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I. 

ON  THE   FUNDAMENTAL  FORMULAE   OF  DYNAMICS. 

[American  Journal  of  Mathematics,  vol.  n.  pp.  49-64,  1879.] 

Formation  of  a  new  Indeterminate  Formula  of  Motion  by  tlie  Sub- 
stitution of  the  Variations  of  the  Components  of  Acceleration  for 

the  Variations  of  the  Coordinates  in  the  usual  Formula. 

The  laws  of  motion  are  frequently  expressed  by  an  equation  of  the 

form  x + (  F_  m^Sy  +  (Z-  m^$z]  =  0 
in  which 

?7i  denotes  the  mass  of  a  particle  of  the  system  considered, 
x,   y,   z  its  rectangular  coordinates, 
x,   y,  z  the  second  differential  coefficients  of  the  coordinates  with 

respect  to  the  time, 
X,  F,  Z  the  components  of  the  forces  acting  on  the  particle, 
Sx,  Sy,  Sz  any    arbitrary    variations    of    the    coordinates    which    are 

simultaneously  possible,  and 
Z  a  summation  with  respect  to  all  the  particles  of  the  system. 

It  is  evident  that  we  may  substitute  for  Sx,  Sy,  Sz  any  other 
expressions  which  are  capable  of  the  same  and  only  of  the  same  sets 
of  simultaneous  values. 

Now  if  the  nature  of  the  system  is  such  that  certain  functions 
A,  B,  etc.  of  the  coordinates  must  be  constant,  or  given  functions  of 
the  time,  we  have 

_  (dA  .    ,  dA  s     ,  d  A  «  \     A    ' 2   -y—  ooj+^7—  oy-\ — T—6Z )  =  0, 
\dx          dy          dz     J 

f^.Sx+—^^—^-^     I  (2) ,dx          dy 
etc. 

These  are  the  equations  of  condition,  to  which  the  variations  in 
the  general  equation  of  motion  (1)  are  subject.  But  if  A  is  constant 
or  a  determined  function  of  the  time,  the  same  must  be  true  of 
A  and  A.  Now 

fdA  ,  .  dA  ,  .  dA  .\ 

dx"  rdyy  rdz 
*A  A      ̂          .  ,  dA  .  ,  dA  .. 

G.  II. 
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where  H  represents  terms  containing  only  the  second  differential 

coefficients  of  A  with  respect  to  the  coordinates,  and  the  first  differ- 

ential coefficients  of  the  coordinates  with  respect  to  the  time.  There- 

fore, if  we  conceive  of  a  variation  affecting  the  accelerations  of  the 

particles  at  the  time  considered,  but  not  their  positions  or  velocities, 
we  have 

dA 

(3) 

dB 

and,  in  like  manner, 

etc. y 

Comparing  these  equations  with  (2),  we  see  that  when  the  accelera- 
tions of  the  particles  are  regarded  as  subject  to  the  variation  denoted 

by  S,  but  not  their  positions  or  velocities,  the  possible  values  of  Sx,  Sy, 
Sz  are  subject  to  precisely  the  same  restrictions  as  the  values  of  Sx, 
Sy,  Sz,  when  the  positions  of  the  particles  are  regarded  as  variable. 
We  may,  therefore,  write  for  the  general  equation  of  motion 

2[(X-m&)8x+(Y-my)8y+(Z—mss)8z]  =  Q,  (4) 

regarding  the  positions  and  velocities  of  the  particles  as  unaffected  by 

the  variation  denoted  by  S,  —  a  condition  which  may  be  expressed  by 

the  equations  ^  =  0>  3  0>  Sz  =  Q,) 

We  have  so  far  supposed  that  the  conditions  which  restrict  the 
possible  motions  of  the  systems  may  be  expressed  by  equations 
between  the  coordinates  alone  or  the  coordinates  and  the  time.  To 
extend  the  formula  of  motion  to  cases  in  which  the  conditions  are 

expressed  by  the  characters  =  or  ̂ ,  we  may  write 

I>[(X-mx)Sx+(Y-my)Sy+(Z-mz)Sz]^Q.  (6) 

The  conditions  which  determine  the  possible  values  of  Sx,  Sy,  Sz 
will  not,  in  such  cases,  be  entirely  similar  to  those  which  determine 
the  possible  values  of  Sx,  Sy,  Sz,  when  the  coordinates  are  regarded  as 
variable.  Nevertheless,  the  laws  of  motion  are  correctly  expressed 
by  the  formula  (6),  while  the  formula 

2[(X-mx)8x+(Y-my)8y+(Z-mz)8z]^Q,  (7) 
does  not,  as  naturally  interpreted,  give  so  complete  and  accurate  an 
expression  of  the  laws  of  motion. 

This  may  be  illustrated  by  a  simple  example. 
Let  it  be  required  to  find  the  acceleration  of  a  material  point, 

which,  at  a  given  instant,  is  moving  with  given  velocity  on  the 
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frictionless  surface  of  a  body  (which  it  cannot  penetrate,  but  which 
it  may  leave),  and  is  acted  on  by  given  forces.  For  simplicity,  we 
may  suppose  that  the  normal  to  the  surface,  drawn  outward  from  the 
moving  point  at  the  moment  considered,  is  parallel  to  the  axis  of  X 
and  in  the  positive  direction.  The  only  restriction  on  the  values  of 
Sx,  6V  Sz  is  that  „   -*  ̂  &e=±0. 

Formula  (7)  will  therefore  give 
X  Y  Z 

®=—,   y~—y    z=— • m  m  m 

The  condition  that  the  point  shall  not  penetrate  the  body  gives 
another  condition  for  the  value  of  x.  If  the  point  remains  upon  the 
surface,  x  must  have  a  certain  value  N,  determined  by  the  form  of 
the  surface  and  the  velocity  of  the  point.  If  the  value  of  x  is  less 
than  this,  the  point  must  penetrate  the  body.  Therefore, 

x^N. 

But  this  does  not  suffice  to  determine  the  acceleration  of  the  point. 
Let  us  now  apply  formula  (6)  to  the  same  problem.     Since  x  cannot 

be  less  than  N,  ;f  jg  =  _y>    ̂ Q, 
This  is  the  only  restriction  on  the  value  of  Sx,  for  if  x  >  N,  the 
value  of  Sx  is  entirely  arbitrary.  Formula  (6),  therefore,  requires 
that  Y •  c  •      -\T         -^  -Ji- 

ll x=N,    x>  — ; 

~m 

X 
but  if  x>  N,    x  =  —: m 

— that  is  (since  x  cannot  be  less  than  N),  that  x  shall  be  equal  to  the 

greater  c 
and  that 
greater  of  the  quantities  N  and  ;-,  or  to  both,  if  they  are  equal, — 

..     Y      ..     Z 
y  =  —.     z  =  —. m  m 

The  values  of  x,  y,  z  are  therefore  entirely  determined  by  this 
formula  in  connection  with  the  conditions  afforded  by  the  constraints 

of  the  system.* 
The  following  considerations  will  show  that  what  is  true  in  this 

case  is  also  true  in  general,  when  the  conditions  to  which  the  system 

*  The  failure  of  the  formula  (7)  in  this  case  is  rather  apparent  than  real  ;    for, 
although  the  formula  apparently  allows  to   x,   at    the   instant  considered,   a  value 

v- 

exceeding  both  N  and  —  ,  it  does  not  allow  this  for  any  interval,  however  short.     For m 
if  x<N,  the  point  will  immediately  leave  the  surface,  and  then  the  formula  requires 

that  x  =  — m 
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is  subject  are  such  that  certain  functions  of  the  coordinates  cannot 
exceed  certain  limits,  either  constant  or  variable  with  the  time.  If 

certain  values  of  Sx,  Si/,  Sz  (with  unvaried  values  of  x,  y,  z}  and  x,  y,  z) 
are  simultaneously  possible  at  a  given  instant,  equal  or  proportional 
values  with  the  same  signs  must  be  possible  for  Sx,  Sy,  Sz  immediately 

after  the  instant  considered,  and  must  satisfy  formula  (1),  and  there- 
fore (6),  in  connection  with  the  values  of  x,  y,  z,  X,  Y,  Z  immediately 

after  that  instant.  The  values  of  x,  y,  z,  thus  determined,  are  of 

course  the  very  quantities  which  we  wish  to  obtain,  since  the  accelera- 
tion of  a  point  at  a  given  instant  does  not  denote  anything  different 

from  its  acceleration  immediately  after  that  instant. 
For  an  example  of  a  somewhat  different  class  of  cases,  we  may 

suppose  that  in  a  system,  otherwise  free,  x  cannot  have  a  negative 
value.  Such  a  condition  does  not  seem  to  affect  the  possible  values 
of  Sx,  as  naturally  interpreted  in  a  dynamical  problem.  Yet,  if  we 
should  regard  the  value  of  Sx  in  (7)  as  arbitrary,  we  should  obtain 

X 
x  =  —, m 

which  might  be  erroneous.  But  if  we  regard  Sx  as  expressing  a 
velocity  of  which  the  system,  if  at  rest,  would  be  capable  (which  is 
not  a  natural  signification  of  the  expression),  we  should  have  Sx  ~  0, 
which,  with  (7),  gives  v 

*==-. 

~m 

This  is  not  incorrect,  but  it  leaves  the  acceleration  undetermined. 

If  we  should  regard  Sx  as  denoting  such  a  variation  of  the  velocity 
as  is  possible  for  the  system  when  it  has  its  given  velocity  (this  also 
is  not  a  natural  signification  of  the  expression),  formula  (7)  would 

give  the  correct  value  of  x  except  when  ae  =  0.  In  this  case  (which 
cannot  be  regarded  as  exceptional  in  a  problem  of  this  kind),  we 
should  have  Sx  ̂   0,  which  will  leave  x  undetermined,  as  before. 

The  application  of  formula  (6),  in  problems  of  this  kind,  presents 
no  difficulty.  From  the  condition 

z^O, 

we  obtain,  first,  if  x  =  0,    x  =  0, 

then,  if  x  =  0     and     x  =  0,     Sx  ̂   0, 

which  is  the  only  limitation  on  the  value  of  Sx.     With  this  condition, 
we  deduce  from  (6)  that  either 

X 
x  =  0 ,  x  =  0  ,  and  x  >  — ; 

~m 

X 
or  x  =  — . m 
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x 
That  is,  if  x  =  0,  x  has  the  greater  of  the  values  --  and  0;  otherwise, 

X 
<JU  —       • m 

In  cases  of  this  kind  also,  in  which  the  function  which  cannot 
exceed  a  certain  value  involves  the  velocities  (with  or  without  the 
coordinates),  one  may  easily  convince  himself  that  formula  (6)  is 
always  valid,  and  always  sufficient  to  determine  the  accelerations 
with  the  aid  of  the  conditions  afforded  by  the  constraints  of  the 

system. 
But  instead  of  examining  such  cases  in  detail,  we  shall  proceed  to 

consider  the  subject  from  a  more  general  point  of  view. 

Comparison  of  the  New  Formula  with  the   Statical  Principle  of 

Virtual  Velocities.  —  Case  of  Discontinuous  Changes  of  Velocity. 

Formula  (1)  has  so  far  served  as  a  point  of  departure.  The  general 
validity  of  this,  the  received  form  of  the  indeterminate  equation  of 
motion,  being  assumed,  it  has  been  shown  that  formula  (6)  will  be 
valid  and  sufficient,  even  in  cases  in  which  both  (1)  and  (7)  fail.  We 

now  proceed  to  show  that  the  statical  principle  of  virtual  velocities, 
when  its  real  signification  is  carefully  considered,  leads  directly  to 
formula  (6),  or  to  an  analogous  formula  for  the  determination  of  the 
discontinuous  changes  of  velocity,  when  such  occur.  This  will  be  the 
case  even  if  we  start  with  the  usual  analytical  expression  of  the 

principle  2  (Z^  +  YSy  +  Z8z)  ̂   0,  (8) 
to  which,  at  first  sight,  formula  (6)  appears  less  closely  related  than 
(7).  For  the  variations  of  the  coordinates  in  this  formula  must  be 
regarded  as  relating  to  differences  between  the  configuration  which 
the  system  has  at  a  certain  time,  and  which  it  will  continue  to  have 
in  case  of  equilibrium,  and  some  other  configuration  which  the  system 
might  be  supposed  to  have  at  some  subsequent  time.  These  temporal 
relations  are  not  indicated  explicitly  in  the  notation,  and  should  not 
be,  since  the  statical  problem  does  not  involve  the  time  in  any 
quantitative  manner.  But  in  a  dynamical  problem,  in  which  we  take 
account  of  the  time,  it  is  hardly  natural  to  use  Sx,  Sy,  Sz  in  the  same 
sense.  In  any  problem  in  which  x,  y,  z  are  regarded  as  functions 
of  the  time,  Sx,  Sy,  Sz  are  naturally  understood  to  relate  to  differences 
between  the  configuration  which  the  system  has  at  a  certain  time, 
and  some  other  configuration  which  it  might  (conceivably)  have  had 
at  that  time  instead  of  that  which  it  actually  had. 
Now  when  we  suppose  a  point  to  have  a  certain  position,  specified 

by  x,  y,  0,  at  a  certain  time,  its  position  at  that  time  is  no  longer  a 
subject  of  hypothesis  or  of  question.  It  is  its  future  positions  which 
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form  the  subject  of  inquiry.     Its  position  in  the  immediate  future 
is  naturally  specified  by 

x+xdt  +  J#cft2+ etc.,    y  +  ydt  +  $ydt2+etc.,    z+zdt  +  %zdtz+etc., 

and  we  may  regard  the  variations  of  these  expressions  as  corre- 
sponding to  the  Sx,  Sy,  Sz  of  the  statical  problem.  It  is  evidently 

sufficient  to  take  account  of  the  first  term  of  these  expressions  of 
which  the  variation  is  not  zero.  Now,  x,  y,  z,  as  has  already  been 
said,  are  to  be  regarded  as  constant.  With  respect  to  the  terms 
containing  x,  y,  z,  two  cases  are  to  be  distinguished,  according  as 
there  is,  or  is  not,  a  finite  change  of  velocity  at  the  instant  considered. 

Let  us  first  consider  the  most  important  case,  in  which  there  is  no 
discontinuous  change  of  velocity.  In  this  case,  x,  y,  z  are  not  to  be 

regarded  as  variable  (by  <5),  and  the  variations  of  the  above  ex- 
pressions are  represented  by 

J&jcft2,    $8ydt2,    $32  dt2, 
which  are,  therefore,  to  be  substituted  for  Sx,  Sy,  Sz  in  the  general 
formula  of  equilibrium  (8)  to  adapt  it  to  the  conditions  of  a  dynamical 

problem.  By  this  substitution  (in  which  the  common  factor  $dt2 
may  of  course  be  omitted),  and  the  addition  of  the  terms  expressing 
the  reaction  against  acceleration,  we  obtain  formula  (6). 

But  if  the  circumstances  are  such  that  there  is  (or  may  be)  a 
discontinuity  in  the  values  of  x,  y,  z  at  the  instant  considered,  it  is 
necessary  to  distinguish  the  values  of  these  expressions  before  and 
after  the  abrupt  change.  For  this  purpose,  we  may  apply  x,  y,  z 
to  the  original  values,  and  denote  the  changed  values  by  x+Ax, 

y-\-Ay,  z-\-Az.  The  value  of  #  at  a  time  very  shortly  subsequent 
to  the  instant  considered,  will  be  expressed  by  x-\-(x+ Ax)dt-{-ekc.,  in 
which  we  may  regard  Ax  as  subject  to  the  variation  denoted  by  S. 

The  variation  of  the  expression  is  therefore  S  Ax  dt.  Instead  of  —  mx, 
which  expresses  the  reaction  against  acceleration,  we  need  in  the 

present  case  —in Ax  to  express  the  reaction  against  the  abrupt  change 
of  velocity.  A  reaction  against  such  a  change  of  velocity  is,  of 
course,  to  be  regarded  as  infinite  in  intensity  in  comparison  with 
reactions  due  to  acceleration,  and  ordinary  forces  (such  as  cause 
acceleration)  may  be  neglected  in  comparison.  If,  however,  we 
conceive  of  the  system  as  acted  on  by  impulsive  forces  (i.e.,  such 
as  have  no  finite  duration,  but  are  capable  of  producing  finite  changes 
of  velocity,  and  are  measured  numerically  by  the  discontinuities  of 
velocity  which  they  produce  in  the  unit  of  mass),  these  forces  should 
be  combined  with  the  reactions  due  to  the  discontinuities  of  velocity 
in  the  general  formula  which  determines  these  discontinuities.  If 

the  impulsive  forces  are  specified  by  X,  Y,  Z,  the  formula  will  be 

[(X-mAx)SAx+(Y-'niAy)SAy+(Z--mAz)SAz)]^0.        (9) 
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The  reader  will  remark  the  strict  analogy  between  this  formula 
and  (6),  which  would  perhaps  be  more  clearly  exhibited  if  we  should 

write  -jT,  -—,  -T7  for  x,  y,  z  in  that  formula. 

But  these  formulae  may  be  established  in  a  much  more  direct 
manner.  For  the  formula  (8),  although  for  many  purposes  the  most 
convenient  expression  of  the  principle  of  virtual  velocities,  is  by  no 
means  the  most  convenient  for  our  present  purpose.  As  the  usual 
name  of  the  principle  implies,  it  holds  true  of  velocities  as  well 
as  of  displacements,  and  is  perhaps  more  simple  and  more  evident 

when  thus  applied.* 
If  we  wish  to  apply  the  principle,  thus  understood,  to  a  moving 

system  so  as  to  determine  whether  certain  changes  of  velocity 
specified  by  Asc,  Ay,  Az  are  those  which  the  system  will  really  receive 
at  a  given  instant,  the  velocities  to  be  multiplied  into  the  forces  and 
reactions  in  the  most  simple  application  of  the  principle  are  manifestly 
such  as  may  be  imagined  to  be  compounded  with  the  assumed 
velocities,  and  are  therefore  properly  specified  by  SAx,  SAy,  SAz. 

The  formula  (9)  may  therefore  be  regarded  as  the  most  direct  appli- 
cation of  the  principle  of  virtual  velocities  to  discontinuous  changes 

of  velocity  in  a  moving  system. 
In  the  case  of  a  system  in  which  there  are  no  discontinuous  changes 

of  velocity,  but  which  is  subject  to  forces  tending  to  produce  accelera- 
tions, when  we  wish  to  determine  whether  certain  accelerations, 

specified  by  x,  y,  z,  are  such  as  the  system  will  really  receive,  it  is 
evidently  necessary  to  consider  whether  any  possible  variation  of 
these  accelerations  is  favored  more  than  it  is  opposed  by  the  forces 

*Even  in  Statics,  the  principle  of  virtual  velocities,  as  distinguished  from  that  of 
virtual  displacements,  has  a  certain  advantage  in  respect  of  its  evidence.  The  demon- 

stration of  the  principle  in  the  first  section  of  the  Me"canique  Analytique,  if  velocities 
had  been  considered  instead  of  displacements,  would  not  have  been  exposed  to  an 

objection,  which  has  been  expressed  by  M.  Bertrand  in  the  following  words:  "On  a 
object^,  avec  raison,  a  cette  assertion  de  Lagrange  1'example  d'un  point  pesant  en 
^quilibre  au  sommet  le  plus  elev4  d'une  courbe ;  il  est  Evident  qu'un  defacement 

infiniment  petit  le  ferait  descendre,  et,  pourtant,  ce  de"plaeement  ne  se  produit  pas." 
(Mdcanique  Analytique,  troiseme  Edition,  tome  1,  page  22,  note  de  M.  Bertrand.)  The 
value  of  2  (the  height  of  the  point  above  a  horizontal  plane)  can  certainly  be  diminished 
by  a  displacement  of  the  point,  but  the  value  of  2  is  not  affected  by  any  velocity  given 
to  the  point. 

The  real  difficulty  in  the  consideration  of  displacements  is  that  they  are  only  possible 
at  a  time  subsequent  to  that  in  which  the  system  has  the  configuration  to  which  the 
question  of  equilibrium  relates.  We  may  make  the  interval  of  time  infinitely  short, 
but  it  will  always  be  difficult,  in  the  establishing  of  fundamental  principles,  to  treat  a 
conception  of  this  kind  (relating  to  what  is  possible  after  an  infinitesimal  interval  of 
time)  with  the  same  rigor  as  the  idea  of  velocities  or  accelerations,  which,  in  the  cases 
to  which  (9)  and  (6)  respectively  relate,  we  may  regard  as  communicated  immediately  to 
the  system. 
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and  reactions  of  the  system.  The  formula  (6)  expresses  a  criterion 

of  this  kind  in  the  most  simple  and  direct  manner.  If  we  regard 

a  force  as  a  tendency  to  increase  a  quantity  expressed  by  xt  the 

product  of  the  force  by  Sx  is  the  natural  measure  of  the  extent  to 

which  this  tendency  is  satisfied  by  an  arbitrary  variation  of  the 

accelerations.  The  principle  expressed  by  the  formula  may  not  be 

very  accurately  designated  by  the  words  virtual  velocities,  but  it 

certainly  does  not  differ  from  the  principle  of  virtual  velocities  (in 
the  stricter  sense  of  the  term),  more  than  this  differs  from  that  of 

virtual  displacements, — a  difference  so  slight  that  the  distinction  of 
the  names  is  rarely  insisted  upon,  and  that  it  is  often  very  difficult 
to  tell  which  form  of  the  principle  is  especially  intended,  even  when 

the  principle  is  enunciated  or  discussed  somewhat  at  length. 
But,  although  the  formulae  (6)  and  (9)  differ  so  little  from  the 

ordinary  formulae,  they  not  only  have  a  marked  advantage  in  respect 
of  precision  and  accuracy,  but  also  may  be  more  satisfactory  to  the 
mind,  in  that  the  changes  considered  (to  which  S  relates),  are  not  so 
violently  opposed  to  all  the  possibilities  of  the  case  as  are  those  which 

are  represented  by  the  variations  of  the  coordinates.*  Moreover,  as 
we  shall  see,  they  naturally  lead  to  various  important  laws  of  motion. 

Transformation  of  the  New  Formula. 
Let  us  now  consider  some  of  the  transformations  of  which  our 

general  formula  (6)  is  capable.  If  we  separate  the  terms  containing 

*  It  may  have  seemed  to  some  readers  of  the  Mfoanique  Analytique — a  work  of  which 
the  unity  of  method  is  one  of  the  most  striking  characteristics,  and  that  to  which  its 
universally  recognized  artistic  merit  is  in  great  measure  due — that  the  treatment  of 
dynamical  problems  in  that  work  is  not  entirely  analogous  to  the  treatment  of  statical 
problems.  The  statical  question,  whether  a  system  will  remain  in  equilibrium  in  a 
given  configuration,  is  determined  by  Lagrange  by  considering  all  possible  motions  of 
the  system  and  inquiring  whether  there  is  any  reason  why  the  system  should  take  any 
one  of  them.  A  similar  method  in  dynamics  would  be  based  upon  a  comparison  of  a 
proposed  motion  with  all  other  motions  of  which  the  system  is  capable  without  violating 
its  kinematical  conditions.  Instead  of  this,  Lagrange  virtually  reduces  the  dynamical 
problem  to  a  statical  one,  and  considers,  not  the  possible  variations  of  the  proposed 
motion,  but  the  motions  which  would  be  possible  if  the  system  were  at  rest.  This 
reduction  of  a  given  problem  to  a  simpler  one,  which  has  already  been  solved,  is  a 
method  which  has  its  advantages,  but  it  is  not  the  characteristic  method  of  the 
Mtcanique  Analytique.  That  which  most  distinguishes  the  plan  of  this  treatise  from 
the  usual  type  is  the  direct  application  of  the  general  principle  to  each  particular  case. 

The  point  is  perhaps  of  small  moment,  and  may  be  differently  regarded  by  others, 
but  it  is  mentioned  here  because  it  was  a  feeling  of  this  kind  (whether  justified  or  not) 
and  the  desire  to  express  the  formula  of  motion  by  means  of  a  maximum  or  minimum 
condition,  in  which  the  conditions  under  which  the  maximum  or  minimum  subsists 

should  be  such  as  the  problem  naturally  affords  (Gauss's  principle  of  least  constraint 
being  at  the"  time  unknown  to  the  present  writer,  and  the  conditions  under  which  the 
minimum  subsists  in  the  principle  of  least  action  being  such  that  that  is  hardly  satis- 

factory as  a  fundamental  principle),  which  led  to  the  formulae  proposed  in  this  paper. 



ON  THE  FUNDAMENTAL  FORMULA  OF  DYNAMICS.  9 

the  masses  of  the  particles  from  those  which  contain  the  forces,  we 

have        V(X8x+  Yoy+ZSz)-2[$mS(x*+y*+z*)]^0,  (10) 
or,  if  we  write  u  for  the  acceleration  of  a  particle, 

2(X8x+  YSy  +  ZS^-SZ^mu2)^.  (11) 

If,  instead  of  terms  of  the  form  XSx,  or  in  addition  to  such  terms, 

equation  (1)  had  contained  terms  of  the  form  PSp,  in  which  p  denotes 
any  quantity  determined  by  the  configuration  of  the  system,  it  is 
evident  that  these  would  give  terms  of  the  form  PSp  in  (6),  (10)  and 
(11).  For  the  considerations  which  justified  the  substitution  of  Sx, 
Sy,  Sz  for  Sx,  Sy,  Sz  in  the  usual  formula  were  in  no  respect  dependent 
upon  the  fact  that  x,  y,  z  denote  rectangular  coordinates,  but  would 
apply  equally  to  any  other  quantities  which  are  determined  by  the 
configuration  of  the  system. 

Hence,  if  the  moments  of  all  the  forces  of  the  system  are  represented 

by  the  sum  *(Pdp), 

the  general  formula  of  motion  may  be  written 

£(P<$p)-<52(im™2)^0  (12) 

If  the  forces  admit  of  a  force-function  V,  we  have 

or  (?[F-2(imu2)]^0.  (13) 
But  if  the  forces  are  determined  in  any  way  whatever  by  the 

configuration  and  velocities  of  the  system,  with  or  without  the  time, 

X,  F,  Z  and  P  will  be  unaffected  by  the  variation  denoted  by  S,  and 
we  may  write  the  formula  of  motion  in  the  form 

<S2(X£+F#+^-Jmu2)^0,  (14) 

or  <$[£(P£)-2(imo,2)]^0.  (15) 

If  the  forces  are  determined  by  the  configuration  alone,  or  the 

configuration  and  the  time,  SX  =  0,  SY=0,  SZ=0,  SP  =  Q,  and  the 
general  formula  may  be  written 

S       2(Xx+  Fy+^)-2(|mu2)  <  0,  (16) 

or  5(P^)-2(Jmt*«)^0.  (17) 

The  quantity  affected  by  S  in  any  one  of  the  last  five  formulas 
has  not  only  a  maximum  value,  but  absolutely  the  greatest  value 
consistent  with  the  constraints  of  the  system.  This  may  be  shown 

in  reference  to  (15)  by  giving  to  p,  x,  y,  z,  contained  explicitly 
or  implicitly  in  the  expression  affected  by  8,  any  possible  finite 
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increments  p\  x',  ijf.  z't  and  subtracting  the   original  value  of  the 
expression  from  the  value  thus  modified.     Now, 

But  since  p,  x'y  y't  z'  are  proportional  to  and  of  the  same  sign  with 
possible  values  of  Sp,  8x,  Sij,  8z,  we  have,  by  the  general  formula  of 

motion,  ^  (p-^  _  2  [m(&g'  +  yf  +  %#)]  <  Q. 

The  second  member  of  the  preceding  equation  is  therefore  negative. 

The  first  member  is  therefore  negative,  which  proves  the  proposition 

with  respect  to  (15).  The  demonstration  is  precisely  the  same  with 

respect  to  (13)  and  (14),  which  may  be  regarded  as  particular 
cases  of  (15). 

To  show  the  same  with  regard  to  (16)  and  (17),  we  have  only  to 

observe  that  the  quantities  affected  by  3  in  these  formulae  differ  from 

those  affected  by  the  same  symbol  in  (14)  and  (15)  only  by  the  terms 

^(Xx+Yy+Zz)    and     £(Pp),  ?• 

which  will  not  be  affected  by  any  change  in  the  accelerations  of 
the  system. 
When  the  forces  are  determined  by  the  configuration  (with  or 

without  the  time),  the  principle  may  be  enunciated  as  follows:  The 
accelerations  in  the  system  are  always  such  that  the  acceleration  of 

the  rate  of  work  done  by  the  forces  diminished  by  one-half  the  sum 
of  the  products  of  the  masses  of  the  particles  by  the  squares  of  their 
accelerations  has  the  greatest  possible  value. 

The  formula  (17),  although  in  appearance  less  simple  than  (15),  not 
only  is  more  easily  enunciated  in  words,  but  has  the  advantage  that 

the  quantity  -ji£(Pp)  is  entirely  determined  by  the  system  with  its (Jut 

forces  and  motions,  which  is  not  the  case  with  $(Pp).  The  value  of 
the  latter  expression  depends  upon  the  manner  in  which  we  choose  to 
represent  the  forces.  For  example,  if  a  material  point  is  revolving  in 
a  circle  under  the  influence  of  a  central  force,  we  may  write  either 

Xx+Yy+Zz  or  Rr  for  P'pt  R  and  r  denoting  respectively  the  force 
and  radius  vector.  Now  Xx+Yy+Zz  is  manifestly  unequal  to  Rr. 

But  Xx+Yy  +  Zz  is  equal  to  Rr,  and  -^-(Xx+Yy  +  Zz)  is  equal  to j  CLv 

B<*> It  may  not  be  without  interest  to  see  what  shape  our  general 
formulae  will  take  in  one  of  the  most  important  cases  of  forces 
dependent  upon  the  velocities.  If  a  body  which  can  be  treated  as  a 
point  is  moving  in  a  medium  which  presents  a  resistance  expressed  by 
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any  function  of  the  velocity,  the  terms  due  to  that  resistance  in  the 
general  formula  of  motion  may  be  expressed  in  the  form 

where  v  denotes  the  velocity  and  <j>(v)  the  resistance.     But 

xx  ,  yii  ,  zz     dv -+—  +  —  =  ̂ T  =  V. v       v      v     at 

The  terms  due  to  the  resistance  reduce,  therefore,  to 

or,  v, 

where  /  denotes  the  primitive  of  the  function  denoted  by  <f>. 

Discontinuous  Changes  of  Velocity.  —  Formula  (9),  which  relates  to 
discontinuous  changes  of  velocity,  is  capable  of  similar  transformations. 

If  we  set  wz  _  AX*  +  A?/2  +  A<£2, 
the  formula  reduces  to 

^2(XA*+YAy+ZA»-Jww8)^0,  (18) 
where  X,  Y,  Z  are  to  be  regarded  as  constant.  If  g(Pdp)  represents 
the  sum  of  the  moments  of  the  impulsive  forces,  and  we  regard  P  as 
constant,  we  have 

8  L^(PAp)  -  2(  Jmw2)]  ̂   0.  (19) 
The  expressions  affected  by  S  in  these  formulae  have  a  greater  value 
than  they  would  receive  from  any  other  changes  of  velocity  consistent 
with  the  constraints  of  the  system. 

Deduction  of  other  Properties  of  Motion. 

The  principles  which  have  been  established  furnish  a  convenient 
point  of  departure  for  the  demonstration  of  various  properties  of 
motion  relating  to  maxima  and  minima.  We  may  obtain  several 
such  properties  by  considering  how  the  accelerations  of  a  system,  at  a 
given  instant,  will  be  modified  by  changes  of  the  forces  or  of  the 
constraints  to  which  the  system  is  subject.  Let  us  suppose  that  the 

forces  X,  Y,  Z  of.  a,  system  receive  the  increments  X',  F',  Z\  in  con- 
sequence of  which,  and  of  certain  additional  constraints,  which  do  not 

produce  any  discontinuity  in  the  velocities,  the  components  of  accelera- 

tion x,  y,  z  receive  the  increments  x',  y',  %.  The  expression 

(20) 

will  be  the  greatest  possible  for  any  values  of  x',  y',  z'  consistent  with 
the  constraints.     But  this  expression  may  be  divided  into  three  parts, 

2[(Z+Z/)£+(F+  Y')y+(Z+Zyz-\m(x*+y*  +22)],        (21) 
2  [Xxf  +  Yij'  +  Zz'  -  m(xx'  +  yy'  +  2*0],  (22) 

and  2[Z'^+  Yy'  +Z'z'-  Jm(o;/2+f  2+£'2)].  (23) 
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The  first  part  is  evidently  constant  with  reference  to  variations  of 

x\  y',  z\  and  may,  therefore,  be  neglected.  With  respect  to  the  second 
part  we  observe  that  by  the  general  formula  of  the  motion  we  have 

for  all  values  of  Sx,  8y,  Sz  which  are  possible  and  reversible  before  the 

addition  of  the  new  constraints.  But  values  proportional  to  x\  y',  z', 
and  of  the  same  sign,  are  evidently  consistent  with  the  original  con- 

straints, and  when  the  components  of  acceleration  are  altered  to 

x+x,  y  +  y',  z  +  z',  variations  of  these  quantities  proportional  to  and 
of  the  same  sign  as  —x',  —y',  —z'  are  evidently  consistent  with  the 
original  constraints.  Now  if  these  latter  variations  were  not  possible 
before  the  accelerations  were  modified  by  the  addition  of  the  new  forces 
and  constraints,  it  must  be  that  some  constraint  was  then  operative 
which  afterwards  ceased  to  be  so.  The  expression  (22)  will,  therefore, 
be  equal  to  zero,  provided  only  that  all  the  constraints  which  were 
operative  before  the  addition  of  the  new  forces  and  constraints,  remain 

operative  afterwards.*  With  this  limitation,  therefore,  the  expression 
(23)  must  have  the  greatest  value  consistent  with  the  constraints. 
This  principle  may  be  expressed  without  reference  to  rectangular 

coordinates.  If  we  write  ur  for  the  relative  acceleration  due  to  the 
additional  forces  and  constraints,  we  have 

and  expression  (23)  reduces  to 

2(Z'tf+  Y'y'+Z'z'-^mu'*).  (24) 
If  the  sum  of  the  moments  of  the  additional  forces  which  are 

considered  is  represented  by  £(Qdq)  (the  q  representing  quantities 
determined  by  the  configuration  of  the  system),  we  have 

We  may  distinguish  the  values  of  -^f  immediately  before  and  imme- 
diately after  the  application  of  the  additional  forces  and  constraints 

by  the  expressions  q  and  q  +  q'.  With  this  understanding,  we  have, 
by  differentiation  of  the  preceding  equation, 

*  As  an  illustration  of  the  significance  of  this  limitation,  we  may  consider  the  con- 
dition afforded  by  the  impenetrability  of  two  bodies  in  contact.  Let  us  suppose  that  if 

subject  only  to  the  original  forces  and  constraints  they  would  continue  in  contact,  but 
that,  under  the  influence  of  the  additional  forces'and  constraints,  the  contact  will  cease. 
The  impenetrability  of  the  bodies  then  ceases  to  be  operative  as  a  constraint.  Such 
cases  form  an  exception  to  the  principle  which  is  to  be  established.  But  there  are  no 
exceptions  when  all  the  original  constraints  are  expressed  by  equations. 
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whence  it  appears  that  ?<(X'x'+  Yy'+Z'z)  differs  from  £(Qq')  only 
by  quantities  which  are  independent  of  the  relative  acceleration  due 
to  the  additional  forces  and  constraints.  It  follows  that  these  relative 
accelerations  are  such  as  to  make 

£(<2^)-2(imu'2)  (25) a  maximum. 
It  will  be  observed  that  the  condition  which  determines  these 

relative  accelerations  is  of  precisely  the  same  form  as  that  which 
determines  absolute  accelerations. 

An  important  case  is  that  in  which  new  constraints  are  added  but 
no  new  forces.  The  relative  accelerations  are  determined  in  this  case 

by  the  condition  that  2  (Jmu'2)  is  a  minimum.  In  any  case  of  motion, 
in  which  finite  forces  do  not  act  at  points,  lines  or  surfaces,  we  may 
first  calculate  the  accelerations  which  would  be  produced  if  there  were 
no  constraints,  and  then  determine  the  relative  accelerations  due  to 

the  constraints  by  the  condition  that  2(Jmu'2)  is  a  minimum.  This 
is  Gauss's  principle  of  least  constraint* 

Again,  in  any  case  of  motion,  we  may  suppose  u  to  denote  the 

acceleration  which  would  be  produced  by  the  constraints  alone,  and  u' 
the  relative  acceleration  produced  by  the  forces  ;  we  then  have 

whence,  if  we  write  u"  for  the  resultant  or  actual  acceleration, 

2  (  J  mu2)  +  2  Gmu'2)  =  2  (  Jmu"2). 
Moreover,  differentiating  (25),  we  obtain 

whence,  since  &q',  Sx',  Sy',  Sz'  may  have  values  proportional  to  q',  x', 

These  relations   are   similar  to  those   which   exist   with  respect  to 
vis  viva  and  impulsive  forces. 

Particular  Equations  of  Motion. 

From  the  general  formula  (12),  we  may  easily  obtain  particular 
equations  which  will  express  the  laws  of  motion  in  a  very  general 
form. 

Let  cta^,  da)2,  etc.  be  infinitesimals  (not  necessarily  complete 
differentials)  the  values  of  which  are  independent,  and  by  means 

*This  principle  may  be  derived  very  directly  from  the  general  formula  (6),  or  vice 
versa,  for  S  (\mu'z)  may  be  put  in  the  form 

the  variation  of  which,  with  the  sign  changed,  is  identical  with  the  first  member  of  (6). 
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of  which  we  can  perfectly  define  any  infinitesimal  change  in  the 
configuration  of  the  system  ;  and  let 

da)-,  dwn 

^w  »*=-dt'  etc- 
where  dwlt  du>z  are  to  be   determined  by  the   change   in  the   con- 

figuration in  the  interval  of  time  dt  ;  and  let 

etc- 
Also  let  i7 

It  is  evident  that  U  can  be  expressed  in  terms  of  cb1,  o>2,  etc., 

t^,  oig,  etc.,  and  the  quantities  which  express  the  configuration  of  the 
system,  and  that  (since  S  is  used  to  denote  a  variation  which  does 
not  affect  the  configuration  or  the  velocities), 

Moreover,  since  the  quantities  p  in  the  general  formula  are  entirely 
determined  by  the  configuration  of  the  system 

dp          dp  , 
p  =  -f-  a)!  +  -f-  ft>2  +  etc., 

where  -•*-  denotes  the  ratio  of  simultaneous  values  of  dp  and  dto,, 
OCOj  -. 

when  dco2,  etc.  are  equal  to  zero,  and  3-,  etc.  are  to  be  interpreted 

<Xft)2 

on  the  same  principle.     
Multiplying  

by  P,  and  taking  the  sum  with 
respect  to  the  several  forces,  we  have 

£  (Pp)  —  O^ 

where  Q=lP  Q=lP  etc. 

If  we  differentiate  with  respect  to  t,  and  take  the  variation  denoted 
by  S,  we  obtain .. 

w2  +  etc. The  general  formula  (12)  is  thus  reduced  to  the  form 

2  +  etc.  ̂   0.  (26) 

If  the  forces  have  a  potential  F,  we  may  write 

dV    dU\.         dV 
/<m 

etc.,  (27) 
2 

where  -,  —  denotes  the  ratio  of  dV  and  dot,  when  dw*,  etc.  have  the 

value  zero,  and  the  analogous  expressions  are  to  be  interpreted  on 
the  same  principle. 
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If  the  variations  Scolt  <Jo)2,  etc.  are  capable  both  of  positive  and  of 
negative  values,  we  must  have 

dUi    ~       dU    0 

3ZTQl'     ̂   =  Q2'  ̂   (28) 
dU    dV    dU    dV 

°r>  ;7^~  =  ;r~>    77^  =  j—>   etc-  (29> 

To  illustrate  the  use  of  these  equations  in  a  case  in  which  dw1, 
etc.  are  not  exact  differentials,  we  may  apply  them  to  the  problem  of 
the  rotation  of  a  rigid  body  of  which  one  point  is  fixed.  If  dw^  c?o>2, 
dw3  denote  infinitesimal  rotations  about  the  principal  axes  which  pass 
through  the  fixed  point,  Q1,  £22,  £23  will  denote  the  moments  of  the 
impressed  forces  about  these  axes,  and  the  value  of  U  will  be  given 

by  the  formula 

(a  +  b  +  c)(<*\  +  <%  +  wW-(<»l+<*l  +  ̂  

+  2(6  —  c)(b2w3cl}i  +  2(c  — 

where  a,  b,  and  c  are  constants,  a  +  b,  b  +  c,  c+a  being  the  moments 
of  inertia  about  the  three  axes.     Hence, 

dU    ,-,       .  -,  .  dU     . 

-r—  =  (a  —  b]  w^  +  (a  +  6)  o>3  ; 

and  the  equations  of  motion  are 

a+c 

(b  — 
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ON  THE  FUNDAMENTAL  FORMULA  OF  STATISTICAL 
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vol.  xxxin.  pp.  57,  58,  1884.J 

(ABSTRACT.) 

SUPPOSE  that  we  have  a  great  number  of  systems  which  consist 
of  material  points  and  are  identical  in  character,  but  different  in 
configuration  and  velocities,  and  in  which  the  forces  are  determined 
by  the  configuration  alone.  Let  the  number  of  systems  in  which  the 
coordinates  and  velocities  lie  severally  between  the  following  limits, 
viz.,  between 

xl  and 

yl   and z±   and 
x2   and 

etc., 

^  and 

2/i  and z^  and XQ  ano.  Xa  ~T~  ct/Xa  , 
etc., 

be  denoted  by 

L  dx1  dyl  dzl  dx2  etc.  dxt  dyl  dz^  dx2  etc. 

The  manner  in  which  the  quantity  L  varies  with  the  time  is  given 

by  the  equation 
— 

dt  ~       ̂ Ldx       dx 

where  t,  xlt  y1}  zl}  x%,  etc.,  xlt  ylt  zlt  x2,  etc.,  are  the  independent 
variables,  and  the  summation  relates  to  all  the  coordinates. 

The  object  of  the  paper  is  to  establish  this  proposition  (which  is  not 
claimed  as  new,  but  which  has  hardly  received  the  recognition  which 

it  deserves)  and  to  show  its  applications  to  astronomy  and  thermo- 
dynamics. 
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ELEMENTS  OF  VECTOR  ANALYSIS. 

[Privately  printed,  New  Haven,  pp.  17-50,  1881 ;  pp.  50-90,  1884.] 

(The  fundamental  principles  of  the  following  analysis  are  such  as  are  familiar  under 

a  slightly  different  form  to  students  of  quaternions.  The  manner  in  which  the  subject 
is  developed  is  somewhat  different  from  that  followed  in  treatises  on  quaternions,  since 
the  object  of  the  writer  does  not  require  any  use  of  the  conception  of  the  quaternion, 
being  simply  to  give  a  suitable  notation  for  those  relations  between  vectors,  or  between 
vectors  and  scalars,  which  seem  most  important,  and  which  lend  themselves  most  readily 

to  analytical  transformations,  and  to  explain  some  of  these  transformations.  As  a 

precedent  for  such  a  departure  from  quaternionic  usage,  Clifford's  Kinematic  may  be 
cited.  In  this  connection,  the  name  of  Grassmann  may  also  be  mentioned,  to  whose 

system  the  following  method  attaches  itself  in  some  respects  more  closely  than  to  that 
of  Hamilton.) 

CHAPTER  I. 

CONCERNING  THE  ALGEBRA  OF  VECTORS. 

Fundamental  Notions. 

1.  Definition. — If  anything  has  magnitude  and  direction,  its  mag- 
nitude and  direction  taken  together  constitute  what  is  called  a  vector- 

The  numerical  description  of  a  vector  requires  three  numbers,  but 
nothing  prevents  us  from  using  a  single  letter  for  its  symbolical 
designation.  An  algebra  or  analytical  method  in  which  a  single  letter 
or  other  expression  is  used  to  specify  a  vector  may  be  called  a  vector 
algebra  or  vector  analysis. 

Def. — As  distinguished  from  vectors  the  real  (positive  or  negative) 

quantities  of  ordinary  algebra  are  called  scalars* 
As  it  is  convenient  that  the  form  of  the  letter  should  indicate 

whether  a  vector  or  a  scalar  is  denoted,  we  shall  use  the  small  Greek 

letters  to  denote  vectors,  and  the  small  English  letters  to  denote 
scalars.  (The  three  letters,  i,  j,  k,  will  make  an  exception,  to  be 
mentioned  more  particularly  hereafter.  Moreover,  IT  will  be  used  in 
its  usual  scalar  sense,  to  denote  the  ratio  of  the  circumference  of 
a  circle  to  its  diameter.) 

*  The  imaginaries  of  ordinary  algebra  may  be  called  biscalara,  and  that  which  cor- 
responds to  them  in  the  theory  of  vectors,  bivectors.     But  we  shall  have  no  occasion  to 

consider  either  of  these.     [See,  however,  footnote  on  p.  84.] 
G.  II.  B 
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2.  Def. — Vectors  are  said  to  be  equal  when  they  are  the  same  both 
in  direction  and  in  magnitude.      This   equality  is   denoted  by  the 
ordinary  sign,  as  a  =  /3.     The  reader  will  observe  that  this  vector 
equation  is  the  equivalent  of  three  scalar  equations. 

A  vector  is  said  to  be  equal  to  zero,  when  its  magnitude  is  zero. 
Such  vectors  may  be  set  equal  to  one  another,  irrespectively  of  any 
considerations  relating  to  direction. 

3.  Perhaps  the  most  simple  example  of  a  vector  is  afforded  by  a 
directed  straight  line,  as  the  line  drawn  from  A  to  B.     We  may  use 
the  notation  AB  to  denote  this  line  as  a  vector,  i.e.,  to  denote  its 

length  and  direction  without  regard  to  its  position  in  other  respects. 
The  points  A  and  B  may  be  distinguished  as  the  origin  and  the 
terminus  of  the  vector.     Since  any  magnitude  may  be  represented  by 
a  length,  any  vector  may  be  represented  by  a  directed  line;  and  it 
will  often  be  convenient  to  use  language  relating  to  vectors,  which 
refers  to  them  as  thus  represented. 

Reversal  of  Direction,  Scalar  Multiplication  and  Division. 

4.  The  negative  sign  (  —  )  reverses  the  direction  of  a  vector.    (Some- 
times the  sign  +  may  be  used  to  call  attention  to  the  fact  that  the 

vector  has  not  the  negative  sign.) 
Def. — A  vector  is  said  to  be  multiplied  or  divided  by  a  scalar 

when  its  magnitude  is  multiplied  or  divided  by  the  numerical  value 
of  the  scalar  and  its  direction  is  either  unchanged  or  reversed 
according  as  the  scalar  is  positive  or  negative.  These  operations 
are  represented  by  the  same  methods  as  multiplication  and  division 
in  algebra,  and  are  to  be  regarded  as  substantially  identical  with 
them.  The  terms  scalar  multiplication  and  scalar  division  are  used 
to  denote  multiplication  and  division  by  scalars,  whether  the  quantity 
multiplied  or  divided  is  a  scalar  or  a  vector. 

5.  Def. — A  unit  vector  is  a  vector  of  which  the  magnitude  is  unity. 
Any  vector  may  be  regarded  as  the  product  of  a  positive  scalar 

(the  magnitude  of  the  vector)  and  a  unit  vector. 
The  notation  a0  may  be  used  to  denote  the  magnitude  of  the 

vector  a. 

Addition  and  Subtraction  of  Vectors. 

6.  Def. — The  sum  of  the  vectors  a,  /3,  etc.  (written  a+/3+etc.)  is 
the  vector  found  by  the  following  process.     Assuming  any  point  A, 
we   determine   successively   the    points   B,   C,   etc.,   so  that   AB  =  a, 
BC  =  /3,  etc.     The  vector  drawn  from  A  to  the  last  point  thus  deter- 

mined is  the  sum  required.     This  is  sometimes  called  the  geometrical 
sum,  to  distinguish  it  from  an  algebraic  sum  or  an  arithmetical  sum. 
It  is  also  called  the  resultant,  and  a,  /3,  etc.  are  called  the  components. 
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When  the  vectors  to  be  added  are  all  parallel  to  the  same  straight  line, 
geometrical  addition  reduces  to  algebraic  ;  when  they  have  all  the  same 
direction,  geometrical  addition  like  algebraic  reduces  to  arithmetical. 

It  may  easily  be  shown  that  the  value  of  a  sum  is  not  affected 
by  changing  the  order  of  two  consecutive  terms,  and  therefore  that 
it  is  not  affected  by  any  change  in  the  order  of  the  terms.  Again,  it 
is  evident  from  the  definition  that  the  value  of  a  sum  is  not  altered 

by  uniting  any  of  its  terms  in  brackets,  as  a  +  [/3+y]  +  etc.,  which  is 
in  effect  to  substitute  the  sum  of  the  terms  enclosed  for  the  terms 

themselves  among  the  vectors  to  be  added.  In  other  words,  the 
commutative  and  associative  principles  of  arithmetical  and  algebraic 
addition  hold  true  of  geometrical  addition. 

7.  Def.  —  A  vector  is  said  to  be  subtracted  when  it  is  added  after 
reversal  of  direction.      This  is  indicated  by  the  use  of  the  sign  — 
instead  of  +  . 

8.  It  is  easily  shown  that  the  distributive  principle  of  arithmetical 
and  algebraic  multiplication  applies  to  the  multiplication  of  sums  of 
vectors  by  scalars  or  sums  of  scalars,  i.e., 

+  m/3+  n/3  +  etc. 

+  etc. 
9.  Vector  Equations.  —  If   we  have  equations  between   sums  and 

differences  of  vectors,  we  may  transpose  terms  in  them,  multiply  or 
divide  by  any  scalar,  and  add  or  subtract  the  equations,  precisely  as 
in  the  case  of  the  equations  of  ordinary  algebra.     Hence,  if  we  have 
several  such  equations  containing  known  and  unknown  vectors,  the 
processes  of  elimination  and  reduction  by  which  the  unknown  vectors 
may  be  expressed  in  terms  of  the  known  are  precisely  the  same,  and 
subject  to  the  same  limitations,  as  if  the  letters  representing  vectors 
represented  scalars.     This  will  be  evident  if  we  consider  that  in  the 
multiplications  incident  to  elimination  in  the  supposed  scalar  equations 
the   multipliers  are  the  coefficients  of  the   unknown   quantities,  or 
functions  of  these  coefficients,  and  that  such  multiplications  may  be 
applied  to  the  vector  equations,  since  the  coefficients  are  scalars. 

10.  Linear  relation  of  four  vectors,  Coordinates.  —  If  a,  /3,  and  y 
are  any  given  vectors  not  parallel  to  the  same  plane,  any  other  vector 
p  may  be  expressed  in  the  form 

If  a,  /3,  and  y  are  unit  vectors,  a,  b,  and  c  are  the  ordinary  scalar 

components  of  p  parallel  to  a,  /3,  and  y.  If  p  =  OP,  (a,  /3,  y  being 
unit  vectors),  a,  b,  and  c  are  the  cartesian  coordinates  of  the  point  P 
referred  to  axes  through  O  parallel  to  a,  /3,  and  y.  When  the  values 
of  these  scalars  are  given,  p  is  said  to  be  given  in  terms  of  a,  /3,  and  y. 
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It  is  generally  in  this  way  that  the  value  of  a  vector  is  specified,  viz., 
in  terms  of  three  known  vectors.  For  such  purposes  of  reference,  a 

system  of  three  mutually  perpendicular  vectors  has  certain  evident 
advantages. 

11.  Normal  systems  of  unit  vectors.  —  The  letters  i,  j,  k  are  appro- 
priated to  the  designation  of  a  normal  system  of  unit  vectors,  i.e., 

three  unit  vectors,  each  of  which  is  at  right  angles  to  the  other  two 
and  determined  in  direction  by  them  in  a  perfectly  definite  manner. 

We  shall  always  suppose  that  k  is  on  the  side  of  the  i-j  plane  on 
which   a   rotation   from  i  to  j   (through   one   right   angle)   appears 
counter-clockwise.     In  other  words,  the  directions  of  i,  j,  and  k  are 

to  be  so  determined  that  if  they  be  turned  (remaining  rigidly  con- 
nected with  each  other)  so  that  i  points  to  the  east,  and  j  to  the  north, 

k  will  point  upward.     When  rectangular  axes  of  X,  Y,  and  Z  are 
employed,  their  directions  will  be  conformed  to  a  similar  condition, 
and  i,  j,  k  (when  the  contrary  is  not  stated)  will  be  supposed  parallel 
to  these  axes  respectively.     We  may  have  occasion  to  use  more  than 
one  such  system  of  unit  vectors,  just  as  we  may  use  more  than  one 
system  of  coordinate  axes.     In  such  cases,  the  different  systems  may 
be  distinguished  by  accents  or  otherwise. 

12.  Numerical  computation  of  a  geometrical  sum.  —  If 

etc., 

then 

p  +  0-+  etc.  =  (a  +  a'  +  etc.)  a  +  (b  +  b'  +  etc.)  /3  +  (c  +  c'  +  etc.)  y, 
i.e.,  the  coefficients  by  which  a  geometrical  sum  is  expressed  in  terms 
of  three  vectors  are  the  sums  of  the  coefficients  by  which  the  separate 
terms  of  the  geometrical  sum  are  expressed  in  terms  of  the  same 
three  vectors. 

Direct  and  Skew  Products  of  Vectors. 

13.  Def.  —  The  direct  product  of  a  and  ft  (written  a.  ft)  is  the  scalar 
quantity  obtained  by  multiplying  the  product  of  their  magnitudes 
by  the  cosine  of  the  angle  made  by  their  directions. 

14.  Def.  —  The  skew  product  of  a  and  ft  (written  ax  ft)  is  a  vector 
function  of  a  and  ft.     Its  magnitude  is  obtained  by  multiplying  the 
product  of  the  magnitudes  of  a  and  ft  by  the  sine  of  the  angle  made 
by  their  directions.     Its  direction  is  at  right  angles  to  a  and  ft,  and 
on  that  side  of  the  plane  containing  a  and  ft  (supposed  drawn  from 
a  common  origin)  on  which  a  rotation  from  a  to  ft  through  an  arc 

of  less  than  180°  appears  counter-clockwise. 
The  direction  of  ax  ft  may  also  be  defined  as  that  in  which  an 

ordinary  screw  advances  as  it  turns  so  as  to  carry  a  toward  ft. 
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Again,  if  a  be  directed  toward  the  east,  and  ft  lie  in  the  same 
horizontal  plane  and  on  the  north  side  of  a,  ax  ft  will  be  directed 
upward. 

15.  It  is  evident  from  the  preceding  definitions  that 

a.ft  =  ft.a,     and     axft=—ftxa. 

16.  Moreover,  [na].ft  =  a.[nft]  =  n[a.ft], 

and  [na]xft  =  ax[nft]  =  n[axft]. 

The  brackets  may  therefore  be  omitted  in  such  expressions. 
17.  From  the  definitions  of  No.  11  it  appears  that 

i.i=j.j  =  k.k=l, 

ij  =j.i  =  i.k  =  k.i=j.  k  =  k.j  ==•  0, 
Q,       kxk=0, 

jxi=—k,    kxj=—i,    ixk=—j. 

18.  If  we  resolve  ft  into  two  components  ft'  and  ft",  of  which  the 
first  is  parallel  and  the  second  perpendicular  to  a,  we  shall  have 

a.ft  =  a.ft'  and  axft  =  axft". 

19.  a.[/3+y]  =  a./3  +  a.y   and   ax[ft  +  y]  =  axft  +  aXy. 

To  prove  this,  let  <r  =  /3+y,  and  resolve  each  of  the  vectors  ft,  y,  <r 
into  two  components,  one  parallel  and  the  other  perpendicular  to  a. 

Let  these  be  ft',  ft",  y,  y",  <r',  a-".  Then  the  equations  to  be  proved 
will  reduce  by  the  last  section  to 

a.<r'  =  a.ft'-\-a.y     and    aX(r"  =  axftrr  +  aXy". 
Now  since  &  =  ft+y  we  may  form  a  triangle  in  space,  the  sides  of 
which  shall  be  ft,  y,  and  <r.  Projecting  this  on  a  plane  perpendicular 

to  a,  we  obtain  a  triangle  having  the  sides  ft",  y",  and  <r",  which 
affords  the  relation  <r"  =  ftr'  +  y".  If  we  pass  planes  perpendicular 
to  a  through  the  vertices  of  the  first  triangle,  they  will  give  on  a 

line  parallel  to  a  segments  equal  to  ft',  y',  &'.  Thus  we  obtain  the 
relation  a-'  =  ft'+y.  Therefore  a.(r'  =  a.ft'+a.y,  since  all  the  cosines 
involved  in  these  products  are  equal  to  unity.  Moreover,  if  a  is  a 

unit  vector,  we  shall  evidently  have  aX(rn  =  axft"  +  aXy",  since  the 
effect  of  the  skew  multiplication  by  a  upon  vectors  in  a  plane 

perpendicular  to  a  is  simply  to  rotate  them  all  90°  in  that  plane. 
But  any  case  may  be  reduced  to  this  by  dividing  both  sides  of  the 
equation  to  be  proved  by  the  magnitude  of  a.  The  propositions 
are  therefore  proved. 

20.  Hence, 
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and,  in  general,  direct  and  skew  products  of  sums  of  vectors  may  be 

expanded  precisely  as  the  products  of  sums  in  algebra,  except  that 

in  skew  products  the  order  of  the  factors  must  not  be  changed 

without  compensation  in  the  sign  of  the  term.  If  any  of  the  terms 
in  the  factors  have  negative  signs,  the  signs  of  the  expanded  product 

(when  there  is  no  change  in  the  order  of  the  factors)  will  be  deter- 
mined by  the  same  rules  as  in  algebra.  It  is  on  account  of  this 

analogy  with  algebraic  products  that  these  functions  of  vectors  are 

called  products  and  that  other  terms  relating  to  multiplication  are 

applied  to  them. 
21.  Numerical  calculation  of  direct  and  skew  products.  —  The 

properties  demonstrated  in  the  last  two  paragraphs  (which  may  be 
briefly  expressed  by  saying  that  the  operations  of  direct  and  skew 

multiplication  are  distributive)  afford  the  rule  for  the  numerical 
calculation  of  a  direct  product,  or  of  the  components  of  a  skew 
product,  when  the  rectangular  components  of  the  factors  are  given 
numerically.  In  fact,  if 

and     3  =  x 

and  ax/5  =  (yz'  -  zy')i  +  (zxf  -  xz')j  +  (xy'  -  yx')k. 
22.  Representation  of  the  area  of  a  parallelogram  by  a  skew 

product.  —  It  will  be  easily  seen  that  ax/3  represents  in  magnitude 
the  area  of  the  parallelogram  of  which  a  and  /3  (supposed  drawn 

from  a  common  origin)  are  the  sides,  and  that  it  represents  in  direc- 
tion the  normal  to  the  plane  of  the  parallelogram  on  the  side  on 

which  the  rotation  from  a  toward  /3  appears  counter-clockwise. 
23.  Representation  of  the  volume  of  a  parallelopiped  by  a  triple 

product.  —  It  will  also  be  seen  that  aX/3.y*  represents  in  numerical 
value  the  volume  of  the  parallelopiped  of  which  a,  /3,  and  y  (supposed 
drawn  from  a  common  origin)  are  the  edges,  and  that  the  value  of 
the  expression  is  positive  or  negative  according  as  y  lies  on  the  side 
of  the  plane  of  a  and  /3  on  which  the  rotation  from  a  to  /3  appears 

counter-clockwise,  or  on  the  opposite  side. 
24.  Hence, 

=  /3.yXa=  —  /3xa.y=  —  yX/3.a=  —  aXy./3 

=  —  y./3xa=  —  a.yX/3=  —  /3.aXy. 

It  will  be  observed  that  all  the  products  of  this  type,  which  can  be 
made  with  three  given  vectors,  are  the  same  in  numerical  value,  and 

*  Since  the  sign  x  is  only  used  between  vectors,  the  skew  multiplication  in  expressions 
of  this  kind  is  evidently  to  be  performed  first.  In  other  words,  the  above  expression 

must  be  interpreted  as  [ax/3].-y. 
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that  any  two  such  products  are  of  the  same  or  opposite  character  in 

respect  to  sign,  according  as  the  cyclic  order  of  the  letters  is  the  same 

or  different.  The  product  vanishes  when  two  of  the  vectors  are 
parallel  to  the  same  line,  or  when  the  three  are  parallel  to  the  same 

plane. 
This  kind  of  product  may  be  called  the  scalar  product  of  the  three 

vectors.  There  are  two  other  kinds  of  products  of  three  vectors,  both 

of  which  are  vectors,  viz.,  products  of  the  type  (a./3)y  or  y(a./3),  and 

products  of  the  type  ax[/8xy]  or  [yx/3]xa. 
25. 

From  these  equations,  which  follow  immediately  from  those  of 

No.  17,  the  propositions  of  the  last  section  might  have  been  derived, 

viz.,  by  substituting  for  a,  /3,  and  y,  respectively,  expressions  of  the 

form  xi  +  yj+zk,  x'i+y'j+z'k,  and  x"i+y"j+z"k.*  Such  a  method, 
which  may  be  called  expansion  in  terms  of  i,  j,  and  k,  will  on  many 

occasions  afford  very  simple,  although  perhaps  lengthy,  demonstrations. 

26.  Triple  products  containing  only  two  different  letters.  —  The 
significance  and  the  relations  of  (a.a)/3,  (a./3)a,  and  ax[aX/3]  will 
be  most  evident,  if  we  consider  /3  as  made  up  of  two  components, 

ft  and  /3",  respectively  parallel  and  perpendicular  to  a.  Then 

(a  .  /5)  a  =  (a  .  (3')  a  =  (a  .  a)/3', 

Hence,  ax[aX/3]  =  (a./3)a  —  (a.a)/3. 

27.  General  relation  of  the  vector  products  of  three  factors.  —  In  the 
triple  product  ax[/3xy]  we  may  set 

a  =  Z/3  +  ray  +  71/3  X  y, 

unless  /3  and  y  have  the  same  direction.     Then 

But  £/3.y  +  my.y  =  a.y,   and   £/ 

Therefore  ax[^Xy]  =  (a.y)/3  —  (a./3)y, 

which  is  evidently  true,  when  /3  and  y  have  the  same  directions.     It 
may  also  be  written 

*  The  student  who  is  familiar  with  the  nature  of  determinants  will  not  fail  to  observe 
that  the  triple  product  a.pxy  is  the  determinant  formed  by  the  nine  rectangular 
components  of  a,  /3,  and  7,  nor  that  the  rectangular  components  of  ax/S  are  determinants 
of  the  second  order  formed  from  the  components  of  a  and  /S.  (See  the  last  equation  of 
No.  21.) 
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28.  This  principle  may  be  used  in  the  transformation  of  more 
complex  products.  It  will  be  observed  that  its  application  will 
always  simultaneously  eliminate,  or  introduce,  two  signs  of  skew 
multiplication. 

The  student  will  easily  prove  the  following  identical  equations, 
which,  although  of  considerable  importance,  are  here  given  principally 
as  exercises  in  the  application  of  the  preceding  formulae. 

29. 

30. 

31. 

32. 

33. 

34.  [aX/3].[/3xy]x[yXa]  =  ( 

35.  The  student  will  also  easily  convince  himself  that  a  product 
formed  of  any  number  of  letters  (representing  vectors)  combined  in 
any  possible  way  by  scalar,  direct,  and  skew  multiplications  may  be 
reduced  by  the  principles  of  Nos.  24  and  27  to  a  sum  of  products, 
each  of  which  consists  of  scalar  factors  of  the  forms  a./3  and  a./3xy> 
with  a  single  vector  factor  of  the  form  a  or  ax/3,  when  the  original 
product  is  a  vector. 

36.  Elimination  of  scalars  from  vector  equations.  —  It  has  already 
been  observed  that  the  elimination  of  vectors  from  equations  of  the 
form 

is  performed  by  the  same  rule  as  the  eliminations  of  ordinary  algebra. 
(See  No.  9.)  But  the  elimination  of  scalars  from  such  equations  is  at 
least  formally  different.  Since  a  single  vector  equation  is  the  equi- 

valent of  three  scalar  equations,  we  must  be  able  to  deduce  from  such 
an  equation  a  scalar  equation  from  which  two  of  the  scalars  which 
appear  in  the  original  vector  equation  have  been  eliminated.  We 
shall  see  how  this  may  be  done,  if  we  consider  the  scalar  equation 

which  is  derived  from  the  above  vector  equation  by  direct  multipli- 
cation by  a  vector  X.  We  may  regard  the  original  equation  as  the 

equivalent  of  the  three  scalar  equations  obtained  by  substituting  for 
a,  /?,  y,  S,  etc.,  their  X-,  Y-,  and  Z-components.  The  second  equation 
would  be  derived  from  these  by  multiplying  them  respectively  by 
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the  X-,  Y-,  and  Z-components  of  X  and  adding.  Hence  the  second 
equation  may  be  regarded  as  the  most  general  form  of  a  scalar  equa- 

tion of  the  first  degree  in  a,  6,  c,  d,  etc.,  which  can  be  derived  from 
the  original  vector  equation  or  its  equivalent  three  scalar  equations. 
If  we  wish  to  have  two  of  the  scalars,  as  b  and  c,  disappear,  we  have 
only  to  choose  for  X  a  vector  perpendicular  to  /3  and  y.  Such  a 
vector  is  /3xy.  We  thus  obtain 

37.  Relations  of  fowr  vectors.  —  By  this  method  of  elimination  we 
may  find  the  values  of  the  coefficients  a,  6,  and  c  in  the  equation 

p  =  oa  +  6/3+cy,  (1) 

by  which  any  vector  p  is  expressed  in  terms  of  three  others.     (See 
No.  10.)     If  we  multiply  directly  by  /3xy,  yXa,  and  aX/3,  we  obtain 

p./3xy  =  aa./3xy,     p.yXa  =  6/3.yXa,     p.aX/3  =  cy.aX/3;        (2) 
whence 

- 

By  substitution  of  these  values,  we  obtain  the  identical  equation, 

(a./3xy)p  =  (p./3xy)a  +  (/o.yXa)  ft  +  (p.aX/3)y.  (4) 

(Compare  No.  31.)     If  we  wish  the  four  vectors  to  appear  symmetri- 
cally in  the  equation  we  may  write 

(a.£xy)p  -  (0.yxp)a  +  (y.pXa)/3  -  (p.ax£)y  =  0.  (5) 

If  we  wish  to  express  p  as  a  sum  of  vectors  having  directions 
perpendicular  to  the  planes  of  a  and  /3,  of  /3  and  y,  and  of  y  and  a, 
we  may  write 

p  =  e/3xy+/yXa+#ax/3.  (6) 

To  obtain  the  values  of  e,  f,  g,  we  multiply  directly  by  a,  by  /8,  and 
by  y.     This  gives 

p-a       f-  p-P      „_ -  ->        ~ 

Substituting  these  values  we  obtain  the  identical  equation 

(u./3xy)  p  =  (p.a)  /3xy  +  (p./3)  yXa  +  (p.y)  ax/8.  (8) 
(Compare  No.  32.) 

38.  Reciprocal  systems  of  vectors.  —  The  results  of  the  preceding 
section  may  be  more  compactly  expressed  if  we  use  the  abbreviations 

_.  _. 
"3    P  ~'         ~ 

The  identical  equations  (4)  and  (8)  of  the  preceding  number  thus 
become 

(2) 
(3) 
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We  may  infer  from  the  similarity  of  these  equations  that  the  relations 

of  a,  /3,  y,  and  a',  /3',  y  are  reciprocal,  a  proposition  which  is  easily 
proved  directly.  For  the  equations 

Q_    yxcc  ax *  &  .  ?>  P  —  ~&  'TT  ?>   y  —  ~  /v  .  £>/ a.pxy  p.yXa  y.aXp 

are  satisfied  identically  by  the  substitution  of  the  values  of  a',  /3', 

and  y'  given  in  equations  (1).  (See  Nos.  31  and  34.) 
Def.  —  It  will  be  convenient  to  use  the  term  reciprocal  to  designate 

these  relations,  i.e.,  we  shall  say  that  three  vectors  are  reciprocals  of 
three  others,  when  they  satisfy  relations  similar  to  those  expressed  in 
equations  (1)  or  (4). 

With  this  understanding  we  may  say  :  — 
The  coefficients  by  which  any  vector  is  expressed  in  terms  of 

three  other  vectors  are  the  direct  products  of  that  vector  with  the 
reciprocals  of  the  three. 
Among  other  relations  which  are  satisfied  by  reciprocal  systems 

of  vectors  are  the  following: 

a./3'  =  0,     a.y'  =  0,     /3.a'  =  0,     /3.y'  =  0,     y.a'  =  0,     y./3'  =  0.      (5) 
These  nine   equations  may   be   regarded  as   defining   the   relations 

between  a,  /3,  y  and  a,  /3',  y'  as  reciprocals. 

(a./3xy)(a'./3'xy)=l.  (6) (See  No.  34.)  ,  ,  Q    Q,  ,          ,     A 
aXa  +/3x/3+yXy  =0.  (7) 

(See  No.  29.) 

A  system  of  three  mutually  perpendicular  unit  vectors  is  reciprocal 
to  itself,  and  only  such  a  system. 

The  identical  equation 

P  =  (p-i)i+(p-j)j+(p.k)k  (8) 

may  be  regarded  as  a  particular  case  of  equation  (2). 

The  system  reciprocal  to  aX/3,  /3xy,  yXa  is 

a'x/3',    /3'xy',    y'xa', 
or  a  /3  y 

a./3xy'     a./3xy'     a./3xy* 
38a.  If  we  multiply  the  identical  equation  (8)  of  No.  37  by  <rXr, 

we  obtain  the  equation 

'.cra.T — y.ra.o-)  +  y./o(a.<7/3.T  — a.r/3.0-), 

which  is  therefore  identical.     But  this  equation  cannot  subsist  identi- 
cally, unless 
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is  also  an  identical  equation.  (The  reader  will  observe  that  in  each 

of  these  equations  the  second  member  may  be  expressed  as  a  deter- 
minant.) 

From  these  transformations,  with  those  already  given,  it  follows 
that  a  product  formed  of  any  number  of  letters  (representing  vectors 
and  scalars),  combined  in  any  possible  way  by  scalar,  direct,  and  skew 

multiplications,  may  be  reduced  to  a  sum  of  products,  containing 
each  the  sign  x  once  and  only  once,  when  the  original  product 
contains  it  an  odd  number  of  times,  or  entirely  free  from  the  sign, 
when  the  original  product  contains  it  an  even  number  of  timea 

39.  Scalar  equations  of  the  first  degree  with  respect  to  an  unknown 

vector.  —  It  is  easily  shown  that  any  scalar  equation  of  the  first 
degree  with  respect  to  an  unknown  vector  p,  in  which  all  the  other 
quantities  are  known,  may  be  reduced  to  the  form 

p.a  =  a, 
in  which  a  and  a  are  known.  (See  No.  35.)  Three  such  equations 
will  afford  the  value  of  p  (by  equation  (8)  of  No.  37,  or  equation  (3) 
of  No.  38),  which  may  be  used  to  eliminate  p  from  any  other  equation 
either  scalar  or  vector. 

When  we  have  four  scalar  equations  of  the  first  degree  with 
respect  to  p,  the  elimination  may  be  performed  most  symmetrically 
by  substituting  the  values  of  p.  a,  etc.,  in  the  equation 

which  is  obtained  from  equation  (8)  of  No.  37  by  multiplying 
directly  by  S.  It  may  also  be  obtained  from  equation  (5)  of  No.  37 
by  writing  S  for  p,  and  then  multiplying  directly  by  p. 

40.  Solution  of  a  vector  equation  of  the  first  degree  with  respect  to 

the  unknown  vector.  —  It  is  now1  easy  to  solve  an  equation  of  the form 
p),  (1) 

where  a,  /3,  y,  8,  X,  yu,  and  v  represent  known  vectors.     Multiplying 
directly  by  /3xy,  by  yxa,  and  by  ax/5,  we  obtain 

or 

where  a',  {¥,  y   are  the  reciprocals  of  a,  ft,  y.     Substituting  these 
values  in  the  identical  equation 

in  which  X',  /z',  y  are  the  reciprocals  of  X,  /z,  v  (see  No.  38),  we  have 

p  =  XV-<5)4y(/3'.<$)+»''(y'.<$),  (2) 
which  is  the  solution  required. 
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It  results  from  the  principle  stated  in  No.  35,  that  any  vector 
equation  of  the  first  degree  with  respect  to  p  may  be  reduced  to  the 

But  ap  =  d\'(\.p) + afJL'(im.p) + av'(v.p), 

where  X',  p!t  v  represent,  as  before,  the  reciprocals  of  X,  /*,  v.  By 
substitution  of  these  values  the  equation  is  reduced  to  the  form  of 

equation  (1),  which  may  therefore  be  regarded  as  the  most  general 
form  of  a  vector  equation  of  the  first  degree  with  respect  to  p. 

41.  Relations  between  two  normal  systems  of  unit  vectors. — If 

i,  j,  k,  and  i',  j',  k'  are  two  normal  systems  of  unit  vectors,  we  have 

a) 

and 

(2) 

(See  equation  (8)  of  No.  38.) 
The  nine  coefficients  in  these  equations  are  evidently  the  cosines 

of  the  nine  angles  made  by  a  vector  of  one  system  with  a  vector  of 
the  other  system.  The  principal  relations  of  these  cosines  are  easily 
deduced.  By  direct  multiplication  of  each  of  the  preceding  equations 
with  itself,  we  obtain  six  equations  of  the  type 

By  direct  multiplication  of  equations  (1)  with  each  other,  and  of 
equations  (2)  with  each  other,  we  obtain  six  of  the  type 

By  skew  multiplication  of  equations  (1)  with  each  other,  we  obtain 
three  of  the  type 

Comparing  these  three  equations  with  the  original  three,  we  obtain 
nine  of  the  type 

').  (5) 

Finally,  if  we  equate  the  scalar  product  of  the   three  right  hand 
members  of  (1)  with  that  of  the  three  left  hand  members,  we  obtain 

^./)^!.        (6) 

Equations  (1)  and  (2)  (if  the  expressions  in  the  parentheses  are 
supposed  replaced  by  numerical  values)  represent  the  linear  relations 
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which  subsist  between  one  vector  of  one  system  and  the  three  vectors 
of  the  other  system.  If  we  desire  to  express  the  similar  relations 
which  subsist  between  two  vectors  of  one  system  and  two  of  the  other, 
we  may  take  the  skew  products  of  equations  (1)  with  equations  (2), 
after  transposing  all  terms  in  the  latter.  This  will  afford  nine 

equations  of  the  type 

(i.j')K-(i.k')j'  =  (k.i')j-(j.i')k.  (7) 
We  may  divide  an  equation  by  an  indeterminate  direct  factor.    [MS.  note  by  author.] 

CHAPTER  II. 

CONCERNING  THE  DIFFERENTIAL  AND  INTEGRAL  CALCULUS   OF  VECTORS. 

42.  Differentials  of  vectors.  —  The  differential  of  a  vector  is  the 
geometrical  difference  of  two  values  of  that  vector  which  differ 
infinitely  little.  It  is  itself  a  vector,  and  may  make  any  angle  with 
the  vector  differentiated.  It  is  expressed  by  the  same  sign  (d)  as  the 
differentials  of  ordinary  analysis. 

With  reference  to  any  fixed  axes,  the  components  of  the  differential 
of  a  vector  are  manifestly  equal  to  the  differentials  of  the  components 
of  the  vector,  i.e.,  if  a,  /3,  and  y  are  fixed  unit  vectors,  and 

dp  =  dx  a  +  dy  ft  +  dz  y  . 

43.  Differential  of  a  function  of  several  variables.  —  The  differential 
of  a  vector  or  scalar  function  of  any  number  of  vector  or  scalar 
variables  is  evidently  the  sum  (geometrical  or  algebraic,  according  as 
the  function  is  vector  or  scalar)  of  the  differentials  of  the  function 
due  to  the  separate  variation  of  the  several  variables. 

44.  Differential  of  a  product.  —  The  differential  of  a  product  of  any 
kind  due  to  the  variation  of  a  single  factor  is  obtained  by  prefixing 
the  sign  of  differentiation  to  that  factor  in  the   product.     This  is 
evidently  true  of  differentials,  since  it  will  hold  true  even  of  finite 
differences. 

45.  From    these    principles    we    obtain    the    following    identical 
equations  : (1) 

=  dna-\-  nda,  (2) 

(3) (4) 

(5) 

(6) 
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46.  Differential  coefficient  with  respect  to  a  scalar. — The  quotient 
obtained  by  dividing  the  differential  of  a  vector  due  to  the  variation 
of  any  scalar  of  which  it  is  a  function  by  the  differential  of  that 
scalar  is  called  the  differential  coefficient  of  the  vector  with  respect 
to  the  scalar,  and  is  indicated  in  the  same  manner  as  the  differential 
coefficients  of  ordinary  analysis. 

If  we  suppose  the  quantities  occurring  in  the  six  equations  of  the 

last  section  to  be  functions  of  a  scalar  t,  we  may  substitute  -^  for  d  in 
those  equations  since  this  is  only  to  divide  all  terms  by  the  scalar  dt. 

47.  Successive    differentiations. — The   differential   coefficient   of   a 
vector  with  respect  to  a  scalar  is  of  course  a  finite  vector,  of  which 
we  may  take   the   differential,   or  the   differential    coefficient   with 
respect  to  the  same  or  any  other  scalar.     We  thus  obtain  differential 
coefficients  of  the  higher  orders,  which  are  indicated  as  in  the  scalar 
calculus. 

A  few  examples  will  serve  for  illustration. 
If  p  is  the  vector  drawn  from  a  fixed  origin  to  a  moving  point  at 

any   time  t,  -fr  will  be  the  vector   representing  the  velocity  of   the d2p 

point,  and  -rK  the  vector  representing  
its  acceleration. 

If   p   is  the  vector  drawn  from  a  fixed  origin  to  any  point  on  a 
curve,  and  s  the  distance  of  that  point  measured  on  the  curve  from 

any  fixed  point,  -£-  is  a  unit  vector,  tangent  to  the  curve  and  having 

the  direction  in  which  s  increases;  -,-§  is  a  vector  directed  from  a 

ds2 

point  on  the  curve  to  the  center  of  curvature,  and  equal  to  the 
7  J7O 

curvature ;  -f  X  -T?  is  the  normal  to  the  osculating  plane,  directed  to- 

the  side  on  which  the  curve  appears  described  counter-clockwise 
about  the  center  of  curvature,  and  equal  to  the  curvature.  The 
tortuosity  (or  rate  of  rotation  of  the  osculating  plane,  considered  as 
positive  when  the  rotation  appears  counter-clockwise  as  seen  from 
the  direction  in  which  s  increases)  is  represented  by 

dp   d2p    dsp 
ds    ds2     dss 

ds2 ds2 
48.  Integration  of  an  equation  between  differentials. — If  t  and  u 

are  two  single-valued  continuous  scalar  functions  of  any  number  of 
scalar  or  vector  variables,  and dt  =  du, 

then  t  =  u-\-a, 
where  a  is  a  scalar  constant. 
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Or,  if  r  and  o>  are  two  single-valued  continuous  vector  functions 
of  any  number  of  scalar  or  vector  variables,  and 

then  T 
where  a  is  a  vector  constant. 

When  the  above  hypotheses  are  not  satisfied  in  general,  but  will  be 
satisfied  if  the  variations  of  the  independent  variables  are  confined 
within  certain  limits,  then  the  conclusions  will  hold  within  those  limits, 

provided  that  we  can  pass  by  continuous  variation  of  the  independent 
variables  from  any  values  within  the  limits  to  any  other  values 
within  them,  without  transgressing  the  limits. 

49.  So  far,  it  will  be  observed,  all  operations  have  been   entirely 
analogous  to  those  of  the  ordinary  calculus. 

Functions  of  Position  in  Space. 

50.  Def.  —  If  u  is  any  scalar  function  of  position  in  space  (i.e.,  any 
scalar  quantity  having  continuously  varying  values  in  space),  Vu  is 
the  vector  function  of  position  in  space  which  has  everywhere  the 
direction  of  the  most  rapid  increase  of  u,  and  a  magnitude  equal  to 
the  rate  of  that  increase  per  unit  of  length.     Vu  may  be  called  the 
derivative  of  u,  and  u,  the  primitive  of  Vu. 

We  may  also  take  any  one  of  the  Nos.  51,  52,  53  for  the  definition 
of  Vu. 

51.  If  p  is  the  vector  defining  the  position  of  a  point  in  space, 

__        .du.dutldu 
o2.  vu  =  ̂ J  —  h?-j  —  \-K-J-. 

dx    '  dy       dz 
du     .  _         du     .  —        du 

53.  -T-=I.VU,      -f-**j.Vtfc     -j- dx  dy  dz 

54.  Def.  —  If  o>  is  a  vector  having  continuously  varying  values  in  space, 

x,  v (1) 
.  da)     -,  da 

.u  =   .-j---]-       .-T-, 
dx    J  dy        dz 

_          .    d&)  .  .    da)  ,  7    do)  /e)\ 
and  Vx^X++fcx-  (2) 

.co  is  called  the  divergence  of  o>  and  Vxo>  its  curl. 
If  we  set 

we  obtain  by  substitution  the  equations 

_dX     dY    dZ 
~+      + 

./dZ    dY\./dX     dZ\/dY dZ\ 

-j-J 

dx/ 
and  yAra  =  .,v___;T-/v__^yT.vs--^_ 
which  may  also  be  regarded  as  defining  V.w  and  Vxo>. 
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55.  Surface-integrals. — The  integral  ffto.da;  in  which  da-  represents 
an  element  of  some  surface,  is  called  the  surface-integral  of  o>  for  that 
surface.     It  is  understood  here  and  elsewhere,  when  a  vector  is  said 

to  represent  a  plane  surface  (or  an  element  of  surface  which  may  be 
regarded  as  plane),  that  the  magnitude  of  the  vector  represents  the 
area  of  the  surface,  and  that  the  direction  of  the  vector  represents 
that  of  the  normal  drawn  toward  the  positive  side  of  the  surface. 
When  the  surface  is  defined  as  the  boundary  of  a  certain  space,  the 
outside  of  the  surface  is  regarded  as  positive. 

The  surface-integral  of  any  given  space  (i.e.,  the  surface-integral 
of  the  surface  bounding  that  space)  is  evidently  equal  to  the  sum  of 

the  surface-integrals  of  all  the  parts  into  which  the  original  space 
may  be  divided.  For  the  integrals  relating  to  the  surfaces  dividing 
the  parts  will  evidently  cancel  in  such  a  sum. 

The  surface-integral  of  o>  for  a  closed  surface  bounding  a  space  dv 
infinitely  small  in  all  its  dimensions  is 

V.wdv. 

This  follows  immediately  from  the  definition  of  Vo>,  when  the  space 
is  a  parallelepiped  bounded  by  planes  perpendicular  to  i,  j,  k.  In 

other  cases,  we  may  imagine  the  space — or  rather  a  space  nearly 
coincident  with  the  given  space  and  of  the  same  volume  dv — to  be 
divided  up  into  such  parallelepipeds.  The  surface-integral  for  the 
space  made  up  of  the  parallelepipeds  will  be  the  sum  of  the  surface- 
integrals  of  all  the  parallelepipeds,  and  will  therefore  be  expressed  by 

V.wdv.  The  surface-integral  of  the  original  space  will  have  sensibly 
the  same  value,  and  will  therefore  be  represented  by  the  same 
formula.  It  follows  that  the  value  of  V.  w  does  not  depend  upon  the 
system  of  unit  vectors  employed  in  its  definition. 

It  is  possible  to  attribute  such  a  physical  signification  to  the 
quantities  concerned  in  the  above  proposition,  as  shall  make  it  evident 
almost  without  demonstration.  Let  us  suppose  co  to  represent  a  flux 

of  any  substance.  The  rate  of  decrease  of  the  density  of  that  sub- 
stance at  any  point  will  be  obtained  by  dividing  the  surface-integral 

of  the  flux  for  any  infinitely  small  closed  surface  about  the  point  by 
the  volume  enclosed.  This  quotient  must  therefore  be  independent  of 
the  form  of  the  surface.  We  may  define  V.w  as  representing  that 
quotient,  and  then  obtain  equation  (1)  of  No.  54  by  applying  the 
general  principle  to  the  case  of  the  rectangular  parallelepiped. 

56.  Skew  surface-integrals. — The  integral  ffdcrxw  may  be  called 
the  skew   surface-integral  of  o>.     It  is  evidently  a  vector.     For  a 
closed  surface  bounding  a  space  dv  infinitely  small  in  all  dimensions 
this  integral  reduces  to  Vxwdv,  as  is  easily  shown  by  reasoning  like 
that  of  No.  55. 
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57.  Integration.  —  If  dv  represents  an  element  of  any  space,  and  dcr 
an  element  of  the  bounding  surface, 

For  the  first  member  of  this  equation  represents  the  sum  of  the 

surface-integrals  of  all  the  elements  of  the  given  space.  We  may 
regard  this  principle  as  affording  a  means  of  integration,  since  we 
may  use  it  to  reduce  a  triple  integral  (of  a  certain  form)  to  a  double 
integral. 

The  principle  may  also  be  expressed  as  follows  : 

The  surface-integral  of  any  vector  function  of  position  in  space  for 
a  closed  surface  is  equal  to  the  volume-integral  of  the  divergence  of 
that  function  for  the  space  enclosed. 

58.  Line-integrals.  —  The  integral  fw.dp,  in  which  dp  denotes  the 
element  of  a  line,  is  called  the  line-integral  of  o>  for  that  line.     It  is 
implied  that  one  of  the   directions  of  the   line  is  distinguished  as 
positive.     When  the  line  is  regarded  as  bounding  a  surface,  that  side 
of  the  surface  will  always  be  regarded  as  positive,  on   which  the 

surface  appears  to  be  circumscribed  counter-clockwise. 
59.  Integration.  —  From  No.  51  we  obtain  directly 

f  Vu  .  dp  =  u"  —  u', 
where  the  single  and  double  accents  distinguish  the  values  relating 
to  the  beginning  and  end  of  the  line. 

In  other  words,  —  The  line-integral  of  the  derivative  of  any  (con- 
tinuous and  single-valued)  scalar  function  of  position  in  space  is  equal 

to  the  difference  of  the  values  of  the  function  at  the  extremities  of 

the  line.  For  a  closed  line  the  integral  vanishes. 

60.  Integration.  —  The  following  principle  may  be  used  to  reduce 
double  integrals  of  a  certain  form  to  simple  integrals. 

If  da-  represents  an  element  of  any  surface,  and  dp  an  element  of 
the  bounding  line, 

In  other  words,  —  The  line-integral  of  any  vector  function  of  position 
in  space  for  a  closed  line  is  equal  to  the  surface-integral  of  the  curl  of 
that  function  for  any  surface  bounded  by  the  line. 

To  prove  this  principle,  we  will  consider  the  variation  of  the 
line-integral  which  is  due  to  a  variation  in  the  closed  line  for  which 
the  integral  is  taken.  We  have,  in  the  first  place, 

<5/w  .  dp  =f$&  .  dp  +Jco  .  8  dp. 

But  h).Sdp  =  d((*).Sp)  —  du).8p. 

Therefore,  since  fd(w.Sp)  =  0  for  a  closed  line, 

<5/fc>  .  dp  =jSu>  .  dp  —jdw  .  Sp. G.  n.  c 



34  VECTOR  ANALYSIS 

Now 

and 

where  the  summation  relates  to  the  coordinate  axes  and  connected 

quantities.  Substituting  these  values  in  the  preceding  equation, 
we  get 

or  by  No.  30, 

.  [Spxdp]  = 

But  Spxdp  represents  an  element  of  the  surface  generated  by  the 
motion  of  the  element  dp,  and  the  last  member  of  the  equation  is 
the  surface-integral  of  Vxw  for  the  infinitesimal  surface  generated 
by  the  motion  of  the  whole  line.  Hence,  if  we  conceive  of  a  closed 
curve  passing  gradually  from  an  infinitesimal  loop  to  any  finite  form, 
the  differential  of  the  line-integral  of  co  for  that  curve  will  be  equal 
to  the  differential  of  the  surface  integral  of  Vxo>  for  the  surface 
generated  :  therefore,  since  both  integrals  commence  with  the  value 
zero,  they  must  always  be  equal  to  each  other.  Such  a  mode  of 
generation  will  evidently  apply  to  any  surface  closing  any  loop. 

61.  The  line-integral  of  w  for  a  closed  line  bounding  a  plane  surface 
da-  infinitely  small  in  all  its  dimensions  is  therefore 

This  principle  affords  a  definition  of  Vx«  which  is  independent 
of  any  reference  to  coordinate  axes.  If  we  imagine  a  circle  described 
about  a  fixed  point  to  vary  its  orientation  while  keeping  the  same 
size,  there  will  be  a  certain  position  of  the  circle  for  which  the  line- 
integral  of  ft>  will  be  a  maximum,  unless  the  line-integral  vanishes  for 
all  positions  of  the  circle.  The  axis  of  the  circle  in  this  position, 
drawn  toward  the  side  on  which  a  positive  motion  in  the  circle 
appears  counter-clockwise,  gives  the  direction  of  Vxo>,  and  the 
quotient  of  the  integral  divided  by  the  area  of  the  circle  gives  the 
magnitude  of 

V,  V.,  and  Vx  applied  to  Functions  of  Functions  of  Position. 

62.  A  constant  scalar  factor  after  V,  V.,  or  Vx   may  be  placed 
before  the  symbol. 

63.  If  f(u)  denotes  any  scalar  function  of  u,  and  f'(u)  the  derived 
function,  _.          „      _ 

Vf(u)=f'(u)Vu. 
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64.  If  u  or  CD  is  a  function  of  several  scalar  or  vector  variables 

which  are  themselves  functions  of  the  position  of  a  single  point,  the 
value  of  Vu  or  V.o>  or  Vxo>  will  be  equal  to  the  sum  of  the  values 
obtained  by  making  successively  all  but  each  one  of  these  variables 
constant. 

65.  By  the  use  of  this  principle  we  easily  derive  the  following 
identical  equations  : 

(I) 

(2) 

(3) 

(4) 
(5) 

(6) 

The  student  will  observe  an  analogy  between  these  equations  and 
the  formulae  of  multiplication.  (In  the  last  four  equations  the 
analogy  appears  most  distinctly  when  we  regard  all  the  factors  but 
one  as  constant.)  Some  of  the  more  curious  features  of  this  analogy 
are  due  to  the  fact  that  the  V  contains  implicitly  the  vectors  i,  j 
and  k,  which  are  to  be  multiplied  into  the  following  quantities. 

Combinations  of  the  Operators  V,  V.,  and  Vx. 

66.  If  u  is  any  scalar  function  of  position  in  space, 

as  may  be  derived  directly  from  the  definitions  of  these  operators. 
67.  Conversely,  if  o>  is  such  a  vector  function  of  position  in  space 

that 

CD  is  the  derivative  of  a  scalar  function  of  position  in  space.     This  will 
appear  from  the  following  considerations  : 

The  line-integral  fu>  .  dp  will  vanish  for  any  closed  line,  since  it  may 
be  expressed  as  the  surface-integral  of  Vxo>.  (No.  60.)  The  line- 

integral  taken  from  one  given  point  P'  to  another  given  point  P"  is 
independent  of  the  line  between  the  points  for  which  the  integral 
is  taken.  (For,  if  two  lines  joining  the  same  points  gave  different 
values,  by  reversing  one  we  should  obtain  a  closed  line  for  which  the 

integral  would  not  vanish.)  If  we  set  u  equal  to  this  line-integral, 

supposing  P"  to  be  variable  and  P'  to  be  constant  in  position,  u  will 
be  a  scalar  function  of  the  position  of  the  point  P",  satisfying  the 
condition  du  =  w.dp,  or,  by  No.  51,  Vu=w.  There  will  evidently  be 
an  infinite  number  of  functions  satisfying  this  condition,  which  will 
differ  from  one  another  by  constant  quantities. 
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If  the  region  for  which  Vxet>  =  0  is  unlimited,  these  functions  will 

be  single-valued.  If  the  region  is  limited,  but  acyclic,*  the  functions 
will  still  be  single-  valued  and  satisfy  the  condition  Vu  =  w  within  the 
same  region.  If  the  region  is  cyclic,  we  may  determine  functions 
satisfying  the  condition  Vu  =  c»  within  the  region,  but  they  will  not 

necessarily  be  single-  valued. 
68.  If  o)  is  any  vector  function  of  position  in  space,  V.Vx«  =  0. 

This  may  be  deduced  directly  from  the  definitions  of  No.  54. 
The  converse  of  this  proposition  will  be  proved  hereafter. 
69.  If  u  is  any  scalar  function  of  position  in  space,  we  have  by 

Nos.  52  and  54 

__       (d*       d*      d*\ V.  vu  =  (  -T-O  4-  -j-3  +  -j-o  )  u. 
\dxz    dy2    dz2/ 

70.  Def.  —  If  fc>  is  any  vector  function  of  position  in  space,  we  may 
define  V.Vw  by  the  equation 

^        _/d2       
d* =  \d^+d^+d 

the  expression  V.V  being  regarded,  for  the  present  at  least,  as  a  single 
operator  when  applied  to  a  vector.  (It  will  be  remembered  that  no 
meaning  has  been  attributed  to  V  before  a  vector.)  It  should  be 
noticed  that  if 

V.  Vo>  =  iV.  VX  +  j  V.  VY  +  jfeV.  VZ, 

that  is,  the  operator  V.V  applied  to  a  vector  affects  separately  its 
scalar  components. 

71.  From  the  above  definition  with  those  of  Nos.  52  and  54  we 

may  easily  obtain 

The  effect  of  the  operator  V.V  is  therefore  independent  of  the  direc- 
tions of  the  axes  used  in  its  definition. 

72.  The  expression  —  %a?V.Vu,  where  a  is  any  infinitesimal  scalar, 
evidently  represents  the  excess  of  the  value  of  the  scalar  function  u 

*If  every  closed  line  within  a  given  region  can  contract  to  a  single  point  without 
breaking  its  continuity,  or  passing  out  of  the  region,  the  region  is  called  acyclic,  other- 

wise cyclic. 

A  cyclic  region  may  be  made  acyclic  by  diaphragms,  which  must  then  be  regarded  as 
forming  part  of  the  surface  bounding  the  region,  each  diaphragm  contributing  its  own 

area  twice  to  that  surface.  This  process  may  be  used  to  reduce  many- valued  functions 

of  position  in  space,  having  single-valued  derivatives,  to  single- valued  functions. 
When  functions  are  mentioned  or  implied  in  the  notation,  the  reader  will  always 

understand  single-valued  functions,  imless  the  contrary  is  distinctly  intimated,  or  the 
case  is  one  in  which  the  distinction  is  obviously  immaterial.  Diaphragms  may  be 

applied  to  bring  functions  naturally  many-valued  under  the  application  of  some  of  the 
following  theorems,  as  Nos.  74  ff. 
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at  the  point  considered  above  the  average  of  its  values  at  six  points 

at  the  following  vector  distances:  ai,  —ai,  aj,  —aj,  ak,  —dk.  Since 
the  directions  of  i,  j,  and  k  are  immaterial  (provided  that  they  are 
at  right  angles  to  each  other),  the  excess  of  the  value  of  u  at  the 
central  point  above  its  average  value  in  a  spherical  surface  of  radius 
a  constructed  about  that  point  as  the  center  will  be  represented  by 

the  same  expression,  —  %a?Wu. 
Precisely  the  same  is  true  of  a  vector  function,  if  it  is  understood 

that  the  additions  and  subtractions  implied  in  the  terms  average  and 
excess  are  geometrical  additions  and  subtractions. 

Maxwell  has  called  —  V.Vu  the  concentration  of  u,  whether  u  is 
scalar  or  vector.  We  may  call  V.Vu  (or  V.Vo>),  which  is  proportioned 
to  the  excess  of  the  average  value  of  the  function  in  an  infinitesimal 
spherical  surface  above  the  value  at  the  center,  the  dispersion  of 
u  (or  co). 

Transformation  of  Definite  Integrals. 

