
\qquad
\qquad
\qquad
\qquad
\square

$$
\because
$$

RESOURCE MANAGEMENT REPORT

RESOURCE MANAGEMENT REPORT

Fish and Wildlife Branch

DEPARTMENT OF LANDS AND FORESTS

RESOURCE MANAGEMENT REPORT

$$
\begin{gathered}
\text { TA BLE OF CONTENTS } \\
\text { No. } 87
\end{gathered}
$$

Pheasant Harvest Report 1966 - Lake Simcoe District.

- by J.S. Dorland 1

The Creel Census of the Winter Fishery on Lake Simcoe During 1966.

- by A.S. Holder \& F.H. Marshall

Waterfowl Production and Harvest Report Swastika District - 1966.

- by J.F. Gardner.18

Transfer of Adult Goldeye from Severn River to Sachigo Lake in Sioux Lookout District - 1966.

$$
\text { - by C.A. Milko } 34
$$

Tagging Moose From a Helicopter During 1966 - Geraldton District. - by J.A. Chappel

Deer Yard Maintenance in the Parry Sound Forest District, 1962-1966.

$$
\text { - by John Macfie } 49
$$

$\because \quad \because \quad \cdots \quad \cdots \quad \because \quad . \quad \because \quad . \quad . \quad$.
:
$\therefore \vdots \because \quad \cdots$

 \because ?OHONT xuok?
n多 9800 M Betas

1

PHEASANT HARVEST REPORT 1966
LAKE SIMCOE DISTRICT

by
J.S. Dorland.

Abstract

A field check of 1318 pheasant hunters in seven of our thirteen regulated townships during the open season produced a harvest of 695 pheasants, and a hunter success of .52 of a bird per hunter. It took 6.9 man-hours of hunting to kill a bird. Success figures are comparable with last year's results. Opening day figures indicate a hunter success of .66 bird per hunter in 4.9 man-hours of huncing. The townships of Whitby, Pickering and Markham provided the best hunting during the season. Wind and rain on the opening day caused many hunters to leave the field by noon.

Open Seasons

October 19 - Noverber 5th - the counties of Peel and York except the townships of North Gwillimbury and Georgina. The townships of Adjala, Tecurnseth and West Gwillimbury in the County of Sincoe; and the townships of Pickering, Reach, Uxbridge, Scott, Whitby and East Whitby in the County of Ontario.

October 19 - November 12 - the County of Dufferin (8 a.m. 5 p.m. only)

Septerber 24 - December 15- remainder of the district. Bag limit - 3 birds per day, not more than one of which shall be a hen. Three of either sex in area 3.

Statistics

Although the hunting of pheasants was open throughout the entire district, this report covers only seven of the regulated townships in the district, nanely: Whitby, Pickering, Markham, Whitchurch, King, Caledon and a few figures from Chinguacousy. The remaining regulated townships either produce little pheasant hunting

or closed their townships to hunting during the pheasant season. The remainder of the district, that is northward, produced only a few figures and is considered outside good pheasant habitat. The attached map indicates the regulated townships or parts of the township open this year for pheasant hunting.

	Opening Day	Entire Season
Number of parties checked in field	232	534
Number of parties using dogs	128	302
Number of hunters checked in the field	614	1318
Number of Man-hours hunted	1992	4837
Number of cocks harvested	241	415
Number of hens harvested	165	280
Total pheasants harvested	406	695
Cock per hunter	.39	.31
Hen per hunter	.27	.21
Total per hunter	.66	.52
Man-hours per pheasant	4.9	6.9
Cocks seen but not shot	412	649
Hens seen but not shot	344	530
Sex Ratio C/H harvest	$1.5-1$	$1.5-1$

See Table I for coraplete coverage by townships
Distribution
A total of 10,660 pheasants made up of 4960 day-olds, 5000 poults and 700 stock birds were received in the district for distribution (These figures do not include birds received for provincial parks and crown land releases). The day-olds were raised to poult size by townships, game commissions and interested sportsmen before release. Ten of our regulated townships received 8680 pheasants for distribution. No birds were released in the regulated townships of Markhan, Toronto, Adjala and West Gwillimbury for different reasons and upon request of township councils. See Table II.

Pheasant Release (Adult in fall)
As previously carried out in recent years the townships of Whitchurch and Pickering made special plantings of adult birds just prior and during the open season for pheasants. All pheasants released in these townships during the year were leg banded. (A special report on these two townships is being prepared.)

Licences

A total of 4412 township pheasant licences (excluding E. Gwillimbury) were sold up to the close of the pheasant season, November 5, by twelve townships, two less than in the previous year (Toronto Gore and Toronto). This total consists of 1465 resident licences and 2947 non-resident licences. The township of Pickering again sold the largest number of non-resident licences 440, with Whitchurch a close second with 400. (See Table III)

Weather

Wind and Rain greeted the pheasant hunter on opening day making hunting hazardous, difficult, and causing many to leave the field by noon. The remainder of the season was slightly warmer but turned cooler toward the end with little sunshine. The overall weather throughout the open season was considered only fair.

Harvest

Average hunter success and man-hours to kill a pheasant in the regulated townships checked compares very closely with figures presented in 1964 and 1965. Whitby township where 1700 pheasants were distributed for raising and releasing produced the best success figure of the seven townships showing . 73 of a bird per hunter during the season for 4.6 man-hours of hunting. In the townships of Pickering and Whitchurch where many of the birds were released just prior and during the season hunter success figure of around a half a bird per hunter was obtained with 6.4 man-hours to kill a pheasant. In the township of Markhan which has not had a pheasant release since 1963, hunter success on the opening day was .75 of a bird per hunter, requiring only 4.2 man-hours of hunting for a bird. Hunter suecess in King and Chinguacousy townships was disappointing to all, with hunting in Caledon considered only fair. Close to three quarters of the birds known to be harvested in the township of Whitchurch were from releases made during the year.

Comparison with	1962	1963	1964	1965	1966
of townships reporting	9	9	10	9	7
of hunters checked	1,455	2,097	1,795	1,316	1,318
of parties using logs	263	457	427	317	302
of pheasants shot	672	942	964	699	695
of pheasants seen	1,679	1,403	1,713	1,221	1,179
nt not shot					
success	.46	.45	.54	.54	.52
cs to kill a bird	.7 .4	7.5	6.4	.6 .6	6.9
ution of pheasants	15,550	15,000	9,400	10,350	8,680
licences sold	6,341	6,598	5,518	5,698	4,412

-

Remarks

Figures indicating hunter success and man-hours to kill a pheasant show little change in the past three years, with an approximate 20% rise over 1963. This small increase in a way could be attributed to the increase in the planting of adult birds just. prior and during the open season in a few townships. In addition, our last few springs have had fairly good hatching weather thus increasing our natural hatch in the field. Excluding plantings and hunting licences sold, this year's figures compare favourably with 1965.

Discussion

It would appear that the pheasant hunting areas open to hunting in the township of Whitby, although not large in comparison with townships to the west, are developing into excellent pheasant areas. Hunter success here has increased from . 54 of a bird per hunter with 5.6 man-hours of humting to kill a bird in 1963 to .73 of a bird per hunter with only 4.6 man-hours of hunting per bird this year.

In the township of Markham with no pheasant releases since 1963 hunters success in the last three years has varied between .52 and . 61 bird per hunter season, indicating fair to good reproduction on the land open to hunting. Observations on lands closed to hunting south of No. 7 Highway have indicated on many occasions large flocks of pheasants in and around corn fields and uncultivated lands.

Harvest of pheasants in the townships of Pickering and Whitchurch, except on the opening day, was a little disappointing as many birds here were released into the field just prior or during the season. Although a good number of hunters were checked in each township the inclenent weather prevailing during the season made it difficult to flush the bird even with the use of dogs.

In the remaining townships reporting, King, Caledon and Chinguacousy, hunters really had to hunt for the pheasant as success was very poor. This year the township of king sold non-resident licences only to those hunters who produced written consent of trespass from landowners. Such procedure may in the future be in order for other townships.

The continuation of the raising and releasing of adult pheasant is to be further encouraged with those townships who in the past released only poult.

Acknowledgements

I wish to acknowledge thanks to Conservation Officers, G. Love, J. Catcher, Ben Smith, A. Fletcher, E. Smith and R. Manley; District Biologist A. Wainio, and the Deputy Conservation Officers who supplied the figures used in the compilation of this report.

