RESOURCE MANAGEMENT REPORT

DEPARTMENT OF LANDS AND FORESTS

RESOURCE MANAGEMENT REPORT

DEPARTM ENT OF LANDS AND FORESTS
Fish and Wildife Branch

[^0]F.A. MacDougall

T\&BLEOFCONTENTS No. 73 November, 1964

Page
Wood Duck Banding Project, Lake Erie District, 1963.

- by D. M. Brooks 1

Geraldton District Ruffed Gouse Studies - 1963.

- by B. H. Gibson

7

The 1963 Deer Season, Sault Ste. Marie District.

- by N. R. Payne 14

The Use of Daily Commercial Fishing Records to Describe the Seasonal Distribution of the American Smelt in the Central Basin of Lake Erie.

- by R. D. Thomasson

Winter Angling for Brook Trout in the Port Arthur Forest District.

- by P. Nunan

Report on the White Lake Fishery Project, 1963.

- by D. J. Rice

50
(THESE REPORTS ARE FOR INTRA-DEPARTMENTAL INFORIATION AND NOT FOR PUBLICATION)
. . .

ant book

: 5 - 3
I. $3 \times 2 \mathrm{~m}$
.cJeI -

$$
\therefore \quad \begin{array}{r}
\text { sose sif } \\
\text { toxsata }
\end{array}
$$

(gCA Toさrid

00 J20ce
. ever

SeTHT)
\cdots

WOOD DUCK BANDING PROJECT, LAKE ERIE DISTRICT, 1963

by
D. M. Brooks, Biologist
\section*{Abstract}

One thousand one hundred and thirty-eight ducks and three Canada Geese were leg banded between July 13 and September 22, 1963. One thousand and fifty-nine of these were banded in South Walsingham Township, including Long Point, and 82 were banded in Yarmouth Township in Elgin County. Included in this number were 132 wood ducks. This was a contribution to a project initiated by the Mississippi Flyway Council to band wood ducks. Banding was conducted with the authority of Canadian Fildife Service, using U. S. Fish and Wildiife bancs and a record of band numbers and other pertinent data are on file at District Office at Aylmer.

Purpose

The Mississippi Flyway Council has placed special emphasis on the study of wood ducks. One phase of this study is the banding of wood ducks during the summer and fall. In an effort to ensure that sufficient birds are banded to make a reliable study, a goal or quota was set for each province and state within the Flyway where wood ducks could be captured. The goal for Ontario was set at 500 birds. The Lake Erie District co-operated in this program during the summer of 1963.

Methods

Three part-tine employees hired during the summer conducted the field work under direction of Departmental personnel. Mr. Ted Hert, a University student was employed from June 15 to August 30. Wr. Ted Ackert, a recent graduate of the Ontario Forest Ranger School, was assigned to this project from August 6 to September 15. Mr. Marshall Field, an experienced bird bander from St. Thomas, Ontario, assisted during week-ends and other times during this program and participated in all banding done after September 15.

$02+50$

3 50fs beyoubrros
f）HOASK bas • TM
$: 11 \cdot 0$ ．Jears3A 100．192 3030s及
－ $25 \cdot 7 a d m j q a 己$

ッサロンg aldty galyub
－2．rodirjiger

Sixs portable traps were constructed, three of these, six foot square and four feet high, while the other three were cubical in shape having each side four feet long. The sides were formed of one-by-two inch mesh, 16 gauge, welded wire, the bottoms of two inch mesh poultry netting covered with burlap to retain and make bait available. One inch mesh fish netting was used for the tops of the traps, a precaution to prevent trapped birds from scalping themselves when attempting to Ely. A single funnel-type entrance, 14 inches deep, tapering from 18 to three inches, was made at the front of each trap. Removal of captured birds was accomplished by loosening a portion of the roof netting and scooping then up in a long-handled dip net.

The portable traps were set in four ponds on private property in South Walsinghan Towship of Norfolk County and in ponds on Long Point Provincial Park.

A permanent trap $20^{\prime} 2320^{\circ}$ square, located at a feeding sanctuary on Long Point Provincial Park was also operated during the late sumer.

Traps were baited with shelled corn, wheat and barley. Captured birds were examined to determine species, sez and age, were banded and then liberaced.

Results

A total of 1,056 ducles was banded during the 1963 wood duck banding program in Lake Erie District at Long Point Provincial Park and vicinity. Table 1 shows the catch by species, sex and age composition of these birds by semi-monthly periods.

The 47 adult males banded constituted 45.6 per cent of the catch of 103 wood ducks taken from July 16 to September 22, 1963; nine adult females, 8.7 per cent, 29 inmature males, 28.2 per cent and 18 imature fenales, 17.5 per cent. In all there were 56 or 54.3 per cent adult wood ducks and 47 or 45.7 per cent imnatures banded during this period. The high percentage of adult males probably is a result of a catch from a flock of males which were together during the post nuptial period and as yet had not joined with a migration group.

Although the primary objective of the progran was to trap and band wood ducks a total of 947 other ducks was also captured. There were 685 blue-winged teal banded, 8 green-winged teal, 200 mallards, 56 black ducks, one American widgeon (baldpate) and one pintail. In addition three Canada geese which had been raised in the sanctuary at Long Point were also banded.
w arsed busaxel! su. $1 . .0 \cdot 301 \mathrm{~g}$
20.0.27138 ady

Records were not maintained showing days when traps were set or run. However, the portable traps were used exclusively from July 13 to August 30. During this period 39 ducks were banded of which 51 were wood ducks. The permanent sanctuary trap was the only trap operated from August 31 to September 22. A total of 54 wood ducks or 51.4 per cent of the total wood ducks banded were taken in this trap. These 54 wood ducks were all taken during the period August 31 to September 15. Excessive baiting or heavy feeding at or in the vicinity of the trap site may have been responsible for the poor trapping success of wood ducks in the period of September 16 to 22. In all 89 or 8.4 per cent of all ducks banded were taken in the portable traps while 967 ducks, 91.6 per cent were taken in the permanent trap. Table 2 shows the catch by species between the portable traps and the permanent sanctuary trap.

An additional 82 ducks were banded by Mr. R. A. Hubert under the direction of Mr. Marshall Field, an Ontario Bird Bander Associationmember at Corner's Pond, Lot 15, Concession IV, Yarmouth Township, Elgin County. Species composition of these birds was 27 wood ducks, 22 blue-winged teal, 8 green-winged teal, 20 mallards, 3 black ducks and 2 pintails.

All birds banded in this program at Long Point Provincial Park and vicinity and at Corner's Pond were banded under the authority of a banding permit, held by Mr. Marshall Field of St. Thomas, Ontario.

A mortality of 18 ducks lost in trapping operation was reported. Eleven were killed by raccoons, three by mink or weasel, two were trampled to death by other ducks in the trap, one was lost to a snapping turtle and one sustained a broken neck in the trap.

Conclusion and Recomendations
Trapping of local wood ducks on their rearing ponds is usually expensive and time consuming. Greater numbers could probably be taken by restricting trapping to locales when migrant groups gather.

It is recomended that Euture waterfowl banding conducted or sponsored by the Department of Lands and Forests be done under a banding permit issued to a member of the district staff. This would ensure that all banding records would be maintained in a uniform manner since the employee holding the banding permit would be responsible for submitting banding schedules to the Fish and Wildife Branch. The District Office would receive reports of subsequent recaptures or recoveries of birds banded under authority of permit issued to a staff member.*

* Please refer to Circular F.W. 12-2, dated August 18, 1964.

Acknowledgments

The valuable contribution to this project of the following participants is gratefully acknowledged: Mr. Marshall Field and Mr. R. A. Hubert of St. Thonas, Mr. Hart and Mr. Edward Ackert, sunmer assistants in biology, and Mr. T. L. Beck, Superintendent of Long Point Provincial Park.

