

S M I T H S 0 N I A N

C0NTRIBUTIONS T0 KN0WLEDGE.

VOL. XIII.

EVERY MAN 13 a VALUABLE member of society, who, by his observations, researcheg, and experimenta, frocures

CITY OF WASHINGTON:
published by the smith onian institution.

MDCCCLXIII

A DVERTISEMENT.

This volume forms the thirteenth of a series, composed of original memoirs on dif-- ferent branches of knowledge, published at the expense, and under the direction, of the Smithsonian Institution. The publication of this series forms part of a general plan adopted for carrying into effect the benevolent intentions of James Smithson, Esq., of England. This gentleman left his property in trust to the United States of America, to found, at Washington, an institution which should bear his own name, and have for its objects the "increase and difficsion of knowledge among men." This trust was accepted by the Government of the United States, and an Act of Congress was passed August 10, 1846, constituting the President and the other principal executive officers of the general government, the Chief Justice of the Supreme Court, the Mayor of Washington, and such other persons as they might elect honorary members, an establishment under the name of the "Smithsonian Institution for the increase and diffusion of knowledge among men." The members and honorary members of this establishment are to hold stated and special meetings for the supervision of the affairs of the Institution, and for the advice and instruction of a Board of Regents, to whom the financial and other affairs are intrusted.

The Board of Regents consists of three members ex officio of the establishment, namely, the Vice-President of the United States, the Chief Justice of the Supreme Court, and the Mayor of Washington, together with twelve other members, three of whom are appointed by the Senate from its own body, three by the House of Representatives from its members, and six persons appointed by a joint resolution of both houses. To this Board is given the power of electing a Secretary and other officers, for conducting the active operations of the Institution.

To carry into effect the purposes of the testator, the plan of organization should evidently embrace two objects: one, the increase of knowledge by the addition of new truths to the existing stock; the other, the diffusion of knowledge, thus increased, among men. No restriction is made in favor of any kind of knowledge; and, hence, each branch is entitled to, and should receive, a share of attention.

The Act of Congress, establishing the Institution, directs, as a part of the plan of organization, the formation of a Library, a Museum, and a Gallery of Art, together with provisions for physical research and popular lectures, while it leaves to the Regents the power of adopting such other parts of an organization as they may deem best suited to promote the objects of the bequest.

After much deliberation, the Regents resolved to divide the annual income into two equal parts-one part to be devoted to the increase and diffusion of knowledge by means of original research and publications-the other half of the income to be applied in accordance with the requirements of the Act of Congress, to the gradual formation of a Library, a Museum, and a Gallery of Art.

The following are the details of the parts of the general plan of organization provisionally adopted at the meeting of the Regents, Dec. 8, 1847.

Details of the first part of THE PLAN.

I. To increase Knowledge.-It is proposed to stimulate research, by offering rewards for original memoirs on all subjects of investigation.

1. The memoirs thus obtained, to be published in a series of volumes, in a quarto form, and entitled "Smithsonian Contributions to Knowledge."
2. No memoir, on subjects of physical science, to be accepted for publication, which does not furnish a positive addition to human knowledge, resting on original research; and all unverified speculations to be rejected.
3. Each memoir presented to the Institution, to be submitted for examination to a commission of persons of reputation for learning in the branch to which the memoir pertains; and to be accepted for publication only in case the report of this commission is favorable.
4. The commission to be chosen by the officers of the Institution, and the name of the author, as far as practicable, concealed, unless a favorable decision be made.
5. The volumes of the memoirs to be exchanged for the Transactions of literary and scientific societies, and copies to be given to all the colleges, and principal libraries, in this country. One part of the remaining copies may be offered for sale; and the other carefully preserved, to form complete sets of the work, to supply the demand from new institutions.
6. An abstract, or popular account, of the contents of these memoirs to be given to the public, through the annual report of the Regents to Congress.
II. To increase Knowledge.-It is also proposed to appropriate a portion of the income, annually, to special objects of research, under the direction of suitable persons.
7. The objects, and the amount appropriated, to be recommended by counsellors of the Institution.
8. Appropriations in different years to different objects; so that, in course of time, each branch of knowledge may receive a share.
9. The results obtained from these appropriations to be published, with the memoirs before mentioned, in the volumes of the Smithsonian Contributions to Knowledge.
10. Examples of objects for which appropriations may be made:-
(1.) System of extended meteorological observations for solving the problem of American storms.
(2.) Explorations in descriptive natural history, and geological, mathematical, and topographical surveys, to collect material for the formation of a Physical Atlas of the United States.
(3.) Solution of experimental problems, such as a new determination of the weight of the earth, of the velocity of electricity, and of light; chemical analyses of soils and plants; collection and publication of articles of science, accumulated in the offices of Government.
(4.) Institution of statistical inquiries with reference to physical, moral, and political subjects.
(5.) Historical researches, and accurate surveys of places celebrated in American history.
(6.) Ethnological researches, particularly with reference to the different races of men in North America; also explorations, and accurate surveys, of the mounds and other remains of the ancient people of our country.
I. To diffuse Knowledge.-It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the chanyes made from yeur to year in all branches of knowledge not strictly professional.
11. Some of these reports may be published annually, others at longer intervals, as the income of the Institution or the changes in the branches of knowledge may indicate.
12. The reports are to be prepared by collaborators, eminent in the different branches of knowledge.
13. Each collaborator to be furnished with the journals and publications, domestic and foreign, necessary to the compilation of his report; to be paid a certain sum for his labors, and to be named on the title-page of the report.
14. The reports to be published in separate parts, so that persons interested in a particular branch, can procure the parts relating to it, without purchasing the whole.
15. These reports may be presented to Congress, for partial distribution, the remaining copies to be given to literary and scientific institutions, and sold to individuals for a moderate price.

The folloring are senne of the subjects which may be embraced in the reports:-

I. PHYSICAL CLASS.

1. Physics, including astronomy, natural philosophy, chemistry, and meteorology.
2. Natural history, including botany, zoology, geology, \&c.
3. Agriculture.
4. Application of science to arts.

II. MORAL AND POLITICAL CLASS.

5. Ethnology, including particular history, comparative philology, antiquities, \&c.
6. Statistics and political economy.
7. Mental and moral philosophy.
s. A survey of the pulitical events of the world; penal reform, \&c.

III. LITERATURE AND THE FINE ARTS.

9. Modern literature.
10. The fine arts, and their application to the useful arts.
11. Bibliography.
12. Obituary notices of distinguished individuals.
II. To diffuse K vowledge.-It is proposed to puhlish orresiomally separate treatises on sullijects of yenrvel interest.
13. These treatises may occasionally consist of valuable memoirs translated from foreign languages, or of articles prepared under the direction of the Institution, or procured by offering premiums for the best exposition of a given subject.
14. The treatises to be sulmitted to a commission of competent judges, previous to their publication.

DETAILS OF TLEE SECOND PART OF THE PLAN OF ORGANIZATION.

This part contemplates the formation of a Library, a Museum, and a Gallery of Art.

1. To carry out the plan before described, a library will be required, consisting, 1st, of a complete collection of the transactions and proceedings of all the learned societies in the world; $2 d$, of the more important current periodical publications, and other works necessary in preparing the periodical reports.
2. The Institution should make special collections, particularly of objects to verify its own publications. Also a collection of instruments of research in all branches of experimental science.
3. With reference to the collection of books, other than those mentioned above, catalogues of all the different libraries in the United States should be procured, in order that the valuable books first purchased may be such as are not to be found elsewhere in the United States.
4. Also catalogues of memoirs, and of books in foreign libraries, and other materials, should be collected, for rendering the Institution a centre of bibliographical knowledge, whence the student may be directed to any work which he may require.
5. It is believed that the collections in natural history will increase by donation, as rapidly as the income of the Institution can make provision for their reception; and, therefore, it will seldom be necessary to purchase any article of this kind.
6. Attempts should be made to procure for the gallery of art, casts of the most celebrated articles of ancient and modern sculpture.
7. The arts may be encouraged by providing a room, free of expense, for the exhibition of the objects of the Art-Union, and other similar societies.
S. A small appropriation should ammally be made for models of antiquity, such as those of the remains of ancient temples, \&e.
8. The Secretary and his assistants, during the session of Congress, will be required to illustrate new discoveries in science, and to exhibit new objects of art; distinguished individuals should also be invited to give lectures on subjects of general interest.

In accordance with the rules adopted in the programme of organization, each memoir in this volume has been lavorably repurted on by a Commission appointed
for its examination. It is however impossible, in most cases, to verify the statements of ath author; and, therefore, neither the.Commission nor the Institution can be responsible for more than the general character of a memoir.

The following rules have been adopted for the distribution of the quarto volumes of the Smithsonian Contributions :-

1. They are to be presented to all learned societies which publish Transactions, and give copies of these, in exchange, to the Institution.
2. Also, to all foreign libraries of the first class, provided they give in exchange their catalogues or other publications, or an equivalent from their duplicate volumes.
3. To all the colleges in actual operation in this country, provided they furnish, in return, meteorological observations, catalogues of their libraries and of their students, and all other publications issued by them relative to their organization and history.
4. To all States and Territories, provided there be given, in return, copies of all documents published under their authority.
5. To all incorporated public libraries in this country, not included in any of the foregoing classes, now containing more than 10,000 volumes; and to smaller libraries, where a whole State or large district would be otherwise unsupplied.

OFFICERS

SMITHSONIAN INSTITUTION.

THE PRESIDENT OF THE UNited states,
Ex-officio presiding officer of tie institution.

TIIE VICE-PRESIDENT OF THE UNITED STATES,
Ex-officio second presiding officer.

ROGER B. TANEY, chancellor of the institution.

JOSEPH HENRY,
secretariy of the institution.

SPENCER F. BAIRD.
assistant sechetary.
W. W. seaton, Treasurer.

ALEXANDER D. BACHE, JOSEPH G. TOTTEN, RICHARD WALLACII,
\int Executive Committee.

REGENTS.

MEMBERS EX-OFFICIO OF THE INSTITUTION.

Abraham Lincoln, President of the United Stutes.
Mannibal Hamlin, Vice-Piesident of the Urited Stutrs.
William II. Seward, Secretary of State.
Salmon P. Chase, Secretary of the Treasury.
Edwin M. Stanton, Secretery of Wer.
Gideon Welles, Secretary of the Nery.
Montgomery Blair, Postmaster-General.
Edfard Bates, Attorney-General.
Roger B. Taney, Chief Justice of the United Stules.
David P. Holloway, Commissioner of Putents.
Riciard Wallacit, Meyor of the City of IVustiongtom.

HONORARY MEMBERS.

Penjamin Silliman,	A. B. Longstreet,
John P. Upshitr.	The Secretury of the Iuterior.

TABLE OF CONTENTS.'

Article II. Tidal Observations in the Arctic Seas. By Elisha Kent Kane, M. D., U.S. N. Made durine the second Grinnell Expedition in searcif of Sir John Franklin, in 1853, 1854, and 1855. Reduced and discuseed by Charles A. Schott, Assistant United States Coast Survey. Pp. 90 , and 4 plates. (Published October, 1860.)

Article 1il. Meteorological Obserivations in the Arctic Seas. By Sir Leopoid Mcchintock, R. N. Made on board the Arctic Searching Yacut "Fox," in Baffin Bay and Prince Regent Inlet in 1857, 1858, and 1859. Redlced and disclssed at the expense of the Smithonlan Institution by Cilarles A. Schott, Assistant U. S. Const Survey. I'p. 160 and one map. (Published May, 18i2.)

Article IV. Ancient Mining on the Shores of Lake Superior. By Cmarmes Whittlegey. Pp. 32 and mom map. (Published April, 1863.)

Article V. Discussion of the Magnetic and Meteorological Observations made at the Girard College Observatory, Phladelphia, in $1840,1841,1842$, 1843, 1844, and 1845. Part II. Investigation of the Solar-Diurnal Variation of the Magenetic Declination and its Annual Inequadity. By A. D. Bache, LL. D., F. R. S., Mem. Corr. Acad. Sc. Paris; Superintendent Tr. S. Coast Eurver. Pp. 2s. (Puhlished June, 1sfog.)

Article Vi. Discussion ue the Magetic and Meteorological Observations made at the Girard College Observatory, Philadelphia, in 1840, 1841, 1842, 1843, 1844, and 1845. Part III. Investigation of the Luvar Effects on the Magnetic Declination. By A. 1). Bache, LL. D, F. R. S., Mem. Corr. Acad. Sc. Paris; Siperintentent U. S. Coast Survey. Pp. 16. (Published June, 1562.)

[^0]- R'TICLE: VIf. Disoussion of the Magnetic and Meteorological Observations mane at the (iibard Coliege Observatory, Philajeliphia, in $1810,1841,1842$, 1843, 1844, ANi 1845. Second Section, comprising Parts IV, V, VI. Horizontal Force. Investlgation of the Ten or Eleven Year Period and of the Disturbances of the Horizontal Component of the Magnetic Force; Investigation of the Solar-Diurnal Variation and of the Annual Inequality of the Horizontal Force; and of the Lunal Fffect on the Sane. By A. D. Bache, LL. D., F. R. S., Mem. Corr. Acad. Sc. Iaris; Superintendent T. S. Coast Survey. Pp. 78. (Published Norember, 1862.)

AR'TiCle YIII. Records and Results of a Magnetic Survey of Pennsilvania and parts of adjacent States in 1840 and 1841, with some additional, Iiecords and Results of $1834,1835,1843$, and 1862, and a map. By A. D. Bacue, LL. D., F. R.S., Mem. Corr. Acad. Sc. Paris; I'rest. Nat. Acad. Sciences; Superintendent IT. S. Coast Survey. Pp. 88 and one map. (Published Oetober, 1863.)

Aliticle IX. Researcies upon the Anatomy and Physiology of Respiration in the Cuelonia. By S. Weir Mitcuell, M. D., and George R. Moreiouse, M. D. P1. 50. (Published April, 1863.)

TIDAL 0BSERVATONS

A R C T I C S E A S.

BY
ELISHA KEXT KINE, M. D., L.S. Х.

MADE DURING TIE SECOND GRINNELL ENPEDITION IN SEARCII OF SIR JOIN FRANKLIN, IN 1853. 1854, AND 1855, AT VAN RENSSElAAER MARBOR.

REDUCED AND DLSOUSSED,

H
C HARLESA.SCHOTT,
agelstast i. \& .inast stertey.

CONTENTS.

Introductory Letter
Explanatory and introductory remarks 1
Record of tidal observations at Van Rensselaer Harbor, 1853-4-5 5
Discussion of half-monthly inequality in time and height 67
Effect of changes of the moon's declination and parallax 72
Discussion of the diurnal inequality in height and time 74
Investigation of the form of the tidal wave 78
Note on the effect of wind on the tides 81
Note on the progress of the tidal wave and depth of the sea 81
Record of soundings 82
Appendix-containing a tidal record at Wolstenholm Somnd, Commander Situnders, 1849-50, with four plates 83
-

INTRODUCTORY LETTER.

Washingiton, July 4 th, 1860 .
 Professor Joserh Henry, LL.D. Secretary of the Smithsomian Institution:

Dear Sir: The records of the tidal observations made under the direction of Dr. Kane, in the second Grinnell Expedition to the Aretic Regions, were placed in my hands by his late lamented father, Judge Kane, in December, 185\%.

Dr. Kame had sclected Assistant Charles A. Schott, of the U.S. Coast Survey, for the reduction of a considerable portion of the observations made on that expedition; and I, therefore, placed them in Mr . Schott's possession for reduction, and recommend his paper for publication in the "Smithsonian Contributions to Knowledge." It is proper to state that the computations were at the expense of the Smithsonian Institution. 'This is the sixth and last paper of the series.

Very respectfully, yours,
A. D. BACHE,

$$
\bullet
$$

RECORD AND REDUCTION OF TIIE TIDES.

Tee obscrvations and discussion of the tides at Van Rensselace Harbor, the winter quarters of the Advance during 1853-54 and 1854-55, will form the last of the series of papers on the results of the expedition, prepared by me for publication.

Occasional tidal observations were made after passing Smith Straits, when, owing to the peculiar mavigation through the narrow openings between the coast and the bay ice, the vessel was much exposed to the tidal action, frequently grounding at low water, and otherwise, by taking advantage of high tides, slowly advancing to her winter quarters.

The bay, near the head of which the Advance was laid up, and used as the winter quarters by Dr. Kane's party, is freely exposed to the north (true) and northwest; the indentation of the shore line is about five miles; some rocky islands are situated within the bay.

Shortly after the vessel entered the harbor a tide staff was arranged, and a series of tidal observations was commenced on September 11, 1853, and continued, with occasioual interruptions (partly owing to defects in the pulley-gauge, afteiwards rigged up, and partly owing to other unaroidable accidents) till the 2tth of January, 1855 , on which date the regular \log book appears to have been discontinued.

The several series of observations during this period are of very unequal value, as will appear in the detailed examination and discussion of the results. The difficultics to be overcome in the attempt to secure a reliable set of obscrvations were considerable, those of a physical nature being the greatest. The observations with the staff or sounding line are subject to irregularitics from a slow movement of the vessel, which, though imbedded in ice during the greater part of the year, is yet not stationary; these observations may also be affected by the softness of the bottom; the observations by means of a pulley tide gauge may be defective, on account of a slow drift of the vessel and motion of the ice field, also in consequence of a lengthening or shortening of the rope, or it may be in consequence of slipping of the rope on the circumference of the wheel. The latter deffect, or one similar in its nature, has been a source of much annoyance, requiring the application of corrections to the readings, in order to refer all observations to the same zero of the scale. There is another defect to which pulley-gauges are subject, namely, the gradual rise of the vessel, in consequence of the consumption of provisions and fuel. Notices of these defects will appear in the subsequent discussion.

The pulley-gauge is described by Dr. Kane, in volume I of the Narrative, p. 117, as follows: "Our tide register was on board the vessel, a simple pulley-gauge,
arranged with a wheel and index, and dependent on her rise and fall for its rotation." ${ }^{\prime \prime}$

In order to ascertain the nature of the tides, as well as the degree of accuracy of the different observations, the readings were roughly plotted for a first examination ; the following scrics were found suitable for discussion:-

Series I. From October 10th, 1853, to December 28th, 1853.-This series, with the exception of three days, is complete; the observations in the latter part of December appear to be of less reliable character. The observations between September 11 and October 4, 1853, are too fragmentary to be used. The pulley-gauge observations between October 4 and October 9 seem to have been only experimental. The hourly readings are superseded by half-hourly readings on November 8 , and continue half hourly, day and night, to the end of the series. After November 28, corrective soundings were taken at noon each day. In order to make use of these soundings, the mean depth of the water at the anchorage was deduced from them as follows:-

| | Mean reading. | | |
| :--- | :---: | :---: | :---: | :---: |
| December, | 1853. | 43.8 feet, from 31 soundings (at noon). | |
| January, | 1854. | 44.9 | 21 |
| Fehruary, | " | 44.3 | 17 |
| March, | $"$ | 43.3 | 19 |
| April, | $"$ | 41.8 | 20 |
| May, | " | 43.5 | 9 |

The indivilual soundings will appear in the record following.
Mean depth of water at anchorage, in winter, 1853-54, 43.6 feet, as obtained from 117 soundings. The monthly mean values for the tidal level accord well, and show that no lateral change took place in the position of the brig (or else that the bottom was level). It will be scen that for Series I the reading 7.0 was adopted to express the mean level, the zero of the scale was, therefore, at an elevation of 36.6 fect from the bottom. The readings of the pulley guage are expressed in feet, ${ }^{2}$ as I have been informed by Mr. Sonntag.

Series II. From January 28th, 1854, to April 7th, 1854.-The double half-hourly readings of the pulley-gauge are continued. The series is complete with the exception of ten days, which had to be omitted. The register broke January 22d; observations commenced January $24 t h$, but were not sufficiently regular for use

[^1]until January 28th. The corrective soundings at noon are continned, with occasional omissions, throughout this series. After April 7th there is a break in the observations, those between the 14 th and 20 th appear to be irregular.

Series III. From April 20th, 1854, to August 3d, 1854.-The double half-hourly readings of the pulley-gauge continue to May 5 th, after which date single halfhourly readings are recorded. The corrective soundings cease on the 12th of May. Interruptions occur between May 4 th and May 7th, also on July 8th, also between July 15 th and 18th, and between July 20th and the 28th. On the 8th of August the brig was released from her ice cradle, and rose two and a half fect; occasional warpings of the brig after this date render the observations worthless. On the $23 d$ of August the brig was in but seven feet of water, and grounded.

Series IV. From September ${ }^{7}$ th, 1854, to October 22d, 1854.—The hourly observations assume again a more regular appearance on the \%th of September; they were taken with the sounding line, and are expressed in fathoms and fect (as stated in a note, August 12th). The following note is of October 21st, 1854: "The tide register as yet not rigged, observations very faulty by sounding line." The irregularities increase after this date; on the 15 th of November following, the tide register was arranged, and observations (hourly) commenced on the 17 th; the slipping of the rope, however, was of so frequent occurrence and of so great an extent, that it was considered better to take no further notice of these observations; the record continues to January 24th, 1855, when the strength of the party no longer permitted due attention to the tidal phenomena.

It was apparent that before any closer insight into the nature of these tides could be obtained, they must first be reduced to the same zero or mean level of the sea. To effect this in a manner apparently best suiting the case, and otherwise unobjectionable, two curved lines were traced on the diagrams, the upper one enveloping the highest high water of each day, the other enveloping the lowest low water of each day; in tracing these lines some allowance was made, when necessary, for disturbing causes, so as to obtain tolerably smooth curves; cases of abrupt changes were, of course, treated accordingly. A line, equidistant from these curves, was assumed as representing the mean level, and when straightened out was adopted as axis of the mean level of the sea. The corrections to refer each observation to this adopted mean level; or, in other words, the corrcctions required to refer each observation to the same zero of the scale, so as to make them comparable with each other, were taken from the projection, and are given in the column headed "reduction," in the following record.

This method of treatment excludẹs necessarily in Scries I, II, and III, any discussion of the variation in the mean level of the sea, the oscillations of which have been found small at other places. As an illustration of this, the tides at Singapore might be referred to; the Rev. W. Whewell (7th series of researches on the tides, Phil. Trans. of the Roy. Soc., Part I, 1837), finds for these tides that, if a line is drawn representing the mean height (midway between high and low water each day) it is very nearly constant, though the successive low waters often differ by six
fect (on account of the diurnal inequality), the mean level only oscillates through a few inches. It appears from Mr. Lloyd's paper (Phil. Trans. of 1831) that the mean level at Sheerness is higher in spring tides than in neap tides by seven inches nearly; also there secms to be no doubt (as shown by Mr. Whewell, Phit. Trans., 1839 and $1 \$ 40$) that the mean level increases as the moon's declination increases, ameunting to three inches at Plymouth, when the moon's declination is 25°; at Petropaulofsk and Novo-Arkhangelsk the mean level rises as the moon's declination increases.

The use of the soundings intended to furnish corrections to the readings of the pulley-gauge is in many cases a doubtful remedy, on account of the continued change in the zero of the wheel's index; in fact, it would have required numerous soundings at other hours than noon. As it is, a combination of the corrections by enveloping curves and soundings had to be adopted. Thus, for December 5th, soundings at noon 43.0 feet (see record further on), mean level 36.6 , hence reading of scale at noon 6.4; reading of pulley-gauge at that hour 19.0 , correction by curve -12.5 , corrected reading 6.5 , which agrees with the first number; this is, however, a very fivorable case. For intermediate hours the correction as given by the curves serve as guides. The reduction to the same level affects the times generally very little.

The following table contains the soundings taken at noon between the interval of the first and second series, those taken during the series being given in the record.

Soundings at Noon.										
$1853 .$	Fath.	Feet.	Ineh.	Register.	$1854 .$		Fath.	Feet.	Inch.	. Register.
December, 29	7	3	0		January	13.	7	3	6	
30	8	0	0	18.1 (changed.)		14.	---	---	---	
31	8	2	0			15.	8	1	0	
1854. Jan.	8	1	6			16.	7	2	6	
	8	1	6			17.	-- -	-. -	-.	
	7	5	6			18.	7	3	9	
	7	3	0	Changed to 16.0		19.	7	5	6	
	7	1	6			20.	6	3	0	
	6	4	6	Changed to 10.5		21.	6	4	0	Changed to 10
	6	3	0			22.	Tid	e regis	ster b	broken.
		- - -	---			23.	"	،		"
	6	4	2			24.	"	،		"
1	7	0	0			25.	.-.	-. -	-.	
11	- -	- -	--			26.	-.	- -	-	
12	7	4	0			27.	7	1	9	

The following soundings were taken between the second and third series:-

195.4.	Fath,	Fect.	Inches.
April 8.	6	5	6
9.	6	4	0
10.	7	0	6
11.	6	5	6
13.	7	4	0
$14 .{ }^{1}$	7	5	6
15.	8	0	0

(Low water to high water 14 ft .8 inch.)

[^2]The note of February 3d, 1854, is very instructive in regard to the effect of the tides on the ice floe, viz: "The enormous elevation of the land ice by the tides has raised a barrier of broken tables seventy-two feet wide and twenty feet high between the brig and islands. This action has caused a recession of the main floe; our vessel has changed her position twenty feet within the last two spring tides, and the hawser connected with Butler Island parted with the strain." The cutwater of the brig was then 280 feet from the margin of the ice. (Note of February 4th.)

The mean of all the soundings taken during the fourth series is very nearly fifteen fect, hence the constant index error, to refer the observations to the level previously adopted, is eight feet, which correction was applied, converting at the same time the record of fathoms into feet.

The following tidal record extends, therefore, over about nine and a half lunations between October 10, 1853, and October 22, 1854, during which interval the time and height of nearly five hundred high and as many low waters were secured.

Record of the Observations of the Tides at Van Rensselaer Harbor, North Gireenland,
in 1853, 1854, and 1855.
Position of the Winter Quarters,
Latitude $78^{\circ} 37^{\prime}$ north, and longitude $70^{\circ} 53^{\prime}$, or $4^{\text {h }} 43^{\mathrm{m}} .5$ west of Greenwich. ${ }^{1}$
The first column for each day is copied from the original log-book, the second column contains the reduction to the adopted zero of scale found graphically as explained, and the third column contains the observations referred to the same mean level.

[^3]Series I.-Tidar Observations from October 10, 1853, to December 28, 1853.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0 , expressed in units of the seale. Increasing numbers indicate rise of water.

October, 1853.																		
$\begin{gathered} \text { Mean } \\ \text { solar } \\ \text { hour. } \end{gathered}$	10th.'	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	11 tb	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	12th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	13th.	Rerl. to level.	Ref. obs.	14th.!	Red. to level.	Ref. obs.	17 th.	Red. to level.	Ref. obs.
1			--	5.4	-1.0	4.4	5.0	-1.0	4.0	7.5	-1.3	6.2	7.0	-1.5	5.5			-
2	6.6	-1.0	5.6	5.4	"	4.4	5.0	6	4.0	6.4	6	5.1	5.4	"	3.9	-		-. .
3	7.6	6	6.6	5.5	"	4.5	5.2	'6	4.2	5.0	،	3.7	4.4	"	2.9	---		--.
4	8.1	6	7.1	6.0	\%	5.0	6.0	"	5.0	5.5	6	4.2	4.2	"	2.7	--		-- -
5	8.7	"	7.7	6.9	"	5.9	7.9	"	6.0	7.9	"	6.6	4.4	-1.6	2.8	-.-		---
6	8.7	6	7.7	7.3	6	6.3	8.5	"	7.5	8.3	"	7.0	5.5	"	3.9	---		--
7	8.7	"	7.7	7.7	"	6.7	8.9	"	7.9	8.7	-1.4	7.3	7.5	"	5.9	-		---
8	9.0	،	8.0	7.7	"	6.7	8.9	6	7.9	9.4	6	8.0	9.6	16	8.0	-		
9	6.4	6	5.4	7.6	"	6.6	-		--	10.5	"	9.1	11.2	6	9.6	-. -		---
10	5.9	6	4.9	6.15	6	5.6	7.8	-1.1	6.7	10.5	6	9.1	11.4	"	9.8	---		---
11	5.7	\%	4.7	6.1	"	5.1	6.7	"	5.6	10.3	"	8.9	11.3	"	9.7	\cdots		---
Noon	5.8	*	4.8	5.8	"	4.8	5.6	"	4.5	9.9	"	8.5	11.0	-1.7	9.3	-		-- -
1	6.7	${ }^{6}$	5.7	5.8	6	4.8	5.3	"	4.2	7.6	6	6.2	9.4	"	7.7	\cdots		-.
2	7.3	"	6.3	5.3	"	4.8	5.3	6	4.2	6.7	"	5.3	7.4	"	5.7	- --		--
3	8.9	"	7.9	6.3	"	5.3	5.3	،	4.2	5.6	-1.5	4.1	6.6	"	4.9	- - -		---
4	3.3	،	8.3	7.7	"	6.7	5.3	'	4.2	4.6	6	3.1	4.4	*	2.7	---		…
5	10.2	"	9.2	9.0	،	8.0	6.4	-1.2	5.2	6.5	6	5.0	4.6	6	2.9	4.2	-2.7	1.5
6	10.2	"	9.2	10.1	6	9.1	7.8	6	6.6	9.0	6	7.5	5.9	${ }^{6}$	4.2	4.5	6	1.8
7	11.2	6	9.2	10.5	"	9.5	9.9	'	8.7	10.5	،	9.0	9.2	"	7.5	---		---
8	9.9	"	8.9	111.5	"	9.5	11.0	${ }^{6}$	9.8	11.6	'6	10.1	12.0	-1.8	10.2	9.5	6	6.8
9	8.8	"	7.8	. 8.8	"	8.8	11.3	-1.3	10.0	12.4	6	10.9	12.4	6	10.6	12.6	${ }^{6}$	9.9
10	7.5	"	6.5	9.0	6	8.0	11.3	6	10.9	12.4	6	10.9	13.1	6	11.3	13.0	"	10.3
11	6.3	'6	5.3	7.2	6	6.2	9.7	${ }^{6}$	8.4	12.4	6	10.9	13.1	6	11.3	13.4	"	10.7
Midn't	5.7	6	4.7	5.6	6	4.6	8.3	6	7.0	10.4	، 6	8.9	13.0	-1.9	11.1	13.4	66	10.7
October, 1853.																		
Mean solar hour.	18th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	19th.	Red. to level.	Ref. obs.	20 th.	Red. to level.	Ref. ubs.	21 st.	Red. to level	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	22d.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	23 d .	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { lerel. } \end{gathered}$	Ref. obs.
1	11.5	-2.7	8.8	13.6	-2.2	11.4	13.8	-2.3	11.5	11.6	-1.7	9.9	10.7	-0.2	10.5	7.0	+0.8	7.8
2	8.9	"	6.2	12.0	"	9.8	12.6	"	10.3	---	"		10.2		10.0	8.0	"	8.8
3	6.8	'6	4.1	5.9	،	6.7	10.5	6	8.2	10.8	-1.6	9.2	10.0	-0.1	9.9	9.5	6	10.3
4	5.5	"	2.8	6.6	6	4.4	8.0	"	5.7	9.6	-1.5	8.1	3.0	${ }^{6}$	8.9	9.0	+0.9	9.9
5	4.4	-2.6	1.8	4.5	"	2.3	7.9	-2.2	5.7	6.7	-1.4	5.3	8.0	0.0	8.0	6.9	"	7.8
6	4.4	"	1.6	3.8	6	1.6	7.9	"	5.7	4.6	${ }^{6}$	3.2	7.0	*	7.0	4.5	"	5.4
7	6.5	،	3.9	3.8	/6	1.6	7.9	6	5.7	4.1	-1.3	2.8	5.0	'6	5.0	3.4	"	4.3
8	8.7	6	6.1	4.7	16	2.5	8.9	6	6.7	4.1	-1.2	2.9	5.0	+0.1	5.1	3.0	\%	3.9
9	11.8	-2.5	9.3	5.8	"	3.1	8.7	6	6.5	6.7	6	5.5	3.3	6	3.4	3.1	6	4.0
10	-. -		-- -	11.0	"	8.8	8.7	6	6.5	8.5	-1.1	7.4	4.5	$+0.2$	4.7	3.5	6	4.4
11	. .			13.6	"	11.4	12.9	6	10.7	10.8	${ }^{6}$	9.7	6.3	${ }^{6}$	6.5	3.7	" 6	4.6
Nown	- - -			14.4	6	12.2	13.6	*	11.4	11.7	-1.0	10.7	7.2	*	7.4	4.5	"	5.4
1	--		--	14.6	"	12.4	14.0	-2.1	11.9	11.9	"	10.9	7.0	$+0.3$	7.3	6.5	"	7.4
2	14.8	6	12.3	12.6	6	10.4	14.1	4	11.9	11.9	-0.9	11.0	7.5	4	7.8	7.0	${ }^{6}$	7.9
3	10.6	-2.4	8.2	10.4	"	8.2	---		...	11.9	- 1.8	11.1	9.5	+0.4	8.9	8.5	"	9.4
4	8.6	*	6.2	9.6	-2.3	7.3			---	11.8	${ }^{6}$	11.0	9.2	،	9.6	9.5	"	10.4
5	6.6	"	4.2	6.6	"	4.3	7.7	66	5.6	9.0	-0.7	8.3	9.2	"	9.6	8.0	$+0.8$	8.8
6	4.4	"	2.0	5.2	"	2.9	6.2	6	4.1	7.5	"	6.8	6.7	+11.5	7.2	7.4	${ }^{6}$	8.2
7	4.4	-2.3	2.1	4.2	"	1.9	5.5	6	3.4	5.5	- 11.10	4.9	5.2	،	5.7	7.0	6	7.8
8	5.5	"	3.2	4.8	"	2.5	5.2	-2.0	3.2	5.0	"	4.4	3.9	+0.6	4.5	6.1	6	6.9
9	8.3	'	6.0	6.8	/	4.5	4.7	${ }^{6}$	2.7	5.0	-0.5	4.5	3.9	"	4.5	5.5	${ }^{6}$	6.3
10	10.4	6	8.1	8.4	\%	7.1	6. ${ }^{\text {8 }}$	-1.9	4.9	5.0	"	4.5	4.0	0.	4.6	4.5	+0.7	5.2
11	12.6	,	10.3	11.6	*	9.3	9.8	1.8	7.9	5.0	-0.4	4.6	6.3	+0.7	7.0	5.0		5.7
Midn't	13.7	-2.2	11.5	$\mid 13.4$	${ }^{6}$	11.1	11.0	-1.8	9.2	5.0	-0.3	4.7				5.5	6	6.2

Regular oiservations commence October 10, 2 A. M.
Oct. 15. Thide rope fomm hroken at 10 A . M., and the lead lost through the ice hole.
Oct. 17. Tides irrecular, index changed 12 units; hence most of the observations on this day had to be omitted.
Oct. 211. The observation for $10 \mathrm{~A} . \mathrm{M}$. is incorrect, on acconat of obstruction by the ice.
Oct. 21. Flood [rise] commenced at 8 P. M.
Oct. 23. Slack water [stand] at \& oclock, flood commences.

Series I.-Tidal Observations from October 10, 1853, to December 28, 1853.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

October, 1853.																		
$\begin{aligned} & \text { Mean } \\ & \text { solar } \\ & \text { hour. } \end{aligned}$	2 2th.	$\begin{gathered} \text { Red. } \\ \text { Red. } \\ \text { tevel. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { Ref. } \\ & \text { obs. } \end{aligned}$	25th.	$\begin{gathered} \text { Red. } \\ \text { Red. } \\ \text { tevel. } \end{gathered}$		126 th.	$\begin{gathered} \text { Rod. } \\ \text { to } \\ \text { lovel. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	127 th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$			$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{gathered} \text { Ref. } \\ \text { Rews. } \\ \text { obs } \end{gathered}$	29 th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{array}{\|l\|l} \text { Ref. } \\ \text { obss. } \end{array}$
1	6.5	+0.7	7.2	5.5	-0.1	5.4	5.0	+0.3	5.3	4.0	+0.8	4.8	4.5	+1.1	5.6	5.1	+0.9	6.0
2	7.0	+	7.75	5.8		5.7	5.5		5.8	4.0	+	4.8	3.5	+1.	4.6	4.4		5.3
3	8.0	"	8.7	6.5	-0.2	6.3	5.5	+0.4	5.9	4.5	"	5.3	3.4	"	4.5	2.8	"	3.7
4	ع. 0	$+0.6$	8.67	7.2	,	7.0	5.8	"	6.2	5.0	+0.9	5.9	4.3	"	5.4	3.5	"	3.4
$\begin{aligned} & 5 \\ & 6 \end{aligned}$	7.3 6.5	"	7.97	${ }^{7.0}$	-0.3	7.1	5.8	$+0.5$	6.2 6.7	6.8	"	7.7	${ }^{3} .15$	"	6.7	5.5	"	3.4
7	5.4	"	6.1	6.4	"	6.1	6.5	,	7.0	7.1	$+1.0$	8.1	7.3	"	8.4	7.0	"	7.9
8	4.0	$+0.5$	4.5	5.6	"	5.3	6.5	"	7.0	7.1		8.1	8.2	"	9.3	7.8	"	8.7
9	5.0		5.5	5.6	-0.4	5.2	6.1	"	6.6	7.1	"	8.1				9.8	"	11.7
10	5.0	"	5.5	5.15		5.2	5.6		6.1	6.0	"	7.0				9.8	"	10.7
11	5.0		5.5	5.15	"	5.2	5.5	+0.6	6.1	5.6	"	6.6				9.6	"	10.5
Noon	5.0	+0.4	5.4	5.6	"	5.2	5.5		6.1	4.5	"	5.5				9.3		10.2
1	7.5		8.1	7.3	-0.3	7.0	5.5	"	6.1	4.5	"	5.5	4.8	"	5.9	${ }_{4}^{6.8} 8$	"	7.7
2				6.3	-0.2	${ }_{6}^{6.0}$	5.5	"	6.1 6.6	5.0 5.3	"	6.0 6.3	4.3	"	5.4 5.1 5.1	4.8	"	5.7 4.9
4				7.5	-0.	7.3	6.5	"	7.1	${ }_{6.3}$	"	7.3	4.0	"	5.1	4.19	"	4.9
5	9.5	+0.2	9.7	7.3	-0.1	7.2	7.5	+0.7	8.2	7.7	"	8.7	6.0	"	7.1	4.11	"	4.9
6	9.5		9.7	7.6	"	7.5	8.0		8.7	7.3	+1.1	8.4	7.1	"	8.2	5.5	"	6.4
8	8.1	$+0.1$	8.2	8.3	0.0	8.2	8.2	"	8.9	8.6		9.7 9.8	8.0 9.4	${ }_{4}^{1.0}$	9.0 10.4	6.7 9.1	"	7.6
9	7.0		${ }^{7.1}$	${ }^{5.5}$	"00	8.5	8.5	"	9.2	8.7 8.7	"	9.8	9.4 9.8	"	10.4 10.5	9.0.5	"	10.9
10	5.8		5.8	6.1	+0.1	6.2	7.1	"	7.8	7.1	+1.2	8.3	9.8	"	10.8	10.5	"	11.4
11	5.5	-0.1	5.4	5.4		5.5	6.1	+0.8	6.9	6.3		7.5	9.0	+0.9	9.9	10.5	'	11.4
Midn't	t 5.5		5.4	5.0	+0.2	5.2	4.8		5.6	5.9	6	7.1	7.3		8.2	8.5	"	9.4
October, 1853.							November, 1853.											
$\left.\begin{gathered} \text { Mean } \\ \text { solar } \\ \text { sour. } \end{gathered} \right\rvert\,$	(th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { Ref. } \\ \text { obs. } \end{array}$	31st.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{gathered} \text { Ref. } \\ \text { Ros. } \end{gathered}$	1st.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { abs. } \end{aligned}$	2 d .	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{array}{\|l\|} \text { Ref. } \\ \text { obss. } \end{array}$	3 d .	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs	4th.	$\begin{gathered} \text { Red. } \\ \text { to. } \\ \text { tevel. } \end{gathered}$	Ref.
1	4.5	+0.9	5.4	5.4	+1.5	6.9	6.8	+1.7	8.5	9.1	+1.4	10.5	13.5	-1.7	11.8	13.0	-1.4	11.6
	3.5	4	4.4	3.8		5.3	4.0		5.7	8.8	+1.3	110.1	12.0		10.3	12.5		11.1
3	2.0	"	2.9	3.0	+1.6	4.6	2.5	"	4.2	7.1	+1.2	8.3	9.0		7.3	11.2	"	9.8
4	2.0	"	2.9	0.0	"	1.6	1.0	"	2.7	4.7	+1.0	5.7	6.7	-1.6	5.1	9.8	"	8.4
5	3.2	"	4.1	1.0	"	2.6	1.0	"	2.7	1.5	+0.7	2.2	3.7	"	2.1	6.0	"	4.6
6	4.2	"	5.1	1.2	1	2.8	2.2	"	3.9	0.5	+0.5	1.0	1.8		0.2	4.4	"	3.0
8	6.2	$+1.0$	7.2	3.1	$+1.7$	4.8	3.2	"	4.9	0.7 3.0	+0.2	0.9 3.0	1.5 2.4	-1.5	0.0	2.0	"	0.6 0.3
8	${ }_{10.5}^{8.5}$	+1.1	11.5	6.5 8.5	"	110.2	${ }_{9} .5$	+1.6	11.1	7.2	-0.2	7.0	3.4	"	1.9	3.7	"	2.3
10	10.4	"	11.5	9.3	"	11.0	10.5	"	12.1	9.8	-0.5	9.3	4.2	"	2.7	7.3	"	5.9
11	10.4	"	11.510	10.3	"	12.0	10.7	"	12.3	10.9	-0.7	11.2	6.0	"	4.5	10.5	"	9.1
Noon	11.4	+1.2	11.61	10.0	"	11.7	10.7	"	12.3	15.3	-1.11	14.3	6.7	"	5.2	12.6	"	11.2
1	8.2		9.4	7.5	"	9.2	10.2	"	11.8	15.2	-1.2	14.0	15.7	"	14.2			
${ }_{2}^{2}$	5.5	"	6.7	5.2	"	6.9	9.2	"	11.8	13.6	-1.5	12.1	115.2	"	13.7			
3	3.7	"	4.9	3.7	"	5.4	8.1	"	9.7	10.5	-1.6	8.9	12.5	"	11.0	12.0	"	10.6
4	3.4	"	4.6	0.1	"	1.8	4.5	+1.5	6.0	f. 8	-1.7	5.1	10.1	"	8.6	11.5	"	10.1
5	2.6	+1.3	3.9	0.2	"	1.9	3.0	+1.	4.5	3.8	.	2.1	6.5	"	5.0	9.0	"	7.6
6	3.4	"	4.7	1.2	"	2.9	2.3	"	3.8	2.0	"	0.3	4.5	"	3.0	5.5	"	4.1
7	5.1	"	6.4	3.0	"	4.7	2.1	"	3.6	1.8	"	0.1	3.5	"	2.0	3.2 3.0	"	1.8 1.6
8	6.8	"	8.1	5.2	"	6.9	4.0	"	5.5	3.2	"	1.5	3.5	"	2.0	3.0	"	1.6
9	9.5	+1.4	10.9	8.1	"	9.8	9.0		11.5	3.3	"	1.6	4	"	3.0	3.1	"	1.7
10	11..;	+	11.7	9.5	"	11.2	10.1	"	11.6	3.3	"	1.6	7.3	"	5.8	5.0	"	3.6
11	10.3	"	11.7	9.5.	"	11.2	10.1	"	11.15	3.3	"	1.6	9.3	"	7.8	7.5	"	6.1
Midn't	t 9.0	+1.5	10.51	10.5	"	12.2	10.1	"	11.6	3.3	"		$1^{12.0}$	\|"	10.5	9.8	"	8.4

Oct. 29. Slack water [stand] of ebb at $4^{\mathrm{h}} 30^{\mathrm{m}}$ A. M.
Oct. 31. Slack water [stand] of ebb at $5 \mathrm{~A} . \mathrm{M}$.
Nov. 2 to Nov. 6. Between hese dates there are oceasionally half-hourly readings, but anless they occur near high or low water they are omitted in the alove.

Series I.-Tidal Observations from October 10, 1853, to December 28, 1853.
Hourly observations on the pulley-gange. Adopted reading of mean level 7.0 , expressed in units of the scale. Increasing numbers indicate rise of water.

November, 1853.

$\begin{aligned} & \text { Mean } \\ & \text { solar } \\ & \text { hour. } \end{aligned}$	5th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref.	Gith.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	Tth.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { lerel. } \end{gathered}$	Ref. obs.	8th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	9th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{gathered} \text { Ref. } \\ \text { obs. } \end{gathered}$	10th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.
1	11.5	-1.4	10.1	9.0	-1.0	8.0	6.6	-0.6	6.0	$\begin{aligned} & 4.3 \\ & 5.3 \end{aligned}$	-0.5	3.8 4.8 5.1	$\begin{aligned} & 3.8 \\ & 3.9 \end{aligned}$	$+0.2$	$\begin{aligned} & 4.0 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	-0.2	$\begin{aligned} & 4.3 \\ & 4.3 \end{aligned}$
																	"	
2	11.0	"								5.6			$\begin{aligned} & 4.2 \\ & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & " \\ & " \\ & " \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.2 \end{aligned}$	4.3 4.0	"	4.13.8
			9.6	9.	""	$\begin{aligned} & 8.8 \\ & 8.9 \end{aligned}$	7.8.	"	$\begin{aligned} & 7.3 \\ & 8.2 \end{aligned}$	6.2	"	5.7						
												6.6			4.7	4.24.5	"	4.0
3	10.0	"	8.6	4.9		$\begin{array}{r} 8.9 \\ 9.0 \end{array}$	$\begin{aligned} & 8.8 \\ & 8.8 \end{aligned}$	8.28.2		7.1	"		5.0	"	5.2		-0.3	4.2
						9.0	8.8							"	6.2	4.5		4.2
4		-1.3	7.9	10.11	-0.9	9.1	8.8	"	$8 \cdot 2$	7.9	- 4	7.4	6.0			4.1	"	3.8
				8.1	"	7.2	8.8	"	8.2	7.9	-0.4	7.5				5.8	"	5.5
5	5.7	"	4.4	7.7	"	6.8	8.6	"	8.0	8.2	"	7.8	7.5	*	7.7	6.5	6.2	
6	3.5	"	2.2	5.5	"	4.6	7.8	-0.5	7.3	7.8	"	7.4		"	8.1	8.5	"	8.2
													7.9	"	8.1	$\begin{array}{\|l\|} \hline 9.9 \\ 10.5 \end{array}$	"	9.6
7	2.3	"	1.0	4.5	"	3.6	6.5	"	6.0	7.3	-0.3	7.0	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$+0.1$			"	$\begin{aligned} & 9.2 \\ & 9.7 \end{aligned}$
				4.0	"	3.1									$\begin{aligned} & 8.1 \\ & 8.1 \end{aligned}$	110.0		
8	2.0	${ }^{6}$	0.7	3.6	-0.8	2.8	5.4	"	4.9	6.3	"	6.0	$\begin{gathered} 8.0 \\ 7.4 \end{gathered}$	"		10.2	"	$\begin{aligned} & 9.8 \\ & 9.8 \end{aligned}$
	2.11	"	0.7	3.1	4	2.3								"	7.5	10.2		
9	2.4	"	1.1	3.1	"	2.3	4.0	"	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	5.5	"	5.2	6.9	"	7.0	110.2	"	9.8
	2.15	"	1.3	3.2	"	2.4	4.0	"								10.1	9.7	
10	2.7	-1.2	1.5	4.31	"	3.5	3.7	"	3.2	5.3	"	5.0	16.0	"	6.1	9.8	"	9.7 9.4
11	6.7	"	5.5	$5.7-0.7$		5.0	4.4	"	3.9	5.5	${ }^{\prime}$	$\begin{aligned} & 5.2 \\ & 5.1 \end{aligned}$	4.8	"			"	8.6
							5.5	"	5.0	5.3	-0.2				4.9	9.0		
Noon	11.1	"	9.9	8.3	"	7.6	6.8	"	6.3	5.1	"	4.9	4.6	0.0	4.6	7.5	-0.5	7.0
										5.3	"	5.1		"			"	
1	13.1	"	11.9				S. 1	"	7.6	5.6	\%	0.4	4.4	"	4.5	6.3	"	5.8
2	14.2	"	13.0				9.5	"	9.0	7.1	6	6.9	4.5	"	4.5	6.0	"	5.5
	14.2	"	13.0										5.1	،	5.1	6.0	"	5.5
3	14.1	-1.1	13.0				10.6	"	10.1	S.:	"	8.1	5.5	"	5.5	6.5	-0.6	5.9
	13.0	"	11.9				10.9	"	110.4									
4	12.3	"	11.2				11.2	"	10.7	0.5	"	9.3	7.1	"	7.1	7.0	"	6.4
5	10.8	"	7	11.5	-0.6	10.9 10.4	11.2	"	10.7 10.6	10.1	-0.1	10.0	9.2	-0.1	9.1	7.9	${ }^{\prime}$	7.8
				10.7	"	10.1	10.2	"	9.7	10.5	"	10.4	9.6		9.5			
6	8.2	"	7.1	9.1	"	8.5	10.2	"	9.7	10.5	"	10.4	10.1	"	10.0	9.5	"	8.9
				7	"	6.9	8.5	"	8.0	10.5	"	10.4 10.4	9.5 11.1	"	9.4 11.0	10.9	"	10.3
7	5.1	\cdots	4.0	7						10.5	"	10.4	11.1		11.0	11.4	"	10.8
8	3.3	"	2.2	5.4	"	4.8	7.5	"	7.10	10.0	0.0	10.9		"	10.9	11.0	"	10.4
	2.3	"	1.8										9.8		9.7	11.0	"	10.4
9	3.1	"	1.9	42	"	3.6	5.6	"	5.1	8.1	،	8.1	8.9	"	8.8	11.0	"	10.4
	$\therefore .5$	"	2.4	4.0	"	3.4										11.3	-	10.7
10	4.1	-1.0	3.1	3.2	"	2.6	4.4	"	3.9	7.0	+0.1	7.1	7.0	\%	6.9	11.3	-0.7	10.6
				3.2	"	2.6	4.3	"	3.8	4		5.0	4.7		4.5	10.9 4.5	"	10.2 8.8
11	6.0		5.0	4.5	,	3.4	4.1	"	3.6	42	"	4.3	4.7		4.5			
Midn't	7.3	"	6.3	4.9	'	4.3	4.0	"	3.5	4.0	+0.2	4.2	4.5	"	4.3	8.5	"	7.8

Now. s. From this date the ohsemrations are half-hourly: in the above record, however, only those half-
hourty matines wore insogted, which oceur near a hislo or low water.

Series I.-Tidal Obselyations from October 10, 1853, to December 28, 1853.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the seale. Increasing numbers indicate rise of water.

November, 1853.

Mean solar hour.	11th.	Red. to level.	Ref. obs.	12th.		Ref. obs.	13th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	144.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	15th.	Red. to level.	Ref. obs.	16th.	Red. to level.	Ref. obs.
1	6.1	-0.7	5.4	0	-0.9	5.1		$\begin{gathered} -1.6 \\ 4 \end{gathered}$		11.5					7.8	16.8	-5.5	$\begin{array}{r} 11.3 \\ 9.6 \end{array}$
	4.6	"	3.9															
	4.4	-0.8	3.7 2.8						5.1		-4.2			"		14.7	-5.6	
2	3.6 3.1	-0.8	2.8 2.3	4.5	"	3.6	6.7			9.1		4.9	10.0		4.8			9.1
3	3.	*	2.7	4.0	-1.0	3.0	4.9	-1.7	3.2	7.5	-4.3	3.2	8.0	"	2.8	13.0	"	7.4
	3.6	"	2.8	4.0	"	3.0	4.6		2.9	7.0		2.7						
4	4.1	"	3.3	3.8	"	2.8	4.4	-1.8	2.6	6.5	-4.4	2.1	6.6	"	1.4	10.5	${ }^{6}$. 9
				4.1	"	3.1	4.5		2.7	6.5		2.1	6.0	"	0.8	6.1	-5.7	0.4
5	5.0	"	2	4.6	"	3.6	4.5	-1.9	2.6	6.5	"	2.1	5.9	"	0.7	6.1		0.4
							5.0		3.1	6.5	${ }^{6}$	2.1	5.9	"	0.7	6.3	-5.8	0.5
6	5.6	"	4.8	7.1	"	6.1	5.5	"	3.6	7.0	-4.5	2.5	6.2	"	1.0	6.3	"	0.5
7	8.0	"	7.2	8.6	"	7.6	7.5	-2.0	5.5	9.0	،	. 5	8.0	"	2.8	7.3	-5.9	1.4
8	8.3 9.5	"	7.5	10.5	"	9.5	10.2	-2	. 1	12.4	-4.	7.8	10.5	"	. 3	10.0	-6.0	. 0
	10.3	"	. 5	11.5	"	10.5												
9	10.3	"	. 5	12.0	"	11.0	12.7	"	10.6	15.5	"	10.9	12.9	"	7.7	12.7	"	6.7
	10.0	"	9.2	12.2	"	11.2	13.0	-2.2	10.8									
10	10.0	"	9.2	$\left\|\begin{array}{l} 12.2 \\ 12.0 \end{array}\right\|$	"	11.2	13.7 13.7	-2.3	11.5	17.6 17.5	-4.7	12.3	16.0	"	10.8	16.4	-6.1	10.3
11	9.5	"	8.7	11.7	-1.1	10.6	13.5	"	11.2	17.3	-4.9	12.4	18.5	"	13.3	17.9	"	11.8
							12.9	"	10.6	17.1		12.2	18.5	"	13.3	18.5	-6.2	12.3
Noon	7.5	"	6.7	9.0	"	7.9	12.1	-2.4	9.7	16.4	-5.0	11.4	18.3	-5.3	13.0	19.9	-6.3	13.6
1													18.0	"	12.7	19.9	"	13.6
	6.0	"	5.2	8.0	"			-2.5	8.6	14.1	"	9.1	17.6	،	12.3	18.7	-6.4	12.3
2	5.3	"	4.5	6.3	"	5.2	9.1	-2.6	6.5	12.0	"	7.0	15.5	"	10.2	17.9	"	11.5
	5.3	"	4.5	5.6	"	4.5												
3	5.0	"	4.2	4.9	"	3.8	7.8	-2.7	5.1	9.3	-5.1	4.2	12.0	"	6.7	15.0	"	8.6
4	5.0 5.5	"	4.2	5.0 5.0	"	3.9 3.9	6.3	-2.	3.5	8.5	"	3.4	10.3	"	. 0	12.6	-6.5	6.1
	5.5	\cdots	4.6	5.0	"	3.9				9.0	"	3.9	9.5	"	4.2			
5	6.6	"	5.8	5.5	-1.2	4.3	6.3	-2.9	3.4	8.0	"	2.9	8.9	"	3.6	10.6	"	4.1
							5.5		2.6	8.0	"	2.9	8.9	"	3.6	10.3	-6.7	3.6
6	8.0	"	7.2	6.4	"	5.2	5.5	-3.0	2.5	8.5	-5.2	3.3	8.9	-5.4	3.5	10.0	"	3.3
7							6.8	-3.1	3.7				8.9	"	3.5	10.0	-6.8	3.2
	10.0	"	9.2	7.7	"	6.5	8.7	-3.2	5.5	9.6	،	4.4	9.2	"	3.8	10.0	${ }_{-6}^{-6.9}$	3.1 4.1
8	11.4	-0.9	10.5	10.4	-1.3	9.1	11.0	-3.3	7	11.4	"	6.2	10.	"	5.3	11.5	-7.0	4.5
9	11.8	6	10.9															
	12.7	"	11.8	11.8	"	10.5	13.7	-3.4	10.3	13.1	"	7.9	13.7	"	8.3	14.0	"	7.0
10	12.7	"	11.8	12.8	"	11.5												
	12.1	"	11.2	12.7	-1.4	11.3	14.4	$\begin{aligned} & -3.6 \\ & -3.7 \end{aligned}$	10.8	$\begin{aligned} & 14.7 \\ & 15.0 \end{aligned}$	"	$\begin{aligned} & 9.5 \\ & 98 \end{aligned}$	16.6	"	11.2	16.0	"	9.0
11		"	10.5	12.5 11.9	"	11.1	14.5	-3.7	10.8 11.0	$\begin{aligned} & 15.0 \\ & 14.6 \end{aligned}$	"	9.8 9.4	17.8	"	12.4	17.5	-7.1	10.4
		*	10.5			10.5	14.4	-3.9	10.5	14.5	"	9.3	18.5	-5.5	13.0	18.0	"	10.9
Midn't	9.2	"	8.3	10.6	-1.5	9.1	13.6	-4.0	9.6	14.1	"	8.9	18.5	"	13.0	17.9	"	10.8

Series I.-Tidal Observations from October 10, 1853, to December 28, 1853.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

Nov. 17. The scale reads up to 20 , hence the reading 1.4 at midnight is eqnivalent to 21.4.
Nov. 21. At 1 P. M. the upper limit of the scale was reached, the index was changed afterwards.

Series I.-Tidal Observations from October 10, 1853, to December 28, 1853.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

November, 1853.

Mean solar hour.	23d.	Red. to level.	Ref. obs.	24th.		Ref. obs.	25th.		Ref. obs.	26th.		Ref. obs	27th.	Red. to level.	Ref. obs.	28th.	Red. to level.	Ref. obs.
				6.7	-3.0	3.7	10.0	-6	3.7	14.8	-10.3	4.5						
1	4.7	+0	5.1	7.4	-3.2	4.2	10.2		3.9	14.5	-10.	4.2	14.7	-10.4	4.3	17.5	-12.	. 5
				7.8	-3.3	4.5	10.4	-6.4	4.0	14.6	,	4.3						
2	5.6	+0.2	5.8	8.1	-3.4	4.7	10.7	-6.5	4.2	14.7	-10.4	4.3	13.7 13.3	"	3.3 2.9	15.3 14.9	-12.1	3.2 2.8
3	6.	0.0	6.2	9.1	-3.5	5.6	11.2	-6.6	. 6	15.2	-10.5	4.7	13.1	-10.3	2.8	14.7	-12.2	2.5
													13.0		2.7	14.5		2.3
4	7.0	-0.2	6.8	10.0	-3.6	. 4	12.5	-6.7	5.8	15.5	-10.6	4.9	13.2	-10.4	2.8	14.5	-12.3	2.2
5	7.	-0.3	6.7	10.5	-3.7	6.8	13.6	-6.9	6.7	16.5	"	5.9	16.0	"	5.6	15.6	-12.4	3.2
6	7.	-0.5	7.	11.1	-3.8	7.3	15.0	-	8.0	0	-10.7	7.3	17.3	"	6.9	. 2	5	5.7
	7.5	-0.6	6.9				15.6		8.6									
7	7.6	-0.7	6.9	11.6	-3	7.7	15.7	-7.1	8.6	19.4		8.7	19.8	-10	9.3	20.3		7
	7.8	-0.8	7.0	11.9	40	8.0	16.0	-7.2	8.8									
8	7.9	-0.9	7.0	12.5	-4.0	8.5	15.6	-7.3	8.3	$\left\|\begin{array}{l} 20.0 \\ 20.2 \end{array}\right\|$	-10.8	9.2 9.4	20.9 21.2	-10.6	10.3 10.6	22.6	-12.7	9.9 11.1
	7.8 7.7	-0.9	6.9	11.6	-4.1	7.5 6.8	15	-7	7.8	$\left\|\begin{array}{l} 20.2 \\ 20.0 \end{array}\right\|$	،	9.4	21.2 21.5	-10.7	10.6	24.8	-12.8	11.7
9	7.7	-1.	6.7	11.0	-4.2	6.8		-	7.8	19.5	"	. 7	21.6		10.9	24.7	"	11.9
10	7.7	-1.1	6.6	9.5	-4.4	5.1	15.7	-7.6	8.1	19.0	-10.7	8.3	21.3	-10.8	10.5	24.8	"	12.0
	7.7		6.6										20.9		10.1 10.0	${ }^{24.3}$	-12.9	11.5 10.9
11	80	-1.2	6.8	9.0	-4.5	4.5	16.0	-7.8	8.2	17.8	6	7.1	20.9	-10.9	10.0	23.8	-12.9	10.9
Noon	8.6	-1.3	7.3	0	-4.6	3.4	15.5	-8.0	7.5	16.3	"	5.6	19.2	"	. 3	22.7	،	9.8
				9	"	4.3	15.5	-8.1	7.4									
1	9.6	-1.	8.1	9.9	-4.7	5.2	15.4	-8.2	7.2	15.7	"	5.0	2	-11.	7.2	. 4	-13.0	8.4
2							15.2	-8.3	6.9	$\left\{\begin{array}{l}15.4 \\ 15.1\end{array}\right.$	"	4.7		"	. 1	13.	"	5.4
2										15.0		4.3						
3	11.4	-1.8	. 6	11	-4.9	6.5	16.0	-8.6	7.4	15.1	"	4.4	15.2	-11.1	4.1	17.1	"	4.1
										15.4		4.7	14.9		3.8	15.8	"	2.8
4	11.8	-2.0	9.8	12.6	-5.0	7.6	16.4	-8.8	7.6	15.5	-10.6	4.9	14.6	-11.2	3.4	15.7	"	2.7
	12.0	-2.1	9.9										16.9		5.7	15.6	"	2.6
5	12.0	-2.2	9.8	13.5	-5.1	8.4	18.1	-9.0	9.1	17.0	"	6.4	17.5	-11.3	6.2	15.9	"	2.9
	12.0	-2.3	9.7	13.9	-5.2	8.7	19.1	-9.1	10.0							16.4	"	3.4
6	12.2	${ }^{6}$	9.9	14.6	-5.3	9.3	19.6	-9.3	10.3	19.1	"	8.5	19.3	-11.4	7.9	17.7	"	4.7
	11.8	-2.4	9.4	14.9	-5.4	9.5	19.7	-9.4	10.3									
7	11.4	"	9.0	14.4	-5.5	8.9	19.8	-9.5	10.3	20.0	"	9.4	$\begin{aligned} & 20.9 \\ & 22.0 \end{aligned}$	-11.5	9.4 10.5	20.0	"	7.0
8	10.0		7.5	14.4 13.7	-5.6	8.8	20.0 19.4	-9.7	10.3 9.6	20.5	-10.5	9.9 9.9	22.1	-11.6	10.5	22.0	"	9.0
										20.4		9.9	22.8	,	11.2			
9	9.0	-2.6	6.4	12.8	-5.9	9	18.5	-9.9	8.6	20.4	"	9.9	22.9	-11.7	11.2	23.7	"	10.7
										20.1		9.6	22.9		11.2	23.9	"	10.9
10	8.2	-2.7	5.5	12.5	-6.0	6.5	18.0	-10.0	8.0	19.8	"	9.3	22.6	-11.8	10.8	23.9		10.9
11				11.5	-6.	5.4	16.0	-10.	5.9	17.7	"	7.2	${ }_{2}^{22.1}$	-11.9	10.3 9.7	24.0 23.5	"	12.5
	7.4	-2.9	4.5													21.1	"	8.1
Midn't	t 7.2	-3.0	4.2	10.9	-6.2	4.7	15.0	-10.3	4.7	16.2	-10.4	5.8	19.7	-12.0	7.7	20.8	"	7.8

Nov. 26. From 11 A. M. of this day two readings are given for each half hour; the mean of the two observations has been inserted above. The two corresponding readings agree generally within a few tenths, the difference being due to the effect of the small waves.
Nov. 28. Orders were given to observe and record careful soundings by lead line at the tide hole every day at twelve o'clock.

Series I.-Thidal Observations from October 10, 1853, to December 28, 1853.
Honrly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

November, 1853.							December, 1853.											
Mean solar hour:	29th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	30th.	Red. to level.	Ref. obs.	1st.	$\begin{aligned} & \text { Red. } \\ & \text { to } \\ & \text { level. } \end{aligned}$	Ref. obs.	2 d .	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	3 d.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	4th.	Red. to level.	Ref. obs.
										18.0	-8.7	9.3				18.0	-10.8	7.2
1	18.7	-13.0	5.7	13.1	-5.8	7.3	15.0	-6.6	8.4	17.6	-8.7	8.9	19.3	-9.9	9.4	18.6	10	7.8
													18.8	"	8.9	19.2	-10.9	8.3
2	15.8	-12.9	2.9	9.3	"	3.5	12.4	"	5.8	15.5	-8.8	6.7	17.8	"	7.9	19.2	\% 6	8.3
3	4.7	"	1.8	7.2	"	1.4	9.2	--6.7	2.5	12.1	-8.9	3.2	16.0	${ }^{6}$	6.1	18.7	-11.0	7.7
	14.1	"	1.2	7.0	"	1.2												
4	13.8	-12.8	1.0	6.2	"	0.4	8.2	-6.8	1.4	10.1	-9.0	1.1	14.1	${ }^{6}$	4.2	17.1	"	6.1
	13.5		0.7	5.9	"	0.1	6.0	،	-0.8	8.0	-9.1	-1.1	11.6	"	1.7	14.0	-11.1	2.9
5	13.6	-12 7	1.5	8.2	"	2.4	6.6 5.6	,	-1.2	7.3	-9.1	-1.8			1.7	12.5		1.4
6	14.7	-	2.0	9.6	"	3.5	6.5	-6.9	-0.4	7.1	-9.2	-2.1	10.1	"	0.2	11.4	-11.2	0.2
6	14.		2.0				6.7	-0.t	-0.2	9.0	-9.3	-0.3	9.7	"	-0.2	11.3	"	0.1
7	16.8	-12.6	4.2	11.7	"	5.9	7.5	-7.0	0.5	9.8	-9.4	0.4	9.5 10.0	"	-0.1	111.5	-11.3	0.3 0.7
8	19.7	-12.5	7.2	13.8	${ }^{6}$	8.0	11.0	"	4.0	10.5	-9.5	1.0	11.2	"	1.3	12.0	-	0.7
9	23.5	-12.4	11.1	17.7	"	11.9	13.8	-7.1	6.7	14.6	-9.6	5.0	14.2	"	4.3	13.8	"	2.5
10	25.2	-12.3	12.9	19.2	"	13.4	18.1.	-7.2	109	17.8	-9.7	8.1	16.0	"	6.1	17.3	-11.4	5.9
	25.5	-12.2	13.3	19.5	"	13.7												
11	25.5	-12.1	13.4	19.5	"	13.7	19.3	-7.3	12.0	20.2	-9.8	10.4	18.3	"	8.4	19.	"	8.4
	25.8	-12.0	13.8	19.2	"	13.4	19.8	-7.4	12.5	22.4	-9.9	12.5						
Noon	18.2	-5.8	$\begin{aligned} & 12.4 \\ & 11.3 \end{aligned}$	18.3	"	12.5	$\begin{aligned} & 20.2 \\ & 20.0 \end{aligned}$	-7.4	12.8 12.6	22.9 23.3 23.3	-10.0	12.9 13.3	21.6	-9.8	11.8	21.7	-11.5	10.2
1	$\mid 17.1$	"	11.8 9.4	16.3	"	10.5	19.8	-7.5	12.3	23.6	"	13.6	22.5	"	12.7	23.8	"	12.3
										23.1	"	13.1	22.6	"	12.8	24.7	"	13.2
2	11.7	"	5.9	13.0	-5.9	7.1	16.9	-7.6	9.3	22.0	"	12.0	22.7	-9.9	12.8	25.2	"	13.7
													21.5	"	11.6	24.3	"	128
3	8.7	"	2.9	9.0	"	3.1	13.7	-7.7	6.0	19.8	"	9.8	20.5	10.0	10.5	23.9	،	12.4
	8.2	-5.8	2.4 1.2												7.9	21.8	"	10.3
4	7.0 7.2	-5.8	1.2	$\begin{aligned} & 8.1 \\ & 8.0 \end{aligned}$	-6.0	2.1	10.1	-7.8	2.3	16.2	"	6.2	18.0	10.1	7.9	21.8	,	10.3
5	7.1	"	1.3	7.7	"	1.7	8.5	-7.9	0.6	12.9	"	2.9	15.7	"	5.6	19.8	"	8.3
	7.4	"	1.6	7.7	"	1.7	8.1	"	0.2									
6	7.8	"	2.0	8.0	-6.1	1.9	7.7	-8.0	-0.3	10.9	"	0.9	14.5	10.2	4.3	16.7	"	5.2
	9.2	"	3.4	49.2	،	3.1	7.7	"	-0.3	10.3	"	0.3						
7	10.0	"	4.2	10.2	'6	4.1	8.2	-8.1	0.1	10.0	"	0.0 0.6	$\left\lvert\, \begin{aligned} & 11.9 \\ & 11.2 \end{aligned}\right.$	10.3	1.6 0.9	14.5	"	3.0
8	13.3	"	7.5	. 11.9	-6.2	5.7	11.1	-8.2	2.9	10.6	"	0.6	10.4	10.4	0.0	13.6	"	2.1
													10.3	"	-0.1	13.3	"	1.8
9	14.8	"	9.0	14.4	"	8.2	12.6	-8.3	4.3	12.0	"	2.0	11.3	10.5	0.8	13.1	"	1.6
						9.9			6.9	14.9	${ }^{6}$	4.9	13.7	10.6	3.1	$1 \begin{aligned} & 13.3 \\ & 14.0\end{aligned}$. ${ }^{\text {c }}$	1.8 2.5
	16.5	"	10.7															
11	16.5	"	10.7	716.6	-6.4	10.2	17.3	-8.5	8.8	17.0	"	7.0	15.6	10.7	4.9	16.0	,	4.5
	16.3	"	10.5	17.0	"	10.6	17.9		9.4	418.2	"	8.2						
Midn't	t 16.1	"	10.3		-6.5	10.8	18.1	-8.6	; 9.5	18.9	"	8.9	18.2	10.8	7.4	17.8	-11.5	6.3

Nov. 29. Tide register corrected at noon. Sounding at noon 7 fath., 0 feet, 4 inches, register 18.2. It may be remarked that soundings are subject to uncertainty in case of any drift of the ice field in which the vessel was imbedded, and also in case the bottom be soft. Some allowance must be made for stretch of the line.

Series I.--Tidal Observations from October 10, 1853, to Deqember 28, 1853.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

December, 1853.

From the 9 th to the 18 th of December the corrections deduced from curves and soundings differ by a constant of nearly 4 feet. The differences are partly due to imperfect soundings, partly to sudden changes of the pulleygange (see readings between noon and 1 P. M. on the $9 t h$). The heights given, as corrected by the soundings and curves, are, during this period, of little value, the times being less affected. The soundings were increased by 4 feet, equal to a reading of the mean level of 32.6 .

Series I.-Tidal Observations from October 10, 1853, to December 28, 1853.
Hourly observations on the pulley-gange. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

December, 1853.

Mean solar hour.	11th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	12th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	13th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	14th.	Red. level.	Ref. obs.	15th.	Red. to level.	Ref. obs.	16th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.
							21.4	-14.0	7.4							23.0	. 6	12.4
1	2	-4.3	3.9	12.2	-8.8	3.4	20.7	-14.1	6.6	13.9	-7.6	3	15.4	-8.5	6.9	22.7	0.8	11.9
2	7.4	-4.4	. 0	11.1	-9.1	0	20.3	-14.3	6.0	12.9	"	3		"	. 2	20.4	1	. 3
3	6.8	-4.5	2.3	10.2	-9.3	0.9	19.8	-14.5	5.3	11.2	-7.7	3.5	2	-8.6	3.6	. 5	. 4	7.1
	6.3	-4.6	1.7	10.0	-9.5	0.5	18.9	-14.6	4.3	10.2	"	2.5						
4	6.5	-4.7	1.8	10.0	-9.7	0.3	18.2	-14.7	3.5	10.0	"	2.3	11.5	"	. 7	16.0	8	4.3
	7.5	-4.8	2.7	10.2	-9.8	0.4	18.7	-14.8	3.9	10.0	"	2.3	11.3	${ }^{6}$	2.7	15.3	11.8	3.5
5	8.7	-4.9	3.8	10.4	-10.0	0.4	19.4	-14.9	4.5	10.0	"	2.3	11.1	-8.7	2.4	15.4	12.0	3.4
										10.2	"	2.5	11.4		7	15.9	12.2	3.7
6	11.8	-5.0	6.8	12.9	-10.2	2.7	29.8	-15.1	. 7	10.6	-7.8	2.8	11	8	0	16.1	12.3	. 8
7		-5.	7.		-	5.1		-	. 2	12.1	"	. 3	12.9		4.1			4.6
8		-5.2	8.5			7.3		-	9.2	15.1	-7.9	7.2	15.2	"	4	19.1	9	6.2
	14.2	-5.3	8.9															
9	14.7	-5.4	9.3	19.7	-10.9	8.8	25.7	-15.7	10.0	17.3	"	9.3	17.8	-8.9	8.9		4	7.8
	15.0 15.0	-5.5	9.5	20.4	-11.1		26.7	-15.9	10.8	19.4	-8.0	11.4	19.6	"	0.7	24.0	. 7	10.3
	14.7	-5.6	9.1	20.8	-11.2	9.6	27.0	-16.0	11.0	20.2	"	12.2						
11	14.3	5	8.7	21.2	-11.3	9.9	27.0	-16.1	10.9	20.5	"	12.5	20.5	6	11.6	. 0	-14.1	11.9
				20.2	-11.4	8.8	27.1	-16.2	10.9	20.2	- 81	12.2						
Noon	13.4	-5.7	7.7	20.2	-11.5	8.7	26.8	-16.3	10.5	19.6	-8.1	11.5	21.0	-9.0	12.0	${ }_{27.3}^{27.3}$	-14.5	12.8
1	11.2	-5	5.3			8.5	11.9				"	10.1	22.3	-9.1	13.2	27.3	-14.8	12.5
													21.2		12.1	26.8	-15.0	11.8
2	9.4	-6.1	3.3	18.5	-11	6.6	10.9	?		16.2	'	8.1	20.1	-9.2	10.9	26.0	-15.1	10.9
	7	-6.2	2.5		-12			-7.	3.7	13	-8.2	5.6	17.6	-9.3	8.3	23.1	3	7.8
3		-b.4	1.8		-12	4.7												
4	8.7	-6.7	2.0	15.9	-12.3	3.6	10.2	-7.2	3.0	11.5	"	3.3	16.2	-9.4	6.8	21.0	5	5.5
				15.2	-12.4	2.8	10.0	"	2.8	11.1	"	2.9						
5	9.7	-6.9	2.8	15.6	-12.5	3.1	10.3	"	3.1	10.8	"	2.6	15.6 15.4	-9.5	6.1	18.3	-15.6	2.7
							10.3	-7	3.1	10.8	-8.3	2.6 2.4	15.4	-9.6	5.5	17.6	-15.8	1.8
6										10.9	-8.3	2.6	15.2		5.6	17.5		1.7
7	12	-7.3	5.0	19.7	-12.9	6.8	12.2	"	4.9	11.2	"	2.9	15.7	-9.7	6.0	17.5	-15.9	. 6
																17.5		1.6
8	13.7	-7.6	6.1	21.0	-13.1	7.9	13.0	"	5.7	13.7	"	4	8	-9.8	7.0	17.7	-16.0	1.7
9		-7.8	7.4	21.9	-13	8.6	15.1	-7.4	7.7	15.6	"	7.3	18.8	-9.9	8.9	19.7	-16.1	3.6
	15.7	-7.9	7.8				15.7		8.3									
10	15.8	-8.1	7.7	22.8	$\left\lvert\, \begin{array}{r} -13.5 \\ -13.6 \end{array}\right.$	9.3	16.0	"	8.6 8.6	16.9 17.2	-8.4		21.2	-10.1	11.1	21.5	-16.2	5.3
	15.8 15.3	-8.3	7.5	23.2 23.3	-13.6	9.6 9.6	16.0	-7.5	8.6	17.2	'6	8.8 8.9	22.4	-10.3	12.1	23.1	-16.3	5.8
				23.4	-13.8	9.6	15.7	.	8.2	17.2	"	8.8	22.9	-10.4	12.5			
Midn't	${ }_{1} 13.7$	-8.6	5.1	23.4	-13.9	9.5	15.2	"	7.7	17.1	"			-10.5		23.8	-16.4	7.4

	Fath.							Feet.	Inch.	Reg.
Dec.	11. Sounding at noon	6	2	9	13.3					
"	12.	"	"	6	4	0				
19.9										
"	13.	"	"	7	1	3				
"	14.	"	"	7	2	2				
"	13.3 (Changed from 26.8)									
"	15.	"	"	7	4	0				
"	10.	"	"	7	3	6				

Series I.-Tidal Observations from October 10, 1853, to December 28, 1853.
Hourly observations on the pulley-gauge. Adopted reading of mean level t.0, expressed in units of the seale. Increasing numbers indicate rise of water.

December, 1853.

Mean solar hour.	$\xrightarrow{17 \mathrm{th}}$	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	18th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref.	$\left\|\begin{array}{c} 19 \text { th. } \\ * \end{array}\right\|$	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { tevel. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	20th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	21st.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref.	22d.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$
	24.0	-16.5	7.5	23.4	-17.6	5.8	4.1	+3.0	7.1									
1	23.7	-16.6	7.1	23.4	"	5.8	4.2	+2.9	7.1	14.5	-3.9	10.6	20	-10.7	9.7	20.6	-13.7	6.9
2	23.8	6.7	7.1	23.2	"	5.6	5.7	+2.5	8.2	15.1	-4.2	10.9	21.4	-11.0	10.4	21.6	"	7.9
				22.6	"	5.0	5.7	+2.3	8.0	15.3	-4.4	10.9	22.4	-11.1	11.3			
3	. 9	"	6.2	21.7	"	4.1	5.0	+2.2	7.2	${ }_{14.2}^{15.2}$	-4.5	10.7 9	${ }_{22}^{22.9}$	$\begin{aligned} & -11.3 \\ & -11.4 \end{aligned}$	11.6	${ }^{22.2}$	"	. 5
4	21:5	-16.8	4.7	20.2	"	2.6	3.7	+2.0	5.7	13.5	-4.8	8.7	21.3	-11.6	9.7	22.5	-13.8	8.7
					"						2	7.0	,	11.9	9.1	${ }^{222.9}$	"	9.1
5	$\left\lvert\, \begin{aligned} & 20.5 \\ & 19.9 \end{aligned}\right.$	"	$\begin{aligned} & 3.7 \\ & 3.1 \end{aligned}$	21.3	${ }^{\prime}$	3.7	2.1	+1.8			-							8.5
6	19.6	-16.9	2.7	20.0	"	2.4	1.4	+1.6	3.0	10.5	-5.5	5.0	19.3	-12.2	7.1	21.7	"	7.9
	19.7		2.8	19.3	"	1.7	1.1	+1.4	2.5									
7	20.2	"	3.3	$\left\lvert\, \begin{aligned} & 18.5 \\ & 20.2 \end{aligned}\right.$	"	$\begin{aligned} & 0.9 \\ & 2.6 \end{aligned}$	$\begin{gathered} 1.1 \\ 0.9 \end{gathered}$	+1.3 +1.1	$\begin{aligned} & 2.4 \\ & \hline \end{aligned}$	10.1	-5.8	4.3	18.3	-12.4	6.9	20.9	"	7.1
8	21.7	-17.0	4.7	20.4	-17.6	2.8	1.6	+1.0	2.6	9.6	-6.1	3.5	17.8	-12.6	5.2	19.3	-13.9	5.4
										7.7	-6.3	1.4	17.2	-12.7	4.5	19.4		5.5
9	.		8.0	4.3	?		2.9	+0.8	3.7	8.9	-6.4	1.6	17.4	-12.8	4.6	${ }_{19.0}^{19.0}$		5.1
10	27.7	-17.1	10.6	7.8	"		5.0	+0.6	5.6	9.5	-6.7	2.8	18.3	-13.0	5.3	19.3	"	5.4
11	. 8	"	11.7	8.3	"		7.1	+0.3	7.4	11.3	-7.1	4.2	19.5	-13.2	6.3	20.3	*	6.4
Noon	$\left\lvert\, \begin{array}{\|c\|c\|} 29.7 \\ 23.7 \end{array}\right.$	-17.2	12.5	10.	"		8.2	0.0			-7.5	5.6		. 4	7.8		-14	7.7
	22.6	"	-..										27.8	?				
1	21.8	"		12.4	"		10.4	-0.2	10.2	16	-7.7	9.2	27.7			23.0	"	9.0
2	20.0	"		12.5	"		10.7	-0.3	10.4	18.2	-7.9	10.3		-13.4	11.0	,	14	10.4
							10.7	-0.6	10.1	18.4	-8.0	10.4						
3	18.6						10.6	-0.8	9.8	18.5	-8. 1	10.4	24.7	-13.5	11.2	25.3	-14.2	11.1
4		17	0.9				9.0		. 0	17.9	-8.3	9.6	25.0	"	11.5	25.8	-14.3	111.5
	18.3		0.7										24.4	"	10.9	25.9		11.6
5	18.2	"	0.6				8.2	-1.2	7.0	17.0	-8.5	8.5	23.5	"	10.0	25.6	-14.4	11.2
	18.2	"	0.6							16.2	-8.6	7.6				25.1		10.7
6	18.3	"	0.7				8.5	-1.5	7.0	${ }^{15.6}$	-8.7	6.9	22.1	"	8.6	24.3	-14.5	9.8
	18.4	"	0.8		?					${ }^{16.0} 1$	-8.9	7.1	20.2	"			-14.6	
	18.3	"					7.6	-1.9	5.7		-9.1						-14	
8	18.3	"		15.4	"		7.6	-2.0	5.6	17.0	-9.4	7.6	19.3	-13.6	5.7	21.0	-14	6.3
	18.8	"					9.8	-2.2	7.6				18.3		4.7			
9	19.4	"			"			-2.4	8.0	17.0	-9.7	7.3	18.0 15.0	"	$\begin{aligned} & 4.4 \\ & 4.4 \end{aligned}$	20.8	-14	6.0
10	8	"		17.6	"			-2.8	8.8	17.6	-10.0	7.6	18.0	"	4.4	19.8	-14.9	4.9
11	9	${ }^{6}$						-3.2			-10.2	8.0	${ }^{18.3}$	"	4.7 5.6	19.4	-15.0	4.5
																19.4		4.4
Midn't	23.3	$\square^{17.6}$	5.7	23.2	-17.0						-10.4	8.5	19.5	-13.7		19.8	-15.1	4.7

Fath. Feet. Inch. Register.
Dec. 17. Sounding at noon $7 \quad 5 \quad 0 \quad 30.0$ changed to 23.0 . * Results doubtful.
"18. " " $\quad 7 \quad 5 \quad 3 \quad 31.3(=11.3)$. Tide register broke down at 21 P. M. ; was re-
" 19. No sounding taken. [paired and observations commenced at 7 P. M.
" 20.
" 21. Sounding at noon $7 \quad 3 \quad 6$ 21.5. Correction at noon by soundings 12.3 , by curves 14.5 ,
"22. " " $\quad 7 \quad 3 \quad 6 \quad 21.7$. Mean correction -14.0. [mean adopted.
The heights on the 18th and 19th have been rejected.

Series I.-Tidal Observations from October 10, 1853, to December 28, 1853.
Hourly observations on the pulley-gauge: Adopted reading of mean level 7.0 , expressed in units of the scale. Increasing numbers indicate rise of water.

December, 1853.																		
Mean solar hour.	23 L.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	24th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	25th.	Red. to level.	Ref. obs.	26th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	27th.	Red. to level.	Ref. obs.	28th.	Red. to level.	Ref. obs.
							19.5	" ${ }^{\text {\% }}$	2.7			3.3	3.1	-0.4	2.7	7.1	-2.0	5.1
1	20.0	-15.2	4.8	19.1	-16.0	3.1	$\mid 19.3$	-16.9	2.4	1.8	$+_{6} 1.4$	3.3 3.2	3.1 2.7	-0.4	2.3		-2.0	
2	21.1	-15.3	5.8	19.7	"	3.7	19.6	-17.0	2.6	1.8	"	3.2	2.3	-0.5	1.8	5.7	-2.1	3.6
										1.9		3.3	2.7		2.2			
3	22.0	-15.4	6.6	21.0	"	5.0	20.3	-17.1	3.2	2.1	+1.3	3.4	3.5	-0.6	2.9	4.4	" 2.2	2.3
4	22.7	-15.5	7.2	21.7	-15.9	5.8	21.8	-17.2	4.6	3.2	+1.2	4.4	93.0	"	?2.4	4.2	-"	2.0
																4.3	-2.3	2.0
5	2\%.0	-15.6	7.4	22.0	"	6.1	23.4	-17.3	6.1	5.6	،	6.8	4.7	-0.7	4.0	4.7		2.4
6	23.1		7.5	23.4	"	7.5	24.9	-17.4	7.5	6.7	+1.0	7.7	6.6	"	5.9	6.9	-2.4	4.5
6	22.7	-	7.0	23.6	碞	7.7												
7	23.0	-15.8	7.2	23.6	-15.8	7.8	25.3	-17.5	7.8	8.2	+0.9	9.1	8.5	-0.8	7.7	9.2	،	6.8
				23.1	"	7.3	25.5		8.0	8.7		9.6						
8	22.4	-15.9	6.5	22.9	"	7.1	25.6	-17.6	8.0	9.2	$+_{68}^{0.8}$	10.0	10.6	-0.9	9.7	11.1	-2.5	8.6
9	21.9	-	5.9	22.3	"	6.5	25.1	"	7.5	9.8	+0.7	10.5	11.9	-1.0	10.9	13.3	"	10.8
\bigcirc	-1								7.5		+0.7		12.2	-	11.2	13.8	"	11.3
10	20.6	-16.1	4.5	21.2	"	5.4	23.6	-17.7	5.9	8.5	"	9.2	12.1	-1.1	11.0	14.2	-2.6	11.6
													11.6		10.5	14.2		11.6
11.	19.4	-16.2	3.2	21.0	"	5.2	22.9	-17.8	5.1	6.7	+0.6	7.3	11.0	-1.2	9.8	13.7	"	11.1
	19.3	"	3.1	21.7	"	4.9	22.3		4.5									
Noon	20.4	-16.3	4.1	20.3	-15.7	4.6	22.0	-17.9	4.1	5.6	+0.6	6.2	9.2	-1.3	7.9	11.7	-2.7	9.0
1	21.4	"	5.1	21.7	"	6.0	22.2	-18.0	4.2	4.4	"	5.0	6.9	"	5.6	10.0	-2.9	7.1
										4.4	"	5.0						6.3
2	22.5	"	6.2	23.5	-15.8	6.7	22.5	"	4.5	4.3	+6.5	4.8	5.2	-1.	3.8	9.6	-3.3	6.3
3	3.6	-16.2	7.4	23.5	-15.9	7.6	23.2	-18.1	5.1	4.3	"	4.8	4.5	-1.5	3.0	9.5	-3.8	5.7
										4.3	"	4.8	4.4	"	2.9			
4	-4.6	"	8.4	24.5	-16.0	8.5	23.6	-18.2	5.4	4.5	+0.4	4.9	4.4	"	2.9	9.5	-4.5	5.0
	25.0	"	8.8										4.4	"	2.9	9.6	-4.7	4.9
5	24.9	"	8.7	25.1	-16.1	9.0	24.6	"	6.4	5.2	+0.3	5.5	4.7	-1.6	3.1	9.8	-4.9	4.9
	24.7	"	8.5								"		6.3	"	4.7	10.0 10.4	-5.1	4.9 5.1
6	24.6	"	8.4	$\left[\begin{array}{l} 25.4 \\ 25.5 \end{array}\right.$	$$	9.2 9.3	25.3	-18.3	7.0	6.8	*	7.1	6.3	\cdots	4.7	10.4	-0.3	5.1
7	23.7	-16.1	7.6	25.1	-16.3	8.8	25.3	"	7.0	8.1	+0.2	8.3	7.8	-1.7	6.1	12.6	-5.7	6.9
		"		24.2		7.8	25.6	-18.4	7.3 7.0	8.5		8.7 9.2	9.3	"	7.6	14.2	-6.0	8.2
8	22.3	,	6.2	2.2	-10.4	7.8	25.4	-18.4	7.0	9.1	+	9.2						
9	20.1	"	4.0	23.1	-16.5	6.6	25.0	"	6.6	9.1	0.0	9.1	10.0	-1.8	8.2	16.3	-6.3	10.0
10	19.4	"	3.3	22.6	-16.6	6.0	24.1	-18.5	5.6	8.1	-0.1	8.0	10.9 10.8	"	9.1	17.1	-6.9	10.2
													10.4	"	8.6	17.4	-7.0	10.4
11	19.1	"	3.0	22.1	-16.7	5.4	23.1	"	4.6	7.2	-0.2	7.0	10.2	-1.9	8.3	17.7	-7.1	10.6
	19.0		2.9 3.0									4.9	9.0	-2.0	7.0	17.7 17.7	-7.2	10.5 10.4
Midn't		-16.0	3.0		-16.8	4.6		-18.6	3.8	5.2	-0.3	4.9	9.0	-2.0	7.0	17.7	-7.0	1.4

[^4]Series II.-Tidal Observations from Janvary 28 to April 7, 1854.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

January, 1854.													F'ebruary, 1854.					
Mean solar hour.	28th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{gathered} \text { Ref. } \\ \text { obs. } \end{gathered}$	29th.	Red. to level.	Ref. obs.	30th.	Red. to level.	Ref. obs.	31st.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Rof. obs.	1st.	$\begin{aligned} & \text { Red. } \\ & \text { to } \\ & \text { level. } \end{aligned}$	Ref. obs.	2 d.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.
1	13.2	-2.6	10.6	21.9	-10.0	11.9	16.5	-7.5	9.0	14.9	-5.8	9.1				13.2	-6.2	7.0
	12.8	-2.8	10.0	21.5	-10.1	11.4	16.2	-7.4	8.8	15.5	"	9.7	16.2	-5.8	10.4	13.5		7.3
										15.2	"	9.4 8.9					"	
2	12.0	-3.3	8.7	19.6	-10.2	9.4	15.6	-7.3	8.3	14.7	"	8.9	16.8 17.0	--5.9	11.1	14.3	6	8.1
3	11.0	-3.8	7.2	17.7	-10.3	7.4	12.8	-7.2	5.6	14.3	-5.7	8.6	17.0	،	11.1	15.6	"	9.4
	11.0	-3.8	7.2	17.7	-1.	7.4							17.0	"	11.1	16.0	"	9.8
4	8.8	-4.2	4.6	16.1	-10.	5.7	10.5	-7.1	3.4	11.7	${ }^{6}$	6.0	16.9	-6.0	10.9	16.2	"	10.0
	8.8		4.6	10.1	-10.											16.2	"	10.0
5	6.3	-4.7	1.6	15.0	-10.	4.5	9.2	-	2.2	9.2	"	3.5	12.6	"	6.6	15.7	"	9.5
	5.9	-4.9	1.0		-10													
6	6.2	-5. 5.1	1.1	12.2	-10.6	1.6	7.4	-6.9	0.5	6.9	"	1.2	10.6	-6.1	4.5	14.0	"	7.8
	6.7	-5.3	1.4	11.9		1.3	7.4	"	0.5	5.9	-5.6	0.3						
7	8.2	-5.4	2.8	12.1	-10.7	1.4	7.5	-6.8	0.7	5.3	"	-0.3	8.5	"	2.4	10.6	"	4.4
				13.4	1	2.7	7.8		1.0	5.3	"	-0.3	7.9	"	1.8			
8	11.0	-5.9	5.1	14.6	-10.8	3.8	8.2	-6.7	1.5	5.3	${ }^{\prime \prime}$	-0.3	7.7	"	1.6	8.9 9.1	"	2.7 2.9
9						7.7	10		3.7	5.3 6.9	-5.5	-0.2	7.5	-6.2	1.3	8.2	"	2.0
	15	-6	9.2	18	-	7.7	1		3.7	6.9			8.3	.	2.1	8.2	"	2.0
10	17.7	-7.	10.5	20.7	-11	9.7	12.2	-6.5	5.7	10.0	6	4.5	10.0	"	3.8	8.7	"	2.5
11	19.9	-8.0	11	23.4	-11.1	12.3	14.3	-6.4	7.9	13.0	-5.4	7.6	13.0	"	6.8	11.2	"	5.0
Noon									12.0	16.2	-5.3	10.9	16.3	-6.3	10.0	13.0	-6.1	6.9
	$\left\lvert\, \begin{aligned} & 21.0 \\ & 21.2 \end{aligned}\right.$	-8.8	12.2	24.5	$\begin{aligned} & -11.2 \\ & -11.1 \end{aligned}$	13.3 9.6	18.3	-6.3	12.0	17.3	-5.3	12.0						
1	20.4	-8.9	11.5	19.7	-11.0	8.7	20.1	"	13.8	18.3	"	13.0	17.7	"	11.4	14.6	"	8.5
				19.2	-10.9	8.3	20.2	"	13.9	19.0	${ }^{6}$	13.7						
2	18.8	-9.0	9.8	18.7	-10.8	7.9	19.7	-6.2	13.5	18.2	-5.4	12.8	18.4	${ }^{6}$	12.1	16.0	"	9.9 10.1
3													19.0	"	12.7 12.9	${ }_{16.2}^{16.7}$	"	10.1
	17.1	-9.1	8.0	15.6	-10.6	5.0	17.7	-6.1	11.6	16.8	"	11.4	19.2	"	12.9	16.7 16.0	"	10.6 9.9
4	15.6		6.4	12.0		1.6	14	"	8.5	15.7	-5.5	10.2	18.2	"	11.9	16.0	"	9.9
5														"	9.5	14.9	-6.	8.7
	13.7	-9.3	4.4	10.8	-10.2	0.6	8.2	-6.0	2.2	13.0	-	7.5	15.8	-	9.5	14.9	-6.	8.7
6	12.2	-9.4	2.8	10.0	-10.0	0.0	6.3	،	0.3	9.7	-5.6	4.1	12.4	"	6.1	13.9	"	7.7
	12.0	"	2.6	9.7	-9.9	-0.2	6.1	"	0.1								"	
7	12.2	-9.5	2.7	9.2	-9.8	-0.6	5.7		-0.3	7.3	"	1.7	10.0	"	3.7	10.8	"	
				8.6	-9.7	-1.1	5.6	-5.9	-0.3	7.2	"	1.6					"	1.9
8	14.2	-9.6	4.6	7.8	-9.6	-1.8	5.5	"	$\mid-0.4$	7.2	" ${ }^{6}$	1.6	8.7 8.5	"	2.4	8.1	\cdots	1.9
				7.7	-9.5	-1.8	5.7	"	-0.2	7.2	- ${ }_{68} 5$	1.5	8.5 8.4	"	2.2		"	
9	17.1	-9.7	7.4	8.7	-9.4	-0.7	6.7	"	0.8	7.4 8.0	"	1.7 2.3	8.4	"	2.1	6.6 6.6	${ }^{\prime}$	0.4 0.4
10	19.9	-9.8	10.1	10.8	-92	0.6	9.3	6	3.4	9.0	"	3.3	8.6	"	2.3	6.6	-6.3	0.3
																6.6		0.3
11	21.1	-9.9	11.2	13.4	-9.0	4.4	12.1	"	6.2	12.0	"	6.3	10.0	"	3.7	7.2	"	0.9
Midn't	t 21.6	-10.0	11.6	14.8	-8.7	6.1	14.0	-5.8	8.2	14.6	-5.8	8.8	12.1	-6.2	5.9	9.3	"	3.0

Jan. 27. At 11 P. M., 13.7 ; at $11^{\mathrm{b}} 30^{\mathrm{m}}, 13.8$; at $28 \mathrm{th}, 0^{\mathrm{h}}, 13.9$, high water; corrected high water 11.3 . Fath. Feet. Inch.
Jan. 28. Sounding at noou 8 (0 . 0 Corrected reading by sounding 11.4, by curves 13.1 , mean 12.2 .
" 29.4 " $6 \quad 1 \quad 6$ Index changed to 19.6. Corrected reading by sounding 12.4 , by
curves 13.7 , mean 13.3 .
"31. " " Corrected reading by curves 10.9.
Feb. 1. " $\quad 4 \quad 4 \quad 6$ Ebb tide at $7!$ A. M.
Ebb tide at 4 P.M. (probably means ebb commences). Index 13.0 .
Note to Feb. 1 and 2. The correction is derived from the soundings and curves.

Series II.-Tidal Observations from January 28 to April 7, 1854.

Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in nits of the scale. Increasing numbers indicate rise of water.

Series II.-Tidal Observations from January 28 to April 7, 1854.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

February, 1854.

Feb. 8. No sounding.
Fath. Feat. Inch
"10. Sounding at noon $7 \quad 2 \quad 0$ Corrected by sounding - 6.6 , by curves - 6.6 .
$\begin{array}{ccccccc}6 & 11 . & " & 6 & --- & -- & -\cdots \\ \text { " } & 12 . & 6 & 6 & 7 & 4 & 6\end{array}$
"13. " $6 \quad 8 \quad 1 \quad 6 \quad$ Corrected by sounding -6.6, by curves -7.6, mean -7.1.
${ }^{6}$ 14. No sounding.

Series II.-Tidal Observations from January 28 to April 7, 1854.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in mits of the seale. Increasing numbers indicate rise of water.

February, 1854.

$\begin{gathered} \text { Mean } \\ \text { solar } \\ \text { sour. } \end{gathered}$	21st.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	22d.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	233.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \end{array}$	24th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { Robs } \end{aligned}$	25th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.
1				$\begin{aligned} & 10.5 \\ & 10.7 \end{aligned}$	-6.0	$\begin{aligned} & 4.5 \\ & 4.7 \end{aligned}$	12.4	-7.2	5.21	14.4	-10.9	3.5	9.8	-2.1	7.7	10.6	-2.2	8.4
							11.8	-7.3	4.51	14.2	"	3.3						
2				11.5	"	5.5	11.8	-7.4	4.41	14.5	-11.0	3.5	7.8	'	5.7	8.8	-2.4	6.4
3				. 9	"	9	11.8	-7.7	4.1	14.9	-11.1	3.8	5.8	-2.2	3.6	6.4	-2.7	3.7
							12.1	-7.8	4.3				5.3		3.1			
4				. 2	"	8.2	13.0	-8.0	5.01	16.1	-11.2	4.9	5.1	-2.3	3.8	$\begin{aligned} & 5.2 \\ & 4.1 \end{aligned}$	$\square^{-3.0}$	2.2
5					?		14.3	-8.2	6.1	17.2	-11.3	. 9	5.6	"	3.3	4.2	-3.2	1.0
																4.3	-3.3	1.0 1.2
6				13.6	"		15.8	-8.3	7.5	18.3	-11.5	6.8	7.6	-2.4	5.2	4.7	-3.5	1.2
7				13.2	"		16	-8.5	8.3	19.4	-11.6	7.8	9.7	"	7.3	6.6	-3.7	2.9
8					"		18	-8.6	9.5	21.7	1.8	0.9	11.0	-2.5	8.5	9.0	-4.0	5.0
				15.0	-6.2	8.8 9.3		-						"	10.2	.	-4.3	6.7
				15.6	"	9.4				$2{ }^{2}$	"	10.3						
10				14.9	*	8.7	19.1	-8.8	10.3	22.3	-12.0	10.3	$3 \left\lvert\, \begin{aligned} & 13.8 \\ & 13,8 \end{aligned}\right.$	-2.6	$\left\lvert\, \begin{aligned} & 11.2 \\ & 11.2 \end{aligned}\right.$	13.0	-4.6	8.4
11				14.2	"	0	19.3	-8.9	10.4	22.2	-12.1	10.1	13.8	"	11.2	14.6	-4.9	9.7
Noon				12.8	-6.2	6	18.7	-9.0	7	20.7	-12.3	8.4	13.7	-2.7	11.0	15.4	-5.4	10.0
											-1.7	8.3	11.4	-3.9	9.5	$\|$17.0 17.5	-5.5	11.5
1					"		17	-9.3								15.7	-5.7	10.0
2				12.2	"	0	. 7	-9.6	7.1	7.6	"	5.9	9.0	-1.0	8.0	15.0	-5.8	9.2
3					-6.3	5.9	16.1	-9.9	6.2	6.6	-1.8	4.8	6.0	-1.1	4.9	13.1	-6.0	7.1
							116.0	-10.0	6.0	5.0		3.2						
4				$\left\lvert\, \begin{aligned} & 12.5 \\ & 11,0 \end{aligned}\right.$	"	6.2 4.7	$2 \left\lvert\, \begin{aligned} & 16.0 \\ & 16.0 \end{aligned}\right.$	-10.2	$\begin{aligned} & 5.8 \\ & 5.8 \end{aligned}$	$\begin{gathered} 4.6 \\ 5.3 \end{gathered}$	"	$\begin{aligned} & 2.8 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 3.3 \end{aligned}$	${ }^{-1.3}$	$\begin{aligned} & 3.4 \\ & 2.0 \end{aligned}$		-6.1	4.1
5				11.7	-6.4	5.3	16.2		5.7	5.6	"	3.8	3.7	-1.4	2.3	9.5	-6.2	3.3
				12.9	"	6.5	16.6	"								9.4	-6.3	3.1
6				14.2	"	7.8	17.0	-10.3	6.7	6.4	"	4.6	4.1	-1.5	2.6	9.4	-6.4	3.0
7								"	7.7		"		5.4	-1.6	3.8		-6.6	3.2
7				15.2		8.7												4.8
8	13.5	-5.8	7	$7 \begin{aligned} & 15.7 \\ & 15.6 \end{aligned}$	${ }^{-6.6}$	$\begin{aligned} & 9.1 \\ & 9.0 \end{aligned}$	$\begin{array}{l\|l} 15.9 \\ 19.3 \end{array}$	-10.4	$\begin{aligned} & 8.5 \\ & 8.9 \end{aligned}$	${ }^{9.6}$	-1.9	7.7	8.0	-1.7	6.3	11.5	-6.7	4.8
9	12.5	"	6.7	15.3	-6.7	8.6	19.3	-10.5	8.8	10.8	"	8.9	10.2	-1.8	8.4	15.0	-6.8	8.2
10	11.2	9	5.3	${ }_{15.0}^{15.1}$	-6.8	7.4 8.2		-10.6	. 8.8	${ }_{11.6}^{11.3}$	"	9.4	111.9	-1.9	10.0	16.3	-6.9	9.4
										11.6		9.7	712.3	"	10.4			
11		"	4.5	14.6	-6.9	7.7	18.5	-10.7	7.8	11.6	"	9.7	712.4	-2.0	10.4	17.8	-7.0	10.8
	10.5	""	4.6							${ }^{11.6}$		9.7	$7{ }^{12.4}$		${ }_{10.3}^{10.4}$			
Midn't	t 10.2	"		13.8	-7.0	6.8	16.4	-10.8	5.6	10.6	-2.0		6.12 .3	-2.0			-7.1	11.3

Feb. 21. Readings irregular, tide-gauge out of order at 8 A. M., repaired at noon. Sounding 7 fath., $1 \mathrm{ft}, 0 \mathrm{in}$.
Feb. 22 and 23. No sounding.
Fath. Feet. Iuch,
Feb. 24. Sounding at noon $6 \quad 5 \quad 0 \quad$ Corrections derived from curves.
" 25. " " $7 \quad 0 \quad 6 \quad$ Ebb tidc at 11 A. M. Corrections derived from curves.
" $26.3 \quad$ " $7 \quad 5 \quad 6$ Correction derived from the means by sounding and curves.

Series II.-Thdal Observations from January 28 to April 7, 1854.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

Series II.-Tidal Observations from January 28 to April 7, 1854.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0 , expressed in units of the scale. Increasing numbers indicate rise of water.

March 5. Soundings at noon 6 fath., 3 feet, 6 inches. Correction from curves.
" 7. Tide register broke at 9 A. M., was repaired inmediately. No sounding. Fath. Feet. Inch.
" 9. Sounding at noon $\quad(\mathrm{j} \quad 4 \quad 0$
" $10 . \quad$ " " $\quad 7 \quad 0 \quad 0$
$\begin{array}{llllllr}\text { " } & 11 . & " & " & 7 & - & - \\ \text { " } & 14 & " & " & 7 & 5 & 6\end{array}$
"15. " $\begin{array}{llllll} & 15 & 8 & - & \end{array}$

March 6. No sounding. March 8. No sounding.

March 12. No sounding and but a few observations taken.
" 13. But few observations taken.
The corrections after March 7 are derived from curves.

Semes II.-Tidal Observations from January 28 to April 7, 1854.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing uumbers indicate rise of water.

March, 1854.

Series II.-Tidal Observations from January 28 to April 7, 1854.

Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

March, 1854.

Mean solar bour.	24th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.		Red. to level.	Ref. obs.	26th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	27 th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	2sth.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	29th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.
																15.5	-3.5	12.0
1	$\left\lvert\, \begin{aligned} & 11.3 \\ & 10.9 \end{aligned}\right.$	-6.0	5.3	8.5	-0.1		9.9	9	7.0	2	-1.1	. 1	15.0	-4.7	10.3	15.3 14.0	-3.3	12.0 10.7
2	10.9	-6.1	4.8	6.5	-0.2	6.3	8.3	-3.0	5.3	8.2	-1.3	6.9	12.4	-4.9	7.5	13.3	-3.2	10.1
	10.9		4.8	5.5		5.3												
3	11.2	-6.2	5.0	5.5	-0.3	5.2	7.5	-3.2	4.3	6.0	-1.4	4.6	9.7	-5.1		. 3	-3.1	8.2
				. 5		5.2	7.3	-3.3	4.0									
4	12.1	"	5.9	5.5	-0.	5.1	7.3	-3.4	3.9	4.1	-1.5	2.6	9.0	-5.2	3.8	9.0	-3.0	6.0
				5.6		5.2	7.3	-3.5	3.8	3.9	-1.6	2.3						
5	12.9	-6.3	6.6	5.7	-0.5	5.2	7.6	-3.6	4.0	3.9	--1.7	2.2	8.0	-5.3	2.7	7.5	"	4.5
										4.2	-1.8	2.4	7.7	-5.4	2.3	7.1		4.1
6	13.8	"	7.5	8.2	-0.7	7.5	9.2	-3.8	5.4	4.5	-1.9	2.6	7.5	-5.5	2.0	6.5	"	3.5
													8.2	-5.6	2.6	6.5	"	3.5
7	15.	-6.4	8.6	9.2	-0.8	8.4	11.8	-4.0	7.8	5.3	-2.0	3.3	8.7	-5.7	3.0	6.5	"	3.5
	16.0		9.6													7.2	"	4.2
8	16.7	-6.5	10.2	9.9	-1.0	8.9	13.5	-4.2	9.3	8.0	-2.1	5.9	2	-5.5	5.4	8.6	"	5.6
	16.4	${ }^{6}$	9.9															
9	16.0	-6.6	9.4	11.2	-1.1	10.1	16.0	-4.4	11.6	12.1	-2.2	9.9	16	"	10.6	12.8	"	9.8
10				11.5 11.5	-1.2	10.3 10.2	$\begin{aligned} & 16.2 \\ & 16.2 \end{aligned}$	-4.5	$\left\|\begin{array}{l} 11.7 \\ 11.5 \end{array}\right\|$	13.7	-2.4	11.3	16.9	"	1.1	. 9	"	1.9
10		-6		11.5	-1.3	10.2	15.5	-4.9	10.6	14.0	-2.5	11.5	17.2	"	11.4			
11	15.0	-6.8	8.2	11.5	-1.4	10.1	14.0	-5.2	8.8	14.0	-2.1	11.9	17.7	"	11.9	16.5	"	13.5
	---			10.5	"	9.1				14.0	-2.7	11.3	17.8	"	12.0			
Noon	8.7	-0.7	8.0	9.5	-1.5	8.0	12.0	-5.5	6.5	13.9	-2.8	11.1	16.0	-5.9	10.1	17.2	-3.0	14.2
												7		*	10.4	17.5	"	14.5
1	7.7	-	7.2		-	7.1	10.3	$?$			-	. 7				17.4		14.5
2	5.8	-0,3	5.5	7.7	-1.7	6.0	8.7	"		9.4	-3.1	6.3	16.3	-5.8	10.5	16.9	"	13.9
	5.6		5.3													11.0	"	
3	5.6	-0.	5.5 5.5	6.6	-1	4.7	6.2	،		6.6	-3.	3.4		-5	11.0	11.0		
4	5.6	0.0	5.6	6.3	-2.0	4.3	3.7	0.0	3.7	6.5	-3.4	3.1	12.8	-5.3	7.5	7.7	"	4.7
							4	"	3.4	4.9		1.5						
5	6.0	"	6.0	6.6	-2.1	4.5	3.5	-0.1	3.4	5.1	-3.5	1.6	. 5	-5.1	6.	5.	"	2.0
6	6.8	"	. 8	7.8	-2.2	5.6	3.9	-0.3	3.6	5.2	-3.7	1.5	10.2	-4.9	5.3	2.9	"	-0.1
													3.5	-4.8	-1.3	2.8	"	-0.2
7	7.6	"	7.6	9.3	-2.3	7.0	4.6	-0.4	4.2	6.9	-3.9	3.0	3.8	-4.7	-0.9	3.2	"	0.2
8	7.7	"	7.7	10.9	-2.4	8.5	6.9	-0.5	6.4	8.6	-4.1	4.5	5.2 6.2	-4.6	0.5 1.6	5.2	"	2.2
9	8.3	"	8.3	11.4	-2.5	8.9	9.9	-0.6	9.3	12.3	-4.2	8.1	11.6	-4.4	7.2	7.2	"	4.2
				12.0	"	9.5												
10	9.1	"	9.1	12.2	-2.6	9.6	11.2	-0.8	10.4	13.9	-4.3	9.6	12.6	-4.2	8.4	10.5	*	7.5
	9.2	"	9.2	12.0	"	9.4				14.4		10.1						
11	9.2	"	9.2	12.0	-2.7	9.3	11.9	-0.9	11.0	14.8	-4.4	10.4	14.6	-4.0	10.6	13.7	"	10.7
	8.7	"	8.7				12.3	"	11.4	15.3		10.9						
Midn't	8.4	"	8.4	11.5	-2.8	8.7	11.4	-1.0	10.4	15.2	-4.5	10.7	15.5	-3.7	11.8	15.2	"	12.2

[^5]Series II.-Tidal Observations from January 28 to April 7, 1854.
Hourly observations on the pulley-gange. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

Series III.-Tidal Observations from April 20 to August 3, 1854.
Hourly observations on the pulley-gange. Adopted reading of mean level 7.0 , expressed in units of the seale. Increasing numbers indicate rise of water.

April 20. No sounding.

Series III.-Tidal Observations from April 20 to August 3, 1854.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0 , expressed in units of the scale. Increasing numbers indicate rise of water.

Series III.-Tidal Observations from April 20 to August 3, 1854.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

May, 1854.

Mean solar hour.	2 d .	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { lovel. } \end{gathered}$	$\begin{gathered} \text { Ref. } \\ \text { obs. } \end{gathered}$	3d.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { lovel. } \end{gathered}$	Ref. obs.	4th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	7 th.	$\begin{aligned} & \text { Red. } \\ & \text { to } \\ & \text { level. } \end{aligned}$	Ref. obs.	8th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	$\begin{gathered} \text { Ref. } \\ \text { obs. } \end{gathered}$	9th.	Red. to level.	Ref. obs.
										10.2	-4.2	6.0	10.5	-4.8	5.7			
1	15.1	-4.4	10.7	13.2	"	8.5	13.6	-5.2	8.4	10.2	"	6.0	10.0	"	5.2	10.7	-5.5	5.2
										10.5	"	6.3	11.5	"	6.7	10.0		4.5
2	16.7	"	12.3	14.0	"	9.3	14.0	-5.3	8.7	10.8	"	6.6	11.5	-4.9	6.6	10.0	-5.6	4.4
	16.8	"	12.4													10.5	"	4.9
3	16.5	"	12.1	14.2	"	9.5	14.8	-5.4	9.4	11.3	"	7.1	11.5	"	6.9	11.3	"	5.7
			9.7	14.3 14.3	"	9.6 9.6	16.1	-5.6	10.5	11.8	"	7.6	12.4	"	7.5	12.6	-5.7	6.9
4	14.2	-4.5	9.7	$\left\|\begin{array}{l} 14.3 \\ 14.2 \end{array}\right\|$	"	9.6	16.1	-5.6		11.8							-5.7	0.9
5	12.5	"	8.0	14.1	"	9.4	16.2	-5.8	10.4	12.4	"	8.2	13.0	"	8.1	14.3	"	8.6
6	11.0	"	6.5	13.1	"	8.4	16.2	-6.0	10.2	13.2	-4.3	8.9	14.1	-5.0	9.1	15.6	"	9.9
7	8.4	"	3.9	12.0	"	7.3	15.7	-6.1 -6.3	$\begin{aligned} & 9.6 \\ & 9.0 \end{aligned}$	13.2	"	8.9	16.2	"	11.2	16.4	-5.8	10.6
																16.9	"	11.1
8	6.7	"	2.2	10.9	"	6.2				13.0	'	8.7	16.0	"	11.0	17.2	-5.9	11.3
	6.4	"	1.9	10.2	"	5.5							16.5	"	11.5	17.2	"	11.3
9	6.4	-4.6	1.8	10.0	"	5.3				12.2	"	7.9	16.5	-5.1	11.4	17.2	- 6.0	11.2
				10.3	"	5.6							16.3	4	11.2	16.6	"	10.6
10	7.4	"	2.8	10.5	\%	5.8				11.0	"	6.7	16.0	"	10.9	16.0	-6.1	9.9
				10.8	"	6.1				10.2	"	5.9	15.1	"	10.0	14.9	-6.2	8.7
11	9.5	"	4.9	11.0		6.3												8.7
Noon	11.3	-4.7	6.6	11.4	4.7	6.7				9.0	-4.4	4.6	14.1	-5.2	8.9	13.8	-6.3	7.5
1	13.1	"	8.4	12.8	"	8.1				8.1	"	3.7	13.0	"	7.8	?	"	--
				13.4	"	8.7				8.0	"	3.6						
2	14.9	"	10.2	13.8	"	9.1	运			8.0	"	3.6	10.6	"	5.7	11.2	"	4.9
	15.0	"	10.3	13.8	"	9.1	5			8.0	"	3.6						
3	14.5	"	9.8	13.8	"	9.1				8.4	"	4.0	9.0	-5.3	3.7	10.0 0.3	-6.2	
				13.8 13.8	"	9.1							8.4	"	3.1 2.7 3.7	9.3 8.0	"	3.1
4	13.6	"	8.9	\| $\begin{aligned} & 13.8 \\ & 13.1 \\ & 1\end{aligned}$	"	$\begin{aligned} & 9.1 \\ & 8.4 \end{aligned}$	$\begin{aligned} & \text { no } \\ & .8 \end{aligned}$			3.0	-4.5	4.5	8.0	:	3.4	8.0 8.0	"	1.8
5	12.6	"	7.9	12.7	"	8.0	\%			9.8	"	5.3	9.0	-5.4	3.6	8.9	"	2.7
6	10.1	"	5.4	12.1	-4.8	7.3	\sim			10.3	"	5.8	10.2	"	4.8	11.2	-6.1	5.1
7	9.5	"	4.8	11.8	"	7.0				11.0	-4.6	6.4	11.6	"	6.2	13.0	"	6.9
8	9.0	"	4.3	11.6	-4.9	6.7				11.3	"	6.7	12.3	"	6.9	14.2	"	8.1
	9.0	"	4.3	11.6	"	6.7												
9	9.0	"	4.3	11.4	"	6.5				12.0 12.5	"	7.4	12.9	"	7.5	15.5	"	9.4
10	9.1 9.5	"	4.4 4.8	11.6 12.0	" 5	6.7 7.0				12.5	" 6	7.9	13.3 13.5 13.5	" 6	7.9	14.6	"	8.5
										12.5	"	7.8	13.5	"	8.1			
11	10.1	"	5.4	12.7	"	7.7				12.0	\because	7.3	13.3	"	7.9	14.0	"	7.9
Midn't	11.1	"	6.4	13.3	-5.1	8.2				10.5	-4.8	5.7	12.7	-5.5	7.2	13.5	-6.0	7.5

[^6]Series III.-Tidal Observations from April 20 to August 3, 1854.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

May, 1854.																			
	${ }^{10 t \mathrm{~h} .}$	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	11th.	Red. to level.	Ref. abs.	12th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	13th.	Red. level.	Ref. obs.	14th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	15th.	$\begin{gathered} \text { Red. } \\ \text { to } \\ \text { level. } \end{gathered}$	Ref. obs.	
1	12.5	-6.0	6.5	$\begin{aligned} & 17.0 \\ & 16.5 \end{aligned}$	$\begin{gathered} 4 \\ -6.3 \end{gathered}$	$\begin{aligned} & 10.8 \\ & 10.2 \end{aligned}$	17.4	-6.3	11.1	17.3	-6.5	10.8	18.3	-6.7	11.6	20.6	$\begin{gathered} -6.7 \\ 6 \\ \hline 6 \end{gathered}$	$\begin{array}{\|l\|} 139 \\ 13.9 \end{array}$	
2	9.8		3.8	13.7		7.4	16.0		9.7	16.1		9.6	16.2	"	9.5	18.8		12.1	
3	9.5	"	3.5	11.5	"	5.2	13.7	"	7.4	15.3	"	8.8	12.3	1	5.6	7.6	"		
																		10.9	
4	8.3 8.0	"	2.3	9.6	"	3.3	10.8	6	4.5	14.0	*	7.5	9.9	"	3.2	16.5	"	9.8	
5	8.0	"	2.0	8.3	"	2.0	8.4	"		1 -		---				15.4	"	8.7	
	8.0	"	2.0				7.3												
6	8.0	"	2.0	9.5	"	3.2	7.3	"	1.02.9			---	---		---	10.4	"	3.7	
	8.5	-6.1	2.4				9.2	"											
7	9.2	"	3.1	11.8	"	5.5	10.4	"	4.1			-- -	---		-	9.0	"	2.3	
8	11.7	"	5.6	15.4	"	9.1	12.3	"	6.0	--			\cdots			9.0	"	2.3	
9	12.5	"	6.4	15.0	"	8.7	14.2	"	7.9	16.5	-6.6	9.9	12.3	"	5.6	10.4	"	3.7	
10	14.4	"	8.3	16.0	"	9.7	15.4	"	9.1	18.4	"	11.8	13.5	"	6.8	12.6	"	5.9	
	15.0	"	8.9	16.8	"	10.5					"	12.4							
11	15.0	"	8.9	16.8	"	10.5	16.0	"		219.0		12.4	5.2	"	$\begin{array}{r} 8.5 \\ 11.1 \end{array}$	14.5	"	7.8	
	14.2	"	8.1	10.8	"	10.5	16.5	"			"	11.8	17.8						
Noon	13.4	-6.2	7.2	16.0	-6.3	9.7	17.2	$\begin{gathered} -6.2 \\ 6 \\ 6 \end{gathered}$	$\begin{aligned} & 11.0 \\ & 10.7 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.4 \end{aligned}$	-6.7	11.3	$\begin{aligned} & 18.0 \\ & 17.4 \end{aligned}$	"	$\begin{aligned} & 11.3 \\ & 10.7 \end{aligned}$	16.6	"	9.9	
1	12.3	"			6		16.9				"	9.7	16.6	"		18.9	"		
1	12.3	*	0.1	14.6	*	8.3	16.4			16.4					$\left.\begin{array}{r} 10.7 \\ 9.9 \end{array} \right\rvert\,$			$\begin{aligned} & 12.2 \\ & 12.3 \end{aligned}$	
2	10.3	"	4.1	13.0	"	6.7	13.4	"	7.2	14.4	"	7.7	14.7	"		$\begin{aligned} & 19.0 \\ & 19.0 \\ & 18.1 \end{aligned}$	"	$\begin{aligned} & 12.0 \\ & 12.3 \\ & 11.4 \end{aligned}$	
	9.7	"	3.5																
3	8.4	"	2.2	12.1	"	5.8	9.0	"	2.8	12.0	"	5.3	12.5	"	5.8	17.3 "		$\begin{aligned} & 11.4 \\ & 10.6 \end{aligned}$	
	8.4	"	2.2 2.2				8.3	-6.3	2.1 0.9										
4	8.4 9.2	"	2.2 3.0	9.7 8.6	"	3.4 2.3	7.2		0.9		"	3.1		"	3.9	15.5	"	8.8	
5	10.3	"	4.1	7.6	،	1.3	7.2	"	0.9	8.0	"	1.3	9.0	"	2.3	123	"	5.6	
				9.2	"	2.9	8.1		1.8	8.0	"	1.3	8.2	"	1.5				
6	11.0	"	4.8	10.3	"	4.0	9.5	*	3.2	9.3	"	2.6	7.5	"	0.8	10.3	"	3.6	
7	12.7	\%	6.5	12.4	"	6.1	10.7	"	4.4	11.1	"	4.4	8.5	"	1.3	7.9	"		
																7.5	"	0.8	
8	14.5	"	8.3	15.0	"	8.7	13.7	-6.4	7.3	12.9	"	6.2	10.2	"	3.5	7.2	"	0.5	
9	15.4	"	9.2	17.4	"	11.1	15.5	"	8.1	14.5	"	7.8	11.8	"	5.1	9.3 "		$\begin{aligned} & 0.5 \\ & 2.6 \end{aligned}$	
																		2.6	
10	16.2	"	10.0	19.5	"	13.2	18.2	*	11.8	17.4	"	10.7	14.7	"	8.0	12.1	-6.8	5.3	
11		"	10.9	20.0	"	13.7	19.5	"	13.1	20.3	"	13.6	18.2	6		16.5	-6.9	9.6	
	17.8	"	11.6	19.6	"	13.3	19.5		13.1	20.1	"	13.4							
Midu't	18.0		11.8	18.8	"	12.5	19.5	"	13.1	20.1	"	13.4	20.2	"	13.5	19.0	-7.0	12.0	
	May	10 and 12. Sou	11. N unding	$\begin{aligned} & \text { No sou } \\ & \text { g at n } \end{aligned}$	uding. oon 8 f	fathom	(la	st soun	ding	record	ed).	Corre	ction	by sou	nding	and	urves.		

Series III.-Tidal Observations from April 20 to August 3, 1854.

Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

From about the middle of May to the end of the series the corrections change very little from day to day, and are given below :-

May	16.	Correction	-7.2
$"$	17.	$"$	-7.2
$" 6$	18.	$"$	-7.2
$"$	19.	$"$	-7.1
$"$	20.	$"$	-6.7

$$
\begin{array}{cccc}
\text { May } & \text { 21. } & \text { Correction } & -6.5 \\
" & 22 . & " & -7.11 \\
" & 23 . & " & -3.0 \\
" & 24 . & " & -9.3
\end{array}
$$

Series III.-Tidal Observations from April 20 to August 3, 1854.
Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

May, 1854.															June, 1854.			
Mean solar hour.	25th.	Ref. obs.	26 h.	Ref. obs.	27 th.	Ref. obs.	2sth.	Ref. obs.	29th.	Ref. obs.	30 th .	Ref. obs.	31st.	Ref. obs.	1st.	Ref. obs.	2 d .	Ref. obs.
1	19.8	10.6	17.4	8.5	21.2	12.5	19.0	10.7			19.0	11.5						
	19.0	9.8	16.6	7.7	21.2	12.5	19.0	10.7	18.4	10.8	19.5	12.0	16.4	8.9	18.2	10.7	15.4	8.0
2					19.6	10.9	18.6	10.4			18.6	11.1			18.4	10.9		
	17.0	7.9	14.3	5.4	18.7	10.1	17.3	9.1	16.4	8.8	18.1	10.6	17.9	10.4	18.5	11.0	16.1	8.7
3													18.5	11.0	18.5	11.0		
	14.5	5.4	12.4	3.6	16.0	7.4	15.5	7.4	14.3	6.7	17.2	9.5	19.0	11.5	18.2	10.7	17.0	9.6
			11.8	3.0									19.0	11.5			17.2	9.8
4	12.0	2.9	11.5	2.7	14.7	6.1	12.4	4.3	12.1	4.5	16.1	8.6	18.2	10.7	17.8	10.3	17.2	9.8
	11.0	2.0	11.5	2.7													17.2	9.8
5	11.0	2.0	11.5	2.7	12.5	3.9	10.8	2.8	10.0	2.5	14.3	6.8	17.2	9.7	16.2	8.7	17.0	9.7
	11.0	2.0	11.5	2.7	11.2	2.6	10.0	2.0	9.0	1.5								
6	11.5	2.5	11.5	2.7	11.0	2.4	9.5	1.6	9.0	1.5	12.4	4.9	14.9	7.4	14.3	6.8	15.6	8.3
			11.8	3.0	11.0	2.4	9.5	1.6	9.0	1.5								
7	13.5	4.5	12.5	3.7	12.4	3.8	9.5	1.6	9.0	1.5	10.2	2.7	12.9	5.4	13.4	5.9	14.2	6.9
							9.5	1.6	9.0	1.5	10.0	2.5						
S	15.1	6.1	14.3	5.5	14.1	5.5	10.1	2.3	9.0	1.5	10.0	2.5	12.0	4.5	12.6	5.1	12.8	5.5
									9.0	1.5	10.0	2.5	11.2	3.7	12.0	4.5		
9	17.4	8.4	15.2	6.4	15.2	6.7	11.7	3.9	10.2	2.7	10.0	2.5	10.0	2.5	11.5	4.0	12.0	4.7
	18.2	9.2									11.3	3.8	10.0	2.5	11.5	4.0	11.3	4.0
10	19.0	10.0	16.3	7.5	17.3	8.8	13.0	5.2	12.4	4.9	12.4	4.9	10.5	3.0	11.5	4.0	11.0	3.7
	19.0	10.0			18.2	9.7									11.5	4.0	11.0	3.7
11	18.4	9.4	17.2	8.4	18.2	9.7	14.7	6.9	14.4	6.9	13.8	6.3	12.6	5.1	12.0	4.5	11.0	3.7
					18.0	9.5	15.4	7.6									11.5	4.2
Noon	16.0	7.0	18.4	9.6	17.5	9.0	16.5 15.7	8.7	15.5	8.0	14.9	7.4	13.7	6.2	13.0	5.5	11.8	4.5
1	15.0	6.0	18.5	9.7	16.6	8.1	15.1.	7.3	16.0 16.0	8.5	15.3	7.8	14.8	7.3	14.5	7.0	12.4	5.1
			17.7	8.9					15.6	8.1	16.0	8.5	15.4	7.9				
2	14.0	5.0	17.1	8.3	14.2	5.7	13.5	5.7	15.1	7.6	16.0	8.5	16.0	8.5	14.6	7.1	12.8	5.5
											16.0	8.5	16.0	8.5				
3	13.2	4.2	16.0	7.2	12.3	3.8	11.7	3.9	14.2	6.7	16.0	8.5	16.0	8.5	15.0	7.5	13.5	6.2
					9.6	1.1	10.8	3.1			15.2	7.7	15.4	7.9	15.5	8.0		
4	12.0	3.0	14.8	6.0	9.0	0.5	10.0	2.3	12.3	4.8	14.2	6.7	15.0	7.5	15.5	8.0	14.4	7.2
	11.4	2.4			9.0	0.5	10.0	2.3							15.5	8.0	15.0	7.8
5	11.0	2.0	13.6	4.8	9.5	1.0	10.0	2.3	11.6	4.1	12.8	5.3	13.5	6.0	15.5	8.0	15.0	7.8
	11.0	2.0	13.0	4.2			10.0	2.3			11.2	3.7			15.2	7.7	14.3	7.1
6	11.0	2.0	12.2	3.4	10.0	1.5	11.3	3.6	10.2	2.7	10.0	2.5	12.7	5.2	15.0	7.6	14.0	6.8
	12.1	3.1	12.2	3.4					9.5	2.0	10.0	2.5						
7	13.3	4.3	12.2	3.4	10.4	1.9	12.3	4.6	9.1	1.6	10.0	2.5	11.7	4.2	14.2	6.8	13.4	6.2
			12.6	3.9					9.1	1.6	10.0	2.5	11.5	4.0				
8	15.7	6.8	13.2	4.5	12.0	3.6	14.2	6.5	9.1	1.6	11.0	3.5	11.0	3.5	13.0	5.6	12.8	5.6
									10.2	2.7			11.0	3.5				
9	17.4	8.5	15.3	6.6	14.2	5.8	15.0	7.3	11.3	3.8	13.0	5.5	11.0	3.5	12.0	4.6	12.4	5.2
													11.5	4.0	11.4	4.0	12.0	4.8
10	19.5	10.6	17.6	8.9	16.4	8.0	16.1	8.4	13.7	6.2	14.4	6.9	12.0	4.5	11.0	3.6	12.0	4.8
	19.7	10.8													11.5	4.1	12.0	4.8
11	19.7	10.8	19.4	10.7	18.1	9.8	17.4	9.7	16.2	8.7	15.1	7.6	14.2	6.7	12.2	4.8	12.0	4.8
			20.1	11.4	18.7	10.4	18.0	10.3									12.3	5.1
Midn't	19.7	10.8	20.1	11.4	19.0	10.7	18.6	10.9	17.4	9.9	16.2	8.7	15.8	8.3	14.3	6.9	12.7	5.5,

May 25.	Corractiom	-9.11	
$"$	26.	$"$	-8.8
6	27.	6	-8.5
4	28.	$"$	-7.8
$"$	29.	4	-7.5

$$
\begin{array}{cccc}
\text { May 30. Comection } & -7.5 \\
\text { " } 31 . & " & -7.5 \\
\text { June 1. } & \text { " } & -7.5 \\
\text { " } 2 . & " & -7.3
\end{array}
$$

Series IIf.—Tidal Observations from April 20 to August 3, 185.
Hourly observations on the pulley-grage. Adopted reading of mean level 7.0, expressed in units of the seale. Increasing numbers indicate rise of water.

June, 1854.

Mean solar hour.	30.	Rec. ohs.	4th.	Ref. whes.	5th.	Ref. obs.	6th.	$\begin{aligned} & \text { lief. } \\ & \text { chs. } \end{aligned}$	7th.	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	8th.	$\begin{aligned} & \text { Ref. } \\ & \text { ohs. } \end{aligned}$	9th.	$\begin{aligned} & \text { Ref. } \\ & \text { Rhs. } \end{aligned}$	10 th .	$\begin{aligned} & \text { Turf. } \\ & \text { whs. } \end{aligned}$	114.	$\begin{aligned} & \text { leef. } \\ & \text { obs. } \end{aligned}$
																	18.0	0.5
1	14.2	7.1	13.0	6.3	12.4	6.0	12.5	6.1	12.3	5.6	12.8	5.5	--	- - -	16.4	8.2	19.0	10.5
							12.5	(i.1									19, 9	11.4
2	15.8	8.7	14.0	7.4	12.8	6.4	12.5	6.1	12.5	5.8	11.8	4.4		---	14.9	6.7	. 0	1.5
							12.9	6.5			11.4	4.0 4.0						
3	16.4	9.3	15.2	8.6	13.8	7.4	13.6	7.2	12.0	5.3	11.4	4.0			12.1	-3.9	15.2	6.7
4	$16.1{ }^{4}$	9.6	16.0	3.4	15.2	8.8	14.2	7.8	11.0	4.3	14.5	7.0			12.0	3.7	13.2	4.6
5					15	0.0	14.8	8.4	15.6	8.8	14.7	7.4			10.4	2.1	10.4	1.4
6					15	9.4	15.0	8.6	16.0	9.2	15.0	7.7			10.9	2.6	IO. 4	1.5
7					10	9.6	15.6	9.2	17.0	?	15.6	8.2			11.5	3.2	10.4	1.8
ε					1	9.7	16.0	9.6	15.5	$\therefore .7$	16.8	9.3			11.1	?	13.2	4.6
9	11.5	4.5	---		14.1	7.7	16.5	10.1	17.1	10.2	16.6	9.1					16.0	7.4
							15.5	9.1	16.8	8.9				8.0	20.1	11.7	0	9.4
10	12.0	5.0	---	---	12.2	5.8	14.8	8.4	15.5	8.5	16.2	8.6	16.0	8.0	19.2	10.9		0.4
11	12.5	5.5			11.5	5.1	14.5	8.1	14.5	7.5	13.4	5.5	13.9	5.9	18.0	9.7	18.0	9.4
					11.3	4.9					12.5		12.6	4.6	17.6	9.3	17.2	.f
Noou	13.0	6.0	--		11.1 11.1	4.7	13.3	6.9	12.9	5.9	12.0	4.9	12.6	4.6	17.0	9.0	1..a	.,
1	13.5	6.5			11.1	4.7	11.6	5.2	11.9	4.9	11.8	4.2	12.0	4.0	16.4	8.1	10.8	8.2
					11.2	4.8	10.8	4.4			11.4	2.7	10.3	2.3				
2	14.0	7.0	11.4	5.0	11.2	4.8	10.5	4.0	11.4	4.4	9.5	1.8	11.0	3.0	$1 \pm .7$	6.4	1	. 4
							10.5	4.0	10.5	3.5			0.4	1.4	13.2	4.9	15.0	6.4
3	$\begin{aligned} & 14.5 \\ & 15.0 \end{aligned}$	7.6 8.1	12.4	6.0	11.4	5.0	10.5 10.9	4.0 4.4	11.5	3.4		$\begin{aligned} & 1.8 \\ & 2.1 \end{aligned}$	9.4		13.2	4.0	(1).	0.4
4	15.0	8.1	13.6	7.2	12.4	6.0	11.4	4.9	12.6	5.5	11.5	2.8	10.3	2.3	11.7	3.3	14.2	5.6
	15.0	8.1									11.9	4.1	11.4	3.4	10.2	1.8	12.9	4.3
5	14.8	8.0	14.4	8.0	13.6	7.2	13.2	6.6	14.0	6.9	11.9	4.1	11.4	3.4	9	1.2	12.)	4.8
6	14.6	7.8	14.4	8.0	14.8	8.4	14.8	8.2	14.7	7.5	13.1	5.3	12.6	4.5	9.0	0.6	12.0	3.4
				8.6				9.			14.0	0.2	16.4	8.3	12.0	3.	10.6 11.5	2.0
γ	1	\%		-		8												
8	13.4	6.6	15.0	8.6	15.2	8.8	17.0	10.4	18.0	10.8	16.2	8.4	19.5	11.4	15.4	7.0	13.6	4.9
9	13.0	6.2	14.0	7.6	15.6	9.2	10.6	10.0	18.4	11.1	18.6	10.8	21.0	12.9			16.2	7.5
10	12.0	5.2	13	6.6		8.2	10	0.6	18.0	10.7	19.4	11.0	20.6	12.5			19.2	10.5
	12.0	5.2																
11	12.3	5.6	12.5	6.1	13.2	6.8	16.2	9.6	17.2	9.9	19.0	11.2	20.0	11.9			20.2	11.5
Midn ${ }^{\text {ct }}$	13.0	6.3	12.0	5.6	12.6	6.2	15.2	8.6	14.0	6.7	18.0	10.2		--			21.4	12.6

June 3. Correction -7.0

$"$	6.	$"$	-6.4
$"$	9.	$"$	-8.0
$"$	10.	$"$	-8.3
$"$	11.	$"$	-8.6

June 4. Correction - $\mathbf{~} .4$
" $7 . \quad$ " -7.0
The record on this day is defective.
Readings between the full hours are less freguent than before, and are generally
Lgiven only near high or low water.

Series III.-Tidal Observations from April 20 to August 3, 1854.
IIourly observations on the pulles-gauge. Adopted reading of mean level 7.0 , expressed in units of the scale. Increasing numbers indicate rise of water.

June, 1854.

$\begin{array}{\|l} \text { Mean } \\ \text { solar } \\ \text { hour. } \end{array}$	12th.	$\begin{aligned} & \text { Kef. } \\ & \text { obs. } \end{aligned}$	13 th.	Ref. abs.	14th.	$\begin{aligned} & \text { Ref. } \\ & \text { whes. } \end{aligned}$	15 th.	Ref. obs.	16th.	Ref. obs.	17th.	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	18 th.	Ref. ubs.	19th.	Ref. obs.	20th.	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$
			21.0	12.1			19.2	10.4										
1	29.16	13.2	21.0	12.1		12.1	20.1	11.3	16.0	7.3	17.3	8.6	1.4 .1	6.1	14.0	6.2	13.5	5.8
	21.5	12.7			21.0	12.1											13.0	5.3
2	19.8		19.9	11.0	21.0	12.1	21.1	12.3 12.3	17.2	8.5	18.6 10.2	${ }_{1}^{9.9}$	15.6	7.3	15.1	7.4	12.9	5.2 5.2 5.2
3	18.5	9.7	18.2	9.3	20.2	11.3	21.1	${ }^{12} 3$	19.0	10.3	20.0	11.4	17.0	8.7	15.9	4.2	14.11	5.3
4				9.1	. 6	10.7	20.9 20.2	12.1	20.0 20.4	11.3				9.9		$8 . t$	14.0	. 2
5	12.5	3.7	13.2	4.3	15.3	6.4	16.3	7.6	19.0	10.3	17.6	9.0	18.4	10.2	18.0	10.4	15. 6	7.8
6	10.4	1.6	11.6	2.7	12.2	3.3	14.4	5.7	16.8	8.1	16.4	7.8	18.0	9.8	15.1	10.5	16.4	8.6
7	10.4	1.6	10.0	1.1	10.5	1.6	11.5	2.8	14.3	5.6	14.2	5.6	17.5	9.3	18.	10.4	17.6	0.8
s	13.2	4.4	10.0	1.1	10.5	1.6	10.8	2.1	12.8	4.1	12.4	3.8	17.0	8.8	17.8	10.2	17.7	9.9
9	15.5	6.7	9.1 10.0	0.2 1.1	12.6	3.7	10.4 10.0	1.7 1.3	11.4	2.7	11.6 11.4	3.0	13.4	5.3	15.6	8.0	17.6	9.8
							11.0	2.3	11.2	2.5								
10	16.6	7.8	12.2	3.3	14.0	5.1	12.0	3.3	11.4	2.5	12.2	3.6	12.5	4.4	15.0	7.4	16.5	8.7
11	18.6	9.8	16.4	7.5	16.0	7.1	14.5	5.8	13.0	4.3	12.6	4.0	11.6	3.6	14.0	6.4	14.8	7.0
Noon	19.8. 17.6	10.4 8.8	18.4	0.5	17.6	8.7	16.2	\%.6)	14.6	5.9		5.9	11.2 11.4	3.2	13	5.1		
			19.2	10.3	19.2	10.3	16.5	7.8										
I	15.8	7.0	1!1.2	10.3	19.1	10.2	17.2	8.5	15.9	7.2	15.9	7.3	12.0	4.0	12.0	4.4	14.0	6.2
			19.2	11.3			17.2	8.5	1 ti. 4	8.1					11.6	4.0		
2	13.8	5.0	18.9	10.0	19.1	10.2	17.2	8.5	17.6	8.9	17.3	8.7	13.3	5.3	12.0	4.4	13.6	5.8
							16.2	7.5	16.9	8.2	17.9	9.3						
3	13.0	4.2	17.6	8.7	17.4	8.5	15.5	6.8	16.2	7.5	17.5	8.9	15.6	8.6	13.0	5.4	13.0	5.2
4	11.6	2.8	16.2	7.3	16.0	7.1	15.0	6.3	15.5	6.5	1	8.4	16.3	8.3	14.0	6.4	12.2	4.4
													16.0	8.0				
5	10.3	1.5	14.8	5.9	14.2	5.3	13.4	4.7	14.8	6.1	16.6	8.0	18.5	10.5	15.0	7.4	14.0	6.1
6	9.6 9.2	0.8	14.2	5.3	13.0	4.1	12.6	3.9	14.	5.9	16.1	7.5	15.0	7.9 6.3	16.5	8.9	15.0)	7.1
	9.6	0.8			10.4	1.5												
7	10.2	1.4	14.0	5.1	10.4	1.5	11.6	3.9	14.2	5.5	15.8	7.2	13.2	5.2	17.t	9.8	16.7	8.5
	12.4	3.6	10.0		10.4 10.2	1.5	11.2	$\underline{2.5}$							17.6	10.0	17.8	9.9
δ	12.4	3.6	11.0	1.1	10.6	1.3	11.2	$\stackrel{2}{2.5}$	12.8	4.1	15.2	0.1	13.6	0.6	17.4	0.8	17.8	2.9
9	15.0	4.2	12.0	3.1	11.0	2.1	11.4	2.7	12.4	3.7	14.2	5.6	14.3	6.3	16.8	9.1	18.4	10.5
10	18.5	9.7	15.0	6.1	12.4	3.6	13.6	4.9	13.0	4.3	13	4.9	15.0	?	15.5	7.8	18.5	10.5
11	21.0	12.2	18.0	$!.1$	15.11	15.2	15.0	(6.)	14.0	5.3	13.0	4.1	14.0	6.2	14.5	6.8	10.9	8.9
Midu't			20.4	11.5	18.0	9.3	---	-	15.2	(1,5)	$13.1{ }^{\prime}$	4.6	13.4	5.15	14.3	10.6	15.6	7.6

June 12. Correction - 5.8 The record on this day is defective, the times being uncertain.
.. 13. :1 -8.9
June 14. Correction - -9
" $15 . \quad . \quad-8.7$
" 16 . " -5.7
" $17 . \quad$.. -8.6
" 18. " -s.0

Series III.-Tidal Observations from April 20 to August 3, 1854.
Hourly observations on the pulley-gange. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indiente rise of water.

June, 1854.

Mean solar hour.	21st.	Ref. ols.	220.	Ref. ols.	23.4	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	$24 t h$.	$\begin{aligned} & \text { Kef. } \\ & \text { obs. } \end{aligned}$	$25 t h$.	Ref. obs.	26th.	$\begin{aligned} & \text { Ref. } \\ & \text { ols. } \end{aligned}$	2-h.	$\begin{aligned} & \text { Ref. } \\ & \text { chs } . \end{aligned}$	2 Sth.	$\begin{aligned} & \text { Ref. } \\ & \text { ohs. } \end{aligned}$	29 th .	$\begin{aligned} & \text { Mer. } \\ & \text { whe. } \end{aligned}$
							21.0	10.6									21.4	11.4
1	14.5	6.5	15.2	6.6	16.5	7.0	20.5	10.1	19.0	8.3	29.4	12.1	20.2	10.1	21.4	11.4	21.4	11.4
	14.2	6.2									22.4	12.1					21.4	11.4
2	13.8	5.8	13.9	5.3	14.7	5.2	18.0	7.6	17.0	6.3	20.0	9.7	20.2	10.1	21.4	11.4	21.4	11.4
	13.8	5.8																
3	13.8	5.5	11.5	2.9	13.8	4.3	15.8	5.3	16.0	5.3	17.6	7.3	18.5	8.4	19.1	9.1	20.0	10.0
	13.8	5.8	13.3	4.7	13.4	3.8	15.0	4.5										
4	14.9	5.9			13.2	3.6	14.2	3.6	14.1	3.5	15.0	4.8	17.0	6.9	16.3	6.3	18.0	8.0
5	14	6.3			14.0	4.3	14.2	3.6	13.0	2.4	12.2	2.0	12.0	1.9	15.3	5.3	16.6	6.6
6	15.7	7.6			14.6	4.9	15.1	4.4	13.4	2.8	13.4	3.2	12.2	2.1	14.4	4.4	15.5	5.5
7	16.3	8.2			15.0	5.2	15.3	4.6	14.0	3.4	13.8	3.7	12.8	2.7	13.8	3.8	13.9	3.9
8	17.2	9.1	16.7	7.6	15.6	5.8	15.5	4.7	14.5	3.9	14.4	4.3	13.4	3.3	13.2	3.2	13.4	3.6
	17.2	9.0													13.5	3.5	13.9	3.9
9	17	9.4	17.6	8.5	18.4	8.5	16.4	5.6	16.2	5.6	16.0	5.9	14.6	4.5	14.0	4.0	14.4	4.4
	17.2	9.0	1:3.0	9.9														
10	16.2	8.0	18.5	9.4	18.4	8.5	17.5	6.7	17.0	6.4	17.2	7.1	16.4	6.3	15.5	5.5	16.2	0.2
11	15.8	7.6	17.5	8.4	18.1	8.1	18.3	7.5	18.1	7.5	18.8	8.7	18.0	7.9	17.8	7.8	18.0	8.0
							18.5	7.7	18.8	8.2								
Noon	14.6	6.4	16.5	7.4	17.8	7.8	18.9	8.1	18.9	8.3	19.8	9.7	19.4	9.3	19.1	9.1	18.4	8.4
1				6.9		6.0	18.9	8.1 7.7	18	7.6	20	9.9	19.9 19.0	9.5 8.9	19.2	9.2	19.0	0.0
											10.0	8.9			19.2	9.2	19.1	9.1
2	13.0	4.8	15.4	6.3	15.5	5.5	15.9	5.1	18.5	5.9	18.2	8.1	17.6	7.5	18.6	6.6	19.1	9.1
	12.4	4.2															18.8	8.8
3	11.2	3.0	14.4	5.3	14.0	3.9	14.7	3.9	15.7	5.1	16.4	6.3	16.8	6.7	17.5	7.5	17.5	7.5
	11.9	3.7																
4	13.9	5.6	13.2	3.1	13.6 13.5	3.5 3.3	13.9	3.1			15.0	4.9	16.0	5.9	17.2	7.2	16.4	6.4
5	14.	6.3	12.8	3.1 3.3	13.5 13.2	3.3	13.2	2.4			14.0	3.9	14.5	4.7	16.8	6.8	13.4	3.4
			13.0	3.8	13.2	2.9	12.8	2.0										
6	16.5	8.2	14.6	$5 .-1$	13.2	2.9	13.5	2.7	13.7	3.2	13.3	3.2	1\%.8	3.8	15.1	5.1	12.1	$\because .1$
					14.2	3.9					12.5	2.4					12.0	$\underline{2.0}$
7	18.4	10.0	17.2	7.9	15.0	4.7	15.0	4.2	13	3.1	13.0	2.9	13.8	3.8	12.8	2.8	12.6	2.15
													13.0	3.0	12.5	2.5		
8	19.5	11.1	18.0	8.7	16.0	5.7	17	6.2	15.0	4.5	15.0	4.9	13.2	3.2	13.1	3.1	13.5	3.6
9	20.0	11.6	19.0	9.6	19.0	8.7	19.0	8.2		7.5	19.4	9.3	15.0	5.0	15.1	5.1	15.2	5.3
	21.5	13.0	19.5	10.1														
10	20.5	12.0	20.0 20.0	10.6 10.6	21.0	10.6	21.0 21.5	$\begin{aligned} & 10.2 \\ & 10.8 \end{aligned}$	20.2	9.8	22.	12.1	17.5	7.5	17.2	7.2	16.7	6.8
11	18.5	10.0	19.8	10.3	21.4	11.0	22.0	11.3	21.5	11.1	22.4	12.3	20.0	10.0	19.2	9.2	17.8	8.0
Midn't		5.6	19.4	9.9	21.4	11.0 11.0	21.8 20.6	11.1 9.9	22.0	11.6	---		21.4	11.4	21.3	11.3	19.5	9.7

June	21.	Correction	-8.2
$"$	23.	$"$	-10.0
$"$	25.	$"$	-10.6
$"$	27.	$"$	-10.1
$"$	25.	$"$	-10.0
$"$	29.	$"$	-10.0

Iune 22. Correction - 9.1
"24. " \quad "10.8
"6 20. " -10.1
Some doubt about the time record in the afternoon.

Series III.-Tidal Oiselryations hrom Aprila 20 to August 3, 1854.

Ilourly observations on the pulley-gange. Adopted reading of mean level 7.0 , expressed in units of the scale. Iucreasing numbers indicate rise of water.

June, 1854.

