SMITHIANA

Publications in Aquatic Biodiversity

Bulletin No. 8, February 2008

Published by the South African Institute for Aquatic Biodiversity

Margaret Mary Smith (1916-1987), James Leonard Brierley Smith (1897-1968) with their dog Marlin

The publication series (Monographs, Bulletins \& Special Publications) of SAIAB (formerly the JLB Smith Institute of Ichthyology), in its new format, honours James Leonard Brierley Smith and Margaret Mary Smith with the name Smithiana, in recognition of their many years of devoted service to African aquatic biology. Their life's work, a team effort, established modern ichthyology in southern Africa and laid the groundwork for the expansion of aquatic biology throughout the region.

CONTENTS

Denis Tweddle and M. Eric Anderson A collection of marine fishes from Angola, with notes on new
distribution records. .. 3
Denis Tweddle and Paul H. Skelton. New species of ‘Barbus' and Labeobarbus (Teleostei: Cyprinidae)
from the South Rukuru River, Malawi, Africa. 25
Frank J. Schwart. A survey of tail spine characteristics of stingrays frequenting African, Arabian to ChagosMaldive Archipelago waters. 43

Smithiana Bulletins and Monographs are publications of the South African Institute for Aquatic Biodiversity, for original scientific articles in the fields of taxonomy, systematics, ethology, ecology, biogeography and conservation of the fishes of Africa and its surrounding waters. Priority will be given to papers by staff and associates of the Institute. Manuscripts from outside the Institute will be considered if they are pertinent to the work of the Institute or use the Institute's collections.

Editor: Mr Wouter Holleman
SAIAB: Scientific Publications, Private Bag 1015, Grahamstown, 6140 South Africa
w.holleman@ru.ac.za

Digitized by the Internet Archive in 2017 with funding from JRS Biodiversity Foundation

A collection of marine fishes from Angola, with notes on new distribution records

Denis Tweddle and M. Eric Anderson
South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, RSA

Received 16 March 2007; accepted 1 October 2007

Abstract

Collections of fishes from demersal trawl surveys to 800 m depth off the Angolan coast in 2001, 2002 and 2005 resulted in several range extensions tabulated here. Specimens of species poorly represented in previous collections allowed improved diagnoses of Myxine ios, Torpedo bauchotae, Dysommina rugosa, Pisodonophis semicinctus, Xenomystax congroides, Lestidiops cadenati, Ophidion lozanoi, Cataetyx bruuni, Dibranchus atlanticus, Diceratias pileatus, Himantolophus paucifilosus, Neomerinthe folgori, Careproctus albescens, Paracaristius maderensis and Pachycara crossacanthum. All specimens accessioned into the Fish Collection of the South African Institute for Aquatic Biodiversity are listed and colour plates show a selection of species from the trawl catches.

Key words: demersal trawl, Gulf of Guinea, Benguela Current, range extensions, species diagnoses

INTRODUCTION

The Angolan coast is an area of high biodiversity interest as it forms the boundary between the fauna of the temperate Benguela current, arising from upwelling off the Namibian coast to the south, and the tropical waters of the Gulf of Guinea to the north. The sea off Angola therefore supports a rich and diverse fauna.

Few survey studies of fish off the Angolan coast have been made. Poll $(1951,1953,1954,1959)$ reported on work carried out by L'Expédition Océanographique Belge dans l'Atlantique Sud of 1948-49. Lloris (1984, 1986) reported on mainly deepwater fishes from Spanish government surveys run through the Instituto de Ciencias del Mar, Barcelona, along the adjacent Namibian coast. Surveys in the area by the former Soviet Union were conducted during the 1970s and 1980s (Trunov 1981), but many of these collections remain unreported. A few other summaries and guides have been published that are relevant to the Angolan marine fish fauna. The FAO Species Identification Sheets for the eastern central Atlantic (Fischer et al. 1981) provide identification material for mostly commercial species. The Check-list of the fishes of the eastern tropical Atlantic (or "Clofeta"), in three volumes, is a comprehensive guide to the relevant literature on fishes of the area (Quero et al. 1991). Smiths' Sea Fishes (Heemstra \& Smith 1986) covers the southwestern African coast up to Namibia and thus is a partial guide to the Benguela system fishes, while the dated Blache et al. (1970) covers the eastern Atlantic coast to the north of Angola.

Extensive demersal trawl surveys off Angola in March 2001 and March 2002 in depths of 20 to 800 m by the $R V$ Dr Fridtjof Nansen under a UNDP/NORAD programme provided South African Institute for

Aquatic Biodiversity (SAIAB) with an opportunity to make large representative collections of the fishes of the region. The collection had two purposes, (1) to enhance the Institute's existing fish collection, and (2) to provide the fisheries researchers on the vessel with an updated species list, the documentation of range extensions and descriptions of the rarer species encountered.

Because of space and transport limitations, preparations for the surveys included a review of the species likely to be encountered, using existing guides to the area (Bianchi 1986; Bianchi et al. 1993; Schneider 1990) to determine which species should be collected. Decisions were made on which of the known species to collect based on presence or absence from the existing fish collection at SAIAB and on taxonomic status. Those species that required further taxonomic study had higher priority than well-known species. For the lessè-known, deep-water species, efforts were made to obtain representative samples of as many as possible, but concentrating on specimens that were in good condition. Any specimens that were not identified on board were retained for later study. A complete list of all species collected is appended to this paper, together with a summary of trawl station data for cross reference. On the basis of the Clofeta synopsis and some more recent literature, we record range extensions (Table 1) of 34 fish species from more northerly waters, two (Galeichthys feliceps and Careproctus albescens) from more southerly waters and the first eastern Atlantic record of the apparently widespread eel Dysommina rugosa. A new morid species collected, Physiculus cyanostrophus Anderson \& Tweddle 2002, was described earlier.

Colour plates in this paper illustrate a small selection of species caught during the surveys, including some of the species discussed in the text.

MATERIALS AND METHODS

The trawl surveys were designed to obtain biomass estimates using the swept area method (Sparre \& Venema 1998) and covered the entire length of the Angolan continental shelf from 20 to 800 m in depth. A total of 342 stations (summarised in Appendix A) were fished in the 2001 and 2002 surveys, with trawl bottom time usually of 30 minutes unless interrupted by hard ground.

Samples were taken from each trawl by the fisheries scientists on board for sorting, weighing and measurement. The fishes in this sample were checked and if there was any uncertainty over identification, the fishes were examined further in the vessel's laboratory, using available identification keys on board. In addition to the sample taken, each trawl haul was examined on deck for any unusual species that were present.

Using the target species list prepared in advance, up to ten good specimens were collected for each of the species and preserved in 10% formalin. Rare, unidentified or questionable specimens were also retained. Most specimens were identified on board, though some species are the subject of further study, as discussed below. Each fish kept was labelled with a code number written in pencil on plastic paper, which was inserted in the mouth or gillcover, cross-referenced with the field notes and station number. Full collection details were added later from the vessel's trawl records at SAIAB where the collection of 1704 specimens of 277 species was transferred to 60% propanol or 70% ethanol and catalogued. The full species list is given in Appendix B.

When time permitted and specimens of the various species were available in good condition, photographs were taken, generally against a standard yellow background, using the vessel's Olympus digital camera. Some photographs were also taken on slide film. Most photographed specimens were keptand preserved, with the specimen and photo cross-referenced, though some larger and/or commoner species were not retained.

In addition to the 2001 and 2002 survey collections, specimens of the uncommon Lestidiops cadenati, Cataetyx bruuni and Pachycara crossacanthum were obtained by Dr Tomio Iwamoto, California Academy of Sciences (CAS), during the UNDP/NORAD cruise of March-April 2005. Data from these specimens were incorporated into our accounts, with the station data added to Appendix A.

Counts and measurements in the species accounts follow Hubbs \& Lagler (1947), Fernholm \& Hubbs (1981) and McMillan \& Wisner (1984) for hagfishes, Robins \& Robins (1970) and Smith \& Kanazawa (1977) for eels, Bradbury $(1988,1999)$ for batfishes, Pietsch (1974) and Bertelsen and Krefft (1988) for anglerfishes, Eschmeyer (1969) for scorpionfishes, Anderson (1994) for zoarcids and Robins $(1960,1962)$ for ophidioids. Counts of vertebrae and unpaired fin rays of elongate fishes were taken from radiographs. Abbreviation used
are as follows: SL - standard length; TL - total length; HL - head length; Pelv. - pelvic fin rays.

Authorities for original descriptions are available in Eschmeyer's on-line Catalog of Fishes, http://www. calacademy.org/research/ichthyology/catalog/ fishcatmain.asp, and are not included in the reference list here.

SYSTEMATICS

MYXINIDAE

Myxine ios Fernholm, 1981

This hagfish was the first to be captured in West African waters, and is known to occur from off WesternSahara to Iceland (Fernholm \& Vladykov 1984). Fernholm (1981) found the species exists in two populations, a northern one with a light grey body and whitish head, and an African one with a uniformly darker grey colour. A single specimen, 303 mm TL , of the African population was collected off northern Angola in 700 m at station 2799 during the 2002 cruise (Appendix B). It agrees with the original description in every respect except that it has 101 slime pores, compared with 103-116 for the West African population, and slight differences in a few morphometric features.

Head and body uniformly dark purplish-grey. Ventral part of snout, mouth, barbels, gill apertures, slime pores, cloaca and distal half of ventral fin fold white. Proportions as percent total length: prebranchial length 30 ; trunk length 57 ; tail length 13 ; body width 4.8; body depth including fin fold: 6.5; body depth excluding fin fold: 5.6; body depth at cloaca: 5.3; tail depth 5.7 ; first barbel length 1.3 ; second barbel length 1.3; third barbel length 1.5. Slime pore counts, left side: prebranchial 29 , trunk 61 , tail $11=101$ total. Seven gill pouches on each side. Tooth counts: cusps on multicuspids $2 / 2$ each side; unicuspids, right side: outer row 9 , inner row 9 ; unicuspids left side: outer row 10, inner row 9 ; total cusps 45 .

TORPEDINIDAE

Torpedo bauchotae

Cadenat, Capapé \& Desoutter 1978
(Plate 1J)
This electric ray was described from two juveniles taken off the Congo and Senegal, depths unknown. Other (unpublished) specimens are known from Ivory Coast and Senegal (B. Seret pers. comm., 2003). Two juvenile females, $148-150 \mathrm{~mm} \mathrm{TL}$, were taken off northern Angola during the 2001 cruise in 24 m (Appendix B).

Anterior edge of disk straight, pelvic fins gently rounded. Characteristic black variegations snaking around disk; these wider, therefore disk darker, in 148

Table 1. New records, range and depth extensions for fishes caught in the Angolan trawl surveys. The sources for the previous data, followed by page number, are: C = CLOFETA; S = Smith 1989; L = Lloris 1986.

Name	From	To	Source
MYXINIFORMES			
Myxine ios	W. Sahara	N. Angola	$\mathrm{Cl}: 1$
ANGUILLIFORMES			
Coloconger cadenati	Gulf of Guinea	N. Angola	CI:168
Uroconger syringinus	Gulf of Guinea	C. Angola	CI:166
Nettastoma melanurum	Gulf of Guinea	N. Angola	CI:174
Xenomystax congroides	Gulf of Guinea	N. Angola	S:566
Hoplunnis punctatus	Gulf of Guinea	N. Angola	CI:173
Chlopsis olokun	Congo	N. Angola	Cl:150
Dysommina rugosa	(First East-Central A	record)	S:242
SILURIFORMES			
Galeichthys feliceps	Walvis Bay	S. Angola	Cl:230
SALMONIFORMES			
Talismania homoptera	Congo	S. Angola	CI:263
AULOPIFORMES			
Aulopus cadenati	NW Africa	N. Angola	Cl:349
Bathypterois quadrifilis	Gulf of Guinea	C. Angola	Cl:357
Lestidiops cadenati	Gorée, Senegal	N. Angola	Cl:375
GADIFORMES			
Nezumia africana	Gulf of Guinea	S. Angola	CII:560
OPHIDIIFORMES			
Ophidion lozanoi	Senegal	C. Angola	CII:574
Cataetyx bruuni	First since original d	tion (off Angola)	CII:574
LOPHIIFORMES			
Lophiodes kempi	Congo	C. Angola	CII:479
Antennarius senegalensis	Congo	C. Angola	CII:482
Diceratias pileatus	Gulf of Guinea	C. Angola	CII:496
SCORPAENIFORMES			
Scorpaena elongata	Guinea	C. Angola	CII:671
Neomerinthe folgori	Mauritania	N. Angola	CII:667
Careproctus albescens	So. Namibia	S. Angola	L:320
PERCIFORMES			
Boops boops	São Tome-Principe	S. Angola	CII:790
Mycteroperca rubra	Zaire	Luanda	CII:702
Cephalopholis nigri	Zaire	Luanda	CII:695
Chaetodon robustus	Gulf of Guinea	Luanda	CII:838
Labrisomus nuchipinnis	Equatorial Guinea	Luanda	CII:918
Lutjanus fulgens	Gulf of Guinea	C. Angola	CII:776
Pachycara crossacanthum	Gabon	N. Angola	
Priacanthus arenatus	Gulf of Guinea	S. Angola	CII:712
Apogon affinis	Gulf of Guinea	C. Angola	CII:814
Synagrops bellus	Gulf of Guinea	N. Angola	CII:693
Xyrichthys novacula	Gabon	C. Angola	CII:882
Trachinus pellegrini	Nigeria	N. Angola	CII:895
Foetorepus phaeton	Gabon	N. Angola	CII:924
Trachinotus goreensis	Gulf of Guinea	C. Angola	CII:749
Ariomma bondi	Gulf of Guinea	N. Angola	CII:1019
PLEURONECTIFORMES			
Microchirus wittei	Ghana	N. Angola	CII:1043
	Depth: 145-460 m	43-44 m	
Cynoglossus cadenati	Depth: $10-20 \mathrm{~m}$	729-738 m	CII:1051

mm specimen than in the larger individuals. Pale spots surrounded by thin black lineations in this specimen, spots paler (whitish), without lineations in 150 mm specimen. Spiracle surrounded by 9-10 finger-like papillae. Molariform teeth in four rows anteriorly in both jaws. Proportions as percent disk width: total length 1.4-1.5; disk length 83-87; snout to origin of first dorsal fin 93-99; snout to origin of second dorsal fin 1.0; interdorsal distance 3.7-4.1; first dorsal fin base 9.3-9.8; second dorsal fin base 7.5-7.7; transverse spiracle diameter 2.7-2.9; interspiracular width 7.07.9; interorbital width 4.8-5.0; mouth width 9.3-9.4; internasal width 5.8-5.9; snout to mouth 13; first gill slit interdistance 25; fifth gill slit interdistance 23-24.

SYNAPHOBRANCHIDAE

Dysommina rugosa Ginsburg 1951

This cutthroat eel has been reported reliably from upper slope depths in the northwestern Atlantic and Hawaii. A single 362 mm TL specimen was taken off northern Angola in 536-542 m during the 2002 cruise (Appendix B) that agrees with North Atlantic specimens (Robins \& Robins 1989).

Total vertebrae133; predorsalvertebrae11; Dorsal fin rays (D) 314 ; Anal fin rays (A) 290; Pectoral fin rays (P) 16 ; Caudal fin rays (C) 15. Pores: preoperculomandibular 5 (pore in position five, under posterior margin of eye, not open on both sides); infraorbital 5; supraorbital 3. No supratemporal commissure. Vomer with four caniniform teeth. Proportions as percent TL: predorsal length 17; preanal 28; body depth at anus 5.9; head length 13; head width 3.3. Proportions as percent head length (HL): head width 26; snout 28; eye diameter 13; jaw length 45; gill opening 16; interbranchial distance 12; pectoral-fin 24; interorbital 15. Colour uniformly dark chocolate brown.

OPHICHTHIDAE

Pisodonophis semicinctus (Richardson 1848) (Plate 3Y)

This distinctive snake eel was originally described as Ophisurus semicinctus Richardson 1848. This name, however, is a junior homonym of Ophisurus semicinctus Lay \& Bennett 1839, another snake eel now placed in the genus Leiuranus Bleeker (McCosker 1977). Richardson's name has been wrongly treated as valid by authors as Pisodonophis semicinctus. Also, the species does not belong to Pisodonophis sensu stricto, thus a replacement name is required (J. McCosker, pers. comm.). This eel ranges from the Mediterranean coast of Algeria to Angola at inner shelf depths (Bauchot 1986). Three specimens, 616-813 mm TL, were taken during the cruises off northern and central Angola in

25-40 m (Appendix B). Recent descriptive literature for the species includes Blache et al. (1970), Blache \& Saldanha (1972), Saldanha (1982) and Bauchot (1986), summarised below.

Total vertebrae 155-162. Lateral line pores: prepectoral 10-12; preanal 53-59. Pectoral-fin rays 1011. Caudal fin absent, tip of tail a stiff lobe. Proportions as percent total length (TL) (Blache \& Saldanha 1972): predorsal length 6.7-8.9; preanal 32-43; head 1112; body depth 3.3-4.3. Proportions as percent HL: predorsal length 63-79; body depth 29-40; snout 19-21; eye diameter 6.6-10.0; interbranchial distance 18-20; pectoral-fin 28-33.

Head cuneiform in lateral view when mouth closed. Dorsal and anal fins well developed, dorsal-fin origin distinctly in advance of gill opening. Background colour yellow, lighter ventrally, with 14-18 dark brown saddles from nape to tail tip. Pectoral fin yellow. Head with large dark saddle blotch and smaller black spots.

CONGRIDAE

> Xenomystax congroides Smith \& Kanazawa in Smith, 1989

This eel is chiefly known from the Gulf of Mexico to off northern Brazil in depths of about $150-500 \mathrm{~m}$, but is also known in the eastern Atlantic from 10 specimens taken from off Liberia to Congo in 156-400 m (Smith 1989). Two specimens were taken off northern Angola during the 2001 cruise at depths of $327-355 \mathrm{~m}$ (Appendix B). One specimen (SAIAB 64867, 445 mm TL) has lost the end of its tail (172 total vertebrae) and has a regenerated pseudocaudal fin. Both specimens agree well with the Gulf of Guinea population in the original description but have one less supraorbital pore.

Predorsal vertebrae 4; preanal vertebrae 3940; precaudal vertebrae 60-61; total vertebrae 216 (undamaged specimen). Branchiostegal rays 10. Pectoral-fin rays $12-13$. Pores: lateral line to anus 36-37; preoperculomandibular 14; infraorbital $5+$ $0+3$; supraorbital $1+4$; supratemporal commissure 3. Proportions as percent TL (undamaged specimen): predorsal 12; preanal 34; head 14. Proportions as percent preanal length (both specimens): predorsal 3435; head length 41; head width 9.0-10.1; depth at anus 11; pectoral fin 9.2-10.1. Proportions as percent HL: snout 32; eye 11; upper jaw 55-56; gill opening 9.2-10.3; interbranchial 10; pectoral fin 23-25.

Body and tail brownish dorsally with scattered melanophores. Lateral line area pale. Ventral surface pale yellowish. Edges of vertical fins posteriorly and gut black. Intermaxillary tooth patch with three large canines anteriorly (Smith 1989, fig. 598).

Fig. 1. Lestidiops cadenati, 218 mm SL, SAIAB 66083.

PARALEPIDIDAE

Lestidiops cadenati (Maul 1962)
(Figs. $1 \& 2$)
This barracudina was described from a single beachcast juvenile, 82.5 mm SL, found near Dakar, Senegal in 1953 (Maul 1962). Subsequent references that we found all refer to the holotype (Blache et al. 1970; Post 1972, 1991). Nineteen specimens, $210-233 \mathrm{~mm}$ SL, were collected during the two cruises off northern Angola at five stations ranging in bottom depth from 259 m to 364 m (Appendix B). The 2005 CAS collection contains seven specimens $217-318 \mathrm{~mm}$ SL from stations 3630, 3656, 3675, 3698 and 3709 (Appendix A). Barracudinas are considered coastal, mesopelagic fishes (Rofen 1966). Vertebral and caudal-fin counts were taken from radiographs of 15 specimens. Other counts and measurements were taken from all 26 fish where possible.

Vertebrae 36-40 + 41-45 = 79-84; D 9-11 (usually 10); A 25-27; P 11-12; Pelv. 9; C xiii-xiv $+10-11+9+$ ix-xvii (19-20 principals); lateral line sections 130-140; gill rakers $4-13+22-29=26-41$; branchiostegal rays 5; pseudobranch filaments 16-19. Proportions as percent SL: head length 22-24; head width 4.1-4.8; head depth 6.4-7.5; postorbital length 8.4-9.3; upper jaw length 8.410.2; lower jaw length 11-13; predorsal length 60-63; preanal length 79-80; prepelvic length 56-60; pectoralfin length 7.9-9.3; pelvic-fin length 5.2-5.9; body depth at dorsal-fin origin 5.2-7.3; body depth at anal-fin origin 5.0-6.1; gill slit length 11-12; caudal peduncle length 5.2-7.2; caudal peduncle least depth 2.5-2.8; dorsal-fin base 4.5-5.6; anal-fin base 14-15. Proportions as percent HL: head width 19-21; head depth 28-34; postorbital length 38-41; upper jaw length 38-43; lower jaw length 50-57; pectoral base depth 9.2-11.6; pectoral-fin length 35-42; pelvic-fin length 23-25; snout length 44-46; orbit diameter 16-18; gill slit length 50-52; bony interorbital width 9.2-11.0.

Head depressed, snout long and tapering to tip of upwardly-protruding lower jaw that fits into the median diastema of the upper jaw. Over 60 tiny teeth on each premaxilla. Maxilla closely joined to premaxilla, edentate, as is vomer. Palatines with 6-9 retrorse, caniniform teeth in anterior half, usually arranged in groups of two, with innermost the larger; single row
of 8-19 smaller, retrorse teeth posteriorly. Dentary with double row of teeth posterior to symphysis, outer teeth small, retrorse, inner teeth long, daggerlike. Eye large, rounded, with adipose eyelid covering anterior and posterior third of pupil. Gill cavity black, gill arches and pseudobranch filaments elongate. Gill rakers reduced to placodes bearing 1-4 strong denticles, with 4-13 placodes on epibranchial, 12-17 on ceratobranchial and 9-12 on hypobranchial. Operculum and suborbital regions with complex, radiating pattern of sensory canals. Body strongly laterally compressed. Ventral carinas (adipose keels) between pectoral and pelvic fins and pelvics and anal fin dotted with tiny melanophores. Lateral line scales (sections) one per myomere anteriorly; three upper and three lower pores posteriorly on each scale to mid-anal fin (Fig. 2; Maul 1962, fig. 5; compare with Rofen 1966, figs. 101, 102). Scales abruptly diminish in size near posterior end of anal fin, becoming two per myomere and with a single dorsal and single ventral pore. Lateral line scales extend to end of caudal peduncle where they are three per myomere, with a few scales turning dorsally right at end. Anus on vertical through dorsal-fin rays 4-8, center of anus situated 20.8-26.2\% HL posterior to pelvic-fin insertion. Fins relatively small; pectorals wedge-shaped, dorsalmost five rays longest. Anal fin deeply notched anteriorly, rays 4-6 longest. Dorsal fin low, usually of 10 rays, its origin one eye diameter posterior to vertical through pelvic-fin origin.

Colouration: dorsum dusky brown, pale silvery ventrally. Eye and opercular areas dark blue. Peritoneal pigment patches absent in our material. Fins of largest specimen (CAS 222645; 318 mm SL) dusky.

Fig. 2. Lestidiops cadenati, SAIAB 66083, lateral line scale detail.

Ophididae
Ophidion lozanoi Matallans 1990

This cusk-eel was described from two specimens taken off Western Sahara (holotype) and Senegal (paratype). No further published records are known (J. Matallans pers. comm.), but Robins (1999:40) listed it from Spain as well. Twenty-one specimens, $117-208 \mathrm{~mm} \mathrm{SL}$, were collected during the 2002 cruise off central and northern Angola (Porto Amboim to the Congo River mouth) at depths of $40-259 \mathrm{~m}$ (Appendix B). Counts of vertebrae and unpaired fin-rays were taken from six radiographed specimens. Other counts and measurements were taken from 15 specimens $144-208 \mathrm{~mm}$ SL (the two types were $130 \& 138 \mathrm{~mm} \mathrm{SL})$.

Vertebrae 15-16 + 51-53 = 67-69; D 130-147; A 108-119; P 24-25; C 9; Pelv. 2; lower limb gill rakers 4; branchiostegal rays 7; pseudobranch filaments 4-5. Proportions as percent SL: head length 21-22; head width 8.7-11.3; head depth 13-14; predorsal length 26-29; preanal length 40-41; prepelvic length 5.2-6.4; gnathoproctal length 37-38; lateral line length $88-90$;
body depth at occiput 14-25; body depth at dorsal-fin origin 14-15; body depth at anal-fin origin 13-14; gill slit length 12-15; occipital length 13-14; postorbital length 12-13. Proportions as percent HL: upper jaw length 49-54; lower jaw length 55-60; pectoral base depth 18-19; pectoral-fin length 43-46; pelvic-fin length $33-53$; snout length 19-21; orbit diameter 24-27; gill slit length 56-68; bony interorbital width 14-17; occipital length 61-63; postorbital length 57-59.

Anterodorsal edge of snout high as result of large rostral spine; tip of snout vertical (Fig. X). Tail laterally compressed, lateral line coursing along its dorsal third, extending to posterior seventh of total length. First dorsal-fin pterygiophore inserted between vertebrae 6 and 7. Epibranchial tooth plates 2-3, four elongate gill rakers on ceratobranchial. Vomerine teeth 28-51, in triangular or rhomboidal patch. Palatine teeth in three (smallest fish) to five (largest) irregular rows. No pyloric caeca. Peritoneum and orobranchial chamber black, mouth dusky toward sides. Body greyish-brown dorsally with yellowish tinges ventrally in smaller specimens.

Fig. 3. Cataetyx bruuni, 100 mm SL, SAIAB 65946, pectoral and caudal fin details from separate specimen, SAIAB 65871.

BYTHITIDAE

Cataetyx bruuni (Nielsen \& Nybelin 1963)
(Fig. 3)
This rare brotula was originally described in the genus Oculospinus Koefoed 1927 from three specimens taken off Angola at depths of $235-510 \mathrm{~m}$, but was assigned to Cataetyx by Cohen (1981). No other descriptive records were found, but Nielsen (1990) mentioned there were a "few specimens from the Gulf of Guinea". We found that these are 27 specimens in four lots in the Museum de La Rochelle, France, and the National Museum of Natural History, Washington, D.C., USA. They range from Senegal to Gabon at depths of 329-1355 m. Three specimens were collected during the 2002 cruise off central Angola (north of Benguela to off Cabo Ledo) at depths of 504-707 m (Appendix B), an adult male

92 mm SL and two gravid females $87-100 \mathrm{~mm}$ SL. The CAS 2005 collection is of 21 specimens $65-122 \mathrm{~mm}$ SL from stations $3601,3622,3641,3649$ and 3656 at depths of $604-809 \mathrm{~m}$ (Appendix A).

Vertebrae $15-16+48-50=61-66 ;$ D 107-120; A 81-89; P 26-28; C 10; Pelv. 1; lower limb gill rakers 3; branchiostegal rays 9; pseudobranch absent. Proportions as percent SL: head length 23-26; head width 10-14; head depth 11-13; predorsal length 31-34; preanal length 47-51; prepelvic length 19-21; gnathoproctal length 42-46; body depth at occiput 1114; body depth at dorsal-fin origin 11-17; body depth at anal-fin origin 11-13; gill slit length 15-16; postorbital length 14-15; pectoral fin length 13-15. Proportions as percent HL: upper jaw length 43-49; lower jaw length 49-56; pectoral base depth 21-26; pectoral fin length 56-63; pelvic fin length 31-42; snout length 21-23; orbit diameter 19-20; gill slit length 63-66; bony interorbital
width 14-16; postorbital length 56-60.
Head ovoid, depressed; tip of snout steeply sloping (Fig. 3). Tail laterally compressed; lateral line not evident. First dorsal-fin pterygiophore inserted between vertebrae 7 and 8 . Rudimentary gill rakers on epibranchials 2-3; three elongate rakers on upper part of ceratobranchial and seven rudiments ventrally. Vomerine teeth 16-27, in two arcing rows. Palatine teeth in three irregular rows. No pyloric caeca. Opercle with stout, V-shaped spine arrangement; uppermost projecting posteriad, lower projecting ventroposteriad. Skin flap on opercle above posteriorly-directed spine ending in a wide pore. Cleithrum with posteriorlydirected spine just above pectoral base. Posteriorlydirected preorbital spine directly behind posterior nostril. Pelvic fins inserted under opercle. Top of head and body brown, head darker. Opercle, lower side of head and area under eye blue. Cheeks yellowish. Orobranchial chamber and peritoneum black.

OGCOCEPHALIDAE

Dibranchus atlanticus Peters 1876

This batfish is known in the western Atlantic from Canada to Brazil and in the eastern Atlantic from the Gulf of Guinea to Angola in depths of about 100-1260 m (Bradbury 1999). Twenty-six specimens were taken off central and northern Angola during the cruises at depths of 112-614 m (Appendix B). The specimens agree with Bradbury's detailed description, but most have very large tubercles more like those of D. tremendus Bradbury 1999 than typical D. atlanticus (Bradbury 1999, fig. 8). The central spines of our specimens are not greatly elongated on the tubercles of the tail, as in D. tremendus. All tubercles are decorated with spinules, however, and this, with the small sizes and shallow collection depths, identify the species as D. atlanticus.

