trips of Fish Hawk to. 39
Gurnard sold at Billingsgate mar- ket 660
H.
Haddock, its price and edible quali- ties 583,660
Hæckel, Dr. Ernst 760,808
Hake, its sale in Billingsgate mar-ket660
Hand-line in mackerel fisheries.. 171,233,309, 366
in Norwegian fisheries.550, 551,554
Hanscom, Ellis 1088
Harding, Capt. King 525
Harmon, D. H 1088
Harver, Jameson, statement of 640
Hasford, Charles 1056
Hatching apparatus ... 6, 16-18,36,55-58,
operations60-64, 70-73, 825, 5,1037, 1063, 1079, 1085, 1091, 1107
Haven, J. M 1103
Havre de Grace, Md., experiments at. 787
Henson cited 808
Herreshoff Manufacturing Com- pany 8
Herring, its eggs 796
its weight 614
Norwegian fishery for .. 583, 588,596, 611-617, 659

Scotch fishery for

Scotch fishery for

Scotch fishery for

Scotch fishery for

Scotch fishery for

Scotch fishery for

Scotch fishery for

Scotch fishery for

Scotch fishery for 659 659 659 659 659 659 659 659 659

Lake, its abundance and

Lake, its abundance and

Lake, its abundance and

Lake, its abundance and

Lake, its abundance and

Lake, its abundance and

Lake, its abundance and

Lake, its abundance and

Lake, its abundance and price price price price price price price price price 1040 1040 1040 1040 1040 1040 1040 1040 1040

Herring, William G., cited

Herring, William G., cited

Herring, William G., cited

Herring, William G., cited

Herring, William G., cited

Herring, William G., cited

Herring, William G., cited

Herring, William G., cited

Herring, William G., cited 694 694 694 694 694 694 694 694 694

Herıwigs cited

Herıwigs cited

Herıwigs cited

Herıwigs cited

Herıwigs cited

Herıwigs cited

Herıwigs cited

Herıwigs cited

Herıwigs cited 808 808 808 808 808 808 808 808 808

Hewett, Robert, cited

Hewett, Robert, cited

Hewett, Robert, cited

Hewett, Robert, cited

Hewett, Robert, cited

Hewett, Robert, cited

Hewett, Robert, cited

Hewett, Robert, cited

Hewett, Robert, cited 659 659 659 659 659 659 659 659 659

Hewey, F. C

Hewey, F. C

Hewey, F. C

Hewey, F. C

Hewey, F. C

Hewey, F. C

Hewey, F. C

Hewey, F. C

Hewey, F. C 1088, 1103 1088, 1103 1088, 1103 1088, 1103 1088, 1103 1088, 1103 1088, 1103 1088, 1103 1088, 1103

Hilgard, J. E

Hilgard, J. E

Hilgard, J. E

Hilgard, J. E

Hilgard, J. E

Hilgard, J. E

Hilgard, J. E

Hilgard, J. E

Hilgard, J. E 28 28 28 28 28 28 28 28 28

Hilgard's ocean salinometer

Hilgard's ocean salinometer

Hilgard's ocean salinometer

Hilgard's ocean salinometer

Hilgard's ocean salinometer

Hilgard's ocean salinometer

Hilgard's ocean salinometer

Hilgard's ocean salinometer

Hilgard's ocean salinometer 28 28 28 28 28 28 28 28 28
Hind, Prof. H. Y
Hind, Prof. H. Y
Hind, Prof. H. Y
Hind, Prof. H. Y
Hind, Prof. H. Y
Hind, Prof. H. Y
Hind, Prof. H. Y
Hind, Prof. H. Y
Hind, Prof. H. Y 525 525 525 525 525 525 525 525 525
$805,1038,1044-1046$103 755
its food
its food 35
its movements.
its movements. 135 135
Hingham, Mass., its mackerel fish-ery525
Holland, its fish-trade . . 600, 603, 604, 606shipment of eggs to..... 830
Hollenback, George M., cited 631
Hollenback, Nelson B., statement of 633
Hooks and attachments, patented in 1881 87
Horton, George F 634
Hubbard, J. S 29, 30
Richard D 1064
Hume, George 1081
Hüningen piscicultaral establish- ment 817
Huske, C. J 1073
Huxley, Professor, cited 643, 651
Hyalinæcia collected by Fish Hawk 40
artifex 41
Hydroida collected by Fish Hawk. 40, 41
Hyodontidæ, their food 765
I.
Iceland, its fish trade 598
Illinois, distribution to.. $829,834,837-841$, 845, 860, 896, 907, 1053
Importation of cod by Norway ...605,606of mackerel by theUnited States..... 300,305
Indiana, distribution to ..838, 840-842, 845,$861,896,912,1054,1104$
Ingham, Dr. Chas. A., statement of. 639
Inspection of mackerel 525
Norwegian fisheries.533-538
Iowa, distribution to....829, 834, 837-842,$846,861,896,907,912,1047$,1048, 1055, 1104, 1107, 1117
Ipswich Bay, mackerel taken....... 525Ireland, its fish trade600-603, 605, 606
Isinglass patented in 1881606
Italy, its fish trade ..599-601, 603, 605, 606
J.
Jacobs, Capt. Solomon 525
Jacobsen, H 534
Jacobson, Herman, translation by .749, 815
Jakes, John T., cited 694
Jenkins, S., statement of. 635
John Dorey sold at Billingsgate market 660
Johnson, Curtis 1073
Jones, Horace, cited 649
Joselyn cited 117
Joyce, Capt. H. B 525
Jnel, Niels. 533
K.

Page.

Kansas, distribution to.. 829, 834, 837-841, 846, 864, 896, 1108, 1117
Kentucky, use of fish guano. 664
distribution to 829, 834,
837-841, 846, 866, 896, 1108, 1117
Kirby, Captain 39
Kite, Dr. J. A. 69
Klein cited 808
Kokk, B 575
L.
Labracidæ, their food 765
Labrador, mackerel on coast of $93,94,406$
Lacordaire, Prof. Theodore 817
Lady of the Lake, steamer 38
Lake trout.1055, 1056,1037, 1042, 1043, 1048
Lamellibranchates, their food 766
Laminaria saccharina 757
Lances patented in 1881 88
Land-locked salmon 1053
Lanier, A. C 1052
Latimer, C.E $8: 25$
Lattomus, L. W., cited 694
Lavoie, N., report cited 405, 406, 410
Leech, water, parasite of 763
Lefèbre, M., work referred to 815
Legislation to protect mackerel fishery 209-213
to protect Belgian fish- eries818, 819, 820, 821
Le Have Bank, abundance of crus-taceans on107
Leidy, Professor, cited 755,760, 763
Leopold I of Belgium 817
Leyder, Professor 823
Liagre, Monsieur 824
Libraries for use of Norwegian fish- ermen 543, 544
Lie, J. B 545, 573
Lincoln, Hon. Robert T 69
Line fisheries, mackerel..171, 233, 309, 366Norwegian....540, 549, 551,$555,558,582,581,594,595,596,615,616$.
Ling, Norwegian fishery for.. $583,611,615$Littorina vulgaris, experiments
with 751
Livingston, R. R 1073
Ljungman, Axel Vilhelm 765
Lobster, its weight 614
Norwegian fishery for..611, 613,
615,617Lock Leven trout, its food and fla-vor.765
Page.
use of fish guanoin. 666, | Mytilis edulis, experiments with. 751
672, 691,693| Myxostoma macrolepidotum 755Laffoden, Norway, its fisheries, \&c...533,$546,547,556,562,564,566,579,588,589$
London, its fish supply . 643, 653, 658
new fishmarket in 656
Long, J. T., cited 694
Lookout, F. C., Steamer 37, 38
Lopholatilus chamseleonticeps.. 32, 33, 39Louisiana, distribution to. $838,840,846,867$use of fish guano in 664
Low, Major D. W 526
Lurco,its food 757
Lymnæus, its food 764
Lynceidæ, their food and enemies. 756,757768, 769
Lynch, J. A., cited 694
J. E., cited 694
William H 69
M.
McCloud River Station, operations
at. 8:29,1063
MoCord, John 630, 631
McDonald, Col. Marshall.65, 800, 801, 806,$1109,1111,1113$
McDonald's hatching apparatus. 800, 805,806
Mackerel (see special index, p. 521).91-531
its food 41, 105, 111
its importation 301-307
its movements. $135,137,526$
Norwegian fishery for.. 611,612 ,613, 615
statistics of fishery for $-214,220$
Spanish, its propagation. 11:31
Magdalen Islands, mackerel fisheryat526
Maine, distribution to...829, 834, 837, 841,847, 867, 896, 907, 1089, 1104,1108,1117use of fish guano in... $666,669,683$,684,693Gulf of, its mackerel fishery - 526
Markurson, Capt. Knud. 170,429
Martin, Capt. S.J 159,161
J. M., cited 693
Maryland, distribution to $.829,834,837,849$,$847,867,897,908,1051,1104$,1108,1117use of fish guano in... 666,670 ,$688,689,693$
Massachusetts, distribution to... 829,835 ,
$837,841,851,871,898$,$908,1089,1104$
her fisherics........ 520Mather, Fred. .1046, 1047, 1051, 10533, 1055,$1073,1103$.
Matheson, George N 1052
Maxwell, John 69
Mayhew, Horace, cited 643, 646
Maury, Lieut., cited 759
Mediterrancan Sea, mackerel in 94
Monhaden (or pogy), its food 41-755
its habits and movements.
97, 169
Merchant, Captain 526
Messick, J. B., cited 694
Meteorological Institute, Norwe- gian 57%
Methods of fishing for mackerel.. 142, 175,$197,203,205,510$
in Norway ...551, 554,$556,558,587,593,597$
Mexico, Gulf of, no mackerel in. 94
Michigan, distribution to...829, 835, 837,842, 852, 872, 901, 908,912, 1053, 1054, 1104
use of fish guano in 664
Microbia, its food and enemies 768.
Microciona proliferum 766
Miller, George 630, 631
Milne-Edwards, H., cited 795
Milner, J. W $765,773,774$
Miner's History of Wyoming, ex-tracts from641,642
Minkler, H. E 69
Minnesota, distribution to. . 829, 835, 837,$842,852,875,901,909,1089,1104$
Mississippi, distribution to838.840,852, 882
use of fish guano in ... 664
Missouri, distribution to 829, 835, 837,
$840,852,882,1105$
Möbius, Carl, cited 759, 766
Mollusks affected by salts in sea-
water 749
collected by Fish Hawk. 40,41
Moneræ, doubtful of their existence 808
Moore, Mr 1049
Mosely, work cited 759
Mousel, Monsieur 823
Mulhall, Michael G., cited 661
Munson, Mr $1095,1096,1097,1100$
Murray, John 759, 760
Mussel, experiments with. 751
its price in Norway583,588
Mya areuaria 75
N.

