

$$
\therefore=
$$

REPORT

WILLIAM H. CARMALTT, M.D.,

Commissioner of the New York State Agricultural Society,

ABORTION IN COWS.

Read Before the Society February 11, 1869.

PUBLISHED BY THE SOCIETY.

ALBANY:
PRINTING HOUSE OF CHAS. VAN BENTHUYSEN \& SONS.
1869.

$$
\begin{gathered}
S F 811 \\
c^{2} 8
\end{gathered}
$$

ABORTION IN COWS.

Mr. President and Gentlemen of the Society:

Innediately that notice was received, that this investigation was to be continued, the necessary steps were taken to prosecute the inquiry, in the manner demonstrated the most advisable by the experience gained last year; i. e., by the appointment of properly qualified persons to inspect the farms or dairies considered desirable, and to obtain full reports thereof from the owners or occupants.

As it appeared, from the examination then made, that farms were affected indiscriminately, as regards location, and that no rule with reference to contiguity could be established; that one largelyaffected dairy might be surrounded, on all sides, by those perfectly healthy, or an unaffected dairy might lie in immediate proximity to several having the disease, in other respects, all apparently subject to the same influences; it was considered desirable that as many reports as possible, of the two classes of affected and nonaffected farms, should be obtained; and in order to secure this with the least possible expense, as well as that the inspection should in all cases be complete for the district examined, it was determined to have every farm reported.

As it was further apparent from that report, as well as from information received from other sources, that Herkimer county was affected to a marked degree, and yet include a large number of farms reported as having escaped the disease entirely, it was considered a favorable district, in which to institute a series of comparisons, between farms; and as it was further desirable to compare districts as well as farms, the towns of Hardwick and Barre, in Worcester county, Massachusetts, which had been partially inspected last year, were also included in the plan of operations.

The following gentlemen were appointed to make these inspections and reports, viz: Dr. R. F. Halsted, Inspector; and Drs. N.
A. Lindley, Benjamin R. Swan and Daniel W. Kissam, Assistant Inspectors. The Inspector, to receive a salary of one hundred and fifty (150) dollars per month; the Assistant Inspectors, one hundred (100) dollars per month, and both, to have their necessary traveling expenses paid.

They were furnished with the accompanying blank form of Report, marked "A," to be filled up with the replies furnished by each farmer. They received instructions, as to the manner in which their inspections should be conducted, in all essential respects, similar to the circular letter of instructions issued last year (which will be found in the Report of that year), and from time to time further directions were given to them, as circumstances seemed to render necessary.

All the farms in that part of Herkimer county lying south of the towns of Russia, Norway and Salisbury were inspected, and thus reported upon, and also the towns of Hardwick and Barre, in Massachusetts, as before mentioned.

In addition to the above general report of each farm, a botanical inspection of the town of Danube, in Herkimer county, was instituted, for the purpose of determining whether the introduction of a deleterious substance into the food of the cows, could be the cause of the trouble.

Mr. Coe F. Austin was appointed Botanical Inspector, and received a salary of one hundred and fifty (150) dollars per month, and his necessary traveling expenses were also paid. He received instructions as follows:

$$
\text { New York, July 3d, } 1868 .
$$

Mr. C. F. Austin, Inspector, ${ }^{-\& \cdot c .}$:
Sir-You are hereby appointed an Inspector, for the New York State Agricultural Society, in the Commission to investigate the subject of abortion in cows.

As soon as possible after the receipt of this, you will please proceed to the town of Danube, in Herkimer county, in this State, and make a thorough botanical inspection of the farms therein, from a list furnished you by Inspector Halsted, who is instructed to render you this, and such other assistance as you may, together, deem advisable for the interests of this investigation.

In your inspection, you will collect and preserve specimens of all plants found in the meadows, pastures, and among the grain of those farms; -which specimens shall be the property of the Agricultural Society. You will record, at the time, the habitat, and the percentage of frequency, for each plant in pasture, meadow and grain field, for each farm.

You will examine for any disease of the plants, whether due to the presence of a parasitical growth of any kind, or other cause ; and when found, you will record the part of the plant affected;-the habitat of the diseased as compared with the
healthy plant; the percentage of disease; and, so far as you can learn from observation on the ground, the course and natural history of the disease. You are especially desired to make as careful obscrvations and collections as possible, of all fungi upon plants-among which, Ergot, holds in connection with this investigation, a peculiar importance.

Forward specimens of every diseased plant you obtain, to the Commissioner, at as early a date after collection as practicable.

As soon as possible after making your collections, you will make out a proper classification of the specimens secured, with an account of their natural history and habits; making a complete botanical history of each farm separately.

No necessary expense is to be spared, in making your inspection as thorough as possible, so far as it may relate to the subject undergoing investigation. At the same time, you are relied upon to exercise a judicious economy in husbanding the resources of the Society, and to assist in this way the successful accomplishment of its work.

At the termination of each month of service, you will furnish to the Commissioner a report of your operations for that month, together with an account of your expenses during the same period.

Very respectfully yours, W. H. CARMALT, M. D., Commissioner.

Mr. Austiv began his examination on July 8th, and, with the exception of a few days, continued in the field until September 18th, when he reported in person, to the Commissioner, to make up his reports. These consist of:

1st. A report, marked "B," of four hundred and forty-nine (449) plants, growing spontaneously in the town, giving, for each, its proper botanical classification and common name; its habitat, whether growing in meadows, pastures, grain-fields or woods; the estimated frequency of its occurrence; and the farms upon which each was actually found. Specimens of three hundred and sixtysix (366) of these were preserved, and afterwards carefully mounted and labelled, and, together with the reports "D" and " G ," hereafter referred to, are placed in the Rooms of the Agricultural Society for reference, and in the hope that this collection may serve as a nucleus for an Herbarium of all the plants growing spontaneously in the State, should it at any time hereafter, be considered desirable for the Society to possess such an one.*

2nd. A report, marked "D," of cultivated grain raised on each farm.

[^0]3rd. A report, marked "E," of the grasses affected by Ergot, (Claviceps purpurea, Tulasne), giving the name of each farmer; the percentage of abortion on his farm, as reported by Inspector Halsted; the estimated percentage of frequency of the grass in the meadows; and the estimated percentage of frequency of disease on the plant. The latter, has reference to the number of heads of grass affected, not to the total amount of ergot; for, while in one plant but one or two seeds may be ergotized, in another nearly all may be affected, so that a closer estimate than the above is, obviously, impossible; together with a report, of the grasses unaffected by Ergot, giving their estimated frequency of occurrence in the meadows, for each farm.

4th. A report, marked " G," on Rust, as affecting the grasses growing spontaneously, giving the estimated percentage of the grass in the meadows, with the estimated percentage of frequency of diseased plants, to each farm.

In addition to the above, a 5th report marked "H," has been furnished, by Mr. Jno. L. Russell, of Salem, Massachusetts, of the proper classification of a collection, by Mr. Austin, of several species of the more common parasitical growths on the plants found.

If the cause of this trouble is to be found in the food of the animals affected, the offending substance would, in all probability, it is considered, be found in some of the above reports, and would also be noted as occurring only, or in greater frequency, on those farms reported to have been to a considerable degree troubled by the disease.

In examining the report " B," of those plants collected or noted as growing spontaneously in the town, with regard to the reputed influence that any may have, upon the animal system, quite a large number may be noted as having some reported medicinal qualities, but a very few can be said, to be liable to produce abortions; and none of these, without associated symptoms, to be remarked by the farmers; nor are these noted as occurring exclusively, or even in greater frequency, on the affected farms; but are recorded either indefinitely "on all farms," or on a few farms of both classes, noted together.

The number of noxious plants that may be cut and gathered in, with the hay, is of course very much smaller in number, and are probably nearly all the same varieties that would be found in the pastures; and yet, in the year 1867, out of the whole number of

1758 abortions, in which the month of the year was noted, 1571 , or 89 per cent, occurred during the months of November, December, January, February and March, being those months during which the cows are stabled and fed principally on hay.

The report of 1867 shows, that the rule with regard to abortions is, that there are no marked symptoms on the part of the cow before the abortion occurs. There is no constitutional disturbance, other than should properly be referred to the fact of an approaching natural labor. There are no evidences of poisoning, either by substances irritating the alimentary canal, from which the uterus, by its proximity, may be stimulated to contraction; nor from any disturbance of the general system producing an abortion secondarily. The instances in which the cow is sick, before abortion (other than above noted), are too rare to be taken into consideration, in trying to find a cause for so extensive a malady; and all symptoms occurring after, are properly to be referred to the fact of the abortion, and not to anything beyond that.

Your Commissioner is unable to find, in the lists presented, any plant in itself healthy, which there is a reasonable probability has been the cause of this disease, affecting, as it does, so large a number of farms.

The possibility that some plants may be diseased, or subject to parasitical growths, and in this condition be eaten by the cows, and cause abortion, engaged the attention of the Commission; and the subject, it will be remembered, was embraced in the instructions issued to the Botanical Inspector. So far as practicable, specimens of plants so affected were collected, and were afterwards placed in the hands of Mr. Charles James Sprague, of Boston, for examination, who conferred with Mr. John L. Russell, of Salem, upon their proper classification. These gentlemen are the most competent authorities in the Northern United States, on this subject; and where desirable, extracts are taken from Mr. Sprague's reports and letters to the Commissioner.

It was impossible for the collector to have made a complete collection of all the different fungi affecting the plants, and at the same time to have made a complete botanical examination of the district assigned him, in any one season; for, to quote Mr. Sprague: "There is scarcely a phanerogamous plant which is not more or less infested. * * * The genera Uredo, Acidium, Puccinium, and others, are found everywhere upon almost everything. * * * Cows could not graze where these fungi do not abound. I presume

* * * that there are at least two thousand distinct parasitic fungi on New England vegetation. The peculiar species which attack grasses are limited; but if the animals should have access to woods, glades, undergrowths, \&c., they would be exposed to the effects * * * of eating hundreds of different so-called species of fungi. Many of these * * * are minute microscopic species. * * * It would be almost impossible to trace the effect of these parasites on animals eating them, because an immense quantity would be requisite to cause any effect, and the cattle would eat scores of species with every mouthful picked up."

Of the fungi affecting grasses, the one of most evident primary practical value in this investigation is Ergot (Claviceps purpurea, Tul.); first, by reason of its known influence upon the pregnant uterus; and secondly, because it is probably eaten in largest quantity with the hay, at the time when abortions prevail with greatest frequency; i. e., during the winter.

By reference to the report on Ergot, marked "E," it is seen that this fungus was found on ten (10) different plants, of which six (6) are among the more frequent meadow or pasture grasses, and it also shows the estimated percentage of frequency, for each farm, of each grass, and the estimated percentage therein of diseased plants. By adding the grasses contained in this table, with those unaffected by ergot (in the same table), a tolerably fair estimate may be formed of the amount and proportion of this substance in the hay fed to the cows; and noting the percentage of abortion, on each farm, will show if those farms having the greatest amount of ergot are also those affected by abortions; or if those having no abortions, are also comparatively free from ergot.

Your Commissioner is unable to trace any such definite relation as there recorded, though, as the record of abortions is for the year ending April 1st, 1868, and the botanical inspection was made during the summer of 1868 , the record of abortions does not cover the ergot reported. It will be necessary to know the history of the disease next year, before a positive conclusion can be arrived at on this point, though the quantity of ergot reported on any farm this year, is so small that it is highly improbable that it should exert any such very general influence, as the history of this disease shows it must do, if it is to be considered the principal cause of the trouble; and more so, in view of the established rule, that the ruminata require a proportionately greater quantity of almost every substance, if introduced into their stomachs, than the mono-
gastric, before a similar effect is produced on the rest of the system. Well authenticated observation shows, further, that the continued administration of ergot, in considerable quantity, is not infrequently followed by gangrene and paralysis of the extremities, or other evidences of serious poisoning. It would seem not improl)able, that as usually no material change is made in the food of the cows during the winter, but that the ergot, if administered at all, is continued to be taken to the same extent until the cows are turned out to pasture, that if enough was taken to produce any considerable number of the abortions reported, that out of the 75,000 cows, and reported 4,350 abortions, passing under the notice of the Inspectors of the Society during the last two years, some one instance of this kind of trouble would have occurred, and if occurred, surely reported; but the records of the Commission are without an instance.