Counts and body proportions from 10 specimens $81-105 \mathrm{~mm}$ SL: D 5-6; A 4; P 13-14; Pelv. 5. Neuromast counts: preopercular 2; subopercular 5-6; tail 10-11. Proportions as percent SL: disk margin length 42-44; skull length $28-31$; cranium width $20-22$; eye width 9.7-10.7; distance jaw to anus 49-53; jaw to anal fin origin 71-74; predorsal length 58-60; interorbital width 8.6-9.4; jaw length 11-12; mouth width 14-16.

DICERATIIDAE

Diceratias pileatus Uwate 1979

This double anglerfish is known in the literature from 45 specimens ranging across the tropical Atlantic from the Bahamas to the Gulf of Guinea (Uwate 1979; Fujii 1983). Pietsch \& Randall (1987) reported the first occurrence of the species outside the Atlantic (off

Hawaii), which is the largest specimen known at 275 mm SL. Twenty-two female specimens, $20-114 \mathrm{~mm}$ SL, from nine stations were collected during our cruises off Angola (Appendix B). This species is mesopelagic and bottom depths ranged from $446-769 \mathrm{~m}$.

Following counts and proportions taken from the ten best specimens, $20-65 \mathrm{~mm}$ SL: D 6-7; A 4; P 12-13; C 9; vomerine teeth 0-8 (absent in 20 mm fish); upper jaw teeth 9-17; lower jaw teeth 14-22. Proportions as percent SL: predorsal length 76-79; preanal length 8689; body depth 59-62; illicial length 36-40; head length 37-40; head depth 57-59; head width 33-36; lower jaw length 44-47. Esca a simple bulb with a small cap (absent in 20 mm fish). Body solid black, covered in minute spinules.

HIMANTOLOPHIDAE

Himantolophus paucifilosus
 Bertelsen \& Krefft 1988

This footballfish was described from 17 females taken at mesopelagic depths across the tropical Atlantic. A single female, 147 mm SL, was taken off central Angola in 2002, bottom depth 672 m (Appendix B).

Counts and proportions as percent SL: D 5; A 4; P 16; C 9; head length 39; head depth 56 ; predorsal length 87 ; preanal length 87 ; body depth 65 ; illicial length 46 ; diameter escal bulb 5.5 ; length distal escal appendage 2.0; anterior appendage absent; length posterior appendage 9.5 ; length illicial appendage 15 . Two illicial appendages just below esca, each with an unbrancing filament. Colour solid black.

SCORPAENIDAE

Neomerinthe folgori (Postel \& Roux 1964)
 (Fig. 4)

This rare scorpionfish was described from a single specimen, 287 mm SL, taken off the Cape Verde Islands in $180-200 \mathrm{~m}$. We found that only two other specimens have been reported, one from Mauritania in 310 m (Cervignon 1960, reported as Scorpaena sp. (Eschmeyer 1969)) and another from Namibia in about 200 m (Penrith 1980; Eschmeyer 1986). The species was not mentioned by Blache et al. (1970). A gravid female, apparently the largest specimen known at 417 mm SL , was collected off northern Angola during the 2001 cruise in 322-324 m (Appendix B). It agrees with published descriptions, but as it is much larger than the other three (to 340 mm), has significantly shorter predorsal and snout lengths and fewer gill rakers (lowermost somewhat coalesced); variation in other morphometric features is insignificant.

D XII, 11; A III, 5; P 17; C 16; Pelv. I, 5; gill rakers 8 + 8 ; tubed lateral line scales 28 ; lateral line scale rows 78 .

Fig. 4. Neomerinthe folgori, 417 mm SL, SAIAB 65015, photograph of right side in mirror image.

Proportions as percent SL: head length 45; head width 25 ; head depth 32 ; body depth 36 ; predorsal length 35; preanal length 73; prepelvic length 36; pectoral-fin length 23. Proportions as percent HL: head width 57; head depth 71; postorbital length 55; orbit diameter 19; snout length 31 ; upper jaw length 47; pectoral-fin length 51.

Preorbital bone with two spinous lobes over upper jaw, with 11 lateral points and five cirri. Suborbital ridge with 34 small points along centre line. First preopercular spine longest, second small (absent on left side), third and fourth present, fifth a mere nub under skin. Supplemental preopercular spine present. Postorbital ridge with upper posttemporal spine embedded (unexposed); supracleithral, lower posttemporal, pterotic and sphenotic spines present, letter two with several small points. Scales on body ctenoid, 78 lateral scale rows (the count by Postel and Roux 1964, of 85 in the holotype was corrected by Poss \& Duhamel 1991, to 77). Cirri on head weakly developed, mostly absent. Background colouration yellowish with black and brownish variegations. Four variegated black bands on body. Caudal fin with narrow bands, posterior margin without wide black band as in holotype.

LIPARIDAE

Careproctus albescens Barnard 1927

Careproctus griseldea Lloris 1982

This snailfish was described from six juveniles taken off Cape Town in $1152-1463 \mathrm{~m}$. It is still rare in collections, and we are aware of 16 other specimens from Cape Town north to off southern Namibia. Lloris (1982) described the first adults as C. griseldea. A single adult, 126 mm SL, was taken during the 2002 cruise off
southern Angola in 603 m (Appendix B).
Vertebrae $11+51=62$; D 55; A 49; P $26+11=37$; C 11; branchiostegal rays 6 . Proportions as percent SL: Predorsal length 23; preanal length 36; head length 23; head width 14; head depth 18; body depth 20 ; gill slit length 8.2; pectoral-fin length 19. Proportions as percent HL: head width 60; head depth 77; upper jaw length 37; lower jaw length 43; pectoral base depth 32; pectoralfin length 82 ; body depth 86 ; disk width 23 ; disk length 26; snout length 32 ; eye diameter 22; gill slit length 36; bony interorbital width 19. Colour uniformly pale grey anteriorly grading into blackish tail. Peritoneum dusky (densely dotted with melanophores, typical of adult, shallow-dwelling Careproctus species). Teeth mostly simple, retrorse, a few in inner rows of lower jaw trilobed (tips triangular).

CARISTIIDAE

The manefishes are in great need of systematic revisionary study. No keys to all the species exist (but see below) and a few undescribed genera and species are known in collections (M. Leiby pers. comm. 2002). Until recently, two subgenera of Caristius Gill \& Smith 1905 were usually recognised, Platyberyx Zugmayer 1911, with a high, curved lateral line and vomerine and palatine teeth, and Caristius Gill \& Smith 1905, with lateral line straight or absent and with or without vomerine or palatine teeth. The manefishes were not considered by Blache et al. (1970), but Post (1991) lists four species for the Clofeta area, two Platyberyx (P. opalescens and P. groenlandicus) and two Caristius (C. macropus and C. maderensis). Trunov et al. (2006) erected Paracaristius for C. maderensis (type species) and a new southern hemisphere species (P. heemstrai), but did not comment on the generic status of C. macropus. Nine
specimens, $56-173 \mathrm{~mm}$ SL, of a manefish were taken during our cruises off central and northern Angola at bottom depths of 601-776 m (Appendix B).

Caristius macropus, originally described from Japan (Bellotti 1903) and well known in the Pacific, has been reported from the Atlantic a few times (e.g., FraserBrunner 1931; Parin et al. 1974, but not Norman 1930 [see Maul 1949: 26 for corrected counts]). We distinguish our species from C. macropus, and therefore identify it as P. maderensis, on the basis of its lower counts and lack of vomerine and palatine teeth. The material agrees well with Mauls' original description and that of Trunov (1981), each based on one specimen. We offer here a tentative key gleaned from other Caristius specimens in the SAIAB Fish Collection, the literature and an unpublished key of R. Britz, Natural History Museum, London.

KEY TO ATLANTIC SPECIES OF MANEFISHES

1A. Lateral line high on dorsum, arched 2
1B. Lateral line straight, coursing midlaterally, obsolete 3

2A. D 28-31; A 17-19 \qquad Platyberyx opalescens
2B. D 32-36; A 20-22 Platyberyx groenlandicus

3A. Rear margin of upper jaw not reaching beyond middle of eye; vomerine and palatine teeth absent; D 26-30; A 15-17; P 15-17; vert. 32-33

Paracaristius maderensis
3B. Rear margin of upper jaw reaches beyond middle of eye; vomerine and palatine teeth present; D 33-37; A 21-23; P 17-20; vert. 39-40

Caristius macropus

Paracaristius maderensis (Maul 1949)

Counts and proportions from Angola material (vertebral counts from radiographs of five specimens): Vertebrae $15+17-18=32-33 ;$ D 27-28; A 17-18; P 16-17; C 17 (principal rays); Pelv. 6; gill rakers $6-8+14=20-22$; branchiostegal rays 7; pseudobranch filaments 11-20. Proportions as percent SL: head length 30-36; head width 13-15; upper jaw length 11-12; lower jaw length 15-20; predorsal length 8.8-9.5; preanal length 56-57; prepelvic length 25-30; length longest dorsal ray 58-81; length longest anal ray 25-43; pectoral length 26-31; pelvic length 59-61; body depth 47-48. Proportions as percent HL: head width 41-44; upper jaw length $32-$ 36; lower jaw length 49-56; pectoral base depth 21-23; snout length 11-13; pupil diameter 31-36.

Fig. 5. Pachycara crossacanthus, drawing from original description.

ZOARCIDAE

Pachycara crossacanthum Anderson 1989
(Fig. 5)
This rare eelpout was described from six specimens, 227-378 mm SL, collected by French researchers in fish traps set off Senegal and Gabon in depths of 900-1050 m . No other specimens have been reported. Four late juvenile females, 137-155 mm SL, were collected during the two cruises off central and southern Angola at two stations in depths of 672-783 m (Appendix B). The CAS 2005 collection is of four specimens $122-265 \mathrm{~mm}$ SL from stations 3609, 3676 and 3684 taken at depths of 725-891 m (Appendix A). Vertebrae and median fin rays were counted from radiographs of all eight fish.

Vertebrae 25-28 + 76-81 = 103-107; D 98-101; A 8082; C 11-12; P 17; Pelv. 3; vomerine teeth 5-9; palatine
teeth 7-13; gill rakers 3-4 +13-14; branchiostegal rays 6; pseudobranch filaments 4-5. Proportions as percent SL: head length 17-19; head width 8.3-8.7; head depth 8.8-9.6; pectoral-fin length 10-11; predorsal length 1922; preanal length 41-44; body depth 9.4-10.7; gill slit length 6.6-7.5; caudal-fin length 3.0-3.7. Proportions as percent HL: head width 44-50; head depth 50-54; upper jaw length 31-38; pectoral-fin length 58-66; snout length 18-22; eye diameter 18-24; gill slit length 38-42; interorbital width 7.9-11.2; interpupillary width 23-27; pelvic-fin length 13-21; pectoral base/length ratio 42-47.

The four SAIAB and two CAS juveniles agree in every respect with the larger specimens but have slightly longer heads, pectoral fins and gill slits. Eight preoperculomandibular pores, seven suborbitals, two supraorbitals, four postorbitals (except CAS 222451 and 222647 with three), and no interorbital or occipitals.

Only dorsalmost 5-7 gill rakers on lower limb furcate in the six juveniles (Anderson, 1989, fig. 8). Body lateral lines originating just posterior to postorbital pore four, with mediolateral and ventral branches diverging just above anterior quarter of pectoral fin. Dorsal fin origin associated with vertebra four, with no free pterygiophores. Anal fin origin associated with ultimate precaudal vertebra, with 2-3 ray-bearing pterygiophores inserted anterior to haemal spine of first caudal vertebra in all four fish. Caudal fin with two epural and 9-10 hypural rays.

ACKNOWLEDGEMENTS

The authors are indebted to the Institute of Marine Research, Bergen, Norway, particularly the late Guillermo Burgos, for the invitation to take part in the cruises and for logistical support and specimen shipment. We also thank Alvheim Oddgeir and the IMR for permission to use photographs from the IMR's on-board identification digital photograph collection. Scientists and crew from both Norway and Angola were friendly and supportive. Particular thanks go to cruise leaders Åge Høines, Sigborn Mehl, Diana ZaeraPerez and Bjørn Erik Axelsen, and to scientists Haraldur Einarsson, Magne Olsen and Maria Sardinha for their assistance and friendship. SAIAB, a national facility of the National Research Foundation in South Africa provided support to both authors for the analysis and paper preparation. Elaine Heemstra rendered all text drawings. Specimens were identified and curatorial needs provided by David Smith, Smithsonian Institute, Bernard Seret and Martine Desoutter, Museum National d'Histoire Naturelle, and John McCosker and Tomio Iwamoto, California Academy of Sciences. Phillip Heemstra, John McCosker and Stuart Poss commented on the manuscript.

LITERATURE CITED

Anderson, M.E. 1989. Review of the eelpout genus Pachycara Zugmayer, 1911 (Teleostei: Zoarcidae), with descriptions of six new species. Proceedings of the California Academy of Sciences, 46(10): 221-242.
Anderson, M.E. 1994. Systematics and osteology of the Zoarcidae (Teleostei: Perciformes). Ichthyological Bulletin of the J.L.B. Smith Institute of Ichthyology, 60: 120 pp.
Anderson, M. E. \& D. Tweddle. 2002. A new species of Physiculus (Teleostei: Moridae) from the southeastern Atlantic. Archive of Fishery and Marine Research 50(1): 17-22.
BAUснот,M.-L.1986. Ophichthidae(including Echelidae, Clofnam 84), In: P.J.P. Whitehead, M.-L. Bauchot, J.C. Hureau, J. Nielsen \& E. Tortonese (eds.), Fishes of the North-eastern Atlantic and the Mediterranean, vol. 2. Paris, UNESCO: 577-585.

Bellotti, C. 1903. Di un nuovo pteraclide giapponese. Atti Societa Italiana de Scientia Naturale 42: 136-139.
Bertelsen, E. \& G. Krefft. 1988. The ceratioid family Himantolophidae (Pisces, Lophiiformes). Steenstrupia 14(2): 9-89.
Bianchi, G. 1986. Fichas FAO de identificaçao de espécies para propósitos comerciais. Guia de campo espécies commercias marinhas e de àguas salobras de Angola. Preparado com o apoio da NORAD e de FAO (FIRM) Programa Regular. Rome, FAO, 184 pp.
Bianchi, G., K.E. Carpenter, J.-P. Roux, F.J. Molloy, D. Boyer \& H.J. Boyer. 1993. FAO species identification field guide for fishery purposes. The living marine resources of Namibia. Rome, FAO, 250 pp .
Blache, J., J. Cadenat \& A. Stauch. 1970. Clés de détermination des poissons de mer signalés dans l^{\prime} Atlantique oriental (entre le 20e parallele N . et le 15e parallele S.). Paris, O.R.S.T.O.M., Faune Tropical 18: 479 pp .
Blache, J. \& L. Saldanha. 1972. Contribution à la connaissance des poissons Anguilliformes de la côte occidentale d'Afrique. Bulletin de l' Institut Francais de l'Afrique Noire 34(A)(1):127-159.
Bradbury, M.G. 1988. Rare fishes of the deep-sea genus Halieutopsis: a review with descriptions of four new species (Lophiiformes: Ogcocephalidae). Fieldiana: Zoology (44): 1-22.
Bradbury, M.G. 1999. A review of the fish genus Dibranchus with descriptions of new species and a new genus, Solocisquama (Lophiiformes, Ogcocephalidae). Proceedings of the California Academy of Sciences 51(5): 259-310.
Cervignon, F. 1960. Peces recogidos en el curso de las campañas realizadas a bordo del "Costa Canaria" desde cabo Bojador a Guinea Portugal (Africa Occidental) y consideraciones sobre su distribución. Investigaciones Pesqueras 17: 33-107.
Cohen, D.M. 1981. New and rare Ophidiiform fishes from the eastern Atlantic: Canary Island to the Cape of Good Hope. Proceedings of the Biological Society of Washington, 94(4): 1085-1103.
Eschmeyer, W. N. 1969. A systematic review of the scorpionfishes of the Atlantic Ocean (Pisces: Scorpaenidae). Occasional Papers of the California Academy of Sciences (79): 1-143.
Eschmeyer, W. N. 1986. Family No. 149. Scorpaenidae. In: M. M. Smith \& P. C. Heemstra (eds.), Smiths' Sea Fishes. Johannesburg, MacMillan South Africa: 463-478.
Fernholm, B. 1981. A new species of hagfish of the genus Myxine, with notes on other eastern Atlantic myxinids. Journal of Fish Biology 19: 73-82.
Fernholm, B. \& C. L. Hubbs. 1981. Western Atlantic hagfishes of the genus Eptatretus (Myxinidae) with description of two new species. Fishery Bulletin 79(1): 69-83.
Fernholm, B. \& V. Vladykov. 1984. Myxinidae. In: P. J. P. Whitehead et al. (eds.), Fishes of the North-eastern

Atlantic and the Mediterranean, vol. 1. Paris, UNESCO: 68-69.
Fischer, W., G. Bianchi \& W.B. Scott. 1981. FAO species identification sheets for fishery purposes, Eastern Central Atlantic Fishing Areas 34, 47 (in part). FAO \& Dept of Fisheries and Oceans, Canada. Ottawa, 6 vols.
Fraser-Brunner, A. 1931. Some interesting West African fishes, with descriptions of a new genus and two new species. Annals and Magazine of Natural History, series 10, 15: 658-663.
Fujil, E. 1983. Diceratiidae. In: T. Uyeno, K. Matsuura \& E. Fujii (eds.), Fishes trawled off Suriname and French Guyana. Japanese Marine Fisheries Resources Research Center, Tokyo: 259.
Hubbs, C.L. \& K.F. Lagler. 1947. Fishes of the Great Lakes region. Bulletin of the Cranbrook Institute of Science 26: 1-213.
Lloris, D. 1982. Careproctus griseldea sp. N. (Scorpaeniformes, Cyclopteridae) capturada en el Atlántico sudoriental. Resultados Expediciones Cientificas, Barcelona (10): 101-110.
Lloris, D. 1984. Ictiofauna demersal de la costa sudoccidental de África (S.W.A.-Namibia). Unpublished thesis, Doctor en Ciencias Biològicas, Universidad de Barcelona, 871 pp.
Lloris, D. 1986. Ictiofauna demersal y aspectos biogeogràficos de la costa sudoccidental de África (SWA/Namibia). Monográficos Zoológicos Marinos 1: 9-432.
Maul, G. E. 1949. Alguns peixes notaveis. Boletim do Museo Municipal do Funchal 4(11): 22-42.
Maul, G. E. 1962. On four rare paralepidids from off Dakar, with a discussion on two type specimens of Omosudis elongatus Brauer from the Atlantic Ocean. Bulletin de l'Institut Francais de l'Afrique Noire, (A) 24(2): 523-550.
McCosker, J. E. 1977. The osteology, classification, and relationships of the eel family Ophichthidae. Proceedings of the California Academy of Sciences 41(1): 1-123.
McMillan, C. B. \& R. L. Wisner. 1984. Three new species of seven-gilled hagfishes (Myxinidae, Eptatretus) from the Pacific Ocean. Proceedings of the California Academy of Sciences 43(16): 249-267.
Nielsen, J.G. 1990. Bythitidae. In Quero, J.C., Hureau, J.C., Karrer, C., Post, A. \& Saldanha, L. (eds). 1990. Check-list of the fishes of the eastern tropical Atlantic. Lisbon, UNESCO, 1: 574-575.
Norman, J. R. 1930. Oceanic fishes and flatfishes collected in 1925-27. Discovery Report 2: 261-370, 2 pls.
Parin, N. V., A. P. Andriashev, O. D. Borodulina, \& V. M. Chuvasov. 1974. Midwater fishes of the southwestern Atlantic. Trudy Institut Okeanologii 98: 76-140 (In Russian).
Penrith, M. J. 1980. Three additions to the marine fish fauna of southern Africa. Madoqua 12(1): 59-62.
Pietsch, T. W. 1974. Osteology and relationships of ceratioid anglerfishes of the family Oneirodidae,
with a review of the genus Oneirodes Lütken. Natural History Museum of Los Angeles County, Science Bulletin 18: 1-113.
Pietsch, T. W. \& J. E. Randall. 1987. First Indo-Pacific occurrence of the deepsea ceratioid anglerfish, Diceratias pileatus (Lophiiformes: Diceratiidae). Japanese Journal of Ichthyology 33(4): 419-421.
Poll, M. 1951. Poissons. I. Généralités. II. Sélaciens et Chimères. Resultats Expedition oceanographique Belge dans les eaux cotieres Africaines de l'Atlantique Sud, Brussels, 144 pp. \& 13 plates.
Poll, M. 1953. Poissons. III. Téléostéens Malacoptérygiens. Resultats Expedition oceanographique Belge dans les eaux cotieres Africanines de l'Atlantique Sud, Brussels, 258 pp. \& 8 plates.
Poll, M. 1954. Poissons. IV. Téléostéens Acanthoptérygiens (Première Partie). Resultats Expedition oceanographique Belge dans les eaux cotieres Africaines de l'Atlantique Sud, Brussels, 390 pp. \& 9 plates.
Poll, M. 1959. Poissons. IV. Téléostéens Acanthoptérygiens (Deuxième Partie). Resultats Expedition oceanographique Belge dans les eaux cotieres Africanines de l'Atlantique Sud, Brussels, 417 pp. \& 7 plates.
Poss, S. G. \& G. Duhamel. 1991. Neomerinthe bauchotae, a new scorpionfish (Scorpaenidae) from Saint Paul and Amsterdam Islands (southern Indian Ocean), with comments on the limits of the genus. Cybium 15(2): 93-102.
Post, A. 1972. Catalogue of type-specimens and designation of lectotypes of the fish-family Paralepididae (Osteichthyes, Myctophoidei). Archiv fur Fischereiwissenschaft 23(2): 136-165.
Post, A. 1991. Paralepididae. Caristiidae. In: J.C. Quero, J. C. Hureau, C. Karrer, A. Post \& L. Saldanha (eds.), Check-list of the fishes of the eastern tropical Atlantic. Lisbon, UNESCO: 373-384.
Postel, E. \& C. Roux. 1964. Scorpaena folgori, poisson téléostéen nouveau des Iles du Cap Vert. Bulletin du Muséum National de l'Histoire Naturelle, 2ème serie 36(2): 165-171.
Quero, J.C., J.C. Hureau, C, Karrer, A. Post, A. \& L. Saldanha (eds). 1990. Check-list of the fishes of the eastern tropical Atlantic. Lisbon, UNESCO, vol. 1, 1-519, vol. 2, 520-1080, vol. 3 1081-1492. Lisbon, UNESCO.
Robins, C. H. \& C. R. Robins. 1970. The eel family Dysommidae (including the Dysomminidae and Nettodaridae), its osteology and composition, including a new genus and species. Proceedings of the Academy of Natural Sciences, Philadelphia 122(6): 293-335.
Robins, C. R. 1960. Studies on fishes of the family Ophidiidae. V. Lepophidium pheromystax, a new Atlantic species allied to Lepophidium jeannae Fowler. Bulletin of Marine Sciences of the Gulf and Caribbean 10(1): 83-95.
Robins, C. R. 1962. Studies on fishes of the family Ophidiidae. VII. The Pacific species of Lepophidium.

Copeia 1962(3): 487-498.
Robins, C. R. 1999. Subfamily Ophidiinae. In: J.G. Nielsen, D.M. Cohen, D.F. Markle \& C.R. Robins (eds.), Ophidiiform fishes of the world (Order Ophidiiformes). FAO Species Catalogue 18: 26-44.
Rofen, R. R. 1966. Family Paralepididae. In: Fishes of the western North Atlantic, pt. 5. New Haven, Sears Foundation for Marine Research, 205-461.
Saldanha, L. 1982. Poissons des cotes nord-ouest Africaines (campagnnes de la "Thalassa" 1962, 1968, 1971 et 1973). Anguilliformes. Revue des Travail de l'Institut des Pêches Maritimes 45(1): 7-20.
SChneider, W. 1990. FAO species identification sheets for fisheries purposes. Field guide to the commercial marine resources of the Gulf of Guinea. Prepared and published with the support of the FAO Regional Office for Africa. Rome, FAO, 268 pp.
Smith, D.G. 1989. Family Congridae. In: Fishes of the western North Atlantic, part 9, vol.1. Orders Anguilliformes and Saccopharyngiformes. Memoirs of the Sears Foundation for Marine Research, New

Haven, 460-567.
Smith, D. G. \& R. H. Kanazawa. 1977. Eight new species and a new genus of congrid eels from the western North Atlantic, with redescriptions of Ariosoma analis, Hildebrandia guppyi, and Rhechias vicinalis. Bulletin of Marine Science 27(3): 530-543.
Sparre, P. \&. C. Venema. 1998. Introduction to tropical fish stock assessment. Part 1. Manual. FAO Fisheries Technical Paper. No. 306.1, Revision 2. Rome, FAO, 407 pp.
Trunov, I.A. 1981. Ichthyofuna of the submarine Valdivia Bank (southeastern Atlantic). Byulletin Moskvogo Obshii Ispytatelnaya Priroda Otdelenie Biologiya 86(5): 51-64 (I Russian).
Trunov, I.A., E.I. Kukuev \& N.V. Parin. 2006. Materials for a revision of the family Caristiidae (Perciformes): 1. Description of Paracaristius heemstrai gen. et sp. nov. Journal of Ichthyology 46(6): 441-446.
Uwate, K.R. 1979. Revision of the anglerfish Diceratiidae with descriptions of two new species. Copeia 1979(1): 129-144.

PLATE 1

A. Cepola pauciradiata. Station 2762, SAIAB 65971.

First published live colour photograph of this species.

C. Physiculus huloti. Station 2765, SAIAB 66038.

E. Bathygadus macrops. Station 2861, SAIAB 67989.

G. Syacium micrurum. Station 2472, SAIAB 65501.

I. Zanobatus schoenlenii. Station 2556, SAIAB 65726.

B. Coloconger cadenati. Station 2842, SAIAB 67386.

D. Physiculus cyanostrophus. Station 2753, SAIAB 64639, paratype. First published live colour photograph of this species.

F. Trachyrhynchus trachyrhynchus. RV Dr Fridtjof Nansen collection, photo MARTRO1.jpg.

H. Ebinania costaecanariae. Station 2701, SAIAB 65804.

J. Torpedo bauchoti. RV Dr Fridtjof Nansen collection, photo Rayto13.jpg.

PLATE 2

K. Stromateus fiatola. Caught on 12 March 2001, not preserved.

M. Hoplostethus cadenati. RV Dr Fridtjof Nansen collection, photo TRHH0031.jpg.

O. Centrarchops atlanticus. Station 2808, SAIAB 68106.

Q. Scorpaena scrofa. Two specimens from Station 2555, SAIAB 65733.

L. Zenion longipinnis with mouth everted. RV Dr Fridtjof Nansen collection, photo ZE1Z10.jpg.

N. Laemonema lawreysii. RV Dr Fridtjof Nansen collection, photo MORLA011.jpg.

P. Setarches guentheri. RV Dr Fridtjof Nansen collection, photo SCRSE031.jpg.

R. Scorpaena normani. Station 2501, SAIAB 65496.

PLATE 3

S. Aulopus cadenati. Station 2477, SAIAB 64976.

U. Zenopsis conchifer. Adult. RV Dr Fridtjof Nansen collection, photo ZEIZN01.jpg.

W. Uranoscopus albesca. Station 2481, SAIAB 65507.

Y. Pisodonophis semicinctus. Station 2798, FMNH 117452.

T. Epigonus constanciae. Station 2495, SAIAB 64872.

V. Zenopsis conchifer. Juvenile, 89 mm SL, SAIAB 67765.

X. Uranoscopus cadenati. Station 2477, SAIAB 65517.

Z. Schedophilus pemarco juvenile. Station 2792, SAIAB 67986.

APPENDIX A.

A summary of station data for the 2001 and 2002 cruises. The 2005 survey stations from which specimens were provided by T. Iwamoto are also included.