Nais, food of a
Page.

Nautilus, specimens of, obtained... 40
Nebraska, distribution to $829,835,837,883$
Nets in mackerel fisheries........... 524 in Great Lake fisheries. . . . 1039, 1040, 1042, 1043, 1044 in Norwegian fisheries.......549,551, 554, 556, 582, 587, 589, 591, 594, 597, 615-617
patented in 1881.......-......... 88
Nevada, distribution to $829,835,837$, 840, 883
New Brunswick mackerel fishery.. 526
Newburyport, Mass., its mackerel fisheries

527
New foundland, its fish trade. .601, 602, 605
New Hampshire, distribution to. .829, 835, 837, 842, 853, 883, $902,909,1089,1105$
use of fish guano
in. 666, 667, 676, 677, 693
New Jersey, distribution to 829, 835, 837, 840-842, 883, $903,910,913,1105$ use of fish guano in. 666, 667, $671,690,691,693,695$
Newport, R. I $30,34,35,43$
New South Wales, egge sent to.... 1073
New species 39, 40
New York, distribution to.- 829, 836, 841
$853,885,903,910,1049,1089,1105$
New York, use of fish-guano in. 665,667 $675,676,693,695$
New Zealand, shipment of eggs to. 830
North Carolina, distribution to. 829, 836
$842,853,886,903,1108,1117$
North Carolina, use of fish guano
in........ 666, 667,677, 678,679,693,695
Northeast River, shad-hatching on. 61
63, 72
North Sea, English fishing in...... 653 quantity of fish taken in. 659 value of fish taken in... 658
Northville hatching station 1037
Norway, her fish trade..... 599,600,604
her herring fishery........ 659
statistics of her fisheries. 533
$606,609,611,617$
Notodelphys ascidicola.............. 758
Nova Scotia mackerel fishery... 407,527
0.

Octopus, collected by Fish Hawk. 40,41
© Ellacher, cited
808

Page.
Ohio, distribution to... 829,836-842,854
$887,903,910,913,1054,1105,1108,1117$
Ohio, use of fish guano in 664
Ohl, Percy C 1073
Olsen, H 534
Ombre, its abundance in Belgium.. 816
Ommastrephes illecebrosa.......... 118
Ontario, California trout put in 1052
Opalina, its mode of feeding 762
Ophiurans, collected by Fish Hawk 40
Orbulina universa 759
Oregon, distribution to............... 829
Osgood, N. A 105
Osmerus eperlanus...................... 815
Osterhout, Hon. P. M................ 630
Isaac S., standing of... 630
Oswego bass624, 629, 631
Otter trawl........................... $20,45,47,49$
Oyster, its culture at Saint Jerome. 37
its food 755, 764
its histology 808
its production in Norway.- 611 $612,615,617$
its sensitiveness to chemical changes in water

751
patents of apparatus for its
capture....................... 87
patents relating to its cul-
ture.............................. 87
P.

Page, W. F., cited..................... 796
Palourde, experiments with....... 751 752,753
Parelius, Marcus Hegge............. 537
Parker, H. G 1073
Patents, issued in 1881............... 87
Pedicellina americana 766
Peereboom, Ernest, von den....... 817
Pennsylvania, distribution to...829, 836842, 854, 887, 903,910 $1089,1105,1108,1117$ use of fish-guano in. 664 $665,673,674,675,693$
Penobscot salmon, its distribution. 841
907, 1088
its propagation. 1085
Perch, its eggs........................... 796
its food........................... 765
Periwinkle, experiments with..... 751
Petermann's Mittheilungen 598
Pfitzner cited 808
Phalaropus borealis 107
Physa, its food 764
Pike, in Susquehanna................. 625
Page.
Pike, their food 765
wall-eyed 624
Pinnotheres, its habits 761
Plaice, its sale in Billingsgate 660
small, its abundance in Bel- gium 815
Planorbis, its food 764
Platyonichus ocellatus. 105
Pleuronectes flesus 815
Podophrya gemmipara 763
Podophrya quadripartita 763
Pogy (or menhaden), its habits and movements 97, 169
Poisoning of water-courses. . 823, 815, 824Pole flounders, caught by fish-hawk41
Pollock fishery of Norway 611,615
Polyodontidæ, their food 765
Polyps collected by Fish Hawk 41
Poppe, U. F. M 534, 538
Porpoises destructive to mackerel. 118
Portman, J. G. 1083, 1103
Portugal, its fish trade... 599-601, 604-606Poteriodendron, its habits761
Powers, A. H $1073,1088,1103$
Preparation of fish, methods pat- ented. 88
fishers products,
Norway ...581-588,597mackerel 103, 108,221, 227
Priestley, Dr., cited 661
Prince Edward Island, its mackerel fishery 527
Pritchard; cited 757
Products of fisheries in the Great Lakes 1040, 1041
fisheries in the North Sea 658, 659
mackerel fisheries... 171,217Norwegrian fisheries. 558,559 ,584-587, 593, 597,611, 615-617
Prorodon, its food 762
Protection of river fisheries.. $625,818,820$,821,824
Protozoa and protophytes, the pri- mary source of food 755
Provincetown, Mass., annelida of 699 its mackerel fisheries 527
Pteropoda 40,527
Pyrocystis fusiformis 760
noctiluca 760
R.
Paga.
Radcliff, Robert 1081
Radiolaria, their size 760
Rainbow trout 1037, 1052
Rathbun, Richard 38
Rathke, cited 769
Raveret-Wattel, C 819
Read, George H 4, 69
Reading-rooms for Norwegian fish- ermen 537, 543
Reciprocity treaty, its effects 397
Redding, Hon. B. B. 1047, 1048, 1065, 1073, 1081, 1083, 1103
Red mullet sold at Billingsgate 660
Red-seed eaten by mackerel 107
Reels patented in 1881 87
Reinspection of pickled mackerel 282
Religion among Norwegian fisher-
men. 543, 544
Retardation of egg development.. 795, 808
Reynolds, Hon. John P 782
Rhipidodendron splendidum 761
Rhizopods collected by Fish Hawk. 40
Rhode Island, distribution to829, 836-
$841,855,889,904$,

$$
911,1108,1117
$$

use of fish-guano in. 666,672,692, 693
Richmond, Duke of 655
Rice, H. J 787
Roberts, Henry, statement of 626
Rockfish in Susquehanna 625
Rods and sinkers, patented in 1881. 88
Roebling's Sons' Company 19
Roney, James 62
Russell \& Sempers 62
E. M 1103
Russia, her fish trade 600,606
Ryder, John A 755, 795
S.
St. Jerome Creek 36, 37, 43
St. John's, its cod trade 601, 604, 605
St. Lawrence, Gulf of, fishery in.515, 521,
522, 530
Salinometer 28,29
Salisbury, Lord 655
Salmo fario 816
irideus 842, 1037, 1053, 1083
lacustris. 820
namaycush 1096
quinuat 829, 840
salar 815,841
subs. sebago 841

	Page.
	ftesbury, L
Salmon, its abundance in Belgium. 815	Sharks, basking, its food.......... 759
Norwegian tishery...... 611, 613 ,	Shaw, B. F................ 1047, 1048, 1055,
California.........-767, 829-837,	Sheepshead, its food.............. 766
840, 859, 1063, 1073	Shipwrecks in Norway...539,570,571, 572
Penobscot 841, 907, 1085, 1088	Shore mackerel fisheries 529
Schoodic ...829, 830, 831, 841,894	Sigsbee, Lieutenant-Commander .. .19, 20
1037, 1052, 1053, 1056, 1091	27, 28
Susquehanna .-. 624, 625, 631	Simmons, Mr 1049
Salpingæca, its mode of feeding... 761	Simocephalus americanus........ 777
Salvelinus fontinalis............... 1037	vetulus............. 777
Saudwich Islands, egge sent to 830	Skate sold at Billingsgate market. 660
Sardine, its food.................... 755	Slack, Mrs. J. H.......... 1047, 1048, 1103
Saxe, Dr. A. W., cited............. 663	Slipper-limpet, its eggs 808
Scaling and dressing machine patents \qquad	Smiley, Charles W., articles by ...825,917
Schizomycetës, their food and hab-	Smith, Capt. Joseph 529
761,762	J. A........................ 4,69
Schoodic salmon, its distribution .829, 830,	Prof. S. I................... 765
$831,848,894,1052,1053,1056$	Silas ...-....... 642
salmon, its propagation.. 1837, 1052, 1091	Snappers, animals eaten by mackerel \qquad
Schwann cited 808	Snide and Fox, Messrs. 1040
Scixnoids, their food 765	Soles sold at Billingsgate market.. 660
Scientific results of Fish Hawk's ex-	Sounding apparatus23,25,31,32,33
Scomber grex 129	(i05, 606
Scotland, her fish trade. . . 598, 603, 604, 605	Carolina, distribution to.. $829,836-$
herring fishery...... 659	42, 855, 889, 904, 1108,
Seal, W. P., cited. 758	17
Sea-trout fishery of Norway..611, 612, 617	use of fish-guano in.. 666
Sea-water, biological action of salts	670,687, 688, 693, 695
. 749	Spain, its fish trade............... 598,606
Seawing, fishing-tug............... 1043	Spanish mackerel, its propagation.. 64,71
Sellman, Henry-................... 226	Spawning grounds of Great Lake
Selys-Longchamps, Baron de.815, 823	fish 1039, 1040
Shad, amount of water necessary	mackerel...111-115
for keeping its eggs and fry.. 783	season of brook-trout.... 1049
fisheries for, in Susquehanna	1050, 1051
River 619	Great Lake fish. 1040
its abundance in Belgium.. 815,816	1041, 1042
distribution $825,838,843$	mackerel ...111-115
embryology............767, 768,	Speedwell, United States steamer.. 1
797, 798, 809	Spencer, Herbert, cited............. 795
food............... 755, 767, 769	Spirialis gouldii 105
former abundance..625, 627, 632	Sponge, red, its foorl and enemics.. 766
price..........621, 622, 635,642	Squalns americauus................ 161
propagation... 16, 17, 60-63, 70,	Star fish, new species of........... 40
72, 826, 827, 828, 1107	Stellwagen Banks, water
size 622	ture on........................... ${ }^{\text {a }}$ - 123
retardation of the develop-	Stephanodiscus niagaræ 774
ment of its eggs.....787, 795, 811	Stone, Livingston, article by ... 1063, 1079
Shadwell, proposed fish marketat.656,657	Strasburger, cited 808
Shafer, Peter, deed given by....... 037	Striped bass of the Susquehanva.624,629