L－でT	$\underline{T}-\varepsilon^{\bullet}$ T	\underline{T}－T	乙－I－โ ueas h／O о̧̧ex xos
T－9＊${ }^{\text {¢ }}$	$\underline{-L}{ }^{\circ} \mathrm{L}$	I－I	I－I ךочS H／D от̧ey xas
عLE	661	\＆6I	S\＆I（7OYS 70N）uəos［P70L
L9I	88	¢0I	7 L （70YS 70N）uəas suəh
902	IIT	06	I9（7OYS 70N）uəəs syooj
が9	ガら	9＊7	ザy pxic e 8eg of sxnot
$\angle 5^{\circ}$	$59{ }^{\circ}$	εL°	08＊［E7OL Jәךunh xod
で＊	$\dagger 2^{\circ}$	$\angle \varepsilon^{\circ}$	
¢ ε°		98 ：	
LSZ	821	18	85 posieq โenol
96	87	カワ	$6 乙$ pəisixa suəH
SSI	08	と＇	62 po3sreg syooj
LGSI	$\angle 89$	L68	£¢\％sxnoh rozunh［E7OL
年舛	L6I	815	ZL sxə7unh ғ๐ ${ }^{\circ} \mathrm{ON}$
£ ¢	LS	6 6	8 s3od 3utsn sothaxd
881	IL	6ε	ヶて Sotured fo ${ }^{\circ} \mathrm{ON}$

L－で「	L－でし			I－I	T－I	$\underline{L-L} \mathrm{~L}$	I－I
L－S．${ }^{\text {c }}$	T－S＇T			I－G ${ }^{\circ}$ T	I－I	I－て	I－ウ
6LIT	9SL	I		¢	SI	て¢	92
0¢ऽ	ガヶ¢			$\varepsilon \tau$	8	ZI	ZI
679	でゅ	I		ZI	\llcorner	$0 Z$	尔
$6 \cdot 9$	6＊カ			$0 \cdot 6$	$3^{\circ} \mathrm{L}$	$0{ }^{\circ} \angle \varepsilon$	$8 \cdot 6$
25＊	99°			07＊	98°	6°	$6 \varepsilon^{\circ}$
I2＊	$\angle Z^{\circ}$			LT	$3{ }^{\circ}$	$\varepsilon{ }^{\bullet}$	3°
โ ${ }^{\text {＊}}$	$6 \varepsilon^{\circ}$			£て＊	$8{ }^{\circ}$	$9{ }^{\circ}$	I $\varepsilon^{\text {＊}}$
¢69	90円	ITN		8ε	91	9	S
082	¢91	ITN		91		て	I
STヶ	でて	LTN		てて	8	サ	7
LE87	2661	$\angle I$		†ऽ¢	SZI	027	67
8IEI	ヶT9	L		76	诩	$\varepsilon 9$	εI
20¢	82τ	\％		てZ	8	02	9
ฤ६ऽ	てع乙	2		$\angle \varepsilon$	SI	0ε	L
uoseas əxT7ư	$\begin{gathered} \text { Ked } \\ \text { uədo } \end{gathered}$	uoseas axṭqug	$\begin{gathered} \text { Ked } \\ \text { uədo } \end{gathered}$	uoseas 	$\begin{gathered} \text { Ked } \\ \text { uədo } \end{gathered}$	noseas วมโ7นี	$\begin{gathered} \text { Ked } \\ \text { uədo } \end{gathered}$
Le70I 70TITSTa		Ksnosensutup		uopetes		BuȚY	

TABLE II	PHEASANT D \qquad	$\text { BUTION } 1$ DISTRICT		
Township	Chicks	Poults	Adults	Total
E. Whitby		600		600
Whitby	1000	600	100	1700
Pickering	900	600	250	1750
Whitchurch	500	900	200	1600
King		490		490
E. Gwillimbury		250		250
Tecumseth	500	200	50	750
Caledon	600	600	100	1300
Chinguacousy		200		200
Toronto Gore		40		40
Sub Totals	3500	4480	700	8680

Miscellaneous

Georgina Island		230		230
Orillia Fish \& Game Club	190	150		340
Stayner Rod \& Gun	500	100		600
Orangeville Schools	200			200
A.S. Leigh, Adjala	50			50
Andrew Chukas	50			50
Barrie Fish \& Gane Club		40		40
Waubaushene area (C/o F. Bowes)	200			200
M. Rye, Keswick	270			270
Totals	4960	5000	700	660

TABLE III

REGULATED TOWNSHIP HUNTING LICENCES SOLD UP TO AND INCLUDING NOV. 5/66

Township	Resident	Non-resident	Total
Whitby	223	300	523
E. Whitby	55	223	178
Pickering	236	440	676
Markhan	210	350	560
Whitchurch	160	400	560
King	304	100	404
E. Gwillinbury	(No figures received)		
Adjala	1	200	201
Tecumseth	70	348	418
W. Gwillimbury	40	246	286
Caledon	06	240	336
Chinguacousy	70	2947	270
Totals	1465	4412	

$\because \because \quad \therefore$?

6

THE CREEL CENSUS OF THE WINTER FISHERY ON LAKE SIMCOE DURING 1966

> A.S. Holder and F.H. Marshall

Abstract

Results of the creel census of the winter fishery on Lake Simcoe during 1965 show 1,672 anglers fished 6,421 man-hours for a catch of 4,376 fish. A projection for the lake over the entire season gives an estimated fishing pressure of 340,000 man-hours for a catch of about 216,000 fish of which 140,000 were whitefish, 42,000 lake herring, 28,000 yellow perch and 1,800 lake trout. Catch per unit effort values for the major species are compared over the four year period 1963 to 1966.

Introduction

A creel census of the winter sports fishery on Lake Simcoe has been carried out on a casual basis since 1950, and on a much more intensive basis since 1960. The census serves as an index of fishing pressure and of fluctuations in availability of important game fish. It also gives an estimate of the total fishing pressure and harvest of fish from the lake during the winter months.

This paper reports on the results of the 1966 census.

Method

The methods used in this creel census have remained unchanged since 1964. In brief, this consisted of interviews with a sample of anglers selected as representatives of the winter fishery. For a detailed account of methods, reference should be made to earlier reports (Holder, 1964; Holder and Townes, 1965).

The effective length of the ice fishing in 1966 was 70 days. This covered the interval from January 15 to March 25 . The season was six days shorter than in 1965 as a result of mild spring weather which made ice travel unsafe after March 25.

Results

Fifty-six man-days were spent on the creel census in 1966. The results are sumarized in Table I.

Average length of ang1er day without huts

Percentage of checked huts occupied

Catch per man－hour without huts

No．of fish（all species）caught by anglers in huts
No．of fish（all species）caught by anglers without huts
 8105

－sxnoy 39° を
－sュnoч $58^{\circ} \varepsilon$ $\%$ \％I•8T
$\rightarrow \iota^{\circ}$ T
カッジて
$85^{\circ} 0$
ع6L
ยภระ

On the assumption that the sample of anglers checked was rep－ resentative of all anglers on the lake over the entire 70 day season，it was possible to project the total fishing pressure and harvest for the season．The results of this projection are sumarized in Table II．
uoseas Kep OL xof axnssexd

day by all anglers
Av．catch of fish per

$08 L^{6}$ Z

とゅで0ウを
020＊9IZ
$980^{\circ} \varepsilon$
$79 Z^{6} I$
$\frac{006^{\circ} \varepsilon}{1870 \downarrow}$
$\because \quad \vdots$

The estinated total seasonal catch of 216,020 fish is further broken down to catch by species in Table III below.

Table III: Estinated Total Catch by Species from January 15 to March 1966.

Species
$\frac{\text { Without Huts }}{\text { Percentage Nulber }} \frac{\text { Huts }}{\text { Percentage Number }} \frac{\text { Combined }}{\text { Total Catch }}$

Whitefish	23.83	5,105	69.52	135,286	140,391
Lake Trout	0.88	189	0.84	1,635	1,824
Lake Herring	7.06	1,513	20.88	40,632	42,145
Yellow Perch	65.57	$14,04.5$	7.14	13,094	27,939
Burbot	0.88	189	1.12	2,180	2,369
American Sne1t	1.77	379	0.47	915	1,294
Other	--	-	0.03	58	58

An effort was made last year, as in the past, to determine the fishing pressure exerted against each species. This has not proven particularly successful. Fishemen using standard whitefish gear are actually exerting fishing pressure on whitefish, lake herring and trout, since all are caught. Also Eishernen within the huts frequently fish a whitefish line sinultaneously wich a lake trout line and census personnel have not been able to particion chis effort by species. Results fron previous years have indicated that over 90% of the fishing effort was directed toward the capture of whitefish and herring with the renainder being divided equally between lake trout and perch. There was no indication that pressure by species had changed significantly during 1966.

Catch per unit effort by species in 1966 was determined by expressing the species catch per hour, considering the total fishing pressure to have been exerted against each individual species. As noted above, however, partitioning of effore by individual species has not proven practical. Since past results can easily be converted to catch per unit of total effort, it was decided to use this method in 1966. Results for 1966 are given in Table IV.

Table IV: | Catch Per Unit Effort by Species |
| :--- |
| fron January 15 to March 25,1966 |

Species	Without Huts	
	Huts	
Lake Trout	0.58	0.41
Lake Herring	0.022	0.005
Yellow Perch	0.17	0.12
Other	1.60	0.04
Total	0.06	0.01

Discussion

Fishing during the winter of 1966 was hampered by unsafe ice conditions. Unseasonably warm temperatures in January and again in March shortened the season by several days. Travel by car was unsafe for much of the season. These conditions are reflected in a comparison of the hut counts, percentage occupancy and estimated fishing pressure for the past four years as given in Table V below.

Table V: A Comparison of the Annual Winter Fishing Pressure During the Years 1963 to 1966

| | $\underline{1963}$ | $\underline{1964}$ | 1965 | 1966 |
| :--- | ---: | :--- | :--- | :--- | :--- |
| Mid-winter hut count | 3,963 | 4,097 | 4,051 | 3,900 |
| Average percentage occupancy of huts | 18.99 | 14.45 | 20.65 | 18.13 |
| Est. Tot. Fish. Pressure (nan-hours)491,280 | 355,015 | 591,196 | 340,243 | |

A comparison of the estinated total harvest and catch per unit effort by species for the past four years is given in Table VI.

