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THE PROBLEM 

Develop statistical, physical, and computer techniques and 

methods for interpreting, summarizing, and extrapolating environ- 

mental data to support Navy requirements in research, develop- 

mental, and operational aspects of underwater detection, location, 

communications, and navigation. Specifically, study the use of 

regression models for time/space interpolation of sea-surface 

temperature observations, 
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RESULTS 

1. A regression model considering latitude, longitude, and day- 

of-year as the independent variables, together with empirically 

determined interaction terms, was found capable of estimating the 

seasonal variation of sea-surface temperature off the west coast 

of the United States, in water depths greater than 100 fathoms, to 

a standard deviation of less than 1°F. 

2, The analysis suggests that more information than previously 

suspected can be obtained from a given number of observations 

provided realistic regression models can be developed. This 

suggestion has important implications with regard to sampling. A 

sampling interval based on the model can be used in place of the 

fixed time interval employed in the classical manner with an area 

grid. The oceanographic problem becomes one of searching for 

adequate models. It is indicated adequate models can be derived 

for many ocean areas from the present archive of oceanic temper- 

ature data. 

3. On the assumption that the regression model is reasonably 

valid, the regression technique has the potential of being an effec- 

tive method for identifying and editing raw temperature data for 

erroneous observations and for detecting and isolating temperature 

anomalies. 

4, This study suggests that regression techniques may provide 

the basis for a new approach to summarizing archived sea-surface 

temperature data. 



RECOMMENDATIONS 

1. Extend regression models to include depth as an independent 

variable, 

2. Apply regression modeling techniques to describing the dis- 

tribution of other oceanic parameters, such as salinity. 
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AUTHOR’S NOTE 

This study was undertaken as a result of the following 

recommendation made in an NEL report published in 1960: 1,* 

"Explore the utility of multiple regression 

(response surfaces), or more complex 

analyses of variance, in summarizing the 

entire body of collected data, since the 

manner in which the observations are col- 

lected limits the amount of the available 

data which can be used for comparisons at 

different places and times." 

This recommendation resulted from a review of the manu- 

script of NEL Report 965 by Dr. George W. Snedecor, then Con- 

sultant in Statistics at NEL. The initial attempts to apply regres- 

sion models to summarizing sea-surface temperature data were 

undertaken jointly by Dr. Snedecor and the author. The original 

intent was to publish these results as a coauthored report. With 

the retirement of Dr. Snedecor a number of years ago this is not 

now possible. However, the author wishes to especially acknowl- 

edge Dr. Snedecor's enthusiastic motivation, interest, and con- 

tribution to the results presented in this report. 

* 

See references at end of report 



Oceanometrics Defined 

The work described in this paper is often referred to as the 

"climatology of the oceans."' Since the dictionary definition of 

"climatology" refers to the atmosphere only, Dr. Snedecor pro- 

posed that this aspect of oceanography be called 'oceanometrics."' 

The use of such a word has precedents in the fields of biology and 

economics, where "biometrics" and ''econometrics" are well- 

defined words. 

Since Dr. Snedecor first proposed the word some five years 

ago, its definition has been undergoing gradual evolution. Origi- 

nally it was felt that the word implied a relationship to oceanogra- 

phy similar to the relationship of climatology to meteorology. In 

the minds of many people climatology is associated with the statis- 

tical summarization of measurements of atmospheric parameters, 

such as temperature, wind speed, and the like, with no implication 

concerning its ultimate application. 

As a result a second definition evolved suggesting that 

oceanometrics occupied a position between the extremes of "pure 

dynamical oceanography" and "climatology of the ocean." In this 

sense pure dynamical oceanography is thought of as attempting to 
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construct simplified models and, from these models, to derive 

laws that describe what is happening in the ocean; and climatology 

of the oceans is thought of as collecting data on oceanographic 

parameters and presenting statistical summaries of these data 

with, in the extreme case, no thought to physical theory. 

Recently a third definition has been suggested based on the 

assumption that most sciences develop in three stages: descrip- 

tion, prediction, and control. At the present time the science of 

oceanography is phasing from description to prediction. The first 

stage, usually referred to as "descriptive oceanography," is 

primarily concerned with the reporting of data collected during 

exploratory data-collection cruises. The second stage, prediction, 

is primarily concerned with the quantitative analysis of oceanic 

data. This stage involves the symbolic expression of the physics 

of ocean behavior, or mathematical modeling. It is generally 

referred to as "dynamic oceanography" if it is limited to determin- 

istic variables—that is, variables which are unencumbered by 

random variability. It is proposed that the second stage be 

referred to as ''oceanometrics" if it is concerned with stochastic 

variables—that is, variables which include random variability. 
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INTRODUCTION 

This study is the second in a series concerned with the 

analysis of sea-surface temperature observations. The first 

study ~ dealt with the effect of missing data in long time-series 

sea-surface temperature measurements on certain regression and 

autocorrelation analyses. 

