(s)

$$
55962
$$

Digitized by the Internet Archive in 2013

RESOURCE MANAGEMENT REPORT

DEPARTMENT OF LANDS AND FORESTS

RESOURCE MANAGEMENT REPORT

FISH AND WILDLIFE BRANCH

DEPARTMENT OF LANDS AND FORESTS

RESOURCE MANAGEMENT REPORT

TABLEOFCONENTS
No. 97 November, 1968

- Wa. J. Cook 1

Kenora-District Wild Rice Harvest Report, 1967.

- R.W. McGillivray10

Creel Census Report Chiblow-Deman Lakes, 1967.

- C.H. Olver

by
W.J. Cook

Abstract

This year, between June 26 and July 7, sixty (60) moose were eartagged. Since 1962, 283 moose have been tagged. Sixteen of these 283 moose have been collared. The project is done in a 2287 square mile circle, circumscribing the Town of Geraldton. Thirty-seven moose with tags recovered averaged a lineal distance movement of 6.25 miles. Fewer calves were seen this year. Last year, 21.9% of the moose tagged were calves, whereas this figure dropped to 6.7% this year.

Weather conditions were poorer for tagging than in 1967. A Bell helicopter was used for 26 hours.

Moose collars made from a material called Darvex were used for the first time in an attempt to get a higher frequency of resightings of marked animals. Radio transmitters are recomendef for more complete data on moose movements.

Purpose

A. Biological Considerations

To determine movements of moose for better management by considering:

1. Annual Mobility, e.g., extent of mobility throughout the year.
2. Seasonal Movements, e.g., what is the extent of mobility in each season.
3. Age-sex influences on mobility.
4. Movement by specisic range, e.g., comparisons between heavily hunted and unhunted areas; comparison between cutover and virgin timber types.
\therefore •
$\because 38$

To detemine difficulties in the use of the Darvex collar and assess the efficiency of the collar in tracing movements.

Materials

Ear Tags
Cattle ear tass made by Ketchum Manufacturing Sales Ltd., Ottawa, Ontario, and special pliers for the application of these tags were used. The tags are approximately $3 / 8^{18}$ wide and $1-1 / 2^{11}$ 1ong.

Collars
A material called Darvex was used to construct the collars. It is obtainable from Canada Industries Ltd., who import it from Britain. Cost of Darver is $\$ 30.00$ per $4^{8} \times 6^{\prime}$ sheet of $1 / 8^{18}$ thickness. A $3^{\prime \prime} \times 4^{\prime}$ sheet of $1 / 16^{\prime \prime}$ thickness is $\$ 11.20$.

The $1 / 8^{18}$ stock is used 50 the collar. It is cut into 4^{10} wide strips, $40^{\circ 8}$ long. Placing the Darvex in an oven at $220^{\circ} \mathrm{F}$ for 2-3 minutes makes it pliable. The material can then be shaped and held until cocl enough to hold its form. A compressed ovoid shape was foud most suitable to the shape of a moose neck. The collar should expand to 39^{11} (the maximum measurement for a bull's neck from data received frora D r. H. Cumming) . A stop block fastener is used, and this is attached wich pop rivets: The loop to stop the block from returning is made of $1 / 16^{\prime \prime}$ stock, $3 / 4^{\circ 9}$ wide and 8^{19} long. Colour combinations and shapes were used to distinguish each marked animal. Each coded collar was aiso numbered to facilitate easier recording of rechecks. (See-diagram of collar). Other materials included the essential maps, recording equipment and binoculars.

Method

Ear tags were fastened in the same manner as described in previous reports from this District. The same study area of 2287 square miles in a 30 mile radius of Geraldion was used. Flying was done betwean 0530 and 0800 and 1330 and 2100. An altitude of 500' - 700' was maintained while searching for moose. Binoculars were used to assist in locating moose.

Two different methods were used to affirs the collars. Cows were easier to mark than bulls.
-
$\because \because$.
"DARVEX" MOOSE COLLAR

When collaring a cow, the collar is held with two hands spreading it open with the fastener on the top. The collar is looped over the nose and brought back to the neck and fastened. It is then turned 180° so that the colour code is on top.

When collaring a bull with large antlers, the collar must be placed straight down over the neck. It is then turned up, fastened, and turned back around to show the colour code.

Collars were put on moose in three types of areas.
(1) Areas readily accessible to man
(2) Areas closed to travelled air routes
(3) Inaccessible areas (abolished Nipigon-Onaman Game Preserve)

When moose had to be chased into the water, the pilot would try to approach from downind because when they are frightened they will not enter the water downwind as readily as upwind.

Observations

Ear Tags

Sixty moose were eartagzed this year. Since 1962, 283 have been tagged in the study area. Or the 60 tagged this year, 35.7\% were bulls, 56.6% cows and 6.7% calves. Fifty-eight (58) moose were seen but not tagged. Of these, 39 were cows, 16 bulls and 3 calves. Sexing and aging was based on presence of antlers and size of animals.

Percentage of calves cagged dropped from 21.9% in 1967 to 6.7\% this year.

Sixteen moose were tagged under CAVU weather conditions, fifteen under light cloud cover and sixteen under 10/10 cloud conditions. Temperature varied throughout the project but was mainly cold. High temperature and abundance of aquatic vegetation appear to be the main factors bringing moose to water.

Twenty-six of the sixty tagged had to be chased to the water. I believe this was the result of cool and fairly windy weather conditions.

Flies were noticed on only 3 moose that were tagged. Weather conditions and chasing moose to the water probably resulted in this observation.
$\therefore 00$
. ${ }^{2}$

A turborprop Beaver was used one night to try spotting for the helicopter. It was not deemed economical to use it further as it would crily have required an extra few minutes to locate the moose seen by the Beaver crew.

There have been 37 ear-tagged moose recovered since 1962.

Percentage Recovered
Average distance shown in miles

Average retention period of tags

Bul1s		
54.1	Cows	Calves
43.2	2.7	

Collars

Sixteen collars were placed on moose. Fifteen were placed on moose tagged this year and one on a cow moose tagged in 1963. The cow had moved 3-1/2 miles north from where it was tagged.

Eleven collars were placed on females and five on males. Two collar bearing moose were sighted again during the project. One hed moved $1 / 2$ mile south after seven days, while the other was in the same location after six days.

Moose do not seem to try to discard the collar. A bull with large antlers tossed his rack violently as I tried to fasten the collar. All others were relatively easy to fasten. The collars are plainly visible to heights of 2,000 feet. The distinguishing codes must be viewed closer (200^{\prime} to 300^{\prime}). Pale colours such as yellow, are poor for coding. Dark colours naturally stand out best.

A search was made for a moose collared 12 hours previously. It proved unsuccessful.

- $\because \because \because$

\square
\square
\square

Discussion

A. Biological Considerations
(1) Annual mobility -

The 37 recoveries suggest that annual mobility is high. The average distance from point tagged to point recovered over periods of up to five years is 6.25 miles. We should like to know where and how far they move in the interval and what factors influence this. With radio equipment, annual mobility could be determined. It appears that moose move randomly and not in a desired direction.
(2) Seasonal Movement -

We have learned little of seasonal movements from eartagging. Ear tag recoveries show only a straight line distance from point tagged to point recovered, usually over a great period of time. We must have a high frequency of rechecks throughoat the same year to gain facts about seasonal mobility. We assume from observations on winter aerial moose counts and tagging operations that movement is not great in the winter and summer. Observations of tracks during the winter count and rechecks of tags during summer tagging suggest this.