..... \square :
!
\qquad
\vdots
$!$
\vdots

The application of total fishing pressure against each species in determining C.U.E. may not be entirely satisfactory, but to date no suitable alternative method seens practical. We are not certain that fluctuations in C.U.E. between years necessarily indicate similar fluctuations in the fish populations. Nevertheless, a continued decline in C.U.E. over several years would probably prove significant.

The C.U.E. values over the past four years (Table VI) show fluctuations but no identifiable trends, with the exception of an increase in the catch of American smelt. The decrease in catch of lake trout in 1965 had caused some alam, however, results in 1966 are encouraging. Since we consider the status of the lake trout to be of greatest concern, we made an addicional comparison of C.U.E. during the past two years among anglers fishing in the open specifically for this species. This analysis showed a catch of eight trout per hundred angler-hours in 1965 and nine per hundred hours in 1966, a slight increase.

* C.U.E. in 1965 and 1966 is a composite value calculated fron the projected total fishing pressure and catch of hut and without hut fishermen. Prior to 1965 these groups were not recorded separately.

Acknowledgements

The contribution of Conservation Officers H. Van Wyck, T. Ross, R. Toth, M. Townes, H. Mulholland and others who helped with this creel census are gratefully acknowledged.

References

Holder, A.S. 1964. A creel census of the winter fishery on Lake Sincoe. Unpublished District Report.

Holder, A.S. and M.A. Townes, 1965. The creel census of the winter fishery on Lake Sincoe from January 15 to March 31, 1965. Unpublished District Report.

by
J.F. Gardner

Abstract

During the summer of 1966, a cotal of 131 broods of waterfowl representing 10 species were recorded on cke three Abitibi marshes, Moose Lake, the Matachewan West area, and several other scattered locations. Breeding conditions in general were much improved over those of 1965. Common Goldeneyes, Blacks and Ring-neckeds represented the most commonly encountered nesting species.

An opening day bag check on the Ghost River revealed 19 hunters harvesting 79 ducks for a success rate of 4.1 ducks per hunter. Mallards have taken over from Blacks as the number one specie shot in this area. Hunting pressure was light on Moose Lake, Long Lake and Mountain Lake with success rates of $2.6,1.1$ and 2.7 ducks per hunter, respectively.

A total of 235 duck wings were collected from a small number of co-operating hunters this year.

An airboat was used for the first time in Northern Ontario during August to capture and band waterfowl and proved to be most effective.

Section A - Brood Production Survey
Introduction
During the summer of 1966 an effort was made for the first time to observe and record waterfowl broods in the Swastika District. The principal objective of this progran was to obtain breeding indices for several of the major wetland areas in the District. The vast majority of the broods were recorded during Wetland Investigation work on the Abicibi Marshes (Ghost, Lightning and Mattawasaga) Moose Lake - Bond Townskip and in a series of pothole lakes west of Matachewan. The number of broods recorded and the variety of nesting species was most gratifying, not withstanding the fact that the larger marshes appear to be well below their breeding potential. Considering complete and incomplete broods as well as broody hens, a total of 131 broods representing 10 nesting species were recorded. Nesting
species included Black (Anus rubripes), Common Goldeneye (Glaucionetta clangula), American Widgeon (Marece americana), Ring-necked Duck (Nyroca collaris), Blue-winged Teal (Querquedula discors), Comon Merganser (Mergus merganser americanus), Mallard (Anas platyrhynchos), Hooded Merganser (Lophodytes cucullatus), Wood Duck (Aix sponsa) and Green-winged Teal (Nettion carolinense).

Table I represents a complete summary of all waterfowl broods observed during the summer of 1966.

xyENWMS LOIYLSIの - I aTgYl

I - Abitibi Lake Marshes - (Ghost, Lightning, Teddy Bear)
TABLE II

Species	Com. Broods	Young	Mean	Inc. Broods	Broody Females
Com. Goldeneye	26	125	4.8	3	-
Black	6	20	4.6	1	1
Ring-necked	4	20	5.0	-	-
Ma1lard	2	13	6.5	-	-
Widgeon	1	4	-	1	-
Com. Merganser	3	27	9.0	-	-
Wood Duck	-	-	-	1	-
TOTALS	42	217		6	1

Nesting conditions on the Ghost river were much improved over 1965 with generally higher and more stable water levels prevailing throughout most of the incubation and hatching period. These improved conditions were manifested by an increase of six in total brood counts from 10 in 1965 to 16 this year. Goldeneye mean brood size increased from 3.7 young per brood last year to 4.0 young per brood this year. Eleven Lroods of Goldeneye, 4 broods of Blacks and 1 brood of pallards made up the total for the area.

Brood counts were conducted for the first time on the Lightning and Teddy Bear (Wattawasaga) rivers. While brood incidence was low on the Lightning (1 broods): Goldeneye broods averaged a respectable 6.1 yg . brood, This is the highest nean of any area in the District for this spec:es.

On prelininary $\mathfrak{t x a m i n a t i o n , ~ t h e ~ M a t t a w a s a g a ~ R i v e r ~ i n ~ S t r o u g h - ~}$ ton Township promises to 1 e an excellent waterfowl area. Tine did not permit the complete examilation of all the feeder streans and the bulk of the period was spent: on the flood basin known as the Teddy Beax Marsh.

Brood counts resui.ted in 12 broods of Goldeneye, 4 broods of Ring-necked ducks, 3 b: 'ods of Blacks, 2 broods of Widgeon and 1 brood of Wood Ducks; for a t, cal (If 22 broods. Common Goldeneye broods yielded a mean of 4.8 . g . br ood based on 9 complete broods. Four
broods of Ring-necked duck averaged an even 5.0.
Of particular interest was the fact that approxinately 15 Wood Ducks, principally moulting males, were observed in the area as well as one incomplete brood of 2 young plus a female. Although Wood Ducks have been known to nest in this area for some tine no previous breeding records exist on our District files.

As was the case on the Ghost, the water conditions were very good in both the Lightning and Mattawasaga Rivers for breeding waterfowl this year.

The control of water levels on all of the Abitibi marshes is definitely a prine liniting factor in deternining waterfowl breeding success in the area. Any plans designed to realize the excellent production potential of these marshes must certainly take this factor into inmediate consideration.

> II - Moose Lake Marshes - Bond Twp.

TABLE III

Species	Con. Broods	Young	Mean	Inc. Broods	Broody Females
Am. Widgeon	12	59	4.9	1	2
Com. Goldeneye	7	25	3.5	-	-
Black	1	0	-	1	-
Wood Duck	-	-	-	-	1
TOTAL	20	92		2	3

A preliminary examination of the west shore of Moose Lake and all marshy areas of the South Driftwood River and Crooked Creek was conducted during late July, 1966. The actual nake-up of the area will be dealt with in nore detail under a separate report. In general the flat nature of the surrounding topography together with the excellent nesting cover bordering the river marshes at both Crooked Creek and the South Driftwood make this area one of the most potentially productive for waterfowl so far encountered in this District. The shallow lake together with extensive shore zones of aquatic vegetation provide excellent feeding areas for most species of dabbling ducks.

O-N + + + + - +

It is significant that the number one nesting species was the Anerican Widgeon since this is the only area in this District to date where any real concentration of Widgeon broods have been located. The majority of these broods as sighted on the sections of the two strean marshes adjacent to the lake. This area forms a large narsh since these two nain water courses enter the lake only about 200 yards apart. There was evidence of broods of Blacks having already achieved their 组良ht. In addition an innature Mallard with fully developed wing feathors was packed up, presumably the victim of a predator, Thu the area should be considered a productive one for these tro imporente species as well.

III - Matachevan West

(Townships - Argyle, Montcose. Bannockburn, Powell)
Table IV

Species	Com. Broods	Young	Mear.	Inc. Broods	Broody Fenales
Black	5	20	4.0	1	3
Com. Goldeneye	5	27	5.4	-	-
Ring-necked	5	40	8.0	-	-
Con. Merganser	4	37	9.2	-	-
Hooded Merganser	2	8	4.0	-	-
TOTAL	21	132		1	3

All the broods 1isced in Table IV were observed by Conservation Officer E.A. Corbould during the course of regular lake survey duties in the aforenentioned townships west of latachewan. Superficial examination of this area gives the inpression that it would have to be rated as "poor" as far as waterfowl production and use capability are concerned. Rough. rocky terrain and small lakes generally low in aquatic vegetation would appear to severely restrict such an area as a duck producer. However, many sma11 potholes and shrubby creeks do offer minimal nesting opportunities for certain species. The numerous beaver ponds and flood inpoundments bear evidence of a beaver popilation that has flourished for several years now with a resulting production of much desirable-Black duck habitat. This area, like no other in the Swastika District, is an indication of the true worth of northern woodland potholes in the production of waterfowl. For instance, on one such area measuring less than two
acres, a total of 51 "resident" ducks were observed including 5 broods of young. liany such potholes with their characteristic bog-shrub shorezones and bays appear to offer excellent Ring-necked nesting habitat. There are literally hundreds of such areas seattered throughout the area west and south of latachewan and E1k Lake, hence to measure production in such an area presents quite a challenge. However, during the next two or three years it should be possible to build up an inder of production for such an area that will closely approximate the general mean.