For many decades observations of sea-surface temperature 

have been taken and recorded by merchant and naval vessels. 

Subsequently these observations have been catalogued and archived 

by many agencies. In the United States these agencies include the 

U. S. Naval Hydrographic Office (now the U. S, Naval Oceano- 

graphic Office), the National Weather Records Center, and the 

National Oceanographic Data Center. 

As the volume of data accumulated, it became the basis for 

many generalized summaries.*!” All these summaries use 

arbitrary temporal and spatial averaging. Krummel averaged the 

data over all years and all months. His areas were 5 degrees of 

latitude in the north-to-south dimension and extended east to west 

across an entire ocean. Bohnecke, the U. S. Weather Bureau, and 

the U. S. Naval Hydrographic Office used areas of 1-, 2-, or 

5-degree squares of latitude and longitude and averaged all years 

together by month or season. 

In recent years a requirement by researchers in the fields 

of fisheries oceanography, military oceanography, and meteor- 

ological oceanography for more detailed descriptions of sea- 

surface temperature distributions has developed. In response to 

this requirement the Bureau of Commercial Fisheries and the 

American Geographical Society have begun the preparation of 

more detailed charts. The Bureau of Commercial Fisheries is 

preparing detailed month-by-month charts of sea-surface 
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temperature in the North Pacific and the American Geographical 

Society is preparing similar charts for the Atlantic in the area of 

the Gulf Stream. The technique used to summarize the data is 

the same as that used in the earlier studies. Both studies sum- 

marize data for a particular year by monthly time intervals. The 

Bureau of Commercial Fisheries uses 2-degree-square areas and 

the Geographical Society uses 30-minute-square areas. 

This study examines the potential of multiple-regression 

analysis as an approach to analyzing sea-surface temperature 

observations. Although multiple-regression techniques were 

developed by the statisticians many decades ago, they have rarely 

been used by oceanographers, because of the complexity inherent 

in developing realistic models and the magnitude of the arithmetic 

task required to evaluate the necessary constants, With the rapid 

progress in developing high-speed digital computers, the arith- 

metic computational difficulties have been overcome to the extent 

that it is now practical to consider relatively complex models. 

THE REGRESSION MODEL 

In the use of regression analysis it is necessary to know, or 

to assume, (1) the major independent variables, or main effects: 

and (2) a functional relationship between these variables, or a 

regression model, In any given situation the desired functional 

relationship is generally determined from analytical or theoretical 

considerations or from a study of scatter diagrams prepared from 

the data being analyzed. In this study the latter approach is used. 



The assumed independent variables are latitude, longitude, 

and day-of-year. A "point," or ''cell,' in the model is a 10- 

minute-by-10-minute area for a 1-day time period. A 10-minute- 

square area was selected, since the location of the data points is 

probably not known exactly and the initial interest is in the sea- 

sonal, or day-to-day, change in temperature. 

Seasonal Variation 

Sea-surface temperature records acquired over approx- 

imately 96 years were used to establish a functional relationship 

descriptive of the seasonal variation. The data were for the fol- 

lowing locations: 

50°.N 145 W Pacific Ocean Weather Ship PAPA 

51°50'N 131 W Pacific Ocean St. James Island 

54°10'N 133° W Pacific Ocean Langara Island 

32°50'N 117 15'W Pacific Ocean Scripps Pier, La Jolla, Calif. 

35 N 48 W Atlantic Ocean Weather Ship ECHO 

One year of measurement for each location is presented in 

figure 1 to give the reader some feel for how the individual tem- 

perature measurements vary throughout the year. A subjective 

examination of the data shows a more or less regular sinusoidal 

variation with season. In addition there are variations of a few 

days' to a few weeks' duration at irregular intervals. At the open- 

ocean locations, PAPA and ECHO, the shorter-period variations 

occur less frequently and their magnitude is smaller than at the 

13 
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Figure 1. An example of the day-to-day variation of sea-surface temperature for five 

locations in the eastern Pacific Ocean and the Atlantic Ocean. 
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coastal location, Scripps Pier. It is also recognized that there is 

a diurnal variability present in these data since the daily observa- 

tions were taken at random times during the day. The latter 

short-period variations will not be included in the model, with the 

result that their effect will contribute to the unexplained variance. 

Since the seasonal variation in sea-surface temperature is 

not symmetrical about an origin, the use of the following fifth- 

degree polynomial is suggested by the scatter diagrams: 

T =d,-GD -a,D- ~a,D? ~a,D° “a_D? (1) 

where ) is measured in days from some arbitrary origin, T is 

the least-squares fitted value, or estimate, of surface tempera- 

ture, and the sub scripted a's are regression coefficients to be 

estimated. 

