DEPARTMENT OF THE INTERIOR.

REPOR'T

of the

UNITEEI) STATES GBOLOMICAL SURVEY

UF

THE TERRITORIES.

F. V. I A YDFN,
UNITEDSTATES GEOLOGIST-IN゙-CMARGE

VOLUME VIII.

WASHINGTON:
GOVELINMENT PRINTING OPFICE.
1883.

NOTE.

Department of the Interiok, United States Geological Survey,

 November 1, 1883.On the 27th of September, 1882, at the request of Dr. F. V. Hayden, the completion of the publicalions of the United States Geological and Geographical Survey of the Territories, formerly under lis charge, was committed to the charge of the Director of the Geological Survey by the following order from the honorable the Secretary of the Interior:

Department of the Interior, Washington, September શ̃, 1882.

Maj. J. W. Powell,

Director U. S. Geological S'ereey, City:
Sir: The letter of Prof. F. V. Hayden, dated June 27, bearing your indorsement of July 20 , relating to the umpublished reports of the survey formerly under his charge, is herewith returued.

You will please take charge of the publications referred to in the same, in accordance with the suggestions made by Professor Hayden.

It is the desire of this office that these volumes shall be completed and published as early as practicable.

Very respectfully,
H. M. TELLER,

Secretary.
Of the publicalions thus placed in charge of the Director of the Survey, the accompanying volume is the second to be issued. The first was entitled "The Vertebrata of the Tertiary Formations of the West, by Edward D. Cope." On the 12 th day of October, 1882, the manuscript of the present volume was received at the office of the Geological Survey, and through the hearty co-operation of Professor Lesquereux, the work has been pushed to rapid completion. The volume is an important contribution to the ancient botany of North America, and will be heartily welcomed by paleontologists.

Director.
\because

LETTER TO THE SECRETARY.

Whamngron, November 1, 1850.

Sir: I have the honor to transmit, for your approval, the eighth volame of the final reports of the United States Geological and Ceographical Survey of the Territories, prepared by the eminenl pateontotogist, Prot. Leo Lesquereux.

A brief synopsis of the contents of the volume may be given as follows:

In the firsl part-lhe Crelaceous Flora-are described a large number of new species, some representing rare and very remarkable types, all of which are figured on the first seventeen plates. Besides the description of the species, there are some gencral remarks on the geology of the Dakota group, and on the character of the plants in regard to climate and their affinilies with phants of succeeding geological periods. A table of distribution is added, ennmerating all the species known up to the present time, pointing out the relations of the plants of Europe and various puts. of North America with those of the Dakota group in Nebraska. Kansas. and Colorado. The number of species enumerated in this table is 443 . of which 200 are from the Dakota group.

The second part contains a revision of the plants of the Laramie group. The introduction considers the relations of these plants to those of Europe, for the purpose of fixing the age of the formation. Then follows a description of a few new species from very fine specimens on three plates, and a table of distribution inchding only the species of the Laramie group, which in the seventh volume of the series were mixed with those of the other stages of the Tertiary and were not grouped clearly enough for the proper appreciation of the gencral characters of the flora.
U_{p} to the present time the anthor has been unable to find a single species that he could identify with any from the Dakola group. He has now in his possession very large collections of plants firom this group. which have not been reported upon, collected in Colorado and Wyoming: yet after a careful examination he fails to find any form even related to those of the Dakota group.

The third part reviews the flora of the White and Green liver regions, which he separates into Lwo groups. The plants of Green River and Alkali

Stations and Raudolph County, Utah, are most of them different from those of Florissant. Mouth of White River, and Elko. These plants are represented by twenty-one plates, and their relation is indicated with the flora of the Gypses of Aix in France, which is generally regarded as lowest Miocene or Oligocene. The table of distribution of these plants includes, in America, those of Florissant, Elko, Green River Station, Alkali Station, Sage Creek, and Barrell Springs as compared with the Miocene of Greenland, Alaska, the Oligocene of France and Germany, and the Miocene of Europe.

The fourth part relates to Miocene plants described from specimens oblained from the Bad Lands, California, and Oregon, and from Alaska, and they occupy tifteen plates. There is also a table of distribution that indicates the relations of these species of Alaska, Carbon. Washakie, the Bad Lands, Oregon. California, and Fort Union with the Arctic Miocene, Greenland, Spitzbergen, and those of Europe. This eighth volume forms a kind of supplement lo the two preceding volnmes, inasmuch as in it are figmred and enmmerated all the plants which have been found since their publication, in the formations of the Mesozoic and Cenozoic periods of North America, and therefore forms a broad basis in regetable paleontology for the direction of future researches and the chassification and determination of the fossil flora of the Continent. The three volumes of this series, on vegetable paleontology, form a grand monument to the industry and fame of the author.

I take pleasure in acknowledging my obligations to the Director of the U. S. Geological Survey, who has with great kindness superintended the printing of this Report.

The plates were engraved by the well-known tirm of Thomas Sinclair $\&$ Son, of Philadelphia, and are fine examples of their work.

I have the honor to remain, with great respect, your obedient servant,

> F. V. HAYDEN,
> United States Geologist.

To the Honorable the Secretary of the Interior.

CONTRIBUTIONS

11）

THE F（）心内LL FL（）RA

－1F THE

WESTERN TERRITORIES．

Paikt III．

THE（RETAOEOUS AND TERTLARY FLORAS． By I EO LESQUEREUX．

W」心II」NGTON：
GOVERNMENT PLINTING OFFICF． 188：

（ONなNさHが。

ringe．
Nohe of Maj．J．W．Poweld，Dhector of the Genlugical survey－ iii
Lether of Dr．l＇．V．lhathen tu the Secretary op the laterior r
Lemter of thansmitalo． xi
lwisonetction 1
1．－Tile F＇loha of rine Dakota Giboup ：
General remarka． 2
Description and emmeration of species of the American Diskota Group formation． 25
Table of distribution of the plants of the Cretaceous Cenomanian formation． 93
The relatimathip of the Hora of the Dakota Croup 105
H．－－Tife Flora of the Laramie limoui 109
Table of distribution of the species of the Lamanie Gronp． 115
Description of species added to the flora of the Laramie Group． 181
11I．－The Flora of the Green River Group． $1: 7$
Geological distribution of the nurisures． 127
Enumeration and description of the species of fossil plants known from the Green River Grump． 1：35
General remanks． 205
Table of ajstribution of the plauts of the Green River and White River Groups $\because 06$
Relationdip of the becal groups indicated hy correlation of species． 213
1V．－Tief Mincene F＇lora $\because 19$
Description of the Diocene species from specimens obtained in the so－called Baul Lauds of Dakota． いこ1
Description of Miocene species of California and Oregon． 293
Contribution to the Niocene thora of Alaska． 2.7
Species of plants from the Chalk Bluffs of California 205
Table of distribution of the North American Diocene fossil plants． 266
Remarks on the species of Niocene plants． 273
INDEX 479
Deschiptions of plites． $\because 83$
LIST OF ILIUUSRATIONS．

Plates 1－XVIII．－Fossil Plants from the Dakota Gromp－C＇retaceous．
Plates XIX－XX．－－Fossil Plante from the Laramie（iroup．
Plates XXl－Xl，V（A）．－Fossil llants from the Greell livel Group．
Plate XLV（B）．－Fossil Plants from the Chalk Blafts of Nevada Comaty，California．
Plates XLVI－XLIX．－Fossil Ilants from the Bad Lands of Dakuta．
Plates L－LIX．－Fossil Plants from the Niocene of California and Gitgon．

LETTER OF TRANSIIITTAL.

Columbus, Ohio, September 30, 188%.
Dr. F. V. Hayden, Philadelphia.
Dear Sir: I send herewith the mannscript of the eighth volume of the Reports of the United States Geological Survey of the Territories, made under your direction. Besides a short introduction, this volume contains:

1st. A review of the Cretaceons Flora of the Dakota Group, or of what has been pubtished in volume VI, with descriptions of a large number of new and remarkably interesting species illustrated by 17 ptates.

2d. Some remarks on the Flora of the Laramie Group, which I consider as Eocene, with descriptions of a few new species, illustrated by 3 phates.

3d. The more valuable part of the volume, viz: the descriptions of the plants of the Oligocene, a flora of which little was known before, and which is now richly represented by a large number of specimens, especiatly from Florissant, Colorado. This Flora will be quite as well received by pateontologists as has been the Cretaceous Flora of volume VI. It is illushated hy $24 \frac{1}{2}$ phates, which are all very finely made.

4th. Malf of one plate serves for illustrations of a few plants from the oldest Pliocene, or upper Miocene of California.

5 h. Descriptions with tigures of Miocene plants of the Bad Lands, with 5 plates. The plants, clearly of Miocene lype, are very interesting from their relation to species of the Arctic Flora.

6th. Descriptions of species of Miocene plants of California and Oregon from specimens pertaining to the State Museum of Oakland, California. They are illustratent by 10 phates, the whole number of the phates being 60 .

7th. A short account and description of new species found in a collection of fossil ptants made in Alaska by W. H. Dall, of the United States

Coast Survey, for the smithsonian lnslitution. The specimens were sent lo me for determintion, and I was allowed lo give in volume VIII a short description of the new species added to the Alaskan Flora already parlly known by the works of Heer. These new species have been figured in the Proceedings of the Nalional Museum, vol. v, pl. vi-x.

It is nol unnecessary to remark that all the planls described in volume V1II are considered in separate groups according to their relation to the age of the formation which they determine. Comparisons are established with the European Floras by lables of distribution, etc.

I truly believe that this volume will prove to be a very valuable contribulion, not merely to the paleontology but also to the geology of this country.

Very truly and respectfully yours,
LEO LESQUEREUX.

CRETACEOUS AND TERTIARY FLORA.

By Leo Lesquereux.

INTRODUCTION.

The present volume contains:
1st. The materials referable to the Cretaceous Flora.
The speeies recognized from specimens received since the publication of the Annual Report of Dr. F. V. Hayden, 1874, are of course described here, but it has been found advisable to add to them and to consider again part of what has been published in that report as a Review of the Cretaceous Flora of North America; mentioning also the species described by Professor Heer and Dr. Newberry from specimens obtained from the Dakota Group.

It is well known that the plants of the Cretaceous epoch, at least those of a higher class, the Dycotyledons, have been barely discovered and deseribed in Europe, while the profusion of these vegetables in the Dakota Group constitutes an original illustration of a peculiar vegetation which. for reasons explained hereafter, will be of great significance in the future. From this consideration the exposition, in the same work, of all that is known to this time of the North American Cretaceous Flora is greatly to the advantage of vegetable paleontology both in this country and in Europe.

2d. A description of a few species of plants of the Laramie Group, which I persist in considering as Eocene.

These species, added in this volume to the list of the plants already described from the same formation, were all obtained at Golden, Colorado, from the locality where most of those published formerly were found by myself. One, Oreodorites plicatus, a fine Palm, represented by a number of well-preserved though more or less fragmentary leaves, is of a peculiar type,
and finds its affinity only in Ludoviopsis geonomcefolia, Sap., of the Eocene of Sézanne. A second, Sterculia modesta, Sap., also of Sézanne, is represented by a beautifully preserved specimen whose identity has been recognized by the author. A third, Aralia pungens, is remarkable for its very close relation, perhaps identity, to four species described by Massalongo as Sylphidium from the Eocene of Italy. And still a fourth, Zizyphus Beckwithii, is evidently allied to Z. Marcourtii of Sézanne. These, on seven species only, added to the flora of the Laramie Group, tend to confirm the conclusions which I have admitted on the age of the flora of the great Lignitic, or Laramie, Group.

3d. A large number of species described from what I called in Volume VII the Green Rirer Group No. 4, which I considered as probably Miocene.

When that volume was published this flora was known only by a very few species. Since that time a large number of specimens have been procured from the same formation, especially at Florissant, Colorado. The species which they represent are very interesting as indicative of a geological period older than the Miocene, or preceding in age the Carbon and Alaska floras.

4th. A new contribution to the Miocene Flora from specimens procured from various localities of the Bad Lands of California and Oregon, with mention of new species recently obtained from Alaska, and a note upon a few specimens from the Chalk Bluff of California, a Pliocene formation.

I.-THE FLORA OF THE DAKOTA GROUP.

GENERAL REMARKS.

All that refers to the geology of the Cretaceous Dakota Group-its immediate superposition upon rocks of Permian age; its relation to the strata overlying it in an uninterrupted series of marine deposits up to the base of the Tertiary measures; its thickness, the superficial expanse of its area-has been recorded in the general remarks of Volume VI of these reports. Since that time very little has been added to what was known and published on the subject.

One faet only should be mentioned now. It is the discovery of numerous specimens of Cretaceous plants at the base of the Rocky Mountains in

Colorado. The plants, by the identity of a number of them and the close affinity of character of some others with species of the Dakota Group, have positively confimed the supposition that this formation, passing westward in Kansas under the Tertiary measures, is prolonged under them and continues to the Rocky Mountains.

Aheady, in 1873 , Dr. A. C. Peale had procured from Colorado fragments of poorly preserved leaves which had been recognized as identical with Protevides acuta. Heer, a species commonly found in the Dakota Group of Killsiss and Nebriskia. From this, Nos. 14-16 of the section of South Platte River ${ }^{1}$ hat been then considered by Dr. Hayden as referable to a Cretaceous formation. More recently, Passed Assistant Engineer H. C. Beckwith, United States Nary, and Rev. Arthur Lakes, have got, near Morrison, a few miles west of Denver, numerous specimens of some of the more predominant species of the Dakota Group-S'assafires (Araliopsis) cretarpum. Inagntia Cupellini. Aralia, Sullix protectolia, etc., with some others, which though new are related species which tend to identify the Cretaceous formation at the base of the Rocky Mountains with that of Kansas. Admitting, therefore, the prolongation of the Dakota Group under the Tertiary measures to the base of the mountains, the width of the area covered by this formation should be estimated from east to west at 450 to 500 miles.

Perhaps, also, I should omit here any remarks on the flora of the North American Cretaceous as represented by the plants of the Dakota Group, having already, in Volume VI of the United States Geological Survey of the Teritories, by Dr. F. V. Hayden. considered the general character of this flora and its relation to plants living at our time. or to analogous or identical species observed in the formations succeeding that of the Cretaceous. But the materials which I had then for consideration Were few and local; they have since been greatly increased, and also new points for comparison have been furnished to phytopaleontologists by the works of Heer on the recently discovered Cretaceous plants of Greenland. From this, some of the conclusions formerly atmitted have been more or less modified, while others have received a higher degree of precision

[^0]if not of actuality. It is thus advisable to look again over what is known to the present time of the characters of the North American Cretaceous flora and to record the deductions legitimately derived from that knowledge. This kind of work is a necessity for the present, as it will be also for the future, not only because what is known now is, probably at least, a mere fraction of the elements constituting the North American Cretaceous flora, but because the determinations of the plants are still and must be for a long time to come unreliable to a certain degree.

The plants of the Dakota Group, as known mostly by detached leaves, are striking from the beauty, the elegance, the variety of their forms, and from their size. In all this they are fully comparable to those of any geological epoch as well as to those of our time. From entirely developed leaves, less than one inch in size, they show all the gradations of size to one foot, even to a foot and a half in diameter. The multiplicity of forms recognized for a single species is quite as marked as it might be upon any tree of our forests; and to show the admirable elegance of their forms it suffices to say that, at first sight, they forcibly recall those of the most admired species of our time-the Tulip-tree, the Magnolia, the Sassafras, the Sweet-gum, the Plane-tree, the Beech, the Aralia, etc. The leaves of Protophyllum Sternbergii have the size and the aspect of those of the Catalpa, one of our finest ornamental trees. Those of Menispermites obtusilobus, of Protospermum quadratum, represent in the same manner some of the rarest shrubs, Menispermum, Ferdinandia, etc., carefully raised in conservatories for the graceful forms of their leaves or the richness of their vegetation. It is, indeed, the first impression received from the beauty of forms of the leaves of the North American Cretaceous, and the evident likeness of their facies to that of the finest vegetable types of our time, as we see them around us, which strikes the paleontologist, and may lead him into error in forcing upon the mind the belief of a typical identity where possibly there may be a mere likeness of outlines, a casual similarity of forms in the leaves. For, really, when we enter into a more detailed analysis of these Cretaceous leaves, we are by and by forcibly impressed by the strangeness of the characters of some of them, which seem at variance with any of those recognized anywhere in the floras of our time, and unobserved also in those of the geological intermediate periods. Not less surprised are we to see united in
a single leaf, or species, characters which are now generally found separated in far distant families of plants. The leaves of Eremophyllum, so striking by the peculiar appendages of their borders; those of Anomophyllum, referable to Platamus by one-lialf, to Quercus by the other; those of Platanus obtusiloba, half Acer, ete., are of this kind.

On another side, the characters of some of the Cretaceous species are sometimes of such a transient or indefinite order that it is scarcely possible to take hold of them and to describe them with any degree of reliance. At first sight they appear very distinct, but, in comparing a number of specimens, the differences dwindle by unmistakable transitions and disappear. In other leaves, on the contrary, visibly identical by their outlines, the nervation is so different that they are foreibly separated and referred to far distant generic divisions. Hence this flora does not leave any satisfaction, any rest, to the mind. Even the most clearly defined types become doubtful in regard to their integrity when we see others, which, at first, were recognized as positively fixed, manifesting instability and pointing to diversity of relation by the discovery of new specimens. The leaves considered first as Sassafias, for example, seemed evidently referable to this genus; but when leaves of the same type were found with dentate borders, though bearing, besides, all the characters of a genus which belongs to the Lawinece, a family where, as yet, no representative has been found with dentate borders of leaves; when others were obtained with subdivisions of the lower lobes in two or three, thus showing the palmate shape of Aralia leaves, the confidence in the value of the characters at first recognized had to be abandoned.

The first exposition of the Dakota Group flora shows four species of Ferns, six species of Conifers, and one of Cycadece only. To this small number we have added in this volume one species of Gleichenia, six species of Conifers, and five of Cycatece. The specific values of some of the vegetable remains referable to the Conifers is, however, doubtful, especially for those which are represented by cones only. Abietites Ernestince, Sequoia formosa, Sequoia Reichenbachi, and the fragments described as Inolepis are of this kind; all, however, though their specific or generic relation may be uncertain, are evidently representatives of some species of

Conifer. The fraginents referable to this group are difficult of determination. for the organs represented upon the coarse shale or hard ferruginous sandstone of the formation merely expose some traces of their more prominent outlines, originally printed upon the soft embedding matter. We do not find, therefore, any flattened cones with the scates, nor any flattened branches with leaves, but impressions only, more or less deeply carved into the stone, the cones even passing vertically or obliquely through the shates and showing the space originally occupied, as a mere cylindrical hollow, around which the forms of the scales are more or less clearly moded. The numerons leaves of Pimes spread upon the surface have dug in the same way, and by their hard substance, narrow linear channels, representing the back of these leaves, with an indistinct midrib; and branchlets of Sequoia also are seen as longitudinal grooves, bearing on both sides the same impressed form of their leaves. This cannot be considered a very distinct representation of characters, the minute details desirable for an exact determination being more or less obsolete.

Among the specimens recently examined, a second fragment has been found referable to Phyllocladus. ${ }^{1}$ The presence of this genus in the Cretactous flora is thus sufficiently ascertained. We may, therefore, record as recognized in the flora of the Dakota Group, for the Ferns, the genera Lyyodiam, Sphenopteris. Iymenophyllam, and Gleichenia, the first three by each one species, the last by two; in the Cycadece, Podozamites by six species, and in the Conifers, Sequoia by three species, Pimus by one, Philloctudus by one, Torreya and Thuites each by one, leaving out as of uncertain generic relation with the cones mentioned above, Glyptostrobus (?) gracillimus. which is perhaps identifiable with Sequoia condita, or with Frenclites, and Geinitia (?), known merely by the impressions of some detached scales. To this should be added Araucaria from a species described in "Extinct Floras of North America" by Dr. Newberry, from Nebraska specimens.

The first dicotyledonous leaves described in the "Cret. Fl.," under the name of Liquidumbar integrifolium, have been considered by some

[^1]authors as uncertain in regard to their generic relation merely on account of their entire borders. The form of the leaves, however, especially as figured (pl. xiv, fig. 3), with the lobes slightly enlarged above the sinuses. then gradually narrowed to a slightly obtuse point, and the nervation also. hare the same character as those of the living Liquillambar Styraciffur. It is trme that the four species of this genus known in the present flora have serrate borders of leaves. But three fossil species represented by leares with entire borders have been described as Liquidmbar from the Tertiary of Europe: and, though this reference is more or less hypothetical and controverted, it shows, nevertheless, that botanists of high standingUnger. Watelet, Massalongo-have considered it, at least, as probable. It is easily seen that the leaves of Aralia Towneri (pl.vi, fig. 14) have a relation in shape or general oulline to those of Liquidambar integrifolium, and this apparent similarity can but suggest the possible relation of all these and like forms to the genus Aralia. I may admit this relation as probable for the two leaves figured in "Cret. Fl.," pl. xxix, figs. 8 and 9 , which are comparable, by their primary nervation, to those of Aralia concreta (pl. ix, figs. 3,5). But though we have now a large number of specimens referable to diverse Araliaceons types, there is none as yet with leaves divided into lanceolate acute lobes like those which are figured in pl. ii, "Cret. Fl.." and with five primary nerves from the base. The reference of these leaves to Stcreutia has been proposed also, from analogy of forms. But according to the definition of this genus as I admit it for the fossil leaves of the Dakota Group, I refer to it merely tripartite leaves with narrow linear lobes. comparable to those of Sterculia labrusca, like those of the few species described in this volume.

A number of vegetable remains of the Cretaceous are evidently referable by their characters to Poputus. The only fragments of dicotyledonous leaves recognized by Heer, in the specimens which he studied from the Lower Cretaceons formations of Greenland (Kome), represent a Populus. appropriately specified by the name of P. primeva. From a higher stage of the same Crefaceous formation of that country (Alane) the celebrated Swiss patcontologist has deseribed four other species of Populus. In his "Phyllites Crétacées du Nebraska," and from specimens of the Dakota Group, he has recognized Populus litigiosa, Populus (?) Debeyana, and another species still.
P. cyclophylla, described in Proc. Acad. Nat. Sci., Philadelphia. Professor Newberry, in his paper "On the Later Extinct Floras of North America," has described, also, besides the doubtful P. (?) Debeyana, three new species: Populus (?) cordifolia, P. clliptica, and P. microphylla. The specification and the interrogative punctuation applied to some of these names show that the authors themselves do not consider the generic reference as chefinitive, the character of some of the leaves being somewhat in disagreement with those generally recognized in species of Populus of our present time. Indeed, species of this kind, like the present P. alba, for example, have such multiplied and diversified forms of leaves, such great variability in their nervation, the mode of attachment, the length of the petiole, etc., that they readily offer, by comparison with fossil leaves of obscure relationship, some points of affimity which, not being found elsewhere, have to be considered by the authors. Hence the doubtful references which may be, and are often, rectified by subsequent discoveries, as is proved by the great proportion of synonyms appended to the entmeration of Populus species. To obviate this inconvenient multiplication of fluctuating species of Populus I proposed a new generic division, under the name of Populites, for the classification of those Cretaceous leaves, numerous indeed, which. partaking of some of the characters of Populus, are nevertheless removed from this division by some others, as remarked in the first memoir which I published on some Cretaceous plants from Nebraska.

This paper had to be prepared on short notice from a limited number of specimens, but since its publication I have had opportunity to study the specific forms of the Cretaceous Flora by comparing a very large number of specimens, and have thus been able to recognize a more evident affinity of some of those leaves referred to Populites with other generic divisions. Iopulites Lancastriensis, P. elegans, which Schimper admits as a true Populus. and l'opulites cyclophyllus are the only species preserved in this genus. I^{\prime}. watus. considered as possibly referable to Celtis in Cretaceons Flora, being rather related by its characters to the Ampelidea, is described under the new generic division of Ampelophyllum. The affinity of P. quadranguluris being more evident with Alnus, has been described as Almites. I'. flubellata, as seen from other specimens, appears to be a deformed leaf of Greciopsis Huydenii, and P. Salisburicefolia, being related to Cissus, is described as Cissites.

In regard to the distribution of Populus, to which are referred the most ancient dicotyledonous leaves known as yet, from the Lower Cietaceous of Greenland, the genus has, as said above, three species known wready in the Upper Cretaceous of that same country, and five or six in the Dakota Group. It has, however, not been remarked in any Cretaceous Flora of Europe. It is not mentioned in the review of the genera represented by the, as yet, undescribed species of Aix-la-Chapelle, ${ }^{1}$ and no form even distantly related is described in the Lower Paleocene Flora of Gelinden. It has, however, one species in the Eocene Flora of Sézanne, and increases in the number of its representatives in all the stages of the European Miocenc. As far as we know it, till now, it has few species in our Lower or first American Terliary Group-the Eocene; has a large proportion, eight per cent. of the species, in the Evanston Group; still more. or twelve per cent., in the Miocene of Carbon, and is present in the second, the Green River Group in four species, three of them of peculiar types, one of which is very abundant.

The presence of Willows (Salix) in the Flora of the Dakota Group cannot be controverted, though neither seeds nor scales of this genus have been found as yct. As it is seen in "Cret. Fl.," p. 60, pl. v, figs. $1-4$, I have described as referable to one species only a number of leaves somewhat different in size and shape. As the specimens representing them are from the same locality, and as I recognized upon some numerous fragments of leaves a unity of character, size, form, and even texture and color, I considered them as mere varieties of leaves of the same tree. Dr. Newberry has, from the same formation, four species which, he says, he has chosen to regard as distinct, for geological convenience. No Salix has been recognized as yet in any stage of the Cretaceous of Greenland; but one species, Salicites Hartigii, Dkr., is from the Quader-sandstein of Germany, and another, Salix Gotziana, Heer, from Quedlinburg. The genus is therefore sparingly represented in Europe and North America in Cretaceous Floras which are considered as nearly synchronous.

The other genera of the Amentacere, Betula, Almus or Alnites, Myrica.

[^2]Quereus. Fagus, and Firus, to which leaves have beon referred in the Cretacuons Flora, do not require my observations. In this case, as in all the detemmations of forsil ptants. the characters of the species are not
 nizet of passed he anthor: without any marked eriticism. The generic relation is specially positise for the remains referable to IIyrica: whe firy-
 white tro tine new secies are added in this memoir. It seems equally so for (tumens or tis peculiar division. Irymphllum. of which we have two new - beeces, and for Ficus, to which three species are added.

Specimens of leaves referable to l'htamus have been found in moderate [moportion both in Nehraska and Kamsas. The first was described by Heer, in the "Phyllites Crétacees du Nebraska," as Platumus Newbervy. from a very incomplete fragment. The accuracy of this delermination was. however. subsequmtly rerified by the discovery of more complete leares. figured in "Ciret. Fl.." pl. viii. figs, 2 and 3, and pl. ix. fig. 3. Which show the namowed base descending along the petiole lower than the point of mion of lateral primary veins, and also the tendency to a three-lobed division. chamaters which are not observable in the fragment which Profesor Heer had for his examination. To this tine species hare been added: I'lutums primurn, lescribed from leaves so remarkably similar to those of I^{\prime}. aceroides of the Niocene that 1 was at first disposed to consider them as idention. I have lately received numerous large leaves of this sberies with specimens bearing fruts, which, very small. show a great difference trom those of the living species: then, P. Heerii. lare like the fomer, and fomd ats yet. only along the blutis of the Salina River: I^{\prime}. whtusitub, from a nmmber of somewhat fragmentary specimens from Buatrice. Nebraska. representing leaves of about the same size and of the same characters: and l^{\prime}. dimimetion-all species described and figured in "Cret. Fl." The last one, as remarked in its description, may be a dwaffed form of I^{\prime}. primmen or P^{\prime}. Hecrii. The leat appears as gnawed aloner the reins by insects or perhaps by parasite fingus. Its specitication is not positive and is subject to criticisms. The base of the heaf is rounded to the petiole, a character as yet unique for a species of this kind. P. recurcata should, following the opinion of my honored friend saporta, be
referred to the Araliacee by a more intimate affinity to Araliopsis species: ${ }^{1}$ and Platunus affinis seems now, after the examination and comparison of a number of specimens from Kansas, more evidently referable to the Ampelidete than to the Platanea. Therefore these last two species are now eliminated from this generic division. The first is now Araliopsis recuretus, the second Cissites affinis.

I persist in considering Platamus Heerii and P'. obtusiloba as two different species, though it has been suggested that the last was probably a mere variety of the first. The identity is denied not only by the size. the ficties. and the nervation of the leaves, but especially by the thinner texture of those of P^{\prime}. obtusiloba. The fact that the numerous specimens representing it are all from the same place in Nebraska, and that P. Heerii has not been found in that state thus far, confirms this separation. In regard to this last species Professor Geimitz has remarked in "Isis," 1875. p. 558. that paleontologists might, perhaps, recognize in it a Credneria. There is. indeed, some simitarity in the general outline of the leaves. But this might be said of many of the generic forms of the Cretaceous, which seem referable to a few different types, or to present in one leaf the characters which are now generally found isolated in separate vegetable groups. The genus Credneria, known as it is to me by what is described by Stiehter. Vol. V of the "Paleontographica," includes species with cordate or subcordate leaves (none narrowed to the petiole), and bearing above the base two or three true secondary veins at right angles to the midrib. In P. Heeri the leaves are cuncate at the base, even gradually narrowed or decurrent on the petiole. which thus becomes slightly winged, and the veins under the primary nerves are mere marginal veinlets. Perhaps the relation of this species is more marked to the genus Ettingshausenia, which. I regret to say, is known to me only by supposed synonyms Chondrophyllum grantidentatmm, as represented by Heer in the Cretaceous Flora of Moletein. and by Phyllites repandus. Sternb., two forms which have no affinity to Platemus.

The typical character of the Cretaceons species of Platames is more evidently related to the Aralite than to any other. This is proved by the reference to that genus of leaves now generally admitted as species of

[^3]Aralia, as Platanus grandifolia, P.digitata, P. Jatropafolia, P. Hercules, Ung.. and P. latiloba, Newby. The leaf of Sassafias (Araliopsis) Platanoides (pl. vii. fig. 1) has the facies and some of the characters of Platanus more distinctly defined than any other of the group; the same characters are even reproduced in Aspidiophyllum platanifotium (pl. ii, fig. 4).

The geological distribution of the genus Platamus is truly remarkable. No trace of it is recorded as yet in the Cretaceous of Europe, not even in the Paleocene and Eocene of France, so rich in fossil vegetable remains. Its first appearance in Europe is in the Upper Miocene of Oeningen, and of Austria and Itaty, where it is represented by two very similar forms, Platanus Guillelmes and P. aceroides, two species present in the same formation from the northern parts of the arctic lands to Italy. It is followed in the Upper Tertiary, or Pliocene, of this last country by Platanus Academice, Gand., related as progenitor, perhaps, to the living P. orientalis. I have remarked above that the relation of leaves of the Dakota Group to Platamus has been considered as doubtful by some European paleontologists. This doubt may have been induced by the understanding of the total absence of Platams leaves in the Cretaceous and Lower Tertiary of Europe. If so, it is certainly removed by the presence in our lignitic Eocene of some very beautiful and well characterized species of this genus: I'latames Haydenii and P. Reynoldsii, Newby. These species, discovered first in the Tertiary of the Upper Missouri River, near Fort Union, are predominant at Golden, Colorado, and are also found at Black Butte Station. The third 'Tertiary Group, that of Carbon, has, for the more numerous representatives of its Flora, leaves of Platanus aceroides and P. Guillelma. No species of this genus has been described from the Oligocene Green River Group; but we have from the Upper Tertiary (Pliocene) of California very fine specimens of leaves of two species, P. appendiculata and I^{\prime}. dissecta, closely related by their characters to the living P. occidentalis. Therefore, and considering the geological records, we may trace the origin of Platames as far down as the North American Cretaceous, and follow its development through nearly all the stages of its Tertiary to our present time, by a number of closely altied intermediate forms. ${ }^{1}$

[^4]Coming now to the Laurinece, I have to remark somewhat more definitely on the Cretaceous species referred to this family. The relation of some of them to the genera to which they have been referred is generally acknowledged, and the presence of the Laurinece in our Cretaceous Flora receives a kind of historical authority from that of a Sassafias in a Cretaceous formation of Greenland, ${ }^{1}$ of three species of Daphnophyllum in that of Moletein, and of Laurus cretacea, Daphnogene primigenia, Daphnites Göpperti, in that of Niedershoena. Of the species which have formerly been described in the Flora of the Dakota Group, Laurus Nebrascensis is related to Daphnophyllum ellipticum and D. crassinervium of Heer, while Cimamomum and Oreodaphne cretacea are comparable to Daphnogene primigenia of Ettingshausen. Persea Sternbergii is also evidently of the same family, and the two leaves, described here below under the name of Laurus protecefolia, are, indeed, allied to species of Laurus or of Persea by their nervation, especially by the more acute angle of divergence of the lower veins, though they show in the grooved middle nerve a character often remarked in species of Ficus, especially Ficus protogoa, Heer, of the Greenland Cretaceous Flora. Moreover, the fruit described ("Cret. Fl.," p. 74) as Laurus macrocarpa satisfactorily completes the evidence afforded by the leaves of the existence of species of Laurinece in the vegetable world of the Cretaceous epoch. We have, however, to eliminate from this family Laurophyllum reticulatum, which appears more properly referable to Ficus. Its nervation, and especially its areolation, formed of square or irregularly polygonal meshes by the interposition of tertiary veins between the secondary ones and parallel to them, and the rectangular subdivision of its branches, are of the same character as in Ficus Geinitzi, Ett., Ficus protogcea, Heer, and as in many species of this genus now growing in Cuba, and even Florida, Ficus suffocans, F. lentiginosa, F. pertusa, F. dimidiata, etc. Numerous specimens recently found in Kansas represent the fossil species in characters more precise than formerly, as seen in its more detailed description under the name of Ficus laurophyllum.

But if the reference of some of the above-mentioned leaves to the Laurinece is not contested, it is not the same in regard to those which, at
${ }^{1}$ In "Arct. Fl," vol. vi, :d part, pp, $75-76$, HeEr describes as new species Laurus plutonia, L. angusta, L. Holle, L. Odini, with Cimamomum Sezannense. Wat., from the Upper Strata of Atane.
first appearance, were cousidered as more positively related to this family, and which have been described under the generic name of Sassafias. The question of the relation of those leaves which, by their number, seem to be the essential components of the North American Cretaceous Flora, has been atready touched upon ("Cret. Fl.," p. 77). But since the publication of that work I have oblained from divers localities a large number of specimens of all the forms described there as species, and I have now some more data to offer to the consideration of paleontologists on the subject.

From historical documents the presence of Sassafias species in the Flora of the Dakola Group is as legitimately presumable as that of species of Lenrus or I'ersen. In his "Flora fossilis arctica," Heer has described as Shssuffas arcticum a leaf which, by its form, is similar to those described as sussefras retecem, as remarked by the author, differing merely by its base tapering somewhat less narrowly to the petiole. The nervation is of the same character. Saporta considers the Greentand leaf as a true representative of Sussufiras. He has himself published in the "Sézanne Flora, ${ }^{1}$ as S . primigenium. two flagmentary leaves whose base, more narrowly tapering, is similar to that of S. Mudyei of the "Cret. Fl.," as well as the lobes which, enlarged in the middle, have that orate-lanceolate shape so distinctly marked in the present S. officinale. There is also no appreciable difference in the nervation. The lower secondary veins of the middle lobe ascend a little higher in the leaves of the Sézanne Flora, and unite with those of the lateral lobes somewhat nearer the borders of the sinuses. But in some of the specimens of Kansas the same appearance is remarked also, and the difference between the greater or less distance which separates from the sinuses the branches which unite the upper division of the secondary veins is observable upon leaves of s. officinale, this division being sometimes marginal, sometimes curving one to three miltimeters lower than the border of the sinuses. Comparing leaves of Sassafias officinale with those represented by Saporta in the "Flora of Sezanne" and the specimens of S. Aludgei from Kansas, it is impossible for me to recognize any character, even any specific difference, by which these leaves could be separated. It is therefore not surprising that Dr. Newberry first, and after him Heer and Schimper, did consider Cretaceous
specimens of this kind as representing species of Sassafras. In the last volume of his superb work on Vegetable Paleontology, ${ }^{1}$ Prof. W. P. Schimper, speaking of leaves of Sassafias cretaceum, of which I had sent him photographical designs, remarks: "That those leaves, very variable in size, present such a remarkable likeness to those of S. officimale, now living in North America, that one would be disposed to consider them as belonging to a homologons species." He rightly adds that the only difference seems to be in the thicker substance of the forsil leaves. Even on this point I have from Texas specimens of the present S. officinule, whose leaves appear of a consistence nearly as thick as it seems to be in those of the Dakota Group.

On the other hand, no species of the Laurinece family living at our time is known with dentate leaves; and it may be remarked, from the figures, that the two leaves described as Sassafras crptacemm ("Cret. Fl.," pl. xi, figs. 1 and 2) have the borders of the tobes somewhat dentate, and some of the secondary veins running into the point of the teelh, or craspedodrome. This character is still more marked in S. mirabile, loc. cit., pl. xii. fig. 1, a form extremely common in Southern Kansas, and represented in very numerous and remarkable varieties. In some of the leaves the secondary veins are all camptodrome, and therefore the borders of the lobes are entire. In others, as seen, pl. xi, fig. 2, the outside lateral veins are craspedodrome, and thus the borders are dentate, while on the inside they curve along the borders, which are entire. In the fine complete leaf (fig. 1 of the same plate) the middle lobe has the veins all camptodrome on the left side, while on the right one, a few of them, one or two, reach to the border, which has, therefore, one or two short indistinct teeth, and the lateral lobes are clearly dentate on the outside only. This evidently shows such a disposition to variations of nervation and border divisions, that I formerly considered as unjustifiable a specific, and still more a generic, division between the leaves of pl. xi, tigs. 1 and 2 , and those of $p l$. xii, . figs. 2 and 3, of the "Gret. Florat" When, therefore, we find the same difference between the leaves which represent s's. mirabile (pl. xii. fig. 1), it seems that the same conclusion should follow. But in this case, with the more generally predominant character of the indentation of the leares,

[^5]which, in some specimens larger than the one figured, are now deeply cut by divisions like pointed lobes, there is still another character, remarked on specimens recently discovered, which seems more forcibly to separate these forms from the Lauriner, and indicates a more evident relation to the Araliacere. A number of those specimens communicated by M. Chs. Sternberg, to whose careful and zealous researches the Flora of the Dakota Group is indebted for many important discoveries, represent large leaves, which, by the outlines, the nervation, and the dentate borders of the lobes, are like S. mirabile of pl. xii, fig. 1. The leaves, however, which are much larger, the lobes measuring as much as ten centimeters in length from the point of union of the primary nerves, greatly differ by the forking of the lateral nerves from a point two and one-half centimeters above their base, thus forming, of course, a subdivision of these lobes into two equal parts, or a palmately five-lobed leaf. They are described as Sussafras (Araliopsis) dissectum. Among the innumerable varieties in the shape of the leaves of the living Sassafras officinale we see a constant and gradual mode of division, passing from a round or oval and entire shape to a bilobed and trilobed one; but, as yet, I have been unable to observe a single case of subdivision of the lateral lobes, or to find a palmately five-lobed Sassafras leaf. This character is, on the contrary, far more generally seen in the Araliacere of our time. Even in a section of the Araliacea, the genus Hedera, whose leaves may be compared to some of those under examination, I do not know any species with trilobate leaves. Hedera turbascens, II. discolor, II. argentea, H. aurifolia, H. jatropoffolia. have leaves five to seven palmately lobed, or when occasionally trifid their segments are narrow and acuminate. From this the relation of the five palmate leaves to the Araliacer becomes more evident.

Going further into this kind of investigation, we are met by a new difficulty in the appearance of another modification in the character of this peculiar type of leaves. In examining the first specimens of the species represented (pl . xii and xiv), I could but consider them as representing either Sassafras (Araliopsis) obtusum or S. mirabile, the specimens being fragmentary, having only the lobes or part of them preserved. As long as the auricled and peltate base was unknown, the reference of the specimens could not be different. The nervation, the form of the lobes,
their size, all are of the same character as in S. mirabile. But in the peltate base of the leaves there is another character which, separately considered, relates the leaves to the Menispermacea. We thus have Sassafras already represented in those leaves by S. Mudyoi, and less positively by S. ncutilobum: Aruliopsis, to which are referable s. mirabile, with the dentate S. retaceum, S. obtusum, S. dissectum, S. platanoides, Platanus recurvata. ant in a new generic division, under the name of Aspidiophyllum, the braves which, either Aralia or Sassafras, by their upper trilobate part. are newssarily separated from these genera by their auricled peltate appendage. Still, the subdivisions in the classification of the peculiar and so-called Sassafras leaves have to be pursued further, for by degrees and by the gradual obliteration of their lobes they become round or truncate, or broadly pointed at the top, preserving more or less the narrowed base, tapering to a long petiole, and the trifid craspedodrome nervation from a distance above the borders, and thus they become more evidently related to other vegetable orders. One species is a true Hedera, another passes to the IIamamelidec, and a number have their affinity with the Ampelidea.

The characlers of the leaves of the Ampelidece, especially those of Cissus, are somewhat obscurely represented in Sassafras Harkerianum ("Cret. Fl.," pl. xi, figs. 3 and 4; pl. xxvii, fig. 2) and in S. obtusum (pl. xiii), more distinctly in Cissites acuminatus (pl.v, fig. 3) and C. Heerii (pl. v, fig. 2), two new species described in this memoir. They appear to constitute an indivisible group. Some of the leaves formerly described as Populites are also referable to this section, or to another less exactly defined Ampelophyllum, allied by some of its characters to Iledera, by others to Credneria, thus intermediate between the Ampelida and the Tilicacea; by the areolation this genus is related to Greviopsis, and also more distantly to Chondrophyllum of Heer, as remarked in the description. From this it is perceivable that this Sassafias type, which at the beginning was regarded as simple, well defined, and limited in its character, is, on the contrary, multiple, and representing forms which, from increased researches and discoveries, indicate affinity to a number of different genera or orders of the vegetable kingdom.

The same remark is equally applicable to the leaves which have been described in the "Cret. Fl." under the generic name of Protophyllum. The CF 2
disagreement in the affinities of its species has been explained in the remarks following the description of the genus. I have now to add still to this division two leaves recently communicated from Kansas, represented in pl. iii, fig. 1, and pl. viii, fig. 4. They fully confirm the former observations. By the outline of the leaves, their craspedodrome nervation, and the presence of two pairs of secondary veins under the primary ones and at a right angle to the midrib, they represent a species of Protophyllem; but the border base of the leaves is truncate, not subpeltate, and by this difference the leaves are rather referable to Credneria, from which, however. they differ by the veins as well as their divisions, being all eraspedodrome, and by the truncate, not cordate, base of the leaves. I formerly published a short description of them under the name of Credneria? microphylla. It now seems that, by their evident relation to Protophyllum quadratum, they have to be admitted in this last generic division, an opinion which may be put at naught by the discovery of specimens pointing to another reference for these leaves.

We have, also, an addition of three new species to the group of Cretaceous plants described under the generic name of Menispermites. In this case, however, there is no difficulty whatever in conformably uniting into a definite group the characters of the leaves which, round, ovate, or oval, with borders entire or undulate, have a common generic affinity, indicated by their nervation. In order more clearly to bring into view the relation of the undulate-lobed forms of leaves deseribed in the "Cret. Fl." (pl. xx, figs. 1-4, and pl. xxv, fig. 1), I have represented (pl. xv, fig. 4) a finely and wholly preserved leaf of Menispermites obtusilobus, which, though small, is easily identified with the large one of "Cret. Fl." (pl. xxv, fig. 1). Now, comparing it to figs. 2 and 3 of the present pl. xv, the identity of nervation is defined by the five basilar veins, with a thin pair of marginal veinlets underneath; and by the upward direction of the internal lateral veins, which in fig. 4 ascend to above the middle, pass still higher in the short oval leaf, fig. 3, and reach nearly to the obtuse point in fig. 2. The subdivision of the tertiary veins is in all the leaves of the same type, and the shape of the leaves or their outlines are mere modifications, depending upon the direction of the veins. The leaf, fig. 3, is peltate from the point of attachment of the petiole near the middle.

The character of the nervation remains, however, the same. It is somewhat obscured in the figure from indistinctness of the specimen. In figs. 1 and 2 , representing leaves entirely preserved and nearly round, the nervation is marked by three pairs of primary nerves on each side of the midrib, and under them by one pair of true marginal veintets curving on each side toward the borders. Comparing, therefore, these peltate leaves with fig. 4 , the position of the petiole is the only notable difference, and the transition to fig. 5 by slight modifications of characters is easily remarked. The peltate form of these round leaves has suggested the fitness of a slight modification in the characters assigned to the genus Pterospermites in the "Cret. Fl." (p.94), the leaves being sometimes rounded or subcordate at base. The difference is immaterial, and is remarked even upon leaves of the same species of Menispermam of our epoch. These round peltate leaves, for example, are so much like those of living species of Cissampelos, that they rather prove the adaptation of this generic division to all the Cretaceous leaves which I have referred to it.

The Magnoliacere are more numerously and definitely represented in the North American Cretaceous Flora than they are in that of Europe. Maqnolia alternans and M. Capellimi have been described by Heer in his "Phillites Cretacees du Nebraska;" and since that time these two species have been recognized throughout the whole explored area of the Dakota Group, as also in the lower stage of the Cretaceous of New Jersey, and in the Upper Cretaceous of Greenland. M. speciosa of Moletein has been discovered in Colorado with a fruiting cone or carpite of this genus. Two other species have been described from the Dakota Group: one, M. obovata, by Dr. Newberry, in his "Ancient Floras," another, M. temufolia, in "Cret. Fl.," and two new ones, M. obtusata and M. Isbergiana, by Heer, from Atane. In Europe, M. amplifolia and M. speciosa are described by Heer in the Flora of Moletin-there represented by leaves and fruit.

To the same order belongs Liriodendron, so easily recognized by the peenliar form of its leaves. Its Cretaceous origin, or rather existence, is marked in the Dakota Group by a number of specific representatives locally and distantly distributed. The genus is not represented in the Cretaceous Flora of Europe; but in the "Cretaceous Flora of Groenland" Heer describes six varieties of Liriodendron Meekii from Atane, and no less than eight
specific forms have been described from Nebraska and Kansas-some of them extremely well defined. This shows, perhaps, more evidently than any other fact remarked on the characters of the plants of the Dakota Group the great disposition to variableness by modification of some characters in the first Dicotyledonous plants. These changes have either caused a multiplication of specific forms preserving traces of the original types in traversing the subsequent geological formations, or have gradually destroyed the number of specific representatives of some genera, as in Liriodendron, or even caused the total disappearance of some of the best defined and more predominant types, like those of Credneria, Pterophyllum, etc. Of these, however, the original characters may have been so widely varied that the ultimate derived forms have not yet been distinctly recognized on plants living now. The two last-named genera, Credneria and Protophyllum, may possibly be referable to some subdivisions of the Columnifere, the Buttneriacea and Pterosperma, for example.

The three species which I have described under the insufficientlydefined genus of Sterculia are all very uncertain in their relation. As much may be said for the following and last classes of the vegetable kingdom:

To the Acerece is referable Negundoides acutifolius. The leaf, however, as seen from pl. xxi, fig. 5, and its description, is too fragmentary for a satisfactory determination of its characters. Acer antiquum is described by Ettingshausen in his "Flora of Niedershœna," but from the opinion of the author the reference is uncertain. The leaf rather resembles a deformed form of Quercus or of Liriodendron. In the same order Heer has, from the Upper Cretaceous of Greenland, a Sapindus prodromus, represented by one leaf only, which has evidently the character of the genus. A beautiful species of Sapindus described here from Colorado is also present at Atane. This genus is therefore Cretaceous. The reference to the Rhamnacere of the leaf described as Rhamnus tenax in "Cret. Fl." is apparently legitimate, for of the same group three other species, R. prunifolius, a Celastraphyllum, and an Ilex, are described here from the same formation.

To the Anacardiacea we have probably to refer, as Rhus Debeyana, the species described as Populus and as Juglans Debeyana as seen in "Cret. Fl., p. 110. I have not obtained from the Dakota Group any new materials
comparable to this form, especially common in Nebraska; but I have seen a very fine specimen of it got out of a deep tunnel in Oregon, presenting upon its surface small punctiform protuberances, apparently oily glands, like those remarked upon leaves of the living Rhus aromatica and other species of this genus. The leaves are figured (pl. lvi, figs. 5, 6). A species of Rhus is described from the Cretaceous of Greenland by Heer, while considering historical authority, we have the same evidence in favor of Juglans by a species of this genus in the Cretaceous Flora of Moletein and one in that of Greenland.

Of the Rosiflorex we have from the Dakota Group one leaf and one fruit described as Prumus. I have recently received from M. Towner a fruit of the same character upon a specimen bearing leaves of Aralia Towneri.

The Myrtiflora, as well as the Leguminosa, present by a number of specimens in the Greenland Cretaceous, have not been thus far positively recognized in Kansas and Nebraska, but seen by one silique only in Colorado.

The few groups not considered in this review have been remarked upon already in the "Cretaceous Flora," and the views in regard to the leaves referred to them have not been modified either by remarks of European authors or by the discovery of new materials.

The want of positiveness in the characters of some of the Cretaceous plants cannot in any way weaken reliance upon the data derived from the exposition of the Flora of the Cretaceous age, nor throw any discredit on the conclusions which they dictate. What the Flora of the Dakota Group positively shows is a great predominance of dicotyledonous plants in its composition; and that is all that may be positively known as yet of the remarkable change it attests in the vegetation of that period. The causes, the mode of proceeding of nature, either by slow, gradual, or by rapid modifications, remains as yet inscrutable. But the characters of dicotyledonous leaves cannot be mistaken; the relation of most of them to groups of plants of the present Flora possesses positive evidence. The Cupuliferere with species of Quercus and Fagus; the Salicines with species of Populus; the Platanea with Platanus primeru, leaves and fruits; the Laurinea. represented also by leaves and a fruit of Laurus, by leaves of Persea, Cimamomum, Sassafras; the Araliucer, the Magnoliacere, with fruits and leaves;
the numerons forms of leaves of Liriodendron, so peculiar that they cannot bo mistaken for thuse of any other group or plant; even the Menisfermecer constitnte, by their fossil remains, vegetable groups quite as definite as they rould be established from living plants.

Since the publication of the "Gretaceous Flora" (vol. vi of the U.S. Genloycal Reports of Dr. F. V. Hayden) the character of the vegetation of the Middle Cretaceous as represented in the Dakola Group has become betler defined by the discovery of a large number of specimens of fossil plants. which have increased from 130 to 190 the number of vegetable forms considered specific, already known from this formation. The whole Flora of the Cenomanian epoch, as it is shown in the table of distribution. is composed of 446 species, of which 310 are dicotyledonous and 130 are cryptogamous and gymnospermous plants. Of the 190 species of the Dakota Group, 162 are dicotyledonous and only 28 represent crytogamous and gymnospermous plants.

Numerous works on the Jurassic Flora have sufficiently proven that up to its upper member the Wealden, or lower Neocomian, it is entirely composed of gymnospermous and cryptogamous plants-especially Ferns, Cycuder, and Conifers. The Neocomian, whose vegetation is but little known as yet, slows in its remains the same constituents of its Flora. Upon it is superposed in Germany the upper Neocomian, or Urgonian, from which a series of fossil plants, 22 in number, have been described by Schenk from the Wermsdorf-Schichten of the Carpathian Mountains of Austria; and there also no dicotyledonous plant has been found, and nothing indicates the decadence of the reign of the gymnospermons plants or shows any kind of difference which could lead one to presage the appearance of the Dicotyledons.

We owe to Heer the most interesting documents on the characters of the regetation of the Middle Cretaceous-first by the publication of the Flora of Kome, and then of that of Alane, both in Greenland.

The Flora of Kome, composed of 85 species, has, says the author, its greatest affinity with that of the Wernsdorf shate or upper Neocomian on one side, and with that of the Wealden on the other. With the plants of the higher Cretaceous stages it has only 7 species-Ferns and Conifersin common. Nost of the specimens of the group submitted to Heers
examination have been obtained on the peninsula of Noursoak ($70^{\circ} 37^{\prime} \mathrm{N}$.), from beds of shale altermating with banks of sandstone, the whole vererlying granite or primitive formation. One of the localities, that of Elkorfat. is 500 feet above that of Kome, but the plants are of the same kind. The regetable remains belong mostly to cryptogamons and gymmospermous plants: 41 Ferns, 1 Marsilia, 1 Lycopod, 3 Equisetucca, 10 Cycadece, 21 Conifers, 6 Monocotyledons, and a single Dicotyledonons species.

On the south side of the same peninsula of Noursoak, near Atane, at an elevation of 650 feet above the sea, another lot of plant-remains, collected also by the expeditions of Nordenskjöld, and submitted to Prof. Heer for examination, represents a Flora composed of far different elements. It has 170 species: 3 Fungi, 31 Ferns, 1 Marsilia, 1 Selaginella, 1 Equisetum, 8 Cycader, 27 Conifers, 8 Monocotyledonous, and 97 Dicotyledonous plants. These. therefore, constitute more than one-half of the vegetation. ${ }^{1}$ The celebrated author remarks, on the geological relation indicated by the characters of the plants, that it is not possible to determine it positivety, as the plants of the Crelaceous are, as yet, too little known. But he admits that the formation of Atane, considering its vegetable remains, is probably referable to the lower Cienomanian.

As will be seen in the examination made of the age of the Dakota Group, from data shown in the table of distribution, its Flora seems to be somewhat more recent than that of Atane, though the relationship is very close. The general character of the plants does not greatly differ, but the number of the dicotyledonous plants is much greater, amounting in the Flora of the Dakota Group to more than five-sixths of the regetation.

In considering merely what is now known of the vegetation of the Middle Cretaceous (the Cenomanian of arbigny), the first appearance, and especially the prodigious development, of the Dicotyledons seems the more wonderful that it is not a local phenomenon, but is remarked in the formations of the same age over the whole Northern hemisphere. Te cannot yet follow it in all the intervening land areas, but it has been traced from Greenland to Vancouver Island to Canada, to Kansas, and Colorado, and in Europe to Germany, therefore in about $40^{\circ} \mathrm{N}$. latitude.

[^6]With the limited acquaintance we have with the ancient Floras of the world it is not possible to account for the sudden appearance of the Dicotyledons in the Cretaceous time and for their rapid and wide distribution. Saporta, justly considered as the botanist who has acquired by his rast knowledge the most extensive views on the distribution of the vegelation in the ancient epochs, says, on the subject:" The organic evolution to which the Dicotyledons owe their existence and their distribution must have been produced under the influence of very different conditions. It is possible that the evolution has been originally slow and obscure; possibly also it has been accomplished in a concealed or as yet undiscovered locality, in a separate region, and under the influence of peculiar local circumstances. It is probable that the change may have been accomplished by the mediation of insects, multiplying at a given time the results of crossing and producing some combinations favorable to the growth of these plants. It is even conceivable that a short time may have been sufficient to give origin to plants of this class under the action of causes which are still unknown. Whatever hypothesis may be preferred, the fact of the rapid multiplication of the Dicotyledons and of their simultaneous occurrence in many localities of the Northern Hemisphere from the beginning of the Cretaceous Cenomanian cannot be contested."

Yes, in this case, as in many others, we may collect facts, but the work of nature in its mode of proceeding for the creation or modification of species remains inscrutable. We may consider the formation of the Dakota Group as produced by a very slow, gradual, prolonged depression of the Western slope of the continent, bringing up from the South or West the invasion of ocean water charged with muddy materials, periodically heaped firther and farther inland by powerful tides. We may suppose, too, the invading flow as bringing with it seeds or fragments of roots of plants derived from a country now covered by the sea, and distributing here and there those germs of vegetable organisms. But all this does not account for mucl in the solution of the problem; it may explain the distribution; but the first appearance, and it seems the simultaneous multiplication. of the dicotyledonous plants remains a fact inconceivable to reason.

DESCRIPTION AND ENUMERATION OF SPECIES OF THE

 AMERICAN DAKOTA GROUP FORMATION.
I. CRYPTOGAMAE.

THALLOPHYTES.

ZONARITES, Brgt.
Zonarites digitatus, Gein.
"U. S. Geol. Rep." vi, p. 44, pl. i, fig. 1.
The relation of this vegetable organism to that described by Brongmart and Geinitz is contested on account of the habitat in a different Geological stage, Geinitz having described his plant from the Dyas. As species of Thallophytes of the Devonian are represented by identical forms in more recent formations, even in the Cretaceous of Europe, the objection is not imperative.

ACROGENS.

EQUISETACE \nrightarrow.

 EQUISETUM, Linn.
Equisetum nodosum, sp. nov.

Stems small, one-half to one centimeter in diameter, obscurely narrowly striate; articulations very inflated, marked with broad round scars of points of attachment of branches above the line of division.

The species is distantly related to E. amissum, Heer, "Fl. Arct.," III, p. 60, pl. xiii, figs. 2-8, of the Lower Cretaceous of Kome, essentially differing by the inflated articulations. It is represented by specimens Nos. 473,536 of the Museum of Comp. Zool., Cambridge; they are too small and obscure for definite comparison.

Hab.-7 miles N. E. of Glasco, Kansas ; collected by Chs. Sternberg.

FILICES.

SPHENOPTERIS, Brgt.

Spllalroltrris carrustata, Newby.

From manown: pimmes ovate or conefinm, narrowed at the base, obtuse, lobeh, and often plicate longitudinally; nerves distinct, dichotomons, branching from the bare.-(Newby.)

HYMENOPHYLLUM, Klf.

Hymenopliyllum cretaceum, Lesqx.

In describing this species 1 related it to the preceding from the description given by the author, as I had not then seen the figures. These indicalt a degree of retation which camot be positively ascertained on accomst of the too frigmentary specimens. The fronds were evidently large in the plants of this kind. The divisions are mulliple and extremety variable. The specimens may, therefore, represent pimules derived from divers parts of fronds of the same species.

PECOPTERIS, Brgt.
 Preopteris Nebraskina, Heer.

"U.S. (ien). R+p.," vi, p. 46, ph. xxix, figs. 5. 5a.
GLEICHENIA, SW.
Gloichenia Kurriana, Heer.
"U. A. (feol. Rep.," vi, p. 47, pl. i. figs. 5-5e.
Glridlenial Nordenskididi, Heer.
l'late I, l’igs. 1, la.
1Iayden"s "Aum. Repr." 1-74, p. 334, pl. ii, fig. 5.
Fronds slender, hipolypimate; ultimate pinne alternate, rigid, open, linear, parallel; pimmles subcoriaceons, small, free, oblong-ovate, obtuse, rounded at base on both sides, inclined nuward; secondiry veins few, three or fom pais, the lower forking, the nuprir simple.
'Though the American specinens of this species are small they show distinctly the essential chancters of the species: the slender rachis of the ultintith pimme rendered flexuons by compression of the basilar border of the pimmules, the very small leaflets free and rounded at base and the dixposition of the veins. The suecimens which l have for examination are sterile. As seen and fignred by Prof. Heer, the fructifications are those
of the subgenus Didymosorus, Deb, and Ett., two sori platced upon the middle of the lower pair of veins, one on each side of the medial nerve.

The rathis of this fern is described by Heer is slemeter. As it is tigured here it appears somewhat broad, though mot larger than it is represented in Heer"s "Fl. Arct.," iii, pl. ix, fig. 6. The ultimate rachis is, however, very slendur filiform.

Hetb.-Fort IIarker, Kansas. Chs. Stemberg. LYGODIUM, Sw.
Lygodium trichomanoides, Lesqx.
"U. S. Geol. Rep.." ri, p. 45, rl. i, fig. 2.

PHGENOGAM解. GYMNOSPERME.

 ZAMI PODOZAMITES, Fr. Br.Fronds pinnate; leaves distant, obliquely or horizontally attached by an attennated pedicelliform half-twisted that base artitulated upon the rachis and therefore caducons; veins equal, longitudinal, converging to both ends of the leaves; borders entire.

This genus of Braun, as amended by Saporta and Schimper, scems adapted for the description of all the leaves of Cyeader found as yet in the Dakota Group.

Podozamites Haydenii, Lesqx.

Pterophyllum Haydenii, Lesqx., "U.S. Geol. Rep.," vi, p. 49, pl. i, figs. 6, 6b; Hayden's "Ann. Rep.," 1884, p. 334.
Nothing more definite is known of these vegetable fragments than has been published as quoted above.

Professor Heer, considering the thickness and impressions of the stems, regards these fragments as more probably referable to Conifers of the section of the Arucurites than to Cycadea. No leaves of this section. however, can be compared to those which I have figured, and which, by their parallel veins and foms, are very much like the leaves of some species of Podozamites. Indeed, from the remarks on this genus by Heer. the leaves are either narrowed and joined to the stems by decurring to it. or produced into a short pedicel attached to the stem by small tubereles or warts. The characters of the genus are thus exactly shown not only by the leaf, but also by the stem whose round small scars indicate points of attachment like tubercles.

The leaves closely rescmble those of Podozumites lanceolatus as figured by Nathorst, "Fl. of Bjuf.," pl. xvi, fig. 3. I think, therefore, that the fragments figured in "U.S. Geol. Rep.," figs. 6 and $6 b$, should be referred to this genus. The relation of the cone, however, which I referred to the same species from its likeness to that of Stiehler as Pterophyllum Ernestino, is wrong, as it evidently represents a Conifer.

Podozanites oblongus, Lesqx.

Plate I, Figa. 10, 11.
Leaves oblong, gradually narrowed from below the middle to the flat sessile base, rounded at the eroded apex; veins thin, parallel, close, equal, distinct with the glass.

These leaves are evidently overturned upon the plate. The apparently truncate lower part seems as an enlarged point of attachment similar to that of species of Cordaites of the coal. But the irregular erosion is accidental or caused by compression of the macerated apex of thick coriaceous leaves.

These leaves are of the same character as those of P. lanceolatus, Schp., in Heer, "Fl. Arct.," iv, pl. vii, figs. 1-7 of the Jurassic Flora of Spitzbergen, differing by the more abruptly rounded apex.

Hab.—Dakota Group, Kansas. Chs. Sternberg.
Podozamites angustifolius? Heer.
Leaves long and narrow, somewhat falcate or ensiform, linear-lanceolate, gradualls slightly narrowed upward from the middle, obtnse? (point broken) more rapidly downward from below the middle to the point of attachment, distantly veined; primary reins obtuse, prominent; surface smooth, minntely lineate.

The preserved part of the leaves is 11 centimeters long, averaging 9 millimeters broad. The point of attachment is flat, 3 millimeters broad. As the apex of the leaf is broken it is not possible to see if it is acuminate.

The leaves figured by Heer, "Fl. Arct.," iv, pl. vii, figs. 8-11, and pl. viii, fig. 5, are either acuminate or somewhat obtuse and slightly scytheshaped, as in the one described here, but this is broader than any of those of Heer. The norvation seems like that of P. Eichwaldi, Heer, ibid., the primary veins being broad, thick, or prominent, so that the surface appears undulate and the intervals marked by irregular or not continuous very small veinlets. This leaf is also, from its shape and size, comparable to

Podozamites ensis, Nath., "Fl. of Bjuf.," pl. xv, fig. 2. This, however, has the veins narrower and indistinct.

Hab.-South of Fort Harker, 4 miles east of Minneapolis, and 7 miles northeast of Glasco, Kansas. Chs. Sternberg.

Podozamites prelongus, sp. nov.
Leaf large, oblong, linear, narrowed gradually to the point of attachment, obscurely veined; primary nerves parallel and distinct.

The upper part of the leaf broken at 12 centimeters from the base is there 5 centimeters broad. The whole length appears to be about 16 centimeters. Its size is greater than that of any of the leaves of this genus figured by authors, larger than the fragment of P. lanceolatus-latifolius, Heer, "Fl. Arct.," iv, pl. xxvi, fig. 6.

Though obtuse, the veins appear more distant and broader than in this last species.

Hab.-South of Fort Harker, with the preceding.
Podozamites emarginatus, sp. nov.
Leaves large, linear-oblong, gradually narrowed from below the middle to the flattened base, abruptly rounded and deeply emarginate at the apex; primary nerves parallel,distinct or prominent, conjoining at the apex and the base, separated by thin disconnected veinlets.

The leaf is 14 centimeters long, $3 \frac{1}{2}$ centimeters broad in the middle, the point of attachment 4 millimeters broad. It is abruptly rounded at the top to 2 centimeters broad and there deeply obtusely emarginate, the borders joining into a small obtuse sinus $1 \frac{1}{2}$ millimeters wide.

The emargination of the top may be a casual deformation, but even if the apex was regular and obtuse this species is without marked affinity to any other of the genus.