Page.	
ròm Boyo, article by 611	Towing net........................ 41
Sturgeon, its occurrence in Bel-	Traps pateut
gium 815	Tulip, steame
sale in Billingsgate.... 660	Turbot sold at Billingsgate market. 660
Suctoria, their food............... 763	Transportation of eggs.. $787,793,794,795$,
Suckers in the Susquehanna 625	6,
their food................. 765	
Sulphate of soda, shellfish kept alive in \qquad	Trawl-line....33, 39, 551, 554-556, 558, 587, $589,591,594,597,615,616$
Sunfishes, their food............... 765	
usquehanna Piver, its shad fish-	Trichony
$\begin{aligned} & \text { eries } 619 \\ & \text { shad hatching } \end{aligned}$	Tritonium undatum, experiments with 751
in........... 62,72	Trout, brook 1037, 1049, 1051, 1056
Sweden, its fish trade............600,606	Cal
Sweeny, R. O........ 1073, 1083, 1088, 1103	European $816,8 \div 0$
	lake......... 1037, 1042, 1043, 1048,
able sieve......................... 21	
Tangle bar 21	612,61
	U.
Temperature and the movements of	Umbridæ, their food 765
fish-..............97, 110, 123-125	United States, their cod fisheries .- 600
emperature observations 22, 45,	their fish trade ...600, 602,
579,	
1043, 1044, 1056-1060, 1076-1078	their mackerel fisher-
	ies........... $91,214,220$
855, 890, 1105, 1108, 1117	n to...829,836,340,856,890
use of fish guano in.... 664	
fera, their food.......... 763	
istribution to... $838,840,856,890$,	Vampsrella, its habits 763
1108, 1117	Van Kirk, Joseph, statement of ... 625
33,44, 46,	Van Vliet,
48,577	Venning, W. H., cited 405, 407, 410
W., cited 781	Venus decussata, experiments with 751,
Thompson, Isaac, statement of. 638	
Sir Henry, cited....... 661	751
Wyville, work cited... 759	753, 754
Thornback sold at Billingsgate market.	$\begin{aligned} & \ldots . .833-841,856 \text {, } \\ & 91,904,911,1105 \end{aligned}$
Thornbury, Walter, cited644, 646	68,
Thorpe and Rücker, Messr8.. 30	79, 630, 693
Thymallus vexillifer.............. 816	35, 69, 94,
Thysanopoda eaten by mackerel.. 105, 106,	118, 123
107	Vessels in mackerel fishery ...510-519, 530
Tilefish taken by str. Fish Hawk.. 32, 33,	n Norwegian fisberies. $534,562-566$
34, 39, 66, 67, 68	ater, mollusks kept alive
Tintiunus fergusonii.............. 760	751,759
Tippet, Mr 24	841,
Tipulidı caten by shad........... 766	108, 1119
Todd, Frank 1100	in. $666,669,681$,
Togue, its propagatiou............ 1096	682, 683, 693, 695
Tönseth, J 534	Vorticella, its habits.............760, 761

W. Page. Wall-eyed pike624 Walpole, Spencer, cited..643, $647,653-655$, $657,658,659$	e.
	Whitefish, its propagation1037-1046
	statistics of fisheries for. 772
	White percl, its eggs.............. 796
	Whiting sold at Billingsgate market 660
Walton, Ham \& Co., cited Washburn \& Moen Manufacturing Co \qquad	Widegren, Hjalmar................ 765
	Wightman, T. B......................... . 1054
Washington Territory, use of fish guano in	Wilcox, W. A 223, 225, 695
	Willard, E. G 162, 249, 435
Way, Jasper C., cited................. 694	Willequet, E 823
Weather observations. ..44-49, 1043, 1044, 1046-1050	Williams, S. E. 1054, 1055
	Wilmot, S.......................-...-. 1073
	Wilson, H. C., statement of 627
Webber, S............................ 1083 Webster, Prof. H. E., article by 699	J. Fletche
Webster, Prof. H. E., article by Weeks, Seth1073, 699	W. J-.......... .-. . 62
Weeks, Seth $1073,1088,1103$ Welcher, Mr. 790	Wires, Mr $1043,1045,1055$
Welcher, Mr. 790	Wisconsin, distribution to.. .829, 837-842,
Wellfleet, Mass., annelida of 699 its mackerel fish-	$858,893,906,911,913,1049$
	use of fish guano in.... 665
	Wislöff, Th............................ 534
West, Robert.......................... 62	Wolff, Julius 531
Indies, their fish trade .598, 600-603,	Woodbury, Mr 1048
604, 605, 606	Wood's Holl, cod hatching at .. .32, 34, 43
Virginia, distribution to 829 ,	Woodward, H., cited 758,759
837-842, 858, 892,905,	Wrecks of Norwegian fishing ves-
1108, 1117	sels 570, 571
use of fish guano in 665	Wright, Harrison, article by 619
Whale, its food $118,758,767$	
White, C.S.......................... 1073	
Whiteaves, J. F 531	ow bass in Susquehanna 624
Whitefish, food of its young....... 771	Z.
its distribution.......842, 912,	Zoöthamnium761,763
1047-1049, 1056	alternans............ 761

.

[^0]: * From a paper read before the Portland Socicty of Natural History January 16, 1882.

[^1]: *The number of carp actually sent out in 1881 was from six to eight thousand greater than appears from the subjoined table, many having been distributed throngh agents whose reports were not available when this table was made. There should also be added the number of carp distributed in the spring of 1882 , those being of the 1881 crop and amonnting to five or six thousand. The crop of 1881 aggregated about 160,000 .

[^2]: * Proceedings Boston Society of Natural History, vol. 10, p. 66.

[^3]: *In 1860 Capt. Peter Avery, of the schooner Alabama, of Provincetown, took 100 barrels of fat mackerel at Port au Port, Newfoundland. Captain Atwood, however, has seen them at the Bay of Islands. He has also seen large schools at Mecattina.

 Capt. J. W. Collins writes:
 "As early as 1836, Capt. Stephen Rich, in the schooner "Good Hope", of Gloucester, spent almost the entire mackerel-fishing season on the coast of Labrador in pursuit of mackerel. He was induced by the reports brought him by the Labrador cod-fishermen to make this attempt. They had reported seeing mackerel abundant in the vicinity of the Straits of Belle Isle, and Captain Rich being of an adventurous turn decided to devote one summer to the investigation of the subject, feeling in hopes of obtaining a large catch. My father was one of the crew, and I have often heard him tell that the trip was entirely unsuccessful, notwithstanding the fact that they cruised all the way from Mecattina Islands through the Straits of Belle Isle, and on the northwest coast of Newfoundland as far down as the Bay of Islands. Few or no mackerel were taken until the vessel returned in the fall to the southern part of the Gulf of Saint Lawrence, where a small fare was obtained in a few weeks' fishing."

[^4]: *Mr. Barnet Phillips, in the New York Times, December 31, 1880, thus criticises the theory of Mr. Hind, while referring to Mr. William H. Rideing's essay entitled "First Families of the Atlantic":
 "In an article entitled 'First Families of the Atlantic,' to be found in the January number of Harper's Magazine, certain assertions are advanced in regard to the habits of the mackerel which are entirely of an ex parte character and might unintentionally act injuriously to our interests in case future disputes arose between the Provinces and the United States on the fishery question. The writer states that, 'seeking a soft muddy or sandy bed at the approach of winter, it [the mackerel] buries itself therein, first drawing a scale or film over each eye.' In a prior paragraph of this same article the possibility of the hibernation of the mackerel is advanced. Now, exactly these two arguments were presented by Professor Hind, who wished to prove that the mackerel was a local fish, in favor of the Provinces, which assertions were entirely refuted by Prof. Spencer F. Baird, Secretary of the Smithsonian Institution, and by Prof. G. Brown Goode. The great argument used by the Provincial fish experts was to show that the mackerel belonged to their waters, and the ideas of hibernation were therefore represented. If this had been granted, our case would have had, as far as mackerel go, little to rest upon. As to hibernation of the mackerel there are innumerable reasons to suppose that nothing of the kind exists. In fact, hibernation is one of those ichthyological questions which require very long research to know anything about. It does seem that sturgeon in Russian waters, and carp in cold temperatures, take to the mud, and may, perhaps, do something like hibernation, but this habit has no precedent in sea-fish. It may happen that a few individuals of the scomber family have been inclosed in the winter season in the waters of the Newfoundland coast. Such cases have undoubtedly happened, for on page 62 of the late report of the United States Commission, the statement is made that in a river of Nova Scotia where a school of mackerel had been detained, the fish were speared out of the mud. Returning to the numbing effects of cold weather on sea-fish, in order to show how unusual it must be, the American turbot is taken with hooks in

[^5]: the dead of winter under the floe ice of North Greenland at a depth of 300 fathoms. If sea-fish were mummified in the ocean depths by the cold, because at the deeper strata of the ocean temperatures are fairly uniform, once a fish had hibernated, his sleep might continue on forever. There can be no better proof of the migratory character of the mackerel than to cite a paragraph from the Cape Ann Advertiser, published this week, where the fact is announced that the mackerel fleet have gone off Hatteras in hopes of securing mackerel, and that some time ago 'vessels reported having sailed through immense schools for forty miles.' The film over the eye of mackerel Professor Hind placed great stress on, as he supposed it was a preparatory step to the hibernating process. Now, this film over the eye, as Mr. Goode shows, is not peculiar to the Scombers, for many fish, such as the shad, the alewife, the menhaden, the blue-fish, the mullet, the lake white-fish, and various cyprinoid fishes, have this membrane, though it never does cover the whole eye. The fact remains also to be proved that a skin forms over the eye in winter only. The writer of this article has apparently culled his facts in regard to mackerel from one side, and has read most superficially the whole of the testimony. 'Public documents' are rarely of an amusing character, but when they happen to be of interest, as were those published as 'The Award of the Fisheries Commission,' it is most unfortunate when false deductions are derived from them."