TABLE 1 SPECIES, SEX AND AGE COMPOSITION BY SEMI-MONTRLY PERIODS OF 1,056 DUCKS BANDED AT LONG POINT
PROVINCIAL PARK, 1963

	JuI. 16-31	Aug.1-15	fug. 16-31	Sep.1-15	Sep.16-22	Total	Per cent
Wood duck							
Ad. ${ }^{\text {a }}$	-	-	11	36	-	47	45.6
Ad. \ddagger	-	-	4	5	-	9	8.7
Im. ${ }^{\text {a }}$	11	10	3	5	-	29	28.2
In. $¢$	4	8	5	1	-	18	17.5
Total	15	18	23	47	-	103*	
B.W. Teal							
Ad. 0 "of	-	-	9	15	4	28	4.1
Ad. \dagger	-	-	2	63	19	84	12.3
Im. ${ }^{\text {cos }}$	-	-	35	187	83	310	45.2
Im. 9	-	-	29	155	79	263	38.4
Total	-	-	75	420	190	685	
G.W. Teal							
Ad. 0 "0\%	-	-	-	-	-	-	0.0
Ad. 9	-	-	-	-	1	1	12.5
Im. $0^{\circ} 0^{\circ}$	-	-	-	-	1	1	12.5
Im. $\%$	-	1	-	3	2	6	75.0
Total	-	1	-	3	4	8	
Mallard							
Ad. $0^{\circ 80}$	-	-	3	30	3	36	18.0
Ad. \ddagger	-	-	1	14	-	15	7.5
Im. ${ }^{\circ} 0^{\circ}$	-	-	6	45	9	60	30.0
Im.	-	-	14	57	18	89	44.5
	-	-	24	146	30	200	
Black Duck							
Ad. $¢$	-	-	-	4	-	4	7.1
In. 0°	-	-	1	22	4	27	48.2
In.	-	-	3	16	4	23	41.1
Total	-	-	4	44	3	56	
Total Ducks	15	19	126	660	232	1052**	

* One additional irmature male wood duck banded July 13, 1963. One additional wood duck banded July 30, 1963, sex and age not determined.

One immature nale baldpate and one imature female pintail also banded in the progran.

TABLE 2 COMPARISON OF CATCE $1 \times$ SPECIES OF 1,056 DUCKS beTveen portable and sanctuary traps at LONG POINT PROVINCIAL PARK, 1963

$\left.\begin{array}{c}\text { Portable Traps } \\ \text { (July } 13 \text { to Aug. 30) }\end{array} \begin{array}{c}\text { Sanctuary Trap } \\ \text { (Aug. 21 to Sept. 22) }\end{array}\right)$.					
	NO.	PER CENT	NO.	PER CENT	TOTAL
Wood duck	51	48.6	54	51.4	105
Blue-winged teal	34	5.0	651	95.0	685
Green-winged tea1	1	12.5	7	87.5	8
Mallard	3	1.5	197	98.5	200
B1ack	-	-	56	100.0	56
Pintail	-	-	1	100.0	1
American widgeon (Baldpate)	-	-	1	100.0	1
Total	39	8.4	957	91.6	1,056

by
 B. H. Gibson, Biologist

Abotract

Ruffed grouse production appcared to be lower in 1963 than in 1962. A surmer average brood size of 5.4 chicks was recorded. This was the lowest average during the last four years. Predictions of poor to fair hunting from 196 : resulted. Hunting success on foot increased from the 16.5 birds shot per 100 manhours in 1962 to 25.0 yrouse in 1963. A continued decline in grouse shot per 100 car-miles by automobile hunters was noted. This group shot only 1.2 birds in 1963 cormpared with 2.3 for each 100 car-miles driven in 1962.

Ruffed Grouse Production Studies

Thirisy broods of ruffed grouse were reccrded by conservation officers between June and September 1963 during regular patrols. The number of broods recorded between 1960 and 1963 has varied from the low of 27 in 1962 to the high of 39 observed in 1961.

The average brood size of 8.0 chicks for Junc, 1963 is not significant because only three broods were recorded for this month. For July, the average brood size was 4.1 juveniles. For the same month of 1962, the avcrage was 6.3 young per brood. This would indicatc that survival was poorer for June of 1963. In August of 1963, broods averaged 4.3 young, while in 1962, for the same month, a brood average of 5.7 chicks was observed. The average brood size for September, 1203 is not likely significant because of the small number of broods (3) sighted.

It appears that rufecd grouse production in the Geraldton District decreased in 1963. The 1963 brood size average of 5.4 grouse suggested an average decrease of .5 grouse per brood over 1962 and was the lowest average during the last four years. In 1962, only firye out of 18 districts recorded sumer averages less than 5.4 chicks per brood (Roseborouch, 1963).

There does not appoar to be any clearly defined trend in annual brood production in the District. As Table I shows, the highest average sumer production between 1960 and 1963 occurred in 1960. In that year, the broods averaged 6.0 chicks; the average dropped to 5.6 for 1961 ; it rase to 5.9 in 1962, beforc dropping to the new four year low of 5.4 in 1963.

The small number of broods sighted and the reduced average brood size during the sumer of 1963 indicated that hunting would be poor to fair, The August brood size average of only 4.3 chicks verificd that hunting prospects were not good. After studying the hunter success data, our predictions of a poor to fair grouse hunt were confirmed.

Hunter Success for Ruffed Grouse During 1963

As was previously mentioned, pre-season predictions of a poor to fair hunt for grouse were verified by a study of the hunt data. The data were again collected on H-50 cards. Conservation officers collected this information in the field; selected grouse hunters also contributed to the study.

A total of 61 hunter study cards was received for the 1963 hunt. OE these, 27 or 44.3 per cent were from bunters on foot. Thirty-four or 55.7 per cent indicated hunting from cars.

(a) Hunting on Foot - 1963

Hanters on foot saw an average of 38.8 grouse and shot 25.0 birds for each 100 man-hours in the field during the 1963 hunting season. A 66.0 per cent increase in grouse shot occurred over 1962 when 27.5 birds were scen and 16.5 were harvected per 100 man-hours. This closely approximates the lowest bunter success found in Ontario during I 962 in the Cochrane District where 13.0 grouse were shot for each 100 man-hours of hunting according to Roseborough, (op.cit.).

It appears as if the three year dec1ine in hunter success experienced between 1960 and $1: 62$ has ended. Hunter success may be on the upswing. The success figures for hunters on foot compare favourably with the averages of between 25 and 35 grousc shot for much of Ontario during 1962 in Roseborough's studiec. Table II illustrates the hunter success data for hunters on foot during 1963.

In 1963, on1y one of the 27 parties (3.1\%) indicated using a dog. This is greatly reduced from the three year average of 23.7 per cent who used dogs between 1960 and 1962 (Gibson 1962). In Table IV, hunter success on foot is compared for the years 1960 to 1963 inclusive.

(b) Hunting by Car - 1963

In contrast with huncing on foot, hunting from an auto in 1963 was less rewarding than at any tine since 1959. This year, 1.2 grouse were shot and 2.3 were seen for each 100 carmiles; in 19622.3 birds were shot while 3.0 were sighted in that distance. It is not known why hunting from a car was less fruitful in 1963, while hunting on foot was better. The data for the years 1960 to 1953 inclusive for car hunters are compared in Table V.

Discussion

I believe that the bunter success data for 1963 reflect accurately the quality of the hunt. Efforts to convince selected hunters to report on all hunts are meeting more response. As Tables IV and V show, the number of birds shot per 100 nan-hours in 1960 appeared to be alnost 400 per cent greater than for 1962 for hunters on foot. Similarily, for hunters using cars, success appeared to be almost 200 per cent greater for 1961 than 1962.

These apparent dec1ines in hunter success rates in 1963, except for road hunters, are bclieved to result fron increasing co-operation from hunters in reporting non-successful hunts. Previous to 1962 , it appeared that only successful parties submitted $\mathrm{H}-50$ cards. Only a small number of these cards indicated hunters had not seen or shot a grouse prior to 1962.

In 1962, however, 31 of 51 study forms indicated that hunters had not seen or shot a grouse. Thirty cards for 1963 reported hunters had not seen or shot a grouse. We asked the selected grouse hunters in $1: 62$ and 1963 to report all hunts to us, whether successful or not in bagging birds. Evidently this has been partially successful, for hunting success appeared to drop for these two years. This is probably a reflection of a less biased sample rather than a reduced quality bunt. Consequently the data for 1960 and 1961 probably cannot be compared reliably with that for 1962 and 1963.

There is confusion on the part of hunters in Eilling out the Ho50 cards. For instance, some hunters continue to report that they record mileages driven to an area where they plan to hunt, although actual hunting does not occur until they reach the hunting locality.

Some lunters are unsure if they should report on grouse shot while moose hunting. Others are uncertain of the term "nanhours" as used on the H-50 cards. Some hunters simply record time in hours. This nakes it difeicult to analyze the data in some cases as it is hard to tell if man-hours or hours hunting is designated. This could be simplified by reverting to the original H-50 card where actual hours huneing rather than man-hours was recorded.

Sumary and Conclusions

Thirty broods of rusfed grouse were recorded by conservation officers during the sumer of 1963. The 5.4 chicks per brood average for the sumer was the lowest since 1959. Tunting success was poor to fair for the district. Hunters on foot increased their success over that of 1002 . In 1963, 25.0 grouse were shot for each 100 man-hours expended by this group. Hunters using automobiles experienced reduced success, bazging only 1.2 grouse per 100 car-miles.