2001 cruise				Station	Date	Position (Lat./Long.)	Depth (m)
				2485	12.03.2001	S 09 ${ }^{\circ} 16^{\prime} \mathrm{E}$ 12055'	43-44
Station	Date	Position (Lat./Long.)	Depth (m)	2486	12.03.2001	S $09^{\circ} 17^{\prime} \mathrm{E}$ 12053'	65
2426	04.03.2001	S $12^{\circ} 37^{\prime} \mathrm{E}$ 12058'	745-750	2487	12.03.2001	S 090 ${ }^{\prime} 6^{\prime} \mathrm{E} 12^{\circ} 50^{\prime}$	94-95
2427	05.03.2001	S $12^{\circ} 27^{\prime} \mathrm{E} 13^{\circ} 17^{\prime}$	515-530	2488	12.03.2001	S $09^{\circ} 20^{\prime} \mathrm{E} 12^{\circ} 31^{\prime}$	751-769
2428	05.03.2001	S 12026' E 13019'	315-326	2489	12.03.2001	S 09016' E 12 ${ }^{\circ} 31^{\prime}$	771-776
2429	05.03.2001	S $12^{\circ} 28^{\prime}$ E $13^{\circ} 26^{\prime}$	39-45	2490	13.03.2001	S $09^{\circ} 13^{\prime} \mathrm{E} 12^{\circ} 47^{\prime}$	107-108
2430	05.03.2001	S 12022' E 13029'	70-75	2494	13.03.2001	S 09006' E 12049'	112-125
2431	05.03.2001	S 12024' E 13022'	105-107	2495	13.03.2001	S 09007' E 12042'	305-341
2432	05.03.2001	S $12^{\circ} 20^{\prime} \mathrm{E}$ 13 ${ }^{\circ} 20^{\prime}$	574-614	2496	13.03.2001	S $09^{\circ} 06^{\prime}$ E $12^{\circ} 37^{\prime}$	650-697
2433	06.03.2001	S $12^{\circ} 05^{\prime} \mathrm{E} 13^{\circ} 25^{\prime}$	444-445	2497	14.03.2001	S 08050' E 12049'	538-541
2434	06.03.2001	S $12^{\circ} 05^{\prime} \mathrm{E}$ 13 ${ }^{\circ} 34^{\prime}$	86-87	2499	14.03.2001	S $08^{\circ} 46^{\prime} \mathrm{E} 13^{\circ} 00^{\prime}$	183-185
2435	06.03.2001	S 11059' E 13043'	25-29	2501	14.03.2001	S $08^{\circ} 35^{\prime} \mathrm{E} 13^{\circ} 09^{\prime}$	81-83
2436	06.03.2001	S 11053' E 13040'	65-66	2502	14.03.2001	S $08^{\circ} 39^{\prime} \mathrm{E} 13^{\circ} 04^{\prime}$	113
2437	06.03.2001	S 11048' E 13034'	103-107	2504	14.03.2001	S $08^{\circ} 36^{\prime} \mathrm{E}$ 12 ${ }^{\circ} 55^{\prime}$	368-369
2438	06.03.2001	S 11052' E 13031'	189-193	2506	14.03.2001	S $08^{\circ} 24^{\prime} \mathrm{E} 12^{\circ} 45^{\prime}$	637
2439	06.03.2001	S 11051' E 13027	268-276	2507	15.03.2001	S $08^{\circ} 25^{\prime} \mathrm{E} 12^{\circ} 45^{\prime}$	624-633
2440	06.03.2001	S $11^{\circ} 46^{\prime} \mathrm{E} 13^{\circ} 21^{\prime}$	432-437	2508	15.03.2001	S 08020 ${ }^{\prime}$ E $12^{\circ} 55^{\prime}$	164-169
2441	06.03.2001	S 11028' E 13020'	624-654	2509	15.03.2001	S 08924'. E 13003'	108-110
2442	07.03.2001	S $11^{\circ} 29^{\prime}$ E $13^{\circ} 27^{\prime}$	109-114	2513	15.03.2001	S 080 ${ }^{\circ} 4^{\prime} \mathrm{E}$ 120 ${ }^{\circ} 6^{\prime}$	322-324
2443	07.03.2001	S 11030' E 13033'	73-81	2515	15.03.2001	S $08^{\circ} 15^{\prime} \mathrm{E} 12^{\circ} 39^{\prime}$	780-783
2444	07.03.2001	S 11029' E 13040'	35	2517	18.03.2001	S 08014' E 13011'	43-44
2445	07.03.2001	S $11^{10} 22^{\prime} \mathrm{E} 13^{\circ} 40^{\prime}$	33	2518	18.03.2001	S $08^{\circ} 00^{\prime} \mathrm{E}$ 1203 5^{\prime}	681-694
2446	07.03.2001	S 11018' E 13040'	31-36	2521	19.03.2001	S 07058' E 12040'	348-364
2447	07.03.2001	S $11^{\circ} 20^{\prime}$ E 13033	53-55	2522	19.03.2001	S 08001' E 12043'	233-248
2448	07.03.2001	S 11015' E 13036'	152-168	2525	19.03.2001	S 07054' E 12053'	86-87
2449	07.03.2001	S 11013' E 13031'	321-332	2528	19.03.2001	S 07053' E 13005	19-21
2450	07.03.2001	S $11^{10} 09^{\prime} \mathrm{E} 13^{\circ} 27^{\prime}$	618-622	2529	19.03.2001	S 07050' E 12932'	732-744
2451	08.03.2001	S $10^{\circ} 57^{\prime} \mathrm{E} 13^{\circ} 25^{\prime}$	441-451	2530	20.03.2001	S 07049' E 12034'	547-553
2452	08.03.2001	S 10053' E 13031'	124-126	2531	20.03.2001	S 07046' E 12033'	433-456
2453	08.03.2001	S $10^{\circ} 49^{\prime}$ E 13037	79-81	2532	20.03.2001	S 07045' E 12034'	336-340
2454	08.03.2001	S $10^{\circ} 48^{\prime} \mathrm{E} 13^{\circ} 42^{\prime}$	44-47	2533	20.03.2001	S $07^{\circ} 45^{\prime} \mathrm{E} 1^{\circ}{ }^{\circ} 35^{\prime}$	250-251
2455	08.03.2001	S 10037' E 13028'	82-85	2538	20.03.2001	S 07040' E 12058'	35-36
2456	08.03.2001	S 10938' E 13023'	106-108	2539	20.03.2001	S 070 ${ }^{\circ} 9^{\prime}$ E 12059'	- 24-26
2457	08.03.2001	S 10036' E 13013'	163-173	2540	20.03.2001	S 07036' E 12026'	642-651
2458	08.03.2001	S 10 $0^{\circ} 36^{\prime}$ E 13009	400-429	2542	21.03.2001	S 070 33^{\prime} E 12020'	320-366
2464	09.03.2001	S $10^{\circ} 21^{\prime} \mathrm{E} 13^{\circ} 02^{\prime}$	177-179	2543	21.03.2001	S 07033' E 120 ${ }^{\circ}{ }^{\prime}$	244-248
2465	09.03.2001	S $10^{\circ} 12^{\prime} \mathrm{E}$ 12056'	232-236	2546	21.03.2001	S $07^{\circ} 27^{\prime} \mathrm{E} 1^{\circ}{ }^{\circ} 8^{\prime}$	81-83
2466	09.03.2001	S $10^{\circ} 07^{\prime} \mathrm{E} 2^{\circ}{ }^{\circ} 53^{\prime}$	374-378	2547	21.03.2001	S $07^{\circ} 28^{\prime} \mathrm{E} 1^{\circ}{ }^{\circ} 46^{\prime}$	50-51
2467	09.03.2001	S $10^{\circ} 07^{\prime} \mathrm{E}$ 12951'	529-535	2552	22.03.2001	S 07022' E 12099	355-364
2468	09.03.2001	S $10^{\circ} 02^{\prime}$ E $12^{\circ} 47^{\prime}$	727-780	2553	22.03.2001	S 07021' E 12015'	224-232
2470	10.03.2001	S $10^{\circ} 02^{\prime} \mathrm{E}$ 12054'	156	2554	22.03.2001	S 07018' E 12020'	143-149
2471	10.03.2001	S $10^{\circ} 03^{\prime} \mathrm{E} 13^{\circ} 01^{\prime}$	94-97	2555	22.03.2001	S 07018' E 12027'	101-102
2472	10.03.2001	S $10^{\circ} 02^{\prime}$ E $13^{\circ} 08^{\prime}$	69-74	2556	22.03.2001	S 07013' E 12043'	31-32
2473	10.03.2001	S $09^{\circ} 56^{\prime} \mathrm{E}$ 13013'	29-30	2557	22.03.2001	S $07^{\circ} 09^{\prime} \mathrm{E}$ 12030'	52-53
2474	11.03.2001	S 090 ${ }^{\circ} 4^{\prime} \mathrm{E}$ 13011'	23-24	2561	23.03.2001	S 07011' E 11059'	342-346
2475	11.03.2001	S 09 ${ }^{\circ} 45^{\prime}$ E $13^{\circ} 03^{\prime}$	81-85	2562	23.03.2001	S 07010' E $12^{\circ} 03^{\prime}$	256
2477	11.03.2001	S $09^{\circ} 45^{\prime} \mathrm{E}$ 12050'	178-179	2566	23.03.2001	S 07001' E 12 ${ }^{\circ} 38^{\prime}$	24
2478	11.03.2001	S 09049' E 12051'	214-218	2569	24.03.2001	S 06059' E 11 ${ }^{10} 46^{\prime}$	548-549
2479	11.03.2001	S 090 8^{\prime} E E $12^{\circ} 42^{\prime}$	432-486	2570	24.03.2001	S 06057' E 11050'	327-355
2480	11.03.2001	S 09928' E 12039'	444-446	2571	24.03.2001	S 06057' E 11053'	236-246
2481	12.03.2001	S 09033' E 12047'	168-171	2573	24.03.2001	S 06054' E 12007'	89-90
2482	12.03.2001	S $09^{\circ} 28^{\prime}$ E $12^{\circ} 52^{\prime}$	101	2576	25.03.2001	S 06037' E 11057'	110
2484	12.03.2001	S 09026' E 13003'	25-27	2577	25.03.2001	S 06043' E 11 ${ }^{\circ} 45^{\prime}$	283-285

Station	Date	Position (Lat./Lo
2578	25.03 .2001	S 06

2689
2691
2692
2693
2694
2695
2697
2698
2699
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
01.03.2002 01.03.2002 01.03.2002 01.03.2002 01.03.2002 02.03.2002 02.03.2002 02.03.2002 02.03.2002 03.03.2002 03.03.2002 04.03.2002 04.03.2002 04.03.2002 04.03.2002 04.03.2002 04.03.2002 04.03.2002 04.03.2002 05.03.2002 05.03.2002 05.03.2002 05.03.2002 05.03.2002 05.03.2002 05.03.2002 05.03.2002 05.03.2002 05.03.2002 05.03.2002 06.03.2002 06.03.2002 06.03.2002 06.03.2002 06.03.2002 06.03.2002 07.03.2002 07.03.2002 07.03.2002 07.03.2002 07.03.2002 07.03.2002 07.03.2002 07.03.2002 08.03.2002 08.03.2002 08.03.2002 08.03.2002 08.03.2002 08.03.2002 08.03.2002 08.03.2002

Depth (m) 336

$+$

家
S $17^{\circ} 15^{\prime}$ E $11^{\circ} 41^{\prime}$ S 17014' E 11³1'

53-58

131-133
S 17014' E $11^{\circ} 21^{\circ} 21^{\prime} 160$

S 17013' E 11¹6' 603-617

S 17000' E 11041' $36-37$
S 1658' E 11³3' 102-103
S 16³1' E 11³4' 93-94
S 16¹8' E 1140' 65-66
S $12^{\circ}{ }^{\circ} 5^{\prime}$ E $13^{\circ} 03^{\prime} \quad 760-773$
S 12 ${ }^{\circ} 23^{\prime}$ E 13016' 723-737
$\begin{array}{lll}\mathrm{S} \\ \mathrm{S} 12^{\circ} 26^{\prime} \text { E } 13^{\circ} 26^{\prime} & 61-70\end{array}$
S 12002 ${ }^{\prime}$ E $13^{\circ} 24^{\prime}$
S 12002' E $13^{\circ} 21^{\prime}$
S $12^{\circ} 17^{\prime}$ E $13^{\circ} 34^{\prime}$
$\begin{array}{ll}\text { S } 12^{\circ} 16^{\prime} \text { E } 13^{\circ} 32^{\prime} & 71-74 \\ \text { S } 12^{\circ} 16^{\prime} \text { E } 13^{\circ} 27^{\prime} & 06-97\end{array}$
S $12^{\circ} 15^{\prime}$ E 13 $3^{\circ} 25^{\prime} \quad 111--112$
S 11056' E 13²0' 657-662
S 11055' E 13²1' 575-576
S 11年56' E 13 ${ }^{\circ} 23^{\prime} \quad$ 471-477
264-266
101-106
70-73
49-54
26-28
$110-111$
160-161
349-356
672-674
351-354
27-28
23-24
20-21
113-116
529-540
35-40
52-53
114-115
30
91
151-152
331-336
504-514
344-349
130-131
48-50
30-31
70-71
96
168-173
610-624

Station	Date	Position (Lat./Long.)	Depth (m)
2756	09.03.2002	S 0958' E 12045'	739-749
2762	09.03.2002	S 090 46^{\prime} E $13^{\circ} 00^{\prime}$	93-94
2763	09.03.2002	S 09\% ${ }^{\circ} 3^{\prime}$ E 12 ${ }^{\circ} 44^{\prime}$	628-707
2764	10.03.2002	S 09036' E 12 ${ }^{\circ} 39^{\prime}$	536-542
2765	10.03.2002	S 090 $32^{\prime} \mathrm{E}$ 12 ${ }^{\circ} 5^{\prime}$	112-114
2766	10.03.2002	S 09²8' E 1300'	50-52
2767	10.03.2002	S 09 ${ }^{\circ} 27^{\prime}$ E 13 ${ }^{\circ} 04^{\prime}$	25-26
2768	10.03.2002	S 090¹5' E 12058'	24-27
2769	10.03.2002	S 090 ${ }^{\circ} 4^{\prime}$ E 12051'	74-76
2770	10.03.2002	S 09016' E 12047'	114-116
2771	13.03.2002	S 090 ${ }^{\circ} 2^{\prime}$ E 12042'	259
2772	13.03.2002	S 09 ${ }^{\circ} 06^{\prime}$ E 12 ${ }^{\circ} 41^{\prime}$	404-438
2773	13.03.2002	S $09^{\circ} 05^{\prime}$ E 12 ${ }^{\circ} 37^{\prime}$	729-738
2774	14.03.2002	S 080 ${ }^{\circ} 0^{\prime}$ E 12 ${ }^{\circ} 55^{\prime}$	308-343
2776	14.03.2002	S 08054' E 1300'	186-195
2777	14.03.2002	S 08052' E 12059'	215-219
2779	14.03.2002	S 080 ${ }^{\circ} 6^{\prime}$ E 12 ${ }^{\circ} 50^{\prime}$	701-708
2780	14.03.2002	S 080 ${ }^{\circ} 4^{\prime}$ E 12 ${ }^{\circ} 51{ }^{\prime}$	535-574
2782	15.03.2002	S 089 38^{\prime} E $13^{\circ} 04^{\prime}$	113
2783	15.03.2002	S 080 ${ }^{\circ} 5^{\prime}$ E $13^{\circ} 09^{\prime}$	81-82
2784	15.03.2002	S 080 ${ }^{\circ} 5^{\prime}$ E $13^{\circ} 15^{\prime}$	52-59
2786	15.03.2002	S 080 ${ }^{\circ} 6^{\prime}$ E $13^{\circ} 19^{\prime}$	28-32
2787	15.03.2002	S $08^{\circ} 20^{\prime} \mathrm{E} 13^{\circ} 06^{\prime}$	82-87
2788	15.03.2002	S 080²6' E 120 ${ }^{\circ} 6^{\prime}$	700-717
2789	15.03.2002	S 089028' E 12047'	601-647
2792	16.03.2002	S 080 ${ }^{\circ} 8^{\prime}$ E 12053'	308-309
2798	16.03.2002	S 089015' E 130 ${ }^{\circ} 6^{\prime}$	25-28
2799	16.03.2002	S 080 ${ }^{\circ} 6^{\prime} \mathrm{E}$ 120 ${ }^{\circ} 1^{\prime}$	703-705
2807	17.03.2002	S 080 ${ }^{\circ} 4^{\prime}$ E $13^{\circ} 08^{\prime}$	40-42
2808	17.03.2002	S 08003' E 13010'	26-28
2809	17.03.2002	S 08004' E 12036'	732-736
2811	18.03.2002	S 08002' E 120 ${ }^{\circ} 8^{\prime}$	524-527
2816	18.03.2002	S 070 52^{\prime} E 12 ${ }^{\circ} 59^{\prime}$	55-58
2819	18.03.2002	S 070 ${ }^{\circ} 6^{\prime}$ E $12^{\circ} 30^{\prime}$	730-759
2824	19.03.2002	S 070 38^{\prime} E $12^{\circ} 45^{\prime}$	88-93
2825	19.03.2002	S 070 $36{ }^{\prime} \mathrm{E}$ 120 48^{\prime}	68-70
2828	19.03.2002	S 070 34^{\prime} E 120 ${ }^{\circ} 4^{\prime}$	721-722
2833	20.03.2002	S 070 ${ }^{\circ} 1^{\prime} \mathrm{E}$ 120 39^{\prime}	57-64
2834	20.03.2002	S 07019' E 120 ${ }^{\circ} 3^{\prime}$	42
2835	20.03.2002	S 070 ${ }^{\circ} 5^{\prime}$ E 12047	24-26
2836	21.03.2002	S 07003' E 12 ${ }^{\circ} 39^{\prime}$	26
2837	21.03.2002	S 07005' E 12036'	38
2841	21.03.2002	S 07015' E 12009'	229-235
2842	21.03.2002	S 070 20^{\prime} E 1200 ${ }^{\prime}$	416-423
2843	21.03.2002	S 07021' E 12002'	521-529
2846	22.03.2002	S 07006' E 11057'	272-276
2852	22.03.2002	S 0658' E 11* ${ }^{\circ} 0^{\prime}$	724-728
2855	23.03.2002	S 0651' E 11050'	255-267
2856	23.03.2002	S 06051' E 11 ${ }^{\circ} 54^{\prime}$	132-146
2857	23.03.2002	S 060 ${ }^{\circ} 6^{\prime}$ E 11 ${ }^{\circ} 58^{\prime}$	100
2858	23.03.2002	S 06047' E 11053'	143-156
2859	23.03.2002	S 060 ${ }^{\circ} 6^{\prime}$ E $11^{\circ} 55^{\prime}$	117-126
2860	23.03.2002	S 06049' E 12001'	90-91
2861	23.03.2002	S 06038' E 110 ${ }^{\circ} 5^{\prime}$	704-720
2868	24.03.2002	S 060 ${ }^{\circ} 8^{\prime}$ Ė 11 ${ }^{\circ} 59^{\prime}$	97-98
2869	24.03.2002	S 060 ${ }^{\circ} 6^{\prime}$ E 12002'	80

Station	Date	Position (Lat./Long.)	Depth (m)
2870	24.03.2002	S 06\% ${ }^{\circ} 5^{\prime}$ E 12 ${ }^{\circ} 05^{\prime}$	54-56
2872	25.03.2002	S $06^{\circ} 15^{\prime} \mathrm{E}$ 11 $1^{\circ} 25^{\prime}$	383-385
2876	25.03.2002	S $06^{\circ} 08^{\prime} \mathrm{E} 11^{\circ} 54^{\prime}$	74
2877	25.03.2002	S $06^{\circ} 07^{\prime} \mathrm{E} 11^{\circ} 58^{\prime}$	69
2878	25.03.2002	S $06^{\circ} 05^{\prime}$ E $12^{\circ} 06^{\prime}$	40

2005 cruise

3609	01.04.2005	S 120 23^{\prime} E $13^{\circ} 17^{\prime}$	729-733
3610	01.04.2005	S $12^{\circ} 27^{\prime}$ E $13^{\circ} 15^{\prime}$	646-656
3622	03.04.2005	S $11^{\circ} 56^{\prime}$ E $13^{\circ} 20^{\prime}$	652-658
3630	03.04.2005	S 11032' E $13^{\circ} 21^{\prime}$	361-364
3632	04.04.2005	S 11028' E 130 ${ }^{\circ} 9^{\prime}$	733-735
3641	04.04.2005	S 11011' E $13^{\circ} 24^{\prime}$	806-809
3649	05.04.2005	S 10 ${ }^{\circ} 56^{\prime}$ E $13^{\circ} 21^{\prime}$	640-647
3656	06.04.2005	S 10 ${ }^{\circ} 49^{\prime}$ E $13^{\circ} 16^{\prime}$	501-504
3675	08.04.2005	S 10 $0^{\circ} 07^{\prime}$ E 120 ${ }^{\circ} 2^{\prime}$	381-385
3676	08.04.2005	S 10 $0^{\circ} 03^{\prime}$ E 122047'	725-734
3684	09.04.2005	S 09 ${ }^{\circ} 40^{\prime}$ E 120 ${ }^{\circ} 4^{\prime}$	884-891
3698	11.04.2005	S 080 48^{\prime} E $12^{\circ} 47^{\prime}$	662-666
3709	12.04.2005	S 080 28^{\prime} E $12^{\circ} 53^{\prime}$	304-305

APPENDIX B .

All species collected and deposited in SAIAB from the 2001 and 2002 cruises, indicating the station numbers (see Appendix A for station details) and the SAIAB collection numbers for each species.

NAME	STATION NO. (SAIAB CATALOGUE NO. IN BRACKETS)
MYXINIFORMES	
Myxine ios	2799(66087)
CHONDRICHTHYES	
Scyliorhinidae	
Galeus polli	2497(64537); 2693(65840)
Scyliorhinus cervigoni	$\begin{aligned} & \text { 2546(65499); 2561(64847); 2562(64602); } 2720 \\ & (65886) ; 2740(65998) ; 2745(68094) \end{aligned}$
Leptochariidae	
Leptocharias smithi	2538(64850); 2539(64960)
Carcharhinidae	
Carcharhinus limbatus	2513(64650)
Squalidae	
Centroscymnus crepidater	2427(64334)
Deania calcea	2426(64340)
Isistius brasiliensis	2427(64998); 2488(65007); 2732(65972)
Squatinidae	
Squatina oculata	2477(65006)
Torpedinidae	
Torpedo bauchotae	2539(65676)
T. marmorata	2539(65673); 2704(68029); 2833(67966); 2857(67965); 2859(67983); 2868(68030)
T. mackayana	2485(65514); 2539(65672); 2706(67964); 2716(68088); 2727(68096); 2735(65999); 2748(67984); 2786(66076)
T. torpedo	2429(65541); 2430(65714); 2431(65004); 2435(65560); 2517(65503); 2834(68086)
T. nobiliana	2754(68087)
Rhinobatidae	
Rhinobatos albomaculatus	$\begin{aligned} & \text { 2429(65718); 2454(65730); 2717(68034); } \\ & \text { 2737(67971) } \end{aligned}$
Platyrhinidae	
Zanobatus schoenleinii	2556(65726); 2566(65727)
Rajidae	
Raja sp.	2494(64915)
R. barnardi	$\begin{aligned} & 2427(64336) ; 2450(65716) ; 2497(65715) ; \\ & 2506(64911) ; 2540(64927) \end{aligned}$
R. miraletus	2878(67751)
R. straeleni	2478(65725)
Dasyatidae	
Dasyatis marmorata	2878(67752)
Gymnura micrura	2734(68095)
HOLOCEPHALI	
Callorhynchidae	
Callorhinchus capensis	2698(68039)
Chimaeridae	
Hydrolagus sp.	2861(67976)
H. mirabilis	2852(67402)
Rhinochimaeridae	
Neoharriotta pinnata	$\begin{aligned} & \text { 2479(64323); 2531(64935); 2732(65973); } \\ & \text { 2782(66066) } \end{aligned}$
ACTINOPTERYGII	
ALBULIFORMES	
Albulidae	
Albula vulpes	2870(65722)
Pterothrissus belloci	2439(65009); 2448(65607); 2691(65836)
NOTACANTHIFORMES	
Halosauridae	
Halosaurus ovenii	2441(64358); 2479(64376); 2504(64893); 2701(65805); 2702(65821); 2754(65933); 2772(66007); 2773(66016)
ANGUILLIFORMES	
Heterenchelyidae	
Pythonichthys microphthalmus	$\begin{aligned} & \text { 2499(64914); 2697(65849); 2776(68260); } \\ & \text { 2783(66074) } \end{aligned}$
Chlopsidae	
Chlopsis olokun	2478(64396)
Synaphobranchidae	
Dysommina rugosa $\quad 2764(66023)$	
Synaphobranchus affinis	2441(64357); 2450(64351); 2496(64900); 2701(65806); 2763(65941); 2764(66024); 2828(66104)
S. kaupil	2515(64885); 2756(65969); 2763(65942); 2764(66025)

NAME	STATION NO. (SAIAB CATALOGUE NO. IN BRACKETS)
Ophichthidae	
Echelus myrus	$\begin{aligned} & \text { 2485(65746); 2709(67977); 2753(67978); } \\ & \text { 2856(67946); 2860(67948); 2876(67947); } \\ & \text { 2877(67945) } \end{aligned}$
E. pachyrhynchus	$\begin{aligned} & \text { 2562(64937); 2693(68259); 2753(65967); } \\ & \text { 2855(67979) } \end{aligned}$
Mystriophis rostellatus	$\begin{aligned} & \text { 2428(67980); 2495(65738); 2689(68257); } \\ & \text { 2692(67981); 2693(67982); 2697(67953); } \\ & \text { 2741(67942); 2752(65959) } \\ & \hline \end{aligned}$
Pisodonophis semicinctus	2435(65748); 2878(67943)
Colocongridae	
Coloconger cadenati	2497(64878); 2842(67386); 2843(67383)
Congridae	
Bathycongrus bertini	2428(64931); 2439(64936)
Bathyuroconger vicinus	2450(64899); 2694(65845); 2701(65807); 2773(66015); 2788(66078); 2789(66084)
Uroconger syringinus	2751(65961); 2770(68258); 2774(66072); 2783(66062); 2852(67403); 2877(67944)
Xenomystax congroides	2532(64867); 2570(64881)
Unidentified leptocephali	2495(64874); 2497(64879)
Muraenesocidae	
Cynoponticus ferox	2435(65748); 2449(64330); 2458(64397); 2479(64375); 2727(67951); 2734(67952); 2807(66092); 2876(67950)
Nemichthyidae	
Nemichthys scolopaceus	$\begin{aligned} & \text { 2441(64356); 2450(64352); 2467(64402); } \\ & \text { 2488(64390) } \end{aligned}$
Serrivomeridae	
Serrivomer beanii	2828(66103)
Nettastomatidae	
Facciolella oxyrhyncha	$\begin{aligned} & \text { 2479(64374); 2496(64902); 2504(64894); } \\ & \text { 2842(67387); 2843(67384) } \end{aligned}$
Hoplunnis punctata	2508(64898); 2509(64938); 2710(65868); 2745(65966)
Nettastoma melanurum	2496(64903); 2764(66026); 2852(67949)
Unidentified leptocephali	$\begin{aligned} & \text { 2507(64870); station data lost(67764); } \\ & \text { 2710(65873); 2852(67404) } \\ & \hline \end{aligned}$
CLUPEIFORMES	
Clupeidae	
Etrumeus whiteheadi	2689(65834)
llisha africana	2727(65898)
Sardinella aunta	2727(65899); 2816(66093)
S. maderensis	2443(65000); 2836(67905)
Engraulidae	
Engraulis encrasicolus	2486(64584); 2878(67754)
SILURIFORMES	
Ariidae	
Arius heudeloti	2798(68263)
A. latiscutatus	2770(67972); 2787(68262)
A. parkii	2435(64845); Luanda Harbour (64846)
SALMONIFORMES	
Alepocephalidae	
Alepocephalus sp.	2701(65813); 2764(66028)
Leptoderma macrops	2861(67734)
Talismania antillarum	2701(65812)
T. homoptera	$\begin{aligned} & \text { 2450(64350): } 2488(64385) ; 2515(64882) ; \\ & 2701(65811) ; 2764(66027) \end{aligned}$
Xenodermichthys copei	2450(64347); 2467(64407); 2488(64386); 2701(65810); 2711(65875); 2722(65891); 2732(65978); 2763(65943); 2861(67735)
Platytroctidae	
Maulisia microlepis	2819(66097)
STOMIIFORMES	
Gonostomatidae	
Sigmops elongatus	2488(64388); 2530(64933); 2710(65870); 2742(65990); 2779(66068); 2819(66095)
Triplophos hemingi	2732(65977); 2780(66064); 2788(66079)
Sternoptychidae	
Sternoptyx diaphana	2468(64380); 2488(64391)
S. pseudodiaphana	2468(64381)
Phosichthyidae	
Yarrella blackfordi	2732(65974)
Chauliodontidae	
Chauliodus sloani	2742(65991)

Stomiidae	
Stomias boa boa	$\begin{aligned} & \text { 2488(64392); 2732(65976); 2742(65989); } \\ & \text { 2763(65944) } \end{aligned}$
Astronesthidae	
Astronesthes barbatus	2488(64387)
Borostomias antarcticus	2779(67762); 2861(67736)
B. mononema	2507(64913)
Melanostomiidae	
Melanostomias sp.	2780(66063)
Odontostomias micropogon	$\begin{aligned} & 2450(64354) ; 2458(64398) ; 2467(64405) ; \\ & 2694(65844) ; 2780(66065) \end{aligned}$
Photonectes parvimanus	2732(65975)
AULOPIFORMES	
Aulopidae	
Aulopus cadenati	2477(64976)
Chlorophthalmidae	
Bathypterois quadrifilis	$\begin{aligned} & \text { 2515(64883); 2773(66018); 2828(66107); } \\ & \text { 2852(67405) } \end{aligned}$
Chlorophthalmus atlanticus	2439(64322); 2448(64328); 2449(64342); 2465(64411); 2466(64415); 2495(64873); 2577(64890); 2693(65843); 2843(67385); 2846(67377)
Parasudis fraserbrunneri	2449(64329); 2533(64924); 2542(64919); 2577(64889); 2713(65880); 2846(67378)
Notosudidae	
Scopelosaurus smithii	$\begin{aligned} & \text { 2467(64406); 2496(64901); 2754(65936); } \\ & \text { 2819(66096); 2828(66106) } \end{aligned}$
Synodontidae	
Saurida brasiliensis	2436(65597); 2438(65564); 2457(65604)
Trachinocephalus myops	2836(67393); 2837(67396)
Paralepididae	
Lestidiops cadenati	$\begin{aligned} & \text { 2513(64909); 2552(64896); 2771(66012); } \\ & \text { 2774(66073); 2792(66083) } \end{aligned}$
L. similis	2449(64332)
Lestrolepis intermedia	2774(69153); 2855(67398)
MYCTOPHIFORMES	
Neoscopelidae	
Neoscopelus macrolepidotus	2861(67737)
Myctophidae	
Diaphus diadematus	2878(67753)
Lampadena pontifex	2468(64382); 2489(64906); 2773(66017)
Notoscopelus resplendens	2488(64389)
Scopelopsis multipunctata	2828(66105)
GADIFORMES	
Macrouridae	
Bathygadus macrops	$\begin{aligned} & \text { 2754(65934); 2799(66088); 2852(67975); } \\ & 2861(67989) \end{aligned}$
B. melanobranchus	$\begin{aligned} & 2450(64346) ; 2489(64905) ; 2828(66110) ; \\ & 2852(67407) \end{aligned}$
Coelorinchus coelorhincus*.	2732(65980)
Hymenocephalus gracilis	2466(64419)
H. italicus	2842(67389)
Malacocephalus occidentalis	$\begin{aligned} & 2440(64324) ; 2451(64412) ; 2458(64399) ; \\ & 2466(64984) ; 2479(64378) \\ & \hline \end{aligned}$
Nezumia aequalis	2842(67388)
N. africana	2426(64339); 2861(67738)
N. micronychodon	2441(64355); 2722(65895)
Trachyrincus scabrous	2518(64916); 2809(66091)
Moridae	
Gadella imberbis	$\begin{aligned} & 2449(64327) ; 2458(64400) ; 2466(64420) ; \\ & 2467(64408) ; 2540(64926) ; 2722(65894) ; \\ & 2732(65979) ; 2763(65945) ; 2771(66013) ; \\ & 2772(66011) ; 2846(67379) ; 2852(67408) ; \\ & 2855(67397) ; \end{aligned}$
Laemonema laureysi	2458(64401); 2693(65839); 2721(65890); 2772(66010)
Physiculus cyanostrophus	2428(64343); 2709(64638); 2753(64639)
P. huloti	2765(66038); 2876(67742)
Melanonidae	
Melanonus zugmayeri	$\begin{aligned} & \text { 2701(65808); 2754(65935); 2763(65947); } \\ & \text { 2779(66071) } \end{aligned}$
Merlucciidae	
Merluccius polli	2438(65563)
OPHIDIIFORMES	
Ophidiidae	
Brotula barbata	2429(65723); 2430(65545); 2431(65005); 2442(65010); 2448(65736); 2539(65011); 2707(68091); 2735(66001); 2762(65970); 2769(66040)
Dicrolene intronigra	2515(64884)
Lamprogrammus exutus	2489(65008); 2694(65848); 2732(65981); 2773(68035)

