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A computer study of the transmission electron

microscope images of small defects has dissected the theory

of these images into a few components which determine the

main features of the image. The above or below background

nature of an image induced by displaced atoms is viewed in

terms of the wave interference responsible for diffraction.

The shape of the image is shown to arise from the resolved

displacements of the defect and a simple and intuitively

manageable method is presented for predicting the image.

These results and trends, as well as several others, are

displayed in pictorial formats by the use of computer

simulated images to reinforce and augment this theory.



Application of the theory to a study of radiation

damage in aluminum alloys led to an investigation of the

origin and sensitivity of a particular kind of image

(referred to as a |g-b| = image). These images detected

strains largely ignored previously and can detect minor

structural variations of a defect, such as the segregation

of solute to a dislocation loop. In experimental

application, this image was the primary evidence identifying

as »' precipitates observed in a neutron irradiated, dilute

Al-Cu alloy. Microscopy of precipitates known to be Q'

confirms this identification and establishes unambiguously

that the lattice parameters a and b of a
1 are greater than

those of aluminum. The strain created by t/ ' is expected to

contribute to the improved void swelling resistance of this

alloy

.

VI



CHAPTER I

INTRODUCTION

A persistent objective of materials science research is

to relate the microscopic structure of a material to its

macroscopic properties. The use of transmission electron

microscopes (TEM) in materials science has therefore

increased continuously since the early 1940's when these

instruments first became commonly available. The TEM's high

resolution and ability to view samples in three dimensions

make it obviously well suited to detailed microstructur al

characterization. More recent developments of the electron

microscope's ability to do quantitative compositional

analysis on a microstructur al level (^100 nm , by the use of

STEM-EDX and EELS) have extended this usefulness. But the

full potential of the TEM is not yet achieved; its theory

and use are still developing.

The present research grew from the desire to apply TEM

to the study of heterogeneous nucleation and precipitation

of a second phase. Such studies are important because

precipitates can have large effects on the properties of

materials. By the very meaning of the word nucleus,

theories of nucleation deal with materials at the atomic

level. Although nucleation and precipitation processes can

sometimes be followed by various indirect means such as

x-ray techniques or resistivity measurements, it is more

1



natural and direct that the high resolution of TEM be called

upon in such studies. Aside from the compositional

measurements (which may or may not be possible, depending on

the material, or the size and the volume fraction of the

precipitates) , the atomic structure and geometry of the

precipitate is desired. Structure here means not only the

atomic arrangement within the precipitate, but also the

relationship of the precipitate and the matrix, the habit

plane of a plate-like precipitate, a precipitate's

coherence, and the compressive or tensile nature of the

precipitate misfit. Other structural information which

would be desirable in a study of heterogeneous nucleation is

the exact atomic arrangement of a precipitate upon its

heterogeneous nucleation site. This type of information is

derived not from diffraction patterns or compositional

measurements, but from the image. Unfortunately, the TEM

image of a defect will often bear little resemblance to the

structure of the defect, as Fig. 1 shows. Here straight

dislocations appear as highly curved lines, a grain boundary

images as a set of fringes, and precipitates and dislocation

loops appear similar, both being images consisting of a

black and white lobe. Clearly an understanding of the image

formation process must be available to correctly interpret

the images and identify the defects. The more detailed the

information to be extracted from a TEM image, the greater

and more exact is the understanding needed.

The images presented below are called two beam

dynamical strain contrast images. In such images, the
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Fig. 1. Examples of TEM images: (a) dislocations a
grain boundary, (b) small dislocation loons, (c) sma
precipitates. Magnifications ar<= (a) 40,000, (b) 200
and (c) 200,000.
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electron beam is oriented so that it diffracts strongly off

only one set of lattice planes and the contrast arises from

the component of displacements perpendicular to these

lattice planes. This imaging mode is the most common and is

the easiest to achieve. The Howie-Whelan equations (1961)

have proven to be an adequate description of two beam

dynamical diffraction. These equations, along with relevant

geometry and mathematical descriptions of defects, have been

incorporated into a number of computer programs which

produce simulated images of defects. Such simulated images

accurately reproduce details of a real image. In principle

then, the Howie-Whelan equations and the mathematical

description of a defect are all that is necessary to

understand defect images. The Howie-Whelan equations and

the description of a defect are both sufficiently complex

that an understanding of images is not easily derived from

the equations, and so accurate computer calculations are

needed. Use of these computer programs allows the various

parameters to be studied, so that trends can be recognized

and understood. In this way, the theory can be broken down

into a number of effects depending on a few independent

parameters. Combining these effects allows confident

prediction of the major features of a defect image without

recourse to computer calculations.

The objective of this research is to advance the

understanding of small defect images and to prepare a method

suitable to the practicing microscopist for identifying the

most common small defect, the small dislocation loop. The



first point has had as its goal the study of precipitation

phenomena. The second point has been derived from the

desire to avoid the cumbersome methods of small loop

identification presented in the literature. As can be

appreciated from Fig. 1, the analysis of small defects is

difficult because high magnification is needed to observe

what little detail is available and because the images of

distinctly different defects can be very similar. The

method developed here uses direct image matching with

simulated images and so involves minimum calculation and

effort on the part of the microscopist .

Small dislocation loops occur in rapidly quenched

materials where the supersaturated vacancies cluster and

condense on a crystal lographic plane. In irradiated

materials, the collision of neutrons or other high energy

particles with lattice atoms creates inter stitial/ vacancy

pairs. This results in a super saturation of both vacancies

and interstitials which condense on lattice planes to form

dislocation loops. A dislocation loop is characterized by

the burgers vector of the dislocation, its habit plane and

whether it consists of an extra plane of material

(interstitial type) or a missing plane of material (vacancy

type). Larger dislocation loops, resolvable as geometric

loops, are fairly easy to characterize; the plane of the

loop is determined by geometric reconstruction, the burgers

vector is determined by the usual |g-b| = requirement for

invisibility. As demonstrated in Fig. 1, the diameter of

the loop is smaller than the extent of the image in the case



of a small loop and so the habit plane is obscured by the

image. Nor are any of the other parameters describing a

loop obvious in these images. The precipitates in Fig. 1

also look very much like the loops. Understanding these

images allows identification of the various parameters of a

loop and allows distinction between loops and precipitates.

A compromise is needed between using the computer to

simulate every conceivable small defect and estimating the

image from the known dependence of the image on relevant

parameters. The solution chosen is the compilation of two

image catalogs of the dislocation loop crystallographies

expected of fee and bec materials. Catalogs were prepared

only for cubic materials because of the great variety of

defect types possible in other crystal systems. In these

catalogs the images are calculated for a standard set of

imaging parameters. These images produce the important

topographical features of the image and the minor variations

which would occur in the image for parameters, other than

those used in the calculations, are easily visualized. By

using several time-saving approximations it was possible to

compute the large number of images in the catalogs (over

1,000). Some useful detail is lost from the image by the use

of these approximations, but this shortcoming is compensated

for by the capabilities of such a large data base. These

can be summarized as follows:

1) Identification of an experimentally
obtained image can be made by direct comparison
with the catalogs.



2) The imaging conditions which are most
useful and discriminating are also obvious, so the
catalogs can be used to plan the experimental
conditions to efficiently obtain useful data.

Furthermore, because of its pictorial form, the information

in the catalogs can be understood and utilized by the

practicing microscopist with a minimum of effort. The

catalogs represent an essentially complete data base because

the variations in imaging parameters can be accounted for

easily .

Although the catalogs can be used without much

understanding of the image formation, the importance of such

knowledge should not be minimized. Details of the image can

be crucial for the final identification of the image. Also,

dislocation loops may serve as nucleation sites for

precipitation. The segregation of solute atoms to loops

and/or the transformation of the loop to a precipitate will

make minor changes to the structure of the defect and subtly

change the image. An understanding of the image allows

deduction of the structure which causes the changes, and the

comDuter can then be used to test this hypothesis. The

computer studies which resulted from the compilation of the

catalogs Drovided this understanding.

The use of the catalogs to study several neutron

irradiated alloys led to the discovery of structure such as

just indicated. Specifically, the addition of copper to

aluminum is known to reduce the void swelling of aluminum in

a nuclear reactor (Farrell and Houston, 1979). In the

irradiated state an Al+100 ppma Cu alloy was observed to

produce very small precipitates which had peculiar structure



in their images when imaged by the use of a diffracting

vector perpendicular to the normal of these platelike

precipitates (a condition referred as |g«bl = 0). The

nature of the structural difference between the precipitates

and a small dislocation loop was quickly recognized and a

number of models were hypothesized and tested. This testing

produced a theoretical study of the sensitivity of these

Ig'bl = images to structural detail.

The results of this theoretical study are themselves

significant, but in application to this alloy system two

more results are obtained. First, by the good image match

that the parameters of 0' give, considerable support is

given to the hypothesis that the precipitates are 0'. This

is very significant because there was not a sufficient

volume fraction of precipitate to allow their detection or

identification by other techniques, such as small angle

x-ray scattering, electron diffraction or x-ray

spectrographic techniques. The technique of analyzing the

fg-bl = image finds application when the others have

failed. Secondly, when considered in the light of work

others have done on the diffusion of point defects and

solute atoms in a stress field (e.g., Sines and Kikuchi,

1958), it appears that the same strain responsible for the

|g-b| = images plays a role in the precipitates'

interaction with point defects and the alloy's ability to

resist void swelling.



CHAPTER IT
REVIEW OF PREVIOUS WORK

Electron microscopes evolved from the components used

to study the electron itself; Marton (1934) reported the

use of the first electron microscope on biological

specimens. The early intepr etation of images of biological

specimens was based on mass thickness scattering contrast

(Marton and Schiff, 1941) but such interpretation yielded

confusing results when applied to crystalline samples

(Borries and Ruska , 1940). One of the electron microscope's

greater contributions to materials science was the direct

observation (and confirmation) of dislocations in metals

(Bollmann, 1956; Hirsch et al . , 1956). This application

required correct and confident interpretation of the image

contrast and catalysed the development of electron

diffraction theories applied to image contrast.

Although Bethe (1928) first presented a dynamical

theory of electron diffraction, a dynamical diffraction

theory for image contrast was developed much later by Whelan

and Hirsch (1957), who applied the theory to explain

stacking fault images in fee crystals. Theories for the

images of dislocations soon followed as Hirsch et al . (1960)

applied the kinematical theory. Later Howie and Whelan

(1961) used the dynamical theory to explain these images.

From this work came the so-called Howie-Whelan two beam

9
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dynamical diffraction equations which describe the

interaction of an electron wave with a crystal sample when

only one set of lattice planes is strongly diffracting.

They also developed the concept of the "column

approximation" by which the intensity at a point on the

electron exit surface of the sample is determined from the

Howie-Whelan equations. The assumption is made that the

electrons diffracting down a column of material do not

interact with electrons in a neighboring column. The

limitations of the Howie-Whelan two beam equations and the

column approximation have been addressed (Howie and

Basinski, 1968; Heidenreich, 1964; Head et al
.

, 1973); in

spite of the many simplifications the theory makes on

reality, the Howie-Whelan equations have been successfully

used in applications too numerous to list here.

The initial use of the Howie-Whelan equations to

produce intensity traces for comparison to experimental

densitometer traces of micrographs proved to be a laborious

and unsatisfactory technique. A. significant improvement was

achieved by Head and co-workers (Head, 1967; Humble, 1968;

Head et al
. , 1973), who incorporated the Howie-Whelan

equations into a computer program which simulated

micrographs of the entire image by converting calculated

intensities to image points by the use of gray scale

symbols. This program, however, lacked flexibility and

generality because of its integration methods and geometric

algorithms. Many computer programs have been developed to

simulate the images of various small defects. The programs
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of Ru'hle et al . (1965) and Bullough et al. (1971) simulated

the images of small dislocations loops in isotropic

materials. Programs for small loop images in anisotropic

materials were developed by Ohr (1979) and Saldin et al

.

(1977). Saldin et al . (1977) also considered the images of

small stacking fault tetrahedra. Sass et al. (1972)

simulated cuboidal particles in a Ni-Ti alloy assuming

isotropy. Degischer (1972) developed a computer program for

the simulation of coherent particles in an anisotropic

material .

All of these programs were specific and inflexible in

purpose. Thblen (1970) developed a more general routine

using the scattering matrix techique first suggested by

Howie and Whelan (1961). This technique made the

integration of the Howie-Whelan equations independent of the

defect geometry and was therefore very flexible. It is well

suited to high speed computations and is easily adapted to

many beam images. Coooer (1977) incorporated this technique

in a computer program capable of producing two beam images

of isotropic dislocations, stacking faults and

infinitesimal, isotropic, small defects. Various

modifications of this program were used in the present work.

For the images of small defects, other approximations

besides the Howie-Whelan equations can be used to estimate

the image. Katerbau (1976) has used the Bloch wave approach

to derive equations describing image contrast as a function

of defect type, defect depth and foil thickness. He also

implemented these equations in a simulation program. In
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later work using the equations derived in the previous

paper, Katerbau (1981) investigated the black-white

direction of small defect images as a function of deviation

from the Bragg condition. His goal was to determine

experimental parameters which would discriminate between

interstitial and vacancy type defects, but he concluded no

such experimental conditions exist. Yoffe (1970) developed

a method which extracted from the displacement field of a

small defect the components which contribute to the image,

and from this was able to construct isointensity contours of

the image. This method employed the infinitesimal

approximation and was applicable to anisotropic materials.

This method was found to be in good agreement with the more

accurate calculations of Ohr (1979). A similar approach was

taken by Wilkens and Kirchner (1981), who estimated small

defect images using the Fourier transform of the anisotropic

elastic Greens function. They determined that the image of

small dislocation loops became increasingly insensitive to

the burgers vector and loop normal as the anisotropy of the

crystal increased.

Two beam images are used in the greatest fraction of

TEM applications but do not represent the total power of

transmission electron microscopes. The many other

abilities, techniques and theories of TEM are reviewed and

described in several texts. Heidenreich (1964) covers the

theory of electron diffraction and TEM image formation from

the point of view of fundamental physics. Hirsch et al

.

(1977) discuss the theory and techniques of TEM as applied
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to materials science. Edington (1975) has prepared an

excellent and concise review of the many important

applications and experimental results of TEM . Hren et al

.

(1979) have described and reviewed the recent advances of

various analytical techniques such as compositional analysis

by the use of x-ray and energy loss spectroscopy.

Interest in dislocation loops stemmed from their role

in quenching experiments and radiation damage processes.

The study of dislocation loops by TEM was impeded by the

need for the proper interpretation of their images.

Dislocation loops were first observed by Hirsch et al

.

(1958). Large loops can be identified by the so-called

formal analysis used by Mazey et al. (1962) and Maher and .

Eyre (1968). A dislocation loop is described by two

vectors, the burgers vector and the loop (habit plane)

normal. In the case of large loops the normal can be

determined by reconstructing the geometry from the data

taken at various beam directions. The direction, but not

the sign, of the burgers vector can be determined by imaging

the loop with various diffraction vectors. If the burgers

vector is perpendicular to the diffraction vectors

(|g-b| = 0) the defect will not appreciably distort the

diffracting planes, and the image will be weak or invisible.

Obtaining this condition for two diffracting vectors, g, and

g , defines the burgers vector as (g-)x(g ). Knowledge of

the loop normal and other crystal lographic constraints can

allow the burgers vector to be determined from one |g-bl =

condition. The sign of the burgers vector depends on the
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convention used and indicates whether the dislocation loop

consists of an extra plane of atoms (interstitial loop) or a

missing plane of atoms (vacancy loop). The determination of

the interstitial or vacancy nature of a loop is achieved by

exploiting the fact that for diffracting conditions

deviating from the Bragg condition (i.e., s i 0), the

position of the image does not coincide with the position of

the dislocation core (Hirsch et al
.

, 1960). The image will

be either inside or outside a loop's true position,

depending on the sign of g, s and b as described by

Edmondson and Williamson (1964). The magnitude of the

burgers vector is usually determined a priori from

crystallographic considerations.

The characterization of intermediate sized loops (10 nm

to 100 nm) was considered by Maher and Eyre (1971) who

extend the formal analysis described above. They also

demonstrated the possibility of obtaining erroneous results

from the method of Edmondson and Williamson (1964) for loops

whose burgers vector is not parallel to their normal

(sheared loops). For the case of prismatic loops in fee

materials (n = (111), b = ao /2[110]), Bell and Thomas (1966)

have presented a method whereby the direction of the burgers

vector can be determined without the use of the |g«bl =

images. The method depends on the fact that the dislocation

line changes character around the loop from pure edge to

mixed screw and edge. The segments of mixed character give

weaker contrast, resulting in a double arc image. The line

of no contrast of these images is per pend icul ar to b.
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The early considerations of small defects were

experimental TEM studies. Nicholson and Nutting (1958)

studied a number of alloy systems containing small

precipitates and GP zones. They first observed the

black-white strain contrast images, typical of all small

strain centers, for 0' in Al+47,Cu. Small defects appeared

as black spots under most imaging conditions. The

black-white contrast occurs near the exact Bragg condition

when only one diffracting vector is operating (two beam

case). Ashby and Brown (1963a) applied the dynamical theory

to the images of spherical strain centers in Cu+2%Co. This

work was extended to other small defects, including small

loops (Ashby and Brown, 1963b). Their primary prediction

concerned the direction from the black lobe of an image to

the white lobe (the ^-vector). This vector was predicted to

be parallel to the diffracting vector g (i.e., bright on the

side of +g) for the dark field image of vacancy type defects

near the top or bottom surface of a foil. In their view,

bright field images would be similar to dark field images

for defects near the upper surface. The £-vector for an

interstitial type defect would be opposite that of a vacancy

defect in all cases above.

The predictions of Ashby and Brown (1963b) were not

consistent with the experimental work of Essmann and Wilkens

(1964) who obtained inconsistent answers for the nature of

small Frank loops in neutron irradiated copper. They also

observed that the ^-vector was not parallel to g as in the

case of spherical strain centers but was always parallel to
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one of the [111] directions of the crystal. This led Riihle

et al . (1965) to study the contrast of small loops as a

function of loop size, foil thickness and depth of the loop

within the foil. They showed that the contrast would

reverse periodically as the defect moved away from either

foil surface, and semi-quantitatively described this

dependence. This divided the foil into a number of contrast

layers, called L-layers, having a periodicity of one

extinction distance (£ ). Their results were consistent
g

with that of Ashby and Brown (1963b) for defects located in

the contrast layers immediately adjacent to either foil

surface. Mclntyre and Brown (1966) demonstrated that the

apparent inconsistency between these two results was due to

the large defect misfit used in the work of Ashby and Brown

(1963b). The existence of contrast oscillations complicated

the determination of the interstitial or vacancy nature of a

defect, because both £ and the depth of the defect had to
aa

be known for such a determination. Diepers and Diehl (1967)

and Diepers (1966) showed that stereomicroscopy could be

successfully used for determining the defect depth.

Wilkens (1970) has published a review article on the

electron microscopy of small defects. This article

considered several types of defects, including both large

and small dislocation loops, voids and stacking fault

tetrahedra. The state of knowledge of small defect images

was reviewed, concentrating on the oscillatory behavior of

the ^-vector with depth. Determination of the size and

shape of a defect was also covered. Wilkens included a
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discussion of much of the experimental work done on

irradiated materials.

Up to this time most work on the images of small

dislocation loops had focused on pure edge loops. Tn

irradiated copper the ^-vector proved to be always parallel

or antiparallel to the projection of one of the [111]

directions onto the image. It was therefore assumed that

the ^-vector would always be parallel to the projection of

the loop's burgers vector, and a method of defect analysis

based on this trend was proposed (called £-vector analysis,

Ru'hle et al . , 1965; Riihle, 1967). The topographic features

of the image were not considered in great detail. In

considering small sheared loops, minor changes in the image

were expected and attention had to be paid to detail.

Wilkens (1970) qualitatively predicted that the image of a

sheared loop would be very little changed from that of a

pure edge loop if the shear component of the burgers vector

was the smaller component. Yoffe (1972) applied her

approximate method to a pure shear loop to predict its

image. She suggested that a shear component of the burgers

vector would skew the images of loops viewed on edge.

Wilkens and Ru'hle (1972) used a first order approximation to

consider the images of small loops, including sheared loops.

They demonstrated the skewing of images and from their

equations predicted that an interchange of the loop normal n

and the normalized burgers vector b would produce no change

in the image. This latter result is not

crystallographically meaningful, but does show that for
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small loops, the loop normal is as important a parameter as

the burgers vector. They concluded that £-analysis was not

a sufficiently complete method for the identification of

sheared loops and suggested such identification be done by

comparison with calculated images.

Most of the preceding work used an approximate

displacement field for the loops (the infinitesimal

approximation, so-called because the solution is obtained by

ignoring the spatial extent of the defect and considering it

to exist at a point). Also, approximations were often used

for intensity calculations and the results were displayed by

means of isointensity contours rather than gray scale

pictures. Bullough et al . (1971) developed a computer

program incorporating the Howie-Whelan equations, an exact

finite displacement calculation for pure edge loops

presented by Bullough and Newman (19^0) and gray scale

display. They first applied this program to a study of

intermediate sized loops in Mo. The effect of the deviation

from the Bragg condition, the loop and foil orientation, the

order and sign of g, and the loop radius and depth in the

foil were considered. They also demonstrated the program's

ability to accurately reproduce the image of a small

dislocation loop. Later work by Eyre et al . (1977a, b)

considered the images of small edge loops in detail. They

examined the details of the image with regard to the modulus

|g-b | and proposed analysis based on this modulus. The two

most important conditions are |g-b| > 1, for which the

black-white image of the loop displays an "interface
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structure" (a reversal in contrast near the interface

between the black and white lobe of the image) , and

|g«b| = 0, for which a weak "butterfly" image occurs. They

showed that the image was not invisible for defects located

between contrast layers, but that the contrast would

transition in a complex way as the defect's depth was varied

from one L-layer to another. Using the finite displacement

field for a shear loop presented by Ohr (1972), Holmes et

al. (1979) and English et al . (1980) extend this work to

include sheared loops. They found that the shear component

of the burgers vector would not affect the interface

structure in the case of Ig-bl > 1 but that considerable

skewness could occur to the butterfly images in the case

Ig-bl = 0. Distinction between these skewed images and some

cases where |g-bl < 1 was difficult. They also considered

the possibility of extracting data about the loop normal

from the interface between the black and white lobes. The

paper of Holmes et al . (1979) presents many simulations

(about 200) of bcc dislocation loops images with the beam

directions [011] and [001], and so provides a very valuable

data base to the literature.

Most of these investigators assumed an isotropic

material because of the computing time required to calculate

anisotropic displacements. Ohr (1976) evaluated

displacements about an a / 2 [ 1 1
1

] Frank loop in copper and

later used these results to simulate images (Ohr, 1979). As

a result of anisotropy the black-white image streaked out

along the projection of the [111] directions. Ohr therefore
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favored the use of ^-analysis. Saldin et al . (1977) modeled

dislocation loops and stacking fault tetrahedra by the

superimposed displacement fields of angular dislocations in

an anisotropic material. The approximate method of Yoffe

(1970) is also applicable to ansiotropic materials.

The literature of small dislocation loop images

presents three quantifications of image behavior. The first

is the dependence of the black-white vector on foil

thickness and defect depth. The others, ii-analysis and

|g-b| analysis, predict the image topography. Both the

later methods have extracted geometric trends from the image

and expressed them in a mathematical form. Complications

occur in both methods. For ^-analysis, skewing and

deviations of the ^-vector arise due to anisotropy, shearing

of the burgers vector and inclination of the foil. These

same effects produce skewing in the |g-bl = butterfly

images. The lg-b| > 1 interface structure can be approached

in the case of |g-bl < 1 if the defect is between L-layers.

Even with these complications aside, both methods require

the microscopist to extract from his experimental images a

quantity to be compared with rules originally derived from

theoretical images.

The direct comparison of experimental and theoretical

images is the easiest and least error-prone method of

analysis. The ideal form of this approach, the comparison

of theoretical images calculated for the exact experimental

conditions, is not practical because of the difficulty of

determining the experimental parameters. However,
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comparison can be made to theoretical images calculated for

a standard set of conditions chosen so that account can

easily be made for deviations from these conditions. This

philosophy led Cooper (1977) to compile a catalog of images

for the loop crystallographies expected in fee materials.

The more exact calculations of Ohr (1979) and Eyre et al.

(1977a, b) involved too much computing time and expense to

allow the simulation of many images, and so Cooper employed

an isotropic infinitesimal approximation for the

displacement field. Studies were made of the effect of

various parameters, such as deviation from the Bragg

condition, the absorption parameters, defect depth, and the

.inclination of the foil, to allow logical selection of the

standard conditions for image calculations. He then

compiled a catalog of the unique permutations of loops of

the type a /3[1 1 1] (1 1 1 ) , a
Q /2 [ 1 1 0] ( 1 1 1 ) , a

Q
/2 [ 1 1 0] ( 1 1 ) and

a /2 [ 1 1 0] ( 1 20) for six major beam directions and using the

low order diffracting vectors of those poles.

This catalog was made available to other microscopists

by the work of Sykes et al . (1981) who extended the catalog

to include bec loops of the type a /2 [ 1 1 1 ] ( 1 1 1 ) ,

a /2[1 10] (1 10) , a /2[ 1 1 1] (1 10) and a [ 1 00] ( 1 1 ) . Cooper's

format, which displayed on several pages the images of one

beam direction, diffracting vector and defect type*, was

changed to a format of greater theoretical and experimental

convenience. Coordinate transforms were supplied to extend

the applicability of the catalogs. The theory of these

images was laid out in simplified and largely pictorial
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form. The theoretical and experimental uses of the catalogs

were discussed and demonstrated. A highly modified version

of Cooper's original program was listed with documentation

to make it available to others.

It is seen that with time, simulation programs have

improved and computing costs have decreased. As a result,

methods of small defect analysis have moved away from

quantified rules to direct comparison with images. The work

of Holmes et al . (1979) proposes quantitative rules but

nevertheless presents a great many images. The rules are

given both to illustrate trends and to aid in the

extrapolation of their limited data base. The infinitesimal

approximation employed by Sykes et al . (1981) resulted in

slightly less detail in the images of their catalogs, but

this minor shortcoming is offset by the improved format and

the completeness of the data base. These provided methods

and abilities for experimental design and post-experimental

defect identification not easily available from the results

of Holmes et al . (1979). The works of Sykes et al . (1981)

and of Holmes et al . (1979) developed concurrently along

separate paths and are complementary rather than competing

efforts

.