$\begin{aligned} & \text { Mean } \\ & \text { solar } \\ & \text { hour. } \end{aligned}$	Suth.	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	Ist.	$\begin{aligned} & \text { Ruf. } \\ & \text { whe. } \end{aligned}$	2 d .	Ref. obs.	36.	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	4th.	Ref. obs.	5th.	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	6 th.	Ref. obs.	7th.	Ref. obs.	9th.	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$
													15.7	6.7				
1	19.0	9.2	18.5	9.0	20.17	11.0	14.5	5.9	16.:3	7.6	15.2	(6.5)	15.11	6.0	17.0	7.8	15.5	8.3
													15.11	6.0	17.0	1.8		
2	20.8	11.0	19.8	10.3	21.0	11.3	16.3	7.7	16.9	8.2	15.6	6.9	15.0	6.0	15.8	5.6	13.0	5.8
													15.0	6.0	15.8	5.4		
3	21.0	11.2	20.7	11.2	21.4	11.7	17.3	8.7	17.4	8.7	16.8	8.1	15.0	6.0	15.8	5.6	11.0	3.9
	24.0	12.3	20.9	11.4			17.6	8.9					15.6	6.6	15.8	5.6		
4	20.4	10.7	21.0	11.5	21.4	11.7	17.5	9.1	18.6	9.9	17.3	8.6	15.6	$(6.6$	15.8	5.6	9.8	2.7
			21.0	11.6			17.8	9.1							116.0	5.8	9.5	2.4
5	19.4	10.1	21.0	11.6	17.6	7.8	17.5	8.8	18.6	10.0	18.4	9.7	17.0	8.0	16.4	6.2	9.5	2.4
			20.7	11.3													9.5	$4 . \overline{15}$
()	18.1	8.4	19.5	10.1	15.7	5.9	17.0	8.2	$18 .{ }^{3}$	10.0	18.6	9.9	17.1i	8.5	17.2	7.0	9.8	2.8
									18.8	10.2	18.9	10.0	15.2	9.1	18.8	8.6	10.5	3.5
7	17.1	7.4	17.	7.7	14	4.6	16.3	7.5	18.8	10.2	18.9	10.1	18.2	9.4	19.0	8.8	10.5	3.5
8	15.11	5.4	15.7	(6.3)	12.7	4.5	15.7	6.9	17. ${ }^{\text {i }}$	9.0	18.4	9.6	18.5	9.4	19.4	9.2	12.4	5.4
	14.!	4.4											17.8	8.7	19.1	8.9		
9	13.5	3.9	13.5	4.1	12.0	3.8	14.0	5.2	15.0	6.4	18.2	9.4	17.0	7.8	18.5	8.3	13.8	6.8
	14.8	5.2	12.2	2.5	11.7	3.5	14.0	5.2										
10	10.1	6.5	12.0	2.6 3.1	11.4 11.4	2.2 2.2	13.6 13.6	4.8 4.8	$\begin{array}{\|l\|l\|} 14.0 \\ 13.6 \end{array}$	5.4 5.0	17.0	8.2	16.2	7.0	16.8	6.6	15.4 15.5	8.4 8.5
11	15.7	9.1	12.5	3.1 3.6	11.4 11.4	2.2	13.6	4.8	13.6 13.0	5.0	15.0	6.2	15.9	6.7	15.5	5.3	15.5	8.5
	18.9	4.3			11.4	2.2	15.0	16.2	13.0	4.4							149	7.9
Noon	19.11	3.4	15.4	18.0	11.9	3.7	16.5	7.7	13.1	4.5	14.0	5.2	14.0	4.8	15.5	5.3	14.3	7.3
	19.11	9.4									13.3	4.5	13.1	3.9				
1	15.8	9.2	17.2	7.4	12.2	3.9	18.3	?	13.2	4.6	13.1	4.3 4.3	13.1 13.1	3.9	14.4	4.2	13.2	6.2
2	17.1	7.4	18.1	8.7	13.4	5.1	116.2	7.4	14.11	5.4	1:3.1	4.3	1:\%. 1	3.9	13.3	3.1	11.2	4.3
											13.32	4.4	13.1	3.9	13.2	3.0		
3	15.\%	6.2	18.3	8.9	14.4	13.1	17.2	S. 4	15.3	6.7	13.4	4.4	13.4	4.2	13.2	3.0	9.1	2.2
															13.2	3.0	8.3	1.5
4	15.0	5.4	18.3	8.9	15.2	6.8	15.2	9.4	17.2	8.6	16.1	7.3	14.3	5.1	13.2	3.0	8.0	1.2
							18.4	9.6							13.7	3.5	8.0	1.3
5	14.0	4.4	15.7	9.3	15.6	7.	18.6	9.8	17.4	8.7	17.5	8.7	17.3	8.1	14.2	4.0	8.0	1.3
			17.8	8.4	15.7	7.3	18.6	9.8							15.3		8.6	2.0
6	13.5	3.9	17.3	7.5	15.3	6.9	18.6	9.8	18.0	9.3	18.0	9.2	18.3	9.1		5.1	9.0	2.4
							18.3	9.5	15.5	9.8	18.7	9.9			16.6			
7	13.4	3.8	10.2	6.7	14.6	6.2	14.0	4.2	1s. 5	9.8	19.4	10.6	19.5	10.3		6.4	11.0	4.5
8		3.8	17.7	5.2	14.0	5.5	17.5	S. 7	18.5 18.0	9.8 9.3	19.4 19.4	10.5	19.9 20.4	10.7 11.2	17.4	7.2	13.4	6.9
	13.4	3.8	14.7	2.		$5 .$.	17.			\cdots	19.4	10.5	20.4	11.2	18.0			
9	14.1	4.5	14.5	5.0	14.1	5.5	16.7	7.9	17.4	8.7	19.4	10.5	20.4	11.2		7.8	15.9	9.5
10	7-.t	5.8	17.5	5.0	12.S	4.3	15.5	7.0	16.2	7.5	19.2	10.3 9.8	20.4 20.4	11.2			18.2	11.9
					12.4	3.9	15.6	6.9					20.1	10.9	苞			
11	16.0	6.4	18.9	9.3	12.3	3.8	15.6	6.9	15.8	7.1	17.2	8.3	19.7	10.5	률		18.6	12.3
					12.3'	3.8	15.6	6.9							荗:		18.7	12.5
Midn't	16.7	7.1	19.7	10.1	12.3	3.8	15.7	7.11	15.2	6.5	16.0	7.1	17.1	7.9			18.7	12.5

June : 3 . Correction -! ! 6
July 2. " - 2.5 before 8 A. M., and - 8.2 after \& A. M.
". 4. ".
" 7. " -i.2 Tide register out of order at 2 o'clock, clanged index 1 foot; correction after
" 8 . The readinss appear irregular. Correction at noon-i.0, at midnight-i.2. \quad I2 A.M. 10.2.

Series III.-_Tidal Observations from April 20 to Avgest 3, 1854.

Hourly observations on the pulley-gauge. Adopted reading of mean level 7.0, expressed in units of the scale. Increasing numbers indicate rise of water.

July, 1854.

July 110.	Correction	-5.8	
$"$	12.	$"$	-6.0
$"$	14.	$"$	-6.0
$"$	18.	$"$	-14.3
$"$	20.	$"$	-14.9

July 10. Correction - 5.8
July 11. Correction - 6.0
" 13. . " - 6.0
" $15 . \quad$ " ?
"19. " $1 \% \quad-14.6$

Series III．－Tidal Observations from Aprif 20 to August 3， 1854.
Hourly obsermations on the pulley－gange．Adopted reading of mean level 7.0 ，expressed in units of the scale．Increasing numbers indicate rise of water．

July， 1854.									August， 1854.					
$\begin{aligned} & \text { Mean } \\ & \text { shlar } \\ & \text { huerr. } \end{aligned}$	2 sth ．	Ref． ols．	2eth．	Ref： obs．	30th．	$\begin{aligned} & \text { Ref. } \\ & \text { obs. } \end{aligned}$	31st．	Ref． obs．	1st．	Ref． obs．	2 d ．	$\begin{aligned} & \text { Ref. } \\ & \text { olys. } \end{aligned}$	3 d.	Ref． obs．
1			10.6	10.1	10.6	10.5	8.3	8.3	8.0	8.0	6.8	7.0	5.3	5.7
	$\dot{\square}$				11.2	11.1							5.5	5.9
2	\％		11.3	10.8	11.2	11.1	8.6	8.6	8.4	8.4	8.0	8.2	6.0	6.4
	㫛		12.3	11.8	11.2	11.1			9.1	0.1				
3	\therefore		12．5	13.0	11.2	11.1	9.3	9.3	9.3	9.3	8.7	8.9	6.5	6.9
	\vec{E}		11.3	10.8	11.0	11.0								
4	．		10.2	9.7	10.8	10.8	10.6	10.6	9.3 9.2	9.3 0.2	9.0	9.3	7.3 8.2	7.7 8.6
5	寝		8.4	5.0	10.2	10.2	－－－	－－－	9.0	3.0	10.2	10.5	$8 . \frac{1}{4}$	8.8
									9.0	9.0			8.4	8.8
6	$\stackrel{\square}{7}$		6.1	5.7	8.5	8.5	\cdots	－－－	9.0	9.0	9.1	9.4	8.4	8.8
7	䫆		3.0	2.6	6.4	6.4	－－－	－－－	7.5	7.5	7.4	7.8	8.4 8.4	8.8 8.8
	E		2.3	1.9	5.1	5.1	－－	－－．						
8	突		2.0	1.7	3.2	3.2	－－－	－－－	5.5	5.5	6.4	6.8	7.7	8.1
	\bigcirc		20，	1.7	3.2	3．2	4.0	4.0			5.0	5.4	6.0	6.4
9	E		2.2	$1 .$.	3.2	3.2	4.0	4.0	4.4	4.4				6.4
10	－		3.5	3.2	3.4	3.1	5.2	5.2	4.4	4.4	4.2	4.6	4.4	4.8
	\％		48		4.	4.2	5.5	5	4.4	4.4	4.1	4.5 4.5	3.4	3.8
11	\bigcirc		4.8	4．．	4.2	4.2			4.4	4.4	4.1	4.5	3.4	3.8
Noon	8.3	7.6	7.2	6.9	6.1	6.1	6.2	6.2	4.4	4.4	4.1	4.5	3.4	3.8
	9.1	8.4							5.11	5.0	4.3	4.7	3.2	3.6
1	9.2	8.5	9.2	8.9	7.0	7.0	7.5	7.5	5.7	5.7	4.5	5.2	3.2	3.6
	？ 1.3	8.6					8.0	8.0					3.2	3.6
2	9.3	8.6	10.2	9.9	8.3	8.3	9.10	9.0	7.0	7.0	5.9	6.3	3.2	3.6
	9.3	8.6			8.5	8.5	0.0	8.0					4.0	4.4
3	9.2	8.5	11．：	10.0	9.2	9.2	9.0	9.0	8.7	8.7	6.4	6.6	4.5	4.9
			11.4	11.2	9.0	3.0	$!9.0$	9.0	9.5	4．5				
4	7.4	6.5	11．5	11.3	8.3	8.3	9.0	9.0	11.4	10.5	6.8	7.2	6.2	6.6
			11.0	10.4					10.4	10.5				
5	5.5	4.9	10.0	9.5	7.2	7.2	9.1	9.1	10.4	10.5	7.0	7.4	7.4	7.8
									10.4	10.5	8.2 9.1	8.6		
6	3.7	3.1	7.8	7.6	6.0	6.0	8.0	8.0	10.2	10.3	9.1 9.0	9.5 9.4	8.2	8.6
7	2.9	2.3	4.2	4.1	5.1	5.1	6.6	6.6	9.0	9.1	9.0	9.4	8.5	9.2
	2.7	2.1			4.3	4.3							93.0	9.4
8	2.6	2.0	3.4	3.3	4.1	4.1	5.4	5.4	7.4	7.5	9.0	9.4	9.0	9.4
	3.1	2.4			4.1	4.1	4.8	4.5					9.0	9.4
9	3.2	2.7	3.3	3.2	4.1	4.1	4.8	4.8	6.2	6.3	7.4	7.8	9.0	9.4
			4.0	3.9	5.0	5.1	4.8	4.8	6.0	6.1			9.0	9.4
10	5.4	4.9	4.0	3.9	5.2	5.2	4.8	4.8	6.0	6.1	6.2	6.6	8.2	8.6
							4.8	4.8	0.0	6.1				
11	6.4	5.9	6.0	5.9	6.4	6.4	4.8	4.5	6.2	6.4	5.5	0.2	7.3	7.7
Midn ${ }^{\text {t }}$	0.0	S．\％	8.0	7.9	．－．	－．．	5.1	5.1	6.5	6.7	5.6	6.0	6.0	6.4

Between the $20 t 11$ and 27 th of July the observations do not appear sufficiently regular to promise any reliable
renults．

July 28．Correction－ 0.7 July 29．Correction－ 0.3
July 30．Correction 0.0
Aug．2．$\% \quad+0.4$
Aug．$\%$＋ 0.4 After this date the observations are irregular．
On the 5ith the rope slipped off the wheel．
Aug． 8 ．The biry was ruleased from the ice crate at 10 A．M．，rising suldenly 2 ？foet．She resumed this position uph sery slight disturbance of the external ice，and is now on an even keel for the first time in eleven months．The brig wats frozen in and fast since the 9th of September， 1853.

Aug．10．The high－water mark was cut on the istand by Mr．Medary．
Aus．11．The warping of the ships was commenced．Tidal observations were resmmed on the 12th．The register is kept in fathoms and feet．

Series IV.-Tidal Observations from September 7 to October 22, 1854.
Hourly observations on the pulley-gange. Adopted reading of mean level 7.0 , expressed in units of the seale. Increasing numbers indicate rise of water.

September, 1854.

Reduction of Tides, Van Rensselaer Harbor, 1853-'54.

Having given the tidad record in a form ready for use, the observations next require to be properly tabulated for the purpose of deducing empirically their laws, and for comparison with theory. In the United States Coast Survey two blank forms are in use for this tabulation; they have in their essential part been adopted as suitable for the Van Rensselaer Harbor tides, and were used with permission of the Superintendent of the Survey. They are strictly applicable only for such cases where the diurnal inequality is comparatively small, or is at least not approximating to the production of single day tides. In order to show, at a glance, the general character of the tides under discussion, they were plotted a second time, and are given in Plates I, II, and III; the observations having previously been referred to the same mean level. From these diagrams it appears that the diurnal inequality is not of so great an effect as to render the use of the ordinary method of reduction unavailable; on the other hand, it is sufficiently large to require a special discussion for time and height. The extension of the series of observations over a whole year must be considered as a fortunate circumstance, since the results thereby gain considerably in accuracy over others deduced only from a few disconnected lunations.

The tidal record wouk not be complete without the observations for direction and force of the wind, and for atmospheric pressure; the reader will find these records in my discussion of the meteorological material of the expedition, in Vol. XI, Smithsonian Contributions to Knowledge, 1859.

The following pages contain the first tabulation of the preceding record, viz: column 1 contains the date, civil reckoning, adopted for convenience sake. Column 2 gives the apparent time (civil reckoning) of the moon's superior and inferior transit over the Van Rensselaer meridian, obtained by adding nine minutes to the time of transit at Greenwich, allowing for a difference of longitude of $4^{\mathrm{h}} 43^{\frac{1}{\mathrm{~m}}} \mathrm{~W}$. The mean time was converted into apparent time by applying the equation of time. The time for the lower transit was obtained by taking the mean of the time of the preceding and following upper transit. Columns 3 and 4 contain the apparent time of high and low water, taken from the record; in some cases a graphical method was resorted to, to obtain the instant of these phases with greater precision. The equation of time has been applied to the mean time in which the observations are expressed. Columns 5 and 6 contain the lunitidal interval between the time of high water and low water, and the time of the transit of the moon immediately preceding, though in some cases, owing to the half-monthly inequality, it may be the second preceding, the establislment being about 11 hours. This transit of comparison has been called transit F by Mr. Lubbock. ${ }^{1}$ The next columns, 7 and 8 , give the height of high and low water, extracted from the preceding abstract. The remaining columns contain the moon's parallax and declination at noon.

[^7]
Table for tie Reduction of Tines.-No. 1.

Showing the times of High and Low Water, and the Heights of High and Low Tides; wgether with the time of the Moon's passing the Meridian of the place, and the Lanitidal Intervals, at Van Rensselaer Harbor during the months of October 10, 1853, to October 22, 1855.

Series I.-From October 10 to Degember 28, 1853.

Date.$1853 .$	Moon passes the meridian. Appar. time.		Apparent time of				Lunitilal interval.				Height of				$\begin{aligned} & \text { Mon's } \\ & \text { parallax } \\ & \text { ite noon. } \end{aligned}$		$\begin{aligned} & \text { Moon's } \\ & \text { declination } \\ & \text { at noon. } \end{aligned}$	
			II. water.		L. water.		H. water.		L. water.		II. water.		L. water.					
	H.	M.	Ft.	Dec.	Ft.	Dec.	Min.	Dec.	Degree.	Dec.								
$\begin{aligned} & \text { Oct. } 9 \end{aligned}$	6 6	$\begin{aligned} & 28 \\ & 57 \end{aligned}$	$\stackrel{8}{8}$	13	11	13	13	45	16	45	8	0	4					\cdots
	7	26	(;	13	11	14	16	4.	8 9	$\stackrel{0}{2}$	4	7	58	4	-23	\times
" 11	7	54	7	58	1	43	12	32	38	46	${ }_{6}$	7	4	4	57	8	-20	:
	8	22	7	43	1	13	11	49	17	47	9	5	4	8				
" 12	9	47	8	${ }^{13}$	1	43	11	51	17	49	7	9	4	0	57	3	-17	${ }^{\prime \prime}$
" 13	9	12 37	9	29 59	${ }_{3}^{2}$	4	12	42	18	21 27	10 9	${ }_{1}^{0}$	${ }_{3}^{4}$	2	56	\%	-12	3
	10	02	10	14	3	59	12	37	18	47	10	9	3	1	56	1	-12	3
" 14	10	24	10	14	4	14	12	12	18	37	${ }^{9}$	8	$\stackrel{2}{2}$	7	56	3	- 7	1
	10	47	10	44	3	59	12	20	17	57	11	3	2	7				
" 17	0	13	11	4	5	15	11	10			\ldots	-			54	9	+8	9
" 18	0	15 57 5	$\begin{array}{\|l\|l} 11 \\ & \end{array}$	${ }^{45}$	${ }_{6}^{5}$	$\begin{aligned} & 15 \\ & 011 \end{aligned}$	11	10	17	02 25	10	\square	1	5	54	5		
	1	18	6	30	...		17	33	i2	\cdots	2	0	54	5	+	7
" 19	1	40	0	30	6	45	11	12	17	27	11	5	1	,	54	3	+17	9
	$\stackrel{2}{2}$	02	1	15	7	15	11	35	17	35	12	4	1	9				
-	${ }_{2}^{2}$	48	1	15	5 9	10	11	$1 \begin{aligned} & 13 \\ & 20\end{aligned}$	15	${ }_{35}^{43}$	11	9	5	7	54	2	+21	3
" 21	3	12	1	30	7	45	10	42	16	57	9	9	2	8	54	1	+23	8
	3	36	3	15	8	30	12	03	17	18	11	1	4	4		1		s
" 22	4	00	1	15	9	16	9	39	17	40	10	5	3	4	54	2	+25	2
" 23	4	25 51	3	${ }_{16}^{16}$	8	46 31	11	16	16	46	9	9	4	5 9				
	5	16	4	16	10	11 i	11	${ }_{25}$	17	25	10	4	3	$\stackrel{9}{2}$	54	4	+25	5
" 24	5	42	3	31	8	31	10	15	15	15	8	7	4	5	54	*	+24	7
	6	07	5	45	-		12	14			9	7						
־ 25	${ }_{6}$	32	5	${ }_{16}^{01}$	10	116	10	54	18	34	7	1	5	4	55	4	+22	${ }^{6}$
" 26	7	22	7	$4{ }^{16}$	10	31	12	49	17	59	\%	${ }_{0}$	5	2	51	1	+19	5
	7	46	8	46	0	46	13	24	17	49	$!$,	6	1				
" 27	8	11	8	16	1	46	12	311	15	24	8	1	4	8	57	1	+15	3
" 28	8	35 59	8	$4{ }^{\circ}$	13	41	12	35	18	10 50	9	8	5	5	57	9	+10	3
	9	23	9	45	3	46	12	47	$1!$	11	10	8						
" 29		47	9	46	4	01	12	23	1!	12	10	7	3	4	58	8	$+4$	6
	10	11	10	46	4	16	12	59	18	53	11	4	4	9				
" 30	10	36	12	01	3	46	13	50	17	59	11	6	2		59	7	- 1	5
" 31	11	${ }_{26}^{01}$	10	46 31	5	16	12	10 30	19	${ }_{0}^{05}$	11	7		9				
	11	52	12	16	5	01	12	50	18	00	12	${ }_{0}^{0}$		6	60	4	- 7	7
Nov. 1	\ldots		11	46	4	45	11	54	17	20	12	3	2		60	8	-13	6
	0	19	11	16	7	(1)	10	57	19	09	11	6	3	6				
" 2	0	48	\cdots	\ldots	7	01	\ldots		18	42		.	,	9	61	0	-18	7
"	1	16 46	${ }_{1}^{0}$	${ }_{16}^{16}$	7	16 16	112	28	18	28	14	3	0	1				
	2	16	1	31	8	45	11	45	19	00	14	2	${ }_{1}$	0	60		-22	7
" 4	2	47	1	16	8	01	11	00	17	45	11	6	0	3	60	5	-25	0
	3	19 50	\cdots	16	${ }_{8}^{8}$	${ }_{31} 1$	9			12			1	$\stackrel{6}{8}$				
	4	5	${ }_{2}^{1}$	${ }_{46}^{16}$	8	31	10	56	16	15	13	1	0	7	59	9	-25	6_{6}
"	4	52	4	01	9	01	11	39	16	39	9	1	,	3	59	1	-24	5
	5	23	4	46	10	31	11	54	17	39	10	9	2	,				
"	6	52 21	3 4 4	46 31	10	16	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 23 \\ & 39 \end{aligned}$	16	53	888	7	3	2	58	4	-21	9

Series I.-Fron Octoler 10 to December 28, 1853.																		
$\begin{gathered} \text { Date. } \\ 1853 . \end{gathered}$	Moon the m	disses	Apparent time of				Lunitidal interval.				Height of				Mon's: parallax at noon.		Muen* declination at noon.	
	Appr	me.	II.	tor.	L. W	ater.	II. w	ter.	L. 1		H. w	ter.	L. W	ater.				
	H.	M.			11.	M.	H.	M.		M.	Ft .			Dec.	Min.	Dec.	Degree.	Dec.
Dec. 11	9	06	9	51	3	36	13	05	19	11	9	5	1		54	5	+11	2
	9	27	9	36	3	36	12	30		50			,	8				
\% 12	9	49	11	06	4	06	13	39		00	9	9	0		54	2	$+15$	7
	10	10	11	06	4	36	13	17		09	9	(${ }^{\text {d }}$	2				+15	7
" 13	10	31	10	35	4	05	12	35		119	11	0	3	5	54	0	$+19$	6
	10	54	10	20	4	35	11	49		25	8	6	2	8			+	
" 14	11	17	11	05	4	35	12	11	18	04	12	5	2		53	9	+22	6
	11	41		05	6	03	11	4		11	S	9	2				+2	
6 15	...	\ldots		\ldots	5	05	\cdots	\cdots	17	48			2	4	53	9	+24	7
	0	06		04	4	04	13	23		23	13	2	5					
¢ 16	0	30		04	5	04	11	58	16	58	12	5	3	4	54	0	+25	6
	0	55			7	19	11	49	18	$4!$	12	8	1	6				
، 17	1	20	0	84	6	03	11	39	17	15	7	5	2	7	54	2	$+25$	4
	1	44			5	18	11	\cdots	15	58	0					
" 18	$\stackrel{2}{2}$	09	1	03	7	13	11	19	17	19			54	5	$+24$	0
	$\stackrel{2}{2}$	34 58			7	32	11	29	\cdots	\ldots	..	\ldots			54			
	3	58 22	1	32	8	02	10	34	17	18	\ldots	\cdots			54	δ	+21	5
" 20	3	46	2	17	8	32	10	55	17	10	10	9	1	4	55	3	+18	0
	4	09	2	47	6	02	11	01	14	16	10	4						
" 2	4	32	3	02	8	31	10	5.3	16	23	11	6	4	5	55	9	$+13$	7
	4	54	3	46	9	31	11	14	16	59	11	5	4					7
" 2	5	17	4	31	9	16	11	37	16	22	9	1	5		56	5	$+8$	7
	5	39	4	31	11	01	11	14	17	4	11	6	4					
" 2	6	01	5	31	11	30	11	52	17	51	7	5	3		57	4	$+3$	2
	6	24	4	30	11	30	10	23	17	29	8	8	2					
" 2	6	47	7	00	...	\ldots	12	36	\cdots	\ldots	7	8	...		58	3	-2	6
	7	10		30	0	00	11	43	17	36	9	3	4					
" 2	7	34	8	00	1	15	12	50	18	28	8	${ }_{0}^{0}$	2	4	59	2	- 8	5
" 2	8	23	8	29	1	44	12	30	18	10	11	5	4	1	60	0	-14	1
	8	50	8	14	2	4	11	51	15	45	9	2	4					
" 27	9	18	9	28	1	59	12	38	17	36	11	2	1		60	7	-19	1
	10	46	9	28	?	58	12	10	19			1						
"	10	16		13	3	28	12	27	18	10	11	(i)	1		61	2	-22	9
	10	48		58	4	58	12	42	19	12	10	6						
Series II.-From January 28 to April 7, 1854.																		
Jan. 27	10	58	\cdots	...	\cdots	60	7	-25	0									
	11	\cdots	0	17	-	17	13	19	18	19	10	\cdots	\cdots	\cdots	60	4	-22	5
	0	01	0	17	6	17	12	47	18	47	12	4	2	6				
29	0	31	0	17	6	17	12	16	18	16	11	9	1	3	59	9	-18	6
	1	01	0	2	8	02	11	31	19	31	13	3	-1	8				
" 30	1	27	0	16	6	01	11	15	17	00	9	0	0	5	59	1	-13	7
	1	55	1	16	7	46	11	49	18	19	13	9	-0	4				
، 31	2	20	0	46	7	16	10	51	17	21	9	7	-0	3	55	2	-8	1
	2	45	1	16	8	16	10	56	17	56	13	7	1	5				
Feb. 1	3	08	2	46	8	46	12	01	18	01	11	1	1	3	57	3	- 2	4
	3	32	2	46	9	01	11	38	17	53	12	9	2	1				
	3	54	4	01	9	C1	12	29	17	29	10	0	2	11	56	4	+3	3
	4	16	2	45	10	01	10	52	18	07	10	6	0	3				
	4	38	4	01	8	46	11	45	16	30	8	5	3	4	55	6	$+8$	7
64	5	00	3	46	9	31	11	08	16	53	8	6	2	2				
	5	21	4	46	9	01	11	46	16	01	9	2	3	8	55	0	$+13$	6
	5	43	5	16	12	16	11	55	18	55	8	9	3	8				
"	6	0	6	16	12	16	12	33	18	33	10	5	5	0	54	5	$+17$	3
	6	28	5	16	11	46	11	10	17	40	10	7	4	5				
" 6	6	51	8	16	11	46	13	48	17	18	9	5	3	8	54	3	+21	3
	7	14	8	(1)	11	16	13	10	16	25	7	2	3	7				
" 7	7	38 02	7	46 31	\cdots	\%1	12	32	\ldots	\ldots	9 8	4 2	\cdots	\cdots	54	1	+23	9

$\begin{aligned} & \text { DATE. } \\ & 1 \times 5 . \end{aligned}$	Series II.-Trom January 29 to \pric 7, 1854.																	
	Mon passes the meridian. Appar. time.		Apparent time of				Lunitidal interval.				Height of				Moon's parallax at noon.		Monn's declination at noon.	
			H. water. L. water.				H. water.		L. water.		H. water.		L. water.					
	14.	M.	II.	M.	II.	M.	II.	M.	H.	M.	Ft.	Dec.	Ft.	Dec.	Min.	Dec.	Degree.	Dec.
l'en) S	*	29	10	01	2	40	13	59	19	05	9		4		54	1	+25	4
	8	50	9	15	3	15	12	$4!$	19	13	c	7						
"	9	1.5	10	15	3	15	13	25	18	49			31	8	54	3	$+25$	7
	9	41	9	45	4	45	12	30	19	5.5	7	2						
" 10	10	016	10	15	6	15.	12	34	21	00		2	3		54	6	+24	9
	10	32	11	45	5	1.)	13	39	19	31	6	6		5				
، 11	10	57	11	45	5	(10)	13	13	18	54	10	5			54	9	$+22$	8
	11	28	11	45	4	45	12	48	18	13	7	7						
" 12	11	$4{ }^{\circ}$	10	45	5	(10)	11	23	18	13	11	5			53	4	$+19$	8
	11	15	6	30	11	29	19	$(18$	8	4	2	3				
" 13	0	10	11	15	5	4.5	11	0.5	17	59	12	6	1.	7	5.5	8	$+15$	6
	0	33	111	45	5	15	10	12	17	05	10	6		1				
$\therefore \quad 14$	0	58	\cdots	\cdots	6	46	,	,	18	13	\ldots	...	2	4	56	3	$+10$	7
	1	21	0	46	7	16	11	45	18	18	13	6	2	6				
" 15	1	44	0	31	6	46	11	10	17	25	11	8		2	56	8	$+5$	3
	2	06	1	16	7	46	11	32	18	02	12	9		1				
1616	2	29	0	16	7	46	10	10	17	40	13	1	2	2	57	3	-0	3
	2	51	2	01	8	16	11	32	17	47	13	1	2	3				
*	3	14	3	16	7	16	12	25	16	25	12	6	3	9	57	7	-6	0
	3	37	\cdots	\ldots	9	16	\ldots	...	18	02	11	7	0	3				
" 1	4	00	3	01	9	01	11	24	17	24	10	6	2	7	5 S	2	-11	7
	4	24	2	16	9	16	10	16	17	16	10	2	3	0				
4 19	4	49	3	16	10	46	10	52	18	22	11	3	4	5	58	7	-16	8
	5	16	3	16	10	1 1;	10	27	17	27	10	7	3	0				
"	5	42	3	46	9	16	111	30	16	00	10	8	5	5	59	1	-20	9
	6	10	3	46	\cdots	\ldots	10	$0 \pm$	\cdots	\cdots	10	7		\ldots				
\% 21	6	39	…	\cdots	...		…	\cdots	,		...	\ldots	59	5	--24	1
	7	09	11	46	\ldots	\ldots	17	36	\cdots	\cdots	4	3				
" 22	7	40	\because	\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots	\ldots	50	8	-25	7
	8	10	7	46	4	115	12	06	21	07	9	1	4	7				
" 23	8	41	10	16	2	$4{ }^{\circ}$	14	06	19	06	10	7	4	1	59	9	-25	6
	9	12	S	41	4	46	12	05	20	36	8	9	5	7				
" 24	9	45	9	17	1	17	12	05	16	36	10	3	3	3	59	9	-23	7
	10	15	10	17	3	47	12	32	18	35	9	7	2	8				
" 25	10	45	10	17	3	47	12	(12)	17	52	11	2	2	8	59	6	-20	3
	11	13	10	47	4	17	12	02	18	02	10	4	2	0				
" 21;	11	41	12	47	4	47	13	34	18	02	11	9	1	0	53	2	-15	7
	.	\cdots	11	47	6	02	12	00°	18	49	11	3	3	0				
" 27	0	07	11	47	5	(12)	11	40	17	21	12	7	-0	4	55	6	-10	3
	0	33	11	47	6	02	11	14	17	55	10	3	-0	9				
* 28	0	57	12	32	6	17	11	35	17	44	13	0	0	1	57	9	-4	5
	1	22	11	47	7	(1)	10	25	18	05	12	4	1	1				
March 1	1	45	\cdots	\ldots	7	02	\cdots	\ldots	17	40	\ldots	\ldots	0	5	57	1	$+1$	4
	2	09	1	32	8	47	11	47	19	02	12	9	1	3				
"	$\stackrel{3}{2}$	31	1	18	7	48	11	09	17	39	12	0	2	5	56	4	$+7$	0
	2	53	1	33	9	18	11	02	18	47	13	0	1	9				
*	3	15	2	13	8	18	11	10	17	25	10	6	2	5	55	7	$+12$	2
	3	38	2	18	9	$(13$	11	03	17	48	10	9	1	5				
،	4	00	3	13	7	48	11	25	16	10	11	1	3	9	55	0	+16	7
	4	23	2	4	8	48	10	48	16	48	11	1	1	0				
،	4	$41 ;$	3	48	8	48	11	25	16	25	9	2	3	1	54	6	$+20$	5
	5	0.9	3	0.3	9	48	10	17	17	02	10	1	3	9				
"	5	32	4	18	10	03	11	09	16	54	10	5	${ }_{6}$	1	54	3	$+23$	4
	5	56	5	$1!$	10	34	11	47	17	02	9	6	4	1				
، 7	6	22	4	49	10	49	10	53	16	53	8	8	5	8	54	2	$+25$	3
	6	47	\cdots	...	\cdots	\cdots	\cdots	...	\cdots	\ldots	...	\cdots	\cdots	\cdots				
" 9	8	03	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots			+25	5
	8	28	\cdots	...														
* 11	\%	53	9	49	4	21	13	21	20	18	9	9	3	9	54	9	$+23$	8
	!	1 s	10	50	4	35	13	57	20	07	S	\checkmark	5	0				
(6) 1	$!$	42	10	50	4	35	13	32	19	42	10	6	5	4	55	4	$+21$	0
	10	18	\ldots	...	\cdots	\ldots	...	\cdots	\cdots	\cdots	...	\cdots		\cdots				
" 1	11	4.3	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	...	\cdots	\cdots	\cdots	\cdots			$+7$	1
	11	111	1ٌ	21	\ldots	\cdots	12	1.5	...	\ldots	11	2		...				

Series II.-From January 28 to April 7, 1854.																		
Date. 1854.	$\begin{gathered} \begin{array}{c} \text { Moon passes } \\ \text { the meridian. } \end{array} \\ \hline \text { Appar. time. } \end{gathered}$		Apparent time of				Lunitidal interval.				Height of				$\substack{\text { Moon's } \\ \text { parallax } \\ \text { att noon. }}$		$\underset{\substack{\text { declinan'ion } \\ \text { at noon. }}}{\text { ant nop }}$	
			H. water.				II. water.						$\begin{array}{\|l\|l\|} \hline \text { L. water. } \\ \hline \text { Ft. } & \text { Dee. } \\ \hline \end{array}$					
	н.	м.	II.	м.	H.	M.	II.	M.	II.		Ft.				Min.	Dee.	Degree.	Dee.
Mar. 15	0	29	11	21	${ }_{6}^{6}$		10	52	18		12	7	2		57	6	+1	2
" 16	1	15	$\left\lvert\, \begin{aligned} & \cdots \\ & 0 \end{aligned}\right.$	36	$\begin{gathered} 8 \\ 8 \\ 6 \\ 6 \end{gathered}$	$\begin{aligned} & 06 \\ & 21 \\ & 21 \end{aligned}$	$\begin{array}{\|l} 11 \\ 11 \\ 12 \end{array}$	4	$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & 37 \\ & 29 \\ & 29 \end{aligned}$	10	$\begin{gathered} 5 \\ 4 \end{gathered}$	$\left.\begin{aligned} & 2 \\ & 3 \\ & 3 \end{aligned} \right\rvert\,$		58	1	-4	6
" 17	2	38 02 02	1	${ }_{36}^{21}$		21	11		17	${ }_{43}^{21}$	128	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	${ }_{0}$		58	5	-10	5
18		${ }_{52}^{26}$	\cdots	52	$\begin{aligned} & 8 \\ & 9 \\ & 9 \end{aligned}$	21	11	$\stackrel{7}{6}$	${ }_{1}^{18}$	19	12	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	1	${ }_{6}$	58	8	-15	8
" 19	3 3 4	18 4 4 18	1 2 2 2	[52	${ }^{8}$	07 52 37	11	${ }^{00}$	17 16 16	15 34 2	12	${ }_{3}^{5}$	2	$\frac{1}{7}$	59	0	-20	4
" 20	4	12 40	${ }_{4}^{2}$	37 22	...	37 ..	10 12	${ }_{10}^{53}$	$\stackrel{16}{\ldots}$	$\stackrel{53}{. .}$	12	4	\ldots	...	59	2	-23	8
$\begin{array}{ll}\text { " } & 22 \\ & \\ \\ \end{array}$	7	11	7	\ldots	\cdots		.i.		\cdots		$\because 9$		\cdots	\cdots	59	2	-26	${ }_{6}^{0}$
${ }^{1} 23$	8	${ }_{12}^{42}$	8		\cdots	53	$\left.\right\|_{12} ^{12}$	${ }_{41}^{12}$	18		${ }_{8}^{9}$...		59			5
" 24	${ }_{9}^{8}$	${ }_{12}^{42}$	${ }_{10}^{7}$	${ }^{54}$54 4	2	0	111	${ }_{57}^{42}$	18		${ }_{9}^{10}$	${ }_{2}^{2}$	4	${ }_{3}^{8}$	59	0	-21	6
" 25	9	${ }_{39}^{39}$	9	54	3	54	12	43	19		10	3	${ }_{4}^{5}$	1	58	7	-17	5
" 26	10	05 31 31	9	年44	4	${ }_{24}^{54}$	${ }_{11}^{12}$	${ }_{19}^{15}$	18		11	7	${ }_{3}^{4}$		58	3	-12	4
" 27	110	55 19 19	110	${ }_{5}^{24}$	4	39	${ }_{11}^{12}$	53 59	18	${ }_{23}^{34}$	111	${ }_{8}^{4}$	${ }_{2}^{3}$	${ }_{2}^{4}$	57	8	- 6	7
	11	43	${ }_{11}^{11}$	${ }_{25}^{25}$	5	25	${ }_{11}^{12}$	${ }_{4}^{06}$	\|18 18		10	9	${ }_{2}^{1}$	${ }_{3}^{3}$				
28	\cdots	07	11	${ }^{25}$	${ }_{6}^{5}$	${ }_{25}^{55}$			18		${ }_{12}^{12}$				57	3		8
" 29	0	29 52 5	0	40	${ }_{6}^{6}$	${ }_{25}^{25}$	${ }_{12}^{12}$	${ }_{11}^{33}$	18	${ }_{56}^{18}$	14	¢	-		56	:	$+4$	9
" 30	1	14 14 3	,	55	7	55	13	13 46	19		12		3		56	1	+10	4
" 31	1	36 59 59	0	${ }_{41}^{0}$	7	46	12	${ }_{05}^{46}$	18	20	11	3	1		35	5	+15	3
	2	22	1	56	8	56	11	57	18		13	0	3					
April 4	5	11													54	3	$+26$	1
" 5	${ }_{5}^{5}$	31 01 01	5	${ }^{57}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	12	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	${ }_{06}^{46}$	17	${ }_{06}^{01}$	9	$\begin{aligned} & 3 \\ & 7 \end{aligned}$	5		54	3	+26	1
"	6 6 6	${ }_{52}^{27}$	5 6	42 28	10		$\begin{aligned} & 11 \\ & 12 \end{aligned}$	${ }_{11}^{41}$			${ }_{6}^{6}$	$\begin{aligned} & 9 \\ & 8 \\ & 8 \end{aligned}$	5		54	6	24	8
	7	17 41	8	${ }_{13}^{58} 1$	${ }_{0}^{2}$	${ }_{0}^{28}$	$1 \begin{aligned} & 14 \\ & 12\end{aligned}$	${ }^{166}$	20 17	${ }_{18}^{01}$	6	7	${ }_{5}^{6}$		55	0	+2	3
		07	9		-	28	14	17	19	11	7	5	5	5				
				Sries	SII	I.-F			riu 2			UST	3, 1					
April 19	$\begin{aligned} & 6 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 17 \\ & 45 \end{aligned}$	$\left.\begin{array}{\|c\|} \cdots \\ \cdots \end{array} \right\rvert\,$	$\left.\begin{array}{\|c} \ddot{0 i} \end{array} \right\rvert\,$	\cdots	$\left.\begin{array}{\|c} \cdots \\ \cdots \end{array} \right\rvert\,$	$\begin{aligned} & \cdots \\ & \cdots \\ & \hline \end{aligned}$	\cdots	$\left.\begin{gathered} \cdots \\ 17 \end{gathered} \right\rvert\,$	$\left.\begin{aligned} & \cdots \\ & \cdots, \\ & \hline \end{aligned} \right\rvert\,$	$\left.\begin{array}{\|c\|} \cdots \\ \hline . \end{array} \right\rvert\,$	\cdots			58	8	22	6
" 21	7	$\begin{aligned} & 131 \\ & 41 \end{aligned}$		$\begin{array}{\|l\|} 01 \\ 31 \\ \hline 16 \end{array}$	$\left.\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned} \right\rvert\,$	16 31 31	$\begin{array}{\|l\|l\|} 11 \\ 12 \end{array}$	$\begin{array}{\|l\|l\|} \hline 16 \\ 18 \end{array}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 59 \\ & 46 \\ & 18 \end{aligned}$	$\begin{gathered} 8 \\ 10 \\ 7 \end{gathered}$	$\left.\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\left.\begin{aligned} & 5 \\ & 4 \\ & 4 \end{aligned} \right\rvert\,$	$\left.\begin{array}{r} 1 \\ 5 \\ 0 \end{array} \right\rvert\,$	58	4	-18	7
22	8	107 35 5	8	${ }_{0}^{47}$	1	17	11	${ }^{05}$	17	${ }^{18}$	${ }_{9}^{10}$	4	4		${ }^{57}$	9	-13	8
23	${ }_{9}^{8}$	59 24 1		17	${ }_{3}$	${ }_{02}^{17}$	11	${ }_{18}^{12}$	18		10	${ }_{7}^{8}$	${ }_{4}^{4}$	1	57	4	-8	5
" 24	10	47	${ }_{9}^{19}$	17	4		12		19	${ }^{33}$		${ }^{6}$	${ }_{2}^{1}$	${ }_{5}^{8}$	57	0		6
	10	-32	9	32	4						9		1					
" 25	10	54	\cdots	${ }^{0}$	5	${ }_{04}^{32}$	11	${ }^{30}$	${ }_{18}^{19}$	22	12	2	1	${ }_{8}^{6}$	${ }^{56}$	4	+ 3	1
" 26	11	${ }_{38}^{16}$	\cdots	\cdots	4		$\begin{aligned} & \cdots \\ & i i \\ & \hline \end{aligned}$		17			\cdots	2	$\stackrel{6}{6}$	56	0	+ 8	7
" 27	12	\cdots	1	${ }_{02}^{02}$	${ }_{6}^{6}$	${ }_{47}^{32}$	13	${ }_{24}^{46}$	19		11	0	1	${ }_{0}^{1}$	55	5	+13	8
" 28	${ }_{0}^{0}$	22	-	32	5		12		17		12	2	${ }_{2}^{2}$	${ }_{0}^{2}$	55	0		3
	1	${ }_{0} 9$	\cdots	${ }_{3} 3$	7	03	12	18	18		11	6	2	${ }^{\circ}$				
	${ }_{1}^{1}$	33 56 56	0		5	33 33	$\left\lvert\, \begin{gathered} 11 \\ 10 \\ 10 \end{gathered}\right.$	${ }_{30}^{24}$	18		12	0	${ }_{1}^{2}$	${ }_{5}^{1}$	54	7	+	9

Series III.-From April 20 to August 3, 1854.																		
Date. 1854.	Moon passes the meridiau. Appar. time.		Apparent time of				Lunitidal interval.				IIeight of				Monn's parahax at noon.		Moon's declination at noon.	
			H. w	ater.	L. w	ater.	H. w	ater.	J. w	ater.	II. w	ater.	L. W	ter.				
	II.	M.	H.	M.	11.	M.	H.	M.	II.	M.	Ft .	Dec.	Ft.	Dee.	Min.	Dec.	Degree.	Dec.
June 2	5	09	4	02	10	32	11	15	17	45	9	8	3	7	54	9	+17	6
" 3	5	32	4	47	10	17	11	38	17	08	7	8	4	8				6
\cdots	6	16	\cdots	…	\ldots	\%2	\cdots	\ldots	\cdots	\ldots	9	${ }_{6}$	4	5	55	5	+13	1
" 4	6	38	1.	...	\ldots	8	4	5	2	56			
	7	00	7	32	12	02	12	34	17	$\dddot{24}$	8	6	\cdots	6	56	3	+ 8	0
" 5	7	22	8	02	\ldots	\ldots	13	02	…	\ldots	9	7		.	57	2	+ 2	3
	7	44	9	02	0	32	13	40	17	32	9	2	4	7	5	2	+ 2	3
" 6	8	07	9	02	1	32	13	18	18	10	10	1	6	1	58	2	- 3	6
	8	30 54	8	02	2	32	11	55	18	48	10	4	4	0				
" 7	8 9	54 18	9 9	02	4	02	12	32	19	55	10	2	4	3	59	0	-9	5
" 8	9	44	8	02	3 2	42	12	-13	18	32 53	11	1	3	4				
	10	10	10	01	2	31	12	17	17	53 13	11	1 6	4 1	19 8	59	9	-15	2
" 9	10	38	\cdots	\cdots	.	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	60	6	-20	1
	11	07	?	01	3	01	10	23	16	51	12			\cdots	60	0	-20	1
" 10	11	38	10	01	5	01	10	54	18	23	11	7	2	1	61	1	-23]
	a	\cdots	13	31	6	01	13	53	18	54	11	4	0	(;	61	1	--3)
6 11	0	10	10	31	6	01	10	21	18	23	9	4	1	8	61	2	-26	0
	0	43	13	01	6	31	12	18	18	21	13	2	2	0	61	2	- 0	0
" 12	1	16	11	31	${ }_{6}^{6}$	31	10	15	17	48	10	4	1	6	61	1	-26	2
6 13	12	49	\cdots	\ldots	${ }_{6}^{6}$	31	-..	...	17	15	12	2	0	4				
-	2	52	\cdots	00	8	0	10	39	18.	41 39	\cdots	\cdots	0	2	60	6	- 24	5
" 14	3	24	1	30	7	30	10	38	16	38	12	1	1	6	60		-21	0
	3	53	0	30	8	00	9	06	$1{ }^{1 i}$	36	10	3	1	3	60		-21	0
" 15	4	23	2	30	9	00	10	37	17	07	1.2	3	1	3	59	2	-16	5
	4	49	1	30	8	00	9	07	15	37	8	5	2	3	5	2	-10	0
" 16	5	16	4	0	9	45	11	11	16	51	11	7	2	5	58	3	-11	2
	5	40	2	0	9	00	8	44	15	44	S	9	3	7	\%	3	-1	2
" 17	6	04	3	0	9	00	9	20	15	20	11	4	2	8	57	4	- 5	4
	6	27	2	30	11	29	8	26	17	25	9	3	4	15	\%	4	- 5	4
\% 18	6	49	4	59 59	11	29	10	32	17	02	10	2	3	2	56	7	$+0$	4
" 19	7	11	4	59 59	11	59	10	10	17	10 \ldots	10 10	5 5	5	l		0	+6 +6	0
	7	54	7	29	1	29	11	56	18	18	10	0	4	0	56	0	$+6$	0
" 20	8	16	7	59	2	14	12	05	18	41	9	9	5	2	55	4	+11	3
	8	37	9	29	3	29	13	13	19	35	10	5	4	4		4	+1	3
" 21	8	59	8	59	$\stackrel{2}{2}$	44	13	22	15	28	3	4	5	8	54	9	$+16$	0
	9	24	9	$\stackrel{29}{29}$	2	59	12	30	18	22	13	0	3	0	5	,	+10	0
" 22	9 10	44	9 10	28	2	55	12	06	17	59	\%	9	2	9	54	5	$+20$	1
" 23	10	31	10 9	128	4	58	12	29	19	36	10	6	3	3				
	10	55	11	28	5	43	12	57	19	36	11	0	3 2 2	6 9	54	3	$+23$	2
" 24	11	19	12	13	4	2	13	18	17	57	8	1	3	6	54	1	+25	4
	11	44	10	58	5	28	11	39	18	33	11	3	2	0	54	1	+	\pm
" 25	\cdots	\because	11	58	4	58	12	14	17	39	8	3	2	4	54	0	+26	3
	0	10	\cdots	\cdots	6	58	\cdots	\cdots	19	14	\ldots	..	3	1	54	0	+	3
26	0	35	1	13	4	58	13	03	115	48	12	1	2	0	53	9	+26	0
	0	59	0	57	6	27	12	22	17	52	9	9	2	4				
27	1	24	\because	\cdots	4	57	\cdots	\cdots	15	58	12	3	1	9	54	0	$+24$	6
" 28	1	49 13	0	27	7	27	11	03	18	03	9	8	3	0			+	0
- 28	2	13 37	0	57	7	57	11	08	18	08	11	4	3	2	54	2	+22	1
" 29	3	00	1	57 12	7	27 57	10 10	44 35	17 17	14 20	$\stackrel{9}{9}^{9}$	2	2	5 4 4				
	3	24	1	42	6	27	10	42	15	27	9	1	2	0	, 1	5	$+18$	6
" 30	3	46	3	27	8	57	12	03	17	33	12	3	3	9	54	9	+14	3
	4	08	0	12	7	27	8	26	15	41	9	4	3	8	5	9	$+1$	3
Juiy 1	4	30	4	42	9	57	12	34	17	49	11	6	2	6	55	5	$+9$	4
	4	52	4	57	8	57	12	27	16	27	9	3	5	0				
" 2	5	12	3	26	10	41	10	34	17	49	11	7	2	2	56	2	$+4$	0
	5	33	5	26	11	26	12	14	18	14	7	3	3	8	5	-	$+$	0
" 3	5	55	4	11	10	26	10	38	16	53	9	1	4	8		0	- 1	
	6	17	5	20	10	56	11	21	17	01	9	8	6	9	57	0	-1	7
" 4	6	39	${ }_{6}^{6}$	41	11	11	12	24	16	54	10	2	4	4	57	9	-7	5
	'	02	6	56	12	17		...	9	8		...				

Series III.-From April 20 to August 3, 1854.																		
Date. 1854.	Moon passes the meridian. Appar. time.		Apparent time of				Lunitidal interval.				Height of				Moon's parallax at noon.		Moon's declination at noon.	
			H. water.		L. water.		H. water.		L. water.		H. water.		L. water.					
	H.	M.	Ft .	Dec.	Ft.	Dec.	Min.	Dec.	Degree.	Dec.								
July 5	7	26	6	56	0	26	11	54	17	47	10	1	6	5	58	8	-13	1
	7	51	7	56	1	26	12	30	18	24	10	6	4	3				
06	8	18	7	41	1	56	11	50	18	30	9	4	6	0	59	7	-18	3
	8	45	8	56	1	26	12	38	17	35	11	2	3	9				
	9	14	7	55	2	55	11	10	18	37	9	2	5	6	60	5	-22	5
"	9	43	3	10	18	25	\cdots	\cdots	3	0				
	10	15	\cdots	-..	\cdots	\ldots	61	1	-25	3
" 9	10	47	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	...	\cdots				
	11	20	10	40	4	40	11	53	18	25	8	5	2	4	61	4	-26	3
" 1	12	55	5	25	12	51	18	05	18	4	4	2	61	4	-25	4
	0	27	11	55	5	10	11	28	17	26	13	6	1	2				
" 1	I	(i)	12	25	6	25	11	25	17	58	10	1	1	5	61	0	-22	5
	1	31	12	55	6	10	11	24	17	10	13	3	1	2				
" 1	2	02	11	40	6	55	9	38	17	24	10	1	1	0	60	3	-18	3
" 13	2	31	\cdots	\cdots	7	10	\cdots	\cdots	17	08	\cdots	\cdots	1	2				
" 1	3	00	1	10	7	40	10	39	17	09	13	6	1	0	59	5	-12	9
	3	26	1	25	7	55	10	25	16	55	10	0	2	4				
" 1	3	52	1	55	9	10	10	29	17	44	12	6	1	8	58	5	-7	2
	4	15	2	24	8	54	10	32	17	02	9	2	2	5				
15	4	39	\ldots	57	6	-1	2
"	6	31	\cdots	...	\cdots	\cdots	\ldots	\ldots	...	\ldots	\ldots	\cdots		...			+10	2
	6	53	\cdots	\cdots	\cdots	깐	\cdots	...	55	3	+15	1						
1	7	16	7	24	1	24	12	31	18	53	9	2	4	8				
	7	38	8	54	\cdots	\cdots	13	38	\ldots	\cdots	7	${ }_{6}^{6}$	4	6	54	7	+19	3
" 20	8	01	8	39	1	24	13	01	18	Os	9	3	4					
	8	24	9	54	2	39	13	53	19	01	8	7	5	${ }_{6}$	54	4	+22	6
	\cdots	...	\cdots	...	1	54	17	53	4	5				
$\begin{array}{ll}4 & 2 \\ " & 2\end{array}$	2	04	\cdots	\ldots	\cdots	\cdots	\cdots	...	\cdots	\cdots	\ldots	\cdots	\ldots	...			+15	3
	2	24	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\ldots	\cdots	\ldots	55	2	$+10$	4
	2	48	1	54	7	54	11	28	17	28	8	6	2	0				
" 29	3	09	2	54	8	09	12	06	17	21	12	0	1	7	55	7	$+5$	2
" 3	3	30	3	24	8	54	12	45	17	45	11	3	3	2				
	3	51	2	09	8	24	10	39	16	54	11	1	3	2	56	3	- 0	4
31	4	13	2	54	8	24	11	03	16	33	9	2	4	1				
	4	34	\because	\cdots	\cdots	\ldots	\cdots	…	…	\cdots	10	6	4	1	50	9	-6	1
Aug. 1	4	56	2	39	9	39	10	05	17	05	9	0	4	8				
	5	19	3	24	10	39	10	28	17	43	9	3	4	4	57	7	-11	6
	5	43	4	39	9	54	11	20	16	35	10	5	6	1				
	6	07	4	54	11	09	11	11	17	26	10	5	4	5	58	5	-16	8
" 3	6	32	5	54	\cdots	...	11	47	\cdots	...	9	5	..					
	$\frac{6}{7}$	59 27	8	54 24	1	54	113	22 25	18 18	47 37	8 9	8		7 6	59	3	-21	3
Series IV.-From September 7 to October 22, 1854.																		
Sept. 7	0	23	\cdots	\because	\cdots	\cdots	\cdots	\cdots	...		\cdots	\because		...	59	3	- 5	7
" 8	0	47	11	2	-	\cdots	10	15	\ldots			5		\cdots				.
	1	12	11	2	5	32	9	50	16		14	0	-1	7	58	5	$+0$	5
" 9	1	36 01	\cdots	\cdots	8	112	11	36	18		13	5	0 1	0	57	7	$+6$	6
	2	24	1	32	7	32	11	31	17	31	14	0	-0	5	57	7	+ 6	6
" 10	2	47	1	03	7	33	10	39	17	09	13	0	-1	0	56	9	+12	3
	3	10	2	03	10	03	11	16	19	16	11	0	1	0				
" 11	3	33	2	33	8	33	11	23	17	23	11	0	0	0	56	1	$+17$	2
	3	57	\because	\ldots	9	$0 \cdot 3$	10	0	17	30	10	5	1	5				
" 12	4	22	2	04	8	0.3	10	${ }^{0} 1$	16	04	14	0	0	0	55	4	+21	2
	4	46	4	0.3	8	03	11	41	15	41	10	0	0	0				
" 13	5	38	3	34	8	104	10	18	14	18 53	10 9	0	0 3	0	5	8	+24	2
	6	110	2	04	8	29	...		7	0	54	5	$+26$	1
	\%	25	\cdots	...	\cdots	\cdots	\cdots	\cdots	\ldots					
" 15	$\frac{6}{7}$	17	\ldots	\ldots	\cdots			$+26$	7

$\begin{gathered} \text { Date. } \\ 1854 . \end{gathered}$	Series IV.-From September 7 to October 22, 1854.																	
	Moon passes the meridian. Appar, time.		Apparent time of				Lunitidal interval.				Height of				Monn's parallax at noon.		Moon's declimation at noon.	
			H. water.		L. water.		H. water.		L. water.		I. water.		L. water.					
	H.	M.	H.		H.	M.	H.	M.	H.	M.	Ft .	Dec.	Ft.	Dec.	Min.	Dec.	Degree.	Dec.
Supt. 16	7	43 18	\cdots	...	11	35	\cdots	...	16	18	\cdots	\cdots	5	0	54	2	+26	1
" 17	8	34	7	06	1	30	\ldots	\%8	17	5. 5	10 9	0	\cdots	0	54			
	8	58	8	06	0	06	11	32	15	58	10	4	5	0	04	3	+24	4
" 18	9	22	\cdots	...	4	06	\cdots	\cdots	19	32	9	0	5	0	54	5	+21	5
	9	47	10	06	3	06	12	44	18	08	12	0	5	0		5	+	\checkmark
" 19	10	09	8	36	4	36	10	49	19	14	10	0	5	0	54	9	$+17$	7
	10	33	11	06	6	06	12	57	20	19	12	6	5	0			+17	7
" 20	10	55	\ldots	\ldots	5	07	...	\cdots	18	58	\ldots	\cdots	2	0	55	3	$+13$	1
" 21	11	17	11	07	4	07	12	12	17	34	13	0	2	0				
	1	39	11	\bigcirc	5	07	11	50	18	12	11	5	4	0	55	8	$+7$	8
6 22	12	00	\ldots	\cdots	5	07	11	2s	17	50	14	O	0 2	0	56			
	0	22	0	07	5	07	12	07	17	07	13	0	1	0	56	4	$+2$	2
" 23	0	45	1	08	6	08	12	46	17	46	12	0	-0	7	56	9	- 3	
	1	07	0	08	6	38	11	23	17	53	13	0	0	0				6
6 24	1	29	1	08	7	08	12	01	18	01	11	0	2	0	57	4	-9	5
	1	52	0	08	7	08	10	39	17	39	13	0	1	0				
6 2	2	15	2	08	8	08	12	10	18	16	14	0	0	0	57	9	-14	9
	2	39	1	08	8	08	10	53	17	53	13	0	0	0				
" 2	3	06	1	09	7	09	10	30	16	30	13	0	0	0	58	3	-19	7
	3	32	2	09	8	09	11	03	17	03	13	0	0	0				7
62	3	59	2	09	8	09	10	37	16	37	12	0	-1	0	58	G	-23	5
6 28	4	27	3	09	8	09	11	10	16	10	13	0	0	0	5	6	-23	5
" 2	4	56	3	09	8	09	10	42	15	42	13	0	1	0	58	9	-26	0
	5	25	4	09	9	09	11	13	16	13	12	0	2	0				0
6 2	5	57	2	10	10	10	8	45	16	45	10	0	2	0	59	2	-26	S
	6	28	4	10	9	10	10	13	15	13	11	5	3	0			-	S
" 30	6	59	4	10	11	10	9	42	16	42	9	0	3	0	59	4	-25	8
	7	30	5	40	12	10	10	41	17	11	10	0	4	5			-	8
Oct. 1	*..	...	\cdots	\cdots	\ldots	59	5	-23	3
" 3	10	20						\cdots										
	10	45	9	41	\cdots	\cdots	II	21	\cdots	\cdots	10	\cdots	\cdots	\cdots			-14 -8	2 3
	11	10	11	11	4	41	12	26	18	21	14	0	\cdots	0	59	0	- 8	3
"	11	36	12	12	4	11	13	02	17	26	13	0	-1	2	58	6		0
	11	59	11	42	5	12	12	06	18	02	14	0	-2	0	5	6	- 2	0
	0	22	12	12	5	12	12	13	17	36	12	0	-1	0	57	9	$+4$	3
	0	$\dddot{46}$	11	12	7	12	10	50	19	13	14	0	-0	5			F	3
	0	46	\cdots	\cdots	${ }^{6}$	42	\cdots	\because	18	20	\ldots	...	1	0	57	3	$+10$	2
	1	09	0	12	5	42	11	26	16	56	14	0	0	0	57	3		2
"	1	33	0	12	8	12	11	03	19	03	14	0	-1	0	56	6	$+15$	5
	1	57	0	43	7	13	11	10	17	40	13	0	0	0		6	+15	5
*	2	21	0	13	6	43	10	16	16	46	10	0	0	0	55	9	$+20$	
	2	45	2	13	8	13	11	52	17	52	14	0	0	0		0	+	0
\% 1	3	10	1	13	6	13	10	28	15	28	13	0	0	0	55	3	$+23$	4
	3	35	2	13	8	13	11	03	17	03	14	0	0	5			+23	4
6 1	4	00	1	13	8	13	9	38	16	38	10	0	0	0	54	8	+25	7
12	4	25	1	13	8	13	9	13	16	13	14	0	2	0	at	8	+	7
	4	51	2	13	8	13	10	48	15	48	14	5	2	0	54	5	$+26$	8
	5	17	3	44	9	14	10	53	16	23	14	0	4	0	54	\checkmark	+	δ
$\begin{array}{ll} " & 1 \\ " & 1 \end{array}$	6	58	\cdots	\ldots			\cdots	...	\cdots				...					
615	7	23	\ldots	\ldots	11	14	\cdots	\cdots	16	16	70	0	\cdots	\bigcirc	54	3 4	+25 +22	3
${ }^{6} 1$	7	47	8	14	11	14	12	51	15	51	10	0	5	0	$\pm \pm$	4	+22	7
	8	01	\cdots	\cdots	\cdots	\cdots	...	\cdots	\cdots	54	8	+19	2
، 1	8	34 54	$\dddot{10}$	$\dddot{15}$	\cdots	10.	…	71	19	…	70	\cdots	\cdots	\cdots				
- 17	8	19	10 10	15 15	3 3	15 15	13 13	41 18	19	14	10	0	3 3	0	55	2	$+14$	8
" 18	9	41	9	15	3	15	11	56	18	18	11	0	3	0	55	7	$+9$	7
	10	02	9	15	3	45	11	34	18	26	12	0	2	0	5	7	$+9$	7
" 19	10	24	9	15	4	15	11	13	18	34	12	0	0	0	56	4	$+4$	2
	10	46	\cdots	\cdots	3	45	\cdots	...	17	43	11	0	1	0	5	4	+ 4	2
* 20	11	08	11	15	5	15	12	29	18	51	12	0	1	0	57	0	-1	6
	11	30	12	15	4	15	13	07	17	29	11	0	0	0	5	0	- 1	6
" 21	11	53	11	45	4	15	12	15	17	07	12	0	0	0	57	7	-7	6
" 22		\cdots	11	15	5	15	11	22	17	45	12	0	0	0	57	7	- 7	6
	0	17	11	45	4	15	11	28	16	22	13	0	0	0	58	3	-13	4
	0	41	11	45	5	15	11	04	16	58	13			0	5	3	-13	4

The second form, or Table No. 2, for reduction of tides, is specially arranged to obtain the establishment and the half-monthly incquality in time and height. The first part is arranged in reference to the observed high waters; the second part, in reference to the low waters. That the inequality in time and height should also be made out from the low water, is specially important for stations where either the observations are of short extent, or else where difficulties tend to render the observations less accurate. The discussion of the low waters could not be omitted in our case. The headings to the columns of Table No. 2, explain the arrangement sufficiently. The results from the upper and lower transit of the moon are kept scparate. (It need hardly be remarked that, in certain months, the sun's or moon's lower transit can be observed at Van Rensselaer Harbor.)

Table for the Reduction of Tides.-No. 2.
Showing the Interval between the App. Time of the Moon's Superior Transit and the Time of High Water, and also the Heights of High Water, at Van Rensselaer Harbor, from Four Serics of Observations made between October 10, 1853, and October 22, 1854.

Table for the Reduction of Tides -No. 2.
Showing the Interval between the App. Time of the Moon's Superior Transit and the Time of High Water, and also the Heights of High Water, at Van Rensselaer Harbor, from Four Series of Obserrations made between October 10, 1853, and October 22, 1854.

$3^{\text {h }}$ to $4^{\text {h }}$.							$4^{\text {h }}$ to $5^{\text {h }}$.							$5^{\text {h }}$ to $6^{\text {h }}$.																		
Muon's transil		Lunitidas interval.		Meight of 11. water.			$\begin{aligned} & \text { Moon's.s.s. } \\ & \text { rransit. } \end{aligned}$		Lunitidal interval.		IIeight of II. water.			Moon'stransit.			Lunitidal interval.		Height of II. water.													
H.	M.	н.	M.	Ft.	Dec.		H.	M.	H.	M.	Ft.	Dee.			H.	M.	H.	M.	Ft.	Dec.												
	12	12	13	11	1		4	00	11	16	1	4			5	42	12		9	7												
3	19	9	57	111	1		4	51	11	25	10	4			5	23	10	23	8	2												
3	13	10	10 51	18	${ }_{3}^{5}$	1.	4	24	10	($\begin{aligned} & 39 \\ & 20\end{aligned}$	9 10	1	I.		5 5	14	10 10	29 09	$\begin{array}{r} 10 \\ 6 \end{array}$	1	1.											
3	46	11	11	10	4		4	13	10	36	9	1			5	52	12	46	6	8												
							4	32	11	14	11	5			5	17	11	14	11	6												
	${ }_{14}^{32}$	12	29	10	${ }^{0}$		4	16	11	45	8				5	00	11	46	9	2												
	38	11	25	11	1	II.	4	00	10	14	10	2	II.		5	43	12	${ }_{3}$	10	5												
	4	10	53	10	7		4	49	10	27	10	7	11.		5	42	10	04	10	7	II.											
	34	10	59	12	4			23	11	25	9	2			5	$\begin{aligned} & 09 \\ & 56 \end{aligned}$	11 10	09 53	10 8	5 8	11.											
	38	10	56	10	4		4	25	11	23	,	${ }^{1}$			5	36	12	06	9	7												
	${ }^{19}$	12	19	11	5 0		4	41	10	$\begin{aligned} & 18 \\ & 15 \end{aligned}$	10 9	${ }_{6}^{6}$			5		11		10	5												
	24	9	106	10	3	III.	4	23	9	107	8	5	III.		5		10	09	9	6												
	24	12	${ }^{13}$	12	3		4	118	12	34	11	6	11.		5		...		9	6												
	${ }^{60}$	10	25	10	\because		4	52	10	34	11	7			5		8	4	8	9	m.											
	$\left\lvert\, \begin{aligned} & 52 \\ & 30 \end{aligned}\right.$	10	32	${ }_{11}^{9}$	1		4	13	10	28	10	${ }^{6}$			- 5	33	10		9	1												
	33	10	\cdots	10	0		,	22	11	41	10	0			5		10		9.	0	IV.											
		10 11	37 03	12	0	IV.	4	27	10 9	42	13 14	0 0	IV.		5		8		10°	0	IV.											
							4	51	10	53	14	${ }_{0}$																				
										MEA	NS.																					
	30	10	57			19	4	27	10	52			21		5		10				19											
	29	...		10	9	21	4	27	10	5	22		5	27	9	5	20											
The hichest and lowest value of the interval batanee nearly.														The criterion rejects no value of the interval, the two high and two low values balance nearly.																		

Table for the Reduction of Tides.-No. 2.

Showing the Interval between the App. Time of the Moon's Superior Transit and the Time of High Water, and also the Heights of High Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, and October 22, 1854.

$6^{\text {h }}$ to $7^{\text {h }}$.							$7^{\text {h }}$ to $8^{\text {h }}$.							$8^{\text {h }}$ to $9^{\text {h }}$.						
		Lunitidal interval. II. water.		Height of H. water.							Height of H. water.					Lunitidat interval. II. water.		Meight of 1I. water.		
	M.	H.	M.	Ft.	Dec.		H.	M.	II.	M.	Ft.	Dee.		H.	M.	H.	M.	Ft.	Dee.	
6	28	13	45	8	0 5		7	26	12	32	6 9	$\begin{aligned} & 7 \\ & 2 \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$	22	11	51	7	8	
6	21	10	55	7	8		7	14	12	02	8	2	I	8	59	12	47	10	8	
6	01	10	42	9	9	I.	7	34	11	23	10	3	I.	8	02	12	44	9	8	
6	45	11	55	9	5	1.	7	22	13	15	11	2		8	48	13	13	9	5	I.
6	38	11	45	7	6		7	34	11	56	7	3		8	20	12	07	9	9	
${ }^{6}$	01	10	29	8	8									8	04	$\begin{array}{\|l\|} 13 \\ 13 \end{array}$	33	11	1	
	47	11	43				7	$\begin{aligned} & 14 \\ & 40 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 32 \\ & 06 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \end{aligned}$		8	23		51	9	2	
66	28	13	48	9	5	II.	7	42	12	41	8	5	1.							
	27	12	01	8	8		7	17	12	56	8	5		8	$\begin{aligned} & 02 \\ & 50 \end{aligned}$	13	$\begin{aligned} & 59 \\ & 25 \end{aligned}$	9	$\frac{5}{7}$	
6666	45	11	16	8	1		7	41	12	05	7	2		8	41	12	05	8	9	II.
	34	11	45	10	2		7	38	10	56	8	9		8	28	13	21	9	9	
	16	\ldots	\ldots	9	4		7	24	13	10	8	7		8	42	13	57	9	2	
	04	8	26	10	3	III.	7	00	13	18	9	7								
	49	10	10	10	5	III.	7	4	13	18	10	1	III.	8	35	13	12	9	8	
	17	12	24	10	2		7	33	11	56	10	0		8	25	12	09	11	5	
	53 32	11	31 22		${ }_{8}^{2}$		7	51	11	54 50	10 9	1		8	55	12	(1)	9	3	
${ }^{6}$							7	38	13	01	9	3		8	30	12	32	10	2	III.
	28	9	42	9	${ }^{0}$	IV.								8	19	12	30	13	${ }_{0}$	
							7	23	12	51	10	0	IV.	8	45	11	10	9	2	
														8	34 57	${ }_{13}^{11}$	32	10	0	IV.
means.																				
6	($\begin{aligned} & 30 \\ & 29\end{aligned}$	11	35 ..	9	1	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	7	$\begin{aligned} & 28 \\ & 29 \end{aligned}$		26 \cdots	9	\cdots	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	8	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	12	42	9	9	24
Peirce's criterion rejects the value $8^{\mathrm{h}} 26^{\mathrm{m}}$, new mean-																				
6	31	11	45	17														

Table for the Reduction of Tides.-No. 2.

Showing the Interval between the App. Time of the Moon's Superior Transit and the Time of High Water, and also the Heights of High Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, and October 22, 1854.

Table for the Reduction of Tides．－No． 2.
Showing the Interval between the App．Time of the Moon＇s Inferior Transit and the Time of IIigh Water，and also the Heights of High Water，at Van Rensselaer Harbor，from Four Series of Observations made between October 10，1853，and October 22， 1854.

0^{h} to $1^{\text {b }}$ 。							$1^{\text {h }}$ to $2^{\text {h }}$ 。							$2^{\text {h }}$ to $3^{\text {h }}$ 。							
Mon＇s transit．		Lunitidal interval		Height of H．water．			Moon＇s transit		Lunitidal		Height of H．water．			Morn＇s transit．		Lumitidal interval		Height of H．water．			
App．time．		H．water．					App．time		H．water．				App．time	II．water．							
H．	M．	H．	M．	Ft．	Dec．		H．	M．	H．	M．	Ft．	Dec．		H．	M．	II．	M．	Ft．	Dee．		
0	35	11	10	10	7		1	18	11	12	11	5			2	02	11	13	11	5	
0	48	11	28	14	3		1	46	11	45	14	2		9	48	10	42	9			
0	44	11	01	10	9		1	31	11	14	13	7	I．	2	20	10	54	9	8	I．	
0	21	11	50	12	8	1.	1	25	11	45	13	6		2	30	11	25	12	8		
0	06	11	58	12	5		1	44	11	19	．．．	．．．		2	34	11	29	．．．	．．．		
0	55	11	39	7	5		1	27	11	49	13	9		2	20	10	56	13	7		
0	31	11	31	13	3		1	21	11	10	11	8		2	06	10	10	13	1		
0	33	10	12	10	6		1	45	11	47	12	9	II	2	51	12	25	12		11.	
0	07	11	40	12	7		1	38	11	58	12	0	11.	2	31	11	02	13	0		
0	57	11	35	13	0	II．	1	14	10	46	13	5		2	26	11	26	12	1		
0	06	12	15	11	2		1	59	11	57	13										
0	52	11	44	10	5									2	20	10	13	11	3		
0	29	12	11	14	5		1	33	10	30	12	0		2	01	10	48	13	9		
							1	0	10	${ }_{59}^{04}$	13	${ }_{7}^{6}$		$\stackrel{2}{2}$	44	11	$\begin{aligned} & 34 \\ & 38 \end{aligned}$	${ }^{8}$	5	UL	
0	10 45	12	32 18	12	${ }_{6}^{2}$		1	54	10	54	8	5	III．	${ }_{2}^{2}$	13	10	44	${ }_{9}$	2	\％．	
0	02	11	32	13	1		1	49	，	．．．	12	2		2	31	10	39	13	6		
0	15	10	33	9	7	HII．	1	24	11	03	9	8		2	26	11	28	8	6		
0	43	12	18	13	2		1	31	11	24	13	3									
0	35	12	22	9	9											10					
0	27	11	28	13	6		1	$\left\lvert\, \begin{aligned} & 36 \\ & 29 \end{aligned}\right.$	11	56 39	13	$\begin{aligned} & 5 \\ & 0 \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 15 \\ & 45 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{array}{\|l\|l} 53 \\ 28 \end{array}$	13	0 0	1 V	
0	47	10	15	14	5		1	09	11	03	14	0	IV．								
0	00	12	07	13	0		1	57	10	16	10	0									
0	45	11	23	13	0	IV．															
0	$\frac{22}{17}$	11	$\begin{aligned} & 50 \\ & 28 \end{aligned}$	$\begin{aligned} & 14 \\ & 13 \end{aligned}$	${ }_{0}^{0}$																
MEANS．																					
		11	34						11	13										20	
0	29	1	\cdots	12	2	25	1	31	．．．	．．．	12	3	21	2	27	1	．．．	11	8	19	

Table for the Reduction of Tides.-No. 2.

Showing the Interval between the App. Time of the Moon's Inferior Transit and the Time of High Water, and also the Heights of High Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, and October 22, 1854.

Table for the Reduction of Tides.-No. 2.

Showing the Interval between the App. Time of the Moon's Inferior Transit and the Time of High Water, and also the Heights of High Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, and October 22, 1854.

Table for the Reduction of Tides.-No. 2.

Showing the Interval between the App. Time of the Moon's Inferior Transit and the Time of High Water, and also the Heights of High Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, and October 22, 1854.

9^{h} to 10^{h}.				10^{h} to $1 \mathrm{l}^{\mathrm{h}}$.							$11^{\text {b }}$ to $12^{\text {b }}$.						
Monn's transit.	Lunitidal interval.	Heisht of H. water				Lunitidal interval. H. water.		Height of II. water.			Moon's transit.		Lunitidal interval.		Height of II. water.		
H. M.	H. M.	Ft. Dee.		н.	M.	H.	M.	Ft.	Dec.		H.	M.	H.	M.	Ft. D	Dec.	
9 9 37	1237	10 9		10	24	12	20	11	3		11	01	12	30	12	0	
923	$12 \quad 23$	$10 \quad 7$		10	11	13	50	11	${ }^{6}$		11	52	11	54	12	3	
		118		10	34	12	41	11	0	I.	11	15	11	30	9	8	I.
9 52 9 12	$\begin{array}{ll}11 & 54 \\ 11\end{array}$	11.5	I.	10	24 31	13	17 4	$\begin{array}{r}13 \\ 8 \\ \hline\end{array}$	8		111	59 20	12	${ }_{36}^{01}$	13 13	0	
9 33 9	$12 \quad 39$	12							6		$\begin{aligned} & 11 \end{aligned}$	$\begin{aligned} & 20 \\ & 17 \end{aligned}$	11	$\begin{aligned} & 36 \\ & 48 \end{aligned}$	$\begin{array}{r} 13 \\ 8 \end{array}$	7	
9 106 9 49	12 31 13 17	${ }_{9} 98$		10	06	13	39	6									
9 9 46	12. 27	11 6		10	57	12	48	7	7		11	30	12	47	12	4	
				10	15	12	02	11	2	II.	11	46	11	29	8	4	1.
9815	$12 \quad 30$	$7 \quad 2$		10	05	11	19	11	7		11	13	13	34 42	11	9	
$9 \quad 12$	1205	10.3	II.	10	55	11	59	11	9		11	43	11		12	0	
		10		10	32	11	30	12	2		11	16	12	46	12	0	
		11 1		10	19	13	45	11	8		11	09	11	40	13	7	
983	$11 \quad 31$	94		10	43	11	35	10	0	HI.	11	28	13	17	${ }^{9}$	7	III.
${ }_{9}^{9} 16$	$10 \quad 48$	11 9 9	111.	10	38	10	23	12 8 8	$\stackrel{9}{5}$,	11	38 $4+$	13	53	11	${ }_{3}^{4}$	
9 59 9 $4 \pm$ 	$\begin{array}{ll}10 & 49 \\ 12 & 17\end{array}$	$\begin{array}{rr}9 & 9 \\ 11 & 6\end{array}$		10	$\begin{aligned} & 17 \\ & 55 \end{aligned}$	113	21 18	8	$\stackrel{5}{1}$		11		12	20	12	5	
9 - 22	12.06	9 9															
47	10×49			10 10	$\left\lvert\, \begin{aligned} & 45 \\ & 02 \end{aligned}\right.$	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 26 \\ & 13 \end{aligned}$	14 12	0	IV.	11	$\begin{aligned} & 17 \\ & 36 \end{aligned}$	11	${ }_{0}^{50}$	114	5 0	IV.
9 19	1156	110	IV.	10	46	12	29	12	0		11	31	12	15	12	0	
means.																	
9 30 9 30	12 03 $\ldots .$.	10 \ldots 4	19 19	10 10	29 29	12	18 ...	10	9	$\begin{aligned} & 19 \\ & 19 \end{aligned}$	111	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	12	16	11	5	19 19
There being three low and but one high value in the interval, it seemed preferable to adopt a mean resulting after the rejection of 10^{h} 48 ${ }^{\mathrm{m}}$, viz:																	
9 30	$12 \mid 07$	\| ... ${ }^{\text {... }}$	18														

Table for the Renuction of Tines.-No. 2.

Showing the Interval between the App. Time of the Moon's Superior Transit and the Time of Low Water, and also the Heights of Low Water, at Van Rensselaer Harbor, from Four Serics of Observations made between October 10, 1853, and October 22, 1854.

$0^{\text {b }}$ to $\mathbf{1}^{\text {h }}$.							1^{14} to $2^{\text {n }}$.							$2^{\text {l }}$ to $3^{\text {h }}$.						
Moon"s transit.		Lunitidal interval.		Height of L. water.			${ }_{\substack{\text { Moon's } \\ \text { transit. }}}^{\text {cher }}$	time.	Lunitiont interval.		Height of L. water.					Lunitidal interval.		Height of L. water.		
H.	M.	II.	M.	Ft.	Dec.		H.	M.	I.	M.	Ft.	Dec.		II.	M.	H.	M.	Ft.	Dee.	
0	13	17	02	1	5		1	40	17	35 00	1	9		$\stackrel{2}{2}$	16	18	35 45	2	7	
0	19	17	43	1	0 9		1	16	17	38	3	1		2	44	17	30	2	3	I.
0	21	18	54	3	1	I.	1	55	18	20	1	2	1.	2	58	17	04	...		
0	53	17	17	-2	1		1	58	17	12	-0	4								
0	30	18	49	1	6		1	20	15	58	0	6		${ }_{2}^{2}$	45	$\begin{aligned} & 18 \\ & 17 \end{aligned}$	$\left\lvert\, \begin{aligned} & 01 \\ & 47 \end{aligned}\right.$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3 3 3	
0	01	18	13	1	3		1	01	17	(0)	0	5		2	19	17	39	2	5	
0	10	17	15	4	1		1	55	17	21	-0	3		2	53	17	25	2	5	n.
0	58	18	18	,	6		1	44	18	(2)	4	1	II.	2	12	18	19	,	2	
0	33	17	44	0	1	II.	1	22	17	40	0	5	11.	2	52	17	15	3	1	
0	29	19	37	2	7		1	15	17	21	3	0								
0	07	18	18	3	5		1	36	18	20	1	5		2	45	18	18	0		
0	52	19	03	3	3			09	18		2	1		2	19	17	59	$\stackrel{0}{2}$	5	
0	22	16	41	2	0		1	56	15	37		9		2	21	17	39	1	1	III.
0	30	16	49	1	3		1	30	16	49	0	8		2	37	17	20	3	,	
0	39	18	09	1	6		1	29	17	34	1	5	III.	2	02	17	08	1	2	
0	10	18	21	2	0	IIf.	1	16	17	15	0	4		2	48	17	21	1	7	
0	10	16	48	2	0		1	49	18	08	1	${ }_{2}^{2}$								
0	59	15	58	1	9		1	00	17	10	1	2		2	101	17	16	${ }^{0}$	5	
												0		2	39	16	30	0	0	IV.
0	46	16	56	0	0	IV.	,	07	18	01	2	0	IV.	2	21	17	52	0	${ }^{0}$	
							1	${ }_{32}^{52}$	18	$1 \begin{aligned} & 16 \\ & 40\end{aligned}$	0									

means.

Table for the Reduction of Tides.-No. 2.

Showing the Interval between the App. Time of the Moon's Superior Transit and the Time of Low Water, and also the Heights of Low Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, and October 22, 1854.

Table for the Reduotion of Tides.-No. 2.
Showing the Interval between the App. Time of the Moon's Superior Transit and the Time of Low Water, and also the Heights of Low Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, and October 22, 1854.

Table for the Reduction of Tides.-No. 2.
Showing the Interval between the App. 'Time of the Moon's Superior Transit and the Time of Low Water, and also the Heights of Low Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, and October 22, 1854.

9^{h} to 10^{h}.							10^{h} to $11^{\text {h }}$.							$11^{\text {h }}$ to $12^{\text {h }}$.								
Moon's transit. App. time		Lunitidal interval. L. water		Height of L. water.			Moon's transit.		Lunitidal interval.		Height of L. water.			Moon's transit.		Lunitidal interval.		Height of L. water.				
		App. time	L. water.		App. time.		L. water.															
н.	M.			H.	M.		Ft.	Dec.	H.	M.	H.	M.		Ft.	Dec.	H.	M.	II.	M.		Ft.	Dec.
9	12	18	47			3	1		10	02	17	57	${ }^{2}$	7		11	26		20	${ }_{3}^{2}$		
9	47	17	59	2	9 8			10	315 13	20	${ }_{0} 4$	2	5		11	50	17	51	-1	2	I.	
9	31	18	10	3 2 2	2	I.	10	54	15	36	2	9	1.	11	41	18	23	5	5			
,	58	18	43	0	7		10	51	17	50	0	1										
9	27	19	19	2	8		10	10	18	25	2	8		11	22	19	08	,	3			
9	18	18	10	1	9		10	54	19	11	2	4		11	41	17	21	0	4	II.		
		19	34				10	58	18	19												
9	45	17	52	2	8	II.	10	32	18	13	1	8	II.	11	38		09	1				
9	39	15	45	3	8		10	45	18	$\begin{aligned} & 02 \\ & 23 \end{aligned}$	$\stackrel{1}{2}$	-		11	${ }^{35}$	17	58	2	7			
	24		0 os	2										11	51	18	27	2	4	III.		
9	10	18	09	1	8		10	10	19	22	1	${ }^{6}$		11	07	18	54	${ }^{0}$	6			
9	56	17	38	2	2		10	54	17	08	2	${ }_{6}^{6}$		11	19	17	39	2	4			
9	38	19	10	4	0	11.	10	43	18	21	1	3		11	54	17	26	1	2			
9	18	17	13	1	8		10	21	18	42	2	0	III.									
9	44	18	14	3	6		10	10	16	51	1	4		11	39	17	28	${ }_{2}^{2}$	0			
9	$\begin{aligned} & 22 \\ & 41 \end{aligned}$	19	$\begin{aligned} & 14 \\ & 34 \end{aligned}$	50	0	IV.	10	47	17	38	1	2		11	59	19	13	-0	5	IV.		
									18					11	53	16	22	0	0			
							10	55	18	12	4	0	IV.									
							10 10		18	21	0	0										

MEANS.

9	32	18	28	\ldots	\ldots	18	10	32	18	19	\ldots	\ldots	22	11	32	18	01	\ldots	\ldots	19
9	32	\ldots	\ldots	2		18	10	32	\ldots	\ldots	1	9	22	11	32	\ldots	\cdots	1	3	19

Table for the Reduction of Tides.-No. 2.

Showing the Interval between the App. Time of the Moon's Inferior Transit and the Time of Low Water, and also the Heights of Low Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, and October 22, 1854.

Table for the Reduction of Tides.-No. 2.
Showing the Interval between the App. Time of the Moon's Inferior Transit and the Time of Low Water, and also the Heights of Low Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, and October 22, 1854.

Thble for the Reduction of Tides.-No. 2.

Showing the Interval between the App. Time of the Moon's Inferior Transit and the Time of Low Water, and also the Heights of Low Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, and October 22, 1854.

Table for the Redlction of Tides.-No. 2.
Showing the Interval between the App. Time of the Moon's Inferior Transit and the Time of Low Water, and also the Heights of Low Water, at Van Rensselaer Harbor, from Four Series of Observations made between October 10, 1853, to October 22, 1855.

The preceding tables (No. 2) contain the individual and mean values for interval and height, for high and low water, and the moon's upper and lower transit. The mean, in some cases, was improved by the application of Peirce's criterion for the rejection of doubtful observations; a few other rejections were made, as stated, in order to obtain a well-balanced mean; of 982 observations of the interval, but 17 were thus rejected.

Half-monthly Inequality.-For the comparison of the observed with the theoretical values, it is customary to use the forms of the equilibrium theory or of the wave theory, ${ }^{1}$ certain modifications being necessary to produce an agreement between these theories with observation. According to the equilibrium theory the formula for the position of the pole of the tidal spheroid is:

$$
\operatorname{tan.2} 2 \theta^{\prime}=-\frac{h \sin .2 \phi}{h^{\prime}+h \cos .2 \dot{\phi}},
$$

where h and h^{\prime} are the elevations of the spheroid due to the sun and moon respectively, ϕ the angular distance of the moon from the sun and θ^{\prime} the angular distance of the pole of the spheroid (or of high water) from the moon's place. In reality, however, the pole of this spheroid follows the moon at a certain distance, the mean value λ ' of which is known as the "mean establishment" (also fundamental hour, corrected establishment), and which corresponds to a distance of the sun and moon of $\phi-\alpha$ instead of ϕ. This retroposition of the theoretical tide has been called the age of the tide. For the comparison of the observed and computed values for the half-monthly inequality in time, we have the formula: ${ }^{2}$

$$
\tan 2\left(\theta^{\prime}-\lambda^{\prime}\right)=-\frac{h \sin .2(\phi-\alpha)}{h^{\prime}+h \cos .2(\phi-\alpha)^{\prime}}
$$

This inequality goes through its period twice in each month. Proper values have to be found for the ratio $\frac{h}{h^{\prime}}$ and the angle α.

The observations of 480 high waters furnish us with the following values, derived from the preceding tabulation on form No. 2:-

[^8]| From © ${ }^{\text {cs }}$ upper transit. | | | From C's lower transit. | | | From © ${ }^{\text {d }}$ upper and lower transit. | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Apparent solar time of moon's transit. | Lamitilnal interval. | No. of observations. | Apparent solar time of moon`stransit. | Lunitidal interval. | No. of observations. | Apparent solar time of moon's transit. | Lunitidal interval. | No. of observations. |
| (1) 290 | $11^{1 / 10}$ | 18 | $0^{4} \quad 29$ | $11^{\mathrm{h}} 34^{\mathrm{m}}$ | 25 | $0^{\text {¢ }} 29{ }^{\text {m }}$ | $11^{\text {b }} 37{ }^{\text {m }}$ | 43 |
| 129 | 1112 | 22 | 131 | 1113 | 21 | 130 | 1112 | 43 |
| 232 | 11114 | 20 | $2 \quad 27$ | 1659 | 20 | 230 | 1101 | 40 |
| 330 | 11157 | 19 | 331 | 1040 | 26 | 330 | 1047 | 45 |
| 427 | 10 52 | 21 | 433 | 1101 | 20 | 430 | $10 \quad 56$ | 41 |
| $5 \quad 27$ | 105 | 19 | 530 | 1104 | 17 | $5 \quad 29$ | $10 \quad 58$ | 36 |
| (6)31 | 1145 | 17 | 633 | $12 \quad 13$ | 19 | 632 | 1159 | 36 |
| 7 20 | $12 \quad 26$ | 20 | 733 | 1228 | 18 | 730 | $12 \quad 27$ | 38 |
| \& 32 | 1242 | 24 | 829 | 124 | 21 | 830 | 1243 | 45 |
| $9 \quad 32$ | 1236 | 18 | 930 | 1207 | 18 | 931 | 1222 | 36 |
| 1032 | 1223 | 20 | $10 \quad 29$ | 1218 | 19 | 1030 | 1221 | 39 |
| 1132 | 1217 | 19 | 11 28 | 1216 | 19 | 1130 | 1216 | 38 |
| $\left.\begin{array}{c}\text { Mean and } \\ \operatorname{sum}\end{array}\right\}$ | 1144 | 237 | $\left.\begin{array}{c}\text { Mean and } \\ \text { sum }\end{array}\right\}$ | 1143 | 243 | $\underset{\text { sum }}{\substack{\text { Mean and } \\ \text { sum }}}\}$ | 1143.3 | 480 |

The mean establishment resulting from the observed times of 480 high waters at Van Rensselaer Harbor is therefore $11^{\mathrm{h}} 43.3^{\mathrm{m}}$, referred to the moon's transit immediately preceding and corresponding to a mean horizontal parallax of the moon and sun, and to the moon's and sun's declination of 16° nearly. The mean interval corresponds to the moon's transit of $0^{\mathrm{b}} 21^{\mathrm{m}}$ nearly, indicating that the epoch would have come out $0^{\mathrm{b}} 0^{\mathrm{m}}$ if transit E (see An Elementary Treatise on the Tides, by J. W. Lubback, Esq., London, 1839) or that immediately preceding transit F had been used.

In like manner we obtain the following table from the observed times of 485 low waters at Van Rensselaer Harbor:-

From © ${ }^{\text {c }}$ upper transit.			From © $\mathbb{C}^{\text {'s lower transit. }}$			From © $\mathbb{C}^{\text {'s upper and lower transit. }}$		
Apparent solar time of moon's transit.	Lunitidal interval.	No. of observations.	Apparent solar time of moon's transit.	Lunitidal interval.	No. of observations.	Apparent solar time of moon's transit.	Lunitidal interval.	No. of observations.
(1) 3112x	$17^{11} 404$	21	Oh $30 \times$	17850m	24	$0^{4} \quad 30 \mathrm{~m}$	$17^{\text {a }} 50{ }^{\text {m }}$	45
1 28	$17 \quad 39$	22	134	1758	20	$1 \quad 31$	1748	42
231	1743	21	228	$17 \quad 15$	20	230	1729	41
3 28	17 (14	20	$3 \quad 31$	1656	26°	330	1659	46
427	16 52	21	434	$16 \quad 45$	18	430	1649	39
$5 \quad 27$	1702	16	530	$16 \quad 59$	17	$5 \quad 29$	1700	33
625	17 42	16	$6 \quad 30$	$17 \quad 39$	21	$6 \quad 30$	1740	37
729	$18 \quad 24$	20	$7 \quad 29$	1810	20	$7 \quad 29$	$18 \quad 17$	40
$8 \quad 30$	$18 \quad 15$	25	$8 \quad 29$	1848	23	830	1831	48
$9 \quad 32$	1828	18	930	1900	17	931	1843	35
10 3:	1519	22	1029	1819	20	$10 \quad 30$	$18 \quad 19$	42
11 32	1801	19	11 28	1821	13	1130	1811	37
$\left.\begin{array}{c}\text { Muan and } \\ \text { sum }\end{array}\right\}$	1746	241	$\left.\begin{array}{c}\text { Mean and } \\ \text { sum }\end{array}\right\}$	1750	244	$\left.\begin{array}{c}\text { Mean and } \\ \text { sum }\end{array}\right\}$	$17 \quad 48.0$	485

The mean establishment resulting from the observed times of 485 low waters is $17^{\mathrm{h}} 48.0^{\mathrm{m}}$, referred to the moon's transit immediately preceding low water, and the same to which the preceding high water has been referred; the difference between the two mean intervals is $6^{n} 04.7^{7}$.

To obtain a numerical expression for the half-monthly inequality in time, the value for a should be determined so as to furnish, in particular, good results for
$5^{\mathrm{h}} 30^{\mathrm{m}}, 6^{\mathrm{h}} 30^{\mathrm{m}}, 7^{\mathrm{h}} 30^{\mathrm{m}}$, where the curve is steepest; the value $\frac{h}{h^{\prime}}$ is obtained from the greatest range of the inequality determined, for a first approximation, by a graphical process. I find from the observed high waters $\alpha=0^{11} 21^{m}$ or $5^{\circ} 15^{\prime}$, and from the low waters $\alpha=0^{\mathrm{h}} 50^{\mathrm{m}}$ or $12^{\circ} 30^{\circ}$. Range of inequality, from the high waters, $1^{\mathrm{h}} 51^{\mathrm{m}}$ or $27^{\circ} 48^{\prime}$, the sin. of which is 0.4649 , and for the low waters, range $1^{\mathrm{h}} 54^{\mathrm{m}}$ or $28^{\circ} 30^{\prime}$, the \sin. of which is 0.4771 ; hence the expression for the halfmonthly inequality in time becomes
From the observed high waters $\tan .2\left(\theta^{\prime}-175^{\circ} 49^{\prime} .5\right)=-\frac{0.4649 \sin .2\left(\phi-5^{\circ} 15^{\prime}\right)}{1+0.4649 \cos 2\left(\phi-5^{\circ} 15^{\prime}\right)}$
" " " low waters $\tan .2\left(\theta^{\prime}-267^{\circ} 00^{\prime}\right)=-0.4771 \sin .2\left(\phi-12^{\circ} 30^{\prime}\right)$
These expressions furnish us with the following comparison :-
HALF-MONTHLY INEQUALITY IN TIME.

From high waters.				From low waters.			
Apparent solar time of moon's transit.	Observed.	Computed.	Difference.	Apparent solar time of monn's transit.	Observed.	Computed.	Difference.
$0{ }^{1} 29^{\text {u }}$	$-6^{\text {mi }}$	- 3^{m}	-3^{m}	$0^{12} 30^{\mathrm{mm}}$	$+2^{\text {m }}$	$+6^{02}$	-4^{m}
130	-31	-22	- 9	131	0	-13	$+13$
230	-42	-39	-3	230	--19	-31	$+12$
330	-56	-52	-4	330	-49	-47	-2
430	-47	-55	+88	430	-59	-56	-3
$5 \quad 29$	-45	-38	-7	$5 \quad 29$	-48	-52	+ 4
$6 \quad 32$	+16	$+8$	+88	${ }_{6}^{6} \quad 30$	-8	-18	$+10$
730	$+44$	$+46$	-2	$7 \quad 29$	+29	+33	-4
830	+60	$+56$	$+4$	$8 \quad 30$	+43	$+56$	-13
$9 \quad 31$	$+39$	$+48$	-9	$9 \quad 31$	$+55$	$+54$	+1
1030	$+38$	$+34$	+ 4	$10 \quad 30$	$+31$	$+42$	-11
11. 30	$+33$	+16	$+17$	1130	+23	$+25$	- 2

Considering that the times of high and low water are only observed to the nearest half hour and for some time to the nearest hour, the agreement as shown above and by the diagrams, seems to be satisfactory.

In the above diagram, the observed values are indicated by dots; the computed values are represented by curves. From the times we have seen the mean value $\frac{h}{h^{\prime}}$ (or $\frac{S^{\prime \prime}}{\overline{\boldsymbol{I}^{\prime \prime}}}$ of the wave theory and (A) of Lubbock's $)=0.471$, and $\alpha=0^{\text {দ }} 36^{\text {m }}$; hence, the age of the tide, or the time requisite for the moon to increase its right ascension by that amount, becomes $\frac{36}{48}$ days, or 18 hours.

Half-monthly Inequality in Height.-The theoretical expression for the half monthly inequality in height of high water is:

$$
n=\sqrt{ }\left\{h^{2}+h^{2}+2 h h \cos 2 \phi\right\}^{1}
$$

where n expresses the height of the pole of the equilibrium spheroid above the mean level of the surface; for its application, and according to the wave theory, it must be changed to:

$$
n=\sqrt{ }\left\{h^{2}+h^{2}+2 h^{\prime} h \cos .2(\phi-\alpha)\right\}^{2}
$$

The following table contains the results of the observations from the high and low waters, and the moon's superior and inferior transit:

${ }^{1}$ See Phil. Trans. Royal Soc., 1834 and 1836.
${ }^{2}$ Eucyclopædia Metropolitana, Tides and Waves, Art. (535). The expression given by Mr. Lubbock is :

$$
h=I^{\prime}+\left(E^{\prime}\right)\left\{\left(1+\frac{q}{c}\right)(A) \cos (2 \psi-2 \phi)+\left(1+\frac{q^{\prime}}{c}\right) \cos 2 \psi ; ;\right.
$$

for which see his treatise.

The values for h^{\prime}, h and α were found from the maxima and minima values of the inequality, viz., for the high water:

$$
y=\checkmark\left\{10.6^{2}+1.5^{2}+31.8 \cos .2\left(\phi-15^{\circ}\right)\right\} ;
$$

for the low waters:

$$
y^{\prime}=\sqrt{ }\left\{2.95^{2}+1.75^{2}-5.16 \cos .2(\phi-15)\right\} ;
$$

These expressions may be changed to

$$
y=10.6+1.5 \cos .2\left(\phi-15^{\circ}\right), \text { and } y^{\prime}=2.7-1.7 \cos .2\left(\phi-15^{\circ}\right) ;
$$

they leave the following differences between the computed and observed values:-

Moon's transit.	Height of high water.			Height of low water.		
	Computed.	Observed.	Difference.	Computed.	Observed.	Difference.
$0^{\text {b }} 30^{\text {ma }}$	12.1	12.1	0.0	1.1	1.4	+0.3
130	12.0	11.9	-0.1	1.1	1.2	+0.1
230	11.7	11.8	$+0.1$	1.5	1.7	+0.2
330	11.0	11.0	0.0	2.3	2.0	-0.3
430	10.2	10.5	$+0.3$	3.1	3.2	+0.1
530	9.5	9.5	0.0	3.9	4.1	+0.2
$6 \quad 30$	9.1	9.1	0.0	4.3	4.4	$+0.1$
730	9.2	9.3	+0.1	4.3	4.7	$+0.4$
830	9.5	9.8	+0.3	3.9	3.8	-0.1
$9 \quad 30$	10.2	10.4	+0.2	3.1	2.8	-0.3
1030	11.0	11.0	0.0	2.3	1.9	-0.4
1130	11.7	11.6	-0.1	1.5	1.4	-0.1

The differences may be considered within the uncertainty of the obscrvations. The annexed diagram shows the comparison given above:-

Observed and computed half-monthly inequality in height from observations. Of the high waters.

Of the low waters.

From the inequality in height $\frac{h}{h^{\prime}}$ or $\frac{S^{\prime \prime \prime}}{\boldsymbol{M}^{\prime \prime \prime}}$ (notation of the wave theory) $=0.367$ whereas from the inequality in times $\frac{h}{h^{\prime}}$ or $\frac{S^{\prime \prime}}{M^{\prime \prime}}$

The ratio ${ }^{1}$ of the solar to the lunar tide is deduced with more exactness from the inequality in times, and the above value is certainly greater than the average value deduced at more southern stations. One of the reasons why this ratio is not constant, and which probably applies here, is given in $(538, \beta)$ (Tides and Waves), viz.: If tides are communicated by different channels to the same port, the proportion of the solar and lunar waves will depend on the length of those channels. This explanation would require a polar tide to enter through Kennedy Channel, to combine with the principal tide which passes up Baffin's Bay, and enters by Smith's Straits. According to the equilibrium theory, there should be no tide at the pole, and but a small tide in latitude $78 \frac{1}{2}^{\circ}$; but it is the tide wave propagated from the Atlantic, which is felt in this part of the polar regions. With regard to α, its value as found by the heights is more accurate than that found by the times; the latter gave $\alpha=9^{\circ}$, the former 15° (the same from high and low waters). Adopting 15°, the retard or age of the tide becomes 11 day, by which interval the spring and neap tides follow the syzygies and quadratures, respectively. The timevalue of α is here smaller than the height-value, which is more in accordance with theory than the opposite, as observed at a number of places on the coast of England (543 and 546, Tides and Waves). Compared with other values of α, the Van Rensselaer value appears somewhat smaller than an average at more southern stations.

We have further, mean rise and fall of tides at Van Rensselaer Bay 7.9 feet, range of spring tides 11.1 feet, and range of neap tides 4.7 feet. 'These numbers are averages from the discussions of $9 \frac{1}{2}$ lunations, and obtain without regard to the diurnal inequality, which will be investigated further on.

Effect of the Changes in the Moon's Declination and Parallax on the half-monthly Inequality, in Time.-In reference to the investigation of the half-monthly inequality, it is comparatively of little consequence which transit of the moon is taken for comparison; it is otherwise in the investigation of the effect of a change in the moon's declination and parallax, as well as for a similar effect due to the sun, which latter, however, cannot become a subject of investigation for the tidal series in hand, on account of its short extent; for the same reason, the variation in the inequality, in height, will have to be passed over. To ascertain the effect due to the moon's declination and parallax, an anterior value, corresponding to a certain age of the tide, is to be taken in the comparison; the preceding investigation gave for the retard $1 \ddagger$ day, each lunitidal interval, minus its corresponding mean value for the respective hour of the moon's transit, was therefore tabulated in respect to the moon's declination and parallax (separately for each), corresponding to one day anterior to the time of high or low water, thus referring the results to transit \boldsymbol{E}. The present investigation can only furnish an approximation to the true results; the

[^9]observations, while they give reliable value for the half-monthly inequality, cannot be expected to give more than an approximation to its variations. For any one station, and any one inequality or correction to it, special examinations require to be made to ascertain that transit of the moon, best suited for the purpose; this has hardly been done for any standard station, and it suffices to state here that, by referring to an anterior transit, the whole half-monthly inequality is moved backward through nearly twenty-four minutes for every transit preceding. Upon the inequality itself, the effect is but of a differential character. Thus to refer our table to transit E, deduct 24^{m} from each value.

To concentrate as many values as possible to a mean, the changes of declination and parallax were grouped for three values. The separate parcels for declination are for declination 0 to $13^{\circ}, 13^{\circ}$ to 21°, and 21° to 27°.5, irrespective of sign. The parallax groups are: 54^{\prime} to $56^{\prime}, 56^{\prime}$ to 58^{\prime}, and 58^{\prime} to $61^{\prime} .4$.

The differences of interval for the high and low waters were made out separately, and, in general, agreed tolerably well. I obtained the following results :-
table showing the correction (in minutes) to the mean hourly interval, for a change in the moon's declination and parallax.

The above table of declination corrections exhibits systematic values for the periodical part of the lunar effect, or for the term $D \sin .2(\phi-\gamma)$. Between 0° and 13° of declination, the correction is positive for transits between 1^{h} and 7^{h}, for other hours negative; for declinations between 13° and 21° it is positive, between the hours of 4 and 10 ; for remaining hours it is negative, and for declinations 21° to $27^{\circ} .5$, the correction is positive, for hours 7 to 1 , and negative for remaining hours of transit. The quantity D is accordingly about 14 minutes, and γ equals $15^{\circ}, 60^{\circ}$, and 105° respectively.

The variation in the inequality due to the changes of the moon's declination appears large when compared with its value at other places, but is in conformity with the large value of the half-monthly inequality itself.

The periodical part of the parallax correction is of the same form as given above.

The empirical values for the groups of small and middle values of parallax appear systematic; the values in the last column for large parallax are less regular. The maximum correction on the average is somewhat greater than one-fourth of an hour.

The corrections to the mean establishment for changes of the sun's declination and parallax may be taken as one-third of the corresponding lunar values, and in the present case will probably not exceed five minutes of time.

The means of each column, containing the non-periodical part, are small, and appear rather irregular; they are variable with the transit or the moon's age adopted in the discussion. ${ }^{1}$

Diurnal Inequality.-We now proceed to the examination of a prominent feature in the Rensselaer Harbor tides, namely, the diumal inequality. This inequality is well marked in the diagrams, Plates I, II, and III. Although the existence of this inequality, in height and times, has long been known to practical men, it was not until about twenty-five years ago that its laws were understood and reduced to computation by Mr. Whewell. ${ }^{2}$ The subject has since been taken up by the present superintendent of the U. S. Coast Surver, Prof. Bache; ${ }^{3}$ his researches commenced about nine years ago, and resulted in a further extension of the method of discussion as well as in the recognition of the grographical limits of the phenomena on our own coast; further, the discussion of single day tides, produced by this inequality in extreme cases, and here complicated by an extremely small rise and fall of the tides, was now successfully accomplished. According to the equilibrium theory, the diurnal tide ought to be very small in latitude 79°; but viewing the Rensselaer Harbor tide as a wave, produced principally in the Atlantic, and propagated through Davis's and Smith's Straits, the existence of the diurnal inequality in so high a northern latitude cannot surprise us. The following notes were extracted from Captain McClintock's narrative of the voyage of the "Fox,"

[^10]in 1857, '58, '59. Referring to Bellot Strait: " As in Greenland, the night tides are much higher than the day tides." Speaking of the ice motion, and remarking that the tides are the chief cause of it, he says: "Now we know that the night tides in Greenland greatly exceed the day tides." Also, when near Buchan Island, north of Upernavik, and in the vicinity of Cape Shackleton: "We had grounded during the day tide, and were floated off by the night tide, which on this coast occasions a much greater rise and fall." By the labors of Dr. Kane we now know that the diurnal inequality extends as high up as 79° of latitude on the northwestern coast of Upper Greenland. In a report of Mr. Sonntag's to Dr. Kane, dated Godhavn, Sept. 12, 1855, he says: The mean height of spring tides is 12.8 feet, and at the time of new and full moon high water is at $12^{\text {b }} 0^{\text {ma }}$; the highest spring tide is three days after full moon, and the night tide is at this time fully three feet higher than the day tide. At Northumberland Island, Sept. 10, 1854 , at (after) the time of full moon high water was at 11^{h} P. M., and the night tide rose three feet more than the day tide. These statements, crude as they necessarily are, show that the attention of the party was fully directed to the phenomenon.

A cursory examination of the Plates (I, II, and III) shows that the diurnal inequality extends without exception over the whole series of observation, that it is well marked in the difference of the height of high water, but very little or irregularly in the height of low water; that sometimes the day tide, at other times the night tide is the higher of the two occurring in a lunar day; further, that it vanishes a day or two after the moon's crossing the equator, and that it amounts in maximo to about three feet some time after the moon attains her greatest declination. There is but one instance where the inequality approximates to the production of a single day tide. See curve for Nov. 23, 1853.

We may now enter somewhat more fully into the discussion of this inequality, which is produced by the interference of two independent waves, the diurnal and the semi-diurnal, the former depending for its size chiefly on the moon's declination. For a complete study of these compound waves, they require to be examined in their separate parts, and it would therefore be our first object to effect their separation into the diurnal and the semi-diurnal; a process which, when graphically performed, is neither too laborious nor lacking in accuracy; it is nevertheless a process of some nicety, and requires observations of standard excellence. Upon trial, I found the less rigorous method employed by Mr. Whewell in his discussion of the Plymouth and Singapore tides, was better suited to the general mass of the observations at Van Rensselaer, and that the above described process of separation had better be reserved to that portion of our observations which are apparently of the best character.

The observed heights of high and low water were laid down graphically, and a line was drawn by the eye, cutting off the zigzags of the successive high waters, leaving equal portions above and below the intermediate curve. These differences from the mean height were then set off from another axis, and those belonging to the high water next following the moon's superior transit were marked by a curve of dashes; those following the moon's inferior transit were marked by a curve of dots. These curves, without exception, were found to have alternately, as the
moon has north or south declination, positive and negative ordinates, in perfect accordance with the equilibrium theory, according to which the tide (high water) which belongs to a south transit of the moon should be the greater of the two of the same day, the moon's declination being north, or should be the smaller of the two, the moon having south declination; when the moon crosses the equator (or, according to experience, some time after it), the inequality vanishes; the time by which the full effect is produced is, as in other cases of the application of this theory, later than theoretically indicated. On Plate III are given specimens of the diurnal inequality curve, constructed as explained above and on the same scale as the other diagrams on these plates. By means of the diagrams, the epoch when the inequality vanishes has been made out as follows:-

TABLE SHOWINQ THE OBSERVED TIMES WHEN THE DIURNAL INEQUALITY VANISHES, TOGETIER WITH THE time when the moon crosses the equator, and the difference of these times, or the number of days by whicir the cause precedes the effect. this difference is also called the epoch.

Year.	Inequality disappears.	Moon's deelination equal 0.	Difference, or epoch.	Year.	Inequality disappears.	Moon's declination equal 0.	Difference, or epoch.
1853	Oct. not observed	$15^{1 / 4}$	---	1854	April $28^{\text {a }} 8^{\text {a }}$	$24^{4} 11^{\text {b }}$	$3^{4} 21^{\text {b }}$
"	Oct. $30^{12} 21^{4}$	$29 \quad 18$	$1^{4} \quad 3$	"	May 924	90	10
"	Nov. 1210 ?	1113		"	$\begin{array}{llll}\text { " } & 23 & 14\end{array}$	2117	121
"	Nov. 13 63	11 1.		"	June 79	510	123
"	$\begin{array}{lll}6 & 27 & 22\end{array}$	$2 ; 4$	115	،	$\begin{array}{lll}\text { \% } & 19 & 9\end{array}$	1722	111
"	Dece 9 9	$81!$	14	"	July $5 \quad 4$	217	211
"	" $25 \quad 12$	$2: 313$	123	"	$\begin{array}{llll} & 3 & 31 & 22\end{array}$	$\begin{array}{ll}29 & 22\end{array}$	20
15.54	Jatn. not olsmereal.	5.2	.-.	"	Sept. 93	$7 \quad 22$	15
"	" " "	19718	-- ${ }^{-1}$		Remaining observa-	229	-- -
،		$\begin{array}{rr}1 & 10 \\ 15 & 23\end{array}$	$\begin{array}{ll}1 & 18 \\ 0 & 19\end{array}$		tions of Siries IV not sufficiently re-		
"	6 14 18 3 12 3 12	1523	0 19)		not sufficiently reliable.	Mean.	$1{ }^{\text {d }} 15^{6}$
"	Mar. $\left.\begin{array}{ll}3 & 12 \\ 1 & 12\end{array}\right\}$	$28 \quad 19$	17				
"	" lii 0	155	019				
"	Mar, olss'n incompl.	254	---				

The results for the epoch are very regular, and with the exception of part of the last scries, which is of inferior accuracy, no observation has been omitted. The inequality ramishes at the distance of 1.62 days' motion of the moon from her nodes.

The magnitude of the diumal inequality, and its variation depending on twice the moon's declination, was made out by dividing the inequality curves in six parts between the times of disappearance, and by tabulating the ordinates as well as the corresponding declination of the moon, the following results were obtained from 12 complete cycles, omitting no value, viz:-

AMUUNT UF DIURNAL inequalaty in the height of high water.

Orimate.	(In fiect.)												Mean d/h.	Meav" declination.
0	11	0	0	0	0	0	(1)	0	0	0	0	0	0.0	0°
1	1.1	2.1	0.8	2.7	1.0	0.3	11.2	1.4	2.7	1.5	1.5	1.0	1.4	12
${ }^{2}$	11.5	2.4	2.3	4.0	4.2	2.5	1.11	1.5	2.2	2.0	2.1	3.0	2.3	21
:	1.5		3.0	4.11	4.0	2.6	1.1	1.6	2.ご	3.1	2.0	2.0	2.5	25
4	1.19	2. ${ }^{\text {\% }}$	$\therefore 1.1$	4.15	(1.2	3.6	1.5	1.4	1.8	1.9	3.3	2.7	2.3	22
5	0.5	1.1	11	3.0	2.4	1.2		3.5	2.2	1.0	2.0	2.0	1.7	13
6	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0

The mean declination corresponds to an epoch 1.6 days anterior, which remark applies also to the formula $d h=C \sin .2 \delta^{\prime}$, representing the diurnal inequality $d h$ in two successive high or low waters, δ ' being the moon's declination. For the value of C we obtain 3.3 , which gives us the following comparison:-
dIURNAL INEQUALITY IN HEIGITT.
(Epoch 1.6 days.)

Moon`s declination.	Observed $d h$.	Computed dh.	Difference.
	Feet.	Feet.	Feet.
	0.0	0.0	0.0
12	1.4	1.4	0.0
21	2.3	2.2	0.1
25	2.5	2.5	0.0
22	2.3	2.3	0.0
13	1.7	1.5	0.2
0	0.0	0.0	0.0

The diurnal inequality in time I have tried to exhibit by numbers as well as by diagrams; it seems, however, that the incidental irregularities in the observations themselves, coupled with the fact that the observations generally were only made half-hourly and at other times hourly-so far exceed in magnitude the inequality itself as to make the effect of the changes of the moon's declination exceedingly obscure. The lunitidal intervals (for high and low water) between Oct. 17 and Dec. 28, 1853, between Jan. 28 and March 7, 1854, and between June 1 and July 7 ., 1854, were tabulated in vertical columns; the means of the alternate values were tabulated in the 2 d column, and placed in the horizontal line opposite the intermediate value of column one. The numbers in the first column were next subtracted from the corresponding numbers in the second column, if the interval belonged to the inferior transit; if belonging to the superior, the values in the second column were subtracted from those in the first. The moon's declination, for noon each day, was also set down. The 276 values for diurnal inequality in time, thus obtained, were plotted. After attempting to deduce an epoch and arranging the values for different assumptions for epoch, no satisfactory result could be obtained in any way according with the expression

$$
d \psi=\frac{g \tan . \delta^{\prime}}{1+A \cos .^{2} \phi} \text { (sce Lubbock, Phil. Trans. 1837), }
$$

and the results of the investigation must be confined to the following general remark. The diurnal inequality in time is in maxima probably not exceeding two hours; it seems to be less in amount for the times of high water than for the times of low water, a result the reverse of that belonging to the inequality in height. A similar conclusion was arrived at in the discussion of the tides at San Francisco, Cal. (Prof. A. D. Bache in Coast Survey Report for 1853, p. *81), when the smaller inequality in height of high water (when compared with that for low water) corresponded to the greater inequality in time of high water (when compared with the inequality for low water). Whether the inequality of the height for high or low water is the greater or smaller depends only on the epoch of the diumal wave compared with the epoch of the semi-diurnal wave. There is no regular increase
of the inequality corresponding to an increasing (irrespective of sign) declination of the moon, but the curve appears double-crested about the time of maximum declination, there being a sudden diminution in the inequality, preceded and followed by high values; about the time of the moon's crossing the equator the inequality is very irregular.

On Plate IV, the actual separation of the semi-diurnal and the diurnal wave has been effected graphically, for which purpose a part of the best observations was selected; these observations extend over the period from Oct. 30 to Nov. 22, 1853. The process of decomposition in use in the U.S. Coast Survey was at first an analytical one, by computing sine curves; since 1855 , however, a graphical process, equivalent thereto, was substituted; this latter method, as introduced by assistant L. F. Pourtales, may be briefly explained as follows: After the observations are plotted and a tracing is taken, the traced curves are shifted in epoch 12 (lunar) hours forward, when a mean curve is pricked off between the observed and traced curves; this process is repeated after the tracing paper has been shifted 12 hours backward; the average or mean pricked curve thus obtained represents the semidiurnal wave. On an axis parallel with that on which the time is counted, the differences between the originally observed and the constructed semi-diurnal wave were laid off; this constitutes the diumal curve. In the case in hand I have simplified the process of scparation by blackening the under surface of the tracing paper with a lead pencil, and running in with a free hand; the intermediate curves by the pressure of a style, an average of the two traces thus left on the lower paper, gave the semi-diurnal wave in quite an expeditious manner. On the diagram, the diurnal curve with its epoch of high water nearly coinciding with that of the semidiurnal wave, appears plainly with its variation in size depending on the moon's declination.

Investigution of the Form of the Tide Wave.-The shape of the tide wave has been ascertained in the manner described in art. (479) Tides and Waves, and depends on the hourly observations of 60 tides, 30 during spring tides and an equal number during neap tides, that is, the observed heights on the day of the syzygies and quadratures and on the first and second day after, were tabulated, forming ten groups of three columns each, from low water to low water. The columns of an equal number of hours (they vary from 16 hours to 11 hours) were united in a mean. In order to combinc these it was assumed that the interval from the observed low water to the next following low water corresponds to 360° of phase, and the time of every intermediate observation was converted into phase by that proportion. In order to render the observed heights comparable, the range from high to low water in every half tide (the reading of low water for phase 0 gencrally not being identical with the reading of the succeeding low water or phase 360°) was supposed to correspond to 2.00 , and the elevation above the low water was converted into number by that proportion, thus furnishing a series of ordinates for equidistant abscisse. The means of all the phases and corresponding converted depressions within every 30 th degree of phase were then taken with proper regard to the weights, depending on the number of columns, of equal hours, united at the commencement of the reduction. By observation of the progress of the numbers,
it was easy to alter the latter so as to make them exactly correspond to the phases $30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}$, etc. In this manner the following numbers have been obtained :-

For the spling-tide wave occurring one and a quarter day after full and new moon.

Phase of groups.							Proportional height above low water.						
						Mean.							Mern.
	0°	0°	0°	0°	0°	0°		0.00	0.00	0.10	0.00	0.00	0.00
	26	28	30	33	36	30		0.116	0.133	0.24	0.27	0.10	0.21
	51	55	60	65	72	59		0.32	0.68	0.90	0.70	0.415	0.71
	77	83	90	98	108	89		0.91	1.13	1.36	1.32	1.17	1.24
	103	111	120	131	144	120		1.39	1.68	1.73	1.76	1.52	1.70
	129	138	150	164	180	156		1.84	2.04	1.98	1.93	2.00	1.85
	154	166	180	196	216	180		1.94	1.98	2.00	2.19	1.48	2.00
	180	194	210	229	252	208		2.00	2.00	1.84	1.56	1.23	1.48
	206	222	240	262	288	237		1.84	1.84	1.45	1.15	0.70	1.46
	231	249	270	294	324	270		1.58	1.23	1.00	0.65	0.41	0.97
	257	277	300	327	360	300		1.14	0.79	0.27	0.25	0.00	0.37
	283	305	330	360		330		0.60	0.40	0.17	0.00		0.17
	309	332	360			360		0.15	0.16	0.00			0.00
	334	360						0.02	0.00				
	360							0.00					
Weight	5	4	13	7	1		Weight	5	4	13	7	1	

The columns headed "mean" show the ordinates of the waves for (nearly) equidistant intervals of time.

The following table contains the corresponding numbers for the neap tide wave occurring $1 \pm$ day after the first and last quarter, and as derived from 30 tides observed hourly from low to low water:-

Phase of groups.								Proportional height above low water.							
							Mean.		0.00						Mean.
	24	0°							0.07	0.00					
	48	21	0°						0.26	0.17	0.00				
	72	51	28	0°			0°		0.49	0.55	0.24	0.00			0.00
	96	77	55	30	0°		29		0.89	1.11	0.59	0.20	0.00		0.20
	120	113	83	60	33	0°	58		1.19	1.53	0.93	0.50	0.60	0.00	0.52
	144	129	111	90	65	36	89		1.55	1.83	1.35	1.05	1.02	0.00	1.08
	168	154	138	120	98	72	119		0.82	2.00	1.73	1.60	1.44	0.35	1.51
	192	180	146	150	131	108	147		2.00	1.95	2.00	1.85	1.81	1.06	1.82
	216	2015	194	180	164	144	180		1.92	1.62	1.96	2.00	2.00	1.88	1.97
	240	231	222	210	196	180	213		1.64	1.43	1.72	2.00	1.72	2.00	1.84
	264	257	249	240	229	216	241		1.25	1.09	1.32	1.84	1.43	1.63	1.58
	2×8	283	277	270	262	252	271		0.94	0.67	0.80	1.37	0.79	0.99	1.08
	312	309	315	300	294	288	301		0.51	0.24	0.32	0.79	0.15	0.10	0.56
	336	334	332	330	327	324	331		0.23	0.05	0.04	0.42	0.00	0.00	0.22
	260	360	360	360	360	360	360		0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weight	3	4	8	13	1	1		Weight	3	4	8	13	1	1	

The results are represented in the annexed diagram. The result for the neap tide curve has also been multiplied by $\frac{4 . T}{11} \frac{1}{1}$, the ratio of neap and spring tide range as found on a preceding page, and was increased by 0.5 to refer it to the same level.

The full curves in the diagram show the form of the spring and neap tide wave (the scales being arbitrary), to which has been added for convenient comparison the dotted curve representing the neap tide wave on the same relative scale as the spring tide wave. It is apparent that the spring tide wave is slightly steeper between low and high water than between high and low water, and that the neap tide wave is very nearly symmetrical in respect to rise and fall.

We have seen that the duration of rise is $6^{b} 04^{m} .7$, hence the duration of fall will be $6^{h} 19 .^{\text {m }} 7$; or in making ebb the time is 15 minutes greater than in making flood, a circumstance in conformity with the shape of the curves of rise and fall. This holds good for an average tide; according to art. (510) Tides and Waves, if the place of observation is not far from the sea, or, as in our case, in a bay, the water will occupy a shorter time to rise than to fall, and the inequality will be greater at spring tides than at neap tides; this is fully illustrated in the preceding diagram, the spring tide wave being the steeper of the two.

The form of the tide waves will be found closely represented by the following expressions:-

For the spring tide wave-

$$
5.83+5.58 \sin .\left(\theta+278^{\circ}\right)+0.20 \sin .\left(2 \theta+281^{\circ}\right)
$$

For the neap tide wave-

$$
2.42+2.25 \sin .\left(\theta+269^{\circ}\right)+0.09 \sin .\left(2 \theta+290^{\circ}\right)
$$

in which expressions the angle θ counts from low water to low water, from 0 to 360°, and the height of the wave is expressed in feet.

The relative numbers, given above, as the ordinates, have been changed in the proportion of 2 to 11.1 for the higher and of 2 to 4.7 for the lower wave. The following table shows the agreement between observation and the numerical expressions, in which the 3d and higher terms are zero:-
form of tue tide wave at van rensselaer harbor.

Phase.	Height of Spring tide, in feet.$\qquad$$\qquad$ Observed. Computed.		Height of neap tide, in feet.	
			Observed.	Computed.
0	0.0	0.1	0.0	0.1
30	1.2	1.4	0.5	1.4
60	3.9	3.9	1.3	1.3
90 120	6.9 9.4	16.5 9.3	3.5	3.5
150	10.7	11.9	4.3	4.3
180	11.1	11.1	4.5	4.5
210	10.4	10.2	4.3	4.4
240	7.9	8.0	3.7	3.7
270	5.4	5.3	2.5	2.5
300	2.1	2.4	1.3	1.3
330	1.9	10.5	0.5	0.4
360	0.0	0.1	0.0	0.1

Respecting the effect of the wind and ice on the tides, it may be remarked that the former can only be slight, since the sea is protected from the direct action of the wind by its icy cover for the greater part of the year. When the sea is partially open, the effect becomes sensible, as may be seen by the following note extracted from the log-book:-
"August 17, 1853. The above records show a heavy gale from the southward gradually hauling to the eastward; the effect of this gale on the tides was very marked ; our flood rose two feet above any previous register, overflowing the ground ice, and our last ebb or outgoing tide was hardly perceptible." The ice crust cannot sensibly affect (by friction on its lower surface) the progress of the tide wave, and will certainly not sensibly interfere (by friction on the ice foot and breakage of the ice fields) with the rise and fall of the tide.

Progress of the Tide Wave.-The tide at Van Rensselaer Harbor may be taken as a derived tide, and transmitted to it from the Atlantic Ocean, and in part modified by the small tide originating in the waters of Baffin's Bay ; which latter tide, however, must necessarily be small, particularly on account of the general direction of the bay, which is very unfavorable for the production of a tide wave. That the tide wave is travelling up along the western coast of Greenland, or, in other words, reaches Van Rensselaer Harbor from the southward, may be seen from the following observed establishments :-

Holsteinborg Harbor, latitude $66^{\circ} 56^{\prime}$, longitude $53^{\circ} 42^{\prime}$. High water at F. \& C. $6^{\mathrm{h}} 30^{\mathrm{m}}$. Spring tides rise 10 feet.-Capt. Inglefield, 1853.

Whalefish Islands (near Disco), latitude $68^{\circ} 59^{\prime}$, longitude $53^{\circ} 13^{\prime}$. Time of high water F. \& C. $8^{\mathrm{h}} 15^{\mathrm{m}}$. Highest tide $7 \frac{1}{2}$ feet.-Parry's 3d Voyage of Discovery.

Godharn (Disco), latitude $69^{\circ} 122^{\prime}$, longitude $53^{\circ} 28^{\prime}$. Tidal hour 9^{h}. Rise and fall $7 \frac{1}{2}$ feet.-See Map in Narrative of Kane's First Voyage.

Upernavik, latitude $72^{\circ} 47^{\prime}$, longitude $56^{\circ} 03^{\prime}$. High water at F. \& C. 11^{11}. Rise 8 feet.-Capt. Inglefield, 1854.

Wolstenholm Sound, latitude $76^{\circ} 33^{\prime}$, longitude $68^{\circ} 56^{\prime \prime}$. High water at F. \& C. $11^{\mathrm{h}} 8^{\mathrm{m}}$. Rise, both at spring and neaps, 7 to $7 \frac{1}{2}$ feet.-(See Admiralty Chart of Baffin's Bay, sheet 1, 1853, corrected to 1859.) The observations themselves, taken by Captain Saunders of H. M. S. North Star, in 1849 and 1850, were kindly fur-
nished to Prof. Bache by the Hydrographer to the Admiralty, Captain J. Washington, R. N., and are given in the appendix to this paper. And finally,

Ven Rensselaer Hurbor, latitude $78^{\circ} 37^{\prime}$, longitude $70^{\circ} 53^{\prime}$. High water at F. \& ($.11^{n} 50^{m \prime \prime}$, as derived from the preceding analytical expression. Rise and fall at spring tide 11.1 feet, at neap tide 4.7 feet, average range 7.9 feet.

By means of the difference in the establishments of Holsteinborg and Van Rensselaes, we c:m obtain an approximation to the depth of Baffin's Bay and Smith's straits, vi»:-

Assuming the distance along the channel to be roo natical miles, we have a velocity of the tide wave of about 202 feet in a second, which, according to Airy's table (174), Tides and Wares, would correspond to a depth of nearly 1300 feet, or about 220 fathoms-a result probably smaller than the true value, since the other observations indicate a greater depth, it may be taken as an inferior limit; in the same manner we find from the co tidal hours of Upernavik and Van Rensselaer a depth of near 800 fathoms, and a similar result from the Wolstenholm observations; this last result may perhaps he taken as an upper limit.

Somalings.-The following soundings have been copied from the log-book:-

Fhramometer tims
Mark.
*' 15" 11 liot, taded.
1! 10 White.
\therefore In butlom, with 15 fathoms; shot brought up with gray mud and fine sand. The line was afterwards measured.

June $26,1553 . L$ Lat. $59^{\circ} 45^{\prime}$, long. $50^{\circ} 3^{\prime}$ (owemment sounding twine and 32 -pound shot).

Chronometer time.$3^{h} 56^{\mathrm{m}} 35^{5}$			Mark. Stared th fathoms from the next bark.	Chronometer time.		Mark. White.	
			$4^{\text {h }}$ 91m	25^{8}			
	57	25		liod.	$\underline{\square}$	10	Red.
	58	50	Whiter	29	15	White.	
4	110	:i	Lied.	:3)	25	lied.	
	2	45	Iblack.	37	30	Black.	
	5	16	Whitr.	4.	11	White.	
	8	11	Red.	46	30	Red.	
	11	0	White.	31	15	Wrhite.	
	14	5	Red.	56	0	Red.	
	-	-	Missed the mark.	58	$1)$	Bottom floms	

 (hot)

A P P E N D I X.

Tidal Observations made on board H. M. S. Nortu Star, Cummander Saunders, at the Winter Quarters in Wolstenholm Sound. (From the Ship's Log.)

$\begin{gathered} \text { Date. } \\ 1849 . \end{gathered}$	High water.		Low water.		Date. 1850.	High water.		Low water.	
	Time.	Height.	Time.	Height.		Time.	Height.	Time.	Height.
Nov. 16, A. M.	$12^{\mathrm{h}} \mathrm{O}^{\mathrm{m}}$	$\begin{gathered} \text { Ft. In. } \\ 750 \end{gathered}$	$4^{1 /} 0^{\mathrm{ma}}$	$\begin{gathered} \text { Ft. } \\ 69 \end{gathered}$	Mar. 13, P. M.		Ft. In.	()$^{12} 0^{\text {am }}$	$\begin{gathered} \text { Ft. In. } \\ 69 \end{gathered}$
" 17, A. M.			5311	7011	" 19, A. M.	$3^{\text {h }} 0^{m}$	756		
" 17, P. M.	0.30	7s 6			6 19, P. M.			110	$70 \quad 10$
6 29, A. M.	110	7\% 5	50	714	" 27, P. M.	110	7 7: 2	530	679
(-30, A. M.	100	7!) 1	4311	710	April 4, A. M.			12	63 !
Dec. 14, P. M.	110	696	10	65 2	" 4, P. M.				
6 22, P. M.	40	$\begin{array}{lll}70 & 9\end{array}$	1030	6.54	" 12, A. M.	1130	701	50	698
" 29, A. M.	110	7310	330	1i4 0	" $26, \mathrm{~A} . \mathrm{M}$.	110	$70 \quad 3$	50	$69 \quad 2$
$1850 .$					May 4, P. M.	50	$\begin{array}{ll}75 & 0 \\ 7 & \end{array}$		
Jan. 13, A. M.	120	716	5 30	$64 \quad 2$	" 19, A. M.	530	772		
${ }^{6}$ 21, P. M.	40	704	1030	651	* 19, P. M.			1130	726
" $27, \mathrm{~A} . \mathrm{M}$.	110	$\begin{array}{ll}72 & 4\end{array}$	530	$6 \pm \quad 2$	" $26, \mathrm{~A} . \mathrm{M}$.	10	75 10	6 (1)	690
Fek. 3, P. M.	330	70	90	6310	June 2, P. M.	10	6\% 11		
* 19, P. M.	40	$70 \quad 3$	930	668	${ }^{\prime \prime} \quad 23, \mathrm{P} . \mathrm{M}$.	110	744		
March 5, P. M.	430	700	100	6610	July 9, P. M.	110	7410	30	661
${ }^{6} 13, \mathrm{~A} . \mathrm{M}$.	1130	760							

From the rough manner with which the above observations appear to have been made, an approximate establishment and rise of tide only can be deduced from them.
H. W. F. and C. appears to take place between $X I^{h} 0^{\mathrm{m}}$ and $\mathrm{XI}^{\mathrm{h}} 15^{\mathrm{m}}$, say $\mathrm{XI}^{\mathrm{h}} 8^{\mathrm{m}}$, and the rise both at springs and neaps from 7 to $7 \frac{1}{2}$ feet.
(Signed)
.JNO. BURWOOI, Master R. N.,
(Tide Computerv).
Ammiratity, 3 d . July, 1860 .

PURLISHED BY THE SMITHSONIAN INSTITUTION, WASHINGTONCITY,

-

-

METE0R0L0GICAL 0BSERVATI0NS

in Tire
\section*{ARCTIC S E AS.}

BY
SIR FRANCIS LEOPOLD MCLINTOCK, R. N .

MADE ON BOARD THE ARCTIC SEARCHING YACHT" "FOX," IN DAFFiN bAY AND PRINCE REGENT'S INLET, IN 185\%, 1858, AND 1859.

REDUCED AND DISCUSSED,

at tue expense of the smithsonian institution.

EY
C II ARLESA. SCIIO'T
assistant u. . cuast survey.
pribatimelitha.

CONTENTS.

Part II. - WINDS.

Record and discussion of the direction and foree of the wind-Introductury remarks. . 39
Record of the observations 40
Method of reduction 62
Average velocity of the resulting wind 66
Average velocity of the winds 67
Relative frequency of the winds.
Relative quantity of air passed orer the place of observation. . . . 80
Rotation of the winds

PARTIII-ATMOSPHERIC PRESSURE
Record and reduction of the observations for atmospheric pressure-Introductory remarks . is
Record of the observations 81
Comparison of the readings of the aneroid and mereurial barometers . . . 99
Resulting mean 4 -hourly and mean monthly rearlings of the mercurial barometer in the months of September, 1857, and Fobruary and April, 1858Diurnal variation of the atmospheric pressure 101
Annual variation of the atmospheric pressure 104
Diurnal extremes 106
Monthly and annual extremes 106
Relation of the atmospheric pressure to the dircetion of the wind 107

AIPENDIX

Record of the weather kept on board the Yacht "Fox," from July 2, 1857, to September 18, 1859 ; with notes of the specific gravity of sea water, on the state of the ice, appearance of animals, ete. cte.; on the aurora borealis and atmospheric phenomena
Tabulation of auroras, with nbservations and notes, by Mr. David Walker 145

ILLUSTRATIONS.

PLATES.

Chart showing the tracks of the yacht "Fox" in the Arctic regions under command of Cap.
tain (now Sir) Francis L. MClintock, R. N., 185\%-1859. Newly projected for the
Smithsonian Institution, by Charles A. Schott, Assistant U. S. Coast Survey, 1801 .
Scale 1: $15,000,000$. (Frontispiece.)
radif

WOODCUTS.

Figure A. Diagram showing the annal fluctuation of the temperature of the air at I'ort
Kenuedy 21
Figure B. Diagram showing the diurnal amplitude of the temperature 24
Figure C. Diagram showing the diurnal variation of the temperature ${ }^{2} 6$
Figure 1. Diagram showing the mean velocity of the winds in Bafin's Bay, at Port Ken- nedy, and at Van Rensselaer's harbor 65
Figure 2. Diagram showing the relative frequency of the winds at the same places. 70
Figure 3. Diagram showing relative quantity of air passed over at the same places. $\because 1$
Figures 4-8. Diagrams illustrating five storms at Baffin's Pay 71. 75, 76
Figure 9. Diagram showing the diurnal variation of atmospheric pressure in Baffin's Tay 10.3
Figure 10. Diagram showing the same for Port Kemedy 104
Figure 11. Diagram showing a halo and paraselense, December a, 1450 119
Figure 12. Diagran of a halo, Marels 7, 1855 123

PREFACE.

The following series of reduced metcorological obscrvations have been prepared from the records kept on board the yacht "Fox," in 1857, '58, '59, during the expedition in search of Sir John Franklin, under the command of Captain N'Clintock, ${ }^{1}$ R. N.
The records of these observations were presented by the commander of the expedition to the Institution, to be used in such manner as might be deemed best suited to advance the science of meteorology. They were accordingly placed in the hands of Mr. Charles A. Schott, of the U. S. Coast Survey, to be discussed in accordance with the plan proposed by Sir John Herschel in his work on meteorology, and which was adopted in regard to the records made during the voyage of Dr. Kane in the Arctic regions. These reductions form a part of a serics of articles on the climatology of the Aretic portions of the North American continent, which are in the course of preparation and publication by the Smithsonian Institution. Of these the investigations relative to the winds of the Northern Hemisphere, by Prof. Coffin, the observations by Dr. Kane, and those by Dr. Hayes, form portions. It is to be hoped that an opportunity will be afforded for a thorough discussion of all the observations which have been made by the different Arctic explorers on a similar plan, since such a work would not only throw much light on the climatology of the continent of North America, but also on the meteorology of the globe.

The following brief account of the expedition of "the Fox," compiled from the narrative of the commander, and other sources, will perhaps be of service in rendering the observations more easily understood, as well as of interest to those who may not have ready access to the works from which the compilation has been made :-

Sir John Franklin was appointed in 1845 to the command of an expedition consisting of two ships, the Erebus and Terror, fitted out for a further attempt to discover a northwest passage. The expedition sailed from England on the 26th of May, 1845, and was last seen by a whaler in Baffin's Bay on the 26th of July following. In the autumn of 1847 public anxiety began to be manifest for the safety of the explorers, from whom nothing more had been heard, and several expeditions were sent from 1848 to 1854 in search of them. In these active excrtions

Lady Franklin took the lead, and by her unwearied labors and sacrifices aroused the sympathy of the whole civilized world. Aid was offered by France and even by Tasmania. Citizens of the United States replied to her call by equipping two expeditions, the expense of which was principally borne by Mr. Henry Grinnell, of New York.

In August, 1850, , traces of the missing explorers were discovered, where they had spent their first winter, but no further tidings were obtained until the spring of 1854, when Dr. Rảe, of the Hudson's Bay Company, ascertained that they had been seen by the Esquimaux on the west coast of King William's Island, in the spring of 1850 , and it was thought that they had all died on an estuary of the great Fish River. The attempt, in 1855, of the Hudson's Bay Company to explore this river resulted in obtaining but little additional information, and a few relics from the Esquimaux.

It was at this time that Lady Franklin, who had previously sent out three expeditions at her own expense, again carnestly urged the renewal of the search, that the fate of her husband and his companions might not be left in uncertainty, and in the spring of 1857 commenced the preparations for another expedition as a final effort to trace "the footsteps of these gallant men in their last journey upon earth," and, if possible, to rescue from entire loss some of the scientific results for which they had sacrificed their lives.
The small steamer Fox, of 177 tons burthen, was purchased for the service, and Lady Franklin was highly gratified in obtaining the willing service of Captain MClintock as commander of the expedition. This officer had signally distinguished himself in the voyages of Sir James Ross and Admiral Austin, and especially in his extensive journeys on the ice when associated with Captain Kellett.

The voyagers sailed from Aberdeen, July 1st, 185\%, and after a favorable run across the Atlantic, passed Cape Farewell, the southern point of Greenland, on the 13th, and arrived at Fredericshaab on the 19th of the same month. After stopping to take in coal at Waigat, they reached Upernavik, the most northerly of the Danish stations in Greenland, and then bore away, on the 6th of August, directly westward for the purpose of crossing Baffin's Bay; but, on the evening of the 8th, their progress in that direction was stopped by impenetrable ice in Latitude 72° 40^{\prime} and Longitude $59^{\circ} 50^{\prime}$ west. They then steered northward with the hope of finding a passage westward in a higher latitude, but in this they were disappointed, aud, on the 19th of August, became entangled in the ice, and thus remained two hundred and forty-two days, until April, 1858. During this period, the "Fox" drifted from Latitude 75° north and Longitude 62° west, eleren hundred and ninetyfour geographical miles in a southerly direction, almost to the lower extremity of Greenland. (See the accompanying map.)

On the 26th of April, the ice suddenly and almost entirely disappeared; the ship was again headed northward for another attempt, and arrived on the 19th of June in Melville Bay. 'They then again stecred westward across Baffin's Bay, and, finally, entered lancaster Sound in the begimning of August. They next sailed westerly and southerly until they reached the Longitude of 96° west, and about latitude 73° north. From this point, they retumed castward through Barrow's

Straits, which they found clear of ice, and went southerly down Prince Regents Inlet to the mouth of Bellot Straits, where they arrived on the 20th of August, and near which they were destined to remain for more than a year.

Bellot Strait, which is near Latitude 72° north, is the water eommunication between Prince Rupert's Inlet and that part of the western sea now known as Franklin Channel. It separates the extreme northern part of the continent of North America, or Boothia Felix, from North Somerset. The shores of this strait are faced in many places with lofty granite cliffs, and some of the adjacent hills rise to fifteen or sixteen hundred fect above the level of the sca. Through this channel the tide runs at the rate of six or seven knots an hour, and also frequent stormy winds blow from the west which probably affect the local meteorology of the country immediately around the eastern entrance.

At the time of the arrival of the expedition, this strait was choked up with masses of ice, but as the season advanced these obstacles so far gave way that the voyagers were enabled to work the ship through to the western outlet. But beyond this point they were unable to advance further in the same direction, and on account of the exposed position they were obliged to return and seek for safer winter quarters. These they found near the eastern entrance of the strait in a commodious harbor named Port Kennedy. At this place they remained frozen up from the 27th of September, 1858, until the 9th of August, 1859.

Early in the spring, three exploring parties set out from Port Kennedy in different directions, severally under the command of Captain N'Clintock, Captain Young, and Lieutenant Hobson. The routes traversed by these parties included the southern portion of the coast of Prince of Wales Island-the western coast of Boothia Felix, and the entire circumference of King William's Land. These explorations furnished important additions to the map of the Arctic regions as well as definite information relative to the fate of Sir John Franklin and his devoted companions. On the western coast of King William's Island, several relics of the lost mariners were found, and among the number a tin-case containing a record of the unfortunate explorers.

From this record, the following facts were obtained, namely, the Franklin Expedition spent the first winter after leaving England at Beechy Island near the southwestern poin̂t of North Devon (see map). From this place it passed down Franklin Channel to within fifteen miles of the northwest coast of King William's Island (see the spot indicated on the map), where the ships were frozen in the ice, and finally abandoned on the 22 d of April, 1848. Sir John Franklin died on the 11th of June, 1847, and several other deaths had occurred. The survivors, one hundred and five in number, under the command of Captain Crozier, landed on King William's Island, where all knowledge of their subsequent journeying ceases ; they probably, however, all perished in their endeavor to reach a less inhospitable region.

Although the whole shore of King William's Island 'was three times patiently examined by Captain M'Clintock and Lieutenant Hobsor, no vestige of the wrecks was seen, and it was doubted whether any portion of them remained above water.

After making the explorations above mentioned, the object of the expedition having been measurably attained the explorers in the lowated for the advance
of the season to be released from the ice, but though the summer at Port Kennedy was a warm one, they were not able to move before the 9 th of August. At this time they commenced their homeward voyage and arrived at Portsmouth on the $23 d$ of September following.

During the whole time of the exploration of "the Fox," a regular series of observations was made upon the temperature, the pressure and movements of the atmosphere, as well as upon the variations of the elements of terrestrial magnetism, the tides, \&c.

The meteorological observations were under the care of Dr. David Walker, of Belfast, and were made at equal intervals of time during day and night. In winter they were generally taken at intervals of two hours; and in summer of four hours. Occasionally, there are found some irregularities in the time of observation, and omissions noted in the records, but these are of rare occurrence, and are corrected approximately in the reductions.

The reductions have been made at the expense of the Smithsonian Institution, by Mr. Schott, whose previous labors in the reduction of the observations of Dr. Kanc have met with general approval.
The series of observations is divided into three parts, relating to the following subjects, namely:-

1. The temperature.
2. The direction and force of the winds.
3. The pressure of the atmosphere.

To these are added, in an appendix, miscellaneous phenomena, such as the face of the sky, appearance of plants and animals, auroras, \&c.

The following remarks relative to the observations are from communications addressed by Captain M'Clintock to the Secretary of the Smithsonian Institution:-
"I have much pleasure in transmitting to you the meteorological records of my whole voyage in the Fox. I have had my two-hourly observations for the temperature and pressure of the air reduced according to the method adopted in Kane's observations, but they have not been published in any book, nor do I think they will be, the time required and the expense being an objection. Admiral Fitzroy has published in the fourth number of the Meteorological Papers of the Board of Trade a part of my observations [the temperature for noon, the face of the sky, and the specific gravity of sea water, \&c., without reduction], which I fear will not be sufficient for your purpose. You are at full liberty to make any use you may think fit of the observations, and should you deem them worthy of publication, it would afford me much pleasure."
"I think it better to send the whole record than to make extracts which would increase the chance of error and perhaps not be sufficient after all. You will thus be able to trace my drift down Baffin's Bay and Davis' Straits and to compare it with De Haven's drift.
"My magnetical observations are in the hands of General Sabine. In the
appendix of the second edition of my narrative, now published, you will see an article on the Tides, as also one upon the Gcology, by Professor Haughton. Observations upon Halos, \&c., with the Polariscope, have been sent to Professor Stokes; a serics of earth temperatures, to Dr. Jos. Hooker, of Kew Botanic Gardens, as also the specimens of dried and living plants. Natural history specimens have also been made over to scientific friends of the Expedition, my sole object being, to render our labors subservient to scientific ends, and with the least possible delay."
"I quite agree with Kane's remarks as to the increase of cold during full moon. The fact was noticed as far back as 1829-30, by Sir John Ross, in the Victory.
"I also agree with you in opinion that the apparent quantity of ozone depends upon the velocity of the air which has free access to the box containing the prepared paper."
"I likewise think that when you have fully examined my data now in your possession you will in a great measure subscribe to my opinion as to the ice-movement [as connected with the wind]. I referred in my letter only to the winter movements of the ice when there is no discharge of water whatever from the land, and when the precipitation in the northern regions is reduced to its minimum. The Bayrow Strait stream is almost lost in the vast expanse of Baffin's Bay, but its line is tolerably well indicated by De Haven's drift. The entire current which brings such quantities of ice round Cape Farewell, and up to about $65^{\circ} \mathrm{N}$., appears to be deflected off shore to the westward by banks which lie in about the latitude of 67°. It sweeps very swiftly past Cape Walsingham, curves southward, and having united with Barrow Strait current continues its course downward along the Labrador coast; so that the Labrador current is not due, in my opinion, so much to water flowing from the upper part of Baffin's Bay as to the Arctic current which sets around Cape Farewell from the East."
"The long drift of the Terror through Hudson's Straits in 1836-37 appears to me to be another instance of the effect of wind upon the ice, as in this case it does not seem possible that any considerable current could always, that is to say all winter, set out of Hudson's Bay. But it is my anxious endeavor to bring to light facts instead of advancing hypotheses, and I do know from repeated observations in the Fox, in 1837, and in H. M. S. Bulldog during the past summer, that the Arctic currents [from around Cape Farewell] flow northward along the coast of Greenland-off Frederickshaab, for instance, at from eighteen to twenty-four miles daily, and that West India seeds have been borne by it as far north as - Egedesminde, which is in about 68° of north latitude. Our observations, therefore, upon the volume of water setting out of Baffin's Bay [on the west side] should not be extended south of this point without making considerable allowance for the current which flows around Cape Farewell, and northward up the coast."

In one of his communications, Captain M'Clintock states that the beams of the aurora were mpst frequently seen in the direction of open water, or else in that of places where vapor was rising. In some cases, patches of light could be plainly seen a few feet above a small mass of vapor over an opening in the ice. This observation is in accordance with a deduction from an examination of a large number
-f notions of the amora in the boyens of Aretic explorations by Peter Force, Esq., of Washington; published in Vol. VIII. of Smithsonian Contributions (in 1856), namely, "that on the Itlantic Occan, and other open water, the aurora is most freruent and most beilliant." These fucts would appear to favor the hypothesis that amoma displays are due to clectrical discharges between the air and the earth, since buch discharges would, at least in part, be intermpted by a stratum of nonconducting ice.

The accompanying map, to illustrate the voyage of the Fox, is drawn by Mr. schott on the plan of the projection known as the polyconic, which is a development of the earth's surface on cones tangent to each parallel of latitude ; the radius boing the distance between the are of the parallel and the earth's axis.

Points of interscetion of the parallels and the meridians are, according to Mr. whott, readily computed by substitution in the following formulae, in which x and I/ are the co-ordinates for any difference of longitude, n, on any parallel of latitudr, 1 , and I the normal enting at the polar axis.

$$
\begin{aligned}
& x=N \cos L\left(n-\sin ^{2} L+\ldots\right) \\
& y=N \cos L\left(n^{n^{2}} \sin L-\frac{n^{4}}{2} \sin ^{3} L+\ldots\right)
\end{aligned}
$$

This projection is used in the United States Coast Surrey, and is described in the luport of the Superintendent, Dr. Bache, for 1859 , Appendix, 33.

JOSEPH HENRY,

Sutinomian Institution,
Winnangon, December, 1אfz.

PARTI.

TEMPERATURES.

RECORD AND DISCUSSION OF TEMPERATURES.

The registers herewith presented include observations extending over twentyseven months, and amount to a total number of upwards of seven thousand. The time is given in civil reckoning, and the latitude and longitude refer to noon each day (unless otherwise stated). All necessary explanations are contained in the notes accompanying the tables in which the observations are given.

The following statement is made in the preface to the Record: The registering thermometers were frequently compared with the standard thermometers supplied from Kew Observatory, and may be considered as free from sensible error. The corrections were deduced from the following table, furnished by Captain McClin-tock:-

[^11]The Kew Standards were most beantiful instruments, too valuable to leave exposed. Newman's, being filled with colored spirit, were more easily read off during winter. No. 16 having been used in 1850-51, enables us to compare the temperatures of that winter with those of the Fox.

Thermometers compared.								$\begin{aligned} & \text { 富富 } \\ & \stackrel{5}{5}^{\circ} \end{aligned}$										
		+												-		-	-	-
$\left.\begin{array}{c}\text { Kew Standard } \\ \text { (mercury), No. } 19\end{array}\right\}$	21.7	2.4	0.4	10.4	12.7	13.0	14.1	15.2	24.0	29.2	33.8	36.3	37.3	39.7				34.7
Kew Standard (white sp'it), No. 8	21.3	2.2	0.4	10.8	12.9	13.4	14.2	16.0	24.9	30.0	34.8	37.0	38.5	40.8	41.0	41.3	48.5	36.3
Kew Standard (whitesp'it), No. 6	21.1	2.2	0.3	10.5	12.7	13.1	14.0	15.5	24.7	30.0	34.5	37.3	38.4	40.8	40.9	41.2	48.0	35.8
Newman (colored spirit), No. 11	21.3	3.0	1.1	10.7	12.7	12.8	14.0	15.2	24.0	20.2	34.1		37.7	39.1	39.3	40.1	46.0	35.7
$\left.\begin{array}{c}\text { Newman } \\ \text { spirit), } \\ \text { (colored } \\ 0.72\end{array}\right\}$	21.8	3.7				11.9		15.2	24.2			36.3	37.5	38.8	38.9	39.5		36.3
$\left.\begin{array}{r} \text { Newman (colored } \\ \text { spirit), No. } 16^{3} \end{array}\right\}$	20.8	3.0	1.4	11.8	13.5	13.4	15.2	16.5	25.5	30.6			39.6	40.4	40.7	41.3	47.8	37.9

[^12]"On February 8th, 1858, the mercurial standard No. 19 fell steadily to - $40^{\circ} .2$; then the mercury appeared to freeze, and descended into the bulb. Had the stem been graduated down to the neck of the bulb, it would then have indicated -70 . A globule of mercury corked up in a small test-tube remained fluid. Two other mercurial thermometers (good instruments) were exposed ; one fell to -42°, the other to $-40^{\circ} .5$. This was a very fair set of observations; the thermometers were taken to a distance from the ship, and freely suspended at five feet above the snow."

Taking the mean of the three Kew standards, Nos. 19, 8, and 6, and comparing the same with the readings of Newman, Nos. 11 and 7 , we obtain the following corrections to each of the registering thermometers:-

From the above, it appears that the following small corrections may properly be applied, viz:-

For thermometer, Newman No. 11, nsed in wiuter 1857-58-

$$
\text { Between } 0^{\circ} \text { and - } 39^{\circ}, \quad-0^{\circ} .2
$$

$$
\text { " }-39 \text { " }-48, \quad-1.6
$$

Fur thermometer, Newman No. T, used from Sept. 1858 to Aug. 1859-

$$
\begin{array}{cc}
\text { Between } 0^{\circ} \text { and }-39^{\circ}, & -0^{\circ} .5 \\
"-39 "-48, & -1.8
\end{array}
$$

As remarked above, no correction is applied to the record, and to the results only when specially stated.