Field Aging of Duck Broods

To determine approximate hatching dates and gain some knowledge of nesting chronology of duck broods in this District, all broods observed on the Abitibi marshes, Moose Lake and Natachewan West areas were classified according to the age criteria as set down by Gollop and Marsha11, 1954.

The plumage classes of class I - Downy, Class II and Class III, were used; however, the sub-classes were not employed this year. As pointed out by these authors, the use of class and sub-class can eliminate duplications of broods when two counts are made at different times on the same marsh. Since none of our counts was to be duplicated it was deemed unnecessary to use the "sub-class" breakdown.

Since a limited number of broods are available from any one area, this information will be maintained for a period of at least three years on each particular marsh. At this point sufficient data should be available to permit the delineation of the dates of the hatching periods for the more common species. Such information will also prove invaluable in determining ducking mortality at various stages of development in an area where it is possible to make three to four brood counts in any one season.

Section B - Opening Day Water Oowl Bag Checks
I - Ghost River ligrshes
For the second consecutive year a waterfowl bag check was conducted in the Ghost River marshes during the opening day of the 1966 hunting season, September 15 th.

At this time hunter success data and sample duck wings were collected from all hunters active in the area. Once again hunting pressure was light as only sirs parties comprised of 19 hunters took part in the opening day activities. The following is a sumary of hunter success for opening day (September 15) only.
＂i．n
－\because, ．．．
＊ージッ．．．
$\therefore \because \cdots$
\because
－

Parties	Humters	Man- Hours	Total Ducks	Lost Cripples
6	19	155	79	20
1965			1966	
Hunter success	- 3.5 ducks / hunter		4.1 ducks / hunter	
Hunter effort	- 0.71 ducks / man-hr.		0.50 " / man-hr.	
Crippling loss	- -		20.2\%	

The 1966 opening day was certainly more successful than last year although it required slightly more hunter effort to harvest one duck. It is probably safe to presume that the Ghost River marshes had one of the highest opening day success rates in the Province at 4.1 ducks per hunter; however, this is understandable when one considers the possibilities as 18 hunters spread out over 1,000 acres of marsh. A crippling loss of 20.2% doesn't seem excessive for a difficult cattail marsh like the Ghost; however, it should be considered that five of the six parties humting employed retrieving dogs with one party of four men using three Labradors. No doubt the loss would have been in the neighbourhood of 50% had the dogs not been used.

The principal reason for the increase in hunting effort was that the morning shoot was quite slow but was followed by an excellent evening shoot under clear, calm weather conditions.

Hunter Origin and Comments
It is worthy of note that only one party of hunters were Northerners originating in this case from Timmins. All the other parties were from the South with one party from the U.S.A. Five of the six parties were "regulars" on the Ghost and all were veteran waterfowl hunters. The chief comment concerning the migratory bird hunting permit was that it cost too little, and also some concern was expressed as to whether the money would be directed back into waterfowl management.

HUNTER FARVEST BY SPECIES

N.B. - This data includes all ducks shot on September 15th as well as those taken up to noon of September 16th, 1966.

Specie
Mallard
Black
Ring-necked duck
Com. Goldeneye
Green-winged Teal
American Widgeon 3
Blue-winged Tea1 1
Wood duck 1
Hooded Merganser 1
Unidentified 7

TOTAL
93
\% Total Kill
37.6
32.3
5.4

$$
4.3
$$

3.2

$$
1.1
$$

1.1
1.1
7.5
100.00

As would be expected Blacks and Mallards made up the bulk of the kill during the first two days of the hunt on the Ghost marshes. However, it is rather startling that the percentage of these two species representative of the total ki11, jumped from 47.4\% last year to 69.9% in 1966. This can be explained in part by the fact that some of the hunters were selectively shooting these preferred species to the exclusion of the lesser known species.

The trend towards the predominance of Mallards over Blacks as the number one specie in the area is again evident as they have now surpassed the latter specie in representation in the hunter's bag. Although the Black still predominates as a nesting specie on the Ghost river itself, all indications are that the Mallard will eventually prevail in the area as a whole.

Age - Sex Data
During the first day and a half of the 1966 season the writer
obtained age - sex data on 76 ducks by the cloacal examination method. In addition, one wing was collected from each of these ducks and labelled with relevant data in each case. These wings are to be used as a reference collection for the later use of the Preliminary Keys Age and Sex of Duck Wings by Samuel Carney and Aelred Geis.

Table V presents the age - sex data from the examined sample on the Ghost river.

TABLE V

Total	Specie	Adults		Immatures	
		Males	Females	Males	Females
32	Black	2	2	13	15
27	Mallard	3	4	10	10
5	Goldeneye			4	1
4	Ring-necked			3	1
3	Green-winged Teal			2	1
2	American Widgeon			1	1
1	Blue-winged Teal			1	
1	Hooded Merganser			1	
1	Wood Duck	1			
76	TOTALS	6	6	35	29

This sample is obviously too grall to establish reproductive ratios; however, the strong showing of immature Blacks and Mallards would indicate stronger hatching success this year. This factor bears out similar indications suggested by much improved sumer water levels and increased brood counts in the area.

During the period September 17th to October 20th, an additional collection of duck wings was made by Master Dennis Tremblay. However, due to our inability to pick these wings up from Tremblay's camp in time, a large proportion had to be thrown away. The following identification breakdown represents that portion of the wings that were saved.
$\because \because$

Mallard	-19
Goldeneyes	-5
Ring-neckeds	-4
Blacks	-2
Green-winged Teal	-2
Blue-winged Teal	-1
Wood duck	-1
Pintail	-1
	TOTAL

In addition, a Blue-winged Teal wearing band number 665-56600 was reported at Tremblay's camp.
II - Moose Lake - Bond Township

Following the preliminary wetlands survey of Moose Lake Bond Township during the past sumer it was decided to obtain hunting pressure data through an opening day bag check. However, the 2 man crew encountered only two parties of hunters using the area on September 15th. Reports fron local residents indicated that duck hunting has deteriorated at this location during recent years. It was also reported that the area is better suited to the hunting of migrant waterfowl later in the fall.

The following represents a sumary of the Moose Lake bag check data September 15th, 1966:

| $\frac{\text { Parties }}{2}$ | $\frac{\text { Hunters }}{6}$ | $\frac{\text { Man-Hours }}{24} \quad \frac{\text { Total Ducks }}{16 ;}$ | $\frac{\text { Cripples }}{2}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Hunter success | - | 2.6 ducks / hunter | |
| | Hunter effort | - | 0.66 ducks / nan-hour | |

Species
Ring-necked
B1ack
Blue-winged Teal
Goldeneye
Hooded Merganser

Total
5
4
4
2
1
TOTAL
16
\% Total Kill

$$
31.3
$$

$$
25.0
$$

25.0
18.7

$$
100.00
$$

The census crew observed that ducks appeared to be fairly numerous in the area on opening day. One band number, 607-76138, from a Black duck banded as an-imature female by Mr. Leo Badger and his airboat crew during August, was recovered.
III - Long Lake - Gross Township

The upper end of Long (Kinogami) Lake in Gross and Blain townships has always been a favourite early season hunting area in conjunction with the chain of potholes in the imediate area of the inflow of the Englehart river. A two man census crew interviewed eight parties of hunters in this area on opening day this year. While success was gencrally low, this was attributable to various cases of "sky busting" and other unsportsmanlike tactics rather than a dearth of waterfowl.

Bag Check Surmary

- .

Species Composition

Species
Black
Common Merganser
Ma11ard
Blue-winged Teal
Wood duck
Ring-necked
TOTAL

Total
8

It should be mentioned at this point that some good hunting for ducks was reported in this particular area during the two weeks following opening day, hence it can be assumed that conditions were better than indicated by the limited data available.

IV Mountain Lake - James Township

This area has long been known as a night roosting area for waterfow1. The extensive bullrush cover on the north shore of the lake and at the mouth of the Montreal river offers excellent opportunity for such waterfowl use.

On opening day, September 15 th , a party of 7 men bagged 19 ducks in 14 man-hours of hunting during the late afternoon and evening hours. The total bag consisted of 6 Ring-neckeds, 4 Blacks, 7 Hooded Mergansers, 1 Blue-winged Teal and 1 Green-winged Teal. These figures produce a success rate of 2.7 ducks per hunter.

Up until 1964, this area was known as an excellent late duck location with good numbers of migrating Ring-necks and Scaup using it as a resting and stop-over area. During the past two seasons, however, there has been a dearth of these species with only very small flocks coming in well after dark. It is felt that some factor has caused these migrants to change their fall flight pattern. It is certain that hunting had no part in affecting this change since this area has been very lightly hunted for some time.

-spmen,

A total of 235 wings were collected from ducks shot during the 1966 hunting season in Swastika District. Of this total, 123 came from the Ghost river and the bulk of the remainder were concributed by five co-operating hunters. Following local analysis and recording of data and the selection of a suitable study collection, the remainder will be forwarded to the University of Guelph for inclusion in the Provincial collection.