Twenty-seven tag recoveries in October over a sizx year span result in an average lineal distance of 7.3 miles for these moose.

Nine winter recoveries show a decreased movement of 3.5 miles. This suggests that moose may move more in the fall (October) than in November and December. This is feasible due to heavy hunting pressure and travel by hunters in October. A comparison of seven moose tagged within 2 miles of the Goldfield Road and seven tagged in remote areas is interesting. The seven from the accessible area, when shot, showed an average lineal movement of 5.1 miles. The seven from remote areas were shot an average of 3.6 miles away from point of tagging. These observations suggest that there may be increased fall movement from natural causes, i.e. rutting, and that it is further increased by humter activity.
(3) Age-Ser Influence on mobility -

We expect that males do move more than females. Tag recoveries have not shown any noticeable difference in movement though. A greater frequency of recoveries and radio equipment should facilitate a knowledgeable gain in this aspect of moose mobility.

$$
G^{*}
$$

(4) Assessing Movement by Specific Range -

To what extent is mobility affected by range type? It appears that moose travel more in accessible areas. This is influenced by:

1. activity from humters, bushmen
2. areas where we obtain most recoveries

Theoretically, movement should be less because of greater food abundance, on past cutting operations. Hopefully, with radio equipment, we could deteriritise extent of movement on specific range types and be able to make comperiscns. We lack information on movement in remote areas. The only way we can get this information is by using radio transmitters.

The decreased number of calves seen is noteworthy. Did wet and cold weather at caiving time have an effect on production, or was it simply that the calves were not seen? The percentage of calves sighted on the winter aerial survey will prove interesting.

Three collar recheck flights nave been made with the Beaver aircraft. Airways have bcen notified of the presence of the collarbearing moose. No moose with collars have been sighted to date.

Recommendation

1. I believe that ear tags should be discontinued, and collars and radio transmitters be utilized. Transmitters would be more efficient at tracking and cut down on helicopter time.
2. Brighter colours should be used for coding the collars.
3. We should apply as many collars as possible until we can utilize transmitters.
4. From first attempts at rechecks, it appears that a great deal of time must be spent in searching for the collars. I believe a helicopter would be best for these flights.

Summary

Ear tags were used on 60 monse this year.
Collars wera used on 16 moose, 15 on moose tagged this year, and one on a previously tagged animal. This moose had been tagged

F
3
\therefore
$\because:!$
\therefore

- . :
$\because \because$
in 1963 and was 3.5 lineal miles to the north of the tagging location when collared this year.

Thirty-seven tags have been recovered from 203 tagged. This 37 show an average lineal distance of 6.25 miles from point tagged to point shot.

Only 6.7% of moose tagged were calves. Weather conditions were poor for tagging this year. Darvex collars were put on moose with relative ease. Flying time with a Bell helicopter totalled 26 hours.

It is recomended that we use radio transmitters.

Acknowledgements

I would like to thank Dr. Cumming who conceived the use of collars on moose. His interest and guidance is appreciated. I am also grateful to pilot John Busby for his enthusiastic attitude shown throughout the tagging project.

Literature Cited

Cook, W.J. (1967) Tagging Moose by Helicopter, Geraldton District, 1967. Unpub1ished.

Gibson, B.H. (1968) Report in District Office files - the 1968 Aerial Moose Census in the Geraldton District. Unpublished.
\square
\square
\square
. $+, 1+{ }^{\circ}$
\square
..

. $\because \because \cdot$
i.
$\therefore \because \quad \therefore$

KENORA DISTRICT WILD RICE HARVEST REPCRT
1967
by
R.W. MeGillivray

Abstract

Returns received from district wild rice buyers indicate that 456,046 pounds of wild rice was purchased in the Kenora District in 1967.

The average price received was $\$ 1.15$ per pound giving a total value of $\$ 526,622.13$ for this crop. A total of 596 pickers participated in the harvest and realized an average cash return of $\$ 883.59$ for about 20 days of work.

Low and receding water levels were perhaps the biggest factor contributing to the success of this year's crop. However, it is now time to develop more constructive policies, management programs and legislation in order to maintain and develop this valuable resource to its fullest potential.

Introduction

Wild rice is one of our most valuable yet one of our least recognized natural resources. Little is known about wild rice although programs and studies are now being umdertaken to answer some of the unknowns of this valuable plant. Wild rice was first introduced to the whitemen by the North American Indian as a finished product. It was necessary for the Indian to harvest and cure the rice before it could be bartered or sold. With the development of machines to process and cure wild rice, it is now possible for Indians to sell green rice to comercial buyers.

The price of wild rice is primarily controlled by the major companies which handle this product on the basis of availability and demand. Competition is usually keen between buyers. They control pickers by supplying them with canoes and in return the pickers sell their rice to them. In the past five years, green rice prices have ranged from an average of $\$ 0.22$ a pound to a $\$ 1.15$ a pound while
-

1
retail sale prices or $\$ 6.00$ a pound or higher in Montreal and Texas.
The preaent Kencra District policies concerning the harvesting of wild rice are made under the authority of the Wild Rice Harvesting Act. The district is divided into ten Wild Rice Harvesting Areas. Each area is assigned to one or two Indian Bands who have exclusive rights to coatrol the harvesting in the area. A $\$ 1.00$ licence is issued for each of the 10 havvesting areas. This $\$ 10.00$ constitutes the totol revemue collected for the wild rice resource in the Kencra Diserict. Rach band is required to submit a list of pickers who axe authorizes to harvest rice under their area licence. In many cases these lists ane inaccurate and incomplete.

Each band elects a comitcee which controls the harvest. This comittee is responsible for establishing starting tines, days of rest and number of pickers in each location. However, the lack of authoritative control over non-treaty Indians causes conflicts and, in some cases, loss of crops.

Harvesting of rice is carried out by a primitive method. Two persons operate in a canoe, one paddling in the bow while the other in the stem bends down the rice stocks with a tapered cedar stick about 30 inches in length and taps the rice kernels into the canoe with another stick. In a good picking area, two persons can harvest 200 to 300 pounds a day. The use of mechanical pickers which destroys some plants is frowned upon and is not allowed except under experimental conditions. Such mechines are capable of harvesting 1000 poumds of rice per day.

The 1967 harvest began about August 27 and was completed by September 20. Data collected regarding amounts of rice harvested may not be absolute since buyers are not required to keep or submit accurate records. Figures which are volunteered sometimes conflict with those received from other fepresentatives of the same company, however, it is our only source of informaticn.

The 1967 Wild Rice Harvest
A total of 456,046 pounds of green rice valued at $\$ 526,622.13$ was harvested in 1967, This is the second largest district wild rice crop recorded since 1960 and is the highest value ever received for a district crop. This year's crop exceeded last year's harvest by 417,090 pounds and $\$ 485,837.09$ 。

An estimated 596 pickers participated in the harvest. They received an average of $\$ 1.15$ per pound and realized an average individual earning of \$333.59 for about 20 days of work.
\square

Table I shows the 1967 wild rice harvest by Chies Ranger Divisions and amount of rice purchased by each buyer. Table II shows harvest of wild rice by the harvest areas and prices received by pickers in these areas. Table III compares the district wild rice harvest figures for the past seven years.

