

SEA TESTS OF THE USCGC UNIMAK PART 2 - STATISTICAL PRESENTATION OF THE MOTIONS, HULL BENDING MOMENTS, AND SLAMMING PRESSURES FOR SHIPS OF THE AVP TYPE

by

N.H. Jasper, Dr. Eng., and R.L. Brooks, CDR, USN

April 1957

Report 977 NS 731-037

TABLE OF CONTENTS

Page

ABSTRACT	1
INTRODUCTION	1
STATISTICAL BACKGROUND	4
DERIVATION OF DISTRIBUTIONS OF SHIP MOTIONS AND LONGITUDINAL BENDING MOMENTS OF THE HULL	7
DESIGN AND OPERATIONAL CONDITIONS FOR WARTIME SERVICE Long-Term Distributions of Ship Motion, Hull Bending Moment,	20
and Wave Height	20
Predictions of Ship Response to Waves for Given Conditions	20
Prediction of Extreme Values	22
Design Loads for Bottom Structure to Withstand Slamming Loads	26
DISCUSSION	27
ACKNOWLEDGMENTS	28
APPENDIX A - SAMPLE OSCILLOGRAMS	29
APPENDIX B - SAMPLE CALCULATIONS	35
APPENDIX C - PHOTOGRAPHIC DEFINITION OF SEA CONDITIONS	37
REFERENCES	42

LIST OF ILLUSTRATIONS

		Page
Figure	e 1 - Profile and Characteristics of USCGC UNIMAK (AVP10-Class Vessel)	3
Figure	2 - Distribution of Heights of Ocean Waves at Weather Station C, 52° N 37° W, North Atlantic Ocean	5
Figure	3 - Distribution of Variation in Pitch Angle (Sample 1) for USCGC UNIMAK	8
Figure	4 - Cumulative Distribution of Variation in Pitch Angle (Sample 1) for USCGC UNIMAK	8
Figure	5 - Distribution of Variation in Pitch Angle (Sample 2) for USCGC UNIMAK	9
Figure	6 - Cumulative Distribution of Variation in Pitch Angle (Sample 2) for USCGC UNIMAK	9
Figure	7 - Long-Term Cumulative Distribution of Pitch Angle for Wartime Service, North Atlantic Ocean	21
Figure	8 - Long-Term Cumulative Distribution of Pitch Acceleration for Wartime Service, North Atlantic Ocean	22
Figure	9 - Long-Term Cumulative Distribution of Roll Angle for Wartime Service, North Atlantic Ocean	23
Figure	10 - Long-Term Cumulative Distribution of Longitudinal Bending Moment, Amidships, for Wartime Service, North Atlantic Ocean	24
Figure	11 - Samples of Records Taken During the Tests	30
Figure	12 - Wave Photographs	38
Figure	13 - Wave Profiles	20

LIST OF TABLES

Page

Table 1	- Estimated Wartime Operating Conditions	2
Table 2	- Basic Statistical Data on Pitch Angles	11
Table 3	- Basic Statistical Data on Pitch Accelerations	12
Table 4	- Basic Statistical Data on Roll Angles	13
Table 5	- Basic Statistical Data on Stresses	14
Table 6	- Basic Statistical Data on Heave Accelerations	15
Table 7	- Constants Required for Prediction of Probable Maximum Value in a Sample from a Rayleigh Distribution	15
Table 8	- Derivation of Predicted Distribution Pattern for Variations in Pitch Angle for Wartime Duty in North Atlantic Ocean	16
Table 9	- Derivation of Predicted Distribution Pattern for Variations in Pitch Acceleration for Wartime Duty in North Atlantic Ocean	17
Table 10	- Derivation of Predicted Distribution Pattern for Variations in Roll Angle for Wartime Duty in North Atlantic Ocean	18
Table 11	- Derivation of Predicted Distribution Pattern for Variation in Hull Stress Due to Longitudinal Bending, at the Main Deck, Amidships	
	for Wartime Duty in North Atlantic Ocean	19
Table 12	- Maximum Values of Ship Motion and Longitudinal Bending Moment for Use in Design Calculations	26

ABSTRACT

The motions and hull-girder bending moments which a ship of the general form and size of the AVP10 Class may be expected to experience over a wide range of operating conditions are presented in statistical form. The data are based on extensive measurements made on the USCGC UNIMAK during sea trials in the North Atlantic Ocean. The methods of statistics have been employed in the planning of the at-sea phases of the trials and in the collection, analysis, and presentation of the large amount of data. From the test results, data are derived for this type of ship for use in design and operating problems involving bending moments, hull motions, and slamming pressures. Formulas are given for use in estimating probable maximum values of moments and motions.

INTRODUCTION

The Bureau of Ships initiated a long-range investigation of strains in ships at sea for the purpose of evaluating and improving methods for the design of the ship girder and its structural components.¹ Instrumentation has been developed and installed on various types of ships to collect information on the wave loads, stresses, and motions which ships experience in service. During the winter of 1954 and 1955, measurements were carried out on the USCGC UNIMAK (formerly AVP31) during operation in the North Atlantic Ocean. One of the main objectives of this work is the collection of sufficient data on ship motions and longitudinal hull-girder stresses to determine, by statistical methods, the frequency distributions of these quantities for different combinations of sea conditions, ship speed, and ship heading relative to the waves. For a complete background and general discussion of these trials, see Reference 2.

This report presents the distributions of the motions and bending moments* to be utilized for design purposes. To devise these distributions, it is necessary to specify the ship operations for which the vessel is to be designed. The term "mission" will be used here to define the ship's assigned operational pattern. One component of this mission is the aggregate of sea conditions under which the vessel must operate. It will be assumed that the ship will operate in the North Atlantic Ocean inasmuch as this probably represents more severe sea conditions than the vessel will actually experience and thus is on the safe side.

Accordingly, the probable speeds and headings at which these ships would be expected to operate under wartime conditions and the fraction of time the ships would spend at each of the various conditions were estimated by the skippers of a number of vessels of this class.

¹References are listed on page 42.

^{*}The hull bending moments due to flexure in the longitudinal plane of the ship were deduced from the strain measurements and the section modulus applicable to the strain-gage location.

Estimated Wartime Operating Conditions

The data for the WAVP vessels have been developed on the basis of a detailed analysis of ships' logs. For the AVP vessels data are based on estimates made by officers having experience in this type over a wide range of operating conditions. Values for individual ships were evaluated for mutual consistency and then averaged for each sea state and speed range. Sea states are defined in Reference 4.

10	Ship Ship Speed Reporti			Perce	ntage of T	ime Oper	ating at the	e Given S	speed*	
Ocean	Ship Speed knots	Ship Reporting	Sea Sta Significa Heigh	ate 2 nt Wave t 6.ft	Sea St Significa Height	ate 3 nt Wave 7-9 ft	Sea Sta Significa Height	ate 4 nt Wave 16 ft	Sea Sta Significa Height 2	ate 5 nt Wave ?1 ft
Atlantic	7	WAVP370 WAVP374 WAVP378 WAVP381 WAVP382 WAVP383 AVP38 AVP38 AVP41	15.74 average	19.7 16.7 16.5 22.4 13.5 22.1 10.0 5.0	15.01 average 1	0 9.5 30.0 9.8 14.6 41.2 10.0 5.0	17.75 average 45	6.2 4.3 22.0 25.0 14.7 39.8 10.0 20.0	35.53 average 95	47.9 6.6 14.8 70.0 32.6 27.4 10.0 75.0
			average		average		average		average	
Atlantic	10	WAVP370 WAVP374 WAVP378 WAVP381 WAVP382 WAVP382 AVP38 AVP38 AVP41	17.29 average	13.9 9.8 15.9 17.3 10.4 11.0 50.0 10.0	15.16 average	0 2.9 8.9 17.0 4.9 17.6 50.0 20.0	28.53 average	19.2 15.2 31.4 13.8 9.5 9.1 70.0 60.0	28.89 average	17.8 19.9 13.7 20.0 34.8 9.9 90.0 25.0
Pacific		COMAIRPAC	3 average		3 average		45. average		5. average	
Atlantic	14	WAVP370 WAVP374 WAVP378 WAVP381 WAVP382 WAVP383 AVP38 AVP38	35.17 average	26.6 30.4 48.7 27.7 23.0 20.0 40.0 65.0	37.95 average	29.2 37.2 45.3 12.2 67.9 11.8 40.0 60.0	28.54 average	23.8 46.4 38.1 17.5 36.6 25.9 20.0 20.0	22.58 average	24.7 41.6 58.9 10.0 21.2 24.2 0 0
Pacific		COMAIRPAC	95. average		95. average		10 average		0 average	
Atlantic	17	WAVP370 WAVP374 WAVP378 WAVP381 WAVP382 WAVP382 WAVP383 AVP38 AVP41	31.80 average	39.8 43.1 18.9 32.6 53.1 46.9 0 20.0	31.88 average	70.8 50.4 15.8 61.0 12.6 29.4 0 15.0	25.18 average	50.8 34.1 8.5 43.7 39.2 25.2 0 0	13.00 average	9.6 31.9 12.6 0 11.4 38.5 0 0
Pacific		COMAIRPAC	1 average	-	1 average		0		0	

Figure 1 - Profile and Characteristics of USCGC UNIMAK (AVP10-Class Vessel)

The information received from these officers is summarized in Table 1. These estimates were primarily based on an examination of ships' logs.

The sea conditions will be specified in terms of a significant wave height.* Estimates of the significant wave heights are made by weather observers stationed on a number of weather ships at various locations in the Atlantic Ocean. These observations have been made at 3-hr intervals since 1947. It has been found that the frequency distribution of these significant wave heights is approximately logarithmically normal.³ The Weather Bureau's observations of significant wave heights have been utilized here to evaluate the sea conditions to be expected in the North Atlantic Ocean.

During the at-sea phases, oscillographic recordings were made of actual variations of roll and pitch angle, heave accelerations, and hull strains as the ship responded to waveinduced loads. In general, 1/2-hr continuous records were taken for each combination of ship speed, heading, and sea condition. Typical oscillograms are shown in Appendix A. Instruments were located as shown in Figure 1.

The pressures incident to slamming acting on the ship's bottom were measured by seven pressure gages installed on the UNIMAK.⁵ Similar but more limited data were obtained during trials⁶ of a sister ship, the USCGC CASCO.

^{*}The significant wave height was obtained by averaging the observed highest wave in each of a number of groups of waves. 'Note that the term "significant height" as used here is not synonymous with the statistical meaning of "significant" value which is defined as the average of the upper third highest values.

Figure 2a - Distribution Function

STATISTICAL BACKGROUND

The wave heights, ship motions, and hull bending moments experienced under a given set of conditions will be described or specified in terms of their distribution patterns or, mathematically speaking, their distribution functions.

For illustrative purposes, consider one of the variables, for example, wave height. All wave heights are considered to be members of a statistical "population." The distribution function (d.f.) of wave heights indicates the relative probability p(x) of encountering a wave of a given height as a function of that height. Figure 2a illustrates this distribution function. (Similar illustrations are given for the ship motions in Figures 3 through 6.) The area under the curve up to a value x_i is the integral of the d.f. up to the value $x = x_i$; it is equal to the fraction of all members of the population of wave heights which have a height less than x_i .

Figure 2b - Cumulative Distribution Function

Figure 2 - Distribution of Heights of Ocean Waves at Weather Station C, 52°N 37°W, North Atlantic Ocean

This distribution is based on 12,365 observations made over a period of 4½ years by U.S. Weather Bureau personnel.

Mathematically

$$P(x) = \int_0^x p dx \text{ and } P(x \to \infty) = \int_0^\infty p dx = 1$$
 [1]

P is a function of x, and this function is designated as the cumulative distribution function (c.d.f.) of x. P(x) is numerically equal to the probability that a value chosen at random from the population is less than x.

A discussion of the statistical methods utilized here is given in References 3 and 7. There is considerable evidence³ to indicate that the distribution of wave heights corresponding to any *one* given sea condition is of the one-parameter type known as the Rayleigh distribution which is defined as

$$P(x) = 1 - e^{-x^2/E}$$

where E is independent of x. Thus the probability is defined by a single number* E. On the other hand, when the heights of all waves experienced over a long period of time, say over several years, are considered, then the evidence indicates that the logarithm of the wave height is approximately normally distributed, that is, the two-parameter log-normal distribution describes the situation. The log-normal distribution is defined as follows:

$$p(\log x) d(\log x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(\log x - \mu)^2}{2\sigma^2}} d(\log x)$$

where u is the mean value of log x and σ is the standard deviation of log x.

Reference 3 shows that these two types of distributions also describe the response of the ship to the waves. For the sake of brevity, the distributions applicable to homogeneous conditions of the sea, ship speed, and course will be called "short-term" distributions, whereas the function which represents the distribution when the seas, ship speeds, and courses are allowed to vary over a range of conditions, will be designated as "long-term" distributions.

The distribution pattern will, at a glance, give the probability of exceeding any given magnitude of motion or stress. It also can be applied to the prediction of the largest magnitude to be expected in a given number of variations. For application to design for endurance strength, the distribution pattern can be utilized as a load spectrum. Illustration of these applications will be given in a later section.

DERIVATION OF DISTRIBUTIONS OF SHIP MOTIONS AND LONGITUDINAL BENDING MOMENTS OF THE HULL

It will be assumed without further discussion that the short-term distribution of waveinduced ship motions and stresses may be represented by the one-parameter Rayleigh distribution and that the corresponding long-term distributions are approximated by the twoparameter log-normal distribution. Evidence to support these hypotheses is presented in Reference 3.