Monomitopus metriostoma	2515(64888); 2702(65823); 2710(65869); 2754(65938)
Ophidion lozanoi	2753(65968); 2771(66014); 2878(67755)
Bythitidae	
Cataetyx bruuni	2710(65871); 2742(65992); 2763(65946)
Cataetyx laticeps	2489(64904); 2507(64868)
BATRACHOIDIFORMES	
Batrachoididae	
Perulibatrachus rossignoli	2709(65860); 2856(67750)
LOPHIIFORMES	
Lophiidae	
Lophiodes kempi	2458(64897); 2466(65609); 2497(64877); 2521(64932); 2529(64934); 2542(64920); 2553(65741); 2554(65744)
Lophius vaillanti	2479(65719); 2504(65720); 2723 (65897)
Antennariidae	
Antennarius senegalensis	2739(65996)
A. striatus	2429(65543)
Chaunacidae	
Chaunax suttkusi	2433(64325); 2466(64421); 2479(64377); 2721(65888); 2741(65997); 2772(66009)
Ogcocephalidae	
Dibranchus atlanticus	$\begin{aligned} & \text { 2427(64333); 2432(64337);2765(66039); } \\ & 2772(66008) \end{aligned}$
Melanocetidae	
Melanocetus johnsonii	2702(65822); 2828(66108)
Himantolophidae	
Himantolophus paucifilosus	2722(65893)
Diceratiidae	
Bufoceratias wedif	$\begin{aligned} & \text { 2467(64403); 2488(64394); 2710(65864); } \\ & \text { 2779(66070); 2788(66081) } \\ & \hline \end{aligned}$
Diceratias pileatus	2480(64359); $2488(64393) ; 2710(65865) ;$ $2711(658777) ; 2722(65892) ; 2779(66069) ;$ 2788(66080); 2828(66109); 2852(67406)
Oneirodidae	
Oneirodes eschrichtii	2701(65803)
Ceratiidae	
Ceratias holboelli	2468(64379)
Cryptopsaras couesii	2711(65876); 2712(65878)
BELONIFORMES	
Exocoetidae	
Fodiator acutus	Luanda Harbour (65962)
Parexocoetus brachypterus	2710(65872); 2842(67390)
BERYCIFORMES	
Trachichthyidae	
Gephyroberyx darwini	2439(64320); 2448(64341); 2571(64880)
Hoplostethus cadenati	2432(64338); 2515(64887); 2773(67987)
Berycidae	
Beryx splendens	2543(64929); 2742(68107)
Melamphaidae	
Scopelogadus beanii	2468(64383); 2489(64907); 2754(65937)
ZEIFORMES	
Macrurocyttidae	
Zenion longipinnis	2439(64321); 2495(64876); 2533(64923); 2543(64928); 2577(64892); 2712(65879); 2744(65965)
Zeidae	
Cyitopsis rosea	2577(64891)
Zenopsis conchifer	Station data lost(67765); 2693(65841)
Zeus faber	2697(68100)
Grammicolepididae	
Xenolepidichthys dalgleishi	2495(64871)
SYNGNATHIFORMES	
Fistulariidae	
Fistularia petimba	2767(66031)
F. tabacaria	2484(65103)
SCORPAENIFORMES	
Scorpaenidae	
Ectreposebastes imus	$\begin{aligned} & 2468(64384) ; 2507(64869) ; 2742(65993) ; \\ & 2773(66019) ; 2789(66085) \end{aligned}$
Helicolenus dactylopterus	2428(65745); $2495(65510$)
Neomerinthe folgori	2513(65015)
Pontinus accraensis	$\begin{aligned} & \text { 2428(69408); 2448(65608); 2553(65002); } \\ & 2709(65862) \end{aligned}$
P. leda	2449(65588)
Scorpaena angolensis	2728(65987): 2747 (65957); 2786(66077)
S. elongata	2495(65511); $2705(68031)$; 2709(68033)
S. normani	2431(65556); 2501(65496); 2704(65829); 2735(66002); 2736(66004); 2739(65995)
S. scrofa	2555(65733)
S. stephanica	$\begin{aligned} & 2435(65561) ; 2538(65551) ; 2539(65678) ; \\ & 2714(68032) \end{aligned}$

Setarches guentheri	2495(64873); 2542(64922); Station data lost (67763); 2872(67746)
Triglidae	
Chelidonichthys capensis	2689(68264)
C. gabonensis	2475(65734); 2689(65835); 2699(65853); 2709(65859); 2766(66029); 2825(68093)
Lepidotrigla cadmani	2431(65559); 2434(65589); 2436(65596); 2437(65562); 2555(65521); 2573(65500)
Peristedion cataphractum	2449(64331); 2578(64856); 2846(67380)
Trigla lyra	2553(65086); 2578(65519); 2693(65842); 2698(65852); 2846(67381); 2855(67399)
Trigloporus lastoviza	2709(68103)
Platycephalidae	
Grammoplites gruveli	2429(65542); 2454(65599); 2472(65611); Station data lost(67766); 2876(67744); 2877(67740)
Psychrolutidae	
Ebinania costaecanarie	2426(65103); 2427(64335); 2450(64353); 2467(64404); 2694(65847); 2701(65804)
Psychrolutes inermis	2710(65867)
Liparidae	
Careproctus albescens	2694(65846)
PERCIFORMES	
Acropomatidae	
Synagrops bellus	2513(64910); 2533(64925)
S. microlepis	2438(64344); 2465(64409)
Dinopercidae	
Centrarchops atlanticus	2539(65735): 2808(68106)
Serranidae	
Anthias anthias	2442(68084); 2555(68085); 2705(68041)
Cephalopholis nigri	Luanda Harbour(65498); 2539(65677)
Epinephelus aeneus	2435(64958); 2444(64996); 2539(65680)
E. caninus	2429(65540)
E. costae	2547(64995); 2747(67970); 2834(68255)
E. haifensis	2429(65539); 2703(65814): 2745 (68256)
E. marginatus	2430(65623)
Mycteroperca rubra	Luanda Harbour(65964)
Rypticus saponaceus	2539(65609); 2717(65882); 2878(67756)
Serranus heterurus	2538(65552); 2539(65682)
Priacanthidae	
Priacanthus arenatus	2471(64986); 2703(65819)
Apogonidae	
Apogon affinis	2767(66034); 2878(67759)
A imberbis	2539(65675); 2767(66035)
Epigonidae	
Epigonus constanciae	2429(64345): 2495(64872): 2721(65889)
E. pandionis	2553(64930); 2842(67391)
Malacanthidae	
Branchiostegus semifasciatus	2443(65724); 2708(67968)
Pomatomidae	
Pomatomus saltatrix	2695(68111)
Carangidae	
Alectis alexandrina	2444(65742)
A. ciliaris	2446(64999)
Caranx hippos	2474(65721)
Chioroscombrus chrysurus	2703(65818): 2748(65955)
Decapterus punctatus	2816(66094)
Selene dorsalis	2429(65538); 2430(64963); 2431(65728); 2473(65620); 2522(65490); 2533(65492); 2703(68114); 2728(65986); 2767(66033)
Trachinotus goreensis	2446(65012); 2768(68036)
T. ovatus	2717(65883)
Trachurus capensis	2443(65616)
T. trecae	2443(65615); 2824(66102)
Coryphaenidae	
Coryphaena equiselis	Angling near station 2835(65106)
Bramidae	
Brama brama	2701(65809)
Caristiidae	
Paracarastius maderensis	2489(64908); 2754(65939); 2763(65948); 2773(66020); 2788(66082); 2789(66086); 2828(66111)
Emmelichthyidae	
Erythrocles monodi	2464(65594); 2470(65600); 2705(68105)
Lutjanidae	
Lutjanus fulgens	2748(65956)
Gerreidae	
Eucinostomus melanopterus ${ }^{-}$	2444(65587); 2473(65621), 2798(66089)
Haemulidae	
Brachydeuterus auritus	2706(65825)
Parakuhlia macrophthalmus	2539(65681); Luanda Harbour(65952); Luanda Harbour(65963)
Parapristipoma octolineatum	2708(68115)
Plectorhinchus	2715(68108); 2717(65884)

Pomadasys incisus	2703(65820); Luanda Harbour(65954)
P. jubelini	2728(68040)
P. perotaei	2728(67973)
P. rogerii	2539(65674)
Sparidae	
Dentex angolensis	2477(65515); 2705(68116)
D. barnardi	2472(65612); 2698(68092)
D. congoensis	$\begin{aligned} & \text { 2442(65505): } 2471(65591) ; 2475(64588) ; \\ & 2502(65626) \end{aligned}$
D. gibbosus	2699(65855)
D. macrophthalmus	2477(64978): 2691(65837)
Diplodus sargus cadenati	Luanda Harbour(65950)
Lithognathus mormyrus	2703(68104)
Pagellus bellottii	2472(65613); 2699(65854)
Spondyliosoma cantharus	2431(64972); 2703(65815); 2707(65828)
Centracanthidae	
Boops boops	2431(65555); 2470(65014); 2703(65816)
Spicara alta	2464(65595); 2470(65601); 2705(65830)
Sciaenidae	
Atractoscion aequidens	2689(65832)
Pseudotolithus senegalensis	Luanda Harbour(64973)
Pteroscion peli	2528(64643); 2878(67758)
Umbrina canariensis	2689(65833)
Mullidae	
Pseudupeneus prayensis	$\begin{aligned} & \text { 2472(65614); Luanda Harbour(65504); } \\ & \text { 2703(65817); } 2767(66032) \end{aligned}$
Drepanidae	
Drepane africana	2474(64992); 2728(68090); 2786(68089)
Ephippidae	
Chaetodipterus lippei	2538(65003): 2539 (65679)
Chaetodontidae	
Chaetodon hoefleri	2429(64980); 2430(64962); 2431(64964); 2437(64983); 2455(65740); 2482(64848); 2703(68113); 2734(66003); 2767(79497)
C. robustus	2539(65671); 2767(68110): Luanda Harbour(65949)
Prognathodes marcellae	2482(64605); 2525(65485)
Pomacentridae	
Chromis chromis	2538(65554)
Cepolidae	
Cepola pauciradiata	2762(65971)
Polynemidae	
Galeoides decadactylus	2473(65729); Luanda Harbour(64993); 2706(65824); 2727(68112); 2768(66042)
Pentanemus quinquarius	2727(65900)
Labridae	
Bodianus speciosus	2484(64629)
Xyrichtys novacula	2556(65484): 2729(65985)
Zoarcidae	
Pachycara crossacanthum	2515(64886): 2722(65896)
Trachinidae	
Trachinus armatus	2878(67757)
7. pellegrini	2825(66100)
Uranoscopidae	
Uranoscopus albesca	$\begin{aligned} & \hline 2481(65507) ; 2554(65487) ; 2714(65881) ; \\ & 2720(65887) ; 2730(65983) ; 2736(67988) \\ & \hline \end{aligned}$
U. cadenati	$\begin{aligned} & \hline 2431(65558) ; 2452(65618) ; 2457(65602) ; \\ & 2477(65517) ; 2478(65495) ; 2719(65885) \\ & \hline \end{aligned}$
Percophidae	
Bembrops sp. n.	2457(64414); 2478(64395); 2499(64854)
B. greyi	2542(64921): $2578(64855) ; 2552(65523)$
Labrisomidae	
Labrisomus nuchipinnis	Luanda Harbour(65951)
Callionymidae	
Synchiropus phaeton	2855(67400)
Gobiidae	
Awaous lateristriga	Luanda Harbour(65953)
Lesueurigobius koumansi	2452(65617); 2487(65486); 2499(65625); 2697(65850); 2730(65982); 2735(66000); 2784(66075)
Acanthuridae	
Acanthurus monroviae	2484(64844)
Gempylidae	
Gempylus serpens	2450(65001); 2468(65593)
Trichiuridae	
Aphanopus carbo	2809(68038)
Centrolophidae	
Schedophilus pemarco	2707(65826): 2792(67986)
Nomeidae	
Cubiceps pauciradiatus	$\begin{aligned} & \text { 2710(65866); 2754(65940); 2773(66021); } \\ & \text { 2819(66098); 2852(67410) } \end{aligned}$
Psenes pellucidus	2811(68097); 2819(660990; 2861(67739)
Ariommatidae	
Ariomma bondi	2576(65502); 2858(67745); 2859(67747)
A. melanum	2569(64895); 2742(65994); 2841(67392)
Stromateidae	
Stromateus fiatola	2727(65901)

PLEURONECTIFORMES	
Citharidae	
Citharus linguatula	$\begin{aligned} & \text { 2452(65619); 2454(65598); 2456(65592); } \\ & 2457(65605) ; 2557(65739) \\ & \hline \end{aligned}$
Paralichthyidae	
Citharichthys stampflii	2485(65512)
Syacium micrurum	2573(65501)
Bothidae	
Arnoglossus imperialis	2429(65544); 2430(65622); 2555(65520)
Bothus podas	2836(67394); 2878(67760)
Chascanopsetta lugubris	2552(65522); 2578(65518); 2846(67382)
Monolene microstoma	2440(65506); 2448(65606); 2457(65603); 2477(65516): 2478(65494): 2533(65493)
Soleidae	
Dicologlossa cuneata	$\begin{aligned} & \text { 2689(65831); 2699(65856); 2798(66090); } \\ & \text { 2878(67761) } \end{aligned}$
Solea hexophthalma	2767(66037)
Microchirus boscanion	2691(65838); 2692(65851)
M. frechkopi	2431(65557); 2501(65497); 2707(65827); 2709(65861); 2752(65960); 2769(66041); 2869(67749): 2876(67743); 2877(67741)
M. wittei	2508(64534)
Monochirus hispidus	2485(65683); 2539(65513);2766(66030); 2825(66101)
Vanstraelenia chirophthalma	2430(65624); 2703(67969)
Bathysoela polli	2777(66067); 2855(67401)
Cynoglossidae	
Cynoglossus canariensis	2727(67974); 2773(66022); 2869(68099)
Symphurus ligulatus	2518(65491); 2529(65488)
TETRAODONTIFORMES	
Balistidae	
Balistes capriscus	2445(64853); 2446(64849); 2729(68102)
B. punctatus	2566(64965)
Monacanthidae	
Aluterus heudelotii	$\begin{aligned} & \text { 2445(64852); 2446(64851); 2835(68261); } \\ & \text { 2836(67395) } \end{aligned}$
Tetraodontidae	
Ephippion guttifer	2444(64997); 2735(68109)
Lagocephalus laevigatus	2716(68037)
Sphoeroides marmoratus	$\begin{aligned} & \text { 2538(65553); 2539(65670); 2728(65988); } \\ & 2767(66036) \end{aligned}$
S. pachygaster	2490(64975)
Diodontidae	
Chilomycterus spinosus mauretanicus	$\begin{aligned} & \text { 2446(65590); 2706(68101); 2747(65958); } \\ & \text { 2870(67748) } \end{aligned}$
* Note: Spelling of C. coelorhincus follows recommendation of T. Iwamoto in e mail to E. Anderson, based on original intent of author.	

New species of 'Barbus' and Labeobarbus (Teleostei: Cyprinidae) from the South Rukuru River, Malawi, Africa.

Denis Tweddle and Paul H. Skelton
South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, South Africa.

Received 23 February 2007; accepted 14 November 2007.

Abstract

Two new barbine species are described from the South Rukuru River, which flows into Lake Malawi. 'Barbus' seymouri sp. nov. differs from the ' B ' eutaenia / ' B '. miolepis species complex in the absence of the sheath of enlarged scales at the base of the dorsal fin, which is prominent in the other species of the complex, and in the pigmentation pattern of the mid-lateral stripe. Labeobarbus nthuwa, sp. nov. differs from L. marequensis of the Middle and Lower Zambezi River system and from L. johnstonii of the Lake Malawi system in the presence of a bony dorsal spine, and from L. codringtonii of the Upper Zambezi in the absence of the tall dorsal fin. It also differs from L. johnstonii in scale counts, and from L. marequensis in gill raker counts and caudal peduncle proportions. The fish fauna of the South Rukuru River is separated from that of Lake Malawi and all other inflowing rivers by steep rift escarpment waterfalls. Evidence is presented for river capture from the Luangwa River, which flows to the Middle Zambezi. Other Zambezian species found on the northern Malawi lakeshore are considered to be evidence for a separate, former link to the Zambezi system via the Chambeshi system.

Key Words: new species, Lake Malawi, Luangwa River, river capture

INTRODUCTION

The South Rukuru River rises in the central uplands of Malawi and flows to Lake Malawi (Fig. 1). In its upper reaches it flows north, close to the Zambian border, before turning east and passing between the high Viphya and Nyika plateaux. For much of its northward passage, the terrain is fairly flat and the river slow flowing, but it is fed by fast-flowing mountain streams that arise on the two plateaux, many of which are perennial. After cutting through the Precambrian granitic basement complex rocks of the Njakwa gorge, the river continues to the lake down the rift escarpment as a series of rapids cut through a heavily faulted Karooage trough. Shortly before entering the lake, the river drops over the Wongwe and FuFu waterfalls, which form a barrier preventing the upstream movement of lake fishes (Tweddle 1982).

The fish fauna of the South Rukuru River, its tributaries and neighbouring rivers has been sampled on several occasions and differs considerably from that of all other affluent streams of Lake Malawi (Tweddle 1982; 1996; Tweddle \& Willoughby 1978). The species collected in the South Rukuru have been compared with known species from other river systems in Africa, and three of the barbine species are new to science. Two species are described here, while the third will be described later in a review of small spotted 'Barbus' species in the region (Tweddle, in prep.). The use of 'Barbus' follows Berrebi et al. (1996), under which the generic name Barbus is restricted to Barbus barbus (L.) and its large European congeners. The small African barbine species with radiate scale striations are not
closely related and therefore do not belong in the same genus. Until further research clarifies their relationships, the temporary epithet 'Barbus' will be used.

One of the species described herein is a member of the group of smaller 'Barbus' species with radially striated scales, a serrated dorsal spine and a mid-lateral stripe. This species also occurs in the Kaziwiziwi River (Fig. 1), a tributary of the North Rumphi River that arises close to tributaries of the South Rukuru on the southern flanks of the Nyika Plateau. The Kaziwiziwi River joins the North Rumphi before it falls steeply over the rift escarpment to Lake Malawi. Below the escarpment, sampling in the North Rumphi yielded only the typical lakeshore stream fauna (unpublished catch data; the lakeshore stream fauna is described by Tweddle (1996)).

The second species to be described is a member of the large African barbine group with parallel-striated scales recognised as the recently reinstated genus Labeobarbus Rüppell 1835 (Skelton 2001). In Lake Malawi and its other inflowing rivers, this genus includes two species, L. brevicauda (Keilhack) and L. johnstonii (Boulenger).

METHODS

Specimens were collected from various sites (Fig. 1) in the South Rukuru River and tributaries and in the Kaziwiziwi River by electric fishing and the three largest specimens of Labeobarbus nthuwa (sp. nov.), were purchased from a local angler. Specimens were preserved on site in 10% formalin, transferred to 60% N-propyl alcohol, and were later transferred to 70\%

Fig. 1. The South Rukuru and neighbouring catchments. $\mathbf{X}=$ localities where Labeobarbus nthuwa sp. nov. type specimens were collected; O $=$ localities where 'Barbus' seymouri sp. nov. type specimens were collected; = localities where non-type specimens of ' B ' seymouri listed in text were caught; = towns of Rumphi and Mzimba; \star indicates site of possible river capture between Luangwa and South Rukuru river systems. The small map attached shows the location of the main map in southeastern Africa, indicated by the rectangle.
ethyl alcohol.
Measurements were made by vernier calipers to the nearest 0.1 mm following Skelton (1988). Skeletal meristics and fin ray counts were taken from radiographs. Vertebral counts include the four Weberian vertebrae and a single (PU + U1) caudal fin vertebra. Abdominal vertebrae include all anterior vertebrae without an extended haemal spine. Caudal vertebrae possess an extended haemal spine. Lateral line scales were counted from the first scale row behind the gill cover to the end of the body, i.e. the point of flexure of the caudal fin. This usually excludes the last pored scale and smaller scales on the fin base. In transverse scale counts where a count is given as e.g. $2+1$, this means two full size scales and either one small scale or a gap between scale and fin with the next scale overlapping the fin base.

Colour descriptions were made from field
observations and colour transparencies of live fishes. Pharyngeal bones were dissected and macerated in trypsin for several days before being defleshed. Scales were removed and stained with alizarin red. Scales and pharyngeal teeth were drawn using a camera lucida.

Institutional abbreviations follow Leviton et al. (1985). The following abbreviations are used in text and tables: SL, standard length; HL, head length; HD, head depth; SNL, snout length; OD, orbit diameter; POL, postorbital length; IOW, interorbital width; PDL, predorsal length; PPL, prepelvic length; DL, dorsal fin length; PCL, pectoral fin length; PVL, pelvic fin length; AL, anal fin length; BD, body depth; BW, body width; CP , caudal peduncle; CPL, caudal peduncle length; CPD, caudal peduncle depth; $A B$, anterior barbel length; PB, posterior barbel length; LJW, lower jaw width; LL, lateral line.

STATISTICA 8 software was use for the principal component analysis.

'Barbus' seymouri sp. nov.

Fig. 2.
Holotype. SAIAB 34888, unsexed, 93.3 mm SL; Kaziwiziwi River, North Rumphi River basin, Lake Malawi affluent, Malawi, $10^{\circ} 38^{\prime} \mathrm{S}, 34^{\circ} 05^{\prime} \mathrm{E}$; D. Tweddle, 25 September 1980.

Paratypes. SAIAB 34887, 17 specimens, 52.4-108.2 mm SL, collected with holotype. SAIAB 34946, 1 specimen, 74.0 mm SL, collected with holotype. SAIAB 34881, 5 specimens, $28.3-92.4 \mathrm{~mm}$ SL, South Rukuru River at Njakwa gorge, $11^{\circ} 02^{\prime} \mathrm{S}, 33^{\circ} 54^{\prime} \mathrm{E}$, and Runyina tributary, $11^{\circ} 01^{\prime} \mathrm{S}, 33^{\circ} 47^{\prime} \mathrm{E}$, at Rumphi, Malawi, D. Tweddle, 22-23 October 1980.

Other material examined. SAIAB 40797, 20 specimens, 31.6-51.2 mm SL, Mzimba River (South Rukuru tributary), Mzimba, Malawi, $11^{\circ} 54^{\prime}$ S $33^{\circ} 36^{\prime}$ E, D. Tweddle \& P.H. Skelton, 2 July 1992; BMNH 1978.8.3.537-556, 20 specimens, South Rukuru River, $12^{\circ} 16^{\prime} \mathrm{S}, 33^{\circ} 29^{\prime} \mathrm{E}$, and Mzimba tributary, $11^{\circ} 54^{\prime}$ S, $33^{\circ} 36^{\prime} \mathrm{E}$, D. Tweddle \& N.G. Willoughby, October 1976; BMNH 1978.8.3.1596, 1 specimen, South Rukuru River $12^{\circ} 16^{\prime} \mathrm{S}, 33^{\circ} 29^{\prime} \mathrm{E}$, D. Tweddle \& N.G. Willoughby, October 1976; further specimens are also deposited in the museum in the Monkey Bay Fisheries Research Unit Museum, Malawi, without accession numbers.

DiAGnosis. A moderate-sized (up to 108 mm SL), robust bodied, 'Barbus' species with an ossified, serrated last dorsal simple ray, 26-29 lateral line scales, fins tinted pinkish-orange, and a midlateral black stripe that extends through the caudal fin to the fork, but does not extend onto the snout. Differs from other orangefinned, serrated-spined 'Barbus' species in the region (including 'B.' eutaenia Boulenger, 1904, 'B.' miolepis Boulenger, 1902, 'B.' choloensis Norman, 1925, and

Fig. 2. Holotype of 'Barbus' seymouri sp.nov.
several other species, some of which are undescribed, recently discovered in Upper Zambezi tributaries (Tweddle et al., 2004)) in the absence of the prominent sheath of enlarged scales at the base of the dorsal fin present in the other species, and in the pattern of pigmentation of the mid-lateral stripe, which is distinct in each species.

Description. Based on the holotype and paratypes. Morphometric and meristic data are given in Table 1.

Body fusiform, slightly compressed, maximum depth approximately equal to head length, located before dorsal fin. Nape rises in hump behind head, particularly in larger specimens. Head moderately deep, four times in SL. Eyes lateral in position, visible from above and below, orbit becoming proportionately smaller in large specimens (OD as $\% \mathrm{HL}=-0.5952 \mathrm{HL}$ $+39.184, \mathrm{r}^{2}=0.7346$). Snout rounded and short, equal to or slightly shorter than orbit diameter. No tubercles on the head. Nostrils small, short tubular anterior naris adjacent to open posterior naris; nostrils level with dorsal margin of eye and separated from orbit by less than one orbit radius. Mouth subterminal, crescentshaped and reaching to below anterior border of orbit, lips moderately well-developed. Two pairs of simple barbels, anterior slightly shorter than posterior, which is approximately equal to orbit diameter. Gill cover opening from level with dorsal margin of orbit, attached ventrally close to isthmus. Gill arches with four short, stub-like, widely-spaced gill rakers on ceratobranchial of anterior arch, two on epibranchial.

Pharyngeal bones typical of small African 'Barbus' species with three rows of peg-like pharyngeal teeth with pointed cusps, formula $5,3,2$ 2,3,5.

Origin of dorsal fin equidistant between tip of snout and base of caudal fin, above or just behind origin of pelvic fins. Dorsal fin becomes relatively shorter with
increasing size of specimen, from approximately 30% of SL in smallest specimens to 20% in largest individuals, anteriormost branched ray longest, distal margin concave. Last unbranched dorsal ray ossified and finely serrated (approximately 30 prominent serrations and up to 40 in total) on its posterior side. Pectoral fins reach $2 / 3$ of distance to base of pelvics, tips rounded and distal margin straight. Pelvic fins reach $2 / 3$ of distance to base of anal fin, relatively small and rounded. Anal fin short, extending $1 / 3$ length of caudal peduncle, last unbranched ray longest, distal margin straight. Caudal fin forked, outer rays twice length of median rays, lobes rounded. Caudal peduncle long, length twice depth.

Fig. 3. Predorsal scale of 'Barbus' seymouri paratype, SAIAB 34887, from right side above lateral line, showing striae. Dashed line indicates limit of embedded area, Scale bar 1 mm .

Anus and genital opening immediately anterior of base of anal fin. Gut short, about equal to SL, in a single simple S-flexure.

Fig. 4. Colour photograph of paratype of 'Barbus' seymouri from Kaziwiziwi River, SAIAB 34887.

Scales moderately large, cycloid and rounded, well developed in regular rows. Scales radially striate with about 10 radii in total (Fig. 3). Lateral line complete, anteriorly dipping one scale row below the horizontal myoseptum, joining and extending straight along the midline at the anterior end of the caudal peduncle. No sheath of enlarged, elongate scales along base of dorsal fin; short pelvic axil scale present; breast scales well developed,

Colouration. Live colours (Fig. 4): body and head olive dorsally and sides silvery with whitish-gold sheen ventrally; black midlateral stripe bordered with golden yellow; black post-opercular vertical bar. Dorsal fin with dark olive rays and clear membranes; caudal fin colouration similar but with pinkish-orange tinge, particularly on lower half; pectoral, pelvic and anal fins pale brownish-orange tinted distinctly pinkishorange. Iris dark anteriorly and posteriorly, pale yellow ventrally with orange highlight dorsally. Specimens from turbid water uniformly pale with faint dark midlateral stripe.