TABLE I
 WIID RICE HARVEST BY CHIEF RANGER DIVISION - 1967

DRYDEN DIVIS ION

Buyer	No, Lbs. Green Rice Purchased	Aver. Price Paid Per Lb.	Value
Besselt	33,993		
Korzinski	5,000	$\$ 1.22$	$\$ 41,471.46$
Morison \& Pitchenese	28,000	1.22	$6,100.00$
Finch	5,885	1.25	$35,000.00$
Green	8,888	1.37	$8,062.45$
Totals	81,766	1.10	$9,776.80$

KENORA DIVISION

M. Gaudry	18,509	0.90	16,658.10
Klatt	7,717	1.00	7,717.00
G. Gaudry	44,578	1.10	49,035.80
McDonald	15,920	1.00	15,920.00
Thor Fisheries	3,398	1.10	3,737.80
Hanson	2,571	0.87	2,236.77
Toien	5;026	0.89	4; 473.14
Hele	2,036	0.84	1;710.24
Dalseg	13,323	0.94	12,528.32
Kroeken	6,44.4	0.94	6;057.36
Kowbe1	20,080	1.10	22,038.00
Hudson Bay Company	7,597	0.97	7,369.09
Shoal Lake Fisheries	225,000	1.22	274;500.00
Simpson	2,076	1.05	2,179.80
Totals	374,280	1.14	$426,211.42$
GRAND TOTAL	456,046 1bs.	1.15	526,622.13

-.....

$6 S^{*}$ ع88	965	\＆I＊てZ9＊9てS	$S L^{\bullet} \mathrm{L}$	$970^{6} 957$		THLOL
$\begin{aligned} & Z I^{\bullet} O E L \\ & L 9^{\circ} Z \tau 6 \\ & 8 S^{\bullet} \mathrm{SS} \end{aligned}$	$\begin{aligned} & 0 \varepsilon \\ & 79 \\ & 8 Z \end{aligned}$	$\begin{aligned} & 09^{\bullet} \varepsilon 0 \sigma^{\epsilon} \varepsilon \\ & 0 S^{\bullet} \angle 0 \overbrace{}^{‘} 8 S \\ & S Z^{\bullet} 9 S^{〔} \tau Z \end{aligned}$	$\begin{aligned} & 9 Z^{\circ} L \\ & Z Z^{\circ} I \\ & \varsigma Z^{\circ} I \end{aligned}$	$\begin{aligned} & 8 \angle 0^{6} \varepsilon \\ & S \angle 8^{6} \angle 7 \\ & S 26^{\circ} 9 I \end{aligned}$		OT非
99° LS9	97	$9 \varepsilon^{\bullet} \varepsilon^{\circ} 76^{6} 9 I$	てて＊	838^{6} EI		6 非
9ガ LTS			$\begin{aligned} & 00^{\circ} I \\ & 00^{\circ} I \\ & 00^{\circ} I \end{aligned}$	$\begin{aligned} & 8 S I^{\star} T E \\ & 605^{c} 8 I \\ & 7 E 7^{`} \angle Z \end{aligned}$	Keg aypus \％дənty หวetg ～OSZOK 叉 puetsi 8itg Keq 8uoyseqes	L ग 9 非
$\varepsilon て^{*} 000 \mathrm{~L}$	$7 て$	$\varepsilon 9^{*} 500^{6} 7$ 亿	$90^{\circ} \mathrm{T}$	019 ${ }^{\text {c }}$ 2乙	วโชินท 7SวMบ7	S非
ZL•096L	$0 \dagger \mathrm{~L}$	00＊ $009^{6} 7 \mathrm{LZ}$	てで	000^{6} ¢ 22	อ⿰丬犬 TEOYS	「非
					ITN	を非
$\angle E \cdot 687$	57	$88^{\text {•IZ }}$ ² てZ	$96^{\circ} 0$	$950^{6} 27$	smoxien Kssexi	て非
6S ${ }^{\circ}$ LIE\＄	06	L6＊ $2 ¢ 5^{6} 87 \$$	$\angle 0^{\circ} \mathrm{I}$	EIL＇9¢	30¢ 27！पM	L非
$\begin{array}{r} \text { THODNI } \\ \text { PAV } \end{array}$	$\begin{array}{r} \hline \text { S\&FYDId } \\ \text { ON } \end{array}$	FATVA		बHONIOYd WHyy SEI ON	NOILYDOT	

*

COMPARISON OF WIID RICE HARVESTS S INCE 1960

Year	Total Rice Produced	Aver. Price/ Pound	value
1960	350;156 1bs.	\$0.39	136,560.84
1961	470,729 1bs.	0.22	105,915.02
1962	44,510 1bs.	0.49	22,032.45
1963	47,032 lbs.	0.38	17,816.58
1964	50;449 1bs.	0.40	20,398.46
1965	22,321 1bs.	0.52	11,603.14
1966	33,056 lbs.	1.07	40,735.04
1967	456,046 lbs.	1.15	526,622.13

Finished Rice

Of the 456,046 pounds of green rice harvested, 13,805 pounds were reported to have been cured in the district and retained for personal use or for sale as a finished product. A total of 13,500 pounds was finished by Messrs. Pitchenese and Morison in their small plant on the Wabigoon Indian Reserve. Mr. Pitchenese, a treaty Indian, and Mr. Morison, a non-Indian, for the past two years have sold all the rice they have purchased as finished rice. The rice that they are unable to finish thenselves is sent to Manitoba to be finished at a cost of approxinately $\$ 0.06$ per pound. However, this year these men were able to finish all their ow rice. The rice is then sold to buyers in Minnesota or through a co-operative in Manitoba for approximately $\$ 3.50$ to $\$ 4.00$ a pound.

The 23,000 pounds of green rice purchased at $\$ 1.25$ per pound costs $\$ 35,000.00$. The amount of finished rice recovered was 13,500 pounds. If the finished rice had a value of $\$ 3.50$ per pound then the value of the rice purchased and processed by Messrs. Pitchenese and Morison was increased by $\$ 12,250.00$ by being processed. However, this year, companies and co-operatives found it difficult to move wild rice to outlets at a wholesale price of $\$ 3.50$ per pound. This could mean a loss of profit to these two men.

The original Indian method of curing rice was by drying the kernels in the sum on racks or blankets. It was then roasted in large tubs over an open fire of low heat continually stirring it until it was well dried. The rice was then put in a shallow rounded
depression or hole in the gromd which was lined with birch bark or canvass and it was then pounded with the rounded end of a \log to remove the chaff. In sone cases, small children were given the job of stamping on the rice to accomplish this same result. After the chaff was removed, the rice was winnowed by placing it in shallow birch bark baskets or cn a blanket enj throwing it up into the wind. This separatel the chafe from tho wice. This nethod of curing produces short, broken kennol rice mitke that of the $1.0 n g$ comercially cured rice; however, it is saíd to contain more flavour.

The curing of zice by machines is much more scientific. The rice is fars allowed to "heas" in bass; thos gives the kernels the shiny black colour. This heating proeess is watched very carefully and at the right time the rice is put into the roaster or cooker to "cook" up to 30 mirutes. This reduces the moisture content to a specific level which is ucually deteramed by a metering instrument. The cooke: is a round cylonder similar to a clother dryer which is rotaced over gas heat. Some cookers hrive electric heat in the centre rather than on the cutside.