Section C - Duck Banding

I - Air Boat Operation

This year, U.S. Game Management Agent, Leo Badger, working out of West Virginia, was detailed to band waterfowl using an air boat on the Nepawa Island and Boundary Marshes of Lake Abitibi on the Quebec side. During the period August $4=19 \mathrm{th}, 1966$, a total of 118 ducks were banded. Due to the relatively poor success, the scene of operations was shifted to Northeastern Ontario. At Lillabelle Lake and Porcupine Lake in the Cochrane District, excellent success was achieved in a very short time. The writer worked on the Porcupine Lake endeavour for two of the four nights spent in the area and was quite impressed with the excellent results obtained. A total of 350 ducks was banded at this site. At Moose Lake in the Swastika District, a rather disappointing total of 40 ducks were captured and banded. However, examination of this marsh would indicate that it is better suited as a daytime feeding area and is not used extensively by waterfowl as a roosting site.

The Airboat

The boat itself is made up of a streamlined fibreg1ass hull made by Hurricane Fibreglass Products Incorporated, of Auburndale, Florida. It is 14 feet long, has a total weight of 800 lbs . and is powered by a $150 \mathrm{H} . \mathrm{P}$. Lycoming Aircraft engine. A battery of three 1500 watt lamps provide excellent opportunity for "spotting" ducks at a considerable distance. The boat is extremely maneuverable and versatile in shallow water and provides an excellent means of banding waterfowl.

Recommendations

Since the air boat is the most efficient method of banding the most waterfowl in the shortest amount of time so far encountered in Northern waterfowl banding, we submit the following recommendations for consideration.

$$
\because \therefore \quad \cdots \cdot
$$

$$
\sim
$$

-

1) The air boat, if possible, should be reassigned to this area nnce again next year. A definite program should be arranged with District Fish and Wildiife personnel concerned in order to best utilize the available time.
2) Mr. Badger should be in charge of the boat once again in order to utilize his experience gained on this summer's program.
3) Since in the past, communication between Head Office staff and the Districts concerning travelling banding crews has been very poor, the Districts involved should be notified well in advance of the intended plans. This would result in the elimination to a great extent of trial runs on marginal areas. The knowledge of various marsh areas available at the District level has not as yet been utilized for such banding projects.
4) It is suggested that operations not commence before August 12th, 1967 and that areas such as Lillabelle Lake, Porcupine Lake, Nighthawk Lake and Moose Lake receive attention first. The waterfowl build-up on the Abitibi marshes has been quite late during recent years, hence operations in that area need not begin before August 25th at the earliest.
5) The third man necessary in such an operation should be somene from Fish and Wildlife in the Northeastern region on a full time basis. This will result in greater efficiency of operation as well as indicating to the Flyway representatives that the Ontarin government is truly interested in the Eastern-Canada banding program.

II - Bait Trapping

Due to the shortage of time following the completion of the air boat operation, the bait-trapping project was unsuccessful this year. The Hill Lake site requires much pre-baiting to draw the birds from natural feed on to the bait site, hence only 2 Blacks and 1 Mallard were taken this year. In addition, 14 Blue-winged Teal locals. were banded by drive trapping. Since the waterfowl build-up at Hill Lake has been dropping in recent years, this operation will be discontinued unless arrangements can be made for the Hatchery staff to aid in the project. The small returns have not warranted the time spent in this project.

Acknowledgements

The writer wishes to express his sincere thanks to Conservation Officers E.A. Corbould and J. Bradshaw for their contribution to the data used in this report.

$$
\therefore+\infty
$$

$$
\because \cdots
$$

r.
± 0
\sim
e

- $\because \cdot$

里雨
\square

References

Gollop, J.B. and W.H. Marshall, A Guide for Aging Duck Broods in the Field, Paper for the Mississippi Flyway Council Technical Section, 1954. 14 pp .

Gardner, J.F., Ghost River Marshes Waterfow1 Bag Check - 1965, unpublished District Fish and Wildlife Report. 4 pp.

TRANSFER OF ADULT GOLDEYE FROM SEVERN RIVER TO SACHIGO LAKE IN SIOUX LOOKOUT DISTRICT 1966

by
C.A. Milko, Res. Mgt, Officer

Abstract

In order to stimulate economic growth of the Sachigo comercial fishery, a program was approved by the FederalProvincial Resource Developnent comnittee which entails the transplant of adult goldeye from the Severn River to Sachigo, Little Sachigo and Ponask Lakes which appear to be suitable bodies of water for the production of these species.

A total of 212 adult fish were moved by otter aircraft and introduced into Sachigo Lake. Holding time in the retainer net and water temperatures are two critical factors in the successful application of a goldeye transplant.

The program can be considered partially successful in that at least 6 recoveries fron Sachigo Lake have been reported this past sumer.

Introduction

Under the terms of the present Resource Development Agreenent funds were made available for a project designated as R.D 82, for the transplantation of adult goldeye from a spawning site on the Severn River below Sandy Lake to Sachigo, Little Sachigo and Ponask Lakes.

The main reason for implenenting the project was to stimulate economic growth of the Sachigo comercial fishery in future years. Goldeye are a highly desirable species of fish on the consumers' market and are considered a gourmet dish when smoked, consequently competition by fish buyers for production is high and also results in higher bid prices for other species of fish such as pickerel and whitefish in order to secure production.

There presently is a comercial fishery on the three lakes in question, however, distances involved in flying the fish restricts the lakeside price per pound to the Indian fishermen.

ぞゥ・•

An established population of goldeyes entering the commercial fishery will almost automatically increase the value of the other comercially produced species.

Information and advice regarding the physical aspects of the project was sought from the Fisheries Research Board, and the Fisheries Branches of Manitoba, Saskatchewan and Alberta, however, no pertinent information was available so we proceeded on a trial and error basis.

Personnel participating in the project were the author, John Lessard, Resource Managenent Officer; Fred Gamble, Fisheries Supervisor and Walter Kakepteun, Fisheries Supervisor.

Chemica1 \& Physical Characteristics

Sachigo, Little Sachigo and Ponask Lakes are located in the far northwestern part of the Province in the general locality of longitude $92^{\circ} 00 \times$ Latitude $54^{\circ} 00^{\prime}$ and each have water areas of 90,38 and 20 square miles respectively.

Sachigo and Little Sachigo Lakes are shallow, turbid and relatively wide open bodies of water exposed to a great deal of wind action. Ponask Lake is a long narrow lake with a high turbidity rating.

A comparison of water sample analysis between the three lakes and lakes on the Severn River watershed, where goldeye populations exist and are produced comercially, indicate that water characteristics are sinilar as illustrated in Table I.

Table I

Lake	Total Dissolved Solids	Alkalinity	Turbidity Units
Sandy Lake	114 ppm.	50	24
Finger Lake	97	44	19
Muskrat-Dan	90	50	27
Asipiquobah	85	37	2
Sachigo	105	57	12
Little Sachigo	104	72	9
Ponask	129	97	11

The above data indicate average value taken over a threeyear period.

$$
\begin{aligned}
& \text {. } 0 \\
& \text { - } \\
& \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& =1 . \quad \therefore \\
& \therefore \mathrm{rr} \\
& \text { a } \\
& \text { ロコン } \because \because \because \\
& \therefore: 4 \\
& \text { - }
\end{aligned}
$$

A probable reason why goldeye never have existed in the waters in question is the height of land between the Severn and the Sachigo River watersheds.

Methods - Capture and Transplant

On June 3; 1966, after a four day delay because of inclement flying weather, a crew of three (2 Resource Officers and 1 Fisheries Supervisor) with all necessary equipment were flown to the trapping site on the Severn River via otter aircraft ODV piloted by Harry Speight. There they were met by Walter Kakepetum from Sandy Lake settlement who is aiso employed as a fisheries supervisor. The attached map indicates both the capture and the planting sites.

The trapping site is approxinately 215 air miles north of Sioux Lookout.

Equipment Used

1-14 aluminum boat and motor
1-18' canoe and motor
3 - complete set $1-1 / 2^{\prime \prime}-3-1 / 2^{19}$ nesh 100^{\prime} gill nets
2-20 gal. metal water barrels for holding fish alive in boat
1-6' retainer net
2 - cylinders oxygen

- supply of large poly bags for holdings during air transit
- supply of hose bags supplied by Forest Protection to provide reinforcement for poly bags.
- camping gear

1 - P35 radio with generator.
The Severn River is very deep around the capture area ($30^{\prime}-40^{\prime}$) and all nets had to be floated in order to catch any fish. Trimed dry popiax pegs 16^{11} long and 3^{11} in diameter were fastened at float intervals along the top line by means of a split notch in one end of the peg to provide floatation.

Abnornally high water levels caused the river to be very swift and full of debris creating difficult fishing conditions. The nets had to be pulled periodically, taken to camp, cleaned, and then re-set.

In order to keep mortality to a mininum nets were run at least three tines daily, early morning, afternoon and late evening.

Maximun travelling distance involved with fish from the net to retainer was 6 miles. In this distance continual changing of water was required. Not more than 10 or 12 fish at any one tine could be transported in the water barrels in the boat to the retainer net.

Sone fishing activity was carried out up river from the camp site and above the first rapids. This necessitated portaging the live fish in wash tubs and created a great deal of strenuous work. Towards the end of the project this practice was stopped.

Daily water temperatures were recorded, and revealed that a higher incidence of mortality occurred as the water temperature rose.

Only numbers of fish and sex were recorded of fish that were to be transplanted. Goldeyes can be sexed easily by visual examination of the anal fin. The anal fin of the adult male becomes slongated to form a distinct lobe whereas the adult female lacks such a lobe as illustrated below.