73.  From  the  equations  of  No.  65,  with  the  principles  of  integration 
of  Nos.  57,  59,  and  60,  we  may  deduce  various  transformations  of 
definite  integrals,  which  are  entirely  analogous  to  those  known  in  the 

scalar  calculus  under  the  name  of  integration  by  parts.     The  follow- 
ing formulae  (like  those  of  Nos.  57,  59,  and  60)  are  written  for  the 

case  of  continuous  values  of  the  quantities  (scalar  and  vector)  to  which 
the  signs  V,  V.,  and  Vx  are  applied.     It  is  left  to  the  student  to 
complete  the  formulae  for  cases  of  discontinuity  in  these  values.     The 
manner  in  which  this  is  to  be  done  may  in  each  case  be  inferred  from 
the  nature  of  the  formula  itself.     The  most  important  discontinuities 
of  scalars  are  those  which  occur  at  surfaces  :  in  the  case  of  vectors 

discontinuities  at  surfaces,  at  lines,  and  at  points,  should  be  considered. 
74.  From  equation  (3)  we  obtain 

fV(tu).dp  =  tf'u"  -  t'u'  =fuVt.dp  +ftVu.dp, 

where  the  accents  distinguish  the  quantities  relating  to  the  limits  of 

the  line-integrals.  We  are  thus  able  to  reduce  a  line-integral  of  the 

form  fuVt.dp  to  the  form  —ftVu.dp  with  quantities  free  from  the 
sign  of  integration. 

75.  From  equation  (5)  we  obtain 

where,  as  elsewhere  in  these  equations,  the  line-integral  relates  to  the 
boundary  of  the  surface-integral. 
From  this,   by   substitution   of   Vt  for  o>,   we   may   derive  as   a 

particular  case 

p  =  -ftVu.dp. 
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76.  From  equation  (4)  we  obtain 

where,  as  elsewhere  in  these  equations,  the  surface-integral  relates  to 
the  boundary  of  the  volume-integrals. 

From  this,  by  substitution  of  Vt  for  «,  we  derive  as  a  particular  case 

fffVt.Vu  dv  =JfuVt.da"-JffuV.Vt  dv  ̂ ffWu.dv-fffrt.Vu  dv, 

which  is  Green's  Theorem.     The  substitution  of  sVt  for  o>  gives  the 
more  general  form  of  this  theorem  which  is  due  to  Thomson,  viz., 

JffsVt.Vu  dv  =ffusVt.d<r  -JffuV.  [sVt]dv 

=JftsVu.da-  -fffW.  [sVu]  dv. 
77.  From  equation  (6)  we  obtain 

jffV.[rX(*)]dv  =JfTX<a.d<r=J)yoo.VxT  dv  -fffr.Vxu)  dv. 
A  particular  case  is 

dv  =<»x  Vu.do: 

Integration  of  Differential  Equations. 

78.  If  throughout  any  continuous  space  (or  in  all  space) Vu=0, 

then  throughout  the  same  space 
u  =  constant. 

79.  If  throughout  any  continuous  space  (or  in  all  space) 

and  in  any  finite  part  of  that  space,  or  in  any  finite  surface  in  or 
bounding  it, 

then  throughout  the  whole  space 

Vu  =  0,   and   u  =  constant. 

This  will  appear  from  the  following  considerations  : 
If  Vu  =  0  in  any  finite  part  of  the  space,  u  is  constant  in  that  part. 

If  u  is  not  constant  throughout,  let  us  imagine  a  sphere  situated 
principally  in  the  part  in  which  u  is  constant,  but  projecting  slightly 
into  a  part  in  which  u  has  a  greater  value,  or  else  into  a  part  in 
which  u  has  a  less.  The  surface-integral  of  Vu  for  the  part  of  the 
spherical  surface  in  the  region  where  u  is  constant  will  have  the 
value  zero:  for  the  other  part  of  the  surface,  the  integral  will  be 
either  greater  than  zero,  or  less  than  zero.  Therefore  the  whole 
surface-integral  for  the  spherical  surface  will  not  have  the  value  zero, 
which  is  required  by  the  general  condition,  V.  Vu  =  0. 

Again,  if  Vu  =  0  only  in  a  surface  in  or  bounding  the  space  in 
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which  V.Vu  =  0,  u  will  be  constant  in  this  surface,  and  the  surface 

will  be  contiguous  to  a  region  in  which  V.Vu  =  Q  and  u  has  a  greater 
value  than  in  the  surface,  or  else  a  less  value  than  in  the  surface. 

Let  us  imagine  a  sphere  lying  principally  on  the  other  side  of  the 

surface,  but  projecting  slightly  into  this  region,  and  let  us  particularly 

consider  the  surface-integral  of  Vu  for  the  small  segment  cut  off  by 
the  surface  Vu  =  0.  The  integral  for  that  part  of  the  surface  of  the 
segment  which  consists  of  part  of  the  surface  Vu  =  0  will  have  the 
value  zero,  the  integral  for  the  spherical  part  will  have  a  value  either 
greater  than  zero  or  else  less  than  zero.  Therefore  the  integral  for 
the  whole  surface  of  the  segment  cannot  have  the  value  zero,  which 
is  demanded  by  the  general  condition,  V.Vu  =  0. 

80.  If  throughout  a  certain  space  (which  need  not  be  continuous, 
and  which  may  extend  to  infinity) 

and  in  all  the  bounding  surfaces 

u  =  constant  =  a, 

and  (in  case  the  space  extends  to  infinity)  if  at  infinite  distances 

within  the  space  u  =  a,  —  then  throughout  the  space 

Vu  =  0,   and  u  =  a. 

For,  if  anywhere  in  the  interior  of  the  space  Vu  has  a  value 
different  from  zero,  we  may  find  a  point  P  where  such  is  the  case, 
and  where  u  has  a  value  b  different  from  a,  —  to  fix  our  ideas  we  will 
say  less.  Imagine  a  surface  enclosing  all  of  the  space  in  which  u  <  b. 
(This  must  be  possible,  since  that  part  of  the  space  does  not  reach  to 

infinity.)  The  surface-integral  of  Vu  for  this  surface  has  the  value 
zero  in  virtue  of  the  general  condition  V.Vu  =  0.  But,  from  the 
manner  in  which  the  surface  is  defined,  no  part  of  the  integral  can  be 
negative.  Therefore  no  part  of  the  integral  can  be  positive,  and  the 
supposition  made  with  respect  to  the  point  P  is  untenable.  That  the 
supposition  that  b  >  a  is  untenable  may  be  shown  in  a  similar 
manner.  Therefore  the  value  of  u  is  constant. 

This  proposition  may  be  generalized  by  substituting  the  condition 
V.[tVu]  =  Q  for  V.Vu  =  Q,  t  denoting  any  positive  (or  any  negative) 
scalar  function  of  position  in  space.  The  conclusion  would  be  the 
same,  and  the  demonstration  similar. 

81.  If  throughout  a  certain  space  (which  need  not  be  continuous, 
and  which  may  extend  to  infinity) 

and  in  all  the  bounding  surfaces  the  normal  component  of  Vu  vanishes, 
fllJL 

and  at  infinite  distances  within  the  space  (if  such  there  are)  r2^-  =0, 
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where  r  denotes  the  distance  from  a  fixed  origin,  then  throughout  the 

space 

and  in  each  continuous  portion  of  the  same 

u  —  constant. 

For,  if  anywhere  in  the  space  in  question  Vu  has  a  value  different 
from  zero,  let  it  have  such  a  value  at  a  point  P,  and  let  u  be  there 

equal  to  b.  Imagine  a  spherical  surface  about  the  above-mentioned 

origin  as  center,  enclosing  the  point  P,  and  with  a  radius  r.  Con- 
sider that  portion  of  the  space  to  which  the  theorem  relates  which  is 

within  the  sphere  and  in  which  u<b.  The  surface  integral  of  Vu 
for  this  space  is  equal  to  zero  in  virtue  of  the  general  condition 
V.Vu  =  0.  That  part  of  the  integral  (if  any)  which  relates  to  a 
portion  of  the  spherical  surface  has  a  value  numerically  not  greater 

than  47rr2(-r-  ),  where  (-?-]  denotes  the  greatest  numerical  value  of 

du  vfr*'  v*»v 
-7-  in  the  portion  of  the  spherical  surface  considered.     Hence,  the 

value  of  this  part  of  the  surface-integral  may  be  made  less  (numeri- 
cally) than  any  assignable  quantity  by  giving  to  r  a  sufficiently  great 

value.  Hence,  the  other  part  of  the  surface-integral  (viz.,  that  relating 
to  the  surface  in  which  u  =  b,  and  to  the  boundary  of  the  space  to 
which  the  theorem  relates)  may  be  given  a  value  differing  from  zero 
by  less  than  any  assignable  quantity.  But  no  part  of  the  integral 
relating  to  this  surface  can  be  negative.  Therefore  no  part  can  be 
positive,  and  the  supposition  relative  to  the  point  P  is  untenable. 

This  proposition  also  may  be  generalized  by  substituting  V.  [t  Vu]  =  0 

for  V.Vu  =  0,  and  £r2      =  0  for  . or  dr 

82.  If  throughout  any  continuous  space  (or  in  all  space) 

then  throughout  the  same  space 

t  =  u+  const. 

The  truth  of  this  and  the  three  following  theorems  will  be  apparent  if 
we  consider  the  difference  t  —  u. 

83.  If  throughout  any  continuous  space  (or  in  all  space) 

and  in  any  finite  part  of  that  space,  or  in  any  finite  surface  in  or 
bounding  it, 

then  throughout  the  whole  space 

Vt  —  Vu,   and  t  =  u+  const. 
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84.  If  throughout  a  certain  space  (which  need  not  be  continuous, 
and  which  may  extend  to  infinity) 

and  in  all  the  bounding  surfaces t=u, 

and  at  infinite  distances  within  the  space  (if  such  there  are) t  =  u, 

then  throughout  the  space 
t  =  u. 

85.  If  throughout  a  certain  space  (which  need  not  be  continuous, 
and  which  may  extend  to  infinity) 

and  in  all  the  bounding  surfaces  the  normal  components  of  Vt  and  Vu 
are  equal,  and  at  infinite  distances  within  the  space  (if  such  there  are) 

r2^  —  ;T/  =  O'  where  r  denotes  the  distance  from  some  fixed  origin, 

—  then  throughout  the  space V^ 

and  in  each  continuous  part  of  which  the  space  consists 
t  —  u  =  constant. 

86.  If  throughout  any  continuous  space  (or  in  all  space) 

Vxr  =  Vxft>   and   V.T  =  V.o>, 

and  in  any  finite  part  of  that  space,  or  in  any  finite  surface  in  or 
bounding  it, 

T  =  ft), 

then  throughout  the  whole  space 

For,  since  VX(T  —  a>)  =  0,  we  may  set  VW  =  T  —  o>,  making  the  space 
acyclic  (if  necessary)  by  diaphragms.  Then  in  the  whole  space  u  is 
single-valued  and  V.Vu  =  0,  and  in  a  part  of  the  space,  or  in  a  surface 
in  or  bounding  it,  Vu  =  0.  Hence  throughout  the  space  Vu  =  r  —  o>  =  0. 

87.  If  throughout  an  aperiphractic*  space  contained  within  finite 
boundaries  but  not  necessarily  continuous 

VXT  =  VXO>  and  V.r  =  V.w, 

and  in  all  the  bounding  surfaces  the  tangential  components  of  T  and 
ft>  are  equal,  then  throughout  the  space 

T  =  ft). 

It  is  evidently  sufficient  to  prove  this  proposition  for  a  continuous 
space.  Setting  VU  —  T  —  o>,  we  have  V.Vi&  =  0  for  the  whole  space, 

*  If  a  space  encloses  within  itself  another  space,  it  is  called  periphractic,  otherwise 
aperiphractic. 



42  VECTOR  ANALYSIS. 

and  u  =  constant  for  its  boundary,  which  will  be  a  single  surface  for  a 
continuous  aperiphractic  space.     Hence  throughout  the  space 

88.  If  throughout  an  acyclic  space  contained  within  finite  boundaries 
but  not  necessarily  continuous 

Vxr  =  Vxfc>   and   V.T  =  V.a>, 

and  in  all  the  bounding  surfaces  the  normal  components  of  T  and  w 
are  equal,  then  throughout  the  whole  space 

T  =  ft). 

Setting  VU  =  T  —  ft),  we  have  V.Vw  =  0  throughout  the  space,  and 
the  normal  component  of  Vu  at  the  boundary  equal  to  zero.  Hence 

throughout  the  whole  space  Vu  =  T  —  CD  =  0. 
89.  If  throughout  a  certain  space  (which  need  not  be  continuous, 

and  which  may  extend  to  infinity) 
V.V 

and  in  all  the  bounding  surfaces 
=  ft) 

and  at  infinite  distances  within  the  space  (if  such  there  are) 
T  =  ft>, 

then  throughout  the  whole  space 
T  =  ft). 

This  will  be  apparent  if  we  consider  separately  each  of  the  scalar 
components  of  T  and  w. 

Minimum  Values  of  the  Volume-integral  fffuw.  to  dv. 

(Thomson's  Theorems.) 
90.  Let  it  be  required  to  determine  for  a  certain  space  a  vector 

function  of  position  &>  subject  to  certain  conditions  (to  be  specified 

hereafter),  so  that  the  volume-integral 

fffu  w.wdv for   that  space  shall  have   a  minimum   value,  u   denoting   a  given 
positive  scalar  function  of  position. 

a.  In  the  first  place,  let  the  vector  o>  be  subject  to  the  conditions 
that  V.o)  is  given  within  the  space,  and  that  the  normal  component 
of  eo  is  given  for  the  bounding  surface.  (This  component  must  of 

course  be  such  that  the  surface-integral  of  ft)  shall  be  equal  to  the 
volume-integral  fV.  <o  dv.  If  the  space  is  not  continuous,  this  must 
be  true  of  each  continuous  portion  of  it.  See  No.  57.)  The  solution 

is  that  Vx(itft))  =  0,  or  more  generally,  that  the  line-integral  of  uw  for 
any  closed  curve  in  the  space  shall  vanish. 
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The  existence  of  the  minimum  requires  that 

fffu  w.  Sw  dv  =  0, 
while  SCD  is  subject  to  the  limitation  that 

V.&o  =  0, 

and  that  the  normal  component  of  (So>  at  the  bounding  surface  vanishes. 

To  prove  that  the  line-integral  of  UCD  vanishes  for  any  closed  curve 
within  the  space,  let  us  imagine  the  curve  to  be  surrounded  by  an 
infinitely  slender  tube  of  normal  section  dz,  which  may  be  either 
constant  or  variable.  We  may  satisfy  the  equation  V.&o  =  0  by 

making  &»  =  0  outside  of  the  tube,  and  8wdz  =  Sa^r   within  it,  So, ds 

denoting  an  arbitrary  infinitesimal  constant,  p  the  position- vector,  and 
ds  an  element  of  the  length  of  the  tube  or  closed  curve.  We  have  then 

Jjju  W.SOD  dv  =Ju  (ti.Soo  dz  ds  =Ju  oa.dp  8a  =  Saju  w.dp  =  0, 

whence  fu  w.dp  =  Q.  Q.E.D. 

We  may  express  this  result  by  saying  that  uw  is  the  derivative  of  a 

single-valued  scalar  function  of  position  in  space.  (See  No.  67.) 
If  for  certain  parts  of  the  surface  the  normal  component  of  to  is  not 

given  for  each  point,  but  only  the  surface-integral  of  o>  for  each  such 
part,  then  the  above  reasoning  will  apply  not  only  to  closed  curves, 
but  also  to  curves  commencing  and  ending  in  such  a  part  of  the 
surface.  The  primitive  of  UCD  will  then  have  a  constant  value  in 
each  such  part. 

If  the  space  extends  to  infinity  and  there  is  no  special  condition 
respecting  the  value  of  «  at  infinite  distances,  the  primitive  of  UOD 
will  have  a  constant  value  at  infinite  distances  within  the  space  or 
within  each  separate  continuous  part  of  it. 

If  we  except  those  cases  in  which  the  problem  has  no  definite 
meaning  because  the  data  are  such  that  the  integral  Juco.wdv  must 
be  infinite,  it  is  evident  that  a  minimum  must  always  exist,  and  (on 
account  of  the  quadratic  form  of  the  integral)  that  it  is  unique.  That 
the  conditions  just  found  are  sufficient  to  insure  this  minimum,  is 
evident  from  the  consideration  that  any  allowable  values  of  Sco  may 
be  made  up  of  such  values  as  we  have  supposed.  Therefore,  there 
will  be  one  and  only  one  vector  function  of  position  in  space  which 
satisfies  these  conditions  together  with  those  enumerated  at  the 
beginning  of  this  number. 

6.  In  the  second  place,  let  the  vector  o>  be  subject  to  the  conditions 
that  Vxw  is  given  throughout  the  space,  and  that  the  tangential 
component  of  w  is  given  at  the  bounding  surface.  The  solution  is  that 
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and,  if  the  space   is   periphractic,   that  the   surface-integral  of   uw 
vanishes  for  each  of  the  bounding  surfaces. 

The  existence  of  the  minimum  requires  that 

while  &o  is  subject  to  the  conditions  that 

and  that  the  tangential  component  of  Sao  in  the  bounding  surface 
vanishes.     In  virtue  of  these  conditions  we  may  set 

where  Sq  is  an  arbitrary  infinitesimal  scalar  function  of  position,  sub- 
ject only  to  the  condition  that  it  is  constant  in  each  of  the  bounding 

surfaces.  (See  No.  67.)  By  substitution  of  this  value  we  obtain 

or  integrating  by  parts  (No.  76) 

ffu  w.dcrSq  -fffV.  [u  co]Sq  dv  =  0. 

Since  Sq  is  arbitrary  in  the  volume-integral,  we  have  throughout  the 
whole  space 

V.[>ft>]  =  0; 

and  since  Sq  has  an  arbitrary  constant  value  in  each  of  the  bounding 
surfaces  (if  the  boundary  of  the  space  consists  of  separate  parts),  we 
have  for  each  such  part 

Potentials,  Newtonians,  Laplacians. 

91.  Def. — If  u'  is  the  scalar  quantity  of  something  situated  at  a 
certain  point  p',  the  potential  of  u  for  any  point  p  is  a  scalar  function 
of  p,  defined  by  the  equation 

,         u' 
potu  =r-,   T~, 

IP  -A 

and  the  Newtonian  of  u'  for  any  point  p  is  a  vector  function  of  p 
defined  by  the  equation / 

new  u'  =  p£ — ^  u'. [p  -pB 
Again,  if  &>'  is  the  vector  representing  the  quantity  and  direction  of 

something  situated  at  the  point  p',  the  potential  and  the  Laplacian  of 
ft)'  for  any  point  p  are  vector  functions  of  p  defined  by  the  equations 

,         ft)' 
P0tft)=f  , 



VECTOR  ANALYSIS.  45 

92.  If  u  or  CD  is  a  scalar  or  vector  function  of  position  in  space, 

we  may  write  Pot  u,  New  u,  Pot  CD,  Lap  o>  for  the  volume-integrals  of 

pot  u'y  etc.,  taken  as  functions  of  p  ;  i.e.,  we  may  set 

Potu=fffpot  u'dv'  =fff.  ?'  ,  dv', 
'  [p  ~p]o 

/ 

New  u  =  fffuew  u'dv'  =  /77V^  —  ̂   u'dv', '  [p  -pti 
-—t 

IP  -/°Jo 

where  the  p  is  to  be  regarded  as  constant  in  the  integration.  This 

extends  over  all  space,  or  wherever  the  u'  or  o>'  have  any  values 
other  than  zero.  These  integrals  may  themselves  be  called  (integral) 
potentials,  Newtonians,  and  Laplacians. 

QQ  d  Pot  u  _  .p     du        d  Pot  ft)     ̂   ,  dw 
t/o.  —  T  -  —  IT  ot  -5  —  ,          —  T  --  =  Jrot  -7  —  • ax  ax  ax  ax 

This  will  be  evident  with  respect  both  to  scalar  and  to  vector  functions, 
if  we  suppose  that  when  we  differentiate  the  potential  with  respect 
to  x  (thus  varying  the  position  of  the  point  for  which  the  potential 

is  taken)  each  element  of  volume  dv'  in  the  implied  integral  remains 
fixed,  not  in  absolute  position,  but  in  position  relative  to  the  point 

for  which  the  potential  is  taken.  This  supposition  is  evidently  allow- 
able whenever  the  integration  indicated  by  the  symbol  Pot  tends  to  a 

definite  limit  when  the  limits  of  integration  are  indefinitely  extended. 
Since  we  may  substitute  y  and  z  for  x  in  the  preceding  formula, 

and  since  a  constant  factor  of  any  kind  may  be  introduced  under  the 
sign  of  integration,  we  have 

V.  Pot  co  =  Pot  V. 

i.e.,  the  symbols  V,  V.,  Vx,  V.V  may  be  applied  indifferently  before 
or  after  the  sign  Pot. 

Yet  a  certain  restriction  is  to  be  observed.  When  the  operation  of 

taking  the  (integral)  potential  does  not  give  a  definite  finite  value, 
the  first  members  of  these  equations  are  to  be  regarded  as  entirely 
indeterminate,  but  the  second  members  may  have  perfectly  definite 
values.  This  would  be  the  case,  for  example,  if  u  or  w>  had  a  constant 

value  throughout  all  space.  It  might  seem  harmless  to  set  an  inde- 
finite expression  equal  to  a  definite,  but  it  would  be  dangerous,  since 
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we  might  with  equal  right  set  the  indefinite  expression  equal  to  other 
definite  expressions,  and  then  be  misled  into  supposing  these  definite 
expressions  to  be  equal  to  one  another.  It  will  be  safe  to  say  that 
the  above  equations  will  hold,  provided  that  the  potential  of  u  or  w 
has  a  definite  value.  It  will  be  observed  that  whenever  Potu  or 
Pot  w  has  a  definite  value  in  general  (i.e.,  with  the  possible  exception 

of  certain  points,  lines,  and  surfaces),*  the  first  members  of  all  these 
equations  will  have  definite  values  in  general,  and  therefore  the 
second  members  of  the  equation,  being  necessarily  equal  to  the  first 
members,  when  these  have  definite  values,  will  also  have  definite 

values  in  general. 
94.  Again,  whenever  Pot  u  has  a  definite  value  we  may  write 

J-        /      /     / 

- 

where  r  stands  for  [p'  —  p]0.     But 

whence 

M  /y£ 

V  Pot  u  =  New  u. 

Moreover,  New  u  will  in  general  have  a  definite  value,  if  Pot  u  has. 
95.  In  like  manner,  whenever  Pot  w  has  a  definite  value, 

VxPot  ft)  =  VX//T-  dv'  =fffVx~  dv'  =fffV~x^f  dv'. */»/t/      ft*  «/«/*/  M  «/*/»/  /yi 

Substituting  the  value  of  V  -  given  above  we  have 

Vx Pot  w  =  Lap  w. 

Lap  w  will  have  a  definite  value  in  general  whenever  Pot  ft)  has. 
96.  Hence,  with  the  aid  of  No.  93,  we  obtain 

VxLapw  =  Lap  V; 

V.Lap&)  =  0, 
whenever  Pot  w  has  a  definite  value. 

97.  By  the  method  of  No.  93  we  obtain 

V.  New  u  = 
u'  dv  =fffVuf.  *f-  dv'. 

To  find  the  value  of  this  integral,  we  may  regard  the  point  p,  which 
is  constant  in  the  integration,  as  the  center  of  polar  coordinates. 

Then  r  becomes  the  radius  vector  of  the  point  p',  and  we  may  set 

*  Whenever  it  is  said  that  a  function  of  position  in  space  has  a  definite  value  in 
general,  this  phrase  is  to  be  understood  as  explained  above.  The  term  definite  ia 
intended  to  exclude  both  indeterminate  and  infinite  values. 



VECTOE  ANALYSIS.  47 

where  rzdq  is  the  element  of  a  spherical  surface  having  center  at  p 
and  radius  r.     We  may  also  set 

wr We  thus  obtain 

V.  New  u  —fff-^-  dqdr  =  4>7rf-r-  dr  =  4nrur=00  —  4?ri//r=o  > 

where  u  denotes  the  average  value  of  u  in  a  spherical  surface  of 
radius  r  about  the  point  p  as  center. 

Now  if  Pot  u  has  in  general  a  definite  value,  we  must  have  u'  =  0 
for  r  =  oo.  Also,  V.  New  u  will  have  in  general  a  definite  value.  For 

r  =  0,  the  value  of  u'  is  evidently  u.  We  have,  therefore, =  —  4nru, 

98.  If  Pot  CD  has  in  general  a  definite  value, 

V.  V  Pot  «  =  V.  V  Pot  [ui  +  vj  -f  wk] 

=  V.  V  Pot  ui  +  V.  V  Pot  vj  +  V.  V  Pot  wk 

=  —  47Tft). 

Hence,  by  No.  71, 
Vx  VxPot  w-  VV.Pot  o>  =  47TO). 

That  is,  Lap  V  x  ft>  —  New  V.  o>  =  47Tft). 

If  we  set  1  T      _  —  1  XT      r? 
«!  =  j—  Lap  Vxft>,      ft)2==~r  —  NewV.ft), 

we  have  ft)  =  ft)1H-ft)2, 

where  ft)x  and  ft)2  are  such  functions  of  position  that  V.ft)1  =  0,  and 
Vxft)2  =  0.  This  is  expressed  by  saying  that  ft^  is  solenoidal,  and  ft)2 
irrotational.  Potft^  and  Potft)2,  like  Pot  ft),  will  have  in  general 
definite  values. 

It  is  worth  while  to  notice  that  there  is  only  one  way  in  which  a 
vector  function  of  position  in  space  having  a  definite  potential  can 
be  thus  divided  into  solenoidal  and  irrotational  parts  having  definite 

potentials.  For  if  ft)x  +  e,  ft)2  —  e  are  two  other  such  parts, 

V.e  =  0  and   Vxe  =  0. 

Moreover,  Pot  e  has  in  general  a  definite  value,  and  therefore 

6  =  7—  LapVxe—  i—  NewV.e  =  0.  Q.E.D. 
4?r      r  4-7T 

*  Better  thus  :   V.V  Potu=fff^V.Vudv=fffV.fau}dv  - 

=  -ffuV-.dff=  -  4ira.     [MS.  note  by  author.] 
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99.  To  assist  the  memory  of  the  student,  some  of  the  principal 

results  of  Nos.  93-98  may  be  expressed  as  follows  : 
Let  w1  be  any  solenoidal  vector  function  of  position  in  space,  a>2  any 

irrotational  vector  function,  and  u  any  scalar  function,  satisfying  the 
conditions  that  their  potentials  have  in  general  definite  values. 

With  respect  to  the  solenoidal  function  tov  j—  Lap  and  Vx  are 
inverse  operators  ;  i.e., 

7—  Lap  Vxee>!  =  Vxj—  Lap  ̂   =  a>r ! 

Applied  to  the  irrotational  function  o>2,  either  of  these  operators  gives 
zero;  i.e., 

Lap  «2  =  0,     Vx  o>2  =  0. 

With  respect  to  the  irrotational  function  &>2,  or  the  scalar  function  u, 

j—  New  and  —  V  .  are  inverse  operators  ;  i.e., 47T 

—  -;—  New  V.ft)9  =  ft)9,     —  V.  -:—  New  u  =  u. 
4-7T  4-7T 

Applied  to  the  solenoidal  function  cov  the  operator  V.  gives  zero  ;  i.e. 

V.  «!  =  (). 
Since  the  most  general  form  of  a  vector  function  having  in  general 

a  definite  potential  may  be  written  a^-ho^,  the  effect  of  these  operators 
on  such  a  function  needs  no  especial  mention. 

With  respect  to  the  solenoidal  function  o^,  -r—  Pot  and  VxVx  are 
inverse  operators  ;  i.e., 

-:-  Pot  Vx  VXft>i  =  Vx-^  Pot  Vxa)i  =  VxVx^-  Pot  «,=<»,. 
4?r  -  - 

With  respect  to  the  irrotational  function  o)2,  j—  Pot  and  —  VV.  are 
inverse  operators;  i.e., 

JL 

*  -*.   **s  v     T       T    •  wn     T        M  j.  v^  v     T    •  V-K/O     »       »   •    « -—  Pot  VV.w^  -  V—  Pot  V.coo=  -  VV.— Potw2  =  ft)2. 

With  respect  to  any  scalar  or  vector  function  having  in  general  a 

definite  potential  j—  Pot  and  —  V.  V  are  inverse  operators  ;  i.e., 

-^-  Pot  V.Vu=  -V.-i-  Pot  Vu=  -V.V-^- 
4-7T  4?T  4?T 

With  respect  to  the  solenoidal  function  &lt  —  V.V  and  VxVx  are 
equivalent;  with  respect  to  the  irrotational  function  w2  V.V  and  VV. 
are  equivalent  ;  i.e., 
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100.  On  the  interpretation  of  the  preceding  formuice.  —  Infinite 
values  of  the  quantity  which  occurs  in  a  volume-integral  as  the 
coefficient  of  the  element  of  volume  will  not  necessarily  make  the 
value  of  the  integral  infinite,  when  they  are  confined  to  certain 
surfaces,  lines,  or  points.  Yet  these  surfaces,  lines,  or  points  may 

contribute  a  certain  finite  amount  to  the  value  of  the  volume-integral, 
which  must  be  separately  calculated,  and  in  the  case  of  surfaces  or 

lines  is  naturally  expressed  as  a  surface-  or  line-integral.  Such  cases 
are  easily  treated  by  substituting  for  the  surface,  line,  or  point,  a 
very  thin  shell,  or  filament,  or  a  solid  very  small  in  all  dimensions, 

within  which  the  function  may  be  supposed  to  have  a  very  large 
value. 

The  only  cases  which  we  shall  here  consider  in  detail  are  those  of 
surfaces  at  which  the  functions  of  position  (u  or  w)  are  discontinuous, 
and  the  values  of  Vu,  Vx«,  V.o>  thus  become  infinite.  Let  the 

function  u  have  the  value  u^  on  the  side  of  the  surface  which  we 
regard  as  the  negative,  and  the  value  u2  on  the  positive  side.  Let 

Au  =  u2  —  ul.  If  we  substitute  for  the  surface  a  shell  of  very  small 
thickness  a,  within  which  the  value  of  u  varies  uniformly  as  we  pass Vtt 

through  the  shell,  we  shall  have  Vu  =  v  —  within  the  shell,  v  denoting 

a  unit  normal  on  the  positive  side  of  the  surface.  The  elements  of 
volume  which  compose  the  shell  may  be  expressed  by  a[dcr]0,  where 

[dcr]0  is  the  magnitude  of  an  element  of  the  surface,  do-  being  the 
vector  element.  Hence, 

Vu  dv  —  v  Au  [dcr]0  =  Au  d<r. 

Hence,  when  there  are  surfaces  at  which  the  values  of  u  are 

discontinuous,  the  full  value  of  Pot  Vu  should  always  be  understood 
as  including  the  surface-integral 

[p  -/> relating  to  such  surfaces.     (Auf  and  dv  are  accented  in  the  formula 
to  indicate  that  they  relate  to  the  point  pf.) 

In  the  case  of  a  vector  function  which  is  discontinuous  at  a  surface, 

the  expressions  V.wdv  and  Vxwdv,  relating  to  the  element  of  the 
shell  which  we  substitute  for  the  surface  of  discontinuity,  are  easily 
transformed  by  the  principle  that  these  expressions  are  the  direct 
and  skew  surface-integrals  of  w  for  the  element  of  the  shell.  (See 
Nos.  55,  56.)  The  part  of  the  surface-integrals  relating  to  the  edge 
of  the  element  may  evidently  be  neglected,  and  we  shall  have 

V.  CD  dv  =  o>2  .  dcr  —  ojj  .  dcr  =  Ao>  .  c&r, 

V  x  o>  dv  =  do-  x  fc>2  —  d<r  x  Wj  =  d<r  x  Ao>. 
G.  II.  D 
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Whenever,  therefore,  o>  is  discontinuous  at  surfaces,  the  expressions 
Pot  V.  to  and  NewV.w  must  be  regarded  as  implicitly  including  the 

surface-integrals 
cr'     and 

IP  ~ 

respectively,  relating  to  such  surfaces,  and  the  expressions  Pot  V  x  ft> 

and  Lap  V  x  ft)  as  including  the  surface-integrals 

/TV  -        c&r'xAo/     and L/>-*>Jo 

respectively,  relating  to  such  surfaces. 
101.  We  have  already  seen  that  if  w  is  the]  curl  of  any  vector 

function  of  position,  V.o>  =  0.  (No.  68.)  The  converse  is  evidently 
true,  whenever  the  equation  V.w  =  0  holds  throughout  all  space,  and 
to  has  in  general  a  definite  potential  ;  for  then 

ft)  =  VxT—  Lap  ft>. 4-7T 

Again,  if  V.o>  =  0  within  any  aperiphractic  space  A,  contained 
within  finite  boundaries,  we  may  suppose  that  space  to  be  enclosed  by 
a  shell  B  having  its  inner  surface  coincident  with  the  surface  of  A. 

We  may  imagine  a  function  of  position  «',  such  that  «'  =  w  in  A,  o>'  =  0 
outside  of  the  shell  B,  and  the  integral  jjjto.u)  dv  for  B  has  the  least 
value  consistent  with  the  conditions  that  the  normal  component  of  w 
at  the  outer  surface  is  zero,  and  at  the  inner  surface  is  equal  to  that 

of  ft),  and  that  in  the  shell  V.a/  =  0  (compare  No.  90).  Then  V.&/  =  0 
throughout  all  space,  and  the  potential  of  a/  will  have  in  general  a 
definite  value.  Hence, 

ft/  =  Vx  i  —  Lap  ft>', 47T 

and  w  will  have  the  same  value  within  the  space  A. 

|102.  Def.  —  If  a)  is  a  vector  function  of  position  in  space,  the  Max- 

wdlian  *  of  co  is  a  scalar  function  of  position  defined  by  the  equation 

(Compare  No.  92.)  From  this  definition  the  following  properties  are 
easily  derived.  It  is  supposed  that  the  functions  w  and  u  are  such 
that  their  potentials  have  in  general  definite  values. 

Max  w  =  V.  Pot  w  =  Pot  V.  w, 
V  Max  w  =  VV.  Pot  w  =  New  V.  «, 
Max  Vu  =  —  4f7ru, 

4-Trft)  =  V  xLap  w  —  V  Max  ft). 

*  The  frequent  occurrence  of  the  integral  in  Maxwell's   Treatise  on  Electricity  and 
Magnetism  has  suggested  this  name. 

t[The  foregoing  portion  of  this  paper  was  printed  in  1881,  the  rest  in  1884.] 
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If  the  values  of  Lap  Lap  <*>,  New  Max  o>,  and  Max  New  u  are  in  general 
definite,  we  may  add 

47r  Pot  ft>  =  Lap  Lap  o>  —  New  Max  o>, 

4-7T  Pot  u  =  —  Max  New  u. 

In  other  words  :  The  Maxwellian  is  the  divergence  of  the  potential, 

—  -  —  and  V  are  inverse  operators  for  scalars  and  irrotational  vectors, 
4-7T  j 

for  vectors  in  general  —  j—  V  Max  is  an  operator  which  separates  the 

irrotational  from  the  solenoidal  part.  For  scalars  and  irrotational 

vectors,  -A  —  Max  New  and  -  -  New  Max  give  the  potential,  for  sole- 
47T  -i  47T 

noidal  vectors  j—  Lap  Lap  gives  the  potential,  for  vectors  in  general 
—  1  1 
—  —  New  Max  gives  the  potential  of  the  irrotational  part,  and  j—  Lap 

Lap  the  potential  of  the  solenoidal  part. 

103.  Def.  —  The  following  double  volume-integrals  are  of  frequent 
occurrence  in  physical  problems.  They  are  all  scalar  quantities,  and 

none  of  them  functions  of  position  in  space,  as  are  the  single  volume- 
integrals  which  we  have  been  considering.  The  integrations  extend 
over  all  space,  or  as  far  as  the  expression  to  be  integrated  has  values 
other  than  zero. 

The  mutual  potential,  or  potential  product,  of  two  scalar  functions 
of  position  in  space  is  defined  by  the  equation 

Pot  (u,  w)  =ffffff       dv  dv'  =fffu  Pot  w  dv  =fffw  Pot  u  dv. 

In  the  double  volume-integral,  r  is  the   distance  between  the  two 

elements  of  volume,  and  u  relates  td  dv  as  w'  to  dv'. 
The  mutual  potential,  or  potential  product,  of  two  vector  functions 

of  position  in  space  is  defined  by  the  equation 

Pot  <*,  «)  =ffffff^~-  dv  dv'  =fff$  .  Pot  «  dv  =///«,  .  Pot  *  dv. 

The   mutual  Laplacian,  or   Laplacian  product,  of    two  vector 
functions  of  position  in  space  is  defined  by  the  equation 

,  «)  =ffffff"  .^xfdv  dv' 

.  Lap  0  dv  =fff<t>  .  Lap  w  dv. 

The  Newtonian  product  of  a  scalar  and  a  vector  function  of  position 
in  space  is  defined  by  the  equation 

/ 

New  (u,  <*))  =f/ffif(30  .  ?£  u'  dv  dv'  =fff<*>  .  New  u  dv. 
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The  Maxwellian  product  of   a  vector  and  a  scalar  function   of 
position  in  space  is  defined  by  the  equation 

/ 

Max  (w,  u) ~ffffff^ ^  T^ .  a>'  dv dv'  —fffu  Max  wdv  —  -  New (u,  w). 

It  is  of  course  supposed  that  u,  w,  0,  w  are  such  functions  of  position 
that  the  above  expressions  have  definite  values. 

104.  By  No.  97, 

4>7ruPotw=  —  V.NewuPotiy  =  —  V.[NewuPotit/]  +  New  u.  New  w. 

The  volume-integral  of  this  equation  gives 

4-7T  Pot  (u,  w)  ==/J^New  u.  New  w  dv, 
if  the  integral 

ffdv.  New  u  Pot  w, 

for  a  closed  surface,  vanishes  when  the  space  included  by  the  surface 
is  indefinitely  extended  in  all  directions.  This  will  be  the  case  when 
everywhere  outside  of  certain  assignable  limits  the  values  of  u  and  w 
are  zero. 

Again,  by  No.  102, 

4<7Tft).Pot  0  =  VxLapw.Pot  0  —  V  Max  a). Pot  0 

=  V.[Lap  ft>xPot  0]  -f-  Lap  to. Lap  <j> 

—  V.  [Max  w  Pot  0]  -h  Max  w  Max  0. 

The  volume-integral  of  this  equation  gives 

4-7T  Pot  (0,  ft))  ==/5f7*Lap  0 -Lap  « cfa;  -f  j^JOVIax  0  Max  w  cfo, 
if  the  integrals 

ffd<r .  Lap  w  x  Pot  (f>,  ffd<r  •  Pot  0  Max  w, 

for  a  closed  surface  vanish  when  the  space  included  by  the  surface  is 

indefinitely  extended  in  all  directions.  This  will  be  the  case  if  every- 
where outside  of  certain  assignable  limits  the  values  of  0  and  co  are 

zero. 

CHAPTER  III. 

CONCERNING  LINEAR  VECTOR  FUNCTIONS. 

105.  Def. — A  vector  function  of  a  vector  is  said  to  be  linear,  when 
the  function  of  the  sum  of  any  two  vectors  is  equal  to  the  sum  of  the 
functions  of  the  vectors.     That  is,  if 

f  unc.  [p  +  p]  =  f  unc.  [p]  -f  f  unc.  [p] 

for  all  values  of  p  and  p,  the  function  is  linear.  In  such  cases  it  is 
easily  shown  that 

f  unc.  [ap  -f  bp  +  cp"  -f  etc.]  =  a  f  unc.  [p]  -f  b  f  unc.  [p] + c  f  unc.  [p"]  +  etc. 

, 
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106.  An  expression  of  the  form 

a  X  .  p  +  ft  M  •  p  +  etc. 

evidently  represents  a  linear  function  of  p,  and  may  be  conveniently 
written  in  the  form 

{a\+/3iu.+etc.}.p. 

The  expression  />.aX  +  p./3/z+etc., 

or  p 

also  represents  a  linear  function  of  p,  which  is,  in  general,  different 
from  the  preceding,  and  will  be  called  its  conjugate. 

107.  Def.  —  An  expression  of  the  form  aX  or  /3/j.  will  be  called  a 
dyad.     An  expression  consisting  of  any  number  of  dyads  united  by 

the  signs  +  or  —  will  be  called  a  dyadic  binomial,  trinomial,  etc., 
as  the  case  may  be,  or  more  briefly,  a  dyadic.     The  latter  term  will 
be  used  so  as  to  include  the  case  of  a  single  dyad.     When  we  desire 

to  express  a  dyadic  by  a  single  letter,  the  Greek  capitals  will  be  used, 
except  such  as  are  like  the  Roman,  and  also  A  and  2.     The  letter  I 
will  also  be  used   to   represent  a  certain  dyadic,  to  be  mentioned 
hereafter. 

Since  any  linear  vector  function  may  be  expressed  by  means  of  a 
dyadic  (as  we  shall  see  more  particularly  hereafter,  see  No.  110),  the 
study  of  such  functions,  which  is  evidently  of  primary  importance  in 
the  theory  of  vectors,  may  be  reduced  to  that  of  dyadics. 

108.  Def.  —  Any  two  dyadics  <3>  and  ¥  are  equal, 

when  <£.p  =  ¥.p  for  all  values  of  p, 

or,  when  p&  =  p&  for  all  values  of  p, 

or,  when  o-/l>./o  =  o-.>Er./o  for  all  values  of  <r  and  of  p. 

The  third  condition  is  easily  shown  to  be  equivalent  both  to  the  first 
and  to  the  second.     The  three  conditions  are  therefore  equivalent. 

It  follows  that  $  =  •¥,  if  3>.p  =  ¥.p,  or  p&  =  p&,  for  three  non- 
complanar  values  of  p. 

109.  Def.  —  We   shall   call  the   vector  &p  the  (direct)  product  of 

$  and  p,  the  vector  p&  the  (direct)  product  of  p  and  3>,  and  the 
scalar  <r&.p  the  (direct)  product  of  <r,  <3?,  and  p. 

In  the  combination  <l?.p,  we  shall  say  that  3>  is  used  as  a  pref  actor, 
in  the  combination  p.<fr,  as  a  postf  actor. 

110.  If  r  is  any  linear  function  of  p,  and  for  p  =  i,  p=j,  p  =  k,  the 
values  of  r  are  respectively  a,  /3,  and  y,  we  may  set 

r 
and  also 

T 

Therefore,  any  linear  function  may  be   expressed   by   a  dyadic   as 
prefactor  and  also  by  a  dyadic  as  postfactor. 
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111.  Def.  —  We  shall  say  that  a  dyadic  is  multiplied  by  a  scalar, 
when  one  of  the  vectors  of  each  of  its  component  dyads  is  multiplied 
by  that  scalar.     It  is  evidently  immaterial  to  which  vector  of  any 
dyad  the  scalar  factor  is  applied.     The  product  of  the  dyadic  3?  and 
the  scalar  a  may  be  written  either  a  3?  or  3?  a.     The  minus  sign  before 
a  dyadic  reverses  the  signs  of  all  its  terms. 

112.  The   sign    -j-    in   a   dyadic,   or    connecting   dyadics,   may   be 
regarded  as  expressing  addition,  since  the  combination  of  dyads  and 
dyadics   with   this   sign   is   subject  to  the   laws  of   association  and 
commutation. 

113.  The  combination  of  vectors  in  a  dyad  is  evidently  distributive. 
TVmt  i<4 

We  may  therefore  regard  the  dyad  as  a  kind  of  product  of  the  two 
vectors  of  which  it  is  formed.  Since  this  kind  of  product  is  not 
commutative,  we  shall  have  occasion  to  distinguish  the  factors  as 
antecedent  and  consequent. 

114.  Since  any  vector  may  be  expressed  as  a  sum  of  it  j,  and  k  with 
scalar  coefficients,  every  dyadic  may  be  reduced  to  a  sum  of  the  nine 

yS  ii>  ij,  ̂   ji,  jj,  jk,  ki,  kj,  kk, 
with  scalar  coefficients.  Two  such  sums  cannot  be  equal  according  to 
the  definitions  of  No.  108,  unless  their  coefficients  are  equal  each  to 
each.  Hence  dyadics  are  equal  only  when  their  equality  can  be 
deduced  from  the  principle  that  the  operation  of  forming  a  dyad  is  a 
distributive  one. 

On  this  account,  we  may  regard  the  dyad  as  the  most  general  form 
of  product  of  two  vectors.  We  shall  call  it  the  indeterminate  product. 
The  complete  determination  of  a  single  dyad  involves  five  independent 
scalars,  of  a  dyadic,  nine. 

115.  It  follows  from  the  principles  of  the  last  paragraph  that  if 

2  a/3  =  2  K\, 

then  2«x/3=S/txX, 
and  2«./8=2,.X. 

In  other  words,  the  vector  and  the  scalar  obtained  from  a  dyadic 
by  insertion  of  the  sign  of  skew  or  direct  multiplication  in  each  dyad 
are  both  independent  of  the  particular  form  in  which  the  dyadic  is 
expressed. 
We  shall  write  <£x  and  $g  to  indicate  the  vector  and  the  scalar  thus 

obtained. 

3>x  =  (j.3>.  k  —k&.j)i  +  (k&.i  —  i&.  k)j  +  (i.3>.  j  —j.3>.i)k, 

>.  k, 
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as  is  at  once  evident,  if  we  suppose  <I>  to  be  expanded  in  terms  of 
ii,  ij,  etc. 

116.  Def.  —  The  (direct)  product  of  two  dyads  (indicated  by  a  dot) 
is  the  dyad  formed  of  the  first  and  last  of  the  four  factors,  multiplied 
by  the  direct  product  of  the  second  and  third.  That  is, 

The  (direct)  product  of  two  dyadics  is  the  sum  of  all  the  products 
formed  by  prefixing  a  term  of  the  first  dyadic  to  a  term  of  the  second. 
Since  the  direct  product  of  one  dyadic  with  another  is  a  dyadic,  it 
may  be  multiplied  in  the  same  way  by  a  third,  and  so  on  indefinitely. 
This  kind  of  multiplication  is  evidently  associative,  as  well  as  dis- 

tributive. The  same  is  true  of  the  direct  product  of  a  series  of  factors 
of  which  the  first  and  the  last  are  either  dyadics  or  vectors,  and  the 
other  factors  are  dyadics.  Thus  the  values  of  the  expressions 

will  not  be  affected  by  any  insertion  of  parentheses.  But  this  kind  of 
multiplication  is  not  commutative,  except  in  the  case  of  the  direct 
product  of  two  vectors. 

117.  Def.  —  The  expressions  3>x/o  and  /ox3?  represent  dyadics  which 
we  shall  call  the  skew  products  of  3?  and  p.     If 

3?  =  aX  -f  /3/z  +  etc., 

these  skew  products  are  defined  by  the  equations 

<l>X/3  =  a  \  x/o  +  /5  fi  x/o  +  etc., 

It  is  evident  that 

p*{3>&}, 

a.{3>X/o}  = 

}. 

We  may  therefore  write  without  ambiguity 

This  may  be  expressed  a  little  more  generally  by  saying  that  the 
associative  principle  enunciated  in  No.  116  may  be  extended  to  cases 
in  which  the  initial  or  final  vectors  are  connected  with  the  other 

factors  by  the  sign  of  skew  multiplication. 
Moreover, 

a.pX&  =  [aXp]&   and   3>x/o.a  =  < 
These  expressions  evidently  represent  vectors.     So 

These  expressions  represent  dyadics.     The  braces  cannot  be  omitted 
without  ambiguity. 
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118.  Since  all  the  antecedents  or  all  the  consequents  in  any  dyadic 

may  be  expressed  in  parts  of  any  three  non-complanar  vectors,  and 
since  the  sum  of  any  number  of  dyads  having  the  same  antecedent 
or  the  same  consequent  may  be  expressed  by  a  single  dyad,  it  follows 
that  any  dyadic  may  be  expressed  as  the  sum  of  three  dyads,  and  so, 
that  either  the  antecedents  or  the  consequents  shall  be  any  desired 

non-complanar  vectors,  but  only  in  one  way  when  either  the  ante- 
cedents or  the  consequents  are  thus  given. 

In  particular,  the  dyadic 
aii+bij  +cik 

which  may  for  brevity  be  written 

is  equal  to 
where 

y  =  ci  +  c'j+c"k, 
andto  iX+jfji  +  kv, 
where  +ck 

'j  +c'k 

119.  By  a  similar  process,  the  sum  of  three  dyads  may  be  reduced 
to  the  sum  of  two  dyads,  whenever  either  the  antecedents  or  the 
consequents  are  complanar,  and  only  in  such  cases.  To  prove  the 
latter  point,  let  us  suppose  that  in  the  dyadic 

neither  the   antecedents   nor  the   consequents   are   complanar.     The 
vector 

is  a  linear  function  of  p  which  will  be  parallel  to  a  when  p  is  perpen- 
dicular to  JUL  and  v,  which  will  be  parallel  to  ft  when  p  is  perpendicular 

to  v  and  X,  and  which  will  be  parallel  to  y  when  p  is  perpendicular  to 
X  and  //.  Hence,  the  function  may  be  given  any  value  whatever  by 
giving  the  proper  value  to  p.  This  would  evidently  not  be  the  case 
with  the  sum  of  two  dyads.  Hence,  by  No.  108,  this  dyadic  cannot  be 
equal  to  the  sum  of  two  dyads. 
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120.  In  like  manner,  the  sum  of  two  dyads  may  be  reduced  to  a 
single  dyad,  if  either  the  antecedents  or  the  consequents  are  parallel, 
and  only  in  such  cases. 

A  sum  of  three  dyads  cannot  be  reduced  to  a  single  dyad,  unless 

either  their  antecedents  or  consequents  are  parallel,  or  both  ante- 
cedents and  consequents  are  (separately)  complanar.  In  the  first  case 

the  reduction  can  always  be  made,  in  the  second,  occasionally. 

121.  Def.  —  A  dyadic  which  cannot  be  reduced  to  the  sum  of  less 
than  three  dyads  will  be  called  complete. 

A  dyadic  which  can  be  reduced  to  the  sum  of  two  dyads  will  be 
called  planar.  When  the  plane  of  the  antecedents  coincides  with 
that  of  the  consequents,  the  dyadic  will  be  called  uniplanar.  These 
planes  are  invariable  for  a  given  dyadic,  although  the  dyadic  may  be 
so  expressed  that  either  the  two  antecedents  or  the  two  consequents 
may  have  any  desired  values  (which  are  not  parallel)  within  their 

planes. 
A  dyadic  which  can  be  reduced  to  a  single  dyad  will  be  called 

linear.  When  the  antecedent  and  consequent  are  parallel,  it  will  be 
called  unilinear. 

A  dyadic  is  said  to  have  the  value  zero  when  all  its  terms  vanish. 
122.  If  we  set 

T  = 

and  give  />  all  possible  values,  <r  and  T  will  receive  all  possible  values, 

if  $  is  complete.  The  values  of  a-  and  T  will  be  confined  each  to  a 
plane  if  <£  is  planar,  which  planes  will  coincide  if  <1?  is  uniplanar. 
The  values  of  <r  and  T  will  be  confined  each  to  a  line  if  3>  is  linear, 
which  lines  will  coincide  if  <£  is  unilinear. 

123.  The  products  of  complete  dyadics  are  complete,  of  complete 
and  planar  dyadics  are  planar,  of,  complete  and  linear  dyadics  are 
linear. 

The  products  of  planar  dyadics  are  planar,  except  that  when  the 
plane  of  the  consequents  of  the  first  dyadic  is  perpendicular  to  the 
plane  of  the  antecedents  of  the  second  dyadic,  the  product  reduces 
to  a  linear  dyadic. 

The  products  of  linear  dyadics  are  linear,  except  that  when  the 
consequent  of  the  first  is  perpendicular  to  the  antecedent  of  the 
second,  the  product  reduces  to  zero. 

The  products  of  planar  and  linear  dyadics  are  linear,  except  when, 
the  planar  preceding,  the  plane  of  its  consequents  is  perpendicular  to 
the  antecedent  of  the  linear,  or,  the  linear  preceding,  its  consequent  is 
perpendicular  to  the  plane  of  the  antecedents  of  the  planar.  In  these 
cases  the  product  is  zero. 

All  these  cases  are  readily  proved,  if  we  set 

o-  = 
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and  consider  the  limits  within  which  a-  varies,  when  we  give  p  all 
possible  values. 

The  products  "^"x/o  and  yox$  are  evidently  planar  dyadics. 
124.  Def.  —  A  dyadic  <1>  is  said  to  be  an  idemfactor,  when 

&.p  =  p  for  all  values  of  p, 

or  when  /o.4?  =  /o  for  all  values  of  p. 

If  either  of  these  conditions  holds  true,  3?  must  be  reducible  to  the 
form 

Therefore,  both  conditions  will  hold,  if  either  does.  All  such  dyadics 
are  equal,  by  No.  108.  They  will  be  represented  by  the  letter  I. 

The  direct  product  of  an  idemfactor  with  another  dyadic  is  equal  to 
that  dyadic.     That  is, 

1.$  =  *,         $.1  =  $, 

where  <&  is  any  dyadic. 
A  dyadic  of  the  form  ,  ,  Q0,  ,       , act  -rpp  -ryy, 

in  which  a',  /3',  y  are  the  reciprocals  of  a,  /3,  y,  is  an  idemfactor. 
(See  No.  38.)  A  dyadic  trinomial  cannot  be  an  idemfactor,  unless  its 
antecedents  and  consequents  are  reciprocals. 

125.  If  one  of  the  direct  products  of  two  dyadics  is  an  idemfactor, 

the  other  is  also.     For,  if  3>.ty  =  I, 

for  all  values  of  cr,  and  <3?  is  complete  ; 

(7.$.¥.«3>  =  o-.<i» 
for  all  values  of  or,  therefore  for   all  values  of   0-.$,  and  therefore 

Def.  —  In  this  case,  either  dyadic  is  called  the  reciprocal  of  the 
other. 

It  is  evident  that  an  incomplete  dyadic  cannot  have  any  (finite) 
reciprocal. 

Reciprocals  of  the  same  dyadic  are  equal.  For  if  3>  and  ty  are  both 
reciprocals  of  ft,  $  =  $.  Q.¥  =  ̂ . 

If  two  dyadics  are  reciprocals,  the  operators  formed  by  using  these 
dyadics  as  prefactors  are  inverse,  also  the  operators  formed  by  using 
them  as  postfactors. 

126.  The  reciprocal  of  any  complete  dyadic 
a  A  +  ftfji  +  y  v 

is  AV+M73/+"Y> 

where  a',  /8',  y   are  the  reciprocals  of  a,  ft,  y,  and  A',  JUL',  v  are  the 
reciprocals  of  A,  p,  v.     (See  No.  38.) 
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127.  Def. — We  shall  write  $"1  for  the  reciprocal  of  any  (complete) 
dyadic  <1>,  also  <1?2  for   $.$,  etc.,  and  <£~2,  for   $~1.$~1,  etc.      It  is 
evident  that  $~n  is  the  reciprocal  of  3>n, 

128.  In  the  reduction  of  equations,  if  we  have 

we  may  cancel  the  4>  (which  is  equivalent  to  multiplying  by  $~l)  if 
$  is  a  complete  dyadic,  but  not  otherwise.  The  case  is  the  same  with 
such  equations  as 

To  cancel  an  incomplete  dyadic  in  such  cases  would  be  analogous  to 
cancelling  a  zero  factor  in  algebra. 

129.  Def.  —  If  in  any  dyadic  we  transpose  the  factors  in  each  term, 
the  dyadic  thus  formed  is  said  to  be  conjugate  to  the  first.     Thus 

and 

are  conjugate  to  each  other.  A  dyadic  of  which  the  value  is  not 

altered  by  such  transposition  is  said  to  be  self-conjugate.  The  con- 
jugate of  any  dyadic  <£  may  be  written  $c.  It  is  evident  that 

p&  =  3>c.p   and   3?.p  =  /9.3>c. 

3>c.p  and  <£»./>  are  conjugate  functions  of  p.  (See  No.  106.)  Since 

{<j>c}2=  {<!>2}c,  we  may  write  $c>  etc.,  without  ambiguity. 
130.  The  reciprocal  of  the  product  of  any  number  of  dyadics  is 

equal  to  the  product  of  their  reciprocals  taken  in  inverse  order.     Thus 

The  conjugate  of  the  product  of  any  number  of  dyadics  is  equal  to 
the  product  of  their  conjugates  taken  in  inverse  order.     Thus 

Hence,  since  3>0.{<Ir1}c  =  {<3?-1.<£}c  =  I, 

{$-1}c={^c}-1, 

and  we  may  write  ̂ c1  without  ambiguity. 
131.  It  is  sometimes  convenient  to  be  able  to  express  by  a  dyadic 

taken  in  direct  multiplication  the  same  operation  which  would  be 
effected  by  a  given  vector  (a)  in  skew  multiplication.  The  dyadic 
Ixa  will  answer  this  purpose.  For,  by  No.  117, 

/o.{IXa}=/oXa, 

The  same  is  true  of  the  dyadic  ax  I,  which  is  indeed  identical  with 
Ixa,  as  appears  from  the  equation  I.{axl}  =  {Ixa}.I. 
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If  a  is  a  unit  vector, 

{IXa}2=-{I-aa}, 

{Ixa}3=  —  IXa, 

{Ixa}*  =  l  —  aa, 

etc. 

If  i,  j,  k  are  a  normal  system  of  unit  vectors 

i  =  i  xl  =  kj  —jk. 

=     —    . 

If  a  and  /3  are  any  vectors, 

That  is,  the  vector  axft  as  a  pre-  or  post-factor  in  skew  multipli- 
cation is  equivalent  to  the  dyadic  {fta  —  aft}  taken  as  pre-  or  post- 

factor  in  direct  multiplication. 

[axft]Xp  =  {fta  —  aft}.p, 

px[axft]  =  p.{fta  —  aft}. 

This  is  essentially  the  theorem  of  No.  27,  expressed  in  a  form  more 
symmetrical,  and  more  easily  remembered. 

132.  The  equation 

aftxy  +  /5yXa  +  y  axft  =  a.ftxy  I 
gives,  on  multiplication  by  any  vector  p,  the  identical  equation 

p.aftxy  +  p.ftyXa  +  p.y  axft  =  a.ftxy  p. 

(See   No.   37.)     The   former   equation   is   therefore   identically   true. 
(See  No.  108.)     It  is  a  little  more  general  than  the  equation 

which  we  have  already  considered  (No.  124),  since,  in  the  form  here 

given,  it  is  not  necessary  that  a,  /3,  and  y  should  be  non-complan 
We  may  also  write 

Multiplying  this  equation  by  p  as  prefactor  (or  the  first  equation  b; 
p  as  postfactor),  we  obtain 

/9./3xya  +  p.yXa/3  -f  /3.a 
(Compare  No.  37.)     For  three  complanar  vectors  we  have 

a/5xy  +  /3yXa  +  yaX/3  =  0. 

Multiplying  this  by  i/,  a  unit  normal  to  the  plane  of  a,  ft,  and  y 
we  have 

+  yaX/3.i/  = 
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This  equation  expresses  the  well-known  theorem  that  if  the  geometrical 
sum  of  three  vectors  is  zero,  the  magnitude  of  each  vector  is  propor- 

tional to  the  sine  of  the  angle  between  the  other  two.  It  also  indicates 
the  numerical  coefficients  by  which  one  of  three  complanar  vectors  may 

be  expressed  in  parts  of  the  other  two. 

133.  Def.  —  If  two  dyadics  3>  and  ¥  are  such  that 

they  are  said  to  be  homologous. 
If  any  number  of  dyadics  are  homologous  to  one  another,  and  any 

other  dyadics  are  formed  from  them  by  the  operations  of  taking 
multiples,  sums,  differences,  powers,  reciprocals,  or  products,  such 
dyadics  will  be  homologous  to  each  other  and  to  the  original  dyadics. 
This  requires  demonstration  only  in  regard  to  reciprocals.  Now  if 

That  is,  3?'1  is  homologous  to  >P,  if  3?  is. 
134.  If  we  call  ty.Q-1  or  3?-1.<I>  the  quotient  of  ¥  and  3>,  we  may 

say  that  the  rules  of  addition,  subtraction,  multiplication  and  division 
of  homologous   dyadics   are  identical   with   those   of   arithmetic   or 
ordinary  algebra,  except  that  limitations  analogous  to  those  respecting 
zero  in  algebra   must  be  observed  with   respect  to  all   incomplete 
dyadics. 

It  follows  that  the  algebraic  and  higher  analysis  of  homologous 
dyadics  is  substantially  identical  with  that  of  scalars. 

135.  It  is  always  possible  to  express  a  dyadic  in  three  terms,  so 
that  both  the  antecedents  and  the  consequents  shall  be  perpendicular 

among  themselves.  ' 
To  show  this  for  any  dyadic  <£,  let  us  set 

p  =$./>, 

p  being  a  unit-  vector,  and  consider  the  different  values  of  p  for  all 
possible  directions  of  p.  Let  the  direction  of  the  unit  vector  i  be  so 

determined  that  when  p  coincides  with  i,  the  value  of  p'  shall  be  at 
least  as  great  as  for  any  other  direction  of  p.  And  let  the  direction 
of  the  unit  vector  j  be  so  determined  that  when  p  coincides  with  j, 

the  value  of  p'  shall  be  at  least  as  great  as  for  any  other  direction  of  p 
which  is  perpendicular  to  i.  Let  k  have  its  usual  position  with 
respect  to  i  and  j.  It  is  evidently  possible  to  express  $  in  the  form 

We  have  therefore 

p'= 
and  dp'  —  {  ai  -f  /3j  +  yk}  .  dp. 
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Now  the  supposed  property  of  the  direction  of  i  requires  that  when  p 
coincides  with  i  and  dp  is  perpendicular  to  i,  dp  shall  be  perpendicular 

to  p',  which  will  then  be  parallel  to  a.  But  if  dp  is  parallel  to  j  or  k, 
it  will  be  perpendicular  to  i,  and  dp  will  be  parallel  to  /3  or  y,  as  the 
case  may  be.  Therefore  /3  and  y  are  perpendicular  to  a.  In  the  same 
way  it  may  be  shown  that  the  condition  relative  to  j  requires  that  y 
shall  be  perpendicular  to  /3.  We  may  therefore  set 

<1>  =  ai'i  4-  bj'j  4-  ck'k, 
V     V 

where  i',  j',  k',  like  i,  j,  k,  constitute  a  normal  system  of  unit  vectors 
(see  No.  11),  and  a,  b,  c  are  scalars  which  may  be  either  positive  or 

negative. 
It  makes  an  important  difference  whether  the  number  of  these 

scalars  which  are  negative  is  even  or  odd.  If  two  are  negative,  say  a 

and  b,  we  may  make  them  positive  by  reversing  the  directions  of  i' 
and  j'.  The  vectors  i',  j',  k'  will  still  constitute  a  normal  system. 
But  if  we  should  reverse  the  directions  of  an  odd  number  of  these 

vectors,  they  would  cease  to  constitute  a  normal  system,  and  to  be 
superposable  upon  the  system  i,  j,  k.  We  may,  however,  always  set 

either  3>  =  ai'i  +  tyj+cVk, 

or  $  =  —  { ai'i  +  bj'j  4-  ck'k } , 
with  positive  values  of  a,  b,  and  c.     At  the  limit  between  these  cases 
are  the  planar  dyadics,  in  which  one  of  the  three  terms  vanishes,  and 
the  dyadic  reduces  to  the  form 

ai'i  +  bj'j, 

in  which  a  and  b  may  always  be  made  positive  by  giving  the  proper 

directions  to  i'  and  /. 
If  the  numerical  values  of  a,  b,  c  are  all  unequal,  there  will  be  only 

one  way  in  which  the  value  of  <3?  may  be  thus  expressed.  If  they  are 
not  all  unequal,  there  will  be  an  infinite  number  of  ways  in  which  3? 
may  be  thus  expressed,  in  all  of  which  the  three  scalar  coefficients 

will  have  the  same  values  with  exception  of  the  changes  of  signs 
mentioned  above.  If  the  three  values  are  numerically  identical,  we 
may  give  to  either  system  of  normal  vectors  an  arbitrary  position. 

136.  It  follows  that  any  self -conjugate  dyadic  may  be  expressed 
in  the  form  .  •  ,  T  •  •  ,    7  7 

an  4-  fyj  4-  c/ck, 
where  i,  j,  k  are  a  normal  system  of  unit  vectors,  and  a,  b,  c  are 
positive  or  negative  scalars. 

137.  Any  dyadic  may  be  divided  into  two  parts,  of  which  one  shall 

be  self -conjugate,  and  the  other  of  the  form  Ixa.     These  parts  are 
found  by  taking  half  the  sum  and  half  the  difference  of  the  dyadic 
and  its  conjugate.     It  is  evident  that 
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Now  %{3?+3>c]  is  self-conjugate,  and 

(See  No.  131.) 

Rotations  and  Strains. 

138.  To  illustrate  the  use  of  dyadics  as  operators,  let  us  suppose 
that  a  body  receives  such  a  displacement  that 

p'  =  $.p, 

p  and  p  being  the  position-  vectors  of  the  same  point  of  the  body  in 
its  initial  and  subsequent  positions.  The  same  relation  will  hold  of 
the  vectors  which  unite  any  two  points  of  the  body  in  their  initial 

and  subsequent  positions.  For  if  plt  p2  are  the  original  position- 
vectors  of  the  points,  and  /o/,  p%  their  final  position-vectors,  we  have 

Pl=$'Pl>  PZ=&P2> 

whence  ,        ,     ,  r  •. 
Pz-pi  ==<£-U>2-/>iJ- 

In  the  most  general  case,  the  body  is  said  to  receive  a  homogeneous 
strain.  In  special  cases,  the  displacement  reduces  to  a  rotation. 
Lines  in  the  body  initially  straight  and  parallel  will  be  straight  and 
parallel  after  the  displacement,  and  surfaces  initially  plane  and 
parallel  will  be  plane  and  parallel  after  the  displacement. 

139.  The  vectors  (a;  a-')  which  represent  any  plane  surface  in  the 
body  in  its  initial  and  final  positions  will  be  linear  functions  of  each 

other.     (This  will  appear,  if  we  consider  the  four  sides  of  a  tetra- 
hedron in  the  body.)     To  find  the  relation  of  the  dyadics  which 

express  a-'  as  a  function  of  or,  and  p  as  a  function  of  />,  let 

Then,  if  we  write  X',  /*',  v  for  the  reciprocals  of  X,  /x,  i/,  the  vectors 
X',  /A',  v  become  by  the  strain  a,  /3,  y.  Therefore  the  surfaces  //Xi/, 
i/xX',  X'XM'  become  /3xy,  yxa,  ax/3.  But  /x'xi/,  i/xX',  X'Xju'  are  the 
reciprocals  of  /xXi>,  i/xX,  Xx/u.  The  relation  sought  is  therefore 

(/  =  {/3xy  v.Xv  -f  yxa  i/xX  +  ax/3  Xx/*}.(r. 

140.  The  volume  X'./x'xi/  becomes  by  the  strain  a./Sxy.  The 
unit  of  volume  becomes  therefore  (a./3xy)(X.ywXi/). 

Def.  —  It  follows  that  the  scalar  product  of  the  three  antecedents 
multiplied  by  the  scalar  product  of  the  three  consequents  of  a  dyadic 
expressed  as  a  trinomial  is  independent  of  the  particular  form  in 
which  the  dyadic  is  thus  expressed.  This  quantity  is  the  determinant 
of  the  coefficients  of  the  nine  terms  of  the  form 

aii  +  bij  +  etc., 
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into  which   the   dyadic  may   be   expanded.      We   shall   call   it  the 
determinant  of  the  dyadic,  and  shall  denote  it  by  the  notation 

when  the  dyadic  is  expressed  by  a  single  letter. 
If  a  dyadic  is  incomplete,  its  determinant  is  zero,  and  conversely. 
The  determinant  of  the  product  of  any  number  of  dyadics  is 

equal  to  the  product  of  their  determinants.  The  determinant  of  the 
reciprocal  of  a  dyadic  is  the  reciprocal  of  the  determinant  of  that 
dyadic.  The  determinants  of  a  dyadic  and  its  conjugate  are  equal. 

The  relation  of  the  surfaces  cr'  and  cr  may  be  expressed  by  the  equation 

141.  Let  us  now  consider  the  different  cases  of  rotation  and  strain 

as  determined  by  the  nature  of  the  dyadic  <£. 
If  <£  is  reducible  to  the  form 

i,j>  k,  i',j'y  h'  being  normal  systems  of  unit  vectors  (see  No.  11),  the 
body  will  suffer  no  change  of  form.     For  if 

we  shall  have 

p=xi'+yj'-\-zk'. Conversely,  if  the  body  suffers  no  change  of  form,  the  operating 
dyadic  is  reducible  to  the  above  form.  In  such  cases,  it  appears  from 
simple  geometrical  considerations  that  the  displacement  of  the  body 
may  be  produced  by  a  rotation  about  a  certain  axis.  A  dyadic 
reducible  to  the  form 

i'i+j'j+k'k 
may  therefore  be  called  a  versor. 

142.  The  conjugate  operator  evidently  produces  the  reverse  rotation. 
A  versor,  therefore,  is  the  reciprocal  of  its  conjugate. 

Conversely,  if  a  dyadic  is  the  reciprocal  of  its  conjugate,  it  is  either 

a  versor,  or  a  versor  multiplied  by  —  1.  For  the  dyadic  may  be 
expressed  in  the  form 

Its  conjugate  will  be  ia+j/3+ky. 
If  these  are  reciprocals,  we  have 

But  this  relation  cannot  subsist  unless  a,  ft,  y  are  reciprocals  to 

themselves,  i.e.,  unless  they  are  mutually  perpendicular  unit-vectors. 
Therefore,  they  either  are  a  normal  system  of  unit-vectors,  or  will 
become  such  if  their  directions  are  reversed.  Therefore,  one  of  the 

dyadics 
ai  +  /3j  +  yk     and     —ai  —  /3j  —  yk is  a  versor. 

[See  note  on  p.  90.] 
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The  criterion  of  a  versor  may  therefore  be  written 

For  the  last  equation  we  may  substitute 

It  is  evident  that  the  resultant  of  successive   finite  rotations  is 

obtained  by  multiplication  of  the  versors. 
143.  If  we  take  the  axis  of  the  rotation  for  the  direction  of  i, 

i'  will  have  the  same  direction,  and  the  versor  reduces  to  the  form 

ii+j'j  +  k'k, 
in  which  i,  j,  k  and  i,  j',  k'  are  normal  systems  of  unit  vectors. 

We  may  set 
j'  =  cos  q  j  +  sin  q  k, 
k'  =  cos  q  k  —  sin  q  j, 

and  the  versor  reduces  to 

ii  +  cosff  {jj+kk}  +  sing  {kj—  jk}, 
or 

ii  +  cos  q  {I  —  ii}  +  sin  q  Ixi, 

where  q  is  the  angle  of  rotation,  measured  from  j  toward  k,  if  the 
versor  is  used  as  a  prefactor. 

144.  When  any  versor  <J>  is  used  as  a  prefactor,  the  vector  —  $x 
will  be  parallel  to  the  axis  of  rotation,  and  equal  in  magnitude  to 
twice  the  sine  of  the  angle  of  rotation  measured  counter-clockwise  as 
seen  from  the  direction  in  which  the  vector  points.     (This  will  appear 
if  we  suppose  3?  to  be  represented  in  the  form  given  in  the  last 

paragraph.)     The  scalar  <l»s  will  be  equal  to  unity  increased  by  twice 
the  cosine  of  the  same  angle.     Together,  —  <£x  and  <frs  determine  the 
versor  without  ambiguity.     If  we  set ^  =  TT<P 

the  magnitude  
of  0  will  be 

...  ,  n — - —    or    tan  iff, 2  +  2  cos  q 

where  q  is  measured  counter-clockwise  as  seen  from  the  direction  in 
which  0  points.  This  vector  0,  which  we  may  call  the  vector  semi- 
tangent  of  version,  determines  the  versor  without  ambiguity. 

145.  The  versor  $  may  be  expressed  in  terms  of  0  in  various  ways. 

Since  <£  (as  prefactor)  changes  a  — 0Xa  into  a  +  0Xa  (a  being  any 
vector),  we  have 

Again 

00+{I+Ix0}2  _  (1-0.0)1  +  200+21x0 
1  +  0.0  1  +  0.0 

G.  II.  E 
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as  will  be  evident  on  considering  separately  in  the  expression  <£. 
the  components  perpendicular  and  parallel  to  0,  or  on  substituting  in 

ii  +  cos  q  (jj + kk)  +  sin  q  (kj  —jk) 

for  cos  q  and  sin  q  their  values  in  terms  of  tan  ̂ q. 
If  we  set,  in  either  of  these  equations, 

we  obtain,  on  reduction,  the  formula 

-h(2a&  +  2c)/fc+(l-a2+62-- 

in  which  the  versor  is  expressed  in  terms  of  the  rectangular  com- 
ponents of  the  vector  semitangent  of  version. 

146.  If  a,  ft,  y  are  unit  vectors,  expressions  of  the  form 

2aa-I,          2$8-I,          2yy-I, 

are  biquadrantal  versors.     A  product  like 

{2/3/3-!}.{2aa-I} 

is  a  versor  of  which  the  axis  is  perpendicular  to  a  and  ft,  and  the 
amount  of  rotation  twice  that  which  would  carry  a  to  ft.  It  is 
evident  that  any  versor  may  be  thus  expressed,  and  that  either  a  or  ft 
may  be  given  any  direction  perpendicular  to  the  axis  of  rotation.  If 

<£=  {2/3/3-1}.  {2aa-I},     and     ¥=  {2yy-I}.  {2/3/3-1}, 
we  have  for  the  resultant  of  the  successive  rotations 

¥.<!»=  {2yy-I}.{2aa  -I}. 

This  may  be  applied  to  the  composition  of  any  two  successive 
rotations,  ft  being  taken  perpendicular  to  the  two  axes  of  rotation, 
and  affords  the  means  of  determining  the  resultant  rotation  by 
construction  on  the  surface  of  a  sphere.  It  also  furnishes  a  simple 
method  of  finding  the  relations  of  the  vector  semitangents  of  version 

for  the  versors  <£,  ¥,  and  ̂ r.$.  Let 

Then,  since 

/>  _a "i  ~~ 

^  ' 

cc.p 

which  is  moreover  geometrically  evident.     In  like  manner, 
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Therefore, 

a..  a. 

a.ftft.y 

(See  No.  38.)    That  is, 

03  +  0i- 

0  a  _ax/3./3xy    ,        a.y AlSO,  CN  .  t72  =  ---  nTo  ----  *•  --  /T/0>  - 
a.ftft.y  a.pp.y 

Hence,  01X02  =  02-(l-0r02)03+0i> 

_01  +  02+02X01 
*8~         1-M» 

which  is  the  formula  for  the  composition  of  successive  finite  rotations 
by  means  of  their  vector  semitangents  of  version. 

147.  The  versors  just  described  constitute  a  particular  class  under 
the  more  general  form 

aa  +  cos  q  {ft/3'  +  yy}  +  sin  q  [yft  -  By]  , 

in  which  a,  ft,  y  are  any  non-complanar  vectors,  and  a,  ft',  y  their 
reciprocals.  A  dyadic  of  this  form  as  a  pref  actor  does  not  affect  any 

vector  parallel  to  a.  Its  effect  on  a  vector  in  the  ft-y  plane  will  be 
best  understood  if  we  imagine  an  ellipse  to  be  described  of  which 

ft  and  y  are  conjugate  semi-diameters.  If  the  vector  to  be  operated 
on  be  a  radius  of  this  ellipse,  we  may  evidently  regard  the  ellipse 
with  ft,  y,  and  the  other  vector,  as  the  projections  of  a  circle  with  two 
perpendicular  radii  and  one  other  radius.  A  little  consideration  will 
show  that  if  the  third  radius  of  the  circle  is  advanced  an  angle  q,  its 
projection  in  the  ellipse  will  be  advanced  as  required  by  the  dyadic 
prefactor.  The  effect,  therefore,  of  such  a  prefactor  on  a  vector  in  the 

ft-y  plane  may  be  obtained  as  follows:  Describe  an  ellipse  of  which 
ft  and  y  are  conjugate  semi-diameters.  Then  describe  a  similar  and 
similarly  placed  ellipse  of  which  the  vector  to  be  operated  on  is  a 
radius.  The  effect  of  the  operator  is  to  advance  the  radius  in  this 
ellipse,  in  the  angular  direction  from  ft  toward  y,  over  a  segment 

which  is  to  the  total  area  of  the  ellipse  as  q  is  to  2-Tr.  When  used  as 
a  postfactor,  the  properties  of  the  dyadic  are  similar,  but  the  axis  of 
no  motion  and  the  planes  of  rotation  are  in  general  different. 

Def.  —  Such  dyadics  we  shall  call  cyclic. 
The  Nth  power  (N  being  any  whole  number)  of  such  a  dyadic  is 

obtained  by  multiplying  q  by  N.  If  q  is  of  the  form  2?rN/M  (N  and 
M  being  any  whole  numbers)  the  Mth  power  of  the  dyadic  will  be  an 
idemfactor.  A  cyclic  dyadic,  therefore,  may  be  regarded  as  a  root  of 
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I,  or  at  least  capable  of   expression   with  any  required  degree  of 
accuracy  as  a  root  of  I. 

It  should  be  observed  that  the  value  of  the  above  dyadic  will  not 
be  altered  by  the  substitution  for  a  of  any  other  parallel  vector,  or 

for  /3  and  y  of  any  other  conjugate  semi-diameters  (which  succeed  one 
another  in  the  same  angular  direction)  of  the  same  or  any  similar  and 
similarly  situated  ellipse,  with  the  changes  which  these  substitutions 

require  in  the  values  of  a',  ft,  y.  Or,  to  consider  the  same  changes 
from  another  point  of  view,  the  value  of  the  dyadic  will  not  be  altered 

by  the  substitution  for  a  of  any  other  parallel  vector  or  for  /3'  and  y 
of  any  other  conjugate  semi-diameters  (which  succeed  one  another  in 
the  same  angular  direction)  of  the  same  or  any  similar  and  similarly 
situated  ellipse,  with  the  changes  which  these  substitutions  require  in 
the  values  of  a,  /3,  and  y,  defined  as  reciprocals  of  a,  /&,  y. 

148.  The  strain  represented  by  the  equation 

p  =  {aii  +  bjj  +  ckk}  .  p 

where  a,  b,  c  are  positive  scalars,  may  be  described  as  consisting  of 
three  elongations  (or  contractions)  parallel  to  the  axes  i,  j,  k,  which 

are  called  the  principal  axes  of  the  strain,  and  which  have  the  pro- 
perty that  their  directions  are  not  affected  by  the  strain.  The  scalars 

a,  b,  c  are  called  the  principal  ratios  of  elongation.  (When  one  of 
these  is  less  than  unity,  it  represents  a  contraction.)  The  order  of 
the  three  elongations  is  immaterial,  since  the  original  dyadic  is  equal 
to  the  product  of  the  three  dyadics 

aii  +jj  -f-  kk,        ii  +  bjj  +  kk,        ii  +jj  -f  ckk 

taken  in  any  order. 

Def.  —  A  dyadic  which  is  reducible  to  this  form  we  shall  call  a  right 
tensor.  The  displacement  represented  by  a  right  tensor  is  called  a 

pure  strain.  A  right  tensor  is  evidently  self  -conjugate. 
149.  We  have  seen  (No.  135)  that  every  dyadic  may  be  expressed 

in  the  form 

±  (ai'i  +  bj'j  +  ck'k], 

where  a,  b,  c  are  positive  scalars.     This  is  equivalent  to 

and  to 

±  {i'i  +j'j  +  Vty  .{aii  +  bjj  +  ckk}. 
Hence  every  dyadic  may  be  expressed  as  the  product  of  a  versor  and 
a  right  tensor  with  the  scalar  factor  ±  1.  The  versor  may  precede  or 
follow.  It  will  be  the  same  versor  in  either  case,  and  the  ratios  of 
elongation  will  be  the  same;  but  the  position  of  the  principal  axes 
of  the  tensor  will  differ  in  the  two  cases,  either  system  being  derived 
from  the  other  by  multiplication  by  the  versor. 
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Def.  —  The  displacement  represented  by  the  equation 

P=-~P 
is  called  inversion.  The  most  general  case  of  a  homogeneous  strain 
may  therefore  be  produced  by  a  pure  strain  and  a  rotation  with  or 
without  inversion. 

150.  If 

<£  =  ai'i  -f  bj'j  +  ck'k, 

$.$o  =  a>W  +  &*//  +  c*  k'k', 

and  3>0&  =  a?ii  +  b'*jj+c2kk. 
The  general  problem  of  the  determination  of  the  principal  ratios  and 

axes  of  strain  for  a  'given  dyadic  may  thus  be  reduced  to  the  case  of 
a  right  tensor. 

151.  Def.  —  The  effect  of  a  pref  actor  of  the  form 

aaa  +  6/3/3'  +  cyy', 
where  a,  b,  c  are  positive  or  negative  scalars,  a,  ft,  y  non-complanar 

vectors,  and  a,  /3',  y  their  reciprocals,  is  to  change  a  into  act,  /3  into 
b/3,  and  y  into  cy.  As  a  postfactor,  the  same  dyadic  will  change  a' 
into  act',  ft'  into  b/3',  and  y'  into  cy.  Dyadics  which  can  be  reduced  to 
this  form  we  shall  call  tonic  (Gr.  reivw).  The  right  tensor  already 
described  constitutes  a  particular  case,  distinguished  by  perpendicular 
axes  and  positive  values  of  the  coefficients  a,  b,  c. 

The  value  of  the  dyadic  is  evidently  not  affected  by  substituting 
vectors  of  different  lengths  but  the  same  or  opposite  directions  for 
a>  ft,  y>  with  the  necessary  changes  in  the  values  of  a,  ft,  y,  defined 
as  reciprocals  of  a,  ft,  y.  But,  except  this  change,  if  a,  b,  c  are 
unequal,  the  dyadic  can  be  expressed  only  in  one  way  in  the  above 
form.  If,  however,  two  of  these  coefficients  are  equal,  say  a  and  6, 

any  two  non-collinear  vectors  in  the  a-  ft  plane  may  be  substituted 
for  a  and  ft,  or,  if  the  three  coefficients  are  equal,  any  three  non- 
complanar  vectors  may  be  substituted  for  a,  ft,  y. 

152.  Tonics  having  the  same  axes  (determined  by  the  directions 

of  a,  ft,  y)  are  homologous,  and  their  multiplication  is  effected  by 
multiplying  their  coefficients.     Thus, 

'  +  C2yy'} 

Hence,  division  of  such  dyadics  is  effected  by  division  of  their  co- 
efficients. A  tonic  of  which  the  three  coefficients  a,  b,  c  are  unequal, 

is  homologous  only  with  such  dyadics  as  can  be  obtained  by  varying 
the  coefficients. 

153.  The  effect  of  a  pref  actor  of  the  form 

or  aaa  +  pcosq{ftft'  +  yy'}  -f  psinq{yft'-fty'}, 
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where  a',  {?,  y  are  the  reciprocals  of  a,  /3,  y,  and  a,  b,  c,  p,  and  q  are 
scalars,  of  which  p  is  positive,  will  be  most  evident  if  we  resolve  it 
into  the  factors 

aa  +  cosg{/3/3'  +  yy'}  +  smq{y/3'-/3y'}, 
of  which  the  order  is  immaterial,  and  if  we  suppose  the  vector  on 
which  we  operate  to  be  resolved  into  two  factors,  one  parallel  to  a, 

and  the  other  in  the  /3-y  plane.  The  effect  of  the  first  factor  is  to 
multiply  by  a  the  component  parallel  to  a,  without  affecting  the  other. 
The  effect  of  the  second  is  to  multiply  by  p  the  component  in  the 

/3-y  plane  without  affecting  the  other.  The  effect  of  the  third  is  to 

give  the  component  in  the  /3-y  plane  the  kind  of  elliptic  rotation 
described  in  No.  147. 

The  effect  of  the  same  dyadic  as  a  postf  actor  is  of  the  same  nature. 
The  value  of  the  dyadic  is  not  affected  by  the  substitution  for  a  of 

another  vector  having  the  same  direction,  nor  by  the  substitution  for 

/3  and  y  of  two  other  conjugate  semi-diameters  of  the  same  or  a 
similar  and  similarly  situated  ellipse,  and  which  follow  one  another 
in  the  same  angular  direction. 

Def.  —  Such  dyadics  we  shall  call  cyclotonic. 
154.  Cyclotonics   which   are   reducible   to   the   same   form   except 

with  respect  to  the  values  of  a,  p,  and  q  are  homologous.     They  are 
multiplied  by  multiplying  the  values  of  a,  and  also  those  of  p,  and 
adding  those  of  q.     Thus,  the  product  of 

c^act'  -f  p1  cos  ql  {/3/3'  +  yy'}  +  pl  sin  ql  {yfi  -  /3y} 

and  a2aa'  +  p2  cos  qz  {/3/3'  +  yy}  +  pz  sin  q2  {y/3'  -  ,#y'} 

is  a^aa'  +  p&t  cos  (q1  +  q2)  {/3fi'  +  yy} 

+PiPz  sin  (ql  +  q2)  {y/3'  -  #/}. 
A  dyadic  of  this  form,  in  which  the  value  of  q  is  not  zero,  or  the 

product  of  TT  and  a  positive  or  negative  integer,  is  homologous  only 
with  such  dyadics  as  are  obtained  by  varying  the  values  of  a,  p,  and  q. 

155.  In  general,  any  dyadic  may  be  reduced  to  the  form  either  of  a 
tonic  or  of  a  cyclotonic.     (The  exceptions  are  such  as  are  made  by 
the  limiting  cases.)     We  may  show  this,  and  also  indicate  how  the 
reduction  may  be  made,  as  follows.     Let  $  be  any  dyadic.     We  have 
first  to  show  that  there  is  at  least  one  direction  of  p  for  which 

$.p  =  ap. 

This  equation  is  equivalent  to 

or, 
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That  is,  <£—  al  is  a  planar  dyadic,  which  may  be  expressed  by  the 

equation  |$-al|  =  0. 
(See  No.  140.)    Let  $  =  x;  +  Mf+^; 
the  equation  becomes 

\[X-ai]i+[[jL-aj]j+[v-ak]k\  =0, 

or,  [X  —  ai]x  [/UL  — 

or,    a3  —  (i.\+j./uL  +  k.v 
This  may  be  written 

a* 
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are  easily  determined.  We  have  therefore  a  cubic  equation  in  a,  for 
which  we  can  find  at  least  one  and  perhaps  three  roots.  That  is,  we 
can  find  at  least  one  value  of  a,  and  perhaps  three,  which  will  satisfy 

the  equation  |$-al|=0. 

By  substitution  of  such  a  value,  <i»  —  al  becomes  a  planar  dyadic,  the 
planes  of  which  may  be  easily  determined.!  Let  a  be  a  vector 
normal  to  the  plane  of  the  consequents.  Then 

{$-aI}.a  =  0, 
$.  a  =  da. 

If  $  is  a  tonic,  we  may  obtain  three  equations  of  this  kind,  say 

3?.a  =  aa,         «l?./3  =  &/3,         3>.y  =  cy, 

in  which  a,  /3,  y  are  not  complanar.     Hence  (by  No.  108), 

$  =  aaa'  +  6/3/3'  +  Cyy, 

where  a',  ft',  y  are  the  reciprocals  pf  a,  /3,  y. 
In  any  case,  we  may  suppose  a  to  have  the  same  sign  as  |$|,  since 

the  cubic  equation  must  have  such  a  root.  Let  a  (as  before)  be 

normal  to  the  plane  of  the  consequents  of  the  planar  <£  —  al,  and  a 
normal  to  the  plane  of  the  antecedents,  the  lengths  of  a  and  a  being 

such  that  a.  a'  =  14  Let  /3  be  any  vector  normal  to  a,  and  such  that 
3>./3  is  not  parallel  to  /3.  (The  case  in  which  <!>.£  is  always  parallel 

to  /3,  if  /3  is  perpendicular  to  a',  is  evidently  that  of  a  tonic,  and  needs 
no  farther  discussion.)  {<!>  —  aI}./3  and  therefore  <3?./3  will  be  per- 

pendicular to  a.  The  same  will  be  true  of  3?2./3.  Now  (by  No.  140) 

[$.a]. 
that  is,  aa. 

*  [See  note  on  p.  90.] 
t  In  particular  cases,  $  -  al  may  reduce  to  a  linear  dyadic,  or  to  zero.     These,  how- 

ever, will  present  no  difficulties  to  the  student. 
J  For  the  case  in  which  the  two  planes  are  perpendicular  to  each  other,  see  No.  157. 
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Hence,  since  [<J>2./3]x[<i?./3]     and     [$.ft]x/3  are  parallel, 

Since  a"1!^!  is  positive,  we  may  set 

l^saa" 

If  we  also  set 

ft^-^.ft         &=.p-2*2.&     etc., 
/3_i==p3>-i./3}       /3_2  =  p*3>-2./3,    etc., 

the  vectors  ft  ft,  ft,  etc.,  /S.-p  /3_2,  etc.,  will  all  lie  in  the  plane 

perpendicular  to  a,  and  we  shall  have 

ftxft  =  ftxft 

We  may  therefore  set  ft  +  ft  =  2?ift  . 

Multiplying  by  j)'1^,  and 
etc., 

etc. 

Now,  if  ti  >  1,  and  we  lay  off  from  a  common  origin  the  vectors 

ft  ft,  ft,  etc.,    /?_!,  /3_2,  etc., 
the  broken  line  joining  the  termini  of  these  vectors  will  be  convex 
toward  the  origin.  All  these  vectors  must  therefore  lie  between  two 
limiting  lines,  which  may  be  drawn  from  the  origin,  and  which  may 

be  described  as  having  the  directions  of  ft  and  /3_oo.*  A  vector 
having  either  of  these  directions  is  unaffected  in  direction  by 

multiplication  by  <3?.  In  this  case,  therefore,  $  is  a  tonic.  If  n  <  —  1 
we  may  obtain  the  same  result  by  considering  the  vectors 

ft  -ft,  ft,  -ft,  ft,  etc.,  -0-j,  /3_2,  -0-8,  etc, 
except  that  a  vector  in  the  limiting  directions  will  be  reversed  in 
direction    by    multiplication    by    $,    which    implies    that    the    two 
corresponding  coefficients  of  the  tonic  are  negative. 

If  1  >  n  >  —  l,t  we  may  set n  =  cos  q. 

Then  3 

Let  us  now  determine  y  by  the  equation 

This  gives  /8.1  =  cosg/3  —  sin^y. 

Now  a  is  one  of  the  reciprocals  of  a,  ft  and  y.     Let  ft  and  y'  be  the 
others.     If  we  set 

we  have 

*  The  termini  of  the  vectors  will  in  fact  lie  on  a  hyperbola, 

t  For  the  limiting  cases,  in  which  n=l,  or  n=  - 1,  see  No.  156. 
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Therefore,  since  {aaa'+p¥}.a  =  aa  =  &a, 

it  follows  (by  No.  108)  that 

156.  It  will  be  sufficient  to  indicate  (without  demonstration)  the 
forms  of  dyadics  which  belong  to  the  particular  cases  which  have 
been  passed  over  in  the  preceding  paragraph,  so  far  as  they  present 
any  notable  peculiarities. 

If  n  =  ±  1  (page  72),  the  dyadic  may  be  reduced  to  the  form 

where  a,  /3,  y  are  three  non-complanar  vectors,  a,  f¥,  y'  their  reci- 
procals, and  a,  b,  c  positive  or  negative  scalars.  The  effect  of  this  as  an 

operator,  will  be  evident  if  we  resolve  it  into  the  three  homologous 
factors 

The  displacement  due  to  the  last  factor  may  be  called  a  simple  shear. 
It  consists  (when  the  dyadic  is  used  as  prefactor)  of  a  motion  parallel 

to  /3,  and  proportioned  to  the  distance  from  the  a-/3  plane.  This 
factor  may  be  called  a  shearer. 

This  dyadic  is  homologous  with  such  as  are  obtained  by  varying 
the  values  of  a,  b,  c,  and  only  with  such,  when  the  values  of  a  and  b 
are  different,  and  that  of  c  other  than  zero. 

157.  If  the  planar  <3?  —  al  (page  71)  has  perpendicular  planes,  there 
may  be  another  value  of  a,  of  the  same  sign  as  |  $  |,  which  will  give  a 
planar  which  has  not  perpendicular  planes.  When  this  is  not  the 
case,  the  dyadic  may  always  be  reduced  to  the  form 

where  a,  /3,  y  are  three  non-complanar  vectors,  a',  ft  ',  y',  their  reci- 
procals, and  a,  6,  c,  positive  or  negative  scalars.  This  may  be  resolved 

into  the  homologous  factors 

al   and   I  +  b{a/3'  +  /3y'}  +  cay. 
The  displacement  due  to  the  last  factor  may  be  called  a  complex  shear. 
It  consists  (when  the  dyadic  is  used  as  prefactor)  of  a  motion  parallel 

to  a  which  is  proportional  to  the  distance  from  the  a-y  plane,  together 
with  a  motion  parallel  to  b/3  +  ca  which  is  proportional  to  the  distance 

from  the  a-/3  plane.  This  factor  may  be  called  a  complex  shearer. 
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This  dyadic  is  homologous  with  such  as  are  obtained  by  varying 

the  values  of  a,  b,  c,  and  only  such,  unless  6  =  0. 
It  is  always  possible  to  take  three  mutually  perpendicular  vectors 

for  a,  /3,  and  y  ;  or,  if  it  be  preferred,  to  take  such  values  for  these 
vectors  as  shall  make  the  term  containing  c  vanish. 

158.  The  dyadics  described  in  the  two  last  paragraphs  may  be 
called  shearing  dyadics. 

The  criterion  of  a  shearer  is 

The  criterion  of  a  simple  shearer  is 

{$-I}2  =  0, 

The  criterion  of  a  complex  shearer  is 

NOTE.  —  If  a  dyadic  $  is  a  linear  function  of  a  vector  p  (the  term  linear  being  used  in 
the  same  sense  as  in  No.  105),  we  may  represent  the  relation  by  an  equation  of  the  form 

<£  =  a/3  y.  p  +  ef  t].  p  +  etc.  , 

or  4>  =  {afiy  +  eft  +  etc.  }  .  p, 

where  the  expression  in  the  braces  may  be  called  a  triadic  polynomial,  and  a  single  term 
afiy  a  triad,  or  the  indeterminate  product  of  the  three  vectors  a,  |3,  7.  We  are  thus  led 
successively  to  the  consideration  of  higher  orders  of  indeterminate  products  of  vectors, 
triads,  tetrads,  etc.,  in  general  polyads,  and  of  polynomials  consisting  of  such  terms, 
triadics,  tetradics,  etc.,  in  general  polyadics.  But  the  development  of  the  subject  in 
this  direction  lies  beyond  our  present  purpose. 

It  may  sometimes  be  convenient  to  use  notations  like 

\  M»  v      nA     X»  /*>  v -  —  -  —  and  —  3  —  r 
K  /3,  y  a>A7l 

to  represent  the  conjugate  dyadics  which,  the  first  as  prefactor,  and  the  second  as 

postfactor,  change  a,  /3,  y  into  X,  /*,  v,  respectively.  In  the  notations  of  the  preceding 
chapter  these  would  be  written 

Xa'  +  /x/3'  +  vy'   and   a' 

respectively,  a',  /3',  y'  denoting  the  reciprocals  of  a,  /3,  y.  If  r  is  a  linear  function 
of  p,  the  dyadics  which  as  prefactor  and  postfactor  change  p  into  r  may  be  written 
respectively 

T         j     T 
-  and  —  -. \P  P\ 

If  T  is  any  function  of  p,  the  dyadics  which  as  prefactor  and  postfactor  change  dp  into 
dr  may  be  written  respectively 

dr         ,    dr 

—  j-   and  -=-:-. \dp  dp\ 

In  the  notation  of  the  following  chapter  the  second  of  these  (when  p  denotes  a  posi- 
tion-vector) would  be  written  VY.  The  triadic  which  as  prefactor  changes  dp  into 

—  ̂-  may  be  written  —  -4,  and  that  which  as  postfactor  changes  dp  into  —  may  be 
\dp  \dp*  dp\ 

,72— 

written  —  j-  .    The  latter  would  be  written  V  VT  in  the  notations  of  the  following  chapter. 
dp*  I 
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CHAPTER  IV. 