[^6]: *Twenty mackerel were caught in a gill-net at Provincetown January 17, 1878. Others were taken late in December. Captain Harding tells me that they sometimes como ashore frozen in cold weather, and are found in the ice on the beach.

 Early in February, 1831, small mackerel 5 or 6 inches in length were found in considerable numbers in the stomachs of hake and cod, taken on the eastern part of George's Bank in 50 fathoms, and on the southeastern part of Le Have in 60 and 80 fathoms of water; sometimes ten, twelve, or fifteen in the stomach of a single fish. On the 8th and 9th of February, Captain Olsen observed thern schooling at the surface on George's. Gloucester fishermen had before seen them in winter on George's, but never so abundant.

[^7]: are so boisterous that our nets are destroyed. Some few parties will keep them out in December in spite of cold and storms.' Mr. White corroborated this. Mr. Thomas Brackett said he had taken them often in December, and often in weather so cold that the fish were frozen in removing them from the meshes of the nets, but could remember no dates. Mr. William Duffy stated he saw one once on the 24th of December. He recollected it because it was Christmas ere, and on account of its rarity; but he had frequently takeu them during December, though having no dates. The nets used are about two fathoms deep, set near the shore in about five to ten fathoms of water. My ornu recollections, but without dates, are sceing stops made in very cold weather and frozen ground, which must have been late in November. I think I have now mado good my assertion that they linger to December, and that in any future history of

[^8]: * Near the Nerr London light-house is a small brook which empties into the harbor and abounds with a small species of fish of which the mackerel appear to be fond.

 A ferv days since the keeper of the light-house, while the mackerel were indulging in a meal, caught five hundred at one hanl with a scoop-net.-(Gloucester Telegraph, December 3, 1870.)

[^9]: "This "large net of coarse twine" is the mackerel pocket described in the chapter on the purse-seine mackerel fishery.

[^10]: * Report on the second deep-sea dredging expedition of the Gulf of Saint Lawrence, 1872.

[^11]: *"On the seals of Greenland."-Dr. R. Brown.

[^12]: *There are no mackerel-fishing grounds within 250 miles or more of the Grind Bank, and certainly none nearer than 400 miles of its southern edge. It is possible that mackerel have occasionally been seen, or stray specimens captured, nearer the Grand Bank than this, but no mackerel fishermen would think of trying for these fisb east of the west coast of Newfoundland. There are but three instances on record where mackerel fishermen have gone so far east as that. Whatever influence may be exerted upon other forms of ocean lifo by the meeting of the Gulf Stream and the Arctic current, it can be quite safely asserted that the mackerel is never found in summer near the junction of these currents, excepting, perhaps, on the southern edge of George's Bank and off the south shoal of Nantucket. These localities are the nearest mackerel-fishing grounds to the Gulf Stream of any on the United States coast. And even here mackerel are rarely or never taken nearer than 40 or 50 miles from the northern edge of the stream.-J. W. Collins.
 \dagger During the entire month of June mackerel are taken in the Bay of Saint Lawrence with roes well developed. Having been engaged in the mackerel fishery in the Gulf for twenty-two consecutive seasons, ten of which I went to the Bay early in June, I have therefore had abundant opportunity to learn the spawning seasou of the mackerel in that region. It is my opinion that mackerel spawn in the Gulf of Saint

[^13]: * New England's Fish, John Smith, 1622. U. S. F. C. Rep., 153.

[^14]: * It is a fact well known to all experienced mackerel fishermen that during the month of May and the early part of June large bodies of mackerel pass along the shores of Nova Scotia and Cape Breton from west to east, and while many of these fish move through the waters of Chedabucto Bay and the Straits of Canso to the Gulf of Saint Lawrence, other schools pass in around the east end of Cape Breton Island, their destination being the same as those fish taking the shorter route. No better evidence of this migratory habit can be given than the fact that at this season of the year the fishermen along the Nova Scotian coast and about the Strait of Canso are busily employed in catching mackerel both in gill-nets and in drag-seines. On some occasions when the season has been exceptionally favorable the amount of mackerel so taken has often been very great. This movement of the mackerel is so regular and so welldefined that the fishemen rarely fail to tell within a few days, or, perhaps, even a few hours of the time when thes will appear on certain portions of the coast. The fall migrations are quite as regular. As the season advances and the temperature of the water decreases, the mackerel, instead of simply changing their position into deeper water near their summer habitat, as has been stated by Professor Hind, move in vast bodies towards the southern part of the Gulf of Saint Lawrence, frequently striking in a succession of waves. as it were, on the northern shores of Cape Breton Island, where, deflected from thew southern course, they divide into two streams or branches, one passing through the Strait of Canso, and the other out round the north cape of the island, by its eastern and southern sides, and so on up along the south coast of Nova Scotia. The mackerel which are found about tho Magdalene Islands during the summer and early autumn apparently move in a nearly direct line towards the northeast end of Cape Breton Island when they begin their fall migration. I have often had occasion to notice, in a practical way, these movements, the knowledge of which is of vital importance to the fishermen and of considerable interest to the naturalist. On one occasion in the fall of 1867 an immense body of mackerel was found along the north shore of Cape Breton, and on the last day that the fish were seen the schools came near the surface of the water, and I feel safe in saying, from actual observation, that they moved at a rate of no less than three or four miles per hour in the direction of the north cape of the island. On another occasion, a body of mackerel that was found near Amherst Island (one of the Magdalenes) one day, were met with the following morning about 30 miles distant from the first locality, in the direction of the north cape of Cape Breton Island, towards which they were moving at the rate of one or two miles an hour. I have myself seen schools of mackerel off the Nova Scotian coast, in the fall, moving rapidly in a westerly direction, but all efforts to catch them with a hook failed, since they seemed to pay no regard whatever to toll bait. All of my own observations and those of the Nova Scotian fishermen with whom I have been brought in contact, lead me to believe that mackerel will not bite the hook to any extent during their fall migrations along the southern coasts of Nova Scotia. This is all the more remarkable since they seem to take the hook very eagerly up to the last moment of their stay on their feeding-grounds in the gulf. The spring and fall migrations of the mackerel on our own coast are carried on with equal regularity and precision. On more than one occasion, in autumn, I have followed these fish day after day in their progress to the south and west along the shores of Maine and Massachusetts. An instance of this kind occurred in the fall of 1862 , when I caught mackerel nearly down to the Fishing Rip on the Nantucket shoals. These fish were moving rapidly southward, and the schools could be kept alongside of the vessel only a short time, and each trial had to be made two or three miles farther south than the drevious one. At another time, in the fall of 1870 , the mackerel moved in large schools

[^15]: *It is often the case that a school of mackerel may be kept alongside of the vessel for many hours at a time, even during the hottest days of summer, though generally at such times they will not bite very much. For this reason, therefore, the fishermen do not usually endeavor to keep the fish alongside of their vessels, but prefer instead to change their position and try to secure a new school of mackerel. This action on the part of the fishermen, just referred to, may have led to the belief that their movements were caused by the disappearance of the fish from the vessels' side instead of on account of the disinclination of the mackerel to take the hook.-J. W. Collins.
 \dagger Hind, Fisheries of British North America.
 \ddagger Professor Verrill, page 485, Report of the Uaited States Commissioner of Fish and Fisheries, 1871-'72.

[^16]: *Professor Verrill, page 485, Report of the United States Commissioner of Fish and Fisheries, 1871-72.

[^17]: * Mackerel are frequently abundant close in to the shores of New England in midsummer. As a matter of fact large catches of mackerel have been occasionally made in Penobscot Bay, fifteen miles or more inside of the outer headlands and islands. Bluehill Bay, also in Maine, is a famous resort for small and medium-sized mackerel in summer. It is also well known that the immediate vicinity of Monhegan Island is one of the best mackerel grounds on the New England coast during the months of July and August.-J. W. Collins.
 \dagger Fisheries of British North America, pp. 42, 43.

[^18]: * Hind, Fisheries of British North America, pp. 22, 23.

[^19]: * Repor of U. S. Commissioner of Fish and Fisheries, 1871-72.

[^20]: * Whatever repairs are needed are first attended to, while, in the meantime, the jibboom is rigged out, the foretopmast (if the vessel carries one) is sent up, the spars cleaned and painted, and the rigging tarred. This having been done, the ressel is taken on the railway and thoroughly cleaned and painted. The work of cleaning and painting spars, tarring rigging, \&c., was formerly done liy the vessel's crew, but at the present time it is done by gangs of shoresmen organized for the purpose, the expense for the labor performed being paid for by the nishermen. The custom of hiring others to do this work began about 1863 or 1864 . The fisheries were at that time very prosperous, and many of the fishermen preferred to pay some one for tarring and such work rather than to do it themselves. At first two or three men of the crew usually did the work, being paid for it by their shipmates, but in a short time it passed into the hands of the longshoresmen to the general satisfaction of both owners and crews. The work of cleaning the ressel's bottom, preparatory to painting it, is now often done by shoresmen, who are paid by the crew.

[^21]: * The first iron purse-davit (with wooden suatch-inocks), accordiner to Captain Merehant, was invented and used by Capt. Homry Blatehford, in 1858. With the exception of the blocks, it was essentially the same as the purse-davit in use at the present time. Previons to this a wooden davit (usually an old one), such as were in use on the fishing-vessels, was employed for the purpose of pursing up the seine. These davits were rigged ont over the side of the boat, a place being eut in them three or four inches deep, so that thoy might it over the gunwale of the boat in such a manuer as to steady the outer ond while the inner end was secured to the midship, thwart by a grommet strap.

[^22]: * Goode, History of the American Menhaden, p. 122.