But a small amount of grain is raised in Danube, proportionately to the dairy products. One (1) farm reported raising rye; three (3) raised buckwheat; three (3), corn; seven (7), wheat; fifty-four (54), oats, and thirteen (13), barley, though this list must not be understood to be complete. Partly the limited time at the disposal of the Inspector in which to make an examination of the whole town, and to a certain extent an inability on his part to understand his instructions on this point, whether verbal or written, prevented so full a report on this subject as was designed; but so far as reported, and compared with the general report of the town, by Dr. R. F. Halsted, it is as follows, viz:

The point of importance being still the food of the coms;-of one hundred and four (104) farms inspected in the town, forty (40) raised the grain from which the ground feed given to the cows was made; and sixty-four (64) did not raise it;-of the 64, on 8 the ground feed was purchased, either from mills or stores in the neighborhood, beyond which it could not be definitely traced, and of these, 5 , or 62 per cent had abortions upon them; and on the other 56 no ground feed or grain at all was given, and 9 , or 16 per cent had abortions upon them. Of the remaining 40,14 , or 36 per cent had abortions upon them, and of the 14,5 were reported not to raise oats, and 11 were reported not to raise barley. The nine raising oats had "smut" (Ustilago segetum) to a very limited amount, a "trace" on all, and "rust" (Puccinia graminis) in variable proportion, from 50 per cent to "a trace" on all; while of the 26 on which no abortions occurred, 14 were reported not to raise
oats, and 22 were reported not to raise barley, leaving 12 raismg oats and 4 raising barley to feed the cows, out of which 10 were affected by both rust and smut. While it is, therefore, apparent that abortions prevail to a greater extent, upon those farms where ground feed is given than upon those where it is not, the number upon which it is given is too small to base an opinion upon, were not the occurrence of these parasites so nearly uniform on both classes of affected and non-affected farms, as to justify the expression that they cannot be a probable cause of this disease there.

It would seem, then, that the substances used for food by the cattle, in this town, have been sufficiently well examined to have found anything therein that could be considered to cause so general a trouble. The pastures, woods and cultivated fields, after the grain had been cut, and the meadows, after the hay was harvested, have been gone over without finding sufficient therein to account for the trouble during the summer months, while the cows were grazing; and the standing hay and grain have been examined to determine if the offending substance could be found there, to account for the great amount of disease during the winter, but each equally without success.

The principal phenomena of this disease are sufficiently distinct, to warrant the exclusion of a substance that would cause the disease secondarily, and the only one having a direct action on the pregnant uterus, i e., Ergot (though as yet its want of influence must be considered not absolutely settled), was found in too small quantity to be considered a probable cause of so wide spread an affection; and we are forced to a negative conclusion in endeavoring to account for the disease by reason of the introduction of a deleterious substance in the food.

The general inspection closed December 4th, 1868;-the following is a summary of the towns inspected, the whole number of farms in each, the number of affected farms in each, and the percentage of affected farms;-showing that Fairfield has the largest percentage of affected farms, viz: 72; and Barre the lowest, viz: 7; or in Herkimer county alone, Warren has the lowest, viz: 13 .

IN HERKIMER COUNTY, NEW YORK.			
Towns.	Whose number of farms inspected.	Number of affected farms.	Per cent of affected farms.
Newport......	105	63	60
Fairfield...	97	70	72
German Flats..........	120	26	22
Herkimer. . .	103	33	32
Little Falls	89	38	43
Frankfort .	102	20	20
Litchfield ..	131	41	31
Winfield ...	84	26	31
Schuyler ...	107	33	31
Danube ..	104	28	27
Manheim .	91	32	35
Stark .	89.	17	19
Warren ...	119	16	13
Columbia	128	21	16
	1469	464	33
IN WORCESTER COUNTY, MASSACHUSETTS.			
Hardwick ..	105	24	23
Barre	119	8	7
	1693	496	29

These towns report cows in calf, and abortions, respectively, as follows:

Towns.	Total number of cows in calf.	Number of abortions.	Per cent of abortions.
Newport	2,895	361	. 124
Fairfield.	3,397	324	. 095
German Flats . . .	1,790	133	. 074
Herkimer	2,582	166	. 064
Little Falls	2,703	164	. 06
Frankfort..	1,299	71	. 054
Litchfield.	2,384	113	. 047
Winfield.....	1,756	84	. 047
Schuyler..	2,236	100	. 044
Danube..	2,363	102	. 043
Manheim	3,347	132	. 039
Stark.	1,711	68	. 039
Warren.	2,032	78	. 038
Columbia	1,861	45	. 024
	32,356	1,941	. 06
Hardwick	1,240	105	. 084
Barre	1,323	11	. 0083
Total.	35,919	2,057	. 057

The results of the above table are further shown in the Map at the end of this Report, marked " \mathbf{X}," in which those towns, having less than 4 per cent of abortions, are in White; those having from 4 to 6 per cent (both inclusive), are in Gray; and those having over 6 per cent (being the average for the county), are in Black.

Comparing the actual frequency of abortions, with the number of affected farms in the different towns, it is seen that the relation is not positive:

Towns.	Per cent of abortions.	Per cent of affected farms.
Newport ..	. 124	. 60
Fairfield 095	. 72
German Flats..	. 074	. 22
Herkimer	. 064	. 32
Little Falls...	. 06	. 43
Frankfort.	. 054	. 20
Litchfield	. 047	. 31
Winfield .	. 047	. 31
Schuyler .	. 044	. 31
Danube ..	. 043	. 27
Manheim.	. 039	. 35
Stark ..	. 039	. 19
Warren .	. 038	. 13
Columbia	. 024	. 16
Average Herkimer county 06	. 32
Hardwick	. 084	. 23
Barre 0083	. 07

The irregularity which may be said to be one of the most marked characteristics of this disease, and which has so often interfered with the determination of its probable cause, is well shown in the above table, for while the highest and lowest hold about the same relation to each other, in both columns, in no other part can any constant rule be established; as, for instance, Frankfort, which is sixth in the order of abortions, is eleventh as regards frequency of affected farms; and Manheim, which is eleventh in the order of abortions, is fourth in the order of affected farms; while Warren, having but one-tenth of one per cent less abortions than Manheim, is fourteenth or lowest in the order of affected farms. So that, a high percentage in a town may be brought about either by a few farms being largely affected, or by a large number of farms, each having comparatively a slight loss. Thus Fairfield, having but two per cent more abortions than German Flats, has a little more than three times the percentage of affected farms, the loss in the latter town being brought up by farms having suffered heavily, viz: 94 per cent, 82 per cent, and 61 per cent for each of three farms; 94 per cent being, proportionately, the heaviest loss reported in the county occurring in a dairy of 19 cows.

The disease affects farms lying near each other, very irregularly, also, as regards their comparative percentage of abortions, though a tendency may be said to exist towards a concentration of affected farms to a vicinity. This is further shown, in the diagram at the end of this Report, marked "Z," of all the farms inspected in Herkimer county with the percentage of abortions of each, represented as follows: those having 5 per cent or less being in Green; those between 5 and 10 per cent in Red; those from 10 to 25 per cent in Yellow, and those over 25 per cent in Blue; the non-affected being in White.

Of the 464 farms affected by the disease, 120 had 5 per cent or less of the disease upon them; 126 had from 5 to 10 per cent; 134 had from 10 to 25 per cent, and 84 had over 25 per cent;about one-half having less than 10 per cent.

To determine the relation between the size of the herd, and the liability to be affected by the disease, the following table is presented, showing the percentage of abortions, the average size of all the herds, and the average size of the affected herds, and the average size of the non-affected herds for each town:

Towns.	Per cent of abortion.	Average number in each herd.	Average number in affected herds.	Average number in nonaffected herds.
Newport 124	27	30	23
Fairfield 095	36	38	26
German Flats .	. 074	15	20	13
Herkimer	. 064	25	33	21
Little Falls	. 06	30	35	27
Frankfort	. 054	13	20	11
Litchfield.	. 047	18	22	16
Winfield	. 047	21	23	20
Schuyler	. 044	21	29	17
Danube .	. 043	22.7	22.5	22.7
Manheim	. 039	37	42	34
Stark	. 039	19	19	19
Warren	. 038	17	21	16
Columbia	. 024	14	17	13
	. 06	22	29	19
Hardwick	. 084	13	17	10
Barre	. 0083	11	17	11

This table shows, then, that the size of the herd has no constant relation to the percentage of abortions for the towns, for Manheim, which averages the highest number of cows per herd, stands eleventh in order of frequency of abortions; and Frankfort, whose dairies average 13 cows, being the lowest average in Herkimer county, is the fifth in the order of abortions. Fairfield holds the same position with regard to number of cows and frequency of abortions, being in each instance the second, while Newport, whose rate of abortion ranks highest, stands fourth in the order of number of cows per farm.

But it shows further, that the average number of cows on affected farms in a town, is always larger than on those non-affected (with the single exception of the town of Danube, where the nonaffected herds average one-fifth of a cow more than those affected); so that, while the size of the herds has no relation to the percentage of abortions in the towns, the tendency of the disease is to affect the larger dairies in a given district.

The number of farms inspected in 1867, in these towns of Herkimer county, was 597 , of which 200 , or about 33 per cent, were then affected. This year, of the 1,469 farms reported, 464 , or $31 \frac{1}{2}$ per cent, were affected. This slight difference in favor of 1868 , may be accounted for by recalling the fact that last year the inspections were confined to those farms containing 15 or more cows, with the addition of all others containing less than 15 upon which abortions had occurred that year. This year every farm having cows upon it has been reported, and it may be considered to show, the actual amount of disease in whatever district is referred to, and will account for the greater percentage of affected farms in 1867.

Comparing the reports of 1867 with the records here given, the percentages of the towns for the two years is as follows, viz:

Towns.	1868.	1867.	Towns.	1868.	1867.
Newport	. 124	. 09	Winfield	. 047	. 024
Fairfield	. 095	. 11	Schuyler	. 044	not rep.
German Flats	. 074	. 047	Danube	. 043	. 054
Herkimer.	. 064	. 048	Manheim	. 039	. 056
Little Falls.	. 06	. 078	Stark	. 039	. 025
Frankfort	. 054	not rep.	Warren	. 038	. 019
Litchfield	. 047	. 06	Columbia	. 024	. 018
Total for Herkimer county. .				. 06	. 055

Comparing this table with the statement; just presented, of the total percentage of affected farms during the last two years, it will be seen that while the percentage of affected farms was greater last year, that this year the total percentage of actual abortions is the greater, showing that the disease has actually increased in frequency.

Attention is further directed to the circumstance, that while the total percentage for the county does not vary materially as between the two years, still, with the exceptions of the extremes of two highest and two lowest, considerable differences exist in the towns with regard to their percentages in the different years. Thus German Flats, which is in 1868 the third in rate of actual disease, was in 1867 the eighth; and Manheim, which was then the fifth, is now the ninth, not counting the two towns of Frankfort and Schuyler, not reported in 1867. And reference to the Map "Y," hereto appended, of the results of the inspection in 1867, will show, at a glance, in what towns these differences occurred.

This uncertainty as to the recurrence of the disease may be further illustrated as regards farms by comparing the results of the inspection of 1867 of 71 farms in the town of Little Falls, and of the inspection of the same farms in 1868. Of these 71 farms, 31 escaped the disease in both years; 23 had the disease both years; 8 had the disease in 1867 and escaped in 1868, and 9 which were unaffected in 1867 had the disease in 1868. The comparison shows further, that the percentage of disease in one year bears no positive relation to the percentage the following year; for the 8 which had the disease in 1867, and escaped in 1868, were affected variously, from 2 per cent to 25 per cent; and the 9 which had no disease in 1867, were, in 1868, affected in different amounts, ranging between 3 per cent and 41 per cent.

This uncertain feature is, however, as regards either towns or farms within certain limits, and the proportion of instances in which the disease returns, may be determined with tolcrable exactness, as follows: of the 383 farms reporting abortions in 1867, 280, or 73 per cent, had abortions on them again in 1868; of the 899 farms reporting no abortions in 1867,180 , or 20 per cent, had abortions on them in 1868; or the disease is about $3 \frac{1}{2}$ times as likely to recur upon an affected farm as it is to appear upon a previously nonaffected farm.

With regard to the period of pregnancy, at which abortions occur, it is reported as follows:

This report agrees with the report of 1867, except that a larger proportion were then reported occurring during the sixth month, and a smaller proportion towards the ninth month than seems to be the case this year. They agree, however, in the important point, that as pregnancy advances the abortions occur with greater frequency, up to the time when much uncertainty must prevail, as whether the full term of pregnancy has expired or not.

The month of the year, during which abortions occur, can be determined with tolerable precision, as follows:

Of these 1,644 cases, it will be noticed that 1,468 , or 89 per cent, occurred during the five winter months of November, December, January, February and March, during which the cows are kept up, precisely the same percentage as a similar comparison showed to be the case last year. The marked decrease of abortions during April, while a large number are still stabled, is probably owing to the circumstance, that by that time, a large number of the cows have arrived at their full period of gestation, and have calved at term.

The question of the influence exerted by the age of the bulls used for service, engaged the attention of the Commission last year, but it seemed desirable to include it in the reports for this year, and the following results were obtained:

Number of Cows mmpregnated by	Bull aged 1 year.	Bull aged 2 years.	Bull aged 3 yrs or over.
That carried calf to full term	9,740	19,530	1,482
That aborted	522	1,340	74
	10,262	20,870	1,566
Per cent of abortions .	. 05	. 064	. 047

Showing a slight influence in favor of the use of aged bulls over both the younger classes, but also an influence in favor of yearling bulls over those two years old; so that it cannot be claimed from this, that it is the age alone, which exerts the favorable influence for the aged bulls.