There were a number of other thermometers on board; but, since the numbers of these instruments are not given in connection with the observations, it suffices to show that their corrections are small. The following table is copied from p. 3 of the Meteorological Register in the fourth number of the papers published by authority of the Board of Trade:-

Mercurial Thermometers．					
	42°	620	82°		
Negretti，A 499，	－0．1	－0．1	－0．2）		
＂500，	0.0	－0．2	－0．3	完	
501,	－0．1	－0．2	－0．3	言	Compared at Kerr Fel 1857
502,	－0．1	－0．2	＋0．1	¢	Comparedat Ker，Fel． 1857.
503,	－0．1	－0．3	－0．3	\％	
504，	0.0	－0．2	－0．3		
Negretti，A 500，	－0．3）	－0．3	－0．4		
＂501，	－0．1	－0．4	－0．4		
＂502，	－0．4	－0．4	－0．1	휸	Compared at Kew Observatory
＂503，	－0．4	－0．5	－0．4	希	
＂504，	－0．2	－0．3	－0．4		

The corrections in regard to the barometer are explained in the third part of the series，on page 79 ．
-

	Temper	URE OF TH	Air in pressed	Shade degrees July,	OBSERVE of Fahren 1857.	D ON BOA heit's ses	ARD the le.)	$Y_{\text {ACHT }}$	Fox.	
Day of the month.	Latitude north.	Longitude west of Greenwich.	$4^{1 /}$	$8^{\text {b }}$	Noon.	$4^{\text {n }}$	$8^{\text {b }}$	Midn't.	Mean.	Deduced mean.
1		een		-					-•	--
2	$58^{\circ} 19^{\prime}$	$2^{\circ} 35^{\prime}$	-	\because			57			57.2°
3	$58 \quad 56$	413	.	57°	57.5	. .		57.7
4	5945	$7 \quad 16$.	54	.		49	. .		52.0
5	$60 \quad 18$	1349		49.5			53	550		51.7
6	$60 \quad 1$	151	5	53.5	56°	60°	56.5	55°		56.1
7	$60 \quad 6$	$15 \quad 42$	54°	58	61	61	57	57	58.0°	56.1
8	$60 \quad 38$	1920	69	59	59	59.5	56	55	57.9	.
9	6117	2540	55	55	57	57	55	51	55.0	.
10	6116	$28 \quad 56$	52	53	55	54	54	54	53.7	
11	613	3249	53	54	56	53	52	51	53.2	
12	$59 \quad 37$	$38 \quad 44$	50	50	50.5	50	48	47	49.3	
13	5919	4138	46	48	48	46	44	46	46.3	
14	$59 \quad 24$	$44 \quad 48$	44	40	44	47.5	44	44	43.9	
15	606	4819	44	43	41.5	43	41.5	41	42.3	
16	$60 \quad 24$	$49 \quad 40$	43	41	43	44	39	41	41.8	
17	6122	$50 \quad 36$	35	36	37	36	33	33	35.0	
18	61.57	$50 \quad 11$	32	32	34	35.5	37	36	34.4	
19	Frede	kshaab	40	\cdots	\because	\bullet	\cdots			40.5
20	-	,	44	40	41	40	41	36	40.3	
21	---	--	36	41	43	43	7	31	\cdots	38.8
22	$62 \quad 26$	515	34	35	36	36	37	37	35.8	. .
23	Fisk	naes	38	41	42	54	49	45	44.8	.
24	63 30	5210	43	40	41	41	41	39	40.8	
25	Off G	dhat	38	38	40	41	41	38	39.3	
26	$64 \quad 7$	$\begin{array}{lll}53 & 15\end{array}$	39	41	41	41	40	39	40.2	
27	6434	550	40	38	40	39	36	38	38.5	
28	651	$55 \quad 20$	36	37	39	39.5	40	39	38.4	
29	$67 \quad 23$	5530	38	39	38	42	39	39	39.2	
30	$68 \quad 29$	$55 \quad 12$	38	42	42	41.5	40	41	40.8	
31			44	45	45	45	43	42	44.0	
Mean	62.0	39.1	+44.78	+45.24	+46.4	+47.24	+45.36	+44.26		
	Correction to refer to mean from 24 observations in n day $=-0^{\circ} .03$.									
August, 1857.										
Day of the month.	Latitude north.	Longitude west of Greenwich.	4^{4}	$8^{\text {b }}$	Noon.	$4^{\text {n }}$	8^{\square}	Midn't.	Mean.	
1	In Disco Fiord $69^{\circ} \quad 7^{\prime} \quad \mid \quad 52^{\circ} \quad 58^{\prime}$ Off Issung Point At Rittenbeuk		- 422°	45°	44°	44°	44°	43°	$+43.7$	
2			45	44	45	46	45	45	45.0	
3			43	44	45	46	48	51	46.2	
4			51	50	51	47	40	39	46.3	
5	$\begin{array}{llllll}71 & 7 & \text { \| } & 55 & 25\end{array}$		38	39	41	43	40	40	40.2	
6	Off Upernavik		41	\because	\because	44	40	37	41.2	
7	7242	$\begin{array}{ll}58 & 1\end{array}$	34	33	33.	34	34	31	33.2	
8	$\begin{array}{ll}72 & 34 \\ 73\end{array}$	$\begin{array}{ll}59 & 47\end{array}$	29	30	34	35	37.5	40	34.2	
9	$\begin{array}{ll}73 & 19\end{array}$	5843	38	33.5	35	34	34	34	34.7	
10	$\begin{array}{ll}74 & 29\end{array}$	$58 \quad 38$	36	35	35	33.5	33	32	34.1	
11	7445	5926	32	33	36	36	34	32	33.8	
12	$75 \quad 6$	5920	28	30	34	36	36	33	32.8	
13	$75 \quad 11$	594	32.5	35	46	37	37	32	36.6	
14	$75 \quad 9$	5911	34	34	36.5	37	38	33	35.4	
15	759	5911	33	35	39	36	34	32	34.8	
16	$75 \quad 7$	$59 \quad 29$	31	34	36	36.5	32	31	33.4	
17	$75 \quad 10$	6118	31	31	31	33.5	32	31	31.6	
18	7517	628	29	30	33	35	32	29	31.3	
19	$\begin{array}{ll}75 & 16\end{array}$	6216	29.5	30	34	31.5	27	27	29.8	
20	$\begin{array}{ll}75 & 17\end{array}$	-	27.5	29	30	31	29	28	29.1	
21	7517	6216	28	29	32	35	33	31	31.3	
22	$75 \quad 22$	6241	30	31.5	35	35.5	32	29	32.2	
23	$75 \quad 22$	6241	30	31	33.5	33	33	27	31.2	
24	$75 \quad 20$	$63 \quad 9$	25	27	30	31	27	26	27.7	
25	---	--	23	28	34	35	34	34	31.3	
26	$\begin{array}{ll}75 & 23\end{array}$	$63 \quad 12$	32	32	31.5	32.5	31.5	33.5	32.2	
27	$75 \quad 26$	$63 \quad 15$	34	35	37	35	35	34	35.0	
28	---	---	34.5	35	34	35	34	33	34.2	
29	$75 \quad 26$	$63 \quad 55$	31	29	33	33	28	26	30.0	
30	---		24	27	32.5	33	34	34	30.7	
31	$75 \quad 30$	$64 \quad 4$	32	32.5	34	32	29	25	30.8	
Mean	74.0	59.8	+33.16	$+33.99$	$+36.39$	+36.32	+34.74	$+33.31$	+34.65	
	Correction to refer mean of 6 observations to mean of 24 observations, $0^{\circ} .00$.									

Temperature of tie Air in Silate observed on board the Yacht Fox.
(Expressed in degrees of Fahrenheit's scale.)
September, 1857.

$\begin{gathered} \text { Lay } \\ \text { of the } \\ \text { month. } \end{gathered}$	Lat. north.	$\left.\begin{array}{\|c\|} \left\|\begin{array}{c} \text { Long. } \\ \text { west of } \\ \text { Green. } \end{array}\right\| \end{array} \right\rvert\,$	$2^{\text {h }}$	$4{ }^{1}$	6^{14}	$\mathrm{g}^{\text {b }}$	$10^{\text {b }}$	Noon.	2^{14}	$4^{\text {h }}$	$6^{\text {b }}$	$8^{\text {b }}$	$10^{\text {b }}$	Midn't.	Mean of 6 obs'ns.	Mean of 12 obs'ns.
1	$75 \times 28^{\prime}$	-. -	.	22°	-	23°	- .	$29^{\circ} .5$	-	32°	-•	30°	-	29	+270.6	$+27^{\circ} .5$
\because	T	...	\cdots	31		34		35	. .	36	.	32.5		28	32.7	32.5
5	-.	-.		2		25.5	\cdots	30	.	32		30.5		29	29.2	29.1
4	- -	--		27.5		28	\ldots	29.5	.	26	.	26		25	27.0	26.8
5	7527	64 $4^{\text {c }}{ }^{\prime}$		24	.	29	.	31	. .	31	.	31		30	30.0	29.9
6	7526	8431		29	.	30	.	32	.	27.5	.	26	.	18	27.1	26.9
7	7524	6431		20		24.5		28.5	.	28	.	27.5	\ldots	33	26.9	26.8
4	...	- -		27		26.5		30	-•	32	\cdots	29		28	28.8	28.6
9	-.	- -		24.5		32		33		33	.	33		33	32.1	32.0
10	\cdots			32		34	.	33.5	-	35	.	31.5		30	32.7	32.5
11	\cdots	- . -		30	\cdots	30.5		33	-	34	.	34		31	32.1	32.0
12	7531	-	-	23	\ldots	23		22	-	21	.	16	-	16.5	20.2	20.0
13	7532	6532	\cdots	17	-	7		17	-	15	. .	18	. .	18	15.3	15.2
14	-.	-.	\cdots	20	.	24	.	31	.	28	.	19	.	6	21.3	21.1
15	7533	6152	.	5	-	10.5	.	10.5	.	19	.	13	.	6	10.7	10.6
16	- .	-	\cdots	9	.	16.5	\cdots	22	.	22.5	.	17.5	.	11	16.4	16.2
17	7532	661		3.5	.	3	.	10	. .	16	.	12		-2	7.1	7.0
18	7530	(15 39		4		8	.	7	.	14	.	13.5	. .	11.5	9.7	9.5
19	7523	$65 \quad 32$		10.5		9.5		15.5		17		9		7	11.4	11.3
20	7521	$65 \quad 24$		5		6		13	\cdots	16	\cdots	10.5		10.5	10.2	10.0
21	\% 7517	6521		13.5	\cdots	17		25.5	27°	26.5	23°	21	21°	21	20.7	20.3
$2 \cdot$	7512	6512	$23^{\circ} .5$	23	23°	21.5	17°	17	17	16.5	15	16	17.5	18	18.7	18.8
23	7510	$65 \quad 5$	17	17	13	19	15.5	17	18	17	8	5.5	,	5	13.4	13.2
24	758	$65 \quad 20$	6	6	5	9.5	10.5	10	12	13	8	6	3	4	8.1	7.8
25	$75 \quad 5$	$65 \quad 20$	5	5	6	9	12	14.5	16	16	10.5	8	8	6	9.8	9.6
26	754	$65 \quad 23$	3	5	6	7.5	11.5	12	13	14	11	8.5	9	9	9.3	9.1
27	751	- -	8	7	8.5	12	14	14	15.5	20	20.5	21	19	18	15.3	14.8
29	---	-- -	13	10.5	10.5	10.5	15	19.5	21.5	19.5	15	15.5	18	19	15.7	15.6
29	$75 \quad 1$	-.	19	18	17	18	19	20	20.5	19	14.5	12	11	11	16.3	16.6
30			12	12	11	15	18	19.5	18.5	16	16	16	15	12	15.1	15.1
Mean	75.3	65.5	15									19.63	18.63	17.38		19.5

Correction to refer to mean of 24 observations $=-0^{\circ} .04$.

October, 1857.

	Lat. north.	Long. Green.	$2^{\text {b }}$	$4^{\text {b }}$	$6^{\text {b }}$	$8{ }^{\text {b }}$	10^{b}	Noon.	$2^{\text {h }}$	$4^{1 /}$	6^{4}	$8^{\text {a }}$	$10^{\text {h }}$	Midn't.	Mean.
1			$+6^{\circ}$	$+5^{\circ}$	$+2^{\circ}$	$+3^{\circ} .5$	$+6^{\circ}$	$+13^{\circ}$	+180	$+18^{\circ}$	$+18^{\circ} .5$	$+20^{\circ}$	$+20^{\circ} .5$	$+21^{\circ}$	$+12^{\circ} .6$
2	---		1.9	17.5	17.5	20	22	22	19	11.5	8	12	7	9	$+15.4$
3	$74^{\circ} 58$	$65^{\circ} 52$	6	8	10	9		9.5	10	10	5	3	2	4	+ 7.1
4	7456		5.5	8	8	11	15.5	17	19.5	16	16	12	12	6.5	+12.2
5	1454	-- -	8.5	7.5	7	11	14	12	12	9	3	1	1	2	+7.3 +7.3
6	$\begin{array}{lll}74 & 52\end{array}$	$65 \quad 45$	-2	-1	10	14	16	17	13.5	14.5	13	3.5	1	-3	+ 8.0
7	$74 \quad 52$	$65 \quad 42$	-5	-6	-6	-3.5	-3.5	0	3	4	1	3	1	1.5	- 0.9
8		. . .	2	2	2	1	4	4	3.5	4.5	4	3.5	3	-3	+ 2.5
9			-3.5	-3	8	12	13	14	14	12.5	10	10.5	8	-3	+ 7.7
10	-. -		-3	-3	-3	2	0	0	-1.5	-1.5	-3.5	-7	-4	1	-2.0
11	-		-1	-1	-2	-3	-5.5	0	-2	-1	-1	-2	0	5	-1.1
12	$74 \quad 52$		6	9	9	9	14	15.5	15.5	15.5	15.5	13	2	5	$+10.8$
13	- - -	. .	8	7	9	9	8.5	8.5	10	10.5	18.5	23	26.5	28	+13.9
14	---		29	29	28.5	30	32	32	29	26	21	23	24	26	+27.4
15	- -		27	28	29.5	31	30.5	31	30	27	25	25	24	24	+27.6
16	-- -		27	28	28	$2 \times .5$	29	28	27	26.5	26	25	27	21.5	+26.8
17	$75 \quad 18$	$69 \quad 30$	12	8	7	11	13	11	19	18.5	19	19	19	20	+14.7
1.	-	- -	21	21.5	19	17	14	13	12	12	12	11	11	11	+14.5
19	751	15980	12	11	,	7.5	6.5	7	7	5.5	6	6.5	6	6	+ 7.5
$2{ }^{211}$	-5-30	\cdots	6	7	9		10.5	10.5	11	10.5	10	11	10.5	11	+ 9.7
21	7530	19934	10	10	12	11.5	11	8	9	9	11.5	15	16	13	+11.3
$\stackrel{22}{23}$	$75 \quad 33$	- - -	12	11	9	6.5	2	1.5	4.5	4	4	4	2	1	+ 5.1
23	$75 \quad 33$	\cdots	-2	-3	-4	-4	-8	-8	-9.5	-11	-11	-11	-11	-8	- 7.5
24 24	\square	---	-3	-6	-5	-3	-3	-4	-6	-7.5	-9.5	-9.5	-10	-11.5	-6.5
25 26	$\begin{array}{ll}75 & 27 \\ 75 & 27\end{array}$	188 41	-12	-13	-9	-5	-5	-2.5	-3.5	-4	-8	-10	-10	-8	- 7.5
26 27	75 27	(18) 50	-7	-8	-5.5	-7.5	-7	-7	-8	-4	-3	-4	-4	-6	- 6.0
2	75		-7	-7	-5	-4.5	-3.5	-3	-3	-3	-3	-1	0	-1	- 3.4
29	75 75	- -	-1	-1	-1	-1	-0.5	0	-4	-6	-8	-10	-11	-11	-4.5
301	$\stackrel{75}{75}$	184	-13.5	-12	-12	-10	-10	-9	-10	-11	-8	-7	-7	-10	-10.0
31	(6) 13	11840	-10 -11.5	-11	-10	-8	-6.5	-8	-8	-9	-10		-12.5	-12.5	- 9.8
Mean	7.52	67.6	$+4.3$. 31	5.	+6.2	(i.	-7.3	7.	(6.5)	+5.68	± 5.29	+4.81	+4.31	$+5.71$

'Temperature of tue Air in Shade observed on boabd the Yacet Fox														
$\begin{aligned} & \text { Day } \\ & \text { of the } \\ & \text { month. } \end{aligned}$	$\begin{array}{cc} \text { Lat. } & \begin{array}{c} \text { Long. } \\ \text { north. } \\ \text { west of } \\ \text { Oreen. } \end{array} \end{array}$	$2 "$	41	6^{6}	$8^{\prime \prime}$	10°	Noon.	2^{13}	$4^{\text {b }}$	$6^{\text {b }}$	$8{ }^{\text {n }}$	10^{4}	Midn't.	Mean.
1	$\cdots \cdots$	-36°	-35 ${ }^{\circ}$	-35. 5	-30^{3}	-35°	$-33^{2} .5$	-3. 5°	'-33'	-32°	$-31^{\circ} .5$	-30°	-29 ${ }^{\circ}$	$-33^{\circ} .5$
2	29	28	27	26	24	25	27	29	29	30	31.5	31	-28.0
3	\cdots - - -	28	28.5	27	24	23	21.5	20	20.5	22	23.5	24.5	25	-24.0
4	$73^{3} 49^{\prime} 699^{\prime \prime}$	25	25	23	17	15	15	14.5	14	13	11	9.5	9	-15.9
5	9	9.5	10	10	9	10	10	10	13	21	22.5	23	-13.1
6	-	21.5	22	20	19	18	17.5	17	17	16.5	16	16	16	-18.0
7	\cdots	16.5	16	15.5	15.5	16	16	15.5	14	15	15	16.5	16	-15.6
8	..- ...	17	17.5	18	18	18	17	18	18.5	18.5	18	18	18.5	-17.9
9	16.5	18	19	20	20	19	20	23	24.5	24	24	25	-21.1
10	$\begin{array}{lllll}73 & 30 & 64 & 9\end{array}$	26	26	26	25	24	23	23	22	22	21	20	20	-23.2
11	-	19	18.5	18	18	18	18	18	21	21	24.5	24	26	-20.3
12	$73 \quad 24: 6354$	27	28	27	25	23.5	22	21	20.5	27.5	26	28	26.5	-25.7
13	-	28	27.5	27	25	245	25	26	28	28.5	30	30	31	-27.7
14	-.. -. -	31	32.5	33	35	36	34	34	33	27.5	22	20	20	-30.0
15	-.. ...	17	17	15.5	14	13	9.5	8	8	9	11.5	13	14	-12.4
16	-	14	13	12	12	11	12	14	15	16	17.5	17	17	-14.2
17-.	16	16	19	21	19	22	25	27	29	31	31	33	-24.1
18	$\begin{array}{lllll}73 & 9 & 63 & 25\end{array}$	34	35	35.5	35.5	36	36	36	37	36	35	36	36	-35.7
19	- - - -	36	37	37.5	36.5	35	34	34	32	25	24	18	13	-30.1
20	- . . -	9	8	9	9	9	8.5	9.5	12	12	12	11	11	-10.0
21-	13	13	14	16.5	16	16	16	16.5	17	17.5	18	18	-16.0
22	- - , - -	18.5	19.5	20	25	27	30.5	31	30	29	29	28.5	29	-26.4
23	$\begin{array}{llll}73 & 1 & 62 & 55\end{array}$	29	28	28	29	30.5	32	32	36	36	36.5	37.5	36	-32.5
24	- 1	36	36	35	35	35	35	33	32	28	26	24	22.5	-31.5
25	- - -	22	22	22	23	21	22	24	26	27	27	28	28	-24.3
26	$\begin{array}{lllll}72 & 48 & 62 & 33\end{array}$	26	24.5	24	24	24	24	25	26	26	26	26	27	-25.2
27	25	25	24	23.5	26	28	31	31	33	34	35.5	36.5	-29.4
28	37	37	38	38.5	39	38	35	37.5	39.5	40	40.5	45.5	-38.4
29	-	39	39	39	39	41	41	45	43	45	46	43	43	-41.9
	---	41	41		37	36.5	36	34.5	35	33.5	32	33	33	-36.0
31	-.	33				31.5			24	23	23	23	21.5	-28.2
Mean.	73.2 63.7	-25.01	-25.07	-24.92	-24.72	-24.39	-24.16	-24.52	-25.08	-24.97	-25.21	-25.08	-25.0	-24.84
	Correction to refer mean of 12 to mean of 24 readings $=-0^{\circ} .03$.													
February, 1858.														
	$\begin{array}{cc\|} & \text { Long. } \\ \text { Lat. } & \text { Lest of } \\ \text { north. } & \text { Green. } \end{array}$	$2^{\text {n }}$	$4^{\text {n }}$	$6^{\text {b }}$	$8{ }^{4}$	$10^{\text {b }}$	Noon.	$2^{\text {n }}$	$4^{\text {b }}$	6^{14}	$8^{\text {b }}$	10^{4}	Midn't.	Mean.
1	$\cdots{ }^{-}-{ }^{-}$	-22	-22°	-22°	-190	-19°	-19°	-21. 5	-22	-21°	-22°	-23°	-20^{3}	$-21^{\circ} .0$
2	$72^{\circ} 28^{\prime} 611^{\circ} 10^{\prime}$	20.5	20	17	16	11	10	11	8	12	16	17	19	-14.8
3	\cdots	21.5	22	21.5	22.5	23	22.5	24	25	23	20	21	23	-22.4
4	$\begin{array}{llll}72 & 25 & 61 & 10\end{array}$	23	21	22	25	25.5	25	26	27	28	29	28	29	-25.7
5	-	30	30	29	27	26	25	25	24	24	21	20	20	-25.1
6	- - - .	21	19	19	18	16.5	15	15.5	15	14	15	17	23	-17.3
7	72 22:61 20	27.5	30	31	32	34	34	32	35	36	34	33.5	35	-32.9
8	72 22 61 26	33	34	36	37	39	39.5	38.5	39.5	38	37	37	35	-37.0
9	$\cdots{ }^{\text {- }}$ - -	34	34	33	32	32.5	30	28.5	27.5	26	24	23	23	-28.9
10	\cdots	24	23	20	18	16	15	13	11	10	10	8	6	-14.5
11	\cdots	3	$\stackrel{2}{2}$	4.5	8	10.5	11	11.5	16	18	14	12	10	-10.0
12	\cdots	9	8.5	7.5	6	8.5	7	13	16	17	17	16	16	-11.8
13	71 59 60 26	15	15	17	15	15	14	10	9	10.5	7	16.5	8	-11.8
14	--- $-\cdots$	8	9	8	7	7	5	5	6	6	6	7	7.5	-6.8
15	71 38 61 31 71 28	8.5	10	10	10.5	9.5	9.5	11	11	11	12	12	11	-10.5
16	$\begin{array}{lllll}71 & 28 & - & - \\ 71 & 16 & 60 & 45\end{array}$	11	10	9	${ }_{12} 9.5$	8	8	8	9	9	10	11	10	-9.4
17	$\begin{array}{cc:cc}71 & 16 & 60 & 45 \\ 71 & 8 & & \end{array}$	11	11	12	12	13	13	12	12	13	12	12	12	-12.1
18	$\begin{array}{lllll}71 & 8 & - & - \\ 71 & 2 & 60 & 48\end{array}$	13	13	13	11	10	9.5	9	10	10	11	11	10	-10.9
19	71 2 60 48 -	7	7	8	5	3	1.	1	1.5	3	4	9	13	-5.2
20	\cdots	14	15	10	7	5.5	3.5	1	${ }_{2}^{1.5}$	1	3	4	5	- 5.9
21	\cdots	5	5	${ }^{6}$	7	8	8	7.5	13	19	18	16	15	-10.6
$\stackrel{22}{23}$	70	16	16.5	18.5	17	17.	13	13	15	15	15	14	14	-15.2
23	$\begin{array}{cccc}70 & 39 & 60 & 35 \\ \ldots & \end{array}$	15	15	15	15	14.5	13	13	14.5	16	16	16	16	-15.0
24 2.9	\cdots	15	13	12	12	13	12.5	12	12	12	13	11	13.5	-12.6
25 26	\cdots		14	13	15	15	15	15	15	16	15	16	16	-14.9
26 27	\cdots		16	16	15.5	12	9	7	10	15	12	13	20	-13.5
27 28	69 50 59 - 13		26 +8	26	25 +8.5	22	19	14	6.5	6.5	8	15	9	-16.7
Mean										2	0	2	0.5	
	$71.5-60.9$	-16.55	-16.18	-15.98	-15.55	-15.14	-14.11	-13.95	-14.66	$\overline{-15.43}$	$\overline{-15.04}$	-15.43	-15.70	-15.31
Correction to refer mean of 12 to mean of 24 observations $=-0^{\circ} .03$.														

Temperature of the Air in Shade observed on board the Yacht Fox. (Expressed in degrees of Fahreuheit's soale.)

March, 1858.

Day of the month.	$\begin{gathered} \text { Lat. } \\ \text { north. } \end{gathered}$	Long. Green.	$2^{\text {b }}$	$4^{\text {n }}$	$6^{\text {b }}$	$8^{\text {b }}$	$10^{\text {b }}$	Noon	$2^{\text {b }}$	4^{n}	$6^{\text {b }}$	$8^{\text {h }}$	$10^{\text {h }}$	Midn't.	Mean,
1			-2°	-2°	$+4^{\circ}$	$+5^{\circ}$	$+8^{\circ} .5$	$+8^{\circ} .5$	$+10^{\circ}$	$+12^{\circ} .5$	$+16^{\circ}$	$+15^{\circ}$	$+6^{\circ}$	$+3^{\circ}$	$+7^{\circ} .0$
2			+3	+1	+ 2	+ 3	$+3$	+ 5	$+3.5$	+1.5	$+0.5$	+1		-5	+1.5
3		-. -	-7	-7	-11	-4.5	-5	-1	-5	0	+ 3	+ 5	+8	+18	-0.5
4			+12	+ 7	+ 4	+1	+1	0	--2	-5	- 7	-8.5	-11	-12	-1.7
5	$70^{\circ} \quad 4^{\prime}$	$59^{\circ} 29$	-12.5	-12.5	-10	-12	-12.5	-10	-8	-9	-13	-16	-19	-22	-13.0
6	$70 \quad 1$	5	-21	-25	-25.5	-23	-18	-16	-14	-15	-18.5	-22.5	-23	-25	-20.5
7	$69 \quad 55$	5911	-25	-26.5	-25	-22.5	-20	-16	-15	-15	-19	-19.5	-19	-19	-20.1
8	6949		-18	-18	-18.5	-18.5	-15	-14.5	-12	-11.5	-17	-20	-19	-17	-16.5
9			-17	-17	-15	-12	-6.5	-2	+3.5	+2.5	+2	-1	+1	+4	-4.8
10	6941		+ 4	+ 2	+9	+18	+23.5	+25.5	+22	+21	+20	+18	$+20$	+26	+17.4
11			+25.5	+25.5	$+30$	+29	+31	+32	+32	$+30$	+24	+20	$+17$	+17	+26.1
12			+19	+22	+18	+20	+26	+31.5	$+27.5$	+15	+13	+11	+11	+ 8	+18.5
13			+10	+11	+11	+11.5	+10	+13	+10	+12	+ 6	-6	- 8	-10	+ 5.9
14	$69 \quad 55$	$60 \quad 5$	-8	-8	-9	-7	- 7	-6.5	-4	- 5	-12	-14	-15	-17	- 9.4
15			-20	-20	-19	-18	-15.5	-13	-14	-15	-18	-19	-19	-18	-17.4
16	6938	$59 \quad 14$	-18	-20	-20	-18	-14.5	-12	-10	-10	-11.5	-12	-11	-11	-14.0
17	$69 \quad 31$	-.-	-11.5	-10.5	-9	-8.5	-8.5	- 6	- 3	-6	-8.5	-10	-11	-13	-8.8
18	$69 \quad 28$	$58 \quad 55$	-13	-12	-12	-12	-7.5	- 5	- 3	- 3	- 5	-5.5	-6.5	- 7	-7.6
19	$69 \quad 20$	--	-8	8	-9	-8	- 5	-4	-2	-2.5	-5.5	-9	-10	- 8	-6.6
20	$69 \quad 14$	$58 \quad 43$	-4	- 5	-9	-4	-5	+1	+3.5	$+3.5$	0	-3	-9	-11	-3.5
21	$69 \quad 14$	-	-11.5	-11	-11	-10	-4	± 3.5	-1	+3	-6	-2	0	0	-4.7
22	- - -		+1	$+2$	+ 4	+9	+9	+13	+14	+14.5	+17	+19.5	+22	+25	+12.5
23			+25	+24	+29	+29.5	+29	$+30$	$+20$	+15	+11	$+9.5$	+8.5	+8	+19.9
24			+ 7	+7	+ 7	$+8.5$	+10	$+10$	+ 9.5	+8.5	+ 7	+ 6	+6	+ 5	+ 7.6
25	$69 \quad 16$	$58 \quad 50$	$+1$	-1	-1	+ 3	+ 4	$+4$	+ 5	+ 3.5	+ 1.5	0	,	-1	+ 1.6
26	$68 \quad 59$	-- -	- 1	- 3	- 5	- 6	-7	- 7.5	-7	-6.5	-9	-12	-13	-15	- 7.7
27	$68 \quad 44$	$58 \quad 37$	-15.5	-16	-17	-14	-13	-11.5	-11	-11	-12	-14	-16	-17.5	-14.1
28	$68 \quad 34$	-	-16.5	-15.5	-14	-11	-8	- 8.5	- 5	4	-7	-7	-9	-12	-9.8
29	$68 \quad 27$	$\begin{array}{ll}58 & 29\end{array}$	-12	-12	-15	7	-7	-5.5	- 6	- 8	-10	-12	-14	-15	-10.3
30	$68 \quad 25$	$58 \quad 31$	-14	-13.5	-11.5	-5	$+3.5$	+ 4.5	$+4$	- 2	-4	-10	-14	-18	-6.7
31	$68 \quad 20$		-22	-25	-25.5	-23	-21	-20	-19.5	-18	-19	-20.5	-25.5	-27	-22.2
Mean	69.4	59.1	-5.48	-6.03	-5.60	-3.44	-1.34	+0.47	+0.74	-0.13	-2.49	-4.79	-5.57	-6.0	-3.31

Correction to refer mean of 12 to mean of 24 observations $=+0^{\circ} .02$.
April, 1858.

Day of the month.	$\begin{gathered} \text { Lat. } \\ \text { north. } \end{gathered}$	Long. west of Green	$2^{\text {b }}$	$4^{\text {b }}$	$6{ }^{6}$	$8^{\text {h }}$	$10^{\text {b }}$	Noon.	2^{13}	$4^{\text {h }}$	$6^{\text {n }}$	8^{11}	$10^{\text {b }}$	Midn't.	Mean of 6 obs'ns.	Mean of 12 obs'ns.
1	$68^{\circ} 17$	$58^{\circ} 15^{\prime}$	-26°	-26°	-26°	-13°	- 8°	- 7°	-4. ${ }^{\circ} 5$	- 5°	$-8^{\circ} .5$	-17°	-17°	-17°	$-14^{\circ} .2$	$-14^{\circ} 6$
2	6817		-19	-20	-18	-12	-10.5	- 9.5	-9	-9.5	-12	-15	-16	-16	-13.7	-13.9
3	$68 \quad 9$	5825	-16	-15	-13.5	-10	-9	-7.5	- 8	-9	-11.5	-12	-14	-14	-11.5	-11.6
4	-..	...-	-15	-15	-15	-14.5	-13.5	-11	-8.5	-8	-10	-11	-11.5	-12.5	-12.0	-12.2
5	-.-		-12.5	-12	-11	-6	-4	- 1	+1	-4	-7	-8.5	-9	-10	- 6.9	-7.2
6	6718	5817	-8	-8	-8	-4	-3	0	+ 2	+ 4.5	-3	-8	-9	-9	-4.1	-4.5
7	-. -	-. -	-8	- 5	-3	+3	$+13$	$+16.5$	+15	+9	$+5$	$+4$	$+4$	+ 4	+ 5.2	+ 4.8
8	66		+ 4	+ 4	+ 2.5	+ 5	+1	+ 5	+ 4	- 1	2	- 6	-7	- 9.5	- 0.4	0.0
9	6653	5831	-9	-10	- 6	- 3.5	0	+1	+1.5	0	-2	-4	- 5	-6	-3.7	-3.6
10	6645	5820	- 6	-7	-5	-1	$+6$	+9	+10	+ 9	+ 2.5	+ 2	-1.5	- 1.5	$+1.7$	$+1.4$
11	6640	---	-2	-2	-1.	+ 6	+11	+20	+19	+18	+14	+ 5.5	+ 1	$+4$	+8.6	+ 7.8
12	6633	58 8	- 0	-1	-2.5	+ 3	- 2.5	$\square 1$	+	-1.5	-5.5	-7.5	-9	-10	-4.0	- 3.6
13	6626		-10.5	10 -3	-5	± 3	+1 +10	+5	+8	$+10$	+8.5	+ 5	$+1.5$	-2	+ 0.8	$+0.7$
15	66 66 66 17	58 57 57	- 5	- 3	+1	+ 6	+10 +3	$\underline{+12}$	+12	+11	+9	$+4$	+1		+ 5.0	+ 4.8
15	$\begin{array}{lll}66 & 17 \\ 65 & 58\end{array}$	575	+ 1	+1.5	+1 $+\quad 2$ +1	$+\quad 2.5$ +4.5	+3 +8	+ 5.5	+ 5.5	$+4.5$	$+4$	$+1.5$	${ }^{0}$	-0.5	+ 2.5	+ 2.5
17	6558		0	- 1.5	+1	$+4.5$	+8	$+10$	$+11.5$	+14	+16	+9	$+8$	$+8$	+ 7.3	+ 7.4
17	6528	5824	$+7$	+6.5	$+7$	+9	+14	+16	+18	+18	+15	+15	+14	+14	+13.1	+12.8
18	6450	5835		+11		+11		+19.5	. .	+18		+17		+15	+15.2	+15.1
19	6416	-		+14		+15.5		+16		+15		$+10$		+9	+13.2	+13.1
20	6422	5845		+8		+16		+16		+14		+12		+10	+12.7	+12.6
21	6410	5844		+12		+13		+17		$+17$		+ 9.5		+ 7	+12.6	+12.4
22	6351	5854		+3		+ 5		+15		$+15.5$		+13		$+7$	+ 9.7	+ 9.6
23	6341	5859		+ 8		+12		+ 9.5		+21		+19.5		+19	+14.8	+14.7
24				$+17$		+26		$+28.5$		+33		+33		$+30$	+27.9	+27.8
25	6340	5824		+26		$+30$		+34		+31		+25		+22	+28.0	+27.8
26	6347	5636		+23		$+26.5$		$+30.5$		+28		+25		+24	+26.2	+26.1
27	6514	5341		+28		$+25$		$+29$		+30		$+26$		+23	+26.8	+26.7
28	6628	5330		+26		$+25$		+29		+28		+25		$+25$	+26.3	$+26.2$
29	6628	5330		+21		+23		28		+26		$+25$		+22	+24.2	+24.0
30	6628	5330		$+27$		+31		+35		$+38$		-36		+34	+35.5	+33.4
Mean	66.0	57.7	+3.03	+3.	4.13	$+7.50$					10.	7.	6.14	-5.63		8.04

Temperature of tue Air in Sifade obseived on board the Yacut Fox.
(Expressed in degrees of Fahrenleit's scale.)
May, 1858.

Day of the month.	Latitude north.	Longituilo west of Greunwich.	4	$8^{\text {b }}$	Noon.	4^{n}	$8^{\text {h }}$	Midn't.	Mean
1	Hols	inbors	33	34	34^{2}	25°	27°	25°	$+30^{\circ} .2$
\because			$\because 7$		34	36.5	31.5	30	31.6
3			24	24	24	26	24	21	23.8
4			24	$\because 6$	27	28	28	27	26.7
5			27.5	27	21	20	14	13	20.4
18			14	16	11.5	18	15	10.5	14.2
7			12	16	19	23.5	17	12	16.6
\checkmark			13	15	29	15	14.5	13	16.6
!	$67^{\circ} 22^{\prime}$	$5.33^{\circ} 55$	13	13	15	17	17	17	15.3
10	6810	$53 \quad 55$	15	18	21	21	18	23	19.3
11	Whallef	Istands	24	27	29	29	27.5	28	27.4
12	---	,	29	30	30	29	25	26	28.7
13	. . -	...	29	30	33	34	34	34	32.3
14	-. -	...	35	37	39	39.5	37.5	35	37.2
15	- . -	-.	33	39	39	37	35	31	35.7
16	- - -	- - -	33	35	36	30	29	27	31.7
17	Upera	ik Bay	27	29	29.5	30	32.5	30	29.7
15	"	"*	29	33	42	45	35	31	35.8
19	"	"	30	31	35	39	34	30	33.7
211	"	"	30	32	39	40	34	30	34.2
21	"	"	$21 ;$	40	41	40	38	32	36.2
$2 \cdot$	"	"	33	34	36	35	35	34	34.5
23	"	"	30	34	37	44	38	36	36.5
24	Giot	aren	30	34	39	41	41	31	36.0
25	- - -	-. -	32	35	42	36.5	34	33	35.4
20	Ont the	al ceam	32	33	35	35	39	35	34.8
27	711	5250	34	37	44	36	37	34	37.0
2	$70 \quad 32$	54.9	35	36	36	42	35	34	36.3
29	$71 \quad 19$	5537	34	32	32.5	32	32	33	32.6
30	721	5540	35	30	32	31	32	32	32.0
31	Off C^{+}	ruavik	33	33	36	37	37	32	34.7
Mean	68.7	53.7	$+27.60$	+29.69	+32.28	$+32.10$	$+30.02$	+27.73	+29.90

June, 1858.

Day of the month.	Latit nor	ude	$\begin{gathered} \text { Long } \\ \text { wes } \\ \text { Green } \end{gathered}$	$\begin{aligned} & \text { tudle } \\ & \text { tof } \\ & \text { wich. } \end{aligned}$	4	8	Noon.	$4{ }^{\text {b }}$	$8^{\text {b }}$	Midn't.	Mean.
1	Off Cpermatk				38°	$39{ }^{2}$	$42^{2} .5$	43°	41°	39°	$+40.3$
2					35	44	45	50	44	40	44.2
3					42.5	38	41	42	41	38	40.3
4		$7{ }^{\prime}$		-	37	38	37	40	35	33	36.7
5		17	56°	23^{\prime}	82	33	33	40	33	34	34.2
6		24	56	20	36	36	40	40.5	44	38	39.1
7		27	50	15	41	39	41.5	44	44	36	40.9
s		35	56	42	35	35	38	43	38	35	37.3
9		51	57	6	34	38	40	41	38	32	37.2
111		$5 \cdot 1$	57	5	36	39	37	37	35	35	36.5
11		56		48	34	34	38	42	36	31	35.8
12		3			35	35	38	36	33	29.5	34.4
13		4			23	30	36	32	32	25	31.0
14		10		4	29	32	36	35	31	35	33.0
1.5		14	58	14	36	3	38	35	34	32	35.5
14		57	60	4	30	35	35	37	37	30	34.0
17		17	61	0	32	33	35	33	35	34	33.7
18		211		19	34	39	40	35	38	31.5	36.2
1:1		25	62	1	35	34	44	38	35	36	38.2
210		32		50	38	$3-.5$	37	40	35	31	36.6
21		34	62	7	30	32	34	34	34	30	32.3
29		27		2	30	33	35	38	36	32	34.0
23	75	27		22	35	35	35	34	35	33	34.5
24		36		37	34	34	36	38	36	34	35.3
25		51			34	37	36	39	36	36	36.3
24		55		33	36	36	36	35	37	36	36.0
27		55			35	34	36	34	32	33	34.0
29	75	53		5	33	35	3 n	34	33.5	32	34.2
\%	75	5		15	36	36	39	34	33	31	34.8
311	75	5		28	32.5	34	37	39	35	30.5	34.7
Ile:4n	74.		S		$+34.52$	+35.42	$+37.90$	+35.05	+36.32	+33.50	+36.04

('orrection to refer mean of © to mean of a A observations $=-0^{\circ} .07$.

	Tempera	RE OF THE (E	Air in pessed in	HADE Ol legrees of July, 1	SERVED Falurenhei 858.	$\begin{aligned} & \text { N BOARD } \\ & \text { 's scale.) } \end{aligned}$	THE YA	It Fox.	
Day of the month.	Latitude north.	Longitude west of Greenwich.	$4^{\text {n }}$	$8^{\text {h }}$	Noon.	$4^{\text {h }}$	$8^{\text {b }}$	Midn't.	Mean.
1	$75^{\circ} 55^{\prime}$	$68^{\circ} 28^{\prime}$	33°	36°	37°	41°	34°	33°	$+35^{\circ} .7$
2	$75 \quad 53$	$67 \quad 11$	32	34	41	49	34	31	36.8
3	$75 \quad 31$	$70 \quad 42$	32.5	33	34	34	31.5	31	32.7
4	$75 \quad 34$	$70 \quad 34$	32	32	31	34	31.5	32	32.1
5	7544	$70 \quad 28$	34	36	36	35	36	37	35.7
6	$75 \quad 17$	$73 \quad 35$	33	32	34	33	31	33	32.7
7	$75 \quad 25$	$75 \quad 12$	34	35	37	36	36	34	35.2
8	$75 \quad 20$	$75 \quad 37$	35	31.5	36	35	36	34	34.6
9	$75 \quad 17$	$75 \quad 47$	33	35	38	36	34	34	35.0
10	$75 \quad 26$	$76 \quad 58$	35	37	39	39	38	36	37.3
11	$75 \quad 9$	$78 \quad 46$	35	37	39	40	35	34	36.7
12	$74 \quad 41$	$79 \quad 34$	33	33	39	35	32	32	34.0
13	7 ± 35	$80 \quad 40$	33	31	33.5	33	35	34	33.2
14	---	---	35	36	40	38	35	32	36.0
15	$74 \quad 33$	so 57	35	38	37	39	33	36	36.3
16	$74 \quad 24$	8159	33	36	35.5	38	36	34	35.4
17	$74 \quad 2$	820	36	37	44	37	34	33	36.8
18	7346	$79 \quad 10$	32	38	38	38	32	31	34.8
19	$73 \quad 49$	$78 \quad 26$	32	35	37	38	36	34	35.3
20	$73 \quad 56$	$78 \quad 32$	35	39.5	45	45	39	37	40.1
21	7358	7825	36	34	44	43	38	38	38.8
22	740	785	39	40	45	44	39.5	38	40.9
23	745	7743	34	38	41	39	41	37	38.3
24	$73 \quad 54$	$76 \quad 54$	37	41	43	44	42	39	41.0
25	73 38	\% 0	35	40	47.5	42	42	39	41.4
26	739	7549	36	45	49	46	40	37	42.2
27	---	-	37	38	41	42	42	36	39.3
28	$72 \quad 50$	---	35	38	43	38	36	35	37.5
29	7251	$76 \quad 13$	34	36	35	35	35	34	35.3
30	7251	$76 \quad 13$	36	38	35	35	35	36	35.8
31	$72 \quad 37$	-..	37	38	40	36	38	36	37.5
Mean	74.4	76.4	$+34.57$	+36.39	+39.18	+35.64	+36.14	+34.74	+315.61
	Correction to refer mean of 6 to mean of 24 observations $=-0^{\circ} .01$.								
August, 1858.									
$\begin{gathered} \text { Day } \\ \text { of the } \end{gathered}$ month.	Latitude north.	Longitude west of Greenwich.	$4{ }^{\text {b }}$	8^{14}	Noon.	$4^{\text {b }}$	8^{4}	Midn't.	Mean.
1	$72^{\circ} 47^{\prime}$	$77^{\circ} \quad 9^{\prime}$	34°	37°	35°	40°	39°	33°	$+36^{\circ} .8$
2	$72 \quad 48$	$76 \quad 54$	37	38	35	40	36	37	37.7
3	7245	$76 \quad 24$	36	35	38.5	39	37	$3{ }^{\circ}$	37.4
4	7248	---	37	37	39.5	40	39	38	38.4
5	$72 \quad 48$	$76 \quad 39$	37	38	40	37	36	36	37.3
6	$72 \quad 54$	$75 \quad 50$	35	39	38	40	37	36	37.5
7	7340	7716	38	37	36	36	35	34	36.0
8	7355	$84 \quad 22$	33	32	35	35	35	35	34.2
9	7414	8700	34	36	38	36	34	34	35.3
10	74	8820	36	34	34	35	36	35	35.0
11	..-	.-.	35	34	38	38	38	38	36.8
12	- -	-	38	39	41	44	43	35	40.0
13	. - -	- -	35	43	40	38	38	38	35.7
14	- . -	.-.	38	40	41	40	38	38	39.2
15	- - -	--.	39	39	40	38	35	33	37.3
16	-	---	32	32	33	35	36	34	33.7
17	748	$\begin{array}{lll}94 & 58 \\ 98 & \end{array}$	33	34	36	33	32	31.5	33.3
18	Port Leopold		31.5	31	31	35.5	36	$3{ }^{6}$	33.5
19			36	32	33	32	33	32	33.0
20	$\begin{array}{ll}72 & 41 \\ 72\end{array}$	$\begin{array}{ll}91 & 58 \\ 94 & 9\end{array}$	32	32	33	33	33	33	32.7
21	72 00 ${ }^{\text {In Depot Bay }}$		32	35	33	34	32	31	32.8
22			32	31.5	34	35	32	33	32.9
23	In Bellot Straits		33	34	35	35	36	33	34.3
24	$\begin{array}{ll}71 & 54 \\ 76\end{array}$	$\begin{array}{ll}94 & 26 \\ 94 & 9\end{array}$	31	32	32	33	33	34	32.5
25	7200	94 94	32	35	35	34	30	31	32.8
26	7154	$\begin{array}{ll}94 & 12 \\ 93 & 17\end{array}$	30.5	30	32	31	32	32	31.3
27	7134	$\begin{array}{ll}93 & 17 \\ 93 & 17\end{array}$	32	35	33	31	30	29	31.7
28	7150	${ }^{93} 12$	30	28	30.5	30	29	30	29.6
29	Depot Bay		32	29	33	32	31	30	31.2
30	7201	9414	24.5	26	29	32	31	27	28.2
31	Port Kennedy		28	30	30	30	29	28	29.2
Mean	73.1	88.5	+33.66	+34.44	+35.40	+35.53	$+34.55$	$+33.57$	$+34.52$
The correction to refer mean of 6 to mean of 24 observations becomes zero for this month.									

Day of the month.	Temperature of the Air in Shade observed on board the Yacht Fox. (Expressed in degrees of Fahrenheit's scals.) September, 1858.							
	Latitude north. Longitude west of (ireenwich.	$4{ }^{\text {b }}$	8	Noon.	$4^{\text {b }}$	8^{4}	Midn't.	Mean.
1	Head of Port Kennedy	26°	29°	32°	34°	32°	30°	$+30^{\circ} .5$
2	" ${ }^{\text {a }}$	21	30	30	29	26	26	27.0
3	"	25	29	29	29	28	27	27.8
4	" "	30	30	30	29	27	26	28.7
5	" "	24	23	27	29	30	29	27.0
i	Near Pemmican Rock	26	27	30	32	34	30	29.8
7	"	36	37.5	37	37	36	37	36.7
8	" "	36	35	36.5	36	31.5	34	34.8
9	71° 58^{\prime} 95 10	33	29	28	29	29	26	29.0
10	71 58 95 10	27	30	33	32	31	29	30.3
11	Port Kennedy	32	30	31.5	31	28	28	30.0
12	72 01×144	25	26	27	29	27	25	26.5
13	72 01 9.4 14	20	22	28.5	27.5	29	26°	25.5
14	$\begin{array}{ll}72 & 01\end{array}$	21	19	26	28	26	25	24.2
15	72 11 94 14	23	23.5	24	26	24	20	23.4
16	72 11 94 14	23	22	25	25.5	25	25	24.3
17	72 $111 \begin{array}{llll}11 & 14\end{array}$	25	27	29.5	28	28	28	27.6
15	Jellot Straits	29	28	29	26	21	19	25.3
19	met sirais	18.5	17	20	23.5	23	23	20.8
20	25	21	20	23	26	27	23.7
21	\cdots-.	29	31	32	31	30	27	30.0
22	19	18	16	18	18	28	19.5
23	-.. , -.	31	32	32.5	33	26	12	27.8
24	... \quad..	11	8	11	14	14	11	11.5
25	-	13	15	16	15	17	15	15.2
26	-. - .	15	19	19.5	18	18.5	15	17.5
27	$\begin{array}{ll}71 & 58\end{array}$	15	16	17	15	12	21	16.0
28	Port Kennedy	23	23.5	26	29	27	27	25.9
29	"	25	21	25	23	20	21	22.5
30	"	21	22	26	26	25	25	24.2
Meau	72.0 94.4	+24.25	+24.68	+26.45	+26.83	$+25.63$	$+24.73$	+25.43
	Correction to refer mean of 6 to mean of 24 readings $=$ zero.							
October, 1858.								
Day of the month.	Latitude north. Longitude west of Greenwich.	$4^{\text {b }}$	8^{\square}	Noon.	$4^{\text {h }}$	8^{4}	Midn't.	Mean.
	l'ort Kemnedy72° (1nt 94°Winter Quarters""		26°	2805	25°			
2		27	28	28.5				$+25^{\circ} .4$+26.1+25.8
3		27	25	26	22	27 23	25 29	
4		24	25	23		20	21	+22.3+22.5
5	"	22	22	25	24	21	21	
6	"	20	21	27	25	21	19	+22.2
7	" "	13	14.5	14	14	13	13	+13.6+6.3
8	" "	11	10	15	2	0	0	
9	"	-1	-2	6	3	-7	-6	-1.2
10	"	-4	-1	${ }^{7}$	8	9	9	+ 4.7
11	"	10	12	16	14	14	13	+13.2
12	"	14	15.	17.5	12	8	4	+11.7
13	"	$\stackrel{2}{2}$	- 1.5	-4	-2.5	-1	3	-0.7
14	"	${ }^{2}$	2 -95	3 0	2	-6	-10	-1.2
15	"	-11	-9.5	0	11	12	9	+1.9
16	"	18	19	22	19.5	15.5	17	$+18.5$
17	"	10	8	8	8	5	4	+ 7.2
18	" " ${ }^{\text {" }}$	4	$\begin{array}{r}-2 \\ -\quad 9 \\ \hline\end{array}$	-3.5	- 6.5	0 9.5	2	-1.0
19 20	"	5	9 2	10 0	-3.5	- ${ }^{9.5}$	11 10	a +9.0 $+\quad 2.2$
21	"	9.5	11	10	7	6	1	+7.2 +7.4
22	"	-1	-7	-7	-9	-10	-11	-7.5
23	"	-10	-4	0	4	5	10	+ 0.8
24	"	14	16	19	19	19	22	+18.2
25	"	-21	14	8	- 4	1	-11	+6.2 +158
26 27	"	-17 -11	-21	-20 -7	-17 -11	-10 -10	-10 -12.5	-15.8
28	"	-11	-1	-1	- 3	- 6	-12.5	-10.6 -2.0
29 30	"	-7	-8	0	0	3	2	-1.7
311 31	" "	2 9	3 7	2 5	9 2	11	9	+6.0
Mean		+7.62			+7.55			
			$+7.37$	+9.03		$+7.26$	$+6.53$	$+7.54$
		fer mea	of 6 to n	n of 24	adings $=$	+ $0^{\circ} .05$.		

Temperature of the Air in Shade observed on board the Yachit Fox.
(lixpessed in degrees of Fathrenheit's seale.)
November, 1858.

Duy of the month.	Lat.	Lang. wost of Green.	2^{11}	$4^{\text {H }}$	6^{17}	8	10^{13}	Noon.	23	4	(3) ${ }^{1 /}$	5^{4}	$10^{1 /}$	Milu't.	Mean.
1	Port K	emmedy	$+4$	+ 50°	$+50$	$+8^{\circ}$	$+10^{\circ}$	- -12°	+120	$+10$	+ 20	+110	$+11$	+-110	+ 33.3
2	$72^{\circ} 111$	$194^{\circ} 1 t^{\prime}$	+12	+12	+12	$+10$	+ 3	-	- 8.5	-11	-12	-12	-	-7	- 1.11
3	Winter	duarters	- 5	- 5	- 5	-5	-is	-15	-1\%	-	- +	-1.7	-15	-1.5	- 9.7
4	${ }_{6} 6$	"	-14	-14	-11	-14	-13	-14	-11	-11	- 11	-11	-10	-11	-12.3)
5	*	"	-11	-12	$-1 \pm$	-12	-15.5	-15	-14	-16	-16	-15	-15	-11	-14.11
6	"	"	-10	- ह	- 5	-2	+8	$+8$	+	+	- 1	-4	-4	- 2	- 11.6
7	6	"	-15	-16	-16	-16	-1.5	-15	-11	-12	+ 1	- 8	-12	-12	-12.\%
8	"	*	-12	-12	-13	-12	-12	-10	-11	-11	-11	-11	-11	-11	-11.4
9	"	6	-14	-14	-14	-12	-11	- 9	-- 8	-5	-7	-7	-8	-1:	-10.3
10	16	*	-12	-14	-16	-17	-16	-17	-20	-21	-18	-17	-17	-17	-14.8
11	${ }^{6}$	6	-16	-15	-14	-11	-13	-13	-1:	-12	- $\%$	- 9	-7	-7	-11.
12	"	"	-7	-7	-111	-12	-10.5	-12	-].1	-1:3	--13	-13	-15	-15	-12.0
13	"	6	-13	-10	- 9	- 8	- 7	- 7	- 7.5	-	-10	-11	- 111	- 9	- $\because 2$
14	"	"	- 7	-7	-11	- 8	-11	-13	-14	--17	—. 6	-27	- : $: 1$	— : $: 10$	-17.1
15	*	"	-30	-29	-31	-31	-31	-30	-29	- 30	-	-31	-:30	-	-30.1
16	6	"	- 06	- 6	-22	-92	-20	-20	-18	-18	-10	$-1 t$	-12	-11.	-15.s
17	6	"	- 5	-2	+1	$+4$	$+4$	$+2$	-5	- 8	-1	$+1$	+3	+ 5	- 19.3
18	"	"	$+6$	$+7$	+ 9	$+11$	+-11	+111	+ 9	+ 0	+10	$+10$	+10	$+7$	+ 9.1
19	"	"	$+8$	$+7$	+12	+12	+13	+13	+13	+12	$+13$	+12	+	+	+11.0
20	"	6	+ 7	+ 9	+11	+10	+12	$+12$	$+4$	+ 2	- 5	-3	-5	-s	+3.8
21	"	،	- 8	-5	+ 2	-1	- 2	$+3$	$+4$	$+1$	$+\frac{1}{1}$	+	- 1	-5	- 0.83
93	'6	6	- 7	-10	-10	-16	-16	-17	-17	-18	-21	-2:2	-2:	-23	-16.4
23	"	"	-21	-22	- 21	- 0	-1:	- 21	-	-23)	- 23	-25	--:1	--5	-21.9
24	6	"	- 2.4	- 25	-27	-27	-29	- 219	- 96	-29	-3:3	-34	-35	-	-20.7
25	،	"	-20	--3.3	-23	- 4	-33	-33	-33	-25	--95	- 313	-26	-28	- 2.46
26	"	،	-26	-2i	-26	-26	- 28	-28	-28	-:7	- -7	- 27	-3;	- : ${ }^{\text {; }}$	-29.8
27	"	"	-25	--23	-21	-21	-21	-21.5	-22	-27	- 27	-27	- ${ }^{2}$	-25	-23.6
28	،	"	- 25	- 3	-2:	-20	-20	-311	-19	-19	-17	-16	-16	-16	- 13.6
39	6	"	-16	-16	-16	-16	-14	--11	- $] 0$	-10	-10	- 9	-8	-8	-12.0
30	6	'6	8	-9	-10	- 9	-7	-7	-7	-7	-	-	-9	-11	- 8.2
Mean	72.0	4	-11.5	-11.	-10.6	-10	-1.1.	-10.82	11.07	-11.5	-11	-12	-12	-12.5%	-11.29

December, 1858.

Day of the month.	$\begin{aligned} & \text { Lot. } \\ & \text { north. } \end{aligned}$	$\left\|\begin{array}{c} \text { Long. } \\ \text { west of } \\ \text { Grecu. } \end{array}\right\|$	2	4^{17}	; ${ }^{\text {b }}$	8^{12}	10^{10}	Noon.	$\xrightarrow{\square}$	4	61	sis	10^{4}	Miln't.	Mean.
1	Port K	mnedy	-160	-18°	$-18^{\circ} .5$	-19°	-.-18 ${ }^{\circ}$	-17°	-17°	-220	-210	- $21{ }^{\circ}$	- 20°	$-20{ }^{\circ}$	-19.00
2	$72^{\circ} 01$	7414	21	21	23	25	27	25	30	31	33	32	30	25	27.4
3	Winter	Quarters	$2!$	27	23	25	26	25	$\because 5$	24	25	25	28	2	27.0
4	- "	"	28	28	30	35	39	40	$3!$	38	37	37	37	37	35.4
5	"	"	36	34	35	32	32	31	32	32.5	30	32	33	31	32. 5
6	"	"	28	2	30	32	:2	32	32	31	33	31	30	32	30.8
7	"	"	30	30	31	31	31	32	30	31	24	33	33	34	31.2
8	"	"	29	29	29	26	21	21	21	21	27	32	34	34	27.8
9	"	،	33	32	33	87	32	31	29	2	23	23	23	21	29.0
10	"	*	23	23	24	17	17	18	15	21	23	25	27	31	21.8
11	"	"	31	32	32	34	33	33	35	39	41.5	40	41	40	35.9
12	"	"	38	37	37	38	36	36	36	31	36	35	37	36	36.5
13	،	.	3	37	39	39	38	36	37	3	36	37	35	37	37.3
14	*	"	31	319	36	34°	35	36	36	33	33	25	2	30	32.8
15	\%	"	31	31	33	33	33	32	32	32	37	38	$3 \times$	33	34.1
11^{\prime}	¢	"	3:	40	42	43	42	4	- 43	43	4.	41	42	42	41.9
17	"	*	43	4.3	42	41	38	35	35	38	39	37	32	31	38.3
1	"	،	32	33	32	33	34	34	34	33	85	3:3	34	34	33.4
19	"	.	3.5	33	83	33	30	2	28	24	31	3.3	33	22	31.7
21	"	"	34	$\therefore 1$	30	32	27	23	21	18	16	15	$1{ }^{\text {i }}$	16	23.5
21	"	"	13	14	19	24	2	29	32	35	333	34	35	36	27.7
22	،	"	37	36	34	32	32	St	35	31	30	29	29	29	32.3
23	"	"	29	311	30	33	33	35	34	3.5	35	37	35	8.	33.4
24	\%	"	35	3	39	40	41	43	4	4	44	44	4	4.7	42.0
25	"	،	44	45	45	45	$4 t$	4.8	44	42	44	45	45.5	47	+4.6
213	"	"	47	47	$41 ;$	4	4	4		45	411	310	36	23	42.3
27	*	،	32	32	311	33	8	30	32	32	30	33	$: 2$	30	31.5
28	"	"	33	32	29	32	32	31	3	311	30	30	8	31	31.1
29	"	"	29	:1	30	34	$\therefore 4$	$3+1$	37	$3!4$	36	35	$3 i$	34	34.6
30	،	*	37	37	39	10	36	36	37	3	41	42	4%	43	39.1
31	"	"	39	37	35	35	34	34	36	36	36	3	$3: 1$	36	31.3
Mean	72.11	14.2	32.52	32.41	-32.60	-33.32	-32.75	-32.-1	-32.74	-33.18,	83.27	-33.35	-33.40	-33.29	-32.47

January, 1859.

February, 1859.

Temperature of tife Air in Shade observed on board tie Yacit Fox．
（Expressed in degrees of Fahronhites scale．）
March， 1859.

Day of the month．	Lat． north．	$\left.\begin{gathered} \text { Long. } \\ \text { west of } \\ \text { Green. } \end{gathered} \right\rvert\,$	$2^{\text {h }}$	$4^{\text {n }}$	$6^{\text {h }}$	$8^{\text {h }}$	$10^{\text {h }}$	Noon．	$2^{\text {n }}$	4	8^{6}	$8{ }^{4}$	$1{ }^{10}$	Midn＇t．	Mcan．	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { obsing } \end{aligned}$
1	Port K	cennery	$-31{ }^{\circ}$	－ 28°	－．310	$-3: 3{ }^{\circ}$	-20°	－24 ${ }^{3}$	－20	-27°	－30	-29°	－29	－230	－2＊．8	\bigcirc
2	72001	（94 ${ }^{\circ} 14^{\prime}$	29	31	32	35	26	$2: 3$	2：3	25	25	2	23	26	－26．7	\therefore \％
3	Wi	nter	25	24	25	24	21	20	20	22	24	25	22	22	－－23．8	$\overline{6}$
4	Qua	rters	24	26	25	25	18	6	6	11	36	31	：	32	－2：20．2	\bigcirc
5		＂	31	30	27	25	22	9	8	24	31	：	30	80	－24．9	$\stackrel{*}{c}$
6		＂	29	27	25	23	19	19	19	21	23	22	23	25.5	－22．9	E
7		＂	24	23	26	27	21	20	21	20	19	16	16	15.5	－20．7	$\stackrel{\stackrel{5}{3}}{\sim}$
8		＂	11	9	7	4	2	0	＋	$+2$	3	2	3	1.5	－3．2	E
9		＂	2	4	8	11	6	4	＋2	＋8	14	14	1：3	15	－8．4	ミ－
10		＂	20	20	29	24	21	27	14	16	38	26	22	24	－23．4	강
11		＂	24	26	25	25	24	23	24	25	27	29	29	29	－25．4	包砤
12		＂	29	28	25	22	16	13	15	16	21	24	26	29	－22．11	－
13		＂	29	30	89	28	27	26	24	24	25	26	24	23	－26．：	河
14		＂	22	24	29	25	13	4.5	12	13	25	． 30	32	30	－21．6	E
15		＂	30	24	26	21	19	19	20	21	21	21	21	22	－22．2	\％
16		＂	22	19	17	15	14	11	20	12	11	12	13	13	－14．9	－130．7
17		＂	16	21	24	24	24	24	24	27	26	30	31	13	－25．3	－26．5
18		＂	33	32	39	30	26	23	23	24	30	31	32	32	－29．6	－28．7
19		＂	32	31	32	31	24	21	21	22	25	29	31	30	－27．7	－27．3
20		＂	30	29	28	17	14	12	16	17	25	26	28	28	－22．5	－21．5
21		＂	29	29	35	25	29	20	21	22	26	29	27	28	－25．9	－25．5
22		＂	29	32	30	28	28	20	19	19	22	22	29	21	－24．3	－23．7
23		＇	20	20	20	21	13	10	（	2	＋1	0	＋1	＋4	－8．8	－8．2
24		،	＋4	＋3	＋ 5	$+9$	$+12$	＋11	$+0$	$+8$	＋	＋ 4	－ 3	$+3$	＋6．5	＋6．3
25		＂	＋3	$+3$	$+4$	＋ 5	$+6$	$+9$	＋ 9	$+7$	$+4$	$+2$	＋1	＋1	＋ 4.5	＋ 4.5
26		＂	2	5	5	4	3	－ 3	＋1	1	1	0	＋4	10	－2．4	-3.8
27		＂	10	11	14	11	5	3	3	7	14	19	21	21	－11．6	－12．0
28		＂		21		17		5		9		17		22	－15．4	－15．2
29		＂		19		13		$+4$		1		12		1.7	－ 9.9	-9.7
30		＂		16		9		$+1$		2		14		18	－9．9	－9．7
31		＂		16		10		3		6		11		23	－11．7	－11．5
Mean	72.0	94.2	21.06	－21．00	－21．57	－19．45	－14．79	－11．89	－12．03	－13．77	-18.43	－19．22	－19．52	－20．66	-17.78	

April， 1859.

Day of the month．	Latitude north．	$\begin{aligned} & \text { Longitude } \\ & \text { west of } \\ & \text { Grecnwich. } \end{aligned}$	$5^{\text {b }}$	8^{11}	Noon．	$4{ }^{\prime \prime}$	$8^{\text {b }}$	$11^{\text {b }}$	Mean．
1	Port	nedy	-11°	-9°	-6	－ 8°	-11°	-13°	－ 90.7
2	$72^{\circ} \mathrm{O1}$	$94^{\circ} 14^{\prime}$	-2	$+2$	$+2$	$+6$	＋2	$+2$	$+2.0$
3	Winter	ararters	$+1$	$+4.5$	＋8	－11．5	＋5	＋3．5	± 5.6
4	＂	＂	$+5$	＋6	＋10	＋6．5	＋3	＋2．5	± 4.7
5	＂	＂	－5	－ 9	10	± 8	－13	-15	＋ 8.3
6	＂	＂	－20	－20	-19	－18	－22．5	－22	－20．3
7	＂	＂	-6.	－8	－2	-6	－18	－24	－10．7
8	＂	＂	－23	-11.5	－s	－9	-12	－11	－12．4
9	＂	＂	－11	－ 9	－ 8	0	－6	-10	－ 7.3
10	＂	＂	－ 6	-4	－11	－12	－19	－22	－12．3
11	＂	＂	－21	－14	-13	－16	－23	－27	-19.0
12	＂	＂	-16	－15	－13	-15	－18	－21	－16．3
13	＂	＂	-19	－14	－10．5	-12	－17	－18	－15．1
14	＂	＂	-13	－11	-10	-9	-10	－12	－10．8
15	＂	＂	－9	－1	＋8．5	＋ 8	-4	－9	-1.1
16	＂	＂	-6	-7	$+0.5$	－2．5	－8	－6	－4．5
17	＂	＂	－ 6	0	＋0	＋111	$+5$	$+4$	＋3．2
18	＂	＂	＋14	＋15	＋20	＋23．5	＋21	＋15	－18．1
19	＂	＂	＋ 6	＋5	$+5$	＋0．5	－3．5	－4	＋1．5
20	＂	＂	-7	-7	－4	－6	－ 8	-4.5	－6．1
21	＂	＂	-1	＋ 2	$+6$	$+1$	-1	$+5$	＋2．0
22	＂	＂	＋11	＋14	＋16	－16	＋10．5	＋ 0.5	＋11．3
23	＂	＂	0	－1	0	＋1	-1.5	0	－0．2
24	＂	＂	－ 8	－9	－5	0	－8	－11．5	-6.9
25	＂	＂	－12	－10	－6	-6	－11	-15	-10.0
26	＂	＂	－ 6	-4	$+1$	0	-1	＋0．5	-1.6
27	＂	＂	－ 2	＋2．5	$\underline{+11}$	＋15	＋10	＋11	＋ 7.7
28	＂	＂	＋12．5	－13．5	＋15	－14．5	－12．5	$+10.5$	＋13．1
29	＂	＂	＋11	＋12．5	－13	＋16	－15．5	$+15$	＋13．8
30	＂	＂	＋18	＋18．5	＋31	＋17	$+9$	＋5	＋16．4
Mean	72.0	94.2	-4.38	－2．27	＋1．25	＋0．60	－4．07	-5.82	－2．45

Correction to refer observed mean to mean from 24 observations $=0^{\circ} .17$ ．

Temperature of the Air in shade obsraved on board the Yacit Fox.
(kxpressed in degrees of Fahrenheit's scale.)
July, 1859.

Day of the month	Lat. north.	$\begin{gathered} \text { Long. } \\ \text { west of } \\ \text { Green. } \end{gathered}$	$2^{1 /}$	$\frac{5}{4}$	6^{4}	8^{3}	$10^{1 / 4}$	Noon.	$2^{\text {h }}$	$4{ }^{\text {b }}$	$9^{6 / 4}$	8^{11}	$11^{\prime \prime}$	$\left\lvert\, \frac{11^{n}}{M i n^{\prime} t .}\right.$	Mean.	$\begin{gathered} \text { Mean } \\ \text { of } 6 \\ \text { ohs'ns. } \end{gathered}$
1	Port K	ennedy	\cdots	370.5	.	$4.3{ }^{\circ}$	-	$43^{3} .5$.	410	.	41°		$411{ }^{\circ}$	+413.6	+4108
2	720011	$194^{\circ} 14^{\prime}$. .	42	. .	50		4		4.	\cdots	4:3,5		37.5	43.5	43.7
3	Wil	inter	.	35	.	. 10	.	41.5	.	38		315		33.5	37.16	37.5
4	Quar	rters	. .	38	.	42.5	.	41.5		40		37.5	\cdots	35	38.9	39.1
5			-	37	.	$4 \times$	\cdots	4.	$4{ }^{2}$	40.5	3310.5	38	:3, 0°	\% $\because 5.5$	33.2	
6		"	35°	36	37°	37.5	410	42	41	38.5	38.5	37	31	$3 ;$	87.9	
7		"	35.5	38	:8	38	40.5	41.5	43.5	41.5	:7	$3 ;$	35	34.5	38.2	
8		"	32	33	32	120	41.5	34.5	$3+5$	39.5	37	31.5	3.3	35	331.5	
9		"	34.5	35	36	36	37	43	39.5	36	:37.5	$3 ;$	33.5	3.4	36.7	
10		"	34	31	32	35.5	40	40	316.5	35.5	35	品	35	$31 ;$	35.4	
11		"	35	34.5	35	39	39	39	41	41.5	$4!$	37	37	35.5	$\because 8.0$	
12		"	34	35	36	36.5	38	37	3.	39	38	813.5	$3+$	37	86.7	
13		"	37	40	40	40	39	42	38	37	40.5	39	$: 37$	35	38.7	
14		"	35.5	36	38	43	43	42	43	33.5	411	39	36	3	3:1 1	
15		"	34	34	34	34	3.4 .5	38	42	35	38	37.5	36	35	35.3	
16		"	35.	37	38.5	35	42	42	41	39	37.5	87	31	35	37.8	
17		"	3%	36	40	46	44	43	45	42	39	39	36	35	41.0	
18		"	34	33	34	37	37	37	37.5	37	37	37	36	34	35.9	
19		"	34	3.5	35.5	37	40.5	40.5	39	33	枵	37	85	35	37.2	
20		"	33	32	37	42	47.5	42	42	42.5	42	40	38	37.5	$3!.6$	
21		"	37	38	38	38	41	41	40	40	41	41	40	39	39.4	
22		،	39	41	42	45	49	49	$4!$	50	45	45	44	38	44.5	
23		"	44	45	415	48	45.5	47	46	43.5	43	40	37	34	43.3	
24		"	35	39	4.3	44	49	52	47	47	4.5	44	42	40.5	44.0	
25		"	35	39	42	44	42	44	42	42	43	41	41	41	41.5	
26		"	39	42	45	44	50	52	49	46	41	415	43	43	45.3	
27		"	40	39	42	42	43	49	41	41	41	40	44	87	41.6	
28		"	38	40	44	49	49	42	42	47	43	43	41	37	42.9	
29	Off Ob	serra-	38	35	38	415	50	55	53	54	55	53	45	41	46.7	
30	tion	I'oint	41	40	43	- 45	4.5	48	47	50	49	45	47	49	45.7	
31			43	39	45	45	46	44	49	50	46	47	17	41	45.3	

Mean 72.0 ($44.2+3651+37.24+3224+4129+42.90+43.48+4234+41.98+4106+40.02+3556+3698+40.13$
Correction to refer mean of 12 to mean of 24 observations $=-0$. 11 .
August, 1859.

Day of the month.	Latitule north.	Lengitula west of Greenwich.	4^{6}	$8{ }^{\text {i }}$	Noon.	$4^{1 /}$	8^{4}	Miln ${ }^{\text {ct }}$	Mean.
1	Port	mody	41°	42^{3}	45°	450	43^{10}	40°	+420.5
2		"	39	37	36	35	35	35	38.2
3	"	"	35	$\therefore 4$	36	41	40	39	37.5
4	"	"	39	40	41	41	40	34	39.2
5	"	"	33	37	39	39	42	39	35.2
6	"	"	34	39	39	40	40	38	38.3
7	"	"	36	38	34.5	41	39	33	36.9
8	"	"	32	35	37	37	34	33	34.7
9	Lon	sland	33	34	34	37	31	33	34.5
10	Adel	le Bay	33	34	36	39	36	33	35.2
11	-	-	33	319	39	39	36	40	37.8
12	-. -	. . -	38	39	40.5	3	39.5	3	3:0.0
13	- -	- .	88	8.7	3×5	35	41	40	38.8
14	--	--	41	41	40	38	:88. 5	42	40.1
15	Off F	Beach	39	3	37	35	34.5	31	35.7
16	Off E	in Bay	31	35.5	36	32	33	31	33.1
17	-- -	---	\cdots	\because	\cdots	\cdots	\therefore	\therefore	
18	$78^{\circ} 55^{\prime}$	$87^{\circ} 16^{\prime}$	32	35	38	34	35	36	80
19	7400	$7!40$	3%	33	33	33	$: 32$	31	$3 \because .3$
20	7312	7640	32	$\because 1$	35	34	30	31	32.2
21	$72 \quad 43$	726	33	31	35	31.5	34	34	33.1
22	7301	6717	3.3	84	$3 \pm$	31	32	31	33.5
23	7310	(6) 15	35	36	38	38	8	36	36.2
24	727	598	319	38	35	37	37	37	37.2
25	$70 \quad 40$	$55 \quad 57$	315	37	39	3.7	36	31%	36.5
26	$69 \quad 39$	5530	35	35	38	37	39	37	36.8
27		aven	33	34	36	37	35	36	35.5
28			31	3 j	38	41	36	36	315.2
29			37	38	40	42	47	33	30.5
30			32	39	47	44	411	38	411.0
31			36	38	44	4.2	39	37	31.3
Meau	71.9	79.8	+3485	$+3637$	+37.97	+37 65	+37.10	+3552	+ 6.5

The correction to refor mean of 6 to mean of $2 \pm$ observations lecomes zero.

	'Temeris	Cire of TiI	Air in ressed i S	mane of	ERTED Fahenh 1859	a boar s scale.)	He	IIt Fox	
$\begin{aligned} & \text { Tivy } \\ & \text { of ihe } \\ & \text { of henth. } \end{aligned}$	Latatitule nurl ch.	$\begin{aligned} & \text { Luritule } \\ & \text { wew } \\ & \text { Grenwioh. } \end{aligned}$	4	$\xi^{\prime \prime}$	Noon.	$4^{\prime \prime}$	$8^{\prime \prime}$	Midn't.	Mean.
1	\%	[4. m^{\prime}	33^{3}	4110	47°	43°	419	47°	$+12.3$
\because	(ii)	\%	\%	33	37	411	37 37	35	37.7
\%	1.11	5\%	83	\%	35	37	37 40	34	35.0
4	\cdots		4	+89	$4{ }^{40}$	+40	40 39	39	38.6 41.2
;	㬽	5+ 516	3	41	\%	41	39	38	39.2
7		513474	37	38	38	38	37	36	37.3
\checkmark	(in)	:2	\%	411	41	40	39	37	38.5
9	54. 41	$4-1$	87	39	41	42	39	39	39.5
11	\therefore 든	44	39	42	47	4.	42	+11	42.3
11	$\therefore 7$	411 1:	$4{ }^{4}$	$4 \pm$	4	45	44	45	43.7
12\%	51.14	3+ 19	45	4.7	48	46	47	$4{ }^{4}$	41.2
13	5it	31.10	45	5	56	54	54	54	5
1.4	5t	近	5	56	5	5	5	49 55	50.8
31	5is	15 11	54	59	6.4	69	59	58	(01. 5
17	51 1	16	58	$5!$	62	61	60	60	60.11
15	51120	12	58	58	59	59	59	60	58.8
Meat	50.3	41.9	+43.6	+45.7	+47.6	$+47.3$	45.6	$+45.0$	+45.79
Correction to refer mean of 6 to mean of 24 readings $=$ zero.									

Notes to the preceding Abstract of the Temperiture Record.
July, 15.57. The column headed "mean" contains the mean daily temperature derived from six equidistant observations; the figures in the next column of "deduced mean" were obtained as follows: Suppose the mean temperature of July $3 d$ be recpuired from the observations at $\delta ~ A . M$. and S P. M., the observations at each of these hours in the full series were compared with their respective mean, as given in the preceding column; thus, from 23 values, we find the correction to the \& A. M. reading, to oltain the mean reading of the day, $+0^{\circ} .8$, and in a similar manner, for the 8 P. M. reading, $+0^{\circ}$.2. Applying these corrections to $57^{\circ} .0$ and $55^{\circ} .5$ respectively, and taking the mean, we find for July $3 d$ the mean temperature $57^{\circ} .7$. The following table contains these corrections to each observing hour in the month of July, in order to produce the mean of six readings a day, viz :-

For + A. M.	$+11^{\circ} .5$	For 4 P. M.	$-1^{\circ} .5$
" \& A. M.	$+0.8$	" \& P. M.	+0.2
minom	-0.8	" midnight	+1.0

The means rerpuire a further small correction to refer them to what they would be if hourly observations had been made. For this purpose, I have made use of the tables of hourly corrections for periodic variations for Boothia Felix and Drontheim, as given in the Smithsonian collection of meteorological and physical tables by A. Gingot, and also of a similar table given in the discussion of Dr. Kane's metemongical observations for Van Rensselaer Harbor, in Vol. XI. of the Smithsomian Contributions to knowledge. For these localities, to which has been added Lecth, we have, for the month of July, the correction to the mean of six observa-
tions at $4^{\text {h }}, 8^{\text {h }}, 12^{\text {h }}$, A. M. and P. M., to obtain the daily mean from twenty-four observations:-

Boothia Felix		Latitude.	Longitude.		$\begin{aligned} & \text { Fabrenheit. } \\ & 0^{\circ} .100 \end{aligned}$
	. .	$69^{\circ} 59^{\prime}$		1^{\prime}	
Drontheim	. .	638	-10	25	-0.09
Van Rensselaer	. .	$78 \quad 37$		53	-0.06
Leith	. .	$55 \quad 59$	-3	10	$+0.06$
Adopted correction		. .	- .		-0.03

The resulting mean temperature for the month of July, in latitude $62^{\circ} \mathrm{N}$. and longitude $39^{\circ} .1 \mathrm{~W}$. is, therefore, $+45^{\circ} .56-0^{\circ} .03=+45^{\circ} .53$, as given in the general table of results. The means for the hours 4,8 , and 12 , are derived from the observations between the 6th and the 31st, omitting those on the 19th, and taking 53° for the interpolated value at $4^{\mathrm{h}} \mathrm{A}$. M. on the 6th. ${ }^{1}$ For the sake of uniformity, the quantity $+1^{\circ} .26$ has been added to each of these hourly means, so that the mean of all may again produce $45^{\circ} .56$.

The correction to refer the mean from the observations at certain hours of the day to the mean derived from twenty-four readings aday, for the remaining months, has been deduced from the observations at Van Rensselaer Harbor and Boothia Felix. The following table contains these corrections:-

Month.	Year.	Observed Hours.	Correction Deduced.		
			Van Rensselacr Harbur.	Boothia Felix.	Mean.
August	1857, 1858, 1859	4, 8, 12, A. M. and P. M.	-0.01	$0^{\circ} .00$	(10.017)
Suptember	"	$2,4,6,8,11,12,4$. M. and P. M.	-0.01	-0.07	-0.04
October	"	" " "	+0.04	0.00	+0.02
Norember	" 1858	" " ${ }^{\text {a }}$	+19.112	+0.23	+10.12
December	" "	"	0.00	f-0.01	0.00
January	1858, 1859	" ${ }^{\text {" }}$	-0.05	-0.01	-0.113
February	" "	" " "	-0.05	-0.01	-0.03
March	" ${ }^{\text {c }}$	" "	+-10.04	0.00	+0.02
April	"	" " ${ }^{6}$	+10.02	+0.01	+0.02
May	"		-0.13	$\underline{+0.01}$	-0.07
June	"	" "	-0.16	+0.01	-0.07
July	"	" "	-0.103 +0.01	1.001 -0.01	-0.01 0.00
October	"	" ${ }^{\text {a }}$	+0.10	0.00	+0.05 +0.15
April	1859	5, 8, 12, A. M. ; 4, 8, 11, P. M.	-0.26	-0.13*	-0.17
May	،	" " ،	-0.42	- $0.3 .36^{*}$	-0.38
June	"	، "6	-0.44	- 0.39%	-0.41

* Indicates that the weight 2 has been given to the correction derived from the Boothia Felix station, as being the nearer one.

August, 1857. The two omissions on the 6th were supplied by 42° and 43°.
September, 1857. The values for the 21st were interpolated as follows : $2 \mathrm{~A} . \mathrm{M}$. $12^{\circ} .0,6 \mathrm{~A} . \mathrm{M}^{2} 15^{\circ} .2$, and $10 \mathrm{~A} . \mathrm{M} .21^{\circ} .2$. From the observations between the 21 st and 30th, we find that the mean of twelve observations a day is $0^{\circ} .15$ smaller than that derived from six observations a day; the second column of means between the 1st and 21st, therefore, is derived from the preceding column by subtracting

[^13]fio. 1 and 10.2 altemately from the successive daily means. The monthly mean temperature at the hours 4,8 , noon, 4,8 , midnight, was first made out (if diminished by the above constant 0°. Th, their mean would exactly give $\left.13^{\circ} .55\right)$. To oltatin the interncdiate values for $2,6,10, \mathrm{~A} . \mathrm{M}$. and P . M., the observations between the 21st and 30th were uscd as follow:-

Muan tenp. at miduight for last 10 days	$12^{\circ} .30$	Same for 30 days, $17^{\circ} .38$
" 2 人 M. " "	11.85	
Diference	-0.45	

which, applici to 170.38 , gives 160.93 ; in the same way, we obtain from the following hour, 4 A . M., the value $17^{\circ} .38$. The mean, or $17^{\circ} .15$, has conserguently been athited as the mean monthly temperature at 2 A . M. The remaining values were derived in at similar manner.

Funnary, 185s. On the 11th and some following days, there are occasionally pencil fiyures inserted between the lines. These are neither used nor explained.

April, 1855. The daily mean from six observations differs from the daily mean from twice this number of observations by $0^{\circ} .13$, as found from the values between the 1 st and 17 th; a correction of $-0^{\circ} .13$ has, therefore, been applied to the deduced means on and after the 1Sth, in order to refer the same to the result produced be twelve obserrations. The hourly means at the bottom of the page were obtainced in the manner explained in the note to the hourly means of the month of September, 18.5., viz: through a comparison of the hourly means of the full series, and applying the correction (the mean found from the preceding and following column) to the monthly mean at the hours $4, \mathrm{~S}, 12$, etc.

May, 18.58. The temperature at 8 A . M.' on the 2 d was assumed to be $30^{\circ} .5$.
March, 18.59. The correction to refer the mean from six observations on each of the last four days of the month to the daily mean as resulting from twelve observations, was found by comparison of the respective means on the twelve days preceding; it was found - $10^{\circ} .16$. The mean hourly temperature for the hours 2 , $6,8,10$, was obtained by the process applied on two former occasions.

April, 18.9. The bar in the column for $4^{\prime \prime}$ and in the column for midnight, indicates that the observations were taken one hour later and one hour earlier, or at ") and $11^{1 "}$ respectively. This practice was discontinued on the 5th of July following.

Tuly, 1859. For the temperatures of the 5th, at the hours 2, 4, 6, 10, A. M., I have adoptel the interpolated values $36^{\circ}, 36^{\circ} .5,39^{\circ}, 43^{\circ}$, respectively. The correction to refer the mean of six observations (hours 5, 8, noon, 4, 8, 11) to the man of twelve observations (hours $4, \delta, 12, ~$. M. and P. M.), was derived from the tahkes comstructed for Van Renselaer and Boothia Felix; the latter value having the weight 2, it was found $=-0^{\circ} .21$, which quantity was applied in the first chlumm of mems, July list to July the inclusive. To obtain the correct houly moans lior the month, the numbers in the column for 5 " (first four days) were first reformen to the reading at $4^{\prime \prime}$ by subtracting 0.5. The same correction was applied to refie the readings from 11 P. M. to midnight. The monthly means for the homst, s, 12, A. M. and I. M., being know, the means for the interme-
diate hours were found by comparison of the respective readings on the last twentyseven days of the month, as has been explained in similar cases.

August, 1859. The value $34^{\circ} .0$ for the mean temperature on the 17 th was interpolated, which required a corresponding diminution of $0^{\circ} .08$ for each of the hourly means, in order to produce the same monthly temperature of $+36^{\circ} .58$.

September, 1859. The means of this month are of little value, the month being incomplete, and the change in latitude (and longitude) very considerable.

The two following talles contain a recapitulation of the results of the preceding abstracts. Table I exhibits the mean monthly temperature at the locality indicated by its latitude and longitude, also the relative maxima and minima, and relative monthly extreme range, as observed in either the bi-hourly or the four-hourly series. The absolute maxima and minima were not recorded. Table II contains the mean monthly temperatures for each observing hour, and is intended to serve as the basis for the discussion of the diurnal variation, while the first table furnishes the means for the discussion of the annual variation of the temperature. The column headed "mean," in Table II, differs from the corresponding column in Table I, for this reason: that, in Table II, no correction has been applied to refer the mean of six or twelve observations in a day (as the case may be) to the reading of twenty-four observations.

Table I.-Recapitulation of Results of Monthly Mean Temperatures of the Air in Shade observed on board the Yacht Fox. (Expressed in degrees of Fahrenbeit's scale.)								
Year.	Month.	Latitude north.	Longitude west.	Mean temperature.	Relative maxima.	Relative minima.	Relative range.	Correction for index error (to mean temp.).
1857	July	623.0	$39^{\circ} .1$	+45. 53	$+61^{\circ}$	$+31^{\circ}$	30°	
6	August	74.0	59.8	+34.65	$+51$	+23	28	
6	September	75.3	65.0	$\underline{+19.50}$	$+36$	+2	38	
"	October	75.2	67.9	$\underline{+5.73}$	+32	-13.5	45.5	$-0^{\circ} .07$
${ }^{6}$	November	74.8	69.1	-4.76	+31	-32	63	-0.16
"	December	74.3	67.4	-21.55	+5	-36	41	-0.20
1858	January	73.2	63.7	- 4.57	- 8	-46	38	-0.20
6	February	71.5	60.9	-15.34	$+11$	-39.5	50.5	-0.19
"	March	69.4	59.1	-3.29	+3:	-27	59	-0.14
"	April	66.0	57.7	$+8.06$	+:38	-26	64	-0.05
"	May	68.7	53.7	+29.83	± 45	$+10.5$	34.5	-0.00
${ }^{6}$	June	74.6	60.1	+35.97	-50	+28	22	
6	July	74.4	76.4	+36.60	+49	+31	18	
6	August	73.1	88.5	+34.52	+44	+24.5	19.5	
"	September	72.0	94.4	-25.43	+37.5	+8	29.5	
"	October	72.0	94.2	+ 7.59	-28.5	+21	49.5	-0.15
"	November	72.0	94.2	-11.17	-13	-35	48	-0.43
${ }^{6}$	December	72.0	94.2	-32.97	-16	-47	31	-0.60
1859	January	72.0	94.2	-33.57	-14	-48	34	-0.83
"	February	72.0	94.2	-36.06	-12	-48	36°	-1.02
"	March	72.0	94.2	-17.76	+12	-39	51	-0.46°
4	April	72.0	94.2	- 2.62	+31	-27	58	-0.30
"	May	72.0	94.2	+15.04	+35	-0.5	35.5	
4	June	72.0	94.2	-35.11	-50.5	+19	31.5	
"	July	72.0	94.2	-40.12	+55	$+30$	25	
"	August	71.9	79.8	-36.58	$+47$	$+30$	17	
4	Septernber	58.9	41.9	+45.79	From 1	ys' obse	tions	

Rewaphlation of the precedins mena hendy ralues for each month, and of their monthly mean temperature.

Iriacession of the Ammul Theriction ant of the Temperature at Different Secasons
of the Iear.
The monthly means brought out in Table I refer to different localities and years, and require to be combined with reference to these changes. The "Fox" remained stationary at the winter quarters for nearly a whole year-between August, 1858, and August, 1859 - and we will, therefore, first examine the annual variation, the mean temperature of the seasons and of the whole year, for-Port Kemedy, in north latitule 7 Po $^{\circ} 01$, west longitude $94^{\circ} 14^{\prime}$, near the castern entrance to Bellot Straits, which separates North Somerset froom Boothia Felix. Our monthly means for August, 15.58 and 1809 , require to be corrected for difference of position. For this purpose, I have projected on a suitable chart the two isothermal lines for the month of Aurust, constructed by me on the basis of Dove's investigation, and published in the 2 Z r rolme, Appendix No. XIII, of Dr. Kanes Narative of his Aretic Expotition (north of smith Straits), in the years 1853-54-25. By means of these curves, we find that the positions of $\Lambda u g u s t, 15.58$ (viz., latitude 73°. 1, longitude $85^{\circ} .7$, and of A ugust, 1859 (viz, latitude $71^{\circ} .9$, longitude $79^{\circ} .8$), can be assumed as lying nearly on the same isotherm, with a temperature of $1^{\circ} .4$ Fahr. relatively collur than the isutherm passing through Port kiennedy in that month; the normal distance between the isotherms differing $4^{\circ} .5$ in temperature being nearly 6° of are. In the following table, the temperature for the month of August is derived from the mean of the respective observations of 1858 and 1859 increased by $1^{\circ} .4$, in orden to reflew the value to the locality of Port Kennedy.

To express the above and other periodic results in an analytical form, Bessel's formula of interpolation for periodic functions, and depending on the method of least squares, ${ }^{1}$ will be made use of throughout the discussion; a practice which hats now become almost universal in meteorological and many other physical inventigations.

The above numbers will be found represented by the formula-

$$
T=+2^{\circ} .17+38^{\circ} .70 \sin \left(8+248^{\circ} 4^{\prime}\right)+0^{\circ} .58 \sin \left(28+279^{\circ} 57^{\prime}\right)+1^{\circ} .14 \sin \left(3 y+275^{\circ} 33^{\prime}\right)
$$

T representing the monthly values of the amual variation, and the angle θ counting from January 1st at the rate of 30° a month. According to this expression, the mean annual temperature at Port Kemnedy is $+2^{\circ} .17$ Fihr.

The strict application of Bessel's formula requires the intervals between the successive observations or means to be of efual length, and a small correction, therefore, becomes necessary on account of the unequal length of the months. This correction, generally too small to be noticed in low latitudes, is of sufficient magnitude in very high latitudes not to be neglectable. The following numbers show the quantity, in days and fractions of a day, by which the middle of each actual month differs from the mean of each month of average duration (30.4 days for a common, and 30.5 days for a leap, year), and for which interval a correction, -depending, also, on the magnitude of the variation of the temperature-is to be applied. A positive sign indicates that the middle of the actual month occurs earlier than the middle of the normal month; a negative sign indicates the reverse. Commencing with January, and proceeding in regular order, these intervals are as follows:- ${ }^{2}$
$-0^{3} .3+0.6+1.5+1.5+1.4+1.3+1.2+0.7+0.6+0.5+0.4+0.3$
$-0.2+0.2+0.8+0.8+0.8+0.8+0.8+0.2+0.2+0.2+0.2+0.2$
The upper line is for a common year, the lower line for a leap year. These numbers suppose the angle θ to be zero for the commencement of the civil year, and that the daily mean temperature, so far as the annual fluctuation is concerned, refers to the middle of the day. The corrections become greatest for the spring and autumn months, when the annual variation is most rapid. To obtain an ap-

[^14]proximate value for the diumal change for the middle of each month, the above formula was need, the increase in the value of 0 for one day being 59'.2. Multillying the daily change into the alove intervals, we obtain the following mean monthly temperatures corrected for uncrual duration, to which numbers the correction for index error has been added, as given in the third column of the table.

The maximum corrections for inequality in the length of the month were $+0^{\circ} .94$, in April, and - $0^{\circ} .32$, in October. The above monthly means, as corrected for index error, will be found represented by the expression (II) -

$$
T=+2^{\circ} .02+39^{\circ} .2 \theta \sin \left(9+249^{\circ} 5^{\prime}\right)+0^{\circ} .80 \sin \left(2 \theta+256^{\circ} 56^{\prime}\right)+1^{\circ} .06 \sin \left(3 \theta+274^{\circ} 43^{\prime}\right)
$$

The numerical coefficients differ but slightly from the corresponding values in the first expression. The observations are represented as follows (the hundredths have been omitted as having no real value) :-

Month.	$\begin{aligned} & \text { Mean } \\ & \text { currected } \\ & \text { for index } \\ & \text { error. } \end{aligned}$	Mean vorrectod fur intex and inelpuality.	Same br Furm. II.	Differ. ence.	Month.	$\begin{aligned} & \text { Mean } \\ & \text { corrected } \\ & \text { for index } \\ & \text { error. } \end{aligned}$	Mean corrected for index and inequality.	Same by Form. II	Difierence.
January February March April May June	$\begin{aligned} & -34.44 \\ & -37.48 \\ & -15.22 \\ & -2.92 \\ & +15.44 \\ & +35.11 \end{aligned}$	$\begin{aligned} & -34.44 \\ & -36.49 \\ & -17.44 \\ & -1.98 \\ & +15.87 \\ & +35.67 \end{aligned}$	$\begin{aligned} & -38.42 \\ & -33.13 \\ & -19.74 \\ & -2.07 \\ & +17.52 \\ & +34.01 \end{aligned}$	$\begin{aligned} & +4.0 \\ & +3.5 \\ & +2.3 \\ & +0.1 \\ & -1.6 \\ & +1.7 \end{aligned}$	July	+411. 12	$+39^{\circ} .98$	$+40^{\circ} .92$	$-0^{\circ} .9$
					Aucust	+313.95	$+36.76$	-36.81	0.0
					Suptember	$+25.43$	$\underline{-25.13}$	+24.84	+0.2
					October	+ 7.44	+ 7.12	$+7.65$	-0.5
					November	-11.60	-11.86	-13.12	+1.3
					December	-33.63	-33.75	-31.13	-2.6
					Mean	$+1.85$	+ 2.02	$+2.02$	0.0

The differences between the observed and computed mean monthly temperatures are greatest in winter, which is due to the greater fluctuations of the temperature in that season. The same result was found from my reduction of the Van Rensselaer IIarbor temperatures, as observed by Dr. Kane. The average probable error of representation of the mean temperature of any one month is accordingly $\pm 2^{\circ} .1$, and of the result for the mean amnual temperature $\pm 0^{\circ} .6$.

The following table contains the temperature of the several seasons at Port Kennedy; December, January, and February being reckoned as winter months (and so on for the other seasons), in accordance with metcorological usage. The results by Formula II refer to the corrected normal months; the results headed "by observation," are corrected for index error.

The corresponding values at Van Rensselaer Harbor have been inserted for comparison, and show a remarkable difference in the temperatures of spring and autumn, at which seasons it was much colder at Van Rensselacr Harbor than at Port Kennedy, whereas the mean winter temperature was lowest at Port Kennedy. The observations give the range between the summer and winter mean at Port Kennedy $72^{\circ} .4$, and at Van Rensselaer Harbor 62․0. According to Formula II, we find, as a close approximation, the warmest day July 20th, with $T=+41^{\circ} .0$, and the coldest day January 19th, with $T=-38^{\circ} .4$; hence, the range of the annual fluctuation 79°.4. The mean temperature of the year is reached on April 23 d and October 22 d.

The annual fluctuation of the temperature, or the observed and computed monthly (normal) means (corrected for index error), are represented in the annexed diagram (A). The curve shows the computed, and the dots the observed, temperature.
(A.) Annual Fluctuation of the Temperature of the Air at Port Kennedy.

By means of Table I, we can make the following combinations of mean temperatures of the scasons of the year at different localities, which tabular numbers and combinations may be useful in future investigations of the course of the monthly isothermal lines, and of the isotherms of the several seasons.

The last three (but one) columns of Table I, exhibit the observed monthly maxima and minima of the temperature, and the extreme monthly range. These numbers are only relative, since the absolute extremes were not found recorded.

The highest temperature observed near Port Kennedy was $+55^{\circ} .0$, on July 29th, 1859, and the lowest, $-49^{\circ} .8$ (the index correction having been applied), on January 21st, 1859, and February 15th and 18th, 1859. Extreme range recorded at the winter quarters of the "Fox," $104^{\circ} .8$ of Fahrenheit's scale. To compare with the above numbers, Dr. Kane recorded at Van Rensselaer Harbor a maximum tomperature of $+51^{\circ} .0$, on July 23 d , 1854, and a minimum temperature of - $66^{\circ} .4$, on Fehruary 5th, 1854, and of -650.5, on January Sth, 1855 ; observed absolute range $117^{\circ} .4$ Fahr, excecding the Port Kennedy range by $12^{\circ} .6$.

The monthly range is greatest in March and April and in October and November ; its value may be set down as 522° at Port Kemnedy. This range is least in December and January and in July and August, when it does not exceed 27°. The extreme monthly range occurred in April, 1858 (viz, 64°), and in August, 1859 (viz., 17°).

Diurnal Teriation of the Temperature.

The material collected in Table II furnishes the basis for the discussion of the diurnal fluctuation of the temperature. The hourly means (at certain observing hours) recorded there do not present the true daily fluctuation of the temperature in each month, on account of the disturbing effect of the annual change during the interval of a day, an effect which cannot be neglected in a locality where the :mnual fluctuation amounts to the excessive quantity of $79^{\circ} .4$. The tabular numbers, therefore, must first be cleared of this disturbing effect. This is best done by computing, by means of our expression for T, the change of the ammual variation in a day for the middle of each month, and by correcting the means for the hours ${ }^{0}$ A. M. and $12 \mathrm{P}^{\text {² }}$. M. by one half of this change, with opposite signs. There is no correction for noon, and a proportional one for the intermediate hours between morning and noon, and between noon and midnight; the signs in the second interval being the reverse from those in the first. The diurnal fluctuation during the long aretie night is so small as to be almost effaced by the overpowering effect of the ammal fluctuation during a day.

Contining our attention for the present to the diumal variation of the tempera-
ture in each month at Port Kennedy, we find an anomaly in the table of results in April, May, and June, 1859, when the symmetry of the observing hours is interrupted by observations being taken at 5 A. M. and $11 \mathrm{P} . \mathrm{M}$. To remedy this defect, I have first established an approximate equation of the diumal variation, and, by means of it, computed the difference between the mean at 4^{12} and $5^{1 "}$, and also between 11^{h} and 12^{h}. These differences were applied respectively to the mean for $5^{\text {h }}$ and to the mean for 11^{h}, which gave the deduced means for 4^{h} and 12^{h}.

The maximum corrections for diurnal effect of the amnual change occur at midnight, and are as follows :-

At 0^{h} A. M., the corrections are the same with the sign reversed; at noon, they are zero; at intermediate hours, proportional values were applied. The monthly mean is left unchanged (or very nearly so).

For August, I have combined the means of August, 1858 and 1859.
Accordingly, we have the following table of the diurnal variation of the temperature for each month of the year:-

	Tarle IV.-Diurnal Variation of the Temperature at Port Kennedy.											
	$2^{\text {¹ }}$	4	6^{17}	$8^{\text {b }}$	$10^{\text {h }}$	Noon.	2^{1}	4	6^{1}	$8{ }^{\text {b }}$	$1{ }^{11}$	Midn't.
	\bigcirc								\bigcirc	\bigcirc		
Jamuary	-37.78	-34.26	-33.96	-33.97	-33.52	-33.31	-33.55	-33.26	-32.85	-33.10	-33.11	-33.75
February	-36.52	-36.23	-36.25	-35.93	-35.84	-35.25	-35.27	-35.86	-36.37	-36.16	-36.0.	-36.74
March April	-20.85	-20.83	-21.44	-19.37 -2.17	-14.75	-11.89	-12.17	-13.85 $+\quad 0.50$	-18.51	-19.39	-19.73	-20.92
May		$+12.36$.	$+16.60$.	+15.81	.	$+18.11$. .	+14.06	. .	+11.15
June		+31.94		+38.11	\bigcirc	+39.82	-	+36.86	- ${ }^{\circ}$	+:33.5!	\cdots	+30.50
July	+36.51	$+37.24$	+39.24	+41.29	+42.90	+ +3.48	+ 42.34	+41.98	$+41.07$	$+40.02$	+38.5	+310.98
August		+34.16		$+35.36$		+36.68		$+36.63$		+35.91	.	+34.188
September		+24.08		+24.30		$+26.45$		+26.91	.	+25.80		+ +4.98
October		+ 7.31		$1+7.27$	-10.95	+ 9.03		+ 7.65		+ 7.47		+ 6.85
Norember December	-11.79	$\begin{array}{r} -11.41 \\ -32.54 \end{array}$	$\begin{aligned} & -10.76 \\ & -32.70 \end{aligned}$	-10.43 -33.38	-10.08 -32.81	-10.32 -32.81	-11.02 -32.71	-11.47 -33.12	-11.71	-11.96	-11.97	-12.25
Decenver												

For the purpose of making full use of all the bi-hourly observations, it was thought advisable to express the values for the months of April, May, June, and August, September, October, analytically, and to supply by interpolation values for the hours 2, 6, 10, A. M and P. M. The values thus computed were derived from the following expressions, in which the angle θ counts from midnight, and is reckoned at the rate of 15° an hour :-

For April,	$t=-2.54+30.67 \sin \left(9+255^{\circ}\right)+0^{\circ} .70 \sin \left(29+27^{\circ}\right)$
" May,	$t=+15.16+4.09 \sin (\theta+255)+0.24 \sin (29+257)$
" June,	$t=+35.17+4.65 \sin (0+267)+0.90 \sin (29+181)$
For August, " September, " October,	$\begin{aligned} t & =+35^{\circ} .57+10.32 \sin \left(\theta+228^{\circ}\right)+0^{\circ} .18 \sin \left(2 \theta+142^{\circ}\right) \\ t & =+25.47+1.39 \sin (9+213)+0.31 \sin (29+55) \\ t & =+7.59+0.37 \sin (\theta+2.8)+0.35 \sin (29+80) \end{aligned}$

The following table (IV, 死) contalns the interpolated values, by the insertion of which Table IV will be rendered complete: -

The two preceding tables furnish the following values for the amplitude of the diurnal fluctuation in each month of the year, also in each season, and for the whole year, together with the hours of maximum and minimum temperature, and the hours when the mean temperature is reached, for each of the periods.

The amnexed diagram (B) exhibits the monthly values of the diurnal range:-
(B.) Ditrnal Amplitude.

The autumn and winter monthis have a range of less than 3°, whereas the months of March to July exhibit two and a half times that amount. The maximum value was observed in Junc, amome $9^{\circ} .60$; the minimum value occurred in December, value $0^{\circ} .14$. Fow comparisom, I may add that the corresponding values at Van

Rensselaer Harbor occurred in April, amount $9^{\circ} .09$, and in November, amount $1^{\circ} .00$; showing a correspondence in amount but not in time. The diurnal variation never disappears altogether, and even during the long arctic night there appears to be a daily propagation or existence of a thermal wave producing a range of about 1°. The amount of the amplitude changes tolerably regular from month to month; the high value in March, however, either presents a distinct feature or is due to some anomaly. Altogether, the curve indicates no secondary maximum, such as was found in September at Van Rensselaer Harbor.

On the average, the maximum temperature is reached between noon and 1 P. M., and the minimum between 2 and 3 A. M.; whereas, at Van Rensselaer Harbor, these hours were respectively $2 \mathrm{P} . \mathrm{M}$. and $1 \mathrm{~A} . \mathrm{M}$.

The following table contains the hourly values of the diurnal variation for each season and the whole year:-

Table VI.-Diurnal Variation in eace Season.													
Season.	$2{ }^{\text {b }}$	$4^{\text {b }}$	$6^{\text {n }}$	$8{ }^{\text {b }}$	$10^{\text {b }}$	Noon.	$2^{\text {b }}$	$4^{\text {a }}$	$6^{\text {n }}$	$8^{\text {b }}$	10^{5}	Midn't.	Mean.
	-34.33			-34.43	-34.06	-33 79		-34 08	-3413	- 3116	- 41		\bigcirc
nter Spring	$\begin{array}{r} 34.33 \\ -5.07 \end{array}$	-34.34	- -3.31	-34.43	- 34.06 +0.84	-33.79	- ${ }^{-33.84}$	- 34.08	-34.13	-34.16	-34.14	-34.54	-34.18
Spring	${ }^{-35.07}$	- ${ }^{4.43}$	- 36.64	- 1.65	+0.84 +39.63	+3.72 +39.99	+ 2.87	+1.59 +38.49	- 1.34	-3.20 +36.57	- 4.22	- 5.19	- 1.73
	+6.60	+6.66	+6.80	+ 7.15	+ 7.91	+8.39	+8.17	+ 7.70	+ 7.36	+ 7.10	+ +6.84	+64.03	+1.96 +7.27
Year	$+0.21$	+0.58	+1.28	+2.33	+3.58	$+4.33$	+4.10	+3.42	+2.37	+1.58	+0.95	+0.21	+2.08
formula	+0.10	+0.49	+1.30	+2.42	+3.63	+4.33	+4.08	+3.25	+2.42	+1.72	+0.95	+0.27	+2.08
Differ'ce	+0.11	+0.09	-0.02	-0.09	-0.05	0.00	+0.02	$+0.17$	+0.05	$+0.14$	0.00	$+0.06$	

The computed diurnal variation for the whole year is derived from the expression given below. Comparing the means as stated above with corresponding values derived in the preceding discussion of the mean temperature of the seasons, we may add to each horizontal line the following corrections: to values for winter, $-0^{\circ} .05$; for spring, $+0^{\circ} .30$; for summer, $+0^{\circ} .29$; for autumn, $-0^{\circ} .78$; for the year, $-0^{\circ} .06$. These differences arise from changes in the observing hours, and consequent necessity of interpolation.

The mean temperature of the day is reached at $7^{\mathrm{h}} 24^{\mathrm{m}}$ A. M. and at $6^{\mathrm{h}} 56^{\mathrm{m}}$ P. M., by formula. The diurnal variation of the temperature during the whole year is represented by the formula :-

$$
t=+2^{\circ} .08+2^{\circ} .02 \sin \left(\theta+252^{\circ} 57^{\prime}\right)+0^{\circ} .25 \sin \left(2 \theta+117^{\circ}\right)+0^{\circ} .09 \sin \left(3 \theta+251^{\circ}\right)
$$

If we supply the constant term, and change the epoch from noon to midnight, as in the above expression, the diurnal variation at Van Rensselaer Harbor has been represented by

$$
t=-2^{\circ} .91+1^{\circ} .85 \sin \left(\theta+244^{\circ} 55^{\prime}\right)+0^{\circ} .08 \sin \left(2 \theta+97^{\circ}\right)+0^{\circ} .03 \sin \left(3 \theta+308^{\circ}\right)
$$

which is here added for comparison.
In either expression, the constant term might be omitted, as not essential in the inquiry of the diumal fluctuation; or the values $+2^{\circ} .02$ and $-2^{\circ} .20$, which are the true mean ammal temperatures respectively, might be substituted in their place.

The maximum and minimum value is given by the formula:-

$$
0=+2^{\circ} .02 \cos \left(\theta+252^{\circ} 57^{\prime}\right)+0^{\circ} .51 \cos \left(2 \theta+117^{\circ}\right)+0^{\circ} .28 \cos \left(3 \theta+251^{\circ}\right)
$$

The following diagram (C) exhibits the diurnal variation during the whole year:-
(C.) Diurnal Variation.

Hourly Corrections for Periodic Variations.-Under this head, a number of tables have been given by Prof. Guyot in his meteorological and physical tables, prepared for the Smithsonian Institution. These tables furnish the means of correcting other incomplete material at stations in the vicinity. A similar table was prepared by me for Van Rensselaer Harbor. The following table for Port Kennedy is directly derived from the values in Table II, in connection with Tables IV and IV (b). For those hours requiring interpolation in the latter case, the small corrections for the effect of the amnual change during a day has again been deducted.

Arctic America.-Port Kennedy, Lat. $22^{\circ} 01^{\prime}$ N., Long. $94^{\circ} 14^{\prime}$ W. of Greenwich.
Corrections to be applied to any Bi-hourly or set of Bi-hourly Observation to obtain the
Mean Temperature of the Day.
Degrees of Fahrenheit's scale.

Hour.	Jın.	Feb.	March.	April.	May.	June.	July.	Aug.	sept.	Oct.	Nov.	Dec.	Year.
							\bigcirc	-	\%		0	-	
$2 \mathrm{~A} . \mathrm{M}$.	+0.24	+0.61	+3.2s	$+3.16$	+4.41	$+5.12$	+3.62	+1.23	+0.74	+0.22	+0.24	-0.45	+1.87
4	+11.12	+0.29	+3.22	+2.47	+3.03	+3.39	+2.93	+1.31	+1.21	+0.05	-0.09	-0.56	+1.49
${ }_{8}^{6}$	+0.43	+0.29	+3.79	+1.45	+1.01	$+1.34$	+0.89	+0.91	+1.28	$+0.31$	-0.69	-0.37	+0.80
8	+10.43	-0.12	+1.67	-0.24	-1.31	-2.86	-1.16	$+0.16$	$+0.78$	$+0.20$	-0.96	+0.35	-0.25
10	-0.112	-01.23	-2.49	-2.15	-2.35	-4.61	-2.77	-0.61	-0.09	-0.77	-1.26	-0.19	-1.50
Noon	-0.2.3	-0.78	-5.8.9	-3.76	-3.62	-4.63	-3.35	-1.12	-0.99	-1.46	-0.97	-0.16	-2.25
$2 \mathrm{P} . \mathrm{M}$.	+0.01	-0.78	-5.75	-4.28	-3.83	-3.38	--2.21	-1.21	-1.49	-0.92	-0.22	-0.23	-2.02
4	-0.24	-0.21	-4.91	-3.11	-3.02	-1.73	-1.85	-1.03	-1.37	+0.02	+0.28	+0.21	-1.34
6	- 10.69	+ +0.25	+0.65	-0.77	-1.41	-0.34	-0.94	-0.71	-0.80	+0.33	+0.58	+0.30	-0.30
8	-0.44	+ +1.04	+1.4.	$+1.56$	+0.93	+1.26	+0.11	-0.27	-0.17	$+0.31$	+0.88	+0.38	+0.50
10	-0.43	-0.07	+1.74	+2.75	+2.35	+2.98	$+1.57$	$+0.35$	+0.19	+0.71	$+0.94$	$+0.43$	+1.13
Midn't	+0.24	$+0.56$	+2.88	+2.57	+3.8t	+4.47	+3.15	+1.02	+0.73	$+1.04$	+1.28	$+0.32$	+1.87
	-11.13 0.119	+0.27 +0.14	+2.22	$+0.34$	-0.20	0.00	-0.10	+0.10	$+0.24$	+0.32	-0.05	-0.03	+0.25 +0.12
8,8 10,15	0.168 -10.22	$\begin{array}{r}-10.14 \\ -0.15 \\ \hline\end{array}$	+1.55	$\text { f-0. } 62 ;$	-0.19	-0.80	-0.52	-0.015	$+0.31$	$+0.25$	-0.04	$+0.37$	+0.12
10,15 $6,-2,10$	-0.22	-0.15	-0.62	+11.30	0.00	-0.81	-0.60	-0.13	$+0.05$	-0.03	-0.16	+0.12	-0.18
6, 2, 10		-0.19	-0.017	-0.03	- 0.16	-0.02	+0.08	+0.02	-0.01	$+0.03$	+0.01	-0.06	-0.03

Owing to the fact that the observations extend over one year only, the table, in some instances, must necessarily contain some small irregularities. The closest results are obtained from the hours $6,2,10$, which was also the case at Van Rensselaer Harbor.

Connection of the Lunar Phases with Low Winter Temperatures.

The apparent connection of the lunar phases with the observed temperature of the air during the Arctic winter, the thermometer being below the zero of Fahrenheit's scale, was long ago noticed by Arctic explorers, and was again independently observed by Dr. Kane, in the discussion of whose observations I have attempted an explanation of the phenomenon. In that paper, the connection of the lunar phases with the serenity of the sky and the fall of snow was also discussed; for the observations now on hand, the numerical relations alone will be represented.

Dividing the daily means of the temperature into penthemers (or periods of five days), a table was formed showing the time of full and new moon and the mean temperatures; and, by means of differences of the alternate means at these periods, the amount by which the mean temperature is lower at full moon than at new moon is exhibited in column headed Δ.

The average fall of the temperature for the period from new moon to full moon, from the above comparisons, is $7 \exists^{\circ}$. The separate results may, perhaps, not appear as conclusive as those obtained at Van Rensselaer Harbor (lat. 78 ${ }^{\circ} .6$); still, the general deduction is confirmed. The following account of the weather for each day, the day preceding and the day following, of the full and new moon, is copied from the record and refers to noon. Beaufort's signification of letters is used.

In the first winter, the weather appears to have been finer and clearer at full moon; whereas, in the second winter, there is little or no difference, a misty weather and snow drifts characterizing the locality; under these circumstances, the lunar effect could hardly be expected to show itself as distinctly as brought out above. Captain McClintock makes the following remark (page ix of the 4th number of meteorological papers published by the Board of Trade): "The dense and continued mist over Bellot Strait, caused by considerably warmer water than the air above it, and the strong local winds, perhaps partly caused by this speedy evaporation and condensation, are special features."

No recurrence of cold was noticed, either in 1858 or in 1859, about May 11ththe period Dove has called attention to.

Temperature of the Winds.-To ascertain the elevating or depressing influence of the varions winds on the temperature, the following method of investigation was adopted:-
The normal temperature of each day was made out by taking the mean of the temperature of that day, the two preceding and the two following days. The observed temperature at the hours $6 \mathrm{~A} . \mathrm{M}$. and $6 \mathrm{P} . \mathrm{M}$., and at noon and midnight, were then compared with the respective normal temperature (the mean of five days); the differences thus obtained were tabulated according to one of the eight winds (or calm) N., N. E., E., S. E., etc., blowing at the respective hours. The mean difference for each wind, and for a period extending over a season, very nearly indicates the elevating or depressing influence of each wind, and at each season, on the temperature of the air. The + sign indicate warmer, the - sign colder, than the average. The diurnal variation being generally small, and in the absence of any regularity of a certain wind blowing regularly at certain hours, the effect of
this variation will disappear in the resulting average values. In the exceptional case when no observations are recorded at 6 A. M. and P. M., the mean of observations at 4 and $8 \mathrm{~A} . \mathrm{M}$. and P. M. were substituted. For notes referring to the observations of the winds, see the record or Part II of this discussion. The directions of the wind are "true." This method of investigation is less laborious than that followed by me in a similar discussion of the temperature of the various winds at Van Rensselaer Harbor.

All results in Baffin Bay have been united, and a second group has been formed from the observations at Port Kennedy.

The seasons and localities for Baffin Bay, for which results were deduced, are as follows:-

Season. Months.	Between latitudes	Between longitudes
Autumn-Sept., Oct., Nov., 1858	$75^{\circ} .3$ and $74^{\circ} .8$	$65^{\circ} .0$ and $69^{\circ} .1$
Winter-Dec., 1858, Jan., Feb., 1859	74.3 71.5	$67.4 \quad 60.9$
Spring-March, April, May, 1859	69.468 .7	59.1 53.7
Summer-June, July, August, 1859	74.6	$60.1 \quad 88.5$
Mean	$72^{\circ} .5 \mathrm{~N}$.	$65^{\circ} .8 \mathrm{~W}$.

This average position is nearly in the middle of Baffin Bay.

Elevating or Depressing Effects of the Winds on the Temperature of the Air. + warmer, - colder, than the mean temperature.										
	Calm.	N.	N. E.	E.	s. e:	s.	s. w.	w.	N. w.	Mean.
Autumn 1857	$-2^{\circ} .8$	- ${ }^{\circ} \mathrm{i} 2$	$+^{3}{ }^{\circ} \cdot 1$	$+{ }^{10} .6$	$+4^{\circ} .1$	+0.7	$-2^{\circ} .6$	$-{ }^{1.2}$	$+0^{0.3}$	
	-1.9	${ }_{-1.5}^{-0.1}$	-0.3	-1.0 +1.3	+ +8.8	$\underline{+1.4}$	${ }_{-0.7}^{2.4}$	${ }_{-0.3}^{-0.2}$	${ }_{-2.9}^{+1.2}$	
Summer 1858	$+0.6$	-1.0	$+0.5$	${ }_{-0.5}^{10}$	${ }_{-0.3}$	+0.6	0.0	+0.3	-0.5	
Mean	${ }_{-1.0}$	-0.5	+1.1	+0.4	+3.3	+0.8	-1.4	${ }_{-0.4}$	-0.5	$+0^{\circ} .2$
Result for year	-1.2	-0.7	+0.9	+0.2	+3.1	+0.6	-1.6	-0.6	-0.7	

The results in the last line, obtained after deducting $0^{\circ} .2$ from the preceding line, show that the S. E. winds are the warmest, and the S. W. winds the coldest; also, that during calms the temperature is lower. At Van Rensselaer Harbor, the depressing effect of the calms amounted to $3^{\circ} .4$.

The following table shows the results for Port Kennedy :-

	Calm.	N.	N. E.	E.	S. E.	S.	S. W.	W.	N. W.	Mean.
Autumin 1858	$+2^{\circ} .4$	$+0^{\circ} .9$	$+1^{\circ} .3$	$+3^{\circ} .7$	$+2^{\circ} .4$	$+4^{\circ} .5$	$+1^{\circ} .0$	-1.7	-10.9	
Winter 1858-9	-0.9	+2.0	-0.5	+2.3	+	+4..5	+2.2	$+0.2$	-0.6	
Spring 1859	-0.4	$+0.4$	+0.3	+0.6	---	---	-	-0.6	-1.2	
Summer 1859	-0.8	-0.4	-0.3	+0.5	-1.2	-1.3	$+0.3$	+0.5	-0.2	
Mean	+0.1	+0.7	+0.2	+1.8	+0.6	+1.6	+1.2	-0.4	-1.0	$+0^{\circ} .5$
Result for year	-0.5	+0.2	-0.3	+1.3	+0.1	$+1.0$	+0.6	-0.9	-1.5	

The results for winds from the S. E., S., and S. W. are not very reliable, on account of the scarcity of wind from these directions. At Port Kennedy, the E. winds are the warmest and the N. W. the coldest; during calms, the mean tem-
perature is depressed $0^{\circ} .5$. The local configuration of the land, and the peculiar situation of the port, may possibly affect the results deduced.

The following recapitulation of results shows a tolerably fair agreement between the localities-middle of Baffin Bay, Van Rensselaer Harbor, ${ }^{1}$ and Port Kennedy.

(The positive and negative values have been made to balance, after omitting the value for the calms.)
Counting θ from the north (or belonging to a true north wind), in the direction east, south, etc., to 360°, the above tabular numbers can be expressed by the for-mula-

| | Lat. | Long. | |
| :--- | :---: | :---: | :--- | :--- |
| Middle of Baffin Bay, | $72^{\circ} .5$ | $65^{\circ} .8$ | $T=+1^{\circ} .5 \sin \left(\theta+338^{\circ}\right)+0^{\circ} .8 \sin \left(2 \theta+173^{\circ}\right)$ |
| Yan Rensselaer Harbor, | 78.6 | 70.9 | $T=+1.0 \sin (\theta+286)+0.3 \sin (2 \theta+335)$ |
| Port Kennedy, | 72.0 | 94.2 | $T=+0.9 \sin (\theta+320)+0.4 \sin (2 \theta+26)$ |

The second terms are of subordinate value; the first, or significant terms, correspond upon the whole very close, considering the peculiarity of each station, in reference to free exposure to the various winds.

From the 4 th number of the meteorological papers published by the Board of Trate in 1860, I extract the following remark of Captain McClintock's: "The Danish settlers at Upernavik, in Northwest Greenland, are at times startled by a sudden rise of temperature during the depth of winter, when all nature has been long frozen; rain sometimes falls in torrents. It is called the warm southeast wind." In reference to a warm northwest wind in Upper Baffin Bay, alluded to in the same paper (p. iv), the above table for that locality shows that, although this wind is warm in winter, it is considerably colder in spring, and also colder, on the average, for the whole year.

Temperature of the Suit.-The following is copied from p. 309 of the record: "On 14th September, 1858, as soon as it appeared probable that we should winter at Port Kemenly, I sunk a brass tube two feet two inches vertically in the ground, and inserted a padded thermometer. The ground, at time of sinking the tube, was frozen from six inches below the surface, and it was with great difficulty I could get the tube sufficiently far down. The surface soil was similar to that

[^15]strewn over the land, but from below six inches it was of a yellowish mud. The thermometer used was one of very small bore, with a long stem finely graduated (it had been prepared for taking temperatures of trees). From 18th to 29 th September, 1858 , no register was made, as the ship was not in port; also from 18th to 28 th March, 1859 , as I was absent from the ship travelling. The minimum temperature registered was $+0^{\circ} .5$, on March 10th, 1859 ; the lowest may be assumed as at zero, on March 16th. The register was continued until June 18th, when water entered the tube, and the thermometer was frozen to the side so that it could not be detached. Column No. 1 gives the register of this thermometer. Column No. 2 gives the depth of overlaying snow, which was always greater than the average on the land. On 17th January, 1859, a tube was placed one foot one inch deep in a mixture of shingle and earth; in this a thermometer was placed. The position of the ground was such that scarcely any snow lay upon it, the strong wind constantly blowing removing it almost as soon as deposited. Column No. 3 is the register of this thermometer. February 12th, 1859, a tube was placed horizontally on the surface of the ground, beneath the snow lying on the ground, where thermometer No. 1 was sunk. The temperature as shown by this thermometer (Column No. 4) was registered until the snow all disappeared. Column No. 5 gives the mean temperature of the air for the day on which the registers of the different thermometers were taken. Column No. 6 gives the mean temperature of the air for the number of days or hours intervening between the registers of the thermometers. All the temperatures of the different thermometers are corrected so as to reduce them to the standard of the air thermometer, comparisons having previously been made as opportunity offered."
(Signed) DAVID WALKER.

Date.	No. 1.	No. 2.	No. 3.	No. 4.	No. 5.	No. 6.			
		Iaches.			$+24^{\circ} .2$				
Sept. Oct.	${ }_{20.9}$		\cdots	-	+25.4	Between Sept. 30 and Oct. $1=+24^{\circ} .2$			
Oct. 4	25.5	3	-	\cdots	+22.3	"	Oct. 1	" 4	+25.7
: 7	27.5	5			+13.6	"	$\begin{array}{ll}\text { " } \\ \text { " } & 4\end{array}$	" 7	+22.2
" 9	26.3	5			- 1.2	"	"	"6 9	+9.9 $+\quad .0$
" 13	24.1	7			-0.7	"	6 6	" 13	+ 7.0
" 1if	22.4	$7 \frac{1}{2}$.		+18.5 $+\quad 9.1$	"	"13 16	"16 6 19	0.0 $+\quad 8.2$
" 19	21.2	8			$\begin{array}{r}+9.1 \\ \hline 0.8\end{array}$	"	"19 19	" 23	+8.2 +3.2
" 23	21.2	10	.		- 0.8	"	" 23	" 28	$+\quad 3.2$ -0.4
"\% 28	19.4 17.8	16 42		\cdots	- 0.6	"	" 28	Nov. 6	- 2.4
" 13	16.3	42			-9.2	"	Nov. 6	${ }^{6} 13$	-10.7
" 20	14.9	55			-13.8	"	" 13	" 20	-7.9
" 27	14.1	57			-23.8	"	" 60	" 27	-16.5
Dec. 4	13.5	56			-35.4	"	" 27	Dec. 4	-19.4
" 11	12.9	53			-35.9		Dec. ${ }_{6}$	" 11	-29.8
" 18	10.6	51		.	-33.4		" 11		-36.7
$\stackrel{1859}{\text { Jan. }} 1^{\text {c }}$	8.1	66			-39.2	"	" 18	Jan. 1	-34.5
". 8	6.9	69		\cdots	-34.7	"	Jan. 1	" 8	-36.8
" 15	5.4	68	-180.7		-28.3	"	" 8	" 18	-28.9
" 21			-23.7		-42.2	"	" 18	" 21	-35.4
" 27	4.4	72	-22.2		-25.8	"	" 21	" 27	-37.5
Fels, 1	--	--	-24.7		-33.3	"	" 27	Feb. 1	-32.1
" 12	2.9	72	-23.7		-22.7	"	Feb. 1	" 12	-34.1
" 17	--	--	-25.2		-36.6	"	" 12	" 17	-35.6
" ${ }^{16}$	1.6	68	-25.7	$-3^{\circ} .0$	-38.2	"	" 17	" 26	-37.4
March 4	--	--	-22.7	--	-22.2	"	" 26	Mar. 4	-32.1
" 10	0.5	72	-16.4	- 3.8	-23.4	"	March 4	" 10	-17.0
" 28	0.8	76	-10.9	-3.7	-15.4	"	" 10	[28	-17.8
April ${ }^{2}$	--	--	-12.4		+2.0	"	"6 28		-10.9
" 7	1.1	78	-10.9	- 1.2	-10.6	"	April 2	" 7	-3.5
" 12		--	-12.9		-16.3	"	" 7	612 4	-12.3
" 15	1.4	77	-11.9	+ 0.6	-1.1	"	" 12	" 15	-14.1
" 23	1.8	76	- 0.5	$+1.2$	-0.2	"	" 15	" 23	+ 3.0
" 26	--		-5.0		-1.5	"	4	" 26	-5.7
" 30	2.2	S4	-3.0	+2.3	+16.4	"	26	" 30	+ 5.5
May 7	2.8	82	-3.0	+ 3.7	+4.1	"	" 30	May 7	
" 10	\cdots	--	$+3.5$	--	+11.8	"	May 7	" 10	+ 7.0
" 14	3.1	72	$+8.0$	+ 4.5	+20.4	"	" 10	" 614	+14.4
" 21	3.6	74	+11.5	$+5.0$	+17.8	"	14	" 21	+19.1
" 25		-	$+14.0$	--	+18.7		" $6 \quad 21$	" 25 18	+17.1
" 28	4.3	71	+14.5	+6.4	+25.4 +34.1		"6 6 6		
${ }_{\text {June }}{ }^{\text {a }} 11$	4.9 10.1	70 54	+18.0 +22.1	+7.7 +31.8	+34.1 +35.3	"	June $\begin{array}{r}68 \\ \hline\end{array}$	June 4	+26.5 +33.7
" 16			+32.3		+39.2	"	" 11	" 16	$+37.4$
" 18	frozen	26	+33.8	$+32.3$	$+36.3$	"	" 16	$\begin{array}{ll} \\ \\ \\ & 18\end{array}$	$+40.1$
" 24	frozen	18	$+30.3$	+32.1	$+36.3$	" 6	" 18	" 24	$+36.8$
July 1	frozen	0	+32.6	+34.8	$+40.6$	"	24	July 1	+36.8

The thermometer sunk two feet two inches, and the ground above covered with snow, gave its lowest indication on March 10th, when it reached $+0^{\circ} .5$, and may be assumed as having reached zero about March 16th. The temperature of the air was lowest about January 19th $\left(T=-38^{\circ} .4\right)$; hence, the greatest cold of the soil at that depth occurred 57 days later. The thermometer sunk one foot one inch, and the ground free of snow, reached its lowest indication already on February 26 th ($T=-25^{\circ} .7$); hence, 38 days later than the time of the lowest atmospheric temperature.

Timperature of the Surfuce of the Sea.-Frequent observations (at irregular hours of the day) were made for temperature of the surface of the sea, between July $2 d, 1857$, and September 12th, 1857 . It suffices, however, to give an abstract of these observations, and the following record contains the maximum, minimum, and mean temperature observed each day. The observations were resumed April

18th, 1858, and continued till September 11th, 1858. They were again resumed August 21st, 1859. Some other observations will be given below. For the latitude and longitude, see preceding abstract.

\bar{j}

NOTES.
1858

Mar. 10th.	p	120	th	$30^{\circ} .5$	April 7th.	Temp		,	8
	"	100	"	31.0	April 10th.	,	120	"	34
	"	5	"	29.0		"	4	"	30
Mar. 20th.	"	90	"	34.0	April 14th.	"	110	"	31
	"	4	"	29.5		"	4	"	30.5
Mar. 29th.	"	12)	${ }^{6}$	35.0	April 21st.	"	110	"	31.2
	"	4	"	31.5		'	4	"	29.5

Date.	Lugatity		$\begin{aligned} & \text { Temp. } \\ & \text { of sea. } \end{aligned}$	REMARES.
1857				
July 2-15	$58^{\circ} .3-60^{\circ} .1$	$2^{\circ} .6-48^{\circ} .3$	$51^{\circ} .7$	Aherdeen to off Cape Farwel.
${ }^{6}$ 16-31	$60.4-69.2$	49.7-53.3	3.5	Off Cape Farewell to Liovely.
Aug. 1-15	69.4-75.1	$53.0-59.3$	36.9	Lievely to near Melville Ibay.
" 16-31	75.1-75.	$59.3-64.1$	30.8	
Sept. ${ }_{24}^{1-12}$	$75.5-75.5$ 75.1	$64.0-65.5$ 65.3	29.6 29.0	" ${ }_{6}$
Nov. 9	74.8	68.5	28.0	"
1858				
Feb. 2-22	$72.5-70.7$	$61.2-60.7$	28.8	Baffin Bay.
March 1-29)	69.8-68.5	59.7-58.5	29.6	Near Davis Strait, at 4 fathoms depth.
April 7-21	$67.0-64.2$	58.4-58.7	30.0	Davis Strait 4 fathoms.
"18-28	64.8-66.5	58.6-53.5	29.6	Davis Strait.
May 8-11	66.8-69.0	53.3-53.3	28.5	Holsteinberg to Whalefish Isiands.
" 29-31	$71.3-72.8$	55.6-55.8	33.5	Omenak Fiord to off Upernavik.
June 1-15	$72.8-74.2$	55.8-58.2	32.0	Of Upernavik to south of Melville Bay.
"6 16-30	$75.0-75.9$	$60.1-67.5$	31.6	Melville Bay,
July 1-15	75.9-74.6	$67.5-80.9$	31.7	Upper Bafin Bay.
" 16-31	$74.4-72.6$	82.0-76.3	32.4	Bation Bay.
Aug. 1-12	72.8-74.3	77.2-89.0	32.8	Near Lancaster Sound and Barrow Strait.
" 16-31	74.3-72.0	94.0-94.2	30.5	Prince Regent Inlet, Port Kennedy.
Sept. ${ }_{6} 1-11$	72.0	94.2	29.5	Near Port Kennedy.
Ang. 21-20	$72.7-69.7$	72.1-55.5	38.5	Lower Bafin Bay.
Sept. 2-9	$67.3-58.7$	57.3-48.3	41.0	Off South Greeuland.
" $10-17$	58.1-51.3	44.9-16.4	52.5	

The lowest temperatures of the surface of the sea were observed in November, 1857, near Melville Bay, and in September, 1858, at Port Kennedy (viz., $28^{\circ} .0$); the highest temperature, north of Davis Strait, in May, 1858, off Swarte Hook Peninsula (viz., $33^{\circ} .5$).

The following table of monthly mean temperatures of the air (in shade), expressed in degrees of Fahrenheit's scale, has been prepared by Captain McClintock, and is here appended as forming part of the most valuable material for the construction of the isothermal lines, and for the investigation of the climatic relations of this portion of the Arctic regions. I have added two columns, containing the results from the Second American Grinnell Expedition, under command of Dr. E. K. Kane, from my discussion of the observations, as published by the Smithsonian Institution, and the results for Port Kennedy as made out by me in the preceding discussion. This last column may be substituted for that given by Captain McClintock in his general table.

Trable of Mean Montily Temperatlres Registered by Modern Expeditions to the American Arctic Regions.

PARTII.

WINDS.

record and discussion of the direction and force of tile wind.

The direction and force of the wind was recorded at the same hours as those given in the preceding record of the observations for temperature, and are the same at which all other meteorological observations were made.

In the preface to the journal containing the original record, Captain McClintock states-"The true direction of the wind is given throughout;" and "the force of the wind is indicated according to the Beaufort scale of notation, 0 to 12, see Admiralty's Manual." Comparing the direction of the wind given in the fourth number of Meteorological Papers published by authority of the Board of Trade, 1860, I find that for a part of the cruise the magnetic direction is given, which in Captain McClintock's record is already converted into "true," the magnetic variation having been applied; I have, therefore, added to the record of the wind the observed variation of the needle to show the amount allowed for in the conversion of the directions. The proper reduction of the winds requires a knowledge of the velocity of the air corresponding to each number expressing the force according to Beaufort's scale; this I have derived from the following table:-

Denomination of wiad.					Estimated number of force.	Pressure in pounds per square foot.	Velocity in miles per hour.
Calm	-	-	-	-	0	0.000	0
Light air	,	.	-	-	1	0.005	1
Gentle breeze .		-	-	.	2	0.08	4
Moderate breeze	.	-	.	-	3	0.9	13
Fresh breeze		.	-	-	4	2.6	23
Strong breeze	-	-	-	-	5	5.1	32
Fresh gale	6	7.9	40
Strong gale	.	.	.	-	7	12.0	50
Storm .	-	-	-	-	8	18.0	60
Tempest	-	.	.	.	9	31.0	80
Hurricane	-	-	-		10	49.0	100

The relation of the tabular numbers of pressure and velocity is in accordance with Smeaton's table, and also agrees with that following from Dr. Bernoulli's formula. By simple proportion, or by means of a diagram, we obtain the following velocity number corresponding to Beaufort's scale, or to a graduation from 0 to 12.

Force according to Beaufurts notation.	Corresponding ndopted velocity	Force according to Beaufort's	Corresponding adopted velocity
0	in milesper hour.	0	7
1	1	8	40
2	4	9	48
3	10	10	56
4	17	11	67
5	24	12	82
6	32		100

The force of the wind being obtained by estimation, a moderate accuracy in the velocity numbers suffices.

Record of the Observations for Direction and force of the Wind.
This record may be divided in two parts; the first part comprising the period from September, 1857, to August, 1858, when the ship was in Baffin's Bay, and the second part between Scptember, 1858, and August, 1859, when she was at Port Kemedy. These two periods will be discussed separately. The daily and mean monthly positions of the Fox are given in the record of the temperatures; those for the several seasons are as follows:-

Between mean lat's- and Mean long's-

Remarks relating to winds are given in notes.

Direction (true) and Force of the Wind obseryed on board the yacht Fox. July, 1857.-Mean position: Lat. $62^{\circ} \mathrm{N}$. ; long. $39^{\circ} .1 \mathrm{~W}$. of Greenwich.								
DATE.	$4^{\text {h. }}$	$8^{\text {l. }}$	Noon.	4h.	$8^{\text {h. }}$	Midn't.	Varia'u	Remarkg.
${ }_{0}^{1}$								
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$2 \text { S. S. W. }$	2 W.S.W.	4 S. W.	4 S. by W.	4 S.W. byW	4 S. S. W.		n
4	${ }_{5}^{6}$ N. E.		5 S. S. W.	$1 \mathrm{~N} . \mathrm{W}$.	Calm	4 N. E. by		applied for the ed,
5	6 N .	6 N.	4 N.	${ }_{2}^{6}$ N. E. N. Wy .	$2{ }^{6} \mathrm{~N} . \mathrm{by}$. $\mathrm{N} . \mathrm{W}$.	2 N.W.byW		not given.
6	2 N.W.byW	1 S . W.	1 N.W.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	${ }_{36}{ }^{\circ}$.	
8	1 E .	Calm	1 E .	1 E .	3 E. S. E.	4 E. S. E.		
8	6 E. S. E.	6 E. S. E.	6 E. S. E.	7 E . by S.	7 E. by S.	7 E . by S.	42	
9 10	${ }_{2}^{7} \mathrm{E}$ E. by S.		5 E.	3 E.	2 E .	1 S'ly	47	
11	1 N. N. E.	4 N. N. E.	6 E. N. E.	5 E. by N.	1 E. by N.	1 var.	51	
12	7 N. N. E.	6 N.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{E}$ W.	5 N. N. E.	6 N. N. E.	7 N. N. E.	52	
13	2 N. W.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{E} . \mathrm{W}$.	4 N. N. E.	2 N.	55	
14	Calm	1 E'ly	2 S. E.	$1{ }_{2}$ E'ly. W.	1 N'y	1 N'ly 4 E. by S.	55	
15	Calm	1 S. E.	$4 \mathrm{~N} . \mathrm{W}$.	4 W. by N.	5 N. N. W.	1 N. N. W.	55	
16	1 W. by N.	1 S . W.	1 S. W. by S.	1 S. W.	1 S . W.	2 N. N. E.	55 55	N. N. W. 18'.
17	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	4 N.W.by N.	2 N.W.by N	56	
18 19	$2 \mathrm{~N} . \mathrm{W} . \mathrm{byW}$.	2 N.W. by N.	3 N.W., E.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	2 N.W.by N.	2 N.W.by N	59	
19 20	2 N.			$4 \mathrm{~S} . \mathrm{W}$.	5 S. W.	5 S. S.W.		19th. Current
21	$4 \mathrm{~N} . \mathrm{W}$.	${ }_{2}^{6 S .}$ S. W.	${ }_{2} 5$ S. by E.	4 S. W.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.		N. N. W. 18'; Va-
22	5 N.W. by N.	5 N.W.by N.	5 N.W. by N.	2 N.W.byW.	2 N.W.byW.	2 W.		between the 19th
23		4 N.W. by N.	$6 \mathrm{~N} . \mathrm{W}$. by N.	5 N.W. by N.	3 N.W. by N. 2 N.W. by N.	3 N.W. by N		\& 26th not stated.
24	Calm	$4 \mathrm{~S} . \mathrm{W}$.	6 S. E. by S.	${ }_{2}{ }^{\text {S S.W.W. by S. }}$	2 N.W. by N. $1 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$. by N $3 \mathrm{~N} . \mathrm{W}$.		
25	5 N.	5 N .	1 N. N. W.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	1 N.			
26	1 N.	1 N .	2 N.	2 N.	2 N.			
27	5 N.	4 N.	3 N. by W.	3 N. by W.	5 N. N. W.	4 N. N. W.		
28	2 N. N. W.	1 N. N. W.	2 S. S. E.	4 E. S. E.	6 E. S. E.	7 E.S. E.	64	
29	7 E. S. E.	4 E .	4 E .	2 S. S. E.	$2 \mathrm{S}$. .	1 S . ${ }^{\text {E. }}$	64 70	
30	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \text { N.W. by N. }$	$5 \text { N.W. by N. }$	$7 \text { N.W.by N. }$	7 N.W. by N.	Q N.W.byW	70 72	
31	$2 \mathrm{E} . \mathrm{by} \mathrm{S}$.	2 E. N. E.	Calm	Calm	Calm	Calm		
August, 1857.-Mean position: Lat. $74^{\circ} \mathrm{N}$. ; long. 590.8 W.								
date.	$4{ }^{\text {b }}$.	8 h.	Noon.	$4^{\text {h. }}$	8 h.	Midn't.	Varia'n allow'd	REMARKS
1	Calm	Calm	Calm	3 S'ly				
2	4 S. E. by E.	3 N. E.	1 E'ly	1 E'ly	Calm	$\begin{aligned} & \text { S. E. by E. } \\ & \text { Calm } \end{aligned}$	72°	
3	1 E'ly	Calm	Calm	4 E .0 by S.	$4 \text { S. E. by S. }$			
4	6 S. E. by S.	2 S. E. by S.	8 S. E. by S.	6 N.W.byW.	$4 \text { N.W.byW. }$	$4 \text { W. N. W. }$		
5	5 W .	$5 \mathrm{~W}$	4 W .	5 W. by S.	5 W. by S.	5 W. by S.	76	with. Bafling withstrong
6	4 S'ly	5 S'ly	6 S. S. E.	6 S. S. E.	8 S. S. E.	4 S. S. E.		
7	$1 \mathrm{~S} . \mathrm{E} . \mathrm{by} \mathrm{S}$.	3 W. N. W.	2 N. N.W.	2 N'ly	1 N'ly	3 N'ly	80	
8	3 N. E. by E.	2 N. E. by E.	2 N. E. by E.	4 E . by N.	4 E'ly	5 E'ly		
10	$5 \mathrm{~S} . \mathrm{E}$.	5 S .	5 S. S. E.	3 S. S. E.	3 S .	3 S. E.	82	
10	3 S. S. E.	3 S. S. E.	3 S. S. E.	1 W. N. W.	2 W'ly	$2 \mathrm{~N} . \mathrm{W}$.	87	
11	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	8	
12	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~S} . \mathrm{W}$.	2 S. E.	2 S . E.	Calm	Calm	90	
13	Calm	Calm	Calm	Calm	1 N'ly	1 N.E. by N.		
14	Calm	Calm	Calm	Calm	Calm	1- N.E. by N.	90	
15	Calm	Calm	Calm	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	3 N. W.	87	Var'n obse
16	$1 \mathrm{~W}^{\prime} \mathrm{l}$ y	Calm	$2 \mathrm{~S} . \mathrm{S.E}$.	3 S. S. E.	3 S. S. E.	5 S. S. E.	90	Var'n obse
17	$6 \mathrm{~S} . \mathrm{E}$.	4 S. E.	2 S. S. E.	4 S. S. E.	4 S. E.	6 S. E.	90	
18	5 S. E.	4 E. S. E.	3 E. S. E.	$2 \mathrm{S.E}$.	1 S. E.	1 S. E.	50	
19	1 E. N. E.	1 E. N. E.	1 E. N. E.	2 S .	3 S. S. E.	5 S'ly	92	
20	6 S . E.	5 E .	4 S. E. by S.	$3 \mathrm{~S} . \mathrm{E}$. by S.	2 S. E. by S.	2 S. E.	12 92	
21	$1 \mathrm{~S} . \mathrm{E}$.	2 S. S. E.	2 S. W. by S.	1 S. W. by S.	1 S. W. by S.	${ }^{2}$ S. E.	92 92	
22	1 N.W.	Calm	Calm	1 S. E. ${ }^{\text {d }}$	1 S. E. by	1 E. S. E.	92 92	
23	1 E .	1 E .	4 E. N. E.	$1{ }^{1} \mathrm{E}$. .	1 S. N. E.	1 E. S. ${ }^{\text {N. }}$ E.	92	
24	$1 \mathrm{~N} . \mathrm{E}$.	2 N. by E.	2 N.W. by N.	3 N.W. by N.	3 N.W. by N.	${ }^{1} \mathrm{EL}$ N. N.		
25	3 N.	4 E. by S.	6 E.	6 E. by N.	6 E. by N.	5 E. by N.		Var'a observed
26	$2 \mathrm{E} . \mathrm{by} \mathrm{S}$.	3 S. by E.	5 E. S. E.	3 E.	5 E. by N.	5 E. by N.	9238	Far'n observed.
27	5 E .	6 E.S.E.	4 E. N. E.	3 N. E. by E.	2 E. N. E.	2 E. by S	9238	Fara
28	${ }^{\text {Calm }}$	2 E . by S.	1 E. S. E.	1 E. S. E.	1 S. S. E.	2 E. S. E.		
29	1 S. E.	$1 \mathrm{~S} . \mathrm{E}$.	$2 \text { E. S. E. }$	$1 \text { N.W.byW. }$		4 W. N. W.		
30	3 N.	3 N.	5 S. E.	7 E.	7 E.S. E.	8 E.S.E.	9230	Sist. Var'a obs. cees stationary af
31	8 S. S. E.	8 S. E.	5 E. N. E.	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	6 N.W.byW.	6 N.W.by W.	9412	terwards driviag 10 N. N.W. \& S.E.

Direction (true) and Force of the Wind observed on board tme yacht Fox.
September, 1857.-Mean position: Lat. $75^{\circ} .3 \mathrm{~N}$; long. $65^{\circ} \mathrm{W}$.

date.	$4^{\text {h. }}$	8 h.	Noon.	$4^{\text {h }}$.	84.	Midn't.	Variation
1	$2 \mathrm{~N} . \mathrm{W}$.	2 L .	2S.W.	1 W. N. W.	2 S. S. W.	3 S .	
2	35.E.	3 s. hy E.	1 E . ${ }^{\text {d }}$			1 N. W.	
3	1 N.W. by W.	1 N. W. by W.	1 N. W. by W.	$1 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	1 N. W. by W.	
4	$3 \mathrm{s.s.W}$.	3 s	3S.E. by S.	$4 \mathrm{~S} . \mathrm{E}$.	5 E. S. E.	6 E. by S.	
5	$1 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~S} . \mathrm{E}$.	2 E - by N.	${ }_{3}^{2} \mathrm{E}$.	${ }_{3}$ Calm	2 S. IF. W,	w.
6	$3 \mathrm{Sis.r}$ \%.	2 S. E. hy E. 5 W. hy a	$3 \mathrm{~W} . \mathrm{s} . \mathrm{W} .$	3 E. E. N. E. 3 E.	$\begin{aligned} & 3 \mathrm{~N} . \\ & 4 \mathrm{~N} . \mathrm{E} . \end{aligned}$	$\begin{aligned} & 3 \text { N. N. W. } \\ & 6 \text { E. S. E. } \end{aligned}$	$94^{\circ} \quad 28^{\circ}$
\%	- W. s.w.	7s.s.w.	BS. E.	7 s . E .	6 S . by W.	${ }_{6}$ S. E. by S.	
9	5 Sty E.	5 S. F. by S.	6S. ly E.	$5 \mathrm{~S} . \mathrm{ly} \mathrm{E}$.	is. lig E.	6 S. by E.	
10	5 S. W. by S.	2 s by E.	35. by E.	1 S. by E.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~W} . \mathrm{hys}$.	
11	2 s b l E.	4 E.	${ }^{5}$ S. E.	7 s . E.	6s. E .	6s. S S iv.	
113	4 W Why	¢ W. N. W.	$1 \mathrm{~W} . \mathrm{by}$ N	2 W. W.	$\begin{aligned} & 1 \mathrm{~W} \text { W. hy } \\ & \hline \end{aligned}$	1 W. by N. 4 E. by N.	944
14	${ }_{5} \mathrm{E}$.	4 S E. by	$4 \mathrm{SS.E}$	6 S . by E.	$6 \mathrm{~W} . \mathrm{by} \mathrm{S}$.	3 W .	
15	$1 \mathrm{~W} . \mathrm{lys}$	es. by it.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	1 S. E. by S.	$1 \mathrm{E} . \mathrm{by}$ S.	2 E. N. E.	
16	4 E. by S .	$3 \mathrm{E} . \mathrm{by} \mathrm{S}$	$4 \mathrm{E} . \mathrm{bys}$.	3 E. by S.	$4 \mathrm{E}$. S. E.	2 E. by N.	
17 18	${ }^{2} \mathrm{~N}$. E .	1 N. by W.	1 N. W. by N.	$1 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	2 W.	$95 \quad 16$
18 19	? N. by E.	2 N. N.W.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	${ }^{5}$ W. N. W.	2 W. N. W.	
20	\because N. W. by N.	2 NB b E.	$2 \mathrm{~N} . \mathrm{E}$.	$3 \mathrm{~N} . \mathrm{W}$. ${ }^{2}$.	4 N. W. by W.	${ }_{4}^{2} \mathrm{~N} . \mathrm{W}$. by W.	
21	$4 \mathrm{~N} . \mathrm{W} . \mathrm{by}$ W.	$4 \mathrm{~N} . \mathrm{W} . \mathrm{log}$ W.	$5 \mathrm{~N} . \mathrm{W} . \mathrm{by} \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W} . \mathrm{by} \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
22	4 W .	$4 \mathrm{~N} . \mathrm{W}$. by W.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	6 W. by S.	$7 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	
23	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	Calm	Calin	9414
$\xrightarrow{24}$	3 F. ly S.	5 N. N. E.	${ }_{6}^{6} \mathrm{~N}$ N. N. E.	$3 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$:	
25	©N.W.	$4 \mathrm{~N} . \mathrm{W}$.	${ }_{3}^{2}$ N. W. W. by W.	2 N. W. by N.	1 N. E.	$1 \mathrm{~N} . \mathrm{E}$.	
26 27	2 W. hy W.	3 N. N.W.	4 E. N. E. ${ }^{\text {a }}$	4 N.		${ }_{3}^{3} \mathrm{~W}$ W. E. We N	
24	1 N. N.E.	Calm	2 E .	2 N.N.E.	Calm	Cal	
23	2 N. W. hy W.	2 W. N. W.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	Calm	1 W. N. W.	1 W. N. W.	
30	Calm	1 N. W. by W.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	5 N. W. by W.	5 N. W. by W.	2 W. N. W.	
30	$\operatorname{Calm}^{2 \mathrm{~h}}$	$1 \mathrm{~N} . \frac{\mathrm{W}^{\mathrm{b}} .}{}$	$2 \mathrm{~N} .{ }_{\mathrm{W}}^{10 \mathrm{~h} .} \text { by W. }$	$4 \mathrm{~N} \cdot \mathrm{~W}^{2 \mathrm{~h}} \cdot \text { by W. }$	$\text { N. }{ }_{\text {W. by }}^{\text {h. }} \text { W. }$	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W} .$	

Remarks.