Equation (1) was fitted to 5 years of data taken at each of the 

five locations listed above to demonstrate the adequacy of the 

fifth-degree polynomial as an estimator of the seasonal sea- 

surface temperature variation, The origin of time was taken as 

July 1 and the years referred to are fiscal years. The notation 

"1954" refers to a fiscal year 1954 starting 1 July 1953, and end- 

ing 30 June 1954, 

The following related quantities are used as measures of the 

"goodness of fit'’ of equation (1) to the observed data: R , multiple 

correlation coefficient: 100R2 percent variance explained by 

regression: and «, standard deviation in degrees Fahrenheit of the 

observations about the regression curve. 

17 
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Fiscal year 95 i 

Weather ship PAPA 

Observations 254 

R 0.98 

100R* 95.9 

o Ilgal 

Weather ship ECHO 

Observations 229 

R 0. 96 

100R" 92.3 

o 1.2 

Cape St, James 

Observations 325 

R 0.95 

100R? 90.5 

o Ibe 

100 

0.98 

96.4 



Fiscal year 1957 1958 1959 1960 1961 

Langara Island 

Observations 345 354 343 343 306 

R 0.96 0.95 0.91 0.98 0.96 

100R7 92.4 90.8 83.1 95.9 91.3 

Scripps: Pier 

Observations 362 357 364 359 358 

R 0.96 0.93 0.91 0.91 0.94 

100k? 91.6 86.2 83.0 83.4 87.9 
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An examination of these statistics supports the conclusion 

that a fifth-degree polynomial is an acceptable estimator of the 

seasonal variation. Relatively, the fit is best for open-ocean data 

(PAPA and ECHO), with 92 to 98 percent of the observed varia- 

bility explained; next best at island locations (St. James Island and 

Langara Island), with 83 to 96 percent of the variability explained; 

and poorest at Scripps Pier, located about 1000 feet from shore, 

with 83 to 92 percent of the variability explained. Equation (1) 

has been fitted to many other years of data with similar results. 

On figure 1 the solid line is a plot of equation (1) using the 

regression coefficients for the indicated location and year. The 

histograms show the distribution of differences between the 

observed and estimated sea-surface temperatures and the vertical 

dotted lines indicate one standard deviation of these differences, 

It is of interest to note that from September 1 to January 1 

the rate of cooling varies from 2. OF per 30-day period at St. 

James Island to 3.4 F per 30-day period at PAPA. The rate of 

warming from May 1 to July 1 varies from 3. 2°F per 30-day 

period at Langara Island to 4, 0F per 30-day period at ECHO and 

St. James Island. 



Latitudinal Variation 

The observations used to examine the latitudinal variation in 

sea-surface temperature were taken from Punched Card Deck 116, 

U. S. Merchant Marine and Other Ship Observations, 1949 ——— , 

of the National Weather Records Center, These are marine 

weather observations which include, among other parameters 

measured, a sea-water temperature. These observations are 

usually taken by a mercury-in-glass thermometer installed in 

the ship's sea-water-intake system and are reported to the nearest 

whole degree Fahrenheit,!? Listings of all weather observations 

made in the North Pacific north of 20 N for the years 1956 and 

1957 were obtained from the Records Center. 

From the punched-card deck the sea-surface temperatures 

taken north of 20°N and along a given longitude, +0. 2 of longitude, 

were selected to examine the variation of surface temperature as 

a function of latitude. The longitude strips selected were: 126°, 

129°, 132°, 135°, 138°, and 141°W. The data from three of these 
strips for March and September 1956 and 1957 are plotted in 

figure 2. March and September were used to minimize the effect 

of the seasonal change in temperature. 

21 



138 DEGREES W LONGITUDE 

TEMPERATURE 

1957 60 

50 

40 
20 2D 30 35 40 45 50 55 60 

LATITUDE, DEGREES N 

22 Figure 2. Latitudinal variation of sea-surface temperature. 
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A subjective study of these scatter diagrams suggests a 

polynomial of the following form: 

ce 2 3 
T -a, +@.L+a.L +a.L (2) 

where L is the latitude, T is the estimated sea-surface tempera- 

ture, and the subscripted a's are the regression coefficients to 

be estimated, 

Equation (2) was fitted to the above 24 sets of data. The 

following statistics for the data shown in figure 2 were obtained: 

Number of 100 Re oO, 

Longitude | Observations percent | degrees F 

MARCH 

1956 | 126 W 1.5 

132° 16 

138 eal 

1957| 126 W Qe 

132% 23 

138 its 8) 



Number of 

Year | Longitude | Observations 

SEPTEMBER 

1956 126 W 

1957 126° W 

Relatively the fit is best for data taken the greatest distance 

from shore, the percent variance explained by regression varying 

systematically from 94 to 71 percent. The reader is reminded 

that the original data were reported to the nearest whole degree 

Fahrenheit and that many of the temperatures are 'injection" 

temperatures taken at some depth below the surface. The standard 

deviation would be expected to be greater for these data than for 

the data used to establish the seasonal variation. 