CHAPTER III
THEORY OF TEM IMAGES OF SMALL DEFECTS

Because this work depends heavily on computer simulated

images, this chapter begins with a brief explanation of how

an image is simulated. Rather than consider a complex

transmission electron image, the more intuitive case of

light passing through a smoked glass sample will be

presented as an analogy. Ignoring reflection and refraction

and assuming perfectly collimated light, the image is

essentially the shadow cast by the sample. To be calculated

is the intensity of light at each position in the image.

The calculation starts by defining a matrix of points in the

image plane. From each point a ray is constructed

antiparallel to the direction of travel of the light rays.

The rays pierce the sample. The intensity of each ray is

assigned the value of 1.0 before reaching the sample and,

working toward the image point, the intensity is calculated

as it attenuates through the sample. For light, the

attenuation is assumed to be of the form

dl/dx = -pi

which leads to

1=1 exp(-px)
o

For a sample in which the attenuation coefficient varies,

the process

23
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T
n+1

= I
n
exp(-p (x)dx)

is repeated for each dx along the ray. The appropriate

value of p(x) is determined from the geometric description

of the sample. A number of geometric algorithms and methods

can be used. The sample may be defined, for example, as a

slab of glass containing bubbles of various sizes as well as

regions of darker (more absorbing) glass. In practice,

defining the geometry is the most involved part of the

program, but no complex theory is involved, so it will not

be considered further here. Completing the above numerical

integration for each image point produces the matrix of

intensities desired. This matrix is converted to an image

by having the computer print a corresponding matrix of

symbols: a dark symbol such as "E" is used for low

intensities, while a light symbol, such as ".", is used for

high intensities.

Ignoring the crystal lographic complications which occur

in TEM image calculations, the simulation of an electron

image is done as above. Instead of the simple absorption

equation, the Howie-Whelan equations must be used to

integrate intensities. In the Howie-Whelan equations the

absorption term is usually assumed constant and the variable

of position which affects the intensities is the displacement

of atoms from their perfect crystal positions caused by a

defect. The components necessary for electron image

calculations are therefore the Howie-Whelan equations, the

effect of disDlaced atoms on intensities and the calculation

of displacements due to a defect.



25

For the purposes of imaging in the electron microscope,

the particle nature of electrons can be largely ignored.

Electron waves, like all waves, are capable of diffraction;

that is, waves scattered by an array of scattering centers

may constructively interfere in certain directions. The

simplest theory of diffraction is the kinematic theory which

assumes that the scattering of waves from each atom is so

weak that the incident wave is negligibly attenuated by the

diffraction process (so each atom receives the same incident

intensity), and the diffracted wave is so weak that

diffraction of it back into the incident beam can be

ignored. The assumptions of the kinematic theory apply well

to x-rays. Electrons, however, are so strongly scattered by

atoms that after penetrating merely 10 to 20 nm into a

crystal, the diffracted beam will be of an intensity equal

to the incident beam. An accurate theory of electron

diffraction must account for the attenuation of the incident

wave, as well as diffraction of the scattered wave back into

the incident wave.

Because diffraction is a phenomenon involving

constructive and destructive interference of waves, account

must be made of not merely the amplitude of a wave but also

its phase. Upon entering a crystal, the incident electron

wave scatters from each atom encountered. Tf the

orientation of the crystal is appropriate for two beam

diffraction, the scattered waves will constructively

interfere in only one direction, and so begin to form the

diffracted wave. A fact derived from more formal equations
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presented later is that scattering occurs with a 90 phase

shift, and thus the diffracted wave is 90 out of phase with

the incident wave. This is represented in Fig. 2a. A

convenient mathematical expression for waves is complex

notation, and so Fig. 2 represents a wave as a vector in the

complex plane. Electrons in the diffracted wave scatter

with a probability equal to that of electrons in the

incident wave, so a fraction of the electrons in the

diffracted wave will scatter back in the direction of the

incident wave. This scattering will also occur with a 90

phase shift, so these electrons are 90 +90 out of phase

with the incident wave and destructively interfere with it,

Fig. 2b. It is easy to see that initially the incident wave

will diffract (losing a small fraction of its amplitude in

the process), and in so doing continually reinforces the

diffracted wave. The contributions of the diffracted wave

back into the incident wave will, on the other hand,

continuously decrease the incident wave's amplitude until

(in the ideal case) the situation in Fig. 2c occurs. kt

this point, the situation is similar to that at the entrant

surface of the crystal, except that all the energy is in the

diffracted wave. As the electrons proceed further into the

crystal, the diffracted portion of the diffracted wave will

constructively interfere with the incident wave, producing

an incident wave 90 +90 out of phase with the original (but

now lost) incident wave, Fig. 2d. Diffraction of this

resurrected incident wave into the diffracted wave will

destructively interfere with the diffracted wave, and so now
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decrease, rather than increase, its amplitude. This process

can continue ad infinitum to produce the seesaw exchange of

energy shown in Fig. 3. The distance through which the

incident beam must pass in order to go from maximum

intensity, through minimum and back to maximum intensity is

called an extinction distance and is referred to by the

symbol 5 .

The above description assumes an ideal value of zero

for three parameters which appear in the complete theory:

normal absorption (n ) , anomalous absorption (A), and the

deviation from the Bragg condition (s). Normal absorption

accounts for the attenuation of the waves. The electrons are

rarely physically absorbed by the crystal, but are often

scattered out of either the incident or diffracted wave by an

inelastic scattering event. The normal absorption reduces

the waves in each AZ of crystal by the factor exp(-irnAZ).

If /'-land s are zero, a positive value of r\ will change the

curves in Fig. 3 by simple dampening with depth. Anomalous

absorption accounts for the possibility that an electron

inelast ical ly scattered out of one of the waves may be

scattered back into either the incident or diffracted wave.

These electrons are reintroduced with a random phase

relationship, which on the average can be taken to be 90 .

The effect is to counteract normal absorption and set a

minimum intensity toward which the two waves will tend.

Anomalous absorption is entered into the Howie-Whelan

equations in an ad hoc manner. Its effects are the most
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difficult to understand. This is unfortunate because it can

greatly influence image behavior.

In order to define the deviation parameter, s, the

reciprocal space construction for two beam diffraction is

shown in Fig. 4. The vector s joins the diffracting node g

with the diffracting wave vector K'. At the exact Bragg

condition, the Ewald sphere touches the node g and Is! is

zero. When the Ewald sphere does not touch the node the

deviation parameter s has magnitude |s| and is considered

positive if the node lies outside the Ewald sphere. The

result of being off the Bragg condition is that constructive

interference of the waves scattered in the direction K' is

not complete. In the kinematic theory, this causes the

intensity of the diffracted wave to vary as a sin^ function

of depth. As seen, this already happens even at the Bragg

condition for dynamical diffraction. The effect of s H
for dynamical diffraction is to increase this tendency and

so lessen the distance required for the energy to be

exchanged from one wave to the other; that is, it lessens

the effective extinction distance.

The most exact and formal treatment of electron

diffraction is the Bloch wave approach, in which the

solution to Schroed inger ' s equation is found assuming the

periodic potential of the crystal lattice (Kestenbech,

1971). The formalism of this approach allows account to be

taken of diffraction into any number of directions. If the

Bloch wave approach is carried out assuming that only one

diffracted beam results, equations are obtained which give
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the amplitude and phase of both the incident and one

diffracted wave as a function of penetration into a crystal

These equations are equivalent to the Howie-Whelan

equations, which were first presented in a phenomenological

way to describe the two beam diffraction. The Howie-Whelan

equations are

d<f>

dz

Q

dz

1 i
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This mathematical expression of the diffraction process

is entirely compatible with the conceptual picture presented

before, which ignored absorption terms and assumed the exact

Bragg condition. Putting n , /-land w equal to zero in the

above equations results in

A = A = cos(ttAz)

A, _ = A~, = i sin(TrAz)

Consider a small hi. The matrix elements A and A ?? (in

the ideal case) simply reduce the amplitude of the T and S,

respectively, to account for the intensity which has been

scattered into the other wave. The elements A and A

take a portion of each wave and add it to the other, after

applying the 90 phase shift discussed before (multiplying

by i rotates any complex vector by 90°). The intensity

versus depth curve resulting from these equations, when

expected values of normal and anomalous absorption are used,

appears in Fig. 5. Normal absorption has damped the

intensities, and anomalous absorption has set a minimum

intens ity

.

Strictly, the Howie-Whelan equations apply only to a

large, flat, perfect crystal. A number of assumptions are

required to extend their use to a crystal containing a

defect. The material along a ray leading to an image point

is considered to be a column of material independent of the

other columns. That is, electrons in one column do not

diffract into a neighboring column. Because the Bragg angle

is so small, this approximation is valid in general if the

columns are further apart than 2 nm

.
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In the calculation of intensities, the defect makes its

presence felt as outlined in Fig. 6. Each increment AZ of a

column is assumed to be an element of perfect crystal

deviating from the Bragg condition by s. The operation

T' = A nT A
12

S

S- . A n T + A
22

S

is carried out for each M , using values for the scatterng

matrix appropriate for the local value of s. For perfect

crystals, each AZ of column has the same value of s = s Q .

With a defect present, the lattice planes nearby are

distorted, giving rise to variations in the local value of s

given by s = sQ + [d( u -g) /( dz) ] , where s = mean value of.s

for the crystal, u = displacement due to the defect, and g =

the diffracting vector. The term [d( u
•
g) /( dz) ] can be

thought of as the local inclination of the lattice planes.

The term u-g itself however is of prime importance; the

derivative is used because of the differential form of the

equations used .

The simplest explanation of the origin of image

contrast is given by kinematic theory. The assumptions of

this theory-- that every atom receives the same incident

energy and that the intensity of the diffracted beam is

always negligible compared to the incident beam— are rarely

met in electron diffraction, but the same mechanism

producing contrast in the kinematical theory produces

contrast in the dynamical theory. At the Bragg condition,

the waves scattered by every atom constructively interfere

in the direction of the diffracted beam. Atoms near a
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defect are displaced from their perfect crystal positions,

and these scatter waves whose phase is shifted by the amount

2 TT (u-g) relative to the waves scattered by atoms in perfect

crystal positions. The regions of the dark field image

coming from displaced atoms will be dark, because of the

incomplete constructive interference.

As seen above, the incident and diffracted waves are

generally of comparable intensity in dynamical diffraction

and account must be made of the contribution each scatters

into the other. As the dynamically diffracting waves pass

through a region of deformed material, the phase shifts from

displaced atoms result in constructive interference to a

greater or lesser extent than in perfect material. The

change in phase and amplitude generally causes the

transmitted and diffracted waves to be different from the

perfect crystal case, creating contrast; the image may be

brighter or darker than the normal intensity. Figure 5

shows that at alternating depths, first the incident beam

and then the diffracted beam dominate in intensity. These

regions are referred to as L-layers. The alterations in

phase and amplitude which occur if the waves encounter

displaced material when the incident beam dominates are

opposite to those occurring when the diffracted beam

dominates. Images of straight dislocations reveal this by

their alternating contrast. The images of small defects

have similar reversals in contrast, depending on their depth

in the foil. Katerbau (1976) has used the Bloch wave

approach to derive equations which give the incident and
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diffracted intensities as a function of defect type, defect

depth, and foil thickness. The systematic dependence of

contrast on these parameters was expressed by Ruhle et al.

(1965) and is paraphrased as follows:

1) High-contrast bright field images are
expected for foils of thickness ti = (2n + 1)£g/2
(n = 0,1,2,3...); high-contrast dark field images
are expected for foils of thickness t?= nr

CT (n =

1,2,3...). g

2) For images in good contrast, the contrast
of interstitial defect images will be opposite
that of vacancy defects.

3) For a vacancy type defect located at a

distance d = n£
g
/2 (n = 0,1,2,3...) in from the

nearest foil surface will, for bright field
images, have the white lobe of its image on the +g
side of the image if n is even, and on the -g side
if n is odd. For dark field images of vacancy
type defects, the above is true if the defect is
nearer the electron entrant surface, but the
contrast is reversed for defects near the exit
sur face

.

The contrast reversals with defect position are

illustrated in Fig. 7. Note that the dark field images are

not suppressed at the center of the foil. With the

exception of rule 2, the need for these rules are set aside

by computer calculations of the actual images in the next

chapter, which shows the contrast of an interstitial

dislocation loop positioned at various depths in a foil of

variable thickness.

An experimental complication must be pointed out. It

is preferable electron-opt ical ly to obtain dark field images

by tilting the beam so that -g is operating rather than to

simply move the objective aperture to +g. The contrast of a

defect near the top of a foil will thereby be reversed,
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whereas defect images near the bottom of the foil will

remain unchanged.

A more quantitative (but still approximate) description

of diffraction around a defect will aid the intuitive

understanding of this contrast behavior. Figure 8a

schematically shows the transmitted and diffracted waves at

1.0 £ into a perfect crystal. At this depth the incident

beam dominates in intensity as seen in Fig. 5. Due to

anomalous absorption, the waves are 180° out of phase. The

incident beam is diffracting electrons into the diffracted

wave 90° out of phase with itself, a process represented by

the dotted wave (for simplicity, diffraction of the

diffracted wave into the incident wave is considered

negligible at this point). If at this point displaced atoms

are encountered, the contribution of the incident wave into

the diffracted wave will have its phase shifted by 2ir(u'g).

For the beam passing the interstitial defect in Fig. 9,

2ir(u-g) will be positive, advancing the phase of the

diffracted part of the incident beam (dotted wave).

Advancing the phase causes the curve to lag. This results

in less complete constructive interference for the

diffracted wave, decreasing its intensity. The intensities

of the incident and diffracted wave for this case are shown

in Fig. 10, and are compared to the values which occur in

perfect crystals. Tf the defect were vacancy type, the

displacements would be towards the defect. The term 2ir(u'g)

will be negative, retarding the phase and so enhancing the

constructive interference. The diffracted beam will
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increase in intensity (Fig. 11). It is easy to see that the

contrast of a vacancy loop will usually be opposite that of

an interstitial loop.

At half an extinction distance above or below the

location just considered, the diffracted beam dominates in

intensity (Fig. 8b). Again the incident and diffracted

waves are 130 out of phase. The important process

occurring here is the diffraction of electrons from the

dominant diffracted wave into the incident wave. For the

moment, consider the diffracted beam to be the primary beam.

Its diffraction is occurring by the opposite diffracting

vector as the incident beam. Therefore, the phase shift of

its contribution into the incident beam depends on

2iT(u.(-g)) = -2ir(u-g). For the interstitial defect in

Fig. 9, -2ir(U'g) is negative, retarding the phase. As a

result, the intensity of the incident wave increases over

the values of the perfect crystal case, opposite the case

above where the diffracted wave intensity decreased. This

results in the reverse contrast behavior shown in Fig. 12

and Fig . 13.

Because integration of the Howie-Whelan equations is

needed to obtain the intensity of the two waves as the beam

proceeds beyond the displaced material around a defect, it

is not easy to obtain an intuitive understanding of the

process, but it is useful to note the trends which occur.

If, when encountering displaced material, the lesser of the

waves increases in intensity, the greater wave decreases in

intensity (Fig. 12). This is a result of the tendency for
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energy to be conserved (if not for inelastic scattering

events, energy would be conserved). In this case, after

passing through sufficient material, both waves eventually

have intensities above the perfect crystal case. Similarly,

if the lesser wave decreases in intensity, the greater wave

increases (Fig. 13). In this case, after passing through

sufficient material for the absorption terms to have their

effect, both waves decrease in intensity relative to perfect

crystals

.

The above observations allow explaination of the

qualitative behavior of image contrast described by Ruhle et

al . (1965). The origin of the oscillation in contrast of

defects encountered at different depths is seen above, as

well as the reversal in contrast expected in changing from

an interstitial type defect to vacancy type. Of interest

now is the relation between bright and dark field images

near the top and bottom surfaces. If the defect is near the

upper surface, the beam passes through sufficient material

before exiting the crystal that the absorption effects are

important, and the incident and diffracted waves both have

their intensities similarly altered above or below the

perfect crystal background level. Thus, the contrast of

defects near the upper surface does not reverse in going

from bright to dark field. For the waves immediately after

encountering a defect, the tendency to conserve energy

results in the fact that if one wave has greater than normal

intensity, the other has less than normal intensity. For a

defect near the bottom surface, this trend prevails when the
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exit surface is reached; bright and dark field images of

defects near the bottom surface have oooosite contrast.

The image relates back to the strain field of the

defect, so the evaluation of the strain field of a

dislocation loop is now considered. To evaluate the

displacement u at a position r from the loop, the computer

program used an infinitesimal approximation for the strain

field. The approximation has the advantages of reducing

computing time, is easily modified to model the strain field

of other defects such as voids or particles, yields a

displacement field simple enough to be intuitively

manipulated, and most importantly, yields images which

compare well with the experimental images of small

dislocation loops.

Although they are relatively involved, the expressions

for the displacements are arrived at by straightforward

mathematical techniques. The major tool is the Green's

function whose physical meaning is found in its definition,

u (r) = Uv (r - ?') f, (?')
m km k

where u (r) is the displacement at r. f, (?') is the force
m k

applied at r',and U, (r - r') is the Green's function for
' km

the relative (r - r' ) . The Green's function gives the

displacement u found at r which results from the force f

applied at the point r'. Using Hooke's law and the

differential equations expressing the equilibrium of forces

in a continuous medium, the Green's function for an infinite

isotropic elastic continuum can be obtained (see DeWit,

1960):
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If a defect can be described as a number of forces

distributed in some spatial array, the displacement at any

point is obtained by summing the displacements resulting

from each force in the array

u (r) = / U, (r - r' ) f. (?' ) dr
m s km k

In a typical application, the forces tend to occur in equal

and opposite pairs separated by a small distance. Consider

the formation of pure edge vacancy loop in a continuum.

Cuts are made, and a disk of material of radius a and

thickness b is removed. To one surface of the disk an array

of forces is applied which is equal and opposite a similar

array of forces applied to the other surface. The forces

are of magnitude such that the surfaces come together,

forming a dislocation loop with burgers vector b. It can be

shown that the displacement due to a pair of closely spaced

equal and opposite forces (called a force dipole) is

um (?) = u km,£( ? " F ') pk£^')

Pvod"') is a tensor describing the force dipole at r For

an element of surface ds with normal n across which a

displacement b has been made, the assumption of linear

elasticity (that stresses are proportional to strains) leads

to

k£
C..,. b .n . ds
ijk£ 1 j

The above definition of U-u » is such that if b-n > 9, the

surfaces on which the force dipole acts are pushed apart

(such as for an interstitial loop), and similarly b«n <
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means the surfaces are pushed together (vacancy loop).

Using the force dipole definition, the displacements from a

dislocation loop are

u (?) = /C. -

t „ b. n. U, . (? -?' ) ds,
m s 13 k£ 1 ] km,£ '

where (r - r' ) is the vector from each element of the

surface of the loop to the point of interest r.

The expressions just described gives the displacement

of a finite loop. The integration is difficult and the

resulting numerical calculations are time-consuming. If

displacements are being evaluated at a point distant from

the loop, the vector (r - r ' ) will not vary significantly

and can be assumed constant. This approximation [(?—?') =

r] results in

u (?) = / C ., . b. n. U, . (?) ds
m s 13 k£ 1 j km,£

" C
ijk* Vj \m,im {

ds

= C
ijk£

b
i"j

(1,a2} Ukm,£<«

This approximation (the infinitesimal approximation) holds

well for points distant from the loop but will become

increasingly poor as the defect is approached (i.e., where

(r - r') varies significantly).

To obtain the displacement field of any defect, steps

parallel to the above need to be taken. The defect must be

described as an array of forces on some surface, the

appropriate Green's function defined and the results

integrated. In general, it is possible to employ the

infinitesimal approximation to simplify the result, or to

obtain a less accurate result when integration is not

possible .
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The displacements of points equidistant from a pure

edge loop of both interstitial and vacancy type are shown in

Fig. 14. They are cyl indr ically symmetric about the loop

axis so that Fig. 14 represents any plane containing the

axis. For the infinitesimal approximation, the magnitudes

_ 2of the displacements are proportional to 1/lrl . The

displacements of an interstitial loop with a shear term are

shown in Fig. 15. These are not cyl indrical ly symmetric,

and so Fig. 15 refers only to the plane containing b and n.

However, the displacements appear quite similar to those for

an unsheared loop. In fact, Fig. 14a overlaps Fig. 15

closely if it is rotated approximately 9 toward the burgers

vector of the loop in Fig. 15. It can be expected, then,

that a sheared loop could be modeled by a Frank loop whose

habit plane normal is appropriately rotated from the normal

towards its burgers vector. The appropriate rotation is

between 1/4 and 1/3 of the way from the normal to the

burgers vector. Thus, the sheared loop described by n and b

can be approximated by the Frank loop with n' = b' = (b/3 +

2n/3). This approximation is empirically valid for most

images and is useful because the images of a Frank loop are

easy to predict. Because of this result, the parameter n

will be the chief parameter for describing a loop in this

work; b will be used only as a secondary description needed

to define small sheared loops. Of course, for those

dislocation loops large enough to be resolved, the character

of the image depends on the local line direction and burgers

vector

.
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i^. 15. The displacements about an interstitial loon with
shear conponent in its burr^srs vector.
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In calculating an image, the displacement field of a

defect appears as the quantity d(u«g)/dz. That is, the

image is sensitive only to the displacements in the

direction g. The importance of u-g is better illustrated

using the following graphical representation. Consider the

displacments at a constant distance from the loop, in a plane

normal to the incident beam and intersecting the loop.

These displacements are resolved into a direction g,

oroducing u«g. This function is plotted in Fig. 16 for

three different directions g as r(6) = g-u(6), where u(0) is

the displacement at a unit distance from the loop and at an

angle e from g. If g-u(e) is negative, the line is plotted

with a dotted line rather than a negative value of r. The

method becomes less valid as the habit plane normal deviates

from the image plane. Although this graphical method is

presented only to develop an intuitive relationship between

the displacement field and the image, the comparison with

accurately calculated images is striking. The development

and meaning of this construction is most easily seen for the

case in Fig. 16 where g aligns with the loop normal. The

greatest displacement is in the direction of the loop

normal. This displacement is fully resolved into g,

producing a large value of u-g. The polar displacement plot

extends quite far in that direction. The small inward

displacements resulting from the collapse of material around

the edge of the loop are not at all resolved into g, so

u-g = 3. The polar displacement plot (and the image)

extends zero distance in the plane of the loop.
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Fi<* . ifi. The vector u as a function of 6 around the loop
resolved into sever?! directions. Th^ magnitude of the
scaler product ( u • ° ) is plotted in a nolar nann»'-

.
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Displacements of material 45 from the loop normal produce a

small value of u-g, and the polar displacement plot extends

a short distance in this direction. The origin of the

butterfly image is made clear from this construction. The

small lobes aligned with g of these images are seen to arise

from the inward collapse of material around the

circumference of an interstitial loop.

As has just been presented, the main elements of the

electron image formation process can be separated and

understood in a qualitative manner. It is possible, then,

to predict the major features of a dislocation loop image if

the various relevant parameters are known. Its orientation

relative to the beam direction and diffracting vector

determine the major topographic features of the image. The

above or below background nature of regions of the image can

be deduced from the defect's interstitial or vacancy nature,

and its position in the foil. Ignoring the effort required

to make such an estimation of an image, it is less preferred

than a computer calculation, because sufficient confidence

cannot be placed on the estimate. Nevertheless, this

understanding provides a base from which the more accurate

computer simulated images can be interpreted, and from which

any trends in image behavior can be recognized and

extrapolated .



CHAPTER TV
COMPUTER EXPERIMENTS AMD THE CATALOGS

The theory presented in the last chapter can explain

much of the image behavior of small defects, but it does not

quantitatively provide the response of an image to all

imaginable sets of parameters. For example, exactly how

does the image depend on the orientation of a loop? What is

the effect of the deviation from the Bragg condition? The

theory presented can allow these and similar questions to be

tentatively answered, but the use of computer calculated

images is easier, and produces more confident results.

Computer studies will show which parameters have the

greatest effect on the image. These effects decide what

parameters must be included in a catalog of images intended

for use in defect identification. Some parameters will

prove to have little effect, and the computer studies decide

the best representative values for these. These studies

also extend and reinforce the understanding presented in

the last chapter. The structure, philosophy and use of

these catalogs will also be briefly outlined and

illustrated .

The contrast vector, I, drawn from the black lobe of an

image to the white lobe, is known to vary with the defect's

depth in a foil. Ruhle et al. (1965) have given rules

describing this behavior. Rather than working out these
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rules, it is preferable to merely look up an image for a

defect at a particular depth in a foil of a given thickness.

Figures 17 and 18 provide this ability. The bright field

and dark field images of a pure edge interstitial

dislcoation loop are shown in these figures as a function of

foil thickness and defect depth. The layout mimics the "

contrast expected from a wedge-shaped foil with a thickness

increasing from one-quarter to five extinction distances.

The depth of the defect is represented by the position of

the image in each column, the topmost image corresponding to

a depth one-eighth extinction distance down from the top

surface and the bottom image one-eighth extinction distance

up from the bottom surface. The gray levels were obtained

by normalizing the intensities for a particular image by

those obtained for a perfect crystal of the same thickness.

Thus, the thickness contours normally associated with a

wedge-shaped crystal do not appear.

The image contrast rules for a small dislocation loop

described by Ruhle et al . (1965) can be easily deduced from

these composites. Note that thicknesses giving good

contrast in bright field images give poor contrast in dark

field and vice versa. Note, too, that the black-white

direction of an image oscillates with depth for both bright

and dark field images, and that the bright and dark field

images have the same black-white direction near the top of

the foil but have opposite directions near the bottom. The

illustrations of Ruhle, and his reference to defect distance

from the nearest foil surface, tend to pass over the
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contrast of defects near the center of the foil. As seen

here, good contrast can occur in bright field images for

defects near the center and in dark field images for defects

at the center.

The images for vacancy type defects are obtained by

reversing the contrast seen here. This rule does not apply

to images in poor contrast which normally appear as small

black dots independent of the interstitial or vacancy nature

of the defect. Due to surface relaxations, experimental

images of defects very near either surface are expected to

be slightly different from those seen here.

To augment the relationship between the displacement

field and the image, as presented in the last chapter, the

change of the image with loop orientation can be visualized

with the help of the following simulation experiment.

Holding the foil geometry, diffracting conditions, and

defect depth constant, the inclination of the habit plane of

a Frank loop is varied through the wide angular range

indicated in Fig. 19a. This is not a physically realizable

experiment, of course, but it gives useful results

nonetheless. Figure 20a is an expansion of the lower right

quadrant, showing the dependence of the image on orientation

in a more continuous manner. Figures 19b and 20b are

stereographic projections giving the loop normal direction

for the images. 4s for all images presented in this work,

the direction of g projected onto the image is to the right.