	Direction (t Octob	eue) and Force	of the Wind an position: L	observed on bo at. $75^{\circ} .2 \mathrm{~N} . ; 1$	ARD THE YACHT ng. $67^{\circ} .9 \mathrm{~W}$.	Fox.
date.	2^{16}	4 l	$6^{\text {h, }}$	8h.	10^{3}.	Noon.
1	1 W. N. W.	1 W. N. W.	Calun	2S. by E.	${ }^{2} \mathrm{E}, \mathrm{N} . \mathrm{E}$.	$2 \mathrm{E} . \mathrm{N} . \mathrm{E}$.
2	$3 \mathrm{E} . \mathrm{S} . \mathrm{E}$.		Calm	${ }_{2}^{\text {Calm }}$ (${ }^{\text {Cut }}$	$1 \mathrm{~W} . \mathrm{W}$ by	$1 \mathrm{~N} . \mathrm{W}$.
3	$2 \mathrm{~W} . \mathrm{N}$. W.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 W. N. W.	$2 \mathrm{~N} . \mathrm{W} . \mathrm{loy} \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W} . \mathrm{by}$ W.	2 N.W. by W.
4	4 N. W. by W.	4 N. W.	$3 \mathrm{~N}, \mathrm{~W}$.	$3 \mathrm{~N} . \mathrm{W}$. by W.	2 W. N. W.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
5	2 N. N. W.	1 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	5 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	5 N. W. hy W.
$6^{6}{ }^{*}$	2 N.W.	2 N. W.	$2 \mathrm{~N} . \mathrm{by}$ E.	1 N. by E.	1 N. by W.	1 N. hy W.
7	${ }_{2}$ Calm	alm	1S. by E.	1 S. by E.	15. by E.	$1 \mathrm{s.S.W}$
s	2 W.S.W.	1 W.S. W.	${ }_{1}$ S. S. W. by N.	${ }_{2}^{2}$ S. E. ly N S.	1 E. by S. $4 \mathrm{~N} . \mathrm{E}$.	$1 \text { K. by S. }$
10	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 W. N. W.
11	2 N.W. by W.	$2 \mathrm{~N} . \mathrm{W}$. by W.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. N. W.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 W. N. W.
12	4 W. N. W.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 W. N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~W} . \mathrm{by}$ N.	2 W . by N.
13	1 W. by N .	1 W. by N.	1 W.	1 W.	1 E. N. E.	2 E. N.E.
14	8 E. N. E.	9 E. N. E.	8 E.S. E.	8 E. S. E.	8 E.S.E.	8 E.S.E.
15	7 E.S.E.	7 E.S.E.	6 S. E. by E.	© S. E. by E.	7 S. E.	7 s. 1%
16	4 E.S. F.	4 E. S. \%.	4 F. S. E.	$2 \mathrm{~S} . \mathrm{E}$.	2 S E.	3 E. by S.
17	6 S. S. E.	$4 \mathrm{~S} . \mathrm{S} .$.E .	4 E. by S.	5 E .	${ }^{6} \mathrm{~N} . \mathrm{E}$.	$6 \mathrm{~N} . \mathrm{N}$.
18	$2 \mathrm{E} . \mathrm{by}$ S.	1 E. by S.	3 W .	2 W .	3 W. S. W.	3 S . by W.
19	$2 \mathrm{~N} . \mathrm{W}$.	5 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	4 W. N. W.	4 W. N. W.
20	4 E. S. F.	4 E. S. E.	3 S. S. E.	2 S . W. by S.	2 S W. by S.	2 S . W. by S.
21	6 S. by mo	4S. by E.	5S. E. by S.	5 S. E. by S.	4 S. E. by S.	4 S. E.
22	2 N. E. by E.	5 N. E. by E.	8 N. W. by W.	9 N. W. by W.	9 W. hy N.	$9 \mathrm{~W}, \mathrm{by}$ N.
23	$6 \mathrm{~S} . \mathrm{W}$.	4 S . W.	2 S . W.	2S.W.	$2 \mathrm{~S} . \mathrm{W}$.	2 S . W.
24	5 W. by N.	6 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
25	Calm	Calm	1 W.	1 W.	$1 \mathrm{E} . \mathrm{by} \mathrm{N}$.	$1 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.
26	$2 \mathrm{~N} . \mathrm{W} . \mathrm{by}$ W.	2 N. W. by W.	1 W. by S.	$1 \mathrm{~W} . \mathrm{by} \mathrm{S}$.	1 s .W. by W.	1 s . W. by W.
27	IS. E. by E.	1S.E. by E.	1 S. E. by E.	$1 \mathrm{~N} . \mathrm{W}$.	1 W.	$3 \mathrm{~N} . \mathrm{W}$.
28	8 N. W.	$9 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.
29	3 E. by N.	2 E . by N.	1 E. by N.	1 N. W. by W.	1 N. W. by W.	1 N. W. by W.
30	3 N. W.	$4 \mathrm{~N} . \dot{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	1 N. E. by E.	2 E. N. E.	2 E. N. E.
31	2 N. E. by N.	3 N. E. by N.	4 N. E. by N.	2 N. by E.	3 N. by E.	3 N. by E.
date.	$2^{\text {h. }}$	$4^{\text {b }}$	6 h .	8h.	10 h.	Midn't.
1	2 S. E. by E.	1 S. E. by E.	6 N. E.	4 E .	5 E. S. E.	4 E. S. E.
2	$1 \mathrm{E} . \mathrm{by} \mathrm{N}$.	$1 \mathrm{S.S.E}$.	1 W.	1 W.	Calm	3 W.
3	2 N . W.	${ }_{2} \mathrm{~N} . \mathrm{W} . \mathrm{by}$ N.	2 N. W. by N.	2 N. W. by N.	$2 \mathrm{~N} . \mathrm{W}$. by W.	3 N. W. by W.
4	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	1 W. N. W.	2 W. by N .	$2 \mathrm{~W} . \mathrm{by} \mathrm{N}$.
5	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. N. W.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.
6	$1 \mathrm{~N} . \mathrm{by}$ W.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	2 W.	2 W.	Calm
7	1 S . W.	1 S . W.	$1 \mathrm{~S} . \mathrm{W}$.	Calm	Calm	$1 \mathrm{~S} . \mathrm{W}$.
8	1 E. by S.	1 E. by 5.	1 E. by S.	1 I. by S.	Calm	$1 \mathrm{E} . \mathrm{by}$ S.
9	$4 \mathrm{~N} . \mathrm{E}$.	$4 \mathrm{~N} . \mathrm{E}$.	3 N. N. E.	4 N. N. E.	4 N. N. E.	4 N. N. E.
10	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 W.	2 W.	2 W.	2 W .	2 W .
11	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. N. W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 W. N. W.	3 W. N. W.	2 W. N. W.
12	2 W. by N.	2 W. by N.	1 W. by N .	2 W. by N .	$2 \mathrm{~W} . \mathrm{by} \mathrm{N}$.	$2 \mathrm{~W} . \mathrm{by} \mathrm{N}$.
13	4 E. N. E.	3 E. N. E.	4 E. N.E.	6 E. N. E.	6 E. N. E.	7 E. N. E.
14	7 S. S. E.	6 S. by E.	$4 \mathrm{~S} . \mathrm{by} \mathrm{E}$.	3 S. E. by S.	4 S. E.	7 S . E. by S.
15	3 S. S. E.	$3 \mathrm{~S} . \mathrm{E}$. by S.	2 S. S.E.	Calm	Calm	Calm
16	3 E. by S.	4 E . by S.	5 E. by S.	6 E.	7 E. by S.	9 S. S. E.
17	5 E. by N.	3 E. by N.	$4 \mathrm{E} . \mathrm{by} \mathrm{N}$.	3 E. by N.	3 E . by N.	$2 \mathrm{E} . \mathrm{by} \mathrm{S}$.
18	$3 \mathrm{~S} . \mathrm{S} . \mathrm{W}$.	$1 \mathrm{~S} . \mathrm{by}$ W.	$1 \mathrm{~S} . \mathrm{by}$ W.	Calm	Calm	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
19	4 W. by N .	3 W . by N .	2 W. by N.	$1 \mathrm{~W} . \mathrm{by}$ N.	2 E. S. E.	2 E. S. E.
20	$3 \mathrm{~S} . \mathrm{E}$.	5 S. E.	6 E. S. E.	7 S. E. by E.	$7 \mathrm{S}$. by E.	7 S . by k.
21	$3 \mathrm{~S} . \mathrm{E} . \mathrm{by}$ E.	$2 \mathrm{S}$. . E. by E.	2 N. by W.	5 E. by N .		
22	$9 \mathrm{~W} . \mathrm{by} \mathrm{N}$	$8 \mathrm{~W} . \mathrm{by} \mathrm{N}$.	$8 \mathrm{~W} . \mathrm{by} \mathrm{N}$.	7 W . ${ }^{\text {¢ }}$ W		$6 \text { S. W. by W. }$
23	$2 \mathrm{~S} . \mathrm{W}$.	$2 \mathrm{~S} . \mathrm{W}$.	2 S . W. by W.	2 S . W. by W.	2S. W. by W.	3 W. by S. 1 E hy S .
24 25	1 W.	Calm	$1 \mathrm{~W} . \mathrm{byS}$.	$1 \text { E. by S. }$		1 E. ly S. $3 \mathrm{~N} . \mathrm{W}$. by W.
26	1 E. S. W.	2 S.S.W.	2 S.S.W.	Calm	Calm	Calm
27	3 N. W. by W.	$4 \mathrm{~N} . \mathrm{W} . \mathrm{by}$ W.	$5 \mathrm{~N} . \mathrm{W}$. by W.	7 N. W. by W.	$8 \mathrm{~N} . \mathrm{W} . \mathrm{by} \mathrm{W}$.	8 N. W. by W.
28	2 N. W. by W.	1 E. Who	1 E. W W	Calm	$1 \mathrm{~N} . \mathrm{E}$. by N.	1 N. E, by W.
29	2 N. W. by W.	$2 \mathrm{~N} . \mathrm{W}$. by W.	2 N. W. by W.	$4 \mathrm{~N} . \mathrm{W} . \mathrm{by} \mathrm{W}$.	6 N. W. by W.	$4 \mathrm{~N} . \mathrm{W} . \mathrm{by}$ W.
30	2 E. N. E.	2 E. by N.	${ }_{5}^{1} \mathrm{E}$ N. by N.	${ }_{3}^{2} \mathrm{E}$ N. by W.	3 E. by W. 4 E. N. E.	$3 \text { E. by N. }$ $6 \text { E. N. E. }$
31	4 N.					

Direction (tree) and Force of the Wind observed on board the yacht Fox.
November, 1857.-Mean position: Lat. $74^{\circ} .8$ N.; long. $69^{\circ} .1 \mathrm{~W}$.

Date.	2 h	$4^{\text {h. }}$	6 h.	84.	10^{h}.	Noon.
1	$4 \mathrm{E} . \mathrm{by} \mathrm{N}$.	4 E. by N.	4 E . by N.	5 E. by N.	$4 \text { E. by N. }$	
2	$4 \mathrm{~N} . \mathrm{W} . \mathrm{by}$ W.	3 N. W. by W.	Calm	Calm	Calm	$1 \text { E. S. E. }$
3	1 E. N. E.	$3 \mathrm{E} . \mathrm{N} . \mathrm{E}$.	2 N. N. E.	$1 \text { S. W. by S. }$	2 S. W. by S.	3 S. W. by S. 3 E. by S.
4	1 E. N.E.	\%1. N. E. 3 N. W.	$4 \mathrm{E} . \mathrm{N} . \mathrm{E}$. $3 \mathrm{~N} . \mathrm{W}$.	2 E. N. E. $2 \mathrm{~N} . \mathrm{W}$.	3 E. by S. $1 \text { N. N. W. }$	3 E. by S. 1 N. N. W.
(i)	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. N. W.	3 W. N. W.	3 W. N. W.	2 W. N. W.	3 W. N. WV.
7	8 N.W.	9 N.W.	$9 \mathrm{~N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{W}$	$8 \mathrm{~N} . \mathrm{W}$.	4 N. W.
8	3 W. N. W.	4 W. N. W.	4 W. N. W.	3 W. N. W.	2 W. N. W.	4 W. N. W.
3	6 N. W. by W.	${ }_{5}$ N. W. ly W.	$5 \mathrm{~N} . \mathrm{W}$. by W.	5 N. W. by W.	$3 \mathrm{~N} . \mathrm{W} . \mathrm{by}$ W.	$4 \text { N. W. by W. }$
10	5 W. by S.	5 W. S. W.	3 S. W. by W.	$2 \mathrm{S.S.E}$.	$3 \mathrm{~S} . \mathrm{by}_{\mathrm{w}}^{\mathrm{w}} \text {. }$	$\begin{aligned} & 3 \text { S. by W. } \\ & 2 \mathrm{~N} . \mathbf{V}^{2} \end{aligned}$
11	1 N. F. by N.	2 N. L. by N.	1 W.	$2 \mathrm{~W} . \mathrm{S}$. W.	$2 \mathrm{~N} . \mathrm{W}$.	${ }_{2}^{2} \mathrm{~N} . \mathrm{W} .$
12	7 N. W. by W.	$7 \mathrm{~N} . \mathrm{W}$. by W.	$5 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 W. N. W.	3 W.	$3 \mathrm{~W} .$
13	('alm	2 W.	2 W.	${ }_{7}$ Calm	$\begin{aligned} & 2 \text { W. by N. } \\ & 7 \text { E.S.E. } \end{aligned}$	$2 \text { W. by N. }$
14 15	${ }_{2} \mathrm{E} \mathrm{E}$.	4 l 2 s ¢	6 E.	7 E. S. E.	${ }_{6} 7$ E. S. E. ${ }^{\text {E }}$. by N.	$\begin{aligned} & 7 \mathrm{E} . \mathrm{S} . \mathrm{E} . \\ & 5 \mathrm{E} . \text { by N. } \end{aligned}$
16	7 E. S. E.	7 E. S. E.	5 E. S. E.	2 E. S. E.	1 E.S.E.	1 E. S. E.
17	8 S .	8 S .	9 W. S. W.	9 W. S. W.	8 S. S. E.	8 S. S. E.
18	Calm	Calm	Calm	1 W.	1 W. N. W.	3 W. N. W.
19	1 W. N. W.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	Calm	1 W. N. W.	1 W. N. W.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
20	1 S. hy W.	$1 \mathrm{~S} . \mathrm{by}$ W.	$1 \mathrm{~S} . \log \mathrm{W}$.	$1 \mathrm{~S} . \mathrm{by}$ W.	1 S . by W.	1 S . by W.
21	$4 \mathrm{~N} . \mathrm{E}$.	$5 \mathrm{~N} . \mathrm{E}$.	3 N.E.	2 N. E.	2S. E. by E.	4 E.
22	9 N. E. by E.	9 N. E. by E.	3 N. F. by E.	9 N. E. by E.	9 N. E. by E.	9 N. E. by E.
23	$9 \mathrm{S.S.W}$.	9 S. S. W.	8S.S.W.	7 S. S. W.	$6 \mathrm{~S} . \mathrm{S} . \mathrm{W}$.	4 S. S. W.
24	$3 \mathrm{~S} . \mathrm{W}$.	$2 \mathrm{~S} . \mathrm{W}$.	$1 \mathrm{~S} . \mathrm{W}$.	1 S . W.	1 S . W.	Calm
25	2 S. S. E.	I S. S. E.	5 N. E. by E.	5 N. E. by E.	1 S. E.	$1 \mathrm{~S} . \mathrm{E}$.
24	7 W	(i) W. N. W.	5 W. N. W.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. N. W.	4 W. N. W.
27	$6 \mathrm{~N} . \mathrm{W}$.	© N. W.	6 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	6 N. W.	$5 \mathrm{~N} . \mathrm{W}$.
$\because 3$	$5 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	ti W. N. W.	6 W. N. W.	5 W. N. W.	$5 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	5 W. by N.
29	5 W .	if W.	6 W.	7 W.	7 N . W.	$6 \mathrm{~N} . \mathrm{W}$.
30	3 W. by N.	2 W. by N.	2 W. by N.	$2 \mathrm{~N} . \mathrm{W}$.	1 N. W.	$1 \mathrm{~N} . \mathrm{W}$.

Date.	2 h.	$4^{1 /}$	6 h .	8 h .	10^{h}.	Midn't.
1	15.N. F.	$1 \mathrm{E} . \mathrm{N} . \mathrm{E}$.	2 E. N. E.	2 N. W.	$2 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
2	1 F. S. E.	1 E. S. E.	1 E. S. E.	1 E. S. E.	2 E. S. E.	Calm
3	3 S W.	$2 \mathrm{~s} . \mathrm{W}$.	2S.W.	$1 \mathrm{~s} . \mathrm{W}$.	2 N. W. by W.	$2 \mathrm{~N} . \mathrm{W}$. by W.
4	3 E .	3 E.	2 E .	1 E .	1 E .	$1 \mathrm{~N} . \mathrm{W}$.
5	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	3 N. W. by W.
6	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	7 N. W.	$8 \mathrm{~N} . \mathrm{W}$.
7	${ }^{2} \mathrm{~N}$. W. by N .	2 N. W. by N.	3 N. W. by N.	$2 \mathrm{~N} . \mathrm{W}$. by N.	4 N.W.	$4 \mathrm{~N} . \mathrm{W}$.
8	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	5 W. N. W.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. N. W.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	1 W. N. W.
9	3 N. W. by W.	5 W .	7 W.	7 W.	7 W.	6 W.
111	$2 \mathrm{S.S.W}$.	$\because \mathrm{S}$ S. S. W.	2 S. S. W.	1 S .	1 N. E.	$1 \mathrm{~N} . \mathrm{F}$.
11	$2 \mathrm{~N} . \mathrm{V}$.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	7 N. W.	$7 \mathrm{~N} . \mathrm{W}$.
12	3 W .	$3 \mathrm{~W} . \mathrm{hy}$ N.	5 W . by N.	5 W . by N.	4 W. by N.	1 W. by N.
13	1 s . W .	1 S . W.	2 S.S.E.	3 S. S. F.	$2 \mathrm{E}, \mathrm{by}$ N.	2 E . by W.
14	7 E.S.E.	5 E. S. E.	5 k . S. E.	6 E. S. E.	1 E. S. E.	1 E. S. E.
15	© E. by N.	${ }^{5} \mathrm{E}$ \%. by N.	4 N. F. by E.	5 N. E. by E.	3 N. E. by E.	4 N. E. by E.
16	1S.W. by S.	1 s. W. by S.	$1 \mathrm{~S} . \mathrm{W}$. by S.	3 S. W. by S.	4 S . W. by S.	6 S . W. by S.
17	8 S. S. E.	8S. S. E.	S. S. S. E.	5 S. S. E.	2 S. S. E.	1 S. S. E.
18	3 W. N. W.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 W . N. W.			
19	2 W. by N.	2 W. by N.	1 W. by N.	Calm	Calm	Calm
20	Calm	Calm	$1 \mathrm{~N}, \mathrm{E}$.	1 N. E.	1 N. E.	1 N. E.
21	3 S E.	6S.E. by E.	${ }_{6}$ N. E. by E.	7 N. E. by E.	8 N. E. by E.	8 N. E. by E.
22	9 S . Db. by S.	9 S. S. E.	9 S.S.E.	9 S. S. E.	9 S.S.E.	9 S. S. E.
23	$4 \mathrm{~S} . \mathrm{by}$ W.	4S. ly W.	4 S. W. by S.	3 S. W. by S.	$4 \mathrm{~S} . \mathrm{W}$. by S.	3 S . W. by S.
24	Calm	${ }_{\text {Calum }}$	Calm	2 S . W .	3 s .	$2 \mathrm{S.S.E}$.
25	$3 \mathrm{~N} . \mathrm{W}$. by W.	3 N. W. by W.	$5 \mathrm{~N} . \mathrm{W}$. by W.	$6 \mathrm{~S} . \mathrm{W} . \mathrm{by} \mathrm{W}$.	6^{6} W. S. W.	$6 \mathrm{~W} . \mathrm{by} \mathrm{S}$.
26	¢ W. by N.	$7 \mathrm{~W}, \mathrm{by}$ N.	7 W . by N.	$6 \mathrm{~W} . \mathrm{by}$ N.	6 W. by N.	6 W. by N .
27	${ }_{5} \mathrm{~W}$ W, liy N.	$4 \mathrm{~W} . \mathrm{ly} \mathrm{N}$.	5 W. by N.	5 W. by N .	$5 \mathrm{~W} . \mathrm{by} \mathrm{N}$.	5 W. by N.
24	${ }^{5}$ W. b. ly N.	4 W. by N.	4 W. by N ,	4 W. by N.	5 W. by N.	4 W. by N .
29	¢ N.W.	AN.W.	6 W. by N .	5 W. by N.	2 W. by N.	1 W. by N .
30	$1 \mathrm{~N}, \mathrm{~W}$.	$1 \mathrm{~N} . \mathrm{W}$.				

Direction (true) and Force of tue Wind obselved on board the yachi Fox.
December, 1857.—Mean position : Lat. $74^{\circ} .3 \mathrm{~N} . ;$ long. $67^{\circ} .4 \mathrm{~W}$.

date.	$2^{\text {h. }}$	41.	6 h.	$8^{1 .}$	10 h.	Noon.	Variation,
1	1 N. W. by W.	1 N. W. by W.	2 N. W. by W.	1 N. W. by W.	1 N. W. by W.	1 N. W. by W.	
2	$1 \mathrm{~N} . \mathrm{W}$.						
3	$1 \mathrm{~N} . \mathrm{W}$. by N.	$1 \mathrm{~N} . \mathrm{W}$. by N.	2 N. W. by N.	1 N. W. by N.	$1 \mathrm{~N} . \mathrm{W}$. by N.	$2 \mathrm{~W} . \mathrm{S}$. W.	
4	3 S. by W.	3 S. by W.	2 S. by W.	2 S. by W.	3 S. by W.	3 S. by W.	
5	2 S.by E.	2 S . by E.	4 W. by N .	4 W. by N.	$5 \mathrm{~W} . \mathrm{by} \mathrm{N}$.	6 W. by N.	
6	7 N. W. by W.	8 N. W. by W.	8 N. W. by W.	7 N. W. by W.	3 S. S. 1.	3 S . S. E.	
7	5 S. S. E.	5 S. S. E.	3 S. S. W.	$1 \mathrm{~S} . \mathrm{S}$ W.	$1 \mathrm{~S} . \mathrm{S}$ W.	1 S. S. E.	
8	3 N. E.	$2 \mathrm{~N} . \mathrm{E}$.	Calm	Calm	1 N. W.	1 N. W.	
9	3 N. W. by W.	$1 \mathrm{~N} . \mathrm{W}$. by W.	1 N. W. by W.	1 S. S. E.	$1 \mathrm{~S} . \mathrm{E}$.	1 S. E.	
10	$1 \mathrm{~N} . \mathrm{W}$.	2 N. N. E.	2 N. N. E.				
11	$1 \mathrm{~N} . \mathrm{W}$. by N.	1 N. W. by N.	$1 \mathrm{~N} . \mathrm{W}$. by N .	$1 \mathrm{~N} . \mathrm{W} . \mathrm{by}$ N.	$2 \mathrm{~N} . \mathrm{W}$. by N .	2 N. W. by N.	
12	6 N. E. by E.	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	8 N. W. by N.	8 N. W. by N.	$8 \mathrm{~N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{W}$.	
13	7 W. N. W.	7 W. N. W.	$7 \mathrm{~N} . \mathrm{W}$. by N.	$7 \mathrm{~N} . \mathrm{W}$. by N.	7 N. W. by W.	7 N. W. by W.	
14	3 N.W.	2 N. W.	$2 \mathrm{~W} . \mathrm{S}$. W.	1 W. S. W.	1 W. S. W.	1 S W. W .	
15	Calm	Calm	Calm	Calm	Calim	1 W. S. W.	
16	1 W .	1 W.	$1 \mathrm{~N} . \mathrm{E}$.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	1 W. N. W.	1 W. N. W.	
17	2 N. E.	2 N. E.	2 N.	3 N. N. W.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	
18	3 W .	4 W.	3 W.	3 W.	2 W.	1 W	
19	Calm	2 S .	2 S .	2 S .	4 W. N. W.	4 W. N. W.	
20	3 N. E.	4 E . by N.	$5 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	$4 \mathrm{~S} . \mathrm{by}$ W.	4 S . by E.	4 S . by E.	
21	$4 \mathrm{~S} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	7 N. W.	7 W. N. W.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	
22	1 S. W.	$2 \mathrm{~S} . \mathrm{by} \mathrm{E}$.	4 S. by E.	5 S . by E.	4 S. by E.	4 S. by E.	$92^{\circ} \mathrm{W}$.
23	5 S. S. E.	5 S. S. E.	5 S. S. E.	4 S. S. E.	4 S. S. E.	4 S. S. E.	(about)
24	1 S. E.	1 S . E.	1 N. E.	1 N. N. F.	1 N. N. E.	$1 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
25	3 N. N. E.	3 N. N. E.	4 N. N. E.	5 N. by E.	4 N. by E.	$4 \mathrm{~N} . \mathrm{byg}$ E.	
26	2 N.by E.	2 N. by E.	2 N. by E.	$2 \mathrm{~N} . \mathrm{by}$ W.	$1 \mathrm{~N} . \mathrm{by}$ W.	1 N. by W.	
27	$4 \mathrm{~N} . \mathrm{by}$ W.	5 N. by W.	$4 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	${ }_{6} \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	
28	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	4 N. N.W.	4 N. N. W.	5 N. by W.	4 N. by W.	$2 \mathrm{~N} . \mathrm{W}$. by N .	
29	6 S. E. by S.	7 S. E. by S.	7 S. E. by S.	$6 \mathrm{~S} . \mathrm{EL}$.	6 S. by E.	5 S. by E.	
30	$3 \mathrm{~S} . \mathrm{by}$ W.	2 S. by W.	1 W. by N.	1 W. by N.	2 N. E.	$2 \mathrm{~N} . \mathrm{E}$.	$91^{\circ} \mathrm{W}$.
31	3 W. N. W.	2 W. N. W.	1 W. N. W.	2 S . W. by W,	2 W. by S.	2 W. by S.	(about)
date.	2 h .	4 h .	6 h.	8h.	10 h.	Midn't.	
1	1 N. W. by W.	$1 \mathrm{~N} . \mathrm{W}$. by W.	1 N. W. by W.				
2	1 N. W. by N.	$1 \mathrm{~N} . \mathrm{W}$. by N.	$1 \mathrm{~N} . \mathrm{W}$. by N.	1 N. W. by N.	1 N. W. by N.	$1 \mathrm{~N} . \mathrm{W}$. by N.	
3	$3 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	3 W. S. W.	$2 \mathrm{~S} . \mathrm{W}$. by S.	2 S . W. by S.	1 S . W. by S.	2 S . W. by S.	
4	3 S .	2 S	4 S .	$2 \mathrm{~s}$	$3 \mathrm{~S} .$	3 S.	
5	6 W. by N .	6 W. by N.	$7 \mathrm{~W} . \mathrm{by}$ N.	8 W. by N.	8 N.W.	$8 \text { N. W. }$	
6	3 S. E.	4 S. F.	3 S. E.	2 N. E. by N.	2 E'ly	4 E. S. E.	
8	5 S. S. E.	$5 \mathrm{~S} . \mathrm{S}$. E.	$4 \mathrm{E} . \mathrm{S} . \mathrm{E}$.	1 E. S. E.	1 E.S.E.	$1 \mathrm{~N} . \mathrm{E}$.	
8	1 N. W.	1 N.W.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	
9	1 S . E.	$1 \mathrm{~S} . \mathrm{E}$.	1 S. E.	$1 \mathrm{~S} . \mathrm{E}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	
10	1 N. N. W.	1 N. N. W.	2 N. E.	$2 \mathrm{~N} . \mathrm{E}$.	1 N. E.	$1 \mathrm{~N} . \mathrm{E}$.	
11	2 N. N. W.	3 N.	3 N.	3 N.	3 N.	4 N. N. E.	
12	9 W. N. W.	9 W. N. W.	$9 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	9 W. N. W.	8 W. N. W.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	
13	6 N. W. by W.	$6 \mathrm{~N} . \mathrm{W}$. by W.	4 N. W. by W.	4 N. W. by W.	$4 \mathrm{~N} . \mathrm{W} . \mathrm{by}$ W.	2 N. W. by W.	
14	$1 \mathrm{~S} . \mathrm{W}$.	1 S W. W.	Calm	Calm	Calm	Calm	
15	1 W.S. W.	1 W. S. W.	1 W. S. W.	1 W. S. W.	$1 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	1 W. S. W.	
16	1 W.	1 W .	3 N .	3 N. E.	1 N. F.	1 N. E.	
17	1 W. by N.	1 W. by N.	$3 \mathrm{~W} . \mathrm{by} \mathrm{N}$.	3 W. by N.	2 W. by N .	2 W.	
18	$1 \mathrm{~N} . \mathrm{W}$.	1 W. by S.	1 W. by S.				
19	2 W.	CaIm	$1 \mathrm{~N} . \mathrm{E}$.	$1 \mathrm{~N} . \mathrm{E}$ 。	1 N. E.	3 N. E.	
20	3 W. S. W.	3 W. S. W.	2 W. S. W.	$2 \mathrm{~W} . \mathrm{S}$. W.	Calm	Calm	
21	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~S} . \mathrm{W}$.		
22	$4 \mathrm{S.S.E}$.	$4 \mathrm{S}$. S. E.	6 S. S. E.	5 S. S. E.	5 S. S. E.	$5 \mathrm{~S} . \mathrm{S} . \mathrm{E}$.	
23	4 S. by E.	4 S. by E.	3 S. by E.	3 S. by E.	$2 \text { S. by E. }$	1 S. by E.	
24	1 N. by E.	1 N. by E.	2 N .	1 N.	$1 \mathrm{~N} .$	$1 \mathrm{~N} .$	
25	3 N .0 by E.	3 N. by E.	3 N. by E.	$3 \mathrm{~N} . \mathrm{by} \mathrm{E}$.	$4 \mathrm{~N} . \text { by E. }$	4 N . by E.	
26	$1 \mathrm{~N} . \mathrm{by}$ W.	1 N. by W.	2 N. by W.	1 N. by W.	$\begin{gathered} 2 N \\ 2 N T \end{gathered}$	$3 \mathrm{~N} . \mathrm{by}$ W.	
27	$6 \mathrm{~N} . \dot{\mathrm{W}}$. by N .	6 N. W. by N.	$7 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	7 N. N. W.	5 N. N. W.	
28^{*}	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	4 N.	$5 \text { S. E. by S. }$	${ }^{6}$ S. E. by S. 3 S by W	
29 30	4 S . ${ }^{\text {N. W. }}$	$2 \mathrm{~N} . \mathrm{W}$.	${ }_{2} \mathrm{~W}$ W. by N .	3 W. by N.	$3 \mathrm{~W} . \mathrm{by} \mathrm{N}$.	3 W .	
31	$2 \mathrm{~W} . \mathrm{by} \mathrm{S}$.	2 W. N. W.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	1 W. N. W.	

* At 8 h .45 m . wind veered from N. by E. to S. E. by S.

Directon（trte）and Force of the Wind observed on board the yacht Fox．
January，1858．－Mean position：Lat．730．2 N．；long． 630.7 W.

rate．		4^{12}	6^{6}.	8 sin	10 h.	Noon．	Variation．
1	$\because \mathrm{W} . \mathrm{by} \mathrm{N}$	$1 \mathrm{~W} . \mathrm{ly}$ N．	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W} .$			$91^{\circ} \mathrm{W}$
$\stackrel{2}{8}$	3 W hy	4 W by N．	$\begin{aligned} & 4 W \text { by } \\ & 4 \mathrm{~N} \text { W. } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~W} . \text { by N. } \\ & 4 \mathrm{~N} . \mathrm{W} . \end{aligned}$	$\begin{aligned} & 4 \text { W. N. W. } \\ & \text { N. N. W. } \end{aligned}$	$\begin{aligned} & 3 \text { W. N. W. } \\ & 6 \text { N. N. W. } \end{aligned}$	（about）
8	＋N Nil．	4 N．N．	$4 \times N W$			bN．N．W．	
4	3s．hy W．	3 S．W W．	$\because \mathrm{Cby}$ ¢		as. by W.	$1 \mathrm{~s} \text { by W. }$	
\％	5s．ly 1：	5S．E．L	6S．by W．		tiN．N．W．	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$ ．	
$\frac{6}{7}$	天W．	＋\％	4×11.	7 N．W．	7 N.	$7 \mathrm{~N} . \mathrm{W}$.	
s	7 N W．	7N．W\％	7 N W．	$6 \mathrm{~N} . \mathrm{W}$.	5 W. by N．	5 W. by N．	
9	7 W.	6 W ．	$5 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 W．N．	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	W．N．W．	
10	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$ ．	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}^{\circ}$ ．	© N．N．W．	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$ ．	5 N．N．W．	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$	90
11	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$ ．	$3 \mathrm{~W} . \mathrm{N.W}$	Calm	Calm	1 S．S．W．	1 S．S．W．	
12	1S．ly E．	1 S by lim	Calm	（ Calm	Calm	$1 \mathrm{~S} . \mathrm{E}$.	
13	$4 \times$ ¢ \％	4 N．N．W．	5 N．N．W．	5 N．N．W．	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	89
14	\because S．S．W	1 S S．W．	1 S S．E．	2 S．s．E．	$\cdots \mathrm{S}$ E．	2 E．S．E．	
15	$4 \sim .6$	5 N．F．	$5 \mathrm{~N} . \mathrm{E}$ ．	$3 \times 1 \%$ hy	3 N．E．by N．	3 N．bi．by N．	
16	5 N．N．W．	5 N N． N W．	6 N．N．W．	（i）N．W．	（i）N．N．W．	${ }_{6} \mathrm{~N} . \mathrm{W}$.	89
17	4 N	4 N．N．W．	4 N．N．W．	$4 \mathrm{~N}, \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	
15	－W．hys	2 W. bys．	1 W.	${ }^{\text {Calm }}$	1 W.	$1 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	8s
19	1 N．his	2 N．liy E．	$\stackrel{\mathrm{N}}{2}$ by E．	$1 \mathrm{~F} . \mathrm{N} . \mathrm{E}$ ．	$1 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{E}$. by E．	
21	4 E S． E	${ }_{5}$ E．S．E．	2 E ．	2 E	2 E ． $\mathrm{log}_{\mathrm{W}} \mathrm{N}$ ．	2 E S．E．	
21	\％N．N．	－N．W．	SN．N．W．	S N．N．W．	7 N．W．	5 N．W．	
22	$1 \mathrm{~N} . \mathrm{by}$ W．	1 N.	1 N ，by E ．	$1 \mathrm{~N} . \mathrm{by}$ E．	$1 \mathrm{~N} . \mathrm{N} . \mathrm{E}$ ． $\mathrm{f}_{\mathrm{W}} \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{N}$. E．	$\begin{aligned} & 87 \\ & 87 \end{aligned}$
23 24	Ex．No．W．	CN．N．W． Calm	9 W．N．W． $1 \mathrm{SW} . \mathrm{W}$.	W．N．W． IS．W．	$\begin{aligned} & \text { 6) W. iw. } \\ & 1 \mathrm{~S} . \mathrm{W} . \end{aligned}$	$\begin{aligned} & 6 \mathrm{~W} . \\ & 1 \mathrm{~N} . \mathrm{N} . \mathrm{E} . \end{aligned}$	87
24	${ }_{4}^{\text {Calm }}$ N．W．	${ }_{4}^{\text {Calm }}$ W． W ．	$\begin{aligned} & 1 \mathrm{~S} . \mathrm{W} . \\ & \sim \mathrm{E} . \mathrm{N} . \mathrm{E} . \end{aligned}$	$2 \mathrm{S}$. N．E．	1 S．N．E．	$\begin{aligned} & 1 \text { N. N. E. } \\ & 1 \text { N. } \end{aligned}$	
26	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$ ．	$3 \mathrm{~W} . ⿳ 亠 丷 厂 犬$ ．	4 W. by N ．	6 W ．	${ }_{6} \mathrm{~W} . \mathrm{by} \mathrm{N}$ ．	6 W. by N ．	87
27	61 W.	7 W.	$6_{6} \mathrm{~W}$.	4 W. by S．	$3 \mathrm{~W} . \mathrm{S}, \mathrm{W}$	3 S．W．by W．	
28	15．F．liy S．	1 S．F．by S．	1 S ．E．by S．	$1 \mathrm{~S} . \mathrm{E}, \mathrm{by} \mathrm{S}$ ．	1 S ．E．by S．	$1 \mathrm{~S} . \mathrm{T} . \mathrm{by} \mathrm{S}$.	
29	15．s．\％	Calm	$1 \mathrm{~W} . \mathrm{S}$ ．W．	1 S．S．E．	1 L. by S．	1 E．by N．	
30	1 E ．	1 E ．	2 E. by S．	2 E \％by S ．	1 E．S．F．	1 E．S．E．	
31	$1 \mathrm{~S} . \mathrm{F}$.	$2 \mathrm{S}$. E．	1 E．N．E．	1 E．N．E．	$3 \mathrm{~N}, \mathrm{by}$ W．	4 N．by W．	86

Date．	2 h ．	$4^{\text {h．}}$	6 b ．	Sh．	10 k.	Miln＇t．
1	$1 \mathrm{~W} . \mathrm{N}, \mathrm{W}$ ．	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 T．N．W．	$4 \mathrm{~N} . \mathrm{W}$ ．	$2 \mathrm{~N} . \mathrm{W}$.	2 N．W．
2	2 W．N．W．	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 N．by L ．	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$ ．	3 N．N．W．
3	5 N．N．W．	is $\mathrm{N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$	$3 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$ ．	${ }^{6} \mathrm{~S} . \mathrm{by}$ W．
4	2S．s．W．	2 S W．	1 S hy W．	1s．ly W．	$1 \mathrm{~S} . \mathrm{by}$ W．	1 S ．by W．
5	1 s hy W．	$\because \mathrm{N}$ Wy E．	4 N hoge	3 N．loy E．	2 N．by E．	4 N．by lo
6	S．W．	6 S W．	$6 \times .1$	¢ N ．W．	$7 \mathrm{~N} . \mathrm{W}$.	7 N．W．
7	$7 \mathrm{~N} . \mathrm{W}$.	7 N．W．	$6 \mathrm{~N} . \mathrm{W}$.			
8	5 W ．	万1 W ．	6 W.	5 W ．	5 W ．	5 W.
9	4 W．N．W．	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 N．W．by N．	5 N．N．W．	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.
10	3 N N．W．	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$ ．	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
11	1 S	1s．	1 S.	1S．by E．	$1 \mathrm{~S} . \mathrm{by}$ E．	$1 \mathrm{S}$. by E．
12	1 N．F．by N．	1 N．N．F．．	1 N．by E．	1 N．by E．	$2 \mathrm{~N}, \mathrm{by}$ W．	2 N. by W．
$1:$	4 X ．W．	4 W．hys．	4 S．S．W．	4．s．S．W．	3 s．s．W．	$3 \mathrm{S.S.W}$
14	$\because 16$	3 E	3 E ．	4 \％	$3 \mathrm{~N}, \mathrm{~F}$.	$4 \mathrm{~N}, \mathrm{E}$.
15	2 N．Fi．ly N．	3 S．Fi．hy	3 N．F．by F．	3 x．by W．	TM．Hy W．	5 N．N．W．
115	$\because \mathrm{N}, \mathrm{N}, \mathrm{W}$ ．	6 N．W．by	1；N．W．by N．	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$ ．	$4 \mathrm{~W} . \mathrm{N}$.	4 W.
17	$5 \times .1$	5 N．W．	（1V．	5）W．	4 W	2 W.
14	1 N N．W．	1 N．N．W．	$1 \mathrm{~N} . \mathrm{lyy}$ J．	$1 \mathrm{~N} . \mathrm{by} \mathrm{l}$ ．	1 N．by E．	1 N．by E．
19	$1 \times$ N．	\＃N．E．ly L．	3 b．by N ．	4 l	＋E．hys ．	4 E．S．E．
20	1 K N． E	$1 \mathrm{E}. \mathrm{N}. \mathrm{J̌}$,	$\because \mathrm{N} . \mathrm{N} .1 \mathrm{~m}$	3 N．N．E．	5 N ．	7 N
21	5×11	5 N ，W．	5 IV by N．	4 N．W．hy N．	2 N .1 V ．hy N．	1 N．W．by N．
22	1 N NW	$\because N . \mathrm{W}$	$2 \mathrm{~N} . \mathrm{N}$ W．	$4 \times$ N．${ }^{\text {W\％}}$	${ }_{5} \mathrm{~N}$ N． N WV．	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$ ．
2：	4 W	$2 \mathrm{~W} \cdot \log$ N．	\because W by N．	1 W．hy N．	$1 \mathrm{~W} . \mathrm{S}$ W．	$1 \mathrm{~W} . \mathrm{by} \mathrm{N}$ ．
$\because 4$	$1 \times 1, y$.	$1 \times .16$	S．byE．	3 N．W\％．	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$ ．
\because	$1 \times$ N． $1:$	$1 \times \mathrm{N}$	1 N	3 N	3 N．N．W．	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.
？1；	13．liy \times ．	（1）W，by N．	\％W．Wy N．	＊W．	（i）W．	6 W.
$\because 7$	\therefore Stw	\because S．hy E	3 S．S．1\％．	2 S．S．E．	$2 \mathrm{S.S.E}$ ．	1 S ．J．by S．
\because	2 A． E lys．	2s．s． L	2 Sc S． L	1s．S． E ．	1S．S．E．	1 S．S．E．
\because	$11.10 \leq$	$1 \mathrm{li} . \mathrm{ly}$ S	1 E loys．	2 E．lys．	1 l \％by s ．	1 k ．by s．
\％	1 k ¢ k	1 fos F	1 E S．E．	15.1%	1s． E ．	$1 \mathrm{~S} . \mathrm{L}$.
： 1		$\therefore \therefore \mathrm{SH}$	7 N by W．	7 N．by W．	7 N.	7 N

Direction (true) and Force of the Wind observed on board the racht Fox.
February, 1858.-Mean position: Lat. $71^{\circ} .5 \mathrm{~N}$. ; long. $60^{\circ} .9 \mathrm{~W}$.

date.	$2^{\text {b }}$.	4 h .	6 h.	$8^{\text {h. }}$	10^{h}.	Noon.	Variation.
1	$9 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	8 N. N. W.	6 N. N. W.	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$86^{\circ} \mathrm{W}$.
2	$4 \mathrm{~N} . \mathrm{W}$.	4 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	
3	2 N . W.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	2 N . W.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	85
4	2 N. N. W.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	2 N . by W.	2 N. by E.	84
5	Calm	Calm	1 N.	1 N.	Calm	Calm	84
6	Calm	Calm	1 N. by \%.	1 N. N. W.	$1 \mathrm{~N} . \mathrm{N}, \mathrm{W}$.	1 N. N. W.	
7	3 W. by N .	2 W . by N.	2 N. N. W.	3 W.	2 W.	1 W.	84
8	Calm	Calm	Calm	Calm	$2 \mathrm{~N} . \mathrm{by}$ W.	2 N .	85
9	3 N. N. E.	3 N. N. E.	3 N. by W.	3 N. by W.	3 N. by W.	$4 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	85
10	$9 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	9 N. N. W.	$9 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	8 N. N. W.	8 N. W. by N.	85
11	$1 \mathrm{E} . \mathrm{by} \mathrm{N}$.	4 S. E. by S.	6 S. by E.	5 S. S. E.	5 S. S. E.	4 S. S. E.	
12	$7 \mathrm{~N} . \mathrm{W}$. by N .	$8 \mathrm{~N} . \mathrm{W}$. by N .	8 N. W. by N.	$4 \mathrm{~N}, \mathrm{~W}$, by N.	3 W. by N .	2 W. by S.	
13	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	4 N. by W.	2 N. by W.	3 N. by W.	3 N. by W.	3 N. by W.	84
14	$7 \mathrm{~N} . \mathrm{by}$ W.	7 N. by W.	7 N. by W.	$7 \mathrm{~N} . \mathrm{by}$ W.	$6 \mathrm{~N} . \mathrm{by}$ W.	6 N. by W.	
15	8 N .	8 N.	7 N.	6 N. by W.	$5 \mathrm{~N} . \mathrm{by}$ W.	$4 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	83
16	5 N. by W.	6 N. by W.	$6 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	6 N. by W.	$6 \mathrm{~N} . \mathrm{by}$ W.	5 N. by W.	
17	6 N. by W.	9 N. by W.	$5 \mathrm{~N} . \mathrm{by}$ W.	3 N .	4 N.	4 N .	82
18	6 N. N. W.	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{by}$ W.	$6 \mathrm{~N} . \mathrm{by}$ W.	$6 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	5 N .	
19	$8 \mathrm{~N} . \mathrm{W}$.	8 N. W.	$8 \mathrm{~N} . \mathrm{W}$.	${ }_{7} \mathrm{~N} . \mathrm{W}$.	5 N. W. by N.	4 N. W. by N.	82
20	1 S . W. by S.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 W. N. W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 N. N. W.	5 N. N. WV.	
21	$6 \mathrm{~N} . \mathrm{W} . \mathrm{by} \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$. by W.	6 N. W. by W.	5 N.W. by W.	$4 \mathrm{~N} . \mathrm{W}$. by W.	$3 \mathrm{~N} . \mathrm{W}$. by W.	
22	1 S . W.	1 W. by S .	Calm	1 N.W. by W.	1 N. by W.	1 N. E. by N.	
23	$7 \mathrm{~N} . \mathrm{N} . \mathrm{E}$.	7 N. N. E.	7 N.	7 N .	$7 \mathrm{~N} . \mathrm{by}$ W.	7 N. by W.	81
24	$7 \mathrm{~N} . \mathrm{by}$ W.	$7 \mathrm{~N} . \mathrm{W}$. by N.	8 N. W. by N.	$9 \mathrm{~N} . \mathrm{W}$. by N.	$9 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{W}$. by N.	
25	$10 \mathrm{~N} . \mathrm{W}$. by N.	10 N. W. by N.	$10 \mathrm{~N} . W$. by W.	9 N. W. by W.	9 N. W. by W.	8 N. W. by W.	
26	6 N. W. by W.	5 N. W. by W.	5 N. W. by W.	3 N. W. by W.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	
27 28	3 S . by E.	$2 \mathrm{~S}, \mathrm{by}$ E.	$2 \text { S. by E. }$				
28	7 S. E. by S.	9 S. E. by S.	$9 \text { S. E. by S. }$	8 S. E. by E.			78 ab 't
date.	2 h .	4 b .	6 h.	8h.	10 h .	Midn't.	
2	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	4 N. N. W.	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	3 N. N. W.	3 N. N. W.	
2	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	
3	1 S . W.	2 S . W.	2 S . W.	$2 \mathrm{S}$. W.	1 S . W.	2 W. N. W.	
4	2 N. by E.	2 N. by E.	1 N. by E.	1 N. by E.	$1 \mathrm{~N} . \mathrm{by}$ W.	Calm	
5	1 S . by E.	1 S . by E.	1 S. by E.	1 S. by E.	1 S. by E.	Calm	
6	1 W.	2 W.	4 W.	3 W. by N.	4 W. by N .	3 W. by N .	
7	1 W.	2 W.	1 W.	Calm	Calm	Calm	
8	1 N. E.	$1 \mathrm{~N} . \mathrm{E}$.	1 N.	2 N. N. E.	3 N. N. E.	3 N. N. E.	
	6 N. by W.	6 N. by W.	6 N. by W.	$9 \mathrm{~N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
10	8 N. W. by N.	8 N. W. by N.	8 N. W. by N.	5 N. N. W.	3 N. by W.	2 N. by E.	
11	2 S. by E.	1 S. by E.	Calm	$4 \mathrm{~N} . \mathrm{by}$ W.	5 N. by W.	7 N. by W.	
12	1 W. by S.	3 W. by S .	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
13	3 N. by W.	3 N. by W.	$3 \mathrm{~N} . \mathrm{by}$ W.	4 N. by W.	6 N. by W.	¢ N. by W.	
14	7 N. by W.	6 N . by W.	6 N.	6 N.	6 N.	6 N.	
15	4 N. by W.	4 N. by W.	$5 \mathrm{~N} . \mathrm{by}$ W.	5 N. by W.	$6 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	6 N. by W.	
16	6 N. by E.	6 N. by E.	5 N. by E.	6 N.	5 N.	7 N. N. W.	
17	4 N.	5 N. by W.	5 N. by W.	5 N. by W.	$5 \mathrm{~N} . \mathrm{by}$ W.	$6 \mathrm{~N} . \mathrm{by} \mathrm{E}$.	
18	5 N.	5 N .	6 N .	6 N.	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$. by W.	
19 20	$2 \mathrm{~N}, \mathrm{~W} . \mathrm{by}$ N.	2 W. N. W.	3 W.	4 W.	$3 \mathrm{S}$. W. by S.	1 S . W. by S.	
20	7 N. N. W. ${ }_{3}$ N. W. by	$7 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	6 N. W. by W.	6 N. W. by W.	$6 \mathrm{~N} . \mathrm{W} . \mathrm{by}$ W.	
22	1 N.E. by N.	2 N. E. by N.	$3 \mathrm{~N} . \mathrm{W} . \mathrm{by} \mathrm{W}$.	4 Calm. ${ }^{\text {N. E. }}$	6 Nalm N. E.	7 N. N. E.	
23	$6 \mathrm{~N} . \mathrm{by}$ W.	5 N. by W.	$4 \mathrm{~N} . \mathrm{W}$. by N.	6 N. W. by N.	6 N. by W.	7 N. by W.	
24	9 N. N. W.	9 N. W. by N.	9 N. W. by N.	10 N. N. W.	10 N. N. W.	$10 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
25	7 N. W. by W.	$6 \mathrm{~N} . \mathrm{W}$. by W.	7 N. W. by W.	6 N.W. by W.	7 N. W. by W.	$7 \mathrm{~N} . \mathrm{W}$. by W.	
26 27	${ }_{2}^{\text {Calm }}$	1 S. E. by E.	1 S. E. by E.	$2 \mathrm{~S} . \mathrm{by}$ W.	2 S. by L.	3 S. by E.	
27	2 E. S. E.	3 N. E. by E.	4 E.S. E.	$4 \mathrm{~S} . \mathrm{by}$ W.	4 S. by E.	6 S. E. by S.	
28	2 S . E. by S.	1 N. by W.	1 N. E. by N.	1 N. E. by E.	1 N. E. by E.	1 N. E. by E.	

	Direction (true) and Force of the Wind ohseryed on board the yacht Fox. March, 1858.—Mean position: Lat. $69^{2} .4$ N.; long. $59^{\circ} .1 \mathrm{~W}$.						
date.	$2{ }^{1}$	4^{14}	$6^{\text {h. }}$	84.	10 h.	Noon.	n
1	2 N. E. by E.	3 N. E. by E.	2 N. E. by E.	$1 \text { N. E. by E. }$	2 N. F. by E.	2 N. E. by E.	
3	Ts.byder	7 S. by l:. 1 W. by	6 S. by E. 1 s. W. by TV	$2 \mathrm{~S} . \mathrm{W}$. by S . 1 S . W.	2 S. by W.	1 S. W. by S. 1 N. by W.	
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	10 W. S. W.	1 W.by 9 S. S. W.	${ }_{9}^{1 \text { S. W. by Wy. W. }}$	${ }_{\text {l }}^{1} \mathrm{~S}$ S. W. by W.	1 N. by W. 8 S. W. by S.	1 N. by W. 7 S. W. by s.	
5	1 s .	3 s	$1 \mathrm{~S} . \mathrm{W}$. by W.	1 S. W. by W.	1 s. W. by W.	1 S. W. by W.	$78^{\circ} \mathrm{W}$.
$\stackrel{6}{6}$	1 s.W. by W.	$2 \mathrm{~W} . \mathrm{S}$. W.	4 N. W. by N.		W.		
7	1 N.W. by W.	${ }_{6}^{1 N . W . W . ~ b y ~ W . ~ N . ~}$	${ }_{5}^{3} \mathrm{~N}$ N. by W.	4 N.	4 N.	5 N . 4 N. by W.	
9	2 N	2 N.	2 N. N. E.	1 N.E. by E.	1 E. S. E.	2 E. by S.	
10	2 N. E. by N.	4 N. E. by N.	5 S. E. by S.	6 S. E. by S.	5 E.S.E.	3 E. S. E.	
11	3 S. E. by E.	3 S. E. by E.	6 S S. E. by E.	${ }_{5}^{5}$ S. E. by E.	5 S. E. by E.	5 S. E. by E.	
$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$4 \mathrm{S.S.E.}$		${ }_{5}^{2}$ E. by S. ${ }^{\text {S S. }}$	$\begin{aligned} & 2 \text { E. by S. } \\ & 4 \text { S. S. E. } \end{aligned}$	$\begin{aligned} & 2 \text { E. by S. } \\ & 3 \text { S. S. W. } \end{aligned}$	2 S. by W.	
14	3 W .	3 W .	3 W. by N .	4 W. N. W.	3 W. N. W.	3 N. W. by N.	7730^{\prime}
15	4 N W. by N .	4 N. Wr. hy N.	$4 \mathrm{~N} . \mathrm{W}$. by N.	$5 \mathrm{~N} . \mathrm{W}$. by N.	$5 \mathrm{~N} . \mathrm{W}$. by N.	7 N. W. by N.	
16	$7 \mathrm{~N} . \mathrm{W}$. by N .	${ }_{6} \mathrm{~N} . \mathrm{W}$. by W.	6 N. W. by W.	4 N. W. by W.	4 N.W. by W.	3 W. by N.	
17	4 N. W. by W.	4 N. W. hy W.	4 N. N. W.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	4 N. N. W.	
18	2 N by W.	$2 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	2 N. by W.	2 N.	3 N.	3 N.	
19	6 N .	7 N . by W.	$6^{6} \mathrm{~N}$. W. by N.	6 N. W. by N.	5 N. W. by N.	5 N. W. by N.	
20	3 N N. W.	$2 \mathrm{~N} . \mathrm{by} \mathrm{E}$.	1 N. E. by E.	1 E.S.E.	1 N. E. by E.	1 N. E. by E.	
$\cdots 1$	N.W. hy N.	2 N. W. by N .	1 N.	1 N. E. by E.	1 N. E. by E.	1 N. E. by E.	(about)
22	1 N. W. by E.	1 N. E. by E.	$1 \mathrm{E} . \mathrm{byS}$.	1 S. E. by S.	3 E. by S.	3 E. by S.	
23	10 s . E. by E.	10 S. E. by le.	7 S. E. by S.	5 S .	2 S . W. by W.	$1 \mathrm{~S} . \mathrm{by} \mathrm{W}$.	
24	6N.W. by N .	6 N. W. by N.	6 N	6 N. by E.	6 N. by E.	6 N. by E.	
2	\% N. W. by x	${ }_{6}^{6}$ N. Wy Why N .	SN. N. W.	$\begin{aligned} & 7 \mathrm{~N} . \\ & 8 \mathrm{~N} . \mathrm{W} . \text { by N. } \end{aligned}$	8 N. W. by N.	$\begin{aligned} & 8 \mathrm{~N} . \\ & 8 \mathrm{~N} . \mathrm{W} . \text { by N. } \end{aligned}$	$\begin{array}{\|l} 75 \\ \text { (about) } \end{array}$
27	8 N. N. W.	8 N.N.W.	8 N. N. W.	7 N. N.W.	7 N. N.W.	$7 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
23	6 N. N. W.	bN. N. W.	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{x} . \mathrm{W}$.	3 N. N. W.	
29	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	4 N. N. W.	${ }_{6} \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$. by N.		
30 31	$\begin{aligned} & 2 \text { N. .. by E. } \\ & 7 \mathrm{~N} \text { by W. } \end{aligned}$	$2 \mathrm{~N} . \mathrm{E}, \text { by } \mathrm{F} .$	2 E. by N. (5) N. Wy v	$2 \mathrm{E} .$	$2 \mathrm{E}$	$2 \text { S. E. by E. }$	(about)
31	7 N. by W.	7 N. W. by N.	$6 \mathrm{~N} . \mathrm{W} . \text { by N. }$	5 N. W. by N.		$5 \text { W. N. W. }$	
date.	2 h .	$4^{\text {h. }}$	6^{h}.	8 h.	10 h.	Midn't.	
1	$2 \mathrm{E}$. ly N.	$4 \mathrm{E} . \mathrm{by} \mathrm{N}$.	$6^{6} \mathrm{E} . \mathrm{by} \mathrm{N}$.	6 S. E. by S.	6 S. by E.	6 S. by E.	
$\stackrel{2}{2}$	1 N.W. hy W.	1 N. W. by W.	3 N. W. by N.	4 N. W. ly N.	$3 \mathrm{~W} . \mathrm{by} \mathrm{S}$.	2 W. by S .	
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	${ }^{2}$ N. FW. W. W .	3 N. F. by N.	4 N. E. by N.	$7 \mathrm{~N} . \mathrm{E} . \mathrm{by} \mathrm{N}$ $2 \mathrm{~S} . \mathrm{W} . \mathrm{by} \mathrm{S}$	9 N. E. by N.	9 N. E. by E.	
5	2s.w. by W.	4 S. W. by W.	4 S. W. by w.	3 S. W. by W.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	1 N. W. by W.	
6	$3 \mathrm{~N} . \mathrm{W} . \mathrm{by} \mathrm{N}$.	3 N. W. ly N.	3 N. W. lig N.	3 N. W. ly N.	2 N. W. by N.	1 N W. by N.	
${ }_{8}^{7}$	4	4 N , by W.	${ }_{2}^{4} \mathrm{~N} . \mathrm{N} . \mathrm{N} . \mathrm{W}$	$4 \mathrm{~N} . \mathrm{by}$ W.	5 N. by W.	${ }_{3}^{6} \mathrm{~N}$. by W.	
9	2\% \% liy E.	2 N N. E .	2 N. N. E.	2 N. N. E.	${ }_{2} \mathrm{~N}$ N. $\mathrm{N} . \mathrm{E}$.	$1 \mathrm{~N} . \mathrm{N} . \mathrm{E}$.	
10	3 E ¢ S. F. ${ }^{\text {c }}$	$4 \mathrm{E} . \mathrm{by} \mathrm{N}$.	5 E. by N.	$2 \mathrm{E} . \mathrm{ly}$ N.	3 E. by N.	2 E .	
11	4S.F. by S.	3 S. E. by S.	3 S. E. by S.	$4 \mathrm{~S} . \mathrm{E}, \mathrm{by} \mathrm{S}$.	4 S. E. by S.	4 S. S. E.	
12		${ }_{6}^{5}$ S. by E.	3 S. W. by W.	$3 \mathrm{S.W}$ W. by.	2 S . W.	2 S. S. W.	
13	25	2 S	3 s	2 W. hy N.	2 W . by N.	2 W. by N.	
14	4 N. W. ly N.	3 N. W. by N.	\pm N. W. hy N.	3 N. W. by N.	3 N. W. hy N.	3 N. W. by N.	
15	$7 \mathrm{~N}, \mathrm{~W} . \mathrm{log} \mathrm{N}$.	7 N. W. hy N.	7 N. W. by N.	7 N. W. by N.	$7 \mathrm{~N} . \mathrm{W}$. by N.	7 N. W. by W.	
115	$3 \mathrm{~W} . \mathrm{by}$ N.	2 W. by N.	3 N. W. by N.	3 N. W. by N.	${ }_{5}^{5} \mathrm{~N}$. W. by W.	4 N. W. by W.	
17	$4 \mathrm{N}$. N. W.	3 N. N.W.	$4 \mathrm{~N} . \mathrm{by}$ W.	$3 \mathrm{~N} . \mathrm{by} \mathrm{W}$ W.	$3 \mathrm{~N} . \mathrm{by}$ W.	3 N. by W.	
18	4 N	4 N	4 N.	4 N.	6 N.	5 N.	
19	4 N. W. by N.	4 N. W. by N.	3 N. W. by N.	$2 \mathrm{~N} . \mathrm{W} . \mathrm{lyy}$ N.	2 N. W. by N.	$2 \mathrm{~N} . \mathrm{W} . \mathrm{by} \mathrm{N}$.	
2	$1 \mathrm{~N} . \mathrm{F}, \mathrm{by} \mathrm{E}$ E.	1 N. by l.	$2 \mathrm{~N}, \mathrm{~N}, \mathrm{~N}$	2 N. N. E.	2 N. N.E.	2 N. N. E.	
21	1 N E. by E .	1 S. E. by s.	1 N. E. hy E.	1 E. by N.	Calm	1 E .	
22	5 ELS E .	5 S. F. by 1 \%	${ }^{6} \mathrm{E}, \mathrm{bys}$	7 E. by s.	S S. le, by E.	9 S. E. by E.	
2434	3 N.W. by W.	2 N W. by W.	3 W. by N.	4 W. by N.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	${ }_{6}^{6} \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	
$\begin{aligned} & 24 \\ & 2.5 \end{aligned}$		4\%		${ }_{9}^{5} \mathrm{~N}$.	$5 \mathrm{~N} . \mathrm{by}$ W.	$6 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	
2	8 \% W. ly N .	\%.x.w.	\% N. W. by N.	${ }_{8}^{9}$ N. W. W. W. N.	$\begin{aligned} & 9 \text { N. W. by N. } \\ & 8 \text { N. N.W. W. } \end{aligned}$	$\begin{aligned} & 8 \text { N. W. by N. } \\ & \text { SN. N. W. } \end{aligned}$	
27	$7 \times \cdots$.	$7 \times$ \%	7 N. N.w.	7 NW N.	${ }_{7}$ N.N.W.	${ }_{6} 8$ N. N. W.	
2	4 n N.W.	$3 \mathrm{N}. \mathrm{N}. \mathrm{W}$.	3 N. N. W.	4 N.N.W.	4 N. N. W.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
29	3 N. W. $1, y$ N.	2 N. W. hy N.	${ }_{3}^{2} \mathrm{~N}$ W. W. by N.	2 N.	2 N	2 N. E. by N.	
30 31	2 s. w, by ${ }^{\text {d, }}$	${ }^{2}$ N.N.E.	$\stackrel{\mathrm{N}}{2}$	$6 \mathrm{~N} . \mathrm{by}$ W.	7 N. by W.	6 N. by W.	
31	$5 \mathrm{~W} . \mathrm{N}$ N.	5 W. by N.	万W. N. W.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 w . $\mathrm{N} . \mathrm{W}$.	2 W. by N.	

Direction (true) and Force of the Wind observed on board the yacht Fox.
April, 1858.-Mean position: Lat. 66° N. ; long. $57^{\circ} .7$ W.

date.	2 h .	4 h .	$6{ }^{\text {h. }}$	Sh.	10 h.	Noon.	Variation
1	2 W. by N .	3 W. by N.	4 S . W. by W.	2 S . W. by W.	1 S. W. by W.	1 S . W. by W.	74° W.*
2	3 N. E. by N.	2 N. E. by N.	1 N. E. by E.	1 N. N. E.	3 N. N. E.	3 N. N. E.	73 31'
3	6 N .	6 N.	6 N .	7 N.	7 N.	8 N.	
4	10 N. by W.	$10 \mathrm{~N} . \mathrm{by}$ W.	10 N. by W.				
5	$10 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	$8 \mathrm{~N} . \mathrm{by}$ W.	8 N. by W.	8 N. W. by N.	$8 \mathrm{~N} . \mathrm{W}$. by N.	8 N.W. by N.	
6	$6 \mathrm{~N} . \mathrm{W}$. by W.	$5 \mathrm{~N} . \mathrm{W}$. by W.	$5 \mathrm{~N} . \mathrm{W}$. by W.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. by S.	3 W. by S.	72
7	3 N. E. by N.	2 N. E. by E.	3 N.	3 N.	2 N.	4 N.	
8	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	7 N. W. by W.	8 N. W. by N.	8 N.W. by N.	8 N. W. by N.	
9	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	1 N. N. W.	1 N. N. W.	3 N. N. W.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$70 \quad 06$
10	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
11	3 N.	3 N .	3 N.	2 N .	2 N. by E.	2 N. N. W.	
12	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	5 N. N. W.	5 N. N. W.	5 N .	4 N.	4 N.	6314
13	2 N. N. E.	2 N. N. E.	6 N. N. E.	6 N. N. E.	2 N. N. E.	2 N. N. E.	
14	2 N . by E.	3 N. E.	$2 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{E}$.	4 N. E.	4 N. E. by E.	
15	2 N .	3 N .	4 N.	4 N. by E.	5 N. by W.	5 N. by W.	
16	7 N. by W.	8 N. by W.	8 N. by W.	69			
17	9 N. by E.	$9 \mathrm{~N} . \mathrm{by} \mathrm{E}$.	9 N. by E.				
18		7 N. E.		7 N.		8 N.	
19		7 N.		6 N.		6 N.	
20		$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.		5 N. N. W.	-...	5 N. W.	64
21		$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	--	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.		5 N. N. W.	
22†		$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.		$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.		3 N. N.W.	
23		$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.		2 N. W. by W.		$2 \mathrm{~N} . \mathrm{W}$.	62
24		2 E. N. E.		4 E. S. E.		5 E. S. E.	
25		4 S. S. W.		Calm		3 N. N. W.	
26		5 W. S. W.		6 S . by W.		6 S. by W.	
27		5 W. S. W.		5 W .		$5 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	65
28		5 W. S. W.		5 S. S. E.		4 S. S. E.	68
29		3 E. N. E.		1 E.S. E.		Calm	
30		2 E. N. E.		3 S. S. W.		3 E. N. E.	
DATE.	2 h.	4h.	$6^{\text {h. }}$	8 h.	10 h .	Midn't.	
1	2 W. by S .	2 W. by S.	2 W. by S.	1 W. by S.	Calm	1 N. E. by N.	
2	3 N. N. E.	4 N. N.E.	3 N. N. E.	$4 \mathrm{~N} . \mathrm{by} \mathrm{E}$.	4 N. by E.	5 N. by E.	
3	7 N. by W.	7 N. by W.	8 N. by W.	9 N. by W.	9 N. by W.	$10 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	
4	10 N. by W.	10 N. by W.	$10 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	$10 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	10 N. by W.	10 N. by W.	
5	7 N. W. by N.	8 N. W. by N.	7 N. W. by N .	$6 \mathrm{~N} . \mathrm{W}$. by W.	7 N. W. by W.	6 N. W. by W.	
6	2 W. by S.	Calm	Calm	Calm	Calm	1 N. E. by N.	
7	4 N .	5 N. by W.	$5 \mathrm{~N} . \mathrm{by}$ W.	$5 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
8	S N. W. by N.	7 N. W. by N.	$3 \mathrm{~N} . \mathrm{W} . \mathrm{by} \mathrm{N}$.	$3 \mathrm{~N} . \mathrm{W} . \operatorname{by}$ N.	2 N. W. by N .	$2 \mathrm{~N} . \mathrm{W} . \mathrm{by} \mathrm{N}$.	
9	4 N. by W.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W} .$				
10	4 N. by W.	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	3 N.	2 N . W	3 N.	$3 \mathrm{~N} .$	
11	$1 \mathrm{~N} . \mathrm{W}$. by W.	$1 \mathrm{~N} . \mathrm{W}$. by W.	1 N. W. by W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
12	3 N.	2 N.	3 N.	3 N.	$2 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	2 N. by W.	
13	2 N. N. E.	1 N. E. by N.	1 E. by N.	1 N. by E.	1 N. by E.	1 N. by E.	
14	5 E. by ${ }^{\text {5 }}$	4 E. by N.	3 E. by N.	3 N. E. by E.	$3 \mathrm{~N} . \mathrm{E}$. by E.	2 N. by W.	
15	$5 \mathrm{~N} . \mathrm{by}$ W.	5 N. by W.	5 N. by W.	5 N. by W.	$6 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	7 N. by W.	
16	9 N.	9 N.	9 N. by E.				
17	9 N.	9 N.	8 N. by E.	8 N. by E.	7 N. by E.	7 N. by E.	
18		8 N		8 N .	-...	7 N.	
19		6 N. W. by N.		5 N. by E.	---	5 N. by E.	
20		$5 \mathrm{~N} . \mathrm{W}$.		5 N. W.	-...	$5 \mathrm{~N} . \mathrm{W}$. ${ }^{\text {. }}$	
21		6 N. N. W.		$7 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.		$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
22		$3 \mathrm{~N} . \mathrm{W}$. by N.		$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.		$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
23		$2 \mathrm{~N} . \mathrm{W}$.		$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.		${ }_{6}$ Calm	
24	----	6 F. S. E.		6 E. S. E.	--	${ }_{6}^{6}$ E.S.S. ${ }^{\text {W. S. W. }}$	
26		${ }_{5}^{4} \mathrm{~S}$. by W.		5 W. S. W.		6 W. S. W.	
27		$3 \mathrm{~W} .8 . \mathrm{W}$.		5 W.S.W.	- - -	$6 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	
28		2 var.		3 W.		4 E. N. E.	
29		$2 \mathrm{~F} . \mathrm{N} . \mathrm{E}$.	--	2 E. N. F.		2 E. N. E.	
30		2 S. S. E.		4 S. by E.		6 S. E.	

Direction（true）and Fonce of the Wind observed on board the yacht Fox．
May，1858．－Mean position：Lat． 680.7 N．；Long． $53^{\circ} .7 \mathrm{~W}$ ．

Date．	$4^{1 .}$	6^{3}	Noon．	$4^{\text {b．}}$	8h．	Midn＇t．	Yariation．
1	78.	28.	4 S．S．E．	4 S．S．W．	$4 \mathrm{~W} . \mathrm{S}$. W．	4 W．S．W．	
2	3 1\％．N．E．	Calm	$3 \mathrm{~S} . \mathrm{S} . \mathrm{W}$ ．	$4 \mathrm{~N} . \mathrm{E}$.	4 E．N．E．	5 N. by E．	
3	2 E N． N ．	4 E．N．E．	4 N．E．	\％N．E．	2 E．N．E．	2 E ．N．E．	
4	$4 \mathrm{E}, \mathrm{N} . \mathrm{E}$ ．	6 S．S．M．	8S．S．F．	8 S．S．E．	S S．S．E．	8 S．by E．	
5	ES．by E．	8 N．N．W．	9 N．W．by W．	$9 \mathrm{~N} . \mathrm{W}$.	$8 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	
${ }^{16}$	${ }_{6} \mathrm{~N} .2 . \mathrm{N}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	\pm N．N．W．	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{N} . \mathrm{E}$ ．	
7	4 N.	3 N．L．	3 N．E．	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$ ．	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	4 E ．	
8	2S．S．W．	2 E 。	6 N.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	3 N.	3 N＇ly	
9	3 l 1．19	4 N＇ly	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	2 Variable	2 LE S．E．	4 Variable	$70^{\circ} \mathrm{W}$ ．
10	2toJE．N．E．	5 L.	6 1．．by S．	7 E ．	7 LE ．	6 E．S．E．	
11	6 S E．by E．	$5 \mathrm{~S} . \mathrm{E}$ ．	$6^{6} \mathrm{E} . \mathrm{N}$ N．E．	（4）E＇ly	5 E．S．E．	4 S．E．	（about）
12	2 F．N．E．	3 N．N．W．	$4 \mathrm{S.S} . \mathrm{E}$ ．	4 S．S．E．	4 S．by W．	4 S. by W．	
13	5 N．	5 N．J．．by E．	${ }_{5} \mathrm{~N}$ ．L．by N．	${ }_{6} 5 \mathrm{~N} . \mathrm{E}$.	3 N．E．	${ }_{\text {Calm }}$	
14	2 S 。	Caln	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$ ．	2 N. by E．	Calm	$2 \mathrm{~S}, \mathrm{by} \mathrm{W}$ ．	
15	2S．S．F．	$2 \mathrm{E} . \mathrm{N} . \mathrm{N}$.	Calm	Calm	Calm	$1 \mathrm{~W} . \mathrm{S}$ ．W．	
1 i	3 N．N．W．	3 N．E．	1 W．by N．	$4 \mathrm{~W} . \mathrm{N} . W$.	4 W．N．W．	4 W．S．W．	
17	2 E ．	${ }_{2} \mathrm{E}$ L．S． F ．	4 N．N．W．	$2 \mathrm{~W} . \mathrm{S}$ ．W．	Catm	4 E．N．E．	
18	3 S．S．F	1 W．N．W．	1 W．N．W．	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	Calm	
19	5 S．s．For	2 S S．IE．	Calm	3 W．S．W．	3 W．S．W．	Calm	
20	Calms and	light variable	winds			Calm	
21	Calur	3 E．N．E．	$2 \mathrm{E} . \mathrm{N} . \mathrm{E}$ ．	2 W．S．W．	2 W．S．W．	1 W．S．W．	
2	$5 \mathrm{E} . \mathrm{N}, \mathrm{E}$ ．	${ }_{5}^{516}$	5 L ．	4 E．N．E．	$1 \mathrm{E} . \mathrm{S}$. E．	Calm	
23	Calm	5 E．N．F．	4 E．N．E．	2 W．S．W．	1 W．S．W．	1 W．S．W．	
24	1 sty	$5 \mathrm{S.S.E}$	$3 \mathrm{S.S.E}$	Calm	Calm	Calm	
25	Caim	2 S ．W．	Calm	${ }_{2} \mathrm{~S} . \mathrm{E}$ ．	$2 \mathrm{S.E}$ ．	$2 \mathrm{~S} . \mathrm{E}$ ．	
26	$4 \mathrm{~s} . \mathrm{E}$ ．	4S．E．	2 E．S．E．	$2 \mathrm{S.S.E}$ ．	Calen	$1 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
27	$3 \mathrm{~S} . \mathrm{S}$ U．	2 S E．	Calm	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	Calm	Calm	73 （ab＇t）
24	$1 \mathrm{~W} . \mathrm{S}$ ．W．	$3 \mathrm{S}$. E．	4 Variable	Calm	Calm	$1 \mathrm{~N} . \mathrm{N} . \mathrm{E}$ ．	$7330{ }^{\prime}$
29	3 E．N．E．	$2 \mathrm{~S} . \mathrm{S}$. L．	$1 \mathrm{S.S.E}$ ．	1 E．S．E．	Calin	$1 \mathrm{~N} . \mathrm{W}$ ．	79
30	1 N．W．by W．	Caln	Calm	$1 \mathrm{~N} . \mathrm{W}$ ．	3 sly	2 sily	
31.	4S．S．E．	$4 \mathrm{S.S.E}$	5 S ．	2S．S．W．	$2 \mathrm{~N} . \mathrm{E}$ ．	Calm	

June，1858．—Mean position：Lat． $74^{\circ} .6$ N．；Long． $60^{\circ} .1 \mathrm{~W}$ ．

pate．	4^{4}	8h．	Noon．	4h．	$8^{\text {h．}}$	Midn＇t．	Variation
1	1 N．W．	$1 \mathrm{~N} . \mathrm{W}$.	${ }_{2}$ S．S．W．	$1 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	1 E．N．E．	$1 \mathrm{li} . \mathrm{N} . \mathrm{E}$ ．	
2	2 E N．E．	$2 \mathrm{~N} . \mathrm{W}$ ．	$1 \mathrm{~N} . \mathrm{E}$ ．	1 N．Ji．	Calm	2 S ．W．by S．	
3		6 E by E．	fis．by W．	1s．W．by S．	Calm	1 N．W．by N．	
4	1 N .1 W .1 y N．	3 N．W．liy N．	d N．W．by W．	Calm	7 S．E．by S．	7 S．E．by S．	
5	5S．E．bys．	4 S．E．by＇s．	3 S．E．by S．	Calm	4 N.	1 N.	$83^{\circ} \mathrm{W}$.
i	$4 \mathrm{~N} . \mathrm{N} .1 \mathrm{~L}$	$3 \mathrm{~N} . \mathrm{W} . \mathrm{l}, \mathrm{N}$ N．	$3 \mathrm{S.W}$ W．L，S．	$3 \mathrm{~N} . \mathrm{E}$ ．	2 N．E．	Calm	
7	$3 \mathrm{~N} . \mathrm{W}$. by N．	1 S ，b．bys．	Camm	$2 \mathrm{S.E}$. loy S．	Calm	Calm	84
8	calm	1 N．E．by li．	3 N．W．by N．	$1 \mathrm{~N} . \mathrm{W} . \mathrm{by} \mathrm{N}$.	Calm	1 N．N．E．	85
9	Calm	Calm	Calm	$1 \mathrm{~s} . \mathrm{E}$.	Calm	1 S ．	
10	$1 \mathrm{~s} . \mathrm{W}$.	Calm	$1 \mathrm{~s} . \mathrm{W}$.	Calm	$1 \mathrm{S.W}$ ．	$1 \mathrm{S}$. W．	
11	$1 \mathrm{S}$. ．${ }^{\text {．}}$	1 N.	$1 \mathrm{~S} . \mathrm{L}$ ．	Calm	Calm	1 W ．	85
13	Calm	3 W. by s	3 W.	2 N. by W．	4 N ．by W．	5 N．N．W．	（about）
13	5 N．N．W．	$5 \mathrm{~N} . \mathrm{W}$. by N．	$4 \mathrm{~N} . \mathrm{by}$ W．	$4 \mathrm{~N} . \mathrm{by} \mathrm{W}$ ．	$4 \mathrm{~N} . \mathrm{W} . \mathrm{byN}$ ．	4 N．W．by N．	
14	$3 \mathrm{~N} . \mathrm{W}$ ．	3 N．N．W．	2 N．N．W．	1 N.	1 N. by E．	$2 \text { N. by E. }$	
15	1 Nly	1 Nly	3 N．W．	4 W.	4 W N．W．	3 W．N．W．	
16	＋W．N．W．	4 N゙．W．	$4 \mathrm{~N} . \mathrm{W}$.	3 W. by N.	2 s ．W．	2 S ．E．	89
17	$5 \mathrm{~S} . \mathrm{E}$ 。	$4 \mathrm{E} . \mathrm{S} . \mathrm{E}$ ．	3 E S．E．	2 S ．E．	2 E by S	$1 \mathrm{l} . \mathrm{by}$ S．	90
1.	$1 \mathrm{l} . \mathrm{by} \mathrm{S}$ ，	$1 \mathrm{~N}, \mathrm{~F}$	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 Variable	Calm	Calm	90 （ab＇t）
19	$2 \mathrm{~N} . \mathrm{W} . \mathrm{by}$ W．	$2 \mathrm{~N} . \mathrm{W}$ ．	3 N．W．	$3 \mathrm{~N} . \mathrm{W}$ ．	$2 \mathrm{~W} . \mathrm{S}$ W．	$2 \mathrm{S}$. W．	93
2	2 N．by Li．	$2 \times$ W．	$4 \mathrm{~W} . \mathrm{N}$ W．	$3 \mathrm{~W}, \mathrm{~N} . \mathrm{W}$ ．	$1 \mathrm{~N} . \mathrm{W}$ ．	1 S ．	（about）
21	Calm	$2 \mathrm{~N} . \mathrm{W}$ ．	3 N．by W．	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$ ．	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	
23	$3 \mathrm{~N}, \mathrm{~N}, \mathrm{~W}$ ．	$3 \mathrm{~N}, \mathrm{~W}$. by N．	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$1 \mathrm{~S} . \mathrm{E}$ ．	Calm	2 N，by E．	
23	1 N	4 N．E．	5 S S．	3 E ．	$4 \mathrm{E} . \mathrm{by} \mathrm{N}$ ．	3 E ．	（about）
24	3 N． $1:$ ．	4 E ．	$3 \mathrm{E} . \mathrm{by}$ N．	2 N. by F．	$\because \mathrm{N}$. by E．	2 N．by F．	94
25	3 N． N．W．	$2 N . N . W$	$2 N . E$	2 E．by S．	2 E N．E．	$1 \mathrm{E} . \mathrm{by}$ S．	
21	Calm	$2 \mathrm{~N} . \mathrm{by}$ W．	$1 \mathrm{~N} . \mathrm{N} . \mathrm{W}$ ．	$3 \mathrm{~N} . \mathrm{W}$ ．	$3 \mathrm{~N} . \mathrm{W}$ ．	2 N．E．	
$\because 7$	$51: 14$	$61: 1 y$	16 E b by S ．	5 E．by S．	${ }_{5} \mathrm{~F}$ ¢．by S．	$5_{5} \mathbf{S}$ ．E．	（about）
28	$4 \mathrm{E}, \mathrm{S}, \mathrm{E}$ ．	2 E E．	2 S E，	$2 \mathrm{~S} . \mathrm{E}$ ．	1 S ．E．	$2 \mathrm{~S} . \mathrm{E}$ ．	
29	15．E．	$1 \mathrm{~S} . \mathrm{E}$.	2 S ．E．	3 L .0 by s．	5 E．by S．	6 L. by S．	
3	5 k b by s．	3 E．by s．	3 S．E．hy E．	1 S．E．by E．	2 N．W．by W．	2 N ．W． W by W．	95

Direction (true) and Force of tie Wind observed on board the yacht Fox. July, 1858.-Mean position: Lat. $74^{0} .4$ N.; long. $76^{\circ} .4 \mathrm{~W}$.								
date.	4h.	8 ht	Noon.	4 h .	81.	Midn't.		bemarks.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \text { N.W.byW. } \\ & 4 \text { S.S.W. } \\ & 1 \text { S. E. } \end{aligned}$	$\begin{aligned} & \text { Calm } \\ & 3 \text { W.S. W. } \\ & 1 \mathrm{~N} . \mathrm{W} . \end{aligned}$	$\begin{aligned} & 1 \mathrm{S.} \text { E. } \\ & \text { Calm } \\ & 2 \mathrm{~N} . \mathrm{W} . \end{aligned}$	$\begin{aligned} & 1 \text { E. by S. } \\ & 2 \text { S. E. } \\ & \text { Calm } \end{aligned}$	$\begin{aligned} & 4 \text { W.S. W. } \\ & 4 \text { S.E. } \\ & 1 \mathrm{~W} . \end{aligned}$	$\begin{aligned} & 5 \mathrm{~W} . \mathrm{S} . \mathrm{W} . \\ & 4 \mathrm{~S} . \mathrm{E}, \mathrm{ly} \\ & 1 \mathrm{~S} . \mathrm{W} . \end{aligned}$	$\begin{aligned} & 95^{\circ} \\ & W \\ & 9 . \\ & 98 \end{aligned}$	(atmul)
4	Calm	Calm	2 N.W.byW.	3 N .	3 N.	2 N. E.		
5	4 N. E. by N.	4 E. N. E.	5 N .	4 S. E. by E.	5 N. E.	4 N. E.		
6	6 E .	6 E. by S.	6 E.S. E.	6 N.E. by N.	4 N. E. by E.	$3 \mathrm{~N} . \mathrm{by} \mathrm{E.0}$	100	
7	4 N. by E.	4 N. N. W.	3 N.	3 N.	4 N.	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.		
8	4 N.W.byW.	4 N.W.byW.	3 N.W.byW.	3 N.W.byW.	4 N.W.byW.	3 N. W. 3 N. Wh W.	102	
9 10	3 N.W.byW.	2 N.W.byW.	$2 \mathrm{~N} . \mathrm{W} . \mathrm{byW}$.	4 N.W.by W.	4 N.W. by N.	3 N.W.byW. 3 N.W.byW.		
10	$3 \mathrm{~N} . \mathrm{W}$. $3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$. by N.	$4 \mathrm{~N} . W$. $2 \mathrm{~N} . \mathrm{W}$. by N.	4 N.	3 N.W.byW. 3 W'ly	$\begin{aligned} & 3 \text { N.W.byW. } \\ & 2 \text { S. E. } \end{aligned}$	105	
12	1 W.S. W.	Calm	1 S. E'ly	6 N. E.	6 N. E.	7 N. E. by N.		
13	8 N. E. by E.	8 N. E. by E.	8 N. E. by N.	5 S . W'ly	6 W. S. W.	$4 \mathrm{E}$. N. E.		$\underset{\text { At } 2 \text { P. M, wind }}{\text { cuddeuly becume }}$
14	1 N. N. E.	2 W .	2 W.	2 W.	4 W.	4 S. W.		cuddenly vecame
15	Calm	$1 \mathrm{~S} . \mathrm{W}$.	2 E'ly	6 E'ly	5 E. N. E.	4 S. E. by E.	106	
16	4 S. E. by E.	2 S. S. E.	1 E'ly	1 W'ly	Calm	1 S. E.	105	
17	Calm	1 E .	1 Variable	2 N. E'ly	$2 \mathrm{~N} . \mathrm{N} . \mathrm{E}$.	2 N. N. E.		
18	Calm	1 N. E'ly	2 Ely	4 E'ly	2 E ¢ ${ }^{\text {ly }}$	2 E'ly	100	Astrougeasterly current : the ship
19	2 E. by N .	2 E. by S.	$2 \mathrm{E}$. . by N.	$5 \text { S. E. by E. }$	1 S. L. by E.	1 S. IE. by E.	99	chrrent: the shl driting with it.
20 21	$\begin{gathered} \text { Calm } \\ 1 \mathrm{~S} . \mathrm{W} . \end{gathered}$	1 S ¢ 1 S . W .	$\xrightarrow[1 \mathrm{~S} . \mathrm{W} .]{\text { Calm }}$	1 W W. by N.	${ }_{3} \mathrm{Calm}$ S. by S.	$5 \mathrm{~W} . \mathrm{S}$. W.	113 $\frac{1}{2}$	
22	5 S.W. byW.	2 W. by S.	2 W. by N.	3 W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. by S.	114	
23	3 W. S. W.	$1 \mathrm{~N} . \mathrm{W}$.	2 W.	1 W. S. W.	1 W. S. W.	$2 \mathrm{~W} . \mathrm{S}$. W.		
24	5-3 W. S.W.	3 W .	4 W.	$1 \mathrm{~S} . \mathrm{W}$.	$1 \mathrm{~S} . \mathrm{S}$. W.	1 S .		
25	Calm	Calm	Calm	Calm	Calm	3 S. S. E.	110?	
26	${ }_{2}^{2}$ S. S. Ey ${ }^{\text {E S. }}$	${ }_{2}^{\text {S. }}$ Cay W W.	$\begin{aligned} & 1 \mathrm{~S} . \mathrm{S} . \mathrm{W} . \\ & 2 \mathrm{~N} . \text { by W. } \end{aligned}$	1. S.W. by S.	2 S. E. by E.	2S.E. by E.	101	A sirong set to the suuthward.
27	2 E. by S.	${ }_{\text {Calm }}^{\text {Calm }}$	$\begin{aligned} & 2 \mathrm{~N} . \text { by W. } \\ & 1 \mathrm{~W} . \text { by } \mathrm{S} . \end{aligned}$	4 N. E. by N.	2 S.E.by E.	1 S . by F。		
29	3 N. E. by N.	1 N. E. by N.	2 S .	Calm	1 E.S.E.	1 E. S. E.		
30	Calm	$1 \mathrm{~N} . \mathrm{W}$.	7 N. N. W.	5 N.	1 N. E. by E.	6 W. N. W.		
31	7 S.W.byW.	4 W.	4 W. S. W.	4 S . W.	$5 \mathrm{~S} . \mathrm{W}$.	5 S.		
August, 1858.-Mean position: Lat. $73^{\circ} .1 \mathrm{~N}$. ; long. 88.5 W .								
date.	$4^{\text {h. }}$	8 h.	Noon.	$4^{\text {h. }}$	8 h.	Midn't.	Varia tion.	Remares.
1	3 W.	4 S. W.	5 S.W. byW.	6 S.W. byW.	5 W. by S.	3 W. by S.	108°	
2	7 W. by S.	6 W. by S.	$6 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	5 W. by S .	2 S. E. by S.	Calm	W.	
3	$1 \text { N. E'ly }$	Calm	Calm	$1 \text { E'ly }$	$2 \text { E'ly }$	Calm		
4	Calm	Calm	Calm	$2 \mathrm{~S} . \mathrm{E}$.	2 E. S. E.	1 E. S. E.		
5	Calm	Calm	1 E'sy	1 E'ly	Calm	Calm		
6	Calm	Calm	Calm	Calm	1 S. E. by E.	2 S. E. by S.		
7	3 S. E. by S.	4 S. E. by E.	6 S. E. by E.	7 S. E. by S.	7 S. E. by E.	7 S. E. by E.	108	(aboua)
8	10 E. S. E.	10 E.S. E.	10 E.S. E.	9 E .	9 E .	8 E .	110	A heavy gale.
9	8 E .	7 E .	3 E .	1 E. S. E.	1 E.S. E.	1 E. N. E.		
10	1 E. N. E.	2 E. N. E.	2 E. N. E.	Calm	Calm	1 Variable	115	
11	1 Variable	$2 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	Calm	Calm	138	(about)
12	Calm.	Caln	3 N'ly	4 N. E.	4 E .	4 S . E.		
13	3 E .	4 E .	4 E. S. E.	2 E .	2 E .	2 E .		
14	3 N. N. E.	4 N.	5 N.	6 N. N. W.	5 N .	5 N.		
15	5 N. N. E.	6 N. N. E.	6 N. N. E.	6 N'ly	6 N. N. W.	$6 \mathrm{~N} . \mathrm{N} . \mathrm{w} .$		
16	5 N. N. W.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 W. S. W.	3 S. W.	$5 \mathrm{~S} . \mathrm{W}$.	$5 \text { S. W. }$		
17	4 W. S. W.	$6 \mathrm{~W} . \mathrm{by} \mathrm{N}$.	6 W. by N.	5 W.	4 W.	4 S. W.	149	
18	$6 \mathrm{~S} . \mathrm{W}$.	4 W.	2 W.	2 S'ly	$6 \mathrm{S}$. S. W.	6 W'ly		
19	$3 \mathrm{~S} . \mathrm{S}$. W.	5 W.	6 W.	2 W.	$4 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	$3 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.		
20	4 W.	4 W. S. W.	3 W.	6 N. N. W.	7 N. W.	4 W.		
21	5 N.W.	5 N.W.	6 W.	6 W.	5 W.	4 W.		
22	4 W. S. W.	$3 \mathrm{~W} . \mathrm{S}$ W.	3 S'ly	2 S. S. E.	$3 \mathrm{~S} . \mathrm{S} . \mathrm{E}$.	$3 \mathrm{~S} . \mathrm{S} . \mathrm{E}$.		
23	Calm	$2 \mathrm{S.W}$.	6 W.	6 W.	6 W.	6 W.		
24	5 W .	5 W .	4 W.	2 N. E.	6 N. N. E.	$7 \mathrm{~N} . \mathrm{N} . \mathrm{E}$.		
25	6 N. N. E.	5 N. N. W.	6 N. N. W.	4 N. N. W.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	6 W. N. W.		
26	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	6 N. N.W.	5 N.N.W.	$6 \mathrm{~N} . \mathrm{W}$.	6 W. N. W.	6 W. N. W.		
27	1 Variable	Calm	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W} .$	6 N. W.	$7 \mathrm{~N} . \mathrm{W}$.	7 N. W.		
28	${ }_{6}^{6}$ N. N. W.	6 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	4 Variable	4 Variable	$2 \mathrm{~N} . \mathrm{E}$.		
29	$3 \text { E. S. E. }$	3 E. N. E.	3 N. E.	3 E. N. E.	2 E. N. E.	2 N'ly		
30	$4 \mathrm{~N} . \mathrm{E}$.	$3 \text { N. N. W. }$	2 S .	$2 \mathrm{~S}$	2 S . E.	Calm		
31	1 S. E.	$2 \text { S. E. }$	2 N. E.	2 N. W.	3 W.	3 W.		

Direction (true) and Force of the Wind observed on board the yacht Fox.
September, 1858.-Mean position: Lat. $72^{\circ} \mathrm{N}$. ; long. $94^{\circ} .4 \mathrm{~W}$.

date.	4 h .	sh.	Noon.	$4^{\text {h. }}$	8 h.	Midn't.
1	$2 \mathrm{~N} . \mathrm{W}$.	4 N. N. W.	$2 \mathrm{~S} . \mathrm{W}$.	$3 \mathrm{~W} .$	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \text { W. N. W. }$
2	5 N.N.W.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 S. by W.	4 S. E.	5 W. N. W.	
3	5 W. by S.	4 W. by S.	5 W .1 l S.	4 W.	4 W.	6 W. by S. $8 \text { W. by N. }$
4	5 7 7 $\mathrm{~W} . \mathrm{W}$.	$5 \mathrm{~W} . \mathrm{by}$ S. 6 W.	7 W.	6 W.	6 W.	6 W .
${ }_{6}$	4 W .	4 W. S. W.	$3 \mathrm{~S} . \mathrm{W}$.	4 S . by W.	4 S'ly	4 S'ly
7	3 Sly	3 S'ly	3 Sly	$4 \mathrm{~S} . \mathrm{S}$. E.	$4 \mathrm{~S} . \mathrm{E}$.	4 S. E.
8	4 S . E.	$4 \mathrm{~S} . \mathrm{H}$	4 E.. S. E.	4 S. S. E.	4 S. S. E.	$4 \mathrm{~W} . \mathrm{by} \mathrm{S}$.
9	5 S. W.	5 W . by S.	5 W.	5 W.	4 W.	3 W.
111	3 s . W.	2 S. S. IV.	$2 \mathrm{S}$. S. W.	Calm	1 N. W.	$2 \mathrm{~N} . \mathrm{W}$.
11	3 S. S. E.	3 E. S. E.	4 E .	3 N. E.	3 N. E.	$3 \mathrm{~N} . \mathrm{E}$.
12	3 N. E.	3 N. E.	4 N. E.	$4 \mathrm{~N} . \mathrm{E}$.	$4 \mathrm{~N} . \mathrm{E}$.	$4 \mathrm{~N} . \mathrm{E}$.
13	$3 \mathrm{~N} . \mathrm{N} . W$.	Calm	2 S'ly	3 S. S. W.	1 W.	Calm
14	2 N. E.	2 N. E.	2 S. W'ly	3 Ely	3 N. E.	$3 \mathrm{~N}, \mathrm{by}$ E.
15	3 N. by E.	4 N. by E.	3 N. N. E.	$5 \mathrm{~N} . \mathrm{N} . \mathrm{E}_{\text {. }}$	6 N'ly	6 N'ly
16	5 N'ly	5 N'ly	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	5 N. N. W.	5 N. N. W.
17	6 N. N. W.	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	4 N. N. E.	4 N. N. E.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{E}$.
18	3 N. N. E.	4 N. N. E.	5 N. N. E.	$5 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	6 N. W.
19	$6 \mathrm{~N} . \mathrm{W}$.	4 N. N. W.	4 W.	4 W.	$5 \mathrm{~S} . \mathrm{W}$.	$5 \mathrm{S.W}$.
20	4 N. N. W.	4 N. N. W.	$4 \mathrm{~N} . \mathrm{W}$.	5 W.	6 S . W.	5 S . W.
21	3 S. S. W.	4 S . W.	$4 \mathrm{~S} . \mathrm{S} . \mathrm{W}$.	$4 \mathrm{~S} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.
22	$G^{6} \mathrm{~N} . \mathrm{W}$.	6 W. by N.	$5 \mathrm{~W} . \mathrm{by} \mathrm{N}$.	$3 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	$7 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	7 S. W.
23	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W.	2 W.	1 W	7 to 8 N. W.	7 N. W.
24	GN. W.	6 W.	5 W.	5 W.	1 W.	8 W. S. W.
25	7 W. N. W.	6 W.	6 W.	6 W.	${ }^{6} \mathrm{~W} . \mathrm{hy} \mathrm{S}$.	6 W. by S.
26	5 W. S. W.	$5 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	5 W. S. W.	$4 \mathrm{~S} . \mathrm{W}$.	$2 \mathrm{S}$. W.	2 S . W.
2\%*	${ }_{3}$ Calm	3S. Why	$3 \mathrm{S}$. . F'ly	5 5 E. S. E.	5 E. S. E.	${ }_{6}^{5 \mathrm{~S} . \mathrm{E} .1 \mathrm{l}}$
26	$3 \mathrm{~S} . \mathrm{E}$. $4 \mathrm{~S} . \mathrm{W}$.	${ }_{5}^{5} 5$.	$5 \mathrm{S.S.E}$.	$5 \mathrm{S.S.E}$. 3 W.	6 S. S. E.	6 N'ly
311	3 N.	5 N. E.	6 N. E.	5 N. E.	6 N. E.	6 N. E.

October, 1858.-At winter quarters: Lat. $72^{\circ} \mathrm{N}$. ; long. 940.2 W .

Date.	$4^{\text {h. }}$	8h.	Noon.	$4^{\text {b. }}$
1	6 N. E.	$5 \mathrm{~N} . \mathrm{E}$.	5 N. E.	6 N. E.
2	7 N. L. by E.	7 N. J. by E.	7 N. E. by E.	$7 \mathrm{~N} . \mathrm{E}$.
3	$7 \mathrm{~N} . \mathrm{E}$.	7 N. E.	6 N. N. E.	7 N. E.
4	$7 \mathrm{~N} . \mathrm{E}$.	5 İ. S. E.	6 E. N. E.	6 N. E. by E.
5	4 Sly	3 S. E.	3 S . E.	$2 \mathrm{~S} . \mathrm{S} . \mathrm{E}$.
6	2 S.s.E.	$2 \mathrm{~S} . \mathrm{S} . \mathrm{E}$.	$1 \mathrm{S}$. S. E.	2 S .
7	$3 \mathrm{~S} . \mathrm{S}$. W.	3 S . W.	2 W.	2 S . W.
s	Calm	Calm	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	1 W.
9	2 W.	2 W.	2 W.	1 N. E.
10	Calm	$4 \mathrm{~N} . \mathrm{F}$.	5 E .	7 N. E.
11	4 F.. N. E.	$3 \mathrm{~N} . \mathrm{E}$.	4 N. E. by N.	5 N. E. by N.
12	$6 \mathrm{~N}, \mathrm{l}$.	7 N. N. E.	3 N. E.	$2 \mathrm{~N} . \mathrm{E}$.
13	3 N. E.	2 N. E. by N.	2 N. E.	3 N. E.
14	$7 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	(0)W. N. W.	6 W. N. W.	5 W. N. W.
15	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	3 N.W.
115	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	5 N. W.	$6 \mathrm{~N} . \mathrm{W}$.
17	${ }^{1} \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	9 W. N. W.	9 W. N. W.	8 N. W.
15	$5 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N}, \mathrm{~W}$.	$7 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
19	2 N. N. E.	2 E. N. E.	$3 \mathrm{E} . \mathrm{N} . \mathrm{E}$.	4 J. N. E.
20	4 N. W.	2 S. S. E.	3 12. N. F.	3 N. N. E.
21	5 N. by E.	$6 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$ 。	8 N. N.W.
22	$5 \mathrm{~N} . \mathrm{W}$.	8 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
23	$2 \mathrm{~N} . \mathrm{W}$.	2 S. E. by S.	2 E. N. E.	$2 \mathrm{E} . \mathrm{N} . \mathrm{E}$.
24	1 N.E.	6 S .	6 s.	3 S. S. E.
25	$3 \mathrm{~S} . \mathrm{W}$.	5 N. E.	7 N. E.	8 N. E. by N.
26	$16 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	8 W. N.W.	$7 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	8 N. W.
27	$10 \mathrm{~N} . \mathrm{W}$.	$10 \mathrm{~N} . \mathrm{W}$.	8 N. W.	$7 \mathrm{~N} . \mathrm{W}$.
$\because \sim$	Calu	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	1 N. E.
$2!1$	Calun	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.
311	$7 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	7 N.W.	$5 \mathrm{~N} . \mathrm{W}$.
31	$7 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	4 N. N.W.	$4 \mathrm{~N} . \mathrm{W}$.

8h.	Midn't.
6 N. 15.	6 N. E.
7 N. E.	$7 \mathrm{~N} . \mathrm{E}$.
8 N. E.	8 N. E.
5 N. E.	5 N. E.
$3 \mathrm{~S} . \mathrm{E}$.	2S. E.
4 S . W.	$6 \mathrm{~S} . \mathrm{W}$.
4 S. W.	Calm
1 W. N. W.	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
1 N. E.	1 E. by S.
4 E. N. E.	${ }_{5}$ E. N. E.
5 N. E. by N.	6 N. E.
2 N. E.	$1 \mathrm{~N} . \mathrm{E}$.
$5 \mathrm{~N} . \mathrm{W}$.	6 W.
$6 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.
3 N. by W.	4 N. N. E.
$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$8 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
${ }^{9} \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
$3 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.
5 L. N. E.	5 E. N. E.
$2 \mathrm{~N}, \mathrm{E}$.	2 N. by W.
7 N. N. W.	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.
$3 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.
4 E. N. E.	$1 \mathrm{~N} . \mathrm{E}$.
1 S. S. E.	$3 \mathrm{~W} . \mathrm{by} \mathrm{N}$.
4 N. E. by N.	8 N. N. E.
6 N.W.	$10 \mathrm{~N} . \mathrm{W}$.
$7 \mathrm{~N} . \mathrm{W}$.	4 N. W.
2 N. E.	Calm
$4 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.
$4 \mathrm{~N} . \mathrm{W}$.	7 N. W.
$4 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.

[^16]Direction (true) and Forcr of the Wind observed on board the yacit Fox.
November, 1858.-At winter quarters.

date.	2 h .	4 h .	6 h.	8 h .	10h.	Noon.
1	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	1 W. N. W.	Calm	Calm	Calm
2	Calm	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.
3	$9 \mathrm{~N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{W}$.	9 W. N. W.	9 W. N. W.	8 W. N. W.	7 W. N. W.
4	$9 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$9 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	9 W. N. W.	9 W. N. W.	9 W. N. W.	10 W. N. W.
5	$9 \mathrm{~N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.
6	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	4 N. by E.	2 N. by E.
7	$7 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
8	$4 \mathrm{~N} . \mathrm{W}$.	5 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
9	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.			
10	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.
11	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	5 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
12	$1 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	$1 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.
13	1 E. N. E.	2 E .	Calm	2 E. N. E.	1 E. N. E.	2 E. N. E.
14	1 E. N. E.	2 E. N. E.	1 E. N. E.	Calm	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
15	6 N. W.	4 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.
16	Calm	Calm	2 N. E.	2 N. E.	2 N. E.	3 N. E.
17	$5 \mathrm{~N} . \mathrm{E}$.	4 N. E.	4 E. S. E.	1 E. N. E*	2 E. N. E.	2 E. N. E.
18	3 E. N. E.	4 E. N. E.	4 E. N. E.	2 E. N. E.	Calm	Calm
19	Calm	Calm	$2 \mathrm{~N} . \mathrm{E}$.	2 N. E.	2 E. N. E.	2 E. N. E.
20	2 N.E.	5 N. N. W.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	4 N. E. by E.	3 N. E. by E.
21	2 E. N. E.	3 E. N. E.	1 E. N. E.	1 E. N. E.	1 N. E.	Calm
22	3 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.
23	$2 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.			
24	$4 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.
25	$2 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.
26	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	6 N. W.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	6 W. N. W.
27	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 W. N. W.	Calm	Calm	Calm	$2 \mathrm{~N} . \mathrm{E}$.
28	6 N. E.	8 N. N. E.	8 N. N. W.	8 N. N. W.	8 N. N. W.	8 N. E.
29	$9 \mathrm{~N} . \mathrm{E}$.	$9 \mathrm{~N} . \mathrm{E}$.	$9 \mathrm{~N} . \mathrm{E}$.	8 N. E.	8 N. E.	$9 \mathrm{~N} . \mathrm{E}$.
30	10 N. E.	10 N. E.	9 N. E.	8 N. E.	$0_{0} \mathrm{E} . \mathrm{N} . \mathrm{E}$.	6 E. N. E.
DATE.	2 h .	4 h .	6 h.	8h.	10 h .	Midn't.
	Calm	Calm	Calm	$1 \text { N. E. }$		Calm
2	$4 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W} .$	6 N.W.	$8 \mathrm{~N} . \mathrm{W}$	$8 \mathrm{~N} . \mathrm{W}$.	$8 \mathrm{~N} . \mathrm{W} .$
3	7 W. N. W.	7 W. N. W.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 W. N. W.	4 W. N. W.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W} .$
4	9 W. N. W.	8 W. N. W.	9 W. N. W.	9 W. N. W.	7 W. N. W.	4 W. N. W.
5	$7 \mathrm{~N} . \mathrm{W}$.	7 N. W.	$4 \mathrm{~N} . \mathrm{W}$.			
6	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
7	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	4 N. N. W.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.
8	3 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	1 N.W.
9	Calm	Calm	Calm	Calm	Calm	Calm
10	2 W.	2 W.	$3 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
11	$5 \mathrm{~N} . \mathrm{W}$.	5 N.W.	$4 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	2 N. W.	$2 \mathrm{~N} . \mathrm{W}$.
12	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	1 E. N. E.
13	3 E. N. E.	4 E. N. E.	3 E. N. E.	3 E. N. E.	2 E . N. E.	1 E. N. E.
14	$6 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$8 \mathrm{~N} . \mathrm{W}$.	8 N. W.
15	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
16	$4 \mathrm{~N} . \mathrm{E}$.	6 N. E.	$6 \mathrm{~N} . \mathrm{E}$.	5 N. E.	$6 \mathrm{~N} . \mathrm{E}$.	$5 \mathrm{~N} . \mathrm{E}$.
17	1 E. N. E.	2 E. N. E.	4 E. N. E.	4 E. N. E.	$4 \mathrm{E}$. N. E.	3 E. N. E.
18	Calm	Calm	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	Calm
19	2 E. N. E.	2 E. N. E.	3 N. E.	3 N. E.	3 N. E.	$3 \mathrm{~N} . \mathrm{E}$.
20	3 E. N. E.	3 E. N. E.	2 E. N. E.	Calm	${ }^{\text {Calm }}$	$1 \text { N. E. }$
21	$1 \mathrm{~N} . \mathrm{E}$.	$1 \mathrm{~N} . \mathrm{E}_{\text {. }}$	1 E. N. E.	1 E. N. E.	1 E. N. E.	$\begin{aligned} & 2 \mathrm{~N} . \mathrm{W} . \\ & 2 \mathrm{~N} . \mathrm{W} . \end{aligned}$
22	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$. $3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$. $3 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$\begin{aligned} & 2 \mathrm{~N} . \mathrm{W} \\ & 3 \mathrm{~N} . \mathrm{W} . \end{aligned}$
24	$2 \mathrm{~N} . \mathrm{W}$.	2 N. E.	${ }^{\text {Nalm }}$	Calm	Calm	Calm
25	$6 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	5 N. W.	5 N. W.
26	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	6 W. N. W.	6 W 'ly	6 W'ly	4 W'ly	4 W'ly
27	$2 \mathrm{~N} . \mathrm{E}$.	2 N. E.	$2 \mathrm{~N} . \mathrm{E}$.	2 N. E.	$5 \mathrm{~N} . \mathrm{E}$.	$6 \mathrm{~N} . \mathrm{E}$.
28	$7 \mathrm{~N} . \mathrm{E}$ 。	8 N. E.	$9 \mathrm{~N} . \mathrm{E}$.	8 N. E.	$9 \mathrm{~N} . \mathrm{E}$.	$9 \mathrm{~N} . \mathrm{E}$.
29 30	10 N. E. ${ }^{5}$ E. N. E.	10 N. E. 5 E. N. E.	10 N. E. ${ }^{5}$	10 N. E. ${ }_{4} 4$ E. N. E.	$\begin{gathered} 10 \text { N. E. } \\ 5 \text { N. E. } \end{gathered}$	10 N. E.
30	5 E. N. E.	5 E. N. E.				Calm

Direction（true）and Force of the Tind observed on board the yacht Fox．
December，1858．At winter quarters．

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DAts． \& $2^{\text {h }}$ \& 4 h． \& $6{ }^{4}$. \& $8^{\text {h．}}$ \& $10^{\text {h．}}$ \& Noon．

\hline 1 \& Calm \& 1 N．W． \& $1 \mathrm{~N} . \mathrm{W}$. \& $2 \mathrm{~N} . \mathrm{W}$. \& $$
{ }_{4}^{2} \text { N. N. W. }
$$ \& $$
2 \mathrm{~N} . \mathrm{W} .
$$

\hline 2 \& $8 \mathrm{~N} . \mathrm{W}$. \& ${ }^{6} \mathrm{~N} . \mathrm{W}$. \& $6 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$. \& $$
4 \mathrm{~N} . \mathrm{W} .
$$ \& $$
4 \mathrm{~N} . \mathrm{W} .
$$

\hline 3 \& 4 N．W． \& $5 \mathrm{~N} . \mathrm{W}$ ． \& $5 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$. \& $5 \mathrm{~N} . \mathrm{W}$. \& $5 \mathrm{~N} . \mathrm{W}$.
4 N.

\hline 4 \& 8 N．W． \& $8 \mathrm{~N} . \mathrm{W}$. \& 8 N．W． \& $6 \mathrm{~N} . \mathrm{W}$. \& $7 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$.

\hline 5 \& 4 N．N．W． \& $3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$ ． \& $3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$. \& $3 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$. \& $3 \mathrm{~N} . \mathrm{W}$.
$4 \mathrm{~N} . \mathrm{W}$.

\hline \& © N．W． \& $6 \mathrm{~N} . \mathrm{W}$. \& $6 \mathrm{~N} . \mathrm{W}$. \& $5 \mathrm{~N} . \mathrm{W}$.
$3 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$.
$2 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$.

\hline 7 \& $6 \mathrm{~N} . \mathrm{W}$. \& $6 \mathrm{~N} . \mathrm{W}$. \& 6 N．W． \& $3 \mathrm{~N} . \mathrm{W}$. \& $2 \mathrm{~N} . \mathrm{W}$. \& $2 \mathrm{~N} . \mathrm{W}$.

\hline 8 \& $1 \mathrm{~N} . \mathrm{V}$ ． \& $1 \mathrm{~N} . \mathrm{W}$. \& $2 \mathrm{~N} . \mathrm{W}$. \& $3 \mathrm{~N} . \mathrm{W}$. \& $2 \mathrm{~N} . \mathrm{W}$. \& 1 Variable

\hline 9 \& $3 \mathrm{~N}, \mathrm{E}$ 。 \& $2 \mathrm{~N} . \mathrm{E}$ ． \& Calm \& $2 \mathrm{~N} . \mathrm{W}$. \& $1 \mathrm{~N} . \mathrm{W}$. \& $1 \mathrm{~N} . \mathrm{W}$ ．

\hline 10 \& 5 N．W． \& 5 N．W． \& $4 \mathrm{~N} . \mathrm{W}$. \& $2 \mathrm{~N} . \mathrm{W}$. \& $3 \mathrm{~N} . \mathrm{W}$. \& 5 N．W．

\hline 11 \& 5 N．W． \& $5 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$. \& $2 \mathrm{~N} . \mathrm{W}$. \& 1 Variable \& ${ }^{\text {Calm }}$

\hline 12 \& $\xrightarrow{\text { Calıo }}$ \& 1 N．E．${ }_{1}$ E．N．E \& $2 \mathrm{~N} . \mathrm{IS}$. （ 1 E．N． \& \& 2 E．N．E．
2 N．E． \& $$
\begin{aligned}
& 3 \text { E. N. E. } \\
& 2 \mathrm{~N} . \mathrm{E} .
\end{aligned}
$$

\hline 13 \& 1 E．N．E． \& 1 E．N．E．

5
F．N．E． \& 1 E．N．E．

3 E．N．E． \& 2 Calm \& 2 N．E．${ }_{\text {Variable }}$ \& $$
\begin{gathered}
2 \text { N. E. } \\
\text { Variable }
\end{gathered}
$$

\hline 14
15 \& $5 \mathrm{E} . \mathrm{N} . \mathrm{E}$.
6 N. \& ${ }_{6}^{5} \mathrm{~J} . \mathrm{N} . \mathrm{N}$. \& ${ }^{3} \mathrm{E}$ W．N．E．W． \& ${ }^{2} \mathrm{~N}$ N．E．${ }^{\text {N }}$ ． \& $5 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$.

\hline 16 \& 8 N. \& $7 \mathrm{~N} . \mathrm{W}$. \& $5 \mathrm{~N} . \mathrm{W}$ ． \& $8 \mathrm{~N} . \mathrm{W}$. \& $6 \mathrm{~N} . \mathrm{W}$. \& 7 N．W．

\hline 17 \& $5 \mathrm{~N} . \mathrm{W}$ ． \& $3 \mathrm{~N} . \mathrm{W}$ ． \& $4 \mathrm{~N} . \mathrm{W}$. \& $3 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$ ． \& $4 \mathrm{~N} . \mathrm{W}$.

\hline 18 \& $2 \mathrm{~N} . \mathrm{E}$ ． \& 2 N．E． \& 3 N．E． \& 4 N．E． \& 4 E．N．E． \& 4 E．N．E．

\hline 19 \& 4 E．N．E． \& 4 E ．N．E． \& 4 E．N．E． \& 4 E．N．E． \& 3 E．N．E． \& 2 E N．E．

\hline 20 \& $1 \mathrm{E} . \mathrm{N} . \mathrm{E}$. \& 4 N．E． \& 5 N．E． \& 6 N．L． \& 6 E．N．E． \& 7 E．N．E．

\hline 21 \& 2 ぶ．N．W． \& $4 \mathrm{~N} . \mathrm{W}$. \& $5 \mathrm{~N} . \mathrm{W}$ ． \& $5 \mathrm{~N} . \mathrm{W}$. \& $6 \mathrm{~N} . \mathrm{W}$. \& 6 N．W．

\hline 22 \& Calm \& $1 \mathrm{~S} . \mathrm{W}$ ． \& $2 \mathrm{S}$. W． \& 3 S．E． \& 1 W. by S． \& 1 S ．W．

\hline 23 \& $3 \mathrm{~s} . \mathrm{W}$. \& Calm \& 1 S ．W． \& Calm \& Calm \& Calm

\hline 24 \& Calm \& $1 \mathrm{~N} . \mathrm{W}$ ． \& $2 \mathrm{~N} . \mathrm{W}$ ． \& $4 \mathrm{~N} . \mathrm{W}$. \& 3 N．W． \& $4 \mathrm{~N} . \mathrm{W}$.

\hline 25 \& $4 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$. \& $3 \mathrm{~N} . \mathrm{W}$. \& $5 \mathrm{~N} . \mathrm{W}$ ． \& $3 \mathrm{~N} . \mathrm{W}$. \& 3 W．by N．

\hline $2 ;$ \& 7 W. \& 8 W. \& 6 W. \& 4 W. \& 4 W. \& 5 N．W．

\hline 27 \& 3 N．W． \& $2 \mathrm{~N} . \mathrm{W}$ ． \& $4 \mathrm{~N} . \mathrm{W}$. \& $6 \mathrm{~N} . \mathrm{W}$. \& $5 \mathrm{~N} . \mathrm{W}$. \& $7 \mathrm{~W} . \mathrm{S}$ ．W．

\hline 28 \& 7 W. \& 4 W. \& 6 W. \& 5 W ． \& 4 W. \& 4 W.

\hline 29 \& $2 \mathrm{~N} . \mathrm{W}$. \& Calm \& Calm \& Calm \& Calm \& Calm

\hline 30 \& Calm \& Calm \& Calm \& Calm \& $1 \mathrm{~N} . \mathrm{W}$. \& 1 N．N．W．

\hline 31 \& Calm \& $3 \mathrm{~N} . \mathrm{W}$ ． \& $4 \mathrm{~N} . \mathrm{W}$. \& 4 N．W． \& $3 \mathrm{~N} . \mathrm{W}$. \& $3 \mathrm{~N} . \mathrm{W}$.

\hline \& \& \& \& \& \&

\hline date． \& $2^{\text {h．}}$ \& 4 l \& 6 h. \& 8h． \& 10 h. \& Midn＇t．

\hline 1 \& $2 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$. \& 3 N．W． \& $4 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$. \& $5 \mathrm{~N} . \mathrm{W}$.

\hline 2 \& $5 \mathrm{~N} . \mathrm{W}$ ． \& $5 \mathrm{~N} . \mathrm{W}$. \& $5 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$ ． \& $2 \mathrm{~N} . \mathrm{W}$ ． \& Calm

\hline 3 \& $4 \mathrm{~N} . \mathrm{W}$. \& $5 \mathrm{~N} . \mathrm{W}$ ． \& $6 \mathrm{~N} . \mathrm{W}$. \& $7 \mathrm{~N} . \mathrm{W}$. \& 7 N．W． \& 7 N．W．

\hline 4 \& $4 \mathrm{~N} . \mathrm{W}$ ． \& 4 N．W． \& $3 \mathrm{~N} . \mathrm{W}$. \& $3 \mathrm{~N} . \mathrm{W}$ ． \& $4 \mathrm{~N} . \mathrm{W}$ ． \& 4 N．N．W．

\hline 5 \& 3 N．W． \& $3 \mathrm{~N} . \mathrm{W}$. \& $2 \mathrm{~N} . \mathrm{W}$. \& 1 N ．W． \& $3 \mathrm{~N} . \mathrm{W}$. \& $3 \mathrm{~N} . \mathrm{W}$.

\hline 6 \& 5 N．W． \& $6 \mathrm{~N} . \mathrm{W}$. \& $7 \mathrm{~N} . \mathrm{W}$. \& $7 \mathrm{~N} . \mathrm{W}$. \& $6 \mathrm{~N} . \mathrm{W}$. \& 6 N．W．

\hline 7 \& $2 \mathrm{~N} . \mathrm{W}$ ． \& Calm \& Calm \& Calm \& Calm \& Calm

\hline 8 \& 3 N．E． \& 4 N．E． \& $3 \mathrm{~N} . \mathrm{EL}$ ． \& $4 \mathrm{~N} . \mathrm{N}$ \& 4 N．E． \& 5 N．E．

\hline 9 \& $2 \mathrm{~N} . \mathrm{W}$. \& $3 \mathrm{~N} . \mathrm{W}$. \& $2 \mathrm{~N} . \mathrm{W}$ ． \& $2 \mathrm{~N} . \mathrm{W}$ ． \& $3 \mathrm{~N} . \mathrm{W}$ ． \& $3 \mathrm{~N} . \mathrm{W}$ ．

\hline 10 \& 7 N．W． \& $6 \mathrm{~N} . \mathrm{W}$. \& $6 \mathrm{~N} . \mathrm{W}$. \& 4 N．W． \& $6 \mathrm{~N} . \mathrm{W}$. \& $$
5 \mathrm{~N} . \mathrm{W} .
$$

\hline 11 \& Calm \& Calm \& Calm \& Calm \& Calm \& Calm

\hline 12 \& $2 \mathrm{~N} . \mathrm{E}$ ． \& $2 \mathrm{~N} . \mathrm{EL}$ ． \& 2 N．E． \& 4 N .1 l. \& 2 E ．N．E． \& 1 E．N．E．

\hline 13 \& 3 N．E． \& 4 E．N．E． \& 4 N．．N．E． \& 3 E．N．E． \& 3 E．N．E． \& 4 E．N．E．

\hline 14 \& Calm w \& Calm \& Calm \& $3 \mathrm{~N} . \mathrm{W}$. \& 6 N．W．by W． \& 6 N．W．by W．

\hline 15 \& $7 \mathrm{~N}, \mathrm{~N}, \mathrm{~W}$ ． \& $8 \mathrm{~N} . \mathrm{N} . \mathrm{W}$. \& ${ }_{6} \mathrm{~N} . \mathrm{N} . \mathrm{W}$. \& 1 N．W． \& 1 N．W． \& $$
2 \mathrm{~N} . \mathrm{W} .
$$

\hline 17 \& 2 N W． \& $1 \mathrm{~N} . \mathrm{W}$ ． \& ${ }^{5}$ N．${ }_{\text {Calm }}$ \& 1 E．N．E． \& $1 \mathrm{E} . \mathrm{N} . \mathrm{E}$ ． \& ${ }_{1} 1$ E．N．E．

\hline 18 \& $3 \mathrm{li} . \mathrm{N} . \mathrm{I}$ ． \& 4 E．N．E． \& 3 E．N．E． \& Calm \& 1 E．N．E． \& $3 \mathrm{E} . \mathrm{N} . \mathrm{E}$ ．

\hline 1.9 \& 2 EF N．E． \& 3 EFO N．E． \& 3 E．N．E． \& Calm \& 1 N．E． \& 2 N．E．

\hline 20 \& （1）N，1\％ \& 5 E．N．E． \& 4 E．N．E． \& $1 \mathrm{E} . \mathrm{N} . \mathrm{E}$ ． \& 3 N．by W． \& 6 N．N．W．

\hline 21 \& $4 \mathrm{~N} . \mathrm{W}$ ． \& C N．W． \& $4 \mathrm{~N} . \mathrm{W}$. \& $2 \mathrm{~N} . \mathrm{W}$ ． \& $$
1 \text { N. W. }
$$ \& Calm

\hline 2： \& 2 S ，W． \& 2 S ．W． \& 1 S ．W． \& $1 \mathrm{~S} . \mathrm{W}$ ． \& 2 S ．W． \& 2 S ．W．

\hline 23 \& Calm \& 1 N．I\％． \& $1 \mathrm{~N} . \mathrm{K}$. \& Calm \& Calm \& Calm

\hline 24 \& $4 \mathrm{~N} . \mathrm{W}$. \& 5 N W．${ }^{\text {W }}$ \& $4 \mathrm{~N} . \mathrm{W}$. \& $4 \mathrm{~N} . \mathrm{W}$. \& $3 \mathrm{~N} . \mathrm{W}$. \& $5 \mathrm{~N} . \mathrm{W}$.

\hline 25 \& 3 W. by N ．
7 W. \& $3 \mathrm{~W} . \mathrm{S.W}$ \& $4 \mathrm{~W} . \mathrm{So}$ W． \& 4 W．S．W． \& 7 W. \& 7 W.

\hline 248 \& \& 7 W. \& 7 W. \& $7 \mathrm{~N} . \mathrm{W}$. \& 8 N．W． \& 8 N N．W．

\hline 29 \& ${ }^{7} \mathrm{~W}$ W．S．W． \& $7 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.
4 W. \& $8 \mathrm{~N} . \mathrm{W}$. \& 8 N．W． \& 7
3
3 \& 8 W.
3 W.

\hline 29 \& Calm \& Caim \& 4 Calin \& $6 \mathrm{~N} . \mathrm{E}$. \& 3 W Calm \& 3 Calm

\hline 30 \& $3 \mathrm{~N} . \mathrm{W}$ ． \& $2 \mathrm{~N}, \mathrm{~W}$ ． \& Calm \& Calm \& Calm \& Calm

\hline 31 \& $4 \mathrm{~N} . \mathrm{W}$. \& 5 W. \& 6 W. \& 5 W ． \& $4 \mathrm{~N} . \mathrm{W}$ ． \& $2 \mathrm{~N} . \mathrm{W}$.

\hline
\end{tabular}

Direction (true) and Force of the Wind observed on board the yachi Fox.
January, 1859.-At winter quarters.

date.	2 h .	$4^{\text {h. }}$	6 h.	8 b.	10 h.	Noon.
1	$6 \mathrm{~N} . \mathrm{W}$.	4 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	${ }^{1} \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.
2	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	4 N. N. E.	5 N. N. E.	5 N. N. E.
3	4 N. N. W.	4 N .	4 N.	4 N.	5 N .	5 N .
4	3 N.	3 N .	3 N .	$4 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	8 N. W.
5	$4 \mathrm{~N} . \mathrm{W}$.	3 N. W.	3 N. W.	5 N .	5 N .	4 N .
6	$2 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	4 W .	4 W.
7	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	2 N.W.	$6 \mathrm{~N} . \mathrm{W}$.	3 N. W.
8	6 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	8 N. W.	8 N. W.	$7 \mathrm{~N} . \mathrm{W}$.	6 N.W.
9	Calm	Calm	Calm	$2 \mathrm{~N} . \mathrm{W}$.	3 N.W.	4 N. W.
10	Calm	$1 \mathrm{~N} . \mathrm{W}$.	Calm	and variable	air	1 N, E.
11	1 N. E.	2 N. E.	$2 \mathrm{~N} . \mathrm{E}$.	3 N. E.	3 N. E.	4 N. E.
12	4 E. N. E.	4 E. N. E.	4 E. N. E.	3 E. N. E.	2 N. E.	1 Variable
13	1 E. N. E.	Calm	1 N. E.	1 N. E.	Calm	Calm
14	3 W. N. W.	4 W. N. W.	2 W. N. W.	Calm	3 N.W.	3 N.W.
15	3 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	7 N. W.	$7 \mathrm{~N} . \mathrm{W}$.
16	6 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	4 N. W.	4 N. W.
17	4 W. N. W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	4 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	5 W. N. W.
18	$6 \mathrm{~N} . \mathrm{W}$.	3 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	1 N. E.
19	3 N. E.	Calm	Calm	$1 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.
20	$6 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	3 N. W.	$2 \mathrm{~N} . \mathrm{W}$.
21	1 N. E.	Calm	1 W. by N.	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.
22	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N}, \mathrm{~W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
23	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	2 N. W.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	
24	4 W. N. W.	5 W. N. W.	6 W. N. W.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	5 W. N. W.	5 W. N. W.
25	8 N. W.	8 N. W.	7 N. W.	5 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
26	5 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	3 N. W.	2 N. W.	4 N. W.	1 Variable
27	1 N. W.	Calm	Calm	1 N. E.	Calm	Calm
28	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	6 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	4 N. W.
29	$6 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	3 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	2 N. W.	$5 \mathrm{~N} . \mathrm{W}$.
30	1 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	4 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	2 N. W.	$1 \mathrm{~N} . \mathrm{W}$.
31	2 N. E. *	2 N. E.	1 N. E.	1 N. E.	1 N. E.	I N. E.
date.	2 b .	4^{4}.	64.	8 h.	10 h.	Midn't.
1	4 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.			
2	$6 \mathrm{~N} . \mathrm{E}$.	5 N.	4 N.	2 N.	$3 \mathrm{~N} .$	$3 \mathrm{~N} .$
3	5 N.	4 N.	4 N.	4 N .	4 N.	$4 \mathrm{~N} .$
4	7 N.W.	8 N. W.	${ }^{6} \mathrm{~N} . \mathrm{W}$.	7 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
5	Calm	Calm	1 W.	Calm	3 N.W.	2 N. W.
6	4 W.	6 W.	5 W .	4 W .	6 W.	6 W.
7	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	6 N. W.	4 N. W.	$7 \mathrm{~N} . \mathrm{W}$.	8 N. W.
8	$4 \mathrm{~N}, \mathrm{~W}$.	$3 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	Calm	Calm
9	$5 \mathrm{~N} . \mathrm{W}$.	4 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	3 W.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	3 N. W.
10	1 N.E.	Calm	Calm	Calm	$2 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{E}$.
11	4 N. E.	$4 \mathrm{~N} . \mathrm{E}$.	$4 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{E}$.
12	2 N.E.	2 N. E.	3 N. E.	$2 \text { E. N. E. }$		$1 \mathrm{E} . \mathrm{N} . \mathrm{E}$.
13	Calm	Calm	Calm	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
14	$5 \mathrm{~N} . \mathrm{W}$.	6 N. W.	4 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.
15	$6 \mathrm{~N} . \mathrm{W}$.	7 N.W.	7 N.W.	$6 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.
16	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	4 N. W.	$4 \mathrm{~N} . \mathrm{WV}$.
17	4 W. N. W.	4 W. N. W.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	5 N.W.	7 N. W.
18	$2 \mathrm{~N} . \mathrm{E}$.	3 N. E.	$3 \mathrm{~N} . \mathrm{E}$.	3 N. E.	$5 \mathrm{~N} . \mathrm{E}$.	$5 \mathrm{~N} . \mathrm{E}$.
19	$4 \mathrm{~N} . \mathrm{W}$.	5 N.W.	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	1 N.W.	$3 \mathrm{~N} . \mathrm{W}$.
20	$1 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	1 N. E.	Calm	1 N. E.
21	$2 \mathrm{~N} . \mathrm{W}$.	3 N. W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 W. N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
22	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
23	3 N. W.	3 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	3 W. N. W.
24	4 W. N. W.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{W}$.	8 N. W.	$7 \mathrm{~N} . \mathrm{W}$.
25	$5 \mathrm{~N} . \mathrm{W}$.	6 N.W.	$6 \mathrm{~N} . \mathrm{W}$.			
26	1 N. E.	1 N. E.	1 N. E.	Calm	Calm	Calm
27	3 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	4 N. W.	6 N.W.
28	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
29	$4 \mathrm{~N} . \mathrm{W}$.	4 N. W.	3 N. W.	$2 \mathrm{~N} . \mathrm{W}$.	2 N. W.	1 N.W.
30	1 N. W.	$2 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	$2 \mathrm{~N} . \mathrm{E}$.	$3 \mathrm{~N} . \mathrm{E}$.
31	2 N. E.	1 N. E.	1 N. E.	Calm	Calm	Calm

Direction (true) and Force of tue Wind observed on board the yacht Fox.
February, 1859.—At winter quarters.

date.	2 h	4 b.	$6{ }^{\text {h. }}$	Sh.	10h.	Noon.
1	Calm	Calm	Calm	Calm	Calm	
2	$4 \mathrm{~W} . \mathrm{byN}$.	${ }_{6} \mathrm{~W}$ W. N. W.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$
3	$1 \mathrm{~N} . \mathrm{N} . \mathrm{E}$.	1 E. N. E.	$1 \text { E. N. E. }$			
4	$1 \mathrm{~N} . \mathrm{EV}$.	Calm	Calm	$2 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
5	$5 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N}, \mathrm{~W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.
6	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$	G N. W.	6 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
7	8 N. W.	6 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.
8	$2 \mathrm{~N} . \mathrm{W}$.	Calur	Calm	$3 \mathrm{~N} . \mathrm{W}$	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
9	5 N . W.	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	Calm	1 W. N. W.	1 W. N. W.
10	$1 \mathrm{~N} . \mathrm{E}$.	Calm	Calm	Calm	Calm	$2 \mathrm{~N} . \mathrm{W}$.
11	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.
12	$5 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	1 W.	3 W.
13	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. N. W.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. N. W.	2 W. N. W.
14	8 W. N. W.	6 W. N. W.	$6 \mathrm{~N} . \mathrm{W}$.	4 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
15	$7 \mathrm{~N} . \mathrm{W}$.	7 N. W.	7 N. W.	$5 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	9 W. N. W.	8 W. N. W.
16	(i) W.	5 W.	5 W.	5 W.	6 W.	4 W.
17	2 S . W.	1 N. W.	Calm	1 S . E.	Calm	Calm
18	5 V .	4 W.	5 W.	6 W.	6 W.	1 W.
19	2 W.	5 W .	6 W.	5 W.	5 W.	2 W.
20	${ }_{\substack{\text { Calm } \\ \text { Calm }}}$	Calm Calm	$2 \mathrm{~N} . \mathrm{E}$.	2 N. E.	3 N. E.	$4 \mathrm{~N} . \mathrm{E}$.
21 22	${ }_{6} \mathrm{Calm}$	$6_{\text {C }}^{\text {Calm }}$ (E.	5 Calm	5 Calm	5 Calm	4 Calm
23	3 N. E.	$1 \mathrm{~N} . \mathrm{J}$	Calm	Calm	2 W.	1 W .
24	$3 \mathrm{~N} . \mathrm{W}$.	3 N. W.	3 N. W.	2 W .	3 W.	2 W.
25	$6 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	6 W.	4 W .
$2{ }^{6}$	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	2 N. W.	$1 \mathrm{~N} . \mathrm{W}$.
27	2 W.	3 W.	3 W.	4 W.	4 W.	5 W.
28	9 W .	8 W.	8 W.	$5 \mathrm{~N} . \mathrm{W}$.	6 N. W.	7 N. W.
date.	$2^{\text {h. }}$	4 h.	6 h.	8 h .	10h.	Midn't.
1	Cam	18.	3 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	3 W. by N.	5 W. by N.
$\frac{2}{3}$	1 N	$1 \mathrm{S.E}$.	$1 \mathrm{E} . \mathrm{N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{E} . \mathrm{N} . \mathrm{E}$.	2 E. N. E.
3	$1 \mathrm{~L} . \mathrm{N} . \mathrm{E}$.	1 E. N. E.	$1 \mathrm{E} . \mathrm{N} . \mathrm{E}$.	1 E. N. E.	1 E. N. E.	1 E. N. E.
4	$6 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
5	$3 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	3 N. W.	$2 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
${ }^{6}$	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.
7	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$7 \mathrm{~W} . \mathrm{N.W}$.	6 W. N. W.	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.
8	$7 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	is N. W.	$6 \mathrm{~N} . \mathrm{W}$.	6 N. W.	$4 \mathrm{~N} . \mathrm{W}$.
	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	Calm	$1 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	1 N. E.
11	$4 \mathrm{~N} . \mathrm{W}$.	${ }_{6}^{2} \mathrm{~N} . \mathrm{W}$.	2 7 7 $\mathrm{~N} . \mathrm{W} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
12	3 W.	6 W.	$4 \mathrm{~N} . \mathrm{W}$.	5 W. N. W.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
13	W. N. W.	2 W N. W.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. N. W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
14	\% N.W.	4 N W.	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W} .$	$5 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.
15	${ }_{\text {5 \% W }} \mathrm{W} . \mathrm{N} . \mathrm{W}$.	$5 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$6 \text { W. N. W. }$		4 W.S. W.	$6 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.
178	\%) ${ }_{2} \mathrm{~W}$.	4 W.	$\begin{aligned} & 4 \mathrm{~N} . \mathrm{W} . \\ & 2 \mathrm{~W} . \end{aligned}$	$\begin{aligned} & 4 \mathrm{~N} . \mathrm{W} . \\ & 4 \mathrm{~W} . \end{aligned}$	$4 \mathrm{~N} . \mathrm{W} .$	$4 \mathrm{~N} . \mathrm{W}$.
18	2 W .	2 W .	2 W.	3 W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	2 W.
19	2 W.	1 W.	Calm	Calm	Calm	Calm
20	3 N. E.	$2 \mathrm{~N} . \mathrm{E}$.	2 N. E.	2 N. E.	Calm	Calm
21	Calm	Calm	2 N. E.	2 N. E.	5 N. E.	7 N.E.
21 23 23	4 N. E.	$4 \mathrm{~N} . \mathrm{K}$.	$4 \mathrm{~N} . \mathrm{E}$.	5 N. E.	5 N. E.	5 N. E.
23	1 W	1 W.	1 W.	1 W .	Calm	1 N.W.
24	2 W.	2 W.	3 W.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
年	4 W. $1 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	4 W. W.	$4 \mathrm{~N} . \mathrm{W}$.	4 N. W.	$4 \mathrm{~N} . \mathrm{W}$.
27	$\therefore \triangle$ W.	${ }_{5} \mathrm{~N} . \mathrm{W}$.	${ }_{7} \mathrm{~W}$.	${ }_{5}^{1} \mathrm{~W}$ W. W .	${ }_{5}{ }_{5} \mathrm{~W}$ W.	${ }_{7} \mathrm{Calm}$
2.	¢ W.	9 N.W.	8 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	$0 \mathrm{~N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{W}$.

Direction (true) and Force of the Wind observed on board the yacit Fox.
March, 1859.-At winter quarters.

Date.	$2^{\text {h. }}$	$4^{\text {h }}$.	$6^{\text {h. }}$	8h.	10 h.	Noon.
1	$9 \mathrm{~N} . \mathrm{W}$.	8 N.W.	$7 \mathrm{~N} . \mathrm{W}$.	6 W.	7 W.	6 W.
2	2 W.	2 W.	Calm	Calm	Calm	Calm
3	2 N. E.	2 N. E.	3 N. E.	4 N. E.	4 N. E.	4 N. E.
4	2 N. E.	1 N. E.	2 N. E.	2 N. E.	Calm	Calm
5	Calm	Calm	Calm	Calm	Calm	Calm
6	Calm	Calm	Calm	Calm	Calen	Calm
7	3 N. E.	4 N. E.				
8	3 E. N. E.					
9	3 E. N. E.	1 E. N. E.	2 E. N. E.	2 E. N. E.	2 E. N. E.	1 E. N. E.
10	1 N. E.	$2 \mathrm{~N} . \mathrm{E}$.	Calm	2 N. E.	1 N. W.	$1 \mathrm{~N} . \mathrm{W}$.
11	5 W. N. W.	7 W. N. W.	7 W. N.W.	7 W. N. W.	7 W. N. W.	$7 \mathrm{~N} . \mathrm{W}$.
12	9 W. N. W.	9 W. N. W.	9 W. N. W.	7 W. N. W.	8 N. W.	$8 \mathrm{~N} . \mathrm{W}$.
13	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	6 N. W.	$3 \mathrm{~N} . \mathrm{W}$.
14	4 N. W.	$2 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	Calm	Calm
15	Calm	2 N. E.	5 N. E.	5 N. E.	5 N. E.	7 N. E.
16	5 N. E.	4 N. E.	3 N. E.	4 N. E.	4 N. E.	4 N. E.
17	$3 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	7 N. W.	$7 \mathrm{~N} . \mathrm{W}$.	8 N. W.	$8 \mathrm{~N} . \mathrm{W}$.
18	6 W.	4 W.	8 W.	$5 \mathrm{~N} . \mathrm{W}$.	5 N. W.	4 N. W.
19	3 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.
20	Calm	Calm	Calm	Calm	Calm	Calm
21	Calm	Calm	Calm	Calm	Calm	Calm
22	$1 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	Calm	2 N. E.	1 N. E.
23	3 N. E.	4 N. E.	4 N. E.	2 N. E.	3 N. E.	2 N. E.
24	Calm	Calm	Calm	Calm	1 W .	2 W.
25	$1 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	$1 \mathrm{~N} . \mathrm{W}$.	2 N. W.	$1 \mathrm{~N} . \mathrm{W}$.
26	4 N. E.	3 N. E.	3 N. E.	3 N. E.	5 N. E.	4 N. E.
27	2 N. E.	2 N. E.	4 N. E.	2 N. E.	2 N. E.	Calm
28		1 N. E.		Calm		Calm
29		Calm		Calm		2 N. W.
30		2 N. E.		1 N. E.		$1 \mathrm{~N} . \mathrm{E}$.
31		Calm		Calm	--- -	Calm

date.	2 h .	4^{12}.	6 h.	8 h.	10 h	Midn't.
1	5 W.	3 W.	3 W.	2 W.	2 W.	2 W.
2	Calm	Calm	$2 \mathrm{~N} . \mathrm{E}$.	3 N. E.	4 N. E.	4 N. E.
3	3 N. E.	2 N. E.	1 N.E.	1 N. E.	1 N. E.	3 N. E.
4	Calm	Calm	Calm	Calm	Calm	Calm
5	Calm	Calm	Calm	Calm	Calm	Calm
6	$1 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{E}$.	2 N. E.	2 N. E.	2 N. E.
7	5 N. E.	5 N. E.	4 E. N. E.	4 E. N. E.	4 E. N. E.	3 E. N. E.
8	2 E. N. E.	2 E. N. E.	2 E. N. E.	3 E. N. E.	2 E. N. E.	3 E. N. E.
9	1 E. N. E.	2 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	Calm
10	Calm	Calm	$1 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	4 W. N. W.
11	8 N. W.	9 N . W.	$9 \mathrm{~N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{W}$.	9 W. N. W.
12	7 N.W.	8 N. W.	$7 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	2 W .
13	6 N. W.	5 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.
14	Calm	Calm	Calm	$1 \mathrm{~N} . \mathrm{E}$.	Calm	Calm
15	7 N. E.	5 N. E.	4 N. E.	4 N. E.	4 N. E.	4 N. E.
16	3 N. E.	2 N. E.	$1 \mathrm{~N} . \mathrm{E}$.	$1 \mathrm{~N} . \mathrm{E}$.	Calm	Calin
17	$6 \mathrm{~N} . \mathrm{W}$.	6 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	5 N . W.	3 W .	2 W.
18	3 N. W.	3 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
19	3 N. W.	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	1 N. W.	Calm
20	Calm	Calm	Calm	Calm	Calm	Calm
21	Calm	Calm	Calm	1 N. E.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.
22	1 N. E.	2 N. E.	$2 \mathrm{~N} . \mathrm{E}$.	1 N. E.	1 N. E.	4 N. E.
23	$2 \mathrm{~N} . \mathrm{E}$.	$1 \mathrm{~N} . \mathrm{E}$.	Calm	Calm	Calm	2 S . W.
24	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.			
25	$1 \mathrm{~N} . \mathrm{W}$.	1 N. E.	2 N. E.	2 N. E.	$4 \mathrm{~N} . \mathrm{E}$.	$4 \mathrm{~N} . \mathrm{E}$.
26	3 N. E.	4 N. E.	$2 \mathrm{~N} . \mathrm{E}$.	3 N. E.	3 N. E.	3 N. E.
27	1 N. E.	2 N. E.	1 N. E.		2 N. E.	1 N. E.
28		Calm		Calm		Calm
29		$2 \mathrm{~N} . \mathrm{W}$.		2 N . W.		Calm
30		1 N. E.		1 N. E.	---	Calm
31		Calm		Calm		$3 \mathrm{~N} . \mathrm{W}$.

Direction（true）and Force of the Wind observed on board the yacet Fox．
A pril，1859．－At winter quarters．

date．	5 h ．	84.	Noon．	$4{ }^{\text {b．}}$	8h．	11^{h} ．
1	$4 \mathrm{~N} . \mathrm{W}$ ．	$6 \mathrm{~N} . \mathrm{W}$ ．	7 N．W．	$5-7$ W．S．W．	5 W．S．W．	T－8 W．S．W．
2	s W．S．W．	$2 \mathrm{~W} . \mathrm{s} . \mathrm{W}$.	4 W.	1 W.	2 W.	3 W.
3	5 W	2 W.	2 W.	1 W.	Calm	1 N．E．
4	3 E N．E．	3 N．N．E．	$4 \mathrm{~N} . \mathrm{E}$.	$4 \mathrm{~N} . \mathrm{E}$ ．	2 N.	1 N.
5	$4119 y$	3 W ly	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	5 W．N．W．	6 W．N．W．	6 W．N．W．
${ }^{6}$	if TV．	$5 \mathrm{~W} . \mathrm{S}$ ．W．	7 W．s．W．	4 W.	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.
7	2 N ．	3 N	1 N N．W．	2 N.	Calm	Calm
8	Calm	Calm	3 N．N．E．	3 N．N．E．	3 N．N．E．	2 N．N．E．
9	6 E．N．E．	6 E．N．E．	4 I．．N．E．	1 E．N．E．	Calm	Calm
10	Calm	Calu	4 V ．	4 W.	2 W.	1 W.
11	Calm	（ alm	calm	Calm	Calm	Calm
12	2 N .1 W	$2 \mathrm{~N} . \mathrm{W}$ ．	4 W．N．W．	5 W．N．W．	$2 \mathrm{~W} . \mathrm{N}$ ．W．	2 W．N．W．
13	Calm	1 Variable	Calmu	Calm	2 N．N．E．	3 N．N．E．
14	3 F	2 E	4 N．E．	3 N．E．	3 N．E．	4 N．E．
15	$1 \mathrm{~N} . \mathrm{F}$ ．	Calm	Calm	Calm	5 E．N．E．	4 E．N．E．
10	$4 \mathrm{E}$. N．F．	4 F．N．E．	3 E．N．E．	4 N．E．	5 N．Li．	$5 \mathrm{~N} . \mathrm{E}$ ．
17	3 N．E．	$5 \mathrm{~N} . \mathrm{E}$.	$6 \mathrm{~N}, \mathrm{E}$ 。	5 N．E．	4 E．N．E．	6 E．N．E．
18	7 F N． E	7 N．E．	S N．E．	7 N．E．	5 N．E．	$1 \mathrm{~N} . \mathrm{E}$ ．
19	1 E．S．E．	$4 \mathrm{E} . \mathrm{S} . \mathrm{E}$ ．	$2 \mathrm{E} . \mathrm{S}$. E．	$2 \mathrm{E} . \mathrm{S}$. E．	2 E．N．E．	3 E．N．E．
20	$41.8 .1 \%$	$2 \ldots . \mathrm{N}$.	3 N．E．	4 N．E．	3 N.	4 N．N．E．
21	2 N．N．E．	$3 \mathrm{~N} . \mathrm{N} . \mathrm{E}$ ．	3 N．N．E．	3 N.	4 N.	5 N.
22	$4 \times$ ．	1 N.	4 W．N．W．	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	1 N.
23	3）E． 1 y N．	3 E．ly N．	4 N．I．	8 N．E．	8 N．F．	9 N．E．
24	5 E．N．For	GE．N．E．	$6 \mathrm{E} . \mathrm{N} . \mathrm{E}$.	3 E．N．E\％．	3 E．N．E．	3 N．E．by E．
25	2 E N． E ．	4 I ．N．E．	$2 \mathrm{E} . \mathrm{N} . \mathrm{E}$ ．	2 N．E．by E．	Calm	Calm
24	Calm	Catue	1 E．N．1\％．	$2 \mathrm{~L} . \mathrm{N} . \mathrm{E}$ ．	3 N．E．	$4 \mathrm{~N} . \mathrm{E}$ ．
27	－E．N． E 。	$4 \mathrm{E} . \mathrm{N} . \mathrm{E}$ 。	${ }_{6} \mathrm{EF}$ N．E．	3 E．N．E．	2 E．N．E．	2 N．E．by E．
28	Calm	1 N .1 L	1 N．E．	Caim	1 N．E．	$2 \mathrm{~N} . \mathrm{E}$ ．
29	$3 \mathrm{~N} . \mathrm{E}$ ．	$2 \mathrm{~N} . \mathrm{E}$ ．	3 N．E．	2 N．E．	4 N．E．	4 N．E．
3	$1 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{E}$.	Calm	5 W.	8 W.	9 W.

May，1859．－At winter quarters．

I．ATE．	5 h.	$8^{\text {h．}}$	Noon．	$4^{1 /}$	Sh．	11 h ．
1	4 W	9 W	9 W.	7 W.	4 W.	4 W.
2	3 W.	3 W.	6 W.	5 W ．	5 W.	7－9 W．
3	7 W.	if W．	（ W W．	6－8 W．	4－6 W．	6 W.
4	3 W．N．W．	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W．N．W．	$1 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	5 W.
5	4 W.	2 W.	1 W.	3 W.	3 W ．	4 W.
，	$\stackrel{\mathrm{L}}{2} \mathrm{~W}$ 。	1 W.	2 W ．	2 W ．	5 W．N．W．	4 W．N．W．
7	2 W.	2 W.	5 W.	6 W.	6－8 W．	8－9 W．
5	$\pm W$ ．	\pm W．	6 W	5 W.	3 W.	Calm
9	TN． N	$7 \mathrm{~N} . \mathrm{E}$ ．	（f）N．F．	2 N．E．	5 N．N．E．	Calm
111	$\because \mathrm{N} . \mathrm{W}$ ．	万，N．W．	$4 \mathrm{~N} . \mathrm{W}$.	（ alm	Calm	3 W.
11		$1 \mathrm{~W} . \mathrm{hyy}$ N．	$5 \mathrm{~W}, \mathrm{by}$ N．	\because N．E．	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$ ．	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.
12	（＇ahn	Calm	$4 \mathrm{~N} . N . W$ ．	3 N．N．W．	\pm N．N．W．	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.
13	$3 N . N$ ．	3 N．N．W．	3 N W．	3 N .1 W ．	$2 \mathrm{~N} . \mathrm{W}$ ．	Calm
14	Calen	（ al （1）	$1 \mathrm{k} . \mathrm{N} . \mathrm{E}$ ．	4 N．N．E．	$3 \mathrm{~N} . \mathrm{N} . \mathrm{F}$.	2 N．N．E．
1%	$3 \mathrm{~N}, \mathrm{~N}, \mathrm{E}$ ．	2 N ，N．E．	2 N N．E．	1 N N．E．	1 N．N．E．	2 N．N．E．
$1{ }^{\circ}$	Calm	Calm	$4 \mathrm{~N} . \mathrm{W}$ ．	$7-8$ N．W．	$5-7 \mathrm{~N} . \mathrm{W}$ ．	\＆N．W．
17	$4 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$ ．	د N．W．	$3 \mathrm{~N} . \mathrm{W}$ ．	4 N．W．	6_{6} N．N．W．
18	Calm	Calm	（＇alm	1 N．N．W．	Calm	Calm
19	$\because \mathrm{N}$ ，1\％	Calm	（＇alm	Calm	$1 \mathrm{~N} . \mathrm{F}$ ．	2 N. by E．
20	3 N	$2 \cdots$	$6 \mathrm{~N} . \mathrm{W}$.	7－9 N．W．	$6 \mathrm{~N} . \mathrm{W}$.	5 W．N．W．
21	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$	1 W．N．W．	Caln	Calm	Calm	2 N．N．E．
22	3 K ¢，	2 E．N． E ．	1 li N．F．	2 E．N．E．	1 E．N．F．	$2 \mathrm{E} . \mathrm{N} . \mathrm{E}$ ．
2	216 N	2 E N．E．	$3 \mathrm{E}$. N． l \％	2 E．N．E．	1 E．N．E．	Calm
2t	1 K K． E ．	1N．by E．	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$ ．	$1 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$ ．
\％	4\％．l．y N ．	4－i W．ly N．	3－5N．W．	5 W．by N．	5 W. by N．	$3 \mathrm{~N} . \text { by E. }$
26	SN．	$3 \mathrm{~N}, \mathrm{E}$ \％	iin N．W．	$3 \mathrm{~N}, \mathrm{~W}$ ．	$5 \mathrm{w}$	$8 \mathrm{~W} .$
	W．	${ }_{5} \mathrm{~W}$	5 W	3 V ．	1 W.	$2 \mathrm{~N} . \mathrm{E}$ ．
23		Calm	${ }_{\text {Calm }}$	1 N.	1 N.	1 N.
30	Cahn	Catm	¢ ${ }_{\text {c．alm }}$	$\xrightarrow{\text { Calm }}$ 4． $\mathrm{N} . \mathrm{W}$ ．	$4 \stackrel{\text { Calmı }}{\text { N．N．W．}}$	${ }_{2} 1 \mathrm{~N} . \mathrm{N} . \mathrm{N} . \mathrm{W}$.
31	4 N N．W．	3 N ，\％W．	4 N．N．W．	3 N．N．W．	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W} .$	$2 \text { N. N. W. }$

Direction (true) and Force of the Wind observed on board tue yacut Fox.
June, 1859.—At winter quarters.

DATE.	5 h .	8h.	Noon.	4 h .	$8^{\text {h. }}$	11 h .
1	$4 \mathrm{~N} . \mathrm{W}$.	3 N. W.	$5-7 \mathrm{~N} . \mathrm{W}$.	$6-8 \mathrm{~N} . \mathrm{W}$.	3 N. N. W.	
2	$9 \mathrm{~N} . \mathrm{W}$.	$9 \mathrm{~N} . \mathrm{W} .$	$9 \mathrm{~N} . \mathrm{W} .$	7 N. W.	$9 \mathrm{~N} . \mathrm{W} .$	9 N. W.
3	4 N. N. W.	1 N.	2 N.	1 N. N. W.	2 N. E.	3 N. E.
4 5	$4 \mathrm{~N} . \mathrm{E}$.	4 N. E.	1 N. E.	Calm	$2 \mathrm{~N} . \mathrm{Li}$.	Calm
5	$2 \mathrm{~N} . \mathrm{E}$. $2 \mathrm{~N} . \mathrm{E}$.	3 N. E. 3 E. N. E.	${ }_{2}^{\text {Calm }}$ N. E.	4 N.	1 N.	3 N,
7	Calm	3 N. E.	5 N. E. by E.	4 N. E. by E.	N N. E. 2 N. E. by E.	3 N. E. 2 N. E. by E.
8	3 N.	4 N.	6 N.W.	7-9 N. W.	7-9 W. by S.	$3-7$ N. W.
9	3 N.	2 N .	Calm	2 N. E.	1 N. F.	3 N. E.
10	4 N. E.	¢ N. E.	$6 \mathrm{~N} . \mathrm{E}$.	4 N. E.	2 N .1 L	Calm
11	6 W. N. W.	6 W.	6 W.	$6 \mathrm{~N} . \mathrm{W}$.	$2-5$ N. N. W.	2-5) N. N. W.
12	2 W. by N .	4 W. by N.	6 N. N. E.	5 N. N. E.	4 N. N. E.	3 N. N. E.
13	$3 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{E}$.	Calm	$1 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
14	$5 \mathrm{~N} . \mathrm{W}$.	${ }^{6} \mathrm{~N} . \mathrm{W}$.	5 N. W.	Calm	$1 \mathrm{~N} . \mathrm{W}$.	1 N. by W.
15	2 W.	2 W.	Calm	Calm	$4 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.
16	2 E. N. E.	$2 \mathrm{E} . \mathrm{N} . \mathrm{E}$.	1 N. E.	1 N. E.	1 N. E.	Calm
17	Calm	Calm	Calm	Calm	Calm	$1 \mathrm{~N} . \mathrm{E}$.
18	2 E ,	1 E .	Calm	5 W .	$4 \mathrm{~N} . \mathrm{W}$.	${ }_{3}{ }^{5} 5$ N. N. W.
19	3 W.	2 W.	4 N. E.	4 N. E.	$6 \mathrm{~N} . \mathrm{W}$.	5 N. W.
20	3 N. W.	$2 \mathrm{~N} . \mathrm{W}$.	$1 \mathrm{~N} . \mathrm{W}$.	Calm	2 E .	Calm
21	Calm	$1 \mathrm{~S} . \mathrm{E}$.	Calm	15.S.W.	5 W. N. W.	7 N. W.
22	9 W.	7-W.	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
23	6 N. W.	5 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	3-5 N. W.
24	7 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	7-9 N. W.	$5 \mathrm{~N} . \mathrm{W}$.	1 N. W.	6 N. W.
25	$6 \mathrm{~N} . \mathrm{W}$.	5 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.	8 N.W.
26	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	3 N . W.	2 N. W.	Calm
27	1 E. N. E.	1 E. N. E.	${ }_{2}$ E. N. E.	3 E. N. E.	1 E. N. E.	3 H. N. E.
28	4 E. N. E.	4 E. N. E.	3 E. N. E.	3 E. N. F\%	$3 \mathrm{E} . \mathrm{N} . \mathrm{E}$.	2 N.E.
29	3 N. E.	1 W .	4 W. N. W.	2 W. N. W.	Calm	$1 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.
30	Calm	$2 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.	7 N.W.	7 N.W.	$3 \mathrm{~N} . \mathrm{W}$.