In preserved specimens (60% propyl alcohol), dorsal surface scales densely pigmented with fine melanophores, with a crescent of closely spaced larger melanophores at both anterior and posterior borders of exposed part of scale. Pigmentation less intense in centres of lateral line scales and in the row below the lateral line only a few scattered melanophores present on each scale, although anterior crescent is still fairly prominent. In next row below, only a few scattered melanophores present anteriorly and dorsally on each scale. Below this, all scales pigment-free except for a few melanophores along the ventral scale row between anal and caudal fins. Crescent of dark pigment present behind operculum from lateral line to pectoral fin base. Horizontal myoseptum darkly pigmented beneath the scales, forming a fine but fairly intense mid-lateral
stripe, most prominent on the caudal peduncle. In many specimens, underlying pigmentation emphasised by additional melanophores along the line on the scales themselves. At base of caudal fin, lateral stripe broadens slightly as a result of heavier scale pigmentation. Stripe continues through to posterior margin of caudal fin. Mid-dorsal stripe present for full length of body. Rays of the dorsal, pectoral and caudal fins lightly pigmented with fine melanophores, pelvics and anal almost pigment free. Operculum and snout covered in melanophores, which are more abundant but finer on the snout. Both pairs of barbels lightly pigmented.

Distribution and habitat. 'Barbus' seymouri is found throughout the South Rukuru system above the falls that isolate the fauna from that of Lake Malawi, and in the Kaziwiziwi River above the escarpment down to the lakeshore. The sites where the species is caught are generally clear, strongly-flowing streams with cover in the form of vegetation and/or rocks. In the Mzimba River in Mzimba town, the river changed dramatically between sampling in 1976 and 1992. The narrow, wellvegetated, clear stream of 1976 yielded many large well-coloured specimens of ' B '. seymouri, whereas in 1992 the wide, shallow, sandy stream at the same site yielded small, pallid specimens only from the road bridge gabions.

Etymology. Named after the late Tony Seymour (Fig. 5), a close friend of the first author and colleague for many years in the Malawi Government Fisheries Department, in recognition of his many years of service to Malawi not only in Fisheries but also in many other aspects of environmental management and conservation, and in particular for his long-term commitment to supporting Lake Malawi's fishermen.

Comparisons. 'Barbus' seymouri is one of a group of small

Fig. 5. The late Tony Seymour, after whom 'Barbus' seymouri is named.

African 'Barbus' with radiate striated scales, a bony, serrated last unbranched dorsal-fin ray, orange tinted fins and a dark midlateral stripe. The three most similar species so far recorded in eastern, central and southern Africa are ' B.' choloensis, ' B.' eutaenia and 'B.' miolepis. 'Barbus' choloensis occurs in the south of Malawi in two Lower Shire River (i.e. Lower Zambezi system) tributaries, the Ruo River and the Mwabvi River (Tweddle \& Willoughby 1979). 'Barbus' eutaenia is currently recognised as being widespread in southerncentral Africa while 'B.' miolepis is considered to be a species of the Upper Zambezi, Kafue and Congo river systems (Skelton 2001). All three are robust species with yellow or orange tinted fins, a black mid-lateral stripe and a serrated dorsal spine. The ' B.' eutaenia / 'B.' miolepis species complex needs detailed revision and several other species new to science exist, including another possibly distinct species in the lower reaches of the Lufirio River, which flows into northern Lake Malawi from Tanzania (SAIAB 54766). In the Upper Zambezi system several other species in this complex occur, some of which are undescribed (Tweddle et al. (2004). Taxonomic review of these species will not affect the status of ' B.' seymouri.
'Barbus' seymouri has larger scales than 'B.' choloensis with 4 scales between the dorsal fin and lateral line compared to $5-6$ scales in 'B.' choloensis. 'Barbus' seymouri has 12 scales around the caudal peduncle and 'B.' choloensis has 14-16. 'Barbus' seymouri has a more rounded snout, thus the mouth is slightly sub-terminal, whereas the snout of ' B.' choloensis is pointed and the mouth terminal. In similar-sized specimens, ' B.' choloensis has a much larger eye. 'Barbus' choloensis has pointed caudal fin lobes whereas those of 'B.' seymouri are rounded. In 'B.' choloensis, the mid-lateral stripe
is diffuse, confined to the posterior half of the body, broadens to an indistinct oval spot one full scale wide on the caudal peduncle, and does not extend noticeably on to the caudal fin rays. The mid-lateral stripe of ' B.' seymouri is narrower and better defined, extends the full length of the body following the curve of the scale row above the lateral line, broadens only slightly on the caudal peduncle and continues through the caudal fin to its fork.
'Barbus' seymouri differs from the other species in the 'B.' eutaenia / 'B'. miolepis complex in that it lacks the enlarged scales that form a sheath at the base of the dorsal fin in the other species. It also has more lateral line scales (26-29 v. 23-27). The mid-lateral stripe of 'B.' seymouri is finer than the broad heavy stripe of the other species. The well-defined stripe in the other species extends through the operculum and to the tip of the snout, whereas in ' B.' seymouri there is only a suggestion of heavier pigmentation in the centre of the operculum and only diffuse melanophores on the snout.

Labeobarbus nthuwa sp. nov.

Fig. 6.
Holotype. SAIAB 39341, 210 mm SL; Runyina tributary of South Rukuru River, Lake Malawi affluent, Malawi, $11^{\circ} 01^{\prime} \mathrm{S} 33^{\circ} 47^{\prime} \mathrm{E}$; D. Tweddle \& P.H. Skelton, 3 July 1992.

Paratypes. SAIAB 79494, 2 specimens, 217-236 mm SL, collected with holotype. SAIAB 40787, 6 specimens $31.0-36.7 \mathrm{~mm}$ SL, Runyina, $11^{\circ} 01^{\prime} \mathrm{S} 33^{\circ} 47^{\prime} \mathrm{E}$, and South Rumphi, $11^{\circ} 01^{\prime} \mathrm{S} 33^{\circ} 52^{\prime} \mathrm{E}$, tributaries of South Rukuru River; D. Tweddle \& P.H. Skelton. SAIAB 39293, 1 specimen, 42.1 mm SL, Runyina tributary of South Rukuru River, $11^{\circ} 01^{\prime} S 33^{\circ} 47^{\prime} \mathrm{E}$; D. Tweddle \& P.H. Skelton. SAIAB 51928, 2 specimens, 210-217 mm SL, South Rukuru River at Chikulamayembe, Malawi, $10^{\circ} 45^{\prime}$ S $34^{\circ} 07^{\prime}$ E; D. Tweddle, R. Bills \& P.H. Skelton, 22 October 1995.

Diagnosis. A Labeobarbus species with parallel-striated scales, a heavily ossified, unserrated, last unbranched dorsal-fin ray, five unbranched dorsal rays in total, and 30-33 lateral line scales. Differs from the two Lake Malawi Labeobarbus species (L. johnstonii Boulenger 1907 and L. brevicauda Keilhack 1908) in scale counts and the presence of the bony dorsal spine. Differs from L. marequensis (A. Smith 1841) of the Zambezi River and east coastal rivers south to the Phongolo in gill raker counts, caudal peduncle proportions and the presence of the bony dorsal spine. Differs from L. codringtonii (Boulenger 1908) of the Upper Zambezi River in the absence of the high dorsal fin characteristic of that species.

Description. Based on the holotype and paratypes.

Fig. 6. Holotype of Labeobarbus nthuwa sp. nov.

Morphometric and meristic data are given in Table 2.
Body fusiform, slightly compressed, body depth approximately equal to head length in smaller specimens, becoming proportionately deeper with size, to approximately $11 / 2$ times head length in adults, deepest at origin of dorsal fin. Head length 4 times in standard length, head depth approximately $3 / 4$ head length. Dorsal profile of head in larger specimens straight to slightly concave (Fig. 7), shallowly convex in smaller specimens.

Fig. 7. Head of L. nthuwa holotype, showing position of tubercles.

Eyes lateral in position, visible from above and below, becomingproportionatelysmallerinlargespecimens(OD as $\% H L=54.662 \mathrm{HL}^{-0.236}, \mathrm{r}^{2}=0.971$). Snout pronounced, particularly in larger specimens, longer than orbit diameter in fish over 40 mm SL , shorter than orbit diameter in smaller specimens. Small conical tubercles present on snout, operculum and sides of head, not extending on to dorsal surface of head or on to body. Nostrils prominent, short tubular anterior naris adjacent
to open posterior naris and separated by raised rounded septum. Nostrils at horizontal through dorsal half of eye, separated from orbit by less than one orbit radius. Mouth sub-terminal, not reaching below anterior border of orbit; lips variable, ranging from specimens with straight, keratinised scraping edge to the lower lip (Varicorhinus-like) to specimens with rounded, fleshy lips. Two pairs of barbels, anterior just over half length of posterior, which ranges from being equal to orbit diameter in largest specimens examined to less than one-half orbit diameter in smallest specimens. Gill cover opening from level with dorsal margin of orbit, attached ventrally close to isthmus. Gill arches with $8-10$ robust gill rakers visible on anterior arch.

Pharyngeal bones robust with pharyngeal teeth in

Fig. 8. Left pharyngeal bone of paratype of L. nthuwa, SAIAB 79494, from left, lateral view, posterior view and anterior view. Scale bar 5 mm .
three rows, formula 5,3,2 2,3,5 (Fig. 8).
Origin of dorsal fin equidistant between tip of snout and base of caudal fin, positioned before origin of pelvic fins, last simple ray heavily ossified and unserrated, anterior branched ray longest, distal margin of fin

Fig. 10. Colour photograph of Labeobrabus nthuwa paratype, SAIAB 79494.
strongly concave. Radiographs show five simple rays in dorsal fin in all but smallest three specimens, where first, very small ray may have not yet developed to a size where it becomes visible. Pectoral fins falcate, reaching $3 / 4$ of distance to base of pelvic fins. Pelvic fins pointed with square distal margin, reaching $2 / 3$ of distance to base of anal fin. Anal fin last unbranched ray longest, distal margin shallowly concave, reaching to $1 / 2$ length of caudal peduncle. Single rows of prominent tubercles present on posterior edge of branched rays of anal fin in adult males. Caudal fin deeply forked, outer rays nearly four times length of median rays, lobes pointed. Caudal peduncle of moderate length, depth generally more than 60% of length. Anus and genital opening located at anterior of base of anal fin. Gut extended and involuted, its length several times longer than SL.

Scales moderately large, cycloid and rounded, well developed in regular rows. Scales with numerous parallel striations on exposed field, less numerous on medial area of embedded field, focus ill-defined (Fig. 9). Lateral line complete, anteriorly dipping one scale

Fig. 9. Scale of Labeobarbus nthuwa paratype, SAIAB 79494, from right side above anal fin, showing striae. Scale bar 1 mm .
row below midline, which it rejoins anterior to anal fin, passing mid-laterally to base of caudal fin. Elongated pelvic axil scale present; breast scales well developed but markedly reduced in size between bases of pectoral fins.

Colouration. Live colour (Fig. 10) silvery-olive dorsally, silver laterally and ventrally with faint purple sheen that is most prominent on operculum. Dorsal and caudal fins dark olive-grey; anal, pelvic and pectoral fins paler with brownish-orange bases, greyish extremities.

Preserved specimens (60% propyl alcohol) with scales on dorsal surface lightly pigmented with fine melanophores, more closely spaced at anterior border of exposed part of scale. Pigmentation less intense ventral to lateral line scales with melanophores confined to anterior of exposed part of scale. Ventral scales unpigmented. Vertical crescent of dark pigment behind operculum from lateral line to pectoral fin base. Fin membranes between rays of dorsal, caudal and pectoral fins heavily pigmented, outlining the rays. Similar pigment appears on pelvic and anal fins, but less prominently. Caudal fin with fine, dark posterior edge as result of membrane pigmentation. Dorsal surface of the head very finely pigmented, with larger melanophores in the centre of operculum. Posterior edge of operculum unpigmented. Ventral surface of head, lips and barbels are unpigmented.

Distribution and habitat. Adult L. nthuwa occur in the main South Rukuru River down to the Wongwe and FuFu falls near the lake (Fig. 1), but have not been found in the lake itself. The upper distribution limit is unknown, but the species occurs at least as far upstream as Lake Kazuni. The species also occurs in larger perennial tributaries flowing from the Nyika Plateau, such as the Runyina, where adults and juveniles were caught, and the South Rumphi, a smaller stream that
yielded juveniles only. All sampling sites where the species has been caught were rocky, fast flowing stretches with some deeper pools. The species has not been recorded beyond the South Rukuru River system.

Etymology. Nthuwa (pronounced "ntoowa") is the vernacular name used for this species in the vicinity of the town of Rumphi, and is used here as a noun in apposition.

Comparisons. There are two similar large Labeobarbus species in Lake Malawi and all perennial rivers and streams flowing to the lake with the exception of the South Rukuru above the Wongwe and FuFu Falls.

Labeobarbus brevicauda (Keilhack), formerly known as L. eurystomus (Keilhack) (Seegers 1995), is easily distinguished from L. nthuwa by its higher lateral line scale count (33-37, mean 35 v. 30-33, mean 31), long, robust barbels of equal length and enlarged, molariform pharyngeal teeth.

Labeobarbus johnstonii is closer in appearance to L. nthuwa and has similar pharyngeal bones and teeth. Because L. johnstonii is variable in form depending on habitat and locality, e.g. Shire River specimens from torrential stretches of river are deeper bodied than specimens from standing or slow moving waters in Lake Malawi and inflowing streams, it was necessary to investigate the full range of variation in the species. A total of 56 specimens from Lake Malawi, various inflowing rivers at different altitudes in different habitat types, the out-flowing Shire River, and small tributaries of that river in the Lower Zambezi system were measured. Labeobarbus johnstonii can be separated from L. nthuwa by its higher lateral line scale count (3140 , mean 35), by its higher gillraker count (L. johnstonii, 10-15, mean 11; L. nthuwa, 8-10, mean 9) (Table 3), and by having a flexible and not heavily ossified last simple dorsal ray, as in L. nthuwa. Labeobarbus nthuwa has five unbranched dorsal-fin rays visible on radiographs of specimens $>38 \mathrm{~mm}$ SL, whereas in L. johnstonii, the usual count is four: only four of 58 specimens radiographed have five unbranched rays.

Labeobarbus nthuwa was also compared with L. marequensis from the Zambezi system. Labeobarbus marequensis, as currently recognised, is found from the Middle and Lower Zambezi south to the Incomati system in South Africa, including the type locality, the Marico River (Skelton 2001). L. marequensis populations show considerable variation, e.g, populations to the south of the Zambezi have higher scale counts and narrower caudal peduncles (discussed by Farquharson 1962). Following preliminary examination of the other populations, our study was restricted to Zambezi populations as these are closest to Malawi drainages, most similar in scale counts, and most likely to be related to L. nthuwa. Meristic and morphometric measurements were taken for 46 specimens of L. marequensis from the Middle and Lower Zambezi River and tributaries (Table 4). From the Gairezi tributary of the Lower Zambezi,
both typical L. marequensis and chisel-mouthed forms previously identified as Varicorhinus nasutus Gilchrist and Thompson 1911 (see Tweddle \& Skelton 1998, for discussion of validity of V. nasutus) were measured. The various Zambezi populations differ in the depth of the caudal peduncle. Specimens from the Lower Shire tributary of the Lower Zambezi have very broad caudal peduncles, as deep as long, whereas specimens from the Gairezi tributary have narrow caudal peduncles. A list of the measured specimens of L. johnstonii and L. marequensis is presented in the Appendix.

Labeobarbus marequensis can be separated from L. nthuwa by its higher gillraker count ($9-14$, mean 11 cf. 8-10, mean 9) and the absence of the ossified last simple dorsal-fin ray. Specimens of L. marequensis from Lake Kariba have slightly more robust last unbranched dorsal-fin rays than other populations, but not to the extent that they could be considered spinous. Only two of 36 radiographed specimens of L. marequensis had five unbranched dorsal-fin rays, the rest had four.

Because of the wide geographic variation in L. johnstonii and L. marequensis, caution is needed when describing a new species. To assess the validity of L. nthuwa, principal component analysis was carried out on the measurements from all specimens examined. The first principal component summarised body size, as indicated by its large weights for linear measurements and low weights for meristic variables, and did not help to differentiate the species. Components 2 and 3, however, separated L. marequensis and L. johnstonii, based largely on scale counts (factor 2), barbel lengths and caudal peduncle depth (factor3) (Fig. 11), whereas L. nthuwa was intermediate, with slight overlap with both species. A single aberrant specimen from the Maperera tributary of the Lower Shire River had 32 lateral line scales and only 12 around the caudal peduncle, and was possibly a L. johnstonii/L. marequensis hybrid as both species occur in the Lower Shire. This specimen is excluded from the convex hull drawn to encompass the L. johnstonii data points in Fig. 11.

Labeobarbus nthuwa was compared with the different populations of L. marequensis (Fig. 12) and L. johnstonii (Fig. 13) in separate analyses. Labeobarbus nthuwa and L. marequensis were clearly separated, with scale counts and caudal peduncle depth (factor 2) and gillraker counts and barbel lengths (factor 3) identified as key variables. Some clustering of different Zambezi populations of L. marequensis is also noted on this figure, and further investigation using genetic and morphometric techniques on fresh L. marequensis material is needed to ascertain the relationships between populations of this species.

In the third analysis, L. nthuwa was also distinguished from L. johnstonii (Fig. 13), based on scale and gillraker counts (factor 2), caudal peduncle depth and barbel length (factor 3). There is considerable overlap between L. johnstonii populations and thus they are not outlined in Fig. 13. Middle Shire River specimens, from torrential stretches of river, have more powerful caudal regions

Fig. 11. Separation of L. marequensis and L. johnstonii with L. nthuwa occupying an intermediate position, using PCA based on all morphometric measurements. Numbers represent specimens from different populations (see Figs. 12 and 13 captions). $1=L$. nthuwa, $2-7=$ L. johnstonii, $8-13=$ L. marequensis. An aberrant specimen of L. johnstonii population 4 is omitted from the convex hull for that species, as explained in the text.

Fig. 12. Separation of L. nthuwa from Zambezi populations of L. marequensis, numbered as follows: $1=L$. nthuwa; 8-13 = L. marequensis, $8=$ 'normal’ mouthed Gairezi River, $9=$ 'Varicorhinus' mouthed Gairezi River, $10=$ Ruo River, tributary of Lower Shire River, $11=$ Mazoe River, $12=$ Lake Kariba, 13 = Luangwa River. Specimens measured are listed in the appendix. The different populations are outlined in the scatterplot.

Fig. 13. Separation of L. nthuwa from populations of L. johnstonii, numbered as follows: $1=L$. nthuwa; 2-7 $=L$. johnstonii, 2 = Bua River, 3 = Lake Malawi, $4=$ Maperera River, tributary of Lower Shire River, $5=$ Lufira River, $6=$ Middle Shire River, $7=$ North Rukuru River. Specimens measured are listed in the appendix. Because of the large degree of overlap between L. johnstonii populations, they have not been differentiated in this scatterplot.
than specimens from standing or slow moving waters in Lake Malawi and inflowing streams, and this was reflected in the weight given to caudal peduncle depth in the third principal component. As a result, Lake Malawi specimens (population no. 3 in Fig. 13) are all found in the upper part of the scatter diagram, while the robust Middle Shire specimens (population no. 6) are mainly in the lower part.

Labeobarbus codringtonii is a species found in rapids of the Upper Zambezi River system and is distinguished from L. nthuwa by the absence of the ossified last simple dorsal-fin ray and from both L. marequensis and L. nthuwa in having a very tall dorsal fin.

DISCUSSION

Banister \& Clarke (1980) considered L. johnstonii to be 'strikingly similar' to L. marequensis in gross appearance, including the form of the pharyngeal bones and teeth and the scale striations. They cautioned that the characters in question are probably plesiomorphic, but stated that, with no other likely candidates in the region, there are no zoogeographical inconsistencies in the suggestion that the two species are related. Labeobarbus nthuwa is
an addition to this group of similar species.
In scale counts L. nthuwa is closer to L. marequensis than it is to L. johnstonii. Labeobarbus marequensis occurs in the Luangwa River. The very close proximity of the South Rukuru River to the Luangwa River watershed on the Zambian border for approximately 150 km of its course, and the presence of swamps and evidence of former lakes in the area (Hopkins 1973) suggests river capture has occurred as a result of tectonic warping of the land surface associated with the Lake Malawi rifting. Unconsolidated pebble sheets up to 30 m above the present level of Lake Kazuni (Fig. 1) probably represent the littoral deposits of a once much more extensive lake (Hopkins 1973) created by such tectonic movements. A probable site of river capture is marked on Fig. 1. Prior to this, much of the present South Rukuru River would have been a west-flowing Luangwa River tributary. The Luangwa River in Zambia flows to the Middle Zambezi. It is possible that L. nthuwa is derived from a population of L. marequensis present in the Luangwa tributary captured by the South Rukuru River. Unfortunately no Labeobarbus specimens are available in museum collections of the Luangwa River's eastern tributaries near Malawi to compare with L. nthuwa. An alternative possibility is that L. nthuwa evolved from a population of L. johnstonii present in the South Rukuru
before the Wongwe and FuFu Falls became a complete barrier to migration during rifting.

Another possible interpretation is that L. johnstonii is derived from Luangwa River L. marequensis, which entered the Lake Malawi system via the South Rukuru River. With the South Rukuru separated from both systems as a result of the river capture to the west and falls to the east, L nthuwa would then have evolved its distinctive characteristics in isolation, while the lake populations in continuous contact with each other evolved into the species now recognized as L. johnstonii. The alternative suggestion that the ancestor of L. johnstonii entered Lake Malawi from the Lower Zambezi via the Shire River (Banister \& Clarke, 1980) is untenable because the Shire link is very recent, established only in the Quaternary (Lister 1967).

The South Rukuru River is unique among rivers flowing to Lake Malawi as it contains several fish species absent from the other rivers. In addition to the two species described here, there is another small 'Barbus' species with midlateral spots, which is possibly distinct from a similar species, also undescribed, on the lakeshore plain. Genetic study is needed to resolve this problem. One of the species described in this paper, 'B.' seymouri, also occurs in the adjacent Kaziwiziwi River, from where many of the type series, including the holotype, were taken. The species may have found its way into the Kaziwiziwi naturally as a result of river capture, or possibly by human transfer when a fish farm on the Nchenachena tributary of the South Rukuru, very close to the Kaziwiziwi, was used to stock fish ponds in the area in the 1950s.

The South Rukuru River contains two undescribed species of the small catfish genus Zaireichthys, only one of which occurs in other Lake Malawi rivers, while the other is found in the Zambezi system (D.H. Eccles et al., in prep.). Clarias liocephalus Boulenger occurs in Malawi only in the South Rukuru River. This is a species of the Upper Zambezi, north to the Congo, and through the Central African Great Lakes to the Lake Victoria region (Teugels 1986; Skelton 2001). In addition to these distinct species, there are as yet unquantified differences in the appearance of Amphilius uranoscopus (Pfeffer) from the South Rukuru River compared to other Malawi rivers, and the South Rukuru 'Barbus' paludinosus Peters population grows to a much larger size (15 cm SL) than in other populations elsewhere in its wide range (Jackson et al. 1963; personal observations). The distinctness of the South Rukuru fish fauna shows that it is likely to be derived from a different source than the fauna of other rivers flowing into the lake. It is suggested here that the likely source is highland tributaries of the Luangwa River captured by the South Rukuru during tectonic warping of the rift flanks.

The fish fauna of the Lake Malawi catchment as a whole shows close links with both east coast rivers and also with the Zambezi system to the west. The distribution of some of these 'Zambezi' species suggests there may have been more than one source.

The following 'Upper Zambezi' species occur along the northern Malawi lakeshore plain, including the Limphasa wetlands (Fig. 1), but not in the south: Pollimyrus castelnaui (Boulenger), 'Barbus' bifrenatus Fowler, Clarias stappersii Boulenger, Tilapia sparrmanii Smith and $P_{\text {seudocrenilabrus philander (Weber). None of }}$ these species occur in the South Rukuru River above the falls. Another "Upper Zambezi" species in the Hippopotamyrus ansorgii (Boulenger) species complex occurs in the upper reaches of the North Rukuru River, to the north of the Nyika Plateau (W. Kadye, pers. comm., specimens lodged in SAIAB). Thus the relationship between Lake Malawi and the Zambezi system is complex and cannot be explained simply by the single river capture from a Middle Zambezi tributary for which evidence is presented in this paper.

Worthington(1933) suggested linksbetweennorthern affluents of Lake Malawi and the Chambeshi system in Zambia, which is currently a headwater system of the Congo River system in an area that is flat and largely covered by marshes and large lakes. Genner et al. (2007) also suggested links in this area when discussing the molluscan Melanoides polymorpha (Smith) 'complex' of Lake Malawi. They pointed out that the M. polymorpha complex formed a clade with Melanoides anomala (Dautzenberg and Germain), a taxon now restricted to the southeast of the Congo drainage, and Melanoides mweruensis (Smith), an endemic of Lake Mweru. They stated that the Malawi Basin may have been colonised directly via a direct watershed boundary between the headwaters of the Congo River and the northwest of the Malawi Basin. Here tributaries of the Songwe River are adjacent to tributaries of the Chambeshi River that flows directly into the Bangweulu swamps and onto Lake Mweru.

Stankiewicz \& de Wit (2006) described historical changes in river directions in this area based on geological evidence. They suggested that in the Miocene the Luangwa and Middle Zambezi rivers changed course from their previous northeasterly flow direction towards an eastward-flowing paleo-Congo River, and may have become landlocked until captured by the Lower Zambezi River. The Chambeshi River also originally flowed north east, either joining the Luangwa or flowing directly into the palaeo-Congo. Its flow was also reversed in the Miocene and it became landlocked, possibly originating Lake Bangweulu. This system was captured first by the Kafue River to become part of the Zambezi River network and then, in the Lower Pleistocene, by the Luapula River to become part of the new west-flowing Congo River network, as it is today. The course of the proto-Luangwa River when flowing northeast cuts across the northern tip of the current Lake Malawi. Thus there have been opportunities for transfer of fish species in the area as proposed by Worthington (1933), explaining the presence of the group of species discussed above in northern Lake Malawi lakeshore streams. Further study is needed on the faunas of Zambian waters between the Upper

Zambezi and Lake Malawi, including eastern Luangwa tributaries, to shed more light on these possible links.

ACKNOWLEDGEMENTS

Colleagues who assisted in various surveys of the South Rukuru system included Nick Willoughby, the late Tony Seymour and Roger Bills. The first author was an employee of the Malawi Government Fisheries

Department, supported by the British Government (DFID), when conducting the surveys.SAIAB, a national facility of the National Research Foundation in South Africa provided support for the analysis and paper preparation. Martin Villet and Tony Booth of Rhodes University gave statistical advice. Line drawings were prepared by Elaine Heemstra and the small scale context map by Willem Coetzer. Interpretation of the geological history of the area benefited from discussions with Drs Rob Crossley and Pete Mosley.

Table 1. Morphometric and meristic measurements of 'Barbus' seymouri type series.

| Measurement | N | $\begin{array}{c}\text { Range } \\ \text { Holotype } \\ \text { Max }\end{array}$ | | | | Min |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | Mean $)$ SD

Meristics

Count

Holotype

Range

Dorsal-fin rays	iv +7	iii $+7(\mathrm{~N}=2)$ or iv $+7(\mathrm{~N}=22)$
Anal-fin rays	iii +5	iii $+5(\mathrm{~N}=23)$ or iii $+6(\mathrm{~N}=1)$
Pectoral-fin rays	14	$12(\mathrm{~N}=1), 13(\mathrm{~N}=1), 14(\mathrm{~N}=7), 15(\mathrm{~N}=15)$
Pelvic-fin rays	8	$8(\mathrm{~N}=22), 9(\mathrm{~N}=2)$
Total vertebrae	35	$34(\mathrm{~N}=17), 35(\mathrm{~N}=7)$
Abdominal vertebrae	19	$17(\mathrm{~N}=1), 18(\mathrm{~N}=9), 19(\mathrm{~N}=14)$
Caudal vertebrae	16	$15(\mathrm{~N}=8), 16(\mathrm{~N}=14), 17(\mathrm{~N}=2)$
Predorsal vertebrae	10	$9(\mathrm{~N}=8), 10(\mathrm{~N}=16)$
Preanal vertebrae	19	$18(\mathrm{~N}=3), 19(\mathrm{~N}=19), 20(\mathrm{~N}=2)$
Rib pairs	13	$12(\mathrm{~N}=8), 13(\mathrm{~N}=16)$
Lateral line scales	27	$26(\mathrm{~N}=6), 27(\mathrm{~N}=11), 28(\mathrm{~N}=5), 29(\mathrm{~N}=2)$
Caudal peduncle scale rows	12	$12(\mathrm{~N}=24)$
Scale rows lat. line - dorsal	4	$4(\mathrm{~N}=24)$
Scale rows lat. line - pelvic	3	$2+1(\mathrm{~N}=9), 3(\mathrm{~N}=14), 3+1(\mathrm{~N}=1)$
Scale rows lat. line - anal	$2+1$	$2(\mathrm{~N}=1), 2+1(\mathrm{~N}=21), 3(\mathrm{~N}=2)$
Predorsal scale rows	12	$9(\mathrm{~N}=1), 10(\mathrm{~N}=9), 11(\mathrm{~N}=13), 12(\mathrm{~N}=1)$

Table 2. Morphometric and meristic measurements of Labeobarbus nthuwa type series.