Hab.-Seven miles northeast of Glasco, Kansas. Podozamites caudatus, sp. nov.
Leaf large, enlarged and oval in the middle, where it is 5 centimeters broad, rap. idly narrowed to a point of attachment 7 millimeters broad, and attenuated from above the middle in rounding to a long acumen measuring $1 \frac{1}{2}$ centimeters broad at the point where it is broken 13 centimeters from the base.

The leaf has a peculiar form, being abruptly enlarged in the middle from above the base and as rapidly narrowed into a long linear acumen whose upper part is destroyed. The primary veins are flat and broad,
distinct, half a millimeter distant, with an indistinct veinlet in the narrow intervals.

The form of this leaf is peculiar, without relation to any of this genus. Hab.-Near Fort Harker, Chs. Sternberg. No. 117 of the National Museum.

CONIFER Æ.
 PHYLLOCLADUS, Rich.

Phyllocladus subintegrifolius, Lesqx.
"U. S. Geol. Rep.," vi, p. $\begin{gathered}\text { ¹, pl. i, fig. 12; Hayden's "Ann. Rep." 1874, p. 337, pl. 2, fig. } 4 .\end{gathered}$ Thinfeldia Lesquereuxiana, Heer, "Fl. Arct.," vi, p. ii, p. 37, pl. xliv, figs. 9, 10.

Figure 4 of "Ann. Rep." represents the lower half of a leaf of same character as that in "U. S. Geol. Rep.," l. c.
aradcaria, Juss.
Araucaria spathulata, Newby.
"Notes on Ext. Fl.," p. 3; "1llustr.," pl. ii, fige. 5, 5a.
Leaves close, broadly spathulate, obtuse, narrowed above the enlarged base, carinate; medial nerve distinct at base, effaced from the middle upwards. - (Newby.)

The author remarks that the specimen represents a fragment of a branch nearly half an inch in diameter on which the leaves are thickly set, their base slightly decurring scarcely separated from each other. From their base the leaves, half an inch in length, radiate in all directions.

The species is closely allied to Abietites curvifolius, Dkr., of the Quader-sandstone of Blankenburg. This has the leaves rounded at the apex, a deep medial nerve, and the leaf scars very distinct. This last character is well marked on the figure of A. spathulata. The same figure shows the leaves reflexed or spreading at the base, the only part seen. In Dunker's species the leaves are curved up from the middle and are longer.

Hab.-Sage Greek, Nebraska. Dr. F. V. Hayden.
TORREYA, Arn.
Torreya oblanceolata, sp. nov.
Plate I, Fig. 2.
Branches slender; leaves long, flat, gradually enlarging upwards from the decurring base; medial nerve thin.

The figure represents the best and largest of the fossil fragments.

None of them has a leaf entirely preserved, and thus the upper end of the leaf is undetermined.

From the decurring base of the leaves the fragment may represent a Sequoia. It has some analogy to S. Smittiana, Heer, "Fl. Arct.." iii, pl. xvii, figs. 3, 4, while Torreya parvifolia and T. Dicksoniana, Heer, ibit., pl. xvii and xviii, have the leaves sessile, and in this last species rounded and enlarged above the point of attachment. The leaves of this fragment, however, are too long for a species of Sequoia, also flat, not rigid nor coriaceous, and thus seem referable to Torreya.

Hab.-Gretaceous black shale, near Golden. Rev. A. Lakes.
SEQUOIA, Endl.
Sequoia Leiehenbaehi, Heer.
Lerilx., "U.S. Geol. Rep.," vi, p. 51, pl. i, fige. 10, $10 b$.
The supposed relation of the cone referred to this species is contradicted by Professor Heer. Though the cone represents a Sequoia, the specific name is left undetermined.

Sequoia fastigiata? St.

Hryden's "Ann. Repo," 1874, p. 335, pl. iii, figs. 2, 8, 8a.
Branches slender, erect; branchlets filiform; leaves loosely imbricate, short, broadly lanceolate-acuminate, subfalcate or more or less incurved, costate; strobiles orate-globose, small.

The fragments referred to this species are merely two short branchlets, pl. iii, fig. 8, loc. cit., and some indistinct cones imbedded into the stone. The leaves appear to be of the same form as those of this species figured by Heer, "Molet. Fl.," pl. i, fig. 10, generally a little broader and shorter, and the cones have the same character as that of fig. 12 of the same plate. These fragments are also comparable to the species as figured in Heer, "Fl. Arct.," iii, pl. xxvii, figs. 5 and 6, of the Upper Cretaceous of Atane. Professor Heer says, in the first description of this species, "Molet. Fl.," l. c., that the leaves do not seem to have any medial nerves, and in "Fl. Arct.," loc. cit., he remarks on the difference of the species from S. rigida by the absence of a medial nerve. As the costa is distinct on the leaves of the Dakota Group the relation is doubtful.

Hab.-Kansas, Clay Centre. H. C. Towner.

Scquoia condita, Lesqx.

Plate I, Figs. 5, 7, 9.
Hoyden" "Ann. Rep.," 1874, p. 335, pl. iv, figs. 2-7.
Branches rigid, pinnately disided; branchlets slender, filiform, oblique; leares short, oblong, thick, not pointed, narrowed to the decurring base, appressed to the stem, sometimes longer linear-acuminate, curved inward, nerveless; male ament oval, scalc, rhomboidal, apiculate.

This species is not rare in the shale of the Dakota Group, but as yet it has been found always imbedded into the shale and in small fragments, so that its characters cannot be stated with precision. Generally the leaves are lineal-oblong, acute, appressed to the stem, variable in length, sometimes longer, curved inward, resembling those of S. fastigiata, the medial nerve being indistinct. The cone, fig. 9 , found upon specimens with branches of the species, is apparently an unopened fruiting catkin of this species. It has a slender short pedicel covered with very small obtuse scale-shaped leaves.

Hab.-Kansas; not rare.

GLYPTOSTROBOS, Endl.
 Glyptostrobus gracillimus, Lesqx.
 Plate I, Fige. 6-6b.

"U. S. Geol. Rep.," vi, p. 52, pl. ii, fige. 8, 11-1lf; Hayden's "Ann. Rep.," 1874, p. 337.
I have figured here a mere fragment which I consider referable to the species, though the branch is a little thicker and the leaves ovate, somewhat like those of Sequoia condita, but shorter, as may be seen in comparing both figs. $5 a$ and $6 a$.

The leaves of this plant and their disposition are remarkably similar to those of Cyparissidium gracile, Heer, "Fl. Arct.," iii, p. 74, pl. 19, fig. i, found at Kome and Atane.

THUITES, Sternb.

Thuites crassus, sp. nov.

Pinnately branching; branches comparatively thick, alternate; branchlets short, obtuse; leaves thick, broadly oblong, equilateral, as broad as long, closely imbricate in four rows; medial nerve distinct, inflated on the back.

Species closely allied to Thuites Meriani, Heer, "Fl. Arct.," iii, p. 73, pl. xvi, figs. 17,18 , differing especially by the great thickness of its branches, the leaves larger, broader, the facial and lateral of the same size.

Hab.-Seven miles northeast of Glasco. Chs. Sternberg.

PINUS, Linn.
Pinus (luchstadti. Heer.
1'litu. 1. Fis... 3.

Latres in fassicles of five, very long and slembre, thedd-like, deely nerved, the hase inclosed in long cylindrical sheaths; cone eylindrical, very long; seales with broad thomboidal shieds (apopyses), acute on the sides, mammate in the center.

The sperinems representing this species are numerous but all fragmenfary. The leaves are generally scattered and imbedded close together, their point of attachment by five is marked by the long sheaths forming Wep holes into the stone; but none has been thus far found preserved entirr. The species may be, therefore, different from that of Heer. desribed at alove, and figured in "Molet. Fl.," p. 13, pl. ii, figs. 5-9. The threat-like long leaves the long cylindrical cone, and the shields of the saths are, however, so much alike that I have scarcely any doubt on the irlentity of the Dakola Group species with that of Europe. The length of the leaves as given by Heer, who has had splendid specimens for descripHion, is 20 centimeters. The fragments I have seen are 5 to 8 centimeters. The eytindrical cone, 22 millimeters broad, gradually tapering to the base, appears to be very long, its impressions perforating large stones, being at least 15 centimeters long. These cones are generally curved as in fig. iii. Heer represents them straight but of the same length and width.

In the "Flora of Gelinden" by Saporta and Marion, the authors remark (p. 19) that this fossil species does not differ by any important character from the living Mexican Pines with quinate leaves which now compose the section of the Pseudo-strobus.

Hab.-Near Fort Harker and Clay Centre, Kansas. Chs. Sternberg and H. C. Towner.

FrAgMENTS OF CONIFERS OF UNOERTAIN RELATION.
Abietites Ernestinae, Lesqx.
"U. S. Geol. Rep.," vi, pl. i, fig. 7.
Sequoiatorllosa, Lesqx.
"U. S. Geol. Rep.." vi, pl. i, figs. 9, 3a.

> Inolepis? species.
> Plate l, Figs. $8-8 c$.

Hayden's "Ann. Rep.," 1874, p. 337 , pl. is, fig. 8.
Sutlets small, globular, short-mucronate, sessile upon slender branches.
CF3

The specimen, fig. 8 , shows the impression of three unopened globular, naked nutlets, which, as seen in figs. $8 a$ and $8 c$, appear to contain small seeds which, in fig. $8 c$, are olscordate and inflated. These three last figures are all spread upon the same specimen with fig. 8 .

The relation of this fragment to Inolepis is not certain. The fruits found mixed with a mass of decayed and broken remains of conifers may be considered as indeterminable, even in their generic relation, until better specimens are obtained.

Hab.-Dakota Group of Kansas.

MONOCOTYLEDONES.

GLUMACE.
PHRAGMITES, Adans.

Phraguites cretaceus, Lesqx.

"U. S. Geol. Rep.," vi, p. 55, pl. i, figs. 13 and 14; pl. xxix, figs. 7, 7a.
Leaves and culms in fragments of various sizes; leaves lanceolate, blunt at the apex, donbly nerved; primary nerves thick or inflated under the thick epidermis, under which the intermediate veinlets, three or four, are discernible.

The fragmentary state of the first specimens found afforded reasonable doubt of their reference to this gemus. But remains of plants of analogous character have been since discovered in the Upper Cretaceons of Greenland and described as Arumb Grönlandica, Heer, "Ft. Arct.." iii. p. 104, pl. xxviii, figs. 8-11. In this species the primary nerves do not appear separated by any intermediate veinlets, at least none could be observed by Professor Heer. This difference, and also the great size of the leaf, pl. xxix, fig. 7 of the Rep., l.c., evidently separate the species.

DIOSCORE Æ.

dioscorea, Plum.
Dioscorea? eretacea, Lesqx.
"U. S. Geol. Rep.," vi, p. 56, pl. xxviii, fig. 10.

PALM Æ.
 FLABELLARIA, St.

Flabellaria? minima, Lesqx.
"U. S. Geol. Rep.," ri, p. 56, pl. xxx, fig. 12.

DICOTYLEDONES.

MYRICACEA.

MYRICA, Linn.

Myrica obtusa, Lesqx.
"U. S. Geol. Rep.," vi, p. 63, pl. xxix, fig. 10.
Myrica Dakotensis, Lesqx.
Plate IV, Fig. 9.
M. cretacea, Lerqx., Haylen's "Ann. Rep.," 1874, p. 339, pl. iii, fig. 4.

Leaves narrowly lanceolate or lineal-obong, grablually narrowed to a thick short petiole, crennlate on the borders; medial nerve flat and broad; lateral nerves at an acute angle of divergence, parallel, variable in distance, camptodrome; tertiary veins short, anastomosing with the secondary ones by nervilles at right angles.

The substance of the leaves is thick, coriaceous, the surface polished, the borders slightly retlexed and crenulate; the upper end of both the leaves representing the species is destroyed, but on fig. 9 the apex seems rounded or obtnse. They are 7 to 8 centimeter's long and about $1 \frac{1}{2}$ centimeters broad in the middle.

The relation of these leaves is more distinctly marked with M. Schenkiamm, Heer, "Quedl. Fl.," p. 11, pl. iii, fig. 1, and less distinctly with M. cretacea, Heer, ibid., p. 10, pl. iii, figs. $2 a, b$, c. They are more lineal, the borders less deeply and more closely denticulate, the veins closer, etc. By their hard texture and their nervation the leaves are also comparable to those of some tropical species of Salix.

Hab.-Fort Harker, Kansas. Chs. Sternberg.

```
Myrica Sternbergii, sp. nov.
```

Leaves long, linear-lanceolate; borlers distantly obtusely dentate; lateral reius at aente angles of divergence, comparatively thick, flexuous, simple or forking above the middle, the divisions entering the teeth in curving along the borders.

The specimen represents only a fragment of a leaf whose upper and lower parts are destroyed. The fragment is 7 centimeters long and 3 broad; the secondary veins or their primary divisions euter the teeth by

[^7]their ents or by anastomosing branches, diverging under the teeth and following the borders. By the size of the leaves and the distant obtuse teeth this species is related to M. Thulensis, Heer, "Fl., Arct.," iii, p. 107, pl. xxxi, fig. i; also closely allied by the nervation to M. apiculata, Sap. "Sézanne Fl.," p. 342, pl. iv, fig. 5.

Hab.-Two and a half miles north of Glasco, Kansas. Chs. Sternberg.

```
Myrica? semina, Lesqx.
```

""U. S. Geol. Rep.," vi, p. 63, pl. XXvii, fige. 4, $4 a$.

BETULACEA.

betula, Tourn.

Betula Beatriciana, Lesqx.

"U. S. Geol. Rep.," vi, p. 61, pl. v, fig. 5; pl. xxy, fig. 4.
Betulites denticulatus, Heer.
"Phyll. Crét. du Neb.," p. 15, pl. iv, fige. 5, 6.
Leares short, ovate, denticulate, rounded at base; lateral nerves diverging in acute angle, craspedodrome, straight.

The craspedodrome nervation relates these leaves to Betula or Alnus, though the form of the leaves recalls the type of Populus.

```
Phyllites betulxfolius, Lesqz.
```

"U. S. Geol. Rep.," vi, p. 112, pl. xx riii, fig8. 4, 7.

alnites, Goepp.

Alnites grandifolius, Newby.

" Notes on Ext. Fl.," Catal., p. 9; "Illustr.," pl. iv, fig. 2.
The species is not described by the author. The figure represents a large, round-oval leaf, narrowed to the petiole; the borders deeply regularly undulate, the lateral nerves at an acute angle of divergence, much branched on the lower side, craspedodrome like all the divisions.

The leaf represents the type of Alnus glutinosa by its form and size; but the borders are entire, merely undulate, not denticulate. The base of the leaf is more acutely narrowed to the petiole than it is generally in the leaves of this genus.

Hab.-Nebraska. Dr. F. V. Hayden.

CUPULIFERA.

FAGUS, Tourn.

Fagus polyclada, Lesqz.

"U. S. Geol. Rep.," vi, p. 67, pl. v, fig. 6.

Fagus cretacea, Newby.

Plate II, Figs. 6, $6 a$.
Newby., "Notes on Ext. Fl.," p. 23; "1llustr.," pl. ii, fig. 3.
Leaf oral, entire, slightly narrowed to the petiole; lateral veins sharply defined, numerous, parallel, craspedodrome, the points of the nerves being prominent and the interrals between them forming shallow sinuses.

To offer a point of comparison between this leaf and the one described as Fagus polyclada I have figured it again, distinctly tracing the nervilles, which are not visible on the original figure. The type of venation is that of Fagus not of Rhammus; the marginal veinlets only are more distinct than in F. ferruginea, following the border in short curves anastomosing to the upper nervilles, nearly as in Castanea.

Hab.-Smoky Hill, Kansas. Dr. F. V. Hayden.

DRYOPHYLLUM, Debey.

Leares lanceolate or oblong, generally dentate, penninerve; secondary nerres (in denticulate leaves) sub-opposite, straight, simple, entering the teeth directly by their points, or more rarely branching quite near the borders, one of the divisions entering a tooth, the other eurving under, following the margins in wary flexures and joining the next vein above. In the entire leaves the secondary nerves are more or less curved, camptodrome, with nervilles transsersely decurrent, simple or forking, united by renules at right angles. (Sap.)

Saporta in describing the genus compares the species referred to it to some kinds of Oaks and Chestnuts with coriaceous leaves, now inhabiting the mountains of Asia and of Mexico, and which seem to have been the ancestors of the Oaks and Chestnuts of the present Flora of North America.

Dryophyllum (Quercus) primordiale, Lesqx.
"U.S. Geol. Rep.," vi, p. 64, pl. v, fig. 7.

> Dryophyllum(Quercus) latifolium, Lesqx.
> Plate IV, Figs. $1,2$.

Hayden's " Ann. Rep.," 1874, p. 340, pl. vi, fig. 1.
Leaf large, broadly orate, rounded at base, deeply sinuate, obtuse or blunt at the apex; medial nerve thick; secondary nerves distant, straight or slightly eurving up to the borders, the lower more or less branching.

The fine leaf, fig. 1 , is nearly 12 centimeters long and 9 broad in the middle, its widest part, coriaceous, deeply undulate. The nervation is thich and coarse, the secondary nerves, 8 pairs, alternate, diverging at an angle of 50° are parallel, except a pair of basilar, thin, short marginal reinlets which, nearly at right angles to the medial nerve, follow close to the borders. The lower veins are more or less branching and enter the undulations or broad obtuse teeth, somewhat less prominent at the ends of the branches than at those of the nerves. The nervilles thin, but very distincl, are flexuous, at right angles to the veins, more generally continnous. Fig. 2 is an incomplete fragment which I consider as representing the same species. The upper end of the veins and of their branches are connected by strong nervilles following close to the borders; but they are not subdivisions of the secondary veins. This nervation is like that of Castanea and of some species of Quercus.

Hab.-Fort Harker, Kansas. Chs. Sternberg.

Dryophyllum (Quercus) Holmesii, Lesqx.

Plate IV, Fig. 8.
Dryophyllum (Quercus) salicifolium, Lesqu., Hayden's "Ann. Rep.," 1574, p. 340, pl. viii, fig. 刃.
Leaf linear-lanceolate, rounded in narowing to the base, minntely acutely denticulate; lateral nerves momerous, parallel, alternate or opposite, slightly bowed subcamptodrome.

The fragment represents a slightly falcate somewhat thick leaf. rather membranaceons than coriaceous, with a narrow medial nerve and close parallel secondary ones, some of them as far as can be seen ascending to the teeth and passing under the sinuses by an upper branch, some others curving along the borders and reaching the teeth by short branchlets. This species is related to Dryoplyllum lineare, Sap., "Séz. Fl.," p. 350. pl. iv, fig. 6. The teeth, however, of the American species are more distinct. turned onlside in the lower part of the leaf, inclined upward in the upper part, as in D. subtretncerm of the same author, ibid., p. 348. fig. 10.

Hob.-Near the San Juan River, at a higher Cretaceous stage than that of the Dakola Group; Southwest Colorado. W. H. Holmes.

[^8]
QUERCUS, Linn.

Quercus Dakotensis, sp. nov.

Leaf subcoriaceons, ovate-lanceolate, narrowed in rounding to the base, less abruptly, however, to an acute or blunt apex (not distinct), entire on the borders toward the base, nearly regularly dentate from below the middle upward, short perlicellate: medial nerve straight; secondary nerves thin, slightly bowed, divided into two or three branches, each entering a tooth.

The leaf is 9 centimeters long and $4 \frac{1}{2}$ centimeters broad in the middle; the point not distinct appears blunt; the pedicel is slender, nearly 1 centimeter long as far as it is seen before entering the stone; the secondary nerves diverge 55° to 60°.

The species is related to Quercus Beyrichii, Ett., "Kreidefl. von Nieders." " p. 14, pl. ii, fig. 2, from which it differs by the teeth not being turned upward or serrate, but abruptly acuminate outward; by the texture, which is not distinctly coriaceous; by thin secondary nerves and a narrow straight midrib. The upper veins are under the same angle of divergence, craspedodrome; the lowest pair, attached a little above the base of the leaf. follows the entire border up to the lower teeth. This species has also it degree of affinity to Castunea Humsmami, Dkr., "Paleonl.." iv, p. 181, pl. xxxit, fig. 1. The teeth are of the same character.

These three species may be referable to the preceding genus, but the tertiary divisions of the veins are not discernible in any of them.

Hab.-South of Fort Harker. Chs. Sternberg. No. 62, Mus. Comp Zool.. Cambridge.

Quercus hexagona, Lesqx.

"U. S. Gienh. Rep.," vi, p. 64, pl. v, fig. 8.
This leaf, to which I could not indicate any related form when I described it (l.c.), is, in shape especially, allied to the Oligocene Quercus Osbornii.pl. xxxviii, fig. 17, which, itself, is comparable to Quercus tepheoles, Ung., as figured in sieber, " Nord-Böhm Braunkohl. Fl.," iii, fig. 17.

```
Quereus Ellsworthiana, Lesqx.
```

"U. S. Geol. Rep.," vi. p. Co. pl. vi, fig. 7.
Another specimen referable to this species, as yet insufficiently represented and described, is a leaf of the same size and form as that of the "U. S. Geol. Rep.," l.c. The nervation is of the same character, at least
for the distance and the ramification of the secondary nerves; the lower ones only are more open and more bowed in passing to the borders, the lowest pair being nearly al right angles to the thick medial nerve. The specimen is No. 1175 of the U. S. National Museum.

Qucreus porinoides, Lesqx.

"U. S. Geol. Rep.," vi, p. 66, pl. $\mathbf{x x x}$, fig. 9.
The generic relation of this fragment, like that of the preceding, is not positively ascertained.

Quercus Morrisoniana, sp. nov.
Plate XVII, Fige. 1, 2.
Leares of medium size, coriaceous, petiolate, ovate-lanceolate, acuminate; medial nerve strong; secondary nerves numerous, alternate, curved in passing to the borders, camptodrome, simple, or some of them forking near the entire borders.

The species is related by its characters, shape, size, facies of the leares, and nervation to the Miocene Quercus neriafolia, A. Br. The midrib is strong, prolonged into a petiole $1 \frac{1}{2}$ centimeters long. The lower veins are slightly more open than the upper; all are nearly parallel, variable in distance, more or less bowed in passing to the borders, which are very entire. The leaves average 10 to 12 centimeters long, 3 to $3 \frac{1}{3}$ centimeters broad in the middle where they are the widest, gradually narrowing in a curve to the base and slightly decurring to the petiole.

The embedding material is a sandstone too coarse for the preservation of the areolation; flexuous nervilles, transversely decurrent, are more or less distinct. By this character the leaves are related to Q. nervosa, Sap., "Ét.," ii, i, p. 86 , pl. iii, fig. 12.

Hab.-Base of the mountains, near Morrison, Colorado. II. C. Beckwith.
Quercus salicifolia, Newby.
"Notes on Ext. Fl.," I' 24; " Illustr.," pl. ii, fig. 1.
Leares petiolate, smooth, thick, entire, abruptly pointed at both ends; medial nerves strong, straight or flexnous; secondary veins unequal in size, strong near their base, becoming finer, flexuous, and branehing toward the borders, where some of them inoseulate by irregular curves while others terminate in the margin.

The facies of the leaf and the alternation remarked by the author of lare with smaller secondary veins, a character essentially pertaining to the willows, sem to justify the reference of this leaf to Salix. The coriaceous
texture of the leaf and its smooth surface do not contradict this reference; for all the species of willows of the Dakota Group are coriaceous, as are generally the willows of the tropical or warm regions.

Hab.-Blackbird Hill, Nebraska. Dr. Hayden.

```
Quercus cuneata, Newby.
```

"Notes on Ext. Fl.," p. 25.
Leaves short, petiolate, lanceolate, pointed at both ends, acute, entire, or slightly wave-margined; midrib strong; secondary veins remote, nearly straight, with short intermediate ones; surface smooth, texture originally thick and coriaceous. (Ny.)

The author compares this species to Q. imbricaria, Michx., for the form and consistence of the leaves.

Hab.-Blackbird Hills, Nebraska. Dr. Hayden.
Quercus autiqua, Newby.
"Notes on Ext. Fl.," p. 26.
Leaves of medinm size, lanceolate in outline, acute, often somewhat flexuons; margins serratedentate, with strong obtuse teeth, which are appressed or turned upward; midrib stroug, pereurent; secondary veins numerous, of unequal strength, arched upward, craspedodrome. (Ny.)

Hab.-Lower Cretaceous sandstone, Banks of the Rio Dolores, Utah.

```
Quercus sinuata,Newby.
```

"Notes on Ext. F].," p. 27.
Leares small, ovate in general outline, narrowed to the petiole or slightly decurrent; margins deeply lobed; lobes rounded, broader than the sinuses that separate them, three, nearly equal on cither side; summit broadly ronuded or obseurely lobed, often oblique; midrib straight or slightly flexed; secondary reins strong and simple, rumning to the margin of each lateral lobe. (Ny.)

The author compares the species to the living Q. obtusiloba, Michx.
Hab.-Same as the preceding.

SALICINEA.
 SALIX, Tourn.
 Salix nervillosa, Heer.

"Phyll. Crét. du Neb.," p. 15, pl. i, fig. 3.
Leaves oblong, lanceolate, very entire; secondary veins in an acute angle of divergence, curved, camptodrome; nervilles curved, at right angles to the midrib.

Hab.-Nebraska. Dr. Capellini.

Salix protedfolia, Lesqx.
Plate 1, Figs. 14-16; XV', Fig. 3.
"U. S. Geol. Rrpe," vi, p. 60, pl. v, figes 1, 4.
The leal figured (pl. xvi) is related to this species merely by its form. resmbling that of pl. v, fig. t, of the "Report," l. c. The nervation is indistinctly preserved. as in fig. 2 of the same plate. The ollor leaves (pl. 1. ties. $14-16$) are all much narrower but broader toward the base, and gradually tapering to a long point. They have the same kind of venation and merely represent modified forms of this extremely variable species.

Hub.-Kansas, near Fort Harker.
Salix Meekii, Newby.
"Latey Ext. Fl.," f' 19; " Illustr.," pl. i, fig. 1.
Leaves petioled, thin and delicate, lanceolate, acute at both ends, entire; midrib slender; secondary nerves fine, in an acute angle of divergence 35°, gently arched and anastomosing near the margins. (Ny.)

This is apparently the same species as the preceding, which, with an apparent difference in the texture of the leaves, the more or less acutely narrowed base, the great variety of size of the leaves, includes also the two following forms:

Horb.-Blackbird Hills. Nehraska. Dr. Hayden.
Salix culleata, Newby.
"Later Ext. Fl.," p. 21; "Illuetr.," pl. i, tigs. 2, $\because 2$
Leaves of medinm size, sessile or short petiolate, lanceolate, acute at both ends, broadest toward the apex, gradmally narmod below to the base; medial nerve distinct: secomary veins lelicate. with an acute angle of divergence ($\sim_{0} 0$), gently armed abore and inosculating near the margin. (Ny.)

The figures show the leaves larger in the middle, not foward the apex: they are more rapidly narrowed to the base and abruptly curve to the petiole in reathing it.

Hub - Mouth of Sioux Fiver, Nebraska. Dr. Hayden.
salix Hexuosa, Newby.
"Later Ext. Fh.," p. © 1 ; "Ilnstr.," pl. i, tig. 4.
Leares nampor, lintar, pointed at eath end, sessile or very short petioled; medial nervestmons, generally sumewhat tlexnous; secondary vejns diverging abont 400 , somewhat brached and flexnous, curving and inosentating near the margins. (Ny.)

The author considers this as a variety of s '. Meekii.
Mab.-Blackbird Hills, Nebraska. Dr. Hayden.

POPOLOS, Linn.

Populus litigiosa, Heer.

"Phyll. Crét. du Neb.," p. 13, pl. i, fig. 2; Newby., "1llustr.," pl. iv, fig. 1.
Leaves round in outline, very entire at base; the two pairs of lower lateral veins opposite, the other alternate and distant; nervilles curved, simple or forking. (Hr.)

Mab.-Tekamah, Nebraska. Dr. Capellini.
Populis elliptiea, Newby.
"Later Exl. Fl.," p. 16; " Illuatr.," pl. iii, figx. 1, 2.
Leares long-petioled, suborbieular or transversely elliptical, slightly cuneate at the base and apienlate at the smmmit; lower half of leaf entire, upper half or more very regularly and rather finely obtusely serrate or cremate, the points of the teeth inclining npwarl; primary nerves nsually fine, sometimes three, radiating from the base at equal angles: from them the secondary reins spring at acute angles. (Ny.)

The species is remarkably similar, by the characters of the leaves, to P. cumeata. Newby., loc. cit., p. 64, pl. xiv. figs. 1, 4, a Miocene species of the type of P. arctica, or is. perhaps, one of its numerous varieties.

Hab.-Blackbird Hills, Nebraska. Dr. F. V. Hayden.

```
Popilus microphylla, Newby.
```

"Later Est. Fl.," p. 17 ; "Illuntr.," pl. ii., fig. 5.
Leaves very small, seareely an inch in length, broadly emeate at the entire bast, rounded and deeply dentate from the middle upward; teeth conical, acute or blunt at the apex; nerves finely radiating trom the base, branching above, the branches entering the teeth. (Ny.)

Hab.-Same as the preceding. Dr. F. F. Hayden.

> Populus? cordifolia, Newby.
"Later Ext. F".," p. 18; " Illustr.," pl. iii, fig. 7.
Leaves heart-shaped, slightly decurrent on the petiole; margins entire; nervation fine but distinctly defined: medial nerve straight or slightly curved, running to the margin: lateral nerves, six on each side, diverging about 50°, nearly parallel, straight or slightly curved near the apex, the lower branching; nervilles at right angles or forking, rarely continuons. (Ny.)

Hab.-Same locality as the preceding. Dr. F. V. Hayden.

Populites Laneastriensis, Lesqx.

"U. S. Geol. Rep.," vi, p. 58, pl. iii, fig. l.
Populites elegans, Lesqx.
" U. S. Geul. Rep.," ri, p. 59, pl. iii, fig. 3.
Populites cyclophylla? Heer.
"U. s. Geol. Rep.," ri, p. 59, pl. iv, fig. 5.
From a remark of Professor Heer, this leaf is not referable to his Populus cyclophylla, as I supposed it. Indeed, from the craspedodrome nervation, this leaf is rather a Cissites than a Populus. Its relation is as yet undefined.

PLATANEX.
\section*{PLATANUS, Linn.}

Platanus Newberryana, Heor.

"U. S. Geol. Rep.," vi, p. 72, pl. viii, figs. 2, 3; ix, fig. 3.
Platanus obtusiloba, Lesqx.
"U. S. Geol. Rep.," vi, p. 69, pl. vii, figg, 3, 4.
Platanus primieva, Lesqx.
"U. S. Geol. Rep.," vi, p. 69, pl. vii, fig. 2; xxvi, fig. 2.

Platanus Meerii, Lesqz.
 Plate IlI, Fig. I; VII, Fig. 5.

"U. S. Geol. Rep.," vi, p. 70, pl. viii, fig. 4; ix, figs. 1, 2.
Fig. 1 of pl. iii represents a fragment of a merely undulate, not lobate, leaf. The nervation has the normal character; the petiole is longer than I have seen it in any other specimen of this species. Another leaf, preserved entire, seen in the Museum of Comp. Zool., Cambridge, No. 225, is still smaller than this one, only 6 centimeters long and $5 \frac{1}{2}$ broad. It has the same nervation, the borders more deeply undulate, and two short, rather acute, lateral lobes. Fig. 5 of pl. vii is still a smaller form of this same species.

The leaves of this species have been found at two different localities on the Salina River and near Fort Harker, Kansas.

Platanus dimitutiva, Lesqx.
"U. S. Geol. Rep.," vi, p. 73, pl. viii, fig. 5.

LIQUIDAMBAR, Linn.
Liquidambar integrifolium, Lesqx.
Plate XIV, Fig. 3.
"U. S. Geol. Rep.," vi, p. 56, pl. ii, figs. 1, 3; xxiv, fig. 2.
There is a degree of uncertainty in regard to the relation of the leaves described under this name, as I have remarked it in the "U. S. Geol. Rep.." l. c. If on one side they are related by their forms, especially the entire margin, to species of Aralia, or perhaps more of Sterculia, their nervation has more analogy to that of Liquidambar than to any other of the groups to which they have been compared. Two well-preserved specimens of the Museum of Comp. Zool., Cambridge, show the secondary veins somewhat variable in distance and divergence, moderately curving to quite near the borders, where they abruptly bend, following upward to the point where they anastomose in simple festoons. They are separated by short tertiary veins parallel to the secondary ones, dividing in the middle of the areas in joining the borders at right angles as nervilles. I have not observed this character in any of the fossil leaves which I have described as Aralia, nor do I find it in the few living species which I have for comparison. Another point of relation is remarked in the sub-cordate base of the leaves of the cretaceous species which, like Liquidambar Styraciflua and the common Miocene species L. Europaum, have the lower lateral lobes either curved back or at right angles to the petiole, so that the base of the leaf is never cuneate.

MOREX.

FICUS, Linn.

Ficusprimordialis, Heer.

"Phyll. Cret. du Neb.," p. 16, pl. iii, fig. 1.
Leares coriaceous, lanceolate, narrowed to the base, very entire, penninerve; lotrer pair of secondary veins at a very acute angle of divergence from the midrib, the others more open, all camptodrome.

I refer to this species two specimens (Nos. 26 and 33, Museum Comp. Zool., Cambridge), representing: the one, the impression of the upper surface of a lanceolate or oblong-lanceolate leaf, same size and shape as that of

Heer, with base and top also destroyed. The midrib is narrow, the secondary reins thin, the lower pair at a more acute angle of divergence; but the divergence of those above is gradually more obtuse, not abruptly so, as is the leaf of the "Phyllites." The veins are close, 5 to 6 millimeters distant, not decuring to the medial nerve, slightly arched in passing up toward the borders, which they follow in curves, anastomosing by nervilles at right angles with the anterior veins.

The other specimen bears the impression of the under surface of a leaf and the upper part of two others, these tapering into a long acumen. The areolation is very distinct, exposing a coarse reticulation composed of large, irregularly quadrate areas divided into small polygonal meshes.

These teaves have great affinity to those of the following species; they differ by their shape, oblong in the middle, by the secondary veins being more distinct, especially near and along the borders; the areolation appears to be of the same character.

Hab.-South of Fort Harker. Chs. Sternberg.

Ficus Halliana, Lesqx.

"U. S. Geol. Rep.," vi, p. 68, pl. xxviii, figs. 3, 9.

Ficus Beckwithii, sp. nov.

Plate XVI, Fig. 5; XVII, Figs. 3, 4.
Leares sub-coriaceous, lanceolate or oblong, very entire, narrowed upward to a long acmmen, more rapidly downward from below the middle and slightly decurring to the petiole; midrib strong, gradually thicker toward the base; secondary veius momerous, parallel, camptodrome; nervilles close, flexuous, and sub-contimons, at right angles to the veims.

This species is of the same type as F. protogoca, Heer, "Fl. Arct.," iii, p. 108. pl. xxx, figs. 1-8, differing by the form of the leaves, which in F. protogca are oblanceolate or largest toward the apex. The veins are closer, though at the same angle of divergence, simple, 7 to 8 millimeters distaut, at an angle of divergence of 35°. The nervilles also are very close and distinet. The leaves average 15 centimeters in length and $3 \frac{1}{2}$ to 4 centimeters broad betow the middle.

Mab.-Near Morrison, Colorado. H. C. Beckwith.

Ficus? angustata, sp. nov.
Leaves narrowly laneeolate, comparatively long; medial nerve thick; secondary reins very close, at an acute angle of divergence, camptodrome.

The leaves are long, lanceolate, gradually acuminate, and also gradually narrowed to the base, 12 centimeters long, 2 centimeters broad. The reins at an angle of divergence of 20° pass upward slightly curved, and abruptly bend close to the borders following them in single bows. They are only $2 \frac{1}{2}$ millimeters distant.

This species differs from the preceding by narrower leaves, the more acute angle of divergence of the reins and their relative positions. It might be compared to Rhammus tenax, Lesqx., "U. S. Geol. Rep.," vi, p. 109 , pl. xxi, fig. 4; but the leares, though of the same width, are nearly twice as long, and the angle of divergence of the veins is only half as lroad; the medial nerve also is much thicker.

Hab.-Blufit Creek, Kinsas. Chs. Sternberg.

Ficus magnolizefolia, sp. nov.

Plate XV11, Fige. 5, 6.
Leaves very entive, oval or broadty laneeolate, broader below the middle, rounded in narowing to the short petiole, and dechned downward at the slightly decurring base; medial nerve of medimm size, strict; secondary reins at an acute angle of divergence, close, very oblique, nearly straight from the midrib to near the borders, simply camptodrome.

The leaves, 8 to 10 centimeters long, $3 \frac{1}{2}$ to $5 \frac{1}{2}$ centimeters broad, with a short not inflated petiole about 1 centimeter long, appear somewhat thick but not coriaceous; they are acute or tapering to a short acumen (all the points are broken). The veins close, 5 to 7 millimeters distant, under an angle of divergence of 40°, are thin, parallel, except the lowest pair which is a little more oblique. The areolation is obsolete; only a few nervilles are seen at the end of the veins, anastomosing in marginal curves along the borders and close to them.

These leares have a great likeness to those of Magnolia Capellini, Heer, "Phyll. Crét. du Neb.," p. 21. pl. iii, figs. 5, 6, differing especially by the more acute angle of the more numerous and closer secondary nerves. By this character, and also by the slightly decurring base of the leaves, they
are related to M. alternans, Heer, l.c., p. 20, pl. iii, figs. 2, 4. They may represent one of these species; but on account of the simple curves of the veins close to the borders, and also of their position close to each other. they do not appear to be referable to Magnolia. The petiole is not inflated as it is often in Ficus, but the lower.pair of veins is more oblique, and, as seen in fig. 6 , the medial nerve is narrowly split or channeled in the middle.

Hab.-With the preceding. H. C. Beckwith.

Ficus Glascena, sp. nov.

Leaves large, thick, coriaceous, polished on the surface, oblong-lanceolate, obtusels pointed, narrowing and slightly decurring to the petiole; medial nerve very broad; secoudary veins thin, at a broad angle of divergence, scarcely curved in passing to the borders, joining without curving to it a somewhat thick marginal vein.

The leaves are thick, 15 to 20 centimeters long, 6 to 7 broad; the midrib 2 to 3 millimeters broad at base. The type of venation resembles that of Ficus parasitica, Shott., as figured by self-impression in "Bil. Fl.," pl. xxiii, fig. 1; the thin lateral veins sometimes branching in the middle, abruptly anastomosing to a somewhat thick marginal vein which follows close to the borders in successive bows. The secondary veins appear separated by parallel thinner shorter tertiary veinlets; but the divisions of the third order and the details of areolation are obscure.

Hab.-Two and a half miles south of Glasco, Kansas. Chs. Sternberg.

Ficus distorta, Lesqx.

Plate XIV, Fig. 4.
Hayden's "Ann. Rep.," 1874, p. 342, pl. $\mathbf{\nabla}$, fig. 5.
Leaf coriaceous, entire, obovate, unequilateral, pointed or acuminate, apparently gradually narrowed to the base; nervation pinnate; secondary nerves thick, parallel, equidistant, camptodrome; nervilles strong, at right angles to the veins, anastomozing and subdividing into an irregularly quadrate or polygonal areolation.

A mere fragment of a leaf of which the upper and lower parts are destroyed. The characters do not positively indicate its relation to Ficus. It is figured and described for future comparison.

Hab.-Near Fort Harker, Kansas.

Plate 1, Figs. 1:. 13.
Havden's "Ana. Repr," 1874, p. 342, ph. v, fig. 7.
Laurophyllum reticulatum, Leeqx., "U. S. Geol. Rep.," vi, p. \%6, ph. xv, figs. 4, 5.
Leaves coriaceons, polished on the upper face, entire, narrowly lanceolate, acnminate, gradually tapering to a short thick petiole; medial nerve thick, grooved on the upper side; secondary veins close, very open.

A large number of specimens of this fine species have been examined. Though generally more or less fragmentary and often erased on the surface, the essentiat characters may be generally recognized. The leaves Villy in size from 10 to 20 centimeters long and from $1 \frac{1}{2}$ to $4 \frac{1}{2}$ centimeters broad in the middle. They are lanceolate, gradually narrowed bolh ways from the middle. The secondary nerves are parallel, unequal in distance, nearly at right angles to the midrib, and also nearly straight in passing to near the borders, where they curve and anastomose in festoons. They are generally separated by one or two tertiary reins attached to them by branches either oblique or at right angles, whose subdivisions compose an irregularly quadrate areolation.

By its nervation this species has a typical relation to F. Glascena. The curres of the secondary veins, which follow close to the borders in successive bows, form a kind of margin, as in the preceding species; but the reins distinctly curve to the festoons and compose them. They do not abruptly anastomose with them by their attenuated ends; for this reason the marginal flexures are thin, rarely distinct in this species, while in F. Glascona they appear as formed by a truly independent nerve, more deeply and distinctly marked than the ends of the secondary veins.

In the collection of the Nuseum of Comp. Zool. of Cambridge I have found fourteen specimens of leaves same size and form as those described here, with the same character of areolation, but with the secondary veins at an acute angle of 30°. All the specimens are from the same locality, Elkhorn Creek, and seem to represent a truly different species. But the lateral veins and their divisions are not distinct enough to be satisfactorily described.

At first I considered the relation of these leaves to be with the Laurinea. But as remarked already in the first description of this species,
c F^{4}
the renation is of the same type as that of some species of Fices of both the present and the older floras, comparable, for example, to that of Ficus Geimitzï. Ett.. "Fl.. Niedersch.." p. 16. pl. ii. tiges. 7. 9-11.

The two leare figured. pl. i, show the mader face, where the vins are more distinct and the medial nerve lalf-round. On the upper face the midrib is deeply chameled, but not inflated at the point of union to the short petiole which is rarely lonere than 1 $_{\frac{1}{2}}$ centimeters.

IIab.-Commonly found throughout the Dakota Group formation from Minnesota to Southern Kansas.

PROTEACEA.
PROTEOIDES, Heer.
Proteoides daplinogenoides, Heer.
"U. S. Geol. Rep.," vi. p. S5, pl. xv, figs. 1, o.
Proteoides grevilledeformis, Heer.
"U. S. Geol. Rep.," vi, p. 86, pl. xxriii, fig. 12.
Proteoides lancifolius, Heer.
"Quedliub. Fl.," p. 12, pl. iii, fig». 5, 6.
Leaves narrowly lanceolate, narrowed in the upper part, very entire.
Two specimens, Nos. 63 and 76, of the Museum of Comp. Zool. of Cambridge, seem referable to this species. The first is a fragment of a linear-lanceolate leaf narrowed upward to an inclined apparently obluse point, 8 to 9 centimeters long. 11 millimeters broad in the middle, the base destroyed. The medial nerve is narrow, and the thin lateral reins. two of which are seen near the base, come out at a very acute angle of divergence and are soon effaced upward.

The other leaf is larger, 16 millimeters broad in the middle, 8 centimeters long, lanceolate, gradually equally narrowed both ways, obtuse at the apex. Its medial nerve is flat, somewhat broader, 1 millimeter near the base, wherefrom two lateral nerves ascend at a very acute angle of divergence (about 10°), and no other veins are distinct up to above the middle of the leaf, where a few alternate ones come out at a broad angle of divergence, curving up as in fig. 6 of Heer, loc. cit. Except that this leaf is slightly broader the characters are identical.

Hab.-Near Fort Harker, Kansas. Chs. Sternberg.

EMBOTHRITES, Ung.

Embothrites (?) daphneoides, Lesqx.
"U. S. Geol, Rep.," ri. p. 87, pl. xxx. fig. 10.
From the comparison of a number of well-preserved specimens of Andromedt l'arlatorii, Heer, recently received from Kansas, I am disposed to consider this fragment as referable to this last species.
lomatia, R. Brown.
Lomatia? Saportanea, Lesqx.
Plate III, Fig. 8 (enlarged).
Haydm's "Ann. Repo:" 1874, p. 340.
Totur Saportanea, Lesqx., "U. S. Geol. Rep.," vi. p. 42, pl. xxix, fign. 1-4.
Leaves compond, linear in ontline; ultimate divisions membranaceous or subcoriaceous, narrowly lanceolate, acute, commate by the decurring base forming a narrow nerved wing to the rachis; medial nerve strong and straight, continuous to the apex; secoudary reins simple, close, parallel, diverging at an acnte angle in passing up close to the borders, whicl they follow in simple bows; tertiary veins shorter, anastomosing with the secondary ones by oblique diversely inclined veinlets.

The ultimate divisions of the leaves are parallel-oblique or somewhat curved downward, alternate or sub-opposite, a disposition similar to that of the divisions of the pinnæ of a number of species of ferns. They are gradually decurrent on the rachis, following it downward as a narrowreined or smooth margin. The renation of the leaves is distinctly seen on the enlarged fragment, fig. 10.

My first impression in regard to these remarkable and fine vegetable remains was that they represented an extinct kind of fern. I eren supposed that, considering the peculiar disposition of the leaflets and their renation, which is sometimes mixed with curved lines, we had here regetable remains of a new type, constituting a link of transition between the ferns and the plants of a higher order. The segmentation of the leaves is similar to that of some species of fossil ferns, Sphenopteris desmomera, ${ }^{1}$ for example, which, according to the remarks of the author, has no relation to any living fern; also related to the fragments described by Debey and Ettingshausen ${ }^{2}$ under the generic name of Monkeimia. For not only have they a similar division of the pinnæ, but, as seen in fig. 6 , the nervation

[^9]is somewhat analogous, the numerous parallel secondary veins curving ur along the borders, some of them united by oblique veinlets.

Competent observers in Europe have contradicted these views and referred the fossil fragments to the Protencea, comparing them to some species of Lomatir; and later I have received from the Oligocene of Florissant a large number of specimens, partly figured (pl. xliii), whose relation both with the Gretaceous species and with living specimens of Proteacet is evident.

Lomatia saportanea, var. longifolia.
Leaves larger, divisions longer and broader.
None of the lateral leaflets are preserved entire, but from the fragments they are at least 8 or 9 centimeters long, though comparatively narrow, only $\frac{1}{2}$ to 1 centimeter broad. The upper leaflets, two pairs of which are preserved, with the terminal upon one of the specimens, are 6 centimeters long and 7 millimeters broad, the terminal having the same size and characters.

Besides the difference in the size of the leaflets, these appear a little more distinctly coriaceons, and their surface is smooth without any trace of venation. Better specimens may prove this to be a different species.

Hab.-The specimens from which the variety is described are from Morrison, Colorado, procured by A. Lakes. The others, first described, are from Kansas.

Lat Thacee.

LAURUS, Linn.

Laurus Nebrascensis, Lesqu.
"U.S. Geol. Rep.," ri, pl. 74, p. x, fig. 1; pl. xxviii, fig. 14.
Lanrus macrocarpa, Lesqx.
"U. S. Geol. Rep.," ${ }^{\text {ri, p. 74, pl. x, fig. .2. }}$
Lanrus proterefolia, Lesqx.
Plate III, Figr.9, 10; XVI, Fig. 6.
ITaydun's "Ann. Rep,", $1=74$. p. 34:, pl. r, figs, $1, ~ \because$.
Leares subeoriaceous, broadly lanceolate, gradnally narrowed from below the middle into a loug blunt acumen, more rapidly attemated to the base; medial nerve straight or slightly chrved; lateral nerves slender, eamptodrome, parailel, except the lower pair slightly more obiique.

The leaves vary in size from 9 to 16 centimeters long and $2 \frac{1}{2}$ to $3 \frac{1}{2}$
centimeters broad at or below the middie. The secondary reins, distinctly curved in passing from the midrib to the borders, are more or less distant, rately separated by shorter terfiary veins cut at right angles by strong nervitles. which are simpte or anastomosing in the middle, the npper ones ascending to the borders. The arcolation is not seen. the surfice appearing puntulate or chosely dotted by small areoles.

111 my first deseription of this species, l. c.. I compared it to Protereides driphenemondes, from the shape of the leares only. This aftinity is distant. By the form of the leaves this species rather resembles Firms hrousimu, Heer, and F. Ficchwithii, descrited above. Its renation is that of Larmins Tebrascusis. from which it difters ing the narower medial nowte. fte secontary reins more stender and more curved in passing to the bomers, the proloned point of the leares ete.

Inlb.-Near Fort Inarker, Kansas. Chs. Sternberg. Feren!ly fomm at Mmrison, Colerado, by A. Lakes.

Latluns? modesta, sp. nov.

Plate XTh. Fier. 1.
Leaves small, lincar-oblong, cmeate to the petiole; midribthick: seombary vems irregular in distance, camptodrome, following dose to the borders in prolonged emres.

There is only a fiagmentary specimen of a smatl. aptorently linear-
 The nervation is like that of Lamons primifomin. Lng.. in sin. "El.." こ. 1 , f. 89.1 . iii. fis. 8 , the lateral veins at about the same distame and oblique in the same degree, curving high and close to the bordors: but no trace of areolation is distinct. This fragment is also related to Myrtopheytheme masillmm, Heer", "Ouedl. Fl.," p. 14, pl. iii, fig. 10, represented hy a still smaller fragment of leaf. round at base, with secondary veins curved and following high along the borders.

Hub.-Near Morrison. Colorado. H. C. Beckitith.
PERSEA, Gærtn.

Prrsra Leconteana, Lesqx.

"U. S. Geal. Rep.," ri, p. in, pl. xxviii, tig. 1.

```
Perser Sternlergii, Lesqx.
```

"L. S. Gecl, Relr," vi, p. 76, pl. vii, fif. 1.

CINNAMOMUM, Burm.

Cinnamomum Scheuchzeri? Heer.

"U. S. Grol. Rep.," vi, p. 8:3, pl. xxx, figs. 2, 3.
Profersor Heer considers the reference of these leaves to C. Scheuchzeri as mucertain; for though the form of the leaves is much the same, the middle nerve is too thick for that species, especially toward the point. Saporta is also of opinion that the presence of C. Scheuchzeri in the Cretaceous is very improbable, as in Europe this species is essentially in the upper Miocene. In his paper ("Descriptions of the fossil plants collected by Mr. George Gibbs"), Professor Newberry doubtfully refers to Cimamomum Heerii, Lesqx., some leaves whose affinity of nervation is in his opinion with C. Scheuchzeri or C. lanceolatum. Following Professor Heer’s opinion, I had changed the original name of the "Rep.," l. c., to that less definite of Daphnogene cretacea (Hayden"s "Ann. Rep.," 1874, p. 343); but if specifie identification is not ascertainable from the fragmentary specimens obtained thus far, the close relation is at least indicated by the old name, which should, therefore, be preserved. Another reason against the change of name is the intimate relation, or perhaps identity, of the Cretaceous C. Heerii, with a Tertiary species of the genus.

```
Cinnamomnm Heerii, Lesqx.
```

"U. S Geol. Rep.," vi, p. 84, pl. xxviii, fig. 11.
Leares thick, coriaceous, very entire, ovate, taper-pointed, rounded at the base to a short petiole; lateral nerves emerging a little above the base, asceuding higher than the middle of the leaves, branching outside.

There is scarcely any modification to be made to the description of the "Rep.," l. c., which I am able now to complete from a recently procured specimen of an entirely preserved leaf. This leat, 9 centimeters long without the petiole (1 centimeter long), is broadest above the base, rounded to the petiole, joining it in an abruptly and short declining curve, and tapering above to a somewhat acute or merely blunt point. The medial nerve is broad and deep, enlarged to the base from the point of union of the lateral primary nerves 7 millimeters above the top of the petiole, gradually narrowed upward but distinct or persistent to the apex. The lateral nerves though thick are not as strong as the midrib, ascend in slightly curving inward up to nearly the second pair of secondary veins, where
they are effaced near the borders. The secondary veins, two pairs, are alternate, distant, much curved in ascending high toward the boreders, the lowest joining the medial nerve above the middle of the leaves, while from the base downwad to the fork of the primaty nerves the area is filled by a series of thin nervilles derived at right angles from the midrib. The lateral primary nerves are divided in momerous lateral bramehes. 5. 6 curving in passing outside toward the margins, where they becone effaced.

This leaf is well enough represented by the figure in "U.S. Geol. Rep.." vi. mate from a specimen whose borders hat been ground from the middle downward and rounded to the point of union of the lateral nerves in such a way that the relative position of the nerves to the base of the leaf could not be ascritained, nor the disposition of the borders in joining the petiote. The size of the newly-fomm leaf is larger and its broadest point is close towird the base.

Excepting this last character, and its thimer venation, the Crefaceous leaves are very similar to those deseribed from the Mississippi Eocene as C. Mississimpiense, lately identified with numerous leaves of C. "ffine, of the Laramie and Carbon Groups. These are of about the sime size, but all are rather oral-acuminate than orate, the broadest part being in the middle. In C. polymorphem, to which both the Cretaceous and Tertiary species have been compared, the leares are broader above the midtle.

The specimen figured in "U. S. Geol. Rep.," vi, l. c., came from near Ellswortli, Kansas. That of Nanamo was, as far as I can recollect, in a still more imperfect state of preservation, and as I have not preserved a copy of the phates delivered to Dr. Evans, which have never been published, I am unable to see, if, indeed, the leaf of Nanamo is identical with that of the Dakota Group. This, however, could not force a definite conclusion of the age of the flora of Nanaimo, as the Cretaceous type of Cimnamomum appears preserved with very little modification in the different Tertiary stages of this continent.

OREODAPHNE, Nees.
Oreodaphne cretacca, Lesqx.
"U. S. Geol. Rep.," vi, p. 8i, pl. xxx, fig. 5.
A fine leaf of this species recently found in Kansas (No. 215, Coll. of the Iusemm Comp. Zool., Cambridge) has all the characters of the leaf
figured. It differs merely by the secondary nerves not being as thick. The areolation is not distinct.

SASSAFRAS, Nees.
Sassafras Mudgei, Lesqx.

Sassafras acutilobum, Lesqx.
Plate V, Figs. 1, 5.
"LT. S. Greol. Rep.," vi, p. 79. hl. xir, fige. 1. .2.
The form appears specific, as it is represented by leares of very different size and ahways with the same characters. All the lobes are very entire, the lateral either broadly diverging, sometimes nearly at right angles to the midrib or erect; the renation is distinct but not coarse. The leaf, fig. 5 , is one of the smallest seen of this species. The largest measures 12 to 14 centimeters long without the peliole, or still more, for I have seen from Kansas a fragment, only the middle lobe, 10 centimeters long from the simuses to the apex and t centimeters broad. As the lateral lobes greatly vary in their divergence, of course the width of the leaves differ much. The species is especially abundant at Thomson Creek, near Fort Harker, with S. cretaceum and other forms of the same type.

SASSAFRAS (Araliopsis), Lesqx.
 Sassafras (draliopsis) cretaceum, Newby.

```
"Later Ext. Fl.," p. 14; "llhetr,"pl. ri, figs. 1. 4 (fragments of leaves). Lesqx., "U.S. Ged. Rep.," vi, p. 80,
    pl. xi, fige. \(1, \ddot{\sim}\); xii, fig. . .
    Sassatras (Araliopsis) obtusum, Lesqx.
S. cretacerm, rar. obtusum, Lesqx., "LT. S. Geol. Rep ." ri. p. عo, ply xii, fig. 3; xiii, fig. 1.
```

This form should be considered as specific. not merely on account of its shorter, more obtuse lobes, but particularly of the renation, which is much coarser than in the preceding species. The primary nerves, especiatly, are mach broader and slarply cut. It is found with S. cretaceum at Thomson Creek; but it is also fomd by itself alone in otler localities.

```
Sassafrats (AraliopNis) mirabile, Lesqx.
```

"U.S. Crol. Repr,'" vi. p. EO. pl. xii, fier. 1.
Ihutums lutitoba, Newhy.. "Later Ext. Fl.," P. ©3: "Illustr.," pl. it, fig. 4.
To the "haraders indicated in "Rep.." vi, may be added the thick coriaceou: substance of the leares. which in small specimens appear
horny; the great divergence of the lateral lobes nearly at right angles to the medial nerve and also generally curved down; the middle lobe is always comparatively short and broad.

```
Sassalroas(Avaliopsis) dissectum, sp. nov.
```

Leaves very large. long and narnowly emeate to the petiole, palmately five-lobate by sublivision of the lateral lobes diverging at an acute angle from the medial one.

The leaves of this form are very large, some measuring 20 centimeters from the top of the peliole to the apex, 20 centimeters befween the extremities of the lateral lobes. The base is narrowly cumeate. long, decurring to the petiole; the three primary divisions are joined in obluse but narrow sinuses; the lateral ones at an acute angle of divergence are cut into two short obluse dentate lobes, while the middle one is laper-pointed, not lobed, but deeply undulate-dentate. This form might be considered as a var. of s mirabite but if differs greally in the gencral facies, the lateral lobes ohlique erect lobed and mequilateral, the lateral primary nerves alternating at base or joined to the medial at a distance from each other. the long lanceolate mondate-dentate middle lobe and in the nervation, the primary nerves being thick indeed, while the secondary nerves and their branches are thin, generally effaced along the borders.

Itch.-This form lias not been seen among the numerous specimens of fossil plants examined from the Dakota Group until recenlly. Il is represented in the collection of the Muscum of Conp. Zool. of Cambridge by a number of finc specimens, all obtained from 3 and 7 miles north of Fort Harker by Chs. Sternbery.

```
Sassalras (Araliopsis) recurvatum, Lesqx.
```

Platanus rocmeatu, Lesqx., "U.S. G+ol. Rep,", vi, p. 71, pl. x, figs, 3-5.
Leaves three to tive palmately lobed; lohes nearly equal in length, the medial broader; lateral nerves curving downwad, either simple with mere secondary reins or forking above the base; lobes mudalate or obtasely dentate on the borders.

This form is evidently transient in its characters. By the cuneate and decurrent hase of the leares joining the peliole at a distance below the point of mion of the three primary reins and by the tritobate division, it is a Sassafias. But hy the irregularity of the lobes or the subdivisions of the leaves in lobes and teeth, it seems referable to l'tutrmes, while a tendency to become five-lobate by the forking of the lateral nerves is a
character of the Araliacere. This last character is still more marked in the following species.

This form is very rare. Except the specimens figured in the "Rep.," l. c.. I hare not seen any identifiable with it, except a well-preserved leaf, So. 145, counterpart 10.5, of the Museum Comp. Zool., Cambridge. Which in all its charaters, especially by its peculiar nervation, represents in a diminutive form fig. 3 of pl. x. The lateral nerves join the medial only a little abore the base of the leaf, and the lower pair of secondary nerves follow upward along the borders and by an inward curve anastomose with the outside curved end of the second pair above the middle of the leaf.

Sassafras (Araliopsis) platanoides, sp. nov. Plate VII, Fig. 1.

Leares narrowly euneate from the middle downward, palmately fire-lobate in the upper enlarged part ; lobes short, the upper half-round or obtuse, apiculate, the lower deltoid-acute; primary nerves tripartite from fir above the base of the leaves; lateral nerves branching in the middle, primary and secondary divisions passing out to the points of the lobes.

The leaf figured is 13 centimeters long from the point where it joins the entarged medial nerve in gradually decurring to it, and 11 centimeters broad between the lower lateral lobes, which, though shorter than the upper ones, are turned outside, while those above are directed upward; the point of union of the veins is $2 \frac{1}{2}$ centimeters above the base of the leaf. the medial nerve underneath being 3 millimeters thick or three times as broad as the medial nerve above the division. The lobes are of a peculiar shape, the lower ones deltoid-acute. short, about 1 millimeter long: the upper ones longer, rounded and narrowed to a blunt apex; the terminal is of the same shape but still longer: all are joined in obtuse sinuses.

The close relation of this leaf to Platamas Ifeerii, "U. S. Geol. Rep.." vi. 11 . ix, figs. 1,2 , will be easily recognized; but still, the long narrowly wedge-form base, the subdivision of the lateral primary nerves, are characters represented in Araliopsis, especially in the preceding species, so that it is extremely difficult to say with which of these generie divisions this kind should be identified.

Itab.-Near Clay Center, Kansas. M. C. Towner, from a figure com-
mmicated. Bat other leares of the same characters, only a little smaller (Nos. 694, 672, Museum Comp. Zool., Cambridge), have been found by Chs. Sternberg, on Thomson Creek, 7 miles south of Fort Harker.

```
Sassafras(Araliopsis) subintegrifolimm, Lesqx.
```

"U. S. Geol. Rel.," vi, p. 8:, pl. iii, fig. 5.
From a number of specimens more or less similar to those of the leaf figured "U. S. Geol. Rep.," vi, l.c., I believe it represents only a deformation of S. cretucum, especialfy of its variety obtusum. I have, however, received quite recently, from North Kansas, leaves of Sassafras perfectly entire or tobate on one side only, identical in shape and size with the leares of Sassafias officinale commonty found also entire, bilobate or trilobate. They were sent by Mr. L. C. Mason, of Delphos.

ARISTOLOCHIACEX.

ARISTOLOCHIA, Tourn.

Aristolochia dentata, Heer.
"Phỵll. Crét. du Neb.," p. 18, pl. ii, figa. 1, 2; Lesqx., "U. S. Geol. Rep.," vi, p. 87, pl. xxx, fig. 6.
DIOSPYRINEA.

SAPOTACITES, Ett.

Sapotacites Haydenif, Newby.

"Later Ext. Fl.," Catal., p. 8; "Illustr.," pl. v, fig. 1.
No description is given of this species. The leaf, of medium size, is obovate, slightly emarginate at the obtuse apex; secondary nerves at an acute angle of divergence, close, curved in passing up toward the borders. divided by short oblique veins detached from both sides of the lateral nerves.

Hab.-Nebraska. Dr. F. V. Hayden.
DIOSPYROS, Linn.
Diospylos primaeva, Heer.
"Phyll. Crét. du Neb.," p. 19, pl. i, figs. 6. 7; Newby., "Later Ext. Fl.," Catal., p. 8; "Illustr.," pl. iii, fig. 3.
Leares oblong-oval, very entire, rather obtuse at the apex; secondary reins fles. nous, branching, camptodrome.

The author compares it to his D. anceps of the European Miocene. and to D. Alaskon of the same formation of Afaska. The species is not rare in Kansas.

Ibiospyros ambigua, Lesqx.

Diospyros rotundifolia, Lesqx.
"U'.S. Geol. Rep.," vi, p. $=9$. 1', xxx, figel.
ERICACEE.

ANDROMEDA, Linn.

Andromeda Parlatorii, Heer.
"Fhyll. Crét. du Neb.," p. 12, pl. i, fig. 5; Lesqx., "U. S. Geol. Rep ," vi, p. 8叉, pl. xxiii, figs. 6, 7; xxriii, fig. 15.
Andromedi affinis, Lesqx. Plate II, Fig.
Hayden's "Ann. Rep.," 1874, p.342, pl. iii, fig. 3.
Leaf thick, narrowly lancelate, acaminate, entire; medial nerve comparatively thick; lateral reins close, parallel, at an acnte angle of divergence, camptodrome.

The leaf, $5^{\frac{1}{2}}$ centimeters long. 11 mitlimeters broad in the middle, is gradually narrowed downward lo the petiole and upward to a somewhat long acumen; the angle of the lateral nerves is 30°; the areolation is composed of round or quadrate polygonal minute areoles.

This species is closely allied to the freceding; the veins are less obligue and more curved.

Mab.-Spring Cañon, with fragmentary leaves of A. Parlatorii. Dr. F. T. Hayden.

ARALIACEA.

ARALIA, Linn.
Aralia formosa, Heer.
Plate N1, Figs. 3, 4.
Itetr, "Moletein Fl.," p. 18, 1]. riii. fig. 3.
Leaves petioled, triple-nerved, trilubate; lubes deutate, blunt at the apex.
This species, as represented by American specimens, though positively identified, presents a few umimportant points of difference. In Heer`s figures the base of the leaves is wedge-form and the divisions oblique; in those which I have for examination the middle lobe is oval or lance-

[^10]olate, the lateral linear lanceolate, not enlarged in the middle, as far as seen from the one partly preserved, and the borders are obtusely serrate from near the base. In Heer"s figures the medial lobe is shorter and narrower, and it is, like the other, denticulate only in the upper part. The secondary veins are not very distinct; a few, of which the base only is seen, are parallel, close, at an open angle of divergence. The leaves are thick; the petiole is not preserved, but as seen in Heer*s specimen it is short and thick.

Heer compares this species for the shape of the lobes to A. Japonica, which, however, has the leaves five-lobed, and indicates its relation to A. primigenia of Mount Bolca and of Alumbay.

Hab.-Near Morrison, Colorado. H. C. Beckwith.
Aralia Saportanca, Lesqx.
Plate V'lli, Figs. 1, 2; 1X, Figs. 1, 2.
Ilayden's "Anu. Rep.," 1874, p. 350, pl. 1, fig. 2.
Leaves large, sub-coriaceous, triple-nerved and fivelobate by division of the lateral nerves, fan-shaped in outline, narrowed in a curse or broadly cuneate, and decurring to a long slender petiole; lobes narrowly lanceolate or linear-lanceolate, aente or blunt at the apex, equally dirergiag, distantly dentate from below the middle neward; secondary nerves snb-camptodrome.