The rice is immediately remved from the cooker and hulled. Hulling mast be done within 17 minutes aftev cooking or moisture will be picked up by the hulls and maire the hrling process more difficult. Hulling is done by a device similar to the cooker. It is a cylinder with rotating ins in the centre. The fins rotate beating the hulls off the kernels. When the rice is huller., the hulls are separated from the kernels in a fannirg mill. The rice enn also be graded during this process by using different siacd sercens. In large operations the rice is graded and broken lommis are removed and used in by-products such as ceiceal, pancake and nuffin mizes. It has been indicated that nuch profic in wild rice is contined from these by-products.

Jones Lake

This area is located about 50 air miles south-east of Dryden on the Turste River cystem. Although rice has been growing here for many years, it has been of a quantity and quality that made it uneconomical to harvest. Fowever, this year with low water levels this area produced a substantial hervest of 16,925 pounds.

It is recomended that a rice management progran be
initiated on this area. control of water levels at crucial times appears to be the best means of producing burper rice crops. It would be a small matter to reconstevet the old logging dan and regulate the water level.

The success of the wild rice crop this year was felt to be due to recession of water levels in most of the wild rice locations. If it were possible to control these water levels at the critical times during the growth and ripening stages of the wild rice plants, a bumper crop could perhaps be produced every year, barring effects of the other elements such as weather.

Although the average income to the individual was substantial, it is felt that greater benefits could be derived from this resource through improved control and managenent planning.

The greatest market for wild rice is in the United States. Exporting of a finished quality product would provide more income for local people if they processed the rice instead of selling it in the green condition. This could be done by the formation of Indian co-operative wild rice picking and processing associations. The biggest single deterent factor in this industry is not money itself but rather excess due to unstable supply and purchase prices.

Future Management

In order to bring our program more into line with present conditions, proposals have been made to the district Indian bands to reduce the size of their harvesting areas. This will allow each band to retain all their present harvesting locations as well as other areas they wish to retain for the future. It will lenve portions of the district available for Departmental or private management programs aimed at developing additional wild rice production.

It has been recomended that individual pickers be required to purchase licences to harvest rice in the Wild Rice Harvesting Areas. This will provide accurate figures as to the actual number of persons engaged in the harvest as well as increased revenue to the department.

Recomendations have also been made by the Regional Wild Rice Comittee for legislation to provide for the licencing of buyers.

Acknowledgements

A vote of thanks is extended to those persons providing the information contained in this report, as well as to those who provided their criticisms of its wsiting.

References

Humberstone, T.A. 1966. Kenora Wild Rice Harvesting Report - 1966.
-

CREEL CENSUS REPORT

CHIBLOW-DENMAN IAKES, 1967

by
C.H. Olver

Abstract

The closure of Chiblow and Denman Lakes to fishing between October 15 and May 1 since 1956-57 dissatisfied many anglers, particularly in recent years when the closure of these lakes became quite a controversial subject. In an effort to resolve this dispute a creel census was conducted on Chiblow and Dennan Lakes in 1967 to deternine if the continued closure of these lakes to winter Eishing was warranted.

The majority of people contacted on these lakes between early May and late September were lake trout fishermen (63 per cent). Smallmouth bass fishermen composed 19 per cent of the total and pleasure boaters 18 per cent.

Lake trout fishermen spent 14,161 hours to catch 3,454 lake trout. The average rate of success was 0.24 fish per man-hour. The harvest of 6,955 pounds of lake trout represented a yield of approximately 1.2 pounds per acre.

Lake trout aged 5 and 6 years composed the bulk of the observed catch (67 per cent). No hatchery planted lake trout were seen anong the 587 fish examined.

Lake white:ish were caught by people who were angling for lake trout. Only 49 lake whitefish were estimated to have been caught - a figure which could be increased many times.

The estimated harvest of smallnouth bass was 953 fish weighing 578 pounds. The catch rate was 0.38 for boat fishermen and 0.14 for shore fishermen. Smallmouth bass aged 4,5 and 6 years composed 88 per cent of the observed catch.

Introduction

Chiblow and Denman Lakes were originally closed to fishing between October 15 and May 1 inclusive in 1956－57 under Ontario Regulation 181／56．These lakes have remained closed annually between these dates by authority of Ontario Regulation 254／57．

The closure of these lakes has caused considerable controversy among some members of the angling pubiic．A petition submitted in January of 1965 requested that these lakes，as well as Wakekobi Lake（Big Basswood）be reopened to ice fishing．A counter－petition signed by property owners and comercial operators on the three lakes was received in the summer of 1965．By November of 1965 the following organizations favoured the opening of the three lakes to winter fishing：

> Fish Managenent Comittee 非6
> Fish Management Comaittee 非7
> Elliot Lake Chamber of Comerce
> Algoma Rod and Gun Club
> Mississagi Valley Tourist Association

The East Algoma Tourist Outfitters Association and members of Fish Management Comittee 非 were opposed to a change in current policy．The Thessalon Chamber of comerce expressed no opinion． The Bruce Mines Chamber of Cormerce felt it was the responsibility of the Department of Lands and Forests to decide and menbers of Fish Management Comittee 非9 voted to support the Deparment＇s decision．

A lake survey carried out on Chiblow and Denman Lakes in the sumer of 1966 indicated the presence of adequate natural reproduction to support a lake trout sport fishery．As a result of the lake survey it was recomended that no further stocking of lake trout occur in these waters．

A reassesment of the current policy of winter closure was conducted on a biological basis during 1967 by means of a creel census．The prinary objective of the creel census progran was to determine if the present level of harvest of lake trout fron Chiblow and Denman Lakes was sufficient to warrant continued winter closure， or whether the reopening of the lakes to winter fishing would be in the best interests of the management of the lake trout resource．

19.

Dennan Lake (1,450 acres) and Chiblow Lake (4,450 acres) are joined together by a narrow channel approximately 200 yards long by 30 yards wide (Figure 1). These two lakes are discussed as a single unit and have a combined surface acreage of 5,900 acres.

The approach used to estimate the fishing pressure, rate of success, and harvest of fish from a lake will be the subject of a separate report by C.H. Olver. The creel census on Chiblow-Denman Lakes was designed to run from May 6 to Septenber 22. During this 140 day period Chiblow-Denman Lakes and Basswood Lake were sampled equally by one creel census clerk. As the creel census clerk worked a 6 -day week, 60 working days were allotted to Chiblowmennan Lakes and 60 days to Basswood Lake\%. The creel census was carried out on 57 of the pre-selected 60 days. Sampiing was not conducted on May 6 , July 29 or September 7 because of servicing of the outboard motor or a Deparment motor vehicle.

Sampling intervals were nostly concentrated in 3-4 hour periods between 8 a.m. and 8 p.n. These intervals, shown in Appendix Table 18*, were assigned values between 0 and 9 and then the sampling intervals for each day were chosen from the table of randon numbers. In order to assess the early morning and late evening angling pressure, sampling intervals from 6 a.m. to $3 \mathrm{a} . \mathrm{m}$. and 8 p.m. to 2 a.m. were randomly selected for 8 of the 60 working days on Chiblow-Denman Lakes.

The fishing pressure or effort is expressed in terms of man-hours. A man-hour is defined as one person fishing with one line for one hour. The three components used to measure fishing pressure are:
(1) The average number of boats fishing for each species per day.
(2) The average number of fishermen per boat.
(3) The average number of hours fished per fisherman per comp1eted trip.