[^23]: * The following is the price-list of Messrs. Higgins \& Gifford, of Gloncester, Mass., for 1880 :

 Seine-boats, including pump, iron breast hook, outside tovo iron, and iron stem cap. Smooth bottom, battened seam, 31 feet.. $\$ 18600$
 Smooth bottom, battened seam, 32 feet... 19200
 Smooth bottom, battened seam, 33 feet... 20000
 Smsoth bottom, battened seam, 34 feet... 21000
 Smooth bottom, battened seam, 36 feet ... 22500
 Galvanized rowlocks, with brass sockets, per set (8)................................... 650
 Pursing gear.. 850
 Patent steering rowlock with socket ... 125
 Pursing blocks, per pair .. 600
 Towing iron and pin ... 800
 S. Mis. $110-10$

[^24]: * Capt. Joseph Smith tells us that the depth of the seine-ends varies a great deal acoording to the fancy of the fishermen. Some of the skippers prefer to have the ends of their seines "taken up" enough to make them very shallow, while others think a net with deep ends will fish the best.
 \dagger The middle ring is usually made of different metal from the others, or is larger, so that the center of the bottom of the seine can be easily found.

[^25]: Merchant adds: "We use the left-laid rope for loops and the right for the sinkers. The loops are formed by separating the ropes at what are called the 'bridle hitches.' Only one ring is attached to a loop." The net has attached to it, when completed, 800 No. 1 corks, 1,200 No. 2 corks. The No. 1 corks, which are the largest, are placed in pairs in the center of the bunt of the seine, at a distance of 10 inches between the pairs. The " middle cork," however, is made of three, joined together and covered with canvas. This is for the purpose of determining the center of the seine when it is being overhauled. The No. 2 corks are secured to the upper part of the seine upon the wings and arms, being placed 15 inches apart. From 65 to 75 pounds of lead sinkers, which weigh from $2 \frac{1}{2}$ to 4 ounces each, are placed at the bottom of the seine. None of these are put in the bunt, but are scattered along the foot of the wings and arms, being nearest together close to the ends of the net. The rings used at present are made of galvanized 1 -inch iron, and weigh about $2 \frac{1}{2}$ pounds each; with the sinkerleads they make about 160 pounds weight attached to the bottom of the seine. One and three-fourth inch hemp rope is used for the purse-line, the length of this being generally about 25 fathoms more than that of the seine. In hanging the seine it is "taken up" at the ends, so that one end is 7 fathoms deep while the other is only 1 fathom deep, though the middle of the net will go down 125 feet. The first or deepest end is called the "dory end" or " outer end," and the other is known as the "boat end" or "inner end." As will readily be understood by reference to the preceding dimensions of the purse-seine, the difference in the depth of the several sections of the net, when hung, is due solely to the "taking up" in the process of hanging it, since the webling is of the same depth throughout. The purse-seines, like many other things, are being improved. Those we are making now [for the mackerel fishery] are much lighter than we have been making them in former years, and can be handled with greater ease and rapidity.

[^26]: * This habit of circling, which the mackerel performs, is also called "milling" by the tishermen.

[^27]: * Capt. Nelson A. Kenney, of Gloucester, states that two men usually go in a dory, one of whom pulls a little while the other holds to the end of the seine. If the one

[^28]: having the oars is an expert (and as a rule only old hands do the rowing), he will quickly and dexterously turn the dory as the seine-boat approaches "close to," so that the latter may shoot alongside of the former in such a manner that the purse-line held by the man in the stern of the dory may be easily transferred to the larger boat. As soon as this is done both of the dorymen jump aboarl the seine-boat and assist in "pursing up" the seine.

[^29]: *It should be stated that the large purse-weight is at present seldom used. The tide is rarely so strong as to make it useful, and even then the process of "reeving" is likely to be so tedious as to make the loss of time more than balance the gain through its use. According to Capt. Joseph Smith the majority of the mackerel seiners now ase two purse-weights, each of 75 or 100 pounds weight, instead of the old-fashioned "Long Tom," which usually exceeded 300 pounds. The two weights above mentioned, being so much lighter than those formerly employed, can be handled by one man, and rove on the purse-line very much quicker than if the heavier, or "double weight," as it is called, was used. These small purse-weights are provided with one block, and each weight has a line attached of suffisient length to reach the bottom of the seine. The time occupied in reeving them on the purse-line rarely exceeds fifteen or twenty seconds. One of the purse-weights is most commonly used on the "boat end," or the end of the seine last thrown out, for the reason that this part of the net has not usually time to sink down to its full extent before the pursing begins. A weight is more rarely used on the end of the seine which is first thrown out, and, consequently, has had time to sink to its extreme depth; though sometimes, on account of the current, or for some other reason, it may be found necessary to put the purse-weight upon this end, as well as upon the other. In using one large weight, as formerly, it would be necessary, of course, to always put it on both ends of the purse-line of the seine, but in having two weights one can be attached and run down on either end of the purseline as required. That sinks it and keeps the net deep, and if both ends "purse high" a weight should be put on each end. The ends of the purse-line, when the weights have been run down, in the manner above stated, will stand out from each other, something in the form of the letter A, both parts coming nearly together at the pursedavit and being separated several fathoms at the lower part of the net, as the first purse-rings are attached about 15 fathoms from the ends of the seine.

[^30]: * The schooner Oliver Cromwell, while on a mackerel cruise recently, had a curious incident befall her. Her seine being out, a school of mackerel suddenly turned, and, making for the seine, took it down. A vessel in the neighborhood immediately answered a call for assistance, and swept her seine under that of the Oliver Cromwell. Twenty-three hundred dollars' worth of mackerel were secured, the two vessels dividing the catch, the fish selling on an average at nine cents each. The bunt of the seine belonging to the Oliver Cromwell was badly rent by the sudden rush of the fish, or more would have been secured. This is the second time the seine of the Oliver Cromwell has experienced similar treatment, losing all the fish at the first, on account of the seine giving way and there being no help near.-(New Bedford Mercury, 1875 (?).)
 †A much larger quantity could be taken care of were it not for the fact that mackerel, after being kept a certain length of time, grow "soft," and rapidly become unfit for food. This change takes place much sooner when the weather is warm than at other times. The fishermen, however, are generally able to tell pretty accurately how many fish can be dressed and salted before they spoil. When good catches are made for several days in succession the fishermen get no sleep, being constantly employed night and day in taking and curing the fish.

[^31]: * Mr. A. Howard Clark, writing under date of October 28, 1881, says: "During the past few weeks the mackerel fleet have taken some good hauls during the night, as the fish have been difficult to catch by daylight but have rarely failed to show themselves on dark nights. When the moon shines it is impossible to see them, but when the night is dark or starlight they can be plainly seen from the mast-head, and sometimes from the vessel's deck. Heretofore, in night fishing, the methods have been the same as by day, but recently, owing to the difficulty of seeing the fish from the deck or the boat, the lookout at the foremast-head has given directions to the men while setting the seine. In this method the seine-boat is towed astern of the vessel, and when ready to 'give 'em twine,' the dory is allowed to drift astern with one end of the seine while it is being thrown out from the seine-boat. When ready to go around the school, the order is given from the mast-head, to 'go ahead'; the seine-boat is cast loose from the vessel and the seine brought together in the usual manner. Still another improvement in the methods is likely soon to be adopted in this night seining, and that is in the use of large lanterns to show their position to the men while setting for them. 'The schooner 'Northern Eagle' tried this new method last Tuesday night and found it to work splendidly. It was probably the first attempt to use lanterns for such a purpose. Two schools of mackerel were secured, one at ten o'clock and the other at midnight, both together yielding 160 barrels. The lantern was the ordinary large signal light used by fishing vessels."
 \dagger We hear of one vessel with a catch of 100 barrels in one week, and of several with catches ranging from 30 to 60 barrels. Another vessel made a good haul in a seine, one moonlight night recently, a new feature in this fishery.-(Cape Ann Advertiser, October 19, 1877.)

[^32]: * Night fishing, says Capt. Joseph Smith, can only be carried on in reasonably moderate weather. The boat is usually towed alongside of the vessel, the painter being fastened to the out-rigger. When a school is seen, the men jump into the boat, each taking his station, and at the proper time the boat is cast off and proceeds to set the seine if the fish "show up" in a promising manner. Sometimes, however, the school of mackerel may sink suddenly after the boat leaves the vessel's side, and, in consequence, the fishermen are not able to set their seine. As a rule the man on the lookout aloft reports the school of fish and indicates the direction in which it is and tells about how far it is distant. After the boat leaves the vessel's side, however, the captain, or seinemaster, who steers, takes charge of her, and when the boat approaches near the fish, which may be seen by the phosphoresence in the water, he gives the order to put out the seine as his judgment may direct. On special occasions this method may be somewhat varied, but the usual practice of setting a seine in the night is the one described above. Sometimes a portion of the net is set from the boat while towing astern of the vessel; or, again, even while the boat is towing alongside. In the latter case the towing rope is fastened to the boat some distance aft from the stem, so that she will keep from the schooner's side some ten or fifteen feet. The oarsmen have out their oars

[^33]: ready to pull whenever the men aloft gives the order for them to cast off. These methods of setting the scine, however, are only adopted when the fish do not show plainly, so that they can be seen by the men on the vessel's deck, or in the boat; it therefore becomes necessary for the man on the masthead to give the requisite orders for throwing out the seine as well as to direct the wheelsman how to steer the vessel until the boat leaves the side.

 Captain Smith has never known a ressel to make a complete circle around a school of mackerel while towing the seine-boat from which the net was being thrown out, but thinks it probable that it may have been done.

 A lantern is carried both in the seine boat and dory, the one in the former always being kept darkened or out of sight until the seine is set, since a light would so blind the men in the boat that it would be difficult for them to perform successfully the work of setting the net.

[^34]: * Captain S. J. Martin writes that in the summer of 1881 the crew of one of the mackerel schooners endeavored to save their seine from the depredations of the dogS. Mis. $110-11$

[^35]: Sish by hauling the staysail underneath it, thinking that if they could thus prevent the dogfish from secing the mackerel inclosed in the net the latter would not be aarmet. But this did not succeed fully, since the sail was badly bitten and much injured by the dogfish, making this experiment a rather costly one.
 *The "mackerel pockets" constructed by Capt, George Merchant, of Gloucester, are 36 feet long, 30 feet deop, from 15 to 18 feet wide across the mouth; two-inch cuesh, and knit of 12-21 half-patent twine.