This same question of the age of the bulls, was also referred to the classes of affected and non-affected farms, with the view of the bearing upon the nutrition of the foetus, from excessive use of the bull, and as many bulls are allowed to serve other cows than those on the farms on which they are kept, care was taken to ascertain the full number of cows served:

It may be seen from this list, that while there does not appear to be any excessive strain upon the generative powers of the bulls, at the different ages, yet in the case of the yearlings, and two years old bulls, more cows are, on the average, served on the affected than on the non-affected farms, while in the case of the three years old bulls, the contrary average exists. That this is owing to the habit of using the older bulls for service outside the farms upon which they are kept, is shown if the cows upon the same farms only are taken into the calculation; in both instances of affected. and non-affected farms, the average number served by aged bulls is but eighteen.

This question of the age of the bull may be considered further; and although the reports at the service of the Commission, do not show any very marked influence in favor of the aged bulls, so far
as directly affecting the immediate subject under investigation goes, yet a secondary influence is not unlikely to be exerted that must be of interest, and the attention of the Society is directed to the very limited number of aged bulls used, for out of 1,213 bulls used this year, in that part of Herkimer county inspected, but 32 were over two years old, while in Barre, where the percentage of abortions is but four-fifths of one per cent, of 86 bulls used, 28 were over that age. The habit of breeding from immature bulls cannot be too strongly objected to, if we may be allowed to be governed by the experience of those who breed to improve the general constitution of their stock, or by the rule which exists among wild animals, among which the young males are kept from service by the older ones, until they arrive at sufficient maturity and vigor to assert their equality and consequent right to perpetuate their kind; and, while we cannot say that the fretus gotten by a young bull will not live to be delivered, still, the delicate constitution thus liable to be produced, will, if a heifer, and permitted to live and breed, be likely to fail when called upon to go through with the drain, hereafter to be further referred to, in breeding at two years old, and in immediately afterwards being compelled to give an excessive amount of milk.

The principal idea of the farmers, from whom the Commission has this year received reports, with regard to the use of their cows, is to get as much milk as possible therefrom with as little outlay as can be got along with, and therefore a bull is rather a necessary evil than otherwise; and as the smaller the animal is the less it will cost to keep, so, if a bull will but get a cow with calf, his destiny is accomplished, and the calf is killed as soon after birth as the stomach will do for rennet;-that must be saved;-for the records of last year show, that 14,000 out of 17,000 calves born alive at full term, were killed within a few days after birth.

The milking qualities of the dam was intended to be considered, but owing to a typographical error in the blanks, the distinction between good and ordinary milkers was not in all cases obtained; so far, however, as reported, it appears that of 6,464 good milkers in calf, 390 , or .06 per cent, aborted; that of 4,954 ordinary milkers in calf, 248 , or .05 per cent, aborted; but as the total percentage of abortions among cows, as distinguished from heifers, is reported hereafter at .059 per cent, neither of these classes differs sufficiently from the latter to suggest a probability even that the milking qualities, per se, have any marked influence.

The Commission would have been pleased to have given more information on this point, but the full report of 1867, and the partial one of this year, substantially agree, neither showing any marked difference in disease between the two classes of milkers.

The point of interest in this classification, however, being that of over-taxing or exciting irritability in the generative organs of the dam, in hereafter bringing to the attention of the Society the question of the total product of the cow, the most essential point in this connection is not lost; for it is not to be assumed that because one cow naturally gives a larger quantity of milk than another, that she will be the one to abort when exceeding an arbitrary standard, and so far as collected, the reports do not point to any difference. An ordinary milker, who is milked during the later months of pregnancy to make her pay as much for her care as a good milker, is likely to suffer more from the drain, and experience more irritation in her generative organs (of which the mammary gland is an important part) than a cow which, naturally, gives a larger quantity.

Are first pregnancies more or less liable to abortion?

This difference is too slight to lead to any other conclusion, than that the same liability to abortion pertains in a first pregnancy, that exists in later ones.

Are cows which have aborted, more likely to abort the year following, than those which have carried their calves to full term?

Of 29,649 cows which carried calf to full term in $1867,1,698$, or .058 per cent, aborted in 1868; of 987 which aborted in 1867, 121, or .12 per cent, aborted in 1868 , showing that a cow which has aborted is twice as liable to abort, the following year, as one which has previously carried her calf to full term.

It has been suggested that subjecting cows to changes, from farm to farm, might have a prejudicial effect against carrying calf to full term. With a view of determining this, the following table is presented:

Of the Cows $\quad \therefore$	That carried calf to full term.	That aborted.	Per cent of abortions.
Raised on the farm, including those brought on as unimpregnated heifers \qquad Brought on at any time during or since their first pregnancy \qquad	$\begin{aligned} & 11,730 \\ & 19,961 \end{aligned}$	$\begin{array}{r} 551 \\ 1,380 \end{array}$.046 .07

Showing a decided influence in favor of raising the cows rather than buying them, as is so frequently done, indiscriminately about the country, or from droves.

For a further illustration of this point, the actual condition, whether pregnant or not pregnant, at the time of removal, was made the subject of inquiry, with the following result:

Of all the Cows brought on during the past year	That carried calf to full term.	That aborted.	Per cent of abortions.
Number pregnant at time of removal.	2,322	203	. 087
Number not pregnant at time of removal	1,031	24	. 02

Showing a very decided objection to subjecting cows to removal during pregnancy, whether compared with all removals, or even with those removals taking place during the non-pregnant condition only. That this would be expected, owing to the greater liability to accident, and from fighting with other cows, is very evident; but it must be taken into consideration, when providing means to prevent the occurrence of the disease, and shows the advantage of raising cows on the farm, or subjecting them to change only during the non-pregnant condition.

It has been shown that cows are not more liable to abort during first pregnancies; but whether the effect of early breeding is prejudical to carrying calf to full term in subsequent pregnancies, is yet to be considered. For the investigation of this point the Inspectors were desired to get the age at which the cows raised upon the farms (or brought on as unimpregnated heifers) first calved; being those only, which the farmer could state had been under his own observation and care since before their first impregnation. The reports are contained in the following table:

Of all the Cows raised on the Farms	That car- ried calf to full term.	That abor- ted.	Per cent of abor- tions.
No. that first calved at under 3 years of age ..	9,129	.462	.05
No. that first calved at 3 years of age or over..	1,902	66	.03

Showing a greater tendency towards abortion, among cows which began breeding at under three years of age, and giving confirmation to what has been said, when referring to the influence of using immature bulls, viz: that immature stock should not be used for breeding purposes.

In the further consideration, of whether this practice is more prevalent on affected or on non-affected farms, the reports of Herkimer county show as follows, viz:

Cows.	Affected farms.	Non-affected farms.
Whole number of cows raised	3,372	7,047
Number that first calved under 3 years of age.....	2,869	5,865
Per cent	. 85	. 83

While, therefore, the reports on this point do not show any marked difference, to account for the prevalence of the disease on the affected farms, they do show a very uniformly general practice in Herkimer county, of breeding at a very early age, and if the comparison is extended to the town of Barre, in Massachusetts, where the abortions are but four-fifths of one per cent, it is seen, that the percentage of cows first calving at under three years, is but 77 per cent on the affected farms, and 72 per cent on the nonaffected farms.

Leaving this point for the present, and taking the question of the total product of the cows, which bears a very close connection to this, the first consideration is; how much milk do the cows give? and second; does the amount influence gestation?

For the examination of this, the Inspectors were requested to report, for each farm, the average number of pounds of butter and cheese made, and the number of gallons of milk sold. These were reduced to pounds of milk, by multiplying the number of pounds of cheese by ten (10), the pounds of butter by twenty-five
(25), and the gallons of milk by eight (8). These figures may not represent exactly the actual quantity of milk produced, but as in all the calculations hereafter made, these same factors are used, they will be reliable for purposes of comparison.

The census tables for the State of New York, taken in 1865, report the average yield of milk, per cow, for the whole State, to be 2,571 pounds. The following list, taken from the same source, shows the average number of pounds of milk, per cow, from the returns of 133 cheese factories, for 18 counties, being all those reported:

Counties.	Number of factories reported.	$\begin{aligned} & \text { Number of } \\ & \text { cows. } \end{aligned}$	Average lbs. of milk per cow.
*Cattaraugus.........................	1	670	1,780
Chautauqua...........................	4	1,853	2,643
Chenango	10	4,520	2,743
Cortland.	5	3,250	2,808
Erie	2	1,385	2,586
*Essex.	1	1,100	2,408
Herkimer	5	2,383	3,408
Jefferson	15	7,413	2,545
Lewis	16	8,877	2,795
Madison	12	6,700	3,091
Montgomery	4	1,615	2,940
Oneida.	35	17,358	2,890
*Onondaga.	1	400	3,329
Oswego.	11	4,550	2,421
Otsego ..	5	2,180	2,956
*St. Lawrence .	1	375	2,953
*Tompkins.	1	900	3,190
W yoming.	4	1,855	2,361
Summary of 18 counties	133	65,384	2,802
* Five counties represented by	1 each	3,445	2,662

The reports to this Commission, represent the total average quantity of milk obtained from the non-affected farms in Herkimer county, reporting 11,908 cows, at 4,386 pounds per cow.

The table for the cheese factories shows, it is understood, only the actual quantity brought to the factories, while the instructions to the Inspectors, as also to the Enumerators of the census, were in all cases to get the whole yield. The importance of as near an approach to perfect accuracy as possible, was insisted upon to the officers of the Commission, and additional certainty secured by -reference, whenever desirable, to the records of cheese factories, to which the milk was taken. It is decidedly the opinion of your Commissioner, from a careful examination of the separate reports, that the amounts given by the Inspectors are a very near approximation to the actual yield, and yet they demonstrate an average excess of 1,815 pounds more milk, per cow, than the statistics of the whole State determine should be the yield. Additional evidence, to the effect that the farmers of Herkimer county are demanding a greater than the usual yield, is shown by reference to the above table of cheese factory products, which indicates an excess of 600 pounds of milk more, per cow, from Herkimer county than the average of the other counties, in the same table. It would hardly seem necessary to state, that a drain upon an animal of this amount, and nature, must exert an injurious influence upon the reproductive apparatus, of which the mammary gland is an important part, were it not that the habit is of such general frequency that it demands further reference, to be given hereafter.

The effect of abortions upon the supply of milk, may be seen as follows, viz: of 1,651 cows who had borne calf previously, and whose yield would therefore be known, 276 failed to give any milk after aborting; 278 were reported as unaffected in their yield; and of the remaining 1,097 , in which a diminution in quantity was reported, 676 averaged a loss of 50 per cent, which may safely be assumed as the loss of the remaining 421, and the whole to be equal to the total loss of the yield of 822 cows. The difference in yield of milk on affected and non-affected farms is as follows (for Herkimer county): The former reporting an average yield of 3,994 pounds per cow, the latter 4,386 pounds per cow; and if it is considered that the latter might be the yield were it not for the abortions, the loss experienced may be stated at 822 times 4,386 , which is equal to $3,565,292$ pounds of milk, or 356,529 pounds of cheese in this part of Herkimer county, excluding the loss from heifers not counted. The difference in yield of milk between affected and non-affected farms that has been shown in Herkimer county, exists also in Hardwick, where the average yield on the affected farms is

4,260 pounds per cow, and on the non-affected farms it is 4,602 pounds per cow; but in Barre the percentage of abortions being but four-fifths of one per cent, the difference is the other way, for the yield on the affected farms is 5,336 pounds per cow for 163 cows, and on the non-affected it is 4,643 pounds per cow for 953 cows. Now, in Barre, the number of aborting cows is but 11 on 10 farms, which would be too slight a loss to affect the average per cow; and it is worthy of especial note that the first appearance of the disease here, should be upon farms, where the yield reported is so unusually large, and affords additional evidence to the opinion before expressed, that an excessive drain upon the milking capacity of a pregnant cow is injurious to the healthful performance of the reproductive process.

To determine the changes that take place in the internal organs of a cow, at the time of aborting, Inspector R. F. Halsted, M. D., was instructed to procure and make a careful post mortem examination of one within twenty-four hours after abortion had occurred. He was directed to select an uncomplicated case, so far as could be determined, but to observe carefully for any evidence of disease in any organs, especially the uterus and its appendages, and to forward specimens of the muscular coat of the uterus, of the cotyledons, (both foetal and maternal,) of the kidneys, liver, voluntary muscles, and of the blood, bile and urine, to the Commissioner without delay. Dr. Halsted made such an autopsy, on a cow belonging to Mr. Jaues Blood, of Herkimer, and forwarded the following report:

Herkimer, N. Y., November 28th, 1868.

Dr. W. H. Carmalt, Commissioner, \&.c. :

Doctor:-

I have the honor to report, that I have this day made a post mortem examination of a cow that had aborted about twenty-four hours previously. So far as I could learn or judge, the case was without complication. I found no trace of disease, or even temporary disturbance in any part except in the uterus, and there nothing except the disorganization of the cotyledons, of which the specimens sent you will give you a fair idea. This case differs from the one I examined last winter, only in this disorganization having reached a more advanced stage. The placenta was expelled only a short time before the cow was killed. Of the calf I know very little. It had been thrown with the manure into the barnyard, and was not in fit condition to form any judgment upon.