The product of these statistics provided a daily estimate of the fishing pressure. Data for weekdays and weekends and holidays was analyzed separately because it was felt that if a substantial difference in the daily fishing pressure existed between such days, the data could not be combined safely to achieve a single monthly average. Also, a substantial difference in fishing pressure between
*See Unpublished Report in Fish and Wildife Library for Appendix
20.
$\geq<7$
Figure 1 - Map of Chiblow and Demon Lake

weekdays and weekends and holidnys could affect the rate at which fish were caught and so influence the harvest estimates for each month. (Neither of these two assumptions were tested). The month1y estimate of fishing pressure was detemined by multiplying the daily effort for weakdays and rieekends and holidays by the number of weekdays and veekende ard holidays in each month.

The rute of success or catch per unit-of-effort (C.U.E.) is defined as the nubler of fish caughe and kept per man-hour of fishing. Data fron conleced trips and ircomplete trips was analyzed eeparately. A chiastuare test (Snedecor, 1956) was used to compare C.U.E. data fron completed and incomplete trips. If no significant difference existed between completed and incomplete trips, the data was combined. If a significant difference existed, only the completed trip C.U.E, data was utilized. As the yield of fish to the angler is a function of the effort expended in angling for the species and the rate at which fish are renoved from the water, the harvest of fish is singly the product of the fishing pressure and the C.U.E. for weekdays and weekends and holidays for each month.

Data for fishing pressure, C.U.E. (woighted) and harvest were added for weekdays and weekends and holidays to provide monthly sumaries, and the monthly sumaries were added together to provide the season estinates. Although the ereel census did not begin until May 6 and terminated on September 19, the May and September estimates were expanded to cover all days for these two months. As no creel census data was collected between October 1 and the close of the lake trout season on October 10 , no estimates of fishing pressure, C.U.E. or harvest were available for thir period of time.

Recreational Use of ChiblounDerman Iakes. 1961
Approxinately tro-ihirds of the persons on Chiblow-Denman Lakes between early May and lace September were lake trout fishermen (Table 1). The percentaga if lake trout fishermen declined steadily from a high of 100 per cent in ling to a low of 24 per cent in August, then increased to $6 I$ per cent in September.

As interest in the pursuit of lake trout dininished during July and August, the popularity of smallmouth basc fishing and pleasure boating increased accordingly. During Aucust three times as many people enjcyed pleasure boating or smallmouth bass fishing than fished for lake trout. Sone prople wese intcrviewed who had not fished in either lake, but instead had bcated actoss the lake to fish for smallmouth bass in Demorest (Caribori) Lake。 Thesc people were not included in determining the activity of persons on Chiblow and Denman Lakes.
－STE707 КโЧ7世O～

－ウて əunf โโ7u uodo zou uoseas Bu！TBue sseq yqnoutteus x

$0^{\circ} 001$			$0^{\circ} 8 \mathrm{~L}$	$S^{\circ} 9 \mathrm{I}$	$I \cdot 6 I$	$S^{\circ} 9 \mathrm{I}$	$6^{\circ} 29$	$0^{\circ} \angle 9$	STE70L PITR5／\％
SLST 639	εL	$3^{7} 2$	782	OLT	008	LIL	I66	8ウ7	STE70］PUTス
$0^{\circ} 001$			$Z^{\circ} \mathrm{ZZ}$	$6^{\circ} \mathrm{LI}$	$0^{\circ} 9 \mathrm{~L}$	$0 \cdot 6 L$	$0 \cdot 19$	$L^{\circ} \& 9$	T2， $0 / \%$
$\overline{581} \quad 78$	9	Z	L†	ST	TE	9 I	$\varepsilon L T$	$\varepsilon 5$	गอquopdos
$0^{\circ} 00 \mathrm{~L} \quad 0^{\circ} 00 \mathrm{~L}$			$3^{\circ} 8 \varepsilon$	$0^{\circ} 8 \varepsilon$	$c^{\circ} \angle \varepsilon$	$3^{\circ} \mathrm{E}$ ¢	$6^{\circ} \mathrm{CZ}$	$77^{\circ} 82$	T870 530%
958 － $78 T$	6ε	εL	$8 \varepsilon L$	IS	EGI	$S 7$	58	88	$2 \operatorname{sis} 4$
$0^{\circ} 00150.001$			$0^{\circ} \mathrm{EZ}$	$2^{\circ} 07$	$\therefore 08$	L＇7C	1097	$T^{c} \subseteq \subseteq$	T270工 20%
G7E SGL	82	6	61	ZE	SOL	6ε	IOI	$\angle 8$	STn¢
$0^{\circ} 001$			$7^{\circ} \mathrm{L}$	$8^{\circ} \mathrm{L}$	6%	I＇L	$L^{\circ} 88$	$1^{\circ} 98$	TE20］ 50%
6\％8 i7cI	0	0	97	CI	TE	II	262	IEL	2tinc
$0^{\circ} 00100^{\circ} 001$			$0^{\circ} 0$	$0^{\circ} 0$	0×0	$0^{\circ} 0$	0.001	$0^{\circ} 001$	T270 70%
O7E 6EI	0	0	0	0	0	0	0178	$6 \varepsilon L$	CEN
こTdcod s\％Pog	Siotoug	S7ए0¢	－1dOJd	57508	S $20 \mathrm{LSU4}$	s7eog	ST0T 34%	57209	47UOW
［ $\% 7014$ KYFEOK	$\pi 2470$	T ILUSTH		7CN	STg $17 n$	ITEUS	7no	xJ $2 \times 1 \mathrm{~T}$	

The Lake Trout Fishery

Angling Statistics

A sumary of the lake trout boat fishery is presented in Table 2. A more detailed analysic of its components is given in Appendix* Tables 1 through 5. The estinated fishing pressure or effort was 14,161.2 man-hours. This represents a fishing intensity (man-hours of effort per surface acre) of 2.40.

The rate of success or catch per unit-of-effort (C.U.E.) was originally estinated to be 0.22 fish per man-hour. This seasonal average was undoubtedly greater but highly significant differences for C.U.E. values between completed and incomplete trips for May week days, May weekends, and June weekends prohibited the use of combining C.U.E. data for complete and incomplete trips for these time periods.

The C.U.E. values (Appendix Table 5) resulted in an estimated harvest of 2,684 lake trout. Fairly complete records kept by personnel from Bilton's Tourist Camp show that at least 3,400 lake trout were caught by their guests or by individuals using only some facilities of their camp such as a boat and/or outboard motor.

The C.U.E. values for incomplete trips for May week days, May weekends, and Jme weekends were $0.28,0.19$ and 0.27 respectively. If these figures were used to compute the harvest estinates for these three time periods, an estinated 770 more lake trout would have been caught. The season total would therefore be 3,454 lake trout and the revised C.U.E. would be 0.2%. It is assumed that the low and probably false C.U.E. values used in the original harvest cstimates for May week days, May weekends, and June weekends resulted in an underharvest of well over 700 fish. This situation would probably not have arisen is sufficient completed trip data had been collected during these tire periods. The inportance of a detailed analysis of C.U.E. data is apparent.

The revioed harvest estinate of 3,454 lake trout produced a total of 6,955 pounds of fish for the sportsman. The yield of lake trout from Chiblow and Denman was 1.2 pounds per acre. This estimated harvest must be considered as an underestimate also as the difference between 3,454 and 3,400 fish leaves few lake trout attributed to the 24 cottage owners and their guests.

No anclers were observed fishing from the shore for lake trout. Some lake trout were probably caught by persons fishing while enjoying a shore lunch, but the number caught is negligible compared to the total estimate.