Typical distribution patterns of variation* in pitch angle are shown in Figures 3 through 6. In all, 129 similar sets were analyzed. Pertinent results are given in Tables 2 through 6 for variations of pitch angle, pitch acceleration, roll angle, heave acceleration, and the hull girder stress in the main deck amidships due to bending of the ship in a longitudinal plane normal to the deck.

It is interesting to note that all cumulative Rayleigh distributions (for example, those shown in Figures 4 and 6) become identical if $v^2 = x^2/E$ is plotted against the probability instead of plotting x directly. Utilizing this artifice it is necessary to know only the value of E corresponding to a particular sea condition, ship speed, and heading in order to obtain the probability of exceeding any value of x from a single graph (Figure 4) which is equally applicable to wave heights, ship motions, and hull stresses. The values of E for various ship operations are given in Tables 2 through 6. Table 7 gives factors which, together with the value E, permit making statistical predictions as discussed later.

We now proceed to utilize the short-term distributions, each of which is characterized by a value of E, as building blocks in order to construct the long-term frequency distribution patterns of the ship responses to the sea applicable to wartime service in the North Atlantic Ocean. (It should be noted that the distribution patterns for other "missions" can be readily computed from the data given in this report.) Each of these short-term distributions will be weighted in accordance with the relative fraction of time spent at given sea state (f_2) , at the given heading to the sea (f_3) , and at the given ship speed (f_1) . For example, if tests have indicated that the ship will experience N = 480 pitch variations per hour in a State 2 sea when heading directly into the waves at a speed of 10 knots, then one may expect that $n = f_1 f_2 f_3 N$ = (0.33) (0.34) (0.125) 480 = 6.73 variations of pitch angle per hour, out of the average number of variations per hour, can be attributed to this set of environmental conditions over an average year's operation in the assigned mission.

These calculations are carried out in Tables 8 through 11. Each horizontal line in these tables gives the data corresponding to a given set of environmental conditions. The probabilities (1-P) of exceeding given values of pitch angle, etc., are computed and tabulated in columns 10 through 18. The total number of variations per hour which, over the average

^{*}Throughout this report, a variation is taken to mean the peak-to-peak variation of the variable.

Conditions at time of test were: State 5 sea, head seas, ship speed 7/5 thous, significant wave height 21 ft. The ship pitched at a rate of about 80 variations per hour. The test sample consisted of 236 variations in pitch angle. This sample is representative of 129 samples that were analyzed. Each such sample has been developed from analysis of oscillograns covering continuous periods of one-half hour or thereabout.

(Datingtre 1) for UDOUC UNIMAN Conditions at time of test were: State 5 sea, head seas, ship speed 7½ knots.

See Figure 3 for corresponding histogram. The plotted confidence limits do not include an allowance for errors of measurement.

8

1 - P, percent

20.0

-30.0 40.0

6.0 8.0 9.0 9.0

2.0

0.7 0.8 0.9 0.6

99.2 -

99.3-

99.4-

3.0 4.0 5.0

Conditions at time of test were: State 5 sea, quarter following seas, ship speed 7/5 knots, significant wave height 21 ft. The ship pitched at a rate of about 370 variations per hour. The test sample consisted of 175 variations in pitch angle. This sample the poorest fit to the Rayleigh distribution of the 129 samples analyzed.

30.0-20.0-

10.0

50.0-40.0Conditions at time of test were: State 5 sea, quarter following seas, ship speed 7/; knots. See Figure 5 for corresponding histogram.

Figure 6 - Cumulative Distribution of Variation in Pitch Angle

 $v^{2} = x^{2}/E$

(Sample 2) for USCGC UNIMAK

-20.0

60.0

-70.0 -80.0

p = percent/degree Pitch Angle

year, will exceed each given level are obtained by summing the product of column 9 with columns 10 through 18 over all environmental conditions. The last line in the table gives the probability of exceeding any one of the given magnitudes, for the long-term distribution. The latter values are plotted on the cumulative probability distribution charts in Figures 7 through 10.

The straight lines shown on these charts have *not* been drawn by eye through the plotted points but have been computed directly from the percentages represented by the plotted points under the assumption that the long-term distribution is of the log-normal type. A sample calculation is given in Appendix B. The rather good fit of the computed line to the plotted points indicates that this assumption is reasonable. One would expect that the points corresponding to the more extreme values would lie above the theoretical line because by far the greatest contribution to the computed probability for these extreme values derives from the more severe sea conditions. It is apparent that if data had been available for more severe seas than State 5, the probabilities of exceeding the higher values would have been increased whereas the plotted points representing probabilities of exceeding low or medium large values would not have been affected to any noticeable extent.

The value of E corresponding to any short-term distribution may readily be used to predict the most probable maximum value of the motion or stress expected in any given number of oscillations. Longuet-Higgins⁸ has shown that the largest probable value out of N measurements is \sqrt{E} times a constant if the population is of the Rayleigh type, where the constant is a function of N only. For large values of N, the constant is nearly equal to $\sqrt{\log_e N}$. Table 7 gives the value of the constant by which \sqrt{E} must be multiplied. A comparison of predicted and measured maximum values, utilizing this method, is given in Tables 2 through 6. There appears to be a satisfactory agreement.

The wave-induced hull-girder stresses can be converted to the corresponding vertical bending moments amidships by making use of the midship section modulus which is applicable to the strain-gage location (23.8 ft above baseline, 10 ft above the location of the neutral axis). Tests have indicated ^{2,6} that the deckhouse of the AVP vessel is fully effective in resisting bending, thus resulting in a section moment of inertia of 761 ft⁴ which corresponds to a section modulus applicable to the strain-gage location of 11,000 ft-in². This value of the section modulus has been used to convert wave induced stresses to wave-induced bending moments.

10

Basic Statistical Data on Pitch Angles

Sea State (Est'd)	Significant Wave Height ft	Heading of Waves Relative to Ship	Ship Speed knots*	N Number of Variations per Hour	Minutes Sampled	E deg ²	Predicted Maximum Value for 1-hr Operation	Maximum Measured Peak-to-Peak Variation deg	Number of Variations in Sample from Which Maximum Was Obtained	Predicted Maximum Peak-to-Peak Variation	Ratio Predicted Maximum to Measured Maximum
2	6	Head Seas	7-7 1/2 10 14 17	480 555	30 32	4.00 4.48	5.0 5.3	4.8 5.3	240 296	4.68 5.04	0.98 0.95
2	6	Quarter Head Seas	7-7 1/2 10 14 17	404 514	37 32	1.97 1.86	3.4 3.5	3.1 3.3	249 274	3.3 3.24	1.06 0.98
2	6	Beam Seas	7-7 1/2 10 14 17	561 643	29 1/2 32	5.40 3.75	5.9 4.9	6.2 4.8	276 343	5.5 4.69	0.89 0.98
2	6	Quarter Following Seas	7-7 1/2 10 14 17	583	29	1.68	3.3	3.5	282	3.08	0.88
2	6	Following Seas	7-7 1/2 10 14 17	578	32	1.86	3.5	3.8	308	3.27	0.86
3	7-9	Head Seas	10 14 17	583 603 616	26 32 27	10.35 9.62 9.59	8.1 7.8 7.9	7.6 7.3 6.7	253 321 277	7.56 7.49 7.34	0.99 1.03 1.09
3	7-9	Quarter Head Seas	10 14 17	587 592	27 1/2	1.79	3.4	3.1 3.9	269 365	3.16 3.45	0.89
3	7-9	-Beam Seas	10 14 17	542 298	29 26	3.52 1.08	4.7	4.3 3.3	262 129	4.44	1.03 0.70
3	7-9	Quarter Following Seas	10 14 17	523	31	1.85	3.4	3.9	270	3.16	0.85
3	7-9	Following Seas	14 17	504	23	1.28	2.8	2.4	193	2.59	1.08
4	16	Head Seas	14	578	30	26.12	12.9	11.6	289	12.1	1.00
5	21	Head Seas	7 1/2 10 14	517 583	27 1/2 24	47.32 56.00	17.2	18.0 15.5	236 235	16.1 17.4	0.90
5	21	Quarter Head Seas	7 1/2 10 14	541 577	38 1/2	35.13	14.9	13.9	347	14.3	1.03
5	21	Beam Seas	7 1/2	364	30	16.78	9.9	8.8	182	9.34	1.06
5	21	Quarter Following Seas	7 1/2 10 14	368 296 302	28 1/2 29 27	20.24 28.00 17.2	10.9 12.6 9.9	9.8 11.5 8.8	175 143 136	10.2 11.8 9.16	1.04 1.02 1.04
. 5	21	Following Seas	7 1/2 10 14	291 273	33 31	31.12 20.54	13.3 10.8	11.8 10.8	160 140	12.58 10.1	1.06 0.94

*The speed is the nominal speed read from a calibration curve of propeller rpm versus knots;

7 1/2, 10, 14, and 17 knots correspond to 94, 127, 185, and 230 rpm, respectively.