This beautiful species is known by numerous finely preserved specimens. The leaves, 9 to 20 centimeters long from the top of the petiole to the summit of the middle lobe, are of the same width between the points of the lower lateral lobes; the petiole is long and comparatively slender, though appearing thick upon one of the specimens, probably enlarged and flattened by compression. The preserved broken part on one of the leaves measures 5 centimeters. The lobes cut down to about two-thirds of the leaves are narrowly lanceolate, slightly narrower near the obtuse sinuses. equally diverging, the lower lateral ones much shorter, curved down, and decurring to the base of the leaves. The leaves, triple-nerved from the division of the primary nerves a little above the base, become five-nerved from the forking of the lateral nerves at a short distance from their base. The secondary veins emerge at an acute angle of 30°, curve in ascending to the borders, and sometimes enter the teeth by their ends; the upper more generally follows close to the borders in festoons, emitting under the
teeth short branches which enter them. There are not any intermediate tertiary veins, but the nervilles are strong, often continuous, anastomosing in the midtle of the areas and forming ly subdivisions a small quadrathenlar areotation (1.t. viii, fig. 1). The typical relation of these Aralia leares is marked with Sussafies (Areliopsis) cretacem and S. mirabile, though the generic and specitic characters are fir different.

Itrlb. -South of Fort Harker. Chs. Steruberg. A number of splendid specimens have been found all at the same locality near Brookville, Kansas.

Aralia quinquepartita, Lesqx.

"U. S. Geed. Rep.," vi, p. 90 , pl. xr, fig. 6.
Of this species, described, l. c., from two fragmentary specimens, I have now seen some better leaves. One, the largest, is 16 centimeters long from the top of the petiole to that of a lateral lobe preserved entire. It is deeply divided into six narrow oblanceolate lobes, obscurely dentate toward the apex, the lower lateral nearly entire. The medial lobe, 2 centimeters broad above the middle, is only 1 centimeter broad near the sinus. Though somewhat thick, the leaves are rather membranaceous than coriaceous, the upper face smooth. The lateral veins are obsolete, appearing very thinly distributed, about like those of A. Saportrnea. The division of this leaf in six is abnormal; the primary lateral nerves on one side fork twice and therefore form three lobes, while on the other side the lateral nerves fork once only and have thus two divisions only.

Hab.-The best specimens seen of this form are from south of Fort Harker. Chs. Sternberg.

```
Aralia Towneri, Lesqx.
Plate VI, Fig. 4.
```

Hayden's "Ann. Rep.," 1874, p. 349, pl. iv, fig. 1.
Leaf large, eoriaceous, polished on the upper face, irregularly fice-lobed to below the middle; lobes entire, oblong, obtusely pointed; primary nerves in three, from near the top of the petiole, the lateral ones forked at a distance from the base; secondary reins open, variable in distance, very enrred in passing toward the borders, camptodrome, separated by short tertiary veins parallel to them or at right angles to the midrib.

The leaves of this fine species are, as seen from another better preserved specimen, 15 centimeters long from the top of the petiole and 22 to 24 centimeters broad between the points of the lobes, which, descending
much lower than the middle, are 7 to 10 centimeters long and 3 to $3 \frac{t}{2}$ centimeters broad. The primary nerves are comparativety narrow; the form of the lohes is oblong, the print somewhal ohtuse, the sinuses broad and abo obtuse. The secondary nerves distant, nearly simple at an open angle of divergence, pass toward the borders in curves and follow then in festoons, anastomosing by nervilles with those above. They are generally separated by short tertiary veins forming by ramifications in more or less oblique directions, square or polygonal, large meshes.

Hab.-Clay Centre, Kansas. II. C. Towner.

```
Aralia subemarginita, sp. nov.
```

Leares of medium size, thick, coriaceous, five-palmate, cuneate to the base; lobes cut to the middle of the leaves, entire, obovate, rounded or emarginate at the apex ; primary nerves in three, the lateral forking near the base; venation campodrome.

The lobes of this leaf are nearly equal in length, about 5 centimeters long from the narrow obtuse sinuses, 5 to 6 centimeters broad in the upper part; lateral veins few, distant, 3 or 4 pairs, some of them forking on the lower side, much curved in passing to the borders. This species is closely allied to the preceding, differing by the short, obovate, rounded or emarginate lobes and the nervation. The only specimen seen is No. 810 of the Museum Comp. Zool., Cambridge.

Mab.-Three miles southeast of Fort Harker, Kansas. Chs. Steruberg.

Aralia tenuinervis, sp. nov.

Plate VII, Fig. 4.
Leaf small, truncate at base, palmately fise-lobed; lobes much liverging, lanceolate or linear-lanceolate, acute; simuses broad and obtuse; primary nerves thin, flexnons, apparently diverging from the same point near the base of the leaf; lateral veins close, parallel, camptodrome.

The base of the leaf is destroyed and the point of mion of the lateral nerves is not seen. It appears to be about like that of fig. 3 of the same plate, a leaf related by its shape. The thin primary nerves, the close lateral thin veins, separate this species from all the others described above. Its type is that of Aralia angustiloba, Lesqx., of the Chalk Bluffs of the Gold-gravel formation of California.

Hab.-Clay County, Kansas. II. C. Towner.

```
Aralia radiata, sp. nov.
```

Plate VII, Fige. 2.3.

Abstract

Leaves small, palmately five-lobed; base troncate and abruptly declined to the petiole; lobes equally diverging, lanceolate-aeminate, the lower at right angles to the medial neve; primary nerves in three or five united near the basilar border of the leaves.

This description and the figures of this species are mide from sketches commmicated by Mr. H. C. Towner, the discoverer. As I have seen a poorly preserved specimen only, apparently representing the species, I am umable lo give more details on the characters. In fig. 2 the lateral nerves are branching a little above the base. This division is observed in most of the Cretaceous leaves I have described of this genus, and it is especially from this kind of nervation that I have considered them as referable to Aralia. But in fig. 3 the primary veins are in five from the base, and this is a characler of Stcrculia. The great similarity of the leaves cut to lwothirds of their length into lanceolate, gradually cuneate lobes, the habitat at the same locality, seem to prove that they represent the same species.

Hab.-Clay Cenlre, Kansas. II. C. Towner.

Aralia concreta, Lesqx.

Plate IX, Figs. 3, 4. 5.
Mayden's "Ann. Rep.," 1874, p. 349, pl. iv, figs. 2, 3, 4.
Leaves small, very thirk, coriaceons, pahmately five-lobed to below the middle, broadly cmeate and curving to the petiole; lobes linear or narowly lanceolate, very entire; primary nerves three, from a little above the border base of the leaves, the lateral forking, all thick, flat, and deep by impression, preserving nearly the same size to the top of the obtusely-pointed leares.

The leaves vary in diameter from $5^{\frac{1}{2}}$ to 8 centimeters between the points of the lateral lobes, being shorter than broad. The secondary nervation and areolation are totally obsolete. Fig. 4 is a remarkable form. On account of the rounded base of the leaf the lobes are not as widely diverging and the sinuses narrower. The essential characters, great thickness of leaves, broad percurrent primary nerves, the size also being the same, the difference camot be considered as specific.

Hab.-Clay Centre. II. C. Towner. Bluff Creek, Ellsworth County, Kansas. Chs. Sternberg.

HEDERA, Linn.

```
Hederit ovalin, Lesqx.
```

"C. S. Geol. Rep.," vi, p. 91. ph. xxy, fig. is; ph. xxvi. fig. 4.

Hedcra Schimperi, Lesqx.

Plate IV, Fig. :
Hayderin' "Amn. Rep.," 1-74, p. 351, pl. vii, fig. ©.
Leaf sub-reniform, broader than long, rounded at the top, abruptly narrowed or obliduely sub-trumeate to the jetiole, three nerved from a little abore the base; lateral norves corving and mone or less oblique toward the borders, anastomosing by thick banches and vainlets with the divisions of short distant secondary veins curving along the bonders and entering by short veinlets the distant slightly marked denticulations of the margins.

The leaf is coriaceous, $6 \frac{1}{2}$ centimeters broad and 6 centimeters long without the petiole, which is only 7 millimeters long. As seen on the secimen it appears enlarged to a point of attachnenl, not very distinct, howerer. The lateral reins are inclined on one side toward the medial nerves: on the other they rather tend down or toward the borders; the reimlets all nearly at right angles, anastomosing with the divisions of the secondary reins, form an irregular arcolation of angular, square, or polygonal meshes. The areolation is of the same character as in the preceding species, and is analogous to that of Greciopsis tremulufotia and of Cissus ampelopsider. Sap., and recognizable also in the following species.

Hab.-Soulh of Fort Harker. Chs. Sternbery.

```
Hodera platanoidea, Lesqx.
Plate III, Figa. 5, 6.
```

Harden's "Ann. Rep.," 1874, p, 3in, pl. iil. fig. 3.
Leaf small, broadly ovate, rommed at the top, trmeate at base, short petioled, entire, triple-nerved at a short distance above the basal borders of the leaves; primary uerves craspedodrome.

The leaves, five to six centimeter's in diameter, are aboul as broad as long: the borders are entire, though somewhat forced outside over the points of the primary nerves and lhus very obseurely and obtusely trilobate. The lowest branches of the primary lateral nerves follow the borders in festoons along the base of the leaves as in the preceding species, and there is also moder the primary nerves a pair of marginal reinlets at
right angles to the midrit, The secondary reins and their divisions all reach to sery near the horders, even seem to reach them, anastomosing at their ends with a veintet which follows close to the margins in successive short curves like a marginal vein. The nervilles are strong, more or tres at right angles to the nerves, not continnous, anastomosing in the middle of the areas, composing a net of large irregular quadrangular or polygonal meshes. The suface of these leares is rough, the venation deep and distinct. The substance thick, nearly coriaceous; the short petiole (7 milli meters long) is enlarged al the base.

Hab.-Near Fort Harker. Chs. Sternbery.

AMPELIDE』.
 CISSITES, Heer.

Leaves more or less deeply trilobate by the extension of the lateral primary nerves always in three, romded and broadly cuneate to the base; lobes deltoid or round, entire or dentate, sometimes lobed ; seeondary nerres mostly camptodrome.

Under the name of Cissites insignis, and without definition of the genus, Professor Heer has described a fragment of leaf which has apparently a degree of affinity to those which I place under this generic division. The leaves are closely allied to draliopsis by the pinary nervation always being tritid generally from a distance above the basal borders, and by the areolation and the more or less distinclly trilobate division. The secondary veins are generally camptodrome.

> Cissites insignis, Heer.
"Flughl. Crét. du Nub.," p. 19, pl. ii, figs. 3 (4 restored).
Leaves coriaceous, palmately deeply trilobate; lateral lobes very unequal, lobes eremate at the apex.

This leaf is very coriaceous, triple-nerved, deeply pabmately trilobale. The lower part of the lower lobe is larger than the upper. which is entire and bears three obtuse teeth toward the base; the secondary veins are thin, anastomosing in emres at a distance from the borders.

```
Cissites salisburiarfolims, sp. nov.
```

Sassafras obtusum, Lesqx., "U.S. Geol. Rep.," vi, p. 81, 1" xizi, figs. , 4,
Pcpulites salisburiafolius, Lanx., "Am. Jomr. of Sci. and Arts," xlvi, 1868, p. 94.
These leaves. first described as Populites, then as Sassafras or Arali-
opsis, and now as Cissites, have indeed some character's which relate them to Araliopsis. They are palmately tilobate, have about the same form as Araliopsis cretaceus var. obtusus, and an analogous distribution of the nerves and secondary veins. They differ much by the thin texture of the leaves and the disposition of the lobes to become more or less obtusely and distinctly dentate at the apex, as seen by figs. 2 and 4. The rapidly narrowed base and the very long petiole give to them a peculiar fan-like shape. Their relation to this group seems indicated by their affinity to Cissites insignis.

Cissites Harkerianus, Lesqx.

Plate III, Figs. 3, 4.
Hayden's "Ann. Rep." 1874, p. 352, pl. vii, figs. 1, 2.
Sassafras (Araliopsis) Harkerianum, Lesqx., "U.S. Geol. Rep.," vi, p. 81, pl. xi, fig. 4.
Leaves coriaccous, broadly rhomboidal in outline, and coneate to the petiole, b, imately sub-trilobed; lateral primary veins joined at a short distance above the base; secondary veins and their divisions camptodrome.

The leaves figured here are smaller than fig. 4, pl. xi, of the "U. S. Geol. Rep.," vi; but this is the only difference, and a number of specimens have been found of leaves of intermediate size. The nervation is, of course, more or less prononnced, according to the face exposed upon the stone. The relation of this and the preceding species to Araliopsis is easily remarked.
Cissites affinis, Lesqx.

Platanus affinis, Leeqx., "U.S. Geol. R'p.," vi, p. 71, pl. ir, fig. 4; xi, fig. 3.
Leaves eoriaceons or sub-coriaceons, triple-nerved from near the base, sub-trilobate, ronnded in narrowing to the petiole, broadly deltoid to the apex; borders marked by short distant teeth at the points of the exchrrent nerves and their brauches.

```
CisNites acuminatus, Lesqx.
    Plate V, Figs, 3, 4.
```

llayden's "Amm. Rep.," 1874, p. 353, pl. viii, fig. 1.
Leaves deltoid from the middle to the acute point, rounded from the middle downwarl to the petiole, triple-nerved from the base.

These leaves, 7 to 8 centimeters long and nearly as broad, much resemble those of the preceding species; they differ merely by the borders being entire, the secondary nerves more numerous and camptodrome. In fig. the points of the lower pair of these lateral nerves reach to the horder:s
and force them outside, forming short teelh. The difference between this ant thr preceding form becomes, therefore, less marked and may not be considered of specific value. But the same remarks can be made on the momerons transitional forms of this peculiar flora, as it has been remarked already.

Iteb.-Near Fort Harker. Chs. Sternberg.
Cissites, Heerii, Lesqx.
Plate V, Fig. ${ }^{2}$.

Leat fan-shaped in outlime, broadly cuneate to the base from above the middle, divided at the upper border into tive nealy equal acute lobes separated by broad simses; primary nerves tifid fiom above the basal border of the leaf, aseending with the lower pain of secondary merves to the points of the teeth; nper lateral veins and all the suldivisions camptodrome.

Though the base of the leaf is destroyed its outline is clearly defined hy the preserved part of the borders and the direction of the lateral primary veins. Exeept that the two lower secondary nerves ascend to the points of two lobes, the nervation of the leaf is of the same type as that of the two preceding species. Thongh the elose retation of these leares is evident, this one cimnot be compared to Arationsis. II, therefore anthorizes a separation of this group, which by its characters is related to the Ampelidece. especially to Cissus.

Heb.-Near Fort Harker, Kansas. Clis. Sternberg.
Ampelophyllum, Lesqx.
ILayden's "Ann. Rep.," 15\%4, 1" 354.
Leares ovate or obovate, obtuse, entire, narmored to a long petiole, or sub cordate, palmately thee-nerved from above the base; nerves flexuons, branching on both sides, ascending to the borders.

```
Ampelophyllum attenuatum, Lesqx.
```

Plate III, Fis. 只。
Hayden's "Ann. Rep.," 1-î4, p, :34, pl. ii, fig. :
Leaf sub-coriaceons, cmeiform in ontline, enlarged aml rombled at the top; borlers entire, wary; latemphmary nerves joming the midde at a distance from the base, flexnous, branching ont and inside, asemeling to the borders.

The leaf. $6 \frac{1}{2}$ centimeters long without the petiole and about the sime width between the points of the primary lateral nerves, is rounded at the
 from a distance above the base and has ahove the peint of combertion

 will lhe same degree of divergence as the primary omes (4)-.50). Tha fomm of this tine leal and its mode of nervalion are pectulians amd of a
 of Grompsis in the "sazame Flora" by sampar There is. homeres. a marked difference in the primary ternate nevation and in the entire borders of the leares. The two lower pairs of tedtiary reins show abo for this leat a relation to Cerberim, and especially to the small leaf of P'tionms Herii, pl. iii, fig. i. The secondary and terliary nerves are of a different character.

Ireb.-Soutlo of Fort Harker. 'Ths. Sternberg.

Ampelophyllim ovatum, Lesqx.

Ilayden's "Ann. Repu.," $1=74$, p. .5n.

Leares ovate, obtuse or undulate, troncate or obtusely pointed, enlarged toward the base and abmptly rounded and sub-trucate or cordiform at base; mervation trifid from the base, craspedodrome.

Though the relation of these leaves to the preceding speries is not very distinct, it is, however, more marked than to the luaves of reltis. But for the craspedodrome, and esperially the ternate primary nervation, they might be referable to l'opulus or I'opulites, having indeed some degree of affinity to P '. elegans, Lesqx., "U. S. Geol. Req.." vi. pl. iii. lig. 3.

HAMAMELIDEA.

HAMAMELITES, Sap.

 tion pimate; secombary nerves at an acute angle of divergenes. crapochombe.

The leaves deseribed in this emeric division have the esemtial haraclers of the leaves of looth Itrmmmelis and Almes.

```
Hamummelites temuinervis, sp. nov.
```

Leat broadly ovate, rounded at both ends, entire from the middle downward, regulanly iecply molulate upraid, pimately nerved; lower lateral nerves alternate, curving along the horders, camptodrome, mostly simple, the upper more oblique, simple or bramehing, reaching the borders at the onter end of the undalations, or broad round teeth.

The base of the lateral medial nerves is somewhat decurrent in joining the midrib at an acute angle of divergence, while the lower ones, more open, join it in a broad curve nearly at right angles, all more or less curving in passing to the borders. The leaf is 5 centimeters long without the short petiole (about 1 centimeter long), and nearly as broad. The only leaf known to me, to which this might be compared, is Parrotia pristina, Heer, "Fl. Arct.," vol. iv, p. 83, pl. xxi, fig. 5 (Quercus fagifolia, Goepp.), from which it differs not only by the leaf being shorter and broader, but by the distribution of the lateral nerves, the two lower pairs being alternate and at a short distance from each other, as in Alnus serrulata, Linn., while the upper, sub-opposite, parallel, and more distant, are branched and reach the borders at a more acute angle of divergence and a less pronounced curve.

Hab.-Four miles northeast of Minneapolis, Kansas. Chs. Sternberg.

> Hamamelites quadrangularis, Lesqx.

Hayden's "Ann. Rep.," 1874, p. 355.
Alnites quadrangularis, Lesqx.,"U. S. Geol. Rep.," vi, p. 62, pl. iv, fig. 1.
The leaf is small, slightly more coriaceous than the one described above; the borders are less distinctly undulate, and the secondary nerves thick, closely parallel, less divided; the two lower pairs of nerves are thinner and closer, following the borders like marginal nerves.

Hamamelites Kansaseanus, Lesqx.

Plate IV, Fig. 5.
Hayden's "Ana. Rep.," 1874, p. 355.
Alnus Ransaseanus, Lesqx.. "U. S. Geol. Rep.," vi, p. 62, pl. xxx, fig. 8.
From the specimen figured here, which is better preserved than that copied in the "U. S. Geol. Rep.." vi, the description is somewhat modified. The leaves are small, obovate in outline, cordate or obtuse at the gradually
narrowed base: the borders are deeply regularly undulate from below thr middle: the two lower pairs of lateral nerves thimer that those abow and more open ate camplodrome. the other craspedodrome. The hasilin border seens to pass over the top of the peliole its in Menispermites.

Hab.-This species is not rare in Kinsas. The specimen figured was rommmicated by Prof. B. F. Metlge. No. 605 of the National Museum.

Hatuanelites quereifulins, sp. nov.
Leaf ohbon, coriaceons, lanceolate, muded to the base, bhat at the apex, mudnlate on the borders; nervation pinoate, leep; lateral veins close, obligue, craspedodrome, branching on the lower side.

The leaf hats great likeness to Dryopyllum (Quercus) latifolium, ul. ir, fig. i. It is about the same length but narrower, only $5^{\frac{1}{2}}$ centimeters boad in the middle, as in the preceding species; the two lower pairs of secondary nerves are thinner, less oblique, more open than the eight uthers above. These slightly curve in passing to the borders and enter, hike the divisions, the outside curve of the undulations.

Mab.-Blulf Creek. Ellsworth County, Kansas. Chs. Sterubery. There is only one specimen (No. 6: a of the Museum Comp. Zool., Cambridge).

Hamamelites? cordatus, sp. nov.

Plate IV, Fig. 3.
Leaves large, thickish, broadly oraloblong, deeply marrowly cordate at base, obtusely dentate; nervation pimate; latemal nerves ohlique, slighty curved in passing toward the borders, much branching on the lower side, eraspedodrome.

This fragment represents a leaf about 12 centimeters long. 7 to 8 centimeters broad. It is undulate-dentate all around, pinnately nerved, with the secondary nerves at equal distance, and parallel, except two pairs of smaller ones attached to the base of the lower lateral nerves. Of these, the upper curves downward, branching and entering the borders by its apex and by its divisions, the lowest, simple and marginal, follows the nearly auricled basal borders. Nothing is seen of the areolation. Some simple parallel nervilles continuous and at right angles to the veins are seen in the upper part of the leaf, which by its facies and some of its characters resembles a Viburnum.

Hab.-Near Fort Harker, Kansas. Chs. Sternberg.

MAGNOLIACEX.

MAGNOLIA, Linn.
Magnolia alternalls, Heer.

Better specimens of this species, though not many, have recently been found in Kansas.

```
Maguolia Capellini, Heer.
```

"Phyll. Crét. du Neb.," p. 21, fl. iii, figs. 5, f.
Leares coriaceons, broadly oral, rery entire; secondary reins at an ante angle of tivergence, eurving to the borlers, camptodrome.

The leaves of this species are similar in size and shape to those described as Ficus magnoluefolia, pl. xtii, figs. \bar{b} and 6 . This last figure. especially, does not differ from those published by Heer, except by the closer secondary veins and by the base, which is slightly decurrent in the leaves of Ficus, while in fig. 5 of Heer it is abruptly rounded and subcordate or subauricled. This appearance, however, may be merely casual. resulting from the breaking of the base, as seen in all the leares of this species described by Heer in "Fl. Arct.," vol. iv, pl. xxxiii. Two specimens of this species found in Colorado have the base decurrent upon a short petiole, and the nervation of the species.

Int.-The two specimens mentioned above (Nos. 12 and $12 b$ of the collection of the Muscum of Comp. Zool., of Cambridge) are from Morrison, Colorado, found by A. Lakes. I have received a number of others more or less fragmentary from Kansas.

```
Magnolia speciosa, Heer.
```

"Molet. Fl.," p. 20, pl. vi, fig. 1; ix, fig. 2; x; xi, fig. l.
Leaves large, eoriaceous, elliptical-ovate, narrowed upward into a long acumen and downward to a thick petiole; medial nerve thick; secondary nerves eurred, canntedrome. (Heer.)

The leaves of this species are enlarged in the middle and more rapidly attennated to a long acumen and to the petiole than in the preceling. The medial nere is much thicker. The specimens which I refer in it differ in nothing from Heers tigure except. perhaps. by the lateral nerves.
which appear somewhat closer. As the reins are very indistinct the reference is smowhat uncertain.

Itab.-Near Morrison. Cotorado. A. Lakes. Specimen Nos. 13 and 13 of the Musoum Comp. Zool., of Cambridge.

Mánuliar temuilolia, Lesqx.

Magmolia obovata, Newby.

Leaves large, obovate, entire, thick and smouth, pointed and slightly decurrent on the petiold; nervation strong: midrib straight and extending to the smmit; lateral nerres pimate, set at somewhat mequal distances, straight and parallel below, forked and inoscolating above, forming a festoon parallel with the margin; terminal nerves forming an irregular network of polygonal and relatively large areoles. (Newby.)

Hub.-Blackbid Hills, Nebraska. Dr. Itayden.

```
Magnolia species.
```

1'late XI, Fig. 6.
Λ flattened immature receptacle or carpite of a Magnolia. The shortpediceled cone is oblong-obluse, covered with shorl obluse carpels.

Hab.-Near Morrison. Colurado. H. C. Beckwith.
LIRIODENDRON, Linn.

Liriodendron Meekii, Heer.

*- Phyll. Crét. du Neb.," 1. 21, pl. ir, fige. 3, 4.
Leaves panduriform, emarginate at the top, bilobate; lobes obtuse; secondary reins branching. (Heer.)

Mab.-Tekamah. Nebraska. Professor Capellini.
Liriodendron primadum, Newby.
"Later Ext. Il.," p. 12; "Illustr.," pl. vi, fige. 6, 7.
Leaves three-lobed, upper lobe emarginate, all the lobes rounded; nerration delicate, medial nerve straight or slightly curved, terminating in the sinus of the superior lobe; secombary nerres gently arhing upwarl, simple or forked near the extremities, a few more telicate ones altemating with the stronger. (Ny.)

From comparison of seeimens received from Greenland, Professor Heer considers this species as also the leaves described as Lequminosites Marcouanus. Heer. and Phyllites obcordatus. Heer (Newby.. "Illushr.," pl. v. figs. $2^{2}, 3$), as idenlical with the preceding species.

Liriodendron intermedium, Lesqx.
"L. S. (menl. Rep.." vi, p. 9: pl. xx, fig. ©.
No other specimen has been fonmd as yet than the fragmentary one described in the "Report."

Liriodendron gigantenm, Lesqx.
' U. S. Geol. Rog.," vi, p. 93, pl. xxii, fig. .2.
A number of well-preserved specimens, recently obtained in Kansas, distinctly display the characters of this species originally described from a fragment, the upper lobe of a leaf only. The leaves are very large. 20 eentimeters broad between the lower lobes, which are broad (6 centimeters), oblong, rounded or obtuse, at right angles to the medial nerve; upper lobes more oblique, shorter, narrowed and rounded to an obtuse point, joining the lower in a narrow deep sinns at a short distance (2 centimeters) from the thick medial nerves; lateral nerves parallel, nearly at equal distances, slightly oblique, curved down in joining the medial nerve.

By the form of the leaves this species is more than any other related to the living L. Tulipifera. As far as can be seen from the fragment of L. intermedium, this last species differs much from I. giganteum, especially by the deeply emarginate leaf, the very oblique upper lobes at a great distance from the lower ones. The facies of the leaves of these two species is far different.

Ifab.-Two miles from Glasco, Kansas. The specimens, Nos. 206, 513. 535 , found by Chs. Sternbery, like those of the four following species, belong to the collection of the Museum Comp. Zool., Cambridge.

Liriodendron acuminatum, Lesqx.
"Bull. Mus. Comp. Zoul, Cambridge," sul. vii, No. 6, p. Ext.
Leaves small, abont half as large as those of the preceding species, cnt into two paits of narrow linear accuminate lobes all arched upward, abont 10 to 12 centimeters long.

A remarkable species; the lobes, 1 centimeter broad, have only a medial nerve.

Hab.-Same location as the preceding. Specimens Nos. 476, 504, 504a.

```
Liriodendron eruciforme, Lesqx.
```

Ibid., p. 2:27.
Leaves large; urper lobes broad, square or equilateral, at right angles to the broad midrib; lower lobes narow, linear, acuminate, much longer and arehed upward.

The shape of the leaves is like that of an anchor, except that the medial nerve, or axis, does not pass above the upper border of the leaf, Which is cut flat. not, or scarcely, emarginate.

Hab.-Elkhorn Creek. Nos. 197, 198, and some fragmentary ones.
Liriodendron semi-alatum, Lesqx.
"Bull Mus. Comp. Zool., Cambridge," vol. vii, No, 6, p. 227.
Leares divided at the base in two opposite short romad lobes, obliquely ent in curving un to near the medial nerve and then diverging and enlarging npward into an oborate or spatulate entire lamina.

This form is somewhat like fig. 7 uf pl. vi, Newby., "Illustr.," the lower' lobes longer obtuse and more detined, the upper part gradually enlarged, spatulate, obtuse. It may be a distant form of L. Meekii.

Hab.-Seven miles from Glasco, kansas. Specimens Nos. 472, 425.

```
Liriodrndron pinnatifidmm, Lesqx.
```

Lbid. p. wi.
A simple leaf, with the general facies and the nervation of Liriodendrom, but narrow linear in oulline, subaltemately trilobed on each side. The top and hase of the leaf are broken, the lobes, separated by broad flat simuses, are half round, entire or irregularly undulate. The fragment is 9 centimeters long and $\overline{5}$ broad between the untside curves of the medial lobes, which are a little larger than the upper and lower ones; the lateral reins are close, oblique, parallel, distinct only at and near their point of mion to the midrib. The fragment may represent a leaf of a different genus. though its affimity is evidently with Liriodendron.

Hab.-Two miles from Glasco, Kansas. Specimen No. 531 (526? fragment).

LIRIOPHYLLUM, Lesqx.

Leares subcoriaceous, square or broadly rhomboidal in outline, abruptly narrowed to a comparatively short petiole, split from the top to the middle along the line of the medial nerve into two primary lobes much enlarged in the lower part, entire or sublobate or distinctly bilobate; nerration pimate.

By the facies and the nervation these leaves have a great affinity to those of Liriodendron. Instead of being merely emarginate at the top they are deeply cut down, nearly to the middle, in two lobes joined by a narrow more or less obtuse sinus. This is indeed the more marked difference.

 hitid at a short distance above the base, the divisions ascemding to the ohture point of the upper lobes; secomdary reins two, parallel, comed into the lower bobe, all with for bramelaes.

The ahommal form of the leaves of this genus renders their description dilficull. In this species. which may be a variely or deformation of the folluwing, the leares are large, about is centimeters between the points of the lower lobes, and nearly 20 centimeters from the base to the aper of the uper. They are divided into two halves from the top to 4 centimeters ahove the base by the splitting of the medial nerve under an angle of 40°, and cach division is cul at the side in two short obtuse lobes separated by a broad sinus. The lower lobe, nearly at right angles to the midrib, is traversed in its whole length by two parallel, strong, secondary nerves, apparently vanishing below the top (broken). Except very few oblique curved tertiary reins, no other trace of nervation or areolation is distinct. The medial nerve from under the sinus downward is 3 millimeters broad-as broad as the shorl pedicel broken 2 centimeters below the slightly decurrent base of the leaf.

ILeb.-Near Morrison, Colorado. II. C. Beckwith. Found only in one good specimen.

```
Liriophyllum populoides, Lesqx.
```

Plate X1. Figs. 1 and 2.
Leaves smaller, broadly ovate, coneiform at base, divided nearly vertically from the top to above the middle into two obtuse lobes, enlarged on the romded sides above the base and there sometimes prolonged into a short obtuse lobe; medial nerve straight; latemal nerves strong, parallel, equidistant, fomr pais, etticed near the borders, rarely banching; nervilles at right augles.

In comparing these leaves with the preceding the essenlial character:s are seen to be idenlical, though the appearance is far differenl. The large size of the leaf and the subdivision of the lwo primary lobes in L. beckwithii are the more marked differences. But in fig. 1 of this species the lower side is continued into a short lobe, indicating a subdivision like that of the leaf pl. x, fis. 1 , and the nervation is of the same lype as in the leaf
pl. xi. fig. 1; the two lower lateral nerves tum outside toward the stord lobes, while the uper is evidently tending upward.

Itth.-With the preceding in numerous specinens. A. C. Beckwith, A. Lakes. One specimen also thas been found in Kansas.

Liriophyllum obeordatum, sp. nov.

Leaf small, obovate, entire, marowly deeply emarginate at the top, gratualty narrowing to the petioie (broken); medial nerve narow; lateral nerves at an acute angle of divergence, alternate, eamptodrome.

This leaf, 6 centimeters long and 3 broad abore the middle, is cut from the top to one-hnird of its length into two obtuse entire slighty diverging lobes by the splitting of the medial nerve, as in the two preceding species. It is perfectly entire, gradualty narrowed from above the middle, or cuneiform to the base, with two pairs of altermate distant secondary nerves at an acute angle of divergence and curving in passing toward the borders. The tertiary nervation and the areolation are totally obsolete.

Hath.-With the preceding. Rev. A. Lakes.

```
Carpites liriophylli? sp. nov.
    llate XI, Fig. 5.
```

An oblong seed ${ }^{3}$ centimeters long. 7 millimeters broad in the middle, narrowed and blunt at one end. acute at the other; irregularly obseurely tineate on the surface.

The reference of this fruit to Liriophyllum is hypothetical. The seed was found on one of the specimens of M. Beckwith, with leaves of L. populvides.

ANONACEA.

ANONA, Linn.

Anona cretacea, spong

Leaf lanceolate or oblong lancoolate, gradually narowed to a short flattened petiole; medial nerve thick; secomdary nerves open, nearly at right angles toward the base, branching, eamptodrome.

A fragment of leaf of which the lower half only is well preserved. It is similar' in its size, form, and venation to A. lignitum. Uny., "Syllog.,"

1. 25. pl. x. figs. 1-6. The relation of this leaf to this genus is as evident as it can be indicated ly a single specimen representing only part of a leaf and no firuit.

Mab.-Near Glasco, Kansas. Chs. Sternberg. No. 414 of the collection of the Museum of Comp. Zool., Cambridge.

MENISPERMACE \nrightarrow.

MENISPERMITES, Lesqx.

"U. S. Geol. Rep.," ri, p. 94.
The definition of this genus has to be somewhat modified in this: the leaves are not only broadly deltoid and more or less distinctly trilobate, but also round or ovate, entire, with a camptodrome nervation. From this, the group is subdivided in two sections, represented one by lobate, the other by entire leaves.

Menispermites obtusilobus, Lesqx.

Plate XV, Fig. 4.
"U. S. Geol. Rep.," vi,]. 94, pl. xxv, figs. 1, 2; xxvi, fig. 3. M. obtusilobus var., ibid., p. 95, pl. xxii, fig. 1 .

Meuispernites Salinensis, Lesqx.

"U.S. Geol. Rep.," vi, p. 95, pl. xx. figs. 2, 3.
Menispelmites acutilobus, sp. nov.
Plate XIV, Fig. :
Leaf large, triangular in outline, broadly rounded or nearly truncate at base, deltoid, dentate-lobate, he-nerved from near the base, eoriaceons; nerves more or less bramehing on the lower side, craspedodrome, with their divisions; nervilles at right angles to the nerves, anastomosing in the middle of the areas.

The specimen figured is the only one seen. Comparison of the figures representing this species and M. obtusilolus, pl. xv, fig. 4 , shows the close affinity of the leaves- M. acutilobus merely differing by the large acute distant teeth of the borders. The primary nervation is the same as that in pl. xy, fig. 1; the secondary veins are distant, equally oblique, and curving foward the borders, scarcely branching, all craspedodrome, and entering the teeth of the borders, a character adready remarked in all the specimens of M. obtusilobus, whose secondary veins are more generally
craspedodrome even when the borders are not undulate-dentate, and always so when the leaves are undulate.

Mab.-Clay County, Kansas. II. C. Towner.
Menispermites populifolius, Lesqx.
llate 1Y. Fig. 4.
Hardenis "Amn. Rep.," 1874, p. 35π.
Leaf broadly ovate, obtuse, subeordate or trumeate at base, palmately five-nerved from near the basal borders; primary lateral nerves at a more acute angle of divergence, branching on the lower side; secomary nerves equidistant, parallel, all camptodrome.

The leaf is coriaceons, smoolh on the surface, perfectly entire, $5 \frac{1}{2}$ centimelers long and as broad in its largest diameter below the middle. The primary lateral veins diverge about equally from each other at an angle of about 30°; the lower is nearly simple and has still it thin marginal veinlet underneath; they branch from the lower part, and the secondary nerves at a distance above fork only at their ends toward the borders. The areas are crossed by very strong nervilles at right angles to the nerves, anastomosing in the middle. The areolation is obsolete.

Hab.-South of Fort Harker. Chs. Sternbery.
Menispermites cyeloplyyus, Lesqx.
llate XV, Fig. 3.
Hayden's "Ann. Rep.," 18i4, p. 358, pl. vi, fig. 4.
Leaf thick, subcoriaceons, very entire, nearly round aud centrally peltate, deeply concave, palmately fivenerved; inuer lateral nerves cmring inside, the onter open, nearly at right angles to the medial nerve, all dividing by open straght banches anastomosing at a distance from the borders in clouble rows of arches: basilar velus $: 3$ to 5 , diverging star-like from the central point.

The leaf is 7 centimeters long and 6 broad in its widest diameter: the middle is rounded downward and a little more narrowed upward to the round subtruncate apex. The point of attachment of the netiole is nearly central, and though surrounded by a series of nerves diverging star-like, it has, like the other species of this gents, five primary nerves turning upward, the lower ones representing marginal veins. The leaf is concave from the point of attachment of the petiole, which passes down into the stone, leaving an opening like the pipe of a funnel.

Hub.-Near Fort Harker, Kansas. Ohs. Sternberg.

```
Meni-permites grandis, sp. nov.
```

 1patゃ XV, Figs, I, 2.
 Leaves subeoriaceoms. large, that, nearly romd, hoader than long, peltate; borders entire or undintate: nerve radiating from the point of attachment, camptondrome: primary nerves five.

This species differs from the preeeding not only by the large size of the teares bat especially by the nervation which is simply eamptodrome. the reins and their divisions curving along close to the borders and anastomosing in a single row of festoons. Even the medial nerve has the same character and does nol ascend to the borders, but is forked near the apex in camptodrome divisions.

Irob.-Near Clay Centre, Kansas. II. C. Towner.

```
Menispermites ovalis,Lesqx.
```

 Plate XV. Fig.
 Havelen's " Ann. Rep.," 1874, p. 357 , pl. v, fig. 4.
Leaf narrowly oral or ublong, obtusely pointed, rom nerved; lateral nerves at anate angle of divergence, the imer ones ascending to near the top, branching ontside; branches momerons, parallel, enrving aloug the borders in festoons.

This fine leaf. preserved nearly entire, is 7 to 8 centimeters long, 3 z centimeters broad, nearly exactly oval-oblong. perfectly entire. Il is less distinctly palmately five-nerved than the leaves of the other species of this genus; the two internal primary nerves are as strong as the medial one, rure gradually nearly parallel to the borders, and near the top join the hranches of the midrib with which they anastomose in curves; the outside lateral nerves are thimner and shorter: they ascend also nearly parallet to fle borders, disappearing in the middle of the leaf in anastomosing with branches of the lateral primary nerves. This is a mere deviation from the type.

Under the name of Daplenogene Tianii, Heer has published ("Fl. Arct.," i. $1.11 \pm$, pl. xiv), from the Niocene of Greentand, leares related by their form to this Cretaceons species. The same kind of leaves are described by saporta and Marion in the \cdot Flora of Gelinden." p. 63, pl. x, as Cocculte himii. la these leares the primary nervation is in three from the base; in the Cretacous leaf it is positively in five and therefore different, appearing intermediate betreen that of the leaves described above as Henispromites and that of Dephenogene, or Coccelus Fania.

Hab.-Near Clay Centre, Kansas.

STERCULIA, Linn.
Leaves alternate, petiolate, palmately deeply trilobate; triple-nerved from the top of the petiole.

This definition represents the characters of the coriaceous leaves which I refer to this genus, and which I separate from Aralia merely on account of the primary divisions. Most of these leaves have only the primary nerves distinct and rarely any trace of the secondary veins. By a lower division of the lateral primary nerves, species referable, perhaps, to this genus are deseribed above as Aralia. If, as Schimper says, Sterculia Majoliana, Massal., "Fl. Foss. Senig., p. 319," is referable to the group of Sterculia Labrusca, most of the species that are described as Aralia, if not all, should be placed also with Sterculie. I do not admit this conclusion.

```
Sterculia lugubris, sp. nov.
    Plate VI, Figs. 1-3.
```

Leaves coriaceuns, large, divided near the cuneate baso into three very long sublinear acuminate lobes; primary nerves thick, distinct to the apex.

The leaves, narrowly cuneate, somewhat decurrent at base to the thick petiole, which they reach a little below the point of union of the primary nerves, vary in length from 12 to 24 centimeters from the base to the apex of the lobes, which are united by obtuse comparatively narrow sinuses at a short distance-3 to 6 centineters-from the base. The lobes, 1 to 2 centimeters broad in the middle, are stightly narrowed to their base, and gradually tapering from the middle upward to an acuminate point. The lateral are curved downward, or scythe-shaped. No trace of secondary nervation is visible.

There is in the collection of the National Museum a set of specimens representing an analogous form, though perhaps specifically different. The fobes, descending nearer to the base, are shorter (7-14 centimeters long), straight, not recurved, linear-oblong, slightly narrowed from the midale downward to the broad obtuse sinuses and gradually to the apex. Afl the points of the lobes are destroyed. Their divergence is about 25°.

Hab.-Colorado, near Golden. A. Lakes. The variety is from Kansas. Chs. Sternberg.

C F 6

Stereulia obtusiloba, Lebqx.

l’ate VIII, Fig. 3.

Aralia tripartita, lesqx., Hayden's "Ann. Rep.," 1874, p. 348, pl. i, tig. 1.
Leaves comiteons, small, palmately thee-lobed; lobes equal, linear, obtuse, very entire: secombary merves olsolete.

The only leaf I have seen of this speries is figured. It is 7 rentimeters long of centimeters broad belween the points of the lateral lobes. which dimper al an angle of 2.5° and are eut down lo about two-tlipds of the leat. The medial lobe is a little narower than the lateral (l centimoneroad): the leat is cuneate to the base and apparently a little decurrent to the petiole '(broken); its surface is smooth. This leaf, following the definition of the genus, represents a Stercula. Its name was changed accordingly.

Hub.-Near Fort Harker, Kansas. Ches. Sternberg.
Sterculia aperta, spon.
llate X, Figs. 2, 3.
Leaves subcoriaceous, palmately three-lobed, and triple-nerved from near the hase ; bhes lancedate, bunt at the apex ; angle of divergence moad.

This species is different from the preceding by the form of the brotder lanceolate obtusely pointed lobes, the leaves not as thick and larer. Fig. 3 shows traces of secondary nerves equidistant and curving to tho borders, the lower ones on the medial nerve being at right angles to it. These leaves are related to Sterculid labrusea, Ung.. a species which. already present in the Eocene of France, is found also in all the stages of the Tertiary, including the Pliocene, in very variable forms. A number of specimens in the Musenm of Comp. Zool. of Cambridge represent a form which seems intermediate between this and the preceding. The leaves are 8 to 10 centimeters long, somewhat thick but not coriaceous. with lobes more or less diverging, linear-lanceolate, gradually narowed above to a blunt point, nearly equal in length. 4 to $5 \frac{1}{2}$ centimeter: long. 12 to 14 millimeters broad.

Hab.-Kansas. Found at divers localities. Chs. Sternberg.

TILIACE.E.

GREVIOPSIS, Sap.

The remark made on the definilion of this gemus, "U. S. Geol. Rep.," vii, 1. 257. is applirable also to the tretaceous leaves which I have described under this generic name. The character of the nervation especially relates them to those figured by the celehrated anthor in the "Sézanne Flora."

Greviopsis Haydenii, Lesqx.
"It. S. Geol, Rep.," vi, p. (17, pl. iii, figs. 2,4 ; xxiv, fig. 3 .
The leaf represented in this last digure was described tirst in "Amer. Jour. Sci. and Als," July, 1S68, as Populites flubelleta.

ACERACEA.
ACERITES, Newby.
Arariles pristinlls, Newby.
"Later Ext. Fl.," p. 15; "Mlustr.," pl. v, fig. 4
Leares petiolate, cortate at the base, five-loberd; lobesentire, atonte; five strong and nearls equal reins radiate from the base into the lobes. The small nerves are distributed over the surtice in a fine net-work of whirh the meshes are subrectanc゙ular. (Ny)

The figure represents a fragmentary leaf of the same character as those described and figuret in "U. S. Geol. Rep.," ri, p. 56 , pl. ii, figs. 1 , 3 , moder the name of Liquidambar integrifolium. The relationship of these leaves seems to be with the Araliacer, but it is as yet mascerlained.
"U.S. Geol. Rep.," vi, p. 67. pl. xxi, fig 5 .

> SAPINDACE E.
> SAPINDUS, Linn.

Sajindus Marrisoni, sp. nov.
Plate XVI, Figs. L, 9.
Leatlets subcoriaceous, short petioled, lanceolate-acmminate, unequal at the rommed narrowed slightly decurming base; lateral nerves alternate, parallel, curving in passing to the borders. camphorlrome.

The fragment represents atparently the base of a large pimately
divided leaf, with leaflets alternate, short petioled, more enlarged on one side near the base. The fragments of leaflets distributed on the same piece of coarse shaly sandstone indicate their original connection with a pimate leaf. The lower part of the stem does not bear any fragments of the base of other leaflets altached to it. The stone is coarse, the nervation is obscure and has no trace of subdivisions of the secondary veins. The leaflets average 12 to 14 centimeters in length, $2 \frac{1}{2}$ to 3 centimeters in width in the broadest part below the middle.

Hab.-Near Morrison. Colorado. II. C. Beckwith.
Fragments of what I consider a variety of this species have been sent hy Chs. Sternberg to the Museum of Comp. Zool., Cambridge, from Ellsworth Counly, Kansas (Nos. 24, 37). These represent two leaflets only, both mequal at base, one about the same size its the specimens from Morison, merely differing by the lateral veins being a liftle more oblique; another leaflet is shorter and has the veins open proximate. It has been fomd also at Atane with S. prodromus. Hetr. "Fl. Aret.." iii. p. 117, pl. xxxir, which it resembles.

FRANGULACEA.
 CELASTROPHYLLUM, Ett.

```
    Celastrophyllumensilolimm, Lesqx.
"U.S Geol. Rep.," vi, p. 108, pl. xxi, figs. :%,3.
```

ILEX, Linn.
Ilex strangulata, Lesqx.
Plate III, Fig. 7.
Mayden's "• Am, Repr," 1574, p. 359, pl. vii, fig. ©
Leaf coriaccons, narrow, panduriform or strangled in the middle to a small anguhar lobe, rounded at base in narrowing to the petiole, entire in the lower part, little thlaged and irregularly distinctly obtusely dentate in the upper; secondary veins proximate, in a very open angle of divergence, irregnarly eamptodrome or mixpl.

This leat is about $5 \frac{1}{2}$ centimeters long (point broken) without the $1 \frac{1}{2}$ ratimen long petiole. The general ontine of the leat is lanceolate, but it is Harrowed in the middle, as by mosion, nearly to the medial nerve. and gradually enlarged upwarl by undalations or successive large obluse irregular teetl. The surtace is rugose: the laterat nerves, mostly camp-
todrone, follow close to the borders, the lower pair at a morw acute ande of divergence as marginal veins, and those of the middle abruplly rurved, following also close to the borders with the same appearance as that of the basilar nerves. This nervation is related to that of some species of Mybict, and still more of Hex, like I. Abichi, I. berberidifolim. Hecr, of the Miocene. The areolation, distinct only on a small area where the epidermas is destroyed, is in smatl. angutar or irregularly spuare arooles. Thematrowing of the leal in the middle appears as produced by the ghawing of insects. But if the rein which follows the border is not a deceptive representation caused by the thickness of the leaf, this peculiar deformation is natural. Leaves of Ilex are oflen variously and abnormally cut.

Ilab.-Same as Dryophyllum (Quercus) Holmesii, in comnection with coal strata of Southwest Colorado at a higher stage of the Cretaceons. H. Holmes.

FRANGULACEA.

PALIURUS, Tourn.

Paliurus membranaceus, Lesqx.

"IT. S. Creol. Rep.," vi, p. 108, pl. xx, fig. 6.

RHAMNUS, Juss.

Rhamins tenax, Lesqx.

"CU. S. (reol. R+p.," vi, p. 109, pl. xxi, fig. 4.

Khamnus prunifolius, sp. nov.

Leaf coriaceons, orate-lanceolate, rounded in narrowing to the base; medial nerve deep, straight; lateral nerves at short distance, parallel, open, arched in passing toward the borders and curving along and close to them; nervilles close, mumerons, oblique to the nerves.

This leaf, 4 to 5 centimeters long (point broken), nearly 3 ceutimeters in the middle, resembles what Heer describes as Satix werwillosa, "Phyll. Crét. du Neb.," pl. i. fig. 3; but the lateral nerves are open, joining the medial nerve nearly at right angles, parallel from the base of the leaf, which is not cuneiform but more rounded; the nervilles are oblique to the veins. The nervation is that of a Rhammes.

Hab.-Near Glasco, Kansas. Chs. Sternberg. No. 479 of the Museum Comp. Zool., Cambridge.

Juglans？Debeyana，Heer．

＂U．S．Grol．Rep．．＂vi，p．110，pl，xxiii，figs．1－5．
Populus Ifbeyana．11per，＂Phyll．Cret．du Neb．，＂p．14，pl．i，fig．1；Newby．，＂Notes on Ext．Fl．，＂p．It； ＂Illustr．，＂pl．is，figr． 3.

ANACARDIACEE．

```
Phyllites rlooil⿴囗口ims, Lesqx.
```

＂U．ふ．（ieol．Rep．，＂vi，p．111，pl．xxii，figs．\％，（i．
POMACEA． PYRUS，Lindl． Pyrus：cretacea，Newby．
＂Nutes on lixt．Fl．．＂pr 12：＂Illustr．．A pl．ii，fier． 7.
Leaves petioled，small，roundish，oval or elliptital，often shightly emarginate， entire or timely serate；medial nerve strong below，mpidly diminishing toward the summit：lateral nerves four or tive pairs，with intermediate smaller ones，diverging from the midrib at mequal ancles，corved toward the summit，where they anastomose in a series of arches parallel with the margins：tertiary nerves forming a net－work of which the areoles are somewhat elongated．（Ny．）

This leaf seems to be a small，lateral leaflet of Jughuns？Debeyuna．
Mab．－Smoky Hills．Kamsas．Dr．Hayden．
AMYGD』LE®．
PRUNUS，Tourn．

l＇rinus cretacea，Lesqx．

＂U．S．Geol．Rrp．，＂ri，p．111，pl．xxini，figs．S． 9.
LEGUMINOSA．
LEGUMINOSITES，Auct．
Legnminositescultriformis，sp．nov．
Plate $\mathrm{X}, \mathrm{Fig} .4$.
Fruit（legume）stipitate，rounded to the point of support，enlarged above it and gradually tapering up to an obtuse point；stipe enlarged at base．

The legume is $7 \frac{1}{2}$ centimeters long without its stipe（a little more than 2 centimeters）， 13 millimeters broad above the base，the widest part，and gradually narrowed，by the inclination of one of its sides only，to a blunt
point. The whole surface is smooth with only some fragments of longitudinal lines.

No remains of Leguminose have been discovered in the Dakota Group except the one figured as above. It appears to be a stipitate legume with analogy of form and size to those of Lonchoctrimes. II. B. © Kuntlo. a genns mostly represented in the West Indian Islands, the equatorial America.

GENERA ANI SIECLES OF UNCERTAIN IIELATION.
ASPIDIOPHYLLUM, Lesqx.
Mardeu' "Aun. Rep.," 18:4,], Sthl.
leaves large, triangnlar in outline, palmately trilobate, truncate or rombed to a peltate base; mervation coarse; pimary nerves tatid, from a short distance above the peltate base of the leaves, the lateral, at an open angle of divergence, sometimes embed downward; secomdary nerves generally elose, parallel, camptodrome, geberally simple, joined hy strong nervilles at right angles.

This grout has a great affinity by the form of the leaves and the nervationt to that of the simseffirs (Araliopsis). Indeed at first sight it atpears to differ from it onty by the addition of a basilar shiedd. The neration. however, differs in some characters, the primary nerves beine at a more open angle of divergence, as are also the secondary ones, which are atso more curved in passing to the borders. The rounded more or less entaged shield of the base is nerved by the secombary nerves gradnatly dectining downward. one pair generally attached under the point of union of the primary nerves, the others derived from the base of the medial nerve and passing downward, the lowest nearly perpendicular in direetion. and all abruptly curving and following the borders in continuous flexnres. The disposition of the lower lateral nerves has an analogy to that of Credneria. with the difference that in Codneria the lower secondary nerve are all at right angles to the midrib. The same kint and degree of anatoxy is marked behween these leaves and those of Protophyllum and Pterospermites, and also those of P'lutames.

```
Aspididyluylumtrilobatum, Lesqx.
Plate XII, Fig. 1: XllI, Figs. 1-5; XIV. Fig. 1.
```

Leaves generally large, coriaceons, triangular or rhomboidal in outline, deepls obtusely tribobate, broally cuncate to the base, enlarged into a half-round entire auricle.

The leaves vary in size from 10 to 24 centimeters long and from 10
to 30 centimeters bruad between the lateral lobes. Some of them, apparfatly constituting a variety of the normal form, are not half as large, their nervation is still coarser and the surface rugose, as in pl. xiii, fig. 1 , and "specially pl. xir, fig. 1. All have been found at the same locality, mostly ahne. There is also a marked difference in the expansion of the peltate hase, which is generally half-round, as in pl. xiii, figs. 1,3 , but which -rmetines is sagularly dentale lobate around, as in pl. xiii, fig. 5. But this fragment maty be referable to the following species.

Mab.-Fonnd in mumerons specimens $3 \frac{1}{2}$ miles south of Fort Harker. Chs. Sternbery.

```
Aspidioplivllum dentatum, sp. nov.
```

Leaves smaller, palmately three-lobate, peltate at the base; lateral lobes trilobate, the medial long, all dentate in the upher part; secondary nerves camptonlrome; lase of the leaves contracted into a fan-like five-lobed basilar shield.

The leaves have the same general facies as those of A. trilubutum, differing by their lexture not being as thick, the nervation not as cuarse, and by the base of the leaves being contracted under the point of division of the primary nerves into a narrow neck half a centimeter broad only, and then abruptly enlarged into a fan-like tive-lobed or deeply dentate shield or stipule 4 centimeters broad between the summits of the lateral teeth and 2 centimeters vertically from the base of the medial nerve to the end of the lower lobes. This form or species with the dentate borders of the middle lobes and the subdivisions of the lateral lobes has its affinity to Sussafias (Araliopsis) cretacem, while the preceding species has it to S. (Araliopsis) mirabile. Another specimen of the same group shows the basilar shield transversely oval and entire, stipuliform, also separaled from the leaf by a narrow neck. But of this I have seen only a mere fragment, the base of a leaf. It possibly represents still another species.

Hab.-Eight miles northeast of Minneapolis. Chs. Sternberg. Specimens 607 and 614 of the Museum Comp. Zool. Cambridge.

```
Aspidiophyllum platamifolium, sp. nov.
```

1 late II, Fig. 4.
Leaves of varions sizes, thimer or not coriaceons, rhomboidal in ontline, irregularly short tribobate, triple-nerved high above the base; secondary nerves distant and irregular in position and direetion, eraspedodrome, with canptodrome divisions.

The few leaves I have seen of this species are about of the same size,

15 centimeters long, 13 centimeters broad between the lateral short broadly obtuse lobes. The substance of the leaves is not coriaceous, rather thin or menmanaceous; the nervation not is coarse; the primary veins binly half an thick as in the preceding species. The medial nerve descends to near the basilar margin before passing under it, and thus the tertiary or marginal reins join the lower part of the medial nerve at right angles as in Cromoria; the upper secondary nerves, only llnee pairs, are very distant and oblique, not parallel nor equal in distance, and reach the marins: by their ends as craspedodrome while all their divisions are camptodrome. The relation of this leaf to Platamus is quite distinct, as will be seen in comparing it to P. Heerii, "U. S. Geol. Rep.," vi, pl. ix, fig. 1.

Hab.-Clay County, Kansas. II. C. Towner.
Protoplyylum, Lesqx.
"Lt. S. Geol. Rep.." vi, p. 100.
Protophyllum Sternbergii, Lesqx.
Ibid., p. 101, pla, xvi, xviii, fig. 2.
Protophyllumi Leconteanum, Lesqx.
Itid., p. 103, pl. xvii, fig. 4 ; $\mathbf{x} \mathbf{x} \mathrm{i}$, fig. 1.
Protophyllum Nebraseense, Lesqx.
Itid., p. 103, pl, xxvii, fig. 3.
Protoplyllum quadratum, Lesqx.
Ibid. p. 104, pl. xix, fig. 1.

```
Protopluyllum minus, Lesqx.
    Plate IV, Fig.6.
```

Itid., p. 104, pl. xix, fig. ? ; xxvii, fig. 1.
This species sometimes has the leaves very rugose and thus resembles ${ }^{\prime}$. mugosum, which is, however, very different in the nervation, the large size of the leaves, etc.

Protopliyllum nulutinerve, Lesqx.
Ibid., p. 105, pl. xviii, fig. 1.
From numerous specimens less fragmentary than the one figured the leaves are seen to be round or transversely oval with borders entire. The sizes vary from 7 to 14 centimeters long and 9 to 18 centimeters broad. The nerves are very close and numerous around the pellate base of the leaves; above it they count 8 to 10 pairs, the lower forking generally once. the upper simple.

```
Protophyllum rugosum, Lesqx.
```


Among other leaves of this species there is one entirely preserved, No. 7.47 . in the Museum Comp. Zool. Cambridge. It measures 17 centimetris long, 10 broad, is undulate on the borders or somewhat dentate by the projection of the lateral veins. and agrees in every point by form and nervation with the figure and description of the species (loc. rit.).

```
Protophyllum Haydemii, Lesqx.
```

Ibid.. p. 106, pl. xvii, fig. 3.

```
Protophyllum ereduerioides, Lesqx.
```

Plate 11. Figs. 1-3.

Hayden's "Ann. Rep.," 1Ei4. p. 36i3, pl. iii, tig. 1: viii. fig. 4.
Leaves small, nearly romd, brodly comeate or subtmeate at base, longe petioled; borders entive or more gemerally umdulate; nemation obscurely trifid; secondary rems parallel, equidistant, at vamons anges of divergence, more or less hranching.

The leaves vary in size from 6 to 8 centimeters both ways. The borders are either deeply undulate or nearly entire, thongh all the neres and their divisions are craspedodrome; the secondary nerves are open. at right angles toward the base. The areolation is formed by anastomosing of continnoms nervilles at right angles to the veins and by their subdivisions in the areas, ako at right angles. forming very small quadrate meshes, as seen in fig. 3. As in the other species of the genus, the nervation is more or less obscurely frifid. The lower primary lateral nerves being at a distance above the borders have under them, as in Credneria. two pairs of thinner secondary or marginal nerves at right angles. But as the lower veins often branch like the upper ones and have the same direction as those above, the nervation sometimes appears pimate. as in fig. 1. The ternate disposition is, however, distinct in fig. 3.

Mab.-Kansas. Not rare. Chs. Sternberg, II. C. Towner.

```
Irotophyllum? Mudgei, Lesqx.
```

[^11]ANISOPHYLLUM, Lesqx.
"U. S. Grol. Rep.," vi, p. 98.
Anisoplyllumsemi-alatum, Lesqx.
Ibid. p. 9k, pl. vi, figs. 1-5.
No uther specimens have been seen of this species since it was first examined.

EREMOPHYLLUM, Lesqx.

Ibid., p. 10\%.

> Eremoplyyllum limbriafum, Lesqx.

Ibid. p. 107. pl. viii, fig. 1.
The specimen figured is the only one seen of this kind.

```
VEGETABLE REMAMNM OF CFてERTALY AFELVITE.
PHYLLITES. Auct.
1’hylitrs V:allolle, Heer.
```

Ibid., p. 11:3, pl. xx, fig. 7 : xxpiii, fis. -
Pluylites rlıolulyoideus, Lesqx.
Ibid.. 1. 112, 1.7. vi, fig. W.
Phyblites cotinus, Lesqx.
Haydeni: " Aum. Rap.," 1874, p. 364.
Bumelia Murouma, llemp, "L. S. Geol. lepp," vi, p. 90, pl. xxviii, fig. \because.
lhyllites umbonatus, Lesqx.
"Y". S. Gienl. lityn," vi. p. 113, pl. xix, fig. 4.
Phyllites anorphus, Lesqu.
Ibid., p. 11\%, pl. xxii, figs, 3, 4 .
P(はnostrobus, Lesqx.
Ibid. 1. 114.
ftenostrobus Neblascensis. Lesqx.
Ibid.. p. 111, pl. xxiv, fig. 1 .
CARPOLITHES, Auct.
Cambolithes species?
Ibid., p. 114, pl. xxvii, fig. 5; xxx, fig. 11 .

CAUDEX.

Calldex spinosus. Lesqx.
Caulinites spinosus, Lusqx., Ibid., p. 115, ph. xxvii, fig. 4.

CONCLUDING REMARKS.

The Flora of the Dakota Group, as already remarked, is considered at relating the formation which it represents to the Cenomanian or Mitule (hretacous. horder to ascertain the ralidity of the relationship, and alou to have a clear exposition of the general characters of the vegetation of the lime. I thave prepared the lotlowing table of the species of fossit Nants which have been described by authors as referable to that stage of the Cretaceous.

1st. Those from Atane, Greenland; described by Heer in the \cdot Fl. Aret.." inctuding part ii of vol. vi, recently published.

2 . The species known from Motetein and Quedlinburg, described by the same author.

3d. The plants found in the Quader sandstone of the Hartz and of Bohemia, described or mentioned in different memoirs by Hampe, Stiehler, Dunker, Goeppert, Feistmantel, Corda, etc.

4th. The species described from Niedershœna in Saxony, by d'Ettingshausen.

TARLE OF DISTRIBUTIO.V of TIIE PLANTS OF THE CRETACEOUS CE.VOM.ANIS FORMATION.

Table of Mistribution of the Plants of the Cretaceous Cenomanian Formation-Continued.

$\begin{aligned} & \text { 空 } \\ & = \\ & \hline \end{aligned}$	NAMES OF spectes.							㗁
43	Gicichenia mmptomiefulia, Ett.			$+$		+	$+$	$+$
44	Gleichornit whtusata, Hr_{r}			$+$				
45	Lygodium thimounanides, Lx.	$+$						
46	(anumda Obergiana, Hr			$+$				
4	Weirhselia Ladovirar, Stieht				+	$+$		
	Rhazocarpex.							
10	Marsilea ${ }^{\text {cratarasa, }} \mathrm{Hr}$							
49	Stlaginetr.							
	fhenorimene.							
	©ycudex.							
50				$+$				
51	Cyraditen Licksumi, If			+				
52	1'throphythum eretusum, Weich..						$+$	
\% 3	Iteruphytum saxunicum, Reich .					$+$	$+$	
T	Zamites latipemis, It			$+$				
5.	Podozamites Haydenii, L , x	$+$						
56	Poulozanites Embentine, Stueh					$+$		
57	Poduzamites marginatus, IIr..			$+$				
-e	Ionduzanites minur, Itr.			+				
3.9	'thfuzamiten tuninervis, Hf .			$+$				
\%0	Powlozamites ublongus, Lx.	+					
$6^{6} 1$	Poduzamites ampustrolius ? , Hr	$+$						
12	l'odozamites prælongus, Lx......	$+$						
63	Podozamites emarginatus, Lx	+						
fis	P'udozamites caudatus, Lx	$+$						
65	Otozamitws? Grunlandicus, Hr			+				
6	Nelsonia Johnstrupi, Hr......			+				
	Conifers.							
1.	Araucariaspathulata, Ny....	$+$						
is	Coninghamites elegans, Corda.				+			
69	Cuninghamites squanosa, Mr..				$+$			
70	Cuninghamites oxycedrus, St..						$+$	
7	Cuninghamites Stembergii, Ett.						$+$	
T2	- naninghanites ixarealis, Hr..			+				
73	finus Suctededi, Mr.	$+$		$+$	+	$+$		
74	Pinus waginalis, H \%			+				
35	I'inus ${ }^{\text {taratschini, }} \mathrm{Hr}$			$+$				
26	\boldsymbol{l} 'inus (1 mernas ikensis, Mr.			$+$				
7	Pınus Chafiana, Hr......			$+$			$+$	
\%	Whierites rurvifutios, Dkr					$+$		
\%	A bietites tivepterti, Dkr..					+		
81	Ahetites Hartigii. Ikrr..					+		
$=1$	Sheturs lirmestina, Lx.	$+$				+		
8	Sequaia rigida, Mr...			$+$				$+$
¢3	Nequela ambigua, Hr.			$+$				$+$
84	Sequaia Reichenbachi, Itr	+		$+$	$+\quad+$	$+$		$+$
-i					$+$			

Table of Distribution of the Ilants of the Cretaceous Cenomanian Formation-Contimuld.

${ }^{1}$ Heer condiders these three species as byounym.

Table of Distribution of the Plants of the Cretareous Cenomanian Formation-Continued.