Because the image shifts so dramatically from one direction

of skewness to the other in making the transition through
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the butterfly image, this image type gives the greatest

sensitivity to the orientation of the loop. For example, a

Frank loop oriented so that a strong butterfly image is

obtained can be easily distinguished from a sheared loop,

because the latter will show considerable skewness.

One pattern apparent from Fig. 20a is that the

black-white direction , I, deviates from g by about 2/3 of

the angle from g to the projection of n. The 5,-vector

hypothesis and the approximation n' = (b/3 + 2n/3) was tested

for all of the images in the fee and bec catalogs. The

^-vector was determined (when possible) by constructing a

vector from the centroid of below-background intensities to

the centroid of above-background intensities. The angle

from g to l is plotted in Fig. 21 versus the angle from g to

the projection of h (or n') onto the image. In experimental

loop images it is difficult to determine the black-white

direction with enough confidence to make this trend

quantitatively reliable, but these results do confirm the

qualitative validity of the rule.

The full range presented in Fig. 19a and Fig. 20a

demonstrates that there are few image types expected. kt

this point, the adequacy of the infinitesimal approximation

can be evaluated by comparing images calculated using a

finite strain field with images calculated using the

infinitesimal approximation. Figure 22 compares some

infinitesimal loop images from the bec catalog with finite

loop images calculated by Eyre et al . (1977a). The format

mimics that of Fig. 20a. The finite loop calculations
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(a)

(b)

Fig. 21. The angle of the black-white direct ions deviating
fron ff plotted as a function of the anp;l» of the deviation
of the oro.iection of n' = 2n/3 + B/3 onto the image plane,
(a) Dat3 ar Q fron all the images in the fee Catalog; (b)
data are from all the images in the bee Catalog.
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Fis*. 22. Comparison of the finite loon images of Fyre et
al . (19 7 7) (oriented so the operating diffracting vector is
to the right) to the corresponding infinitesimal, looo images
of the bcc Catalog.
ns(01 1 ) , <?=(91 1 );

n=(1 11 )
, 5= (01 1 )

;

n= (01 T) ,
» = (200)

;

n=(1 1 1 ) , 5= (200)
nr(1 10) ,

ff= (01 1 )

n: (101 ) , g=(2lT)

n= (021 ^
, 5= (0]1 ) ;

1-Min, rr = ( 2 1 1 )
;

n=<011)
,
g=(2Tl )

.
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produce fine detail in the images near the loop not

obtainable by the infinitesimal approximation, particularly

between the black and white lobes for the case |g-b| > 1.

Such a structure is hinted at in some of the infinitesimal

images, but because the only non-zero term in the dipole

tensor used in simulating an edge loop depends on the size

of the loop as well as its burgers vector, this reversal can

result from using a large value for the loop radius.

Discussions of the details of such finite loop calculations

are found in the works of Eyre et al . (1977a, b). Figure 22

is presented here only to indicate when and how the

infinitesimal approximation may be insufficiently precise.

The value of w = sK has a very pronounced effect on

the images of straight dislocations and other extended

defects (Head et al., 1973). As Fig. 23 shows, however, the

images of small loops suffer only minor variation in

contrast intensity over a wide variation in w. The reversal

of contrast occurring at large values of w results from the

decrease in effective extinction distance. The general

shape and symmetry of the images is unaffected. This is

quite a fortunate result, since it relaxes the need to

accurately know the value of w for an experimental image.

The ratio of anomalous absorption to normal absorption also

has great influence on the images of straight dislocations

(Head et al
. , 1973). Variations of this parameter from 0.05

to 0.10 (the usual range expected) cause little qualitative

change in images of small defects for a given value of w

(Cooper, 1977) .
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All the images in the catalogs were calculated for the

foil normal set parallel to the beam direction. This

condition cannot always be met experimentally. Figure 24

shows the purely geometric effects of tilting the foil. The

thickness and mean depth of the defect are both increased by

the factor (1/cos 9). The effective depth of the defect in

a particular column is a function of the column's position

in the image. Complications which can arise due to large

foil tilts will probably require additional image

simulations. Figure 24b shows a defect in a tilted foil

near the top of an L-layer. The effective depth of the

defect on the side towards which the foil normal has been

tilted (i.e., on the right) will be near the boundary

between L-layers, and thus give a weak image. The image on

the other side will be strong because the effective depth of

the defect is nearly centered in the L-layer. For the

defect in Fig. 24d near the bottom of an L-layer, the same

factors create the opposite effect. For a defect centered

in the L-layer, the image will be weaker on both side (Fig.

24c) .

The best experimental images are those in good

contrast, corresponding to a defect near the center of an

L-layer and viewed on edge. The effect of foil tilt in this

case is shown in Fig. 25a, b and c for several image types.

In each array, the center image has its foil normal parallel

to the beam; the others have their foil normals tilted 30°

toward the location of the picture (see Fig. 25d). The

change in effective foil thickness has increased the overall
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contrast of the images. The most striking effect of foil

tilt in this case is to compress the image in the direction

toward which the foil has been tilted. This compression can

effectively cause a rotation of the black-white direction.

Post-experimental calculations are advised for conclusive

identifications when large tilts (> 25°) are required, but

the overall effect is not so great that it interferes with

the general usefulness of the images in the catalogs.

The information just presented was used to determine

the structure and parameters of the catalogs for small

dislocation loop identification. The complete fee and bec

catalogs are given in the work of Sykes et al. (1981), which

also includes a description of all parameters used in

calculations and gives several examples of the usefulness of

the catalogs. The catalogs are too extensive for inclusion

here, but they are the focal point of all the preceding

developments and the following summary is appropriate. The

purpose of the catalogs is to allow the determination of the

loop normal and burgers vector of a small loop without

requiring the microscopist to work out the geometry from the

various published rules. Identification of an experimental

image is accomplished by direct comparison with computed

images. With the images of all defect types and

permutations logically ordered with respect to

experimentally controllable parameters, it is possible to

determine at a glance which experimental conditions provide

the greatest distinction between the images of various

defects. In this way, the microscopist can minimize the
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number of micrographs needed to make a conclusive

identification .

The microscopist can control only a few imaging

parameters. Use of a double tilt goniometer stage gives him

simultaneous control of the beam direction, the diffracting

vector and the deviation from the Bragg condition. Control

of the beam direction allows the microscopist to view the

defect from any orientation; e.g, looking down on the face

of the loop or viewing it on edge. At any beam direction it

will be possible to use various diffracting vectors and so

sample different portions of the displacement field (that

is, different functions of u-g). Thus, if the goniometer

stage had sufficient range and if the tilting of the foil

did not obscure the image, it would be possible to obtain

any of the image types in Fig. 19a from any loop. This last

statement is not entirely true, because at any beam

direction only a few diffracting vectors are available and

not all of these are experimentally useful. Table 1 lists

the six beam directions, along with the diffracting vectors

at those directions, use in the fee catalog. Table 2 lists

similar data for the bec catalog.

Each page of the catalogs contains the images of all

defects calculated for one diffracting vector and one beam

direction. This was done because a single micrograph could

conceivably contain an image of all the possible defect

types and permutations, but is imaged by only one beam

direction and diffracting vector. If a loop type is

contained in the catalog, all permutations of that type are
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Table 1. fee Catalog data - Aluminum ( a Q
= 0.404 nm)

Elastic Constants

'11 1 1 .83 x 10
10

Pa

C
12

= 6. 12 x,10

C
44

= 2.85 x 10

10

10

Pa

Pa

Loop Normal

(111)

(111)

(1 10)

Burgers vector

a /3[111]

ao /2[110]

ao /2[110]

Beam
Direction

Diffracting
Vector

5„(nm) n A

001 200
020
220
220

67.3

105.7

0.10 0.07

0.10 0.09

011 1 11
1 1 1

200
022

55.6 0.10 0.06

1 1 1 202
022
220

013 200
131
131

130.0 0. 10 0. 11

1 12 111
220
311
131

123 111

331
420

187.7
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Table 2. bcc Catalog data - Tungsten (

a

Q
= 0.315 nm)

Elastic Constants

11

12

52. 10x1010

20 . 10 x 10
10

Pa

Pa

C
44

= 16.00x 10
10

Pa

Beam
Direction

001

01 1

111

013

1 12

123

Loop Normal

(011)

(01 1 )

(01 1)

(111)

Diffracting
Vector

110
1 10
200
020

011
200
211
21 1

10T
01 1

1 10

200
031
231
231

1 To

222
312
132

121

301
222

K (nm)

37.7

52.0

63.7

85.4
107.2

96.3

iurgers vector

a
Q /2[011]

a /2[111]

9o[001]

a /2[111]

A

0.10 0.06

0.10 0.09

0.10 0. 10

0. 10

0. 10
0. 14

0. 17

0. 10 0. 16
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contained. So, for fee loops with habits of (111) and

burgers vectors of a /2[110], the 12 unique permutations are

presented. The arrangement of the defect images is

identical on all pages. Figure 26 is a page from the fee

catalog given as an example. Table 3 gives the loop normals

and burgers vectors to label the images. Because of the

predominance of the habit plane in determining the

characteristics of these infinitesimal loop images, images

for loops possessing the same habit plane are arranged in

rows, the first image of each row being an unsheared loop

and those which follow possessing one of the expected shear

burgers vectors. Displaced to the right is an array of

images whose habits are of a different type than- the main

array. Tables 1 and 2 also give the defect types contained

in the fee and bec catalogs.

Given below are the values of other parameters used in

calculating the catalog images. The value of w, having only

a small effect, was set to zero. Whether the black-white

direction is acute or obtuse with the diffracting vector

depends on the interstitial or vacancy nature of the defect,

the defect depth, the foil's thickness and whether the image

is bright or dark field. The catalogs contain bright field

images of interstitial type defects so variations in depth

can be accounted for by comparing to the defect depth series

(Fig. 17). The contrast of vacancy type defects can be

surmised by simply inverting the contrast. The defect depth

is placed at 0.5 (centered in L-layer 2). The thickness was

chosen to be 4.0 E for the fee catalog and 3.5 5
CT

for the
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Table 3. Loop normals and burgers vectors
for the images on fee catalog pages.

(loop normal) (burgers vector)

111111 111110 111101 111011

111111 111110 111101 111011

111111 111110 111101 111011

110 110 101 101

110 110 011011

101 101 011 011

111111 111110 111101 111011
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bcc catalog. The foil normal was always set parallel to the

beam direction so foil tilt would not be convoluted with

other effects. Other parameters, such as the elastic

constants, were chosen to be consistent with the materials

assumed: aluminum is the fee material and tungsten is the

bcc material. These parameters are listed in Tables 1

and 2.

The uses of the catalogs for defect identification are

now illustrated. Consider the image of the dislocation loop

in aluminum circled in Fig. 27a. The diffracting conditions

for this micrograph have been assigned Z = [011], g = (200).

The appropriate fee catalog page for Z = [011] and g = (200)

is page 7 (presented as Fig. 26). Aligning the diffracting

vector drawn on the micrograph so that the orientation

corresponds to the diffracting vector of the calculated

images in the catalog (i.e., to the right), the circled

image in Fig. 27 matches the third row and also two other

images at the lower left in the smaller array of images.

The corresponding indices for the loop normals and the

burgers vectors are found in Table 3'

n 1T1 1T1 1T1 111 "11 101

B i T i i To 101 oTi T10 101

This example of the catalog's use for defect

identification a posteriori does not yield a conclusive

identification and leads to another use of the catalog:

selecting a priori the diffracting conditions which will

yield the most useful and discriminating images. The

conclusion of such an exercise (carried out in the work of
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Fig. 2 7 . Dislocation loons observed
(20 keV) onro aluminum (OQ.QQog*. ).

(200) and magnif ication is 250,000.
(220) and magnification is 2,000,000.

in electron irradiated
(a) 7 = [0111, S =

( b
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Sykes et al
.

, 1981, but not repeated here for lack of the

complete catalogs) is that conclusive identification of an

image is possible only for a defect viewed on edge. Two

important imaging conditions are possible for this

particular geometry. First, the diffracting vector may

align with the major components of the defect's displacement

field (i.e., with the burgers vector). In this case, the

magnitude of the burgers vector can be estimated since, as

pointed out by Eyre et al . (1977a, b) and Katerbau (1976), a

reversal in contrast will occur near the center of the image

for |g-b| > 1. Holmes et al. (1979) point out that for

loops viewed on edge, the interface between the black and

white lobe is along the loop habit plane.

The butterfly image can be obtained from defects viewed

on edge by using a diffracting vector perpendicular to the

loop habit plane; i.e., |g-bl = 0. This image gives the

greatest sensitivity to the orientation of the loop as

already noted. The insert of Fig. 27 is such an image and

Fig. 28 is the fee catalog page calculated for the

corresponding beam and g. The labels in Table 3 are also

applicable to these images and from these it is apparent

that the defect in Fig. 27b lies on (TTl). Note in Fig. 28

that this image is the only image that discriminates between

a Frank loop and its sheared counterpart. The catalog

provides at a glance the imaging conditions which will yield

this discriminating image. For example, if a bec sample

with an (001) foil normal is to be examined, a brief study

of the bec catalog (page 1, i"ow 4; presented here as Fig.
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29) demonstrates the ability of the (110) diffracting vector

to distinguish between the burgers vector ao/2[l1l] and

ao [001] for loops with a (011) habit.

The preferred method of identification is presented in

Fig. 30. The same defect is imaged at the beam direction

[001], g = (220), (200) and (220). Comparison with the fee

catalog shows this to be a loop with n = (110), b =

a
Q /2 [ 1 1 ] . This defect is thus being viewed on edge at this

beam direction. Note the structure between the black and

white lobes in Fig. 30a, for which |g-b| = 2. These data

use a beam direction near the sample's foil normal.

Although post-experimental use of the computer program can

make use of the data taken from large tilts, the effort

required to simulate a significant number of defects can be

more profitably applied to collecting data from other areas

of the sample. The catalogs will quickly indicate which

diffracting vectors are most useful for the beam direction

nearest the foil normal. From such data a number of images

will be obtained which allow a confident identification as

in Fig. 27b. The catalogs are not intended to be the final

word on small defect identification, and further

calculations using a finite strain field solution may be

needed for conclusive identification of a defect. The

catalogs do not resolve the problem of determining the

interstitial or vacancy nature of a defect without precise

data from st ereomicroscopy

.

Computer simulations were used to examine the effect of

various imaging parameters. These studies extend the
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understanding of small defect images, and determine the

structure and parameters of the fee and bec catalogs. These

catalogs provide an easy means of post-experiment

identification of small loop images, but more importantly,

they allow a priori determination of the best experimental

conditions and procedures.



CHAPTER V
APPLICATION OF THE CATALOGS TO RADIATION DAMAGE IN ALUMINUM

BACKGROUND AND REVIEW

The theory and results in the previous chapters were

applied in an investigation of several irradiated aluminum

alloys. Such a study would not only produce information and

data about the material itself but also demonstrate in what

ways the catalogs are useful. It may also allow

determination of the limits of the technique. For example,

is there any evidence in the image of solute atoms

clustering to a defect? Finally, knowledge gained in

attempting an experiment establishes the limitations and

difficulties which must be considered or addressed in any

subsequent theoretical work.

Small defects can occur in rapidly quenched materials

and materials exposed to radiation. Defects occuring from

the latter mechanism are more technologically important.

The behavior of materials in a reactor environment must at

the very least be characterized. Preferably they should be

well understood so their properties and performance can be

optimized. The radiation induced damage in metals includes

not only dislocation loops but also voids and often,

precipitates. ftlloy additions can greatly change the

radiation damage behavior of metals so, the interaction

39
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of solute atoms with defects is expected. The study of such

a system is well suited to the goals of this research.

The effect of radiation on metals has been of

scientific interest for some time but this field gained

great technological importance when Cawthorne and Fulton

(1967) reported the phenomenon of void swelling in neutron

irradiated stainless steel. Void swelling greatly affects

the design of fast reactors and fusion reactors. Huebotter

and Bump (1972) have reviewed some of the implications of

void swelling on reactor design. The basic processes and

theories of the radiation damage of metals will be briefly

reviewed here to provide a perspective from which previous

and present work can be appreciated. Mansur (1978) has

reviewed the theories of radiation damage and void swelling

and the following pages summarize the main points from his

work .

The collision of an energetic particle with a metal

sample creates damage in the form of an array of vacancies

and interstitials. Diffusion of the vacancies and

interstitials is required if they are to recombine and

annihilate each other. At low temperatures vacancies are

essentially immobile and are annihilated bv interstitials,

still migrating due to their low binding energy. At higher

temperatures (> . 3T ) , the vacancies are mobile and can

cluster together. These clusters become voids while the

interstitials migrate to dislocations. The point defects

can also migrate to be absorbed into various defects such as

voids, olates, dislocation loops, etc. If interstitials are
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preferentially absorbed to dislocations and are repelled by

voids, there will be a net flux of vacancies to the voids

resulting in their growth and macroscopic swelling.

The amount of immediate damage created by a colliding

particle depends on the material of the target and the

energy and mass of the particle. An incident particle of

mass M^ and energy E can have a maximum transfered energy E

to the target of ( Wilkens , 1 970 )

:

Em = 4EM
1
M
2
/(M

1
+ M

2
)

where M
2

is the mass of the target atoms. For E > 20 eV a

Frenkel pair is created. For Em > 1 to 10 keV, a cascade of

damage is created. In the array of damage resulting from

the collision of a massive energetic particle (the cascade),

the vacancies are found nearer the collision site while the

interstitials are found further out. Another immediate

effect of a collision is a possible nuclear reaction

resulting in the transmutation of a target atom. Although

alloys can be made more resistant to the results of

displacement damage, nothing can be done about this latter

effect. Most metals, however, have small cross sections for

transmutation .

Many of the point defect pairs created in a collison

event are unstable and immediately recombine and annihilate

eachother. Of the stable point defects many will recombine

after diffusing a short distance. Those which survive to

diffuse away from the cascade produce the effective point

defect generation rates, G. and G , where i and v refer to
1 v

'

interstitials and vacancies respectively. Within the bulk,
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the point defects can be lost by recombination with an

opposite point defect, by absorption into various crystal

defects or by loss to a free surface. By accounting for the

production and the loss of point defects, the change in

their concentrations can be expressed

dC /dt = G -RCC. -KC + V (D VC + D C VU /kT)
P P vi PPPP PPP

where C is the point defect concentration, G is the point

defect production rate, R is the recombination constant, K

is the reaction rate constant for losses to sinks, U is the

interaction energy with a discrete sink, and D is the

diffusion coefficient. The subscripts i and v refer to

interstitials and vacancies, respectively. The subscript p

is replaced by i or v, depending on whether the equation is

to apply to interstitial or vacancy concentrations. The

last term on the right represents losses to a surface and

will be ignored. This equation and those which follow model

the material as a homogeneous continuum whose properties are

the same on the average as the real material. In the

material there are sinks of type j and of strength SJ .

P
After the initial build up time at the start of the

irradiation, the point defect concentrations reach a quasi

steady state and so the time derivative can be considered

zero. This allows the above equations to be solved for the

point defect concentrations as a function of the sink

microstr uc tur

e

[K.K + R(G. + G )]

c =
i

-i 2L_'
{[ i +

4RG K.K
v 1 v

2RK [K.K + R(G + G )]XV IV
-
2 f

in
- n
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By using this equation iteratively to determine the point

defect concentrations and using other equations which give

the defect growth rates as a function of the point defect

concentration, the evolution of the radiation damage

microstructure can be predicted. The generally observed

course of raicrostructur al evolution is the nucleation of

small loops, the growth of the interstitial loops into a

dislocation structure (tangles) and the nucleation and

growth of voids. Depending on the alloy system,

precipitation of a second phase may also occur.

This approach has been applied to the growth of voids

(Mansur, 1978). The growth of a void of size r
v

will depend

on the arrival rates of interstitial s and vacancies to the

void :

drv /dt = ^{Zv (rv )D (C - C
e

( r
v

) ) - Z
v

( r
v

) C. D. } /r
v

V V V V 1 11
where 0, is the atomic volume, C

e is the thermal vacancy
v 3

concentration at a void of radius r
V

, and Z is the sink
P

(void) capture efficiency. Inserting the equation for the

point defect concentrations and replacing the populations of

defects of various sizes with oopulations of defects of an

appropriate average size (

r

v
in the case of voids), leads

to:

dr
V D.D fl 4GR in . .— - -i-f- [(1 )

1/2
- l]x{^CZJ.z£ " Z-<Z^}

dt 2Rf
V K-K - l v v l

IV J

where ^ is a weighting factor accounting for the average

size and number of sinks of type j. The terms of the type

( l\ Z
v

- Z^zY) are defined as the bias of the sink type i
l v v l

y K J

with respect to voids. This is the basic quantity
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determining the potential of the material to swell. It is

interesting to note that the existence of at least one other

sink type is a prerequisite to the growth of voids. If the

interstitials have no other place to go, they must

ultimately be migrating to the voids in a one to one ratio

with the vacancies. If only one other sink type is present,

say dislocations, then if voids are to grow, this sink must

have a greater tendency to absorb interstitials versus

vacancies than voids do; that is Z./Z > zY/ZV . Besides

influencing the important bias term, the other sinks can

effect void growth by the term J^K in the denominator of

the above equation. If the total sink reaction rate

constants are high the point defect concentrations will be

kept low, slowing the growth of the voids.

Because of their importance in determining the void

growth rate, the efficiencies Z
J deserve more consideration.

These terms are obviously related to the structure of the

sink and it is not surprising that it is difficult to

estimate their values. The definition of the efficiency of a

void is given to clarify its meaning. The concentration

profile around a void is:

C(p) = 0°° - (C°° - C»)(r"/p - D/Cr
00

- r
V

)

where r
v is the void radius, p is the distance to the void

center, r 00 is the distance at which C = C°° , and C is the

concentration at the void surface. The loss of point

defects to the void, k
v

, is the flux at the surface times

the void area

k
v

= %r 2
D(dC/dp)| _ = 4TTr

V
D(C°° - C')(1 - ^/r")" 1
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v , °° e v °° /

If we let Z (C - C (r )) = (C - C) , then this becomes

'/ = ^r 2
D(C°° - C

e
(r
V
))Z

V
(1 - rWV 1

If the void is a good absorber, C* = C
e

(

r

V
) and Z

V
= 1 . If

the void is a poor absorber, C°° < C' < C
e
(rv ) and < Z

v
< 1.

The sink capture efficiency Z expresses the relative ability

of the real sink to absorb point defects to that of a

perfect absorber (i.e., a sink which freely absorbs all

defects which drift to it and so maintains the local

concentration at the equilibrium value). Of course, for any

defect of type j, Z J is as poorly known as the C around the

defect. Of greatest importance, however, is the comparative

values of the sink efficiencies, which are expressed as the

bias terms, ( Z 3
. Z

v
- Z J Z

V
). Small changes in efficiencies

can produce relatively large changes in the bias. Although

quantitative predictions are difficult, it is only necessary

to estimate whether a give structural change increases or

decreases the efficiency of a defect to estimate the change

in the swelling behavior.

Estimates and calculations of sink strengths and bias

factors have been carried out for some defects. Wolfer and

Mansur (1976) derived the interaction of a point defect with

a spherical cavity and later used this result in numerical

calculations of void capture efficiencies (Mansur and

Wolfer, 1978). They showed that the presense of an impurity

coating at the surface of a void could reverse the bias of a

void from preferentially absorbing inter st it ials to

preferentially absorbing vacancies. Coghlan and Yoo (1977)

have calculated Z for a finite dislocation loop. Wolfer and
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Ashkin (1975) have derived expressions for the bias of a

general spherical strain center and calculated its effect on

point defect fluxes.

Control of alloy composition is one of the most

important methods by which a metallugist influences the

properties of a metal. Impurity atoms can affect all the

processes described above. The effective yield of point

defects per collision can be changed. The impurity atoms

disrupt the perfection of the lattice and this will lessen

the ability of the inter st it ial s to be transported as far

away from the center of the cascade as in the pure material.

More point defects will recombine immediately and reduce the

effective yield. The impurity atoms are usually of a

different size than the matrix atoms. Vacancies are more

stable if configured next to a larger atom; inter stitial s

are more stable next to a smaller atom. The point defects

can thus be coupled or bound to an impurity atom. The point

defect/ impur ity atom complex may migrate together or the

point defect may simply be held ud at the impurity. Both

these mechanisms result in a decrease in the effective

diffusion coefficient of the total point defect population.

Not only will this slow the rate at which vacancies arrive

at voids but by being held in the matrix longer, there is a

greater probability of annihilation by meeting an opposite

point defect. It can be shown (Mansur, 1978) that these

processes can be handled in the above theory and equations

by changing the point defect diffusion coefficients to lower

effective values. The magnitude of this mechanism will be
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different for vacancies than for inter stitials since the

energy binding vacancies to a particular solute species will

be different than the energy binding inter stitials .

Numerical calculations for nickel (Mansur, 1978) show that a

vacancy binding energy of 0.1 eV reduces swelling but for

interstitial trapping to be effective the binding energy

must be greater than the difference between the vacancy and

interstitial migration energies, that is, about 1.2 eV.

Radiation affects the stability of second phase

particles in an alloy. Depending on the conditions and the

alloy system, radiation can enhance precipitation, induce

precipitation in undersatur ated alloys or induce solution of

precipitates in supersaturated alloys. Martin (1978) has

reviewed the systems displaying precipitation in

undersaturated alloys. Several models have been proposed to

explain this. Bocquet and Martin (1979) have taken a

thermodynamic approach and considered a ternary phase

diagram (a, b, point defect). Precipitation in

undersaturated alloys is predicted under restrictive

conditions not met by experimental systems displaying this

phenomenon. Maydet and Russell (1977) formulate the

precipitation or solution of a precipitate in terms of an

irradiation modified free energy A<j> which depends on kinetic

and thermodynamic factors such as solute and vacancy

supersaturations, or ec ipitate/matr ix misfit and the degree

of point defect biasing. They predict the possibility of

the growth of oversized precipitates in an undersaturated
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alloy and the dissolution of undersized precipitates in an

oversatur ated alloy.