(SUPPLEMENTARY  TO  CHAPTKB  II.) 

CONCERNING   THE  DIFFERENTIAL  AND   INTEGRAL  CALCULUS  OF  VECTORS. 

159.  If  CD  is  a  vector  having  continuously  varying  values  in  space, 
and  p  the  vector  determining  the  position  of  a  point,  we  may  set 

p  =  xi+yj+zk, 

and  regard  <o  as  a  function  of  /Q,  or  of  x,  y,  and  z.     Then, 

rj        i   dw dx 

that  is, 

If  we  set 

Here  V  stands  for 
.  d      .  d 

d(») 

d_ 

dz 

exactly  as  in  No.  52,  except  that  it  is  here  applied  to  a  vector  and 
produces  a  dyadic,  while  in  the  former  case  it  was  applied  to  a 
scalar  and  produced  a  vector.  The  dyadic  Vo>  represents  tfte  nine 
differential  coefficients  of  the  three  components  of  co  with  respect  to 
x,  y,  and  z,  just  as  the  vector  Vu  (where  u  is  a  scalar  function  of  p) 

represents  the  three  differential  'coefficients  of  the  scalar  u  with 
respect  to  x,  y,  and  z. 

It  is  evident  that  the  expressions  V.o>  and  Vxco  already  defined 
(No.  54)  are  equivalent  to  {Veo}8  and  { V«}x. 

160.  An  important  case  is  that  in  which  the  vector  operated  on  is 
of  the  form  Vu.  We  have  then 

where 

dxdz 
ik 

dydz 

jk 

kk. 

dzdx'*        dzdy'^         dz2 

This  dyadic,  which  is  evidently  self-conjugate,  represents  the  six 
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differential  coefficients  of  the  second  order  of  u  with  respect  to  x,  y, 

and  z* 
161.  The  operators  Vx  and  V.  may  be  applied  to  dyadics  in  a 

manner  entirely  analogous  to  their  use  with  scalars.  Thus  we  may 
define  Vx3?  and  V.3?  by  the  equations 

.. dy        dz 
Then,  if  $  =  ai  +  /3j  +  yk, 

Or,  if  3>  =  ia  +j/3  +  ky, 

—    &  _  .  rdy    d/3~\     .  rda     dy 
~ 

. 
dx    dy     dz 

162.  We  may  now  regard  V.V  in  expressions  like  V.Vo>  as  repre 
senting  two  successive  operations,  the  result  of  which  will  be 

in  accordance  with  the  definition  of  No.  70.     We  may  also  write 
V.V$  for 

dx2     dyz     dz2 

although  in  this  case  we  cannot  regard  V.V  as  representing  two 
successive  operations  until  we  have  defined  V$.t 

That  V.V<3?  =  V  V.3?  —  VxVx<£  will  be  evident  if  we  suppose  $  to 
be  expressed  in  the  form  ai+/3j+yk.  (See  No.  71.) 

163.  We  have  already  seen  that 
u"  —  u'  =fdp  .Vu, 

where  u'  and  u"  denote  the  values  of  u  at  the  beginning  and  the  em 
of  the  line  to  which  the  integral  relates.  The  same  relation  will  hole 
for  a  vector  ;  i.e., w'"  —  CD'  =fdp  . 

*  We  might  proceed  to  higher  steps  in  differentiation  by  means  of  the  triadics  Ww, 
VVVu,  the  tetradics  VVVw,  VVVVw,  etc.  See  note  on  page  74.  In  like  manner  a  dyadic 

function  of  position  in  space  ($)  might  be  differentiated  by  means  of  the  triadic  V<£,  the 
tetradic  VV$,  etc. 

t  See  footnote  to  No.  160. 
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164.  The  following  equations  between  surface-integrals  for  a  closed 
surface  and  volume-integrals  for  the  space  enclosed  seem  worthy  of 
mention.     One  or  two  have  already  been  given,  and  are  here  repeated 
for  the  sake  of  comparison. 

a) (2) 

(3) 

(4) 

=fffdvVx»,  (5) 
(6) 

It  may  aid  the  memory  of  the  student  to  observe  that  the  transfor- 
mation may  be  effected  in  each  case  by  substituting  fffdv  V  for  Jfd<r. 

165.  The  following  equations  between  line-integrals  for  a  closed 
line  and  surface-integrals  for  any  surface  bounded  by  the  line,  may 
also  be  mentioned.     (One  of  these   has  already  been  given.     See 
No.  60.) 

fdp  u  =Jfd<r  x  Vut  ( 1 ) 

fdp.co  =ffd<r.Vxa>,  (3) 
(4) 

(5) 

These  transformations  may  be  effected  by  substituting  ff[da-  X  V]  for 
fdp.  The  brackets  are  here  introduced  to  indicate  that  the  multi- 

plication of  dor  with  the  iy  j,  k  implied  in  V  is  to  be  performed  before 

any  other  multiplication  which  ma'y  be  required  by  a  subsequent  sign. 
(This  notation  is  not  recommended  for  ordinary  use,  but  only  sug- 

gested as  a  mnemonic  artifice.) 

166.  To  the  equations  in  No.  65  may  be  added  many  others,  as,  p*'"- a) 

(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

etc. 

The  principle  in  all  these  cases  is  that  if  we  have  one  of  the  operators 
V,  V.,  Vx  prefixed   to   a  product  of   any  kind,  and   we   make  any 
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transformation  of  the  expression  which  would  be  allowable  if  the  V 
were  a  vector  (viz.,  by  changes  in  the  order  of  the  factors,  in  the 
signs  of  multiplication,  in  the  parentheses  written  or  implied,  etc.),  by 
which  changes  the  V  is  brought  into  connection  with  one  particular 
factor,  the  expression  thus  transformed  will  represent  the  part  of 
the  value  of  the  original  expression  which  results  from  the  variation 
of  that  factor. 

167.  From  the  relations  indicated  in  the  last  four  paragraphs,  may 
be  obtained  directly  a  great  number  of  transformations  of  definite 

integrals  similar  to  those  given  in  Nos.  74-77,  and  corresponding  to 
those  known  in  the  scalar  calculus  by  the  name  of  integration  by 

parts. 168.  The  student  will  now  find  no  difficulty  in  generalizing  the 

integrations  of  differential  equations  given  in  Nos.  78-89  by  applying 
to  vectors  those  which  relate  to  scalars,  and  to  dyadics  those  which 
relate  to  vectors. 

169.  The  propositions  in  No.  90  relating  to  minimum  values  of  the 

volume-integral  fffuoo.wdv    may    be    generalized    by    substituting 
u)&.(0  for  uw.oi,  3?  being  a  given  dyadic  function  of  position  in  space. 

170.  The  theory  of  the  integrals  which  have  been  called  potentials, 

Newtonians,  etc.  (see  Nos.  91-102)  may  be  extended  to  cases  in  which 
the  operand  is  a  vector  instead  of  a  scalar  or  a  dyadic  instead  of  a 
vector.     So  far  as  the  demonstrations  are  concerned,  the  case  of  a 
vector  may  be  reduced  to  that  of  a  scalar  by  considering  separately 
its  three  components,  and  the  case  of  a  dyadic  may  be  reduced  to  that 
of  a  vector,  by  supposing  the  dyadic  expressed  in  the  form  <j>i  +  x3 ' +w& 
and  considering  each  of  these  terms  separately. 

CHAPTER  V. 

CONCERNING  TRANSCENDENTAL  FUNCTIONS  OF  DYADICS. 

171.  Def.  —  The  exponential  function,  the  sine  and  the  cosine  of  a 
dyadic  may  be  defined  by  infinite  series,  exactly  as  the  corresponding 
functions  in  scalar  analysis,  viz., 

These  series  are  always  convergent.  For  every  value  of  <£  there  is 
one  and  only  one  value  of  each  of  these  functions.  The  exponential 
function  may  also  be  defined  as  the  limit  of  the  expression 
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when  N,  which  is  a  whole  number,  is  increased  indefinitely.  That 
this  definition  is  equivalent  to  the  preceding,  will  appear  if  the 
expression  is  expanded  by  the  binomial  theorem,  which  is  evidently 
applicable  in  a  case  of  this  kind. 

These  functions  of  3>  are  homologous  with  <£. 
172.  We  may  define  the  logarithm  as  the  function  which  is  the 

inverse  of  the  exponential,  so  that  the  equations 

are  equivalent,  leaving  it  undetermined  for  the  present  whether 
every  dyadic  has  a  logarithm,  and  whether  a  dyadic  can  have  more 
than  one. 

173.  It  follows  at  once  from  the  second  definition  of  the  exponential 

function  that,  if  <£  and  ¥"  are  homologous, 

and  that,  if  T  is  a  positive  or  negative  whole  number, 

{e*}T  =  eT* 174.  If  SI  and  $  are  homologous  dyadics,  and  such  that 
£2.$=-$, 

the  definitions  of  No.  171  give  immediately 

e8-*  =  cos  $+H  sin  <1>, 

e  -  E 

whence
 e  -  E  •  *  =  cos  3?  —  H  sin  <£, 

175.  If  $.¥  = 

Therefore  e*+*  =  e* + e*  - 1, 

cos{<!> + ¥}  =  cos  $ + cos  ¥  —  I, 

sin  { $  +  "^  }  =  sin  $ + sin  "^. 176. 

For  the  first  member  of  this  equation  is  the  limit  of 

|{I4-N"1$}N  ,    that  is,  of     |I4-N~1$|N. 
If  we  set  $=*ai+fij+yk,  the  limit  becomes  that  of 

(l+N-1a.i  +  N-1/3.,;-}-N-1y.&)N,    or    (l  +  N'1^)11, 
the  limit  of  which  is  the  second  member  of  the  equation  to  be  proved. 

177.  By  the  definition  of  exponentials,  the  expression 

represents  the  limit  of 
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Now  I  +  gN"1!/^  —  jk}  evidently  represents  a  versor  having  the  axis  i 
and  the  infinitesimal  angle  of  version  t/N"1.  Hence  the  above  ex- 

ponential represents  a  versor  having  the  same  axis  and  the  angle  of 
version  q.  If  we  set  qi  =  o>,  the  exponential  may  be  written 

elxw. 

Such  an  expression  therefore  represents  a  versor.  The  axis  and 
direction  of  rotation  are  determined  by  the  direction  of  a,  and  the 
angle  of  rotation  is  equal  to  the  magnitude  of  o>.  The  value  of  the 
versor  will  not  be  affected  by  increasing  or  diminishing  the  magnitude 
of  o>  by  27T. 

178.  If,  as  in  No.  151, 

$  =  aaa'  +  b/3/3'  +  cyy, 

the  definitions  of  No.  171  give 

e*  =  eaaa  -f  eb/3/3'  -f  ecyy, 

cos  <&  =  cos  a  aa  4-  cos  b  /3/3'  +  cos  c  yy, 

sin  <1>  =  sin  a  aa  +  sin  b  /3/3'  +  sin  c  yy. 

If  a,  b,  c  are  positive  and  unequal,  we  may  add,  by  No.  172, 

log  <£  =  log  a  aa'  -f-  log  b  /3f?  -h  log  c  yy. 
179.  If,  as  in  No.  153, 

=  aaa'  +  p  cos  q  {ftft'  +  yy}  +  p  8mq{yP'-/3y'}, 
we  have  by  No.  1  73     e*  =  e<^  %  e&{^'+yy'}  .  e^  -  M. 

But  eP*  =  eaaa'  +  &f¥  +  yy', 
aa'  +  eb{/3/3'  +  yy'}, 

Therefore,      e*  =  eaaa'  +  ̂ coscj/^+yy'}  +  e&sin 
Hence,  if  a  is  positive, 

Since  the  value  of  $  is  not  affected  by  increasing  or  diminishing  q  bi 

2-7T,  the  function  log  $  is  many- valued. 
To  find  the  value  of  cos  3?  and  sin  <3>,  let  us  set 

Then,  by  No,  175, 

cos  $  =  cos  {aaa'}  -f  cos  0  —  I. 

cos  {aaa'}  —  I  =  cos  aaa'  —  aa'. 
Therefore,  CQ8  $  =  C08  aafl,  _  ̂   +  CQg  e 
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Now,  by  No.  174, 

Since 

e-s-e  =  aa'  +  e'cosfc  {/S^'  +  yy'}  -  ecsmb Therefore 

cosO  =  aa' 
and 

In  like  manner  we  find 

sin$  =  sinaaa/+  %(ec  + 

180.     If  a,  )8,  y  and  ct',  ̂x,  yx  are  reciprocals,  and 

$  =  aaa/  + 
and  N  is  any  whole  number, 

Therefore, 
e*  =  eaaa>  +  e{       +  yy  }  +  e&  c 

cos  $  =  cos  a  aa'  +  cos  6  {ft/3'  +  yy'}  —  c  sin  6  /3yr, 

sin  $  =  sin  a  aa  4-  sin  6  {/^^  +  yy'}  4-  c  cos  6  /3y'. 
If  a  and  6  are  unequal,  and  c  other  than  zero,  we  may  add 

181.  If  a,  /3,  y,  and  a,  /3',  y'  are  reciprocals,  and 
$  =  aI  + 

and  N  is  a  whole  number, 

Therefore 

cos  $  =  cos  al  —  b  sin  a  {a/3'+  /^a'}  —  (  J62cos  a+c  sin  a)  ay', 

sin  $  =  sin  a  I  +  6  cos  a  {a/3'  +  /3a'}  —  (  J62sin  a  —  c  cos  a)ay'. 
Unless  6  =  0,  we  may  add 

182.  If  we  suppose  any  dyadic  $  to  vary,  but  with  the  limitation 
that  all  its  values  are  homologous,  we  may  obtain  from  the  definitions 
of  No.  171  ,.  „,  *  ,, 

(2) 

(3) 

(4) 
G.  II.  F 
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as  in  the  ordinary  calculus,  but  we  must  not  apply  these  equations  to 
cases  in  which  the  values  of  <£  are  not  homologous. 

183.  If,  however,  F  is  any  constant  dyadic,  the  variations  of  tT  will 
necessarily  be  homologous  with  tT,  and  we  may  write  without  other 
limitation  than  that  F  is  constant, 

(2) 

(3) 
dlog{tT}_i ~sr  -f 

A  second  differentiation  gives 

i  =  P.«'r,  '  -    (5) 

(6) 

(7) 

184.  It  follows  that  if  we  have  a  differential  equation  of  the  form 

the  integral  equation  will  be  of  the  form 

p  representing  the  value  of  p  for  t  =  0.     For  this  gives 

P  —  T  <F  ~'  —  r  „ 
dt~l'e  '?-  r^' 

and  the  proper  value  of  p  for  t  =  0. 

185.  Def.  —  A  flux  which  is  a  linear  function  of  the  position-  vector 
is  called  a  homogeneous-strain-flux  from  the  nature  of  the  strain 
which  it  produces.  Such  a  flux  may  evidently  be  represented  by  a 

dyadic. 
In  the  equations  of  the  last  paragraph,  we  may  suppose  p  to 

represent  a  position-  vector,  t  the  time,  and  F  a  homogeneous-strain- 

flux.  Then  etT  will  represent  the  strain  produced  by  the  flux  F  in the  time  t. 

In  like  manner,  if  A  represents  a  homogeneous  strain,  (logA}/£ 

will  represent  a  homogeneous-strain-flux  which  would  produce  the 
strain  A  in  the  time  t. 
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186.  If  we  have 

where  F  is  complete,  the  integral  equation  will  be  of  the  form 

For  this  gives  , O  /V  s\ 

dt2  ~  ' 

and  a  and  /3  may  be  determined  so  as  to  satisfy  the  equations 

187.  The  differential  equation 

will  be  satisfied  by 

whence  , 

.a  4- 

If  F  is  complete,  the  constants  a  and  /3  may  be  determined  to  satisfy 
the  equations 

188.  If 

where  F2  —  A2  is  a  complete  dyadic,  and 

we  may  set 

which  gives 

+  {iF.e<r+|F.e-tr  +  A.cos{*A}}./3, d*o 

=  {F2-A2}.p. 
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The  constants  a  and  /3  are  to  be  determined  by 

189.  It  will  appear,  on  reference  to  Nos.  155-157,  that  every 
complete  dyadic  may  be  expressed  in  one  of  three  forms,  viz.,  as  a 
square,  as  a  square  with  the  negative  sign,  or  as  a  difference  of  squares 
of  two  dyadics  of  which  both  the  direct  products  are  equal  to  zero. 
It  follows  that  every  equation  of  the  form 

d?=e-p' 
where  0  is  any  constant  and  complete  dyadic,  may  be  integrated  by 
the  preceding  formulae. 

NOTE  ON  BIVECTOE  ANALYSIS  * 

1.  A  vector  is  determined  by  three  algebraic  quantities.  It  often 
occurs  that  the  solution  of  the  equations  by  which  these  are  to  be 
determined  gives  imaginary  values,  i.e.,  instead  of  scalars  we  obtain 
biscalars,  or  expressions  of  the  form  a  +  ib,  where  a  and  b  are  scalars, 

and  i  =  /s/  —  1.  It  is  most  simple,  and  always  allowable,  to  consider 
the  vector  as  determined  by  its  components  parallel  to  a  normal 
system  of  axes.  In  other  words,  a  vector  may  be  represented  in  the 

form  m+yj+zk. 
Now  if  the  vector  is  required  to  satisfy  certain  conditions,  the  solution 
of  the  equations  which  determine  the  values  of  x,  y,  and  0,  in  the 
most  general  case,  will  give  results  of  the  form 

n  , 

*  Thus  far,  in  accordance  with  the  purpose  expressed  in  the  footnote  on  page  17,  we 
have  considered  only  real  values  of  scalars  and  vectors.  The  object  of  this  limitation 
has  been  to  present  the  subject  in  the  most  elementary  manner.  The  limitation  is 
however  often  inconvenient,  and  does  not  allow  the  most  symmetrical  and  complete 
development  of  the  subject  in  many  important  directions.  Thus  in  Chapter  V,  and  the 
latter  part  of  Chapter  III,  the  exclusion  of  imaginary  values  has  involved  a  considerable 
sacrifice  of  simplicity  both  in  the  enunciation  of  theorems  and  in  their  demonstration. 
The  student  will  find  an  interesting  and  profitable  exercise  in  working  over  this  part  of 
the  subject  with  the  aid  of  imaginary  values,  especially  in  the  discussion  of  the 
imaginary  roots  of  the  cubic  equation  on  page  71,  and  in  the  use  of  the  formula 

in  developing  the  properties  of  the  sines,  cosines,  and  exponentials  of  dyadics. 
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where  xlt  x2,  yl,  yz,  zlt  z2  are  scalars.     Substituting  these  values  in 

xi  +  yj+zk, 

we  obtain  (xl  +  ixz)i  +  (yl  +  iyz)j  +  («i 

or,  if  we  set  pi  =  xli  +  yj  +  ̂ , 

we  obtain 

We  shall  call  this  a  bivector,  a  term  which  will  include  a  vector  as  a 

particular  case.  When  we  wish  to  express  a  bivector  by  a  single 
letter,  we  shall  use  the  small  German  letters.  Thus  we  may  write 

An  important  case  is  that  in  which  pl  and  p2  have  the  same  direction. 
The  bivector  may  then  be  expressed  in  the  form  (a+ib)p,  in  which 
the  vector  factor,  if  we  choose,  may  be  a  unit  vector.  In  this  case,  we 
may  say  that  the  bivector  has  a  real  direction.  In  fact,  if  we  express 
the  bivector  in  the  form 

(xl  +  ixz)  i+(yl+  iy2)j  +  (z1  +  iz2)  & 

the  ratios  of  the  coefficients  of  i,  j,  and  k,  which  determine  the  direc- 
tion cosines  of  the  vector,  will  in  this  case  be  real. 

2.  The  consideration  that  operations  upon  bivectors  may  be  regarded 

as  operations  upon  their  biscalar  x-,  y-  and  z-components  is  sufficient 
to  show  the  possibility  of  a  bivector  analysis  and  to  indicate  what  its 
rules  must  be.  But  this  point  of  view  does  not  afford  the  most  simple 
conception  of  the  operations  which  we  have  to  perform  upon  bivectors. 
It  is  desirable  that  the  definitions  of  the  fundamental  operations  should 
be  independent  of  such  extraneous  considerations  as  any  system  of 
axes. 

The  various  signs  of  our  analysis,  when  applied  to  bivectors,  may 
therefore  be  defined  as  follows,  viz., 

The  bivector  equation 

implies  the  two  vector  equations 
/       //          i      /      // 

jj.  =  fjL  ,    and    v  =  v  . 

—  4 

r     "1 /./x  J. 

*  (a  +  ib)  [n  +  iv~\  =  a/jt.-bv  +  i[av  +  bp]. 
[n  +  u>](a  +  ib)=fM-vb  +  i[fjib  +  va]. 

Therefore  the  position  of  the  scalar  factor  is  indifferent.     [MS.  note  by  author.] 
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With  these  definitions,  a  great  part  of  the  laws  of  vector  analysis 
may  be  applied  at  once  to  bivector  expressions.  But  an  equation 
which  is  impossible  in  vector  analysis  may  be  possible  in  bivector 
analysis,  and  in  general  the  number  of  roots  of  an  equation,  or  of  the 
values  of  a  function,  will  be  different  according  as  we  recognize, 
or  do  not  recognize,  imaginary  values. 

3.  J)ef.  —  Two  bivectors,  or  two  biscalars,  are  said  to  be  conjugate, 
when  their  real  parts  are  the  same,  and  their  imaginary  parts  differ 
in  sign,  and  in  sign  only. 

Hence,  the  product  of  the  conjugates  of  any  number  of  bivectors 
and  biscalars  is  the  conjugate  of  the  product  of  the  bivectors  and 
biscalars.  This  is  true  of  any  kind  of  product. 

The  products  of  a  vector  and  its  conjugate  are  as  follows  : 

[jUL  +  lv]  .  [/X  —  tv]  =  /X./U-f  V.  V 

[im  +  1  v]  X  [ju  —  tv]  =  2  iv  x  AC 

[M  +  iv]  [M  —  w]  =  {MM  +  vv}  +  i{vjui  — 

Hence,  if  JJL  and  iv  represent  the  real  and  imaginary  parts  of  a 
bivector,  the  values  of 

fA.fJL  +  V.V,  JUiXV,  fJLjUL  +  VV,  V/JL  —  JULV, 

are  not  affected  by  multiplying  the  bivector  by  a  biscalar  of  the  form 

ib,  in  which  a2+62  =  l,  say  a  cyclic  scalar.     Thus,  if  we  set 

we  shall  have 

fjf  —  iv  =  (a  —  i  b)  [//.  —  iv], 
and 

[X  +  1  v]  .  \JJL  —  iv  ]  =  [/*  +  tv]  .  [fj.  —  «/]. That  is, 

and  so  in  the  other  cases. 

4.  Def.  —  In  biscalar  analysis,  the  product  of  a  biscalar  and  its  conju- 
gate is  a  positive  scalar.     The  positive  square  root  of  this  scalar  is 

called  the  modulus  of  the  biscalar.     In  bivector  analysis,  the  direct 
product  of  a  bivector  and  its  conjugate  is,  as  seen  above,  a  positive 
scalar.     The  positive  square  root  of  this  scalar  may  be  called  the 
modulus  of  the  bivector.     When  this  modulus  vanishes,  the  bivector 

vanishes,  and  only  in  this  case.     If  the  bivector  is  multiplied  by  a 
biscalar,  its  modulus  is  multiplied  by  the  modulus  of  the  biscalar. 
The  conjugate  of  a  (real)  vector  is  the  vector  itself,  and  the  modulus 
of  the  vector  is  the  same  as  its  magnitude. 

5.  Def.  —  If  between  two  vectors,  a  and  (5,  there  subsists  a  relation 
of  the  form 
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where  n  is  a  scalar,  we  say  that  the  vectors  are  parallel.  Analogy 
leads  us  to  call  two  bivectors  parallel,  when  there  subsists  between 
them  a  relation  of  the  form a  =  rab, 

where  m  (in  the  most  general  case)  is  a  biscalar. 
To  aid  us  in  comprehending  the  geometrical  signification  of  this 

relation,  we  may  regard  the  biscalar  as  consisting  of  two  factors,  one 
of  which  is  a  positive  scalar  (the  modulus  of  the  biscalar),  and  the 
other  may  be  put  in  the  form  cos  q  + 1  sin  q.  The  effect  of  multiplying 
a  bivector  by  a  positive  scalar  is  obvious.  To  understand  the  effect  of 
a  multiplier  of  the  form  cosq  +  t  sing  upon  a  bivector  p  +  tv,  let  us  set 

fi'+tv  —  (cos  g  + 1  sin  q)  [/A  +  II/]. 
We  have  then 

fj!  =  cos  q  JUL  —  sin  q  v, 

v  —  cos  q  v  -f  sin  q  JUL. 

Now  if  JUL  and  v  are  of  the  same  magnitude  and  at  right  angles,  the 
effect  of  the  multiplication  is  evidently  to  rotate  these  vectors  in 
their  plane  an  angular  distance  q,  which  is  to  be  measured  in  the 

direction  from  v  to  JUL.  In  any  case  we  may  regard  JUL  and  v  as  the  pro- 
jections (by  parallel  lines)  of  two  perpendicular  vectors  of  the  same 

length.  The  two  last  equations  show  that  fj!  and  v  will  be  the 

projections  of  the  vectors  obtained  by  the  rotation  of  these  perpendi- 
cular vectors  in  their  plane  through  the  angle  q.  Hence,  if  we 

construct  an  ellipse  of  which  JUL  and  v  are  conjugate  semi-diameters,  JUL' 
and  v  will  be  another  pair  of  conjugate  semi-diameters,  and  the  sectors 

between  JUL  and  //'  and  between  v  and  v ',  will  each  be  to  the  whole  area 
of  the  ellipse  as  q  to  27r,  the  sector  between  v  and  v  lying  on  the  same 

side  of  v  and  JUL,  and  that  between  JUL  and  JUL'  lying  on  the  same  side 
of  ju  as  —v. 

It  follows  that  any  bivector  /*  +  «/  may  be  put  in  the  form 

(cos  q  + 1  sin  q)  [a  4-  */3], 

in  which  a  and  /3  are  at  right  angles,  being  the  semi-axes  of  the  ellipse 
of  which  JUL  and  v  are  conjugate  semi-diameters.  This  ellipse  we  may 
call  the  directional  ellipse  of  the  bivector.  In  the  case  of  a  real 
vector,  or  of  a  vector  having  a  real  direction,  it  reduces  to  a  straight 
line.  In  any  other  case,  the  angular  direction  from  the  imaginary  to 
the  real  part  of  the  bivector  is  to  be  regarded  as  positive  in  the  ellipse, 
and  the  specification  of  the  ellipse  must  be  considered  incomplete 
without  the  indication  of  this  direction. 

Parallelism  of  bivectors,  then,  signifies  the  similarity  and  similar 

position  of  their  directional  ellipses.  Similar  position  includes  iden- 
tity of  the  angular  directions  mentioned  above. 
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6.  To  reduce  a  given  bivector  r  to  the  above  form,  we  may  set 

r.r=(cos(?-H  sin  g)2[a  +  //3].[a  +  */3] 

=  (cos  2q  +  1  sin  2q)  (a.  a  —  ft.  ft) 

where  a  and  6  are  scalars,  which  we  may  regard  as  known.  The 
value  of  q  may  be  determined  by  the  equation 

tan  2(7  =  -, a 

the  quadrant  to  which  2g  belongs  being  determined  so  as  to  give 
sin  2q  and  cos  2q  the  same  signs  as  b  and  a.  Then  a  and  ft  will  be 
given  by  the  equation 

a  +  i/3  —  (cos  q  —  i  sin  g)t. 

The  solution  is  indeterminate  when  the  real  and  imaginary  parts  of 
the  given  bivector  are  perpendicular  and  equal  in  magnitude.  In  this 
case  the  directional  ellipse  is  a  circle,  and  the  bivector  may  be  called 
circular.  The  criterion  of  a  circular  bivector  is 

r.r  =  0. 

It  is  especially  to  be  noticed  that  from  this  equation  we  cannot 
conclude  that 1=0, 

as  in  the  analysis  of  real  vectors.  This  may  also  be  shown  by  ex- 
pressing t  in  the  form  xi  +  yj+zk,  in  which  x,  y,  z  are  biscalars.  The 

equation  then  becomes 

which  evidently  does  not  require  x,  y,  and  z  to  vanish,  as  would  be 
the  case  if  only  real  values  are  considered. 

7.  Def. — We  call  two  vectors  p  and  <r  perpendicular  when  p.0-  =  0. 
Following  the  same  analogy,  we  shall  call  two  bivectors  t  and  $ 

perpendicular,  when 

In  considering  the  geometrical  signification  of  this  equation,  we  shall 
first  suppose  that  the  real  and  imaginary  components  of  t  and  $  lie  in 
the  same  plane,  and  that  both  t  and  3  have  not  real  directions.  It  is 
then  evidently  possible  to  express  them  in  the  form 

where  m  and  m'  are  biscalar,  a  and  ft  are  at  right  angles,  and  a 
parallel  with  ft.     Then  the  equation  r.$  =  0  requires  that 

/3.p  =  0,     and     a.p+p.a=0. 

This  shows  that  the  directional  ellipses  of  the  two  bivectors  are 
similar  and  the  angular  direction  from  the  real  to  the  imaginary 
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component  is  the  same  in  both,  but  the  major  axes  of  the  ellipses  are 
perpendicular.  The  case  in  which  the  directions  of  t  and  $  are  real, 
forms  no  exception  to  this  ride. 

It  will  be  observed  that  every  circular  bi vector  is  perpendicular  to 
itself,  and  to  every  parallel  bivector. 

If  two  bivectors,  JUL  +  IV,  /UL'  +  IV',  which  do  not  lie  in  the  same  plane 
are  perpendicular,  we  may  resolve  /UL  and  v  into  components  parallel 

and  perpendicular  to  the  plane  of  /z'  and  i/.  The  components  perpen- 
dicular to  the  plane  evidently  contribute  nothing  to  the  value  of 

[/X +  <!/].  [// +  «>']. 

Therefore  the  components  of  /u.  and  v  parallel  to  the  plane  of  JUL',  v, 
form  a  bivector  which  is  perpendicular  to  /UL'+IV.  That  is,  if  two 
bivectors  are  perpendicular,  the  directional  ellipse  of  either,  projected 
upon  the  plane  of  the  other  and  rotated  through  a  quadrant  in  that 
plane,  will  be  similar  and  similarly  situated  to  the  directional  ellipse 
of  the  second. 

8.  A  bivector  may  be  divided  in  one  and  only  one  way  into  parts 
parallel  and  perpendicular  to  another,  provided  that  the  second  is  not 
circular.     If  a  and  b  are  the  bivectors,  the  parts  of  a  will  be 

b.at  -,  b.at 
r-r  b  and  a  —  ̂ -r  b. b.b  b.b 

If  b  is  circular,  the  resolution  of  a  is  impossible,  unless  it  is  perpen- 
dicular to  b.  In  this  case  the  resolution  is  indeterminate. 

9.  Since  axb.a  =  0,  and  axb.b  =  0,  axb  is  perpendicular  to  a  and  b. 
We  may  regard  the   plane  of   the   product  as   determined   by   the 
condition  that  the  directional  ellipses  of  the  factors  projected  upon 
it  become  similar  and  similarly  situated.     The  directional  ellipse  of 
the  product  is   similar  to   these   projections,   but  its  orientation  is 

different  by  90°.     It  may  easily  be  shown  that  axb  vanishes  only 
with  a  or  b,  or  when  a  and  b  are  parallel. 

10.  The  bivector  equation 

(axb.c)b  —  (b.cxb)a+(c.bxa)b— (b.axb)c  =  0 

is  identical,  as  may  be  verified  by  substituting  expressions  of  the 
form  xi  +  yj+zk  (x,  y,  z  being  biscalars),  for  each  of  the  bivectors. 
(Compare  No.  37.)  This  equation  shows  that  if  the  product  axb 
of  any  two  bivectors  vanishes,  one  of  these  will  be  equal  to  the  other 
with  a  biscalar  coefficient,  that  is,  they  will  be  parallel,  according 
to  the  definition  given  above.  If  the  product  a.bxc  of  any  three 
bivectors  vanishes,  the  equation  shows  that  one  of  these  may  be 
expressed  as  a  sum  of  the  other  two  with  biscalar  coefficients.  In 

this  case,  we  may  say  (from  the  analogy  of  the  scalar  analysis)  that 
the  three  bivectors  are  complanar.  (This  does  not  imply  that  they 
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lie   in   any   same   real  plane.)     If  ci.bxc  is  not  equal  to  zero,  the 
equation  shows  that  any  fourth  bivector  may  be  expressed  as  a  sum 
of   a,  b,  and   c  with   biscalar   coefficients,   and   indicates   how   these 
coefficients  may  be  determined. 

11.  The  equation 

(r.ci)bxc+(r.b)cxa+(r.c)axb==(axb.c)r 

is  also  identical,  as  may  easily  be  verified.     If  we  set 
c  =  axb, 

and  suppose  that  r.a  =  0       r.b  =  0 

the  equation  becomes 

(r.axb)axb  =  (axb.axb)r. 
This  shows  that  if  a  bivector  r  is  perpendicular  to  two  bivectors 
Q  and  b,  which  are  not  parallel,  t  will  be  parallel  to  axb.  Therefore 
all  bivectors  which  are  perpendicular  to  two  given  bivectors  are 
parallel  to  each  other,  unless  the  given  two  are  parallel. 

[Note  by  Editors. — The  notation  |*  |  $c~l>  used  on  page  64,  was  later  improved  by  the 
author  by  the  introduction  of  his  Double  Multiplication,  according  to  which  the  above 

expression  is  represented  by  4>2,  and  |<t>[  by  4>3.  See  this  volume,  pages  112,  160, 
and  181.  For  an  extended  treatment  of  Professor  Gibbs's  researches  on  Double  Multi- 

plication in  their  application  to  Vector  Analysis  see  pp.  306-321,  and  333  of  "Vector 

Analysis,"  by  E.  B.  Wilson,  Chas.  Scribner's  Sons,  New  York,  1901.] 



IV. 

ON  MULTIPLE  ALGEBRA. 

ADDRESS  BEFORE  THE  SECTION  OF  MATHEMATICS  AND  ASTRONOMY  OF  THE  AMERICAN 

ASSOCIATION  FOR  THE  ADVANCEMENT  OF  SCIENCE,  BY  THE  VICE-PRESIDENT. 

[Proceedings  of  the  American  Association  for  the  Advancement  of  Science, 

vol.  xxxv.  pp.  37-66,  1886.] 

IT  has  been  said  that  "  the  human  mind  has  never  invented  a  labor- 

saving  machine  equal  to  algebra.'"*  If  this  be  true,  it  is  but  natural 
and  proper  that  an  age  like  our  own,  characterized  by  the  multi- 

plication of  labor-saving  machinery,  should  be  distinguished  by  an 
unexampled  development  of  this  most  refined  and  most  beautiful  of 
machines.  That  such  has  been  the  case,  none  will  question.  The 
improvement  has  been  in  every  part.  Even  to  enumerate  the  principal 
lines  of  advance  would  be  a  task  for  any  one ;  for  me  an  impossibility. 
But  if  we  should  ask,  in  what  direction  the  advance  has  been  made 

which  is  to  characterize  the  development  of  algebra  in  our  day,  we 
may,  I  think,  point  to  that  broadening  of  its  field  and  methods  which 
gives  us  multiple  algebra. 

Of  the  importance  of  this  change  in  the  conception  of  the  office  of 
algebra,  it  is  hardly  necessary  to  speak :  that  it  is  really  characteristic 

of  our  time  will  be  most  evident  if  we  go  back  some  two  or  three- 
score years,  to  the  time  when  the  seeds  were  sown  which  are  now 

yielding  so  abundant  a  harvest.  The  failure  of  Mobius,  Hamilton, 

Grassmann,  Saint-Venant  to  make  an  immediate  impression  upon 
the  course  of  mathematical  thought  in  any  way  commensurate  with 
the  importance  of  their  discoveries  is  the  most  conspicuous  evidence 
that  the  times  were  not  ripe  for  the  methods  which  they  sought  to 
introduce.  A  satisfactory  theory  of  the  imaginary  quantities  of 
ordinary  algebra,  which  is  essentially  a  simple  case  of  multiple 
algebra,  with  difficulty  obtained  recognition  in  the  first  third  of  this 
century.  We  must  observe  that  this  double  algebra,  as  it  has  been 
called,  was  not  sought  for  or  invented; — it  forced  itself,  unbidden, 
upon  the  attention  of  mathematicians,  and  with  its  rules  already 
formed. 

The  Nation,  vol.  xxxiii,  p.  237. 
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But  the  idea  of  double  algebra,  once  received,  although  as  it  were 
unwillingly,  must  have  suggested  to  many  minds  more  or  less 
distinctly  the  possibility  of  other  multiple  algebras,  of  higher  orders, 
possessing  interesting  or  useful  properties. 

The  application  of  double  algebra  to  the  geometry  of  the  plane 
suggested  not  unnaturally  to  Hamilton  the  idea  of  a  triple  algebra 
which  should  be  capable  of  a  similar  application  to  the  geometry  of 
three  dimensions.  He  was  unable  to  find  a  satisfactory  triple  algebra, 
but  discovered  at  length  a  quadruple  algebra,  quaternions,  which 
answered  his  purpose,  thus  satisfying,  as  he  says  in  one  of  his  letters, 
an  intellectual  want  which  had  haunted  him  at  least  fifteen  years. 
So  confident  was  he  of  the  value  of  this  algebra,  that  the  same  hour 
he  obtained  permission  to  lay  his  discovery  before  the  Royal  Irish 

Academy,  which  he  did  on  November  13,  1843.*  This  system  of 
multiple  algebra  is  far  better  known  than  any  other,  except  the 
ordinary  double  algebra  of  imaginary  quantities,  —  far  too  well  known 
to  require  any  especial  notice  at  my  hands.  All  that  here  requires 
our  attention  is  the  close  historical  connection  between  the  imaginaries 

of  ordinary  algebra  and  Hamilton's  system,  a  fact  emphasized  by 
Hamilton  himself  and  most  writers  on  quaternions.  It  was  quite 
otherwise  with  Mobius  and  Grassmann. 

The  point  of  departure  of  the  Barycentrischer  Galcul  of  Mobius, 

published  in  1827,  —  a  work  of  which  Clebsch  has  said  that  it  can 
never  be  admired  enough,!  —  is  the  use  of  equations  in  which  the 
terms  consist  of  letters  representing  points  with  numerical  coefficients, 
to  express  barycentric  relations  between  the  points.  Thus,  that  the 
point  8  is  the  centre  of  gravity  of  weights,  a,  6,  c,  d,  placed  at  the 
points  A,  B,  C,  D,  respectively,  is  expressed  by  the  equation 

An  equation  of  the  more  general  form 

a  A  +  bB  +  cC+  etc.  =pP  +qQ+rR  +  etc. 

signifies  that  the  weights  a,  b,  c,  etc.,  at  the  points  A,  B,  C,  etc.,  have 
the  same  sum  and  the  same  centre  of  gravity  as  the  weights  p,  q,  r, 
etc.,  at  the  points  P,  Q,  R,  etc.,  or,  in  other  words,  that  the  former  are 
barycentrically  equivalent  to  the  latter.  Such  equations,  of  which 
each  represents  four  ordinary  equations,  may  evidently  be  multiplied 
or  divided  by  scalars,J  may  be  added  or  subtracted,  and  may  have 

*  Phil.  Mag.  (3),  vol.  xxv,  p.  490  ;  North  British  fieview,  vol.  xlv  (1866),  p.  57. 
fSee  his  eulogy  on  Pliicker,  p.  14,  Gott.  Abhandl.,  vol.  xvi. 

$  I  use  this  term  in  Hamilton's  sense,  to  denote  the  ordinary  positive  and  negative 
quantities  of  algebra.  It  may,  however,  be  observed  that  in  most  cases  in  which  I  shall 
have  occasion  to  use  it,  the  proposition  would  hold  without  exclusion  of  imaginary 

quantities,  —  that  this  exclusion  is  generally  for  simplicity  and  not  from  necessity. 
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their  terms  arranged  and  transposed,  exactly  like  the  ordinary 
equations  of  algebra.  It  follows  that  the  elimination  of  letters 
representing  points  from  equations  of  this  kind  is  performed  by  the 
rules  of  ordinary  algebra.  This  is  evidently  the  beginning  of  a 

quadruple  algebra,  and  is  identical,  as  far  as  it  goes,  with  Grassmann's 
marvellous  geometrical  algebra. 

In  the  same  work  we  find  also,  for  the  first  time  so  far  as  I  am 

aware,  the  distinction  of  positive  and  negative  consistently  carried 

out  on  the  designation  of  segments  of  lines,  of  triangles,  and  of  tetra- 
hedra,  viz.,  that  a  change  in  place  of  two  letters,  in  such  expressions 
as  AB,  ABC,  A  BCD,  is  equivalent  to  prefixing  the  negative  sign.  It 
is  impossible  to  overestimate  the  importance  of  this  step,  which  gives 
to  designations  of  this  kind  the  generality  and  precision  of  algebra. 

Moreover,  if  A,  B,  C  are  three  points  in  the  same  straight  line,  and 
D  any  point  outside  of  that  line,  the  author  observes  that  we  have 

AB + BC+  CA=Q, 

and  also,  with  D  prefixed, 

DAB+DBC+DCA  =  Q. 

Again,  if  A,  B,  C,  D  are  four  points  in  the  same  plane,  and  E  any 
point  outside  of  that  plane,  we  have 

ABC-  BCD + CD  A  -  DAB = 0, 

and  also,  with  E  prefixed, 

EABC-EBCD+ECDA  -EDAB  =  Q. 

The  similarity  to  multiplication  in  the  derivation  of  these  formulae 

cannot  have  escaped  the  author's  notice.  Yet  he  does  not  seem  to 
have  been  able  to  generalize  these  processes.  It  was  reserved  for  the 
genius  of  Grassmann  to  see  that  AB  might  be  regarded  as  the 
product  of  A  and  B,  DAB  as  the  product  of  D  and  AB,  and  EABC 
as  the  product  of  E  and  ABC.  That  Mobius  could  not  make  this  step 
was  evidently  due  to  the  fact  that  he  had  not  the  conception  of  the 
addition  of  other  multiple  quantities  than  such  as  may  be  represented 
by  masses  situated  at  points.  Even  the  addition  of  vectors  (i.e.,  the 
fact  that  the  composition  of  directed  lines  could  be  treated  as  an 
addition)  seems  to  have  been  unknown  to  him  at  this  time,  although 
he  subsequently  discovered  it,  and  used  it  in  his  Mechanik  des 
Himmels,  which  was  published  in  1843.  This  addition  of  vectors, 
or  geometrical  addition,  seems  to  have  occurred  independently  to 
many  persons. 

Seventeen  years  after  the  Barycentrischer  Calcul,  in  1844,  the  year 

in  which  Hamilton's  first  papers  on  quaternions  appeared  in  print, 
Grassmann  published  his  Lineale  Ausdehnungslehre,  in  which  he 
developed  the  idea  and  the  properties  of  the  external  or  combinatorial 
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product,  a  conception  which  is  perhaps  to  be  regarded  as  the  greatest 

monument  of  the  author's  genius.  This  volume  was  to  have  been 
followed  by  another,  of  the  nature  of  which  some  intimation  was 
given  in  the  preface  and  in  the  work  itself.  We  are  especially  told 

that  the  internal  product*  which  for  vectors  is  identical  except  in 

sign  with  the  scalar  part  of  Hamilton's  product  (just  as  Grassmann's 
external  product  of  two  vectors  is  practically  identical  with  the 

vector  part  of  Hamilton's  product),  and  the  open  product^  which  in 
the  language  of  to-day  would  be  called  a  matrix,  were  to  be  treated 
in  the  second  volume.  But  both  the  internal  product  of  vectors  and 
the  open  product  are  clearly  defined,  and  their  fundamental  properties 
indicated,  in  this  first  volume. 

This  remarkable  work  remained  unnoticed  for  more  than  twenty 
years,  a  fact  which  was  doubtless  due  in  part  to  the  very  abstract  and 
philosophical  manner  in  which  the  subject  was  presented.  In  con- 

sequence of  this  neglect  the  author  changed  his  plan,  and  instead  of  a 
supplementary  volume  published  in  1862  a  single  volume  entitled 
Ausdehnungslehre,  in  which  were  treated,  in  an  entirely  different 
style,  the  same  topics  as  in  the  first  volume,  as  well  as  those  which  he 
had  reserved  for  the  second. 

Deferring  for  the  moment  the  discussion  of  these  topics  in  order  to 
follow  the  course  of  events,  we  find  in  the  year  following  the  first 
Ausdehnungslehre  a  remarkable  memoir  of  Saint- Venant  J,  in  which 
are  clearly  described  the  addition  both  of  vectors  and  of  oriented 
areas,  the  differentiation  of  these  with  respect  to  a  scalar  quantity, 
and  a  multiplication  of  two  vectors  and  of  a  vector  and  an  oriented 
area.  These  multiplications,  called  by  the  author  geometrical,  are 

entirely  identical  with  Grassmann's  external  multiplication  of  the 
same  quantities. 

It  is  a  striking  fact  in  the  history  of  the  subject,  that  the  short 
period  of  less  than  two  years  was  marked  by  the  appearance  of 

well-developed  and  valuable  systems  of  multiple  algebra  by  British, 
German,  and  French  authors,  working  apparently  entirely  inde- 

pendently of  one  another.  No  system  of  multiple  algebra  had 
appeared  before,  so  far  as  I  know,  except  such  as  were  confined  to 
additive  processes  with  multiplication  by  scalars,  or  related  to  the 
ordinary  double  algebra  of  imaginary  quantities.  But  the  appearance 
of  a  single  one  of  these  systems  would  have  been  sufficient  to  mark 
an  epoch,  perhaps  the  most  important  epoch  in  the  history  of  the 
subject. 

In  1853  and  1854,  Cauchy  published  several  memoirs  on  what 

he  called  clefs  alge'briques.§  These  were  units  subject  generally  to 
*  See  the  preface.  t  See  §  172. 
£  Comptes  Rendus,  vol.  xxi,  p.  620.  §  Comptes  Rendus,  vols.  xxxvi,  ff. 
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combinatorial  multiplication.  His  principal  application  was  to  the 
theory  of  elimination.  In  this  application,  as  in  the  law  of  multi- 

plication, he  had  been  anticipated  by  Grassmann. 

We  come  next  to  Cayley's  celebrated  Memoir  on  the  Theory  of 
Matrices*  in  1858,  of  which  Sylvester  has  said  that  it  seems  to  him 
to  have  ushered  in  the  reign  of  Algebra  the  Second,  t  I  quote  this 
dictum  of  a  master  as  showing  his  opinion  of  the  importance  of  the 
subject  and  of  the  memoir.  But  the  foundations  of  the  theory  of 
matrices,  regarded  as  multiple  quantities,  seem  to  me  to  have  been 

already  laid  in  the  Ausdehnungslehre  of  1844.  To  Grassmann's 
treatment  of  this  subject  we  shall  recur  later. 

After  the  Ausdehmingslehre  of  1862,  already  mentioned,  we  come 

to  Hankel's  Vorlesungen  iiber  die  complexen  Zahlen,  1867.  Under 
this  title  the  author  treats  of  the  imaginary  quantities  of  ordinary 
algebra,  of  what  he  calls  alternirende  Zahlen,  and  of  quaternions. 

These  alternate  numbers,  like  Cauchy's  clefs,  are  quantities  subject 
to  Grassmann's  law  of  combinatorial  multiplication.  This  treatise, 
published  twenty- three  years  after  the  first  Ausdehnungslehre,  marks 

the  first  impression  which  we  can  discover  of  Grassmann's  ideas  upon 
the  course  of  mathematical  thought.  The  transcendent  importance 
of  these  ideas  was  fully  appreciated  by  the  author,  whose  very  able 
work  seems  to  have  had  considerable  influence  in  calling  the  attention 
of  mathematicians  to  the  subject. 

In  1870,  Professor  Benjamin  Peirce  published  his  Linear  Associative 
Algebra,  subsequently  developed  and  enriched  by  his  son,  Professor 
C.  S.  Peirce.  The  fact  that  the  edition  was  lithographed  seems  to 
indicate  that  even  at  this  late  date  a  work  of  this  kind  could  only 
be  regarded  as  addressed  to  a  limited  number  of  readers.  But  the 

increasing  interest  in  such  subjects  is  shown  by  the  republication  of 
this  memoir  in  1881,!  as  by  that  of  the  first  Ausdehnungslehre  in 
1878. 

The  article  on  quaternions  which  has  just  appeared  in  the  Encyclo- 
pcedia  Britannica  mentions  twelve  treatises,  including  second  editions 
and  translations,  besides  the  original  treatises  of  Hamilton.  That  all 
the  twelve  are  later  than  1861  and  all  but  two  later  than  1872  shows 

the  rapid  increase  of  interest  in  this  subject  in  the  last  years. 
Finally,  we  arrive  at  the  Lectures  on  the  Principles  of  Universal 

Algebra  by  the  distinguished  foreigner  whose  sojourn  among  us  has 
given  such  an  impulse  to  mathematical  study  in  this  country.  The 
publication  of  these  lectures,  commenced  in  1884  in  the  American 

Journal  of  Mathematics,  has  not  as  yet  been  completed, — a  want  but 

imperfectly  supplied  by  the  author's  somewhat  desultory  publication 

*  Phil.  Trans.,  vol.  cxlviii.  turner.  Journ.  Math.,  vol.  vi,  p.  271. $Amer.  Journ.  Math.,  vol.  iv. 
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of  many  remarkable  papers  on  the  same  subject  (which  might  be 
more  definitely  expressed  as  the  algebra  of  matrices)  in  various 
foreign  journals. 

It  is  not  an  accident  that  this  century  has  seen  the  rise  of  multiple 
algebra.  The  course  of  the  development  of  ideas  in  algebra  and  in 
geometry,  although  in  the  main  independent  of  any  aid  from  this 
source,  has  nevertheless  to  a  very  large  extent  been  of  a  character 
which  can  only  find  its  natural  expression  in  multiple  algebra. 

Our  Modern  Higher  Algebra  is  especially  occupied  with  the  theory 
of  linear  transformations.  Now  what  are  the  first  notions  which  we 

meet  in  this  theory  ?  We  have  a  set  of  n  variables,  say  x,  y,  z,  and 

another  set,  say  x',  y\  z',  which  are  homogeneous  linear  functions  of 
the  first,  and  therefore  expressible  in  terms  of  them  by  means  of  a 

block  of  n2  coefficients.  Here  the  quantities  occur  by  sets,  and  invite 
the  notations  of  multiple  algebra.  It  was  in  fact  shown  by  Grass- 
mann  in  his  first  Ausdehnungslehre  and  by  Cauchy  nine  years  later, 
that  the  notations  of  multiple  algebra  afford  a  natural  key  to  the 
subject  of  elimination. 
Now  I  do  not  merely  mean  that  we  may  save  a  little  time  or  space 

by  writing  perhaps  p  for  x,  y  and  z ;  p  for  x',  y'  and  z' ;  and  <3?  for  a 
block  of  7i2  quantities.  But  I  mean  that  the  subject  as  usually  treated 
under  the  title  of  determinants  has  a  stunted  and  misdirected  develop- 

ment on  account  of  the  limitations  of  single  algebra.  This  will  appear 
from  a  very  simple  illustration.  After  a  little  preliminary  matter 

the  student  comes  generally  to  a  chapter  entitled  "  Multiplication  of 

Determinants,"  in  which  he  is  taught  that  the  product  of  the  deter- 
minants of  two  matrices  may  be  found  by  performing  a  somewhat 

lengthy  operation  on  the  two  matrices,  by  which  he  obtains  a  third 

matrix,  and  then  taking  the  determinant  of  this.  But  what  signifi- 
cance, what  value  has  this  theorem  ?  For  aught  that  appears  in  the 

majority  of  treatises  which  I  have  seen,  we  have  only  a  complicated 
and  lengthy  way  of  performing  a  simple  operation.  The  real  facts 
of  the  case  may  be  stated  as  follows : 

Suppose  the  set  of  n  quantities  p  to  be  derived  from  the  set  p  by 

the  matrix  <1>,  which  we  may  express  by />'=$./»; 

and  suppose  the  set  p"  to  be  derived  from  the  set  p  by  the  matrix  "&,  i.e., 

and  p"  =  ̂ ^.p', 

it  is  evident  that  p"  can  be  derived  from  p  by  the  operation  of  a 
single  matrix,  say  9,  i.e., 

i  i* 

so  that  9  =  ̂ .$. 
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In  the  language  of  multiple  algebra  9  is  called  the  product  of 
¥  and  <3>.  It  is  of  course  interesting  to  see  how  it  is  derived  from 

the  latter,  and  it  is  little  more  than  a  schoolboy's  exercise  to  determine 
this.  Now  this  matrix  0  has  the  property  that  its  determinant 

is  equal  to  the  products  of  the  determinants  of  *Sf  and  $.  And  this 
property  is  all  that  is  generally  stated  in  the  books,  and  the  funda- 

mental property,  which  is  all  that  gives  the  subject  its  interest,  that  0 
is  itself  the  product  of  ¥  and  3?  in  the  language  of  multiple  algebra, 
i.e.,  that  operating  by  9  is  equivalent  to  operating  successively  by 
$  and  ¥,  is  generally  omitted.  The  chapter  on  this  subject,  in  most 
treatises  which  I  have  seen,  reads  very  like  the  play  of  Hamlet  with 

Hamlet's  part  left  out. 
And  what  is  the  cause  of  this  omission  ?  Certainly  not  ignorance 

of  the  property  in  question.  The  fact  that  it  is  occasionally 
given  would  be  a  sufficient  bar  to  this  answer.  It  is  because 
the  author  fails  to  see  that  his  real  subject  is  matrices  and  not 
determinants.  Of  course,  in  a  certain  sense,  the  author  has  a  right 
to  choose  his  subject.  But  this  does  not  mean  that  the  choice 
is  unimportant,  or  that  it  should  be  determined  by  chance  or  by 
caprice.  The  problem  well  put  is  half  solved,  as  we  all  know. 
If  one  chooses  the  subject  ill,  it  will  develop  itself  in  a  cramped 
manner. 

But  the  case  is  really  much  worse  than  I  have  stated  it.  Not  only 

is  the  true  significance  of  the  formation  of  9  from  ̂   and  «f>  not  given, 
but  the  student  is  often  not  taught  to  form  the  matrix  which  is  the 

product  of  "SF  and  <£,  but  one  which  is  the  product  of  one  of  these 
matrices  and  the  conjugate  of  the  other.  Thus  the  proposition  which 
is  proved  loses  all  its  simplicity  and  significance,  and  must  be  recast 

before  the  instructor  can  explain '  its  true  bearings  to  the  student. 
This  fault  has  been  denounced  by  Sylvester,  and  if  anyone  thinks 
I  make  too  much  of  the  standpoint  from  which  the  subject  is  viewed, 

I  will  refer  him  to  the  opening  paragraphs  of  the  "Lectures  on 
Universal  Algebra  "  in  the  sixth  volume  of  the  American  Journal  of 
Mathematics,  where,  with  a  wealth  of  illustration  and  an  energy 

of  diction  which  I  cannot  emulate,  the  most  eloquent  of  mathe- 
maticians expresses  his  sense  of  the  importance  of  the  substitution 

of  the  idea  of  the  matrix  for  that  of  the  determinant.  If  then  so 

important,  why  was  the  idea  of  the  matrix  let  slip  ?  Of  course  the 
writers  on  this  subject  had  it  to  commence  with.  One  cannot  even 
define  a  determinant  without  the  idea  of  a  matrix.  The  simple  fact  is 
that  in  general  the  writers  on  this  subject  have  especially  developed 
those  ideas  which  are  naturally  expressed  in  simple  algebra,  and  have 
postponed  or  slurred  over  or  omitted  altogether  those  ideas  which 
find  their  natural  expression  in  multiple  algebra.  But  in  this  subject 

G.  II.  G 
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the  latter  happen  to  be  the  fundamental  ideas,  and  those  which  ought 
to  direct  the  whole  course  of  thought. 

I  have  taken  a  very  simple  illustration,  perhaps  the  very  first 
theorem  which  meets  the  student  after  those  immediately  connected 
with  the  introductory  definitions,  both  because  the  simplest  illustration 
is  really  the  best,  and  because  I  am  here  most  at  home.  But  the 
principles  of  multiple  algebra  seem  to  me  to  shed  a  flood  of  light  into 
every  corner  of  the  subjects  usually  treated  under  the  title  of  deter- 

minants, the  subject  gaining  as  much  in  breadth  from  the  new  notions 
as  in  simplicity  from  the  new  notations;  and  in  the  more  intricate 
subjects  of  invariants,  co  variants,  etc.,  I  believe  that  the  principles  of 
multiple  algebra  are  ready  to  perform  an  equal  service.  Certainly 
they  make  many  things  seem  very  simple  to  me  which  I  should 
otherwise  find  difficult  of  comprehension. 

Let  us  turn  to  geometry. 
If  we  were  asked  to  characterize  in  a  single  word  our  modern 

geometry,  we  would  perhaps  say  that  it  is  a  geometry  of  position. 
Now  position  is  essentially  a  multiple  quantity,  or,  if  you  prefer,  is 
naturally  represented  in  algebra  by  a  multiple  quantity.  And  the 

growth  in  this  century  of  the  so-called  synthetic  as  opposed  to 
analytical  geometry  seems  due  to  the  fact  that  by  the  ordinary 
analysis  geometers  could  not  easily  express,  except  in  a  cumbersome 
and  unnatural  manner,  the  sort  of  relations  in  which  they  were  par- 

ticularly interested.  With  the  introduction  of  the  notations  of  multiple 
algebra,  this  difficulty  falls  away,  and  with  it  the  opposition  between 
synthetic  and  analytical  geometry. 

It  is,  however,  interesting  and  very  instructive  to  observe  how  the 
ingenuity  of  mathematicians  has  often  triumphed  over  the  limitations 
of  ordinary  algebra.  A  conspicuous  example  and  one  of  the  simplest 
is  seen  in  the  Mecanique  Analytique,  where  the  author,  by  the  use 
of  what  are  sometimes  called  indeterminate  equations,  is  able  to  write 
in  one  equation  the  equivalent  of  an  indefinite  number.  Thus  the 

equation 

by  the  indeterminateness  of  the  values  of  dx,  dy,  dz,  is  made  equiva- 
lent to  the  three  equations 

Z  =  0,     F=0,    Z=0. 

It  is  instructive  to  compare  this  with 

which  is  the  form  that  Hamilton  or  Grassmann  would  have  used. 

The  use  of  this  analytical  artifice,  if  such  it  can  be  called,  runs  all 
through  the  work  and  is  fairly  characteristic  of  it. 

Again,  the  introduction  of  the  potential  in  the  theory  of  gravity,  or 



MULTIPLE  ALGEBEA.  99 

electricity,  or  magnetism,  gives  us  a  scalar  quantity  instead  of  a  vector 
as  the  subject  of  study;  and  in  mechanics  generally  the  use  of  the 
force-function  substitutes  a  simple  quantity  for  a  complex.  This 
method  is  in  reality  not  different  from  that  just  mentioned,  since 

Lagrange's  indeterminate  equation  expresses,  at  least  in  its  origin, 
the  variation  of  the  force-function.  It  is  indeed  the  real  beauty  of 

Lagrange's  method  that  it  is  not  so  much  an  analytical  artifice,  as  the 
natural  development  of  the  subject. 

In  modern  analytical  geometry  we  find  methods  in  use  which  are 
exceedingly  ingenious,  and  give  forms  curiously  like  those  of  multiple 

algebra,  but  which,  at  least  if  logically  carried  out  very  far,  are  exces- 
sively artificial,  and  that  for  the  expression  of  the  simplest  things. 

The  simplest  conceptions  of  the  geometry  of  three  dimensions  are 
points  and  planes,  and  the  simplest  relation  between  these  is  that  a 
point  lies  in  a  plane.  Let  us  see  how  these  notions  have  been  handled 

by  means  of  ordinary  algebra,  and  by  multiple  algebra.  It  will  illus- 
trate the  characteristic  difference  of  the  methods,  perhaps  as  well  as 

the  reading  of  an  elaborate  treatise. 
In  multiple  algebra  a  point  is  designated  by  a  single  letter,  just  as 

it  is  in  what  is  called  synthetic  geometry,  and  as  it  generally  is  by  the 
ordinary  analyst  when  he  is  not  writing  equations.  But  in  his 
equations,  instead  of  a  single  letter  the  analyst  introduces  several 
letters  (coordinates)  to  represent  the  point. 

A  plane  may  be  represented  in  multiple  algebra  as  in  synthetic 
geometry  by  a  single  letter  ;  in  the  ordinary  algebra  it  is  sometimes 
represented  by  three  coordinates,  for  which  it  is  most  convenient  to 
take  the  reciprocals  of  the  segments  cut  off  by  the  plane  on  three  axes. 
But  the  modern  analyst  has  a  more  ingenious  method  of  representing 
the  plane.  He  observes  that  the  equation  of  the  plane  may  be  written 

fx  +  W  +  £z  =  l,  .         (1) 
where  £  rj,  f  are  the  reciprocals  of  the  segments,  and  x,  y,  z  are  the 
coordinates  of  any  point  in  the  plane.  Now  if  we  set 

p  =  (x  +  W  +  &,  (2) 
this  letter  will  represent  an  expression  which  represents  the  plane.  In 
fact,  we  may  say  that  p  implicitly  contains  £  rj,  and  f,  which  are  the 
coordinates  of  the  plane.  We  may  therefore  speak  of  the  plane  p,  and 
for  many  purposes  can  introduce  the  letter  p  into  our  equations  instead 
°f  £  n>  f  For  example,  the  equation 

is  equivalent  to  the  three  equations 
t    i        / 

'»- 



100  MULTIPLE  ALGEBRA. 

It  is  to  be  noticed  that  on  account  of  the  indeterminateness  of  the 

x,  y,  and  zt  this  method,  regarded  as  an  analytical  artifice,  is  identical 
with  that  of  Lagrange,  also  that  in  multiple  algebra  we  should  have 
an  equation  of  precisely  the  same  form  as  (3)  to  express  the  same 
relation  between  the  planes,  but  that  the  equation  would  be  explained 
to  the  student  in  a  totally  different  manner.  This  we  shall  see  more 
particularly  hereafter. 

It  is  curious  that  we  have  thus  a  simpler  notation  for  a  plane  than 
for  a  point.  This  however  may  be  reversed.  If  we  commence  with 
the  notion  of  the  coordinates  of  a  plane,  (f,  q,  f,  the  equation  of  a 
point  (i.e.,  the  equation  between  £  77,  f  which  will  hold  for  every 
plane  passing  through  the  point)  will  be 

a£+3M  +  s?=l,  (5) 
where  x,  y,  z  are  the  coordinates  of  the  point.     Now  if  we  set 

q  =  xg+yti  +  zg,  (6) 
we  may  regard  the  single  letter  q  as  representing  the  point,  and  use 
it,  in  many  cases,  instead  of  the  coordinates  x,  y,  0,  which  indeed  it 
implicitly  contains.  Thus  we  may  write 

for  the  three  equations 

Here,  by  an  analytical  artifice,  we  come  to  equations  identical  in 
form  and  meaning  with  those  used  by  Hamilton,  Grassmann,  and  even 
by  Mobius  in  1827.  But  the  explanations  of  the  formulae  would 
differ  widely.  The  methods  of  the  founders  of  multiple  algebra  are 
characterized  by  a  bold  simplicity,  that  of  the  modern  geometry  by  a 
somewhat  bewildering  ingenuity.  That  p  and  q  represent  the  same 

expression  (in  one  case  x,  y,  z,  and  in  the  other  (-,  77,  f  being  indeter- 
minate) is  a  circumstance  which  may  easily  become  perplexing.  I  am 

not  quite  certain  that  it  would  be  convenient  to  use  both  of  these 
abridged  notations  at  the  same  time.  In  fact,  if  the  geometer  using 
these  methods  were  asked  to  express  by  an  equation  in  p  and  q  that 
the  point  q  lies  in  the  plane  p,  he  might  find  himself  somewhat 
entangled  in  the  meshes  of  his  own  ingenuity,  and  need  some  new 
artifice  to  extricate  himself.  I  do  not  mean  that  his  genius  might 
not  possibly  be  equal  to  the  occasion,  but  I  do  mean  very  seriously 
that  it  is  a  vicious  method  which  requires  any  ingenuity  or  any 
artifice  to  express  so  simple  a  relation. 

If  we  use  the  methods  of  multiple  algebra  which  are  most  com- 
parable to  those  just  described,  a  point  is  naturally  represented  by  a 

vector  (p)  drawn  to  it  from  the  origin,  a  plane  by  a  vector  (or)  drawn 
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from  the  origin  perpendicularly  toward  the  plane  and  in  length  equal 
to  the  reciprocal  of  the  distance  of  the  plane  from  the  origin.     The 
equation  /  ,     // 

,-»=2L+f  (9) 

will  have  precisely  the  same  meaning  as  equation  (3),  and 

(10) 

will  have  precisely  the  same  meaning  as  equation  (7),  viz.,  that  the 

point  p"  is  in  the  middle  between  p  and  p".  That  the  point  p  lies  in 
the  plane  <r  is  expressed  by  equating  to  unity  the  product  of  p  and  a- 
called  by  Grassmann  internal,  or  by  Hamilton  called  the  scalar  part 
of  the  product  taken  negatively.  By  whatever  name  called,  the 
quantity  in  question  is  the  product  of  the  lengths  of  the  vectors  and 
the  cosine  of  the  included  angle.  It  is  of  course  immaterial  what 
particular  sign  we  use  to  express  this  product,  as  whether  we  write 

/9.o-  =  l,         or         Spar=—  1.  (11) 
I  should  myself  prefer  the  simplest  possible  sign  for  so  simple  a 
relation.  It  may  be  observed  that  p  and  <r  may  be  expressed  as  the 
geometrical  sum  of  their  components  parallel  to  a  set  of  perpendicular 
axes,  viz., 

p  =  xi  +  yj+zk,         (T  =  gi+W  +  £k.  (12) 
By  substitution  of  these  values,  equation  (11)  becomes  by  the  laws  of 
this  kind  of  multiplication 

0£+y*+sf=i.  (13) 
My  object  in  going  over  these  elementary  matters  is  to  call  attention 

to  the  very  roundabout  way  in  which  the  ordinary  analysis  makes 
out  to  represent  a  point  or  a  plane  by  a  single  letter,  as  distinguished 
from  the  directness  and  simplicity  of  the  notations  of  multiple  algebra, 
and  also  to  the  fact  that  the  representations  of  points  and  planes  by 
single  letters  in  the  ordinary  analysis  are  not,  when  obtained,  as 
amenable  to  analytical  treatment  as  are  the  notations  of  multiple 
algebra. 

I  have  compared  that  form  of  the  ordinary  analysis  which  relates 
to  Cartesian  axes  with  a  vector  analysis.  But  the  case  is  essentially 
the  same  if  we  compare  the  form  of  ordinary  analysis  which  relates 

to  a  fundamental  tetrahedron  with  Grassmann's  geometrical  analysis, 
founded  on  the  point  as  the  elementary  quantity. 

In  the  method  of  ordinary  analysis  a  point  is  represented  by  four 
coordinates,  of  which  each  represents  the  distance  of  the  point  from 
a  plane  of  the  tetrahedron  divided  by  the  distance  of  the  opposite 
vertex  from  the  same  plane.  The  equation  of  a  plane  may  be  put 
in  the  form 

Q,  (14) 
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where  £  rj,  £  o>  are  the  distances  of  the  plane  from  the  four  points, 
and  xy  y,  z,  w  are  the  coordinates  of  any  point  in  the  plane.  Here 
we  may  set 

p^gx+ijy  +  gz  +  cow,  (15) 

and  say  that  p  represents  the  plane.  To  some  extent  we  can  intro- 
duce this  letter  into  equations  instead  of  £  r\,  £  w.  Thus  the  equation 

lp'+mp"+np'"  =  0  (16) 

(which  denotes  that  the  planes  p',  p",  p'",  meet  in  a  common  line, 
making  angles  of  which  the  sines  are  proportional  to  I,  m,  and  ri)  is 
equivalent  to  the  four  equations 

Jf+mf  +  rcf"  =  0,        Zi/  +  mjf  +  7ij/"  =  0,    etc.  (17) 
Again,  we  may  regard  £  r\,  f,  w  as  the  coordinates  of  a  plane.     The 

equation  of  a  point  will  then  be 

xg+yr)  +  z£+wco  =  Q.  (18) 
If  we  set 

q  =  xg+yr)  +  z£+ww,  (19) 

we  may  say  that  q  represents  the  point.     The  equation 

,  0 

^     
' 

2     ' 

which  indicates  that  the  point  q'"  bisects  the  line  between  q'  and  q", 
is  equivalent  to  the  four  equations 

£"  +  £'"  n"4-n'" 
f-^T*-,         tf-1^,   etc.  (21) 

To  express  that  the  point  q  lies  in  the  plane  p  does  not  seem  easy, 
without  going  back  to  the  use  of  coordinates. 

The  form  of  multiple  algebra  which  is  to  be  compared  to  this  is  the 
geometrical  algebra  of  Mobius  and  Grassmann,  in  which  points  without 
reference  to  any  origin  are  represented  by  single  letters,  say  by  Italic 
capitals,  and  planes  may  also  be  represented  by  single  letters,  say  by 
Greek  capitals.  An  equation  like 

> 
has  exactly  the  same  meaning  as  equation  (20)  of  ordinary  algebra.    So 

m'+mir+™ir"=o  (23) 
has  precisely  the  same  meaning  as  equation  (16)  of  ordinary  algebra- 
That  the  point  Q  lies  in  the  plane  II  is  expressed  by  equating  to  zero 
the  product  of  Q  and  II  which  is  called  by  Grassmann  external  and 
which  might  be  defined  as  the  distance  of  the  point  from  the  plane. 
We  may  write  this 

QxII  =  0.  (24) 
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To  show  that  so  simple  an  expression  is  really  amenable  to  analytical 
treatment,  I  observe  that  Q  may  be  expressed  in  terms  of  any  four 
points  (not  in  the  same  plane)  on  the  barycentric  principle  explained 

above,  viz.,  Q  =  xA+yB+zC+wD,  (25) 
and  II  may  be  expressed  in  terms  of  combinatorial  products  of 
At  B,  C,  and  D,  viz., 

U=£BxCxD+riCxAxD+£DxAxB+wAxCxB,          (26) 

and  by  these  substitutions,  by  the  laws  of  the  combinatorial  product 
to  be  mentioned  hereafter,  equation  (24)  is  transformed  into 

w<*+xg+yT)  +  z£=0,  (27) 

which  is  identical  with  the  formula  of  ordinary  analysis.* 
I  have  gone  at  length  into  this  very  simple  point  in  order  to 

illustrate  the  fact,  which  I  think  is  a  general  one,  that  the  modern 
geometry  is  not  only  tending  to  results  which  are  appropriately 
expressed  in  multiple  algebra,  but  that  it  is  actually  striving  to  clothe 
itself  in  forms  which  are  remarkably  similar  to  the  notations  of 
multiple  algebra,  only  less  simple  and  general  and  far  less  amenable 
to  analytical  treatment,  and  therefore,  that  a  certain  logical  necessity 
calls  for  throwing  off  the  yoke  under  which  analytical  geometry  has 
so  long  labored.  And  lest  this  should  seem  to  be  the  utterance  of  an 
uninformed  enthusiasm,  or  the  echoing  of  the  possibly  exaggerated 
claims  of  the  devotees  of  a  particular  branch  of  mathematical  study, 
I  will  quote  a  sentence  from  Clebsch  and  one  from  Clifford,  relating 
to  the  past  and  to  the  future  of  multiple  algebra.  The  former  in 
his  eulogy  on  Pliicker,t  in  1871,  speaking  of  recent  advances  in 

geometry,  says  that  "  in  a  certain  sense  the  coordinates  of  a  straight 
line,  and  in  general  a  great  part  of  the  fundamental  conceptions  of 

the  newer  algebra,  are  contained  in  the  Ausdehnungslehre  of  1844," 
and  Clifford  |  in  the  last  year  of  his  life,  speaking  of  the  Ausdehn- 

ungslehre, with  which  he  had  but  recently  become  acquainted, 

expresses  "his  profound  admiration  of  that  extraordinary  work,  and 
his  conviction  that  its  principles  will  exercise  a  vast  influence  upon 

the  future  of  mathematical  science." 
Another  subject  in  which  we  find  a  tendency  toward  the  forms 

and  methods  of  multiple  algebra,  is  the  calculus  of  operations.  Our 
ordinary  analysis  introduces  operators,  and  the  successive  operations 
A  and  B  may  be  equivalent  to  the  operation  C.  To  express  this  in 
an  equation  we  may  write 

   BA  (x)  =  C(aj), 

*The  letters  £,  T;,  £,  w,  here  denote  the  distances  of  the  plane  II  from  the  points 
A,  B,  C,  D,  divided  by  six  times  the  volume  of  the  tetrahedron,  A,  B,  C,  D.  The 
letters  #,  y,  z,  w,  denote  the  tetrahedral  coordinates  as  above. 

+  GGU.  Abhandl.,  vol.  xvi,  p.  28.  %Amw.  Journ.  Math.,  vol.  i,  p.  350. 
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where  x  is  any  quantity  or  function.     We  may  also  have  occasion  to 

write  A(x)+B(x)  =  D(x),    or    (A+B)(x)  =  D(x). 

But  it  is  almost  impossible  to  resist  the  tendency  to  express  these 
relations  in  the  form  T>A  _  n 

A+B=D, 

in  which  the  operators  appear  in  a  sense  as  quantities,  i.e.,  as  subjects 
of  functional  operation.  Now  since  these  operators  are  often  of  such 
nature  that  they  cannot  be  perfectly  specified  by  a  single  numerical 
quantity,  when  we  treat  them  as  quantities  they  must  be  regarded  as 
multiple  quantities.  In  this  way  certain  formulae  which  essentially 
belong  to  multiple  algebra  get  a  precarious  footing  where  they  are 
only  allowed  because  they  are  regarded  as  abridged  notations  for 
equations  in  ordinary  algebra.  Yet  the  logical  development  of  such 
notations  would  lead  a  good  way  in  multiple  algebra,  and  doubtless 
many  investigators  have  entered  the  field  from  this  side. 

One  might  also  notice,  to  show  how  the  ordinary  algebra  is  be- 
coming saturated  with  the  notions  and  notations  which  seem  destined 

to  turn  it  into  a  multiple  algebra,  the  notation  so  common  in  the 

higher  algebra  (a>  ̂  c)(x>  y>  g) 

for  ax  +  by  +  cz. 

This  is  evidently  the  same  as  Grassmann's  internal  product  of  the 
multiple  quantities  (a,  b,  c)  and  (x,  y,  z),  or,  in  the  language  of 
quaternions,  the  scalar  part,  taken  negatively,  of  the  product  of  the 
vectors  of  which  a,  b,  c  and  x,  y,  z  are  the  components.  A  similar 

correspondence  with  Grassmann's  methods  might,  I  think,  be  shown 
in  such  notations  as,  for  example, 

(a,  b,  c,  d)(x,  y)B. 
The  free  admission  of  such  notations  is  doubtless  due  to  the  fact  that 

they  are  regarded  simply  as  abridged  notations. 

The  author  of  the  celebrated  "  Memoir  on  the  Theory  of  Matrices  " 
goes  much  farther  than  this  in  his  use  of  the  forms  of  multiple 

algebra.  Thus  he  writes  explicitly  one  equation  to  stand  for  several, 
without  the  use  of  any  of  the  analytical  artifices  which  have  been 
mentioned.  This  work  has  indeed,  as  we  have  seen,  been  characterized 

as  marking  the  commencement  of  multiple  algebra,  —  a  view  to  which 
we  can  only  take  exception  as  not  doing  justice  to  earlier  writers. 

But  the  significance  of  this  memoir  with  regard  to  the  point  which 
I  am  now  considering  is  that  it  shows  that  the  chasm  so  marked 
in  the  second  quarter  of  this  century  is  destined  to  be  closed  up. 
Notions  and  notations  for  which  a  Cayley  is  sponsor  will  not  be 
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excluded  from  good  society  among  mathematicians.  And  if  we  admit 
as  suitable  the  notations  used  in  this  memoir  (where  it  is  noticeable 

that  the  author  rather  avoids  multiple  algebra,  and  only  uses  it  very 
sparingly),  we  shall  logically  be  brought  to  use  a  great  deal  more. 
For  example,  if  it  is  a  good  thing  to  write  in  our  equations  a  single 

letter  to  represent  a  matrix  of  n2  numerical  quantities,  why  not  use 
a  single  letter  to  represent  the  n  quantities  operated  upon,  as  Grass- 
mann  and  Hamilton  have  done  ?  Logical  consistency  seems  to  de- 

mand it.  And  if  we  may  use  the  sign  )(  to  denote  an  operation  by 
which  two  sets  of  quantities  are  combined  to  form  a  third  set,  as  is 
the  case  in  this  memoir,  why  not  use  other  signs  to  denote  other 
functional  operations  of  which  the  result  is  a  multiple  quantity  ? 
If  it  be  conceded  that  this  is  the  proper  method  to  follow  where 

simplicity  of  conception,  or  brevity  of  expression,  or  ease  of  trans- 
formation is  served  thereby,  our  algebra  will  become  in  large  part  a 

multiple  algebra. 

We  have  considered  the  subject  a  good  while  from  the  outside ;  we 
have  glanced  at  the  principal  events  in  the  history  of  multiple  algebra; 
we  have  seen  how  the  course  of  modern  thought  seems  to  demand  its 
aid,  how  it  is  actually  leaning  toward  it,  and  beginning  to  adopt  its 
methods.  It  may  be  worth  while  to  direct  our  attention  more 
critically  to  multiple  algebra  itself,  and  inquire  into  its  essential 
character  and  its  most  important  principles. 

I  do  not  know  that  anything  useful  or  interesting,  which  relates 
to  multiple  quantity,  and  can  be  symbolically  expressed,  falls  outside 
of  the  domain  of  multiple  algebra.  But  if  it  is  asked,  what  notions 
are  to  be  regarded  as  fundamental,  we  must  answer,  here  as  else- 

where, those  which  are  most  simple  and  fruitful.  Unquestionably,  no 
relations  are  more  so  than  those  which  are  known  by  the  names 
of  addition  and  multiplication. 

Perhaps  I  should  here  notice  the  essentially  different  manner  in 
which  the  multiplication  of  multiple  quantities  has  been  viewed 
by  different  writers.  Some,  as  Hamilton,  or  De  Morgan,  or  Peirce, 
speak  of  the  product  of  two  multiple  quantities,  as  if  only  one  product 
could  exist,  at  least  in  the  same  algebra.  Others,  as  Grassmann,  speak 
of  various  kinds  of  products  for  the  same  multiple  quantities.  Thus 
Hamilton  seems  for  many  years  to  have  agitated  the  question,  what 
he  should  regard  as  the  product  of  each  pair  of  a  set  of  triplets,  or 
in  the  geometrical  application  of  the  subject,  what  he  should  regard 
as  the  product  of  each  pair  of  a  system  of  perpendicular  directed 

lines.*  Grassmann  asks,  What  products,  i.e.,  what  distributive 
functions  of  the  multiple  quantities,  are  most  important  ? 

*Phil.  Mag.  (3),  vol.  xxv,  p.  490;  North  British  Review,  vol.  xlv,  (1866),  p.  57. 
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It  may  be  that  in  some  cases  the  fact  that  only  one  kind  of  product 
is  known  in  ordinary  algebra  has  led  those  to  whom  the  problem 
presented  itself  in  the  form  of  finding  a  new  algebra  to  adopt  this 
characteristic  derived  from  the  old.  Perhaps  the  reason  lies  deeper 
in  a  distinction  like  that  in  arithmetic  between  concrete  and  abstract 

numbers  or  quantities.  The  multiple  quantities  corresponding  to 
concrete  quantities  such  as  ten  apples  or  three  miles  are  evidently 

such  combinations  as  ten  apples  +  seven  oranges,  three  miles  north- 
ward +  five  miles  eastward,  or  six  miles  in  a  direction  fifty  degrees 

east  of  north.  Such  are  the  fundamental  multiple  quantities  from 

Grassmann's  point  of  view.  But  if  we  ask  what  it  is  in  multiple 
algebra  which  corresponds  to  an  abstract  number  like  twelve,  which 
is  essentially  an  operator,  which  changes  one  mile  into  twelve  miles, 
and  81,000  into  $12,000,  the  most  general  answer  would  evidently 
be :  an  operator  which  will  work  such  changes  as,  for  example,  that 
of  ten  apples  +  seven  oranges  into  fifty  apples  +  100  oranges,  or  that 
of  one  vector  into  another. 

Now  an  operator  has,  of  course,  one  characteristic  relation,  viz.,  its 
relation  to  the  operand.  This  needs  no  especial  definition,  since  it 
is  contained  in  the  definition  of  the  operator.  If  the  operation 
is  distributive,  it  may  not  inappropriately  be  called  multiplication, 
and  the  result  is  par  excellence  the  product  of  the  operator  and 
operand.  The  sum  of  operators  qua  operators,  is  an  operator  which 
gives  for  the  product  the  sum  of  the  products  given  by  the  operators 
to  be  added.  The  product  of  two  operators  is  an  operator  which  is 

equivalent  to  the  successive  operations  of  the  factors.  This  multi- 
plication is  necessarily  associative,  and  its  definition  is  not  really 

different  from  that  of  the  operators  themselves.  And  here  I  may 

observe  that  Professor  C.  S.  Peirce  has  shown  that  his  father's 
associative  algebras  may  be  regarded  as  operational  and  matricular.* 
Now  the  calculus  of  distributive  operators  is  a  subject  of  great 

extent  and  importance,  but  Grassmann's  view  is  the  more  compre- 
hensive, since  it  embraces  the  other  with  something  besides.  For 

every  quantitative  operator  may  be  regarded  as  a  quantity,  i.e.,  as 
the  subject  of  mathematical  operation,  but  every  quantity  cannot 
be  regarded  as  an  operator ;  precisely  as  in  grammar  every  verb  may 
be  taken  as  substantive,  as  in  the  infinitive,  while  every  substantive 
does  not  give  us  a  verb. 

Grassmann's  view  seems  also  the  most  practical  and  convenient. 
For  we  often  use  many  functions  of  the  same  pair  of  multiple 
quantities,  which  are  distributive  with  respect  to  both,  and  we  need 
some  simple  designation  to  indicate  a  property  of  such  fundamental 

*  Amer.  Journ.  Math.,  vol.  iv,  p.  221. 
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importance  in  the  algebra  of  such  functions,  and  no  advantage 

appears  in  singling  out  a  particular  function  to  be  alone  called 
the  product.  Even  in  quaternions,  where  Hamilton  speaks  of 
only  one  product  of  two  vectors  (regarding  it  as  a  special  case 
of  the  product  of  quaternions,  i.e.,  of  operators),  he  nevertheless 
comes  to  use  the  scalar  part  of  this  product  and  the  vector  part 
separately.  Now  the  distributive  law  is  satisfied  by  each  of  these, 
which  therefore  may  conveniently  be  called  products.  In  this 

sense  we  have  three  kinds  of  products  of  vectors  in  Hamilton's 
analysis. 

Let  us  then  adopt  the  more  general  view  of  multiplication,  and  call 
any  function  of  two  or  more  multiple  quantities,  which  is  distributive 
with  respect  to  all,  a  product,  with  only  this  limitation,  that  when 
one  of  the  factors  is  simply  an  ordinary  algebraic  quantity,  its  effect 
is  to  be  taken  in  the  ordinary  sense. 

It  is  to  be  observed  that  this  definition  of  multiplication  implies 
that  we  have  an  addition  both  of  the  kind  of  quantity  to  which  the 

product  belongs,  and  of  the  kinds  to  which  the  factors  belong.     Of 
course,  these  must  be  subject  to  the  general  formal  laws  of  addition. 
I  do  not  know  that  it  is  necessary  for  the  purposes  of  a  general 
discussion  to  stop  to  define  these  operations  more  particularly,  either 
on  their  own  account  or  to  complete  the  definition  of  multiplication. 
Algebra,  as  a  formal  science,  may  rest  on  a  purely  formal  foundation. 
To  take   our   illustration  again  from  mechanics,  we   may  say  that 

if  a  man  is  inventing  a  particular  machine, — a  sewing  machine,  a 
reaper, — nothing  is  more  important  than  that  he  should  have  a  precise 
idea  of  the  operation  which  his  machine  is  to  perform,  yet  when  he  is 
treating  the  general  principles  of  mechanics  he  may  discuss  the  lever, 
or  the  form  of   the  teeth  of   wheels  which  will  transmit  uniform 

motion,  without  inquiring  the  purpose  to  which  the  apparatus  is  to 
be  applied ;  and  in  like  manner  that  if  we  were  forming  a  particular 

algebra, — a  geometrical   algebra,   a   mechanical  algebra,   an   algebra 
for  the  theory  of   elimination  and  substitution,  an  algebra  for  the 

study  of  quantics, — we  should  commence  by  asking,  What  are  the 
multiple  quantities,  or  sets  of  quantities,  which  we  have  to  consider  ? 
What  are  the  additive  relations  between  them  ?     What  are  the  multi- 

plicative relations  between  them  ?  etc.,  forming  a  perfectly  defined 
and  complete  idea  of  these  relations  as  we  go  along;   but  in  the 
development  of  a  general  algebra  no  such  definiteness  of  conception 
is  requisite.     Given  only  the  purely  formal  law  of  the  distributive 
character  of  multiplication, — this  is  sufficient  for  the  foundation  of  a 
science.     Nor  will  such  a  science  be  merely  a  pastime  for  an  ingenious 
mind.     It  will  serve  a  thousand  purposes  in  the  formation  of  parti- 

cular algebras.     Perhaps  we  shall  find  that  in  the  most  important 
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cases  the  particular  algebra  is  little  more  than  an  application  or 
interpretation  of  the  general. 

Grassmann  observes  that  any  kind  of  multiplication  of  7i-fold 
quantities  is  characterized  by  the  relations  which  hold  between  the 
products  of  n  independent  units.  In  certain  kinds  of  multiplication 
these  characteristic  relations  will  hold  true  of  the  products  of  any 
of  the  quantities. 

Thus  if  the  value  of  a  product  is  independent  of  the  order  of  the 
factors  when  these  belong  to  the  system  of  units,  it  will  always  be 
independent  of  the  order  of  the  factors.  The  kind  of  multiplication 
characterized  by  this  relation  and  no  other  between  the  products  is 
called  by  Grassmann  algebraic,  because  its  rules  coincide  with  those 
of  ordinary  algebra.  It  is  to  be  observed,  however,  that  it  gives 
rise  to  multiple  quantities  of  higher  orders.  If  n  independent  units 

- 
are  required  to  express  the  original  quantities,  n  —  •=  —  units  will  be ft 

required   for   the   products  of  two   factors,  n—  —   for   the 
-j  .  O 

products  of  three  factors,  etc. 
Again,  if  the  value  of  a  product  of  factors  belonging  to  a  system 

of  units  is  multiplied  by  —1  when  two  factors  change  places,  the 
same  will  be  true  of  the  product  of  any  factors  obtained  by  addition 
of  the  units.  The  kind  of  multiplication  characterized  by  this  relation 
and  no  other  is  called  by  Grassmann  external  or  combinatorial.  For 
our  present  purpose  we  may  denote  it  by  the  sign  x  .  It  gives  rise 

n  —  I 
to  multiple  quantities  of  higher  orders,  n—  •=  —  units  being  required 

to   express   the   products  of   two   factors,  n-  -  0   Q     —  -   units    for 
-j  .  O 

products  of  three  factors,  etc.  All  products  of  more  than  n  factors 
are  zero.  The  products  of  n  factors  may  be  expressed  by  a  single 
unit,  viz.,  the  product  of  the  n  original  units  taken  in  a  specified 
order,  which  is  generally  set  equal  to  1.  The  products  of  n  —  1  factors 
are  expressed  in  terms  of  n  units,  those  of  n  —  2  factors  in  terms  of 

71  —  1 

n  —  g  —  units,  etc.     This  kind  of  multiplication  is  associative,  like  the <H 

algebraic. 
Grassmann  observes,  with  respect  to  binary  products,  that  these 

two  kinds  of  multiplication  are  the  only  kinds  characterized  by  laws 
which  are  the  same  for  any  factors  as  for  particular  units,  except 
indeed  that  characterized  by  no  special  laws,  and  that  for  which  all 

products  are  zero.*  The  last  we  may  evidently  reject  as  nugatory. 
That  for  which  there  are  no  special  laws,  i.e.,  in  which  no  equations 

*  Crelle's  Journ.  f.  Math.,  vol.  xlix,  p.  138. 
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subsist  between  the  products  of  a  system  of  independent  units,  is  also 

rejected  by  Grassmann,  as  not  appearing  to  afford  important  applica- 
tions. I  shall,  however,  have  occasion  to  speak  of  it,  and  shall  call 

it  the  indeterminate  product.  In  this  kind  of  multiplication,  nz  units 

are  required  to  express  the  products  of  two  factors,  and  nz  units  for 
products  of  three  factors,  etc.  It  evidently  may  be  regarded  as 
associative. 

Another  very  important  kind  of  multiplication  is  that  called  by 
Grassmann  internal.  In  the  form  in  which  I  shall  give  it,  which  is 

less  general  than  Grassmann's,  it  is  in  one  respect  the  most  simple  of 
all,  since  its  only  result  is  a  numerical  quantity.  It  is  essentially 
binary  and  characterized  by  laws  of  the  form 

i.i  =  l,        j-j  =  l>        k.k  =  l,    etc., 

V  =  0,        j.^  =  0,  etc., 

where  i,  j,  k,  etc.,  represent  a  system  of  independent  units.  I  use  the 
dot  as  significant  of  this  kind  of  multiplication. 

Grassmann  derives  this  kind  of  multiplication  from  the  com- 
binatorial by  the  following  process.  He  defines  the  complement 

(Erganzung)  of  a  unit  as  the  combinatorial  product  of  all  the  other 
units,  taken  with  such  a  sign  that  the  combinatorial  product  of  the 
unit  and  its  complement  shall  be  positive.  The  combinatorial  product 
of  a  unit  and  its  complement  is  therefore  unity,  and  that  of  a  unit 
and  the  complement  of  any  other  unit  is  zero.  The  internal  product 

of  two  units  is  the  combinatorial  product  of  the  first  and  the  com- 
plement of  the  second. 

It  is  important  to  observe  that  any  scalar  product  of  two  factors  of 
the  same  kind  of  multiple  quantities,  which  is  positive  when  the 
factors  are  identical,  may  be  regarded  as  an  internal  product,  i.e.,  we 
may  always  find  such  a  system  of  units,  that  the  characteristic 
equations  of  the  product  will  reduce  to  the  above  form.  The  nature 
of  the  subject  may  afford  a  definition  of  the  product  independent  of 
any  reference  to  a  system  of  units.  Such  a  definition  will  then  have 
obvious  advantages.  An  important  case  of  this  kind  occurs  in 

geometry  in  that  product  of  two  vectors  which  is  obtained  by  multi- 
plying the  products  of  their  lengths  by  the  cosine  of  the  angle  which 

they  include.  This  is  an  internal  product  in  Grassmann's  sense. 
Let  us  now  return  to  the  indeterminate  product,  which  I  am 

inclined  to  regard  as  the  most  important  of  all,  since  we  may  derive 
from  it  the  algebraic  and  the  combinatorial.  For  this  end  we  will 
prefix  2  to  an  indeterminate  product  to  denote  the  sum  of  all  the 
terms  obtained  by  taking  the  factors  in  every  possible  order.  Then, Sal/Sly, 

for    instance,    where    the    vertical    line     is    used    to    denote    the 
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indeterminate  product,*  is  a  distributive  function  of  a,  ft,  and  y.  It 
is  evidently  not  affected  by  changing  the  order  of  the  letters.  It  is, 
therefore,  an  algebraic  product  in  the  sense  in  which  the  term  has 
been  defined. 

So,  again,  if  we  prefix  S±  to  an  indeterminate  product  to  denote 
the  sum  of  all  terms  obtained  by  giving  the  factors  every  possible 
order,  those  terms  being  taken  negatively  which  are  obtained  by  an 
odd  number  of  simple  permutations, 

for  instance,  will  be  a  distributive  function  of  a,  /3,  y,  which  is 

multiplied  by  —  1  when  two  of  these  letters  change  places.  It  will 
therefore  be  a  combinatorial  product. 

It  is  a  characteristic  and  very  important  property  of  an  indeter- 
minate product  that  every  product  of  all  its  factors  with  any  other 

quantities  is  also  a  product  of  the  indeterminate  product  and  the 

other  quantities.  We  need  not  stop  for  a  formal  proof  of  this  pro- 
position, which  indeed  is  an  immediate  consequence  of  the  definitions 

of  the  terms. 

These  considerations  bring  us  naturally  to  what  Grassmann  calls 
regressive  multiplication,  which  I  will  first  illustrate  by  a  very 
simple  example.  If  n,  the  degree  of  multiplicity  of  our  original 
quantities,  is  4,  the  combinatorial  product  of  aX/3xy  and  <5xe,  viz., 

aX/3xyxSxe, 

is  necessarily  zero,  since  the  number  of  factors  exceeds  four.  But  if 
for  Sxe  we  set  its  equivalent 

S\e-e\S, 

we  may  multiply  the  first  factor  in  each  of  these  indeterminate  pro- 
ducts combinatorially  by  aX/3xy,  and  prefix  the  result,  which  is  a 

numerical  quantity,  as  coefficient  to  the  second  factor.  This  will  give 

(aX/3XyX(5)e  —  (aX/3xyXe)S. 
Now,  the  first  term  of  this  expression  is  a  product  of  aX/3xy,  8,  and 
e,  and  therefore,  by  the  principle  just  stated,  a  product  of  aX/3xy 
and  S\e.  The  second  term  is  a  similar  product  of  aX/3xy  and  e\S. 

Therefore  the  whole  expression  is  a  product  of  aX/3xy  and  S\e  —  €\St 
that  is,  of  aX/3xy  and  <5xe.  That  is,  except  in  sign,  what  Grass- 

mann calls  the  regressive  product  of  aX/3xy  arid  Sxe. 
To  generalize  this  process,  we  first  observe  that  an  expression  of 

the  form 

in  which  each  term  is  an  indeterminate  product  of  two  combinatorial 
products,  and  in  which  S±  denotes  the  sum  of  all  terms  obtained  by 

*  This  notation  must  not  be  confounded  with  Grassmann's  use  of  the  vertical  line. 
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putting  every  different  pair  of  the  letters  before  the  dividing  line,  the 
negative  sign  being  used  for  any  terms  which  may  be  obtained  by  an 
odd  number  of  simple  permutations  of  the  letters,  —  in  other  words, 
the  expression 

aX/3\yXS  — 

is  a  distributive  function  of  a,  /3,  y,  and  <5,  which  is  multiplied  by  —  1 
when  two  of  these  letters  change  places,  and  may,  therefore,  be  regarded 

as  equivalent  to  the  combinatorial  product  aX/3xyxS.  Now,  if  7i  =  5, 
the  combinatorial  product  of 

pXa-Xr         and         aX/BXyXS 

is  zero.  But  if  we  multiply  the  first  member  of  each  of  the  above 

indeterminate  products  by  pXarXr,  and  prefix  the  result  as  co- 
efficient to  the  second  member,  we  obtain 

which  is  what  Grassmann  calls  the  regressive  product  of  pXvXr  and 
aXflXyxS.  It  is  easy  to  see  that  the  principle  may  be  extended  so 
as  to  give  a  regressive  product  in  any  case  in  which  the  total  number 
of  factors  of  two  combinatorial  products  is  greater  than  n.  Also,  that 
we  might  form  a  regressive  product  by  treating  the  first  of  the  given 
combinatorials  as  we  have  treated  the  second.  It  may  easily  be  shown 
that  this  would  give  the  same  result,  except  in  some  cases  with  a 
difference  of  sign.  To  avoid  this  inconvenience,  we  may  make  the 
rule,  that  whenever  in  the  substitution  of  a  sum  of  indeterminate 

products  for  a  combinatorial,  both  factors  of  the  indeterminate  products 
are  of  odd  degree,  we  change  the  sign  of  the  whole  expression.  With 
this  understanding,  the  results  which  we  obtain  will  be  identical  with 

Grassmann's  regressive  product.  The  propriety  of  the  name  consists 
in  the  fact  that  the  product  is  of  less  degree  than  either  of  the  factors. 
For  the  contrary  reason,  the  ordinary  external  or  combinatorial 
multiplication  is  sometimes  called  by  Grassmann  progressive. 