[^36]: "Also called, especially in Gloucester, "gib-keelers" and "splitting-keelers."

[^37]: *An expert can split mackerel nearly as fast in the darkest night as at any other time. The sense of tonch becomes so acute from long practice that the fisherman can tell (without seeing it) when he grasps a mackerel whether its head is in the right direction or not, and also which side should be laid to the board in order to bring the fish's back in proper position for the knife. The splitter holds the knife with his fingers, letting the thumb slide down along the upper side of the fish, thus guiding unerringly the keen and swiftly moving blade. Whether the fish be large or small it is almost invariably split with the utmost precision, the edge of the knife glancing along on the left side of the vertelra, and scareely a hair's breadth from it, while the point goes just deep enough and no farther. But one must witness the operation of splitting mackerel in order to fully appreciate the skillfulness of the performance.
 \dagger Fresh mackerel are never gibbed for the New York market in spring, but a law of Massachusetts compels the fishermen to eviscerate all mackerel taken to Boston. In the first named port the cargoes of fresh dish are sold by commission merchants, while in Boston the captain sells directly to the dealers.

[^38]: * 3,665 barrels pickled, and 1,240 fresh; total, 4,905 barrels.
 $\dagger 1,600$ barrels pickled, and 2,900 barrels fresh; total, 4,500 barrels.
 \ddagger The Herrick did not sail until July 22.
 §Among the "fishing items" in the Cape Ann Advertiser of October 21, 1881, we find the following mention of catches of mackerel made by some of the seiners, which may serve to show the energy and activity with which this fishery is prosecuted: "Schooner 'Moro Castle' sailed from this port on Thursday morning of last week, and returned in the evening of the same day with 140 wash barrels of handsome mackerel. Schooner 'Dreadnaught' sailed from Portland after mackerel the other night, was gone twenty-one hours, and returned with 205 barrels. Schooner 'David A. Osier' sailed from Hull Friday evening, and was at this port next morning with 105 wash barrels of mackerel. Schooner 'Wildfire,' Captain McLain, has landed and sold $\$ 3,200$ worth of mackerel in the past fortnight, and has enough fish on board to add another thousand dollars to her stock. Schooner 'Fleetwing' took 210 barrols sea-packed mackerel at one haul of the seine off Plymouth on Saturday. Schooner 'Wm. M. Gaffney' took 140 wash barrels at one haul Sunday, and schooner 'Henry Friend' 140 wash barrels at one haul Sunday night. Schooner 'Madawaska Maid' left Gloucester Sunday, turning Eastern Point at 11 o'clock a. m., and arrived at Boston at five o'clock Monday morning, with 225 barrels sea-packed mackerel; in five weeks the 'Madawaska. Maid' has landed 1,000 barrels of mackerel. The schooner 'Wm. M. Gatfiney' landed 900 barrels of mackerel in twenty-one days."

[^39]: * Capo Ann Advertiser, August 9, 1878.

[^40]: * Note upon the origin of mackerel fishing in the Gulf of Saint Lawrence.

 Mr. Dauiel Cameron, of Southport, Me., thinks the first American vessels went to the Bay in 1832. This year 4 went, among others the schoouer "Galen," Captain Pate, of Freeport. These schooners averaged 60 to 70 tons, carried about 250 barrels, and filled up in four or five days. The first vessel going to the bay from this section of which we learn was the schooner "Olinda," Capt. Jos. Maddocks, of Southport, in 1837. Captain Atwood states that, in 1834, the New England fleet in the Gulf of Saint Lawrence consisted of six vessels, three of them from Provincetwn. The Cape Ann Advertiser of May $13,1 \times 59$, refers to "the custom which has grown up within a few years of going to the Gulf of Saint Lawrence for mackerel, where already the supply is lessening."
 \dagger A lucky streak.-The schooner "William T. Smith," Capt. Henry O. Smith, the last of the baymen, arrived home on Monday, bringing a good fare of mackerel, of which about 200 barrels were caught off Newfoundland, as already mentioned in our columns. These fish are of good size and prime quality, and will command a ready sale. Captain Smith struck a streak of luck when he ventured into untried waters in pursuit of mackerel, and his voyage will prove a profitable one, which is an anomaly in this branch of the fishing industry the present season.-(Cape Ann Advertiser, November 23, 1877.)

[^41]: * In the fall of 1849 one of the writers had the opportunity of seeing a fleet of mackerel schooners fishing ofi Chatham. The number of vessels in the fleet was variously estimated from 500 to 700 sail-a beautiful and interesting sight.

[^42]: *In certain localities the mackerel could only bo taken to good advantage among the rocks close to the shore; and the men fished from small boats rather than from the side of the vessel.
 t According to Captain Merchant, the "mackerel jig" was introduced at Cape Ann about 1815. Mr. Abraham Lnrvey, of Pigeon Cove, was one of the first to use them, and was supposed to have invented them. The advantages of this new invention immediately brought it into general use. Before "jigs" were devised, the "gangings" of the mackerel lines would frequently break when the fish was jerked or "slatted" off the hook; when the "jig" is used this rarely occurs. Before the time of the "jig" it was customary to bait the hooks, when mackerel were plenty, with pieces of pork "as big as a four-pence-ha'penny."

 According to Captains Daniel Cameron and John Grey, of Southport, Me., Edward Caiss, a fisherman of Hingham, Mass., invented the mackerel jig between the Jears 1810 and 1814 , and $\operatorname{by} 18: 29$ it had come into general use on the coast of Maine. It was introduced into Maine some time before 1829 , but by whom no one knows. [EARLL.]

[^43]: *Strips for bait cut from near the anal fin are usually preferred, since they canoot so easily bo torn from the hook as can the fatter and tenderer strips taken from the abdomen.
 S. Mis. $110-12$

[^44]: * Mr. Earll writes: "Daniel Cameron, of Sonthport, states that pogies were first used in Maine about 1844, and by 1846 had come into general use. People of this section claim to have introduced the pogy, Brevoortia tyrannus, as mackerel bait, but with whom the practice originated I was unable to learn."

[^45]: *Proceedings of the Halifax Commission, 1877, Appendix L, p. 334.

[^46]: * The Clupea astivalis.
 \dagger N. E. Atwood, Proceedings of the Halifax Commission, Appendix L, p. 42, September 19, 1877.

[^47]: *Statement of Daniel Cameron and Capt. John Gray, of Southpori, Me., obtained by R. E. Earll.

[^48]: *"Jıging mackerel."-"Jigging mackerel" is a method peculiar to mackerel-catchers that superseded the old way called "trailing," or taking them while the vessel was under headway. The manner of jigging is peculiarly interesting to new beholders. The vessel is kept comparatively motionless; a large guantity of poor mackerel chopped into mince-meat is thrown upon the water, which brings them to the surface. So much of this has been done that it has, in a great measure, destroyed their appetites, and sharp-pointed hooks of a sufficient length to reach the fish have been resorted to.
 A line of the color of the water, called the jig line, attached to a lead of a finger's length, say one-half inch in diameter, diminished at the end towards the hook which is solid in the lead called a "jig lead." Bait of such as is thrown overboard is put on the hook and thrown also among the "floating bait," or more properly the floating fish. Thus prepared, the fisherman has littlo else to do but to draw in the line and snap off the fish in a tub prepared for that purpose a little faster than can be casily imagined by the land fisherman. From 50 to 80 barrels have ofteu been taken on a good "fishing day" in this way by a crew of 6 or 8 hands; oftentimes several boys comprise a portion of the company.-(Barnstable Patriot, Nov. 15, 1836.)

[^49]: * On the mackerel "hookers" the cook stood to fish just aft of the forerigging. The large schooners sometimes had a boy forward of the forerigging, but this was not the rule by ans means. Each man or boy had a certain number of inches measured on the rail and assigned him as his berth. The length of a berth at the rail varied from $2 \frac{1}{2}$ to 3 feet.

[^50]: * Large catch of mackerel.-Schooner "Bloomer," of Hingham, with a crew of 10 men, caught on Thursday last, between $10 \mathrm{a} . \mathrm{m}$. and 2 p. m., 5,700 mackerel with the hook and line.-(Barnstable Patriot, May 28, 1861.)

[^51]: *Schooner "B. D. Haskins" lately arrived from Bay Saint Lawrence with mackerel; left five of her crew to continue the fishery in dories until her return on her second trip.-(Cape Ann Advertiser, Augast 17, 1860.) Instances of this kind were rare. Authors.

[^52]: * The most general custom, perhaps, on the Gloucester vessels was to have two men in a gang, though this was varied a good deal on different schooners. Some crews preferred dress gangs of three men each, while others sometimes had four men working together, one of them "passing up" the mackerel to the splitter.
 \dagger The early method of packing them flesh up has been abandoned.
 \ddagger This is the case when the mackerel are "rubbed," Liverpool salt being almost wholly used, since Cadiz salt, owing to its coarseness, has a tendency to tear or "ruck up" the flesh of the fish and give them a ragged appearance. Many of the Cape Cod fishermen, however, preferred to use Cadiz salt, believing it to be better for curing the fish than Liverpool. Their manner of applying it was quite different from that which has been described. Each man salted his own catch. Placing a wash-

[^53]: barrel of mackerel at his left hand, an empty barrel in front of him, and with a bucket or basket of salt at his right, the fisherman rapidly tranzferred the fresh fish into the proper barrel, placing each flesh up, and scattering over it with the right hand a sufficient quantity of salt. An expert can thus take care of many more fish than any one unacquainted with the method would believe possible, though, it is safe to say, mackerel cau be handled more expeditionsly by the process of rubbing, and for this reason the Cape Cod style of salting has never come into favor at Cape Ann and on the coast of Maine.
 *The largest of the mackerel schooners had sufficient capacity for stowing 20 or 25 butts, besides a number of barrels alongside of them in the wings on each side of the jold.