药	NaMEs Of Species.							
	Scitamines.							
123	Zingiberitea pulchellus, Ifr			+				
	Pandanere.							
194	Y'andanus Smildre, Stiebl.				+	+		
	Palme.							
125	F'almacites horridus				$+$			
124	Flabellaria minima, lax..	+						
	LhCotiledones.							
	Myricacts.							
12%	Myrima eretacea, Hr .				+			
108	Myrica Dakotenis, Lx	+						
109	Myrica nhtusa, Lex.	+						
130	Myrica semina, Lx	+						
131	Myrica 大mamkiana, Hr.				+			
122	Myrica Stornbergii, ix	+		1				
133	Myrica Thulpusis, Hr.			+				
134	Myrica ellarginata, Hr			+				
135	Myrica Zenkeri, Ett			+			+	
13 ki	Myrica lunga, Hr			+				
$1: 37$	Myrica lungifula, Ung..						+	
	Brtulacre.							
138	Letulat Beatricianat Lx	$+$						
134	Betnlites denticulata, H	+						
140	Phyllites hetuliefulins, Lx	+						
141	Aldites grandifulins, $\mathrm{N} \boldsymbol{y}$.	+						
	Cupulifers.							
142	Dryophylhum (Quercus) latifulium, Lx	+						
143	Dryophyllum (Querras) primordiale, Lx.	+						
144	Dryophylum (\$uercus) Iolmesii, Lx .	+						
145	Quercus Beyrichii, Eft.						$+$	
146	Quercus Dakotenkix, Lx	+						
147	quercus hexagona, Lx .	+					
148	Quercus Ellsworthiana, Lx	+						
14!				+				
150)	Quercus Linkiane, Mr......			+				
151	Qumans Warningiana, Hr			+			
152	Querens ferux, Mr.........			+				
153.	Querens hieracifolia, Hos. \& v. d. M.			+				
1.4	Querens thalensis, Mr.			+				
15	(harrche trigladites, 1fr			+				
156;	Querena poramides, Lx..	+						
157	(uerens Murrisonima, Lx		+					
150		+						
258	Querons antiqua, Ny	+						
100	quercus sinuata, Ny...	+?						
261	Castatea Hausmanoi, Dhr					$+$		

Table of Distribution of the Plants of the Cretacous Cenomenian Formation-Cominurd.

Table of Distribution of the Plents of the Cretaceous Cenomanian Formation-Continued.

Table of Distribution of the I＇lants of the C＇retaceous Cenomaniun Iomation－Continued．

Fricaces

Ambrompelai lotatliantar, Hr

lowmatuphyllitws al utas, Hr
Asclepiaders.
210
2π
\because
23
4 Iralia 'Iniaquepartita, $1, x \ldots$
Sralia emarginata, $1, x$.
Iralia noncreta, I x...
Iralia tenuinervis, $\mathbf{L x}$.
Srilla rauliata, Lx.
Tralia (irmmlandica, Ir
Hanax retaceum, Mr
Hedera wealis, Lx
Heciera primordialis, Hr_{r}
Hedera Schimperi, Ix.
Hedera cuneata, IIr.
Hedera platanoides, Lx.
Dakota Gromp-Kan-
sas, Nebraska. Min-
nesota.

Maynophylhm Fratacii. Itr

Eaphophyllant whation. Hr

dsarines
Imstule whia alentata, $\mathrm{H}^{\text {. }}$
Myrstnear.
Myann- Muncilis. $\mathrm{H} r$.
Phospyrines.
Sonemtas aretica, $11 r$.
Araliaceie.
Iralia furmosia, Itr
Aralia Naportanea, Lx
Iralia Powneri, $\mathbf{1}$ x.
ltaliat Kavniana, IIr

Fable of Instribution of the I'lants of the Cretactous Cesomanian Formation-Coutinued.

Table of Distribution of the Plents of the Cretareous Cenomanian Formation-Comtinuml.

Table of Instribution of the Plants of the Cretaceous Cenomanian Formation-Continued.

NAMES OF SPECIES.
('redneria sternbergii, Brgt
Aspudinphyllum platanifolium. L,x

C'redueria voneifolia, Bronn Credneria lienntaiana, Vog ('redneria grandidentata. Ung CreIneria species, IIr Aspidiophyllum trilobatnon, L x P'rot"lhyllum Nternbergii. Lx.. Irotophyllum laconteanuis, $\mathbf{1 x}$. 1'rotophyllum Nolontscense, Lx

 - Protuphyllum quadratum, $1 / x$ lrotuphylhim minus. Lx I'vouphyllum multinerve, $L x$ I'ratophylutu rugasum. Lx 1rotophyllum Haydenis. L_{x} lrutuphyllum crenduerinides. L_{x} Protuphyllam Mmigei. Lx Ausurphllum sturi alatum. Lx Eremoyhyllam fimbiatum, Lx. Phyllites Vamunat, Mr

$$
\left|\begin{array}{c}
\text {. } \\
\cdots \cdots \\
\cdots
\end{array}\right|
$$

$$
\text { A spidiophyllum dentatum, } \mathbf{l} x \text {. }
$$ 1'hyllitun olucurdatus, Sy Plyolliter rhamboinfers, ix I'lugllitas cutinas. Lx Phyllitu mobronatus Lax. Ihylliten amorfhus, $L x$. Phyllites linguxformis, Hr Phyllites lievigatua, It Ihyllites homefretiolatus. Mr. Ihyllites granalatum, IIr. Phyllites mourvatus. 11r

 Phyllites ramosinervis, Hr 'Tetraphylum oblungum, Hr Carpuithes? sfecies, Lx. Carpolithes? scrobienlatus, $11 r$ Carpolithes? eretarens, Ett Cauder slumsias. $\mathrm{L} x$, 11 r
\qquad
\qquad
$+$
I'rutnuhyllum sternbergii. Lx..

$\ldots \cdots \cdots \cdots \cdot |$| + |
| :---: | :---: |
| + |

$$
\begin{aligned}
& + \\
& +
\end{aligned}
$$

\qquad
\qquad
+
+
+
\qquad
+
+
+

[^12]\qquad
\qquad
\qquad
.............................+
+
+
\qquad
\qquad
\qquad
$\qquad$$t$
+
+
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
…................
\qquad........

\qquad
\qquad
\qquad
\qquad
\qquad
x

\qquad

$$
\begin{array}{c|c}
\cdots & \cdots \\
\cdots & \cdots
\end{array}
$$

$$
\begin{array}{c|c}
\ldots & \ldots \\
\cdots & \ldots \\
\cdots & \ldots
\end{array}
$$

$$
\cdots
$$

THE RELATIONSHIP OF THE FLORA OF THE DAKOTA GROUP.

In comprang first the Floria of the Daknta Gromp to plants described be Here from Kome. referable to the lowest Cretaceous or Neoconian formation. thr lable of distribution indicates an extremely great difterene in the chanacters of the constituents. Two species only are common to
 Reichenherhi, a Coniter. These speries are of predoninant and persistent durasese types. remnants of old apochs. The single dicotyledonons specis diservered in the group of plants of Kone, I'opulas primera belones to the sedion of the coriaceons pophars. represented at Atane by two other species. Sopoplar of this sedion has been observed as yet anong the reqedabe remains of the Dakota Gromp. This last hora is. therefore. withmat aftinity to that of Kome. But with the thomaf Atane that of the Dithota (iroup las a marked degree of attinity, 15 species of plants being rommon to both. They ine: P'inns (luenstenti. Sequin Rerchenbachi, s.

 Gromp are so dosely illied to T. I'fuffic ind M. Thulpmsis of Atime that these forms described mader different specitic names. appear to be mere Vibleties: and the same can be sad of Ficus protorfan and Aratia Racmana of Atane. Which. as far as can be smmised in comparing figures and descrif, tions. apprar identical with Ficus Berdwithii and Arulid Towneri of the Dakuta Gronp. The relationship is the more remarkable as the affinitien are not limited to one or a few pecnliar sections of the vegetable kinglom. but refer to plants of most of the divisions known in the flom of the present epocth. at least in that of the temperate regions. Of the 65 genera to 115*

Which the plants of the Dakola Group have been referted, ft are represented at Alane: and in them (besides Ferns, Conifers. Monocotyledons) there are in the Dieotyledons, Maynoliacear, Anonacea. Memisperimacece. Vitnere. Stpuntered. Araliacea, under the subdivision of the Polypetalous: Letheminestr. Ericucce, Ebenacra, in the Monopetalons: IIamamelnere. (in'mera. Rhemmacte, Urticacea (Morce Tuglandea, ole.), in the Apetatons. Hence the relation of these floras is, so to speak. general. There is only a makmed difference in the number of species represented in a few groms. Mathe for example, has 35 suecies of ferms and 28 of Conifers, while only tiferm and 9 Comifers are known from the Dakota Group. This last flora has it large number of species in the gencra Salix. Platamus, Sussufors. Aralin. Litiodendron, Menispermites, Protophyllum, while Atane has preHominance of species in Maymolia, in the Myrtacee. Ptorospermites. Ritus, and especially in the Lequminose, of which 18 species are described by Heer, while only one is known from the Dakola Group. But these differHoces merely show the inthence of local circumstances, lower temperature. more open ground perhaps for the phants of Atane. where ferns and Lupmemose are more abundantly distribuled than in forests of large-leafer trees, like those of which the llora of the Dakola Group is esjecially ramposed.

As Kome and Atane have in common 8 species of Ferns and Gymmosperms. of which two only have been found in the Dakota Group, it might berspposed that the Atane flora is older than that of the Dakota Gromp. The character's of the Dicotyledonous plants lead to a different conclu--ion: for some of these plants of Alane are identical or very closely related to speries of the uper Crelaceous. or Senonian. while none of them have been observed in the Dakola Group: Querous Westfatica and Q. hacracifotia. remeded by Herr in the flora of Atane are described from the Senonian of Europe: two species of Dewalquea, also recognized by Heer in the plants of Atane, are found in the upper Grelaceous of Belgium and the Paleocene of France, while Cinnmmomm Sezonnense, which Heer lias also found in the plants of Alane, is lower Eocene in France. Therefore, it is evident that the formation of Alane is somewhat more recent than that of the 1)akota Group, apparenlly an upper slage of the same.

The degree of relationship of the Dakota Gromp flora with that of the

Conomanian of Europe in divers localities indicated in the table, is the least distinctly marked with Quedlinburg. From this place Heer has descided 20 species, 3 of which only-Gileichenia Kurriana, Sequoia Reichenbachi. and Proteoides lancifolius-are identified in the Dakota Group. The -tage of the Quedtinburg beds is not positively determined. While some geotogist: rufer it to the Cenomanian, Goeppert considers it as lower Senonian. If as a formation more recent than that of the Cretaceous of Kansas. It has a Cirtueria (C ' inteyerrimu, Zenk.), also tound at Atane. The flora of Moletcin ofters. in nearly the same number of species (18). more detinite point: of attinity with that of the Dakota Group in 7 identical species. 3 of whirh are dicotyledonons: Ficus Mohliana. Aralia formosra. and Magnolia speciosa. The Moletein formation is generally admitted as equivalent to that of the lower Quader sandstone of Germany, from which at different localities in the Hartz and in Bohemia 30 species ot plants have been described. Of these also. 8 ire found in the Dakota Group. Hence the marked analogy in the components of these tloras authorizes the conclusion of equivaleney of the age of the Dakota Group with that of the Quader sandstont of Germany, which is as positively determined as Cenomanian by its anmat fussils as the Dakota Group is recognized as Middle Cretaceous by the inverforate rmains which abound in the strata of the Fort Benton Gromp. immerliately overlying it.

We may have an opportunity to see in the characters of the plants further described in this volume, from the different stages of the Tertiars. some of the types of the Dakota Group reappearing through subsequent periods. especially in the Miocene. But this camot in any way nutlify the originality of these types, and what is said above sufficiently proves that if the Dakota Group has in its flora some plants closely allied to Hiocene species and also to plants living at the present time. the tipetaceons are of the group is positisely fixed.

FLORA OF THE LARAMIE GROUP.

The age of the Laramie Group of Hayden is nol yet definitively determinet. The remains of fossil plants, abundantly procured from this formation, especially at Golden, Black Buttes, and Point of linchs. have been recognized by letanists as pertaining to a flora mostly composed of Tertiary types, while, acording to zoölogists, the fana of the same formation is Gretaceous in character. Though the question has already been discussed at length and considered under diverse points of view. my own opinion being given in the preceding volume of the "U. S. Geol. Rep.." vii,
 brietly to present here some new facts lowating on the subject, and to note the conclusions which may be derived from them.

1st. The flora of the Larmmir Gromp has a relation, remarkably well defined, with that of Sezame. This relation becomes still more distinctly shown by the few species of plants whirh have recently been added to it and are described below. The flora is not rague or indefinite in ils character; its types are-clear and-precise: those which are limited to the formation are found in the divers localitios where the remains of phants have been discovered, the relation of some others is with plants of a higher stage, especially with those of the Miocene; rery few are Crelaceons and these are mostly represented by persistent species whirh, derived from the Jurassic, have passed through the inlervening period to the present eporlh.

Though the geological surveys of the Govemment have not sent me from the Larmmic Group any specimens of fossil plants to be examined and deseribel in this volume. l have had the opportunity of looking orer a large collection of plant remains obtamed at Golden for the Musemm of Comparative Zoölogy of Gambridge. They mostly represent species already known. Of the new ones, none are referable to Crelaceous types: they are still more generally allied to those of Sezanne. This does not imply that
the thora of the Laramie is positively identical in its geological horizon "ith that of sozame. There are marked differences in the general char-antri- at the regetable groups. The flora of the Laramie, for example. ha- a renarkable predominanre of species of palms. white these are on the contrary, rery rare at Sézanne. As the palms have their origin, as far in knwon. in the middle Grefaceous. where they have been observed in rery pare lemains. limited to one or two species, and as their development hat been gradually progressing through the more recent formations, this fact. on the abundance of remains of palms in the flora of the Laramie. gives to it a somewhat more recent aspect than that of sezanne, where the absence of palm. howerer. may have resulted from mere local circumstances.

2 d. Some time ago the members of one of the scientific expeditions of Princeton College discorered and collected in Wyoming a number of tine specimens of fossil plants referable, by their characters, to a slage of the Cretaceoss more recent than the Cenomanian Dakota Group. As far as can be fudged by a preliminary examination. the species, mostly Quercites and Aruliccere are related by idenlical types, even by some identical species. to the flora of the Senonian, as it is known in Germany by the plants published by Hosius and Yon der Mark, and in Belgium by those of Debey. They have also a degree of affinity, though less distinct, with those of the Marnes Heersiemes of Gelinden, a formation which, in France, constilutes part of the series of the Sables de Bracheux or of the London clay, etc.. the lowest part of the Tertiary system. or Eocene, as it is generally admitted to be by European geologists. The plants of Gelinden, partly Senonian in their characters, are related to the Sezanne flora by one identical species and a number of others of generic or typical affinity. Hence we see now. in the floras of the North American Continent, from the Cenomanian to the Eocene of the Laramic, a succession of regetable groups corresponding to the Emropean series, with the exception only of the flora of Gelinden in the sables of Bracheux, nol yel discovered on this conlinent. According to French geologists the Sezanne beds are comprised in the Pisolitic limestone, a formation superior to the Sables of Bracheux. and hence more distinctly referable to the Tertiary.

3d. A menoir published by Professor Cope on the horizon of extinct

Sndthrates of Europe and North America ${ }^{1}$ contains very Valnably and interesting docunemts. Which really show that the evidence afforded as th the ase of the Laramie Group both by the remains of animals and by those of plants is not far discordant. In the table indicating the correlation of all the formations from the lowest to the morr recent (1 中, 50 and 51 of th. memoir quated above the horizon of the sezanne tlora. or the Pisolitic linestome is not separately indicated. but is probably in what the authm catls the Puerco stage hypothetically identified with the Thanetian. or lower Eocene: the whole Puerco and Laramie on one side. and the Sableof Brachenx on the other. being marked as Post-Cretaceous. Now the relatiom and difference between the vertebrates of the Laramie and those of the sables of Brabhenx is rstablished by Professor Cope as follows: . The genera of Dinosturia (Detcoscincus. Cionotom. Diclonius. Monoctomins. Iysignu: , which comstitute a predominant type in the Laramie Group. have not been found in iny uthre part of the world. Mingled with them Were species of crocodiles and turtles of indifferent characters, while a number of other forms existed which had a limited range in time. and hence are important indications of stratigraphic position. Such are the generia Ihyledaphus (Cope) and Clastes (Cope), which have been found also near Pheims. France. by Dr. Lemoine, in the Sables de Brachenx, which are regarded as the lowest Tertiary. Such is the curions Saurian type Chumpsosaurns (Cope), Simedosturus (Grev.), and the turtle genus Compsemys (Leidy). which Lemoine fints a little higher up in the series in the conglomerate of Cerny, which is the lower part of the Suessonian. In France a genus of the Laramie. Polythorar. extends into the Lisnite or upper Coryphodon beds of the suessonian. Thus the Laramie is intercalated in its characters between the Cretaceous period on one hand and the Tertiary on the other, and its fauna inchedes genera and orders of both great series."

Admitting the exposition of the characters of the strata as made by the celebrated author of the notice, it may be observed that. from the table which follows the above remark, all the genera common to the Sables of Bracheux and the Laramie Group forcibly indicate relationship to the

The relation of the horizon of extinct vertebrata of Europe add Sorth America, " L. S. Geol. \& Geog. surmy" (Hayden), Bull. v, No. L.

Tertiary eren to strata above the Eocene. The other gemera, as remarked he Professon Cope are Jimosurian of Mezozoic types, but are without any represntatives in Europe; hence they can only be used as hypothetically implying referne of the Laramie Group to the Post-Cretaceous. For they have nerd bed found anywhere but in America. while the reference of the Lamanin to the Tertiary age is based on the positive evidence of species or semera represented in that formation both in Europe and America.

Professor Heer, in the VIth volume of the " Aretic Flora," has examined the question from the same point of riew. After remarking that the Tertiary character of the fossil plants of the Laramie Gronp, confirmed by that of the mollusks, had rightly forced me to recognize it as Tertiary. he adds that the discovery at Black Buttes of Agatheamas sylhestris. a Dinozamrian. had been considered by zoölogists as sufficient athority for the admission not only of Black Buttes but of the whole Laramie Group into the Cretaceons: this from the dowma that Dinosamians hare disappeared with the Gretaceous. That a Samian, he says, has been found only at that locality, is no reason for recognizing it as a Cretaceous species. lont the only conclusion which can be drawn from the fact is, that until now it has been supposed that the Dinosamian type had died in the Crefaceous, while animals of this kind have permitted some of their offspring to live still in the Tertiary. And, indeed, in regard to that, other groups of Simbians, like the crocodile. have lived in far different periorls. Therefore the Aguthoumas of Black Buttes is not proof at all that at thal locality a Tertiary flora was existing at the same time as a Cretaceous fama, as admitted by Professor Cope: for a single animal does not constitute a fauna any more than a fragment of plant could constitute a flora. Added to this. it is also well to remark that at Black Buttes, in a stratum immediately above the bed where the remains of Ayathoumas were found, a fish, Celastes, four species of turtles, an alligator, and a mammal have been discovered. and that all these animals are undonbedly Tertiary. ${ }^{1}$
tha. The Laramie formation is a land or fresh-water formation. If sufficient proof of this fact was not given by the remains of plants and the momerous coal deposits found at divers stages over its whole extent.
O. Hear, Beithage zur Miocene Flora von North Canada, p. 7 , in Flora fossilis Arctica, vol. vi, part ${ }^{3}$.
the molloscan fauna would offer an incontestable evidence. Professor C. A. White, in a paper lately published, ${ }^{1}$ writes as follows: "The invertebrate fauna of the Laramie Group is wholly different from that of any of the Narine Cretaceous formalions. with one of which some writers have confounded it. It contains no true marine type of any kind. but it does contain many brackish-water molluscan forms, and also the remains of many fresh and lind mollusks. The fama characterizes a great widespread geological group of strata in the most distinct and unequivocal manner, severat of its molluscan species now being known to ocem at tocalities more than a thousand miles apart." After remarking on the erroneous statements in the text-book of Geology by Professor Geikie, and on the assertion of Professor J. P. Stevenson upon the presence of marine strata of the Fox Hills Group alternating with those of the Laramie. Professor White adds: "That any true Laramie strata ever alternate with those of the Fox Hills Group, or any other Marine Cretaceous Group, or that any true marine fossils. were ever collected from any strata of the Laramie Group, I camnot admit. I regard all such statements as the result of a misunderstanding of the stratigraphical geology of a region in which such observations are said to have been made."

These remarks agree entirely with those I have had opportunity to make in my researches on the flora of the Laramie Group. ${ }^{2}$ The flora. like the invertebrate fauna, is, on the whole, of a peculiar character, uniformly distributed orer the whole extent of the formation, and free from any types or characters relating it to the Cretaceous flora. As the Laramie Group has never been subjected to submersion in the deep sea, the few remains of Dinosamians found in it are derived from low marine lagoons penetrating into the land, and camot impress the formation with the Cretaceous character. This being the case, it is not at all surprising to find remains of marine animals of Cretaceous lypes with remains of plants of Tertiary age, not more than to find the bones of the marine saurian Agathoumas of Black Buttes enveloped in a mass of dicotyledonous leaves. some of them even ghed to the bones. and petrified with them

[^13]in such a way that they tamot be separated without breaking the specimens. This fact positively indicates the cause of the distribution of some remains of Cretactous animals as merely casual. without relation to the nature and the progressing development of the formation.

As has already been remarked, the external aspect of the species of different groups treated in vol. vii is an obstacle to the easy comprehension of the tharacter of eath group. It is therefore, advisable to have now, separately, all the species of the Eocene flora exposed in a table. with their retation indicated. This will render more clear the deductions which, as said above, have been derived from the character of the flora in the "U. S. Geol. Rep.," vol. vii. ${ }^{1}$

[^14]TABLE OF DISTRIRUTION OF THE SIECIES OF THE LARAMIE GROUP.

Names of species.	Amemican.				Evropran.		
			$\begin{aligned} & 1 \\ & \text { 㤩 } \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				离
Fongl.							
Spheriu lapidea, Lx							
Sphreria Myricee, Lux	B. B						
Spheria rhytiemoides, Lx	B. B						
Sclerotium rubellum, Lx --------------------------- Col							
Lichenes. Opegrapha antiqua, $\mathbf{L x}$							
Opegrapha antiqua, $\mathbf{L x}$ \qquad B. B							
	R. Col., B. B., etc			Id			
Delesseria fulva, Lx							
Canlerpites incrassatus, Lx							
Lfcopodiacee.							
Selaginella Berthoudi, Lx ------------------------- Col							
Selaginella falcata, Lx	Pt. of R						
Fhices.							
Sphenopteris Lakesii, Lx \qquad Col Sphenopteris membranacea, Lx							
Sphenopteris membranacea, Lx	Col						
							Rel
Diplaziam Muellpri?, Mr \qquad Hy. F Lastrea (Goniopturia) Goldiana, Lx							
							Rel
Lastrea (Goniopteris) intermedia, Lx..........------ Co							Rel
Lastrea (Goniopterie) polypodioides, Ett------------							
	B. Spr						
Lygodium Marviné, Lx							
Lygodium compactum, Lx							
Rhizocarpex							
							Rel
Equibetacr.s.							

Table of Distribution of the Species of the Laramie Group-Continued.

Table of Distribution of the Specics of the Laramie Group-Continued.

Table of Distribution of the Species of the Laramie Group-Continned.

Table of Distribution of the Species of the Laramir Group-Continued.

Table of Distribution of the Species of the Laramie Group-Continued.

DESCRIPTION OF SPECIES ADDED TO THE FLORA OF THE LARAMIE GROUP

FILICES.
Osmmilla major, sp. nov.
Flate XV゚liI, Fig.

Frond pimmate; pimmes simple, alternate, large and thick, linear-lanceolate, unequilateral at base; borders madulate: medial nerve marow; lateral nerves passing to the borders at aroal angle of divergence, forking generally once trom the base, one of the loanches sometimes forking agatin from the midhle.

This beantiful tragment serms formong bo the same species as that of fus. 5 , ph. ir, "U.s. (ied. Rep.." vii: at leas the nervation is identral in its chatalors. The borders of the leateds. howerer, are very entire. while they ate abscurely remmbate in pl. is. fieg. $\overline{5}$. They come from the same bocalily. On the other hand the fragments, fiess 6 and 7 of phe iv.
 and the lateral reins forkins more generally from the middre than from the base. Jt is, therefore. mererann whelher hase fragmends represent two or thace species. of whether, perhaps. they maty all be referable to the sambe.

Mab.-Gohlen. A. Lukes. Cullection of Princelon College.

```
                                    I'teris eroril, Lesqx.
```

Hatp NIX, Fig. 1 .

 unequilateral at hase: lateral nosers distant, obtusely diveraing from the merlial nerve, enving down in foming it, forking at the base omly, rately one of the veins forking again from the middle.

Jy the shape of its leatlets and their nervation this species lesembles the former and shoukl, perhaps. be identitied wilh il. The borders are sharply irregularly sermale. somelimes merely gnawed in places.

Mab.-Sane locality as thepreceding; also commmnicated by Mr. Lakes. It is the property of the Princelon College.

Gymuogramina Haydenii, Lesqx.

Plate XIX, Fig. 2.
"It, S. Greol. R+p.," wii, p. 59, Jl. v, figs. 1-8.
The fragment represented here is the upper part of a large leaflet having exactly the same specific characters. It has been figured, on account of the locality, as a positive identification of Snake River and Yellowstone Lake with the Laramic Group.

Hab.-Golden. A. Lakes.

```
PALME.
Oreodoxites plicatus, sp nov.
Plate XVIII, Figs. 1-4.
```

Leaves acute at both ends, deeply plicate lengthwise in mmerous rays converging at the base and the apex, obsomely marked towarl the base by a narow medial nerve; rays distinctly reined; primary nerves distinct, separated by 3 or 4 thin intermediate ones.

On account of the plicate lamina. the leaves are referable to patms, and. as seen by figs. 2 and 3, they appear partly traversed by a narrow rib. which would indicate the disposition of the leaves as simple; but they are more probably lobes of a compound or palmately divided frond, like those of Oreodoria regia of Cuba. In this last species the lobes are much longer and comparatively narrower, connected near the base. This disposition may have been the same for the fossil leaves, as the fragments, figs. 2 and 3 , appear as lacerated near the base, and therefore as if they had been merely segments of a pahmately divided frond.

The fragments of leaves described as Ludoviopsis Geomomatolia, Sap., "Fl. de Sézanne," p. 339, pl. iv, fig. 1, are the only fossil plants to which the species might be compared. If the midrib of fig. 2 was more distinctly marked and the rays flat, the likeness would be striking. Saporta's species is referable to the Pandanere. It has not the truly plicate rays of the palms.

Hab.-Golden, Colorado. Found by Rev. A. Lakes. The specimens belong to the Museum of Princeton College.

ADDED TO THE FLORA OF THE LARAMIE GROUP.
OLEACEE.

```
Fraxinus eoceniea, Lesqx.
    Plate XX, Figs. 1-3.
```

"U. S. Geol. Rep.," vii, p. 229.
This fine species has been fully described, as quoted above. The specimens which represent it belong to the Princeton Museum.

ARALIACEE.
 Aralia puligens, sp. nov.
 Plate XIX, Figa. 3, 4.

Leares coriaceons, rigid, rery large, palmately divided; segments deeply cnt into lanceolate sharply amminate lobes-the lower opposite, the upper simple or lobate on one side.

The general outline of the leaves represented by the figured fragments is very probably analogons to the one figured in pl. xxxy of this volume: for it is evident that we have here mere segments or fragments of a compound leaf. These segments are subdivided into long lanceolate sharply acminate entire lobes, which, oblique at their base, are turned up and erect at the apex. The nervation of the segmenls is pinnate; the lower secondary reins are opposite, strong, passing up to the point of the lobes, or curving up and following close to the borders like the lateral veins of the lobes.

This species is allied in its form to what has been described in vol. vii as M. Lessigii, p. 13t; but the nervation differs. In M. Lessigii, the tertiary veins directed towird the sinuses divide under them into two branclies, passing along on both sides and following the borders of the lobes. while in this leaf the tertiary reins do not divide, but appear to merely pass up on one side without forking. Though this difference may be marked, it is scarcely possible lo doubt that these fragments represent the same group or the same genus of plants, and, as I have remarked it in the description of M. Lessigii. Saporta and other authors refer plants of this kind to the Araliarea.

The fossil leares, published thus far, and more evidently related to these fragments, are the species of Sylphidium. Massalongo, on which Schimper remarks that the three species described from fragments are
withont dond referable to the renus Aralia and represent a single species, perlaps identical wilh Arolia meltifida. Sap.

Hath.-Golden. A. Lakes. Specimens in the Museum of Princeton College.

MAGNOLIACEE.
Magnolia tenuinervis, Lesqx.
Plate XIX. Fig 6.

In the description of the species, l. c. I compared the fragments by which it is represented to M. Inglefieldi, Meer, "Fl. Aret."" p. 120. especiatly to tigs. 1-3 of pl. xriii. The pat of leaf now foured is exactly of the same form ats lig. 1 of this las plate. It is coriaceons. He surface smooth or glosey. the lateral reime only being aptarently not quite as strong. The relation is threfore so dose that it is satacely possible to admit the difference as spedific, the more so as some of the leaves figured in vol. vii have the lateral nerres quite as strong is represented by Heer.

Hatb-Golden. A. Latios. Spormen in the National Museum.
ANONACEE.
A11011: lowlista, sp. nov.
Plate XX, Figr. 4.
 apex, rommed at hase, pimately nerved: semmaty mores strong, close parallel, courval in passing to the horders, ramptodmme.

The leaf is abnit 13 centineters long. 6 broad betow the middle; the border: ate slinhtly motulate: He medial herve is thick: the lateral (12

 of divergence. Whimh in the upper ones is only 30 . Thare veins are all smaple more or lese ohlifuely eut by strong nervilles. which are either simple and continuons or antatomosiny in the midate of the areas.

The speries is dislamly related to Anemm alliptice. Ung., "syllos.." iii, 1. 43. pl. xis. tig. 1. The nerves, however, are much stronger indeed stronger than in any fussil leat referred to this gemis, and the base of the leaf is rounded.

Hab.-Golden, Colorado. Rev. A. Lakes.

STERCULIACEE.

Sterculia modesta, Sap.
Plate XX. Fig. $\overline{5}$.
Leaves thick, romded in the lower part, trilobate at the apex; modial fobe longer, separated trom the lateral by broad sinuses; nervation trifil from the base; lateral nerves camptodrome.

This finely preserved leaf is 8 rentimeters long from the base to the apex of the middle lobe, and 6 cenlimeters broad between the points of the lateral ones. It is cnlarged in the middle a little contracted below the lateral lobes, and deltoid to the apex. The primary nerves are strong; the lateral are entwined ly distinet nervilles: the arenation is in loose irreg. ularly quadrate meshes.

By comparison with a fragment described under this name in "Fl. de Sezanne." p. 401, pl. xii, fig. .2, the American leaf has been identified by the author.

Hab-Golden, Colorado. A. Lakes. Specimen in the Museum of Princeton College.

FRANGULACEE.

Zizyphus Beckwithii, sp. nov.
Plate XIX, Fig. j.
Leaf nembranaeeons, oval or obovate, rombled at the top, narrowed and deeurrent to the petiole, palmately trinerved from the base; medial nerve narow, with a single branch above the middle, the lateral curving up at a distance from the borders nearly aerodrome, much hanched outside; nervilles close, distinct, at right angles to the midrit.

The fine leaf, somewhat fan-like, $4 \frac{1}{2}$ centimeter: long, 3 broad, has a thick petiole a lithe more than 1 centimeler long. The lateral primary nerves ascend to the top at equal distances from the midrib and the borders, which are perfectly entire. The secondary nerves are numerous (about 1: pairs), parallel, the lower being basilar and marginal; the nervilles are strong, parallel, contimous, and very close. The species is related to Z izyplus Ruincourti, Sip., of the Sézanne flora.

Hab.-Near Golden. Colorado. II. (: Beckwith. Specinen in the National Museum.

Plate XX, Fig. 6.
Leaf lanceolate, tapering to an obtnse point, abruptly narrowing and decurrent to the petiole: borders entire, irregularly mululate; lateral nerves simple, camptodrome.

The leaf seems to have been deformed in the process of maceration. lt is largest below the middle, diversely undulate-plicate on both sides; the secondary nerves are numerous (16 pairs), open, but much curved in passing toward the borders and following close to them, the upper ones at a more acute angle of divergence than those of the base.

Mab.-Golden, Colorado. Specimen in the National Museum.

THE FLORA OF THE GREEN RIVER GROUP.

geological mistribletion of The measures.

In my preceding Reports 1 have reterred to the Green River Group a limited number of species of tossil plants obtained from different localities mentioned below, and which were formerly considered as pertaining to the samb geological stage. Now this greup includes fow members: the luwer, the Wasatch, of which the Green River is an upper member; then, in ascending, the Bridger, the Uinta, and the White River with the Oregon beds.

The name of He Green River Group was proposed by Dr. F. V. Hayden on account of the great extent, thickness, and display of strata of this formation along Green River in Wyoming.

The formation as it is seen there is purely of a fresh-water origin and seems to be a continuation of the Eocene Laramie Group, or Lignitic, its strata being conformable to it and the modifications of the compounds being gratuat. The lower member of the measures is mostly composed of arenaceons beds. the upper a series of laminated shate, eath of these members averaging about one thousand feet in thickness.

The upper part of the measures merit especially to be considered now, as from it are derived the fossil remains which have been described here as derived from the Green River Group.

The shale, variegated in color, mostly red and white, and variable in thickness, give to the measures a peculiar banded appearance. especially marked near Green River Station, where I had an opportmity to make some observations on the distribution of the strata. At this place a section of 550 feet from the bed of the river to the high round bhuf towering there over the comtry around shows the multiplicity of the layers and the variety of the compomd. ${ }^{2}$ The upper part of the bluff is a hard ferru-
"Hayden's "Annual Keport," 1872, p. 336, where the section is given in detail.

128

ginous red sandstone in layers varying from 6 inches to 1 foot; below this there are 55 feet of laminated argillaceous sandstone with remains of fishes and plants intercalated between distinct slaty layers \ddagger to 1 inch thirk: then five beds of black bituminons compact shale measuring 2, 5, 25 freet. separated by beds of white catcareous shale, sandstone in thin layers. cte. Few of the beds are compact and homogencous except the bituminous shale. The intercalated sandstone, four beds, variable from 5 to 13 feet, are composed of shaty layers. Near the base of the section only there is a bed of hard calcareous somewhat compact rock, which I have not remarked elsewhere in the country around.

The localities where fossil plants formerly referred to the Green River Group have been obtained are near Alkali Stage Station and Green River Station. Wyoming; in Randolph County of the same State; near Elko Station, on the U. P. Railroad, in Nevada; near the mouth of White River, Utah; and especially at Florissant, a locality also mentioned as Castello's Ranch and South Park. in Colorado.

The beds ${ }^{1}$ of Florissant, now generally known for the abundance of their fossil remains, plants and insects especially, have been formed by like deposits. The geologist, Dr. A. C. Peale, one of the assistants of Dr. F. V. Hayden in his Survey of the Territories, has first given a short account of the formation near Florissant, a settlement rather than a village, situated in a narrow valley of the mountains, at the southern extremity of the Front Range of Colorado. He says: "In this valley, the name of Hayden Park has been given to the low rolling country to the west of Pike's Peak. Hayden Park is drained by Front Creek, Wost Creek, and Beaver Creek. The latter flows to the northwest and empties into the South Platte just below the upper cañon. About five miles from its mouth, around the settlement of Florissant, is an irregular basin filled with modern deposits. The entire basin is not more than five miles in diameter. The deposits extend up the branches of the creek, which all unite near Florissant. Between the branches are granite islands appearing above the beds which themselves rest on the granite. Just below Florissant, on the north side of the road, are bluffs not over 50 feet in height,
'Dr. Hayden's "Annual Report, U. S. Geological Sursey of the Territories," 1o73. p. 200.
in which are good exposures of the various beds. The following section gives them from top downward:
${ }^{-1}$. Coarse conglomerated samblone.
$\cdots 2$. Fine-glained. soft, yellowish-white sandstone, more or less argilhaceons, and containing fragments of stems and leaves.
$\cdots 3$. Coarse gray and yellow samdstone.
$\cdots t$. Chocolate-colored clay shales with fossil leaves. At the upper part the shates are black, and below pass into-
" 5 . Whitish clay shates.
"These hast form the base of the hill. The beds are all horizontal."
After remarking on the presence of fragments of trachyte scattered around and found in layers near the surface, as seen by the boring of a well in the vicinity, Dr. Peate continues: "The lake basin may possibly be one of a chain of lakes that extended sonthward. I had thought it possible that the beds were of Pliocene age. The specimens obtained from No. 4 of the section above were submitted to Mr. Lesquerenx, who informs me that they are Upper Tertiary, and says that he does not believe, as yet, that the plants of the Green River Group, lo which are referable the specimens sent to him, authorize the conclusion of Pliocene age. He rather considers them, as yet, as Upper Miocenc. The species known of our Upper Tertiary are, as yel, too few and represented in too poor specimens for definitive conclusion. Those sent from Florissant have a Myrica, a Cassia, firagments of leaves of Salix angustata, Al. Br., a Rhus, an Ulmus, and a fragment of Poa or Poacites."

I give the end of the quotation in order to show that the first opinion l expressed on the age of the Green River Group from its vegetable remains was based upon the examination of too insufficient materials.

Atter Dr. Peale the lake basin of Florissant has been carefulty explored by Professor Sam. H. Scudder. who, in "Bulletin of the Geol. Survey," vol. vi, No. 2 , has given in great delail the most precise and interesting account of his researches. It comprises not only the topographical description of the basin, the geology and stratigraphy of the beds formed by deposits of the lake, but a preliminary report on the insects and the plants obtained there by himself in an immense number C F 9
of specimms. From this valuable menoir are derived a few notes which romplete what the paleontologist may wish to know in regard to the strata from which the fossil remains are derived.

1'rofessor seudder's memoir is clucidated by a map of the Tertiary basin of Florissant as it was at the time when the strata were deposited. The area was then covered by a shallow sheet of water, hemmed in on all sides by near granite hills whose wooded slopes come to the water's edge, sometimes, especially on the northern and eastern sides, rising abruptly; at others gradually sloping so that reeds and flags grew in the shallow water by the shore; the water of the lake, penetrated by deep inlets between the hills, giving to it a varied and tortuous outline. This old lake was really a long outlet following the bottom of the valley, and expanding on both sides in lateral long shallow straits or pools. In one place the lake is contracted to half a mile in width; at two others one-fourth of a mile; taken altogether it is on an average 1 mile broad, being 6 to 7 miles long, expanding. on the eastern side especially. into nine of those narrow shallow straits. The outlines of the straits are, of course, varied. The area covered by their water measured half a mile to a mile long, one-fourth to half it mile broad, so that the shape of that Tertiary lake, as it is represented upon the map, resembles an oblong leaf, lobate on the borders, somewhat like a leaf of the white oak. It is easy to understand how those shallow pools, penetrating between hills covered with deep forest, alternately drying in summer and filling up in the rainy season, could become the reservoirs of woody and animal debris thrown upon their surface from overhanging trees and rocks, and there periodically accumulating by the succession of dryness and flood.

Professor Scudder supposes that the ancient outlet of the whole system was at the southern extremity; at least, the marks of the lake deposits reach near the ridge which now separates the waters of the Platte and of the Arkansas; and the nature of the basin itself, the much more rapid descent of the present surface on the southern side of the division, with the absence of any lacustrine deposits upon its slopes, lead to this conclusion.

S'ays Professor Scudder: "The very shates of the lake itself", in which
the myriad of plants and insects are entombed, are wholly composed of volcanic sand and ash: 50 feet or more thick. they lie in attermating layers of coarser and fimer materiats. About half of this, now lying beneath the general surface of the ground, consists of heavily bedded drab shales with a conchoidat fracture, and totally destitute of fossils. The upper half has been eroded and carried away, leaving, however, the frigmentary remains of this great ash deposit clinging to the borders of the basin and surrounding the istands; a more convenient arrangement for the present explorer could not lave been devised. That the source of volcanic ashes must have been close at hand seems abundantly proved by the difference in the deposits at the extreme ends of the lake. Not only does the thickness of the beds differ at the two points, but it is difficult to bring them into any thing beyond the most general concordance.
"The excavation ot the filled-up basin we must presume to be due to the ordinary agencies of atmospheric erosion. The islands in the lower lake take now as then the form of the granitic nucleus; nearly all are long and narrow, but their trend is in every direction, both across and along the valley in which they rest. Great masses of the shales still adhere equatly on every side to the rocks against which they are deposited, proving that time alone, and no rude agency, has degraded the ancient flora of the lake."

The examination of Professor Scudder of the deposits of this lacustrine basin was principally made in a small hill, from which, perhaps, the largest number of fossils have been taken, lying just south of the house of Mr. Adam Hill and upon his ranch. "Like the other ancient islets of this upland lake it now forms a mesa, or flat-topped hill, about 30 to 50 feet high, perhaps 300 feet long and 80 broad. Around its eastern base are the famous petrified trees, huge, upright trunks, standing as they grew, which are reported to have been 18 to 20 feet high at the advent of the present residents of the region. Piecemeal they have been destroyed by vandal tourists, until now not one of them rises more than 2 or 3 teet above the surface of the ground, and many of them are entirely leveled; but their huge size is attested by the relics, the largest of which can be seen to have been 10 to 15 feet in diameter. These gigantic trees appear

$1: 3$

Io be sequmbata fat at ran be told from thin sections of the wood submitted LoIr: L. Gootale. As is well known, remains of more than one *perdse of sequmin have been found in the shales al their base.
"From what information we could gain of the wells in this neighborhood. it would appear that the present bed of the ancient Florissant lake is eutirely simila in composition for at leas 30 feet below the surface. consisting of heavily bedded non-fossiliferous shales having conchoidal fracture. Above these basal deposits, on the slope of the hill, we found the following series from above downward. commencing with the evenly bedded shrata:
> "Section in Southern Lakie-By S. II. Scudder and A. Lakes.

1. Finely laminaled, evenly bedded, light-gray shale; plants and
insects scarce and poorly preserved ..

2 . Light-brown. sofl and pliable, fine-grained sandstone: unfossiliferous

20
3. Coarser, ferruginous sandstone; unfossiliferous.................... 1 4
4. Resembling No. 1, leaves and insect remains........................ 8 2
5. Hard, compact, grayish-black shale, breaking with a conchoidal
fracture, seamed in the middle with a narrow strip of drab
shate: fragments of plants... 11 0
6. Ferruginons shale; unfossiliferous....................................... 50
7. Resembling No. 5, but having no conchoidal fracture; stems of
plants. insects. and a small bivalve mollusk.......................... 344
8. Very tine gray ochreous shale; non-fossiliferous 0 o 2
9. Drab shales, interlaminated with finely divided paper shales of
a light-gray color; stems of plants, reeds, insects............. 18 o
10. Crumbling ochreous shale; leaves abundant, insects rare........ : 0
11. Drab shales: no tossils... 0
12. Coure ferruginous sandstone: no fossils................................ i \quad it
13. Very hard drab shales, having a conchoidal fracture and tilled
with nodules; unfossiliferous ... $24 \quad 7$
14. Finely laminated yellowish or drab shales; leaves and fragments
of plants, with a few insects .. 11 6
15. Alternating layers of darker and lighter gray and brown ferm- ginoms sambstone; no fossils 40
16. Drab shales: leaves, seeds, and other patts of plants, and in- sects, all in abmondance. $24 \quad 0$
17. Fermginous, porous, sandy shale: no fossils $\underset{3}{2}$
18. Dark-gray and yellow shales: leaves and ohler parts of plants.. 34
19. Interstratified shales, resembling Nos. 17 ant 18: leaves and other parts of plants. with insects $7 \quad 0$
20. Thickly berded rhorolate-colored shates: no fossils. 170
21. Jorons yehow shale, interstratified with seams of very thin drab-onlored shales; plants 30
$2-2$. Heavily betded chorohate-colored shales: no fossils. 116
$2: 3$. Thinly berthed drab shales: perfect leaves, wilh pertect and imperfer frawnends of plants and a few broken inserts. 76
24 . Thinly berderd light-drabshales. wralhering, very light: withont fossils: passing info 76
$25 . ~ T h i r k-b e d d e d$ drab shales, braking with a conchoidal fiacture: also destitute of fossils. 70
26 . Coarse arenaceous shale; unfossiliferous. 34
27. Gray sandstone. coutaining decomposing fragments of some white mineral. perhaps calcite: no fossils. $70 \quad 0$
28 . Conrse, feruginous. friable sandslone, will concretions of a softer material; liagments ol stems $\because 3 \quad 0$
29. Thinly bedded drah shales, having a conchoidal firature: some- what lignitic. with fragments of roots. etr. $10 \quad 0$
30. Dark chocolato shates, contaning yollowish concretions: filled wiflu stems and moots of plants io 0
'Total thickness of eventy-bedeled shates (D. of Dr. Widdsworthis note) above flom deposifs. $\because 30$
." The bed which has been most worked for insects and leaves, and in which llaey are mantestionably the most abmondat and best preserved, is the thick bed. No. 16, lying halt way up the hill, and composed of rapidly abternating bets of varionsly-rolored drab shales. Below this, insects were plentilul only in No. 19. and above it in Nos. 7 and 9 ; in other beds
they necured onty rarely or in fragments. Plants were always abundant where inseds were found but also occurred in many strata where insects were either not discovered-such as beds 18 and 21 in the lower half and bed 6 in the uprer half—or were rare as in beds 10 and 14 above the midtle and bed 23 below; the coarser lignites occurred only near the base.
" The thickest unfossiliferous berls. Nos. 20 and 27 , were almost miform in character throughout, and did not readily split into laminæ, indicating an enormons shower of ashes or a mud-flow at the lime of their deposition; their character was similar to that of the floor-beds of the basin.
"These beds of shale vary in color from yellow to dark brown. Above them all lay, as already slated, from 4 to 6 feet of coarser more granulated sediments, all but the lower bed broken up and greatly contorted. These reached almost to the summit of the mesa, which was strewn with granitic gravel and a few pebbles of lava."

The specimens of Florissant representing the plants described in this memoir were mostly obtained by Professor Scudder, who had opportunity to purchase for Dr. Hayden a collection made by Mrs. Charlotte Hill, the proprictress of the land where are exposed the banks conlaining the richest fossiliferous shale. A little later a scientific exploration for the College of Princeton visiter the same locality and obtained there also a great number of specimens; some of these, very fine, which were loaned me for examination, have been figured and described in this report. I have been allowed to use the names of some of the members of the exploration-Messrs. W. B. Scott. H. F. Osborn, F. Speir, McCosh. W. Libbey-for the nomenclature of some of the new species which are represented by the Princeton specimens.

ENUMERATION AND DESCRIPTION OF THE SPECIES OF FOSSIL PLANTS KNOWN FROM THE GREEN RIVER GROUP.

CRYPTOGAMA. FUNGI.

sphafria myricie, Lesqx.
"1, S. Geol. Rep.." vii, p. 34, pl. ii, tig. 4.
CHARACEA.
CHARA, Waill.
Chira? glomerata, spen
llate XXI, lig. 12.
Leaves short, in compact, dense, distant or terminal capitnles; stem narrow.
These fragments are not positively referable to Chara on account of the compactness and shortness of the leaves. The branches bearing the capitules are smooth. flexuous, the leaves? apparenty subeylindrical. acute. They may represent flower-bearing pedicels of Platames like P '. racemosa, Null. They, however, can scarcely be considered as such. for not the least fragment of Platumus leaves has been found as yel in the Green River Group.

Hab.—Florissant. U. S. Geol. Expl. Dr. IT. V. Hayden.
MUSCI.
FONTINALIS, Linn.
Foutinalis pristina, spor.
Plate XXI, Fig. !
Leaves ohseurely two maked, crowded, linear-lanceolate, acuminate, ecostate.
The leaves are close, gradually enlarged toward the embracing base. about one centimeter long. very narrow.

Hab.-Florissanl, Colorado. The locality indicated as Castello:s ranch is the same.

HYPNUM, Linn.

Hypumm Haydenii, Lesqx.
"U. S. Geel. Rep.," vii, p. 44, pl. v, lige. 14-14h.

RIIIZOCARPE E.

salvinia, Mich.
Salvinia cyelophylla, Lesqx.
'"U. S. Geol. Rep.,' rii. 1. 64, pl. v, figs. 10, 10a.
Salvinia Alleni, Lesqx.
Plate XXI, Figs. 10, 11.
"U.S. (reol. Repr." vii, p. G5, h. r, fig. 11.
The species is common and has been obtained in large well-preserved specimens by the different collectors. The leaves are merely variable in size, obtuse or slightly emarginate at the apex, topped by the point of the excurrent nerve.

> EQUISE'IACEA.
> EQUISETUM, Linn.
> Equisetum wyomingense, Lesqx.
"U. S. Geol. Rep.," vii, p. 69, pl. ri, figs. 8-11.
Equisetunt Hiydenii, Lesqx.
"U. S. Geol. Rep.," vii, p. 67, pl. vi, figs. 2-4.
1SOETEA.
ISOETES ?, Web.
Isoctes bievifolius, sp. nov.
Tufts small, compact; leaves cylinhrical, acuminate, coming out of a small cylindrical stem or rhizoma.

The leaves are 1 to 2 millimeters in diameter, 4 to $\mathbf{6}$ centimeters long, narrowed to a point, apparently smooth. The small tufts much resemble lsoetes Braumii, Heer, as figured in "Fl. Tert. Helv.," pl. xiv, fig. 5, the leaves being only shorter and narrower.

Hat.-Florissant. Specimen No. 66 of the collection of Mr. R. D. Lacoe, of Pittsion, Penna.

LYCOPODIACEA.
LYCOPODIUK, Linn.
Lycoporlinm prominens, Lesqx.
"U. S. Geol. Rep." vii, p. 45, pl. v, figa. 13-1:3".

FILICES.

SPHENOPTERIS, Phill.
Sfluenopteris Guyottii, sp. nov.
Plate XXI, Figs. l-7.
Ultimate pinne linear-lanceolate, ot varous lengths; rachis marow and marowly winged by the decurent base of the lanceolate obtuse pimmas; lower pimmales regularly divided into 2 to 4 halfround short lobes, connate in the middle; uper pimmes entire, ohong, obtnse; medial nerve thin, pinately bramelang into obliqne lateral nerves, senerally forking onde, rarely simple; substance of the leaves rather thin; nervation distinct.

This fern, common at Florissant, but always found in small fragnurnts, has no near relation to my fossil species known to me being only comparable to sphenopteris Blomstrandi. Heer, "Fl. Arct," i, P. 155, pl. xxix, figs. 1-5. from the Miocene of Spilzbergen. In its form and its nervation it is a true Phegopteris. closely related to some Cuban species. I'. soricea. I'. direryens, \&e But from the absence of fructification an exarl comparison is not possible.

Mah.-Florissant. Seen in most of the collections.

ADIANTITES, Auct.

Aliantites gracillimils, spong
Ilate XXI, Fig. $\stackrel{\text {. }}{ }$.
Rachis very slemer, filifom, flexnons, bearing at its top a few simple entire pinnules, oval in ontline, sessile ly the cmeate base, ubtuse; nervation dichotomons, the medial nerves forking two or three times; banches very oblique, forking near the alex.

I have sen only the small fragment figured, which is, however, dislinctly presered. By the disposition of the leaflets and their shape it may be compared to Asplenites ullosuromides. Ung., " Fl. v. Sotzka." which has small fruclified pimnules; but the nervation is thal of Allentum.

Itul.-VIorissamt.

LASTRÆA, Presl.
Lantrial (Goniopteris) intermedia, Lesqx.

PTERIS, Linn.
pteris pendo-penneformis, Lesqx.

DIPLAZIUM, Swartz.
Diplazium Muelleri, Heer.

LYGODIUM, Sw.
Lygodinm ueuropteroides, Lesqx.
Ibid. p. 61, pl. v, figs. 4-í; vi, fig. 1.
Lygodium Dentoni, Lesqx.
Ibich., p. 63. pl. Mxe, figs. 12. 13.
CONIFERA.
PINUS, Linn.
Pinus Florissanti, sp. nov.
Plate NX1, lig. 13.
Strobile large, conical, 12 eentimeters long or more, 6 centimeters in diameter at the broken base; scales large, $4 \frac{1}{2}$ centimeters long, $1 \frac{1}{2}$ broad; apophyses conical, transversely thomboidal when flattened.

This fine cone is related to Pimus pondrosa, Douglas, a fine species of Califormia and New Mexico, by the large size of the scales, not or scarcely enlarged under the apophyses.

Mab.-Florissant. U. S. Geol. Expl. Dr. F. T. Hayden.
Pinus palaostrolous \because, Ett.
"U.S. Geol. Rep.." vii, p. \& 3, pl. vii, figs. $\because 5,31$.
SEQUOIA, Torr.
Sequoia angustifolia, Lesqx.
Ibid, p. 77, pl. vii, figs 6-10.
Sequoia Langsulowit, Brgt.
Ibid., p. 76.
Sequoia Heerii, Lesqx.
Ibid., p. 77, pl. vii, figs. 11-13.
Seduoia afíinis, Lesqx.
Ibid.. 1. 75, pl. vii, figs. 3-5; lxv, fifs. 1-4.

TAXODIUM, Rich.

T:AXOdium distichum miocenum, Heer.

"1". S. Geol. Lep.," vii, p. 73, pl, vi, figa. 1-2-14.
Abies Nevadensis, Lesqx., "Inayden's Amn. Rep," 182:, p. 37*

WIDDRINGTONIA, Endl.

Widdrinğtonia lingltafolia, sp. nov.
Plate NXI, ligs 14, 14 a.
Gluptostrubus Europaus, Lesqx., "U. S. Geol. Req.." vii, p. 71, pl. vii, figrs. 1, 9.
Branches and bramodets short, pimately divided ; divisions alternate; branchlets simple and slender; leaves appressed, irregularly tworanked or subalternate, ovate, blunt-pointed or lingulate.

The specimens represent two forms of the same species, difficring merely by the size or the thickness of the branches and branchlets. The more common form is figured; the other is more slender in all its parts, a rar. gracilis, mentioned in "Hayden's Anm. Rep.," 1872, p. 371, as Thuites callitrina, Ung.

Mab.-Florissanl. U. S. Geol. Expl. Dr. F. V. Itayden.
THUYA, Linn.
Thuya Garmani, Lesqx.
Hayden's "Amm. Rep.," 187: p. 37\%.

GLYPTOSTROBUS, Endl.

Glyptostrobus Ungeri ? Heer.
Ilate XXII, Figs. I-Ga.
Heer, "Fl. Tert. Melv.," i. p. 52, fl. xsiii ; "Fl. Alask.," p. 22, pl. iii, figs. 10, 11.
Stem leaves squamitorm, appresserl, lanceolate, acute or aemminate; branchleaves open, tworanked, much longer, linear-lanceolate, acute; mate cone small, oval, terminal; strobiles orate on short branches; seales $i ;$ to 9 , obtusely dentate at the mper horder, obsenrely striate lengthwise.

This species obtained in fine specimens, is in some of its characters identical with Cupressites taxiformis. Ung., "Chloris." p. 18, pls. viii and ix. The diversity of the leaves in regard to their position upon the stem and the base of the branches, where thoy are shorter, appressed, and squamiform, is not indicated by Unger. It seems also to be identical to Chomaryprovites Itardtio. Endl.. as represented by Elt., "Häring Jl.," 1. 35. pl. vi. figs. 1-21. two species referred by Schimper to Sequoia Lanyshorfii, Brgt. The cones of the species of Florissint, however, are not those of a Sequoia
but of a Gilyptostrolus, and these like the diversity in the form of the leares, agree in character with (t. Ungeri, Hees, quoted above, which is mow considered by the aulhor as a varicly of ef. Europers. The cones only ate somewhat titrger, as figured hy lleer, and the stem leaves mather ohmse than acmumate. As in the "Flora of Alaska," the same anthor mpremte these saliform leaves acule even acuminate, and as in that of Sinithergen ("Fl. Arel.." iv, pl. xi, figs. : - -8) the same kind of leaves are either abtuse or acuminate. Dre reference of the American form to the species of lleer is sufficienlly authorized. The species is closely related to Gilyptostrobus heterophyllus. Endl., of China, the only living species of Hisis genas.

Ifth.-Very common al Florissant. The specimens figured are mostly those of the Princelon Museum.
podocarpus, l'Hérit.
Podocarluts cocenica ? , Ung.
Leaves namowly linear-lanceolate, acute, marrowed into a short petiole: medial nerve distinct.

This descriplion refers to wo leaves which agree with the description and tigure of this species ly Unger ("Fl. of Solzka," p. 2s, pl. ii, figs. 11-16). The medial neme is llat and comparatively broad: the leaves are slightly broader in the middte.

Mab.-Ftorissant. No. 68 of Lacoe Collection.

> GRAMINEA.
> POACITES, Heer.
> Poacites lievis, Heer.

IIayden's "Ann. Rep.." 1871, p. 29.,
CYPERUS.
Cyperus Chavannesi, Heer.
"U.N. Geol. Rtp.," vii. p. 9 ? pl. ix, figs. 1.2 .
CYPERITES, LindI.
Cyprrites Hayderii, sp nov.
Plate XXIII, Figs. 1-ik.
Leaves large, gradnally entarging mpward from its root. linear above; medial nerve broad and flat; lateral nerve parallel, distinct to the eye, separated by four or tive very thin intermediate rems.

From the fragments preserved the leaves appear to have been very long. Linear in the middle where they are 3 centimeters broad, they are slightly narrower upward and apparently rounded to a pointed apex. gradually tapering downward to the upper part of the root, a small tubercle. The medial nerve, quite distinct, is 2 millimeters broad in the midde. Though related to Cyperns and Cyperites, this leaf has no maked aftinity to any one of the numerous forms which have been described mader this name. The leaf is quite flat and does not appear to have been keeled in the iniddle, but distinctly nerved. It comes out directly from the fuberele. The lateral nerves, 12 to 14 , are separated by veinlets without any transverse veins.

Mab.—Randolph Co., Colorado. U. S. Geol. Expl. Dr. F. I. Itayden.
ARUNDO, Linn.
Arundo Goepperti? Münst.
" U. S. Geol. Rep.," vii, p. 84, pl. viii, figs. 3-5.

Arindo reperta, Lesqx.

Ibid., p. 87, pl. viii, figs. 6, 8.
PHRAGMITES, Trin.
Phragmites Alaskana, Heer.
Ibid., pl. viii, figs. 10-12.
TYPHACEN.

TYPHA.

Typhat latissima, Al. Br.
Plate XXIIl, Figs. 4, 4a.
 fig. 11 ; Ett., "Foss. Fl. v. Bilin," p. 30, pl. vi, fig. 9.

Leaves very long, 2 to 3 centimeters broad, linear, marked lengthwise by parallel strong nerves (14) crossed at right angles by transverse thin lines; intermedial reinlets numerous ($10-13$).

Though these fragments, which are numerous, and part of which only are figured, are referable to the European species by their appearance, they may represent a different one on account of the numerous intermediate veinlets which separate the primary nerves. In the European species only 4 to 6 are counted, while on the American specimens they are generally 10 to 12. It is, however, to be remarked that Typha species living at the
present epoch have a wide range of distribution; the two species (T. latifolim int T. (tngustifolia) are as common on the North American continent as they are in Europe.

Itub.-Florissant; Randolph tounty. U. S. Geol. Expl. Dr. Iayden.
POTAMOGETON, Linn.
Potamogeton? verticillatus, spon
Plate XXIII, Figs. 5, 6.
Stems slender; leaves verticillate or tuftel, grass-like, linear-lanceolate, largest toward the base, sessile and narrowed to the point of attachment, nerved lengthwise in the middle; branches rery slender, floating or pendant, bearing tufts of shorter leaves.

This species differs from its congeners by the position of the leaves in verticils upon apparently articulate stems. It is distantly related to I'. čespitans, Sap., "Ét.," i, p. 76, pl. ir, fig. '2.

Hab.-Florissant. The specimen (fig. 5) is from the Explor. of Dr. f. I. Hayden; the other belongs to the Princeton Museum.

Potamogeton genicmlatus, Al. Br.
 figs. 1,2.
Stems slemer, banching, geniculate-flexnous; leares narıowly linear, acuminate, tasciculate, sessile; fruits rom or broadly oval-apienlate, 1 millimeter in dianeter.

Though the specimens merely represent the upper part of a stem the characters of the leaves and the fiructification refer the plant to Heers species. The fruits are slightly smaller, however, rather round than ovate or exactly like those represented by the author, pl. xlvii, fig. $5 c$.

Mab.-Florissant. No. 69 of Lacoe Collection.
NAJADOPSIS, Heer.
Najadopsis rugulosa, spon.
Plate XXIII, Fig. 7.
Stem dichotomons from inflated apicial innovations; segments flat, dichotomons, linea, acuminate, decurent to the main stem; surface merely irregular and minutely wrinkled lengthwise, without trace of medial nerves.

The substance of this plant is somewhat thick; the leaves or segments seem to have been originally cylindrical, though quite flat upon the stone, by compression? All that can be seen of the plant is figured. It has an
evident relation to N. dichotoma, Heer, "Fl. Terl. Hotr.," i, p. 10t, pl. xlviii, ligs. 1-6. Not only the dichotomous disposition of the segments is anatogons, but in fig. 1 of Heme the primary division appears as from an obsene innovation, while the top of the main stom soems to be inflated by the pusilion of apparently fasciculate segments as they are in the middle of tig. 7 of our plate. The size of the European plant is smaller in all its parts.

Heb.-Florissanl. U. S. Geol. Expl. Dr. Fr. V. Hayden.

MUSACEA.
MUSOPHYLLUM, Goepp.
Musoplyyllmin complicatum, Lesqx.
"U. S. Geeol. Rep.," vii, p, 90, pl, xr, fige, 1, 6.
The station of the bed of coal and shale where this plant was found in greal profusion, with remains of Supindus obtusifolius, appears rather referable to the Green River Grout, than to the Niocene of Carbon from the presence of this last species, which has been found also at Florissant.

AROIDRE.
ACORUS, Linn.
Acorus brachystachys, Heer.
"U. S. Geol, Rep.," vii, P. 105, pl. xir, fig. 16.
LEMNACEA.
LEMNA, Linn.
Lemmat pemicillata, sp. nov.
Plate XXIII. lïs.
Leaves small, romd in ontline, irregularly crenulate on the borders; surface rugose; rootlets numerons, in fusicles.

The leaves, 3 to 4 millimeters in diameter, are rugose on the surface and do not show any trace of nerves; they appear to have been fleshy, but they are quite flattened into thin flakes on soft shales.

Hab.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.

PALMA.

FLABELLARIA, Schp.

Flabellaria Florissanti, spong
Plate XXIV, Figs. 1-2a.
Frouds large; rays diverging all around from the top of the nearly flat not keeled long rachis; rays large, very mmerous, acutely keeled; primary nerves distinct ; close intermediate veinlets, 3 , 4 .

This species has some degree of likeness to Flabellaria cocenica, Lesqx., "U. S. Gcol. Rep.," vii, p. 3, pl. xiii, figs. 1-3. The rachis is not carinate but merely indistinctly lineate lengthwise, and the top of the rachis on one side of the leaf is also nearly truncate. The nerves are less distant and the intermediate reins less numerous. It is still more intimately related to Flabellariu Lamanomis, Brgl., and perhaps identical with it as tigured
 in each division of the rays and that of the intermediate veins are about the same. The lateral rays are more sharply keeled in the American form and also more open, the lateral ones being al righl angles to the more distinctly truncate lop of the petiole.

Mab.-Randolph Co., Colorado. U. S. Geol. Expl. Dr. F. V. Iayden.

PALMOCARPON.

"alinocarpon? ghobosum, sp. nov.

Plate NXIV, Fig. 3.
Fruit large, slobose, striate lengthwise.
The fruit is exactly globose, 18 millimelers in diameter; the testa appears to have been woody. though the fruit is flattened. This fruil has not been found in connection with the palm-leaf described above, but al a different locality, and therefore its reference to Palms is not positive. It resembles Curpites lincatus, Newby., as figured, pl. lx. fig. 1, "U. S. Geol. Rep.,. vii, a species abundantly found at Eranston, where no remains of Palms have been discovered.

Mab.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.

DCOTYIEIONES.

MYRICACEA.

MYRICA.

"•U.s. (reol. R+p.," rii, p. 12b.
§ 1. Leaves dentate, semate or mululate.

Myriea Copeana, Lesqx.

Ibiol. 1. 1:31. 11.xvii, fig. :

```
Myrida oloscura, sp. nov.
```

Plate XXXII, Fiys, 8-10.
Leaves linar-lanceolate, comsely serme, romoded in marowing to the betiole, mownilateral at hase; nervation ohsolete.