Direction (true) and Force of the Wind observed on board the yacht Fox. July, 1859.-At winter quarters.

date.	2 h .	$4^{\text {b }}$	5 h.	6 h.	8 h.	10 h.	Noon.
1	----	---	8 N. W.	----	$7 \mathrm{~N} . \mathrm{W}$.	--. -	6 N. W.
2			3 N. W.	---	$4 \mathrm{~N} . \mathrm{W}$.	---	6 N. W.
3			1 E. N. E.		1 E. by N.		2 E. S. E.
4			1 E. N. E.		1 E. N. E.		2 E . by N.
5			2 E. N. E.		2 E. N. E.		2 E. N. E.
6	Calm	Calm		$3 \mathrm{~N} . \mathrm{W}$.	5 N. W.	5 W. N. W.	6 W. N. W.
7	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 W. N. W.		3 W. N. W.	2 W. N. W.	2 W. N. W.	1 W. N. W.
8	3 E. N. E.	3 N.		2 N.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. N. W.	4 W. N. W.
9	4 S . S. W.	$5 \mathrm{S.S}$ W.		$5 \mathrm{~S} . \mathrm{S} . \mathrm{W}$.	2 S. S. W.	Calm	2 W. N. W.
10	$5 \mathrm{~W} . \mathrm{by}$ N.	6 W. by N.		5 W. by N.	5 W. by N.	3 W. by N.	6 N. N. W.
11	7 N.E. by N.	$9 \mathrm{~N} . \mathrm{E}$. by N.		$9 \mathrm{~N} . \mathrm{E}$. by N.	7 N. E. by N.	7 N. E. by N.	7 N. E. by N.
12	$3 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.		5 W. N. W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
13	2 W. N. W.	4 W. N. W.		5 W. N. W.	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	6 W. N. W.	$5 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
14	Calm	Calm		$4 \mathrm{~N} . \mathrm{E}$.	$4 \mathrm{~N} . \mathrm{E}$.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{E}$.
15	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.		$4 \mathrm{~N} . \mathrm{W}$.	5 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	3 N. W.
16	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.		$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	5 N.W.
17	Calm	Calm		$2 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
18	$6 \mathrm{~N} . \mathrm{W}$.	6 W. by N.	---	6 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.
19	$7 \mathrm{~N} . \mathrm{W}$.	$7 \mathrm{~N} . \mathrm{W}$.		$3 \mathrm{~N} . \mathrm{E}$.	$3 \mathrm{~N} . \mathrm{E}$.	6 N. E.	6 N. E.
20	$5 \mathrm{~N} . \mathrm{E}$.	$5 \mathrm{~N} . \mathrm{E}$.		3 N. E.	3 N. N. W.	$3 \mathrm{S.W}$.	2 S. S. W.
21	6 N. E.	5 N. E.		5 N. E.	5 N. E.	$5 \mathrm{~N} . \mathrm{E}$.	5 N. E.
22	5 N. E.	$4 \mathrm{~N} . \mathrm{E}$.		$2 \mathrm{~N} . \mathrm{E}$.	$2 \mathrm{~N} . \mathrm{E}$.	-2 N. E.	3 N. E.
23	3 N. E.	2 N. E.		3 N. E.	3 N. E.	4 E. by N.	3 E. by N.
24	Calm	Calm		Calm	Calm	Calm	1 S.W.
25	$6 \mathrm{~N} . \mathrm{W}$.	$6 \mathrm{~N} . \mathrm{W}$.		$6 \mathrm{~N} . \mathrm{W}$.	6 N. W.	6 W. S. W.	$6 \mathrm{~W} . \mathrm{S}$. W.
26	$6 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	${ }_{6} 6 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.		5 W. S. W.	$5 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	1 W. S. W.	1 W.S.W.
27	2 E. by N.	3 E . by N.		5 E . by N.	5 E. by S.	4 E. by S.	1 N. E.
28	Calm	Calm		Calm	Calm	Calm	Calm
89	1 W. by N.	1 W. by N .		2 N. N. E.	$2 \mathrm{~W} . \mathrm{S}$. W.	2 W. S. W.	2 W. S. W.
30 31	$2 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.		$3 \mathrm{~N} . \mathrm{W}$.	3 N. W.	$3 \mathrm{~N} . \mathrm{W}$.	$2 \mathrm{~N} . \mathrm{W}$.
31	2.N. W.	$3 \mathrm{~N} . \mathrm{W}$.		$3 \mathrm{~S} . \mathrm{W}$.	2 S . W.	3 S . W.	3 W .
date.	2 b .	44.	6 h.	8h.	10 h.	11 h.	Midn't.
1		2 W. S. W.		4 N. W.		4 N. W.	---
2		${ }_{2}^{2} \mathrm{~N} . \mathrm{W}$.		$2 \mathrm{~N} . \mathrm{E}$.		2 N. E.	---
3		1 E. S. E.		$1 \mathrm{~S} . \mathrm{E}$.		$1 \mathrm{~S} . \mathrm{E}$. by S.	
4		1 E. N. E.	- ---	1 E. N. E.		3 E. N. E.	----
5	1 E. N. E.	3 E .	2 E .	2 E. N. E.	1 E. N. E.	-..-	$1 \mathrm{~N} . \mathrm{W}$.
${ }_{7}$	${ }_{6}^{6} \mathrm{WW} . \mathrm{N} . \mathrm{W}$.	6 W. N. W.	${ }^{6} \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	6 W. N. W.	5 W. N. W.		$5 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
7	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	Calm	2 E. N. E.		2 E. N. E.
8	$5 \mathrm{~W} . \mathrm{N} . \mathrm{W}$. $3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	6 W. N. W.	${ }^{6} \mathrm{~W} . \mathrm{N} . \mathrm{W} . \mathrm{W}$.	5 W. N. W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.		$5 \mathrm{S.S.W}$.
8 10	$7 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	3 W. N.W. 7 N. N.	5 W. N. W. 7 N. N. W.	5 W. by N. 7 N. N. W.			4 W. by N. S N.E. by N.
11	4 N. E. by N.	$3 \mathrm{~N} . \mathrm{J} . \mathrm{by} \mathrm{N}$.	Calm	Calm	Calm		Calm
12	5 W. N. W.	5 W. N. W.	5 W. N. W.	4 W. N. W.	6 W. N. W.	----	$6 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.
13	5 N. N.W.	Calm	$3 \mathrm{~N} . \mathrm{W}$.	3 N.W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	---	Calm
14	$2 \mathrm{~N} . \mathrm{E}$.	2 N. E.	4 N. by W.	4 N. by W.	$3 \mathrm{~N} . \mathrm{W}$.		$2 \mathrm{~N} . \mathrm{W}$.
15	5 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.		$2 \mathrm{~N} . \mathrm{W}$.
16	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	3 N. W.	2 N . W.	$4 \mathrm{~N} . \mathrm{W}$.		$4 \mathrm{~N} . \mathrm{W}$.
17	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{W}$.	4 N. W.	5 N.W.	---	$6 \mathrm{~N} . \mathrm{W}$.
18	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	5 N.W.	$5 \mathrm{~N} . \mathrm{W}$.		$6 \mathrm{~N} . \mathrm{W}$.
19	${ }_{6}^{6} \mathrm{~N} . \mathrm{E}$.	7 N .1 E	$1 \mathrm{~N} . \mathrm{E}$.	(i) N. E.	7 N. E.		7 N. E.
20	2 L. by N.	$2 \mathrm{E} . \mathrm{by} \mathrm{N}$.	$5_{0} \mathrm{E} . \mathrm{N} . \mathrm{E}$.	$5 \mathrm{~N} . \mathrm{E}$.	4 N. E.		6 N. E.
21	5 N. W. by N.	6 N. E. by N.	6_{3} N. E. by N.	6 N. li. by N.	4 N. E.	---	5 N. E.
22 23		2 E .	1 E.	Calm	Calm		Calm
23	Calm	1s.W.	IS.W.	Calm	Calm		Calm
24	4s.W.	4 N.W.	4 N. W.	$4 \mathrm{~N} . \mathrm{W}$.	$5 \mathrm{~N} . \mathrm{W}$.	----	$5 \mathrm{~N} . \mathrm{W}$.
25	6 W. S. W.	$6 \mathrm{~W} . \mathrm{S}$. W.	$5 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	6 W. S. W.	6 W. S. W.	--- -	6 W. S. W.
26 27	Calm	1 s .	Calm	Calm	1 E .	---	1 E .
27 29	1 N N. W.	${ }_{1}^{2} \mathrm{~N} . \mathrm{W}$.	¢ ¢alm	Calm	$4 \mathrm{~N} . \mathrm{F}$.		Calm
29	1 \% W	$3 \mathrm{~W} . \mathrm{S}$ W.	4 W.S. W.	$4 \mathrm{~N} . \mathrm{W}$.	\% Light		Variable 2 N. W.
30	$2 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	3 N. W.	\% N. W.	2 N. E.		3 N.W.
31	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	$2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	3 W. N. W.	5 W. N. W.		3 W .

Direction (true) and Force of the Wind obseryed on board the yacht Fox.
August, 1859.-Mean position: Lat. $71^{\circ} .9 \mathrm{~N}$. ; long. $79^{\circ} .8 \mathrm{~W}$.

DATE.	4 h .	Sh.	Noon.	4 k .	8h.	Midn't.	Variation.
1	3 W.	3 W.	1 W.	1 W.	Calm	1 E . by N.	
2	3 E.	2 E .	1 E. by N.	4 E. N. E.	2 N. E.	2 N.E.	
3	2 N. E.	5 N. E.	6 N. H.	6 N. E.	$5 \mathrm{~N} . \mathrm{E}$.	5 E. N. E.	
4	6 N. E.	7 N. E.	7 N. E. by E.	6 N. E. by E.	5 N. E. by E.	Calm	
5	Calm	3 N. W.	3 W .	4 W .	2 W.	2 W.	
6	Calm	Calm	2 S . W.	$3 \mathrm{~N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	2 N.W.	
7	1 W.	2 W.	8 N. W. by W.	4 N. W.	4 N. W.	4 N. W.	
8	5 W.	4 W. N. W.	3 W.	4 W.	4 W.	6 W.	
9*	6 W.	4 W. by S.	5 W. by S.	3 N. N. W.	2 W. N. W.	$1 \mathrm{S}$. .	
10	C'lm, lightvar	2 S . E.	1 E .	Calm	Calm	2 E .	
11	3 E . by S.	3 E. by S.	4 E. by S.	5 E. S. E.	$6 \mathrm{~N} . \mathrm{E}$.	6 N. N. E.	
12	6 E. N. E.	4 E . by S.	$6 \mathrm{E} . \mathrm{by} \mathrm{S}$.	7 E. by S.	7 E. by S.	$7 \mathrm{E} . \mathrm{byS}$ S.	
13	7 E. by S.	7 E. by S.	$6 \mathrm{E} . \mathrm{by} \mathrm{S}$.	$5 \mathrm{E} . \mathrm{by}$ S.	${ }^{6} \mathrm{E} . \mathrm{by} \mathrm{S}$.	7 E. by S.	
14	9 E. by S.	8 E. by S.	6 E. by S.	4 E. by S.	5 E. by S.	5 F. by S.	
15	$4 \mathrm{E} . \mathrm{by} \mathrm{S}$.	4 W. N. W.	8 N. W.	8 W. N. W.	6 N. W. by W.	6 W. by N.	
16	2-4 N.W. by N.	2 W.	$4 \mathrm{~S} . \mathrm{W}$.	5 S. by E.	$2 \mathrm{~S} . \mathrm{by}$ E.	3 S .	
17	Calm	$2 \mathrm{~N} . \mathrm{by} \mathrm{W}$.	2 N. E.	3 N. E.	3 Variable	3 N. N. E.	
18	1 N. E.	2 N. W.	$3 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	5 W. S. W.	5 W.	5 W .	
19	5 W. by S.	5 W. N. W.	6 N. W.	5 W.	5 W.	4 W.	
20	2 W.	Calm	1 N. E.	1 N	5 N.	4 N. N. E.	
21	6 N. W.	3 S .	5 S. E.	5 S .	5 S. E. by E.	2 E .	
22	1 W.	6 W .	6 W .	6 W.	6 S. S. E.	5 S. E.	$90^{\circ} \mathrm{W}$.
23	5 S. E.	5 E.S. E.	3 S. E.	5 E. S. E.	3 E. S. E.	1 E. N. E.	
24	5 N. N. W.	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	6 N. W. by N.	7 N. N. W.	6 N. N. W.	$6 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	83
25	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	Calm	1 N.	1 S .	2 S. W. \& var.	3 S. W. \& var.	78
26	3 Variable, S.	3 E .	2 E .	5 N. W.	$6 \mathrm{~N} . \mathrm{W}$.	1 E .	72
27	3 E.	3 E. N. E.	4 E. N. E.	4 E. N. E.	3 E. N. E.	2 E N. F.	
28	$1 \mathrm{E} . \mathrm{N} . \mathrm{E}$.	3 E. N. E.	3 E. S. E.	2 E. N. E.	2 E. N. E.	2 E. N. E.	
29	2 E. N. E.	1 E. N. E.	Calm	4 N. N. E.	2 N. E.	Calm	
30	Calm	Calm	5 N. N. W.	$2 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	Calm	Calm	
31	2 E. N. E.	2 E. N. E.	3 N. E.	$1 \mathrm{~N} . \mathrm{W}$.	Calm	Calm	

September, 1859.-Mean position: Lat. $58^{\circ} .9 \mathrm{~N} . ;$ long. $40^{\circ} .9 \mathrm{~W}$.

date.	4h.	8 h.	Noon.	4n.	$8^{\text {h. }}$	Midn't.	Variation.
1	2 E. N. K.	4 E. N. E.	2 N. N. E.	2 N.	3 N. W.	5 N.W.	$73^{\circ} \mathrm{W}$
2	5 N. N. W.	7 N. N. W.	$7 \mathrm{~N}, \mathrm{~W}$.	6 N. N. W.	6 N. N. W.	7 N. N. W.	72
3	5 N. N. W.	$5 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$4 \mathrm{~N} . \mathrm{N} . \mathrm{W}$.	$3 \mathrm{~N} . \mathrm{W}$.	2 S.S.E.	2 S . W.	65
4	4 S. S. W.	$4 \mathrm{~S} . \mathrm{W}$.	4 S . W. by S.	5 S.S.W.	5 S .	6 S . by W.	62
5	6 S. E. by S.	7 S. E. by S.	7 S. S. W.	7 S .	3 W. S. W.	$2 \mathrm{~W} . \mathrm{S}$. W.	60
6	1 S. W. by S.	1 S. W. by S.	5 S. W. by S.	4 S. S. W.	$4 \mathrm{~S} . \mathrm{S}$. W.	$4 \mathrm{~S} . \mathrm{W}$. by W.	60
7	3 W .	3 W .	$3 \mathrm{~W} . \mathrm{by}$ N.	5 W .	3 W.	5 W. N. W.	55
8	Calm	2 N. E.	3 N. E.	$4 \mathrm{~N} . \mathrm{E}$.	5 N. N. E.	7 N.	54
9	7 N. by W.	8 N. N. W.	8 N. W.	6 W. N. W.	6 W. N. W.	4 W. N. W.	53
10	4 W. N. W.	$4 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	4 W. N. W.	5 W. N. W.	6 W. N. W.	6 W. N. W.	52
11	$7 \mathrm{~W} . \mathrm{N} . \mathrm{W}$.	7 W.	7 W. N. W.	50			
12	7 W. S. W.	7 S. W.	6 S. S. W.	$5 \mathrm{~S} . \mathrm{W}$.	6 W. S. W.	$5 \mathrm{~W} . \mathrm{S} . \mathrm{W}$.	48
13	3 S. S. W.	3 S .	4 S . W.	4 S . W.	$6 \mathrm{~S} . \mathrm{W}$.	7 S . W.	46
14	7 S. S. W.	$6 \mathrm{~S} . \mathrm{W}$.	6-7 W. S. W.	7 W.	7 W. N. W.	7 W. N. W.	43
15	7 W. N. W.	8 N. W.	$8 \mathrm{~N} . \mathrm{W}$.	8 N. W.	8 N. W.	8 N. W.	40
16	7 N. W. by N.	6 N. N. W.	5 N. N. W.	5 N. N. E.	2 N. E.	1 N. E.	35
17	5 S.S.W.	5 S. S. W.	4 S. S. W.	6 S. S. W.	6 S. S. W.	$6 \mathrm{S.S.W}$.	32
18	6 S. S. W.	6 S . W.	2 W.	6 S. W. by S.	6 S. W. by S.	5 W.	

[^17]Methot of Reduction.-The method of reduction used is the same as that employed in the discussion of Kane's observations-it is by Lambert's improved formula, so as to include the velocity of the wind, and not the relative frequency alone. It is given in its outline in the article "Meteorology," in the 8th edition of the Encyclopredia Britamica.

Let $\theta_{1} \theta_{2} \theta_{3} \ldots$ be the angles which the directions of the wind make with the meridian (true), reckoned round the horizon, according to astronomical usage, from the south, westward to 360°, a direction corresponding to that of the rotation of the winds in the northern hemisphere ; and $v_{1} v_{2} v_{3} \ldots \ldots$ its respective velocities, which may be supposed expressed in miles per hour; and let the observations be made at equal intervals (for instance, hourly). Adding up all velocity-numbers referring to the same wind during a given period (say one month), and representing these quantities by $s_{1} s_{2} s_{3} \ldots \ldots$, the number of miles of air transferred bodily over the place of observation by winds from the southward is expressed by the formula

$$
R_{s}=s_{1} \cos \theta_{1}+s_{2} \cos \theta_{2}+\varepsilon_{3} \cos \theta_{3}+\ldots
$$

And for winds from the westward

$$
R_{10}=s_{1} \sin \theta_{1}+s_{2} \sin \theta_{2}+s_{3} \sin \theta_{3}+\ldots
$$

The resulting quantity R, and the angle ϕ it forms with the meridian, is found by the expressions

The general formule, in the case of eight principal directions θ, assume the following convenient form :-

$$
\begin{aligned}
& r_{s}=(S-N)+(S W-N E) \sqrt{\frac{1}{2}}-(N W-S E) \sqrt{\frac{1}{2}} \\
& R_{v o}=(W-E)+(S W-N E) \sqrt{\frac{1}{2}}+(N W-S E) \sqrt{\frac{1}{2}}
\end{aligned}
$$

Where the letters $S, S W, W$, etc., represent the sum of all velocities during the given period, or the quantity of air moved in the directions $S, S W$, W, etc., respectively; l_{s} represents the total quantity of air transported to the northward, and R_{x} the same transferred to the eastuard. These formulæ, for practical working, may be put in the following shape:-

$$
\text { Put } \begin{array}{ll}
S-N=a & S W-N E=c \\
W-E=b & N W-S E=d
\end{array}
$$

Then

$$
\begin{aligned}
& R_{s}=R \cos \phi=a+0.707(c-l) \\
& R_{\imath v}=R \sin \phi=b+0.707(c+d) .
\end{aligned}
$$

Since R_{s}, R_{w}, R, represents the quantity of air passed over during the given period in the direction $0^{\circ}, 90^{\circ}, \phi^{\circ}$, respectively, we must, in order to find the mean velocity for any resulting direction, divide by n, or by the number of observations during that period; we then have

$$
V_{s}=\frac{R_{s}}{n}, \quad V_{10}=\frac{R_{v o}}{n}, \quad \text { and } V=\frac{R}{n} .
$$

A particle of air which has left the place of observation at the commencement of the period-of a day, for instance-will be found at its close in a direction 180 $+\phi$, and at a distance of R miles, equal to a movement with an average velocity of
$\frac{R}{n}$; this supposes an equal and parallel motion of all particles passing over; the length of the path described by each can be found by the summation of all the v 's (for each hour) during the period.

The great variability in the direction and force of the atmospheric motion renders the taking of resulting values for short intervals unnecessary, and a subdivision of the reduction into monthly periods has been found convenient.

To include more than eight directions into the discussion would not only render it very tedious, but would give no materially increased accuracy. Observed directions, intermediate of the eight directions, are referred to the nearest principal direction; and if midway, and occurring more than once, they are referred to the nearest preceding and following direction alternately.

The winds observed during July and August, 1857, and in September, 1859, cannot well be combined with the body of the observations, and have, therefore, not been reduced.

To illustrate the process of reduction, the working up of the observations for direction and force of the wind in the month of September, 1857, is here given as an example.

Abstract of the Quantity of Wind referred to the eight principal Directions and observed in tel Month of September, 1857 , between Latitudes $75^{\circ} .5$ and 75° N., and Longitudes $64^{\circ} .1$ AND $66^{\circ} \mathrm{W}$. Ohservations at $4,8,12$, A. M. and P. M. (The few intermediate observations on the last day of the month were not taken into account.)																
True direct' n .	1st.	2 d.	3 d	4 th.	5 th.	6 th.	7th.	8 th.	9th.	10th.	11th.	13th.	13th.	14 th.	15 th.	
S.	10		20	...	\cdots	\cdots	72	152	15	36	...	10	66	4	
N.		2	10	24		...	-	\cdots		\cdots		..	
W. . . .	\cdots	.	3	\ldots	...	\ldots	24	48	...	2	\ldots	31	28	42	1	
E. . - .	4	1	...	56	8	14	10	17	...	17	24	1	
S. W. . .	8	-.	\cdots	\cdots	
N. E. -	1	10	17	\cdots	...	4	
N. W. .	5	1	1		\cdots	10					4	...	4	
S. E. .	10	10	...	27	8	10	42	104	24	24	96				1	
Sum . .	27	22	6	103	17	54	117	224	176	41	149	31	59	132	15	
True direct'n.	16th.	17th.	18th.	19 th.	20 th .	21 st.	22d.	23d.	24 th.	25 th .	20 ¢th.	27th.	28th.	$29 t h$.	30 th .	
S. . .	**	-	$\stackrel{8}{8}$	\cdots	'	"	\cdots	\cdots	\cdots	\cdots	\cdots	...	385
N. . .	*.	2	8	9	8	4	\cdots	4	10	5	86
W. . . .		4	28	90	49	...	\cdots	...	4	\cdots	\cdots	354
E. . . .	75	10	17	4	258
S. W. . -	...	\cdots	\cdots	*-.	\cdots	...	\cdots	8
N. E. .	\cdot	4	\cdots	25	4	1	...		56	2	\cdots	27	...	…		153
N. W. .	\cdots	2	27	10	44	17	121	13	31	57	40	14	...	11	70	482
S. E.			356
Sum . . .	75	12	63	47	56	111	170	13	97	59	48	68	9	11	70	2052

By preceding formulx we find-

$$
\begin{aligned}
c & =-145 \\
d & =+126 \\
c-d & =-271 \\
c+d & =-19
\end{aligned}
$$

$\begin{aligned} 0.7(c-d) & =-190 \\ 0.7(c+d) & =-13 \\ a & =+299 \\ b & =+96\end{aligned}$
$R_{s}=+109$
$R_{10}=+83$
$R=+137$
$\phi=37^{\circ}$
equivalent to a resulting direction of the wind S. W. $\frac{3}{4}$ S.

The following table shows the velocity-numbers for each of the principal eight winds, as well as the resulting direction of the wind, for each month between Sept. 1857, and Aug. 1859, as deduced by application of the preceding formulæ.

The above results for the resulting direction of the wind in each month, when expressed to the nearest half point, are contained in the following table:-

Resulting Direction of the Wind.

For the combination of the monthly results to quarterly, half-yearly, and yearly results, we have to double the numbers for R_{s} and \boldsymbol{R}_{w} for all months in which but 6 observations a day were taken, in order to make them correspond to the numbers for the other months in which 12 observations a day were recorded; the latter number of observations having been adopted as standard. The numbers in the second column for April, 1858, were doubled and added to the corresponding numbers in column one, before the formula was applied.

The following table contains the resulting values for R_{s} and R_{w} as they resulted (or in part were referred to) from bi-hourly observations:-

At Port Kennedy, the resulting direction of the wind is remarkably constant for the several seasons, and the differences with the corresponding values for Baffin Bay are also small, the final direction for the two localities being practically identical.

For further comparison, I add a table showing the resulting (true) direction of the wind for Baffin Bay (lat. $72^{\circ} .5$ N., long. $65^{\circ} .8$ W.), Van Rensselaer Harbor ${ }^{1}$ (lat. $78^{\circ} .6 \mathrm{~N}$. , long. $70^{\circ} .9 \mathrm{~W}$.), and Port Kennedy (lat. $72^{\circ} .0 \mathrm{~N}$., long. $94^{\circ} .2 \mathrm{~W}$.)

Season.					Baffin Bay.	Van Rensselaer Harbor.	Port Kennedy.
Autumn	- 105°	22°	151°
Winter	-	-	.	-	. 142	351	136
Spring	-	.	-	.	167	21	150
Summer	-	.	.	.	- 146	72	156
Year	.		.		. 149	19	147

These numbers show that the wind at Van Rensselaer Harbor is rather anomalous in its direction when compared with either of the two more southern stations, the resulting directions being S. by W. 8 W., whereas at Baffin Bay and Port Kennedy, it is N. W. by N. i N.

Average Velocity of the Resulting Wind.-We find the average velocity of the resulting wind by dividing the quantity R by the actual number of observations (exclusive of calms). This velocity, on account of the neutralization of the opposing winds, is necessarily smaller than the average velocity of the winds.

[^18]Thus, for September, 1857, we found $R=137$, and $n=$ number of observations (minus calms) $=170$, hence $V=0.8$. The following table contains the quantities for each month, season, and the whole year. The numbers for April, 1858, were changed so as to refer to 12 daily observations throughout. A similar remark applies to March, 1859, and to July, 1859.

Average Velocity of the Winds.-The average velocity with which each of the eight principal winds passes over the place of observation in each month, season, and whole year, is found by dividing the sum of the velocity-numbers of each wind by the number of entries in the period; thus, for the month of September, 1857, we have-

The following table shows the mean velocity of the winds, expressed in miles per hour, for each month of observation:-

Year．	True diruction．	B E 品		$\begin{aligned} & \text { 菦 } \\ & \text { E } \end{aligned}$	苍	$\stackrel{\dot{y}}{\stackrel{\rightharpoonup}{z}}$	号	劲			\％			遆
$\begin{aligned} & \infty \\ & \\ & \\ & \\ & \hline \end{aligned}$	S．	5.4	6.5	14.0	26.2	18.4	16.6	2.2	5.5	19.2	16.4	11.5	11.0	12.5
	\therefore W．	5.5	3.11	12． 2	18.5	6.9	3.2	11.9	17.4	4.0	7.1	16.7	4.5	10.6
	W．	15.4	6.9	6.7	8.1	1.1	9.6	6.7	23.1	12.2	9.9	20.0	10.0	13.9
	N．W．	$2: .3$	29.0	23.4	20.9	16.5	9.3	12.0	21.3	10.3	11.5	16.0	15.2	18.8
	N.	11.8	23.1	21.5	33.2	17.3	6.3	13.6	19.3	4.7	7.7	－－	8.5	20.6
	N．E．	16.0	11.6	7.2	8.4	1：3．3	4.7	19.3	13.7	11.0	18.1	13.0	5.6	11.0
		5.4	1.0	10.9	13.0	22.8	15.5	9.6	20.7	11.7	8.7	19.6	10.5	13.9
	S．E．	4.1	24.1	21.8	19.5	16.4	10.3	6.0	18.4	19.8	20.2	25.6	16.1	16.8
$\begin{aligned} & \text { 丽 } \\ & \vdots \\ & 0 \end{aligned}$	Mean	14．1	22.0	14.3	23.6	14.8	9.2	11.2	20.0	12.3	12.5	17.7	11.7	16.0
	S．		1.0				－－	1.0	11.9	13.4	21.2	－－	－－	13.2
	S．W．	－	24.5	4.9	30.3	－－	1.0	15.1	11.8	18.2	12． 4	－－	11.7	16.2
	1 ．	12.1	16.9	15.2	16.2	22.6	21.2	17.9	16.4	23.8	8.4	17.7	25.7	19.6
	N．W．	17.2	19.2	22.2	16.4	15.6	24.8	18.7	21.6	23.4	28.0	22.7	19.2	20.4
	N．	11.8	－－	－－	8.6	3.6	7.3	12.0	7.5	16.7	12.7	10.5	10.0	11.7
		12.5	9.9	9.1	15.6	8.1	10.3	18.1	14.8	16.7	22.5	20.3	10.8	14.3
	E．		－－	．－	8.5	－－	3.0	8.2	21.4	13.5	12.5	4.0	－	15.1
	S．E．		1.0	－－	6.5	－－	1.0	1.7	18.1	18.4	6.9	17.0	10.0	12.8
Mean		10.5	17.1	14.6	15.4	15.7	18.0	17.1	17.5	20.0	22.5	21.7	17.2	17.8

In the first year，while in Baffin Bay，the velocity of the wind was greatest in the months of February and March，and least in the months of June and July ；in the sccond year，at Port Kennedy，it was greatest in October and November，and least in March and April．In Baffin Bay，during 1857，＇58，the N．W．and N． winds blew with the greatest strength，and the S．W．and N．E．with the least； whereas，in the following year，at Port Kennedy，it was the W．and N．W．wind which hew strongest，and the N．and S．E．which blew with the least force．The mean velocity of each of the cight winds is shown in the annexed diagram，which contains also，for comparison，the velocity of the winds as observed at Van Rensse－ laer IIarbor．

Fig． 1.

The velocity of the wind being only estimated at each place，the apparently small velocities at Van Rensselaer Harbor may，in a mea－ sure，be due to a different scale of estimating，although the great num－ ber of calms seems to point to their reality．

We have next to consider the relative frequency of each wind；for this purpose it is only necessary to refer the number of entries，n ，of each wind，as used in the preceding computation for the velocity，to an equal number of hours of observation for each month．This has been done hy simple proportion，and the num－
bers were all referred to twelve observations a day；thus，the numbers of entries， for all months of six observations a day，have all been doubled．The following table contains the relative frequency of each wind：－

	True direction．	䂞	彥	皆	宾	梁	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{5}}$	$\stackrel{\Delta}{\underset{3}{y}}$	容		¢ ¢ $\stackrel{\text { d }}{0}$ 8		促	家
	S．	27	19	22	s	24	10	10	S	40	1.5	19	41	$24: 3$
	S．IW．	16	9	28	26	38	23	62	38	4	30	42	30	345
	W．	54	22	20	13	2	10	34	68	58	48	56	：39	426
	N．W．	130	125	133	105	58	98	64	62	94	115	115	134	1233
	N．	45	103	68	125	16	40	20	14	$3 i$	14	0	：39	520
	N．E．	32	20	42	44	64	34	45	44	$\stackrel{28}{ }$	37	32	31	454
	E．	22	1	22	4	22	40	32	32	44	43	35	2	299
	S．E．	37	16	35	22	72	58	48	50	36	48	40	＋ 41	503
	Calm	9	21	2	11	70	48	50	52	20	22	21	15	341
Sum and check		372	336	372	358	306	360	370	368	360	372	360	372	4366
	S．	0	1	0	0	0	0	1	14	20	8	0	0	44
	S．W\％．	0	2	0	14	0	2	38	10	62	14	0	17	159
	W．	11	69	19	3	110	26	13	62	90	14	6	30	488
	N．W．	256	174	100	38	110	152	157	66	68	152	203	194	1670
	N.	22	0	0	24	18	16	4	8	20	6	2	1	121
	N．E．	37	45	140	172	70	106	88	82	50	134	108	72	1104
	E． S．E．	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 2	0 0	8	0 0	6 2	21 8	64 25	4	${ }_{26}$	1	0	108
	S．E．		2	0	8	0	2	8	2	40	26	1	1	114
	Calm	44	43	112	56	64	50	42	38	6	14	39	53	561
Sum and check		370	336	371	358	372	360	372	370	360	372	360	368	4369

In the above table a few variable winds have not been counted in．
In both localities the N．W．is the most frequent next to this，in Baffin Bay the N．wind，and at Port Kennedy the N．E．；the least frequent wind in both seasons is from the S．and E．The results at Port Kennedy are remarkable for the scarcity of winds from the S．，E．，and S．E．This is most probably due to the configuration of the surrounding land；the same cause may also explain the scarcity of winds from the north，midway between the most frequent N．W．and N．E．winds．The following diagram exhibits the relative frequency of each wind for the two locali－ ties，to which has been added the result obtained at Van Rensselaer Harbor（the numbers for that harbor refer to twenty－four observations a day，and were therefore halfed in order to make them comparable with the numbers deduced above．）

Relative Frequency of the Winds．

In Baffin Bay the calms occur less frequently than any of the eight winds; at Port Kennedy they are more frequent; the frequency of the calms at Van Rensselaer

Fig. 2.
 exceeds that at Baffin Bay and Port Kennedy in the ratio of nearly 7 and 5 respectively.

The preponderance of the N. W. and N. E. winds at Port Kennedy is very striking on the diagram.

The quantity of air which has been transferred over the place of observation in a given period, is directly proportional to the velocity-numbers, or the number of miles travelled over by a particle of air in any direction during the period. The observations not having all been made at regular and equal intervals of two hours, the numbers indicating the relative quantity of air in April, 1858, March and July, 1859, were referred by simple proportion to twelve observations a day, to which all other numbers refer; the number for all months of six observations a day have been doubled.

The following table contains the comparative values at Van Rensselaer Harbor
with the above, the result at Van R. having first been halfed to refer to twelve observations a day.

These results of the relative quantity of air moved over each place are also shown in the annexed diagram.

Owing to the small differences in the velocity of the several winds, the alove diagram of the quantity of wind resembles that of the frequency of the winds, at least, in all its characteristics.

It cannot be expected that the relations of the wind within the Arctic Circle should come out with any degree of certainty from but a single year of observation, or even from several years; and before we can arrive at their true characteristics, we must combine results at different stations as well as in different years.

Rotation of the Wind.-For the purpose of ascertaining the law of the
 rotation of the wind, the observations were examined in reference to the number of times the wind arrived at each of the eight principal directions, the motion each time not being less than 45°; and also in reference to the sum total of angular motion, in a direct and retrograde sense. The direction in which the hands of a watch (face up) turn, and which corresponds to the direction of the rotation of the wind, according to Dove, has been assumed as direct, and is indicated by a + sign; the opposite direction is indicated by a - sign.

The following table exhibits the number of changes of the wind, or the number of times it arrived at any one of the principal directions during a given period, and also the amount it shifted, or its angular motion expressed in units of 45°. In making out these numbers for each wind, not only the four-hourly series of observations, but also the intermediate observations in certain months were used. After each calm the counting was commenced anew, and also in cases where the wind shifted suddenly 180°.

Changes to	$\text { Altume, } 1557 .$ Ibrection. Amount.			Wister, 1s5ï-s.				Spming, 1858.				Summer, 1858.				Year, 1857-8.			
				Dire	tion.	Amo	unt.	Dire	tion.	Am	unt.	Dire	tion.	Amo	unt.	Dire	ction.	Am	ount.
N.	3	$+\frac{1}{5}$	$\overline{2}$	$+$	$\overline{3}$	$+1$	$\overline{5}$	\pm	$\overline{4}$	+ 7	12	$\stackrel{+}{5}$	$\overline{4}$	\pm	$\overline{8}$	$\stackrel{+}{21}$	12	+ 36	27
N. E .	$6: 11$	11 !	20	11	3	36	13	5	5	25	11	9	9	19	22	31	28	91	66
E .	1111	30	19	0	1	0	2	6	6	17	11	3	6	5	8	20	24	52	40
S. E.	127	20	12	2	5	4	16	13	3	42	5	12	6	30	25	39	21	96	58
\therefore	15%	12	11	3	4	10	9	2	6	4	10	2	4	9	9	13	20	35	39
s. W.	7 (i)	17	15	5	4	15	13	10	5	31	16	5	14	9	29	27	29	72	72
W.	317	11	35	1	15	1	42	1	4		8	9	3	10	17	14	39	23	102
N. W.	$17 \quad 7$	$2{ }^{2}$	19	8	\&	15	17	6	10	20	26	6	10	14	19	37	35	79	81
sum	$65 \quad 60$	130	133	38	43	97	117	48	43	153	99	51	56	104	136	212	208	484	485
Excess	... 1	\ldots	3	...	5	...	20	5	...	54	5	...	32	...	6	...	1

From the above it appears that the direction of the wind is shifting in spring only direct, in the other seasons it is retrograde; the total amount of angular motion, however, is balanced (within 45°) in the whole year.

Port Kennedy: Lat. 720.0 N. ; Long. 940.2 W.																		
Changez to	Autumi, 1858.		Winter, 1858-9.				Spring, 1859.				Summer, 1859.				Yeaf, 1858-9,			
	Lirection. Amount.		Direction.		Amount.													
N.	$\pm \quad \overline{1}$	$\begin{array}{ll}+ & \overline{5}\end{array}$	+ 1	$\bar{\square}$	+ 1	$\overline{0}$	$+$	$\overline{1}$	$+$	$\overline{1}$	$+$	$\overline{1}$	$+$	1	\pm	\bigcirc	$\stackrel{+}{10}$	$\overline{7}$
N, \%.	111	2413	3	1	6	2	4	2	11	2	11	5	24	8	28	12	65	25
J.	311	80	1	0	1	0	5	0	7	0	7	2	11	5	16	2	27	5
\therefore E.	24	411	0	1	0	2	1	0	2	0	3	2	11	2	6	7	17	15
	11	3 3	0	0	0	${ }^{1}$	0	${ }_{0}^{0}$	${ }^{0}$	0	1	3	1	9	2	4	4	12
iv.	$\begin{array}{ll}1 & 9 \\ 5 & 5\end{array}$	$\begin{array}{rrr}0 & 17 \\ 1 \pm\end{array}$	1	5	0 3	$\stackrel{9}{4}$	0	2	1	4	0	${ }^{6}$	0	20	0	22	${ }_{18}^{0}$	50
N. W.	9 1\%	178	22	12	2	14 4	$\frac{1}{7}$	(7	15	12	8	16	26	50	28	68	73
Sum	32. 36	72.85	24	23	39	31	19	20	31	37	37	40	67	89	116	119	209	242
1:xcess	$\cdots 4$... 13	5	...	S	1	..	6	\ldots	3	...	22	...	3	...	33

As might have been expected from the peculiar situation of Port Kennedy, and the results as given on Figs. 2 and 3, the rotation of the wind scems to be greatly affected in this locality; the resulting direction is retrograde, and the amount equals four circumferences.

The following table contains, ${ }^{1}$ for comparison, the results of a similar investigation of the rotation of the winds at Van Rensselaer Harbor, from Dr. Kane's observations in 1853, '54, 55.5 . Seventeen months of observations (hourly) were discussed, and the results, by the same months in different years, were united into one mean: the results for September, October, November, December, and January, have double weight, for this reason, when compared with the remaining months.

[^19]| Changes to | Van Rensselaer IIarbor: Idat. 78.6 N ; Iong. 70.9 W. | | | | | | | | | | | | | | | | | | | |
| :---: |
| | Autume 1853-4. | | | | Winter, 1853, '4, '5. | | | | Spring, 1854. | | | | Sumater, 1854. | | | | Yeatr, 1853, '4, '5. | | | |
| | Drection. | | Amount. | | Direction. | | Amount. | | Direction. | | Anount. | | Direction. | | Amount. | | Direction. | | Amount. | |
| N. | $\frac{+}{10}$ | $\overline{1}$ | | 2 | \pm | - | + 3 | 13 | $+$ | \bigcirc | $+$ | 0 | 11 | 5 | $\stackrel{+}{+}$ | 8 | $\stackrel{+}{28}$ | 11 | + | 23 |
| N. E. | 2 | 1 | | 3 | 0 | 2 | 0 | 4 | 0 | 1 | 0 | 3 | 4 | 0 | 1 | 0 | 6 | 4 | 9 | 10 |
| E. | 1 | 6 | 3 | 11 | 1 | 10 | 2 | $2]$ | 0 | 5 | 0 | 12 | 0 | 3 | 0 | 5 | 2 | 24 | 5 | 49 |
| S. E. | 3 | 18 | 4 | 27 | 10 | 17 | 12 | 33 | 2 | 11 i | 2 | 27 | 5 | 4 | 9 | 5 | 20 | 55 | 27 | 98 |
| S. | 14 | 18 | 18 | 23 | 16 | 20 | 24 | 28 | 15 | 111 | 20 | 17 | 7 | 2 | 8 | 2 | 52 | 50 | 70 | 70 |
| S. W. | 20 | 2 | 27 | 4 | 29 | | 43 | 7 | 12 | 6 | 17 | 16 | 3 | 0 | 4 | 0 | 64 | 14 | 91 | 27 |
| W. | 6 | 4 | 11 | 6 | 11 | | | 1 | 2 | 2 | 2 | 2 | 2 | 25 | 4 | 26 | 21 | 32 | 45 | 8.5 |
| N. W. | 4 | 9 | S | 13 | 4 | 3 | 8 | 5 | 9 | 5 | 21 | 5 | 18 | 5 | 22 | 6 | 35 | 29 | 59 | 39 |
| Sum | 60 | 58 | 86 | 89 | $7 t$ | 6-1 | 120 | 112 | 44 | 45 | 70 | 82 | 50 | 44 | 66 | 52 | 298 | 212 | 3.22 | 335 |
| Excess | 1 | ... | ... | 3 | 10 | \ldots | 8 | ... | \cdots | 1 | \cdots | 12 | 6 | ... | 14 | ... | 116 | ... | 7 | ... |

The result is in favor of the direct motion of not quite a circumference. The result deduced for Baffin Bay agrees with this within the limit of uncertainty of the final value itself, and both indicate that the law of rotation probably does not hold good for these high latitudes.

Occurrence and Duration of Storms.-The following table contains the date, duration, and direction (true), of all storms experienced between the dates of the record. In each case the intensity rises to δ (of the scale) or beyond it, and there are at least two consecutive entries of this or a higher number; in other words, gusts of wind blowing for less than three hours are not noted.

Date.	Duration.	Direction nnd changes.
1857, Aug. 30, 31,	$12^{\text {h. }}$	E. S. E. to S. S. E. and S. E.
Oct. 14,	12	E. N. E. to E. S. E.
" 22,	14	N. W. to W.
" 27, 28,	8	N.W.
Nov. 6, 7,	12	N. W.
" 17,	16	S. to S. W., S. E., and S. S. F.
*" 21, 22, 23,	36	N. E. to S. E., S., S. W., and S. S. W.
Dec. 5, 6,	12	W. to N. W.
" 12,	18	N. W. to W. N. W.
1858, Jan. 7,	4	N. W.
" 21,	8	N. N. W.
" 23,	8	N. N.W. to W. N. W.
Feb. 1,	6	N. N. W.
" 9,	24	N. W. to N. N. W. and N. W.
" 15 ,	4	N.
" 24,	32	N. W. to N. N. W. and N. W.
" 28,	6	S. ${ }^{\text {d. }}$
* March 3, 4,	14	N. E. to S. S. W., S., and S. W.
" 22, 23,	8	S. E.
" $25,26,27$,	46	N. to N. W. and N. N. W.
April 3, 4, 5,	54	N. to N. W.
" 8 ,	8	N. W.
" 16, 1\%, 1s,	58	N.
* May 4 ,	36	S. S. E. to S., N. N. W. and N. W.
July 13,	12	N. E.
Aug. 8,	28	E. S. E. to E.

[^20]10

In the year 1857-S (Baffin Bay), there were 26 storms of an average duration of 19 hours, and from the prevailing quarters, almost to the exclusion of all others, from the N. W. and S. E. (true) ; at Van Rensselaer Harbor, the prevailing storm quarters were S. W. and S. E. (true), and the average duration was 7 hours; 13 storms were recorded during 17 months.

Dite.	Buration.	Direction and changes.
1858, Sept. 4,	$8^{\text {h }}$	W.
Oct. 3,	8	N. E.
" 16, 17,	24	W. N. W. to N. W.
" 25, 26, 27,	48	N. E. to N. N. E., N. N. W., and N. W.
Nov. 2, 3,	16	N. W. to N. N. W.
" 4,	20	W. N. W.
" 5,	4	N. W.
" 14,	4	N. W.
" 2r,	S4	N. N. E. to N. N. W. and N. E.
[ee. 4 ,	B	N. W.
" 26,	4	N. W.
" 27,	4	N. W.
1859, Jan. 8,	4	N. W.
" 24, 25,	10	N. W.
1-cl. 14,	4	W. N. W.
Feb. 28, and March 1,	, 25	W. N. W.
March 11,	26	N. W. to W. N. W. and N. W.
" 17,	4	N. W.
April 23,	12	N. E.
April 30, and May 1,	20	W.
June 1, 2,	28	N. N. W. to N. W.
July 11,	4	N. F.

There were 22 storms in the second year, almost all from the N. W., with a few from the N. E, but not a single one from either S. W. or S. E.

As in Baffin Bay, storms are more frequent in the winter and autumn than in summer.

Five of the storms were accompanied by sudden falls of the barometer; they are the nore remarkable ones, and have been illustrated by diagrams, showing the hour, direction, and force of wind, and reading of the aneroid barometer. Of these five, the storms of January 21 , and March 3, 4, 1858 , are perhaps the most interesting; in each case the barometer fell over one inch. During the storm of May 4, 1858 , the barometer was not much affected.

The relation of the different winds to the atmospheric temperatures has already been investigated in the preceding paper; other relations, as those with the atmospheric pressure, will be given on subsequent pages.

PARTIII.

ATMOSPHERIC PRESSURE.

record and reduction or tie observations for athospileric phessule.

INTRODUCTORY REMARKS.

The observing hours are the same as those for the other meteorological obscrvations, that is, in part at equal intervals of two hours, and in part at intervals of four hours. There are two records, one of the aneroid readings, the other of the readings of the mercurial barometer.

The series of observations by the aneroid is continued throughout the cruise; the mercurial barometer was used only between September 20,1857 , and Λ pril 16 , 1858. The readings in the month of July and August, 1857, and of September, 1S59, are given in the record, but are not further introduced in the discussion, since the ship was then rapidly changing her position, not permitting a combination of the daily observations.

The mercurial marine barometer, Adie No. 208, was compared with a standard instrument at Kew both at departure and after return. The comparisons for index correction are as follows (communicated in a letter from Captain McClintock, dated London, December 12th, 1860) :-

Corrections to be applied to Barometer by Adie No. 208 (or No. 407 , private
Mark of tee makers.)

Before Embarfation in the Fox.	Subsequent to its Return.		
At inches.	Correction.	At inches.	Correction.
30.5	+0.005	30.5	+0.008
30.0	+0.006	30.0	+0.008
29.5	+0.007	29.5	+0.007
29.0	+0.007	29.0	+0.006
28.5	+0.007	28.5	+0.005
28.0	+0.008	28.0	+0.005

This mercurial barometer had been used by Professor Piazzi Smyth at Teneriffe, and is highly thought of by Admiral Fitzroy, in whose office it is now in use.

It is specially stated in the reduction whenever the above correction was applied. Comparisons of the readings of the mercurial and aneroid barometers will be found in the discussion.

The cistern of the mercurial barometer was four feet above the level of the sea (in reference to the position of the aneroid, no statement is given). The barometric
realings recorded give the combined pressure of the dry air and aqueous vapor; the latter, however, is very small: no hygrometric observations were found recorded.

The following tables commence with the aneroid readings, and conclude with the realings of the mercurial barometer and its corresponding temperature. A few aceasional omisions in the record were supplied by interpolation; such figures are distinguished by being placed between brackets. The mean position of the "Fox" is given for each month (the daily position is already given in the preceding temperature paper).

Lecord of the Observatiox of the Atmospheric Pressure made on board the Yacht "Fox," under command of F. L. MeClintock, R. N., in tie Aretic Seas, in 1857, '58, '59.

Readings of Anerod barometer 1 h 601 on board the Yicht Fux.
July, 1857. 29 Inches + . Mean Lat. $62^{\circ} .0 \mathrm{~N}$., Long. $39^{\circ} .1 \mathrm{~W}$. of Greenwich.

DAY.	4^{12}.	Slı.	Noon.	$4^{\text {h }}$	8h.	Midn't.	Mean.
1	---	--.	-..-	-..-	---	---	Inches.
2	(1.50)	1.50	1.50	1.15	. 95	(.92)	1.25
3	(.88)	. 8.5	(.87)	(.89)	. 91	(.91)	0.88
4	(.91)	. 91	(.94)	(.98)	1.111	(1.05)	0.96
5	(1.118)	1.11	(1.11)	(1.12)	3.12	(1.12)	1.11
6	(1.12)	1.12	1.12	1.17	1.18	1.20	1.15
7	1.20	1.22	1.23	1.22	1.22	1.22	1.20
8	1.16	1.14	1.12	1.04	1.02	. 96	1.08
9	.92	. 90	. 86	. 85	. 83	. 80	0.86
10	. 72	. 66	. 59	. 52	. 52	. 52	0.59
11	. 48	.46	. 44	. 40	. 40	. 44	0.44
12	. 46	. 50	. 54	. 61	. 70	. 78	0.60
13	. 82	. 85	. 92	. 84	. 96	. 99	0.91
14	. 98	. 96	. 92	. 89	. 90	. 92	0.93
15	. 90	. 92	. 94	. 98	. 97	.94	0.94
16	. 90	. 89	. 85	. 82	. 89	. 92	0.88
17	. 96	. 99	. 98	. 97	. 98	. 97	0.97
18	. 92	. 90	. 84	. 82	. 82	. 84	0.86
19	. 80	(.78)	(.76)	(.74)	(.72)	.70	0.75
20	. 74	. 74	. 74	. 74	. 74	. 80	0.75
21	.8\%	. 82	. 84	. 82	. 88	. 88	0.84
22	. 86	. 82	. 80	. 82	. 84	. 84	0.83
23	. 86	.86	. 84	. 85	. 84	. 84	0.85
24	. 84	. 76	. 73	. 76	. 80	. 90	0.80
25	. 96	(.95)	. 94	. 94	. 90	. 89	0.93
23	. 70	. 60	. 54	.60	. 56	. 54	0.59
27	. 34	. 50	. 48	. 50	. 50	. 48	0.47
28	. 52	. 58	. 60	. 62	. 60	. 64	0.59
29	.69	. 65	. 68	. 68	. 72	. 73	0.69
30	. 70	. 68	. 66	. 65	. 64	. 63	0.66
31	. 72	. 80	. 84	. 90	. 92	. 94	0.85
Mean	29.849	29.847	29.841	29.834	29.834	29.844	29.842

August, 1857. 29 Inches + . Mean Lat. $74 .{ }^{\circ} 0$ N., Long. $59^{\circ} .8 \mathrm{~W}$.

DAY.	4 h.	Sh.	Noon.	$4{ }^{\text {b }}$	Sh.	Midn't.	Mean.
1	.94	. 99	.98	. 96	. 94	. 94	0.96
2	.90	. 92	. 90	.96	. 98	. 96	0.94
3	.96	. 98	(.94)	(.90)	(.86)	(.82)	0.91
4	.78	. 74	. 70	. 72	. 84	. 93	0.78
5	1.02	1.12	1.15	1.24	1.24	1.23	1.17
6	1.16	1.08	1.00	. 98	. 90	. 96	1.01
7	.96	1.118	1.10	1.15	1.15	1.15	1.10
8	1.18	1.12	1.12	. 94	. 86	. 80	0.99
9	. 75	. 76	. 81	. 88	. 90	. 90	0.83
10	. 92	. 92	. 94	1.00	1.06	1.04	0.98
11	1.10	1.10	. 97	. 94	. 92	. 89	0.95
12	.85	. 87	. 69	. 92	.95	. 98	0.91
13	1.00	1.14	1.06	1.02	1.02	1.02	1.03
14	. 96	. 90	. 86	. 82	. 52	. 80	0.86
15	. 81	. 81	. 80	(.73)	(.67)	(.60)	0.74
16	. 514	. 43	.45	. 50	. 52	. 52	0.49
17	. 48	. 48	. 48	. 51	. 55	. 60	0.52
18	. 64	. 68	. 72	.76	. 78	. 80	0.73
19	. 82	. 85	.90	.94	. 95	. 98	0.91
20	. 98	1.110	1.02	1.05	1.06	1.06	1.03
21	1.10)	1.04	1.03	1.02	1.00	. 98	1.02
22	. 96	. 96	. 94	. 96	. 98	. 94	0.96
23	.22	. 92	. 90	.90	. 88	. 84	0.89
24	. 78	. 71	. 11	. 56	. 54	. 54	0.62
25	. 56	.61	. 13	. 61	. 62	. 54	0.54
26	. 51	. 54	. 64	. 68	. 67	.62	0.61
27	. 62	. 65	. 65	.62	.62	. 66	0.64
28	. 76	. 82	.92	1.00	1.04	1.10	0.94
29	1.06	1.20	1.20	1.06	. 90	. 69	1.03
30	. 50	. 48	.44	. 58	.66	. 78	0.57
31	. 86	.97	.93	.75	.50	.44	0.75
Mean	29.850	29.860	29.858	29.860	29.852	29.842	29.854

Readings of Aneroid Barometer 17701 on board tile Yacht Fox. September, 1857. 2! Inches + . Mean Lat. $75^{\circ} .3 \mathrm{~N} .$, Long. $65^{\circ} .0 \mathrm{~W}$.													
	$2{ }^{3}$	4 t .	6is.	8 k.	10^{h}.	Noon.	2 h	4 h.	6 h.	$\delta \mathrm{h}$.	10 L	Midn't.	Mean.
!	(1.41)	. 41	(1.4.3)	. 44	(.43)	. 42	(.40)	. 37	(.41)	. 46	(.54)	. 62	0.44
2	(11.603)	. 71	(11.72)	. 7.3	(.78)	. 81	(.82)	. 84	(.83)	. 83	(.83)	. 84	0.78
3	(11, \%3)	- \because	(11.4)	. 4	(.57)	. 90	(.92)	. 95	(.97)	1.100	(1.02)	1.14	0.92
4	(1.10)	1.17	(1.09)	1.111	(1.11)	1.12	(1.13)	1.14	(1.14)	1.14	(1.14)	1.14	1.11
$\bar{\square}$	(1.11)	1.15	(1.15)	1.110	(1.12)	. 95	(.96)	. 94	(.92)	.91	(.91)	. 91	0.99
;	(11.42)	$\therefore 4$	(11.05)	.97	(.96)	. 96	(.95)	. 84	(.59)	. 6	(.75)	. 70	0.90
7	(i1. ic1)	.50	(11.51)	. 4	(.45)	. 49	(.49)	. 49	(.45)	. 42	(.35)	. 34	0.47
8	(11.411)	. 40	(10.5:4)	.72	(.73)	. 74	(.71)	.68	(.71)	. 72	(.75)	. 78	0.66
3	(11.75)	. 7	(11.75)	. 715	(.81)	. 56	(.87)	. 88	(.8!)	-9610	(.91)	. 92	0.84
111	(11.04)	. 7 ;	(11.7.7)	. 74	(.73)	. 22	(.70)	. 68	(.71)	.72	(.79)	. 86	0.75
11	(11.:3)	.1s	(1.010)	1.02	(1.10)	1.02	(1.011)	. 98	(.96)	. 94	(.94)	. 99	0.98
12	(1.13)	1.17	(1.10)	1.12	(1.14)	1.16	(1.17)	1.18	(1.19)	1.211	(1.22)	1.24	1.15
13	(1.30)	1.67	(1.11)	1.45	(1.51)	1.51 t	(1.56)	1.50	(1.51)	1.46	(1.40)	1.34	1.45
14	(1.42)	1.51	(1.46)	1. 410	(1.41)	1.38	(1.39)	1.411	(1.36)	1.82	(1.29)	1.26	1.39
15	(1.15)	1.111	(1.199)	1.08	(1.12)	1.16	(1.21)	1.26	(1.32)	1.38	(1.40)	1.42	1.23
$1 i_{i}$	(1.3*)	$1 .: 14$	(1.33)	1.80	(1.31)	1.32	(1.31)	1.31	(1.33)	1.36	(1.36i)	1.36	1.33
17	(1.36)	1.2if	(1.2n)	1.21	(1.18)	1.15	(1.1s)	1.20	(1.21)	1.82	(1.24)	1.26	1.24
18	(1.20)	1.18	(1.12)	1.117	(1.06)	1.016	(.98)	. 90	(.85)	. 80	(.76)	. 77	0.98
19	(11.7.5)	.74	(11.0.6)	. 18	(11.98)	. 97	(1.01)	1.14	(1.10)	1.16	(1.18)	1.21	1.00
2	(1.:2)	1. 22	(1.2i)	1.28	(1.27)	1.26	(1.23)	1.20	(1.15)	1.10	(1.04)	. 98	1.18
\cdots	(11.85)	. 7	(11.71)	.1.4	(.60)	. 611	. 62	. 64	. 64	. 70	. 70	. 70	0.69
22	. 14	.1i0	. 61	.62	. 68	.72	. 74	. 80	. 86	. 86	. 88	. 90	0.74
\cdots	. 6	.86	90	.91)	. 99	1.00	1.10	1.015	1.12	1.14	1.16	1.20	1.12
24	1.19	1.17	1.17	1.16	1.20	1.11%	1.12	1.08	1.15	. 98	. 92	. 88	1.19
2	. 7 !	. 74	.71	. 63	. 74	. 74	.79	. 52	. 85	.87	. 88	.90	0.79
26	. 90	.si;	. 1	-s	. 88	. 87	. 84	. 4	. 84	. 4	. 86	. 84	0.86
27	-	. Sil	S1	. 78	. 8	. 54	. 86	. 84	. 84	. 81	. 86	. 85	0.83
2	.83	.811	. 81$)$. 81	. 84	. 84	. 86	.90	. 90	. 92	. 94	. 94	0.66
2!	$\therefore 4$	12	. 911	. 89	. 92	. 94	.94	. 94	. 93	. 93	. 92	.90	0.92
30	. 8.4	. \because	$7!$. 79	.76	.72	.70	.66	. 64	. 62	. 59	. 60	0.71
Mean	0.036	11.9225	0.928	0.133	1.9446	0.949	0.950	0.951	0.952	0.953	0.954	0.956	29.943
October, 1857. 29 Inches t. Mean Lat. 750.2 N, Long. $67^{\circ} .9 \mathrm{~W}$.													
DAY.	2 h .	$4{ }^{\text {b }}$	6 h.	Sh.	10^{h}.	Noon.	2 h .	$4^{\text {h. }}$	$6^{2 h}$	Sh.	10 b .	Midn't.	Mean.
1	. 51%	. 57	. 60	.62	. 71	. 74	.76	. 73	. 81	. 4	. 86	.90	0.73
2	. 911	. 91	. 12	. 94	1.00	1.02	1.112	1.07	1.06	1.09	1.10	1.11	1.01
3	1.11	1.13	1.10	1.111	1.16	1.14	1.16	1.15	1.211	1.19	1.18	1.16	1.15
4	1.14	1.12	1.10	1.18	1.08	1.115	1.04	1.14	1.06	1.06	1.06	. 99	1.07
5	. $!$.92	. 96	. 88	. 88	\cdots	. 78	. 76	. 74	. 72	. 70	. 69	0.81
1	. +17	.fis	.138	. 7.4	. 80	. 811	. 81	. 87	. 87	. 90	. 90	. 90	0.80
7	\cdots	$\therefore!$	$\therefore 8$.85)	.91	. 02	. 92	. 94	. 95	.96	. 96	. 97	0.92
s	(4,	. 1.1	. 20	1.04	1.102	1.04	1.04	1.14	1.08	1.08	1.10	1.12	1.13
$!$	1.12	1.10	1.10	1.10	1.20	1.24	1.25	1.25	1.29	1.30	1.32	1.32	1.22
111	1.27	1.25	1.20	1.18	1.16	1.12	1.10	1.12	1.12	1.12	1.14	1.16	1.16
11	1.08	1.161	1.05	1.04	1.09	1.08	1.15	1.03	1.010	1.01	. 99	. 94	1.03
13	. 6	$\cdots 1$.41	. 7 !	. 82	. 80	. 80	.8:	. 83	. 84	. 85	. 84	0.83
13	-	$\cdots 1$. 51	.811	. 80	. 79	.75	. 74	. 64	.12	. 59	. 54	0.73
14	. 4	.45	$\therefore 3$. 3.4	. 98	.39	. 42	. 51	. 50	.61	. 62	. 64	0.45
1.1	.11	. 51	.5:	59	. 60	. 80	.14	.70	. 76	. 78	. 76	. 74	0.66
11	. 71	. 71	.72	. 71	. 74	. 76	.79	. 82	. 810	. 90	. 89	. 44	0.80
17	1.64;	1.111	1.111	1.14	1.12	1.110	1.015	1.15	1.18	1.05	1.06	1.08	1.108
is	1.14;	1.14	1.112	1.0.4	1.11%	1.105	1.05	1.10	. 48	. 916	.90	. 85	1.00
1:1	\because	.7:3	-	. 6 \%	. 70	- 6 -	. 69	. 74	. 74	.75	. 76	. 76	0.72
\because	.7.	-7	-7\%	.81	. 86	.ns	. 90	. 911	. 91	. 94	. 94	. 95	0.86
$\because 1$	\therefore, ${ }^{\text {; }}$	$\therefore 1$. 111	. 9.1	景	吅	. 87	. 81	. 75	. 68	.60	. 51	0.62
\cdots	. 4 :	$\therefore-4$	\cdots	$\therefore 11$. 24	. 24	.37	.43	. 53	. 110	. 64	. 70	0.42
-	- 3	54	.7.	. 77	. 81	.4:	. 83	.83	.n0	. 78	. 74	. 74	0.78
\because	.it	. 76	N-3	.92	. 94	1.117	1.13	1.20	1.29	1.3:3	1.34	1.35	1.08
25	1..ir	1.3,	1.3	1.48	1.46	1.45	1.50	1.56	1.54	1.60	1.10	1.62	1.49
\because	1.12	1. 13	1.13].tit	1.70	1.711	1.49	1.70	1.71	1.71	1.70	1.70	1.68
$\because 7$	1.4it	1.5.	1.511	14%	1.44	1.38	1.33	1.26	1.28	1.24	1.19	1.14	1.37
-	1.111	1.114	1.07	1.11;	1.13	1.12	1.17	1.18	1.20	1.24	1.23	1.20	1.15
\%!	1.1-	1.15	1.19	1.1.9	1.28	1.20	1.14	1.13	1.10	1.05	1.00	. 96	1.13
$\because 1$		S3	919	. 713	. 31	A 3	.46	. 88	. 85	. 86	. 89	. 88	$0.8 \pm$
$\because 1$.4ij			.81	- -6	. -8	. 88	. 88	. 90	. 92	. 92	. 88	0.87
Hran	11.144	19.464	11.:41\%	10. 1121	11.950	11.958	\| 11.9010	0.976	0.985	0.993	0.98.	0.977	29.959

Readings of Anerod Baroneter 17701 on board the Yactit Fox. November, 1857. 29 Inches + . Mean Lat. $74^{\circ} .8$ N., Long. $69^{\circ} .1 \mathrm{~W}$.													
day.	2^{h}.	$4^{\text {h. }}$	$6{ }^{\text {b. }}$	8h.	10h.	Noon.	$2^{\text {h }}$.	$4^{4 .}$	6 h.	8 h.	10 h.	Midn't.	Mean.
1	. 85	. 86	. 88	. 88	. 94	. 94	. 94	.94	. 96	. 94	. 98	. 89	0.92
2	. 84	. 84	. 81	. 80	. 87	. 87	. 88	. 90	. 86	. 84	. 88	. 819	0.85
3	. 88	. 82	. 81	. 81	. 90	. 84	. 84	. 98	1.01	1.114	1.08	1.09	0.112
4	1.108	1.17	1.08	1.09	1.16	1.20	1.22	1.23	1.28	1.2:)	1.29	1.28	1.19
5	1.25	1.24	1.23	1.24	1.28	1.31	1.32	1.34	1.36	1.37	1.34	1.34	1.30
6	1.30	1.25	1.28	1.28	1.34	1.32	1.29	1.26	1.23	1.20	1.12	1.04	1.25
7	. 95	. 88	. 84	. 82	. 88	. 90	. 94	. 94	. 95	. 99	. 99	. 98	0.92
8	. 96	. 96	. 96	. 97	1.00	1.02	1.05	1.12	1.18	1.22	1.26	1.28	1.118
9	1.28	1.29	1.28	1.26	1.26	1.19	1.16	1.10	1.05	1.04	1.03	1.14	1.16
10	1.07	1.10	1.12	1.16	1.20	1.22	1.22	1.23	1.24	1.23	1.24	1.20	1.1 !
11	1.17	1.09	1.03	. 98	. 98	. 92	. 82	. 81	. 76	. 7.3	. 78	. .71	0.90
12	. 71	. 72	. 75	. 77	. 82	. 85	. 89	. 91	. 92	. 93	. 91	. 91	0.8 .4
13	. 84	. 81	. 78	. 72	. 72	. 72	. 69	. 69	. 69	. i 8	. 67	. 69	0.73
14 15	. 69	. 68	. 69	. 70	. 76	. 74	. 75	. 75	. 80	. 81	. 80	. 81	0.75
15	. 81	. 80	. 80	. 74	. 74	. 61	. 60	. 52	. 50	. 42	.40	. 35	0.61
16	. 30	. 30	. 27	. 24	. 24	. 19	. 16	. 10	. 04	. 13	. 09	:19	0.18
17	. 28	. 34	. 40	. 42	. 44	. 47	. 50	. 58	. 60	. 64	. 68	. 73	0.51
18	. 75	$\begin{array}{r}.80 \\ \hline 1.80\end{array}$. 87	. 92	1.00	1.06	1.06	1.16	1.20	1.24	1.26	1.26	1.05
19	1.26	1.22	1.16	1.16	1.17	1.16	1.16	1.17	1.20	1.20	1.19	1.17	1.18
20	1.16	1.15	1.16	1.12	1.17	1.17	1.19	1.19	1.19	1.16	1.10	1.05	1.15
21	1.05	1.04	. 98	. 94	1.00	1.00	1.00	1.01	1.01	. 87	. 78	. 68	0.95
22 23	. 56	. 50	. 51	. 48	. 42	. 38	. 42	. 45	. 46	. 48	. 43	. 53	0.47
24	. 97	. 91	. 90	. 78	. 82	. 876	. 48	1.04	. 96	. 2.12	. 97	. 97	0.83
25	1.03	. 82	. 74	. 59	. 50	. 37	. 215	1.00 .17	1.08 .12	2. 13	1.10 .14	1.05 .16	0.99 0.42
26	.16	.16	. 10	. 12	. 12	. 10	. 09	. 12	.15	.21	. 25	.27	0.15
27	. 28	. 30	. 30	. 34	. 38	. 39	. 44	. 47	. 51	. 55	. 59	. 60	0.43
28	. 60	. 61	. 62	. 62	. 70	. 70	. 72	. 72	. 75	. 78	. 80	. 84	0.70
29 30	$\begin{array}{r}.85 \\ \hline\end{array}$	${ }^{.85}$. 90	. 94	1.01	1.04	1.10	1.10	1.18	1.20	1.22	1.23	1.05
30	1.23	1.22	1.24	1.26	1.30	1.32	1.33	1.36	1.39	1.33	1.40	1.41	1.32
Mean	0.857	0.842	0.840	0.833	0.869	0.861	0.864	0.875	0.888	0.890	0.895	0.887	29.866
December, 1857. 29 Inches + . Mean Lat. 74.3 N., Long. 67. 4 W .													
day.	2 h .	$4{ }^{\text {b }}$	6 h.	8 h.	10 h	Noon.	2 L .	$4^{\text {b }}$	6 h .	Sh.	10 h.	Midn't.	Mean.
1	1.41	1.39	1.38	1.39	1.40	1.39	1.38	1.39	1.38	1.35	1.35	1.32	1.38
2	1.28	1.23	1.18	1.15	1.15	1.13	1.12	1.10	1.07	1.07	104	1.01	1.13
3	1.00 .72	.95 .70	. 92	. 88	. 88	. 90	. 83	. 80	. 80	. 77	. 75	. 73	0.85
4	. 72	. 70	. 70	. 69	. 613	. 66	. 67	. 68	. 70	. 69	. 57	. 64	0.68
5	.62	. 60	. 55		. 52	. 47	. 43	. 42	. 40	. 35	. 30	. 29	0.46
$\begin{aligned} & 6 \\ & 7 \end{aligned}$.26	. 23	. 22	. 21	. 25	. 29	. 34	. 35	. 41	. 44	. 49	. 55	0.34
$\begin{aligned} & 7 \\ & 8 \end{aligned}$. 58	. 62	. 67	. 74	. 82	. 86	. 90	. 92	. 98	1.00	1.02	1.04	0.85
8	1.04	1.03	1.02	1.02	1.08	1.08	1.10	1.12	1.16	1.20	1.24	1.22	1.11
9	1.22	1.22	1.23	1.24	1.30	1.28	1.32	1.30	1.30	1.30	1.28	1.28	1.27
10	1.27	1.23	1.23	1.21	1.25	1.26	1.28	1.30	1.28	1.31	1.31	1.33	1.27
11	1.34	1.32	1.32	1.33	1.315	1.36	1.35	1.37	1.34	1.31	1.24	1.18	1.32
$\begin{aligned} & 12 \\ & 13 \end{aligned}$	1.05 .38	. 94	. 78	. 68	. 68	. 60	. 56	. 56	. 55	. 52	. 48	. 44	0.65
13	. 38	. 32	. 278	. 23	. 28	. 28	. 29	. 33	. 34	. 36	. 38	. 42	0.32
14	. 44	. 46	. 48	. 49	. 53	. 59	.59	. 63	. 65	. 66	. 66	. 67	0.57
16	. 68	. 68	. 66	. 615	. 70	. 72	. 74	. 75	. 78	. 77	. 78	. 78	0.72
17	. 77	.76	. 77	- 74	. 76	.74	. 78	. 79	. 79	. 78	. 77	. 78	0.76
18	. 84	. 84	. 77	. 84	.79 .84	. 79	. 80	. 82	. 82	. 84	. 84	. 84	0.80
19	. 82	. 80	. 78	. 80	.84	. 86	.86 1.04	1.86	.85 1.04	.85 1.02	.86 .95	. 82	0.84
20	. 86	. 80	. 76	. 77	. 74	. 75	. 75	. 75	. 76	. 75	. 76	. 74	0.92
21	. 68	. 66	. 67	. 70	. 80	. 82	. 82	. 85	. 92	. 92	. 96	1.01	0.77
22	1.00	1.10	. 9 s	1.04	1.14	1.04	1.02	1.04	1.01	. 94	. 98	1.96	0.82 1.01
23	. 92	. 91	. 86	. 87	. 89	. 88	. 90	. 92	1. 94	. 97	.99	1.01	1.01
24	1.04	1.03	1.02	1.04	1.12	1.10	1.10	1.11	1.11	1.10	1.06	1.03	1.07
25	. 95	. 88	. 80	. 76	. 76	. 73	. 71	. 70	. 71	. 70	. 70	. 68	0.76
27	. 66	.65 .30	. 71	. 64	. 54	. 54	. 54	. 54	. 53	. 51	. 48	. 42	0.57
28	. 10	.10	. 08	. 04	. 05	. 04	. 01	. 120	. 09	.09 $* .96$	+.08	.09 $* .98$	0.17
29	*. 98	*. 94	*. 94	*. 919	. 03	. 09	. 15	. 23	. 31	$* .96$.36	$*$ $*$${ }^{.98}$	*.48	0.03 0.16
30	. 51	. 53	. 56	. 58	. 63	. 68	. 72	. 74	. 75	. 79	. 84	. 83	0.68
31	. 83	. 83	. 85	. 87	.92	. 94	. 97	. 98	. 96	. 96	. 93	. 90	0.91
Mean	0.786	0.765	0.748	0.742	0.769	0.775	0.779	0.791	0.798	0.796	0.794	0.786	29.777

January, 1858. 29 Incbes + Mean 1.at. $73^{2} .2 \mathrm{~N} .$, Long. 630.7 W .													
DAE.	$2{ }^{2}$	4^{11}	6^{11}	ch.	11 hb .	Noon.	2 h .	$4{ }^{\text {b }}$	6 h .	8h.	10 in .	Midn't.	Mean.
1	48	7	86	. 84	86	. 82	.79	. 76	. 75	. 72	. 64	.60	0.78
2	.5.4	82	. 50	. 511	516	. 54	. 55	. 53	. 54	. 51	.49	. 41	0.52
3	.35	$\therefore 4$:211	. 12	.12	. 11	*.96	*.93	*.92	*.50	*. 91	*.92	0.05
4	*.42	*.!2	*.13	*.!4	*. 92	*. 96	*. 98	. 01	. 04	. 11	. 13	. 20	0.111
5	‥2	. 24	.23	. 24	. 31	. 32	. 30	. 28	. 28	. 26	.26	.23	0.27
©	.1!	.14	. 14	.12	. 12	.12	. 13	. 1.1	.12	. 12	. 10	. 09	0.13
7	. 108	.107	.117	. 09	.14	.17	. 20	.22	. 28	.29	.30	. 31	0.19
ε	: 31	24	.27	$\therefore 9$	$\therefore 6$. 26	. 26	. 27	. 25	$\because 6$. 26	. 24	0.26
9	. 24	. 21	. 21	. 22	26	. 24	.30	.31	.33	. 36	.37	. 37	0.29
10	. 3	\therefore	. 38	. 40	. 45	. 4	. 51	. 54	. 58	. 60	. 61	. 56	0.50
11	.17	. is	.67	.157	.71	.73	. 75	. 80	. 8	.83	. 83	. 85	0.75
12	. $-\frac{1}{2}$.89	. -1	. 60	. 8.4	, 4	. 4	. 85	. 84	.83	. 81	. 77	0.82
13	. 72	. 71	. 67	.6\%	.72	.-11	. 90	. 99	1.10	1.21	1.32	1.41	0.94
14	$1.4!$	1.54	1.60	1.62	1.69	1.15	1.63	1.57	1.49	1.39	1.32	1.26	1.52
15	1.18	1.13	1.08	1.15	1.06	1.111	1.10	. 39	1.00	. 96	. 96	. 96	1.03
1 1;	. 92	. (ii)	. 57	.82	. 81	. 74	. 76	. 77	. 80	. 3	. 84	. 88	0.83
17	. 8.	. 411	. 10	. 91	. 91	. 91	.90	. 30	. 99	1.00	1.13	1.21	0.97
18	1.20	1.2:3	1.03	1.25	1.24	1.26	1.25	1.25	1.26	1.25	3.25	1.20	1.24
15	1.15	1.17	1.15	1.17	1.22	1.24	1.24	1.28	1.24	1.27	1.26	1.21	1.22
21	1.1 i	1.19	. 99	.13\%	. 11	. 88	. 79	. 75	. 168	. $5!$. 49	. 40	0.80
21	.27	. 21	. 15	.16	.25	. 33	.40	. 51	. 65	. 74	. 83	. 90	0.45
22	. 91	. 6.4	. 4	.97	1.02	1.00	.99	. 93	. 86	. 78	.67	. 56	0.48
23	.47	. 41	.43	. 51	. 18	. 72	. 80	. 86	. 92	. 94	.91	. 89	0.71
24	. 8.4	. 78	. 75	.67	. 17	.61	. 53	.45	. 35	.213	. 23	. 25	0.53
25	. 24	.24	. 22	.20	. 22	. 19	. 15	. 14	. 11	.09	. 05	. 04	0.16
$\stackrel{6}{6}$.116	.118	. 14	. 17	$\therefore 4$.26	.31	.32	. 32	. 34	. 30	.26	0.83
27	. 23	.23	. 31	.28	. 36	. 44	. 50	. 60	. 68	. 78	. 82	. 83	0.511
25	. 92	. 95	. 99	1.02	1.06	1.109	1.12	1.14	1.17	1.19	1.21	1.23	1.119
29	1.26	1.25	1.30	1.36	1.45	1.48	1.53	1.59	1.66	1.70	1.73	1.80	1.51
311	1.82	1.4.4	1.88	1.84	2.1010	2.64	2.10	2.14	2.14	2.14	2.14	2.14	2.103
31	2.15	2.143	1.96	1.91	1.86	1.82	1.70	1.62	1.511	1.40	1.32	1.27	1.71
Mean	0.7	0.71	0.702	11.704	11.339	11.745	17.74	0.7515	0.764	0.765	0.755	0.753	29.739
February, 1858. 29 Inches t. Mean Lat. $710.5 \mathrm{N.,Long} .60 .9 \mathrm{~W}$.													
DAT.	2 h.	4^{1}	$6{ }^{\text {h. }}$	81.	10 h.	Noonl.	21.	4^{4}	6^{61}.	Sh.	104.	Midn't.	Mean.
	1.23	1.17	1.15	1.14	1.19	1.1 !	1.15	1.15	1.12	1.09	1.1:7	1.10	1.14
2	. 93	. 90	. 86	. 4	. 85	. 84	. 81	. 81	. 81	. 80	. 81	. 80	0.54
3	. 718	. 76	. 75	. 72	. 75	.72	. 74	.73	.72	.72	. 70	. 70	0.73
4	. 515	. 1.4	. 64	. 08	.119	. 69	. 65	. 71	.73	. 75	. 79	. 80	0.70
5	. 811	. 78	. 76	$.71 \%$. 78	.75	. 74	. 74	.72	. 71	. 8	. 6.4	0.74
6	. 515	. $5: 3$. 51	. 49	. 4	. 47	. 47	.47	. 47	. 40	. 48	. 51	0.49
7	. 51	. 513	. 56	. $5: 1$. 6.4	.68	.72	. 75	. 1	.x:3	. 6	.85	0.70
8	. 91	. 110	. 91	. 93	1.010	1.113	1.115	1.188	1.11	1.11	1.11	1.12	1.108
9	1.05	1].11;	1.03	1.02	1.033	1.13)	. 97	. 92	. 8.4	. 78	. 7.3	. 66	0.93
111	. 5.4	- . 3 ,	. 46	. 40	. 4.5	. 4.3	. 44	. 4.4	. 48	. 514	. 59	. 54	0.44
11	.68	.7t	. 4	. 12	1.104	1.12	1.20	1.2:3	1.21	1.111	1.12	. 14	1.101
12	. 41	. 361	. 198	1.10	1.15	1.20	1.こt	$1.2!9$	1.35	1. 3 \%	1.3 -	1.34	1.18
1:3	1.34	1.34	1.41	1.40	1.45	1.45	1.50	1.5%	1.511	1.45	1.4%	1.44	1.44
14	1.37	1.37	1.82	1.24	1.31	1.29	1.215	$1 . .31$	1.29)	1.3:	1.25	1.26	1.30
15	1.22	1.22	1.21	1.20	1.20	1.20	1.211	1.11\%	1.14	1.14	1.12	1.08	1.17
$1{ }^{\text {fi}}$	1.14	1.11	.19	.917	. 94	. 81	. 88	. 618	. 8.4	. 2.4	. 83	. 8	0.91
17	人2	- 11	. 84	-	. 6 \%	-4i	- Al	. 5	. 90	. 141	. 91	. 90	0.80
1.	\cdots	$\therefore 1$	$\therefore 2$. 79	. 78	.72	.tit	.12	. 14	. 5	. 44	.38	0.146
19	$\therefore 2$	25	$\therefore 2$. $2:$	$\therefore 3$	\therefore	. 35	. 47	. 515	. 614	.70	.72	0.42
20	. 69	. lis	.173	$\therefore \mathrm{SH}$. 5 S	\cdots	. 44	. 418	.48	. 419	. 48	. 52	0.55
21	.52	.fir	. 6	. 1 ix	.7\%	\%	.43	. 8	. 311	. 91	. 98	.9!	0.78
?	1.0	1.112	1.14	1.111	1.10	1.11	1.116	1.15	1.15	. 98	. 90	. 815	1.102
$\cdots 3$. 79	-7,	. 78	. 74	.76	. 71	.77	. 79	.80	. 41	. 80	. 810	0.77
$\because 4$. 78	. 71	-	.19;	-14	. 1.1	. 63	. 13	. 62	. 519	. 515	. 48	0.65
-5	-4	.40	.42	. 4.4	. $5 \cdot$. 59	. 14	.17	. 15	. lis	. 6.4	. 614	0.57
-1\%	1, 11	164	. 711	.24	. 51	$\cdots 4$.69	. 113	. 214	. 91	1.01	1.112	0.85
-	1.01	1.111	1.113	1.111	1.10	1.111	1.14	1.11	1.019	1.13	1.16	1.17	1.109
2	1.111	1.114	1.117	1.11	1.15	1.15	1.15	1.16	1.15	1.12	1.111	1.10	1.12
Mean	11.4.43	0...2!	(1. 5.810	11.4: 2	0.Stis	11.451	0.674	11.886	0.859	0.856	0.877	0.861	29.632

Readings of Aneroid Barometer 17701 on board the Yacht Fox. March, 1858. 29 Inches +. Mean Lat. $69{ }^{\circ} 4$ N., Long. 599.1 W.													
day.	2 h.	$4^{1 .}$	$6{ }^{\text {hl. }}$	$8^{\text {h. }}$	1 m.	Noon.	$2^{\text {h. }}$	4h.	6 h .	84.	10 h.	Midn't.	Mean.
1	1.04	1.112	. 96	. 1.4	. 93	.93	. 91	. 91	. 917	. 13	.96	.99	0.95
2	1.01	1.003	1.01	1.14	1.07	1.112	. 96	. 93	. 96	. 97	1.14	1.12	1.02
3	1.22	1.33	1.at	1.42	1.48	1.46	1.35	1.22	1.15	. 83	. 59	. 835	1.14
4	. 42	. 49	. 54	. 619	. 8.3	. 91	1.12	1.34	1.40	1.41	1.55	1.54	1.02
5	$1 \cdot 54$	1.58	1.62	1.67	1.70	1.72	1.71	1.71	1.66	1.66	1.14	1.64	1.65
6	1.64	1.155	1.64	1.68	1.75	1.79	1.84	1.89	1.94	1.93	1.98	2.10	1.81
7	1.94	1.98	1.95	1.14	1.94%	1.90	1.96	1.85	$1 . \times 2$	1.76	1.74	1.67	1.47
8	1.62	1.56	1.56	1.54	1.56	1.55	1.57	1.56	1.57	1.58	1.57	1.58	1.57
10	1.53	1.519	1.46	1.45	1.415	1.411	1.34	1.31	1.22	1.16	1.11	1.14	1.33
10	.99 $* .92$	*.89	.86 $* .85$.82 $* .85$.82 $\times .85$.72 $* .84$.58 $\times .69$.44 $* .11$.29 $* .94$	$\begin{array}{r}1.29 \\ +.97 \\ \hline\end{array}$. 115	*.97	\% 0.56
12	*. 12	*.83	*.85	*.80	*.85	*.88	*.89	$* .14$.30	$* .94$.38	$* .97$.44	. 10	.12	$* 0.92$ 0.23
13	. 48	. 48	. 49	. 50	. 54	. 54	. 54	. 53	. 54	. 55	. 56	. 58	0.53
14	. 58	. 57	. 58	. 60	. 69	.70	. 73	.79	. 80	. 80	. 84	.43	0.71
15	. 80	. 80	. 81	. 82	. 88	. 89	. 93	. 97	1.013	1.03	1.04	1.09	0.92
16	1.09	1.109	1.10	1.14	1.20	1.20	1.21	1.22	1.25	1.26	1.26	1.20	1.19
17	1.25	1.25	1.23	1.24	1.26	1.25	1.24	1,25	1.24	1.23	1.20	1.17	1.23
18	1.14	1.169	1.08	1.103	1.01	. 98	. 22	. 911	. 88	. 88	. 84	. 82	0.96
19	. 80	. 78	. 78	. 67	. 80	. 80	. 80	. 8	. 86	. 85	. 88	. 90	0.82
20	. 90	. 88	. 88	. 88	. 89	. 85	. 83	. 82	. 73	. 76	. 75	.71	0.83
21	. 68	. 18	.64	. 70	. 74	. 72	. 72	. 70	. 68	. 66	. 66	.62	0.69
22	. 59	. 516	. 56	.56	. 60	. 58	. 515	. 56	. 55	. 54	. 51	. 48	0.55
23	. 50	539	. 60	. 68	. 79	. 89	. 98	1.10	1.14	1.24	1.32	1.38	0.93
24	1.40	1.41	1.44	1.44	1.50	1.48	1.48	1.51	1.56	1.56	1.58	1.55	1.49
25 26	1.49	1.46	1.42	1.42	1.44	1.44	1.44	1.43	1.42	1.47	1.50	1.52	1.45
26 27	1.53	1.53	1.54	1.58	1.66	1.65	1.66	1.619	1.65	1.68	1.68	$1.64 ;$	1.65
28	1.64 1.60	1.61	1.60	1.64	1.66	1.67	1.67	1.66	1.66	1.65	1.66	1.64	1.65
29	1.47	1.46	1.45	1.53	1.55	1.55	1.59	1.59	1.58	1.60	1.58	1.47	1.50
30	1.50	1.44	1.38	1.37	1.35	1.31	1.29	1.26	1.21	1.25	1.28	1.29	1.33
31	1.27	1.24	1.24	1.26	1.25	1.24	1.2\%	1.18	1.19	1.20	1.20	1.19	1.22
Mean	1.085	1.077	1.073	1.059	1.120	1.118	1.119	1.124	1.119	1.118	1.114	1.101	30.105
April, 1858. 29 Inches + . Mean Lat. $66^{\circ} .0 \mathrm{~N}$, Long. 57.7 W.													
DAY.	$2^{\text {L }}$.	$4^{\text {h }}$.	6 L.	$8 \mathrm{ht}$.	10 h.	Noon.	$2{ }^{21}$.	4 b .	6^{h}.	84.	10 h.	Midn't.	Mean.
1	1.20	1.19	1.20	1.22	1.22	1.25	1.25	1.26	1.26	1.23	1.22	1.22	1.23
2	1.18	1.12	1.12	1.10	1.10	1.10	1.08	1.08	1.107	1.07	1.04	1.02	1.19
3	1.02	. 98	. 96	.98	. 98	. 94	. 94	. 93	. 91	. 92	. 92	. 92	0.95
4	. 89	. 90	. 92	. 94	. 84	. 92	. 89	. 88	. 88	. 88	. 88	. 84	0.90
5	. 78	. 78	. 76	. 76	. 76	. 75	. 76	. 76	. 79	. 82	. 84	. 86	0.78
6	. 87	.92	. 47	1.119	1.18	1.20	1.26	1.30	1.25	1.33	1.35	1.35	1.17
7	1.32	1.29	1.30	1.30	1.29	1.28	1.26	1.26	1.26	1.25	1.24	1.20	1.27
8	1.14	1.14	1.11	1.119	1.16	1.24	1.32	1.43	1.56	1.64	1.72	1.74	1.36
9	1.74	1.75	1.75	1.74	1.73	1.70	1.65	1.64	1.64	1.62	1.62	1.61	1.68
10	1.54	1.52	1.50	1.54	1.54	1.54	1.54	1.55	1.56	1.56	1.57	1.58	1.55
11	1.56	1.54	1.52	1.53	1.56	1.55	1.54	1.53	1.52	1.53	1.54	1.55	1.54
12	1.62	1.67	1.72	1.79	1.86	1.85	1.87	1.85	1.88	1.88	1.816	1.84	1.81
13	1.74	1.72	1.67	1.67	1.63	1.58	1.52	1.48	1.44	1.42	1.38	1.35	1.55
14	1.217	1.26	1.20	1.18	1.18	1.15	1.12	1.10	1.18	1.08	1.10	1.07	1.15
15	1.02	.97	.93	. 93	. 96	. 96	. 96	. 915	. 98	. 98	. 95	. 95	0.96
16	. 90	.90	.90	. 91	. 90	. 89	. 90	. 90	. 92	. 93	. 93	. 89	0.91
17	. 86	. 82	. 810	. 74	. 76	. 73	. 69	. 74	. 72	. 71	.(is	. 65	0.74
18	(.ti6)	. 66	(.616)	. 66	(.69)	.72	(.73)	. 75	(.74)	. 74	(.76)	. 77	0.71
19 20	$(.76)$ $(.91)$. 7.91	(.77)	. 79	(.811)	. 82	(.84)	. 86	(.90)	.93)	(.92)	. 92	0.84
20 21	(.91) $(.90)$.91	(.93)	. 96	(.97)	.901	(.90)	. 91	(.9])	. 91	(.91)	. 91	0.42
21	(.98)	. 99	(1.05)	1.10	(1.12)	1.15	(1.17)	.914 1.20	(1.23)	1.25	(1.97)	.97 1.25	0.48 1.14 1.15
23	(1.22)	1.20	(1.211)	1.20	(1.18)	1.16	(1.13)	1.111	(1.10)	1.11	(1.010)	1.08	1.15
24	(1.0\%)	.97	(.95)	. 93	(.85)	. 77	(.74)	(.71)	(.68)	(.65)	(.62)	(.59)	0.79
25 26	(.56) $(.90)$.53 .98	(.55) (1.13)	.56 1.148	(1.4.3)	.40 1.19	(.41)	.42	(.53)	. 64	(.74)	. 83	0.55
27	(1.46)	1.46	(1.511)	1.54	(1.57)	1.60	(1.2.3)	1.25	(1.35)	1.41 1.60	(1.43)	1.46	1.21
28	(1.57)	1.55	(1.57)	1.60	(1.61)	1.62	(1.63)	1.64	(1.65)	1.60 1.66	(1.60) (1.45)	1.60	1.56 1.42
29	(1.62)	1.610	(1.6i1)	1. 610	(1.57)	1.55	(1.45)	1.313	(1.35)	1.34	(1.31)	1.25	1.45
30	(1.22)	1.17	(1.117)	. 18	(.96)	. 94	(.94)	. 93	(.94)	. 94	(.95)	1.96	1.60
Mean	1.149	1.138	1.137	1.148	1.153	1.146	1.142	1.144	1.154	1.166	1.168	1.14	30.151

	Ieadings of Aneroid Baroneter 17701 on board the Yacht Fox. May, 1858. 29 Inches + . Mean Lat. 680.7 N., Long. 530.7 W.						
DAY.	$4{ }^{\text {b }}$	84.	Noon.	$4{ }^{\text {b }}$	8h.	Midn't.	Mean.
1	.9\%	. 90	. 95	1.04	1.16	1.20	1.03
2	1.1 i	(1.06)	. 96	. 79	. 73	. 74	0.91
3	. 77	.is	. 96	1.06	1.08	1.10	0.97
4	1.15	1.14	1.112	. 99	. 96	. 94	1.00
5	. 4	.85	. 87	. 98	1.07	1.11	0.95
4,	1.11	1.14	1.199	1.11	1.16	1.13	1.12
7	1.12	1.15	1.21	1.21	1.23	1.21	1.19
5	1.11;	1.17	1.22	1.24	1.25	1.22	1.21
4	1.15	1.16	1.10	1.08	1.118	1.18	1.11
111	1.10	1.101	1.11	1.13	1.13	1.18	1.12
11	1.14	1.17	1.20	1.19	1.12	1.14	1.16
12	1.13	1.14	1.24	1.38	1.50	1.59	1.33
13	1.54	1.58	1.10	1.64	1.65	1.66	1.62
14	1.14	1.19;	1.71	1.68	1.68	1.66	1.67
15	1.05	1.74	1.76	1.70	1.70	1.62	1.70
16	1.515	1.5\%	1.51	1.50	1.56	1.54	1.54
17	1.50	1.45	1.42	1.40	1.37	1.34	1.42
1.	1.34	1.40	1.36	1.35	1.34	1.30	1.35
19	1.311	1.31	1.33	1.26	1.22	1.16	1.26
29	(1.15)	(1.14)	(1.13)	(1.12)	(1.11)	(1.10)	1.12
21	1.118	1.10	1.14	1.18	1.18	1.17	1.14
2	1.14	1.24	1.29	1.26	1.23	1.14	1.22
23	1.19	1.19	1.16	1.16	1.14	1.18	1.17
24	1.20	1.32	1.30	1.25	1.22	1.17	1.24
25	1.15	1.12	1.10	1.08	1.15	1.18	1.13
$\because 18$	1.24	1.31	1.34	1.36]. 40	1.38	1.34
$\because 7$	1.39	1.45	1.42	1.44	1.34	1.35	1.40
28	1.3n	1.35	1.30	1.10	1.09	1.00	1.19
29	. 914	. 88	1.00	1.00	1.00	1.01	0.99
311	1.110	1.117	1.10	1.13	1.14	1.16	1.11
31	1.16	1.16	1.20	1.18	1.14	1.12	1.16
Mean	1.204	1.223	1.299	1.205	1.230	1.222	30.222
June, 1858. 29 Inches + Mean Lat. $74.6 \mathrm{N.,Long.60} .1 \mathrm{~W}$.							
D.AY.	4^{1}	Sh.	Noon.	$4^{1 .}$	$8^{\text {h. }}$	Midn't.	Mean.
1	1.118	1.18	1.09	1.05	1.05	1.05	1.07
2	. 49	. 92	. 90	. 85	. 88	. 59	0.90
3	. 69	1.05	1.20	1.18	1.15	1.13	1.12
4	1.111	. 94	. 22	. 92	1.03	1.16	0.99
5	1.20	1.24	1.36	1.32	1.34	1.29	1.28
6	1.21	1.20	1.26	1.21	1.25	1.28	1.25
7	1.24	1.31	1.34	1.28	1.28	1.25	1.29
8	1.15	1.26	1.24	1.20	1.15	1.14	1.22
9	1.12	1.10	1.18	1.05	1.00	. 95	1.05
10	. 4.4	. 910	. 196	. 90	. 95	. 90	0.92
11	. 97	. 99	1.112	1.015	1.08	1.08	1.03
12	1.10	1.12	1.16	1.22	1.24	1.25	1.18
13	1.23	1.21	1.15	1.18	1.15	1.12	1.18
14	1.12	1.17	1.22	1.24	1.24	1.20	1.20
15	1.18	1.22	1.19	1.15	125	1.23	1.21
$1 i$	1.15	1.15	1.12	1.14	1.00	. 96	1.07
17	. 311	. 04	. 511 ;	. 99	1.00	1.14	0.97
18	. 89	. 93	1.111	. 98	.97	. 97	0.98
1.7	. 4.4	. 41	. 41	. 88	. 87	. 86	0.89
\cdots	. 4	.4	. 4	. 87	. 86	. 83	0.85
$\because 1$. W1 1	.78	.83	. 86	. 91	. 92	0.85
20	. $\because 11$	$\therefore 44$	1.01	1.06	1.11	1.10	1.02
23 $\because 4$ 4	1.110	1.10	1.05	1.16	1.10	1.10	1.11
24	1.118	1.198	1.19 .87	1.17	1.012	.94	1.05 0.86
24, 20	-4	.88	.87 .76	.86	. 86	. 82	0.86 0.70
$\because 3$. 44	. 42	. 53	. 52	.55	.57	0.51
$\because 9$	去,	. 15	.74	. 76	. 81	. 84	0.73
29	- in	. 41	1.110	1.166	1.20	1.18	1.03
30	1.20	1.26	1.29	1.29	1.21	1.12	1.23
Mean	3.31014%	30.015	30.035	30.132	30.039	30.025	30.025

Readings of Aneroid Barometer 17701 on board the Yacht Fox, July, 1858. 29 Inches + . Meau Lat. $74^{\circ} .4$ N., Long. $76^{\circ} .4$ W.							
Dap.	$4^{\text {h. }}$	8 h.	Noon.	4b.	$8^{\text {h }}$.	Midn't.	Mean.
1	1.12	1.17	1.25	1.24	1.21	1.08	1.18
2	1.11	1.09	1.12	1.19	1.20	1.18	1.15
3	1.07	1.10	1.06	1.06	1.07	1.07	1.07
4	1.08	1.11	1.14	1.12	1.13	1.12	1.12
5	1.04	1.00	. 94	. 92	. 86	. 78	0.92
6 7	.72 .84	. 81	. 86	. 89	. 90	. 91	0.85
8	. 85	. 84	.86	. 82	. 80	. 80	0.83
9	. 74	.74	. 70	. 776	. 77	. 74	0.76
10	. 64	. 68	. 69	. 70	. 71	. 64	0.70 0.68
111	. 70	. 69	. 69	. 70	. 72	. 70	0.70
12	. 68	. 70	. 69	. 79	. 72	. 62	0.70
13	. 58	. 57	. 56	. 62	. 66	. 62	0.60
14 15	. 64	. 63	. 68	. 68	. 72	. 73	0.68
15 16	. 74	. 74	. 72	. 66	. 69	. 66	0.70
16 17	.60 .79	. 61	. 64	. 68	. 73	. 74	0.67
18	1.06	1.22	1.84	.89 1.24	.98 1.27	1.12 1.30	0.89
19	1.30	1.35	1.38	1.40	1.44	1.42	1.38
20 21	1.42 1.46	1.44	1.44	1.43	1.48	1.45	1.44
21 22	1.46	1.48	1.48	1.46	1.48	1.46	1.47
23	1.40	1.47	1.48	1.48	1.45	1.42	1.46
$\stackrel{24}{ }$	1.14	1.20	1.12	1.30 1.10	1.28	1.19	1.32
25	. 99	. 97	. 98	. 96	. 93	. 90	1.105
26	. 88	. 89	. 94	. 94	. 94	. 91	0.92
27 28	. 90	. 90	. 87	. 91	. 90	. 89	0.90
28 29	.86	. 84	. 84	. 84	. 88	. 86	0.85
39	.89 .90	. 93	. 92	. 97	. 90	. 90	0.92
31	. 80	. 81	. 82	.78 .89	.78 .86	. 79	0.83
Mean	29.945						
Mean	29.45	29.961	29.965	29.971	29.974	29.949	29.961
August, 1858. 29 Inches +. Mean Lat. $73 .{ }^{\circ} 1 \mathrm{~N}$. , Long. $88^{\circ} .5 \mathrm{~W}$.							
day.	4 h .	84.	Noon.	4 h .	8 h.	Midn't.	Mean.
1	. 80	. 88	. 90	. 34	1.00	1.05	0.93
2	1.07	1.11	1.13	1.15	1.17	1.19	1.14
3	1.18	1.16	1.16	1.15	1.16	1.12	1.15
4	1.14	1.14	1.14	1.16	1.18	1.18	1.16
5	1.20	1.22	1.24	1.28	1.27	1.26	1.25
6	1.28	1.26	1.24	1.24	1.25	1.20	1.24
7	1.15	1.15	1.00	. 86	. 80	. 73	0.95
8	. 58	. 54	. 55	. 58	. 59	. 62	0.58
9 10	.60 .82	. 66	. 76	. 78	. 78	. 80	0.73
11	. 82	. 82	. 88	. 90	. 90	. 89	0.87
12	. 82	. 92	. 89	. 85	. 85	. 89	0.87
13	. 88	. 89	. 87	. 87	. 89	. 83	0.87
14	. 72	. 70	. 84	. 82	. 74	. 74	0.82
15	. 74	.76	. 80	. 95	. 98	. 74	0.72
16	. 98	. 98	1.00	1.00	. 98	. 98	0.87 0.95
17	. 74	. 80	. 93	. 99	1.04	1.04	0.92
18 19	. 94	. 90	. 90	. 89	. 86	. 84	0.89
19 20	. 86	. 91	. 98	. 94	1.00	. 99	0.95
20 21	1.01	1.12	1.08	1.14	1.18	1.20	1.10
21	1.19	1.20	1.20	1.20	1.22	1.12	1.19
22 23	1.04	. 94	. 90	. 66	. 90	. 88	0.92
23	. 87	. 88	. 86	. 85	. 80	. 67	0.82
24 25	. 60	. 69	. 58	. 60	. 60	. 64	0.60
25 26	. 68	. 69	. 76	.81	. 81	. 78	0.75
27	. 78	.84	. 88	. 90	. 92	. 88	0.87
28	. 98	1.103	1.08	1.11	1.08	1.04	0.85
29	. 96	. 98	. 90	1.05	1.05	1.08	1.05
30 31	1.07 1.10	1.15 1.10	1.13	1.14	1.14	1.10	1.12
31	1.10	1.10	1.13	1.14	1.16	1.18	1.13
Mean	29.917	29.931	29.941	29.963	29.966	29.947	29.944

	Readings of Ineroid Baroneter 17701 on board the Yacht Fox. September, 1858. 29 Inches + . Mean Lat. 720.0 N., Long. 94.4 W .						
DAY.	$4{ }^{\text {an }}$	Sh.	Noon.	$4^{\text {h }}$	84.	Midn't.	Mean.
1	1.12	1.12	1.19	1.25	1.26	1.28	1.20
2	1.24	1.25	1.15	1.24	1.35	1.30	1.27
3	1.26	1.30	1.30	1.30	1.34	1.30	1.30
4	1.30	1.29	1.32	1.31	1.30	1.23	1.29
5	1.31	1.30	1.23	1.14	1.15	1.16	1.22
${ }_{6}$	1.20	1.10	1.12	(1.116)	(1.10)	(0.9.4)	1.17
7	. 88	. 84	$\therefore 7$. 80	. 92	. 90	0.88
8	. 90	. 90	. 84	. 97	. 94	. 95	0.94
9	. 97	1.102	1.10	1.14	1.15	1.18	1.09
10	1.19	1.20	1.20	1.20	1.24	1.22	1.21
11	1.20	1.19	1.20	1.20	1.24	1.24	1.21
12	1.16	1.13	1.17	1.17	1.17	1.15	1.16
13	1.12	1.12	1.16	1.17	1.16	1.21	1.16
14	1.20	1.24	1.25	1.28	1.22	1.22	1.24
15	1.26	1.25	1.29	1.29	1.34	1.37	1.30
115	1.27	1.32	1.31	1.36	1.33	1.29	1.31
17	1.25	1.28	1.23	1.26	1.23	1.19	1.24
1.	1.14	1.16	1.12	1.19	1.20	1.12	1.15
19	1.10	1.18	1.18	1.20	1.18	1.09	1.16
21	1.100	1.09	1.06	. 98	. 94	. 80	0.98
21	. 72	. 72	. 74	. 72	. 78	. 84	0.75
22	. 88	1.00	1.14	1.03	. 80	. 68	0.92
23	. 52	. 33	. 32	. 28	. 48	. 69	0.44
24	.75	. 90	. 88	. 98	. 98	. 96	0.91
25	. 90	1.02	1.12	1.118	1.08	1.08	1.03
26	1.10	1.20	1.12	1.24	1.24	1.24	1.19
27	1.20	1.20	1.30	1.31	1.30	1.30	1.27
\because	1.15	1.20	1.10	1.14	1.14	1.12	1.12
29	1.10	1.29	1.20	1.24	1.20	1.18	1.19
30	1.12	1.10	1.06	1.04	1.02	. 98	1.05
Mean	30.084	30.105	30.110	30.115	30.127	30.107	30.108

October, 1858. 29 Iuches + . Mean Lat. $72^{\circ} .0$ N., Long. $94^{\circ} .2 \mathrm{~W}$.

pay.	4 l	Sh.	Noon.	$4{ }^{4}$	Sh.	Midn't.	Mean.
1	. 88	.58	.86	. 5.5	. 80	. 70	0.83
2	. 64	.12	.72	.72	.72	.90	0.72
3	. 68	. 72	. 74	. 80	. 80	. 70	0.74
4	.61	. 616	. 82	. 94	. 95	1.00	0.83
5	1.10	1.22	1.311	1.38	1.42	1.46]. 31
6	1.46	1.54	1.61	1.62	1.66	1.66	1.59
7	1.64	1.68	1.70	. 68	1.63	1.56	1.48
8	1.45	1.45	1.45	1.45	1.50	1.41 ;	1.47
9	1.44	1.44	1.40	1.38	1.37	1.29	1.39
11.	1.10	1.16	1.11	. 78	. 63	. 45	0.69
11	.42	.45	. 46	. 41	. 44	.42	0.43
12	.42	. 50	. 5%	.137	.73	. 75	0.60
13	. 74	. 54	. 85	. 86	. 85	. 88	0.84
$1 \pm$. 88	. 85	1.64	1.115	1.18	1.20	1.14
15	1.18	1.24	1.20	1.11	1.118	. 94	1.12
$1 ;$.82	.78	. 719	. 16	. 160	. 60	0.70
17	. 56	.62	.611	.70	. 73	. 82	0.67
18	. 59	. 90	. 48	.98	.92	.9S	0.93
19	. 70	. 76	. 710	. 64	. 611	. 46	0.67
30	- Br	. 44	. 4 s	. 52	. 58	.60	0.50
21	. 610	. 70	. S1	. 94	1.116	1.14	0.87
$\because 2$	1.21	1.20	1.32	1.317	1.36	1.36	1.30
23	1.36	1.38	1.35	1.28	1.23	1.14	1.28
24	1.16	1.00	. 513	. 80	. 79	. 74	0.87
25	. 73	. 971	. 919	1.14	1.114	1.24	0.98
$\because 6$	1.24	1.32	1.40	1.38	1.34	1.36	1.35
$\cdots 8$	1. 34	1.44	1.46	1.46°	1.42	1.34	1.41
28	1.24	1.34	1.22)	1.18	1.22	1.16	1.21
24	1.10	1.111	1.04	1.04	1.10	1.00	1.05
\cdots	. 146	. 116	. 92	. 96	. 96	1.04	0.97
31	1.17	1.19	1.20	1.20	1.18	1.12	1.16
Mean	29,969	311.1107	30.026	29.998	30.031	30.016	30.007

Readings of Aneroid Barometer 17701 on board the Yacht Fox. November, 1858. 29 Inches + . Mean Lat. $72^{\circ} .0$ N., Long. $94{ }^{\circ} .2 \mathrm{~W}$.													
DAF.	$2^{\text {h, }}$	$4^{\text {h. }}$	$6^{\text {h. }}$	8h.	10 L.	Noon.	2 h .	$4^{\text {b }}$	6 h.	81.	10h.	Midn't.	Mean.
1	1.10	1.08	1.08	1.18	1.15	1.04	1.02	1.02	. 98	. 97	. 94	. 94	1.04
2	. 86	. 86	. 85	. 93	. 96	1.100	1.08	1.14	1.10	1.14	1.16	1.20	1.02
3	1.24	1.26	1.24	1.26	1.36	1.34	1.34	1.34	1.40	1.411	1.36	1.30	1.32
4	1.22	1.22	1.12	1.14	1.18	1.15	1.12	1.22	1.24	1.28	1.20	1.24	1.19
5	1.12	1.16	1.16	1.18	1.23	1.22	1.14	1.18	1.16	1.18	1.18	1.18	1.17
6	1.13	1.16	1.25	1.28	1.26	1.28	1.32	1.34	1.32	1.28	1.34	1.30	1.27
7	1.28	1.28	1.32	1.34	1.38	1.38	1.42	1.46	1.48	1.48	1.50	1.50	1.40
8	1.48	1.48	1.46	1.50	1.50	1.48	1.48	1.50	1.52	1.52	1.52	1.52	1.511
9	1.48	1.48	1.48	1.50	1.50	1.58	1.58	1.60	1.60	1.62	1.60	1.60	1.55
10	1.62	1.62	1.58	1.60	1.64	1.68	1.66	1.66	1.66	1.6\%	1.616	1.60	1.6-4
11	1.57	1.52	1.58	1.58	1.52	1.50	1.48	1.46	1.48	1.46	1.46	1.44	1.50
12	1.44	1.44	1.43	1.42	1.50	1.44	1.45	1.48	1.48	1.48	1.48	1.48	1.46
13	1.44	1.40	1.38	1.42	1.38	1.33	1.32	1.32	1.24	1.18	1.15	1.11	1.31
14	1.08	1.04	1.02	1.07	1.08	1.10	1.09	1.18	1.18	1.20	1.22	1.20	1.12
15	1.24	1.24	1.24	1.32	1.34	1.34	1.38	1.38	1.44	1.46	1.50	1.52	1.37
16	1.54	1.54	1.52	1.57	1.56	1.52	1.50	1.45	1.40	1.54	1.30	1.26	1.47
17	1.20	1.14	1.10	1.16	1.19	1.19	1.22	1.22	1.20	1.20	1.15	1.15	1.18
18	1.10	1.06	1.06	1.00	1.12	1.14	1.13	1.15	1.16	1.16	1.18	1.18	1.12
19	1.17	1.17	1.17	1.20	1.18	1.18	1.18	1.18	1.19	1.18	1.14	1.14	1.17
20	1.08	1.08	1.01	1.03	1.00	1.08	. 98	. 99	1.00	1.02	1.04	1.08	1.03
21	1.10	1.10	1.09	1.14	1.15	1.14	1.12	1.14	1.14	1.12	1.13	1.11	1.12
22	1.12	1.12	1.10	1.19	1.18	1.23	1.24	1.26	1.28	1.30	1.34	1.34	1.23
23	1.33	1.31	1.30	1.36	1.35	1.33	1.39	1.40	1.45	1.49	1.50	1.50	1.49
24	1.50	1.50	1.55	1.65	1.65	1.63	1.64	1.68	1.66	1.66	1.65	1.64	1.62
25	1.60	1.57	1.56	1.58	1.58	1.53	1.54	1.60	1.58	1.56	1.57	1.58	1.57
26	1.56	1.56	1.56	1.60	1.56	1.56	1.54	1.52	1.52	1.44	1.40	1.40	1.52
27	1.35	1.28	1.24	1.26	1.20	1.15	1.05	1.06	1.03	1.02	. 94	. 91	1.12
28	. 86	. 80	. 73	. 75	. 74	. 74	. 72	. 70	. 68	. 68	. 68	. 69	0.73
29	. 66	. 65	. 64	. 72	. 76	. 74	. 72	. 74	. 78	. 80	. 81	. 81	0.74
30	. 82	. 84	. 90	. 97	. 98	1.00	1.00	1.02	1.00	1.01	. 99	1.00	0.96
Mean	1.243	1.231	1.224	1.263	1.273	1.270	1.263	1.280	1.278	1.283	1.270	1.264	30.261
December, 1858. 29 Inches + Mean Lat. $720.0 \mathrm{~N} ., \mathrm{Long}$.94.2 W .													
DAY.	$2^{\text {h. }}$	$4^{\text {h. }}$	6 h.	8 h .	10 h.	Noun.	$2^{\text {b. }}$	$4^{\text {h }}$.	6 h .	81.	$10^{\text {h. }}$	Midn't.	Mean.
1	1.00	. 99	1.00	1.06	1.08	1.09	1.12	1.16	1.18	1.18	1.20	1.20	1.10
2	1.20	1.18	1.17	1.20	1.20	1.18	1.18	1.16	1.10	1.10	1.14	1.00	1.14
3	. 98	. 94	. 96	1.00	1.03	1.15	1.12	1.02	1.04	1.01	. 98	. 97	1.08
4	. 96	. 94	. 90	. 98	. 96	. 96	1.00	1.01	1.04	1.05	1.08	1.10	1.00
5	1.10	1.10	1.12	1.12	1.12	1.12	1.12	1.18	1.18	1.18	1.18	1.15	1.14
6	1.16	1.12	1.11	1.16	1.16	1.15	1.12	1.10	1.10	1.05	1.00	. 98	1.10
7	. 94	. .94	. 52	. 99	1.00	1.01	1.04	1.06	1.06	1.06	1.04	1.03	1.08
8	1.02	1.00	. 98	1.00	1.00	1.00	1.00	1.01	1.04	1.08	1.09	1.09	1.03
9	1.09	1.09	1.09	1.12	1.10	1.06	1.04	1.1015	1.01	. 98	. 96	. 92	1.14
10	. 89	. 86	. 88	. 84	. 82	. 78	. 74	. 75	. 74	. 72	. 70	. 70	0.75
11	. 68	. 67	. 69	. 74	. 75	. 74	. 74	. 78	. 78	. 80	. 82	. 85	0.75
12	. 84	. 84	. 81	. 89	. 90	. 90	. 92	. 94	. 94	. 97	1.00	1.00	0.91
13	1.02	1.04	1.06	1.16	1.20	1.20	1.22	1.26	1.28	1.26	1.26	1.24	1.18
14	1.24	1.22	1.20	1.24	1.26	1.26	1.26	1.28	1.22	1.23	1.24	1.22	1.24
15	1.20	1.20	1.16	1.20	1.22	1.20	1.16	1.18	1.18	1.20	1.20	1.19	1.19
16	1.12	1.10	1.13	1.10	1.12	1.10	1.10	1.12	1.08	1.08	1.08	1.07	1.10
17	1.05	1.04	1.18	1.08	1.08	1.05	1.08	1.08	1.08	1.06	1.06	1.06	1.010
18	1.06	1.06	1.08	1.14	1.14	1.10	1.10	1.12	1.10	1.10	1.08	1.06	1.10
19	1.04	1.44	. 98	1.02	1.11	. 99	. 98	1.00	1.01	1.00	1.00	1.00	1.01
20	. 98	.98	. 92	. 96	. 90	. 86	. 82	. 79	. 72	. 65	. 59	. 54	0.81
21	. 48	. 45	.46	. 50	. 53	. 56	. 62	. 66	. 70	. 76	. 76	. 80	0.61
22	. 82	. 84	. 87	. 95	. 98	1.00	1.03	1.04	1.06	1.08	1.10	1.10	0.99
23	1.08	1.06	1.06	1.12	1.13	1.10	1.08	1.08	1.08	1.06	1.04	1.03	1.08
24	1.02	1.00	1.01	1.00	1.09	1.09	1.109	1.11	1.11	1.12	1.12	1.12	1.08
25	1.12	1.10	1.12	1.14	1.15	1.14	1.16	1.16	1.12	1.13	1.10	1.10	1.13
26°	1.09	1.10	1.09	1.108	1.12	1.14	1.16	1.16	1.16	1.16	1.18	1.18	1.13
27	1.20	1.20	1.34	1.30	1.33	1.31	1.38	1.44	1.41	1.50	1.55	1.53	1.37
28	1.54	1.58	1.58	1.70	1.72	1.72	1.75	1.77	1.74	1.70	1.70	1.68	1.65
29	1.64	1.56	1.54	1.54	1.48	1.44	1.40	1.39	1.35	1.32	1.30	1.29	1.44
30	1.22	1.20	1.16	1.20	1.16	1.14	1.15 1.18	1.20	1.20 1.16	1.21	1.22	1.22 1.10	1.19 1.16
31	1.20	1.18	1.16	1.18	1.18	1.18	1.18	1.17	1.16	1.12	1.11	1.10	1.16
Mean	1.064	1.049	1.053	1.070	1.094	1.085	1.092	1.105	1.095	1.094	1.090	1.081	30.081

12

Readivas of Aneroid Jiaroneter 17701 on board the Yacht Fox. January, 1859. 2』 Iuches t. Mean Lat. 720.0 N., Long. $94^{\circ} .2 \mathrm{~W}$.													
TAY.	2^{4}	$4^{\text {h. }}$	$6{ }^{6}$	8 h.	$1{ }^{101}$.	Noon.	2 h .	$4^{\text {h }}$.	6^{12}.	8h.	$10^{\text {h. }}$	Midn't.	Mean.
1	1.14	1.16	. 95	. 415	.92	.92	. 88	. 83	. 80	. 80	. 78	. 76	0.89
2	. 76	. 7.3	. 76	. 76	.74	. 80	. 84	. 88	. 59	. 28	. 30	. 90	0.83
3	.90)	.961	.12	. 95	1.02	1.02	1.14	1.06	1.06	1.113	1.104	1.04	1.00
4	1.04	1.00	1.60	1.12	1.103	1.00	. 98	1.01	1.04	1.04	1.04	1.103	1.02
5	1.010	1.14%	1.01	1.16	1.24	1.2	1.34	1.38	1.44	1.44	1.44	1.46	1.28
6	$1.41 i$	1.46	1.46	1.46	1.44	1.42	1.44	1.42	1.37	1.36	1.30	1.28	1.41
7	1.24	1.211	1.17	1.21	1.22	1.23	1.20	1.19	1.20	1.21	1.17	1.14	1.20
8	1.16	1.16	1.15	1.15	1.22	1.22	1.24	1.27	1.25	1.24	1.24	1.22	1.21
9	1.12	1.116	. 94	. 14	. 91	. 88	. 86	. 8.4	. 84	. 88	. 85	. 88	0.92
10	. 961	. 9.4	. 96	1.05	1.1:3	1.15	1.24	1.2\%	1.24	1.26	1.30	1.34	1.14
11	1.32	1.32	1.35	1.36	1.42	1.42	1.40	1.42	1.44	1.44	1.44	1.46	1.40
12	1.44	1.49	1.38	1.82	1.41	1.38	1.38	1.37	1.37	1.36	1.35	1.33	1.37
13	1.32	1.311	1.25	1.20	1.25	1.20	1.20	1.20	1.20	1.18	1.16	1.16	1.22
14	1.13	1.10	1.08	1.13	1.13	1.14	1.16	1.16	1.18	1.20	1.20	1.22	1.15
1.5	1.24	1.22	1.23	1.26	1.32	1.34	1.36	1.35	1.40	1.40	1.42	1.42	1.33
16	1.41	1.35	1.42	1.:38	1.35	1.34	1.34	1.36	1.34	1.34	1.32	1.29	1.316
17	1.25	1.25	1.24	1.24	1.24	1.26	1.27	1.20	1.28	1.26 j	1.20	1.24	1.27
18	1.21	1.1.)	1.17	1.21	1.18	1.15	1.12	1.12	1.12	1.10	1.09	1.10	1.15
19	1.10	1.111	1.14	1.21	1.20	1.20	1.19	1.22	1.22	1.23	1.22	1.18	1.18
20	1.119	1.04	.98	. 98	. 98	. 95	. 92	. 93	. 84	. 94	. 96	. 18	0.97
21	1.011	. 98	. 47	1.02	1.10	1.00	1.00	1.03	1.10	1.00	. 96	.96	1.00
22	. 911	. 88	. 88	. 92	. 30	. 87	. 88	. 89	. 6.5	. 89	. 87	. 88	0.88
23	. 86	. 86	. 84	. 90	. 14	. 94	. 96	. 99	1.00	1.113	1.12	1.04	0.95
24	1.016	1.04	1.114	1.10	1.15	1.17	1.18	1.18	1.17	1.16	1.15	1.16	1.13
25	1.14	1.15	1.16	1.20	1.22	1.24	1.25	1.213	1.30	1.30	1.30	1.34	1.24
26	1.34	1.32	1.28	1.34	1.34	1.30	1.32	1.33	1.31	1.32	1.30	1.29	1.32
27	1.24	1.24	1.21	1.26	1.32	1.32	1.26	1.215	1.24	1.26	1.26	1.25	1.26
20	1.26	1.26	1.26	1.23	1.31	1.32	1.33	1.35	1.38	1.38	1.40	1.40	1.33
29	1.41	1.43	1.40	$1.41 ;$	1.46	1.44	1.43	1.44	1.42	1.40	1.40	1.40	1.42
30	1.39	1.38	1.40	1.43	1.46	1.45	1.44	1.50	1.51	1.54	1.52	1.52	1.46
31	1.50	1.50	1.50	1.516	1.56	1.56	1.55	1.52	1.52	1.55	1.54	1.53	1.53
Mean	1.172	1.158	1.148	1.180	1.197	1.190	1.192	1.213	1.207	1.203	1.201	1.200	30.188
February, 1859. 29 Inches + . Mean Lat. $720.0 \mathrm{~N} .$, Long. 940.2 W.													
Day.	2 h.	$4^{\text {h }}$	$6^{\text {h. }}$	8 h.	10 h.	Noon.	2 h.	4 h .	Gh.	Sb.	10 l.	Midn't.	Mean.
1	1.46	1.47	1.46	1.46	1.46	1.42	1.40	1.38	1.38	1.34	1.27	1.25	1.40
2	1.23	1.20	1.16	1.20	1.20	1.18	1.17	1.1 13	1.118	1.115	. 98	. 92	1.12
3	. 85	. 81	. 78	. 80	. 75	. 72	. 78	. 6.18	. 66	. 63	. 62	. 60	0.72
4	. 60	. 60	. 65	. 72	. 78	. 84	. 86	.92	. 18	1.02	1.106	1.08	0.84
5	1.115	1.10	1.10	1.20	1.19	1.19	1.19	1.22	1.24	1.24	1.24	1.23	1.18
6	1.23	1.21	1.17	1.20	1.22	1.20	1.25	1.25	1.26	1.19	1.28	1.24	1.22
7	1.22	1.23	1.23	1.23	1.23	1.27	1.32	1.30	1.29	1.32	1.32	1.34	1.27
8	1.30	1.30	1.30	$1: 5$	1.34	1.32	1.30	1.30	1.25	1.28	1.26	1.24	1.30
9	1.21	1.2:	1.29	1.24:	1.24	$1.21 ;$	1.26	1.27	1.28	1.25	1.28	1.28	1.25
111	1.24	1.218	1.15	1.20	1.22	1.18	1.20	1.20	1.20	1.15	1.17	1.16	1.20
11	1.111	1.116;	1.113	1.11%	. 96	. 90	. 88	. 80	. 76	. 74	. 70	. 68	0.88
12	. 6.4	.ti)	. 515	. 57	. 52	. 4	.48	. $4 \times$. 49	. 48	.46	.45	0.52
13	. 45	. 41	. 48	. 48	. 49	. 53	. 52	. 51	. $5: 9$. 5 -	.60	. 60	0.52
14	. 610	. $1: 11$. 1	.rs	.79	.72	. 715		-	84	.85	. 80	0.74
15	. 911	. 110	.910	(11]	. 19	1.171	1.14	1.14	1.16	1.12	1.10	1.05	0.99
117	1.114	1.112	1.112	1.111	1.13	1.12	1.14	1.11;	1.15	1.18	1.15	1.19	1.12
17	1.1!	1.19	1.21	1.2:	1.26	1.213	1.29	1.30	1.31	1.32	1.34	1.35	1.27
1. 19	1.32	1.:20	1..n	1.3\%	1.40	1.46	1.47	1.51	1.51	1.52	1.53	1.54	1.45
19 0	1.50	1.4	1.4;	1.53	1.51	1.50	1.52	1.50	1.50	1.47	1.48	1.44	1.49
	1.40	1.311	1.45	1.:30	1.27	1.215	$1.21 ;$	1.26	1.29	1.28	1.28	1.28	1.28
211	1.25	1.25	1.0.	1.2;	1.38	1.38	1.36	1.410	1.43	1.44	1.45	1.44	1.36
2\%	1.401 1.44	1.3 C	1.34	1.4i	1.41	7.48	1.44	1.44	1.44	1.46;	1.45	1.45	1.44
2-4	1.4.4	1.44	1.4 .4	1.53 1.49	1.54	1.55 1.4	1.55 1.45	1.54 1.44	1.60 1.44	1.59 1.40	1.58 1.36	1.57	1.54
-5	1.27	1. 1.4	1.\%	1.4!	1.50	1.44 1.24	1.45	1.4.4	1.44 1.24	1.40 7.26	1.36 1.26	1.32 1.25	1.46 1.24
26	1.94	1.2:3	1.21	1.36	3.8	1.24	1.30 1.30	1.230	1.24	1.26 1.31	1.26 1.30	1.25	1.24 1.28
24 24	1.:3	1.1)	1.119	1.13	1.10	1.111	1.14	. 1.98	-. 97	1. 915	- 92	1.24	1.115
2	-	!	.75	-	- 3	. 3	. 81	.82	. 84	. 88	. 88	. 90	0.83
Mean	1.13:	1.120	1.110	1.74;	1.3.49	1.146	1.155	1.151	$1.15 \pm$	1.152	1.150	1.140	30.142

Readings of Aneroid Baroneter 17701 on board the Yacht Fox. March, 1859. 29 Inches t. Mean Lat. $72^{\circ} .0 \mathrm{~N} .$, Long. $94^{\circ} .2 \mathrm{~W}$.													
day.	2 h .	4 h .	6 h.	8 h.	10 h.	Noon.	2 h .	$4^{\text {h. }}$	6 h.	Sh.	10^{h}.	Midn't.	Mean.
1	. 90	. 92	. 98	1.10	1.14	1.14	1.15	1.17	1.17	1.15	1.20	1.19	1.10
2	1.20	1.19	1.18	1.22	1.25	1.28	1.27	1.25	1.24	1.22	1.22	1.20	1.23
3	1.18	1.15	1.12	1.18	1.17	1.17	1.15	1.14	1.14	1.14	1.12	1.12	1.15
4	1.12	1.10	1.10	1.16	1.18	1.19	1.22	1.26	1.28	1.29	1.30	1.32	1.21
5	1.32	1.31	1.30	1.37	1.40	1.40	1.45	1.46	1.47	1.46	1.4 (;	1.49	1.41
6	1.47	1.46	1.44	1.50	1.53	1.52	1.53	1.53	1.54	1.53	1.53	1.54	1.51
7	1.50	1.47	1.46	1.48	1.46	1.47	1.419	1.44	1.42	1.33	1.36	1.31	1.44
8	1.26	1.22	1.16	1.18	1.17	1.16	1.16	1.17	1.16	1.16	1.11 ;	1.14	1.18
9	1.10	1.06	1.06	1.10	1.10	1.10	1.09	1.10	1.11	1.14	1.15	1.13	1.10
10	1.11	1.05	1.06	1.08	1.06	1.04	1.04	1.00	. 96	. 93	. 90	. 86	1.11
11	. 82	. 76	. 94	. 82	. 80	. 80	. 79	. 79	. 79	. 81	. 82	. 80	0.81
12	. 80	. 78	. 80	. 92	. 92	. 94	1.02	1.05	1.10	1.13	1.17	1.21	0.99
13	1.22	1.20	1.22	1.22	1.32	1.35	1.32	1.38	1.42	1.43	1.40	1.41	1.38
14	1.43	1.44	1.39	1.40	1.45	1.42	1.42	1.44	1.44	1.44	1.44	1.40	1.43
15	1.38	1.34	1.31	1.31	1.32	1.34	1.29	1.30	1.24	1.24	1.23	1.19	1.30
16	1.14	1.10	1.10	1.14	1.12	1.10	1.09	1.09	1.10	1.09	1.08	1.06	1.10
17	1.06	1.04	1.08	1.14	1.14	1.15	1.16	1.22	1.26	1.30	1.32	1.32	1.18
18	1.30	1.31	1.37	1.36	1.38	1.42	1.40	1.44	1.44	1.43	1.45	1.44	1.40
19	1.44	1.44	1.46	1.48	1.48	1.48	1.50	1.52	1.51	1.56	1.58	1.56	1.50
20	1.56	1.59	1.58	1.68	1.68	1.68	1.69	1.72	1.70	1.70	1.72	1.72	1.67
21	1.70	1.70	1.78	1.76	1.76	1.76	1.75	1.78	1.80	1.82	1.81	1.80	1.77
22	1.78	1.78	1.78	1.80	1.82	1.82	1.82	1.79	1.78	1.78	1.78	1.74	1.79
23	1.70	1.66	1.64	1.68	1.64	1.61	1.58	1.56	1.54	1.54	1.54	1.52	1.60
24	1.48	1.42	1.42	1.46	1.46	1.44	1.40	1.40	1.39	1.38	1.38	1.38	1.42
25	1.32	1.30	1.30	1.38	1.40	1.40	1.44	1.46	1.45	1.50	1.54	1.54	1.42
26	1.54	1.53	1.54	1.58	1.58	1.58	1.56	1.58	1.58	1.56	1.55	1.58	1.57
27	1.54	1.50	1.50	1.54	1.58	1.59	1.59	1.62	1.64	1.68	1.08	1.65	1.60
28	(1.69)	(1.70)	(1.71)	1.72	(1.70)	1.68	(1.67)	1.66	(1.68)	1.70	(1.67)	1.64	1.45
29	(1.59)	1.54	(1.56)	1.58	(1.56)	1.54	(1.56)	1.58	(1.59)	1.60	(1.60)	1.61	1.58
30	(1.60)	1.59	(1.62)	1.66	(1.66)	1.66	(1.68)	1.70	(1.70)	1.72	(1.72)	1.74	1.67
31	(1.73)	1.72	(1.73)	1.74	(1.74)	1.75	(1.73)	1.72	(1.71)	1.70	(1.67)	1.64	1.71
Mean	1.354	1.335	1.345	1.380	1.386	1.386	1.386	1.397	1.400	1.408	1.407	1.396	30.382
April, 1859. 29 Inches + Mean Lat. $720.0 \mathrm{~N} .$, Long. 94.2 W.													
DAY.		5 h .		8h.		Noon.		$4^{\text {h. }}$	$S^{\text {h }}$		11 h .		Mean.
1		1.56		1.59		1.52		1.52	1.4		1.40		1.50
2		1.27		1.28		1.22		1.19	1.19		1.16		1.22
3		1.17		1.14		1.08		1.06	. 98		. 94		1.06
4		. 87		. 92		. 94		1.00	1.03		1.04		0.97
5		1.07		1.09		1.07		1.07	1.04		1.06		1.07
6		1.07		1.09		1.02		1.17	1.00		1.03		1.06
7		. 96		1.02		. 98		1.00	1.00		1.07		1.01
8		1.07		1.13		1.14		1.19	1.25		1.27		1.17
9		1.37		1.44		1.48		1.52	1.61		1.63		1.51
10		1.67		1.69		1.76		1.80	1.88		1.91		1.78
11		1.96		2.00		2.02		2.07	2.11		2.11		2.05
12		2.16		2.19		2.27		2.24	2.27		2.24		2.23
13		2.17		2.17		2.16		2.14	2.15		2.11		2.15
14		2.04		2.07		2.04		2.01	1.99		1.95		2.02
15		1.87		1.76		1.66		1.59	1.52		1.48		1.65
16		1.37		1.37		1.37		1.30	1.29		1.27		1.38
17		1.26		1.26		1.27		1.37	1.3		1.31		1.30
18		1.17		1.17		1.10		1.11	1.10		1.12		1.13
19		1.27		1.33		1.42		1.46	1.5		1.53		1.43
20		1.57		1.57		1.60		1.62	1.66		1.61		1.60
21		1.57		1.57		1.48		1.40	1.29		1.15		1.41
23		. 97		1.07		. 99		. 97	. 93		. 93		0.99
23		1.06		1.17		1.16		1.14	1.10		1.03		1.11
24		1.07		1.19		1.16		1.17	1.22		1.22		1.15
25		1.17		1.17		1.16		1.12	1.10		1.04		1.13
26		. 97		1.07		1.10		1.17	1.25		1.25		1.14
27		1.27		1.27		1.24		1.23	1.28		1.26		1.26
28		1.37		1.38		$\begin{aligned} & 1.40 \\ & 1.40 \end{aligned}$		1.47	1.48		1.45		1.43
29		1.47		1.47		$.1 .46$		1.40	1.4		1.42		$\begin{aligned} & 1.45 \\ & 1.42 \end{aligned}$
30		1.37		1.47		1.41		1.43	1.4		1.40		1.42
Mean		1.374 (1.363) At 4^{14}.		1.401		1.389		. 396	1.403		$\begin{gathered} 1.381 \\ (1.374) \\ \text { At } 12 \mathrm{n} . \end{gathered}$		$\begin{aligned} & 0.391 \\ & 0.388 \end{aligned}$

	Readings of Aneroid Barometer 17701 on board the Yacht Fox. May, 1859. 29 Inches + Mean Iat. $72^{\circ} .0$ N., Long. $94^{\circ} .2 \mathrm{~W}$.						
DAY.	5 h.	81.	Noon.	$4^{\text {h. }}$	8h.	11 h.	Mean.
1	1.37	1.39	1.40	1.40	1.39	1.37	1.39
2	1.27	1.20	1.37	1.30	1.36	1.31	1.32
3	1.35	1.37	1.39	1.35	1.38	1.33	1.36
4	1.28	1.30	1.28	1.26	1.26	1.24	1.27
5	1.18	1.22	1.25	1.22	1.26	1.22	1.22
6	1.20	1.24	1.213	1.26	1.27	1.26	1.25
7	1.25	1.28	1.30	1.29	1.37	1.32	1.30
8	1.30	1.33	1.30	1.26	1.22	1.18	1.27
9	1.16	1.17	1.26	1.36	1.31	1.29	1.26
10	1.19	1.22	1.22	1.22	1.22	1.18	1.21
11	1.08	1.12	1.09	1.09	1.07	1.05	1.08
12	. 916	. 97	1.00	1.06	1.117	1.07	1.02
13	1.00	1.112	1.110	. 98	1.010	. 98	1.00
14	. 90	.92	. 95	. 98	. 97	.98	0.95
15	. 94	. 07	. 93	. 00	.88	. 87	0.92
16	. 81	. 82	. 84	. 83	. 83	. 81	0.82
17	. 715	. 78	. 52	. 82	. 87	. 65	0.82
18	. 80	. 85	. 90	. 97	1.12	1.06	0.93
19	1.07	1.09	1.15	1.19	1.24	1.27	1.17
20	1.25	1.29	1.32	1.32	1.34	1.35	1.31
21	1.28	1.28	1.26	1.22	1.22	1.22	1.25
22	1.13	1.15	1.17	1.20	1.23	1.23	1.19
23	1.20	1.23	1.26	1.29	1.31	1.32	1.27
24	1.25	1.28	1.32	1.36	1.38	1.35	1.32
25	1.28	1.29	1.30	1.30	1.18	1.28	1.29
$2 b^{\circ}$	1.28	1.25	1.29	1.29	1.30	1.28	1.29
27	1.19	1.19	1.26	1.25	1.25	1.27	1.24
28	1.29	1.29	1.38	1.41	1.42	1.43	1.37
23	1.40	1.42	1.47	1.49	1.54	1.56	1.48
30	1.58	1.58	1.6:3	1.64	1.65	1.66	1.62
31	1.65	1.65	1.72	1.70	1.70	1.70	1.69
Mean	$\begin{aligned} & 1.182 \\ & (1.175) \\ & \text { At } 4 \mathrm{~h} . \end{aligned}$	1.203	1.229	1.233	1.245	$\begin{aligned} & 1.235 \\ & (1.231) \\ & \text { At } 12 \mathrm{~h} . \end{aligned}$	30.222 30.219
June, 1859. 29 Inches + Mean Lat. $72^{\circ} .0 \mathrm{~N}$., Long. 940.2 W.							
DAP.	5 h.	8h.	Noon.	$4^{\text {h. }}$	8 h.	$11^{\text {h }}$	Mean.
1	1.68	1.69	1.70	1.68	1.67	1.55	1.66
2	1.52	1.50	1.44	1.36	1.29	1.21	1.39
3	1.15	1.15	1.23	1.27	1.32	1.33	1.24
4	1.32	1.34	1.38	1.39	1.39	1.40	1.37
5	1.44	1.46	1.51	1.55	1.56	1.58	1.52
6	1.54	1.58	1.60	1.62	1.64	1.62	1.60
7	1.58	1.56	1.56	1.52	1.52	1.45	1.53
8	1.36	1.31	1.29	1.24	1.18	1.16	1.26
3	1.09	1.11	1.13	1.18	1.22	1.22	1.16
10	1.19	1.21	1.24	1.26	1.26	1.22	1.23
11	1.19	1.19	1.20	1.25	1.22	1.22	1.21
12	1.11	1.10	1.109	1.08	1.118	1.16	1.07
13	1.01	1.00	1.112	1.11	1.01	1.02	1.01
14	. 98	1.01	1.00	1.100	1.00	. 94	0.99
15	. 85	. 4	. 815	. 85	. 86	. 85	0.85
$11 ;$. 85	. 82	. 89	. 90	. 22	. 91	0.88
17	. 92	. 9	. 96	. 96	. 96	. 91	0.95
18	. 75	. 72	. 65	. 73	. 85	. 92	0.77
19	1.114	1.06	1.118	1.119	1.14	1.16	1.09
20	1.19	1.21	1.18	1.14	1.07	1.08	1.15
21	1.15	1.16	1.10	1.02	. 99	. 96	1.06
20	. 98	1.02	1.03	1.019	1.06	1.06	1.03
938	1.115 1.00	1.12	1.03	1.01	. 99	. 99	1.01
24	1.00	1.14	102	1.06	. 98	. 92	1.00
$\begin{aligned} & 25 \\ & 20 \end{aligned}$.86 .78	. 88	. 86	. 88	. 84	. 84	0.86
26 27	.78 .74	.78 .78	.81 .80	.79 85	. 77	. 77	0.78
-8	. $\times 8$. 911	.80 .95	1.85	1.11	.84	0.81 1.10
$2!$	1.10	1.11	1.04	1.00	1.08	1.08	1.07
:30	1.14	1.1\%	1.15	1.12	1.49	1.06	1.12
Me:tu	$\begin{gathered} 1.114 \\ (1.111) \\ \Delta t .41 . \end{gathered}$	1.122	1.127	1.131	1.130	$\begin{aligned} & 1.114 \\ & (1.119) \\ & \text { At } 12 \mathrm{~h} . \end{aligned}$	30.123 30.122

* Refers to $2 s$ inches.

	Readings of Aneroid Barometer 1 rot on board the Yacht Fox． September，1859． 29 Inches t ．Mean Lat． $58^{\circ} .9$ N．，Long． $40^{\circ} .9 \mathrm{~W}$ ．					
Day．	$4{ }^{\text {a }}$	$8^{4 .}$	Noon．	$4^{11 .}$	8 h.	Midnight．
1	1.24	1.219	1.27	1.26	1．23	1.20
2	1.15	1.18	1.20	1.20	1.20	1.16
3	1.14	1.11	1.18	1.14	． 98	.90 .80
4	$\therefore 1$	． 78	． 77	．．．．	．\quad.	．－．
\％	．11	．68	．fis	． 68	． 70	． 73
$\frac{6}{6}$	Ts	． 8.2	． 85	.7	． 88	． 90
8	．	． 88	． 8	． 86	． 85	． 80
（）	． 75	． 80	． 82	． 8	． 94	． 94
10	． 81	－2	．91）	． 86	． 88	． 82
11	．80	． 81	． 80	． 81	． 84	． 59
12	． 8	． 83	． 75	． 84	． 94	． 96
13	． 93	．	．91	． 98	． 93	． 94
1.4	．	． 111	．12	． 93	． 912	． 90
15	．69	． 42	． 18	1.10	1.11	1.103
$1 ;$	1.15	1.15	1.19	1.24	1.31	1.310
17	1.30	1.32	1.38	1.30	1.30	1.30
15	1．25	1.20	1.22	1.20	1.15	1.15

Additional Rearings of the Marine Mercerial Burometer，between September，1857， and Amil， 1858.
A description of the Marine Barometer adopted by Her Majesty＇s government， on the recommendation of the Kew Observatory Committee of the British Associa－ tion for the Adrancement of Science，will be found in the appendix to the fourth number of meteorological papers，published by authority of the Board of Trade． London， 1860.

Readings of the Marine Mercurial Baroneter，Adie No．208，on poard the Yacet Fox． Height of cistern abore the level of the sea， 4 feet． September，1857． 29 Inches + ．Nean Lat． 75.2 N．，Long． 650.3 T ．															
DAY．	4^{6}.		Sh．		Noon．			Th.	Sh．		Minnight．		Mean．		Mean． At 32.
	Mar．	Th．	Bar．	Thı．	Bar．	Th．			Ear．	Th．	Bar．	Th．	Bar．	Th．	
20	$\left(\begin{array}{c} 1: 0, h_{1} \\ (1.0,3) \end{array}\right.$	（55）	14% 1.143	55	$\begin{aligned} & \text { luch } \\ & 1.106, \end{aligned}$	58	$\begin{aligned} & \text { Inch } \\ & 1.045 \end{aligned}$	59	Iucht		Iach .78	62	Inch 1.000	58.2	Inch，
21	（－14i1）	（1i2）	． 510	（i）	． 458	${ }^{1} 1$	． 474	59	． 542	2	． 54.9	16	． 527	182．0	．439
$\because 2$	（．121）	（45）	． $4+1$	45	． 556	52	（i）：3	5．4	064	57	． 731	（6）	．5¢1	52.7	． 516
23	（．732）	（4．5）	． 772	45	．854	53	． 61	55	． 147	58	1．（1） 4 ！	6	． 579	54.0	． $81{ }^{*}$
24	（1．042）	（iic）	1．10：3	101	1.1006	56	.927	54	.839	55	． 7419	59	． 931	57.3	． 85.7
25	（．542）	（34）	． $5: 1$	3	． 531	47	． 6.11	$4!$	． 702	62	． 749	59	． 626	48.8	． 573
26	（．7ロロ）	（4s）	． 7 ＋14	14	． 728	53	.710	50	． 690	51	．${ }_{\text {cul }}$	57	． 711	51.0	． 651
27	（．141）	（57）	－（120）	57	． 636	51	．6998	53	－69\％	5.5	． 694	519	.671	55.3	． 601
28	（．12，${ }^{\text {a }}$ ）	（52）	．6゙ら	5%	． 651	52	－24	56	． 7.2	59	Til	61	． 69	55.3	． 6213
29	（．i40）	（4i）	． 7119	$4{ }^{\circ}$	．799	54	．7！	53	． 710		．76！	56	． 765	51.8	． 703
30	（．tinit）	（ 1 ！${ }^{\text {a }}$	． $1: 36$	$4!$	． 583	47	． 513	54	.475		． 43	51	． 552	49.7	． 495
Mean	.713	50.10	． 510	1.6	． 723	． 1	$3!$		． 733	7.11	．724	60.1	． 722	54.2	
At 32	29．450，		2．9．643		2：1．657		29.672		29.658		29.640		29.654		29.654

The column for $4^{\text {h．}}$ A．M．was obtained by interpolation，the difference in the aneroid realing．s of $4^{\text {n．}}$ and $S^{\text {nh }}$ was applied to the reading of the marine barometer at $\delta^{\text {nin }}$ to get the value for $4^{\text {h }}$ ．

The reduction to 32° was effected by means of Table XVII．，C．，of Guyot＇s Meteorological Tables（Enlition of 1858）．

The renling for \＆A．M．，between October 1 and 20，being wanting，they were supplied by means of differences of the aneroid readinge，as stated above．

Readings of the Marine Mercurial Barometer, Adie No. 208, on board the Yacit Fox.
October, 1857. 29 Inches + . Mean Iat. $750.2 \mathrm{~N} .$, Itong. 670.9 W.

DAY.	$4^{\text {h. }}$		8 h.		Noon.		$4^{1 /}$		Sh.		Midnight.		Mean.		Mean.
	Bur.	Th,	Bar.	Th.	Bar.	'T1.	Bur.	Th.	Bar.	Th.	Sar.	Th.	Bat.	Th.	At 3 3
	Inch.	(15	Iucli.	-	Ineh	-	Inals,		Inch.		Luch,	\bigcirc	Inch.	\bigcirc	luch.
1	(.422)	(45.	. 472	45	. 6145	50	. 1963	49	. 676	54	.740	58	. 5.96	$51)$.5839
2	(.768)	(46$)$. 798	415	. 860	50	.920	$4!$. $9+7$	53	.! 0	54	.879	49	.825
3	(1.010)	(51)	. 980	51	1.012	47	1.10s	52	1.033	58	1.013	56	1.011	52	.9.43
4	(.954)	(44)	. 914	44	$\therefore 118$	49	. 909	49	. 899	52	. 821	5	. 3100	48	. 848
5	(.760)	(45)	.720	45	.7115	50	.621	48	. 573	5.2	.556	5	.6.)7	48	. 6115
6	(.514)	(47)	. 594	47	.150	49	. 703	49	. $7: 9$	$5 \frac{1}{4}$.727	51	. 654	50	. 54.47
7	(.700)	(47)	. 700	47	. 754	45	. 788	44	.813	49	.819	54	. 762	47	. 713
8	(.760)	(49)	.822	$4!$	S50	50	.901	49	.937	51	. 950	49	. 870	49	. 816
9	(.948)	(45)	. 948	45	1.179	50	1.138	50	1.161	53	$1.1 \bigcirc 1$	50	1.075	45	1.02:3
10	(1.108)	(47)	1.038	47	. 950	45	.969	43	. 967	49	. 930	48	. 0 Sl	46	. 934
11	(.892)	(40)	. 872	40	.932	44	. 880	44	. 869	49	.Ens	51	. 675	44	-s.31
12	(.716)	(39)	.666	39	. 670	44	.680	45	.684	50	.687	50	.6S 4	44	. 6.43
13	(.650)	(47)	. 650	47	. 618	50	. 544	45	. 4150	56	. 400	57	. 515	54	. 4118
14	(.322)	(53)	. 212	53	. 270	52	. 3 ± 4	51	. 440	58	.482	57	. 344	$5 \cdot \frac{1}{2}$.277
15	(.452)	(51)	.452	51	. 470	53	. 539	56	. 615	60	. 591	5.9	.530	54	. $4 \% 3$
16	(.552)	(51)	. 552	51	. 602	53	. 680	50	.756	58	. 787	5.9	. $6: 5$	54	. 5.95
17	(.882)	(57)	. 922	57	. 898	52	. 884	51	. 900	59	. 896	60	. 897	55	- 527
18	(.858)	(52)	. 858	52	. 876	58	. 846	59	. 777	59	. 690	54	. 818	56	. 745
19	(.562)	(53)	. 512	53	.536	50	. 549	53	. 597	57	. 604	58	. 55.9	54	.402
20	(.606)	(50)	.676	50	.700	56	.722	5.4	. 761	59	.786	59	. 709	54	. 642
21	. 782	50	. 752	59	.750	54	. 752	56	. 522	55	.350	(6)	.651.	55	.581
22	. 178	59	. 058	50	. 116	55	. 278	54	. 416	58	. 530	516	. 264	55	. 1.14
23	. 580	50	. 598	50	.656	54	. 652	55	. 620	58	. 592	54	.6il	54	. 549
24	. 600	44	. 752	45	.906	46	1.030	47	1.130	-49	1.201	53	. 637	47	. 888
25	1.218	40	1.258	42	1.302	44	1.396	50	1.424	50	1.471	53	1.344	$4{ }^{1}$	1.297
26	1.450	42	1.492	42	1.550	43	1.536°	47	1.564	51	1.530	55	1.5.25	46	1.477
27	1.410	43	1.272	44	1.220	44	1.176	52	1.068	55	1.120	50	1.104	48	1.142
28	. 966	42	. 932	43	.946	48	1.045	54	1.086	59	1.043	51	1.1018	49	. 953
29	1.010	40	1.042	45	1.060	49	. 973	5.3	.875	55	.770	$5 \cdot$. 955	49	. 900
30	.670	44	. 595	48	.640	51	. 650	54	. 6.50	53	.7110	56	. 6,0	51	. 591
31	. 656	43	. 652	49	.724	53	. 684	56	.726	58	.728	50	. 645	51	.636
Mean	.774	47	.766	47	.502	49	. 823	50	.823	54	. 818	54	. 812	50.2	
At 32°	29.7		29.7		29.7		29.7		29.7	760	29.7		29.7		29.744

November, 1857. 29 Inches + . Mean Lat. $74^{\circ} .8$ N., Long. $69^{\circ} .1$ W.

	4h.		Sh.		Noon		$4^{\text {n }}$		Sh.		Midnig		Mean	
	Bar.	Th.	Bar.	Th.	Bar.	Th.	Erar.	Th,	Bar.	Th.	Bar.	Th.	Bar.	Th.
	Iuch.	-	Inch.	\bigcirc	Inch.	\bigcirc	Iach.	\bigcirc	Iuch.	\bigcirc	Inch.	\bigcirc	Inch.	\bigcirc
1	. 702	42	. 738	47	. 582	49	. 778	56	. 806	54	. 744	50	0.758	49.7
2	. 664	48	. 654	43	. 708	50	. 742	58	. 696	59	. 671	58	0.659	52.7
3	. 650	44	. 620	46	.680	50	. 794	52	. 836	57	. 912	58	0.749	51.2
4	. 920	45	. 922	(54)	1.027	62	1.1190	57	1.100	61	1.095	58	1.021	56.2
5	1.096	49	$1.10{ }^{2}$	49	1.148	52	1.160	59	1.175	59	1.166	57	1.141	54.2
6	1.196	44	1.070	43	1.134	52	1.1165	52	. 9711	58	. 882	58	1.0:37	51.7
7	. 784	45	. 732	45	. 820	54	. 794	53	. 845	57	. 828	58	0.801	52.0
8	. 814	45	. 832	49	. Nit	49	. 940	54	1.050	57	1.111	58	0.1085	52.0
9	1.110	48	1.128	48	1.020	50	. 9116	51	. 672	55	. 8	52	0.988	50.7
10	. 932	44	1.012	47	1.1144	51	1.198	5.3	1.038	58	1.002	5	1.011	51.5
11	. 580	48	.84)	50	. 5×2	55	. 155	59	. 515	69	. 550	5	0.7106	54.3
12	. 551	45	.600	47	. 700	50	. 850	58	. 7611	57	. 744	58	0.184	52.5
13	. 650	45	. 522	48	. 592	52	.47\%	5.5	. 510	55	. 528	57	0.550	52.0
14	. 526	48	. 5.54	54	. 580	54	. 6110	54	. 8511	50	. 6.0	58	0.593	53.3
15	. 65	47	. 61 - 4	50	. 582	5.7	.5.54	55	. 274	58	. 1199	5 S	0.470	53.8
16	. 152	48	. 134	48	.114	5	. Dis	到	. 8 -3	59	. 112	(i2	0.369	55.0
17	. 162	49	. 298	45	. 3130	515	. 44	57	. 4%	55	.5.57	55	0.379	5.3 .3
18	. 636	47	. 715	49	. 80	52	-141\%	5	1.05,	57	1.076	61	0.842	\%3.7
19	1.044	52	1.122	5,1	1.112	56	1.100	57	1.1025	59	1.026	59	1.022	514.5
20	. 956	49	.971	51	. $9: 96$	52	. 976	5.3	. 951	56	. 880	52	0.454	52.5
21	. 848	45	. 776	50	. 840	5.6	.834	59	. 6 (i)	10	.454	5	0.742	54.5
22	. 346	43	.290	45	. $2: 0$	52	- $0^{\text {di }}$	57	. 294	55	. $3+5$	57	0.246	52.5
23	. 418	45	.til	5	. 7110	5.3	-75\%	5	. 819	55	. 818	$5: 3$	(1.15is 7	52.3
24	. 734	45	. 754	50	. 780	55	. 834	54	.93?	(i)	.840	5.4	0.817	53.8
25	.652	48	. 442	50	$\therefore 20$	515	. 1111	51	*.9815	5	.1104	60	0.219	54.5
213	*.998	49	*.998	51	* 4	52	*.976	54	. 0	59	. 150	6	0.019	5-3
27	. 150	45	. 184	int	. 220	55	. 314	57	. 341	59	. 144	58	0.281	55.2
28	. 450	48	. 5311	51	.5tis	53	. 580	57	. 133	60	. 1 iro	59	0.513	55.2
29	. 716	49	. 811	511	.057	52	. 970	57	1.10%	59	1.091	59	0.919	54.3
30	1.080	48	1.130	50	1.150	52	1.208	55	1.230	56	1.232	58	1.172	50.2
Mean	0.179 419.8		0.69049 .3		$0.707 \quad 53.2$		0.747 56.0		0.74957 .4		0.72257 .2		0.715	53.3
At 320	29.631		29.636		29.642		29.674		29.64		29.647		29.650	

Reading of the Marine Mercurial Barometer，Adie No．208，on board the Yacut Fox．
December，1857． 29 Inches t．Mean Lat． $74^{\circ} .3$ N．，Long． $67^{\circ} .4 \mathrm{~W}$.