FEMALE

The actual movement of the fish to Sachigo Lake presented no problen. Large polyethylene type bags were placed in canvas hose bags into which approxinately $4-5$ gallons of water was placed. Ten or twelve fish were put in the bag out of the retainer net, the bag was inflated slightly with a small amount of oxygen and tied off with cord.

Ten or twelve bage of fish could be hauled quite easily in the otter aircraft, but this load could be increased if landing and take-off conditions on the river were more suitable.

Flying distance involved to the planting site in Sachigo Lake was 44 miles. Total holding tine of the fish in bags from retainer net to planting site under normal conditions would be approximately one hour and ten rinutes.

Previous to transporting the fish, live specimens were held in oxygen inflated bags for as long as 12 hours with no apparent ill effects.

Because of their delicate nature great care had to be exercised in handling the live fish. Goldeye have deciduous scales and are subject to fungus with rough handling.

The actual planting of the fish posed no problen. Once landed at the planting site the pilot handed the bags to a resource officer on the float of the aircraft who untied the bag, placed it in the water and let the fish swin out.

Results and Observations
As indicated in Table II a total of 363 goldeye were captured in 18,300 feet of net. Of this total, 97 fish or a mortality rate of 27% was observed.

Of the 266 goldeye held in the retainer during the project 47 fish died indicating a mortality rate of approximately 18%.

As was to be expected, the mortality rate increased as the water temperatures rose.

Mortality in the retainer net can probably be attributed to weak specinens being retained and too large a mesh size in the retainer itself which was $2^{\prime \prime}$.

On numerous occasions fish would be observed hitting the mesh and getting entangled by their teeth.

Another probable cause of mortality in the retainer woudd be holding fish for extended periods of time (i.e. 3 or 4 days). Had the crew been at the trapping site one week earlier when spawning activity was at its peak fishing success would have been greater thereby reducing holding tine between aircraft loads. Lower water temperatures a week earlier would probably also reduce nortality.

Of the graduated nets used ($1-1 / 2^{\prime \prime}-3-1 / 2^{\prime \prime}$) the $3-1 / 2^{\prime \prime}$ nesh nets proved to be most effective for catching numbers of fish but accounted for a higher mortality in the fish caught when compared to the smaller mesh size.

Fish caught in the $3-1 / 2^{\prime \prime}$ nets would almost invariably be gilled and drowned or so many scales would be ribbed off during removal from the nets that it was considered unadvisable to retain them for transplant.
\square

あくわ	．59］		$\angle 7$	± 99	200\％	むてて	\％SL	ع9¢	$00 \varepsilon^{\circ} 8 \mathrm{I}$	ST870］
¢0¢	．99	A 085	L	d 2	． 5	tS	OH	$9 I$	，008工	9I əunc
		a ols	61	¢ST．	． 12	dT	\％	6ε	，008	SI．ounc
		A oss	ς	あった	Pll	¢ ${ }^{\text {L }}$	${ }^{\circ} \mathrm{¢}$ ¢	¢¢	：00ヶて	gT ounc
あしT	．066	A oss	9	d9t	！98	dて	OZI	99	，00ヶて	$\varepsilon \tau$ ounc
		－ 075	\dagger	d¢	،0\％	১¢	$\bigcirc 0$ T	加		ZI गunc
		A ${ }^{\text {oby }}$	ε	¢8	． 12	古㘯	$\bigcirc \square I$	5	，00LZ	II ounc
		－ O_{0}	ε	¢ \downarrow	๑® ๕	¢ $¢$	${ }^{\circ} \mathrm{E}$ L	97	，009E	OI əunc
		a ocs		万I	． 68	ذ¢	． 96	ZS	，009E	6 วun¢
pJow	पsta	$\begin{aligned} & \text { - dwal } \\ & \text { 工ə7eM } \end{aligned}$	xวuṬe7ロy ut pead	มวน！	$\begin{gathered} \text { ezoy } \\ \text { uI } \end{gathered}$	prad		$\begin{aligned} & \text { כpto } \\ & \text { [e7ol } \end{aligned}$	$\begin{array}{r} \text { PO7ITT } \\ 7 \partial N \end{array}$	2720

The 1-1/2 2^{10} nets proved to be worthless for catcing adult goldeye and were removed from the water after 3 or 4 days.

The arount of debris on the river getting tangled in the 1-1/2" net probably reduced its catching ability.

The $2^{\prime \prime}, 2-1 / 2^{\prime \prime}$ and $3^{\prime \prime}$ necs appear to be best suited for a project of this cype.

Although they dc nct capeure as many specimens as the $3-1 / 2^{\prime \prime}$ nets the fish that are captured are usually caught by the teeth and in reasonably good shape after reacval from the net.

Pror to the start of the preject some thought was given to the use of impounding gear, however, the depth and swiftness of the Severn River at the trapping site would render this type of gear impractical.

The water barrels used in the boats to transport the fish from the net to the retainer appear to be suitable providing water temperatures are not above 500-540 and the number of fish carried is held to a maximum of 10 or 12 fish.

The holding capacity of these water barrels might be increased if a steady flow of orygen were fed into the tank in the boat during transit to the retainer.

The inflated poly bags in canvas hose bags appear to be excellent containers for roving adult goldeye. No apparent ill effects to the fish were noticeable during transpore by air to the planting site.

On the first trip the aircraft had to return to camp because of inclement weather between the Scvern River and Sachigo Lake, consequently 116 live fish were kept in the containers for 3 hours until the weather cleared.

No mortality was observed upon release of the fish after this period of time.

Canvas hose bags provide excellent reinforcement to the poly bags and also restrict light penetration to the fich.

The criginal plan of transplanting fish into Sachigo, Little Sachigo, and Ponask Lakes had to be abandoned when it became apparent that the required number of fist would not be obtained. Consequently, a total of 212 fish (1650° and 47\%) were planted in Sachigo Lake only. Had the crew been at the trapping site a week earlier, during the

-
peak spawning run, the entire transplant (500 fish to each lake) could have been completed quite easily.

Walter Kakepetum, one of the crew members, was at the site a week earlier (via boat fron Sand Lake village) set one 100' net overnight and captured 80 odd fish and reported that the fish were at the peak of their run.

Other species of fish eaught during the project-were: northern pike, walleye, sturgeon, suckers, comon suckers, whitefish, saugers and sturgeon.

Personal comunication with Indian fishermen at Sachigo Lake, in September 1966, revealed that at least 6 goldeye were caught by the fishermen during comercial operations this past sumer. This would indicate that some neasure of a successful transplant has been achieved.

Conclusion

1. Adult goldeyes can be captured, held and transplanted from one locality to another without too much difficulty.
2. Gill nets in the size range of $2^{\prime \prime}-3^{\prime \prime}$ mesh set in a floating position appear to be best suited for capturing and retaining fish in a live condition.
3. Goldeyes held in a retainer net stand up well, providing water temperatures are below 54° and providing that the fish are not held for periods longer than 48 hours.
4. Oxygen inflated polyethylene type bags reinforced by canvas fire hose bags are ideally suited for transporting goldeyes.
5. Gill nets should be run frequently in order to reduce nortality.
6. Reported captures of at least 6 goldeyes fron Sachigo Lake indicate some neasure of a successful planting.

Recormendations

1. That funds be made available to complete this project next spring.
2. That the crew be at the capture site imediately after break-up and wait for the fish.
3. That seining for imature goldeyes be carried out on Sachigo Lake in 2 or 3 years to evaluate transplant and spawning success.
\cdot ’

Acknowledgements

Special thanks are extended to Pilots Harry Speight and A1 (Cactus) McLeod for their participation in the project.

Thanks are also extended to nembers of the District Fish and Wildlife staff for their help and assistance.

$$
\rangle
$$

Abstract

Moose tagging fron a helicopter in the Geraldton District during 1966 resulced in twenty-eight (28) moose tagged. Tagging was carried out on eleven(11) days fron June 23rd to July 5th inclusive.

A tagging area with a radius of thirty miles from the Town of Geraldton was used. A large number of photographs and filn was taken by the National Geographic Society and "Wild Kingdon", Don Meyers Productions; Television series.

Tagging was done by two different helicopters for a total of twenty-seven hours and thirty-five ninutes flying tine. This gave an average of 1.03 moose tagged per hour. The average for 1965 was 1.97 per hour, and 2.61 moose per hour for 1964.

Method

During late June and early July of 1966, a moose tagging progran was planned and carried out in the Geraldton District. A helicopter was used in the nethod described in Information Bulletin F.W. II-I issued August 2, 1963.

The helicopters used were both Bell machines. One was on rental from Dominion Helic pters Limited of Toronto while the other machine was on a short rental from Bordercities Helicopters and Construction Linited, of Fort Willian, Ontario.

Tagging was carried out on eleven days starting on June 23rd and ending on July 5th. Twenty seven hours and thirty five minutes of flying tine was used in searching for and tagging moose. There was an additional two hours and twenty-five ninutes of ferry tire on the project.

This year there were nine bulls, seventeen cows and two calves tagged, making a total of twenty-eight aninals. This gave an average of only 1.03 noose tagged per hour. However, during the searching an additional seventy-nine moose were seen, but due to the heavier weight of three nen in the helicopter it was not possible to manoeuver then into a position for tagging. During the 1965 tagging only twenty-three additional noose were seen, but not tagged.