Basic Statistical Data on Pitch Accelerations

										1
Significant Wave Height ft	Heading of Waves Relative to Ship	Ship Speed knots*	N Number of Variations per Hour	Minutes Sampled	$\left(\frac{rad}{sec^2}\right)^2$	Predicted Maximum Value for 1-hr Operation	Maximum Measured Peak-to-Peak Variation rad/sec ²	Number of Variations in Sample from Which Maximum Was Obtained	Predicted Maximum Peak-to-Peak Variation	Ratio Predicted Maximum to Measured Maximum
6	Head Seas	10 14	704 786	30 32	0.0015	0.099 0.126	0.093 0.123	352 419	0.093 0.121	1.00 0.99
	Quarter	10	761	32	0.0015	0.100	0.093	406	0.095	1.02
6	Head Seas	14	872	32	0.0014	0.097	0.097	465	0.093	0.950
6	Beam	10	708	29 1/2	0.0033	0.147	0.144	348	0.139	0.97
	Quarter Following	14	900	20	0.0016	0.104	0.11	430	0.099	0.90
6	Following	14	630	23	0.0010	0.104	0.11	450	0.055	0.50
6	Seas	14	635	32	0.00028	0.043	0.047	339	0.0404	0.86
7-9	Head Seas	10 14 17	694 765 862	26 32 27	0.0109 0.0161 0.0171	0.267 0.327 0.341	0.28 0.322 0.357	301 396 368	0.250 0.310 0.319	0.90 0.97 0.90
	Quarter	10	779	27 1/2	0.0022	0.121	0.13	357	0.114	0.88
7/9	Head Seas	17	900	37	0.0028	0.138	0.15	555	0.133	0.89
7-9	Beam Seas	10 17	763 760	29 26	0.0030 0.0029	0.142 0.139	0.161 0.174	369 329	0.133 0.130	0.83 0.75
7-9	Quarter Following Seas	17	696	31	0.001	0.081	0.075	338	0.076	1.00
7-9	Following Seas	17.	629	23	0.00072	0.068	0.064	241	0.063	0.98
16	Head Seas	14	780	30	0.0222	0.384	0.39	390	0.35	0.90
21	Head Seas	7 1/2 14	624 692	'27 1/2 24	0.0173	0.334	0.425 0.47	284 278	0.341 0.42	0.80 0.89
	Quarter	7 1/2	615	38 1/2	0.0140	0,300	0.314	395	0.29	0.92
21	Seas	14	711	28 1/2	0.0327	0.465	0.47	338	0.437	0.93
21	Beam Seas	7 1-2	458	30	0.0039	0.155	0.161	229	0.145	0.90
21	Quarter Following Seas	7 1/2 10 14	702 660 714	28 1/2 29 27	0.0032 0.0023 0.0023	0.145 0.123 0.123	0.146 0.129 0.131	333 319 322	0.136 0.115 0.115	0.93 0.89 0.88
21	Following	7 1/2	524 470	33	0.0013	0.090	0.068	288	0.085	1.25
	Significant Wave Height ft 6 6 6 6 6 6 6 7-9 7-9 7-9 7-9 7-9 7-9 16 21 21 21 21	Significant Wave Height Heading of Waves Relative to Ship ft Head 6 Seas 6 Head 6 Seas 6 Beam 6 Seas 6 Seas 6 Seas 7 Head 7-9 Head 8 Seas 7-9 Head 8 Seas 7-9 Head 9 Seas 10 Guarter 7-9 Seas 16 Head 9 Seas 21 Head 21 Seas 21 Beam 21 Seas 21 Seas 21 Seas 21 Seas 21 Seas 21 Following Seas Seas	Significant Wave Height Heading of Seas Ship Speed ft Heading of Seas Ship Speed Ship Speed ft Head 10 6 Seas 14 6 Read 10 7 Head 14 6 Beam 10 7 Beam 14 7 Quarter Following 14 7 Following 14 7 Seas 14 7 Pead 14 7 Seas 12 7 Head 14 7 Seas 17 7 Beam 10 7 Seas 17 7 Beam 17 7 Seas 17 7 Seas 17 16 Head 14 Seas 12 Seas 11 Seas 12 12 Seas 14	Significant Wave Height Heading of to Ship to Ship Notot Nip Number of Variations per Hour Head 10 704 Seas 14 786 Quarter 10 761 Head 10 761 Seas 14 786 Quarter 10 761 Following 14 780 Quarter 14 780 Following 14 763 Seas 14 890 Seas 10 694 7-9 Head 10 779 Head 10 779 Head 10 779 Head 10 779 Seas 17 760 Quarter 17 762 Pollowing 17 656 7-9 Seas 17 656 7-9 Seas 17 652 7-9 Seas 17 652 7-9 Seas <td>Significant Wave Height Heading of to Ship Ship Ship Notes N Number of Variations per Hour N Number of Variations per Hour Ninutes 6 Head Seas 10 704 30 6 Head Seas 10 704 32 6 Head Seas 14 786 32 6 Beam Following 10 701 32 6 Seas 14 872 32 6 Seas 14 872 32 6 Seas 14 872 32 7 Quarter Following Seas 14 635 32 7-9 Head Seas 14 635 32 7-9 Seas 14 635 32 7-9 Seas 10 779 21 1/2 7-9 Seas 10 763 25 7-9 Seas 17 696 31 7-9 Seas 17 696 31 7-9</td> <td>Significant Wave Height Heading of to Ship Ship Speed Number of Variations per Hour Minutes Number of Variations per Hour Minutes Sampled Variations per Hour Minutes Sampled Variations per Hour Minutes Sampled Variations per Hour Minutes Sampled Variations per Hour Minutes Sampled Variations per Hour Minutes Variations per Hour Minutes Variations per Hour Minutes Sampled Variations per Hour Minutes Variations per Hour Minutes Varis Variatio Per Hour Minutes Varis Variation<td>Significant Wave Height Heading of to Ship Ship Speed Number of Variations Minutes Sampled E (rad sec) Predicted Maximum Value Heading of the Head 10 704 30 0.0015 0.099 6 Seas 14 786 32 0.0014 0.0024 6 Head 10 761 32 0.0014 0.099 6 Beam 10 761 32 0.0014 0.097 6 Beam 10 778 29 1/2 0.0033 0.147 6 Seas 14 890 29 0.0016 0.104 6 Seas 14 655 32 0.0028 0.043 7-9 Head 14 755 32 0.0028 0.043 7/9 Head 14 755 32 0.0024 0.121 7/9 Head 17 760 26 0.0029 0.138 7-9 Seas 17</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td></td><td>Significant Wave ft Heading of boship Significant Sample height Heading of two per Hour Minutes Sample per Hour Minutes (ref. 2) (ref. 2) Predicted Maximum set? Maximum Measured Peak-to-Peak Variations Number of Variations in Sample Peak-to-Peak Variation Number of Variations in Sample Peak-to-Peak Variation Number of Variations in Sample Peak-to-Peak Variation 6 Head 14 10 764 30 0.0015 0.093 0.003 0.005 0.093 6 Seas 14 766 22 0.0014 0.017 0.121 0.121 6 Seas 14 776 32 0.0014 0.097 0.093 0.06 0.095 6 Seas 14 776 22 0.0015 0.104 0.114 346 0.139 6 Seas 14 635 32 0.0028 0.043 0.047 339 0.0404 7.9 Head 16 675 20 0.0119 0.277 0.28 0.32 0.330 0.310 0.310 7.9</td></td>	Significant Wave Height Heading of to Ship Ship Ship Notes N Number of Variations per Hour N Number of Variations per Hour Ninutes 6 Head Seas 10 704 30 6 Head Seas 10 704 32 6 Head Seas 14 786 32 6 Beam Following 10 701 32 6 Seas 14 872 32 6 Seas 14 872 32 6 Seas 14 872 32 7 Quarter Following Seas 14 635 32 7-9 Head Seas 14 635 32 7-9 Seas 14 635 32 7-9 Seas 10 779 21 1/2 7-9 Seas 10 763 25 7-9 Seas 17 696 31 7-9 Seas 17 696 31 7-9	Significant Wave Height Heading of to Ship Ship Speed Number of Variations per Hour Minutes Number of Variations per Hour Minutes Sampled Variations per Hour Minutes Sampled Variations per Hour Minutes Sampled Variations per Hour Minutes Sampled Variations per Hour Minutes Sampled Variations per Hour Minutes Variations per Hour Minutes Variations per Hour Minutes Sampled Variations per Hour Minutes Variations per Hour Minutes Varis Variatio Per Hour Minutes Varis Variation <td>Significant Wave Height Heading of to Ship Ship Speed Number of Variations Minutes Sampled E (rad sec) Predicted Maximum Value Heading of the Head 10 704 30 0.0015 0.099 6 Seas 14 786 32 0.0014 0.0024 6 Head 10 761 32 0.0014 0.099 6 Beam 10 761 32 0.0014 0.097 6 Beam 10 778 29 1/2 0.0033 0.147 6 Seas 14 890 29 0.0016 0.104 6 Seas 14 655 32 0.0028 0.043 7-9 Head 14 755 32 0.0028 0.043 7/9 Head 14 755 32 0.0024 0.121 7/9 Head 17 760 26 0.0029 0.138 7-9 Seas 17</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td>Significant Wave ft Heading of boship Significant Sample height Heading of two per Hour Minutes Sample per Hour Minutes (ref. 2) (ref. 2) Predicted Maximum set? Maximum Measured Peak-to-Peak Variations Number of Variations in Sample Peak-to-Peak Variation Number of Variations in Sample Peak-to-Peak Variation Number of Variations in Sample Peak-to-Peak Variation 6 Head 14 10 764 30 0.0015 0.093 0.003 0.005 0.093 6 Seas 14 766 22 0.0014 0.017 0.121 0.121 6 Seas 14 776 32 0.0014 0.097 0.093 0.06 0.095 6 Seas 14 776 22 0.0015 0.104 0.114 346 0.139 6 Seas 14 635 32 0.0028 0.043 0.047 339 0.0404 7.9 Head 16 675 20 0.0119 0.277 0.28 0.32 0.330 0.310 0.310 7.9</td>	Significant Wave Height Heading of to Ship Ship Speed Number of Variations Minutes Sampled E (rad sec) Predicted Maximum Value Heading of the Head 10 704 30 0.0015 0.099 6 Seas 14 786 32 0.0014 0.0024 6 Head 10 761 32 0.0014 0.099 6 Beam 10 761 32 0.0014 0.097 6 Beam 10 778 29 1/2 0.0033 0.147 6 Seas 14 890 29 0.0016 0.104 6 Seas 14 655 32 0.0028 0.043 7-9 Head 14 755 32 0.0028 0.043 7/9 Head 14 755 32 0.0024 0.121 7/9 Head 17 760 26 0.0029 0.138 7-9 Seas 17	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Significant Wave ft Heading of boship Significant Sample height Heading of two per Hour Minutes Sample per Hour Minutes (ref. 2) (ref. 2) Predicted Maximum set? Maximum Measured Peak-to-Peak Variations Number of Variations in Sample Peak-to-Peak Variation Number of Variations in Sample Peak-to-Peak Variation Number of Variations in Sample Peak-to-Peak Variation 6 Head 14 10 764 30 0.0015 0.093 0.003 0.005 0.093 6 Seas 14 766 22 0.0014 0.017 0.121 0.121 6 Seas 14 776 32 0.0014 0.097 0.093 0.06 0.095 6 Seas 14 776 22 0.0015 0.104 0.114 346 0.139 6 Seas 14 635 32 0.0028 0.043 0.047 339 0.0404 7.9 Head 16 675 20 0.0119 0.277 0.28 0.32 0.330 0.310 0.310 7.9

*The speed is the nominal speed read from a calibration curve of propeller rpm versus knots;

7 1/2, 10, 14, and 17 knots correspond to 94, 127, 185, and 230 rpm, respectively.

Basic Statistical Data on Roll Angles

Sea State (Est'd)	Significant Wave Height	Heading of Waves Relative to Ship	Ship Speed knots*	N Number of Variations per Hour	Minutes Sampled	E deg ²	Predicted Maximum Value for 1-hr Operation	Maximum Measured Peak-to-Peak Variation deg	Number of Variations in Sample from Which Maximum Was.Obtained	Predicted Maximum Peak-to-Peak Variation	Ratio Predicted Maximum to Measured Maximum
-			10	290	20	10.0	10.7	9.4	190	9.96	1.06
2	6	Seas	10	380	30	19.0	10.7	10.5	193	9.80	0.93
2	6	Quarter , Head Seas	10 14	355 340	37 32	31.0 26.0	13.5 12.4	13.1 12.2	219 191	12.9 11.7	0.99 0.96
		Beam	10	388	29 1/2	17.8	10.3	10.6	191	9.66	0.91
2	6	Ouarter	14	300	32	13.0	10.0	10,3	130	10.0	0.57
2	6	Following Seas	14	335	29	24.0	11.9	10.9	172	11.1	1.02
2	6	Following Seas	14	326	32	21.0	11.0	10.3	174 -	10.4	1.01
	7-9	Head	10	436	26	20.6	11.2	10.6	189	10.4	0.98
	1-3	Seas	17	448	27	9.8	7.75	7.2	202	7.23	1.00
		Quarter	10	20.9	27 1/2	6.5	6.0	6.0	96	5,45	0.91
3	7-9	Seas	17	339	37	7.5	6.6	6.7	209	6.34	0.95
1	7-9	Beam Seas	10	260 482	30	6.9 13.0	6.2 9.0	8.7 9.2	130 209	5.8	0.67
		Quarter									
3	7-9	Following Seas	17	285	31	19.3	10.5	10.9	147	9.8	0.90
3	7-9	Following Seas	17	355	23	15.8	9.6	9.1	136	8.81	0.97
4	16	Head Seas	14	348	30	7.8	6.8	6.9	174	6.35	0.92
1		Head	7 1/2	369	27 1/2	119.	26.6	24.4	168	24.7	1.01
5	21	Seas	14	398	24	84.8	22.5	20.6	160	20.7	1.01
		Head	7 1/2	388	38 1/2	75.3	21.2	18.1	249	21.0	1.16
5	21	Seas	14	408	28 1/2	64.3	19.8	23.0	194	18.4	0.80
5	21	Seas	11/2	364	30	1/1.	31.0	23.0	102	25.5	
	21	Quarter	7 1/2	384	28 1/2	176.	32.4	38.8	182	30.2	0.78
,	21	Seas	14	360	29	114.	25.9	21.9	162	24.1	1.10
5	21	Following Seas	7 1/2 14	356 340	33 31	150. 60.	29.6 18.8	24.4 18.5	196 176	28.1 17.6	1.15 0.95

"The speed is the nominal speed read from a calibration curve of propeller rpm versus knots;

7 1/2, 10, 14, and 17 knots correspond to 94, 127, 185, and 230 rpm, respectively.

Basic Statistical Data on Stresses

Sea State (Est'd)	Significan Wave Height	Heading of Waves Relative to Ship	Ship Speed knots*	N Number of Variations per Hour	Minutes Sampled	E (kips (in,2)	Predicted Maximum Value for 1-hr Operation kips	Maximum Measured Peak-to-Peak Variation kips/in, ²	Number of Variations in Sanple from Which Maximum Was Obtained	Predicted Maximum Peak-to-Peak Variation	Ratio Predicted Maximum to Measured Maximum
2	6	Head Seas	10 14	670 784	30 32	0.22	1.20 1.44	1.2 1.5	335 418	1.13	0.94 0.91
2	6	Quarter Head Seas	10 14	256 1004	37 32	0.21 0.24	1.08 1.30	1.2 1.3	158 536	1.03 1.22	0.86 0.94
2	6	Beam Seas	10 14	522 666	29 1/2 32	0.37	1.52 1.38	1.6 1.7	257 355	1.43 1.31	0.89
2	6	Quarter Following Seas	14	640	27	0.22	1.19	1.5	288	1.11	0.74
2	6	Seas	14	392	32	0.36	1.46	1.4	209	1.39	0.99
3	7-9	Head Seas	10 14 17	621 778 991	26 32 27	1.12 1.28 1.21	2.70 2.92 2.88	2.6 2.8 2.9	2 69 4 14 4 46	2.5 2.84 2.72	0.96 1.01 0.94
3	7-9	Quarter Head Seas	10 17	864 711	27 1/2 37	0.11 0.16	0.86	0.9 1.0	396 438	0.81 0.985	0.90 0.99
3	7-9	Beam Seas	10 17	503 685	29 26	0.19	1.09	0.94 0.97	243 297	1.02	1.08 1.04
3	7-9	Quarter Following Seas	17	459	31	0.15	0.96	1.0	237	0.905	0.91
3	7-9	Following Seas	17	360	23	0.09	0.72	0,59	138	0.666	1.13
4	16	Head Seas	14	768	30	1.17	2.8	3.1	384	2.64	0.85
		Head	7 1/2	581	27 1/2	2.81	4.2	3.9	265	3.96	1.02
5	21	Quarter Head	7 1/2	598	38 1/2	2.34	4.8	3.9	318	3.73	0.95
5	21	Seas Beam	14	694	28 1/2	3.00	4.4	4.0	330	4.16	. 0.96
5	21	Seas Ouarter	7 1/2	532	30 28	1.3	2.8	2.7	266	2.69	0.94
5	21	Following Seas	10 14	328 344	29	1.12	2.5 2.4	2.3	159 155	2.38 2.25	1.03 0.98
5	21	Following Seas	7 1/2 14	325 300	33 31	1.90 1.57	3.3 3.0	3.6 3.1	179 155	3.14 2.82	0.87 0.91
5	21	Following Seas Following Seas	10 14 7 1/2 14	328 344 325 300	29 27 33 31	1.12 1.01 1.90 1.57	2.5 2.4 3.3 3.0	2.3 2.3 3.6 3.1	159 155 179 155	2.38 2.25 3.14 2.82	1.03 0.98 0.87 0.91

*The speed is the nominal speed read from a calibration curve of propeller rpm versus knots; 7 1/2, 10, 14, and 17 knots correspond to 94, 127, 185, and 230 rpm, respectively.