Regressive  multiplication  is  associative  and  exhibits  a  very  remark- 
able analogy  with  the  progressive.  This  analogy  I  have  not  time 

here  to  develop,  but  will  only  remark  that  in  this  analogy  lies  in  its 
most  general  form  that  celebrated  principle  of  duality,  which  appears 
in  various  forms  in  geometry  and  certain  branches  of  analysis. 

To  fix  our  ideas,  I  may  observe  that  in  geometry  the  progressive 
multiplication  of  points  gives  successively  lines,  planes  and  volumes; 
the  regressive  multiplication  of  planes  gives  successively  lines,  points 
and  scalar  quantities. 

The  indeterminate  product  affords  a  natural  key  to  the  subject  of 
matrices.  In  fact,  a  sum  of  indeterminate  products  of  the  second 
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degree  represents  n2  scalars,  which  constitute  an  ordinary  or  quadratic 
matrix  ;  a  sum  of  indeterminate  products  of  the  third  degree  repre- 

sents n3  scalars,  which  constitute  a  cubic  matrix,  etc.  I  shall  confine 
myself  to  the  simplest  and  most  important  case,  that  of  quadratic 
matrices. 

An  expression  of  the  form a(\.p) 

being  a  product  of  a,  X,  and  p,  may  be  regarded  as  a  product  of  a|X 
and  p,  by  a  principle  already  stated.  Now  if  3?  denotes  a  sum  of 
indeterminate  products,  of  second  degree,  say  a|X  +  /3|/z  +  etc.,  we 
may  write 

3>.p 

for  a(X.p)+/3(ju  ./o)  +  etc. 

This  is  like  p,  a  quantity  of  the  first  degree,  and  it  is  a  homogeneous 
linear  function  of  p.  It  is  easy  to  see  that  the  most  general  form 
of  such  a  function  may  be  expressed  in  this  way.  An  equation  like 

<T  =  3>.p 

represents  n  equations  in  ordinary  algebra,  in  which  n  variables  are 

expressed  as  linear  functions  of  n  others  by  means  of  n2  coefficients. 
The  internal  product  of  two  indeterminate  products  may  be  defined 

by  the  equation 

This  defines  the  internal  product  of  matrices,  as 

This  product  evidently  gives  a   matrix,  the   operation  of  which  is 

equivalent  to  the  successive  operations  of  3>  and  "¥"  ;  i.e., 

We  may  express  this  a  little  more  generally  by  saying  that  internal 
multiplication  is  associative  when  performed  on  a  series  of  matrices, 
or  on  such  a  series  terminated  by  a  quantity  of  the  first  degree. 

Another  kind  of  multiplication  of  binary  indeterminate  products 
is  that  in  which  the  preceding  factors  are  multiplied  combinatorially, 
and  also  the  following.  It  may  be  defined  by  the  equation 

This  defines  a  multiplication  of  matrices  denoted  by  the  same  symbol, as 

This  multiplication,  which  is  associative  and  commutative,  is  of  great 

importance  in  the  theory  of  determinants.     In  fact, 

n 
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is  the  determinant  of  the  matrix  <1>.  A  lower  power,  as  the  mth,  with 
the  divisor  n(n  —  l)  ...  (n  —  m+1)  would  express  as  multiple  quantity 
all  the  subdeterminants  of  order  m* 

It  is  evident  that  by  the  combination  of  the  operations  of  inde- 
terminate, algebraic,  and  combinatorial  multiplication  we  obtain 

multiple  quantities  of  a  more  complicated  nature  than  by  the  use 
of  only  one  of  these  kinds  of  multiplication.  The  indeterminate 
product  of  combinatorial  products  we  have  already  mentioned.  The 
combinatorial  product  of  algebraic  products,  and  the  indeterminate 
product  of  algebraic  products,  are  also  of  great  importance,  especially 
in  the  theory  of  quantics.  These  three  multiplications,  with  the 
internal,  especially  in  connection  with  the  general  property  of  the 
indeterminate  product  given  above,  and  the  derivation  of  the  algebraic 
and  combinatorial  products  from  the  indeterminate,  which  affords  a 

generalization  of  that  property,  give  rise  to  a  great  wealth  of  multi- 

plicative relations  between  these  multiple  quantities.  I  say  "  wealth 

of  multiplicative  relations"  designedly,  for  there  is  hardly  any  kind 
of  relations  between  things  which  are  the  objects  of  mathematical 
study,  which  add  so  much  to  the  resources  of  the  student  as  those 
which  we  call  multiplicative,  except  perhaps  the  simpler  class  which 
we  call  additive,  and  which  are  presupposed  in  the  multiplicative. 
This  is  a  truth  quite  independent  of  our  using  any  of  the  notations 
of  multiple  algebra,  although  a  suitable  notation  for  such  relations 
will  of  course  increase  their  value. 

Perhaps,  before  closing,  I  ought  to  say  a  few  words  on  the  appli- 
cations of  multiple  algebra. 

First  of  all,  geometry,  and  the  geometrical  sciences  which  treat  of 
things  having  position  in  space,  kinematics,  mechanics,  astronomy 
physics,  crystallography,  seem  to  demand  a  method  of  this  kind,  for 
position  in  space  is  essentially  a  multiple  quantity  and  can  only  be 
represented  by  simple  quantities  in  an  arbitrary  and  cumbersome 
manner.  For  this  reason,  and  because  our  spatial  intuitions  are  more 
developed  than  those  of  any  other  class  of  mathematical  relations, 
these  subjects  are  especially  adapted  to  introduce  the  student  to  the 
methods  of  multiple  algebra.  Here,  Nature  herself  takes  us  by  the 
hand  and  leads  us  along  by  easy  steps,  as  a  mother  teaches  her  child 
to  walk.  In  the  contemplation  of  such  subjects,  Mobius,  Hamilton, 

*  Quadratic  matrices  may  also  be  represented  by  a  sum  of  indeterminate  products  of 
a  quantity  of  the  first  degree  with  a  combinatorial  product  of  (?i-l)st  degree,  as,  for 
example,  when  n  =  4,  by  a  sum  of  products  of  the  form 

The  theory  of  such  matrices  is  almost  identical  with  that  of  those  of  the  other  form, 
except  that  the  external  multiplication  takes  the  place  of  the  internal,  in  the  multipli- 

cation of  the  matrices  with  each  other  and  with  quantities  of  the  first  degree. 
G.  II.  H 
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and  Grassmann  formed  their  algebras,  although  the  philosophical 
mind  of  the  last  was  not  satisfied  until  he  had  produced  a  system 
unfettered  by  any  spatial  relations.  It  is  probably  in  connection  with 
some  of  these  subjects  that  the  notions  of  multiple  algebra  are  most 
widely  disseminated. 

Maxwell's  Treatise  on  Electricity  and  Magnetism  has  done  so 
much  to  familiarize  students  of  physics  with  quaternion  notations, 
that  it  seems  impossible  that  this  subject  should  ever  again  be  entirely 
divorced  from  the  methods  of  multiple  algebra. 

I  wish  that  I  could  say  as  much  of  astronomy.  It  is,  I  think,  to  be 
regretted,  that  the  oldest  of  the  scientific  applications  of  mathematics, 
the  most  dignified,  the  most  conservative,  should  keep  so  far  aloof 
from  the  youngest  of  mathematical  methods;  and  standing  as  I  do 
to-day,  by  some  chance,  among  astronomers,  although  not  of  the  guild, 
I  cannot  but  endeavor  to  improve  the  opportunity  by  expressing  my 
conviction  of  the  advantages  which  astronomers  might  gain  by 
employing  some  of  the  methods  of  multiple  algebra.  A  very  few  of 
the  fundamental  notions  of  a  vector  analysis,  the  addition  of  vectors 
and  what  quaternionists  would  call  the  scalar  part  and  the  vector 
part  of  the  product  of  two  vectors  (which  may  be  defined  without 
the  notion  of  the  quaternion), — these  three  notions  with  some  four 
fundamental  properties  relating  to  them  are  sufficient  to  reduce 
enormously  the  labor  of  mastering  such  subjects  as  the  elementary 
theory  of  orbits,  the  determination  of  an  orbit  from  three  observations, 
the  differential  equations  which  are  used  in  determining  the  best  orbit 
from  an  indefinite  number  of  observations  by  the  method  of  least 
squares,  or  those  which  give  the  perturbations  when  the  elements  are 
treated  as  variable.  In  all  these  subjects  the  analytical  work  is 
greatly  simplified,  and  it  is  far  easier  to  find  the  best  form  for 
numerical  calculation  than  by  the  use  of  the  ordinary  analysis. 

I  may  here  remark  that  in  its  geometrical  applications  multiple 
algebra  will  naturally  take  one  of  two  principal  forms,  according  as 
vectors  or  points  are  taken  as  elementary  quantities,  i.e.,  according  as 
something  having  magnitude  and  direction,  or  something  having 
magnitude  and  position  at  a  point,  is  the  fundamental  conception. 

These  forms  of  multiple  algebra  may  be  distinguished  as  vector1 
analysis  and  point  analysis.  The  former  we  may  call  a  triple,  the 
latter  a  quadruple  algebra,  if  we  determine  the  degree  of  the  algebra 
from  the  degree  of  multiplicity  of  the  fundamental  conception.  The 
former  is  included  in  the  latter,  since  the  subtraction  of  points  gives 

us  vectors,  and  in  this  way  Grassmann's  vector  analysis  is  included  in 
his  point  analysis.  Hamilton's  system,  in  which  the  vector  is  the 
fundamental  idea,  is  nevertheless  made  a  quadruple  algebra  by  the 
addition  of  ordinary  numerical  quantities.  For  practical  purposes  we 
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may  regard  Hamilton's  system  as  equivalent  to  Grassmann's  algebra 
of  vectors.  Such  practical  equivalence  is  of  course  consistent  with 
great  differences  of  notation,  and  of  the  point  of  view  from  which  the 
subject  is  regarded. 

Perhaps  I  should  add  a  word  in  regard  to  the  nature  of  the  problems 

which  require  a  vector  analysis,  or  the  more  general  form  of  Grass- 

mann's point  analysis.  The  distinction  of  the  problems  is  very  marked, 
and  corresponds  precisely  to  the  distinction  familiar  to  all  analysts 
between  problems  which  are  suitable  for  Cartesian  coordinates,  and 
those  which  are  suitable  for  the  use  of  tetrahedral,  or,  in  plane 

geometry,  triangular  coordinates.  Thus,  in  mechanics,  kinematics, 

astronomy,  physics,  or  crystallography,  Grassmann's  point  analysis 
will  rarely  be  wanted.  One  might  teach  these  subjects  for  years  by  a 
vector  analysis,  and  never  perhaps  feel  the  need  of  any  of  the  notions 
or  notations  which  are  peculiar  to  the  point  analysis,  precisely  as  in 
ordinary  algebra  one  might  use  the  Cartesian  coordinates  in  teaching 

these  subjects,  without  any  occasion  for  the  use  of  tetrahedral  coor- 
dinates. I  think  of  one  exception,  which,  however,  confirms  the 

rule.  The  very  important  theory  of  forces  acting  on  a  rigid  body  is 
much  better  treated  by  point  analysis  than  by  vector  analysis,  exactly 

as  in  ordinary  algebra  it  is  much  better  treated  by  tetrahedral  coor- 
dinates than  by  Cartesian, — I  mean  for  the  purpose  of  the  elegant 

development  of  general  propositions.  A  sufficient  theory  for  the 
purposes  of  numerical  calculations  can  easily  enough  be  given  by  any 
method,  and  the  most  familiar  to  the  student  is  for  such  practical 

purposes  of  course  the  best.  On  the  other  hand,  the  projective  pro- 
perties of  bodies,  the  relations  of  collinearity,  and  similar  subjects, 

seem  to  demand  the  point  analysis  for  their  adequate  treatment. 
If  I  have  said  that  the  algebra  of  vectors  is  contained  in  the  algebra 

of  points,  it  does  not  follow  that  in  a  certain  sense  the  algebra  of 
points  is  not  deducible  from  the  algebra  of  vectors.  In  mathematics, 
a  part  often  contains  the  whole.  If  we  represent  points  by  vectors 
drawn  from  a  common  origin,  and  then  develop  those  relations 
between  such  vectors  representing  points,  which  are  independent  of 

the  position  of  the  origin, — by  this  simple  process  we  may  obtain  a 
large  part,  possibly  all,  of  an  algebra  of  points.  In  this  way  the 
vector  analysis  may  be  made  to  serve  very  conveniently  for  many  of 
those  subjects  which  I  have  mentioned  as  suitable  for  point  analysis. 
The  vector  analysis,  thus  enlarged,  is  hardly  to  be  distinguished  from 
a  point  analysis,  but  the  treatment  of  the  subject  in  this  way  has 
somewhat  of  a  makeshift  character,  as  distinguished  from  the  unity 
and  simplicity  of  the  subject  when  developed  directly  from  the  idea  of 
something  situated  at  a  point. 

Of  those  subjects  which  have  no  relations  to  space,  the  elementary 
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theory  of  eliminations  and  substitutions,  including  the  theory  of 
matrices  and  determinants,  seems  to  afford  the  most  simple  application 
of  multiple  algebra.  I  have  already  indicated  what  seems  to  me  the 
appropriate  foundation  for  the  theory  of  matrices.  The  method  is 

essentially  that  which  Grassmann  has  sketched  in  his  first  Ausdehn- 
ungslehre  under  the  name  of  the  open  product  and  has  developed 
at  length  in  the  second. 

In  the  theory  of  quantics  Grassmann's  algebraic  product  finds  an 
application,  the  quantic  appearing  as  a  sum  of  algebraic  products  in 

Grassmann's  sense  of  the  term.  As  it  has  been  stated  that  these 
products  are  subject  to  the  same  laws  as  the  ordinary  products  of 
algebra,  it  may  seem  that  we  have  here  a  distinction  without  an 
important  difference.  If  the  quantics  were  to  be  subject  to  no  farther 

multiplications,  except  the  algebraic  in  Grassmann's  sense,  such  an 
objection  would  be  valid.  But  quantics  regarded  as  sums  of  algebraic 

products,  in  Grassmann's  sense,  are  multiple  quantities  and  subject  to 
a  great  variety  of  other  multiplications  than  the  algebraic,  by  which 
they  were  formed.  Of  these  the  most  important  are  doubtless  the 
combinatorial,  the  internal,  and  the  indeterminate.  The  combinatorial 

and  the  internal  may  be  applied,  not  only  to  the  quantic  as  a  whole  or 

to  the  algebraic  products  of  which  it  consists,  but  also  to  the  indi- 
vidual factors  in  each  term,  in  accordance  with  the  general  principle 

which  has  been  stated  with  respect  to  the  indeterminate  product  and 
which  will  apply  also  to  the  algebraic,  since  the  algebraic  may  be 
regarded  as  a  sum  of  indeterminate  products. 

In  the  differential  and  integral  calculus  it  is  often  advantageous 
to  regard  as  multiple  quantities  various  sets  of  variables,  especially 
the  independent  variables,  or  those  which  may  be  taken  as  such. 
It  is  often  convenient  to  represent  in  the  form  of  a  single  differential 
coefficient,  as 

dr 

dp' 

a  block  or  matrix  of  ordinary  differential  coefficients.  In  this 

expression,  p  may  be  a  multiple  quantity  representing  say  n  inde- 
pendent variables,  and  T  another  representing  perhaps  the  same 

number  of  dependent  variables.  Then  dp  represents  the  n  differ- 
entials of  the  former,  and  dr  the  n  differentials  of  the  latter.  The 

whole  expression  represents  an  operator  which  turns  dp  into  dr, 
so  that  we  may  write  identically 

7       dr  -, cir  =  -y-  dp. 

dp 

Here  we  see  a  matrix  of  n2  differential  coefficients  represented  by 
a  quotient.  This  conception  is  due  to  Grassmann,  as  well  as  the 
representation  of  the  matrix  by  a  sum  of  products,  which  we  have 
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already  considered.  It  is  to  be  observed  that  these  multiple  differ- 
ential coefficients  are  subject  to  algebraic  laws  very  similar  to  those 

which  relate  to  ordinary  differential  coefficients  when  there  is  a 
single  independent  variable,  e.g., 

da-  dr  _d<r 

dr  dp     dp' 
dp  dr  _.. 
dr  dp 

In  the  integral  calculus,  the  transformation  of  multiple  integrals 
by  change  of  variables  is  made  very  simple  and  clear  by  the  methods 
of  multiple  algebra. 

In  the  geometrical  applications  of  the  calculus,  there  is  a  certain 

class  of  theorems,  of  which  Green's  and  Poisson's  are  the  most 
notable  examples,  which  seem  to  have  been  first  noticed  in  connection 
with  certain  physical  theories,  especially  those  of  electricity  and 
magnetism,  and  which  have  only  recently  begun  to  find  their  way 
into  treatises  on  the  calculus.  These  not  only  find  simplicity  of 
expression  and  demonstration  in  the  infinitesimal  calculus  of  multiple 
quantities,  but  also  their  natural  position,  which  they  hardly  seem 
to  find  in  the  ordinary  treatises. 

But  I  do  not  so  much  desire  to  call  your  attention  to  the  diversity 
of  the  applications  of  multiple  algebra,  as  to  the  simplicity  and 
unity  of  its  principles.  The  student  of  multiple  algebra  suddenly 
finds  himself  freed  from  various  restrictions  to  which  he  has  been 

accustomed.  To  many,  doubtless,  this  liberty  seems  like  an  invi- 
tation to  license.  Here  is  a  boundless  field  in  which  caprice  may 

riot.  It  is  not  strange  if  some  look  with  distrust  for  the  result 
of  such  an  experiment.  But  the  farther  we  advance,  the  more 
evident  it  becomes  that  this  too  is  a  realm  subject  to  law.  The 
more  we  study  the  subject,  the  more  we  find  all  that  is  most  useful 
and  beautiful  attaching  itself  to  a  few  central  principles.  We 
begin  by  studying  multiple  algebras;  we  end,  I  think,  by  studying 
MULTIPLE  ALGEBRA. 



V. 

ON   THE   DETERMINATION   OF   ELLIPTIC   ORBITS   FROM 

THREE  COMPLETE   OBSERVATIONS. 

[Memoirs  of  the  National  Academy  of  Sciences,  vol.  iv.  part  n. 

pp.  79-104,  1889.] 

THE  determination  of  an  orbit  from  three  complete  observations 

by  the  solution  of  the  equations  which  represent  elliptic  motion 
presents  so  great  difficulties  in  the  general  case,  that  in  the  first 
solution  of  the  problem  we  must  generally  limit  ourselves  to  the  case 
in  which  the  intervals  between  the  observations  are  not  very  long.  In 
this  case  we  substitute  some  comparatively  simple  relations  between 
the  unknown  quantities  of  the  problem,  which  have  an  approximate 
validity  for  short  intervals,  for  the  less  manageable  relations  which 
rigorously  subsist  between  these  quantities.  A  comparison  of  the 
approximate  solution  thus  obtained  with  the  exact  laws  of  elliptic 
motion  will  always  afford  the  means  of  a  closer  approximation,  and 
by  a  repetition  of  this  process  we  may  arrive  at  any  required  degree 
of  accuracy. 

It  is  therefore  a  problem  not  without  interest — it  is,  in  fact,  the 
natural  point  of  departure  in  the  study  of  the  determination  of  orbits 

— to  express  in  a  manner  combining  as  far  as  possible  simplicity  and 
accuracy  the  relations  between  three  positions  in  an  orbit  separated 

by  small  or  moderate  intervals.  The  problem  is  not  entirely  deter- 
minate, for  we  may  lay  the  greater  stress  upon  simplicity  or  upon 

accuracy ;  we  may  seek  the  most  simple  relations  which  are  sufficiently 
accurate  to  give  us  any  approximation  to  an  orbit,  or  we  may  seek 
the  most  exact  expression  of  the  real  relations,  which  shall  not  be  too 
complex  to  be  serviceable. 

Derivation  of  the  Fundamental  Equation. 

The  following  very  simple  considerations  afford  a  vector  equation, 
not  very  complex  and  quite  amenable  to  analytical  transformation, 
which  expresses  the  relations  between  three  positions  in  an  orbit 
separated  by  small  or  moderate  intervals,  with  an  accuracy  far 
exceeding  that  of  the  approximate  relations  generally  used  in  the 
determination  of  orbits. 
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If  we  adopt  such  a  unit  of  time  that  the  acceleration  due  to  the 

sun's  action  is  unity  at  a  unit's  distance,  and  denote  the  vectors* 
drawn  from  the  sun  to  the  body  in  its  three  positions  by  9^,  9?2,  $H3, 
and  the  lengths  of  these  vectors  (the  heliocentric  distances)  by  rlt 

r2,  r3,  the  accelerations  corresponding  to  the  three  positions  will  be 
<v\  <x\  03 

represented   by   --  1,   --  1,  --  1.      Now   the   motion   between   the 
ri         rz         rs 

positions  considered  may  be  expressed  with  a  high  degree  of  accuracy 
by  an  equation  of  the  form 

having  five  vector  constants.     The  actual  motion  rigorously  satisfies 
six  conditions,  viz.,  if  we  write  T3  for  the  interval  of  time  between  the 

*  Vectors,  or  directed  quantities,  will  be  represented  in  this  paper  by  German  capitals. 
The  following  notations  will  be  used  in  connection  with  them  : 

The  sign  =  denotes  identity  in  direction  as  well  as  length. 
The  sign  +  denotes  geometrical  addition,  or  what  is  called  composition  in  mechanics. 

The  sign  -  denotes  reversal  of  direction,  or  composition  after  reversal. 
The  notation  31.53  denotes  the  product  of  the  lengths  of  the  vectors  and  the  cosine  of 

the  angle  which  they  include.  It  will  be  called  the  direct  product  of  51  and  33.  If 

ar,  y,  z  are  the  rectangular  components  of  51,  and  a;',  y',  z'  those  of  33, 

51  .  51  may  be  written  5l2  and  called  the  square  of  51. 
The  notation  51x33  will  be  used  to  denote  a  vector  of  which  the  length  is  the  product 

of  the  lengths  of  51  and  33  and  the  sine  of  the  angle  which  they  include.  Its  direction 
is  perpendicular  to  51  and  33,  and  on  that  side  on  which  a  rotation  from  51  to  33 

appears  counter-clockwise.  It  will  be  called  the  skew  product  of  51  and  33.  If  the 

rectangular  components  of  51  and  33  are  x,  y,  z,  and  x',  y',  z',  those  of  51x33  will  be 

yz'  -  zy',        zx'  -  xz',        xy'  -  yx'. 
The  notation  (5133(5)  denotes  the  volume  of  the  parallelepiped  of  which  three  edges  are 

obtained  by  laying  off  the  vectors  51,  33,  and  (5  from  any  same  point,  which  volume  is  to 
be  taken  positively  or  negatively,  according  as  the  vector  (5  falls  on  the  side  of  the  plane 

containing  51  and  33,  on  which  a  rotation  ifrom  51  to  33  appears  counter-clockwise,  or  on 

the  other  side.  If  the  rectangular  components  of  51,  33,  and  (5  are  x,  y,  z  ;  x',  y',  z'  ; 
and  x",  y",  z", 

x      y      z 

x'     y'     z' x"    y"    z 

It  follows,  from  the  above  definitions,  that  for  any  vectors  51,  33,  and  (5 

51.33=33.51,       51x33=  -33x51, 

(5133(5)  =  (33(551)  =  ((55133)  =  -  (51(533)  =  -  ((53351)  =  -  (3351(5), 
and  (5l33(5)  =  5U33x(5)=33.((5x5l)  =  (5.  (51x33)  ; 

also  that  51  .  33,  51  x  33,  are  distributive  functions  of  51  and  33,  and  (5133(5)  a  distributive 

function  of  51,  33,  and  (5,  for  example,  that  if  51  =  8  +WI, 

5l.33=2.33  +  2R.33,        51x33=2x33  +  9^x33,        (5133(5)  =  (£33(5)  +  TO<5), 
and  so  for  33  and  (5. 

The  notation  (5133(5)  is  identical  with  that  of  Lagrange  in  the  Mtcanique  Analytique, 

except  that  there  its  use  is  limited  to  unit  vectors.  The  signification  of  51x33  is  closely 
related  to,  but  not  identical  with,  that  of  the  notation  [r-^r^  commonly  used  to  denote 
the  double  area  of  a  triangle  determined  by  two  positions  in  an  orbit. 

(5133(5)  = 
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first  and  second  positions,  and  rt  for  that  between  the  second  and 
third,  and  set  t  =  0  for  the  second  position, 

for  t  =  —  TO  , 

for  £  =  0, 

for  ̂   =  TX, 

dt2'       TV*' 

dt2  ~       r3' 

n 

We  may  therefore  write  with  a  high  degree  of  approximation 

From  these  six  equations  the  five  constants  51,  33, 
eliminated,  leaving  a  single  equation  of  the  form 

where 

[,  $),  (S  may  be 

=  0,  (1) 

This  we  shall  call  our  fundamental  equation.     In  order  to  discuss 
its  geometrical  signification,  let  us  set 

7?  \  /        7?  \  /       J5  \ 
jLf-t  \  /   -i  "^"^9  A  A     I   "1  "^"^^  \  /rt\ 

^y>    3  / '  2  \  /y»    3  /  O\  /ya    O  / 

so  that  the  equation  will  read 

This  expresses  that  the  vector  7i2SR2  is  the  diagonal  of  a  parallelogram 
of  which  7i19?1  and  %$R3  are  sides.  If  we  multiply  by  $R3  and  by  9^, 
in  skew  multiplication,  we  get 

whence  — %   ^  =  — 1   ?  =  - 
/io  /vj  /yi 
/ti  /to  »*'« 
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Our  equation  may  therefore  be  regarded  as  signifying  that  the  three 
vectors  9^,  9?2,  ̂ 3  ̂ e  ̂ n  one  plane>  an(l  that  the  three  triangles 
determined  each  by  a  pair  of  these  vectors,  and  usually  denoted  by 

[^2^3]'  [rirsl'  [rirz\>  are  proportional  to 

Since  this  vector  equation  is  equivalent  to  three  ordinary  equations, 
it  is  evidently  sufficient  to  determine  the  three  positions  of  the  body 
in  connection  with  the  conditions  that  these  positions  must  lie  upon 
the  lines  of  sight  of  three  observations.  To  give  analytical  expression 
to  these  conditions,  we  may  write  (£lf  (52,  (53  for  the  vectors  drawn 
from  the  sun  to  the  three  positions  of  the  earth  (or,  more  exactly,  of 
the  observatories  where  the  observations  have  been  made),  8lf  32>  83 
for  unit  vectors  drawn  in  the  directions  of  the  body,  as  observed, 

and  plf  p2,  p3  for  the  three  distances  of  the  body  from  the  places  of 
observation.  We  have  then 

By  substitution  of  these  values  our  fundamental  equation  becomes 

)=0,  (7) 

where  plt  p2,  /o3,  rlt  r2,  rs  (the  geocentric  and  heliocentric  distances) 
are  the  only  unknown  quantities.  From  equations  (6)  we  also  get, 
by  squaring  both  members  in  each, 

*        s2 

by  which  the  values  of  rx  ,  r2  ,  •  r3  may  be  derived  from  those  of 
Pi>  P2>  /°3>  or  V^ce  versd-  Equations  (7)  and  (8),  which  are  equivalent 
to  six  ordinary  equations,  are  sufficient  to  determine  the  six  quantities 

ri»  rz>  rz>  Pi>  Pz>  P*>  or>  ̂   we  8UPP°se  the  values  of  rx,  r2,  rB  in  terms 
of  plt  p2,  ps  to  be  substituted  in  equation  (7),  we  have  a  single  vector 
equation,  from  which  we  may  determine  the  three  geocentric  distances 

Pi>  Pz>  Pz- 
It  remains  to  be  shown,  first,  how  the  numerical  solution  of  the 

equation  may  be  performed,  and  secondly,  how  such  an  approximate 
solution  of  the  actual  problem  may  furnish  the  basis  of  a  closer 
approximation. 

Solution  of  the  Fundamental  Equation. 

The  relations  with  which  we  have  to  do  will  be  rendered  a  little 

more  simple  if  instead  of  each  geocentric  distance  we  introduce  the 
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distance  of  the  body  from  the  foot  of  the  perpendicular  from  the  sun 
upon  the  line  of  sight.     If  we  set 

equations  (8)  become 

Let  us  also  set,  for  brevity, 

Then @ 

2, 

(12) 

may   be    regarded   as    functions    respectively   of 

7  j 

dql 
Pi>  /°2>  /°3>  therefore  of  ft,  <?2,  ft,  arid  if  we  set 

and 

we  shall  have 

To  determine  the  value  of  ©',  we  get  by  differentiation 

©'=^ 

But  by  (11) 

Therefore 

(13) 

(14) 

(15) 

(16) 

(17) 

Ta 

3  '
 

(18) 

Now  if  any  values  of  qlt  q2,  q3  (either  assumed  or  obtained  by  a 
previous  approximation)  give  a  certain  residual  @  (which  would  be 
zero  if  the  values  of  qlt  q2,  qs  satisfied  the  fundamental  equation),  and 
we  wish  to  find  the  corrections  Aq1}  Ag2,  Ag3,  which  must  be  added 
to  qlf  q2,  q3  to  reduce  the  residual  to  zero,  we  may  apply  equation  (15) 
to  these  finite  differences,  and  will  have  approximately,  when  these 
differences  are  not  very  large, 

j  +  ©"Aft + ©'"Aft.  (19) 
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This  gives 

(©©'©") 

- 

From  the  corrected  values  of  qlt  ft,  ft  we  may  calculate  a  new  residual  ®, 
and  from  that  determine  another  correction  for  each  of  the  quantities 

ft>  ?2>  ?8' 

It  will  sometimes  be  worth  while  to  use  formulae  a  little  less  simple 
for  the  sake  of  a  more  rapid  approximation.  Instead  of  equation  (19) 
we  may  write,  with  a  higher  degree  of  accuracy, 

-  ®  =  ®'Ag,  +  @"A?2  +  @'"A?3  +  JZX  A?1)2  +  i2"(Ag2)»  +  jr"<  Aft?,  (21  ) 
where 

dq 

—  Tlv  -3 

(22) 

It  is  evident  that  £"  is  generally  many  times  greater  than  £'  or  X//x, 
the  factor  B2,  in  the  case  of  equal  intervals,  being  exactly  ten  times  as 
great  as  AlBl  or  A3B3.  This  shows,  in  the  first  place,  that  the  accurate 

determination  of  Ag2  is  of  the  most  importance  for  the  subsequent 
approximations.  It  also  shows  that  we  may  attain  nearly  the  same 
accuracy  in  writing 

+  ©"A 

+  J£"A 

(23) 

We  may,  however,  often  do  a  little  better  than  this  without  using 

a  more  complicated  equation.  For  £'+£"'  may  be  estimated  very 
roughly  as  equal  to  -J-X".  Whenever,  therefore,  Aft  and  Aft  are  about 
as  large  as  Aft,  as  is  often  the  case,  it  may  be  a  little  better  to  use  the 
coefficient  ̂   instead  of  £  in  the  last  term. 

For  Aft,  then,  we  have  the  equation 

-  C©©'"©')  =  (©'©"©"O  Aft  +  A(£//@'//<5/)  Aft2.  (24) 

(5E"©'"©7)  is  easily  computed  from  the  formula 

1  /         n  02 '©')  =  —  ( 1  —  5^, 

^2^  ̂ 22 

.B. (25) 

which  may  be  derived  from  equations  (18)  and  (22). 

*  These  equations  are  obtained  by  taking  the  direct  products  of  both  members  of  the 
preceding  equation  with  @"  x  (§'",  @"'  x  ©',  and  @'  x  @",  respectively.  See  footnote 
on  page  119. 
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The  quadratic  equation  (24)  gives  two  values  of  the  correction  to  be 
applied  to  the  position  of  the  body.  When  they  are  not  too  large, 
they  will  belong  to  two  different  solutions  of  the  problem,  generally 
to  the  two  least  removed  from  the  values  assumed.  But  a  very  large 
value  of  Ag2  must  not  be  regarded  as  affording  any  trustworthy 
indication  of  a  solution  of  the  problem.  In  the  majority  of  cases  we 
only  care  for  one  of  the  roots  of  the  equation,  which  is  distinguished 
by  being  very  small,  and  which  will  be  most  easily  calculated  by  a 
small  correction  to  the  value  which  we  get  by  neglecting  the  quadratic 

term.* 
When  a  comet  is  somewhat  near  the  earth  we  may  make  use  of  the 

fact  that  the  earth's  orbit  is  one  solution  of  the  problem,  i.e.,  that  —  p2 
is  one  value  of  Ag2,  to  save  the  trifling  labor  of  computing  the  value 

of  (St"®'"®').  For  it  is  evident  from  the  theory  of  equations  that 
if  —  p2  and  z  are  the  two  roots, 

~ 

Eliminating  (£"®'"®'),  we  have 

(*- 

whenc
e 

(©©'"©') Now  ——,-,„—  tL  is  the  value  of  Ag2,  which  we  obtain  if  we  neglect 

the  quadratic  term  in  equation  (24).     If  we  call  this  value  [A<?2], 
have  for  the  more  exact  value  t 

The  quantities  Agt  and  Ag3  might  be  calculated  by  the  equations 

(27) \ 
J 

*  In  the  case  of  Swift's  comet  (V,  1880),  the  writer  found  by  the  quadratic  equation 
-  '247  and  —  *116  for  corrections  of  the  assumed  geocentric  distance  *250.  The  first  of 
these  numbers  gives  an  approximation  to  the  position  of  the  earth  ;  the  second  to  that 

of  the  comet,  viz.,  the  geocentric  distance  '134  instead  of  the  true  value  "1333.  The 
coefficient  -&-  was  used  in  the  quadratic  equation ;  with  the  coefficient  £  the  approxi- 

mations would  not  be  quite  so  good.  The  value  of  the  correction  obtained  by  neglecting 

the  quadratic  term  was  '079,  which  indicates  that  the  approximations  (in  this  very 
critical  case)  would  be  quite  tedious  without  the  use  of  the  quadratic  term. 

t  In  the  case  mentioned  in  the  preceding  footnote,  from  [Ag2]  =  -  '079  and  p.2  =  "25, 

we  get  Ag2=  -  '1155,  which  is  sensibly  the  same  value  as  that  obtained  by  calculating 
the  quadratic  term. 
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But  a  little  examination  will  show  that  the  coefficients  of  Ag22  in 
these  equations  will  not  generally  have  very  different  values  from  the 
coefficient  of  the  same  quantity  in  equation  (24).  We  may  therefore 
write  with  sufficient  accuracy 

A?i  =  [Aft]  +  Ag2--[A?2],    Ag8  =  [Ags]  +  A?2-[Ag2],         (28) 

where  [A^J,  [A(?2],  [A</3]  denote  the  values  obtained  from  equations  (20). 
In  making  successive  corrections  of  the  distances  qlt  q2,  q3,  it  will 

not  be  necessary  to  recalculate  the  values  of  @',  @",  @'",  when  these 
have  been  calculated  from  fairly  good  values  of  qlt  q2,  qs.  But  when, 
as  is  generally  the  case,  the  first  assumption  is  only  a  rude  guess,  the 

values  of  @',  @",  @'"  should  be  recalculated  after  one  or  two  corrections 

of  qv  q2,  qs.  To  get  the  best  results  when  we  do  not  recalculate  ©', 
@",  @'",  we  may  proceed  as  follows  :  Let  @',  @",  @"'  denote  the  values 
which  have  been  calculated;  Dqlt  Dq2,  Dg3,  respectively,  the  sum  of 
the  corrections  of  each  of  the  quantities  qly  q2,  qs,  which  have  been 

made  since  the  calculation  of  @',  @",  @'";  ©  the  residual  after  all  the 
corrections  of  qlt  q2,  <?3,  which  have  been  made;  and  Ag1?  Ag2,  Aqs 
the  remaining  corrections  which  we  are  seeking.  We  have,  then, 
very  nearly 
''""  (29) 

The  same  considerations  which  we  applied  to  equation  (21)  enable 
us  to  simplify  this  equation  also,  and  to  write  with  a  fair  degree  of 
accuracy 

(30) 
(31) 

where 

r.  ,     (©©"©'")  (©©'"©o  FA  ,     (©©'©-) ^ol"  ~      ''^      L^(/2J-          '"'"'    L^^/sJ-  '"''' 

Correction  of  the  Fundamental  Equation. 

When  we  have  thus  determined,  by  the  numerical  solution  of  our 
fundamental  equation,  approximate  values  of  the  three  positions  of 
the  body,  it  will  always  be  possible  to  apply  a  small  numerical 
correction  to  the  equation,  so  as  to  make  it  agree  exactly  with  the 
laws  of  elliptic  motion  in  a  fictitious  case  differing  but  little  from 
the  actual.  After  such  a  correction  the  equation  will  evidently  apply 
to  the  actual  case  with  a  much  higher  degree  of  approximation. 

There  is  room  for  great  diversity  in  the  application  of  this  principle. 
The  method  which  appears  to  the  writer  the  most  simple  and  direct  is 
the  following,  in  which  the  correction  of  the  intervals  for  aberration 
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is  combined  with  the  correction  required  by  the  approximate  nature  of 

the  equation.* 
The  solution  of  the  fundamental  equation  gives  us  three  points, 

which  must  necessarily  lie  in  one  plane  with  the  sun,  and  in  the  lines 
of  sight  of  the  several  observations.  Through  these  points  we  may 
pass  an  ellipse,  and  calculate  the  intervals  of  time  required  by  the 
exact  laws  of  elliptic  motion  for  the  passage  of  the  body  between 
them.  If  these  calculated  intervals  should  be  identical  with  the  given 
intervals,  corrected  for  aberration,  we  would  evidently  have  the  true 

solution  of  the  problem.  But  suppose,  to  fix  our  ideas,  that  the 
calculated  intervals  are  a  little  too  long.  It  is  evident  that  if  we 
repeat  our  calculations,  using  in  our  fundamental  equation  intervals 
shortened  in  the  same  ratio  as  the  calculated  intervals  have  come  out 

too  long,  the  intervals  calculated  from  the  second  solution  of  the 
fundamental  equation  must  agree  almost  exactly  with  the  desired 
values.  If  necessary,  this  process  may  be  repeated,  and  thus  any 
required  degree  of  accuracy  may  be  obtained,  whenever  the  solution  of 
the  uncorrected  equation  gives  an  approximation  to  the  true  positions. 
For  this  it  is  necessary  that  the  intervals  should  not  be  too  great.  It 
appears,  however,  from  the  results  of  the  example  of  Ceres,  given 

hereafter,  in  which  the  heliocentric  motion  exceeds  62°  but  the 
calculated  values  of  the  intervals  of  time  differ  from  the  given  values 
by  little  more  than  one  part  in  two  thousand,  that  we  have  here  not 
approached  the  limit  of  the  application  of  our  formula. 

In  the  usual  terminology  of  the  subject,  the  fundamental  equation 
with  intervals  uncorrected  for  aberration  represents  the  first  hypothesis; 
the  same  equation  with  the  intervals  affected  by  certain  numerical 
coefficients  (differing  little  from  unity)  represents  the  second  hypothesis; 
the  third  hypothesis,  should  such  be  necessary,  is  represented  by  a 
similar  equation  with  corrected  coefficients,  etc. 

In  the  process  indicated  there  are  certain  economies  of  labor  which 
should  not  be  left  unmentioned,  and  certain  precautions  to  be  observed 
in  order  that  the  neglected  figures  in  our  computations  may  not 
unduly  influence  the  result. 

It  is  evident,  in  the  first  place,  that  for  the  correction  of  our  funda- 
mental equation  we  need  not  trouble  ourselves  with  the  position  of  the 

orbit  in  the  solar  system.  The  intervals  of  time,  which  determine  this 
correction,  depend  only  on  the  three  heliocentric  distances  rlt  rz,  rs  and 

the  two  heliocentric  angles,  which  will  be  represented  by  v2  —  vl  and 

v8  —  vz,  if  we  write  vlt  v2,  v3  for  the  true  anomalies.  These  angles 
(vz~~vi  and  v8  — Vg)  niay  be  determined  from  rlt  r2,  rs  and  nv  n2,  nB, 

*  When  an  approximate  orbit  is  known  in  advance,  we  may  correct  the  fundamental 
equation  at  once.     The  formulae  will  be  given  in  the  Summary,  §  xii. 
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and  therefore  from  rlt  r2,  r3  and  the  given  intervals.     For  our  funda- 
mental equation,  which  may  be  written 

indicates  that  we  may  form  a  triangle  in  which  the  lengths  of  the 
sides  shall  be  n^,  n2rz,  and  n3r3  (let  us  say  for  brevity,  81,  82,  s3),  and 
the  directions  of  the  sides  parallel  with  the  three  heliocentric  directions 

of  the  body.  The  angles  opposite  ̂   and  s3  will  be  respectively  v9  —  v2 
and  v2  —  vv  We  have,  therefore,  by  a  well-known  formula, 

As  soon,  therefore,  as  the  solution  of  our  fundamental  equation 
has  given  a  sufficient  approximation  to  the  values  of  rlt  r2,  rs  (say 

five-  or  six-figure  values,  if  our  final  result  is  to  be  as  exact  as 
seven-figure  logarithms  can  make  it),  we  calculate  nlt  n2,  n3  with 
seven-figure  logarithms  by  equations  (2),  and  the  heliocentric  angles 
by  equations  (34). 

The  semi-parameter  corresponding  to  these  values  of  the  heliocentric 
distances  and  angles  is  given  by  the  equation 

i*s  (35) 

The  expression  n^  —  n2  -f  nz  ,  which  occurs  in  the  value  of  the  semi- 
parameter,  and  the  expression  n^  —  n2r2  +  nzr3,  or  s1  —  s2-fs3,  which 
occurs  both  in  the  value  of  the  semi-parameter  and  in  the  formulae  for 
determining  the  heliocentric  angles,  represent  small  quantities  of  the 
second  order  (if  we  call  the  heliocentric  angles  small  quantities  of  the 

first  order),  and  cannot  be  very  accurately  determined  from  approxi- 
mate numerical  values  of  their  separate  terms.  The  first  of  these 

quantities  may,  however,  be  determined  accurately  by  the  formula 

+  ~+3-  (36) 

With  respect  to  the  quantity  sx—  s2+s3,  a  little  consideration  will  show 
that  if  we  are  careful  to  use  the  same  value  wherever  the  expression 
occurs,  both  in  the  formulae  for  the  heliocentric  angles  and  for  the 

semi-parameter,  the  inaccuracy  of  the  determination  of  this  value  from 
the  cause  mentioned  will  be  of  no  consequence  in  the  process  of 
correcting  the  fundamental  equation.  For  although  the  logarithm 

of  sl  —  s2+s3  as  calculated  by  seven-figure  logarithms  from  rlt  r2,  r3 
may  be  accurate  only  to  four  or  five  figures,  we  may  regard  it  as 
absolutely  correct  if  we  make  a  very  small  change  in  the  value  of  one 
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of  the  heliocentric  distances  (say  r2).  We  need  not  trouble  ourselves 
farther  about  this  change,  for  it  will  be  of  a  magnitude  which  we 

neglect  in  computations  with  seven-figure  tables.  That  the  helio- 
centric angles  thus  determined  may  not  agree  as  closely  as  they  might 

with  the  positions  on  the  lines  of  sight  determined  by  the  first  solution 
of  the  fundamental  equation  is  of  no  especial  consequence  in  the 
correction  of  the  fundamental  equation,  which  only  requires  the  exact 
fulfilment  of  two  conditions,  viz.,  that  our  values  of  the  heliocentric 

distances  and  angles  shall  have  the  relations  required  by  the  funda- 
mental equation  to  the  given  intervals  of  time,  and  that  they  shall 

have  the  relations  required  by  the  exact  laws  of  elliptic  motion  to 
the  calculated  intervals  of  time.  The  third  condition,  that  none  of 

these  values  shall  differ  too  widely  from  the  actual  values,  is  of  a 
looser  character. 

After  the  determination  of  the  heliocentric  angles  and  the  semi- 
parameter,  the  eccentricity  and  the  true  anomalies  of  the  three 
positions  may  next  be  determined,  and  from  these  the  intervals  of 
time.  These  processes  require  no  especial  notice.  The  appropriate 
formulae  will  be  given  in  the  Summary  of  Formulae. 

Determination  of  the  Orbit  from  the  Three  Positions  and  the 
Intervals  of  Time. 

The  values  of  the  semi-parameter  and  the  heliocentric  angles  as 

given  in  the  preceding  paragraphs  depend  upon  the  quantity  sl  —  s2+s3) 
the  numerical  determination  of  which  from  slt  sz,  and  s3  is  critical  to 
the  second  degree  when  the  heliocentric  angles  are  small.  This  was 
of  no  consequence  in  the  process  which  we  have  called  the  correction 
of  the  fundamental  equation.  But  for  the  actual  determination  of  the 

orbit  from  the  positions  given  by  the  corrected  equation — or  by  the 
uncorrected  equation,  when  we  judge  that  to  be  sufficient — a  more 
accurate  determination  of  this  quantity  will  generally  be  necessary. 
This  may  be  obtained  in  different  ways,  of  which  the  following  is 
perhaps  the  most  simple.  Let  us  set 

4  o  1  *  \         / 

and  s4  for  the  length  of  the  vector  @4,  obtained  by  taking  the  square 
root  of  the  sum  of  the  squares  of  the  components  of  the  vector.  It  is 

evident  that  sz  is  the  longer  and  s4  the  shorter  diagonal  of  a  parallelo- 
gram of  which  the  sides  are  s1  and  s3.  The  area  of  the  triangle  having 

the  sides  slt  s2,  s3  is  therefore  equal  to  that  of  the  triangle  having  the 

sides  s.p  s3,  s4,  each  being  one-half  of  the  parallelogram.  This  gives 
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_ 

The  numerical  determination  of   this  value  of  Sj  —  82+ss  is  critical 
only  to  the  first  degree. 

The  eccentricity  and  the  true  anomalies  may  be  determined  in  the 
same  way  as  in  the  correction  of  the  formula.  The  position  of 
the  orbit  in  space  may  be  derived  from  the  following  considerations. 

The  vector  —  @2  is  directed  from  the  sun  toward  the  second  position 
of  the  body;  the  vector  @4  from  the  first  to  the  third  position. 
If  we  set 

©5  =  @4-^@2.  (40) 

the  vector  <55  will  be  in  the  plane  of  the  orbit,  perpendicular  to  — 
and  on  the  side  t 

the  length  of  @6, 
and  on  the  side  toward  which  anomalies  increase.     If  we  write  s5  for 

    and 

will  be  unit  vectors.  Let  3  and  3'  be  unit  vectors  determining  the 
position  of  the  orbit,  3  being  drawn  from  the  sun  toward  the  peri- 

helion, and  3'  at  right  angles  to  3,  in  the  plane  of  the  orbit,  and  on 
the  side  toward  which  anomalies  increase.  Then 

3=  --cos^—2- —  sin^2— ̂ ,  (41) 
SZ  S5 

3'=  -sinu,— 2+cos%?k  (42) S2  85 

The  time  of  perihelion  passage  (T)  may  be  determined  from  any 
one  of  the  observations  by  the  equation 

k 
—(t  —  T)  =  E—esmE,  (43) 

a* 

the  eccentric  anomaly  E  being  calculated  from  the  true  anomaly  v. 

The  interval  t  —  T  in  this  equation  is  to  be  measured  in  days.  A 
better  value  of  T  may  be  found  by  averaging  the  three  values  given 
by  the  separate  observations,  with  such  weights  as  the  circumstances 
may  suggest.  But  any  considerable  differences  in  the  three  values 
of  T  would  indicate  the  necessity  of  a  second  correction  of  the 
formula,  and  furnish  the  basis  for  it. 

For  the  calculation  of  an  ephemeris  we  have 

SR=  -ae3 +003^03+ sin  .#63'  (44) 
in  connection  with  the  preceding  equation. 

Sometimes  it  may  be  worth  while  to  make  the  calculations  for  the 

correction  of  the  formula  in  the  slightly  longer  form  indicated  for 
G.  H.  i 
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the  determination  of  the  orbit.  This  will  be  the  case  when  we  wish 

simultaneously  to  correct  the  formula  for  its  theoretical  imperfection, 
and  to  correct  the  observations  by  comparison  with  others  not  too 

remote.  The  rough  approximation  to  the  orbit  given  by  the  un- 
corrected  formula  may  be  sufficient  for  this  purpose.  In  fact,  for 
observations  separated  by  very  small  intervals,  the  imperfection  of 
the  uncorrected  formula  will  be  likely  to  affect  the  orbit  less  than 
the  errors  of  the  observations. 

The  computer  may  prefer  to  determine  the  orbit  from  the  first  and 
third  heliocentric  positions  with  their  times.  This  process,  which  has 
certain  advantages,  is  perhaps  a  little  longer  than  that  here  given,  and 
does  not  lend  itself  quite  so  readily  to  successive  improvements  of  the 
hypothesis.  When  it  is  desired  to  derive  an  improved  hypothesis 
from  an  orbit  thus  determined,  the  formulae  in  §  XII  of  the  summary 

may  be  used. 

SUMMARY  OF  FORMULAE 

WITH  DIRECTIONS  FOR  USE. 

(For  the  case  in  which  an  approximate  orbit  is  known  in  advance,  see  XII.  } 

I. 

Preliminary  computations  relating  to  the  intervals  of  time. 

tl}  t2,  tz  =  times  of  the  observations  in  days. 

log  &  =  8-2355814  (after  Gauss) 

A      _32  A      _ ~  -°-~ 

7?    -1  13          3  fl    _113          3  „    _1  13 
12  12  12 

For  control  :  A^  +  B^+A  3B3  =  Jr^. 

II. 

Preliminary  computations  relating  to  the  first  observation. 

Xlt   Fp  Zl  (components  of  ̂ )  =  the  heliocentric  coordinates  of  the 
earth,  increased  by  the  geocentric 
coordinates  of  the  observatory. 

£i»  9i>  £1  (components  of  3i)  =  the  direction-cosines  of  the  observed 

position,  corrected  for  the  aber- 
ration of  the  fixed  stars. 
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Preliminary  computations  relating  to  the  second  and  third 
observations. 

The  formulae  are  entirely  analogous  to  those  relating  to  the  first 
observation,  the  quantities  being  distinguished  by  the  proper  suffixes. 

III. 

Equations  of  the  first  hypothesis. 

When  the  preceding  quantities  have  been  computed,  their  numerical 
values  (or  their  logarithms,  when  more  convenient  for  computation,) 
are  to  be  substituted  in  the  following  equations : 

Components  of  @i 

nil 

For  control : 

For  control 

ry,  __ ~ 

Components  of  @' 

Components  of 

y2=  _2- 

Components  of  @" 

IIL 
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For  control :  ss2  =  as2 + /332  +  y32  =  -43 

Components  of  ©'" 

The  computer  is  now  to  assume  any  reasonable  values  either  of  the 
geocentric  distances,  plt  /o2,  /o3,  or  of  the  heliocentric  distances,  rlt  r2, 
r3  (the  former  in  the  case  of  a  comet,  the  latter  in  the  case  of  an 
asteroid),  and  from  these  assumed  values  to  compute  the  rest  of  the 
following  quantities : 

By  equations  IIIj,  III'.        By  equations  III2,  III".         By  equations  III3,  III"'. 

kg  A! 

Iogr2 

log  E2 

Iogr3 

log  R3 

lno*n  4 

logF 

logP" 

10s  \L1 

logF" 

& 

«2 

«3 

Yi y2 y3 a 

a"
 

a'"
 

/ 

IV. 

Calculations  relating  to  differential  coefficients. 

Components  of  @"  x  @'"         Components  of  @"'  x  @'         Components  of  @'  x  @" 

n    ///  //     ///  i  ///    /  ///     t 

i  =  V  a    —  ay  02  =  y   a  —  ay 

Cl  =  a"^"  -  ̂ V"  C2  =  a'"P  -  P"a' 

t     // 

—  ay 

These  computations  are  controlled  by  the  agreement  of  the  three 
values  of  G. 

The  following  are  not  necessary  except  when  the  corrections  to  be 
made  are  large  : 



DETERMINATION  OF  ELLIPTIC  ORBITS.  133 

V. 

Corrections  of  the  geocentric  distances. 

Components  of  @. 

(This   equation   will    generally   be   most    easily  solved   by   repeated 
substitutions.) 

2        A<?3  =  C3  - 

VI. 

Successive  corrections. 

A<?2,  Ag3  are  to  be  added  as  corrections  to  ql9  q2,  qs.  With  the 
new  values  thus  obtained  the  computation  by  equations  III^  III2,  IIIS 
are  to  be  recommenced.  Two  courses  are  now  open  : 

(a)  The  work  may  be  carried  on  exactly  as  before  to  the  deter- 
mination of  new  corrections  for  qlt  q2,  qs. 

(b)  The  computations  by  equations  III',  III",  III'",  and  IV  may  be 
omitted,  and  the  old  values  of  al}  blt  cl}  az,  etc.,  G,  and  L  may  be 
used  with  the  new  residuals  a,  /3,  y  to  get  new  corrections  for  qlt  qz, 
q%  by  the  equations 

where  Dq2  denotes  the  former  correction  of  q2.  (More  generally,  at 
any  stage  of  the  work,  Dq2  will  represent  the  sum  of  all  the  corrections 
of  qz  which  have  been  made  since  the  last  computation  of  alt  bl}  etc.) 

So  far  as  any  general  rule  can  be  given,  it  is  advised  to  recompute 
av  615  etc.,  and  G  once,  perhaps  after  the  second  corrections  of  qlt  q2, 
<73,  unless  the  assumed  values  represent  a  fair  approximation.  Whether 
L  is  also  to  be  recomputed,  depends  on  its  magnitude,  and  on  that  of 
the  correction  of  <?2J  which  remains  to  be  made.  In  the  later  stages 
of  the  work,  when  the  corrections  are  small,  the  terms  containing  L 
may  be  neglected  altogether. 

The  corrections  of  qlt  q2,  q3  should  be  repeated  until  the  equations 

a  =  0         /3  =  0         y  =  0 
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are  nearly  satisfied.  Approximate  values  of  rx,  r2,  r3  may  suffice  for 

the  following  computations,  which,  however,  must  be  made  with  the 

greatest  exactness. 

VII. 

Test  of  the  first  hypothesis. 

logrj,    Iogr2,    Iogr3    (approximate    values    from    the    preceding 
computations). 

AT_  A  7?  r-3  i  R  r-3  i   A  o  r-s «i.T   —  -i  i  i -*-'i  *  i      ̂ T  -*-'2    2        «^  "*^^ 3"^*^ 3    3 

S  """  S      S  "*"•"  O      8  ~~*  0  . 

j  , 

£  , 

The  value  of  s  —  s2  may  be  very  small,  and  its  logarithm  in  con- 
sequence ill  determined.  This  will  do  no  harm  if  the  computer  is 

careful  to  use  the  same  value  —  computed,  of  course,  as  carefully  as 
possible  —  wherever  the  expression  occurs  in  the  following  formulae  : 

R / V 
/y\  — p N 

For  adjustment  of  values : 

esin 

tan  K'i;2"~'?;i)==: 

£_£ 

r/y» 

1  /   o 

R 

—  s, 

For  control : 

r,     rv, 

^-     -r-  
 

2  COS  1(^8  ~"Vl 

e  cos  ̂ 2  =  - — 

"2 

e  = 

l-e a P 

tan  %El  =  €  tan  |v1         tan  J^  =  e  tan  Jv2         tan  ̂ E3  =  e  tan 

Tl  calc.  = 

T3  calc.  = 
sn      —  ec   sn 
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VIII. 

For  the  second  hypothesis. 

-L  =  •0057613A;(/o2  —  />3)        (aberration-constant  after  Struve.) 

Pz)        log  (-0057613A;)  =  5-99610 

A  log  TI  =  log  TI  -  log  (TI  c«ic.  - 

T    = 

calc. 

A  log  (TlT3)  =  A  log  TI  +  A  log  r3 

A  log  —  =  A  log  T!  —  A  log  r3 

T3 

A  log  4,  =  -4,  A  log 

A  log  Bl  =  A  log  (TlT8)  -  ̂-Wi?8-  A  log  -1 

These  corrections  are  to  be  added  to  the  logarithms  of  AI}  A3, 

Bv  B2,  B3,  in  equations  III1}  III2,  III3,  and  the  corrected  equations 
used  to  correct  the  values  of  qlt  q2,  q%,  until  the  residuals  a,  /3,  y 
vanish.  The  new  values  of  Aly  Az  must  satisfy  the  relation 

Al-\-A3  =  l)  and  the  corrections  Alog-^j,  AlogJ.3  must  be  adjusted, 
if  necessary,  for  this  end. 

Third  hypothesis. 

A  second  correction  of  equations  III1,  III2,  III3  may  be  obtained  in 
the  same  manner  as  the  first,  but  this  will  rarely  be  necessary. 

IX. 

Determination  of  the  ellipse. 

It  is  supposed  that  the  values  of 

72' 

73 

** 

have  been  computed  by  equations  III^  III2,  III3  with  the  greatest 
exactness,  so  as  to  make  the  residuals  a,  /8,  y  vanish,  and  that  the 
two  formulae  for  each  of  the  quantities  «1,  s2,  s3  give  sensibly  the  same 
value. 
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Components  of  @4  Components  of  @5 

For  control  only : 

75  =  74 

_/Q       a4«2  +  /3A  +  74720 ~  P4  ""  Q  2  P2 

S2 

72 

R 

S  — 

tan 

tan 
RS 

The  computer  should  be  careful  to  use  the  corrected  values  of  Av 
(See  VIII.)     Trifling  errors  in  the  angles  should  be  distributed. 

For  control : 

p     p 

r/v» 

t  *  o 

ecos 

tan 

i      «  —    ,  x  -  v 2oosJ(t;8—  % 

e  = 

l-e 

cos  vz  =  —  —  1 

^2 

p 

a=~- 
Direction-cosines  of  semi-major  axis. 

,  _        COS  V2  Sin  V2 
(j  —   ""•  ~  da  ~~"  ~  Otc 

a  •&  o 

cos  v9  0      sin  %  ,, .   « /•<  .  « /•< 
9       P2~     -T       P5 &2  65 

cos  V2         sin  i>2 
,   y   _  y 

o  »  «  o  »  O 
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Direction-cosines  of  semi-minor  axis. 

\= 

~    , 

p2H 

coav9 

—  -75 

2  S6 

Components  of  the  semi-axes. 

ax  =  al  a  =  am  az  =  an 

X. 

Time  of  perihelion  passage. 
Corrections  for  aberration. 

tan  Jj^  =  e  tan  J^  6^  =  -  '0057613^ 
tan  %E2  =  e  tan  Jv2  Stz  =  -  '0057613/02 
tan  \ES  =  e  tan  Jv,  ^3  =  -  '0057613/03 

log  '0057613  =  7-76052 

e  sn 

The  threefold  determination  of  T  affords  a  control  of  the  exactness 

of  the  solution  of  the  problem.  If  the  discrepancies  in  the  values  of  T 
are  such  as  to  require  another  correction  of  the  formulae  (a  third 

hypothesis),  this  may  be  based  on  the  equations 

3  —    2  2          1 

where  T(l))  T(2),  T(3)  denote  respectively  the  values  obtained  from  the 
first,  second,  and  third  observations,  and  M  the  modulus  of  common 

logarithms. 
XL 

For  an  ephemeris. 

a 
Heliocentric  coordinates.     (Components  of  $R.) 

x  =  —  eax  +  ax  cos  E+bx  sin  E 

y  =  —  eay+  ay  cos  E+  by  sin  ̂  
z=  —eaz+azcoaE+bz  smE 

These  equations  are  completely  controlled  by  the  agreement  of  the 
computed  and  observed  positions  and  the  following  relations  between 
the  constants  : 

^  A  +  a  A  +  a*6,  =  0     aj+  a*  +  a?  =  a,2     bx*  +  V  +  bf  =  (1  -  e2)a2 
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XII. 

When  an  approximate  orbit  is  known  in  advance,  we  may  use  it  to 
improve  our  fundamental  equation.  The  following  appears  to  be  the 
most  simple  method : 

Find  the  excentric  anomalies  EI}  E2)  E3)  and  the  heliocentric 
distances  r1?  r2,  r3,  which  belong  in  the  approximate  orbit  to  the  times 
of  observation  corrected  for  aberration. 

Calculate  Slt  B3>  as  in  §1,  using  these  corrected  times. 
Determine  Alt  A3  by  the  equation 

sin  (  E3  —  E2) sin  E2    sin  (E2  —  E^)  — 

in  connection  with  the  relation  Al-}-A3  = 
Determine  B2  so  as  to  make 

sn 

r 

'  1 

' 

4  sin  J  (E2  -  EJ  sin  |  (E3  -  E2)  sin  \  (E3  -  EJ 

equal  to  either  member  of  the  last  equation. 
It  is  not  necessary  that  the  times  for  which  Elt  E2,  E3)  TI}  r2,  r3, 

are  calculated  should  precisely  agree  with  the  times  of  observation 

corrected  for  aberration.  Let  the  former  be  represented  by  £/,  £2',  t3, 
and  the  latter  by  £/',  £2",  ts"',  and  let 

We  may  find 
A  log  r3  =  log(  tj'  -  C)  ~  log(  ̂   -  O 

53,  ̂L1}  -43,  j52,  as  above,  using  £/,  ̂2',  ts',  and  then  use 
AlogTj,  AlogT3  to  correct  their  values,  as  in  §VIII. 

Numerical  Example. 

To  illustrate  the  numerical  computations  we  have  chosen  the 
following  example,  both  on  account  of  the  large  heliocentric  motion, 
and  because  Gauss  and  Oppolzer  have  treated  the  same  data  by  their 
different  methods. 

The  data  are  taken  from  the  Theoria  Motus,  §159,  viz., 

Times,  1805,  September 

5-51336 
139-42711 265-39813 

Longitudes  of  Ceres     - 95°  32'  18"-56 99°  49'    5"-87 
118°    5'28"-85 Latitudes  of  Ceres -0°  59'  34"  -06 

+  7°  16'  36"  -80 +  7°  38'  49"  -39 Longitudes  of  the  Earth 342°  54'  56"-00 117°  12'  43"  -25 241°  58'  50"  -71 
Logs  of  the  Sun's  distance  - 

0-0031514 9-9929861 0-0056974 

The  positions  of  Ceres  have  been  freed  from  the  effects  of  parallax 
and  aberration. 
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From  the  given  times  we  obtain  the  following  values : 

139 

Numbers. Logarithms. 

4-4 133-91375 
2-1268252 

ts-t<l 125-97102 
2-1002706 

*3-*l 259-88477 
2-4147809 

^1 

•4847187 9-6854897 

-43 

•5152812 9-7120443 

TI 

•3358520 

T3 

•3624066 

jjj 

9-6692113 

J52 

•3183722 

53 

** 

9-5623916 

Control : 

+  £2 +^.£3  =  2-4959086 

£Tlr3  =  2-4959081 

II. 

From  the  given  positions  we  get : 

log*! 9-9835515 + 
logXa 9-6531725 

logX, 
9-6775810 

togTi 9-4711748 - iogra 9-9420444 
+ 

logF3 9-9515547 
- 

^1 
0 

z* 

0 

Z, 

0 
!°gli 8-9845270 - 

log  la 
9-2282738 - 

log  £3 

9-6690294 
- 

lOg  7?! 9-9979027 + 

log»/2 
9-9900800 

+ 

logT?3 

9-9416855 
+ 

log  ft 8-2387150 - 

log& 

9-1026549 
+ 

!ogf8 

9-1240813 
+ 

61-81 •3874081 - 
Ca-ga •9314223 

+ 
®8.g» 

•5599304 

- 

A8 

•8645336 + 

*>22
 

•1006681 
+ ^ 

•7130624 

+ 

III. 

The  preceding  computations  furnish  the  numerical  values  for  the 

equations  III15  IIF,  III2,  III",  III3,  III'",  which  follow.  Brackets 
indicate  that  logarithms  have  been  substituted  for  numbers. 

We  have  now  to  assume  some  values  for  the  heliocentric  distances 

ri>  r2>  rs-  A  mean  proportional  between  the  mean  distances  of  Mars 
and  Jupiter  from  the  Sun  suggests  itself  as  a  reasonable  assumption. 
In  order,  however,  to  test  the  convergence  of  the  computations,  when 
the  assumptions  are  not  happy,  we  will  make  the  much  less  probable 

assumption  (actually  much  farther  from  the  truth)  that  the  helio- 
centric distances  are  an  arithmetical  mean  between  the  distances  of 

Mars  and  Jupiter.  This  gives  '526  for  the  logarithm  of  each  of  the 
distances  rlt  r-2,  r3.  From  these  assumed  values  we  compute  the  first 
column  of  numbers  in  the  three  following  tables  : 
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^  =  ̂ -•3874081 
r*  =  ̂ 2 +'8645336 

#!  =  [9-6692113]r1 

[-47712]^ ' 

GI  =  -  [8-6700167K?!  -  9-5901555)(l  +  R 

&  =     [9-6833924]  (?!+  •0900552)(l  +  jBI 

Vl  =  -[7-9242047](g1+  •3874081)(1  + 

«'  =  -  -046775-  [8-67002]^ -P'ai  \ 

P  =     -482383  +  [9-68339]^  -  P'&  I  III' 
y  =  -  -008399  -  [7-92420]^  -  F7l  J 

Aft 

-  -66731 
-  -04558 -  -0010434 

+  •0000006 

ql + 
3-22606 

2-55875 
2-51317 2-5142134 2-5142140 

logrx + 

•52600 •434960 •4280791 
•4282376 

•4282377 

log  A 
+ 

8-09121 8-364331 8-3849740 8-3844985 

log(l+.#1) + 

•00533 •009934 •0104122 
•0104010 

logP' 

+ 
8-01967 8-369626 8-3957468 8-3951457 

al 

+ 

•30136 •336506 •3390605 
•3390018 

ft + 
1-61938 1-307304 1-286223 1-2867056 

7i 
- 

•03072 •025316 •0249518 
•0249601 

a'
 

- 
•050505 

•0563438 

/* 

+ 

•47139 •4620942 

7'
 

— 

•00818 •0079821 

=  P2  +  '9314223 
=  ?22  +  1006681 
=  [0-3183722]r 

-3 

a2  =  +  [9'2282738]  (g2  +  17286820)(1  - 

&=  -  [9-9900800]  (g2-  -Q36I3Q9)(I  - 

y2=  -[91026549](g2-  •9314223)(1-JR2) 

a"=     169151  -[9-22827]  ̂  

y"=  -•126664  +  [9-10265]E2+P//y A* 
-  -77826 

+  -005042 +  -0013222 +  •0000021 

#2 + 3-34235 
2-56409 2-569132 2-5704542 2-5704563 

Iogr2 + 
•52600 •412233 •4130733 •4132934 

•4132937 

log  ̂ 2 + 8-74037 9-081673 9-0791524 9-0784920 

log(l-^2) + 9-97543 9-944142 9-9444866 9-9445766 

3  logP" + 8-71411 9-199120 9-1954270 9-1944598 

«2 

+ 
•81059 •638489 •6397466 

•6400760 

$2 

— 3-05379 2-172660 2-1787230 2-1803116 

72 - 
•28858 •181843 •1825486 

•1827338 

a"
 

+ 
•20182 •2491854 

0"
 

- 
1-08177 1-2018221 

y" 

— 
•13464 •1400944 

P///== 

5599304         a3=- 

/33=     [9-6537308](g3-   •< 
"3     y3=     [8'8361256](23+   -J 

a'"  =  -  -240477  -  [9-38107]  £3-P"'a3 
$"=  +  -450537  +  [9-65373]  R5- 

in, 
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Ags -  -80780 

-•04055 

+  -0025316 +  -0000031 

qs + 3-24945 2-44165 2-40110 2-4036316 2-4036347 

Iogr3 + 0-52600 
•412217 •4057319 

•4061394 •4061399 

log  SQ + 7-98439 8-325742 8-3451948 8-3439733 

log(l  +  HQ) + 

•00417 •009099 •0095108 
•0094843 

logP'" 
+ 7-91715 8-357016 8-3817516 8-3801993 

a3 

- 1-17253 
•987590 •9785152 

•9790776 

ft + 1-26749 
•910305 •8924956 

•8936069 

73 + 

•26373 •210171 •2075292 
•2076940 

a'"
 

- 

•22847 •2222335 

p"
 

+ 
•44441 •4390163 

V"
 

+ 

•06690 •0650888 

as=-  -07232 
68=-  -00845 
c3=-  -04050 

IV. 

The  values  of  a',  /3',  etc.,  furnish  the  basis  for  the  computation  of 
the  following  quantities : 

<*!=  - -01254  a2=  - -03517 
61=+  -01726  62=-  -00525 
c1==-  -15746  c2=- -08526 

For  G  we  get  three  values  sensibly  identical.     Adopting  the  mean, 
we  set 

G  =  -01006. 

We  also  get  H=  -  -00998,        L  =  -02322.* 
V. 

Taking  the  values  of  alt  a2,  etc.,  from  the  columns  under  IIIj,  III2, 
III3,  we  form  the  residuals 

a=--06058,         0=-, -16692,         y=  -'05557. 
From  these,  with  the  numbers  last  computed,  we  get 

<?!  =  -  -65888,        <72  =  -  -76983,        C3  =  -  -79939, 
which  might  be  used  as  corrections  for  our  values  of  ft,  g2,  qs.     To 
get  more  accurate  values  for  these  corrections  we  set 

Ag2  =  a2-TVX(A^2)2,    or    Ag2=  - -76983 --01393(Ag2)2, 

which  gives  Ag2  =  —  '77826. 

The  quadratic  term  diminishes  the  value  of  A<?2  by  '00843.     Sub- 
tracting the  same  quantity  from  C^  and  G2  we  get 

h  =  -  -66731,        Ag3  =  -  -80780. 

*  It  would  have  been  better  to  omit  altogether  the  calculation  of  H  and  L,  if  the 
small  value  of  the  latter  could  have  been  foreseen.  In  fact,  it  will  be  found  that 
the  terms  containing  L  hardly  improve  the  convergence,  being  smaller  than  quantities 
which  have  been  neglected.  Nevertheless,  the  use  of  these  terms  in  this  example  will 
illustrate  a  process  which  in  other  cases  may  be  beneficial. 
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gve 

a  =  -  -012595, 

!  =  -  '04567, 

VI. 

Applying  these  corrections  to  the  values  of  ft,  q2,  qs  we  compute 
the  second  numerical  columns  under  equations  III^  III2,  and  III3. 

We  do  not  go  on  to  the  computations  by  equations  III',  etc.,  but 
content  ourselves  with  the  old  values  of  al}  blt  etc.,  G,  and  L,  which 
with  the  new  residuals 

ft  =  '044949,         y  = -003012, 

02  =  '004952,       08  =  -  '04064. 

f2  =  02-X(%2  +  JC'2)Ag2  = -004952 --02322(--77826  +  -00247)Ag2. 

This  gives  Ag2  = '005042. 

As  the  term  containing  L  has  increased  the  value  of  Ag2  by  '00009, 
we  add  this  quantity  to  Ol  and  (73,  and  get 

Aft  =  -  '04558,         A^3  =  -  '04055. 
With  these  corrections  we  compute  the  third  numerical  columns 

under  equations  III1,  etc.  This  time  we  recompute  the  quantities  a, 
etc.,  with  which  we  repeat  the  principal  computations  of  IV,  and  get 
the  new  values 

1=-  -0167215 

1=  +  -0149145 
?!=- 1576886 

ag=-  -0335815 

&2=- -0054413 

c2=-  -0779570 
£  =  •0090929. 

a8=-  -0743299 
&8=-  -0098825 

c8=-  -0474318 

The  quantities  H  and  Z  we  neglect  as  of  no  consequence  at  this 
stage  of  the  approximation. 

With  these  values  the  new  residuals 

gve 

a=  +  -0002919,         ft=  -'0000044, 

Aft  =  C7X  =  +  -0010434, 
C7 

y=  +'0000288, 
+  '0013222, 

=  03=+  -0025316. 
These   corrections   furnish   the   basis    for   the   fourth   columns   of 

numbers  under  equations  IIIj,  etc.,  which  give  the  residuals 

a  =  +  -0000002,         ft=+  '0000009,         y  =  +  '0000001  , 
and  the  new  corrections 

Aft=  +'0000006,        Ag2=  +'0000021,        Ag3=  +  -0000031. 
The  corrected  values  of  ft,  <?2,  qs  give 

log  r,  =  0-4282377,    log  r2  =  0-4132937,    log  r3  =  0-4061399. 
We  have  carried  the  approximation  farther  than  is  necessary  for 

the  following  correction  of  the  formula,  in  order  to  see  exactly  where 
the  uncorrected  formula  would  lead  us,  and  for  the  control  afforded 

by  the  fourth  residuals. 
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The  computations  for  the  test  of  the  uncorrected  formula  (the  first 

hypothesis)  are  as  follows : 

Number  or  arc. Logarithm. 

rl 

0-4282377 

ra 

0-4132937 

r3 

0-4061399 

Aisiri~* 
+ 

•01174865 8-0699879 

Bfa-3
 

+ 
•11980944 9-0784911 

A3B3r3~3 

+ 

•01137670 8-0560162 

N + 
•14293479 9-1551380 

8i 

+ 
1-3308476 0-1241283 

s2 

+ 
2-2796616 0-3578704 

s3 

+ 
1-3417404 0-1276685 

8 + 2-4761248 0-3937725 
8-8l 

+ 
1-1452772 0-0589106 S-S2 

+ 0-1964632 9-2932812 
8-S3 

+ 1-1343844 0-0547602 

B + 9-5065898 

P + 
0-4391732 

tan  i  (v2  -  Vi) + 15°  48'  10"  -82 
9-4518296 

tan|(v3-v2) + 
15°  39'  36"-38 

9-4476792 

tan  £  (vs  -  Vj) + 
31°  27'  47"'20 

9-7866915 

esinK^g  +  Vj) - 
8-7099387 

ecos^Vg  +  Vi) + 
8-7872701 

tan^vg  +  vj - 
-39°  55'  32"  -31 

9-9226686 

e + 
8-9025438 

e + 
9-9652259 

a + 
0-4419546 

tan  ̂  
- 

-35°  41'  39"'75 
9-8563809 

tan  Jv2 — 
-  19°  53'  28"  -93 

9-5584981 

tan  |v3 — 
-  4°  13'  52"-55 

8-8691380 

tan  \E^ - 
-33°  33'    0"-17 

9-8216068 

tan  i^2 - 
-18°  28'    6"  -35 

9-5237240 

tan  l^g — 
-   3°  54'  24"  -21 

8-8343639 
sin  El 

- 
-67°    6'    0"-34 

9-9643473 

sin  JKj - 
-36°  56'  12"  -70 

9-7788272 
sin  E$ - 

-  7°  48'  48"  -42 

9-1333734 

eat  sin  ̂  - 
•3387061 9-5298230 

ea^  sin  Ez — 
•2209545 9-3443029 

eat  sin  ̂ 3 — 
•0499861 8-6988491 

(Jf7^  \JJJ<\  —    flj-t  ) 
+ 

2-4226307 0-3842872 

^.-2-  /  Z7"             ET   \ 
Ot2  l^Vo  —  -£*o) + 

2-3391145 0-3690515 ''"S  calc. 

+ 
2-3048791 0-3626482 

Tl  catc. + 
2-1681461 0-3360885 
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VIII. 

The  logarithms  of  the  calculated  values  of  the  intervals  of  time 

exceed  those  of  the  given  values  by  '0002416  for  the  first  interval  (rs) 
and  '0002365  for  the  second  (r^.  Therefore,  since  the  corrections  for 
aberration  have  been  incorporated  in  the  data,  we  set  for  the  correction 
of  the  formula  (for  the  second  hypothesis) 

A  log  TI  =  -  '0002365     A  log  r3  =  -  '0002416 
This  gives    A  log  At  =  '0000026         A  log  AB  =  -  '0000025 

A  log  Bl  =  -  -0004872      A  log  £2  =  -  -0004782      A  log  B3  =  -  -0004665 
The  new  values  of  the  logarithms  of  Av  A3  are 

log  Al  =  9-6854923         log  AB  =  9-7120418 
Applying  these  corrections  to  equations  III^  III2,  III3,*  we  get  the 

following : 

r*  =  g^ +-8645336 
a1=-  [8-6700193]  (g1- 

&!  =  [9-6687241] r^*  II     corrected. 

ft  =  +  [9-6833950]  (3l  +  -0900552)(1 + j^) 

7l=  -  [7-9242073]  (ft  +  -3874081X1  +  ̂ ) 

Aft 

+   -0002887 
-    -0000217 

£l + 2-5142140 2-5145027 2-5144810 

logrj 
+ 

•4282377 •4282816 
•4282782 

log  Si + 8-3838110 8-3838793 8-3838894 

log(l  +  ̂!) + 
•0103847 

•0103863 •0103865 

ai 

+ 
•3389910 

•3389784 
•3389796 

I8! 

+ 1-2866654 1-2868124 1-2868024 
7i 

- 
•0249593 

•0249619 
•0249617 

log* 

+ 
•1241571 

-1006681 

a2  =  +  [9-2282738]  (q2+  1'7286820)(1  - 

ft  =  -  [9-9900800]  (g2  -  -0361309X1  - 

72  =  _  [9-1026549]  (g2  -   '9314223)(1  - 

III2  corrected. 

Ag2 

-    -0000955 
+   -0000187 

g2 + 2-5704563 2-5703608 2-5703795 

Iogr2 
+ 

0-4132937 
•4132778 •4132809 

log  .S2 + 9-0780129 9-0780605 9-0780513 

log(l-j?2) + 9-9446418 9-9446353 9-9446365 

ttg 

+ 
•6401725 

•6401487 •6401532 

P2 

— 2-1806412 2-1805261 2-1805482 
73 

- 
•1827615 •1827481 

•1827507 

log«2 + 
•3579174 

*  The  corrections  may  be  made  without  rewriting  the  equations. 
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g32+-7l30624 
a3=-[9-3810712](g3+l-5798163)(l+.R3) 

[9-5619251]r3-3 

fti=  +  [9-6537283] (?3-   -4630521)(l  +  £3) 
y3  =  +  [8-8361231]  (gg+  -5599304)(l  +  £3) 

corrected. 

Ag3 

+   -0003302 +    -0000424 ?3 

+ 2-4036347 2-4039649 
2-4040073 

Iogr3 + 
•4061399 •4061929 •4061998 

log  Rz + 8-3435055 8-3433463 8-3433257 

log(l  +  J?3) + 
•0094742 

•0094708 
•0094704 

a3 

- 
•9790500 •9791236 •9791329 

/33 + 
•8935824 

•8937277 •8937461 

73 

+ 
•2076882 

•2077097 •2077124 

log*3 + 

•1277120 

With  these  corrected  equations  the  last  values  of 
the  residuals 

a  =  -0001135  ft=  -  -0003934 

These  give  the  corrections 

Aft  =  -0002887         Ag2  =  -  -0000955 
The  next  residuals  are 

a  =  -0000035  /3  = '0000140 

which  give  the  corrections 

Aft  =  -  -0000217     Aft  =  -0000187 J.  J.  -i  - 

The  next  residuals  are 

a  =  -  -0000001        ft  =  -0000003 

which  must  be  regarded  as  entirely  insensible. 

y  =--0000326 

=  •0003302 

y=_  -0000003 

=  •0000424 

=  •0000000 

IX,  X. 

It  remains  to  determine  the  ellipse  which  passes  through  the  points 
to  which  the  numbers  relate  in  the  last  columns  under  the  corrected 

equations  IIIj,  III2,  III3,  and  also  the  time  of  perihelion  passage. 
The  computations  are  as  follows : 

G.  II. 
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XL 

This  gives  the  following  equations  for  an  ephemeris  : 

T=1806,  June,  23*97450,  Paris  mean  time 

[2-8863186](*  -  T)  =  Eln  8flcond8  -  [4-2216270]  sin  E 
Heliocentric  coordinates  relating  to  the  ecliptic. 

x  =  +  -1820700  -  [0-3530366]  cos  E-  [01827457]  sin  E 
y  =  -  -1244685  +  [0*1878576]  cos  E-  [0*3603257]  sin  E 
z=-  -0373970  +  [9-6656346]  cos  E+  [9-3320292]  sin  E 

The  differences  of  the  values  of  Tw,  T(2),  jT(3),  from  their  mean  T, 

indicate  the  residual  errors  of  this  hypothesis.  They  indicate  differ- 
ences in  the  calculated  and  the  observed  geocentric  positions  which 

are  represented  by  the  geocentric  angles  subtended  by  the  path 

described  by  the  planet  in  the  following  fractions  of  a  day  :  '00054, 
•00003,  -00052.  Since  the  heliocentric  motion  of  the  planet  is  about 
one-fourth  of  a  degree  per  day,  and  the  planet  is  considerably  farther 
from  the  earth  than  from  the  sun  at  the  times  of  the  first  and  third 

observations,  the  errors  will  be  less  than  half  a  second  in  arc. 

If  we  desire  all  the  accuracy  possible  with  seven-figure  logarithms, 
we  may  form  a  third  hypothesis  based  on  the  following  corrections  : 

A  log  Tl  = 
=  _  .Q000017, 

A  log  r3  =  MT™  _Tt(l]  =  -  -0000018. 
The  equations  for  an  ephemeris  will  then  be : 

T=1806,  June  23-96378,  Paris  mean  time 

[2-8863140](*  -  T)  =  #in  8econd8  -  [4-2216530]  sin  E 
Heliocentric  coordinates  relating  to  the  ecliptic. 

x  =  +  -1820765  -  [0-3530261]  cos  E-  [0-1827783]  sin  E 
y=- 1244853  + [0-1878904]  cos  E-  [0'3603153]  sin  E 
z=-  -0373987  +  [9-6656285]  cos  E+  [9-3320758]  sin  E 

The  agreement  of  the  calculated  geocentric  positions  with  the  data 
is  shown  in  the  following  table : 

Times,  1805,  September 
5-51336 

139-42711 265-39813 

Second  hypothesis  : 
longitudes 
errors    - 

95°  32'  18"-88 
0"-32 

99°  49'    5"-87 

0"-00 

118°    5'28"-52 

-0"-33 

latitudes -0°  59'  34"  -01 

T  16'  36"-82 
7°  38'  49"-34 

errors    - 

0"-05 
0"-02 -0"-05 

Third  hypothesis  : 
longitudes 
errors    - 

95°  32'  18"  -65 
0"-09 

99°  49'    5"-82 
-0"-05 

118°    5'28"-79 

-0"-06 

latitudes -0°  59'  34"  -04 7°  16'  36"  -78 7°  38'  49"  -38 
errors    - 

0"-02 -0"-02 
-0"-01 
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The  immediate  result  of  each  hypothesis  is  to  give  three  positions  of 
the  planet,  from  which,  with  the  times,  the  orbit  may  be  calculated  in 
various  ways,  and  with  different  results,  so  far  as  the  positions  deviate 
from  the  truth  on  account  of  the  approximate  nature  of  the  hypothesis. 
In  some  respects,  therefore,  the  correctness  of  an  hypothesis  is  best 
shown  by  the  values  of  the  geocentric  or  heliocentric  distances  which 
are  derived  directly  from  it.  The  logarithms  of  the  heliocentric 

distances  are  brought  together  in  the  following  table,  and  correspond- 

ing values  from  Gauss*  and  Oppolzert  are  added  for  comparison.  It  is 
worthy  of  notice  that  the  positions  given  by  our  second  hypothesis  are 
substantially  correct,  and  if  the  orbit  had  been  calculated  from  the 
first  and  third  of  these  positions  with  the  interval  of  time,  it  would 
have  left  little  to  be  desired. 

logrj. Iogr2. Iogr3. 

First  hypothesis 

•4282377 
•4132937 •4061399 

Second  hypothesis    - 

•4282782 
•4132809 

•4061998 

Third  hypothesis 

•4282786 •4132808 
•4062003 

Gauss  : 

First  hypothesis 

•4323934 •4114726 
•4094712 

Second  hypothesis 

•4291773 •4129371 •4071975 

Third  hypothesis 

•4284841 
•4132107 

•4064697 

Fourth  hypothesis     - 

•4282792 •4132817 
•4062033 

Oppolzer  : 
First  hypothesis 

•4281340 
•413330 •4061699 

Second  hypothesis     - 

•4282794 
•4132801 

•4061976 

Third  hypothesis 

•4282787 
•4062009 

In  comparing  the  different  methods,  it  should  be  observed  that 

the  determination  of  the  positions  in  any  hypothesis  by  Gauss's 
method  requires  successive  corrections  of  a  single  independent  variable, 

a  corresponding  determination  by  Oppolzer's  method  requires  the 
successive  corrections  of  two  independent  variables,  while  the  corre- 

sponding determination  by  the  method  of  the  present  paper  requires 
the  successive  corrections  of  three  independent  variables. 

*  Theoria  motus,  §  159. 
t  Lehrbuch  zur  Bahnbestimmung  der  Kometen  und  Planeten,  2nd  ed, ,  vol.  i,  p.  394. 



VI. 

ON  THE  USE  OF  THE  VECTOR  METHOD  IN  THE 
DETERMINATION  OF  ORBITS 

LETTER  TO  DR.  HUGO  BUCHHOLZ,  EDITOR  OF  KLINKERFUES'  Theoretische 

Astronomic* 

New  Haven,  October,  1898. 
Dr.  HUGO  BUCHHOLZ, 

My  dear  Sir, — The  opinion  of  Fabritius  t  on  the  comparative  con- 
venience of  different  methods  is  entitled  to  far  more  weight  than 

mine,  for  I  am  no  astronomer,  and  have  calculated  very  few  orbits, 
none,  indeed,  except  for  the  trial  of  my  own  formulae.  The  object  of 
my  paper  was  to  show  to  astronomers,  who  are  rather  conservative 
(and  with  right,  for  astronomy  is  the  oldest  of  the  exact  sciences), 
the  advantage  in  the  use  of  vector  notations,  which  I  had  learned  in 
Physics  from  Maxwell.  This  object  could  be  best  obtained,  not  by 
showing,  as  I  might  have  done,  that  much  in  the  classic  methods 
could  be  conveniently  and  perspicuously  represented  by  vector 
notations,  but  rather  by  showing  that  these  notations  so  simplify 
the  subject,  that  it  is  easy  to  construct  a  method  for  the  complete 
solution  of  the  problem.  That  the  method  given  is  the  best  possible, 
I  certainly  do  not  claim,  but  only  that  it  is  much  better  than  I  could 
have  found  without  the  use  of  vector  notations.  Some  of  the  more 

obvious  crudities  in  my  paper  have  been  corrected  in  that  of  Beebe  and 
Phillips.^  Doubtless  many  more  remain,  even  if  the  general  method 
be  preserved. 

My  first  efforts,  however,  to  solve  the  fundamental  approximative 

equation  were  along  the  same  lines  which  Fabritius  has  followed: — 
to  set  ri  =  r2  and  r3  =  r2  in  equation  second  of  (2)  of  Fabritius,  which 
will  give  p2  and  r2,  then  to  get  r1  from  the  first  of  (3)  of  Fabritius, 
and  then  r3  either  from  equation  second  of  (3)  or  from  some  other 

*  [In  which  the  preceding  memoir,  and  also  that  of  Beebe  and  Phillips  referred  to 
below,  are  translated.] 

t[See  Fabritius,  W.  "Ueber  eine  leichte  Methode  der  Bahnbestimmung  mit 

Zugrundelegung  des  Princips  von  Gibbs,"  also  "  Weitere  Anwendungen  des  Gibbs'chen 
Princips,"  Astronomische  Nachrichten,  No.  3061,  3065  (1891)]. 
U"The  Orbit  of  Swift's  comet,  1880  V,  Determined  by  Gibbs's  Vector  Method," 

W.  Beebe  and  A.  W.  Phillips.  Gould's  Astronomical  Journal,  vol.  ix,  Dec.  1889.] 
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which  would  serve  the  purpose,  and  then  to  find  better  values  of 

p2,  r2  by  setting  in  equation  second  of  (2) 

the  expressions  in  brackets  denoting  numbers  derived  from  the 
approximate  values  already  found.  This  is  similar  to  or  identical  with 
the  method  of  Fabritius,  except  that  he  combines  with  it  the  principle 

of  interpolation  (for  the  first  value  in  the  third  "hypothesis").  As 
I  found  the  approximation  by  this  method  sometimes  slow  or  failing, 

notably  in  the  case  of  Swift's  comet,  1880  V,  I  tried  the  method 
published  in  my  paper.  Indeed,  it  may  be  said  that  the  method  of 
my  paper  was  constructed  to  meet  the  exigencies  of  the  case  of  the 
comet,  1880  V. 

In  ordinary  cases  I  think  that  the  method  of  Fabritius  may  very 
likely  be  better  than  that  which  I  published.  The  equations  are  very 
simply  and  perspicuously  represented  in  vector  notations.  I  shall  use 

the  notations  of  my  paper,  writing  E,  F,  etc.,  for  German  letters.*  To 
eliminate  pl  and  pB  from  equation  (7)  in  my  paper,  multiply  directly 

by  gj  X  g3.  This  gives 

3 
(a) 

To  eliminate  p3  and  r3,  multiply  by  (£3xS3  which  gives 

-  i  -ic&HAfoWJ-o.     (6) '2  ' 

When  we  have  found  plt  rlt  pz,  r2  it  is  not  necessary  to  eliminate 
any  of  them,  and  to  save  labor  in  forming  the  equation  for  ps,  rs,  I 
should  be  inclined  to  take  the  components  in  (7)  in  the  direction  of 
one  of  the  coordinate  axes,  choosing  that  one  which  is  most  nearly 
directed  towards  the  third  observed  position.  However,  I  will  write 

where  ty  may  represent  an   axis  of   coordinates,  or  ((^xSi)  which 

would  give  Fabritius'  equation.    It  might  be  directed  towards  the  pole 

*  [In  the  remainder  of  the  letter  as  here  printed  German  capitals  have  been  substituted 
for  the  E,  f\  P,  etc.  of  the  original,  thus  making  the  notation  uniform  with  that  of 
the  paper  referred  to.] 
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of  the  ecliptic,  which  would  make  (C^.^P),  (@2-?),  (@3-^)  vanish, 
except  for  exceedingly  minute  quantities  depending  on  the  latitude  of 
the  sun  and  the  geocentric  coordinates  of  the  observatories,  if  these 
are  included  in  @j,  @2,  @3. 

The  equations  (a),  (6),  (c),  which  are  together  equivalent  to  (7),  I 
would  solve  as  follows,  almost  in  the  same  way  as  Fabritius,  but 
relying  a  little  more  on  interpolation,  and  less  on  the  convergence  of 
which  he  speaks,  which  in  special  cases  may  more  or  less  fail. 

Setting  r±  =  r2  and  r3  =  r2  in  (a),  which  thus  modified  I  shall  call  (a'), 
and  solving  this  (a')  by  "  trial  and  error,"  using  pz  as  the  independent 
variable,  as  soon  as  I  have  a  value  of  p2  which  I  think  will  give  a 

residual  of  (a')  of  the  same  order  of  smallness  as  the  effect  of  changing 

—5  and  —5  into  — =,  I  determine  from  this  value  by  (b)  and  (c),  r*  and M    *>  M    O  /y>    O  «/         N      '  N      '  * 

r3,  and  then  find  the  residual  of  (a),  using  the  values  of  r1?  r2,  r3 
derived  all  from  the  same  assumed  p2.  Now  using  the  last  value  of 

A       —  in  my  previous  calculations  on  (a')  which  indeed  applies 
only  roughly  to  the  (a),  I  would  get  a  value  p2  which  I  would  use  for 

the  second  "hypothesis"  in  (a).  This  will  give  a  second  residual  in 
(a),  which  will  enable  me  to  make  a  more  satisfactory  interpolation. 
As  many  more  interpolations  may  be  made  as  shall  be  found  necessary. 

Some  such  method,  which  should  perhaps  be  called  the  method  of 
Fabritius,  would,  I  think,  in  most  cases  probably  be  the  best  for 
solution  of  equation  (7). 

Of  course  I  am  quite  aware  that  the  merit  of  my  paper,  if  any,  lies 
principally  in  the  fundamental  approximation  (1).  I  will  add  a  few 
words  on  this  subject. 

The  equation  may  be  written  more  symmetrically 
/  2  _i_       2       Q      2\  /  2   i         2       Q      2\ 

It  might  be  made  entirely  symmetrical  by  writing  —  T2  for  T2. 
If  an  expression  ending  with  ts  had  been  used,  we  could  still  have 

satisfied  two  of  the  conditions  relating  to  acceleration,  and  should 
have  obtained 

'  =0,  Ila 

or 
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Using  an  expansion  ending  with  t2  we  can  only  satisfy  one  con- 
dition relating  to  acceleration,  say  the  second.     This  will  give TiT3 

TTT 

.  ^,,. 
T2  ^'2  '  T2 

(Gauss  uses  virtually 

I     I    T1T3 

h 

which  is  a  little  more  convenient,  but  not,  I  think,  generally  quite 
so  accurate.) 

Writing  an  equation  analogous  to  III  for  the  earth  and  subtracting 
from  (7),  Mem.  Nat.  Acad.,  we  have 

which  gives,  on  multiplication  by  f^x&g  and  $2X&2,  theorems  of 
Olbers  and  Lambert. 

It  is  evident  that  in  general  the  error  in  I  is  of  the  fifth  order,  in 
Ila,  116,  lie  of  the  fourth,  and  in  III  of  the  third.  But  for  equal 
intervals,  the  error  in  I  is  of  the  sixth  order,  and  in  III  of  the  fourth. 

And  when  T22+r32  —  3x^  =  0,  Ilct  becomes  identical  with  I,  and  its 
error  is  of  the  fifth  order. 

The  same  is  true  of  lie  in  the  corresponding  case.  It  follows  that 
when  the  intervals  are  nearly  as  5:8  we  should  use  Ila  or  116  instead 
of  I.  This  will  evidently  abbreviate  the  solution  given  above  as 
only  one  of  the  quantities  rlt  r3  is  to  be  used. 

The  formula  Ila,  116,  lie  may  also  be  obtained  by  the  following 
method,  which  will  show  their  relative  accuracy. 

The  interpolation  formula 

Tnn    O  tyt    O  _.         M    ° 

2    'I  '2  T2    '3 

has   an   error   evidently   of   the   second  order.      If  we  multiply  by 
T  2_j_T  2__3T  2 

-2   |-r   —  and  subtract  from  I,  we  get  Ila.     So  if  we  multiply  by 
!  —  frr  2   •-    or    — 

24  24 

we  get  116  or  lie.  The  errors  due  to  using  one  of  these  equations 
instead  of  I  are  therefore  proportional  to  these  multipliers  and  very 
unequal. 

Again,  in  case  of  equal  intervals,  Ila  and  lie  become  identical  with 
III.  There  is,  therefore,  no  reason  for  using  Ila  or  lie  when  the 
intervals  are  nearly  equal.  116  is  in  this  case  much  less  accurate 
than  III. 
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It  will  be  observed  that  all  the  formulae  I,  Ha,  116,  lie,  III,  may  be 

expressed  in  the  general  form 

except  that  the  letters  BI}  B2,  B3  have  different  values  in  the  different 
cases,  some  vanishing  in  the  more  simple  formulae.  Moreover,  if  the 
values  of  BI}  B^,  B3  have  been  calculated  for  I,  the  values  for  Ha,  116, 
or  lie  are  found  simply  by  subtraction  of  one  of  the  numbers  from  the 
three.  It  is  evident  that  116  will  hardly  be  useful  except  in  special 
cases,  as  in  the  determination  of  a  parabolic  orbit  in  the  failing  case  of 

Gibers'  method,  and  then  it  would  be  a  question  whether  it  would  not 
be  better  to  determine  the  orbit  from  p2  and  p3,  or  p2  and  pv  using  Ha 
or  lie. 

Equations  Ha  and  lie  are  very  appropriate  for  the  determination 
of  an  elliptic  orbit  when  the  observed  motion  is  nearly  in  the  ecliptic, 
by  means  of  four  observations  with  intervals  nearly  in  the  ratio 
5:8:5. 