Measurement		Range				
	N	Holotype	Max.	Min.	Mean	SD
Standard length (mm)	12	210.00	236.00	31.00	91.43	
Head length (\%SL)	12	23.33	28.71	22.86	26.25	2.19
Head depth (\%HL)	12	76.73	76.73	70.16	72.92	1.74
Snout length (\%HL)	12	37.14	37.14	22.68	29.96	4.48
Orbit diameter (\%HL)	12	22.04	32.58	21.30	28.10	4.42
Postorbit length (\%HL)	12	46.33	47.98	39.62	42.78	2.82
Interorbit width (\%HL)	12	37.76	40.12	23.60	32.03	5.05
Predorsal length (\%SL)	12	48.43	52.97	46.14	50.51	2.17
Prepelvic length (\%SL)	12	50.81	57.14	49.84	53.30	2.44
Dorsal fin length (\%SL)	12	21.62	27.33	20.79	23.42	1.92
Pectoral fin length (\%SL)	12	19.86	20.73	19.05	19.68	0.49
Pelvic fin length (\%SL)	12	18.00	18.00	15.42	16.62	0.79
Anal fin length (\%SL)	12	17.48	19.83	15.98	17.24	1.32
Body depth (\%SL)	12	30.14	30.38	25.42	27.40	1.70
Body width (\%SL)	12	18.19	19.22	12.35	15.09	2.28
Caudal peduncle length (\%SL)	12	19.86	19.90	15.52	18.09	1.42
Caudal peduncle depth (\%CPL)	12	59.95	71.59	55.84	62.47	4.77
Anterior barbel length (\%OD)	12	68.52	68.52	13.79	33.70	18.17
Posterior barbel length (\%OD)	12	96.30	107.83	24.14	58.94	26.18
Mouth width (\%HL)	12	26.12	32.38	16.85	23.49	4.88

Meristics

Count	Holotype	Range
Dorsal fin rays	$\mathrm{v}+9$	$\mathrm{iv}+9(\mathrm{~N}=3), \mathrm{v}+8(\mathrm{~N}=1), \mathrm{v}+9(\mathrm{~N}=8)$
Anal fin rays	16	$15(\mathrm{~N}=5), 16(\mathrm{~N}=3), 17(\mathrm{~N}=4)$
Pectoral fin rays	9	$8(\mathrm{~N}=1), 9(\mathrm{~N}=11)$
Pelvic fin rays	40	$40(\mathrm{~N}=3), 41(\mathrm{~N}=9)$
Total vertebrae	22	$21(\mathrm{~N}=1), 22(\mathrm{~N}=5), 23(\mathrm{~N}=6)$
Abdominal vertebrae	18	$17(\mathrm{~N}=1), 18(\mathrm{~N}=7), 19(\mathrm{~N}=3), 20(\mathrm{~N}=1)$
Caudal vertebrae	10	$10(\mathrm{~N}=5), 11(\mathrm{~N}=7)$
Predorsal vertebrae	26	$26(\mathrm{~N}=10), 27(\mathrm{~N}=2)$
Preanal vertebrae	14	$13(\mathrm{~N}=2), 14(\mathrm{~N}=10)$
Rib pairs	32	$30(\mathrm{~N}=3), 31(\mathrm{~N}=3), 32(\mathrm{~N}=5), 33(\mathrm{~N}=1)$
Lateral line scales	12	$12(\mathrm{~N}=12)$
Caudal peduncle scale rows	5	$5+1(\mathrm{~N}=12)$
Scale rows lat. line - dorsal	3	$3(\mathrm{~N}=7), 3+1(\mathrm{~N}=5)$
Scale rows lat. line - pelvic	4	$3+1(\mathrm{~N}=3), 4(\mathrm{~N}=8), 4+1(\mathrm{~N}=1)$
Scale rows lat. line - anal	11	$11(\mathrm{~N}=5), 12(\mathrm{~N}=7)$
Predorsal scale rows	9	$8(\mathrm{~N}=4), 9(\mathrm{~N}=6), 10(\mathrm{~N}=1)$
Gill rakers		

Table 3. A comparison of the morphometric and meristic characters of L. nthuwa, L. johnstonii and L. marequensis.

	L. nthuwa			L. johnstonii				L. marequensis		
Measurement	n	mean	SD	n	mean	SD	n	mean	SD	
SL	12	91.43		54	104.93		45	100.45		
HL \%SL	12	26.25	2.19	54	25.42	1.50	45	25.67	2.17	
HD\%HL	12	72.92	1.74	56	74.71	3.19	45	74.98	5.37	
SNL\%HL	12	29.96	4.48	56	33.33	2.81	45	33.00	3.06	
OD\%HL	12	28.10	4.42	56	27.16	3.29	45	28.95	3.54	
POL\%HL	12	42.78	2.82	56	43.46	2.71	45	42.18	3.08	
IOW\%HL	12	32.03	5.05	56	37.21	4.62	45	36.40	6.25	
PD\%SL	12	50.51	2.17	54	49.64	1.70	45	50.93	1.87	
PP\%SL	12	53.30	2.44	54	52.43	1.63	45	53.59	1.96	
DL\%SL	12	23.42	1.92	54	23.81	1.39	45	25.24	3.16	
PCL\%SL	12	19.68	0.49	54	20.10	1.20	45	20.98	1.82	
PVL\%SL	12	16.62	0.79	54	17.82	1.10	45	18.85	1.87	
AL\%SL	12	17.24	1.32	54	18.38	1.38	45	19.38	1.93	
BD\%SL	12	27.40	1.70	54	28.15	2.25	45	28.70	2.28	
BW\%SL	12	15.09	2.28	54	15.35	1.17	45	15.71	1.70	
CPL\%SL	12	18.09	1.42	54	18.65	1.13	45	17.55	1.24	
CPD\%CPL	12	62.47	4.77	54	64.78	5.35	45	70.18	8.51	
AB\%OD	12	33.70	18.17	56	40.25	13.64	45	36.70	13.37	
PB\%OD	12	58.94	26.18	56	61.22	16.34	45	54.84	14.38	
MW\%HL	12	23.49	4.88	56	28.56	4.74	45	32.08	9.66	

Counts	Range		
	L. nthuwa $(n=12)$	L. johnstonii $(\mathrm{n}=56)$	L. marequensis $(\mathrm{n}=36)$
Dorsal-fin rays	iv+9, v+8, (v+9)	iv +8 , (iv+9), iv $+10, \mathrm{v}+9$	(iv+9), iv+10, v+10
Anal fin rays	iii+5	(iii) $+5, \mathrm{iii}+6$, iv +5	iii+5
Pectoral fin rays	(15)-17	14-(16)-17	15-(16)-17
Pelvic fin rays	8-(9)	8-(9)-10	8-(9)
Total vertebrae	40-(41)	40-(41)-43	38-(39)-42
Abdominal vertebrae	21-(23)	22-(23)-24	21-(23)-24
Caudal vertebrae	17-(18)-20	16-(18)-19	16-(17)-19
Predorsal vertebrae	10-(11)	10-(11)-12	(10)-12
Preanal vertebrae	(26)-27	25-(26)-28	24-(25)-27
Rib pairs	13-(14)	14-(15)-16	13-(15)-16
Lateral line scales	30-(32)-33	31-(34)-40	26-(29)-32
Caudal peduncle scale rows	12	12-(14)-16	11-(12)
Scale rows lateral line - dorsal	5+1	5+1-(6+1)-7	4+1-(5)-5+1
Scale rows lateral line - pelvic	3-(3+1)	2+1-(3)-4	2-(3)
Scale rows lateral line - anal	3+1-(4)-4+1	3+1-(4)-4+1	(3)-4
Predorsal scale rows	11-(12)	10-(12)-14	9-(11)-12

LITERATURE CITED

Banister, K.E. \& M.A. Clarke. 1980. A revision of the large Barbus (Pisces, Cyprinidae) of Lake Malawi with a reconstruction of the history of the southern African Rift Valley lakes. Journal of Natural History, 14: 483-542.

Berrebi, P., M. Kottelat, P.H. Skelton \& P. Rab. 1996. Systematics of Barbus: state of the art and heuristic comments. Folia Zoologica 45 (Supplement 1): 5-12.
Hopkins, D.A.S. 1973. The geology of the Rumphi Nkhata Bay area. Bulletin of the Geological Survey of Malawi. 38/39.

FARQUHARSON, F.L. 1962. The distribution of cyprinids in South Africa. Annals of the Cape Provincial Museums 2: 233-251.
Genner, M.J., J.A.Todd, E. Michel, D. Erpenbeck, A. Jimoh, D.A. Joyce, A. Piechocki \& J-P. Pointier. 2006. Amassing diversity in an ancient lake: evolution of a morphologically diverse parthenogenetic gastropod assemblage in Lake Malawi. Molecular Ecology (2007) 16: 517-530.
Jackson, P.B.N., T.D. Iles, D. Harding \& G. Fryer. 1963. Report on the survey of northern Lake Nyasa 195455 by the Joint Fisheries Research Organisation. Government Printer, Zomba, Nyasaland, 171 pp. \& plates.
Leviton, A.E., R.H. Gibbs, E. Heal \& C.E. Dawson. 1985. Standards in herpetology and ichthyology: Part 1. Standard symbolic codes for institutional resource collections in herpetology and ichthyology. Copeia, 1985: 802-832.
Lister, I.A. 1967. Erosion surfaces in Malawi. Records of the Geological Survey of Malawi, 7: 15-28.
Seegers, V.L. 1995. Fische aus dem tansanischen Einzug des Njassasees. DATZ, 47b: 31-35.
Skelton, P.H. 1988. A taxonomic revision of the redfin minnows (Pisces, Cyprinidae) from southern Africa. Annals of the Cape Provincial Museum, Natural History, 16: 201-307.
Skelton, P.H. 2001. A complete guide to the freshwater fishes of southern Africa. Second edition. Struik, Cape Town, 395 pp.
Stankiewicz, J. \& M.J. de Wit. 2006. A proposed drainage evolution model for Central Africa - did the Congo flow east? Journal of African Earth Sciences, 44 (2006): 75-84.
Teugels, G.G. 1986. A systematic revision of the African species of the genus Clarias (Pisces; Clariidae). Annales de Musee Royal de l'Afrique Centrale, Tervuren, Belgique, Sciences Zoologiques, 247: 1-199.
Tweddle, D. 1982. The fishes of the Malawi Northern Region game reserves. Nyala, 7(2): 99-108.
Tweddle, D. 1996. Fish survey of Nkhotakota Wildlife Reserve. A report to the Japanese International Cooperation Agency on behalf of the Wildlife Society of Malawi. J.L.B. Smith Institute of Ichthyology, Investigational Report No. 53: 1-79.
Tweddle, D., P.H. Skelton, B.C.W. van der Waal, I.R. Bills, A. Chilala \& O.T. Lekoko. 2004. Aquatic biodiversity survey for the "Four Corners" Transboundary Natural Resources Management Area. Final Report - July 2004. Report for African Wildlife Foundation, xviii + 202 pp.
Tweddle, D. \& N.G. Willoughby. 1978. Electrofishing survey of the affluent streams of Lake Malawi in the Viphya-Chintheche area. Rome, FAO, FI: MLW/75/019/1. 32 pp .
Tweddle, D. \& N.G. Willoughby. 1979. An annotated checklist of the fish fauna of the River Shire south of Kapachira Falls, Malawi. Ichthyological Bulletin of Rhodes University, 39: 11-22.

Worthington, E.B. 1933. The fishes of Lake Nyasa (other than Cichlidae). Proceedings of the Zoological Society of London, 2: 285-316.

APPENDIX

List of specimens of Labeobarbus marequensis and Labeobarbus johnstonii used in the morphometric and meristic comparisons.

Labeobarbus johnstonii

SAIAB 74-108, 5 specimens, 108.1-144.5 mmSL, Lake Malawi. SAIAB 74-126, 2 specimens, $141.1 \& 156.7 \mathrm{~mm}$ SL, Lake Malawi, Varicorhinus-mouth form. SAIAB 42112, 1 specimen, 213.0 mm SL, South East Arm of Lake Malawi. SAIAB 42111, 2 specimens (large heads only), South East Arm of Lake Malawi. SAIAB 39340, 1 specimen, 133.3 mmSL , Bua River, Lake Malawi system. SAIAB 50089, 9 specimens, 41.9-111.7 mm SL, Bua River, Lake Malawi system. AMG 8401, 3 specimens, 193.0-225.0 mm SL, North Rukuru River, Lake Malawi system. SAIAB 34910, 7 specimens, 41.7-81.2 mm SL, Lufira River, Lake Malawi system. SAIAB 50174, 14 specimens, 40.5-175.0 mm SL, Wankurumadzi River, Middle Shire system. AMG 8403, 3 specimens, 117.9170.8 mm SL, Mpatamanga, Middle Shire River. SAIAB 34322, 1 specimen, 120.9 mm SL, Maperera River, Lower Shire system. SAIAB 34854, 8 specimens, 43.9-119.5 mm SL, Maperera River, Lower Shire system.

Labeobarbus marequensis

SAIAB 34938, 1 specimen, 185.0 mm SL, Chiromo, Ruo/Lower Shire River. SAIAB 51947, 1 specimen, 59.6 mm SL, Sankhulani, Ruo River, Lower Shire system. SAM 8801, 1 specimen 482.0 mm SL, (type specimen of Varicorhinus nasutus), Middle Zambezi below Victoria Falls. AMG 366, 4 specimens, $143.7-156.4 \mathrm{~mm}$ SL, Mazoe River, Lower Zambezi system. AMG 8pf) 33, 3 specimens, 50.6-147.7 mm SL, Mazoe River, Lower Zambezi system. AMG 2100, 1 specimen, 368.0 mm SL, Gairezi River, Lower Zambezi system. AMG (pf) 144, 3 specimens, 180.0-195.0 mm SL, Gairezi River, Lower Zambezi system. AMG 30, 6 specimens, $59.4-99.2 \mathrm{~mm}$ SL, Gairezi River, Lower Zambezi system. AMG 1249, 3 specimens, $39.6-60.5 \mathrm{~mm}$ SL, Gairezi River, Lower Zambezi system. AMG 67, 4 specimens, 70.1-121.2 mm SL, Gairezi River, Lower Zambezi system. AMG (pf) 351, 3 specimens, $83.2-89.1 \mathrm{~mm}$ SL, Gairezi River, Lower Zambezi system. AMG (pf) 1322, 6 specimens, 29.2-51.7 mm SL, Luangwa River, Middle Zambezi system. AMG 2022, 10 specimens, $75.6-154.3 \mathrm{~mm}$ SL, Kariba, Middle Zambezi system.

A survey of tail spine characteristics of stingrays frequenting African, Arabian to Chagos-Maldive Archipelago waters.

Frank J. Schwartz
Institute of Marine Sciences, University of North Carolina
3431 Arendell Street, Morehead City, NC USA 28557-3209

Submitted 12 June 2007; accepted 16 November 2007.

Abstract

Tail spine characteristics were examined of 51 species (including one subspecies) of stingrays frequenting African, Arabian to Chagos-Maldive archipelago waters. Thirty-four species (313 males, 405 females) possessed intact spines, 12 species lacked tail spines. Spine characteristics recorded were: total length, prebase length, serrations (right and left), serrations or spaces on the spine base and if a dorsal groove was present. Spine total serrations ranged 36-261; spine serrations of males were usually more numerous than of females, sometimes twice as many. Total serration count seemed to be associated with stingray habitat and behavior, those of active open water rays have high counts, while benthic or freshwater ray species have low counts. Disk width, spine length, prebase length and presence of a dorsal groove is not correlated with size or type of stingray. Likewise the number of spine serrations does not increase in more derived genera. A combination of spine characteristics does, however, define a species. These features will help scientists, paleontologists and physicians identify a species.

Keywords: stingrays, tail spine serrations, Africa, Arabia

INTRODUCTION

The public is acutely aware of injuries - even death resulting from encounters with stingray tail spines. To date no one has examined stingray tail spines for species specific spine characteristics or species-spine-habitat correlations. Schwartz (2005), examined stingrays frequenting the Mediterranean Sea, noting each species could be identified by its spine characteristics, and that the number of spine serrations seemed to be habitat related: two species with high total spine serrations were open water swimmers (Dasyatis centroura, Pteroplatyrygon violacea); five species with intermediate serration counts (Dasyatis pastinaca, Himantura uarnak, Myliobatis aquila, Taeniura meyeni, Dasyatis margarita) were midwater or benthic inhabitants; and three benthic species had low serration counts (Gymnura altavela, Pteromylaeus bovinus, Taeniura grabata).

This study reports spine characteristics of 34 stingray species frequenting the eastern Atlantic ocean waters adjacent to Africa, the Mediterranean and Arabian Seas and waters from eastern Africa to the Chagos-Maldive Archipelago, noting spine shape, total length, prebase length, right and left side serration counts and features, base serrations or space features, and presence or absence of a dorsal spine groove.

The study area (Fig.1) includes the tropical ocean waters off Africa's west coast from $10^{\circ} \mathrm{N}$ to $15^{\circ} \mathrm{S}$, the subtropical and cool temperate waters from 15° to the Cape of Good Hope at 25°; the tropical coastal waters of East Africa from $15^{\circ} \mathrm{N}$ to the Tropic of Capricorn,

Fig. 1. Outline map of Africa showing the major current patterns (Sources: The Times Atlas and Encyclopaedia of the Sea 1989; Lutjeharms 2007).
and the subtropical and warm temperate south to $25^{\circ} \mathrm{S}$ (Whitfield 2005).

Fish faunal distributions are influenced by ocean currents. Fig. 1 shows the prevailing currents in the study area. Two points are worth noting. The first is that

Fig. 2. Diagram of a tail spine in situ to show how total length (STL) is measured (based on Halstead, 1978).
during the northwest monsoon (February and March), the wind blows from southeast across the Indian Ocean and across the Indian sub-continent, inducing the development of the North Equatorial Current. A strong countercurrent exists south of the North Equatorial Current at this same time of year. In August and September, during the southwest monsoon, the North Equatorial Current reverses its flow from west to east (and is called the Monsoon Current), and the countercurrent seems to disappear. During this time of year the winds form a major upwelling off the Somali coast (Kindle \& Arnone 2001).

The second point is that there is no defined current in the Mozambique Channel, but that water is carried down the Channel in a series of slowly rotating eddies. The South Equatorial Current, impinges on the east coast of Madagascar at about $17^{\circ} \mathrm{S}$, divides into a south flowing East Madagasar Current and a north flowing current, which flows around the north of Madagascar and contributes to the southward flowing Mozambique Eddies. The East Madagascar Current, together with the Mozambique Eddies, form part of the Agulhas Current (Lutjeharms 2007).

METHODS

Intact tail spines of 34 preserved stingray species and one subspecies (313 males and 405 females) were examined at the following institutions: Natural History Museum (London), Natural History Museum (Paris), Naturhistorisches Musem (Vienna), South African Museum (Cape Town, South Africa), the South African Institute for Aquatic Biodiversity (formerly the J. L. B. Smith Institute of Ichthyology, Grahamstown, South Africa), Natal Sharks Board (Umhlanga Rocks, South Africa), CSIRODivision of Fisheries (Hobart, Tasmania), Australian Museum (Sydney, Australia), United States National Museum (Washington, DC), California Academy of Sciences (San Francisco, California) and Scripps Oceanographic Institute (La Jolla, California).

I follow Compagno's (2005) use of stingray common names.

Most tail spines were left attached to the tail. The skin surrounding the spine base was teased loose when necessary to reveal serrations or spaces on the spine base sides. The base demarcation point was determined by placing a thin plastic ruler parallel to the spine and pushing it forward until it met the base (Fig. 2). Total serrations (right [R] or left [L]), regardless of shape or size of tail spine, were counted from the spine tip to the base. Total spine length (STL) was the length from the spine tip to its posterior dorsal insertion on the tail. Prebase length (pb) was the STL minus the length of the spine from the tip to its base. Base length was the difference of the STL minus the pb . Secondary spines were noted if developing before or behind the primary spine. Disk width (DW) of each specimen was measured in millimeters (mm). Sex was noted as immature or adult. Species' spine serrations are presented alphabetically within a genus in the text and in Table 1.

OBSERVATIONS

PLESIOBATIDAE - GIANT STINGRAYS

Plesiobatis daviesi (Wallace 1967) - giant stingray. Found off southwest Africa, (Wallace 1967). A 270 cm DW species. Spine characteristics: total length averages, males 136 mm , females 81 mm ; total serrations averages, males 136, females 104; pb/STL average 68% in both sexes. Six to 15 serrations or a $2-18 \mathrm{~mm}$ space on spine base sides; no dorsal groove evident.

DASYATIDAE - WHIPTAIL STINGRAYS

Dasyatis bennetti (Müller \& Henle 1841) - frilltailed stingray. Frequents Persian Gulf and Hormoz Straits (Fowler 1941; Garman 1913; Vossoughi \& Vosoughi 1999). A 33 mm DW species. Spine characteristics: total lengths, males 77 mm , females 86 mm ; total serrations averages, males 94, females 100; pb/TL averages, males 91%, females 91%. Eight serrations on spine base sides, dorsal groove $60-80 \%$ of spine length.

Dasyatis brevicaudatus (Hutton 1875) - smooth stingray. Synonyms: Dasyatis schrienei (Garrick 1954) and not D. agulhensis (Wallace 1967). South and southeast coast of South Africa from False Bay to Maputo (Wallace 1967; Compagno \& Heemstra 1984; Compagno et al., 1991). A 2.1 m disk width (DW) species. A 33 mm DW species. Spine characteristics: total length averages, males 100 mm , females 149 mm (longest spine measured was of a female at 338 mm STL - see Table 1); total serrations averages, males 261, females 156 ; pb/STL averages, males 89%, females 71%. Five to 10 serrations on spine base sides; dorsal groove 30$80 \%$ of spine length. A unique feature was cul-de-sacs located medially between serrations (Fig. 3), a feature also possessed by the pelagic stingray Pteroplatytrygon violacea.

Dasyatis centroura (Mitchell 1815) - roughtail stingray. Occurs in the eastern Atlantic from Norway to Madeira, Mediterranean and Black Seas (Fowler 1936; Capapé 1977; Compagno \& Heemstra 1984; Compagno \& Roberts 1984; Dulcic et al. 2003; Golani \& Capapé 2004). An active midwater to benthic 2.1 m DW species. Spine characteristics: large, heavy spines, wide at base and tapering to tip; total length averages, males 143 mm , females 159 mm ; total serrations averages, males 160, females 178; pb/STL averages, males 78%, females 72%. Eleven to 20 serrations or $72-114 \mathrm{~mm}$ space on spine base sides; dorsal extends $60-80 \%$ of spine length; secondary spines develop below and behind primary spines.

Dasyatis c. chrysonota (Smith 1828) - blue stingray. D. chrysonata is often confused with Dasyatis pastinaca and D.c. marmorata, resolved by Cowley \& Compagno (1993). Known from Angola southeast to Cape Agulhas and northeast to St. Lucia, South Africa (Soljan 1948; Wallace 1967; Compagno et al. 1991; Cowley \& Compagno 1993; Ebert \& Cowley 2003; Heemstra \& Heemstra 2004; Golani \& Capapè 2004). A 48 cm DW species. Spine characteristics: total length averages, males 36 mm , females 52 mm ; total serrations averages, males 61, females 82 ; pb/STL averages, males 73%, females 71%. Twelve to 17 mm spaces on spine base sides; dorsal groove 33% of spine length.

Dasyatis c. marmorata (Steindachner 1892) - blue stingray. A subspecies of D. chrysonata; found off Senegambia, West Africa, Mediterranean and eastern Atlantic from Spanish Sahara south to Congo (Maigret \& Ly 1986; Cowley \& Compagno 1993; Capapè \& Zaouali 1995; Golani \& Capapè 2004). A 27 cm DW species found in coastal benthic habitats. Spine characteristics: total length averages, males 48 mm , females 38 mm ; total serrations averages, males 65 , females 55 ; pb/STL averages 48% in both sexes. Twelve to 28 serrations or a 16 mm space on base sides; dorsal groove extends length of spine.

Dasyatis kuhlii (Müller \& Henle 1841) - bluespotted stingray. Found from southeastern Africa north to Red Sea (Fowler 1941; Compagno \& Heemstra 1984; Compagno et al. 1991; Goren \& Dor 1994; Vossoughi \& Vosoughi 1999; Bonfil \& Abdullah 2004). A 38 cm DW stingray. Spine characteristics: lengths 50 mm in both sexes; total serrations averages, males 72, females 61; pb/STL averages, males 67%, females 58%. Two to 13 serrations or a $1-25 \mathrm{~mm}$ space on base sides. Dorsal groove extends $10-50 \%$ spine length.

Dasyatis margarita (Günther, 1870) - dwarf stingray. Frequents lagoons, brackish water, mangroves and estuaries from Ivory Coast to Congo, west Africa to Angola (Fowler 1936; Compagno \& Roberts 1984; Maigret \& Ly 1986; Compagno \& Cook 1994). A 65 cm DW species. Spine characteristics: average lengths, males 43 mm , females 45 mm ; total serrations averages, males 52 , females 64 ; pb/STL averages, males 71%, females 69%. A $10-12 \mathrm{~mm}$ space on the base and spine proper; no dorsal groove.

Dasyatis margaritella Compagno and Roberts 1984 - pearl stingray. Frequents marine and inshore waters, even off mouths of rivers, Guinea-Bissau to Congo and West Africa (Fowler 1936; Compagno \& Roberts 1984). A 26 cm DW species. Spine characteristics: average lengths males 57 mm , females 61 mm ; total serrations averages, males 62, females 78; STL averages, males 72%, females 74%. Three to 10 serrations or a 24 mm space may be present on base sides; no dorsal groove.

Dasyatis pastinaca (Linnaeus 1758) - common stingray. Some consider D. tortonese (Capapè 1977; Golani 1996) a separate species, others consider or confuse it with D. pastinaca (Serèt, pers. comm. 2005). Found in the northeast Atlantic to Madeira, Mediterranean and Black Seas, South Africa, Angola to KwaZulu-Natal Coast, and Red Sea (Fowler 1936, 1941; Soljan 1948; Wallace 1967; Capapé 1977; Klimaj 1978; Compagno \& Heemstra 1984; Compagno \& Roberts 1984; Compagno \& Randall 1987; Cowley \& Compagno 1993, Dulcic \& Lipez 2002; Golani \& Capapé 2004). A 60 cm DW inshore species. Spine characteristics: average lengths, males 77 mm , females 72 mm ; total serrations averages, males 112; females 86; pb/STL averages, males 74%, females 71%. Eight to 18 mm spaces on base sides; dorsal groove 85% spine length.

Dasyatis rudis (Günther, 1870) - smalltooth stingray. Found off coast of Sierra Leone (Springer \& Collette 1971; Compagno \& Roberts 1984). A benthic 2 m DW stingray. Spine characteristics: length 138 mm ; total serrations 108 short and tightly appended to spine proper. Thirty-three to 35 serrations on base sides; dorsal groove 50% of spine length.

Dasyatis thetidis (Ogilby 1899) - thorntail stingray. Once described as D. agulhensis or D. lubricus (Wallace 1967). Southeastern Africa (Wallace 1967; Last \& Stevens 1984; Compagno \& Heemstra 1984). A large, inshore, heavy 180 mm DW species. Spine characteristics: average lengths, males 66 mm , females 70 mm ; total serrations averages, males 83, females 88; pb/STL averages, males 64%, females 65%. One to 30 serrations on base sides; no dorsal groove evident.

WHIPRAYS

Himantura bleekeri (Blyth 1860) - whiptail stingray. Smith's (1945) H. bleekeri specimen may be H. oxyrhincha. Occurs in the Arabian Gulf (Kuronuma \& Abe 1986). A 39 cm DW species found over sandy substrates. Spine characteristics: average lengths, males 57 mm , females 48 mm ; total serrations, males 63 , females 49 ; pb/STL averages, males 63%, females 69%. Five to 18 mm spaces on base sides; no dorsal groove.

Himantura draco (Compagno \& Heemstra 1984). No common name. Compagno (2005) considered H. draco a synonym of H. jenkensii. Stehmann (1995) and Eschmeyer (1998) believed H. draco is a valid species. Known from off Durban, South Africa at 50 m (Compagno \& Heemstra 1984). DW $38-58 \mathrm{~cm}$. Spine haracteristics: tail spine long, males 53 mm , females 28 mm . Total serrations are, male right 27, left 28, female
right 27, left $25 ; \mathrm{pb} / \mathrm{STL} 34 \%$ for both the male and female. One to 20 serrations or one- 12 mm spaces on base sides; dorsal groove $40-75 \%$ of spine length.

Himantura fai Jordan \& Seale 1906 - pink stingray. Occurs in the Red Sea and Maldives (Capapé 1977; Randall \& Anderson 1993; Bonfil \& Abdullah 2004; Randall 2005). DW 150 cm . Spine characteristics: long 184 mm tail spine; total serrations (1 female), 88 right, 95 left; pb/STL 70\%. No serrations on spine base; dorsal groove 95% of spine length.

Himantura gerrardi (Gray, 1851) - sharpnose stingray. Often confused with H. draco or H. jenkinsii (Wallace 1967). Found from South Africa to Red Sea and Arabian Sea (Fowler 1941; Wallace 1967; Compagno \& Heemstra 1984; Kuronuma \& Abe 1986; Compagno \& Randall 1987; Goren \& Dor 1994; Stehmann 1995; Randall 1995; Randall \& Lim 2000; Bonfil \& Abdullah 2004). A 90 cm DW species. Spine characteristics: average lengths, males 43 mm , females 63 mm ; total serrations averages, males 51 , females 81 ; $\mathrm{pb} / \mathrm{STL}$ averages, males 71%, females 75%. One to 11 serrations on base sides; dorsal groove $40-57 \%$ of spine length. Two forms may be encountered: tail may be banded or mottled.

Himantura granulata (Macleay 1883) - mangrove whipray. Known from Seychelles, Oman and Maldives (Randall \& Anderson 1993; Randall 2005). A 90 cm DW stingray. Spine characteristics: average lengths, males 71 mm , females 63 mm ; total serrations averages, males 97 , females $79 ; \mathrm{pb} / \mathrm{STL}$ averages, males 71%, females 68%. One to four serrations or a one to four mm space on base sides; dorsal groove 60% spine length.