The tags used this year were the sane size and shape as are used for ear-tagging cattle. They were used for the first tine in 1965 and appear to be the best suited for an animal that is travelling through brush its entire life.

The tags were placed as usual on the botton edge of the ear and on the lower half of the length of the ear.

This year Conservation Officer Willian Cook of Nakina carried out the tagging fron June 30 th to the end of the progran. His observations on behaviour of moose while being tagged are included in this report.

Observations made while tagging noose during 1966
The greater experience of the Dominion Helicopters pilot, Mr. Ed Porco, especially on moose tagsing, was a definite advantage this year. With the necessity of carrying a third man (photographer) and two cameras mounted on outside boons, it increased the load of the helicopter by more than two hundred pounds. This, of course, meant that noose in the smaller waters and moose close to shore must be left because the performance of the helicopter is greatly reduced. It was evident that the pilot of the Bordercities helicopter, inexperienced in moose tagging, was reluctant to bring his helicopter close to the noose at any time. Even when the moose was caught in safe, deep water a great deal more tine was used to accomplish the tagging operation. This certainly increases the hazard of tiring the aninal. All noose, however, were noted to make shore safely.

The first noose was tagged on June 24th this year, it formed a group of three bulls found on an evening flight north of Geraldton. A large fire had gone through this area in June of 1965, leaving only snall patches of tinber around sone of the low swampy areas. The ground is already becoming covered with many small weeds and plants, nost of which are less than two feet in height. Even though this appears to be poor noose habitat several noose were noted throughout the area. They were probably ranging close to the lakes for the abundant aquatic foods that were unharned in the fire. A cow and her small calf were spotted in one quite small wet marsh inside the burn. There was only a thin ring of trees surrounding the parsh. The two aninals were found lying down in the open grass on the sunny side when first spotted, and were noted on another two occasions in the same marsh. It has become more evident that wind is probably the greatest factor in finding the moose in water.

This year twenty-two noose were tagged when the wind was classed as "light" or "nil". June 23,29 and 30 were days of rather high wind, being 9, 3 and 11 miles per hour respectively. The sun was strong with only scattered cloud putting the temperature close to
-
$80^{\circ} \mathrm{F}$. On these three days sixteen moose were seen along the shorelines or in very small sheltered creeks. None of these aninals were tagged. As soon as the helicopter was heard the moose noved into the bush, and would not enter water any deeper than approximately two feet.

Table III included at the end of this report attempts to show the relationship between the strength of the wind and the ability to tag moose. Wind strengths were-recorded from weather records maintained at Kenogamisis Air Base, Division 17, Geraldton.

As in past years, many moose were seen in the Eldee Lake marsh area just south of Kenogarisis Air Base. On July 5th a cow and calf was noted at the botton end of Eldee Lake. The calf was tagged first while the cow escaped. However, the noise of the machine ran four adult moose off a small island nearby. They had not even been seen as the helicopter was approaching. Two of these animals were also tagged before they reached shore.

The area to the west and north-west of Geraldton showed a good number of moose. Fourteen animals or 50% of noose tagged were taken in this area. This is working into the eastern boundary of the now abolished Nipigon-Onaman Crown Gane Preserve.

Eleven, or 39% of the moose tagged this year were tagged within the boundary of the abolished preserve area. Very little success was obtained on morning flights this year, with only three noose being tagged before 9:30 a.n. Considerable flying was done around mid-day in an attempt to tag noose when there was plenty of light for the photographers. The ten moose tagged during mid-day were scattered fron 10:30 a.n. to 2:30 p.rn.

By far the best tagging was obtained between 6:30 p.a. and 3:00 p.a., with thirteen moose being tagged within this evening period, representing 46.4% of moose tagged in 1966. Why so very few moose were seen during early morning flights remains a mystery. During the 1964 tagging progran slightly nore than one-third of the moose were tagged before 7:00 a.n.

Tables I and II of this report records the number of noose tagged and the number seen but not tagged per day respectively. Table IV contains data on each moose tagged during 1966. A map showing the exact location wherc each aninal was tagged is available for inspection in the Fish \& Wildlife Library at Maple.

Acknowledgements

I would like to thank the pilots of the helicopters, Ed Porco and Oscar Sideen, Don Butler, helicopter mechanic, Conservation Officer Willian Cook, and all others involved with the 1966 tagging operation for their continued support and willingness, under some trying conditions.

TABLE I
Moose tagged per day

Date	Bull	Cow	Ca1f	TOTAL
June 24	3	-	-	3
27	1	4	-	5
July 3	-	2	-	2
4	2	5	1	8
5	3	6	1	10
TOTALS	9	17	2	28

TABLE II

Moose Seen but not Tagged per Day

Date	Bul1	Cow	Calf	Unknown	TOTAL
June 23	-	-	-	2	
24	-	-	-	6	6
25	-	1	1	1	3
27		3	3	2	12
28	1	-	-	3	4
29	1	-	-	-	4
30	2	7	1	1	11
July 1	4	2	1	1	8
3	3	3	2	1	9
4	5	7	6	-	18
5	5	2	-	-	5
TOTALS	23	25	14	17	79

TABLE III
Wind velocity and air temperature during tagging period

Date	$\begin{gathered} \text { TOTAL moose } \\ \text { seen } \\ \hline \end{gathered}$	Number tagged	$\begin{aligned} & \text { Wind } \\ & \text { M.P.H. } \end{aligned}$	Air Tenperature
June 23	2	-	11	810
25	9	3	8	800
25	3	-	9	800
27	17	5	1	740
28	4	-	9	76°
29	1	-	8	74°
30	11	-	11	80°
July 1	8	-*	2	85°
3	11	2	17	69°
5 4	17	10	3-5	70°
4	26	8	2	75°

- ON | B |
| :---: |
| B |

рә8887 อләцм иоโฺеכoт

DEER YARD MATNTENANCE IN THE

PARRY SOUND FOREST DISTRICT

$$
\begin{gathered}
\text { 1962-66 } \\
\text { by } \\
\text { John Macfie. }
\end{gathered}
$$

Abstract

During the past four years deer yard management techniques have been applied to several Parry Sound District yards. These are in three categories: preservation of shelter, commercial cutting oriented to production of winter food for deer; and non-comercial cutting to produce deer food. Of these, it is considered that shelter preservation is the most urgently needed at present. Commercial cutting encouraged by special inducements offers the best hope for maintaining food productivity in yards, while non-comercial cutting financed by stand improvement funds is practicable in emergency situations.

Introduction

Heavy winter losses of deer in the Parry Sound District during the severe winters of 1958-1959 and 1959-1960 focussed attention on the relationship between distribution and condition of deer wintertarg areas, or "yards", and abundance of deer. Those winters of extreme snow depth demonstrated vividly that the fortumes of the white-tailed deer in this part of its range are largely governed by conditions and evenes in the comparatively small part (less than 10%) of the District's forest that affords suitable winter shelter for deer. In the years that followed, some deer management techniques that the Department of Lands and Forests had been developing have been put into practice.

Between February 1959 and March 1962 the entire District was mapped for deer yards. Ground assessment of the yards followed. This phase, which will continue indefinitely, is in two categories, general and systematic. The former is an ocular assessment of shelter, food and winter mortality, usually done in winter while deer are yarded. The latter, applied to only a few selected major. yards, is an annual measurement, using approved statistical techniques, of deer population and mortality, and in some cases, of browse availability and utilization by deer.
-
e \square

The third function consists of yard maintenance, the subject of this report.
(Steps that have been taken to mainDeer Yard Maintenance Techniques (tain or improve deer yards are in (three categories:)

1. Shelter preservation
2. Commercial cutting oriented to production of deer food
3. Non-commercial cutting to produce deer food.

Shelter Preservation

Ground investigations have shown that nearly all Parry Sound deer yards are located in timber stands in which hemlock is the principle shelter species. It appears that hemlock is vital to the existence of deer in this region. Over half a century of hemlock logging has destroyed most of the original stands, few of which are being replaced by regeneration.

Presumably the District's carrying capacity for deer has also declined drastically in this period, and continued cutting threatens to reduce it further. Little can be done to check cutting of hemlock on privately-owned land, but on Crown Land, the Department can control cutting. The District Timber Branch recognizes that hemlock must now be regarded primarily as deer shelter, and secondarily as timber, and in 1963 it began to implement some special cutting restrictions recomended by the Fish and Wildiffe Branch.

Such restrictions are not difficult to apply to operations authorized by District Cutting Licences, by inserting clauses prohibiting the cutting of hemlock, raising the minimum diameter limit, marking trees to be cut or outright refusal of the application. This power is being used fairly widely in the District.

Most logging on Crown Land is, however, conducted under Crown Timber Licences, long term agreements often covering large tracts of land, to which it is more difficult to attach special deer shelter preservation clauses. Only a little progress has been made in this area.

One licence agreed to preserve selected hemlock stands that he would otherwise have logged, without having it made-a condition of licence. A total of about 40 acres of hemlock, it patches measuring roughly an acre in size, were marked using stand improvement funds (SIM Pjt. 495-63) at a cost of $\$ 4.16$ per acre.
$\because \because \cdots$
-

- -
- $\because \therefore$

Deer shelter clauses, either raising the minimum diameter limit on hemlock, or calling for marking of all hemlock to be cut, have been written into a few recently issued or renewal licences. Marking is the better method of control, and ideally, a hemlock marking clause should appear in all Crown Timber Licences which encompass deer yards.