This form is related by its shap" and the teelh of the borders lo 1%. Bouk: irfotion, Ung., as tigured by Heer, "Fl. Tert. Hets.." pl. c. figs. 3-10. differing merely the more romded and unequilateral base of the leaves and the total disappearance of lateral nerves by immersion into a thick carbonareous roating. However, hig 6 of Heer represents two leares without thares of lateral nerves, and dig. 8 has the base somewhat rounded and mequilateral, though nol quite as distinctly as in the Ameriean form. The pedicel of this last figure is ako slender, of the same length as in tier. 10 of our phate. The leaves are on average a litfle smaller than those of M. bunkiafulia, 7 to 9 centimeters long and 1 to $2 \frac{1}{2}$ centimeters broad above the base: the teeth are generally sharp, slightly inclined upward.

Mal,-Florissant. U. S. Geol. Expl. Dr. F. V. Mayden.
Myrical Ludwigit, Schp.
"I. S. Geol. Rep.." vii, lo 1:33, pl. lxe, fig. It
Myrica acmmillata, Ung.
Ibid., [. 130, pl. xvii, fige. 1-4.

$$
\begin{gathered}
\text { Myrica rierida, sp. nov. } \\
\text { Plate XXV, Figs, : } 4 .
\end{gathered}
$$

Leaves thick, rigid, subcoriacoms, lanceolate-acmminate, sermate, rombed and mequilateral at base, short petioled; medial nerve thin, straight, the lateral erasped. odrome.

This species differs from the preceding by the distinctly lanceolate form of the leaves equaliy and gradually narrowing from the rom ded base to the apex, by the short petiole, the distinct lateral veins and the

C F 10
hhunt teeth of the borders. The leaves are also proportionally shorter. \therefore to 7 rntineters long and 1 to 2 centimeter: broad near the base. It is intermediate bolwent the preceding and the following species.

Hoth.—With the preceding.

```
Myrica Zacharicusis, Sap.
    Plate NXV, Fig. 5; XLV ', ligs. 6-9.
```

Lates very variable in size and shape, lanceolate and linear, narrowed and more or less decurrent to the petiole; medial nerve thick; lateral nerves open, eurved in passing to the borders and along them; teeth entered ly branchlets.

This species, as figured by saporta, "Et.." i, ii, p. 201, fig. 5, is represented in pl. xxy, fig. 5, and xly^{2}. fig. 7. It is the variety b. elongata. The varicty $c^{\text {a }}$ ongustifolia, Sap., loc. cit., tig. 1 , has the character of pl. xpra. figs. 6-8. while fig. 9 of the same plate is exactly like a counterpart of fig. 10\%.. Sap.. "Ét.." ii, pl. 5, which is the variety mimutn of this species. It diflers from the two preceding species by the gradual narrowing of the base to the petiole, the border base being decurrent to it and bordering it to the point of attachment.

Incb.-Florisant. Specimens, pl. xly ${ }^{n}$, tigs. 15-9. are from Alkali station.

```
Myricat polymorpha, Schp.
```

Plate XXV, Figs. 1, 2.
Leaves thickish, membrantecons or subeoritceous, long-lanceolate or linear-lanceolate acuminate, narrowed at base to a short petiole, serrate or denticulate; pimary nerves thick at base, the lateral more or less oblipue, slightly curving in passing to the borters.

This species is described by Saporta as Myricophyllum Zachariense. "Él.." i, ii, p. 220, pl. viii, fig. 2, with varieties spimelosa and laciniata. according to the more or less deep and acule teeth of the borders. Our pale represents the normal form. The leaves are long comparalively to their width- 6 to 8 centimelers long. 5 to 6 millimeters broad. 'The species is. like the preceding, very polymorphous. The author compares it to the living Myrica AEthiopica, Limn., especially as to its nervation.

Hab.-Very common at Florissant.
Myrica callicomafolia, sp. nov.
Plate XXVI, Figs. 5-14.
Callicona microphylla, Ett., "U.S. Geol. Rep.." vii, p. 246, pl. xliii, figs. 2-4.
This species is evidently a Myrica. Better specimens show that the
fragment which I considered as a compound leat is a small branch with alternate leaves. The reference to Callicoma is not possible, as in this gents the divisions are opposite. Except from what is seen in the branch. tig. $\overline{5}$, whose divisions are alternate, distant, parallel, as well as the leaves. Here is nothing to modify in the description of this species in vol. vii. loc. cit. The teeth are not always sharty acute, but more or less so. always inclined uprard.

The species is closely related in the nervation to M. Zachariensis. var. mimutu, Sap., loc. cit., but differs evidently in the more rounded and unequilateral base of the leaves.

Hnb. - Most abundant at Florissant, also at Elko Station, Utah.

```
Myricil fiallam, sp, nov.
Plate XXXII, Figs. 11-16.
```

Very similar in its characters to the preceding species and perhaps a variety of it. It merely differs in the teeth being shaply acuminate or subspiniform, the lateral nerves less curved in passing toward the borders. the base of the leaves not as distinctly unequilateral. It is distantly related to M. acuminata, Ung.

Hab-Florissant. Not rare.

```
Myrica Scottio sp. nov.
Plate XXXII, Figs. 17, 18.
```

Leaves coriaceous, long and uarrow, linear-acminate, narrowly cuneate to the petiole, sharply dentate; lateral veins more or less oblique and curved.

By the leaves, 6 to 9 centimeters long, 6 to 10 millimeters broad, with sharply spinescent teeth turned upward, the species is related to M. Banksicfolia, Ung., and M. obscura, described above. It differs from both in the sharply dentate borders of the leaves, the lateral nerves being distinct and more acutely diverging.

Hab.-Florissant. Princeton Museum.

```
Myrica amygrlalina, Sap.
```

Plate XXVI, fige. 1-4.
Saf., "Et.," iii, ii, ['. 21, pl. 1, figz. e-10.
Leaves submembranaceons, oblong-lanceolate, obtuse or apiculate, narrowed to a short petiole, denticulate or subentire; seeondary nerves mumerous, at an aeute angle of divergence, obliquely branching and reticalate.

The leans are small, $2 \frac{3}{2}$ to $5^{\frac{1}{2}}$ centimeters long, enlarged towad the Heptle part; the armbation is distinct. formed hy nervilles crossing the ohligur divisions of the lateral nerves at right angles.

Hah.-Florissiml. L. S. Geol. Expl. Dr. F. I. Hayden.
Myriral nigricans, Lesqx.
"U.S. Geol. R+1.," vii, 1. 132, pl. x wii, fige. 9-12.
Myrical Bolanderi, Lesqu.
Ibid., p. 13:, pl. xvii, fis. 17.
Myrica undulata, Lesqu.

Leaves lobate; lobes irregular, often serrate.
§:. Leares pimately lobed (Comptonia).

```
Myrica partita, Lesqx.
```

Ibirl., 1. 134, pl. x vii, ti\&. 14.

> Myrica diversifolia, sp. nov.
> Platr XXV, Figs, 6-15.

Leaves membranaceons, short-petioled, either longer, deeply lobate and lanceolate, or shorter, broadly ovate, diversely tri-quadri-lobate; lobes dentate; primary nerves uarrow, the secondary open, curved in passing to the points of the lobes or of the teeth, hranching; tertiary uerves in the direction of the simses, forking under them, each branch followiog the horders. Seeds small, oval-acute.

At first it is difficult to see that these leaves are referable to the genus Myrica and that they all represent the same species. In comparing, however, fig. 6 to Myrict Graffii. Heer. "Fl. Tert. Helv.." iii, p. 176, 1l. cl, figs. 19,20 , the chararter of the nervation, the form of the leares, the dentate lobes will be found much alike. The species are far different but the type is the same. The same degree of affinity is remarked between ligs. 11-13 of omr plate with Myrica latilobr. Heer, ffrs. 12-15 of the same flate: there is also a marked degree of relationship between the leaves I refer to this species and Comptonia laciniata, Ung.. "Fl. von Sotzka." 1. 31 , pl. viii, tig. 2.

Comparing now with one another the fragments which represent this suctics, we see in fig. 8 the same characters exactly as in fig. 6 , merely moditied by the shortening of the leaves and of their lobes. Fig. 11 represents an intermediate form, and with its deep-cut lobes fig. 13 is like an original representation of fig. 11. Indeed, considering the characters of
these leaves with the more or less broadly cuneate base decurent to the short petiole, their sharply dentate lobes. the membranaceons substance, the nervation. 1 ann not able to find any difference to separate them into two or more species, and still less lo refer them lo a different genos. Some of the leares (tig. 14 especially) have some of the chatacters of Cratayus, but the nervation recalls them to Myricu. The small seed, fig. 15 , Hough a seed of Myrica, is not positively reterable lo this species.

Hab.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.

Myrica latiloba, Heer, var. achtilobat.

"1T. S. Geol. Rena.." vii, p. 134. pl. xvii, fig. 13.
§3. Leaves pinnately lobed (Comptonia).
The leaf mentioned with the description of this species as being identical in "haracler with it and obtained from the Miocene of Oregon is figured, pl. K. his. 10, and destribed wilh Miocene plants.

Myrica lbrongiliarti? Ett.
"U. S. Geol. Refl," vii, p. 135, pl. xvii, fig. 15.

```
Myrica Nlkalina, sp nov.
```

Plate XLV ${ }^{2}$. Figa. 10-15.
Leaves short, trilobate and obtusely dentate from a cuncate base, or lanceolate, rounded and narrowed to the base, pinnately, obtusely or acutely dentate.

The species represented by a large number of fragmentary leares. mixed upon the same specimens, present two forms, rather marked varieties. especially differing by acule or obtuse lobes or teelh. The leaves are suberiaceons or membranceous. somewhat large. 3 to 8 centimeters long. $\underset{\sim}{2}$ to 3 centimeter: broad. either lobate wilh narrow cuneate base or pimately demply dentate. more or less obhosty cuneate al base. The medial nerve is lhick: the lateral nerves. at a broad angle of divergence, much curved in passing up to the points of the lobes are generally separated by parallel shorter tertiary veins, anastomosing with oblifue nervilles or brancllets derived from the secondary nerves.

The species is comparable to both Myrica Vindobonensis, Elt., in Heer. "Fl. Terl. Hek.." p. 34, pl. lxx. figs. 5, 6. and M. Ungeri, Heer, l. c., p. 35, pl. lxx. fig-. 7 , S. differing from both by shorter comparatively broader leares, more equally dentate-lobed.

As represented upon the plates. the leaves would seem to be referable to two different species. The fragments. however, are so well mixed twe thee that sumetimes one leaf appears acntely dentate on one side and obtusety sor on the other.

Heth.-Alkali station, Wyoming. Professor S'udder.

Myrica insiguis, Lesqx.

- U. S. Geel. Rep.." vii, p. 135, pl. lxe, fiss. I, 8.

This species has a degree of relationship to the preceding.

BETULACEE.

BETULA, Linn.

" U. S. Geol. Rep.," vii, p. 137.
Betula Florissanti, sp. nov.
Plate XXVII, Fig. 11.
Leares small. lanceolate-acnminate, unequilateral at the cuneate base, borters dombly serrate; medial nerve thin; secondary nerves generally opposite, curved in passing to the borders, branching, entering the teeth like the branches and miterl hy norrilles.

The leat. $5^{\frac{1}{2}}$ centimeters long, $1 \frac{1}{2}$ broad, appears unequilateral at the narrowed base. The primary and secondary teeth are small, acute and thrned upward.

Inth.-Florissant. Princeton Museum.

Betula truncata, sp. nov.

Plate XAVIII, Figs. i, e.
Leares short and short-petioled, ovate-lanceolate, truncate or rommed at base, simply dentate; lateral reins at a broad angle of dicergence. momerons, parallel, the lower opposite.

Thir leares. 3 to 4 centimeters long. 2 centimeters broad. equally dentate from new the base, have the secondary nerves at an angle of divergence of 60°. generally branching. The relation of this species is to Betulu remitr. Ung..." Schoss. Fl.." p.11, pl. iii, figs. 7, 8. The lateral nerves are more open, mnre numerous, and less curved in the American species.

Hab.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.

ALNUS, Tourn.

"U. S. Grol. Rep.," vii. I. 139.
Alnus Kefersteinii, Goepp.
Ibid., p. 141. pl. xriii, figs. 6--: lxir. fig. 11.
Aluus inadiuilateralis, Lesqx.
lbid., 1r. 141, pl. Ixii, figs. 1-4.
Alnus coldata, sp. nov.
Leaf cordate at hase, pyramidal and acuminate, doubly serrate on the borders, long-petioled; primary nerves thick, the lateral opposite, parallel, s pairs, at acute angles of divergence, curving in passing to the borders, craspedodrome.

The leaf is 6 rentincters long, has a thick petiole 3 centimeters lung. is largest near the cordate base (3 centimeters), and hence tapering to an acute point and dentate all around. The leaf resembles Almus dilmiana. Ung.. \cdot lconogr.," pl. xvi, fig. 16 , but is more acutely tapering to the point, and the lateral nerves, at a more acute angle of divergence are more curved.

Mab.-Florissant. Lacoe"s Cabinet, No. 83.
Flowers uf Almus, pl. xxxix, fig. 3, are also found at Florissant, but are not identifiable in species.

CtPCLifere.

OSTRYA, Michx.

"U. S. Geol. Rep.," rii, p. 142.
Ostryabetuloides, sp. nov.
Leares small, broadly ovate, acute, rounded to the equilateral base; borders deutate: lateral nerves close, at a broad angle of divergence.

The leaf is of the same size and shape as that of Ostrya Atlantidis, Sip., "Ét.," ii, 2, p. 254, pl. vi, fig. 4, differing in the simple teeth of the borders, which give to the leaf the appearance of a Betula; but there is with the same specimen a fragment of an involucre of Ostrya, similar in size to that of Sap., fig. 11, l. c., and still more to Ostrya tenerpima. Sap., "Ét.." i, 2, p. 49, pl. v, fig. 6, differing only from the last by its larger size (2 centimeters long). Possibly this involucre is referable to the same species as the leaf. It is the only one seen, as yet, from this formation.

Hab.-Florissant. Lacoe‘s Cabinet, Nos. 26 and 29.

CARPINUS, Linn.

" I', A. Gomb, Rep.," vii, p. 14?

```
    Carpinus grandis, Ung.
```

Ibiel. pr. 143. ph xix, fis. 3; Ixiv, figa, 8-10.
Carimus atteunata, sp, noz.
Plate XXVIL, Fig. 10.
Leaf large, narrowed downward from the middle and upward to an acmminate print, slightly mequilateral at base; borders donbly dentate; lateral nerves oblique, straight, or slightly curved in passing up to the borders, branching near the borders, entring the primary teeth by their ends and the intermediate ones by their branches.

This leaf. 11 tentimeters long, $5 \frac{1}{\frac{1}{2}}$ centimeters broad in the middle, its widest part, is equally narrowed upward and downward, with borders cut by large teeth entered by the secondary nerves, and generally two smaller ones intermediate or on the lower side of the primary teeth. The leaf appears to have been somewhat unequal at the base, but the broader side is lacerated; the veins are. however, equally obligue at the base and not more open on one side. The leaf closely resembles Cirpinus alnifolia. Goepp.. "Schoss. Fl.." 1. 19. pl. iv, fig. 11. merely differing by the border teeth being a little larger, and by the more distinctly narrowed and elongrated base. Schimper unites this last species to C. ostryoides of Goepp., 1. c.. figs. 7-10. Fig. 7 represents a much smaller leaf, but it is narrowed to the base nearly in the same degree as in that of Florissant.

Mub.-Florissant. Princeton Musemm. No. 2.58.
Carpinus liaterua, sp. nov.
Plate XXVII, Fige, 1?-14.
Letres small, lanceolate, rounded to the short petiole; borders mimutely, sharyly, donhy servate; lateral nerves close, mmerous, oblique and straight to the borders, baturhing near the borders.

The species is of the same type as Carpinus Americana, Limn., some of it varieties having leaves as small and of the same pattern. They are generally more coarsely or distinclly serrate than in the fossil species; the teaves are also generally larger.

Ifab.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.

FAGUS．Tournf．
＂LT．S．（imel．liw ，＂vii．p．14．
Fagus livioniade，Ung．
Jhil．．p．I li，pl，xix，fige，I－3．

Ihid．1． 117
QUERCUS，Linn．
－
§ 1．Leares dentate．
Quercus Haidiugeri，Ett．
Ibiel．，p．15iti，11．xx．tigw．9，11．

（2いいrens Mediturutueat Ung．

Mate XXVII，Fis． 9.

 ＂Contr＂．＂ii，J．4ti．jl．iv，figs．1ti－1！
Leares eoriaceons，obovate，abruptly ammate，narowed toward the base and abrupty rombled to it，deeply dentate；secondary nerves simple，craspedodrome，about 9 pairs；nervilles strong，at right angles to the secomdary nerves，simple or more gentratly anstomosing in the midalle．

Excent that the teeth of the borders are slightly more acute and torned upward in the Enropean species，I see no difference sufficiently marked to athomize a separation of this leaf into a new species．The leaf． tig． 3 of Ung．，loc．cit．is like a counterpart of our fig． 9 ，and in other leaves tigured by different authors the leeth of the borders are not sharply acute but somelimes obtuse and nearly eftaced．It is the case in Ung．． ＂Chlor．，＂pl．xxxii，tig．5；in Heer．＂Fl．Tert．Helr．．＂pl．Ixxvi，figs．13－1．5． The nervilles art distinefly seen in figs． $3-4$ given of this species in Ung．． ＂Fl．v．Kımi，＂pl．vi，where henty leaves of this species are represented． All these．howerer，have the horder teeth more acule and proportionally smaller than in fig． 9 of om plate．

Muh．－Fhorissant．U．S．Geol．Expl．Dr，F．V．Mayten．
Quereus serria，Ung．

Leares petioled，subcoriaceous，elliptical，pointed or obtuse，serratedentate ou the lorelers：teeth equal，with callous points．

I single leaf， 4 centimeters long withont the petiote， $2 \pm$ centimeters broml．remamkinly similar to fig． 7 of Ung．，loc．rit．oval or obtusely ovate．
with a shopt thick petiole. The lateral nerves are much curved in passing to the borders, close, craspedodrome.

Mah.-Florissant. Laroe's Collection, No. 64.
Quercus Drymeja, Ung.
Plate XXVIII, Fig. 12.
"UT. S. Geol. Rep.," pr 157, pl. xix, fig. 14.
Among the numerous figures given of this species this leaf is especially comparable to Ung., "Chlor'. Prot.." pl. xxxii, fig. 1, and to "Fl. of Sutzka." pl. ix, fig. 1. The lateral veins are mostly craspedodrome, the lower pairs entering the teeth by an anastomosing veinlet. The species is very common in the Miocene of Europe. The reference of the fragment of leaf described, vol. vii, loc. cit. is not certain.

Hab.-Randolph Co., Wyoming. U. S. Geol. Expl. Dr. F. F. Haylen Quereus Osboruii, sp. nov.

Plate XXXVIll, Fig. 17.
Leaf small, obovate, abrnptly long-acuminate. dentate from under the acmmen to the middle; medial nerve thin; secondars nerves oblique, alternate, parallel, camptodrome.

This fine leaf, about 7 centimeters long, is gradually narrowed from above the middle to the base (broken). rounded in the upper part. there cut by three or four large leeth, and then abruptly long-acuminate. The lateral nerves diverging 30° to 40°. curve in passing up to the borders, which they follow in festoons, entering the leeth by anastomosing branchlets. I to not find any other species comparable to this bul Quercus Tepleroles, Ung., as described in "Sieber. Nord-Böhm. Bram-Kohl... pl. iii. fig. 17. Quercus hexagona. Lesiqx., "U.s. Geol. Rep.," vi, pl.v, fig. 8, is also of the same lype.

Hab.-Florissant. Princeton Collection. No. 684.

Quercus pyrifolia, sp. nov.

Plate XXVIII, Fig. 14.
Leares rather thin, oval, short-acmmate, romded in narrowing to a long petiole; borders irregmarly obseurely serrate; secondary nerves curving in passing to the borders. camptohrome, coossed by nervilles at right angles.

The petiole of the leaf is $1 \frac{1}{2}$ centimeters long, and the leaf without it
is 5 centimeters long and nearly 3 centimeters broad in the middle. It is broken at the apex. but appears as tapering to a short acumen. The litteral nerves, 5 or 6 pairs, at angle of 40° are thin. flexuous, camptodrome, following the borders and joined to some of the teeth by anastomosing veintels: nervilles flexnous or transversely curved.

Species related to Quercus larguensis. Sap., "Ét." iii. 1, p. 67. pl. 5. fig. 1 , which has the same form, the borders irregularly cut-dentate.

Hah.-Florissant. Princeton Museum, No. 797.

```
Qucrcas castalucopsis, sp. nov.
    Plate XXVIII, Fig. 10.
```

Leaves large, lanceolate, gradually acmmimate, regularly distantly dentate; lar pral nerves parallel, at an open angle of divergence, the lower joining the medial nefves at right angles, all camptodrome, curving in passing to the borders, following them and entering the short teeth by oblique nervilles; areolation of mime polygonal meshes.

This leat may represenl a Castancopsis. I do nol know of any fossil species to which it may be compared.

Hab.-Randolph Co., Wyoming. U. S. Geol. Expl. Dr. F. V. Hrayder. §2. Leares entire. Quercus eliena, Ung.

Plate XXVIII, Figs. 11, 13.
 fig. 1 ; iii. 1. 178. pl. cli, figr. 1-3; Sap., "Et.," ii, p. 85, pl. iii, fig. 11 ; iii, p. 65, pl. ii. fics, 5-9): r, fis. 碞.
Leaves coriaceons, short-petioled, oblong-lanceolate; borders entire, revolute or reflexed; lateral nerves camptodrome.

The leaves vary from 5 to 7 centimeters long and from 1 to $1 \frac{1}{2}$ centimeter broad. Those figured here especially resemble the figures in Sap.. loc. cit., pl. ii. figs. 5-10.

Hab.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.

Quercus neriffolia, Al. Br.

Plate XXXI, Fig. 12.
"U. S. Geol. Rep.," vii, p. 150, pl. xix, fige. 4, 5.
I refer with doubt to this species a subcoriaceous polished leaf 10 centimetris long, 22 millimeters broad in the middle, whose borders are
not entire but distanty dentate, and the base stightly decurrent to a thick short petiole. In the Emopean species the leaves are mostly entire. but somotims atoo druticutate in the upper part, and the base of the leat is not as decurrent, while the petiole, generalty thick, is a little longer. The nervition is as represented in Heer, "Fl. Tert. Helv.," ii. pl. Ixxiv, fig. 4. Hah.—Randot,ht Co.. Wyoming. U. S. Geol. Expl. Dr. I. V. Hayden. CASTANEA, Linn.

Castanea intermedia, Lesqu.

SALICINEA.

SALIX, Linn.

Salix amyedalafolia, sp. nov.
Plate XXXI, Figs. 1, \because
"U. S. Grol. Rep.," p. 165.
Leares narrowly lanceolate, tapering to a bhnt acumen, ronnded in narrowing to the petiole, serrulate: lateral nerves at an acute angle of divergence.

The leaves 6 to 7 rentimeters long. 12 to 15 millimeters broad, with a slender petiole 2 centimeters long. may seem to represent a variety of S. mitans, Goepp.. so common in the European Miocene. But they are generally much smaller. more narrowly lanceolate: the secondary nerves. esprecially the basitar ones a more atate angle of divergence: the borderw more distinctly serrate-renate. The form of the leaves is the same as in s. lucuteri. Al. Br'.. but the leaves of this last species are much longer.

Hab.-Florissant. Seen in the difterent coltections from that locality.

```
Nalix Lilubeyi, sp. nov.
    Ilat+ XXXI, Fig. i.
```

Leaves large, thick, oblong, enlarged upward, rapidly marrowed to the point, tapering to the base. very entire.

The nearest relation of this species is s. abbreciata. Goepp.. "schoss. Fl.." p. 25. pl. xvii. tigs. 4-11, especially like fig. 7: but the American leaf is twice as litge, 8 centimeters long, $2 \frac{1}{2}$ broad in the upper part, narrowed to the base. which is not rounded, and more enlarged upward.

Hab.-Florissant. Princeton Musemm, No. 780.

Salix angusta, Al. Br.
Hhid. p. 16. jl. xxii, hits. 4, 5.

> Salix elongata, O. Web.

POPOLUS, Linn.

fhiel. vii, 1: 169.

1'opulus Herrii, Sap.

Plate XXX, Figs. 1-e; XXXI, Fig. 11.
sap., "Et.," i, J. $\mathbf{c h}^{7}$, J. vii, fix. 3.
leaves longrpetioled, orate, long-lanceolate, acuminate, obtusely serate; primary nerves thick; lower seembary norves at a more acnte angle of dirergence and aseending higher along the borders, the others curving in passing to the borders and reticulate in following them.

The leares are extremely variable in size. some. as shown in tig. . . being 20 to 30 rentimeters lons and 10 to 12 centimeters lroad below the middte: others. as in fig, erarely \bar{z} centimelers long and 2 broad; others still, as in tig. 11 of ph. xxat, being harrow comparatively to their length. 10 centimeters long, 2 cuthenters broad. thus resembling leaves of willows. That all these leares represent the same species is evident enongh. Besides the essential characters in common, they hase the same somewhat lhick consistence, and are all colored reddish-yellow even upon shates where all the fragments of wther plants are colored black.

Saporla, who has described a fruit of Popmes found upon the sanse shate as his leaf, compares it to that of l^{\prime}. Emphratico. Oliv., and the leaves to I. luurifolit, Ledeb. We have still living in the Rocky Mountains of Colorado and Utah a speries. I'. "myestifutia, James, considered by some authors as a variety of l^{\prime}. bulsumifert. Limn., which represents the fossil -peetes in the different forms and size of its leaves. Those of the living -pecies vary from 5 to 24 ecntimeters long and \supseteq to 10 centimeters broad, being either attemuated or broadly cordate at base, according to their width.

Hab.-Florissanl. Found in all the collections.

Leat rety later apparnily boader than long, cordate-ovate; borders molnlate, creman: primary nerves thick: lateral nerves thin, moch eurved to and along the borhow: he lower bairs math branched, the other simple.

This leat. ahout 12 rentimeters long and 14 broad toward the base, scems to represent a different species from those figured under this name In European authors. It is broader than long, while the leaves of P. hatsomoides are, accordiug to Heer, ahwys longer than broad; it is deeply cordate at base. and the lateral veins. without any basilar veinlets, are commaratively very thin, much curved and all alike; the borders are merely crenulate. even olscurely so. while they are more or less deeply serrate in the normal form of P. balsemoiles. Fig. 7, pl. lix. of Heer, l. c., represents. however, a leaf witlı borders obscurely dentate and nearly as large as that of fig 4 , cordate at base: and fig. 1 of pla of Heer shows the lateral nerves of the same characler as they are in the American leaf. There is between the fossil leaves a difference as marked as between those of the living Populus balsamifera, Limn., and I^{\prime}. cametictus, Ait. This last, though with broader and more or less heart-shaped leaves, is considered a mere local variety of the first.

Hab.—Florissant. U. S. Geol. Expl. Dr. F. I. Hayden.

Populus Zaddachi, Heer.

Plate XXXI, Fig. 8

The figured leaf is one of the smallest of this species, and besides differs from the normal form in some points. The secondary nerves descend a little lower; the border teeth, though obtuse and turned upward. have not al the apex the small glands which are generally seen in the small leaves of this species. As these glands may have been destroyed hy maceration, as is often the case, and as this species is very common in the North American Tertiary, I consider this leaf as a mere variety.

Hub.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.

Populus oxypliylita, Sap.
Hate XXXV11I, Fign, 9-11
Sal.. Ef ." iii, 1, p. 33 . pl. wii, fig. 1.
Leates of small size, long petiolate, deltoid, short-acmminate, romded to the base, denticulate; secombary nerves variable in distance, the lower longer, branching ontside.

The leaves vary from $2 \frac{1}{2}$ to 4 centimeters long and from $1 \frac{1}{2}$ to $\quad 3 \frac{1}{2}$ contimeters broad below the middle, from which part they tiper upward to a froint or shor acumen; the peliole is 2 to 3 centimeters long. The anthor describes and ligures the lateral nerves as flexuous, a character which is not seen on the leaves which I refer to this species. The nerves are however, camptodrome, the teeth being entered, as seen in fig. 11. the best preserved leaf, by short veinlets anastomosing to the curves of the lateral nerves. In this leaf also the nervilles and their mode of ramification in forming large primary irregularly hexagonal meshes are of the same type as in the tigure of saportat.

Hab.-Florissant. U. S. Geol. Expl. Dr: F. V. Hoyden. One specimen. No. 54, not tigured here, is in the collection of Mr. Lacoe.

Populus Lithardsoni, Heer.
"L ${ }^{+}$.s. Grebl. Rep..." vii, p. 12is, pl. xxii, figs. 10-13.
Populus aretica, Heer.
Ibid., p. 178, pl. xxiii, figs. 1-6.

 LIQUIDAMBAR, Linn.

Ibid., vii, p. 186.

> Liquidilulotr Eurourenu, Al. Br.
> llate XXXII, Fig. 1.

A1. Brann, "Buckl. Geol," p, 112: Ung., "Chlor. Protog.," p. 120, pl. xxx, figs. 1-5; Goepp., "Tert. Fl. v. Schuss.," p. $\because!$, pl. xii, tigs. 6, 7 ; Heer, "Fl. Tert. Helv.," ii, p. 6, pl. li, lii, tigs. 1-8; Ludw.. "I Ialaontug.," viii, p. 69, pl. xxv, figs. 1-4; Gand., "Contrib.," iv, p. 19, pl. iv, figs. 5-7.
Leaves long-petioled, pahnately 3 to 5 -lobed; lobes more or less distinctly glandulose, sermate, lanceolate-acaminate.

- In the leaf figured as referable to this species the borders appear nearly entire or merely undulate-crenate; but it is the only difference from the normal form which is very common in the Miocene of Europe.

The leares presered ftaltened on some of the thin simdy shates of Florissall rery uften have the burdus arased and the small teeth therefore often de:treye. The medial lobe of the figure has the teeth quite as distinct ars in somm of the figures of Enopean :mthors, still more so tham in tig. 5 of Giadin, l. \cdot.

Heth.—Ramdoljh Co., Wroming. U. S. Geol. Expl. Dr: F. V. Hayden.

URTIOINEA.

ULMACEA.

ULMUS, Linn.

"1. S. Grab. R+j.," vii, f. 1-\%.
Ulmus tenuinervis, Lesqx.
Ihiel. 1. 1-N, pl. xxvi, tixe. 1, 3 .
Ulinus Hillite, sp. nov.
Plate XXVIII, Figs. 1,3 .
Leaves narrow, lancolate-acmamate, very mequilateral at base, simply or doubly-serrate; lateral reins enrved in passimg to the horders, eraspedodrome.

The leaves are smath, 5 to 9 centimeters long, $1 \frac{1}{2}$ to $2 \frac{1}{2}$ rentimeters brod, short-petioled, thickish; the base is narowed on one side in rombling 6 o the priole, straight on the other; the teeth of the borders are large, shehtly tmed up. not very sharp; the areolation is quite distinct in small irregnarly quatrangular meshes, formed by subdivisions of nervillor mostly at right angles.

Hobb-Florissant. Mrs. Mill, who has widely collected and distributed the specimens of fossil plants of that locality.

Ulmus Browncllit, sp. nov.

Plate XXVIII, Jige. 2, 4.
Leaves narow, oblong-lanceolate, moqual at base, simply obtusely dentate; lateral nerves simple, parallel, the lower open; mervilles irregularly branching amd auastomosiug ; areolation polygonal, loose.

This species resembles the preceding, differing by the simple teeth and huras; the areoles, much larger, formed by irregularly divided navilles.

Hub.-Florissant. U. S. Geol. Expl.: White River. W. A. Brownell.

Ulmus IBraminio, Heer.
Pate XXVII, rige. 1-4. $\begin{gathered}\text {. }\end{gathered}$

Labes short-petioled, reay mequilateral, romm or cordate at base, elliptical on watw-lanceolate, acnte or acmumate, doubly or simply comsely dentate; teeth conical, thrmed up; lateral veins open, at right angles towam the base, $10-18$ paim; finit petiwate, broadly-winged; wings lateral.

This speries is very variable in the form of the leaves and the more or less arnte leeth of the borders. The leaves. $4 \frac{1}{2}$ to 12 centimeters long. 2t $\frac{1}{2}$ to $4^{\frac{1}{2}}$ centimeters broad, are comparatively broader and shorter and more mequilateral and difform than those of the preceding species. It is very common in the European Hiocene and is also abundantly found at Florissant. where the truits ahso are nol rare. Bat these fruits, always fonme ripe. do not agree with tha fignes given by Heer, loc. wit.. pl. cli, fig. 31: they are rather like those of U. Brommin, or U. lompifolim. Uug.. as figured in "Bil. Fl.," 1 . xviii, tigs. 4. 5. S. The specitic relation of the seeds of Ulmus describet by European athor's is hypothetical, as well at that of those 1 have figured.

Ireb.-Florissant. Nol rare; expecially in Princeton Collection.

> PLANERA, Gmel.
"['. S Geol. Rep.." vii. p 189.
Flandralongilolia, Lesqx.
Plate XXIX, Figs. 1-13; XLIV, Fig. 10.
Las介|x., "U. S. Geol. Rep.," vii, 1. 189. 11. xxvii, tige. 4-6.
Planela longifolia, var. myricaefolia. Plate XXIX, Firs. 15-2\%.

From a comparison made in the examination of more than two thousand speeimens, representing not merely the leaves figured but a large number of intermediate forms. I have been forced to admit that they all belong to the same species, and that though some of them are closely allied to the European Planeru Confori, they constitute a different species. First examining the relation of all the leaves from No. 1, the normal type, to

No. 13, all have simple. more or less acute. more or less distant teeth; and the lateral veins all simple. straighl, eraspedodrone. vary in nothing but in their more or less acute angle of divergenve according to the width of the leaves: the petiole is equally variable. from 5 to 10 millimeters fong. int the leaves are sometimes nearly sessile, as in fig. 7. One of the leares ut fig. 1 has also the petiole very short. Comparing the different forms of tigs. $14-27$ we see the same essential characters preserved-that is. lateral veins straight. craspedodrome at a more or less acute angle of diverence relatively to the widh of the leaves, the teeth either sharply ante. even acuminate. or merely pointed. even obscurely so, as in figs. $2 \cdot{ }^{2} .27$. The petiole is generally of the same length, but some of the leares (fig: $-21,26,27$) are narrowed to the base and nearly without petiole. If 1 ind that all these leaves have the same consistence and black color upon the shale, that both forms are often found upon the same specimens. that it is often scarcely possible to say that a leaf is referable to the normal type or to the variety, it will be understood why I am unable to consider these leaves as representing different species or referable to two genera, though, comparing the extreme forms (figs. 1, 5, 6. to figs. 21, ㄴ4, 27), this separation scems indeed natural.

As for the identity of this species with P. Ungeri, it is disproved by the comparatively large and narrower leaves, the veins, exactly straight from the medial nerves to the point of the teeth, never curved, and the fruits which, as seen in comparing fig. 12 with fig. 1, pl. lxxx of Heer. "Fl. Tert. Helv.." are nearly twice as large in the American species. The difference in the characters of the leaves may be easily seen in comparing the figures of pl. xxix with that of P. Ungeri, quoted below.

Hab.-Florissant. Most abundant.
Planera Ungeri, Ett.

[^15]CELTIDEA.
CELTIS, Tour
"1". S. Guol. Repr." vii, p. 191.
Celtis McCoshii, sp. nov.
Plate XXXVIII, Figs. 7, 3.
Leaven long-petioled, narrowly ovate, lanceolate-acuminate, more or less unequiLateral at base: lower lateral nerves at a more acute angle of divergence, ascending higher across the borters. curved like the upper (4 to 6 pairs), all eamptodrome, attached to the bomers by anastomosing violets.

The leaves, 5 to $6 \frac{1}{2}$ centimeters long, 2 to $2 \frac{1}{2}$ centimeters broad below the middle, where they are widest, are not very bul distinctly mequilateral at the romnded base, at least in fig. 7. By the form of the leaves the epecies is clusely allied to Celtis primigenia. Sap., "Ét.," ii, 2. p. 263, 11]. vi., fig. 7. The nervation and the denticulation of the leaves are of the same character. The leaves are also remarkably similar to those of C. occilentulis, Limn., var. Terena, a form whose leaves, nearly equilateral at Dase are minutely serrate. The Texas leaves are subcordate at base or round, as in fig. 8.

Hub.-Florissant and Randolph Co.. Wyoming. Princeton Collection. No. 394 , U. S. Geol. Expl. Dr. F. V. Hemiltu.

MOREE.
FICUS, Tourn.
"U. S. Gred. Rep.," vii, p. 191.

Ficus lanceolata, Heer.

Ibid. p. 192, pl. xxviii, figs. 1,5
Ficus Jynx, Ung.
Ibid., p. 19:3, pl. xxpili, fis. 6.
Ficus multinervis, Heer.
Ibid., p. 194, pl. xxvii, fisw. 7,8 .
Ficus itrenacea, Lesqx.
lbid. p. 195, pl. xxix, figa. 1-5.
Ficus Ungeri, Lesqx.
Plate XLIV, Figs. 1-3.
Ibid., p. 145, pl. xxx, fig. 3.
This species is finely represented by the three figures of our plate. They show not merely the variable size of the leaves, but their true shape aml the short petiole abruptly thickened at base. The leaves, are oblong

Wr lingulate. momed at tho base and apparently at the apex also: they vary in size from 10 to 20 contimeters hong and from $3 \frac{1}{2}$ to $6 \frac{2}{2}$ centimetre brod in the middle. Fig. 2 may retresent at different species not merely on aroment of the different size, but from the presence of tertiary thimer athd shorter reins intermediate to the secondary nerves.

Ilut.-Mkali Station, Wyoming. Professor S'cudder; Green River Station, U. S. Geol. Expl. Dr. F. F. Ifeyden.

Ficus Wyomingiana, Lesqx.

Ficus tenuinervis, sp. nov. Plate Xliv, lig. 4.

Leaf oblong or limceolate, tripalmately nerved, rommed at base, entire.
A mere fragment, showing the lower part of a leaf whose lower lateral nerves are strongly branched downward and atl (nerves and branches) camptodrome. The medial nerve is intlated at base. The fragment represents a Ficus, but the specific characters are not discernible.

Hab.-Alkali Station. Professor Scurder.

Ficus alkalina, sp. nov.

Plate XLIV, Fige. 7-9.
Leaves thin, vimiable in size, obovate or ovate lanceolate, acuminate, obtusely sermbate, palmately trinerved; secondary nerves distinct, all camptodrome, alternate and parallel; nervilles oblique, simple or forking in the middte.

The leaves are fragmentary, variable in length from 6 to 10 centimeters, and proportionally broad. The nervation is that of a Ficus: the lower primary lateral nerves are thin, flexuous, ascending at a more acute angle of divergence. The upper are parallel, camplodrome, attached to the teetl by small anastomosing nervilles.

Ilab.-Alkali Station. Professor Scudder.
SANTALEA.
SANTALUM, Linn.

Santalum Americanum, sp, nov.

Plate XXXII, Fig. 7.
Leares thick, narrowly elliptical or oblong, very short-petioled, blunt at the apex: nerration obsolete.

The basilar border of the leaf is decurrent atong the petiole. Whicht is scarcely 2 millimeters long for a leaf 4 centimeters long, 1 centinnetor bratel in the middle. The affinity of this leaf is with the living S'metrom luneolutmo. Brown. From the fossil species published. it differs in the rety shont petiole and the blont apen of the leaver.

Hul.-Ftorissant. No. $6: 38$ of the collection of the Princeton Musean.
LAURINEE.
CINNAMOMUM, Burn.

Cinnamommmsehenchzeri, Heer.

1Plate NXXVIll, Fig. 6.
"L'.A. Geal. Rep.," vii, p. w2l, pl. xaxvii, tig. 8.
The leaf from Florissant more distinelly represents this species than Htat ("Rep." vii) from Montana. There is still a small differente from the European form in the position of the lateral nerves descending lower, nearly the top of the petiole, and the basilar borders more dislinetly decurent. These deviations from the normal character are. howerer, somewhat indicaled in a few of the numerous tigures given by Heer of this species.

Hab.-Florissant. U. S. Geol. Expl. Dr. F. V. Huyden.
PROTEACEE.
BANKSITES. Sap.
Banksites limeatus, sp. not.
Plate XXXII, Fin. : 3.
Seeds obliquely oval, winged; wings ohbong, obtuse, larger on one side, distinctly striate lengthwise by $\overline{0}$ or 6 paralle black lines converging at the apex.

The seeds resemble those described as Bouksia Rodubojensis. Ung., ".syllog.." iii, p. 75. pl. xxiv, ligs. 16. 17.

Heb.-Florissant; nol rare. Dut as yet no leares referable bo this genus have been found there.

LOMATIA, R. Br.
Leaves coriaceons, bimately laciniate or acutely lobed; divisions oblique, lanceolate. arde or acuminate, nerved in the midnle, decurrent along the medial nerve or comected by a marow wing at the basilar margm.

This definition merely relates to the peculiar leaves described below, Whose relationship is marked only with leaves of some species of Lomatia. Their texture is thick. The surface is always covered by a coaly layer, obliterating the umatiom.

Lomillatia hakeafolia, spong.
Plate XXXII, Fig. 19.
Leaf olliquely truneate at base, lanceolate, acmumate, irregularly deeply dentate.
This form differs from the following by the segments, or lobes. being shorler and directed to the ontside at right angles to the primary nerve; these acute short lobes or teeth, four on each side. are opposile and separated by broad shallow sinuses: no trace of secondary nerves is discermible.

Mab.—Florissanl; rare. U.S. Geol. Expl. Dr. F'V. Hayden.
Lomalia spinosal, sp. nov.
Plate NLIII. Fis. 1.
Leaves narrowly lanceolate, long-acminate, hoadly alternately acutely dentatelobed; divisions gradually shorter upward, the terminal long-acmminate.

Related to the preceding species bul differing by the laciniæ being longer, turned upward, decurrent. The primary nerve is scareely risible.

Hab.-Florissant; rare. U.S. Geol. Expl. Dr. F. V. Hayden.
Lomatia terminalis, sp. nov.
1Mate XLIII, Figs. シ-~
Leaves linearlanceolate, acmmate, deeply lobate: lobes obligue, lanceolate, acute, decurrent along the primary thin nerve: lateral nerves generally distinct.

Hab.-With the preceding; not mare. U. S. Geol. Expl. Dr. F. V. Hayden.

Lambitiat tripartita, sp. nov.
Plate XLIII, Figs. 8-10.
Leaves palmately trilobate, narowly cuneate to the base; lobes obliquely diverg. ing, oblong, obtuse or obtusely pointed, entire or dentate-lobed on one side; primary nerves more or less distinct.

The three firagments representing this species may be mere forms of the preceding.

Hab.—Florissant; rare. U. S. Geol. Expl. Dr. F. V. Hayden.

Lomatia acutiloba, sp. nov.

1'late XLIll, Firs. 11-16, 20.
Leares long, linear-lanceolate, alternately pimately lobed; lobes lanceokate or linear-Ianceolate, acute, oblique, decurrent, gradually shorter upwim, distinctly curced backward.

The divisions of the leaves, their shape and mode of decurring to a primiry axis, are of the same type as in Lomatia (Torlea) Suportonen of the "Cretaceous Flora" ("U. S. Geol. Rep."), vi, pl. xxix, figs. 1-4.

Hrh,-Florissant. Common, and seen in all the collections.
Lomatia abbreviata, sp. nov.
Plate XLIII, Fig. 17.
Leares linear or narmwly lanceolate; lobes oblique, short, oblong, not decmrent, emmate at base, inelined upward, obtusely pointed ; nerves obsolete.

This fragment appears related to fig. $\mathbf{1 0}$.
Hab.-Florissant; very rare. Collection of the Princeton Museum.
Lomatia interripta, sp, nov.
1'late XLIII, Figs. 1e, 19.
Leares linearoblong, larger in the middle, either lobes biform; larger, wrate, entire or obtusely dentate, or smaller intermediate to the larger ones, merely oralobtuse, like short teeth.

This peentiar form has the lobes of the top and the base of the leaves simple, open, obtuse; in the midtle the lobes become larger, obovate, obtusely irregularly denlate, opposite, and near their base the wing of the leares is expanded into intermediate very small entire obtuse teeth. The large lobes, when entire, have only the medial nerve distinct; in the dentale ones the medial nerve is dichotomous, the branches passing up to the leeth, one or two on each side.

Hab.-Florissant; very rare. Princeton Colleclion, Nos. 842, 843.
Lomatia microplyylla, Lesqx.
"U.S. (ieol. Rep.," vii, p. 211, pl. Ixv. fige. 14, 15.

PIMELEA.
PIMELEA, Banks.
Pimelea delicatula, sp. nov.
Plat, XXXIII, Firs. 15. 16.
Leaves membranaceons, nearly sessile, spatulate, short-pointed or apiculate; secondary nerves emerging at an acnte angle of divergence, branching on the lower part. variahle in distance, separated ly intermediate short veinlets; nervation camptodrome.

The leaves vary from 3 to $5 \frac{1}{2}$ centimeters long and from 8 to 13 millimeters broad in the upper part, near the apex, where they curre upward in narrowing to a short point, and from which part they are gradually narrowed downward to the very short petiole.

The species is closely allied to P. Eninyensis, Heer. "Fl. Tert. Hehr.." ii. p. 93, pl. xcrii. figs. $2-10$, which has smaller leaves less gradually narrowed downward and no petiole.

Mab.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.

OLEACE. olea, Linn.

Of the numerous living species of this gemus, one only, Olea Americour, inhabits the North American Continent; three species are European: the others are found in Tropical Asia and South Africa; Japan has one species.

The leaves of Olea are opposite, petioled, oriaceous, persisting. oblongoral. obovate or lanceolate, very entire; the nervation pinnate, and the flowers fasciculate in the axils of the leares.

Ofea bratuissa, sp. nov.
Plate XXXIII, Fig. 1.
Leares coriacrous, lancenlate, larger below the middle, narrowed to a very short petiole: flowers in simple or arely compond racemes.

The leaves average 5 centimeters in length and 1 centimeter in wiltll below the middle, from which they are gradually tapering upward to a blunt point. The flowers are short-petioled, either single or in short slightly compound racemes. This character essentially separates this
species from Olen Americana, its nearest relative, from which it differs by shatler leaves and larger flowers. No trace of secondary veins is discornither on those leares.

Nine fossil species of Olea are described by authors from the Miocent of Europe, none of which have a marked reation to this.

Heb.-Whorissand. Princelon Collection, No. 641.
Fraxinus, Tourn.


```
Fraxinus predict:, Heer.
```

Ibil. p. Mi.9, ph. xl, fig. 3.

```
Fraxilus Herrit, sp. nov.
    Plate XXXIIL. Fimg. 5, 6.
```

Leatlets mone or less unequilateral, rommed or narrowed to the short petiole, and equally so from the middle to the acminate blunt apex ; borders undulate; lower secombily nerves at a more acote angle of divergenee, all mequally distant, enving and reticulate at a distance from the horlers; nervilles flexuous, at right angles to the medial nerve.

The leaflets, 5 lo 7 centimeters long. $1 \frac{1}{2}$ to 2 centimeters broad, are. evidently. part of a compound leaf, as seen from the lower lateral leaflet. which is neaty sessile and very unequilateral, and the upper a terminal one, effuilateral, larger and petioled. The lateral nerves are thin, arched toward the medial nerve at a distance from the borders, as in Frarimus prethicta, Heer, "Fl. Tert. Helv.." pl. cir. tigs. 12. 13. to which this species is closely related: indeed. il merely differs by the basilar nerves being at a more acole angle of divergence, and those above with curves more dislant from the margins which are merely modulate. No truiting pard has been found.

> Mab.-Florissant. U. S. Geol. Expl. Dr. F. V. Itayden.
> Fraximus mespililolia, sp. nov.
> Plate XXXIII, Figs. 7-1\%.

Leaflets more or less unequilateral, ovate-lanceolate, obtusely acuminate, romed to a short petiole, obtusely serrate; secondary nerves parallel, subequidistant, 8 or a pairs, much curved in passing to the borders and following them, comected with the teeth by short anastomosing veinlets; nervilles oblique, very flexuons.

This species is as closely allied to F. juglandina. Sap.. "Ét.." iii. p. 89. pl. ix. figs. 13-16, as is the preceding to F. predicta. Heer. The leatets
are broater, les mequal than in F. Heerii, rounded or narowed on we side to a short petiole: the camplodrome veins follow close to the borders not curving inside to the medial nerves. and the borders are always distinctly serrate. In F. juglundinn the borders are sharply denticulate and the more open lateral reins do nol ascend higher along the bomers. as in the American species.

Heth-Florissant. U. S. Geol. Expl. Dr. F. T. Heyder.

```
Fraxilums abloreviata, sp. nov,
    1 late AXVIll, Fign. 5, 6.
```

Leares short, ovate, acute, round or trmeate at base, short-petioled, denticilate; secondary nerves elose, parallel, open, curved in passing to the borters, mueh brambing outside.

These leaflets, subequilateral, 3 to 5 cenlimeters long, 2 lo 3 centimeters broad, with borders equally cul in acute small teeth slightly turned unward, have the lateral nerves close. 10 pairs. at an angle of divergence of 60°, somewhat curved in traversing the areas. much divided near the borters. the branches entering the teeth directly or by anastomosing reinlels. The nervation is like that of Fraxims ulmifolia, Sap.. "Et.." iii, p. 91, pl. ix. figs. 17-19, differing essentially by shorter. comparatively broader, more equilateral leaflets. and less acule. more equal teeth. The relation of the species is very close.

Hab.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden. Seen also in Lacoe Cabinet. No. 26.

Fraximus? myrictiolia, sp. nov.
Plate XXXIII, Figs 13, 14.
Leatlets small, sessile, subcoriaceons, narrowly lanceobate, distantly dentate; seroudary merves very oblique, mostly ohsolete.

The relationship of this fragment of leaf is obscure. The fateral nerves are obsolete and the leaflels sessile. Though the leaflel, fig. 14. has the same lhick texture, the nerves scarcely distinct, it seems different on account of its short petiole and the direction of the scondary nerves. which is at an acule angle of divergence, apparently toward the leeth as (raspedodrome. It may be a leaf of Myricu.

Hall.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.

Fraxinus Uugeri, spon.
Lapflet small, membranaceons, very entire, mequilateral, bromlest below the midde, ovate lameolate, acuminate, narowed to a short petiole.

There are three leaflets of the same kind remarkably similar in thape and size to Frarimus primigenia, Ung., "Syllog.," i, p. 22, pl. viii. figs, :3-S. They arr $4^{\frac{1}{2}}$ to 7 centimeters long, $1^{\frac{1}{2}}$ to $2^{\frac{1}{2}}$ centimeters broad belor the middle, where they are much larger on one side than the other. The serondary nerves are parallel, open. curved in traversing the areas. branching near the borders, effaced in touching them. It may be the same speries as that of Unger, hut it is not possible to ascertain the degree of relationship, as in the leathot representing the European species the secondary nerves are neither described nor distinctly figured.

Hab.-Florissant. Lacoe's Cabinet. No. 57.
Fraxinus Brownollii, Lesqx.
" U. S. Gerl. Rep.," vii, p. 230.
Fraximus Liblevi, sp. nov.
1late XXVII, Figs. Fi-7. 9.
Leaves very variable in size, mequilateral, ovate-lanceolate, acuminate, rounded to a short petiole, imegularly semate; secondary merves parallel, close, 10 to 1 s pairs according to size, branching near the borders, camptodrome, joined to the teeth by anastomosing veinlets.

The feaves vary from $3^{\frac{1}{2}}$ to 11 centimeters long. $1^{\frac{1}{2}}$ to 4 centimeters broad. They are very unequal at base. generally cut straight and obliquely on one side toward the petiole, enlarged and rounded on the other. deeply more or less irregularly serrate. Fig. 9 rerresents a long narrow leat. bronder in the midde, gradualty narrowed upward and downward. rather oblong; the other leaves are broader toward the base and orate; the secondary nerves are more or less divided near the borders, generally camptodrome, joined to the teeth by nervilles a few of them entering the teeth; the nervilles are parallel, flexuons. simple or forking. or anastomosing at right angles in the middle; the areolation as seen in fig. 9 is formed of very small quadrate or round-quadrangular meshes.

Hab.—Florissant. Princeton Museum. Nos. 217, 245, 275, 281.

APOCINEX.

APOCYNOPHYLLUM, Ung.
Leares very entire, pemmerve, coriaceons; medial nerves strong; secomdary nerves rery open or at right angles to the midrib, close together, camptodrome, sometimes separated by shorter intermediate thin reins.

```
Apocynopluylum Sculderi, sp nov
Plate XLS'a. Fige 1-5.
```

Leares oblong-lanceolate, gradually narrowed mpward to an achmen and downward to a short petiole; secondary reins nearly at fight angles, mmerous, camptobrome, and curving quite near and along the borders as if joined to a continuous lateral nerve ; intermediate tertiary nerves thimer, as lons as the secondary ones; nerviles close. obligue.

The peculiar direction of the nerves, which in their curves follow the borders appearing like a continuous marginal vein, is also a character of the leares of some Myrtacele. The relationship of this species is, however. more marked, nol only by the nervation but by size and form of the leares with Apocynophyllum Helieticum. Heer. figured in "Bornsl. Fl.," pl. ir. figs. $1-7$. The curving of the reins close to the borders is distinctly seen (fig. 3) with the inlermediate tertiary nerves. corresponding to fig. 4 of Heer. The form of the leaves and their size being also the same, possibly the American species is a mere varicly.

Mab.-Alkali Stalion. Professor Sculder.

CONYOLYULACEE.

PORANA, Burm.

I have seen of this genus scariose calyxes, but, as yet. no leaves. These calyxes. 3- to 5 -lobate, have the sepals generally of unequal length, tree to the base, sometimes more or less comnate. Two species only are described by authors with calyxes and leaves, six from scariose ealyxes. all trom the European Miocene.

```
Noramit Speirii, sp. nov.
    Plate XXVIII, Fig. IF.
```

Calyx scariose, somewhat thick, indistinetly five-lobate; loves large, connate; nerves liverging trom the central point to the borders, traversed at right angles by strong nervilles, forming equilateral meshes.

The lobes are marked only by their upper borders being connate to
 and of the same length. This form is redated to dirfonine mombunasu.
 middle and whase arendation is different. The size is the same.


```
I*olalla temuis, sp. nov.
```

 distantly whigurly branelad.

Rtsimble: I^{\prime}. menrentlu, Ludw.. "Palaontogr." viii, p. 116. pl. xii, tig. 1s. but its segals: are still longer-more than $1 \frac{1}{2}$ rentimeters long. and narrower. hatf a centimeter. The ranitications of the veins are muh more distinet.

Helh.-Florissint. Lacoes Cabmet. Nos. 65 and 71.
MYRSINEX.
MYRSINE, Linn.
My1.sille latilolia, sp. nov.
llate XXXYIII, Fix. 16.
Leaf subcoriaceons, broady oval or nearly romm, truncate at base, rery entire; nervation camptodrome.

The leaf, 2 centimeters long and as broad, is broken at the base and the top, and therefore the mode of affachment to the petiole is not seen. The nervation is, however. so much like that of apecies of this genus that its reference to it sems legitimate. The open, opposite, slightly curving, secondary nerves fork two or three timus, and are divided foward the borders. where they abrutty curve and follow vose to the matgins in short anastomosing hows. The areas hetween the secondary nerves are oblignely crossed by branching nervilles constituting a loose polygonal areolation.

The affinity of this leaf as to its from and size is with M. antiqum. Ung., ".syllog.," 1. 20, pl. rii, figs. 7. Th. The Enropean leaf is a little larger and the secondary nerves also a little more curved: the areolation is of the same type. The leaf appors to be unequilateral, and in this and size it is comparable to M. ('hrmodrys. Ung., "Fl. v. Sotzka." p. 4". pl. xxii, figs, 4,5. The type of nervation of the American speries is that of 1I. biferia, Wall., of India.

The leaf described here is the only one seen as yet of this genus in thr. Sinth Ameritan geological formations: thirty-four species have been derriled from the European Tertiary. The leaves are generally very small and hare probably been unobserved until now.

Inth,-Florissant. Princeton Museum, No. 874.

SAPOTACEN.

BUMELIA, Swartz.
The plants of this gems have the leaves alternate, petiolate, coriaceons. and very entire. They inhabit at the present epoch tropical and boreal America. Ten fossil species are described from the European Continent.

Bumelia Florissanti, sp nov.

Plate XXXIV, Figs. 4, 5.
Lemres thick, obovate, obtuse: lateral nerves thin, at an open angle of dirergence, parallol. campotodrome.

The leaves, nearly 5 centimeters long and 3 broad in the upper part, atre rommed at the apex, eilher slightly emarginate or apiculate, gradually narrowed to a rery short petiole. Of the nervation nothing is distinct except the thin secondary nerves diverging at base at an angle of $60^{\circ} 1070^{\circ}$, moch curved in passing foward the borders, crossed at right angles by close nervilles, camptodrome. In size and shape these leaves are comparable to Bumelia subsputhulutu. Sap., "Ét.," iii, 3, p. 62, pl. 10. figs. 18-22, and in their different character's to the living B. retusa of Jamaica.

Hrb.-Florissant; not rare. U. S. Geol. Expl. Dr. F. I. Hayden.
DIOSPYROS, Linn.
" 「. S. Geol. Rep.," vii, p. 230.
Diospyros braclyscpala, Al. Br.
Plate XXXIV, Figs. $1,2$.
Ibid. . p. 32, pl. xl. fiss. 7-10; 1xiii, fig. 6.
The two leaves figured in this volume are more positively identified with the European species than the fragments of "Rep.," vii, pl. xl, whose aftinity is still somewhat doubtful on account of the thickness of the secondary nerves.

Hab.-Florissant; not rare. Princeton Museum. Nos. 631. 657. \&c.
"U. S. Geobl. R"p.," vii, p. 23., pl. xl, fig. II.
Though this leal is shorter and its nervation more dislinet. it has evidently the same characters as that described from Elko Slation in vol. vii. Mab.-Florissant. U. S. Geol. Expl. Dr. Ir. V. Maylen.

MACREIGHTIA, A. D. C.

The fossil remains referable to this genus are represented by calyxus. Thew are merely tripartite; those of Diospmos are generally 4 to fi-lobed.

```
Marreightia crassa, sp, nov.
```

Plate XXXIV. Figs. li, 12.
Calys thick and coriacoms, tribobate; lobes ont to the midnde, triangular.
Mat.-Florissant; nut rare. Seen in all the collections.

ERIGACEA.

ANDROMEDA, Linn.
${ }^{*}$ U. S Gerll, Rell.," vii, p. : 234.
Andromeda delicitula, sp. nov.
Plate XXXIV, Figs. 10, 11.
Leares sulmembranacous, not think, very entire, equally narrowed from the middle upward to a short blunt acumen, downwarl to a long slemder petiole; nervation camptodrome.

These fine leaves average 5 centimeters long and 2 broad in the middle where they are widest. The lateral norves at an angle of divergence of 40° eurve in passing to the borders and follow them in anaslomosing bows. They are parallel, unequal in distance; the basilar ones follow close lo the borders at a more acute angle of divergence. This and the smaller size of the leaves, more enlarged in the middle, separate this species from A. protogra, Ung., in Heer, "Fl. Terl. Helv.." p. 8. pl. ci, fig. 26.

There is in Lacoes Cabinet a number of oblong or linear-lanceolate leaves narrowed to a long peliole, exactly similar to those of A. protoqua as figured by Heer, loc. cit., but without trace of nervation. They seem indeed referable to the European species.

Hab.-Randolph Co., Wyoming. U. S. Geol. Expl. Dr. F. V. Hayden.

```
Andromeda rlommboidalis, sp. nov.
```

Leaves hombidal in ontline, enlarsed in the middle, narrowed downmad to a longe semder petiole and "rhally so mpeat to an obtuse apex; nervation obsolete.

The leaves withont the petiohe are 3 rentimeters long, 18 millimeters
 meters form the bas of the leaf.

Speris rmmparale to A. tromula. Heer, "Fl. Tert. Hels.." p. ! p. p. ci, tig. 2.). The leates are howerer, more entarged in the middle.

Heth,FFlorisemb. Lacoés Cabinet, No. 70.
VACCINIUM, Linn.
Vaccinium reticulatum?, Al. Br.

ARALIACEE.

aralia, Tourn.

"U. S. (irol. Rep.," vii, p. 235.
Aralia dissecta, sp. nov. Plate XXXV.

Leaves palmately seven-lobed; primary segments ent to three-fomeths of the lamina, oblong lancolate, derpy lobate, dentate above; secondary divisions lanceolate, obtusely dentatefobed; simses ohtuse; secoudary nerves subopposite, thick, pimately branching; nervation craspedodrome.

Of the seven lobes of this fine leaf three are preserved nearly entire and sulticiently represent its character. The leaf, nearly round or fanshaped in ontline, 19 centimeters long from the top of a very thick petiole to the apex of the medial lobe. is cut into seven primaly divisions, all pimately or bipinnately lobate-dentate: the lobes and teeth ohlique, slightly turned up, each entered by one of the secondary or of the tertiary nervers all the nerves therefore corresponding to one division of the leares and mited by nervilles at right angles. There are no intermediate rems passing up to the base of the lobes as in the large fragments which I have reterred to Myrien as M. insigmis and M. Lessigii of vol. vii, which have apparently a kind of primary division like this leat.

This line species is closely related to Aralia multifita, Sap., "Et.," i, 1. p. 115, pl. xii, fig. 1 , from which it differs merely by the primary divisions being regularly pinnately lobed, the lobes also pimnately lobed or deeply
dratale. the terthı shorter and more obtuse. Saporta compares his species to Armle remmes of New Grenadi, a plant cultivated in gardens, which from He figure given by the author seems like a comerpart of the fossil leaf.

Itrb.-Florissant. This splendid specimen is in the Princeton Musemm, No. 659.

HEDERA, Linn.
Hedera marginata, sp. nov.
Plate XL, Fig. 8.
Leaf small, coriaceons, nearly romd in ontline, trmeate at base, deeply sharply lobate all arome ; nervation firepalmate from the base, the nerves directed toward the points of the lobes, mited by nerrilles at right angles.

I know nothing to which this leaf may be related. In shape and nervation it seems a species of Hedera comparable by these characters to II. prisca, Sap., "Séz. Fl.," p. 380, pl. x, fig. 1, which, however, is a large leaf with short obtuse teeth.

Hab.—Florissant. U. S. Geol. Expl. Dr. F. F. Hayden.
A MPELIDEE.
CISSUS, Linn.
Cissus parrotiafolia, Lesqx.
" U. S. Geol. Rep.," rii, p. 289, 1". xl, figs. 15-17.
AMPELOPSIS, Mich.
Itid., p. 212.
Anluelopsis tertiaria, Lesqx.
IVid., p. 242, pl. xliii, fig. 1.
SANIFRAGEA.
WEINMANNIA, Linn.
Leaves simple, teruate, quinate or odd-pinnate; petiole articulate; rachis often alate, rarely entire; secoudary nerves thin, camptodrome or craspedodrome.

The leaves which I refer to this genus have been referred by authors either to Zanthoxylum or Celastirus, or especially to Rhus, as I have done in vol. vii. Fine figures of species of Weinmamia from specimens oblained by Rev. Probst from the Tertiary of Biberack, and communicated to me by Heer, show such a close relation to the leaves described from Florissant that their reference to the same genus cannot be doubted.
c Fl l

Plate MLII, Fiers. 1-7.

Leares imparipinater rachis winged ; leatlets opposite or alternate, sessile, membnameems, narowly lancenate, obtusely serate; newation pimate, eraspedodrome: nervilles at right angles to the secondary reins, anastommsing in the midule of the weas and foming a small polygonal areolation.

The rachis is winged and nerved: the leathets are joined to the midrib, by their primary nerves, and their borders are continued at base by a narrow margin along the rathis.

Hub.-Florissant. Very abundant: seen in all the collections. The figures are from specimens obtained by the U. S. Geol. Expl. Dr. F. T. Hoydro.

> Weinmannia integrifolia, sp. nov.
> Plate XLH. Fige, $=-13$.

Leares narrower than in the preding species; leatlets marow, entire, oblong or snblinear, blunt at the apex, more iistinctly thrned upwad; nerration camptodrome.

Except that the leaflets are narrower and entire and the nervation consequently camptodrome, the characters are the same and this form may represent only a distinct variety. The leaves of these two species are polyphyllous, the number of their leaflets being much greater than in any other species living at this epoch. This difference and the nearly linear wing of the petiole relate them to Rhus.

Hab. With the preceding and quite as common.
Weinmannia obtusifolia, sp. nov.
Plate XLI, Fige. 4-10.
Leaflets close, the mpper pairs decurrent and conate at base, the lower more distant, bordering the rachis ly their decurrent base; wing obtusely dentate or convex in the middle: leatlets oblong-obtuse or subspatulate, very entire, more rigid than in the two preceling species, membranaceous; nervation camptodrome.