Literature Ciced

Gibson, B. H. 1963. Ruffed Grouse in the Geraldton District 1962. Resource Mgt. Rept., 69:44-50.

Roseborough, J. D. 1963. Ruffed Grouse Studies 1962. Ontario Dept. of Lands \& Forests, Fish and Wildife Branch, 5 pp.

Month	1963 No. of Broods	$\begin{aligned} & 1962 \\ & \text { No. of } \\ & \text { iroods } \end{aligned}$	1961 No. of Broods	1560 No. of Iroods	1963 Aug. brood size	1962 Aug. brood size	$\begin{aligned} & 1961 \\ & \text { Aug. } \\ & \text { brood } \\ & \text { size } \\ & \hline \end{aligned}$	$\begin{aligned} & 1960 \\ & \text { Aug. } \\ & \text { brood } \\ & \text { size } \end{aligned}$
June	3	8	14	5	8.0	6.6	6.1	7.4
July	17	12	15	20	4.1	6.3	4.9	6.0
August	7	6	10	7	4.3	5.7	5.7	4.6
Septenber	3	1	0	0	5.3	5.0	0	0
Totals	30	27	39	32	Avg. $\overline{5.4}$	$\overline{5.9}$	$\overline{5.6}$	$\overline{6.0}$

TABLE II - Ruffed Grouse Hunter Success on Foot Duxing 1963

Period	No. of Parties	Total Hunters	Hours Hunting	Mankours	Ruffed Grouse Seen	Ruffed Grouse Shot	Dog Used	Dog Not Used
Sept. 14-15	3	5	9.5	17	6	3	1	2
Sept. 16-22	3	3	7	7	2	1	0	3
Sept. 23-29	2	2	6	6	0	0	0	2
Sept. 30-Oct. 6	2	3	6	8	4	3	0	2
Oct. 7-13	9	17	25. 5	50.5	27	16	0	9
Oct. 14-20	5	11	9	19	3	3	0	5
Leaf Fall								
Oct. 21-27	1	1	2	2	0	0	0	1
Oct. 28-Nov. 3	2	2	6.5	6.5	3	3	0	2
Totals	-27	44	71.5	116.0	-	29	I	-26

TABLE III - Ruried Grouse Hunter Success by Automobile during 1963

Period	Number of Parties	Total Hunters	Total Car-miles	Ruffed Grouse Seen	Ruffed Grouse Shot
Sept. 14-15	4	7	150	7	6
Sept. 16-22	10	14	759	7	2
Sept. 23-29	8	18	155	0	0
Sept. 30-0ct. 6	2	3	40	2	1
Oct. 7-13	5	10	395	7	3
Oct. 14-20	$=$	-	-	\cdots	-
Leaf Fall					
Oct. 21-27	-	-	-	-	-
Oct. 28-Nov. 3	2	2	37	3	1
Nov. 4-10	1	3	25	2	1
Nov. 11-17	-	-	-	\cdots	-
Nov. 18-24	1	2	15	3	2
Nov. 25-Dec. 1	1	4	55	7	3
Totals	34	63	1631	38	19

TABLE IV - Comparison of Hunter Success On Foot For Years 1960 to 1963 Inclusive

Year	Total Hunters	Manhours	Birds seen per 100 man-hours	Birds shot per 100 man-hours
1960	43	124	34.2	60.1
1961	35	70	75.7	35.7
1962	38	109	27.5	16.5
1963	44	116	38.8	25.0

TABLE V - Comparison of Hunter Success by Auto For Years 1860 to 1963 Inclusive

Year	Total Hunters	Total Car-miles	Birds seen per 1960	66

THE 1963 DEER SEASON, SAULT STE. MARIE DISTRICT

by
N. R. Payne
Biologist

Abstract

This report summarizes effort, success and age composition data obtained in the field and from camp and hunter questionnaires. It provides an interpretation of the observed changes from the previous year in light of hunting conditions. Despite poor hunting weather, hunter success improved slightly. A success of 13.0, 16.4 and 29.8 per cent is indicated, for resident, farmer and non-resident hunter, respectively. Only 32 camps reported in 1063 , less than half the number in the 1062 sample. The records for hunters occupying camps show that they required 20.8 man-days of hunting per deer, two more than in 1962. Two out of four hunting zones received 69 per cent of the hunting effort and yielded 89 per cent of the total kill, which is estimated to have been 339 deer. Of these, 100 were aged and an addicional 12 were classified as adults. Fawns comprised 32.1 per cent of this sample, an improvement over 1962. It is recommended that the season for St. Joseph Island be extended to two weeks and be timed to coincide with the season on the mainland.

Introduction
Hunting, in addition to providing enjoyment to the hunter, offers a means by which vital information on the relative abundance (other factors being constant), reproduction and survival of deer can be obtained. This information is necessary for a proper program of deer management.

Changes in the availability of deer to the hunter from one year to the next depend on the proportion of deer escaping the hunters during the previous season, the survival of these deer in the intervening year, and the number of offspring which they produce. The proportion of deer escaping the hunters, especially in Sault Ste. Marie District where hunter densities are light, is usually large and year to year variations in this proportion can be considered of minor significance. Survival and reproduction, however, are important and both are greatly influenced by a combination of
climatic and range conditions. Severe winters confine deer to areas where cover requirements are met and in these areas the food supply can become exhausted, especially if the period of confinement is lengthy, Then this happens starvation depletes the herd and, equally important, death is caused to many fawns of undernouriched does. Fawn of the previous spring are less able to compete for food than mature deer and, therefore, suffer first when the supply of browse becomes criticel. Thus two successive year-classes can be seriovcly arsected by che bad winter.

Spaing surveys, conducted annally, assess the effects of winter on the deer popmlation, in addition to providing information on range condicion and dees density. The 1963 survey revealed that starvacion wes not an important morcality factor over the winter of 1962-63, alchough certain yarding axeas were browsed to a degree considered injurious to Future food production. On the basis of this sumvey and fiell observations which indicated the deer were in satiofactory condition at the end of the winter, improved hunter success fro the 1963 onason wis forecast.

Methoes

Infomation on huner effort and success was again collected by mans of a duestionnaire sent out to random samples of resijcnt, famer and non-resident licencees. Those hunters in the sampla who were reciding locaily and whose telephone numbers were given were quectioned by telephone. Approwimately 20 per cent of the residert and 33 por cont oach of the farmer and non-resident hunters were ccatacted either by mail or by telephone.

Checing brations ware not orrated as this method has prover inefective in cotaining the regured age composition infomation in this area, nucead, thambers of the field staff enncentratec ca contacting hunters both in the field and at the cans. This doployment of conservation officers (including special apoincees) viclds larger samplea of aged deer than by other wethois and at the same tine allows these men to function more esfectirclly as eninorcenent officers.

A hunt carp report form was circulated to each organized canp by tiae concervation officers, who requested that one member of the carn record daily the number of men hunting and deer killed. These reports were to be returned upon termination of the season. In this way a Eurther assessment of the hunt was obtained, which could serve as a ceoss check on the mail survey results.

$$
-16-
$$

Two methods of estinating total kill have been employed. The first method involves the application of the estimated rate of hunter success to the estimated number of active licencees. The second method is based on the Lincoln index principle. The officers recorded the licence numbers of successful hunters, when possible, and these numbers served as marks in the population of individuals who took deer. Later sampling of this population was done by means of the hunter questionnaire. The estisate of total kill was then derived through the use of the following equation:

Total kill $=$ No. of successful hunters in $\frac{\text { survey sample }}{\text { No. of above whose licence }} \mathrm{X}$ numbers were noted in the field

Total no. of licences recorded in the field.

This latter method was applied independently to resident, farmer and non-resident hunters.

Results

Total licence sales in the Sault Ste. Marie District in 1963 climbed slightly to 2780* from 2697* in 1962, an increase of 3.1 per cent. It appears from this small increase that 1962 climaxed the period of decline in the number of hunters in the Algoma District. Licence sales to famers showed the most marked change, increasing by 10 per cent. This may be due largely to the warm fall which facilitated the harvesting of crops. Residents and non-residents purchased 1.3 and 6.2 per cent more licences, respectively.

Questionnaires were returned from only 32 organized camps, fewer than half of the number which reported in 1962.1. Dissolution of some camps and analganation of others reduced the number of active camps but not to the ertent indicated by the decline in camp questionnaires. It is obvious that a smaller proportion of the camps was concacted in 1962. The information gathered from the camp questionnaires is presented in Table I, alonc with corresponding data for 1962. A breakdown of the camp hunter success by area was not considered feasible because of the small number of camps in the sample.