Very respectfully, your obd't serv't,

$$
\begin{aligned}
& \text { R. F. HALSTED, M. D., } \\
& \text { Inspector } N . \boldsymbol{Y} . \text { S. Agricultural Society. }
\end{aligned}
$$

Dr. Halsted authorizes the further statement, that the foetus was about four and a half months of age.

The specimens forwarded were received in good order on the day following the autopsy, forty-eight hours after the abortion occurred, and were immediately placed in the hands of Prof. Jno. C. Dalton, for microscopical examination, who furnished the following report:

New York, November 29th, 1868.
Dr. Wm. H. Uarmalt :
Dear Sir:-
I received from you, to-day, for microscopic examination, specimens of the the blood, bile and urine of a cow killed after abortion, together with portions of the liver, kidney, muscular tissue, mucous membrane of the uterus, and materual and foetal portions of the cotyledons. I have accordingly made the examination, with the following results:

The blood globules were natural in size, form, and other physical qualities. The blood contained no abnormal ingredients visible by the microscope.

The bile was perfectly clear, showing no microscopic forms whatever.
The urine was very nearly clear. Its scanty deposit contained only a few shreds of epithelium and mucus from the urinary bladder.
In the liver the glandular cells were of natural size, well defined, granular, and without any unnatural deposit of fat.

The kidney was examined both in its cortical and medullary portions. The uriniferous tubules, blood vessels, and Malpighian bodies were natural in appearance.

The mucous membrane of the uterus exhibited upon its surface columnar epithelium cells, and many detached nuclei. There was nothing abnormal seen in its structure.

The fretal portion of the cotyledons was well injected with blood in its deeper parts, but pallid, very soft, and of a light opaque yellowish color on the surface. The cells of the foetal tufts were very granular, and showed an abundant deposit of minute fat-globules.

The maternal portion of the cotyledons was more uniformly filled with blood, and in one spot very strongly injected; but its tissue, nevertheless, showed distinct evidence of fatty degeneration, similar to that of the foetal portion, and even more abundant. Otherwise the cotyledons were natural.

In every instance, I examined thoroughly for any appearance of cryptogamous spores, or other form of microscopic vegetation, but without discovering them in either of the specimens.

Yours, very respectfully,
J. C. DALTON.

There is, then, no evidence of any active disease in operation on the part of the dam, as shown by the careful post mortem and microscopical examination of every organ in the body having a probable influence to produce this disease.

What is the evidence of disease on the part of the foetus? Of 4,163 abortions reported in 1867 and 1868 , in 3,597 , or 86 per cent, the fœetus was reported dead, or diseased looking.

There have been but few opportunities offered to the Inspectors, in which to make actual examinations of the foetus as expelled, but
their limited investigations, and the general observations of farmers, unite in describing nothing inflammatory, or otherwise abnormal in the external appearance of the foetus;-but it is usually dead.

The microscopical report by Dr. Dalton states that there was evidence of an abundant fatty degeneration of both foetal and maternal cotyledons, but that they were otherwise natural. As a fatty degeneration is the natural change occurring in the placenta, after cessation of the circulation, the inference is plain that circulation had stopped before the abortion took place;-for the changes noted could not have occurred in the twenty-four hours between the abortion and the time the autopsy was made, but they had probably been going on for some days previously.

If the fact be established, that the uterus and its appendages, and the foetus and its products, are both healthy, the natural changes incident to a stoppage of circulation being all that occurs, an important point is arrived at. And aside from the absence of any traces of preëxisting disease, to be detected by the microscope, symptoms are wanting on the part of the cow to point to anything other thian an approaching labor, the evidences of which are, perhaps, unusually marked.

The introduction of a deleterious substance into the food, to affect so large a number of cows, with such uniformity of action, over a large extent of country, besides being in the first place improbable, in the second place has been investigated sufficiently to show that no article, or even variety of articles, occur having properties that would produce these extensive effects.

The existence of microscopic vegetations, or animalculæ, in the tissues of the cow, has been disproved by the microscopical examination by Dr. Dalton of almost every solid organ, and of all the important fluids.

It is very difficult, and in this investigation unnecessary, to draw an absolute line between forces operating upon bodies so intimately applied, as the fœetus and its dam; or to say that in one case the foetus is primarily affected, and in the other it is the dam. In either case, after the death of the fæetus occurred, the changes referred to in the microscopical examination would follow, and by, the amount of fatty degeneration, an estimate may be formed, as to whether the foetus has been dead for some time or not.

The microscopical examinations in the cases examined each year, indicate that this fatty degeneration had progressed sufficiently, to warrant the belief that the foetus had been dead some days.

To what source, then, must we look for the causes to produce the death of the foetus-in-utero, after excluding those already referred to? It plainly cannot be external violence in all the cases over so wide an extent of country.

Is it mal-nutrition? the blood of the dam or sire being impure:The evidence is all to the contrary ; the cows are well nourished, so far as can be judged from external appearances by persons accustomed to this method of examination, and those skilled in pathological investigation agree that there are no preëxisting abnormal appearances in the internal organs. The bulls are healthy, with the exception of a few instances in which the trouble is entirely local; and as has already been said, the descriptions reccived from farmers almost uniformly state that there is no appearance of disease in the external aspect of the foetus.

If, then, there is no fault in the quality of the nutritive materials furnished to the foetus, does it receive a sufficient supply during the whole period of utero-gestation?

It has already been pointed out that the average yield of milk of all the cows in the State is 2,571 pounds per cow, while the average yield of cows on the non-affected farms examined in Herkimer county this year, is 4,386 pounds per cow, an excess of 70 per cent more milk than the average natural yield of cows, subjected to the same circumstances in other respects, than those herein referred to. That this excess is supplied at the expense of the fœetus, is respectfully submitted; but in order to show how, the more important particulars of the reproductive process should be fully understood, and a brief description is therefore introduced.

The essential features in the generative function are, in all cases, the formation of a germ, which, living for a certain period at the expense of the parent, is afterwards detached therefrom, and takes on a separate existence. The forms under which this series of phenomena occur, are as various as there are species of animals and plants; but it is absolutely necessary, for its proper performance, that each step of the process should be performed, and in itself complete, before the next takes place.

That the performance of this function makes great demands upon the nutrition of the parent, is of such common knowledge that it is only necessary, here, to refer to the length of time expended in the preparation of the body of the parent, for its own maturity, before the function is called into action; in other words, until it shall be capable of bearing young.

When the germ is not formed from the parent stock, the conclition is that of barrenness or sterility.

If the parent is unable, from any cause, to furnish the proper materials for the maintenance of the germ, after fecundation, during the second of the reproductive processes, or that of development; or if, for any reason, either external or internal, the process of furnishing the supply is interfered with, this development is arrested. This arrest may be complete or partial; if complete, the germ dies, it is cast off as a foreign substance, and an abortion is said to occur; if the arrest is partial, a so-called deformity of some part is the usual consequence.

The methods by which the germ is nourished after conception, and before its birth, differ widely in different species of animals. The oviparous animals casting off the germ with its supply of nourishment, together, as an egg, to depend, perhaps, upon other external sources to furnish the conditions necessary to its development; the so-called parent not necessarily supplying any of the nutritive material. The viviparous animals retain the germ, attached to the parent, during the second period of its development, and until it is able to take on an independent existence. This connection in the truly viviparous animals is most intimate, the foetus depending entirely upon the parent for its nutritive supply; and, as it increases in size and multiplicity of parts, making continuously greater demands for the materials necessary to its growth; which in all cases are furnished more or less directly from the blood of the dam.

Further differences exist even among viviparous animals in the arrangement of the parts concerned in the reproductive apparatus; and one very large class, the mammalia, is characterized by the presence of an organ-the udder or mammary gland-whose primary and natural function, is to secrete a fluid for the nourishment of the young, immerliately, and for a future variable period, after birth; which fluid is also derived from the blood of the parent.

The uterus and mammary gland bear a certain inverse relationship to each other, with regard to their activity in function; the one, in the natural condition, being comparatively quiescent when the other is active. In this condition, during the development of the embryo-in other words, the preguancy of the dam-the uterine organs are in a state of extreme activity, all other parts of the animal economy tending to the proper performance of this function; and the mammary gland, though showing evidences of being influenced by this process, is, in the earlier stages, inactive.

But as pregnancy advances to its natural termination, and preparations are being made for the change that is about to occur, the most marked of these, is the increase in the activity of the mammary gland, which either just before or very soon after delivery secretes the milk designed to be the food of the young animal, whenever the more intimate placental connection is severed. The young animal, after birth, at first depends upon the milk entirely for its nourishment, and the supply of blood, before furnished to the pla centa, is now directed to the mammary gland. But as the growth of the young animal enables it to look elsewhere for food, it makes less demand upon the dam; the supply of milk diminishes in quantity, and the uterine organs, having had opportunity to return to their previous condition, are again stimulated to the performance of their natural function; and when pregnancy again occurs. the blood is redirected to the uterus, and the mammary glands diminish in activity, soon become quiescent, and the same series of phenomena are again repeated.

In this hasty sketch of the main points in the history of the reproductive process, as it occurs naturally, uninterfered with by habits of domestication, your attention is called to the inverse relationship between the activity of the uterine organs and the mammary glands. By means of the first of these, the young animal is nourished during the period of its development, and by the second, during the period of its early growth.

The animal economy does not, as a rule; allow both of these processes to go on for a length of time together-it cannot support both at the same time. The instances in nature in which the dam at once suckles one offspring and carries another, are rare. The reproductive process is a great demand upon the parent. Nature requires a long period for its preparation, has made certain laws for its government while it is going on, and after a certain period has been devoted to its performance, regulates its cessation. A constant violation of any of its more important laws, must bring about a failure somewhere in its proper performance.

The size and functional activity of the mammary gland differs much in different species of animals, and may be very decidedly influenced, even in the same species, by a difference in circumstances and treatment; and it is further possible, by a long continued system of breeding, carefully regulated by laws that have been found to perpetuate differences in breeds, to increase permanently the capacity to produce more than the previous natural quantity
of milk; and it is by recognizing and acting upon these laws, that the different breeds of the domestic cow have been established, and her present milk-producing capacity reached. But it is necessary that the process should be a gradual one, brought about by the continued repetition for generations, of the union of two animals of opposite sexes, having the same tendency as regards this func-tion;-the bull, as shown by his descent, from a line of good milkers, the cow, by her own capacity and similar descent. If, however, instead of following these rules, the attempt is made to get a large increase at once, first, by forcing the uterine reproductive apparatus into activity before the animal has arrived at full maturity, and afterwards by continuing the drain upon the mammary secretion at the same time that a second foetus is demanding its supply by the placenta-by the first practice the uterine reproductive apparatus is weakened, and a liability to abortion established; and by the second, the natural supply of blood, which should go during pregnancy to the uterus to nourish the foetus, is continued to be drawn in the other direction towards the mammary gland, arrest of development from inanition is endangered, and when it occurs, the foetus is expelled as a foreign body.

Now, it is respectfully submitted, that the reports to this Commission from the dairy districts of New York, and to a more limited extent those of Massachutetts, during the last two years, show an habitual violation of both the laws governing the time at which the reproductive process should begin, and those regulating the nourishment of the foetus-in-utero.

In the first place, in the year 1867, from the reports of 1,453 farms, it appears that on 1,047 , or 72 per cent of farms, the habit is to impregnate the heifers at from one to one and a half years of age. The reports of this year state that out of 11,549 cows raised by the farmers reporting them, 9,591 , or 83 per cent of cows, first calved at under three years of age.

If an animal be allowed to bear young much before it has arrived at maturity, the process of reproduction, being essentially antagonistic to that of nutrition, must interfere to a greater or less degree with its full growth, which of course depends upon its nutrition. An animal cannot be said to have arrived at maturity, simply because it is able to be fecundated; the phenomenon of ovulation, or heat, is but a part of the reproductive process; for the successful carrying out of the whole, the rest of the animal system should have acquired strength of constitution and vigor, sufficient to bear
the tax of having a part of its nutritive materials taken by the foetus, and this requires that nearly the full growth of its organs should be attained.

Now, a heifer at two years is not fully grown, and yet it is shown that 83 per cent of those raised, in the districts where abortions prevail, have been, for from the six to nine months preceding this age, subjected to a process in opposition to that of growth. And although it cannot be said that any one heifer, impregnated with a view to have her calve at two years old, will not carry to term, there is danger that the effect may, by reason of the strain upon the constitution thus produced, be felt in the subsequent pregnancies; and a table previously given shows, that while five per cent of those which first calved under three years of age aborted, in some of the subsequent pregnancies, the abortions among those which first calved at three years old or over, was but three per cent.

In the second place, the amount of milk demanded per cow, in the districts examined this year, as has been shown, is 70 per cent greater than the amount determined, by the yield of $1,195,000$ cows, to be the natural yield. It is respectfully submitted, that this constitutes a violation of the rule that an animal but very seldom naturally suckles one offspring at the same time she is pregnant with another; in other words, that the milk-secreting organs shall be in a condition of comparative quiescence during the period of gestation.