As in the other species, the leaflets are alternate or opposite, narrowed toward the base or linger toward the obtuse or rounded apex; the leaves are generally smaller, sherter, with fewer leaflets.

Hab.-Florissant; not as frequent as the two preceding ones.

STERCULIA, Linn.

Schimper remarks, on the present distribution of this genus, that it has made its appearance in Europe at the first stage of the Tertiary, as it is already reported in the "Flora of Sézanne;" that it has had its largest representation in the Miocene, and has since totally disappeared from the continent. The numerous forms of leaves of this genus described in this volume from the Dakota Group prove that the origin of these plants should be removed to the Cretaceous for the American continent at least. The genus is thence found in the divers stages of the Tertiary, but far less frequently here than in Europe.

```
Sterculia rigida, sp. nov.
Plate XXXIV, Fig. 1%.
```

Leaf subcoriacems, rigid, cuneate at base, tripalmately lobed; lobes eut to near the base, narrowly lauceolate, sharply acuminate, very entire, the lateral shorter and narower; nervation obsolete.

I have seen another leaf of the same character since the first was figured, but it does not show anything more except the base, which is cuneate, or like a continuation of fig. 12, to the top of the petiole. The leaves are small, $5 \frac{1}{2}$ centimeters between the points of the lateral lobes, 7 centimeters long from the base to the apex of the medial lobe which is 6 centimeters long, the lateral only four. The only species related to this is S. Labrusca, common in the Miocene, but the relation is distant.

Hab.-Florissant; very rare. Princeton Museum, No. 667. Lacoe's Collection. No. 44.

\author{

TILIACE | . |
| :---: |
 TILIA, Linn.
 Tilia populifolia, sp. nov.
 Plate XXXIV, Figs. 8, 9.

}

Leares large, round or subeordate at base, deltoid-acuminate to the apex, deeply regularly serrate, palmately five-nerved; upper lateral nerves somewhat thicker and nore distant, the sccondary parallel, slightly curving, branching near the borders. Leaves large, variable in size.

At first the leaf, fig. 8 , seems to represent a Pomulus on account of the
laterat primary neres being much stronger than the secondary; tut all the nerves and their divisions are craspedodrome; the nervalion is positively that of a Tilite. In fig. 9 the primary nerves, though more distant, are not stronger, and the teeth of the borders are triangutar, somewhat unequal. not thrned up as in fig. 8, except toward the base, where they have evilently the same claracter in both leaves. The teeth are very variable on the borders of the leaves of Tilia, even on those of the same tree, and the hathitat boing the same I refer these to the same species.

Imb.-Florissant. Princeton Museum, Nos. 886 and 887.

> ACERACEA.

ACER, Linn.

"U. S. Geul. Rep.." vii, p. 260.
Acer requidentatum, Lesqx.
Ibid., p. 262. pl. xlviii, figa. 1-3.
Aeer indivisnnn sp. nov.
Plate NXXYI. Firs *i,9.
Leares small, of thin texture, rond-truncate in ontline, fire-nerred and fire. lobed; lobes entire, shamly acminate: sinnses boad, entive or dentate in the midale; petiole comparativels long, inflated under the pint of attachment.

The leares are $5^{\frac{1}{2}}$ centimeters broad between the points of the upper lobes and only 4 centimeters long from the top of the petiole. Which is $5 \frac{t}{2}$ centimeters long. They are truncate at base, the lower lobes shorter, turned outside at right angles to the medial nerve; the upper lateral ones a little longer, also turned outside. The primary nerves are thin; no trace of sccondary nervation is seen.

This species is comparable to Acer Siliricum, Heer, "Fl. Foss. Aret.," v, p. 46, pl. x, figs. 4 , 5 a, 5l; xi, fig. 2, differing ly the base of the leaves being truncate and entire, not dentate, the sharply acuminate longer lobes, the terminal also entire, the medial nerve being simple like the lateral ones, without branches going to the borders. The affinity of this leaf is more evidently marked with Acer rubrum, to which the fruit, fig. 9 , is still more intimately related.

Hab.-Randolph Co., Wyoming. U. S. Geol. Expl. Dr. F. V. Hayden.

Acer, npecies.

Plate XXXVI, Fige, 7, 8.
leaves rommed to the petiole, palmately three-nerved and three-lobate; bomers dentate.

The leaves are too much broken for determination and definitive description; they appear related to some of the varieties of deri trilobrtum, Al. Br.

Mru,-Florissant. U. S. Geol. Expl. Dr. I'. I. Mayden.

SAPINDACEA.
 SAPINDUS, Linn.

```
"1..S. Geul. R+p.," vii, p.こ63.
    Sapindus stell:uriafolius, Lesqx.
Ibid, !. 2gt, pl. xlix, fig. 1.
    Sapindus angusfifolius, Lesqx.
        Plate NXXVII, Fign 1-=: NXXIN, Fig. ls.
```

Ihicl., p. 26\%, M. xlix, fig* :-7.

The numerous forms figured of this species, common at Florisant. shows the great variety of its leaffets. Though comparatively large, the leares of plaxix, fig. 12, appear referable to it. The spechnels. howerer, may represent two specific forms, which can be setrated only when the nerration is known.

Sapimdus coriaceus, Lesqx.
"U.S. Gienl. liep.," rif, p. 965, pl, xlix, fige, 12-14.
Sapindus lentoui, Lesqx.
Iliel. ! 24n. 11. Ixir, fige 2-4.
Sapindus obtusilolins, Lesqx.
Itid., p. 20n, pl. xlix, firr. S-11.
There is a fine specimen of this species from Florissant in M. Lacoes cabinel, No. 48. The leaflets are disposed as in fig. 8. l. c.. but they are still smaller, the lower $1^{\frac{1}{2}}$ centimeters, the upper 1 centimeter. all more distinctly obtuse.

Plate XXXII, Fig. D.
Leaves subcoriaceons, unequilateral at the narrowed base, lanceolate-aemminate; lateral nerves much curved and following the borders in anastomosing with the upper ones.

The form of the leaflet and its nervation indicate its reference to this genus. It is distantly related to S. undulatus, Heer, "Fl. Tert. Helv.," iii, p. 62, pl. cxxi, figs. 3-7.

Hab.-Florissant. Princeton Nuseum, No. 763.

Sapiudus laucifolius, sp. nov.

Plate XXXII, Figs. 3-6; XXXVII, Fig. 9.
Leaves subcoriaceons or membranaceous, petioled and more or less nnequilateral at the ronnded base, lanceolate, long aenminate, very entire; secondars nerves elose, parallel, nearly at right angles to the narrow midrib, straight or slightly curved in trar. ersing the lamina, abruptly eurving near the borders and anastomosing in simple bows.

These leaflets, $6 \frac{1}{2}$ to 7 centimeters long and more or less than 2 centimeters broad, have the lateral veins close, parallel, united by oblique simple nervilles and nearly without branches. They are distinctly related to S. Grecus, Ung., "Fl. v. Kumi," p. 49, pl. xii, figs. 1-23. In this species the veins are equally close and numerous at right angles to the midrib and the leaves have the same form; they are, however, generally smaller. As in those of Florissant, the petiole is 1 centimeter long. In fig. 9 of pl. xxxvii the leaf is narrowed to the petiole, which appears longer; the reins are not as open nor as numerous; its reference to this species is not certain.

Hab.-Florissant. Princeton Nuseum, Nos. 644 and 645.

DODON ÆA, Linn.
I have referred to this genus the seed, pl. xxxvi, fig. 5, on account of its great likeness to that of D. canescens, D. C., figured by Ettinghausen in "Fl. v. Här.," pl. xxiii, o. The nucleus is, however, harder, more distinct, and the wings also more distantly veined. It is, perhaps, a seed of Ulmus, like those figured, pl. xxvii, fig. 8, from which it differs merely by its slender pedicel. No leaves of Dodonaca lave been observed in the Green

River Group. The baves of Ulmus are on the contrary very abundant at Florissant and other localities of the North American Tertiary where fossif plants have been obtained.

STAPIIYLEACEÆ. STAPHYLEA, Linn.

"U. S. Geol, R+p.," vii, p. $\because 6 \overline{2}$

> Stapliyleat acuminatio, Lesqx.
> plate XXXV1, Figs. $1-4$.

Ibid., p. 267, pl. xlviii, tigs. 4,5.
The species is not rare at Ftorissant, but generally the leaves are defaced by maceration and their characters obscurely defined.

FRANGULACEA.

EVONYMUS, Tourn.
Leaves opposite, petiolate, orate, suratemendate, pimattly nerved; secondary nerres camptodrome or effaced in the retiendaton towarl the bonders.

Ten fossil species of this genus are described from the Enopean Tertiary, mostly from the Miocene.

```
Evonymus tlexilolius, sp. nov.
    Plate NXXVIII, Fig. l:%
```

Leaves large, ovate-abminate from an oval base, flexnons at the apex, narowed from the midde to the petiole, sharply demplerrate; secondary nerves alternate. equidistant and parallel, eamptodrome.

The leaf without the petiole is $16^{\frac{1}{2}}$ centimeters long, $\overline{5}$ centimeters broad in the middle, where it is oval-obtong, narrowed upward to a long flexuous acumen and more rapidy to the petiole. which is 3 centimeters long. The teeth of the borders are tumed upward, equal, becoming short toward the acumen, deeply cut; the nervation is truly camptodrome, the veins being effaced near the borders and not entering the teeth directly as it is incorrectly figured.

This leaf has the character's of Econymus Proserpince, Ett.. "Bit. Fl.," iii, p. 30, pl. xlviii, figs. 6, 7. It is of the same size and shape, more grad-
mally and longer acuminate; the border teeth are larger and more acute. The details of nervation are obsolete.

Hal.-Randolph Co., Wyoming. U. S. Geol. Expl. Dr. F. V. Hayden.

CELASTRUS, Linn.

"U. S. Geol. Rep,", rii. p. 268.

Celastrus Lacoei, spov.

Leaves subcoriaceons, obovate or spatulate, rounded and dentate at the apex.
The leaf is remarkably similar in character to those described by Heer as U. cassinefolius, Ung., in "F1. Tert. Helv.," iii, p. 67, pl. cxxi, figs. 24-26, whose leaves are longer and narrower, obtusely dentate or rather crenulate from the middle upward.

Mab.-Florissant. Lacoe Collection, Ňo. 49.

Calastrus Greithiauus, Heer.

"Fl. Tert. Helr.," iii. p. 70, pl. cxxi, fig. 63.
Leares small, broadly oral, obtuse, rery entire, abruptly narrowed to the petiole; lateral nerves nearly at right angles to the midrib, eamptolrome.

Two leaves from Florissant are referred to this species. One is of the same size, form, and nervation as that figured by Heer, the other is more gradually narrowed to the base. lacerated at the rounded apex. This last leaf is more like C. Bruckimami, Heer, l. c., fig. 32.

Itab.-Florissant. Lacoe Collection, No. 74.
Celastrus fraxinifolius, spov.
Plate XXXIII, Figs. D-4; Plate NL, Fig. 10.
Leares membranaceous, narmwly elliptical in the middle, lanceolate, acuminate, blunt at the apex, narrowed and decurrent to the petiole, creunate-dentate; secondary nerves at an acute angle of divergence, curving to the borders and reticulate aloug them.

The leares, 5 to 7 centimeters long, averaging 2 centimeters in width in the middle, are mostly equitateral at the narrowly cuneate base, shortpetioled, the petiote $\frac{1}{2}$ centimeter long, being bordered by the decurrent base of the leaves; the lateral nerves mequally distant, much and uncqually curved in traversing the lamina, fotlow the borders in multiple reticulations without entering the teeth, which are distant, obtuse, sometimes ofsolete.

The leaves have a great affinity in their characters to those of species of Fraxinus. They are, however, equilateral on the borders and the nervation is different. Figure 3 of pl. xl may represent another species; the leaf is broader and slightly unequilateral. The decurrent base of the leaf and the type of nervation are the same.

Hab.-Florissant; not rare. U. S. Geol. Expl. Dr. F. V. Iayden. Fig. 10 represents two leares, Nos. 648 and 870 of the Princeton Muscum.

```
Celastrinites elegans, sp. nov.
```

Plate XXXI, Figs. 9, 10.
Leares nearly romd, membranaceons, somewhat long-petioled, erenate on the borders; nervation pinnate; secondiry veins ohlique, parallel, retienate and efficed along the horders.

The leaves are very smanl, $1 \frac{1}{2}$ to $\operatorname{Da}_{\frac{1}{2}}$ centimeters long and about the same width, rounded or broadly cuncate to the petiole.

Figure 10 is trumeate at bave and its nervation appears triple-nerved, as in Populus; but the surface is somewhat erased and the upper secondary nerve obsolete, and as all the other characters are alike the difference is not considered.

Hab.-Florissant. Princeton Museum, Nos. 799 and S68.

> ILICEA.

ILEX, Linn.

"U. S. Geol. Rep.," vii, 1" 269.

> Ilex psenda-sten"pliylla, sp. nov.
I. stenophylla, Lesqx.; Hayilen's "Amn. liep.," 15:1, supp"t. p. E.

Leaves small, coriaceous, very entire, noovate or ohlanceolate, obtuse, shortpedicellate; medial nerve thin; lateral nowes rery oblipue, mon curved near the borlers, anastomosing.

The leaf is much like those of I. stenophyllu, Ung., "Syllog.," ii, p. 1t, pl. iii, figs. 15, 27, being, however, smaller with a shorter broad pedicel. The nervation is like that of figs. 2t and 2.5 of Unger. The leaves described in Hayden's "Amm. Rep.," loc. cit., have the same degree of affinity to Unger's species and are all larger. They apparently represent an American rariety of the species.

IIab.-Florissant. No. 59 of Lacoc's Collection.

Hex microphylla, sp nov.

Leaves small. coriaceons, obowate or spatmate, rommed abol dentieulate at the apex, harrowed io a short broad petinle; secondary nerration obsolete.

The leaf. $\boldsymbol{D}^{\frac{1}{2}}$ centimeters long, 7 millimeters bioad in the upper part, is gradually narowed to a petiole 7 millimeters long. Its affinity, which is close indeed, is with llex cmbiym, Ung., "Syllog.," ii, p. 14, pl. iii, tig. 29, from which it differs merely by the gradually narrowed base of the leaf and the longer petiole.

Itrb.-Florissant. No. 60 of Lacoe's Collection.

Hex maculata, spong.
Plate XLIV, Fig. $\overline{3}$
Leaves coriaceons, obovate, obscurely and irregularly crenulate, narrowed to the petiole; medial nerve narrow, the lateral at a broal angle of divergence, a little curved in tharersing the blade, effaced toward the borders.

The leaf is badly preserved; its surface is maculated or gnawed by parasite hypoplylles or insects. Its shape and thick consistence appear to refer it to this genus.

Inab.-Alkali Station. Professor Scudder.

Ilex Wyomingiana, Lesqx.

"L. S. (imol. Rep.," vii, p. 970, pl. 1, fig. 1.
Mex: affinis, Lesqx.
Ibud. 1.: 70, 1. 1, fiya, B, 3.

> Ilex subuenticulata, Lesqx.

Ibid., p.:2l, pl. I, figa, 5, 6-6b.
Ilex dissimilis, Lesqx.
1bid. p. ©is, pl.1, figa. 7-9.
Hlex quercifolia, sp. nov.
Plate XXXVIII, Fifs. $2-5$.
Leaves coriaceons, short-petioled, obovate, abruptly acminate, irregularly acntely dentate from near the base; secondary nerves at a broad angle of divergence, slightly curved in passing to the borders, entering the teth directly or by branchets; intermediate tertiary veins short, anastomosing with nervilles in the midde of the areas.

The leaves are very variable in size (from 12 millimeters long to nearly 6 centimeters, and 5 millimeters to 2 centimeters broad); the petiole is thick and short (6 millimeters long): the teeth turned outside, sharply
pointed, are distant and variable in length, separated by obtuse sinuses; the acumen is sharply pointed.

The relation of this species is distinctly indicated to Ilex dryandrexfotia, Sap., "Ét.," i, ュ, p. 89, pl. x, fig. 8, a leaf which is much like fig. 2 of our plate, and which merely differs by the secondary nerves being at right angles to the midrib, rather curved backward than upward, a difference scarcely noticeable enough to authorize specific distinction. The Ilex odora, Sieb. and Zucclı, of Japan. has the leaves remarkably similar to both these fossil species.

Mab.-Florissant. U. S. Geol. Expl. Dr. F. T. Mayden. Hex grandifolia, sp. nov.

Plate XXXVIII, Fig. 1.
Leaves large, membranaceons, oblanceolate or obovate, irregulanly dentate; lateral nerves very oblique, more or less curved in traversing the blade, camptotrome, joined to the borders and the teeth by anastomosing neprilles.

The leaf seems to have been very large, the fragment preserved (the upper half) being 8 centimeters long and 5 centimeters broad. It appears to have been rounded at the apex and gradually narrowed to the base, the lower lateral nerves being very oblique and following the borders in curves. The nervation is irregular. The lateral nerves, diverging about 30°, are distant, parallel, with few intermediate tertiary shorter thin veins, and in their curves they generally ascend to near the borders, but also sometimes curve in the middle of the areas, anastomosing with the divisions of the first nerves above and sending strong outside branches toward the borders. The teeth are somewhat unequal but not as large as in the preceding species, more or less inclined upward, acute. The subdivision of the primary areas is by nervilles at right angles to the nerves, anastomosing generally at right angles with the thimer tertiary veins. producing a large irregularly quadrate areolation.

Mab.—Florissant. U. S. Geol. Expl. Dr. F. V. Mayden.

```
Ilex knightigefolia, sp. nov.
```

1 late XL. Figs. 4. \therefore
Leaves membranaceons, linear in ontline, decurrent to the petiole, ronnded and acminate at the apex, deeply dentate; secondary nerves at right angles, curving abmptly amb anastomosing at right angles at a distance from the borders, joined to the teeth by nerrilles; teeth large, irregular in distance, turned ontside and sharply pointed.

These leaves have peculiar characters which seem to refer them to some types of the Proteacece of New Holland, Bankisia IHugelii, R. Br., and species of Finightia. The small leaf, fig. 5, is better preserved but not sufficiently so to show the base of the leaf which, being lacerated, appears to follow and border the thick petiole to its point of attachment. The teeth, like the secondary nerves, are at right angles to the midrib except near the apex, which is formed of a sharply angular point; the secondary nerves are separated by slightly thimer and shorler tertiary ones, anastomosing with nervilles at right angles in traversing the areas and united to the upper part by curves or strong nervilles also at right angles.

Ihnl.-Florissant. U. S. Geol. Expl. Dr. F. T. Ifaylen.
RHAMNE玉.
"L".s. Geol. Rep.," rii, p. 272.

PALIURUS, Tourn.

Paliurus Florissanti, Lesqx.

lbich., [. 274, [1. 1, fig. 18.

```
Paliurus orbiculatus, Sap.
```

 Plate XXXVIII, Fig. 12.
 Saporta, "Er.," iii, 2, p. 1F2. pl. vii, fig. ©
Leaves small, membranaceons, orbicular, vers entire, triple-nerred from the base; lateral nerves curved mprard in ascending to near the apex, where they unite to the secomdary nerres which are distant and fers.

Though the nervation is not as distinct as in the leaf published by Saporta. the affinity is so clear that it is not possible to doubt specific identity; the basilar nerves, equally branching, ascend high, joining the few secondary nerres, one of which only is distinct in the specimen of Florissant and two only on that figured by Saporta, who described the
tertiary veinlels as flexuous and reticulate. The leaf is nearly of the same size, 2 centimeters in diameter both ways.

Heb.-Florissant. U. S. Geol. Expl. Dr. I'. I. Hayden.
ZIZYPHUS, Mill.

```
"U.s.Geol, Imen," vii, p. 2%%.
    Zizyphus cimmamomoides, Lesqx.
Ibid., p. 277, j1. lii, figm, 7, 3.
    RHAMNUS, Linn.
Ibid., p.2%5.
    INhamuus olcalolius, sp. nov.
    Plate XXXVIII, Fig. }11
```

Leaves thick, oblong-lanceolate, narowed at base, blunt at the apex ; secomdary veins thick, at an aeute angle of divergence, curving elose to the boriers.

The leaf, $6 \frac{1}{2}$ centimeters fong, 18 millimeters broad, has the primiu'y and secondary nerres thick, but no trace of nervilles; the lateral veins are nearly straight to near the borders and abruptly eurve in reaching them, appearing to join the margin by their ents. The same character of nervation is remarked in h. margimutus, Lesyx., "Trans. Phil. Soc.," vol. xiii, p. 420 , pl. xxii, figs. 3-5, which, however, differs much in the form and size of the leares.

Hab.-Florissant. Princeton Ifuseum, No. 657.

```
RHamuus uotatus?, Sap.
```

I'late NXXV11I, Fig. 15.
Sap., "Et.," iii, 1, p. 1U8, pl. xi, fig. 5.
Leares subcoriaceons, very short-petioled, entire or slightly undulate in the upper part, round ovate, obtusely pointed; lateral nerves 6 to 7 pairs, parallel, curved; nervilles oblique, transversely reticulate.

This leaf is, in its form and size, like a counterpart of that of Saporta, l. c. It is also rounded at base to a rery short petiole, curved toward the apex and there obscurely undulate or crenulate. The lower secondary reins are opposite, three pairs. In the figure of the French author all the veins are allemate except the basilar ones; but there is also no trace of nervilles visible as upon the specimens of Florissant.

Hab.-Florissant. Princeton Museum, No. 643.

TEREBINTIINEA.

JUGLANDE | J. |
| :---: |

Ibil., pr. 2-9. ph. Iriit, fie. 1.

```
Juglans Florissanti, spong
```

Leaf large, lanceolate-acuminate from a romded mequilateral base; lateral reins thick, much enrsed in traversing the blade, camptodrome; borders dentate.

The leat is 11 centimeters long, $4^{\frac{1}{2}}$ centimeters broad in the middle; its surface is rough and altogether of coarse aspect-the mimary and secondary nerves being thick. The details of areolation and subdirisions of the nerves are obsolete. It is comparable to a leaf of J. bitinica, figured in Heer", "Fl. Tert. Helv.," p. 90, pl. cxxx, fig. 7, but it is thicker, coarser, with more prominent nerves.

Ifrb.-Florissant. Lacoe's Collection, Mo. 80.

Juglams allalina, Lesqx.

"l". S. Gerl. Rep," vii, p. De8, pl. lxii, fiex. 6-9.

```
Juglans costata, Ung.
```

Plate NXXIN, Fig. 5.
Carya costuta, Lng., "Syllug.," p. 41, pl. xxxix, fig. 16.
Juglans costata, Ludw., "Palantogr.," viii, p. 138, pl. lvii, fig. 7 (leaf); liv, fig. 15 (nut). Juglats acuminata ?, Heer, Lesqx., Suppl. to Hayden's "Ann. Refr.," 1871, p. 8.

Leaflets broadty oral, obtuse, slightly mneronate, somewhat unequilateral or turned to one side, rounded at base to a short petiole; nervation eamptodrome. Nut romdorate, short-pointed; lobes of the seed simple, oblong.

In the short description of the leaflet as J. acuminata?, loc. cit., I remarked that it has exactly the same characters as the one figured by Heer, "Fl. Tert. Hely.," pl. cxxix, fig. 6, which appears far different from any other forms of this species, and that it is comparable to J. costata, Ung., as figured by Ludwig, l. c. As one of the specimens of Florissant has a nut very much like that published by the same author, l. c., the
identification of the American specimens with Ludwig's species is legitimate.

Mab.-Florissant. Princeton Musemm, No. 712 (nut).

CARYA, Nutt.

Carga bilinica, Ung.
Plate AXXIN, Figs. 1, 2, 13.
Ung., "Syllug," f. 39, pl. xrii, firs. 1-10; "Fl. r. Fiuni.," p.in, pl. xir, fig. 13; Et., "Bil. Fl.," iii, p. 46, pl. li, figen, $4-1,13,15 ;$ lii, figs. :3, 4, $7-1$ I.
Leares odd-pimmate; leatets short-petioled, oblong or narrowly orate, lanceolate, aemminate, serrate; lateral nerves eamptodrome, parallel.

These fine leaves correspond to the description and figures given of the species by European authors; the borders of the leaves are more or less distinctly serrulate, as shown in fig. 2 ; fig. 13 shows a variety represented also by the specimens of Mr. Lacoe, which might, perlaps, be separated into a different species, but except the smather size of the longacuminate leaflets, the characters are the same.

Hab.-Florissant; not rare. U. S. Geol. Expl. Dr. F. V. Hayden. Lacoe's Collection, No. 40, in leares still smaller than fig. 1.

Carya rostrata, (Goepp.), Schp.

l'late XXXIX, Fig. 4.
Ludw., "Palembtogr.," viii, p. 130, ph. 1v, fige. 5-i.
I refer this nut to the species of Ludwig described as quoted above. As we have only on the Florissant shale the representative of a drupe or of the husk, its reference to the Enropean species known by fruits and leaves is not more ascertamable than that of the preceding.

Hab.-Florissant. Princeton Musemm. No. 711.
Carya Bruckmanmi?, Heer.
llate XXXIX, Fig. 6.
Heer, "Fl. Ter. llelv.," iii, p.93, pl. exxvii, fig. 52.
Fruits small, oval, constricted iuto an obtuse apex, costate.
The fruit is still smaller than that in Heer, loc. cit., and as the inside of the nut only is shown upon the face of the specimen it is not possible
to see whelher this small mot is costate. Therefore as in the two preceding species, the reference is uncertain.

Hab.-lForissanl. Princeton Museum, No. 709.
PTEROCARYA, Kunth.
pterocarya Amerieana, Lesqx

ENGELHARDTIA, Leschen.

Leaves abruptly pinuate; leaflets unequilateral, generally resinose, punctate on the lower surface; primary nerves strong, secondary thin, camptodrome, anastomosing. Flowers agglomerated in paniculate ears; drupe small, comate at base to a tri-alate involucre; dorsal lobe generally ahsent (in fossil secimens), epicarp coriaceous, patamen bicostate.
Engelhardtia oxypteril, Sap.
"Et.," ii, p. 344, pl. xii, fig. 2.
Lobes of the involucre linear-oblong, obtusely pointed, the lateral half as long as the middle; medial nerve distinct to the point, the lateral open-obliqne, camptodrome.

The involucre from the base of the nucleus to the top of the medial lobe is 3 centimeters long, a little more than 2 to the top of the lateral ones. The basilar nervation of the middle lobe is in fwo short basilar parallel nerves and above in curred secondary nerves, as in the lateral lobes; all the nerves are camptodrome and anastomosing. The involucre is only slightly larger than in Saporta's figure; the nervation is the same.

Hab.-Florissant. Hm. Clehurne.

A NACARDIACEA.
 RHUS, Linn.

"U. S. Geul. Rep,," vii, p. N91.
Rhus fraterna, spong.
Plate XLI, liga. 1, \%.
Leares simple, submembranaceons, long-petioled, rhomboidal-oval, equally marrowed to the acute apex and to the petiole, very entire; medial nerves narrow, the lateral thin, nearly paratlel, oblique, mneh branching, and obliquely reticulate toward the borders.

The leares arerage 4 centimeters long and 2 broad in the middle, the widest part. The nervation is delicate but very distinct; the secondary
nerves, at an angle of divergence of about 40°. pass toward the borders, slightly curved and obliquely branching, especially near the borders; the nervilles are mostly at right angles to the midrib. Except that the petiole of the leaves is longer, nearly 2 centimeters, and the Jeaves slighlly more enlarged in the middle, the species is, in all its characlers, identical with Rhus palcocotimus. Sap., "Ét.," ii, p. 352, pl. xii, fig. 6, closely allied to the well-known R. Cotinus, Limm.

ILeb.-Florissant. Princeton Museum, Nos. 783 and 875.

Rhus coriarioides, sp. nov.

Plate XLI, Fig. 3.
Leaves odd-pinnate; leaflets marowly lanceolate, gradually acmminate, narrowed in ronnding to the base, sessile; borders distantly serrate; lateral nerves eurved, eraspedodrome.

The leaflets are opposite, at least in the upper part of the leaves, $6 \frac{1}{2}$ centimeters long, 10 to 12 millimeters broad toward the base; the teeth are short, turned upward, gradually smaller toward the apex, where the borders are entire as near the base. The affinity of this species is with Rhus glabra, Limn., of the present North American Flora, and especially with the European R. coriariu, Limn., which merely differs by the larger teeth of the borders.

Hab.-Florissant. Princeton Museum, No. 858.

```
Rlus cassioides, sp. nov.
```

 Plat, XLl, Fig. 11 .
 Leares thifoliate or ohd-pimate; leathets obovate, the terminal twice as large as the lateral ones, entire; lateral veins close, 8 to 10 pairs, paraltel, curved in passing to the borders, eraspedodrome.

The specimen does not indicate whelher the three leaflets figured pertain to an odd-pinnate leat or to a trifoliate one, the axis or pedicel being broken under the point of attachment of the leatlets. The terminal one is $2 \frac{1}{2}$ centimelers long. 12 millimeters broad above the middle: the lateral 14 lo 15 millimeters long and 6 millimeters broad; the lateral veins. quite distinct, follow close to the borders in their curves and are united by close nervilles at right angies, simple or anastomosing in the middle.

The nervation is like that of some species of Cussia-ct. lignitum. C. ambigua, Ung., for example.

Hab.-Fhorissiut. U. S. Geol. Expl. Dr. F. V. Hayden.

IRhus Hillife, sp nov. Plate XL1, Figs. 12-15.

Leaves integularly pinnately divided; terminal leatlets large, pyramidal, more or leas rapidly narmwed to the base, deaply irregularly dentate; lateral pinnules small, nearly at right angles, ovate, acute, dentate, alternate or opposite, subdecurrent, sessile.

These leaves, which seem to have been compound and odd-pinnate, are represented in the fossil state merely by the terminal pinnules and one or two of the lateral ones attached to one side of their base, figs. 13 , 14, or one pair opposite and sessile on the rachis at a distance from the terminal pinnule, fig. 12. The nervation is distinct. As seen in fig. 13 , the secondary nerves are very oblique. straight, with intermediate shorter tertiary veins and nervilles at right angles.

The species is comparable to Rhus incisa, Sip., "Ét.." iii. 1. p. 111, ph. ii, fig. 4 , which is made of a single small leaflet similar to fig. 15 of our plate.

Mab.-Florissant. Fragments and pinmules of this species have been seen in all the collections made by Mrs. Ilill.

```
, Rhus acuminata, Lesqx.
Plate XLII. Figa, 14-17.
```


Laflets mamow ovate, lancolate, acuminate; borders deeply dentate from near tha band lateral meres open, joining the midrib wearly at right angles, much curved, craspedonlrome.

These leatlets have great analogy of character with the terminal leaftets of Iremmomair as seen in pl. xlii, fig. 3. They camot be referred to this genus. howerer, as they are contracted at base to a narrow not winged petiole. Their relationship also, considering them as mere leatlets either terminal or lateral, is with the preceding species, being by their shape, the teeth of the borders and the nervation, intermediate between this and
the following species. The secondary veits ate close patalled, whith inter mediatrshorter tertiary veins of the same chanarter as in R. Ilillite.

Hall.-Florissant. U. S. Geol. Expl. Dr. IV. V. Haydene.
The specimen described in Suppl. to "Ammal Report." 1871, is from Grem River.

Rhus subrliomboidalis, sp nov.

> Plate XLI, Figs. 16-19.

Leathets mombamacoms, wath or sub-hombidal, rombed to a shopt petiole, deeply hontate acminate; lateral nerves eurved, craspedodrome.

Though these three leatlets are so much alike in their forms fhat it is not prsible to refer them to two species, their nervation is very different on incount of the position of the large teelh, one or two on each side. In tig. 1: the teeth are in the uper part of the leatlet and the lateral veins curve npward lo reach them, and are distant from the upper more open parallel ones; in the other leatlets, tigs. 17 and 18 , the two pairs of teeth being lower, the lateral nerves are merely enrved in their direction toward them and parallel from the base. Il is nol possible to decide whether these leaflets pertain to pinnate or to hifoliate leaves. like those of the common and so very variable h. aromutica. Their relation to those described by Saporta as R. Thombohdelis. "Et.." iii, 111, p. 20t, pl. xvi, tigs. 2. 3, is remarkably close.

Ilab.-Florissant. U. S. Geol. Expl. Dr. F. F. Itayden, and also in the Collection of the Princelon Museum, Nos. 751 and 832.

```
R||svivills. sp. nov.
Ilate XLI, l"irs : 0 .
```

Letres trifoliate, long-petioled; leallets cmmifom, enlarged, obtusely dentate or lobate in the upper part and there abmptly named to an obtuse apex ; nervation mixed.

Thas small leat is so exactly similar to il variety of h. aromatict (h. trilobata, Nutt.), especially found living in Texas. that it is scarcely possible to find any point of difference. In the living species the terminal upper lobes of the pimmules arr more distinctly dentate. but its smaller leaves, of the same size as the one ligured. have exaclly the same subdivisions. The nervation is also the sance. the lown lateral rims being camplodrome. the
upper entering the teeth or lobes, att being obliquely short branched. The relationstip is atso marked with the preceding species, which evidently pertains to that pecutiar and variable type of R. aromatica which is stitl universalty distributed in innmmerable varieties through the North American continent from the 30° to the 43° of tatitude. Irab.-Florissant. Princeton Museum, No. 718.

Rhustrifolioides, sp nov.

Leaves trilobate; leaflets oval ; the medial slightly obovate and a little longer, narrowed to a short petiole; the lateral sessile, all apiculate and dentate to the middle.

The medial leaflet is $2 \frac{1}{2}$ centimeters long, 12 millimeters broad in the middle, the laterat ones 2 centimeters long and 1 broad, not as distinctly dentate as the middte. The teeth are sharp, turned exactly to the outside. The leaf is comparable to R. Napearem, Ung., "Syllog.," i, p. 43, pl. xx, fig. 11, differing by the form of the oval sharply dentate leaffets. The pedicet is broken 1 centimeter below the base of the leaflets, the nervation indistinct.

Mab.-Ftorissant. Lacoe`s Collection, No. 58.
Rhus rostefolia, Lesqx.
"U. S. Geol. Rep.," vii, p. 293, pl. xlii, figs. 7-9.

ZANTHOXYLEA.

ZANTHOXYLON, Linn.

$$
\begin{gathered}
\text { Zanthoxylouspirecefolinut, sp. nov. } \\
\text { llate NL, lixs. l-3. }
\end{gathered}
$$

Leaves odd-pimate; leaflets ovate, acate, or bhant at the apex, obsenrely serrate, short-petioled; secondary nerves at an acnte angle of divergence, parallel, simple or forking, camptodrome.

The leaflets vary from $1 \frac{1}{2}$ to $2 \frac{1}{2}$ centimeters long and from 7 to 14 millimeters broad: the lateral nerves appear craspedodrome in fig. 1. But in figs. 2.3 . where the veins are more distinct. they are seen joined to the teeth by nervitles and camptodrome.

This species is closely allied to Z. juglandimum and Z. scrratum, Heer. represented "Fl. Tert. Helv.," pi. cliv, figs. 36 and 37. Upon the leaf,
fig. 2 , there is a small fruit of Sapindus (enlarged, fig. $2 a$), comparable to that of S. rubiginosus, figured in Ung., "Syllog.," i, p. 34, pl. xv. fig. 10.

Mab.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.

aILANTHUS, Desf.

"U. s. Geol. Rep.," rii, p. 294.
Ailanthus longe-petiolata, spong
Plate XL, Jigs. 6, 7.
Leatlets subcoriaceons, narrowly ovate-lanceolate, gradnally acuminate, rounded III narrowing to a long petiole, irregularly obtusely deatate; secondary nerves elose, open, eurving near the borders or entering the teeth; tertiary nerves thimer, nearly as long as the secondary; nervilles at right angles.

The leaflets, 10 centimeters long and 3 broad in the middle, are a little smaller than those of Ailanthus driandroides, Heer, "Fl. Tert. Helv.," pl. cxxvii, fig. 32, which has the same form and an analogous nervation. In the American leaf most of the secondary nerves seem lo enter the teeth or to run to the borders; but in the upper part of the leaves, where the borders are more distinct, the nerves are evidently camptodrome. It is a mixed nervation, same as seen upon the leatlet of Heer, l. c. The leaf however represents a different species, the teeth being obtuse and the petiole very long, too long for a leaffet of Aitanthus, except if it should represent a terminal one. The lower or basilar tooth on the leaflet is protruding outside and apparently glandulose, a peculiar character of A. glandulosa so generally cultivated now. Fig. 7 may not represent the fruit of the same species. though I have not seen any other leaf from the same locality which could be referred to this genus. The samma is equally winged on both sides of the seed, oblong, obtuse at both ends, slightly constricted in the middle. The fruit has a close affinity to that of Aitanthus recognita. Sap., "Ét.," i, p. 105, pl. viii, fig. 7.

Hab.-Randolph Co., W yoming. U. S. Geol. Expl. Dr. F. T. Hayden.
MYRJACE E.
"U. S. Geol. Rep.," vii, p. 293.
EUCALYPTUS, Heer.
Lucalyptus Americana, Lesqx.
Ibid., p. 296, pl. lix, figs. 11, 12

rosiflorem.

amelanchier, Medic.

Amelanchiertypica, sp. nov.

Plate NL, Fim. 11 .
Leaves submembranaceons, petioled, ovate, acute, serate; nervation camptodrome.

This leat scems to represent the living A. Ctumensis in its more common or typical form, dillering in nolhing except the rounded base of the leat. which is generally slightly cordate in the living species. I say genfally, for some of its leaves are also roundel just as in the fossil form. The leat. 8 centimeters long, 4 centimeters broad in the middle. has a petiole 2 centimeters long. The nervation is simitar, the lateral nerves being only a little more distant. The average number of secondary nerves in leares of Ameltuchier Cundensis is 8 to 11, white the fossil leaf has only 9 . But often large leaves of the living species have no more than 9.

Hat.-Florissant. Princeton Museum, No. 691.

CRATEGUS, Linn.
 Cratcous acerifolia, sp. nov.

llate XXXV . liar. 10.
Leat petioled, lanceolate in ontline, leeply lobate, irregnlany dentate; lobes lanceolate, acuminate; mervation craspedodrome.

The substance of the leat is thickish, but not coriaceous; the leaf is gratuatly narowed to the petiole, single-lobed on one side, the lobe being longer, and twice-lobed on the other side. where the lobes are shorter-all imexulaty deutate. The secondary nerves are all craspedodrome, entering He lobes and the teeth; but their divisions, at teast near the points of the fobes, are camptodrome. the bordurs being nearly entire.

This leaf has the facies of an Acer. I find nothing in the fossil plants described by authors to which it may be compared.

Mrtl.-Florissant. Princeton Muscum, No. 660.

ROSA, Linn.
Iiosa Ililli:e, sp. nov.
Patim NL, Viem, 10, 1\%.

Leares small; leathe wal. ohtuse or short-puintet, serate: stiphles large, lance. olate. acmminate; nervation camptormme.

These beantiful small leaverennesent this genus more distimetly than aty of the wher lossil leaves which as yet havo been reformed loit. 'Ther leaflets are rather obtuse, the laterat much smaller. 5 to 15 millimeters loms. \because to 7 millmmars hoad-all shom-pedicaled like the temmal ones: the nervaliom is ramplodrome. the tigure shows it mostly eraspedodrome. a mistake evidently. for as sen on the loft side of the largest pimule, firs. 16. the veins are curvorl. The nervation now the borders is not quite distimel on the sperimens.

Mab.-Florissaml. Pimmelon Maseum. No. 765 . Also in the collection of the U.s. Geal. Expl. hy Dr. Ir. V. Mayden.

AMYGDAI.US. Iinn.

```
Amygllalus wrucilis, sp. nov.
```

Jlati N1, Fige 1:-15: XLIV, Fig. 6.
Leaves oratedancentate, gradmally matowed th the amminate pont and in the same degree to the petiole, sematate; latmal nerves at a more or less acole angle of divergence, much curved, camptodome and retionlate along the borders.

These fine leaves of solid membramacrous tissue average 7 embinmers
 are more or less distinctly minntely servale: the nerves, open at base and much emper hward the borders, aro joined by mudulate norvilles nearly at right angles.
 nervilles, but withoml any important ditiorence tron the normal form.

The leaves are related to A. perger. The.. in Heer. . F Fl. Tert. Helr... iii, p. 95 , pl. exxxii, figs. S-12. The fruits, figs. 14 and 15 , appear to belong to this genus and possibly to this species. The reference is of course hypothetical.

Mab.-Florissanl. U.S. ('eol. Expl. Dr. F. V. IIayden. Fig. 1ュis from a specimen. No. 865 , of the Princeton llusemn. The specimen. tig. 6. is from Randolpli Counly, Wyoming. I'rol'. S'muder.

LEGUMINOSN.

CYTISUS, Linn.
Cytisus modestus, sp. nov.
Plate XXXIX, Figs. 9. 10, 11.
Lavestrifoliate ; leaflets sessile, orate-lanceolate, acnte, borders entire; secondary netres camptodrome.

The small leaves, with leaflets 2 to 3 centimeters long, 5 to 8 millimeter: broad, have the nervation mostly obsolete. I do not find them related to any fossil species published. Fig. 9 appears to have the borders serrulate, but that is probably caused by maceration and erosion. It has the same characters.

Mnb.-Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.
Cytisus Florissantiauns, sp. nov.
Plate XXXIX. Fig. 14.
Leaf long-petioled; leaflets entire, ovate-lanceolate, the middle short-pedicellate, the lateral sessile, mequilateral at base; nervation camptodrome.

The leaflets appear acuminate, but the point is broken; they are rounded in narrowing to the base, and the borders are entire. only slightly molulate. This species is scarcely different from C. Freybergensis, Ung., "Syllog.." ii. p. 19. pl. iv, fig. "., from which it merety differs by the leaflets being a little longer and narrower. The nervation is of the same type. and if the leattets of the American leaf are obtuse the species should be ronsidered as identical.

Mal.--Florissant. U. S. Geol. Expl. Dr. F. V. Hayden.
DALBERGIA, Linn. fil.
Dalbergia cuncifolia, Heer.
Platu XXXIV, Figs. 6, 7.

Leaves pmantr: lathots sessile, membranaceons, cuneate to the base, emarginate at the apex: soourlary morves thin, at an ante angle of divergence.

The leaves ate small. areraging 3 centimeters long, $1 \frac{1}{2}$ broad near the midnle. from which they are graduatly narrowed to the somewhat enlarged point of atlactment. The lateral nerves are at an acute angle of diverg-
ence of 40° on the right side, a little more open on the left, ascending high and reticulate along the borders; the areolation is formed of nervilles at right angles, forking or anastomosing in the middle of the areas, rarely simple.

These leaves only differ from the one described by Heer under this name in their slightly larger size and in the apex being a little more deeply emarginate. The nervation is peculiar and evidently of the same type as in the European leaves, where the lateral nerves are, however, somewhat obsolete. The secondary nerves, four pairs, are distant, alternate, the upper pairs curving inward toward the apex of the midrib.

Hal.-Florissant. Princeton Museum, Nos. 790, 791.

```
CERCIS, Linn.
Cercis parvifolia, sp. nov.
Plate XXXI, Figs. 5-7.
```

Leaves small, membranaceons, round or subtruncate at base, broadly cuneate to the slightly-pointed apex, rers eutire, five-nerved at base; medial nerve slightly stronger, secondary nerves camptodrome.

The three leaves figured and a few others seen in the shale of Florissant are small comparatively to those of this genus described as fossil. They are equilateral, enlarged, and truncate or subcordate at base; the basilar nerves are at right angles; the lateral at an angle of divergence of 30° to 40° are camptodrome like their divisions. The reticulation is obsolete. None of the few fossil species of this genus are comparable to this. The leaves vary from $1 \frac{1}{2}$ to 3 centimeters in width, being as long as broad.

Hab.-Florissant. Princeton Museum, Nos. 766, 767, Figs. 5 and 6; the other from the U. S. Geol. Expl. Dr. F. I. Hayden.

PODOGONIUM, Heer.

$$
\begin{aligned}
& \text { 'U. S. Geol. Rep.," vii, p. } 298 . \\
& \qquad \text { Podogonium acuminatum, sp. nov. } \\
& \text { Plite XL, Fis. } 9 .
\end{aligned}
$$

Leaflets sessile, subcoriaceons, very entire, oblong, obtusely acuminate, narrowed to a short petiole, slightly mernilateral at base; lateral nerves close together, very open or nearly at right ingles to the midrib, curved, camptodrome; tertiary nerves parallel, as long as the secondary thin.

The small leaflet. a itith more lhan 4 eentimeters long and 1 broad, has the pectulat nervation of species of this genus, especiatly like that of I^{\prime}.
 Htw leathet, conlacled near the apex into at shot obtuse acumem. is different from any of the European species. A fragment only of a seed referable to this genus has been found probably at the same locality being labeled Nidule Park, a name often used for leaves from Florissimt.

Ilrb.-Florissant. U. S. Geol. Expl. Dr. F. I'. Hayden.

Podogonitm Americanum, Lesqx.

CASSIA, Linn.
Cassia inceleri, Heer.

leaflets membramacous, petioled, ovate-lanceolate, amminate; secondary nerres at :un arnte angle of divergence.

These leaves. with the shape, size, and nervation of this species, are ammanale, like tig. 64 of Heer.

Heth.-Florisiamt. Licoes Collection, No. 42.

LEGUMINOSITES.

Lagumituosites serrulatus, sp. nov. llate NXSIN, Figk iog

Leares tritioliate long petioled, membranacoms: leaflets namowly ianceotate, sessild, and sermate; secondary merses obsobete.

The leaffets are long and narrow. the lateral a little shorter than the Inminal. largest in the middle tapering upward, atminate or pointed ant gradually narowed to the base. The relationship of these leaves is moknown to me.

Ihnh.-Flerissant. Princeton Museum, Nos. 784 and 785.
Leguminosites alternans, Lesqx.
1layden's "Aun. Rep.," 1884. p. 315.

Leguminosites cassioides, Lesqu.

"U. S Gerl. Fep," vii. p. :300, pl. lix, fige. 1-4.
Leguminosites species.
Ilat NXXIN, Figs 16, 17.
Pistillate ovaries and stamens of Lequminose.
Hab.-Florissant. Seen in divers collections.

ACACIA, Neck.
Acacia soptratriontlis, Lesqx.


```
MIMOSITES, Lesqx.
Mimosites lincarifolius, Lesqx.
PlatexXXV11. Fig. 10-1?
```

"U. S. Geol. Rep.," vii, p. 300, pl lix, fig. 7.

INCERTE SEDIS.

Antholithen obtusilobus.
Patw NXXII Fis.
A monosepatous fumel-shaped prithth. cul to the middle in broad obluse lobes, attached to the ovary ; substance hard, membranaceons.

Hub.-Florissant. Princeton Musemm. Xo. Siff.

```
Amtholither ammeuns, sp.nov.
Patw SXXIN, Figs 1:3-1:%
```

A six-petaloid perianth. appatently moncecions, with six stamens and one pistil distinctly preserved.

Hab.-Florissant. I. S. Geol. Expl. Dr. F. I. Mayden.

Antholithes improbus, sp. nov.

Plate XL, Figs. ${ }^{2} 0,21$.
Whorls of four coriaceons segments, open or reflexed, attached by a narrow base entarged upward, fan-like and modnate-lobed on the borders.

These fragments might represent reflexed scales of conifers but the axis is too narrow. They are comparable to what Heer has named Equisetum tunicutum, "Fl. Tert. Helv.," p. 44, pl. xiv, fig. 10, which represents a broken shealh of Equisetum.

Hab.-Randolph Co., Wyoming. U. S. Geol. Expl. Dr. F. V. Iayden.

Carpites gemmaceus, sp nov.

Plate XL, Fig. 19.
Fruits or buds oval, obtuse, short-pediceled in three at the top of a small branchlet. They are striate in the length, like mopened buds of flowers.

Hab.-Florissanl. Princeton Museum, No. 854.

Carpites Milioides, sp. nov.
Plate XL, Fig. 18.
Sceds on slender pedicels, diffusely panieled, oval, thinly striate lengthwise, 3 millimeters long, \because broad.

Resembles a panicel of Milium effusum, Linn. The seeds are flattened.
Itab.-Florissant. Princeton Museum.

GENERAL REMARKS.

The number of species enumerated and described from this group is 228; of these Ftorissant has the largest number (152), while from the Green River Station 24 species only have been determined from specimens obtained in a cut of the railroad just above the station, and which, of course. represent the Flora of the Green River Group. Of the other localities, I have found $\mathbf{5} 5$ species in the specimens from Elko, 14 in those from Randotph County, Wyoming, 7 in those from Alkali Station, 6 in those obtained near the mouth of the White River, and of the other localities marked in the table two or three only in each.

With these materials it is not well possible to determine, from a comparison of the plants of each place, the degree of relation of the local vegetable groups, and, therefore, a lable of distribution does not seem of great value for that purpose. It is, however, important to record the data. which may help to trace the march of the vegetation on the American continent during the Tertiary; to see also if the different localities, which I formerly referred to the same stage, show traces of identity in the characters of their plants and at the same time to fix, if possible, the age of the very interesting vegetable group of Florissant by its affinity with some local Flora of Europe. And as this volume is, most probably, the last which I shatl have opportunity to prepare on Tertiary plants of Western America, I think proper to leave all the materials which have been examined thus far, exposed as clearly as possible for future comparison.

TABLE OFMMTRHITHON OF THE PLANTE OF THE GREEN RIFER AND WHITE RIVER ciotrs.

Tahle of Mistribution of the Ilants of the Grenn Rimer and White River (iroups-Continued.

Table of Distribution of the Plants of the Green River and White River Groups-Continued.

C F 14

Tablr of Distribution of the Plants of the Green River and White River Gromps-Comtimatd.

Talle of Distribution of the Plunts of the Green River and White River Groups-Continued.

RELATIONSHIP OF THE LOCAL GROUPS INDICATED BY CORRELATION OF SPECIES.

To consider the degree of relationship indicated by the groups of plants from the localities which I formerly referred to the Green River Group, I first put in apposition the Flora of the Green River Station and that of Florissant, for the specimens have been derived, at each place, from a limited area, and the floras of bolh are represented by the largest number of species.

Between these two groups of plants there are only two identical species: Almus Kefersteinii and Sapindus obtusifolius. The first is one of the most common species of the European Miocene, and not less frequently found in that of North America in Califormia, Oregon, Alaska, and in the Aretic tlora of Greenland, Sachalin, \&c. It is therefore a Miocenc type of a wide distribution. and not a leading plant of a peculiar geological slage. The second species, Sapindus obtusifolius, is most abundant nine miles southeast of Green River Station, at a locality high in the hills, where a thin bed of coal is overlaid with sandy yellow shale filled with the remains of Musoplyllum complicatum and Sapindus obtusifolius. mostly ; for no other plants were oblained there except a single leat of Almus heferstcinii. This species of S'opiztus is so closely allied lo sectfinis. Newby., of the Fort Union Group, that il may be considered a mere viricty. The leatlets differ only by the more acule points in s.uftuis, white in the specimens of Florissant the leaflets are more obtuse than in those of Green River, the difference being apparently local. Thuse two species are therefore Niocene types. Then there are from Green River station. Cyperus Chucamusi, Arundo Geopperti, Phragmites alaskenen. Querces Ineidingeri, Sulix media. S. elongata, Juglans denticulutu, or seven European Hiocene speries. Of the others, Equisetum wyomingense. Ilex "ffims, I. wyomingiumet ant a Leguminosites are closely allied to Niocene types, while Ampolopsis tertiaria. Fïcus Ungeri, Myrica nigricans. Arumdo reperta have Hheir affinities to species living at our epoch. Hence 17 specics out of $2 . t$ show evident relationship or identity with plants of the Miocene of Europe or witin
some of the present epoch. The others, Ficus arenacon, Zizypheus dinnamomnills. Cissus moteu folin. Burulyptus americuna are peculiar types whose aftinily is not distind. Jugtons schemperi is also represented in the Eocene of Golden, and Fitus wyomimiunu at Evanston. Therefore there is nothing in this group of plants proving a retation to that of Florissant. From the begiming of my researches I have been uncertain about the geological relations of this flora. It is clear that from its character as exposed by the few materials I have had for identification, I could but refer it to the upprer Miocene.

The same may be said of the 14 species obtained by Professor s. $/ I$. Scomlder in Randoph County, Wyoming. Eight species, Flubelluria Florissomti, 3 species of Quorcus. Populus butsumoiles, Liquitambor ouroputum, Gimumomam Schenchät, Zanthoxylam spireafolum, are identified in the Hiocene of Europe. Cyperites Itoglenii, Acer indivisum, Ceftis MeCoshii, Exonimus flexifotius are peculiar types; while one species only, Amyydulus gracilis, is represented at Florissant.

The flora of Eko station, represented by 15 species, is more distinclly related to that of Florissant, with which it has four species in com-mon-Mrypica cullicomefolia, Curnimes grandis, Planera longifolia, Disipgros Copectur. Omitting Cierpinus aremtis, a common species of the Niocene of Emrope and America, the three others are truly leading lypes of the flora of Florissant, where Alyrica cutlicomafolia and I'lenera lonyifolia are represented by hundreds of specimens; the other, Diospyros Copectud. has been found only at the two localities now compared. Of the other species of Elko, Supindus coriuceus is related to S. anyustifotius of Florissant; three species of Myrica and three Conifers of Elko indicate a predominance of plants of these gencra, represented at Florissant by fourteen species of Myrica and seven Conifers. There is no relation whatever between the flora of Elko and that of the Eocent, or of a lower stige of the Tertiary; but five of its species. Fayus Fernoniue, Satix metiu. S', clonyata, Populus Richardsoni, and Ficus Jymar are identified in the Miocene of Europe, and one. Lycopodirm prominens, is of a still more recent type.

Of the 9 known species of the White River flora, 4 are at Florissant, and these also are leading species-l'mere lonyifolia. Myprica acuminata, M. rigita, and M. lomyifoliu. A hifth, M. Luhwigii, is so intimately related

To the last that it hats often been considered as a variety of it he anthors: the type is the same. And then Lyyodium Dentomi is related to a species, of the (iypses of Aix; Acer equidentatum has been deseribed formerly from the uper Niocene of California; the others have their aftinity with the Miocenr of Europe.

Alkalistage Station is only 15 miles from Green River Station. The horizon of both is geologieally idontical, and the Flora of the first. known by only is speries seems to confirm this determination, though all the species axept lärs lagori are peculiar to the locality. F. Ungeri has been fist fimm al dreen River Station; ils affinity is with species living at this eporlh amt also with two other species of Alkati Station, F. temumerts and F. ulhatime. Dyprict allation is of Miocene type, related to M. cimduhonensis and M. 'Thyeri of Heer' of the others. Inglans alketimu has the facies of leaves of Juplamdites of Sezame (Eocene): Praximus lirownellii is relaled to F. juglandimes, a lype of the Gypes of Aix: Ilex muculuta. from a leat poody preserved, and Almus inaquitateralis are as yet withont affinity known to me. The other localities whose Flora is known by two or three other species only do not demand consideration. The two species of sage Greek are Miocene; of those of Barrell's Springs, Equisitcum Ituydenii is idenlified at Carbon whose flora is Miocene; Lygodium nowropteroides is Eocene; Port levis, described in Hayden's "Anm. Rep.," 1871. from two fragmentary specimens, was not positively determined. The species is Miocene in Europe; as I found in the specimens of Barrell's Springs firagments of a Palm apparently identical with Sabulites Zinkeni of Golden, I have supposed the localities referable to the Laramic Group, or Eocene.

From the above it seems evident that the plats which I have heretofore referred to the Green River Group represent two different horizons: Green River Station, Randolph Co. and Akali Station for one, Florissanl. White River and Elko for a sceond. It may be possible to fix the horizon of this last group, or at least of Florissant, by comparison of its species with those of Emope. But for the present the materials obtained at Green River. Randolph Co., and Akkali Stations are too scant to afford any indiration of their reference to any particular stage of the Tertiary; they may represent a lower group than that of Florissant, but what is said above of the redationship of these plants authorizes a contrary conclusion.

Of the 166 species of vegetable forms recognized in the specimens of Florissant. 50 are related to and 40 identical with Miocene species of Europe, whita the affinity to the lower Tertiary, or Oligocene, of Germany is marked by 8 redated and 4 identical species, and to the flora of the Gypses of Aix by 28 relaled and 16 identical species.

At first sight it seems that the types of the flora of Florissant are more distincty Miocene, even upper Miocene. for two of its species represmb plants living at the present time or which at least are so closely allied to them that it is scarcely possible to deny identity. But searching for more precise affinity, it will be remarked, first: that most of the species related to or identical with Miocene plants are species of wide distribution. which have been found in a large number of European localities from Italy to the Baltic, and on the American continent from Wyoming Territory and California to Oregon and Alaska ; then to Greenland, Spitzbergen, Sachalin, \&e. These plants have been described by a number of authors in different works; while the relationship to the flora of the Gypses of Aix refers to a single locality in the south of France, the plants of which have been described by one author only. Secondly, the more marked species, those represented by the largest number of specimens and which may be considered as peculiar to the group, are exclusively Oligocenc-the mosses, the Rhizocarpeæ in two species of Salvinia, the Ferns, the Conifers with very few exceptions, the Myricacet especially, as numerous and as distinct in their types as they are in the flora of the Gypses of Aix, with which four of them are intimately related and five identical, the beautiful Populus Hecrii, which, described by Saporta from a single leat, is represented at Florissant by numerons fine specimens, the rare Populus oxyplyllu, the abundant and varied species of Lomatia and of Diospyros. Dhe large splendid leaf of Aralia disecta very probably identical with Aralia multifidu. Sip., species of Mex. Potiurus, and especially peculiar forms of Rhus, also described in the "Etudes" of Saporta, give to the flora of Florissant a definite fucies marking its analogy with the Oligocene far more distinctly than it is with the Miocene plants. This becomes evident in comparing the types of Florissant with those of the Miocene, published in this volume. In the "Monde des Plantes" Saporta enumerates as specics, which he considers characteristic of the flora of the Gypses of Aix, Aralia maltifida. Cercis antiqua; seeds
of Ailanthus crispa; involucres of Palaocarya atroia, Betula Iyspsicola, Quercus, salicina, Q. antecedens, Salix aquensis, de.. all types which are recognized in the flora of Florissant by identical or closely alfied species.

Besides the general characters of the flora. the peculiar compounds of the tormation, the laminated shale mostly formed of ashes, the immense number of insects and fishes preserved in a succession of thin layers of grayish stale are repeated in the upper part of the Gypses of Aix precisely as they are found at Florissant. Says Saporta: Entire shoals of fishes were surprised and buried in the muddy clay of the bottom. Even insects suffocated in large numbers, from the smallest kind of mosquitoes to ants, bees, butterflies, are preserved in the thin shales with the minutest of their organs and even the colors of their wings. The borders of the lake also, like those of the Lake of Florissant, were deeply cut, and mountains of very steep slopes had their base raised up from the borders, even from the interior of the lake, \&c. There was also, as at Fhorissant, a river traversing the lake in its whole length, hence the country was diversely broken and therefore afforded the best opportunity for a great diversity of its flora.

It camot be surprising to find in the flora of Florissant such a large predominance of Miocene types, if, like that of Aix, it represents the last periods of the Eocene age, when of course the more predominant and permanent types of the Miocene were already represented.

The evidence of synchronism of the flora of Florissant with that of the Oligocene of France appears confirmed by the characters of the fanna. At least Professor Cope ${ }^{1}$ identifies the White River Group with the Aquitanian and Tongrian of Europe-formations which close the Eocene or are partly referable to the Eocene, partly to the Miocene, and consider: the Green River and the Wahsatch as Suessonian or Paleocene. This agrees with the observations of Saporta, who considers the Gypses of Aix as a long series of formations continuous through the different periods intervening between the Paleocene and the Miocene, the upper part even partaking of the character of this last epoch.

[^16]
MIOCENE FLORA.

The plants of this formation described from Ataska by Profissor Heer; from the Fort Union Gronp by Dr. Newherry ; from Carbon and Washakie, Wyoming, by myself, and those which I have to describe now from the Hanvaises Terres of Nerada and from divers locatities of California and Oregon, are all referable to the Miocene. They may refresent, however, peculiar geological or geographical divisions which it may be interesting to consider separately. The distinction is not yet dear' but these locat floras may serve to fix hereater different stages of the American Miocene.
lndeed, for the present, fossil plamts have been obtained from a large number of localilies of the Miocene: but though taken allogether they constitute an important representation of the flora, the number of specimens of each locality does not afford sulficient data to athorize any retiable conclusion in regard to their relative stage in rither. What has been done for the tlora of the Oligocene must be contimued for that of the Miocenc. I have described separately the plants obtained from each group or peculiar locality from which a number of specimens have been examined and determined either by myseff or by other aullons. and putting in juxtaposition all these materiats in a table of distribution, it will be possible, perhaps, to see some distinct relationship between a few of the localities; or at least there will be for the future some points of emparison for relating the newly discovered plants.

The first group of Miocene plants described here is that of the Bad Lands of Dakota. Fine materials have been sent to me for examination, first by Professor Wm. Denton, later by Professor McBride, and recently by Professor N. H. Winchell. All the species of this group are deseribed below and figured in pl. xlvi to pl. xlix.

The plants of a second group, that of Fort Union, have been described by Dr. Newberry in his memoir on the "Later Extinct Floras of North America" (Lyecum of Nat. Hist. of New York. vol. ix, April, 1868), and figured as a separate volmme of "Ittustrations of the U. S. Geol. Survey
of the Territories." These plants have to be separately recorded, and this is done in the table of distribution, where it is seen that the analogy of their lypes is with plints of different groups from the Eocene up to the upper Miocene, even to species of our epoch.

The third group is that of Carbon, whose flora is typically allied to that of Maska. The plants of Carbon have been all described in vol. vii of the "U. S. Geol. Report," and those of Alaska have been described by Heer' in the $2 d$ volume of the "Flora Arct." These species are merely enumerated in the table of distribution, with the addition of some new ones found in the collection of the U.S. National Museum, which were procured by Dr. Wm. II. Dall, and have been described in Proceedings of the National Museum, February, 1883.

I have placed in a separate fourth group a number of Miocene species procured from distant localities of California and Oregon. The specimens which were intrusted to me for study by Professor J. D. Whitney are the property of the University of California, to which they have been returned. They were collected at diverse localities, and a limited number of specimens from each. It will not be possible for the present to fix the age of these plants otherwise than to say that they are all Miocene. The plants are all figured in this volume, pls. I to lix.

There are still a few vegetable fragments figured (pl, xlv B), obtained at the Chalk Bluffs of Nevada County, California, which are partly Miocene and partly Pliocene in character, and which merit a place in this memoir in order to have all logether the materials of the vegetable scale of the North American Tertiary flora, as far as it is known at this time.

DESCRIPTION OF MIOCENE SPECIES FROM SPECIMENS OBTAINED IN THE SO-CALLED BAD LANDS
 OF DAKOTA.

CRYPTOGAM Æ.

FILICES.

ASPLENIUM, Linn.
Asplenium tenerum, sp. nov.

Plate XLVIa, Figs. 1, 3.
Bipinnate; pinuæ-linear, uarrowly lanceolate; secondary pimeæ short, oblique, parallel, lanceolate, pinnately lobate; lobes distinct to near the base, oblong or obovate, obtuse; primary nerves slightly flexnous, pinnately dichotomons; laterul nerves at an acute angle of divergence, forking once or twiee.

There is a number of fragments of this species, all of the same character. The lower secondary pinnæ, a little more than $1 \frac{1}{2}$ centimeters long, 5 millimeters broad at base, are gradually shorter and narrower in ascending, the lobes becoming also shorter and less deeply cut.

This species has a marked affinity to Sphenopteris Blomstrandi, Heer, "Fl. Arct.," i, p. 155, pl. xxix, figs, 1, 5, 9 ; but that has the secondary pinnæ shorter and broader, more or less unequilateral, deeply lobed, and the medial nerve thin, dissolving upward, not continuous. Its nearest affinity is with living species of Asplenium of the section of the Dicksonice, like Dicksonia tenera, \&c.

Hab.-Bad Lands near Gilmore Station of the U. P. R. R. Communicated by Professor Wm. Denton.

EQTISETACEJ.

EQUISETUM, Linu.

Equisetum globnlosim, spmot
llate XLVIII. Fig. :3.
Lhizoma slemer, thinly lineate, flexnons or risid, distantly articulate, bearing simple opposite globular tubercles more or less wriukled by compression.