On figure 2 the solid line is a plot of equation (2) using the 

regression coefficients for the proper latitude, year, and month. 

A third-degree polynomial appears to exhibit the flexibility neces- 

sary to obtain a reasonable estimation of the latitudinal variation. 

It is of interest to note that from 30 to 40 N the temperature 

decreases about 1,2°F per 1-degree change in latitude, about 60 

nautical miles. 



Longitudinal Variation 

The observations used to examine the longitudinal variation 

were also obtained from Punched Card Deck 116. 

From this deck the sea-surface temperatures taken along a 

given latitude, +0. 2° of latitude, were selected, Latitude strips, 

at 3-degree intervals, were selected starting at 30 N. The data 

for four of these strips—30- : SG 42 om and 48° N—for March and 

September 1956 and 1957 are plotted on figure 3. 

The data suggest that a third-degree polynomial can be used 

as a model where 

T’= a,’ + a,G + a0 i a," @) 

and G is the longitude. 

Equation (3) was fitted to the above sets of data. The fol- 

lowing statistics for the data shown on figure 3 were obtained: 



Number of 

Observations 

SEPTEMBER 

1956 30 N iL 

36. 2m? 

42 2.3 

48 2.8 

1957 30 N 2.0 

36 2.5 

42° 3.0 

48 1.4 
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Figure 3. Longitudinal variation of sea-surface temperature, 
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The variability in the R and the related 100R7is considerably 

more in longitude than in the seasonal or latitudinal analysis, 

while the variability in the standard deviation is about the same in 

longitude and in the latitudinal analysis. The variability in the R 

and 100R7is related to the fact that for the samples with the 

smaller R and 100R* there is little change in temperature with 

longitude. In other words, there is not much systematic variability 

to explain. For the samples with the larger R and 100R? values, 

the systematic longitudinal variation is relatively greater. Thus, 

these statistics are not comparable, since they are not independent, 

for any given sample, of the overall change in temperature with 

longitude. On the other hand the standard deviation, which is a 

measure of the random variability in the variation of the tempera- 

ture, may be compared from sample to sample. 

It is concluded that in the geographical area under consider- 

ation the surface temperature is less sensitive to longitudinal 

change than to latitudinal and seasonal change, that there are 

considerable differences between latitudinal strips, and that equa- 

tion (3) is flexible enough to describe these differences. 



Interactions 

An examination of the data in figure 2 shows that the tem- 

perature variation with latitude differs from one longitude to 

another, indicating that there are interactions between latitude 

and longitude. In addition, there are indications that there are 

interactions between latitude and day, and longitude and day. It 

is necessary, therefore, to include such interactions in the model 

if the model is to be realistic. 

A trial-and-error approach was used to obtain information 

on the characteristics of the interactions to be included in the 

model, Many combinations of the main-effect terms were tried 

and discarded. The following terms appear to be the most 

important for the area under consideration: 

a, LD + a, ,LD® + a, LD? latitude by day 

a, _GD+a GD® Lol (DY longitude by day 
15 16 17 

LGs(anGena GE! a ghG + (a, G> +4, ,GL + 

latitude by longitude 

2 3\pn 
(aL + a, oL IG 
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Summary 

Equations (1). (2), and (3) together with the above interaction 

terms were combined to form a 22-variable regression model with 

23 coefficients to be determined by least squares: 

Surface temperature = 

2 3 4 5 Pe aad 
a) + a,D +a,D aD - a,D - a-D + day-of-year 

9 ‘ main 
a,b + a,L* + ania? + latitude effects 

G.G pay Gena Ge + longitude 
9 107 11 

3 3 3 
a + + su e | ay (4) 19LD a,,LD a, ,LD latitude by day 

a__GD+a -GD° +a._GD° + longitude by day 
15 16 17 

intei- 

a, gLG a 
actions 

2 3 : 9 2 ieee : J a 
(a, 4G a, 9G L latitude by longitude 

2 3 (a,b + @,5L IG 

where D, L, and Gare the day-of-year, latitude, and longitude, 

respectively, This model is applicable to an area off the west 

coast of the United States extending from 20 N to 58 N and from 

the coast to 150° W. 



RESULTS OF REGRESSION ANALYSIS 

Equation (4), or a modification of it, was fitted to surface 

temperature observations taken by a bathythermograph in the 

areas A, B, C, and E shown in figure 4. In addition it was fitted 

to the large area shown extending from 30 to 49° N and seaward 

about 650 miles. In the latter area the sea-surface temperature 

observations used were made in the four shaded 1-degree-longitude 

strips (B, C, D, and E) shown in figure 4. The measurements 

were treated as a single sample drawn from the large area. 

Equation (4) was developed as a model for the largest area. 