The most favored model is that of Johnson and Lam

(1976) which proposes the drag of solute to sinks. The

coupling of solute atoms to point defects can result in the

solute being dragged to the various sinks at which the

supersaturated point defects condense. This raises the

local solute concentration which, if exceeding the

solubility limit, induces precipitation. If irradiation

stops, ending the flux of solute to the sinks, the

precipitates dissolve (provided the temperature is high

enough to make this kinetically feasible). Even if the

local concentrations do not reach the level required for

precipitation, the solute atoms will alter the structure of

the sink, thus altering the sink efficiency and so

influencing the swelling behavior of this alloy. Mansur

(1979) states that a solute atom can produce a greater

effect by this mechanism than by trapping point defects in

the matrix. This conceptually simple model is apolicable to

many but not all observed cases of radiation induced

precipitation. Cauvin and Martin (1979) have observed

homogeneous precipitation of GP zones and 6 precipitates in

Al+2%Zn. The mechanism proposed to account for this is the

coupling of point defect fluxes to solute concentration

heterogeneities, a mechanism somewhat analogous to spinodal

decomposition .

The alloy system chosen for study in the present work

was included in a survey of the void swelling behavior of
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aluminum alloys conducted by Farrell and Houston (1979).

They prepared many dilute alloys (nominally 100 atomic parts

per million of solute addition) and neutron irradiated them

to four dose levels. The irradiated samples were then

observed by TEM and the microstructures compared to that of

irradiated pure aluminum, which swelled about 1% at the

highest dose used. The elements Ag , Ca , Fe , In, Mg , Ni , Si,

Sn and Zn had little affect on the damage behavior. The

elements Cr , Cu , Mn , Ti , V and Zr retarded the formation of

voids and dislocations. These latter elements reduced the

number of voids rather than their average size, indicating

an effect on their nucleation rather than their growth.

Effective elements slowed the evolution of dislocation loops

into a dislocation structure, simultaneously inhibiting void

formation, but had little effect on void growth after the

dislocation structure developed. Of these elements, Mn was

the most effective and Cu reduced swelling if present in

amounts as low as 25 ppma.

Precipitates were observed in many of the

microstructures. Due to the high cross section aluminum has

for neutrons, significant transmutation occurs by the

reactions

27Al(n, Y )

28
<U

28, 23.
Al •> Si + 6

and silicon precipitation occurs in neutron irradiated Al

(Farrell et al
. , 1970). Silicon precipitates are therefore

a feature common to all alloys at the highest dose.

Extrapolation of solubility data indicates that most alloys
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were supersaturated at the irradiation temperature (55C).

Radiation assisted precipitation of the alloying element is

expected and the presence of transmuted Si precipitates

complicates interpretation of the microstrutures . Farrell

states the precipitation is heterogeneous, remarking in

addition that the precipitates in the highly irradiated Si

and Cu alloys had the same concentration, size and spatial

distribution as did the small dislocation loops seen at

lower doses. In analyzing these results, Farrell and

Houston noted that the best damage resistance was imparted

by solute atoms with strong negative misfits (defined by the

solutes -effect on the lattice parameter of Al). Based on

this they concluded that the primary damage suppression

mechanism is solute/ interstitial trapping by negative

misfitting solute atoms.

As an extension of the above work, it was decided to

use the catalogs to carry out a more detailed investigation

of an alloy which proved important in Farrell and Houston's

survey. The Al+100 ppma Cu alloy was chosen for further

study both because low amounts of copper suppressed swelling

and because the Al-Cu system is well known and

characterized. Pure aluminum was also studied to provide a

standard for comparison. It was likewise necessary to study

an Al+100 ppma Si alloy to provide a standard of control for

the transmutation phenomenon.

Clustering and precipitation phenomenon in the Al-Cu

system have been examined in the famous work of Guinier

(1938) and Preston (1938). Precipitation proceeds in the
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stages

GPU ) + 0" * ' •*

Several investigators have studied this system by the use of

TEM . Nicholson and Nutting (1958) first observed

black-white stain contrast around coherent precipitates in

an Al+4XCu alloy. Thomas and Whelan (1961) have used a

heating stage to observe the precipitation sequence in situ.

Philips (1973,1975) has used the technique of lattice fringe

imaging to study the precipitation process from GP(1) zones

to 0'
.

The irradiation damage behavior of Al-Cu alloys has also

been investigated. Katz et al . (1968) observed an

enhancement of the rate of 0' nucleation for alloys neutron

irradiated and subsequently aged below 235C Sklad and

Mitchell (1975) have done in situ electron irradiations of

an Al+3.5%Cu alloy in a high voltage electron microscope.

Enhanced 0' growth was observed in the temperature range

20-290C, but the intermediate 0" stage appeared to be

suppressed by the irradiation. Weaver et al . (1978) again

noted the enhanced growth of 0' in an in situ HVEM study.

They proposed an irradiation induced effective change in the

metastable phase diagram. Voids were not reported in the

above three studies. Carpenter and Ggle (1975) conducted

neutron irradiations on two alloys, Al+1.7%Cu and Al+3.8%Cu,

using various pr e- irr ad iat ion heat treatments to produce

starting structures composed of GP(1) zones and 0", 0", or

0'. They found minimum void swelling in the microstr uctur

e

containing GP ( 1 ) zones and 0". In later work, Carpenter and
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Yoo (1978) studied the neutron irradiation behavior of an

Al+4%Cu alloy aged to contain large semicoherent 0' plates.

A ten fold reduction in void swelling relative to pure

aluminum was quantitatively accounted for by assuming traps

for vacancies and interstitials in the O'/matrix interface.

They also used EDX to detect the segregation of transmuted

Si to this interface.

All of this previous work, both on irradiated and

unirradiated alloys, has been done on fairly concentrated

alloys (> UCu). The work of Farrell and Houston and, of

course, the present work was done on a very dilute alloy.

At the temperature of irradiation, however, the solubility

of Cu is extrapolated to be near 100 ppma (Farrell and

Houston, 1979) and so radiation enhanced or induced

precipitation may be expected.



CHAPTER VI
EXPERIMENTS AND RESULTS

The samples used in this research were irradiated, by

Farrell and Houston (1979) in their work and were kindly

made available by them. Their alloys contained nominally

100 ppma (parts per million, atomic fraction) of one of the

following elements: Ag , Ca , Cr , Cu , Fe , In, Mn , Ni , Si, Sn

,

Ti
,

V, Zn and Zr. Farrell and Houston's description of the

experimental proceedure is reproduced below:

The cast ingots were homogenized for 1 week
at 823K (0.88 Tm ). They were cold rolled to
0.5 mm thickness and 3 mm diameter disks were
punched. These disks were annealed for 1 hour at
673K (0.72 Tm ) in air and were slowly cooled.
They were then packed randomly in aluminum powder
in sealed aluminum cans and were irradiated at an
estimated temperature of 338-358K ( 0.37 Tm ) in
the High Flux Isotope Reactor (HFIR) at Oak Ridge.
Four fluence levels were attained, 2* 10

22
,

2x 10
23

,
2x 10

21
* and 2x 10

25
n/m 2

(> 0.1 MeV),
corresponding to 2.6 X 10" 3

,
2.6x 10~ 2

,
0.26 and

2.6 dpa [displacements per atom]. The
thermal-to-fast fluence ratio was 2.3, the thermal
neutrons resulting in the formation of 10

-6
to

10" atomic fraction Si, the major transmutation
product

.

The copper and silicon alloys used in the present research

contained 100 ppma; Farrell and Houston actually used

several different compositions of these alloys. It is also

noted that the observations made in this research were made

two years after the irradiation of the samples. Metastable

damage and/or phases might no longer be present.

103
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Previously thinned samples were no longer suitable for

microscopy and samples were newly thinned for observation.

Thinning proceeded in two stages. First the 0.50 mm thick

disks (3 mm diam.) were dimpled on both sides by

electropolishing to a thickness of 0.075 mm. The solution

was 120 ml water, 100 ml ethylene glycol monobutyl ether,

73 ml perchloric acid (70%) and 700 ml ethanol. Polishing

was driven by 125 mA of current at room temperature. The

dimpled disks were then electropolished in a solution of

10 ml perchloric acid in 180 ml of ethanol at to 10C using

a current of 88 mA. The glassware for the polishing

solution contained flat view ports to allow observation of

the samples during polishing. The current was stopped and

the sample quickly removed when a small hole first appeared

in the sample.

The samples were observed in either a JE0L 100CX

electron microscope or a Philips 400 electron microscope

equipped with a field emission gun. The imaging conditions

were chosen to be consistent with the fee catalog. The

deviation from the Bragg condition was set at or close to

zero for most micrographs, although larger values also

proved useful. Samples irradiated to the two lowest doses

displayed no particular damage microstr uc tur e . They

contained some dislocations as are usually found in an

annealed sample. In some areas a few small defects could be

seen. A great number of small defects were found in the

Al-Cu and the Al-Si samples irradiated to the highest dose.

At this dose 1000 ppma of transmuted Si is expected.
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Diffraction spots from elemental Si were found in

diffraction patterns taken from these samples and it was

concluded that the defects were precipitates of elemental

silicon. Figure 31 displays microstr uctures from these

alloys. They appear quite similar in terms of precipitate

and void density.

The samples irradiated to the third dose (0.26 dpa)

proved to be the most interesting and these were studied in

greater detail. At this dose, all samples will have about

100 ppma Si added to their composition by the tranmsmutation

of Al . To avoid confusion, this fact will not be explicitly

mentioned in describing the alloys and they will be refered

to simply as the pure aluminum alloy, the Al+100 ppma Si

alloy and the Al+100 ppma Cu alloy. The pure aluminum

sample (Fig. 32) displayed a low density of defects. Figure

32 clearly shows the presence of voids. Precipitates are

observed in three morphologies: roughly spherical (or

disklike), a right triangular plate, and a rod-like plate.

Also occasionally observed were small plates exhibiting a

moire" fringe spacing of ^4.5 nm . For g = (200) in aluminum,

this means the plate has a lattice spacing of 0.19^3 nm or

0.209^ nm parallel to the aluminum (100) planes. This

defect type also appears in the other alloys.

The microstructure of the Al+100 ppma Si alloy exposed

to the third dose is shown in Fig. 33. The precipitate

morphologies are similar to the pure aluminum sample but the

density is much greater. Only a few of the defects exhibit

significant strain contrast. Voids were not observed in
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Fig. 31. Microstructures of (a) the Al+100 no"ia Si and (b)
the Al + 100 Dprna Cu alloys irradiated to the fourth neutron
dose of 2 x10 2j n/m^ (?.6 dpa) . Magnifications ar^ both
70, oon

.
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Fig. ?2. Microstruc tur e of the pur" aluminum sample
irradiated to the third neutron dose o^ ? x m- n/*n (0.26
dDa). Magnification is ?SO,ono.
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'"IT.

irrn
?1 •Ucrostructuro of tb« ,/p + 100 nn^a Si alloy
3t»d to th» third neutron dos° of 2 x in?

1* n/m^ (0.26
don). Magnification is 200, ono



109

this sample. In Fig. 33 there is one elate precipitate

exhibiting a 4.5 nm moire fringe spacing.

The Al+100 ppma Cu alloy is shown in Fig. 34. The

defect density is comparable to the Al+100 ppma Si alloy but

almost all the defects (plates on (100)) exhibit strong

strain contrast. Using a diffraction vector perpendicular

to the plate normal (Fig. 35), the plates exhibit an image

of butterfly symmetry as expected, but the details of the

image are not as predicted by the computer calculations for

a Frank loop. This will be discussed at greater length

later but the results of the analysis add great support to

the conclusion that these precipitates are Q'. A plate

exhibiting the kinematic moire fringe spacing of 4.5 nm is

seen in Fig. 36. The number of such defects was the

greatest in the Al+100 ppma Cu alloy. No voids were

observed in this alloy at this dose. Another significant

feature of this alloy was the presence of large dislocation

loops (see Fig. 37). These were found only in the thicker

regions of the foils and so presumably they either slipped

out of the foils in thinner regions or were cut by the

surfaces and so appeared as straight dislocations. From

geometry, the habit planes were determined to be (110), thus

having a burgers vector of ao /2[110], and by the

inside/outside contrast method of Edmondson and Williamson

(1964) they were determined to be interstitial loops. A

search of even the thickest regions of the pure aluminum and

Al+100 ppma Si samples failed to reveal any large

dislocation loops.
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irradiated to t h e third neutron
dpa). Magnification is 200,000

of the M + 100 oma Cm aHoy
OS" of P x in ?u

n/-n (0.26
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c i ^ . IS. 3 a rn e a r e i as r i^,. 3? i m a n; e d u sin"; the diffracting
vector 2° which yields I'r-bl - ^or "i = nv o r th*5 i^fn^t
images. Insert magnifies the circled i^na^e. Magnifications
are 200,000 and 2,000, noo.
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36. A kinematic image o p thf3 sa-qp
'ig. "". Magnification is 200 000

as in 'i«. ??
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'
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w^^ater >.'-' t^J ^ >
'

'-l.
•

-..-"if JSfj&GaE?.- - HdKtEf-'L.'' •** ^-
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F i » . 17. LTr^e dislocation loops observed in the thicker
regions of the Al+100 doi^ Cu saimle (third dose). Analysis
determined that these sr a interstitial loons o r tyoe n =

(011), b = a / 2 r
1 1 1 . Magnification is 17,000.
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Figure 38 is presented because of this work's interest

in the details of small defect images. This shows the

black-white images of the precipitates in the Al+100 ppma Cu

sample, imaged by the use of g : (200). In some of these

images is seen structure similar to that predicted for the

case |g-b| > 1. The white area in the black lobe, however,

is not complimented by a black area in the white lobe. This

structure is very dependent on s and is suspected to be the

psuedo-interface structure predicted by Eyre et al . (1977)

for a defect in the boundary between L-layers. Because of

the possibility of misinterpreting this structure, more

theoretical work should be done to determine the conditions

for which it can occur.

Table 4 summarizes the microstructur es
,
giving

estimates for the number density and/or the volume fraction

of the various defects found in the three alloys. There is

great uncertainty in these values because the foil thickness

and the average particle size is difficult to determine.

The absolute magnification is known to 1 1 0% and this error

is cubed in these estimates. The estimates of volume

fraction cannot be trusted to better than a factor of two.

Nevertheless, the value for the void volume fraction for the

pure aluminum sample is in good agreement with Farrell and

Houston (1979). They report U swelling at the forth dose

which would yield 0.1% at the third dose, assuming a linear

dependence on dose. The values in table 4 listed as

"Maximum Theoretical Vy of Precipitate" are the volume

fraction expected from the complete precipitation of the
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Fii. 'W . Black-white i^ia^es o p precipitates in the Al + 100
onna Cu sanole. Note -nany iiia^ps show a reversal in
contrast no-ar the black-white in f ^rfic3

, See text for
discussion o r this oseudo- int ai" face structure. Magnification
is ?50,000.
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solute elements (100 ppma Si, 200 ppma Si, and 100 ppma Cu

plus 100 ppma Si) assuming zero solubility. The silicon in

the Al+100 ppma Cu sample may be partially incorporated in

the 0' or, if present as Si precipitates, is too difficult

to distinguish from the 0' to allow separate determination

of the Si precipitate volume fraction. The copper, is

assumed to precipitate as 0'. The theoretical and

experimental values are in reasonable agreement, considering

the uncertainty involved, except for the Si in the pure

aluminum and the Al+100 ppma Cu samples. For the pure

aluminum sample, a 1.0 nra thick Si coating on the voids of

size and number seen can account for 60 ppma Si. Also the

voids appear associated with large precipitates whose volume

is ignored in the estimate of V . It was qualitatively

obvious that the moire fringed precipitates were most

aboundant in the Al+100 ppma Cu alloy. Because they also

occur in the pure aluminum and Al+100 noma Si samples, it is

concluded that these are a form of Si precipitate. The

presence of Cu in the aluminum apparently makes this a more

preferred morphology for Si precipitation.

On the whole these observations are consistent with

those of Farrell and Houston (1979). As here, they report

little damage at the two lowest doses. Their statement that

precipitates at the fourth dose appear on the same

distribution as earlier loops may reflect their mistaking

the 0' images (as in Fig. 34) for dislocation loops. They

report a dislocation structure always accompanied the

presence of voids, but here no particular structure was seen
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in the pure aluminum sample (third dose), which contained

voids. Tf dislocation loops were initially present in this

sample, they may have slipped out of the foil before the

present observations were made. Copper alloying makes glide

more difficult and so the loops remained to be seen in the

Al+100 ppma Cu alloy.

Another experiment carried out was the electron

irradiation of these alloys. Such an experiment, being done

in situ, can demonstrate kinetic differences in the alloys.

The experimental proceedure was quite simple. Samples of

the unirradiated alloys were thinned as described above to

electron transparency. They were then observed in a JEOL

200CX electron microscope. This microscope is equipped with

a variable accelerating voltage, ranging to a maximum of

200 kV. Two hundred keV electrons have sufficient energy to

create displacement damage in aluminum in the form of

Frenkel pairs. The samples were observed using a voltage of

120 kV (which is below the damage threshold) and a suitable

area was micrographed to document the initial lack of

defects. The accelerating voltage was then raised to 200 kV

and the condenser lenses of the microscope adjusted to

concentrate the electron beam on a small area (M ym) .

Irradiation proceeded until damage was visible using the

binoculars of the microscope. The beam was then decondensed

and the accelerating voltage reduced to 120 kV for imaging

and micrographing the damage. Figure 19 shows the resulting

damage of the three alloys. The variation in the

irradiation time must be kept in mind: 4 to 5 minutes for
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Fig. "5Q. Microstructures of the three alloys irradiated
with 200 keV electrons in a JFOL 2000X T F M : (-3) pure
aluminum irradiated for H to S minutes, (b) M + 100 noma Si
irradiated for 5 to 6 minutes, fe) A 1+1 00 noma Cu irradiated
for 20 minutes. All magnifications are 2^0,000.
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the pure aluminum, 5 to 6 minutes for the Al+100 ppma Si

alloy and 20 minutes for the Al+100 ppma Cu alloy.

Although a large qualitative effect of alloying is

obvious from Fig. 39, greater differences in behavior become

known upon more detailed analysis. The pure aluminum

displays ^-vectors both acute and obtuse with g, indicating

the contrast oscillations expected from defects distributed

at various depths in the foil. The alloys containing Si and

Cu , however, display ^-vectors only acute with g. This

indicates the defects are all at one depth (unlikely) or are

very near the surface of the foil. Ruhle et al. (1965) have

reported a similar phenomenon, the formation of defects near

the electron entrance surface of an irradiated Cu sample.

Figure 27b (Chapter IV) shows in the pure aluminum sample,

as predicted by the fee catalog for this beam and g, the

presence of a butterfly image, thus confirming that the

defects present are loops on (111) olanes. For the same

imaging conditions, the Cu and Si alloys failed to display

such butterfly images.

No conclusions have been drawn from these results other

than to note a strong but undefined effect of alloying on

the electron irradiation behavior of aluminum. That the

defects lay at one surface in the Cu and Si samples is

puzzling. Without further experiments the mechanisms can

only be speculated. If alloying suppressed the condensation

of the point defects created and the electron beam ionized

stray gases in the column of the microscope, the surface

damage could be due to ion bombardment. The existence of a
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thermal gradient from one surface to the other (this is not

expected) may induce a drift of point defects to one

surface. The lack of butterfly images indicates that the

defects are not dislocation loops and they may be point

defect clusters trapped between the matrix and the surface

oxide. The strong qualitative effect that Cu and Si have in

this experiment support Farrell and Houston's conclusion

that the radiation damage resistance was imparted by solute

in solution rather than by point defect interactions with

precipitates and other defects.

In summary, all observations in this work are in

general agreement with those of Farrell and Houston (1979).

Little damage is seen at the lower doses; voids and

prolific Si precipitation is seen at the highest dose. Si

and Cu suppressed void formation at the third dose. Silicon

precipitates are seen in both the pure aluminum and the

Al+100 ppma Si samples while 9' precipitates are seen in the

Al+100 ppma Cu sample. Although the electron irradiation

experiments certainly support the conclusion that dissolved

solute is important in the radiation damage behavior of

these alloys, analysis of the strain around the 0'

precipitates developed in the next chapters, suggest the 0'

precipitate may serve as important sinks and thus also

influence the behavior of the Al+100 ppma Cu alloy.



CHAPTER VII
THE Ig.bl = IMAGE

The |g-b| = (butterfly) image of the (100)

precipitate plates found in the Al+100 ppraa Cu alloy

irradiated to a dose of 0.26 dpa are not quite what is

expected and observed for pure edge loops in aluminum.

Figure 40 shows the |g-b| = image of a (111) Frank loop in

Al
,
both theoretical and experimental, and compares these to

an image of a precipitate plate. The most striking

difference is the greater contrast and intensity in the body

of the precipitate image (i.e., the lobes aligned with g) .

The wings of the image are also somewhat less intense than

expected. Figure 20 of Chapter IV showed that the butterfly

image is very sensitive to the orientation of a dislocation

loop. The images of a dislocation loop and one of these

precipitates are virtually identical if imaged by a

diffracting vector perpendicular to the habit plane. But

the |g-bl = images are quite distinct. The difference

must be related to some structural differences between a

pure edge loop and one of these precipitates. This chapter

will explore various models to account for this image and

simultaneously investigate the sensitivity of this imaging

condition to minor structural changes of a defect.

The similarity of the precipitate to a loop is seen in

its kinematic platelike shape (Chapter VI, Fig. 36), its
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simple black-white image when g is parallel to the normal

and its (altered) butterfly image. The differences can be

surmised by recalling the polar displacement plots presented

in Chapter III (Fig. 16). It was noted then that the body

of the image results from the inward displacement of atoms

about the circumference of an interstitial loop. The wings

derive from the resolved outward components of the

displacements. In the case of a vacancy loop the

displacements invert, the circumferential displacements

being outward and the major components being inward. This

reverses the contrast but does not affect its symmetry. All

theoretical considerations done here will assume an

interstitial defect unless stated otherwise. The increased

contrast of the body of the image indicates greater inward

displacements about the circumference. The weakness of the

wings indicates the major outward displacements are

diminished. All atoms, therefore, are displaced inwards

relative to their expected positions if the defect were an

interstitial edge loop. In the infinitesimal approximation

this would be modeled by superimposing the displacement

field of a small vacancy cluster onto that of an interstital

loop. The focus of this chapter is the development of models

which accomplish this effect.

The difference between a precipitate and an edge loop

can be simulated by the infinitesimal approximation but the

detail being interpreted comes from regions very near the

defect. Finite displacement calculations are therefore

required. The simulation in Fig. 40 used the finite
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displacement field used by Bullough et al . (1971). This

displacement field is found in Appendix I, as are others

which will be used.

A model of considerable theoretical interest, the

segregation of solute to a dislocation loop, is developed

first. Copper atoms are smaller than aluminum atoms and as

such they act as point defects of vacancy nature. The

segregation of the smaller copper atoms to an interstitial

loop will reduce the strain energy of this defect and such

segregation is expected. The substitution of copper atoms

for the aluminum atoms of the loop is modeled by

superimposing the displacement field of the copper atoms

onto the field of the loop. This model is not being

proposed to account the precipitate image but is pursued out

of theoretical interest. The displacement field from a

circular monolayer of copper atoms could be obtained by

superimposing the strain fields of the atoms in the

monolayer, but a continuum approach is taken rather than

superimposing so many discrete strain centers. The array of

atoms is replaced with a circular sheet, each infinitesimal

surface element of which acts as a center of contraction.

The mathematics and resulting field are analogous to the

force on a point charge induced by a circular sheet of

charge. This derivation is presented by Gray (1919). His

results and their adaptation to the present oroblem are

found in Appendix I. It is interesting to note that a

circular plane of copper atoms lying on a (100) plane in

aluminum is a G? ( 1 ) zone. The image of this is shown is
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Fig. 41a; the normal of the plane of atoms is (100),

perpendicular to the g = (022). The image of copper solute

segregated to an interstitial Iood (i.e., the superposition

of the above field onto that of a loop) is shown in Fig.

41b. The similarity of this image to that of the

precipitates is good and verifies the general correctness of

the displacement field modification.

The effect is strong and indicates segregation may be

detectable if only half (or perhaps only a quarter) of the

Al atoms of the loop are replaced by copper. Quantitative

assessment of the sensitivity of this image is difficult for

several reasons. The magnitude of the displacements from

the array of copper atoms is determined by the parameter b*

which represents the effective radius mismatch between

copper and aluminum. For the sake of simplicity, this was

assumed to be

b * = (r
Cu " r

Al
)

which is Drobably more extreme than is appropriate. The

grey scale used in plotting the theoretical images is ideal

and its contrast is set by user input. It is difficult to

match exactly the contrast response ultimately obtained on a

positive print. Finally, experimental images contain

considerable noise which will obscure detail predicted

theoretic ally.

The solute model is not applicable to the precipitates.

Eshelby (1959) has obtained the displacement field about a

transformed inclusion of ellipsoidal shape. This is

appropriate for a precipitate and the displacements are
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imagined to arise as follows. An oblate spheroid of

diameter much greater than its thickness (i.e., major

axis >> minor axis) is imagined in an infinite elastic

medium. The volume within the spheroid transforms to a

misfitting shape; in the case at hand, the thickness

increases and the diameter decreases. This misfit results

in elastic strains inside and outside the volume which

adjust to maintain force equilibrium. The elastic constants

within the ellipsoid are assumed to be the same as those of

the matrix. A more complete description of the model and

its adaptation to the present case are given in Appendix I.

For this theoretical study the size and strains, e. ,

of the ellipsoid were chosen to yield a 0.1 nm outward

misfit perpendicular to the face and a 0.03 nm inward misfit

around the circumference. The 0.1 nm is less than the

0.23 nm misfit of an a /3 [111] edge loop and this value will

reduce the intensity of the image wings. The 0.03 nm radial

misfit is comparable to the previous value used for the

vacancy misfit of copper. Figure 42b shows the image this

model produces. To demonstrate the importance of the radial

misfit Fig. 42a is the ellipsoidal model using e, = e =

(i.e., no radial misfit).

This model yields a convincing image match but the

effect of the composition within the precipitate was also

considered. Copper atoms scatter electrons more strongly

than do aluminum atoms. Assuming coherence and continuity

of the diffracting planes through the precipitate, the

structure factor for the operating reflection will change
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Fie?. 42. Ima<*e simulation of an elliosoidal inclussion:
(a) strained outv/ardly normal to f^ce but no radial strains
(b) strained outwardly normal to fnce and contracted
radially. 1 - r

1 1
1

,
£? = (0??). The l^n^th o^ the

simulation plots corresnonds to ?0.0 nm

.
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within the volume of the precipitate if copper is present.