Sea State (Est'd)	Significant Wave Height	Heading of Waves Relative to Ship	Ship Speed	N Number of Variations per Hour	Minutes Sampled	E	Predicted Maximum Value for 1-hr Operation	Maximum Measured Peak-to-Peak Variation	Number of Variations in Sample from Which Maximum Was Obtained	Predicted Maxımum Peak-to-Peak Variation	Ratio Predicted Maximum to Measured Maximum
	п		KNOTS*			g. S~	g's	gs			
3	7-9	Head Seas	10 14 17	448 590 582	26 32 27	0.0107 0.0186 0.0221	0.252 0.35 0.37	0.26 0.32 0.37	239 315 262	0.251 0.321 0.35	0.97 1.01 0.95
5	21	Head Seas	7 1/2 10 14	433 518 514	27 27 24 1/2	0.0221 0.0272 0.0382	0.37 0.41 0.49	0.51 0.41 0.49	197 233 210	0.341 0.385 0.451	0.67 0.94 0.92
5	21	Quarter Head Seas	7 1/2 10 14	466 583 565	38 1/2 28 27 1/2	0.0182 0.0245 0.0498	0.33 0.40 0.57	0.29 0.44 0.62	299 272 259	0.322 0.371 0.525	1.11 0.84 0.85
5	21	Beam Seas	7 1/2	433	28	0.0143	0.29	0.26	202	0.276	1.06
5	21	Quarter Following Seas	7 1/2 10 14	418 552 504	32 30 27	0.0147 0.0131 0.0135	0.30 0.29 0.29	0.35 0.34 0.32	223 226 227	0.282 0.267 0.270	0.81 0.78 0.84
*The	speed is the	nominal speed	read from	n a calibrati	on curve	of propel	ler rom versus k	nots;			····

Basic Statistical Data on Heave Accelerations

7 1/2, 10, 14, and 17 knots correspond to 94, 127, 185, and 230 rpm, respectively.

TABLE 7

Constants Required for Prediction of Probable Maximum Value in a Sample from a Rayleigh Distribution

Let x_{max} be the most probable maximum value of x taken from a sample containing N values of x. Then, $\max_{\text{according to Longuet-Higgins}^6 x_{\text{max}} = \sqrt{\theta}\sqrt{E} \text{ where } \theta = \log_e N - \log_e \left[1 - \frac{1}{2\theta} (1 - e^{-\theta})\right]. \text{ For large } N,$ $\theta \approx \log_{e} N.$

Sample Size N	$\sqrt{ heta}$	Sample Size <i>N</i>	$\sqrt{ heta}$
1 2 5 10 20 50 100 200	0.707 1.030 1.366 1.583 1.778 2.010 2.172 2.323	1000 2000 5000 10,000 20,000 50,000 100,000	2.642 2.769 2.929 3.044 3.155 3.296 3.400

Derivation of Predicted Distribution Pattern for Variations in Pitch Angle for Wartime Duty in North Atlantic Ocean

	_			· · · ·		_	_							-				- 1		_	_	-	-	_		_			-	-		_				-	
19	E (deg) ²	Mean Square Variation	1.08 (estimated)	U U	4.48	1.97	1.86	5.40	3.75	1.86	10.35	9.62	9.59	1./3	3.57	1.08	1.85	1.28	26.12	47.32	35, 12	47.14	16.78	20.24	28.00	17,20	20.54				ned waven.	vailable					
18		18°																	0.420 ⁻⁵	1.08-3	3.08 0	1 03-3	2014		0.01-3	1000	0*03 -	0.0221		0.0041	well-form	data ia a					
17	on †† (1-P	14°		0.053-20	0.715-20		1	1.69 ⁻²⁰			0.219 ⁻⁸	0.138 ⁻⁸	0.136						0.550 ⁻³	16.0 ⁻³	30.3 0	3./0 - 15 6 ⁻³			0.91 ⁻³	0.01	0.07-3	0.330		0.0612	jo unuuo q	which no		ction.			
16	of Variati	10°		0.014-9	0.204-9			6-0°6			0.638-4	0.304-4	0.299						0.0217	0.122	0.168	0,000	0.003	0.007	0.028	0.003	0,008	3.61		0.669	ter of eac	and a frame		wave dire		neic data.	
15	Magnitude	80		0.111-6	0.611-6			7.22-0	0.039		0.206 ⁻²	0.130-2	0.128	_					0.0862	0.259	0.162	0 259	0.022	0.043	0.102	0.023	0.044	10.5		1.95	in the cen			edominant		bles of b	
14	g Given	وه		0.124-3	0.333 ⁻³			1.29 ⁻³	0,068 3		0.0310	0.0234	0.0235						0.252	0.467	0.520	0.666	0.117	0.169	0.276	0.124	0.174	26.5		4.91	t waves			to the pr		on the t	
13	Exceedin	40		0.0184	0.0284	0.00030	0.00018	0.0518	0.0139	0.0002	0.213	0.189	0.189	100000	0.011		0.0002		0.532	0.705	0./50	0, 70 A	0.385	0.452	0.564	0.394	0.459	56.9		10.5	he hiche	ulos -ide	able.	relative		s taken fi	
12	lity of	%	0.0247	0.368	0.410	0.134	0.117	0.476	0.344	0.117	0.680	0.659	0.658	1021 0	0.322	0.025	0.115	0.044	0.860	0.920	0.930	0.019	0.787	0.820	0.867	0.430	0.823	148		28.0	the of t	-	of the t	edinge		of N 10	
11	Probabi	2	0.397	0.78	67.0	0.60	0.59	0.83	0.77	0.59	0.90	0.00	0.90	130	0.75	0.40	0.58	0.46	0.96	0.978	0.983	0.078	0.944	0.950	0.965	0.943	0.950	346		64.2	47 04		poses	e all he		apeed. s value	iplied.
10		0 72	0.795	0.94	0.94	0.88	0.87	96.0	0.94	0.87	0.976	0.975	0.975	0.000	0.931	0.795	0.872	0.822	0.99	0.994	0.995	0.00.0	0.985	0.986	0.991	0.985	0.986	483		89*6	t et a	f	for pu	nclude]	d. Thi	e mult
6	Average Number of Variations per Hour Contributed	by Each Operating Condition $f_1 f_2 f_3 N = n$	111.56	16.73	15.80	11.33	29.28	15.74	36.62	24.57	6.34	8.32	6.71	20.07	30.07	15.14	37.92	18.30	63.58	1.36	2.80	7677	1.97	1.99	1.24	1.63	0./85	/el 539.3		100	value was satimated by takin	the second s	ted speed is assumed to apply	ced for a given ses state and	cted, on the average.	under the condition considere	which the given number is to
8	ors†	2		430	555	404	514	261	643	578	583	603	616	/00	280	298	523	504	578	517	283	140	364	368	296	302	273	en Lev		lave	Ē		indica	ven spe	te allo	stion	10 by
1	g Fact	13		0.125	0.125	0.25	0.25	0.25	0.25	0.125	0.125	0.125	0.125	C7*0	67°0	0.25	0.25	0.125	1.00	0.12	0.12	C7"N	52.0	0.25	0.25	0.25	0.12	ng Giv	ons)	ven Lo	heloke		to the	at a gi		t of op	wer of
9	ightin	12	0.20	0.34	-	_				>	0.29	_	_	-				•	0.11	0.06			_	_		_	>	ceedi	onditio	ing Gi	-		nding	erate i	state	r hour	the po
2	#e	1,		0.33	0.67	0.33	0.67	0.33	0.67	1.00	0.30	0.38	0.32	n	0.30	02.0	1.00	1.00	1.00	0.36	0.64	0.36	0.36	0.36	0.28	0.36	0.64	our E.	r all c	xceed	inent i		Trespo	do Ili	10 Bea	ted pe	enote
-	Ship	knots	AII	107	1417	107	14 ¹⁷	107	141/	147, 10, 1	107	14	17	1	102	1714	177.10.14	177, 10, 14	147, 10, 1		Id to 1	1,10.17	1		10	1417	/ 14 ^{10, 17}	tions per H	mming ove	ariations E	ioni- beta		tal data co	the ship *	that a give	the ship w ions expec	as 10-18 d
3	Relative	of Waves	AII	-		HO	нð	80	en 5	L, L.	×	Ŧ	= 2	53	5, æ		QF	Ŀ	Ŧ	Ŧ	= 2	5.3	5, a	, LO	Ъ,	P.	<u>ـ</u> ۱۱	r of Varial	(Su	ntage of V:	the autim		experiment	on of time	on of time	on of time if of variat	s in colum
2	Significant Wave	Height• ft	~	ų	-					+	6		▶ -					*	16	21							+	Numbe		Perce		and 7 minte	or which the	is the fract	Is the fracti-	is the fraction	he exponent
-	Sea	State			•						~								-	5													and fo	Ψ.	. "	"NN	ŧ

Derivation of Predicted Distribution Pattern for Variations in Pitch Acceleration for Wartime Duty in North Atlantic Ocean

			5					T					1							1	T -					-
19	Ε	(Rad/sec ²) ²		0.0001	0.0015 0.0024 0.0015	0.0014	0.0033 0.0016 0.0018	0.0109	0.0161	0.0022	0.0030	0.00010	0.0222	0,0173	0,0140	0.0327	0.0032	0.0023	0.0004							
18			1.00											0 000 - 10-12		(0.51 × 10 ⁻¹²						Í				
17			0.50			1.2×10^{-33}	1.2×10^{-33}	0.11×10^{-9}	0.178×10^{-6} 0.437×10^{-6}				12.7×10^{-6}	0.53×10^{-6}	0.0175 × 10 ⁻⁶	0.48×10^{-3}				0.00865	0.0001	aves.	ble			
16	ariation ††(1-P)		0.20		$\begin{array}{c} 2.56 \times 10^{-12} \\ 57 \times 10^{-9} \\ 2.56 \times 10^{-12} \end{array}$	$0.38 \times 10^{-1.4}$ 5.43 × 10 ⁻⁶	5.43×10-6 13.8 ×10 ⁻¹²	0.0256	0.0832	12.6 × 10 ⁻⁹	1.64×10 ⁻⁶	- 01 × 01"T	0.1650	0.0990	0.0574	0.2942 35×10^{-6}				21.47	2.79	of well-formed w	no data is availa			
15	a Magnitude of V		0.10		0.00128 0.0155 0.00128	0.00079 0.0482	0.0482 0.00192 0.37 ~ 10-15	0.400	0.538	0.0106	0.0358	0.90 × 10 ⁻⁶	0.6378	0.5615	0.490	0.736	0.044	0.013	0.46 × 10 ⁻³ 13.8 × 10 ⁻¹²	91.306	11.87	er of each group	peeds for which I		wave direction.	
14	Exceeding Giver	(Rad/Sec ²)	0.05		0.189 0.354 0.189	0.469	0.469 0.210 0.00013	0.795	0.856	0.321	0.434	13.8×10^{-12} 0.0310	0.8936	0.8653	0.8364	0.92645	0.458	0.338	0.146	241.26	31.4	aves in the cent	epresent ship s		ae predominant	
13	bility of E		0.02	0.0183	0.7660 0.8465 0.7660	0.7516 0.8859	0.8859 0.7783	0.9640	0.9755	0.8338	0.8752	0.0183	0.98213	0.9772	0.9718	0.98782	0.8826	0.8404	0.7350	465.50	60.5	dgheat w	column r		ative to t	
12	Proba		0.01	0.370	0.9350 0.9592 0.9350	0.9311	0.9702 0.9395 0.7000	0.99087	0.99380	0.9556	0.9673	0.370	0.99551	0.99429	0.93287	0.99696	0.9693	0.9575	0.9260	608.13	79.1	of the !	is in this	the table	ungs rei	
Ξ			0.005	0.7790	0.98350 0.98964 0.98350	0.98230	0.99245 0.98450	17790.0	0.99856	0.98870	0.99170	0.7790	0.99887	0.99856	12866.0	0.99924	0.99221	0.98918	0.98097	715.34	93.03	ean valu	exponent	poses of	s all hea	maads .
9			0.002					1												\uparrow	T	the m	. The	for pur	nclude:	ale ano
6	Average Number of Variations	ber Hour Contributed	$f_1 f_2 f_3 N = n$	157.58	9.874 22.385 21.348	49.660	42.143 75.650 26.989	7.548	10.537	16.944	16.596	56.570 50.460 22.803	85.80	1.685	3.323	13.651	3.791	2.772	2.259	tude 768.97		value was estimated by taking	urve of shaft mm versus knots	ed speed is assumed to apply	ed for a given sea state and a cted, on the average.	to the ses, for a given sea st
~~	ors† /	L	N		704 786 761	872 708	740 890 635	694	765 862	64.4	763	696 629	780	624	513	711	702	660	524	Magni	_	This .	ation c	indicat	e expe	eecung
~	g Fact	L	f ₃		0.125 0.125 0.25	0.25	0.25	0.125	0.125	0.25	0.25	0.25	1.00	0.125	0.25	0.50	0.25	0.25	0.125	Given	n Leve	height.	calibr	the the	will b	given a
9	ightin	L	I_2	0.20	0.34		>	0.29				>	0.11	0.06						eding	Give	wave	from a	guipu	state	ake a t
s	We		1,		0.33 0.67 0.33	0.67	0.67	0.30	0.38	0.30	0.30	001	1.00	0.36	0.36	0.64	0.36	0.28	0.36	Exce	eeding	icant	aken	respon	n sea	VILL THE
4	Ship	Speed **	knots	AII	10 ⁷ 14 ¹⁷ 10 ⁷	147	14 ¹⁷ 14 ^{7,10,17}	107	11	107	107	177, 10, 14 177, 10, 14	147, 10, 17	7 1/2	412	1410.17 7 16	1 %	10	7 ½ 14 10, 14	s per Houn	stions Exc	ated aignib	ial speed t	el deta cou	the ship w that a give	the snip v
3	Relative	of Waves		AII	±=Β	Н, m	a T T	- =	x x	HÒ	5,00 (. F. r.	Ŧ	Ξ :	нд	ЧĞ	ςF	QF F	շուս	of Variation	ige of Varia	s the estim.	· the nomin	exp. Ament	on of time ton of time	TOT OF LITTLE
2	Significant	Height*	Ħ	4>				-6-1				>	16	21					• >	Number o	Percenta	umn 2 giver	lumn 4 giv	r which the	is the fracti in the fracti	1s the ract.
-	Sea	State			2			3					4	s								°Col	**Co	toj pue	1.4	5

The exponents in columns 10-18 denote the power of 10 by which the given number is to be multiplied.