Commercial Cutting Oriented to Production of Deer Food

Few deer yards are being logged intensively enough under normal operating procedures, to maintain an adequate growth of deer food. A start has been made at attracting logging operators to deer yards, or increasing the amount of material they remove, by offering special inducements.

In such cases potential timber values in yards were assessed by the Fish and Wildlife Branch, and the Timber Branch located an operator and drew up an acceptable operating agreement.

Bethune Township Yard 非 (SIM project 364-62, 63, 64 and 65)
Once a major wintering area, this yard now harbours very few deer. New growth that followed logging in the late 1940's is now above the reach of deer. Intensive logging of hardwood was recommended as a means of stimulating browse growth to build up the herd. An operator who makes railway ties is removing all merchantable hardwoods (minimum diameter limits have been waived) from designated strips, at the usual stumpage rates. Cutting commenced in the 1962-63 season, and the fourth consecutive annual cut has now been completed. Yeld of merchantable products per acre (7,000 f.b.m. in 1965-66) is proving to be very substantial.

The net area treated (more or less clear-cut) to date totals 101 acres. Strip marking costs are absorbed by Timber basic organization, so no SIM funds are being expended.

Treatment has not yet caused a noticeable increase in deer. A deficiency of shelter may have been the prime cause of the decline in this herd.

McKellar Township Yard 非3
This three square mile yard is subject to overbrowsing by a fairly large deer herd. Two logging operations were conducted at the easterly and westerly extremities in the winter of 1965-66.

On the easterly site intensive cutting of small and low grade maple adjacent to hemlock groves was desired, and the application of salvage rates and the removal of the minimum diameter limit

$$
\because
$$

.. 1
$\because \because$
$\sim \because$
\square
$\because \quad \because$
for this species were used to attract an operator. Trees to be cut were marked. A total of 73,500 F.B.M. of merchantable hardwood logs were removed.

In the second operation the lower diameter limits were waived on all hardwoods, but normal stumpage rates applied. The operator cut 14. 153 F.B.M. of logs, mostly yellow birch.

Shawanaga Township Yard 非1
Overbrowsing in this large (more than 10 square miles) yard is severe, and heavy winter losses of deer have occurred in recent years. To alleviate the situation in the west sector of the yard, arrangements were made for a logging operation in the winter of 1965-66.

A btand of mapie and birch adjacent to hemlock shelter was selected, and all trees to be cut were marked. The minimum diameter limit on maple was waived, to intensify the cut. Regular District Cutting Licence rates were charged. About 50 hemlock trees that were considered surplus were marked and removed. In addition to the saw and veneer \log operation, the operator cut a 4 or 5 acre stand of young hard and red maple for pulpwood. Fiftyseven cords of pulp wood and 56,969 F.B.M. of logs were removed.

The beneficial effect of this cut, especially the pulp operation (a non-commercial treatment of comparable scope would require about $\$ 300.00$ of stand improvement funds) is expected to be considerable.

Non-Commercial Cutting to Stimulate Growth of Deer Food
During the past four yeare much effort and money has been spent in the District $=1$ ear-cutting low grade hardwoods adjacent to deer shelter, to stimulate grovth of winter food for deer. Funds were providod throash the Silvicultural Section of the Timber Branch. With one exception where cut material was utilized for fuelwood for use in a Provincial Park, no revenue was recovered on these SIM projects. The projects are summarized in Table I.

A standard method of treatment was used throughout the District. Hard and red maple (preferred deer foods) stands of low quality bordering hemlock groves were selected for patch or continuous strip cutting.

Strips were 1 to 1-1/2 chains wide, and patches 1 to 2 chains square. In the case of Carling Yard 非2, a continuous strip was cut the first year, and systematically arranged alternate patches thereafter. In all other yards, patches were selected randomly, using potential productivity as a guide.

\therefore
! -
\because

$\because \because \cdot$
$\therefore \quad \because \quad$
. .

All hardwood trees within outlined plots, with the exception of occasional potentially valuable stems, were felled or killed by girdling. Cluttering of plots was avoided by felling the outer belt of trees outward, and girdling those near plot centres.

Operations were conducted in winter months, employing teams of cutters consisting of one chairr: r -man, and one axe-man. Overall planning and supervision was by Fish and Wildlife personnel, while casual employees or regular staff provided on the job supervision.

Good to excellent growth of browse has followed cutting on all the sites treated prior to 1965-66. Best results occurred in red maple, a preferred deer food that has coppiced profusely. There is no question that the technique quickly creates deer food in quantity.

All treatments in the Loring area (see map) were applied to heavily populated, over-browsed yards. New growth is being nearly fully utilized by deer, causing the desired re-branching of stems, that should permit the beneficial effect to persist for the expected seven to ten years. The large Loring yards are believed to harbour many deer that summer in the more westerly parts of the District where winter cover has deteriorated. The over-crowding of these yards, coupled with the fact that most are on Crown Land, creates botha need and the opportunity for browse improvement cutting.

In the Carling yard, much browse created by the earliest cutting is already "escaping" beyond the reach of deer, in spite of intensive utilization. Here we have produced food in greater quantity than the deer herd can consume. The Carling project was designed as an experimental as well as a management program. After making a browse and population survey in 1962 (Macfie, 1962) a ten-year cutting program encompassing the entire 2,000 acre yard, to be concluded with a re-survey of browse and population, was devised. It has now been concluded that a one or two year pause in cutting should be called to encourage fuller utilization of the food that the four annual treatments have produced.

The Mowat and Blair Township treatments were applied to some scattered remants of what was once a broad wintering area for deer, similar to the situation that still exists around Loring. Deer have declined in recent decades, and since the 1959 "crash" few have wintered there. The object of treatment was to aid in building up the herds by improving browse. So far, no noticeable increase has occurred, and it appears that much of the food it produced will be wasted. It is likely that deteriorating cover is the basic management problem in that region.

54

Discussion
In the four or five years since the implementation of active deer habitat management, considerable money and effort has been devoted to increasing the food supply in certain yards by non-comercial cutting to admit sun1ight. A large proportion of this work was done in the Loring area, and there it undoubtedly ralsed carrying capacity and contributed to an increase in deer. Whether the technique is economically sound depends on the size of the increase, and its worth to hunters, neither of which factors have been measured. It may be said with safety, however, that the extra deer are rather costly. The best course might be to restrict this treatment to the most heavily populated and severely overbrowsed yards, where full utilization of the product is assured. Ideally, non-comercial cutting projects should be reserved for winters of deep snow-when food in the tops of felled trees may contribute as much to the welfare of the herd as does the new growth that follows.

Comercial cutting is less productive of browse, but it requires no stand improvement funds and produces revenue for the Crown and the local economy. By making an effort to locate merchantable-timber in deer yards, and offering special inducements to operators, three deer yards have been improved at little or no cost. If markets for low grade hardwoods continue to expand, the opportunity to pursue this approach will grow. The best prospect for keeping deer yards productive, on both Crown and privately-owned land, lies here.

In the broader, long-term deer management picture, shelter appears to pose a more serious problem than food. The productive potential of the District has declined drastically in recent decades as hemlock stands were destroyed by logging and replaced by maple. Ironically, it was this very process which created the food that made possible the high deer populations of earlier years. Already, large sections of the District have no deer yards worthy of the name because suitable hemlock stands no longer exist. Some of the remaining yards continue to erode away under logging, and only in a few places, principally in the southernmost quarter of the District, is hemlock regenerating satisfactorily.

Among the things needing to be done to maintain, and perhaps increase, the carrying capacity of Parry Sound District deer yards, the most urgent is preservation of existing winter shelter.
. I

-2
4:
2

Table I

Summary of Stand Inprovement Projects
Designed to Stimulate Production of Deer Food
1962－1966

| Deer Yard | Project | Time of Cutting | | Acreage
 Clear Cut | Total Cost net acre |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

＊Costs excessively high because all material cut was skidded for use as park fuelwood．

Mowat 非2	340－62	Feb／63	6.7	\＄441．94	\＄65．96
Mowat 非6	582－64	Feb／65	13.5	\＄925．41	\＄68．55
Blair 非1	497.63	Feb／64	23.4	\＄1，080．52	\＄46．18
Hardy 非1	496.63	Jan－Feb／64	32.27	\＄1，731．08	\＄53．64
（Includes	496.64	Dec－Jan／64－65	11.69	\＄1，046．38	\＄89．51
parts of Mills	496.65	Jan－Feb／66	54.83	\＄1，952．67	\＄35．61
and McConkey	575.65	Feb／66	25.48	\＄848．27	\＄33．29
Twps．					
Total for yard			124.27	\＄5，573．40	\＄44．88av
Pringle 非1	496－63	Feb／64	3.5	\＄234．00	\＄66．86
Wilson 非1	574－64	Dec－Jan／64－65	6.66	\＄362． 60	\＄55．34
Mills 非1	576－64	Dec－Jan／64－65	20.18	\＄1，151．06	\＄57．03
McConkey 非3	575－64	Jan／65	9.84	\＄402．99	\＄40．95
Patterson 非1	669－65	Jan／66	6.19	\＄482．91	\＄78．01

Administrative District Area 6,460 sq. Miles.

Less 10% for water 646 sq. Miles Net area $\quad 5,814$ sq. Miles.