Himantura imbricata (Bloch \& Schneider 1811) - scaly stingray: Synonyms are Trygonoptera walga and Trygon panopeus. Found in the Red Sea and Arabian Gulf (Fowler 1941; Goren \& Dor 1994; Khalaf \& Desi 1997; Kuronuma \& Abe 1986; Compagno \& Randall 1987; Randall 1995; Bonfil \& Abdullah 2004). A dwarf species with 23 cm DW. Spine characteristics: average lengths, males 43 mm , females 28 mm ; total serrations averages, males 56 , females 52 ; $\mathrm{pb} / \mathrm{STL}$ averages, males 72%, females 65%. One to 13 serrations or a 1-28 mm space on base sides; dorsal groove $63-72 \%$ spine length.

Himantura jenkinsii (Annandale 1909) - pointednose stingray. Often considered to be Himantura draco or H. gerrardi (Compagno \& Heemstra 1984; Stehmann 1995; Randall 1995; Heemstra \& Heemstra 2004). A 100 cm DW stingray. Occurs off KwaZuluNatal, southeastern Africa (Wallace 1967). Spine characteristics: average lengths 68 mm in both sexes; total serrations averages, males 73, females 72; pb/STL averages, males 72%, females 73%. One serration or a $1-23 \mathrm{~mm}$ space on base sides.

Himantura uarnak (Forsskål 1775) - honeycomb stingray. A systematically confused species often considered to be H. oxyrynchus, H. krempfi or even H. bleekerii (Eschmeyer 1998; Deynat \& Fermon 2001). Found in the Mediterranean, Red Sea, Arabian Sea,

Persian Gulf and along the east coast of Africa (Fowler 1941; Smith 1955; Smith \& Smith 1963; Wallace 1967; Kuronuma \& Abe 1980; Compagno \& Heemstra 1984; Compagno \& Randall 1987; Goren \& Dor 1994; Khalaf \& Desi 1997; Capapè \& Zaouali 1995; Randall 1995; Basusta et al. 1998; Heemstra \& Heemstra 2004; Bonfil \& Abdullah 2004; Golani \& Capapé 2004). A highly active 110 cm DW species. Spine characteristics: average lengths, males 70 mm , females 84 mm ; total serrations averages, males 83 ; females 82 ; pb/STL averages, males 80%, females 68%. One to 22 serrations or a 1-14 mm space on base sides; dorsal groove 87% of spine length. Body may be spotted or reticulate and tail may be banded or plain.

feathertail stingrays

Pastinachus sephen (Forsskael, 1775) - cowtail stingray. Found off northeast Africa, Red Sea to Chagos Archipelago (Fowler 1941; Smith 1955, 1967; Smith \& Smith 1963; Wallace 1967; Kuronuma \& Abe 1986; Compagno \& Heemstra 1984; Compagno \& Randall 1987; Winterbottom et al. 1989; Randall \& Anderson 1993; Goren \& Dor 1994; Compagno \& Cook 1994; Randall 1995; Bonfil \& Abdullah 2004). A 180 cm DW stingray. Spine characteristics: average lengths, males 157 mm , females 159 mm ; total serrations averages, males 124 , females $130 ; \mathrm{pb} /$ STL averages, males 75%, females 76%. Five to 21 small serrations on base sides, no dorsal groove evident.

PELAGIC STINGRAYS

Pteroplatytrygon violacea (Bonaparte 1832) - pelagic stingray. Often confused with D. purpureus (Winterbottom et al. 1989). Found in the Mediterranean and along the western and southern African coasts (Soljan 1948; Tortonese 1976; Capapé 1977; Compagno \& Roberts 1984; Compagno \& Heemstra 1984; Compagno et al. 1991; Basusta et al. 1998; Mollet 2002, Golani \& Capapé 2004). A broad (80 cm DW), open ocean stingray, dark dorsally and ventrally, anteriorly arched in profile. Spine characteristics: average lengths, males 147 mm , females 128 mm ; total serrations averages, males 191 , females $161 ; \mathrm{pb} / \mathrm{STL}$ averages, males 66%, females 78%. Three to 23 serrations or a 7-9 mm space on base sides; dorsal groove 25% of spine length. The even-sided spine is characterized by cul-de-sacs medially between serrations, similar to Dasyatis brevicaudatus (Fig. 3).

RIBBONTAIL STINGRAYS

Taeniura grabata (Geoffroy St. Hilaire 1817) - round fantail stingray. Known from the Mediterranean Sea, eastern Atlantic and eastern Africa (Fowler 1936, 1941; Maigret \& Ly 1986; Biscioto \& Wirtz 1994; Compagno \& Randall 1987; Dingerkus 1995; Basusta et al. 1998; Serena et al. 1999; Golani \& Capapé 2004), erroneously from the Red Sea (Fowler 1936; Compagno \& Randall 1987). A $\sim 100 \mathrm{~cm}$ DW stingray. Spine characteristics: average lengths, males 50 mm , females 56 mm , tip

Fig. 3. A typical stingray spine (Pteroplatytrygon violacea).
upturned; total serrations averages, males 52 ; females 39; pb/STL averages, males 64%, females 85%. One to 25 mm space on base sides, extending onto spine proper; dorsal groove 90% of spine length. New spines often develop ahead of primary attachment end; spine end V-shaped.

Taeniura lymma (Forsskål 1775) - blue-spotted stingray. Western Indian Ocean (Fowler 1941; Smith 1955; Smith \& Smith 1963; Wallace 1967; Compagno \& Heemstra 1984; Goren \& Dor 1994; Compagno \& Randall 1987; Randall \& Anderson 1993; Khalaf \& Desi 1997; Basusta et al. 1998; Heemstra \& Heemstra 2004; Bonfil \& Abdullah 2004). An oval-shaped 30 cm DW stingray. Spine characteristics: average lengths 45 mm STL in both sexes; total serrations, males 63, females $59 ; \mathrm{pb} /$ STL averages, males 80%, females 68%. One to four serrations or a 1-20 mm space on base sides; dorsal groove $40-88 \%$ of spine length.

Taeniura meyeni (Müller \& Henle 1841) - fantail stingray. Frequents eastern Africa, Madagascar northward to Red Sea, Arabian Sea and Persian Gulf (Fowler 1941; Randall \& Anderson 1983; Compagno \& Roberts 1984; Bonfil \& Abdullah 2004; Randall 2005). A dangerous 180 cm DW species. Spine characteristics: average lengths, males 151 mm , females 63 mm ; totals serrations averages, males 84 , females 71 ; pb/STL averages, males 72%, females 74%. One to 10 serrations on base sides; dorsal groove 80% of spine length.

PORCUPINE RAYS

Urogymnus ukpam (Smith, 1863) - thorny freshwater ray. Often placed in Dasyatis because of tail size or lack of tail spine in some specimens (Compagno \& Roberts 1984; Compagno \& Cook 1994). Known from freshwaters of west Africa from Cameroon to Congo (Compagno \& Roberts 1984; Compagno \& Randall 1987). A large 65 cm DW species. Spine characteristics:
average lengths, males 56 mm , females 46 mm ; total serrations averages 46 in both sexes; pb/STL averages 55% in both sexes. A 10 mm space on base sides; dorsal groove 33% of spine length.

GYMNURIDAE - BUTTERFLY RAYS

Gymnura altavela (Linneaus 1758) - spiny butterfly stingray. Found in northeast Atlantic from Norway to Madeira, Mediterranean and Black Seas (Fowler 1936; Soljan 1948; Bigelow \& Schroeder 1953; Hureau \& Monod 1973, Maigret \& Ly 1986; Dulcic et al. 2003). A $>64 \mathrm{~cm}$ DW benthic stingray. Spine characteristics: average lengths, males 23 mm , females 33 mm ; total serrations averages, males 53 , females 62 ; pb/STL averages, males 69%, females 67%. Two to 23 serrations on base sides; dorsal groove $40-85 \%$ spine length.

Gymnura natalensis (Gilchrist \& Thompson 1911) - diamond ray. Known from south and eastern South Africa (Wallace 1967; Heemstra \& Heemstra 2004). A 182 cm DW stingray. Spine characteristics: average lengths, males 67 mm , females 53 mm ; total serrations averages, males 20 , females 69 ; $\mathrm{pb} /$ STL averages 36% in both sexes. A $9-13 \mathrm{~mm}$ space on base sides; dorsal groove 33% of spine length.

MYLIOBATIDAE - BONNETRAYS

Aetobatus flagellum (Bloch \& Schneider, 1801) -long-headed stingray. Frequents Red Sea (Vossoughi \& Vosoughi 1999; Randall \& Lim 2000: Bonfil \& Adullah 2004). A 62 cm DW stingray. Spine characteristics: average lengths, males 35 mm , females 40 mm ; total serrations averages 57 in both sexes; $\mathrm{pb} / \mathrm{STL}$ average 66% in both sexes. One to four serrations on base sides; dorsal groove 60% spine length.

Aetobatis narinari (Euphreson 1790) - spotted eagle ray. Widely distributed along west and east African coasts, in Red Sea and Arabia Gulf (Fowler 1925,

1936, 1941; Smith 1955; Smith \& Smith 1963; Wallace 1967; Klimaj 1978; Kuronuma \& Abe 1986; Compagno \& Randall 1987; Goren \& Dor 1994; Stehmann 1995; Randall 1995; Kahlaf \& Desi 1997; Bonfil \& Abdullah 2004; Randall 2005). A 330 cm DW active, open water species. Spine characteristics: average lengths, males 60 mm , females 78 mm ; total serrations averages, males 102 , females $114 ; \mathrm{pb} /$ STL averages, males 76%, females 75%. Ten serrations on base sides; no dorsal groove evident. Usually spotted dorsally, yet Last and Stevens (1984:448) depict an individual spotted on the rear two-thirds of the dorsum. The same is true for three specimens at Vienna, while one specimen at Hobart (CSIRO) is spotless. May possess up to eight tail spines (Gudger 1914).

EAGLE RAY

Myliobatis aquila (Linnaeus 1758) - cowtail stingray. Often described as Himantura cervis. Found in the Mediterranean, south and east African coasts and Arabian Sea (Fowler 1936, 1941; Soljan 1948; Wallace 1967; Klimaj 1978; Compagno et al. 1991; Lens \& Marin 1993; Heemstra \& Heemstra 2004). A 83 cm DW species. Spine characteristics: average lengths, males 60 mm , females 45 mm ; total serrations averages, males 72 , females 56 ; pb/STL averages, males 70%, females 65%. Two to 23 mm spaces on base sides and onto spine proper; dorsal groove 70% spine length.

BULL RAY

Pteromylaeus bovinus (Geoffroy St. Hilaire, 1817) - bullray. Frequents Mediterranean, western Africa to Namibia and South Africa to Mozambique (Fowler 1936, 1941; Wallace 1967; Maigret \& Ly 1986; Garman 1913; Heemstra \& Heemstra 2004). A 1.1 m DW stingray. Characteristics are: spine lengths are males 32 mm STL, females 61 mm STL. Serrations total: males 30, females 69 . pb/STL's average: males 56%, females 67%. One to seven serrations or a $3-7 \mathrm{~mm}$ space on base sides. Dorsal groove 30% of spine length.

COWNOSE RAYS

Rhinoptera javanica (Müller \& Henle 1841) Javanese cownose ray. Synonyms include R. peli Bleeker 1863, R. jayakari (Boulenger 1895) and R. sewelli Misra 1947 (type specimens of last two species are now at the NC State Museum, Raleigh, NC; Schwartz 1990). A midwater to benthic inhabitant from equatorial Africa, southeast Africa, Gulf of Oman and Arabia (Fowler 1934; Smith \& Smith 1963; Wallace 1967; Kuronuma \& Abe 1986; Schwartz 1990; Vossoughi \& Vosoughi 1999). A 195 cm DW species. Spine characteristics: average lengths, males 56 mm , females 109 mm ; total serrations averages, males 36 , females 72 ; pb/STL averages, males 69%, females 64%. Two to 10 serrations on spine sides, dorsal groove 40% of spine length.

Rhinoptera marginata (Geoffroy Saint-Hilaire 1817) - Lusitanian cownose ray. Synonyms R. peli Cadenat 1960; Quero et al. 1990 and R. bonasus Séret 1990. Found
in the Mediterranean and estuaries of northwest African coast (McEachran \& Capapé 1984-1986; Ruitart 1998; Schwartz 1990). A 2 m DW pelagic-benthic species. Spine characteristics: average lengths (females) 25 mm ; total serrations average, for females 49; pb/STL average 64%. Spine flat with $3-17$ serrations on base sides; dorsal groove $20-50 \%$ spine length.

DISCUSSION

Tail spine characteristics are described based for 34 preserved species, one subspecies, and 718 specimens (313 males, 405 females) that possessed tail spines. Spine serration differences existed in relation between a species and the habitat it frequented: species with a total spine serration count of >100 were ocean or pelagic inhabitants (e.g. Dasyatis centroura and Pteroplatytrygon violacea); species with $70-100$ total spine serration were midwater swimmers (e.g. Dasyatis pastinaca, Himantura uarnak and Myliobatis aquila); those with $50-70$ serrations totals were benthic inhabitants (e.g. Dasyatis chrysonota, Gymnura altavela, Taeniura grabata, Pteromylaeus bovinus), and those with counts of <50 were usually freshwater inhabitants (e.g. Urogymnus ukpam) (Table 1). The spines of Dasyatis brevicaudata and Pteroplatytrygon violacea are distinct, possessing cul-desacs medially between serrations (Fig. 3).

No primitive to advanced species-spine serration relationship (as in Dasyatis, Himantura, Gymnura, Myliobatis, Rhinoptera and Mobula (Compagno 2005) was evident. Likewise, Plesiobatis daviesi, considered a primitive species (Compagno 2005), has tail spines with 120 serrations while the spine serrations of 11 species of dasyatids range from 58 to 209, for D. marginata and D. bennetti respectively, and spine serrations of 7 species of Himanturids varied from 54 to183, for H. imbricata and H. fai, respectively. Counts for the other species are summarised in Table 1.

Comparing tail spine serrations characteristics of 11 stingray species reported by Schwartz (2005) with this study, three species' spine serrations totals were the same (D. centroura, G. altavela and U. upkam). Of the three, U. upkam enters freshwaters of West Africa. Total tail spine serrations for H. bovinus were lower off Africa than in the Mediterranean Sea (36, this study 44), while serration totals of the remaining seven spines were greater off Africa-Arabia than in the Mediterranean Sea (Schwartz 2005, Table 1).

Twelve other species, also found in AfricanArabian waters, do not possess tail spines: Aetomylaeus nichofii, A. milvus, A. maculatus, A. vespertilio, Gymnura micrura, Mobula rochebrunei, Mobula topacana, Mobula thurstoni, Mobula kuhlii,Urogymnus asperrimus, Mobula ergoodootenkee and Manta birostris. They represented members of advanced stingray families that exhibited a gamut of swimming and habitat usages, suggesting that advanced stingrays are tending to lose tail spines with evolution.

Spines of specimens of Hexatrygon bickelli and Dasyatis garouaensis (the latter an inhabitant of the Niger and Cameroon Rivers, West Africa) were broken and thus not counted. Mobula mobular, Gymnura poecilura and Aetoplatea tentaculata which possess tail spines, were not seen. However, examination of the spines of other Hexatrygon "species" specimens in Taiwan, Japan and Tasmania (designated species " I " or " H " at the time), revealed that there seem to be two species involved. Specimens labelled " H " have high serration counts (84 or more) and smaller spaced on the base sides, while "I" specimens have lower counts (64-75) and large spaces on base the sides.

CONCLUSIONS

Much taxonomic confusion in general still persists regarding the stingrays inhabiting African-Arabian waters. For example, Himantura uarnak is a confusing species complex that Deynat and Fermon (2001) resurrected as H. oxyrhyncha, a species found in Thailand, Sumatra and Borneo, from its synonymy and H. krempfi, a freshwater species from Thailand, Cambodia, Indonesia and Mekong, as a junior synonym. Compagno (2005) listed H. oxyrhynchus as a full species. An H. oxyrhyncha specimen in Paris lacked a spine and three of five H. krempfi specimens possessed tail spines, their characteristics were: spine length 32 , 58 and 60 mm STL; serrations numbered 33,44 and 52 respectively; 4 serrations or a 20 mm space occurred on base sides, and no dorsal groove was evident.

While stingrays are large, bulky and feared because of their venomous tail spines that may cause injury or death, stingray spine characteristics are distinct within a species and should not be overlooked when
describing a species. Their inclusion in a species diagnosis adds another parameter that helps physicians, paleontologists and geologists with species identity and fossil relationships.

ACKNOWLEDGMENTS

Thanks are due many who made specimens under their care available or provided valuable information and literature pertaining to the species studied. They are: Drs D. Golani and M. Goren (Israel); Dr B. Séret (Paris); Dr E. Mikschi, H. Wellendorf and staff (Vienna); Dr L.J.V. Compagno (Cape Town, South Africa); J. Wallace (Durban, South Africa); Dr P. Heemstra and A. Bentley (Grahamstown, South Africa); J. Cliff and S. Dudley (Umhlanga Rocks, South Africa); Drs P. Last and J. Stevens (CSIRO, Hobart, Australia); Dr J. Paxton, (Sydney, Australia); Dr J. Randall (Hawaii); Dr P. Hasting, H. Walker and C. Klepedlo (Scripps, La Jolla, California); Drs W. Eschmeyer, T. Iwamoto, D. Cantana and W. Poly (California Academy Sciences, San Francisco, California); Dr J. Williams and S. Jewett (U.S. National Museum, Washington, DC); M. Sabaj and M. Littman (Philadelphia Academy Natural Sciences, Philadelphia, Pennsylvania); K. Hartel (Museum Comparative Zoology, Cambridge, Massachusettes), Dr R. Winterbottom (Royal Ontario Museum, Toronto Canada) and Dr N. P. Parin and P.P. Shershov (Institute Oceanography Moscow, Russia) who measured the " H . draco" in that collection. Librarians P. Marraro (NOS, Beaufort, NC) and B. Bright (IMS, Morehead City, NC) expedited needed literature references. L. White (IMS, Morehead City, NC) translated my scribbles into the readable text.

Table 1. Characteristics of 313 male (M) and 405 female (F) tail spines of 50 species of stingrays frequenting African-Arabian to Chagos-Maldive Archipelago waters.

Species $\&$ Distribution	No. $\&$ sex	Disc width (mm)	L Number of serrations \mathbf{R}		Total	STL (mm)	pb/STL \%	B/S	D. groove \% STL
			Mean (Range)	Mean (Range)	Mean	Mean (Range)	Mean (Range)		
Plesiobatidae									
Plesiobatis daviesi SA	$\begin{aligned} & 3 M \\ & 2 F \end{aligned}$	$\begin{aligned} & 711-802 \\ & 340-341 \end{aligned}$	$\begin{aligned} & 71 \\ & 43(41-44) \end{aligned}$	65	$\begin{aligned} & 136 \\ & 104 \end{aligned}$	$\begin{aligned} & 114 \text { (63-171) } \\ & 81(63-93) \end{aligned}$	$\begin{aligned} & 68(64-72) \\ & 68(69-78) \end{aligned}$	$\begin{aligned} & 6-15 \mathrm{~B} \text { or } \\ & 2-18 \mathrm{~S} \end{aligned}$	
Dasyatidae									
Dasyatis bennetti A. I	$\begin{aligned} & 5 \mathrm{M} \\ & 1 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 146-288 \\ & 171 \end{aligned}$	$\begin{aligned} & 52(42-84) \\ & 43 \end{aligned}$	$\begin{aligned} & 42(40-85) \\ & 52 \end{aligned}$	$\begin{aligned} & 94 \\ & 100 \end{aligned}$	$\begin{aligned} & 77(60-88) \\ & 86 \end{aligned}$	91 (80-95)	8 B	60-80
Dasyatic brevicaudata SA	$\begin{aligned} & 1 \mathrm{M} \\ & 14 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 240 \\ & 139-384 \end{aligned}$	$\begin{aligned} & 115 \\ & 76(28-135) \end{aligned}$	$\begin{aligned} & 146 \\ & 80(29-180) \end{aligned}$	$\begin{aligned} & 261 \\ & 156 \end{aligned}$	$\begin{aligned} & 100 \\ & 149(34-338) \end{aligned}$	$\begin{aligned} & 89 \\ & 71 \text { (58-85) } \end{aligned}$	5-10 B	30-80
Dasyatis centrura M	27M	123-203	78 (17-129)	82 (20-116)	160	143 (30-182)	78 (58-98)	$\begin{aligned} & 20-116 \mathrm{~B} \text { or } \\ & 72-114 \mathrm{~S} \end{aligned}$	60-80
Dasyatis chrysonota $S W-S A$	$\begin{aligned} & 5 M \\ & 6 F \end{aligned}$	$\begin{array}{\|l\|} \hline 82-290 \\ 191-240 \end{array}$	$\begin{aligned} & 30(24-37) \\ & 39(34-40) \end{aligned}$	$\begin{aligned} & 31(22-43) \\ & 43(31-56) \end{aligned}$	$\begin{aligned} & 61 \\ & 82 \end{aligned}$	$\begin{aligned} & 36(34-35) \\ & 52(38-57) \end{aligned}$	$\begin{aligned} & 73 \text { (66-82) } \\ & 71(63-77) \end{aligned}$	12-17 S	33
Dasyatis c. marmorata M, NW	$\begin{aligned} & 5 M \\ & 6 F \end{aligned}$	$\begin{aligned} & 279 \\ & 315-330 \end{aligned}$	$\begin{array}{\|l} 32(31-40) \\ 24(23-26) \\ \hline \end{array}$	$\begin{aligned} & 33(23-43) \\ & 31(27-33) \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 55 \end{aligned}$	$\begin{aligned} & 48(34-58) \\ & 48(38-51) \end{aligned}$	$\begin{aligned} & 33(30-40) \\ & 45(38-51) \end{aligned}$	$\begin{aligned} & 12-28 \mathrm{~B} \text { or } \\ & 16 \mathrm{~S} \end{aligned}$	100
Dasyatis kuhlii SA, RS	$\begin{aligned} & 47 M \\ & 43 F \end{aligned}$	$\begin{aligned} & 190-280 \\ & 160-310 \end{aligned}$	$\begin{array}{\|l} 32(12-40) \\ 32(15-67) \\ \hline \end{array}$	$\begin{aligned} & 40(17-67) \\ & 29(18-67) \\ & \hline \end{aligned}$	$\begin{aligned} & 72 \\ & 61 \end{aligned}$	$\begin{aligned} & 50(32-82) \\ & 50(21-37) \end{aligned}$	$\begin{aligned} & 67(32-90) \\ & 58(51-91) \\ & \hline \end{aligned}$	$\begin{aligned} & 2-13 \mathrm{~B} \text { or } \\ & 1-25 \mathrm{~S} \end{aligned}$	10-50
Dasyatis margarita NE, NW	$\begin{aligned} & 5 \mathrm{M} \\ & 4 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 135-267 \\ & 150-222 \end{aligned}$	$\begin{aligned} & 26(14-49) \\ & 33(25-48) \\ & \hline \end{aligned}$	$\begin{aligned} & 26(19-48) \\ & 31(25-47) \end{aligned}$	$\begin{aligned} & 52 \\ & 64 \end{aligned}$	$\begin{aligned} & 43(15-50) \\ & 45(30-66) \\ & \hline \end{aligned}$	$\begin{aligned} & 71(48-92) \\ & 69(68-70) \\ & \hline \end{aligned}$	10-66 S	
Dasyatis margaritella NW, A	$\begin{aligned} & 2 M \\ & 1 F \end{aligned}$	$\begin{aligned} & 193-592 \\ & 186 \end{aligned}$	$\begin{aligned} & 30(15-43) \\ & 38 \end{aligned}$	$\begin{aligned} & 32(18-40) \\ & 40 \end{aligned}$	$\begin{aligned} & 62 \\ & 78 \end{aligned}$	$\begin{aligned} & 57(53-63) \\ & 61 \end{aligned}$	$\begin{aligned} & 72(70-74) \\ & 74 \end{aligned}$	$\begin{aligned} & 3-10 \mathrm{~B} \text { or } \\ & 1-24 \mathrm{~S} \end{aligned}$	
Dasyatis pastinaca M, SA, SE, RS	$\begin{aligned} & 13 \mathrm{M} \\ & 12 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 169-443 \\ & 190-598 \end{aligned}$	$\begin{array}{\|l} 59(30-70) \\ 47(24-71) \\ \hline \end{array}$	$\begin{aligned} & 53(32-67) \\ & 39(16-101) \\ & \hline \end{aligned}$	$\begin{aligned} & 112 \\ & 86 \\ & \hline \end{aligned}$	$\begin{aligned} & 77(47-119) \\ & 72(36-109) \end{aligned}$	$\begin{aligned} & 74(70-76) \\ & 71(63-80) \end{aligned}$	$8-25$ S	85
Dasyatis rudis NW	1F	~2000	54	54	108	138	55	33-35 B	50
Dasyatis thetidis SE	$\begin{aligned} & 2 \mathrm{M} \\ & 2 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 350-484 \\ & 347-801 \end{aligned}$	$\begin{aligned} & 43(38-47) \\ & 43(40-44) \end{aligned}$	$\begin{aligned} & 43 \\ & 45 \end{aligned}$	$\begin{aligned} & 86 \\ & 88 \end{aligned}$	$\begin{aligned} & 66(55-77) \\ & 70(42-91) \\ & \hline \end{aligned}$	$\begin{aligned} & 64(61-95) \\ & 65(61-76) \end{aligned}$	$1-30 \mathrm{~B}$	
Himantura bleekeri A	$\begin{aligned} & 1 \mathrm{M} \\ & 4 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 185 \\ & 165-178 \end{aligned}$	$\begin{array}{\|l\|} \hline 32 \\ 25(22-28) \\ \hline \end{array}$	$\begin{aligned} & 31 \\ & 24(20-30) \end{aligned}$	$\begin{aligned} & 63 \\ & 49 \end{aligned}$	$\begin{aligned} & 57 \\ & 48(42-73) \end{aligned}$	$\begin{aligned} & 63 \\ & 69 \text { (67-69) } \end{aligned}$	5-18S	
Himantura draco EA, MA, MO	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 386 \\ & 380 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & 55 \\ & 52 \end{aligned}$	$\begin{aligned} & 53 \\ & 28 \end{aligned}$	$\begin{aligned} & 34 \\ & 34 \end{aligned}$	$\begin{aligned} & 1-20 \mathrm{~B} \text { or } \\ & 1-12 \mathrm{~S} \end{aligned}$	40-75
Himantura fai MA, RS, I	1F	950	88	95	183	184	70		95
Himantura gerrardi SA, RS, I	$\begin{aligned} & 12 \mathrm{M} \\ & 38 \mathrm{~F} \end{aligned}$	$\begin{array}{\|l\|} \hline 230-470 \\ 147-515 \end{array}$	$\begin{aligned} & 28(24-45) \\ & 41(18-74) \end{aligned}$	$\begin{aligned} & 23(17-41) \\ & 40(16-79) \end{aligned}$	$\begin{aligned} & 51 \\ & 85 \end{aligned}$	$\begin{aligned} & 43(40-50) \\ & 63(11-107) \end{aligned}$	$\begin{aligned} & 71(56-87) \\ & 75(47-85) \end{aligned}$	1-11 B	40-57
Himantura granulata S	$\begin{aligned} & 5 M \\ & 7 F \end{aligned}$	$\begin{array}{\|l\|} \hline 280-356 \\ 234-431 \end{array}$	$\begin{array}{\|l} 47(40-53) \\ 39(23-52) \\ \hline \end{array}$	$\begin{aligned} & 50(42-72) \\ & 40(22-52) \\ & \hline \end{aligned}$	$\begin{array}{\|l} 97 \\ 79 \\ \hline \end{array}$	$\begin{aligned} & 71 \\ & 63 \\ & \hline \end{aligned}$	$\begin{aligned} & 71 \\ & 68 \\ & \hline \end{aligned}$	$\begin{aligned} & 1-4 \mathrm{~B} \\ & 1-4 \mathrm{~S} \end{aligned}$	60
Himantura imbricata RS, A. I	$\begin{aligned} & 40 \mathrm{M} \\ & 26 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 127-330 \\ & 80-181 \end{aligned}$	$\begin{aligned} & 28(20-38) \\ & 27(22-40) \end{aligned}$	$\begin{aligned} & 28(21-42) \\ & 25(15-38) \end{aligned}$	$\begin{aligned} & 56 \\ & 52 \end{aligned}$	$\begin{aligned} & 43(16-64) \\ & 28(27-64) \end{aligned}$	$\begin{aligned} & 72(49-79) \\ & 65(22-93) \end{aligned}$	$\begin{aligned} & 1-13 \mathrm{~B} \\ & 1-28 \mathrm{~S} \end{aligned}$	63-72
Himantura jenkinsii SE, SA, A	$\begin{aligned} & 11 \mathrm{M} \\ & 21 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 166-660 \\ & 435-651 \end{aligned}$	$\begin{array}{\|l} 40(27-44) \\ 38(33-61) \\ \hline \end{array}$	$\begin{aligned} & 33(27-39) \\ & 34(26-61) \\ & \hline \end{aligned}$	$\begin{aligned} & 73 \\ & 72 \end{aligned}$	$\begin{aligned} & 68(50-90) \\ & 68(40-105) \end{aligned}$	$\begin{aligned} & 72(71-82) \\ & 73(65-98) \end{aligned}$	$\begin{aligned} & 1 \mathrm{~B} \text { or } \\ & 1-23 \mathrm{~S} \end{aligned}$	40-75
Himantura uarnak M, SA, RS, A, EA	$\begin{aligned} & 21 \mathrm{M} \\ & 28 \mathrm{~F} \end{aligned}$	$\begin{array}{\|l\|} \hline 216-419 \\ 241-720 \end{array}$	$\begin{aligned} & 42(23-100) \\ & 43(17-119) \end{aligned}$	$\begin{aligned} & 41(28-97) \\ & 39(16-119) \end{aligned}$	$\begin{aligned} & 83 \\ & 82 \end{aligned}$	$\begin{aligned} & 70(40-120) \\ & 84(33-116) \end{aligned}$	$\begin{aligned} & 80(76-94) \\ & 68(54-74) \end{aligned}$	$\begin{aligned} & 1-22 \mathrm{~B} \text { or } \\ & 1-14 \mathrm{~S} \end{aligned}$	87
Pastinaca sephen NE, M, SA, EA, RS, A, I	$\begin{aligned} & 4 \mathrm{M} \\ & 28 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 180-404 \\ & 189-507 \end{aligned}$	$\begin{aligned} & 62(51-147) \\ & 68(50-238) \end{aligned}$	$\begin{aligned} & 62(37-68) \\ & 62(37-69) \end{aligned}$	$\begin{aligned} & 124 \\ & 130 \end{aligned}$	$\begin{aligned} & 157(49-180) \\ & 159(62-300) \end{aligned}$	$\begin{aligned} & 75(66-93) \\ & 75(66-86) \\ & \hline \end{aligned}$	5-21 B	
Pteroplatytrygon violacea M, SW	15M	460-540	94 (53-139)	97 (53-120)	191	147 (111-173)	66 (64-85)	4-23 B	25
Taeniura grabata M, NE	$\begin{aligned} & 1 \mathrm{M} \\ & 2 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 320 \\ & 276-345 \end{aligned}$	$\begin{aligned} & 32 \\ & 18 \text { (14-22) } \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \text { (18-23) } \end{aligned}$	$\begin{array}{\|l} 52 \\ 39 \\ \hline \end{array}$	$\begin{array}{\|l} 50 \\ 55(41-84) \\ \hline \end{array}$	$\begin{aligned} & 64 \\ & 62 \end{aligned}$	1-25 S	
Taeniura lymna SA, SE, RS, A, MA	$\begin{aligned} & 14 \mathrm{M} \\ & 14 \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & 124-406 \\ & 110-308 \end{aligned}$	$\begin{array}{\|l} 31(20-42) \\ 33(33-44) \\ \hline \end{array}$	$\begin{aligned} & 32 \text { (18-62) } \\ & 26(6-44) \\ & \hline \end{aligned}$	$\begin{array}{\|} 63 \\ 59 \\ \hline \end{array}$	$\begin{array}{\|l} 45(30-66) \\ 45(24-78) \\ \hline \end{array}$	$\begin{aligned} & 80(76-99) \\ & 68(54-71) \\ & \hline \end{aligned}$	$\begin{aligned} & 1-4 \mathrm{~B} \text { or } \\ & 1-20 \mathrm{~S} \end{aligned}$	40-88

Table 1 cont.