Now, the excessive yield here indicated, is brought about, by first getting all the milk possible during the height of the season, and secondly, by continuing the process as long as possibleas long as the mammary gland can, by any means, be stimulated to activity-and yet, during the latter part of this time, the cow is pregnant; the foetus is demanding an unusual supply of blood to the placenta for its nourishment, and the farmer is demanding a supply to the mammary gland for milk, forgetful entirely, apparently, that the original design of the whole reproductive apparatus is to perpetuate the species;-not to get milk simply. Under the circumstances of this drain, either the cow must refuse to give the milk, and be dried off, or the development of the foetus, which is now the lowest in order of vitality, is checked from lack of nourishment. In a certain number of cases the latter occurs, and an abortion is the result.

In further confirmation of this view, of the arrest of development
from lack of nourishment, attention is called to the table indicating the period of pregnancy at which abortions most frequently occur, and it will be seen that of 1,320 abortions, 939 , or 71 per cent, occur during the last three months of utero-gestation, at the time the foetus must be considered as making the greatest demand upon the dam for its nutrition; and yet, the reports of 1867 indicate a habit of milking the cows to as late a period of pregnancy as they will give milk. The expressions not infrequently occurred in reply to the question: What month of pregnancy are the cows dried off from milkìng? "As long as it will pay." "I milk for a pint." "As long as possible." And in but few instances, were farmers able to give reliable answers as to the exact period of pregnancy at which any individual cows were dried off. Further evidence on this point would be desirable, but the report of every Inspector, derived from the general statements of farmers, has been, that the habit almost universally exists of milking the cows to the last paying drop.

Besides the arrest of development from inanition, thus brought about, the persistent dragging at the mammary gland for milk, during the later months of pregnancy, is a source of irritation to the uterus, by reason of the intimate physiological connection between these organs, and tends very materially to excite contractions in the uterus.

That irritation of this kind to the mammary gland in the pregnant human female will occasion contractions in the uterus, and abortion, is well known to and practiced by physicians when that object is to be attained. And if, in the domestic cow, a liability to abortion by too early breeding is established, and a tendency to the arrest of foetal development endangered by inanition, it is not improbable that so constant an irritation as this will account for many cases of abortion.

The rule in the human female is very positive against the two processes of lactation and pregnancy going on, for a length of time, together, and its continued violation is there followed by directly the consequences here complained of in the domestic cow. If, during lactation, pregnancy occurs, the former process must be stopped, or the mother is liable to a miscarriage; or, vice versa, if lactation is stopped, the phenomenon of ovulation, theretofore in abeyance, now begins again. And although it cannot be stated that in the cow, as also among other of the domestic animals, that these processes cannot go on safely for a limited period together, still, [Ав.]
natural historians and physiologists, when speaking of the periods at which wild animals reproduce their young, assume the rule in general terms. For, they say, "the duration of lactation being, in general, equal in duration to that of gestation,"* therefore, such or such an animal produces young once in so often, making the time, at least, double that of the known length of pregnancy. They also, however, state as a law, that habits of domestication tend to increase the power of reproduction within certain limits, both as regards frequency of occurrence, and the number produced at a birth, and so far, indirectly, acknowledge that a yield of milk in excess of that required by the animal, may be brought about by following correct principles in breeding. But we may also be allowed to reason, that a sudden demand of 70 per cent more milk from one set of cows, over others of the same breeds, subjected in all other respects to the same care and treatment, is too great a variation from the natural law, to be permitted without a check somewhere;-and it is seen that where this excess is demanded abortions occur.

The affirmative results obtained by the Commission, this year, may therefore be briefly stated as follows, viz:

1st. That cows, which have first calved at under three years of age, are more liable to abort during their subsequent pregnancies, than those who first calved at three years of age or over, in the proportion of five to three; and that 83 per cent of the cows raised on the farms reporting them, do first calve at under three years of age.

2 d . That cows, subjected to removals at any time, are liable to abort, over those raised on the farms, in the proportion of 7 to $4 \frac{1}{2}$; and that 63 per cent are thus removed.

3 d . That cows, subjected to removals during pregnancy, are liable to abort, over those moved while not pregnant, in the proportion of nine to two; and that 70 per cent of those moved yearly are pregnant, and 17 per cent are moved yearly.

4th. That arrest of development is the condition immediately preceding the abortion; that an excessive drain upon the secretion of milk, during pregnancy, has a tendency to produce arrest of development in the foetus, from inanition; and that an excess of 70 per cent of milk is demanded from the cows in this district where abortions prevail.

[^1]In submitting these views for the consideration of the Society, it must be understood that no claim is made that these are all the causes that produce the abortions complained of, or that any one of them has by itself given rise to this trouble. The points desired to be shown are, that the practices of breeding from stock at the very early age indicated, and the exacting from the dam the excessive amount of milk shown to be drawn, have each injurious influences upon the reproductive process, tending to produce abortions; and that, acting together, they in many cases do produce this result. And if it be allowed that these practices are markedly prejudicial, then various extraneous circumstances, impracticable to enumerate, which, under other conditions, would have little or no effect, now exert an active influence to bring about the disease.

To so general an extent do these practices prevail, that it has been found practically impossible, to separate the farms in which they exist from those that do not; for some farmers breed one part of their heifers at two years old, and another part at three years old, and the farm must thus be included in both classes. And the irregularities heretofore referred to, with regard to the appearance or disappearance of the disease in towns, or farms, or cows, may be accounted for, in part, by the changes made in the herds between different farms.

The Commission endeavored to obtain information with regard to the first appearance of the disease on each farm, with a view to determine, if possible, the primary influences affecting the cows first aborting; but in Herkimer county the disease has been of so long standing; changes among the cows are so constantly made, as also to less extent among the occupants of farms, that it was found impossible to derive much information upon this point there. In the town of Hardwick, Massachusetts, however, more definite answers could be obtained. The disease has existed there but a short time; the dairies are smaller; so many changes among the stock have not occurred, and the disease was therefore more easily traced. The replies are tabulated as follows:

Of all the farms reporting abortions upon them in this or previous years:

> 1st. Number in which the first appearance could be traced directly to the introduction of animals (bulls, cows, or heifers in calf) from an aborting dairy
2d. Occurred in cows introduced that year from a non-aborting dairy1
3d. Occurred in cows which had been on the farm one year or more, and had not, so far as known, been brought in contact with an aborting dairy 11
4th. Occurred in cows whose previous history was unknown 5
Total 31

The largest proportion of farms, it will be noticed above, is of those which report the access of the disease, as coincident with the introduction of animals from an infected dairy; but the next largest is the one in which the cows had been on the farm for one year or more, and were not brought in contact with an aborting dairy; and the difference between these two, directly antagonistic, classes is, in this town, too slight to consider, that the disease is any more liable to be first introduced from a source foreign to the farm, than it is to occur thereon spontaneously.

With regard to whether a so-called sympathetic influence could have an effect upon the disease, the only manner in which an inquiry could be brought to bear was, to get evidence as to whether the sight, smell or other knowledge of an aborted foetus or its products exerted any influence upon an apparently healthy pregnant cow; but as no farmer, among those reporting abortions in this or previous years, acknowledged having taken any especial care to remove the foetal products, except in a very few instances "to throw it over the fence, out of the barnyard;" and as the aborting cows were not even then separated from the rest of the herd, no decision could be arrived at on this point.

The expenses of the Commission have been as follows:
Salaries of Inspectors $\$ 1,21000$
Current expenses of Inspectors. 92015
Salaries of Assistant Inspectors 60000
Current expenses of Assistant Inspectors 63093
Salary of acting Assis't Inspector, 23 days, at $\$ 100$ per mo. 7700
Cow for autopsy 1428
Mounting plants, \&c. 3082
Stationery 697
Printing 4800
Maps, \&c 2061
Express and postage 1430
Traveling expenses of Commissioner. 3752
Salary of Commissioner 1,00000
Total \$4,610 58

The Commission is under especial obligation to Inspector R. F. Halsted, M. D., for the unusual care always taken to obtain accurate information, as well as for the interest displayed in the investigation throughout. Both he, and the Assistant Inspectors, Drs. Benjamtn R. Swan, Daniel W. Kissam and N. A. Lindley, worked assiduously while on duty, and their labors were in many respects fatiguing.

Acknowledgments for the microscopical examination and report are also due to Prof. John C. Dalton; and also to Messrs. Charles J. Spraque and John L. Russell, of Massachusetts, for the classification and report on fungi.

Respectfully submitted;

W. H. CARMALT, M. D.,
Commissioner.

(A.)

REPORT OF THE

Farm cultivated by Mr
In the Town of \qquad County of
State of \qquad
Number of Calves born alive at full term, from April 1, 1867, to April 1, 1868
Number of Abortions occurring from April 1, 1867, to April 1, 1868

Total number of Cows in calf from April 1, '67, to April1, '68
Number of Abortions occurring in the-
1st Month of Pregnancy
2d Month of Pregnancy
3d Month of Pregnancy
4th Month of Pregnancy
5th Month of Pregnancy
6th Month of Pregnancy
7th Month of Pregnancy
8th Month of Pregnancy
9th Month of Pregnancy
\qquad

NUMBER OF COWS IMPREGNATED BY

	Bull Aged 1 Year.	Buli Aged 2 Years.	Bullaged 3 Yrs. or over.	Total.
That carried Calf to full term That aborted.....................				

How many Cows in all were served during the year 1867-8, by Bull aged 1 year? \qquad
How many Cows in all were served during the year 1867-8, by Bull aged 2 years?
How many Cows in all were served during the year 1867-8, by Bull aged 3 years or over?

| | | NUMBER OF COWS THAT WERE | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Number that were sick immediately before, during, or after abortion
Number that were not sick immediately before, during, or after abortion

Total

What symptoms does the Cow exhibit when sick, before, during or after abortion; as to appetite, emaciation, stupor or restlessness, unnatural discharges, or other particulars?

OF ALL THE COWS ON THIS FARM IN THE YEAR 1867-8

	That carried Calf to Full Term.	That Aborted.	Total.
Number of cases of first pregnancy............................. Number that had borne calf at full term the previous year.. Number that had aborted the previous year			
Total			
Number raised on this farm.. Number brought on as unimpregnated heifers.......... Number brought on pregnant during the past year......... Number brought on not pregnant during the past year... Number that have been on this farm one year or more			
Total.......................			
OF ALL THOSE RAISED ON THIS FARM FROM HEIFERS.			
How many first calved under 3 years of age How many first calved at 3 years of age, or over.			
Total........................			

What was the average quantity of milk sold from this farm, per cow, in the year 1867-8? gallons.
What was the average amount of butter made on this farm, per cow, in the year 1867-8? pounds.

What was the average amount of cheese made on this farm, per cow, in the year 1867-8? pounds.
Upon what kinds of hay are the cows fed?
Was the hay well cured and sweet?
What root crops are given, and how much to each cow? Turnips carrots beets parsnips potatoes.

What ground feed, and how much to each cow? Oats rye buckwheat barley wheat-bran.
Is the grain used for ground feed raised on the farm or purchased? If so, where?

Investigate and report upon the following points:
1st. The manner of the first appearance of the disease on this farm.
2d. What evidence there may be that the sight, smell or other knowledge of an aborted foetus, or its products, will cause an apparently healthy pregnant cow to abort.
3d. Any other actual facts that go towards accounting for the occurrence and spread of this disease upon this farm.

CLASSIFICATION.	Common Name.	Habitat.	Frequency.	Where found or noted.
Ramunculaced. 1. Clematis Virginiana.-L,.............	"Crowfoot Family." Common Virgin's-bower ..	Fence-rows	General but scarce	W. R. Stevens, A. Devendorf, Jacob Walrath, Fr. Lewis, H. Haupt, S. G. Spnor, L. Green, J. E. Fox, P. Baum, N. N. Schuyler, A. Jones, A. Decker, E. Decker, Ed. Simms, Jno. Snell, G. Spoor, A. Miller.
2. Anemone Virginiana. - L.	Tall Anemone..	Fence-rows	General but scarce	On all farms.
3. Anemone Pennsylvanica.-L........	Pennsylvania Anemone...	Meadows	Rare	L. Green, Jno. Smith.
4. Hepatica acutiloba.-D. C.	Sharp-lobed Hepatica....	Woods.......	General and common........	In all woods.
5. Thalictrum dioicum.-L.	Early meadow Rue.	Woods.................	Probably general but scarce.	W. R. Stevens, A. Jones.
*Thalictrum purpurascens.-L.......	Purple meadow Rue......	Roadsides.	Rare	Near Fink's basin.
6. Thalictrum Cornuti.-L.............	Meadow Rue.	Meadows	Rare	H. N. Gros (scarce), I. Green (abundant).
*Ranunculus abortivus.-L..	Small flowered Crowfoot .:	Woods.	Rare	W. R. Stevens.
*Ranunculus sceleratus.-L	Cursed Crowfoot.	Ditches	Rare	H. N. Gros.
7. Ranunculus Pennsylvanica.-L.....	Bristly Crowfoot	Meadows	Rare	G. F. Bellinger.
8. Ranunculus acris.-L...............	Tall Crowfoot, Buttercup..	Meadows and pastures..	General and abundant......	On all farms.
9. Actea spicata. - L. var. rubra.-Michx.	Red Bane berry..........	Thickets and woods	General and common	On all farms (kanks of ravines).
10. Actea alba.-Bigelow ...	White Bane berry, Cohosh.	Thickets and woods.....	General and common	On all farms (banks of ravines).
*Magnoliacece. *Liriodendron Tulipifera.-L........	"MagnoliaFamily." Tulip Tree.	Woods..................	General but scarce	In most forests.
Menispermacece. 11. Menispermum Canadense.-L.	"Moon-seed Family." Canadian Moon-seed......	Fence-rows	Probably general but scarce.	W. R. Stevens, A. Devendorf.