 When salting mackerel in these casks, the salters worked in the hold. A gib tub was filled with salt and sot on top of the butts near the hatchway, and one man threw down the mackerel from the deck into the salt box (or gib tub) while two others standing alongside of the butts did the salting-one "rubbing" the fish and the other packing them away in the proper place. When the cask was full a large stone was placed on top of the fish to keep them beneath the brine so that they would not get rusty. Each man usually had a hogshead of his own for the reception of his fish; that is, if each of the crow kept his catch separate. At that time, however, it was quite generally the custom to "go on shares." This term, as then understood, differed radically from what is now meant by the same expression, and may be described as fol-

[^54]: ows: The crew were shipped as much upon their merits of good seamanship and steady habits as for their skill as fishermen. Each man was provided with a "strike tub"-a half hogshead-and for the first few days' fishing the skipper would note the catch of each of the men, and from this comparison would decide what share every one should receive. Thus some half dozen, perhaps, in a crew of 12 or 14 men would be assigned a full share. Though there might be some difference in the relative catch of these men it was thought fair to consider a capable and reliable man a full sharesman, though he caught somewhat less fish than another who might not be so well experienced in other matters. The remainder of the men were allowed three-fourths or one-half of a share, as the case might be, their expertness in catching fish and other qualifications always being taken into account in settling their relative standing. Thus, if a vessel had a crew of twelve men, six of whom were full sharesmen, four three-quarter sharesmen, and two half sharesmen, there would be ten full shares, and a sharesman would receive one-tenth of the crew's half of the proceeds of the voyages while those having a smaller "lay" would be paid accordingly.

[^55]: * From a circular addressed to the masters and crews of mackerel vessels by Hon. James Barry, inspector-general of pickled fish for Massachusetts, dated May 2, 1832, we quote the following in relation to the use of the mackerel plow: "It is a mischievous error that fishermen have fallen into by salting their fish too slack, as has been often the case; and another by using the plow, which has given to the fish a false appearance, and has been a source of mortification to the fishermen, and they have in a great many instances found fault with the inspectors when the fault belonged to themselves in not taking care of the fish which it was their duty to do, and which in many cases has been a ruinous bnsiness to purchasers. By a law of the commonwealth the inspector is required to throw into an inferior quality all mackerel which have been plowed, cut, or mutilated for the purpose of deception. It can be of no advantage to the fishermen, and I trust will never again be done."
 Capt. N. E. Atwood says that some of the fishermen made mackerel plows with "the ends tipped with pewter and fine teeth on the edges so as to make the crease look rough, as though it was broken naturally; others had a kuife in the end which cat them [the mackerel] smoothly."

[^56]: * The influence exerted upon the settlements in the Strait of Canso in the period between 1850 and 1870, by the trade thus derived from the mackerel fleet, was very remarkable. In many of the coves, on either side of the strait, small villages sprang up, and large store-houses and wharres were built where the American vessels could securo storage for their fish until they could be shipped, and also at the same time obtain supplies of salt, bait, provisions, \&c., which they required for the prosecution of their voyages. This, of course, brought a great deal of money to the people of Canso, and many of the merchants who were not slow to take adrantage of the circumstances became quite wealthy. Those were lively times in the strait, and it was not an unusual thing to see ten or twenty sail of mackerel schooners lying at Port Hawkesbury or at MeNair's or some of the other coves discharging their cargoes and taking on board outfits for another trip. This afforded much employment to local residents and remunerative returns. Most of the people who owned wood lands devoted their time in winter to cutting and preparing for use a lot of fuel which they could readily dispose of the following summer to the American fishermen at good prices ; and whoover was fortumate enough to have a small stream or brook running through his land near the coves, usually derived quite a revenne from the American fishermen by charging five or ten ceuts per barrel for the water which they were obliged to fill there.

 Of lato years, however, since the general introduction of the purse-seine in the mackerel fisheries, and the consequent failure of our hishing fleets to resort to the Gulf of Saint Lawrenco during tho mackerel season, a great change has taken place in tho prosperity of tho settlements at Canso. So much so, indeed, that many of the wharves and store-honses have been allowed to fall into decay and become nearly worthless from disuse. Most of the coves which were formerly the secne of busy life and activity during the mackerel season, now have a comparatively deserted and forlorn appearance. Many of the merchants have moved away to Halifax aud other business centers of the provinces, while thoso who remain find their business much less remmerative than it was at the time when the Strait of Canso was freqnented by a large fleet of American mackerel schooners, which were endraged in fishiug in tho Gulf of Saint Lawrence.

[^57]: * Her gross stock-the amount her fish sold for-was doubtless about $\$ 16,000$.

 Her gross stock would be between $\$ 13,000$ and $\$ 14,000$.
 \ddagger New, England coast.
 § Fishermen's Memorial and Record Book, pp. 86 and 87.

[^58]: * Captain Atwood, Proc. Bos. Soc. Nat., x, 1865-'66.

[^59]: * For convenience of comparison the following description of drift-net fishing for mackerel on the coast of England is quoted from Yarrell's British Fishes:
 "The most common mode of fishing for mackerel, and the way in which the greatest numbers are taken, is by drift-nets. The drift-net is 20 feet deep by 120 feet long; well corked at the top, but without lead at the bottom. They are made of small fine twine, which is tanned of a reddish-brown color to preserve it from the action of the walt water, and it is thereby rendered much more durable.
 "The size of the mesh is about 2 ? inches, or rather larger. Twelve, fifteen, and

[^60]: * Friendship has 12 vessels, Cushing 5, Waldoboro' 2, and Booth Bay and Bremeu 1 each; the total from Maine, including those from Portland, being 39 ; the tonnage is 559.47 ; number of men, 133.
 †Schooner "Yankee Lass," of Boston, arrived home last week from a season's mackereling trip around the Seven Islands of Saint Lawrenco River, with 300 barrels, all large No. 1 mackerel, taken in [gill] nets.-(Cape Ann Advertiver, September 30 , 1881.)
 \ddagger Fisheries of New Brunswick, 1852, pp. 13-16.

[^61]: *Though drailing was abandoned so long ago by the professional mackerel fishermen of New England, we are, nevertheless, told by Capt. Joseph Smith, of Gloucester, that this method of fishing is still practiced by the Block Island boat fishermen.
 tSchooners "Edward E. Webster," "Nellie N. Rowe," and "Ivanhoe" sailed for the south on Saturday (March 11) in pursuit of mackerel, the "Webster" getting the start by sailing at 4 o'clock a. m., and the others following at 4 o'clock p. m. This is the earliest start ever made in the mackerel fishery. Last year the "Edward E. Webster" sailed March 15, which was unusually early, and obtained a fare within a week there-after.-(Cape Anu Advertiser, March 17, 1882.)

[^62]: * Dispatches received lere yesterday announce the arrival of schooner " J. J. Clark" at New York on Monday, with 150 barrels fresh mackerel, which sold at from 6 to 18 cents apiece according to size, and later of the arrival at the same port of the schooners "Seth Stockbridge," "A. M. Terry," "Smuggler," and "T. M. Cromwell," each with 200 barrels; "Moses Adauns," 300; "Mand and Effie," 250; "Golden Hind," 75; "Fleetwing," 65 ; "H. A. Duncan," 20 ; and "James A. Stetson," 50 barrels, which were sold. at from 8 to 12 cents apiece.-(Cape Ann Bulletin, April 17, 1878.)

[^63]: * The mackerel gaff was used to some extent, by the hook and line fishermen as late as 1865 , and possibly even since that time.

[^64]: *The method of capture called "gigging" here is undoubtedly gaffing, since a fishgaff is even yet called a "gig" by some of our fishermen.

[^65]: *A culling-crib may be of any size, but is usually a wooden box 5 feet long, 3 feet wide, and 8 inches deep, with slat bottom, and is set on legs $2 \frac{1}{2}$ or 3 feet high.

[^66]: * Vessels packed out away from home.
 \dagger Numerons vessels packed out in addition to home flect.
 \ddagger Vessels mostly packed out away from home.

[^67]: *The figures for the years 1834 to 1838 and 1851 are from Sabine's Report on the American Fisheries; for the years 1864 to 1877 from the State inspection returns; for the years 1878 to 1881 from the anuual reports of the Boston Fish Bureau.

[^68]: *The statistics in this statement are obtained from the following sources: For the years 1821 to 1841 from Sabine's "Report on the American Fisheries"; for the fiscal years ending June 30, 1850 to 1855 , 1867, 1868, and 1872 to 1881, from the annual reports of the United States Burean of Statistics; for the gears 1856 to $1866,1869,1870$, and 1871, from sheets published in 1879 by W. R. Clark, and heliered to be compiled from United States custom-house records. Mr. Clark's statistics are the most reliable we hare obtained for the years for which we quote them, as the returns of the United Statea Bureau of Statistics do not give the desired details for those years.

[^69]: *The name "jigger" was first applied to the ressels engaged in jigging meakerel. As these vessels were all, or nearly all, pinkeys previous to 1830 , the name in later years came to have a more special reference to the style of crafthan to the particular branch of fishery in which she was engaged. Thus the term "jigger" came to bo eynonymous with "pinker," and was often nsed in that sense br the fishermen.

[^70]: * Inspected.

[^71]: *House Ex. Doc. No. 84, 2d sess. 46th Congress.

[^72]: * The conclusion of this sentence, from the words "one hundred pounds," is given as amended by act of April 1, 1579. The Revised Statutes of 1859 conclude the sentence as follows: "in quarter barrels containing each fifty pounds, in eighths of a barrel or kids containing each twents-five pounds, or in kids or packages containing each less than twenty-five pounds, on which the number of pounds therein shall be branded."

[^73]: "The words "of rift timber" struck out by amendment passed Jamary 30, 1867.

[^74]: * The conclusion of the section from the words "half barrel" is given as amended by act of April 1, 1879. The Revised Statutes of 1859 conclude the section after the words "half barrel," as follows: "half a cent, and for each smaller cask one-quarter of a cent."

[^75]: * Section 6 refers to the packing of tar.

[^76]: * This section and several of the following ones are only partially repealed by the act of March 27, 1860, from which the preceding sections are quoted.

[^77]: * Fra Opsynschefen ved Lofotfiskeriet. Lofotfiskeriet, 1880. Kristiania. Tryht hos Chr. Schibsted. Translated by Tarleton H. Bean.

 Note.-It will be observed that the totals in some of the statistical tables cannot be obtained by adding their component parts. Whether this is due to omissions of minor details or to typographical errors cannot now be determined, and the original is reproduced without change.-Tr.

[^78]: ${ }^{*}$ Includes for shooting eider duck, 6.

[^79]: * Not a calendar week, but a space of 7 days.

[^80]: ${ }^{*}$ Wherever dried cod aro reduced from weight to number, 27 fish are calculated to a vogr (36 Danish pounds).