Derivation of Predicted Distribution Pattern for Variations in Roll Angle for Wartime Duty in North Atlantic Ocean

18	$F_{\rm deg)^2}$	Mean Square of Variations	6.5 (estimated	19.0 18.3 31.0	26.0	19.0	24.0 21.0	20.6 17.5	9.8 6.5	7.5	13.0	19.3 15.8	7.8 ,	119.0	84.8 75.3	64.3	176.0	148.0	114.0	60.0							
17		400	0	c		00		• •					0 0	0.00000152	62000000000000000000000000000000000000	0	11000.0	0.0000202	0.0000083	0	0.000462	0.00012					
15		30°	0	U				00	000			00	0 0	0.00052	0.000025	0.00000067	0,00600	0.00227	0.000373	0.00000031	0.0299	0 0079					
15	tion	200	0	0 0 0 00000352	0.00000021		0.0595 × 10 ⁻⁶ 0	0.00000188	00	0	20		0	0.0348	0.00901	0-00.20	0.103	0.0672	0.0301	0.00128	0.712	0 184	aeven be	• Ida Ila v			
14	nitude of Varia	15°	0	0.0000072 0.0000028	0.000175	0.0000072	0.0000833	0.000598	0 0		0.00000012	0.0000089	0	0.1515	0.0704	0.0303	0.278	0.219	0.139	0.0233	2.61	0.69.4	up of well-form	ch no data is a	2		
13	xceeding Given Mag	100	0	0.00518 0.00425 0.0397	0.0215	0.00518	1.0155 0.00855	0.037	0.0000304	0,00000163	0.0000052	0.00565	0.0000025 0.00016	0.428	0.308	0.211	0.55/	0.509	0.415	0.1885	9.50	9 5 9	tout the center of each gro	t ship speeds for whi	minant wave directio		es of basic data.
12	robability of E	20	0.0213	0.268 0.255 0.447	0.383	0.268	0.353	0.438	0.078	0.0343	0.146	0.366 0.206	0.046 2.92	0.809	0.734	0.678	0.863	0.845	0.802	0.660	78.6	70.07	20.07 est waves in t	dumn represen	ve to the predo		n from the tab
11	٩.	20	0.528	0.81 0.805 n 878	0.858	0.81	0.845 0.825	0.877	0.653	0.579	0.735	0.812 0.775	0.598 38.02	0.966	0.952	0.940	0.975	0.971	0.967	0.935	268.3	11 22	1 1.22 Jue of the high	tents in this co	eadings relati		t ue of N is take
10		10	0.859	0.949 0.946 0.968	0.961	0.949 0.949	0.953	0.952	0.902	0.873	0.925	0.950	0.880 55.95	0.925	0.987	0.985	0.943	0.938	0.925	0.985	344.8	01 59	31.34 g the mean va	a. The expon	includes all h		ate and speed ed. This valv
6	Average Number of Variations per Hour Contributed	$f_1 f_2 f_3 N = n$	70.11	5.38 10.31 0.66	19.36	20.96	28.48 13.86	4.71 5.51	5.20	17.22	5.66 24.49	20.66 12.87	63.58	966.0	1.910	7.834	1,966	1.562	1.944	0.961 1.632	el 376.7		altie was estimated by takin	rive of shaft tpm versus knot of sestimed to sestimed to sorts	ed for a civen sea state and	ted, on the average.	o the sea, for a given sea at under the condition consider
8	ors†	~		380 362 365	340	368	335 326	436	448 209	339	260 482	285 355	578	369	398	408	364	372	360	340	en Lev	-	This v	tion cu		expec	ading t station
-	g Facto	f3	1.00	0.125	0.25	0.25	0.25	0.125	0.125	0.25	0.25	0.25	1.00	0.125	0.125	0.50	0.25	0.25	0.25	0.125	ng Giv		ven Li	calibre		will be	ven he
3	ighting	t_2	0.20	0.34			->	0.29		_		->	0.11	0.06						+	xceedi	litions	wave h	from a	wote e	state	re a gi
2	We	1,	1.00	0.33	0.67	0.67	1.00	0.30	0.32	0.70	070	1.00	1.00	0.36	0.64	0.64	0.35	0.28	0.36	0.36	lour E	CONC	cant	aken	odeau		ted pe
4	Ship Speed**	knots		10 ⁷ 14 ¹⁷	1417	10' 14 ¹⁷	147,10,17 147,10,17	107	117	1714	1714	177,10,14	147,10,17	1	14 10, 17	1410,17	~ *	10	147	1410,17	tions per H	ning over a	ariations t ated algonid	nel speci t	the shin of	that a give	the ship w
3	Relative Heading	01 Waves		±Ξ	55	m m	Ъ, ч	I 1	- = 2	5 F	8 8	55	Ŧ	Ŧ	≖ ₹	55	<u>ه</u> ا	50	ŐF	<u>к к</u>	ier of Varia	(Summ	entage of v s the estim	in nomi	ion of time	ion of time	ion of time
2	Significant Wave	ft ft	4	e				<u></u> б =			-	->	16	21							Numb	4	Perci lumn 2 zives	olumn 4 give	in the function	is the fracti	is the fracti
	Sea State			2									9	50									ů	0	J+		23 8

##The exponents in columns 10-18 denote the power of 10 by which the given number is to be multiplied.

Derivation of Predicted Distribution Pattern for Variation in Hull Stress Due to Longitudinal Bending, at the Main Deck, Amidships for Wartime Duty in North Atlantic Ocean

-	2	6	-	2			8	6	01	=	12	13	14	15	16	17	18	61	
Sea	Significant Wave	Relative Heading	Ship	à	a the	1	4 aret	Average Number of Variations			Probé	ability of Excee	eding Given Magnit	ude of Variation	H(1 - P)			$E^{(kips/in^2)^2}$	
albic	Height*	of Waves	naade	-	Real Provide P			by Each Operating Condition				Kips	s per Square Inch					Mean Square Variation	-
	ħ		knots	f_1	f2	f_3	2	$f_1 f_2 f_3 N = n$	0.2	0.5	1.0	1.5	2.0	4.0	8.0	0.7			
	₹				0.20		64(129.24	0.69541	0,1031	0.00011							0.11	
2	9	=	107	0.33	0.34	0.12	5 676	9.40	0.835	0.321	0.0106	0.0000358	0.0123×10^{-6}	0.025×10^{-30}		0.108		0.22	1
		= 2	1417	0.67		0.05	18/	7 18	0.880	0.44/	0.0398	0.000705	2.52 × 10 ~	0.038 × 10 ⁻⁴¹		0.206		0.31	
		55	1417	0.67			100	57.18	0.846	0.353	0.0156	0.0000855	0.057 × 10 ⁻⁶			0.130		0.24	
		8	107	0.33	_		52	14.64	0.898	0.509	0.0672	0.00228	20.7 × 10 ⁻⁶	0.17×10^{-18}		0.266		0.37	
	_	<u>ه</u> ا	141/	0.67			66	37.93	0.871	0.422	0.0320	0.000430	1.12 × 10 ⁻⁰	1.0×10^{-24} $0.025 \le 10^{-30}$		0.184		0.29	
	+	5≞	147.10.17	1.00	+	0.12	5 392	16.66	0.896	0.495	0.0622	0.00192	15.0 × 10 ⁻⁶	0.049×10^{-18}		0.256		0.36	
3	6-2	x :	107	0.30	0.29	0.12	5 621	6.75	0.96487	0.800	0.4095	0.1343	0.0280	0.624×10^{-6}		0.646		1.12	
		× 1	11	0.38			200	2/-01	0.96749	0.822/	0.4378	0.1555	D 0.368	3.72×10^{-6} 1.82 $\times 10^{-6}$		0.667		1.21	-
		- H	107	0.30		0.25	864	18.79	0.69541	0.1031	0.000113	1.30 × 10 ⁻⁹	0.158 × 10 ⁻¹⁵	NT ~ 70.1	,	0.0116		0.11	
		HÒ	1714	0.70	_		11	36.09	0.77881	0.2095	0.00192	0.78 × 10 ⁻⁶	0.014 × 10 ⁻⁹			0.0467		0.16	_
		æ (10/	0.30	_		200	10.94	0.81037	0.2681	0*00520	7.2 × 10 -0	U.//2 × I0 ⁻⁹			0.076		0.19	
		8 JO	1/27, 10, 14	1.00			459	34./6	0.76610	0.1890	0.00128	3./5 × 10 ⁻⁶	2.63×10^{-12}			0.038		0.15	
	*	; u.	177.10,14	1-00	+	0.12	5 360	13.05	0.64123	0.0621	0.000015	0.0138 × 10 ⁻⁹	0.048×10^{-18}			0.0043		60°0	
4	16	H	147.10.17	1.00	0.11	1.00	768	84.48	0.96637	0.80775	0.4255	0.1460	0.0328	1.16×10^{-6}		0.658		1.17	
s	21	Ŧ	7	0.36	0.06	0.12	5 581	1.57	0.98588	0.91474	0.7010	0.4490	0.2410	3.35×10^{-3}	0.125×10^{-9}	0.8400		2.81	
		= ;	1410,17	0.64		-	162	3.80	0.98863	0.93096	0.7518	0.5260	0.3190	10.4×10^{-3}	11.6×10^{-9}	0.8692		3.50	
		5,5	1410,17	0.50	_	0.10	202	3.23	0.90675	0 01000	2709.0	0.4722	0.3540	4 22 ~ 10 - 3	0.55 010-9	2118.0		3 00	
		5, m	-	0.36	_	0.25	532	2.87	0.96968	0.82508	0.4633	0.1773	0.0460	4.50×10^{-6}		0.6860		1.30	
	_	QF	1	0.36			445	2.43	0.95453	0.74777	0.3125	0.0730	0.0096	8.2×10^{-9}		0.5660		0.86	-
		5	10	0.28			328	1.38	0.96487	0.8000	0.4095	0.1340	0.0280	0.624×10^{-6}		0.646		1.12	
		5,	141/	0.36	_		344	1.86	0.96116	0.78064	0.3718	0.1078	0.0190	0.125×10^{-0}	1-01 04.	0.6155		1.01	
	->	_ u	1410,17	0.54	->	ZT*0	376 0	0.88	0.97484	0.85280	015240	0.3060	0.1220	0.220×10^{-3} 0.038 $\times 10^{-3}$	1"22 × 10	d2//*0		1.57	
	•			5	•		2		10110-0	03000	0.16.0	0007*0	0.01						
	Numbe	er of Variati	ons per Ho	Condi	(tions)	ng Gi	ven N	lagnitude 642.09	531.71	246.75	74.96	28.89	9.994	0.113		141.60			
	Percer	ntage of Val	riations Ex	ceedi	ng Gi	ven L	evel		82.8.	38.43	11.67	5.00	1.56	0.0018		22.05			T
*Col	lumn 2 gives	the estimat	ted signific	cant w	d eve	leight	Th.	is value was estimated by taking	č the mea	n value o	of the high	est waves in th	ie center of each g	roup of well-forn	ied waves.				
**Co	olumn 4 gives	the nomine	al speed ta	ken fr	e mo	calib	ation	curve of shaft rpm versus knots	. The er	tponents	in this co	lumn represent	ship speeds for wh	nich no deta is a	railable				
of bne	r which the e	rperimenta	I data com	espon	ding to	o the	indic	ated speed is assumed to apply	for purpo	ses of th	table.								
t/1	is the fraction	on of time to	he ship wil	II oper	rate al	tagi	ven s	peed for a given sea state and is	ncludes a	all headin	nga relativ	e to the predom	ninant wave directi	on.					
12	in the fractic	on of time ti	nat a given	1	state v	will b	dxe e	ected, on the average.		1									
N 1	is the number	on of variatio	ins expecte	ed per	hour	of op	eratio	g to the Bea, for a given see sta on under the condition considered	d. This	value of	N is taken	from the table.	a of basic data.						