For a time I was unable to determine the relationship of this tragment. But recently I have found in the collection of fossil plants made by Professor Wm. II. Dall in Alaska a number of specimens distinctly representing these remains as rootlels or root-stocks of Equisetum. The branches from 1 to 6 millimeters in diameter, irregularly striate, slraight or flexuous, distantly arliculate, bear at the articulations simple opposite globular appendages somewhat like those of Physagenia Parlatorii, Heer, "Fl. Tert. Helv.." i, p. 109, pl. xlii, tigs. $2-17$, but globular and generally simple, voly rarely appendiculate in pairs. These remains, much decomposed ty maceration, are fragmentary, none of them continuous, and all without lrace of shealh. Though much smaller and globular, they may represent the same species as the fragment in Newby., "Illust.," p. vii. fig. 4, which he mentions as radicle tubers of Equisetum.

Hab.-Bad Lands. Professor Wm. Denton.

CONIFERA.

GLYPTOSTROBUS, Endl.

Glyptostrobus europeus, var. Ungeri, Heer.
Plate XLVI, Figs. 1-1r.
ìerr. "Fl. Tert. 1Iels.," iii, p. 159; "Fl. Foss. Alask.," p. 准, pl. i, fig. 7, b. f.
Leares squamiform, appressed, obscurely costate on the back, becoming longer, natrower, linear and two-ranked in the upper part of the branches.

The figured specimen shows the species as it is represented by Heer in Hof "Alaska Flora." I still believe that two species are represented by the Anerican specimens-one by those figured from Florissant, pl. xxii, and Hhe other by those of the Bad Lands. Fig. i of pl. xlvi is, however, very simitar to the lower part of the branches of fig. 2 of pl. xxii. The speci-
men of the Bad Lands has the scales of the stems evidently acute, while Heer generally represents them obtuse.

Hath-Barl Lands, same as above. Professor Wm. Denton. Spocimens of stems with obtuse scales but no leaves, preserved in lufa. are in the collection of Professor Winchell, from the Yellowstone Valley.

SEQUOIA, Torr.

Sequoia Langsdorfii, Brgt.

"U. S. Geol. Rep.," vii, p. \boldsymbol{z}.
The specimens represent the variety with flat, more obtuse leaves, described by Heer, "Fl. Alask.," p. 23 , pl. i, fig. 10a, as var. obtusa. Another form of this species, apparently corresponding to S. disticha, Heer. ${ }^{-}$Fl. Arcl.," iv, p. 63, pl. xii, fig. $2 a ;$ xiii, figs. 9,10 , is also represented in the specimens of the Bad Lands- this in the collection of Professor McBride from northwestern Dakola; the first is in that of Professor N. H. Winchell. Heer separates S. disticha from the common S. Lanystorfii especially on account of the opposite branchlets. The specimen of Professor McBride has merely simple branchlets, therefore the reference is not certain.

Taxodinm distichum mioceumm, Heer.

"U. S. Geol. Rep.," p, 73, pl. vi, figs. 12-14a.
Hab.-Barrs Bluff, Yellowstone Valley. Professor N. H. Winchell.
CORYLUS, Tourn.
"U. S. Geol. Rep.," rii, p. 144.
Colylus McQuarrii, Forbes.
Plate XLIX. Fig. 4
"U.S. Geol. Rep.," vii, p. 141.
The teelh are less pronounced, larger and more equal than in most of the figures given of this species. But the borders are somewhat erased and the facies is that of some of the leaves described by Heer. It is a form intermediate between C. McQuarii and C. grandifolia, Newby., "Illust.." pl. xy, fig. 5, which has the lateral nerves slender, less divided. and more distant.

Math.-Bad Lands. Professor Wh. Denton.

QUERCUS, Linn.
Quercus Dentoni, sp. nov.

Plate NLVIII, Figs. 1, 11.
Leaves of medium size, coriaceons, elliptical-oblong, very entire, obtuse, narrowed or rounded to a short petiole; borders slightly reflexed; secondary nerves open, nearly at right angles toward the base, generally more oblique upwarl, camptodrome at a distance from the lorders, anastomosing in two series of marginal areoles and separated by intermediate tertiary shorter nerses, bramehing and anastomosing at right angles; ultimate areolation small, quadrate.

The two fragments of leaves preserved indicate the characters of the species. One of them is nearty 10 centimeters long and 3 centimeters broad: the other is broader but the upper part is destroyed. By the nervation the species is related to Q. chlorophylla, Ung., or at least it is of the same type. The leaves of this last species are always much smaller and the nervation less distinct.

Hab.-Bad Lands, Dakota. Professor Wm. Denton.

Quercus Olafseni, Heer.

Plate XLVIII, Fig. 4.
Heer, "Fl. Arct.," i, p. 109, pl. x, fig. 5; xi, figs. 7-11; slvi, fig. 10.
Leares membranaceons, large, short-petiolate, narrowly elliptical, doubly serrate on the borders; teeth obtuse; secomdary nerves parallel, slightly eurved, some of them forking near the borders, camptodrome.

Though I have only seen the fragment figured, it is sufficiently characterized to show its identity with Heer’s species, which is common in the Greenland Miocene. The lateral veins are a little more curved in passing to the borders than represented in most of the figures of Heer.

Mab.-With the preceding. Professor Wm. Denton.

```
Populus Richardsoni, Heer.
```

" U. S. Geol. Rep.," vii. p 177.
The leaf which I refer to this species is smaller than any of those figured. It is only 3 centimeters long and \leftrightharpoons broad. As the leaf is oval, narrowed, cuneate to the base, it cannot be referred to P. arctica. It resembles P. mutabilis oblonga, Heer, "Fl. Tert. Helv.." but I consider it as a small form of P. Richerdsoni.

Hob.—Bad Lands, Dakota. Professor McBride.
"11. S. Geol. Kep.," vii, p. 176, pl. xxii, fig. 13.
Hab.-A fine specimen from Little Missouri Valley, Dakota, is in the collection of Professor Winchell. It has the same character as thę leaf, pl. xxxi, fig. 8, of this volume.

Populus arctica, Heer.

Plate XLVI, 'rigs. 2-13.
"U. S. Geol. Rep.," vii, p. 178, pl. xxiii, figs. 1-6.
Populus decipiens, Lesqx., Ibid., p. 179, pl. xxiii, figs. 7-11.
1 have formerly separated, under the name of P. decipiens, leaves with characters of nervation identical with those of P. aretica, but differing generally by the borders being very entire, the pattern more enlarged in the middle, the base cuneate and the size smaller. But though generally the leaves of P. arctica as figured by Heer have the borders undulate, even obtusely dentate. they are sometimes perfectly entire, and fig. 5 of pl. xlvi, which has undulate borders and is evidently referabte to P. arctica, is a leaf still smatler than some of those of the same plate representing P. decipiens, which] now admit as a variety. The leaves of both forms are found together. All those figured here are from the Bad Lands, in the collections of Professors Denton, Me Bride, and Winchell.

```
Populus cuneata, Newby.
    Plate XLVIA, Fig. 5.
```

Newby., "Ext. Fl. of N. A.," p. 64; "1llustr.," pl. xiv, figs. 1-4.
Leaves small, obovate, narrowed in rounding or enneate to the base, generally round or truneate obtusely dentate in the upper part, rarely narrowed into a short blunt point, entire from the middle, fire or seven palmately nerved from the base, long-petioled; lateral nerves eurving in ascending, branching outside.

This species has the character of P. arctica in all except the size of the leaves, the coarse denticulation of the generally flat, cven emarginate apex. The base is sometimes rounded as in the leaf I have figured, but in others it is exactly wedge-shaped.

Hab.-Bad Lands of Dakota. Denton's and McBride's collections. CF 15

Plate XLV1A, Figs. 3, 4.

Leares glandulose at the point of attachment of the petiole, variable in size, clliption-ovate, pointed or generally enlarged on the sines and broady deltoid, serate or eallous-dentate all aromd, five to seven palmately nerved; nerves branehing outside.

The two specimens tigured here do not show any impression of glands at the top of the petiole; but in both the collections of Professors McBride and Winchell there are fincly preserved leaves of the species with distinctiy marked glands. All the leaves are comparatively small; the one, p1. 4 , is the largest of those I have seen.

Hab.-Bad Lands, Dakota. Denton's, McBride's, and Winchell's collections.

```
Populus latior truncata, Al. Br.
    Plate XLVI, Fig. 14.
```

Heer, " F'l. Tert. Helv.," P. 14, pl. Ivii, fig. 2.
Leaf subtrmeate at base, large; primary nerves five, the lower marginal, thin, the upper strong, branching outside; borlers distantly serrate.

The leaf is perhaps too fragmentary for satisfactory identification. Comparing it, however, with Heer's figure. loc. cit., it does not appear to differ except by the base of the leaf being slightly more rounded.

Hab.-Bad Lands. Professor Wm. Denton.
Populus balsamoides, var. eximia, Goepp.
Plate NLVia, lig. 10.
Populus cximia, Golepp., "Schoss. Fl.," p. 23, pl. xvi, fig. 5; xvii, fig. 3.
Leaves large, cordate at base, ovate-lanceolate, obtuse or acute, deeply crenate; lateral mures at an aente angle of divergence, camptodrome, reticulate along the borders.

This fragment, though the base and apex of the leaf are destroyed, appears referable to this species. The substance of the leaf is membranaceous, the surface very smooth, the lateral nerves less curved and stronger than in any of the figures of Goeppert. The species is also finely represented in Gaudin's "Contrib.." i, p. 29, pl. iii, figs. 1-5; but here also, the secondary nerves are thinner and more curved. The true
P. balsamoides of the same author is described by Heer in "Fl. Alask.." p. 26, pl. ii, fig. 3. The leaves are smaller, less deeply crenate, the secondary nerves closer, more curved. The fragment represented here has also a great analogy of nervation to P. pulceomelus, Sap., "Él.," ii, 2, p. 267. pl. vii, fig. 10.

Hab.-With the lasl.

PLATANE E.

platanus, Tourn.

"U. S. Geol. Rep.," vii, p. 181.
Platanus aceroides, Goepp.
Plate XLIX, Fig. 1.
Ibid., p. 184, pl. xxp, fige. 4, 5, 6.
Mab.—Bad Lands, Dakota. Professor Wm. Uenton. The leaf, nearly entirely preserved, is much like that figured in vol. vii.

Plataums Gillelmie, Goepp.
"U. S. Geol. Rep.," vii, p. 183, pl. xxv, figs. 1-3.
Hab.—Bad Lands. Two fine specimens, with leaves obtusely dentate, are in the collection of Professor Mcbride.

MOREA.
FICOS, Tourn.

"U. S. Geol. Rep.," vii, p. 191.
Ficus artocarpoides. sp. nov.
Plate XLIVII, Figs. 1-5.
Leaves large, subcoriaceons, oval, obtuse or blunt at the apex, rounded or subcordate at base; medial nerve thick, emlarged at base and passing into a very thick long petiole; secondary nerves narrow, at an acute angle of divergenee, camptodrome, with few branches; nervilles close, simple or rarely forking.

The leaves vary from 10 to 15 centimelers long and from 7 to 8 broad. The medial nerve is thick, at least on the lower side of the leaves, as in fig. 2, and the petiole, t to 5 millimeters in diameter when flatlened. is long, measuring in the same leat 4 centimeters from its top to its broken end. As seen from the figures the base of the leaves is cordate or rounded.

In the first case the basilar lateral nerves are nearly at right angles or snmewhat more open than those above; in the other, as in fig. 2 , all the nerves are parallel.

This species is very closely allied to Ficus uncata, Lesqx., "U. S. Geol. Rep.," vii, pl. xxxv, figs. 1-3, but evidently different by the thin lateral nerves being at a more acute angle of divergence, the close nervilles, and especially the narrower medial nerve and the lower long straight petiole.

The resemblance of this species is very marked to the Artocarpoides of the "Flora of Sézanne," especially to A. conocephatoidea, Sap., p. 356, pl. vi, fig. 6 , which has the nervation and facies of Brazilian Artocarpea of the genera of Pourouma and Coussapoa.

Hab.-Bad Lands. Professor Wm. Ienton.

```
Ficus tiligefolia?, Al. Br.
```

"U. S. Geal. Rep.," vii, F. 203, pl. xxxii, figs. 1. 2, 2u, 3; Ixiii, fig. 8 .
The specimen in the collection of Professor McBride is a mere fragment, well characterized by its nervation, but too small for positive identification. I mention it merely to show that species of Ficus of the section of the palmately nerved leaves have traversed the whole Tertiary formation, most abundantly distributed in the Eocene, and still represented in the oldest Pliocene of Califormia. This group becomes gradually less predominant like the Palms, in accord with the gradual lowering of temperature in the more recent geological stages.

LAURINEA.
TETRANTHERA, Jack.

" U. S. Geol. Rep.," rii, p. 217.

> Tetranthera precursoria, sp. nov.
> Plate XLVHII, Fig. 2.

Leaves coniaceons, oblong (lanceolate?), gradually narrowed to a short petiole, reve tutire: primary nerves opposite from a little above the border base of the leaf, more oblique, the secondars above also opposite, three pairs, parallel, distant, eurving in passing to the borders, simple or searcely branching; nervilles thin at right angles.

The leaf, whose upper part is destroyed, is 10 to 11 centimeters long and 4 centimeters broad in the middle; the primary lateral nerves are at
a somewhat more acute angle of divergence, more distant, ascending to the borders in a slight curve, anastomosing with the nervilles of the tower secondary nerves, which are parallel, nearly equidistant, and a little more curved.

This tine species is very closely allied to the living Tetronthern Cutiformict, which has the leaves smaller, and generally four pairs of secondary nerves less distant than in the fossil leaf. In the Californian species the leaves appear more distinctly lanceolate to an acute apex-at least as far as can be judged thom the ontline of the fossil leaf whose upper part is destroyed.

Mab.-Bad Lands. Professor II'm. Menton.

CINCHONACEA.
CINCFONIDIUM, Lim.

Leaves oval or oblong, subcoriaceons, very entire: nervation pinnate; lateral nerves at an acnte angle of divergence, ascending along the borders, camptodrome; tertiary nerves transerse, forming by anastomosis with the quaternary ones a polygonal areolation; seeds in simple or compoand recemes, oval.

Schimper remarks on this definition that the leaves described under this name have a likeness to those of some Cinchonaceer, but that it is not possible to know whether any of them pertain to the genus Cinchona.

Cinchonidium ovale, sp. nov.

1) late XLVIII, Figr, R-10b.

Leaves oval, small, marrowed to a short petiole and to the apex; lateral nerves strong, parallel; nervation and areolation distinct; fruit paniculate, racemose; capsules oval, short-pedicellate.

Though fig. 9 has the base rounded to the petiole and is smaller, the characters of nervation are the same and both leaves evidently represent. the same species. Their sizes villy from 5 to 6 centimeters long and trom 2 to 3 centimeters broad. The fruits, which appear paniculate in short racemes (not corymbose), are exactly oval, obtuse, 8 millimeters long, 5 millimeters broad, lineate lengthwise and as if splitting in the middle by a more distinct line of separation.

Comparing this species to Cinchona Asculapui, Ung., "Syllog.," iii, p. 10, pl. ii, figs. 6, 7, the leaves are seen to be of the same form though smaller, and the nervation of the same type: the fruits are broader and shorter in the American species, and not distinctly splitting. They are racemosepaniculate, like those of C'uchonu Vellozï, D. C., figured by Unger, l. c., fig. 4. llat.-Bad Lands. Professor Wm . Denton.

LONICERE Æ.

VIBURNUM, Linn.

"U. S. Grol. Rep., vii, p. 222.
Viburnum Nordenskialdi, Heer. Plate XLVIA, Figs, 6, 7.
Hear, "Fl. Alask.," p. :36, pl. iii, fig. 13.
Leares large, cordate-emarginate at base, obseurely serrate-crenate, penninerve; secondary nerves divided in the upper part, eraspedodrome; nervilles simple, close, rarely forking; surface punctulate.

The leaves are oval, apparently rounded to a short point, about 9 centimeters long. 7 broad, deeply cordate at base. The lateral nerves are thin, flexuous, with subdichotomous divisions, the tertiary nerves being at an open angle of divergence and tlexuous. These firgments do not differ in their characters from those of Heer's species; even the size is about the same. The secondary nerves are somewhat more oblique but only on one side by deformation of the leaf. The epidermis is distinctly punctulate as by glands at the base of hairs.

Mab.-Bad Lands. Professor Wim. Menton.

Viburniln asperum, Newby.

" Later Ext. Fl. of N. A.," p. 54. pl. xvi, fig. 8.
Leares orate, acminate, ronnded at base, equally aentely serrate; seeondary nerves strong, elose, parallel, divided outside, craspedodrome.

The leaves are small, averaging 5 centimeters long, 3 broad below the middle, from which they taper upward to the acumen; the border teeth are acute and deep, and the strong lateral nerves are joined by simple parallel nervilles at right angles.

Hab.—Bad Lands. Collection of Professor N. II. Winchell.

MOCENE FLORA-BAD LANDS.

Viburuum dakotense, sp nov.

Plate XLVIA, Fig. 9.
Leat suberiacons, ovite-acnte or apicnlate, deeply lentate from near the rommed base; lateral nerves deep, hanching ontside, craspedodrome.

There is only one leaf of the kind. It is a little lacerated at base, but evidently rounded; the border teeth are large, furned upwad, blumt at the apex. The relationship of this leaf is evidenlly with the following species and still nore with Jiburmm Schmidtiamm, Heer, of the "Sachalin Flora." p. 43, pl. xi, figs. 4. 8. This last species has the leaves a lithe lager, the lateral nerves closer. more obligne, and the border teeth shorter and more acule. In both speries the subdivisions of the secondary nerves are dicholomous rather than lateral.

Mab.-Bad Lands of Dakoti. Professor W'm. Denton.

Viburumm Dentoni, sp. nov.

Plate XLIX, Fige, $\because, 3$.
Leaves of medimm size, subcoriaceons, polished, oval, sradually narowed from the middle to the petiole and in the same deeree to a sharp point or acumen, sharply dentate on the borlers; nervation strongly marked; lateral nerves close, parallel, nearly straight in passing to the borders, branching ontside, (raspedodrome.

From a number of fragnentary leares of the same kind 1 hare figured the two which more distinctly refresent the characters. The leaves about 9 centimeters long and 5 broad in the midtle, areoral or orate, acominate: the border teeth are loug, sharply pointed or spiumbseacminate, the lerminal subfalcate; the nervation is very distinct, as atso are the nervilles. which are close and mostly simple. The latern nerves are more numerous and closer than in the preceding species and the substance of the leaves is thicker. The specimens come from a different locality; the stone is hard and black.

ARALIACE A .

 aralia, Tourn."U. S. Geol. Rep.," rii, p. 235.
Aralia acerifolia, spor.
Plate XLIX, Fig. 5.
Leares small, palmately three-lobed, broadly rounded at base; lobes oblong, entarged in the middle, gradually marrowed to the obtuse simuses, contracted above and lanceolate to a blunt point, entire; primary nerves comparatively strong; lower secondary nerves at right angles, the mper very open and curved in passing toward the borders, camptodrome.

By its nervation this small leaf is closely related to Aralia angustiloba of the "Auriferous Deposits" of the Sierra Nevada, pl. v, fig. 4, and identical to the leaf figured in this volume, pl. xlv B, fig. 1.

Hab.—Bad Lands. Dakota. Professor Wm. Denton.

Aralia motata, Lesqx.
"U. S. Geol. Rep.," vii. p. 237, pl xxxix, fige. 2-4
There are some fine specimens of this species in the collection of Professor Winchell; one especially, a large, entirely preserved three-lobed leaf, with lobes short, deltoid-pointed, lateral nerves close, camptodrome. Other fragments of a still larger leaf have the lobes longer and much larger, ovate-lanceolate, acuminate; the borders minutely dentate the nervation craspedodrome, the primary nerves flat and broader, exactly representing Aralia (Platams) nobilis of Newberry. These specimens are of different localities; the first, on coarse yellowish-gray sandstone. It is the onty one of that compound. The second, upon a half-burnt red shale, is on the same kind of material as most of the species of the collection by Professor Winchell. It is, therefore not possible to say whether both forms represent a single species with variety, or whether they belong to two different species. A specimen of Aralia (Platanus) nobilis, Newby., has lately been sent to me from Golden. Both forms have a wide range of distribution.

MaGNOLIACEA.
MAGNOLIA, Linn.
"U. S. Geol. Rep.," vii, p. 247.

Magnolia Hilgardiana, Lesqx.

1bid., p. 249, pl. xliv, fig. 4.
A fine fully-preserved specimen of a leaf of this species is in Professor Winchell's collection from the Yellowstone Valley.

TILIACE $\begin{gathered}\text {. }\end{gathered}$
TILIA, Linn.
Tilia antiqua, Newby.
"Later Ext. Fl. of N. Am.," p. 52, pl. xvi, figs. $1, \stackrel{?}{ }$
The leaf representing this species is a little smatter than those figured by Dr. Newberry. It is oval in outline, broadly deltoid to the obtuse apex, rounded and subcordate at base, 8 -centimeters long. 7 broad. very obtusely and broadly crenate on the borders, the teeth being still broader and more obtuse than figured by the author.

Hab.-Yellowstone Valley. Sent by Professor I. H. Winchell.

> ACERACEA.
> ACER, Adans.
> Acer arcticum, Heer.
> Plate XLIX, Figs. $8,9$.

Hear, "Fl. Arct.." is, p. 86, pls. xxii, xxiii, xxir, fig. 1: xxy, figs. l-3.
Leaves Iong petioled, cordate, emarginate at base, palmately fire-nerved, shortlobate or withont lobes; lobes mequal, coarsely dentate on the borders; teeth unequal, obtuse; fruits broally alate, the wings diverging, not sinuate at base; seeds shortovate.

The description is copied from Heer, loc. cit., and the fragments of leaves which I refer to the species represent only part of the charactersfig. 8 , the lobate, obtusely dentate borders; fig. 9 , the basilar nervation.

These ate sulticient to identify the leaves; fig. 2 being similar to pl. xxii, fig. 3, and xxiii, fiy. t. of Heer. and tig. : to pl. xxiii, fig. 7. This hast leaf hats the hase truncate not rordate, but this form is marked also in the last figure qumted from Ieer and in tig. 8 of pl. xxiii; therefore this difference cammot diminate the essential points of identification. I am the more disposed to consider these fragments as representing Heer's species, that bery time entirely preserved leaves of this maple have been oblained by Professor Whitney from the Chalk huffs of California, and described in "Appendix to the Fossil Plants of the Auriferous gravel deposits" (Mem. of the Mus. Comp. Zool. at Harvard College).

Hrab.-Bad Lands. Professor IVm. Denton.

Acer mracilescens, sp. nov.

Plate XLIN, lig. \boldsymbol{i} (6?).
Leaf small, coriacems, long-petioled, pahately three-lobed; lateral lobes short, oblique, lanceolate, ohtuse, the terminal much longer, all cutire; base broadly caneate, obtusely once-llentate on both sides below the lobes.

The leaf is about 4 contimeters long. the medial lobe being lroken below the top; $2 \frac{1}{2}$ centimeters between the lateral lobes, and the flexuons petiole is a little more than 2 centimeters. There is a short obtuse tooth on each side above the cuneate base, and hence the leaf is enlarged to the points of the lateral lobes and lanceolate to the apex. I find nothing to which this leat might be compared. It has somewhat the facies of the small leaves of Acer Bolumleri, Lesqx., "Aurif. grav. Deposits," in "Mus. Comp. Zool. of Harvard." rol. vi, No. 2. but it is more slender in all its parts; the lateral lobes are narrow and entire. Tlie nervation and areolation are normal.

Though the difference in the characters appears very great, I am disposed to regard fig. 6 as representing a variety, or rather a deformation. of the normal form of this species. The leaf is three-lobate in the upper part and narrowed toward the petiole, where it is abruptly rounded; it has two opposite. short, entire, obtusely pointed lobes, as in the normal leaf, fig. 7. placed much ligher, and the nervation is pimnate on account of the difference of position of the lobes. the lateral nerves being parallel, equidistant, all on the same acute angle of divergence. A modification some-
what similar to this is seen on the leaves of Acer sclerophyllum, Heer, "Fl. Tert. Helv.," iii, p. 55, pl. cxvii, figs. 6-9, where fig. 8, without basilar lobes, has the secondary nerves parallel, as in the leaf of fig. 6, l.c., while fig. 9 is distinctly three-nerved at base and three-lobed. Seen upon the specimens these two leaves have, indeed, a similar facies by their color, the subcoriaccous texture, the polished surface, \&c.

Hab.-Bad Lands. Professor Wm. Denton.

SAPINDACEA.
 SAPINDUS, Linn.

"U. S. Geol. Rep.," vii, p. 263.

```
Sapiudus obtusiflolius, Lesqx.
    Phate NLVIII, Figs, 5-%.
```

Ibid., p. 266, pl. slix, figs. 8-11.
The leaflets are slightly more acute than those figured in volume vii. but less acuminate and broader than those of Sapimtus affinis. Newby.. "Later Ext. Fl.," p. 51, "Illustr.," ph. xxiv, fig. 1. As the specimens from Florissant have the leatlets still more obtuse, the differences may represent mere local varieties of the same species.

Mab.-Bad Lands. Professor Wm. Denton. in numerous specimens. JUGLANDEA.

JUGLANS, Linn.
"U. s. Geol. Rep.," vii, p. :384.

```
Juglams rluanmuoides, Lesqx.
```

Ibid., 1. 284, pl. liv, figs. 6-9.
Mab.-Bad Lands. Professor IIclirides Collection.

```
Juglans nigrella, Heer.
```

Plate XLV La, lig. 11.
Heer. "Fl Foss. Alask.," p. 38, pl. ix, figs. 2-4.
Leaves pinnate; pimmles large, ovate-lanceolate, mequilateral at base, gradually narrowed to the apex, acutely serrate; lateral nerves close, much curved, reticulate along the borders; nervilles at right angles, distant, flexuous, nearly simple and parallel.

The fragment of a leaflet figured is evidently referable to this species,
which is not uncommon in Alaska. The teaflets are not as large as those of C'eryu untiquorum. Newhy., the nervilles more distant and flexuous, the leeth of the borders stronger and more acute.

Itrb.-Bad Lands of Dokota. Professor IVm. Denton.

Juglans Woodiana, Heer.

"Foss. Fil. , if Yancouver," p. 9, pl. ii, figs. 4-7.
leatlets large, oblong-lanceolate, acuminate, crenateserate on the borders; lateral nerves ohlique, abruntly curving at a distance from the borders, following them in simple series of areoles; nervilles very flexnons, distant, branching and anastomosing at right angles; areolation loose.

This species is easily separated from the former by the coarse obtuse irregular teeth of the borders, the curves of the lateral nerves, which are more abrupt and more distant from the borders, and the large irregularly quadrate divisions of the areas.

Ifab.-Bad Lands. Professor McBrides Collechion.

Carya antiquorim, Newby.
" U. S. Geol. Rep ," vii, p. 289, pl. Ivii, figs. 1-5; Iviii, fig. 2.
Mab.-Yellowstone Valley. Professor N. II. Winchell.

ANACARDIACEA.

RHUS, Linn.
" U. S. Geol. Rep.," vii, p. 991.
Rhus Winchellii, sp. nov.
Leares ternate; leaflets sessile, orate-lanceolate, acnte, the lateral unequilateral at the ronnded base, the terminal gradually narrowed to the base; nervation pimate; secondary nerves open, close together, parallel, slightly curving in passing to the borders, where thes are abruptly camptodrome.

This leaf is closely related to Rhus bella, Heer, "Fl. Arct.," ii, p. 482, pl. lvi, figs. 3-5, differing especially by the lateral leaflets being rounded at the base, not narrowed, shorter, and the nervation much closer and strongly marked. The substance of the leaves is subcoriaceous.

Mab.-Yellowstone Valley. Professor N. II. Winchell's Collection.

PRUNUS, Linn.
Pruinus dakotensis, sp. nov.

Plate XLVIa, Fig. 8.
Leaf small, broadly orate, lanceolate-acnminate, rounded at base, minutely serrate on the borders; nervation camptodrome.

The leaf, nearly 4 centimeters long, more than $2 \frac{1}{2}$ broad in the middle. has the lateral nerves ($\$-10$ pairs) paratlel but at unequal distances. the basilar thin, the others more distinct, all very much curved in traversing the blade, camptodrome, united to the minute teeth by anastomosing reinlets; the nervilles are obticue, flexuous. more generally branching in the middle.

The leaf is remarkably simitar to that of $\mathrm{pl} . \mathrm{xl}$, fig. 11 (Amelunchier typical), differing by the more acuminate apex, the more minute teeth of the borders and close strong nervilles.

Hab.-Bad Lands. Professor IIm. Denton.

$$
\begin{gathered}
\text { LEGUMINOSA. } \\
\text { CERCIS, Lim. } \\
\text { Cercistruncata, sp. nov. }
\end{gathered}
$$

Leaf of medium size, somewhat thick, round in outline, obtusels pointed, truncate at hase, palmately fire-nerved.

This leaf has exactly the same form and nervation as the leaves figured on pl. xxxi. figs. 5-7. and described as '. parvifolia. But it greatly differs by its size being 8 centimeters broad and more distinctly pointed. As the leaves of Cercis are extremely variable in size, this one may represent a targe and more developed form of the species of Ftorissant.

IIab.-Bad Lands. Profeser N. II. Winchell.

DESCRIPTION OF MIOCENE SPECIES OF CALIFORNIA AND OREGON.

EQUISETACEA.
EQUISETUM, Linn.
Equisetum species.
llate L, Fig. 8.
A small fragment of Equisctum. representing a cross-section of a root with rootlets diverging starlike.

Hab.-Corral Hollow. San Joaquin County, Catiforuia.
Equisetum species.
Plate L, Fig. 7.
Part of stem of Equisetum, undeterminable species, related to E. wyomingense, Lesqx., "U. S. Geol. Rep.," rol. vii, p. 69, pl. vi, figs. 8-11.

Mab.-Contra Costa, Califormia.
FILICES.
LASTREA, Gresl.
Lastrea (Goniopteris) Fischori, Heer.
llate L, Figes. 1, la.
lleer, "Fl. Telt. IIelv.," i, p. 34. Il. ix, fig. . 3
Frond pinnate; lower pimac oprosite, pimately partite, the uper alternate, linear, pimatifid pimmes narower in the upper half, contracted to a bhme apex: lateral veins curved inside, $\overline{7}$, pairs.

There are of this species merely fragments of the ultimate pinna; the description of the frond and their divisions is taken from Heer, l. c. The form of the pinnules rontracted above to an obtuse point, the direction of the lateral nerves and their ummber suffice for identification.

Hab.-John Day Valley, Oregon.

CONIFERA.

sequoia, Torr.

Sequoia angustifolia, Lesqx.

Plate L, Fig. 5.
"U. S. Geol. Rep.," vii, p. 77, pl. vii, figs. 6-10.
Hab.-Corral Hollow, San Joaquin County, California.

Scquoia Landsdorfii, Brgt.

Plate L, Figs. 2, 3.

```
"U.S. Geol. Rep.," vii, p. 76; Heer, "Fl.Tert. Helv.," i, p. 54, pl. xx, fig. 2; xxi, fig.4; "l"l. Foss. Alask.,"
            p.23, pl.1, fig. 10.
Hab.-John Day Valley, Oregon.
```

TAXITES, Brgt.
Taxites Olriki?, Heer.
Plate L, Figs. 6, $6 a$.
Heer, "Fl. Arct.," i, p. 95, pli, figs. 21-24c; xls, fig. 1a, b, c.
Branches slender; leaves distichous, linear-lanceolate, blunt at the apex, rounded and narrowed at the base, sessile.

The leaves are sessile, not decurrent at the narrowed base, and therefore not referable to the genus Sequoia. Those I have seen average 23 millimeters long by $3 \frac{1}{2}$ millimeters broad, the same length as indicated by Heer, only stightly narrower; they are more or less curved backward, have a deep medial nerve, and the surface, as seen in fig. $6 a$, is distinctly transversely lineale but nol broadly transversely wrinkled, as seen in Heer's fig. 1 of pl. xly. But this difference, as also the lengtl of the leaves, which the author has seen in some fragments reaching 31 to 33 millimeters, is not sufficient to eliminate the close affinity indicated by the essential characters; for the best specimens of Heer have the leaves of the same length as those figured here, and the transverse undulations of the leaves have been remarked by the author upon one specimen only. As in Heer's specimens, the borders of the leaves are flat and smooth and the apex blunt. The species cannot be referred to Taxodium any more than to Sequoia.

Hab.-Corral Hollow, California.

MONOCOTYLEDONES.

PALMA.
GEONOMITES, Lesqx.

"U. S. Geol. Rep.," vii.]. 115.
Geonomites Sehimperi, Lesqx.
Plate L, lig. 9.
Ibid, p. 116, !h. x, fig. 1 .
Rays narrow, convex or obtusely carinate, narrowly donbly striate, diverging at acute angles from the rachis.

The specimen, entirely represented by the figure, is too small and too fragmentary for positive identification. As far as seen by comparison, however, the reference seems authorized. The rays are comnate in the lower part and disjointed above: the slrie are formed by alternate depressions and ridges as seen upon the enlarged fragment, fig. b, c, with 3 to 4 intermediate veinlets. The fragment also resembles Flabellaria Zinkeni, but the primary nerves are more numerous and less marked in this last species and the inlermediate veinlets more numerous.

Hab.-Contra Cosla, California.

DICOTYLEDONES.

AMENTACEA.

MYRICA, Linn.

Myrica diversifolia, Lesqx.
Plate L, Fir. 10.
Supra, p. 148, pl. xxv, figs. 6-14.
This tine leaf has evidently the same character as those figured in pl. xxv, figs. 11-14, and represents the same species. In vol. vii of the "U. S. Geol. Rep.," p. 13t. I alluded to this leaf, referring it to M. lutiloba of Heer. var. acutilobu. Lespx. This varicty now goes to M. diversifolia. described, l. c.. in some of its multiple forms.

Mab.—John Day Valley. Oregon.
C F 16

BETULACE E.

BETULA, Linn.
Betula parce-dentata, sp. nov.
Plate L, Fig. 1?.
Leaf ovate, rombled in narrowing to the base, tapering up to a short acmmen, dentate; secondary nerves craspedodrome; nersilles simple, at right angles to the norves.

A comparatively small leaf, 5 centimeters long, 3 broad in the middle. the hroadest part simply dentate; lower teeth turned outside, the upper curred upward; the lower basilar secondary nerves are at a slightly more acute angle of divergence, branching outside.

Among the fossil plants the affinity of this leaf is with Betula prisca, a very variable and common species of the Miocene. It is especially comparatle to the figures given of that species by Heer in the "Flora of Sachafin," "Fl. Arct.," rol. v, pll. vii, figs. 3,4 , and pl. ii , fig. 8 , of the supplement to the same Flora. Its analogy is also marked with the leaves I have described as Betulu cequalis, Lesqx., "Mem. of the Museum Comp. Zoot. Harrard," p. 3, pl. 1, tigs. 2, 3, 4. It differs from both by the shorter more broadly ovate form and the basilar nerves, which are at a more acute angle of divergence. From the last species it is also distinct by the branching of the lower lateral nerves, which are simple and less curved in B. aqualis.

Itwb.-John Day Vattey, Oregon.

Betula elliptica, Sap.

Plate LI, Fig. G.
Sap., "Ét.," ini. l, pras, pl. v, figs : ?, 4.
Leares long-petioled, elliptical, equalls narrowed from the middle downward to the petiole and upward to an acumen, doubly dentate; secondary nerves subopposite, oblique, branching toward the apex.

The leaf is somerthat larger than the one described by Saporta. As it ayrees in all its characters, it cannot be separated from the mere difference in size. It is $8^{\frac{1}{2}}$ centimeters long, nearly 4 broad, and the petiole 2 centimeters. The lateral nerves, seven pairs, with a thin basilar marginal rein, diverge at an angle of 30°.

Ilchb.-John Day Valley, Oregon.

ALNUS, Tourn.
Alnus Corrallina, spong

Plate LI, Figs. 1-3.
Leares oblong-ovate, thickish, rounded in narrowing to a short petiole, obtusely pointed, doubly dentieulate; teeth short, acute, turned outside, glandulose; secondary nerves elose, parallel, straight to the borders, branching in the mper part; nervilles distinct, close, simple, arely branching, at right angles to the reins; catkins ovaloblong, with a thick perlicel.

The leaves, 4 to 6 centimeters long, $2 \frac{1}{2}$ to $3 \frac{1}{2}$ centimeters broad, shortpetioled, have no distinct affinity to those of any fossil species of this genus, but a very close one to those of the living A. riridis-the Mountain Alder of the Eastern slope of the United States.

Hab.-Speeimen fig. 1 is from John Day Valley, Oregon; fig. 2 is from Corral Hollow, San Joaquin County, California.

Alnus carpinoides, sp. nov.

Plate L, Fig. 11; Ll. Iigs. 4, 4a, 5.
Leares large, orate-lanceolate, acminate, romded toward the base and abrmptly curced outside in reaching the petiole, triplidentate; lateral nerves parallel, straight, nearly simple; nervilles simple or anastomosing in the middle, flexuous at right angles to the nerres.

The leaves much resemble those of Curpinus yrandis, Ung., a common species of the Miocene described above from the Green River Group; but cones of Almus were found in connection with these leaves, which, moreover, differ from Carpimus grandis by the form of the leaves, which are more entarged at and below the middle, curving outward in reaching the pefiole, not rounded or subcordate as in that species, and by the more distant secondary nerves, the distinct nervilles and the large more acute teeth of the borders. By this last character these leaves are related to Almus macrophylla, Goepp., "Schoss. Fl.," p. 12, pl. v, lig 1.

Mab.—Bridge Creek, Oregon.

CUPULIFERE.

QUERCUS, Linn.

Quercus pseudo-aluus, Ett.

Plate LIII, Figs. 1-7.
Ett., '• l'l. v. Bilin," i, p. 59, ph. xvii, fige. 3-6.
Leaves romn-ovate or elliptical, short petiolate, subcoriaceous, irregularly obtusely dentate; primary nerves strong; laternl nerves 6 to 8 pairs, slightly curred, parallel, with few thin outside branehes.

The leaves are very variable in size and form, generally ovate, short, obtusely acuminate, rounded to the petiole, sometimes abruptly decurrent to it as in fig. 3, obtusely irregularly denlate. The author describes them as irregularly spinose-dentate. All the leaves which I refer to this species have the border teeth irregular, sometimes small, as in fig. 4, but none acute. The species is closely related to Quercus Gaudini, Lesqx., "Am. Journ. Sci. and Arts," vol. xxvii, No. 81, p. 360, of Bellingham Bay, from which it essentially differs by the leaves being rounded at base, not or very rarely narrowed to the petiole, and the more obtuse teeth of the borders.

Hab.-John Day Valley, Oregon.

Quercus furcinervis, Rossm.

Plate LIII, Fig. 8-14; LIV, Figs. 1, $\xlongequal[2]{ }$.
Phyllites furcincris and I. cuspidatus, Rossm., "Verst. v. Altsattel.," pl. vii and ix.
Quercus furcinemis, Ung., "Foss. Fl. v. Swoszowice," pl. xiii, fig. 5; Heer, "Fl. Tert. Helv.," ii, p. 5l, pl. Ixxvii, figs. 17, 18; "Fl. Aret.," p. 107, pl. vii, figs. Ga, 7a; xlv, fig. ld; xlvi, fig. 6; Ung., "Fl. v. Kumi.," p. 27, pl. is, fig. 18; Ett., "Fl. v. Bil.," p. 38, pl. xvi, figs. 11, 12, \&e.

Leaves large, subcoriaceous, oblong or oborate-oblong, more or less abruptly atmminate, gradually marrowed downward from the middle or from above it to a short petiole, repand-dentate from above the base; medial nerve strict; secondary nerves parallel, slightly curved, ctaspedodrome, mostly simple.

This species is still uncertain in some points. The above description i.s that of Schimper, made from the figures of Rossmässler. It somewhat diffirs from that of Unger and of Heer, who describe the leaves as ovatelanceolate, acuminate. Schimper, therefore, supposes that Rossmässler's feares might perhaps represent Castanea atavia. His descriptions, however, so positively agree with the characters of the leaves which I have figured, and whicll certainly cannot be referable to Castanea, that evidently we have
here the leaves of Quercus furcinervis of Rossmassler; and as some of the leaves, like those of pl. liii, fig. $\mathbf{2}$, and pl. liv, fig. 1 , are ovalc-lanccolate, I believe that both descriptions: refer to leaves of the same variable species. Very few of the figures of this species given by Emropean aulhors are made from grood specimens. The best is that of Heer, "Fl. Arel.," pl. xts, fig. 1 d . which is like my fig. 11. For this reason I have represented the species by a number of figmes which show its different characters. Fig. 14 is a fragment with dislincl areolation; fig. 13 is the smallest of the leaves I have seen; fig. 8 is the cup of an acorn found with leaves of this speries, and possibly referable to it. The fragnent. fig. 9 , nearly 8 centimeters broad, indicates a leaf about lwice as large as that of fig. 12.

IIab.-Bridge Creek and Cascade Mounlains, Oregon, under a volcanic overflow. Professor Jos. L. Le Conte; Plımas Co., California. Protessor J. I. Whitney.

Quercus Olafseni, Heer.

 Plate LIV, Fig. 3.Supra, 1. 2.24.
Leaves snbeoriaceons, large, oblanceolate or elliptical, doubly dentate; teeth obtuse; secondary nerves subparallel, some of them forking at the apex.

I have only seen the figured fragment of this species. It agrees in characters with Heer's descriplion, being especially similin to fig. 10 of pl. lxvi, loc. cit. The lower laleral nerves are more open and shightly more curved, camptodrome, the upper entering the primary leeth or craspedodrome.

Hab.--Table Mountain, Califormia.

```
Quercus llrymeja, Ung.
```

Plate LIV, Fig. 4.
Supra, 1. 154.
Leaves coriaceons, long-lanceolate, marrowed both to the apex and to the slender petiole, acutely dentate; secondary nerves parallel, slightly comved in traversing the blade, simple, craspedomome.

This leat agrees in characlers with those figured by the authors. The species common in Europe appears lo be rare in the American Terliary.

Hab.-Bridge Creek, Oregon.

Quercus Breweri, sp nov.
Plate LIV, Figs, 5-9.
Leares subcoriaceons, linear-lanceolate or nearly ovate-lanceolate or oblaneeolate, acute or acuminate, more or less gradnally narrowed to a slender petiole, sharply serrate from above the base; medial nerve thin, straight; secondary nerves at an atute angle of divergence, simple, parallel, slightly curving in passing to the borders, craspedodrome.

This species, which has some relation to the preceding and still more to Quercus lonchitis, Ung., has narrow leaves, averaging 1 centimeter in diameter and 7 to 8 centimeter's in length; the secondary nerves at an angle of divergence of 40° to 50° are thin, less than 3 millimeters distant, all simple and passing to the borders either straight or with a slight curve. Though figs. 8 and 9 are somewhat different in their outline I consider them as of the same species, for they have the same kind of nervation, their base entire as in fig. 7, which represents leaves either narrowed or rounded to the petiole though evidenlly of the same species.

Hab.—John Day Valley, Oregon.

CASTANEA, Tourn.
 Castanea Ungeri, Heer.

Plate Lll, Figs. 1, 3-7.
Heer, "Fl. Arct.," ii, p. 470, pl. xlv, fige. l-s; xhi, fig. 8; "Fl. Fuss. Alask.," p. 32, pl. vii, figs. 1-3.
Leares laree, oblong, lanceolate-acnminate, dentate; secondary nerves elose, parallel, enaspedodrome; seeds subglobose.

The leaves which I refer to this species are very variable in size, 8 to 16 centimeters long or more, \geq to 8 centimeters broad. The leeth of the borders are short, blunt, distant. and the sinuses repand. The lateral nerves simple, rigid, but slighty curved in traversing the blade, all enter the teellı under an ingle of divergence of at least 40° to 55°; the nervilles are close, distinct, simple, rarely forking. The nut is oval, nearly 2 centimeters long.

The figures on pl. vii represent the species of Heer under its divers forms.

Hab.-Rock Corral, Plater County. and Corral Hollow, California. The leaves are very numerous but badly preserved.

Castanca atavia, Ung.

Plate LII, lig. \because.
Ung., "Fl. v. Sotzka," p. 34, pl. x, figs. 5-7.
Leares oblong, acute or somewhat obtuse, narrowed at base, mequal, petiolate, coarsely acutely dentate; primary nerves strict ; lateral nerves simple, craspedodrome.

The leaves of this species are smaller than those of the former. The teeth larger, more acute, the lateral veins more nomerous. They are very similar to those of the living North American C. pumila. I have onty seen the specimen figured.

Mab.-.Jolin Day Valley, Oregon.

SAliciNEE.
 SALIX, Tourn.

Salix varians, Goepp.
Ilate LV, Fig …
 figs. 1-3,7-16; iii, p. 174, pl, cl, fiss 1-6; ludw., "Palæont.," wiii, p 92, pl. xxvit, figs 6-10: Heer, "Fl. Foss. Alask.," p. 27, pl. ii, fig. 8; iii, figs. 1-8; Ett., "Fl. v. Bil.," p. E6, pl. xxix, figs. $17,19, \therefore 2,83$.
Leaves petiolate, long-lanceolate or lanceolate-acuminate, narrowed or rounded to the base, scrmate; lateral nerves at an acute angle of divergence, curving in ascending to the borders, camptodrome.

This leaf, though less narrowed to the base than are generally those of this species, has the same torm as that of tig. 18 of Goeppert and also of Heer, fig. 13 , loc. cit., which represents the variely Vimmeriana. The leaf, $11 \frac{1}{2}$ centimeters long, is more than $\frac{2}{2}$ contimeters broad a little above the base, and hence gratually equally tapering to the acumen; the nerves and nervilles are very distinct.

Hab.-Table Mountain, Caifiornia, in a block of carbonate of iron; Corral Hollow, Oregon, in numerous firagmentary specimens.

```
Salix amgusta, Al. Br.
    Matre LV, Fig. 6.
```

"U.S. Geol. Rep.," vii, p. 168, pl. xxii. flige 1, זh.
Leares entire, long and narow, linear-lancolate, acnminate, narrowed at base to a short petiole; secondary veins close, mumerous.

The specimen shows a number of fragments of leaves of willows,

Which have apparently the chatater of this species, but none of them is seen in tis whole length, and therefore the characters are nol well defined. Ond of them only. that near the base on the righl side of the specimen, is in a good state of preservation, and this is evidently shorter than are generally the leares of s. anyusta, and also more enlarged loward the base and distindly lanceolate. It also seems to be curved in the lower part and unequal al base. The nervation is positively thal of S. anguste, and comparing it lo fig. 5 of pl. xxii, loc. cit., the difference of size is not very great. As all the fragments are upon the same piece of shate they seem to belong to the same species and all to represent S. angusta.

Itab.-Old field claim, Oregon.

```
Salix integra?, Goepp.
Plate LV, Fig. i.
```


Though this leaf has the characters of the species and much resembles that in Unger's "Schoss. Fl.," pl. xix, fig. 1, the identification cannot be certain on account of the absence of nervation. It may represent S. tenera. Al. Br., as described by Heer. "Fl. Tert. Helv.," ii, p. 32, pl. lxviii, figs. $7-13$-figs. 9,13 especially being similar to it, only a little longer.

Hab.-Corral Hollow, California.

Populus balsamoides, Goepp.

Plate LV, Fig. 3-5.
Supre, page 158.
Leaves variable in size, cordate or elliptical-ovate, dentate; teeth curved upward; medial nerve thick.
l have described in this volume. page 158, a fragment of leaf from Florissant representing a varicty of this species. We have here three leaves of the same species, all very different in shape and size. Fig. 3 has the form and nervation of the leaves of P. batsamoides as figured by Heer. "Fl. Tert. Helv.," pl. lxx, fig. 1, the leaf being only smaller and less acuminate. Fig. 5 is somewhat like fig. 3 of the same plate, the base only subcordate. The fragment, fig. 4, represents the variety eximia of Goepp., "'Schoss. Fl.," pl. xvi, fig. 5.

Itab.-Corral Hollow, California.

Platanus dissecta, Lesqx.

Plate LVI, Fig. 4 ; LVII, Figs. 1, \because.
Lesqx., "Mem. Musenm Comp. Zool." (IIarrard College), rol, ri, no. 2. p. 13, pl. vii, fiq. 1:2; x, figs. 4, 5.
Leares large, snbcoriaceous, troneate or subcomate at base, deeply three to fivelobed; lobes lanceolate-acominate, sharply toothed.

The leaves are large but not larger than those of I '. occidentalis, which they closely resemble. differing by the narrower more acutely pointed lobes at a more acute angle of divergence. They are larger and more coriaceons than are generally those of P. aceroides, and especially of I^{\prime}. Guillelmere. with sharper teeth more turned upward. The relation of these leaves to those of both P^{\prime}. aceroides and P^{\prime}. orcidentalis is, however, so well-marked that they seem like an intermediate form. indicating mere gradual. seareely noticeable modifications between the ancient Miocene and the present living species.

Hab.-Corral Hollow, California.

It LMACEA.
ULMUS, Linn.
Ulmus perdo-americana, spong.

Plate LIV, Firg. 10.
Leares orate, obloug or oval, acute or acmminate, mequal at base, sharphy doubly serrate; medial nerve strong, strict; secondary nerves close, parallel, straight or slightly curved in traversing the blade, with a lew branches near the apex, craspedodrome.

The leaf. 9 centimeters long, 5 broad, with a short thick petiote. is oblifucty cut on one side at base. rounded to the other. The primary teeth, much longer than the medial ones, have their sharp points curved inward, and the intermediate ones are very small and obtuse. All the characters of this leaf, as far as can be seen from a fossil specimen, are those of the living Ulmus Americana, Linn.. some leaves of which seem like the original from which the figure has been made. The nervation is the same; the lateral nerves, with two or three branches quite near the apex, enter the intermediate teeth. The point of the leaf is broken; it could easily be reconstructed as acute or rather abruptly short acuminate as in most of the leaves of Ulmus Americama.

Itab.-Bridge Creek, Jolm Day Vialley, Oregon.

MOREA.
FICUS, Linn.

Ficus asiminafolia, sp. nov.
Plate LVI, Pigs. 1-3.
Leaves of medimm size, coriaceons and polished on the surface, ovaloblong, rommbed and contmeted at the ipex into a short obtuse acumen, rounded and narrowed at the base to a long very thick petiole; secondary nerves few, distant, deeply marked, camptodrome, with few outside branches.

The leaves vary from 9 to 14 centimeter: long and 4 to 7 centimeters broad: the borders are very entire: the nerves very deeply impressed into the thick substance of the leaves diverge from the midrib at an angle of 50° or 60°. first straight, then much curved, especially toward the borders, which they follow in simple bows. The medial nerve is gradually thicker downward from the apex, and passes to a long very thick pedicel measuring. in fig. 1 (the smallest leaf). 3 miltimeters at the base of the leaf and 4 where it is broken, $3 \frac{1}{2}$ centimeters lower.

This leaf has somewhat the appearance of a Juglans and also, especially by its thick substance and its contracted apex, of a Magnolia, but the great thickness of the pedicel, the direction of the tateral nerves, refer it to a species of Ficus related to F. (Apocynophyllum) peminervia, Ung., as represented in Ett., "Beitr. zur. Fl. v. Radoboj.." p. 47, pl. ii. fig. 1.

Itub.-Rock Corral. Ptacer Countr. California.

La drinem.

LAURUS, Linu.

"L.S. Geol. Rep.," rii. 1. 213
Laurus princeps, Heer.
Plate LVIlli, Fig. ${ }_{2}$.
Heer, "Fl. Tert. IIels.," ii, p.75, pl. lxxxix, figs. 10, 17; xe, figs. 17, 20; xerii, fig. 1; Ludw., "Paleontug.," riii. p. 107, pl. xl, figs. 6-8; xli, fig. 10.
Persea princeps, scly口. "l'al. Véget.," ii, ן. 831.
Leaves coriaccous, broadly lanceolate or elliptical-lanceolate, narromed uprard to an acute point or a short acumen and dornmard to the petiole; lateral nerves thin, numerons and subparallel, joining the medial nerve nearly at right angles, camptodrome.

This leaf, 15 centimeters long, 3 centimeters broad in the middle, has atl the characters of the species as it is described by the authors, and is, though larger, simitar to Ludwig's fig. 6, pl. xl, l. c., differing, however, by
the comparatively narrower, though prominent medial nerve and the slender petiole. In fig. 1 of pl. xcvii Heer has figured a smaller leaf with narrower midrib, and other authors have leaves of this species with still narrower midribs than in specimens which I have figured.

IIab.-Corral Hollow, California.

Laurus grindis, sp. nov.

Plate LVlll, Figs. 1, 3.
Leares comaceons, large, ovate or obovate, gradually narrowed to the base, romnded in marrowing upward to the point (not seen); pinnately nerved; lower secondary nerves thin, at right angles, gralually more curved and more oblique upward in traversing the blade, lexnons, branching and anastomosing in arches toward and along the borders, distinct; areolation very small, punctifmem.

These leaves are numerous but fragmentary, none of them with the aper preserved. The largest, which is the one figured, is about 18 centimeters long, 7 to 8 centimeters broad in the upper part, where it is the widest. The medial nerve is rather thin, as in the leaf described above; the lower secondary nerves are thin, at right angles, like tertiary ones, all undulate, the upper gradually more oblique, distant; nervilles strong. branching or anastomosing at right angles in the middle. The areolation is seen in fig. 3.

The leaves have some relationship to those I have described as L. prinecps and are mixed together. The difference in the form, the size of the leares, and the nervation authorize specific separation.

Inab.-Same as the preceding.
Lillums salicifolia, sp. nov.
Plate LYIll, Figs. 4, 5.
Leares coriaccons, lanceolate or limemr-lanceolate, ergully narrowed uprard to an aeute point and dommarl to the petiole; lateral nerres numerons, open, parallel, camptodrome; areolation punctition.

The leaves, of which there are a number of specimens, rary in size from 6 to 11 centimeters long, 1t to $2 \sqrt{2}$ centimeter's broad. The medial nerve is not thick. Except one pair of basilar nerves, which follow the borders and are at an acute angle of dirergence, all the others are open, unequal in distance, more or less parallel, remarkably similar in their characters to those of fig. 8. These leaves are mixed together and are, perhaps, referable to the same species. They may be compared to those
"f Lumrus Reussii, EH., "Bil. Fl.," ii, p. 5, pl. xxxi, figs. 5, 11. In this European species, lowever, as seen at the base of fig. 11 , the areolation is muth larger and the point of the leaves is obtuse.

Ifob.-Cortal Ilollow, Califormia.
Laurus californica, sp. nov.
Plate LVII, lig. 3; LV1II. Figs. ti-Q.
Leares miaceous, oval-oblong, tapering to an acute point, narrowed to the petiohe ; menial nerve narow; lateral nerves few, from 7 to 8 pairs, the lower pair at a more acute angle ot divergence, the mper open, sometimes nearly at right, angles to the midnib, unequal in distanee and parallel only in the upper part ; nervilles anastomosing or brunching in the midde; ultimate areotation irregularly puadrate, large.

The leaves of this kind are very numerous, and though apparently differing in shape they all seem referable to the same species. The nervation in the upper part of the leares is of the same character as that of fig. 1; but it widely differs, especially by the more oblique basilar nerves. The relation of these leaves to fossil species is with Laurus (Oreodaphne) resurgens, Sap., "Ét.," iii. i, p. 78, pl. vii, fig. 5, and to living species with Phobe triplinervis of Cuba.

IIab.-With the preceding.
CINNAMOMOM, Burm.
"U. S. Geol. Rep.," vii, p. 218.
Cinnamomum affinc, Lesqx.
Plate LVIll, Fig. 9
Ibid., p. 219, pl. xxxvii, figes. 1-i, i.
This leaf is more rounded at base than any of those figured, l. c., but except this there is not any difference. It is remarkably similar to fig. 1 of pl. xxxvii, l. c., with the addition of a pair of marginal veins about like those of fig. 7 of the same plate.

Intb.-Comal Hollow. California. With the preceding.

```
    TILIACEA.
    GREWIA, Juss.
Grewia auriculata, sp. nov.
    Plate LV, Fig. I
```

Leaves orbicular, auriculate at base, pahately nerved, obscurely crenate; primary nerves five, branching and curved upwad; secondary nerves camptodrome.

The leaf is nearly exactly round, only a little narrower toward the base,
$6 \frac{1}{2}$ centimeters broad in the upper part and about the same in vertical direction. The borders at base are prolonged into short obtuse auricles surrounding the base of the petiole and overlapping each other: the borders are obtusely and somewhat obscurely crenate.

The teaf is very closely related to Grewia crenulata, Heer, " Fl. Aret.," iv, p. 85, pl. xix, figs. 16,17 , a species of Spitzberg, which as seen in fig. 17 has the basilar borders prolonged into two small vertical auricles, and whose borders are indistinctly crenate. It may be the same species; our leaf is, however, much larger; the five primary nerves are equal in size; the secondary nerves fewer, at right angles, not or scarcely curved upward; the tertiary nerves and nervilles thinner.

IIab.-Bridge Creek, Oregon.

ACERINE E.
 ACER, Linn.

Acertrilobatum, var. productum, Heer.
Plate LIX, Figs. 1-4.
"U. S. Geol. Rep.," vii, p. 261, pl. xlviii, figs. 2-3a.
Of these leaves, fig. 1 has the same characters as the fragment of Heer in "Fl. Tert. Helv.," iii, pl. cxii, fig. 6, but all have the middle lobe prolonged, or nearly twice as long as the lateral ones. I refer them to the varicty (productum), the same which has been already described from the Miocene of Carbon, vol. vii, l. c.

IIab.-Currant Creek, John Day Valley, Oregon. ${ }^{1}$

[^17]
ZANTIOAYLEA.

AILANTHOS, Desf.
Ailantlus ovatia, sp. nov.
Plate LI, Fig. 7, Z.

Abstract

Winged fruits or samaras, oblong orate, rounded on one end, acute at the other, short, transrersely striate; seels oral.

The specimen shows a branch with unopened buds and some samaras scattered around, which, though not contracted in the middle and not as long as are generally those of this genus, seem however referable to it. No leaves were found in comection with the specimen. The samaras are nearly 2 centimeters long and 13 millimeters broad in the middle. The nearest relation of the species is A. recognita, Sap., "Ét.," i, p. L05, pl. viii, fig. 7, formerly described as Ropalospermites strangeaformis. The branch with prominent buds and smooth back has the facies of an old branch of Ailantlus.

Hab.-Bridge Creek, Oregon.

MYRTOIDEA.
Myrtus, Tourn.
Myrtus oregoneusis, sp nov.
Plate LVIII, Fig. 10.
Leaves coriaceous, oblong-nvate, rounded in narowing to the petiole, very entire; secondary nerves nearly at right angles, foining the marginal vein; intermediate tertiary nerves shorter; surface punctulate.

The leaf. nearly 4 centimeters long, $1 \frac{1}{2}$ broad, is widest below the middle, gradually narrowed up to a point or short acumen, rounded in narrowing more rapidly to a short petiole. The basilar nerves follow the borders all along, anastomosing in curves with the ends of the lateral ones, which, all parallel, are at an angle of 60° to the somewhat strong rigid midrib. The tertiary branches are short and generally disappear in the middle of the areas, anastomosing at right angles: the surface is dotted. The relationship of this species is with Myrtus amissa, Heer, "Bornstädt Fl.," p. 18,
pl. ii, fig. 2; iii, fig. 4; iv, figs. 8, 9, being merely a little smatler and more enlarged below the middle, with the surface vesicular-dolled. The difference in the characters is not important. This leat still more distinctly resembles the living Myrtus commanis, Lim.

Hab.-Corral Hollow, California.

LEGUMINOSA.
 COLUTEA, Linn.
 Coluteal boweniana, sp. nov.

Plate LJIl, Fig. 4.
Leaf ohl pimate; leatlets nearly sessile, broadly ubovate, obtuse or subemarginate at the apex, caneate at the base, very entire; lateral nerves oblique, camptodrome.

The fragment may represent the leminal and ons: lateral leaftet of some odd-pinnate leaves like those of Colutet, or part of trifoliate ones like those of Cytisus. The leaflets in this last genus are rarely as broad as those of the fragmenls, which are 18 millimeters in widh and a little longer. The lemminal leaflet is short-pedicellate, the lateral appear sessile; its base is destroyed. They are much like leallels of Colutet Salteri, Heer, "Fl. Tert. Helv.," p. 101, pl. cxxxii, figs. $45-47$, which have the same form and nervation, being only a little smaller.

Hab.-Bowen Claim. Oregon.

CONTRIBUTION TO THE MIOCENE FLORA OF ALASKA. ${ }^{1}$

CRYPTOGAMEX.

EQUISETACE天.

Equisetumiglobulosum, sp. nov.

The species is described above, p. 222, from the Bad Lands.
FILICES.
Osmunda Torellii, Heer.
"Mioc. Fl. v. Sachalin," p. 19, pl i, figs. 4, 46.
Pecopteris Torellii, Heer, "Fl. Arct.," i. p. 88. pl. i, fig. 15.
Hemitelites Torellii, Heer, ibid., ii, p. 46z. pl. xl, figs. 1-5a; 1v, fig. 2
The species is represented by a very large number of specimens, mostly separate leatlets, imbedded in boulders of carbonate ol' iron. Most of the leaflets are simple, not lobate, oblong or ovate-lanceolate, entire or merely crenulate on the borders by the impressions of the veins. These leaflets are rarely preserved entire; the borders are often lacerated; they vary from $3 \frac{1}{2}$ to 6 centimelers long and 1 to $2 \frac{1}{2}$ centimeters broad. They evidently represent leaflets of an Osmanda.

Hab.-Coal Arbor, Unga Island.
CONIFERE.
Thuites (Chamaeyparis) Alaskensis, spong
Branchlets alternate, flattened, oblique; leaves imbricate on four ranks, the facial squamiform, eompressed, broadly rhomboidal-quadrate, slightly narowed to the base, inflated on the borders and in the middle toward the apex, the lateral flattened by compression, exposing half their face and thus triangular, exactly filling the space between the base and the top of the ficial leaves, all thick.

1 find no distinct relationship of this species except with Thuites Meriani, Heer, "Fl. Arcl.." iii, p. 73. pl. xvi. ligs. 17. 18, a cretaceous species, differing by the facial leaves ovate, narrower toward the apex.

Hub.-Same as the preceding.

[^18]```
MYRIOACEA
'"mptoniar euspialata, spo nov.
```





 ing ontside, the lower parallel and corving atong the borders, anastomosing with


Comparable to Comptonia ucutiloba, Brgt., and other European tertiary species Jnt distine from all by the larger cuspidata lobes turned upward, dec.

Itrb.-Same as the preceding.
fomptonia pramissa, sp nov.

Leaves long, linear in their whele length, 5 to 10 eentimeters long, 12 to 15 millimeters broad ; deeply equally pimate-lobate; lobes very obtuse or half romed, cut to the middle amd slightly decurrent in their point of comnection, the terminal very ohtuse; nervation obsolete; substance somewhat thick, bot not coriaceons.

The species has its greatest aftinily to the living Comptonia asplenifolia. Ait. It also appears relaled to U' rotundata, Wat., as described by Schimper, "Pal. Véget.," ii, p. 555, a species known to me only by its description. Heü.-Chicknic Bay, Alaska.

> BETULACEA.
> Betulataskana, sp. nov.

Leares small, romm in outline, rombed or truncate at base, deeply obtusely dentate all aromnd except at the base, tmmed back or recmrved on a short petiole ; medial nerve distinct, the lateral ohsolete; catkins short, cylindrical, oblong or slightly infated in the middle, erect.

Except that no glands are perceivable upon the stems, this species agrees in all its characlers with Betmla glendulosa, Michx., of Oregon. I consider it as identical.

Hed.-Chicknic Bay, Alaska.

```
Aluns corylifoliat, sp. nov.
```

Latwes land, hroadly ovate, rounded or cordate at base, acuminate or marowly ablong-ovat, dmbly dentate on the borders; primary teetlarge, distant, more or less
 more open, all cemerally simple except a few thin tertiary merves near the bordere passing th the peints of the teeth; surface smooth, newilles rarely distinct, petiole comparatively long. .

Rrsembles Complas McQuaria, differing by the smooth smfarr, the nervilles obsolete, the nerves not branching. Hie long petiole. de.

Mrlh.-Cuyachick, Cook Inlet, Alaska.

$$
\begin{aligned}
& \text { C'IPULIFERA. } \\
& \text { Carpiums gramdis. Ung. }
\end{aligned}
$$

In numerons specimens.
Inab-Sane as the preceding. Described also from Greenland by Heer, and in this volume from the Green River Gromp.