The structure factor is used in calculation of 5 and this
g

parameter in turn affects w = s£ . At s = , the parameter

w proves not to change within the precipitate and the

presence of copper can be modeled by decreasing the

effective E,' when integrating the waves inside the

ellipsoid. See Appendix IT for details of this model.

Figure 43 shows the ellipsoid model with a radial misfit of

0.03 nm assuming the £" within the ellipsoid is 2.0 K _ n?7 ,

^g=022' and °' 5 'g=022 in a
'

b and c res P ec tively. The

value 2.0 -
CT= g 2 2

mode ">-S the presence of lighter atoms while

°-5 'p =0 22
models the presence of heavier atoms. The effect

is not large and considering that the changes in V used are

somewhat extreme (but not unrealistic), this effect may not

be experimentally noticeable for small precipitates.

Nevertheless, to demonstrate that this effect cannot account

for the increased body contrast, Fig. 43d was calculated

using CJ = 0.5 S
022 (

i

' 9 " '
heavier atoms) for the

ellipsoid with no radial mismatch.

The ellipsoid model is quite adequate but simulations

were also done using a strain field whose geometry is an

exact disk. A thin section of a cylinder is imagined as the

surface across which the radial displacements are made. The

appropriate array of force dipoles is constructed on this

surface and the isotropic Green's function integrated to

obtain the displacements. This was carried out numerically

as described in Appendix I. The misfit perpendicular to the

face was obtained by superimposing displacements from two
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finite loops, coinciding with the two faces of the disk and

of burgers vector magnitude 0.05 nm each. The radial misfit

is again, assumed to be 0.03 nm . This model yields Fig. 44

(£' = 1.0 £ „-,-,). Because the radial misfit is induced
g g=022

directly inwards by the cylindrical surface, the contrast of

the body is greater than for the ellipsoid. The radial

strains from the ellipsoid were less directed due to the

curved edge. Although a disk seems a better model for the

precipitate's true shape, the ellipsoid yields a more

convincing image. This implies the edge of the precipitate

disk is rounded .

As impressive as the results of these calculations are,

they are at or beyond the limits of the approximations used.

For example, the columns are spaced 0.4 nm apart rather than

2.0 nm and so cross-talk between waves in neighboring

columns would actually occur. The integraion step size, dz,

is about 1.0 nm . This means a chunk of the column contains

only 10 atoms but is nevertheless being modeled as a

diffracting continuum. The displacements are calculated at

distances from the defect as small as 0.5 nm , too close to

expect the assumptions of continuum mechanics to apply.

These criticisms invalidate only the finest details of the

image. The greatest abuse is the close spacing of the

columns. Proper account of the interaction of waves in

neighboring columns is expected to produce an image slightly

blurred in the direction of g.

Aluminum is nearly isotropic but the lesser components

of the displacement field are being resolved in these images
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Fie;. 44. lmap;p simulation nssinino d i sol acement s around ;

disk shaned precipitate strained outwardly normal to the
fane and contracted radially. Density of material in the
disk is assumed the same as the matrix, 7 = r011l, 5 =

(322). The length of the simulation nlot corresoonds to
20.0 nm

.
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and the effect of aluminum's anisotropy must be considered.

Ohr (1979) has developed a computer program to produce both

the displacements and the images of a loop in an anisotropic

material but has not carried out calculations comparable to

the present case. The application of anisotropic continuum

mechanics to the other finite models presented has not been

worked out. An estimate of the effect can be obtained by

using the approximation developed by Yoffe (1970). This

method is similar to the polar displacement plots presented

before; it is more exact but less intuitive. The Fourier

transforms of the displacements along the beam direction,

U
i
(x,y,Ak) s (2 u-(x,y , z) exp(2iriAkz) dz

are resolved into g and contours of the value g*U(x,y,Ak)

are used to represent the image. The transform g-0(x,y,O)

represents the total displacement of material in the column

at (x,y) and so is a measure of that columns ability to

cause deviations of the electron intensity from background.

This method was carried out for several cases (see Appendix

I). The matrix of image contours in Fig. 45 were calculated

assuming a beam direction of [011], the direction used in

all the preceeding simulations. Shown are the isotropic and

anisotropic calculations for both an infinitesimal loop on

(100) and an infinitesimal loop onto which is superimposed a

vacancy strain of spherical symmetry. The vacancy strain is

equivalent to that assumed above for the copper solute on

the dislocation loop. For this direction anisotropy does

increase the contrast of the body, the effect being on the

order of that produced by the superimposed vacancy strain.
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From this it seems aluminum's anisotropy alone can account

for the contrast effect seen. Using the [001 ] beam

direction, however, Fig. 46 is obtained. For this beam

direction, anisotropy has only a minor effect and the effect

is opposite that seen for the precipitates. The

experimental images of the precipitates from this direction

(Fig. 47) display strong contrast in the body of their

images. It is concluded that the contrast does arise from

the radial mismatch but that the anisotropy of aluminum is

sufficient to enhance the body of |g*b| = images veiwed

from the [Oil] beam direction.

The structure of the metastable Al-Cu phase 0' is

consistent with the models used to explain the Ig-bl =

images. Farrell and Houston (1979) point out that 100 opma

is near the solubility limit of copper in aluminum at the

irradiation temperature. This and the proven enhancement of

0' precipitation under irradiation (e.g., Katz et al . , 1968)

make 0' the most likely identification of the precipitates.

The unit cell of 0' is given by Silcock et al . (1953-54) to

be a
Q

= b
Q = 0.404 nm , c

Q
= 0.58 nm . A disk of fee material

4 unit cells thick and of composition CuAl 7 will transform

to a disk of 0' 2 unit cells thick, thus creating a large

vacancy misfit perpendicular to the faces. The misfit is so

large that an a (100) dislocation will nucleate around the

circumference of the disk, as observed by Weatherly and

Nicholson (1968). A disk of 0' 3 unit cells thick (1.74 nm)

will require one such dislocation and so be compared to 5

unit cells of the fee matrix. This yields a net vacancy
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mismatch of 0.283 nm . Similarly a disk of 0' 4 unit cells

thick (2.32 nm) requires 2 dislocations, producing a net

mismatch of 0.107 nm

.

The work of Weatherly and Nicholson (1968) produced

another relevant fact about 0'. Using TEM , they observed

a (100) dislocations in the broad interfaces of coarse 0'

precipitates. Whereas the values of a and b of '

o o

determined by x-ray measurements indicate complete coherence

of 0' with the aluminum matrix (on the broad faces), these

dislocations are proposed to exist to take up an actual

difference in the lattice parameter between 0' and Al . From

the spacing of the dislocations the true a and b of G 1 was

determined to be either 0.4024 nm or 0.4070 nm , depending on

the sign of the dislocations. The sign could not be

determined directly but the dislocations were observed to

nucleate within the volume of the 0' and based on the work

of Silcock and Heal (1956) who proposed the true composition

of 0' to be CuAl,
g

, Weatherly and Nicholson concluded the

dislocations were of vacancy type. Therefore, the a and b

values for 0' are . 40^0 nm . This is greater than the

lattice parameter of Al . Thus, the displacements

perpendicular to the broad faces of 0' are inwards and the

radial mismatch is outwards, a simple change in sign from

the theoretical cases considered above. The magnitude of

the radial strains for 0' is e,, = e
22

- 0.0057, comparable

to the value of -0.0092 used above. The value -0.0092 was

chosen to yield a net mismatch of -0.03 nm for the diameter
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modeled; the value 0.0057 will yield a similar net mismatch

for larger precipitates.

Figure 48 shows simulations assuming the parameters

appropriate for 9', including V - 80.8 nm = 0.73 £ = n??-

Figure 48a assumes a disk of 0' three unit cells thick, the

effective burgers vector perpendicular to the face being

0.283 nm and Fig. 48b assumes a disk of 0' four unit cells

thick, the effective burgers vector being 0.107 nm . The

ellipsoidal model of Eshelby (1959) was used and the

diameter of the precipitate was increased to 8.0 nm

,

compared to the previously used value of 6.5 nm

.

The above images for 0' (particularly those for a 4

unit cell thick precipitate) match well the experimental

images. An obvious experiment is to obtain |g«b| = images

of precipitates known to be 0' and confirm that these images

(and the radial mismatch) actually exist. Unfortunately, 0'

precipitates in aged Al-Cu alloys are usually in the form of

very large plates, hundreds of nanometers in diameter.

Headley (1974), however, determined heat treatments by which

only small precipitates of 0' formed. Figure 49 shows small

0' precipitates in an Al+4%Cu alloy quenched from 550C into

221C oil for 3 seconds, quenched to room temperature and

subsequently upquenched to 221C for 5 minutes then

requenched to room temperature. The wings of the images are

not apparent, due to the closeness of the precipitates, but

the radial strain is clear. The greater diameter of these

0' precipitates relative to those seen in the irradiated

alloy (^30 nm as opposed to ^8 nm) results in a greater
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> . 43. Simulations assuming the? oarameters appropriate
for 0-^ (a) a three unit cell thick disk of ' (b) a four
unit cell thick disk of 0." 7. - r 1 1 1 , 5 - (022). The
length of the simulation plots corresoonds to '0.0 nil.
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Fi<r. 4Q. Micro^raDhs of s-nall 0" precipitates in oron°rlv
neat treated Al+'I^Cu: (a) Z = [011], % - f?0cn, so
k-b| t 0, (b) Z = [011], i? = (02? 1

), so |"»h| = n.
Magnification is 500,000.



145

radial strain and so a more pronounced body of the image.

This result both confirms the sign of the lattice parameter

misfit chosen by Weatherly and Nicholson and gives great

support to the hypothesis that the precipitates in the

irradiated alloy are 0'.

The theory developed in Chapters III and IV,

particularly the polar displacement plots, allowed the

subtle difference between a precipitate and a dislocation

loop to be quickly deduced. This difference is apparent

only in the lg*b| = image, which theoretically proved

sensitive to small changes in the structure of a platelike

defect. The polar displacement plot indicates that the

experimental |g«b| = images obtained in the Al+100 ppma Cu

alloy are formed by a defect having greater displacements

about its circumference than are expected for a dislocation

loop. The three finite models (solute on a loop, the

strained ellipsoid and the strained disk) all increased

these displacements and their simulated images are similar

to the experimental images. The effect of increased

electron scattering by heavier atoms within the precipitate

is too small to account for the contrast of these images.

Nor is the anisotropy of aluminum responsible for the

contrast, although it does contribute for the beam direction

[011] .

The structure of ' , Darticularly the a and b latticeoo
mismatch proposed by Weatherly and Nicholson (1968), is

consistent with the models studied. The parameters for 0'

produce a good image match and lead to the conclusion that
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the precipitates are 0'. Moreover, the better match

resulting from the parameters of four unit cell thick 0'

provides an indirect measure of the thickness of the

precipitates. Microscopy of precipitates known to be 0'

produced the expected |g-b| = images and the hypotheses of

this chapter rest on the foundation these data provide.



CHAPTER VIII
DISCUSSION

The results of the last chapter lead to three topics

for consideration. First among these is the additional data

produced for the Al-Cu system. These include information on

both the structure of 0' and the solubility of copper in

aluminum. Secondly, the |g*b| = imaging mode has proven

sensitive to minor structural changes of a defect. This

allowed the identification of ' in the irradiated alloy.

The application of this technique to other areas is worth

considering. Finally, the strain field of the defect is

known from the image regardless of the defect's identity.

Considered in the light of other work, this strain field is

expected to improve the radiation damage behavior of this

alloy.

The aluminum-copper system is well studied,

particularly with regard to precipitation phenomena. Any

additional data for this system helps complete a classic

data base against which precipitation theories can be

tested. The strain assumed to obtain the ' image match

confirms the 0.4070 nm choice of Weatherly and Nicholson

(1968) for the a and b lattice parameter of ' . This in

turn supports the hypothesis of Silock and Heal (1956) that

0' contains vacancies on its aluminum sites and so has a

composition of CuAl . That the ' particles have not
1 . o
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dissolved in the three years since their formation suggest

that the alloy is indeed supersaturated at room temperature.

A careful step annealing of the samples can allow the

determination of the 0' solvus at low temperatures.

Moreover, the transformation of * to may occur and so

provide data for this phase as well. This low temperature

data is especially valuable for the testing of thermodynamic

theories of phase diagrams.

The Ig'bl = image was used to identify the

precipitates in the Al+100 ppma Cu alloy. This

identification may seem trivial, it being the natural

conclusion. Farrell and Houston (1979) point out that both

Cu and Si appear to have solubilities in aluminum near or

below 100 ppma at the irradiation temperature;

precipitation is therefore not surprising. In addition to

the composition of the alloy, other evidence suggesting the

precipitates are 0' are the apparent thickness of the

precipitates (GP ( 1 ) and 0" are 1 and 2 atom layers thick,

respectively), and the strain seen when g is aligned with

the plate normal (i.e., the black-white contrast observed by

Nicholson and Nutting, 1958). In the absence of the

|g-bl = image, the conclusion that the precipitates are 0'

must rest on this circumstantial evidence alone. The volume

fraction of precipitate is so low that other techniques

failed to give data about the precipitate's identity. No

extra diffraction spots appeared in any of the electron

diffraction patterns taken from this sample. The sensitive

technique of small angle x-ray scattering (SAXS) also failed
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to indicate copper particles in the alloy. Hendricks

(private communication, 1979) has stated that the

concentration of the alloy in question is an order of

magnitude below the demonstrated sensitivity of this

technique. In a pure Al-Cu alloy, identifying the

precipitates as 0' based on the above evidence would be

reasonable but the case at hand is comDlicated by the

presence of 100 ppma Si. The ternary phase diagram work of

Phillips (1953-54) indicates that Cu and Si have little

effect on the solubility of each other in aluminum. On the

other hand, Carpenter and Yoo (1978) have detected

transmuted silicon in the interface of large 0' plates. In

view of the highly nonequil ibr ium and often metastable

nature of precipitation during irradiation, the possibility

of a complex structure formed by the co-deposition of the Cu

and Si cannot be dismissed. In any event, the |g«bl =

images are the most convincing evidence that these

precipitates are simply 0'.

The sensitivity of the |g-bl = image has been

referred to many times and the demonstrated abilities are

enumerated below.

1) Sheared and unsheared small dislocation
loops are most easily distinguished by this image.

2) This image displays the slight anisotropy
of aluminum.

3) The segregation of undersized solute to
an intersitial dislocation loop may be detected.

4) Detection of small radial strains of
plate-like precipitates is possible.

5) The image responds to the rounding of the
edge of a disk shaped precipitate.
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Other structures this image may observe can be

considered. Figure 50 shows the atomic arrangement at the

edge of a four unit cell thick disk of 0' . The view is

looking down on the (100) plane. The displacements

perpendicular to the face necessary for fit with the Al

matrix are accounted for by simply expanding the c axis of

the 0' from 0.58 nm to 0.6 nm and contracting the Al matrix

from 0.404 nm to 0.4 nm . This model assumed the aQ and bQ

of 0' to be identical to that of M , so the misfitting atoms

at the edge are the result of the incoherence at the edge

and are not the result of theta prime's actual a and b

mismatch. The atomic arrangement shown will outwardly

strain the matrix, affecting the image. The magnitude of

this strain is independent of the radius of the 0' disk,

unlike the strain resulting from the lattice parameter

mismatch. The substitution of copper, silicon or vacancies

for some of the atoms at the edge will relieve this strain,

an such substitutions will affect the image.

This idea of solute substitution can be pursued

further. The solubility of Si in aluminum is lower than

that of Cu and so the presence of many Si precipitates is

also expected in the Al+100 ppma Cu alloy. The number of

moire fringed precipitates, suspected of being Si, appears

too low to account for all the Si expected. Silicon may

have been incorporated into the 0'. There is no direct

evidence for this. The presence of Si in the precipitate

would be expected to alter the structure in some slight way
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and this alteration will in turn affect the displacement

field and the image. The results presented in the last

chapter are not sufficiently quantitative to allow a

conclusion to be drawn, but the experimental images seem to

have greater contrast in their bodies than do the simulated

images, and this may be the result of Si.

The ellipsoid model, as adapted for this work, assumes

the precipitate has the same elastic constants as aluminum.

If elastically stiffer, the precipitate would induce greater

strains to the matrix by yielding less itself, in this way

increasing the body contrast. Similarly, the contrast of

the image body will decrease if the 0' is less stiff than

aluminum. Account of the difference in elastic constants is

easily incorporated into the model, as described by Eshelby

(1959). Eshelby's model assumes isotropic elasticity in the

matrix and precipitate, but the image will respond not only

to the matrix anisotropy, as demonstrated in the last

chapter, but also the anisotropy of the precipitate. That

is, an anisotropic precipitate in an isotropic matrix will,

by deforming aniso tropically , induce anisotropic strains in

the matrix .

The speculations above and the five effects first given

form an impressive list. Unfortunately, several of these

effects could be convoluted in the image at once. In the

case of the 9
' , the anisotropy of aluminum is seen to

contribute to the image. Some of these other effects may be

present as well. The important point, however, is that

these structures and effects are detected. Computer
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simulation allows account to be made of all effects

suspected of contributing to the image of a particular

defect. This discussion has focused mainly on 0', but

platelike precipitates in other alloy systems can also be

studied in this way.

The general form of the strain field around the

precipitate is known from the image, regardless of the

defect's actual identity or the structure responsible for

the strain. It is of interest to know if this strain field

affects the radiation damage behavior of the alloy. The

strain field of 0' is similar to the strain field of a

vacancy dislocation loop. By considering previous work on

the interaction of point defects with dislocation loops, the

effectiveness of these precipitates as point defect traps

can be assessed. Sines and Kikuchi (1958) evaluated the

interaction of vacancies with a small disk shaped cluster of

vacancies. They modeled the cluster as an array of force

dipoles distributed perpendicularly over a circular area;

the model for a dislocation loop differs from this in that

it also contains smaller force dipoles within the plane of

the loop, acting to minimize the radial displacements

induced by the perpendicular dipoles. The redistribution of

vacancies about the cluster was determined by solving for

the diffusion of vacancies down the gradient of the elastic

interaction energy,

E = k(an + a
22

+ a
33

)

where k is a constant dependent on the effective strain

misfit of a vacancy. They found that vacancies were
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repelled from the face of the disk shaped cluster and

attracted to its edge. These results were later used by

Grupens and Sines (1964,1965) to explain the apparent

anomalous retention of vacancies in quenched Al-Cu alloys.

Vacancies in quenched Al-Zn alloys (containing spherical GP

zones) anneal out in several hours at room temperature, but

the same process takes days in Al-Cu alloys. Grupens and

Sines explained this by proposing vacancy attraction to and

entrapment at GP(1) zones in Al-Cu alloys.

The majority of the strain around a Q ' precipitate is

due to the mismatch of the c axis of Q } with the aluminum

matrix. This strain is very similar to that of a vacancy

dislocation loop and is responsible for most- of the ability

of 0' to attract point defects. The strains induced by the

a and b mismatch do contribute, and the effectiveness of

this strain can be assessed by the use of the infinitesimal

approximation. The elastic interacion energy of a point

defect depends, to first order, on the local hydrostatic

pressure, P = a + a
22

+ ff._. In the infinitesimal

approximation a vacancy Frank loop is modeled by three

orthogonal double forces, one along the loop normal of

strength proportional to -b
£
C the other two in the habit

plane proportional to -b^C™ The loop can be viewed as the

superposition of a spherical strain center of strength

proportional to -b^C
2

and a dipole of strength proportional

to -b^(C - C ). It is easy to show that the term P is

zero everywhere in a spherical strain field (this proof and

the rest of this development are documented in Appendix I).
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Therefore the interaction energy and the loop's

effectiveness as a sink depends on -b ( C-i -, -C-,
2 ) , the

nonspherical component of the strain field. The GP(1) zone,

as modeled in the last chapter, has a spherical strain field

in the infinitesimal approximation and so does not interact

with point defects. Its superposition onto a loop (solute

segregation) does not change the loops sink strength. Since

this does not agree with the observed retention of vacancies

in Al-Cu, the model in the previous chapter may be

inappropriate. That is, copper atoms in aluminum may have a

slightly polar strain field rather than a spherical one,

especially if arrayed as a circular cluster.

The 0' precipitate is modeled by adding a radial strain

to the strain of a loop. The result is that the

nonspherical component is proportional to

(b ^r
2

- b TrAtr) (C-- - C- , )
& r 11 12

where b is the effective burgers vector of the precipitate

(i.e., the net mismatch between the thickness of the

precipitate and the thickness of matrix material it

replaces), b
r

is the displacement at the edge of the

precipitate caused by the radial strain and At is the

thickness of the precipitate. A four unit cell thick plate

of 0' has an effective burgers vector of -0.107 nm (=b ).
I

If its radius is 5.0 nm , b = 0.028 nm . Four unit cells
r

corresponds to At = 2.4 nm . In this case the radial strain

increases the nonspherical component of the strain field by

13?' relative to the case of no radial misfit and so

increases the precipitate's power as a sink.
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An increase of 13% does not seem significant but it is

the ratio of sink efficiencies, expressed as the bias term

(Zjxz - Z-'xZ-), that is important to the void swelling

behavior of the alloy. Moreover, the above development is a

first order approximation; other effects could prove

important. For example, Willis and Bullough (1969) have

shown an attractive force between voids arises because of

surface image forces. Wolfer and Askin (1975) calculated

bias factors for spherical sinks but obtained a non zero

result only by including higher order terms dependent on

2
(e..) and £..£.., where £.. is the deviatoric component ofii ij ij ij

the strain field.

The strain field of these small 0' precipitates is not

the only possible source of their effectiveness as point

defect sinks. Bullough and Perrin (1972) suggest that point

defects migrating to coherent precipitates (such as 0') will

retain their identity as point defects when trapped in the

interface and are "sitting ducks" for recombination by the

arrival of an opposite defect. Carpenter and Yoo (1978)

explained the improved swelling resistance of Al+4%Cu alloys

containing 0' by modeling the entrapment of point defects at

the coherent 0' interface.

The full evaluation of the sink strength of 0',

including all relevant effects, is not within the scope of

this work. This discussion is intended simply to point out

that the radial mismatch of 0' will improve its

effectiveness as a point defect trap. The radiation damage

behavior of an alloy is sensitive to the bias terms, which
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in turn are dependent on the structure of the sinks. Proper

modeling and assesment of the radiation damage behavior of

Al-Cu alloys should account for the radial misfit of 0', a

previously ignored phenomenon.

The strain field around the 0' precipitate is

predominately that of a vacancy dislocation loop and as such

a 0' precipitate will act as a point defect trap. Whether

or not the contribution of the radial strain proves

important to the radiation damage resistance of this alloy

will require more precise calculations, but the primary

interest of this work has been that the |g-b| = image is

capable of detecting this strain. This image promises to

allow evaluation of radial strains arising from many

effects, such as anisotropy, precipitate incoherence or

differences in elastic constants. This image provided the

most convincing evidence that the precipitates in the

irradiated Al+100 ppma Cu alloy are 0'. This in turn adds

to the knowledge of the Al-Cu system by supporting the

conclusions of Weatherly and Nicholson (1968) and Silcock

and Heal (1956). Solubility data is also available from

this irradiated alloy.



CHAPTER IX
CONCLUSIONS AND FUTURE WORK

This work grew from interest in heterogeneous

precipitation phenomena and has concentrated on the

application of TEM to the analysis of small defects. The

most common TEM imaging mode (dynamical two beam imaging)

produces indirect images of a defect and the relationship

between a defect and its image was examined by the use of

computer simulations. Small dislocation loop images were

studied most extensively, but an investigation of radiation

damage in aluminum alloys expanded consideration to the

images of small platelike precipitates.

Conclusions

A computer study of the transmission electron

microscope images of small defects has dissected the theory

into a few components which determine the main features of

the image. The oscillations of the black-white vector of

small loop images has been qualitatively described (Riihle et

al . , 1965) but this study explains the above or below

background nature of an image point induced by displaced

atoms in terms of the wave interference responsible for

diffraction. The shape of the image is shown to arise from

the resolved displacements of the defect. A simple and

158
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intuitively manageable graphical method (the polar

displacement plot) is presented for predicting the image.

These results and other trends (such as the effect of foil

tilt or loop orientation) are displayed in pictorial formats

by the use of computer simulated images to reinforce and

augment this theory.

Two exhaustive catalogs of simulated images of small

dislocation loops expected in fee and bec materials were

compiled. These and the above results were made accessible

to the practicing microscopist in the report of Sykes et al.

(1981). These catalogs complement the simulations oresented

by Holmes et al. (1979) by being a much larger and complete

data base. Moreover, the results of Sykes et al . (1981) are

displayed in a format which is more useful both

theoretically and experimentally.

The catalogs were applied in a study of the radiation

damage behavior of several dilute aluminum alloys. This

produced a more detailed and quantitative microstructural

evaluation of the alloys which proved important in the work

of Farrell and Houston (1979). The results presented here

are in qualitative agreement with those of Farrell and

Houston. Tn addition, the results of the electron

irradiations done in this work support Farrell and Houston's

conclusion that point defect trapping at solute atoms is an

important mechanism by which these alloys resist void

swelling

.

The origin of the lg-b| = image of platelike defects

was known from the polar displacement plot and the
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peculiarities of the |g«b| = images of 9' led to an

investigation of the sensitivity of these images. These

images detected strains largely ignored previously, and

promise to be able to detect minor structural variations of

a defect. Theoretical calculations showed these images

respond to shearing of a dislocation loop, to segregation of

solute to a dislocation loop, to the slight anisotropy of

aluminum, to the radial strain of a platelike precipitate,

and to the rounding of the edge of a disk shaped

precipitate .

In experimental application, this image was the primary

evidence identifying as 0' the precipitates observed in a

neutron irradiated Al+100 ppma Cu alloy. Microscopy of

precipitates known to be 0' confirm this identification and

establish unambiguously that the a and b lattice

parameters of 0' are greater than those of aluminum,

confirming the hypothesis of Weatherly and Nicholson (1968).

The strain created by 0' , being similar to a vacancy

dislocation loop, is expected to contribute to the void

swelling resistance of the Al+100 ppma Cu alloy. First

order calculations show the radial strain of 0' increases by

13% the effectiveness of these precipitates as sinks for

point defects. Accurate modeling will be required to assess

the full impact of this strain on the void swelling behavior

of aluminum.
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Suggestions for Future Work

Theta prime is probably below its solvus at room

temperature in a 100 ppma Cu aluminum alloy and the

formation of ' in these samples is irradiation assisted

rather than induced. The Al-Cu system is well studied but

low termperature data is naturally missing because of slow

kinetics. The determination of low temperature solubilities

provides important data for the testing of thermodynmic

theories used to calculate phase diagrams. Careful step

annealing experinents can be done to determine the solvus of

0' at this low concentration. Heating stages equipped with

thermocouples are available for most electon microscopes and

these experiments can be carried out in situ.