[^81]: * The fact that I have not undertaken any corrections in the tables is owing to their having been worked out last autumn, and I have not had time to change them, since it was necessary for me to tinish my report as early as possible, in order to be able to attend the fishery exhibition at Berkn before its close.

[^82]: * Norges officielle Statistik. Ny IRakke. Udgiven i Aaret 1882. C. No. 9. Tabeller vedkommende Norges Fiskerier i Aaret 1880 samt Beretninger angaaende deres Drift m. v. Udgivne af det statstiske Central Dureau. Kristiania. I Kommission hos H. Aschehoug s' Co. Translated by Tarleton H. Bean.

[^83]: * This paper is condensed from the report of a committee of the Wyoming Historical and Genealogical Society, Harrison Wright, chairman (Wilkes-Barre, Luzerne Co., Pa.), which was published in the Fish Commission Bulletin for 1881, p. 352.-C. W. S.

[^84]: * Caleb Wright's son received as his share of one night's fishing at this fishery 1,900 shad.

[^85]: * No. CCCVIII, October, 1882. pp. 231 to 242.

[^86]: ${ }^{1}$ There are no northwestern counties.
 2 There are no northwestern nor western connties.
 ${ }^{3}$ There are no northeastern nor eastern counties.

[^87]: ${ }^{10}$ There are no sonthwestern connties.
 ${ }^{11}$ There are no southeastern counties.
 ${ }_{12}$ There are no western nor southwestern counties.

[^88]: ${ }^{13}$ There are no western nor southwestern counties.
 14 There aro no southeastern counties.
 ${ }^{15}$ There are no western counties.
 ${ }^{16}$ There are no eastern nor southeastern counties.

[^89]: ${ }_{17}$ There are no northern nor southern counties.
 ${ }^{18}$ There are no northwestern, western, southwestern, northeastern, eastern, nor southeastern counties.

 19 There are no western counties.
 ${ }^{20}$ There are no central counties.

[^90]: * Examination of many specimens at Eastport, Me., has fully established the identity of P. tecta with P. minuta.

[^91]: * Stem of compound setæ terminating in four teeth or lobes.

[^92]: Ammotrypane limacina H. Ratmee. Nov. Act. Nat. Cur., vol. xxi, p. 190, pl. x, figs. 4-8. 1840.

 Grube. Fam. der Ann., p. 70. 1851.
 Koren. Nyt. Mag., vol. ix, p. 94 (teste Malmgren). Johnston. Cat. Brit. Mus., p. 217. 1865. Quatrefages. Hist. Nat. des Aun., vol. ii, p. 279. 1865.
 Ophelia bicornis Örsted. Gröulands Annulata Dorsibranchiata, p. 32, figs. 104, 105, 115, $116,121.1843$.

[^93]: Stimpson．Marine Invert．of Grand Menan，p．29，fig．19． 1854.
 Verrill．Invert．An．of Vin．Sound，p．606，pl．xiv，fig． 74.

[^94]: * Action biologique des sels de l'eau de mer au point de rue de l'entretien des animaux marins." From Bulletin mensuel de la Société nationale d'Acclimatation de Irance, 3 d series, vol. X, No. 2, February, 1883. Read at the 19 th meeting of the learned socioties, in 1882, in general session. Tramslated from the French by Herman Jacobson.

[^95]: * Oysters, subjected to the same experiments, have shown great variableness of impressions, and have generally succumbed very rapidly in the different solutions.

[^96]: *See De l'énergie et de la structure musculaire chez les mollusques acéphales. [On the energy and muscular structure of the acephala.] By J. B. Baillière, Paris.

[^97]: * Second edition, revised.

[^98]: *Census Bulletin No. 261, September 1, 1881.

[^99]: * Report of the United States Fish Commission for 1872-73, pp. 44-16.

[^100]: * On some Entomostraca of Lake Michigan and adjacent waters. American Naturalist, Vol. XVI., No. VIII, Angnst, 1882, 1pp. 6.40 and 649.

[^101]: * For definite assurance of this fact, I am indebted less to my own observations (which are, however, consistent with it as far as they go) than to the statements of B. W. Thomas, esq., of Chicago, who, while making a specialty of the Diatomacea of the lake, has collected and studied all its organic forms for sweral years, obtaining them from the city water by atfarhing a strainer to a lyydrant mang times during every month throughont the year.

[^102]: * This disappearance is more apparent than real, and while the nucleus may disappear temporarily it soon reappears, showing that nuclear matter still exists in the cell in a concealed or disguised form.
 \dagger A. Brass has recently demonstrated the presence of a denser central body in some of the so-called Monera by the use of reagents; this central body ho regards as answering to the nucleus, while his studies also show these organisms to be far from homogeneous. Huxley, in 1877, had doubts as to the constancy of this distinctive character of the Monera; see p. 7: of his Anatomy of the Invertebrates. The Hertwigs have since shown the Faraminifera to be nucleated, and Leidy has shown that a nucleus is not always absent in some types, as in Biomyxa, for example.

[^103]: * "Repeuplement des cours d'eau en Belgique," par M. C. Baron de Selys Longchamps. [From Bulletin mensuel de la Société d' Acclimatation de France, 3d série, tome x, No. 3, Mars, 1883, Paris.] Translated from the French by Herman Jacobson.
 ${ }^{1}$ Under the title "Suppression totale du rouissage putride par l'application dex systeme de M. Lefèbre" (Total suppression of putrid retting by the application of Mr. Lefebre's system) an important pamphlet has appeared, which was read at the meeting of the Central Society of Agriculture of Belgium, June 13, 1881. (Brussels. E. Guyot, 1881.) The practical results of this method are given in detail.

[^104]: ${ }^{2}$ At the end of April and in the beginning of May I remember to have seen taken near Liège, at one haul of the net, as many as two hundred and fifty and even three hundred large shad.

[^105]: ${ }^{3}$ The memoir of M. Lehardy de Beaulieu, preceded by the report of M. Lacordaire, was published in 1866, in vol. iii (new series) of the Ménoires de la Société libre d'Emulation de Liége.
 ${ }^{4}$ Bulletins de l'Académie royale de Belgique, 2d series, vol. xxii, 1866.

[^106]: ${ }^{5}$ This last-mentioned system has recently been recommended in a petition of the inhabitants of the banks of the Geer, a tributary of the Meuse on its left bank, in which petitiou they ask the Belgian Government to order the suppression of all watermills, as a measure of public usefulness.

[^107]: Consigned to David Day, Saint Panl, and by him to Seth Green.

[^108]: ${ }^{1}$ Boston Aqnarium, for exbibition.
 ${ }^{2}$ By F. N. Clark, account of U. S. Fish Commission.
 ${ }^{3}$ Consigned to M. S. Rodgers, Knoxville, Tenn.
 ${ }^{4}$ Consigned to W. D. Andrews, Rockford, Ill.

[^109]: 1 Hatched in Iowa for State of Missonri.
 ${ }^{2}$ Consigned to J. Ed. Mumes, Versailles, Morgan County, Miseouri ; all lost in transit.
 S. Mis. $110-53$

[^110]: ${ }^{1}$ Consigned to W. H. Cushman, Georgetown, Colo. ${ }^{3}$ Matehed in Iowa for State of Missonri
 ${ }^{2}$ Consigned to Dr. W. A. Pratt, Elgin, Ill.
 ${ }^{4}$ Industrial Exhibition, Louisville, Ky.

[^111]: * No report received.

[^112]:
 \qquad

 㤩

[^113]: － 2 ²7

 Utah．．．．．

[^114]:

[^115]:

[^116]: Saint Croix Miver
 Nississippi River

[^117]:

[^118]: * Rainfall at Shasta, Jauuary, 1881 ... 47 inches.

 Rainfall at Shasta, February, 1881 ... 17.5 inches.
 Total rainfall for season... 109. 7 inches.
 I hereby certify the above to be correct.

[^119]: * An account of the effects of the high water at the United States trout ponds, 4 miles farther up the McCloud River, will be found in the report of operations at that point.

[^120]: * These eggs were directed as follows: 'T. B. Ferguson, Baltimore, Md., 25,000; B. F. Shaw, Anamosa, Iowa, 25,000; N. K. Fairbanks, Geneva Lake, Wis., 25,000.

[^121]: ＊In these colnmns each fish is recorded when it first comes to hand，and the footings show the total catch．
 \dagger In most cases the defective eggs were few in number，sometimes but 1，2，or 3．Doubtless there were some with defective eggs that the workmen neglected to report，and probably the blank on the 10th is in consequence of some such omission．
 \ddagger These figures are obtained by adding the number rejected at the daily pickings to the number measured out at the time of dividing the eggs in winter．

[^122]: * Captain Tanner states that these eggs were transferred to North Carolina Fish Commission at various times.

[^123]: *For a more detailed statement of this work see report of M. McDonald.
 \dagger For details of deposits of fish see tables of distribution.
 $\ddagger 220,000$ of these eggs were used in experiments; the rest are unaccounted for ; probably a loss
 §of this amount $2,630,000$ eggs were sent to navy-yard station.

[^124]: * For final destination of these fish, see tables of distribution.
 \dagger Of these eggs, 2,630,000 were received from Potomac barges.
 \ddagger Eggs unaccounted for; probably lost.
 $\$$ Of this number, 600,000 were reported tarned over to M. McDonald on his assuming charge of the Navy-Yard Station.

[^125]: * For final destination of these fish, see tables of distribution.
 \dagger May 15 includes a number of previous days' operations which cannot be given specifically.

[^126]: * For a more detailed statement of this work, see report of M. McDonald.
 \dagger Received from Frank L. Donnelly's navy-yard station.

[^127]: Note.-Since the preparation of these tables a report has been received from Mr. S. G. Worth, from which it appears that instead of the number given as "actually planted" A pril 12-30, three tems shond shad fry into Salmon Creek; on May 4th, 200,000 at Moncure, into Haw River, a tiibutary to the Cape Fear River ; and on May 5th, 360,000 into Salinon Cree, of $1,260,000$. The other 540,000 egys were lost in hatching. Worth, in behalf of the State of North Carolina, took 4,632,000 eggs, from which he hatched out and released $3,485,000$ more shad. (See Report of Board of Agriculture, session of 1883, pp. 64, 65.)