Since the other areas cover smaller intervals of latitude and 

longitude, the terms in equation (4) that involve the higher orders 

of these variables are omitted. A 3-month overlap in time was 

used in making the least-squares fit to control the behavior of the 

fifth-degree polynomial. Thus, the data used covered an 18-month 

period extending from 1 April of a given year to 1 October of the 

following year, and the resulting equation was used to estimate 

the temperature during the included fiscal year. 
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Figure 5 is an example of how the data are distributed with 

respect to space and time. Data taken in waters less than 100 

fathoms in depth were excluded from the analysis. The data 

distributions for areas B, C, and E for the years 1952, 1953, and 

1954 are included. The histograms on page 40 show the monthly 

distributions and the figures on page 41 the geographical distribu- 

tions. The nonuniform data distribution with respect to time and 

space is obvious. Geographically, most of the data are in the 

area nearest shore. The number of data decreases rapidly to the 

west, many 10-minute-square areas containing no data. Area C 

is notable for its nonuniform spatial distribution. Temporally, 

most of the data were taken during the spring and summer. Area 

E is notable for its nonuniform temporal distribution. 

The distributions of the observations in the other data sets 

used in this study exhibit similar characteristics. 

Equation (4) was least-squares fitted to 5 years of data taken 

in Area A from 1951 to 1955 inclusive and in areas B, C, and E 

from 1950 to 1954 inclusive. Each data set consisted of sea- 

surface temperatures as recorded in degrees Fahrenheit on 

bathythermograms taken during the indicated year and in the 

indicated area. The results of the 20 individual regression 

analyses are presented in figure 6. For each analysis the number 

of observations, the multiple correlation coefficient, the percent 

of the variance explained by regression, and the standard devia- 

tion of the observations about regression are shown. The last 

analysis utilized the data taken in the four 1-degree-latitude 

strips. As indicated in figure 7 these measurements were treated 

as a single sample drawn from the area 30 to 49 N and extending 

39 
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seaward about 650 nautical miles and for an 18-month time period 

extending from 1 April 1949 to 1 October 1950. The total number 

of observations in each area and their temporal and spatial dis- 

tribution are also shown. In the shaded areas one to 20 observa- 

tions were made and in the unshaded areas no observations were 

made. Equation (4) was fitted to the data. The statistical results 

were as follows: 

Number of observations: Area B 239 

Area C 190 

Area D 176 

Area E 203 

Total 808 

100R2 percent variance explained by regression 85.7 

R, multiple correlation coefficient 0.93 

o, standard deviation in degrees Fahrenheit 

of the observations about regression 1.9 

Figure 8 shows the location in time and space of 971 temper- 

ature observations made in this area during fiscal year 1950. The 

observations were not used in obtaining the regression equation 

but were used as a control to see how well the regression equation 

could estimate independently observed sea-surface temperatures. 

The difference between the observed temperature and that esti- 

mated from regression was obtained. The results are summarized 

in figure 9. The standard deviation of the differences was 2, 3°F 

compared to 1. 9 F for the regression equation. 
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Regression analysis appears to have considerable potential 

as a technique for estimating sea-surface temperatures. However, 

the physical reality of the estimates must also be considered, 

since it is always possible to improve the statistical measures of 

goodness of a regression-model estimate by merely adding addi- 

tional terms to the model. From a physical viewpoint these terms 

may be nonsense terms. 

Regression analyses of Area B (1954), Area C (1953), and 

Area E (1952) are examined to illustrate the physical reality of 

the model, The difference between observed values of tempera- 

ture and the values obtained from regression will be considered as 

a function of water depth, time, latitude, and longitude. 

It was noted in studying the results of some of the earlier 

analyses that many of the large differences between the tempera- 

tures obtained from regression and those obtained by observation 

occurred in the shallower water adjacent to the coast line. This 

finding was not surprising, since transient and local effects, which 

are not accounted for in the model, should have their maximum 

influence on the temperature in such areas. 

Figures 10 and 11 present a qualitative histogram analysis 

of the effect of water depth for the three regressions. Figure 10, 

for each area, contains three histograms. The shaded portion of 

the histogram on the left shows the distribution of differences for 

data taken in water depths less than 100 fathoms, while the un- 

shaded histograms include all data used in the regression analysis, 
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The center histograms show the distribution of differences for 

observations taken in water depths greater than 100 fathoms and 

the histograms on the right show the differences for observations 

taken in water depths less than 100 fathoms. 

Figure 11 contains histograms of the differences between 

observation and regression as a function of the percent of total 

observations taken in water of less than 100 fathoms. 

An examination of the histograms, particularly those of 

figure 11, leads to the not unexpected qualitative conclusion that 

differences between regression and observation for the observa- 

tions taken in water depths less than 100 fathoms are greater than 

for those taken in deeper water. The conclusion suggests that 

variables other than latitude, longitude, and day-of-year are im- 

portant in determining the distribution of temperature in shallower 

water. 