It  is  evident  that  the  solution  of  (7)  given  above  may  be  varied,  in 
ways  too  numerous  to  mention,  by  the  use  of  the  simpler  forms  Ila, 
He,  or  III  for  I  in  the  earlier  stages  of  the  work.  This  only  involves 
changing  the  values  of  Blt  B2,  Bs,  in  (a),  (6)  and  (c). 

It  is  not  correct  to  say  that  in  my  expressions  for  the  ratios  of  the 
triangles  the  error  is  of  the  fifth  order  in  general,  or  for  equal  intervals, 
of  the  sixth.  If  we  write  Pi,p2,pz>  for  the  coefficients  of  9^,  $R2, 
in  I,  and  5£  for  the  error  of  the  equation,  we  have  exactly 

which  gives  p 

^x^3=p[ 
9^x9*3    p2 

Now  *3  is  my  expression  for  the  ratio  of  the  triangles,  and 

is  its  error.  This  is  of  the  fourth  order  in  general  (since  the  denomin- 
ator is  of  the  first),  and  for  equal  intervals,  of  the  fifth.  The  same  is 

true  of  the  two  other  ratios.  Thus  we  have 

Adding  these  equations  and  subtracting  1  [from  both  sides]  we  have 

i>2    (ffls 

Here  the  last  term,  which  represents  the  error,  is  of  the   fifth 
order  in  general,   or  for  equal   intervals,   of    the    sixth.      But   the 
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quantity  sought  is  of  the  second  order,  and  the  relative  error  is  of 
the  third  order  in  the  general  case,  or  the  fourth  for  equal  intervals. 
It  is  precisely  this  error  which  is  most  important  in  the  case  of 
elliptic  orbits. 

It  will  be  observed  that  the  accuracy  of  the  expressions  for  the 
ratios  [ryrj :  [r2rs] :  [r^]  affords  no  measure  of  the  accuracy  of  the 
formula  for  the  determination  of  elliptic  orbits. 

I  think  that  this  hasty  sketch  will  illustrate  the  convenience  and 
perspicuity  of  vector  notations  in  this  subject,  quite  independently  of 
any  particular  method  which  is  chosen  for  the  determination  of  the 
orbit.  What  is  the  best  method  ?  is  hardly,  I  think,  a  question  which 
admits  of  a  definite  reply.  It  certainly  depends  upon  the  ratio  of  the 
time  intervals,  their  absolute  value,  and  many  other  things. 

Yours  very  truly, 

J.  WILLARD  GIBBS. 

P.S. — If  we  wish  to  use  the  curtate  distances,  with  reference  to  the 
ecliptic  or  the  equator,  let  /ox  be  defined  as  the  distance  multiplied  by 
cosine  (lat.  or  dec.),  and  ̂ i  as  a  vector  of  length  secant  (lat.  or  dec.). 
For  the  most  part  the  formulae  will  require  no  change,  but  the  square 

of  5i  will  be  sec2(lat.  or  dec.)  instead  of  unity,  so  that  the  last  terms 

of  (8)  will  have  this  factor.  (&$2$8)  will  then  be  Gauss'  (0.1.2.), 
whereas  in  my  paper  (3^i8k3k)  *s  Lagrange's  (C'C"C'"}. J.  W.  G. 



VII. 

ON  THE  R6LE   OF  QUATERNIONS   IN   THE   ALGEBRA 
OF  VECTORS. 

[Nature,  vol.  XLIII.  pp.  511-513,  April  2,  1891.] 

THE  following  passage,  which  has  recently  come  to  my  notice,  in 

the  preface  to  the  third  edition  of  Prof.  Tait's  Quaternions  seems 
to  call  for  some  reply : 

"  Even  Prof.  Willard  Gibbs  must  be  ranked  as  one  of  the  retarders 
of  quaternion  progress,  in  virtue  of  his  pamphlet  on  Vector  Analysis, 
a  sort  of  hermaphrodite  monster,  compounded  of  the  notations  of 

Hamilton  and  of  Grassmann." 
The  merits  or  demerits  of  a  pamphlet  printed  for  private  distri- 

bution a  good  many  years  ago  do  not  constitute  a  subject  of  any  great 
importance,  but  the  assumptions  implied  in  the  sentence  quoted  are 
suggestive  of  certain  reflections  and  inquiries  which  are  of  broader 
interest,  and  seem  not  untimely  at  a  period  when  the  methods  and 
results  of  the  various  forms  of  multiple  algebra  are  attracting  so  much 
attention.  It  seems  to  be  assumed  that  a  departure  from  quaternionic 
usage  in  the  treatment  of  vectors  is  an  enormity.  If  this  assumption 
is  true,  it  is  an  important  truth ;  if  not,  it  would  be  unfortunate  if  it 
should  remain  unchallenged,  especially  when  supported  by  so  high  an 
authority.  The  criticism  relates  particularly  to  notations,  but  I 

believe  that  there  is  a  deeper  question  of  notions  underlying  that  of 
notations.  Indeed,  if  my  offence  had  been  solely  in  the  matter  of 
notation,  it  would  have  been  less  accurate  to  describe  my  production 
as  a  monstrosity,  than  to  characterize  its  dress  as  uncouth. 
Now  what  are  the  fundamental  notions  which  are  germane  to  a 

vector  analysis  ?  (A  vector  analysis  is  of  course  an  algebra  for 
vectors,  or  something  which  shall  be  to  vectors  what  ordinary  algebra 
is  to  ordinary  quantities.)  If  we  pass  over  those  notions  which  are  so 
simple  that  they  go  without  saying,  geometrical  addition  (denoted 
by  + )  is,  perhaps,  first  to  be  mentioned.  Then  comes  the  product  of 
the  lengths  of  two  vectors  and  the  cosine  of  the  angle  which  they 
include.  This,  taken  negatively,  is  denoted  in  quaternions  by  Sa/3, 
where  a  and  /3  are  the  vectors.  Equally  important  is  a  vector 
at  right  angles  to  a  and  /3  (on  a  specified  side  of  their  plane),  and 
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representing  in  length  the  product  of  their  lengths  and  the  sine  of 
the  angle  which  they  include.  This  is  denoted  by  Va/3  in  quaternions. 
How  these  notions  are  represented  in  my  pamphlet  is  a  question  of 
very  subordinate  consequence,  which  need  not  be  considered  at 
present.  The  importance  of  these  notions,  and  the  importance  of  a 
suitable  notation  for  them,  is  not,  I  suppose,  a  matter  on  which  there 
is  any  difference  of  opinion.  Another  function  of  a  and  /3,  called 
their  product  and  written  a/3,  is  used  in  quaternions.  In  the  general 
case,  this  is  neither  a  vector,  like  Va/3,  nor  a  scalar  (or  ordinary 

algebraic  quantity),  like  Sa/3,  but  a  quaternion  —  that  is,  it  is  part 
vector  and  part  scalar.  It  may  be  defined  by  the  equation  — 

The  question  arises,  whether  the  quaternionic  product  can  claim  a 
prominent  and  fundamental  place  in  a  system  of  vector  analysis.  It 
certainly  does  not  hold  any  such  place  among  the  fundamental 
geometrical  conceptions  as  the  geometrical  sum,  the  scalar  product, 
or  the  vector  product.  The  geometrical  sum  a-\-/3  represents  the 
third  side  of  a  triangle  as  determined  by  the  sides  a  and  /3.  Va/3 
represents  in  magnitude  the  area  of  the  parallelogram  determined  by 
the  sides  a  and  /3,  and  in  direction  the  normal  to  the  plane  of  the 
parallelogram.  SyVa/3  represents  the  volume  of  the  parallelepiped 
determined  by  the  edges  a,  /3t  and  y.  These  conceptions  are  the  very 
foundations  of  geometry. 

We  may  arrive  at  the  same  conclusion  from  a  somewhat  narrower 
but  very  practical  point  of  view.  It  will  hardly  be  denied  that 
sines  and  cosines  play  the  leading  parts  in  trigonometry.  Now  the 
notations  Va/5  and  Sa/3  represent  the  sine  and  the  cosine  of  the  angle 
included  between  a  and  /3,  combined  in  each  case  with  certain  other 
simple  notions.  But  the  sine  and  cosine  combined  with  these 
auxiliary  notions  are  incomparably  more  amenable  to  analytical 
transformation  than  the  simple  sine  and  cosine  of  trigonometry, 
exactly  as  numerical  quantities  combined  (as  in  algebra)  with  the 
notion  of  positive  or  negative  quality  are  incomparably  more  amenable 
to  analytical  transformation  than  the  simple  numerical  quantities  of 
arithmetic. 

I  do  not  know  of  anything  which  can  be  urged  in  favor  of  the 
quaternionic  product  of  two  vectors  as  a  fundamental  notion  in 
vector  analysis,  which  does  not  appear  trivial  or  artificial  in  com- 

parison with  the  above  considerations.  The  same  is  true  of  the 
quaternionic  quotient,  and  of  the  quaternion  in  general. 
How  much  more  deeply  rooted  in  the  nature  of  things  are  the 

functions  Sa/3  and  Va/3  than  any  which  depend  on  the  definition 
of  a  quaternion,  will  appear  in  a  strong  light  if  we  try  to  extend 



QUATEKNIONS  IN  THE  ALGEBRA  OF  VECTORS.  157 

our  formulae  to  space  of  four  or  more  dimensions.  It  will  not  be 
claimed  that  the  notions  of  quaternions  will  apply  to  such  a  space, 
except  indeed  in  such  a  limited  and  artificial  manner  as  to  rob  them 
of  their  value  as  a  system  of  geometrical  algebra.  But  vectors  exist 
in  such  a  space,  and  there  must  be  a  vector  analysis  for  such  a  space. 
The  notions  of  geometrical  addition  and  the  scalar  product  are 
evidently  applicable  to  such  a  space.  As  we  cannot  define  the 

direction  of  a  vector  in  space  of  four  or  more  dimensions  by  the  con- 
dition of  perpendicularity  to  two  given  vectors,  the  definition  of  Va/3, 

as  given  above,  will  not  apply  totidem  verbis  to  space  of  four  or  more 
dimensions.  But  a  little  change  in  the  definition,  which  would  make 
no  essential  difference  in  three  dimensions,  would  enable  us  to  apply 
the  idea  at  once  to  space  of  any  number  of  dimensions. 

These  considerations  are  of  a  somewhat  a  priori  nature.  It  may  be 
more  convincing  to  consider  the  use  actually  made  of  the  quaternion 
as  an  instrument  for  the  expression  of  spatial  relations.  The  principal 
use  seems  to  be  the  derivation  of  the  functions  expressed  by  Sa/3  and 
Va/3.  Each  of  these  expressions  is  regarded  by  quaternionic  writers 
as  representing  two  distinct  operations;  first,  the  formation  of  the 
product  a/3,  which  is  the  quaternion,  and  then  the  taking  out  of  this 
quaternion  the  scalar  or  the  vector  part,  as  the  case  may  be,  this 
second  process  being  represented  by  the  selective  symbol,  S  or  V. 
This  is,  I  suppose,  the  natural  development  of  the  subject  in  a  treatise 
on  quaternions,  where  the  chosen  subject  seems  to  require  that  we 
should  commence  with  the  idea  of  a  quaternion,  or  get  there  as  soon 
as  possible,  and  then  develop  everything  from  that  particular  point  of 

view.  In  a  system  of  vector  analysis,  in  which  the  principle  of  de- 
velopment is  not  thus  predetermined,  it  seems  to  me  contrary  to  good 

method  that  the  more  simple  and  elementary  notions  should  be  defined 
by  means  of  those  which  are  less  so. 

The  quaternion  affords  a  convenient  notation  for  rotations.  The 

notation  q(  )q~l,  where  q  is  a  quaternion  and  the  operand  is  to  be 
written  in  the  parenthesis,  produces  on  all  possible  vectors  just  such 
changes  as  a  (finite)  rotation  of  a  solid  body.  Rotations  may  also  be 
represented,  in  a  manner  which  seems  to  leave  nothing  to  be  desired, 
by  linear  vector  functions.  Doubtless  each  method  has  advantages  in 
certain  cases,  or  for  certain  purposes.  But  since  nothing  is  more 
simple  than  the  definition  of  a  linear  vector  function,  while  the 
definition  of  a  quaternion  is  far  from  simple,  and  since  in  any  case 
linear  vector  functions  must  be  treated  in  a  system  of  vector  analysis, 
capacity  for  representing  rotations  does  not  seem  to  me  sufficient  to 
entitle  the  quaternion  to  a  place  among  the  fundamental  and  necessary 
notions  of  a  vector  analysis. 

Another  use  of  the  quaternionic  idea  is  associated  with  the  symbol  V. 
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The  quantities  written  SVo>  and  Ww,  where  o>  denotes  a  vector  having 
values  which  vary  in  space,  are  of  fundamental  importance  in  physics. 
In  quaternions  these  are  derived  from  the  quaternion  Vo>  by  selecting 
respectively  the  scalar  or  the  vector  part.  But  the  most  simple  and 
elementary  definitions  of  SVo>  and  Wo>  arc  quite  independent  of  the 
conception  of  a  quaternion,  and  the  quaternion  Vo>  is  scarcely  used 
except  in  combination  with  the  symbols  S  and  V,  expressed  or 
implied.  There  are  a  few  formulae  in  which  there  is  a  trifling  gain  in 
compactness  in  the  use  of  the  quaternion,  but  the  gain  is  very  trifling 
so  far  as  I  have  observed,  and  generally,  it  seems  to  me,  at  the  expense 
of  perspicuity. 

These  considerations  are  sufficient,  I  think,  to  show  that  the  position 
of  the  quaternionist  is  not  the  only  one  from  which  the  subject  of 
vector  analysis  may  be  viewed,  and  that  a  method  which  would  be 
monstrous  from  one  point  of  view,  may  be  normal  and  inevitable  from 
another. 

Let  us  now  pass  to  the  subject  of  notations.  I  do  not  know 
wherein  the  notations  of  my  pamphlet  have  any  special  resemblance 

to  Grassmann's,  although  the  point  of  view  from  which  the  pamphlet 
was  written  is  certainly  much  nearer  to  his  than  to  Hamilton's.  But 
this  a  matter  of  minor  consequence.  It  is  more  important  to  ask, 
What  are  the  requisites  of  a  good  notation  for  the  purposes  of  vector 
analysis  ?  There  is  no  difference  of  opinion  about  the  representation 
of  geometrical  addition.  When  we  come  to  functions  having  an 
analogy  to  multiplication,  the  products  of  the  lengths  of  two  vectors 
and  the  cosine  of  the  angle  which  they  include,  from  any  point  of 
view  except  that  of  the  quaternionist,  seems  more  simple  than  the 
same  quantity  taken  negatively.  Therefore  we  want  a  notation  for 
what  is  expressed  by  —  Sa/3,  rather  than  Sa/3,  in  quaternions.  Shall 
the  symbol  denoting  this  function  be  a  letter  or  some  other  sign  ? 
and  shall  it  precede  the  vectors  or  be  placed  between  them  ?  A  little 
reflection  will  show,  I  think,  that  while  we  must  often  have  recourse 

to  letters  to  supplement  the  number  of  signs  available  for  the  ex- 
pression of  all  kinds  of  operations,  it  is  better  that  the  symbols 

expressing  the  most  fundamental  and  frequently  recurring  operations 
should  not  be  letters,  and  that  a  sign  between  the  vectors,  and,  as  it 
were,  uniting  them,  is  better  than  a  sign  before  them  in  a  case  having 
a  formal  analogy  with  multiplication.  The  case  may  be  compared 
with  that  of  addition,  for  which  a  +  /3  is  evidently  more  convenient 
than  Z(a,  /3)  or  2a/3  would  be.  Similar  considerations  will  apply  to 
the  function  written  in  quaternions  Va/3.  It  would  seem  that  we 
obtain  the  ne  plus  ultra  of  simplicity  and  convenience,  if  we  express 
the  two  functions  by  uniting  the  vectors  in  each  case  with  a  sign 
suggestive  of  multiplication.  The  particular  forms  of  the  signs  which 
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we  adopt  is  a  matter  of  minor  consequence.  In  order  to  keep  within 
the  resources  of  an  ordinary  printing  office,  I  have  used  a  dot  and  a 

cross,  which  are  already  associated  with  multiplication,  but  are  not 

needed  for  ordinary  multiplication,  which  is  best  denoted  by  the 

simple  juxtaposition  of  the  factors.  I  have  no  especial  predilection 
for  these  particular  signs.  The  use  of  the  dot  is  indeed  liable  to  the 

objection  that  it  interferes  with  its  use  as  a  separatrix,  or  instead  of  a 

parenthesis. 
If,  then,  I  have  written  a./3  and  aX/3  for  what  is  expressed  in 

quaternions  by  —  Sa/3  and  Va/3,  and  in  like  manner  V.o>  and  Vxw 
for  —  SVo>  and  VVo>  in  quaternions,  it  is  because  the  natural  develop- 

ment of  a  vector  analysis  seemed  to  lead  logically  to  some  such 
notations.  But  I  think  that  I  can  show  that  these  notations  have 

some  substantial  advantages  over  the  quaternionic  in  point  of  con- 
venience. 

Any  linear  vector  function  of  a  variable  vector  p  may  be  expressed 
in  the  form  — 

where  3? 

or  in  quaternions 

-  aS\p  -  pSjuLp  -  ySi/p  =  -  (a 

where  = 

If  we  take  the  scalar  product  of  the  vector  3>.p,  and  another  vector 
<r,  we  obtain  the  scalar  quantity 

or  in  quaternions  Sa-(j)p  =  So-(aSX  +  /3S/UL  -f  ySv)p. 

This  is  a  function  of  a-  and  of  p,  and  it  is  exactly  the  same  kind  of 
function  of  or  that  it  is  of  p,  a  symmetry  which  is  not  so  clearly 
exhibited  in  the  quaternionic  notation  as  in  the  other.  Moreover,  we 

can  write  <r.&  for  o-.(aX  +  /5/x-f  yi/).  This  represents  a  vector  which 
is  a  function  of  <r,  viz.,  the  function  conjugate  to  $.0-;  and  cr.&.p 
may  be  regarded  as  the  product  of  this  vector  and  p.  This  is  not 
so  clearly  indicated  in  the  quaternionic  notation,  where  it  would  be 

straining  things  a  little  to  call  So-0  a  vector. 
The  combinations  aX,  /3yu,  etc.,  used  above,  are  distributive  with 

regard  to  each  of  the  two  vectors,  and  may  be  regarded  as  a  kind  of 

product.  If  we  wish  to  express  everything  in  terms  of  i,  j,  and  k,  3> 
will  appear  as  a  sum  of  ii,  ij,  ik,  ji,  jj,  jk,  ki,  kj,  kk,  each  with  a 

numerical  coefficient.  These  nine  coefficients  may  be  arranged  in  a 
square,  and  constitute  a  matrix;  and  the  study  of  the  properties  of 

expressions  like  <£  is  identical  with  the  study  of  ternary  matrices. 
This  expression  of  the  matrix  as  a  sum  of  products  (which  may  be 
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extended  to  matrices  of  any  order)  affords  a  point  of  departure  from 
which  the  properties  of  matrices  may  be  deduced  with  the  utmost 
facility.  The  ordinary  matricular  product  is  expressed  by  a  dot,  as 
$.ty.  Other  important  kinds  of  multiplication  may  be  defined  by 

the  equations  — 

With  these  definitions  £<I>x  <&•<]?  will  be  the  determinant  of  3?,  and 

<l>x3?  will  be  the  conjugate  of  the  reciprocal  of  <3>  multiplied  by  twice 
the  determinant.  If  <£  represents  the  manner  in  which  vectors  are 
affected  by  a  strain,  ̂ 3>$$  will  represent  the  manner  in  which 
surfaces  are  affected,  and  £<l?x<3>:<l>  ̂ ne  manner  in  which  volumes 
are  affected.  Considerations  of  this  kind  do  not  attach  themselves  so 

naturally  to  the  notation  0  =  aSX+/3S//  +  ySi>,  nor  does  the  subject 
admit  so  free  a  development  with  this  notation,  principally  because 
the  symbol  S  refers  to  a  special  use  of  the  matrix,  and  is  very  much 
in  the  way  when  we  want  to  apply  the  matrix  to  other  uses,  or  to 
subject  it  to  various  operations. 



VIII. 

QUATERNIONS  AND  THE  AUSDEHNUNGSLEHRE. 

[Nature,  vol.  XLIV.  pp.  79-82,  May  28,  1891.] 

THE  year  1844  is  memorable  in  the  annals  of  mathematics  on  account 

of  the  first  appearance  on  the  printed  page  of  Hamilton's  Quaternions 
and  Grassmann's  Ausdehnungslehre.  The  former  appeared  in  the 
July,  October,  and  supplementary  numbers  of  the  Philosophical  Maga- 

zine, after  a  previous  communication  to  the  Royal  Irish  Academy, 
November  13,  1843.  This  communication  was  indeed  announced  to 

the  Council  of  the  Academy  four  weeks  earlier,  on  the  very  day  of 

Hamilton's  discovery  of  quaternions,  as  we  learn  from  one  of  his 
letters.  The  author  of  the  Ausdehnungslehre,  although  not  uncon- 

scious of  the  value  of  his  ideas,  seems  to  have  been  in  no  haste  to 

place  himself  on  record,  and  published  nothing  until  he  was  able 
to  give  the  world  the  most  characteristic  and  fundamental  part  of 
his  system  with  considerable  development  in  a  treatise  of  more  than 
300  pages,  which  appeared  in  August  1844. 

The  doctrine  of  quaternions  has  won  a  conspicuous  place  among  the 
various  branches  of  mathematics,  but  the  nature  and  scope  of  the 
Ausdehnungslehre,  and  its  relation  to  quaternions,  seem  to  be  still 
the  subject  of  serious  misapprehension  in  quarters  where  we  naturally 
look  for  accurate  information.  Historical  justice,  and  the  interests  of 

mathematical  science,  seem  to  require  that  the  allusions  to  the  Ausdehn- 

ungslehre in  the  article  on  "  Quaternions "  in  the  last  edition  of  the 
Encyclopedia  Britannica,  and  in  the  third  edition  of  Prof.  Tait's 
Treatise  on  Quaternions,  should  not  be  allowed  to  pass  without  protest. 

It  is  principally  as  systems  of  geometrical  algebra  that  quaternions 
and  the  Ausdehnungslehre  come  into  comparison.  To  appreciate  the 
relations  of  the  two  systems,  I  do  not  see  how  we  can  proceed  better 
than  if  we  ask  first  what  they  have  in  common,  then  what  either 
system  possesses  which  is  peculiar  to  itself.  The  relative  extent  and 
importance  of  the  three  fields,  that  which  is  common  to  the  two 

systems,  and  those  which  are  peculiar  to  each,  will  determine  the 
relative  rank  of  the  geometrical  algebras.  Questions  of  priority  can 
only  relate  to  the  field  common  to  both,  and  will  be  much  simplified 
by  having  the  limits  of  that  field  clearly  drawn. 

G.  II.  L 
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Geometrical  addition  in  three  dimensions  is  common  to  the  two 

systems,  and  seems  to  have  been  discovered  independently  both  by 
Hamilton  and  Grassmann,  as  well  as  by  several  other  persons  about 
the  same  time.  It  is  not  probable  that  any  especial  claim  for  priority 
with  respect  to  this  principle  will  be  urged  for  either  of  the  two  with 
which  we  are  now  concerned. 

The  functions  of  two  vectors  which  are  represented  in  quaternions 
by  Sa/3  and  Va/3  are  common  to  both  systems  as  published  in  1844, 

but  the  quaternion  is  peculiar  to  Hamilton's.  The  linear  vector 
function  is  common  to  both  systems  as  ultimately  developed,  although 
mentioned  only  by  Grassmann  as  early  as  1844. 

To  those  already  acquainted  with  quaternions,  the  first  question  will 
naturally  be :  To  what  extent  are  the  geometrical  methods  which  are 
usually  called  quaternionic  peculiar  to  Hamilton,  and  to  what  extent 
are  they  common  to  Grassmann  ?  This  is  a  question  which  anyone 

can  easily  decide  for  himself.  It  is  only  necessary  to  run  one's  eye 
over  the  equations  used  by  quaternionic  writers  in  the  discussion  of 
geometrical  or  physical  subjects,  and  see  how  far  they  necessarily 

involve  the  idea  of  the  quaternion,  and  how  far  they  would  be  in- 
telligible to  one  understanding  the  functions  Sa/3  and  Va/3,  but  having 

no  conception  of  the  quaternion  a/3,  or  at  least  could  be  made  so  by 
trifling  changes  of  notation,  as  by  writing  S  or  V  in  places  where 
they  would  not  affect  the  value  of  the  expressions.  For  such  a  test 
the  examples  and  illustrations  in  treatises  on  quaternions  would  be 
manifestly  inappropriate,  so  far  as  they  are  chosen  to  illustrate 
quaternionic  principles,  since  the  object  may  influence  the  form  of 
presentation.  But  we  may  use  any  discussion  of  geometrical  or 
physical  subjects,  where  the  writer  is  free  to  choose  the  form  most 
suitable  to  the  subject.  I  myself  have  used  the  chapters  and  sections 

in  Prof.  Tait's  Quaternions  on  the  following  subjects :  Geometry  of 
the  straight  line  and  plane,  the  sphere  and  cyclic  cone,  surfaces  of 
the  second  degree,  geometry  of  curves  and  surfaces,  kinematics,  statics 
and  kinetics  of  a  rigid  system,  special  kinetic  problems,  geometrical 
and  physical  optics,  electrodynamics,  general  expressions  for  the  action 
between  linear  elements,  application  of  V  to  certain  physical  analogies, 

pp.  160-371,  except  the  examples  (not  worked  out)  at  the  close  of  the 
chapters. 

Such  an  examination  will  show  that  for  the  most  part  the  methods 
of  representing  spatial  relations  used  by  quaternionic  writers  are 
common  to  the  systems  of  Hamilton  and  Grassmann.  To  an  extent 
comparatively  limited,  cases  will  be  found  in  which  the  quaternionic 
idea  forms  an  essential  element  in  the  signification  of  the  equations. 

The  question  will  then  arise  with  respect  to  the  comparatively 

limited  field  which  is  the  peculiar  property  of  Hamilton,  How  im- 
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portant  are  the  advantages  to  be  gained  by  the  use  of  the  quaternion  ? 
This  question,  unlike  the  preceding,  is  one  into  which  a  personal 
equation  will  necessarily  enter.  Everyone  will  naturally  prefer  the 
methods  with  which  he  is  most  familiar ;  but  I  think  that  it  may  be 
safely  affirmed  that  in  the  majority  of  cases  in  this  field  the  advantage 
derived  from  the  use  of  the  quaternion  is  either  doubtful  or  very 
trifling.  There  remains  a  residuum  of  cases  in  which  a  substantial 
advantage  is  gained  by  the  use  of  the  quaternionic  method.  Such 
cases,  however,  so  far  as  my  own  observation  and  experience  extend, 
are  very  exceptional.  If  a  more  extended  and  careful  inquiry  should 
show  that  they  are  ten  times  as  numerous  as  I  have  found  them,  they 
would  still  be  exceptional. 
We  have  now  to  inquire  what  we  find  in  the  Ausdehnungslehre  in 

the  way  of  a  geometrical  algebra,  that  is  wanting  in  quaternions.  In 
addition  to  an  algebra  of  vectors,  the  Ausdehnungslehre  affords  a 
system  of  geometrical  algebra  in  which  the  point  is  the  fundamental 

element,  and  which  for  convenience  I  shall  call  Grassmann's  algebra 
of  points.  In  this  algebra  we  have  first  the  addition  of  points,  or 
quantities  located  at  points,  which  may  be  explained  as  follows.  The 

equation  aA + &B + cC  +  etc.  =  eE  +/F  +  etc, 
in  which  the  capitals  denote  points,  and  the  small  letters  scalars  (or 
ordinary  algebraic  quantities),  signifies  that 

G&  +  &  +  C+  etc.  =  e+f+  etc., 

and  also  that  the  centre  of  gravity  of  the  weights  a,  b,  c,  etc.,  at  the 
points  A,  B,  C,  etc.,  is  the  same  as  that  of  the  weights  e,  f,  etc.,  at 
the  points  E,  F,  etc.  (It  will  be  understood  that  negative  weights  are 
allowed  as  well  as  positive.)  The  equation  is  thus  equivalent  to  four 
equations  of  ordinary  algebra.  In  this  Grassmann  was  anticipated  by 
Mobius  (Barycentrischer  Calcul,  1827). 
We  have  next  the  addition  of  finite  straight  lines,  or  quantities 

located  in  straight  lines  (Liniengrossen).  The  meaning  of  the 

equation  AB  +  CD  +  etc.  =  EF + GH  +  etc. 

will  perhaps  be  understood  most  readily,  if  we  suppose  that  each 
member  represents  a  system  of  forces  acting  on  a  rigid  body.  The 
equation  then  signifies  that  the  two  systems  are  equivalent.  An 
equation  of  this  form  is  therefore  equivalent  to  six  ordinary  equations. 
It  will  be  observed  that  the  Liniengrossen  AB  and  CD  are  not  simply 
vectors ;  they  have  not  merely  length  and  direction,  but  they  are  also 
located  each  in  a  given  line,  although  their  position  within  those 

lines  is  immaterial.  In  Clifford's  terminology,  AB  is  a  rotor,  AB  +  CD 
a  motor.  In  the  language  of  Prof.  Ball's  Theory  of  Screws,  AB  +  CD 
represents  either  a  twist  or  a  wrench. 
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We  have  next  the  addition  of  plane  surfaces  (Plangrossen).  The 
equation  ABC  +  DEF  +  Gm  =  JRL 

signifies  that  the  plane  JKL  passes  through  the  point  common  to  the 
planes  ABC,  DEF,  and  GHI,  and  that  the  projection  by  parallel  lines 
of  the  triangle  JKL  on  any  plane  is  equal  to  the  sum  of  the  pro- 

jections of  ABC,  DEF,  and  GHI  on  the  same  plane,  the  areas  being 
taken  positively  or  negatively  according  to  the  cyclic  order  of  the 
projected  points.  This  makes  the  equation  equivalent  to  four  ordinary 
equations. 

Finally,  we  have  the  addition  of  volumes,  as  in  the  equation 
ABCD+EFGH  =  LTKL, 

where  there  is  nothing  peculiar,  except  that  each  term  represents  the 
six-fold  volume  of  the  tetrahedron,  and  is  to  be  taken  positively  or 
negatively  according  to  the  relative  position  of  the  points. 
We  have  also  multiplications  as  follows:  The  line  (Liniengrosse) 

AB  is  regarded  as  the  product  of  the  points  A  and  B.  The  Plangrosse 
ABC,  which  represents  the  double  area  of  the  triangle,  is  regarded  as 
the  product  of  the  three  points  A,  B,  and  C,  or  as  the  product  of  the 
line  AB  and  the  point  C,  or  of  BC  and  A,  or  indeed  of  BA  and  C. 
The  volume  ABCD,  which  represents  six  times  the  tetrahedron,  is 
regarded  as  the  product  of  the  points  A,  B,  C,  and  D,  or  as  the 
product  of  the  point  A  and  the  Plangrosse  BCD,  or  as  the  product  of 
the  lines  AB  and  BC,  etc.,  etc. 

This  does  not  exhaust  the  wealth  of  multiplicative  relations  which 
Grassmann  has  found  in  the  very  elements  of  geometry.  The 
following  products  are  called  regressive,  as  distinguished  from  the 
progressive,  which  have  been  described.  The  product  of  the  Plan- 

grossen ABC  and  DEF  is  a  part  of  the  line  in  which  the  planes  ABC 
and  DEF  intersect,  which  is  equal  in  numerical  value  to  the  product 
of  the  double  areas  of  the  triangles  ABC  and  DEF  multiplied  by  the 
sine  of  the  angle  made  by  the  planes.  The  product  of  the  Linien- 

grosse AB  and  the  Plangrosse  CDE  is  the  point  of  intersection  of  the 
line  and  the  plane  with  a  numerical  coefficient  representing  the 
product  of  the  length  of  the  line  and  the  double  area  of  the  triangle 
multiplied  by  the  sine  of  the  angle  made  by  the  line  and  the  plane. 
The  product  of  three  Plangrossen  is  consequently  the  point  common 
to  the  three  planes  with  a  certain  numerical  coefficient.  In  plane 
geometry  we  have  a  regressive  product  of  two  Liniengrossen,  which 
gives  the  point  of  intersection  of  the  lines  with  a  certain  numerical 
coefficient. 

The  fundamental  operations  relating  to  the  point,  line,  and  plane 
are  thus  translated  into  analysis  by  multiplications.  The  immense 
flexibility  and  power  of  such  an  analysis  will  be  appreciated  by 
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anyone  who  considers  what  generalized  multiplication  in  connection 
with  additive  relations  has  done  in  other  fields,  as  in  quaternions,  or 
in  the  theory  of  matrices,  or  in  the  algebra  of  logic.  For  a  single 
example,  if  we  multiply  the  equation 

AB  +  CD+etc.  =  EF  +  GH  +  etc. 

by  PQ  (P  and  Q  being  any  two  points),  we  have 

ABPQ  +  CDPQ  +  etc.  =  EFPQ  +  GHPQ  +  etc., 

which  will  be  recognised  as  expressing  an  important  theorem  of 
statics. 

The  field  in  which  Grassmann's  algebra  of  points,  as  distinguished 
from  his  algebra  of  vectors,  finds  its  especial  application  and  utility 
is  nearly  coincident  with  that  in  which,  when  we  use  the  methods 
of  ordinary  algebra,  tetrahedral  or  anharmonic  coordinates  are  more 

appropriate  than  rectilinear.  In  fact,  Grassmann's  algebra  of  points 
may  be  regarded  as  the  application  of  the  methods  of  multiple  algebra 
to  the  notions  connected  with  tetrahedral  coordinates,  just  as  his  or 

Hamilton's  algebra  of  vectors  may  be  regarded  as  the  application  of 
the  methods  of  multiple  algebra  to  the  notions  connected  with  recti- 

linear coordinates.  These  methods,  however,  enrich  the  field  to 

which  they  are  applied  with  new  notions.  Thus  the  notion  of  the 
coordinates  of  a  line  in  space,  subsequently  introduced  by  Plticker, 
was  first  given  in  the  Ausdehnungslehre  of  1844.  It  should  also  be 
observed  that  the  utility  of  a  multiple  algebra  when  it  takes  the  place 
of  an  ordinary  algebra  of  four  coordinates,  is  very  much  greater 
than  when  it  takes  the  place  of  three  coordinates,  for  the  same  reason 
that  a  multiple  algebra  taking  the  place  of  three  coordinates  is  very 

much  more  useful  than  one  taking  the  place  of  two.  Grassmann's 
algebra  of  points  will  always  command  the  admiration  of  geometers 
and  analysts,  and  furnishes  an  instrument  of  marvellous  power  to  the 
former,  and  in  its  general  form,  as  applicable  to  space  of  any  number 
of  dimensions,  to  the  latter.  To  the  physicist  an  algebra  of  points  is 
by  no  means  so  indispensable  an  instrument  as  an  algebra  of  vectors. 

Grassmann's  algebra  of  vectors,  which  we  have  described  as  co- 
incident with  a  part  of  Hamilton's  system,  is  not  really  anything 

separate  from  his  algebra  of  points,  but  constitutes  a  part  of  it,  the 
vector  arising  when  one  point  is  subtracted  from  another.  Yet  it 
constitutes  a  whole,  complete  in  itself,  and  we  may  separate  it  from 
the  larger  system  to  facilitate  comparison  with  the  methods  of 
Hamilton. 

We  have,  then,  as  geometrical  algebras  published  in  1844,  an 
algebra  of  vectors  common  to  Hamilton  and  Grassmann,  augmented 

on  Hamilton's  side  by  the  quaternion,  and  on  Grassmann's  by 
his  algebra  of  points.  This  statement  should  be  made  with  the 
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reservation  that  the  addition   both   of   vectors  and  of  points  had 
been  given  by  earlier  writers. 

In  both  systems  as  finally  developed  we  have  the  linear  vector 
function,  the  theory  of  which  is  identical  with  that  of  strains  and 

rotations.  In  Hamilton's  system  we  have  also  the  linear  quaternion 
function,  and  in  Grassmann's  the  linear  function  applied  to  the 
quantities  of  his  algebra  of  points.  This  application  gives  those 
transformations  in  which  projective  properties  are  preserved,  the 
doctrine  of  reciprocal  figures  or  principle  of  duality,  etc.  (Grass- 

mann's theory  of  the  linear  function  is,  indeed,  broader  than  this, 
being  coextensive  with  the  theory  of  matrices;  but  we  are  here 
considering  only  the  geometrical  side  of  the  theory.) 

In  his  earliest  writings  on  quaternions,  Hamilton  does  not  discuss 
the  linear  function.  In  his  Lectures  on  Quaternions  (1853),  he  treats 
of  the  inversion  of  the  linear  vector  function,  as  also  of  the  linear 
quaternion  function,  and  shows  how  to  find  the  latent  roots  of  the 
vector  function,  with  the  corresponding  axes  for  the  case  of  real  and 
unequal  roots.  He  also  gives  a  remarkable  equation,  the  symbolic 
cubic,  which  the  functional  symbol  must  satisfy.  This  equation  is 

a  particular  case  of  that  which  is  given  in  Prof.  Cayley's  classical 
Memoir  on  the  Theory  of  Matrices  (1858),  and  which  is  called  by 

Prof.  Sylvester  the  Hamilton- Cayley  equation.  In  his  Elements  of 
Quaternions  (1866),  Hamilton  extends  the  symbolic  equation  to  the 
quaternion  function. 

In  Grassmann,  although  the  linear  function  is  mentioned  in  the 
first  Ausdehnungslehre,  we  do  not  find  so  full  a  discussion  of  the 
subject  until  the  second  Ausdehnungslehre  (1862),  where  he  discusses 
the  latent  roots  and  axes,  or  what  corresponds  to  axes  in  the  general 
theory,  the  whole  discussion  relating  to  matrices  of  any  order.  The 
more  difficult  cases  are  included,  as  that  of  a  strain  in  which  all 
the  roots  are  real,  but  there  is  only  one  axis  or  unchanged  direction. 

On  the  formal  side  he  shows  how  a  linear  function  may  be  repre- 
sented by  a  quotient  or  sum  of  quotients,  and  by  a  sum  of  products, 

Luckenausdruck. 

More  important,  perhaps,  than  the  question  when  this  or  that 
theorem  was  first  published  is  the  question  where  we  first  find  those 
notions  and  notations  which  give  the  key  to  the  algebra  of  linear 
functions,  or  the  algebra  of  matrices,  as  it  is  now  generally  called. 

In  vol.  xxxi,  p.  35,  of  Nature,  Prof.  Sylvester  speaks  of  Cayley's 
"ever-memorable"  Memoir  on  Matrices  as  constituting  "a  second 
birth  of  Algebra,  its  avatar  in  a  new  and  glorified  form,"  and  refers 
to  a  passage  in  his  Lectures  on  Universal  Algebra,  from  which,  I 
think,  we  are  justified  in  inferring  that  this  characterization  of  the 
memoir  is  largely  due  to  the  fact  that  it  is  there  shown  how  matrices 
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may  be  treated  as  extensive  quantities,  capable  of  addition  as  well  as 
of  multiplication.  This  idea,  however,  is  older  than  the  memoir  of 
1858.  The  Luckenausdruck,  by  which  the  matrix  is  expressed  as  a 
sum  of  a  kind  of  products  (luckenhaltig,  or  open),  is  described  in  a  note 
at  the  end  of  the  first  Ausdehnungslehre.  There  we  have  the  matrix 
given  not  only  as  a  sum,  but  as  a  sum  of  products,  introducing  a 

multiplicative  relation  entirely  different  from  the  ordinary  multipli- 
cation of  matrices,  and  hardly  less  fruitful,  but  not  lying  nearly  so 

near  the  surface  as  the  relations  to  which  Prof.  Sylvester  refers.  The 

key  to  the  theory  of  matrices  is  certainly  given  in  the  first  Ausdehn- 
ungslehre, and  if  we  call  the  birth  of  matricular  analysis  the  second 

birth  of  algebra,  we  can  give  no  later  date  to  this  event  than  the 
memorable  year  of  1844. 

The  immediate  occasion  of  this  communication  is  the  following 

passage  in  the  preface  to  the  third  edition  of  Prof.  Tait's  Quaternions : 
"  Hamilton  not  only  published  his  theory  complete,  the  year  before 

the  first  (and  extremely  imperfect)  sketch  of  the  Ausdehnungslehre 
appeared ;  but  had  given  ten  years  before,  in  his  protracted  study  of 

Sets,  the  very  processes  of  external  and  internal  multiplication  (corre- 
sponding to  the  Vector  and  Scalar  parts  of  a  product  of  two  vectors) 

which  have  been  put  forward  as  specially  the  property  of  Grassmann." 
For  additional  information  we  are  referred  to  art.  "Quaternions," 

Encyc.  Brit.,  where  we  read  respecting  the  first  Ausdehnungslehre : 

"  In  particular  two  species  of  multiplication  ('  inner '  and  '  outer ')  of 
directed  lines  in  one  plane  were  given.  The  results  of  these  two 
kinds  of  multiplication  correspond  respectively  to  the  numerical  and 

the  directed  parts  of  Hamilton's  quaternion  product.  But  Grassmann 
distinctly  states  in  his  preface  that  he  had  not  had  leisure  to  extend 
his  method  to  angles  in  space.  .  .  .  But  his  claims,  however  great 
they  may  be,  can  in  no  way  conflict  with  those  of  Hamilton,  whose 

mode  of  multiplying  couples  (in  which  the  '  inner '  and  '  outer '  multi- 
plication are  essentially  involved)  was  produced  in  1833,  and  whose 

quaternion  system  was  completed  and  published  before  Grassmann  had 
elaborated  for  press  even  the  rudimentary  portions  of  his  own  system, 
in  which  the  veritable  difficulty  of  the  whole  subject,  the  application 

to  angles  in  space,  had  not  even  been  attacked." 
I  shall  leave  the  reader  to  judge  of  the  accuracy  of  the  general 

terms  used  in  these  passages  in  comparing  the  first  Ausdehnungslehre 

with  Hamilton's  system  as  published  in  1843  or  1844.  The  specific 
statements  respecting  Hamilton  and  Grassmann  require  an  answer. 

It  must  be  Hamilton's  Theory  of  Conjugate  Functions  or  Algebraic 
Couples  (read  to  the  Eoyal  Irish  Academy,  1833  and  1835,  and 
published  in  vol.  xvii  of  the  Transactions)  to  which  reference  is  made 

in  the  statements  concerning  his  "protracted  study  of  Sets"  and 
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"mode  of  multiplying  couples"  But  I  cannot  find  anything  like 
Grassmann's  external  or  internal  multiplication  in  this  memoir,  which 
is  concerned,  as  the  title  pretty  clearly  indicates,  with  the  theory  of 
the  complex  quantities  of  ordinary  algebra. 

It  is  difficult  to  understand  the  statements  respecting  the  Ausdehn- 

ungslehre,  which  seem  to  imply  that  Grassmann's  two  kinds  of 
multiplication  were  subject  to  some  kind  of  limitation  to  a  plane. 
The  external  product  is  not  limited  in  the  first  Ausdehnungslehre  even 
to  three  dimensions.  The  internal,  which  is  a  comparatively  simple 
matter,  is  mentioned  in  the  first  Ausdehnungslehre  only  in  the  preface, 
where  it  is  defined,  and  placed  beside  the  external  product  as  relating 
to  directed  lines.  There  is  not  the  least  suggestion  of  any  difference 
in  the  products  in  respect  to  the  generality  of  their  application  to 
vectors. 

The  misunderstanding  seems  to  have  arisen  from  the  following 

sentence  in  Grassmann's  preface  :  "  And  in  general,  in  the  consideration 
of  angles  in  space,  difficulties  present  themselves,  for  the  complete 

(allseitig)  solution  of  which  I  have  not  yet  had  sufficient  leisure." 
It  is  not  surprising  that  Grassmann  should  have  required  more  time 
for  the  development  of  some  parts  of  his  system,  when  we  consider 
that  Hamilton,  on  his  discovery  of  quaternions,  estimated  the  time 
which  he  should  wish  to  devote  to  them  at  ten  or  fifteen  years  (see 
his  letter  to  Prof.  Tait  in  the  North  British  Review  for  September 
1866),  and  actually  took  several  years  to  prepare  for  the  press  as 
many  pages  as  Grassmann  had  printed  in  1844.  But  any  speculation 
as  to  the  questions  which  Grassmann  may  have  had  principally  in 

mind  in  the  sentence  quoted,  and  the  particular  nature  of  the  diffi- 
culties which  he  found  in  them,  however  interesting  from  other  points 

of  view,  seems  a  very  precarious  foundation  for  a  comparison  of  the 
systems  of  Hamilton  and  Grassmann  as  published  in  the  years 
1843-44.  Such  a  comparison  should  be  based  on  the  positive  evidence 
of  doctrines  and  methods  actually  published. 

Such  a  comparison  I  have  endeavoured  to  make,  or  rather  to 
indicate  the  basis  on  which  it  may  be  made,  so  far  as  systems  of 
geometrical  algebra  are  concerned.  As  a  contribution  to  analysis  in 

general,  I  suppose  that  there  is  no  question  that  Grassmann's  system 
is  of  indefinitely  greater  extension,  having  no  limitation  to  any 
particular  number  of  dimensions. 



IX. 

QUATERNIONS  AND  THE  ALGEBRA  OF  VECTORS. 

[Nature,  vol.  XLVII.  pp.  463,  464,  Mar.  16,  1893.] 

IN  a  recent  number  of  Nature  [vol.  xlvii,  p.  151],  Mr.  McAulay 
puts  certain  questions  to  Mr.  Heaviside  and  to  me,  relating  to  a 
subject  of  such  importance  as  to  justify  an  answer  somewhat  at 
length.  I  cannot  of  course  speak  for  Mr.  Heaviside,  although  I 
suppose  that  his  views  are  not  very  different  from  mine  on  the  most 
essential  points,  but  even  if  he  shall  have  already  replied  before  this 
letter  can  appear,  I  shall  be  glad  to  add  whatever  of  force  may  belong 
to  independent  testimony. 

Mr.  McAulay  asks :  "  What  is  the  first  duty  of  the  physical  vector 
analyst  qud  physical  vector  analyst  ? "  The  answer  is  not  doubtful. 
It  is  to  present  the  subject  in  such  a  form  as  to  be  most  easily 
acquired,  and  most  useful  when  acquired. 

In  regard  to  the  slow  progress  of  such  methods  towards  recognition 
and  use  by  physicists  and  others,  which  Mr.  McAulay  deplores,  it  does 
not  seem  possible  to  impute  it  to  any  want  of  uniformity  of  notation. 
I  doubt  whether  there  is  any  modern  branch  of  mathematics  which 

has  been  presented  for  so  long  a  time  with  a  greater  uniformity  of 
notation  than  quaternions. 

What,  then,  is  the  cause  of  the  fact  which  Mr.  McAulay  and  all 
of  us  deplore  ?  It  is  not  far  to  seek.  We  need  only  a  glance  at  the 
volumes  in  which  Hamilton  set  forth  his  method.  No  wonder  that 

physicists  and  others  failed  to  perceive  the  possibilities  of  simplicity, 
perspicuity,  and  brevity  which  were  contained  in  a  system  presented 
to  them  in  ponderous  volumes  of  800  pages.  Perhaps  Hamilton  may 
have  intended  these  volumes  as  a  sort  of  thesaurus,  and  we  should 

look  to  his  shorter  papers  for  a  compact  account  of  his  method.  But 
if  we  turn  to  his  earlier  papers  on  Quaternions  in  the  Philosophical 
Magazine,  in  which  principally  he  introduced  the  subject  to  the 

notice  of  his  contemporaries,  we  find  them  entitled  "  On  Quaternions; 

or  on  a  New  System  of  Imaginaries  in  Algebra,"  and  in  them  we 
find  a  great  deal  about  imaginaries,  and  very  little  of  a  vector 
analysis.  To  show  how  slowly  the  system  of  vector  analysis 
developed  itself  in  the  quaternionic  nidus,  we  need  only  say  that 
the  symbols  S,  Y,  and  V  do  not  appear  until  two  or  three  years 
after  the  discovery  of  quaternions.  In  short,  it  seems  to  have  been 
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only  a  secondary  object  with  Hamilton  to  express  the  geometrical 
relations  of  vectors, — secondary  in  time,  and  also  secondary  in  this, 
that  it  was  never  allowed  to  give  shape  to  his  work. 

But  this  relates  to  the  past.  In  regard  to  the  present  status,  I  beg 
leave  to  quote  what  Mr.  McAulay  has  said  on  another  occasion  (see 

Phil.  Mag.,  June  1892) : — "  Quaternions  differ  in  an  important  respect 
from  other  branches  of  mathematics  that  are  studied  by  mathe- 

maticians after  they  have  in  the  course  of  years  of  hard  labour  laid 
the  foundation  of  all  their  future  work.  In  nearly  all  cases  these 
branches  are  very  properly  so  called.  They  each  grow  out  of  a 
definite  spot  of  the  main  tree  of  mathematics,  and  derive  their 
sustenance  from  the  sap  of  the  trunk  as  a  whole.  But  not  so  with 
quaternions.  To  let  these  grow  in  the  brain  of  a  mathematician, 
he  must  start  from  the  seed  as  with  the  rest  of  his  mathematics 

regarded  as  a  whole.  He  cannot  graft  them  on  his  already  flourishing 
tree,  for  they  will  die  there.  They  are  independent  plants  that 

require  separate  sowing  and  the  consequent  careful  tending." 
Can  we  wonder  that  mathematicians,  physicists,  astronomers,  and 

geometers  feel  some  doubt  as  to  the  value  or  necessity  of  something 
so  separate  from  all  other  branches  of  learning?  Can  that  be  a 
natural  treatment  of  the  subject  which  has  no  relations  to  any  other 
method,  and,  as  one  might  suppose  from  reading  some  treatises,  has 
only  occurred  to  a  single  man  ?  Or,  at  best,  is  it  not  discouraging 
to  be  told  that  in  order  to  use  the  quaternionic  method,  one  must 
give  up  the  progress  which  he  has  already  made  in  the  pursuit  of 
his  favourite  science,  and  go  back  to  the  beginning  and  start  anew 
on  a  parallel  course  ? 

1  believe,  however,  that  if  what  I  have  quoted  is  true  of  vector 
methods,  it  is  because  there  is  something  fundamentally  wrong  in 
the  presentation  of  the  subject.  Of  course,  in  some  sense  and  to  some 
extent  it  is  and  must  be  true.  Whatever  is  special,  accidental,  and 
individual,  will  die,  as  it  should;  but  that  which  is  universal  and 
essential  should  remain  as  an  organic  part  of  the  whole  intellectual 
acquisition.  If  that  which  is  essential  dies  with  the  accidental,  it 
must  be  because  the  accidental  has  been  given  the  prominence  which 
belongs  to  the  essential.  For  myself,  I  should  preach  no  such  doctrine 
to  those  whom  I  wish  to  convert  to  the  true  faith. 

In  Italy,  they  say,  all  roads  lead  to  Rome.  In  mechanics,  kine- 
matics, astronomy,  physics,  all  study  leads  to  the  consideration  of 

certain  relations  and  operations.  These  are  the  capital  notions ;  these 
should  have  the  leading  parts  in  any  analysis  suited  to  the  subject. 

If  I  wished  to  attract  the  student  of  any  of  these  sciences  to  an 
algebra  for  vectors,  I  should  tell  him  that  the  fundamental  notions 

of  this  algebra  were  exactly  those  with  which  he  was  daily  con- 
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versant.  I  should  tell  him  that  a  vector  algebra  is  so  far  from  being 

any  one  man's  production  that  half  a  century  ago  several  were  already 
working  toward  an  algebra  which  should  be  primarily  geometrical  and 
not  arithmetical,  and  that  there  is  a  remarkable  similarity  in  the  results 
to  which  these  efforts  led  (see  Proc.  A.A.A.8.  for  1886,  pp.  37,  ff.)  [this 
vol.  p.  91,  ff.].  I  should  call  his  attention  to  the  fact  that  Lagrange 
and  Gauss  used  the  notation  (a/3y)  to  denote  precisely  the  same  as 
Hamilton  by  his  S(a/3y),  except  that  Lagrange  limited  the  expression 
to  unit  vectors,  and  Gauss  to  vectors  of  which  the  length  is  the  secant 
of  the  latitude,  and  I  should  show  him  that  we  have  only  to  give  up 
these  limitations,  and  the  expression  (in  connection  with  the  notion 
of  geometrical  addition)  is  endowed  with  an  immense  wealth  of 
transformations.  I  should  call  his  attention  to  the  fact  that  the 

notation  [?V2],  universal  in  the  theory  of  orbits,  is  identical  with 

Hamilton's  V(/o1/o2),  except  that  Hamilton  takes  the  area  as  a  vector, 
i.e.,  includes  the  notion  of  the  direction  of  the  normal  to  the  plane  of 
the  triangle,  and  that  with  this  simple  modification  (and  with  the 
notion  of  geometrical  addition  of  surfaces  as  well  as  of  lines)  this 

expression  becomes  closely  connected  with  the  first-mentioned,  and  is 
not  only  endowed  with  a  similar  capability  for  transformation,  but 
enriches  the  first  with  new  capabilities.  In  fact,  I  should  tell  him 
that  the  notions  which  we  use  in  vector  analysis  are  those  which  he 
who  reads  between  the  lines  will  meet  on  every  page  of  the  great 
masters  of  analysis,  or  of  those  who  have  probed  deepest  the  secrets  of 
nature,  the  only  difference  being  that  the  vector  analyst,  having  regard 
to  the  weakness  of  the  human  intellect,  does  as  the  early  painters 

who  wrote  beneath  their  pictures  "  This  is  a  tree,"  "  This  is  a  horse." 
I  cannot  attach  quite  so  much  importance  as  Mr.  McAulay  to 

uniformity  of  notation.  That  very  uniformity,  if  it  existed  among 
those  who  use  a  vector  analysis,  would  rather  obscure  than  reveal 
their  connection  with  the  general  course  of  modern  thought  in 
mathematics  and  physics.  There  are  two  ways  in  which  we  may 
measure  the  progress  of  any  reform.  The  one  consists  in  counting 
those  who  have  adopted  the  shibboleth  of  the  reformers;  the  other 
measure  is  the  degree  in  which  the  community  is  imbued  with  the 
essential  principles  of  the  reform.  I  should  apply  the  broader 
measure  to  the  present  case,  and  do  not  find  it  quite  so  bad  as 
Mr.  McAulay  does. 

Yet  the  question  of  notations,  although  not  the  vital  question,  is 
certainly  important,  and  I  assure  Mr.  McAulay  that  reluctance  to 
make  unnecessary  innovations  in  notation  has  been  a  very  powerful 
motive  in  restraining  me  from  publication.  Indeed  my  pamphlet  on 
Vector  Analysis,  which  has  excited  the  animadversion  of  quater- 
nionists,  was  never  formally  published,  although  rather  widely 
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distributed,  so  long  as  I  had  copies  to  distribute,  among  those  who 
I  thought  might  be  interested  in  the  subject.  I  may  say,  however, 
since  I  am  called  upon  to  defend  my  position,  that  I  have  found 
the  notations  of  that  pamphlet  more  flexible  than  those  generally 
used.  Mr.  McAulay,  at  least,  will  understand  what  I  mean  by  this, 
if  I  say  that  some  of  the  relations  which  he  has  thought  of  sufficient 
importance  to  express  by  means  of  special  devices  (see  Proc,  R.S.E. 
for  1890-91),  may  be  expressed  at  least  as  briefly  in  the  notations 
which  I  have  used,  and  without  special  devices.  But  I  should  not 
have  been  satisfied  for  the  purposes  of  my  pamphlet  with  any 
notation  which  should  suggest  even  to  the  careless  reader  any  con- 

nection with  the  notion  of  the  quaternion.  For  I  confess  that  one 
of  my.  objects  was  to  show  that  a  system  of  vector  analysis  does  not 
require  any  support  from  the  notion  of  the  quaternion,  or,  1  may 
add,  of  the  imaginary  in  algebra. 

I  should  hardly  dare  to  express  myself  with  so  much  freedom,  if 
I  could  not  shelter  myself  behind  an  authority  which  will  not  be 

questioned. 
I  do  not  see  that  I  have  done  anything  very  different  from  what 

the  eminent  mathematician  upon  whom  Hamilton's  mantle  has  fallen 
has  been  doing,  it  would  seem,  unconsciously.  Contrast  the  system  of 

quaternions,  which  he  has  described  in  his  sketch  of  Hamilton's  life 
and  work  in  the  North  British  Review  for  September,  1866,  with  the 

system  which  he  urges  upon  the  attention  of  physicists  in  the  Philo- 
sophical Magazine  in  1890.  In  1866  we  have  a  great  deal  about 

imaginaries,  and  nearly  as  much  about  the  quaternion.  In  1890  we 
have  nothing  about  imaginaries,  and  little  about  the  quaternion. 
Prof.  Tait  has  spoken  of  the  calculus  of  quaternions  as  throwing  off 
in  the  course  of  years  its  early  Cartesian  trammels.  I  wonder  that 
he  does  not  see  how  well  the  progress  in  which  he  has  led  may  be 
described  as  throwing  off  the  yoke  of  the  quaternion.  A  characteristic 
example  is  seen  in  the  use  of  the  symbol  V.  Hamilton  applies  this  to 
a  vector  to  form  a  quaternion,  Tait  to  form  a  linear  vector  function. 
But  while  breathing  a  new  life  into  the  formulae  of  quaternions, 
Prof.  Tait  stands  stoutly  by  the  letter. 
Now  I  appreciate  and  admire  the  generous  loyalty  toward  one 

whom  he  regards  as  his  master,  which  has  always  led  Prof.  Tait  to 
minimise  the  originality  of  his  own  work  in  regard  to  quaternions, 
and  write  as  if  everything  was  contained  in  the  ideas  which  flashed 
into  the  mind  of  Hamilton  at  the  classic  Brougham  Bridge.  But  not 
to  speak  of  other  claims  of  historical  justice,  we  owe  duties  to  our 
scholars  as  well  as  to  our  teachers,  and  the  world  is  too  large,  and  the 
current  of  modern  thought  is  too  broad,  to  be  confined  by  the  ipse 
dixit  even  of  a  Hamilton. 
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[Nature,  vol.  XLVIII.  pp.  364-367,  Aug.  17,  1893.] 

IN  a  paper  by  Prof.  C.  G.  Knott  on  "  Recent  Innovations  in  Vector 

Theory,"  of  which  an  abstract  has  been  given  in  Nature  (vol.  xlvii, 
pp.  590-593;  see  also  a  minor  abstract  on  p.  287),  the  doctrine  that 
the  quaternion  affords  the  only  sufficient  and  proper  basis  for  vector 
analysis  is  maintained  by  arguments  based  so  largely  on  the  faults 
and  deficiencies  which  the  author  has  found  in  my  pamphlet,  Elements 
of  Vector  Analysis,  as  to  give  to  such  faults  an  importance  which 
they  would  not  otherwise  possess,  and  to  make  some  reply  from  me 

necessary,  if  I  would  not  discredit  the  cause  of  non-quaternionic 
vector  analysis.  Especially  is  this  true  in  view  of  the  warm  com- 

mendation and  endorsement  of  the  paper,  by  Prof.  Tait,  which 
appeared  in  Nature  somewhat  earlier  (p.  225). 

The  charge  which  most  requires  a  reply  is  expressed  most  distinctly 

in  the  minor  abstract,  viz.,  "that  in  the  development  of  his  dyadic 
notation,  Prof.  Gibbs,  being  forced  to  bring  the  quaternion  in,  logically 

condemned  his  own  position."  This  was  incomprehensible  to  me  until 
I  received  the  original  paper,  where  I  found  the  charge  specified  as 

follows:  "Although  Gibbs  gets  over  a  good  deal  of  ground  without 
the  explicit  recognition  of  the  complete  product,  which  is  the  difference 

of  his  'skew'  and  'direct'  products,  yet  even  he  recognises  in  plain 
language  the  versorial  character  of  a  vector,  brings  in  the  quaternion 
whose  vector  is  the  difference  of  a  linear  vector  function  and  its 

conjugate,  and  does  not  hesitate  to  use  the  accursed  thing  itself  in 

certain  line,  surface,  and  volume  integrals"  (Proc.  R.S.E.,  Session 
1892-3,  p.  236).  These  three  specifications  I  shall  consider  in  their 
inverse  order,  premising,  however,  that  the  epitheta  ornantia  are 

entirely  my  critic's. 
The  last  charge  is  due  entirely  to  an  inadvertence.  The  integrals 

referred  to  are  those  given  at  the  close  of  the  major  abstract  in 
Nature  (p.  593).  My  critic,  in  his  original  paper,  states  quite  correctly 
that,  according  to  my  definitions  and  notations,  they  should  represent 
dyadics.  He  multiplies  them  into  a  vector,  introducing  the  vector 
under  the  integral  sign,  as  is  perfectly  proper,  provided,  of  course, 
that  the  vector  is  constant.  But  failing  to  observe  this  restriction, 
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evidently  through  inadvertence,  and  finding  that  the  resulting 
equations  (thus  interpreted)  would  not  be  true,  he  concludes  that  I 
must  have  meant  something  else  by  the  original  equations.  Now, 
these  equations  will  hold  if  interpreted  in  the  quaternionic  sense,  as  is, 
indeed,  a  necessary  consequence  of  their  holding  in  the  dyadic  sense, 
although  the  converse  would  not  be  true.  My  critic  was  thus  led, 
in  consequence  of  the  inadvertence  mentioned,  to  suppose  that  I  had 
departed  from  my  ordinary  usage  and  my  express  definitions,  and 
had  intended  the  products  in  these  integrals  to  be  taken  in  the 
quaternionic  sense.  This  is  the  sole  ground  for  the  last  charge. 

The  second  charge  evidently  relates  to  the  notations  3?s  and  $x  (see 
Nature,  vol.  xlvii,  p.  592).  It  is  perfectly  true  that  I  have  used  a 
scalar  and  a  vector  connected  with  the  linear  vector  operator,  which, 
if  combined,  would  form  a  quaternion.  I  have  not  thus  combined 
them.  Perhaps  Prof.  Knott  will  say  that  since  I  use  both  of  them  it 
matters  little  whether  I  combine  them  or  not.  If  so  I  heartily  agree 
with  him. 

The  first  charge  is  a  little  vague.  I  certainly  admit  that  vectors 
may  be  used  in  connection  with  and  to  represent  rotations  I  have  no 
objection  to  calling  them  in  such  cases  versorial.  In  that  sense 
Lagrange  and  Poinsot,  for  example,  used  versorial  vectors.  But  what 
has  this  to  do  with  quaternions  ?  Certainly  Lagrange  and  Poinsot 
were  not  quaternionists. 

The  passage  in  the  major  abstract  in  Nature  which  most  distinctly 
charges  me  with  the  use  of  the  quaternion  is  that  in  which  a  certain 
expression  which  I  use  is  said  to  represent  the  quaternion  operator 

q(  )q~1  (vol.  xlvii,  p.  592).  It  would  be  more  accurate  to  say  that 
my  expression  and  the  quaternionic  expression  represent  the  same 
operator.  Does  it  follow  that  I  have  used  a  quaternion  ?  Not  at  alL 
A  quaternionic  expression  may  represent  a  number.  Does  everyone 
who  uses  any  expression  for  that  number  use  quaternions  ?  A 
quaternionic  expression  may  represent  a  vector.  Does  everyone  who 
uses  any  expression  for  that  vector  use  quaternions  ?  A  quaternionic 
expression  may  represent  a  linear  vector  operator.  If  I  use  an 

expression  for  that  linear  vector  operator  do  I  therefore  use  quater- 
nions ?  My  critic  is  so  anxious  to  prove  that  I  use  quaternions  that 

he  uses  arguments  which  would  prove  that  quaternions  were  in 
common  use  before  Hamilton  was  born. 

So  much  for  the  alleged  use  of  the  quaternion  in  my  pamphlet- 
Let  us  now  consider  the  faults  and  deficiencies  which  have  been  found 

therein  and  attributed  to  the  want  of  the  quaternion.  The  most 
serious  criticism  in  this  respect  relates  to  certain  integrating  operators,, 
which  Prof.  Tait  unites  with  Prof.  Knott  in  ridiculing.  As  definitions 
are  wearisome,  I  will  illustrate  the,  use  of  the  terms  and  notations 
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which  I  have  used  by  quoting  a  sentence  addressed  to   the   British 
Association  a  few  years  ago.     The  speaker  was  Lord  Kelvin. 

"  Helmholtz  first  solved  the  problem — Given  the  spin  in  any  case 
of  liquid  motion,  to  find  the  motion.  His  solution  consists  in  finding 
the  potentials  of  three  ideal  distributions  of  gravitational  matter 

having  densities  respectively  equal  to  I/TT  of  the  rectangular  com- 
ponents of  the  given  spin;  and,  regarding  for  a  moment  these 

potentials  as  rectangular  components  of  velocity  in  a  case  of  liquid 
motion,  taking  the  spin  in  this  motion  as  the  velocity  in  the  required 

motion  "  (Nature,  vol.  xxxviii,  p.  569). 
In  the  terms  and  notations  of  my  pamphlet  the  problem  and 

solution  may  be  thus  expressed  : 

Given  the  curl  in  any  case  of  liquid  motion — to  find  the  motion. 
The  required  velocity  is  l/4?r  of  the  curl  of  the  potential  of  the 

given  curl. 

Or,  more  briefly — The  required  velocity  is  j-  of  the  Laplacian 
of  the  given  curl. 

Or  in  purely  analytical  form — Required  w  in  terms  of  Vx«,  when 
V.o>  =  0. 

Solution :          w=  !/47rVxPot  Vx<o  =  1/4-Tr  Lap  Vxo>. 
(The  Laplacian  expresses  the  result  of  an  operation  like  that  by 

which  magnetic  force  is  calculated  from  electric  currents  distributed 
in  space.  This  corresponds  to  the  second  form  in  which  Helmholtz 
expressed  his  result.) 

To  show  the  incredible  rashness  of  my  critics,  I  will  remark  that 
these  equations  are  among  those  of  which  it  is  said  in  the  original 

paper  (Proc.  RS.E.,  Session  1892-93,  p.  225),  "  Gibbs  gives  a  good 

many  equations — theorems  I  suppose  they  ape  at  being."  I  may  add 
that  others  of  the  equations  thus  characterized  are  associated  with 
names  not  less  distinguished  than  that  of  Helmholtz.  But  that  to 
which  I  wish  especially  to  call  attention  is  that  the  terms  and 
notations  in  question  express  exactly  the  notions  which  physicists 
want  to  use. 

But  we  are  told  (Nature,  vol.  xlvii,  p.  287)  that  these  integrating 
operators  (Pot,  Lap)  are  best  expressed  as  inverse  functions  of  V. 
To  see  how  utterly  inadequate  the  Nabla  would  have  been  to  express 
the  idea,  we  have  only  to  imagine  the  exclamation  points  which  the 
members  of  the  British  Association  would  have  looked  at  each  other 

if  the  distinguished  speaker  had  said : 

Helmholtz  first  solved  the  problem — Given  the  Nabla  of  the  velocity 
in  any  case  of  liquid  motion,  to  find  the  velocity.  His  solution  was 
that  the  velocity  was  the  Nabla  of  the  inverse  square  of  Nabla  of 
the  Nabla  of  the  velocity.  Or,  that  the  velocity  was  the  inverse 
Nabla  of  the  Nabla  of  the  velocity. 
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Or,  if  the  problem  and  solution  had  been  written  thus  :  Required  o> 
in  terms  of  Vo>  when  SVo>  =  0. 

Solution  :  co  =  VV  '  2  Vco  =  V  -  l  V«. 
My  critic  has  himself  given  more  than  one  example  of  the  unfitness 

of  the  inverse  Nabla  for  the  exact  expression  of  thought.  For 

example,  when  he  says  that  I  have  taken  "eight  distinct  steps  to 
prove  two  equations,  which  are  special  cases  of 

I  do  not  quite  know  what  he  means.  If  he  means  that  I  have  taken 

eight  steps  to  prove  Poisson's  Equation  (which  certainly  is  not  ex- 
pressed by  the  equation  cited,  although  it  may  perhaps  be  associated 

with  it  in  some  minds),  I  will  only  say  that  my  proof  is  not  very 
long,  especially  as  I  have  aimed  at  greater  rigor  than  is  usually 
thought  necessary.  I  cannot,  however,  compare  my  demonstration 
with  that  of  quaternionic  writers,  as  I  have  not  been  able  (doubtless 
on  account  of  insufficient  search)  to  find  any  such. 

To  show  how  little  foundation  there  is  for  the  charge  that  the 
deficiencies  of  my  system  require  to  be  pieced  out  by  these  integral 
operators,  I  need  only  say  that  if  I  wished  to  economise  operators  I 
might  give  up  New,  Lap,  and  Max,  writing  for  them  VPot,  VxPot, 
and  V.  Pot,  and  if  I  wished  further  to  economise  in  what  costs  so  little, 

I  could  give  up  the  potential  also  by  using  the  notation  (V.V)"1  or 
V"2.  That  is,  I  could  have  used  this  notation  without  greater  sacrifice 
of  precision  than  quaternionic  writers  seem  to  be  willing  to  make.  I 
much  prefer,  however,  to  avoid  these  inverse  operators  as  essentially 
indefinite. 

Nevertheless  —  although  my  critic  has  greatly  obscured  the  subject 
by  ridiculing  operators,  which  I  beg  leave  to  maintain  are  not  worthy 
of  ridicule,  and  by  thoughtlessly  asserting  that  it  was  necessary  for 
me  to  use  them,  whereas  they  are  only  necessary  for  me  in  the  sense 
in  which  something  of  the  kind  is  necessary  for  the  quaternionist  also? 
if  he  would  use  a  notation  irreproachable  on  the  score  of  exactness  — 
I  desire  to  be  perfectly  candid.  I  do  not  wish  to  deny  that  the 
relations  connected  with  these  notations  appear  a  little  more  simple 
in  the  quaternionic  form.  I  had,  indeed,  this  subject  principally  in 
mind  when  I  said  two  years  ago  in  Nature  (vol.  xliii,  p.  512)  [this  vol. 

p.  158]  :  "  There  are  a  few  formulae  in  which  there  is  a  trifling  gain 
in  compactness  in  the  use  of  the  quaternion."  Let  us  see  exactly 
how  much  this  advantage  amounts  to. 

There  is  nothing  which  the  most  rigid  quaternionist  need  object  to 
in  the  notation  for  the  potential,  or  indeed  for  the  Newtonian.  These 
represent  respectively  the  operations  by  which  the  potential  or  the 
force  of  gravitation  is  calculated  from  the  density  of  matter.  A 
quaternionist  would,  however,  apply  the  operator  New  not  only  to  a 
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scalar,  as  I  have  done,  but  to  a  vector  also.  The  vector  part  of  New  o> 
(construed  in  the  quaternionic  sense)  would  be  exactly  what  I  have 
represented  by  Lap  CD,  and  the  scalar  part,  taken  negatively,  would  be 
exactly  what  I  have  represented  by  Max  to.  The  quaternionist  has 
here  a  slight  economy  in  notations,  which  is  of  less  importance,  since 

all  the  operators  —  New,  Lap,  Max  —  may  be  expressed  without 
ambiguity  in  terms  of  the  potential,  which  is  therefore  the  only  one 
necessary  for  the  exact  expression  of  thought. 

But  what  are  the  formulae  which  it  is  necessary  for  one  to  remember 
who  uses  my  notations  ?  Evidently  only  those  which  contain  the 
operator  Pot.  For  all  the  others  are  derived  from  these  by  the  simple 
substitutions  ISew  =  V  Pot, 

Lap  =  VxPot, 
Max  =V.  Pot. 

Whether  one  is  quaternionist  or  not,  one  must  remember  Poisson's 
Equation,  which  I  write 

V.VPotft)=-47Tft), 

and  in  quaternionic  might  be  written 

V2  Pot  o>  =  4™. 

If  ft)  is  a  vector,  in  using  my  equations  one  has  also  to  remember  the 
general  formulae, 

which  as  applied  to  the  present  case  may  be  united  with  the  preceding 
in  the  three-membered  equation, 

V.VPotft)  =  VV.  Potft)-VxVxPotft)=-47rft). 

This  single  equation  is  absolutely  all  that  there  is  to  burden  the 
memory  of  the  student,  except  tfcat  the  symbols  of  differentiation 

(V,  Vx,  V.)  may  be  placed  indifferently  before  or  after  the  symbol 
for  the  potential,  and  that  if  we  choose  we  may  substitute  as  above 
New  for  V  Pot,  etc.  Of  course  this  gives  a  good  many  equations, 
which  on  account  of  the  importance  of  the  subject  (as  they  might 

almost  be  said  to  give  the  mathematics  of  the  electro-magnetic  field) 
I  have  written  out  more  in  detail  than  might  seem  necessary.  I  have 
also  called  the  attention  of  the  student  to  many  things,  which  perhaps 
he  might  be  left  to  himself  to  see.  Prof.  Knott  says  that  the  quater- 

nionist obtains  similar  equations  by  the  simplest  transformations. 
He  has  failed  to  observe  that  the  same  is  true  in  my  Vector  Analysis, 

when  once  I  have  proved  Poisson's  Equation.  Perhaps  he  takes  his 
model  of  brevity  from  Prof.  Tait,  who  simplifies  the  subject,  I  believe, 
in  his  treatise  on  Quaternions,  by  taking  this  theorem  for  granted. 

Nevertheless,  since  I  am  forced  so  often  to  disagree  with  Prof. 
Knott,  I  am  glad  to  agree  with  him  when  I  can.     He  says  in  his 

G.  II.  M 
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original  paper  (p.  226),  "  No  finer  argument  in  favour  of  the  real 
quaternion  vector  analysis  can  be  found  than  in  the  tangle  and  the 

jangle  of  sections  91  to  104  in  the  Elements  of  Vector  Analysis." 
Now  I  am  quite  ready  to  plead  guilty  to  the  tangle.  The  sections 
mentioned,  as  is  sufficiently  evident  to  the  reader,  were  written  at 

two  different  times,  sections  102-104  being  an  addition  after  a  couple 
of  years.  The  matter  of  these  latter  sections  is  not  found  in  its 
natural  place,  and  the  result  is  well  enough  characterised  as  a  tangle. 
It  certainly  does  credit  to  the  conscientious  study  which  Prof.  Knott 
has  given  to  my  pamphlet,  that  he  has  discovered  that  there  is  a 
violent  dislocation  of  ideas  just  at  this  point.  For  such  a  fault  of 
composition  I  have  no  sufficient  excuse  to  offer,  but  I  must  protest 
against  its  being  made  the  ground  of  any  broad  conclusions  in  regard 
to  the  fundamental  importance  of  the  quaternion. 

Prof.  Knott  next  proceeds  to  criticise — or  at  least  to  ridicule — my 
treatment  of  the  linear  vector  function,  with  respect  to  which  we  read 

in  the  abstract : — "  As  developed  in  the  pamphlet,  the  theory  of  the 
dyadic  goes  over  much  the  same  ground  as  is  traversed  in  the  last 

chapter  of  Kelland  and  Tait's  Introduction  to  Quaternions.  With 
the  exception  of  a  few  of  those  lexicon  products,  for  which  Prof. 
Gibbs  has  such  an  affection,  there  is  nothing  of  real  value  added  to 

our  knowledge  of  the  linear  vector  function."  It  would  not,  I  think, 
be  difficult  to  show  some  inaccuracy  in  my  critic's  characterisation 
of  the  real  content  of  this  part  of  my  pamphlet.  But  as  algebra  is 
a  formal  science,  and  as  the  whole  discussion  is  concerning  the  best 
form  of  representing  certain  kinds  of  relations,  the  important  question 
would  seem  to  be  whether  there  is  anything  of  formal  value  in  my 
treatment  of  the  linear  vector  function. 

Now  Prof.  Knott  distinctly  characterises  in  half  a  dozen  words  the 
difference  in  the  spirit  and  method  of  my  treatment  of  this  subject 
from  that  which  is  traditional  among  quaternionists,  when  he  says 

of  what  I  have  called  dyadics — "these  are  not  quantities,  but  operators" 
(Nature,  vol.  xlvii,  p.  592).  I  do  not  think  that  I  applied  the  word 
quantity  to  the  dyadics,  but  Prof.  Knott  recognised  that  I  treated 
them  as  quantities — not,  of  course,  as  the  quantities  of  arithmetic,  or 
of  ordinary  algebra,  but  as  quantities  in  the  broader  sense,  in  which, 
for  example,  quaternions  are  called  quantities.  The  fact  that  they 
may  be  operators  does  not  prevent  this.  Just  as  in  grammar  verbs 
may  be  taken  as  substantives,  viz.,  in  the  infinitive  mood,  so  in  algebra 

operators — especially  such  as  are  capable  of  quantitative  variation- 
may  be  regarded  as  quantities  when  they  are  made  the  subject  of 
algebraic  comparison  or  operation.  Now  I  would  not  say  that  it  is 
necessary  to  treat  every  kind  of  operator  as  quantity,  but  I  certainly 
think  that  one  so  important  as  the  linear  vector  operator,  and  one 
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which  lends  itself  so  well  to  such  broader  treatment,  is  worthy  of  it. 
Of  course,  when  vectors  are  treated  by  the  methods  of  ordinary 
algebra,  linear  vector  operators  will  naturally  be  treated  by  the  same 
methods,  but  in  an  algebra  formed  for  the  sake  of  expressing  the 
relations  between  vectors,  and  in  which  vectors  are  treated  as  multiple 
quantities,  it  would  seem  an  incongruity  not  to  apply  the  methods 
of  multiple  algebra  also  to  the  linear  vector  operator. 

The  dyadic  is  practically  the  linear  vector  operator  regarded  as 
quantity.  More  exactly  it  is  the  multiple  quantity  of  the  ninth  order 
which  affords  various  operators  according  to  the  way  in  which  it  is 
applied.  I  will  not  venture  to  say  what  ought  to  be  included  in  a 
treatise  on  quaternions,  in  which,  of  course,  a  good  many  subjects 
would  have  claims  prior  to  the  linear  vector  operator;  but  for  the 
purposes  of  my  pamphlet,  in  which  the  linear  vector  operator  is  one 
of  the  most  important  topics,  I  cannot  but  regard  a  treatment  like 

that  in  Hamilton's  Lectures,  or  Elements,  as  wholly  inadequate  on 
the  formal  side.  To  show  what  I  mean,  I  have  only  to  compare 

Hamilton's  treatment  of  the  quaternion  and  of  the  linear  vector 
operator  with  respect  to  notations.  Since  quaternions  have  been 
identified  with  matrices,  while  the  linear  vector  operator  evidently 
belongs  to  that  class  of  multiple  quantities,  it  seems  unreasonable  to 
refuse  to  the  one  those  notations  which  we  grant  to  the  other.  Thus, 

if  the  quaternionist  has  eq,  log  q,  sin  q,  cos  q,  why  should  not  the  vector 
analyst  have  e*,  log  <!>,  sin  <£,  cos  <£,  where  <1>  represents  a  linear  vector 
operator  ?  I  suppose  the  latter  are  at  least  as  useful  to  the  physicist. 
I  mention  these  notations  first,  because  here  the  analogy  is  most 
evident.  But  there  are  other  cases  far  more  important,  because  more 
elementary,  in  which  the  analogy  is  not  so  near  the  surface,  and 

therefore  the  difference  in  Hamilton's  treatment  of  the  two  kinds  of 
multiple  quantity  not  so  evident.  We  have,  for  example,  the  tensor 
of  the  quaternion,  which  has  the  important  property  represented  by 

the  equation:  T(^r)  =  T^Tr. 
There  is  a  scalar  quantity  related  to  the  linear  vector  operator, 

which  I  have  represented  by  the  notation  |$|  and  called  the 
determinant  of  3?.  It  is  in  fact  the  determinant  of  the  matrix  by 

which  4>  may  be  represented,  just  as  the  square  of  the  tensor  of  q 
(sometimes  called  the  norm  of  q)  is  the  determinant  of  the  matrix  by 
which  q  may  be  represented.  It  may  also  be  defined  as  the  product 

of  the  latent  roots  of  <3?,  just  as  the  square  of  the  tensor  of  q  might  be 
defined  as  the  product  of  the  latent  roots  of  q.  Again,  it  has  the 
property  represented  by  the  equation 

|$.¥  =  *||¥| 
which  corresponds  exactly  with  the  preceding  equation  with  both 
sides  squared. 
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There  is  another  scalar  quantity  connected  with  the  quaternion  and 
represented  by  the  notation  Sq.  It  has  the  important  property 
expressed  by  the  equation, 

S  (qrs)  =  S  (rsq)  =  S  (sqr), 

and  so  for  products  of  any  number  of  quaternions,  in  which  the  cyclic 
order  remains  unchanged.  In  the  theory  of  the  linear  vector  operator 
there  is  an  important  quantity  which  I  have  represented  by  the 

notation  <£B,  and  which  has  the  property  represented  by  the  equation 

where  the  number  of  the  factors  is  as  before  immaterial.  <1>S  may  be 
defined  as  the  sum  of  the  latent  roots  of  <1»,  just  as  2Sg  may  be 
defined  as  the  sum  of  the  latent  roots  of  q. 

The   analogy   of   these   notations   may   be   further   illustrated    by 

comparing  the  equations 

and * 

I  do  not  see  why  it  is  not  as  reasonable  for  the  vector  analyst  to 

have  notations  like  |<£  and  3?s,  as  for  the  quaternionist  to  have  the 
notations  Tq  and  Sq. 

This  is  of  course  an  argumentum  ad  quaternionisten.  I  do  not 
pretend  that  it  gives  the  reason  why  I  used  these  notations,  for  the 
identification  of  the  quaternion  with  a  matrix  was,  I  think,  unknown 
to  me  when  I  wrote  my  pamphlet.  The  real  justification  of  the 

notations  |  3>  |  and  3?g  is  that  they  express  functions  of  the  linear 
vector  operator  qua  quantity,  which  physicists  and  others  have 
continually  occasion  to  use.  And  this  justification  applies  to  other 
notations  which  may  not  have  their  analogues  in  quaternions.  Thus 

I  have  used  3>x  to  express  a  vector  so  important  in  the  theory  of  the 
linear  vector  operator,  that  it  can  hardly  be  neglected  in  any  treatment 
of  the  subject.  It  is  described,  for  example,  in  treatises  as  different  as 

Thomson  and  Tait's  Natural  Philosophy  and  Kelland  and  Tait's 
Quaternions.  In  the  former  treatise  the  components  of  the  vector 
are,  of  course,  given  in  terms  of  the  elements  of  the  linear  vector 
operator,  which  is  in  accordance  with  the  method  of  the  treatise.  In 
the  latter  treatise  the  vector  is  expressed  by 

Voo'4-W+Vyy. 

As  this  supposes  the  linear  vector  operator  to  be  given  not  by  a 
single  letter,  but  by  several  vectors,  it  must  be  regarded  as  entirely 
inadequate  by  any  one  who  wishes  to  treat  the  subject  in  the  spirit  of 
multiple  algebra,  i.e.  to  use  a  single  letter  to  represent  the  linear 
vector  operator. 

But  my  critic  does  not  like  the  notations  |  <£  |,  <l»s,  <£x-     His  ridicule, 
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indeed  reaches  high-water  mark  in  the  paragraphs  in  which  he  men- 
tions them.  Concerning  another  notation,  $x^  (defined  in  Nature,  vol. 

xliii,  p.  513)  [this  vol.,  p.  160],  he  exclaims,  "Thus  burden  after  burden, 
in  the  form  of  new  notation,  is  added  apparently  for  the  sole  purpose 

of  exercising  the  faculty  of  memory."  He  would  vastly  prefer,  it 
would  appear,  to  write  with  Hamilton  m^''1,  "where  m  represents 
what  the  unit  volume  becomes  under  the  influence  of  the  linear 

operator."  But  this  notation  is  only  apparently  compact,  since  the 
m  requires  explanation.  Moreover,  if  a  strain  were  given  in  what 
Hamilton  calls  the  standard  trinomial  form,  to  write  out  the  formula 

for  the  operator  on  surfaces  in  that  standard  form  by  the  use  of  the 

expression  m^'-1  would  require,  it  seems  to  me,  ten  (if  not  fifty)  times 
the  effort  of  memory  and  of  ingenuity,  which  would  be  required  for 
the  same  purpose  with  the  use  of  J^x^- 

I  may  here  remark  that  Prof.  Tait's  letter  of  endorsement  of  Prof. 

Knott's  paper  affords  a  striking  illustration  of  the  convenience  and 
flexibility  of  a  notation  entirely  analogous  to  $*&,  viz.,  $:$.  He 
gives  the  form  SVVX  So-o^  to  illustrate  the  advantage  of  quaternionic 
notations  in  point  of  brevity.  If  I  understand  his  notation,  this  is 
what  I  should  write  V<r:V<r.  (I  take  for  granted  that  the  suffixes 
indicate  that  V  applies  as  differential  operator  to  a;  and  Vl  to  <rlt 

a-  and  &l  being  really  identical  in  meaning,  as  also  V  and  Vr)  It 
will  be  observed  that  in  my  notation  one  dot  unites  in  multiplication 

the  two  V's,  and  the  other  the  two  cr's,  and  that  I  am  able  to  leave 
each  V  where  it  naturally  belongs  as  differential  operator.  The 
quaternionist  cannot  do  this,  because  the  V  and  or  cannot  be  left 
together  without  uniting  to  form  a  quaternion,  which  is  not  at  all 

wanted.  Moreover,  I  can  write  <3?  for  Vcr,  and  <if?:3?  for  V0-.-V0-.  The 
quaternionist  also  uses  a  0,  which  is  practically  identical  with  my  <£ 

(viz.,  the  operator  which  expresses  the  relation  between  da-  and  dp), 
but  I  do  not  see  how  Prof.  Knott,  who  I  suppose  dislikes  $ :  $  as 

much  as  ̂ x*^  would  express  SVVX  Scro^  in  terms  of  this  0. 

It  is  characteristic  of  Prof.  Knott's  view  of  the  subject,  that  in 
translating  into  quaternionic  from  a  dyadic,  or  operator,  as  he  calls  it, 
he  adds  in  each  case  an  operand.  In  many  cases  it  would  be  difficult 
to  make  the  translation  without  this.  But  it  is  often  a  distinct 

advantage  to  be  able  to  give  the  operator  without  the  operand.  For 
example,  in  translating  into  quaternionic  my  dyadic  or  operator  $xp, 

he  adds  an  operand,  and  exclaims,  "  The  old  thing ! "  Certainly,  when 
this  expression  is  applied  to  an  operand,  there  is  no  advantage  (and 
no  disadvantage)  in  my  notation  as  compared  with  the  quaternionic. 
But  if  the  quaternionist  wished  to  express  what  I  would  write  in  the 

form  (^x/o)-1,  or  |$x/o|,  or  (3>x/o)s,  or  (<3>x/3)x,  he  would,  I  think, 
find  the  operand  very  much  in  the  way. 
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ON  DOUBLE  REFRACTION  AND  THE  DISPERSION   OF 
COLORS  IN  PERFECTLY  TRANSPARENT   MEDIA. 

[American  Journal  of  Science,  ser.  3,  vol.  xxm,  pp.  262-275,  April,  1882.] 

1.  IN  calculating  the  velocity  of  a  system  of  plane  waves  of  homo- 
geneous light,  regarded  as  oscillating  electrical  fluxes,  in  transparent 

and  sensibly  homogeneous  bodies,  whether  singly  or  doubly  refracting, 

we  may  assume  that  such  a  body  is  a  very  fine-grained  structure,  so 
that  it  can  be  divided  into  parts  having  their  dimensions  very  small 

in  comparison  with  the  wave-length,  each  of  which  may  be  regarded 
as  entirely  similar  to  every  other,  while  in  the  interior  of  each  there 
are  wide  differences  in  electrical  as  in  other  physical  properties. 
Hence,  the  average  electrical  displacement  in  such  parts  of  the  body 
may  be  expressed  as  a  function  of  the  time  and  the  coordinates  of 

position  by  the  ordinary  equations  of  wave-motion,  while  the  real 
displacement  at  any  point  will  in  general  differ  greatly  from  that 
represented  by  such  equations. 

It  is  the  object  of  this  paper  to  investigate  the  velocity  of  light  in 
perfectly  transparent  media  which  have  not  the  property  of  circular 
polarization  in  a  manner  which  shall  take  account  of  this  difference 
between  the  real  displacements  and  those  represented  by  the  ordinary 
equations  of  wave-motion.  We  shall  find  that  this  difference  will 
account  for  the  dispersion  of  colors,  without  affecting  the  validity 
of  the  laws  of  Huyghens  and  Fresnel  for  double  refraction  with 
respect  to  light  of  any  one  color. 

In  this  investigation,  it  is  assumed  that  the  electrical  displacements 
are  solenoidal,  or,  in  other  words,  that  they  are  such  as  not  to  produce 
any  change  in  electrical  density.  The  disturbance  in  the  medium  is 
treated  as  consisting  entirely  of  such  electrical  displacements  and 
fluxes,  and  not  complicated  by  any  distinctively  magnetic  phenomena. 
It  might  therefore  be  more  accurate  to  call  the  theory  (as  here 
developed)  electrical  rather  than  electromagnetic.  The  latter  term  is 
nevertheless  retained  in  accordance  with  general  usage,  and  with  that 
of  the  author  of  the  theory. 

Since  the  velocity  which  we  are  seeking  is  equal  to  the  wave-length 
divided  by  the  period  of  oscillation,  the  problem  reduces  to  finding 
the  ratio  of  these  quantities,  and  may  be  simplified  in  some  respects 
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by  supposing  that  we  have  to  do  with  a  system  of  stationary  waves. 

That  the  relation  of  the  wave-length  and  the  period  is  the  same  for 
stationary  as  for  progressive  waves  is  evident  from  the  consideration 
that  a  system  of  stationary  waves  may  be  formed  by  two  systems  of 
progressive  waves  having  opposite  directions. 

2.  Let  x,  y,  z  be  the  rectangular  coordinates  of  any  point  in  the 

medium,  which  with  the  system  of  waves  we  may  regard  as  inde- 

finitely extended,  and  let  (+(',  ij  +  rf,  f+f   °e  the  components  of 
electrical  displacement  at  that  point  at  the  time  t ;   £  r\,  f  being  the 
average  values  of  the  components  of  electrical  displacement  at  that 

time  in  a  wave-plane  passing  through  the  point.     Then  £  rj,  f,  £',  r(,  f ' 
are  perfectly  defined  quantities,  of  which  £  q,  f  are  connected  with 

x,  y,  z,  and  t  by  the  ordinary  equations  of  wave-motion,  while  each 

of  the  quantities  £',  r\ ,  f '  has  always  zero  for  its  average  value  in  any 
wave-plane.     We  may  call  £  T/,  f  the  components  of  the  regular  part 

of  the  displacement,  and  £',  if ',  f '  the  components  of  the  irregular 
part  of  the  displacement.     In  like  manner,  the  differential  coefficients 

of  these  quantities  with  respect  to  the  time,  £  T/,  f,  f,  if ',  f',  may  be 
called  respectively  the  components  of  the  regular  part  of  the  flux, 
and  the  components  of  the  irregular  part  of  the  flux. 

Let  the  whole  space  be  divided  into  elements  of  volume  Dv,  very 

small  in  all  dimensions  in  comparison  with  a  wave-length,  but 
enclosing  portions  of  the  medium  which  may  be  treated  as  entirely 
similar  to  one  another,  and  therefore  not  infinitely  small.  Thus  a 
crystal  may  be  divided  into  elementary  parallelepipeds,  all  the  vertices 
of  which  are  similarly  situated  with  respect  to  the  internal  structure 
of  the  crystal.  Amorphous  solids  and  liquids  may  not  be  capable  of 
division  into  equally  small  portions  of  which  physical  similarity  can 
be  predicated  with  the  same  rigor.  Yet  we  may  suppose  them  capable 
of  a  division  substantially  satisfying  the  requirements. 

From  these  definitions  it  follows  that  at  any  given  instant  the 

average  value  of  each  of  the  quantities  £',  rf ',  f '  in  an  element  Dv  is 
zero.  For  the  average  value  in  one  such  element  must  be  sensibly 

the  same  as  in  any  other  situated  on  the  same  wave-plane.  If  this 
average  were  not  zero,  the  average  for  the  wave-plane  would  not  be 
zero.  Moreover,  at  any  given  instant,  the  values  of  £  tj,  f  may  be 
regarded  as  constant  throughout  any  element  Dv,  and  as  representing 
the  average  values  of  the  components  of  displacement  in  that  element. 

The  same  will  be  true  of  the  quantities  £',  jj',  f '  and  £,  TJ,  f 
3.  Since  we  have  excluded  the  case  of  media  which  have  the  pro- 

perty of  circular  polarization,  we  shall  not  impair  the  generality  of 
our  results  if  we  suppose  that  we  have  to  do  with  linearly  polarized 
light,  i.e.,  that  the  regular  part  of  the  displacement  is  everywhere 
parallel  to  the  same  fixed  line,  all  cases  not  already  excluded  being 
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reducible  to  this.  Then,  with  the  origin  of  coordinates  and  the  zero 
of  time  suitably  chosen,  the  regular  part  of  the  displacement  may  be 
represented  by  the  equations 

£=  a  cos  2?rr  cos  2?r I 

u  t 
=  8  COS  27Tr  COS  27T-  , 

I  p 
p 

(1) 

p  0 

r  =  y  COS  27TT  COS  27T- 

l  p 

where  I  denotes  the  wave-length,  p  the  period  of  vibration,  a,  /3,  y 
the  maximum  amplitudes  of  the  displacements  £  77,  f,  and  u  the 

distance  of  the  point  considered  from  the  wave -plane  which  passes 
through  the  origin.  Since  u  is  a  linear  function  of  x,  y,  and  z,  we 
may  regard  these  equations  as  giving  the  values  of  £  ;/,  f,  for  a  given 
system  of  waves,  in  terms  of  x,  y,  z,  and  £. 

4.  The  components  of  the  irregular  displacement,  £',  ̂',  £ ',  at  any 
given  point,  will  evidently  be  simple  harmonic  functions  of  the  time, 
having  the  same  period  as  the  regular  part  of  the  displacement.  That 
they  will  also  have  the  same  phase  is  not  quite  so  evident,  and  would 
not  be  the  case  in  a  medium  in  which  there  were  any  absorption  or 

dispersion  of  light.  It  will  however  appear  from  the  following  con- 
siderations that  in  perfectly  transparent  media  the  irregular  oscil- 

lations are  synchronous  with  the  regular.  For  if  they  are  not 
synchronous,  we  may  resolve  the  irregular  oscillations  into  two  parts. 
of  which  one  shall  be  synchronous  with  the  regular  oscillations,  and 

the  other  shall  have  a  difference  of  phase  of  one-fourth  of  a  complete 
oscillation.  Now  if  the  medium  is  one  in  which  there  is  no  absorption 

or  dispersion  of  light,  we  may  assume  that  the  same  electrical  con- 
figurations may  also  be  passed  through  in  the  inverse  order,  which 

would  be  represented  analytically  by  writing  —  t  for  t  in  the  equations 

which  give  £  rj,  f,  (•',  q ',  f,  as  functions  of  x,  y,  z,  and  t.  But  this 
change  would  not  affect  the  regular  oscillations,  nor  the  synchronous 
part  of  the  irregular  oscillations,  which  depends  on  the  cosine  of  the 

time,  while  the  non-synchronous  part  of  the  irregular  oscillations, 
which  depends  on  the  sine  of  the  time,  would  simply  have  its 

direction  reversed.  Hence,  by  taking  first  one-half  the  sum,  and 
secondly  one-half  the  difference,  of  the  original  motion  and  that 
obtained  by  substitution  of  —  t  for  t,  we  may  separate  the  non- 
synchronous  part  of  the  irregular  oscillations  from  the  rest  of  the 

motion.  Therefore,  the  supposed  non-synchronous  part  of  the  irregular 
displacement,  if  capable  of  existence,  is  at  least  wholly  independent 

of  the  wave-motion  and  need  not  be  considered  by  us. 