The 303 hunters occupying the 32 canps killed 38 deer for an overall success of 29.0 per cent. These hunters expended 1828 man-days, indicating that, on the average, 20.8 man-days were required to shoot one deer. In 1962, canp hunters spent 10.8 mandays per deer, so it would appear that those hunting in camps experienced slightly poorer hunting in 1963. However, the smaller sample of camps detracts from the reliability of the nan-days per deer estimates as an indication of the trend in hunting.
*As indicated by the licence book covers returned to District Office.

TABLE I

> | Organized Camp Hunter Success for Sault |
| :---: |
| Ste. Marie District, 1962 and 1963 |

No. of Camps No. of Licences No. of Deer \% hunter success Total days hunted Man-days per deer

1963 Organized Camps	Organized Camps with \& wichout dogs		
with dogs	without dogs	1962	1963
11	21	74	32
135	168		303
56	32	177	88
41.4	19.1		29.0
918	910	3317	1828
16.4	28.4	18.8	20.8

You will note that no comparison has been made of the estimates for per cent hunter success in 1962 and 1963. For 1963 the total number of licences which could have been filled has been used in calculating the rate of hunter successthereas in the previous year the mean number of hunters operating from the camp over the camping duration was used to arrive at an estimate of hunter success. Therefore, the reported camp hunter success in the two years cannot be compared.

Camp hunters using dogs again enjoyed better success than those hunting without dozs. With dogs, huncers were 41.4 per cent successful and required only 16.4 man-days of hunting per deer. Those not using dogs hunted 28.4 man-days per deer and only 19.1 per cent of this group took deer.

A sumpary of the findings of the deer hunter questionnaire sent out to resident, famer and non-resident hunters appears in Table II. The return of book covers was not complete at the time of the survey so the actual per cent sampled is somewhat less than the 20 and 33 per cent indicated earlier.

Results of the Hunter Questionnaire
Sault Ste. Marie District - 1963

	Resident	Farmer	Non-Resident
Licences Sold	1900	350	442
\% increase from 1062	1.3	10.0	6.2
\% sample	18.5	28.0	25.8
No. in sample	368	98	114
No. returned	236	77	83
\% returned	77.8	85.7	72.7
\% not hunting	4.2	6.1	2.4
\% hunting out of District	20.3	0	29.0
Est. Nc. hunting in District	1501	328	303
\% hunter success	13.0	16.4	29.8
Man-days per deer	32.5	28.3	19.4
Average no. days hunted	4.2	3.8	5.8
Estimated total kill	195	54	90

Estimated kill for District $=339$ deer

A better response to the questionnaire was received from farmers and non-residents who increased their returns by 29.9 and 7.1 per cent over 1962. Resident returns, in contrast, dropped from 38.2 to 77.8 per cent.

Of the resident licence holders in the sample, $\% .2$ per cent failed to hunt and an additional 20.3 per cent hunted in other Districts. Those hunting in Sault Ste. Marie District reported a success of 13.0 per cent, 1.0 per cent better than in 1962. An estimated 1501 resident licencees hunted an average of 4.2 days in the District and they harvested an estimated 195 deer.

The farmer hunters, whose success according to the sample increased shazply from 5.0 per cent in 1962 to 16.4 per cent in 1963, took an estimated 54 deer. This segment of the hunter population averaged 3.8 days of hunting and spent 28.3 man-days afield for each deer taken.

The non-residents, who Iargely hunted in organized camps, experienced the most successful hunting, 29.8 per cent of their numbers taking deer for an estimated kill of 90 deer. This success was 6.7 per cene better than in 1062. They averaged 5.3 days of hunting, more than any other group, and required fewer days to fill a licence (IV. 4 man-days per deer). The similarity of this non-resident success rate (29.0%) to that reported for organized camps (29.0\%) gives support to the statement that non-resicents largely hunt out of organized camps.

The estimated total kill for the District of Sault Ste. Marie is 339 deer, 58 more than was estimated as being taken in 1962. This increase of 20.6 per cent in the deer kill under unfavourable hunting conditions and with an increase of only 3.1 per cent in licence sales can only mean that there has been an increase in the size of the available deer population.

Not included in the above estimate is the deer kill by residents who purchased their Ificences in other Districts but who hunted in Sault Ste. Marie District and by non-residents who purchased a $\$ 100$ moose-deer-bear Iicence. However, such deer hunters are believed to be few in number.

TAELE III
Success of Funters $\begin{aligned} & \text { Tif } \\ & \text { th } \\ & \text { and Without Dogs }\end{aligned}$ Sault Ste. Marie District 1563

	Residents	Farmers	Non-residents
$\%$ using dogs	19.2	35.6	14.7
$\%$ success with dogs	25.6	18.2	37.5
$\%$ success without dogs	10.4	14.0	24.1

Table III show the percentage of hunters using dogs and compares theire success with those hanting without this aid. As you would expect, dogs improved the hunting for all groups. The farmers, who are best able to keep $\log s$, used them to the greatest extent, but they also appear to have benefitted least from their use.

As indicated earlier, estimates of total kill have also been arrived at through a technique essentially the same as the marking-recopture method of estimating population size. The estimates thus derived are shown in Table IV, along with the values used in the calculations. The total kill estimates based on hunter success ard cotal effort estimates, which were presented earlier, also arpear in Table IV for comparison.

TABLE IV

Derivation of Total Kill Estimates Using
The Lincoln Index Method

	Residents	Farmers	Non-Residents
(a) No. of successful hunters whose licence numbers were re- corded in the field.			
(b) No. of successful hunters in mail survey.	31	10	30
(c) No. of successful hunters in survey whose numbers were recorded in the field.	28	13	17
Total kill a a b b			

The estimates for total kill by residents are in quite good agreement, the difference being only 22 deer or 10 per cent. However, in the case of non-residents and farmers, the estimates obtained by the Lincoln index method are substantially lower than those obtained from the success and effort data. In evaluating the hunt only those estimates derived from success and effort data should be regarded as they are based on more extensive data. The estimates obtained by the Lincoln index method have been included to demonstrate the method as its use may be warranted where some means other than the hunter questionnaire can be used in the follow-up sampling.

The practice of selecting names from the licence book covers at constant intervals introduces a bias to both methods of estimating total kill. For a sample of hunters thus drawn to be completely random the hunters whose names appear on a given book cover or on consecutive book covers would have to be independent of one another. This, however, is not always the case. Party hunters occasionally purchase their licences at the same place and at the same time and such groups generally have a rate of success greater than that of the average hunter. By sampling names at a fixed interval, as was done, the possibility of selecting two or more names of hunters from a single party of hunters could be excluded. Should this occur, estinates of total kill which are low would be obtained.

SAULT STE. MARIE DISTRICT

DEER HUNTING ZONES

Major Winter Range
1961-1962
1962-1963

A second known bias again applies to both methods of estimating kill. Euestionnaires were not sent out to the sarmer and non-resident hunters who were recorded in the field as having killed deer. In the case of resident hunters, the names of known successful hunters were unintentionally not deleted from the list of those who were to receive questionnaires (although this worked to our advantage). By withholding the questionnaires for which the answers were already know, we, in effect, were assuring ourselves of a complete return from that group of successful hunters. Unless a 100 per cent return of questionnaires was achieved this could result in an over-estimation of hunter success and total kill when the total kill is worked out using the success rate. The effect with the Lincoln index method would be the reverse unless all of the successful hunters who received a questionnaire made a return. If the returns from these hunters were incomplete the proportion of marks (recorded licence numbers) in the survey sample would be high and this would yield a low estinate of total kill. Thus, a bias of this nature could widen the gap between the total kill estimates obtained by the two methods of calculation.

As indicated earlier, a high percentage of the questionnaires was returned so it is doubtful that this latter bias has introduced a serious error.

The difference existing between the estimates for total kill are thought to arise principally from sampling error. The fact that the differences were greater when the sample size was small would tend to support this view.

The greater part of the Sault Ste. Marie deer range is divided into four zones, the boundaries of which appear in Eigure I. In the winter of 1961-62, observers in aircraft plotted the distribution of deer tracks in these zones, thus delineating the wintering or "yarding" areas." It was Eound at that time that nearly all of the deer were concentrated in two areas, one each in zones 3 and 4. The aerial survey was repeated during the winter of 1962-63.3. revealing that the two major wintering areas had remained virtually unchanged. The linits of these are plotted in Figure I. Cover, to a very great extent, determines the winter distribution of deer and in these wintering areas gooc cover is found. It must be pointed out that stands of cover constitute only a small percentage of the areas indicated on the map, copography being a factor limiting this percentage.

The hunting pressure in terms of man-days as reported on the returned questionnaires and the reported and observed deer kills are broken down by zone and township and shown in tabular form in the appendix. A summary of this information is presented in Table V.