B-Continued.

CLASSIEICATION.	Common Name.	Habitat.	Frequency.	Where found or noted.
Berberidacece. 12. Caulophyllum thalictroides.-Michx.	"'Barberry Family." Papoose-root.	Woods	General and common .	W. R. Stevens, S. G. Spoor (Van Allen ten't), A. J. \& S. Stafford.
13. Podophyllum peltatum.-L..........	May Apple, Mandrake....	Meadows, pastures and woods.	General and common	A. Devendorf.
*Papavaracere. *Chelodonium majus. - L.............	"Poppy Family." Celadine...................	Roadsides	Rare (extremely	Not noted as to locality.
$\begin{gathered} \text { *Fumariacece. } \\ \text { *Dicentra Canadensis.-D. C......... } \end{gathered}$	"Fumitory Family." Sqịrel Corn	Woods	Probably general but scarce.	G. Bellinger.
Cruciferce. *Nasturtium Armoracia.-Fries.....	"Mustard Family." Horse-radish.	Yards	Probably general and common.	A. Miller.
14. Nasturtium palustre.-D. C	Marsh Cress	Pastures...............	Rare	J. E. Fox.
*Cardamine hisurta.-L	Common bitter Cress......	Pastures. ${ }^{\text {Meadows }}$	Rare	J. E. For.
15. Barbaria vulgaris.-R. Br..........	$\begin{aligned} & \text { Common Winter Cress, } \\ & \text { Yellow Rocket. } \end{aligned}$	Meadows, pastures and woods.	General but searce	W. R. Stevens.
*Sisymbrium officinale.-Sco	Hedge mustard...........	Yards	Probably general but scarce. General and common	W. R. Stevens, H. N. Gros.
*Sinipsis (Brassica) nigra.-	Black mustard \qquad Field Mustard, Charlock.	Yards and gardens Grain-fields......	General and common	W. R. Stevens, H. N. Gros.
17. Capsella Bursa-pasturis.-Moench... *Dentaria diphylla.	Shepherd's Purse	Yards and gardens Woods...................	General and common Rare	W. R. Stevens, H. N. Gros. Jacob Walrath.
Violacece. 18. Viola rotundiflora.-Michx...........	"Violet Family." Round leaved Violet......	Woods	General but scarce	. Deoker
19. Viola cuculata.-Ait. var. cordata	Common blue Violet......	Meadows and pastures..	Ra	R. Stevens, A. Devendorf.
20. Viola striata.-Ait.	Pale Violet	Wood	General and com	all woods.
21. Viola Canadensis.-L.	Canada Violet......	Woods.	Rare	W. R. R. Stevens. Stevens, A. Deven-
22. Viola pubescens.-Ait .	Downy yellow Violet	W oods	Gener	W. R. Stevens, A. Deven-

B-Continued.

CLASSIFICATION.	Common Name.	Habitat.	Frequency.	Where found or noted.
Anacardiaceer 37. Rhus typhina.-L.....	"Cashew Family." Stag-horn Sumach	Fence-rowss.	General and common	On all farms.
37. ${ }^{\text {Rhus }}$ glabra.-L	Smooth Sumach	Fence-rows	Rare	W. R. Stevens.
38. Rhus Toxicodendron.-L	Poison Ivy, Poison 0ak...	Fence-rows	Rare	N. N. Schuyler.
Vitacece. 39. Vitis cordifolia.—Michx	"Vine Family." Winter or Frost Grape.			
		Fence-rows	General but scarce	W. R. Stevens, A. Devendorf, Fr. Lewis, S. G. Spoor, Ed. Simms, G. Bellinger, D. Bellinger, Jos. Snell, G. Spoor, J. J. Rickardt, A. Miller.
40. Ampelopsis quinquefolia.-Michx ...	Virginia Creeper.........	Fence-rows	Rare	Jacob Walrath, Fr. Lewis, N. N. Schuyler, A. Jones, A. \& P. Cramer, H. N. Gros.
*Celastracece. *Celastrus seandens.-L	"Staff-Tree Family." Climbing Bitter-sweet....	Fence-rows	Rare	W. R. Stevens, Jacob Walrath, N. N. Schuyler.
Sapindacea. *Acer Pennsylvanicum. - L	"Soap-berry Famıly." Striped Maple.............	Woods..................	General and common........	In all forests.
41. Acer spicatum.-Lam......	Sugar Maple.......			In all forests.
43. Acer saccharinum, var.nigrum.-Wang	Black sugar Maple .	Woods..................	Rare	Mrs.Devendorf (Brigg's ten't).
*Polygalacece. *Polygala verticillata.-L ..	"Milk-wort Family.	Roadsides..............	Rare	W. R. Stevens.
44. Trifolium pratense.-L	"Pulse Family." Red Clover	Meadows, pastures and	General and abundant, forms	On all farms.
		voods.	from one-quarter to onethird of all hay and pastures.	
45. Trifolium repens. $-L \ldots$. 46. Trifolium Agrarium. $-L \ldots \ldots$. .	White Clover Yellow or Hop Clover.....	Meadows, pastures and woods. Meadows	General and abundant, forms from ope-fifth to one-quarter of all pastures, and a large proportion of the hay. Rare \qquad	On all farms. Ar. Jones.

B-Cortinued.

81. Enothera pumila.-L.... *Ludwigia palustris.-Ell.	Water Purslane...........	Meadows and pastures.. Ditches................	Rare......................... Probably general but scarce.	N. Stafford (abundant), E. Decker. Fr. Lewis.
Umbelliferce. 82. Carum Carui...........	"Parsley Family." Caraway	Meadows and pastures..	Rare	W. R. Stevens, M. Wilkes, J. Gardinier.
83. Hydrocotyle Americana.-L	Penny-wort. .	Wet shady places.	Rare	W. R. Stevens.
84. Sanicula Canadensis.-L	Black snake root (?)......	Woods.	General and common	On all farms.
85. Sanicula Marylandica.-L	Black snake root	Woods	Rare	W. R. Stevens, A. Devendorf, Jacob Walrath.
-	Common Parsnip	Meadows and pastures..	General and common	Abundant on H. N. Gros, Mrs. Walrath, J. E. Fox (Smith ten't), Jno. Shall, L. Green, H. Bellinger.
87. Conium maculatum.-L.	Poison Hemlock	Meadows	Rare	L. Green.
88. Cryptotania Canadensis.-D	Hone-wort.	Woods.	General and common	In all woods.
89. Osmorrhiza brevistylis.-D. C Araliacece.	Hairy-sweet Cicily.... "'Ginseng Family."	Woods.	General and common	In all woods (H. N. Gros abundantly).
0. Aralia racemosa.-L.	Spikenard	Woods	General but scarce	In all woods.
91. Aralia nudicaulis.-L.	Wild Sarsap	Woods	General but scarce	In all woods.
92. Aralia quinquefolia.-L	Ginseng	Woods.	General but scarce	In all woods.
Cornacece. *Cornus Canadensis.-L	"Dog-wood Family." Bunch berry	Woods.	Rare	W. R. Stevens.
93. Cornus circinata.-L'Her	Dog-wood	Thickets	Rare	W. R. Stevens. .
94. Cornus sericea.-L..	Kinnikinnick	Thickets.	Probably general but scarce.	W. R. Stevens, Fr. Lewis, E. Decker, G. Bellinger, L. Green, D. Bellinger.
95. Cornus paniculata.-L'Her	Panicled corne	Bog	Rare	L. Green.
96. Cornus alternifolia.		Thicket	Probably general but scarce.	Fr. Lewis, S. G. Spoor, H. Haupt, W. Jones.
Caprifoliacec. 97. Linnæa borealis.-Gronow	"Honey-suckle Family." Twin flower.	Woods.	Rare	W. R. Stevens, A. Devendorf, H. N. Gros.
98. Diervilla trifida.-Moench.	Bush honey-suckle.......	Weods.	Rare	W. R. Stevens.
99. Sambucus Canadensis.-L	Common Elder.	Meadows, pastures and fence-rows.	General and common	On all farms.
*Sambucus pubens.-Michx...........	Red-berried Elder	Woods.	Rare	Ed. Simms.
*Viburnum Lentago.-L..............	Sweet Viburnum, Sheep berry.	Thickets.	Rare	W. R. Stevens.
100. Viburnum acerifolium. $-L$		W oods.	General but scarce	Fr. Lewis, N. N. Sehuyler.

B-Continued.

CLASSIFICATION.	Common Name.	Habitat.	Frequency.	Where found or noted.
Caprifoliaceco-Continued. 101. Viburnum lantanoides.-Michx.....	"Honey-suckle Family"Continued. Hobble-bush, Am. Wayfaring Tree. "(Madder Family."	Woods.................	General about Newville.....	Fr. Lewis, S. G. Spoor, H. Houpt, Edward Simms, W. dricks, S. G. Spoor (Van Allen ten't), A. Decker.
102. Galium Mollugo.-L..............	Smooth Bed-straw	Pastures.	Rare (in country).	. R. Stevens.
103. Galium asprellum.-Michx.........	Rough Bed-straw	Pastures.		W. R. Stevens, H. N. Gros, L. Green.
104. Galium trifidum.-L..............	Small Bed-straw .	Meadows and pastures..	Rare	Fr. Lewis, J. E. Fox. ${ }^{*}$
105. Galium triforum.-Michx..........	Sweet-scented Bed-straw.	Woods................	General and oommon	In all woods.
106. Galium cirææzans.-Michx.........	Wild Liquorice.	Woods................	Rare	W. R. Stevens, A. Devendorf, Jacob Walrath, H. N. Gros.
107. Galium lanceolatum.-Torr........	Wild Liquorice.	Woods.................	Rare	W. R. Stevens, A. Devendorf, Jos. Snell, H. N. Gros.
108. Mitchella repens. $-L$	Partridge berry...	Woods.	General and common	In all woods.
Dipsacec. 109. Dipsacus Fullorum. -	"Teasel Family." Fuller's Teasel............	Pastures..............	Raro	Fr. Lewis, H. Peterie.
Compositce. 110. Eupatorium purpureum.-L........	"Composite Family." Trumpet Weed............	Pastures..............	Rare	W. R. Stevens, A. Devondorf, Haupt, J. E. Fox (Smith ten't), D. Champion.
111. Eupatorium perfoliatum.-L......	Thorough Wort, Bone-set.	Wet places............	General and common	On all farm
112. Eupatorium ageratoides.-L.......	White Snake-root...	Woods.	General and common	In all woods.
113. Iussilago Farfara.-L.	Coltsfoot...............	Pastures and woods.....	General and common	Except Worendor, Jacob Walrath, H. N. Gros, L. Green.
114. Aster corymbosus.-Ait ..		Woods.	General and common	In all woods.
115. Aster macrophyllus.-L		Woods.	Probably general and common.	A. Miller, E. Deeker, G. Bel- linger, H. Haupt, G. Spoor, S. G. Spoor, Edward Simms, J. J. Rickardt.

B-Continued.