The average length of a completed fishing trip for each angler was 5.33 hours (5 hours and 20 minutes). Although the rate of success was quite high, 118 of 272 fishermen (43.4 per cent) who had completed their fiching for the day did not catch any fish. A highly significant difference exsisted between the average number of fish caught per fishwman for completed and incorplete trips. Complete trip fishernen averaged 1.17 fish per man, while fishermen with incomplete trips averaged mly 0.78 fish per man.

TABLE 2	Sumary of Angling Stacistics of the Lake Trout Fhohen from Chiblow-Dennan Lakes, 1967					$\begin{array}{\|l} \hline \begin{array}{l} \text { Pounds } / ~ \\ \text { Acre } \end{array} \\ \hline \end{array}$
Month	Fishing Pressure (man-ris.)	C.U.E.	$\begin{array}{r} \text { Harvest } \\ \text { (nos.) } \end{array}$	Av. Weight (ibs.)	$\begin{array}{r} \text { Harvest } \\ \text { (1bs.) } \\ \hline \end{array}$	
May	5,298.0	0.22	1,290	2.1	2,688.0	
June	3,788.0	0.23	863	1.9	1,672.1	
July	1,733.6	0.23	410	2.3	907.8	
August	1, 1.13 .6	0.24	263	1.9	510.0	
Septeraber	2,178.0	0.29	628	1.9	1,197.0	
Season Estimates	14,16I. 2	0.24	3,4.54	2.0	6,954.9	1.179

Age and Growth

The growth of lake trout in Chiblow and Denran Lakes is presented in Table 3. Since the fish were captured throughout most of the growing season, the average lengths and weights indicate growth at approxinately the midpoint of the growing season. As most fish age IV did not appear in the angler's creel until late August or early Septerber, the average length of age IV fish probably represents growth closcr to the end of the growing season than at the midpoint.

The average total Iength of 521 lake trout was 18.4 inches and the average weight was 2.0 pounds. Total lengths ranged from 13.2 to 26.6 inches and woights varied betreen 0.6 and 6.8 pounds.
?

そ- - Froro

TABLE 3 Growth and Age Composition of Lake Trout
Erom Chiblow-Denman Lakes, 1967

$$
N=226
$$

Age

	IV	V	VI	VII	VIII	IX	X
Year Class	1963	1962	1961	1960	1959	1958	1957
Number in sampIe	26	77	75	27	11	8	2
Percentage Frequency	11.5	34.1	33.2	11.9	4.9	3.5	0.9
Av. total length (inch。)	15.5	17.0	10.7	20.9	23.0	24.9	25.4
Av. weight (pounds)	1.1	1.4	1.9	2.7	3.8	5.0	6.2

Age Composition of Angler-caug"t Lake Trout

The lake trout fishery in Chiblow-Denman Lakes in 1967 was primarily dependent on fish five and six years old (Table 3). These two age groups accounted for 67.3 per cent of the observed catch. It is apparent that a year class failuse or two consecutive year class failures could affect the sport fichery severely. Age groups IV and VII were equally represented in the catch. However, the age VII fish were more abundant in the spring fishery and the age IV Iish were more prevalent in the late sumers and early fall fishery, probably as a result of recruitment through growth. Lake trout age eight and older composed only 9.3 per cent of the catch. Lake trout aging was done by the author ${ }^{\circ}$,

Length Frequency Analyais

The length frequency distribution of angler-caught lake trout (Figure 2, Table 4) showed that in 1967 lake trout between 18.0 and 18.9 inches were fully valnerable to the angling gear. The fishery was primarily composed of lake trout between 15.0 and 19.9 inches as 75.5 per cent of the lake erout caught occursed within this 5 inch length range. The length Erequency distribution, coupled with a knowledge of the age composition of angler-caught lake trout in these lakes, substantiates the view that the lake trout fishery is dependent on only a few age groups and consequently a few year classes to support the sport fishery.
-
r
. .
\therefore
…-.............

Number of lake trout measured (frequency)

A comparison of the 1ength frequency distribution for 1967 with that of future years may help to indicate what effect, if any, the fishing pressure and high rate of success (C.U.E.) has exerted on the lake trout population.

The Contribution of Hatchery Stocked Lake Traut to the Lake Trout Sport Fishery

The planting record of marked, hatchery-reared lake trout in Chiblow-Denman Lakes is as follows:

1958 - June 17	4,530 yearlings	Adipose clip
1962 - June 4	3,000 yearlings	Left ventral-adipose clip
1964 - May 30	4,000 yearlings	Right pectoral-adipose clip
1966 - June 17	11,000 yearlings	Left pectoral-right ventral clip

A total of 587 lake crout were examined by the creel census clerk. No marked fish were observed and thus it is assumed that hatchery lake trout did not contribute measurably to the lake trout sport fishery in 1967.

Methods of Successful Lake Trout Angling

Angling in Chiblow-Denman Lakes was almost entirely confined to trolling. Only two anglers who were still fishing for lake trout were contacted on the lake. The first still fisherman was not observed until August 8.

Trolling with a combination of an artificial luce and a minnow was the most popular method of lake trout fishing. fo total of 666 lake trout were caught by the anglers who were interviewed and 537 of these fish were caught using an artificial lure and a minnow combination (Table 5).

TABLE 5 Sumary of Angling Success for Lake Trout
From Chiblow-Denman Lakes, 1967

	Month					Totals
	May	June	July	Aug.	Sept.	
Trolling Artificial lure and minnow	179	151	40	47	120	537
Artificial lure						114
Minnow	9	4	0	0	0	13
Still fishing	0	0	0	1	1	2
Grand Total						666

Artificial lures captured 114 lake trout. Almost as many lake trout were captured with artificial lures as with a combination of an artificial lure and a mimow during the month of July. This probably does not reflect any real difference between the success of the two trolling methods, but rather reflects a scarcity of minnows for bait which forced more anglers than usual to rely on an artificial lure only.

The Lake Whitefish Fishery

As lake whitefish were caught by anglers engaged in lake trout fishing, it was not possible to ascribe a separate and distinct fishing effort to the whitefish fishery. The fishing pressure on whitefish was therefore considered to be equivalent to the calculated fishing pressure on lake trout.

Only ten whitefish were recorded during the creel census. The estimated harvest of whitefish for the period May 1 to September 30 was 49 fish weighing 33 pounds (Table 6).

Five whitefish were aged. Three were 10 years old, and the other two fish were age 7 and 11 respectively.

Table 6 Sumary of Angling Stacistics of the Lake Whitefish
Fishery from Chiblow-Denman Lakes, 1967

Month	Number Kept	C.U.E.	Harvest (numbers)	Av. Weight (pounds)	Harvest (pounds)
May	0	0	0		
June	3	0.004	15		
July	3	0.008	16		
August	1	0.003	3		83.3
September	3	0.007	15		
Season Estimates	10	0.007	49	1.7	

The Smallmouth Bass Fishe:y

Angling Statistics

A sumary of the smallnouth bass bcat fishery (Table 7) shows that a calculated fishing pressure of 2,442 . 2 man-hours, coupled with a rate of success of 0.38 fish per man-hour, produced an estimated harvert of 922 fish weighing a total of 560 pounds.

Shose Eloting for smallnouth bass was not as rewarding to the angler. The rate of sucess was only 0.14 and the harvest was estimated to have been mnly 31 fish. A more detailed analysis of the components of both the smallmouth bass boat fishery and shore fishery is presented in Appendix Tabies* 7 to 11 and 13 to 17 respectively. The total harvest of smallmouth bass was estimated at 953 fish weighing 578 pounds.