DAY．	4		8 th ．		Noon．		4 l		84.		Midnight．		Mean．	
	Bar．	Tl．	Bat．	Ti：	Lar．	Th．	Bar．	Th．	Ear．	Th．	Bar．	Th．	Bar．	Th．
	Inch．	\bigcirc	luch．		Inch．		Ineh．	\bigcirc	Iuch．	\bigcirc	Iuch	$\stackrel{ }{\circ}$	Inch．	\bigcirc
1	1．204	57	1.252	49	1.236	51	1.231	47	1.181	49	1.150	58	1.213	50.2
2	1.194	44	1.0118	45	． 970	52	．925	51	． 902	53	． 853	57	0.959	51.3
3	． 7 lia	415	． 76	49	． 866	51	． 666	52	．6：32	52	． 598	50	0.699	50.0
4	． 5711	43	． 528	42	．4！ 4	47	． 526	51	． 528	52	． 478	47	0.521	47.0
5	． 450	37	． 410	48	． 325	47	． 282	53	． 182	55	． 147	54	1.3100	49.0
6	． 1111	43	．1022	41	．140	52	． 194	55	． 278	51	．374	52	0.196	49.0
7	． 459	43	． 58	41	．712	48	.775	50	． 847	51	． 865	51	0.707	47.3
8	．880	45	． 86	44	． 958	51	． 96.4	54	1．123	56	1.055	59	0.958	51.5
9	1.181	45	1.112	50	1.134	52	1.126	58	1.128	55	1.120	58	1.117	53.0
111	1.150	413	1.1022	45	1.096	53	1.125	57	1.128	58	1.150	59	1.046	53.0
11	1．16 ${ }^{2}$	45	1.150	48	1.185	50	1.201	56	1.143	55	． 999	56	1.142	51.7
12	． 760	48	． 112	34	．433	50	． 398	58	． 359	59	．281	59	0.457	52．2
13	． 160	45	． 140	46	． 109	49	． 15.3	55	． 199	57	．245	58	0.163	51.7
14	．2－6；	50	． 315	48	． 431	57	．449	56	． 482	56	． 5148	56	0.410	53.8
15	． 519	4	． 510	46	． 570	54	． 597	54	． 611	58	． 605	60	0.569	53.3
115	． 583	49	．5¢2	47	．5）4	54	． 618	58	． 636	58	． 618	59	0.604	54.2
17	． 599	49	． 510	46	． 625	54	． 632	57	． 654	59	． 652	56	0.621	53.3
1.	． 631	47	． 633	$4{ }^{6}$	． 689	58	． 682	61	． 664	60	． 650	61	0.659	55.5
19	．630	51	． 642	52	． 775	59	． 62	60	． 978	56	． 820	59	0.770	56.2
20	． 669	48	． 592	50	． 565	58	． 596	60	．ti30	61	． 590	62	0.607	56.5
21	． 521	50	． 550	50	． 666	56	． 703	56	． 759	59	． 830	59	0.670	55.0
22	． 30	48	． 338	47	． 841	55	． 855	60	.	60	． 815	60	0.833	55.0
23	． 736	48	． 715	53	． 732	54	． 540	59	． 824	59	． 868	58	0.769	55.0
－4	． 869	48	． 888	49	.138	57	． 940	59	． 948	f 6	． 881	63	0.911	56.3
25	． 733	51	.616	52	． 590	53	． 585	69	． 554	55	． 541	56	0.604	54.5
26	． 488	47	． 488	49	． 388	51	． 400	56	． 365	56	． 282	52	0.402	51.8
27	． 156	44	． 162	46	． 90	54	＊． 990	59	＊． 940	59	＊． 948	61	0.016	53.8
28	＊．94i	50	＊． 122	46	＊．896	54	＊． 854	58	＊． 838	61	＊． 830	59	＊ 0.881	54.7
29	＊．418	48	＊．812	45	＊． 954	56	． 048	59	． 223	59	． 354	64	0.041	55.2
30	． 390	51	.472	47	． 564	58	． 610	60	． 644	62	． 708	61	0.563	56.3
31	． 702	49	．752	46	． 774	58	． 800	64	.826	61	．774	60	0.771	56.3
Mean	0.609	40.9	0.592	46.8	0.617	53.3	0.632	56.5	0.640	515.8	0.633	57.5	0.620	53.0
At 23^{3}	29.5		29.5		29.55		29.5		29.5		29.5		29.	

January，1858． 29 Inches + Mean Lat． $73^{\circ} .2$ N．，Long． $63^{\circ} .7 \mathrm{~W}$ ．

bay．	4 h ．		8 h ．		Noon．		$4^{\text {h．}}$		8 l ．		Midnight．		Mean．	
	Bar．	Th．												
	${ }^{\text {luche }}$	4.	luch．	4	Ineh，	59	Inch．	58	1 ch ¢ 5	63	Iuch．	$6 \cdot$	$\mathrm{In} \mathrm{m}_{0} \mathrm{H}$ ．	54.8
1	． 746	42	．712	45	．6－6	59	． 635	58	． 565	63	． 469	62	0.635	54.8
2	． 3.1	48	． 380	46	． 418	60	． 416	60	． 376	60	． 291	62	0.377	56.0
3	． 151	45	＊． 984	48	＊．S36	59	＊． 788	63	＊． 754	63	＊． 771	64	＊0．881	57.5
4	＊． 778	51	＊．792	45	＊．84＊	60	＊．854	55	＊．946	59	． 01310	60	＊11．875	55.5
5	．101	$4!$	．142	47	．172	58	． 127	60	． 150	60	．1076	（i）	0.116	56.3
16	．112	5.5	＊．966	51	＊．982	516	＊．986	60	＊．974	59	＊． 950	58	＊0．978	56.5
7	＊．925	47	＊． 442	44	． 120	52	． 078	57	． 120	60	． 160	61	0.041	53.5
8	． 140	4	． 142	47	． 144	52	． 127	55	． 141	57	． 110	58	0.134	52.8
9	－110）	45	． 198	46	． 137	58	． 15.5	61	.191	61	． 212	62	0.141	56.0
111	.245	52	． 250	51	． 331	5.5	.377	55	． 451	56	． 495	56	0.358	54.0
11	．51：	4	． 542	44	． 612	52	． 1311	59	dic 7	59	． 696	60	0.614	53.7
$1 \underline{ }$	6tiz	4.	． 074	44	． 702	50	． 712	58	． 704	58	． 630	56	0.681	54.2
13	．545	4	． 5116	48	． 626	（i2	． 791	61	1.011	61	1.228	6.3	0.785	57.0
14	1．ご草	52	1．43：	$4 \times$	1.510	59	1.420	55	1．254	58	1.098	59	1.346	56.2
15.	1.16 \＃1	4	． 5115	49	． 44	59	－ 3	55	． 818	59	． 800	6.4	0.846	57.4
11%	．761）	5.11	． 196	4	． 6.54	（0）	． 622	59	． 6.47	62	． 691	61	0.1077	58.0
17	． 710	4！	． 738	45	． 8.94	59	． 682	55	． 868	60	1.015	62	0.806	56.0
$1 \times$	1．00：7	4.3	1.1662	46	1.1093	55	1.198	59	1.081	62	1.038	58	1.068	54.8
19	1．038	47	1.102	45	1．0．）	58	1.101	59	1.108	59	1.155	61	1.064	54.8
211	． 124	4	． 719	45	． 715	54	． 610	58	． 449	58	． 263	58	0.627	53.5
21	． 16.1	415	． 110	4.	．151	51%	． 348	58	． 580	58	． 227	61	0.311	53.8
22	． 7111	44	．742	45	． 852	5.4	． 765	55	． 661	54	． 421	53	0.710	51.7
23	二口木；	43	． 4111	41	． 54.4	53	.710	55	． 790	57	． 748	54	0.578	50.7
$2 \pm$	． 64.45	4.5	．5832	4 4	． 448	51	． 313	53	． 134	50	． 095	53	0.361	49.2
25	． 118	4.3	． 012	4	.110	51	.1008	54	＊． 047	53	＊． 912	53	0.016	50.2
215	＊．921；	4.4	．1032	42	．125	52	． 189	52	． 186	56	． 123	54	0.097	50.0
27	． 05	44	．136	42	． 314	53	． 4.90	54	． 615	55	． 720	60	0.383	51.3
$\stackrel{2}{2}$	710	$4{ }^{4}$	． 814	4.3	． 508	52	． 9.7	53	1.015	53	1.048	55	0.928	50.3
29	1.120	44	1.176	42	1．32\％	51	1．44：）	57	1.550	54	1.624	58	1.374	51.0
311	1．ticit	44	1．75	4	1．$n=1$	53	1.673	57	1.942	58	1.967	61	1.864	52.8
31	1.806	50	1.722	45	1.621	5	1.422	61	1．23s	58	1.130	56	1.505	55.0
Mean	0.561	47.5	11.556	45.8	0.593	55.6	0.604	57.4	0.608	58.0	0.589	59.0	0.587	54.0
At 323	29.5		29.51		29.5		20.5		29.5		29.			

Readings of tie Marine Mercurial Barometer, Adie No. 208, on board the Yacit fox.
February, 1858. 29 Inches t. Mcan Lat. $71^{\circ} .5$ N., Long. $60^{\circ} .9$ W.

DAY.			81		Noo		4		8 b		Midni	ght.		
	Bar.	Th.	Bar.	Th.	Bar.	Th.	Bar.	'Th.	Bar.	Thı.	Bar.	Th.	Bar.	Th.
1	$\begin{gathered} \text { Iuch } \\ 1 .(149 \end{gathered}$	45	$\begin{gathered} 1 \text { urch } \\ .9<0 \end{gathered}$	45	$\begin{aligned} & \text { Inch } \\ & 1.042 \end{aligned}$	$\begin{aligned} & \circ \\ & 58 \end{aligned}$	1 luh . 1.010	58	luch, .926		$\stackrel{\text { Inch. }}{ }$	52	${ }_{\text {Inch. }}$	5.90
2	. 750	44	. 6998	45	1.687	54	-1.142	58		54		52	0.976	52.0
3	. 616	47	. 560	49	. 617	54	. .573	58	.674 .586	56 59	. 6680	58	0.654	52.5
4	. 507	4.9	.493	49	. 542	55	. 576	58	. 629	59	. 648	59	0.573	54.3
5	. 630	52	.6148	45	. 60	53	. 573	59	. 502	59	. 648	62	0.566	55.3
6	. 367	50	. $32 \pm$	50	. 333	59	. 323	60	. 302	59	. 480	61	0.5645	55.3
7	. 370	53	. 434	51	. 534	56	. 389	60 62	. 330	61	. 34	$6: 3$	0.337	57.2
8	. 752	49	.772	56	. 87	59		62	.692	58	. 714	61	0.564	56.8
9	. 898	49	. 868	62	. 584	62	. 886	61	. 162	62	. 9515	50	0.867	515.2
10						62	. 764	60	. 604	61	. 523	57	0.757	58.5
11														
12														
13														
14														
15														
16														
17	. 642	53	. 688	55	. 704	56	. 734	59	. 730	59	. 752	63	0.708	
18	. 693	52	. 652	53	. 558	58	. 475	59	. 370	58	.2:38	76	0.498	59.2
19	. 162	50	. 058	52	. 140	55	.28:2	59	. 482	58	. 546	60	0.252	55.7
20	. 530	55	. 412	53	. 374	58	. 311	58	. 340	60	.377	58	0.391	57.0
21	.430	55	. 492	56	. 652	55	. 712	$6{ }^{6}$. 801	64	. 848	62	0.654	60.2
22	. 874	58	.906	59	. 924	62	. 918	63	. 820	62	.732	61	0.862	60.8
23	. 606	53	. 586	56	. 603	61	. 629	62	. 658	59	. 662	60	0.624	58.5
24	.627	54	. 514	51	. 500	62	. 481	61	. 438	$6 \pm$. 338	57	0.483	58.2
25	. 262	53	. 278	51	. 448	59	. 546	65	. 5.3	61	. 518	62	0.434	58.5
26	. 530	57	. 570	56	. $68 \pm$	58	. 773	62	. 816	59	. 852	(i3	0.704	59.2
27	. 85.2	51	. 864	52	. 934	50	. 952	61	.974	60	1.127	59	0.934	52.5
28	. 930	49	. 972	51	1.033	59	1.004	60	. 981	55	. 923	60	0.974	50.2 55.7
Mean	0.623	51.3	0.603	52.3	0.651	57.7	0.657	60.4	0.661	59.4	0.645	60.2	0.640	56.9
At 32°	29.563		29.540		29.574		29.573		29.580		29.562		29.565	

March, 1858. 29 Inches t. Mean Lat. 69. ${ }^{\circ} 4$ N., Long. 590. 1 W.

DAY.	$4^{\text {h. }}$		8 h.		Noon.		4 h .		8 h.		Midnight.		Mean.	
	Bar.	Th.	Bar.	Th.	Bar.	Th.	Bur.	Th.	Bar.	Th.	Bar.	Th.	Bar.	Th.
1	$\begin{aligned} & \text { Inch. } \\ & .850 \end{aligned}$	$\begin{aligned} & \circ \\ & 48 \end{aligned}$	$\begin{aligned} & \text { Inclı. } \\ & .764) \end{aligned}$	50	Incb.	58	$\begin{array}{r} \text { luch. } \\ .726 \end{array}$	59	Inech. $.770$	$\stackrel{\circ}{61}$	Inch.	55	${ }^{\text {Inch. }}$	55.2
2	. 868	48	. 898	58	. 874	61	. 814	62	. 814	63	. 849	55	0.792	55.2
3	$1.15 \pm$	48	1.252	53	1.310	59	1.058	58	. 690	61	.216	57	0.872	58.3
4	. 330	48	. 482	52	. 846	62	1.140	64	1.380	60	1.380	60	0.947	56.0 57.7
5	1.438	53	1.448	54	1.574	58	1.542	58	1.484	59	1.494	63	1.503	57.5
6	1.496	50	1.500	55	. 624	60	1.718	59	1.750	62	1.833	63	1.492	58.2
7	1.820	52	1.764	55	1.728	58	1.680	60	1.596	60	1.510	58	1.683	57.2
8	1.412	48	1.374	51	1.418	55	1.426°	57	1.412	59	1.430	62	1.412	55.3
9	1.350	50	1.290	51	1.226	53	1.1:0	59	1.010	57	. 904	55	1.152	54.2
10	. 686	47	. 650	56	. 580	52	. 346	58	. 058	61	*. 850	61	0.378	55.8
11	*.762	52	*. 718	57	*. 752	54	*.800	60	*.833	60	*. 898	61	*0.794	57.3
12	*.907	52	*. 950	52	. 006	62	. 148	60	. 297	60	. 350	60	0.110	57.7
13	. 350	50	. 352	56	. 394	64	. 388	60	. 399	61	. 424	67	0.355	59.7
14	. 430	56	. 476	53	. 526	56	. 6331	13	. 668	60	. 686	58	0.569	57.7
15	. 642	47	.670	45	. 789	54	. 829	58	. 875	61	. 950	64	0.785	55.3
16	. 952	50	1.004	57	1.019	58	1.062	58	1.110	58	1.120	61	1.044	57.0
17	1.090	48	1.096	54	1.120	52	1.108	57	1.103	58	1.042	55	1.093	54.5
18	. 966	50	. 896	54	. 808	55	. 770	53	. 748	56	. 674	55	0.810	53.8
19	. 628	46	. 618	50	. 651	53	. 668	513	. 726	55	. 762	59	0.676	53.2
20	. 748	47	. 718	51	. 715	54	. 664	59	. 619	56	. 572	58	0.673	53.2 54.2
21	. 531	54	. 512	54	. 552	54	. 540	56	. 510	56	.462	56	0.523	54.2
22	.436	45	. 418	53	. 4.34	57	. 440	57	. 414	59	. 342	58	0.412	54.8
23	. 384	50	. 554	48	. 725	58	. 897	60	1.078	63	1.232	62	0.612	56.8
24	1.252	50	1.276	52	1.322	60	1.326	60	1.386	65	1.483	58	1.341	57.5
25	1.282	48	1.242	50	1.280	58	1.271	57	1.322	55	1.358	58	1.292	54.3
26	1.377	47	1.436	55	1.509	52	1.518	53	1.500	53	1.533	52	1.479	52.0
27	1.480	41	1.514	50	1.535	53	1.519	51	1.525	53	1.504	56	1.513	50.7
28 29	1.422	46	1.342	48	$1.371 ;$	49	1.820	51	1.328	51	1.316	42	1.351	47.8
29 30	1.362	52	1.415	52	1.449	51	1.445	55	1.449	53	1.410	55	1.422	53.0
31	1.352	42	1.208	50	1.163	5.	1.114	53	1.111	59	1.124	57	1.179	52.2
			1.099	51	1.120	49	1.106^{2}	47	1.064	52	1.075	53	1.057	50.2
Mean	0.934	48.8	0.936	52.3	0.941	55.5	0.971	57.4	0.970	58.3	0.960	58.1	0.952	55.1
At 32°	29.880		29.572		29.869		29.894		29.890		29.851		29.881	

IieadiNis of the Marine Mercurial Barometer，Adie Yo．208，on board the Yacht Fox． April，1858． 29 Inches + Meau Lat． $74^{\circ} .9 \mathrm{~N} .$, Long． 680.8 W.

IRy．	41.		51.		Noon．		$4{ }^{\text {h．}}$		Sh．		Midnight．		Mean．	
	Far．	Th．	Har．	Th．	Bar．	Th．	Ear．	Th．	Bar．	Th．	Bar．	Th．	Ear．	Tu．
	hach	4	1uchit	5，		54	$\begin{aligned} & \text { Incli- } \\ & 1.102 \end{aligned}$	5	$\begin{aligned} & \text { Inch. } \\ & 1.116 i \% \end{aligned}$	54		${ }^{\circ} \mathrm{S}$	luch． 1.073	53.5
$\stackrel{1}{2}$	1．941	45	． 974	\therefore	．193：	56	．90：0	54	． 93.4	50	． 868	51	0.931	52.7
3	－	45	．420	\therefore	． $5: 10$	48	． 878	50	． 750	53	． 764	48	0.788	49.3
4	． 231	44	． 810	53	． 714	53	－75	50	． $7: 35$	5.3	． 710	52	0.743	50.7
5	． 174	45	． 54.4	55	． 614	48	．615	45	． 655	54	－ 489	546	0.640	52.0
fi	． 7.14	51	． 892	5	1.116	51	1.134	49	1.163	51	1.171	56	1.023	51.6
7	1．14：	45	1．1：4	5	1．135	51	1.1111	53	1.1150	53	1.0411	59	1.107	53.7
s	．4811	＋	． 952	53	1．1it	55	1．264	53	1．4゙ロ	59	1.574	58	1.221	54.8
$!$	1．751	47	1．562	45	1．5m：	$4!$	$1.5+10$	54	1.462	56	1．454	61	1.538	52.5
10	1.370	45	1．394	53	1．3nci	P．，	1.356	56	1.388	58	1.396	61	1.386	510.2
11	1.364	（11）	1．352	Sij	1．384	51.	1.344	55	1.3192	58	1．422	（i2）	1.380	56.7
12	1．515	6＇	1.1947	54	1.711	51	1．7ご	58	1.723	59	1．178	is．	1.666	5．7．4
$1: 3$	1．5is	4	1.456	57	1．435	54	1.325	55	1．25s	59	1．202	59	1.379	55.3
1 t	1.10	45	． 980	44	．966	53	． 9.44	59	． 932	3	． $4 \cdot 6$	58	0.975	53.8
1.5	－6\％	5.1	．2－2	51	． $7 \cdot 4$	5.5	． 790	57	． 804	62	． 817	58	0.8112	56.3
16	．742	45	．74	55	．740	5．）	． 738	59	． 766	61	． 718	61	0.743	56.5
Mean	1.148	48.5	1.176	53.3	1.086	53.3	1.013	$5-1.4$	1.099	56.1	1.093	57.3	1.088	53.9
At 3	30.1430		30.114		30.019		30.023		30.025		30.016		30.020	

Fhat Iear．－Recapitulation ue Mean Readingis fron tifereceding record of tue Aneroid Baromerer，No．17701，from september，1857，to September， 1858.

Averaig．		1857.	21.	$4^{\text {h．}}$	61.	Sh．	10．	Noon．	2 h ．	$4{ }^{\text {d }}$	6 ta	8 k.	10 h.	Mid＇t．	Mean．
N．Lut	W．Lens．														
7．3．3	80.0 .1	Sept．	29．034	29.925	1.928	29．903，	9.944	29.949	29.950	29.951	29.959	29.953	29.954	29．936 ${ }^{\circ}$	29.943
75．2	67．9	Oct．	29.94	29，4311	29.916	24.494	29．95i	$2 \cdot 0.935$	29.9615	29.976	29.953	29.998	29．945	29.977	29.4589
74.8	69.1	Nov．	29.857	20．st3	29.40	24．83．3，	29.86	24．011	29.584	29.575	29.850	29.890	29.895	29.887	29.866
7．4．3	87.4	1）${ }_{\text {a }}$ ．	20．7心5	－19．76．）	29.740	29.712	29.764	29.575	29.759	29.791	29.790	29．796	29.794	29.786	－29．737
73.2	13.7	「5，Jan．	20.7	－ 3.712	2！．703	24.71 .4	29．73：9	29.545	29.747	99．750	29.764	29.765	29.758	29.753	29．735
71.5	60.6	F＋b．	2943	29.58	2！$\times 1.830$	29.35	29.568	29.511	20.54	24.686	20.851	29．ぶち	29.577	29.861	$29.86{ }^{2}$
69.4	59.1	March	81.115	310.167	510．173：	30.188 .1	31．121	O．115：	30．119	：30．124：	30.119	30.118	31.114	30.101	30.105
93i．， 1	57.7	Auril	30.145	30.135	31.137		30．15：	30.145	$30.14 \pm$	：0．144：	30.154	30.166	30.168	30.164	30.151
－¢． 7	53.7	May		30． 214		30.203		［30．229］		311.235		30．234		30.222	30．222
74.5	130.1	Inlut		30.0165		30．11］		80.1035		30.138		30.039		30.1125	30.023
74.4	75.4	July		29，94．5		29， 511		29.965		29.971		29．974		29.949	29.961
73.1	－6．5	Aus．		29.917		29.931		29.841		29.963		29.966		29.947	29.944
$7 \cdots$	1；\％ 5		．．．	\ldots	．．．	．．．	．．．	\ldots	．．．	．．．	．．．	．．．	\cdots	．．．	\ldots

Second Vear．－Recapitchation of Mean Readiygs from the preceding record of the Aneroid Barometer，No．17701，from September，1858，to September， 1859. At l＇ort Kennedy：Lat． 22.0 N ．，Long． 940.2 W ．

18.5.	2 h	$4^{1 .}$		S1．	104.	Noon．	2 h ．	$4^{1 /}$	$6^{\text {h．}}$	St．	$10^{1 /}$	Midn＇t．	Mean．
Sept．Oet．Nov．1uce1559，Jan．Feh．MarchAurilMlayJuneJutyAug．		310.01		80.1115		：0．1111		30.118		30.127		30.107	30.108
		$2!9.967$		$\therefore 31.107$		30．103		29.998		30.1331		30.1016	30.007
	301．243	810.231	30． 20.4	：30．213	30.273	34.270	30.263	30.250	30.278	30.283	30.270	30.264	30.261
	30．019．4	：3，（14！	： 0.05%	31.110	31.0194	311．11－5	30.092	30.114	＇30．095	30.094	30.090	30.081	30.1081
	100．1－3	30．15	314．14	30．1－11	30.114	： 1.190	\％11．142	30.2113	30.217	30.219	30.201	30.200	30.188
	131．135	：3．120	31.111	： 1.141	：11．14：	31.146	＋1．155	30.151	80.154	31.152	30.150	30.140	30.142
	30.354	130.389 .7	3－34	30， 30	30.351	314．34，	130．386	31.897	30.400	30.4116	30.407	30.396	30.342
		$130.3+3$		80．401		31．30		30.896		30.413		30.374	30．3－8
		30．175		311．213		311.229		31.2033		30.245		30.231	30.219
		30.111		31．122		30，127		30．1：31		31.130		30.149	30.122
	29.589	2：065	29．857	29.612	29.924	20．97\％	29.948	20．940	29.930	29．924	29.903	29.892	20.913
		24.430		2.3541				29.963		29.963		29.944	29.950
	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	．．．						

Comparison of the Readings of the Aneroid and Mercurial Barometers.
The preceding tabular results furnish the means of comparing the two barometers, and of deducing a correction to the indications of the aneroid barometer, in order to give the readings obtained from the mercurial barometer, referred to 32° of temperature. This correction is necessarily independent of the temperature, there being no thermometric readings in connection with the aneroid: any constant correction for difference of level between the two instruments is included. The following table contains the corresponding readings at the same days and hours, each being the mean of six observations a day.

Table of comparison of corresponding mean readings of the mercurial and the aneroid barometer, and resulting correction to the latter.

Date.	Mercurial.	Aneroid.	$M-A \triangle$
1857, September	Inches. 29.654	Itrhes. 29.878	$\begin{aligned} & \text { Inch. } \\ & -0.224 \end{aligned}$
October	29.714	29.859	-0.0.215
November	29.650	29.865	-0.215
December	29.555	29.776	-0.221
1858, Tanuary	29.520	29.739	-0.219
February	29.565	29.76	-0.227
March	29.551	30.105	-0.294
April	30.020	30.245	-0.205
Nean	- \cdot	$\Delta=$	-0.221

These differences appear remarkably regular, and show that the mean monthly readings of the aneroid may be relied on to one-hundredth of an inch. There appears to be no tendency of a change of Δ depending on the higher or lower reading of the barometer, nor is there any variation due to changes in temperature. The correction to the aneroid readings to refer them to the corresponding readings

[^21]of the mercurial barometer is, therefore, - 0.22 inches. This quantity, strictly speaking, is composed of two parts; the first, the true index error of the aneroid, and the second, the specific difference of the two instruments in different latitudes, the mercurial barometer (weighing a mass of mercury against a mass of air) being independent of a change of gravity, whereas the aneroid barometer is sensible to any increase of gravity as we proceed to the northern high latitudes. Within the limits of latitudes $66^{\circ} .0 \mathrm{~N}$. and $75^{\circ} .3 \mathrm{~N}$. this variation amounts to 0.014 inches; and its greatest difference from the mean, say in latitude $72^{\circ} .0 \mathrm{~N}$., is, therefore, ± 0.008 inches. This quantity being smaller than the uncertainty of the results by the aneroid, I have considered it as a correction that can safely be neglected. The formula $b=b_{45}(1-0.0026 \cos 2 \phi)$ shows the variation for any latitude ϕ.

North of latitude 45° the aneroid gives the higher readings.
Resutting mean 4-hourly and mean monthly readings of the mercurial barometer in the months of September, 1857, and Felruary and Apil, 1858. The results for these months, given above, require a small correction to refer them from part of the month to the whole month; this was obtained by means of the known aneroid readings for the interval when the mercurial barometer was not read, the index correction - $0^{\text {in }} .22$ having first been applied. We find-

Referred mean readings of the mercurial barometer for the full months of September, February, and April, of the first year:-

Averagro		Moxtr.	$4^{\text {b }}$	8h.	Noon.	$4^{\text {h, }}$	8h.	Midn't.	Mean.
N. Lat.	W. Lons.								
55.3	65.0	1857, September	29.707	29.715	29.727	29.732	29.728	29.728	29.723
71.5	61.9	1858, February	29.621	29.609	20.648	29.653	29.658	29.632	29.637
66.0	57.7	1855, April	29.930	29.922	29.923	29.922	29.939	29.936	29.929

The following comparisons were made for the purpose of ascertaining how near the mean of 6 and 12 observations a day approximate to the true daily mean as derived from hourly observations. The following mean hourly readings, taken for 15 days between January 6 and January 22, 1858, are taken from the record; also the means for 7 days in January, 1859, and for 15 days in July, 1859. (Of these observations I find only the results recorded.)

OF THE OBSERVATIONS FOR ATMOSPIIERIC PRESSURE. 101

January, 1858. For 15 Days.							
Hoor A. M.	Bar.	Hovr A. M.	Bar.	Hour P. M.	Bar.	Houn P. M.	Bar.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	29.746 .733 .724 .718 .710 .700	$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \text { Noon } \end{gathered}$	29.697 .695 .705 .722 .731 .737	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{array}{r} 29.738 \\ .742 \\ .748 \\ .758 \\ .774 \\ .778 \end{array}$	$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \text { Midn't } \end{gathered}$	29.782 .787 .790 .792 .796 .795
January, 1859. For 7 Days.							
Hour A. M.	Bar.	Hour A. M.	Bar.	Hour P. M.	Bar.	Hour P. M.	Bar.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	30.037 .029 .020 .013 .006 .003	7 8 9 10 11 Noon	30.000 .047 .019 .053 .050 .040	1 2 3 4 5 6	30.040 .086 .043 .051 .053 .051	7 8 9 10 11 Midn't	30.051 .050 .049 .039 .040 .043
July, 1859. For 15 Days.							
Hour A. M.	Bar.	Hodr A. M.	Bar.	Hour P. M.	Bar.	Hotr P. M.	Bar.
$\begin{aligned} & 1 \\ & \mathbf{2} \\ & 3 \\ & \mathbf{4} \\ & 5 \\ & 6 \end{aligned}$	30.012 .012 .011 .018 .021 .026	7 8 9 10 11 Noon	30.040 .061 .071 .072 .073 .066	1 2 3 4 5 6	$\begin{array}{r}30.087 \\ .098 \\ .094 \\ .080 \\ .071 \\ .065 \\ \hline\end{array}$	7 8 9 10 11 Midn't	30.056 .046 .035 .026 .022 .013
Mean of 24 observations a day . . . 30 in. 049 $"$ " 12 " "049 From the even hours,							

The results show conclusively that the hourly and bi-hourly series give the same mean, and that the mean, deduced from six observations a day, does not materially differ from either; no correction need therefore be applied to daily means derived from readings at intervals of two and four hours.

Diurnal Variation of the Atmospheric Pressure.

The diumal variation, which is almost vanishing in the higher latitudes of the Arctic regions, can only be satisfactorily traced by means of a combination of a great number of observations; it is also frequently masked by the great irregular fluctuations in the atmospheric pressure. The observations were, therefore, grouped,
the first part comprising the results in Baffin Bay, from September, 1857, to August, 1855 , inclusive, and the second part, the results at Port Kennedy, from September, 1858, to August, 1859, inclusive.

For greater convenience the results by the aneroid have been reduced to the results by the mercurial barometer, by the application of the correction - $0^{\text {in. }} .221$.

The readings for the hours $4,8,12$, A. M. and P. M., for the first eight months between Sept. and April, were taken from the preceding abstract of the mercurial barometer (the readings in Sept. February, and April from the table containing the referred means). All tabular numbers for the same eight months, at the hours 2, 6, 10, A. M. and P. M., are derived from the readings of the aneroid barometer by interpolation by means of differences; thus to obtain the reading at $10 \mathrm{~A} . \mathrm{M}$., in September, we have-

Aneroid reading at 10 A. M. 0.013 greater than at 8 A. M. Mercurial barometer reading at $8 \mathrm{~A} . \mathrm{M} .=29.715$, hence at $10 \mathrm{~A} . \mathrm{M} .=29.728$; again, aneroid at 10 A. M. 0.003 smaller than at noon. Mercurial barometer at noon 29.727, hence at $10 \mathrm{~A} . \mathrm{MI}^{2}=29.724$, and the resulting mean from the comparison of the preceding and following hour becomes 29.226 as given in the table.

The ammal mean for the hours $2,6,10, \mathrm{~A}$. M. and P. M. is obtained in a similar manner; thus, for 10 A. M. we have: From S months, Sept. to April, mean at 10 A . M., the reading 0.020 greater than at $\delta \mathrm{A} . \mathrm{M}$. or $=29.731+0.020$; it is also 0.006 greater than at noon or $=29.743+0.000$; the mean of the two values is 29.750 as given in the table.

Diurnal variation of the atmospheric pressure during the year from September, 1857, to August, 1858 , in mean latitude $7230^{\circ} .5 \mathrm{~N}$., and mean longitude $65^{\circ} .8 \mathrm{~W}$.; nearly in the centre of Baffin Bay. 29 inches is to be added to the tabular numbers.

Noxstu.	$2{ }^{2}$	4^{4}	6,	st.	100.	Noon.	2 h	41.	6h.	$\mathrm{g}^{\text {b }}$	1 tob	Niidnt.
1-55, Sept.	. 713	-	.110	215	\% 2	. 27	.830	.832	-7310			${ }_{\text {\% }}^{5}$
Not.	.	,	\%	\%10	\% 6	. 4	${ }^{7}$		(762	.	. 8765	,
	5	\% 5		$\stackrel{.54}{510}$,	$\xrightarrow{23}$	\%	.	. 5.56	. 5.56	¢566	¢ 5.519
	${ }^{2} \times 16$	(6) 8	${ }_{\text {che }}^{\text {cild }}$	${ }_{\text {coin }}^{619}$.64	\% 6	. 8.80		${ }_{\text {c }}^{\text {a }}$. 6.58	.648	
cincil	31	(\%)	Sin	,	239	(1)	.920	1.9.75		1.939	. 940	- 1.936
Nur		\%		5as		\% 818		. 112		. 819		\%05
${ }^{\text {Jaly }}$ Aly		\%-25		\%		: ${ }^{[75}$. 746		..$_{27}$
Mean		. 3		. 731		${ }^{7} 43$. 733		. 756		43
Counpletar wean $\}$.733		\%29		${ }_{750}$		845		.756		.753	

The table of lihhourly means for the second group was obtained from the general recapitulation of result, by subtracting 0.221 from each mean to reduce it to the reading of the standard marine barometer, and by referring the incomplete means at the hours $2,6,8, \Lambda$. M. and P. M., to their corresponding value for a complete series of 12 values hy a process similar to that explained in case of the preceding table.

Diurnal variation of the atmospheric pressure during the year from September, 1858, to August, 1859, at Port Kennely, in latitude $72^{\circ} .0$ N., and longitude $94^{\circ} .2$ W. 29 inches is to be added to the tabular numbers, which, as well as the preceding tabular numbers for $1857-8$, should be considered as reduced to the temperature 32° (Fahr.).

Moxtil	$2^{\text {h. }}$	4 h.	$6^{11 .}$	Sh.	10 h.	Noon.	21.	41.	6h.	Sl.	10 h.	Midn't.
1858, Sept.		$\begin{array}{r}.863 \\ .746 \\ \hline\end{array}$.884 .786		.889		. 897		. 006		.885
Nov.	1.023	1.010	1.003	1.042	1.052	1.049	1.042	1.159	1.057	1.06\%	1.04 .9	1.143
1859, Dan.	. 843	. 828	. 832	-849	. 873	. 84.4	. 81	. 88 t	. 57.4	. 573	. 863	. 810
1859, Jan.	. 951	. 937	. 927	. 959	. 976	. 969	.971	.982	. 981	.988	. 9 k	. 279
Feb.	. 914	. 899	. 889	. 92.5	. 928	. 925	. 934	. 930	. 933	.931	.929	. 919
Mar.	1.133	1.114	1.124	1.159	1.165	1.165	1.165	1.176	1.179	1.185	1.181;	1.17 .5
April		1.142		1.180		1.168		1.175		1.1-2		1.153
May		. 954		. 982		1.005		1.012		1.034		1.010
June		. 890		.901		. 906		. 910		. 909		. 888
July Aug.	. 658	. 664	. 666	. 691	. 603	. 712	. 227	. 719	.709	. 703	. 682	. 671
Aug.		.715	-	. 719		. 730		. 742		. 741		. 723
Mean		. 897		. 923		. 933		. 939		. 943		. 925
$\left.\begin{array}{c} \text { Completed } \\ \text { Mean } \end{array}\right\}$. 906		. 894		. 935		. 936		. 940		. 234	

These results, when expressed analytically by means of Bessel's form of periodic functions with application of the method of least squares, become--

1. For Baffin Bay, 1857-1858-

$$
b=\underset{29.743}{\text { Inches. }}+0.013 \sin \left(\theta+5^{\circ}\right)+0.004 \sin \left(20+159^{\circ}\right)
$$

2. For Port Kennedy, 1858-1859-

$$
\begin{aligned}
& \text { Inches. } \\
& Z=29.925+0.02 \mathrm{~L} \sin \left(\theta+22^{\circ}\right)+0.009 \sin \left(2 \theta+150^{\circ}\right)
\end{aligned}
$$

3. For Van Rensselaer Harbor, 1853-54-55, for comparison-

$$
b=\begin{gathered}
\text { Inches. } \\
29.765+0.003 \sin \left(\theta+290^{\circ}\right)+0.002 \sin \left(2 \theta+204^{\circ}\right)
\end{gathered}
$$

In which expressions the angle θ counts from noon at the rate of 15° an hour.
The comparison of the observations with the values deduced by the formule is shown in the following two diagrams, in which the observed values are indicated by dots.

Dichal Vahathy of Atmospheric Pressme at Port Keysedy. Latitude 72.0 N.

These curves have in common a maximum at about $7 \frac{1}{2}$ P. M., and a minimum at about $4 \frac{1}{2}$ A. M.; the hour of maximum at Van Rensselaer Harbor was 10 P. M., whereas a minimum at $4 \mathrm{~A} . \mathrm{M}$. is hardly perceptible at this place. A secondary maximum is plamly indicated at Port Kennedy about noon, and a secondary minimum about $2 \frac{1}{2}$ P. M., which secondary minimum seems to correspond with the principal minimum at Van Rensselaer Harbor at $1 \frac{1}{2}$ P. M.

The range of the diurnal fluctuation of the barometer is as follows:-

Hence, between latitudes $72^{\circ} .2$ and $75^{\circ} .6$, there is a diminution in range of 0.028 inches; at this rate, the dimmal thetuation would become insensible (be less than 0.001) in about 51° north latitude.

The following table of ohserved bi-hourly means is added for convenience of reference and for comparison:-

Anmul Vicriation of the Atmospheric Pressure.

The mean monthly height of the barometer is obtained directly from the preceding tables, showing the diurnal fluctuation, by applying to the monthly mean
the correction for index, +0.007 , and the renluction to the level of the sea, +0.005 . To the table I have added for comparison the values for Van Renssclaer Harbor (also referred to the level of the sea by applying +0.005).

It should be remembered that the monthly means in the first column were obtained while the ship was drifting and sailing in Baffin Bay, on which account the annual fluctuation may not appear as plainly as if the ship had been stationary in the middle latitude $72^{\circ} .5 \mathrm{~N}$.

The maximum in each series has been marked with an asterisk (*) ; it occurs either in April or May. The occurrence of the minimum does not agree at these stations; in Baffin Bay it occurred in January, at Port Kennedy in July, and at Van Rensselaer Harbor in September-showing plainly that more observations are required to fix the season or month in which it takes place on the average.

The preceding monthly values are represented by the formule:-

1. For Baffin Bay, 1857-8-

$$
B=29.755+0.155 \sin \left(\theta+304^{\circ}\right)+0.113 \sin \left(2 \theta+236^{\circ}\right)
$$

(Greatest difference hetween an observed and computed value $=0.04$ inches).
2. For Port Kennedy, 1858-59—

$$
B=29.938+0.137 \sin \left(\theta+17^{\circ}\right)+0.106 \sin \left(2 \theta+232^{\circ}\right)
$$

(Greatest difference between observed and computed values; in October, -0.13 , in November, +0.11).
3. For Van Rensselaer, 1853, '54, '55-

$$
B=29.775+0.079 \sin \left(\theta+4^{\circ}\right)+0.044 \sin \left(2 \theta+194^{\circ}\right)
$$

Expressed in inches, and θ counting from January 1st, and at a rate of 30° a month.
The computed annual range, or the difference between the highest and lowest monthly mean, is as follows:-

Baffin Bay
Port Kennedy
Van Rensselaer

Taking the mean of the expressions for the three stations, the following formuln furnish the typecurve for lat. $74^{\circ} . t \mathrm{~N}$., and long. $77^{\circ} .0 \mathrm{~W}$., for the diumal and cumual variation of the atmospheric pressure:-

$$
\begin{aligned}
& \quad \text { Inches } \\
& B=24.823+0.012 \sin \left(0+346^{\circ}\right)+0.005 \sin \left(20+171^{\circ}\right) \\
& B=29.623+0.124 \sin \left(0+348^{\circ}\right)+0.088 \sin \left(2 \theta+221^{\circ}\right)
\end{aligned}
$$

Diarnal Eidremes.

The irrectular oscillations from day to day are subject to an annual variation, as exhibited in the following table of average differences in the atmospheric pressure on consecutive days. The daily changes were made out, irrespective of sign, and were obtained from the comparison of the daily means of the aneroid readings.

To the two localities-Baffin Bay and Port Kennedy, I have added, for comparison, Tan Renssclaer Hambor, and also a column for a mean of the three lucalities.

	$\begin{gathered} \text { 1857-8. } \\ \text { Bafin Bay, } \\ \text { T2.5 N. Lat. } \end{gathered}$	$\begin{gathered} 1858-9 . \\ \text { Port Kennedy. } \\ 72.0 \mathrm{~N} . \text { Lat. } \end{gathered}$	1553, '54, '55. Van Rensselaer. is . 6 N. Lat.	Menn.
September.	0.15 inches.	0.12 inches.	0.11 inches.	0.13 inches.
Octoher	0.19	0.21	0.15	0.18
Norember	0.22	0.14	0.17	0.18
December	0.21	0.12	0.26	0.20
January	0.26	0.11	0.17	0.18
Fetruary	0.20	0.16	0.26	0.21
March	0.22	0.12	0.17	0.17
Aprii	0.19	0.16	0.12	0.16
May	0.10	0.07	0.14	0.10
June .	0.12	0.10	0.10	0.10
July	0.08	0.14	0.09	0.10
Aurnst	0.11	0.12	0.10	0.10
Mean	0.17	0.13	0.15	0.15

In Baffin Bay the progression is more regular than at Port Kemedy; the mean from the two stations compares very favorably with the result deduced from Dr. Kane's observations. The oscillations in the winter months are twice as great as those in the summer months.

The larger variations in the atmospheric pressure have already been noticed in the discussion of particular storms in the preceding part of the paper.

Mouthly and Ammal Extremes.

The following table contains the observed maxima and minima of the atmospheric pressure in each month, as observed by or referred to the mercurial marine harometer. (At: $: 2$ Fihre.)

Monthe	Brffin Bay, 1857-58.			Purt Kilanemy, 1858-b9.					
	Mas.	Min.	Range.	Mux.	Min.	Range	Mitx.	Mia.	Range
Soptember	30.35	29.12	1.22	30.12	20.069	1,06	30.15	29.14	1.11
October	30.50	28.98	1.52	311.48	29.16	1.32	30.3:3	29.105	1.28
November	31.19	18.81	1.38	311.46	219.42	1.04	311.33	2!1.133	1.30
December	3t. 19	28.73	1. 47	30.85	29.23	1.332	:311.43	24.95	1.48
January	30.92	25.67	2.2.)	30.34	29.51	0.83	30.44	29.188	$1.31 ;$
February	30.30	29.10	1.30	30.38	29.23	1.15	30.45	2 Sa .44	1.61
March	30.78	28.63	2.15	30.60	29.57	1.113	30.47	29.15	1.31
April	30.65	29.18	1.45	31.05	29.65	1.40	30.37	29.23	1.119
May	30.54	29.51	1.03	30.50	29.54	0.915	30.49	29.19	1.30
June	30.12	29.20	0.92	30.48	29.43	1.05	30.19	29.41	0.78
July	31.26	29.34	0.92	30.315	28.75	1.61	29.97	29.40	0.57
August	30.06	29.32	0.74	30.27	29.26	1.01	30.05	29.22	0.83
Mean	30.40	29.04	1.36	30.47	20.32	1.15	30.31	29.14	1.17

The monthly range is greatest in winter and least in summer in Baffin Bay and at Van Rensselaer Harbor; at Port Kennedy the amount of range is rather irregularly distributed over the year.

Absolute observed maxima and minima and extreme range (corrected for index error and referred to the level of the sea by the addition of 0.01).

Localtty.	Max.	Date.	Min.	Date.	Range.
Baffin Bay	30.93	Jan. 30, 58.	28.64	Mar. 11, 58	2.29
Port Kennedy	31.06	April 12, 59.	28.75	July 10, 59.	2.30
Van Rensselaer Harbor.	30.97	Jan. 22, 55.	28.84	Feb. 19, 54.	2.13

Retation of the Atmospheric Pressure to the Direction of the Wind.

In this investigation the aneroid readings alone have been employed. For this purpose the daily readings at the hours 6 A . M. and $6 \mathrm{P} . \mathrm{M}$., and at noon and midnight, were compared with the corresponding mean of five days (two days before and two days after the day in question). This substitution of the penthemers for the monthly means, as normals, was considered a desirable improvement. Each difference was inserted in the column for the respective wind (eight in all with a column for calms). In the exceptional case, where no observation was made at one or the other of the above hours, the observation at the nearest hour adjacent was substituted. A + sign indicates a pressure higher than the mean, a - sign a pressure lower than the mean. The following table contains the results arranged for two localities of one years' observations for each (commencing with September) ; the results at Port Kennedy for the S. E., S., and S. W. winds, are contracted in one mean on account of the scarcity of wind from these directions. The results for Van Rensselaer ${ }^{1}$ have been added for comparison.

[^22]10S RECORD ANDREDUCTIONOFTHEOBSERVATIONS, ETC.

The maximum effect of any one wind (or calin) does not exceed 0.04 of an inch, and, considering the short period of observation, and the probable irregularity in the phenomenon itself, the above figures for any one locality show a tolerable degree of prouression. During calms the barometer is higher on the average 0.017 inch.

The aloove tabular quantities (after omitting the calms and making the algebraic sum of the results for each place equal zero) are contained in the expressions-

$$
\begin{aligned}
& \text { For Baffin Bay } \quad \beta=+0.015 \sin \left(\theta+27^{\circ}\right) \\
& \text { For Fort Kennedy } \beta=+0.015 \sin (\theta+181) \\
& \text { For Van Rensselaer } \beta=+0.018 \sin (\theta+246) \text {, }
\end{aligned}
$$

The angle θ counting from the north. These expressions give nearly the same amount (0.016 inches) of elevating and depressing effect of the winds on the average, but do not correspond in the direction; thus, in Baffin Bay, according to the above, the barometer is higher with the wind from the N., N. E., and E., and lower with the wind from the S. W., W., and N. W.; whereas, at Port Kennedy, where the wind is much subject to local influences, nearly the opposite law would hold good.

The changes in the atmospheric pressure during the more violent storms have alrealy been noticed, and were illustrated with diagrams.

APPENDIX.

APPENDIX.

Record of tue Weather kept on board the Yacet "Fox," from July 2, 185 7 , to September 18, 1859; with Notes on the Specific Gravity of Sea Water, on the State of the Ice, Appearance of Animals, etc. etc.; on the Aurora Borealis and Atmospleeric Phenomena.

Tre state of the weather is indicated by the following letters (Beaufort's notation):-

```
b Blue sky.
c Clouds (detached).
d Drizzling rain.
f Foggy.
g Gloomy. t Thunder.
H Hail.
l Lightning.
m Misty (hazy).
- Overcast.
p Passing showers.
q Squally.
r Rain.
s Snow.
t Thunder.
u Ugly (threatening) appearance.
v Visibility,objects at a distance unusually visible.
v Wet (dew).
z Snow drift.
```

A bar (-) or a dot (.) under any letter angments its signification.
The sign ("), in the record of the state of the weather, indicates the same entry as that of the hour immediately preceding.

The position of the vessel is given in the preceding record. The specific gravity of sea water was determined by Twaddel's hydrometer, that of distilled water being 1.000. The temperature of sea water and atmospheric pressure have already been stated.

The specific gravity of sea water, in the last column, is given in units of the fourth place of decimals, as indicated by the heading of the table.

For reasons stated by A. Mitchell, A. M., M. D., in the July number, 1860, of the Edinburgh New Philosophical Journal, it has not been deemed advisable to publish the observations for amount of ozone in the atmosphere. It is evident that the amount of discoloration of the papers exposed depends, in a great measure, on the air passed over, and, therefore, presents the combined effiect of the quantity of ozone and the strength of the wind.

July, 1857. Recomo of the Weatmer kept on board the Yacht Fox, With general remarks.

MAY.	$4^{1 /}$	8 h.	Noon.	$4^{\text {h }}$.	8h.	Miduight.	Specitic firav. of sea Witter, 1.0.
1	β	"	"	6	c	"	...
!	c	"	،	${ }_{6}$	*	6	255
3	e	6	*	"	6	*	295
4	r	*	6	"	"	${ }^{6}$	297
5	r	6	$b c$	6	"	"	292
1	'	$b c$	c	$1{ }^{1} \mathrm{c}$	6	"	295
7	11.	*	b	$b c$	16	6	292
8	r	*	co	6	c	$c m p$	\cdots
(1)	?	$\bigcirc m p$	c m	mo	"	f	29.4
10	d m	m 1 r	or	،	c m	$b m$	295
11	b	m	mo	r*	$c d$	07	295
12	m q	16	b	$b c$	${ }^{6}$	6	300
13	b	*	6	c	"	$b e$.
14	b $1 /$	i	$c m$	o	d	$\stackrel{\circ}{ }$	300
15	r	'd	$m j$	\cdots	$b e$	f	302
1 ;	m	$c d$	mo	m	"	f	300
17	d	i	\%	${ }_{6}$	46	4	...
18	i	',	'f	"	c	b c	302
$1!$	b	-- -	---	98	16	"	...
20	r	c	b c	m	"	${ }_{6}$	\cdots
21		*	b m	"	f	6	
23	f	"	"	6	b	"	302
23	b	6	*	"	*	${ }_{6}$	\cdots
24	b	c	"	f	9	c	300
25	b c	*	6	*	"	b	310
26	b	'	$b \cdot$	6	'6	*	300
27	b	!	6	\cdots	o	C	280
28	9	:	6	!	*	0%	340
29	or	r	o	cim		6	295
	$b e$	a	6	${ }^{6}$	"	*	295
31	$b c$	c	6	*	6	*	285

NOTES TO JLLY RECORD.

1st. Aberdeen.
7th. Porpoises going east; a shearwater and two loons seen; fulmar petrels constantly in siglit.
8th. A shearwater, an Aretic tern, and several fulmar petrels seen.
$9 t h$. A whale seen.
111h. Fulmar petrels constantly in sight.
13th. Mountains of Sonth Greenland scen ; Cape Farewell, N. $66^{\circ}, \mathrm{W} .74^{\prime}$; fulmar petrels, kittiwake rulls, also strange petrels in sight.

14 h. Fulmar and strange petrels, and kittiwakes in sight; several hours in sight of the ice.
16 th . Loons are not uncommon.
171h. Sailing through heavy pack ice
18th. Sailing through heavy pack ice.
19th. At noon in habbor of Frederickshaab.
23d. Anchored at $1^{\text {h. }} 30^{\mathrm{m}}$. P. M. in Fiskernaes Harbor.
25th. Hove to off (soodhaal) 8 A. M.
26th. One rorqual seen, mollymauks, and an occasional skua gull.
27th. Mollymanks as usual.
2Sth. A skua gull shot; considerable number seen; one black whale seen. Specific gravity of water in 110 fathoms 1.0275 , temperature 310.5 ; at surface 1.0275 , temperature $37^{\circ} .0$.

31 st. In Lievely IIarbor.

August, 1857. Record of the Weather kept on board the Yacht Fox, With heneraf, remarkso

DAY.	41.	8^{17}	Noon.	$4^{\text {li }}$	sli.	Milnight.	
1	θ	"	"	1 c	:	¢	$2 \begin{gathered}\text { 20 }\end{gathered}$
2	c	"	"	\% c	c.	$0 \cdot$	24\%
13	i	0	"	$b \mathrm{c}$	c	"	*2-5
4	c-	$\cdots{ }^{\circ}$		y^{r}	9\%	$b c a$	25.
5	$b c$	"	"،	"	\cdots		2×5
6	c	"	"	"	$c 0$!	2311
7	or	0	f	$b c$	"	j	275
8	f	"	$0 \cdot$	*	c^{1}	'	27
9	be	0	or	r	o	or	*2T1
${ }^{2} 10$	c	$b c$	0	$m r$	f	"	*20
11	f	b	"	"	"	"	-..
12	b	"	"	"	"	"	2
13	b	"	"	$b e$	"	"	$2+10$
${ }^{3} 14$	$b 0$	"	"	"	u	"	230
15	$b e$	"	"	"	"	"	* 2 ¢ 11
16	$b \mathrm{c}$	"	"	"	f	"	-250
17	f	\%	"	$m d$	"	0 S	2190
18	o	${ }^{\prime \prime} 0$	c m	"	"	"	26.9
19	c m	"	"	"	$m s$	c	*260
20	c $\quad 1$	c	s	${ }^{10}$	$m s$	c	*260
21	c	"	f	90	j	m 6	*2tior
29	mo	m	$b c$	d	"	c	*210
23	co	o	"	"	c	$b e$	2162
24	10	b	"	$b c$	،	\cdots	*2tin
25		"	$m o s$	mor	r		* 212
26	d	$b e$	m	f	ϵ	"	* 161
4		oc	c	be	r	"	*20\%
28	e	f	"	mo	0	9	*202
29	$b e$	"	b	$b m$	b	"	* $\because 16$
30	$b c$	"	$\bigcirc C g$	t	$9_{60}{ }^{\text {mo }}$	"	*260
31	os	s	c	b			* 2 , 0

NOTES TO AUGUST RECORD.
1st. In Disco Fiord; eider ducks abundant.
2d. One black whale and several rorquals seen.
3d. Off Issung Point ; immense flocks of ducks.
4th. At Rittenbenk.
5th. A few rotchies seen.
6th. Off Upernarik; took on board six dogs at Proven, and fourteen at Uperuavik.
7th. Several rotchies seen.
8th. Sailing amongst loose ice.
10th. Off the Devil's Thumb.
12th. Steaming through ice.
13th. Specific gravity of fresh water on the iceberg, 1.001.
14th. At midnight (14th to 15th) fast to a berg south of Brown's Istand.
16th. Running through lanes in the pack.
17th. Rumning through lanes in the pack and beset.
18th. Beset in Melville Bay.

[^23]20th．Three seals seen．
21st．Two seals shot．
24th．One seal shot．
26th．Two glancous gulls shot．
27th．Three seals and a turnstune shot；warping theough the ice；ship nipped．
2sth．Two seals shot．
23h．Cape Melville N． 8019 W．（true）．
？Oth．Cape Melville N． $10^{\circ} 30^{\prime}$ W．（true）．

September，1857．Record of the Weather hept on board tife Yacit Fox，with general REMARKS．

DAY．	4^{1}	8 h.	Noon．	4h．	Sh．	Midnight．	Specilie Graty of sica Water，1．0．
1	b	$b c$	＂	＂	6	c	
2	j	：	＂	＂	＂	${ }^{6}$	$* 260^{1}$
8	j	119	f	$f o$	mo	f	＊2011
4	j	m＂	＇6	0	،	f	＊2かり
2.5	\％	i	c 0	c	0	c	＊ 2 们
${ }^{3} 6$	f	\therefore s	0	c	$b \cdot$	c	$\cdots 2 \leq 31$
7	＇	$\cdots{ }^{\prime \prime}$	＊	0 s	s	＂	
48	0 ¢	10	s	f	c	o	
5）	1	If	r r s	4	＊	$f i s$	
${ }^{6} 111$	s	i	＂	0	$m o$	s	
－11	$0:$	m	$r s$	fs	s	f	
12	i	m	1／${ }^{\circ}$	f	${ }^{6}$	＂	
13	ib	＂	＂	\because	jo	f	
14	（1）	f	s	＂	${ }^{6}$	1	
15	$b \mathrm{c}$	＂	＂	＂	＂	＊	
\％11；	U	c	c＇0	＂	6	c	
17	b	${ }^{*}$	＂	＂	6	＊	
1.5	b	،	＂	＊	6	＂	
19	3	＂	＂	＂	6	＂	
20	1.	＂	＂	6	＂	＂	
21	1,	＂	＂	6	b 1	＂	
2.3	c	${ }^{6}$	b e	0	be	\％	
23	f	1.1	b	bec	c	14	
24	1.	16	b	＂	17	b	
25	r	b	b c	b	f	m	
20	b	＂	＂	${ }^{6}$	＂	＂	
27	v	m	$b 0$	46	＂		
$\because 5$	f	$b c$	o	c	＂	c	
29	f	＊	b с m	c	f	＂	
30	j	r	cm	c	\％	b c	

NOTES TO SEPTEMBER RECORD．
1st．Four seals shot；beset in Melville lhay．
2d．Three seals shot．
3n．Three seals shot．
4th．Two seals shot．
1
Specific gravity of sea water，from record in fourth mumber of Meteorologicals，Board of Trade．
${ }^{3}$（ape Melville，N． $10^{\circ} 45^{\prime} \mathrm{F}$ ．（thte）；two black whales seen；four seals shot．
－A shinh swell perceptille；a sua snipe shot；a young burgomaster and a kitchie seen；also several mollymatis．
－Two lurgomaster galls shot；a white falcon seen．
c At 9 A．M．，dry bulb，：3．0，wet， $22^{\circ} .5$ ；fivo seals and a burgomaster shot；at 10 P．M．，dry hulb， 32 ． 5 ，wet 11211，32 ．5．
：snow huntings seen：a ring doterel shot．

5th. A black whale seen; sounded in 88 fathoms; yellowish mud; six seals obtainet.
6th. Soundings in 88 fathoms; yellowish mud.
7th. A Tringa shot.
8th. Soundings in 86 fathoms; same bottom.
9 th. Soundings in 94 fathoms; mud, shells, and stones.
10th. Soundings in $83 \frac{1}{2}$ fathoms; stones and mud.
11th. Soundings in 83 fathoms; stones and mud.
12th. Soundings in 80 fathoms; soft mud.
131h. Strong refraction in N. W.; three ravens, one burgomaster, and one furnstone seen.
14th. Soundings in 78 fathoms; a sea snipe shot; dry bull, 29 . 19 , wet 24.8 at $9 \mathrm{~A} . \mathrm{M}$.
15th. Soundings in 79 fathoms; two ravens, a few show buntirgs, and a burgomaster seen.
16 th. Soundings in 69 fathoms; stones.
17th. Soundings in 94 fathoms; mud.
18th. Longitude by Jupiter's first satellite $65^{\circ} 5^{\prime} \mathrm{W}$.
19th. Faint aurora at 2 A. M.; sounded in 114 fathoms; stones and mud.
2 Ist. No bottom with 120 fathoms; wet bulb 25.5 , dry bulb 26.5 .
22d. Sounded in 135 fathoms; mud and sand; two bears seen.
$23 d$. Sounded in 130 fathoms; soft mud.
24tb. Specific gravity of surface of sea 1.0250 , at 290 temperature ; two bears seen ; faint aurora in the S. E.

25th. Faint aurora from N. N. W. to S. S. W ; two seals and a glaucous gull sten.
26 th. A raven shot.
2 th. A raven seen ; at 2 A. M. a slight aurora in the E. S. E.
28 th. No bottom with 140 fathoms.
29th. Two bears seen.
30th. Many shooting stars at miduight (30th to 1st).

NuTES TO OCTOBER RECORD.

1st. I ee mith N. IV: a pharmigan caurht lig the dogs ; a flock of eider-ducks and a raven seen.
2d. Dusk at T^{2}
3月. Hawn at $5^{\text {ha }}$ 10n. dusk at $7^{\text {n. }}$

5th. Wawn at $5^{\text {h. }} 30^{m}$, dusk at $6^{\text {h. }} 30^{m}$; at midnight longitude by chronometer and Jupiter $65^{\circ} 45^{\prime} \mathrm{W}$.
Gth. Dawn at $5^{\text {h. }} 2^{2} y^{m}$; tried for sommings with 140 fathoms; dusk at $6^{\text {h. }} 30^{\mathrm{m}}$.
7 th. Namm at $5^{\text {h. }} 8.5^{\text {ma }}$, dusk at $6^{\text {h }} 25^{\text {m. }}$; \mathbf{t} wo bear tracks near the ship.
8 h. Dawn at $5^{\text {h. }} 35^{\text {me }}$, dusk at $6^{\text {h. }} 10^{m}$ m.
9th. 2 A. M. aurora seen from S. S. E. to E. S. E. ; dawn at $5^{\text {h. }} 30^{\mathrm{m}}$; a raven seen; dusk at $6^{\text {nh }} 0^{\text {m. }}$
10th. Dawn at $5^{\text {h. }} 3^{3} 5^{\mathrm{m}}$, dusk at $5^{\text {l. }} 55^{\mathrm{m}}$.
11th. Dawn at $\mathrm{C}^{\text {h. }} 0^{\mathrm{m}}$, dusk at $5^{\text {h. }} 10^{\mathrm{mm}}$.
 hear tracks sees; hetwens and 10 P . M. some shouting stars.
134. Jawn at $5^{\text {h. }} 3 . \mathrm{m}^{\mathrm{m}}$, duask at $5^{\text {ha }}$, 3 ,

Ifth. Dawn at $6^{\text {h. }} 0^{\text {m }}$, dusk at $5^{\text {h. }}$. 3^{m}; the young ice opened for some miles in length; a slight swell observed.

lith. Iawn at 6^{n}. 30^{m}, dusk at $5^{\text {n }} 30^{\text {m }}$; seals in the lane of water ; tried for soundings with 165 fathoms.

17th. Dawn at $6^{\text {h. }} 15^{\text {m }}$, dusk at $5^{\text {h. }} 15^{\text {m. }}$; high land seen from morth to N. E. by E. (true) ; seals in the lane of water, also wawhals; thickness of young ice one month old, 1 foot 3.8 iuches; overlying smow, $2 \frac{1}{2}$ inches.

18th. Hawn at $6^{\text {m. }} 30^{\mathrm{mm}}$, husk at $5^{\text {h. }} 9^{\text {m }}$
19th. Dawn at $6^{10} 45^{m}$, duxk at $4^{\text {ha }}$, 30^{m}.
20th. Dawn at $6^{\text {h }} 50^{m}$, dusk at $\left.4^{n} 2^{2}\right)^{m}$

203. Damm at $6^{\text {b. }} 45^{\mathrm{mm}}$, duak at $4^{\text {th }} 11^{\mathrm{mm}}$.
234. Dawn at $7^{\text {h }} 50^{m}$, dusk at $4^{\text {ma }}$; a fos track near the ship, aud a seal seen.

20th. Dawn at $6^{11} 35^{2 m}$, dusk at $4^{\text {h. }} 20^{\mathrm{m} .}$
 E. (true).

 long lane on pert beam distant one mile, and extending east and west two or three miles; dusk at $4^{\text {b }}$.

Buth. Iece monement and persure all precenting night within two homed yards of the ship; at $4^{\text {ne }}$
 ia moハ!ㅆ..
 than ; ine in motion and water space increasing.

[^24]

Notes to Novemier recoris.
1st. Dawn at $7^{3} .30^{m}$, duask at $2^{1.50 m}$.
2d. Dawn at $7^{\text {h. }} 40^{\text {m. }}$, dusk at $3^{\text {h. }} 30^{n a} ; 8$ P. M. a bear came to the ship and was shot; lengeth 7 feet 3 inches.

3d. Inawn at $\mathrm{H}^{\text {h. }} 30^{\mathrm{m}}$, dusk at $3^{\mathrm{h}} 30^{\mathrm{m} .}$
4th. Dawn at $8^{\text {h. }} 0^{\mathrm{m}}$, dusk at $3^{\text {h. }} 1^{\mathrm{m}}$.
$5 t^{2}$. Dawn at $饣^{\mathrm{h}} .30^{\mathrm{m}}$, dask at $3^{\text {h. }} 15^{\mathrm{m}}$.
6th. Dawn at $7^{\text {h. }} 45^{\mathrm{mm}}$, dusk at $3^{\text {h. }} 15^{\mathrm{m}}$; ice in motion; lanes of water in the S. W. and N . W.; two seals seen.
th. ${ }^{1}$ Dawn at $5^{\text {h. }} 4^{5 \mathrm{~m}}$, dusk at $3^{\mathrm{h}} .15^{\mathrm{m}}$; lanes of water in all directions; two duvekies shot; slight streak of aurora near horizon in the S. E. after 6 I . M.

Sth. Dawn at $8^{\text {h. }} 10^{\text {ma }}$, dask at $3^{\text {h. }}$. $0^{\text {ra. }}$; several seals seen; 8 P . M. faint amrora in the W. N. W.
Sth. ${ }^{2}$ Dawn at $8^{\text {h. }} 30^{m}$, dusk at $2^{\text {h. }} 55^{\mathrm{m}}$; ice in motion, openirg and closing; sereral seals scen; at 10 I . M. several shooting stars, and a faint lunar rainhow.

10th. 2 A. M. faint streaks of aurora from south to west, near horizon; dawn at $5^{3} .30^{m}$, dusk at $2^{\text {h. }} 55^{\text {m. }}$; sereral seals seen.

[^25]11 th. ${ }^{1}$ A dorekie seen ; two seals shot; dusk at $2^{\text {h. }} 50^{\text {m. }}$; 8 P. M. slight aurora in S . W. ; several falling stars.

12th. Dawn at $8^{\text {hi }} 2^{\text {m }}$, dusk at $2^{\text {h. }} 40^{\mathrm{m}}$; at dorekie seen ; three seals shot.
13th. Dawn at $8^{\text {h. }} 45^{\text {ma }}$, dusk at $2^{\text {h. }} 35^{\mathrm{mm}}$; motion pereeptille in the ice ; a few seals and a dovekie seen.
14th. Dawn at $8^{\text {h. }} 30^{m \prime \prime}$; ice in motion, the old ice crushing up the new ice; dusk at $2^{\text {h. }} 23^{\mathrm{m}}$.
15th. Sawn at $8^{\text {h. }} 45^{\text {m. }}$; ice moring ; several harge pouls of water; a narwhal and many seals seen, one shot; dusk at $2^{\text {h. }} 30^{\mathrm{m}}$.

16th. Dawn at $9^{\text {h. }} 15^{\mathrm{m}}$; a seal shot and a dorekie seen; dusk at $2^{\text {h. }} 15^{\mathrm{m} .}$
17th. Dawn at $9^{\text {min }} 30^{\text {m. }}$, dusk at $2^{\text {h. }} 0^{\text {m. }}$
18th. Dawn at $9^{\text {m. }} 85^{\text {mb }}$, dusk at $2^{\text {h. }} 5^{\mathrm{mm}}$; a few seals and narwhals seen.
19th. Iawn at $9^{\text {h. }} 30^{\mathrm{mm}}$, duak at $2^{\text {h. }} 0^{\mathrm{m}}$; two or three seals seen.
20th. Dawn at $9^{\text {h. }} 45^{\text {mh }}$, dusk at $2^{\text {h. }} 0^{\text {mo }}$; one seal seen.
21 st. Bawn at $9 \mathrm{~h} .45^{\mathrm{mm}}$, dusk at $2^{\mathrm{h}} .15^{\mathrm{m}}$.
20d. Dawn at $9^{\text {h. }} 50^{\mathrm{m}}$, dusk at $1^{\text {h. }} 50^{\mathrm{m}}$.
$23 \mathrm{~d} .{ }^{3}$ Dawb at $9^{\text {h. }} 45^{\text {m. }}$; one seal seen ; 8 P. M. anrora near the horizon in the S. E. ; at midnight, aurora from N. W. to S. W. and S. E.

24 th. 2 A. M. aurora at the S. L. horizon ; dusk at $1^{\text {h. }} 45^{\text {m. }}$
25th. Dawn at $9^{\text {h. }} 50^{\text {m. }}$, dusk at $1^{\text {h. }} 40^{\text {m. }}$; a small lane of water near the shij; ouly one seal seen.
20th. Dawn at $9^{\mathrm{h} .} 50^{\mathrm{min}}$, dusk at $1^{\mathrm{h}} 35^{\mathrm{m}}$.
271 h . Dawn at $10^{\text {h. }} 0^{\mathrm{min}}$, dusk at $1^{\mathrm{hb}} 50^{\mathrm{m}}$.

29th. Hawn at $10^{\text {h. }} 0^{\mathrm{m}}$, dusk at $1^{\mathrm{h}} 35^{\mathrm{m}}$.
30th. Dawu at $10^{\text {h. }} 15^{\text {m. }}$, dusk at $1^{\text {h. }} 10^{\mathrm{m}}$.

December, 1857. Record of the Weather kept on board tile Yacht Fox, witi general remarks.

DAY.	$8{ }^{1}$.	4^{1}.	$6^{\text {h. }}$	8h.	101.	Noon.	21.	41.	$6{ }^{3}$	Sh.	10 h.	Mid't.
1	$b v$	6	"	:	6	"	6	6	"	${ }^{6}$	"	"
2	10	6	6	"	"	"	6	6	"	\%	"	"
3	10	"	*	"	m	6	co	m	"	6	6	b ${ }^{\text {b }}$
4	12	"	*	"	"	r	m	"	*	"	6	$m \mathrm{c}$
5	bv	"	${ }^{6}$	"	"	16	$b=$	"	$m \sim$	"	6	*
6	m ~	"		6	$\cdots m$	*	6	"	6	6	"	6
7	c m	"	*	"	c	6	$b \mathrm{c}$	6	${ }^{6}$	$b v$	"	6
8	b ${ }^{\text {b }}$	$b \cdot$	c.m	"	c	$b e$	-	c m	6	،	$b v$	"
9	60	"	"	$b e$	"	*	b	$b \%$	${ }^{6}$	"	c	$b \mathrm{c}$
10	b	$b \%$	"	*	b ${ }^{\text {c }}$	b	${ }^{4}$	"	${ }^{6}$	$b v$	$b m$	m
11	m	"	،	6	be	${ }_{6}$	$l \mathrm{c}$	1	$b c$	b	"	$3 v$
1:	\ldots	${ }_{6}$	- \sim	"	"	${ }^{6}$	"	$\cdots \sim$	*	"	"	m
13	m \%	${ }^{6}$	\%	*	"	b $m=$	$b m$	b	"	6	$b c$	${ }^{\circ}$
14	c	c m	m	6	b	$b v$	c	b	6	${ }^{6}$	6	6
15	r	6	b	${ }^{6}$	160	"	،	*	"	${ }^{6}$	6	*
119	m	6	c	b	*	6	c	m	6	6	6	"
17	${ }^{\prime \prime}$	*	،	b m	"	'،	$b e$	C	"	$b:$	6	$b \mathrm{c}$
1	118	c	"	$b ?$	6	60	*	"	b	$b v$	6	*
19	$b v$	m	"	"	c	*	b er	b 1	"	*	m	6
$\because 0$	m	"	"	s	${ }^{6}$	"	m	"	"	6	$m s$	6
21	s	s z	m \sim	"	m	"	"	،	"	"	$b v$	"
2	m	*	6	"	${ }^{6}$	c	m	6	$m \sim$	"	"	"
23	m	*	،	"	*	$m \mathrm{~s}$	s	'	\cdots	r	"	m
24	m	"	c	\%	c m	*	m	6)	"	$b c$	c	"
2.5	17	"	¢	"	"	b m	c. m	(1) 1	$b v$	"	"	m
215	12	m	،	"	$b \mathrm{bc}$	"	،	"	،	"	$b v$	$b \mathrm{~m}$
27	m	"	6	"	$m \approx$	4	$m 0 z$	6	"	،	s z	"
$\stackrel{4}{4}$	m	"	m s	*	**	${ }^{6}$,	cs	1 c	$m s$	c	$m s$
$\because!$	m s	s z	m	"	${ }^{6}$	"	b	m	$4 v$	"	$b{ }^{\prime}$	"
311	m	6	b\%	"	"	"	131	ber	،	$b v$	"	*
31	b	$b \mathrm{c}$	b	"	$b v$	16	6	$b v$	6	،	6	6

' [11th, minninht. Slitht ins. le. (true).]

NOTES TO DECTMBBR RECORD.

1st. Dawn at $10^{\text {h. }} 30^{\mathrm{m}}$, dusk at $1^{\mathrm{h} .} 5^{\mathrm{m} .}$; ice crushing up at the edges of the floe.
2d. Dawn at $10^{\text {m. }} 30^{\mathrm{mm}}$, dusk at $1^{\text {h. }} 10^{\mathrm{mm}}$.
3 d. Dawn at $10^{\text {h. }} 30^{\mathrm{m}}$., dusk at $1^{\mathrm{h} .} 0^{\mathrm{m}}$.
4th. Dawn at $11^{\text {h. }} 0^{\text {in. }}$; a well-marked halo and several para-
selenix, $7^{\text {h. }}$ to $10^{\text {h. }}$ P. M., consisting of five false moons, three ares of halos, and a borizontal belt of light round the heaven and passing through the moon.

5 th. Dawn at $10^{\text {h. }} 30^{\mathrm{m}}$, dusk at $0^{\text {h. }} 50^{\mathrm{m} .}$

6 th. Unable to read by light of the sky.
7th. Dawn at $11^{\text {h. }} 0^{\mathrm{m}}$; several cracks near the ship; one seal seen.
Sth. Dawn at $11^{\text {h. }} 0^{\mathrm{m} .}$; dusk at $0^{\mathrm{h}} .30^{\mathrm{m} .}$; the cracks nearly closed.
9th. Dawn at $11^{\text {h. }} 5^{\text {m. }}$; dusk at $0^{\text {h. }} 45^{\text {m. }}$; miduight (9 th to 10 th), aurora from E. N. E. to E. S. E. (true), also several shooting stars.

10th. Dawn at $11^{\mathrm{h}} .0^{\mathrm{mu}}$, dusk at $1^{\mathrm{h} .} 30^{\mathrm{m} .}$; 9 P. M., faint aurora in the south, streaming towards the zenith.

11th. Dawn at $11^{\text {h. }} 30^{\mathrm{mm}}$, dusk at $0^{\mathrm{h} .} 30^{\mathrm{m}}$.
12th. Dawn at $11^{\text {h. }} 15^{\text {m. }}$, dusk at $0^{\text {h. }} 20^{\mathrm{m} .}$; [2 A. M., slight aurora to southward ; 10 P. M., faint aurora in N. W.

13th. Dawn at $11^{\text {h. }} 0^{\mathrm{m}}$, dusk at $0^{\text {h. }} 50^{\mathrm{m} .}$; 6 P. M., bright aurora in S. E.; 10 I. M., aurora from the S. E. to N. E. [part of an are], with rays shooting op towards the zenith.

14th. 2 A. M., faint aurora towards the southern horizon ; dawn at $11^{\text {h. }} 10^{\text {m. }}$, dusk at $0^{\text {h. }} 15^{\text {m. }}$; found a perceptible divergence in the gold leaves of an electrometer when attached to a masthead wire and passed down to the sea; 8 P. M., faint aurora in the N. E. (true).

15th. Dawn at $11^{\text {h. }} 10^{\mathrm{m}}$, dusk at $0^{\text {h. }} 30^{\mathrm{m} .}$; several shooting stars between 5 and 6 P. M.; midnight (15 th to 16 th), faint aurora to southward. [Thickness of ice 3 feet 0 inches; increase since last month $11 \frac{1}{2}$ inches. - B. of T. Papers. $\left.{ }^{1}\right]$

16th. No daylight. [6 P. M., aurora slight from E. to N. E., and at 10 P. M. bright from S. to N. E., continuing till 10 A. M. next day, at 6 P. M. again for one hour, across the zenith from E. to W. and N. W. ; the electrometer was sensibly affected.]

17th. Dawn at $11^{\text {h. }} 30^{\mathrm{m}}$. dusk at $0^{\text {h. }} 30^{\mathrm{m} .}$; 6 P. M., slight aurora E. to N., 10 P. M., loright aurora S. to N. E.

18th. Thickness of September ice 3 feet 0 inches, overlying closely packed snow $6 \frac{1}{2}$ inches; 4 A. M. aurora still visible, $9^{\mathrm{h}} .45^{\mathrm{m} .}$.. . M. aurora disappeared; dawn at $11^{\mathrm{h}} .15^{\mathrm{m}}$, dusk at $0^{\mathrm{h} .} 30^{\mathrm{ma}} ; 4$ P. M., faint aurora from E. to W. and N. W., passed through the zenith ; 10 P. M., aurora S. S. E. to S. S. W., near horizon.

19th. Dawn at $11^{\mathrm{h} .} 45^{\mathrm{m}}$, dusk at $0^{\mathrm{h}} 35^{\mathrm{m} .}$; a wide crack, N. W. and S. E., half a mile from the ship.

20th. No daylight.
21 st. Daylight at $11^{\text {h. }} 45^{\mathrm{m}}$, dusk at $0^{\text {h. }} 15^{\mathrm{m}}$.
22d. No daylight.
23d. No daylight.
24th. Dawn at $11^{\text {h. }} 45^{\mathrm{m}}$, dusk at $0^{\text {h. }} 20^{\mathrm{m} .}$; narrow lane of water recently opened to the S . W. and N. W. of the ship, and distant from one-quarter to one mile.

25th, 26 th, 27 th. No daylight.
28th. Dawn at $11^{\text {h. }} 25^{\text {m. }}$, dusk at $0^{\text {h. }} 45^{\text {m. }}$
29th. Dawn at $11^{\mathrm{h} .} 0^{\mathrm{m} .}$, dusk at $11^{\mathrm{L} .} 45^{\mathrm{mL}}$; small lanes of water, and several fresh cracks near the ship.

30th. Dawn at $11^{\text {h. }} 15^{\mathrm{m}}$, dusk at $0^{\text {h. }} 45^{\mathrm{m}}$.
31st. Dawn at $10^{\text {h. }} 30^{\mathrm{m}}$, dusk at $0^{\text {h. }} 50^{\mathrm{m}}$. [No lirds seen and only one seal. - B. of T. Pupers.]

[^26]January, 1858. Rborb of the Weathbr ketr on moari the Vache Fox, Wimh generala MEMARKS

NOTES TO JANUARY RECORD.
1st. Dawn at $10^{\mathrm{h}} .45^{\mathrm{m}}$, dusk at 1^{h}. 0^{m}; temperature in snow-hat -16°.
2a. Jawn at $10^{\text {h. }} 30^{\text {m. }}$, dusk at $I^{\text {h. }} 30^{\text {min. }}$
Bl. Jawn at $11^{\text {h. }} 10^{\mathrm{mm}}$.
41l. Jawn at $11^{\mathrm{h}} 10^{\mathrm{mm}}$, dusk at $\left(0^{\mathrm{h}} .35^{\mathrm{mm}}\right.$.
Eth. Dawn at $11^{\text {h. }} 15^{\mathrm{m}}$, dusk at $1^{\text {h. }} 15^{\mathrm{m}}$; a lane of water in the west extending N. F. and S . W.
(true) ; one seal seen.
Ghth. Dawn at $10^{\mathrm{h}} .45^{\mathrm{m}}$, Ansk at $1^{\mathrm{h}} .15^{\mathrm{m}}$
7h. Dawn at $10^{\text {h. }} 45^{\mathrm{m}}$, dusk at $1^{\text {h. }} 30^{\mathrm{m}}$.
sth. Dawn at $10^{\mathrm{h}} .35^{\mathrm{m}}$, dusk at $1^{\mathrm{h}} .30^{\mathrm{m}}$.
Oh. Ihaw at $10^{h} 15^{\mathrm{m}}$; at 8 S . M. bright aurnra from west to cast (mametic) passing through
Wes ; 10 I'. M., slight amrora oceasionally visible round the horizon; 11 P . M., same.
luht Dawn at $10^{\text {h. }} 5^{10}$, dusk at $1^{\text {h. }} 15^{\text {m. }}$
11th. Hawn at $10^{\text {h. }} 30^{m}$, dask at $2^{\text {h. }} 30^{n}$; nurora near the S . W. horizon at $9 \mathrm{P} . \mathrm{M}$.
 (true).

14th. Daylight at $9^{h} .40^{\mathrm{ma}}$, dusk at $2^{\text {h. }} 5^{m}$
15h. Dawn at $10^{\mathrm{h}} 1 \mathrm{~s}^{\mathrm{m}}$, dusk at $2^{\mathrm{h}} .10^{\mathrm{mu}}$.
loth. Dawn at $10^{\text {ma }}$. $0^{\text {ma }}$. (lask at $2^{\text {ha }}$. (0^{m}.
17h. Dawn at $9^{\text {h. }} 50^{m}$, dusk at $2^{\text {h. }} 30^{\text {m. }}$; a bear supposed to have alamed the dogs; 8 I'. M., amona near horizon heing \mathfrak{f}. and E . from 8 matil miduight.

 athon the extemal temperature ; these lats were bailt by 8 men in 45 minntes.

21st. Dawn at $9^{\text {h. }} 30^{\mathrm{m}}$, dusk at $3^{\text {h. }} 0^{\mathrm{m}}$.
22d. Dawn at $9^{\text {h. }} 10^{\mathrm{m}}$. dnsk at $3^{\mathrm{h}} \cdot 15^{\mathrm{m}}$; much refraction in the S . E.
23d. Dawn at $9^{\text {h. }} 39^{\mathrm{m} .}$, dusk at $3^{\text {h. }} 0^{\text {m. }}$.
24th. Dawn at $9^{\text {h. }} 0^{\text {m. , dusk }}$ at $3^{\text {h. }} 15^{\text {m. }}$
25th. Dawn at $9^{\text {h. }} 0^{\text {m. }}$, dusk at $3^{\text {h. }} 15^{\text {m. }}$; an halo round the moon at $7^{\text {h. }}$ I. M.
26 th . Dawn at $9^{\text {h. }} 0^{\mathrm{m} .}$, dusk at $3^{\text {h. }} 30^{\mathrm{m}}$.
27 th. Dawn at $8^{\text {h. }} 45^{\mathrm{m}}$, dusk at $3^{\text {h. }} 20^{\mathrm{m}}$.
28th. Dawn at $8^{\text {h. }} 25^{\text {m. }}$; sun's upper limb appeared at $11^{\text {h. }} 2^{5} 5^{\text {m. }}$; refraction $59^{\prime} 55^{\prime \prime}$, neglecting the height of the eye (5 feet) ; sun's upper limb disappeared at $1^{\text {h. }} 0^{\mathrm{mm}}$ m. t. ; dusk at $3^{\text {h. }} 45^{\mathrm{m} .}$.

29th. Dawn at $8^{\text {h. }} 15^{\mathrm{m} .}$; sun's upper limb appeared at $11^{\mathrm{h} .} 10^{\mathrm{m} .}$ m. t., disappeared $1^{\mathrm{h} .} 25^{\mathrm{m}}$; dusk at $3^{\text {h. }} \cdot 45^{\mathrm{m}}$; 10 men built two houses in 30 minutes; mercary froze at about - 41°.

30th. Dawn at $8^{\text {h. }} 30^{\mathrm{m}}$; sun's upper limb appeared at $10^{\text {h. }} 30^{\mathrm{m}}$, disappeared at $1^{\text {h. }} 50^{\mathrm{mm}}$; dusk at $3^{\text {h. }} 50^{\mathrm{m}}$. two seals and a dovekie seen in a large crack three or four miles east of the ship.

31st. Dawn at $8^{\mathrm{h} .} 15^{\mathrm{m} .}$; sun's upper limb appeared at $10^{\mathrm{hr}} 40^{\mathrm{mm}}$; a seal and several dovekies seen in a lane of water; sun's upper limb disappeared at $2^{\text {h. }} 0^{\mathrm{me}}$; dusk at $4^{\text {h. }} 0^{\text {m. }}$

February, 1858. Record of the Weather kept on board the Yacht Fox, with general remaris.

DAY.	2 h .	$4^{\text {h }}$.	6 h.	81.	10h.	Noon.	2 h.	41.	64.	Sh.	10 h.	Mid't.
1	b \sim	"	"	${ }^{6}$	*	16	b z	$1 . \mathrm{e}$	'6	$6:$	"	"
2	$b c$:	"	6	"	6	6	$m \mathrm{~s}$	$m z$	${ }_{6}$	${ }^{16}$	"
3	b e	"	"	${ }^{6}$	4	"	"	"	"	$b \mathrm{~m}$	4	l 10
4	$b m$	m	6	$b c$	"	${ }^{6}$	6	"	b	b 0	${ }^{6}$	*
5	$b v$	"	b c	"	${ }^{6}$	6	66	6	${ }^{1}$	m	"	6
6	m	"	$m s$	"	66	6	*	"	،	"	"	m
7	$b \mathrm{c}$	6	b	$b c$	6	،	*	"	"	${ }_{6}$	6	"
8	m	"	$b c$	6	$b 0$	6	6	6	6	،	b m	"
9	$b \mathrm{~m}$	6	$b c$	"	"	"	bez	$b m z$	"	6	b $c=$	6
10	$b m z$	"	6	*	"	"	cm m	${ }^{6}$	"	$m z$	c m	m
11	m	c m	$b: z$	$b c$	$b c z$	b c	${ }_{6}$	6	"	cm \sim	66	"
12	c $m \sim$	$c z$	،	c m	$b c$	6	،	6	b	$b m$	6	6
13	$b \mathrm{~m}$	"	$b c$	6	"	6	"	"	$b m$	$b c$	$b m \approx$	"
14	$b=$	*	6	6	"	"	$b c z$	"	"	"	6	"
15	b ez	"	6	$b z$	*	6	$b e$	$b c z$	"	6	"	${ }^{6}$
16	$b c$	$b<z$	6	"	"	6	b z	"	"	6	bcz	6
17	$b z$	\%	$b c$	"	$b c z$	*	"	6	"	"	"	"
18	$b c z$	${ }^{6}$	6	$b z$	6	'6	$b e z$	"	"	6	6	6
19	$m z$	$b \subset z$	"	co	6	"	6	$m s$	"	6	be	4
20	$b c$	"	6	${ }^{6}$	$m o$	$m \approx$	coz	"	$b e=$	،	c $m z$	m s
21	msz	"	$m \approx$	"	co	$b c$	"	6	"	6	"	"
22	$b \mathrm{c}$	${ }^{6}$	"	*	${ }_{6}$	6	${ }^{6}$	"	"	،	$b c z$	6
23	$b c z$	"	6	"	6	4	*	"	6	"	6	6
24	bcz	"	${ }^{6}$	${ }^{6}$				---	--	o $m z$		
25		"	"	omz	"	"		"	6	${ }_{6} 6$	$b c z$	
20	$c m z$	"	"	om m	- m s	"	*	"	$m o$	6	$b c$	b
27	$b c$	"	6	v	$b c$	"	"	$m s$	$b c s$	$b c$	$c s$	$m s$
28	m s	$m \mathrm{~s} z$	"	*	co	$b c$	*	46	o	$b c$	0	"

NOTES TO FEBRUARY RECORD.

1 st. Dawn at $8^{\text {h. }} 0^{\text {m. }}$; sun's upper limb appeared at $10^{\text {h. }} 25^{\mathrm{m} .} \mathrm{m} . \mathrm{t}$. ; a sooty fox shot, small and fat, weight 7 lbs ; sunset at $2^{\mathrm{h} .} 5^{\mathrm{m}}$, dusk at $4^{\mathrm{h} .} 10^{\mathrm{m}}$.

2d. Dawn at $8^{\text {h. }} 0^{\mathrm{m} .}$; sun's upper limb appeared at $10^{\text {h. }} 10^{\mathrm{m} .}$; no sounding with 170 fathoms ; several new cracks; cirro-stratus moving to S. E. ; dusk at $4^{\text {h. }} 10^{\mathrm{m} .} ; 9$ P. M. aurora faint in the S. E. horizon for about ten minutes; 10 P. M. an auroral arch in the S. E., visible for one hoar, faint from S. E. to E. N. E., the extremities of the arch touching the horizon; the S. E. extremity was the brightest, with an occasional stream towards the zenith.

3d. Dawn at $7^{\text {h. }} 50^{\mathrm{m} .}$; sun's upper limb appeared at $10^{\mathrm{h} .} 5^{\mathrm{m} .}$; dusk at $4^{\text {h. }} 20^{\mathrm{m} .}$; at 11 P. M. an arch of an aurora from S. E. (true) horizon to the zenith; ice in motion.
411. Dawn at in $^{\text {b }} 50^{\mathrm{m}}$; the ice has openel in sereral places; some seals and dorekies seen; dusk at $4^{\text {h }} 30^{\text {w. }} ; 8$ until 12 P. M. ice in motion near the ship.
5th. Dawn at $9^{\text {h. }} 50^{\mathrm{m} .}$; sun's upper limb appeared at $10^{\text {h. }} 5^{\mathrm{m} .} \mathrm{m}$. t. ; six dovekies shot, a few seals seen; at 2 I. M. the floe cracked ten yards astern of the ship, many cracks running N. E. and S. W., and considerable motion in the ice; built snow huts in 40^{m}.

6th. Dawn at $7^{\text {h. }} 4^{\text {mim. }}$, dusk at $4^{\text {th }} 20^{\mathrm{m}} ; 11$ P. M. a slight aurora in the N. E. [Thickness of old floe ice 4 feet 6 inches.]
7th. Dawn at $7^{\text {h. }} 30^{\mathrm{m} .}$; sun's upper limb disappeared at $2^{\mathrm{h} .} 40^{\mathrm{m} .}$; dusk at $4^{\text {h. }} 30^{\mathrm{m} .} ; 11^{\mathrm{h}} \cdot 15^{\mathrm{m} .}$ P. M. until midnight pale streaks and patches of aurora near horizon between S. S. E. and north (true).

Sth. Dawn at $7^{\text {h. }} 30^{\mathrm{m} .}$, dask at $4^{\text {h. }} 40^{\mathrm{m}}$.
9th. Dawn at $7^{\text {h. }} 25^{\text {m. }}$, dusk at $4^{\text {h. }} 40^{\mathrm{m} .}$; at 11 A. M. a faint parhelion; 10 P. M. aurora from N. E. to S.E.
10th. 2 A. M. slight aurora from N. to S., passing through the zenith; dawn at $7^{\text {h. }} 30^{\mathrm{m} .}$, dusk at $4^{\text {1. }} 45^{\text {ma }}$

11th. Dawn at $7^{\text {h. }} 20^{\mathrm{m}}$, dusk at $4^{\text {h. }} 50^{\mathrm{m} .}$; a broad line of water one mile astern of the ship runuing E. N. E. and W. S. W.

12th. Dawn at $7^{\text {t. }} 20^{\mathrm{m}}$, dusk at $5^{\text {h. }} 0^{\mathrm{ma}}$.
13th. 4 A. M. a slight aurora in the west; dawn at $7^{\text {h. }} 15^{\text {m. }}$; prismatic halo round the sun ; several seals seen; dusk at $5^{\text {h. }} 10^{\text {me }} ; 11$ P. M. aurora near horizon between S. S. E. and E., with vertical rays or streamers half way up to the zenith, arch about 14° above the horizon.

14 th. Dawn at $7^{\text {h. }} 5^{\text {m. }}$; two dovelies seen $; 1^{\text {h. }} 30^{\mathrm{m}}$. P. M. an ill-defined halo about 18° diameter, its extremities at the horizon prismatic; ice opening in a lane two miles N. W. from ship; dusk at $5^{\text {h. }} 20^{\text {m. }}$.

15th. Dawn $7^{\text {h. }} 20^{\text {m. }}$; an imperfect double halo around the sun, diameter about 18° and 36°; dusk at $5^{\text {h. }} 20^{\text {n. }} ; 7^{\text {h. }}$ to $9^{\text {h. }}$ P. M. pale aurora near horizon between S. S. E. and E. N. E., with vertical rays towards the zenith, arch 4° abore horizon.

16th. Dawn $6^{\text {h. }} 50^{\text {m. }}$; an imperfect halo slightly prismatic ; dusk at $5^{\text {b. }} 20^{\mathrm{m} .}$; at 8 P. M. bright, pale yellow aurora along the horizon between S. E. and N. N. E., with vertical streamers towards zenith, forming at times an are, double and even treble, from 6° to 8° above horizon.

17th. Aurora continues until 2 A. M., when it disappeared ; thickness of ice 3 feet 9 inches, of snow $9!$ inches; dawn at $6^{\text {h. }} 45^{\text {n. }}$; at noon imperfect prismatic halo, diameter 45°, luminous spots at horizon 45° E. and W. of the sun; several seals seen; dusk at $5^{\text {l. }} 20^{\mathrm{mm}}$; halo round the moon, diameter $46^{\circ} ; 10$ P. M. aurora near the south horizon, are from S. S. W. to N. N. E. about 4° above horizon.

18th. Midnight until 4 A. M. aurora between S. W. and E.; dawn at $6^{\text {h. }} 50^{\mathrm{m} .}$, dusk at $5^{\text {h. }} 20^{\mathrm{m} .}$; $8^{\text {h. }} 30^{\text {n. }}$ P. M. auroral arch about 15° above horizon, between S. S. E. and E.; 10 P. M. aurora ceased.

19th. Darrn at $6^{\mathrm{h} .} 40^{\mathrm{m}}$, dusk at $5^{\mathrm{h} .} 35^{\mathrm{m}}$; at midnight ($19 \mathrm{th}-20 \mathrm{th}$) arch of aurora 9° above horizon, between S. S. E. and N. E.
20th. Dawn at $6^{\text {h. }} 40^{\text {m. }}$; a wide lane of water two miles north from the ship, and extending E. N.E. and W. S. W., the terminations not visible; 6 P . M. prismatic halo round the moon, diameter $4^{\circ} 20^{\prime}$. 21st. Dawn at $6^{\text {h. }} 30^{\mathrm{m}}$, dusk at $5^{\text {h. }} 30^{\mathrm{m} .}$
22d. Dawn at $6^{\text {n. }} 30^{\text {m. }}$; tricd for soundings with 180 fathoms; several seals and dovekies seen in wide lane to the north of the ship, also a bear; dusk at $5^{\text {h. }} 40^{\text {ma }}$; at midnight ($22 \mathrm{~d}-23 \mathrm{~d}$) halo round the moon.

23d. Dawn at $6^{\text {h. }} 15^{\mathrm{m}}$, dusk at $6^{\text {h. }} 0^{\mathrm{m}}$.
24th. Iawn at $6^{\text {n. }} 10^{\text {m. }}$, dusk at $5^{\text {h. }} 0^{\mathrm{m}}$.
25th. Dawn at $6^{\text {h. }} 0^{\mathrm{m}}$, dusk at $6^{\text {h. }} 0^{\mathrm{mm}}$.
26th. Dawn at $6^{\text {h. }} 0^{\mathrm{m}}$, dusk at $6^{\mathrm{hc}} 10^{\mathrm{m}}$.
27th. Dawn at $5^{\text {h. }} 55^{\text {mi. }}$ dusk at $6^{\text {n. }} 15^{\mathrm{m}}$; snow melted against ship's side in the sun at $9 \mathrm{~A} . \mathrm{M}$., temperature in shade - 22 ; a seal shot; dovekies seen; at noon black bulb thermometer - r°, in slade -17.5
 monn, lifancter 43^{-}; altithe of moon 19%.

March, 1858. Record of the Weather kept on board the Yacut Fox, wita general remaris.

DAy.	$2^{\text {b. }}$	$4^{\text {h }}$.	6 h.	Sh.	$10^{\text {di }}$	Noon.	2 h.	$4^{\text {h }}$.	$6^{\text {h }}$.	$8^{\text {h. }}$	10 ha	Mid't.
1	0	"	co	"	b c	"	"	0	$m s$	"	$b^{\text {e } z}$	"
${ }_{3}^{2}$	$c z$	${ }^{b c}{ }_{6}$	${ }^{\prime \prime}$	"	\because	"	$\stackrel{*}{\prime \prime}$	${ }^{6}$ c	${ }^{\text {c }}$	${ }^{1} \mathrm{c}$	"	"
3	${ }^{\circ} \mathrm{c}$			"	$m \%$	${ }^{n}$	"	"	$\because \%$	$m \%$ \%	"	hmos
4	${ }^{m} \mathrm{~m}$ \%	${ }^{\text {b c }}$ \%	$m_{4} \sim$	"	"		$b e$	${ }^{6}$	"	"	$b^{\prime}{ }^{\prime}$	"
6	${ }_{6}{ }^{\text {c }}$	"	"	b	"	"	${ }_{v}$	b c	"	"	"	"
7	$b v$	"	"	"	$b 6$	${ }^{6} \mathrm{~m}$	$b^{\text {c }}$	1	$b 0$	${ }^{\circ}$	$b c$	"
8	b c	"	"	"	"		"	"	،	"	،	"
9	$b c$	"	"	"	co	"	$b c$	"	"	"	"	"
10	-	$b:$	$m s$	"	"	"	co	"	c	ms	"	"
11	$m s$	"	"	${ }^{\text {m }}$	$m \mathrm{~s}$	"	m	${ }^{\text {c }} \mathrm{m}$	$b c$	"	"	\cdots
12	${ }^{\text {b }}$ c	cm	60	co	os	\bigcirc	$c o$	$c \mathrm{~ms}$	$m s$	\%	$m s$	
13	${ }^{m} s$	"	"	"	ι°	$c \circ$	${ }^{m}$ s	"	${ }^{4} \mathrm{C}$	"	،	"
14	${ }^{\circ} \mathrm{c}$	b	b b	"	"	"	"	"	"	"	"	"
15	b	$b c$	"	"	"	bez	"	"	"	"	"	"
16	$b c z$	"	$b c$	"	"	"	"	"	"	"	"	"
17	${ }^{b} \mathrm{c}$	"	"	"	"	$\stackrel{\square}{\circ}$	$b c$	c	"	b c	$b v$	b c
18	${ }^{b} \mathrm{c}$	" ${ }^{\prime}$	"	$\stackrel{6}{6}$	"	"	"		"		"	
19	b c	"	"	"	b	"	"	"	"	\%	"	"
20	${ }^{\text {b }}$ c	"		$f s$		${ }_{6}$	\bigcirc	${ }^{\prime \prime}$	f	"	"	
${ }_{22}^{21}$	${ }^{b}$	co	be	"	$b m$ $c o$		${ }^{\prime}{ }^{\prime \prime}$	m	$\stackrel{f}{f}$	$f z$	m \%	"
23	$\stackrel{f}{f}$	${ }^{\circ} 0$	$\stackrel{0}{6}$	\cdots	60 $m s$	"	"	${ }_{6}$	f_{s}	$l_{\text {l }}^{\prime \prime}$	m ${ }^{\text {\% }}$	"
24	\underline{m}	"	$m \mathrm{c}$	mo	co	m'	"	${ }^{\text {be }}$	\%	${ }_{6}$	m ${ }^{\text {a }}$	$b c=$
25	$b_{\text {c } z}$	"	"	"	$c z$	$b e z$	"	"	\cdots	"	"	
${ }_{27}^{26}$	${ }_{\text {cz }}$	${ }^{\prime \prime}{ }^{\prime}$	bcaz	"	"	"	"	"	"	"	"	"
27	$b z$	"		b c	"	"	"	"	"	"	"	"
${ }_{29}^{28}$	${ }^{6} \boldsymbol{z}$	bez	$b^{\prime \prime} \mathrm{c}$ z	${ }^{6}$	" 6	"	"	"	"	"	"	" ${ }^{\prime}$
30	$c m s$	"	"،	,	"	"	"	"	"	m :	$b c z$	" ${ }^{\text {c }}$
31	$b c z$	"	"	\%	${ }^{\text {b }}$	"	"	"	$b ¢ z$	${ }^{\prime}$	b	"

NOTES TO MARCH RECORD.

1st. Noon tried for soundings with 180 fathoms.
2d. A large lane of water opened E.N. E. and W. S. W. abont one mile south of the ship; several seals seen and four shot; aurora visible between S. W. by S. and east from 10.30 P. M. until $2^{\text {b }}$. $30^{\mathrm{m} .}$ A. M. (3d) [patches, arches and streamers].

3d. Several lanes and cracks in the ice north of the ship, in which some narwhals and dovekies and several seals were seen; hail fell from 10 P. M. until 11.

4th. 10 P. M. Auroral arch in the N. E. at a low altitude. [A broad arch reaching nearly to the zenith.]

5th. At noon, black bulb thermometer in the sun zero, temperature in shade, -10°; at 2 P . M. the ice suddenly detached itself from the ship's bows and sides allowing her to rise eleven inches forward. 9 P. M. Aurora in clonds and streamers between N. W. and S., visible throughout the night; the sound of crushing or cracking ice distinctly heard during the night.

6th. 8 P. M., bright aurora between S. S. W. and E. from 8° to 50° above horizon, ceased at 10^{h} 30^{m}. [Bands and arches with streamers towards the zenith.]

7th. 6 A. M., appearance of high land supposed to be Disco bearing east (true); from 11 A. M. until 2 P. M. a double prismatic halo (red external) about the sun, diameters 45° and 90° nearly; occasional parbelia or inner balo in same altitude as the sun ; a portion of inverted arch above outer halo; sun's altitude 16°.

8th. At daylight appearance of land bearing E. by N. ; a lane of water northwest of the ship in which seals and narwhals were seen; 10 P . M., faint aurora in S. E.

9th. A bear passed near the ship; many seals, some dovekies, and a black whale scen.
10th. Two small seals shot and some narwhals seen; several lanes and pools of water in the north. ward.

11th. Ice much broken up, also lanes and small pools of water northward of the ship.

12th. Water in lanes and pools in sight all around; a slight swell perceptible in the lanes and cracks. 131h. I seal shet.
1th. Several small lanes and ponls to the northward.
 occasional vertical streamers aseending.

16th. Ice 4 feet $3 \frac{1}{2}$ inches thich, increase for the month $6 \frac{1}{2}$ inches; snow $9 \frac{1}{2}$ inches, no increase; ice opened 120 yards west of the ship and a wide lane of water formed, extending N_{z} and S. ; its extremes not risible; 8 P. M., aurora from S. W. to N. E. near the horizon and with vertical streamers [lasted till midnisht].

17th. Several seals seen, three dovekies shot; the ice much broken up and wide lanes of water running N. and S. ; 10 P. M., bright anrora between S. W. and E. N. E.

1 th. A seal shot; the ice closing ; the tracks of three bears seen ; $4^{\text {n. }} 30^{\mathrm{m} .} \mathbf{P}$. M. ice crushing up with great force, that in which the ship is frozen appears setting southward of the western ice; 11 P. M., aurora between S. with E. N. E. [10° above horizon with streamers towards zenith] ; the ice opening.

19th. sereral seals and duvekies seen; at noon, a faint halo with parhelia; 6 P. M. ice in metion, afterwards stationary.

2uth. Sounded in 150 fathoms, soft mud.
21st. Noon, the lane opened to the westward of the ship.
22n. A seal shot; six dovekies shot; $10^{\text {h. }} 30^{\mathrm{m} .}$ P. M., the ice detached itself from the ship and she heeled orer to the gale.
23d. A seal and a dovekie shot; a large pool of water 68 yards west of the ship; much water in sight to the southward; many narwhals seen swimming northward.
$24 t h$. The ice apparently drifting southward and opening in different directions; 10 P . M., ice in motion and pressing against the floe odge 70 yards west of the ship.
$25 \mathrm{th} .1^{\mathrm{h}} .45^{\mathrm{nl}}$. A. M., ice slacked off and the crack opened; Prom 6 until 8 P. M. the ice in motion and crushing up with great pressure iu the crack W. of the ship.

2hth. 9 P . M., halo around the moon, diameter about 44°; altitnde moon's centre 25°; slight motion in the ice.

27th. 8 P. M., ice opened in lane W. 50 yards from ship.
$29 t h .8$ A. M., got bottom with 180 fathoms, mud, supposed depth 150 futhoms.
3uth. 'Two seals and two dovelies shot; 11 P. M., Paraselena on each side and alove the moon, distant about 20°, moun's altitude 11°.

31st. Three seals shot; a fresh bear track close to the ship.

April, 1858.		Record of		Weather kept on remarks.			ARD T	E Yaci	Fox	WIT	GENE	RAL
DdY.	2 h.	4^{12}.	$6{ }^{61}$	8h.	10 ch.	Noon.	$2^{\text {h. }}$	4 h .	$6{ }^{12}$.	8 h.	$10^{\text {b. }}$	Mid't.
1	$b c$	*	"	"	${ }^{1}$	"	"	"	"	"	"	"
2	b	"	"	"	b c	"	"	"	"	b	"	"
3	$b \mathrm{c}$	"	baz	cm z	$b \mathrm{mz}$	"	$m z$	"	c $m z$	"	$m z$	"
4	' m z	"	$m z$	،	"	"	χ^{m} z	:	"	"	"	"
5	! ${ }^{\prime}$ z	"	"	"	"	"	"	"	"	$m \sim$	"	"
6	$m z$	$m s$	"	$b c$	"	"	"	"	"	b	$b:$	$c o$
7	c	b c	$m s$	"	"	m	$b e$	c m	$m s$	"	$m s z$	"
8	m $s z$	"	"	"	$q m s z$	"	"	bcm z	${ }^{\prime}$	"	"	"
9	b	$b e$	b	$b c$	4	"	"	"	"	"	"	"
10	$b c$	"	"	"	"	"	"	"	"	"	"	"
11	b c	"	"	"	"	"	"	"	"	"	0 \%	b c
12	$b c$	"	"	"	"	"	"	"	"	"	"	"
13	b c	"	،	"	"	"	"	"	"	"	"	"
14	$b c$	6	"	"	"	"	"	"	"	"	"	"
15	$b e$	"	"	"	"	*	"	"	"	"	"	"
16	be z	"	"	"	"	$b z$	bes	"	"	$b q z$	"	"
17	$b \mathrm{gz}$	"	"	"	"	"	"	"	bc9		"	"
18	---	bing	-..	$b q s$	---	"	--	"	.- -	cos	--	"
19	-- -	mos	---	"	-. -	"	---	$m s$	- -	$b:$	-. -	b c m
20	-. -	$b c$	-. -	"	--	"	---	"	--	"	- - -	"
21	-. .	b b	- - -	"	---	"	---	"	-- -	$b{ }^{1}$...	"
22	-. -	$b v$		"	-. -	"	--	"	-..	"	- . -	b
23	-. -	$b c$		$b v$	- . -	"	---	b n	---	"	-. -	coo
24		c		$c o$	---	"	-- -	mos	-- -	"	-.	co
25	-. .	b c	---	cos		$b \mathrm{~ms}$	-. -	$m \mathrm{~s}$	-. -	¢0	-. -	e
26	-. .	b m		$m \mathrm{~s}$	---	1.0	---	*	- - -	"	-. -	,
27		co		c	---	"	---	c ${ }^{\prime \prime}$	---	$m \mathrm{~s}$	-. -	co
28		c		"	---	"	--	"	---	0 -	- - -	c
29	---	b c		b	---	"	--	$b c$	-.. -	"	--	$c 0$
30		\bigcirc		coo		"		"		$m \mathrm{~s}$		mos

NOTES TO APRIL RECORD.
1st. A wide lane opening two miles N. E. of the ship; 9 P. M. a streak of aurora 80 above horizon between S.S. E. and S. W., with streamers towards the zenith.

2d. Two black whales seen.
4 th. At noon our old floe cracked in a N. N. E. and S. S. W. line about thirty yards from the ship; it widens to about sixty yards.

5th. At $2^{\text {h. }} 20^{\mathrm{m}}$. the old floe cracked in line with ship, that on the port side drifted off abont fifty yards; secured ship to fast ice, head to wind.

6th. A whale and many narwhals seen ; four seals shot.
7 th. Tried for soundings with 170 fathoms.
8 tb. Ice quiet, but drifting rapidly hefore the wind.
9 th. A walrus seen ; before sunset the western land became visible, supposed Cape Dyer, S. $88^{\circ} \mathrm{W}$. (true); 11 P. M. anrora hetween E. and N ., and from 10° elevation stretching up to the zenith.

10th. A large iceberg bearing E. (true); tried for soundings with 180 fathoms; Cape Dyer visible S. $89^{\circ} \mathrm{W}$.; another cape S. $83^{\circ} \mathrm{W}$.; midnight faint aurora from S. to E. (true).

11th. A bear's track within eighty yards of the ship; a fog bank iu S. E.; 9 to 12 P. M. a pale aurora between E. and S. E.

12th. A lane of water opened astern in the direction of a large berg in the E. N. E.; much mist and vapor in the S. E.; eight dovekies shot; 11 P. M. aurora to the southward between E. and W. S. W. [abont 15° above horizon, with streamers towards zenith, and numerous nebular spots of light at intervals in arch].

13th. 6 P. M. distant land seen bearing $S . W . \frac{1}{2} W$. (true) ; 11 P. M. aurora similar to last night.
14 th. A large flock of ducks flying N. W.; tried for soundings with 170 fathoms; 10 P . M. a bright aurora in the east (true) ; miduight, faint to the sonthward at 18° elevation.

15th. $1^{\text {h. }} 30^{\mathrm{mm}}$. A. M. a bear came close to the ship; thickness of ice 3 feet 11 inches, decrease for the month 1 foot $2 \frac{1}{2}$ iucbes; snow $10 \frac{1}{2}$ inches, increase $1 \frac{1}{2} ;$ a number of mollymanks seen; $10^{\text {h. }} 30^{\mathrm{m}}$. P. M. aurora to the southward, appearing over a fog bank [afterwards forming an arch from E. to S., disappeared at midnight].

16th. At 3 P. M. ice cracked and opened alongside; secured ship by the stern with three hawsers.
17th. Pieces of our floe began to break off, and at 11 A. M. the ship went adrift with them; 3 P. M. shipped rndder and stood to the eastward under double reefed mainsail and flying staysail.
lsth. The ice closed about the ship at $3 \mathbf{A}$. M. ; sludge and bay ice only visible; several bergs in sight; at 6 P . M. ship fast in young ice; many mollymauks about, and a snow bunting seen.

19th. Three bears seen; several bergs in sight.
20th. A considerable swell; unshipped rudder at $3 \mathrm{~A} . \mathrm{M}$. ; the lofty clouds going to the westward at I. M. ; a bear and a seal killed; several small bergs in sight.

21 st. 'Tried for soundings with 170 fathoms.
22d. Many small bergs near ; they change rapidly their bearings, as if the ship and pack were drifting past them to the S. W.; experienced a S. W. current.
23d. A large black whale seen, also a seal ; experienced a westerly set; several large seals lying on the ice.
24 th. 8 P. M. a swell from the S. E., and ice commenced to break up.
25th. Swell rapidly increasing; ice striking against the ship; procecded under sail and steam to the eastward : noon, swell ten feet high; ship receiving very violent and frequent shocks, and procceding, head to swell, through close heavy ice; 6 P. M. swell thirteen feet high, ice less close, shocks still more violent; 8 P. M. cleared the ice, stopped engine, and made sail.

26th. Mollymauks and kittiwakes abundant.
27 th. 7 A. M. saw the land about Sukkertoppan N. E. by N. (true).
28th. Anchored at Holsteinberg at $7^{\text {h. }} 30^{\mathrm{m} .}$ P. M. in seventeen fathoms water, moored with hawsers to the rocks.
29th and 30th. In the harbor of Holsteinberg.
[Specific gravity of sea-water:-

May, 1858. Record of the Weather kept on board the Yacht Fox, with general remarks.

DAY.	4h.	$8^{\text {h }}$.	Noon.	$4^{1 .}$	8 l .	Midnight.
1		"	"	"	"	co
2	c	"	b c	"	"	"
3	$b a$	"	"	"	"	"
4	0	C	$7 / 15$	"	"	"
5	mos	"	"	b"	"	"
6	$m s$	$b \stackrel{c}{ }$	"	"	"	"
7	$m \mathrm{~s}$	$b c$	"	"	"	"
8	be	"	cıs	r	c. m	"
9	r ${ }^{\text {m }}$	-.	be	$m s$	0 ms	"
10	b	b ${ }^{\text {m }}$	1 m s	$m s$	mos	"
11	m ms	m s	bem	${ }^{\prime} \mathrm{c}$	" ${ }^{6}$	\%
12	be	"	m	c"	"	"
13	b:	"	"	"	"	"
14	b	"	"	"	"	,
15	b	$1 . f$	If	"	6%	
16	1	'،	"	1%	f	
17	$i=$	n	b m	"	'	"
15	I	$11 / \mathrm{m}$	1 , ${ }^{\text {c }}$	${ }^{\prime}$	"	"
19	f	"	$1 . m$	1	"	"
20	i).	1.	"	"	"	"
21	11	"	"	bi	"	"
22	1.	"	con	"	$\cdots{ }^{\prime \prime}$	"
2	1 ,	1.1	"	"	b	
24	bi	-	"	1,	"	"
4	,	"	"	b.	1	con
26	coo	"	11.0	"	"	${ }_{6}$
27	c	10	"	1	"	"
-	b	"	"	"	"	" ${ }^{\prime \prime}$
29	$1:$	"	"	\cdots	"	b ${ }^{\prime \prime}$
310	f	"	" 6	"	\cdots	i^{\prime}
31	$m s$	"	"	¢o		

NOTES TO MAY RECORD.

1st. At Holsteinburg.
8th. Sailed from Holsteinburg at $7^{\text {h. }}$ A. M.
9 th. Much ice about; white whale seen; specific gravity of sea water, surface, 1.0270.
10th. Midnight (9th-10th) off Northstrom Fiord; icebergs and ice about; noon, off Rifeal ; at $7^{\text {h. }} 15^{\mathrm{m}}$, when 8 miles from Godhavn, stopped by ice extending in to the land; thick fog and snow came on; very narrowly escaped running on the N. W. of the Whalefish Islands. [Passed more than 500 bergs.]

11th. Anchored at Whalefish Islands in $12 \frac{1}{2}$ fathoms.
15th. 6 P. M., prismatic halo around sun about 45° diameter, two lateral parhelia, some polarization; also an arch 15° above horizon, apparently of a circle of same diameter as halo, opposite the sun.

16th. Godhavn Harbor and entrance lilled with packed ice.
17th. $7^{\text {h. }} 30^{\mathrm{m} .}$ P. M., anchored in Upernavilk, Back Bay, in $10 \frac{1}{2}$ fathoms.
24th. Left Upernavik, and steamed to Godharn.
25th. Steamed out of Godharn at $4^{\text {h. }} 30^{\mathrm{m}}$. A. M.
26 th .6 A. M., entered the Waigat; $4^{\mathrm{h}} 30^{\mathrm{m}}$, anchored off the coal seam in 7 fathoms; one-third of a mile off shore.

27 th. Proceeded under steam northward at $11^{\text {b. }} 50^{\mathrm{m} .}$ P. M.
28th. Passed ont of the Waigat, steering for Black Hook.
29tb. At $5^{\text {h. }} 30^{\mathrm{m} .}$ P. M. off Black Hook, Sanderson's Hope ahead; many bergs in sight.
31 st. 7 A. M., hove to off Sanderson's Hope; $10^{\text {h. }} 30^{\mathrm{m} .}$ A. M., bore up for Upernavils.

June, 1858. Record of tee Weather kept on board the Yacit Fox, with general remarks.

DAY.	$4^{\text {h }}$.	8 h.	Noon.	4h.	8 h.	Miduight.	Specific Grav. of Sea Water, 1.0.
1	$b c$	co	c	$b c$	"	"	
2	$b c$	"	\%	"	"	"	
3	c	co	"	"	$b c$	"	
4	b	$b c$	"	m	$c m 0$	mos	
5	mos	co		$c o$	c	"	
6	$b c$	"	$m s$	c	co	"	
7	$b e$	c	co	$b \mathrm{c}$	b	le	
8	$b c$	b	"	be	"	"	
9	b	"	$b v$	$b c$	"	"	
10	b	f	"	m	$f s$	"	
11	$f s$	"	"	c	${ }^{\prime}$	"	
12	${ }_{c}$	cf	c m	4 m	f	"	
13	f	"	"	"	b b f	$b c$	
14	be	b	"	"	$b \mathrm{c}$	"	
15	c	$b c$	"	"	b	"	
16	b	$b f$	"	$b c$	"	"	285
17	f	"	$d f$	f	"	co	280
18	co	c	$c o$	f	"	m	275
19	$b c$	"	b	$b \mathrm{c}$	"	b	275
20	b	"	"	"	"	f	280
21	f	"	$b m$	$b^{\text {c }}$	b	"	285
22	b	"	"	$b c$	c	"	170
23	co	"	"	c	co	c	275
24	$c o$	"	s	c	$b c$	"	280
25	b e	b	"	"	$b c$	"	275
26	or	0	"	"	c d	$g r$	275
27	or	$c q r$	mo	fo	"	mo	270
28	$\stackrel{0}{0}$	$f \stackrel{ }{s}$	o m	"	bcm	mo	
29 30	f	"o	$c m$ c	co $b i$	"	0.8 4	275 280

[^27]NOTES TO JUNE RECORD.
4th. Started mbler steam at $5^{11 .} 30^{m}$ A. M. ; west point of Great Dane Island (Narsak), north one aud a hall mile; $3^{\text {li }} 3^{\circ \mathrm{m}}$. P. M., wade fast to land ice in a bay on sonth side of Tpernavik Island; the ice elosed in and beset the ship.
fith. Started unter steam at $5^{\text {h. }} 50\left(\mathrm{~m}\right.$. A. M. ; at $10^{\mathrm{h}} .20^{\mathrm{m} .}$ made fast to a grounded berg in 25 fathoms, hatf a mile west of a rugged island having a large caira on the summit of its S. W. extreme; Buchan Island west three and a half or four miles.
rth. I'assed south of Buchan Istand, and close along its west side; at $8^{\text {h. }} 30^{\mathrm{m} .}$ A. M. struck and remained fast on a reef of rocks, tide falling ; extremes of Buchan Island S. $36^{\circ} \mathrm{W}$. and S. $15^{\circ} \mathrm{E}$, distant ahont one mile; at $\mathbf{1}^{\text {h. }} 30 \mathrm{~m} . \mathrm{P}$. M. low water.
sth. At $11^{\text {b. }} 49^{\mathrm{m}}$ A. M. ohserved a rock above water bearing from noon position S. 28° E. (true) three miles; passed inside Horse's IIead; $2^{\text {h. }} 40^{\mathrm{m}}$. passed another rock; Horse's Head S. $15^{\circ} \mathrm{E}$; Cape Shackleton (North Bluff) N. 46° E. (true).
$9 t h$. Stcamed at intervals for about three hours.
11 th. Made fast one mile N. of the Duck Istands.
12th. Tried to reach a lead close to Cape Wilcox bat failed and returned; new moou at 2 P. M., high water at $11^{\text {h. }} 6^{\text {m. }}$ A. M. ; rise 3 feet 8 iuches; flood sets N. N. W., ebb sets S. S. E., about 2^{\prime} an hum between the islands.

13th. At $10^{\text {h. }} 40^{\mathrm{ma}}$ P. M. steamed to the northward, and made fast to laud ice; 4^{\prime} N. $\frac{1}{2}$ W. from Eastern Duck Island.

17th. 4 I'. M. saw the Sabine Islands bearing N. E. (true), and distant seven miles.
18th. P'assed through and steamed along the land ice.
19th. Made fast at a uip; four bears seen, many seals and birds; 10 A. M., until $3^{\text {h. }} 30^{\mathrm{m} .}$ P. M., under sail, working to westward; unable to distinguish the land ice from the loose ice.

22d. Advanced one mile to the N. W. ; progress impeded by uips.
23d. At 9 I. M. got through the nip and made sail to the N. W. ; three bears scen.
2 th. At 11 A. M. came up to a nip and made fast; about 500 little auks shot.
25th. Nip opened; proceeded under stean and sail; two bears seen; at $4^{\text {h. }} 30^{\mathrm{m}}$. 1'. M. stopped at a nip; 5' S. E. of Busthan Island.

26th. 7 P. M. made fast to laud ice; Cape York N. W. $4^{\prime} ; 9$ P. M. proceeded to the westward; shot a walrus.
$27^{\text {th }}$. Blowing strong and very thick; $2^{\text {h. }} 15^{\text {ma }}$ P. M. made fast to a lloe; when clear saw Conical Island N. W. 18^{\prime} or 20^{\prime}; off shore six miles.

28th. Find this floe is held fast ly grounded bergs near us; 42 fathoms; mud and stones; shot rotchies; many rotchies' eggs picked up.
29 th. The ship in a large space of water; no lead visible; considerable movement in the loose ice caused by current and wind.
30th. 8 A. M. tying to a floe three miles off shore.
[The specific gravity of the surface water is copied from the fourth number of the Bourd of Trade Pupers.]

July, 1858. Record of the Weather kept on board tife Yacit Fox, witil generad REMARKS.

DAY.	$4^{\text {h }}$	8 h.	Noon.	$4^{\text {h }}$.	$8^{\text {h }}$	Midnight.	Spacilie (itay of Sa Watur, I.0.
1	f	"	$f o$	$b \mathrm{c}$	f	$1{ }^{1} m$	255
2	$b c$	bcm	b m	f	b m	co	275
3	mo	"	fo	f	"	*	270
4	f	"			"	$b c$	270
5	$b \mathrm{c}$	"	"	co	"	or	275
6	os	"	oc	"	c	f	275
7	\bigcirc	c	m	co	$b c$	"	
8	b	$b^{\text {c }}$ c	"	"	"	"	
9	b	"	"	10.	"	"	270
10	b	b c	"	"	"	"	
11	b	b, c	"	"	"	"	230
12	b	$b \mathrm{c}$	co	"	"	"	
13	Oqs	"	cos	co	os	"	
14	os	co	c	O 3	$c o$	"	275
15	c	$c o$	"	cq q	\underline{r}	c	
16	c	$c o$	$c f$	$b e$	\bar{f}	10	270
17	${ }^{\text {c }}$	b	\%	$b{ }^{\text {b }}$	b	"	275
18	f	$b \mathrm{c}$	b	$b c$	f	"	
19	f	b	"	b c	"	"	
20	b	"	"	$b c$	"	b	
21	$b c$	b	"	b e	b	$b^{\text {b }}$ c	275
22	$b c$	"	"	b	"	"	
23	$b c$	"	"	"	"	c	
24	$b c$	"	"	"	"	"	22.5
25	$b c$	"	"	"	"	16	205
26	$b c$	"	"		$b 0$	c	
27	$b c$	"	"	\%	"	:	
25	$b \mathrm{c}$	"	"	*	co	$b e$	
29	co	$o r$	"	$c o$	$b 0$	"	230
30 31	mo	$f r$	\underline{r} r	$m r$	c m	" ${ }^{\circ}$	
	$c m q$	co	mor	co		${ }^{6}$	

NOTES TO JULY RECORD.

1st. Noon, the ship received a considerable nip, the floes being cheeked loy a grounded lerg ; rudder damaged.

2d. Several large seals on the ice; 4 P. M., water visible, started under steam and reached at 8 P. M. ; made all sail ; midnight lost sight of the pact.

3d. Passing through loose ice ; a seal shot.
4th. At midnight (4th-5th) fog cleared off, the pack close to leeward of us.
5th. Sailing along the pack edge. 9 P. M., about 15 miles from Conical Island; bore up through lane in the pack.

6th. Sailing through heary ice, thick fog at midnight.
7th. Lying fast to a large floe in a confined space of water; Cobourg Island visible to the northward.

8th. Noon, steamed about four miles to the west ; land visible from E. N. E. to N. $\frac{1}{2}$ W. (magnetic.)
9th. From 2 P. M. until 7 P. M. working through nips.
10th. Noon, Cobourg Island in the N. W. 15' or 18^{\prime}; a seal shot.
11th. 2 A. M., reached a large space of water with ice in shore; no ice in sight towards Jones'
Sound; found the pack to rest against the land ; a black whale seen; 11 I. M., rounded Cape Horsburg two miles off shore.

12th. Made fast to land ice off DeRos Island and communicated with natives; proceeded four miles further into a large space of water; found ice all around; kept ship letween the pack and the land westward of Cape Osborne.
13th. At $2^{\text {h. }} 20^{\mathrm{m}}$. A. M., made fast to land ice $\frac{1}{2}$ mile off shore in seven fathoms water; the pack fast driving up the sound and closing in.

14th. The pack in the offing moving with the wind and tide; found a high water mark, a piece of an oaken ship's timber 7×8 inches, with three nails and an iron bote through it, much beached.

15th．Proceeded to C＇ape Warrander；ice all round．
16 h ．Lying to in a space of water off Cape Warrander．
17 th．The ice is very loose；stopped when within four miles of Cape Hay；many uarwhals and two black whales seen．

20th．Commenced boring through the pack to the S．E．
21 st．Attempted to bore through the pack；a seal shot．
2ed．Attempted to bore through the pack；a very large bear shot．
24 th．Steaming through loose ice from 7 until $10 \mathrm{P} . \mathrm{M} ; 8 \mathrm{P}$ ．M．，off Possession Bay．
25th．Made fast to the land ice；a bear seen．
20 th． 4 ．M．，ship drifted to a loose floe in order to drift to the southward with it．
27 th．Made fast to land ice off Button Point；at noon one mile off shore；shooting party brings back 812 loons．

28th．Captain and interpreter left the ship to visit the natives up the inlet；shooting party returns with 301 loons．
29th．The ice in the inlet broke up；shifted ship to the land ice $1 \frac{1}{2}$ mile N．E．of Button Point； Captain and party returned．
30th． 9 P．M．，commenced steaming up Pond＇s Inlet with two natives on board．
31 st． 8 A ．M．，came to fast ice 17 miles up the inlet，found it too weak to make fast to；a strong lea current．
（Numerons unicorns were seen this month．）
［Notes on specific gravity of sea water are from the 4th paper of the Board of Trade．］

August，1858．Record of the Weather kept on board the Yacit Fox，with general remarks．

DAY．	$4^{1 /}$	Sh．	Noon．	$4^{\text {h．}}$	$8^{\text {h }}$ ．	Midaight．	Specific Grat．of Sea Water，1．0．
1	\％	c	＂	co	$b c q$	$b \stackrel{0}{ }$	
2	$c o q$	be	＂	＂	＂${ }^{\text {c }}$	＂	
3	b：	b	＂	$b=$	＂	＂	
4	1	$\cdots 0$	$1{ }^{10}$	＂	＂	cr	
5	br	c	＂	＂	$b r$	،	
6	1.	＂	＂	＂	be：	b	
7	b	3 b	＂	$1 \cdot \mathrm{cq}$	oq	$m q r$	
8	mo \％	＂	$m o r$	moq	60\％	co	
9	mu	＂	θ	mo	＂	＂	
10	＂s	f	$m o$	\％	f	＂	235
11	t	0	＂	b c．	＂	＂	
12	1.1	＂	＂	${ }^{\prime}$	＂	＂	
$1: 3$	，	11.	＂	c	＂	＂	235
14	＂ 0	＇	1.1	＂	＂	＂	
15	r	＂	＂	＂	$b i$	＂	240
16	r	1.10	h．f	1， m	$f r$	$f \underline{ }$	
17	$f r$	be	$1 . \mathrm{m}$	$1{ }^{\text {c }}$	co		200
18	${ }^{\text {a }}$＂${ }^{-}$	－	O．	b ${ }^{\text {a }}$	cor	com	230
19	\cdots	16	＂	＂	c	$\because 0$	220
21	\％s	＂	cso	1.10	bres	r	210
21	$b \cdot$	＂	＂	＂	CO	＂	
23	－＂	＂	＂	0 S	s	＂s	
23	f	＂	co	＂	＂	＂	
24	\cdots	s	1.1	cs	$1{ }^{\prime \prime}$	＂	
2\％	1.1	＂	＂	s	0 \％	＂	
21	＂ 9	いいて	1.1	10\％	＂	＂	
27	：	0 s	＇	co	＂	cos	225
29	＂${ }^{\prime}$	＂	＂	＂	＂	＂	
	1%	$m 0$	1.1	$4{ }^{\prime \prime}$	＂	＂	
310	$\because "$	＂	$b \cdot$	＂	＂ 6	8	
	＋\％		0				

NOTES TO AUGUST RECORD．
1st． $5^{11} 4^{\text {m．}}$ A．M．，C＇aptain and party left the ship to visit the natives at Kaparotolik；many seals were sem；ice broke adrift ：got the ship elear when within her own length of a rock．

2d. Beating to the westward through drifting ice; 6 I . M., Captain ant party returned ; bore up to the eastward.

3d. Midnight (2-3) four natives came on board; endeavoring to beat out of Pond's Pay.
4th. Found the current to set westward along the north shore; whales seen.
5 th. Steaming from 4 until 7 P. M. ; then made fast to land ice, three miles southeast of Cape Graham shore ; whale seen.

7th. A bear shot.
8th. A beavy gale with very heary sea.
10th. Many walrus seen; passed through a few streams of ice; 9P. M., rounded Cape Hurd in thick fog; grounded in the mouth of Rigby Bay; floated off; a bear shot.

11th. A bear shot; anchored inside Cape Riley and commenced taking on board coals.
12th. Loose ice in motion with the tide; coaling from C. Riley and receiving stores from Becchey Island.

14th. Proceeded to Beechey Island ; anchored off the house in five fathoms.
16th. Sailed for Cape Hotham at 6 A. M., at $7^{\text {h. }} 30^{\mathrm{m} .}$ off Cape Hotham depot, landed and brought off two whale boats; proceeded to the westward.

17th. Steered for Peal Sound 9 P. M., Cape Granite N. 73° E., and Cape Lyons N. 56° W. ; observed fast ice extending across the straits from about Cape Briggs to McClure Bay; bore up for Narrow Straits.

18th. At $2^{\text {h. }} 15^{\mathrm{m}}$ A. M., passed Limestone Island ; 4 P. M., off Cape McClintock; 9 P. M., steaming against a head-wind round N. E. cape ; miduight anchored in Port Leopold in seven fathoms; 1^{\prime} N. N. W. of Whaler Point.

19th. Examining stores ou Whaler Point; $5^{\text {h. }} 30^{\text {m. }}$ P. M. made sail to the southward.
20th. $10^{\text {h. }} 30^{\mathrm{m} .}$. A. M., passed Fury Point in a snow shower; 4 P. M., off Cape Garry; $8^{\text {h. }} 30^{\mathrm{m} .}$, rounded the north point of Brentford Bay; observed a small cairn upon it ; $10^{\text {2. }} 15^{\mathrm{m}}$, anchored in a bay four miles further west.

21st. A bear shot; made an attempt to pass through Bellot Straits, found it full of loose ice in rapid motion with a very strong tide ; returned to Depot Bay ; erected a cairn and landed a depot of 15 days provisions.

22d. A bearded seal shot.
23d. Made another attempt to pass through Bellot Straits, found it choked; ran to the southward until stopped by fast ice; anchored in a harbor on east side of Levesque Island at 4 P. M; a herd of reindeer seen on north shore of Bellot Straits, and two seen on shore here.

24th. Made another attempt to penetrate Bellot Straits; anchored in a small bay on the north shore, about half way through at $11^{\mathrm{h}} .15^{\mathrm{m} .}$ P. M., a very unsafe position.
25 th . At $3^{\mathrm{h}}, 30^{\mathrm{m} .}$ A. M., left anchorage and steamed west 4^{\prime}, but being unable to get further returned to Depot Bay and anchored there at 8 P. M.

26th. At 9 A. M., ran to the southward, anchored in Stillwell Bay? 7 fathoms soft mud; landed 120 rations in casks in lat. $71^{\circ} 21^{\prime} \mathrm{N}$.; heavy streams of ice in the offing.
27 th. 9 A. M., made sail for Depot Bay; working to windward between the streams of ice in the offing and the land.

28th. Very little ice seen this day.
29th. Noon, anchored in Depot Bay in 10 fathoms water.
30th. At 5 A. M. steamed into Bellot Straits, finding it still full of loose ice; anchored in a harbor at the head of Port Kennedy at $10^{\mathrm{h}} 30^{\mathrm{m} .}$. . M. in 11 fathoms; at 6 P. M. Captain and boat party left the ship to examine the ice in Victoria Strait from the western hills; a herd of deer seen and a bearded seal shot.

31st. Several deer seen inland.
[Several Brent geese and Peregrine falcons shot on the $23 d$ and $29 t h$; from the 1 st to the 5 th whales were very uumerous.-D3. of T? Papers.]

NOTES TO SEPTEMBER RECORD.
1st. One reindeer shot.
2d. Captain Youncr and boat party left to explore the S. W. part of Breutford Bay.
5 th. P'arty returned ; several deer seen.
6th. 6 A. M. steamed into Bellot Straits; high water at $11^{\text {b. }}$ A. M. ; flood tide running east ; $1^{\text {b }}{ }^{\text {. }}$ $30^{\mathrm{m} .}$ P. M. passed into the western sea; found the main pack resting upon Capes Bird and Mopkins, and extending as far west as visible ; made fast to the edge of the ice; 1^{\prime} south of Cape Bird.

10th. Two seals shot.
11th. Returned to I'ort Kennedy and anchored in the entrance in 10 fathoms; a few deer seen, and a hare shot.

12th. A hare shot.
13th. [Observed a comet.]
18th. Steamed through Bellot Straits and made fast to the ice near Pemmican Rock; sent an officer and dog-sledge to examine the ice between us and Separation Island.

20 th. At $g^{\text {h }} \cdot 15^{\text {mi }} \mathrm{P}$. M. a vivid flash of shect lightning was observed.
21 st. Dogs and parties carrying provisions to the southward.
23d. 8 P . M. observed the comet, increased in brilliancy.
25th. Lieat. It ohson and parties started with thirteen days' provisions to carry out southern depots; placed a boat and gear upon Pemmican Rock.

27th. Placed a depot of 100 rations on Pemmican Rock; cast off at noon and steamed for Port Kennely; when $4 \frac{1}{2}$ miles within western end of Bellot's Straits, sounded in 75 futhoms; rock and sand; tide about to commence setting west; boring through young ice, and sledge ran into the fast ice in the cutrance of Poet kemedy at $10 \mathrm{I}^{\prime}$. M., and, being unable to penctrate further, made fast; 13 fathoms Water ; ofl shore one-fuarth of a mile; 12 fathoms at Winter Quarters.

29th. 'Iwo reimber shot; their weights, exclusive of the entrails, are 354 and 139 lbs.
:3mh. liemdeer seen.
(Sherifie gravily of sea water 7 th, 1.0215 ; on the 27 th, 1.0230 ; at 65 fathoms, 1.0270 ; temp. 31°. - - M if Trours. 1

October, 1858. Record of tee Weatner kett on board tie Yacut Fox, witil qeneral REMARES.

DAY.	41.	8 l.	Noon.	4 h .	8 h .	Miduight.
1	c	"	"	s	"	"
2	0 s	co	"	"	$m s$	o
3	s	$m \mathrm{~s}$	oms	(\%)	$q s$	،
4	oqs	$c o$	os	m. s	"	"
5	$m s$	e	"	0	m o	0
6	00	c	0	"	c	"
7	c	c mim	b e	0 os	s	m
8	$b \mathrm{c}$	b	"	"	"	"
9	1	"	"	"	"	،
10	1	f	"	$f s$	s	"
11	s	$\stackrel{\square}{m s}$	oms	m s	"	"
12	$m o$	c	$b:$	b	$b c$	b
13	$b c$	"	"	"	"	"
14	$b \mathrm{c}$	"	"	"	"	"
15	b e	"	"	"	"	"
16	$m o s$	os		os z	"	0 \%
17	oz	"	"	"	"	"
18	$o z$	o	b b	${ }^{6}$:	"
19	$m \mathrm{~s}$	os	"	"	"	${ }^{6}$
20	s	c	$b r$	1	"	"
21	$m s$	$b r z$	$m \mathrm{~s}$ z	$m z$	cs	
22	b z	"	"	b c	"	"
23	b m	o ms	$m \mathrm{~s}$	"	"	os s
24	\bigcirc	\bigcirc	as		os	"
25	${ }^{m}$	l, c	$4 z$	"	"	"
26	bmz	"	"	bcsz	bez	"
27	- \quad - z	"	"	"	"	"
28	b	"	"	"	"	"
29	$b c$	"	"	"	"	"
30	$b:$	$m z$	\cdots	$m s z$	${ }^{\prime \prime}{ }^{\text {a }}$	$m s \approx$
31	$m \geq$		"	mo		

NOTES TO OCTOBER RECORD.
1st. Four reindeer secu; 8 P. M., the crack running up the harbor widened; hove the ship eiglty yards further ahead.

2 d . Two small herds of deer seen.
3d. $10^{\text {h. }} 30^{\text {m. }}$ P. M. lightaing observed
4th. Three ptarmigan seen.
5th. Two herds of deer seen.
6th. Reindeer seen.
7th. Λ few reindeer and ptarmigan seen.
8th. A reindeer shot; 10 P. M. comet visible.
9th. 10 P. M. comet visible.
10th. Four reindeer seen.
12th. One reindeer seen.
13th. Built an ice-bouse for magnetic observatory.
15th. Thickness of ice formed since the third, $9 \frac{3}{4}$ iuches.
19th. Lieut. Hobson and party started to carry depot down the west coast of Boothia at 8 A. M.
20th. A hare shot; many seals seen in the open water in the straits; 8 P. M. balo round the moon, diameter about 45°.

22d. 8 P. M. Prismatic halo around the moon.
2Sth. 8 P. M. anrora in the S. E. [about 20° above the horizon].
29th. From 8 P. M. until midnight, faint aurora between S. and N. W. [about 25° above the horizon, the extremities being joined by a narrow band stretching across the zenith.-B. of T. Papers.]

30th. A hare shot, two deer seen; 8 P. M. faint aurora in the S. W.
31st. Two ptarmigan shot; 10 P . M. faint aurora in the N. W.

November, 1858. Record of the Weather hept on board the Yacht Fox, with general REMARKS.												
niv.	23.	$4^{\text {h. }}$	$6^{\text {h }}$	8 h.	10 ln.	Noon.	2 h .	$4^{\text {h. }}$	6^{h}.	8 h.	$10^{\text {h. }}$	Mid't.
1	th s	*	mo	o	*	*	*	"	b c	m	6	"
\because	${ }^{\prime}$	$m s$	m	b ${ }^{\text {c }}$	6	*	"	brz	"	6	6	4
3	11. 11 z	${ }_{6} 6$	،	"	${ }^{6}$	"	"	،	$b \mathrm{be}$	*	"	$b \mathrm{c}=$
4	b z	"	*	6	${ }^{6}$	b $m=$	*	$m z$	b $m \mathrm{~m}$	4	$b m$	"
5	11 m	6	"	"	${ }^{6}$	"	b $m \sim$	${ }^{6}$	${ }^{6}$	b m	6	6
${ }^{6}$	1.11	*	6	"	b: m	6	${ }_{6}$	6	0 s	mo	6	6
7	哏	${ }^{6}$	"	6	*	4	b m	'6	4	"	6	6
8	b.	6	"	6	6	6	$b \mathrm{c}$	6 c	6	6	6	"
9	b. m	6	"	${ }^{6}$	6	66	"	"	${ }^{6}$	b	66	"
10	b	*	b cm	b	l m	6	6	"6	"	"	6	"
11	b m	"	$b \cdot$	0 s	$b \mathrm{c}$	0	"	6	16	b cm	6	$b m$
12	b m	*	6	"	6	"	6	6	6	"	b	6.
13	b	$b m$	1) 6	0 s	"	6	s	m s	${ }^{6}$	"	"	4
14	$m \mathrm{~s}$	"	*	m	m s	6	$m z$	6	$h r z$	$b m z$	${ }^{2 n} \approx$	${ }^{6}$
15	17%	1. m z	"	6	"	6	$b \mathrm{c}$	،	$b m$	"	br m	${ }^{6}$
16	f. $1 \cdot \mathrm{~m}$	6	6	6	*	m s	"	m s ~	m z	6	m s z	16
17	71 s	*	'6	b	"	"	b	46	$b \mathrm{c}$	$m s$	$m o s$	،
18	mos	"	"	6	"	6	mo	co	110	"	$b \mathrm{~cm}$	6
19	b. m	"	300	c m	6	"	"	*	6	c. $m \mathrm{~s}$	$b \mathrm{~cm}$	46
20	$11 \cdot \mathrm{~m}$	"	"	$m o$	s	mos	m	"	$m 0$	b m	6	${ }^{6}$
21	mo	6	"	"	$m 0 s$	- m	$b r m$	c m	6	6	c ms	c m
80	b. 1 m	"	"	"	"	*	6	"	"	$b \mathrm{~m}$	"	"
23	b m	" 6	$b \cdot m$	"	"	${ }^{6}$	6	6	b m	b	"	b m
24	b m	"	"	b cm	"	"	6	b	be c	"	6	،
25	!	brm	1 \% m	m	"	b m z	6	46	$b z$	"	6	"
24		"	"	"	"	"	"	'6		b $m=$	6	${ }^{6}$
$\because 7$	$m \approx$	110	"	m s	b	6	" 6	"	${ }^{6}$	- "	"	"
	$m \approx$	"	"	6	،	"	6	${ }^{6}$	"	6	b m z	6
29	$1, m z$	6	6	4	6	"	${ }^{6}$	46	"	"	*	46
30	$m 0 z$	‘	*	"	*	6	"	6	b M z	$b m$	6	$b c$

NOTES TO NOVEMBER RECORD.
6th. Lieut. Hobson and party returned; a recent deer track seen.
9 th. [10 P. M. faint aurora from S. by E. to W. S. W.]
th. and sth. [10 P. M. aurora faint in S. W.]
9th. Faint aurora between S. and W. 10° above horizon, 10 I . M.
12th. 10 I . M. a pale streak from the northern horizon to the zenith.
14th. 10 P. M. faint aurora between S. W. and W. N. W.
16th. A deer came near the ship; three ptarmigan seen; [thickuess of ice 1 foot $9 \frac{1}{2}$ inches.]
21st. A ptarmigan seen.
23d. 10 I'. M. a halo around the moon.
24 th. Three ptarmigan seen.
26th. 8 P. M. several willow grouse seen; two deer seen.

December, 1858. Recond of the Weather kept on board the Yacht Fox, witif general REMARKS.												
DAY.	2 h .	$4^{\text {h. }}$	$6^{\text {hr }}$	84.	10 h.	Noon.	2 ha	$4^{\text {h. }}$	$6^{1 .}$	Sh.	10 h.	Mid't.
1	$b c$	"	"	6	b	"	،	16	"	-	"	"
2	$b c$	"	"	"	"	b m	"	---	$b e$	"	b	"
3	${ }^{6}$	$b c$	"	"	$m \sim$	"	b m z	"	\%	"	"	6
4	b m z	"	"	"	b c	"	"	"	"	"	"	"
5	$b c$	"	"	"	"	${ }^{\prime}$	$b c$	"	"	b	"	"
6	$b c$	"	"	"	"	"	"	b	"	$b m z$	"	"
7	$b c z$	"	m	b	"	"	"	"	"	"6	"	"
8	b	"	"	"	"	"	b n	m	$m z$	$b m z$	"	"
9	$b{ }^{1} \mathrm{n}$	"	"	"	${ }^{\prime}$	"	b) m	"	6	"	"	"
10	$b c$	bcm	"	c m	6 cm	$b m z$	"	"	"	"	"	$m \mathrm{~s}$
11	m	$b m$	"	"	"	"	"	"	"	"	"	"
12	$b c$	"	$b m$	b^{\prime}	"	"	"	"	$b \mathrm{cs}$	"	$b \mathrm{~m}$	"
13	b	"	"	"	"	"	b \approx	b m z	"	"	"	"
14	b	"	"	"	"	"		,	،	1.6	$b \approx$	"
15	$b c z$	"	"	$b \sim$	$m \sim$	"	b	$b m z$	"	$b \mathrm{~m}$	"	"
16	$6 \mathrm{~m} \sim$	"	"	~	*	b $c z$	"	,	"	$b \mathrm{c}$	"	"
17	b	$b c$	6 m	"	m	---	$b e$	"	$b \mathrm{~m}$	"	"	"
-18	m	c m	"	"	"	"	$b c$	"	\%	"	"	"
19	b_{6}	"	"	m *	m	$b \mathrm{~cm}$	"	"	"	b	"	"
20	$b c$	"	"	$b c z$	c $m z$	"	"	"	"	"	ms	"
21	$m s$	"	$b m z$	b	$\bigcirc{ }^{-6}$	"	s	m	"	$b \mathrm{~m}$	ms	b
22	$m s$	"	m	"	"	"	"	"	$m s$	m	$m \mathrm{~s}$	"
23	$m s$	"	"	$g \mathrm{~m}$	"	:	"	$b{ }^{6}$	"	"	${ }^{4}$	\%
24	$b c$	"	"	"	$b \mathrm{~cm}$	c m	b	"	"	b cm	"	"
25	$b \mathrm{c}$	"	"	$b z$	$b c$	6 m	"	m		"،	$b m z$	"
26	$m z$	"	m	$m z$	b	"	*	"	$b \subset z$	$m z$	"	$b m z$
27	$m z$	"	"	"	"	"	"	b m z	"	"	"	"
28	$b c z$	$b m z$	"	"	$b m$	"	"	"	"	l m z	"	"
29	${ }_{6}$	"	$b c$	"	$b \mathrm{~m}$		"	"	"	b	"	\%
30	$b_{b} c$	" 6	\cdots	"	b m	$4{ }_{6}$	"	bm	$t \stackrel{ }{6}$	،	"	"
31	$b c$	"	"	"	"	"	m	b m z	"	"	$m \sim$	

NOTES TO DECEMBER RECORD.
1st. Four ptarmigan seen.
3d. 11 P. M., pale aurora in S. W. (true), about 18° above horizon.
4th. 10 P. M., aurora in S. W. [Bright from E. to W. N. W. (through south), about 25° above the horizon. $-B$. of T. Papers.]

5th. A ptarmigan seen; from 8 P. M. until midnight aurora from horizon between S. E. and W., extending upwards nearly to the zenith. [6 to $7^{\mathrm{h} .} 30^{\mathrm{m} .} \mathrm{P}$. M., flashing from S. E. to N. W. across the zenith; at 10 P . M. faint in the westward, and at midnight in W. N. W. and across zenith from N. W. to S. E.-B. of T. Papers.]
6th. 8 until 9 P. M., pale aurora between W. and S. E., about 35° above horizon.
8th. A fox caught; 8 P. M., aurora in the S. E. [about 40° above horizon].
9th. A fox caught.
10th. A fox caught.
11th. $10 \mathrm{P} . \mathrm{M}$., several shooting stars.
12th. 5 to 7 P. M., bright aurora between E. by S. and N. W. [Bright from N. W. to S. E. (through S.) about 60° above horizon.-B. of T. Papers.]

13th. 6 to 7 A. M., light aurora between S. E. and N.; 9 P. M., aurora from S. S. E. to W. N. W., about 20° above the horizon [and continuing until midnight]; several ptarmigan seen.

14th. 4 A. M., bright aurora from S. W. through E. to N. W.; 10 P. M., aurora between S. E. and S. W. near the borizon. [20° above horizon.-B. of T. Papers.] Ptarmigan seen.

15th. 5 to 8 A . M.; bright aurora from E. through S. to N. W. [30° above horizon.-B. of T. Papers.]

18th. 6 P. M., a lunar halo, diameter about 45°. [Thickness of ice, 3 feet 1 inch.]
19th. A covey of ptarmigan seen.
20th. 8 P. M., a lunar halo, diameter 45
234. A pitarmigan seen.
$24 t h .11$ 1'. M., bright aurora all over the heavens [causing the magnetometer to oscillate consider-ably.-B, of T. Popers].

2sth. Aurora between S. S. E. and W. by N., about 20° above the horizon.
29 lh . A ptarmigan, and the recent track of a deer, and one or two hares seen.
$301 \mathrm{~h} .5 \mathrm{P} . \mathrm{M}$. anarora to the southward, about 35° above the borizon.
31st. A ptarmigan seen.

January, 1859. Record of tie Weather kept on board the Yacit Fox, with general remarks.

D.AY.	2 h.	$4^{\text {h. }}$	6 h.	Sli.	10 h.	Monn.	2 b .	4 h.	6h.	84.	10 h.	Mid't.
1	$m \sim$	b m	ζ	: 6	$b c$	،	b сz	$b c$	$b m z$	b m	$b c \sim$	6 c
2	1. m	$m z$	\%	(\%	"	*	$b e z$	"	"	$b c$	b	"
3	$b^{\text {c }}$	6	6	"	"	${ }^{6}$	$b m \mathrm{c}$	$b c$	"	6	"	${ }_{6}$
4	$1{ }^{1} \cdot$	<	b)	"	b z	$b c z$	\%	6	"	6	"	$b c$
5	ic	6	b m	b m z	6	"	b	"	6 m	b	$b m$	${ }_{6}$
6	b m	$b \mathrm{c}$	b m	6	m	$b m$	*	b $m z$	6	6	66	6
7	b $\because 1 / z$	$b c$	*	m	6	$b m$	6	$b \mathrm{mz}$	6	b	$b m z$	6
8	$b m z$	"	"	"	"	"	$b m$	66	b	6	${ }_{6}$	6
9	4	$b m$	6	${ }^{6}$	b c	"	m	"	$b c$	b	${ }^{6}$	"
10	b	6	"	${ }^{6}$	*	"	6	6	6	،	"	"
11	b	${ }^{6}$	"	،	$m s$	"	m	*	m s	'	$b m$	${ }^{\prime}$
12	m	16	b m	"	"	${ }^{6}$	$b c$	6	${ }_{6} 6$	$b m s$	c m	$b c$
13	$b c$	"	c	c m	$c m s$	"	m s	"	"	"	6	6
14	$m \mathrm{~s}$	"	"	"	() m	m 2	6	6	m s	m	$b c$	6
15	b	"	$b \mathrm{~B}$ \%	"	${ }^{6}$	"	6	$m \approx$	$b m z$	$b m$	"	6
16	$b m \sim$	"	b	6	$b m$	$b c$	"	6	${ }^{6}$	$b c m$	${ }^{6}$	${ }^{6}$
17	b m	16	$b \mathrm{c}$	"	c mm	m s	c m	"	*	b c m	b cma	6
18	b, $m z$	3	4	"	${ }^{\prime}$	${ }_{6}$	m 0	46	6	b c m	6	*
19	be	"	b m	1	b m	6	b	* 6	b m	${ }_{46}$	6	6
20	$m z$	16	"	b) $m \sim$	b	$b \mathrm{c}$	6	${ }^{6}$	$b \mathrm{~m}$	m	b	6
21	b	"	b m	66	"	"	*	6	6	'	"	6
23	b m	"	"	"	m	$m z$	*	m	"	"	"	"
23	b) m	"	"	b c	m	$b m$	"	*	b	$b c$	"	6
21	b	6	$b z$	b m z	6	*	${ }^{6}$	*	*	${ }_{6} 6$	6	*
25	$b m z$	"	6	6	6	"	6	"	${ }^{6}$	${ }^{6}$	*	"
20	b m z	*	"	${ }^{4}$	"	b	"	"	"	"	*	"
27	b	6	"	b m	'6	"	6	${ }^{6}$	b m z	m	6	$n z$
28	b, m z	6	"	$b m$	$b m \approx$	$m \approx$	6	$b m z$	6:	4	$b z$	"
29	b $m z$	"	b m	${ }^{6}$	b	b m	6	"	6	6	66	b
30	b	$b m$	،	"	"	،	"	*	b	6	6	"
31	b	6	6	6	"	6	6	"	${ }_{6}$	"	$b m$	6

NOTES TO JANUARY RECORD.