```
Fagus Deucalionis, Ung.
```

The collection has a single specimen of this species. Heer has described it from Greenland.

Hab.-With the preceding.

> Quercus Dallii, sp. nov

Learessubcoriaceous, obloug, tanceolate acominate, rounded or subcordate at base, 6 to 12 centimeters long, 4 to 8 centimeters broad, deeply equally undulate or obtusels dentate; lower lateral nerves nearly at right angles, branching, the others oblique, generally simple, all craspedodrome.

The secondary nerves are more or less distant according to the size of the leaves, being generally 14 pairs.

The relation of this species is to both Q. grentandica and Q. Olafseni. Heer, two species from Greenland, from which this one especially differs by the rounded or subcordate base and the position of the lower nerves nearly at right angles. Except that these leaves are much larger, they may also be compared to Paullinia germanica, Ung., "Syllog. Planl.," iii, p. 52. pl. xvi, fig. 8 , and are possibly referable to this genus, mostly represented now in tropical America.

Hab.-Cook hulet. Alaska.

## SALICINEA.

## Salix Liaeana, Heer.

" 'll. Arct.," i, p. 102, pl.is, figs. 11-1:3; xlvii, fig. 11.
Species described by Heer from specimens of Greenland. IIrb.-Ciook Inlet, Alaska.

## Populus Richardsoni, Heer.

"U.S. Geol. liep.," vii, p. 177.
Species abundantly represented in the Miocene and Flora of Greenland and Spitzberg.

Hab.-Chicknic Bay, Alaska.

## Populus arctica, Heer.

"U. S. Geol. Rep.," vii, p. 178.
Has the same distribution as the preceding, and is still more common in the Miocene of Greenland and North America.

Hab.-With the preceding.

## ULMACEA.

## Ulinus sorbifolia, Ung.

Goepp., "Schoss. Fl.," p. 30, pl. xiv, fig. 10.
Leaf oblong, with borders parallel in the middle, taper-pointed or acuminate; secondary nerves numerous, close, parallel, half open (angle of divergence $60^{\circ}$ ), generally forking near the doubly dentate-crenate borders; primary teeth blunt, turned upward.

The base of the leaf is destroyed. The preserved part is $4 \frac{1}{2}$ centimeters long, 2 centimeters broad, with 18 pairs of deeply marked secondary veins.

The species, which is not mentioned in Schimper's "Pal. Végét.," is closely allied to $U$. plurinervia, Ung., which has been found in Alaska.

Itub.-Cuyachick Bay, Cook Inlet, Alaska.

# NYSSACE $\mathbb{E}$. 

## Nyssa arctica, Heer.

"Fl. Arct." ii , p. 477, pl. xliii, lig. 12c; ; figs. 5, 6,7.
The fruit which I refer to this species is of the same size and form as fig. 6, l. c., but less distinctly striate lengthwise; the cross-wrinkles sliglıtly marked by Heer in fig. $6 b$ enlarged, being as prominent as the longitudinal striæ. The fruit, somewhat deteriorated by maceration, most probably represents the same species, abundantly found in Greenland.

Hab.-Unga Island, Alaska.

## Diospyros anceps, Heer.

"Fl. Tert. Helv.," iii, p. 12, pl. cii, figs. 15-18; "Beit. zur Sibir. Fl.," p. 42, pl. xi, fig. 7.
The leaves agree by all the characters with Heer's species, especially similar to figs. 16,17 of the "Fl. Helv.," $l$. $c$., the smaller leaf being of the same size as fig. 16. The otber specimen, which is fragmentary, is much like fig. 7 of the Siberian Fl. The leaves are broader than in D. Alastana, the lateral nerves more distant, \&ec.

Hab.—Cook Inlet, Alaska.

## ERICINE $\mathbb{E}$.

Vaceinium reticulatum, Al. Br.
Heer, " Fl. Tert. Helv.," iii, p. 10, pl. ci, fig. 30.
Leaves petiolate, oval, very entire, obtuse at the apex, narrowed at the base in rounding to a short alate petiole; lateral neves open, few, interspersed with tertiary shorter ones; surface deeply reticuiate.

The leaves, from their size, shape, and nervation, correspond with those described by Heer, $l$. c., the only difference being that one of the leares I had for examination, the largest, has the short peliole winged. In fig. 30 of Heer the petiole seems also bordered in the upper part by the decurrent base of the leaf, but the appearance is less distinct. Moreover, there are other leaves in the same collection of Mr. Dall which are smaller and with naked petiole. The difference is not, therefore, of specific value.

Hab.-Cook Inlet, Aliska.

# CORNEE. <br> Cornus Orbifera, Heer. 

"1U. S. Geol. Rep." vii. p. :34.i.
The specimen referable to this species has the lateral nerves curving inward along the borders, anastomosing with the upper ones by nervilles at right angles, as in Heer, "Fl. Tert. Helv.." pl. cv, fig. 16. Heer has also described the species from Spitzberg specimens.

Hab.-Ciook Inlet, Alaska.

## MAGNOLIACE Æ.

## Magnolia Nordenskioldi, Heer.

"Beiträge Zur. Foss. Fl. Spitz.". ("Fl. Arct.," is), p. 82, pl. xxi. fis. 3; xxx, fig. 1.
Leaves large, thickish, oval, obtuse, entire. emarginate or shortly auriculate at base; secondary nerves distant, enrved in traversing the blade, forking near the borders.

From the numerous well preserved specimens of this beautiful species I have been able to complete the diagnosis of Heer. made from fragmentary leaves. The leaves are longer than those of $M$. ovalis, Lesqx.. to which Heer compares this species and also subauriculate al base or emarginate ; the surface is rugose. crossed at right angles to the veins by simple or forked nervilles. The two lower pairs of veins are closer than those above. In a leaf of medinm size the two lower pair's of nerves are 8 millimeters distant, while those of the middle are nearly 2 centimeters. The angle of divergence in joining the midrib is open, but the nerves are much curved upward in traversing the blade.

These leaves, like those figured from Alaska Spitzberg, have the surface diversely marked by tracks of worms or insects, which appear to have dug narrow flexuous channels into the parenchyma or under the epidermis.

Ifoh.-Chicknir Bas. Oliarka Peninsula. Alaskat.

ELEODENDREA.<br>Elacodendron helveticum, Heer.

"Fl. Tert. Helv.," iii, p. 71, ple exxii, fire is
Leaves coriaceons, oval, equally narrowed upward to a blant apex and downward to a short petiole; secondary reins (seren) unequally distant, paithel, execpt the lowest, which are a litule more oblique and asceming higher parallel to tho borders; all camptodrome, arehed at a distance from the margins, forming a dombla series of festoous by anastomosing branches; smface rigose; borders mudnate.

The leaves according to Heer are obtusely dentate on the borders, hut part of the margin near the base of the leaf described above is destroyet. and Heer's fig. 5. loc. cit.. shows from the middle upward exactly the same undulations as the Alaska specimen. The only difference remarked on the leaf of Alaska is that it is more distinctly narrowed to the petiole. The specimen bears mumerous fragments of Tarodium distichum.

Hab.-Shumagin, West side of Alaska.

JUGLANDINEA.<br>Juglans Woodiana, Heer.

"Pft. x. Гancouver," p. 9, pl. ii, figs. 4-7.
Two fragmentary specimens.
IIab.-Chicknic Bay, Alaska.
.

## SPECIES OF PLANTS FROM THE CHALK BLUFFS OF CALIFORNIA.

A few fragmenls sent from this locality are figured, pl. xlvb, as supplement to the records obtained until now on the Flora of the remarkable formation of the Gold-bearing gravel of Nevada and California. The age of this formation, which I have considered as recent Miocene, or old Pliocene, is not positively ascertained. All the species known from that locality have been described in " Mem. of the Museum of Comp. Zool.," Harvard College, vol. vi, No. 2. They are recorded in the table of distribution. The fragments figured, pl. xlv $b$, represent the following species:

## Quercus convexa, Lesqx.

Plate XLV b, Figs. 5, 6.
"Mem. of the Museum," loc. cit., p. 4, pl. i, figs. 13, 17.
The species is most abundantly represented.
Ulmus californica, Lesqx.
Plate XLV b, Figs. 3, 4, 7.
Ibid., p. 15, pl. iv, figs. 1, 2; vi, fig. 7 a.
The leaves of this species are very variable, often simply dentate and lanceolate-acuminate.

Aralia accrifolia, Lesqx.
Plate XLV b, Fig. 1.
Species described from the Bad Lands, this vol., p. 232, pl. xlix, fig. 5.

## Aralia Zaddachi?, Heer.

Plate XLV b, figs. 8, 9.
Ibid, p. 21, pl. v, figs. 2, 3.
The fragments represent more distinctly the lobes of the species described, l. c., but do not add any more evidence to the retation of the leaves to $A$. Zaddachi of Heer.

Cercocarpus antiquus, Lesqx.
Plate XLVb, Fig. $\overbrace{\text {. }}$.
Ibid, p. 37, pl. x, figs. 6-11.
The leaf is belter preserved than any of those previously seen. Its characters are the same; the leaf is only broader and a little shorter; the short petiole is entirely preserved.



Table of Listribution of the North American Miocene IUssil I'lonts-Contimuth.


Tuble of Distribution of the North Amerian Mioeene Fossil Ilants-Continued.


Table of Distribution of the North American Mioccne Fossil Plants-Continned.



Table of Distribution of the North Imeriran Miocene Fossil Ilamts-Centinual.


| Tuble of Distribution of the North Imerican Miocene Fossil Plants-Continued. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - N.JMES OF'SI'ECIES. |  | $\begin{aligned} & \text { a } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { B } \\ & \text { E } \\ & \text { E } \\ & \text { E } \\ & \text { d } \\ & 0 \end{aligned}$ | $\begin{aligned} & a \\ & \stackrel{a}{E} \\ & \vdots \end{aligned}$ |  |  | 寺 |
| Cratagus aquidentata, Lex |  | + |  |  |  |  |  |  |
| Smute.e. |  |  |  |  |  |  |  |  |
| Spires Andersuti, IIr .- ................ | $+$ |  |  |  |  |  |  |  |
| Amygdilee. |  |  |  |  |  |  |  |  |
| Prunus corylifolia, $\mathrm{L} x$ |  |  | $+$ |  |  |  |  |  |
| ROSIFLOREX. |  |  |  |  |  |  |  |  |
| Cerencarpus antipuas, Lx. - |  |  |  |  |  | + |  |  |
| LeGUSLNOB. |  |  |  |  |  |  |  |  |
| Colutea oregonensis, Lx. |  |  |  | + |  |  |  |  |
| Cercis truncata, Lx.. |  |  | $+$ |  |  |  |  |  |
| Carpites. |  |  |  |  |  |  |  |  |
| Carpites cocculaides, Mr |  | C. \& W |  |  |  |  | Gr...... |  |
| PHYLLITES. |  |  |  |  |  |  |  |  |
| Phyllites carnosus, Ny... |  |  |  |  | $+$ |  |  |  |
| Phyllites cupanioides, Ny. |  |  |  |  | + |  |  |  |
| Phyllites venosus, Ny.. |  |  |  |  | + |  |  |  |

## REMARKS ON THE SPECIES OF MIOCENE PLANTS.

The 240 species of American Miocene plants named in the table represent the essential, more prominently distribuled genera of plants living now on the North American continent. The list has few species of Ferns, but they are all of types recognized in the present North American Flora, among them the living Onoclea sensibilis. It has a large number of Conifers, the more generally distributed being Tarodium distichum, the bald Cypress of the Southern States, and Sequoia Langslorfii, the ancestor of Sequoia sempervirens, the Redwood of California. It has few Monocotyledons, mostly Graminere and Cyperacea, with a Sagittaria, a Smilax, an Iris, and three species of Palms. The Dicotyledons are as yet represented in the Miocene of North America by five species of Myrica, one of which is the type of M. Californica, another, that of Comptonia asplenifotia; then by a number of species of Betula, Almus, Carpinus, Corylus, Fugus, Castanea, Quorcus, Salix, and Populus; indicating for the Miocene age of North America a distribution of the plants of these genera corresponding to that which we have at the present time. Of Liquidambar, there are two species. or two varieties of one, with six species of Ulmus, two of them representing $U$. Americana and $U$. fulvo, now living; then a number of species of Ficus, Laurus, Persea, Viburnum, Diospgros, Aralia. Corylus, Magnolia, Tilia, Acer, Sapindus, Ilex, Rkammus, Juglans, and Rhus. Indeed. of all the plants enumerated in the table there is onty one whose type is not reproduced in the present vegetation of the North American continent. It is a species referable to the Cinchonacea, described as Cinchomidim, and as yet of uncertain botanical affinity.

The representatives of some of the genera of the present North American arborescent vegetation have indeed not ret been recognized in the American Miocene Ftora.-Planert, Celtis, Curninus, Lirionlendron, Pteleu. Vitis, Evonimus. Asculus. Cephalanthes, Lialmia, Azulen, and a few others;
but speries of the first seven named genera lave been described in the Ftora of the old Tertiary. Even Liriodendron has many specific forms alrealy known in the Crelaccums Dakola Group. It is therefore rational to atmit that remains of these genera have not as yet been found in the American Miorene, though they have been represented in that formation; for they are in that of Europe. The same may be said of Azaler, two species of which are described from the Oligocene of Florissant, and perlaps also of Esculus, though no remains of the last genus have been remarked thus fir in the geological floras of this continent. Cephalenthes, Fintmid, and a number of others have not yet been found fossil anywhere: they may be of more recent origin or of later introduction; or. owing to peculiar cirumstances of habitat, their remains may not have been preserved. And also it must not be forgotlen that the relationship between the floras of two geological chochs cannot be so intimate that the links behween the regetable group can always be clearly followed.

The difference between the regetation of the present epoch and that of the Miocene lime is far greater in Europe than it is in America, though in Europe the Miocene Flora is now much better known than it is on this continent, where regetable paleontology is still in its infincy. Some years ngo. when the fossil Flora of America was as yet unknown, it was contended that the European Niocene Flora having its principal traits of analogy in the living Flora of the North American continent, where most of its types are reprodured. Hiese had been derived, at the end of the Miocene period, by migration through the fahulous Allantis. The typical analogy is now clearly explained by the affinity of the chamater of the Miocene Flora of both coutinents: for, as seen from the table, the distribution of the more important of its regetable lypes is equally marked on both sides of the Athantic. As species in common, there are in the Ferns. Lastrea Fischeri; in the Coniters, Turortinm distichem, Glyptostrobus Enioqueus, Sequoia Langsdenfï; in the Monocotyledons. Smitux gromedifolia; in the Dicolyledons, two speries of Jymict, two of Betnla, one eacla of Almus. Curpimus. Corylus, three of Fieyus, one of Chstancu, four of Quercus, ten of Salix and P'opulus, ind so on: so that, of the 240 species of the American Miocene, more than 50 are itlentified in that of Europe; and besides, a large number of others are so closely related that the specific differences are scarcely noticcable;
and when it becomes possible to eompare the specimens of both continent. identity will probably be admitted for most of them. Conmtiny these species of close affinity, it may be reasonably admitted that the relationship of the flomas is marked by one-half. At this epoch atl the phants entmomated above have disappeared from Emope. or at leak are represented there by different specific lypes.

The same degree of affinity is recognized between the North American Miocene Flora and that of the Arclic in Creenland and Spitzbergen. The table shows that 55 of the species are common to both. As most of these Arclic species are common to Enrope also, it has been smmised that the Floras of the present epoch had their origin in the north, and that firom there the vegetable forms have been gradually distributed soulhward. At first this opinion seemed objectionable on account of the deficiency in the Aretic Florit of southern types, which are found more marked in Alaska, and still lower in the Wextern Termitories of the United states: for, until recently, the genus known as indicating the lowest degree of latitude for the vegetation of the Miocone of Greenland was Jumbentir. This genus at the present epoch marks the northem limit of the soulhem zone of the American Flora, reathing latitude $41^{\circ}$ north. But now. Heer describes in the Vhth volume of the Artic Flora, which has only Green-
 Laurus, two of Aralia, six of Ifaymolia: with species of P'terospormites, S'epindus, Palurus, de.,-indeed of most of the genera repmesented in the Miocene Flora of southern Europe: the objection is therepore gromatlest.

As yet there is not conclusive heduction from a comparisun of the ftoras of the difierent localities from which specimens have been ohtained. in regard to the relative age of the gromps.

The Alaska Flora js known by the largest number of sperins: it may be laken for point of comparison. The different groups bidifornia and Oregon are unserviceable for that purpose, thase remole localitis remesenting each too few species. We therefore put in juxtaposition the species of Alaska, of Carbon, of the Bad Lands, of the Chalk Blatis of Califormia, and of the Fort Union Group.

Alaska has 73 species. of which 13 are found in the Bad Lands. 4 at Carbon, and 2 in the Chalk Bluffis. Is 46 species are described from the

Bad Lands, 32 from Carbon, and 54 from the Chalk Bluffs, considering the number only, by far the greatest degree of affinity is marked between Alaska and the Bad Lands.

The four species of Carbon also found at Alaska, Taxodium distichum, Corylus McQuarrï, Populus Arctica, and P. Richardsoni, are Arctic types common also to the Bad Lands.

Of the $1: 3$ species common to Alaska and the Bad Lands, 9 are Arctic; of these, 6 are European also; and besides, Populus latior, P. glandulifera, and Juglans nigella are European, but not as yet discovered in the Arctic Flora. The Bad Lands group, therefore, is truly Miocene, and shows scarcely any deriation from that of Alaska. The three species mentioned as not Arctic may be indicative of a somewhat warmer climate.

The Flora of the Chalk Bluffs shows positively the characters of a more recent period. developed under the influence of a higher degree of temperature. It has only two species in common with Alaska, Fagus antipofi and Populus Zaddachi, both found in the European Miocene-the first in the south of France, the second near the Baltic Sea. The subtropical character of the Flora is indicated by one species of Palm, a Castaneopsis. closely related to a living species of South California; numerous species of Quercus of the section of the evergreen oaks; two fine species of largeleaved Platamus; three species of Ficus of the group of F. tiliafolia; Persea psendo-carolinemsis, de. It has, besides, a number of plants of Miocene types, preserved in the Eastern slopes of the North American continent, now disappeared from the Western; three species of Ulmus, two of Magnolia, three of Phus, \&c.; and then a few peculiar species which are still found in Galifornia or North Mexico, of the genera Aralia, Acer, Sapindus, Cormus, Zizypheus, Zanthoxylon, Juglens, and Cercocarpers. This group is partly related to the Miocene and partly to the Flora of our epoch.

The Flora of the Fort Union Group, as already remarked, appears to have been made of specimens derived from different localities referable to different horizons. Except Equisetum globulosum, Glyptostrobus Europaus, and Sequoia Lanysdorfii, none of its species are identified with the Flora of Alaska. The first of the plants mamed above is in the Miocene Flora of the Bad Lands, with which that of the Fort Union Group has also in common: Corylus grandifolia, Populus cnneata, Viburnum asperam, Aralia nobikis,

Tilia antiqua, Juglans rhamoides: in all, 9 species, the only ones relating the group to the Miocenc. Others of its plants are identified with species of the Eocene Flora of the Laramie Group-Sabal Camplellii, especially, which, sent in very large and numerous specimens from the banks of the Yellowstone River, indicated as Miocene, is abundantly found in the Lignitic of the Raton Mountains and of Colorado; Platames Raynoldsii, $P$. Haydenii, and a few others, which, though not identified in the Eocene, are related to ils Flora by typical affinity; Aristolochia cordifolia, Catalpa crassifolia, Phyllites carnosus, $P$. cupanioides, \&c., all plants with coriaceous leaves and of coarse tissue, like those of the Dakota Group; and with these, Onocla sensibilis, Corylus rostrata, Corylus Americana, common plants of the present North American Flora.

From these meagre dala nothing appears definite but this: As the fossil floras of Carbon and the Bad Lands are related by 10 identical species, and those of the Bad Lands and Alaska by 13, these three groups apparently represent the same slage of the North American Miocene. The Flora of Carbon has only four species identified in that of Alaska; but this lesser degrec of affinity may be ascribed to difference in latilude.

## INDEN．

Abrtites Emmestinie，Lesux．，p． 33.
Abes nevalensis，Lewidx．，1． 139.
Aracia septuntrionalis，Lesqu．，p．20ts，pl．xxxix，figs．15， 15 a．
durr trquilentatum，Lesqx．，p． 180.
Arcreare iowm，llent，p． 233 ，pl xlix，figs． 8,0 ．


A．tr triluhithm，vair．produrtam，lleur（Al．Br．？）．pr．253，pl． 1ix．Gign．1－4．
Acer，spectus，p．1＊1，pl．xasvi，lige，7，8．
Autrites pristinns，Nowby，prs． 3 ．
Aeorns hrachystachey，Inw $\mathbf{r}$ ，p． 143.
Adiantites gracillimus，Lewqx．p．137．pl．xxi，fig． 8.
dilanthne longepetiolata，Lespx．，p，147，pl．xl，figs．6， 7.

Aluita gramlifolias，Nowly ，p． 3 ．



Almus corlata，Lexfx．，p．1：1；flowner，pl．xxyix，f． 3.

Almus Rensusequa，Lesalx．ן． 70.
Almas inzquilateralian，Lesič．，p．1．i．
Almur Keforstrinii，Goepp．，l． 151.


Anjerlophylhum ovitum，heans．It bas．

 lise 6.

Ampromeda delicatula，Letsus．，p 175，pll xxsiv，figs．10， 11
Andromeda S＇atatorii，Meev，p． 60.
Anthonedat rhomboidalis，Lesifx．，p． 176.
Anisuphylum semi－alatum，Lasux．，p． 01.
Abona roptacea，Lesigu．，1． 7.
Anonat robust．，Lesqu．，p．124，pl．xx，tix f．

Autholithes improlma，Lespx．，p．204，pl．xl，tizs．20， 21



Aralial concrota，Lesqu，p．64，pl．is，tiga，3－5．


Aralial motat．i，Lesurx ，be ana．

Aralia＇puinquepartitis，Lesqx．，p． 62.


Aralia Saportanea，Las， firs． $1,2$.
Aralia suhe－marginata，Lasux，p． 63.

Aralia Towneri，Lesux－，p．62，pl．vi，tiœ． 4.
A ralia tripartila，Lespry，p．82．

Aramearia spathulata，Newhy，p． 30.
Aristolochis i］＋ntata，I［ewr，$p$ ． 59.
Armode Goepperti？Minust．，p． 141.

Aspidiophylhum duatatum，Loselx ，p． 88.
Aspinioplyylum platimifolinm，Lesux．，p．88，pl．ii，lis．t．
 fise 1－5；siv，fig． 1.




Betul：＂lliptian，sap．， 1 ・ロ4，pl hi，fig． 6 ．
Cetnla Flarissanti，Lasqx．，p． $1 \% 0$, pl．x crif，fís． 11.

Betnlat truncotia，Lesplx，p．1．0），whexiai，fise 7,8 ．
Betulites dentienlatiow，Mear，p． 36 ．

Callicoma microphylle，lit p 140 ．






Cirpulithes，specits？［1．！1．
Caryantionornm，Nowloy．，p．2ant．


Carenterstette，lun，prom．




Castanea inturnella，Leratix，f．15th．


Crlant rophyllam ansidulam，Lesply．，P．8t．
 tir 10.



Celtis McCoshii, Lesqx., p. 163, p. xxyviii, figno 7, s
Celtis 1 orata, Lasqu., r. G9.

© "ticis truncata, Lesinc., p. 237

"hara! flomerata, Lesqx., p. 135, pl. xxi, fig. 12



('inuamomum siffuhzesi, 15eer, p]r 5t, 165, pl. xxxpiii, fig. 6.

C'issites allinis, Lesqu., p. 6i.
Cissites harkenianus, Lesug., p. 67, pel iii, figs. 3. 4.

Cissites iusiguis, Heer, $\boldsymbol{\rho}^{6}$. 06.
Cissites sulisburia folins, Lesqx., p gh


Corshlus Mc@aurii, Forbes, p. 223, pl, xlix, fig. 4.
Comos arthitara, IIcer, p. 20 ?
Comuptonil ('uspiadata, Lestr., p. 25s.
Comptonia pramissa, Lesqu., p. 250.
Cratiegus accrifulia, Lesis., p. 198, pl. xxxsi, fig. 10.
Cypurites Haydenii, Lésifx., p. 140, pl. xxiii, fige $1-3$,
Cyperns Chavanesi, 1Ierr, p. 14 .

Cytisus modestus, Lesqu., p 200, 1 ${ }^{1}$, ivis, tigs. 9-11.
Dalh riria cuutifolia, Mecr, l. 200. ן1 xasiv, figs. 0. 7.
Dioscorea? erctacea, Lesqx., p. 3 t
Diospyros annligun, Leses., p. 60.
Dinspyros anceps, Heer, p. 60, 201
Jiospryos bachysepala, A. Br., p. 17t. jl. xxxir, figs. 1, 2.
Diospyrus Copennı, lesqx. p. 175, plaxir, fig. 3.
Diuspyrus primicva, 以eer, p. 59.
Diospreros rotumditelia, Lesqx., p. 60 .
Diplazimm Murllei, Hcer, p. 138.

Dr,wphylmm (onercus) Jlulmesii, Lesgx., p. 38, pl. ir, fig. 8
Dryopbylam (Quescus) latifoliam, Lesqx., p. 37, pl. is, figs 1, 2.
Dryop'sham (Quereus) primorliale, Lesqs., p. 37.
Elirodendron hedreticum, Ilect, P. 262.

Engelhurdtia oxyptera, S.jp., f. 192.

Eøpisetnm Lacilenii, Lesqx., p. 186.
Equisetum nodosum, Lest]x., b. $^{2} 5$.
Equisitum Wyouingense, Lesgx., p. 13f.
Equisutun, species? 1r. 239, ful, firs. 7,8 .
Eranelbhylum imbriatum, Lesifx. P. 91.
Enc:aptus Amerienna, Lesga., p. 197.
Evonymus thesifiliay, Laspy., p. 183, pl xawiii, fig 13.
Fastas creticen, Newh!
Fagus Deucalimis, U'ug., p. : 50.
Factis Fewnise, Unir. pr. 153.

Ficns: alkialio. Laspx., p. 164, fl. xliv, tigs. 7-9

Finus arenarea, Lesyx. 1. 103

Fii us asimintetulia, p 250 , pll lvi, tirs. 1-3.







Ficus laurophylla, Lesqx., p. 49, pl. i, tigs. 12, 13.
Ficus magnoliefolia, Lesqx., p. 47, pl. x vii, figs. 5-6.
Ficns multinervis, Heer, p. 163.
Ficus primerdi:Alis, Heer, p. 45.
Ficus tenuinervis, Lesqx., p. 164, pl. xliv, tig. 4.
Ficus tiliafolia, A. Br., p. $2=8$.
Ficus Ungeri, Lesqx., p. 163, pl. xlir, figs. 1-3.
Ficus Wy yomingiaua, Lesqx., p. 164.
F'labellaria Florissauti, Lessqx., p. 144, pl. xxiv, fige. 1-2e.
Flabellaria? minima, Lesqx., p. 34.
Fontiualis pristida, Lesqx., p. 135, pl. xxi, tig. 9.
Fraxinus abbreviata, Lesqx, p. 170, pl. xxvini, figs. 5, 6.
lraxinus Brownellii, Lesqx., p. 171.
Fraxidus coccuica, Lesux., p. 123, pl. $\mathbf{x}$, 6us. 1-3.
Frasinus lleerii, Lesqx., p. 109, pl. xxxiii, figs. 5, 6.
Fraxinus Libbeyi, Lesqx., p. 171, pl. xxvii, figs. 5-7, 9.
Fraxinus n:espilifolia, Lesqx., p. 169, pl. xxxiii, figs. 7-12.
Praxinus? myricefolia, Lesis., p. 170, pll. xxxiii, figs. J3, I4.
Fraxinut predicta, Heer, I 109.
Fraxinns Unqeni, Lesqx., p. 171.
Geonomites Schimperi, Lesqx., p. 24l, pl. I, tir. 9.
Gleicheuia Kurriana, Heer, p. 26.
Gleiehenia Nordensliölli, Heer, p. 26, pl. i, figs. 1, 1n.
(ilyptostrobns Emopens, sar. Ungeri, Heer, p. 292, pl. slvi,
fies. 1, $1^{\text {a }}$.
Glyptostrolma gracillimus, Lesqx., p. 32, pl. i, figs. $0,6^{6}$. Glyptostrolus Uugeri? Metr, p. 139, pl. xxii, figs 1-63. Grewia amioulata, Lesqx., p. 252, pl. $1 \mathrm{~F}_{\mathrm{t}}$ fig. 1.
Grewiopsia Haydenii, Lesqx., p, 83.
Gpmonorama Haydenif, Lesyx., p. 12: pl. xix, fig. 2.
Hamamelites ecraatus. Lesqx., p. 71, pl. ir, fig. 3.
Hamamelitus kanameamm, Lesqx., p. 70, pl. 4, fig. 5.
IIamarnelites quadraugulatis, Lesqx., p. 70.
Ilamamelites quercifolins, Lesux., p. 71.
Hamamelites tenuivervis, Lesoss, p. 70.
Hedera margidata, Lesix. , ]. 177, pl. xl, fig. 8.
Hedera ornlis, Lesid., $\mathrm{P}, 65$.
Iledera plıtabiden, Lesqu., p. 6.5, pl. iii, figs. 5, 6.
Hedera schimperi, Lesqx., p. 65, pl. is, fig. 7.
Hemitelites Torellii, Heer, ll. 257.
Lywemophylhmm eretaceum, Lesyx., 1. 26 .
IIymum llaydenii, Lestre., p. 136.

110s , lissimilis, Losqs., p. 166.
lles arambifulin, Lesqu., p. 187, pl. xxx viii, fig. 1.
Ilex Ǩniphtiadolis, Lése]x., p. 18s, pl. xl, figs. f, 5.

bex mernployla, Lesyx., p. 1e6.


Ilex stenophallu, Ung., p. 1ats.
fex stran_ular, Lessıx., p. S4, „l. iii, fig. 7 .
lles subleuticulata, Jusqu , p. 186.
lex wromingiana, Lesqx., pr 186

Isoutes hervifolins, Lesids., 1136.
Juglans achminata, Hect, p. 190.
Jurlans allialuma Lese[x. . h. 190 .


Ju,- lans deutinulata, IIecr, p. 19 .
Ju_lans Filurissmoti, Lesqu., pr 190.


Iminns Scbimperi, Lesyv., [" 100.

Lastrat (Goniopteris) Fishomi, Heur, p. 239, pl. l, tigs. 1. 1*

Lastrira (Fonnupheris) internmedia, Lesqu., p. 138.
 6-8.

Lamerus macrociapa, Lesqx., p. 52.

Luturus nelnascensis, Lest[x., [1. 52.
Laurus miner ps, Herr, p. 290, pl. Ivini, fig. 2.

Laurus malicifolia, La:
Legmminositus altermans, Lasqx., p. 20\%.
Leguminosites cassiondes, Lespax., P. 203.
Laguminosites cultrithrmis, L+sqx., p. 86, pl. x, tig. 4.
Leguminusiters serrulatha, Leaqx., p, 202, pl. xxxix, figs. 7, 8.
Leguminosit's, spuciles? p. elos, pl. xxxix, figs. 16, 17.

Liquidambar Finopaum, A. Is', p. 159, pl. xxxii, fig. 1.

Lirioultman aruminatnm, Lesax., ए. 74.
Lirjudemition erncifume, Lesinx., p. 74.
Lisionhontrongiqanteum, Lisegx., p. 74.
Liriouledion intermedium, Jesqx., p. 74.
Lirioutentron Meekii, Herr, p. т3.
Lirimbemlron piunatifidum, Lesqx., p. 75.
Liriondendion primicrum, Nutby., p. 73.
Linioherflon sumi-alatum, Lesex., p. 75.
Liriopliyllum Leekwithii, Lesgr., p. 76, pl. x, fg. 1.
Liri"phyllum ohcorlatnm, Lespx., p. 77.
Líiophtyllnm popnloides, Lesux., p. TG, [1. xi, fige. $1,2$.
Lumatia abbreviata, Lesqx., p. 167, pl. xliii, tig. 17.
Lomatia acutilolv, Lesqx., p. 16í, pl. sliii, figs. 11-16, 20.
Lomatia hakexjolia, Lisqx., p. 16b, pl. sxxii, fy. 10.
Lomatia interpupta, Lesqx., p. 167, ph. xhiii, fies. 18, 19.
Lomatia microphylla, Lesqx, p. 167.
Lomatia Suportanea, Lestfx., p. 51, pl. iii, fig. 8.
Lomatia Saportanea, var. longifulia, Lesqx., p. 52.
Lomatia spinosa, Lesprx., p. 166, pl. xlifi, tig. 1.
Lomatia turminalis, Lesqx., p. 166, pl. xlini, figa. 2- 7.
Lomatia tripartita, Lesqx., p. 164, pl. xliii, tigs. 8-10.
Lycopodimm prominens, Lesidx., p. 137.
Lygodimm Dentoni, Lr'sefx., p. 138.
Lygodimm neuropteroiles, Lasepx.1 1. 138.
Legoolium trichomanoiden, Lesixx., ]r. 27.
Macreightia rassa, Lesilx., ${ }^{\text {r. } 175, ~ p l . ~ x x s i r, ~ i g e s . ~ 16, ~} 17$.
Ma, molia memnans, Meer, p. 72.
Magnolia Caprllini, Heer, p. 72,
Magnolia IIiggatiana, Lesux., 1*- 233.
Magnolia Nurdenskiölti, Heer, p. 262.
Magnolia oborata, Newly., p. 73.
Magnolia speciosa, Mecr, p. T2.
Mamnelia tenaifelia, Lu-spx., fr. 73.
Magnolia tenuinervis, Lesqu., p. 124, pl. xix, tig. $\begin{gathered} \\ \text {. }\end{gathered}$
Mannelia, speries, p. 73, pl. si, fig. 6.
Menispermites acntilobus, L•splx., p. Ts, pl. xiv, fís. a.
Monispermites cyclophyllus, Lesqx., p, 7ta, pl. xv, tiq. 3.

Mrnispermites obtusilohus, h.s.fx., p. T8, pl. xv, ti!. 4 .


Mrnispermites salinnsis, Lestx, $p$ Ts.
Mimosites lineanifoliuq, Lexyx., p. 20s, pl. xxxrii, fits. 10-13.
3lasurbylham conuplicatum, Iasqx., p. 143.
Myrica acuminatit, Uur., p. 14.


Myrica Bolamleri, Léqu. P. 14R.

Myrina Brongaiarti ? Ett., p. 149.


Myrjea dahotensim, Lestes., p. 35, pl. is, fig. 9.
Myrica diversifolial, Lu*sux., [. 118, pl. xxv, figs. 6-15; [. 211 , pl. 1, fic. 10.
Myrima lallax, Le:six., I. 147, pl. xxxii, lira. 11-16.
Myrica insiguis, Lests., ]. 150.
My rica latiloba, Ileer, var. acutiloba, Itesqx., p. 149.
Hyrica Lulwipii. Schimu., p. 14.
Myrica migicans, Leseg , p. 14s.

Myrica olutusa, L t'silx., l. 35.
Myrica purtita, Lerts.., p. 148.
Myrica pulymorpha, Schimp., p. 146, pl. xxv, fige. 1, 2.
Myrica didida, Lesqu , p. 145, pl. xxp, tions. 3, 4.

Myrica Sternbergii, Lesqx , p. 35.
Myriea umblata, Lesqx., 1 . 148 .
Myrica Zachariensis, Sap., p. 146, pl. xxv, fig. 5 ; xlv*, figs.6-9.
Myrice semina, Lesqx., p. 36 .
Myısine latifolia, Leerqx., p. 173, pl. xxxviii, tig. 16.
Myrtus oreqonensis, Lesqx., p. 254, pl. Isiii, fig. 10.
Najadopsis rugnlosa, Lestu., p. 142, pl. xxiii, 名g. 7.
Negumdoides acutitelius, Lesux., p. 83.
Nysна aretica, Merr, p. 2 fl.
Olea premiss:1, Le'stry., p. 168, pl. xxxiii, fig. 1.
Oreonlaphne cretacea, Lespls, p. 1. 5\%.
Oreoloxites plicatus, Lesplx., p. 122, pl. 5 viii, figs. 1-4.
Ommunda major, Lesilx., p. 121, pl. xviii, fig. 5.
Osmanda Torellii, Hecr, p. 257.
Ostrya betuloulps, Lesqx., p. 151 .
Paliurus Florissanti, Lesqx., p. 188.
Paliurus membranacens, Lesqx., p. 85.
Paliurns orbiculatus, Sap., p. 188, pl. xxxviii, f. 12.
Palmocarpon! globosum, Lesqx., p. 14t, pl.xxif, fig 3.
Pecopteris Neltaskana, IIerr, p. 26.
Pecopteris Torellii, Itcer, p. 257.
Persea Lecunteana, Lesqx, p. 53.
Persea Sternhersii, Lesty., p. 53.
Pbrasmites alaskuna, ILur, p. 141.
Phragmites cretacebs, LesqX., p. 34.
Phylites amorphus, Lests., p. 91.
Phyllites betulatolins, Li:aqx., p. 36.
Pbyllites Cotiaua, Lesyx., p. 91.
Phyllites rhoifolins, Lesila., $\mathrm{l}^{4}$. th.
Phyllites thombomleus, Luspx., p. 91.
Phrilites monhomat ne, Lemyx., p. 91.
Phyllites Vanonir, IIfer, 1. 91.
Phyllaclahbs snlintieritulius, Lesqx., p. 30 .


Pinum palaomtrobnin / Ett., p. l:s.s.


 figm 15-20.
Plan raz Cenquri, Eft., p. 16:









1’latamas primirva, Lastri, ]. 44.
Joweitas lievis, llar, fr. Ifo.

Pologaninan :








Popmbites chomas. Iarex, p. 44.

Populites Lamantrionsis, Le*pX., p 44.
Populites s'alisburiofolius, Lesqx., $\mathbf{1}^{1}$ fib.


 fis. 10.
Populas balsamoidns? Focppr, var. latifolia, p. 158, pl, xxi, fis. 4.
Pounlus? cordifolia, N.wby., fr. 43.

Papulus Debeyana, IIcer, p. W6.
Populus decipiens, Lempx, p. 225.
Fupulas dliptica, Newby., p 43.
Populus crimia, Gor-p. P. 220 .


Popmlns lating trumenta, A. Er, p. 226, pl. xlvi, fig. 14.
Populas litimiosa, Huer, $\mathrm{p}^{3}$ 4:3.
Populas micrephylla, Newby., p. 43.

Populay Ridbarmsoni, Ilcer, pp. 159, 224, :060.



1'otamogeton wryicnlatus, I. Er, fr.142.



























Qucrate Dallii, hesty., p. 250.
Qu'ाeng lentoni, Lesqx., p. 22t, pl. slyiti, figs. 1, 11.
 195. 4.

Qurrens Ellswouthiana, lesyx., p. 39.

(buctus fur incris, Jossu, 1. 244, fo. liii, fles. 8-14; liv, tirs. 1, 2.






Qurreus Osharmi, Lasix., p 1.54, fl. xxxviii, fig. 17.


Quereus pyritulia, Lusix., p 154, jol. xxiii, tig. 14.
Qurrens salicifolia, Newber. pl. 40.

Qurrens simata, N. whey., p. 41

Rhammas butaths ? Sap, p 18!, pl. xasviii, fix. 15.
Illatmunt whetilina, Lexix., p. 189, pl. xxxviii, fig. 14.
Jhammas prunifulins, Lequg x. p. $85^{\circ}$.






Rhas IIIliita, Lesqu, p. 194. jl nli, firs. 12-15.


Ithas tifalioidus, Lexqx., p 10 .
Phlus vexama, lesqx., p. 195, pl. xli, fír. 20.


S:lix : 1 ,



Sulis tlexumsi, Newber. 1. 43.


Sillis media, Ilver, f. 1.7


Silix protu; folith, Lescur., p. 42. pl. j, figs. 14-16; xvi, fig. 3.

Salix vatimus, Gueppr, p. 2ti, ph. (s, fig. 2.

Salvinia erolothylla, Lexq y. p. $1: 6$.

 xxaix, lic 12.
Sapimlus coriaterng, Lestas., p. 181.


 dic.





Sissafias acutiholmum, Lesgx., p. 56, pl. v, fige. l-5.






 Sissafras ( $A$ ralinpisis) mectrvatum, Lesg X., b. 57. Sissaftas (Ir,bunsis) sulimequifolium, LesqX., p. 50.

 Supuia combti, Lésgx., p. 32, pl. 1, figs. 5, 7, 9. Sugutia ditaliziata? St, ]. 31. Serpuia formasa, Lesux., p. 33.
 Sequoia Lanmedotii, lingt, pp. 138, 223, $\because 40$, pl. l, tigs. 2-4.


Sphonotctis curru*ata, Newby., „. 26.
Sphenopterin Guyottii, Lestyx., p. 137, pl. xxi, fige. 1-7.
Staphyleit icumanata, Lesgx., p. 183, ph. xxavi, figs. 1-4.
Sloculia :

Storeulia morlesta, Sap., p. 12i, ph. sx, fiem. 5 .
Sterendia whtusilola, Lesi., fr. 82. ןl. viii, tim. 3.
Stuculia rigida, Lesux, p. 179, plaxxiv, fig, 12.

T:


Thuites callitrina, Ung., p. 139.
'1'hnites (Channecyparia) alaskensis, Losux, 10.
Thnitum catasum, lesufx. js. 32.
Thusa Gammani, Lesix. p. 130.
Tilia :atifua, Nevby., 1.: 233 .

Todece Naportunca, Lisgi., p. 51.








Chman trmanurvis, lisgge. p. 160.
Vaccininm rationlatmon? Al. Lre, Iph. 176, 261.




Weinmanni, Haydroii, Lesqx., p. 178, ph. Nlii, 1íss. 1-7.
Wrimmmaia interyitilia, Lesqx., p. 178. gl. vlia, fign. E-13.

Whalrinatomia linenafolia, Lesg

Zizyphas Berliwithii, Lesqx., [. 129, [1]. xix, tig. 5.
Zigyphas cinmamomaides, Lesux. p. 180.
Zonarites dimitatus, Gein., p. 25.

## PLATEI.

## Figures.

1, Ia. Gleichemia Nombnskioldi, Iber, p. 26.
$\Rightarrow$ Torreya oblanceotata, Lesax., b. 30.
: , d. Pimus Quensterlti, Heur, p, 解.

G-Gb. Gilyptostrohus gracilimus, Lesqx., p. 32.
8-8: holepis! species, p. 3:
I0, 11. Pombzamites oblungra, Lesix., p. 28.
I2, 13. Ficas kamphylla, Lesqs., 1. 49.
14-16. Sahx proterefolia, Lespx., p. 42.


## PLATE II.

Figures
1-: Protophyllum ereduerioides, Lesqx., p. 90.
4. Aspidioplylhum patanifolinm, Lesqx., p. 88.
5. Andromeda atifuis, Lesqx., p. 60.

6, 4 a. Fagns eretacea, Niewby., p. 37.



1. Platamm Heerii, Lasid., 1. H

3,4. Cissites harkeriams, lexpx., p. 67.
5, 6. Hedera platanoinea, Lexigx., p. G8.
2. Ilex straugulata, Lespx., 1. 4 .
3. Lomatia Saportanma, Lesodx, p. 51.

9, 10. Lamrus proteiefolia, Lesqx., 1. 52.


## PLATE IV.

## Figures.

1, $\because$. Dryophyllum latifolium, Lesqx., p. 37
3. Hamamelites corlatus, Lesqx., p. 71 .
4. D.-misprermites populifolius, Lesqx., p. 79 .
5. Htamamelites kansaseanus, Lesq[x., p. 70.
6. Protophyllum minus, Lesqx., p. 89.
7. Hedera Schmperi, Lesqx., l'. 65.
8. Drophyllnm Holmesii, Lesqx., p. 33 .
9. Myrica dakoteusis, Lesqx., p. 35 .


Figures.

1. 万. Sassafras acutitobum, Lasqu., p. 56.
2. Cissites Heerii, Lesqu., b. iz .

3,4. Cis ites acumiuatus, Lesqx., p. 67.
rherackoon


## Oretaceous.

PLATE VI.
Figures.
1-3. Sterculia lugubris, Lesqx., p. 81.
4. Aralia Towneri, Lesqx, 1. 62.

.

1. Sassatras (Araliopsis) blatanoides, Lesqx., p. 58.
$\because, \therefore$ Aralia radiata, Lesqx., b, bit.
2. Aralia tenninervis, Lessa., p. 63.
3. Platanns IMeerii, Lesin., 1. 44 .


## Figures.

1, ㄹ. Aralia Saportanea, Lesqx., p, i1.
3. Sterculia obtusiloba, Lesqx., b. © 2 .
－Rばないのはいい


## Figures.

1,2. Aralia Saportanea, Leoqs., p. 61.
3-5. Aralia concreta, Lesqx., 1. fi4.

.

Figures

1. Liriophyllum Beckwithii, Lesqx., p. 76.
$\therefore, \therefore$ Sterculia aperta, Lesqx., p. $5:$.
2. Leguminosites cultritormis, Lesqx., p. 86.
(REVACFOOS


Figures.
1, 2. Liriophyllum propuloider, Lesqx., p. Ati.
3, 4. Aralia formosa, Heer, p. 60.
5. Carpites liriophylli, Lesqx., p. 77.
6. Magnolia species, p. 73 .


-

## Cretaceous

PLATEXII.
Figures.

1. Aspidiophyllum trilobatum, Lesqx., p. 87.



## Cretacomes

## PLATEXIII.

1-i. Aypidiophyllam trilohatum, Leagx., p. 8 .


Figures.

1. Aspidiophyllum trilobatum, Lesqx., p. 87.
2. Menispermites acutilobus, Lesgy., p. 78.
3. Liquidambar integrifolimm, Lesqx., p. 45
4. Ficus distorta, Lesqx., p. 48.


## Cretareots.

PLATESV.
Figures

2. Menispermites cyelophyllus, Lespx., $1,79$.
4. Menispermites ohtusimhms, Lesqx., p. 7e.
5. Menispermites oralis, Laspe., p. 80.

-

## Figures


3. Salix proterfolia, Lespx., 1. 4:.
4. Laurus modesta, Lespa., l. 5 .

万. Ficns Beckwithii, Lespx., p. 46 .
(i. Laurus protexfolia, Lesux., p. 5 .


Th. Offorlen,
I. S. (imolngist.

## Cretaceous.

## PLATEXVII.

Figures.
1,2. Quercus Morrisoniana, Lesqx., p. 40.
3, 4. Fiens Beckwithii, Lesqx., p. 46.
5, 6. Ficus magnoliorfolia, Lesqx.. p. 47

-

## Eorenc.





## Eocene.

LATEXIX.
Figures.

1. Pteris erosa, Lesqx., p. $1 \because 1$.
2. Gymnogramma Haydenii, Lesqx., p. 1:2.

3, 4. Aralia pungens, Lesqx., p. 1 23 .
5. Zizyphus Beckwithii, Lesqx., p. 125.
6. Magnolia tenuinervis, Lesqx., p. l:4.

TEA:TIAN


## Eocene

PLATE SX.
Fisure


$\therefore$ Sterentat montesta, sapop, 1s.



## Oligocene.

## PLATE XXI.

Figues.
1.7. Sphenopteris Guyottii, Les! $x$. p. 157.
8. Adiantites gracillimus, Lesux., p. 137.
9. Fontinalis pristina, LesqX., 1 . 135.

11, I1. Salvinia Allent, Lesqx., p. 136 .
12. Chara? fromerata, Lesqx., p. 135.
13. Pinus Florissanti, Lesqx., p. 133.

14, 14a. Widdringtonia lingnatolia, Lesqx., p. 139.


## 1) Mrocrue.

PLATE NXIT.
FiLuris.



## Fizures.

1-3. Cyperites Ilaydenii, Lespx., l. 140.
4, 4a. Typh latissima, Al. In., p. 111.
5, 6. Potamogeton verticillatus, Lesqx., p. 14:.
7. Najadopsis rugralosa, Lesqx., p. 142.
8. Lemna penicillata, Lesix.. I' 143.


## оиірокте.

PLATE XXIV.

Fisurto.
1-: Fa. Flabellaria Floriswati, Lempx. 1. 11t.



Fignres
1-6. Myrica polymorpla, schp., p. 546.
3, 4. Myrica rigida, Lesqx. 1, 145.
б. Myrica Zacharieusis, Sap., p. I45.

6-I5. Myria diversifolia, Lasqx., p. 148.


$$
\cdot
$$

.

## Oligocene.

PLATE XXVI.
Figures.
1-1. Myrica amygdalina, Sap., p. 147.
5-14. Myrica callicomefolia, Lesqx., p. 146.


Figures
1-4, 8. Ulmus Branmii, Heer, 1. 14il

- $-7,9$. Fraxinus Libheyi, Lesifx., 1.171.

10. Carpinus attenuatia, LesqX., p. 152.
11. Betula Florissanti, Lesqx., p. 150.

12-14. Carpinus fraterna, Lesqx., p. 152.


Figures.
1, 3 . Ulman llillise, Lesig., p. 160.
?,4. Uhans brownellii, Lesqx., p. 160 .
5, i. Fraximus ahbreviata, Lespx., p. 170.
T, S. Alnus trumcata, Leaqx., p. 150.
9. Quercus mediterramea, Ung., p. 153.
10. Quercus casiancopsis, Lesqx.. p. $\mathbf{1 5 5}$.

1] 13. Quereus mirna, Unge, p. 155.
1:. Quereus rlrymoja, Ung., p. 15.
14. Quercus perifolia, Lesqx., p. 154.
15. Porana Speirii, Lesqx., p. 17\%.


Figures.
1-13. Planera longıfolia, Lesqx., p. 161.
14-27. Planera longifolia var. myricafoha, Lendx. p. 161.
11.1:11.111)


## Figures.

1-8. Populus Heerii, Sap., p. 157.
(11.1:"11.11)


## Oligocene.

## PLATE XXXI.

Figutes
1, $\because$ Salix amygdalifolia, Lesqu., l. 156.
$\therefore$ Salix Libluexi, Lesqx., p. $15 \%$.
4. Populum balsamoides. lleer, var. latifulia, p. 158.

5-- C. Cercis purvifolia, Lesqx., p. :01.
$\therefore$ Pupulus Zaddachi, Iter, p. LE.
9. 10. Celastrinites clegans, Lesqx., p. 18.
11. Populas Heerii, Sap., p. 157.
$1 \because$ Qutcus morifolia? lig., p. 1ヵ\%.

## PLATE XXXII.

figum.

1. Liquidambar Emropeman, Al. Bus, 1r. 150
$\because$ Sapimulus infexns, Lesux., !. lse.



11-16. Myrica fillax, Lesix., 1, 147.
1\%, 1 . Myrina Seattii, lestax. ]. 147.

シ0. Aistlonlathes obtanilobus, besplx., p. 203.



## Oligocene.

PLATEXXXIII.
Figures

1. Olea premissa, Lesqx., pr lis.

P-4. Celastrus faxinifolins, Lessf., p, lot.
5, 6. Fraximus Merii, Lesqx., p. 169.
7-1:. Fraxinus mespilifolia, Lesix., p. 160.
13, 14. Fraxinns myricafola, Lesqx., p. 170.
15, 16. Pimelea delicatula, $1.4 \mathrm{sqx}, \mathrm{p} .168$.


## Jíutes.

1, 施 Diosp! mos brachysepala, N. lin., 1. 174.



$\therefore$. Tilia populitolia, Lengx., p. 179.
10, 11. Ajdeomerla clelicatala, Lesofx., l' 175.
1:. Sternhla risura, Lexifs., p. 17.
l:̈-1 $=$, Jutholithes amouns, Lesyx., 1. 203 .
16, 17. Nacreightia crassa, Lebgx., 1'. 175.

TENTSAIS


## Oligocone. <br> PLATE XXXV.

Figure.

1. Aralia dibsecta, Lesqx., p. 176.

.

## Oligocene.

PLATEXXXVI.
Figures
1-4. Staphylea acuminata, Lesqx., p. 183.
5. Dorlonea seeds, p. 182.

6,9 . Acer inlivisum, Lesqx., p. $1 \geq 0$.
$7,8$. Acer species, P . 181.
10. Cratiegus acerifolia, Li•six., p. 198.

## PLATE XXXVI.

## Figures.

1-3. Sapinclus angustifolius, Lesqx., p. I81.
9. Sapindus lancifolius, Lesqx., p. 182.

10-1:3. Mimosites linearifolius, Lesqx., !. 203.


Oligocene.

## PLATE XXXVII.

## Figures.

1. Ilex grandifolia, Lesqx., $]^{1.18 \pi}$.
-5. Hex quercilolia, Lesqx., $\mathrm{l}^{\prime}$. 186 .
2. Cinnamomman Scheuchzeri, Heer, p. 165.

7,8. C'eltis McCushii, Lesqu., J. IC:3.
9-11. Populus oxyplylla, Sap., p. 159.
12. Paliurus orhiculatus, Sap., $\mathrm{I}^{\text {b }}$ 18R.
13. Evonymus hexifolin, Léqx., j. 123.
14. Jhammus oleafolins, Lesqx., p. 1:9.
15. Rhammes motatus? Sap., p. 189.
16. Myrsine Iatifolia, Lesqx., p. 173.
17. Quereus Osbormii, Lesex., p. 154.


## Oligocene:

## PLATEXXXIX.

Figures.
1, $\therefore$, 13. Carya bilinica, Ung., p. 19'.
3. Flowers of Almus, p. 151.
4. Carya ros'rata, Goepp., p. 191.
5. Juglans costata, Ung., p. 190.
6. Carya Bruckmanni? lleer, p. 191.

7, B. Legummosites sermulatus, Lesqx., p. 202.
9-11. Cytisus morlestus, Lesqx. p. 200.
12. Sipiudus angustifolius, Lesqx., p. 181.
14. Cytisus Florissantiauns, Lesqx.,p. 200. 15, 1ia. Actcia septentrionalis, Lesqx., p. 203. 1r, 17. Lequminosites species, p. 203 .


## PLATEXL.

Fl_410
1-i. Xanthoxylon spiverfolinm, leaqx., p. 196.


$\therefore$ Hedera marimata, Leagx. 1 1. 17\%.
! 1. Poknmuinm acmminatum, Lestax., I. D01.

11. Amelanchior trpica, Lardx., I. Iok.

1?-15. Amydhalng ertacilis, Lesqx., p. 199.

1-. Cimpites miliodes, Lesfx., p. D'4.
19. C'arpites gemmacen*, Lesqx. p. 204.
$\because 1 . \because 1$. Antholithes improbus, Lesqx., p. 204.


## PLATEXLI.

## Figures

1, 2. Rhus fraterna, Lesfa., p. 193.
3. Rhus coriarioinles, Lesqx., P. 193.

4-10. Weimmanmia olitusifulia, Lesfx., p. 178.
11. Rhus cassioides, Lesqx., p. 143.

12-15. Rhus Hilliz, Lesqx., p. 194.
16-19. Rhus subrhomboidalis, Lesqx., p. 195.
20. Rhus vexans, Lesqx. , p. 195.


## oligncene. <br> PLATEXLII.

Figures.
1-7. Weimmannia Haydevia, Lessx., p. 178.
<-13. Weinmamaia integrifolia, Lesqx., p. 178.
14-17. Rlus acuminata, Lesqx., p. 194.


-

## PLATEXLII.

## Figures.

1. Lomatia spinosa, Lesqux.; p. lüb.

2-7. Lomatia terminalis, Lesqx., p. 166.
8-10. Lomatia tripartita, Lesqx., p. 166.
-11-16,20. Lomatia acutiluba, Lesqx., p . 167.
17. Lomatia abbreviata, Lesqx., p. 167.

18, 19. Lomatia interrupta, Lesqx., p. 167.

THRTJARY


Figures.
1-3. Ficus Ungeri, Lesqx., p. 163.
4. Ficus tenninervis, Lesqx., p. 164.
5. Ilex maculata, Lesqx., p. 186.
6. Amygilalus gracilis, Lesqx., p. 199.

7-9. Fiens alkalina, Lesqx., p. 164.
10. Planera lougifolia, Lesqx., p. 161.

TEルTTAKY

.

Figures.
1-5. Apocynophylum Scudduri, Lesorx., l. 1\%:. (i-9). Myrica Zachariensis. Sap., p. 146.
10-15. Myrica alkalina, p. 149 .

## Oldest pliocene.

PLATE XLV. B.
Figures

1. Aralia accrifolia. Lesqx., p. 265.
2. Cercocarpus antiquus, Lesqx., p. 265.

3,4,7. Ulmus californica, Lesqx., 1. 265.
5, (i. Quercus convexa, Lesqx., p. 265 .
8,9. Aralia Zaddachi I Heer, p. 265.


Hiocenc. Bad Lands. P L A T E X L V I.
Figures.
1-1c. Glyptostrobus Eureprens, var. Uugeri, Heer, p. 222.
2-13. Populus aretica, Heer, p. 225.
14. Populus latior var. truncata, Al. Br. p. 226.


## Miocene. Bud Lands. P L A T E X L V I. A.

## Figures


3,4. Populus glandulifera, Ileer, p. 9et.
5. Populus cumeata, Ny., p.

6,7. Viburmum Nordenskiahli, Iferr, 1. 230.
8. Prunus dakotensis, Lesift., p. 2:37.
9. Viburnum dakoteuse, Lescax., 1. 23I.
10. Populus balsamoides rar. eximia, Goepp., 1 . 226.
11. Juglans nigella, Heer, p. 235.


Mioccue. Bad Lands. PLATE XLVII. Figures. 1,5. Ficus artocarpoidos, Lesqx., p. 227.

Tlis:lıl:


## Miocenc. Bad Lends. PLATE XLVIII.

## Figures.

1, IL. Quercus Dentoni, Lese x , l. Vet.

3. Equisetum globulosum, Lesqx., p. 28e.
4. Quercus Olafseni, Heer, f. zed.

5-7. Sapindus obtusifulius, Lesyx., b. 235.
8-10b. Cinchonidium ovale, Lesqs., p. $2: 29$.

(as

## Figares.

1. Platanus aceroides, Goepp., p. 227.

2,3 . Viburnum Dentoni, Lesqx., p. 221 .
4. Corylus IlcQuamii, Forbes, p. $2 \boldsymbol{2} 3$.
5. Aralia acerifolia, Lesqx., p. 282.

6,7. Acer gracilescens, Lesrix., p. 234.
8,9. Acer arcticum, Meer, p. 233 .

THFOM.NIT


## -



Miocene. Californin, Ireyon. PLATEL.
Fightox.

1. Lastrua (Goniopteris) Fischeri, Heer, p. 239.
$\because-4$. Seguoia Langmborfii, Bret., p. $\because 40$.

(6, Ga. Taxites Olriki, Heer, , b.: 240 .
2. Equisetmm, surecies, 〕. : $2: 3$
3. Erflisetum, species, p. DP!
4. Gemomites Schimperi, Lexpx. p. 241 .
5. Myrica diversifolia, dasqx.. p . 24 .
6. Ahuns carpinoiles, Lespx., p. D4:

1:. Betula pareadentata, Lesax., 1. 842.

THASTMAY


Mosme. California, Oregon. P L A T E L I. Fyruis

$4,4 a, 5$. Alnus carpinoides, Lesur., f. S. 4 .
6. Butula aliptica, sap., 1. 24ق.

7, A. Ailanthise ovata, Lesifs., 1.:57.
(rasers)
.


```
 i,..- (atetamat [ugeri, Mper, p.:N46
 &. Uh&tuh+a,atatia, L'ng., p.24%.
```



Miocme. California, Oregon. P L A T E LIII.

## Fienres.

1-7. Guercus psendo-Alnus, Ett, 1 . $\because 4$.
e-1.4. Guercus furcinervis, Rossm. M: $\because 44$.








WFilill Mi


Miocene. Culifornia, Oregon. P L A T E L V.
Figures.

1. Grewia amriculata, Lesfy. p. 250.
2. Salix varians, Goepp., f. 847 .
:-5. Populus balsamoides, Goepp., p. 248.
3. Salix angusta, $\mathrm{A} . \mathrm{Br} ., 11:: 47$.
4. Salix integra? Goepp., 1. 24\%.


.
.

Mincene. Califormin, Oregon. P L A T E L I.
Figures.

4. I'lat:ınus dissecta, Lestr., 1.: $4!$.

'11:1!N:


Miocene. California, Oregon. P L A T E L V II.
Figures.
1, ․ Platamus dissecta, Lesin., 1. : 349.
3. Laurus Califormiea, Lesqx., p. 252.
4. Colutea? Boweniana, lesqx., p. 255 .



## Hiocene. California, Oregon. P L A T E L V I I I.

## Figures.

1-3. Laums grandis, Lesegx., l. Din.
?. Laurus princeps, Heer, p. 250 .
4, \%. Launs salicifolia, Lesqx., p. ent.
6-6. Laurns califormica, Lesqx., p. 259.
9. Cinnamommm atine, Lesix., p. 252.
10. Myrtus oregonensis, Lesqx., p. 254 .


Morme. California, Dretmon. P L A E L I X.
Figures.
1-4. Acer trilobatum, val. podurtim, Heer, 1.053.

$\because \quad$ i


[^0]:    ${ }^{1}$ Dr. F. V. Haydex, Annual Report, 1573, 1p. 195, 196.

[^1]:    Since this was written. Heer, in part 2d of Vol. V1 of the "Aretic Flora," has described this species under the name of Thintieldia Lesquereuxiana, as a plant of uncertain relation.

[^2]:    ${ }^{1}$ Dr. M. Debey has recently published a fine memoir on some querciform leaves found in the sand rocks of Aix-la-Chapelle, Rhenish Prussia.

[^3]:    ${ }^{1}$ Heer, in "Arctic Flora," vol. vi, part 2, admite it as Sabsafras.

[^4]:    ${ }^{1}$ Platanus Heerii, L. and P. affinis L. are mentioned by Heer in the Cretaceous of Atane, Greenland.

[^5]:    ${ }^{1}$ Traité de Pateontologit régétale, vol. iii, p. 998.

[^6]:    ${ }^{1}$ These data are taken from Heer"s "Groenland Flora," vol. vi, part 2.

[^7]:    "Myriea cretacea, Heer, was, perhaps, published in the "Flora of Quedlinburg" befure I described my species under the same name. But that work of Heer was then unkuown to me. I change name, not being certain who has priurity fur it.

[^8]:    ${ }^{1}$ Name prenceupied as Quercus salicifolia, Newby., "Ext. Fl.," p. 24.

[^9]:    ${ }^{1}$ Sapurta, " Plautes fossiles des lits a poissons de Cérin, p. 22, pl. xir.
    8." Urweltlicher Acrobryen," p. 31, pl. iv, figs. 1-10.

[^10]:    ${ }^{1}$ The name of this species is changed as preoccupied by Heer.

[^11]:    "U.S Geol. Rep.," vi, p. 10t, pl. xviii, fig. 3.

[^12]:    

[^13]:    ${ }^{1}$ Late observations concerning the Molluscan Fanna and the Geograplical extent of the Laramie Group, "Amer. Journ. of sci.," 3t serjes, vol. xxr, p. : 206 ( 1883 ).

    * "American Journal of Science," 3d Ser., 18:4, vol. xxr, pp. 546-557.

    CF $\sigma$

[^14]:    ${ }^{1}$ This quotation refers to rol. rii of the "U. S. Geological Survey of the Territories," by Dr. F. V. Hayden. (1878).

[^15]:    "U.S. Geol. Rep.," vii, p. 190, pl. xxvii, fig. 7.

[^16]:    1 The relations of the horizons of extinct vertebrata of Europe and North America, in "Bulletin of tha U. S. Geul. and Geogr. Surreys," by Dr. F. V. Hayden, vol. v, No. 1.

[^17]:    1JUGLANS, Linn
    Juglans ?, Debeyana, Heer, pl. LVI, Figs. 5, 6.
    
    Leaves coriaceous, entire, broadly orate, obtuse or with a short obtuse point, round-subcordate at base, or narrowed downward in a curve and slighly decurrent to the petiole; medial nerves thick; secondary nerves numerous, open, camptodrome.

    The above is the description friven in "Cretaceous lloma." vol. vi, l. c., of this species. Comparing the specimens of Rock Corral with those 1 have from the Dakota Group, I conld not remark any difference whatever except the distinct puncturatoms of the surface as sten in fig. ir, whose ephermis is prearred. I therefore consiler these leaves as referable to the C'retacous. 'Ilie specimens do not bear any label of locality. They were mixed with those of Rock Corral, which ate all positively Mincene, and whose impressions are upon a difiertht conpuund, a coarse laminated sandstone, while those of Juglans are on very lard metamorphic black clay full of small shells. I memorandum refering to the contents of the box says that the three speciunens (of which two are figured) are from Rock Comral, IOO feet deep in the Cretaceons. Thus it seems the Miocene there immediately orerlies the C'retaceous Dakota Group.

    Mab-Rock Corral. C'retacons, Califuruia.

[^18]:    ${ }^{1}$ The following species of fossil phats from Alaska have been already described in the "Proceedings of the United States National Musemm," wol.v, 1822, fp. 413-449. They are reprodnced bere in order to include in this volume all the extant literature on the Miocene flora of North America.