We  may  go  farther  in  the  determination  of  the  quantities  f ,  r\t  f '» 
For  in  view  of  the  very  fine-grained  structure  of  the  medium,  it  will 
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easily  appear  that  the  manner  in  which  the  general  or  average  flux 
in  any  element  Dv  (represented  by  £  TI,  f  )  distributes  itself  among 
the  molecules  and  intermolecular  spaces  must  be  entirely  determined 
by  the  amount  and  direction  of  that  flux  and  its  period  of  oscillation. 
Hence,  and  on  account  of  the  superposable  character  of  the  motions 

which  we  are  considering,  we  may  conclude  that  the  values  of  £',  rf,  f 
at  any  given  point  in  the  medium  are  capable  of  expression  as  linear 
functions  of  £,  q,  f  in  a  manner  which  shall  be  independent  of  the 

time  and  of  the  orientation  of  the  wave-planes  and  the  distance  of 
a  nodal  plane  from  the  point  considered,  so  long  as  the  period  of 
oscillation  remains  the  same.  But  a  change  in  the  period  may 

presumably  affect  the  relation  between  £',  rf,  f  '  and  £  77,  f  to  a  certain 
extent.  And  the  relation  between  £',  r\  ',  f  and  £  r\,  f  will  vary 
rapidly  as  we  pass  from  one  point  to  another  within  the  element  Dv. 

5.  In  the  motion  which  we  are  considering  there  occur  alternately 
instants  of  no  velocity  and  instants  of  no  displacement.     The  statical 
energy  of  the  medium  at  an  instant  of  no  velocity  must  be  equal  to 
its  kinetic  energy  at  an  instant  of  no  displacement.     Let  us  examine 
each  of  these  quantities,  and  consider  the  equation  which  expresses 
their  equality. 

6.  Since  in  every  part  of  an  element  T>v  the  irregular  as  well  as  the 
regular  part  of  the  displacement  is  entirely  determined  (for  light  of 
a  given  period)  by  the  values  of  £  q,  £  the  statical  energy  of  the 
element  must  be  a  quadratic  function  of  £  rj,  £  say 

where  A,  B,  etc.  depend  only  on  the  nature  of  the  medium  and  the 
period  of  oscillation.     At  an  instant  of  no  velocity,  when 

sin27r-=0.     and     cos227r-  =  l, 
P  ,  P 

the  above  expression  will  reduce  by  equations  (1)  to 
ni 

(Aa2  +  B/32  +  Cy2  +  E/3y  +  Fya  +  Ga/3)cos2  27T  j  D<v. 

Since  the  average  value  of  cos2  2  Try   in  an  indefinitely  extended I/ 

space  is  J,  we  have  for  the  statical  energy  in  a  unit  of  volume 

S  =  J(Aa2  +  B/32  +  Cy2  +  E^y  +  Fya  +  Ga/3).  (2) 

7.  The  kinetic  energy  of  the  whole  medium  is  represented  by  the 

double  volume-integral* 

r 

*  The  fluxes  are  supposed  to  be  measured  by  the  electromagnetic  system  of  units.  It 
is  to  be  observed  that  the  difference  of  opinion  which  has  prevailed  with  respect  to  the 
estimation  of  the  energy  of  electrical  currents  does  not  extend  to  such  as  are  solenoidal, 
which  may  be  regarded  as  composed  of  closed  circuits. 
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where  dvlt  dv2  are  two  infinitesimal  elements  of  volume, 

((+  £'\  the  corresponding  components  of  flux,  r  the  distance  between 
the  elements,  and  S  denotes  a  summation  with  respect  to  the 
coordinate  axes.  Separating  the  integrations,  we  may  write  for 
the  same  quantity 

It  is  evident  that  the  integral  within  the  brackets  is  derived  from 

£+£'  by  the  same  process  by  which  the  potential  of  any  mass  is 
derived  from  its  density.  If  we  use  the  symbol  Pot  to  express  this 
relation,  we  may  write  for  the  kinetic  energy 

The  operation  denoted  by  this  symbol  is  evidently  distributive, 

so  that  Pot  (£+£')  =  Pot  £+  Pot  £'.  The  expression  for  the  kinetic 
energy  may  therefore  be  expanded  into 

JZ/£  Pot  gdw  +  JE/V  Pot  g  dv  +  JZ/f'  Pot  gdv  +  J2/f  Pot  f  dv. 

But  (•',  and  therefore  Pot£',  has  in  every  wave-plane  the  average 
value  zero.  Also  £  and  therefore  Pot£  has  in  every  wave-plane  a 
constant  value.  Therefore  the  second  and  third  integrals  in  the 
above  expression  will  vanish,  leaving  for  the  kinetic  energy 

f2/VPot£efo+*2/fPotf<fo,  (3) 

which  is  to  be  calculated  for  a  time  of  no  displacement,  when 

•          2-Tra        0     u       .          27T/3        n    U       i          2?ry  u 
£=±  --  COS27T-7-,    y=±      -cos27rT,     f  =  ±  —  Lcos27r-j-.     (4) 
pi  pi  pi 

The  form  of  the  expression  (3)  indicates  that  the  kinetic  energy 
consists  of  two  parts,  one  of  which  is  determined  by  the  regular  part 
of  the  flux,  and  the  other  by  the  irregular  part  of  the  flux. 

8.  The  value  of  Pot  £  may  be  easily  found  by  integration,  but 

perhaps  more  readily  by  Poisson's  well-known  theorem,  that  if  q  is 
any  function  of  position  in  space  (as  the  density  of  a  certain  mass), 

where  the  direction  of  the  coordinate  axes  is  immaterial,  provided 

that  they  are  rectangular.  In  applying  this  to  Pot  £  we  may  place 

two  of  the  axes  in  a  wave-plane.  This  will  give 

In  a  nodal  plane,  Pot^=0,  since  g  has  equal  positive  and  negative 
values  in  elements  of  volume  symmetrically  distributed  with  respect 
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to  any  point  in  such  a  plane.  In  a  wave-crest  (or  plane  in  which 
£  has  a  maximum  value),  Pot£  will  also  have  a  maximum  value, 
which  we  may  call  K.  For  intermediate  points  we  may  determine 
its  value  from  the  consideration  that  the  total  disturbance  may  be 

resolved  into  two  systems  of  waves,  one  having  a  wave-crest,  and  the 
other  a  nodal  plane  passing  through  the  point  for  which  the  potential 
is  sought.  The  maximum  amplitudes  of  these  component  systems 
will  be  to  the  maximum  amplitude  of  the  original  system  as 
11  Hi 

cos27Ty  and  sin2?rj  to  unity.     But  the  second  of  the  component 

systems  will  contribute  nothing  to  the  value  of  the  potential.  We 
thus  obtain 

47T2  U  47T* 

Comparing  this  with  equation  (6),  we  have 

"-(•  (7) 
Hence,  and  by  equations  (4), 

The  kinetic  energy  of  the  regular  part  of  the  flux  is  therefore,  for 
each  unit  of  volume, 

.  (8) 

i 

9.  With  respect  to  the  kinetic  energy  of  the  irregular  part  of  the 

flux,  it  is  to  be  observed  that,  since  £',  tfy  f  '  have  their  average  values 
zero  in  spaces  which  are  very  small  in  comparison  with  a  wave-length, 

the  integrations  implied  in  the  notations  Pot  £',  Pot  if,  Pot  f  '  may  be 
confined  to  a  sphere  of  a  radius  which  is  small  in  comparison  with  a 

wave-length.  Since  within  such  a  sphere  £',  rf,  f  '  are  sensibly  deter- 
mined by  the  values  of  £  r\,  £  at  the  center  of  the  sphere,  which  is  the 

point  for  which  the  value  of  the  potentials  are  sought,  Pot  £',  Pot  jy', 
Pot  f  '  must  be  functions  —  evidently  linear  functions  —  of  £  r\,  f  ;  and 
$  Pot  £*,  rf  Pot  tf,  f  '  Pot  f  '  must  be  quadratic  functions  of  the  same 
quantities.  But  these  functions  will  vary  with  the  position  of  the 
point  considered  with  reference  to  the  adjacent  molecules. 
Now  the  expression  for  the  kinetic  energy  of  the  irregular  part 

of  the  flux, 
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indicates  that  we  may  regard  the  infinitesimal  element  dv  as  having 
the  energy  (due  to  this  part  of  the  flux) 

JSf  Potf  dv. 
Let  us  consider  the  energy  due  to  the  irregular  flux  which  will  belong 
to  the  above  defined  element  Dv,  which  is  not  infinitely  small,  but 
which  has  the  advantage  of  being  one  of  physically  similar  elements 
which  make  up  the  whole  medium.  The  energy  of  this  element  is 
found  by  adding  the  energies  of  all  the  infinitesimal  elements  of 
which  it  is  composed.  Since  these  are  quadratic  functions  of  the 
quantities  £,  r\,  f,  which  are  sensibly  constant  throughout  the  element 
Dv,  the  sum  will  be  a  quadratic  function  of  £  r\>  £  say 

v, 

which  will  therefore  represent  the  energy  of  the  element  Dv  due  to 

the  irregular  flux.  The  coefficients  A',  B',  etc.,  are  determined  by  the 
nature  of  the  medium  and  the  period  of  oscillation.  They  will  be 
constant  throughout  the  medium,  since  one  element  Dv  does  not  differ 
from  another. 

This  expression  reduces  by  equations  (4)  to 

i'a2  +  B'/32  +  C'y2  +  E'/3y  +  F'ya  +  G'a/3) cos2 ZTT ~  D v. 
JJ  i 

The  kinetic  energy  of  the  irregular  flux  in  a  unit  of  volume  is  there- 
fore 9_2 

T  =  ̂-  (A'a2  +  B^2  +  C'y2  +  E^y  +  Fya  +  G'a/3).  (9) 

10.  Equating  the  statical  and  kinetic  energies,  we  have 

ya  +  G/a)8).  (10) P  P 

The  velocity  (V)  of  the  corresponding  system  of  progressive  waves  is 
given  by  the  equation 

£2_    1 
~~ 

27T  AV  +  B'/^  +  Cy +  EV3y  +  FVa  +  G/a/3 O  9     i       /^O     i  O  *  \  / 

p*  a^  +  p^  +  y^ 
If  we  set 

S-^B',     etc.,  (li /v\Z  y  '  ^ 

and 

the  equation  reduces  to 
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For  a  given  medium  and  light  of  a  given  period,  the  coefficients  a,  6, 
etc.,  are  constant. 

This  relation  between  the  velocity  of  the  waves  and  the  direction  of 
oscillation  is  capable  of  a  very  simple  geometrical  expression.  Let  r 
be  the  radius  vector  of  the  ellipsoid 

l.  (14) 

Then  1  _  ax2  +  by  2  +  cz2  +  ey  z  +fzx  +  gxy r2  r2 

If  this  radius  is  drawn  parallel  to  the  electrical  oscillations,  we  shall 

have  ;      e=«     y=§    ?=y 
r    p'      r     p'      r    p' 

and  V-l.  (15) 

That  is,  the  wave-velocity  for  any  particular  direction  of  oscillation 
is  represented  in  the  ellipsoid  by  the  reciprocal  of  the  radius  vector 
which  is  parallel  to  that  direction. 

11.  This  relation   between  the  wave-length,  the  period,  and  the 
direction  of  vibration,  must  hold  true  not  only  of  such  vibrations  as 
actually  occur,  but  also  of  such  as  we  may  imagine  to  occur  under 
the  influence  of  constraints  determining  the  direction  of  vibration  in 

the  wave-plane.      The   directions   of   the   natural   or   unconstrained 
vibrations  in  any  wave-plane   may  be   determined   by  the  general 
mechanical  principle  that  if  the  type  of  a  natural  vibration  is  infini- 
tesimally  altered  by  the  application  of  a  constraint,  the  value  of  the 

period  will  be  stationary.*     Hence,  in  a  system  of  stationary  waves 
such  as  we  have  been  considering,  if  the  direction  of  an  unconstrained 

vibration  is  infinitesimally  varied'  in  its  wave-plane  by  a  constraint 
while  the  wave-length  remains  constant,  the  period  will  be  stationary. 
Therefore,  if  the  direction  of  the  unconstrained  vibration  is  infinitesi- 

mally varied  by  constraint,  and  the  period  remains  rigorously  constant, 

the  wave-length  will  be  stationary.     Hence,  if  we  make  a  central 
section  of  the  above  described  ellipsoid  parallel  to  any  wave-plane, 
the  directions  of  natural  vibration  for  that  wave-plane  will  be  parallel 
to  the  radii  vectores  of  stationary  value  in  that  section,  viz.,  to  the 
axes  of  the  ellipse,  when  the  section  is  elliptical,  or  to  all  radii,  when 
the  section  is  circular. 

12.  For  light   of   a   single   period,  our  hypothesis   has  led   to   a 
perfectly  definite  result,  our  equations  expressing  the  fundamental 
laws  of  double  refraction  as  enunciated  by  Fresnel.     But  if  we  ask 
how  the  velocity  of  light  varies  with  the  period,  that  is,  if  we  seek 

*  See  Rayleigh's  Theory  of  Sound,  vol.  i,  p.  84. 
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to  derive  from  the  same  equations  the  laws  of  the  dispersion  of  colors, 
we  shall  not  be  able  to  obtain  an  equally  definite  result,  since  the 

quantities  A,  B,  etc.,  and  A",  B',  etc.,  are  unknown  functions  of  the 
period.  If,  however,  we  make  the  assumption,  which  is  hardly  likely 
to  be  strictly  accurate,  but  which  may  quite  conceivably  be  not  far 
removed  from  the  truth,  that  the  manner  in  which  the  general  or 
average  flux  in  any  small  part  of  the  medium  distributes  itself  among 
the  molecules  and  intermolecular  spaces  is  independent  of  the  period, 

the  quantities  A,  B,  etc.,  and  A',  B',  etc.,  will  be  constant,  and  we 
obtain  a  very  simple  relation  between  V  and  p,  which  appears  to  agree 
tolerably  well  with  the  results  of  experiment. 

If  we  set        H  =  ,  (16) 

and  H,  = P 

our  general  equation  (11)  becomes 

—-— 
"27T          p* 

where  H  and  H'  will  be  constant  for  any  given  direction  of  oscillation, 
when  A,  B,  etc.,  and  A',  B',  etc.,  are  constant.  If  we  wish  to  introduce 
into  the  equation  the  absolute  index  of  refraction  (n)  and  the  wave- 

length in  vacuo  (X)  in  place  of  V  and  p,  we  may  divide  both  sides  of 
the  equation  by  the  square  of  the  constant  (k)  representing  the 
velocity  of  light  in  vacuo.  Then,  since 

Y     l        17 

£=->  and   %>=*. 
our  equation  reduces  to 

^TTXX  (19) 

7l2       27T&2  X2 

It  is  well  known  that  the  relation  between  n  and  X  may  be  tolerably 

well  but  by  no  means  perfectly  represented  by  an  equation  of  this 
form. 

13.  If  we  now  give  up  the  presumably  inaccurate  supposition  that 

A,  B,  etc.,  and  A',  B',  etc.,  are  constant,  equation  (19)  will  still  subsist, 
but  H  and  H'  will  not  be  constant  for  a  given  direction  of  oscillation, 
but  will  be  functions  of  p,  or,  what  amounts  to  the  same,  of  X. 
Although  we  cannot  therefore  use  the  equation  to  derive  a  priori  the 
relation  between  n  and  X,  we  may  use  it  to  derive  the  values  of  H 

and  H'  from  the  empirically  determined  relation  between  n  and  X. 
To  do  this,  we  must  make  use  again  of  the  general  principle  that  an 
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infinitesimal  variation  in  the  type  of  a  vibration,  due  to  a  constraint, 
will  not  affect  the  period.  If  we  first  consider  a  certain  system  of 

stationary  waves,  then  a  system  in  which  the  wave-length  is  greater 
by  an  infinitesimal  dl  (the  direction  of  oscillation  remaining  the  same), 
the  period  will  be  increased  by  an  infinitesimal  dp,  and  the  manner  in 
which  the  flux  distributes  itself  among  the  molecules  and  intermole- 
cular  spaces  will  presumably  be  infinitesimally  changed.  But  if  we 

suppose  that  in  the  second  system  of  waves  there  is  applied  a  con- 
straint compelling  the  flux  to  distribute  itself  in  the  same  way  among 

the  molecules  and  intermolecular  spaces  as  in  the  first  system  (so  that 

£',  rf,  f  '  shall  be  the  same  functions  as  before  of  £  r\y  f,  —  a  supposition 
perfectly  compatible  with  the  fact  that  the  values  of  £  r\,  f  are 
changed),  this  constraint,  according  to  the  principle  cited,  will  not 
affect  the  period  of  oscillation.  Our  equations  will  apply  to  such  a 

constrained  type  of  oscillation,  and  A,  B,  etc.,  and  A',  B',  etc.,  and 
therefore  H  and  H',  will  have  the  same  values  in  the  last  described 
system  of  waves  as  in  the  first  system,  although  the  wave-length  and 
the  period  have  been  varied.  Therefore,  in  differentiating  equation 
(18),  which  is  essentially  an  equation  between  I  and  p,  or  its  equivalent 

(19),  we  may  treat  H  and  H'  as  constant.  This  gives 
2 _ ~n*d\~    X3 

We  thus  obtain  the  values  of  H'  and  H 

,  X3    dn  27r&2     2-7r&3X  dn 

By  determining  the  values  of  H  and  H'  for  different  directions  of 
oscillation,  we  may  determine  the  values  of  A,  B,  etc.,  and  A',  B',  etc. 

By  means  of  these  equations,  the  ratios  of  the  statical  energy  (S), 
the  kinetic  energy  due  to  the  regular  part  of  the  flux  (T),  and  the 

kinetic  energy  due  to  the  irregular  part  of  the  flux  (T'),  are  easily 
obtained  in  a  form  which  admits  of  experimental  determination. 
Equations  (8)  and  (9)  give 

Therefore,  by  (20), 

~W~    =  "~™  dX=~dl^~X' 
_ 
h  ~' 

m 
T~      T  dlogX         ~dlog\ 
T        dlogn 

-  - 
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Since  S,  T,  and  T'  are  essentially  positive  quantities,  their  ratios 
must  be  positive.  Equation  (21)  therefore  requires  that  the  index 
of  refraction  shall  increase  as  the  period  or  wave-length  in  vacuo 
diminishes.  Experiment  has  shown  no  exceptions  to  this  rule,  except 
such  as  are  manifestly  attributable  to  the  absorption  of  light. 

14.  It  remains  to  consider  the  relations  between  the  optical  pro- 
perties of  a  medium  and  the  planes  or  axes  of  symmetry  which  it 

may  possess.     If  we  consider  the  statical  energy  per  unit  of  volume 
(S)  and  the  period  as  constant,  we  may  regard  equation  (2)  as  the 
equation  of  an  ellipsoid,  the   radii  vectores  of   which   represent  in 

direction  and  magnitude  the  amplitudes  of  systems  of  weaves  having 
the  same  statical  energy.     In  like  manner,  if  we  consider  the  kinetic 

energy  of  the  irregular  part  of  the  flux  per  unit  of  volume  (T')  and 
the  period  as  constant,  we  may  regard  equation  (9)  as  the  equation 
of  an  ellipsoid,  the  radii  vectores  of  which  represent  in  direction  and 
magnitude   the   amplitudes  of   systems  of   waves   having   the   same 
kinetic  energy  due  to  the  irregular  part  of  the  flux.     These  ellipsoids, 

which  we  may  distinguish  as  the  ellipsoids  (A,  B,  etc.)  and  (A',  B',  etc.), 
as   well  as  the  ellipsoid  before   described,  which   we  may   call   the 
ellipsoid  (a,  &,  etc.),  must  be  independent  in  their  form  and  their 
orientation  of  the  directions  of  the  axes  of  coordinates,  being  deter- 

mined  entirely  by  the   nature  of   the    medium   and   the   period  of 
oscillation.     They  must  therefore  possess  the  same  kind  of  symmetry 
as  the  internal  structure  of  the  medium. 

If  the  medium  is  symmetrical  about  a  certain  axis,  each  ellipsoid 
must  have  an  axis  parallel  to  that.  If  the  medium  is  symmetrical 
with  respect  to  a  certain  plane,  each  ellipsoid  must  have  an  axis  at 
right  angles  to  that  plane.  If  the  medium  after  a  revolution  of  less 

than  180°  about  a  certain  axis  is  then  equivalent  to  the  medium  in 
its  first  position,  or  symmetrical  with  it  with  respect  to  a  plane  at 
right  angles  to  that  axis,  each  ellipsoid  must  have  an  axis  of  revolution 
parallel  to  that  axis.  These  relations  must  be  the  same  for  light  of 
all  colors,  and  also  for  all  temperatures  of  the  medium. 

15.  From  these  principles  we  may  infer  the  optical  characteristics 
of  the  different  crystallographic  systems. 

In  crystals  of  the  isometric  system,  as  in  amorphous  bodies,  the 
three  ellipsoids  reduce  to  spheres.  Such  media  are  optically  isotropic 
at  least  so  far  as  any  properties  are  concerned  which  come  within  the 
scope  of  this  paper. 

In  crystals  of  the  tetragonal  or  hexagonal  systems,  the  thrt 

ellipsoids  will  have  axes  of  rotation  parallel  to  the  principal  crystal- 
lographic axis.  Since  the  ellipsoid  (a,  b,  etc.)  has  but  one  circular 

section,  there  will  be  but  one  optic  axis,  which  will  have  a  fixed 
direction. 
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In  crystals  of  the  orthorhombic  system,  the  three  ellipsoids  will 
have  their  axes  parallel  to  the  rectangular  crystallographic  axes.  If 

we  take  these  directions  for  the  axes  of  coordinates,  E,  F,  G,  E',  F',  G', 
e,  f,  g  will  vanish  and  equation  (13)  will  reduce  to 

a 

If  the  coordinate  axes  are  so  placed  that 
a  >  b  >  c, 

the  optic  axes  will  lie  in  the  X-Z  plane,  making  equal  angles  0  with 
the  axis  of  Z,  which  may  be  determined  by  the  equation 

-  b  -  c  ~  P*(E  -  C)  -  4-7T2(B'  -  cry 
To  get  a  rough  idea  of  the  manner  in  which  0  varies  with  the  period, 

we  may  regard  A,  B,  C,  A',  B',  C'  as  constant  in  this  equation. 
But  since  the  lengths  of  the  axes  of  the  ellipsoid  (a,  b,  etc.)  vary 

with  the  period,  it  may  easily  happen  that  the  order  of  the  axes 
with  respect  to  magnitude  is  not  the  same  for  all  colors.  In  that 
case,  the  optic  axes  for  certain  colors  will  lie  in  one  of  the  principal 
planes,  and  for  other  colors  in  another.  For  the  color  at  which  the 
change  takes  place,  the  two  optic  axes  will  coincide.  The  differential 

coefficient  -J-  becomes  infinitely  great   as  the  optic  axes  approach 
coincidence. 

In  crystals  of  the  monoclinic  system,  each  of  the  three  ellipsoids 
will  have  an  axis  perpendicular  to  the  plane  of  symmetry.  We  may 

choose  this  direction  for  the  axis  of  X.  Then  F,  G,  F',  G',  /,  g,  will 
vanish  and  equation  (13)  will  reduce  to 

a 

P2
 

The  angle  0  made  by  one  of  the  axes  of  the  ellipsoid  (a,  6,  etc.)  in 
the  plane  of  symmetry  with  the  axis  of  Y  and  measured  toward  the 
axis  of  Z,  is  determined  by  the  equation 

tan  20-      6 
"  ~      ~ 

To  get  a  rough  idea  of  the  dispersion  of  the  axes  of  the  ellipsoid 

(a,  b,  etc.)  in  the  plane  of  symmetry,  we  may  regard  B,  C,  E,  B',  C',  E', 
as  constant  in  this  equation,  and  suppose  the  axis  of  Y  so  placed  as 
to  make  E  vanish. 

It  is  evident  that  in  this  system  the  plane  of  the  optic  axes  will  be 
fixed,  or  will  rotate  about  one  of  the  lines  which  bisect  the  angles 
made  by  the  optic  axes,  according  as  the  mean  axis  of  the  ellipsoid 

G.  II.  N 
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(a,  6,  etc.)  is  perpendicular  to  the  plane  of  symmetry  or  lies  in  that 
plane.  In  the  first  case  the  dispersion  of  the  two  optic  axes  will  be 
unequal.  The  same  crystal,  however,  with  light  of  different  colors, 
or  at  different  temperatures,  may  afford  an  example  of  each  case. 

In  crystals  of  the  triclinic  system,  since  the  ellipsoids  (A,  B,  etc.) 

and  (A',  B',  etc.)  are  determined  by  considerations  of  a  different 
nature,  and  there  are  no  relations  of  symmetry  to  cause  a  coincidence 
in  the  directions  of  their  axes,  there  will  not  in  general  be  any  such 
coincidence.  Therefore  the  three  axes  of  the  ellipsoid  (a,  b,  etc.),  that 
is,  the  two  lines  which  bisect  the  angles  of  the  optic  axes  and  their 
common  normal,  will  vary  in  position  with  the  color  of  the  light. 

16.  It  appears  from  this  foregoing  discussion  that  by  the  electro- 
magnetic theory  of  light  we  may  not  only  account  for  the  dispersion 

of  colors  (including  the  dispersion  of  the  lines  which  bisect  the  angles 
of  the  optic  axes  in  doubly  refracting  media),  but  may  also  obtain 

Fresnel's  laws  of  double  refraction  for  every  kind  of  homogeneous 
light  without  neglect  of  the  quantities  which  determine  the  dispersion 

of  colors. 
But  a  closer  approximation  than  that  of  this  paper  will  be  neces- 

sary to  explain  the  phenomena  of  circularly  polarizing  media,  which 

depend  on  very  minute  differences  of  wave-velocity,  represented 
perhaps  by  a  few  units  in  the  sixth  significant  figure  of  the  index 
of  refraction.  That  the  degree  of  approximation  which  will  give  the 
laws  of  circular  and  elliptic  polarization  will  not  add  any  terms  to 
the  equations  of  this  paper,  except  such  as  vanish  for  media  which 
do  not  exhibit  this  phenomenon,  will  be  shown  in  another  number 
of  this  Journal. 



XII. 

ON  DOUBLE  REFRACTION  IN  PERFECTLY  TRANSPARENT 

MEDIA  WHICH  EXHIBIT  THE  PHENOMENA  OF  CIR- 
CULAR POLARIZATION. 

[American  Journal  of  Science,  ser.  3,  vol.  XXIII,  pp.  460-476,  June,  1882.] 

1.  IN  the  April  number  of  this  Journal,*  the  velocity  of  propagation 
of  a  system  of  plane  waves  of  light,  regarded  as  oscillating  electrical 
fluxes,  was  discussed  with  such  a  degree  of  approximation  as  would 

account  for  the  dispersion  of  colors  and  give  Fresnel's  laws  of  double 
refraction.     It  is  the  object  of  this  paper  to  supplement  that  discussion 
by  carrying  the  approximation  so  much  further  as  is  necessary  in 
order  to  embrace  the  phenomena  of  circularly  polarizing  media. 

2.  If  we  imagine  all  the  velocities  in  any  progressive  system  of 
plane  waves  to  be  reversed  at  a  given  instant  without  affecting  the 

displacements,  and  the  system  of  wave-motion  thus  obtained  to  be 
superposed  upon  the  original  system,  we  obtain  a  system  of  stationary 

waves  having  the  same  wave-length  and  period  of  oscillation  as  the 
original  progressive  system.     If  we  then  reduce  the  magnitude  of 
the  displacements  in  the  uniform  ratio  of  two  to  one,  they  will  be 
identical,  at  an  instant  of  maximum  displacement,  with  those  of  the 
original  system  at  the  same  instant. 

Following  the  same  method  as  in  the  paper  cited,  let  us  especially 

consider  the  system  of  stationary  waves,  and  divide  the  whole  dis- 
placement into  the  regular  part,  represented  by  £  rj,  f,  and  the 

irregular  part,  represented  by  £',  rf,  f,  in  accordance  with  the 
definitions  of  §  2  of  that  paper. 

3.  The  regular  part  of  the  displacement  is  subject  to  the  equations 

of  wave-motion,  which  may  be  written  (in  the  most  general  case 
of  plane  stationary  waves) 

/  u  u\  t 
£  =  (  a,  cos  27r-7--f-a9  sm  2?r  -r  )  COSZTT  —  , =      \i  /        j  //  CM  > \  (/  v  /  U 

(  It
  .  U\

  t 

p1cos27ry  +  /32sin27r-T- )  cos2x- , 

(n
i 
 1t/\ yx  cos  2-7T  y  +  y2  sin  2?r  j  J  cos 

-  , 

*See  page  182  of  this  volume. 
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where  I  denotes  the  wave-length,  p  the  period  of  oscillation,  u  the 
distance  of  the  point  considered  from  the  wave-plane  passing  through 
the  origin,  at,  fa,  yl  the  amplitudes  of  the  displacements  £  rj,  f  in 

the  wave-plane  passing  through  the  origin,  and  a2,  /32,  y2  their 
amplitudes  in  a  wave-plane  one-quarter  of  a  wave-length  distant 
and  on  the  side  toward  which  u  increases.  If  we  also  write  L,  M, 

for  the  direction-cosines  of  the  wave-normal  drawn  in  the  direction 
in  which  u  increases,  we  shall  have  the  following  necessary  relations  : 

^  =  0,    La2+M/32+Ny2=0. 

4.  That  the  irregular  part  of  the  displacement  (£,  rft  f  )  at  ani 
given  point  is  a  simple  harmonic  function  of  the  time,  having  the 
same  period  and  phase  as  the  regular  part  of  the  displacement  (£  rj, 
may  be  proved  by  the  single  principle  of  superposition  of  motioi 
and  is  therefore  to  be  regarded  as  exact  in  a  discussion  of  this  kin< 

But  the  further  conclusion  of  the  preceding  paper  (§  4),  "that  the 

values  of  £',  r[t  f  at  any  given  point  in  the  medium  are  capable 
expression  as  linear  functions  of  £  q,  f  in  a  manner  which  shall 

independent  of  the  time  and  of  the  orientation  of  the  wave-planes  and 
the  distance  of  a  nodal  plane  from  the  point  considered,  so  long  as  the 

period  of  oscillation  remains  the  same,"  is  evidently  only  approxima- 
tive, although   a   very  close  approximation.     A   very   much   closer 

approximation  may  be  obtained,  if  we  regard  £',  rf ,  f ',  at  any  given 
point  of  the  medium  and  for  light  of  a  given  period,  as  linear  functions 

°f  £  n>  f  and  the  nine  differential  coefficients 

dx'    dxy    dx' 

— s-        pir» 
-i        ,         CIA^. 

dy' 

We  shall  write  £  r\,  f  and  diff.  coeff.  to  denote  these  twelve  quantiti( 
From  this  it  follows  immediately  that  with  the  same  degree  of 

approximation  £',  /)',  f '  may  be  regarded,  for  a  given  point  of  the 
medium  and  light  of  a  given  period,  as  linear  functions  of  £  7),  f  an( 
the  differential  coefficients  of  £  r\,  f  with  respect  to  the  coordinal 
For  these  twelve  quantities  we  shall  write  £,  r\,  f  and  diff.  coeff. 

5.  Let  us  now  proceed  to  equate  the  statical  energy  of  the  medium 
at  an  instant  of  no  velocity  with  its  kinetic  energy  at  an  instant  of 
no  displacement.     It  will  be  convenient  to  estimate  each  of  these 
quantities  for  a  unit  of  volume. 

6.  The  statical  energy  of  an  infinitesimal  element  of  volume  may  be 
represented  by  cr  dv,  where  <r  is  a  quadratic  function  of  the  components 

of  displacement  £+  £',  r\  +  */',  f  +  f '.     Since  for  that  element  of  volume 
£',  rf,  f '  may  be  regarded  as  linear  functions  of  £  77,  f  and  diff.  coeff., 
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we  may  regard  or  as  a  quadratic  function  of  (,  r\,  f  and  diff.  coeff.,  or 
as  a  linear  function  of  the  seventy-eight  squares  and  products  of  these 
quantities.  But  the  seventy-eight  coefficients  by  which  this  function 
is  expressed  will  vary  with  the  position  of  the  element  of  volume  with 
respect  to  the  surrounding  molecules. 

In  estimating  the  statical  energy  for  any  considerable  space  by  the 
integral  r 

f<rdv, 

it  will  be  allowable  to  substitute  for  the  seventy-eight  coefficients 
contained  implicitly  in  or  their  average  values  throughout  the  medium. 
That  is,  if  we  write  s  for  a  quadratic  function  of  £  q,  f,  and  diff.  coeff. 
in  which  the  seventy-eight  coefficients  are  the  space-averages  of  those 
in  or,  the  statical  energy  of  any  considerable  space  may  be  estimated 
by  the  integral  r 

Jsdv. (This  will  appear  most  distinctly  if  we  suppose  the  integration  to 
be  first  effected  for  a  thin  slice  of  the  medium  bounded  by  two 

wave-planes.)  The  seventy-eight  coefficients  of  this  function  8  are 
determined  solely  by  the  nature  of  the  medium  and  the  period  of 
oscillation. 

We  may  divide  s  into  three  parts,  of  which  the  first  (s,)  contains  the 
squares  and  products  of  £  TJ,  f,  the  second  (»„)  contains  the  products  of 
f,  *l>  f  with  the  differential  coefficients,  and  the  third  («,„)  contains  the 
squares  and  products  of  the  differential  coefficients.  It  is  evident  that 
the  average  statical  energy  of  the  whole  medium  per  unit  of  volume 

is  the  space-average  of  s,  and  that  it  will  consist  of  three  parts,  which 
are  the  space-averages  of  s,  ,  stt  ,  and  8HI  ,  respectively.  These  parts  we 
may  call  S,  ,  Sy/  ,  and  S,,,  .  Only  the  first  of  these  was  considered  in 
the  preceding  paper. 
Now  the  considerations  which  justify  us  in  neglecting,  for  an 

approximate  estimate,  the  terms  of  s  which  contain  the  differential 

coefficients  of  £  ij,  f  with  respect  to  the  coordinates,  will  apply  with 
especial  force  to  the  terms  which  contain  the  squares  and  products  of 
these  differential  coefficients.  Therefore,  to  carry  the  approximation 
one  step  beyond  that  of  the  preceding  paper,  it  will  only  be  necessary 
to  take  account  of  8,  and  8H  and  of  S,  and  Sy/. 

7.  We  may  set 

where,  for  a  given  medium  and  light  of  a  given  period,  A,  B,  C,  E,  F, 
G  are  constant. 

Since  the  average  values  of 

U  90       U  •       «       U  O       U 

-r,    cos227Ty,     sm  ZTT  j-  cos  ZTT  j 
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are  respectively  J,  J,  and  0,  and  since  at  the  time  to  be  considered 
t 

COS227T  — p 

1, 

it  will  appear  from  inspection  of  equations  (1)  that 

S,  =  K  AV + B&2 + Cyi2 
(6) 

This  is  the  first  part  of  the  statical  energy  of  the  whole  medium 
per  unit  of  volume. 

8.  The  second  part  of  the  statical  energy  of  the  whole  medium 

per  unit  of  volume  (S,,)  is  the  space-average  of  s/x,  which  is  a  linear 
function  of  the  twenty-seven  products  of  £,  tj,  f  with  their  differential 
coefficients  with  respect  to  the  coordinates.  Now  since 

dx dx  '       dx 

dx  ' 

the  space-average  of  such  products  will  be  zero,  and  they  will 
contribute  nothing  to  the  value  of  Sx/.  There  will  be  nine  of  these 
products,  in  which  the  same  component  of  displacement  appears 
twice.  The  remaining  eighteen  products  may  be  divided  into  pairs 
according  to  the  letters  which  they  contain,  as 

dt        ,    ,dn 
n  -5*-   and   c  -r. 
dx  *  dx 

A  linear  function  of  the  eighteen  products  may  also  be  regarded 
as  a  linear  function  of  the  sums  and  differences  of  the  products  in 
such  pairs.     But  since 

d£  ,fdrj_ 

dx     ̂   dx~    dx 
the  terms  of  aft  containing  such  sums  will  contribute  nothing  to  the 
value  of  S, .  We  have  left  a  linear  function  of  the  nine  differences 

dx     ̂   dx'    ̂   dx    ̂   dx'    *  dx       dx' 

(the  unwritten  expressions  being  obtained  by  substituting  in  the 
denominators  dy  and  dz  for  dx),  which  constitutes  the  part  of  stl 
that  we  have  to  consider.  Sy/  is  therefore  a  linear  function  of  the 

space-averages  of  these  nine  quantities.  But  by  (3) 

_L 

-^ 

and  the  space-average  of  this,  at  a  moment  of  maximum  displacement, 
is  bv  (1)  2?rL 
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By  such  reductions  it  appears  that  IS,,  is  a  linear  function  of  the 
nine  products  of  L,  M,  N  with 

Now  if  we  set 

e  = we  have  by  (4)  and  (2) 

a1/32-/81a2.  (8) 

Therefore  IS,,  is  a  linear  function  of  the  nine  products  of  L,  M,  N 
with  LG,  M9,  NO.  That  is,  IS,,  is  the  product  of  0  and  a  quadratic 
function  of  L,  M  and  N.  We  may  therefore  write 

»„  =  f  e  =  j  [L(/3iy2  -  y1(82)  +  M(yia2  -  a,y2)  +  N  (<.,&  -  &«,)],      (9) If  (/ 

where  $  is  a  quadratic  function  of  L,  M  and  N,  dependent,  however, 
on  the  nature  of  the  medium  and  the  period  of  oscillation. 

9.  It  will  be  useful  to  consider  more  closely  the  geometrical 
significance  of  the  quantity  0.  For  this  purpose  it  will  be  convenient 
to  have  a  definite  understanding  with  respect  to  the  relative  position 
of  the  coordinate  axes. 

We  shall  suppose  that  the  axes  of  X,  Y,  and  Z  are  related  in  the 
same  way  as  lines  drawn  to  the  right,  forward  and  upward,  so  that 
a  rotation  from  X  to  Y  appears  clockwise  to  one  looking  in  the 
direction  of  Z. 

Now  if  from  any  same  point,  as  the  origin  of  coordinates,  we  lay 
off  lines  representing  in  direction  and  magnitude  the  displacements 

in  all  the  different  wave-planes,  we  obtain  an  ellipse,  which  we  may 

call  the  displacement-ellipse*  Of  this,  one  radius  vector  (pj)  will 
have  the  components  a1?  /3lt  y15  and  another  (p2)  the  components 
a2,  /32,  y2-  These  will  belong  to  conjugate  diameters,  each  being 
parallel  to  the  tangent  at  the  extremity  of  the  other.  The  area  of 
the  ellipse  will  therefore  be  equal  to  the  parallelogram  of  which 
/D!  and  pz  are  two  sides,  multiplied  by  TT.  Now  it  is  evident  that 

&y2~~yA,  yia2~aiy2>  aA~aA  are  numerically  equal  to  the  pro- 
jections of  this  parallelogram  on  the  planes  of  the  coordinate  axes, 

and  are  each  positive  or  negative  according  as  a  revolution  from 

Pi  t°  Pz  appears  clockwise  or  counter-clockwise  to  one  looking  in 
the  direction  of  the  proper  coordinate  axis.  Hence,  0  will  be 
numerically  equal  to  the  parallelogram,  that  is,  to  the  area  of  the 

displacement-ellipse  divided  by  TT,  and  will  be  positive  or  negative 

*  This  ellipse,  which  represents  the  simultaneous  displacements  in  different  parts  of 
the  field,  will  also  represent  the  successive  displacements  at  any  same  point  in  the 
corresponding  system  of  progressive  waves. 
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according  as  a  revolution  from  pl  to  p2  appears  clockwise  or  counter- 
clockwise to  one  looking  in  the  direction  of  the  wave-normal.  Since 

p1  and  pz  are  determined  by  displacements  in  planes  one-quarter  of 
a  wave-length  distant  from  each  other,  and  the  plane  to  which  the 
latter  relates  lies  on  the  side  toward  which  the  wave-normal  is  drawn, 
it  follows  that  9  is  positive  or  negative  according  as  the  combination 

of  displacements  has  the  character  of  a  right-handed  or  a  left-handed 
screw. 

10.  The  kinetic  energy  of  the  medium,  which  is  to  be  estimated 
for  an  instant  of  no  displacement,  may  be  shown  as  in  §  7  of  the 
former  paper  (page  185  of  this  volume)  to  consist  of  two  parts,  of 
which  one  relates  to  the  regular  flux  (£  rj,  £),  and  the  other  to  the 

irregular  flux  (£',  tf,  f).  The  first,  in  the  notation  of  that  paper,  is 
represented  by 

J/(£Potf+*?Pot 
which  reduces  to 

By  substitution  of  the  values  given  by  equations  (1),  we  obtain  for 
the  kinetic  energy  due  to  the  regular  flux  in  a  unit  of  volume 

.  (10) 

11.  The  kinetic  energy  of  the  irregular  part  of  the  flux  is  repre- 
sented by  the  volume-integral 

/*  (f  pot  f  +  if  Pot  «f  +  f  Pot  n  dv. 
Now,  since  £'  rft  f  are  everywhere  linear  functions  of  f  i\,  f  and 
diff.  coeff.  (see  §  4),  and  since  the  integrations  implied  in  the  notation 
Pot  may  be  confined  to  a  sphere  of  which  the  radius  is  small  in 

comparison  with  a  wave  length,*  and  since  within  such  a  sphere  £  r\,  f 
and  diff.  coeff.  are  sufficiently  determined  (in  a  linear  form),  by  the 
values  of  the  same  twelve  quantities  at  the  center  of  the  sphere,  it 

follows  that  Pot  £',  Pot  if,  Pot  f  must  be  linear  functions  of  the  values 
of  £  *7,  f  and  diff.  coeff.  at  the  point  for  which  the  potential  is  sought. 
Hence, 

will  be  a  quadratic  function  of  £  TJ,  £  and  diff.  coeff.  But  the 

seventy-eight  coefficients  by  which  this  function  is  expressed  will 
vary  with  the  position  of  the  point  considered  with  respect  to  the 
surrounding  molecules. 

*  See  §  9  of  the  former  paper,  on  page  187  of  this  volume. 
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Yet,  as  in  the  case  of  the  statical  energy,  we  may  substitute  the 
average  values  of  these  coefficients  for  the  coefficients  themselves  in 
the  integral  by  which  we  obtain  the  energy  of  any  considerable  space. 
The  kinetic  energy  due  to  the  irregular  part  of  the  flux  is  thus 
reduced  to  a  quadratic  function  of  £,  T],  f  and  diff.  coeff.  which  has 
constant  coefficients  for  a  given  medium  and  light  of  a  given  period. 

The  function  may  be  divided  into  three  parts,  of  which  the  first 
contains  the  squares  and  products  of  £  rj,  f,  the  second  the  products 
of  £  r],  f  with  their  differential  coefficients,  and  the  third,  which  may 
be  neglected,  the  squares  and  products  of  the  differential  coefficients. 

We  may  proceed  with  the  reduction  precisely  as  in  the  case  of  the 
statical  energy,  except  that  the  differentiations  with  respect  to  the 

4-7T2 

time   will   introduce   the   constant   factor    —  5-.      This  will   give   for 

the  first  part  of  the  kinetic  energy  of  the  irregular  flux  per  unit 
of  volume 

J     (11) 

p 

<>' 
,     (12) 

where  A',  B',  C',  E',  F',  G'  are  constant,  and  <£'  a  quadratic  function  of 
L,  M,  and  N,  for  a  given  medium  and  light  of  a  given  period. 

12.  Equating  the  statical  and  kinetic  energies,  we  have 

s/+s//=r+r/+r//, 
that  is,  by  equations  (6),  (9),  (10),  (11),  and  (12), 

2  +  C7l2 

92 
~  (  A  V  +  B&«  +  G'yf  +  E'/32y2  +  F'y2a2  +  G' Jr 

2>' «A-/3ia2)].     (13) S 
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If  we  set  A     2-n-A7 
~2<7T  pZ     ' 

and 

the  equation  reduces  to 

—    fri'f* 

~27T  »2     '       ̂  
(14) 

(15) 

1+e&yi+/yi«i+#«] 
aa 

+  ey22 

X  (16) 
p- 

where  a,  b,  c,  e,  /,  g  are  constant,  and  0   a   quadratic   function    of 
L,  M,  N,  for  a  given  medium  and  light  of  a  given  period. 

13.  Now  this  equation,  which  expresses  a  relation  between  the 

constants  of  the  equations  of  wave-motion  (1),  will  apply,  with  those 
equations,  not  only  to  such  vibrations  as  actually  take  place,  but  also 
to  such  as  we  may  imagine  to  take  place  under  the  influence  of 

constraints  determining  the  type  of  vibration.  The  free  or  uncon- 
strained vibrations,  with  which  alone  we  are  concerned,  are  charac- 

terized by  this,  that  infinitesimal  variations  (by  constraint)  of  the 
type  of  vibration,  that  is,  of  the  ratios  of  the  quantities  a1}  (5lt  yx, 
a2,  /32,  y2,  will  not  affect  the  period  by  any  quantity  of  the  same 

order  of  magnitude.*  These  variations  must  however  be  consistent 
with  equations  (4),  which  require  that 

L  da^  +  M  d^  +  N  dy l  =  0,  L  da2  +  M  d/32  +  N  dyz  =  0.  (17) 
Hence,  to  obtain  the  conditions  which  characterize  free  vibration, 

we  may  differentiate  equation  (16)  with  respect  to  a1?  /3lt  y1?  a2,  /32,  y2, 
regarding  all  other  letters  as  constant,  and  give  to  dal}  d^1}  dyv 

da2,  c£/32,  dy2,  such  values  as  are  consistent  with  equations  (17). 

Now  dal}  d/3-L,  dyl}  are  independent  of  da2,  d/32,  dyz,  and  for  either 
three  variations,  values  proportional  either  to  alt  /B^  yx,  or  to  a2,  /32,  y2, 
are  possible.  If,  then,  we  differentiate  equation  (16)  with  respect  to 

ai>  &»  Vi»  and  substitute  first  alt  /3l}  yx,  and  then  a2,  /32,  y2,  for 
dal}  d/3l}  dyl}  and  also  differentiate  with  respect  to  a2,  /32,  y2,  with 
similar  substitutions,  we  shall  obtain  all  the  independent  equations 
which  this  principle  will  yield. 

If  we  differentiate  with  respect  to  alt  /3lt  y1}  and  write  alt  /315  y 
for  da 

dyl,  we  obtain l}       l, 
* 

aa 
[L(/3iy2 

)  +  M  (7l«2  -  aiyt 

(18) 

Compare  §  11  of  the  former  paper,  page  189  of  this  volume. 
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If  we  differentiate  with  respect  to  alt  &,  y1?  and  write  a2,  /82,  y2  for 

dav  d/3l}  dylt  we  obtain 

072 

If  we  differentiate  with  respect  to  03,  j82,  y2,  and  write  Oj,  /32,  y2  for 
da2,  cZ^2,  dy2,  we  obtain 

aa22  +  6)828  +  cy22  +  e£2y2  +/y2«2  +  ga 

.  (20) 

The  equation  derived  by  differentiating  with  respect  to  a2,  /82,  y2,  and 
writing  a1?  /3lt  y±  for  c£a2,  cZ/32,  cZy2,  is  identical  with  (19).  We  should 

also  observe  that  equations  (18)  and  (20)  by  addition  give  equation 
(16),  which  therefore  will  not  need  to  be  considered  in  addition  to 

the  last  three  equations. 

14.  The  geometrical  signification  of  our  equations  may  now  be 

simplified  by  a  suitable  choice  of  the  position  of  the  origin  of 
coordinates,  which  is  as  yet  wholly  arbitrary. 

We  shall  hereafter  suppose  that  the  origin  is  placed  in  a  plane  of 

maximum  or  minimum  displacement,*  if  such  there  are,  In  the  case 
of  circular  polarization,  in  which  the  displacements  are  everywhere 
equal,  its  position  is  immaterial.  The  lines  p1  and  />2,  of  which  alf  /3lf 
yl  and  a2,  /32,  y2  are  respectively  the  components,  will  now  be  the 

semi-axes  of  the  displacement-ellipse,  and  therefore  at  right  angles. 
(See  §  9.)  The  case  of  circular  polarization  will  not  constitute  any 
exception.  Hence, 

a1a2+)81/32  +  y1y2  =  0,  (21) 
and  by  §  9, 

(22) 

where  we  are  to  read  +  or  —  in  the  last  member  according  as  the 
system  of  displacements  has  the  character  of  a  right-handed  or  a 
left-handed  screw. 

15.  Equation  (19)  is  now  reduced  to  the  form 

ia2  +  26/8  A  +  2cyiy2  +  e(&y2  +  7l/32) 
(23) 

*  The  reader  will  perceive  that  an  earlier  limitation  of  the  position  of  the  origin  by  a 
supposition  of  this  nature,  involving  a  limitation  of  the  values  of  a1  ,  /3j  ,  ylt  a2  ,  /32  ,  -y2  , 
would  have  been  embarrassing  in  the  operations  of  the  last  paragraph. 
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which  has  a  very  simple  geometrical  signification.  If  we  consider 

the  ellipsoid  ax*+by*  +  cz*+eyz+fzx+gxy,  (24) 
and  especially  its  central  section  by  a  plane  parallel  to  the  planes  of 

the  wave-system  which  we  are  considering,  it  will  easily  appear  that 
the  equation 

2)  =  0 

will  hold  of  any  two  points  xlt  y-^,  %  and  x2,  y2,  zz  which  belong  to 
conjugate  diameters  of  this  central  section.  Therefore  equation  (23) 

expresses  that  the  displacements  alt  /3l}  yx  and  a2,  /32,  y2  are  parallel 
to  conjugate  diameters  of  the  central  section  of  the  ellipsoid  (24)  by  a 

wave-plane.  But  since  the  displacements  a1?  /3lf  yx  and  a2,  /32,  y2  are 
also  at  right  angles  to  each  other,  it  follows  that  they  are  parallel 

to  the  axes  of  the  central  section  of  the  ellipsoid  (24)  by  a  wave-plane. 

That  is:  —  The  axes  of  the  displacement-ellipse  coincide  in  direction 

with  those  of  a  central  section  of  the  ellipsoid  (24)  by  a  wave-plane. 

16.  If  we  write  Uj,  U2  for  the  reciprocals  of  the  semi-axes  of  the 

central  section  of  the  ellipsoid  (24)  by  a  wave-plane,  Uj  being  the 
reciprocal  of  the  one  to  which  the  displacement  alt  /31?  yx  is  parallel, 
we  have 

),      (25) 
as  is  at  once  evident  if  we  substitute  the  coordinates  of  an  extremity 

of  the  axis  for  the  proportional  quantities  av  /3V  yr     So  also 

aa2HW  +  ̂y22  +  ̂ 2y2+/y2a2+^a2^2  =  U22(a22  +  ft2  +  y2J).       (26) 
If  we  write  V  for  the  velocity  of  propagation  of  the  system  of 

progressive  waves  corresponding  to  the  system  of  stationary  waves 
which  we  have  been  considering,  we  shall  have 

V  =  l  (27) 
P 

By  equations  (22),  (25),  and  (26),  equations  (18)  and  (20)  are 
reduced  to  the  form 

TWi^ftA-VW,        U2W±|AP2=VW>  (28) 

where  we  are  to  read  +  or  —  according  as  the  disturbance  has  the 

character  of  a  right-handed  or  a  left-handed  screw.  In  a  progressive 
system  of  waves,  when  the  combination  of  displacements  has  the 

character  of  a  right-handed  screw,  the  rotations  will  be  such  as  appear 
clockwise  to  the  observer,  who  looks  in  the  direction  opposite  to  that 

of  the  propagation  of  light.  We  shall  call  such  a  ray  right-handed. 
We  may  here  observe  that  in  case  0  =  0  the  solution  of  these 
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equations  is  very  simple.  We  have  necessarily  either  />2  =  0 

V^Uj2,  or  ̂   =  0  and  V2=U22.  In  this  case,  the  light  is  linearly 
polarized,  and  the  directions  of  oscillation  and  the  velocities  of 

propagation  are  given  by  Fresnel's  law.  Experiment  has  shown  that 
this  is  the  usual  case.  We  wish,  however,  to  investigate  the  case  in 
which  0  does  not  vanish.  Since  the  term  containing  0  arises  from 
the  consideration  of  those  quantities  which  it  was  allowable  to  neglect 
in  the  first  approximation,  we  may  assume  that  0  is  always  very 

small  in  comparison  with  V3,  Uj3,  or  U23. 
17.  Equations  (28)  may  be  written 

V2_U2=-t^^       V2-U2--b-^  &.  (29) 
ui  "     tV/o1'  2"       V  P2 

By  multiplication  we  obtain 

V2(V2  -  U^X  V2  -  U22)  =  02.  (30) 

Since  0  is  a  very  small  quantity,  it  is  evident  from  inspection  of  this 

equation  that  it  will  admit  three  values  of  V2,  of  which  one  will  be  a 
very  little  greater  than  the  greater  of  the  two  quantities  t^2  and  U22, 
another  will  be  a  very  little  less  than  the  less  of  the  same  two  quan- 

tities, and  the  third  will  be  a  very  small  quantity.  It  is  evident  that 
the  values  of  V2  with  which  we  have  to  do  are  those  which  differ  but 

little  from  U*  and  U22.* 
For  the  numerical  computation  of  V,  when  Ux,  U2,  and  0  are 

known  numerically,  we  may  divide  the  equation  by  V2,  and  then 
solve  it  as  if  the  second  member  were  known.  This  will  give 

(31) 

By  substituting  T^Ug  for  V2  in  the  second  member,  we  may  obtain 
a  close  approximation  to  the  two  values  of  V2.  Each  of  the  values 
obtained  may  be  improved  by  substitution  of  that  value  for  V2  in  the 
second  member  of  the  equation. 

For  either  value  of  V2,  we  may  easily  find  the  ratio  of  pl  to  /o2, 
that  is,  the  ratio  of  the  axes  of  the  displacement-ellipse,  from  one  of 
equations  (29),  or  from  the  equation 

n  2       V2  _  TT  2 
£2__i_    ui  (32) 
n2-V2_TJ2 
Pl  U2 

obtained  by  combining  the  two. 

*  We  should  not  attribute  any  physical  significance  to  the  third  value  of  V2.  For 
this  value  would  imply  a  wave-length  very  small  in  comparison  with  the  length  of 
ordinary  waves  of  light,  and  with  respect  to  which  our  fundamental  assumption  that 
the  wave-length  is  very  great  in  comparison  with  the  distances  of  contiguous  molecules 
would  be  entirely  false.  Our  analysis,  therefore,  furnishes  no  reason  for  supposing  that 
any  such  velocities  are  possible  for  the  propagation  of  electrical  disturbances. 
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In  equations  (29),  we  are  to  read  4-  or  —  in  the  second  members, 
according  as  the  ray  is  right-handed  or  left-handed.  (See  §  16.)  It 
follows  that  if  the  value  of  0  is  positive,  the  greater  velocity  will 

belong  to  a  right-handed  ray,  and  the  smaller  to  a  left-handed,  but  if 
the  value  of  <f>  is  negative,  the  opposite  is  the  case.  Except  when 

0  =  0,  and  the  polarization  is  linear,  there  will  be  one  right-handed 
and  one  left-handed  ray  for  any  given  wave-normal  and  period. 

18.  When  U1  =  U2,  equations  (29)  give 

V2—  rT2-f-0. 
Pi  —  Pz>  -  u  ±y  » 

where  U  represents  the  common  value  of  'Ul  and  U2.  The  polariza- 
tion is  therefore  circular.  The  converse  is  also  evident  from  equations 

(29),  viz.,  that  a  ray  can  be  circularly  polarized  only  when  the 

direction  of  its  wave-normal  is  such  that  U1  =  \JZ.  Such  a  direction, 
which  is  determined  by  a  circular  section  of  the  ellipsoid  (24)  precisely 

as  an  optic  axis  of  a  crystal  which  conforms  to  Fresnel's  law  of  double 
refraction,  may  be  called  an  optic  axis,  although  its  physical  pro- 

perties are  not  the  same  as  in  the  more  ordinary  case.*  If  we  write 
VB  and  VL,  respectively,  for  the  wave-  velocities  of  the  right-handed 
and  left-handed  rays,  we  have 

-,     VL2=IP--;  (33) 
R  VL 

whence 
R        v  L/  ¥  R  v  L 

and  VR  —  VL  =  — — — .  (34) 
R     L 

The  phenomenon  best  observed  with  respect  to  an  optic  axis  is  the 
rotation  of  the  plane  of  linearly  polarized  light.  If  we  denote  by  0 
the  amount  of  this  rotation  per  unit  of  the  distance  traversed  by  the 

wave-plane,  regarding  it  as  positive  when  it  appears  clockwise  to  the 

*  Our  experimental  knowledge  of  circularly  or  elliptically  polarizing  media  is  confined 
to  such  as  are  optically  either  isotropic  or  uniaxial.  The  general  theory  of  such  media, 
embracing  the  case  of  two  optic  axes,  has  however  been  discussed  by  Professor  von  Lang 

("Theorie  der  Circularpolarization,"  Sitz.-J3er.  Wiener  Akad.,  vol.  Ixxv,  p.  719).  The 
general  results  of  the  present  paper,  although  derived  from  physical  hypotheses  of  an 
entirely  different  nature,  are  quite  similar  to  those  of  the  memoir  cited.  They  would 

become  identical,  the  writer  believes,  by  the  substitution  of  a  constant  for  —r-  or  ̂  
in  the  equations  of  this  paper.     (See  especially  equations  (18),  (20),  (28).) 

That  a  complete  discussion  of  the  subject  on  any  theory  must  include  the  case  of 
biaxial  media  having  the  property  of  circular  or  elliptical  polarization,  is  evident  from 
the  consideration  that  it  must  at  least  be  possible  to  produce  examples  of  such  media 
artificially.  An  isotropic  or  uniaxial  crystal  may  be  made  biaxial  by  pressure.  If  it 
has  the  property  of  circular  and  elliptic  polarization,  that  property  cannot  be  wholly 
destroyed  by  the  application  of  small  pressures. 
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observer,  who  looks  in  the  direction  opposite  to  that  of  the  propagation 

of  the  light,*  we  have 

(35) 
By  the  preceding  equation,  this  reduces  to 

-  (36) 
Without  any  appreciable  error,  we  may  substitute  U4  for  VE2VL2, 
which  will  givet 

<37> 
19.  Since  these  equations  involve  unknown  functions  of  the  period 

they  will  not  serve  for  an  exact  determination  of  the  relation  between 
0  and  the  period.  For  a  rough  approximation,  however,  we  may 
assume  that  the  manner  in  which  the  general  displacement  in  any 
small  part  of  the  medium  .  distributes  itself  among  the  molecules  and 
intermolecular  spaces  is  independent  of  the  period,  being  determined 
entirely  by  the  values  of  £  r\,  £  and  their  differential  coefficients  with 

respect  to  the  coordinates.  J  For  a  fixed  direction  of  the  wave-normal, 

<f>  and  <£'  will  then  be  constant.  Now  equations  (15)  and  (36)  give 

To  express  this  result  in  terms  of  the  quantities  directly  observed,  we 
may  use  the  equations 

A  -r-r  K>  -\-f  *C  f-r-  K 

P  =  k>   v*=v   VL=<   U=V 
where  k  denotes  the  velocity  of  light  in  vacuo,  \  the  wave-length 
in  vacuo  of  the  light  employed,  TIR,  nL  the  absolute  indices  of  refrac- 

tion of  the  two  rays,  and  n  the  index  for  the  optic  axis  as  derived 

from  the  ellipsoid  (24)  by  Fresnel's  law.  We  thus  obtain 2  /OQX 

X4
 

*  When  the  rotation  of  the  plane  of  polarization  appears  clockwise  to  the  observer, 
it  has  the  character  of  a  left-handed  screw.  But  the  circularly  polarized  ray  to  which 
VR  relates,  the  rotation  of  which  also  appears  clockwise  to  the  observer,  has  the 
character  of  a  right-handed  screw. 

t  The  degree  of  accuracy  of  this  substitution  may  be  shown  as  follows.     By  (33) 

VR(VK2-U2)  =  VI.(U2-VL2), 
whence 

Compare  §  12  of  the  former  paper,  on  page  189  of  this  volume. 
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In  the  case  of  uniaxial  crystals,  the  direction  of  the  optic  axis  is 
fixed.     We  may  therefore  write 

regarding  K  and  K'  as  constants.  If  we  had  used  equation  (37),  we 
should  have  had  the  factor  7i4  instead  of  nnznL2.  Since  this  factor 
varies  but  slowly  with  X,  it  may  be  neglected,  if  its  omission  is 

compensated  in  the  values  of  K  and  K'.  The  formula  being  only 
approximative,  such  a  simplification  will  not  necessarily  render  it 
less  accurate. 

20.  But  without  any  such  assumption  as  that  contained  in  the 

last  paragraph,  we  may  easily  obtain  formulae  for  the  experimental 

determination  of  3?  and  <3?'  for  the  optic  axis  of  a  uniaxial  crystal. 
Considerations  analogous  to  those  of  §  13  of  the  former  paper 

(page  190  of  this  volume),  show  that  in  differentiating  equation  (39) 

we  may  regard  <3>  and  <£'  as  constant,  although  they  may  actually 
vary  with  X.  This  equation  may  be  written 

X2 

Th
er
ef
or
e,
 

\X2) 

(42) 
d 

When  &  has  been  determined  by  this  equation,  <3?  may  be  found 
from  the  preceding. 

21.  If  we  wish  to  represent  (p  geometrically,  like  Uj  and  U2,  we 
may  construct  the  surfaces 

Aaj2  +  B2/2  +  cz2 + Et/0 + FZX + Gxy  =  ±  1,  (43) 

the  coefficients  A,  B,  etc.,  being  the  same  by  which  (j>  is  expressed  in 

terms  of  L2,  M2,  etc.  The  numerical  value  of  $,  for  any  direction 
of  the  wave-normal,  will  thus  be  represented  by  the  square  of  the 
reciprocal  of  the  radius  vector  of  the  surface  drawn  in  the  same 
direction.  The  positive  or  negative  character  of  0  must  be  separately 
indicated.  There  are  here  two  cases  to  be  distinguished.  If  the 

sign  of  <j>  is  the  same  in  all  directions,  the  surface  will  be  an 

ellipsoid,  and  we  have  only  to  know  whether  all  the  values  of  </>  are 
to  be  taken  positively  or  all  negatively.  But  if  <J>  is  positive  for  some 
directions  and  negative  for  others,  the  surface  will  consist  of  two 

conjugate  hyperboloids,  to  one  of  which  the  positive,  and  to  the  other 
the  negative  values  belong. 
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22.  The    manner    in   which    the   ellipsoid  (24)  may   be   partially 
determined  by  the  relations  of  symmetry  which  the  medium  may 
possess,  has  been  sufficiently  discussed  in  the  former  paper. 

With  respect  to  the  quantity  0,  and  the  surfaces  which  determine 
it,  the  following  principle  is  of  fundamental  importance.  If  one  body 
is  identical  in  its  internal  structure  with  the  image  by  reflection  of 
another,  the  values  of  0  in  corresponding  lines  in  the  two  bodies  will 

be  numerically  equal  but  have  opposite  signs.* 
It  follows  that  if  a  body  is  identical  in  internal  structure  with  its 

own  image  by  reflection,  the  value  of  0  (if  not  zero  for  all  directions) 

must  be  positive  for  some  directions  and  negative  for  others.  More- 
over, the  above  described  surface  by  which  <J>  is  represented  must 

consist  of  two  conjugate  hyperboloids,  of  which  one  is  identical  in 
form  with  the  image  by  reflection  of  the  other.  This  requires  that 
the  hyperboloids  shall  be  right  cylinders  with  conjugate  rectangular 
hyperbolas  for  bases.  A  crystal  characterized  by  such  properties  will 

belong  to  the  tetragonal  system.  Since  0  =  0  for  the  optic  axis,  it 
would  be  difficult  to  distinguish  a  case  of  this  kind  from  an  ordinary 
uniaxial  crystal,  unless  the  ellipsoid  (24)  should  approach  very  closely 
to  a  sphere.! 

It  is  only  in  the  very  limited  case  described  in  the  last  paragraph 
that  a  medium  which  is  identical  in  its  internal  structure  with  its 

image  by  reflection  can  have  the  property  of  circular  or  elliptic 
polarization.  To  media  which  are  unlike  their  images  by  reflection, 
and  have  the  property  of  circular  polarization,  we  may  apply  the 
following  general  principles. 

If  the  medium  has  any  axis  of  symmetry,  the  ellipsoid  or  hyper- 
boloids which  represent  the  values  of  0  will  have  an  axis  in  the  same 

direction.  If  the  medium  after  a  revolution  of  less  than  180°  about 
any  axis  is  equivalent  to  the  medium  in  its  first  position,  the  ellipsoid 
or  hyperboloids  will  have  an  axis  of  revolution  in  that  direction. 

23.  The  laws  of  the  propagation  of  light  in  plane  waves,  which 

*  The  necessity  of  the  opposite  signs  will  perhaps  appear  most  readily  from  the 
consideration  that  the  direction  of  rotation  of  the  plane  of  polarization  must  be  opposite 
in  the  two  bodies. 

t  There  is  no  difficulty  in  conceiving  of  the  constitution  of  a  body  which  would  have 
the  properties  described  above.  Thus,  we  may  imagine  a  body  with  molecules  of  a 

spiral  form,  of  which  one-half  are  right-handed  and  one-half  left-handed,  and  we  may 
suppose  that  the  motion  of  electricity  is  opposed  by  a  less  resistance  within  them  than 

without.  If  the  axes  of  the  right-handed  molecules  are  parallel  to  the  axis  of  X,  and 
those  of  the  left-handed  molecules  to  the  axis  of  Y,  their  effects  would  counterbalance 

one  another  when  the  wave-normal  is  parallel  to  the  axis  of  Z.  But  when  the  wave- 
normal  (of  a  beam  of  linearly  polarized  light)  is  parallel  to  the  axis  of  X,  the  left-handed 
molecules  would  produce  a  left-handed  (negative)  rotation  of  the  plane  of  polarization, 

the  right-handed  molecules  having  no  effect ;  and  when  the  wave-normal  is  parallel  to 
the  axis  of  Y,  the  reverse  would  be  the  case. 

G.  II.  0 
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have  thus  been  derived  from  the  single  hypothesis  that  the  disturb- 
ance by  which  light  is  transmitted  consists  of  solenoidal  electrical 

fluxes,  and  which  apply  to  light  of  different  colors  and  to  the  most 
general  case  of  perfectly  transparent  and  sensibly  homogeneous  media 

not  subject  to  magnetic  action,*  are  essentially  those  which  are 
generally  received  as  embodying  the  results  of  experiment.  In  no 
particular,  so  far  as  the  writer  is  aware,  do  they  conflict  with  the 
results  of  experiment,  or  require  the  aid  of  auxiliary  and  forced 
hypotheses  to  bring  them  into  harmony  there  with.  1 

In  this  respect,  the  electromagnetic  theory  of  light  stands  in  marked 
contrast  with  that  theory  in  which  the  properties  of  an  elastic  solid 

are  attributed  to  the  ether, — a  contrast  which  was  very  distinct  in 

Maxwell's  derivation  of  Fresnel's  laws  from  electrical  principles,  but 
becomes  more  striking  as  we  follow  the  subject  farther  into  its  details, 
and  take  account  of  the  want  of  absolute  homogeneity  in  the  medium, 
so  as  to  embrace  the  phenomena  of  the  dispersion  of  colors  and  circular 
and  elliptical  polarization. 

*  The  rotation  of  the  plane  of  polarization  which  is  produced  by  magnetic  action  has 
been  discussed  by  Maxwell  (Treatise  on  Electricity  and  Magnetism,  vol.  ii,  chap,  xxi), 
and  by  Rowland  (Amer.  Journ.  Math.,  vol.  iii,  p.  107). 



XIII. 

ON  THE  GENERAL  EQUATIONS  OF  MONOCHROMATIC  LIGHT 
IN  MEDIA  OF  EVERY  DEGREE  OF  TRANSPARENCY. 

[American  Journal  of  Science,  ser  3,  vol.  XXV,  pp.  107-118,  February,  1883.] 

1.  THE  last  April  and  June  numbers  of  this  Journal*  contain  an 
investigation  of  the  velocity  of  plane  waves  of  light,  in  which  they 

are  regarded  as  consisting  of  solenoidal  electrical  fluxes  in  an  indefi- 
nitely extended  medium  of  uniform  and  very  fine-grained  structure. 

It  was  also  supposed  that  the  medium  was  perfectly  transparent, 
although  without  discussion  of  the  physical  properties  on  which 
transparency  depends,  and  that  the  electrical  motions  were  not 
complicated  by  any  distinctively  magnetic  phenomena. 

In  the  present  paper  t  the  subject  will  be  treated  with  more 
generality,  so  as  to  obtain  the  general  equations  of  monochromatic 
light  for  media  of  every  degree  of  transparency,  whether  sensibly 

homogeneous  or  otherwise,  which  have  a  very  fine-grained  molecular 
structure  as  measured  by  a  wave-length  of  light.  There  will  be  no 
restriction  with  respect  to  magnetic  influence,  except  that  an  oscil- 

lating magnetization  of  the  medium  will  be  excluded.  J 
In  order  to  conform  as  much  as  possible  to  the  ordinary  view  of 

*See  pages  182-194  and  195-210  of  this  volume. 
tThis  paper  contains,  with  some  additional  developments,  the  substance  of  a  com- 

munication to  the  National  Academy  of  Sciences  in  November,  1882. 
£  Where  a  body  capable  of  magnetization  is  subjected  to  the  influence  of  light  (as 

when  light  is  reflected  from  the  surface  of  iron),  there  are  two  simple  hypotheses  which 
present  themselves  with  respect  to  the  magnetic  state  of  the  body.  One  is  that  the 
magnetic  forces  due  to  the  light  are  not  of  sufficient  duration  to  allow  the  molecular 
changes  which  constitute  magnetization  to  take  place  to  any  sensible  extent.  The  other 
is  that  the  magnetization  has  a  constant  ratio  to  the  magnetic  force  without  regard  to 
its  duration.  We  might  easily  make  a  more  general  hypothesis  which  would  embrace 
both  of  those  mentioned  as  extreme  cases,  and  which  would  be  irreproachable  from  a 
theoretical  stand-point ;  but  it  would  complicate  our  equations  to  a  degree  which  would 
not  be  compensated  by  their  greater  generality,  since  no  phenomena  depending  on  such 
magnetization  have  been  observed,  so  far  as  the  writer  is  aware,  or  are  likely  to  be, 
except  in  a  very  limited  class  of  cases. 

For  the  purposes  of  this  paper,  therefore,  it  has  seemed  better  to  exclude  media 
capable  of  magnetization,  except  so  far  as  the  first  mentioned  hypothesis  may  be  appli- 

cable. But  it  does  not  appear  that  this  requires  us  to  exclude  cases  in  which  the  medium 
is  subject  to  the  influence  of  a  permanent  magnetic  force,  such  as  produces  the 
phenomenon  of  the  magnetic  rotation  of  the  plane  of  polarization. 
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electrical  phenomena,*  we  shall  not  introduce  at  first  the  hypothesis 
of  Maxwell  that  electrical  fluxes  are  solenoidal.t  Our  results,  however, 
will  be  such  as  to  require  us  to  admit  the  substantial  truth  of  this 
hypothesis,  if  we  regard  the  processes  involved  in  the  transmission  of 
light  as  electrical. 

With  regard  to  the  undetermined  questions  of  electrodynamic  in- 
duction, we  shall  adopt  provisionally  that  hypothesis  which  appears  the 

most  simple,  yet  proceed  in  such  a  manner  that  it  will  be  evident  exactly 
how  our  results  must  be  altered,  if  we  prefer  any  other  hypothesis. 

Electrical  quantities  will  be  treated  as  measured  in  electromagnetic 
units. 

2.  We  must  distinguish,  as  before,  between  the  actual  electrical 
displacements,  which  are  too  complicated  to  follow  in  detail  with 
analysis,  and  which  in  their  minutiae  elude  experimental  demonstration, 
and  the  displacements  as  averaged  for  spaces  which  are  large  enough 
to  smooth  out  their  minor  irregularities,  but  not  so  large  as  to  oblite- 

rate to  any  sensible  extent  those  more  regular  features  of  the  electrical 
motion,  which  form  the  subject  of  optical  experiment.  These  spaces 
must  therefore  be  large  as  measured  by  the  least  distances  between 

molecules,  but  small  as  measured  by  a  wave-length  of  light.  We 
shall  also  have  occasion  to  consider  similar  averages  for  other  quan- 

tities, as  electromotive  force,  the  electrostatic  potential,  etc.  It  will 
be  convenient  to  suppose  that  the  space  for  which  the  average  is 
taken  is  the  same  in  all  parts  of  the  field,  J  say  a  sphere  of  uniform 
radius  having  its  center  at  the  point  considered. 

Whatever  may  be  the  quantities  considered,  such  averages  will  be 
represented  by  the  notation 

L  JAve' 

*  It  has,  perhaps,  retarded  the  acceptance  of  the  electromagnetic  theory  of  light  that 
it  was  presented  in  connection  with  a  theory  of  electrical  action,  which  is  probably  more 
difficult  to  prove  or  disprove,  and  certainly  presents  more  difficulties  of  comprehension, 
than  the  connection  of  optical  and  electrical  phenomena,  and  which,  as  resting  largely 
on  a  priori  considerations,  must  naturally  appear  very  differently  to  different  minds. 
Moreover,  the  mathematical  method  by  which  the  subject  was  treated,  while  it  will 

remain  a  striking  monument  of  its  author's  originality  of  thought,  and  profoundly 
modify  the  development  of  mathematical  physics,  must  nevertheless,  by  its  wide  depar- 

ture from  ordinary  methods,  have  tended  to  repel  such  as  might  not  make  it  a  matter 
of  serious  study. 
fA  flux  is  said  to  be  solenoidal  when  it  satisfies  the  conditions  which  characterize 

the  motion  of  an  incompressible  fluid, — in  other  words,  if  u,  v,  w  are  the  rectangular 
components  of  the  flux,  when du    dv    dw_n 

dx    dy     dz~  ' and  the  normal  component  of  the  flux  is  the  same  on  both  sides  of  any  surfaces  of 
discontinuity  which  may  exist. 

J  This  is  rather  to  fix  our  ideas,  than  on  account  of  any  mathematical  necessity.  For 
the  space  for  which  the  average  is  taken  may  in  general  be  considerably  varied  without 
sensibly  affecting  the  value  of  the  average. 
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If,  then,  £  ij,  f  denote  the  components  of  the  actual  displacement  at 
the  point  considered, 

will  represent  the  average  values  of  these  components  in  the  small 
sphere  about  that  point.  These  average  values  we  shall  treat  as 
functions  of  the  coordinates  of  the  center  of  the  sphere  and  of  the 
time,  and  may  call  them,  for  brevity,  the  average  values  of  £,  tjt  f. 
But  however  they  may  be  designated,  it  is  essential  to  remember  that 

it  is  a  space-average  for  a  certain  very  small  space,  and  never  a  time- 
average,  that  is  intended. 

The  object  of  this  paper  will  be  accomplished  when  we  have 
expressed  (explicitly  or  implicitly)  the  relations  which  subsist 
between  the  values  of  [£]Ave>  MAVB*  [f]Ave>  a^  different  times  and  in 

different  parts  of  the  field,  —  in  other  words,  when  we  have  found 
the  conditions  which  these  quantities  must  satisfy  as  functions  of 
the  time  and  the  coordinates. 

3.  Let  us  suppose  that  luminous  vibrations  of  any  one  period  *  are 
somewhere  excited,  and  that  the  disturbance  is  propagated  through 
the  medium.  The  motions  which  are  excited  in  any  part  of  the 
medium,  and  the  forces  by  which  they  are  kept  up,  will  be  expressed 
by  harmonic  functions  of  the  time,  having  the  same  period,t  as  may 
be  proved  by  the  single  principle  of  the  superposition  of  motions 
quite  independently  of  any  theory  of  the  constitution  of  the  medium, 
or  of  the  nature  of  the  motions,  as  electrical  or  otherwise.  This  is 

equally  true  of  the  actual  motions,  and  of  the  averages  which  we  are 
to  consider.  We  may  therefore  set 

*  There  is  no  real  loss  of  generality  in  making  the  light  monochromatic,  since  in  every 
case  it  may  be  divided  into  parts,  which  are  separately  propagated,  and  each  of  which 
is  monochromatic  to  any  required  degree  of  approximation. 

t  It  is  of  course  possible  that  the  expressions  for  the  forces  and  displacements  should 
have  constant  terms.  But  these  will  disappear,  if  the  displacements  are  measured  from 
the  state  of  equilibrium  about  which  the  system  vibrates,  and  we  leave  out  of  account 
in  measuring  the  forces  (and  the  electrostatic  potential)  that  which  would  belong  to  the 
system  in  the  state  of  equilibrium.  To  prevent  misapprehension,  it  should  be  added 
that  the  term  electrical  displacement  is  not  used  in  the  restricted  sense  of  dielectric 
displacement  or  polarization.  The  variation  of  the  electrical  displacement,  as  the  term 
is  used  in  this  paper,  constitutes  what  Maxwell  calls  the  total  motion  of  electricity  or 
true  current,  and  what  he  divides  into  two  parts,  which  he  distinguishes  as  the  current 
of  conduction  and  the  variation  of  the  electrical  displacement.  Such  a  division  of 
the  total  motion  of  electricity  is  not  necessary  for  the  purposes  of  this  paper,  and 
the  term  displacement  is  used  with  reference  to  the  total  motion  of  electricity  in  a 
manner  entirely  analogous  to  that  in  which  the  term  is  ordinarily  used  in  the  theory  of 
wave-motion. 
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2, 

where  t  denotes  the  time,  p  the  period,  and  alf  a9)  functions  of  the 
coordinates.     It  follows  that 

47T2, 

etc. 
JT 

(2) 

4.  Now,  on  the  electrical  theory,  these  motions  are  excited  by 

electrical  forces,  which  are  of  two  kinds,  distinguished  as  electro- 
static and  electrodynamic.  The  electrostatic  force  is  determined  by 

the  electrostatic  potential.  If  we  write  q  for  the  actual  value  of  the 
potential,  and  [<7JAve  f°r  i^8  value  as  averaged  in  the  manner  specified 
above,  the  components  of  the  actual  electrostatic  force  will  be 

dq  dq  dq 

dx'  dy'  dz' 
and  for  the  average  values  of  these  components  in  the  small  spaces 
described  above  we  may  write 

dx 

dy 

dz 

for  it  will  make  no  difference  whether  we  take  the  average  before 
or  after  differentiation. 

5.  The  electrodynamic  force  is  determined  by  the  acceleration  of 
electrical  flux  in  all  parts  of  the  field,  but  physicists  are  not  entirely 
agreed  in  regard  to  the  laws  by  which  it  is  determined.  This 
difference  of  opinion  is  however  of  less  importance,  since  it  will  not 
affect  the  result  if  electrical  fluxes  are  always  solenoidal.  According 
to  the  most  simple  law,  the  components  of  the  force  are  given  by 

the  volume-integrals 

-flj$*  -ffl>  -IIF 
where  dv  represents  an  element  of  volume,  and  r  the  distance  of  this 
element  from  the  point  for  which  the  value  of  the  electromotive 
force  is  to  be  determined.  In  other  words,  the  components  of  the 
force  at  any  point  are  determined  from  the  components  of  acceleration 
in  all  parts  of  the  field  by  the  same  process  by  which  (in  the  theories 

of  gravitation,  etc.)  the  value  of  the  potential  at  any  point  is  deter- 
mined from  the  density  of  matter  in  all  parts  of  space,  except  that 

the  sign  is  to  be  reversed.  Adopting  this  law,  provisionally  at  least, 
we  may  express  it  by  saying  that  the  components  of  elecfcrodynamic 
force  are  equal  to  the  potentials  taken  negatively  of  the  components 
of  acceleration  of  electrical  flux.  And  we  may  write,  for  brevity, 

-Pot£         -Pot;/,          -Potf, 

for  the  components  of  force,  using  the  symbol  Pot  to  denote  the 
operation  by  which  the  potential  of  a  mass  is  derived  from  i 
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density.     For  the  average  values  of  these  components  in  the  small 
spaces  defined  above,  we  may  write 

since  it  will  make  no  difference  whether  we  take  the  average  before 
or  after  the  operation  of  taking  the  potential. 

6.  If  we  write  X,  Y,  Z  for  the  components  of  the  total  electromotive 
force  (electrostatic  and  electrodynamic),  we  have 

[X]Ave=  -  Pot  [flAve   ^-,  j_  (3) etc., 

or  by  (2) 

4?r2 

rvi
  

T) /r    -pj    .  r  --, 

[X]Ave=— 2-Pot[£]Ave- 
etc. 

It  will  be  convenient  to  represent  these  relations  by  a  vector 

notation.  If  we  represent  the  displacement  by  U,  and  the  electro- 
motive force  by  E,  the  three  equations  of  (3)  will  be  represented  by 

the  single  vector  equation 

[E]Ave=-Pot[U]Ave-V[g]Aye,  (5) 

and  the  three  equations  of  (4)  by  the  single  vector  equation 

(6) 

where,  in  accordance  with  quaternionic  usage,  V[g]Ave  represents  the 
vector  which  has  for  components  the  derivatives  of  [<?]ATe  with  respect 
to  rectangular  coordinates.  The  symbol  Pot  in  such  a  vector  equation 
signifies  that  the  operation  which  is  denoted  by  this  symbol  in  a 
scalar  equation  is  to  be  performed  upon  each  of  the  components  of 
the  vector. 

7.  We  may  here  observe  that  if  we  are  not  satisfied  with  the  law 
adopted  for  the  determination  of  electrodynamic  force  we  have  only 

to  substitute  for  —  Pot  in  these  vector  equations,  and  in  those  which 
follow,  the  symbol  for  the  operation,  whatever  it  may  be,  by  which 

we  calculate  the  electrodynamic  force  from  the  acceleration.*  For 
the  operation  must  be  of  such  a  character  that  if  the  acceleration 
consist  of  any  number  of  parts,  the  force  due  to  the  whole  acceleration 
will  be  the  resultant  of  the  forces  due  to  the  separate  parts.  It  will 
evidently  make  no  difference  whether  we  take  an  average  before  or 
after  such  an  operation. 

*  The  same  would  not  be  true  of  the  corresponding  scalar  equations,  (3)  and  (4).  For 
one  component  of  the  force  might  depend  upon  all  the  components  of  acceleration. 
Such  is  in  fact  the  case  with  the  law  of  electromotive  force  proposed  by  Weber. 



8.  Let  us  now  examine  the  relation  which  subsists  between  the 

values  of  [B]Ave  and  [U]Ave  for  the  same  point,  that  is,  between  the 
average  electromotive  force  and  the  average  displacement  in  a  small 
sphere  with  its  center  at  the  point  considered.  We  have  already  seen 
that  the  forces  and  the  displacements  are  harmonic  functions  of  the 
time  having  a  common  period. 

A  little  consideration  will  show  that  if  the  average  electromotive 

force  in  the  sphere  is  given  as  a  function  of  the  time,  the  displace- 
ments in  the  sphere,  both  average  and  actual,  must  be  entirely 

determined.  Especially  will  this  be  evident,  if  we  consider  that  since 
we  have  made  the  radius  of  the  sphere  very  small  in  comparison  with 

a  wave-length,  the  average  force  must  have  sensibly  the  same  value 
throughout  the  sphere  (that  is,  if  we  vary  the  position  of  the  center 
of  the  sphere  for  which  the  average  is  taken  by  a  distance  not  greater 
than  the  radius,  the  value  of  the  average  will  not  be  sensibly  affected), 
and  that  the  difference  of  the  actual  and  average  force  at  any  point 
is  entirely  determined  by  the  motions  in  the  immediate  vicinity  of 
that  point.  If,  then,  certain  oscillatory  motions  may  be  kept  up  in 
the  sphere  under  the  influence  of  electrostatic  and  electrodynamic 
forces  due  to  the  motion  in  the  whole  field,  and  if  we  suppose  the 
motions  in  and  very  near  that  sphere  to  be  unchanged,  but  the  motions 
in  the  remoter  parts  of  the  field  to  be  altered,  only  not  so  as  to  affect 
the  average  resultant  of  electromotive  force  in  the  sphere,  the  actual 
resultant  of  electromotive  force  will  also  be  unchanged  throughout 
the  sphere,  and  therefore  the  motions  in  the  sphere  will  still  be  such 
as  correspond  to  the  forces. 

Now  the  average  displacement  is  a  harmonic  function  of  the  time 
having  a  period  which  we  suppose  given.  It  is  therefore  entirely 
determined  for  the  whole  time  the  vibrations  continue  by  the  values 
of  the  six  quantities 

MAVO       LSJ 

Avej 

JAve at  any  one  instant.  For  the  same  reason  the  average  electromotive 
force  is  entirely  determined  for  the  whole  time  by  the  values  of  the 
six  quantities 

for  the  same  instant.  The  first  six  quantities  will  therefore  be 
functions  of  the  second,  and  the  principle  of  the  superposition  of 
motions  requires  that  they  shall  be  homogeneous  functions  of  the 
first  degree.  And  the  second  six  quantities  will  be  homogeneous 
functions  of  the  first  degree  of  the  first  six.  The  coefficients  by  which 
these  functions  are  expressed  will  depend  upon  the  nature  of  the 
medium  in  the  vicinity  of  the  point  considered.  They  will  also 
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depend  upon  the  period  of  vibration,  that  is,  upon  the  color  of  the 

light.* We  may  therefore  write  in  vector  notation 

[E]Ave  =  *[U]Ave-f^[U]Ave  (7) 

where  3>  and  "&  denote  linear  functions.! 
The  optical  properties  of  media  are  determined  by  the  form  of 

these  functions.  But  all  forms  of  linear  functions  would  not  be 

consistent  with  the  principle  of  the  conservation  of  energy. 
In  media  which  are  more  or  less  opaque,  and  which  therefore 

absorb  energy,  ¥  must  be  of  such  a  form  that  the  function  always 
makes  an  acute  angle  (or  none)  with  the  independent  variable.  In 

perfectly  transparent  media,  ¥  must  vanish,  unless  the  function  is 
at  right  angles  to  the  independent  variable.  So  far  as  is  known,  the 
last  occurs  only  when  the  medium  is  subject  to  magnetic  influence. 
In  perfectly  transparent  media,  the  principle  of  the  conservation  of 

energy  requires  that  <3>  should  be  self-conjugate,  i.e.,  that  for  three 
directions  at  right  angles  to  one  another,  the  function  and  independent 
variable  should  coincide  in  direction. 

In  all  isotropic  media  not  subject  to  magnetic  influence,  it  is  prob- 
able that  <£>  and  ̂   reduce  to  numerical  coefficients,  as  is  certainly 

the  case  with  <3?  for  transparent  isotropic  media. 
9.  Comparing  the  two  values  of  [E]Ave,  we  have 

A.—Z 

5  Pot[U]Ave-  V[g]Ave  =  $[U]Ave+*[U]Ave.  (8) Jr 

This  equation,  in  connection  with  that  by  which  we  express  the  sole- 
noidal  character  of  the  displacements,  if  we  regard  them  as  necessarily 
solenoidal,  or  in  connection  with  that  which  expresses  the  relation 
between  the  electrostatic  potential  and  the  displacements,  if  we  reject 
the  solenoidal  hypothesis,  may  be  regarded  as  the  general  equation  of 

the  vibrations  of  monochromatic  light,  considered  as  oscillating  elec- 
trical fluxes.  For  the  symbol  Pot,  however,  we  must  substitute  the 

symbol  representing  the  operation  by  which  electromotive  force  is 
calculated  from  acceleration  of  flux,  with  the  negative  sign,  if  we  are 
not  satisfied  with  the  law  provisionally  adopted. 

*  The  relations  between  the  displacements  in  one  of  the  small  spaces  considered  and 
the  average  electromotive  force  is  mathematically  analogous  to  the  relation  between  the 
displacements  in  a  system  of  a  high  degree  of  complexity  and  certain  forces  exerted 
from  without,  which  are  harmonic  functions  of  the  time  and  under  the  influence  of 
which  the  system  vibrates.  The  ratio  of  the  displacements  to  the  forces  will  in  general 
vary  with  the  period,  and  may  vary  very  rapidly. 
An  example  in  which  these  functions  vary  very  rapidly  with  the  period  is  afforded 

by  the  phenomena  of  selective  absorption  and  abnormal  dispersion. 
t  A  vector  is  said  to  be  a  linear  function  of  another,  when  the  three  components  of  the 

first  are  homogeneous  functions  of  the  first  degree  of  the  three  components  of  the  second. 
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It  is  important  to  observe  that  the  existence  of  molecular  vibrations 
of  ponderable  matter,  due  to  the  passage  of  light  through  the  medium, 

will  not  affect  the  reasoning  by  which  this  equation  has  been  estab- 
lished, provided  that  the  nature  and  intensity  of  these  vibrations  in 

any  small  part  of  the  medium  (as  measured  by  a  wave-length)  are 
entirely  determined  by  the  electrical  forces  and  motions  in  that  part 
of  the  medium.  But  the  equation  would  not  hold  in  case  of  molecular 
vibrations  due  to  magnetic  force.  Such  vibrations  would  constitute 
an  oscillating  magnetization  of  the  medium,  which  has  already  been 
excluded  from  the  discussion. 

The  supposition  which  has  sometimes  been  made,*  that  electricity 
possesses  a  certain  mass  or  inertia,  would  not  at  all  affect  the  validity 
of  the  equation. 

10.  The  equation  may  be  reduced  to  a  form  in  some  respects  more 

simple  by  the  use  of  the  so-called  imaginary  quantities.  We  shall 
write  i  for  ̂ /(—  1  ).  If  we  differentiate  with  respect  to  the  time,  and 

47T2 

[U]Ave>  we  obtain 
substitute 

Pot  [U]ATC-  V[<j]Ave  - 

If  we  multiply  this  equation  by  t,  either  alone  or  in  connection  with 
any  real  factor,  and  add  it  to  the  preceding,  we  shall   obtain   an 
equation  which  will  be  equivalent  to  the  two  of  which  it  is  formed. 

f)i 
Multiplying  by  —~  and  adding,  we  have 

Pot  ([U]Ave  -  1  ̂  [U]  Ave)  -  V  ([g]Ave  -  1  £-  [g]Ave) 

Ave 

If  we  set 

p 

our  equation  reduces  to 

(9) 

(10) 

01) 

(12) 
In  this  equation  9  denotes  a  complex  linear  vector  function,  i.e.,  a 

vector  function  of  which  the  X-,  Y-,  and  Z-components  are  expressed 
in  terms  of  the  X-,  Y-,  and  Z-components  of  the  independent  variable 
by  means  of  coefficients  of  the  form  a-\-  ib.  W  is  a  bi vector  of  which 

*See  Weber,  Abhandl.  d.  K.  Sachs.  Gesdlach.  d. 

Crelle's  Journal,  vol.  Ixi,  p.  55. 

Wiss.,  vol.  vi,  pp.  593-597 ;  Lorberg, 
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the  real  part  represents  the  averaged  displacement  [U]Ave,  and  the 
coefficient  of  i  the  rate  of  increase  of  the  same  multiplied  by  a 
constant  factor.  This  bivector  therefore  represents  the  average 
state  of  a  small  part  of  the  field  both  with  respect  to  position  and 
velocity.  We  may  also  say  that  the  coefficient  of  i  in  W  represents 

the  value  of  the  averaged  displacement  [U]Ave  at  a  time  one-quarter 
of  a  vibration  earlier  than  the  time  principally  considered. 

11.  It  may  serve  to  fix  our  ideas  to  see  how  W  is  expressed  as  a 
function  of  the  time.     We  may  evidently  set 

r     ,  ,    ,  •  , 

[U]Ave  =  A!  cos  —  -£-f  A2  sm  —  t 

where  Ax  and  A2  are  vectors  representing  the  amplitudes  of  the  two 
parts  into  which  the  vibration  is  resolved.     Then 

P   r'  T  .      27T,  27T, 

^WUe=  -Aism—  e+A,coBy*, and 

MAve-  «  ̂  [U]Ave  =  (A1-  i  A2)(COS  y  t  +  l  sin  -j- 

that  is,  if  we  set  A  =  Ax  —  i  A2, 

(13) 

In  like  manner  we  may  obtain 
2fftt 

Q=gep  ,  (14) 
where  g  is  a  biscalar,  or  complex  quantity  of  ordinary  algebra. 
Substituting  these  values  in  (12),  and  cancelling  the  common  factor 
containing  the  time,  we  have 

4-7T2 

(15) 

Our  equation  is  thus  reduced  to  one  between  A  and  g,  and  may  easily 

be  reduced  to  one  in  A  alone.*  Now  A  represents  six  numerical 
quantities  (viz.,  the  three  components  of  A1?  and  the  three  of  A^, 
which  may  be  called  the  six  components  of  amplitude.  The  equation, 

therefore,  substantially  represents  the  relations  between  the  six  com- 
ponents of  amplitude  in  different  parts  of  the  field.  t  The  equation 

is,  however,  not  really  different  from  (12),  since  A  and  g  are  only 
particular  values  of  W  and  Q. 

*The  terms  VQ>  V<7  are  allowed  to  remain  in  these  equations,  because  the  best 
manner  of  eliminating  them  will  depend  somewhat  upon  our  admission  or  rejection  of 
the  solenoidal  hypothesis. 

t  The  representation  of  the  six  components  of  amplitude  by  a  single  letter  should  not 
be  regarded  as  an  analytical  artifice.     It  only  leaves  undivided  in  our  notation  that 
which  is  undivided  in  the  nature  of  things.     The  separation  of  the  six  components  of 
amplitude  is  artificial,  in  that  it  introduces  arbitrary  elements  into  the  discussion,  viz. 
the  directions  of  the  axes  of  the  coordinates,  and  the  zero  of  time. 
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12.  From  the  general  equation  given  above  (8,  12,  or  15),  in  con- 
nection with  the  solenoidal  hypothesis,  we  may  easily  derive  the  laws 

of  the  propagation  of  plane  waves  in  the  interior  of  a  sensibly  homo- 
geneous medium,  and  the  laws  of  reflection  and  refraction  at  surfaces 

between  such  media.  This  has  been  done  by  Maxwell,*  Lorentz,t  and 
others,  J  with  fundamental  equations  more  or  less  similar. 

The  method,  however,  by  which  the  fundamental  equation  has 
been  established  in  this  paper  seems  free  from  certain  objections 
which  have  been  brought  against  the  ordinary  form  of  the  theory. 
As  ordinarily  treated,  the  phenomena  are  made  to  depend  entirely 
on  the  inductive  capacity  and  the  conductivity  of  the  medium,  in  a 
manner  which  may  be  expressed  by  the  equation 

(16) 

which  will  be  equivalent  to  (12),  if 

where  K  and  C  denote  in  the  most  general  case  the  linear  vector 
functions,  but  in  isotropic  bodies  the  numerical  coefficients,  which 

represent  inductive  capacity  and  conductivity.  By  a  simple  trans- 
formation {see  (9)  and  (10)},  this  equation  becomes 

e-'=*   ,2°  (is) 4-7T  Z7T 

where  G'1  represents  the  function  inverse  to  0. 
Now,  while  experiment  appears  to  verify  the  existence  of  such  a 

law  as  is  expressed  by  equation  (12),  it  does  not  show  that  0  has  the 
precise  form  indicated  by  equation  (16).  In  other  words,  experiment 
does  not  satisfactorily  verify  the  relations  expressed  by  (16)  and  (17), 
if  K  and  C  are  understood  to  be  the  operators  (or,  in  isotropic  bodies, 
the  numbers)  which  represent  inductive  capacity  and  conductivity  in 
the  ordinary  sense  of  the  terms. 

The  discrepancy  is  most  easily  shown  in  the  most  simple  case,  when 
the  medium  is  isotropic  and  perfectly  transparent,  and  0  reduces  to  a 
numerical  quantity.  The  square  of  the  velocity  of  plane  waves  is r\ 

then  equal  to  j—  ,  and  equation  (18)  would  make  it  independent  of  the 

*  Phil.  Trans. ,  vol.  civ  (1865),  p.  459,  or  Treatise  on  Electricity  and  Magnetism, 
chap.  xx. 

t  Schlomilch's  Zeitschrift,  vol.  xxii,  pp.  1-30  and  205-219  ;  xxiii,  pp.  197-210. 
:£ See  Fitzgerald,  Phil.  Trans.,  vol.  clxxi,  p.  691;  J.  J.  Thomson,  Phil.  Mag., 

(5),  vol.  ix,  p.  284 ;  Rayleigh,  Phil.  Mag.  (5),  vol.  xii,  p.  81. 