Table 7 Summary of Angling Statistics of the Smallmouth
Bass Boat Fishery from Chiblow-Denman Lakes, 1967

Month	Fishing Prescure (man-hrs.)	C.U.E.	Harvest (numbers)	Av. Weight (pounds)	Harvest (pounds)
Jume	319.3	0.14	37	0.8	27.7
July	781.1	0.43	361	0.6	216.6
August	1,008.8	0.43	431	0.6	253.9
September	333.0	0.29	93	0.7	61.7
Season Estimates	2,442.2	0.38	922	0.6	559.9

Table 8 Sumary of Angling Statistics of the Smallmouth Bass
Shore Fishery from Chiblow-Denman Lakes, 1967

Month	Fishing Pressure (man-hrs.)	C.U.E.	Harvest (numbers)	Av. Weight (pounds)	Harvest (pounds)
June	28.0	0.22	6	0.6	3.6
July	146.1	0.05	9	0.6	5.4
August	57.6	0.27	16	0.6	9.6
September	48.0	0	0	0	0
Season Estimates	279.7	0.14	31	0.6	18.6

Many rock bass were caught by anglers fishing for smallmouth bass. Most rock bass were returned to the water and no attempt was made to estimate the harvest of rock bass from Chiblow-Denman Lakes.

Age and Growth

The growth rate of smallmouth bass in Chiblow-Denman Lakes (Table 9) is probably limited by the oligotrophic nature of these lakes. The average length of age V fish (8.4 inches) was less than that of the age IV fish (9.3 inches). It is assumed that the first year growth of the 1962 year class was retarded to the extent that these fish have had a poorer growth history than the 1963 year class of smallmouth bass.

The average length of 190 smallmouth bass was 10.3 inches and the average weight was 0.6 pounds. Total lengths varied from 6.4 to 17.3 inches and weights ranged from 0.1 to 2.7 pounds. Twenty one of the 190 bass samples (11.1 per cent) weighed 1.0 pound or more. Only 6 fish (3.2 per cent weighed more than 1.5 pounds.)
-an-a........

Age Composition of Angler-Caught Smallmouth Bass

The smallmouth bass fishery during 1967 was prinarily dependent on age groups IV, V and VI. These three age groups accounted for 87.8 per cent of the observed catch (Table 9).

Considerable concern was expressed by the tourist operators, many anglers, and the creel census clerk that the smallmouth bass did not spawn successfully in 1967. Many female bass, which were caught in late August, had retained their spawn.

Discussion

The most notable characteristics of the lake trout fishery were the exceptional rate of success (0.24) and a yield of approximately 1.2 pounds per acre. Most fishery scientists in Ontario accept the figure of 0.5 pounds per acre as a maximum yield which a lake trout resource can sustain annually. Long term records of Algonquin Park Lakes (Martin, 1967) showed that most lakes did not attain or maintain this value even when the lakes were open and closed to fishing on an alternate year basis.

It is possible that the excellent fishing for lake trout in Chiblow and Denman-Iakes in 1967 was due to the presence of two strong year classes $(1962,1961)$ in the fishery. These fish were then 5 and 6 years old respectively. If these year classes continue to dominate the fishery in 1968, the 1068 catch would consist heavily of 6 and 7 year old fish. This will be determined by the 1968 creel census.
-......----............

$\therefore \therefore \because \%$
. $\cdot \cdots$

One of the most prominent features of lake trout fisheries in Algonquin Park lakes has been the extremely uneven success of year classes (Fry and Chapman, 1948). If a similar situation applies to Algoma lake trout lakes, it simply irplies that man has no means of effective control over pronounced fluctuations in the numbers of lake trout available to the angler from year to year. The point of concern in the preaent study is whether spawning escapement was sufficient in 1967, despite the high yield of lake trout, to maintain an attractive fishery in the future. Not until lake trout of the 1967 year class begin to enter the fishery in 1971 as 4 year olds can this question begin to be answered.

Present knowledge suggests that the removal of lake trout from Chiblow-Deman Lakes in 1967 was in excess of that which the lake could sustain annually. The efrect of excessive amual yields of lake trout would be a depressed or collapsed lake trout fishery. Therefore, it is concluded that it is in the best interests of the lake trout resource to maintain the annual closure of these lakes between October 15 and May 1. It may even be necessary to recomend more stringent regulations rather than a liberalization of the existing regulations.

Lake trout planted in 1958 (1957 year class) have largely passed through the fishery, but fish from the 1962 stocking (1961 year class) were 6 years old in 1967 and should have conctibuted measurably to the sport fishery, but none were observed in the angler's cree1. Some of the lake trout planted in 1964 (1903 year class) were age IV in 1967 and could have appeared in the angler's catch, but again none were recorded. These fish should appear, if they are still present, in the 1960 and 1969 catches when they will be age V and VI respectively.

A few of the faster growing lake trout of the 1966 plant (1965 year class) could appear in the 1969 catch when they will be 4 years old. Theoretically, the 1966 plent should contribute substantially to the catch of lake trout in 1970 and 1971 when they will be age V and $V I$ respectively. The creel census in future years will determine the extent to which hatchery-reared lake trout contributed to the harvest of lake trout from Chiblow and Dennan Lakes.

Lake whitefish were essentially an unexploited resource in 1967. Lake surveys conducted on these lakes in 1966 (A1bertini and Keith) showed the presence of a good lake whitefish population. In fact, more whitefish (239) were caught than lake trout (260). The whitefish averaged 1.5 and 1.7 pounds respectively from Chiblow Lake and Denman Lake. Maximum weights recorded were 2.2 pounds from Denman Lake and 3.5 pounds from Chiblow Lake. It is apparent that a lake
$\because \because$
whitefish fishery could and should be established on Chiblow Lake (as well as a number of other District lakes). Preliminary efforts in this regard were begun last December in the form of a release to the local newspaper describing methods used to catch whitefish during the winter on Lake-Simcoe. However, there was.no response at all to the article which appeared in the paper. Open water angling for lake whitefish is also not a popular activity. Perhaps a new approach will have to be made to inform the public of the methods used to catch this desirable sport fish.

Manson (1968) observed that "many of the smallmouth bass failed to spam this sumer; eggs in a state of partial reabsorption were observed right up to the end of the census." If the contention is correct that smallmouth bass did not spawn successfully in 1967, then the 1967 year class will provide poor fishing in 1971, 1972, and 1973 when these fish will be 4, 5 and 6 yaars old respectively. The failure of the 1967 year class of smallmouth bass has already been predicted for South Bay, Manicoulin Island (C.A. Lewis, personal comunicatim). As a result of the successful approach used at South Bay to predict the course of the smallmouth bass fishery, it is predicted that the 1967 year class of sma11nouth bass from ChiblowDenman Lakes will provide few fish to the angler in 1971, 1972 and 1973.

The randomized design of the creel census was designed to eliminate as much bias as possible by interviewing anglexs throughout the length of the fishing day and under all weather conditions. By stratifying the sampling intervals it was possible to leam the charse. teristics of the fishermen and to identify the time periods which were most productive in terms of angler contact. The creel census clerk in his report (Manson, 1957) recommended a standard sampling day on Chiblow and Denran Lakes fron 12 p.r. to 8 p.r. Post 6 a.m. to $8 \mathrm{a} . \mathrm{m}$. and $8 \cdot \mathrm{p} . \mathrm{n}$. to $2 \mathrm{a} . \mathrm{m}$. sampling intervals were devoid of any angler contacts, and as most fishermen were just starting to fish after $8 \mathrm{a} . \mathrm{m}$. , the time period fron $3 \mathrm{a} . \mathrm{m}$. to $12 \mathrm{p} . \mathrm{n}$. often did not yield much data, especially completed trip information. Fuch more complete trip information could be collected if the anglers were interviewed at the tourist camp on Dennan Lake which serves as a point of entry to both lakes for about 90 per cent of the fishermen.