CLASSIFICATION.	Common Name.	Habitat.	Frequency.	Where found or noted.
Compositce-Continued.	"Composite Family"Continued.			
*Bidens chrysanthemoides.-Michx.	Bur-Marigold.............	Meadows and pastures..	Probably general and com-	On all farms.
127. Anthemis arvensis.-L............	Corn Chamomile	Roadsides and grain- fields	General but scarce..........	On all farms.
128. Achillea Millefolium.-L	Common Yarrow, Milfoil..	Meadows and pastures..	General and common	Abundant on M. Wilkes, A. Miller.
129. Leucanthemum vulgare.-L........	White Daisy, 0x Eye.....	Meadows and pastures..	General and common........	On all farms; abundant on M. Wilkes, E. Coville, D. Champion, L. Devendorf.
130. Tanacetum vulgare.-L	Common Tan	Pastures	Rare	Fr. Lewis, S. G. Spoor.
131. Gnaphalium decurrens.-Ives	Everlasting	Pasture	General and common	On all farms.
132. Gnaphalium uliginosum,-L........	Low Cudweed.....	Pasture	General and common	On all farms. On all farms.
133. Antennaria margaritacea.-R. $\mathrm{Br}^{\text {ar.. }}$ 134. Antennaria plantaginifolia.-Hook..	Pearly Everlasting....... Plantain-leared Everlast-	Pastures... Pastures..	General and abundant Probably general, but occurs	On all farms. ${ }_{\text {Scare }}$ on C. Hardee, J. H.
134. Antennaria plantaginifolia.-Hook..	Plantain-leayed Everlast- ing.		Probably general, but occurs only on poor ground.	Stauring, J. Ostrander, Jno. Snell, H. ; common on Snell, G. Spoor, J. J. Rickardt, Ackerman (Donovan ten't), A. Miller; abundant in patehes on E. Decker, G. Bellinger, D. Bellinger
*Erechthides hieracifolia.-Raf....	Fire-weed.	Pastures	Rare	A. Decker.
135. Centaura Cyanus.-L............. 136. Cirsium lanceolatum.-Scop.......	Blue-bottle......		Rare	A. Decker. On all farms; abundant on
136. Cirsium lanceolatum.-Scop........	Common Thistle.	Meadows and pastures ..	General and common	Fr. Lewis, E. Coville.
137. Cirsium muticum.-Michx	Swamp Thistle .	Woods................	Rare	W. R. Stevens.
138. Cirsium arvense.-Scop............	Canada Thistle.	Meadows, pastures and grain-fields.	General and common	On all farms.
139. Lappa major:-Gcrtn	Common Burdock.	Fence-rows	General but scarce	On all farms. ${ }^{\text {a }}$,
140. Hieracium scabrum.-Michx	Rough Hawkweed........	Pastures...............	Rare	E. Decker, A. J. \& S. Stafford, G. Bellinger, D. Bellinger.
141. Hieracium venosum. $-L$.	Rattlesnake weed.	Woods	Rare	W. R. Stevens.
142. Hieracium paniculatum.-L........	Panicled Hawkweed....	W oo		H. Haupt, Ed. Simms.

143. Nabulus albus.-Hook............. 144. Taraxacum Dens-leonis.-Derf.....	Rattlesnake root, White Lettuce. Common Dandelion.......	Woods................	Probably general but scarce. General and abundant	H. Haupt, S. P. Jones, A. Jones. On all farms.
145. Lactuea elongata.-L........	Wild Lettuce	Fence-rows	General and common.	On all farms.
146. Mulgedium aciminatum.-D.		Fence-rows	General but scarce.	On all farms.
147. Sonchus oleraceus.-L.......	Common Sow Thistle	Grain-fields	Rare	J. H. Stauring, H. N. Saunders, H. N Gros, Jno Shall
148. Sonchus asper, -Vill	Spiny-leaved Sow Thistle.	Grain-fields.	Rare	J. H. Stauring, H. N. Saunders, Jno. Shall.
Lobeliacte. 149. Lobelia syphilitica.-L..............	"Lobelia Family." Great Lobelia..........	Roadsides..	Rare	Between Little Falls and Fink's basin.
150. Lobelia inflata.-L	Indian Toba	Meadows and pastures..	General and common	On all farms.
Ericacece. 151. Pyrola eliptica.-Nutt *Pyrola chlorantha.-Swartz.......	"Heath Family." Shin leaf. Small pyrola	Woods	General and common Rare	On all farms. W. R. Stevens.
152. Pyrola secunda.-L	One-sided pyro	Woods	General and commo	On all farms.
153. Moneses uniflora.-	One-flowered pyrola	Woods.	Rare	W. R. Stevens, A. Devendorf.
154. Chimaphila umbellata.-Nut	Pipsissewa, Prince's Pine	Woods	General and commo	In all woods
155. Monotropia uniflora.-L	Indian pipe.	Woods	General but scarce	S. G. Spoor (Van Allen ten't).
*Acquifoliacect. *Ilex verticillata.-L. Gray.	"Holly Family." Black Alder	Pastures	Rare	E. Decker.
Plantaginacect. 56. Plantago major.-L ..	"Plantain Family." Common Plaintain.....	Meadows and pastures..	General and abunda	On all farms.
157. Plantago lanceolata.-L...........	Rib grass, Rifle grass.....	Meadows	Rare	A. Jones (abundant).
Primulacec. 158. Lysmachia stricta.-Ait.	"Primrose Family	Pastures	Rare	H. N. Gros, L. Green, Ar.
159. Lysmachia ciliata. $-L$.		Pastures..............	Rare	H. N. Gros, L. Green; common on Ar. Jones.
Orobanchacea. 160. Conopholis Americana.-Wallroth.. *Epiphegus Virginiana - Bart	"Broom Rape Family." Squaw or Cancer Root.... Beech drops	Woods Woods		W. R. Stevens, N. N. Schuyler. In all woods under beech trees.
Schrophulariacece. 161. Verbascum Thapsus.-L............	"Fig-wort Family." Common Mullein..........	Pastures...............	General but scarce	On all farms.
162. Verbascum Blattaria.-L..........	Moth Mullein	Pastures...............	Rare	W. R. Stevens, A. Devendorf, M. Wilkes, Fr. Lewis, Jacob Walrath, II. N. Gros.

B-Continued.

CLASSIFICATION.	Common Name.	Habitat.	Frequency.	Where found or noted.
Schrophulariacea-Continued. *Linaria vulgaris.-Mill.............	"Fig-wort Family", Continued. Toad-flax, Ramstead, Butter and Eggs.	Door yards and roadsides	Rare	W. R. Stevens, D. Champion, J. H. Saunders, C. Andrews.
163. Schrophularia nodosa.-L..........	Fence-rows	Probably general but scarce.	W. R. Stevens, Fr. Lewis, S. G. Spoor, G. Spoor, H. Haupt, S. P. Jones, J. J. Rickardt.
164. Mimulus ringens.-L		Meadows and pastures (wet places).	General but scarce.	Fr. Lewis, S. G. Spoor, H. Haupt, A. Jones, H. Green, P. Baum, J. E. Fox (Smith ten't), N. N. Schuyler.
165. Gratiola Virginiana.-L	Meadows and pastures (wet places).	Rare	N. N. Schuyler.
166. Veronica Americana.-Schu	Amer. Brooklime.........	Meadows and pastures (wet places).	Rare	W. R. Stevens, J. J. Rickardt, M. Wilkes.
167. Veronica officinalis.-L..............	Common Speedwell.......	Pastures...............	Probably general but scarce.	W. R. Stevens, M. Wilkes.
168. Veronica peregrina.-L............	Purslane Speedwell, Neckweed.	Pastures...............	Rare	W. R. Stevens.
169. Pedicularis Canadensis.-L	Common Lousewort, Wood Betony.	Woods.	Probably general but scarce.	W. R. Stevens.
*Melampyrum Americanum.-Michx	Cow Wheat	Woods.	Probably general but disappears early.	W. R. Steven ${ }^{\text {a }}$
Verbenacece. 170. Verbena hastata.-L.................	"Vervain Family." Blue Vervain...............	Pastures and roadsides..	General but scarce.	Fr. Lewis, S. G. Spoor, H.
		Pastures and roadsides..	General but scarce...........	Haupt, H. Green, P. Baum, A. Decker, R. Landt, Ed. Simms, E. Decker, G. Bellinger, D. Bellinger, Jno. Snell, H.Peterie, Jos. Snell, G. Spoor, J. J. Rickardt, Ackerman (Donovan ten't), H. N. Gros, A. Miller, L. Green, J. Ostrander.
171. Verbena urticifolia,-L............	Nettle - leaved or White Vervain.	Pastures and roadsides..	General and common........	On all farms.

W. R. Stevens, A. Devendorf,
H. N. Gros, S. G. Spoor, H. N. Gros, S. G. Spoor,
Jacob Walrath, F. Lewis,
H. Haupt. On all farms. W. R. Stevens, Fr. Lewis,
S. G. Spoor, H. Haupt,
M. Wilkes, A. Miller.
W. R. Stevens, Fr. Levis, S.G.
Spoor, H. Haupt, M. Wilkes,
A. Miller, G. Spoor, H. Pe-
terie, Jos. Snell.
On all farms. W. R. Stevens,
W. R. Stevens, A. Devendorf.
In all woods. A. Deeker, Jacob Shall. A. \& P. Craamer.
On all farms.
Ed. Simms, Fr. Lewis, S. G.
Spoor, H, Haupt.
On all farms.
W. R. Stevens, JacobW alrath,
H. N. Gros. H. N. Gros.
W. R. Stevens.
W. R. Stevens, A.\& P.Cramer. Mrs. Devendorf (Briggs ten't).

W. R. Stevens, Fr. Lewis, S
 Jones, A.Deeker, Ed.Simms,
S. P. Jones, E. Decker.

 General and probably com| 1 |
| :---: |
| \vdots |

General and common
Probably general but scarce.
Probably general but scarce.
General and common
Rare Rare Rare Rare
 General and common
Probably general but scarce. $\begin{aligned} & \text { Meadows and pastures } \\ & \text { (along a brook). }\end{aligned}$ Rare

(along a brook)
General but scarce
General but scarce

Probably general and com-
mon.

Probably general but scarce.
Probably general but scarce.
Meadows and pastures
Meadows and pastures
Meadows and pastures
(wet places). Meadows and pastures (wet places).
Roadsides Woods.

\vdots
\vdots
0

$$
\begin{aligned}
& \begin{array}{l}
\text { Fence-rows and yards } \\
\text { Fence-rows and yards }
\end{array}
\end{aligned}
$$

B-Continued.

B-Continued.

*Abies Canadensis.-Michx. 230. Thuja occidentalis.-L	Hemlock Spruce Am. Arbor vitæ	Woods. .	General and very common	all woods.
231. Taxus baccata.-L.				W. R. Stevens, H. N. Gros.
var. Canadensis.-Gray	Ground Hemlock, American Yew.	Woods....	Probably general but scarce.	W. R. Stevens, Fr. Lewis, S. G. Spoor, H. Haupt, E. Simms, S. P. Jones, Jos. Snell.
232. Arisæma triphyllum.-Torr.......	Iudian Turnip............	Woods..................	Probably general but scarce.	W. R. Stevens, Jacob Walrath, H. N. Gros, A. Devendorf, Fr. Lewis, S. G. Spoor, A. Decker, Edward Simms, S. P. Jones, G. Bellinger, D. Bellinger, Jos. Snell.
233. Symplocarpus fætidus.-Salisb.....	Skunk Cabbage..........	Meadows, pastures and bogs.	Rare	H. N. Gros, L. Green.
Lemnacecr. 234. Lemna minor.-L	"Duck-Weed Family."	Ditches (floating)......	Rare	N. Gros, L. Green,
				Devendorf (Brigg's ten't), A. Decker; abundant on A. Devendorf.
235. Lemna polyrrhiza.-L		Ditches (floating)......	Rare	H. N. Gros, L. Green, Mrs. Devendorf. (Brigg's ten't); abundant on A. Devendorf.
236. Typha latifolia. $-L$.	Common Cat-Tail	Wet places.	Rare	A. Decker, Mrs. Devendorf (Briggs ten't), Fr. Lewis, S. G. Spoor.
237. Sparganum euricarpum.-Engim ..		Wet places.............	Rare	H. N. Gros, L. Green, J. E. Fox (Smith ten't), Mrs. Devendorf (Briggs ten't).
238. Sparganum simplex.-Hud		Wet places.............	Rare	H. N. Gros, A. Decker.
Alismacea. *Alisma Plantago.-L..............	"Water Plantain Family." Water Plantain	Ditches and wet places. .	Rare	H. N. Gros.
239. Sagittaria variabilis.-Englm......		Ditches and wet places..	Rare	H. N. Gros.
Orchidacece.	"Orchis Family."			
240. Habenaria hyperborea,-R. Br...		Woods.....	Rare	Fr. Lewis.
241. Habenaria Hookeri..... 242. Habenaria psycodes.-G		W oods.	Rare	W. R. Stevens.
* Habenaria flava..		Swamps Meadows	Rare .	L. Green. L. Green.

B-Continued.