17 The exponents in columns 10-18 denote the power of 10 by which the given number is to be multiplied.

DESIGN AND OPERATIONAL CONDITIONS FOR WARTIME SERVICE

In the discussion of the statistical background, it was pointed out that the distribution patterns readily give the probability of exceeding any given magnitude of the motion or stress and that the distribution pattern can be utilized as a load spectrum for endurance strength calculations. In this section the methods will be applied to determine design and operational conditions for wartime service. These determinations are based on the following assumptions.

1. The vessel will be operating in the North Atlantic Ocean. The observations of sea conditions at weather station C (52°N37°W), see Figure 2, are considered typical of conditions in the North Atlantic and are assumed to represent the conditions the ships will encounter in service.

2. The ship operating speeds for the different sea conditions are taken to be the average of the estimates obtained from ship's officers of a number of ships; see Table 1.

3. All headings of the ship relative to the predominant wave direction are assumed equally likely, excepting only that seas coming approximately off the beam are considered unlikely for combinations of high speeds and rough seas.

"LONG-TERM" DISTRIBUTIONS OF SHIP MOTION, HULL BENDING MOMENT, AND WAVE HEIGHT

The charts of Figures 7 through 10 give the probability of exceeding and of not exceeding any given value of stress or motion if all the motions or stresses are considered to which the vessel is subjected over a period of a number of years. For example, only 3 percent of all variations in roll angle would, on the average, exceed a value of 10 deg peak-to-peak; see Figure 9. Figure 2 gives similar data for significant* wave heights to be expected in the North Atlantic Ocean. These distributions may be considered valid up to maximum variations of 25 deg in pitch, 56 deg in roll, 0.8 rad/sec² in pitch acceleration, and 40,000 ft-tons in bending moment.

PREDICTIONS OF SHIP RESPONSE TO WAVES FOR GIVEN CONDITIONS

It is difficult to make reliable estimates on the basis of the available data because the specification of the sea state and of the relative heading of the ship to the sea are somewhat indefinite. Nevertheless the following formulas may be used to make estimates which should be fairly good if the environmental conditions are similar to those for which measurements were made.

The most frequent magnitude of the variation will be 0.707 \sqrt{E} . The average magnitude of the variation will be 0.886 \sqrt{E} . The significant magnitude (average of the upper third of the

^{*}The significant wave height is used to denote a sea state. It is estimated as indicated in the footnote on page 3.

This log-normal distribution is computed on the basis of the data represented by the plotted points and it corresponds to the following parameters (see Appendix B for calculations).

Mean value of \log_{10} (variation in pitch angle) = 0.1227 Standard deviation of \log_{10} (variation in pitch angle) = 0.3898 It is probably valid up to 25 deg.

Figure 8 - Long-Term Cumulative Distribution of Pitch Acceleration for Wartime Service, North Atlantic Ocean

This log-normal distribution is computed on the basis of the data represented by the plotted points and it corresponds to the following parameters:

Mean value of \log_{10} (pitch acceleration in rad/sec²) = 2.4314 Standard deviation of \log_{10} (pitch acceleration in rad/sec²) = 0.4895 It is probably valid up to 0.80 rad/sec².

waves having the largest magnitudes) will be $1.416 \sqrt{E}$. The most probable magnitude of the largest of 50 variations will be $2.01 \sqrt{E}$. The most probable magnitude of the largest of 500 variations will be $2.509 \sqrt{E}$. The most probable magnitude of the largest of N variations will be (constant) \sqrt{E} where the value of the constant is given in Table 7. For large values of N, the constant is approximately equal to $\sqrt{\log_e N}$.

The values of E corresponding to various combinations of sea condition, ship speed, and heading are given in Tables 2 through 6.

PREDICTION OF EXTREME VALUES

It may be desired to estimate the largest value of ship motions or hull girder stress

This log-normal distribution is computed on the basis of the data represented by the plotted points and it corresponds to the following parameters:

Mean value of log₁₀ (variation in roll angle in degrees) = 0.4868 Standard deviation of log₁₀ (variation in roll angle in degrees) = 0.2741 It is probably valid up to 56 deg.

that a ship structure is expected to experience in a given number of variations or over a given period of time.* The cumulative probability functions plotted in Figure 4 (Rayleigh distribution) and Figures 7 through 10 (log-normal distributions) may be used to find the probability of exceeding (1-P) or of not exceeding (P) a given value of the variable.

In the preceding section a convenient formula is given for estimating the most probable magnitude of the largest variation out of N variations; this formula is applicable only when the

^{*}The average number of variations expected per hour of sea operation are given in Tables 8 through 11, column 8.

Figure 10 - Long-Term Cumulative Distribution of Longitudinal Bending Moment, Amidships, for Wartime Service, North Atlantic Ocean

This log-normal distribution is computed on the basis of the data represented by the plotted points and it corresponds to the following parameters:

Mean value of \log_{10} (variation in stress in kips/in.²) = $\overline{1.6016}$ Standard deviation of \log_{10} (variation in stress in kips/in.²) = 0.3229 It is probably valid up to 40,000 ft-tons.

conditions of ship speed, heading, speed, and sea are steady. The following is a more general approach which may be applied to any distribution provided that its cumulative distribution function P(x) is known.

The following formula, developed in Reference 3, gives the fraction f of all samples of

size N [belonging to a given distribution specified by P(x)] which will have at least one value of $x > x_{m_1}$. The formula is valid only if $P(x_{m_1})$ has a value close to unity, that is, the formula is designed to estimate the values which occur rarely. The formula is

$$f = 1 - e^{-N \left[1 - P(x_{m_1})\right]}$$

or alternatively

$$1 - P(x_{m_1}) = \frac{-\log_e (1 - f)}{N}$$

where $[1 - P(x_{m_1})]$ is the probability of exceeding x_{m_1} in the fraction f of all samples of size N each. Knowing $[1 - P(x_{m_1})]$, it is easy to compute the corresponding value of the variable x_{m_1} .

In order to estimate the largest values of motion and bending moments for design purposes we will use this formula to estimate the value x_{m_1} which, on the average, is exceeded by the fraction f of all similar ships during their service life. Thus f represents the risk of exceeding x_{m_1} .

It will be assumed that the worst combination of operating conditions is the most severe of those listed in Tables 1 through 6, viz., a State 5 sea characterized by a significant wave height estimated to be 21 ft. The values of E_m specifying the corresponding Rayleigh distributions are listed in Table 12. Assume that the ship will be subjected to these operating conditions for a duration of 12 hours, experiencing V variations in this period of time, and that this situation will be repeated n times during the service life of the ship; therefore N = nV. For the Rayleigh distribution we have

$$[1 - P(x_{m_1})] = e^{-x_m^2 / E_m}$$

Substitution in the expression for f gives:

$$1 - f = \exp[-e^{-y}]$$
 where $y = \frac{x_{m_1}^2}{E_m} - \log_e N$

Table 1 of Reference 9 tabulates the values of exp $[-e^{-y}]$ as a function of y. Thus, for a specified risk f of exceeding x_{m_1} one may look up the corresponding value of y and then solve for the desired value of x_{m_1} from the relation

$$x_{m_1}^2 = E_m [y + \log_e N]$$

As an example consider the maximum value for the variation in roll angle.

From Table 12: $E_m = 176 \text{ (deg)}^2$, V = 4600If we take f = 0.001 and n = 10, then Reference 9 gives y = 7.0. Therefore:

$$x_{m_1} = [176 (7.0 + 10.74)]^{\frac{1}{2}} = 56 \text{ deg (port to starboard)}$$

TABLE 12 - Maximum Values of Ship Motion and Longitudinal Bending Moment for Use in Design Calculations

Quantity	Sea State	Condition for Wi Significant Wave Height	nich the Ex Direction of Seas	treme V Shaft RPM	alue is Predicted E_m	V Number of Variations in 12 Hours for Steady Conditions	Estimated Most Probable Largest Variation in 12 Hours $\sqrt{F \log_e V}$	Jaximum Variation for Operating Life of Ship f = 0.001	Largest fileasured Variation from Table 5, Ref. 2†	Maximum Variation for Design Purposes
Dell Acele			05	0.4	176 (deg)2	4500	399		50°	560
Roll Angle	5	21	vr	34	1/6 (deg)	4000	0.00	220.00	20.0	
Pitch Angle	5	21	н	185	56 (deg)*	/000	220	32	20-	about 25*
*Roll Angle	5	21	QF	94						40°
Pitch Angle	5	21	QF	94			i			10°
Pitch Acceleration	5	21	QH	185	0:0327 (rad/sec ²) ²	8500	0.54 rad/sec ²	0.78 rad/sec ²	0.77 rad/sec ²	0.8 rad/sec ²
Heave Acceleration	5	21	QH	185	0.0498 (gravity unit) ²	6800	0.66 g	1.0 g	1.0 g	1.0 g
Longitudinal Bending Moment	5	21	н	185	$85 \times 10^6 (\text{ft-tons})^2$	9500	28,000 ft-tons	40,000 ft-tons	33,000 ft-tons	40,000 ft-tons
Longitudinal Bending Stress	5	21	н	185	3.50 (kips/in ²) ²	9500	5.7 kips/in ²	8.0 kips/in ²	6.7 kips/in ²	8.0 kips/in ²
"This is believed to ""This estimate (32	be an) is bei	tost severe cor	dition of al side the ran	multane sge with	ous roll and pitch. The	data are taken from Fi estimation is valid and	gure 5b of Refe I therefore the v	rence 2. alue is discard	ed.	

All values given refer to the peak-to-peak variation.

These values are nearly the largest magnitudes obtained under any conditions experienced during the tests reported in Reference 2.

QH - Quarter Following; QF - Quarter Head; H - Head

Maximum estimated values for the other variables have been computed similarly, taking f = 0.001 and n = 10. They are listed in Table 12 together with the largest values measured at any time during the rough water sea trials reported in References 2 and 6. We will take the larger of the statistically estimated and the measured values as the suggested maximum value to use for design purposes.

For some design problems, it is necessary to make an estimate of the extreme conditions of simultaneous pitch and roll. It is unlikely that the maximum conditions of pitch and roll listed in the last column of Table 12 will occur simultaneously. The most severe combinations of simultaneous roll and pitch angle, measured during the sea trials,² was 40 deg double amplitude in roll together with 10 deg double amplitude in pitch, see Table 12. It is suggested that this combination be used as an extreme condition for design purposes. Predicted extreme values should be used with caution because the method eventually breaks down by predicting too extreme a value. This occurs because, in practical application the theoretical distribution cannot be relied upon at the extreme ranges of the function. For example, the prediction of 32 deg for the extreme value of pitch angle variation is probable unrealistic as nonlinear behavior of the pitch motion will probably set a lower limit than this.

The extreme values listed in the last column of Table 12 may be used to set an interim upper limit to the validity of predicted extreme values.

DESIGN LOADS FOR BOTTOM STRUCTURE TO WITHSTAND SLAMMING LOADS

A detailed analysis of the loads, stresses, and deflection for the bottom plating of an AVP vessel incident to slamming has been made by Greenspon.⁵ On the basis of the latter

study and photographs of an AVP during slamming,² it is estimated that the part of the bottom structure extending from the keel to the turn of the bilge in the forward quarter length of the ship may be subjected to occasional localized slamming or pounding pressures. In some locations within this area, the pressure attains values of the order of 300 psi. For the purpose of design calculations, the time variation of the pressure is such that it may be assumed to act statically. The following design loads are given as an interim recommendation:

a. For the design of bottom panels: Assume that the pressure attains a maximum value which varies linearly from 300 psi at the bow to 30 psi at a distance of 0.25 L from the bow:

$$p_0 = 300 - 1080 \frac{x}{L}, \frac{x}{L} < 0.25$$

where p_0 is the design pressure for plates,

x is the location of the plate measured from the bow in feet, and

L is the length of the ship in feet.

b. For the design of transverse framing: Assume that a static uniform pressure of intensity $p_0/2$ acts on the bottom over a strip one frame space in width.

c. For the design of longitudinal stiffeners or framing: Assume that a static pressure acts on the bottom plating supported by the longitudinal equal to $p_0/2$.

If the bottom plating is to be designed to keep the stresses within the elastic limit, then the simple formulas and tables of Reference 10 may be conveniently used for the calculation of the maximum stresses and deflections in plates loaded transversely. The ultimate load for transversely loaded panels may be estimated by utilizing the simple method given by Greenspon.¹¹

DISCUSSION

The data of Tables 2 through 6 furnish a basis for working up distributions of motion and hull bending moment for assigned service missions of ships of this type. In the present instance, these basic data have been utilized to predict wartime service conditions for operation in the North Atlantic; the procedure for making this prediction is carried out in Tables 8 through 11, as a guide for similar analyses of other missions. It should be pointed out that the prediction for "Wartime North Atlantic" service is greatly influenced by the estimated operational speeds provided by the U.S. Coast Guard. Inspection of Table 1 indicates that the estimates of service operating speeds made by COMAIRPAC vary considerably from those provided by ships in service in Atlantic waters.