Hunting Pressure and Deer Kill, by Zone,
in Sault Ste. Marie District

Zone	Reported man-days	Reported deer kill	Known deer ki11	\% of reported man-days	\% of reported deer kil1
1	155	2	2	11.6	3.6
2	151	2	1こ*	11.3	3.6
3	558	27	68	41.8	48.2
4	366	23	72	27.4	41.0
Elsewhere	105	2	2	7.9	3.6
	1335	56	163	100.0	100.0

*A11 or nearly all of the total kill.

The information reported on the questionnaire forms provides a relatively unbiased picture of the geographical distribution of hunting effort and deer kill. Zones 3 and 4, the areas most densely populated with deer, received 69 per cent of the hunting pressure and yielded 89 per cent of the deer. ©one 1 , the most westerly of the four zones, has heavy snowfall annually and thus the deer population in this area has been very slow to recover after the heavy starvation losses suffered in the winters of 1553-59 and 1959-60. It is therefore understandable that only 11.6 per cent of the hunting effort was expended in this zone, resulting in 3.6 per cent of the total kill. St. Joseph Island (Zone 2) also contributed little to the overall kill as the regulation forbidding the use of dogs handicaps the hunting in that area. Recently, there has been some criticism by the public of the Department policy of allowing hunting to continue in areas with low deer densities. It is clearly evident that hunting in such areas is having very little effect on deer numbers, as has been our argument in support of the general open season.

TABLE VI

Age Composition of the 1961, 1562 and 1963 Deer Kills, in Sault Ste. Marie District

Age	1261		1562		1063	
	HO.	\% of total	No.	\% of total	No.	\% of total
1/2	4.9	45.0	32	27.6	56	32.1
1-1/2	26	22.0	21	18.1	14	12.5
2-1/2	11	10.1	17	14.6	24	21.4
3-1/2	11	10.1	14.	12.1	15	13.4
$4-1 / 2$	6	5.5	10	8.6	6	5.4
5-1/2	5	4.6	11	9.5	5	4.5
6-1/2	3	2.7	0	7.8		
7-1/2			1	. 9		
Unaged adults			1	. 9	12	10.7
Total	109		116		112	

A total of 100 deer were aged by qualified personnel and an additional 12 deer were classified as being adult. Adult bucks, adult does and fawns made up $35.7,32.1$ and 32.1 per cent of this sample of 112 deer, respectively. Hunters, on the questionnaire forms, reported a kill consisting of 34.7 per cent fawns so it would appear that, with respect to the fawn composition, the aged sample reliably represents the total kill.

Table VI gives the frequency of deer in each age group for the 1963 season and also for the two previous years. Several features of the tabulation are noteworthy, the first being the increase in the percentage of fawn over 1962. The contribution of fawn to the 1963 kill, although 4.5 per cent better than in the previous year, still remained lower than the 45 per cent observed in 1561. The appearance of the $2-1 / 2$ year old deer in strength (21.4%) in the 1963 sample indicates that the survival of the strong 1961 year-class has been better than the 1962 age information would suggest. Yearlings comprised only 12.5 per cent of aged deer, further emphasizing the detrimental affect which the severe winter of 1961-62 had on reproduction.

Temporal Distribution of the 1063 Deer Kill. Determined from Camp and Hunter Questionnaires

Camps	Kill	vember												
		45		6	7	89		10	11	12	13	14	15	16
		14	5	12	7	6	11	1	2	4	7	8	8	3
	Accumulated \%	16	22	35	43	50	63	64	66	71	78	88	97	100
A11	Kill	11	1	2	8	2	6	3	1	2	1	4	2	4
Hunters	Accumulated \%	23	26	30	$4: 7$	51	64	70	72	77	79	87	92	100

The temporal distribution of the deer kill as indicated by the dates of kill reported on the hunter and camp questionnaire forms is shown in Table VII. The percentages shown at each date represent the accumulated percentage of the total kill to that date. The initial day of the season produced the largest kill, as is usual, and by the end of the fifth day, half of the total kill had been taken. Of interest is the effect which rainfall had on the level of harvest. One-half inch of rain fell over the two days, November 4 th and 5 th, and on these days the reported kill was low, especially for the organized camps. A comparison of the kill on the two mid-weekend days further demonstrates the adverse effect of rain. Camp hunters reported taking 11 deer on Saturday when .10 inches of rain fell, and only 1 deer on Sunday when the rainfall amounted to .42 inches. The hunter questionnaires show six and three deer being taken on Saturday and Sunday, respectively.

A synopsis of the weather and ground conditions which existed during the deer season appears in the appendix. In general, conditions were very unfavourable. Below normal precipitation during the autumn months coupled with a complete lack of rain or snow during the first five days of the season resulted in extremely dry ground conditions which made quiet travel and tracking difficult. The . 70 inches of rain which fell over the following three days served as a deterrent to the nomally large group of weekend hunters and provided only temporary relief from the handicapping effect of dryness. By Thursday of the second week dry conditions again existed and this state continued throughout the remainder of the season. Mid-day temperatures during the first week ranged between 50 and 57 degrees, making outdoor storage of venison risky.

Hunter cuccess improved brightly in 1963, but not sufficiently enough to make the average hunter aware of any difference. In vien of the poor huting wather, this small increase in success con only menn that there has been an increase in the deer population. Forcunately. some hunters noted an increase in the number of deer tracks. despite the dey ground conditions which prevailed, and therefone are in agrement with this conclucion. The preceding winter was only moderately cevere ond this and an improved fawn crop are considered responsible for the change. Alarec nmber of 2-1/2 yearold doer in the sample aferi deer indicates that the 1361 year-class, which was cxtremely arrong in its cirut yean, has had a better survival rate than the 106? age composition data led us to believe. Ifcence sales which had been declining in recent yearo increased very slightly in 1963, suggesting that 2 monne of stability has come to huting pressure。

It is recomended that the deer season on St. Joseph Island be amtended to manes and be cined to coincide with the season on the manland. This will give the honters on the island, who are forced to hunt withor dogs, a becter chance to harvest deer.
 5 or 10 pet cent of the folandis deer population.

It is aloo reacmerdes that the Cenadian Custorac ofyicers at the Intematimal 3odge 3a asked to collect information on deer kills in 1206\% Such infozmaion wos collectef in 1963 by Customs Officerg but undotunatoly tho data heet was misplaced at their ofsice.

Achnoriesmence
A grone mery Endividualz, consexation officers, pangers, and huntors, contributud 50 thes report both in time and information and Lor their paxticipauto and continued good co-cperation we extend our mint shocre thans. Me. Grant Denley provided able assistance by sentiog nut the gunstionazives and Eiling the returns.

References

1. Lewis, C. A. 1962. The 1962 Deer Season, Sault Sce. Marie District, Unpublished Report, Ont. Dept. of Lands \& Forests.
2. Lewis, C. A. 1962. Sault Ste. Marie District Spring Deer Surveys, 1962. Unpublished Report, Ont. Dept. of Lands \& Forests.
3. Payne, N. R. 1963. Spring Deer Surveys, Sault Ste. Marie District, 1963. Unpublished Report, Ont. Dept. of Lands \& Forests.

Hunting Pressure and Deer Kill by Zone and Township - 1963

ZONE 1	Township	Man-days * of Kunting	Reported * Deer Kill	Known Deer** Kill
	Archibald	0	0	0
	Aweres	42	0	
	Dennis	1	1	1
	Deroche	5		
	Fenwick	4.4		
	Fisher	0		
	Gaudette	3	1	1
	Herrick	0		
	Hodgins	16		
	Havilland	0		
	Jarvis	13		
	Kars	0		
	Korah	8		
	Ley	2		
	Marne	0		
	Palmer	1		
	Prince	19		
	Ryan	1		
	Total	155	2	2
ZONE 2				
	Hilton	26		2
	Jocelyn	94	2	11
	St. Joseph	29		4
	Unknown	2		2
	Total	$\overline{151}$	2	19

* From Hunter Questionnaires
** Reported \& examined kills

Zunting Pressure and Deer Kill by Zone and Township $=1963$

ZONE 3	Township	Man-days * of Wunting	Reported * Deer Kill	known ** Deer Kill
	Aberdeen	50	3	9
	Anderson	2		
	Bridgland	13	1	1
	Chesley	13	1	1
	Chesley Add.	0		
	Duncan	51	2	5
	Galbraith	23	3	5
	Gillmor	0		
	Haughton	30		1
	Johnson	24	4	8
	Kehoe	57	4	11
	Kirkwood	17		
	Laird	27	1	1
	Lefroy	7	1	2
	McMahon	17	1	1
	MacDonald	20	1	1
	Meredith	32	4	12
	Morin	4.4	1	1
	Otter	14		
	Plumer	78		
	Plumaez Add.	3		
	Rose	17		
	Tarbutt	4		
	195	13		9
	201	2		
	Total	553	27	68