Figure 12 shows the differences between the observed tem- 

perature and that computed from regression as a function of day- 

of-year for each of the three areas. In addition a two-standard- 

deviation interval is shown on the right. From a seasonal point of 

view the differences seem to be randomly distributed about zero 

difference. However, for time periods of a few days to tens of 
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days, the differences are not randomly distributed. As examples, 

five such time periods are noted on figure 12. It is noted that 

period four persisted for only a few days while period five appears 

to have persisted for a month or more. It is concluded that equa- 

tion (4) does estimate the seasonal variation, but does not, as 

expected, estimate the shorter-period temperature variations 

related to short-period transient phenomena. 

Figure 13 shows the differences as a function of 10-minute- 

latitude intervals. These differences appear to be randomly 

distributed about zero difference. The numbered short-time- 

period samples shown on figure 12 are also indicated on this 

figure, giving an indication as to the latitudinal extent of these 

short-period anomalies. 

Figure 14 shows the differences as a function of 10-minute 

longitudinal intervals. Again the differences appear to be ran- 

domly distributed about zero difference. Also the numbered short- 

period samples are shown, giving an indication of the longitudinal 
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extent of the short-period anomalies. The spatial extent of the 

anomalies, as shown by figures 13 and 14, may cover 1 degree of 

latitude and several degrees of longitude. For example, numbered 

sample five shows that the observed temperature was lower than 

the regression estimate over the 1 degree of latitude and over 

approximately 4 degrees of longitude for a time period of about 1 

month. 

For most of the numbered samples the data are located in 

that part of the latitude strip nearest the coast, where, oceano- 

graphically, the variation in temperature is expected to be most 

erratic, because the number of mechanisms there that affect 

temperature is greatest. 

Figures 15 through 17 are graphical representations of the 

regression models for these samples. In each figure the regres- 

sion equation is shown at the top. The narrow strip at the bottom 

shows the geographical distribution of the observations. The 

graphs above the strip show the variation of sea-surface tempera- 



ture as a function of day-of-year for each of the 10-minute-by- 

10-minute shaded areas. The dots are measured temperatures 

within the area. To the right of the strip is a histogram showing 

the distribution of the observed data sample by months; to the 

right of the histogram the variation of temperature with longitude 

for the first day of the month is shown; and to the far right is 

shown the distribution of the differences between observed and 

estimated temperature. Pertinent statistics are given at the top 

of each figure. 

A qualitative study of these figures does not reveal any 

contradictions to generally accepted characteristics of the varia- 

tion of sea-surface temperature in the areas covered by the 

analyses. 

It is concluded that the regression model, as expressed in 

equation (4), is a physically acceptable estimator of seasonal and 

spatial variations in sea-surface temperature in the areas covered 

by these analyses. 
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DISCUSSION 
Several interesting observations are suggested by a study of 

the 21 regression analyses considered above. 

Time /Space Consistency 

Perhaps the most obvious is the consistency in the statistical 

parameters with respect to both year and area. In any analysis 

technique this consistency is important. If the results from year 

to year and area to area varied widely, then the statistical model 

would have little predictive potential. It is noted that: (1) The 

multiple-regression correlation coefficients vary from 0. 84 to 

0.99, with 50 percent of the coefficients in the 0. 88-to-0, 91- 

percent interval. (2) The percent of variance explained by regres- 

sion varied from 71 to 97 percent, with 50 percent in the ‘79-to-86- 

percent interval. (3) The standard deviations varied from 0.9 to 

alle 9°F, with over 50 percent in the 1. 1-to-1. 5 F interval. The 

median standard deviation was 1.2 F. Since the surface- 

temperature data were obtained from bathythermograms, the data 

have an instrumental error from 0.5. to perhaps 1. OEP the 

meegnitude selected depending upon the reader's personal feeling 

regarding bathythermogram accuracy. The instrumental error 

represents the noise in the data. The difference between the 

instrumental error and the standard deviation, about 0.5 to 1. 0 F, 

could possibly be a systematic variation not considered in the 
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model. The model does not include the diurnal variation, a 

systematic variation of about this magnitude. It is anticipated 

that the inclusion of this variable would decrease the standard 

deviation to a value near the instrumental error. Thus, it appears 

reasonable to suggest that a simple statistical model, such as 

equation (4), using bathythermogram data, will describe the 

seasonal and spatial variation of sea-surface temperatures to one 

standard deviation of something less than ie 

Time /Space Distribution 

The temporal and spatial distribution of the observations is 

of interest. A study of the distribution of the data (fig. 5) sug- 

gests that temporally the distribution is the most unsatisfactory in 

Area E, since no observations were made from October to March; 

and that spatially it is most unsatisfactory in Area C, since in one 

10-minute square, near the 100-fathom contour, 32, 75, and 87 

observations were taken in 1952, 1953, and 1954, respectively. 

The observations represent 12, 30, and 30 percent of the total 

data taken in their respective years. 