It was pointed out that the elastic model used by

Grupens and Sines (1964,1965) for a GP(1) zone differed

significantly from that used in the present work. Which of

these two models, if either, is appropriate can be

determined by the lg«b| = image of a GP(1) zone, since the

two models will yield entirely different images; the model

used in this work gave a simple black-white image but the

model of Grupens and Sines will produce a butterfly image.

The major experimental difficulty will be obtaining a low

enough density of GP(1) zones so that the images of the

zones do not overlap and interfere. These models also

differ significantly in their interaction with Doint

defects. Determining the correct model has relevance to
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both the effect of GP(1) zones on radiation damage behavior

and to the ability of GP(1) zones to attract Cu solute to

themselves to enhance their growth (the problem studied by

Grupens and Sines, 1964).

Some of the shortcomings of the present calculations

have been pointed out and discussed. The full exploitation

of the information avaialable in |g-b| = images will

require more precise calculations. The inclusion of

anisotropy is obvious. The early work with simulated images

proved the human eye and brain superior to densitometer

scans, but advances in computer technology and software will

reverse this. Equipment for the digitizing of micrographs

is available and quantitative use of this equipment must be

developed. Ultimately, the location of every atom and its

composition will be hypothesized and the continuum

approaches to calculating images will be inappropriate.

Multislice computing techniques (Krakow, 1980) should be

employed to calculate these images. Also, the position of

atoms near defects such as dislocations or precipitates must

be determined not by continuum mechanics but by models for

interatomic forces. Needless to say, the full development

of this type of image analysis is a formidable task, but the

needed theories and tools are already developing.

An image simulation program using the theories as exact

as suggested above will necessarily require precise input of

the experimental paramaters. In analyzing the data obtained

in this work, a major difficulty encounterd was the

determination of the defect's depth in the foil.
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Stereofluoroscopy can be used for moderate angles to resolve

this, but this method is too laborious to allow routine

application. The use of a computer to digitize an image and

combine data from several beam directions to geometrically

reconstruct the sample was briefly developed. An outline of

this work and suggestions for its future development are

given in Appendix III. Given proper data, the computer

would return the three dimensional location of the defects

in the sample. From this the depth of a defect is known, as

is its projected position onto any micrograph. Knowledge of

the three dimensional positions, rather than merely the

depths, allows the determination of average interparticle

distances, the detection of the ordering of particles into

an array or the evaluation of other geometric

configurations. A program such as this will not only make

three dimensional analysis routine but also makes it

possible to sort out defects present in high concentrations.

Modifications of this program could be readily applied to

many other areas.

The catalogs are quite extensive as they are, but in

many applications the infinitesimal approximation will prove

limiting. Figure 20 of Chapter IV displays the limited

number of image types expected. A useful addition to the

catalogs is the assembly of an array as in Fig. 20 using

finite strain field calculations. Two arrays are suggested:

one using a burgers vector magnitude such that the maximum

value of |g»b| in the array is 1, the other so this maximum

value is 2. Tables can be assembled which relate any image
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of the infinitesimal catalogs to its nearest geometric

equivalent in this new array. The inclusion of shear

burgers vectors into such an array posses a problem because

of the great number of possible permutations. This

proliferation can be avoided by considering only three

habits viewed on edge, one normal to g , one 45° from g and

one 90 from g.

Finally, the appearence of the psuedo-inter face

structure in many of the 0' images points out the need for

greater understanding of this detail if it is to be

interpreted confidently and correctly. Theoretical studies

with defects- of modulus |g«b| = 1 must be done to determine

the dependence of this structure on defect depth, foil

thickness, and deviation from the Bragg condition.



APPENDIX T

DOCH'IKiITITIO''! or M/vTHE 1^'

pi sol ncenent s About a lis'- o ^ Solute Atoms

Displacements around 3 iis 1

' of solute atoms ar°ntsr or

smaller than the matrix atoms are found bv integrating the

disol a cements from 3 circular area, each differential

element of which is assumed to be a ooint source having a

spherical displacement field. The mathematics are analogous

to the determination of the electrostatic force on a ooint

charge located near a circular sheet of charge. This

Droblem has been solved by Grav (1919) whose solution

translates to

u^r.z) = 2Trb*a/^eXD(-Az) J
1

(Aa)J
Q
(A r )dX

* CO

u^(r,z) = 2Trb*a/ exD(-Xz)J
1
(Aa)J

r)
(Ar)dA

where a is the radius of the circular sheet, b* is the

effective misfit of the solute and J and J are Bessel

functions of the first and second kind, r°snec

t

ivel v . By

letting X = t/a, these convert to

u
p
(p,C) = 2Trb*/°°exp(-Ct)J ^t)J

1
(pt)dt

u
?
(P,C) = 2TrbV"exp(-?t)J

1
(t)J (Pt)dt

where P = r/a and C = z/a. The integrals are

Hankel-Lipshchitz integrals, which are defined as

l"(p,U|) = A nJ.(t)J (pt)exD(-|c| t)dtm u i m
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The Hankel-Lipschitz integrals can be expressed in terms of

the more numerically tractable elliptic integrals (see Fason

et al., 1955)

- A(g,k)/2 + 1

Ig(p,|?|) = - ,

<C
C'

(!<)/(27T^) + 1/2

+ A<e,k)/2

Ap,|?|) = ((2-k 2 )F (k) - 2E (k))/(7rk/p)

if p < 1

if P = 1

if P > 1

wheri

k 2
= Up/Cc 2

+ (1 + p)
2

)

A(3,k) 3 2(F o (k)E(0,kO + (F (k) - F Q ( k) )F( 3 ,k ' ) ) /jr

cos 2
3 = c

2
/(?

2
+ (1 + p)

2
)

k-
2

= 1 - k
2

F(g,k) and F(g,k) are elliotic integrals of the first and

second kind, r esn n ct ivel y (see Bvrd -^nd Friedmann 10S'O

r (3,k) = /jjd6//l - ''
2 sin 2

9

F(3,k) = /jVl - k
2
sin 2

9 de

These ^.r°. referred to as "complete" if 3 - tt/2 and are

written as F
Q (k)

and F Q (k).
'-1 akin^ the substitutions yields

U (p ,| C |
) = ?TTb*T^( p J ? |

)

u (p ,U| ) = ?TTb*T^(p ,|c| )

Finally b* must be chosen. Sino° the displacements in the 7

direction at p = 0" nnd r, = should equal half the misfit,

A r = ( a
c

u

- a ,
-j

) , and using I n ( , ) - 1

Ar/2 = ?7ib*( 1 )

and so



167

u
p
(p, UP = ArT'^p,

|
? |)/2

u
?
(p,|?|) = Arl^Cp, U|)/2

To obtain three dimensional disDlacements

u ( x , y , z ) = (x/r)u(p,J?|)

u ( x,y ,z) = (y/r)u ( p ,
| ? |

)

u (x,y ,z) u ^p» UP
where r x'- + v .
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Displacements About a Finite Dislocation Loon

Displacements of a finite dislocation looo are derived

using the mathematical machinery just presented . The

results below are presented bv Bullouqh et al . (1971):

u
i

= r% rT
r p '° - ^U|l]<P,C)]

b r , lTu, = -2[4I°(p,0 + .UlT^p^Ol-rfj

P
2

s (x
9

+ y
2 )/r 2

£ = z/r

r = the loon radius.

I (p,£) ar^ the Hankel-L ipschi tz integral qiven before and

using the same notation
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Displacements About an Ellipsoidal Inclusion

Eshelbv (1959) has q;iven exDressions for the

d ispl acement s about an ellipsoidal inclusion arbitrarily

strained relative to the matrix. The model proceeds as

follows

:

1) \ volume of material bound by th^
ellipsoidal surface x

2 /a 2
+ y

2 /b 2
+ z /c 2

= 1 is
removed from an infinite continuous elastic
med ium .

2) The removed material undergoes a

transformation resulting in strains «...
ij

1,) Forces are applied to the new shape to
elastically return it to the original shane.

4) The material is inserted into the cavity
and the surfaces "welded".

5) Th° constraining forces are removed and
the ellipsoid and continuum allowed to reach
equilibrium.

6) The elastic constants of the transformed
ellipsoid are assumed the same as the medium.

The resulting d ispl acements are
e„ - e

U-, =
22

a 2
-
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$ = Hi 2
- x

2
/k

2
+ y

2
/k 2)F(9,k)

? ? ? ? ? p ?
+ (x /k -v7(kV ) + z / k ) E C 6 , k

)

+ My"C/(AB) - z
2
B/r AC) )/k'

2
1

where 3 > b > c and

A r a + A

P 2
B~ = b + A

. 2 2 2
x, = a - c

i

2 ^2 U 2W , 2 P
Nk = (a -b)/(a-c)

? , ? P p p
k' s (b - cV(a - c )

6 = aresin(£/A)

= abc/CU^d - v))

F(e,k) and F(e,k) are elliptic integrals as before and \ is

the greatest root of

x
2
/(a'" + A) + y

2
/(b 2

+ A) + z
2
/(c 2

+A) = 1

The nresent work requires the less general ease

a = b > c , e
1 1

-p., 9^, and all shear strains equal to

zero. Also, we can take advantage of the cylindrical

symmetry and concern ourselves with only the x-z olane.

With y = 0, the above equation for A becomes quadratic and
o p p p

A = (-a ~ + c - + x " + z + R*)/P

where

9 P 9 9 "3

R* = f((a
d

+ c'") - (x
2

+ z
2
))

2

- Ua
2
c
2
(1 - x

2 /a? - z
2
/c

2 )l
1/?

With a = b it is seen that k = and the expression for

$ contains division bv zero. The prooer cono^otual path

would be to connletel y evaluate the above exnressions for
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the general case and take the limit as h approaches a. It

is more convenient, however, to take th a limit of $ first

before obtaining the needed derivatives. Using

lira F(e ,k) = 8

k^O

lim E(9 ,k) = e

k->0

lim (E(9 ,'<) - F(9 ,k) )/k 2 = ((£/A)cos 8 - 9 )/P
k-*0

cos

results in

7 A

$ = Q [U * + z-)e + (x - - v ) (ac/a - e )/?

+ £y 2C/A ?
- £z 2/Ci

This result is not o vl indrical 1 v symmetric, (i.e.,

$(p,0,z) s *(0,p,z) =$(x*,y*,z); (x*)
?

+ (y*) ?
= p

2
)

function

= 0[U 2
+ z

2
) + (x

2
V
2

) (^C/ A
?

The

)/2 - lz-/Z

is cvl indrical ly svmmetric and Droves to ^ive the expected

displacements. The typographical error in Rshelby's caper

resDonsible for this discrepancy was not identified. With

the shear strains defined as zero and
1

1 pp , the

displacements >- Qduce t<

,, - 11 33, ?
P

c - a

~( c x $ ,

2 1 '33
? P-a -$ _ ax J. )

'1 3 ' 1 3

•2 ( ( 1 - v ) e + v ( e +e ) )$
11 11 ?r ' 1

e -e
33 11 ? P

( — P C <£ — O ~X <I>

2 '3 1 '31

9 * 2
a x $ + b"x

1 '11
X
3 ' ?P'

-2( ( 1 - v )e +?v° )$
33 11 '3

Although A is a function of x , v, and z, F. she! by points out

that A can be treated as a constant in taking the first
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derivatives of $ . Thus

?
,

1
= Ox (AC/

A

)

?
* t 2

= QyUC/A " - e)

*,, = Qz(8 - l/C)

The derivatives of A needed in obtaining; the second

derivatives are

9X/3X = ?x/Ah

9A/3Y = 2y/Ah

9A/3Z = 2z/Ch

where

P p 4 P 4 P 4
h " = x V A + y V A + z V C

These leads to

9 A / 9 x = x / ( A
2
h

)

9C/9X = x/(ACh)

38/3x = ~£x/(aVi)

3A/3z = z/( ACh)

3C/3z = z/(C'
?
h)

39/3z = -£z/(

A

2
C
2h)

Th" derivatives with resnect to v contain v, which, beine;

set to zero, fall out in the case at hand. Usin<* the abov

' 1 1

= Q r £C/A
?

- OT£C/ p

+ x (21/ ( a 'Ch) - 2£C/< Ah)) n

+ ?x
2
Z

?
/( A

S
Ch) 1

* = - o r £ c / A 1

$, = O r 2(8 - a/C) + 2 z
2
& ( 1 /

C

2
- 1/A

2
)/C

?
hl

*,^ = $
?1

= 0rP£xz(1/C" - 1/A")/A"hl

Inside the ellinsoid, A = evervv;h a r n and so the terms

involving the derivatives o^ A fall out, ?ivinq

?
$ , = fJlC/

A

i
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'22

'13
0T2(e - I/O ]

n
'13 '31

To apply this model to the case proposed

ae = misfit at the ed<?e of the precipitate

ce^3 = misfit Deroend icul ar to the disk

It is important to note that these disDlacements are

referenced to material positions hefore the transformation

of the ellipsoid. As before, x in the above equations is

reolaced by

2 o 2

and

u. = ( x / r )

u

1 r

u. = (v/r)u
2 r

to obtain thre Q dimensional d isolacements

.
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Displacements About a Disk Shaped p reciPitate

The displacements around a disk shaped precipitate were

obtained by adding to the displacement field of two finit*

dislocation loons located at the ton and bottom faces of the

disk, the integral of displacements resulting from force

dipoles in the edge surface of the disk. \t any ooint on

the edge surface is imagined a differential force diDole as

in Fig. 51. The displacements are

T

u.CO =
\
L

\ du'.(X'C6,t))

T '0
'7

The coordinates of the dinole are considered to rotate

along the edge such that the x
1 axis is always directed

outwards parallel to r and the z ! axis is held parallel to

the disk normal. Again concerning ourselves with only

noints in the x-z Plane, the point X = (X,0,Z) defined in

the major coordinate svstem (X-.Xp.X^) is the ooint

X'O.t) z (X cose - r , -X sine , Z - t) in the svstem

associated with the dioole at (r cos 6, r sin 0, t).

The diffprential displacements at X due to the dipolp

at (r cos 6, r sin 6, t) are

du;(X'(e,t)) = p
kl

u
krT1>1

(x'(e,t))

where the prime indicates reference to the local coordinates

of the dipole. The force dinole tensor D
,-, is also

referenced to the local coordinates:
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Fi?,. 51. The ^ecnetrv ^nd coordinates of the surfac
integral at the e^p of the disk.
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A = dt r d8(0, 0, 1

)

b = b(0, 0, 1)

P. , = b.A.C. .. .

kl i j ijkl

3C
12 °

nC
12

oC

p = dt r d9

Transforming back to the main coordinates gives

du = du' cos 6 - du* sin 9

Only u
1

is needed for the |.g«b"| = image but u, was

determined for the sake of completeness. Expanding by the

use of

(8 C
11

C
Hil

)U
kn,,l

= ((C
1P

+ ^Wi
- (c )(<5. .X ,? .1

12 -4i»'-kl'
:

m
+6

ml
X
k " 3Wl /R ))/R

'

where R is the distance from the dioole to the Doint of

interest, yields the cumbersome integral given in Fig. 52.

Integration with resDect to t is to be done last *nd

obtaining the inn^r line integral with resoect to 9 will be

done considering t = 0. Analytic integration of this line

integral is foiled by the factor P in the denominator. If a

segment of the loop extending from 9 to 9 is chosen such

that R do«s not vary significantly over the segment, then R

can be taken as constant. Doing this, the numerator

integrates easily to give the results listed in Fis. 51.

Far away from the disk the infinitesimal approximation

can be used; that is, R is considered constant for the

entire loon and the results given are evaluated for 8 =

and 9^ r 2 . The apnrooriate disolacement tensor to be

entered into the infinitesimal noint defect subroutine is



177

+
PQ

+
pa

u
c

<t



178



179

DELV1 = TrrAtb

DEVL2 = ^rAtb

DELV3 =

DELV4 = DELV5 = DELV6 = 0.

The orogram used to calculate the ina^p of this disk

(described in the AoDendix II) used oretabluated values for

the inner line integral. Th Q surface integral was completed

by summing S of the line integrals, each assumed equally

spaced alon^ the cylindrical edqp of the disk.
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Calculation of Tsointensity Contours
for Anisotropic Aluminum

Yoffe (19 7 0) has presented an approximate method for

determining the i so intensity contours of a small defect

image. The methods is developed hpre for a small

dislocation loop on a (100) habit viewed from the directions

(001) and (110). The intensity is assumed proportional to

the Fourier 'transform of the displacements along the beam

direction

;

J-i (x,v,A'<) = /°°u. (x,y,z)exD(27riAkz)dz
-L -00 1

where Ak = 1 /£ and will be set to z Q ro (thus representing

E = °°
,

the kinematical approximation). 1 dislocation loop

is modeled by a force dipole normal to the loop of strength

proportional to Cj . and by two orthogonal dipoles in the

plane of the loop of strength nr ooort ional to C . Starting

with the equations for elastic force equilibrium in a

continuum, the function U.(x,v,0) is sought which satisfies

the equilibrium in the Dr^sence of the point forces

representing the defect
.2 ,2 „2

3x" 8y~ 3 x 3y
11

3
x

D-2—

U

3x9y
— V! = -C A—
2 '? 1?

k
9v

when

C

D = (C

/C
11 aa

1?
r ^ /p
-a a • -an
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6 = the two dimensional delta function

Uj md U 2 ^re found by means of the transforms
+ 0O

'J]_ = j/_
ro *i Cp,q) exD(i(px + ov^ ) dodo

U
2

=
•/
'-

/
".oo

$
2 ^ D ' q -

1 ex P^^ DX + ov^ dndq

Putting the latter into the former yields

(Co + q )$ + Odq$
2

= l.AC
1:
jD/(2ir)

2

2 2 ?Doq^ + (p + Cq )$
2

= i/\C
12 q/(?7r)

Because th« solution U ( x , v , ) g with q; = (010) is desired,

only $
2

and from it U- n^ed be solved. Solving for $-

A.
iAq

r

^2
'2

C27TJI -C L p^ + aq
2

A
2

2
+ a*q 2

4C 2
) /2C

where

a = ((C 2 + 1 + D 2
) + /(C 2 + 1 + D'

2
)
2

A
2

= C
12

(C - C
11

D/C
12

) - 1)/(a - a*)

and the (*) denotes the complex conjugate. The inversi

transform gives

A
U. Re

2A
2
y

2 2¥
^ c

CToTox 2 + y
2

)

where Re means "the real part of". The imag^ t s plotted as

the locus of (x,y) points giving the sane value of U
2 , say

u
2

= 1

Obtaining results for the b^am direction Z = [110] an

similarly derived except the elastic constants aonronriate

for the coordintae system (110), (110), (001) must be used

r ' -InL
ll - lu

Ll
c12 + pc44

)/o

-12 (C
11

+ C
12 " ^44 )/0

Procee-lin?, as be por- ^or a Frank loop with its normal

aligned alonq (001), the force equilibrium is
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cc'!^- ni)»i + D^ 3
- -ACizll

2 .

, d&
3x3z

u
i

L
3x 2 L

aT^JU 3 liaY

wherp C = c
ii

/c
44 and c qnd D ^ r ^ " before. This

transforms to

fCo 2
+ q

2
)$

1
+ Dpq$

3
= iAC

12
o/(P7i) 2

Dpq$
1

+ (p
2

+ Cq
2
)$ = i AC q/(27r)

2

from which

= 1PA r 1
1 (2tt)2C' L

d 2 + 6q
2

+

p
2

+ 3*q
2]

where

= (CC'+ 1 +0
2

+ /(CC'+ 2 2
1 - D ) - «C' C)/2C

B
l =

C
i2

(3 + C
il

D/C
12

:)/(3 - 3*)

This transforms back to the desired solution

U-
2^C

a 2xB
n
/3A

r Re
5x" + z

These equations were used with the following elastic

constants :

i so tropic
'11 = 11.8

C "S ?

'44 2.8

anisotropic: C = 10.8

12 °' -

c
„ , = 9

•
R

44

The contours for the case approximating, the precipitate

were obtained bv super imposing the solutions for a spherical
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strain center Riven by Yoff<

PC
11

Re
2k;y

2 2tt
kc

C/a(ax 2 + y 2
)

((C - D)a - 1 )/(a - a*)

for Z = [001] ani:

PC
U,

11
2¥T Re

2BJ/F

lx 2 + z 2

B£ = (0 + D - 0/(3 - 3*)

for Z = [110]. The strength of the loon was set by A = 1 and

the strength of the spherical strain wn " set by p = -^.?.
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T h <° Elastic Interaction *•! n " ^ ^ v B 3 t !iqqn
Point 0? f -^nts and I n f i n i t g § i m a 1 o f g t g

Th a -andom walk diffusion of ooint defects is biased by

their interaction with the local stress field (^ullouqh et

al., 196°). That is, interstit ial s drift towards regions in

tension and vacancies drift towards regions in compression.

The elastic interaction energy is proportional to the local

hydrostatic pressure,

= a
il

+ a
22 '33

To minimize this °n°r3;y, the ooint defects drift down the

gradient of P.

The sum P has a value of zero everywhere in a

sohericallv symmetric displacement field, as is Droven

below. A soherical displacement field is of the form

u(X) = bX/|X| 3

where b is a constant describing the magnitude of the

displacements. The stress is defined bv

a - f C.

ij
e
kl^ijkl

with

kl

This leads to

(du. /dx, + du /dx, ) /2
k 1 Ik

= C ( du , /dx, + du /dx
11 1 1 2 2

du /dx )

U s i n p

d(|xr 3 )/dx. = _(3/P)(x 2 + x
2 + x

2 r 5 / 2 (?Y )11
1 12 3 "

i

Rives
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P/C
11

3b 3b f
2

_,_
2 A 2, _ _

TrT (x
1

+ x
2

+ x
3

) =

The ability of a defect to influence the diffusion of

point defects can be evaluated by separating the defect's

strain field into spherical and nonspherical components.

Since the spherical component has P = everywhere, there is

no gradient to influence the diffusing point defects. The

point defects interact with onlv the nonsoherical comnonent

of the strain field.

In the infinitesimal anDrox imation , a dislocation loop

of burger vector b£ is described bv the force dinole tensor

b„ C „

p
ki = Wijki

J
£ T. 2

b.
12

h
I °11

are thewhere b = b
£

( , 0, 1)
?

\ = (q, 0, 1) and C. -

k
-

elastic constants. This can be separated into spherical and

nonsoherical comnonents:

kl
it r h n

°l 12

1



186

dislocation Iood the radial strain from the ed<*° of the disk

shaped precipitate (derived elsewhere in this apoendix).

The radial strain is

P, , = TrA trb
kl r

(cn + c
12 )

which separates to

p = uAtrb (0,, + C, -)
r 11 12

+ TrAtrb
r
(C

12
- Cn )

(C h. C
12

)

1

1

1

1

PC
12

where b^ is the displacement at the ^d^e of the disk caused

by the -adial misfit of the disk with the matrix (b -
r

e
11

r). Superimposing this field with the dislocation loop

yields for the nonspherical component

(*r b
z

- 7rAtrb
r
)(Cn - C

12 >

For a four unit cell thick- precipitate o^ Q', the misfit

normal to the disk is -0.107 n m (= b ). The radial strain

o
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The precipitate's effectiveness as a point defect sink

depends on the nonsnherical component and so increases by

13*.



APPENDIX TT
LISTINGS OF THE COMPUTER PROGRAMS

The comouter orograns used is this work have been

discussed and doou-ri^nted in the work of Svkes et al . (1981).

Contained in this aooendix are the descriptions and listings

of the -lain oro^ram and those subroutines used to simulate

the 0' nrecioitate and the finite dislocation Iood.