* From Hunter Questionnaires
** Reported and examined kills

APPENDIX I Cont'd
Hunting Pressure by Zone and Township 1563

ZONE 4	Township	Man-days * of Hunting	$\begin{aligned} & \text { Reported * } \\ & \text { Deer Kill } \\ & \hline \end{aligned}$	Known ** Deer Kill
	Bright	39	3	3
	Cobden	10	1	9
	Day	9	1	1
	Gould	33	4	5
	Grasset	28	1	5
	Gladstone	62	2	11
	Mack	1		1
	Montgomery	16	3	15
	Parkinson	30	1	1
	Patton	26	3	11
	Scarfe	10		1
	Striker	21		
	Thompson	16	2	3
	Wells	8		
	161	3	1	1
	162	0		
	163	3		
	167	3		4
	168	23		
	169	0		
	138	6	1	1
	Total	$\overline{366}$	23	72

* From Hunter Questionnaires
** Reported \&: examined kills

Funting Pressure by Zone and Township 1563

OTHER THAN IN ZONES $1-4$ Township	Man-days * of Hunting	Reported * Deer Kill	Known ** Deer Kill
Curtis	2		
Whitran	15		
Esten	4	1	1
Lewris			
Long	9		
McGivern			
Proctor	4	1	1
Sprage	1		
10	1		
2 A	2		
2E	2		
3B	6		
3E	2		
4D	6		
7 D	1		
143	10		
150	12		
155	16		
157	7		
28 R XVI			
Total	$\overline{105}$	2	2

* From Hunter Questionnaires
** Reported \& examined kills

APPENDIX II

Deer Season Weather Report
Station S.S. Marie District S.S. Marie
Cloud Cover Code
Overcast - 0
Partly Cloudy - P
Clear - C

Date	Weather Conditions					Ground Conditions		
	Cloud Cover	In. Rain Falling	In. Snow Falling	IMax. Tenp.	Min. Temp.	\%Snow Cover	Avg. Snow Depth	Ground wet, dry , frozen
Nov. 4	P	0	none	55	39	none	0	dry
5	0	trace	none	53	43	none	0	dry
6	P	0	none	57	39	none	0	dry
7	P	0	none	56	39	none	0	dry
8	C	0	none	50	39	none	0	dry
9	0	.10	none	50	35	none	0	dry
10	P	.42	none	52	36	none	0	wet
11	P	. 18	none	4.3	36	none	0	wet
12	0	. 08	none	43	35	none	0	wet
13	P	trace	none	4.4	30	none	0	wet
14	0	0	none	37	33	none	0	dry
15	P	0	none	46	32	none	0	dry
16	P	0	none	54	40	none	0	dry

Resident \quad Licence Number
Non-resident

Dear Hunter:
You have been selected as part of a sample of persons who purchased a deer licence this fall. Your promptness and accuracy in returning the following questionnaire will be very useful to us. We need your co-operation in order to make suitable managerent reconmendations for nert season. Please return TODAY.

Nov. Township Hunted 1. Did you hunt this past deer season?
Mon. Nov. 4
Tues. Nov. 5
Wed. Nov. 6
Thurs. Nov. 7
Fri. Nov. 8
Sat. Nov. S
Sun. Nov. 10
Mon. Nov. 11
Tues. Nov. 12
Wed. Nov. 13
Thurs. Nov. 14
Fri. Nov. 15
Sat. Nov. 16
\qquad Did you use dogs? Yes_No
7. Non-residents: At what point did you cross the Ontario border when returning home?

Sincerely,
J.W. Lockwood, District Forester.

1963 DEER HUNT - SAUL STE. MARIE DISTRICT

Name of parson recording \qquad
Address \qquad
Exact location of hunt camp \qquad

What is the total number of licences that could be filled in your Camp?

Do you use dogs? Yes \qquad No

Please enter daily hunting record below:

No. of 1963 hunt reports wanted \qquad

Day	No. of men hunting	Deer killed Buck Township where			
Mon. Nov. 4					
Tues. Nov. 5					
Wed. Nov. 6					
Thurs. Nov. 7					
Frilled Nov. 8					
Sat. Nov. 9					
Sun. Nov. 10					
Mon. Nov. 11					
Tues. Nov. 12					
Wed. Nov. 13					
Thurs, Nov. 14					
Fri. Nov. 15					
Sat. Nov. 16					

RESIDENTS: We need deer jaws for ageing!

THE USE OF DAILY COMMERCIAL FISHING RECORDS TO DESCRIBE TYE SEASONAL DISTRIBUTION CF TEE AMERICAN SMELT IN THE CENTRAL BASTN OF IAKE ERIE*

by
R. D. Thomasson Graduate Student, Department of Zoology University of Guelph, Guelph, Ontario

Abstract

An analysis of the compulsory daily fishing reports of trawl and pound net Eishermen has provided a picture of the seasonal movernent and distribution of the Anerican Smelt, Osmerus mordax (Mitchill), in a portion of the central basin of Lake Erie. The reports of the mobile trawl fishery, in particular, provide an available and potentially useful source of information on the abundance and distribution of Smelt.

Introduction

A major fishery for the American Smelt, Osmerus mordax (Mitchill), is located in the northwest portion of the central basin of Lake Erie. Commercial harveses fron this area chosen for study made up 30.6 per cent of the $12,834,588$ millions of pounds of the species harvested from the Canadian waters of Lake Erie during 1961.

The study area of 1,100 square miles is bounded on the north by the ontario shoreline and on the south by the CanadaUnited States boundary (Figure 1). The lake bottom is typically flat with deposits of silt, sand, or clay and lends itself
favourably to Eishing with either trawl or pound net. Water depths reach 80 feet in offshore waters.

This paper describes the seasonal distribution of smelt within the study area as determined by an analysis and interpretation of the daily catch statistics of the comacrial fishermen. The study is based on smelt harvests by 13 trawlers and 60 pound nets, collectively responsible for the total comercial catch from the area during 1961.

[^1]The comercial fishing records used in the study were provided by the Comercial Fish Section of the Ontario Department of Lands and Forests. Two types of data were made available: statistics compiled by that Deparment, and the daily compulsory reports of the comercial fishemen. However, the picture of the fishery has been developed only fron the daily fishing reports.

Catch per unit effort data (Hile, 1962) were used to determine the relative abundance of smelt and, if present, to describe the location of smeit concentrations. Smelt concentrations were defined arbitrarily as those areas where one-third of the daily catches by trawls exceeded 500 pounds per trawl-hour. Daily catch statistics were grouped on a weekly or bi-weekly basis for the subsequent description of seasonal smelt distribution.

Because of the mob:lity of trawlers and their ability to fish at all depths for smelt detected by echo sounder, the picture of seasonal smelt distribution was derived largely from the trawl fishery rather than the more-or-less sedentary pound net fishery. As the trawlers normally located smelt concentrations by running a transect from their home port with echo sounder in operation, the nearest smelt population to the home port of either Wheatley or Erieau was usually fished. The absence of harvests closer to the home port indicated that the echo sounder had not detected smelt in sufficient abundance to justify fishing. The location of Wheatley and Erieau at the extreme western and eastern limits, respectively, of the study area ensured a fair sampling of the area by txawlers working out of these ports.

The pound net fichery provided data on the onshore fishery to depth of 30 feet and gave valuable supplemental information to that of the trawl fishery by indicating the relative seasonal abundance of smelt in shoal waters.

Both the pound net and trawl fisheries were selective in capturing smelt comonly with a fork length greatex than 5.5 inches.

Sumer lirnological conditions within the study area were obtained during cruises of the research vessel Keenosay operated by the Wheatley Laboratory of the Fisheries Section of the Research Branch, Ontario Department of Lands and Forests.

Cormercial snelt harvests from the study area during 1961 totalled 3,037,039 pounds. Traw1s operating 3150. Ehours were responsible Eor 56.8 per cent of the harvest. The balance of the catch was caken by pound nets set for 4,749 net-days.

Harvest statistics are sumarized in Table I on the basis of bi-weekly intervals and shown graphically in Figure 2. Reference to the total catch shows that two major peaks occurred in the fishery. The first peak was between late Februasy and early May, the second from mid-June to early September.

Pound net catches were at a maximum only from mid-April to early May, reflecting substantial numbers of smelt in shoal waters during the spawning period. Only at that tine of year did pound net catches exceed those of the trawlers. Trawl catches were large during late February and March indicating the availability of substantial numbers of snelt to the trawl fishery inmediately preceding the spawning season. A second major trawl fishery for snelt occurred during the sumer extending frow the latter part of June through August. The spring fishery by pound nets and trawls (February 26 to May 6) made up 25.6 per cent and the summer fishery (June 18 to Septerber 9) 61.0 per cent of the total annual catch.