An examination of the variation of the statistical measures 

shown in figure 6 suggests that the data distributions are not 

unsatisfactory, as originally thought, but are quite satisfactory. 

An examination of the regression model supports this contention. 

The model for the day-to-day variation is a fifth-degree polynom- 

ial. If this model truly represents the seasonal variation of sur- 

face temperature, then it is necessary only to have observations 



during oceanographic summer and winter, since in order for the 

model to fit the data taken during the seasonal extremes, it must, 

by nature of the model, fit the data taken during the periods of 

spring warming and autumn cooling. Thus, the taking of addi- 

tional data during the latter seasons neither adds to nor detracts 

from the results obtained. Similar reasoning applies to the spa- 

tial distribution of data. If a third-degree polynomial describes 

the longitudinal variation of surface temperature, then it is neces- 

sary only to have a few observations distributed over the area to 

determine the shape of the polynomial. Again, the taking of addi- 

tional observations is unnecessary. In support of this observation, 

an additional fit to the data taken in 1954 was made to the same 

data shown in figure 6, except that only 22 observations picked 

randomly from the original 87 observations, taken in the 1-degree 

square under consideration, were used. The results follow: 

Area C (1954) Data Set 1 Data Set 2 

Number of observations 286 221 

100R2 percent variance explained 75.0 74.9 

R, multiple correlation coefficient 0.87 0.87 

o, standard deviation in degrees F 1.8 Ie tl 

The almost identical results of the two regression analyses sug- 

gest that the additional 65 observations used in the first analysis 

did not contribute any additional information, and that the abnormal 

spatial distribution of data did not distort the statistical analysis. 
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The implication is important. A sampling interval based on a 

model representing the distribution of the variable should be used 

in place of the fixed time interval employed in the classical 

manner with an area grid. The oceanographic problem becomes 

one of searching for adequate models. It is believed that adequate 

models can be developed for many oceanic areas through examina- 

tion of historical data and present knowledge of oceanic dynamics. 

Data Screening 

It may be possible to use regression techniques to identify 

and eliminate erroneous data from data samples. Saur!? discusses 

this problem. Erroneous measurements are particularly trouble- 

some when the conventional space/time methods of data summar- 

ization are used, since the number of observations in any given 

cell is generally small, and erroneous data can often distort 

arithmetic means and standard deviations of discrete samples. 

Since the average for any given cell is independent of the average 

in any other space/time cell, the contribution of an erroneous 

observation tends to be maximized. Frequently a biased average 

results that must be compensated for in some manner, generally 

subjective, in the subsequent contour analysis. Thus, the problem 

of editing out erroneous observations is of considerable importance. 

Provided the regression model is reasonably valid, the regression 

technique may offer an effective, and objective, method for editing 



out the erroneous observations. Since space and time are treated 

simultaneously in the regression model rather than separately as 

in the conventional space/time averaging approach, a single 

observation is not overly weighted in the averaging process. 

Data taken in the 30 N-latitude strip for fiscal year 1950 will 

be used to illustrate this editing technique. The original set of 

raw data contained 199 observations taken in the 18-month period 

centered on fiscal year 1950. The left-hand section of figure 18 

shows the statistical results obtained by fitting equation (4) to this 

complete data set. In addition, a histogram of the differences 

between the sea-surface temperature obtained from the regression 

equation and the observed value is presented. It is noted that 

there are three differences greater than +3 standard deviations and 

eight differences greater than +2 standard deviations. The original 

data for these 11 observations were examined and in all cases real 

errors were found. The correspondence suggests that gross 

errors in data sets may be detected by means of a regression 

model and eliminated by rejecting data whose differences are 

greater than some multiple of the standard deviation. The center 

and right-hand sections presentresults obtained by rejecting data 

whose differences were greater than +3 and +2 standard devia- 

tions, respectively. If, for one reason or another, it is not 

desirable to eliminate the erroneous data, the regression technique 

affords a method of rapidly identifying the data badly in error. 

Once identified, data can be examined, corrected, and salvaged 

for subsequent analysis. 

Several such analyses were made on different data sets and 

in all cases the data identified by large differences were found to 

contain real errors. 
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Anomaly Detection 

Regression models could be used as anomaly detectors. In 

this application a model, such as equation (4), could be used to 

remove the systematic variations in latitude, longitude, and day- 

of-year. Through a study of the differences between observation 

and regression (anomalies), information on nonsystematic and 

other systematic space/time changes would be obtained. The 

anomalous variations could be examined in terms of causes and 

mechanisms. This application of regression models was alluded 

to in the discussion of figures 12 to 14, in which it was noted that 

the differences revealed short-period, small-area, nonsystematic 

anomalies. 

An additional example of this use of regression models may 

be found in the differences associated with the data used in figure 

9. It is well known that upwelling of cold water occurs off the 

coast of California from about 30° N to 45 N from March to July. 