1st. 8 P. M. aurora from S. to W. aloout 40° above the horizon.
2d. 8 P. M. faint aurora in the S. W. about 40° above horizon, just above fog bank.
3d. 5 P. M. faint aurora in the cast from horizon to zenith; 11 P. M. narrow band of aurora from E.S. E. to zenith.

Sth. 10 P. M. faint aurora between S. E. and W. S. W. near the horizon.
9 h. 6 to 7 A. M. bright anrora between W. and N. W ; $10^{\text {h. }} 30^{\text {h. }}$. I. M. a narrow band of aurora from S. to W., passing through the zenith.

10th. 5 to 7 A. M. slight aurora from S. E. through S. to N. W.; 8 P. M. until midnight, strong auroral hands from S. to N. through the zenith.

11 th. 9 P'. M. until midnight, aurora between S. E. and W. abont 15° above horizon.
12th. Some ptarmigan secn.
13th. A ptarmigan seen.
14th. 10 P . M. a lunar halo, diameter 450
16th. A ptarmigan shot.

18th. A fox cauglit; 6 P. M. a bear's track seen in Depot Bay.
19th. A hare shot; 10 P. M. a halo round the moon.
21 st. A ptarmigan shot, and a hare seen.
22d. A raven seen.
26th. Sun's upper limb appeared at 11 A. M. ; fresh tracks of two reindeer seen
30th. Three ptarmigan shot, 3 A. M.
31st. 3 A. M. bright aurora between S. E. and N. W., passed throngh S. W. ; 6 P. M. pencils of auroral rays from horizon to zenith between S. E. and W.; electrometer strongly affected; two ptarmigan shot.

February, 1859. Record of tue Weather kept on board the Yacht Fox, with general Hemarks.

dAy.	2 h .	4h.	$6^{\text {h. }}$	8 h.	10 h.	Noon.	$2^{\text {h. }}$	44.	$6{ }^{11}$.	81.	$10^{\text {h. }}$	Mid't.
1	b	"	"	،	،	"	"	"	$b m$	ι	"	6 z
2	$b m z$	"	"	"	m	"	"	"	${ }^{6}$	$m s$		$0 \sim$
3	m	"	$b c$	6	$b \mathrm{cs}$	$b c$	"	$l \mathrm{~ms}$	6 m	63 ms	m	"
4	${ }^{m i s}$	b	${ }^{6}$	m	b	$b \mathrm{c} z$	bem \sim	"	$m_{\text {\% }}$	\bigcirc	$b m$	"
5	$b \mathrm{mz}$	${ }^{6} m$	"	"	m	6 m	b	$b m$	"*	"	"	*
6	$b m z$	$b m$	b m z	"	"	"	m \sim	"	$b \mathrm{~m}$	"	$b m \approx$	"
7	$b z$	"	$b{ }^{6}$	"	"	$b \mathrm{cz}$	$b^{\text {b }}$	$b c z$	$b m \approx$	$b c$	b	"
8	b	"	,	1) m	"	-	b z	b	b 6 m	b^{6}	b	4
9	$b z$	$b m$	"	$b \mathrm{c}$	"	b	m	"	"	\cdots	"	"
10	$b m$	m	"	*	$m s$	b m	$b \mathrm{c}$	b m	b	"	b m	"
11	$b z$	${ }^{6}$	"	,	$b \mathrm{cz}$	$b z$	b	b z	"	6.	${ }_{3}=$	"
12	,	"	"	b^{6}	"*	cm	m ~	m	$b c$	"	\%	"
13	b	"	$b e$	$b \ldots m$	$b m$	،	\%	m	b c	،	3 ,	"
14	$b z$	"	"	6 m	$b c a$	"	b cm	$b c$	6 m	"	"	b
15	$b m$	1% z	"	$m \sim$	$b: \%$	'	$b^{\mathrm{m}} \mathrm{z}$	"	"	6 m	"	
16	$b c$	$b m$,	$b \mathrm{mz}$	$b m$	$6 m$ z	*	1) m	" ${ }^{6}$	"	${ }^{6} \mathrm{~m}$ z
17	b	b) m	$m s$	"	,	,	$\bullet m$	b c	$b m$	"	"	
18	$b z$	$l \mathrm{~m}$	$m z$	"	4 z	$b m$	،	m	"	6 m		${ }_{\text {b }}^{c} \mathrm{c}$ ¢
19	$b m$	$m g$	$m \sim$	b m z	\%	$4 m$	"	\cdots	،	bim	"	$6{ }_{6}$
20	$b c$	i	"	b m	$b c$	$b ¢ \%$	3 z	$\stackrel{1}{6}$	"	'。	$b m$	c
21	m	"	b	$b m$	${ }_{b}$	"	\%	\%	"	"	b b z \sim	"
22	$b z$.	$b m z$	$b^{\text {a }}$,	"	"	b c z	،	"	$b z$	-	"
23	b	"	.	8 m	"	$b c$	4 m	*	"	\%	"	"
24	m	$b \mathrm{~m}$	${ }^{m}$	$m s$	$b m$	*	m	"	"	"	b	b m
25	$b^{\text {b }} m z$	$m z$	$b m z$	،	m z	${ }^{6}$	$m \sim$	"	"	b m	"	"
26	$b \mathrm{~m}$	"	m z	$b \mathrm{~m}$	"	"	"	"	b cm	$b \mathrm{~m}$	"	b
27	b	"	'	4 mz	"	"	"	"	"،	"	$b \approx$	$b m z$
28	$m z$	"	$b m z$	"	"	b z	"	"	"	"	b_{4}	"،

NOTES TO FEBRUARY RECORD.

1st. 3 A. M. aurora between S. E. and N. W., passing through south.
2d. A ptarmigan shot.
3d. Two reindeer seen ; ascertained the water space in Bellot Straits for one mile east and west.
4th. A seal and a dovekie seen in the open water.
8th. 8 P. M. aurora in the S. W.
9th.' Some ptarmigan seen.
12th. Two reindeer and several ptarmigan seen; a sooty fox caught; halo round the moon.
13th. Two ptarmigan seen; halo round the moon.
17th. 8 A . M. the early travelling parties left the ship; fifteen ptarmigan shot.
19th. 10 P. M. aurora from south to north through the zenith.
20th. Nine ptarmigan shot; 11 P. M. faint aurora from south to zenith.
21st. Thermometer against a black surface exposed to the sun showed zero; [exposed against the ship's side, -0.50.]
23d. 2 A. M. very bright aurora from N. E. to S. W. ; at 4 A. M. slight aurora in the east; four ptarmigan shot; one white fox caught.

24th. Two white foxes caught.
25th. A white fox caught.
26th. A hare seen ; 11 P. M. until midnight, aurora from north to south through zenith.
27th. A for caught.

March, 1859. Record of the Weather kept on board the Yacht Fox, with general
remarks.

DA\%.	2 b .	$4{ }^{1 /}$	$6^{1 .}$	Sh.	10 h.	Noon.	$2{ }^{\text {h. }}$	4h.	6 h .	8 h .	10 b.	Mid't.
1	$b z$	"	"	"	$m z$	"	b mz	${ }_{6}$	${ }^{b}{ }_{4}$	$b m$	"	${ }_{6}$
2	6	\%e	"	"	"	"	"	"		"	ms	
3	$\mathrm{m}_{4} \mathrm{~s}$	"	"	"	$m z$	m	$m z$	$b m$	$b c$	"	$b m$	$b s$
4	$b c$	"	4	"	$1) \mathrm{c}$	b	${ }^{6}$	"	"	"	"	"
5	b	b:	"	"	"	"	b	$b c$	"	"	b	"
6	b	"	$b c$	"	o m	"	$m s$	$\iota^{\circ} \mathrm{m}$	$b c m$	"	b	"
7	b	"	$1, \mathrm{c}$	"	$b m$	m	،	"	"	ms	*	*
8	ms	*	"	"	"	"	$b m e$	"	m s	"	*	"
9	$m s$	"	16	"	0 ms	"	"	$m s$	$b e$	8 m	"	c m
10	b c	"	"	b ${ }^{\text {a }}$	b	"	"	"	$b c$	"	b	"
11	b z	"	m z	b m \%	"	$b z$	"	"	$b m z$	$b m z s$	$b m z$	lemz?
12	bmzq	"	"	"	"	\%	\%	"	*	"	"	$b m q$
13	b:q	"	"	"	$b ¢ z$	$b c q$	bc z	"	"	6 m	b	"
14	b	"	"	b c	"	"	b	"	"	"	"	"
15	b	"	$b_{6}=$	\#	"	"	6	"	$b m z$	"	6	dm
116	$b \mathrm{~ms}$	"	$b:$	0 m :	"	"	ms	8 m	$b \mathrm{~ms}$	8 m	es	"
17	$b:$	b, $c \sim$	m ~	"*	$b c z$	"	be z	"	"	"	$b c$	$b m e$
18	b) m z	-*	،	b	-	"	6 mz	"	"	"	bm	"
19	6 m	"	"	"	"	،	${ }_{6}$	"	"	"		"
20	b	"	b. c	b	b m	"	"	${ }^{6}$	"	"	4	"
21	b 14	$b c$	b,	"	"	"	"	"	"	"	"	${ }^{6}$
22	b	"	"	"	"	*	"	$b c$	"	"	"	$6 m$
23	$11 . m$	s	"	$b c$	b	"	$b \mathrm{c}$	"	"	$o c$	"	"
24	${ }_{\text {o }}$ e	*	"	"	c	"	"	b m	$b e$	"	$b \mathrm{~m}$	"
25	$4 m$	$m s$	"	"	"	"	0 s	"	"	"	$m s$	"
20	m s	"	"	"	m	"	b c	"	"	m	$b c$	"
27	b c	"	c	$b c$	"	"	b m	"	b c	"	"	"
28	..-	b co	-. -	b	...	"	--	$b c$	-..	f	- - .	b
29		m	-.	$b \mathrm{c}$	--	"	---	460	-.-	"	- - -	b
30		,		"	-. -	"	- -	،.	. - -	"		"
31		"		"	---	"	--.	"	-.-	"	-.-	"

NOTES TO MARCH RECORD.

2d. Seven ptarmigan and one hare shot.
3d. Noon, Captain Young and party returned.
4th. Twelve ptarmigan shot.
5th. Frost smoke in Prince Regent's Inlet.
6th. A white fox caught, in reindeer seen, a ptarmigan shot; 9 I. M. a narrow band of anrora from
N. N. W. to S. S. E. through zenith-a well-marked divergence of leaves of gold electrometer.

10th. Nine ptarmigan shot ; one hare seen.
14th. Noon, Captain McClintock and party returned.
15 th. 2 A. M. a lunar halo; two ptarmigan shot.
18th. 9 A. M. Captain Young with two dog sledges left for Fury Beach; 1 P. M. Dr. Walker with a party started to bring in depot from Cape Airy.

19th. Two bears seen, and two ptarmigan shot.
20th. A hare seen; a white fox caught.
21st. A hare seen.
22d. A hare seen and a white fox caught; several ptarmigan seen.
23d. A hare seen and a ptarmigan shot; a lemming caught; Bellot's Straits entirely free from vapor.
24th. A ptarmigan shot; a white fox canght; a bear seen.
25 th. $10 \mathrm{~A} . \mathrm{M}$. Dr. Walker and party returned.
26th. 'Two bares seen.
28th. A hare and a ptarmigan shot; 8 P. M. Captain Young and party returned from Fary Beach.
30th. A parhelion on each side of the sun; a ptarmigan shot and a hare seen; at midnight aurora seen between land to W. and S. W. and observer.

31 st. 11 P. M. aurora in west seen between land and observer.

April, 1859. Record of the Weatier kept on board the Yacut Fox, with oeneral remarks.

day.	5 L .	8 m.	Noon.	$4{ }^{\text {b }}$	$8{ }^{\text {b }}$	11 b .
1	$b c$	"	$b z$	$b c z$	$b g z$	"
2	$b q z$	$b z$	b	"	\%	"
3	bs	b	$b c$	c	cms	*
4	cms	cs	"	c	"	$b^{6} \mathrm{c}$
5	cm	"	$b c$	b	"	b c
6	$b z$	$b c$	$b c z q$	b c	"	"
7	b c	"	"	b	"	"
8	$b v$	b	"	b c	4	b
9	-	$g o$	b c	"	0 s	"
10	c	$b c$	b \%	bcz	br	1
11	b	${ }^{6}$	"	"	"	"
12	b	"	"	"	"	"
13	b	"	"	"	"	"
14	$o \mathrm{c}$	"	$b c$	"	b	10
15	$b c$	"	"	"	"	b
16	b	"	"	"	$b \stackrel{c}{ }$	\bigcirc
17	0	"	or z	"	oc	0 \%
18	0 \%	osz	ocsz	os z	besz	0.8
19	0	0 \%	$b c$	b	$o c$	"
20	$0 \cdot \mathrm{c}$	b	$b c$	"	"	0 z
21	0	"	"	$b c$	b cz	$0 z$
22	0	b	os	"	"	b
23	\bigcirc	b	$b c$		b. $c z$	
24	$1 z$	"	os z	0	${ }^{6}$	${ }_{\text {b }}{ }_{\text {c }}$
25	$b m$	$b z$	${ }_{4}$	$b v$	"	"
26	0	\bigcirc	b ${ }^{\text {c }}$	b	$b o c$	$\bigcirc \mathrm{Oc}$
27 28	${ }_{0}{ }^{\text {os }}$	${ }_{0}{ }_{c}$	b c oc c	${ }^{\circ}{ }_{c}$	oces 0 0	ors os
29	b c	b	$b e$	"	$o \mathrm{cs}$	\bigcirc
30	os	"	،		$m \circ s z$	"

NOTES TO APRIL RECORD.
1st. A fox caught; $10^{\text {h. }} 20^{\text {ma }}$ P. M. ; Captain McClintock and party left the ship, also Lieutenant Hobson and party for long spring journey to the southward.

4th. A white wolf prowling about the ship.
6th. Travelling party detained by weather.
7th. A bare seen; 9 A. M.; Captain Young and party left ship for search of Prince of Wales' land; a lemming caught.

8th. A hare seen; Bellot Straits quite free from vapor; two ptarmigan shot.
9th. Noticed a second space of water in Bellot Straits, smaller and about two miles further west than first.

10th. A hare seen.
11th. A hare seen; thickness of ice formed since Oct. $3 \mathrm{~d}, 6$ fect 2 inches.
13th. A raven seen.
15th. Bellot Straits entirely free from vapor throughout the day.
20th. A hare seen.
21st. A hare seen; prismatic parkelion and part of halo on cach side of the sun distant about $22^{\circ} 30^{\prime}$
23d. A raven seen.
26th. Two hares seen.
27 th. A hare seen.
28th. A bear and two cubs seen.
[No aurora reported.]

May，1859．liecord of the Weather kept on board the Yacht Fox，with general remarks．

DAY．	5 h.	8h．	Noon．	4k．	8%	11\％．
1	1．\sim	6	\％em	be c	$b=$	$b \mathrm{c}$
2	$b e z$	1 b $m z$	＂	moszq	$b \approx q$	6
3	\％	＂	b． 2	わセ マ	bem	oms
4	0 \％	＂	b	b v	b	b
5	mo	\％m	orms	os	$b c$	＊
6	＂	＂	$o \mathrm{~ms}$	bis	b c	b
7	mo	＂	oc	$1 c^{\text {c }}$	114	$b q=$
8	＂	＂	0 z	＂\times z	os	6
9	\％	＂	1．\cdot \％	be	be	6
111	b c	＂	10	bore	1.0	16
11	1	،	＂	bo	＂	b
12	1	＂	＂	$o \mathrm{c}$	0	${ }^{6}$
13	b	＂	b b	o	＂	${ }^{6}$
14	0 \％	＂	0	0 \％	0 \％	0 s
15	b	＂	bro	0	0%	
16	b	＂	$b \cdot$	b $=q$	be	bra
17	b	＂	$b v$	b－v	b	＇
18	os	＂	＂	6	b	6
19	0 s				os	0
20	6.8	＂	$b r z$	b ¢ \sim q	brz	ocs
21	0 s	＂	b	＊	6	${ }^{1} \mathrm{c}$
22	0 m	＂	b c	06	＂	os
23	${ }^{\circ} \mathrm{s}$	6	＊	0	0.5	
24	0 s	0	0 O	0.3	＂	b
25	$1, z$	$b \downarrow$	of：q	0 ！	0	b c
25	b	0	bit ${ }^{\text {a }}$	l c	＂	o
27	0	＂	＂	＂	＂	＂
23	0		＂	0 C	be	0 \％
29	0.5	6	$b \mathrm{c}$	＂	＂	＂
	$b c$	＂	6	＂	＂	＂
31	$0 \mathrm{~s}$	$0 s m$	＂	os	b c	6

NOTES TO MAY RECORD．

1st．Prismatic parhelion and part of halo on each side of the sun，distant about 23° ．
Bd．Two ravens seen．The water space in Bellot Strait much increased in extent．
4th．A white wolf seen．
5 th．Parhelion and part of halo on each side of sun．
（fh．Prismatic parhelion and part of halo on cach side of sun distant $22^{\circ} 20^{\prime}$（observed）．
9th．Two hares seen；also recent tracks of a small herd of deer．
loth．Five hares seen．
11 th．Ice formed since Oct．3d，1858， 5 feet 4 inches；several hares seen．
12th．Four hares seen．＇Two small pools of water noticed in the strait hetween Fox Island and south shore．

13th．Two hares seen； 8 P．M．，fine snow falling．
14 th．A young bear shot；tip to tip 6 feet 1 inch．
15th．Two hares seen．
16th．＇Two hares seen；part of Captain Ioung＇s party returned．
17th．Two hares secm and two snow buntings shot．
18th．Two hares and some buntings seen．
l！th．Three seals and one wolf seen．
21st．A snow bunting seen；a long lane of water seen to the E．N．E．in Regent＇s Inlet．
22d．Ice loosencd from ship＇s sides，allowing her to rise 2 feet 4 inches forward and 3 inches aft； two hares seen；also recent tracks of seven deer going northward．

28th．I deer seen；two others crossing ice to northward．
29th．I fox seen；also several buntings shot；threc burgomasters seen flying north．
Buth．One bunting spen，one finch shot；four men and sledge started for Pemmican Rock to join ＇apuain Vouns．

June，1859．Record of the Weather kept on board the Yacit Fox，with aeneral remarks．						
d．x．	$5{ }^{5}$	84．	Noon．	$4{ }^{4}$.	$8{ }^{8}$	11 ln
${ }_{2}^{1}$			$\underset{\substack{\text { mos } \\ i, y}}{ }$	${ }^{\text {c }}$	${ }^{6}{ }_{4}{ }^{\text {m }}$	
颜	\cdots	$\stackrel{\text { mos }}{\text { m }}$	为	＂	＂	
${ }_{5}^{4}$	b_{0}	＂	\cdots	b	${ }^{\text {bic }}$	＂
$\stackrel{6}{7}$	$\stackrel{\circ}{\circ}$	${ }_{6}$	\％	＂：	\cdots	${ }_{0}$
${ }_{9}^{8}$	be	＂	＂${ }_{\text {a }}$	＂．		mon
110	俍	．	＂	＂	\cdots	b＂u\％
${ }_{13}^{12}$	${ }^{6}$	＂	＂，	＂	＂＂	＂
14 14 14	b	＂	\cdots	$\stackrel{\text { c }}{ }$	＂	＂
－	\％	＂	${ }^{\prime \prime}$	＂	＂i＂	$m^{m_{0}}$
17 18 18	$\stackrel{\square}{\circ}$	＂${ }_{\text {＂}}$	${ }_{6}{ }_{c}{ }_{r}$	${ }^{\prime}$	\％of ${ }_{\text {of }}$	${ }^{1} \mathrm{c}$
19 20	${ }^{60}$	＂	\cdots	${ }_{0}{ }_{0}{ }_{r}{ }^{r}$	＂．＂	＂
${ }_{22}^{21}$	${ }_{60}$	＂	\cdots	$b^{\circ} \mathrm{c}$	mis ${ }^{\text {c }}$	$\stackrel{c}{\circ}$
${ }_{24}^{23}$	为	${ }_{0}{ }_{0}$		${ }^{\circ}$	＂	
		$\stackrel{\text { a }}{ }$	${ }^{\prime \prime}$	＂	$\stackrel{\text { c }}{ }$	\％
	俍	：	＂	${ }^{\prime \prime}$	＂	$\stackrel{\text { c }}{ }$
2980 30		\％	${ }^{\circ} \mathrm{Cl}{ }^{\text {c }}$	$\stackrel{\circ}{\circ}$	＂	＂

NOTES TO JUNE RECORD．

2d．A bunting seen．
3d．Some gulls，a bunting，and a raven seen；black bulb thermometer in sun＇s rays， 93° in maximo．
4th．Some geese，gulls，and bunting seen；a bear came near the ship；a fox shot alongside．
5th．Some bunting and a gull seen；some small pools of water to eastward of Fox Island，in the course of carrent of straits；several pools of water to E．N．E．and N．E．in Regent＇s Inlet．

6th．Measured height of mountain ahead of harbor－ 1120 feet（aneroid）；a small cairn on top．
7th．Captain Young returned on board；a raven，several ducks，and bunting seen；three reindeer crossing the ice to northward；remainder of Captain Young＇s party returned．

9 th．A deer，a hare，and a fox seen；also some buntings and sandpipers．
10th．A deer，some gulls，buntings，and sandpiper seen；some buntings and sandpiper shot；Captain Young and party left the ship．

11th．Several buntings and gulls seen．
12th．Two sandpipers shot．
13th．First plant in flower（Saxifraga oppositifolia）；a fox canght，and some buntings shot；a deer， a hare，some geese，gulls，and duck seen ；ice formed since Oct．3， 4 feet 6 inches．

14th．Lieut．Hobson and party returned on board，bringing documents and relies of Franklin＇s expedition from west side of King William＇s Land；some duck and sandpipers seen．

15th．Maximum，black bulb thermometer in sun＇s rays， $96^{\circ} .5$ ；three sandpipers shot；some gulls seen．

16th．Two long－tailed ducks and two sandpipers shot；some ducks and gulls seen．
17th．Many ducks and gulls seen，also one seal；one king and two long－tailed ducks shot．
18th．Several ducks and one seal seen．
19th．Captain McClintock and party returned on board，bringing relies of Franklin＇s expedition obtained from natives on east coast of King William＇s Land，and picked up on Montreal Island and south shore of King William＇s Land；a bear，seal，and some duck seen．

20th. Two ducks shot.
21 st. One seal shot.
22d. Twelve ducks and one hare shot; seal seen.
23d. Five ducks and one red-throated diver shot; a seal seen.
$2 t$ th. Four ducks and four deer seen.
25th. One duck and one diver shot.
26th. One duck shot.
27 th. One duck and one plover shot; two deer seen.
2sth. Four plover shot.
29th. One deer seen ; two ducks shot ; one ermine caught.
30th. Several geese seen, and a duck shot.

July, 1859. Record of the Weather kept on board the Yacht Fox, with aeneral remarks.

DAY.	$2 \mathrm{h}$.	4h.	$6{ }^{\text {h }}$	8h.	10 h .	Noon.	2 h .	4 h .	6 h.	$8 \mathrm{h}$.	10 h.	Mid't.
1	---	o m	--	oc	- -	$b c$	---	"	--	b	\cdots	$b c$
2	-.	$b c$...	${ }^{6}$	---	"	---	b	---	$b c$. . -	6
3	---	o	-.-	b c	---	${ }_{6}$	---	b	---	"	---	"
4	.--	b	-. -	$b c$	---	66	--	b	-..	6	-. -	"
5	...	om	-	$b c$	---	"	"	6	6	c	"	"
6	e	or	0 c	"	c	b c	${ }^{6}$	or	$o \mathrm{c}$	$0 c r$	$b c$	*
7	$b c$	oc	*	"	${ }^{4}$	6	$b c$	6	oct	0 mr	0 s	،
8	$\bigcirc \mathrm{ms}$	6	0 c	b c	$o c$	"	c	$o c$	$0 r$	${ }^{6}$	$0 c$	0%
9	$o r$	$o \mathrm{c}$	"	r	$o c$	$b c$	${ }_{6}$	6	6	6	4	4
10	c	6	0 c	${ }^{6}$	6	ocq	ocqr	${ }^{6}$	"	"	${ }^{6}$	"
11	ocr	b c.	"	$o c$	*	${ }^{6}$	،6	66	6	b c	*	"
12	$b c$	6	${ }^{6}$	6	"	0 c	*	6	${ }^{6}$	$o c$	0 mr	0 c
13	$b c$	"	0 c	*	6	c	0 c	*	${ }^{6}$	${ }_{6}$	"	r
14	r	$b c$	${ }^{6}$	"	${ }^{6}$	4	6	*	6	"	$0 c$	*
15	b c	"	oc	"	"	"	$b c$	${ }^{6}$	*	"	6	"
16	$b c$	"	"	4	b cs	$b c$	"	"	"	*	${ }^{6}$	4
17	$b c$	6	"	*	"	"	"	"	6	c	$b \mathrm{c}$	${ }_{6}$
18	b c	\cdots	0 c	"	ocgr	o ms	$o r$	6	"	b c	"	0 cr
19	omrq	$o \subset q$	oc	6	$b c$	6	6	16	b	$b c$	*	"
20	b c	c^{2}	$b c$	"	"	"	b	$b c$	"	"	b	$b c$
21	b c	"	6	4	6	*	*	6	"	6	b	4
22	b	${ }^{6}$	6	"	"	6	"	،	"	*	4	${ }^{6}$
23	b	"	"	$b m$	${ }^{6}$	*	"	6	6	6	"	"
24	$b c$	b	b) m	b	"	${ }^{6}$	$b r$	*	${ }^{6}$	6	*	${ }^{6}$
25	b c	3	"	6	$b c$	"	b	،	،	$b c$	*	4
$2{ }^{\circ}$	$b \mathrm{c}$	"	${ }^{\prime}$	"	"	${ }^{6}$	6	،	c	r	*	*
27	c	cr	$b c$	"	"	"	${ }^{6}$	"	"	"	${ }^{6}$	6
23	b, c	،	6	"	"	b	"	"	$b c$	${ }^{6}$	،	4
20	$b \mathrm{c}$	${ }^{6}$	"	"	"	"	\%	*	6	"	"	"
30	be	"	*	"	b	"	l c	"	6	b	$b e$	"
31	$b c$	*	b	6	b. c	،	"	"	c	"	${ }^{6}$	$m c$

NOTES TO JULY RECORD.
2d. Two ducks and two divers shot.
3d. Four ducks and two gulls shot.
4th. Three ducks and one seal shot.
5th. Commenced tide observations; one duck, one diver, and a silvery gull shot; an ermine seen.
6th. Two hares seen.
7th. A gull shot and lemming caught; several seals seen on the ice.
11th. A seal and a duck shot; the water has much increased in Bellot Straits.
12th. Several lanes of water seen in Regent's Inlet; two seals shot.
13th. One seal shot.
14th. One hare shot, and an ermine seen.
15th. Three seals shot.
16th. Two ducks shot.

17th. A fox seen.
18th. A seal shot, and another taken from a bear; a gull and a duck shot.
24th. An usuk seen.
25th. Several flocks of ducks flying eastward.
26 th. Bellot Straits clear of ice as far as Western Head.
27 th. Ice breaking up around the ship; 11 gulls shot.
28th. A large extent of harbor ice commenced driving out.
29th. Drifted with harbor ice, to which the ship is attached, between the Fox Island and the main, until 2 A. M., when the ice was brought up by the land and shoals; 4 A. M., western current ceased; 5 A. M., ice commenced drifting eastward ; 9 A. M., made sail to a light S. W. breeze ; $9^{\text {h. }} 45^{\mathrm{ul}}$. got clear of the ice, and proceeded into Port Kennedy; 11 A. M., anchored in $6 \frac{1}{2}$ fathoms off Observation Point.

30th. Ice breaking away from head of harbor; outer harbor almost clear; $11^{\mathrm{h}} .30^{\mathrm{m}}$, harbor ice drifted foul of the ship; several gulls shot.

31st. Two gulls and one duck shot.

August, 1859. Record of the Weather kept on board the Yacht Fox, witi ceneral remarks.

DAY.	$4^{\text {h. }}$	8 h.	Noon.	4 ${ }^{\text {l }}$	8 h.	Midvight.
1	$m \mathrm{c}$	${ }_{6}$	0	6	*	${ }_{6}$
2	$c o$	or	on r	$m r$	m	$0 r$
3	or	r	$o c$	"	6	$b c$
4	oc	$b c$	${ }_{6}$	${ }^{6}$	6	b
5	b	6	$o c$	*	1) c	b
6	$b c$	b	$b c$	16	6	c
7	oc	c	$o c$	$b c$	s	4
8	Oc	6	66	${ }^{6}$	6	m
9	$m s$.	"	$b s$	b ¢ m	${ }^{6}$	$m \mathrm{~s}$
10	ocs	c	0 m	$b c$	6	$o \mathrm{c}$
11	c	0	0 c	c	$o c$	oc.r
12	orr	*	$b c$	$o c q r$	or	${ }^{6}$
13	$0 \underline{\sim}$	$0 q$	6	${ }_{6}$	π	orq
14	Or	or	6	$m r$	f	$m r$
15	m	$m r q$	$\bigcirc \subset q$	$b<q$	6	$b q$
16	b	c	$b c$	f	$m \mathrm{c}$	f
17	f	b	*	،	6	"
18	b	*	${ }_{6}$	f	$b m$	b
19	$b m$	$b c$	${ }^{6}$	b	b m	*
20	0 c	$b c$	16	$f c$	$m \mathrm{c}$	"
21	$o c$	${ }_{6}$	c	oc	o m	03
22	0 c	c	6	$b c$	"	${ }^{6}$
23	$b c$	"	*	"	"	*
24	$b c$	"	6	b m	$c s$	$m r s$
	$b c$	6	"	c	o mr	$o \mathrm{cs}$
26	$0 \leq$	oc	$b c$	"	b	${ }^{6}$
27	$\stackrel{\rightharpoonup}{b}$	6	6	"	$b c$	"
28	$b c$	b	"	$b c$	"	${ }^{6}$
29	$b c$	6	${ }^{6}$	"	b	"
30	b	4	$b c$	*	b	${ }^{6}$
31	b	*	46	*	6	6

NOTES TO AUGUST RECORD.

1 st. One seal and fifteen ducks shot; also two gulls.
$3 d$. $4^{\text {b. }} 30^{\mathrm{m} .}$ A. M., thunder.
4th. Bellot Straits and Port Kennedy clear of ice.
5th. A seal shot.
6th. A deer and two seals shot.
7 th. Harbor full of drift ice.
8th. Ice stationary; 8 P. M., ice setting into the harbor.

9th. $10^{h 1.30 \mathrm{~m} . ~ A . ~ M ., ~ w e i g h e d ~ a n d ~ p r o c e e d e d ~ o u t ~ o f ~ t h e ~ h a r b o r ~ u n d e r ~ s a i l ~ a n d ~ s t e a m ; ~ n o o n, ~ p a s s i n g ~}$ south end of Long Island; $1^{\text {h }}$, passed between Brown's Island and off Lying Islet southeastward ; $2^{\text {h. }}$ 30^{m}, off Hazard Inlet; $s^{\text {h }}$, off Mt. Oliver; 8 to 12 , steering between pack and land.

10 th. 4 . M. . steaming 1rast Cape Garry; Creswell Bay clear of ice; $11^{\text {b. }} 25^{\mathrm{m}}$. A. M., made fast to grounded ice in 3 fathoms, 3 cable lengtbs ofl shore of Adelaide Bay; Fury Point 2^{\prime} E. by N. (true); a seal and several dovekies shot; white whales, ducks, and mollymauks seen; pack closing in; low water: I'. M. ; elhtsets to S. W. along land; high water near midnight; rise $7 \frac{1}{2}$ feet.

1th. A white whale shot, 13 feet 2 inches long; pack closing in Cresswell Bay.
12th. Ice dricing to sonthwestward; no water visible in Cresswell Bay or in N. E. ; a seal seen; tide flowed antil midnight ; water rose 10 feet.

13th. Pack in offing driving southwestward; (4 A. M.) no water visible from mast-head, except iuside the space into which we are lying; a small seal and some dovekies shot; many king ducks flying northward; high water at $12^{\text {h. }} 30^{\text {m. }}$

14th. 4 A. M., park driving to southwestward; many ducks flying northward.
15th. Tide flowed until about $1^{\text {h. }} 20^{\mathrm{m}}$. A. M. ; at $5^{\mathrm{h}} 45^{\mathrm{m}}$. P. M. Fury Beach bore W. (true) three miles distant.

16th. $2^{\text {h. }} 45^{\mathrm{m}}$. A. M., off Batty Bay, free from ice; 9 A. M., off Elwin Bay; $3^{\text {h. }} 30^{\mathrm{m} .}$ P. M., Cape Sepping N. W. $\frac{1}{2}$ W., distant 6 ; ice seen extending from Leopold Island eastward.

17th. A black whale and some narwhals seen; Barrow Strait clear of ice as far as visible; 8 P. M., passed a small sheet of ice.
18 th. Many narwhals about the ship; passing stream of loose ice; $9^{\text {h. }} 30^{\mathrm{m}}$ P. M., passing Admiralty Inlet ; some pack or stream ice seen in shore.
19th. 4 A. M., two miles off Wollaston Island; ruming among loose ice; midnight (19-20), passing round Cape liyam Martin, distant 4'.

20th. Noon, off Cape Burney, distant $1 \frac{1^{\prime}}{}{ }^{\prime}$; a bear and two cups shot; 6 P. M., off Cape Graham Moore.

2lst. No floe ice risible.
22d. Some rotehies seen ; passed several bergs.
23d. 75 bergs in sight; saw some stream ice in eastward.
24th. A few bergs in sight; 9 P. M., saw the land about Swarte Hook.
25 h . A finback whate seen; rotchies seen.
2 2fth. Saw the land about Mellem Fiord; 4 P. M., off Disco Fiord.
27 th. 2 A. M., anchored in Godhavn Harbor in $7 \frac{1}{2}$ fathoms.
Specitic gravity of sea water21st. 1.0278. 24th. 1.0270. 22d. 1.0275. 25th. 1.0265. 23 d .1 .0262 C . 26 th. 1.0275.
31st. [Anrora slight in S. W. (true) at 11 P. M.-B. of T. Papers.]

September, 1859. Record of the Weather keit on board the Yacit Fox, with generala remarks.

HAY.	$4^{\text {h }}$.	Sh.	Noon.	$4^{\text {h }}$.	Sh.	Miduight.	Specific Grav. of Sea Wiatur, 1.0
1	$1 . \mathrm{c}$	"	1.	be	"	c	
2	110	4	b, c	"	"	6	280
3	0	c	1) 1	$0{ }^{\circ}$	0 m	oc	272
4	\%	10 :	*	$0 c$	${ }^{6}$	*	268
5	1. ${ }^{\text {c }}$	" ${ }^{\circ}$	"	4	11 c	b	265
i	\& m	0 \%	$0 \cdot r$	$0 c q$	16	${ }^{6}$	28.2
7	'	4	${ }_{6}$		*	"	282
h	1 c	"	"	*	r	be	28.5
$!$	or r h	1	1. 1.	t :	bis	\%	300
111	1. $\because 6$	"	"	*	1 c	*	300
11	1.10	$1 \cdot 1 /$	6	6	1 e:	b	290
12	"r	"19	"	" ${ }^{\prime}$	"	lo 0	275
$1: 3$	" 1	" i	;	$i i$	$0 . f r$	$f r$	275
11	"i	\%	"	" 11	'،	r m	275
15	1)	'	11.	$0{ }^{\circ}$	$0 \cdot 9$	be	285
111	119	B, 0	10 r	1.1	-	1.0	200
17	" 11	18	**	*	r	" ${ }^{\text {c }}$	
1*	" 1	"	-	0 $117 r$	017	0 c	

NOTES TO SEPTEMBER RLCORD

1st. Proceeded out of Godhavn; two whales seen.
2d. Passed several bergs.
3l. Bergs seen.
4th to 5 th. Midnight ; six bottle-nosed whales seen.
6th. Bergs in sight; passed a drift pine log; midnight, slight aurora in S. E.
7th. Bergs passed ; a finner seen ; midnight, aurora in S. W.
8th. Bottle-nosed whale seen.
9 th. Passed piece of drift pine
10th. [Anrora, 10 P. M., in N. E.-B. of T. Papers.]
15th. Porpoises seen.
18th. 8 P. M., sounded in 86 fathoms.

Tabulation of Auroras, with Obseryations and Notes, by Dr. David Walker. (Copied from the log-book.)					
date.	True Direction of Aurora.	DATE.	True Direction of Aurora.	date.	True Direction of Aurora.
1857.		$\begin{gathered} 1858 . \\ \text { March } 2 \end{gathered}$	* S. W. by S. to E.	$\begin{aligned} & 1858 . \\ & \text { Dec. } 8 \end{aligned}$	
Oct. 30	S. to S. S. E.		S. to W. N. W.	Dec. $\begin{array}{r}8 \\ 12\end{array}$	* N. W. to S. E. througlı
Nov. 7	* S. E.		S. W. by S. to N. W.		S.
8	N. N. E. to N. N. W.	6	S. S. W. to E.	13	* S. S. E. to W. S. W.
	* E. to S.	8	S. E	14	*]E. S. E. to N. W.
9	S. E.	16	* S. by W. to N. E.	15	N. W. through S. to E.
11	* N. W. to S. E.	17	* S. W. to E. N. E.	24	All over the heavens.
Dec. 9	E. N. E. to E.S. E.	18	* S. by E. to E. N. E.	28	* W. by N. to S. S. E.
	S. to zenith.	April 9	* E. to N.	30	S'd.
12	N. W.	10	* S. to E.	1859.	
13	N. E. to S. E.	11	* E. to S. E.	Jan. 1	* W. to S.
14	E. to N. E.	12	* E. by S. to W. S. W.		* S. W'd.
15	S'd.	13	* E. to W. S. W.	3	S. E'd.
17	*S. to N. E. and E. to N.	14	* E. to S.	8	W.S.W. to S. E.
18	E. to W.	15	* E. to S.	9	* W. to N. W.
1858.				,	N. tos. throughzenith.
Jan. 9	N. W. to S. E. and all	Oct. 28	* S. to W.	10	* N. W. to S. E. by S.
11	round horizon. S. W.	29	$\begin{aligned} & \text { * S. S. E. to W. N. W. } \\ & \text { *S. W'd. } \end{aligned}$	10 11	N.toS. throughzenith. * S. E. to W.
12	S. to E.	31	* N. W'd.	31	* N. W. to S. E. by S.
17	S. to E.	Nov. 6	S. by E. to W. S. W.	31	W. to S. F. to zenith.
Feb. ${ }^{2}$	* S. E. to E. N. E.		* S. \dot{W}.	Feb. 1	* N. W. to S. E. by S.
	S. E. to zenith.	δ	* S. W.		* S. W'd.
7	* S. S. E. to N.	9	* S. to W.	19	N. tos. throughzenith.
9	* N. E. to S. E.	12	N. to zenith.	20	S. to zenith.
13	S. S. E. to E.	14	* S. W, to W. N. W.	23	N. E. to S. W.
15 16	S. S. E. to E. N. E. S. E. to N. N. E.	Dec. $\begin{aligned} & 3 \\ & 4\end{aligned}$	* S. W'd.		N. to S. through zenith.
16	S. E. to N. N. E. S. S. W. to S. S E.		E. through S . to W. N. W.	March 6	N. N. W. to S. S. E. through zenith.
18	S. S. E. to E.	5	* S. E. to N. W.	30	* W. to S. W.
19	S. S. E. to N. E.	6	* S. E. to W.	31	* W.

"During our drift down Baffn's Bay and Davis' Straits (1857-'8) the aurora was noticed on 43 nights; of these, 18 -marked with an asterisk-were observed in a direction where water or water sky had been seen during the day. The general direction of the remainder was between N. E. and S. E. None were particularly bright but two or three, and even these scarcely equalled the brilliancy of those seen at times in the north of Scotland. On some occasions the aurora was from horizon to zenith, but generally from 10° to 40° above the horizon, with occasional streamers; these latter were generally present towards the zenith, but only sometimes reaching so far. At times pulsations were noticed in the patches aud bands of light; these were often contrary to the surface wind. On the whole stars of all magnitudes were dimmed when viewed through the aurora, but only those of small magnitude
were rendered insisible. Once only was there noticed a connection between cirrous clouds and the anrora.
"Of the 42 auroras observed during our winter at Port Kennedy (1858-'9) 24-marked with an asterisk-were in a direction of a space of water, open throughout the winter, or of the vapor rising from it. Nore than this number might be traced to it, but of these 24 I am certain. On the nights of the 30th and 31st March, 1859, I noticed the aurora between myself and the land; the patches of light could plainly be seen a few fect above the small mass of vapor arising from the water. The opposite land was from two and a half to three miles distant, and I am confident, if this land had been sufficiently high, the most of these 24 auroras would have been seen suspended but a short distance above the surface of the water or ice. On five occasions the aurora was observed to cause agitation of the marnectic needle; on one of these, Dec. 24,1858 , I noticed a vibration of 15°; on the other four times the ribration wats not much more than a degree; four of these five occurred when the aurora was from sonth to north, passing through the zenith. A fine wire was attached to the fore gard-arm by insulated supports and led to a snow house with a connection through the floe to the water beneath. Here the golld leaf electroscope was at times applied, and I was enabled to observe the presence of the electricity in the atmosphere and also the influence of the aurora on the instrument. There appeared to occur two priods of minimum electric intensity about $9 \mathrm{P} . \mathrm{M}$. and noon; the instrument not being sulficiently delicate I could not be satisfied about the time of the maximum. On the whole there seemed to be more fur electricity present in the air at Port Kennedy than Baffin's Bay or Daris' Strait. On six occasions in 1857-'8 I observel a well-marked effect on the electroscope by the presence of surora, the gold leares diverging with greater force and remaining so for a longer time than usual. On threc occasions at Port Kennedy, when the aurora was from horizon to zenith, the electroscope was strongly affectel; on all these occasions the electricity was positive."
[D. W.]

```
PUBLISHED BY THE SMITHSONIAN INSTITUTION,
WASHINGTON CITY,
        MAY, 1862.
```


ANCIENT IIINING

on the

SHORESOF LAKESUPERIOR.

BY
CHARLES WHITTLESEY.
[acertry for peblicatiun, april, 1862 .

COMMISSION
TUWHICHTHISPAPKK HASBEENEREERRED.
1). Wheson, LIt. D.,
E. H. Davis, M. I.

Juspilil Henry.
Secretary s. 1.
collas N, PRINTトR
Fllitabelphas.

ILLUSTRATIONS.

PLATE.

Outline Map showing the position of the ancient mine-pits of Point Keweenaw, Michigan, by
Charles Whitlesey. (Frontispiece.)

WOOD-CUTS

Figure 1. Waterbury Mine-artificial cavern 7
Figure 2. Wooden Shovel-Waterhury Mine 8
Figure 3. Section on the Copper Falls Vein 9
Figure 4. Stone Hammer or Maul, with one groove, and broken by use-Copper Falls Mine 11
Figure 5. Copper Spear-head-Copper Falls Mine 11
Figure 6. Central Mine. Section of the vein and old pit. East and west 12
Figure 7. Broken Maul, without groove-Central Mine 13
Figure 8. Ancient Pits in the Boulder Drift or Gravel-Quincy Location 14
Figure 9. Minnesota Mine. Section across the Vein, looking from the easterly quarter 17
Figure 10. Stone Maul, with double grooves-Minnesota Mine 19
Figure 11. Copper Chisel, full size-Minnesota Mine 19
Figure 12. Spear-head, half size—Ontonagon. From drawings of John F. Mullowney, Escy., Surveyor 21
Figure 13. Copper Gad, full size-Minnesota Mine 21
Figure 14. Chisel, half size-Ontonagon 21
Figure 15. Rude Copper Knife, full size_Carp River 23
Figure 16. Pointed Tool with a Socket, full size-Cary River 23
Figure 17. Copper Instrument, full size-Fort Wilkins 24
Figure 18. Copper Hook, full size-Sault St. Mary's 24
Figure 19. Outline of n Copper Tool, full size-Garden River, Canada 25
Figure 20. Copper Spear-head, full size, downward view-Oak Orchard, Oconto Comty, Wis- consin 25
Figure 21. Copper Knife, full size 26

ANCIEXT MINIXG ON THE SHORES OE LAKE SUPERIOR.

PRELIMINARY REMARKS.

The cridences of ancient mining operations within the mineral region of Lake Superior were first brought to public notice in the winter of 1847-8. Although the Jesuit fathers frequently mention the existence of copper, and even use the term mines, it is clear, from the general tenor of their narratives, that they neither saw nor knew of any actual mining in the technical sense of that word. They amounced as carly as the year 1636 the presence of native copper, and refer to it as having been taken from the "mincs." This was prior to the time when they had themselves visited the Great Lake, and their information was derived from Indians. At the same time they speak with equal certainty of mines of gold, rubies, and steel; but it must be borne in remembrance that the French word is not equiralent to our English mines, but may be more correctly rendered veins or deposits of metals or ores.

In the "Relacions" for 1659-60, after missions had been established on Lake Superior, the region is reported to be "enriched in all its borders by mines of lead almost pure and of copper all refined in pieces as large as the fist, and great rocks which have whole veins of torquoise." It is probable that these accounts are second hand and such as the Chippeways gave when they exhibited to the fathers specimens of native metal in the shape of water-wom pieces and small boulders.

Boucher, in the "Histoire veritable," \&c., in 1640, asserts that "there are in this region, mines of copper, tin, antimony, and lead." He speaks of a great island fifty leagues in circumference, which is doubtless the one now called Michipicoten, where "there is a very beautiful mine of copper." Copper was also found in other places in large masses "all refined;" in one instance an ingot of copper was discovered which weighed more than 800 pounds, and from which the Indians cut off pieces with their axes after having softened it by fire. All this information Boucher obtained from some French traders, and not from his own observation. Such is the tenor of the historical accounts from the time of Lagarde in 1636 to Charleroix in 1721.

Detached and water-worn lumps of copper have been found in great numbers in the gravel, clay, and loose materials that cover the rocks, from the days of the Catholic fathers to this time, not only in the mincral region but over a large space to the southward of it. All these pieres were originally from veins, but have
probably been separated by the same cause that gave rise to that formation which encologists call the "drilt."

The acent, whatever it was, that broke off fragments from the rocks, not only on Lake superior but further north, and transported them in the shape of bouklers, sand, and gravel, as far south as the valley of the Ohio, also bore along the contents of the mineral veins which those rocks contained. Pieces of native copper are well calculated to resist the severe attrition to which transported materials are subjected. Masses of it have been found not far removed from the mineral range, weighing 3000 lbs , and others at a greater distance have been taken from the beds of rivers and from the beach of the lake weighing 1500 and 800 pounds. Others again of less size have been recovered from the gravel of the Menominee River, near the shores of Green Bay, and at Sheboygan Falls near the town of Sheboygan on Lake Michigan. Professor J. Brainard, of Cleveland, has a picce weighing five or six pounds which was found five feet beneath the surface in the drift gravel of Rocky River, Medina County, Ohio.

Had the Indians, the French, or the Jesuits of carly times, discovered copper on the shores of Lake Michigan or of Lake Erie, not knowing or supposing the metal could exist except in mines, they wonld probably have spoken of it as having. been found in a mine. The attention of the fathers was not particularly called to the subject of mineralogy, and although they were learned men, their knowledge of geology must have been very limited, for this science had not at that time assumed a place in the schools.

As to the accounts given by savages, every one who has had much intercourse with them, knows that great allowance must be made for their want of knowledge and their tendency to embellishment and exaggeration. I have listened to many wonderful tales concerning distant mineral riches. An aged Chippeway, by the name of Kundickan, whom I met on the Ontonagon in 1845, stated that as he was one day sailing along the westem shore of the Gogebic (or Akogebe) Lake, at the head of the west branch of that river, he heard an explosion on the face of a rocky cliff that overlooked the water, and saw picces of something fall at a distance from him, both in the lake and on the beach. When he had found some of them, they proved to be a white metal, like "Shumeaw" (money), which the white man gives to the Indians at La Pointe. There are good reasons why the old missionaries should have had greater confidence in such stories than we have, and thus have given them a place in their reports to the Propaganda. But with all the influence possessed by them orer the Indians, and the closeness of the ties that could not fail to exist between a priest and his converts, no instance is referred to where they were shown mining operations upon the rocks or veins.

There is nothing to show that the Indians wrought copper in mines at that time. They had no implements proper for the purpose; nor did they produce samples of metal taken from its position in situ. The Indians had neither copper kettles nor axes when the French came among them; but only rudely fashoned copper knives, that were evidently beaten out from small boulders. Instead of viewing copper as an object of every day use, they regarded it as a sacred Manitou, and carefully prescred pieces of it wripped up in skin in their lodges for many years; and this
custom has been continued to modern times. I am well aware that they have at superstitious dread of showing a mineral mass or locality to a white man, believing that the Manitous will visit them with some calamity if they do so.

The missionaries, however, frequently overeame this feeling in regard to copper boulders, and could as easily have done so in regard to mines, if any such had really existed. If the Chippeways had been cognizant of the ancient works that have been recently discovered, they would have communicated this fact to their spiritual fathers, who would not have suffered so interesting a fact to be lost.

If the Indians possessed traditions from their ancestors relating to ancient mines, or the people who worked them, those must also have come to the ears of the Jesuits. With the exception of an old Chippeway chicf who resided some years since at Fon du Lac (Lake Superior), I have known of no one pretending to such knowledge. The story he gives is sufficiently imaginative, and relates to mines wrought by his tribe on Isle Royale, in times long past, when his fathers were much happicr, and had larger canoes than his cotemporarics have now. I place his narrative in the same category with those above noticed, as having reference to boulder copper, and not to that obtained from mining in sittu.

From evidences which I shall give, in describing the works in detail, it will appear that they were abandoned several hundred years before the French became acquainted with the northem tribes; no mines having been found that could have been wrought as late as the time of the carliest Jesuit. If such were wrought by Indians, it must have been at a period very remote, such as Loons Foot describes. But could the natives have lost the recollection of such a state of things? Had they ever worked mines, they must have possessed the skill to fashion the metnl extracted from them into various useful forms, without which it would be of no valuc. Neither the skill nor the implements themselves would have been lost in a few hundred years, by a people having the same wants, and residing in the same country.

It also seems to be highly improbable that their ancestors either knew of ancient mincs, not worked by themselves, or the people who wrought them. Tradition is the only history of savage nations, and the fault of this species of knowledge is not in the absence, but in the excess of materials such as they are.

Among thousands of legends which the Indians have related, nothing positive or consistent has come to my knowledge respecting the people who preceded the present Aborigines, except a tradition communicated to Major Long, in 1819, upon the Great Miami River, by an Indian chicf, during his Expedition to the Sources of the Mississippi. Aside from this, I have heard of nothing coming from the Western tribes conceming the origin of the tumuli and earthworks that are so conspicuons in Ohio, Kentucky, and other Western States. As a people, if we may judge by their silence on a subject on which they may be supposed inclined to be communicative, if they had anything to tell, the aborigines have no traditionary knowledge of their predecessors, the race of the "mound builders." Neither do we find in the record of English travellers who succeeded the French in 1763 any notice of ancient mines.

Dessriphim of the Loculity of the Remains of Ancient Mining Operations, de.

In casting the eye over a map of Lake Supcrior, a remarkable projection, in the form of an immense horn, will be observed jutting out from the south shore, and curring to the northeast until it ends in an irregular point.

This peninsula, which is called Keweenaw Point, is about eighty miles in length, and at the place where it joins the main land forty-five miles in width. Through the whole extent of this projection a belt of metalliferous trap formation extends, differing at various points in structure, and in the character of its contents. Along this belt, which is designated on the map by dotted lines, there are exhibited, throughout nearly its whole extent, a disturbance of the strata, and upheavals comprising a series of bluffs, rising abruptly from the two streams, Eagle and Montreal Rivers.

Within this belt, all the mining operations, ancient and modern, have been chicfly eonfined. The most remarkable feature of the district is the character of its metalliferous products, which occur, not in the condition of an ore of copper, but exclusively as native metal. This is met with in immense masses, in veins of smaller size, and in rounded nodules. The cutting of the masses is a tedious and costly process, and in some instances, eren with all the appliances of modern art, requires several months before a single mass is entirely remored from the mine. The metal is sometimes almost entirely free from foreign matter, yielding when melted down in the furnace from 90 to 95 per cent. of copper.

The first actual mining operations, within historic times, were commenced near the forks of the Ontonagon, in 1761, by Alexander ILenry, but under the peculiar circumstances they prored entirely abortive. In 1841, Dr. Douglas Houghton made a report to the Legislature of Michigan, in which the carliest definite information in regard to the occurrence of native copper on Lake Superior was given to the public. Shortly after this, mining operations were commenced in this region, explorers and speculators flocked to it from all quarters, and in 1845 the shores of Keweenaw Point were whitened with their tents.

In 1846 the excitement reached its climax, after which a reaction took place, and finally only half a dozen companies out of all that had been formed continued the operation of mining in good carnest.

The first public amouncement, so far as we are aware, of the remains of ancient mines in the copper region is that by Mr. S. O. Knapp, agent of the Minnesota Mining Company, in 1848. Dr. Chas. T. Jackson brought forward the subject in his Geological Report to the United States Government, in 1849, and gave some interesting details of what had been discovered up to that time. Further mention of it was made by Messrs. Foster and Whitney, in their report in 1850, and several illustrations were given. Since then our knowledge of the subject has been much enlarged ly the prosecution of mining operations on the very sites of the ancient works.

It must not, howerer, be supposed that our information is now complete. It is by no means an easy task to diseover remains buried, as those of the ancient mines of

Lake Superior are, in extensive and dense forests, where the explorer ean only see a few rods, or, perhaps, yards around him, and where there is seldom anything which rises sufficiently high above the surface to attract the eye.

They are, for the most part, merely irregular depressions in the soil, trenches, pits, and cavities; sometimes not exceeding one foot in depth, and a few feet in diameter. Thousands of persons had seen the depressions prior to 1848 , who never suspected that they had any connection with the arts of man; the hollows, made by large trees orerturned by the wind, being frequently as well marked as the ancient excavations. Besides this, there are natural depressions in the rocks on the outcrop of veins, formed by the decomposition of the minerals, that resemble the troughs of the ancient miners, as they appear after the lapse of centuries. There is not always a mound or ridge along the side of the pits, for most of the broken rock was thrown behind, nearly filling up the trenches. A mound of carth is as nearly imperishable as any structure we can form. Some of the tumuli of the west retain their form, and even the perfection of their edges at this day. But mere pits in the earth are rapidly filled up by natural processes. Some of those which have been reopened, and found to have been originally ten feet deep, are now scarcely risible. Others that have a rim of earth around the borders, or a slight mound at the side, and were at first rery shallow, are more conspicuous at present than decp ones without a border.

There are, however, pits of such size as could not fail to surprise one at first view, were not the effect destroyed by the close timber and underwood with which they are surrounded. A basin-shaped cavity, 15 feet deep and 120 feet in diameter, would immediately attract the eye of the explorer were it properly exposed. But it is not unusual to find ten and twelve feet of decayed leaves and sticks, filling a trench, and no broken rock or gravel. In such cases a fine red clay has formed towards the bottom, a deposit from water, which indicates the long period of time since the excavation was made.

From the accompanying map it will be seen that the positions of the principal ancient mines correspond to those which are worked at present. There are three groups or centres of operation in both cases, one a little below the forks of the Ontonagon River, another at Portage Lake, and a third on the waters of Eagle River. Other works are known to exist, and more will probably be found; but we have probably discovered the most important ones within the district embraced by the map.

Although the old works are not always situated upon what would be considered good veins, yet they are regarded by practical miners as pretty sure guides to valuable lodes.

In the opening of our principal mines, we have followed in the path of our predecessors, but with much better means of penetrating the carth to great depths. The old miners performed the part of surface explorers.

In giving detailed descriptions of the antiquities of the mining country, we shall commence with those most easterly, near the extremity of Point Keweenaw, and proceed along the mineral range in the order of position to the southwest. There are, however, ancient works found over a much greater space than is included in the map.

The reins on Isle Royale, and near the north shore, opposite I'oint Kewecnaw, were extensively wronght in olden times.

In the other direction, sixty and eighty miles to the southeast, in the iron region near Marquette are remains that are also ancient, and which will be noticed hereafter

No doult future examinations will bring others to notice on the continuation of the mineral range to the southwest, as it extends in that direction into Wisconsin.

DESCRIPTION OF TIIE SEVERAL WORKS

1st Group.

The Agate Itarbor Company has an extensive property on the range south of Agate Harbor, on which there are reported to be Intion digginge, as these excavations are frequently called by the miners. They are well developed at the works of the Native Copper Company, on the northern slope of the range, and on the Northwest Company's grounds at their mines, south of the "Greenstone" cliffs. 'The same veins extend across both these locations, a distance of a mile and a half, indicated by the presence of old works.

At the Northwest Mine the pits are conspicuous, showing on the surface the position of Thre reins that have since been wrought. Stone mauls were abundant in them. Some of the pits had been made in a band of red conglomerate, which lies between the strata of greenstone (or crystalline) and amygdaloid trap. This conglomerate is composed of pebbles and boulders principally of red trap, cemented by argillaccous red sand, forming a very compact stratum, twelve to twenty feet thick. It here carries copper in small grains or pieces, near the veins; also crystallized calcarcous spar and epidote.
'The ancients did not neglect the most triffing indications of metal, but appear to have instituted a thorough investigation as to whether the copper existed in true veins, in metalliferous bands, or in detached nests. There is nothing remarkable in their operations at the "Native" Copper and the "Northwest" mines, except this closeness of pursuit, through all the veins and branches to their most minute extremities.

Waterdury Mine.-'The works of this Company are situated about one mile and a half west of the Northwest Mine. A person passing to the interior from Eagle Harbor or anywhere along the northern shore of l'oint Keweenaw, and crossing the mineral range to the valley of the Little Montreal, witnesses everywhere the same topographical features. The mountain range rises from the lake level, in the distance of a mile, to an cleration of 500 and 600 feet; in the next mile the ascent is less precipitous, but the ground continues to rise from one to two hundred feet more. From the summit of the range there is along the whole line, from the extremity of the point to the Albion location, two miles west of the Cliff Mine, a vertical wall of naked trap rudely columnar, the upper edge, or crest, of which forms the summit of the range. This mineral front has the appearance of a vast upheaval from two to there hunderd feet high firming the south, and about thirty
miles in length. The ground from the bottom of this wall rises gradually to the south until it reaches another range of about the same clevation, thas forming a long narrow valley, through which flow, in opposite directions, the Montreal and Lagle livers. From the summit of the perpendicular cliff at the Waterbury Mine this valley presents a view extremely picturesque, and such as is seldom seen by the traveller in other regions. The general contour of the valley is curvilinear, so that the eye, placed at the middle of an are in the position above mentioned, takes in the boundary ridge on each side as well as the whole inclosure. At the Waterbury Mine, which is situated near the middle of the length of the valley, There is in the face of the vertical bluff an ancient artificial recess or cavern, which is twenty-five feet in horizontal length, fifteen feet high, and twelve feet in depth. In front of it is a pile of the excavated rock, on which are now standing, in full size, the foresf trees common to this region. Some of the blocks of stone which were removed from the recess would probably weigh two or three tons, and must have required the use of levers to dislodge them from their original position. Beneath the surface rubbish the remains of a gutter or trough composed of cedar bark were discovered, the object of which was clearly to conduct off the water which was baled from the mines by wooden bowls, of which mention will be made hereafter. Portions of fine or pulverized copper scales remained in the upper end of this trough. After removing the water and decayed leares at the bottom of the exeavation a piece of white cedar timber was found, one end of which exhibited the marks of a cutting instrument like those of a narrow axe. >

Fig. 1.

Waterbery Mine, artificial cavern.-A. Crystalline or greenstone trap, dipping N. 280.-B. Amygdaloid trap.C. Talus of the bluff and drift. -a. Ancient rock excavation.-b. Rubbish thrown out of $a_{0}-d_{\text {. }}$. Conglomerate bed.-c c. Jointed chloritic bed.-ee. Inclined shaft of Waterbury Company.-2. Little Montreal River or creek.

The above profile is made at right angles to the bluff, and shows the geological structure as seen from the western side. It would answer equally well for the North, West, North Western, Eagle Ricer, Clift, or any mine situated on the southem face of the coast range of Point Kewecnaw.

The copper bearing amyerdaloid (B) is separated from the crystalline or "Greenstone" trap (1) by a parting of conglomerate ((1), which is however sometimes wanting, and its place supplied by a thin bed of red clay called "flecen" overlaid by a layer of quartz carrying specks of copper. This parting, whether it be of red conglomerate or of flucan and quartz, is known as the "slide," and sometimes (though improperly) is called a cross-course. The beds all dip northerly and at an angle of 28°. Resting immediately on the slide, and composing the inferior face of the greenstone stratum, is a bed of blackish-green chloritic rock ($c c$) very much jointed, which contains between its joints, in a leafy state and in its mass in a state more solid, scales, particles, and lumps of copper. 'This chloritic bed is from 12 to 15 feet thick, and in it the ancients worked forming this cavern. They did not operate on a vein at this place.

The Waterbury Company, encouraged by the labors of their predecessors, followed from the bottom of " a " along the surface of the conglomerate by an inclined shaft " $E E$ " to a depth of 300 feet, measuring on the slide.

In removing a part of the old burrow B, Dr. Blake discovered several shovels, of white cedar, resembling the paddles in form now used by the Chippeway Indians in propelling their canoes. Had these been found elsewhere, they would have been regarded as ordinary paddles, but in this place they had evidently been used as shovels. This is also evident from the manner in which the blades are worn, as shown by the lines $a c, b b, c c$, in the annexed sketch.

Fig. 2.

Wooden Shovel, $3 \frac{1}{2}$ feet long-Waterbury Mine.-a a a. Original form.-bu. Partially worn.-c c. Worn obliquely.
The blades are more worn on the under side than the upper, as if the mineral had been scraped together and then shovelled out, as is the practice of the miners of the present day. The shovels which were found bencath the water level were sound in appearance, and the strokes of the tool by which they were formed remained perfeetly distinct, but on being dried they shrunk very much, opening in long cracks, the wood retaining little of its original strength or hardness.

A birch tree, two fect in diameter, grew directly over one of these paddles.
A portion of a wooden scoop, or bowl, was found in the pit, evidently intended to dip up and to pass water. Its edge had been worn, like the shovels, by scraping over the rock; but it was so much decayed that it fell to pieces when it was taken out.

I examined the walls of this cavern minutely, hoping to find the marks of some tool of metal. The effects of blows of stone mauls were visible, and such is the harduess of the rock, that if drills or pieks had been used upon it, I think the marks would be casily seen, particularly on that part which was protected from the atmosphere by water.

At one place something resembling the impression made by the point of a light sharp pick was discernible, but not very plain, and only in a single instance.

In the Porcupine Momtains I have seen works made by the English miners in the years 1769 and ' 70 , where an adit or open cut made in the face of a cliff has been always exposed to the frost and rains. But here the marks of picks and drills appear as fresh and as perfect as if they had been recently made, althougn in some places the sides of the cut are covered by old lichens and mosses.

+ Copper Falls Location.-The ancient miners made very extensive excavations on the property of the Copper Falls Mining Company, both upon veins and metallife-
- rous bands, which run parallel with the formations. By the profile and explanations here given the geological structure of the place will be well understood.

Fig. 3.

 Sandstone.-a a a. Ancient pits on the vein.-b bb. Shafts and galleries of the mine.-c. Sand dunes.-d d. Copper bearing bed of trap.
Scale-horizontal and vertical-2 inches to the mile. 1, 6, 7, Nos. of the shafts.
This sketch illustrates the geology of the northem part of the range, or of all mines described under the head of Copper Falls Location.

From this it will also appear that when we use the term extensive, as applied to "Indian diggings," it is only in a comparative sense, and in reference to other works of the old miners. The levels and shafts constructed by the Copper Falls Mining Company, since 1851, cause the mining of the ancients to appear like mere exploratory pits.

On looking at the map, the pits will be seen to occupy a total length of several miles on this location; but none have been reopened that had a greater depth than twenty-four feet, while the modern shaft has already descended more than 250 feet, and the mine has rock galleries of greater total length than all the old trenches of the ancients. In the profile their pits are shaded, and represented at a a a occupying about half a mile on the "East Vein," or as it is sometimes called, the "Copper Falls Vein." Before they were obliterated, as they are in part now, the surface appearance was that of an irregular channel or trough ascending the mountain from the edge of the sandstone beds to the band $d d$, which carries copper. Here a system of basin-shaped cavities, broad, circular, and deep, crossed those made on the vein. They are denoted by heary black dots on the map.

The first named series were from two to five feet deep and five to ten broad, and the latter five to eighteen deep, with a diameter of twenty to 120 feet. Forest trees and underbrush stood alike within and without them.
'There is a heary reiu half a mile west of the East Vein, which is styled the West or the "Hill Vein," where the old works are similar in all respects to those above noticed and sketehed on the Last Vein. "Those on the "Owl Creck" Vein are not so cxtensive, because the creek occupies the "back" of the lode. Still further east other veins are seen with pits, not only on this location, but on that of the Eagle Harbor Mining Company. Broken stone mauls are common in all of them. Aloout the point where the Owl Creek crosses the "scoriaccons" or metal bearing bed $d d$, the excavations on that bed near the creek are very marked. Here is something similar to the cave on the Waterbury Location.

A very large pit to the east of Owl Creek was partially explored by S. W. Hill, Escl., the Superintendent of the mine, in 1852. By rumning in an adit on a level eighteen feet below the cdge of the depression, after passing some distance in the gravel, rock was met in place; cutting through this at a distance of 100 feet, the miners discovered loose fragments and rubbish that had been handled, and picees of timber still in good preservation. The adit was not deep enough to drain the pit to its bottom, and its depth was not ascertained. I have in my possession a portion of a pine tree from the end of this adit, in complete preservation, except a part which was charred by fire. The adjacent rock contained sheet copper, and small lumps, being a part of the metalliferous band.

By examining the section, it will be seen that the order of succession in the strata is as follows:-

Beginning at the shore of the lake first, a bed of trap, that dips northerly. It rests upon a stratum of red comglomerate of great thickness, dipping conformably under the trap, and is succeeded by conformable and alternating beds of trap and red sandstone, known by the geologist as the "Potsdam" red.

In these beds the mincral veins are not rich enough for working; a fact which the ancients knew full well, for it was only on the regular and uniform strata of trap underlying the variable beds that they expended their labor.
$<$ On clearing out some of the old pits, Mr. Hill found woorlen shovels like those at the Waterbury Mine, more or less worn and of the same size and shape. In the bottom of trenches, and among the rubbish, the workmen saw continually ashes and charcoal, with other traces of the presence of fire. They threw out frequently broken hammers or "mauls," with a groove around the middle. These mauls weigh from five to fifteen pounds, and are merely oblong water-worn boulders of hard, tough rocks. Nature has done everything in fashioning them, except the groove, which was chiselled around the middle. They were collected from the smooth boulders of the lake shore, and from banks of coarse gravel that abound in the country. Most of them are trap; but the homblende, sienitic and granitic rocks furnish some. The ring or groove appears to have been cut for the purpose of attaching a withe, to be used as a handle, wherewith to swing the maul. In one of the trenches on the Cliff Mine, north of the upper engine, one was found with a root of cellar still twisted in the groove, but so much decayed that it fell to pieces and was not brought away. Dr. M. D. Senter, of the Cliff Mine, states that he saw it before being disturbed, and it was evidently the intention of the operators to use the twisted root or withe for a handle.

Most of these hammers are fractured at both ends, and the peculiar sharp cut character of the fracture in many cases indicates that the implement had been used to drive metallic wedges, such as quarrymen call a "gad." Copper gads of this kind have been found in old pits at the Mimnesota Mine. It will be seen also that there are heavier mauls with double grooves, probably to be handled by two men.

In the description of works at the Central Mine, a class of hammers will be noticed without a groove. The one here figured was taken from a pit near Shaft No. 1 of the section above given. Not fir to the south of the same shaft was found a copper spear or javelin head, in the rubbish near the bottom. Three others were found by Mr. Hill on the surface. One of them was so much corroded that the socket was nearly gone. The other I have sketched of natural size and thickness, from the original in the possession of Mr. IIill. It was evidently formed by beating the metal while cold, probably between stones, having a rough and not a polished exterior; it is not much decayed. The section of the blade B shows that its two faces were not symmetrical. A piece of decayed wood was found in the socket of one of them, being apparently the remmant of the shaft, by which it was hurled. As the edges of the "shank" or socket are not soldered together, but only bent around the shaft, it was probably wound with some ligament to give it strength. It is too large and heary for an arrow-head; neither has it the shape proper for that purpose.

The description here given of the pits of the cast vein will answer for almost all others.

In working the surface of the vein, or of the copper-bearing bed, the ancient operators must have wrought open to the day. They no doubt commenced as low down the slope of the range as the copper appeared to them worth being taken out, and worked upwards towards the south, in order to keep their drainage. From their rude and tedious method it was of the highest consequence to cause the water to flow away behind them, without the necessity of baling.

The "attle," or broken rock, was generally thrown back into the vacant space whence it had been taken: but little of it was cast out to right and left along the margin of the vein, which explains why the pits are so shallow at the present time.

In many places on this location, the rein is wide enough to allow men to work between its walls.

Fig. 4.

Stone Hammer or Madl, with one groove, and broken by use; length 7 inches. Copper Falls Mine.

Copper Spfar-head-Copper Falls Mine.- \mathcal{Z}. Section of blade at $c d$. A. Section of shank at ab. Seale, full size.
'Thin sheets of copper were left standing at the bottom of the ancient excaration, which might readily have been extracted, and it seems singular that they were not.

C'entral Mime. - Vear the road from the ". Yorth W"estern" to the "Winthrop" Mine. in an open grove of sugu trees, a depression was observed about five feet deep and thirty feet in length. It was gencrally free from water, and differed so little from cavitios that are not artificial, but which are due to geological causes, that it did not attract much attention.

Mr. John Slawson, the agent of the North Western Mine, after a careful surface examination, concluded that this pit was not wholly due to nature, and the tract was on that account purchased for mining, in the fall of 1854.

Central Minp. Section of the vein and old pit. Last and west.-A. A. Trap rock wall of the vein d d.-a. Ancient excaration partly flled.-c c. Masses of native copher in the vein.-b b. Drift gravel covering the rocks.

The Central Mining Company hamg been organized, a drain was constructed to take off the water, which was no sooncr done than all doubts were removed; about five feet in depth of leares and rotten sticks had accummlated at the bottom, among which a hard substance could be felt with a stick.

This proved to be a flat piece of mative copper (', from five to nine inches thick, and nine feet in length, forming part of a large win $d d$, as shown in the profile. The rein material had been worked away from one foot to eighteen inches along side of it, and it extended forward as well as downward in the vein. Its upper edge had been beaten by the stone mauls so severely, that a lip, or projecting rim, had been formed, which was bent downwards, over the sides. A large number of broken mauls were found in the place, and around it on the surface, all of them without grooves, of which the amnexed woodent is an illustration.

I have seen similar ones on the Humboldt Iocation, next west of Copper Falls. Where this class of stome hammers is fomd. those with grooves are wanting. The grooveless ones appear to have been used for pereussion only at ome end, as though the manner of hohling them was such that a blow was not given on the other.

The Perurims have a ropper axe without an eye, or a groove, to which, however, they attach a handle in the form of a split stick, bound with thongs. The ancient miners, probably, had some such mode of tying a handle to these smooth
oblong stones. Different parties of men may have preferred tools of different kinds, which would account for mauls, which are seen at one mine, being among themselves alike, but dissimilar to those at other places.

Broken Matl, Central Mine. Without groove, $\frac{1}{2}$ size, weight $\varepsilon \frac{1}{2}$ mos.
The usual remains were here thrown out, consisting of charcoal, ashes, and broken wall rock.

The general bearing of the vein is 10° or 12° west of north. The section is made across it, east and west, looking south, and is vertical.

As the labor of uncovering the mass of copper progressed, another one was met with, overlapping the first, and adhering to the east wall. Further on, in the adit, a third mass was found, attached to the westem wall, partly overlapping the one which the ancients had left.

By stoping out a space about sixty feet in length by twenty decp, on the vein, the Company took out fifty-three tons of mass copper. Such unwieldy pieces appear to have been beyond the control of the old miners. Their object seems to have been to secure small lumps, such as could be fashioned without melting. Whatever pieces might have been detached, by diligent pounding with their stone mauls, were broken off, and the remainder was abandoned.

It was impossible for them to cut into pieces, reduce by melting, raise from the pit, or transport blocks of metal weighing many tons. There are neither marks of a cutting tool upon them, nor of the action of fire. It is quite singular that they had not discovered the art of melting copper, which can be effected so easily in an open fire made of wood, but no evidences have fallen under our notice that this was done by that ancient race.

2D Grour.

Portage Lake Region.

Quiney and Perabic Mines.-Portage Lake resembles in form the long, narrow, and crooked Scottish lochs. Like them its quiet surface reflects the outlines of most exquisite scenery.

It comnects with Lake Superior through the channel of Sturgeon River, which has so little descent below the point of junction, that all material changes in the level of the great lake are felt throughout this inland water.

The Quincy landing is situated on the north side of Portage Lake, about twenty miles from Keweenaw Bay. The northern shore, which is nearly east and west at the landing, does not show rocks at the water level.

A succession of drift, kinolls, points, and headlands, rising about 200 feet above the surface, overlook this shore. Above this elevation, and attaining a height of 500 to 600 feet, are seen projecting ledges and bluffs of trap rock, inclosing mineral veins. This rock is alno risible at the heads of ravines where rivulets fall over low precipices forming small cataracts.

The first signs of ancient excarations occur near the lake level, and what is remarkable, are not in the rock, but in the sembl and boulder "drift."

Fig. 8.

Anchent pits in the Boelder Drift or Gravel, Quincy Location.
The most capacions of these gravel pits, however, ofcur on a line nearly level and about 100 fere abowe the surface of the water.

They are partly upon the land of the Quincy Mining Company and in part on the Pewabic, a short distance east of the landing, as shown in the sketch. Those constituting the upper scries are even, broad, deep, and regular, having the appearance of old fortifications. They extend around the headlands of gravel, comecting adjacent ravines, as though the object was to bring water from the rivulets along the face of the bluff.

At the points of the ridges they are much broader and deeper than they are at the heads of the ravines. The resemblance to a race way, or "sluice" for running water, is such that it required much examination to convince me that they had not been used for that purpose. There are, however, no openings at the extremities, such as would have been the case in sluices, to admit and discharge water. A bench, or narrow terrace, breaking into the slope of the hill, forms a regular plateau for the uppermost group; the other groups being scattered along the slope at irregular intervals. Some of them extend down the declivity nearly to the water's edge. Pits of a peculiar shape are occasionally seen to the westward of the landing, particularly at the distance of about a mile. Here is a group of small ones covering several acres on a piece of level land, which is elevated about 200 feet above the lake, constituting one of the upper drift terraces.

There are no doubt many others, large and small, concealed by the thick brush wood with which the ground is covered. Mr. C. C. Douglass, formerly an assistant of Dr. Houghton, in the geological survey of the Upper Peninsula, and since for many years the superintendent of the Quincy and Isle Royale Mining Companies, states that lumps of water-rolled copper and small masses are frequently found on both sides of the lake in this drift gravel. In digging cellars, constructing roads, and exploring trenches, such picces are so common, that it has been thought that, they would pay for their collection by washing the earth. One mass of 1.500 pounds weight was found in digging a cellar where there is no rock visible in place.

To obtain this transported mineral, Mr. Douglass conjectures to have been the object which the ancients pursued in their gravel trenches, and at the same time, that they selected from the water-worn boulders of the coarse drift such stones as had the proper size and shape for mauls, to be used in the adjacent rock cxcarations.

The earth from the trenches near the landing, on the slopes, was principally thrown out over the lover side, forming embankments with an extreme height of fifteen feet above the bottom of the ditch as it remains now after the lapse of centuries.

Some of the ditches are fifty feet wide at the present time.
The beds of trap, constituting the mincral range, at this place, have a total thickness of about a mile and a half, presenting the ends of the strata towards the lake. To reach the rock excavation of the ancients, it is necessary to follow a road from the landing up the mountain threc-quarters of a mile to the northeast. Here the copper bearing rocks protrude from the soil in ledges; the intervals where no rock is seen being covered to a slight depth with earth. The veins of this part of the range have a direction different from those before described on Point Keweenaw. They have run with the formation, and not at
right angles to it, like those at the Cliff, Copper Falls, Northwest, and other neighboring mines. The true lodes of the Quiney, Pewabic, Isle Royale, Portage, Huron, and other companiess adjacent to Portage Lake, are called "parallels," while those further east belong to the system of "transverse" veins.

In the winter of $18.54-5$, after the land had been explored and worked ten years, a line of depressions was discovered on the summit of the range that attracted immediate attention. On this elevated ground the old operators had discovered and worked a rich deposit of copper which was nowhere visible upon the surface. 'Ihe direction of the line of pits is northeast and southwest, corresponding with the range.
'The mines now in operation on this lode are among the richest of Lake Superior.
At first view the excavations appeared to be irregular, like those in the gravel at the foot of the bluffs, but after clearing away the growing timber, they assumed an allignment such as I have given on the map. There are also veins in the vicinity that have a bearing different from the general course of the pits.

When the cavities came to be opened, it was evident that a deposit of great richness had been worked there in past times. Lumps of copper were found plentifully in the bottom of the old works, and with them the usual evidences of ancient mining. The pits are broad and deep, extending not far from half a mile.

Isle Royrale Loration. -This is on the south side of Portage Lake. Here the ground does not rise so high as on the north side, but is equally abrupt. The first escarpment on this side is rocky, its crest being reached by an ascent of 300 feet. The mining companies which have penetrated the rocky strata to a depth of at least ${ }_{2}^{2} 00$ feet, are the Isle Royale, Portage, Huron, and Albion; all of them on the same rein, and situated near the south-easterly edge of the mineral range. The beds in which these companies have worked are, therefore, geologically, nearly a mile lower than those of the Quincy and Pewabic, which are near the westerly or north-westerly side of the range. It was, therefore, in different ground that the ancients sought for copper on the southerly side of the lake.

After haring attained the summit of the lake front on this shore, we find the land nearly level for the distance of a mile, and the rocks covered with a shallow depth of earth. On this plateau the ancients discovered a rich lode that did not show itself on the surface.

In the autumn of 1851 , Mr. Douglass informed me that there were indistinet signs of old works, half a mile from the lake on the northwest quarter of Section 1, 'T. 53, R. 34 , owned by the Isle Royale Mining Company. At the request of the directors of the company, a close recomoissance of the ground was immediately made by myself. It required some assistance of the imagination to conceive that the slight and irregular depressions, which were dimly visible among the trees, were the works of men. Applying a compass to such of them as could be seen at one view, and carrying this line forward, it passed over or near the suceessive pits for a distance of one-third of a mile. We then set men to work to cut down a cross trench through one of them, and in a few hours reached the bottom. The vein and its walls were distinctly visible, having been worked out to a depth of ten feet,
but the space was filled with rubbish nearly to the surface. Further examination, and cross trenching, disclosed the vein along a distance of three quarters of a mile. in places very broad, with a bearing coincilent to that of the formation.

It has now been worked to a depth of 250 feet, producing copper in rich masses, over a space twenty feet in thickness. In these wide places or pockets the carly miners enlarged their pits to correspond, and carried their works to greater depths. Charcoal, broken mauls, and ashes are mixed with the black earth and rocky fragments of the pits.

3d Grour.

Minnesota Mine.-As I have before stated, it was upon this location that the existence of mines, long since wrought, on Lake Superior was first made known to us. It is here, also, that the most extensive and interesting works of that kind are to be found.

The Minnesota lodes have a direction like those at Portage Lake, and different from those at Point Keweenaw. The veins about the forks of the Ontonagon, embracing a district of forty-five miles in^ length, on the mineral range, from the Douglass Houghton Mine, on the east, to the Akogebe Lake, on the west, run with the range, and not across it. Their bearing is, therefore, north-easterly and southwesterly, or about N. 54° East.

Minnesota Ming. Section across the Vein, looking from the easterly quarter. N. 3ur W. - B B . Mineral rein dipping north.-A A. Wall rock of compact trap. -a. a. Left standing a part of the original surface support to the hanging wall.-m. Mass of copper sustained by timbers.-b. Ancient burow or spoil bank.-c c. Veir matter embracing masses of copper $n n$.

On the Nimesota there is a group of veins nearly parallel among themselves, four in number, and on all these the ancients labored. 'The surface presents a cor-
responding gronp of rude trenches, showing the position of the veins, for more than two miles. The ground rises gradually to a height of 637 feet above the lake, but on the south drops suddenly off into a decp valley. The Ontonagon River cuts the range two and a half miles west of the mine, being navigable for batteaux to the limeding.

In the above section, across the main lode, I have grouped together several remarkalle objects, that were seen near each other, though not strictly in contact. The descriptions and sketches are in part due to Mr. Knapp, partly to Messrs. Foster and Whitney, and also to my personal examinations.

The wein $B B$ has a variable thickness from one to nine feet, dipping northerly, at an angle of about 60° with the horizon. This is somewhat steeper than the dip of the strata, or wall rock, A A. On some of the veins, the excarations extend eastward, out of the Mimesota, into the grounds of the Rockland Mining Company, where they are very distinct. Being upon the southerly slope of the mountain, the ditches have become very much filled up by washing from the surface. The greatest depth of the ancient excaration is thirty fect. At the place of the above section the vein had been remored to a depth of twentr-six feet.

Sot far below the apparent bottom of a trough-like cavity where shaft No. one is now situated, among a mass of leases, sticks, and water, Mr. Knapp discovered a detached mass of copper weighing nearly six tons. It lay upon a cob work of round logs or skids six to cight inches in diameter, the ends of which showed plainly the strokes of a small axe or cutting tool about $2 \frac{1}{2}$ inches wide. These marks were perfectly distinct. A piece of this wood which I took from the mine in 1849 proved to be a species of oak, the only species known upon the range, and by some called the spanish oak. It shrunk on drying to about two-thirds of its size, cracking open in deep gashes, and possessed little strength. Its appearance was that of watersoaked timber not rotted, preserving its original form.

The mass of copper had been raised several feet along the foot wall of the lote, on the timbers, by means of welges. Its upper surface and edges were beaten and pounded smooth, all the irregularities taken off, and around the outside a rim or lip was formed, bending downwards. 'This work had apparently been done after the miners had comeluded to abandon the mass. Such copper as could be separated by their tools was thus broken off. The beaten surface was smooth and polished, not roung. Near it were fomd, as the excavation ardvanced, other masses, $n n$, imbedded in the wein. Ifter several years, this sein has been found by the modern miners uncommonly rich and valuable for the size and number of its masses of copper.

Not far to the west of this spot a portion of the vein " 1 had been left like a pillar as a support to the hanging wall, while they excavated beneath. It is cut or bruised quite smooth, but shows no marks of other tools than the mauls. This rocky support is about four feet in thickness, and is high enough above the present bottom of the trench to allow a person to pass under it. The marks of fire on the rocks of the walls are still crident. Charcoal, ashes, and stone mands are found in all of the pits hitherto cleaned out. One of the heaviest manls yet seen, weighing thirtysix pounds, came from this location. It hats a dondle groove, as shown in the annexed figure. which is not usual, and it was intended, no doubt, to be used by two men.

Stone Madr, with double grooves.-Weight 36 lbs. Minnesota Mine.

In one of the pits a rude ladder was found. formed of an oak tree trimmed so as to leare the stumps of the branches projecting, on which men could readily descend or ascend to or from their work. Wooden levers are also found among the rubbish, preserved by water, which covered them continually.

On the edge of the excavation in which the mass m was found there stood an aged hemlock, the roots of which extended across the ditch. I counted the rings of annual growth on its stump, and found them to be two hundred and ninety. Mr. Knapp mentions another tree which had three hundred and ninety-five. The fallen and decayed trunks of trees of a previous generation were seen lying across the pits. $>$

Near the place where the detached mass m was found Mr. Hill discovered a tool of which the following is a sketch, and near it a copper maul or sledge weighing from twenty to twenty-five pounds. Like all the other implements found this maul had been fashioned by pounding in a cold state. Originally the mass appeared to have had the shape of the letter ' I , the cross head at the top being about an inch thick and two or three inches broad, tapering towards cach end. These two prongs had been folded
 over each other and beaten into a shape rudely resembling a man's fist, but larger. This lump of copper had evidently been battered either by pounding, to make it more compact, or by use as a maul. The handle of the manl was cight or nine inches long.

The ehisel above figured was somewhat bruised at the upper end, as though it had been used. Towards the upper end the comers are taken off, apparently for the purpose of being held in one hand, while it was struck by a mallet with the wher. It has a rough surface, common to these relics, but is symmetrical in form, with a bevel at the cutting edge on both sides. None of the tools show signs of having been ground to an elge on stone, but are beaten down roughly by hammers.

Artificial C'arerns. - On the Aztec, Ohio, Adventure, and Ridge locations, in addition to the pits which are so common along the range, there are cavities in the mural faces of trap at rarious elevations, which are ancient and belong to the old copper works.

The bluffs are sometimes as high as three hundred feet above the valley. There are also breaks or gaps in the range formed by dislocations of the strata or faults, enlarged by the wearing action of the drift forces. The ends of different beds of trap are thus presented to view, rising on either side of the gorges, with precipitous fronts of different heights. One of the strata, and perhaps more than one, is metalliferous, like the scoriaceous bed worked at Copper Falls and at Phœenix Mines, on Point Keweenaw. At the Adventure the metal bearing stratum is very thick and highly charged with copper, disseminated irregularly through it. The :neients wrought upon it extensively, seeking with assiduity for the rich portions, no matter how difficult of access. Some of their excavations on the side of the bluft are scarcely large enough to shelter a bear. Others are more extensive, formed in all conceivable shapes, extending wherever indications of minerals were apparent. The agents of the Adventure Mine have followed the example of their predecessors, but on a larger scale, pursuing the strings and bunches of copper in all directions, till they disappear. When the mineral fails, like the ancients they strike off at random, and seldom proceed far without encountering other lumps or small masses.

Hitherto the true veins near the copper bearing stratum have not proved profitable. The ancients, exercising their usual skill, expended very little labor upon them. They showed in this rery considerable knowledge respecting the different systems of veins, and also in regard to those anomalous deposits in which the caves are situated.

Finest Miur, Evergreen Blaffs.-On the ground known by the name of the Erergreen Bluffs ancient pits have been opened southeasterly of the Mimesota works. Some prominent ones have recently (1855) been cleared out on the "Johnson preeimption," which disclosed in a few days several tons of copper. Masses had been partly uncovered in the vein, as at the Central Mine, and thus left. On the Nempaska location and on the Rockland, the old excarations are numerous, and wherever they are reopened valuable lodes are exposed. They are not wanting on the west of the river. It the Forest Mine the present works were commenced upon the site of carlier and ancient operations. A wooden bowl was found near the buttom of one of them, that had been used for baling. Doubtless many others in the vicinity of the Ontomagom exist that are not yet discovered.

Fig. 14.

Section on $c d$, full sizo.

Sprar Head.-Half size. 14 inches
loug. Ontonagon. From draw-
ings of John r. Mullowney, Esq., Surveyor.

Conver Implements, Outonayon.-Some laborers in the employ of Mr. Greenfied were levelling the ground for a brick yard on the east bank of the Ontonagon River, half a mile above the village, in the year 1854, when they perceived some pieces of copper, which were well fashioned implements. They are said to have been found upon a bed of clay in a ravine, and covered about two feet with alluvial earth, a large cedar tree growing nearly over the spot. They consist of two implements, which may be described as spear or javelin heads, though more probably designed as miners' tools; and two cutting instruments that may proporly be called chisels, as shown in the amexed sketches. These show the form and size better than any written description. The socket of the spear is small, and not of the best shape to give a good fastening to a staff, which may perhaps favor the idea that it was a weapon for the use of one hand, like a dirk. 'The blade is symmetrical and strong; it apparently had not been much bruised or injured by use. If it was to be thrown like a javelin, the stock or staff must have been fitted on around the shank and driven down over the blade some distance, to make the wooden attachment proportionally strong with the metal part.

The chisel also had not been used, since neither the cutting edge nor the head is battered. It is bent up longitudinally from near each end in the manner shown by the cross section in ed. The object in giving it this form must have been to stiffen it and thus save metal. This contrivance speaks well for the ingenuity of the maker. Those instruments have better proportions than similar ones found in Ohio. They were probably fresh from the hands of the workman when they were lost upon the banks of the river. Although I have myself examined these implements, I am indelted to Messrs. Emerson, Coburn, and Mullowney for facts respecting them. Both are represented to be more hard and less malleable than the native copper of the mines, from which it has been inferred that they have undergone a hardening process. Like those found at Marquette and elsewhere, I suppose the hardness is due only to prolonged hammering, by which the density is increased. The copper of the ancient inhabitants of Europe was hardened by alloying it with tin.

Copper Implements, C'rip River. (Not on the Map.)-In August, 18.54, while workmen were engaged for Mr. John Burt in making a dam across the Carp River near Marquette, signs of copper were discovered in gravel. They were wheeling earth from the banks of the stream, and did not at first preserve the remains that were visible in the form of spots of green carbonate, which on examination presented a core of moxidized metal. Mr. Burt states that there were numerous thin chips of copper not entirely decayed, which appeared to have been cut from a piece of native metal by a sharp and thin tool. There was also found a rude copper knife, the shank two and a half inches, and the blade four and a half in length, making seven inches. The blade resembles in shape a short butcher knife very much worn. It has spots of native silver imbedded in it like those frequently secu in lake Superior specimens of copper.

Another tool resembles a borlhin, with a socket for the insertion of a wooden handle. There were also arrow or spear heads of copper, which were probably made upon the spot. These relics were lying ne, on bed of water-washed gravel,
which Mr. Burt conjectures once formed the bed of the river, but the chamel of this time is ten feet lower. Soil had accumulated over the tools to a depth of two feet, and on it were pine trees, considered to be at least one hundred years of age.

The knife was harder than the chips, and does not bend so easily. This hardness is probably due to the process of hammering which the mass underwent while it was in a cold state, and not to any tempering. If the bodkin-like implement had not been of this pared the others might have been referred to the present race of Indians. They possessed knives and other implements made of copper when the French came among them, but these were very rude. Mr. Baily, of Eagle Harbor, has one which rescmbles somewhat the semilunar knife used by saddlers. There is a notch in the middle by which to attach a handle. Mr. B. thinks it was used in dressing and working skins. It was found in the gravel within the pickets at Fort Wilkins, Copper Harbor.

Near the mouth of Carp River there are remains of cabins, placed in a row like the houses of a village. This is shown by a line of heaps of stone and clay, like the remains of chimneys, and comected with them slight ridges of clay, resembling the low embankments around a \log building after the timber has decayed. They may have been formed of clay which was used to daub the chinks. A forest of ancient growth covered these ruins. Although I know of no historical evidence illustrating the point, I should hesitate to give them a greater antiquity than the early French adventurers. It is about two hundred years since the Jesuits established themselves on Lake Superior. Traders may have preceded them thirty years, and constructed cabins at places not mentioned by the Jesuits.

I have seen the ruins of buildings on the west fork of the Ontonagon, near the old Copper Rock, the history of which has
 reached us, and which were erected in 1769. In 1845, eighty-four years afterwards, all the logs except such as were of cedar, had disappeared. Near a cabin which
was used fire a blacksmith shop, the outlines of a forge were quite distinct, with cinders, charroal, and picees of rusty iron lying upon it. There were also several pounds of corroded sted and brass, mostly the locks and guards of muskets, and

Fig. 17.

Copper Instrument.-Full size. Fort Wilkins.

one gun barrel. On the forge a pine tree had established itself, which we cut down, and counted upon the stump sixty-one layers of annual growth.

In regard to the implements found at the mill on Carp River, I incline to the belief that they are not as ancient as the old mines. Mr. Henry, who has furnished us the account of the explorations just referred to on the Ontonagon River, and on the north shore, made by the English soon after the Treaty of Paris, says that the Indians beat out pieces of copper into bracelets and spoons. None of their implements are shown to have been so difficult to form as the chisels and spear-heads, which are found in the old pits. These required a state of mechanical skill apparently above the reach of Indians.

Mr. Burt has also furnished the following sketch of a copper hook found by himself in the excavation of the St. Mary's Camal.

Fig. 18.

Corper IIons.-Full size. a a. Flaws in the metal. Sault St. Mary's.
It has the newal ftaws which cold wronght articles exhibit, and doubtless belongs to the claso of resoutly made implements.

On the C'anada shome of the st. Mary's River, at Garden River, twelse miles below the Sault, im implement was discovered in the soil by a half-hreed and phesented to Mr. Burt. The horizontal and side views are sufficiently shown in the

Longitudinal section.
Fig. 20.

Copper Spear-bead. Full size. Downwand view.-e. Hole in back of shank. Oak Orehard. Oconto County, Wiscousin.

Side view.

Section of blate thronghe d.

Section of shank thronsh al b.
sketch to indicate its use, which was that of a cutting instrument like a chisel. Its brised head shows the effect of blows from a mallet of wood or stome.

A rude knife and spear-head of copper were recently picked up by Mr. William Windrose, at Oak Orchard, Oconto Comety, Wisconsin, on the western shore of Green Bay. They are in the possession of Lyman C. Draper, Esq., of Madison, Wisconsin, to whom they were presented by the Mon. C. D. Robinson, of Green

Cupper Kxiff. Natural size.—世e e. Flaws.

Section of hate from u io z.
Bay. 'The spear or arrow-head differs from those of Lake Superior principally in the state of finsh, and in having a hole e in the shank to fasten it to a handle or shaft. Both these specimens are roughly forged and apparently ground to a blunt eder. 'They are, with little doubt, recent, the work of some half-breed or Frenchman.

By whom whe the uncient mines wombh? - I have already given reasons going to show that it was not the present Indian race by whom these mines were worked.

As yet no mmans of cities, graves, domicils, or highways have been found in the copper region. As the race appears to have been farther adranced in civilization than their suceessors, whom we call the aborigines, they probably had better means of transportation than the bark canoe. 'They might thus carry provisions a great distance by water. Their mine-works are open cuts exposed to the day, which in the winter in this country, where snow lies from thee to five feet in depth, could not be occupied comfortably without shelter. No remains of such coverings have been discovered, nor is it probable that any traces of such should now be recover able. On the upland the thermometer deseends to minus 38°. This would not render these trenches absolutely monenable, but would present great difficulties in working them. Even in modern shafts and galleries, that are elosed by self-shutting doors, frost pencetrates to a depth of twenty and thinty fathoms. It is frequently necessary to put stoves in the upper levels in order to prevent their being filled with ice. It would therefore be barely possible, by no means profitable, to work in open trenches during winter. The miners could readily bring with them in the spring supplies for thre months, and before these were exhansted the same craft might
return for additional supplies. Tfter spending the months of summer, the miners could return to their homes for winter, carring with them the mineral obtained during the season.

In relation to their dead, it may have been a custom, perhaps a part of their religion, to restore the bodies to their friends. If the number of operators was not great, and the mortality was no greater than it is now, this would not have been a great burden. In case there were no women and children the proportional number of deaths would be less than at present. It is now, for the season of mavigation, not far from five in 1000 , including females and children, and including also those killed by aceident.

All the ancient excavations hitherto examined could have been made, with our means of working, at less expense than has been incurred during the last ten years. But we-must allow much for the imperfect modes of operating. and thus increase the number of men required to do the same work; we must also, on the other hand, conclude that the old mines were wrought a great length of time, and infer that a less mining force was kept up than we have in our times.

In the prosecution of mining in this remote region, not only would the deaths be few, but among them such distinguished persons as were entitled to sepulchral mounds or monuments would not be found in great numbers. The absence of artificial mounds, therefore, need not cxcite surprise.

The Mound Builders consumed large quantities of copper. Axes, adzes, chisels, and ornamental rings are so common among the relics in Ohio as to leave no doubt on this subject. We know of no copper bearing veins so accessible as those of Lake Superior to a people residing on the waters of the Ohio. Neither are there any others now known that produce natice metal in quantities to serve as an article of commerce. Specimens of pure copper are found in other mines of North America, but not as a predominant part of the lode. The implements and ornaments found in the mounds are made of metal that has not been melted. They have been brought into shape cold wrought, or at least without heat enough to liquefy the metal, and were therefore produced from native copper. In the Lake Superior veins spots of native silver are frequently seen studding the surface of the copper, united or welded to it, but not alloyed with it. This is not known of any other mines, and seems to mark a Lake Superior specimen wherever it is found. It also proves conclusively that such pieces have not undergone fusion, for then the pure white spots would disappear, forming a weak alloy. Copper with blotches of native silver has been taken from the mounds. Dr. John Locke, of Cincinnati, possessed a flattened piece of copper weighing several pounds, which was found in the earthworks at Colerain, Hamilton County, Ohio, having a spot of silver as large as a pea forming a part of the mass.

At the first view of the $\log s$ which supported the mass m of the Minnesota vein, the marks of the tool by which they were cut brought to mind the old copper axes I had seen in Ohio, figured by Mr. Squier. The cut was about an inch and threetenths wide, not smooth like that of a perfectly sharp edge, and not deep enough for a modern axe or hatchet. No such axes have been found on Lake Superior. Those of Ohio may have been used as a chisel, although Mr. Squier thinks a
handle was attached to them. The elifference between the axe and chisel is principally in the taper of the axe towards the head. No groove or eye has been noticed by which to insert a handle, but the Peruvians had means of fastening a handle to a similar instrument without cither. There are also chisel-like tools from the Ohio mounds almost identical with those I have already figured. James Mobride, Eqq. of Hamilton, Butler County, Ohio, has in his possession four of them. found in 10.5 near that place, that may be regarded either as chisels, axes, or adzes.

How much time has passed since these mines were wrought, or since they were aboudnened, is a question of great interest. The timber found in some of the ancient mines is in a better state of preservation than that of the Ohio mounds; but it does not follow that it is more recent. Nost of the pieces exhmen were covered by water, or wet earth. In a northern climate the decay of wood is slower than in warmer regions. The timber itself is montly resinous, which assists in its preservation. The wooden cobwork that remains in the Ohio tumuli, hitherto examined, always lies above water, and the loamy carth in which it was buried does not wholly exclude the atmosphere.

In the Grave ('reck mound the timber was very much decayed, but the chambers inclosing the skeletons were elevated above the natural surface, and the surrounding earth was dry. These circumstances being considered, it does not follow that the wood work of the mounds is the most ancient because it is the most decayed.

The living freces now standing, with their roots entwined among the mauls, skids, and shovels of the old miners, are reliable witnesses as to the least space of time since the mines were abandoned. The age of such trees varies from 300 to 350 yours. Bencath the sharle of these patriarchs of the forest are the prostrate and rotten trimks of a preceding gencration.

General Itarrison, in it discourse before the Historical Soriety of Ohio, adds another score to the tally of ages that have passed since the earthworks were evacuated. When gromed that has been cleared of its timber is aboudoned, the seromd growth differs from the first in kind. It is not until several generations of trees have disappeared, that such phaces produce the varicties which constituted the originall forent. The same thing is obsered on Point Kewechaw; where a weeping fire has comsmed or deadened the resinoms trees of the momatans, the first sucereding growth is that of biret and anpen.

In proceso of time. howerer, the balsam, cedar, pinc. and hembock, resume their andent domain, overshadowing and obsering the deriduons trees. On the ancient burows, and in the ofl pits of lake Superior, the same kinds of timber flourish now as are observed in the surounding forest. These works could not have been ratried on without destroving the growth of timber of that day. Before the pines, and other wererems that now orempe these places, overeame the birch and aspen trees, one of two exemerations must have passed away.

Is it groing too far, on the strength of this cridence, to place the abendroment of the mines at a distance of 500 to 600 years from our times?

There may have been inhabitants covering large territories for long periods who hato disapparad without loaving any monumental evidences of their occupation.

If the North American Indiaus had been destroyed by a general pestilence before Pamphilo de Narvac\% landed in Florida, what traces of them should we be able to find? 'They have left no distinctive marks of their existence impressed upon the soil. Some faint signs of cultivation in the shape of little hillocks or hills of corn, not entirely oblitcrated as yet, are the sole vestiges of centuries. But aroiding all mere conjectural speculations, the following conclusions may be drawn with reasonable certainty:-

An ancient people extracted copper from the veins of Lake Superior of whom history gives no account.

They did it in a rude way, by means of fire and the use of copper wedges or gads, and by stone mauls.

They had only the simplest mechanical contrivances, and consequently penctrated the earth but a short distance. ${ }^{1}$

They do not appear to have acquired any skill in the art of metallurgy or of cutting masses of copper.

For cutting tools they had chisels, and probably adzes or axes of copper. These tools are of pure copper, and hardened only by condensation or beating when cold.

They sought chiefly for small masses and lumps, and not for large masses.
No sepulchral mounds, defences, domicils, roads or canals are known to have been made by them. No evidences have been discovered of the cultivation of the soil.

They had weapons of defence or of the chase, such as darts, spears, and daggers of copper.

They must have been numerous, industrious, and perserering, and have occupied the country a long time.

Ehale River, May 1, 1856.