It should be emphasized that the sea state is a variable which is most difficult to define. In the present case, variability of the sea conditions, for a given sea state, has been minimized by conducting the tests for a given sea state during one continuous time interval with the exception of the data for the State 3 Sea, for which two different time periods were required. The estimates of the sea state, as defined by the scale given in Reference 4, were made by the Weather Bureau observers who were assigned to the USCGC UNIMAK during the trials. In order to give a more quantitative idea of the sea state, sample stereophotographs together with photogrammetric analyses thereof are reproduced in Appendix C for sea states experienced during the trials of the UNIMAK (States 2, 4, and 5).

Inasmuch as the evaluation of sea states made by ships' officers and reported in Table 1, as well as that made by weather observers during the sea tests, depended upon visual observations, one may expect reasonable agreement in the severity of the sea as defined by the sea state. In any case, no better basis for making the synthesis given in Tables 8 through 11 was available to the authors.

The general method of synthesis utilized in this report could also be applied to data obtained from model tests of ships in waves rather than from full-scale test data. This would be a more flexible arrangement in that a wider variety of conditions could economically be covered by model tests than would be feasible with full-scale tests. Furthermore, the problem of measurement would be less difficult.

The order of magnitude of the pressures measured on the USCGC UNIMAK were also experienced by a sister ship, the USCGC CASCO (formerly AVP 12), during earlier sea tests in 1951. The indications are that the measured pressures are typical of the loading to be expected in heavy seas for this type of ship.

ACKNOWLEDGMENTS

The cooperation of the Commandant, U.S. Coast Guard and the Commanders, Air Force, U.S. Pacific and U.S. Atlantic Fleets made it possible to obtain realistic operational estimates of the speeds and headings under which ships of the AVP class are expected to operate in service. The Naval Photographic Interpretation Center and the Naval Hydrographic Office made the analyses of stereophotographs given in Appendix C. Mr. B.M. Wigle of the Vibrations Division, Taylor Model Basin, assisted in the calculations.

APPENDIX A

SAMPLE OSCILLOGRAMS

The two oscillograms of Figure 11a indicate the variation of pressures on the bottom plating with time and the consequent strains and deflections in the plate. The response to slamming is also indicated in the oscillograms of pitch acceleration and hull girder stress amidships in Figure 11e.

The maximum peak-to-peak variations in stress measured in the keel 15 in. aft of Frame 23 were 3500 psi, associated with presently undefined higher modes of hull structure which were excited subsequent to slamming at the bow.

Figure 11 - Samples of Records Taken During the Tests

Figure 11b - Oscillogram at Time of Maximum Measured Roll Angle 16 Jan 55

Maximum Roll Angle	40 deg	Ships Speed	7.5 knots
Significant Wave Ht	21 ft	Relative Heading of Seas	135 deg
Wind Velocity	32 knots	Heading of Waves	090 deg
Wind Direction	090 deg	Heading of Ship	315 deg

Figure 11c - Oscillogram at Time of Maximum Measured Pitch Angle 26 Oct 1954

Maximum Pitch Angle	18½ deg	Ships Speed	0.0 knots (Patent Log)
Significant Wave Heigh	t 25-29 ft	Relative Heading of Seas	000 deg
Wind Velocity	50 knot	s Direction from Which Waves Con	me 260 deg
Wind Direction	270 deg	Heading of Ship	260 deg

Figure 11d - Oscillogram at Time of Maximum Measured Pitch Acceleration 26 Oct 1954

(Patent Log)

Maximum Pitch Acceleration (0.77 rad/sec^2	Ships Speed	0.0 knots
Significant Wave Height	29 ft	Relative Heading of Seas	010 deg
Wind Velocity	50 knots	Direction from Which Waves Come	270 deg
Wind Direction	270 deg	Heading of Ship	260 deg

Figure 11e - Oscillogram at Time of Maximum Measured Stress and Heave Acceleration 1 Feb 1955

Maximum Stress	5900 psi	Ships Speed	14.2 knots
Maximum Heave Acceleration	0.55 g	Relative Heading of Seas	015 deg
Significant Wave Height	20 ft	Direction from Which Waves Come	090 deg
Wind Velocity	32 knots	Heading of Ship	075 deg
Wind Direction	079 deg		

APPENDIX B

SAMPLE CALCULATIONS

In the derivation of the long-term distributions of ship motions and bending moments, it is necessary to fit a log-normal distribution to the truncated histograms computed in Tables 8 through 11. This requires the calculation of the mean value and the standard deviation from the truncated data.

The method and tables of Reference 7 are applied in making these calculations as indicated below. In the calculations, the symbols used are: σ for standard deviation, y and z for the parameters needed to enter Table IX of Reference 7, z being an estimate of the point of truncation.

LONG-TERM DISTRIBUTION OF VARIATION IN PITCH ANGLE

The mean value and standard deviation of the long-term distribution of the variation in pitch angle are computed from the data given in Table 8. These data are truncated at a pitch angle of $1/2 \text{ deg} (\theta = 5)$.

Variation deg $ imes$ 10 heta	log ₁₀ θ at End of Class Interval	log ₁₀ θ at Center of Class Interval h	$log_{10} \theta$ Measured from Point of Truncation $x = h - h_T$	$x^2 = (h - h_T)^2$	Percent of Variations Falling within Class N	Nx ²	Nx
0	- ∞						
5	$0.6990 = h_T$	0.8495	0.1505	0.0227	∠5.4	0.577	
10	1.0000	1.1505	0.4515	0.2039	36.2	7.381	
20	1.3010	1.4516	0.7526	0.5664	17.5	9.912	
40	1.6021	1.6902	0.9912	0.9825	5.6	5.502	
60	1.7782	1.8407	1.1417	1.3035	2.96	3.858	
80	1.9031	1.9516	1.2526	1.5690	1.28	2.008	
100	2.0000	2.0731	1.3741	1.8882	0.608	1.148	
140	2.1461	2.2007	1.5017	2.2551	0.0571	0.129	
180	2.2553				89.605	30.515	44.792

In accordance with the procedure outlined on page 29 of Reference 7, we have:

$$y = \frac{\sum Nx^2 \sum N}{2(\sum Nx)^2} = \frac{30.515(89.61)}{2(44.79)^2} = 0.6815$$

 $z = -1.087$ (from Table IX of Reference 7, corresponding to $y = 0.6815$)
 $g(z) = 0.7798$ (from Table IX of Reference 7)
 $g(z) = 5.78x$ $g(z) = 44.79(0.7798) = 0.3898$

89.61

 ΣN

Theoretical percentage of truncation = 13.9 percent(from Table II of Reference 7, corresponding to z = -1.087). Mean value of x = -zs = 1.087 (0.3898) = 0.4237 = \overline{x} . Mean value of $h = 0.6990 + \overline{x} = 0.6990 + 0.4237 = 1.1227$, $\theta = 13.26$ Mean value of θ = antilog of 1.1227 = 13.26 Therefore the mean value of the pitch angle = 13.26 \div 10 = 1.325°

The value of the variate λ corresponding to a probability of 97.5 percent is 1.96 standard deviations greater than the mean value of λ . Let this value be $\lambda_{97.5}$. Then $\lambda_{97.5} = \log(\theta_{97.5}) = 1.1227 + 1.96 (0.3898) = 1.8867$, $\theta_{97.5} = 77.0$. Therefore the pitch angle corresponding to a probability of 97.5 percent is 7.7 deg. The two sets of values of pitch angle and probability (1.326 deg, 0.50), (7.7 deg, 0.975) define the straight line in Figure 7 which represents the log-normal distribution of pitch angle.

APPENDIX C

PHOTOGRAPHIC DEFINITION OF SEA CONDITIONS

Photographs were taken with stereo-cameras during the sea voyages at estimated State 2, 4, and 5 seas. Photogrammetric analysis results in wave profiles at various distances from the centerline of the ship; see Figure 13. By use of these profiles, it is possible to obtain quantitative values of wave height and wave length which can then be treated statistically to determine, for example, the mean value of the one-third highest waves, commonly referred to as the significant wave height.

Figure 12a - Photograph 525F, Sea State 2

Figure 12b - Photograph 551F, Sea State 4

Figure 12c - Photograph 515A, Sea State 5

Figure 12 - Wave Photographs

The stereo cameras were located 52 ft apart approximately 56 ft above the ship's baseline.

(Photograph taken on January 28, 1955, at 1516 Greenwich time)

Figure 13a - Derived from Photograph 525, Sea State 2

Figure 13 - Wave Profiles Derived from Stereo-Photographs

(Photograph taken on January 16, 1955, at 1605 Greenwich time)

Figure 13c - Derived from Photograph 515, Sea State 5

REFERENCES

1. Bureau of Ships letter S29-7 (442-440-330) of 21 June 1948 to David Taylor Model Basin.

2. Jasper, N.H., and Birmingham, J.T., "Sea Tests of the USCGC UNIMAK. Part 1 -General Outline of Tests and Test Results," David Taylor Model Basin Report 976 (Mar 1956).

3. Jasper, N.H., "Statistical Distribution Patterns of Ocean Waves and of Wave-Induced Ship Stresses and Motions, with Engineering Applications," Transactions, Society of Naval Architects and Marine Engineers (1956).

4. Hydrographic Office Publication No. 606-e (1950).

5. Greenspon, J.E., "Sea Tests of the USCGC UNIMAK. Part 3 - Pressures, Strains, and Deflections of the Bottom Plating Incident to Slamming," David Taylor Model Basin Report 978 (Feb 1956).

6. Jasper, N.H., "Study of the Strains and Motion of the USCGC CASCO at Sea," David Taylor Model Basin Report 781 (May 1953).

7. Hald, A., "Statistical Tables and Formulas," John Wiley and Sons, Inc., New York (1952).

8. Longuet-Higgins, M.S., "On the Statistical Distribution of the Heights of Sea Waves," Journal of Marine Research, Vol. XI, No. 3 (1952).

9. Probability Tables for the Analysis of Extreme-Value Data, National Bureau of Standards Applied Mathematics Series No. 22, issued July 6, 1953.

10. Greenspon, J.E., "Stresses and Deflections in Rectangular Plates Under Dynamic Lateral Load Based on Linear Theory," David Taylor Model Basin Report 774 (Apr 1955).

11. Greenspon, J.E., "An Approximation to the Plastic Deformation of a Rectangular Plate Under Static Load with Design Applications," David Taylor Model Basin Report 940 (Jun 1955).

INITIAL DISTRIBUTION

Copies

Copies

- CHBUSHIPS, Library (Code 312) 22
 - 5 Tech Library
 - Tech Asst to Chief (Code 106) 1
 - 1 Nav Arch Planning Coordinator (Code 320E)
 - 1 Appl Science (Code 370)
 - 1 Noise, Shock, & Vibr Br (Code 371)
 - 1 Ship Design (Code 410)
 - 1 Prelim Des & Ship Pro (Code 420) 3 Hull Design (Code 440)

 - 4 Scientific-Struc & Hydro (Code 442)
 - 1 Interior Commun, Fire Control & Navigation (Code 565) 2 Radar Branch (Code 821)
 - 1 Sonar Support (Code 847)
- CHBUORD 3
- CHBUAER 2
- CHONR 4
 - 1 Deputy Chief & Chief Scientist (Code 102) 3 Mech Br (Code 438) Attn: Dr. P. Eisenberg
- 1 OPNAV
- 1 CO & DIR, USNEES, Annapolis, Md.
- 1 CDR, USNOL, Mech Div (Code 714)
- CO. USNMDL, Panama City, Fla. 1
- 1 CDR. New York Nav Shipyd, Mati Lab (Code 992)
- 2 CDR, Military Sea Transport Service
- COMDT, USCG Headqtrs 13 10 Sec, Ship Struc Comm
- Administrator, U.S. Maritime Admin-3 1 Chief, Div of Prelim Des 1 Mr. R. Krack
- Sec. ASNAME, New York City, N.Y. 10
- 2 CAPT. SS Silver Mariner
- CDR, Boston Naval Shipyd, Attn: Sci & Test Group 1

.6

- 2 CDR, New York Naval Shipyard 1 Sci & Test Group 1 Material Lab (Code 912b)
- 1 CDR, Puget Sound Naval Shipvd Attn: Sci & Test Group
- CDR. Norfolk Naval Shipvd. 1 Attn: Sci & Test Group
- CDR. Mare Island Naval Shipyd 1 Attn: Sci & Test Group
- 1 CDR. Philadelphia Naval Shipyd Attn: Sci & Test Group
- CO. USN Med Res Inst. Natl Nav Med Cen. Bethesda, 1 Md.
- U.S. Weather Bureau 2
- 1 DIR, Natl BuStand