CLASSIFICATION.	Common Name.	Habitat.	Frequency.	Where found or noted.
Orchidacece-Continued.	"Orchis Family"-Continued.			
243. Goodyera repens.-R. Br .		Woods.	General but scarce	In all woods.
*Goodyera pubescens.-R. B		Woods.	Rare	W. R. Stevens, A. Devendorf.
244. Spiranthes latifolia.-Torr		Pastures (wet places)...	Rare	Near Fink's basin Cheese Factory.
245. Pogonia verticellata.-Nutt.		Woods.	Rare	W. R. Stevens.
*Cypripedium pubescens.-Willd...	Large yellow Laबy's slipper	Woods.	Rare	W. R. Stevens.
Iridacece. 246, Sisyrinchium Bermudiana.-L	"Iris Family." Blue-eyed Grass	Meadows	Rare	J. F. Bellinger.
Smilacea. 247. Smilax herbacea.-L	"Smilax Family." Carrion Flower	Fence-rows	Rare	W. R. Stevens.
Liliacer. 248. Trillium erectum.-L................	"Lily Family." Birthroot	Woods..................	General and common.	Jacob Walrath, Fr. Lewis, S. G. Spoor, H. Haupt.
249. Trillium grandiflorum.-Salisb.....	Large white Trillium. .	Woods.	Rare	H. N. Gros.
250. Medeola Virginica.-L	Ind. Cucumber Root . .	Woods.....	Probably general but scarce.	Fr. Lewis, S. G. Spoor, H. Haupt, Edward Simms, S. P. Jones.
251. Uvularia grandiflora.-Smith .	Large flowered Bellwort ..	Woods............	Probably general but scarce.	W. R. Stevens, Fr. Lewis, S. G. Spoor, H. Haupt.
252. Uvularia sessefifolia.-L.	Sessile-leaved Bellwort.	Woods.	Rare	E. Decker, A. Decker.
253. Streptopus roseus.-Michx		Woods.	Rare	Fr Lewis.
254. Polygonatum giganteum.-Diebrich.	Great Solomon's-Seal.....	Woods.	Rare	W. R. Stevens.
255. Smilacina racemosa.-Desf	False Spikenard....	Woods.	Probably general but scarce.	W. R. Stevens, A. Devendorf, Fr. Lewis, H. Haupt, S. G. Spoor, Ed. Simms, E. Decker.
256. Smilacina bifolia.-Ker	Two-leaved Solomon's-Seal	Woods.	Probably general but scarce.	W. R. Stevens, A. Devendorf, Fr. Lewis, H. Haupt, S. G. Spoor, Ed. Simms, E. Decker, A. Jones, A. Decker.
257. Lilium Philadelphicum.-L........	Wild orange-red Lily.....	Woods.	Rare	W. R. Stevens. L. Green.

							合		$\begin{aligned} & \text { é } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { a } \\ & \text { A } \\ & \text { di } \end{aligned}$	
									运	
өmұsed pur sشoprow			？							
	\vdots				Wool grass		\vdots \vdots \vdots			
$\begin{aligned} & 65 \\ & 10 \\ & \text { ov } \end{aligned}$	$\begin{array}{lll} \dot{0} & \dot{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{lll} \dot{4} & 10 & 0 \\ 0 & 0 & 0 \\ \text { H } & 0 \end{array}$	$\begin{gathered} i \\ i+0 \\ i N \end{gathered}$	$\begin{aligned} & \infty \\ & c \\ & c \\ & 6 \end{aligned}$			$\begin{aligned} & 0 \\ & 1 \\ & 6 \end{aligned}$	$\begin{array}{ll} \dot{\infty} & \dot{\infty} \\ \rightarrow 0 & \infty \end{array}$		$\begin{array}{ll} \dot{u} \\ \infty \\ \infty \\ \infty & \infty \\ 0 \end{array}$

B-Continued.

CLASSIFICATION.	Common Name.	Habitat.	Frequency.	Where found or noted.
Cyperacect-Continued.	"Sedge Family"-Continued.			
286. Carex granularis.-Muhl...........		Pastures.	Rare	A. Devendorf, Jacob Walrath, I. Green H N Gros
287. Carex pallescens.-L		Meadows	Rar	A. Devendorf.
288. Carex gracillima.-Schw		Pastures......	Rare	L. Green, H. N. Gros (common on both).
289. Carex plantaginea.-Lam..........		Woods.	General and common	In all woods about Newville.
290. Carex laxiflora.-Lam.		Woods.................	Probably general and com- mon.	W. R. Stevens.
291. Carex laxiflora,var plantaginea.-Boot		Woods................	Probably general and common.	W. R. Stevens.
292. Carex Hitchcockiana.-Dew		Woods.	General but scarce	W. R. Stevens.
293. Carex Pennsylvanica.-Lam		Woods.	Rare	W. R. Stevens, Jacob Walrath.
294. Carex arctata.-Boot.		Woods.................	Rare	Fr. Lewis, R. Landt, A. Decker.
295. Carex hystricina.-Willd.		Meadows and pastures (wet places).	General but scarce	H. N. Gros, L. Green, W. R. Stevens, A. Devendorf, Fr. Lewis, H. Haupt, S. G. Spoor, J. E. Fox (Smith ten't), D. Bellinger.
296. Carex tentaculata.-Muhl		Meadows and pastures (wet places).	General but scarce .	On all farms.
297. Carex lupulina.-Muhl		Swamps	Rare	L. Green.
298. Carex retrorsa.-Sch		Swamps	Ra	L. Green.
Graminece. 299. Leersia oryzoides.-Swartz	"Grass Family." Rice Cut-grass.......	Ditches and wet places. .	General and common	On all farms.
300. Phleum prrtense.-L	Timothy.	Meadows and pastures..	General and abundant	On all farms.
*Vilfa vaginæHora.-Torr		Roadsides...........	Rare	W. R. Stevens.
301. Agrostis vulgaris.-With.	Red To	Meadows and pastures..	General and abundant	On all farms.
302. Agrostis alba.-L Wi.............	Fioren or White Bent grass	Meadows and pastures..	Rare ..	H. N. Gros.
303. Agrostis scabra.-Willd 304. Cinna arundinacea.-L.	Hair-grass	Meadows and pastures..	General but scarce	On all farms.
305. Muhlenburgia Mexicana.-Trin..		Woods.................. Pastures...........	Rare	Decker. N N Schuyl
305. Muhlenburgia Mexicana.-Trin		Pastures...............		E. Decker, N. N. Schuyler, Fr. Lewis.

B-Continued.

CLASSIFICATION.	Common Name.	Habitat.	Frequency.	Where found or noted.
Graminece-Continued. 338. Panicum dichotomum.-L...........	"Grass Family"-Cont'd.	Pastures................	Rare	E. Decker, M. Wilkes, S. Miller, E. Coville.
339. Panicum depauperatum.-Muhl		Meadows	Rare	W. R. Stevens.
340. Panicum Crus-galli.-L	Barnyard Grass	Yards and grain-fields ..	General and common........	On all farms.
341. Setaria glauca.-Beauv............	Foxtail Grass	Meadows, pastures and grain-fields.	General and abundant	On all farms.
342. Setaria viridis.-Beauv	Green Foxtail or Bottle gr.	Pastures and grain-fields	General but scarce	On all farms.
Equisetacec. 343. Equisetum arvense.-L...............	"Horse Tail Family." Common Horse-tail.	Grain-fields and woods..	Probably general but scarce.	F.Lewis, S.G.Spoor,H.Haupt, W. R. Stevens, A. Decker, E. Decker, G. Bellinger.
344. Equisetum sylvaticum.-L.........		Woods.	Rare	E. Decker, H. N. Gros.
		Ditches....	Rare Rare	L. Green. Fr. Lewis; H. Haupt.
Filices.	"Ferns."			
346. Adiantum pedatum.-L	Maiden's Hair	Woods....... Thickets and woods. ...	General and common General bat scarce	
347. Pteris aquilina.-L	Common Brake...........	Thickets and woods.....	General but scarce	W. R. Stevens, H. Haupt, N. N. Schuyler.
348. Asplenium angustifolium.-Michx..	Woods.................	Rare	W. R. Stevens, Jacob Walrath, H. Haupt, Ed. Simms, R. Landt.
349. Asplenium thelypteroides.-Michx..		Woods........	Rare	W. R. Stevens, JacobWalrath, A. Jones, H. Haupt, S. G. Spoor, Fr. Lewis, Edward Simms, A.Decker, R.Landt.
350. Asplenium Filix-fæmina.-Bernh .		Wvods	General and common........	W. R. Stevens, Jacob Walrath, A. Jones, H. Haupt, S. G. Spoor, Fr. Lewis, A. Decker, R. Landt, E. Decker, G. Bellinger.
351. Phegopteris hexagonoptera,-Fee	Woods.................	Probably general but scarce.	W. R. Stevens, Fr. Lewis, S. G. Spoor, H. Haupt, S. G. Spoor (Van Allen ten' t).
352. Phegopteris Dryopteris.-Fee ...		Woods.	Rare	W. R, Stevens, Er. Lewis.

［This mark（＊）denotes that a trace only of Ergot was discernible．］

	－Tralveodo JTOHLNVXOHLNV	－ssexin jo quәo xad	$\vdots{ }^{*} \vdots \vdots \vdots \vdots!$
		－sscxy jo 7uวอ ปอd	$\vdots \vdots \vdots \vdots \vdots$
	$\begin{gathered} \text { •VOIL } \\ \hline \text { - VAOV VIGสOKID } \\ \hline \end{gathered}$		＊\vdots＊$\vdots \vdots$
	$\begin{gathered} \text { VLV } \\ \hline \text { - OTD } \\ \hline \end{gathered}$		$\vdots * \vdots \vdots$
		－9SExy jo 7uov 10．	\vdots ：
	$\begin{gathered} \text { - GSNaL } \\ \text { - 『หd } \\ \hline \end{gathered}$	＊sscry jo queo xed	
Claviceps purpurea－Tuls．）upon them．	－IdS Finohlinta		$\vdots \vdots \vdots{ }^{*} \vdots \vdots$
		－ssexy jo quәอ ләd	！${ }^{*}$ ！${ }^{\text {N }}$＋$\vdots \vdots!$
	－SNad 		
		－sscip jo queo xəd	
	－san －ITVOas samoag		
			：
	－sisnal －VTG Vonus回建		＊＊$\vdots \vdots \vdots \vdots * *$
			＊＊$\vdots \vdots{ }^{*} \vdots{ }^{*}{ }^{*}$
	－SISNGLVAd ${ }^{\text {Vod }}$	－pozitosxat queo dəd	
	－ bniluag $^{\text {Fod }}$		${ }^{*}{ }^{*} \vdots \vdots \vdots \vdots \vdots \vdots \vdots$
	－VLFA 		上 ！！！！${ }^{*}$
		－sscix jo quәว ${ }^{\text {a }} \mathrm{d}$	
			＊$\vdots \vdots \vdots \vdots \vdots!$
		－ssexin jo queo xed	ㄴํㄱํํํ ハึ202＊＊응
	－asNax 		＊
		－sSexin jo queo ded	
	－SIMUSat －∇ व siav		$\vdots \vdots{ }^{*}+$
		－ssexp jo queo xed	$\vdots \vdots{ }^{*}+$
	－miry पree of suo	1097 jo ospqueored	

UNAFFECTED WITH ERGOT．	KOHLNVXOHLNV	－SSExin jo 7ueo ied	
	－VSSaydivo ${ }^{\text {V0d }}$	－sscxi jo quөอ хәд	
		－sscxy jo queo xed	$\vdots \vdots \vdots \vdots \vdots \vdots$
			：
		－sstix jo fueo xod	
	$\begin{array}{cc} \hline & \text { SNGd } \\ \text { - דצ } & \text { Kคitoala } \\ \hline \end{array}$	－SSRX0 Jo quəo $\mathrm{xed}^{\text {d }}$	
		－ssexp jo quoo 10 d	
	－${ }^{\circ}$ WFD －IdS VINOHUNV（I		：
			$\vdots \vdots \vdots$
	－sNGd 		
		－sscxy jo qัขอ ләd	
		－SEEXy jo quoo 10 d	$\vdots \vdots \vdots{ }^{*} \vdots$
	－sISNal －VTA VO』山Say		
		－ssexy jo quoo xed	
	－SISNaIVGd vod		$\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots$ ¢
		－ssrxy jo quәə xәd	
	－VNILOMES Vod		！：！：
			＊${ }^{10}{ }^{*}{ }^{*}{ }^{*} \vdots$＊$\vdots \vdots$ 잉 $\vdots \vdots \vdots * \vdots \vdots$
	$\begin{gathered} \text { - VIVA } \\ \text {-チgN VIG\#DXT } \end{gathered}$	－pazt7osxt 7000 Iəd	$\vdots \vdots$
		－ssexy jo queo xөd	$\vdots \vdots \vdots{ }^{*}$
			$\vdots \vdots 亠$
		－sscxy jo queo ләd	
	－ASNGL 		$\vdots \vdots 亠$
	－SIMESAT －$\nabla \mathrm{d}$ SIzv－	－peztqos．rgh fueo 10 d	$\vdots \vdots \vdots \vdots \vdots \vdots \vdots 亠$ ¢ \vdots
			$\vdots \vdots \vdots \vdots \vdots!\vdots$ 岕
－யx®			宇 OOOHOOON

-

White indicates 120 Abortions
Green " 5percent or less

Red Yellow Blue
from 5 to 10 per cent
" "10 "25" "

REPORT

OF

WILLIAM H. CARMALT, M.D..

Commissioner of the New York State Agricultural Society,

FOR THE INVFSTIGATION OF

ABORTION IN COWS.

Read Before the Society February 11, 1869.

PUBLISHED BY THE SOCIETY.

ALBANY:
PRINTING HOUSE OP CHARLES VAN BENTHUYSEN \& SONS,

R
问

[^0]: * Two points of more especial interest, however, to a botanist, are the presence, in this collection, of a specimen of Cynosurus cristatus, or crested dog's-tail, heretofore undiscovered in this country; and of a new species of Danthonia, viz: Danthonia compressa, AUSTIN, never before described.

[^1]: - Flourens; Physiologie comparée. Paris, 1856; pa. 32.