The phenomenon is associated with the north-northwest winds that 

prevail off the coast of California during these months. The 

upwelling results in summer and autumn surface temperatures 

considerably lower than those expected on a seasonal basis alone. 

The colder-than-expected surface temperatures are centered in 

the vicinity of 35 _N and 40°N, Figure 19 shows the differences 

for July between the observed surface temperatures and surface 

temperatures computed from regression. A negative sign means 

the observed temperature was lower than estimated. The anom- 

alous effect of upwelling on surface temperature is obvious. 

Parenthetically it is noted that since it is known that these anom- 

alies are the result of a north-northwest wind pattern, they could, 

in principle, be removed by introducing the wind vector as an 

independent variable in the regression equation. 
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Figure 19. July differences between observed and computed sea-surface temperatures 
illustrating the use of a regression model for anomaly detection. 
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Summarization of Historical Data 

Regression techniques could also supply a new approach to 

summarizing historical sea-surface temperature data. It is 

assumed that it is possible to develop a realistic regression model. 

In this study the model was derived by a pseudo-objective method 

involving a trial-and-error approach to determining the inter- 

action terms. Before regression modeling can become completely 

satisfactory as a method of sea-surface temperature summariza- 

tion, it will be necessary to develop objective methods of deter- 

mining the main effects and their interactions. If it is assumed 

that a physically acceptable regression model can be developed, 

it might still be asked how such a model can yield estimates of the 

day-to-day and location-to-location sea-surface temperature. An 

unpublished NEL study suggests that an 8-to-10-year time-series 

record of sea-surface temperatures is long enough to produce 

reliable long-term estimates that are independent of the time 

period of observation. Thus, if there is available a 10-year 

record of sea-surface temperatures covering the area for which 

the regression model was developed, the regression equation can 

be fitted to each year of data to provide 10 yearly sets of regres- 

sion coefficients. A sample could then be drawn from each yearly 

distribution and combined into a composite sample which could be 

considered a sample drawn from the 10-year time period. The 

regression equation could then be fitted to this composite sample 
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to produce a regression equation that would represent the temporal 

and spatial variation of sea-surface temperature independently of 

year-to-year effects. This would be analogous to the climatic 

charts of the meteorologist. 

In the absence of any other information this regression 

equation will give the best estimate of sea-surface temperature 

and its variance for any latitude, longitude, and day-of-year. 

Year-to-year variations, which of course do exist, are neglected. 

To improve on this estimate it is necessary to consider the year- 

to-year variation. This might be done as follows: Assume that 

some observations have been made during the past several months 

over the area. The composite surface could be adjusted to the 

new data by a least-squares adjustment of the origin of the regres- 

sion equation to pass the surface through the currently observed 

data. The adjusted surface will then be the best estimate of sea- 

surface temperature for any future day. 

For any particular day of the year contour charts, such as 

illustrated by figure 20, could if desired be prepared. This par- 

ticular chart was prepared, using equation (4) fitted to the data 

taken in fiscal year 1950 in the large area, for 8 November 1950. 

A comparison of this chart with a chart prepared using more 

classical techniques shows excellent agreement. 
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CONCLUSIONS 

1. A regression model considering latitude, longitude, and 

day-of-year as the independent variables together with empirically 

determined interaction terms, was found capable of estimating 

the seasonal variation of sea-surface temperatures off the west 

coast of the United States, in water depths greater than 100 

fathoms, to one standard deviation of something less than 1 F. 

2. From both a statistical and a physical viewpoint rela- 

tively simple regression models have a considerable potential as 

estimators of seasonal and spatial variation in sea-surface tem- 

perature. 

3. The analysis suggests that more information than pre- 

viously suspected can be obtained from a given number of observa- 

tions provided realistic regression models can be developed. 

This has important implications with regard to sampling. A 

sampling interval based on the model can be used in place of the 

fixed time interval employed in the classical manner with an area 

grid. The oceanographic problem becomes one of searching for 

adequate models. It is indicated such models can be derived for 

many ocean areas from the present archive of oceanic tempera- 

ture data. 

4, On the assumption that the regression model is reason- 

ably valid, the regression technique has the potential of being 

an effective, and objective, method for identifying and editing 

raw temperature data for erroneous observations. 

5. When used to remove the seasonal and spatial variation 

in a set of sea-surface temperature data, a regression model, 

such as discussed in this study, may be used to detect and isolate 

temperature anomalies. 

6. Finally, this study suggests regression techniques may 

be used as a new approach to summarizing archived sea-surface 

temperature data that is more objective and amenable to computer 

usage than presently used methods. 
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RECOMMENDATIONS 

As an outgrowth of this study the following investigations are 

indicated: 

1. Determination of how large an area can be covered by 

one regression surface. 

2. Determination of optimum sampling procedures and 

sample sizes. 

3. Extension of regression models to include depth as an 

independent variable. 

4. Application of regression modeling techniques to describ- 

ing the distribution of other oceanic parameters, such as salinity. 
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