That  the  electromagnetic  theory  of  light  gives  the  conditions  relative  to  the  boundary 
of  different  media,  which  are  required  by  the  phenomena  of  reflection  and  refraction, 

was  first  shown  by  Helmholtz.  See  Crelle's  Journal,  vol.  Ixxii  (1870),  p.  57. 
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period;  that  is,  would  give  no  dispersion  of  colors.  The  case  is 

essentially  the  same  in  transparent  bodies  which  are  not  isotropic.* 
The  case  is  worse  with  metals,  which  are  characterized  electrically 

by  great  conductivity,  and  optically  by  great  opacity.  In  their 
papers  cited  above,  Lorentz  and  Rayleigh  have  observed  that  the 
experiments  of  Jamin  on  the  reflection  of  light  from  metallic  surfaces 
would  often  require,  as  ordinarily  interpreted  on  the  electromagnetic 
theory,  a  negative  value  for  the  inductive  capacity  of  the  metal. 
This  would  imply  that  the  electrical  equilibrium  in  the  metal  is 
unstable.  The  objection,  therefore,  is  essentially  the  same  as  that 

which  Lord  Rayleigh  had  previously  made  to  Cauchy's  theory  of 
metallic  reflection,  viz.,  that  the  apparent  mechanical  explanation 
of  the  phenomena  is  illusory,  since  the  numerical  values  given  by 

experiment  as  interpreted  on  Cauchy's  theory  would  involve  an 
unstable  equilibrium  of  the  ether  in  the  metal. t 

13.  All  this  points  to  the  same  conclusion — that  the  ordinary  view 
of  the  phenomena  is  inadequate.  The  object  of  this  paper  will  be 
accomplished,  if  it  has  been  made  clear  how  a  point  of  view  more  in 
accordance  with  what  we  know  of  the  molecular  constitution  of 

bodies  will  give  that  part  of  the  ordinary  theory  which  is  verified  by 
experiment,  without  including  that  part  which  is  in  opposition  to 
observed  facts.! 

*  See  note  to  the  first  paper  of  Lorentz,  cited  above,  Schlomilch,  vol.  xxii,  p.  23. 
t  See  Phil.  Mag.  (4),  vol.  xliii  (1872),  p.  321. 
J  The  consideration  of  the  processes  which  we  may  suppose  to  take  place  in  the 

smallest  parts  of  a  body  through  which  light  is  transmitted,  farther  than  is  necessary  to 
establish  the  general  equation  given  above,  is  foreign  to  the  design  of  this  paper.  Yet  a 

word  may  be  added  with  respect  to  the  difficulties  signalized  in  the  ordinary  form  of  the 
theory.  The  comparatively  simple  case  of  a  perfectly  transparent  body  has  been 
examined  more  in  detail  in  one  of  the  papers  already  cited,  where  there  is  given  an 
explanation  of  the  dispersion  of  colors  from  the  point  of  view  of  this  paper.  It  is  there 

shown  that  the  effect  of  the  non-homogeneity  of  the  body  in  its  smallest  parts  is  to  add 
a  term  to  the  expression  for  the  kinetic  energy  of  electrical  waves,  which  for  an  isotropic 
body  may  be  roughly  described  as  similar  to  that  which  would  be  required  if  the 
electricity  had  a  certain  mass  or  inertia.  (See  especially  §§  7,  9  and  12,  [this  volume 
pages  185  ff.])  The  same  must  be  true  of  media  of  any  degree  of  opacity.  Now  the 

difficulty  with  the  optical  properties  of  the  metals  is  that  the  real  part  of  6  (or  6"1) 
is  in  some  cases  negative.  This  implies  that  at  a  moment  of  greatest  displacement 
the  electromotive  force  is  in  the  direction  opposite  to  the  displacement,  instead  of 
having  the  same  direction,  as  in  transparent  isotropic  bodies.  Now  a  certain  part  of 
the  electromotive  force  must  be  required  to  oppose  the  apparent  inertia,  and  another 
part  to  oppose  the  electrical  elasticity  of  the  medium.  These  parts  of  the  force  must 
have  opposite  directions.  In  transparent  bodies  the  latter  part  is  by  far  the  greater.  But 
it  need  not  surprise  us  that  the  former  should  be  the  greater  in  some  metals. 

It  has  been  remarked  by  Lorentz  that  the  difficulty  with  respect  to  metals  would  be 
in  a  measure  relieved  if  we  should  suppose  electricity  to  have  the  property  of  inertia. 

(See  §  11  of  his  third  paper,  Schlomilch's  Zeitschrift,  vol.  xxiii,  p.  208.)  But  a  supposi- 
tion of  this  kind,  taken  literally,  would  involve  a  dispersion  of  colors  in  vacuo,  and  still 

be  inadequate,  as  Lorentz  remarks,  to  explain  the  phenomena  observed  in  metals. 
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While  the  writer  has  aimed  at  a  greater  degree  of  rigor  than  is 

usual  in  the  establishment  of  the  fundamental  equation  of  mono- 
chromatic light,  it  is  not  claimed  that  this  equation  is  absolutely 

exact.  The  contrary  is  evident  from  the  fact  that  the  equation 
does  not  embrace  the  phenomena  which  characterize  such  circularly 
polarizing  bodies  as  quartz.  This,  however,  only  implies  the  neglect 

of  extremely  small  quantities — very  small,  for  example,  as  compared 
with  those  which  determine  the  dispersion  of  colors.  In  one  of  the 

papers  already  cited,*  the  case  of  a  perfectly  transparent  body  is 
treated  with  a  higher  degree  of  approximation,  so  as  to  embrace  the 

phenomena  in  question. 

See  page  195  of  this  volume. 



XIV. 

A  COMPARISON  OF  THE  ELASTIC  AND  THE  ELECTRICAL 
THEORIES  OF  LIGHT  WITH  RESPECT  TO  THE  LAW  OF 
DOUBLE  REFRACTION  AND  THE  DISPERSION  OF  COLORS. 

[American  Journal  of  Science,  ser.  3,  vol.  xxxv,  pp.  467-475,  June,  1888.] 

IT  is  claimed  for  the  electrical  *  theory  of  light  that  it  is  free  from 
serious  difficulties,  which  beset  the  explanation  of  the  phenomena  of 
light  by  the  dynamics  of  elastic  solids.  Just  what  these  difficulties 
are,  and  why  they  do  not  occur  in  the  explanation  of  the  same 
phenomena  by  the  dynamics  of  electricity,  has  not  perhaps  been 
shown  with  all  the  simplicity  and  generality  which  might  be  desired. 
Such  a  treatment  of  the  subject  is  however  the  more  necessary  on 
account  of  the  ever-increasing  bulk  of  the  literature  on  either  side, 
and  the  confusing  multiplicity  of  the  elastic  theories.  It  is  the  object 
of  this  paper  to  supply  this  want,  so  far  as  respects  the  propagation 
of  plane  waves  in  transparent  and  sensibly  homogeneous  media.  The 
simplicity  of  this  part  of  the  subject  renders  it  .appropriate  for  the 
first  test  of  any  optical  theory,  while  the  precision  of  which  the 
experimental  determinations  are  capable,  renders  the  test  extremely 
rigorous. 

It  is  moreover,  as  the  writer  believes,  an  appropriate  time  for  the 
discussion  proposed,  since  on  one  hand  the  experimental  verification 

of  Fresnel's  Law  has  recently  been  carried  to  a  degree  of  precision  far 
exceeding  anything  which  we  have  had  before,!  and  on  the  other,  the 

*  The  term  electrical  seems  the  most  simple  and  appropriate  to  describe  that  theory  of 
light  which  makes  it  consist  in  electrical  motions.  The  cases  in  which  any  distinctively 
magnetic  action  is  involved  in  the  phenomena  of  light  are  so  exceptional,  that  it  is 
difficult  to  see  any  sufficient  reason  why  the  general  theory  should  be  called  electro- 

magnetic, unless  we  are  to  call  all  phenomena  electromagnetic  which  depend  on  the 
motions  of  electricity. 

t  In  the  recent  experiments  of  Professor  Hastings  relating  to  the  index  of  refraction  of 
the  extraordinary  ray  in  Iceland  spar  for  the  spectral  line  D2  and  a  wave-normal  inclined 

at  about  31°  to  the  optic  axis,  the  difference  between  the  observed  and  the  calculated 
values  was  only  two  or  three  units  in  the  sixth  decimal  place  (in  the  seventh  significant 
figure),  which  was  about  the  probable  error  of  the  determinations.  See  Am.  Jour.  Sci. 
ser.  3,  vol.  xxxv,  p.  60. 
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discovery  of  a  remarkable  theorem  relating  to  the  vibrations  of  a 

strained  solid  *  has  given  a  new  impulse  to  the  study  of  the  elastic 
theory  of  light. 

Let  us  first  consider  the  facts  to  which  a  correct  theory  must 
conform. 

It  is  generally  admitted  that  the  phenomena  of  light  consist 

in  motions  (of  the  type  which  we  call  wave-motions)  of  some- 
thing which  exists  both  in  space  void  of  ponderable  matter,  and 

in  the  spaces  between  the  molecules  of  bodies,  perhaps  also  in 
the  molecules  themselves.  The  kinematics  of  these  motions  is 

pretty  well  understood ;  the  question  at  issue  is  whether  it  agrees 
with  the  dynamics  of  elastic  solids  or  with  the  dynamics  of 
electricity. 

In  the  case  of  a  simple  harmonic  wave-motion,  which  alone  we  need 
consider,  the  wave- velocity  (V)  is  the  quotient  of  the  wave-length  (I) 
by  the  period  of.  vibration  (p).  These  quantities  can  be  determined 
with  extreme  accuracy.  In  media  which  are  sensibly  homogeneous 

but  not  isotropic  the  wave-velocity  V,  for  any  constant  value  of  the 
period,  is  a  quadratic  function  of  the  direction  cosines  of  a  certain 

line,  viz.,  the  normal  to  the  so-called  "  plane  of  polarization."  The 
physical  characteristics  of  this  line  have  been  a  matter  of  dispute. 
Fresnel  considered  it  to  be  the  direction  of  displacement.  Others 

have  maintained  that  it  is  the  common  perpendicular  to  the  wave- 
normal  and  the  displacement.  Others  again  would  define  it  as 
that  component  of  the  displacement  which  is  perpendicular  to  the 

wave-normal.  This  of  course  would  differ  from  Fresnel's  view  only 
in  case  the  displacements  are  not  perpendicular  to  the  wave-normal, 
and  would  in  that  case  be  a  necessary  modification  of  his  view. 
Although  this  dispute  has  been  one  of  the  most  celebrated  in 
physics,  it  seems  to  be  at  length  substantially  settled,  most  directly 
by  experiments  upon  the  scattering  of  light  by  small  particles, 
which  seems  to  show  decisively  that  in  isotropic  media  at  least 

the  displacements  are  normal  to  the  "  plane  of  polarization,"  and 
also,  with  hardly  less  cogency,  by  the  difficulty  of  accounting 
for  the  intensities  of  reflected  and  refracted  light  on  any  other 

*  Sir  Wra.  Thomson  has  shown  that  if  an  elastic  incompressible  solid  in  which  the 
potential  energy  of  any  homogeneous  strain  is  proportional  to  the  sum  of  the  squares  of 
the  reciprocals  of  the  principal  elongations  minus  three  is  subjected  to  any  homogeneous 
strain  by  forces  applied  to  its  surface,  the  transmission  of  plane  waves  of  distortion, 

superposed  on  this  homogeneous  strain,  will  follow  exactly  Fresnel's  law  (including  the 
direction  of  displacement),  the  three  principal  velocities  being  proportional  to  the 

reciprocals  of  the  principal  elongations.  It  must  be  a  surprise  to  mathematicians  and 

physicists  to  learn  that  a  theorem  of  such  simplicity  and  beauty  has  been  waiting  to  be 
discovered  in  a  field  which  has  been  so  carefully  gleaned.  See  page  116  of  the  current 
volume  (xxv)  of  the  Philosophical  Magazine. 
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supposition.*  It  should  be  added  that  all  diversity  of  opinion  on 
this  subject  has  been  confined  to  those  whose  theories  are  based  on 
the  dynamics  of  elastic  bodies.  Defenders  of  the  electrical  theory 
have  always  placed  the  electrical  displacement  at  right  angles  to  the 

"plane  of  polarization."  It  will,  however,  be  better  to  assume  this 
direction  of  the  displacement  as  probable  rather  than  as  absolutely 
certain,  not  so  much  because  many  are  likely  to  entertain  serious 
doubts  on  the  subject,  as  in  order  not  to  exclude  views  which  have 
at  least  a  historical  interest. 

The  wave-velocity,  then,  for  any  constant  period,  is  a  quadratic 
function  of  the  cosines  of  a  certain  direction,  which  is  probably  that 
of  the  displacement,  but  in  any  case  determined  by  the  displacement 

and  the  wave-normal.  The  coefficients  of  this  quadratic  function  are 
functions  of  the  period  of  vibration.  It  is  important  to  notice  that 
these  coefficients  vary  separately,  and  often  quite  differently,  with  the 
period,  and  that  the  case  does  not  at  all  resemble  that  of  a  quadratic 

function  of  the  direction-cosines  multiplied  by  a  quantity  depending 
on  the  period. 

In  discussing  the  dynamics  of  the  subject  we  may  gain  something 
in  simplicity  by  considering  a  system  of  stationary  waves,  such  as 
results  from  two  similar  systems  of  progressive  waves  moving  in 
opposite  directions.  In  such  a  system  the  energy  is  alternately 
entirely  kinetic  and  entirely  potential.  Since  the  total  energy  is 
constant,  we  may  set  the  average  kinetic  energy  per  unit  of  volume 
at  the  moment  when  there  is  no  potential  energy,  equal  to  the  average 
potential  energy  per  unit  of  volume  when  there  is  no  kinetic  energy.! 
We  may  call  this  the  equation  of  energies.  It  will  contain  the 
quantities  I  and  p,  and  thus  furnish  an  expression  for  the  velocity 
of  either  system  of  progressive  waves.  We  have  to  see  whether  the 
elastic  or  the  electric  theory  gives  the  expression  most  conformed  to 
the  facts. 

Let  us  first  apply  the  elastic  theory  to  the  case  of  the  so-called 

*  "At  the  same  time,  if  the  above  reasoning  be  valid,  the  question  as  to  the  direction 
of  the  vibrations  in  polarized  light  is  decided  in  accordance  with  the  view  of  Fresnel. 
...  I  confess  I  cannot  see  any  room  for  doubt  as  to  the  result  it  leads  to.  ...  I  only 
mean  that  if  light,  as  is  generally  supposed,  consists  of  transversal  vibrations  similar  to 
those  which  take  place  in  an  elastic  solid,  the  vibration  must  be  normal  to  the  plane  of 

polarization."  Lord  Rayleigh  "  On  the  Light  from  the  Sky,  its  Polarization  and  Color;" 
Phil.  Mag.  (4),  xli  (1871),  p.  109. 

"  Green's  dynamics  of  polarization  by  reflexion,  and  Stokes'  dynamics  of  the  diffraction 
of  polarized  light,  and  Stokes'  and  Rayleigh's  dynamics  of  the  blue  sky,  all  agree  in,  as 
it  seems  to  me,  irrefragably,  demonstrating  Fresnel's  original  conclusion,  that  in  plane 
polarized  light  the  line  of  vibration  is  perpendicular  to  the  plane  of  polarization." 
Sir  Wm.  Thomson,  loc.  citat. 
fThe  terms  kinetic  energy  and  potential  energy  will  be  used  in  this  paper  to  denote 

these  average  values. 
G.  II.  p 
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vacuum.  If  we  write  h  for  the  amplitude  measured  in  the  middle 
between  two  nodal  planes,  the  velocities  of  displacement  will  be  as 

7  O 
fL  iL 

- ,  and  the  kinetic  energy  will  be  represented  by  A—% ,  where  A  is  a 

constant  depending  on  the  density  of  the  medium.  The  potential 
energy,  which  consists  in  distortion  of  the  medium,  may  be  represented 

h2 

by
  
Bjg

,  
wh
er
e 
 

B 
 
is 

 
a  con

sta
nt 

 

de
pe
nd
in
g 
 

on 
 
the

  
rig

idi
ty 

 

of 
 
the

 

medium.     The  equation  of  energies,  on  the  elastic  theory,  is  therefore 

I2     B 

which  gives  
^2==~2==T>  

(^) 

In  the  electrical  theory,  the  kinetic  energy  is  not  determined  by  the 
simple  formula  of  ordinary  dynamics  from  the  square  of  the  velocity 
of  each  element,  but  is  found  by  integrating  the  product  of  the 
velocities  of  each  pair  of  elements  divided  by  the  distance  between 
them.  Very  elementary  considerations  suffice  to  show  that  a  quantity 
thus  determined  when  estimated  per  unit  of  volume  will  vary  as  the 
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energy,  F  being  a  constant.  The  potential  energy  does  not  consist 
in  distortion  of  the  medium,  but  depends  upon  an  elastic  resistance 
to  the  separation  of  the  electricities,  which  constitutes  the  electrical 
displacement,  and  is  proportioned  to  the  square  of  this  displacement. 
The  average  value  of  the  potential  energy  per  unit  of  volume  will 

therefore  be  represented  in  the  electrical  theory  by  Gh2,  where  G  is  a 
constant,  and  the  equation  of  energies  will  be 

(3) 
p 

which  gives 
72        ft 

V2  —  —  —  — "~" 

Both  theories  give  a  constant  velocity,  as  is  required.  But  it  is 
instructive  to  notice  the  profound  difference  in  the  equations  of  energy 
from  which  this  result  is  derived.  In  the  elastic  theory  the  square  of 

the  wave-length  appears  in  the  potential  energy  as  a  divisor;  in  the 
electrical  theory  it  appears  in  the  kinetic  energy  as  a  factor. 

Let  us  now  consider  how  these  equations  will  be  modified  by  the 
presence  of  ponderable  matter,  in  the  most  general  case  of  transparent 
and  sensibly  homogeneous  bodies.  This  subject  is  rendered  much 
more  simple  by  the  fact  that  the  distances  between  the  ponderable 

molecules  are  very  small  compared  with  a  wave-length.  Or,  what 
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amounts  to  the  same  thing,  but  may  present  a  more  distinct  picture 

to  the  imagination,  the  wave-length  may  be  regarded  as  enormously 
great  in  comparison  with  the  distances  between  neighboring  molecules. 
Whatever  view  we  take  of  the  motions  which  constitute  light,  we  can 
hardly  suppose  them  (disturbed  as  they  are  by  the  presence  of  the 
ponderable  molecules)  to  be  in  strictness  represented  by  the  equations 

of  wave-motion.  Yet  in  a  certain  sense  a  wave-motion  may  and  does 
exist.  If,  namely,  instead  of  the  actual  displacement  at  any  point, 
we  consider  the  average  displacement  in  a  space  large  enough  to 
contain  an  immense  number  of  molecules,  and  yet  small  as  measured 

by  a  wave-length,  such  average  displacements  may  be  represented 
by  the  equations  of  wave-motion;  and  it  is  only  in  this  sense  that 
any  theory  of  wave-motion  can  apply  to  the  phenomena  of  light  in 
transparent  bodies.  When  we  speak  of  displacements,  amplitudes, 
velocities  (of  displacement),  etc.,  it  must  therefore  be  understood  in 
this  way. 

The  actual  kinetic  energy,  on  either  theory,  will  evidently  be 
greater  than  that  due  to  the  motion  thus  averaged  or  smoothed,  and 

to  a  degree  presumably  depending  on  the  direction  of  the  displace- 
ment. But  since  displacement  in  any  direction  may  be  regarded  as 

compounded  of  displacements  in  three  fixed  directions,  the  additional 

energy  will  be  a  quadratic  function  of  the  components  of  velocity  of 
displacement,  or,  in  other  words,  a  quadratic  function  of  the  direction- 
cosines  of  the  displacement  multiplied  by  the  square  of  the  amplitude 

and  divided  by  the  square  of  the  period.*  This  additional  energy 
may  be  understood  as  including  any  part  of  the  kinetic  energy  of 

the  wave-motion  which  may  belong  to  the  ponderable  particles.  The 
term  to  be  added  to  the  kinetic  energy  on  the  electric  theory  may 
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direction-cosines  of  the  displacement.  The  elastic  theory  requires  a 
term  of  precisely  the  same  character,  but  since  the  term  to  which  it 

is  to  be  added  is  of  the  same  general  form,  the  two  may  be  incor- 
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function  of  the  direction-cosines  of  the  displacement.  We  must, 
however,  notice  that  both  AD  and  /D  are  not  entirely  independent  of 
the  period.  For  the  manner  in  which  the  flux  of  the  luminiferous 
medium  is  distributed  among  the  ponderable  molecules  will  naturally 
depend  somewhat  upon  the  period.  The  same  is  true  of  the  degree 
to  which  the  molecules  may  be  thrown  into  vibration.  But  AD  and 

/D  will  be  independent  of  the  wave-length  (except  so  far  as  this  is 

*  For  proof  in  extenso  of  this  proposition,  when  the  motions  are  supposed  electrical, 
the  reader  is  referred  to  page  187  of  this  volume. 
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connected  with  the  period),  because  the  wave-length  is  enormously 
great  compared  with  the  size  of  the  molecules  and  the  distances 
between  them. 

The  potential  energy  on  the  elastic  theory  must  be  increased  by 

a  term  of  the  form  6D/i2,  where  &D  is  a  quadratic  function  of  the 
direction-cosines  of  the  displacement.  For  the  ponderable  particles 
must  oppose  a  certain  elastic  resistance  to  the  displacement  of  the 
ether,  which  in  seolotropic  bodies  will  presumably  be  different  in 
different  directions.  The  potential  energy  on  the  electric  theory  will 

be  represented  by  a  single  term  of  the  same  form,  say  GD  /i2,  where 
a  quadratic  function  of  the  direction-cosines  of  the  displacement,  GD, 
takes  the  place  of  the  constant  G,  which  was  sufficient  when  the 
ponderable  particles  were  absent.  Both  GD  and  6D  will  vary  to  some 
extent  with  the  period,  like  AD  and  /D,  and  for  the  same  reason. 

In  regard  to  that  potential  energy,  which  on  the  elastic  theory  is 
independent  of  the  direct  action  of  the  ponderable  molecules,  it  has 
been  supposed  that  in  seolotropic  bodies  the  effect  of  the  molecules  is 
such  as  to  produce  an  aeolotropic  state  in  the  ether,  so  that  the  energy 
of  a  distortion  varies  with  its  orientation.  This  part  of  the  potential 
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the  directions  of  the  wave-normal  and  the  displacement.  It  may 

easily  be  shown  that  it  is  a  quadratic  function  both  of  the  direction- 
cosines  of  the  wave-normal  and  of  those  of  the  displacement.  Also, 
that  if  the  ether  in  the  body  when  undisturbed  is  not  in  a  state  of 
stress  due  to  forces  at  the  surface  of  the  body,  or  if  its  stress  is 
uniform  in  all  directions,  like  a  hydrostatic  pressure,  the  function  BND 

must  be  symmetrical  with  respect  to  the  two  sets  of  direction  -cosines. 
The  equation  of  energies  for  the  elastic  theory  is  therefore 

h2  h2 AD-2  =  BND72 
P 

which  gives  V2  =  -2  =  A  B™    ,.  (6) *         -2 

The  equation  of  energies  for  the  electrical  theory  is 

2          >2 
G^,  (7) 

which  gives  V*=|=<|5-A.  (8) 
It  is  evident  at  once  that  the  electrical  theory  gives  exactly  the 

form  that  we  want.  For  any  constant  period  the  square  of  the 

wave-velocity  is  a  quadratic  function  of  the  direction-cosines  of 
the  displacement.  When  the  period  varies,  this  function  varies, 
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the  different  coefficients  in  the  function  varying  separately,  because 

GD  and  /D  will  not  in  general  be  similar  functions.*  If  we  consider  a 
constant  direction  of  displacement  while  the  period  varies,  GD  and 
/D  will  only  vary  so  far  as  the  type  of  the  motion  varies,  i.e.,  so  far 
as  the  manner  in  which  the  flux  distributes  itself  among  the 
ponderable  molecules  and  intermolecular  spaces,  and  the  extent  to 
which  the  molecules  take  part  in  the  motion  are  changed.  There 
are  cases  in  which  these  vary  rapidly  with  the  period,  viz.,  cases 
of  selective  absorption  and  abnormal  dispersion.  But  we  may  fairly 
expect  that  there  will  be  many  cases  in  which  the  character  of  the 
motion  in  these  respects  will  not  vary  much  with  the  period. 
r*         f 
-^  and  ̂ M  will  then  be  sensibly  constant  and  we  have  an  approximate 

expression  for  the  general  law  of  dispersion,  which  agrees  remarkably 
well  with  experiment.! 

If  we  now  return  to  the  equation  of  energies  obtained  from  the 
elastic  theory,  we  see  at  once  that  it  does  not  suggest  any  such 

relation  as  experiment  has  indicated,  either  between  the  wave- velocity 
and  the  direction  of  displacement,  or  between  the  wave-velocity  and 
the  period.  It  remains  to  be  seen  whether  it  can  be  brought  to 
agree  with  experiment  by  any  hypothesis  not  too  violent. 

In  order  that  V2  may  be  a  quadratic  function  of  any  set  of 
direction-cosines,  it  is  necessary  that  AD  and  6D  shall  be  independent 
of  the  direction  of  the  displacement,  in  other  words,  in  the  case  of 
a  crystal  like  Iceland  spar,  that  the  direct  action  of  the  ponderable 
molecules  upon  the  ether,  shall  affect  both  the  kinetic  and  the 
potential  energy  in  the  same  way,  whether  the  displacement  take 
place  in  the  direction  of  the  optic  axis  or  at  right  angles  to  it. 

This  is  contrary  to  everything  which  we  should  expect.  If,  never- 

theless, we  make  this  supposition,1  it  remains  to  consider  BND.  This 
must  be  a  quadratic  function  of  a  certain  direction,  which  is  almost 
certainly  that  of  the  displacement.  If  the  medium  is  free  from 
external  stress  (other  than  hydrostatic),  BND,  as  we  have  seen,  is 

symmetrical  with  respect  to  the  wave-normal  and  the  direction 
of  displacement,  and  a  quadratic  function  of  the  direction-cosines 
of  each.  The  only  single  direction  of  which  it  can  be  a  function  is 

the  common  perpendicular  to  these  two  directions.  If  the  wave- 
normal  and  the  displacement  are  perpendicular,  the  direction- cosines 

*But  GD,/D,  and  V2,  considered  as  functions  of  the  direction  of  displacement,  are  all 
subject  to  any  law  of  symmetry  which  may  belong  to  the  structure  of  the  body 
considered.  The  resulting  optical  characteristics  of  the  different  crystallographic 
systems  are  given  on  pages  192-194. 

t  This  will  appear  most  distinctly  if  we  consider  that  V  divided  by  the  velocity  of 
light  in  vacuo  gives  the  reciprocal  of  the  index  of  refraction,  and  p  multiplied  by  the 
same  quantity  gives  the  wave-length  in  vacuo. 
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of  the  common  perpendicular  to  both  will  be  linear  functions  of  the 

direction-cosines  of  each,  and  a  quadratic  function  of  the  direction- 
cosines  of  the  common  perpendicular  will  be  a  quadratic  function  of 
the  direction-cosines  of  each.  We  may  thus  reconcile  the  theory 
with  the  law  of  double  refraction,  in  a  certain  sense,  by  supposing 
that  AD  and  6D  are  independent  of  the  direction  of  displacement, 

and  that  BND  and  therefore  V2  is  a  quadratic  function  of  the  direction- 
cosines  of  the  common  perpendicular  to  the  wave-normal  and  the 
displacement.  But  this  supposition,  besides  its  intrinsic  improbability 
so  far  as  AD  and  &D  are  concerned,  involves  a  direction  of  the  dis- 

placement which  is  certainly  or  almost  certainly  wrong. 
We  are  thus  driven  to  suppose  that  the  undisturbed  medium  is  in 

a  state  of  stress,  which,  moreover,  is  not  a  simple  hydraulic  stress. 
In  this  case,  by  attributing  certain  definite  physical  properties  to 
the  medium,  we  may  make  the  function  BND  become  independent  of 
the  direction  of  the  wave-normal,  and  reduce  to  a  quadratic  function 

of  the  direction-cosines  of  the  displacement.*  This  entirely  satisfies 
Fresnel's  Law,  including  the  direction  of  displacement,  if  we  can 

suppose  AD "  and  6D  independent  of  the  direction  of  displacement. 
But  this  supposition,  in  any  case  difficult  for  aeolotropic  bodies, 
seems  quite  irreconcilable  with  that  of  a  permanent  (not  hydrostatic) 
stress. 

For  this  stress  can  only  be  kept  up  by  the  action  of  the  ponderable 
molecules,  and  by  a  sort  of  action  which  hinders  the  passage  of  the 
ether  past  the  molecules.  Now  the  phenomena  of  reflection  and 
refraction  would  be  very  different  from  what  they  are,  if  the  optical 
homogeneity  of  a  crystal  did  not  extend  up  very  close  to  the  surface. 
This  implies  that  the  stress  is  produced  by  the  ponderable  particles 
in  a  very  thin  lamina  at  the  surface  of  the  crystal,  much  less  in 

thickness,  it  would  seem  probable,  than  a  wave-length  of  yellow 
light.  And  this  again  implies  that  the  power  of  the  ponderable 
particles  to  pin  down  the  ether,  as  it  were,  to  a  particular  position  is 
very  great,  and  that  the  term  in  the  energy  relating  to  the  motion 
of  the  ether  relative  to  the  ponderable  particles  is  very  important. 
This  is  the  term  containing  the  factor  6D,  which  it  is  difficult  to 
suppose  independent  of  the  direction  of  displacement  because  the 
dimensions  and  arrangement  of  the  particles  are  different  in  different 
directions.  But  our  present  hypothesis  has  brought  in  a  new 
reason  for  supposing  6D  to  depend  on  the  direction  of  displacement, 
viz.,  on  account  of  the  stress  of  the  medium.  A  general  displacement 
of  the  medium  midway  between  two  nodal  planes,  when  it  is 
restrained  at  innumerable  points  by  the  ponderable  particles,  will 

*  See  note  on  page  224. 
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produce  special  distortions  due  to  these  particles.  The  nature  of 

these  distortions  is  wholly  determined  by  the  direction  of  displace- 
ment, and  it  is  hard  to  conceive  of  any  reason  why  the  energy  of 

these  distortions  should  not  vary  with  the  direction  of  displacement, 

like  the  energy  of  the  general  distortion  of  the  wave-motion,  which 
is  partly  determined  by  the  displacement  and  partly  by  the  wave- 

normal.* 
But  the  difficulties  of  the  elastic  theory  do  not  end  with  the 

law  of  double  refraction,  although  they  are  there  more  conspicuous 
on  account  of  the  definite  and  simple  law  by  which  they  can  be 

judged.  It  does  not  easily  appear  how  the  equation  of  energies 
can  be  made  to  give  anything  like  the  proper  law  of  the  dispersion 

of  colors.  Since  for  given  directions  of  the  wave-normal  and  dis- 
placement, or  in  an  isotropic  body,  BND  is  constant,  and  also  AD  and  6D, 

except  so  far  as  the  type  of  the  vibration  varies,  the  formula  requires 

that  the  square  of  the  index  of  refraction  (which  is  inversely  as  V2) 
should  be  equal  to  a  constant  diminished  by  a  term  proportional  to 
the  square  of  the  period,  except  so  far  as  this  law  is  modified  by  a 
variation  of  the  type  of  vibration.  But  experiment  shows  nothing 

like  this  law.  Now  the  variation  in  the  type  of  vibration  is  some- 
times very  important, — it  plays  the  leading  role  in  the  phenomena 

of  selective  absorption  and  abnormal  dispersion, — but  this  is  certainly 
not  always  the  case.  It  seems  hardly  possible  to  suppose  that  the 
type  of  vibration  is  always  so  variable  as  entirely  to  mask  the  law 
which  is  indicated  by  the  formula  when  AD  and  6D  (with  BND)  are 
regarded  as  constant.  This  is  especially  evident  when  we  consider 

that  the  effect  on  the  wave-velocity  of  a  small  variation  in  the  type  of 
vibration  will  be  a  small  quantity  of  the  second  order.! 

The  phenomena  of  dispersion,  therefore,  corroborate  the  conclusion 
which  seemed  to  follow  inevitably  from  the  law  of  double  refraction 
alone. 

*  The  reader  may  perhaps  ask  how  the  above  reasoning  is  to  be  reconciled  with  the 
fact  that  the  law  of  double  refraction  has  been  so  often  deduced  from  the  elastic  theory. 
The  troublesome  terms  are  6D  and  the  variable  part  of  AD,  which  express  the  direct 
action  of  the  ponderable  molecules  on  the  ether.  So  far  as  the  (quite  limited)  reading 
and  recollection  of  the  present  writer  extend,  those  who  have  sought  to  derive  the  law 
of  double  refraction  from  the  theory  of  elastic  solids  have  generally  either  neglected  this 
direct  action — a  neglect  to  which  Professor  Stokes  calls  attention  more  than  once  in  his 

celebrated  "Report  on  Double  Refraction"  (Brit.  Assoc.,  1862,  pp.  264,  268)— or  taking 
account  of  this  action  they  have  made  shipwreck  upon  a  law  different  from  Fresnel's  and 
contradicted  by  experiment. 

tSee  pages  190,  191  of  this  volume,  or  Lord  Rayleigh's  Theory  of  Sound,  vol.  i, 
p.  84. 



XV. 

A  COMPARISON  OF  THE  ELECTRIC  THEORY  OF  LIGHT 

AND  SIR  WILLIAM  THOMSON'S  THEORY  OF  A  QUASI- 
LABILE  ETHER. 

[American  Journal  of  Science,  ser.  3,  vol.  xxxvn,  pp.  139-144,  February,  1889.] 

A  REMARKABLE  paper  by  Sir  William  Thomson,  in  the  November 
number  of  the  Philosophical  Magazine,  has  opened  a  new  vista  in 
the  possibilities  of  the  theory  of  an  elastic  ether.  Since  the  general 
theory  of  elasticity  gives  three  waves  characterized  by  different 

directions  of  displacement  for  a  single  wave-plane,  while  the  pheno- 
mena of  optics  show  but  two,  the  first  point  in  accommodating  any 

theory  to  observation,  is  to  get  rid  (absolutely  or  sensibly)  of  the 
third  wave.  For  this  end,  it  has  been  common  to  make  the  ether 

incompressible,  or,  as  it  is  sometimes  expressed,  to  make  the  velocity 
of  the  third  wave  infinite.  The  velocity  of  the  wave  of  compression 
becomes  in  fact  infinite  as  the  compressibility  vanishes.  Of  course 
it  has  not  escaped  the  notice  of  physicists  that  we  may  also  get 
rid  of  the  third  wave  by  making  its  velocity  zero,  as  may  be  done 
by  giving  certain  values  to  the  constants  which  express  the  elastic 
properties  of  the  medium,  but  such  values  have  appeared  impossible, 
as  involving  an  unstable  state  of  the  medium.  The  condition  of 
incompressibility,  absolute  or  approximate,  has  therefore  appeared 

necessary.*  This  question  of  instability  has  now,  however,  been 
subjected  to  a  more  searching  examination,  with  the  result  that 

the  instability  does  not  really  exist  "provided  we  either  suppose  the 
medium  to  extend  all  through  boundless  space,  or  give  it  a  faced 

containing  vessel  as  its  boundary."  This  renders  possible  a  very 
simple  theory  of  light,  which  has  been  shown  to  give  Fresnel's  laws 
for  the  intensities  of  reflected  and  refracted  light  and  for  double 
refraction,  so  far  as  concerns  the  phenomena  which  can  be  directly 
observed.  The  displacement  in  an  aeolotropic  medium  is  in  the  same 

plane  passing  through  the  wave-normal  as  was  supposed  by  Fresnel, 

*  It  was  under  this  impression  that  the  paper  entitled  "  A  Comparison  of  the  Elastic 
and  the  Electric  Theories  of  Light  with  respect  to  the  Law  of  Double  Refraction  and  the 

Dispersion  of  Colors,"  [this  volume  pp.  223-231],  was  written.  The  conclusions  of 
that  paper,  except  so  far  as  respects  the  dispersion  of  colors,  will  not  apply  to  the 
new  theory. 



COMPAEISON  OF  THE  ELECTEIC  THEORY  OF  LIGHT,  ETC.    233 

but  its  position  in  that  plane  is  different,  being  perpendicular  to  the 

ray  instead  of  to  the  wave-normal.* 
It  is  the  object  of  this  paper  to  compare  this  new  theory  with 

the  electric  theory  of  light.  In  the  limiting  cases,  that  is,  when  we 
regard  the  velocity  of  the  missing  wave  in  the  elastic  theory  as  zero, 
and  in  the  electric  theory  as  infinite,  we  shall  find  a  remarkable 
correspondence  between  the  two  theories,  the  motions  of  monochromatic 
light  within  isotropic  or  aeolotropic  media  of  any  degree  of  trans- 

parency or  opacity,  and  at  the  boundary  between  two  such  media, 
being  represented  by  equations  absolutely  identical,  except  that  the 
symbols  which  denote  displacement  in  one  theory  denote  force  in 
the  other,  and  vice  versdJ  In  order  to  exhibit  this  correspondence 
completely  and  clearly,  it  is  necessary  that  the  fundamental  principles 
of  the  two  theories  should  be  treated  with  the  same  generality,  and, 
so  far  as  possible,  by  the  same  method.  The  immediate  consequences 
of  the  new  theory  will  therefore  be  deduced  with  the  same  generality 
and  essentially  by  the  same  method  which  has  been  used  with 
reference  to  the  electric  theory  in  a  former  volume  of  this  Journal 
[page  211  of  this  volume]. 

The  elastic  properties  of  the  ether,  according  to  the  new  theory, 
in  its  limiting  case,  may  be  very  simply  expressed  by  means  of  a 

vector  operator,  for  which  we  shall  use  Maxwell's  designation.  The 
curl  of  a  vector  is  defined  to  be  another  vector  so  derived  from  the 

first  that  if  u,  v,  w  be  the  rectangular  components  of  the  first,  and 

u',  v',  w',  those  of  its  curl, 

,_^dv        ,  _du    dw        ,_dvdu 

dy     dz'         ~  dz     dx  '         "~  dx     dy  ' 
where  x,  y,  z  are  rectangular  coordinates.  With  this  understanding, 
if  the  displacement  of  the  ether  is  represented  by  the  vector  (§,  the 
force  exerted  upon  any  element  by  the  surrounding  ether  will  be 

—  B  curl  curl  (5  dx  dy  dz,  (2) 

where  B  is  a  scalar  (the  so-called  rigidity  of  the  ether)  having  the 
same  constant  value  throughout  all  space,  whether  ponderable  matter 
is  present  or  not. 

Where  there  is  no  ponderable  matter,  this  force  must  be  equated  to 
the  reaction  of  the  inertia  of  the  ether.  This  gives,  with  omission  of 
the  common  factor  dx  dy  dz, 

A(g=-B  curl  curl(g,  (3) 
where  A  denotes  the  density  of  the  ether. 

*Sir  William  Thomson,  loc.  citat.     R.  T.  Glazebrook,  Phil.  Mag.,  December,  1888. 
t  In  giving  us  a  new  interpretation  of  the  equations  of  the  electric  theory,  the  author 

of  the  new  theory  has  in  fact  enriched  the  mathematical  theory  of  physics  with  some- 
thing which  may  be  compared  to  the  celebrated  principle  of  duality  in  geometry. 
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The  presence  of  ponderable  matter  disturbs  the  motions  of  the 

ether,  and  renders  them  too 'complicated  for  us  to  follow  in  detail. 
Nor  is  this  necessary,  for  the  quantities  which  occur  in  the  equations 

of  optics  represent  average  values,  taken  over  spaces  large  enough  to 

smooth  out  the  irregularities  due  to  the  ponderable  particles,  although 

very  small  as  measured  by  a  wave-length.*  Now  the  general  prin- 
ciples of  harmonic  motion!  show  that  to  maintain  in  any  element  of 

volume  the  motion  represented  by 
2™  1 

<g  =  8le     p,  (4) '  »  / 

21  being  a  complex  vector  constant,  will  require  a  force  from  outside 

represented  by  a  complex  linear  vector  function  of  ($,  that  is,  the 
three  components  of  the  force  will  be  complex  linear  functions  of  the 

three  components  of  (£.  We  shall  represent  this  force  by 

W&dxdydz,  (5) 

where  "^  represents  a  complex  linear  vector  f unction.  J 
If  we  now  equate  the  force  required  to  maintain  the  motion  in  any 

element  to  that  exerted  upon  the  element  by  the  surrounding  ether, 
we  have  the  equation         _  ̂   ,  ~ <!>($  =  —  curl  curl  (5,  (6) 

which  expresses  the  general  law  for  the  motion  of  monochromatic 
light  within  any  sensibly  homogeneous  medium,  and  may  be  regarded 
as  implicitly  including  the  conditions  relating  to  the  boundary  of  two 
such  media,  which  are  necessary  for  determining  the  intensities  of 
reflected  and  refracted  light. 

For  let  u,   v,   w     be  the  components  of     (£, 

u'y  v',  w'          „  „  curl  (£, 

u",  v",  w"         „  „  curl  curl  (£, 
so  that  ,    dw    dv         ,    du    dw         ,    dv    du 

ni     —  /})    — —    nil    —    

U>      ^j  7      ,  V    — —      7  7       ,  W       ̂ T^  ' dy     dz  dz     dx  dx 

„    dw'    dv'       „    du'    dw'       „    dv'    du' qj "  — .       _     n\        — —     „_     f)l)               __       • 

dy      dz'         ~  dz      dx '  dx     dy  ' 
and  let  the  interface  be  perpendicular  to  the  axis  of  Z.     It  is  evident 

*  This  is  in  no  respect  different  from  what  is  always  tacitly  understood  in  the  theory 
of  sound,  where  the  displacements,  velocities,  densities  considered  are  always  such 
average  values.  But  in  the  theory  of  light,  it  is  desirable  to  have  the  fact  clearly  in 
mind  on  account  of  the  two  interpenetrating  media  (imponderable  and  ponderable),  the 

laws  of  light  not  being  in  all  respects  the  same  as  they  would  be  for  a  single  homo- 
geneous medium. 

tSee  Lord  Rayleigh's  Theory  of  Sound,  vol.  i,  chapters  iv,  v. 
:£  It  amounts  essentially  to  the  same  thing,  whether  we  regard  the  force  as  a  linear 

*     2 

vector  function  of  (5  or  of  (5,  since  these  differ  only  by  the  constant  factor  -  -^ .     But 

there  are  some  advantages  in  expressing  the  force  as  a  function  of  (5,  because  the 
greater  part  of  the  force,  in  the  most  important  cases,  is  required  to  overcome  the  inertia 
of  the  ether,  and  is  thus  more  immediately  connected  with  (S. 
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that  if  u'  or  v'  is  discontinuous  at  the  interface,  the  value  of  u"  or  v" 
becomes  in  a  sense  infinite,  i.e.,  curl  curl  (£,  and  therefore  by  (6) 

ty&,  will  be  infinite.  Now  both  (g  and  "SF  are  discontinuous  at  the 
interface,  but  infinite  values  for  "^(S  are  not  admissible.  Therefore 
u'  and  v'  are  continuous.  Again,  if  u  or  v  is  discontinuous,  uf  or  v' 
will  become  infinite,  and  therefore  u*  or  v".  Therefore  u  and  v  are 
continuous.  These  conditions  may  be  expressed  in  the  most  general 
manner  by  saying  that  the  components  of  @  and  curl  (£  parallel  to  the 
interface  are  continuous.  This  gives  four  complex  scalar  conditions, 
or  in  all  eight  scalar  conditions,  for  the  motion  at  the  interface,  which 
are  sufficient  to  determine  the  amplitude  and  phase  of  the  two 
reflected  and  the  two  refracted  rays  in  the  most  general  case.  It  is 
easy,  however,  to  deduce  from  these  four  complex  conditions,  two 
others,  which  are  interesting  and  sometimes  convenient.  It  is  evident 

from  the  definitions  of  w'  and  w"  that  if  u,  v,  u',  and  v'  are  continuous 

at  the  interface  w  and  w"  will  also  be  continuous.  Now  —  w"  is  equal 
to  the  component  of  ¥(§:  normal  to  the  interface.  The  following 
quantities  are  therefore  continuous  at  the  interface  : 

the  components  parallel  to  the  interface  of  (§,         \ 

the  component  normal  to  the  interface  of     "^(5,  (7) 
all  components  of  curl  (5.J 

To  compare  these  results  with  those  derived  from  the  electrical 
theory,  we  may  take  the  general  equation  of  monochromatic  light  on 
the  electrical  hypothesis  from  a  paper  in  a  former  volume  of  this 

Journal.  This  equation,  which  with  an  unessential  difference  of  nota- 

tion may  be  written  * 
-Potg-VQ  =  4ir$g,  (8) 

was  established  by  a  method  and  considerations  similar  to  those  which 
have  been  used  to  establish  equation  (6),  except  that  the  ordinary  law 
of  electrodynamic  induction  had  the  place  of  the  new  law  of  elasticity. 
^  is  a  complex  vector  representing  the  electrical  displacement  as  a 
harmonic  function  of  the  time  ;  $  is  a  complex  linear  vector  operator, 
such  that  4^$^  represents  the  electromotive  force  necessary  to  keep 

up  the  vibration  §f.  Q  is  a  complex  scalar  representing  the  electro- 
static potential,  VQ  the  vector  of  which  the  three  components  are 

dQ     d        dQ, 

dx}    dy1    dz' Pot  denotes  the  operation  by  which  in  the  theory  of  gravitation  the 
potential   is   calculated   from   the  density  of  matter.!     When  it   is 

*  See  page  218  of  this  volume,  equation  (12). 

t  The  symbol  -  Pot  is  therefore  equivalent  to  47rV~2,  as  used  by  Sir  William  Thomson 
(with  a  happy  economy  of  symbols)  at  the  last  meeting  of  British  Association  to  express 
the  same  law  of  electrodynamic  induction,  except  that  the  symbol  is  here  used  as  a 

vector  operator.  See  Nature,  vol.  xxxviii,  p.  571,  sub  init. 
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applied  as  here  to  a  vector,  the  three  components  of  the  result  are  to 
be  calculated  separately  from  the  three  components  of  the  operand. 
—  VQ  is  therefore  the  electrostatic  force,  and  —Pot  jf  the  electro- 
dynamic  force.  In  establishing  the  equation,  it  was  not  assumed  that 
the  electrical  motions  are  aolenoidal,  or  such  as  to  satisfy  the  so-called 

"  equation  of  continuity."  We  may  now,  however,  make  this  assump- 
tion, since  it  is  the  extreme  case  of  the  electric  theory  which  we  are 

to  compare  with  the  extreme  case  of  the  elastic. 
It  results  from  the  definitions  of  curl  and  V  that  curl  VQ  =  0.     We 

may  therefore   eliminate  Q  from  equation  (8)  by  taking  the  curl. 
This  gives 

-  curl  Pot  g  =  4<rr  curl  $$.  (9) 

Since  curl  curl  and  -r—  Pot  are  inverse  operators  for  solenoidal  vectors, 
47T 

we  may  get  rid  of  the  symbol  Pot  by  taking  the  curl  again.     We 
thus  get 

-g  =  curl  curl  $$.  (10) 

The  conditions  for  the  motion  at  the  boundary  between  different 

media  are  easily  obtained  from  the  following  considerations.  Potg- 
and  Q  are  evidently  continuous  at  the  interface.  Therefore  the 
components  parallel  to  the  interface  of  VQ,  and  by  (8)  of  $$,  will  be 
continuous.  Again,  curl  Pot  §  is  continuous  at  the  interface,  as 
appears  from  the  consideration  that  curl  Pot  £J  is  the  magnetic  force 
due  to  the  electrical  motions  g.  Therefore,  by  (9),  curl  $g  is  con- 
tinuous.  The  solenoidal  condition  requires  that  the  component  of  £$• 
normal  to  the  interface  shall  be  continuous. 

The  following  quantities  are  therefore  continuous  at  the  interface  : 

the  components  parallel  to  the  interface  of  3?$,         "j 
the  component  normal  to  the  interface  of    fj,  (11) 
all  components  of  curl  i^.J 

Of  these  conditions,  the  two  relating  to  the  normal  components  of  5 
and  curl  3?^  are  easily  shown  to  result  from  the  other  four  conditions, 
as  in  the  analogous  case  in  the  elastic  theory. 

If  we  now  compare  in  the  two  theories  the  differential  equations  of 
the  motion  of  monochromatic  light  for  the  interior  of  a  sensibly 

homogeneous  medium,  (6)  and  (10),  and  the  special  conditions  for  the 
boundary  between  two  such  media  as  represented  by  the  continuity  of 
the  quantities  (7)  and  (11),  we  find  that  these  equations  and  conditions 
become  identical,  if 

(12) 

(14) 
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In  other  words,  the  displacements  in  either  theory  are  subject  to  the 
same  general  and  surface  conditions  as  the  forces  required  to  maintain 
the  vibrations  in  an  element  of  volume  in  the  other  theory. 

To  fix  our  ideas  in  regard  to  the  signification  of  "SF  and  3?,  we  may 
consider  the  case  of  isotropic  media,  in  which  these  operators  reduce 
to  ordinary  algebraic  quantities,  simple  or  complex.  Now  the  curl 
of  any  vector  necessarily  satisfies  the  solenoidal  condition  (the 

so-called  "  equation  of  continuity  "),  therefore  by  (6)  ̂ @  and  @  will 
be  solenoidal.  So  also  will  ̂   and  <3?3f  in  the  electrical  theory.  Now 
for  solenoidal  vectors 

(15) 

so  that  the  equations  (6)  and  (10)  reduce  to 

For  a  simple  train  of  waves,  the  displacement,  in  either  theory,  may 
be  represented  by  a  constant  multiplied  by 

e4gt+ax+by+cz) 

Our  equations  then  reduce  again  to 
(19) 

(20) 
Hence 

a2
 

\ff 
 

- 1  _  ;*. 
 
_
 
 

& 

The  last  member  of  this  equation,  when  real,  evidently  expresses  the 
square  of  the  velocity  of  light.     If  we  set 

-,  (22) 

k  denoting  the  velocity  of  light  in  vcacuo,  we  have 

n2  =  k2V  =  k2$-\  (23) 

When  n2  is  positive,  which  is  the  case  of  perfectly  transparent 
bodies,  the  positive  root  of  n2  is  called  the  index  of  refraction  of  the 
medium.  In  the  most  general  case,  it  would  be  appropriate  to  call 

n — or  perhaps  that  root  of  n2  of  which  the  real  part  is  positive — the 
(complex)  index  of  refraction,  although  the  terminology  is  hardly 

settled  in  this  respect.  A  negative  value  of  n2  would  represent  a 
body  from  which  light  would  be  totally  reflected  at  all  angles  of 
incidence.  No  such  cases  have  been  observed.  Values  of  n2  in  which 
the  coefficient  of  i  is  negative,  indicate  media  in  which  light  is 
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absorbed.  Values  in  which  the  coefficient  of  t  is  positive  would 

represent  media  in  which  the  opposite  phenomenon  took  place.* 
It  is  no  part  of  the  object  of  this  paper  to  go  into  the  details 

by  which  we  may  derive,  so  far  as  observable  phenomena  are  con- 

cerned, Fresnel's  law  of  double  refraction  for  transparent  bodies, 
as  well  as  the  more  general  law  of  the  same  character  which  relates  to 
aeolotropic  bodies  of  more  or  less  opacity,  and  which  differs  from 

Fresnel's  only  in  that  certain  quantities  become  complex,  or  Fresnel's 
laws  for  the  intensities  of  reflected  and  refracted  light  at  the  boun- 

dary of  transparent  isotropic  media,  with  the  more  general  laws  for 
the  case  of  bodies  aeolotropic  or  opaque  or  both.  The  principal  cases 
have  already  been  discussed  on  the  new  elastic  theory  in  the 
Philosophical  Magazine  t  and  a  further  discussion  is  promised.  For 

the  electrical  theory,  the  case  of  double  refraction  in  perfectly  trans- 
parent media  has  been  discussed  quite  in  detail  in  this  Journal,  J  and 

the  intensities  of  reflected  and  refracted  light  have  been  abundantly 
deduced  from  the  above  conditions  by  various  authors.  §  So  far  as  all 
these  laws  are  concerned,  the  object  of  this  paper  will  be  attained  if 
if  it  has  been  made  clear  that  the  two  theories,  in  their  extreme  cases, 
give  identical  results.  The  greater  or  less  degree  of  elegance,  or 
completeness,  or  perspicuity,  with  which  these  laws  may  be  developed 
by  different  authors,  should  weigh  nothing  in  favor  of  either  theory. 

The  non-magnetic  rotation  of  the  plane  of  polarization,  with  the 
allied  phenomena  in  aeolotropic  bodies,  lie  in  a  certain  sense  outside 
of  the  above  laws,  as  depending  on  minute  quantities  which  have  been 
neglected  in  this  discussion.  The  manner  in  which  these  minute 
quantities  affect  the  equations  of  motion  on  the  electrical  theory  has 

been  'shown  in  a  former  paper,  ||  where  these  phenomena  in  trans- 
parent bodies  are  treated  quite  at  length.  For  the  new  theory,  a 

discussion  of  this  subject  is  promised  by  Mr.  Glazebrook. 
But  the  magnetic  rotation  of  the  plane  of  polarization,  with  the 

allied  phenomena  when  an  aeolotropic  body  is  subjected  to  magnetic 
influence,  fall  entirely  within  the  scope  of  the  above  equations  and 
surface-conditions.  The  characteristic  of  this  case  is  that  ̂   and  <1> 

are  not  self-conjugate.1F  This  is  what  we  might  expect  on  the  electric 

*  But  L  might  have  been  introduced  into  the  equations  in  such  a  way  that  a  positive 
coefficient  in  the  value  of  n2  would  indicate  absorption,  and  a  negative  coefficient  the 
impossible  case. 

t  Sir  William  Thomson,  loc.  citat.     R.  T.  Glazebrook,  loc.  citat. 

J  This  vol.  p.  182. 

§Lorentz,  Schlomilch's  Zeitschrift,  vol.  xxii,  pp.  1-30  and  205-219;  vol.  xxiii, 
pp.  197-210;  Fitzgerald,  Phil.  Trans.,  vol.  clxxi,  p.  691;  J.  J.  Thomson,  Phil. 
Mag.  (5),  vol.  ix,  p.  284 ;  Rayleigh,  Phil.  Mag.  (5),  vol.  xii,  p.  81.  Glazebrook,  Proc. 
Cambr.  Phil.  Soc.t  vol.  iv,  p.  155. 

||  This  vol.  p.  195. 
IT  See  this  vol.  p.  217. 
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theory  from  the  experiments  of  Dr.  Hall,  which  show  that  the 
operators  expressing  the  relation  between  electromotive  force  and 

current  are  not  in  general  self -conjugate  in  this  case. 

In  the  preceding  comparison,  we  have  considered  only  the  limiting 
cases  of  the  two  theories.  With  respect  to  the  sense  in  which  the 
limiting  case  is  admissible,  the  two  theories  do  not  stand  on  quite 
the  same  footing.  In  the  electric  theory,  or  in  any  in  which  the 
velocity  of  the  missing  wave  is  very  great,  if  we  are  satisfied  that 
the  compressibility  is  so  small  as  to  produce  no  appreciable  results, 
we  may  set  it  equal  to  zero  in  our  mathematical  theory,  even  if  we 
do  not  regard  this  as  expressing  the  actual  facts  with  absolute 
accuracy.  But  the  case  is  not  so  simple  with  an  elastic  theory  in 
which  the  forces  resisting  certain  kinds  of  motion  vanish,  so  far 
at  least  as  they  are  proportional  to  the  strains.  The  first  requisite 
for  any  sort  of  optical  theory  is  that  the  forces  shall  be  proportional 
to  the  displacements.  This  is  easily  obtained  in  general  by  supposing 
the  displacements  very  small.  But  if  the  resistance  to  one  kind  of 
distortion  vanishes,  there  will  be  a  tendency  for  this  kind  of  distortion 
to  appear  at  some  places  in  an  exaggerated  form,  and  even  to  an 
infinite  degree,  however  small  the  displacements  may  be  in  other 
parts  of  the  field.  In  the  case  before  us,  if  we  suppose  the  velocity 
of  the  missing  wave  to  be  absolutely  zero,  there  will  be  infinite 
condensations  and  rarefactions  at  a  surface  where  ordinary  waves 
are  reflected.  That  is,  a  certain  volume  of  ether  will  be  condensed 

to  a  surface,  and  vice  versa.  This  prevents  any  treatment  of  the 
extreme  case,  which  is  at  once  simple  and  satisfactory.  The  difficulty 
has  been  noticed  by  Sir  William  Thomson,  who  observes  that  it 
may  be  avoided  if  we  suppose  the  displacements  infinitely  small  in 

comparison  with  the  wave-length  of  the  wave  of  compression.  This 
implies  a  finite  velocity  for  that  wave.  A  similar  difficulty  would 
probably  be  found  to  exist  (in  the  extreme  case)  with  regard  to 
the  deformation  of  the  ether  by  the  molecules  of  ponderable  matter, 
as  the  ether  oscillates  among  them.  If  the  statical  resistance  to 
irrotational  motions  is  zero,  it  is  not  at  all  evident  that  the  statical 

forces  evoked  by  the  disturbance  caused  by  the  molecules  would  be 
proportional  to  the  motions.  But  this  difficulty  would  be  obviated  by 
the  same  hypothesis  as  the  first. 

These  circumstances  render  the  elastic  theory  somewhat  less  con- 
venient as  a  working  hypothesis  than  the  electric.  They  do  not 

necessarily  involve  any  complication  of  the  equations  of  optics.  For 
it  may  still  be  possible  that  this  velocity  of  the  missing  wave  is 
so  small  that  the  quantities  on  which  it  depends  may  be  set  equal 
to  zero  in  the  equations  which  represent  the  phenomena  of  optics. 
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But  the  mental  processes  by  which  we  satisfy  ourselves  of  the 
validity  of  our  results  (if  we  do  not  work  out  the  whole  problem 
in  the  general  case  of  no  assumption  in  regard  to  the  velocity  of 
the  missing  wave)  certainly  involve  conceptions  of  a  higher  degree 
of  difficulty  on  account  of  the  circumstances  mentioned.  Perhaps 
this  ought  not  to  affect  our  judgment  with  respect  to  the  question 
of  the  truth  of  the  hypothesis. 

Although  the  two  theories  give  laws  of  exactly  the  same  form 
for  monochromatic  light  in  the  limiting  case,  their  deviations  from 
this  limit  are  in  opposite  directions,  so  that  if  the  phenomena  of 
optics  differed  in  any  marked  degree  from  what  we  would  have  in 
the  limiting  case,  it  would  be  easy  to  find  an  experimentum  crucis 
to  decide  between  the  two  theories.  A  little  consideration  will  make 

it  evident,  that  when  the  principal  indices  of  refraction  of  a  crystal  are 

given,  the  intermediate  values  for  oblique  wave-planes  will  be  less  if 
the  velocity  of  the  missing  wave  is  small  but  finite,  than  if  it  is  infini- 

tesimal, and  will  be  greater  if  the  velocity  of  the  missing  wave  is  very 

great  than  if  it  is  infinite.*  Hence,  if  the  velocity  of  the  missing 
wave  is  small  but  finite,  the  intermediate  values  of  the  indices  of 

refraction  will  be  less  than  are  given  by  Fresnel's  law,  but  if  the 
velocity  of  the  missing  wave  is  very  great  but  finite,  the  intermediate 
values  of  the  indices  of  refraction  will  be  greater  than  are  given  by 

Fresnel's  law.  But  the  recent  experiments  of  Professor  Hastings  on 
the  law  of  double  refraction  in  Iceland  spar  do  not  encourage  us  to 
look  in  this  direction  for  the  decision  of  the  question.! 

In  a  simple  train  of  waves  in  a  transparent  medium,  the  potential 
energy,  on  the  elastic  theory,  may  be  divided  into  two  parts,  of  which 
one  is  due  to  that  general  deformation  of  the  ether  which  is  repre- 

sented by  the  equations  of  wave-motion,  and  the  other  to  those 
deformations  which  are  caused  by  the  interference  of  the  ponderable 

particles  with  the  wave-motion,  and  to  such  displacements  of  the 
ponderable  matter  as  may  be  caused,  in  some  cases  at  least,  by  the 

motion  of  the  ether.  If  we  write  h  for  the  amplitude,  I  for  the  wave- 
length, and  p  for  the  period,  these  two  parts  of  the  statical  energy 

(estimated  per  unit  of  volume  for  a  space  including  many  wave- 
lengths) may  be  represented  respectively  by 

, 

and 

*  This  may  be  more  clear  if  we  consider  the  stationary  waves  formed  by  two  trains  of 
waves  moving  in  opposite  directions.  The  case  then  comes  under  the  following  theorem : 

"If  the  system  undergo  such  a  change  that  the  potential  energy  of  a  given  configur- 
ation is  diminished,  while  the  kinetic  energy  of  a  given  motion  is  unaltered,  the  periods 

of  the  free  vibrations  are  all  increased,  and  conversely."  See  Lord  Rayleigh's  Theory  of 
Sound,  vol.  i,  p.  85. 

t  Am.  Jour.  Sci.,  ser  3,  vol.  xxxv,  p.  60. 
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The  sum  of  these  may  be  equated  to  the  kinetic  energy,  giving  an 
equation  of  the  form 

_ '       = 

I2          4         pz 

B  is  an  absolute  constant  (the  rigidity  of  the  ether,  previously 

represented  by  the  same  letter),  A'  and  6  will  be  constant  (for  the 
same  medium  and  the  same  direction  of  the  wave-normal)  except 
so  far  as  the  type  of  the  motion  changes,  i.e.,  except  so  far  as  the 
manner  in  which  the  motion  of  the  ether  distributes  itself  between 

the  ponderable  molecules,  and  the  degree  in  which  these  take  part 
in  the  motion,  may  undergo  a  change.  When  the  period  of  vibration 

varies,  the  type  of  motion  will  vary  more  or  less,  and  A'  and  b  will 
vary  more  or  less. 

In  a  manner  entirely  analogous,*  the  kinetic  energy,  on  the  elec- 
trical theory,  may  be  divided  into  two  parts,  of  which  one  is  due  to 

those  general  fluxes  which  are  represented  by  the  equations  of  wave- 
motions,  and  the  other  to  those  irregularities  in  the  fluxes  which 
are  caused  by  the  presence  of  the  ponderable  molecules,  as  well  as  to 

such  motions  of  the  ponderable  particles  themselves  as  may  some- 
times occur.  These  parts  of  the  kinetic  energy  may  be  represented 

respectively  by 

7TFW  ,      7T2/^2 -—    and   —    -. 

Their  sum  equated  to  the  potential  energy  gives 

irWh*       7T*fh?_GhZ 

~JT     f    T' 
Here  F  is  the  constant  of  electrodynamic  induction,  which  is  unity  if 

we  use  the  electromagnetic  system  of  units,  /  and  G  (like  A7  and  6) 
vary  only  so  far  as  the  type  of  motion  varies. 
We  have  the  means  of  forming  a  very  exact  numerical  estimate 

of  the  ratio  of  the  two  parts  into  which  the  statical  energy  is  thus 
divided  on  the  elastic  theory,  or  the  kinetic  energy  on  the  electric 
theory.  The  means  for  this  estimate  is  afforded  by  the  principle 
that  the  period  of  a  natural  vibration  is  stationary  when  its  type  is 
infinitesimally  altered  by  any  constraint.!  Let  us  consider  a  case  of 
simple  wave-motion,  and  suppose  the  period  to  be  infinitesimally 
varied:  the  wave-length  will  also  vary,  and  presumably  to  some 
extent  the  type  of  vibration.  But,  by  the  principle  just  stated,  if  the 
ether  or  the  electricity  could  be  constrained  to  vibrate  in  the  original 
type,  the  variations  of  I  and  p  would  be  the  same  as  in  the  actual 

*  See  page  182  of  this  volume. 
t  See  Lord  Rayleigh's  Theory  of  Sound,  vol.  i,  p.  84.     The  application  of  the  principle 

is  most  simple  in  the  case  of  stationary  waves. 
G.  II.  Q 
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case.  Therefore,  in  finding  the  differential  equation  between  I  and  pt 

we  may  treat  b  and  A'  in  (24)  and  /  and  G  in  (25)  as  constant,  as  well 
as  B  and  F.  These  equations  may  be  written 

Differentiating,  we  get 

or 

Hence,  if  we  write  V  for  the  wave-velocity  (l/p),  n  for  the  index  of 
refraction,  and  X  for  the  wave-length  in  vacuo,  we  have  for  the  ratio 
of  the  two  parts  into  which  we  have  divided  the  potential  energy  on 
the  elastic  theory, 

bh*     TT2Bh2  _dlogV  _      d\ogn 

4  "       I*      ~dlogp~   ~dlog\' 
and  for  the  ratio  of  the  two  parts  into  which  we  have  divided  the 
kinetic  energy  on  the  electrical  theory, 

7T fh*  .  TrFW    cZlogV_      d  log  n ____       _.  (27) 
p2        dlogp        cHogX 

It  is  interesting  to  see  that  these  ratios  have  the  same  value.  This 
value  may  be  expressed  in  another  form,  which  is  suggestive  of  some 
important  relations.  If  we  write  U  for  what  Lord  Rayleigh  has 

called  the  velocity  of  a  group  of  waves,* 

U_ 

V=      " dlogl 

^281^1=5.  (28) 
dlogp        U 

It  appears,  therefore,  that   in   the   elastic   theory  that   part  of  the 
potential    energy    which    depends    on    the    deformation    expressed 

*See  his  "Note  on  Progressive  Waves,"  Proc.  Lond.  Math.  Soc.,  vol.  ix,  No. 
reprinted  in  his  Theory  of  Sound,  vol.  ii,  p.  297. 
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by  the  equations  of  wave-motion,  bears  to  the  whole  potential 
energy  the  same  ratio  which  the  velocity  of  a  group  of  waves 

bears  to  the  wave-velocity.  In  the  electrical  theory,  that  part  of 
the  kinetic  energy  which  depends  on  the  motions  expressed  by  the 

equations  of  wave-motion  bears  to  the  whole  kinetic  energy  the  same 
ratio. 

Returning  to  the  consideration  of  equations  (26)  and  (27),  we 
observe  that  in  transparent  bodies  the  last  member  of  these  equations 
represents  a  quantity  which  is  small  compared  with  unity,  at  least  in 
the  visible  spectrum,  and  diminishes  rapidly  as  the  wave-length 
increases.  This  is  just  what  we  should  expect  of  the  first  member  of 
equation  (27).  But  when  we  pass  to  equation  (26),  which  relates  to 
the  elastic  theory,  the  case  is  entirely  different.  The  fact  that  the 
kinetic  energy  is  affected  by  the  presence  of  the  ponderable  matter 
and  affected  differently  in  different  directions,  shows  that  the  motion 

of  the  ether  is  considerably  modified.  This  implies  a  distortion  super- 

posed upon  the  distortion  represented  by  the  equations  of  wave- 
motion,  and  very  much  greater,  since  the  body  is  very  fine-grained  as 
measured  by  a  wave-length.  With  any  other  law  of  elasticity,  we 
should  suppose  that  the  energy  of  this  superposed  distortion  would 
enormously  exceed  that  of  the  regular  distortion  represented  by  the 

equations  of  wave-motion.  But  it  is  the  peculiarity  of  this  new  law 
of  elasticity  that  there  is  one  kind  of  distortion,  of  which  the  energy 
is  very  small,  and  which  is  therefore  peculiarly  likely  to  occur.  Now 
if  we  can  suppose  the  distortion  caused  by  the  ponderable  molecules 
to  be  almost  entirely  of  this  kind,  we  may  be  able  to  account  for  the 
smallness  of  its  energy.  We  should  still  expect  the  first  member  of 

(26)  to  increase  with  the  wave-length,  on  account  of  the  factor  I2, 
instead  of  diminishing,  as  the  last  member  of  the  equation  shows  that 
it  does.  We  are  obliged  to  suppose  that  6,  and  therefore  the  type  of 

the  vibrations,  varies  very  rapidly  with  the  wave-length,  even  in  those 
cases  which  appear  farthest  removed  from  anything  like  selective 
absorption. 

The  electrical  theory  furnishes  a  relation  between  the  refractive 

power  of  a  body  and  its  specific  dielectric  capacity,  which  is  com- 
monly expressed  by  saying  that  the  latter  is  equal  to  the  square  of 

the  index  of  refraction  for  waves  of  infinite  length.  No  objection  can 
be  made  to  this  statement,  but  the  great  uncertainty  in  determining 
the  index  for  waves  of  infinite  length  by  extrapolation  prevents  it 
from  furnishing  any  very  rigorous  test  of  the  theory.  Yet,  as  the 
results  of  extrapolation  in  some  cases  agree  strikingly  with  the 

specific  dielectric  capacity,  although  in  other  cases  they  are  quite 

different,  the  correspondence  is  generally  regarded  as  corroborative,  in 

some  degree,  of  the  theory.  But  the  relation  between  refractive  power 
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and  dielectric  capacity  may  be  expressed  in  a  form  which  will  furnish 
a  more  rigorous  test,  as  not  involving  extrapolation. 

We  have  seen  on  page  242  how  we  may  determine  numerically  the 
ratio  of  the  two  first  terms  of  equation  (25).  We  thus  easily  get 
the  ratio  of  the  first  and  last  term,  which  gives 

Gh*_d}Qgl  TrPW 

4    "dlogX     p* 

In  the  corresponding  equation  for  a  train  of  waves  of  the  same  ampli- 
tude and  period  in  vacuo,  I  becomes  X,  F  remains  the  same,  and  for  G 

we  may  write  G'.  This  gives 

(30) 

f  'JJ- Dividing,  we  get 
G=cnogZ_  ̂  

G'~cnogX  X2  = 

Now  G'  is  the  dielectric  elasticity  of  pure  ether.  If  K  is  the 
specific  dielectric  capacity  of  the  body  which  we  are  considering, 

G'/K  is  the  dielectric  elasticity  of  the  body  and  Gy2K  is  the  potential 
energy  of  the  body  (per  unit  of  volume),  due  to  a  unit  of  ordinary 

electrostatic  displacement.  But  Gh2/4>  is  the  potential  energy  in  a 
train  of  waves  of  amplitude  h.  Since  the  average  square  of  the  dis- 

placement is  h?/2,  the  potential  energy  of  a  unit  displacement  such  as 

occurs  in  a  train  of  waves  is  G/2.  Now  in  the  electrostatic  experi- 
ment the  displacement  distributes  itself  among  the  molecules  so  as  to 

make  the  energy  a  minimum.  But  in  the  case  of  light  the  distribu- 
tion of  the  displacement  is  not  determined  entirely  by  statical 

considerations.  Hence 

?=&'  <32> 

K>  — and 
/7/"\2\ 

(33) 

It  is  to  be  observed  that  if  we  should  assume  for  a  dispersion-formula 

n-2  =  a-6X-2,  (34) 

I/a,  which  is  the  square  of  the  index  of   refraction  for  an  infinite 

wave-length,  would  be  identical  with  the  second  member  of  (33). 
Another  similarity  between  the  electrical  and  optical  properties  of 

bodies  consists  in  the  relation  between  conductivity  and  opacity. 
Bodies  in  which  electrical  fluxes  are  attended  with  absorption  of 
energy  absorb  likewise  the  energy  of  the  motions  which  constitute 
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light.  This  is  strikingly  true  of  the  metals.  But  the  analogy  does 
not  stop  here.  To  fix  our  ideas,  let  us  consider  the  case  of  an 
isotropic  body  and  circularly  polarized  light,  which  is  geometrically 
the  simplest  case  although  its  analytical  expression  is  not  so  simple 

as  that  of  plane-polarized  light.  The  displacement  at  any  point 
may  be  symbolized  by  the  rotation  of  a  point  in  a  circle.  The 

external  force  necessary  to  maintain  the  displacement  §•  is  represented 

by  n~2$.  In  transparent  bodies,  for  which  n~2  is  a  positive  number, 
the  force  is  radial  and  in  the  direction  of  the  displacement,  being 

principally  employed  in  counterbalancing  the  dielectric  elasticity, 

which  tends  to  diminish  the  displacement.  In  a  conductor  n~z 
becomes  complex,  which  indicates  a  component  of  the  force  in  the 
direction  of  $,  that  is,  tangential  to  the  circle.  This  is  only  the 
analytical  expression  of  the  fact  above  mentioned.  But  there  is 
another  optical  peculiarity  of  metals,  which  has  caused  much  remark, 

viz.,  that  the  real  part  of  n2  (and  therefore  of  n~2)  is  negative,  i.e., 
the  radial  component  of  the  force  is  directed  towards  the  center. 

This  inwardly  directed  force,  which  evidently  opposes  the  electro- 
dynamic  induction  of  the  irregular  part  of  the  motion,  is  small 

compared  with  the  outward  force  which  is  found  in  transparent' 
bodies,  but  increases  rapidly  as  the  period  diminishes.  We  may  say, 

therefore,  that  metals  exhibit  a  second  optical  peculiarity, — that  the 
dielectric  elasticity  is  not  prominent  as  in  transparent  bodies.  This 
is  like  the  electrical  behavior  of  the  metals,  in  which  we  do  not 

observe  any  elastic  resistance  to  the  motion  of  electricity.  We  see, 
therefore,  that  the  complex  indices  of  metals,  both  in  the  real  and 
the  imaginary  part  of  their  inverse  squares,  exhibit  properties 
corresponding  to  the  electrical  behavior  of  the  metals. 

The  case  is  quite  different  in  the  elastic  theory.  Here  the  force 
from  outside  necessary  to  maintain  in  any  element  of  volume  the 

displacement  @  is  represented  by  nz&  In  transparent  bodies, 
therefore,  it  is  directed  toward  the  center.  In  metals,  there  is  a 

component  in  the  direction  of  the  motion  d,  while  the  radial  part  of 
the  force  changes  its  direction  and  is  often  many  times  greater  than 

the  opposite  force  in  transparent  bodies.  This  indicates  that  in 

metals  the  displacement  of  the  ether  is  resisted  by  a  strong  elastic 

force,  quite  enormous  compared  to  anything  of  the  kind  in  trans- 
parent bodies,  where  it  indeed  exists,  but  is  so  small  that  it  has  been 

neglected  by  most  writers  except  when  treating  of  dispersion.  We 

can  make  these  suppositions,  but  they  do  not  correspond  to 

anything  which  we  know  independently  of  optical  experiment. 

It  is  evident  that  the  electrical  theory  of  light  has  a  serious  rival, 

in  a  sense  in  which,  perhaps,  one  did  not  exist  before  the  publication 
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of  Sir  William  Thomson's  paper  in  November  last.*  Nevertheless, 
neither  surprise  at  the  results  which  have  been  achieved,  nor 
admiration  for  that  happy  audacity  of  genius,  which,  seeking  the 
solution  of  the  problem  precisely  where  no  one  else  would  have 
ventured  to  look  for  it,  has  turned  half  a  century  of  defeat  into 
victory,  should  blind  us  to  the  actual  state  of  the  question. 

It  may  still  be  said  for  the  electrical  theory,  that  it  is  not  obliged 
to  invent  hypotheses,!  but  only  to  apply  the  laws  furnished  by 
the  science  of  electricity,  and  that  it  is  difficult  to  account  for  the 
coincidences  between  the  electrical  and  optical  properties  of  media, 
unless  we  regard  the  motions  of  light  as  electrical.  But  if  the 
electrical  character  of  light  is  conceded,  the  optical  problem  is  very 
different  from  anything  which  existed  in  the  time  of  Fresnel,  Cauchy, 
and  Green.  The  third  wave,  for  example,  is  no  longer  something 
to  be  gotten  rid  of  quocunque  modo,  but  something  which  we  must 
dispose  of  in  accordance  with  the  laws  of  electricity.  This  would 
seem  to  rule  out  the  possibility  of  a  relatively  small  velocity  for 
the  third  wave. 

*  "  Since  the  first  publication  of  Cauchy's  work  on  the  subject  in  1830,  and  of  Green's 
in  1837,  many  attempts  have  been  made  by  many  workers  to  find  a  dynamical 

foundation  by  Fresnel's  laws  of  reflexion  and  refraction  of  light,  but  all  hitherto 
ineffectually."  Sir  William  Thomson,  loc.  citat. 

"  So  far  as  I  am  aware,  the  electric  theory  of  Maxwell  is  the  only  one  satisfying  these 
conditions  (of  explaining  at  once  Fresnel's  laws  of  double  refraction  in  crystals  and 
those  governing  the  intensity  of  reflexion  when  light  passes  from  one  isotropic  medium 

to  another)."  Lord  Rayleigh,  Phil.  Mag.,  September,  1888. 
f  Electrical  motions  in  air,  since  the  recent  experiments  of  Professor  Hertz,  seem  to 

be  no  longer  a  matter  of  hypothesis.  We  can  hardly  suppose  that  the  case  is  essentially 
different  with  the  so-called  vacuum.  The  theorem  that  the  electrical  motions  of  light 
are  solenoidal,  although  it  is  convenient  to  assume  it  as  a  hypothesis  and  show  that  the 
results  agree  with  experiment,  need  not  occupy  any  such  fundamental  position  in  the 
theory.  It  is  in  fact  only  another  way  of  saying  that  two  of  the  constants  of  electrical 
science  have  a  certain  ratio  (infinity).  It  would  be  easy  to  commence  without  assuming 
this  value,  and  to  show  in  the  course  of  the  development  of  the  subject  that  experiment 
requires  it,  not  of  course  as  an  abstract  proposition,  but  in  the  sense  in  which 
experiment  can  be  said  to  require  any  values  of  any  constants,  that  is,  to  a  certain 
degree  of  approximation. 



XVI. 

REVIEWS  OF  NEWCOMB  AND  MICHELSON'S  "VELOCITY 
OF  LIGHT  IN  AIK  AND  REFRACTING  MEDIA"  AND 
OF  KETTELER'S  "  THEORETISCHE  OPTIK." 

[American  Journal  of  Science,  ser.  3,  vol.  xxxi.  pp.  62-67,  Jan.  1886.] 

Velocity  of  Light  in  Air  and  Refracting  Media. 

Astrononomical  Papers  prepared  for  the  use  of  the  American  Ephemeris  and 

Nautical  Almanac,  vol.  II.  parts  3  and  4,*  Washington,  1885. 

PEOFESSOK  NEWCOMB  obtains  as  the  final  result  of  his  experiments 
at  Washington  299,860  ±30  kilometers  per  second  for  the  velocity  of 

light  in  vacuo.  Professor  MICHELSON'S  entirely  independent  experi- 
ments at  Cleveland  give  substantially  the  same  result  (299,853  ±60) 

His  former  experiments  at  the  Naval  Academy,  after  correction  of 
two  small  errors  which  he  now  reports,  give  299,910  +  50.  All  these 

experiments  were  made  with  the  revolving  mirror,  but  the  arrange- 
ments of  the  two  experimenters  were  in  other  respects  radically 

different.  The  first  of  these  values  of  the  velocity  of  light  with 

Nyren's  value  of  the  constant  of  aberration  (20"'492)  gives  149*60  for 
the  distance  of  the  sun  in  millions  of  kilometers.  On  acount  of  the 

recent  announcement  by  Messrs.  Young  and  Forbes  of  a  difference 
of  about  two  per  cent,  in  the  velocities  of  red  and  blue  light, 
especial  attention  was  paid  to  this  point  by  both  experimenters, 
without  finding  the  least  indication  of  any  difference.  In  Professor 

Newcomb's  experiments,  a  difference  of  only  one  thousandth  in  these 
velocities  would  have  produced  a  well-marked  iridescence  on  the 
edges  of  the  return  image  of  the  slit  formed  by  reflection  from  the 
revolving  mirror.  No  trace  of  such  iridescence  could  ever  be  seen. 
Professor  Michelson  made  an  experiment,  in  which  a  red  glass  covered 

one-half  the  slit.  The  two  halves  of  the  image — the  upper  white, 
the  lower  red — were  exactly  in  line. 

Since  Maxwell's  electromagnetic  theory  of  light  makes  the  velocity 
of  light  in  air  equal  to  the  ratio  of  the  electromagnetic  and 

*[Part  3,  "Measures  of  the  Velocity  of  Light,"  S.  Newcomb;  part  4,  "Supple- 
mentary  Measures  of  the  Velocities  of  white  and  colored  Light  in  air,  water, 

and  carbon  disulphide,"  A.  A.  Michelson.] 
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electrostatic  units  of  electricity,  it  will  be  interesting  to  compare 
some  recent  determinations  of  this  ratio.  These  we  give  in  the 
following  table.  Since  the  determinations  are  affected  by  any  error 
in  the  standard  of  resistance,  we  have  corrected  the  results,  first,  on 

the  supposition  that  the  B.  A.  ohm  =  *987  true  ohms  (Lord  Rayleigh's 
result),  and  secondly,  on  the  supposition  that  the  B. A.  ohm  =  '989  true 
ohms,  which  is  essentially  assuming  that  the  legal  ohm  represents  the 
true  value. 

Ratio  of  Electromagnetic  and  Electrostatic  units  of  Electricity  in  millions  of 
meters  and  seconds. 

Date.  As  published.       B.  A.  ohm  =  '987.     B.A.  ohm  =  '989. 

Ayrton  &  Perry,*  1878  298'0  296'1  296'4 
Hockin.t  1879  298  "8  296  "9  297 '2 
Shida,  *  1880  299 '5  295 '6  296  "2 

Exner,§  1882  30M  (?)  291'7(?)  292'3(?) 
J.  J.  Thomson,  ||  1883  296 '3  296  "3  296 '9 
Klemen£i&,U  1884  301'88(?)  301'88(?)  302*48  (?) 

These  numbers  are  to  be  compared  with  the  velocity  of  light  in  air,  in 
millions  of  meters  per  second,  for  which  Professor  Newcomb  gives 

299*778.  Of  the  electrical  determinations,  that  of  J.  J.  Thomson 
appears  by  far  the  most  worthy  of  confidence.  That  of  Klemencic— 
the  only  one  as  great  as  the  velocity  of  light — was  obtained  by  the 
use  of  a  condenser  with  glass, — a  method  which  would  presumably 

give  too  great  a  ratio.  Exner's  value  is  obtained  from  the  mean  of 
three  determinations,  one  of  which  differed  from  the  others  by  about 
three  per  cent.  If  we  reject  this  discordant  determination,  the  mean 
of  the  other  two  would  give  when  corrected  for  resistance  2944  and 

295'0.  If  we  set  aside  the  determinations  of  Exner  and  Klemenc'ic', 
the  remaining  four,  which  represent  three  different  methods,  are  very 
accordant,  the  mean  being  nearly  identical  with  the  result  of  J.  J. 
Thomson,  and  about  one  per  cent,  less  than  the  velocity  of  light. 

Professor  Michelson's  experiments  on  the  velocity  of  light  in  carbon 
disulphide  afford  an  interesting  illustration  of  the  difference  between 

the  velocity  of  waves  and  the  velocity  of  groups  of  waves — a  subject 
which  is  treated  at  length  in  an  appendix  to  the  second  volume  of 

Lord  Rayleigh's  Theory  of  Sound.  If  we  write  V  for  the  velocity 
of  waves,  U  for  that  of  a  group  of  waves,  L  for  the  wave-length,  and 
T  for  the  period  of  vibration, 

L 

"T' 

For  purposes  of  numerical  calculation,  it  will  be  convenient  to 

transform  these  formulae  by  the  use  of  X  for  the  wave-length  in 

*  Phil.  Mag.,  (5),  vol.  vii,  p.  277.       t  Report  Brit.  Assoc.,  1879,  p.  285. 
%Phil.  Mag.,  (5),  vol.  x,  p.  431.          § Sitzungsberichte  Wien.  Akad.,  vol.  Ixxxvi,  p.  106. 
\\PhU.  Trans.,  vol.  clxxiv,  p.  707.     IF Sitzungsberichte  Wien.  Akad.,  vol.  Ixxxix,  p.  298. 
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vacuo,  n  for  the  index  of  refraction  of  the  medium  considered,  and  k 
for  the  velocity  of  light  in  vacuo,  which  we  shall  regard  as  constant, 
in  accordance  with  general  usage.  By  substitution  of  these  letters  we 
easily  obtain 

k__  k_d(n\~l) 
V  =  U~=  d(X-i)  ' 

The  data  for  the  calculation  of  these  quantities  for  carbon  disulphide 
are  given  by  Verdet  ( Annales  de  Ghimie  et  de  Physique,  (3),  vol.  Ixix, 
p.  470).  They  give 

for  the  line  D,  &/V  =  1-624,   &/U  =  1-722, 

for  the  line  E,  &/V  =  1-637,  k/U=  1-767. 

The  quotient  of  the  velocity  in  vacuo  divided  by  the  velocity  in 

carbon  disulphide,  according  to  Professor  Michelson's  experiments 
with  the  light  of  an  arc  lamp,  is  1*76  +  '02,  which  agrees  very  well 
with  kfU.  Another  theory,  which  would  make  the  velocity  observed 

in  such  experiments  V2/U  (Nature,  vol.  xxv,  p.  52),  receives  no 
countenance  from  these  experiments.  The  value  of  MJ/V2  would 

be  about  1'53.  Some  may  think  that  the  experiments  on  water  point 
in  a  different  direction.  Taking  our  data  from  Beer's  Einleitung  in 
die  hohere  Optik,  1853,  p.  411,  we  get 

forD,  &/V  =  1-334,  fc/U=  1-352,  MJ/V2  =  1-316, 

forE,  Jfe/V  =  1-336,  &/U=  1-359,  MJ/V8  =  1-313. 
The  number  obtained  by  experiment  was  1,330,  which  agrees  better 

with  &/V,  or  even  with  MJ/V2,  than  with  &/U,  but  the  differences  are 
here  too  small  to  have  much  significance. 

Theoretische    Optik,    gegrtindet    auf    das    Bessel-Sellmeier'sche 
Princip,  zugleich  mit  den  experimentellen  Belegen. 

Von  Dr.  E.  KETTELER,  Professor  an  der  Universitat  in   Bonn.     Viewig 
und  Sohn.     Braunschweig,   1885. 

The  principle  of  Sellmeier,  here  referred  to,  relates  to  vibrations  of 
ponderable  particles  excited  by  the  etherial  vibrations  of  light,  and  to 
the  reaction  of  the  former  upon  the  latter.  The  name  of  Bessel  is 
added  on  account  of  his  previous  solution  of  a  somewhat  analogous 

problem  relating  to  the  pendulum.  The  object  of  this  work  is  "to 
treat  theoretical  optics  in  a  complete  and  uniform  manner  on  the  new 
foundation  of  the  simultaneous  vibration  of  etherial  and  ponderable 
particles,  and  to  substitute  a  consistent  and  systematic  new  structure 

for  the  present  conglomerate  of  more  or  less  disconnected  principles." 
Such  a  work  demands  a  critical  examination,  which  should  not  be 
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undertaken  from  any  narrow  point  of  view.  Any  faults  of  detail  will 
be  readily  forgiven,  if  the  author  shall  give  the  theory  of  optics 
the  TTOU  (rru)  which  it  has  sought  so  long  in  vain.  We  may  add  that 
if  this  effort  shall  not  be  judged  successful  by  the  scientific  world, 
the  author  will  at  least  have  the  satisfaction  of  being  associated  in  his 
failure  with  many  of  the  most  distinguished  names  in  mathematical 

physics. 
We  have  sought  to  test  the  proposed  theory  with  respect  to  that 

law  of  optics  which  seems  most  conspicuous  in  its  definite  mathe- 
matical form,  and  in  the  rigor  of  the  experimental  verifications  to 

which  it  has  been  subjected,  as  well  as  in  the  magnificent  develop- 
ments to  which  it  has  given  rise :  the  law  of  double  refraction  due  to 

Huyghens  and  Fresnel,  and  geometrically  illustrated  by  the  wave- 
surface  of  the  latter.  We  cannot  find  that  the  law  of  Fresnel  is 

proved  at  all  in  this  treatise.  We  find  on  the  contrary,  that  a  law  is 

deduced  which  is  different  from  Fresnel's,  and  inconsistent  with  it. 
We  do  not  refer  to  anything  relating  to  the  direction  of  vibration  of 

the  rays  in  a  crystal,  which  is  a  point  not  touched  by  the  experi- 
mental verifications  to  which  we  have  alluded.  We  shall  confine 

our  comparison  to  those  equations  from  which  the  direction  of 
vibration  has  been  eliminated,  and  which  therefore  represent  relations 
subject  to  experimental  control.  For  this  purpose  equation  (13)  on 
page  299  is  suitable.  It  reads 

u2  v2  w2      _0 

nx,  nyy  nz  being  the  principal  indices  of  refraction.  This  the  author 
calls  the  equation  of  the  wave-surface  or  surface  of  ray-velocities. 

It  has  the  form  of  the  equation  of  Fresnel's  wave-surface,  expressed 
in  terms  of  the  direction-cosines  and  reciprocal  of  the  radius  vector, 
and  if  u,  v,  w  are  the  direction-cosines  of  the  ray,  and  n  the  velocity 
of  light  in  vacuo  divided  by  the  so-called  ray-velocity  in  the  crystal 

the  equation  will  express  Fresnel's  law.  But  it  is  impossible  to  give 
these  meanings  to  u,  v,  w  and  n.  They  are  introduced  into  the 
discussion  in  the  expression  for  the  vibrations  (p.  295),  viz., 

t 

The  form  of  this  equation  shows  that  u,  v,  w  are  proportional  to  the 
direction-cosines  of  the  wave-normal,  and  as  the  relation  u2-\-v2+w2  =  1 
is  afterwards  used,  they  must  be  the  direction-cosines  of  the  wave- 
normal.  They  cannot  possibly  denote  the  direction-cosines  of  the  ray, 
except  in  the  particular  case  in  which  the  ray  and  wave-normal 
coincide.  Again,  from  the  form  of  this  equation,  \/n  must  be  the 
wave-length  in  the  crystal,  and  if  X  here  as  elsewhere  in  the  book 
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(see  p.  25)  denotes  the  wave-length  in  vacuo  of  light  of  the  period 
considered,  which  we  doubt  not  is  the  intention  of  the  author,  n  must 

be  the  wave-length  in  vacuo  divided  by  the  wave-length  in  the 
crystal,  i.e.,  the  velocity  of  light  in  vacuo  divided  by  the  wave-velocity 
in  the  crystal.  With  these  definitions  of  u,  v,  w,  and  n,  equation  (13) 

expresses  a  law  which  is  different  from  Fresnel's.  Applied  to  the 
simple  case  of  a  uniaxial  crystal,  it  makes  the  relation  between  the 

wave- velocity  of  the  extraordinary  ray  and  the  angle  of  the  wave- 
normal  with  the  principal  axis  the  same  as  that  of  the  radius  vector 

and  the  angle  in  an  ellipse.  The  law  of  Huyghens  and  Fresnel  makes 

the  reciprocal  of  the  wave-velocity  stand  in  this  relation. 
The  law  which  our  author  has  deduced  has  come  up  again  and 

again  in  the  history  of  theoretical  optics.  Professor  Stokes  (Report 
of  the  British  Assoc.,  1862,  part  i,  p.  269)  and  Lord  Rayleigh  (Phil. 
Mag.,  (4),  vol.  xli,  p.  525)  have  both  raised  the  question  whether 
Huyghens  and  Fresnel  might  not  have  been  wrong,  and  it  might  not 

be  the  wave-velocity  and  not  its  reciprocal  which  is  represented  by 
the  radius  vector  in  an  ellipse.  The  difference  is  not  very  great,  for 
if  we  lay  off  on  the  radii  vectores  of  an  ellipse  distances  inversely 
proportional  to  their  lengths,  the  resultant  figure  will  have  an  oval 
form  approaching  that  of  an  ellipse  when  the  eccentricity  of  the 
original  ellipse  is  small.  Rankine  appears  to  have  thought  that  the 
difference  might  be  neglected  (see  Phil.  Mag.,  (4),  vol.  i,  pp.  444,  445) 

at  least  he  claims  that  his  theory  leads  to  Fresnel's  law,  while  really 
it  would  give  the  same  law  which  our  author  has  found.  (Concerning 

Rankine's  "splendid  failure,"  and  the  whole  history  of  the  subject,  see 
Sir  Wm.  Thomson's  Lectures  on  Molecular  Dynamics  at  the  Johns 
Hopkins  University,  chap,  xx.)  Professor  Stokes  undertook  experi- 

ments to  decide  the  question.  His  result,  corroborated  by  Glazebrook 
(Pro.  Roy.  Soc.,  vol.  xx,  p.  443;  Phil.  Trans.,  vol.  clxxi,  p.  421),  was 
that  Huyghens  and  Fresnel  were  right  and  that  the  other  law  was 
wrong. 

To  return  to  our  author,  we  have  no  doubt  from  the  context  that 

he  regards  u,  v,  w,  and  n  as  relating  to  the  ray  and  not  to  the  wave- 
normal.  We  suppose  that  that  is  the  meaning  of  his  remark  that 
the  expression  for  the  vibrations  (quoted  above)  is  to  be  referred  to 
the  direction  of  the  ray.  It  seems  rather  hard  not  to  allow  a  writer 
the  privilege  of  defining  his  own  terms.  Yet  the  reader  will  admit 
that  when  the  vibrations  have  been  expressed  in  the  above  form  an 
inexorable  necessity  fixes  the  significance  of  the  direction  determined 
by  u,  v,  w,  and  leaves  nothing  in  that  respect  to  the  choice  of  the 
author. 

The  historical  sketches  of  the  development  of  ideas  in  the  theory 
of  optics,  enriched  by  very  numerous  references,  will  be  useful  to 
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the  student.  An  exception,  however,  must  be  made  with  respect  to 
the  statements  concerning  the  electromagnetic  theory  of  light.  We 
are  told  (p.  450)  that  the  English  theory,  founded  by  Maxwell  and 
represented  by  Glazebrook  and  Fitzgerald,  makes  the  plane  of  polari- 

zation coincide  with  the  plane  of  vibration,  while  Lorentz,  on  the 

basis  of  Helmholtz's  equations  comes  to  the  conclusion  that  these 
planes  are  at  right  angles.  Since  all  these  writers  make  the  electrical 
displacement  perpendicular  to  the  plane  of  polarization,  we  can  only 
attribute  this  statement  to  some  confusion  between  the  electrical 

displacement  and  the  magnetic  force  or  "  displacement "  at  right  angles 
to  it.  We  are  also  told  that  Glazebrook's  "  surface-conditions  "  which 
determine  the  intensity  of  reflected  and  refracted  light  are  different 
from  those  of  Lorentz, — a  singular  error  in  view  of  the  fact  that 
Mr.  Glazebrook  (Proc.  Camb.  Phil.  Soc.,  vol.  iv,  p.  166)  expressly 
states  that  his  results  are  the  same  as  those  of  Lorentz,  Fitzgerald, 
and  J.  J.  Thomson.  We  have  spent  much  fruitless  labor  in  trying  to 
discover  where  and  how  the  expressions  were  obtained  which  are 
attributed  to  Glazebrook,  but  in  which  the  notation  has  been  altered. 

They  ought  to  come  from  Glazebrook's  equations  (24)-(27)  (loc.  tit.), 
but  these  appear  identical  with  Lorentz's  equations  (58)-(61)  (Zeit- 
schrift  f.  Math.  u.  Phys.,  vol.  xxii,  p.  27).  They  might  be  obtained  by 
interchanging  the  expressions  for  vibrations  in  the  plane  of  incidence 
and  at  right  angles  to  it,  with  two  changes  of  sign. 

The  reader  must  be  especially  cautioned  concerning  the  statements 
and  implications  of  what  has  not  been  done  in  the  electromagnetic 
theory.  These  are  such  as  to  suggest  the  question  whether  the  author 
has  taken  the  trouble  to  read  the  titles  of  the  papers  which  have 
been  published.  We  refer  especially  to  what  is  said  on  pages  248, 
249  concerning  absorption,  dispersion,  and  the  magnetic  rotation  of 
the  plane  of  polarization. 