188
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The ^ain Program

The main program was modified to account for a change

in the scattering factor of the diffracting Dlanes within

the Drecipitate. This changes the parameter £ (CONV). The

program integrated in steps of 0.01 £ . This step

represents (0.01 r ) angstroms. The change in scattering

power means the same physical length is equivalent to a

greater or lesser step in units of extinction distances. To

the data reading section of th Q main Program was added the

lines below which establish a step A7' (5TEP2) to be used

when integrating the waves within the precipitate:

STEP1=ZSTEP

READC5 ,9001 ) C0MV2

WRITE (6 ,1212) C0NV2

9001 F0RMAT(SF<? . P)

1212 FORM AT (1 x , F 1 . 3

)

STEP2 =7,STEP*CONV/CONV2

The precipitate subroutine returned a flag, N r LA0, set to 1

i r the nres«nt location of the beam was in the precipitate:

CALL N1D^(UD,MFL40)

The substitution of the effective AZ" value was accomplished

by the lines:

301 CONTINUE

IFCNFLAG.NE. 1 ) 00 TO 55^

IW=702

ZSTEP = ST'rD 2
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CALL SETKWEFF)

ZSTEP=STEP

1

555 T=A11 (IW)*TO+A12(IW)*SO

S0=A12(IV)»T0+A22(IW)*S0
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COMPLEX A11.A12, A22.T. TO.SO,IHAG
COMPLEX A2n,A2l2,A22l,A22 2,TA1,SA1
CC3PLEX E11,B12,B21,B22
COMPLEX TA,SOA
COMMON A11J702) , A12J70 2) , A 22 (702) , T, TO , SO
COMMON IHAG-PI.2STEP
COaaCN X1P (3) ,X2P{3) ,X3Pf3) ,GG1 (3)
COMMON F11,F12,F1J,F21 , F22 . F23 , F3 1 , F32 , ASTEP
COMMON ALAT, CONV, C 11, C 12,C44,ANU
COMMON ALFN, THICK, DTHICK, SLTHM, ANOB,ANOM
COMMON DE7.GP1,GP2
COMMON T HALF, I SIZE, JHA LF, JSIZE, NDIS , N3 D, NSF

CCCCCCC
C THIS PROGRAM EXPECTS INTERPOLATION BETWEEN IMAGE
C POINTS: {I/J)SIZE IS THE NUMBER OF POINTS PRINTED,

(I/J)HAL? IS THE NUMBER OF POINTS CALCULATED...
C IN CALCULATING POINTS, THE DIFFERENCE IN SPACING

BETWEEN SYMBOLS IN A LINE AND SPACING BETWEEN LINES
C MUST 3E ACCOUNTED FOR. CPRINT= (SPACING BETWEEN
C LINES) /(SPACING BETWEEN CHARACTERS IN A LINE)
C WINCR AND VINCR ARE THE. SPACING BETWEEN IMAGE POINTS.
C ADJUSTED TO PROPERLY ACCOUNT FOR THE PRINTER USED
C AND TO HAVE THE (X) DIMENSION OF THE PICTURE CORRESPOND
C TO THE LENGTE INPUT (ALEN).
CCCCCC

DATA HLIN/10.0/,VLIN/8.0/
CPRINT=HLIN/VLIN
IMAG= (0.0, 1.0)
ASIE?=0.010
ZSTSP= ASTEP
PI =3. 14 159

r

C ENTEE ^JUM^ER OF PICTURE POINTS FOR THE X(JSIZE) AND
C Y(ISIZE) OF THE PICTURE
1934 R2ADJ5,700 1.END=98 38) JSIZE,ISIZE

WRITE (6.7003) JSTZE,ISIZE
7003 FOBMATfM* ' PICTURE TO BE «,I5,'fX) BY ' 15 ' m MJHALE=JSIZE/2 V

JSIZE=2*JHALF-1
IHALF=ISIZE/2
ISIZE=2*IHALF-1

C ENTER NTHICK, THE NUMBER OF THICKNESSES TD BE CALCULATED
C ENTER THE TYPE OF PICTURE DESIRED: BRIGHT FIELD (1),
C DARK FIELD (2). OR BOTH (3)

READ (5, 7 001, EN D= 98 9 8) NTHICK, NT YPE
WPITE (6,7004) NTHICK,NTYPE
FORMAT (17, 13,' THICKNESSES,'004 FORMAT(1X,I3,' THICKNESSES, BRIGHT/DAR K COPE: ' ,12)

: ENTER THE THICKNESS INCREMENT BETWEEN PICTURES
READ{5,9001) DTHICK

9001 FCRMAT(9FR. 2)
B5ITSJ6, 9002) DTHICK

9002 FOBMAT (1X, 'THICKNESS INCREMENTS (ANGSTROMS): »,F10.3)

! MOST VALUES API ENTERED IN THE READ SUBROUTINE BELOW
CALL READ(CNTX,CNTY)
IF (JSIZE.LE. 1.0R.ISIZE.LE. 1) GO TO 111
WINCR=ALEH/ {JSIZE- 1)
VINCR=WINCF*CPRINT
GO TO 112

111 JAHLF=1
IHALF=1
JSIEE=1
ISIZE=1
VINCR=0.
RINCR=0.

112 CONTINUE
DTHICK=D THICK/CON

V

NUMBER OF STACKING FAULTS (5 MAX), DISLOCATIONS (10 MAX),
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: AND POINT DEFECTS (TO MAX)
EEAD(5,7001) NSF,NDIS,N3D

7C01 FOBMAT(6T1C[
iRITS{5,7002) NSF f NDIS,N3l

7C02 FOHMATpOX,4I10,4X,A4)

C CALL ROUTINES TO HEAD AND ESTABLISH GEOMETRY FOR DEFECTS
IF(N3D.NE.O) CALL N3D1

C
C DETERMINE STEPS BETWEEN THICKNESS INCREMENT AND REDEFINE
C DTHICK TO CORRESPOND TO THE DESCBETE INCREMNETS ALLOWED
C SLTHM IS EFFECTIVE THICKNESS AT CENTER OF PICTURE

CALL PEAD2 (CNTX.CNT Y. ZTOP, SLTHM)
NDZ=DTHICK*]SLTHM/THICK) /ZSTEP+0.

5

DTHICK=ZSTEP*ND2/(SLTHM/TRICK)
C
C THIS CALL TO SETUP PRECA LCULATES SCATTERING MATRICIES

CALL SETUP
ST2P1=ZSTEP
R£AD{5,9001) CONV2
WRITE (6, 1212) CONV2

1212 FORMATnX,4F10. 3)
STS?2=ZSTEE*CONV/CONV2

C
C THE START O v THE OUTPUT FILE IS PADDED TO ALLOW
C SIMPLER LCGIC IN THE PRINT ROUTINE

DO 1C6 NDEEP=1, NTHICK
106 WRITE(10) CHMy1,DMMY2

C BEGIN DOUBLE BO LOOPS TO SELECT IMAGE POINTS

DO 404 I=1,IHALF
IVAL=2*I-1
YVAL= {IHALF-0.5-IVAL)*VINCR+CNTY
DO 403 J=1,JHALF
JVAL=2*J-1
XVAL= (JVAL-JHALF+0.5) *WINCR+CNTX

C DETEFMINE TOP CF COLUMN AND THICKNESS; NRT=STEPS TO
C FIRST THICKNESS INCREMENT.
C NRZ=STEPS TO BOTTOM OF THE LAST INCREMENT.
C THE (+1.5) ROUNDS AND ALLOWS FOR THE FIRST DUMMY STEP
C NEEDED TO ESTAELISH UDO

CALL READ2 ( X VAL, YVA L,ZTOP, S LTH)
NET= (SLTH/ZSTEP) +1 . 5
NPZ=NRT+ (NTHICK-1) *NDZ

C
C INFORM DEFECT ROUTINE OF THE LOCATION OF
C TEE TOP OF THE COLUMN

IF(N3D.NE.C) CALL N3D2 (XVAL , YVA L, ZTCP)

C ?EGIN INTEGRATION DOWN THE COLUMN
C

1^(1.0.0.0)
SO= (0.0.0.0)
DDO=0.0
CG 3 02 K=1,NRZ

C INITIALIZE DISPLACEMENT TERM TO ZERO SO
C PF.OPER SUPERPOSITION SUMS RESULT
C (TO) IS TRANS. WAVE AT TOP OF STEP, (T) AT BOTTOM

TO=T
03=0.0
CIFF=0.

C CALL DEFECT ROUTINE TO GET UD AND DETEBMINE SCATTERING
C MATEIX TO BE USE!: FIRST STEP OF COLUMN IS TO
C INITIALIZE UDO, NO INTEGRATION TAKES ELACE DUE
C TO IE STATEMENT.

IF (M3D.M T'.C) CALL N3D3 (UD, NFLAG , RC)
434 EUDZ= (UD-UEO)/ZSTEP

BETA = DTF 1? tDUDZ
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HEFF=DEV*BETA
UDO=UD
IF(K.EQ. 1) GO TO 302
IW={ffEFP+3.505) *100 + 1

IF (IW.GE.1 .AND.IW.LE.701) GO TO 301
IW=702
CALL SE^I (WEFF)

301 CONTINUE
554 IF(NFLAG.NE. 1) GO TO 555

IH=702
ZSTEP=STEP2
CALL SET1]SEFF)
ZSTEP=STEP1

555 T=Al1fIW)*I0 + A12fIW) *SO
S0 =A12(TI) *TO + A22(IW)*SO

C OUTPUT INTENSITIES IF BOTTOfl OF A THICKNESS INCREMENT
C HAS BEEN RESCHEE

666 IF (K.LT.NRT) GO TO 302
EINT=CABS (T) **2
DINT=CA3S(S0) **2
WRITEMO) EINT, DINT
NET=NHT+NDZ

302 CONTINUE
403 CONTINUE
404 CONTINUE

C
c
c
c
C FOE EACH THICKNESS, CALL PRINT ONCE OR TWICE TO GET A
C BRIGHT FIELD OR DARK FIELD PICTURE OR BOTH
C

DO 104 NDEEP=1,NTHTCK
IF (NTYPE.EC.2) GO TO 105
NPIC=0
CALL PRINT (NDEEP,NTHICK,NPIC)
IMNTYPE.EC-1) GO TO 104

105 NPIC=1
CALL PRTNT {NDEEP ,NTRTC K , NPIC)

104 CONTINUE
C
C RESE"1 FILE AND GC FOP DATA FOR ANOTHER PICTURE
r

FSWINE 10
GO TO 19 34

9333 STOP
f;jd



194

The Ellipsoidal Precipitate Subroutine

Due to the analytic equations available for these

displaces ents, this subroutine oould be straightforwardly

written. This subroutine is infact the subroutine

previously used to obtain displacements about an

infinitesimal defect (see Sykes et al., 19R1).

Modifications simply replaced the equations for the

displacements; the geometry remained the same.
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rjT T N E N3D1
EX ALFHA1. ALPHA2
EX A n,A12,A22,T,S,SO,IMAG
R, H2,L.LAM,L2..L3

STON P71 (3) ,P72 13) ,P73 f3)
N All (702) , A12 (70 2) , A 22 (70 2) ,T,S,SO
N IMAG.PI.ZSTEP
N IIP (3) ,X2P(3) ,X3P (3) ,GG1 (3)
N ?11,P12 # Pl3 t P2l < F22 f F23,F3 1,F32,F33
N ALAT,C0N7,C1 1,C 12,C44,AHU
N ALEN,THICK,DTTCK,SLTHM,ANOF. ANOM
N DE7.GP1,GP2
N THALF,ISIZE,JHALF,JSIZE,NDIS,N3D,
5,2000) P71,P72,P73

READ IN AND NORMALIZE THE DEFECT COORDINATES

SUBRO
COMPL
COMPL
REAL

DIMEN
CO MAC
CO H MO
coaao
COM MO
COM MO
COMMO
COMMC
COM MO
FEAD(

NSF

CC
CC
cc
CC

WRITE (6, 9002)
CALL •-"
CALL
CALL

NORM (P71)
NORM (F72)
NORM(PV3)

P71,P72,P73

000

3 00 2

CC

READ IN MAJOR AND MINOR AXIS OF
THE STRAINS ALCNG THESE
POISSCNS RATIO

E2AD{5,2000) AS,CS, El 1 ,E3 3 ,SIG
FCRMAT M0F8.4)
HRITS]6

t 3002|_ AS,CS,E11 ,E3 3 / SIG

ELLIPSOID.
AXIES AND

FORMAT (h, 10FbU)'

SIG1=2*( (1. 0-SIG!
STG3 = 2*?]1. 0-SIG)
DELTE=(S33-E11)/

3004
CC

CC

ESTABLISH CONSTANTS NEEDED LATER
ABC=AS*AS*CS
AS=AS*AS
cs=cs*cs

1. 0-SIG) *E1H-SIG*
)*E33+SIG*

,/(CS-AS)
Bfi2=A3+CS

L2=AS-CS
L=SQRT(L2)
L3=L**3
CNN=AS*CS
A0C=AEC/(4*L2*L* (1 .0-SIG
WRITE]*, 3004) SIG1,SIG3
FCRMAT(1X,5E20.5)

El 1+E33)
)

E1UE1 1) )

, DELT1 ABC

cc
CC

DETERMINE
DEFECT

A?1 1 = PV1
AP12=P71
AP13=PV1
AP21=?V2
AF22=P72
AP23=?V2
A?31=PV3
AP32=PV3
AP33=PV3

TRANSFORM
COORD.

S

1) *X1P
1) *X2P
1) *X3P
1) *X1P
1) *X2P
1) *X3P
1) *X1P
1)*X2P
1) *X3P

MATRIX BETWEEN PICT12E AND

1) *PV1 (2
1) *^>V1 2
1) + P71 (2
1 *P72
1) + P72
1) *P72
1) + P73
1) +PV3
1) + P73

*X1P
*X2P
*X3*
*X1P
*X2P
*X3?
*X1P

2) *X2P
'2) *X3P

+ P71
+ PV1
+ P71
+ P72
+P72
+ o72
*P73
+ P73
+ P7 3

*X1P
*X2P
*X3P
*X1P
*X2P
*X3P
*X1P
*X2P

3) *X3P

ESTABLISH ONE STEP OF THE
XINCB=-^STEP*C0N7*AP13
YINCR=-ZSIEP*CON7*AP23
ZINCR=-ZSTEP*CON7*AP33
READ f 5, 2000) PX,PY,?Z

TOO 2 FORMAT ( 1 X, 3P8. 3, 4X, 3FR . 3 ,4 X,3F8. 3

)

BEAM THROUGH THE FOIL

9003

READ AND TRANSFORM DEFECT LOCATION
WRITE (6,900 3) PX,PY,PZ
FORMAT (• LOC',3F10.3)

TO PICTURE COORD.

3

FORMAT (' LOC» 3F10.3)
PX1 = ]PX*X1PM) +PY*X1P (2) +PZ*XlPf 3) ) /CON7

?X2= (PX*X2P(T) + PY*X2P(2) +PZ*X2P(3) /CON7
'

" " 1) +PY*X3P{2) +PZ*X3P{3) )/C0N7FX3 =
FETH

PX+X3F
N
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ENT3Y N3D2 (W7AL, 77 AL,7 TOP)
cr
CC TRANSFORM TOP OF COLfJMN TO DEFECT COORDINATES

X7=(W7AL-PX1) *C0N7
Y7= 77AL-PX2) *C0N7
ZV= (ZTOP-PX3) *C0N7
XP=A?11*X7+AP12*Y7+AP1 3*Z7
YP=AP21*X7+AP22*Y7+AP2 3*Z7

102 Z?=A?31*X7+AP32*Y7* AP33*Z7
EETUEN
EN THY N3D3 (UD,NFLAG ,RO)

C
CZ NFLAG WILL BE SET TO 1 IF BEAM IS IN THE ELLIPSOID

NFLAG=0
X2=XP**2+YP**2
Z2=ZP**2
X=SQRT fX2)
Z=SQBT (Z2)

C "

CC DETERMINE IF (X.Z) IS IN THE ELLIPSOID
TESI=X2/AS+Z2/CS
IFfTEST.GT. 1.0) GO TO 222

T INSIDE ELLIPSIOD LAHBA IS ZERO E7ERYWHERE
C THE DERI7ATI7ES SIMPLIFY TO:

C=SQRT(C3)
1H=ARSTN

'

TH=ARSIN (L/SQRT{AS) )

PHI1 1=L*C/AS-TH
EHI1=X*PHI11
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PHI13=2*X*Z*L*BA2*KH*DCA
PHI31=PHI13

FHI22=L*C*RA2-TH

PHI3=2*Z*(TH-t*Rq

EHI3 3=2* (TH-L*RC«-Z2*L*RC2*RH*DCA)

333 CONTINUE
CC
CC DETERMINE DISPLACEMENTS

U1C=CS*X*PHI3 3-AS*PHI1-AS*Z*PHI13
D1C=ABC* (DELTE*01C-SIG1*Pf7H)
3C=-2*C5*FHI3-CS*X*PHI3 1+AS*Z*PHI1 1+AS*Z*PHI2 2

03=ABC* 'DELTE*U3C-SIG3*PHI3)
IF (ZP.LT.0.0) 03=-ri3

CC
DETERMINE RESOLVED COMPONENTS
U1 = 01C*X*VX
02=U1C*YP/X
DP1=AP1 1*0 1*AP21*U2*AP31*U3
UP2=A?12*Ol + AP22*D2 + AP32*rj3
UD=UD+ (DP 1*GP1+0P2*GP2) /CONV

INCREMENT THE BEAM

XP=XP*XINCR
K?=YP+Y T NCR

103 ZP=ZP + 7.INCR
RETURN
END
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The "Disk Precipitate Subroutine

This subroutine was used to obtain displacements about

the disk shaped precipitate and a finite dislocation loop.

This is a -nod if ication of the infinitesimal point defect

subroutine documented by Sykes et al . (1b Q 1). The

subroutine used values interpolated from a matrix of

displacements in the x-z olane (these were Drecalculated and

stored on disk by another nrogram, described later in this

apo^ndix). The geometry is very restrictive; only a disk

viewed on ed^e can be simulated. Th° matrix of

displacements, b°ing or ecalcul ated for a soeeific radius

can only b° used to simulate that siz° defect, although the

thickness and displacement magnitudes (set by RL and BE) can

be varied. The geometry assumed a finite dislocation Iood

at the ton and bottom surface of the disk and five line

integrals for the radial strain spaced evenly alone; the edge

surface (summing the displacements rrom these five completed

the surface integral). Bv putting the radial misfit ^K to

zero and letting the disk thickness become very small (say 1

Angstrom), the displacement field of a dislocation looo is

produced. When the ^eam was b^vond the r^n^o f the matrix

the inf ini tesismal approximation was used.

Within the volume of the precipitate, the rj i so 1 -"cements

resulting from this model ?r* incorrect, there b^ine; a

discontinuity at the surface of the disk. Th° displacements

within the precipitate were assumed to linearly increase
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with r and be continuous at the surface of the disk. This

is what is found for the ellipsoidal model. The net result

of this is that for s = 0, w = everywhere within the disk.

Rather than correct the displacements, the main program was

modified to set w = when the beai was in the disk (i.e.,

when NFLAG=1 )

.

•Is it turned out, the numerical integration of the

radial strains was not sufficiently nr n cise n°ar the edge of

th Q precioitate and the displacements oroduced were too

larn;e. A "band-aid" was olaced in the oro^ram to force the

displacements to vary smoothly from ^F/2 at the edge to

those values calculated at some distance from the ed?;° (at

1 .2r) .
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SUBROUTINE N3D1
COMPLEX ALPHA1.ALPHA2
COMPLEX A1 1, A12,A22,T, S,30.IMAG
DIMENSION PV W3) ,PV2 (3) ,PV$ m
COMMON A11 (702) , £l 2 (702),A22(7
COMMON IMAG,PI,ZSTSP

02) ,T,S,SO

F3 3

COMMON X1P (5) ,X2P(3) ,X3Pf3) ,GG1 (3)COMMON F11,F12,F13,F21.F22,F23,F3 1,F32,
COMMON ALAT,CONV,C11,C12,c44,ANU
COMMON ALEN,THICK,DTICK,SLTHM,ANOS,ANOM
COMMON DEV,GF1,GP2
COMMON IHALF,TSTZE.JHALF,JSIZE,NDIS,N3D,NSF
DIMENSION !JEl (30 , 20) , a E3 ( 30, 20)', OL1 (30, 50) , UL3 (30 , 2 0)

THIS SUBROUTINE READS FROM DISK DISPLACEMENTS OF
A LOOP (UL1SUL3) AND OF THE EDGE OF A PPT (0E2STTE3)
THESE ARE PRECALCULAT ED BY ANOTHER PROGRAM AND ARE
FOR A SPECIFIC RADIUS (32.5)
THE THICKNESS USED HERS IS VARIABLE AND BY SETTING
THE THICKNESS VERY SMALL (1.0 ANGSTOM) AND BE=0.0
A DISLOCATION LOOP IS SIMULATEDC

c
CC READ IN DEFECT COORDINATES.

READ («5. 9001) PV1.PV2.PV3
WRITE (6, 9002) PV1,PV2,PV3

CC READ IN THE THICKNESS AND RADIOS
P.EAD(5, 9001) TICK, RAD

9001 FORMATM0F3. 2)
WHITE (6. 3006) TICK, RAD

3006 FOAM AT (» TRICKNESS AND RADIOS: ',2F20.
THICK2=TICK/2.0
THICK5=TICK/5.0
EAD2=HAD**2

5)

NORMALIZE DEFECT COORD. S AND DETERMINE TRANSFORM TO
PICTURE COORDINATES
CALL NOPM(FVI)
CALL NORM(FV2)
CALL NORM PV3
AP1 1 = PV1
AP12=?V1
AP13=PV1
AP21=PV2
AP22=PV2
AP23=PV2
A?3 1=PV3
AP32=PV3
AP33=PV3

2) *X1P
2) *X2P
2) *X3P
2) *X1P
2) *X2P
2)*X3P
2) *X1P
2 *X2P
2) *X3P

2) +PV1
2) +PV1
2)+PV1
2) +"V2

+ PV2
PV2
PV3
PV3

+ PV3

3) *X1P
3) *X2P
3) *X3P

*X1P
*X2P
*X3P
*X1P
*X2P
*X3P

C DEFINE ONE STEP OF THE BEAM
XINCR=-ZSTEP*CONV*AP13
YINCH=-ZSTIP*CONV*AP23
ZINCR=-ZSTEP*CONV*AP33

READ HURGERS VECTOR MAGNITUDE OF
C AND AT THE EEGF (BE) AND ADJUST

OF 2 AND 5 LOOPS.
F.EAD( 5,9001) BL, BE
8RITEl6,8007) BL,BE

3007 FORMAT ( 1 X, 'LOOP AND ED-
ALOOP=3L/2.0
AEDGE=THICK5*BE

, w<w RBITE(«S, 1010) AEDGE.THICK5
1010 FORMATp X,2F20.5,E20.5)

THE
FOR

LOO?
the a:

BL)

BURG; »,2F10.4)

HEAD DISPLACEMENT MATRICES
FEAD(11) UF1,UE3,UL1,UL3

'ROM DISK.

CC READ DEFECT POSITION AND CONVERT TO PICTURE COORD SRZAD(5,9001) PX,PY,PZ
•.-
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00 2

003

FORMAT (1X,3F9. 3, 4X, 3F8 . 3 ,U X, 3P8 . 3 )

WRITE [f,, 9003) PT.PY.PZ
FORMAT{» LCC. 3F10.3)
PX1 = (PX*X1PM) *PY*X1P (2) +PZ*X1P (3) )"""

"T> PY*T2P(2* '—•--
*• "

CC

PX2= (PX*X2P (T) + PY*T2P(2) +PZ*X2P (

PX3= (?X*X3P(1) *PY*X3P(2) +PZ*X3P (3) ) /CON

7

Ml A
CON7
0N7

CC

CC

DEFINE TERMS NEEDED FOR OSING THE INFINITESIMAL APPROX.
DEL71=?I*RBC*TICK*3E
CEL72=DEL71
DELV3=PI*RAD2*BL
PI"! 1= (DEL71*C1 1+DEL7 2*C12+DEL73*C12)
FK2=(DEL71*C12+DEL72*C1 H-DEL73*C12)
EM3= (DEL71*C12+DEL72*C12+DEL73*C1 1)
B7AL=1.0/{8.0*PI*C1 1*C4U)
FET1RN

ENTRY N3D2 (W7AL, 77 AL,Z TOP)

DETERMINE ^OP OF COLO AN IN DEFECT COORD.

S

X7=(W7AL-PX1) *C0N7
Y7= (77AL-PX2) *C0N7
77= (ZTOP-PX3) *C0N7
XP=AP1 1*X7+AP12*Y7+AP1 ?*Z7
YP=AP21*77+AP22*Y7+AP2 3*Z7

102 ZP=AP31*X7+AP32*I7+AP33*Z7
RETURN

C^
CC

CC

98 3

ENTRY N3D3 (OD,NPLAG)

NFLAG IS SET TO 1 IF BEAM IS IN THE PPT.
NFLAG=0
RO=X?**2+YP**2
IF(ABS(ZP) .LI.THICK2.AND.RO.LE.RAD2) NFLAG=1
eO=SQRT(RO)

CCC IF FAR AWAY, USF. THE
IF (BO. ST. 145.0) GO

INFINITESIMAL
TO 235

APPROX

CC
CCC
CCC
CCC

IX= fEO/5.0) +1
UL?T=G.O
0LP3=0.0
UE?1=C.O
UEP3=0.0
JX = IX*-1
GX={5.0*IX-FO) /5.0
FX=1.C-GX

FOR LOO? AT TOP AND BOTTOM OF CYLANDEB,
SUM DISPLACEMENTS
OSING INTERPOLATED 7ALUES.

ZL=ZP-THICK2
DO 991 LOOP=1,2
KZ = 1

I? (ZL.LT.0.0) KZ=-1
IZ= (AES {ZL)/5. 0) +1.0
JZ=IZ*

1

GZ= fS.0*IZ-ABS (ZL) ) /5.
FZ = T. 0-GZ
ULP1=UL?1+GX*(GZ*UL1 [IX, 17) +PZMJL 1 (IX, JZ) ) +

5 FX* (GZ*OL1 (JX,IZ) +?Z*TJL1 fJX,JZ) )DLP3=FJL"3 + KZ*jfGX*(GZ*nL3 <IX,tZ) + ?Z*UL3 (IX, JZ1) +
S FX* (G7*HL3 (JX,IZ) *FZ*0L3 (JX, JZ) ) )ZL=ZL+TICK

^991 CONTINUE

CCC FOF 5 EDGE LINE INTEGRALS DISTRIBOTED E7ENLY ON THE
CCC CYLINDRICAL SURFACE, SUM DISPLACEMENTS OSING
CCC INTERPOLATE! 7ALUES.
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ZL=ZP-3*THICK5
DO 992 NFDGE=1,5
ZL=ZL+THICK5
KZ= 1

IP(ZL.LT.O.O) KZ=-1
IZ=(ABS(ZL) /5.0) +1
j2. — T7 +• 1

GZ=(5.0*IZ-ABS{ZL)
) /5.0

FZ = 1 . 0-GZ
D1=GX*(R2*UE1 fIX,IZ)+FZ*UE1 (IX,JZ)) +

S FX*(GZ*UE1 M*,IZ) + FZ*UE1 (JX,JZ)
)uepi=itepi + di

UEP3=UEP3+KZ* (GX*(^Z*UE3 (IX.IZ) + FZ*UE3 (IX,JZ)) +

„ & FX*(GZ*UE3(JX\lZ)
V

+FZ*UE3(J*,JZ))
)

l"* u*H
992 CONTINUE ' ' ' '

cc
CCC MULTIPLY DISPLACEMENTS BY BURGEES 7ECT0R MAGNITUDESCCC TO OBTAIN TEE FINAL VALUES.

ULP1=ULP1*AL00P
ULP3=ULP3*ALOOP
DEP1=UE?1*AEDGE
OEP3=riEP3*AEEGF

CC
CCC VERY CLOSE TO THE EDGE THE NUMERICAL INTEGRATION
CCC WAS NOT ACCURATE AND GAVE LARGE VALUES; THECCC FOLLOWING ARBITRARY FUNCTION PRODUCES k SMOOTHC^C VARIATION OF DISPLACEMENTS UP TO THE EDGE ANDCCC MAINTAINED TEEM BELOW BS/2.

I?(RO.GE.45.0.OE.A3S(Z?) .GT.THICK2) GO TO 712
711 IF RO.LT.32.5) GO TO 713

D= RO-32.5) /12.5
ED=1. 3-D
0E?1=(PE
GO TO 71

713 CONTINUE

0E?1* (BE/2.0)* (,526 667 + D*DD*. 30 66 6+ DD*D D*.U 7 333)
GO TO 7 12

C!
CC WITHIN TH* PPT, THE EQUATIONS GIVE UNREALISTIC VALUESCC THE MAIN PROGRAM IGNORES (J. G IF NFLAG=l7 SOCC THE DISPLACEMENTS ARE ARBITRATILY SET TO ZERO HERE.

1 = 0*.