Water level fluctuations were to be recorded once a week but there was no gauge on the dan and consequently no readings were taken. However, it was obvious chat water level fluctuations were anc can be held to a minimurn or nanipulated if desired.
\square

- 38
- -

Public access to Chiblow-Denman Lakes could be improved by providing boat launching and car parking facilities on Chiblow Lake in Scarfe Township on a suitable site where a snall creek enters Chiblow Lake from Plump Lake. The present Forest Access Road to this location would also have to be improved and naincained.
only one sumer cottage is presently located on Chiblow Lake. The single comercial camp and the remaining 22 cottage sites are located on Dennan Lake. The present "wilderness aspect" of fishing on Chiblow Lake cauld be maintained by restricting the dovelopment of sumer resort properties on this lake.

Recomendations

(1) Chiblow and Denman Lakes should rerain closed to winter fishing under Ontario Regulation 254/57.
(2) The creel census progran should be crretrued on these lakes through 1972 in order to detect and document : Ty changes, fluctuations, or trends in the fishery which indicace overreishing, and to assess the response of the lake trout fisiaciy to the pressures exerted upon it. The continuation of the progerm vill also allow the effectiveness of the stocking program to be ascossed.
(3) An attempt should be made to encouroge fishing for lake whitefish. Information concerning the methode of angling for this fish should be made available to the pubIic.
(4) A standard eight hour creel census day thould be employed on Chiblow-Denman Lakes. The approxinate cime poriod should be in the neighbourhood of $12 \mathrm{p} . \mathrm{m}$. to 8 p.r.
(5) A boat count should be nade cach scheduled day but anglers should be interviewed at the comercial touriot onmp in order to acquire as much complete trip data as possible.
(6) Boat launching and car parking facilisies should be provided at Chiblow Lake.
(7) The aesthetic value of angling for lal? trout should be preserved by restricting the development of sume: resers on Chiblow Lake.
\square

Sumary

(1) The major recreational use of Chiblow-Denman Lakes is lake trout fishing. Smallmouth bass fishing and pleasure boating assumed increasins importance during July and took precedence over the lake trout fishery during the month of August.
(2) The estimated Eishing pressure on lake trout was 14,161.2 man-hours. The fishing intensity was 2.40 man-hours of effort per surface acre.
(3) The original C.U.E. estinate for the five month fishing season was 0.22 fish per man-hour and the original harvest estimate was 2,684 lake trout.
(4) Fish records kept by personel from Bilton's tourist camp showed that at least 3,400 lake trout were caught by their guests. It was assumed, therefore, that the C.J.E. data for liay weekdays, May weekends, and June weekends were not reliable. Incomplete C.U.E. data for these time periods were used instead and it was escinated that an additional 770 lake trout had been caught.
(5) The revised estinate of the lake trout harvest was 3,454 lake trout weighing $6,954.9$ pounds. The actual harvest of lake trout was probably greater than the figures presented.
(6) The yield of lake trout was 1.179 pounds per acre.
(7) No anglers were observed fishing from the shore for lake trout.
(8) Lake trout fishermen averaged 5.33 hours per completed trip.
(9) Lake trout fishernen averaged 1.17 fish per man per completed trip.
(10) Angler-caught lake trout averaged 18.4 inches, total length, and 2.0 pounds.
(11) The Iake trout fishery was primarily dependent on 5 and 6 year old fish. Fluctuations in year class strength could cause considerable annual fluetuations in the numbers of lake trout available to the sport fishery.
(12) No hatchery planted lake trout were recorded in the observed catch. The contribution of hatchery-reared lake trout to the sport fishery was negligible.
(13) Lake trout between 15.0 inches and 19.9 inches accounted for 75.5 per cenc of the observed catch.
(14) Almost 100 per cent of the lake trout fishermen preferred to troll rather than still fish or cast. A combination of an artificial luse and a minnow accounted for 537 of the 666 lake trout recorded in the cereal census.
(15) Lake whiccinsh ane caught by anglers fishing for lake trout. The estimated hazvace ins 49 fich veighing 83.3 pounds.
(16) Boat-fishing pressure exerted on the snallnouth bass was estinated at $2,4 i 42.2$ monnours and the CoU.E. was 0.38 fish per man-hour.
(17) The estinated harvest was 922 bass weighing 560 pounds.
(18) The statistics for the smellmouth bass shore fishery were: fishing pressure - 279.7 nan-houns; C.U.E. - O.14 fish per man-hour; harvest - 31 fich weighing 18.6 pounds.
(19) The combined result of the smallmouth bass boat and shore fishery was a harvest of 253 fich weighing 570.5 pourds.
(20) The growth rette of smalimouth bass may be limited by the oligotrophic nature of Chiblow and Denman Lakes.
(21) The 1963 year class (age IV) of smalloouth bass exhibited a faster rate of growth than the 1962 year class (age V).
(22) Angler-caught smalmouth bass averaged 10.3 inches, total length, and 0.6 pounds.
(23) Smalimouth bass age 4,5 and 6 accounted for 87.8 per cent of the observed catch.
(24) Smallmouth bass did not have a successful year for spaming in 1967. Anging for Eish of the 1967 year class will be poor in 1971, 1972 and 1973.
(25) The Lake trout Eishery was characterized by an exceptional rate of success (0.26) and a high yield of 1.179 pounds per acre. Concern was expressed that this yoield may have been in excess of what the lake could maincain on an annual basis.
?n
$\dot{u}^{\prime \prime}$
\cdots
$\because 3$

- \because
$\therefore \cdots$

Sincere appreciation is extended to the creel census clerk, Harald Manson, whose attitude, interest, and extra efforts assured the success of this project. The assistance and co-operation of personnel from Bilton's tourist camp on Denman Lake and the anglers themselves is gratefully acknowledged. Special thanks is due to J.B. Smith of the Department's Research Branch at South Bay, Manitoulin Island, who aged the smallmouth bass scales.

Literature Cited

Albertini, T., and S. Keith, 1966. Lake Survey Report Chiblow Lake. Ont. Dept. Lands and Forests, Sault Ste. Marie District (Mineo.)

Albertini, T. and S. Keith, 1966. Lake Survey Report Denman Lake. Cnt. Dept. Lands and Forests, Sault Ste. Marie District (Mimeo).

Fry, F.E.J. and V.B. Chapman, 1843. The Lake Trout Fishery in Algonquin Park from 1936 to 1945. Trans. Amer. Fish. Soc. 75: 19-35.

Manson, H.J., 1967. Observations on a Sumer Creel Census. Ont. Dept. Lands and Forests, Sault Ste. Marie District (Mimeo.) 4 pp.

Martin, N.V., 1966. The Significance of Food Habits in the Biology, Exploitation, and Managenent of Algonquin Park, ontario, Lake Trout. Trans. Aner. Fish. Soc. 95 (4): 415-422.

Snedecor, G.W., 1956. Statistical Methods. Iowa State College Press, Anes, Iowa. 543 pp .

$$
=
$$