- I Dr. W.H. Hoppmann, II, Dept of Mech Engin, Johns Hopkins Univ, Baltimore, Md.
- General Elec Co, Philadelphia, Pa. 1 Attn: Mr. Samual Levy, Special Proj Div
- 1 Glenn L. Martin Co. Baltimore, Md. Attn: Mr. H.C. Johnson
- 1 Ryan Aeronautics Co, Lindbergh Field, San Diego, Calif, (Operations Res)
- DIR, Exper Nav Tank, Univ of Michigan, 1 Ann Arbor, Mich.
- DIR, Appl Physics Lab, Johns Hopkins Univ, 1 Silver Spring, Md.
- Administrator, Webb Inst of Nav Arch, L.I., N.Y. 1
- 2 American Bureau of Shipping 1 Mr. A. Gatewood, Chief Engin Surveyor
- DIR, Engin Soc Library, New York City, N.Y. 1
- 2 DIR, ETT, SIT, Hoboken, N.J. L. Mr. E.V. Lewis
- Prof. R. Hechtman, Engin School, George 1 Washington Univ
- Prof. J. Ormondroyd, Dept of Engin Mech, Univ of 1 Michigan, Ann Arbor, Mich.
- Bethlehem Steel Co, Shipbldg Div, Quincy, Mass. 1 Attn: Mr. H.G. Acker
- 1 Newport News Shipbldg & Drydock Co, Newport News, Va., Attn: Mr. Comstock, Asst Nav Arch
- Mr. F.L. Pavlik, Hull Tech Asst, Sun Shipbldg & 1 Drydock Co. Chester, Pa.
- Dean David E. Marlowe, School of Engin & Arch, 1 Catholic Univ
- Prof. John W. Tukey, Dept of Math. Princeton Univ. 1 Princeton, N.J.
- Prof. Willard Pierson, Dept of Oceanography, New 1 York Univ. N.Y.
- 1 Dean, College of Eng. Univ of Notre Dame, Notre Dame, Indiana
- Dr. G.P. Weinblum, Universitaet Hamburg, Berliner 2 tor 21, Hamburg, Germany
- Dr. Yoshio Akita, Dir Ship Struc Div, Transportation 1 Technical Res Institute, Tokyo, Japan
- Prof. Georg Schnadel, Dr. of Eng, Hamburg, Germany 1
- 1 Dr. J.F. Allan, Supt. Ship Div. Natl Physical Lab. Middlesex, England
- Natl Inst of Oceanography, England, Attn: Mr. Tucker 1
- ٩ BJSM (NS)
- 1 DIR. BSRA
- 210 3

. ۹.,

 AVP (U.S. seaplane tatears) - Design AVP (U.S. seaplane tenders) - Operating con- titions Ships - Design - Sta- tistical analysis Ships - Dosign - Sta- tistical analysis Ships - Moion - Sta- tistical analysis Ship hulls - Bonding Ship hulls - Slamming Pressue distribution UNMAK (U.S. Coast Guard Guter) Jasper, Norman H. H. Broks, R.L. H. N731-037 	 AVP (U.S. seaplane tenders) – Design AVP (U.S. seaplane tenders) – Operating con- ditions) – Operating con- ditions) – Operating con- ditions – Design – Sta- ditional analysis Ships – Design – Sta- distical analysis Ships – Motion – Sta- tistical analysis Ship hulls – Bending monents Ship hulls – Stamming – Resue distribution UNIMAK (U.S. Coast dand Cutter) Hasper, Norma H. H. Brooks, R.L. H. S731-037
David Taylor Model Basin. Rept. 977. SIA TESTS OF THE JOCGC UNIMAK. PART 9 - STATISTI- CAL DRESENTATION OF THE MOTIONS, HULL BENDING MO- MENTS, AND SIAMMIG PRESSURES FOR SHIPS OF THE AVP TYPE, by N.H. Jasper and R.L. Brocks. Apr. 1987. iv, 439. TIUS, tables, graphs, diagrs., refs. (Research and development report) The motions and hull-girdet banding moments which a ship of the general form and size of the AVP10 class may be expected to experience over a wide range of operating conditions are presear- ments made on the USCGC UNIMAK during sea trails in the Noth Atlantic Ocean. The motiods of statistics have been employed in the planning of the a-see phases of the trials and in the collec- tion, analysis, and presentation of the large amount of data. From	David Taylor Model Basin. Rept. 977. David Taylor Model Basin. Rept. 977. CAL PRESENTATION OF THE MOTIONS, HULL BENDING MO- MENTS, AND SLAMMIG PRESSURES FOR SHIPS OF THE AVP MENTS, AND SLAMMIG PRESSURES FOR SHIPS OF THE AVP The motions and hull-grider bending moments which a ship of the general form and size of the AVP10 class may be expected to report). The motions are heased to extensive measure- ments made on the USCCU UNIMAK during sear this in the Noth Atlantic Ocean. The methods of statistics have been employed in the planning of the ak-sear phases of the trials and in the collec- ulon, analysis, and presentation of the large amount of data. From
 AVP (U.S. seaplane tenders) – Design tenders) – Design AVP (U.S. seaplane (U.S. seaplane ditions) – Operating con- ditions – Design – Sta- tistical analysis Ships – Design – Sta- tistical analysis Ships – Motion – Sta- tistical analysis Ship hulls – Bending moments Ship hulls – Slamming Ship hulls – Slamming Pressure distribution T. UNIMAK (U.S. Coast Guard Cutter) Mappet, R.L.M. II. NS 731-037 	 AVP (U.S. seeplane tenders) – Design tanders) – Design 2. AVP (U.S. seeplane ditions Ships – Design – Sta- ditions Ships – Design – Sta- ditions Ships – Moiton – Sta- distical analysis Constronents Constronents UNIMAK (U.S. Coast dand Cutter) Jasper, Norman H. II. Brooks, R.L. II. NS 731-037
Dovid Toylor Model Basin. Rept. 977. Sea TESTS of THE USCGU UNMAK. PART 2 - STATIST: SEA TESTS OF THE USCGU UNMAK. PART 2 - STATIST: SEA TRESENTATION OF THE MOTIONS, HULL BENDING MO- MENTS, AND SLAMMING PRESSURES FOR SHIPS OF THE AVP TYPE, by N.H. Jasper and R.L. Brooks. Apr 1987. iv, 43p. 1110s., tables, graphs, diagrs, rofs. (Research and devolment UNCLASSIFIED The motions and hull-girder bending moments which a ship of the general form and size of the AVP10 class may be expected to experise on the USCGC UNIMAK during sea trials in the North Allancia Coem. The addata are based on actensive measure- ments made on the USCGC UNIMAK during sea trials in the North Allandic Ocean. The methods of statistics have been employed in He planning of the absess of the trials and in the colloc- tion, analysis, and presentation of the large amount of data. From	Dovid Toylor Model Basin. Rept. 977. SEA TESTS OF THE USCOL UNIMAR. PART 2 - STATISTI- SEA TESTS OF THE USCOL UNIMAR. PART 2 - STATISTI- SEA TESTS OF THE USCOL UNIMAR. PART 2 - STATISTI- MENTS, AND SLAMMING PRESSURES FOR SHIPS OF THE AVP MENTS, AND SLAMMING PRESSURES FOR SHIPS OF THE AVP (1) and the AVP of the APP of APT 1057. iv, 45b. (1) usu, tables, graphs, diagra, refs. (Research and devolment UNCLASSIFIED The motions and hull-girder bending moments which a ship of the general form and size of the AVP 10 class may be expected to evereise over a wide range of operating conditions are present- ments made on the USCGC UNIMAR during sea triasive measure- ments made on the USCGC UNIMAR during sea triasive measure- ment and to the USCGC UNIMAR during sea triasive measure- ments made on the USCGC UNIMAR during sea triasive measure- tion, arelysis, and presentation of the large amount of data. From tion, arelysis, and presentation of the large amount of data. From

the test results, data are derived for this type of ship for use in design and operating problems involving bending moments, hull motions, and atamning pressures. Formulas are given for use in estimating probable maximum values of moments and motions.

the test results, data are derived for this type of ship for use in design and operating problems involving bending moments, hull motions, and slamming pressures. Formulas are given for use in estimating probable maximum values of moments and motions.

> the test results, data are derived for this type of ship for use in design and operating problems involving bending moments, hull motions, and slamming pressures. Formulas are given for use in estimating probable maximum values of moments and motions.

the test results, data are derived for this type of ship for use in design and operating problems involving bending moments, hull motions, and slamming pressures. Formulas are given for use in estimating probable maximum values of moments and motions.

tenders) - Operating contenders) - Operating con-6. Ship hulls - Slamming 6. Ship hulls - Slamming 3. Ships - Design - Sta-4. Ships - Motion - Sta-3. Ships - Design - Sta-5. Ship hulls - Bending 4. Ships - Motion - Sta-- Pressure distribution 5. Ship hulls - Bending - Pressure distribution 7. UNIMAK (U.S. Coast 7. UNIMAK (U.S. Coast 1. AVP (U.S. seaplane 2. AVP (U.S. seaplane 1. AVP (U.S. seaplane 2. AVP (U.S. seaplane I. Jasper, Norman H. I. Jasper, Norman H. tenders) - Design tenders) - Design tistical analysis tistical analysis tistical analysis tistical analysis II. Brooks. R.L. II. Brooks, R.L. Guard Cutter) Guard Cutter) II. NS 731-037 III. NS 731-037 moments moments ditions ditions Atlantic Ocean. The methods of statistics have been employed in tion, analysis, and presentation of the large amount of data. From tion, analysis, and presentation of the large amount of data. From the general form and size of the AVP10 class may be expected to Atlantic Ocean. The methods of statistics have been employed in MENTS, AND SLAMMING PRESSURES FOR SHIPS OF THE AVP ed in statistical form. The data are based on extensive measurements made on the USCGC UNIMAK during sea trials in the North the general form and size of the AVP10 class may be expected to CAL PRESENTATION OF THE MOTIONS, HULL BENDING MOillus., tables, graphs, diagrs., refs. (Research and development experience over a wide range of operating conditions are present-MENTS, AND SLAMMING PRESSURES FOR SHIPS OF THE AVP illus., tables, graphs, diagrs., refs. (Research and development ments made on the USCGC UNIMAK during sea trials in the North the planning of the at-sea phases of the trials and in the collec-CAL PRESENTATION OF THE MOTIONS. HULL BENDING MOexperience over a wide range of operating conditions are presented in statistical form. The data are based on extensive measurethe planning of the at-sea phases of the trials and in the collec-SEA TESTS OF THE USCGC UNIMAK. PART 2 - STATISTI-The motions and hull-girder bending moments which a ship of SEA TESTS OF THE USCGC UNIMAK. PART 2 - STATISTI-The motions and hull-girder bending moments which a ship of IYPE, by N.H. Jasper and R.L. Brooks. Apr 1957. iv, 43p. UNCLASSIFIED TYPE, by N.H. Jasper and R.L. Brooks. Apr 1957. iv, 43p. UNCLASSIFIED David Tavlor Model Basin. Rept. 977. David Taylor Model Basin. Rept. 977. report) report) tenders) - Operating contenders) - Operating con 6. Ship hulls - Slamming 6. Ship hulls - Slamming 4. Ships - Motion - Sta-3. Ships - Design - Sta-3. Ships - Design - Sta-4. Ships - Motion - Sta-5. Ship hulls - Bending 5. Ship hulls - Bending Pressure distribution - Pressure distribution 7. UNIMAK (U.S. Coast 2. AVP (U.S. seaplane 7. UNIMAK (U.S. Coast 1. AVP (U.S. seaplane 1. AVP (U.S. seaplane 2. AVP (U.S. seaplane I. Jasper. Norman H. I. Jasper, Norman H. tenders) - Design tenders) - Design tistical analysis tistical analysis tistical analysis tistical analysis Brooks, R.L. II. Brooks, R.L. Guard Cutter) Guard Cutter) III. NS 731-037 (II. NS 731-037 moments moments ditions ditions 1 H. MENTS. AND SLAMMING PRESSURES FOR SHIPS OF THE AVP Atlantic Ocean. The methods of statistics have been employed in ion, analysis, and presentation of the large amount of data. From Atlantic Ocean. The methods of statistics have been employed in ion, analysis, and presentation of the large amount of data. From the general form and size of the AVP10 class may be expected to ments made on the USCGC UNIMAK during sea trials in the North MENTS, AND SLAMMING PRESSURES FOR SHIPS OF THE AVP the general form and size of the AVP10 class may be expected to CAL PRESENTATION OF THE MOTIONS, HULL BENDING MOillus., tables, graphs, diagrs., refs. (Research and development ed in statistical form. The data are based on extensive measure-CAL PRESENTATION OF THE MOTIONS. HULL BENDING MOillus., tables, graphs, diagrs., refs. (Research and development ed in statistical form. The data are based on extensive measurements made on the USCGC UNIMAK during sea trials in the North experience over a wide range of operating conditions are presentthe planning of the at-sea phases of the trials and in the collecexperience over a wide range of operating conditions are present-SEA TESTS OF THE USCGC UNIMAK. PART 2 - STATISTIthe planning of the at-sea phases of the trials and in the collec-SEA TESTS OF THE USCGC UNIMAK. PART 2 - STATISTI-The motions and hull-girder bending moments which a ship of The motions and hull-girder bending moments which a ship of TYPE, by N.H. Jasper and R.L. Brooks. Apr 1957. iv, 43p. TYPE, by N.H. Jasper and R.L. Brooks. Apr 1957. iv, 43p. UNCLASSIFIED UNCLASSIFIED David Taylor Model Basin. Rept. 977. Javid Taylor Model Basin. Rept. 977. report) report)

the test results, data are derived for this type of ship for use in design and operating problems involving bending moments, buil motions, and shaming pressures. Formulas are given for use in setimating probable maximum values of moments and motions.

the test results, data are derived for this type of ship for use in design and operating problems involving bending moments, hull motions, and slamming pressures. Formulas are given for use in estimating probable maximum values of moments and motions.

> the test results, data are derived for this type of ship for use in design and operating problems involving bending nonvents, buil notions, and shaming pressures. Formulas are given for involving problem maximum values of moments and motions.

the test results, data are derived for this type of ship for use in design and operating problems involving bending moments, hull motions, and slamming pressures. Formulas are given for use in estimating probable maximum values of moments and motions.