Fishing quality by pound nets averaged 1,175 pounds of smelt per net-day between April during this period made up 85.1 per cent of the total pound net catch for the year. During the peak period of the Spring trawl fishery from February 26th to March 25th, a harvest of 2, 104, 029 pounds was taken at a rate of 570 pounds per trawl-hour. The surmer trawl fisheey harvested 1,310,523 pounds at a rate of 632 pounds per trawl-hour between June 13 th and August $26 t h$ and was responsible for 59.1 per cent of the annual trawl harvest of smelt.

Although catch per unit effort (Table I) exceeded 500 pounds per trawl-hour during bioweckly intervals other than those within the two peak periods just described, the actual numbers of smelt caught were relatively low and represented catches by trawlers fortunate enough to locate sufficient quantities of smelt to justify trawling.

Seasonal Distribution of Snelt

The location of snelt concentrations during 1561, as determined by an analysis of the daily records of trawlers operating fron the ports of Wheatley and Erieau are given in Table II.

No indication of any concentrations was evident from fishing records prior to mid-February nor after mid-Septerber. Smelt were found to be concentrated in comparatively shallow water when first located in February, particularly in the Pte. aux Pins area, but moved into deeper water during rarch. Onshore concentrations in less than 40 feet of water were Eished during April concurrent with the mafor pound net fishery in shoal waters at spawning time.

Following spawning, no Eurther concentration of smelt was located by the trawl fishery Erom the end of April until the middle of June. A substantial concentration was loceted in mid-June which by late June erreeded an estimated area of 200 square niles at an average depth of approxinately 60 feet. This concentration contributed a signiricant harvest.

During July and August, offshore concentrations of smelt at an average water depth of 66 feet provided a worthwhile sumer fishery. The identity of chese concentrations had disappeared by early September and, although a concentration was located briefly again during the week of September 17th, the analysis of fishing data indicated a general dispersal of the sumer suelt concentration in Septerber followed by a randon distribution through the study atea during the renainder of the year.

In Figure III are plotted the approximate locations of snelt concentrations as derived by an analysis of the trawl fishery for early March shortly after the Eomation of the sprine onshore concentrations, and for late Augus shortly before the auturn dispersal of smelt from the offshove hypolimnion.

Sumer Limnological Conditions
Evidence in support of the observation of Sand and Gordon (1960) that smelt frequent botton waters during daylight hours has been provided for the ceneral basin of Lake Exie by firstly, a study of echo tracings provided by comercial tishermen and, secondly, the experience of crawl fishermen in reaping their harvests frow botton waters. fn analysis of trawl records has shown the catch of smelt to have come entirely from within the hypolimnion of ofschore waters during the summer months.

A sumary of minimum water temperatures and dissolved oxygen levels within the hypolimion during the surmer ronths is given in Table III. The hypolimnion during that period averaged 25.5 feet in throkness and was as thin as 5 feet at at least two locations in late firgust. Average mininum water temperacures increased fron $11.3^{\circ} \mathrm{C}$. in June to $14.0^{\circ} \mathrm{C}$. by mid-August at the stations sampled. Dissolved oxygen concentrations in bottom waters decreased Erom an average of 0.8 ppra. in June to 3.9 ppn. by late August.

Snelt concentrations on the dates of the limological surveys were detected at 10 sarping stations within the hypolinnion at botton depths ranging from 43 to 80 feet, water terperatures of 12.2 to $15.6^{\circ} \mathrm{C}$. , and dissolved oxygen levels of 2.4 to 9.0 ppm . The hypolimnion at these stations averaged 28.1 Seet and was as thin as 13.0 feet.

Although the linited data precludes any significant correlation between smelt distribution and either water temperature or dissolved oxygen levels, both of these factors tended to become more critical for smelt survival as the sumer progressed.

Discussion

The prinary purpose of this paper has been to zeport on a study to detemine the usefulness of the compulsory daily reports of cormercial fishemen as a basis for describing the seasonal movement and distribution of fish. The study has shown that by analysis of trawling statiscics supplemented by those of the pound net fishery, it has been possible to provide a reasonably sound account of the distributional pattern of adult spelt in a portion of the central basin of lake Erie during lybl.

The najor limitations in the use of these data include, firstly, the accuracy of the cormercial fishernen in recording location, fishing effort, and harvest; secondly, the adequacy of the sampling ot the study arca by the comercial operations; and thirdly, the ability of the investigator to translate and interpret the incomation recorded by the fishermen. In spite of these inherent sources of error, the compulsory daily comercial reports have provided useful and ceasonably reliable biological information on the American Smelt and are a readily available source of potentially usceul data for future studies.

Acknowledgnents

The author expresses his thanks to the Comercial Fish Section of the Fish and Wildlife Branch of the Ontario Department of Lands and Forests for making comercial fishing records available for analysis, and to the Fisheries Section of the Research Branch of the same Department for the use of the research facilities at their Wheatley Station.

References

Hile, Ralph, 1062. Collection and Analysis of Comercial Fishery Statistics in the Great Lakes. Tech. Rept. No. 5, Decerber: 11-16.

Sand, R. F. and W. B. Gordon, 1950. Exploratory Fishing in Lake Erie, September, 1958 - November, 1959. Corm. Fish Review, 22 (c): 1-12.

Two Week Period Beginning	Pound-Net Harvests			Traw1 Harvests			Total Catch
	Net-days	Catch in Pounds	C.U.E.	Traw1-hour	Catch in Pounds	C.U.E.	
Jan. 1	0	-		8.0	1,871	234	1,871
15	0	-		21.0	2,854	136	2,854
29	0	-		5.0	4,925	935	4,925
Feb. 12	0	-		28.0	12,342	441	12,342
26	0	-		240.0	141,046	587	141,046
Mar. 12	4	2,045	511	275.2	248,631	903	250,676
26	25	7,426	297	163.1	268,171	1,644	275,597
April 9	520	543, 002	1,04.4	106.8	54,089	506	597.091
23	696	886,163	1,273	27.0	33,456	1,240	919,619
May 7	838	186,711	223	17.0	4,349	256	191,060
21	740	7,261	10	29.1	3,875	133	11,136
June 4	362	5,075	14	9.0	650	72	5,725
18	216	9,419	22	274.5	137,630	501	147,049
July 2	145	573	40	459.9	251,786	547	252,359
16	339	15,718	46	558.3	354,280	635	369,998
30	70	577	8	538.3	410,376	762	410,953
Aug. 13	0	-	-	243.0	156,451	64.4	156,451
27	0	-	-	85.4	70,478	825	70,478
Sept. 10	210	50	0.3	0	-	-	50
24	87	1,322	15	65.9	57,525	-	58,847
Oct. 8	76	288	4	0	,	-	288
22	207	5,977	29	4.0	2,332	583	8,309
Nov. 5	154	3,215	21	0	,	-	3,215
19	60	5,100	85	0	-	-	5,100
TOTAL	4,749	1,679,922	354	3,158.5	2,217,117	702	3,897,039

TABLE II
The Weekly Location of Concentrations of American Smelt During 1961 as Determined by An Analysis of Compulsory Daily Cormercial Traw1 Reports.

TABLE III Sumary of Data on Water Temperature and Dissolved Oxygen
Within the Hypolimnion of the Study Area During 1961

Survey	No. of Stations	Av. Water Depth	Av. Minimurn Water Temp.	\qquad	$\begin{aligned} & \text { Oxygen } \\ & \text { p.p.m. } \end{aligned}$
June 22	8	69.0	11.3(10.3-12.8)	62.5	6.8(4.1-9.4)
July 17-21	20	65.5	12.9(8.9-16.1)	62.0	6.0(2.2-9.0)
July 18-19	8	64.0	12.6(11.7-14.4)	59.2	5.9(3.1-7.1)
August 14-16	20	63.5	$14.2(12.8-16.7)$	61.0	5.4(3.0-9.4)
August 28 -					
Sept. 1	15	68.0	$14.0(13.0-16.7)$	65.0	3.9(1.6-7.5)
Average	81	66.3	13.2	60.5	5.0

Figure I
Location of the Study Area Within the Central Basin of Lake Erie.

Figure II Total Comercial Harvest of Smelt by Trawls and Pound Nets Within the Study Area During 1961.

Figure III Concentrations of Smelt Within the Study Area During Early March and Late August As Derived Fron an Analysis of Trawl Records.