In  the  Experimental  Part,  with  which  the  treatise  closes,  we  have 
a  comparison  of  formulae  with  the  results  of  experiments  by  the 
author  and  others.  The  author  has  been  particularly  successful  in 
the  formula  for  dispersion.  In  the  case  of  quartz  (p.  545),  the 
formula  (with  four  constants)  represents  the  results  of  experiment  in 

a  manner  entirely  satisfactory  through  the  entire  range  of  wave- 
length from  2*14  to  0*214.  Those  who  may  not  agree  with  the 

author's  theoretical  views  will  nevertheless  be  glad  to  see  the  results 
of  experiment  brought  together,  and,  so  far  as  may  be,  represented  by 
formulae. 



XVII. 

ON  THE  VELOCITY  OF  LIGHT  AS  DETERMINED  BY 

FOUCAULT'S   REVOLVING  MIRROR. 

[Nature,  vol.  xxxm.  p.  582,  April  22,  1886.] 

IT  has  been  shown  by  Lord  Rayleigh  and  others  that  the  velocity 
with  which  a  group  of  waves  is  propagated  in  any  medium  may 

be  calculated  by  the  formula 

dlogV^ 
dlog\ 

where  V  is  the  wave-velocity,  and  X  the  wave-length.  It  has  also 
been  observed  by  Lord  Rayleigh  that  the  fronts  of  the  waves  reflected 

by  the  revolving  mirror  in  Foucault's  experiment  are  inclined  one  to 
another,  and  in  consequence  must  rotate  with  an  angular  velocity 

dV 

d\a>
 

where  a  is  the  angle  between  two  successive  wave-planes  of  similar 
phase.  When  dV/d\  is  positive  (the  usual  case),  the  direction  of 

rotation  is  such  that  the  following  wave-plane  rotates  towards  the 
position  of  the  preceding  (see  Nature,  vol.  xxv.  p.  52). 

But  I  am  not  aware  that  attention  has  been  called  to  the  important 

fact,  that  while  the  individual  wave  rotates  the  wave-normal  of  the 
group  remains  unchanged,  or,  in  other  words,  that  if  we  fix  our 
attention  on  a  point  moving  with  the  group,  therefore  with  the 

velocity  U,  the  successive  wave-planes,  as  they  pass  through  that 
point,  have  all  the  same  orientation.  This  follows  immediately  from 
the  two  formulae  quoted  above.  For  the  interval  of  time  between 

the  arrival  of  two  successive  wave-planes  of  similar  phase  at  the 

moving  point  is  evidently  X/(  V—  U),  which  reduces  by  the  first  for- 
mula to  d\/dV.  In  this  time  the  second  of  the  wave-planes,  having 

the  angular  velocity  adV/d\,  will  rotate  through  an  angle  a  towards 

the  position  of  the  first  wave-plane.  But  a  is  the  angle  between  the 
two  planes.  The  second  plane,  therefore,  in  passing  the  moving  point, 
will  have  exactly  the  same  orientation  which  the  first  had.  To  get  a 
picture  of  the  phenomenon,  we  may  imagine  that  we  are  able  to  see 

a  few  inches  of  the  top  of  a  moving  carriage- wheel.  The  individual 
spokes  rotate,  while  the  group  maintains  a  vertical  direction. 
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This  consideration  greatly  simplifies  the  theory  of  Foucault's 
experiment,  and  makes  it  evident,  I  think,  that  the  results  of  all 
such  experiments  depend  upon  the  value  of  U,  and  not  upon  that  of  V. 

The  discussion  of  the  experiment  by  following  a  single  wave,  and 
taking  account  of  its  rotation,  is  a  complicated  process,  and  one  in 
which  it  is  very  easy  to  leave  out  of  account  some  of  the  elements  of 
the  problem.  The  principal  objection  to  it,  however,  is  its  unreality. 
If  the  dispersion  is  considerable,  no  wave  which  leaves  the  revolving 
mirror  will  return  to  it.  The  individual  disappears,  only  the  group 
has  permanence.  Prof.  Schuster,  in  his  communication  of  March  11 
(p.  439),  has  nevertheless  obtained  by  this  method,  as  the  quantity 

determined  by  "  the  experiments  hitherto  performed,"  F2/(2  V—  U), 
which,  as  he  observes,  is  nearly  equal  to  U.  He  would,  I  think, 
have  obtained  U  precisely,  if  for  the  angle  between  two  successive 

wave-planes  of  similar  phase,  instead  of  2wA/  V,  he  had  used  the  more 
exact  value  2w\/  U. 

By  the  kindness  of  Prof.  Michelson,  I  am  informed  with  respect  to 
his  recent  experiments  on  the  velocity  of  light  in  bisulphide  of  carbon 
that  he  would  be  inclined  to  place  the  maximum  brilliancy  of  the 
light  between  the  spectral  lines  D  and  E,  but  nearer  to  D.  If  we 
take  the  mean  between  D  and  E,  we  have 

U) 

' 

K  denoting  the  velocity  in  vacuo  (see  p.  249  of  this  volume).  The 

number  observed  was  1*76,  "  with  an  uncertainty  of  two  units  in  the 
second  place  of  decimals."  This  agrees  best  with  the  first  formula. 
The  same  would  be  true  if  we  used  values  nearer  to  the  line  D. 

J.  WILLARD  GIBBS. 

New  Haven,  Connecticut,  April  1.     [1886.] 



XVIII. 

VELOCITY  OF  PROPAGATION  OF  ELECTROSTATIC  FORCE. 

[Nature,  vol.  Lin.  p.  509,  April  2,  1896.] 

As  we  may  have  to  wait  some  time  for  the  experimental  solution 

of  Lord  Kelvin's  very  instructive  and  suggestive  problem  concerning 
two  pairs  of  spheres  charged  with  electricity  (see  Nature  of  February 
6,  p.  316),  it  may  be  interesting  to  see  what  the  solution  would  be 
from  the  standpoint  of  existing  electrical  theories. 

In  applying  Maxwell's  theory  to  the  problem  it  will  be  convenient 
to  suppose  the  dimensions  of  both  pairs  of  spheres  very  small  in 
comparison  with  the  unit  of  length,  and  the  distance  between  the 
two  pairs  very  great  in  comparison  with  the  same  unit.  These 
conditions,  which  greatly  simplify  the  equations  which  represent  the 
phenomena,  will  hardly  be  regarded  as  affecting  the  essential  nature 
of  the  question  proposed. 

Let  us  first  consider  what  would  happen  on  the  discharge  of  (A,  B), 
if  the  system  (c,  d)  were  absent. 

Let  ?7i/0  be  the  initial  value  of  the  moment  of  the  charge  of  the 
system  (A,  B),  (this  term  being  used  in  a  sense  analogous  to  that 
in  which  we  speak  of  the  moment  of  a  magnet),  and  m  the  value 
of  the  moment  at  any  instant.  If  we  set 

m  =  F(t),  (1) 

and    suppose   the    discharge   to   commence    when   £  =  0,   and   to    be 
completed  when  t  =  h,  we  shall  have 

F(«)  =  m0     when     £<0,  (2) 
and  F(Q  =  0       when     t>k,  (3) 

Let  us  set  the  origin  of  coordinates  at  the  centre  of  the  system 
(A,  B),  and  the  axis  of  x  in  the  direction  of  the  centre  of  the 

positively  charged  sphere.  A  unit  vector  in  this  direction  we  shall 
call  i,  and  the  vector  from  the  origin  to  the  point  considered  p. 
At  any  point  outside  of  a  sphere  of  unit  radius  about  the  origin, 
the  electrical  displacement  ($))  is  given  by  the  vector  equation 

/  \  (/  ™ "" *  O  •      /  I    v«  \    J?  I 
\  /  J       '  \        / 

where  F  denotes  the  function  determined  by  equation  (1),  F'  and  F" 
its  derivatives,  and  c  the  ratio  of  electrostatic   and   electromagnetic 



256  PROPAGATION  OF  ELECTROSTATIC  FORCE. 

units  of  electricity,  or  the  reciprocal  of  the  velocity  of  light.     For 
this  satisfies  the  general  equation 

-V2£  =  c2d2£V<ft2,  (5) 

as  well  as  the  so-called  "equation  of  continuity,"  and  also   satisfies 
the  special  conditions  that  when  t  <  0 

outside  of  the  unit  sphere,  and  that  at  any  time  at  the  surface  of 

this  sphere  4^  =  m^Xf)  _  ̂  

if  we  consider  the  terms  containing  the  factor  c  as  negligible,  when 

not  compensated  by  large  values  of  r.  That  equation  (4)  satisfies 
the  general  conditions  is  easily  verified,  if  we  set 

u  =  r-l¥(t-cr),  (6) 
and  observe  that 

-?%«<**<*/<&*,  (7) 
and  that  the  three  components  of  $)  are  given  by  the  equations 

4<7rg  =  d2u/dxd,y  (8) 
4-Tr/t  =  d2u/dxdz 

Equation  (4)  shows  that  the  changes  of  the  electrical  displacement 
are  represented  by  three  systems  of  spherical  waves,  of  forms 
determined  by  the  rapidity  of  the  discharge  of  the  system  (A,  B), 
which  expand  with  the  velocity  of  light  with  amplitudes  diminishing 

as  r~3,  r~2,  and  r~l,  respectively.  Outside  of  these  waves,  the  electrical 
displacement  is  unchanged,  inside  of  them  it  is  zero. 

If  we  write  (with  Maxwell)  —dtyt/dt  for  the  force  of  electrodynamic 
induction  at  any  point,  and  suppose  its  rectangular  components 

calculated  from  those  of  —  d2<£)/dt2  by  the  formula  used  in  calculating 

the  potential  of  a  mass  from  its  density,  we  shall  have  by  Poisson's theorem 

or  by  (5),  V2(d%/dt)=  -47rc-2V2£), 

whence  d%/dt=  -47rc-2£).  (9) 
From  this,  with  (4),  and  the  general  equation 

we  see  that  during  the  discharge  of  the  system  (A,  B)  the  electrostatic 

force  —  V  V  vanishes  throughout  all  space,  while  its  place  is  taken  by 

a  precisely  equal  electrodynamic  force  —dtyi/dt. 
This  electrodynamic  force  remains  unchanged  at  every  point  until 

the  passage  of  the  waves,  after  which  the  electrostatic  force,  the 
electrodynamic  force,  and  the  displacement,  have  the  permanent  value 
zero. 
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If  we  write  Curl  for  the  differentiating  vector  operator  which 
Maxwell  calls  by  that  name,  equations  (8)  may  be  put  in  the  form 

47r$)  =  Curl  Curl  (iu), 

whence  dto/dt  =  (4nr)  ~  l  Curl  Curl  (i  du/dt). 
From  dl&jdt  we  may  calculate  the  magnetic  induction  33  by  an 

operation  which  is  the  inverse  of  (47r)~1Curl.  We  have  therefore 
33  =  Curl  (i  du/dt), 

or  $=[r-*F'(t-cr)  +  cr-2F"(t-cr)](yk-zj). 
The  magnetic  induction  is  therefore  zero  except  in  the  waves. 

Equations  (4)  and  (9)  give  the  value  of  dtyt/dt  as  function  of  t  and 

T.  By  integration,  we  may  find  the  value  of  31,  Maxwell's  "vector 
potential."  This  will  be  of  the  form  of  the  second  member  of  (4) 
multiplied  by  —  c~2,  if  we  should  give  each  F  one  accent  less,  and  for 
an  unaccented  F  should  write  F1,  to  denote  the  primitive  of  F  which 
vanishes  for  the  argument  oc  . 

That  which  seems  most  worthy  of  notice  is  that  although  simul- 
taneously with  the  discharge  of  the  system  (A,  B)  the  values  of  what 

we  call  the  electric  potential,  the  electrodynamic  force  of  induction, 

and  the  "  vector  potential,"  are  changed  throughout  all  space,  this  does 
not  appear  connected  with  any  physical  change  outside  of  the  waves, 
which  advance  with  the  velocity  of  light. 

If  we  now  suppose  that  there  is  a  second  pair  of  charged  spheres 
(c,  d),  as  in  the  original  problem,  the  discharge  of  this  pair  will 
evidently  occur  when  the  relaxation  of  electrical  displacement  reaches 

it.  The  time  between  the  discharges  is,  therefore,  by  Maxwell's 
theory,  the  time  required  for  light  to  pass  from  one  pair  to  the  other. 

It  may  also  be  interesting  to  observe  that  in  the  axis  of  x,  on  both 

sides  of  the  origin,  xp  =  r^i,  and  equation  (4)  reduces  to 

Here,  therefore,  the  oscillations  are  normal  to  the  wave-surfaces. 
This  might  seem  to  imply  that  plane  waves  of  normal  oscillations 
may  be  propagated,  since  we  are  accustomed  to  regard  a  part  of  an 
infinite  sphere  as  equivalent  to  a  part  of  an  infinite  plane.  Of  course, 

such  a  result  would  be  contrary  to  Maxwell's  theory.  The  paradox 
is  explained  if  we  consider  that  the  parts  of  the  wave-motion, 

expressed  by  F  and  F',  diminish  more  rapidly  than  those  expressed  by 
F",  so  that  it  is  unsafe  to  take  the  displacements  in  the  axis  of  x  as 
approximately  representing  those  at  a  moderate  distance  from  it.  In 
fact,  if  we  consider  the  displacements  not  merely  in  the  axis  of  x,  but 
within  a  cylinder  about  that  axis,  and  follow  the  waves  to  an  infinite 
distance  from  the  origin,  we  find  no  approximation  to  what  is  usually 
meant  by  plane  waves  with  normal  oscillations. 

J.  WILLARD  GIBBS. 

New  Haven,  Conn.,  March  12  [1896]. 
G.  II.  R 



XIX. 

FOURIER'S  SERIES. 

[Nature,  vol.  LIX,  p.  200,  Dec.  29,  1898.] 

I  SHOULD  like  to  add  a  few  words  concerning  the  subject  of  Prof. 

Michelson's  letter  in  Nature  of  October  6.  In  the  only  reply  which 
I  have  seen  (Nature,  October  13),  the  point  of  view  of  Prof.  Michelson 
is  hardly  considered. 

Let  us  write  fn(%)  for  the  sum  of  the  first  n  terms  of  the  series 

sin  cc  —  \  sin  2x  +  J  sin  3x  —  %  sin  4a?-fetc. 

I  suppose  that  there  is  no  question  concerning  the  form  of  the  curve 
defined  by  any  equation  of  the  form 

2/  =  2/n(a). 

Let  us  call  such  a  curve  Cn.  As  n  increases  without  limit,  the 

curve  approaches  a  limiting  form,  which  may  be  thus  described.  Let 

a  point  move  from  the  origin  in  a  straight  line  at  an  angle  of  45° 
with  the  axis  of  X  to  the  point  (TT,  TT),  thence  vertically  in  a  straight 

line  to  the  point  (TT,  —  TT),  thence  obliquely  in  a  straight  line  to  the 

point  (3-7T,  TT),  etc.  The  broken  line  thus  described  (continued 
indefinitely  forwards  and  backwards)  is  the  limiting  form  of  the 
curve  as  the  number  of  terms  increases  indefinitely.  That  is,  if  any 

small  distance  d  be  first  specified,  a  number  ri  may  be  then  specified, 
such  that  for  every  value  of  n  greater  than  ri,  the  distance  of  any 
point  in  Cn  from  the  broken  line,  and  of  any  point  in  the  broken  line 
from  Cn,  will  be  less  than  the  specified  distance  d. 

But  this  limiting  line  is  not  the  same  as  that  expressed  by  the 

equation  0  =  limit  2/n(a?). 

n=» The  vertical  portions  of  the  broken  line  described  above  are 
wanting  in  the  locus  expressed  by  this  equation,  except  the  points  in 
which  they  intersect  the  axis  of  X.  The  process  indicated  in  the 
last  equation  is  virtually  to  consider  the  intersections  of  Cn  with  fixed 
vertical  transversals,  and  seek  the  limiting  positions  when  n  is 
increased  without  limit.  It  is  not  surprising  that  this  process  does 

not  give  the  vertical  portions  of  the  limiting  curve.  If  we  should 
consider  the  intersections  of  Cn  with  horizontal  transversals,  and 
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seek  the  limits  which  they  approach  when  n  is  increased  indefinitely 
we  should  obtain  the  vertical  portions  of  the  limiting  curve  as  well  as 
•the  oblique  portions. 

It  should  be  observed  that  if  we  take  the  equation 

and  proceed  to  the  limit  for  n  —  oo  ,  we  do  not  necessarily  get  y  —  0  for 
x  —  TT.  We  may  get  that  ratio  by  first  setting  x  =  TT,  and  then  passing 

to  the  limit.  We  may  also  get  y  =  ~L,  X  =  TT,  by  first  setting  y  =  l,  and 
then  passing  to  the  limit.  Now  the  limit  represented  by  the  equation 
of  the  broken  line  described  above  is  not  a  special  or  partial  limit 
relating  solely  to  some  special  method  of  passing  to  the  limit,  but  it 
is  the  complete  limit  embracing  all  sets  of  values  of  x  and  y  which 
can  be  obtained  by  any  process  of  passing  to  the  limit. 

J.  WILLARD  GIBBS. 

New  Haven,  Conn.,  November  29  [1898]. 

[Nature,  vol.  Lix,  p.  606,  April  27,  1899.] 

I  should  like  to  correct  a  careless  error  which  I  made  (Nature, 

December  29,  1898)  in  describing  the  limiting  form  of  the  family  of 
curves  represented  by  the  equation 

y  =  2(  since  —  ~  sin  2cc...  +  —  sin  nx)  (1) 
\  2  ~n  / 

as  a  zigzag  line  consisting  of  alternate  inclined  and  vertical  portions. 
The  inclined  portions  were  correctly  given,  but  the  vertical  portions, 
which  are  bisected  by  the  axis  of  X,  extend  beyond  the  points  where 
they  meet  the  inclined  portions,  their  total  lengths  being  expressed 
by  four  times  the  definite  integral 

f 

Jo 
smu  7   du. 

u 

If  we  call  this  combination  of  inclined  and  vertical  lines  C,  and 

the  graph  of  equation  (1)  On,  and  if  any  finite  distance  d  be  specified, 

and  we  take  for  n  any  number  greater  than  100 /d2,  the  distance  of 
every  point  in  Cn  from  C  is  less  than  d,  and  the  distance  of  every 

point  in  C  from  Cn  is  also  less  than  d.  We  may  therefore  call  C  the 

limit  (or  limiting  form)  of  the  sequence  of  curves  of  which  Cn  is  the 

general  designation. 

But  this  limiting  form  of  the  graphs  of  the  functions  expressed 

by  the  sum  (1)  is  different  from  the  graph  of  the  function  expressed  by 
the  limit  of  that  sum.  In  the  latter  the  vertical  portions  are  wanting, 

except  their  middle  points. 
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I  think  this  distinction  important,  for  (with  exception  of  what 

relates  to  my  unfortunate  blunder  described  above)  whatever  differ- 
ences of  opinion  have  been  expressed  on  this  subject  seem  due,  for  the 

most  part,  to  the  fact  that  some  writers  have  had  in  mind  the  limit 

of  the  graphs,  and  others  the  graph  of  the  limit  of  the  sum.  A  mis- 
understanding on  this  point  is  a  natural  consequence  of  the  usage 

which  allows  us  to  omit  the  word  limit  in  certain  connections,  as 

when  we  speak  of  the  sum  of  an  infinite  series.  In  terms  thus 
abbreviated,  either  of  the  things  which  I  have  sought  to  distinguish 

may  be  called  the  graph  of  the  sum  of  the  infinite  series. 
J.  WILLARD  GIBBS. 

New  Haven,  April  12  [1899]. 



XX. 

RUDOLF  JULIUS   EMANUEL  CLAUSIUS. 

[Proceedings  of  the  American  Academy,  new  series,  vol.  XVI,  pp.  458-465,  1889.] 

RUDOLF  JULIUS  EMANUEL  CLAUSIUS  was  born  at  Coslin  in  Pomer- 

ania,  January  2, 1822.  His  studies,  after  1840,  were  pursued  at  Berlin, 

where  he  became  Privat-docent  in  the  University,  and  Instructor  in 
Physics  in  the  School  of  Artillery.  He  was  Professor  of  Physics 

at  Zurich  in  the  Polytechnicum  (1855-67)  and  in  the  University 
(1857-67),  at  Wiirzburg  (1867-69),  and  finally  at  Bonn  (1869-88), 
where  he  died  on  the  24th  of  August,  1888. 

His  literary  activity  commenced  in  1847,  with  the  publication  of 

a  memoir  in  Crelle's  Journal,  "Ueber  die  Lichtzerstreuung  in  der 
Atmosphare,  und  iiber  die  Intensitat  des  durch  die  Atmosphare 

reflectirten  Sonnenlichts."*  This  was  immediately  followed  by  other 
writings  relating  to  the  same  subject,  two  of  which  were  subsequently 

translated  from  Poggendorff's  Annalen^f  for  Taylor's  Scientific 
Memoirs.  A  treatise  entitled  "  Die  Lichterscheinungen  der  Atmo- 

sphare "  formed  part  of  Grunert's  "  Beitrage  zur  meteorologischen 

Optik." An  entirely  different  subject,  the  elasticity  of  solids,  was  discussed 

in  his  paper  (1849),  "  Ueber  die  Veranderungen,  welche  in  den  bisher 
gebrauchlichen  Formeln  fur  das  Gleichgewicht  und  die  Bewegung  fester 

Korper  durch  neuere  Beobachtungen  nothwendig  geworden  sind."  { 
But  it  was  with  questions  of  quite  another  order  of  magnitude  that 

his  name  was  destined  to  be  associated.  The  fundamental  questions 
concerning  the  relation  of  heat  to  mechanical  effect,  which  had  been 
raised  by  Rumford,  Carnot,  and  others,  to  meet  with  little  response, 
were  now  everywhere  pressing  to  the  front. 

"For  more  than  twelve  years,"  said  Regnault  in  1853,  "I  have 
been  engaged  in  collecting  the  materials  for  the  solution  of  this  ques- 

tion : — Given  a  certain  quantity  of  heat,  what  is,  theoretically,  the 
amount  of  mechanical  effect  which  can  be  obtained  by  applying  the 
heat  to  evaporation,  or  the  expansion  of  elastic  fluids,  in  the  various 

circumstances  which  can  be  realised  in  practice  ? "  §  The  twenty-first 

*  Vol.  xxxiv,  p.  122,  and  vol.  xxxvi,  p.  185.         +  Vol.  Ixxvi,  pp.  161  and  188. 
$  Pogg.  Ann.,  vol.  Ixxvi,  p.  46  (1849).  §  Comptes  Rendus,  vol.  xxxvi,  p.  676. 
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volume  of  the  Memoirs  of  the  Academy  of  Paris,  describing  the  first 
part  of  the  magnificent  series  of  researches  which  the  liberality  of  the 
French  government  enabled  him  to  carry  out  for  the  solution  of  this 
question,  was  published  in  1847.  In  the  same  year  appeared  Helm- 

holtz's  celebrated  memoir,  "Ueber  die  Erhaltung  der  Kraft."  For 
some  years  Joule  had  been  making  those  experiments  which  were 
to  associate  his  name  with  one  of  the  fundamental  laws  of  thermo- 

dynamics and  one  of  the  principal  constants  of  nature.  In  1849  he 
made  that  determination  of  the  mechanical  equivalent  of  heat  by  the 

stirring  of  water  which  for  nearly  thirty  years  remained  the  unques- 
tioned standard.  In  1848  and  1849  Sir  William  Thomson  was  engaged 

in  developing  the  consequences  of  Carnot's  theory  of  the  motive 
power  of  heat,  while  Professor  James  Thomson  in  demonstrating  the 

effect  of  pressure  on  the  freezing  point  of  water  by  a  Carnot's  cycle, 
showed  the  flexibility  and  the  fruitfulness  of  a  mode  of  demonstration 
which  was  to  become  canonical  in  thermodynamics.  Meantime 
Rankine  was  attacking  the  problem  in  his  own  way,  with  one  of 
those  marvellous  creations  of  the  imagination  of  which  it  is  so 
difficult  to  estimate  the  precise  value. 

Such  was  the  state  of  the  question  when  Clausius  published  his 

first  memoir  on  thermodynamics :  "  Ueber  die  bewegende  Kraft  der 
Warme,  und  die  Gesetze,  welche  sich  daraus  flir  die  Warmelehre  selbst 

ableiten  lassen."  * 
This  memoir  marks  an  epoch  in  the  history  of  physics.  If  we  say, 

in  the  words  used  by  Maxwell  some  years  ago,  that  thermodynamics 

is  "a  science  with  secure  foundations,  clear  definitions,  and  distinct 
boundaries,"  t  and  ask  when  those  foundations  were  laid,  those  defini- 

tions fixed,  and  those  boundaries  traced,  there  can  be  but  one  answer. 
Certainly  not  before  the  publication  of  that  memoir.  The  materials 
indeed  existed  for  such  a  science,  as  Clausius  showed  by  constructing 

it  from  such  materials,  substantially,  as  had  for  years  been  the  com- 
mon property  of  physicists.  But  truth  and  error  were  in  a  confusing 

state  of  mixture.  Neither  in  France,  nor  in  Germany,  nor  in  Great 
Britain,  can  we  find  the  answer  to  the  question  quoted  from  Regnault. 
The  case  was  worse  than  this,  for  wrong  answers  were  confidently 
urged  by  the  highest  authorities.  That  question  was  completely 
answered,  on  its  theoretical  side,  in  the  memoir  of  Clausius,  and  the 
science  of  thermodynamics  came  into  existence.  And  as  Maxwell  said 
in  1878,  so  it  might  have  been  said  at  any  time  since  the  publication 
of  that  memoir,  that  the  foundations  of  the  science  were  secure,  its 
definitions  clear,  and  its  boundaries  distinct. 

*  Read  in  the  Berlin  Academy,  February  18,  1850,  and  published  in  the  March  and 

April  numbers  of  Poggendorff" 's  Annalen. 
t  Nature,  vol.  xvii,  p.  257. 
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The  constructive  power  thus  exhibited,  this  ability  to  bring  order 
out  of  confusion,  this  breadth  of  view  which  could  apprehend  one 
truth  without  losing  sight  of  another,  this  nice  discrimination  to 

separate  truth  from  error, — these  are  qualities  which  place  the 
possessor  in  the  first  rank  of  scientific  men. 

In  the  development  of  the  various  consequences  of  the  funda- 
mental propositions  of  thermodynamics,  as  applied  to  all  kinds  of 

physical  phenomena,  Clausius  was  rivalled,  perhaps  surpassed,  in 
activity  and  versatility  by  Sir  William  Thomson.  His  attention, 
indeed,  seems  to  have  been  less  directed  toward  the  development  of 
the  subject  in  extension,  than  toward  the  nature  of  the  molecular 
phenomena  of  which  the  laws  of  thermodynamics  are  the  sensible 
expression.  He  seems  to  have  very  early  felt  the  conviction,  that 
behind  the  second  law  of  thermodynamics,  which  relates  to  the  heat 
absorbed  or  given  out  by  a  body,  and  therefore  capable  of  direct 
measurement,  there  was  another  law  of  similar  form  but  relating  to 
the  quantities  of  heat  (i.e.,  molecular  vis  viva)  absorbed  in  the 
performance  of  work,  external  or  internal. 

This  may  be  made  more  definite,  if  we  express  the  second  law  in 
a  mathematical  form,  as  may  be  done  by  saying  that  in  any  reversible 
cyclic  process  which  a  body  may  undergo 

•dQ 

where  dQ  is  an  elementary  portion  of  the  heat  imparted  to  the  body, 
and  t  the  absolute  temperature  of  the  body,  or  the  portion  of  it  which 
receives  the  heat.  Or,  without  limitation  to  cyclic  processes,  we 
may  say  that  for  any  reversible  infinitesimal  change, 

where  8  denotes  a  certain  function  of  the  state  of  the  body,  called  by 
Clausius  the  entropy.  The  element  of  heat  may  evidently  be  divided 

into  two  parts,  of  which  one  represents  the  increase  of  molecular 
vis  viva  in  the  body,  and  the  other  the  work  done  against  forces, 
either  external  or  internal.  If  we  call  these  parts  dH  and  dQw,  we 
have 

Now  the  proposition  of  which  Clausius  felt  so  strong  a  conviction 
was  that  for  reversible  cyclic  processes 

«fc'=°'
 

and  that  for  any  reversible  infinitesimal  change 

fcC
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where   Z  is   another   function   of  the  state  of  the  body,   which   he 
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called  the  diagregation,  and  regarded  as  determined  by  the  positions 

of  the  elementary  parts  of  the  body  without  reference  to  their  veloci- 
ties. In  this  respect  it  differed  from  the  entropy.  An  immediate 

consequence  of  these  relations  is  that  for  any  reversible  cyclic  process 

1?=' 

and  therefore  that  H,  the  molecular  vis  viva  of  the  body,  must  be 
a  function  of  the  temperature  alone.  This  important  result  was 

expressed  by  Clausius  in  the  following  words  :  "  Die  Menge  der  in 
einem  Korper  wirklich  vorhandenen  Warme  ist  nur  von  seiner 
Temperatur  und  nicht  von  der  Anordnung  seiner  Bestandtheile 

abhangig." 
To  return  to  the  equation 

=  tdZ. 

This  expresses  that  heat  tends  to  increase  the  disgregation,  and  that 

the  intensity  of  this  tendency  is  proportional  to  the  absolute  tempera- 
ture. In  the  words  of  Clausius:  "Die  mechanische  Arbeit,  welche 

die  Warme  bei  irgend  einer  Anordnungsanderung  eines  Korpers  thun 
kann,  ist  proportional  der  absoluten  Temperatur,  bei  welcher  die 

Aenderung  geschieht." 
Such  in  brief  and  in  part  were  the  views  advanced  by  Clausius  in 

1862,  in  his  memoir,  "Ueber  die  Anwendung  des  Satzes  von  der 
Aequivalenz  der  Verwandlungen  auf  die  innere  Arbeit."  i  Although 
they  were  advanced  rather  as  a  hypothesis  than  as  anything  for 
which  he  could  give  a  formal  proof,  he  seems  to  have  little  doubt  of 
their  correctness,  and  his  confidence  seems  to  have  increased  with  the 
course  of  time. 

The  substantial  correctness  of  these  views  cannot  now  be  called  in 

question.  The  researches  especially  of  Maxwell  and  Boltzmann  have 
shown  that  the  molecular  via  viva  is  proportional  to  the  absolute 
temperature,  and  Boltzmann  has  even  been  able  to  determine  the 
precise  nature  of  the  functions  which  Clausius  called  entropy  and 
disgregation.  t  But  the  anticipation,  to  a  certain  extent,  at  so  early  a 
period  in  the  history  of  the  subject,  of  the  ultimate  form  which  the 
theory  was  to  take,  shows  a  remarkable  insight,  which  is  by  no 
means  to  be  lightly  esteemed  on  account  of  the  acknowledged  want  of 
a  rigorous  demonstration.  The  propositions,  indeed,  as  relating  to 
quantities  which  escape  direct  measurement,  belong  to  molecular 

science,  and  seem  to  require  for  their  complete*  and  satisfactory 
demonstration  a  considerable  development  of  that  science.  This 

*  Pogg.  Ann.,  vol.  cxvi,  p.  73.     See  also  vol.  oxxvii,  p.  477  (1866). 
•\Sitzungaberichte  Wien.  Akad.,  vol.  Ixiii,  p.  728  (1871). 
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development  naturally  commenced  with  the  simplest  case  involving 

the  characteristic  problems  of  the  subject, — the  case,  namely,  of  gases. 
The  origin  of  the  kinetic  theory  of  gases  is  lost  in  remote  antiquity, 

and  its  completion  the  most  sanguine  cannot  hope  to  see.  But  a 
single  generation  has  seen  it  advance  from  the  stage  of  vague  sur- 

mises to  an  extensive  and  well  established  body  of  doctrine.  This  is 
mainly  the  work  of  three  men,  Clausius,  Maxwell,  and  Boltzmann,  of 
whom  Clausius  was  the  earliest  in  the  field,  and  has  been  called  by 

Maxwell  the  principal  founder  of  the  science.*  We  may  regard  his 

paper  (1857),  "Ueber  die  Art  der  Bewegung,  welche  wir  Warme 

nennen,"t  as  marking  his  definite  entrance  into  this  field,  although 
many  points  were  incidentally  discussed  in  earlier  papers. 

This  was  soon  followed  by  his  papers,  "  Ueber  die  mittlere  Lange 
der  Wege,  welche  bei  der  Molecularbewegung  gasformiger  Korper 

von  den  einzelnen  Moleciilen  zuriickgelegt  werden,"  J  and  "  Ueber  die 
Warmeleitung  gasformiger  Korper."§ 

A  very  valuable  contribution  to  molecular  science  is  the  conception 

of  the  virial,  defined  in  his  paper  (1870),  "Ueber  einen  auf  die  Warme 

anwendbaren  Satz,"||  where  he  shows  that  in  any  case  of  stationary 
motion  the  mean  vis  viva  of  the  system  is  equal  to  its  virial. 

In  the  mean  time,  Maxwell  and  Boltzmann  had  entered  the  field. 

Maxwell's  first  paper,  "  On  the  Motions  and  Collisions  of  perfectly 
elastic  Spheres,"  1F  was  characterized  by  a  new  manner  of  proposing 
the  problems  of  molecular  science.  Clausius  was  concerned  with  the 
mean  values  of  various  quantities  which  vary  enormously  in  the 
smallest  time  or  space  which  we  can  appreciate.  Maxwell  occupied 
himself  with  the  relative  frequency  of  the  various  values  which  these 
quantities  have.  In  this  he  was  followed  by  Boltzmann.  In  reading 
Clausius,  we  seem  to  be  reading  mechanics ;  in  reading  Maxwell,  and 

in  much  of  Boltzmann's  most  valuable  work,  we  seem  rather  to  be 
reading  in  the  theory  of  probabilities.  There  is  no  doubt  that  the 
larger  manner  in  which  Maxwell  and  Boltzmann  proposed  the 
problems  of  molecular  science  enabled  them  in  some  cases  to  get 
a  more  satisfactory  and  complete  answer,  even  for  those  questions 
which  do  not  at  first  sight  seem  to  require  so  broad  a  treatment. 

Boltzmann's  first  work,  however  (1866),  "Ueber  die  mechanische 

Bedeutung  des  zweiten  Hauptsatzes  der  Warmetheorie."**  was  in  a 
line  in  which  no  one  had  preceded  him,  although  he  was  followed  by 

*  Nature,  vol.  xvii,  p.  278. 
f  Pogg.  Ann.,  vol.  c,  p.  353  (1857). 
J Ibid.,  vol.  cv,  p.  239  (1858).     See  also  Wied.  Ann.,  vol.  x,  p.  92. 
§/6id.,  vol.  cxv,  p.  1  (1862). 
||  Ibid.,  vol.  cxli,  p.  124.     See  also  Jubelband,  p.  411. 
IPhil.  Mag.,  vol.  xix,  p.  19  (1860). 

**  Sitzungsberichte  Wien.  Akad.  vol.  liii,  p.  195. 
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some  of  the  most  distinguished  names  among  his  contemporaries. 
Somewhat  later  (1870)  Clausius,  whose  attention  had  not  been  called 

to  Boltzmann's  work,  wrote  his  paper,  "  Ueber  die  Zuriickf tihrung  des 
zweiten  Hauptsatzes  der  mechanischen  Warmetheorie  auf  allgemeine 

mechanische  Principien."* 
The  point  of  departure  of  these  investigations,  and  others  to  which 

they  gave  rise,  is  the  consideration  of  the  mean  values  of  the  force- 
function  and  of  the  vis  viva  of  a  system  in  which  the  motions  are 
periodic,  and  of  the  variations  of  these  mean  values  when  the  external 
influences  are  changed.  The  theorems  developed  belong  to  the  same 
general  category  as  the  principle  of  least  action,  and  the  principle 

or  principles  known  as  Hamilton's,  which  have  to  do,  explicitly  or 
implicitly,  with  the  variations  of  these  mean  values. 
Among  other  papers  of  Clausius  on  this  subject,  we  may  mention 

the  two  following:  "Ueber  einen  neuen  mechanischen  Satz  in 

Bezug  auf  stationare  Bewegung"t  (1873),  and  "Ueber  den  Satz  vom 
mittleren  Ergal  und  seine  Anwendung  auf  die  Molecularbewegungen 

derGase":  (1874). 
The  first  problem  of  molecular  science  is  to  derive  from  the  observed 

properties  of  bodies  as  accurate  a  notion  as  possible  of  their  molecular 

constitution.  The  knowledge  we  may  gain  of  their  molecular  con- 
stitution may  then  be  utilized  in  the  search  for  formulas  to  represent 

their  observable  properties.  A  most  notable  achievement  in  this 

direction  is  that  of  van  der  Waals,  in  his  celebrated  memoir,  "  On  the 

Continuity  of  the  Gaseous  and  Liquid  States."  To  this  part  of  the 
subject  belong  the  following  papers  of  Clausius:  "Ueber  das  Verhalten 

der  Kohlensaure  in  Bezug  auf  Druck,  Volumen  und  Temperatur,"  § 
and  "  Ueber  die  theoretische  Bestimmung  des  Dampfdruckes  und  der 

Volumina  des  Dampfes  und  der  Fliissigkeit"  (two  papers).  || 
Another  matter  in  which  Clausius  showed  his  originality  and 

power  was  the  vexed  subject  of  electrodynamics,  as  treated  in  his 

memoir,  "  Ueber  die  Ableitung  eines  neuen  electrodynamischen 

Grundgesetzes."  IF  Various  points  in  the  theory  of  electricity  in 
which  the  principles  of  thermodynamics  or  of  molecular  science 
were  involved,  had  previously  been  treated  in  different  papers,  of 

which  the  earliest  appeared  in  1852,**  while  the  doctrine  of  the 

*  Pofjg.  Ann.,  vol.  cxlii,  p.  433. 
Mbid.,  vol.  cl,  p.  106. 
%Ibid.,  Ergdnzungsband  vii,  p.  215. 
§  Wied.  Ann.,  vol.  ix,  p.  337  (1880). 

||  Ibid.,  voL  xiv,  p.  279  and  p.  692  (1881). 

ICrdle's  Journal,  vol.  Ixxxii,  p.  85  (1877). 
**  "  Ueber  das  mechanische  Aequivalent  einer  electrischen  Entladung  und  die  dal 

stattfindende  Erwarmung  des  Leitungsdrahtes. "     Pogg.   Ann.,   vol.    Ixxxvi,   p.   337. 
"  Ueber  die  bei  einem  stationaren  electrischen  Strome  in  dem  Leiter  gethane  Arbeit 
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potential  (electrical  and  gravitational)  was  treated  in  a  separate  book, 

which  appeared  in  1859,  with  the  title,  "Die  Potentialf unction  und 
das  Potential,  ein  Beitrag  zur  mathematischen  Physik."  This 
subsequently  went  through  several  editions,  in  which  it  was  revised 
and  enlarged.  All  these  subjects,  with  others,  were  brought  together 

in  a  single  volume,  "  Die  mechanische  Behandlung  der  Electricitat," 
which  appeared  in  1879,  forming  the  second  volume  of  his 

"  Mechanische  Warmetheorie."  *  Later  papers  on  electricity  related 
to  the  principles  of  electrodynamics,!  electrical  and  magnetic  units,  J 

and  dynamo-electric  machines.  § 

The  Royal  Society's  catalogue  of  scientific  papers,  and  the  excellent 
indices  to  the  Annalen  der  Physik  und  Chemie,  in  which  Clausius's 
work  usually  appeared,  render  it  unnecessary  to  enumerate  in  detail 
his  scientific  papers.  The  list,  indeed,  would  be  a  long  one.  The 

Royal  Society's  catalogue  gives  seventy-seven  titles  for  the  years 
1847-1873.  Subsequently  twenty-five  papers  have  appeared  in  the 
Annalen  alone,  and  about  half  as  many  others  elsewhere. 

But  such  work  as  that  of  Clausius  is  not  measured  by  counting 
titles  or  pages.  His  true  monument  lies  not  on  the  shelves  of 
libraries,  but  in  the  thoughts  of  men,  and  in  the  history  of  more 
than  one  science. 

und  erzeugte  Warme."  Pogg.  Ann.,  vol.  Ixxxvii,  p.  415  (1852).  "  Ueber  die  An- 

wendung  der  mechanischen  Warmetheorie  auf  die  thermoelectrischen  Erscheinungen." 

Pogg.  Ann.,  vol.  xc,  p.  513(1853).  "Ueber  die  Electrieitatsleitung  in  Eleetroly ten. " 
Pogg.  Ann.,  vol.  ci,  p.  338  (1857). 

*  The  first  volume  of  this  work  appeared  in  1876,  and  contained  the  general  theory 
with  the  more  immediate  consequences  of  the  two  fundamental  laws.  The  third  volume 

has  not  yet  appeared,  but  it  is  expected  very  soon,  edited  by  Professor  Planck  and 
Dr.  Pulfrich.  In  a  certain  sense  this  work  may  be  regarded  as  a  second  edition  of  an 
earlier  one  (1864  and  1867),  which  consisted  of  a  reprint  of  papers  and  had  the  title 

"  Abhandlungen  iiber  die  mechanische  Warmetheorie." 
t  Wied.  Ann.,  vol.  x,  p.  608 ;  vol.  xi,  p.  604. 
$Ibid.,  vol.  xvi,  p.  529;  vol.  xvii,  p.  713. 
§Ibid.,  vol.  xx,  p.  353 ;  vol.  xxi,  p.  385. 
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HUBERT  ANSON  NEWTON. 

[American  Journal  of  Science,  ser.  4,  vol.  ill,  pp.  359-376,  May  1897.] 

(Read  before  the  National  Academy  of  Sciences,  in  April,  1897.) 

HUBERT  ANSON  NEWTON  was  born  on  March  19th,  1830,  at 
Sherburne,  N.Y.,  and  died  at  New  Haven,  Conn.,  on  the  12th  day  of 
August,  1896.  He  was  the  fifth  son  of  a  family  of  seven  sons  and 
four  daughters,  children  of  William  and  Lois  (Butler)  Newton.  The 

parents  traced  their  ancestory  back  to  the  first  settlers  of  Massa- 

chusetts and  Connecticut,*  and  had  migrated  from  the  latter  to 
Sherburne,  when  many  parts  of  central  New  York  were  still  a 
wilderness.  They  both  belonged  to  families  remarkable  for  longevity, 
and  lived  themselves  to  the  ages  of  ninety-three  and  ninety -four 
years.  Of  the  children,  all  the  sons  and  two  daughters  were  living  as 
recently  as  the  year  1889,  the  youngest  being  then  fifty-three  years 
of  age.  William  Newton  was  a  man  of  considerable  enterprise,  and 
undertook  the  construction  of  the  Buffalo  section  of  the  Erie  canal, 
as  well  as  other  work  in  canal  and  railroad  construction  in  New 

York  and  Pennsylvania.  In  these  constructions  he  is  said  to  have 
relied  on  his  native  abilities  to  think  out  for  himself  the  solution 

of  problems  which  are  generally  a  matter  of  technical  training.  His 
wife  was  remarkable  for  great  strength  of  character  united  with  a 

quiet  temperament  and  well-balanced  mind,  and  was  noted  among 
her  neighbors  for  her  mathematical  powers. 

Young  Newton,  whose  mental  endowments  were  thus  evidently 
inherited,  and  whose  controlling  tastes  were  manifested  at  a  very 
early  age,  fitted  for  college  at  the  schools  of  Sherburne,  and  at  the 
age  of  sixteen  entered  Yale  College  in  the  class  graduating  in  1850. 
After  graduation  he  pursued  his  mathematical  studies  at  New  Haven 
and  at  home,  and  became  tutor  at  Yale  in  January,  1853,  when  on 
account  of  the  sickness  and  death  of  Professor  Stanley  the  whole 
charge  of  the  mathematical  department  devolved  on  him  from  the  first. 

*  Richard  Butler,  the  great-grandfather  of  Lois  Butler,  came  over  from  England 
before  1633,  and  was  one  of  those  who  removed  from  Cambridge  to  Hartford.  An 
ancestor  of  William  Newton  came  directly  from  England  to  the  New  Haven  colony 
about  the  middle  of  the  same  century. 
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In  1855,  he  was  appointed  professor  of  mathematics  at  the  early 
age  of  twenty-five.  This  appointment  testifies  to  the  confidence 
which  was  felt  in  his  abilities,  and  is  almost  the  only  instance  in 
which  the  Yale  Corporation  has  conferred  the  dignity  of  a  full 
professorship  on  so  young  a  man. 

This  appointment  being  accompanied  with  a  leave  of  absence  for  a 
year,  in  order  to  give  him  the  opportunity  to  study  in  Europe,  it  was 
but  natural  that  he  should  be  attracted  to  Paris,  where  Chasles  was 
expounding  at  the  Sorbonne  that  modern  higher  geometry  of  which 
he  was  to  so  large  an  extent  the  creator,  and  which  appeals  so 
strongly  to  the  sense  of  the  beautiful.  And  it  was  inevitable  that 
the  student  should  be  profoundly  impressed  by  the  genius  of  his 
teacher  and  by  the  fruitfulness  and  elegance  of  the  methods  which  he 

was  introducing.  The  effect  of  this  year's  study  under  the  inspiring influence  of  such  a  master  is  seen  in  several  contributions  to  the 

Mathematical  Monthly  during  its  brief  existence  in  the  years  1858-61. 
One  of  these  was  a  problem  which  attracted  at  once  the  attention 
of  Cayley,  who  sent  a  solution.  Another  was  a  discussion  of  the 

problem  "  to  draw  a  circle  tangent  to  three  given  circles,"  remarkable 
for  his  use  of  the  principle  of  inversion.  A  third  was  a  very 
elaborate  memoir  on  the  construction  of  curves  by  the  straight  edge 
and  compasses,  and  by  the  straight  edge  alone.  These  early  essays  in 
geometry  show  a  mind  thoroughly  imbued  with  the  spirit  of  modern 
geometry,  skilful  in  the  use  of  its  methods,  and  eager  to  extend  the 
bounds  of  our  knowledge. 

Nevertheless,  although  for  many  years  the  higher  geometry  was 
with  him  a  favorite  subject  of  instruction  for  his  more  advanced 
students,  either  his  own  preferences,  or  perhaps  rather  the  influence 
of  his  environment,  was  destined  to  lead  him  into  a  very  different 
field  of  research.  In  the  attention  which  has  been  paid  to  astronomy 
in  this  country  we  may  recognize  the  history  of  the  world  repeating 
itself  in  a  new  country  in  respect  to  the  order  of  the  development  of 
the  sciences,  or  it  may  be  enough  to  say  that  the  questions  which 
nature  forces  on  us  are  likely  to  get  more  attention  in  a  new  country 
and  a  bustling  age,  than  those  which  a  reflective  mind  puts  to  itself, 
and  that  the  love  of  abstract  truth  which  prompts  to  the  construction 
of  a  system  of  doctrine,  and  the  refined  taste  which  is  a  critic  of 
methods  of  demonstration,  are  matters  of  slow  growth.  At  all  events, 
when  Professor  Newton  was  entering  upon  his  professorship,  the 
study  of  the  higher  geometry  was  less  consonant  with  the  spirit  of 
the  age  in  this  country  than  the  pursuit  of  astronomical  knowledge, 
and  the  latter  sphere  of  activity  soon  engrossed  his  best  efforts. 

Yet  it  was  not  in  any  of  the  beaten  paths  of  astronomers  that 
Professor  Newton  was  to  move.  It  was  rather  in  the  wilds  of  a 
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terra  incognita,  which  astronomers  had  hardly  troubled  themselves  to 
claim  as  belonging  to  their  domain,  that  he  first  labored  to  establish 
law  and  order.  It  was  doubtless  not  by  chance  that  he  turned  his 
attention  to  the  subject  of  shooting  stars.  The  interest  awakened  in 
this  country  by  the  stupendous  spectacle  of  1833,  which  was  not  seen 
in  Europe,  had  not  died  out.  This  was  especially  true  at  New  Haven, 
where  Mr.  Edward  C.  Herrick  was  distinguished  for  his  indefatigable 
industry  both  in  personal  observation  and  in  the  search  for  records  of 
former  showers.  A  rich  accumulation  of  material  was  thus  awaiting 
development.  In  1861,  the  Connecticut  Academy  of  Arts  and  Sciences 

appointed  a  committee  "to  communicate  with  observers  in  various 
localities  for  combined  and  systematic  observations  upon  the  August 

and  November  meteors."  In  this  committee  Professor  Newton  was 
preeminently  active.  He  entered  zealously  upon  the  work  of  col- 

lecting material  by  personal  observation  and  correspondence  and  by 
organizing  corps  of  observers  of  students  and  others,  and  at  the  same 
time  set  himself  to  utilize  the  material  thus  obtained  by  the  most 
careful  study.  The  value  of  the  observations  collected  was  greatly 
increased  by  a  map  of  the  heavens  for  plotting  meteor-paths,  which 
was  prepared  by  Professor  Newton  and  printed  at  the  expense  of  the 
Connecticut  Academy  for  distribution  among  observers. 

By  these  organized  efforts,  in  a  great  number  of  cases  observations 
were  obtained  on  the  same  meteor  as  seen  from  different  places,  and 
the  actual  path  in  the  atmosphere  was  computed  by  Professor  Newton. 

In  a  paper  published  in  1865  *  the  vertical  height  of  the  beginning 
and  the  end  of  the  visible  part  of  the  path  is  given  for  more  than 
one  hundred  meteors  observed  on  the  nights  of  August  10th  and 
November  13th,  1863.  It  was  shown  that  the  average  height  of  the 
November  meteors  is  fifteen  or  twenty  miles  higher  than  that  of 
the  August  meteors,  the  former  beginning  in  the  mean  at  a  height 
of  ninety-six  miles  and  ending  at  sixty-one,  the  latter  beginning  at 
seventy  and  ending  at  fifty-six. 
We  mention  this  paper  first,  because  it  seems  to  represent  the 

culmination  of  a  line  of  activity  into  which  Professor  Newton  had 
entered  much  earlier.  We  must  go  back  to  consider  other  papers 
which  he  had  published  in  the  meantime. 

His  first  papers  on  this  subject,  1860-62,1  were  principally  devoted 
to  the  determination  of  the  paths  and  velocities  of  certain  brilliant 
meteors  or  fireballs,  which  had  attracted  the  attention  of  observers  in 
different  localities.  Three  of  these  appeared  to  have  velocities  much 
greater  than  is  possible  for  permanent  members  of  the  solar  system. 
To  another  a  particular  interest  attached  as  belonging  to  the  August 

*  Amer.  Jour.  Sci.,  ser.  2,  vol.  xl,  p.  250. 
t  Amer.  Jour.  Sci.,  ser.  2,  vol.  xxx,  p.  186;  xxxii,  p.  448  ;  and  xxxiii,  p.  338. 
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shower,  although  exceptional  in  size.  For  this  he  calculated  the 
elements  of  the  orbit  which  would  give  the  observed  path  and  velocity. 
But  the  determination  of  the  velocity  in  such  cases,  which  depends 

upon  the  estimation  by  the  observers  of  the  time  of  flight,  is  neces- 
sarily very  uncertain,  and  at  best  affords  only  a  lower  limit  for  the 

value  of  the  original  velocity  of  the  body  before  it  encountered  the 

resistance  of  the  earth's  atmosphere.  This  would  seem  to  constitute  an 
insuperable  difficulty  in  the  determination  of  the  orbits  of  meteoroids, 
to  use  the  term  which  Professor  Newton  applied  to  these  bodies, 

before  they  enter  the  earth's  atmosphere  to  appear  for  a  moment  as 
luminous  meteors.  Yet  it  has  been  completely  overcome  in  the  case 
of  the  November  meteors,  or  Leonids  as  they  are  called  from  the 
constellation  from  which  they  appear  to  radiate.  This  achievement 
constitutes  one  of  the  most  interesting  chapters  in  the  history  of 
meteoric  science,  and  gives  the  subject  an  honorable  place  among  the 
exact  sciences. 

In  the  first  place,  by  a  careful  study  of  the  records,  Professor 
Newton  showed  that  the  connection  of  early  showers  with  those  of 
1799  and  1833  had  been  masked  by  a  progressive  change  in  the  time 
of  the  year  in  which  the  shower  occurs.  This  change  had  amounted 
to  a  full  month  between  A.D.  902,  when  the  shower  occurred  on 
October  13,  and  1833,  when  it  occurred  on  November  13.  It  is  in 

part  due  to  the  precession  of  the  equinoxes,  and  in  part  to  the  motion 

of  the  node  where  the  earth's  orbit  meets  that  of  the  meteoroids. 
This  motion  must  be  attributed  to  the  perturbations  of  the  orbits  of 
the  meteoroids  which  are  produced  by  the  attractions  of  the  planets, 
and  being  in  the  direction  opposite  to  that  of  the  equinoxes,  Professor 
Newton  inferred  that  the  motion  of  the  meteoroids  must  be  retrograde. 

The  showers  do  not,  however,  occur  whenever  the  earth  passes  the 
node,  but  only  when  the  passage  occurs  within  a  year  or  two  before 

or  after  the  termination  of  a  cycle  of  32*25  years.  This  number  is 
obtained  by  dividing  the  interval  between  the  showers  of  902  and 
1833  by  28,  the  number  of  cycles  between  these  dates,  and  must 
therefore  be  a  very  close  approximation.  For  if  these  showers  did 
not  mark  the  precise  end  of  cycles  the  resultant  error  would  be 
divided  by  28.  Professor  Newton  showed  that  this  value  of  the  cycle 
requires  that  the  number  of  revolutions  performed  by  the  meteoroids 

in  one  year  should  be  either  2+^  or  1+^  or  ̂ JL.  In  other  words, 

the  periodic  time  of  the  meteoroids  must  be  either  180*0  or  185*4  or 
354*6  or  376*6  days,  or  33*25  years.  Now  the  velocity  of  any  body 
in  the  solar  system  has  a  simple  relation  to  its  periodic  time  and  its 
distance  from  the  sun.  Assuming,  therefore,  any  one  of  these  five 
values  of  the  periodic  time,  we  have  the  velocities  of  the  Leonids 
at  the  node  very  sharply  determined.  From  this  velocity,  with  the 



272  HUBERT  ANSON  NEWTON. 

position  of  the  apparent  radiant,  which  gives  the  direction  of  the 
relative  motion,  and  with  the  knowledge  that  the  heliocentric  motion 
is  retrograde,  we  may  easily  determine  the  orbit. 
We  have,  therefore,  five  orbits  from  which  to  choose.  The 

calculation  of  the  secular  motion  of  the  node  due  to  the  disturbing 
action  of  the  planets,  would  enable  us  to  decide  between  these  orbits. 

Such  are  the  most  important  conclusions  which  Professor  Newton 
derived  from  the  study  of  these  remarkable  showers,  interesting  not 
only  from  the  magnificence  of  the  spectacle  occasionally  exhibited, 
but  in  a  much  higher  degree  from  the  peculiarity  in  the  periodic 
character  of  their  occurrence,  which  affords  the  means  of  the  deter- 

mination of  the  orbit  of  the  meteoroids  with  a  precision  which  would 
at  first  sight  appear  impossible. 

Professor  Newton  anticipated  a  notable  return  of  the  shower  in 
1866,  with  some  precursors  in  the  years  immediately  preceding,  a 
prediction  which  was  amply  verified.  In  the  meantime  he  turned 
his  attention  to  the  properties  which  belong  to  shooting  stars  in 
general,  and  especially  to  those  average  values  which  relate  to  large 
numbers  of  these  bodies  not  belonging  to  any  particular  swarm. 

This  kind  of  investigation  Maxwell  has  called  statistical,  and  has 
in  more  than  one  passage  signalized  its  difficulties.  The  writer 
recollects  a  passage  of  Maxwell  which  was  pointed  out  to  him  by 
Professor  Newton,  in  which  the  author  says  that  serious  errors  have 
been  made  in  such  inquiries  by  men  whose  competency  in  other 
branches  of  mathematics  was  unquestioned.  Doubtless  Professor 
Newton  was  very  conscious  of  the  necessity  of  caution  in  these 
inquiries,  as  is  indeed  abundantly  evident  from  the  manner  in  which 
he  expressed  his  conclusions;  but  the  writer  is  not  aware  of  any 

passage  in  which  he  has  afforded  an  illustration  of  Maxwell's  remark. 
The  results  of  these  investigations  appeared  in  an  elaborate  memoir 

"  On  Shooting  Stars,"  which  was  read  to  the  National  Academy  in 
1864,  and  appeared  two  years  later  in  the  Memoirs  of  the  Academy* 
An  abstract  was  given  in  the  American  Journal  of  Science  in  1865.1 
The  following  are  some  of  the  subjects  treated,  with  some  of  the  more 
interesting  results : 

The  distribution  of  the  apparent  paths  of  shooting  stars  in  azimuth 
and  altitude. 

The  vertical  distribution  of  the  luminous  part  of  the  real  paths. 
The  value  found  for  the  mean  height  of  the  middle  point  of  the 
luminous  path  was  a  trifle  less  than  sixty  miles. 

The  mean  length  of  apparent  paths. 
The  mean  distance  of  paths  from  the  observer. 

*  Vol.  i,  3d  memoir.  t  Series  2,  vol.  xxxix,  p.  193. 
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The  mean  foreshortening  of  paths. 
The  mean  length  of  the  visible  part  of  the  real  paths. 
The  mean  time  of  flight  as  estimated  by  observers. 
The  distribution  of  the  orbits  of  meteoroids  in  the  solar  system. 
The  daily  number  of  shooting  stars,  and  the  density  of  the 

meteoroides  in  the  space  which  the  earth  traverses. 

The  average  number  of  shooting  stars  which  enter  the  atmosphere 
daily,  and  which  are  large  enough  to  be  visible  to  the  naked  eye, 
if  the  sun,  moon  and  clouds  would  permit  it,  is  more  than  seven 
and  a  half  millions.  Certain  observations  with  instruments  seem 
to  indicate  that  this  number  should  be  increased  to  more  than 

four  hundred  millions,  to  include  telescopic  shooting  stars,  and  there 
is  no  reason  to  doubt  that  an  increase  of  optical  power  beyond  that 
employed  in  these  observations  would  reveal  still  larger  numbers  of 
these  small  bodies.  In  each  volume  of  the  size  of  the  earth,  of  the 

space  which  the  earth  is  traversing  in  its  orbit  about  the  sun,  there 
are  as  many  as  thirteen  thousand  small  bodies,  each  of  which  is 
such  as  would  furnish  a  shooting  star  visible  under  favorable 
circumstances  to  the  naked  eye. 

These  conclusions  are  certainly  of  a  startling  character,  but  not  of 
greater  interest  than  those  relating  to  the  velocity  of  meteoroids. 

There  are  two  velocities  to  be  considered,  which  are  evidently  con- 
nected, the  velocity  relative  to  the  earth,  and  the  velocity  of  the 

meteoroids  in  the  solar  system.  To  the  latter,  great  interest  attaches 
from  the  fact  that  it  determines  the  nature  of  the  orbit  of  the 

meteoroid.  A  velocity  equal  to  that  of  the  earth,  indicates  an  orbit 
like  that  of  the  earth;  a  velocity  ̂ /2  times  as  great,  a  parabolic 
orbit  like  that  of  most  comets,  while  a  velocity  greater  than  this 
indicates  a  hyperbolic  orbit. 

Professor   Newton   sought   to   form   an    estimate    of    this   critical o 

quantity  in  more  than  one  way.  That  on  which  he  placed  most 
reliance  was  based  on  a  comparison  of  the  numbers  of  shooting  stars 
seen  in  the  different  hours  of  the  night.  It  is  evident  that  in  the 

morning,  when  we  are  in  front  of  the  earth  in  its  motion  about  the 
sun,  we  should  see  more  shooting  stars  than  in  the  evening,  when  we 
are  behind  the  earth ;  but  the  greater  the  velocity  of  the  meteoroids 

compared  with  that  of  the  earth,  the  less  the  difference  would  be  in 

the  numbers  of  evening  and  morning  stars.* 

*  It  may  not  be  out  of  place  to  notice  here  an  erratum  which  occurs  both  in  the 
Memoirs  of  the  National  Academy  and  in  the  abstract  in  the  American  Journal  of 

Science,  and  which  the  writer  finds  marked  in  a  private  copy  of  Professor  Newton's. 
In  the  table  on  p.  20  of  the  memoir  and  206  of  the  abstract,  the  column  of  numbers 

under  the  head  "hour  of  the  night"  should  be  inverted.  There  is  another  displace- 
ment in  the  table  in  the  memoir,  which  is,  however,  corrected  in  the  abstract. 
G.  II.  S 
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After  a  careful  discussion  of  the  evidence  Professor  Newton  reached 

the  conclusion  that  "  we  must  regard  as  almost  certain  (on  the 
hypothesis  of  an  equable  distribution  of  the  directions  of  absolute 

motions),  that  the  mean  velocity  of  the  meteoroids  exceeds  con- 
siderably that  of  the  earth ;  that  the  orbits  are  not  approximately 

circular,  but  resemble  more  the  orbits  of  comets." 
This  last  sentence,  which  is  taken  from  the  abstract  published  in 

the  American  Journal  of  Science  in  1865,  and  is  a  little  more 
definitely  and  positively  expressed  than  the  corresponding  passage 

in  the  original  memoir,  indicating  apparently  that  the  author's 
conviction  had  been  growing  more  positive  in  the  interval,  or  at 
least  that  the  importance  of  the  conclusion  had  been  growing  upon 
him,  embodies  what  is  perhaps  the  most  important  result  of  the 
memoir,  and  derives  a  curious  significance  from  the  discoveries  which 
were  to  astonish  astronomers  in  the  immediate  future. 

The  return  of  the  November  or  Leonid  shower  in  1865,  and 

especially  in  1866,  when  the  display  was  very  brilliant  in  Europe, 
gave  an  immense  stimulus  to  meteoric  study,  and  an  especial 

prominence  to  this  group  of  meteoroids.  "Not  since  the  year 

1759,"  says  Schiaparelli,  "  when  the  predicted  return  of  a  comet  first 
took  place,  had  the  verified  prediction  of  a  periodic  phenomenon 
made  a  greater  impression  than  the  magnificent  spectacle  of 
November,  1866.  The  study  of  cosmic  meteors  thereby  gained  the 
dignity  of  a  science,  and  took  finally  an  honorable  place  among 

the  other  branches  of  astronomy."  Professor  J.  C.  Adams,  of 
Cambridge,  England,  then  took  up  the  calculation  of  the  perturba- 

tions determining  the  motion  of  the  node.  We  have  seen  that 
Professor  Newton  had  shown  that  the  periodic  time  was  limited  to 
five  sharply  determined  values,  each  of  which  with  the  other  data 
would  give  an  orbit,  and  that  the  true  orbit  could  be  distinguished 
from  the  other  four  by  the  calculation  of  the  secular  motion  of  the 
node. 

Professor  Adams  first  calculated  the  motion  of  the  node  due  to  the 

attractions  of  Jupiter,  Venus,  and  the  Earth  for  the  orbit  having  a 

period  of  354*6  days.  This  amounted  to  a  little  less  than  12"  in 
33'25  years.  As  Professor  Newton  had  shown  that  the  dates  of  the 

showers  require  a  motion  of  29'  in  33*25  years,  the  period  of  354' 6 
days  must  be  rejected.  The  case  would  be  nearly  the  same  with  a 

period  of  376*6  days,  while  a  period  of  180  or  185*4  days  would  give 
a  still  smaller  motion  of  the  node.  Hence,  of  the  five  possible  periods 
indicated  by  Professor  Newton,  four  were  shown  to  be  entirely 
incompatible  with  the  motion  of  the  node,  and  it  only  remained  to 

*  Schiaparelli,  Entwurf  einer  astronomischen  Theorie  der  Sternschnuppen,  p.  55 
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examine  whether  the  fifth  period,  viz.  that  of  33'25  years,  would  give 
a  motion  of  the  node  in  accordance  with  the  observed  value.  As 

this  period  gives  a  very  long  ellipse  for  the  orbit,  extending  a  little 
beyond  the  orbit  of  Uranus,  it  was  necessary  to  take  account  of  the 
perturbations  due  to  that  planet  and  to  Saturn.  Professor  Adams 

found  28'  for  the  motion  of  the  node.  As  this  value  must  be  regarded 
as  sensibly  identical  with  Professor  Newton's  29'  of  observed  motion, 
no  doubt  was  left  in  regard  to  the  period  of  revolution  or  the  orbit  of 
the  meteoroids.* 

About  this  time,  M.  Schiaparelli  was  led  by  a  course  of  reasoning 

similar  to  Professor  Newton's  to  the  same  conclusion, — that  the  mean 
velocity  of  the  meteoroids  is  not  very  different  from  that  due  to 
parabolic  orbits.  In  the  course  of  his  speculations  in  regard  to  the 
manner  in  which  such  bodies  might  enter  the  solar  system,  the 
questions  suggested  themselves :  whether  meteoroids  and  comets  may 
not  have  a  similar  origin ;  whether,  in  case  a  swarm  of  meteoroids 
should  include  a  body  of  sufficient  size,  this  would  not  appear  as  a 
comet ;  and  whether  some  of  the  known  comets  may  not  belong  to 
streams  of  meteoroids.  Calculating  the  orbit  of  the  Perseids,  or 
August  meteoroids,  from  the  radiant  point,  with  the  assumption  of  a 
nearly  parabolic  velocity,  he  found  an  orbit  very  similar  to  that  of 
the  great  comet  of  1862,  which  may  therefore  be  considered  as  one 

of  the  Perseids, — probably  the  largest  of  them  all.t 
At  that  time  no  known  cometic  orbit  agreed  with  that  of  the 

Leonids,  but  a  few  months  later,  as  soon  as  the  definitive  elements  of 

the  orbit  of  the  first  comet  of  1866  were  published,  their  resemblance 

to  those  of  the  Leonids,  as  calculated  for  the  period  of  33'25  years, 
which  had  been  proved  to  be  the  correct  value,  was  strikingly 
manifested,  attracting  at  once  the  notice  of  several  astronomers. 

Other  relations  of  the  same  kind  have  been  discovered  later,  of 

which  that  of  Biela's  comet  and  the  Andromeds  is  the  most  interesting, 
as  we  have  seen  the  comet  breaking  up  under  the  influence  of  the 
sun ;  but  in  no  case  is  the  coincidence  so  striking  as  in  that  of 
the  Leonids,  since  in  no  other  case  is  the  orbit  of  the  meteoroids 

completely  known,  independently  of  that  of  the  comet,  and  without 
any  arbitrary  assumption  in  regard  to  their  periodic  time. 

The  first  comet  of  1866  is  probably  not  the  only  one  belonging  to 
the  Leonid  stream  of  meteoroids.  Professor  Newton  has  remarked 

that  the  Chinese  annals  mention  two  comets  which  passed  rapidly  in 
succession  across  the  sky  in  1366,  a  few  days  after  the  passage  of  the 
earth  through  the  node  of  the  Leonid  stream,  which  was  marked  in 

Europe  by  one  of  the  most  remarkable  star-showers  on  record.  The 

Monthly  Notices  Roy.  Ast.  Soc.,  vol.  xxvii,  p.  247. 
G.  II.  S  2 

t  Etdwurf,  etc. ,  pp.  49-54. 
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course  of  these  comets,  as  described  by  the  annalists,  was  in  the  line 
of  the  Leonid  stream.* 

This  identification  of  comets  with  meteors  or  shooting-stars  marks 
an  epoch  in  the  study  of  the  latter.  Henceforth,  they  must  be 
studied  in  connection  with  comets.  It  was  presumably  this  discovery 
which  led  Professor  Newton  to  those  statistical  investigations 
respecting  comets,  which  we  shall  presently  consider.  At  this  point, 
however,  at  the  close  as  it  were  of  the  first  chapter  in  the  history  of 
meteoric  science,  it  seems  not  unfitting  to  quote  the  words  of  an 
eminent  foreign  astronomer,  written  about  this  time,  in  regard  to 

Professor  Newton's  contributions  to  this  subject.  In  an  elaborate 
memoir  in  the  Comptes  Rendus,  M.  Faye  says,  with  reference  to  our 

knowledge  of  shooting-stars  and  their  orbits,  "  we  may  find  in  the 
works  of  M.  Newton,  of  the  United  States,  the  most  advanced 
expression  of  the  state  of  science  on  this  subject,  and  even  the  germ, 
I  think,  of  the  very  remarkable  ideas  brought  forward  in  these  last 

days  by  M.  Schiaparelli  and  M.  Le  Verrier."  t 
The  first  fruit  of  Professor  Newton's  statistical  studies  on  comets 

appeared  in  1878  in  a  paper  "On  the  Origin  of  Comets."  In  this 
paper  he  considers  the  distribution  in  the  solar  system  of  the  known 
cometic  orbits,  and  compares  it  with  what  we  might  expect  on  either 
of  two  hypotheses :  that  of  Kant,  that  the  comets  were  formed  in  the 
evolution  of  the  solar  system  from  the  more  distant  portion  of  the 
solar  nebula ;  and  that  of  Laplace,  that  the  comets  have  come  from  the 
stellar  spaces  and  in  their  origin  had  no  relation  to  the  solar  system. 

In  regard  to  the  distribution  of  the  aphelia,  he  shows  that,  except 
so  far  as  modified  by  the  perturbations  due  to  the  planets,  the  theory 
of  internal  origin  would  require  all  the  aphelia  to  be  in  the  vicinity 

of  the  ecliptic ;  the  theory  of  external  origin  would  make  all  direc- 
tions of  the  aphelia  equally  probable,  i.e.,  the  distribution  in  latitude 

of  the  aphelia  should  be  that  in  which  the  frequency  is  as  the  cosine 
of  the  latitude.  The  actual  distribution  comes  very  near  to  this,  but 
as  the  effect  of  perturbations  would  tend  to  equalize  the  distribution 
of  aphelia  in  all  directions,  Professor  Newton  does  not  regard  this 

argument  as  entirely  decisive.  He  remarks,  however,  that  if  Kant's 
hypothesis  be  true,  the  comets  must  have  been  revolving  in  their 
orbits  a  very  long  time,  and  the  process  of  the  disintegration  of  comets 
must  be  very  slow. 

In  regard  to  the  distribution  of  the  orbits  in  inclination,  the  author 
shows  that  the  theory  of  internal  origin  would  make  all  inclinations 
equally  probable;  the  theory  of  external  origin  would  make  all 

*  Amer.  Jour.  Sci.,  ser.  2,  vol.  xliii,  p.  298,  and  vol.  xlv,  p.  91,  or  EncycL  Britann., 
article  Meteor. 

t  Comptes  Rendiis,  t.  Ixiv,  p.  551. 
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directions  of  the  normal  to  the  plane  of  the  orbit  equally  probable. 
On  the  first  hypothesis,  therefore,  we  should  expect  a  uniform 
distribution  in  inclination ;  on  the  second,  a  frequency  proportioned 
to  the  sine  of  the  inclination.  It  was  shown  by  a  diagram  in  which 
the  actual  and  the  two  theoretical  distributions  are  represented 
graphically,  that  the  actual  distribution  agrees  pretty  well  with 
the  theory  of  external  origin  and  not  at  all  with  that  of  internal 
origin.  It  was  also  shown  that  the  curve  of  actual  distribution 

cannot  be  made  to  agree  with  Kant's  hypothesis  by  any  simple 
and  reasonable  allowances  for  perturbations.  On  the  other  hand, 
if  we  assume  the  external  origin  of  comets,  and  ask  how  the  curve 
of  sines  must  be  modified  in  order  to  take  account  of  perturbations, 
it  is  shown  that  the  principal  effect  will  be  to  increase  somewhat 

the  number  of  inclinations  between  90°  and  135°  at  the  expense  of 
those  between  45°  and  90°.  It  is  apparent  at  once  from  the  diagram 
that  such  a  change  would  make  a  very  good  agreement  between  the 
actual  and  theoretical  curves,  the  only  important  difference  remaining 
being  due  to  comets  of  short  periods,  which  mostly  have  small 
inclinations  with  direct  motion.  These  should  not  weigh  very  much, 
the  author  observes,  in  the  general  question  of  the  distribution  of 
inclinations,  because  they  return  so  frequently  and  are  so  easily 
detected  that  their  number  in  a  list  of  observed  comets  is  out  of  all 

proportion  to  their  number  among  existing  comets.  But  this  group 
of  comets  of  short  periods  can  easily  be  explained  on  the  theory  of  an 
external  origin.  For  such  comets  must  have  lost  a  large  part  of 
their  velocity  by  the  influence  of  a  planet.  This  is  only  likely  to 
happen  when  a  comet  overtakes  the  planet  and  passes  in  front  of  it. 
This  implies  that  its  original  motion  was  direct  and  in  an  orbit  of 
small  inclination  to  that  of  the  planets,  and  although  it  may  lose  a 
large  part  of  its  velocity,  its  motion  will  generally  remain  direct  and 
in  a  plane  of  small  inclination.  This  very  interesting  case  of  the 
comets  of  short  periods  and  small  inclinations,  which  was  treated 
rather  briefly  in  this  paper,  was  discussed  more  fully  by  Professor 
Newton  at  the  meeting  of  the  British  Association  in  the  following 

year.* Many  years  later,  Professor  Newton  returned  to  the  same  general 

subject  in  a  very  interesting  memoir  "  On  the  Capture  of  Comets  by 

Planets ;  especially  their  Capture  by  Jupiter,"  which  was  read  before 
the  National  Academy  in  1891,  and  appeared  in  the  Memoirs  of  the 

Academy  two  years  later.!  It  also  appeared  in  the  American 

Journal  of  Science  in  the  year  in  which  it  was  read.  J  This  contains 

*  Eep't  Brit.  Assoc.  Adv.  Sci.  for  1879,  p.  272. 
t  Mem.  Nat.  A  cad.,  vol.  vi,  1st  memoir. 
J  Amer.  Jour.  Sci.,  ser.  3,  vol.  xlii,  pp.  183  and  482. 
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the  results  of  careful  statistical  calculations  on  the  effect  of  per- 
turbations on  orbits  of  comets  originally  parabolic.  It  corroborates 

the  more  general  statements  of  the  paper  "  On  the  Origin  of  Comets," 
giving  them  a  precise  quantitative  form.  One  or  two  quotations 
will  give  some  idea  of  the  nature  of  this  very  elaborate  and  curious 
memoir,  in  which,  however,  the  results  are  largely  presented  in  the 
form  of  diagrams. 

On  a  certain  hypothesis  regarding  an  original  equable  distribution 

of  comets  in  parabolic  orbits  about  the  sun,  it  is  shown  that  "  if  in 
a  given  period  of  time  a  thousand  million  comets  come  in  parabolic 
orbits  nearer  to  the  sun  than  Jupiter,  126  of  them  will  have  their 

orbits  changed "  by  the  action  of  that  planet  "  into  ellipses  with 
periodic  times  less  than  one-half  that  of  Jupiter;  839  of  them  will 
have  their  orbits  changed  into  ellipses  with  periodic  times  less  than 
that  of  Jupiter;  1701  of  them  will  have  their  orbits  changed  into 
ellipses  with  periodic  times  less  than  once  and  a  half  that  of  Jupiter, 
and  2670  of  them  will  have  their  orbits  changed  into  ellipses  with 

periodic  times  less  than  twice  that  of  Jupiter."  A  little  later,  Pro- 
fessor Newton  considers  the  question,  which  he  characterizes  as 

perhaps  more  important,  of  the  direct  or  retrograde  motion  of  the 
comets  after  such  perturbations.  It  is  shown  that  of  the  839  comets 
which  have  periodic  times  less  than  Jupiter,  203  will  have  retrograde 
motions,  and  636  will  have  direct  motions.  Of  the  203  with  retro- 

grade motion,  and  of  the  636  with  direct  motion,  51  and  257,  respec- 

tively, will  have  orbits  inclined  less  than  30°  to  that  of  Jupiter. 
We  have  seen  that  the  earliest  of  Professor  Newton's  more  important 

studies  on  meteors  related  to  the  Leonids,  which  at  that  time  far 
surpassed  all  other  meteoric  streams  in  interest.  One  of  his  later 
studies  related  to  another  stream  which  in  the  mean  time  had  acquired 
great  importance.  The  identification  of  the  orbit  of  the  Andromed 

meteors  with  that  of  Biela's  comet,  which  we  have  already  mentioned, 
gave  these  bodies  a  unique  interest,  as  the  comet  had  been  seen  to 
break  up  under  the  influence  of  the  sun.  Here  the  evolution  of 
meteoroids  was  taking  place  before  our  eyes;  and  this  interest  was 
heightened  by  the  showers  of  1872  and  1885,  which  in  Europe  seem 
to  have  been  unsurpassed  in  brilliancy  by  any  which  have  occurred 
in  this  century. 

The  phenomena  of  each  of  these  showers  were  carefully  discussed 
by  Professor  Newton.  Among  the  principal  results  of  his  paper  on 

the  latter  shower  are  the  following:* 
The  time  of  the  maximum  frequency  of  meteors  was  Nov.  27,  1885 

6  h.  15  m.  Gr.  m.  t.  The  estimated  number  per  hour  visible  at  one 

*  Amer.  Jour.  8ci.,  ser.  3,  vol.  xxxi,  p.  409. 
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place  was  then  75,000.  This  gives  a  density  of  the  meteoroids  in 
space  represented  by  one  to  a  cube  of  twenty  miles  edge.  Three 
hours  later  the  frequency  had  fallen  to  one-tenth  of  the  maximum 
value.  The  really  dense  portion  of  the  stream  through  which  we 
passed  was  less  than  100,000  miles  in  thickness,  and  nearly  all  would 
be  included  in  a  thickness  of  200,000  miles. 

A  formula  is  given  to  express  the  effect  of  the  earth's  attraction 
on  the  approaching  meteoroids  in  altering  the  position  of  the  radiant. 
This  is  technically  known  as  the  zenithal  attraction,  and  is  quite 
important  in  the  case  of  these  meteors  on  account  of  their  small 

relative  velocity.  The  significance  of  the  formula  may  be  roughly 

expressed  by  saying  that  the  earth's  attraction  changes  the  radiant  of 
the  Biela  meteors,  toward  the  vertical  of  the  observer,  one-tenth  of 
the  observed  zenith  distance  of  the  radiant,  or  more  briefly,  that  the 
zenithal  attraction  for  these  meteors  is  one-tenth  of  the  observed 
zenith  distance.  The  radiant  even  after  the  correction  for  zenithal 

attraction,  and  another  for  the  rotation  of  the  earth  on  its  axis,  is  not 

a  point  but  an  area  of  several  degrees  diameter.  The  same  has  been 
observed  in  regard  to  other  showers,  but  the  result  comes  out  more 
distinctly  in  the  present  case  because  the  meteors  were  so  numerous 
and  the  shower  so  carefully  observed. 

This  implies  a  want  of  parallelism  in  the  paths  of  the  meteors,  and 
it  is  a  very  important  question  whether  it  exists  before  the  meteoroids 
enter  our  atmosphere,  or  whether  it  is  due  to  the  action  of  the 
atmosphere. 

Professor  Newton  shows  that  it  is  difficult  to  account  for  so  large 
a  difference  in  the  original  motions  of  the  meteoroids,  and  thinks  it 
reasonable  to  attribute  a  large  part  of  the  want  of  parallelism  to  the 
action  of  the  atmosphere  on  bodies  of  an  irregular  form,  such  as  we 
have  every  reason  to  believe  that  the  meteoroids  have,  when  they 
enter  our  atmosphere.  The  effect  of  the  heat  generated  will  be  to 
round  off  the  edges  and  prominent  parts,  and  to  reduce  the  meteor 
to  a  form  more  and  more  spherical.  It  is,  therefore,  quite  natural 
that  the  greater  portion  of  the  curvature  of  the  paths  should  be 
in  the  invisible  portion  and  thus  escape  our  notice.  It  is  only  in 
exceptional  cases  that  the  visible  path  is  notably  curved. 

But  the  great  interest  of  the  paper  centers  in  his  discussion  of  the 
relation  of  this  shower  to  preceding  showers,  and  to  the  orbit  of 

Biela's  comet.  The  changes  in  the  date  of  the  shower  (from  Dec.  6 
to  Nov.  27)  and  in  the  position  of  the  radiant  are  shown  to  be  related 

to  the  great  perturbations  of  Biela's  comet  in  1794,  1831,  and  1841-2. 
The  showers  observed  by  Brandes,  Dec.  6th,  1798,  by  Herrick,  Dec.  7th, 
1838,  and  by  Heis,  Dec.  8th  and  10th,  1847,  are  related  to  the  orbit 

of  Biela's  comet  as  it  was  in  1772;  while  the  great  showers  of  1872 
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and  1885,  as  well  as  a  trifling  display  in  1867,  are  related  to  the 
orbit  of  1852.* 

Assuming,  then,  that  the  meteoroids  which  we  met  on  the  27th  of 
November,  1872,  did  not  leave  the  immediate  neighborhood  of  the 
Biela  comet  before  1841-2,  we  seem  to  have  the  data  for  a  very 
precise  determination  of  their  orbit  between  those  dates.  The  same 
is  true  of  those  which  we  met  in  1885.  The  computation  of  these 
orbits,  the  author  remarks,  may  possibly  give  evidence  for  or  against 
the  existence  of  a  resisting  medium  in  the  solar  system. 

In  his  last  public  utterance  on  the  subject  of  meteors,  which  was 
on  the  occasion  of  the  recent  sesquicentennial  celebration  of  the 
American  Philosophical  Society,  Professor  Newton  returns  to  the  Biela 
meteoroids,  and  finds  in  the  scattering  which  they  show  in  the  plane 
of  their  orbit  the  proof  of  a  disturbing  force  in  that  plane,  and  there- 

fore not  due  to  the  planets.  The  force  exerted  by  the  sun  appears  to 

be  modified  somewhat  as  we  see  it  in  the  comet's  tails,  where  indeed 
the  attraction  is  changed  into  a  repulsion.  Something  of  the  same 
sort  on  a  smaller  scale  relatively  to  the  mass  of  the  bodies  appears  to 

modify  the  sun's  action  on  the  meteoroids. 
In  1888  Professor  Newton  read  a  paper  before  the  National 

Academy  "Upon  the  relation  which  the  former  Orbits  of  those 
Meteorites  that  are  in  our  collections,  and  that  were  seen  to  fall, 

had  to  the  Earth's  Orbit."  This  was  based  upon  a  very  careful  study 
of  more  than  116  cases  for  which  we  have  statements  indicating  more 
or  less  definitely  the  direction  of  the  path  through  the  air,  as  well  as 
94  cases  in  which  we  only  know  the  time  of  the  fall.  The  results  are 
expressed  in  the  following  three  propositions : 

1.  The  meteorites  which  we  have  in  our  cabinets  and  which  were 

seen   to   fall   were   originally   (as   a   class,   and   with   a   very   small 
number   of  exceptions)   moving   about  the  sun  in   orbits   that   had 

inclinations   less  than  90° ;    that  is,  their  motions  were  direct,  not 
retrograde. 

2.  The  reason  why  we  have  only  this  class  of  stones  in  our  collec- 
tions is  not  one  wholly  or  even  mainly  dependent  on  the  habits  of 

men ;  nor  on  the  times  when  men  are  out  of  doors ;  nor  on  the  places 
where  men  live ;  nor  on  any  other  principle  of  selection  acting  at  or 
after  the  arrival  of  the  stones  at  the  ground.      Either  the  stones 

which  are  moving  in  the  solar  system  across  the  earth's  orbit  move 
in  general  in  direct  orbits ;  or  else  for  some  reason  the  stones  which 

*  It  is  a  curious  coincidence  that  the  original  discoverer  of  the  December  shower  as 
a  periodic  phenomenon,  Mr.  Edward  C.  Herrick,  should  have  been  (with  a  companion, 
Mr.  Francis  Bradley,)  the  first  to  observe  that  breaking  up  of  the  parent  body  which 
was  destined  to  reinforce  the  meteoric  stream  in  so  remarkable  a  manner.  See  Amer. 
Jour.  Sci. ,  ser.  3,  vol.  xxxi,  pp.  85  and  88. 
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move  in  retrograde  orbits  do  not  in  general  come  through  the  air  to 
the  ground  in  solid  form. 

3.  The  perihelion  distances  of  nearly  all  the  orbits  in  which  these 
stones  moved  were  not  less  than  O5  nor  more  than  1-0,  the  earth's 
radius  vector  being  unity. 

Professor  Newton  adds,  that  it  seems  a  natural  and  proper  corollary 
to  these  propositions  (unless  it  shall  appear  that  stones  meeting  the 
earth  are  destroyed  in  the  air)  that  the  larger  meteorites  moving  in 
our  solar  system  are  allied  much  more  closely  with  the  group  of 
comets  of  short  period  than  with  comets  whose  orbits  are  nearly 
parabolic.  All  the  known  comets  of  shorter  periods  than  33  years 
move  about  the  sun  in  direct  orbits  that  have  moderate  inclinations 
to  the  ecliptic.  On  the  contrary,  of  the  nearly  parabolic  orbits  that 
are  known  only  a  small  proportion  of  the  whole  number  have  small 
inclinations  with  direct  motion. 

We  have  briefly  mentioned  those  papers  which  seem  to  constitute 
the  most  important  contributions  to  the  science  of  meteors  and  comets. 

To  fully  appreciate  Professor  Newton's  activity  in  this  field,  it  would 
be  necessary  to  take  account  of  his  minor  contributions.* 

Most  interesting  and  instructive  to  the  general  reader  are  his 
utterances  on  occasions  when  he  has  given  a  resume  of  our  knowledge 

on  these  subjects  or  some  branch  of  them,  as  in  the  address  "  On  the 

Meteorites,  the  Meteors,  and  the  Shooting  Stars,"  which  he  delivered 
in  1886  as  retiring  president  of  the  American  Association  for  the 
Advancement  of  Science,  or  in  certain  lectures  in  the  public  courses 

of  the  Sheffield  Scientific  School  of  Yale  University,  entitled  "  The 

story  of  Biela's  Comet"  (1874),  "  The  relation  of  Meteorites  to 
Comets"  (1876),  "The  Worship  of  Meteorites"  (1889),  or  in  the 
articles  on  Meteors  in  the  Encyclopaedia  Britannica  and  Johnsons 
Cyclopaedia. 

If  we  ask  what  traits  of  mind  and  character  are  indicated  by 

these  papers,  the  answer  is  not  difficult.  Professor  Klein  has  divided 
mathematical  minds  into  three  leading  classes:  the  logicians,  whose 
pleasure  and  power  lies  in  subtility  of  definition  and  dialectic  skill ; 

the  geometers,  whose  power  lies  in  the  use  of  the  space-intuitions; 
and  the  formalists,  who  seek  to  find  an  algorithm  for  every  operation.! 
Professor  Newton  evidently  belonged  to  the  second  of  these  classes, 
and  his  natural  tastes  seem  to  have  found  an  equal  gratification 

in  the  development  of  a  system  of  abstract  geometric  truths,  or 

*  These  were  detailed  in  a  bibliography  annexed  to  this  paper  in  Amer.  Jour.  Sci., 
ser.  4,  vol.  hi. 

•\Lectures  on  Mathematics  (Evanston),  p.  2. 
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in  the  investigation  of  the  concrete  phenomena  of  nature  as  they 
exist  in  space  and  time. 

But  these  papers  show  more  than  the  type  of  mind  of  the  author ; 
they  give  no  uncertain  testimony  concerning  the  character  of  the 
man.  In  all  these  papers  we  see  a  love  of  honest  work,  an  aversion 
to  shams,  a  distrust  of  rash  generalizations  and  speculations  based 
on  uncertain  premises.  He  was  never  anxious  to  add  one  more 
guess  on  doubtful  matters  in  the  hope  of  hitting  the  truth,  or  what 
might  pass  as  such  for  a  time,  but  was  always  willing  to  take 
infinite  pains  in  the  most  careful  test  of  every  theory.  To  these 
qualities  was  joined  a  modesty  which  forbade  the  pushing  of  his 
own  claims,  and  desired  no  reputation  except  the  unsought  tribute 
of  competent  judges.  At  the  close  of  his  article  on  meteors  in  the 
Encyclopaedia  Britannica,  which  has  not  the  least  reference  to  himself 

as  a  contributor  to  the  science,  he  remarks  that  "meteoric  science 

is  a  structure  built  stone  by  stone  by  many  builders."  We  may 
add  that  no  one  has  done  more  than  himself  to  establish  the 

foundations  of  the  science,  and  that  the  stones  which  he  has  laid 

are  not  likely  to  need  relaying. 

The  value  of  Professor  Newton's  work  has  been  recognized  by 
learned  societies  and  institutions  both  at  home  and  abroad.  He 

received  the  honorary  degree  of  Doctor  of  Laws  from  the  University 
of  Michigan  in  1868.  He  was  president  of  the  section  of  Mathematics 
and  Astronomy  in  the  American  Association  for  the  Advancement 
in  Science  in  1875,  and  president  of  the  Association  in  1885.  On 

the  first  occasion  he  delivered  an  address  entitled  "  A  plea  for  the 

study  of  pure  Mathematics  " ;  on  the  second  the  address  on  Meteorites, 
etc.,  which  we  have  already  mentioned.  Of  the  American  Mathe- 

matical Society  he  was  vice-president  at  the  time  of  his  death. 
In  1888  the  J.  Lawrence  Smith  gold  medal  was  awarded  to  him 
by  the  National  Academy  for  his  investigations  on  the  orbits  of 
meteoroids.  We  may  quote  a  sentence  or  two  from  his  reply  to 
the  address  of  presentation,  so  characteristic  are  they  of  the  man 

that  uttered  them :  "  To  discover  some  new  truth  in  nature,"  he 

said,  "  even  though  it  concerns  the  small  things  in  the  world,  gives 
one  of  the  purest  pleasures  in  human  experience.  It  gives  joy  to 

tell  others  of  the  treasure  found." 
Besides  the  various  learned  societies  in  our  own  country  of  which 

he  was  a  member,  including  the  American  Academy  of  Arts  and 
Sciences  from  1862,  the  National  Academy  of  Sciences  from  its 
foundation  in  1863,  the  American  Philosophical  Society  from  1867, 
he  was  elected  in  1872  Associate  of  the  Royal  Astronomical  Society 
of  London,  in  1886  Foreign  Fellow  of  the  Royal  Society  of  Edinburgh, 
and  in  1892  Foreign  Member  of  the  Royal  Society  of  London. 
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But  the  studies  which  have  won  for  their  author  an  honorable 

reputation  among  men  of  science  of  all  countries,  form  only  one 
side  of  the  life  of  the  man  whom  we  are  considering.  Another 
side,  probably  the  most  important,  is  that  in  which  he  was  identified 
with  the  organic  life  of  the  College  and  University  with  which 
he  had  been  connected  from  a  very  early  age.  In  fact,  we  might 
almost  call  the  studies  which  we  have  been  considering,  the  recreations 
of  a  busy  life  of  one  whose  serious  occupation  has  been  that  of  an 
instructor.  If  from  all  those  who  have  come  under  his  instruction 

we  should  seek  to  learn  their  personal  recollections  of  Professor 
Newton,  we  should  probably  find  that  the  most  universal  impression 
made  on  his  students  was  his  enthusiastic  love  of  the  subject  which 
he  was  teaching. 
A  department  of  the  University  in  which  he  took  an  especial 

interest  was  the  Observatory.  This  was  placed  under  his  direction 
at  its  organization,  and  although  he  subsequently  resigned  the 
nominal  directorship,  the  institution  remained  virtually  under  his 
charge,  and  may  be  said  to  owe  its  existence  in  large  measure 
to  his  untiring  efforts  and  personal  sacrifice  in  its  behalf. 

One  sphere  of  activity  in  the  Observatory  was  suggested  by  a 
happy  accident  which  Professor  Newton  has  described  in  the  American 
Journal  of  Science,  September,  1893.  An  amateur  astronomer  in 
a  neighboring  town,  Mr.  John  Lewis,  accidentally  obtained  on  a 
stellar  photograph  the  track  of  a  large  meteor.  He  announced  in 
the  newspapers  that  he  had  secured  such  a  photograph,  and  requested 
observations  from  those  who  had  seen  its  flight.  The  photographic 
plate  and  the  letters  received  from  various  observers  were  placed  in 

Professor  Newton's  hands,  and  were  discussed  in  the  paper  mentioned. 
The  advantages  of  photographic  observations  were  so  conspicuous 
that  Professor  Newton  was  anxious  that  the  Observatory  should 
employ  this  method  of  securing  the  tracks  of  meteors.  With  the 
aid  of  an  appropriation  granted  by  the  National  Academy  from  the 
income  of  the  J.  Lawrence  Smith  fund,  a  battery  of  cameras  was 

mounted  on  an  equatorial  axis.  By  this  means,  a  number  of  meteor- 
tracks  have  been  obtained  of  the  August  meteors,  and  in  one  case, 
through  a  simultaneous  observation  by  Mr.  Lewis  in  Ansonia,  Professor 
Newton  was  able  to  calculate  the  course  of  the  meteor  in  the  atmo- 

sphere with  a  probable  error  which  he  estimated  at  less  than  a  mile. 
The  results  which  may  be  expected  at  the  now  near  return  of  the 
Leonids,  will  be  of  especial  interest,  but  it  will  be  for  others  to  utilize 
them. 

Professor  Newton  was  much  interested  in  the  collection  of  meteorites, 

and  the  fine  collection  of  stones  and  irons  in  the  Peabody  Museum 

of  Yale  University  owes  much  to  his  efforts  in  this  direction. 
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Professor  Newton  was  a  member  of  the  American  Metrological 
Society  from  the  first,  and  was  conspicuously  active  in  the  agitation 
which  resulted  in  the  enactment  of  the  law  of  1866,  legalizing  the 
use  of  the  metric  system.  He  prepared  the  table  of  the  metric 
equivalents  of  the  customary  units  of  weights  and  measures  which 
was  incorporated  in  the  act,  and  by  which  the  relations  of 

the  fundamental  units  were  defined.  But  he  did  not  stop  here. 
Appreciating  the  weakness  of  legislative  enactment  compared  with 
popular  sentiment,  and  feeling  that  the  real  battle  was  to  be  won 
in  familiarizing  the  people  with  the  metric  system,  he  took  pains  to 
interest  the  makers  of  scales  and  rulers  and  other  devices  for  measure- 

ment in  adopting  the  units  and  graduations  of  the  metric  system, 
and  to  have  the  proper  tables  introduced  into  school  arithmetics. 

He  was  also  an  active  member  of  the  Connecticut  Academy  of 
Arts  and  Sciences,  serving  several  years  both  as  secretary  and 

president, — also  as  member  of  the  council.  He  was  associate  editor 
of  the  American  Journal  of  Science  from  1864,  having  especial 
charge  of  the  department  of  astronomy.  His  notes  on  observations 
of  meteors  and  on  the  progress  of  meteoric  science,  often  very  brief, 
sometimes  more  extended,  but  always  well  considered,  were  especially 
valuable. 

In  spite  of  his  studious  tastes  and  love  of  a  quiet  life,  he  did  not 
shirk  the  duties  of  citizenship,  serving  a  term  as  alderman  in  the 
city  council,  being  elected,  we  may  observe,  in  a  ward  of  politics 
strongly  opposed  to  his  own. 

Professor  Newton  married,  April  14th,  1859,  Anna  C.,  daughter 
of  the  Rev.  Joseph  C.  Stiles,  D.D.,  of  Georgia,  at  one  time  pastor 
of  the  Mercer  Street  Presbyterian  Church  in  New  York  City,  and 
subsequently  of  the  South  Church  in  New  Haven.  She  survived 
her  husband  but  three  months,  leaving  two  daughters. 

In  all  these  relations  of  life,  the  subject  of  this  sketch  exhibited 
the  same  traits  of  character  which  are  seen  in  his  published  papers, 
the  same  modesty,  the  same  conscientiousness,  the  same  devotion 
to  high  ideals.  His  life  was  the  quiet  life  of  the  scholar,  ennobled 
by  the  unselfish  aims  of  the  Christian  gentleman;  his  memory  will 
be  cherished  by  many  friends ;  and  so  long  as  astronomers,  while 
they  watch  the  return  of  the  Leonids  marking  off  the  passage  of 
the  centuries,  shall  care  to  turn  the  earlier  pages  of  this  branch 
of  astronomy,  his  name  will  have  an  honorable  place  in  the  history  of 
the  science. 
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