02 = 0.
GO TO 236

712 CONTINUE
B1=(ULP1+UEP1) *XP/RO
02= (0LP1+nEP1) *YP/RO
03=ULP3+UEP3
GO TO 2 36

CC
CC THE FOLLOWING IS THE INFINITESIMAL APPROX.

235 EVAL=EO
XPE=XP/R VAL**3
YPR=YP/RVAL**3
ZPR=ZP/R VAL**3
C2=3. 0* (C12+CU4) /RVAL**2
XC2=C2*X?**2
YC2=C2*TP**2
ZC2=C2*ZP**2
T1= (XPR* (-C12+C4 4 + XC2) ) *PM 1

12= (XPR* -C12-C44+YC2) ) *PM2
T3=(XPR*(-C12-CU4*- ZC2) ) *PM3
U1=3VAL* T 1+T2+T3)
T1=( YPR* (-C12-C4 4+XC2) ) *PM1
T2= (YPR* (-C12+C44+YC2J ) *PM2
T3=jYPR* -C12-C44 + ZC2)

)

*PM3
U2=3VAL* THT2 + T3)
T1= (ZPR* (-C12-C44 + XC2) ) *PM1
T2= ZPR* (-C12-C4 4+YC2) ) *PM2
T3=(2PR* (-C12+C4 4+7C2) ) *™M 3
U3 = 3VAL* T1+T2+T3)

23 6 CONTINUE
CC
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1 HESOWE DISPLACEMENTS INTO Gj INCREMENT THE BEAM
U?1=AP1 1*0H-AP21*IJ2 + AP3 1*0"3

UP2=APl2*ai+AP22*0 2+AP32*0 3
DD = Un+ (OPl*GPUnP2*GP2) /CONV
XP=XP+XINCF
YP=YP+YTNCH

103 ZP=ZP+ZINCE
EETOKN
END
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The Progni to Calculate the Dj sr>! acement Matrices

This orograra, run before the use of the preceding

subroutine for simulating a disk shaped precipitate,

calculates and stores on disk a matrix of values for

displacements about a finite dislocation loon and integrates

the equations given in Aonendix T for the radial strain.

Calculated h Q re are not the actual d iplacements , u-, but the

normalized displacements, fu./b) so f '^ nr^oii'io
' 1 '

subroutine can f," 3elY alt^r the burgers vector ma^nitud *.

rh ° p^ogr-^m has a nested ^^-loon to sel°ct the (X 7)

values at which d i sol acements will be calculated. In this

loon is an adaptation of the equations ^iven by Bui lough et

al. (19 7 1) for a finite dislocation loop. Following this is

another loop which integrates the equations for the radial

strains. Rather than divide the loop ( looo here refers to

th a inner line integral) into uniform segments, it was

divided into arc lengths chosen such that the distance R

from the point (X,7) to the points along the segement varied

less than some prescribed amount. The algorithm used to do

this follows. The looo is the loci of points

2 2*> L - x
z + v: z = Dv

2
;

The distance squared from the point (X,0,7) to the near edge

of the Iood is

R^
2

= (X - r)
2

+ 7
2

Starting with 0, it is desire^ that the distant

2 7squared, R (initially equal to RF ), to points on the loon
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2
not exceed aR in °;oin^ to the noint defined by 8 If a is

2set to 1.02, then R varies less than 2". on the arc from 8-,

to 6 . The intersection of the sohere centered on (X,0,Z)

aR
2

= (x - X)
2

+ (y - 0)
2

+ (z - Z)
2

with the Iood defines the point desired. This yields
2 2

x = (aR - (r Z ) ) /2X

and

9 = arccos(x/r)
2

After a number of iterations, the SDhere defined by aR
2

will

not intercept the loop, and a value of x < -r results. At

this point the program branches out of the integration

DO-loop and completes integration to d
?
- it. Because of

symmetr y

u = /
2
^du(e) =

2/J
du(9)

and using this the integration is completed.
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CCC THIS PROGRAM WAS USED TO COMPILE AND STORE ON DISK
CCC A MATRIX OF DISPLACE MENTS ABOUT A FINITE DISLOCATION
CCC LCOP AND ABCOT AN IN FIN ITES IMALL Y THIN HOOP (CYLANDEP)
CCC INDUCING "ADIAL STRAINS. THIS PROGRAM MUST BE RUN
CCC BEFORE THE SIMULATION PROGRAM IF A DISK IS TO BE
CCC SIMULATED.
cc

DIMENSION UEDG1 (30,20) . UEDG3 ( 30 , 20) ,ULP1 (30,20) ,OLP3(3
READ(5, 1000)C11,C12,C4&
BEAD(5, 1000) RAD
HEAD (5, 1000) ACONST

1000 FORMAT (3F8. 2)
CC ACCNST li THE INCREASE IN DISTANCE SQUARED FROM THE
CC NEAR END OF THE ARC TO THE FAR END (1.02 IS A
CC REASONABLE VALUE TO USE); ACON2 IS USED TO GET AN
CC AVERAGE VALUE FOR THE DISTANCE SQUARED TO THE ARC.

ACON2=0.5* M+ACONST) /ACONST
WRITE (6, 10 00) RAD, A CON ST, C 1 1.C12.CU4

1000 F081AT( 1 X,5E20.5)
p r*

CC DEFINE NEEDED CONSTANTS
PI=3. 1415926536
RAD2=?AD**2
ANU=C12/f2.0*(C12+CU4)

)A=cau-d2
E=-C44-C12
CC=3* (C12+C44)
BVAL=T/(R*PI*C11*C44)
C1= (C11* (A + B) +2*C12* JB-C12) ) /2.
C2 = RAD* (C11*A + 2*C12*B)
C3=(C1 1* (A -3) +2+C12* (B+C12) )/U.O
C4 1= (C11+C12)/2.0
C42=2*C1 1*RAD2
C51= (8*C11+C12) *PAD/3.
C52=C1 1*PAD**3
C5 3=C12*RAC
C53=C12*?.AD
C6 1= f CI 1-C12) /H.
C6 2=0.5*C11*HAD2
C7=?.AD* (C12-C11) /3.
E1 = (C11*E + C12*(A*B) )

B21=0.5* (CI H-C12)
C22=C11*BAE2
D3=2*RAU*C11
D4=0.25*(C11-C12)
WRI7E(6, 3000) ANU, BVAL , A, B , CC
HPIT3 6,30C0) C1.C2.C3
WRITE (6, 30 CO) C4 1,C4 2,C5 1,C5 2,C53
HEI~E 5, 3000) C61,C62,C7
HRITE(6,3000) D 1 ,D 2 1 ,D 22 ,D 3 , D4

SELECT POINTS fXO,ZO) IN THE X-Z PLANE
EO 11 IZ=1,20
ZO = 5-C* (IZ-1)
CO 22 IX=1,30
XC=5.C* fIX-1)

INITIALIZE VARIABLES
U 1 = 0.0
3=0.0

UL 1=0.0
UL3=0.0

THE FOLLOWING ARE "OLD" VALUES
THO=0.0
SIN3 = C0
SIN2O=0.
SNC5O=0.

X2=XO**2
Z2=ZO**2

CZ
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cc

cc
cc
cc
c^

cc
rr
CC
C~

cc

c
cc
cc

ccc

RE2 IS DISTANCE SQUARED TO NEAR EDGE OF LOOP (THETA=0)
PCONT2 IS NEEDED IS DO-LOOP BELOW

RE2=X2+RAD2-2*RAD*XO+Z2
ECONT2=RAD2*X2+Z2
ARE2=RE2

CALCULATE FINITE LOOP DI
HARWELL ELLIPTIC SUBROU
EGL=XC/RAD
ZET\=ZO/RAD
IF fXO.EQ.0.0) GO TO 91
IF(XO.EQ.RAD.AND.ZO.EQ
AK=4.0*ROL/ (ZETA**2 + (1
CALL FB01A (AK.3.0.RELC
E=4. 0*ROL/ (1.0 + ROL) **2
RAK=SQRT (AK)
AT0O=-RAK*ZETA*RELC1/(
AKP=1.9-AK
SINB=SQRT((P-AK)/{P*AK
COS8=SQRT'(1.0-SINB**2)
CALL PB02A (AKP.SINB.CO
CLA.1= (RELC2*F* (E-F) *RE
IF ROL. LT. 1.0) AI00= AI
IF (ROL.C-E. 1.0) AI00=AI0
AI10=RAK*AK* (1.0 -ROL**

S f [1-AFO *8.0*PI*SQRT(R
AI10=AT 10+FAK*RELC1/]2
AI01 = 2.0*{ (1. O-AK/2.0)

T, f?I*SAK* SORT (ROL) )

AI T1=PAK*7ETA* ((1. 0-AK
5 RELC1) /f2.0*PI*SORTf
UL1=-

( (1 .0-2.0*ANO) *AT
S (4.0*{1.0-AN»J))
0L3= (2.0* M.O-ANU) *AI0

e ( 4.0* (1.0-

SPLACEHENTS
TOES ARE DSED

.0.0) GO TO 92

. 0+ROL) **2)
1 r RELC2)

2.0*PI*SQRT (ROL)
)

P))

SB,E,F)
LC1)/PI
00-C1

•AND) )

LAMM
0+CLAM
2-ZETA**2) *RELC2/
0L**3))
• 0*PI*SQRT (RCL))
PELC1-RELC2)/

/2.0)*RELC2/ [1.0 -AK)
POL**3))
01-ZETA*AI1 1)/

0+ZETA*AI10)

/

OF R SQUARED FOR THIS ARC

FCF A MAX CF 200 ARC SEGMENTS, INTEGRATE THE LINE
INTEGRAL FOR THE RADIAL STRAIN.
DO 3 3 N?E= 1,200

INCREASE S**2
ARE2= APE2*ACONST

FIND X OP POINT ON LOOP WHICH IS AEE**2 AWAY FROM
(XC,ZO) AND DSE THIS X TO DETERMINE THETA OF THE
END O? THIS ARC. SEE TEXT FOR ALGORITHM OSED.

XTH = - (ARE2-RCONT2) /(2.0*XO)
IF(XTH.LE. (-RAD)) GO TO 99
TH = ARCOS rXTH/RAD)

PC2 IS AVERAGE VALOE
E02=ACON2*ARE2
P0 3=R02**1 .5
SN=SIN{TH)
SN2=SIN 2. 0*TH)
SNCS=SN* (COS (TH) ) **2
DSIN=SN-SINO
DTH=TH-THO
DSIN2=SN2-SIN20
DSNCS=SMCS-SNCSO
TH0=TH
SIHO=SN
SIN2C-SN2
SNCSO=SNCS
CR2=CC/PC2

GET DISPLACEMENT FROM THIS ARC LENGTH
T1=XO*DTP*C1-DSTN*C2+XO*DSIN2*C3
T2=X0*(C41*X2+C12*Z2+C4 2)*DTH
T3=-DSIN* (X2*C51+C52+C53*7 2)
I4=DSIN2*X0* (C61*X2*C62)
T5=DSNCS*X2*C7
D1=U1+{T1+CR2*(T2*T3*T4+T5)) /R0 3
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*ITl = DTH*nl
TT2=DTH* (D21*X2+C12*Z2+D22)
TT3=-DSIN*XO*D3
TT4=DSIN2*X2*Df»
TTT=CE2* (TT2+TT3+TT4)
DU=ZO*(TT1+TTT) /R03
D3=U3 + Dn

1010 FOEMATf/, 1X, 5E20.6)
33 CONTINUE

CCC FALLING OUT OF DO-LOOP INDICATES TOO MANY STEPS
CC NEEDED TO INTEGRATE THE DISPLACEMENTS

HBITEffi, 1100)
1100 FORMAT] IX, 'ITERATION ERROR, INCOMPLETE INTEGRATION')

GO TO 83

CC FOLLOWING LINES COMPLETE INTEGRATION TO PAR SIDE OF LOOP
99 AFE2 = A?.E2/ACONST

BO 2=0. 5* (ARE2+{XO*RAD) **2+Z2)
P03=SQRT (EC2) **3
CTH=PI-THO
CSIN=-STNC
DSIN2=-SIN20
ESNCS=-SNCSO
CR2=CC/R02
T1=X0*DTH*C1-DSIN*C2+X0*DSIN2*C3
T2=XO* JC41*X2+C12*Z2+C42) *DTH
T3=-CSIN*(X2*C51+C5 2+C53
T4=DSIN2*XO* (C61*X2*C6 2)

CC

T5=DSNCS*X2*C7
U1 = rJ1 + (T1 + CR2*(T2 + T3+T4*-T5) ) /RO 3
TT1=DTFt*D1
TT2=DTH* (D21*X2+C12*Z2+D22)
TT3=-DSTN*XO*D3
"IT<4=DSIN2*X2*DU
D3 = fT3 +70*(TT1+CR2* (TT2 +TT3+TT4) ) /RO 3
GO TO 33

IF (XO,ZO) IS CN LOOP AXIS, USE SIMPLER FORMULAS
91 FC2=RCONT2

?0 3=SQRT {RC2) **3
CE2=CC/R02
Ul-0.0
U3=ZO* (PI*EH-CR2*PI*(D22+C12*Z2)

) /R03
FAC=SQRT(1.G/{1.0+ZETA**2)

)

AI00=1.0-ZETA*FAC
Al01=FA r- **3
rJL3= (2. 9* (1.0- AN U) * A 10 +ZETA* AIO 1 ) / (4. 0* f 1.0- A NT) )

UL 1=0.0
GG TO 33

IF <XO,ZD) FALLS ON THE LOOP, SET DISPLACEMENTS ^o [)

92 01=0.0
U 3=0.0

ul 1=0.0
UL3=0.0

CC
C~ LOAD THE DISPLACEMENT MATRICES

33 OEEG1 (IX, 17,) = 2. 0*3V AL* RAD*D 1

0EDG3 JIX.IZ) =2.0*BVAL*RAD*U3
ULP1 (IX, TZ) =UL1
ULP3jIX,Izi =UL3
HPIT2J6,200 0) ZO,XO,UED0 1 (IX,IZ) , UEDG3 ( IX ,IZ) ,0L1,UL3

?000 FORMATf1X,7E15.6,/j
2 2 CONTINUE
11 CONTINUE

CC WFIT2 THE DISPLACEMENT 1ATRICIES TO DISK
KP.ITE(11) UEDG1,UEDG3, ULP1 ,ULP3

101 STOP
END

CC
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The prORram for Calculation of Pi snl acp-n^nts
About a Disk of Solute Atoms

This program is a modification of the program just

listed. The radial strains have been replaced by the

equations developed in Appendix I for a disk of solute

atoms. These matrices are used by the disk simulation

subroutine already discussed. For the OP zone simulation

the thickness of the disk is set to 1 A, BE is set to -0.? A

and 3L is set to zero. For the solute on a loop simulation,

the thickness of the disk is set to 1 A, BF is set to -0.3 A

and BL is set to 2.02 A.
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CT
CCC THIS PROGRAM WAS USED TO COMPILE AND STORE ON DISK A
CCC MATRIX OP DISPLACEMENTS ABOUT A FINITE LOOP AND
CCC ABOUT A DISK OF SOLUTE ATOMS.
CC.r

DIMENSION UEDG1(30.20) , UEDG3 (30 ,20) ,ULP 1 (30, 20) , ULP3 (3
READ(5, 1000)C11,Cl2,C4q l '

READ{5, 1000)RAD
1000 FORMAT (8 F8. 2)

WRITE (6. 3000J RAD,C11,C12,C44
1000 FORMAT (TX.5E20. 5)

PI=3. 1415926536
RAD2=?A"**2
ANU=C12/(2.0* (C12+C44) )

CC
CC SELECT THE POINTS (XO,Z01

DO 11 IZ=1,20
ZO=S.O* (12-1)
DO 22 IX = 1 ,30
XO=5.0* (IX-1)
0L1=0.0
DL3=0.0
X2=XO**2
Z2=ZO**2
ROL=XO/RAD
ZETA=ZO/RAD
IF(XO.EQ.0.0)GO TO 91
IF(XO.EQ.RAD. AND.ZO.EQ.O.O) GO TO 92

C*
CC DETEMINE H ANKEL-LIPSCHITZ INTEGRALS
CC USING HARWELL ELLIPTIC SUBROUTINES

AK=4.0*ROL/(7ETA**2+(1.0+ROL) **2)
CALL FB01A (AK.3.0.RELC 1,RELC2)
P=4. O+ROL/ (1 ,0+ROL) **2
RAK=SQRT (hK)
AI00=-RAK*ZETA*RELC1/(2.0*PI*SQRT (ROL)

)

AKP=1.0-AK
SIN3 = SQRT( (P-AK)/(P*AKP)

)

C0SB=SQRT M.0-SINB**2)
CALL F802A JAKP,SIN3,C0S3,E,F)
CLAM= (RELC2 + P* (S-P) *RELC1) /PI
IF(ROL.LT. 1.0) AI00=AI0O-CLAM+1
IFfROL.GE. 1.0) AI00=AI00+CLAM
AI10=RAK*AK*(1.0-ROL**2-ZETA**2) *RELC2/

& (M-AK) *8.0*PI*SQRT(ROL**3) )

AI10=AI10*RAK*RELC1/]2.0*PI*SQRT (ROL)

)

AIO 1 = 2.0* ((1. O-AK/2.0) *RELC 1-RELC2) /
(?I*RAK*S0RT(ROL) )

AI 1 1 =R AK*Z ET A*] f 1. O-AK/2.0) *RELC2/(1.
RELC1) /(2.0*PI*SQRT(RCL**3) )

UL1=- (M.0-2.0*ANU) *AI0 1 - ZSTA*A1 1 1)/

& (?I*RAK*SQRT(ROL) )

AI11=RAK*ZETA* {(I.O-
REL
1=-
4.0

DL3= |2.'0* M.O-AN
& (4.0*f 1-0-ANU))
THE FOLLOWING ARE

5 (4. 0*(1.0-ANU))
"

" "1.0-ANU) *AI00+ZETA*AI 10) /

CCC THE FOLLOWING ARE THE SOLUTE DISPLACEMENTS
0GRAY1=0.5*AI01
UGRAY3=0.5*AI00
GO TO 88

CC
CC IF (XO,ZO) IS ON THE LOOP AXIS, USE SIMPLER FORMULAS

91 B02=RCONT2
R03=SQRT (R02) **3
CR2=CC/R02
01=0.0
U3=Z0* (PI*D1+CR2*PI*(D22*C12*Z2)) /R03
FAC=SORT(1.0/(1.0+ZETA**2) )

AI00=1.0-ZETA*FAC
AI10=FAC**3
AI01 = 0.1
UL3= (2.0* (1.0-ANU) *AI0 0+ ZETA*A1 10) / (4. 3 *( 1.0-ANU) )
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UGRAY1=0.5*AI01
DGRAY3=0.5*AI00
GO TO 33

CC
CC IP (XO,ZO) FALLS ON THE LOOP, SET DISPLACEMENTS TO Z^RO.

92 OG3AI1=0.0
OGBAY3=0.0

OL1=0.0
OL 3=0.0

CC
C LOAD THE DISPLACEMENT MATRICES

88 0EDG1 (IX,IZ)=OGRAY1
0EDG3JIX,IZ) =0GRAI3
DLP1 {IX,IZ)=0L1
ULP3(IX,IZ) =OL3
WRITE (6, 2000) ZO, 70,aEDG1 (IX,IZ| , OEDG3 (IX, IZ) ,OL1,UL3

2000 FOHHAT(1X,7E15.6,/0
22 CONTINUE
11 CONTINUE

CC WRITE THE DI SPLACEHENTS TO DISK
WRITE(11) UEDG^OEDGSrULPI^ULPS

101 STOP
END



Cn M P'JTER STEREO ^MULYSTS

Micrographs obtained using two different bpam

directions can be used to reconstruct the three dimensional

sample. Figure SU illustrates in two dimensions the method

to be used. The two micrographs ar» projections of the two

dimensional sample onto the one dimensional imag a
. Working

backwards from the images, the sample is straightforwardly

r econ struc ted .

The algorithm to do this for the three dimensional case

is as follows. A noint in the image is selected to be the

origin. On this noint is constructed a thre» dimensional

coordinate system related to the crvstal: the first axis is

g, the third is the b^am Z, and the second is (gx7), all

normalized. Measuring the (x,y) value of a Doint in the

ima^e (i.°., a defect) in terms of this system th*» imag Q

point (a oroj^etion) can be exnressed as a three dimensional

point in crystal coordinates

= x(g) + y(?xZ)

The true noint, P, responsible for the projected noint, p

,

must exist on the line

1 = p + t Z
1 1 11

If corresponding data is obtained from another beam

direction 7 , the true point P is the intersection of the

212
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V /

Fin. 54. Working backwards from the images, the three
dimensional sample can be recontrue ted

.
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two lines 1 and 1

D, + t ,Z = r>„ + t Z
1 112 2 2

This r Q oresents throe equations for the two unknowns t-, and

t£. due to errors, the lines T-, and \~ will usually b Q

sk°\-i . Sought then is the point bisecting the line of

closest anoroach between the two lines. Let t, and t ?
be

such that they yield the end points of this segment. The

line direction of this segment will obviously be

The segment is on the line

1_ = o_ + t_Z_
3 3 j> 3

where n can be assigned as either pnd point of the segment

"3 = p
l

+ Vl or D
3 °2 * V 2

The midooint is the best estimate of the point's true

nosition and is

p = (5j t^) * t.7
3

. (5
2

+ t.

2
z
2

) - t.z
3

This represents thr^e equations for th Q three unknowns t
1

'

t~ and t, , which define P. Rearrangement yields a

convenient natrix formulation

(o, - D~ ) = -1- 7. + t 7. -?t 1
1 2 11 2233

Cap) = [H]t

t = [B]
_1

(AP)

wh ere

___=
(V V t

3
)

AD = <P
1 X * °2x' "ly "

D
2y' °lz " P

2z'

and
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[B] =

-7 7 _27
lx 2x "3x

-z, z, -2Z,
ly 2y 3y

-Z 7 -97
iz

J
2z ' *3z

[
B] is associated with the Dair of bpam directions and the

(Ap) values for the ith defect in the micrographs are used

to determine the thre° dimensional position of th Q noints,

P. .

l

The data was collected using a computer graphics device

by which the computer can accurately determine where on an

electronic oad a stylus is olaced. For a particular

micrograph, the beam direction and »-vector were entered at

the computer keyboard. Then the first touch of the stylus

defined the location of the origin (a specific defect or

surface flaw identifiable in all micrographs) . The next two

data points defined the direction, head to tail, o^ the

g-vector draw on the mierogranh. Ev^ry ooint thereafter was

the location of a defect image.

The most difficult task is properly oairinq an image on

on^ mierogranh with its counternart on another. The

computer program proceeded as outlined in two dimensions in

Fig. 55. The Doint D in micrograph 1 defines a column along

the b^am direction in which the defect must lie. The defect

also lies within the two surfaces of the foil and using an

overestimate of th Q foil thickness, the defect is restricted

to a segment of the column. The end points of this segment

map onto the second micrograph and the image of th« defect

lies between these two noints. To allow for error in three

dimensions, some width is added in the third dimension not
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Fig;. 55. L'sin", nn estimate of th<° roil thickness (e.f.t)
and the foil non^l ( FN ) , a window in which the defect iiage
lo a xnected (V) c=>n bp constructed on oth»r n icro<?raDhs

.



217

shown in the figure to produce a rectangular window to be

searched. In sorting the data the alogrithm use simply

eliminated any points associated with, any ambiguity (i.e.,

having no corresponding point in any of the other

micrographs or having more than one possibility appear in

the window). Doing this, the approximately 150 images per

micrograph were culled to about 'JO defects whose images

could be unambiguously identified on all of the four

micrographs used. The accuracy of the data was not

sufficient to produce meaningful results.

The above briefly describes what has been done. The

proper oaths to follow in future work became more clear in

this exploratory development. Most obvious among these is

the need for more accurate data collection. First it must

be decided (theoretically) what part of the image as a whole

corresponds to the center of the defect. Secondly, this

center must be measured with high mechanical precision. For

micrographs of beam directions differing by ?0°, a total

measurement ™rror of 0.1 mm on a micrograph of 100,000 times

magnification results in an error in the denth position

corresponding to ?7 nm . Since the present goal is to

determine the iepth to better than 0.1 E = 7.0 nm much
g ••-,-

greater precision is clearly npeded.

The greatest accuracy can be obtained by optically

scanning the negative of the micrograph with a computerized

detector to digitize the entire nicrograoh. With this data

the computer can employ algorithms developed from ™F M image

theory to locate the center of the image. It also allows
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the computer to nair inheres based on image anoearance rather

than simDlv image oosition.

Once accurate data is obtained, sorting through them to

pair the corresoonding i-ns^es is the most difficult oroblem.

This is also the chief advantage* of using the comDuter since

it allows great amounts of data to be handled on a more

routine basis. Rather than simnly eliminate data for which

ambiguities arise, the search of other micrographs will

often resolve the ambiguity. For examDle, if for a

particular defect in micrograph 1, thr°e images are found in

the window manned onto micrograoh ?, it is unlikely that all

three will appear in the window mapoed onto micrograph 1

(given that the beam directions of all three are not

coplanar). The greater the angle of tilt between

micrographs, the greater is the parallax shifts. This

results ultimately in greater accuracy but also oroduces

more ambiguities. Th^ nrogram should start by oairing

images on micrographs involving small tilts, ^oing to

greater tilts as ambiguities are resolved. Any sorting

algorithm must handle the possibility that a defect may be

out of the field of view in some micrographs. 'lore

bothersome than this is the possibility that, for one of

several reasons, the defect may be effectively invisible in

some micrographs.

After an initial sorting of the data Droduces a number

of defects for which ambiguities do not exist, these can he

used to detect and correct svstematic errors such as slight

changes in magnification and small errors in the alignment
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of the g-vector drawn on the micrograph. The corrected data

can be use to re-evaluate the defect oositions. Having

orecise values for the oositions of the unambiguously sorted

defects, the comDuter can remove their projected oositions,

p^ ,
from the lists in memory reoresentin? the micrographs.

These culled lists, being less cluttered and corrected of

systematic errors, can bp resorted and manv of the

previously existing ambiguities will have been removed. The

culling and resorting is iterated until no further

ambiguities are eliminated.

Some defects will be identified in micrographs for

which the tilt angles involved are lar?.e. Their oositions

will be determined with the greatest accuracy and

confidence. On the other hand, some defects (such as those

near the edge of the area examined) will b* identified in

fewer micrographs and/or in micrographs between which only

small tilts exist. Their oositions are less accurately

known. The comnuter should keeo separate estimates of the

^rror of each defect. For many applications the *reat

number of statistics this method can provide will offset any

lack of accuracy.
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