WINTER ANGLING FOR BROOK TROUT IN TRE PORT ARTHUR FOREST DISTRICT

> by
> P. Nunan
> Conservation Officer

Abstract

A survey of the effects of winter fishing on brook trout (Salvelinus fontinalis) was conducted by Fish and WIdlife staff in the months of February to April, 1964. Angling success was .49 fish per hour. This was considered good enough to justify an earlier opening but not heavy enough to cause any concern to summer anglers. It was concluded that any lake receiving exceptionally heavy winter angling could be stocked with catchable sized Sish shortly after break-up.

Introduction

The open season for angling brook trout (Salvelinus fontinalis) in the Port Arthur Forest District has been, Eraditionally, from May 1 to September 15 each year. In the early months of the winter of 1963 - 1564 there was a farrly large number of requests for winter angling. We were not in a position to advise anglers what they could expect so tests were arranged to determine:
(a) is it possible to catch enough brook trout to make winter fishing worthwile?
(b) is it possible that winter fishing could be successful enough to seriously affect open water fishing?
(c) to determine the reaction of the public to winter fishing.

Methods

Our program was widely announced to conservation clubs, service clubs and other organizations as well as to the press through News Re1eases.

Fishing was restricted to Fish and Wildlife stafk so that we would have control of all activities.

Tests were run on Sunset Lake in Lismore Township and Echo (Strange) Lake in Strange Township. These lakes were chosen because they had been heavily stocked in 1963 and because access was relatively easy.
……里：－

Baits and methods were any that winter anglers might be expected to use, from pieces of freshly cut up minnows to various jigs. Lines were either hand held or set and attended.

Results

There was a total of 222 man-hours of fishing and 109 fish were landed for an average of .49 fish per man-hour -- Table I.

Fishing was most successful in February and April. It was very slow in March.

The largest number of fish taken was on April 8 at Echo Lake when 22 fish were taken in 20 man-hours of angling.

It was not possible to detect a difference in the effectiveness of baits or to prove that hand held lines were better than set lines.

Angling was most effective on warm days or when the weather was turning from cold to warm. It was poor in cold weather or while the weather was turning cold.

Angler reaction was, unfortunately, not recorded on forms set up for the purpose and we are unable to produce figures. There has, however, been almost no opposition to the idea of winter fishing. Some anglers were uncertain about it being good or bad. They wanted to see the results of the study first. The majority (and it appears to be large) of the comments were in favour of ice fishing and two or three were emphatic in their feeling.

Conclusions

1. The public generally favours an extension of the present trout season.
2. Angling was successful enough to justify having an open seas on.
3. Angling was not so successful that open water fishing would be seriously affected. Since brook trout fishing in lakes is maintained through hatchery stocking, lakes subjected to heavy winter fishing could be restocked with catchable sized fish shortly after break-up in the spring. This would be one of the best possible uses for hatchery trout.

Acknowledgments

Several members of the Fish and Wildife staff assisted in the fishing and I wish to thank William Sameluk, John Morton, Vern Sheeler, Paul Bougie, Emil Ostrum and Arnold Draves.

Mr. C. A. Elsey helped ic set up the program and gave assistance in preparing the report as well as guidance as the survey progressed.

TABLE I

Angling Success

No. of Man-hrs.	$\frac{\text { February }}{\text { Fished }}$	30	$\frac{\text { March }}{121}$	$\frac{\text { April }}{71}$

- 50 -
 REPORT ON THE WHITE LAKE FISHERY PROJECT, 1963

$$
\begin{gathered}
\text { by } \\
\text { D. J. Rice } \\
\text { Conservation Officer } \\
\text { White River District } \\
\text { Ebstract }
\end{gathered}
$$

This is the third year report of a four year study undertaken to determine over a prolonged period of time the effect of intense angling pressure on a lake hitherto unexploited. Results showed a sharp drop in angling success between 1961 and 1962. Although 1963 angling pressure decreased considerably from that of 1961 and 1962 angling success indicated a levelling off. Tables and graphs showing angling success by months over the summer period are presented.

Introduction

During the summer of 1561 , an intensive creel census survey was begun on White Lake in this District. At that time a census technique was established which was felt to be sufficiently accurate to give a true picture of angling success without unduly taxing personnel. This method proved satisfactory and was continued in 1962 and 1963. The method was fully described in the report for 1961 (Wilton, 1961) and will not be mentioned here.

Methods

The methods used in collecting the creel census data were exactly the same as those used in 1962 which varied only slightly from those used in 1961. The method of tabulating the dara was exactly the same as in 1961 and 1962.

The census period extended from the opening of walleye season, May 12, until September 15, at which time all heavy angling pressure had ceased.

Results

Table 1 shows the angling success results derived from actual information before any conversions of any kind were made.

Graphs 1 to 4 show the differential angling success on a monthly basis.

- $\because \because \because$
". An

$\therefore \because \because \quad \because$

TABLE 1
Ancling Success Derived from Information Received Before Any Conversions Were Made.

June July August September

No. Pickerel caucht per rod-hour

0.85	0.45	0.52	0.50
0.07	0.13	0.18	0.37
0.92	0.58	0.70	0.87
0.50	0.29	0.33	0.33
0.04	0.08	0.12	0.27
0.54	0.37	0.45	0.60

Lbs. Pickerel retained per rod-hour

0.60	0.38	0.32	0.43

Lbs. Pike retained per rod-hour
$\begin{array}{llll}0.05 & 0.08 & 0.22 & 0.44\end{array}$
Lbs. Fish retained per rod-hour
$0.65 \quad 0.46 \quad 0.54 \quad 0.87$
Av. Wt. in lbs. per pickerel retained
$\begin{array}{llll}1.21 & 1.32 & 0.98 & 1.29\end{array}$
Av. Wt. in lbs, per pike retained
$\begin{array}{llll}1.41 & 1.81 & 1.82 & 1.64\end{array}$
Av. Wt. in lbs. per fish retained $\begin{array}{llll}1.22 & 1.42 & 1.20 & 1.45\end{array}$
Fish Caught per Rod-hour

Fish Retained per Rod-hour

Average Weight in Lbs. per Fish

Table 2 shows the calculated angling success stratified on a monthly basis.

Table 3 shows the calculated angling success on a summer basis.

Table 4 shows the comparison of angling pressure and success on a summer basis for the yeass 1961, 1962 and 1963.

The Eigures shown zepresent the data collected for the months of June, July, August and September only. Due to the absence of stafy, no information was obtained for the month of May of 1963, therefore May has not been included in the comparison.

Discussion of Results

The cotaparison of angling success between 1561 and 1962 indicated a sharp drop. In the comparison of the 1962 and 1963 data, although the amount of angling pressure has decreased considerably from that of 1961 and 1962, the angling success would indicate a levelling off. However, no conclusions will be drawn until one more year's data have been collected and tabulated.

Acknowledgments
Thanks are due to the members of the Fish and Wildlife staff of the White River District for their willing co-operation in this study.

References

Rice, D. J., 1062. A Report on the White Lake Fishery. Unpublished Report, Cntario Dept. of Lands \& Forests, White River.

Wilton, M. L., 1962. A Preliminary Report on the Whitc Lake Fishery, 1961. Resource MCt. Report No. 61, January.

- 57 -
TABLE 2

Number of									
Month	Number of Anglers	Total Hours	Number Pickere1 Caught	Number Pickere1 Retained	Pounds Pickere1 Retained	Number Pike Caught	Number Pike Retained	Pounds Pike Retained	
June	589	1697	8473	7154	4224	5083	644	304	416
July	874	2658	9955	4404	2816	3701	1432	845	1566
Aug.	592	1660	5754	2531	1712	1691	897	607	1087
Sept.	96	216	676	338	224	298	243	180	240

TABLE 3

Month	Number of Parties	Number of Ang1ers	Tota1 Hours	Number Pickere1 Caught	Number Pickere1 Retained	Pounds Pickere1 Retained	Number Pike Caught	Number Pike Retained	Pounds Pike Retained
Summer Tota1s	2151	6231	24858	$14: 27$	8976	10773	3216	1936	3309

Year	Number of Parties	Number of Anglers	Heurs	Number Pickere1 Caught	Number Pickere1 Retained	Pounds Pickerel Retained	Number Pike Caught	Number Pike Retained	Pounds Pike Retained
1961	4087	11914	49777	31798	20011	34.482	5206	24.33	6839
1962	3949	11175	50550	24114	16162	24055	3771	1524	3204
1963	2151	6231	24858	14427	8976	10773	3216	1936	3309

Calculated Angling Success - Summer Totals
TABLE 4

- 58 -

[^0]: Hon. A. Kel so Roberts, Q.C.
 Minister

[^1]: *Extracted from Master's Thesis, Department of Zoology, University of Guelph.