Species 8 Distribution	No. \& sex	Dise width (mm)	L Number of serrations R		Total	STL (mm)	pb/STL \%	B/S	D. groove \% STL
			Mean (Range)	Mean (Range)	Mean	Mean (Range)	Mean (Range)		
Taeniura meyeri EA, RS, A	$\begin{aligned} & 6 M \\ & 7 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 330-365 \\ & 271-302 \end{aligned}$	$\begin{aligned} & 44(21-98) \\ & 36(14-49) \end{aligned}$	$\begin{aligned} & 40(28-80) \\ & 35(17-55) \end{aligned}$	$\begin{aligned} & 84 \\ & 71 \end{aligned}$	$\begin{aligned} & 151(45-230) \\ & 63(48-87) \end{aligned}$	$\begin{aligned} & 72(61-88) \\ & 74(70-82) \end{aligned}$	1-14 B	60
Urogymnus ukpam SW	$\begin{aligned} & 2 \mathrm{M} \\ & 3 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 266-360 \\ & 361-650 \end{aligned}$	$\begin{aligned} & 30(25-38) \\ & 29(25-38) \end{aligned}$	$\begin{aligned} & 21(19-30) \\ & 22(11-43) \end{aligned}$	$\begin{aligned} & 51 \\ & 51 \end{aligned}$	$\begin{aligned} & 56(40-60) \\ & 46(40-61) \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	10 S	
GYmnuridae									
Gymnura altivela M	$\begin{aligned} & 34 \mathrm{M} \\ & 44 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 83-782 \\ & 100-179 \end{aligned}$	$\begin{aligned} & 25(10-110) \\ & 30(10-49) \end{aligned}$	$\begin{aligned} & 28(14-42) \\ & 32(10-49) \end{aligned}$	$\begin{aligned} & 53 \\ & 62 \end{aligned}$	$\begin{aligned} & 23(21-33) \\ & 33(26-53) \end{aligned}$	$\begin{aligned} & 69(60-88) \\ & 67(43-85) \end{aligned}$	2-13 B	40-85
Gymnura natalensis SW, SE	$\begin{aligned} & 1 \mathrm{M} \\ & 4 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 460 \\ & 1200-1478 \end{aligned}$	$\begin{aligned} & 10 \\ & 33(20-43) \end{aligned}$	$\begin{aligned} & 10 \\ & 36(20-86) \end{aligned}$	$\begin{aligned} & 20 \\ & 69 \end{aligned}$	$\begin{aligned} & 64 \\ & 53(30-85) \end{aligned}$	$\begin{aligned} & 36 \\ & 36(30-82) \\ & \hline \end{aligned}$	9-13 S	33
Mylobatidae									
Aeticbatis flagellum EA, RS	$\begin{aligned} & 1 \mathrm{M} \\ & 2 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 230 \\ & 236 \end{aligned}$	$\begin{aligned} & 28 \\ & 28(18-37) \end{aligned}$	$\begin{aligned} & 29 \\ & 29 \end{aligned}$	$\begin{aligned} & 57 \\ & 57 \end{aligned}$	$\begin{aligned} & 35 \\ & 40(28-42) \end{aligned}$	$\begin{aligned} & 66 \\ & 66 \end{aligned}$	1-4B	60
Aetiobatis narinan SW, EA, RS, A, I	$\begin{aligned} & 5 M \\ & 22 F \end{aligned}$	$\begin{aligned} & 461-632 \\ & 230-482 \end{aligned}$	$\begin{aligned} & 52(28-78) \\ & 62(11-87) \end{aligned}$	$\begin{aligned} & 50(28-71) \\ & 52(24-87) \end{aligned}$	$\begin{aligned} & 102 \\ & 114 \end{aligned}$	$\begin{aligned} & 60(38-95) \\ & 78(31-91) \\ & \hline \end{aligned}$	$\begin{aligned} & 76(58-92) \\ & 75(35-96) \end{aligned}$	10 B	50
Myliobatis aquila M, SA, SE, A, NW	$\begin{aligned} & 20 \mathrm{M} \\ & 17 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 382-498 \\ & 218-406 \end{aligned}$	$\begin{aligned} & 38(25-60) \\ & 28(10-51) \end{aligned}$	$\begin{aligned} & 34(23-65) \\ & 28(10-51) \end{aligned}$	$\begin{aligned} & 72 \\ & 56 \end{aligned}$	$\begin{aligned} & 60(45-83) \\ & 45(15-80) \end{aligned}$	$\begin{aligned} & 70(58-90) \\ & 65(47-81) \end{aligned}$	2-23 S	70
Pteromylaeus bovinus M, SW, SA, Ma	$\begin{aligned} & 1 \mathrm{M} \\ & 4 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 175 \\ & 452-536 \end{aligned}$	$\begin{aligned} & 12 \\ & 38(37-63) \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 31(23-55) \end{aligned}$	$\begin{aligned} & 30 \\ & 69 \end{aligned}$	$\begin{aligned} & 32 \\ & 61(31-88) \end{aligned}$	$\begin{aligned} & 56 \\ & 67(48-71) \end{aligned}$	$\begin{aligned} & 1-7 \text { B or } \\ & 3-7 S \end{aligned}$	30
Rhinopteridae									
Rhinoptera javanica NE, SW, A	$\begin{aligned} & 3 \mathrm{M} \\ & 3 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 870-1022 \\ & 676-932 \end{aligned}$	$\begin{aligned} & 24(10-38) \\ & 38(30-42) \end{aligned}$	$\begin{aligned} & 12(10-14) \\ & 34(30-38) \end{aligned}$	$\begin{aligned} & 36 \\ & 72 \end{aligned}$	$\begin{aligned} & 56(25-60) \\ & 109(105-120) \end{aligned}$	$\begin{aligned} & 69(68-70) \\ & 64(62-65) \end{aligned}$	2-10 B	40
Rhinoptera marginata M, NW	4F	378-468	19 (15-21)	30 (19-43)	49	25	64 (53-76)	3-17 B	20-50

Abbreviations: B - no of serrations on spine base; S - space on base (mm). Geographic designations: M

- Mediterranean Sea; NW - northwest Africa; NEC - northwest-central Africa; SW - western and southwestern Africa; SA - South Africa; EA - eastern and southeastern coasts of Africa; S - Seychelles; RS - Red Sea; A -- Arabian Sea; Ma-Maldives; I - waters between east Africa and the Chagos-Maldive Archipelago.

MATERIAL EXAMINED

Institutional abbreviations follow Leviton et al. 1985.
Plesiobatis daviesi: AMS 4127, CAS 3350.1, 1104127.1, CSIRO 4107.1, ORI B865

Dasyatis bennetti: MCZ 40418, USNM 13785, 193662, 19781, 21618.

Dasyatis brevicaudata: ANSP 167402, 16704, 167405, 167409, CAS 26470, 27449, MCZ 23860, SI 0457, 804861.001, 35710.00, I 35900.02 , IB 7911, BRI 805, CSIRO 1B07911

Dasyatis centroura: MCZ 562, 203759, NMW 50202, 77995a, 88086, 32 uncatalogued.

Dasyatis chrysonata: CAS C314, 117, 1334, 41536, 1 uncatalogued, HUJ 13768.12450, RUS 131823.

Dasyatis marmorata: NMW 82939, 89680.
Dasyatis kuhli: AMS 1B122, ANSP 121539, 127372, 131644, 15851, 171543, 171544, 171545, 171546, 171641, 25843, CAS 104, 270, 278, 280, 310, 21664, 29993, 3237, 60773(3), 61832, 68134, 68137, 68144, 60-252, 60-373, CSIRO 197671, I 11131, 21038.09, H4122.3, H4961, 4926(2), MCZ127372, 22154, 22546, MTUF 2070, NMW 50218, 86966, 90201,94588, SI 1131, 118180, 19767, 21844,

504, S1982.00, I 1653, 10123, 14878, I1652, 3482.001, 21833.013, USNM 206144, 222533, 222545, 222546.

Dasyatis margarita: MNHN 2605(2), 3826, 7954(4), NMW 6241, 50241.

Dasyatis margaritella: MCZ 459, 222589, 222592, NMW 3837, 22407, 50200, 50203, 61326, 68326, 78007, 87250, 87273, USNM 004595, 193622, 222589, 222592.

Dasyatis pastinaca: ANSP 29998, 350984, CAS 9865, 110560, 12110, 12830, 12845, 19880, NMW 77972, 78931, 79498, 83082, 86608.

Dasyatis rudis: USNM 202730.
Dasyatis thetidis: CAS 40960, 67575, SI 3047.001, B 6518, H3228.2.

Himantura bleekeri: USNM 222606, 222610, 222624(6).

Himantura draco: RUIS 1996(2), ZMMU -P 19174.
Himantura fai: USNM 051712.
Himantura gerrardi: ANSP 172801,BPBM 33201, 33202, 33199, CAS 141, 590, 680, 808, 2437, 2460, 2568, 7888, 20960, 41048, 52984, 63045, 63085, 63086, 63097, $68132,68138,68142,68144,68145,68152,68195,75869$, 12772, 60-28, 60-129, 60-205, 60-326, 60-400, LACM $38130.47,38113.48$, NMW2003.0025, 61774.

Himantura granulata: CAS 3097, 41048, 63006,

68144, 68145, 68149, 68152,75869, LACM 8311,38130.47, NMW 2003.0025, 60774.

Himantura imbricata: ANSP 03108, BPBM 33199, CAS 224(3), 1347, 2223, 2224, 4658, 27435, 48660, 34295, 41675, 41677, 41678, 41680, 41681, 41682, 41683, 41684, CSIRO 20762.001, I 2867, IB 457, MCZ 223, 224(3), C 123(22), SAM 41635, USNM 222529, 222552, 222561, 222564.

Himantura jenkensii: CAS 2645, 7855(2), 68131, 68133, 68135, 68136, 68142, 68148.

Himantura uarnak: ANSP 25842, 25843, CAS 1060, 2433, 2525, 8807, 63093, 63095, 68111, 68144, 68150, 68151, MCZ 201806, MTUF 25070, NMW 1897, 8972, 22453, 22459, 37325, 60176, 60773, 60776, 65715, 66799, $78972,81604,86650,86659,87125,87352,87329 a, 87052 a$, 87852, USNM 119225, 148100, 201806, 206132, 207045, 220153, 232879, 33700.

Pastinaca sephen: ANSP103715(3), CAS6155,65240, 68155, CSIRO 2213.11, H4116.04, 4213.02, 114172.4, MTUF 25108, 26701, 26711, 26712, 26899, 26902, NMW 0711, 2017, 2021, 60759, SI 1908, USNM 147420, 205138, TUFIL 26701, 26711.

Ptryoplatytrygon violacea: MTUF 3425, 106471, 11056, 67675, 74436, MZUP 49011, NMW 42672, 88604, 191234, S10, 29-308, 33-35, 58-35, 54-38, 54-93, 63-120, 73-418, 79-51, 76-21, 79-59, 79-275, 79-283(3), 79-219, 79295, 79-320, 79-309, NMW H2672, 88604, 191234, USNM 222566, 2.22646.

Taeniura grabata: BPBM 9204, 9205, 9206, HVJ8359, 12418.

Taeniura lymna: CAS 60-160, HV224, MCZ 1251, 40480, NMW 2645, 8791, 50223, 78008, 78020, 78189, 87178, 87189, 87188, 3 uncatalogued, S10, 4568, SI 14564, I 5067.03, 13832, 107687, 197785, USNM 40436, 49326, 222621, 226314, 262618.

Taeniura meyeni: CAS 63103, CSIRO I 17314.001, NMW 77976, 89471, SI 17364.000.

Urogymnus upkam: CAS 42761, USNM 219780.
Gymnura altavela: NMW 2008, 2009, 50231, MZUP 9721, 9914, 9918, 10380, USNM 20261, 20762, 70 uncatalogued.

Gymnura natalensis: CAS 14025, 1 uncatalogued, LJVC 682023, 824023, SAM 25019, 33293, SAS 25017.

Aetobatis flagellum: USNM 206131, 22684, 256190.
Aeotbatis narinari: ANSP 71284, 81715, 10224, 179204, CAS 11675, 62395, 63105, 63111, 68154, 71650, 113807, LJVC 87114, MTUF 4343, 110569, 167675, B9166, 26700616, NMW 6073, 10755, 66725, 87161, 87246, 82829, 88207, 88556, 89551, USNM 63175, $205141,222689$.

Myliobatis aquila: MCZ 150-S, 828, 89927, NMW 3857, 6653, 8531, 50236, 50237, 60780, 81159, 87165, 87195, 87366, 87844, 886605, RUSI 04804, 10423, 19823, 444352, SAM 12842, 26452, 26528, 33294, 32575, 333453, 34392, USM 030, 202823, $203457,22577$.

Pteromylaeus bovinus: NMW 89825, USNM 202709, 202763, 222709, 232329.

Rhinoptera javanica: China 34916, MCZ316, NCSM 2 uncatalogued types, ORI 0347, B646, SCB 98006.

Rhinoptera marginata: MNHN 2605(2), 3824,

7954(4), NMW 50241, 56241, 59055.

LITERATURE CITED

Basusta, N., U. Erdem \& M. Kumlu. 1998. Two new fish records for the Turkish seas: round stingray Taeniura grabata and skate stingray Himantura uarnak (Daysatidae). Israel Journal of Zoology 44(1): 65-66.
Bigelow, H. B. \& W. C. Schroeder. 1953. Sawfishes, guitarfishes, skates and rays. Fishes of the western north Atlantic. Memoir of the Sears Foundation Marine Research No. 1(2): 1-514.
Biscoito, A. J. \& P. Wirtz. 1994. Two new records of stingrays (Pisces: Dasyatidae) from the Archielago of Madiera (Northeast Atlantic). Bocagiana (Funchal) 169: 1-4.
Bonfil, R. \& M. Abdullah. 2004. Field identification guide to the sharks and rays of the Red Sea and Gulf of Aden. FAO species identification guide for fishery purposes. FAO, Rome. 71 pp \& 12 plates.
Cadenat, D. 1960. Notes l'ichthyologie oust-Africaine, 29. Les Mobulidae de la cote occidentale l'Afrique. Bulletin Natural France African nouvino ser. 22(3): 1053-1084.
Capapé, C. 1977. Les espices du genre Dasyatis Rafinesque, 1810 (Pisces: Rajiformes) des ĉotes Tunisines. Cybium (Ser. 3) 2: 75-105.
Capapé, C. \& J. Z. Zaouali. 1995. Reproductive biology of the marbled stingray, Dasyatis marmorata (Steindachner, 1892) (Pisces: Dasyatidae) in Tunisian waters (central Mediterranean). Journal Aquaricultural and Aquatic Sciences 7:108-119.
Compagno, L. J. V. 2005. Checklist of living elasmobranchs. In: W. C. Hamlett (ed.). Reproductive biology and physiology of elasmobranchs, sharks, batoids and chimeras. Science Publishers Inc. Enfield, N.H., pp. 503-548.
Compagno, L. J. V. \& S. F. Соок. 1994. The exploitation and conservation of freshwater elasmobranchs: status of taxa and prospects for the future. Journal of Aquariculture and Aquatic Science 7: 62-90.
Compagno, L. J. V. \& P. C. Heemstra. 1984. Himantura draco, a new species of stingray (Myliobatiformes: Dasyatidae) from South Africa, with a key to the dasyatids and the first record of Dasyatis kuhlii (Müller \& Henle, 1841) from southern Africa. J. L. B. Smith, Institute Ichthyological Special Publication No. $33,17 \mathrm{pp}$.
Compagno, L. J. V. \& J. E. Randall. 1987. Rhinobatos punctifer, anewspeciesofguitarfish(Rhinobatiformes: Rhinobatidae) from the Red Sea, with notes on the Red Sea batoid fauna. Proceedings California Academy Science 44(14): 335-342.
Compagno, L. J. V., T. R. Roberts. 1984. Marine and freshwater stingrays (Dasyatidae) of west Africa, with descriptions of a new species. Proceedings California Academy Science 43(18): 283-300.
Compagno, L. J. V., D. A. Ebert \& P. D. Cowley. 1991. Distribution of offshore demersal cartilagenous
fish (Class Chondrichthyes) off the west coast of southern Africa, with notes on their systematics. South African Journal of Marine Sciences 11: 43-139.
Cowley, P. D. \& L. J. V. Compagno. 1993. A taxonomic re-evaluation of the blue stingray from southern Africa (Myliobatiformes: Dasyatidae). South African Journal of Marine Sciences 13: 135-149.
Deynat, P. P. \& Y. Fermon. 2001. Resurrection of Himantura oxyrhyncha (Sauvage, 1878) from the synonymy of H. uarnak, a senior synonym of H. krempfi (Chabanaud, 1923) (Myliobatiformes: Dasyatidae). Cybium 25(2): 161-176.
Dingerkus, G. 1995. Relationships of Potamotrygon stingrays (Chondrichthyes: Batiformes: Myliobatidae. Journal Aquariculture Aquatic Sciences 7: 3237.

Dulcic, C. C. \& J. Lipez. 2002. Rare and little-known fishes in the eastern Adriatic during the last two decades (1980-2001). Periodicum Biologicum 104(2): 185-194.
Dulcic, C. C., J. F. Jardas, V. Onofri \& N. J. Boletin. 2003. The roughtail stingray Dasyatis centroura (Pisces, Dasyatidae) and the species butterfly ray Gymnura altavela (Pisces: Gymnuridae) from the south Adriatic. Journal of the Marine Biological Association of the United King dom 83(4): 871-872.
Ebert, D. A. \&P.D. Cowley. 2003. Diet, feeding behaviour and habitat utilization of the blue stingray Dasyatis chrysonota (Smith, 1828) in South African waters. Marine Freshwater Resources 54: 957-965.
Eschmeyer, W. N. (ed.). 1998. Catalog of fishes. California Academy of Sciences, San Francisco. 2905 pp.
Fowler, H. W. 1925. Fishes from Natal, Zululand, and Portuguese east Africa. Proceedings of the Academy Natural Sciences Philadelphia 77: 187-268.
Fowler, H. W. 1936. The marine fishes of west Africa: based on the collection of the American Museum Congo Expedition, 1909-1915. Bulletin of the American Museum Natural History 70: 1-1493.
Fowler, H. W. 1941. Contributions to the biology of the Philippine Archipelago and adjacent regions. The fishes of the groups Elasmobranchii, Holocephali, Isospondlii and Ostariophysi obtained by the United States Bureau of Fisheries steamer Albatross in 1907 to 1910, chiefly in the Philippines and adjacent areas. U.S. National Museum Bulletin No. 100, Vol. 13, 879 pp.
Garman, S. 1913. The Plagiostomia (Sharks, skates and rays). Memoirs of the Museum of Comparative Zoology 36: i-viii, 1-515, +77 plates.
Garrick, J. A. K. 1954. Studies on New Zealand elasmobranchii. Pt. II. A description of Dasyatis brevicaudatus (Hutton), Batoidei, with a review of records of the species outside New Zealand. Transactions of the Royal Society New Zealand 82(1): 198-198.
Golani, D. 1996. The marine ichthyofauna of the eastern Levant. History, inventory and characterization. Israel Journal of Zoology 42: 15-55.

Golani, D. \& C. Capapé. 2004. First records of the blue stingray, Dasyatis chrysonota (Smith 1828) (Chondrichthyes: Dasyatidae) off the coast of Israel (eastern Mediterranean). Acta Adriatica 45(1): 107113.

Goren, M. \& M. Dor. 1994. An updated checklist of the fishes of the Red Sea. CLOFRES II. Israel Academy Science Humanities, CLOFRES II: i-xii + 1-120.
Gudger, E. W. 1914. History of the spotted eagle ray, Aetobatis narinari, together with a study of its external structures. Carnegie Institute Washington No.183: 248-323.
Halstead, B.W. 1978. Poisonous and Venomous Marine Animals of the World (revised edition). The Darwin Press, Princeton. xlvi + 1043 pp, 283 pp of pls.
Heemstra, P. H. \& E. Heemstra. 2004. Coastal fishes of South Africa. South Africa Institute of Aquatic Diversity/NISC, Grahamstown. 488 pp .
Hureau, J. G. \& T. Monod. 1973. Checklist of the fishes of the northeast Atlantic and Mediterranean. Vol. II. UNESCO, Rome. 683 pp.
Khalaf, M. A. \& A. M. Desi. 1997. Fishes of the Gulf of Aqaba. Marine Science Station, Aqaba, Jordan. 252 pp.
Kindle, J. C. and R. A. Arnone. 2001. A review of the surface circulation of the northern Arabian Sea. In: Chareboudt, M., H. S. Al-Oufi, J. Mcllwain and S. Goddard (eds.) Proceedings of the first International Conference on fisheries, aquaculture and environment in the northeast Indian Ocean. Volume 2. Marine Biology and Ecology, Oceanography, Conservation. Sultan Qaboos University Press, Muscat, Sultanate of Oman, pp. 113-122.
Klimaj, A. 1978. Fishery Atlas of the Southwest African Shelf, Bottom and Pelagic Catches. Vol. III. Translated from Polish. Foreign Scientific Publications Department of the National Center for Scientific, Technical and Economic Information, Warsaw. 173 pp.
Kuronuma, K. \& Y. Abe. 1986. Fishes of the Arabian Gulf. Kuwait Institute Sciences Research, Kuwait City. 357 pp.
Last, P. R. \& J. D. Stevens. 1994. Sharks and rays of Australia. CSIRO, Canberra. 513 pp.
Lens, S. \& M. Marin. 1993. Sobre la presencia tres aguijones en un jemplar de Aquilamarina Linne. Myliobatis aquila (Linne 1758). Boletin Instituto Espania de Oceanografica 9(2): 373-377.
Leviton, A. E., R. H. Biggs, Jr., E. Heal and C. E. Dawson. 1985. Standards in Herpetology and Ichthyology. Part 1. Standard Symbolic Codes for Institutional Resource Collections in Herpetologoy and Ichthyology. Copeia 1985: 802-832.
Lutjeharms, J.R.E. 2007. Three decades of research on the greater Agulhas Current. Ocean Science 3: 129147.

Maigret, J. \& B. Ly. 1986. Les poisons de mar de Mauritanie. Sciences Natural Compagne. Contributions Institute Research Oceanografic et des Pesches Maritini. 213 pp.

McEachran, J.d. \& C. Capapé. 1984-1986. Rhinopteridae.
In: Poissons de l'Atlantique do Nord-Est et de la Mediterranée. Vol. 1. P. J. P. Whitchard, M. L. Bauchot, J.-C. Hureau, J. Nelson \& E. Tortonese (eds.). UNESCO, Rome, pp. 208-209.
Mollett, H. F. 2002. Distribution of the pelagic stingray, Dasyatis violacea (Bonaparte, 1832) off California, Central America and worldwide. Marine Fisheries Review 53: 535--530.
Quero, J. C., J. C. Hureau, C. Karrer, G. Pontis \& L. Soldana. 1990. Catalogue des poisons de Atlantique oriental tropical. Vol. 1. CLOFETA, Portugal. 519 pp.
Randall, J. E. 1995. Coastal Fishes of Oman. University Hawaii Press, Honolulu. 439 pp.
Randall, J. E. 2005. Reef and shore fishes of the South Pacific, New Caledonia to Tahiti and the Pitcairn Islands. University Hawaii Press, Honolulu. 707 pp.
Randall, J. E. \& R. C. Anderson. 1993. Annotated checklist of the epipelagic and shore fishes of the Maldive Islands. J. L. B. Smith Institute of Ichthyology Bulletin 59: 1-47.
Randall, J. E. \& H. P. Lim. 2000. Checklist of the fishes of the South China Sea. The Raffles Bulletin Zoological Supplement 8: 569-667.
Ruitart, J. J. 1998. Additions to the Corsican ichthyofauna, new descriptions of five fish species. Travaux Sciences du Pare Natural Region et des Resources Natural de Corsi 51: 76-102.
Schwartz, F. J. 1990. Mass migrating congregations and movements of several species of cownose rays, genus Rhinoptera: a worldwide review. Journal Elisha Mitchell Scientific Society 106(1): 10-13.
Schwartz, F. J. 2005. Tail spine characteristics of stingrays (Order Myliobatiformes) found in the northeast Atlantic, Mediterranean and Black Seas. Electronic Journal of Ichthyology 1:1-9.
Serena, F., R. Silvestri \& A. Volcani. 1999. Incidental capture of Taeniura grabata (E. Geoffroy St. Hiliare 1817) (Chondrichthyes, Lasyatidae). Bioletin Marine Mediterranean 6(1): 617-618.
Séret, B. 1990. Poissons de la mer d l'ouest-Africa
tropical. OSTROM, Paris. 480 pp .
Smith, H. M. 1945. The fresh-water fishes of Siam, or Thailand. Bulletin of the U.S. National Museum. 188: 1-622.
Smith, J. L. B. 1955. The Fishes of Aldabra. Part 1. Annual Magazine Natural History 8 (12 ser), pp. 305-312.
Smitr, J. L. B. 1967. Dasyatid rays new to South Africa. Annual Magazine Natural History 12(10): 429-431.
Smith, J. L. B. \& M. M. Smith. 1963. Fishes of Seychelles. Department of Ichthyology, Rhodes University, Grahamstown. 215 pp.
Springer, S. \& B. B. Collette. 1971. The Gulf of Guinea stingray, Dasyatis rudis. Copeia 1971(2): 338-341.
Soljan, T. 1948. Fishes of the Adriatic. In: Fauna and Flora the Adriatica. Volume 1. Nakladni Zavod Hrvatske, Zagreb, Yugoslavia. 437 pp.
Stehmann, M. 1995. Two new records of the dragon stingray, Himantura draco, and a record of Himantura gerrardi from the western Indian Ocean (Elasmobranchi: Dasyatidae). Journal of Ichthyology 35(5): 74-88.
Tortonese, E. 1976. A note on Dasyatis violacea (BP.) (Plagiostomia, Rajiformes). Bolletin Pesca Piscicoltura e Idrobiologia 31(102): 5-8.
Vossoughi, G. H. \& A. R. Vosoughi. 1999. Study of batoid fishes in northern part of Hormoz Strait, with emphasis on some species new to the Persian Gulf and Sea of Oman. Indian Journal of Fishes 46(3): 301-306.
Wallace, J. H. 1967. The batoid fishes of east coast of southern Africa. Part II. Manta, eagle, duckbill, cownose, butterfly and stingrays. South African Association Marine Bulletin Research Investigation Report 16: 1-156.
Whitfield, A. K. 2005. Preliminary documentation and assessment of fish diversity in sub-Saharan Africa estuaries. African Journal of Marine Sciences 27(1): 307-324.
Winterbottom, R., A. R. Emery \& E. Holm. 1989. An annotated checklist of the fishes of the Chagos archipelago, central Indian Ocean. Royal Ontario Museum Life Science Contributions 145: 1-226.

Published by the South African Institute for Aquatic Biodiversity Private Bag 1015, Grahamstown, South Africa, 6140 www.saiab.ru.ac.za