[^28]```
PUBLISHED BY THE SMITHSONIAN INSTITCTION,
 WASHINGTON, I.C.
 APRIL, 1863.
```



## DISCUSSI0N

# of Tile <br> MAGNETIC AND METEOR0L0GICAL OBSERVATIONS 

MADE AT THE GIRARD COLLEGE OBSERVATORY, PHILADELPHIA,
IN $1840,1841,1842,1843,1844$, AND 1845.

PARTII.
InVEstigation of the solar diurnal variation in the magnetic declination and its ANNUAL INEQUALITY.

BY
A. D. BACHE, LL. D.

# INVESTIGATION 

of THE<br>SOLAR-DIURNAL VARIATION OF THE MAGNETIC DECLINATION.<br>AND ITS ANNUAL INEQUALITY.

Having discussed, in Part I, the eleven-year period in the amplitude of the solar-diurnal variation, as well as in the disturbances of the magnetic declination, I now proceed to the analysis of the annual inequality of the solar-diurnal variation.

To obviate the difficulty which would occur in cases of months of unusal disturbance, if the crude observations were used, the normals or means freed from the disturbances have been employed in the discussion. This mode of proceeding not only obviates the necessity for rejecting the observations of particular months, but brings out the most consistent results which the observations can furnish, for both diurnal and annual variation. It is the course adopted by General Sabine in the third volume of his discussion of the Toronto observations. ${ }^{1}$

Returning, then, to the hourly normals, they are rearranged in the tables which follow, according to the different months of the year. The normals for 1840 are corrected for the index error by the addition of 93.3 scale divisions. All corrections for referring the partial monthly readings to the annual mean are, of course, omitted.

[^29]|  | Hourly Declination. Normals for January. ${ }^{1}$ <br> Observations 191 minutes later than indicated. Value of one scale division $=0^{\prime}, 453$. Increase of scale readings corresponds to a decrease of westerly declination. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| teak. | 10. | 1 h. | $2{ }^{\text {h. }}$ | 31. | $4^{\text {b }}$ | 5h. | 6 h. | 7 h. | 8h. | 9h. | 10 h. | 116. |
| 140 | 4 | d. | ... | ${ }^{4}$ | d. | d. | ${ }^{\text {d. }}$. |  | d. | d. |  |  |
| 1*41 | 570.3 | ... | 577.0 | .. | 578.6 | $\ldots$ | 576.9 | $\ldots$ | 580.7 | $\ldots$ | 581.9 | .. |
| 1-4: | 5it. 3 | ... | 513.8 | ... | 565.3 | ... | 5165.9 | ... | 5710.9 | ... | 561.4 | ... |
| 1543 | $\cdots$ |  | $\cdots$ |  |  |  |  |  |  |  |  |  |
| 10.4 | 5.58 .6 | 5.5 .2 | 558.4 | 559.2 | 558.9 | 558.8 | 559.7 | 511.2 | 562.9 | 563.3 | 559.1 | 555.9 |
| 1845 | 530.9 | 531.3 | 531.1 | 531.5 | 533.0 | 531.6 | 532.9 | 335.2 | 535.8 | 533.8 | 530.2 | 526.7 |
| Mean ${ }^{2}$ | 530.25 | ... | 557.57 | ... | 558.95 | ... | 558.85 | ... | 562.57 | ... | 559.40 | ... |
| Same refer'd to its mean eporh ${ }^{3}$ | \% 545.25 | 564.80 | 564.35 | 565.62 | 565.70 | 564.66 | 565.47 | 567.74 | 569.27 | 569.51 | 566.65 | 561.88 |
| jear. | Noon. | 13 h | 14 t | 15 h . | 16 h . | $17^{\text {h. }}$ | 18 h . | 19 h. | 20 h. | 21 h . | 22 h | 23 h . |
| 1840 | ¢. | d. . | d. | d. |  | d. |
| 14.1 | 50.0 .11 | ... | 564.8 | ... | 570.3 | ... | 574.2 | ... | 978.0 | ... | 580.1 | ... |
| 1042 | Sins. 7 | ... | 556.0 | $\cdots$ | 562.9 | ... | 5033 | ... | 566.1 | ... | 567.8 | ... |
| 1843 |  |  | 555.4 | … |  | $\ldots$ |  | ... |  | … | \% | ... |
| 1844 | 55.29 | 552.4 | 553.2 | 554.1 | 55.503 | 556.9 | 557.8 | 559.2 | 559.5 | 560.9 | 560.8 | 559.6 |
| 1845 | 524.2 | 525.2 | 526.2 | 5280 | 530.1 | 531.8 | 532.7 | 532.8 | 533.3 | 533.0 | 532.4 | 532.0 |
| Mean ${ }^{2}$ | 250.45 | ... | 551.92 | ... | 554.90 | ... | 5546.97 | $\ldots$ | 559.22 | ... | 560.27 | ... |
| Sime refer'd to its mean eprech ${ }^{3}$ | \} 557.72 | 557.31 | 557.55 | 555.97 | 561.20 | 562.41 | 563.38 | 564.82 | 565.90 | 567.00 | 567.20 | 566.35 |

1 The hours refer to mean local time, reckoned from midnight to 24 hours.
${ }^{2}$ The mean given is the simple mean of the four readings, and at 14 h. of fire readings, and is here inserted for comparison with the corrected mean in the line below, which would have been obtained if there had been no omissions in the observations.
${ }^{3}$ To oltain the normals referring to Janaary of the mean year, the readings for the defective years 1840 and 1843 have loen interplated in the following manner: 1. For the even hours. - The uormals for any tro consecutive years differ simply by the annual effect of the secular change, which may be regarded as uniform when the same hours and months are compared, as in the present case. The values derived from the comparison of the several months of any two years differ, however, by the accidental errors of the observations; thus, tating the difference of the normals for 1540 and 1841 , we obtain for the several months the values-


Which mean corresponds exactly to the diference of the constant terms in Part T , for 1840 and 1841. By adding, therefore, 16.9 scale divisions to the normals for 1841 , we obtain interpolated values for 1840 . The values from January to May, 1840, were thus supplied. The normals for 1843 were supplied in a different manner, by making use of the readings at 2 P. M., which were taken for the purpose of keeping up the continuity of the series. Subtracting 0.6 scale division from the hourly readings of 1842 , we obtain those for 1843 -this being the difference at $14^{\text {; }}$; in like manner, adding 2.2 scale divisions to the readings of 1844 , we obtain a second value for the normals of 1843 . The mean of these two independent determinations has been ured in supplying the readings for 1843. The normals for $1 \leqslant 40$ and 1843 being thus supplied, the figures in the last line of the preceding table are obtained hy simply taking the mean of the six readings at each even hour. 2. For the odd hours.-The difference in the man readings for any given odd hour, in 1844 and 1845 , from the two adjacent even hours, was applied to the normals of these hours, and the mean taken as the normal of the intermediate odd hour. Thus, the mean reading at noon of 1844 and 1845 is 538.55 , at $13^{h}, 538.80$, difference +0.25 ; which, added to the noon normal 557.72 , gives 557.97 ; and, in like manner, by comparison with 14 b ., the correction to its normal is -0.90 , and the normal for $13^{h}$. becomes 556.65 . The mean of the two results, 557.31 , is the resulting normal for this hour as given in the table.

The same principle of interpolation was applied throughout the tables. Dne attention must be paid, in the de lurtions, for the unegual weight of the normals for the even and odd hours; these weights being generally as 5: 2, or proportional to the mumber of semarate readings. The application of a nearly constant guantity to refer means from a defective number of years to the mean epoch of all the years, is not of much consequence in regard to the diumal and aunual inequalities, which depend mainly on differences of readings, but it is essential that no changes should have ne urrell in the zern of the scale during any intersal under discussion.

| Mourly Declination. Normals for February. <br> Obserrations 192 minutes later than indicated. One division of scale $=0.453$. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| year. | 0 h. | 1 h. | 2 h . | 3 h . | $4^{\text {l2. }}$ | 5 h | $6{ }^{1 / 2}$ | 7 n. | 8h. | 9 h. | 10 h. | 11h. |
| 1840 | d. |
| 1841 | 575.0 | $\ldots$ | 573.2 | ... | 575.6 | $\ldots$ | 577.8 | $\cdots$ | 58.1 | ... | … | ... |
| 1842 | 564.5 | $\cdots$ | 564.3 | -.. | 563.8 | ... | 515.2 | $\ldots$ | 5857.8 | $\ldots$ | 579.5 505.5 | $\cdots$ |
| 1843 |  |  |  |  |  |  |  |  |  |  |  | $\cdots$ |
| 1844 | 559.1 | 558.5 | 559.1 | 559.2 | 55.9 .9 | 518.1 | 560.8 | 562.1 | 56.2 .2 | 560.7 | 5.7 .3 | 554.5 |
| 1845 | 531.6 | 531.1 | 531.0 | 532.4 | 532.3 | 533.1 | 534.7 | 535.9 | 535.7 | 535.4 | 533.0 | 528.6 |
| Mean | 557.55 | ... | 556.90 | ... | 557.90 | ... | 559.62 | ... | 561.95 | ... | 558.82 | ... |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 563.10 | 563.13 | 363.90 | 564.23 | 565.25 | 565.93 | 567.88 | 568.53 | 567.97 | 565.42 | 561.47 |
| pear. | Noon. | 134. | 14. | 15h. | 16 h . | 17 h. | 18h. | 19h. | 20 h. | 21 h . | 22 h . | 234. |
| 1840 |  | d. | ${ }^{\text {d }}$.. | d. <br> $\cdots$ |  | A. |  | d. |  |  | d. | d. |
| 1841 | 569.5 | ... | 566.0 | . | 569.5 | $\ldots$ | 572.4 | $\cdots$ | 574.4 | ... | 575.8 | $\ldots$ |
| 1842 | 558.2 | $\cdots$ | 559.9 | ... | 558.0 | ... | 561.9 | ... | 565.3 | ... | 565.5 | $\ldots$ |
| 1843 | $5 \times 1.1$ | 531 | 555.9 | 작 | $\cdots$ | 550 | $\cdots$ | … |  | $\ldots$ | ... | $\cdots$ |
| 1844 | 551.1 524.4 | 551.1 523.0 | 553.0 525.3 | 554.7 527.5 | 556.4 529.7 | 556.6 530.4 | 557.6 | 558.4 | 559.9 | 559.4 | 560.1 | 559.0 |
|  |  |  |  | 527.5 | 529.7 | 530.4 | 532.4 | 531.3 | 543.6 | 534.4 | 532.3 | 531.9 |
| Mean | 550.80 | ... | 552.02 | $\cdots$ | 553.40 | ... | 556.07 | ... | 558.30 | ... | 558.42 | ... |
| Same refer'd to its mean epoch | \}55733 | 555.85 | 557.17 | 558.30 | 559.43 | 560.25 | 562.13 | 562.25 | 564.42 | 565.02 | 564.77 | 564.00 |
| Hourly Deolination. Normals for March. <br> Obserrations $19 \frac{1}{2}$ minutes later than indicated. One division of scale $=0^{\prime} .453$. |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| tear. | 0 h . | $1^{\text {h. }}$ | 2 h . | 3 h. | $4{ }^{\text {b }}$ | 5 h. | 6 h. | 7 h. | 8 h. | 9 h. | $10^{\text {h }}$ | 11 h |
| 1840 | d. $\cdots$ | d. <br> $\times$ <br>  | d. ... | d. | ${ }^{\text {d. }}$. | d. | ${ }_{\text {d. }} \times$ | d. $\ldots$ | d. | d. . | d. | d. |
| 1841 | 577.1 | ... | 577.13 | ... | 580.9 | ... | 582.9 | $\ldots$ | 586.5 | $\ldots$ | 578.9 | .. |
| 1842 | 564.8 | ... | 564.1 | $\cdots$ | 565.4 | ... | 566.1 | ... | 571.8 | $\cdots$ | 565.9 | $\ldots$ |
| 1843 | ${ }_{50} \times 10$ | 559 | … | 증 | $\ldots$ | … |  | … |  | ... |  |  |
| 1844 | 555.0 | 559.0 | 559.2 | 557.9 | 559.8 | 560.2 | 561.3 | 563.6 | 564.8 | 564.1 | 560.3 | 554.9 |
| 1845 | 532.9 | 532.7 | 533.7 | 533.6 | 535.0 | 533.9 | 536.0 | 538.8 | 539.4 | 538.6 | 534.5 | 529.4 |
| Mean | 558.20 | ... | 558.65 | $\ldots$ | 560.27 | ... | 561.58 | ... | 565.70 | ... | 559.90 | ... |
| Samerefer'd to its mean epoch | $\} 565.60$ | 565.72 | 566.03 | 505.75 | 567.82 | 567.53 | 569.20 | 572.11 | 573.37 | 571.95 | 567.32 | 562.02 |
| year. | Noon. | 13h. | 14 h . | 15h. | $16^{\mathrm{h}}$. | $17^{\text {h. }}$ | 181. | 19h. | 20 h. | 21 h . | 22 h . | 23h. |
| 1840 | d. $\cdots$ | d. $\times$. | d. | d. <br> . <br>  | d. | d. | d. |  |  | d. | d. . | d. . |
| 1841 | 569.4 | ... | 567.7 | $\ldots$ | 571.8 | $\ldots$ | 576.4 | $\ldots$ | 577.4 | $\cdots$ | $5 \% 7$ | $\ldots$ |
| 1842 | 555.6 | ... | 533.9 | ... | 556.4 | ... | 560.3 | ... | 564.5 | ... | 564.9 | $\ldots$ |
| 1843 | 550 |  | 557.2 | 51 | ¢ | $\ldots$ |  | $\ldots$ | ... | .... |  | ... |
| 1844 | 550.6 | 549.4 | 549.6 | 5.1 .7 | 55.3 .17 | 555.2 | 556.6 | 558.0 | 558.4 | 558.2 | 558.6 | 559.7 |
| 1845 | 524.8 | 52̇. 5 | 52.8 | 524.8 | 527.8 | 529.7 | 531.1 | 533.0 | 533.1 | 533.8 | 533.5 | 534.0 |
| Mean | 550.10 | $\ldots$ | 550.24 | ... | 552.25 | ... | 556.22 | ... | 558.32 | ... | 558.67 | ... |
| Same refer'd to its mean epoch | 557.52 | 555.75 | 555.97 | 557.75 | 559.63 | 561.85 | 563.68 | 565.31 | 565.75 | 566.04 | 566.08 | 566.94 |


|  | Hourty Declination. Normals for April. <br> $19 \frac{1}{2}$ minutes later than indicated. One division of scale $=0^{\prime} .453$. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rear. | Oh | 1 h. | 2 h | $3^{\text {b }}$ | $4^{\text {b }}$ | 54. | 64. | 7 h. | 8 h. | 9 h. | 10 h. | 11 h . |
|  | d | d. |  | d. |
| 1849 |  | $\cdots$ | 581.9 | $\cdots$ | 582.9 | ... | 585.6 | ... | 587.6 | ... | 579.4 | ... |
| 1842 | 56.38 |  | 565.4 | ... | 566.1 | $\ldots$ | 568.5 | ... | 569.7 | ... | 563.6 | ... |
| 1843 | 569.7 |  | 570.0 |  | 571.0 |  | 574.7 | ... | 576.2 | $\ldots$ | 566.2 | $\ldots$ |
| ] 844 | 556.6 | 557.0 | 5572 | 556.9 | 557.5 | 558.4 | 561.7 | 558.5 | 564.4 | 561.8 | 557.1 | 552.0 |
| $15+5$ | 529.1 | 526.8 | 529.0 | 529.2 | 529.8 | 531.7 | 534.0 | 535.6 | 5375 | 535.4 | 528.5 | 522.5 |
| M-an | 559.74 | ... | 560.70 | ... | 561.46 | ... | 564.90 | ... | 567.08 | ... | 558.96 | ... |
| Same fefer'd to its mean | 56593 | 566.42 | 567.05 | 567.12 | 567.85 | 568.31 | 571.17 | 569.90 | 373.32 | 570.98 | 565.18 | 559.76 |
| tear. | Nonn. | 13 h. | $14^{\mathrm{h}}$ | 15 L . | 16h. | 176. | 18h. | 19h. | 20 h . | 21 h. | $22^{\mathrm{b}}$. | 23 h. |
| 1540 |  | d. | d. | d. | d. | d. |  | d. $\cdots$ |  | d. |  | d. |
| 1841 | 568.8 | $\ldots$ | 566.1 | ... | 571.7 | ... | 576.9 | ... | 578.0 | ... | 579.1 | ... |
| 1842 | 554.0 | ... | 5.52 .5 | ... | 555.1 | ... | 560.6 | ... | 561.3 | $\cdots$ | 563.0 | ... |
| 1843 | 557.8 | ... | 555.7 |  | 562.6 | ... | 564.8 | .. | 568.5 | .... | 568.7 | -... |
| 154 | 547.4 | 545.7 | 546.2 | 547.6 | 549.6 | 553.4 | 553.4 | 553.8 | 556.2 | 555.1 | 555.7 | 559.3 |
| 1845 | 517.8 | 513.9 | 514.0 | 517.2 | 521.5 | 525.8 | 527.8 | 527.9 | 528.1 | 528.5 | 528.0 | 529.4 |
| Mean | 549.16 | ... | 546.90 | ... | 552.10 | ... | 556.70 | ... | 558.42 | ... | 558.90 | ... |
| Samerefer'd toits mean epoch | $\} 55525$ | 552.54 | 552.92 | 555.13 | 558.18 | 562.05 | 562.88 | 563.16 | 564.50 | 564.59 | 565.08 | 567.50 |

Hourly Declination. Normale for Maf.
Observations $19 \frac{1}{2}$ minutes later than indicated. One division of scale $=0^{\prime} .453$.

| year. | Oh. | 1 h. | 2 h. | 3 h | 4 h . | 5h. | 6 h. | 7 m | $8^{\text {h. }}$ | 9 h . | 10 h. | 11 h. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | d. |
| 1840 |  | ... | 50 | ... | 581. | ... | 5874 | $\cdots$ |  | $\cdots$ |  | $\ldots$ |
| 18.1 | 579.1 | ... | 579.8 | ... | 581.9 | ... | 587.4 | $\ldots$ | 58.1 | ... | 578.6 | ... |
| 1842 | 543.3 | ... | 564.3 | ... | 566.0 | ... | 571.2 | ... | 569.5 | $\ldots$ | 560.0 | ... |
| 1843 | 567.0 |  | 567.3 |  | 569.6 | $\ldots$ | 574.6 | $\cdots$ | 575.6 | 559 | 565.7 | 548 |
| 1-4.4 | 34.4 | 548.7 | 547.8 | 547.0 | 549.3 | 552.5 | 555.8 | 556.8 | 555.1 | 552.3 | 540.7 | 542.2 |
| 1845 | 529.9 | 531.3 | 529.7 | 531.7 | 533.2 | 536.3 | 539.3 | 541.9 | 540.7 | 536.0 | 528.0 | 522.6 |
| Mean | 507.54 | ... | 537.78 | ... | 560.00 | ... | 565.66 | ... | 586.00 | ... | 555.80 | ... |
| Samer fer'd to its mean | 56395 | 565.16 | 564.27 | 564.72 | 566.47 | 569.28 | 572.10 | 574.01 | 572.67 | 569.07 | 562.42 | 557.72 |
| year. | Noon. | 13h. | $14^{\text {h }}$ | 151. | $16^{\text {h }}$ | $17^{\mathrm{h}}$. | 18 h. | 19h. | 20 h. | 21 h . | $22^{\mathrm{h}}$ | 23h. |
| 1840 | U. $\cdots$ | d. . |  | d. . | ${ }_{\text {d. }}$ | d. | d. $\cdots$ | ${ }^{\text {d. }}$. |  | d. | d. $\cdots$ | d. . |
| $18+1$ | 519.4 | ... | 5177.9 | ... | 573.6 | ... | 577.4 | ... | 578.5 | ... | 580.1 | ... |
| 1842 | 5.2 .6 | ... | $55 \% .3$ | ... | 557.7 | ... | 560.8 | ... | 561.8 | ... | 562.3 | ... |
| 1-43 | athion |  | 55.6 .2 |  | 562.2 |  | 566.4 |  | 566.9 |  | 567.3 | 끙 |
| $1 \times 4$ | 53,.3 | 53.35 .8 | 536.5 | 538.9 | 5.42 .1 | 545.1 | 545.2 | 546.5 | 546.3 | 54.3 | 5.47 .3 | 547.8 |
| 1845 | 517.1 | 51 ti. 8 | 518.9 | 522.1 | 526.7 | 529.3 | 529.t\% | 530.4 | 529.7 | 530.3 | 530.5 | 530.3 |
| Mean | 54.68 | $\ldots$ | 54:36 | ... | 552.46 | ... | 555.88 | ... | 556.64 | ... | 557.50 | ... |
| $\begin{aligned} & \text { Same wier'd } \\ & \text { to its mean } \\ & \text { epoch } \end{aligned}$ | $55.32=$ | 531.62 | 552.74 | 555.23 | 558.80 | 561.94 | 562.28 | 563.44 | 563.10 | 563.94 | 564.09 | 564.04 |

## Hourly Declination. Normals for June.

Observations 192 minutes later than indicated. One division of scale $=0^{\prime} .453$.

| fear. | 0 h . | 1h. | 2 h . | 3 h . | 4 h . | 51. | 6 h. | 7 h . | 8 h. | 9 h. | $10^{\mathrm{h}}$. | 114. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1840 | $\xrightarrow{\text { d. }}$ 587.7 | d. | d. | d. | d. 500.8 | d. | d. ${ }_{\text {d. }}$ | d. | $\stackrel{\text { d. }}{596.0}$ | d. | ${ }_{54}^{\text {d. }} 7.1$ |  |
| 1841 | 571.7 | ... | 572.2 | $\cdots$ | 574.7 | $\ldots$ | $5 \times 3.3$ | $\cdots$ | 58.6 | ... | 371.1 |  |
| 1842 | 564.6 | ... | 563.7 | ... | 567.2 | ... | 573.7 | ... | 573.0 | ... | 515.2 |  |
| 18.43 | 566.0 |  | 565.6 |  | 568.4 |  | 574.1 |  | 573.9 |  | 564.8 |  |
| 1844 | 548.7 | 549.0 | 549.3 | 549.1 | 551.6 | 553.9 | 557.6 | 559.1 | 558.2 | 554.3 | 547.9 | 541.8 |
| 1845 | 531.5 | 531.7 | 531.6 | 532.0 | 534.8 | 537.9 | 541.9 | 543.5 | 542.5 | 538.6 | 532.2 | 524.9 |
| Mean | 561.70 | ... | 561.78 | ... | 564.58 | ... | 571.32 | ... | 571.03 | ... | 561.38 | ... |
| Same refer'd toits mean epoch | $\} \ldots$ | 561.81 | ... | 561.91 | $\cdots$ | 567.38 | ... | 572.42 | ... | 567.46 | ... | 555.22 |
| year. | Noon. | 13 h . | 14. | 15h. | 1.6 h. | 17 h . | 18 hl . | 19h. | 20 h | 21. | 22 h . | 23h. |
| 1840 | 578.8 | a. | 57 d .7 | a. | 58.2 | d. | ${ }_{5} \mathrm{~d} \mathrm{~d} .1$ | d. | $\stackrel{\text { d. }}{ }{ }^{\text {d }}$ 5.8 | d. | 58. | d. |
| 1841 | 561.6 | ... | 560.3 | ... | 565.0 | ... | 570.1 | ... | 570.9 | ... | 570.8 | ... |
| 1842 | 555.1 | ... | 552.5 | ... | 558.3 | ... | 561.8 | ... | 563.7 | ... | 5.64 .1 | ... |
| 1843 | 556.4 | $\cdots$ | 5560 | $\cdots$ | 561.1 | … | 564.3 | $\ldots$ | 564.0 | $\ldots$ | 565.6 |  |
| 1844 | 537.4 | 535.0 | 537.3 | 540.0 | 542.4 | 545.2 | 545.6 | 546.2 | 546.5 | 546.8 | 548.0 | 548.5 |
| 1845 | 521.3 | 519.6 | 520.0 | 522.1 | 525.4 | 528.9 | 530.3 | 530.7 | 530.1 | 530.7 | 530.3 | 531.4 |
| Mean | 551.77 | ... | 550.47 | ... | 555.57 | ... | 559.70 | ... | 560.17 | ... | 560.95 | ... |
| Samerefer'd to its mean epoch | $\} \ldots$ | 549.42 | ... | 552.80 |  | 558.76 | ... | 500.26 | ... | 560.58 | $\cdots$ | 561.65 |

Hourly Declination. Normals for July.
Observations $19 \frac{1}{2}$ minutes later than indicated. One division of scale $=0^{\prime} .453$.

| year. | 0 h. | ]h. | 2 h. | 3 h. | 4h. | $5{ }^{\text {h. }}$ | 6 h. | 7 h. | 8h. | $9 \mathrm{ha}$. | 10 h. | 11h. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1840 | ¢ ${ }_{590.6}$ | d. | $\stackrel{\text { d }}{590.5}$ | d. | ${ }_{592.2}$ | d. | \% 598.0 | d. | ¢ ${ }_{\text {d. }}^{\text {c. }}$ | d. | ${ }_{588.7}$ | d. |
| 1841 | 569.9 | $\ldots$ | 568.5 | ... | 571.6 | ... | 578.4 | ... | 581.2 | ... | 571.8 | ... |
| 1842 | 566.0 | ... | 566.0 | ... | 568.4 | ... | 576.6 | ... | 576.4 | ... | 505.8 | ... |
| 1843 | 566.9 | $\ldots$ | 565.9 | ... | 568.2 |  | 574.2 | $\ldots$ | 574.6 | ... | 564.5 | $\cdots$ |
| 1814 | 549.0 | 550.5 | 548.4 | 549.4 | 551.0 | 554.3 | 556.9 | 559.8 | 558.6 | 554.8 | 518.0 | 540.8 |
| 1845 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| Mean | 568.48 | ... | 567.86 | ... | 570.25 | $\ldots$ | 576.82 | ... | 577.92 | ... | 5157.76 | ... |
| Same refer'd to its mean epoch | $\} 561.77$ | 563.26 | 561.15 | 562.07 | 583.60 | 567.16 | 570.02 | 572.67 | 571.23 | 567.61 | 561.00 | 535.47 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| year. | Noon. | 13t. | $14^{\text {h }}$ | 154. | $16^{\mathrm{h}}$ | 17h. | 18 h . | 19\%. | 20 h. | $21^{\text {h. }}$ | 22 h . | 23h. |
| 1840 | $\stackrel{\text { d. }}{ }{ }_{57}$ | d. | ${ }_{577.3}^{\text {d. }}$ | d. ... | ${ }_{582.0}^{\text {d. }}$ | d. | ¢86.6 | d. | $\xrightarrow{\text { d. }}$ | d. | ¢ ${ }_{\text {d. }}^{\text {d. }}$ | d. |
| 1841 | 558.9 | ... | 557.3 | ... | 562.3 | ... | 567.2 | ... | 568.8 | ... | 568.6 | ... |
| 1842 | 555.3 | ... | 553.8 | ... | 558.5 | ... | 562.4 | ... | 564.2 | ... | 567.1 |  |
| 1843 | 555.1 | .. | 554.1 | $\ldots$ | 559.5 | ... | 563.6 | ... | 563.8 | ... | 565.6 |  |
| 1841 | 538.3 | 535.5 | 536.3 | 535.8 | 541.9 | 544.5 | 545.8 | 546.2 | 546.6 | 547.4 | $5 \downarrow 5.8$ | 549.3 |
| 1845 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| Mean | 557.28 | ... | 555.76 | ... | 560.84 | ... | 565.12 | ... | 566.44 | ... | 567.94 | ... |
| Same refer'd to its mean epoch | 55065 | 545.05 | 549.05 | 551.33 | 554.22 | 556.98 | 558.43 | 559.05 | 559.67 | 560.18 | 561.28 | 561.97 |

## Molrhy Declination．Jormals for August．

Obsersations 19 minutes later than indicated．One division of seale $=0^{\prime} .453$ ．

| yrar． | 0 h ． | 11. | 2 h. | 3 h. | $4^{4 .}$ | 5 h. | 6 h. | 7 h. | 84. | 9 k. | 10． | 11 h. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \times 10$ | 588.6 | d． | 58.80 | d． | $592.1$ | d． | d． 599.7 | d． | 602.4 | d． | 582．7 | d． |
| 1－41 | 568.4 | $\ldots$ | 5710.3 | ．．． | 571.6 | ．．． | 580.1 | ．．． | 583.9 | ．．． | 568.9 | ．．． |
| 142 | 54.4 .8 | ．．． | 566.0 | $\ldots$ | 565.5 | ．．． | 573.7 | ．．． | 575.0 | ．．． | 560.0 | ．．． |
| 14．3 | 5164.2 |  | 564.5 |  | 267.2 | ．．． | 573.5 | ．．． | 572.7 | ．．． | 561.5 |  |
| 144 | 548.6 | 547.8 | 547.3 | 547.4 | 550.9 | 552.4 | 557.5 | 560.3 | 558.2 | 551.8 | 543.3 | 536.4 |
| 1545 | ．．． |  | ．．． | ．．． | －．． | ．．． | ．．． | ．．． | ．．． | ．．． | ．．＊ | ．．． |
| Mean | 566.92 | ．．． | 567.42 | ．．． | 570.06 | ．．． | 576.90 | ．．． | 578.44 | ．．． | 563.08 | ．．． |
| Samereferd to its ulean epoch | 5560.40 | 559.65 | 560.60 | 560.80 | 563.40 | 565.00 | 570.20 | 573.35 | 571.60 | 565.01 | 556.32 | 549.14 |
| year． | Nonn． | 134. | 14. | 15 h ， | 16 h. | 172． | 18h． | 19h． | 20 h ． | 21 h ． | 22 h ． | 23 b ． |
| 140 | 5 | d． | ${ }_{575.2}^{\text {d．}}$ | d． | 581.5 | d． .0 | ${ }_{586.5}^{\text {d．}}$ | $\ldots$ | ${ }_{588.2}^{\text {d．}}$ | d． $\cdots$ | \％${ }^{\text {a }} 8.4$ | d． |
| 18.41 | 55.3 | $\ldots$ | 556.9 | ．．． | 564.0 | ．．． | 566.8 | ．．． | 568.6 | ．．． | 568.9 | ．．． |
| 1422 | 552.3 | ．．． | 553.7 | ．．． | 561.5 | ．．． | 562.2 | ．．． | 56.4 .1 | $\ldots$ | 564.5 | ．．． |
| 1843 | 5.55 .1 | ．．． | 594．6 | ．．． | 561.2 | ．．． | 563.6 | ．．． | $55^{6} 2.3$ | ．．． | 564.2 | … |
| 1 144 | 5.31 .8 | 532.0 | 534.3 | 538.7 | 542.1 | 544.3 | 546.0 | 546.5 | 546.7 | 546.6 | 547.8 | 547.7 |
| 1．45 | ．．． | ．．． | ．．． | ．．． | $\ldots$ | ．．． | ．．． | $\ldots$ | ．．． | ．．． | ．．． | ．．． |
| Mean | 554.26 | ．．． | 554.94 | ．．． | 562.06 | ．．． | 565.02 | ．．． | 565.98 | ．．． | 566.96 | ．．． |
| Samerefer＇d to its mean epoch | $\int^{547} 05$ | 546.49 | 548.03 | 552．15 | 555.27 | 557.12 | 558.38 | 558.99 | 559.30 | 559.15 | 560.30 | 559.85 |

Hourly Declination Normals for September．
Observations $19 \frac{1}{2}$ minutes later than indicated．One division of scale $=0^{\prime} .453$ ．

| year． | 1 h. | 1 h. | 2 h. | 3 h. | 43. | 5 h. | 6 b. | 7 l ． | 8 l. | 9 h ． | $10^{\mathrm{h}}$ ． | $11^{\text {h }}$ ． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1840 | 545.8 | d． | 85 | d． | ${ }_{59}{ }^{\text {d．}} 10.2$ | d． | 596.5 | d． | $595.8$ | d． | ${ }_{584.1}^{\text {d }}$ | d． |
| 14．11 | 565.1 | ．．． | 514.5 | ．．． | 545.5 | ．．． | 569.4 | ．．． | 571.1 | ．．． | 564.1 | ．．． |
| 1－42 | 513.4 | $\ldots$ | 567.8 | ．．． | 571.0 | ．．． | 576.8 | ．．． | 574.9 | ．．． | 561.2 | ．．． |
| 1－43 | 5160.4 |  | 560.4 |  | 560.3 |  | 565.7 | ．．． | 566.6 | ．．． | 554.6 | ．．． |
| 1844 | 543.3 | 343.1 | 544.1 | 546.0 | 546.5 | 247.1 | 550.0 | 552.9 | 552.4 | 545.8 | 538.3 | 532.5 |
| $1-45$ | ．．． | $\ldots$ | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | $\cdots$ | ．．． | ．．． | ．．． |
| Mean | 56.40 | ．．． | 5450.019 | ．．． | 566.50 | ．．． | 571.68 | ．．． | 572.16 | ．．． | 560.46 | ．．． |
| same referd to it mean ен⿱宀八犬 | 55342 | S＂7．16 | 558.11 | 559.60 | 559.70 | 561.00 | 564.60 | 566.70 | 365.40 | 559.80 | 553.30 | 547.47 |
| year． | Noon． | 134． | $14^{\text {b }}$ ． | 15h． | 1 ha ． | $17^{\text {h．}}$ | 184. | 19 h. | 20 h. | 21 h ． | 22 h ． | 23 h ． |
| 15．40 |  | 1. | 572.8 | d． <br> $\cdots$ <br>  | ${ }_{5}^{\text {［181．7 }}$ | d． <br> . <br>  | ${ }_{583.2}$ | d． | 58.8 | d． | 585.9 | d． |
| 1－41 | 8， 6 | ．．． | 5.54 .5 | ．．． | 5．5．9．5 | ．．． | 562.9 | ．．． | 563.8 | ．．． | 564.0 | ．．． |
| $1+42$ | 5 Stin \％ | ．．． | 85.5 .4 | ．．． | 51620 | ．．． | 545.7 | ．．． | 56.4 .7 | ．．． | 566.6 | ．．． |
| 15.43 | 54.45 | ．．． | 56514.5 |  | 53.68 .8 |  | 55.0 |  | 560.0 | ．．． | 558.7 |  |
| 1－4t | 529.3 | 530.0 | 534.1 | 53.38 | 639，4 | 541.9 | 5.42 .4 | 541.9 | 543.0 | 544.6 | 543.7 | 543.3 |
| 1～4． | ．．． | ．．． |  |  | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． | ．．． |
| Mran | 2， 11.411 | ．．． | 533．44 | $\ldots$ | 50，9．88 | ．．． | 562.44 | ．．． | 564.02 | ．．． | 563.78 | ．．． |
| $\begin{aligned} & \text { sman ro fry } \\ & \text { to its mean } \\ & \text { epoch } \end{aligned}$ | 54.25 | 543．${ }^{\text {c }}$ | 546.36 | 5.12 .44 | 553.00 | 555.31 | 555.63 | 556.04 | 357.05 | 558.26 | 556.97 | 557.00 |


| Observations $19 \frac{1}{2}$ minutes later than indicated. One division of scale $=0^{\prime} .453$. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| year. | 0 h. | 1 h. | 2 h . | 3 h. | 4 h . | 51. | 61. | 7 h. | 8h. | 9 h. | 10 h. | 116. |
| 1840 | d. 585.8 | d. | ¢83.7 | d. | 58.4.4 | d. | d. ${ }^{\text {d }}$ | U. . | d. | d. | 577.4 | d. |
| 1841 | 566.8 | $\ldots$ | 5664.3 | $\cdots$ | 565.5 | $\ldots$ | 567.6 | $\ldots$ | 569.4 | $\ldots$ | 5118.4 |  |
| 1842 | 563.1 |  | 56:3.1 | ... | 564.4 | ... | 564.0 | ... | 568.8 |  | 564.0 |  |
| 1843 | 559.6 | 560.2 | 559.6 | 559.1 | 559.9 | 560.6 | 563.1 | 565.1 | 566.0 | 56.5 .0 | 560.8 | 556.5 |
| 1844 | 545.1 | 545.3 | 54.2 | 546.1 | 545.5 | 544.4 | 548.6 | 550.9 | 551.5 | 548.7 | 545.3 | 540.8 |
| 1845 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| Mean | 564.08 | ... | 563.38 | ... | 564.00 | ... | 565.34 | ... | 567.64 | ... | 563.14 | ... |
| Same refer'd to its mean epoch | $\} 55745$ | 557.71 | 556.72 | 557.33 | 557.50 | 556.67 | 559.08 | 561.23 | 561.48 | 560.04 | 556.70 | 552.36 |
| year. | Noon. | 13 h. | 14. ${ }^{\text {h. }}$ | 15h. | $16^{\mathrm{h}}$. | 17h. | 18 h. | 19h. | 20 h. | 21 h . | 22 h . | 23b. |
| 1840 | ${ }_{571.7}^{\text {d. }}$ | d. . . | $\stackrel{\text { d. }}{570.6}$ | d. . | ${ }_{575.2}^{\text {d. }}$ | d. ... | d. ${ }_{\text {d }}$ | d. <br> . <br>  | $\stackrel{\text { d. }}{579.0}$ | d. | ${ }_{565.4}^{\text {d. }}$ |  |
| 1841 | 564.0 | ... | 562.3 | ... | 564.7 | ... | 573.5 | ... | 568.6 | ... | 569.3 | $\ldots$ |
| 1842 | 556.0 | . | 555.0 | $\cdots$ | 558.2 | . | 564.3 | $\cdots$ | 565.0 | ... | 56.5 .3 |  |
| 1843 | 553.6 | 552.6 | 55.7 | 554.2 | 556.2 | 557.0 | 558.2 | 559.7 | 560.1 | 561.1 | 559.7 | 560.7 |
| 1844 | 541.1 | 539.5 | 541.4 | 544.0 | 545.7 | 545.4 | 545.6 | 545.0 | 544.9 | 544.6 | 54.5 | 54.6 |
| 1845 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| Mean | 557.28 | ... | 556.40 | ... | 560.00 | ... | 564.24 | ... | 563.56 | ... | 565.04 | ... |
| Samerefer'd to its mean epoch | $\} 551.12$ | 549.62 | 550.43 | 552.39 | 554.15 | 555.68 | 557.67 | 557.47 | 556.98 | 558.12 | 558.15 | 558.22 |
|  | Obser | rvations | ourly <br> 191 min | Declin <br> ates late | ATION. <br> than in | NORMA <br> dicated. | LS FOR One di | Novem <br> vision o | BER. <br> scale $=$ | $0^{\prime} .453$ |  |  |
| year. | 0 h. | 1 h. | $2^{\text {b. }}$ | 3 h . | 4 h . | 5 h . | 6 h. | 7 h. | 8 h. | 9 h. | 10 h . | 11 h. |
| 1840 | 57.4 | d. | 573.9 | d. | 57 d .2 | d. | 57\%.0 | d. | \% ${ }_{5}^{\text {d }}$ (9.7 | a. | 575.0 | d. |
| 1841 | 557.2 | ... | 558.5 | ... | 558.5 | ... | 557.6 | ... | 561.7 | ... | 557.1 |  |
| 1842 | 564.2 | $\cdots$ | 563.8 | ... | 565.6 | ... | 566.9 | ... | 569.2 | ... | 563.3 |  |
| 1843 | 556.3 | 556.7 | 556.6 | 556.6 | 557.4 | 557.4 | 559.1 | 561.8 | 561.3 | 560.1 | 556.2 | 552.6 |
| 1844 | 546.8 | 546.8 | 548.3 | 548.6 | 547.4 | 545.5 | 551.5 | 549.2 | 548.4 | 547.9 | 546.2 | 542.8 |
| 1845 |  | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| Mean | 559.78 | $\ldots$ | 560.22 | ... | 561.02 | $\ldots$ | 562.42 | ... | 564.06 | ... | 559.56 | ... |
| Samerefer'd to its mean epoch | \}554.15 | 554.21 | 554.77 | 555.20 | 555.28 | 555.30 | 557.13 | 557.98 | 557.98 | 556.90 | 553.87 | 550.00 |
| fear. | Noon. | 13h. | 14 h . | 15 h. | 16 h. | 17 h | 18h. | 19 h. | 20 h. | 21 h . | 22 h . | 23 h . |
| 1840 | ${ }_{567.5}^{\text {d. }}$ | d. | ${ }_{565.8}^{\text {d. }}$ | d. $\cdots$ | ${ }_{570.8}^{\text {d. }}$ | d. | ${ }_{574.1}$ | d. | 578.8 .9 | d. | 576.0 | d. |
| 1841 | 551.8 | ... | 549.9 | ... | 55.34 | ... | 554.9 | ... | 558.0 | ... | 558.6 | ... |
| 1842 | 556.6 | $\cdots$ | 557.3 | … | 561.2 | $\cdots$ | 564.0 | $\cdots$ | 565.5 | $\ldots$ | 565.0 | $\ldots$ |
| 1843 | 550.4 | 550.0 | 551.1 | 552.6 | 553.8 | 554.9 | 556.3 | 5.57 .5 | 557.5 | 557.7 | 557.3 | 557.4 |
| 1844 | 542.8 | 541.7 | 54.5 | 546.1 | 545.6 | 547.9 | 545.8 | 548.2 | 548.3 | 549.6 | 548.0 | 548.0 |
| 1845 | $\cdots$ | ... | ... | ... | ... | $\ldots$ | ... | ... | ... | ... | ... | ... |
| Mean | 553.82 | ... | 553.72 | ... | 556.96 | ... | 559.62 | ... | 561.24 | ... | 560.98 | ... |
| Samerefer'd to its mean epoch | ¢54852 | 547.3? | 548.72 | 550.76 | 551.60 | 553.25 | 554.35 | 555.26 | 555.62 | 556.36 | 555.35 | 555.35 |



The following table contains the recapitulation of the monthly normals for each hour of the day, and for the mean epoch 1842 to 1843, and forms the basis for the discussion of the diumal variation and its annual inequality. The table exhibits at one view the mean hourly readings for each month, unaffected by the larger disturbances.


This table shows plainly the relation of the mean hourly position of the magnet of each month to its general mean position, after the separation of the larger disturbances, and also, by running the eye along any horizontal line, the solar-diurnal variation for each month. It does not, however, show distinctly the annual inequality, on account of the changes in the numbers by the secular change. To eliminate the effect of this change, each hourly normal has been compared, in the following table, with the corresponding mean monthly value, as given in the last right-hand column; the sign + indicating a westerly direction, and - an easterly direction, ${ }^{1}$ of the north end of the magnet from the mean monthly position. The scale divisions have been converted into minutes of arc.

[^30]| Table of tue Sular Dicrnal Tariation of the Magnetic Declination for each Month of the Year, showing the Annual Inequality. <br> Observations 191 minutes later than indicated in the headings. <br> Philadelphia Mear Time. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 h. | 1 t . | $2^{4}$ | 3 h. | $4^{4}$ | 5 h. | $6^{\text {b. }}$ | 7 h. | 8h. | $9^{\text {h. }}$ | 10 h. | 11h. |
| January | -0'. 47 | -0'.27 | -0.07 | -0.64 | - 0 ' 6.68 | -0. ${ }^{2} .21$ | - ${ }^{\prime \prime} .57$ | -1'.61 | -2'.29 | -2'.40 | -1. 11 | $+1^{\prime} .06$ |
| February | 0.41 | - 19.06 | -0.07 | -0.42 | -0.5ib | $-1.03$ | -1.34 | -2.22 | -2.51 | $-2.26$ | $-1.11$ | +0.65 |
| March | - 0.34 | -0.39 | -0.33 | -0.40 | -1.35 | $-1.21$ | $-1.97$ | -3.28 | -3.85 | -3.21 | -1.12 | +1.29 |
| April | -0.85 | -1.09 | $-1.87$ | -1.40 | -1.73 | -1.94 | -3.24 | -2.03 | -4.21 | -3.15 | -0.50 | +1.93 |
| May | - 11.35 | $-0.90$ | -0.49 | -0.70 | -1.49 | $-2.77$ | -4.04 | -4.90 | $-4.30$ | $-2.66$ | +0.35 | +2.47 |
| June | -0.39 | -0.44 | -0.43 | -0.48 | $-1.70$ | $-2.97$ | -4.75 | -5.25 | -4.62 | $-3.00$ | -0.25 | $+2.54$ |
| July | -0.68 | $-1.37$ | -0.41 | -0.82 | $-1.53$ | -3.18 | -4.44 | $-5.63$ | -4.98 | -3.34 | $-0.35$ | $+3.07$ |
| Ausust | -0.60 | -0.36 | -0.09 | -0.78 | -1.9t | -2.68 | -5.03 | -6.47 | -5.68 | -2.69 | +1.25 | $+4.50$ |
| Septumber | -0.61 | -0.49 | - 0.10 | $-1.60$ | -1.64 | -2.23 | $-3.56$ | -4.81 | -4.23 | -1.69 | +1.26 | $+3.59$ |
| Octoluer | -0.46 | -0.5s | -0.13 | -0.41 | -0.4 | -0.10 | $-1.20$ | -2.17 | -2.24 | -1.63 | -0.12 | +1.84 |
| Norember | -0.09 | -0.11 | -0.3is | -0.55 | -0.59 | -0.60 | $-1.44$ | -1.81 | -1.81 | $-1.33$ | $+0.05$ | $+1.80$ |
| December | $-0.34$ | -0.05 | $+0.23$ | $-0.26$ | -0.55 | -0.69 | -0.73 | -0.0.8 | $-1.27$ | -1.78 | -0.64 | +0.93 |
|  | -0.58 | -0.78 | -0.72 | -0.96 | -1.68 | -2.63 | -4.23 | -4.95 | $-4.67$ | -2.76 | $+0.29$ | $+3.07$ |
| Winter | -0.35 | -0.24 | -0.16 | -0.45 | -0.70 | -0.64 | $-1.22$ | $-1.99$ | $-2.33$ | -2.10 | -0.67 | +1.27 |
| Year | $-0.47$ | $-0.51$ | $-0.44$ | -0.71 | -1.19 | -1.64 | $-2.72$ | -3.47 | $-3.50$ | -2.43 | -0.19 | $+2.17$ |
| Meay Eforis $15+2-1.3$ | Noon. | $13^{14}$. | 14 h . | 15 h. | 16 h. | 17h. | 18 h. | 19 ${ }^{\text {h. }}$ | 20 h. | 21 h. | 22h. | 23h. |
| Janmary | +2. 24 | +3.12 | $+3^{\prime} .11$ | 2'.36 | $+1^{\prime} .36$ | +0, 81 | +0'.37 | -0.28 | -0. 77 | -1'.27 | -1'.36 | -0'.98 |
| February | +2.55 | +3.23 | +2.62 | +2.12 | +1.61 | +1.24 | +0.38 | +0.33 | -0.65 | -0.93 | -0.81 | -0.46 |
| March | +3.33 | +4.13 | $+3.02$ | +3.22 | $+2.36$ | $+1.36$ | +0.53 | -0.20 | -0.40 | -0.54 | -0.55 | -0.95 |
| April | +3.98 | +5.20 | +5.02 | $+4.03$ | +2.64 | $+0.90$ | +0.52 | +0.39 | $-0.21$ | -0.26 | -0.47 | -1.57 |
| May | +4.49 | $+5.24$ | +4.71 | +3.60 | +1.99 | +0.56 | +0.41 | $-0.12$ | $+0.14$ | -0.35 | -0.41 | -0.39 |
| June | $+4.11$ | $+5.16$ | +4.70 | +3.64 | +2.38 | +0.95 | +0.51 | +0.27 | $+0.30$ | $+0.12$ | -0.05 | -0.36 |
| July | $+4.35$ | +5.53 | +5.07 | +4.03 | +2.73 | $+1.47$ | +0.81 | +0.53 | +0.26 | +0.03 | $-0.47$ | -0.78 |
| Auguet | $+5.45$ | +5.71 | +5.00 | +3.14 | +1.72 | +0.88 | +0.32 | +0.04 | -0.10 | -0.04 | $-0.56$ | -0.36 |
| September | $+5.35$ | +5.56 | +4.17 | $+2.09$ | $+1.39$ | +0.35 | $+0.20$ | +0.01 | -0.45 | -1.00 | -0.41 | -0.42 |
| October | +2.40 | $+3.15$ | +2.72 | $+1.83$ | +1.04 | +0.35 | -0.56 | -0.47 | -0.25 | -0.76 | -0.78 | -0.81 |
| Novemher | +2.46 | +3.01 | $+2.37$ | +1.45 | $+1.08$ | +0.33 | -0.18 | -0.59 | -0.74 | -1.09 | -0.63 | -0.63 |
| December | +2.42 | +2.69 | +2.81 | +1.57 | +1.27 | +0.19 | -0.27 | -0.76 | -0.96 | -1.15 | -1.18 | -0.81 |
| Summer | +4.62 | $+5.40$ | +4.78 | +3.42 | +2.14 | +0.85 | $+0.46$ | +0.19 | -0.03 | -0.25 | -0.40 | -0.65 |
| Winter | +2.63 | $+3.24$ | +2.71 | $+2.09$ | +1.46 | +0.71 | +0.05 | -0.33 | -0.63 | -0.95 | -0.88 | $-0.77$ |
| Year | +3.65 | $+4.32$ | $+3.77$ | +2.76 | +1.80 | +0.78 | +0.25 | $-0.07$ | $-0.33$ | -0.60 | -0.64 | -0.71 |

The distinctive features of the above table are next to be considered analytically as well as graphically. The inequality in the diumal variation is most conspicuous when the tabular numbers in the horizontal lines for the months of February and August are compared. The annual variation appears plainest by carrying the eye over the vertical column at the hours 6 or 7 A . M. The annual variation depends on the earth's position in its orbit; the diurnal variation being subject to an inequality depending on the sun's declination. The diurnal range is greater when the sun has north declination, and smaller when south declination; the phenomenon passing from one state to the other about the time of the equinoxes. To show the diumal variation at these periods, the summer and winter means, as well as the annual means, were tabulated. The months from April to September (inclusive) comprise the summer period, and from October to March (inclusive) the winter period. The first diagram (A) shows this variation, and contains the type curves for these half yearly periods. We find for the summer months a diurnal range of nearly 102 minutes, and for the winter months of but $5 \frac{1}{2}$ minutes. These and other curves will be further analyzed hereafter.


The second diagram (B) exhibits the same phenomenon in a different way; the yearly curve of the first diagram being straightened out and forming the axis of the second diagram, which thus shows the deviations from the annual mean value for the two seasons when the sun has north and south declination. The ordinates are obtained by subtracting the annual mean from either the summer or winter mean in the preceding table. This diagram exhibits, in quite a characteristic manner, the course of the annual variation at the different hours of the day, at

the season for which the diagram is constructed. Thus, at the hour of 6 or 7 in the morning, the annual variation is a maximum, disappearing at a quarter before 10 A. M., and reaching a second (secondary) maximum value at 1 P. M. It almost disappears soon after 5 P. M., and a third still smaller maximum is reached after 9 P. M. Half an hour before midnight, the annual variation again disappears. At (and before and after) the principal maximum, between 6 and 7 in the morning, the annual variation causes the north end of the magnet to be deflected to the east in summer and to the west in winter; at $1 \mathrm{P} . \mathrm{M}$., the deflections are to the west in summer and to the east in winter. The range of the diurnal motion is thus increased in summer and diminished in winter; the magnet being deflected in summer more to the east in the morning hours, and more to the west in the afternoon hours, or having greater elongations than it would have if the sun moved in the equator. In winter, the converse is the case. The range of the annual variation from summer to winter is about $3^{\prime} .0$, and its daily range about $2^{\prime} .6$ at Philadelphia.


The next diagram (C) has been projected in order to illustrate the semi-annual inequality of the diurnal variation at four principal magnetic stations. ${ }^{1}$ The general features of the Philadelphia curve most nearly resemble those exhibited in the St. Helena curve; and, relatively, the Toronto and Hobarton curves appear to represent rather extreme than normal shapes. The Philadelphia and St. Helena

[^31]curves have another feature in common: the amplitude at its maximum value, shortly after 6 A. M., is less than the amplitude at Toronto and Hobarton; and, upon the whole, the Philadelphia type confirms the idea that all forms partake of the same general character, more or less affected by incidental irregularities.

In reference to the annual variation, General Sabine, in the "rectifications and additions" to the last volume of Humboldt's Cosmos, expresses himself as follows: "Thus, in each hemisphere, the semi-annual deflections concur with those of the mean annual variation for half the year, and consequently augment them, and oppose and diminish them in the other half. At the magnetic equator, there is no mean diurnal variation, but in each half year the alternate phases of the sun's annual inequality constitutes a diurnal variation, of which the range in each day is about $3^{\prime}$ or $4^{\prime}$, taking place every day in the year except about the equinoxes; the march of this diurnal variation being from east in the forenoon to west in the afternoon, when the sun has north declination, and the reverse when south declination." According to the same authority, the annual variation is the same in both hemispheres, the north end of the magnet being deflected to the east in the forenoon, the sun having north declination; when in the diurnal variation, the north end of the magnet at that time of the day is deflected to the east in the northern hemisphere and to the west in the southern hemisphere. In other words, in regard to direction, the law of the annual variation is the same, and that of the diurnal variation the opposite, in passing from the northern to the southern magnetic hemisphere.

I next proceed to consider more in detail the annual variation at the hours of 6 and 7 in the morning and of 1 and 2 in the afternoon, these being the hours of the principal and secondary maxima respectively. By subtracting the annual mean from each monthly value at the respective hours, we obtain from the preceding general table the following columns:-

| Annual Vartation at tee Hours of the Principal and Secondary Maxima of Range. $\pm\}$ indicates $\left\{\begin{array}{l}\text { west } \\ \text { east }\end{array}\right\}$ deflection from the mean annual position. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 L. A. M. | 7. A. A. | Mean. | 13. P. M. | $2^{\text {h. P. M. }}$ | Mean. |
| January <br> F'ebruary <br> March . <br> April <br> May <br> June <br> July <br> August <br> September <br> October <br> November <br> December | +2'.15 | +1 ${ }^{1} .86$ | $+2.01$ | $-1.20$ | $-0^{\prime} .76$ | -0'.98 |
|  | +1.38 | $+1.25$ | +1.31 | $-1.09$ | -1.15 | $-1.12$ |
|  | +0.75 | +0.19 | $+0.47$ | -0.19 | -0.75 | -0.47 |
|  | $-0.52$ | +0.82 | +0.15 | +0.88 | $+1.25$ | $+1.06$ |
|  | -1.32 | -1.43 | -1.38 | +0.92 | $+0.94$ | $+0.93$ |
|  | -2.03 | -1.78 | -1.90 | +0.84 | +0.93 | +0.89 |
|  | -1.72 | -2.16 | -1.94 | $+1.21$ | $+1.30$ | +1.25 |
|  | -2.31 | $-3.00$ | -2.66 | $+1.39$ | $+1.23$ | $+1.31$ |
|  | $-1.14$ | $-1.34$ | -1.24 | +1.24 | +0.40 | +0.82 +-1.14 |
|  | +1.52 +1.28 | +1.30 +1.66 | +1.41 +1.47 | -1.24 | -1.05 -1.40 | -1.14 |
|  | +1.99 | +2.60 | +2.30 | -1.43 | -0.96 | $-1.20$ |
|  | Maximum range at the above hours, $5^{\prime} .0$; the easterly deflection being greater by $0^{\prime} .4$ than the westerly. |  |  | Range at the hours 1 and 2 P. M., $2^{\prime} .7$; the eastern and western deflections being equal. |  |  |

A general inspection of the above columns containing the mean values shows that, approximately, the solstices are the turning epochs of this annual variation,
the signs changing at the time of the equinoxes. To ascertain how nearly this is true, and in order to obtain a more precise expression, the means of the two columns (after changing the signs in the second) for each month respectively, were put into an analytical form, using Bessel's well-known formula for periodic functions-

$$
\begin{aligned}
\Delta_{n} & =+1^{\prime} .78 \sin \left(\theta+90^{\circ}\right)+0^{\prime} .32 \sin \left(29+180^{\circ}\right) \\
\text { or, } \Delta_{n} & =+1^{\prime} .78 \cos \theta-0^{\prime} .32 \sin 2 \theta ;
\end{aligned}
$$

the angle 8 counting from January 1st.
The maximum values will occur on the first of January and the first of July; and the transition from a positive to a negative value, and the reverse, will take place on the first of April and the first of October, the equation $1.78 \cos \theta=0.32$ $\sin 2 \theta$, being only satisfied for $\theta=90^{\circ}$ and $270^{\circ}$. That the angles $C_{1}$ and $C_{2}$ should be exactly $90^{\circ}$ and $180^{\circ}$ is remarkable. The monthly values are satisfied as follows:-

| Midale of |  |  |  |  |  |  | By observation. | By calculation. |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| January | $\cdot$ | $+1^{\prime} .50$ | $+1^{\prime} .56$ |
| Felruary | $\cdot$ | +1.22 | +0.94 |
| March | $\cdot$ | +0.47 | +0.30 |
| April | $\cdot$ | -0.46 | -0.30 |
| May | $\cdot$ | -1.16 | -0.94 |
| June | $\cdot$ | -1.40 | -1.56 |
| July | $\cdot$ | -1.59 | -1.56 |
| August | $\cdot$ | -2.00 | -0.94 |
| September | $\cdot$ | -1.03 | -0.30 |
| October | $\cdot$ | +1.28 | +0.30 |
| November | $\cdot$ | +1.41 | +0.94 |
| December | $\cdot$ | +1.76 | +1.56 |

The regular progression of the monthly values is a feature of the annual variation deserving particular notice. There is no sudden transition from the positive to the negative side, or vice rerst, at or near the time of the equinoxes (certainly not at the vermal equinox) ; on the contrary, the annual variation seems to be regular in its progressive changes. The method here pursued is entirely different from that employed by General Sabine for the same end, but the results are, nevertheless, in chase accordmee. He remarks (in the British Association report above cited): "When a mean is taken corresponding to the 10th or 11th day after the equinox, the transition from the character of the preceding six months has already commenced and advanced very far towards its completion, and, by the middle of October, is quite complete; apparently, the progress of the change is somewhat more tardy in the March than in the September equinox." From the above analysis, we have found that the transition took place ten days after either equinox, and also that the turning points occur ten days after the solstices.

For the more precise determination of the law of the phenomenon, and in order to render the results of similar investigations comparable with one another, the regular solar-diumal variation is now to be expressed as a function of the time. The preceding tabular values, given in minutes of are, when treated as required by Bessel's ${ }^{1}$ periodic function, furnish the following expressions for each month of the year:-

[^32]

In like manner, we obtain for the summer half-year (from April to September inclusive), for the winter half-year (from October to March inclusive), and for the whole year, the following expressions for the diurnal variation :-


[^33]The relative weights of the results by the even hours and the odd hours are as 3:1.
If, for the purpose of comparison with the presious results in Part I of this discussion, and with other similar expressions, we change the angles $C_{4}, C_{2}, C_{3}, C_{4}$, by $180^{\circ}$, which is equivalent to an easterly deviation from the mean for positive results and to a westerly deviation for negative results, we find-

| For Philadelphia, | $\Delta d=+2^{\prime} .167 \sin \left(\theta+33^{\circ} 55^{\prime}\right)+1^{\prime} .875 \sin \left(2 \theta+218^{\circ} 52^{\prime}\right)$ |
| :---: | :---: |
|  | $+0^{\prime} .759 \sin \left(3 \theta+64^{\circ} 40^{\prime}\right)+0^{\prime} .198 \sin \left(4 \theta+263^{\circ} 05^{\prime}\right.$ |
| For Dublin, | $\Delta \pi=+3^{\prime} .519 \sin \left(\theta+64^{\circ} 1 v^{\prime}\right)+2^{\prime} .127 \sin \left(2 \theta+225^{\circ} 22^{\prime}\right)$ |
|  | $+0^{\prime} .688 \sin \left(3 \theta+70^{\circ} 40^{\prime}\right)+0^{\prime} .322 \sin \left(4 \theta+242^{\circ} 27^{\prime}\right)$ |

This latter expression is copied from the Rev. II. Lloyd's discussion of the Dublin observations in 1840-'43.
For a comparison of the monthly equations, the reader may alco consult similar expressions obtained

In determining the least square coefficients in these equations, allowance has been made for the different weights due to the readings at the even and odd hours. $\theta$ is reckoned from midnight at the rate of $15^{\circ}$ an hour. To compare the numerical quantities of the angles $C_{1}, C_{2}, C_{3}, C_{4}$, in the general expression-
$\Delta_{d}=B_{1} \sin \left(\theta+C_{1}\right)+B_{2} \sin \left(2 \theta+C_{2}\right)+B_{3} \sin \left(3 \theta+C_{3}\right)+B_{4} \sin \left(4 \theta+C_{4}\right)$, with the same quantities in the formula of the diurnal variation (pp. 8 and 9 of Part I), $180^{\circ}$ must first be added or subtracted from each angle given there; since, in the discussion of Part I, increasing numbers correspond to a decrease of western declination, the scale being thus graduated, whereas, in the present case, increasing positive numbers correspond to an increase of western declination, as stated above.

The following table exhibits the close correspondence of the computed and observed mean amual value of the regular solar-diurnal variation :-

| Pbiladelphia meau time. | ditrsal Yartation. |  | $c-0$. | Philadelphia mean time. | Dinraal Varlation. |  | c-o. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cormputed. | Obsersed. |  |  | Computed. | Observed. |  |
| $\begin{array}{ll}1 & 19+\frac{3}{2} \\ 2 & 19+\frac{1}{2}\end{array}$ | -0.48 -0.51 | -0.51 | +0.03 -0.07 | $1 / 3 \mathrm{ll} .19 \frac{1}{2}$ 14 149 | +4.28 +3.81 | $\begin{aligned} & +4.32 \\ & +3.77 \end{aligned}$ | $\begin{aligned} & -0.04 \\ & +0.04 \end{aligned}$ |
| $\begin{array}{ll}2 & 14 . \frac{1}{2} \\ 3 & 1.9\end{array}$ | -0.51 | - 0.44 | - 0.07 | $\begin{array}{ll}14 & 19 \frac{1}{2} \\ 15 & 198\end{array}$ | +3.81 +2.77 | +3.77 +2.76 | $\begin{aligned} & +0.04 \\ & +0.01 \end{aligned}$ |
| $\begin{array}{ll}3 & 1: 9 \\ 4 & 195\end{array}$ | -0.67 -1.199 | -0.71 -1.19 | +0.04 +0.10 | $\begin{array}{ll}15 & 19 \frac{1}{2} \\ 16 & 19 \frac{1}{2}\end{array}$ | +2.81 +1.71 | +2.60 +1.80 | $\begin{array}{r} +0.01 \\ -0.09 \end{array}$ |
| 510 | -1.82 | -1.64 | +0.18 | 17 192 | +0.88 | +0.78 | +0.10 |
| $6 \quad 19 \frac{1}{2}$ | -2.77 | -2.72 | -0.05 | 18 192 | +0.33 | +0.25 | +0.08 |
| $719 \frac{1}{2}$ | $-3.49$ | $-3.47$ | -0.02 | 19 191 | -0.07 | -0.07 | 0.00 |
| $8 \quad 198$ | -3.44 | -3.50 | $+0.06$ | $20 \quad 19 \frac{1}{3}$ | -0.38 | -0.33 | $-0.05$ |
| $919 \%$ | -2.29 | -2.43 | $+0.14$ | $2119 \frac{1}{2}$ | $-0.57$ | $-0.60$ | $+0.03$ |
| $10 \quad 1: 1 / \frac{1}{3}$ | $-0.24$ | $-0.19$ | $-0.05$ | $2219 \frac{1}{2}$ | $-0.62$ | -0.64 | $+0.02$ |
| 11 191 | +2.03 | $+2.17$ | -0.14 | $2319 \frac{1}{2}$ | -0.57 | -0.71 | +0.14 |

The maximum difference at any one hour is less than $11^{\prime \prime}$, and the probable error of any single hourly result is $\pm 0^{\prime} .05$. The probable error of any single computed value from a monthly expression is $\pm 0^{\prime} .19$.

By means of the preceding equations, the hourly values of the diurnal variation for each month of the year have been computed; and the results, projected in curves, are given in Diagrams D and E. The first contains the curves for the six months of the summer half-year, and the second those of the winter half-year. Positive ordinates correspond to a westerly movement, and negative ordinates to an easterly movement, of the north end of the magnet. The diagram following (F) contains the type curves for summer, winter, and the whole year, all being upon the same scale.
by Mr. Karl Kreil from his discussion of deelinometer observations at Prague, extending over ten consecutive years ( $1840-^{\prime} 49$ ), and selected from a thirteen years' series, in order to obtain mean results zenaffected by the smaller inequality of the ten or eleven year period with which our results are still affecter. I'art I of the present discussion, however, affords ready means of changing slightly the uumerical values of the coefficients $B_{1}, B_{2}, B_{3}, B_{4}$, in our equations, in order to obtain the values we would have obtained, had we discussed a consecutive eleven year series of observations or one extending over a series of years corresponding to the actual length of the solar period then observed. Mr. Kreil's discussion will be found in Vol. VIII of the proceedings of the mathematical and physical section of the Imperial Academy of Sciences at Vienna (1854).



Tyfe-Curves of the Regular Solar-Diornal Variation of the Declination.


Regular Solar-Diurnal Variation of tie Magnetic Declination, computed for every
Month of the Year, and for tee Principal Seasons.

| Mean Epoch $18+2-43$. | 0 h . | $1^{\text {li. }}$ | 2 b . | 3 b . | 4 h. | 5 h. | $6{ }^{\text {h. }}$ | 7 h. | 8 b. | $9^{\text {h. }}$ | $10^{\mathrm{h}}$. | 112. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | -0'.52 | -0'. 24 | -0. 30 | -0'. 48 | - 0 ( 0.48 | -0'.38 | $-0.55$ | --1'.24 | -2.12 | -2'.45 | -1.59 | $+0.26$ |
| February | --0.30 | -0.09 | $-0.14$ | $-0.32$ | -0.49 | -0.71 | -1.18 | $-1.90$ | $-2.52$ | -2.49 | -1.49 | +0.24 |
| March | $-0.25$ | -0.32 | -0.55 | -0.71 | -0.81 | -1.09 | -1.84 | $-2.93$ | $-3.67$ | $-3.40$ | -1.81 | $+0.55$ |
| April | -0.84 | -1.14 | $-1.34$ | -1.44 | -1.54 | $-1.88$ | -2.64 | -3.55 | -4.02 | $-3.42$ | $-1.54$ | +1.11 |
| May | -0.58 | -0.59 | -0.50 | -0.59 | $-1.18$ | $-2.32$ | -3.75 | $-4.74$ | -4.66 | $-3.24$ | -0.81 | +1.93 |
| June | -0.19 | -0.28 | -0.41 | -0.69 | -1.32 | -2.45 | --3.87 | -5.02 | $-5.13$ | -3.80 | -1.23 | $+1.69$ |
| July | -0.80 | -0.82 | -0.67 | -0.72 | -1.34 | -2.62 | -4.22 | -5.42 | -5.45 | -4.04 | -1.47 | $+1.47$ |
| August | -0.62 | $-0.33$ | -0.21 | -0.59 | $-1.60$ | -3.09 | -4.68 | -5.71 | -5.48 | -3.67 | $-0.58$ | $+2.87$ |
| September | -0.52 | $-0.72$ | -0.90 | $-1.06$ | -1.42 | $-2.23$ | -3.51 | -4.55 | -4.50 | -2.84 | +0.11 | +3.18 |
| October | -0.44 | -0.52 | -0.30 | -0.20 | -0.16 | -0.45 | $-1.33$ | $-1.72$ | -2.19 | -1.92 | -0.79 | +0.77 |
| November | -0.23 | $-0.21$ | -0.32 | -0.44 | -0.56 | -0.75 | $-1.18$ | $-1.68$ | -1.91 | $-1.50$ | $-0.37$ | +1.11 |
| December | -0.36 | +0.01 | -0.02 | -0.34 | -0.60 | -0.67 | -0.73 | $-1.00$ | -1.44 | -1.64 | $-1.09$ | +0.26 |
| Summer | -0.63 | $-0.71$ | -0.71 | -0.81 | $-1.33$ | -2.43 | -3.84 | -4.92 | -4.91 | -3.43 | -0.83 | +2.12 |
| Winter | -0.41 | -0.26 | -0.29 | -0.42 | -0.50 | -0.68 | -1.09 | $-1.73$ | -2.25 | -2.15 | -1.12 | +0.56 |
| Year | $-0.49$ | -0.48 | $-0.55$ | -0.62 | $-0.94$ | $-1.54$ | -2.41 | -3.31 | $-3.54$ | -2.60 | -1.02 | +1.32 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mean Epocial | Noon. | 13b. | 14h. | $15^{\text {h }}$ | $16^{1 \mathrm{l}}$. | 17 h . | 18 h. | 19h. | 20 h . | 21 h. | $22^{\mathrm{h}}$. | 23 h . |
| January | +2'.26 | +3'.40 | +3'34 | $+2^{\prime} .46$ | +1 ${ }^{\prime} .52$ | $+0^{\prime} .92$ | $+0^{\prime} .57$ | $+0^{\prime} .08$ | - ${ }^{1} .64$ | -1 ${ }^{1} .29$ | $-11.45$ | -1.08 |
| February | +1.96 | $+2.97$ | +3.02 | +2.42 | +1.71 | +1.17 | +0.76 | +0.26 | -0.36 | -0.85 | -0.97 | -0.70 |
| March | $+2.71$ | +3.86 | +3.85 | +3.17 | $+2.33$ | +1.65 | +1.02 | +0.35 | -0.31 | -0.71) | -0.67 | -0.43 |
| April | $+3.60$ | $+5.06$ | $+5.18$ | +4.28 | +2.98 | $+1.76$ | +0.88 +0.39 | +0.27 -0.12 | -0.14 | -0.38 | -0.54 | -0.67 |
| May | +4.06 | +5.07 | +4.88 | +3.85 +3.79 | +2.48 +2.60 |  | +0.39 +0.87 | -0.02 | -0.12 | -0.14 | -0.213 | -0.43 |
| June | +3.99 +3.90 | +5.00 +5.26 | +4.79 +5.37 | +3.79 +4.54 | +2.60 +3.28 | +1.59 +2.04 | +0.87 +1.16 | +0.38 +0.66 | +0.07 +0.39 | +0.18 | -0.15 | -0.53 |
| July | +3.90 +5.44 $+\quad$ | +5.26 | +5.37 +5.55 | +4.54 +3.75 | +3.28 +1.98 | +2.04 +0.87 | +0.16 +0.50 | +0.66 +0.45 | +0.39 +0.26 | +0.13 | $-0.56$ | -0.75 |
| August | +5.44 +5.18 | +6.35 +5.54 | +5.55 +4.48 | +3.75 +2.99 | +1.98 +1.68 | +0.85 +0.85 | +0.50 +0.33 | +0.40 | -0.44 | -0.56 | -0.55 | -0.44 |
| September October | +5.18 +2.60 | +6.54 +3.17 | +5.48 +3.00 | +2.99 +2.20 | +1.68 +1.05 | + +0.85 | +0.39 | -0.36 | -0.39 | -0.52 | -0.69 | -0.69 |
| October | +2.60 +231 | +3.17 +2.81 | +3.00 +2.58 | +2.20 +1.90 | +1.08 +1.18 | +0.25 +0.57 | +0.06 |  | -0.59 | -0.92 | -0.77 | -0.49 |
| November Decemiber | +231 +1.86 | +2.81 +2.95 | +2.58 +3.04 | +1.90 +2.32 | +1.18 +1.34 | +0.57 +0.57 | +0.06 +0.11 | -0.28 | -0.78 | -1.22 | $-1.33$ | -0.96 |
| Decemiber | +1.86 | +2.95 | +3.04 | +2.32 | $+1.34$ | +0.57 | +0.11 | -0.28 | -0.8 |  |  |  |
|  | $+4.35$ | +5.29 | +4.99 | +3.89 | $+2.57$ | +1.43 | +0.64 | +0.18 | -0.05 | -0.17 | -0.33 | -0.44 |
| Winter | +2.21 | +3.12 | $+3.09$ | +2.38 | +1.52 | +0.84 | $+0.37$ | -0.09 | -0.55 | -11.89 | -0.94 | -0.72 |
| Year | +3.25 | $+4.22$ | + 4.09 | +3.14 | $+2.06$ | +1.12 | $+0.45$ | +0.05 | -0.32 | -0.52 | -0.58 | -11.58 |

In the above table + signifies westerly and - easterly deflection; it may be compared with similar tables constructed for Toronto, ${ }^{1}$ Dublin, ${ }^{2}$ and Prague. ${ }^{3}$ It will be observed that the preceding table, which gives the observed variation, refers to an epoch $19 \frac{1}{2}$ minutes later than the exact local hour (that is, to an exact Gïttingen hour), whereas the computed table refers to the exact Philadelphia hours.

From the computed tabular values, aided by the diagrams, we can now deduce some of the general features of the diurnal variation and its annual inequality.

The general character of the diurnal motion (see type-curves) is nearly the same throughout the year; the most eastern deflection is reached a quarter before 8 o'clock in the morning (about a quarter of an hour earlier in summer, and half an hour later in winter); near this hour the declination is a minimum; the north end of the magnet then begins to move westward, and reaches its western elongation about a quarter after one o'clock in the afternoon (a few minutes earlier in summer). At this time the declination attains its maximum value. The diurnal curve presents but a single wave, slightly interrupted by a deviation occurring during the hours near midnight (from about 10 P. M. to 1 A. M.), when the magnet has a direct or westerly motion ; shortly after 1 A . M. the magnet again assumes a retrograde motion, and completes the cycle by arriving at its eastern elongation shortly before 8 o'clock in the morning. This nocturnal deflection is well-marked in winter, vanishes in the summer months, and is hardly perceptible in the annual curve. According to the investigations of General Sabine, it is probable that, if we had the means of entirely obliterating the effect of disturbances, this small oscillation would almost disappear. In summer, when it has no existence, the magnet remains nearly stationary between the hours of 8 P. M. and 3 A. M., a feature which is also shown by the annual type-curve.

The two preceding plates show a close general resemblance in the diurnal curves for the six months when the sun has north declination, and a similar resemblance in the other six months when it has south declination.

The analytical expressions give the epoch and amount of variation with greater precision. The hours of minimum and maximum deflection are obtained from the equation $\frac{d \Delta_{d}}{d n}=o$; and the hours of the mean declination, when the curves cross the axis of abscissx, from the condition $\Delta_{a}=o$. The following table contains these results for each month and the two principal seasons of the year, also the critical interval between the two adjacent hours of the mean position:

[^34]| Nostig. |  | $\begin{aligned} & \text { Eatern } \\ & \text { elungation } \\ & \text { A. M. } \end{aligned}$ | $\begin{aligned} & \text { Wostrin } \\ & \text { elouysarin. } \\ & \text { B. af. } \end{aligned}$ | Gritical interval from minimum to maximam. | Epocie of Meas Dechinatfor. |  | Critical interval. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A. M. |  |  | ${ }^{1}$ P. M. |  |
| January |  |  | 8h. 58 mm . | 1h. 27 m . | 4t. 29 m . | $10 \mathrm{k}, 52 \mathrm{~m}$. | 7t. 188 mm | 84. 16 mm . |
| February | - | $8 \quad 34$ | 133 | $\begin{array}{ll}4 & 58 \\ 5 & 97\end{array}$ | $\begin{array}{lll}10 & 52 \\ 10 & 45\end{array}$ | 7 7 7 | 8 8 |
| March . | . . | 807 | 134 | $5 \quad 27$ | 104 | 732 | 846 |
| April | - - | 812 | $1 \quad 27$ | $5 \quad 15$ | $10 \quad 34$ | 740 | 85 |
| May | - - | 729 | $1 \begin{array}{ll}1 & 21\end{array}$ | 5 5 5 | $\begin{array}{ll}10 & 19\end{array}$ | $\begin{array}{ll}6 & 57 \\ 8 & 26\end{array}$ | 8 80 |
| June - | - . | $\begin{array}{ll}7 & 33 \\ 7 & 36\end{array}$ | $\begin{array}{ll}1 & 20 \\ 1 & 28\end{array}$ | $\begin{array}{ll}5 & 47 \\ 3 & 52\end{array}$ | $\begin{array}{ll}10 & 25 \\ 10 & 30\end{array}$ | 8 9 9 $\mathbf{3 6}$ | $\begin{array}{ll}10 \\ 11 & 02\end{array}$ |
| August: | $\cdot \quad$. | $\begin{array}{ll}7 & 36 \\ 7 & 18\end{array}$ | $\begin{array}{ll}1 & 28 \\ 1 & 05\end{array}$ | 5 5 | 1010 | 840 | $10 \quad 30$ |
| September | . . | $7 \quad 30$ | 045 | 515 | 958 | $6 \quad 45$ | 847 |
| October . | . . | 800 | $1 \quad 17$ | $5 \quad 17$ | $10 \quad 30$ | 523 | $6 \quad 53$ |
| November | - . | $7 \quad 54$ | 108 | 514 | $10 \quad 16$ | $6 \quad 08$ | 752 |
| December | - | $8 \quad 54$ | 140 | 446 | $10 \quad 50$ | (6) 17 | 727 |
| Summer |  | $7^{\text {hl. }} 33 \mathrm{~m}$. | 14. 8 mm . | 54.35 u. | 10 h .17 m. | $7^{\text {b. }} 43112$. | $9 \mathrm{~h} .26{ }^{\text {in. }}$ |
| Winter | - . | $8 \quad 24$ | 125 | 5.01 | $10 \quad 40$ | 649 | $8 \quad 09$ |
| Year |  | 748 | 116 | 528 |  | 708 | 842 |

We likewise obtain:

and


The effect of the seasons on the critical hours is well marked in the above table. The eastern elongation occurs earliest between the summer solstice and the autumual equinox, and latest about the winter solstice. The western elongation occurs earliest about the autumnal equinox, and latest about the winter solstice; and the same holds good for the morning epoch of the mean declination. The afternoon epoch, however, occurs earliest, shortly after the autumnal equinox, and latest, shortly after the summer solstice.
The critical hours which vary least during the year are those of the western elongation and those of the morning mean declination. The extreme difference between the value for any month and the mean annual value is 31 minutes in the former and 28 minutes in the latter.

The following graphical representation of three variables (Diagram $G$ ) will serve to show at a glance the various features of the diurnal variation and its annual inequality: The magnetic surface is formed by contour lines, 0.5 apart; the dotted curves are lines of mean position, the curves represented by dashes correspond to eastern, and the full curves to western deflection from the normal position. This diagram, as well as the computed tabular values from which it has been constructed, serve equally to furnish the correction necessary to reduce any single observation taken at any hour of the day and month to its mean value. It also enibles us in a measure to dispense with developing the amnual variability of the coefficients $B_{1}$ $B_{2} B_{3} \ldots$ and $C_{1} C_{2} C_{3} \ldots$ (or rather the equivalents $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} \ldots$ from which they are derived) in the general expression $A+B_{1} \sin \left(\theta+C_{1}\right)+$ etc. In most cases either a tabular or graphical interpolation between the two adjacent monthly values will fully answer the purpose. The diagram also distinctly exhibits
the diurnal minima and maxima, the former represented by a valley, the latter by a ridge in the magnetic surface.

The magnitude of the diurnal range is next to be considered.

Diagran shofing the Deflecton (in mixutes of arc) of the Nonthend of the Magnet from its Monthly Nohmale Pusition for every boez of the day and month of the year, derived from the Dechinometer Observations at Philadelphia between 1840 and 1845.


The following table contains the amount of the deflection at the eastern and western elongations and the diurnal amplitude of the declination for each month of the year, derived from the preceding equations:-


The diurnal range for the summer months is $10^{\prime} .45$, for the winter months 5.56 ,
and for the whole year $7^{\prime} .89$; all corresponding to an epoch removed about one year and a half from the epoch of a minimum of the solar period.

The numbers expressing the diurnal range exhibit three remarkable features, viz., the maximum value in the month of August, the sudden falling off in the months of September and October (see the graphical representation), and the

minimum value in November or December. Otherwise the progression is regular; the curve is single-crested, a feature equally true for the eastern as well as for the western deflection when viewed separately. This latter circumstance is of special importance, since it is probable that it is mostly by the interference of these two separate curves that we observe at other stations the curve of the diurnal range at some stations apparently to be a double-crested one. The curves for Milan, Munich, Göttingen, Brussels, Greenwich, Dublin, etc., for instance, exhibit two maxima, one after the vernal equinox, and a second, generally the smaller one, about the summer solstice, with more or less regularity. The system to which Philadelphia belongs is exemplified by the annual curve of the diurnal range at Prague and at some Russian stations, especially at Nertschinsk, but principally at Toronto, for which last station the curve is shown in the diagram. Neither station appears to have a tendency to a secondary maximum about the month of April, leaving the maximum about a month and a half after the summer solstice, a well-marked North American feature.

Annual Variation of the Declination.-In connection with the preceding discussion the annual inequality in the magnetic declination next claims attention.

This subject presents greater difficulty, inherent in the observations, than the diurnal inequality; not so much on account of the length of the period as on account of the difficulty of keeping the instrument in precisely the same condition of adjustment throughout the year. In the first part of this discussion I have already had occasion to refer to this circumstance while investigating the annual effect of the secular change, and it was there shown that the Philadelphia observations share in this respect the difficulties of those of other stations, ${ }^{1}$ in consequence of which the results must be received with caution.

[^35]Returning to the last vertical column in the table, headed "mean," we have there the monthly values of the declinometer readings (in scale divisions), and in their differences when compared month for month, the joint effect of the secular change, and of the annual inequality. To eliminate the effect of the secular change, we determine its annual amount as follows: Subtracting the mean annual reading 559.64 , corresponding to July 1 , from each monthly mean, and putting $x=$ monthly effect of the secular change (considered as uniform), each monthly mean reading furnishes an equation for the determination of $x$, thus: for

| January | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ | $4.56=5.5 x$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| February | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot 3.34=4.5 x$ |
| March | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot 5.22=3.5 x$ |
| April | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ | $4.39=2.5 x$, etc., |

which, when combined by least squares, give $x=1^{\text {d. }} .227$, hence the annual change $14^{4} .7$ or 6.7 of increasing westerly declination. ${ }^{1}$

Deducting the effect of the secular change, and comparing the monthly remainders with their mean values, we obtain the annual inequality of the declination as fullows:-

| mostr. | $\begin{gathered} \text { Mran } \\ \text { reading. } \end{gathered}$ | Reduction for sec. chatnge. | Reduced reading. | $\begin{gathered} \text { Annual } \\ \text { inequality. } \end{gathered}$ | month. | $\begin{aligned} & \text { Mean } \\ & \text { realing. } \end{aligned}$ | Reduction for sec. change. | Reduced reading. | $\begin{gathered} \text { Annual } \\ \text { inequality. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January |  | $\begin{array}{r} \text { d. } \\ -6.75 \end{array}$ | $557.45$ | $\begin{array}{r} \text { d. } \\ +2.2 \end{array}$ | July . . | $\stackrel{\text { d. }}{560.24}$ | $\begin{gathered} \text { d. } \\ +{ }^{0.61} \end{gathered}$ | $\stackrel{\text { d. }}{560.85}$ | ${ }^{\text {d. }} 1.2$ |
| February | 512.98 | -5.52 | 557.46 | +2.2 | Augnst . | 559.07 | +1.84 | 560.91 | $-1.3$ |
| Mareh . | 54.4 .86 | -4.29 | 560.57 | -0.9 | September | 556.07 | +3.07 | 559.14 | +0.5 |
| April . | 564.103 | -3.07 | 560.96 | -1.3 | October . | 556.43 | +4.29 | 560.72 | -1.1 |
| May. | 563.18 | -1.84 | 561.34 | $-1.7$ | Norember . | 553.97 | +5.52 | 559.49 | +0.2 |
| June . | 560.84 | -0.61 | 560.23 | -0.6 | December | 549.82 | $+6.75$ | 556.57 | +3.1 |


According to these results the magnet (north end) is deflected to the east of its mean annual position in summer, and to the west in winter. It is, however, desirable to test the result by submitting the first and the second $2 \frac{1}{2}$ years of observations separately to the same process of investigation. The first 31 months in the years 1840, '41, and '42, give a result almost identical with that just deduced;

[^36]the remaining 27 months in the years 1843 , 44 , and ' 45 , when diseussed in the same manner, give a rather different result.

Some improvements, however, can be made in the preceding investigation by omitting the December mean of 1844 , which is obviously about 12 scale divisions too small; the observed value is $535^{\mathrm{d}} .2$, and the interpolated value $547^{\mathrm{d}} .0$. An examination of the first series shows a defect in the monthly means of 1841 , between May and June, requiring a constant correction of $+\delta .0$ scale divisions for the remaining months after May, as may be seen by the following table :-


The following values then remain for the discussion, and they should be considered as forming the basis from which the legitimate results are to be deduced. The numbers marked with an asterisk have been increased by $8^{\text {d. }} .0$. Interpolated values are between brackets, and were obtained by comparing the means of the remaining months of the year with the corresponding means of every other year ; by this process several values are obtained for each interpolated number; the resulting mean is given in the table. The high value of 1841, and the low value of 1844 , for the month of May, in some measure compensate.

| Tear. | Jan. | Feb. | March. | April. | May. | June. | July. | August. | Sopt. | Oct. | Nor. | Dec. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1840 | $(586.9)$ | $\stackrel{\mathrm{d} .}{(585.9)}$ | $\begin{gathered} \mathrm{d} \\ (58 \mathrm{G} .3) \end{gathered}$ | $\begin{gathered} \mathrm{d} . \\ (586.4) \end{gathered}$ | $(5 \leq 4.1)$ | $\begin{gathered} \mathrm{d} \\ 586.9 \end{gathered}$ | $\stackrel{\text { d. }}{588.4}$ | $587.4$ | $\stackrel{\mathrm{d} .}{585.2}$ | $\begin{gathered} \text { d. } \\ 579.9 \end{gathered}$ | $\begin{gathered} \mathrm{d} . \\ 573.9 \end{gathered}$ | ${ }_{570.5}^{\text {d. }}$ |
| 1841 | (576.3 | 574.3 | 577.0 | 578.1 | 578.5 | *579.2 | *576.7 | *576.9 | *571.1 | *575.2 | *564.4 | *567.4 |
| 1842 | 564.1 | 563.3 | 562.0 | 561.9 | 561.8 | 563.6 | 565.2 | 563.8 | 566.7 | 562.7 | 563.5 | 561.6 |
| 1843 | (566.5) | (565.6) | (565.9) | 567.2 | 566.2 | 565.0 | 564.7 | 563.6 | 558.3 | 559.0 | 556.1 | 557.6 |
| 1844 | 558.0 | 558.0 | 557.6 | 555.2 | 546.5 | 547.5 | 547.5 | 546.2 | 542.2 | 545.3 | 547.2 | (547.0) |
| 1845 | 531.0 | 531.3 | 532.0 | 527.1 | 529.7 | 531.0 | (529.9) | (529.0) | (527.0) | (526.2) | (522.7) | (522.1) |
| Means | 563.8 | 563.1 | 563.5 | 562.6 | 561.1 | 562.2 | 562.1 | 561.2 | 558.4 | 558.1 | 554.6 | 554.4 |
|  | 560.4 |  |  |  |  |  |  |  |  |  |  |  |
| Correct'n for sec.changes | \}-4.4 | -3.6 | -2.8 | -2.0 | -1.2 | -0.4 | +0.4 | $+1.2$ | +2.0 | +2.8 | +3.6 | +4.4 |
| Corrected means | ) 559.4 | 559.5 | 560.7 | 560.6 | 559.9 | 561.8 | 562.5 | 562.4 | 560.4 | 560.9 | 558.2 | 558.8 |
| Annual variation (in arc) | $\} \begin{aligned} & +1.0 \\ & +0^{\prime} .5\end{aligned}$ | $\begin{aligned} & +0.9 \\ & +0^{1} .4 \end{aligned}$ | $\begin{aligned} & -0.3 \\ & -0^{\prime} .1 \end{aligned}$ | $\begin{aligned} & -0.2 \\ & -0^{\prime} .1 \end{aligned}$ | $\begin{aligned} & +0.5 \\ & +0^{\prime} .2 \end{aligned}$ | $\begin{aligned} & -1.4 \\ & -0.6 \end{aligned}$ | $\begin{aligned} & -2.1 \\ & -1^{\prime} .0 \end{aligned}$ | -2.0 $-0^{\prime} .9$ | -0.0 -0.0 | -0.5 -0.2 | +2.2 +0.9 | $\begin{aligned} & +1.6 \\ & +0.7 \end{aligned}$ |

This last result accords in general with that before deduced, but is much to be preferred.

From June to October the north end of the magnet is accordingly to the eastward of the mean annual position (after the elimination of the secular change), and in the remaining months of the year it is to the westward of this position. From the vernal equinox till after the summer solstice the motion is to the eastward or
retrograde in regard to the adrance of the secular change (to the westward) ; this is in conformity with the law as given by Dr. Lloyd in the Dublin discussion, where the motion of the magnet is to the westward at this period of the year, or the reverse of the Philadelphia deflection, but the secular change is likewise reversed, the west declination diminishing at Dublin (at the same time or more accurately between 1840 and '43).

For further comparison I give here the results deduced from seven years' observation at Toronto between the years 1845 and '51, a previous working up of a three years' series (middle year 1816) not being deemed sufficiently distinctive in its results. The sccular change is here 2.0 per annum, increasing westerly declination, whereas it was 4.4 per annum at Philadelphia in 1843; as in the above result + indicates west, - east deflection.

| Anneal Fariation at Toronto between 1845 and 1851. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tanuarç | Fenruary. | Mareh. | Aprit. | May. | June. | July. | Augunt. | Septernler. | Octuber. | November. | December |
| + 01.1 | - 01.5 | -0. 2 | 0.0 | $-0.1$ | - $0^{\prime} .5$ | -0. 8 | -0.2 | + 11.7 | $+1.0$ | $+0^{\prime} .3$ | $+0^{\prime} .3$ |

In regard to the amount of the inequality, the two stations agree remarkably well, the range remaining slightly below $2^{\prime}$ of arc. It has been supposed that this range at the same station is increasing or diminishing as the secular change increases or diminishes.

It may further be remarked that the gencral mean resulting from the above discussion at Philadelphia, viz., 560.4, is identical with the value given in Part I. of the discussion, there deduced by an entirely different combination. The annual effect of the secular change, $+4^{\prime} .4$, is likewise in very close conformity with the value given in Part I., as found by a very different process.

The monthly values of the annual variation may serve to give the corrections to observed declinations in any month of the year needed to refer the same to the mean declination of the year, and may also be used in the more refined discussion of the secular change, in both cases, only, when the greatest accuracy is required.

## SMITHSONIAN CONTRIBUTIONS TO KNOWLEDGE.

## D I S C U S S I 0 N

# MAGNETIC AND METEOROLOGICAL OBSERVATIONS 

MADE AT THE GIRARD COLLEGE OBSERVATORY, PHILADGLPHIA, IN $1840,1841,1842,1843,1844$, AND 1845.

PARTIII.

INVESTIGATION OF THE INFLUENCE OF THE MOON ON THE MAGNETIC DECLINATION.

BY

> A. D. B A C II E, LL. D.

# INVESTIGATION 

## or tile

INFLURNCE OF THE MOON ON THE MAGNETIO DECLINATION.

The existence of a sensible lunar effect on the magnetic declination has already been established by the labors of Broun, Kreil, Sabine, and others. It is nevertheless important to add the weight of new numerical results to those already obtained.

In the discussions of the Philadelphia observations of magnetic declination, already presented to the Association, I have shown how the influence of magnetic disturbances, of the eleven year period of the solar diurnal variation and its annual inequality, of the secular change, and of the annual variation may be severally eliminated, leaving residuals from which the lunar influence is to be studied. Each observation was marked with its corresponding lunar hour and the hourly normals used for comparison.
"This method of treatment of the subject is that followed by General Sabine in his discussion of the results of the British observations. ${ }^{1}$

The details of the method will be better understood by an example.
The time of the moon's passage over the meridian of Philadelphia (upper transit) was obtained from the American Almanac, the small correction for the difference

[^37]1
of longitude being neglected. The observation nearest to the local mean solar time of the moon's transit was marked with a zero, signifying $0^{\text {h. }}$ of lunar time. The time of the inferior transit was next obtained; and the observation nearest to it in time was marked $12^{\text {h }}$. The greatest difference in interval between the moon's transit and the time of observation could in no instance exceed half an hour. In the bi-hourly series, the observations nearest the moon's transit, or to either hour angle, one hour before or one hour after the transit was marked. The mean of a number of differences for the same hours thus gave a result corresponding nearly enough with the hour. The number of observations intermediate between those marked $0^{\mathrm{h} .}$ and $12^{\text {h. }}$ were marked with the corresponding hour angle by interpolation, care being taken to note the ncarest full hour against each observation in the bi-hourly series. The hourly series begins with October, 1843. In the case of thirteen observations within twelve lunar hours, the one nearest midway between the two consecutive lunar hours was omitted.

In the month of March, 1842, which is selected as an example of the details of working the bi-hourly series, the number of observations available is 298 , of which 148 correspond to western and 150 to eastern hour angles. In the abstract which follows + indicates a deviation of the north end of the magnet to the west, and - a deviation to the east of the respective normal position for the hour. The hourly normals are given in the first part of the discussion. No difference exceeds eight divisions, this being the limit in number indicated by the criterion.


The following table contains the number of observations used in the discussion of the lunar-diurnal variation :-

|  | 1840. | 1841. | 1842. | 1843. | 1844. | 1845. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January . | $\ldots$ | 168 | 265 | ... | 507 | 591 |
| February . . . . . . | ... | 263 | 257 | ... | 571 | 535 |
| March . . . . . . | ... | 293 | 298 | $\ldots$ | 591 | 55 |
| April . . . . . . . | ... | 283 | 278 | 276 | 523 | 541 |
| May . . . . . . . | $\ldots$ | 2719 | $2 \times 5$ | 309 | 596 | 6013 |
| Jume . . . . . . . | 3100 | 2719 | 280 | 310 | 566 | 542 |
| July . . . . . . . | 272 | 292 | 2;7 | 290 | 593 | ... |
| August . . . . . . | 269 | 26 | 254 | 2.4 | 51 | ... |
| September . . . . . | 25.3 | 250 | 247 | 243 | 529 | ... |
| October . . . . . . | 223 | 214 | 221 | 571 | 517 | $\ldots$ |
| November . . . . | 271 | 230 | 259 | 590 | 517 | ... |
| December . | $2: 37$ | 268 | 316 | 59.5 | 54! | ... |
| Sum | 1825 | 30175 | 3257 | 3458 | 6622 | 3407 |
| Total sum |  |  |  |  |  |  |

If divided into western and eastern hour-angles, the annual numbers stand as follows:-


The preceding mean results will be found inserted in their proper place in the following abstract of the mean monthly values for each observing month between 1840 and 1845.

Proceeding in this way the following results are obtained for the different months discussed.

| D's Upper transit. |  | Moon's hour-angle. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 154\% | 0 h. | $1^{\text {h. }}$ | 2 h . | 3 h . | $4^{\text {b }}$ | 5 h . | 6 h . | 71 | Sh. | 9 h. | 10 L. | $11^{\text {h. }}$ |
| June ${ }^{\prime}$ | - 01.23 | -0. ${ }^{\text {d }}$ (25 | -1.28 | d. +0.95 | $-1.09$ | d +0.11 | ${ }_{\text {d. }}^{\text {d }}$ | d +0.30 | - ${ }_{-1.12}$ | d. +1.60 | -0.02 | $\begin{array}{r}\text { d. } \\ +0.55 \\ \hline\end{array}$ |
| July ${ }^{\text {a }}$ | +0.82 | +1.87 | -0.56 | +2.04 | $-1.98$ | $+1.60$ | $-1.34$ | + 0.40 | $-0.21$ | +0.47 | +0.11 | +0.75 |
| Augnst | -0.71 | - 0.10 | +1.41 | +0.73 | $+1.05$ | +1.20 | $-0.50$ | -0.44 | +0.10 | $+0.86$ | $+0.20$ | $+0.75$ |
| Septernber ${ }^{3}$ | +1.74 | -0.52 | +1.015 | -0.87 | $-0.40$ | $-2.05$ | -0.67 | $-1.18$ | +0.49 | +0.28 | +0.52 | $+1.53$ |
| October | $+11.77$ | $-1.13$ | $\underline{+0.37}$ | +0.98 | + 0.25 | +1.23 | -0.01 | +0.71 | -0.78 | -0.63 | -0.68 | -3.61 |
| November ${ }^{4}$ | +1.11 | +1.04 | +1.21 | +0.77 | +1.07 | +1.44 | -0.39 | -0.53 | -1.44 | $-2.03$ | -0.08 | -1.61 |
| December | $-1.43$ | +1.14 | $+0.37$ | $+0.37$ | +0.16 | -0.90 | -0.73 | -1.44 | $-1.03$ | $+1.01$ | - 1.01 | +1.24 |
| D's Lower trausit. |  |  |  |  |  |  |  |  |  |  |  |  |
| 1) 40. | 12 h | 13 h . | 14 tu . | 15. h . | 16 h. | 17h. | 1sh. | 19h. | 20 h. | 21 h . | 2310 | 23 h . |
|  | 11.50 +1.50 | $\begin{array}{r} \mathrm{d} \\ +11.75 \end{array}$ | + ${ }^{11.28}$ | +0.8.80 | 1.1 +0.19 | d. +1.15 | -0.72 | d +0.18 | $-1.35$ | d. +0.69 | - ${ }^{\text {d. }}$ | d. +10.98 |
| July ${ }^{2}$ | +1.15 | -1.08 | -0.41 | +0.32 | -1.71 | +1.113 | +0.15 | -0.18 | $-11.37$ | +1.00 | $-1.35$ | - 0.0 .0 |
| August | +11.18 | $-1.56$ | -11.91 | - 0.10 .15 | -1.15 | -0.03 | +0.0.0 | $-2.61$ | $+1.50$ | $-1.30$ | $-1.27$ | - 0.50 |
| Suptember ${ }^{3}$ | + 10.64 | +0.38 | +0.63 | +2.25 | +0.84 | +1.26 | -0.61 | -0.01 | -1.05 | -0.61 | $-1.23$ | $+0.20$ |
| October | +0.53 | -0.59 | +1.30 | +1.18 | -1.19 | +0.63) | -0.31 | -0.99 | $-0.40$ | $-0.40$ | +1.51 | +1.05 |
| November ${ }^{1}$ | +0.75 | -0.62 | + 11.12 | -0.42 | -0.49 | +0.01 | $-0.102$ | +1.09 | $+0.88$ | $+0.57$ | +0.14 | $+0.18$ |
| December | $+0.91$ | -0.78 | -0.67 | -1.82 | -0.06 | -0.70 | $-2.57$ | +1.21 | +0.63 | $+0.86$ | +0.64 | +1.48 |

[^38]| D's Upper transit. |  |  |  |  | Moon's hour-angle. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1841. | 0 t . | $1{ }^{11}$. | $2^{\text {h. }}$ | 3 h . | 4h. | 51. | 6 h. | 7 h . | 81. | 91. | 10 hr . | 111. |
| January | +0.86 | -1.07 | +0.54 | +1.39 | +0.50 | 2.01 | +0.89 | 0.11 | $-1.52$ |  |  |  |
| February | +1.48 | -2.17 | +1.12 | +0.49 | +0.49 | +0.10 | $\underline{+0.10}$ | $-0.57$ | -0.38 | +0.32 | +0.92 | +1.40 |
| March | +1.67 | $+0.82$ | +0.64 | +1.00 | $+0.61$ | $+0.40$ | $-0.39$ | $-1.17$ | -1.21 | $+0.69$ | -0.65 | $-0.91$ |
| April | +1.57 | $+1.01$ | $+0.45$ | +0.97 | +0.20 | $+0.12$ | +0.39 | +1.40 | -0.27 | $-1.52$ | +0.48 | $-1.43$ |
| May | +0.19 | +2.11 | +0.69 | +1.94 | -0.0.5 | $+0.92$ | -0.39 | -0.60 | $-0.73$ | -1.20 | -0.94 | +1.21 |
| June | $-0.56$ | +1.77 | $+0.07$ | +0.45 | +2.18 | +1.25 | -1.15 | -0.59 | $-2.40$ | $-1.13$ | -0.42 | $-1.24$ |
| July | +0.84 | +1.86 | $+0.46$ | -1.06 | -0.62 | $-1.52$ | -0.80 | -0.65 | -0.88 | $-1.71$ | -0.24 | +1.6:3 |
| August | +1.95 | +1.31 | +1.73 | +1.42 | -1.17 | -1.46 | -1.48 | $-1.39$ | $-2.06$ | $-2.24$ | $-1.72$ | +0.600 |
| September | +1.05 | $+0.10$ | $-0.45$ | $-0.17$ | $-3.50$ | -0.54 | $-0.55$ | $-0.83$ | -1.47 | $+0.86$ | +1.29 | +0.03 |
| October ${ }^{1}$ | $-1.15$ | $+0.26$ | $-0.77$ | $-0.06$ | $-1.31$ | -0.82 | -0.66 | $-0.61$ | $-1.73$ | +1.73 | +0.22 | +1.09 |
| November | +0.01 | $-0.08$ | $+0.02$ | $+0.54$ | +0.23 | -1.08 | +1.54 | $+0.52$ | +1.39 | +0.02 | -0.24 | -0.096 |
| December | -0.41 | +0.10 | +0.45 | $-0.71$ | -0.94 | +0.55 | $-0.51$ | +1.09 | +0.62 | $-0.47$ | +0.48 | +0.08 |
| D's Lower transit. |  |  |  |  |  |  |  |  |  |  |  |  |
| 1841. | $\mathrm{h}^{\text {b. }}$ | $13^{\text {h. }}$ | 14 b . | 5 h . | 16 k . | 17h. | 18h. | 191. | 20 h. | $21^{\text {b }}$ | 22h. | 234. |
| January | $\underline{+1.33}$ | $+0.57$ | -0.04 | ${ }_{-0.51}^{\text {d. }}$ | ${ }_{-0.50}^{\text {d. }}$ | d. ${ }_{\text {d. }}^{\text {+ }}$ | +0.25 | -2.10 | - ${ }_{\text {d. }}^{\text {- }}$ | $\underline{-1.32}$ | ${ }_{0.07}^{4 .}$ | ${ }^{\text {d. }}$ 00 |
| February | $-0.03$ | $-1.30$ | -0.78 | -0.30 | -1.23 | -2.01 | $-1.12$ | $-1.08$ | +0.60 | +1.30 | $+0.56$ | +1.07 |
| March | +0.15 | +0.18 | +1.05 | +0.23 | -0.15 | $-0.59$ | -0.23 | $-0.93$ | $-0.47$ | -0.98 | +1.89 | $+0.35$ |
| April | +1.35 | -1.05 | $-0.09$ | $+0.90$ | -0.02 | -1.13 | $-0.32$ | -1.67 | -0.89 | -0.13 | -0.63 | +0.02 |
| May | +0.42 | +1.44 | $+0.56$ | +0.24 | $-1.21$ | -0.89 | -2.64 | $-0.85$ | $-2.20$ | $-1.09$ | +0.96 | +0.90 |
| June | +0.11 | -1.42 | $-0.13$ | +0.67 | +1.18 | -0.53 | +0.62 | -1.14 | +1.79 | +0.01 | -0.22 | +0.80 |
| July | $+1.26$ | +1.50 | +1.09 | +1.76 | +0.32 | +0.45 | -0.80 | $+0.01$ | --0.95 | $+0.27$ | -0.87 | $+0.44$ |
| August | +2.28 | $+0.51$ | +1.97 | +1.19 | +0.62 | -1.81 | $-0.50$ | -1.07 | $-0.59$ | +1.66 | $+0.06$ | +1.20 |
| September | $+0.37$ | +0.41 | +1.21 | +0.95 | -1.66 | -0.44 | -0.25 | -0.45 | +0.45 | $+0.19$ | $+0.85$ | +0.44 |
| October ${ }^{1}$ | $-1.73$ | +1.04 | +0.76 | +0.34 | +0.18 | +1.60 | +0.97 | +3.14 | +1.30 | +3.10 | $-0.61$ | -1.54 |
| November | +1.01 | $+0.03$ | $-1.20$ | $-0.30$ | -1.89 | -1.33 | $-0.72$ | -0.49 | $+0.50$ | -1.89 | $+0.79$ | $-0.27$ |
| December | +0.73 | $-0.59$ | +0.80 | $-0.49$ | +0.71 | -0.92 | -0.67 | $-1.27$ | $+0.12$ | +1.21 | $+1.76$ | +0.83 |
| D's Upper transit. |  |  |  |  | Moon's hour-angle. |  |  |  |  |  |  |  |
| 1542. | ${ }^{0} \mathrm{~b}$. | $1^{\text {h. }}$ | 2 h . | 3 h. | $4{ }^{\text {h. }}$ | 5 h. | $6{ }^{6 .}$ | 7 h. | ${ }^{8}{ }^{\text {b }}$ | 9 h. | 10 h | 11 h . |
|  | - ${ }_{-0.30}^{\text {d. }}$ | d. <br> +0.64 | - ${ }_{\text {d. }} .53$ | + ${ }_{\text {d. }}^{\text {d }}$ | + ${ }^{\text {d. }}$ | $\xrightarrow{\text { d. }}$ | + ${ }_{\text {d. }}^{+0.14}$ | ${ }_{\text {d. }}^{\text {d. }}$ | d. +0.44 | -1.20 | d. +0.26 | ${ }_{-1.84}^{\text {d. }}$ |
| February | $-0.73$ | +0.88 | +0.36 | -0.13 | -0.53 | +0.67 | +0.18 | $-1.80$ | -0.92 | $-0.73$ | -0.27 | +0.04 |
| March | +0.72 |  | +1.78 | +0.30 | +1.35 | -1.15 | -0.53 | -2.15 | -0.05 | -0.29 | $+0.46$ | -0.84 |
| April | $-0.77$ | +0.92 | $+0.53$ | +0.37 | -0.07 | -0.39 | -0.26 | -1.65 | $+0.27$ | -0.42 | +1.21 | +0.10 |
| May | $-0.57$ | +1.78 | +0.01 | -0.16 | +0.18 | $-1.01$ | -1.41 | -0.97 | -0.92 | +0.08 | -0.43 | +0.42 |
| June | +0.38 | +0.69 | -0.95 | +1.64 | -0.18 | +0.77 | -0.25 | -0.32 | $+0.76$ | +1.18 | +0.38 | -0.74 |
| July | +0.78 | +0.16 | $+0.69$ | -0.07 | +0.60 | -0.76 | -2.08 | +0.08 | -1.65 | +0.87 | -1.04 | +3.03 |
| August | +0.88 | +0.82 | -0.08 | -1.03 | +1.17 | -0.91 | -0.95 | +0.67 | $+0.72$ | -1.24 | -0.17 | +1.65 |
| September | +0.71 | -0.52 | $-0.13$ | -0.95 | $+0.67$ | $+0.96$ | -0.82 | +0.34 | +0.82 | $+^{0.35}$ | +0.62 | +1.36 |
| October | +3.46 | +0.38 | +0.77 | $-0.29$ | $+0.06$ | +0.02 | -0.25 | -2.21 | $-0.98$ | -1.39 | +0.52 | $-1.09$ |
| November | -0.05 | +0.38 | -1.07 | -0.48 | $-0.36$ | $-1.10$ | -0.53 | +0.43 | -0.95 | $+0.54$ | +0.14 | +0.29 +0.16 |
| December | -0.59 | -0.36 | -0.34 | -1.15 | -0.75 | +0.26 | $-0.57$ | +0.24 | +0.39 | +0.64 | +0.87 | +0.16 |
| D's Lower transit. |  |  |  |  |  |  |  |  |  |  |  |  |
| 1842. | $12^{\text {h, }}$ | 13h. | $14^{\text {h. }}$ | 15h. | 16h. | 17 h . | 18h. | 19h. | 20 h . | 21 | 22 | 23 b. |
| January | ${ }_{-0.18}^{\text {d. }}$ | ${ }_{1.19}$ | ${ }_{-0.11}^{\text {d. }}$ | ${ }_{-2.13}^{\text {d. }}$ | + ${ }^{\text {d. }}$ | ${ }_{-0.61}^{\text {d. }}$ | d. +0.45 | $\xrightarrow{\text { d. }}$ | d. +0.72 | d. +0.66 | - ${ }_{\text {d. }}$ | +0.62 |
| February | -0.91 | +0.71 | +0.52 | +0.40 | -0.97 | -0.86 | -1.11 | +0.44 | -0.12 | +0.14 | $+0.018$ | +11.84 |
| March | +1.22 | +0.20 | +1.25 | $+0.88$ | +0.44 | -0.34 | -0.92 | $-1.43$ | +0.47 | -0.39 | $+0.03$ | -0.35 |
| April | +3.28 | $-0.86$ | +0.13 | -0.12 | -1.05 | -1.34 | -1.36 | +0.15 | $-1.22$ | $+0.19$ | -0.94 | +1.11 |
| May | +1.13 | +1.78 | +1.59 | +1.10 | -0.59 | $-0.52$ | -0.68 | $-1.47$ | -1.05 | +0.15 | -0.70 | +1.01 |
| June | +0.20 | -0.82 | +1.45 | $+0.33$ | +1.73 | -1.19 | +0.05 | -1.36 | -1.04 | -1.43 | $-1.35$ | -1.37 |
| July | -0.32 | +1.84 | -0.86 | -0.72 | +0.59 | -0.95 | $-0.27$ | $\underline{+0.03}$ | -1.22 -0.96 | +0.19 | -0.58 | +0.68 |
| August | -0.68 | +2.50 +1.11 | -1.34 -1.94 | +0.59 +0.25 | -1.41 +0.99 | ${ }^{-0.67}$ | -0.79 -1.64 | -0.58 +0.10 | -0.96 -1.70 | +0.26 +2.14 | +1.68 +1.50 | +0.81 +0.96 |
| October | +1.31 | +1.68 | $-0.62$ | +0.74 | -1.87 | -0.14 | +1.08 | +0.43 | -0.16 | -0.25 | +0.71 | -0.56 |
| November | +0.47 | +0.40 | $+0.91$ | -1.13 | +0.02 | $+0.11$ | $-0.22$ | $-1.46$ | $+0.05$ | $+0.68$ | +0.94 | +1.58 |
| December | +0.53 | +0.35 | +0.12 | $-0.45$ | -1.12 | +0.15 | +0.35 | +0.54 | +0.40 | $+0.57$ | +0.21 | +0.07 |

${ }_{2}^{1}$ At $14^{\text {h. }} 19 \frac{1}{2}{ }^{\text {m. }}$. (observatory time) the difference from the half-monthly normals was used.

| D's Upper transit. |  |  | Moon's hour-angle. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0^{4}$. | $1{ }^{\text {h }}$ | 2 l . | 34. | $4^{\text {t. }}$ | 5 . | 6 h. | 7 h . | 8h. | 9 h . | 10 b . | 11 h. |
|  |  |  |  |  |  |  |  | $-1.72$ | -1.99 | - ${ }_{-0.12}^{\text {d. }}$ |  |  |
| April May | +1.57 +0.94 | +1.47 | +1.66 +1.54 | +0.39 +0.45 | -0.42 | -1.30 | -2.64 +0.23 | -1.72 | -1.99 -0.79 | -1.01 | -1.63 | - ${ }^{0.48}$ |
|  | $\pm{ }_{-0.13}$ | $\pm 1.5$ | +1.08 | ${ }_{-0.81}^{+0.45}$ | +0.67 | +1.21 | -0.31 | +0.83 | $+0.16$ | $+0.61$ | -0.10 | +1.30 |
|  | +2.10 | +0.91 | -0.71 | $+0.65$ | +0.69 |  | $-0.62$ |  | -0.39 | -2.29 | +1.05 | -0.16 |
| August ${ }^{2}$ | -1.56 | -0.81 | -2.28 | +1.17 | $-0.05$ | -1.12 | $+0.32$ | $-1.24$ | +0.26 | -0.22 | -0.69 | +0.46 |
| September | -0.71 | +0.26 | -0.58 | -0.85 | -1.08 | $-0.23$ | -0.30 | +1.74 | -0.74 | $+0.37$ | -0.42 | +0.58 |
| October ${ }^{3}$ | +1.05 | +0.14 | +0.28 | +0.17 | -0.03 | -0.93 | $+0.19$ | -0.52 | -1.16 | +0.27 | +0.33 | $+0.33$ |
| November | +0.52 | +0.16 | -0.72 | -0.47 | -0.80 | -0.84 | -0.57 | $-0.72$ | -0.02 | $+0.23$ | -0.17 |  |
| December | -0.41 | -0.24 | -0.64 | -1.15 | -0.88 | $-0.41$ | +0.07 | +0.08 | +0.39 | +0.99 | +1.09 | +1.28 |

## D's Lower transit.

| 1543. | 12 l . | 13h. | 14. | 15 h. | $16^{11 .}$ | $17^{\text {n. }}$ | 18. | 19 l | $20^{\text {n. }}$ |  | $22^{\text {n. }}$ | 23 b . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | -1.10 | $-1.05$ | -0.22 | -1.06 | 0.56 |  |
| April | +0.79 | $\begin{array}{r}+1.92 \\ +0.74 \\ \hline\end{array}$ | +0.72 +1.01 | -0.06 -0.58 | +0.53 -1.01 | +0.05 -1.03 | -1.10 -1.43 | ${ }_{-0.27}^{-1.05}$ | -0.22 | - ${ }^{-1.06}$ | -0.56 | +1.58 +0.08 +1. |
| May June | +0.67 +0.94 | +0.74 +1.46 | $\underline{+0.55}$ | -0.58 | - 1.01 | -1.03 | - ${ }_{-0.63}$ | -0.27 | -0.38 | -0.22 | +0.74 | +0.20 |
| July | -0.2 | +0.61 | +0.66 | $+0.66$ | -0.43 | $-1.10$ | -2.00 | -1.05 | -0.0 | -0.06 | -0.54 | +1.73 +0.06 |
| August ${ }^{2}$ | +0.91 | -0.59 | $-0.77$ | +0.59 | -1.85 | $+0.01$ | -1.00 | +1.37 | -0.9 | +0.74 | + | 106 |
| Septemb | $+1.63$ | +1.85 | +0.78 | +2.32 | +1.15 | -0.29 | $-^{0.86}$ | +1.08 | , |  |  |  |
| October ${ }^{3}$ | +0 | $+1.50$ | +1.3 | +0.53 | -0.71 | -0.92 +0.04 | $\begin{aligned} & =1.76 \\ & 乙_{0.24} \end{aligned}$ | -0.70 |  |  | -0.37 |  |
| vember | $+0.67$ | +0.45 | -0.33 |  |  | ${ }_{-1.14}^{+0.04}$ | -0.24 | ${ }^{+0.74}$ | -0.46 | +0.46 | +0.24 | ${ }_{+0.42}^{+0.50}$ |
| December | +0.8 | +0.51 | +0.6 | +0.6 | +0.2 | -1.14 | -0.5 | -0.4 |  |  |  |  |


| D's Upper transit. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1544. | Oh. | $1{ }^{\text {b }}$. | $2{ }^{\text {b }}$ | 3 h . | $4^{\text {h. }}$ | 5 h. | 6 h . | 7 h . | 8 h . | 9h. | 10 h. | 11 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| January ${ }^{\prime}$ | -0.79 | $-0.18$ | $-0.26$ | $+0.07$ | +0.20 | $+0.94$ | $+0.58$ | $\underline{+0.19}$ | ${ }_{-0.29}^{+0.22}$ | +0.37 +0.77 | -0.46 |  |
| February | +1.43 | $+0.87$ | +0.67 | -0.52 | -0.69 | -0.82 | -0.56 | -0.74 -0.16 | -0.29 | +0.77 | +1.03 +0.93 | ${ }_{-0.12}^{+0.96}$ |
| March | +1.10 | +1.06 | +0.42 | +0.04 | -0.72 | -0.03 | -0.69 | -0.12 | ${ }_{-0.55}^{+1.98}$ | ${ }_{-0.41}$ | +0.16 | -0.04 |
| April | - 0.1 .58 | +0.08 | +0.23 | +0.54 +0.27 | +0.09 +0.02 | ${ }_{-0.49}^{+0.35}$ | -0.49 | -0.60 | -0.35 | -0.10 | +0.14 | +0.27 |
| June | +1.11 | +0.68 | +1.07 | +0.44 | +0.09 | -0.64 | $-0.24$ | $-1.33$ | $-1.58$ | -1.47 | -0.40 | +0.22 |
| July | +1.09 | +1.27 | +0.78 | $+0.97$ | +0.18 | -0.73 | $-1.05$ | $-1.77$ | -0.17 | -0.13 | $+0.68$ | $+0.37$ |
| Augnst | +2.30 | +0.93 | +0.19 | -0.14 | -0.16 | $-1.55$ | $-0.78$ | -0.69 | -0.38 |  |  | +0.45 |
| September | +1.13 | +1.47 | -0.21 | -0.05 | -0.61 | -1.15 | $-0.31$ | $+1.05$ | +1.10 | -0.18 | +0.12 | $-{ }^{0.34}$ |
| October | -0.22 | +0.42 | -0.102 | +0.22 | $-0.41$ | -0.59 | -0.78 | +0.38 | -0.02 | +1.04 | +1.10 | +1.01 |
| November | -0.91 | -1.12 | -0.71 | $-0.57$ | -0.66 | $+0.03$ | -0.01 | +0.45 | -0.77 | +0.00 | $+0.62$ | +2.57 |
| December ${ }^{5}$ | -0.26 | $-0.74$ | -0.21 | -0.44 | -1.14 | -0.33 | -0.41 | -0.18 | +0.14 | +0.33 | +0.36 | +0.60 |

D's Lower transit.

| 184. | 12 h. | 13h. | 14h. | 15 h | 16h. | 17 h. | 18 L | $19^{\text {h. }}$ | 20 h . | 21 h. | 22 h. | 23 h . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | - ${ }^{\text {d. }} 0.09$ |  |  |  |  | d. +0.32 | ${ }^{\text {d. }} \mathbf{0 . 1 0}$ | - ${ }_{-0.80}$ |  |
| January ${ }^{4}$ | +0.32 +0.44 | +0.10 0.00 | +0.31 +0.54 | -0.09 | -0.61 | -0.17 | +0.84 -1.13 | +0.95 -0.39 | +0.32 | -0.10 | -0.80 | +0.48 |
| February Mareh | +0.44 +1.33 | 0.00 +0.52 | +0.54 -0.50 | -0.26 -0.21 | - 1.10 | -0.49 | -1.13 | -0.39 | -0.022 | -0.05 -0.48 | -0.02 | +0.84 -0.10 |
| March April | +1.33 +0.87 | +0.52 +0.70 | -0.50 | -0.21 | -0.21 | -0.68 | - 0.50 | +0.05 | -0.66 | -0.42 | -0.02 | $-1.63$ |
| May | +0.46 | +0.09 | +0.74 | +0.43 | $+0.62$ | $+0.06$ | $-0.19$ | $-1.10$ | -0.85 | $-1.17$ | +0.10 | $+0.06$ |
| June | +0.19 | +0.48 | $-0.30$ | $-0.36$ | -0.01 | +0.35 | + 0.31 | +0.29 | +0.25 | $+0.20$ | +0.11 | 0.00 |
| July | $+1.27$ | +0.36 | $+0.46$ | -0.70 | -0.51 | -0.70 | $-1.03$ | -0.13 | -0.31 | -0.57 | -0.12 | +0.78 |
| August | $+0.50$ | +0.22 | +0.84 | -0.30 | -0.19 | $-0.77$ | $-1.06$ | -0.75 | $-0.34$ | -0.14 | $-0.43$ | +0.76 |
| September | +0.25 | +0.04 | +0.73 | -0.20 | -0.03 | $-1.20$ | $-1.89$ | $-1.27$ | -1.33 | -0.62 | $+0.13$ | +1.15 |
| October | +0.56 | +1.19 | + 10.78 | $-0.10$ | -0.36 | $-0.32$ | -0.03 | $-1.83$ | -0.58 | -0.55 | +0.06 | +0.06 |
| November | +11.36 | +1.09 | +0.67 | $+0.43$ | +0.05 | +0.40 | $+0.07$ | $-0.77$ | -0.68 | +0.41 | +0.15 | -0.11 |
| December ${ }^{5}$ | +0.48 | +0.64 | $+1.06$ | -0.12 | -0.12 | -0.64 | $-0.22$ | +0.23 | $+0.26$ | +0.68 | +0.17 | +0.42 |

${ }^{1}$ There are no olservations in January, February, and March, of this year.
2 Attention was paid to the shifting of the zero of the scale between the 9 th and 10th.
${ }^{3}$ Commencement of the hourly series of observations.

* Proper attention was paid to the change in the zero of divisions after the 10 th.
s The half-monthly normals were used.

| D's Upper transit. |  |  |  |  | Moon's hour-angle. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1845. | ${ }^{\text {bab }}$ | 1 h . | $2{ }^{\text {h. }}$ | $3{ }^{\text {h. }}$ | $4^{\text {h }}$ | 5 h | $6^{\text {b }}$ | 7 h . | 8 h. | $9{ }^{\text {h. }}$ | $10^{\mathrm{h}}$. | $11^{\text {h }}$ |
|  | ${ }_{-0.46}^{\text {d. }}$ | ${ }_{-1.65}^{\text {d. }}$ | ${ }_{-1.52}^{\text {d. }}$ | $\xrightarrow{\text { d. }}$ - ${ }^{\text {d. }}$ | - ${ }_{\text {d. }}^{\text {d. }}$ - | ${ }_{-0.24}^{\text {d. }}$ | d. <br> +0.11 | + ${ }^{\text {d. }} 1.41$ | + ${ }^{\text {d. }}$ | +1.83 | + ${ }_{\text {d. }}$ | +1.11 |
| February | -0.13 | +0.48 | -0.26 | $-1.15$ | $-0.56$ | $-0.81$ | -0.39 | $-0.28$ | +0.18 | +1.03 | +0.98 | +1.28 |
| March | -0.42 | $-0.47$ | -0.26 | $-0.48$ | $-0.25$ | -0.75 | -0.81 | -0.25 | $+0.20$ | $+0.39$ | $+0.79$ | +0.91 |
| April | +0.45 | +0.54 | $+0.07$ | $+0.52$ | $-0.21$ | $-0.47$ | -0.27 | $-0.07$ | -0.25 | $-0.03$ | +0.27 | +1.08 |
| May | $\begin{aligned} & +0.53 \\ & +1.77 \end{aligned}$ | +0.49 +1.63 | +0.01 +0.90 | +0.16 +1.24 | $\underline{-0.21}$ | -0.22 | -0.66 | - 0.25 | -0.88 | +0.0.43 | ${ }^{+0.92}$ | +0.43 ${ }_{-0.31}$ |
| June |  | +1.63 | +0.90 | +1.24 | $+0.86$ | +0.54 |  |  |  |  | -0.83 | $-0.31$ |
| D's Lower transit. |  |  |  |  |  |  |  |  |  |  |  |  |
| 1845. | $12^{\text {b }}$ | 13h. | 14 l . | 15h. | 16b. | 17 b . | 184. | 19h. | 20 L . | $21^{\text {h. }}$ | 22 h . | 23 b . |
| January | 年. | ${ }_{-0.28}^{\text {d. }}$ | - ${ }_{\text {d. }}^{1.07}$ | ${ }_{-0.60}^{\text {d. }}$ | ${ }_{-0.30}^{\text {d. }}$ | d. <br> +0.14 | + ${ }^{\text {d. }} 1.09$ | + ${ }^{\text {d. }}$ | + ${ }^{\text {d }}$ | ${ }_{+0}^{\text {d. }} 34$ | + ${ }^{\text {d. }} 39$ | + ${ }^{\text {d }}$ |
| February | +1.70 | +0.67 | $-0.13$ | +0.40 | +0.03 | -0.76 | -0.92 | -1.26 | -0.46 | +0.17 | -0.05 | -0.09 |
| March | +1.15 | $+0.95$ | +1.79 | $+0.35$ | $+0.86$ | -0.08 | $-0.83$ | -1.27 | -0.56 | +0.37 | -0.39 | $-0.73$ |
| April | +0.54 | $+0.56$ | 0.00 | +0.76 | +1.01 | -0.30 | -1.00 | -1.67 | $-1.62$ | $-0.97$ | $+0.37$ | $-0.78$ |
| May | +0.53 | +0.03 | $-0.63$ | $-0.01$ | -0.24 | -0.48 | $-0.70$ | -0.30 | -0.40 | $-0.53$ | +1.16 | +0.63 |
| June | +0.01 | $+0.86$ | +0.30 | +0.18 | -0.33 | $-1.27$ | -0.82 | -0.59 | -0.92 | +0.05 | +0.74 | +0.64 |

Value of a scale division $0^{\prime} .453$.
One of the first questions to determine is how many of these residuals must be used to give a definite result, and another one is whether numbers deduced from different parts of the series would give harmonious results. To test both of these the observations were formed into three groups-one containing 4,900 in 19 months of 1840 , ' 41 ; another, 6,715 results in 21 months of 1842 , ' 43 ; and a third, 10,029 results in 18 months of 1844, ' 45 . In all, 21,644 results.

The following table contains the result for each group. Group II includes three months of the hourly series of observations treated as if only equal in weight to the bi-hourly series.

The sign $\Sigma$ indicates the algebraic sum of the values in the preceding tables for the months comprised in each group, and for every hour-angle of the moon. The lines headed I, II, III, contain the preceding values divided by their respective number of months and expressed in minutes of are, or the lunar diurnal variation.

| D's Upper transit. |  |  |  |  | Moon's hour-angle. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 b. | 1 h. | 2 h . | 3 h. | 4 h . | 5 h . | 6 h . | 7 h . | 8 h. | 9 h. | 10 b . | 11 hb . |
| $\begin{array}{cc} \Sigma & \text { of group } 1 \\ \Sigma & \text { " } \\ \Sigma & \text { " } \\ \Sigma & \text { III } \end{array}$ | $\begin{array}{r} \hline \text { d. } \\ +10.27 \\ +6.59 \\ +\quad 7.96 \end{array}$ | $\begin{aligned} & \text { d. } \\ & +8.07 \\ & +7.35 \\ & +6.93 \end{aligned}$ | d. <br> +7.52 <br> +0.23 <br> +1.77 | $\begin{array}{r} \text { d. } \\ +11.17 \\ -2.38 \\ -0.53 \end{array}$ | d. <br> 4.32 <br> +0.87 <br> -5.91 | ( $\begin{gathered}\text { d. } \\ -1.46 \\ -5.95 \\ -7.48\end{gathered}$ | $\begin{array}{r} \mathrm{d} .06 \\ -\quad 7.06 \\ -\quad 7.90 \\ -7.60 \end{array}$ | $\begin{array}{\|c\|} \hline \mathrm{d} \\ -5.49 \\ -10.83 \\ -4.05 \end{array}$ | $\begin{array}{r} \mathrm{d} .63 \\ -14.63 \\ -6.35 \\ -2.01 \end{array}$ | $\begin{array}{r} \mathrm{d} \\ -1.61 \\ -2.78 \\ +2.00 \end{array}$ | ( $\begin{gathered}\text { d. } \\ -1.70 \\ +2.48 \\ +7.77\end{gathered}$ | $\begin{array}{r} \quad \mathrm{d} \\ +\quad 0.30 \\ +\quad 7.65 \\ +10.98 \end{array}$ |
| I III | $+{ }^{0.24}$ +0.14 +0.20 | $\begin{aligned} & +0^{\prime} .19 \\ & +0.16 \\ & +0.17 \end{aligned}$ | $\begin{aligned} & +0^{\prime} .18 \\ & +0.00 \\ & +0.05 \end{aligned}$ | $\begin{aligned} & +0^{\prime} .27 \\ & -0.05 \\ & -0.02 \end{aligned}$ | $\begin{aligned} & -\mathbf{- 0}^{\prime} .10 \\ & +_{0}^{002} \end{aligned}$ | $\begin{aligned} & -\mathbf{- 0}^{\prime} .04 \\ & -0.13 \\ & -0.19 \end{aligned}$ | $4 \begin{aligned} & -0^{0} .17 \\ & -0.24 \\ & -0.20 \end{aligned}$ | $\begin{aligned} & -0^{\prime} .13 \\ & -0.23 \\ & -0.10 \end{aligned}$ | $\begin{aligned} & -0^{\prime \prime} .35 \\ & =0.14 \\ & =0.05 \end{aligned}$ | $\begin{aligned} & -0^{\prime}, 04 \\ & -0.06 \\ & +0.05 \end{aligned}$ | $\begin{aligned} & \hline \overline{-}^{0^{\prime} .04} \\ & +0.05 \\ & +0.20 \end{aligned}$ | $\begin{aligned} & +0^{\prime} .01 \\ & +0.16 \\ & +0.28 \end{aligned}$ |
| D's Lower transit. |  |  |  |  | Moon's hour-angle. |  |  |  |  |  |  |  |
|  | 12h. | 13h. | $14{ }^{\text {b }}$ | 15h. | $16^{\text {h. }}$ | 17 h. | 1 sh . | 19h. | 20 h. | $21^{\text {b }}$. | $22^{4}$. | 23 h . |
| $\begin{array}{cc} \Sigma & \text { of group } \\ \Sigma & \text { I } \\ \Sigma & " \\ \Sigma & \text { II } \\ \text { III } \end{array}$ | $\begin{aligned} & \hline \begin{array}{c} \mathrm{d} .91 \\ +11.91 \\ +13.46 \\ +10.98 \end{array} \end{aligned}$ | $\begin{array}{r} \text { d. } \\ \hline 2.18 \\ \hline+16.15 \\ +8.22 \end{array}$ | $\begin{array}{r} \mathrm{d} . \\ +4.54 \\ +4.52 \\ +5.96 \end{array}$ | $\begin{array}{r} \text { d. } \\ +6.00 \\ +3.86 \\ +0.24 \end{array}$ | $\begin{gathered} \text { d. } \\ -7.22 \\ -6.64 \\ -1.66 \end{gathered}$ | $\begin{array}{r} \mathrm{d} .54 \\ -3.54 \\ -11.24 \\ -7.45 \end{array}$ | $\begin{array}{r} \mathrm{d} . \\ -9.43 \\ -14.67 \\ -9.61 \end{array}$ | $\begin{gathered} \mathrm{d} . \\ -8.71 \\ \hline-4.68 \\ -9.02 \end{gathered}$ | $\begin{array}{r} \text { d. } \\ -0.71 \\ -6.90 \\ -7.35 \end{array}$ | $\begin{array}{r} \text { d. } \\ +3.14 \\ +2.79 \\ -3.38 \end{array}$ | $\begin{array}{r} \mathrm{d} . \\ +1.58 \\ +1.53 \\ +1.90 \end{array}$ | $\begin{aligned} & +\begin{array}{c} \mathrm{d} . \\ +7.60 \\ +8.73 \\ +1.80 \end{array} \end{aligned}$ |
| III | $+0^{\prime} .29$ +0.29 +0.28 | -0.05 +0.35 +0.21 | $\begin{aligned} & +0^{\prime} .11 \\ & +0.10 \\ & +0.15 \end{aligned}$ | $\begin{aligned} & +{ }^{\prime} .14 \\ & +0.08 \\ & +0.00 \end{aligned}$ | $4 \left\lvert\, \begin{aligned} & -0^{\prime} .17 \\ & -0.14 \\ & -0.44 \end{aligned}\right.$ | $\begin{aligned} & =\mathbf{- 0}^{0} .09 \\ & -0.24 \\ & -0.19 \end{aligned}$ | $\left\{\begin{array}{l} -0^{\prime} .23 \\ -0.32 \\ -0.24 \end{array}\right.$ | $\begin{aligned} & -\mathbf{c}^{\prime}, 21 \\ & =0.10 \\ & -0.23 \end{aligned}$ | $\begin{aligned} & \hline-0^{\prime} .04 \\ & =0.14 \\ & =0.19 \end{aligned}$ | $\begin{aligned} & +0^{\prime} .08 \\ & +0.06 \\ & +0.06 \end{aligned}$ | $\begin{aligned} & +0.04 \\ & +0.03 \\ & +0.05 \end{aligned}$ | $\begin{aligned} & +0.18 \\ & +0.19 \\ & +0.05 \end{aligned}$ |

+ indicates west, - east, deflection from the normal position.

These results, 1, II, III, when expressed analytically by means of Bessel's form of periodic functions, and when treated by the method of least squares, are represented by the following equations, in which the moon's hour-angle $\theta$ is reckoned from the upper transit westwards at the rate of $15^{\circ}$ to each hour. $\Delta_{\mathbb{C}}$ represents the lunar diurnal variation.

```
Group I, 1840-'41. \(\Delta_{\mathbb{C}}=+0^{\prime} .003+0^{\prime} .063 \sin .\left(\theta+92^{\circ}\right)+0^{\prime} .189 \sin .\left(2 \theta+67^{\circ}\right)\)
 " II, 1842-'43. \(\quad \Delta_{\mathbb{C}}=-0^{\prime} .006+0^{\prime} .030 \sin .\left(\theta+263^{\circ}\right)+0^{\prime} .282 \sin .\left(2 \theta+63^{\circ}\right)\)
 " III, 1844-'45. \(\quad \triangle \mathbb{C}=0^{\prime} .000+0^{\prime} .075 \sin .\left(\theta+292^{\circ}\right)+0^{\prime} .219 \sin .\left(2 \theta+88^{\circ}\right)\)
```

The numerical results from these equations are presented graphically on the following diagram.

Lonar-Diornal Variation of the Magnetic Declination.


The curves all agree in their distinctive characters, and show two east and two west deflections in a lunar day, the maxima W. and E. occurring about the upper and lower culminations, and the minima at the intermediate six hours. The total range hardly reaches 0.5 . These results agree generally with those obtained for Toronto and Prague.

From 8,000 to 10,000 observations seem to be required to bring out the results satisfactorily, and the best results are derived from the use of all the groups.

The following table contains annual sums of deflections for each hour, and the resulting lunar-diurnal variation from the 21,644 observations available for the purpose :-

| Upper curve. Westerly hour-angles. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YBAR. | 0 h . | 1 h. | 2 h . | 3 l . | $4{ }^{\text {h. }}$ | 5h. | $6{ }^{\text {h. }}$ | 7 h . | 8 h . | 9 h. | $10^{11}$. | 11 h . |  |
| £ for 1840 | + ${ }^{\text {d. }}$ + ${ }^{\text {a }}$ + 77 | d. <br> +2.05 | $\stackrel{\text { d. }}{+2.57}$ | + ${ }^{\text {d. }}$. ${ }^{\text {a }}$ |  | + ${ }^{\text {d. }}$ | -3.85 ${ }^{\text {d }}$ | -2.18 | - ${ }_{\text {d. }}$ | +1.56 | -0.76 | -0.40 |  |
| ¢ for 1840 | +1.70 +8.50 | +2.05 +6.02 | +4.95 | +4.9 +6.20 | -3.94 | +4.03 | -3.21 | -3.31 | -10.64 | +1.56 | -0.74 | +0.70 |  |
| ${ }^{6} 1842$ | +3.92 | +6.15 | +1.04 | -1.93 | +2.50 | -3.25 | $-7.27$ | -8.82 | $-2.07$ | -1.61 | $+2.55$ | $\underline{+2.54}$ |  |
| " 1843 (a) | +1.51 | +1.14 | -0.19 | $+1.00$ | +0.08 | $-0.52$ | $-3.32$ | -0.85 | -3.49 | -2.66 | -1.32 | +2.78 |  |
| " 1843 (b) | +1.16 | +0.06 | -1.08 | -1.45 | $-1.71$ | -2.18 | -0.31 | -1.16 | -0.79 | +1.49 | +1.25 | +2.33 |  |
| " 18.44 | +6.22 | +5.91 | +2.83 | +0.83 | -3.91 | -5.53 | -4.92 | $-3.52$ | -1.47 | -0.33 | +4.73 | +6.48 |  |
| " 1845 | +1.74 | +1.02 | -1.06 | -1.36 | -2.00 | -1.95 | -2.68 | -0.53 | -0.54 | +2.33 | +3.04 | +4.50 |  |
| Mean $\frac{\Sigma}{79}$ | $+0.43$ |  | +0.12 | +0.08 | -0.21 | -0.31 | -0.42 | -0.32 | -0.33 | +0.01 | +0.23 | +0.41 |  |
| Same in are | +0'. 19 | +0.17 | +0.05 | +0.04 | -0.10 | $-0.14$ | -0.19 | -0.14 | -0.15 | $+0.01$ | +0.10 | +0. 19 |  |
| Lower curve. Easterly hour-angles. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| year. | 12h. | 13h. | 14 h . | $15^{\text {h. }}$ | 16 h . | 17h. | 18h. | 19h. | 20 h. | 21 h . | 22 b . | 23 h . | Mos. |
| £ for 1840 | d. +4.66 | - ${ }^{\text {d. }}$ - ${ }^{\text {a }}$ - 50 | $\stackrel{\text { d. }}{\substack{\text { d } \\-0.66}}$ | d. +1.32 | -3.57 ${ }^{\text {d }}$ | + ${ }_{\text {d. }}^{\text {d }}$ | -4.02 | ${ }_{-0.81}^{\text {d. }}$ | ${ }_{-0.16}^{\text {d. }}$ | d. +0.81 | ${ }_{\text {d. }}^{\text {d. }}$ |  | 7 |
| ${ }^{6} 1841$ | $+7.25$ | +1.32 | +5.20 | +4.68 | -3.65 | -7.39 | -5.41 | -7.90 | -0.55 | +2.33 | +4.47 | +4.24 | 12 |
| " 1842 | +6.51 | +7.70 | $+1.10$ | $-0.26$ | -3.07 | -6.81 | -5.06 | -3.56 | $-5.83$ | +2.29 | +1.46 | $+5.40$ | 12 |
| " 1843 (a) | +4.69 | +5.99 | +1.85 | +3.22 | -2.60 | -2.41 | $-7.02$ | +0.15 | -1.59 | -1.46 | $-0.07$ | $+2.47$ | 6 |
| " 1843 (b) | +2.26 | +2.46 | +1.57 | +0.90 | $-0.97$ | -2.02 | $-2.59$ | $-1.27$ | +0.52 | +1.96 | +0.14 | $+0.86$ | 3 |
| " 1844 | $+7.03$ | +5.43 | +5.70 | $-0.84$ | -2.69 | -4.70 | $-6.43$ | -4.22 | $-4.25$ | -2.81 | $-0.32$ | +1.75 | 12 |
| " 1845 | +3.95 | +2.79 | +0.26 | +1.08 | +1.03 | -2.75 | -3.18 | -4.80 | -3.10 | -0.57 | +2.22 | +0.05 | 6 |
| Mean $\frac{\Sigma}{79}$ | +0.63 | +0.42 | +0.29 | +0.14 | -0.23 | -0.40 | -0.58 | -0.42 | -0.27 | +0.01 | +0.09 | +0.26 | 37 |
| Same in are | +0'. 29 | +0.19 | +0.13 | +0.06 | -0.10 | -0.18 | -0.26 | -0.19 | $-0.12$ | $+0.01$ | +0.04 | $+0.12$ | 21 |

The two values for 1843, marked (a) and (b), exhibit the separate sums for the bi-hourly and the hourly observations, and were required to give proper weights to each. There are 37 months of bi-hourly, and 21 months of hourly observations -the latter having double weight, as found from a consideration of the probable errors derived respectively from all the results of the years 1842 and 1844. The probable error of any single monthly mean for any hour in the year 1842 was found $= \pm 0^{\mathrm{d}} .60$, and the same for the year 1844 was $= \pm 0^{\mathrm{d}} .40$. Hence the weights for a resulting value in the bi-hourly series is to the weight for a value in the hourly series nearly as $1: 2$, or the weights are nearly proportional to the number of observations-a result which indicates that no constant errors influence the result. The accordance among themselves of the values for the easterly hourangles is somewhat better than the corresponding values for the westerly hour-angles-a circumstance which seems to connect itself with another phenomenon to be mentioned presently. Giving, therefore, double weight to months of the hourly series, the lunar-diurnal variation resulted as given above. When expressed analytically, it takes the form

$$
\Delta_{\mathbb{C}}=+0^{\prime} .001+0^{\prime} .029 \sin \left(\theta+295^{\circ}\right)+0^{\prime} .207 \sin \left(2 \theta+85^{\circ}\right)
$$

which may also be written

$$
\Delta \mathbb{C}=0^{\prime \prime} .0+1^{\prime \prime} .7 \sin \left(15 n+295^{\circ}\right)+12^{\prime \prime} .4 \sin \left(30 n+85^{\circ}\right)
$$

where $\theta$ represents the moon's hour-angle, reckoned from the upper culmination, or $n$ the number of hours after the same epoch : + indicates west, and - east deflection.

The constant in Bessel's formula comes out zero, and hence it is inferred that the moon has no specific action in deflecting the magnet by a constant quantity. The coefficient of the first term of the formula is small, and it is from the second term that the distinctive feature§ of the double-crested curve result. These results are all represented by curves.

Both the east and west deflections are well marked, those occurring when the moon is east of the meridian being greater than those when west.
It is not at all necessary to take in the third or higher terms. The progression of the hourly values is systematic, and the agreement between the computed and observed values is deemed satisfactory. The following diagram represents the curve resulting from the above equation, the observed values being indicated by dots.


From 21,644 observations at Philadelphia, from 1840 to 1845.
The principal western maximum occurs 6 minutes after the lower culmination of the moon, and amounts to $0^{\prime} .23$. The secondary maximum occurs 14 minutes after the upper culmination, and amounts to $0^{\prime} \cdot 18$. The principal minimum occurs at $6^{\text {h. }} 17^{\text {m. }}$ after the lower culmination, the easterly deflection being $0^{\prime} .22$. The secondary minimum at $6^{\text {d. }} 03^{\mathrm{m} .}$ after the upper culmination, with a deflection of $0^{\prime} .19$. The greatest range is $27^{\prime \prime}$, and the secondary $22^{\prime \prime}$. The epochs of the maxima and minima are found from the formula to be at a mean 10 minutes after culmination. The probable error of a single computed value of the lunar declination is $\pm 1^{\prime \prime} .32$. The Toronto observations gave $\pm 1^{\prime \prime} .37$ from more than twice the number of observations, so that the Philadelphia results are worthy of every confidence.

At Toronto, from the second investigation, embracing about 44,000 observations, the western and eastern deflections balanced, giving for the range $38^{\prime \prime} .3$. The

Prague observations also confirm the nearly equal deflections (mean) to the west and east. The epochs of the maxima and minima were found from the four roots of the equation $0=0.029 \cos \left(\theta+295^{\circ}\right)+0.414 \cos \left(2 \theta+85^{\circ}\right)$, which gave 10 minutes as the mean time elapsed between the moon's passing the meridian, and the time of maxima deflections. If we take the four phases into account, the lunar action seems to be retarded 10 minutes, which quantity may be termed the lunarmagnetic interval for the Philadelphia station. At Toronto the intervals are not so regular.

The secondary range exists at Toronto, and is a marked feature in the Prague result.

The following table contains the observed and computed values and their dif-ferences:-

|  | Upper Curve. |  |  | Lower Curve. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Observed. | Computed. | Difference. |  | Observed. | Computed. | Difference. |
| 0 h . | $+0.19$ | +0.18 | +0\%.01 | 12h. | $+0.29$ | $+0.23$ | $+0^{\prime} .06$ |
| 1 | +0.17 | $+0.17$ | 0.00 | 13 | +0.19 | $+0.21$ | $-0.02$ |
| 2 | $+0.05$ | $+0.10$ | $-0.05$ | 14 | $+0.13$ | $+0.13$ | 0.00 |
| 3 | +0.04 | +0.01 | $+0.03$ | 15 | +0.06 | $+0.03$ | +0.03 |
| 4 | -0.10 | -0.09 | $-0.01$ | 16 | -0.10 | -0.08 | -0.02 |
| 5 | -0.14 | $-0.16$ | $+0.02$ | 17 | -0.18 | -0.18 | 0.00 |
| 6 | -0.0.19 | -0.19 | 0.00 | 18 | -0.26 | -0.22 | -0.04 |
| 7 | -0.14 | -0.17 | +0.03 | 19 | -0.19 | $-0.21$ | $+0.02$ |
| 8 | $-0.15$ | $-0.09$ | -0.06 | 20 | $-0.12$ | -0.14 | $+0.02$ |
| 9 | $+0.01$ | $+0.01$ | 0.00 | 21 | +0.01 | $-0.05$ | +0.06 |
| 10 | $+0.10$ | +0.12 | -0.02 | 22 | +0.04 | $+0.00$ | -0.02 |
| 11 | +0.19 | $+0.20$ | -0.01 | 23 | +0.12 | $+0.14$ | -0.02 |

The formula or curve enables us to divide the observed curve so as to show the diurnal and semi-diurnal part of the observed variations. The decomposition of the curve is made on the diagram where the resulting curve for the diurnal period is given.

The lunar-diurnal variation seems to be subject to an inequality depending on the solar year, for the investigation of which the preceding results were rearranged in two groups, one containing the hourly values for the summer months (April to September), the other the values for the winter months (October to March). For the summer season we have 11,087 observations, and for the winter 10,557 .

| Hourly Sums of the Lunar Variation for the Summer Season. Moon's hour-angle. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 h. | $1^{\text {h, }}$ | 2 h . | 3 b . | 4 b . | 5 h. | $6^{\text {L. }}$ | $7{ }^{\text {h }}$ | $8^{\text {h. }}$ | $9^{\text {h. }}$ | 1 mb . | 114. |  |
| 玉 1840-3 | $+9.29$ | +14.15 | +3.45 | +7.20 | -2.93 | -2.23 | -15.73 | -6.18 | -12.04 | -4.57 | -1.49 | +12.38 |  |
| $\sum_{\Sigma} 1841$-5 | 8.62 | +8.26 | +3.92 | +3.95 | +0.05 | -4.36 | -4.64 | -4.87 | $-3.81$ | -3.87 | +1.51 | +2.13 |  |
| ${ }_{40}{ }^{2}$ | +0.66 | +0.77 | +0.28 | +0.38 | -0.07 | $-0.27$ | -0.63 | -0.40 | -0.49 | -0.31 | +0.04 | +0.42 |  |
| Same in arc | +0.30 | +0.35 | +0.13 | +0.17 | -0.03 | $-0.13$ | -0.28 | -0.18 | -0.22 | -0.14 | +0.02 | +0.19 |  |
|  | 12h. | 13h. | 14 b . | 15 h . | $16^{\text {b. }}$ | 17h. | 18. | 19h. | 20b. | $21^{\text {h. }}$ | $22^{\text {b }}$. | 23 b . | M0's, |
| $\begin{array}{\|l\|l\|} \hline & 1840-3 \\ \Sigma & 1844-5 \end{array}$ | +17.02 | +11.44 +3.32 | $\begin{aligned} & +5.18 \\ & +2.51 \end{aligned}$ | $\begin{aligned} & +13.14 \\ & +0.44 \end{aligned}$ | $\begin{array}{r} 4.94 \\ +0.10 \end{array}$ | $\begin{array}{r} -7.97 \\ -4.85 \end{array}$ | $\begin{aligned} & -16.72 \\ & -6.85 \end{aligned}$ | $\begin{aligned} & -10.27 \\ & -5.47 \end{aligned}$ | $\begin{array}{\|} -12.44 \\ -6.18 \end{array}$ | $\begin{array}{\|} +0.11 \\ -4.17 \end{array}$ | $\begin{array}{\|c} -5.49 \\ +2.04 \end{array}$ | $\begin{aligned} & +10.12 \\ & +1.61 \end{aligned}$ | 22 |
| $\frac{\Sigma}{40}$ | +0.66 | +0.45 | +0.26 | +0.35 | -0.12 | -0.44 | -0.76 | -0.53 | $-0.62$ | -0.21 | -0.04 | +0.33 |  |
| Samein are | +0. 30 | +0.20 | +0.12 | +0.16 | -0.05 | $-0.20$ | $-0.34$ | -0.24 | -0.28 | $-0.09$ | -0. | +0.15 |  |

Hourly Sums of the Lunar Variation for the Winter Season.
Moon's hour-angle.

|  | 0 h . | 1h. | 2 h . | 3 h . | 4h. | 5 m. | 6 h . | 7 h. | 8h. | 9 l . | 10 b . | 11h. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ¢ 1840-2 | $+6.42$ | $+1.21$ | +4.92 | +3.04 | +1.19 | -3.00 | $-1.92$ |  | $-8.15$ | -1.31 |  |  |  |
| £ 1843-5 | +0.50 | -1.27 | -3.23 | -5.93 | -7.67 | $-5.30$ | $-3.27$ | $-0.34$ | +1.02 | +7.36 | $+7.51$ | $+11.18$ |  |
| $\frac{\Sigma}{39}$ | +0.19 | $-0.04$ | -0.04 | $-0.23$ | $-0.36$ | -0.35 | $-0.22$ | -0.25 | -0.16 | +0.35 | +0.41 | +0.40 |  |
| Samein are | $+0.09$ | -0.02 | -0.02 | $-0.10$ | $-0.16$ | -0.16 | -0.10 | -0.11 | -0.07 | +0.16 | +0.18 | +0.18 |  |
|  | 12h. | 13h. | $14^{\text {h. }}$ | 15h. | 16h. | 17. | 18h. | 19 k . | 20 h. | $21^{\mathrm{k}}$. | 22 h . | $23{ }^{\text {a }}$. | Mo's. |
| ᄃ 1840-2 | $+6.09$ | +0.09 | $+2.31$ | -4.18 | -7.95 | -4.79 | $-4.79$ | -1.85 | +4.31 | $+3.86$ | +8.46 | $+5.35$ | 15 |
| ₹ 1843-5 | +8.62 | $+7.34$ | +5.02 | +0.70 | -2.73 | -4.62 | $-5.32$ | $-4.82$ | -0.65 | +2.75 | 0.00 | +1.05 | 12 |
| $\frac{\Sigma}{39}$ | +0.60 | +0.38 | +0.32 | -0.07 | -0.35 | -0.37 | -0.40 | -0.29 | +0.08 | +0.25 | +0.22 | +0.19 |  |
| Samein are | $+0^{\prime} .27$ | +0.17 | +0.14 | $-0.03$ | -0.16 | -0.17 | -0.18 | $-0.13$ | +0.04 | +0.11 | +0.10 | +0.09 |  |

Expressed analytically, the lunar-diurnal variation in the two seasons is as follows :-

In summer,

$$
\Delta \mathbb{C}=-0^{\prime} .006+0^{\prime} .028 \sin \left(\theta+18^{\circ}\right)+0^{\prime} .278\left(2 \theta+67^{\circ}\right)
$$

In winter,

$$
\Delta_{\mathbb{C}}=+0^{\prime} .005+0^{\prime} .058 \sin \left(\theta+264^{\circ}\right)+0^{\prime} .173\left(2 \theta+115^{\circ}\right)
$$

The characteristic feature of the annual inequality in the lunar-diurnal variation is, therefore, a much smaller amplitude in winter than in summer. Kreil, indeed,

inferred from the ten-year series of the Prague observations, that in winter the lunar-diurnal variation either disappears, or is entirely concealed by irregular fluctuations, requiring a long series for their diminution. The method of reduction which he employed was, however, less perfect than that now used. The second characteristic of the inequality consists in the earlier occurrence of the maxima and minima in winter than in summer. The winter curve precedes thę summer curve by about one and three-quarter hours. Both these features are well expressed in the above diagram. At Toronto, the same shifting in the maxima and minima epochs was noticed, but the other inequality in the amount of deflection is not exhibited. It seems probable that the Philadelphia results are more typical in form than those either of Prague or Toronto. It is also apparent that the smaller deflection at the upper culmination in the annual mean, when compared with the deflection at the lower culmination, is entirely produced by the feeble lunar action in winter. The maximum west deflection in summer occurs actually near the upper culmination. At the same season the maximum east deflection is still retained (as in the annual curve) about six hours after the lower culmination. In the winter season this last mentioned maximum east deflection is actually the smaller of the two. We have-


At Prague the maximum summer range was $44^{\prime \prime}$.
Next I proceed to examine whether the phases of the moon, the declination, or parallax, have any sensible effect upon the magnetic declination. Mr. Kreil found, from a ten years' series of observations at Prague, that there was no specific change in the position of the magnet depending upon the moon's phases and parallax, but that the declination was $6^{\prime \prime} .8$ greater when the moon was at the greatest northern declination than when at the greatest southern declination. On the contrary, Mr. Broun, from the Makerstoun observations, a much shorter series than the one at Prague, inferred that there was a maximum of declination two days after the full moon. He also found a maximum corresponding to the greatest northern declination of the moon, but does not appear to have investigated the effect of distance. The residuals which we have been treating enable us at once to examine these several points.

Beginning with the lunar phases, the daily means for the day of full and new moon, and for two succeeding days, were compared with the monthly mean declination. In case any of the hours were disturbed, the monthly normal for the hour was substituted for the disturbed observation before the mean was taken. If onehalf or more of the hourly readings were disturbed, the daily mean was altogether omitted. Accidental omissions of hourly observations were supplied by the hourly normal. The half-monthly normals were then compared with the half-monthly means. In the table of differences thus formed, equal weight is given to the bi-hourly and hourly observations. The daily mean having been subtracted from the monthly mean, the positive sign indicates a western deflection, and the negative sign
an eastern one, as compared with the normal position. The following table contains the result :-


The effect is very small, scarcely much beyond the probable error, but the table indicates that the north end of the magnet is deflected to the westward 0.1 at the full, and as much to the eastward at the change day, the range between full and new moon being $0^{\prime} .2$. A more definite result could hardly be expected from a series of observations extending over but five years.

Treating the subject of the effect of the moon's variation in declination in precisely the same manner, we obtain the following result:-


These results do not positively fix a deflection of the magnet as depending on the moon's greatest north and south declination, the amount resulting from the comparisons being of nearly the same magnitude as its probable error.

A similar investigation, with respect to the moon's distance from the earth, gives the following results:-

| Mean deflection. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One day before |  | - |  | $-0^{\prime} .18$ | from | 50 |  | rvation. |
| At moon's perigee |  | - | . | -0.18 | " | 41 | " |  |
| One day after |  | - |  | 0.00 | " | 59 | " | " |
| Mean | - | - |  | -0. 12 | " | 150 | " | " |
| One day before |  | - | - | -0'.02 | " | 55 | " | " |
| At moon's apogee |  | - |  | $-0.20$ | " | 53 | s | " |
| One day after |  | - |  | -0.13 | 6 | $4 \%$ | " | \% |
| Mean |  | - |  | $-0^{\prime} .12$ | ${ }^{4}$ | 155 | " | " |

The differences being of the same order of magnitude as the probable errors, no conclusion as to the effect of distance can be drawn from them.

I propose hereafter to extend the discussion of the moon's effect on the declination to the effect on the earth's magnetic force.

## SMITHSONIAN CONTRIBUTIONS TO KNOWLADGR.

## DISCUSSION

OFTHE

## MAGSETIC AND METEOROLUGICAL OBSERITTIOSS

MADE AT'THE GIRARD (ULLEGE UBSERYATORY, PHILADELPHIA, IN $1840,1841,1842,1843,1844$, AND 1845.

## SECOND SECTION,

 COMPRISING PARTS IV,V, AND VI. HORIZONTAL FORCE.INVERTIGATION OF THE ELEVEN (OR TFN) YEAR PERIOD AND OF THE DISTURPANCES OF THE llorizontal component of the magnetic force, witil an investigation of the

SOLAR DIURNAL VARIATION, AND OF TIIE ANNUAL INEQUALITY OF THE HORI ZONTAL FORCE; AND OF THE LUNAR EFFECT ON THE SAME.

B Y'

A. I). BACIIE, LL.J., F.R.S., MFAG. CORR. ACAD. SC, PARIS ; SUPERINTENUENT L゙. s. CUAST SIVRPEY.

## PARTIV.

## INVESTIGATION

of the

ELEVEN (OR TEN) YEAR PERIOD AND OF TIIE DISTURBANCES OF THE HORIZONTAL COMPONENT OF TIIE MAGNETIO FORCE

# INVESTIGATION 

OF THE<br>ELEVEN (OR TEN) YEAR PERIOD, AND OF THE HHTURBANCES OF THE HORIZONTAL COMPONENT OF THE MAGNETIC FORCE.

Volume XI of the Smithsonian Contributions to Knowledge contained a discussion, in three parts, of the observations for magnetic declination. The first part referring to the eleven (or ten) year period in the amplitude of the solar diumal variation, and of the disturbances of the magnetic declination; the second, to the annual inequality of the solar diumal variation, and the third, to the influence of the moon on the magnctic declination. The present discussion refers to the changes of horizontal force, and will be carried on in the same order as the former, so as to dispense with explanations in the mode of treatment, unless in those portions involving the peculiarities of the horizontal force instrument and record. Charles A. Schott, Esq., has rendered me the same assistance in this work, stated in the introduction to Part I.

The horizontal force instrument was one of Gauss's large bifilar magnctometers, made by Meyerstein, of Güttingen, the weight of the magnetic bar being about twenty-five pounds, and its length being thirty-six inches and five-eighths. The suspension wires were slightly inclined, the smaller distances between them being above the larger. The value of one division of the scale in parts of the horizontal force was determined to be:-

$$
\begin{array}{lllll}
\text { in May, 1840, } & . & . & . & 0.000035 \\
\text { in June, 1841, } & . & . & . & 0.000038
\end{array}
$$

The mean, or 0.0000365 is the value used throughout the series. The sensibility of the instrument was thus very considerable. The instrument having been properly adjusted with the bar at right angles to the mean magnetic meridian, the torsion angle $Z$ was found to be $71^{\circ} 43^{\prime}$. The relation $k=a$ cotan. $Z$ expresses the value of one scale division $k$ in parts of the horizonal force, $a$ being the value of a scale division in parts of the radius, or $0.00011=0^{\prime} .38$, and $Z$ the angle of torsion. Increase of readings on the scale corresponded to decrease of horizontal force.
1 The instruments were placed in position by the equations deduced by Professor Lloyd, for the case of the declinometer in equilibrium with the horizontal and vertical force magnetometers, the position of instable equilibrium being taken
necessarily from the form and position of the observatory. The effect of the small vertical force bar at first used, upon the bifilar was quite insensible, and that of the declinometer bar affected the value of the scale but slightly, the effect of both instruments changing the value of the scale divisions only in the ratio of 1 to 0.9956 。

A thermometer, by Francis, of Philadelphia, divided to half degrees of Fahrenheit's scale, and easily read to tenths, was placed in the box of the horizontal force magnetometer and as near as practicable to the bar.

After the bifilar was set up, a motion commenced in the direction indicating decrease of force; it was progressive though not steadily so. After a time an extra scale was required on occasions of auroral, or other disturbances, and finally the ordinary readings were upon this extra scale. On the occasion of the change of the vertical force magnetometer, in January, 1841, by the substitution of Saxton's balance magnetometer for Lloyd's, the magnetism of the horizontal force bar was examined and found to have sensibly decreased; its force amounted to 0.9601 of its original force, in May, 1840. The experiments were made by means of deflections with a subsidiary declinometer bar, the only means then available. A further experiment of the loss of force was made in June, 1841, when the instrument was accidentally disturbed by one of the observers. The loss of magnetism then found, by means of a new determination of the angle $Z$, was 0.0314 of its amount in January, 1841. To ascertain the change of magnetism of the bars of the magnetometers, vibrations were also made use of, but they led to no satisfactory result. The progressive change of the scale readings from the change of the horizontal force and loss of magnetism of the bar, will be investigated further on.

The observations, between June, 1840, and Scptember, 1843, were made bi-hourly, and from October, 1843, to the close of the series, hourly. The serics extending over five years is not quite continuous; no observations were made on eleven days in January, 1841, on the occasion of the introduction of a new vertical force magnetometer, and the consequent necessity of readjusting the instruments; in January, February, and March, 1843, the work was reduced to but a single reading a day, by circumstances elsewhere stated; there are also some minor disturbances at other times when the difference in the readings, however, were ascertained and allowed for. Full statements bearing on the continuity of the series will be given in subsequent pages.

The reduction proper, necessarily commences with the operation of bringing all the readings to the same standard temperature, to render them comparable among themselves.

## Correction of the Reulinys of the Bifiler Magnetometer for Changes of Temperature.

The care bestowed on the experiments to ascertain the effect of the temperature on the instrument, and the perseverance with which they were carried out were not rewarded with a corresponding degree of agreement in the results obtained, by the various processes employed. This it will be recollected was also the case at other observatories. The subject of the co-efficient of temperature for the bifilar magnet is fully treated in the preface to the three volumes containing the record,
and it will, therefore, in this place only be necessary to recapitulate in general the results and to state the nature of the experiments there described.

The first obscrvations for the temperature co-efficient were made on July 16, 1840. Oscillations were observed alternately at the ordinary temperature and near the freczing point, obtained by surrounding the box containing the magnet with ice; at the same time comparative oscillations of a bar in another building were observed to furnish the necessary data to correct the bifilar results for any change in the horizontal force during the progress of the experiments. The value deduced was 2.8 scale divisions for a change of $1^{\circ}$ Fahrenheit. No reliance was placed on this result on account of the comparatively rude indications of the subsidiary instrument, and also on account of an irregularity at a certain point in the curve representing the connection of change of force with change of temperature.

The method of deflections was tried, and abandoned on account of the small amount of deflection at a distance sufficiently great to prevent the chance of permanent changes from the mutual action of the bars.

On the 22 d of February, 1841, comparisons by vibrations were again resorted to, but with no better success, the correction for change of force during the interval being unsatisfactory. The result deduced was 3.0 scale divisions for $1^{\circ}$ Fahr.

Applying the results to the readings of the bar when mounted on the bifilar suspension wires in the observatory, they were so little satisfactory that it was determined to get the change of intensity of the bar by heating and cooling the observatory while the bar remained in situ.

In January and February, 1842, a continuous series of observations was made by allowing the observatory to attain the winter temperature on one day, and obtaining thus a result by comparison with the preceding and succeeding days, when the room was artificially warmed. The value found avas 1.55 scale divisions for $1^{\circ}$ Fahr. At this time the observatory was warmed by a soap-stone stove with copper fixtures.

About the close of the year 1842 an efficient set of subsidiary instruments was mounted in one of the College buildings, the bifilar magnet being about nine inches in length. After the relative value of the scales of the instruments had been ascertained, comparative observations were made, six each day, in the morning and afternoon. These observations and results are given in a table extending over cleven months, in 1843, and over cleven months, in 1844 . The results were fluctuating, and the discrepancies proved conclusively, that other causes were at work which would not be accounted for. The changes in the force were gencrally small. In the course of these experiments I found, beyond a doubt, that instruments of the same dimensions were required to give comparative results. During an aurora the small instrument in the College gave by no means the same results as the large instrument in the observatory; there were numerous comparisons determining this. I had reason also to believe that the large bar had its induced magnetism easily disturbed, and not regularly renewing itself, so that the correction for temperature may be supposed compound, one part permanent and cne part temporary. The following results were obtained:-

> Observations between February and June, 1843,
> " " July and December, 1843,
> " " January and June, 1844,
> " " July and December, 1844,
2.50 scalc divisions

| 2.28 | " " |
| :--- | :--- | :--- |
| 1.94 |  |

00 " "
for $1^{\circ}$ Fahr. It may also be stated that no reasonable supposition in regard to differences of temperature between the indications of the thermometer and magnetic bar, or to changes in the co-efficient varying with the temperature, will explain all the cases of discrepancies. In these comparisons, always near each other in time, small differences in intensity, as shown by the subsidiary instrument, were allowed for, but the corrections for temperature of this latter instrument were neglected, as the changes of temperature in the building where it was placed were small.

Another method, not quite so unobjectionable as the preceding one, was tried; it consisted in taking the results corresponding to the highest temperatures during each winter, and comparing them with those corresponding to the lowest temperatures, a correction being made to reduce the changes of force by means of the secondary instrument. These comparisons were liable to be affected by the unequal distribution of the results used over the different parts of the month. The result was: for combinations and comparisons, from

$$
\begin{array}{ll}
\text { January, } 1844 \text {, to June, } 1844, & 2.03 \\
\text { July, 184t, to December, } 1844, & 2.29
\end{array}
$$

scale divisions for cach degree of Fahrenheit's scale.
The mean value of all the results obtained by the various processes explained, is 2.6 scale divisions, and as a preliminary measure, it was supposed that the co-efficient was changeable, and hence a correction for change of temperature was applied, varying from 3.2 scale divisions, in 1840, to 2.0 scale divisions, in 1844 .

On resuming the discussion it was thought desirable to deduce a value for this co-efficient directly from the entire mass of observations, as this could not fail to satisfy the whole series. For this purpose it was indispensable to make the series of observations continuous, or, in other words, to refer the readings, extending over five consecutive years, to the same initial division of the scale. This is, therefore, a proper piace for stating all cases when the instrument suffered any disturbance and the amome of scale correction required. All necessary explanations are given in the record.

The first break in the series occurred August 27, 1840, at $122^{\mathrm{h}} 22^{\mathrm{m}}$ (Philadelphia time), when the mirror was accidentally deranged. The observed numbers from this date to September 22 , at $12^{h} 2^{2 m}$ have been brought to comparison with former numbers by the mean position of the bar for six previous days (in some cases seren) and by the hours, from $0^{\mathrm{h}} 22^{\mathrm{m}}$ to $22^{\mathrm{h}} 22^{\mathrm{m}}$ inclusive. This correction is already applied in the record, its probable error is given as 3.3 scale divisions.

On September 22,1840 , the instrument was readjusted.
An interruption of eleven days occurred, in January, 1841, owing to the introduction of a reflecting vertical force magnetometer, and requiring a new arrangement of the instruments. The horizontal force magnetometer was left in its place. The mean values for January, viz:. 944.6 divisions for the bifilar, and $36^{\circ} .5$ for the
corresponding temperature, as given in volume I of the record, may be reduced to the true mean by the interpolation of values, between December 31 and January 12. The daily mean (at $32^{\circ}$ ), on December 31, was 842.3 , and on January 12, 913.0 , hence, omitting the readings for January 3d, and 10th, as Sundays, the complete monthly mean should be 18.6 divisions less or cqual 926.0.

The observations were resumed on the 12 th, and continued to February 8th at $22^{\mathrm{h}} 49 \frac{1}{2}^{\mathrm{m}}$, when the wires were found to have been slightly deranged, two days previously, February $6,18^{n} 22^{\mathrm{m}}$ (Philadelphia time), a great change in the position was noticed; on re-arranging the instrument it did not return to its former readings. A correction of +116 has been applied (in the record) to the previous mean readings only in this month, and in consequence +116 divisions should be added to each individual reading from the commencement of the series; but on account of another disturbance of the instrument, on the 22 dl , at $16^{\mathrm{h}} 22^{\mathrm{m}}$ (Philadelphia time), a further correction of +92.8 scale divisions should be applied. The total correction is therefore +208.8 . Besides these corrections the readings on the $22 d$ from $0^{\mathrm{h}} 22^{\mathrm{m}}$ (Philadelphia time) to $10^{\mathrm{h}} 22^{\mathrm{m}}$ (Philadelphia time), inclusive, should be increased by +25.1 divisions, the alhidade of the instrument having been disturbed. ${ }^{1}$

On the $2 d$ of June, 1841, the suspension wires were struck accidentally, deranging the instrument; the readings were then near the end of the subsidiary scale, and in rearranging the instrument the new readings were brought near the middle of the scale. The total difference between the old and new scale readings, the latter commencing with the first of the month, is 900 scale divisions. The means between June 1st and 5th are already corrected in the record, but the individual bi-hourly readings require a correction of $+213^{2}$ scale divisions to produce these means. It was thought best not to apply this correction of -900 divisions to the observations between June, 1840, and June, 1841, but simply to state the quantity since it can be applied easily to any result hereafter.

At the close of 1842 the regular observations were discontinued for three months, during January, February, and March, 1843; a daily reading was taken at $14^{\mathrm{h}} 22^{\mathrm{m}}$ (Philadelphia time), in order to keep up a continuity in the scries. By means of the reduced readings in the same months in the other years, it was found that a correction of $-3^{\text {d }} .4-3^{\text {d }} .7$ and $+1^{\text {d }} .5$ for January, February, and March, respectively, was required to refer the mean at $14^{\mathrm{h}} 22^{\mathrm{m}}$ to the mean of a complete bi-hourly daily series. Applying these corrections, the corrected monthly means become:-

[^39]=\mathrm{ difference between iny single period and the mean "poch.
\Deltat= 6 "6 any temperature and the moan tomperature.

```

The formula was first applied to the monthly means resulting from five years of observation ; it gave \(y=+1.0\) scale division ; but the remaining differences showed that the irregular changes between June and July, and December and January, of the years 1840-41, had an undue effect on the result, the first year's observations were, therefore, omitted, and the process repeated for the remaining four years. The twelve conditional equations gave the normal equations:-
\[
\begin{aligned}
& +2143.15=+143 x-200.4 y \\
& -2549.73=-200.4 x+711.1 y
\end{aligned}
\]
whence \(x=\) monthly effect of the progression \(=+16.5\) scale divisions.
\(y=\) temperature correction for \(1^{\circ}\) Fahr. \(=+1.8\) " "
An examination of the observed and computed values showed that the introduction of a term \(\Delta e^{2} z\) would improve the agreement, solving the three normal equations we found
\[
\begin{aligned}
& x=+17.6 \\
& y=+1.62 \\
& z=-0.31
\end{aligned}
\]

The following table shows the comparison of the observed and computed monthly mean readings of the bifilar:-
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1841-3845. & Mean temperature. & Mean observed billar reading. & Mean computed. & Difference c. - \(n\). & c. \(-0+3.5\) \\
\hline June & 73.3 & 772.2 & 779.2 & \(+7.0\) & \(+10.5\) \\
\hline July . . & 77.2 & 811.8 & 806.2 & - 5.5 & \(-2.1\) \\
\hline August . & 76.5 & 833.9 & 824.7 & \(-9.2\) & \(-5.7\) \\
\hline September & 71.9 & 847.1 & 837.0 & -10.1 & - 6.6 \\
\hline October . & 64.2 & 853.4 & 843.3 & \(-10.1\) & -6.6 \\
\hline November & 57.7 & 849.9 & 851.4 & + 1.5 & + 5.0 \\
\hline December. & 57.0 & 872.2 & 867.8 & - 4.4 & \(-0.9\) \\
\hline January . & 57.8 & 895.0 & 886.0 & \(-9.0\) & \(-5.5\) \\
\hline February . & 55.2 & 903.8 & 897.9 & - 5.9 & \(-2.4\) \\
\hline March . & 58.5 & 918.6 & 919.3 & + 0.7 & +4.2
-1.4 \\
\hline April
May & 65.2
67.5 & 950.3
955.5 & 945.4
863.5 & +8.9
+8.0 & +11.4 \\
\hline Mean & 65.17 & 872.0 & & & \\
\hline
\end{tabular}

Adding +3.5 scale divisions to the mean value of \(B_{m}\) the above differences will balance. According to the above results, the annual progressive change is \(+17.6 \times\) \(12=211.2\) scale divisions, and the change in magnetic moment of the bar for a change of \(1^{\circ}\) Fuhr. in the temperature, or \(q=+1.62 \times 0.0000365=0.0000591\). This agrees with the best direct determination, being the one in which the observatory was alternately heated and cooled.

To test these results, a combination of the six warmest months with the six coldest months, by alternate means furnished several values for \(q\) depending merely on the assumption of a gradual regular progressive change during each year and a half, for which separate results were deduced; this series commenees with May, 1841, and ends with April, 1845, and contains, therefore, the same number of months as the first combination, excluding at the same time the two defective portions noticed above. This combination also possesses the advantage of showing the variations in the values of \(q\).

The result from this combination +1.3 confirms the preceding value, the result, according to weight or +1.5 scale divisions or \(q=0.0000548\) in parts of the horizontal force has, therefore, been adopted in the reduction of the bifilar readings to a standard temperature, for which \(+63^{\circ} .0\) Fahr. has been determined upon as the mean temperature of the magnetic bar during the five years series of observations.

The difterence in the resulting value for \(q\), when obtained from deflections or vibrations, and from combinations of the bifilar readings themselves, has been remarked before, and no satisfactory explanation has as yet been given of it. Thus, for instance, at Toronto, the two respective values were 2.69 and 1.63 scale divisions, as shown in General sabine's remarks (Vol. III.) The existence of a similar discrepancy in the case of the Makerstom bifilar has been detected by Mr. Broun. Whatever may be the cause of the difference, there can be no hesitation in saying that the result derived from the bifilar observations themselves is the one to be preferred. At St. IIelena (Vol. II., London, 1860), the two values were 1.45 and 0.98 , the half yearly comparisons at this station even show a less value, viz., 0.88 scale divisions; 0.98 (for convenience 1.0) was adopted in the reduction. Dr. Lamont, in his Handbook of Terrestrial Magnetiom (p. 206, edition of 1849), says: "It deserves to be remarked that the value obtained by comparing monthly mean readings of the bitilar at high and low temperatures is smaller than that obtained by direct observation."

In the present discussion the value \(\frac{7}{i}=\frac{0.0000548}{0.0000365}=1.5\) has been adopted. At Toronto this value wat \(\frac{q}{\%}=\frac{0.000142}{0.000087}=1.63\), and at K . Helena \(\frac{q}{k}=\frac{0.00019}{0.00019}=1.0\).

It will be seen from these values that the Philadelphia bifilar magnetometer was very sensitive; its scale value in parts of the horizontal foree is but four-tenths of the Toronto value, and only two-tenths of that of the St. IIelena instrument.

In the computations which follow the tenths of scale readings have been omitted (keping only the nearest mit) as contributing nothing to the accuracy of the results, and merely increasing the labor of reduction. The uncertainty in the readings arising from the uncertainty in the value of \(q\) probably affects the units, and the same may be said of the declination changes, so that in extreme (individual) cases the next higher figure may be affected.

The next step of the reduction consisted in transcribing the whole booly of the observations after correcting them individually for differences of temperature; the adopted standard temperature being \(63^{\circ}\) Fahr.

The following table contains the monthly means of the bitilar readirgs reduest to the standard temperature; the series has been made continuous by the application of certain corrections explained before.

The readings are in scale divisions of 0.0000365 parts of the horizontal force; increasing numbers denote decrease of force. The time is Observatory mean time, counted to twenty-four hours for convenience sake.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{12}{|c|}{Hourly Series．} \\
\hline & （9） \(21 \frac{1}{2}{ }^{\text {a }}\) & \(1^{5} 21{ }^{\text {a }}\) & \(2^{4} 21 \frac{1}{2 m}\) & \(3{ }^{\text {n }} 21\) ！m & \(4^{\text {n }} 212^{1{ }^{\text {m／}}}\) & \(5^{\text {h }} 211^{\text {m }}\) & \(6^{44} 212^{\frac{1 m}{m}}\) & \(7^{\text {b }} 212{ }^{\text {年 }}\) & \(8^{n} 21 \frac{1}{2}\) & \(9^{\text {b }} 21 \frac{1}{2 m}\) & \(10^{\mathrm{b}} 21 \frac{1}{2 m}\) & \(11^{\text {L }} 21\) 2m \\
\hline 1843． & Liv＇s． & Div＇s． \\
\hline October & 983 & 978 & 80 & 978 & 976 & 978 & 977 & 980 & 984 & 987 & & \\
\hline Nor． & 988 & 957
994 & 996
993 & 984
992 & 983
940 & 981
988 & 9.1
988 & 984
988 & 988
992 & 992 & 994 & 994
998 \\
\hline & \(12^{\text {n }} 21 \frac{1}{2}{ }^{\text {n }}\) & \(13^{\text {h }} 211^{\text {a }}\) & & \(15^{4} 21 \frac{1}{2}\) & \(16^{\text {² }} 21 \frac{1}{2}{ }^{\text {＂＇}}\) & \(21_{2}^{1 \mathrm{~m}}\) & \(18^{\text {b }} 212^{\text {mu }}\) & \(19^{4} 213^{\text {m }}\) & \(20^{\mathrm{h}} 21 \frac{1}{2}^{\text {m }}\) & \(21^{5} 21{ }^{104}\) & & \(23^{\text {b }} 21{ }^{\text {a }}\) \\
\hline October & 991 & 989 & 945 & 983 & 983 & 983 & 485 & 985 & \(9 \sim 5\) & & & 984 \\
\hline Nov． & 992 & 990 & 983 & 987 & 985 & 986 & 987 & 987 & 988 & 988 & 989 & 989 \\
\hline Dec． & 1000 & 999 & 997 & 994 & 992 & 991 & 993 & 996 & 996 & 996 & 998 & 999 \\
\hline 1844. & \(0^{\text {b }} 21 \frac{1}{2}^{\text {an }}\) & \(1^{15} 21^{1 / m}\) & \(2^{2 n} 21{ }^{\text {d }}\) & \(3^{\text {b }} 21^{\frac{1}{2}} \mathrm{~m}\) & \(4^{15} 21_{2}^{\frac{1}{2 m}}\) & \(5^{11} 21_{2}^{110}\) & \(6^{\text {b }} 211^{\text {m }}\) & \(7^{12} 21{ }^{1}{ }^{\text {ar }}\) & \(8^{n} 21 \frac{1}{\frac{1}{2}}\) & \(9^{\text {h }} 21{ }^{1} \mathrm{~lm}\) & \(10^{\text {h }} 21 \frac{1}{2}{ }^{\text {an }}\) & \(11^{\text {b }} 21 \frac{1}{2 m}\) \\
\hline January & 1009 & 11017 & 1004 & 10.4 & 1002 & 1002 & 1001 & 1001 & 1004 & 1007 & 1010
1034 & 1013
1036 \\
\hline Feb． & 1031 & 1031 & 11131 & 1029 & 1026 & 11124 & 1026 & 1028 & 1029 & 1030
1058 & 1034
1060 & 11036 \\
\hline March & 1050 & 10.48 & 10.7 & 1046 & 1045 & 1044 & 1045
1062 & 1046
1062 & 11061 & 1058
1075 & 1060
1079 & 1062
1079 \\
\hline April & 1067
1066 & \(106{ }^{\text {d }}\) & 1065
1064 & \(10+2\)
\(10+3\) & 1059 & 1159 & 1062 & 1065 & 1064 & 1075 & 11076 & 1071 \\
\hline June & 1080 & 1079 & 1078 & 1079 & 1079 & 1077 & 1075 & 1079 & 1082 & 1084 & 1086 & 1083 \\
\hline July & 1103 & 1114 & \(1100^{\circ}\) & 1107 & 1107 & 1106 & 1105 & 1110 & 1110 & 1117 & 1119 & 1115 \\
\hline August & 1129 & 1130 & 1130 & 1130 & 1129 & 1127 & 1126 & 1131 & 1139 & 1148 & 1149 & 1143 \\
\hline S－pt． & 1108 & 1108 & 1108 & 1109 & 1105 & 1107 & 1106 & 1113 & 1123 & 1189 & 1133 & 1129 \\
\hline October & 1132 & 1128 & 1127 & 1123 & 1122 & 1124 & 1125 & 1136 & 1137 & 1143 & 146 & 1141 \\
\hline Nor． & 11：31； & 113 B & 1133 & 1132 & 1131 & 1127 & 1128 & 1129 & 1134 & 1141
1196 & 1207 & 1215 \\
\hline Dec． & 1203 & 1201 & 1198 & 1196 & 1194 & 1192 & 11－8 & 1191 & 11.93 & 1196 & 1207 & 1215 \\
\hline & 120 21 & \(13^{12} 11^{\prime m}\) & \(14^{2} 21 ?\) & 15 & 21 & \(21 \frac{1}{2}\) & 212 & \(19^{n 21}\) & （0） 21 & \(21^{\mathrm{n}} 211_{2}^{\mathrm{m}}\) & \(22^{\mathrm{h}} 212^{\text {m }}\) & \(3^{\text {h } 213}{ }^{\text {m }}\) \\
\hline Tanuary & 1011 & 1108 & 10105 & 1001 & 1000 & 1002 & 1004 & 1005 & 1005 & 1004 & 1007 & 1009 \\
\hline Feb． & 1035 & 11032 & 1028 & 1028 & 1032 & 1031 & 1032 & 1033 & 1034 & 1033 & 1034 & 1033 \\
\hline March & 1067 & 10.33 & \(1055 ;\) & 1049 & 1052 & 1054 & 1054 & 11153 & 1051 & 1052 & 1052 & 1051 \\
\hline April & 1074 & 1010 & 10163 & 105，9 & 1061 & 1059 & 1045 & 1067 & 1068 & 10.9 & 1066 & 1069 \\
\hline May & 1065 & 1058 & 1054 & 10．4 & 1052 & 105.5 & 1060 & 1064 & 11165 & 1065 & 1064 & 1084 \\
\hline June & 1078 & 1117 & 1059 & 1067 & 1667 & 1069 & 11073 & 11075 & 1177
1102 & 1079
1103 & 1079 & 1080
111.5 \\
\hline July & 1107 & 1101 & 1097 & 10414
1115 & 1093 & 1094
1123 & 1097
1130 & 1110 & 11102 & 1103
1131 & 1104
1132 & 1115
1131 \\
\hline August & 1134
1119 & 1125 & 1117 & 1115
1100 & 1117 & 11115 & 11118 & 1110 & 1111 & 1111 & 1112 & 1116 \\
\hline October & 1139 & 1134 & 1128 & 1129 & \(112 \%\) & 1132 & 1133 & 1133 & 1135 & 1132 & 1133 & 1130 \\
\hline Nov． & 1146 & 11.45 & 1139 & 1137 & 1138 & 1138 & 1138 & 1143 & 1141 & 1138 & 1135 & 1139 \\
\hline Dec． & 1215 & 1210 & 1205 & 1200 & 1195 & 1196 & 1197 & 1197 & 1197 & 1201 & 1201 & 1201 \\
\hline 1845. & \(0^{\mathrm{n}} 211^{1 \mathrm{ml}}\) & \(1^{\text {n } 2121 / 3}\) & \(2^{4} 21{ }^{1 \mathrm{~mL}}\) & \(3^{\text {n }} 211_{2}^{\text {m }}\) & \(4^{4} 212^{\text {mu }}\) & \(5^{\mathrm{h}} 21^{12^{\mathrm{m}}}\) & \(6^{32} 21{ }^{110}\) & \(7{ }^{\mathrm{h}} 21{ }^{1} \mathrm{~m}\) & St1 \(21 \begin{aligned} & 150\end{aligned}\) & \(9{ }^{40} 211_{2}^{\text {mu }}\) & 212 & \(1^{n} 211^{2+1}\) \\
\hline January & 1233 & 1230 & 1231 & 1229 & 1227 & 1225 & 1224 & 1206 & 1230 & 1238 & 1244 & 1248 \\
\hline Feb． & 1232 & 1234 & 1232 & 1230 & 1230 & 1227 & 1224 & 1228 & 1234 & 1238 & 1246 & 1249 \\
\hline March & 1237 & \(12: 7\) & 1235 & 1236 & 1235 & 1235 & 1231 & 12.4 & 1242 & 1250 & 1256 & 1262 \\
\hline April & 1253 & 1250 & 124： & 1247 & 1245 & 1243 & 1241 & 124 & 1255 & 1270 & 1280 & 1279 \\
\hline May
June & 1249
1274 & 1248
1274 & 1246
1274 & 1245
1273 & 1241
1268 & 12.38
1267 & 1235
1262 & \(12+2\)
1266 & 1254
127. & 1264
1284 & 1290 & 1289 \\
\hline & \(12^{\mathrm{h}} 21\) dim & \(13^{n} 21 \mathrm{~d}^{\text {m }}\) & \(14^{\mathrm{L}} 21\) & 15421 & 161021 & 1721 & 18，21！ & \(19.21 \frac{1}{3}\) & 20， \(21{ }^{1}\) & \(21^{\mathrm{b}} 21 \frac{1}{2}^{\mathrm{m}}\) & 220 \(21 \frac{1}{2}{ }^{\text {a }}\) & \(23^{4} 21 \frac{1}{2}^{\text {n }}\) \\
\hline January & 1245 & 1241 & 1238 & 12：5 & 1233 & 12316 & 1237 & 123：3 & 1232 & 1231 & 1231 & 1229 \\
\hline Feb． & 1：251 & 1247 & 1240 & 1236 & 1235 & 123：3 & 12.4 & 12316 & 1236 & 1232 & 1232 & 1233 \\
\hline March & 1261 & 1254 & 1246 & 1240 & 1241 & 1243 & 1245 & 1242 & 1241 & \(1 \geq 38\) & 1241 & 1240 \\
\hline April & 1271 & 1267 & 1255 & 1253 & 1249 & 1251 & 1254 & 1257 & 1257 & 1254 & 1251 & 1252 \\
\hline May & \(125{ }^{\circ}\) & 1248 & 1242 & 1242 & 1242 & 1246 & 1251 & 1251 & 1251 & 1253 & 1251
1275 & 1245 \\
\hline June & 1252 & 1278 & 1269 & 1267 & 1260 & 1269 & 1274 & 1278 & 1277 & 1276 & 1275 & 1275 \\
\hline
\end{tabular}

The monthly means are contained in the following table:-

Correction for progressive change in the reulings.-The observations having been referred to a uniform temperature, still require a correction for the effect of the progressive change during each month before Pcirce's criterion can be applied for the purpose of separating the disturbances. We have seen that the mean monthly value of this change due to loss of magnetism of the bar and to change in the horizontal force itself, was 17.6 scale divisions; on the average, therefore, a correction must be applied to the observations on the first and last day of each month of +8.8 and -8.8 scale divisions, and in proportion for the intermediate days. At Toronto, also, the progressive change in some months was so great as to present a practical difficulty by its interference with the proper comparability of the observations, and in these cases new means at shorter intervals than a month were taken.

\footnotetext{
\({ }^{1}\) The actual mean of 17 days was 293 ; to reduce this to the mean of 27 days, 19 scale divisions were subtracted, resulting from an interpolation between Jaumary 1st and January 12th; the mean of 7 days preceding and following the gap was made use of.
s Owing to causes already explained, the means of May and June differ so much as to affect the continuity of the series; the same is to be said of the differences between June and July, 1840, and between December, 1840, and January, 1841; the corresponding differences between the same mouths in the other fonr years furnish us with the means of correcting the series for the first year, as will be seen hereafter; it also appeared advisable to omit the readings in June, 1840, altogether, the instrument not having then been in stable adjustment.
\({ }^{3}\) The numbers in table II have been slightly changed, to refer the mean of the hour of observation to the mean resulting from obscrvation of 12 hours a day. Comparing the mean at \(14^{\mathrm{h}} 22^{\mathrm{m}}\) in each month with the respective monthly means in the other four years, the above corrections became -5 , - 5 and 0 for January, February, and March.

The bar between September and October. 1843, separates the means from the bi-hourly and the hourly series.

In the application of the reduction for temperature no attempt whatever has heen made at interpolation in the magnetic series, but whenever a temperature reading was accidentally omitted, it has been supplied by comparison with the observed temperature immediately preceding and following No magnetic reading can be supplied by interpolation, however short the interval, as long as the law of the oceurrence of the disturbances remains unknown.
}

At Philadelphia the progressive change is so large as to require a systematic correction throughout the series. In the manuscript tables used for the preparation of the monthly normals and containing the observations reduced to \(63^{\circ}\) Fahr., the readings corrected for progressive change were written in blue ink underneath each obserration. If the monthly differences are taken from Table No. III., it is apparent that the change is irregular, and in three cases at least it is certain that other canses were in operation, which produced larger monthly differences than could be attributed to the gradual loss of magnetism. These cases are the following (already noticed in the preceding temperature discussion): between June and July, 1840, a difference of 170 divisions; between December and January, 1840-41, a difference of 75; and between May and June, 1841, a difference of 103 divisions. They require separate treatment, as will be presently explained. For the correction of the progressive change the mean reading from one month's series was made out for the first, middle, and last of each month. By this process of taking the mean from 14 days preceding and 14 days following each of the epochs the lunar effect on the solar variation is practically eliminated from the resulting mean value. \({ }^{\text {B }}\) These means corresponding in time to the beginning, the middle, and the end of each month, furnish the rate of change for the first and second half of the month, and by simple interpolation give the correction for progressive change for each day. If the rates for the first and second half of the month are different, the monthly means of each hour (from the blue figures) will differ by a small but constant quantity from the former monthly means. Thus, for instance, for the month of June, 1842 , the monthly mean is 651 divisions, corresponding in time to the middle of the month, the mean of the readings (at \(633^{\circ}\)) for the second half of May and the first half of June is 641 , corresponding in time to the first of June, and the mean of the readings (at \(63^{\circ}\)) of the second half of June and the first half of July is 673 , corresponding in time to the last of June; the correction applied to the bi-hourly readings (at \(63^{\circ}\)) on June 1st was +10 , and to the readings on June 30th was - 22 divisions. At the middle of the month the correction is zero, and for the intermediate days it is in proportion to their respective distances from the middle. The algehraic sum of the daily corrections divided by the number of days of observation is -3 , which gives the new monthly mean 648 , as corrected for irregularity in the progressive change. In the exceptional case of a break, or begiming and termination, the required rate of change for half the month was found by a similiur process, using half monthly and quarterly means.

The following table, No. IV., contains the monthly means of the bi-hourly and hourly readings of the bifilar magnetometer referred to a uniform temperature (\(63^{\circ}\) Fahr.), and corrected for irregularity in the progressive change. It is here inserted for the purpose of comparing it with the monthly normals, showing the change produced by the exclusion of the disturbances. The mems in the month of June, 1840, are suppressed, and the readings between June 1 and June 5, 1841, were not used.

\footnotetext{
\({ }^{1}\) In comertion with this subject, the first part of an interesting paper by Mr. Broun may be consulted, viz: "On the lanar dimmal variation of the mannetic declination at the magnetic equator." —Proued dings Royel Sowiety, wol X. Nu. 39, 1960.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Table IV. - Monthly Meavs of the Bl-holrha and Hodrly Readings of the Bifhar Magnetometer, bedecen to a Chiform Temperattre and Cobrected for Ibrehlabity in the l'rogressive Change.} \\
\hline \multicolumn{5}{|l|}{Philadelphia time (A. M.)} & \multicolumn{5}{|c|}{(IP. M.)} & & & \\
\hline & \(0^{14} 22^{\text {m }}\) & \(2^{2 b} 22^{2 \prime \prime}\) & \(4^{\prime \prime} 2{ }^{2}\) & \(6^{11} 222^{\prime \prime \prime}\) & 8" 2 2\%" & \(10^{\prime \prime} 22^{\prime \prime \prime}\) & \(12^{n} 22^{m}\) & \(14^{n} 22^{\prime \prime}\) & | \(16^{\prime \prime} 22 \times\) & \(18^{1122 m}\) & \({ }^{(112} 22^{\text {m }}\) & 22' \(22{ }^{\prime \prime \prime}\) \\
\hline 1840. & Div's. & Liv's. \\
\hline July & 130 & 83
118 & 79
118 & 76
114 & 102
147 & 116
158 & 137 & \({ }^{6.4}\) & 57
112 & 130 & +958 & 95
134
134 \\
\hline Sept. & 161 & 150 & 146 & 1.1 & 172 & 204 & & 160 & 15.5 & 1.30 & \({ }_{16 \%}^{127}\) & 134
156 \\
\hline October & 153 & 147 & 135 & 138 & 151 & 177 & 175 & 159 & 153 & 155 & 156 & 150 \\
\hline Nor. & 155 & 152 & 144 & 136 & 148 & 166 & 174 & 1610 & 116 & 154 & 15.5 & 159 \\
\hline Dec. & 202 & 191 & 183 & 177 & 183 & 209 & 217 & 205 & 191 & 195 & 241 & 201 \\
\hline 1841. & \(6^{\text {m } 22^{\text {m }}}\) & \(22^{2 \prime 2}\) & \(4^{\text {n } 22.2}\) & 6 \({ }^{112} 22^{\text {m }}\) & \(8{ }^{\text {n } 22 m}\) & \(10^{\mathrm{n}} 22^{\text {m }}\) & \(\frac{122^{n} 22^{\text {m }}}{}\) & \(14^{\prime \prime} 22^{\text {m }}\) & 16n \(22^{2 n}\) & 18122m & 2(1) \(22^{\prime \prime \prime}\) & 23"23" \\
\hline Wanuary & 300 & 291 & 290 & \({ }_{250}^{280}\) & 276 & 298 & 326 & 310 & 293 & 302 & 299 & 302 \\
\hline \begin{tabular}{l}
Feb. \\
March
\end{tabular} & 279
276 & 270
273 & 265
267 & \({ }_{265}^{256}\) & \begin{tabular}{l}
261 \\
262 \\
\hline 20
\end{tabular} & 286
298 & 303
299 & 295
972 & 276
97
27 & 23
281 & 259
282 & 275
\(2 \times 0\) \\
\hline April & 283 & 275 & 265 & 262 & 284 & 309 & 311 & 279 & 270 & 275 & \(2 \times 6\) & 283 \\
\hline May & 307 & 308 & 307 & 299 & 314 & 331 & 319 & 300 & 294 & 303 & 3018 & 312 \\
\hline June & 392 & 390 & 389 & 383 & 410 & 406 & 390 & 380 & 386 & 392 & 402 & 400 \\
\hline July & 445 & 441 & 436 & 437 & 448 & 458 & 450 & 430 & 431 & 443 & 454 & 449 \\
\hline August & 492 & 492 & 487 & 483 & 501 & 517 & 512 & 481 & \(4 \times 3\) & 498 & 503 & 499 \\
\hline \({ }_{\text {Sept. }}^{\text {Setober }}\) & 519
527 & 52.2 & 51.9 & 516 & 536 & 562
598 & 540 & 5.4 & 523 & 53.30 & 525 & 526 \\
\hline October
Nov. & 527
525 & 519
526 & 516
519 & 517
512 & 531
522 & 539
532 & 544
536 & 534
582
58 & 528
520 & 52.9
522 & 53
58
58 & 529
526 \\
\hline Dec. & 546 & 542 & 538 & 535 & 540 & 552 & 563 & 551 & 548 & 554 & 554 & 552 \\
\hline 1842. & \(0^{6} 211^{1{ }^{\text {nu }}}\) & \(2^{\text {m }} 211^{12^{\text {m }}}\) & \(4^{\mathrm{n}} 21.2^{\text {m }}\) & \({ }^{6 \mathrm{n}} 211_{\frac{1}{2}}{ }^{\text {a }}\) & \(8^{81} 21 \frac{1}{2 m}\) & 10) \(21{ }^{1}{ }^{\mathrm{m}}\) & \(12^{\mathrm{n}} 211^{\text {mim }}\) & \(14^{\prime \prime}\) 212 \({ }^{\text {mp }}\) & \(16^{19} 22_{2}^{1 \mathrm{~mm}}\) & \(18^{\prime \prime} 21 \frac{1}{2}{ }^{\text {n }}\) & "21] & \(22^{\prime 2} 21{ }^{2}\) \\
\hline January & 558 & 556 & 555 & \({ }_{5}^{551}\) & 551 & 573 & 577 & 56.2 & 557 & 566 & 563 & 563 \\
\hline March & 585
569 & 579
540
540 & 577 & 575 & 573 & 583
576 & 596
573 & 58.
563 & 5581 & 586
370 & 592
592
5 & 585
573
57 \\
\hline April & 610 & 604 & 6113 & 598 & 6116 & 623 & 617 & \(6{ }^{6}\) & 597 & 610 & 632 & 612 \\
\hline May & 614 & 610 & 606 & \({ }_{6} 65\) & 621 & 629 & 618 & 614 & 606 & 615 & 617 & 619 \\
\hline \({ }^{\text {June }}\) & 649
687 & \({ }_{6}^{672}\) & \({ }_{6}^{645}\) & 638 & 649 & 661 & 651 & \({ }_{6}^{6} 39\) & \({ }^{636}\) & \({ }_{649}\) & 65.2 & 653 \\
\hline August & 701 & 69. & 695 & 692 & 711 & 521 & 702 & \(6 \times 8\) & 68.9 & 699 & 703 & 712 \\
\hline Sept. & 723 & 725 & 720 & 713 & 734 & 748 & 736 & 724 & 220 & 731 & 732 & 729 \\
\hline October & 761 & 754 & 751 & 751 & 759 & 778 & 782 & 776 & 770 & 768 & 769 & 766 \\
\hline Nor. & 779 & 773 & 771
775 & \begin{tabular}{l}
768 \\
773 \\
\hline
\end{tabular} & 777 & 790
790 & 785 & 781 & 777 & 771 & 781 & 784 \\
\hline 1843. & \(0^{\mathrm{n}} 21 \underline{2}_{\frac{1}{\mathrm{~m}}}\) & \(2{ }^{20} 21{ }^{\text {m }}\) & 4 \({ }^{\text {b } 21 \frac{1}{3}^{\text {m }}}\) & \(\overline{6^{\text {b }} 211_{2}^{12} \mathrm{~m}}\) & \(8^{\mathrm{h}} 21 \frac{1}{2}^{\text {m }}\) & 102 \(21 \frac{1}{3}\) & \(12^{\text {n } 21}\) & \(14^{\mathrm{n}} 211_{\frac{1}{2 m}}\) & \(6^{6} 211^{\frac{1}{2}}\) & 821 & \({ }^{0} 2{ }^{2} 1{ }_{2}^{1}\) & \(22^{1 / 21 \frac{1}{2}}\) \\
\hline January & & & & & & & & 818 & & & & \\
\hline \begin{tabular}{l}
Feb. \\
March
\end{tabular} & & & & & & & & \[
\begin{aligned}
& 19 \\
& 831
\end{aligned}
\] & & & & \\
\hline April & 863 & 862 & 8.56 & 856 & 870 & 883 & 878 & 863 & 862 & \(86^{3}\) & 869 & 862 \\
\hline May & 865 & 863 & 861 & 859 & 874 & 876 & 861 & 854 & 855 & 862 & 87. & 88.9 \\
\hline June & 881 & 880 & 876 & 873 & 883 & 8.92 & 884 & 870 & 870 & 881 & 84 & 845 \\
\hline July & \({ }_{931}^{927}\) & \({ }^{924}\) & 924 & \({ }_{927}^{923}\) & 936
949 & 943 & 935 & 923 & 919 & 924 & 93.4 & 8.32 \\
\hline August
Sept. & \({ }_{971}^{931}\) & 930
970 & 93919 & 927
960 & 949
980 & 956
993 & 943
984 & 923 & 924
971 & 9.9
973 & \(93 \%\)
973 & 934
969 \\
\hline
\end{tabular}
\({ }^{1}\) The mean of 17 days is giren; to refer it to a complete month subtract 19 dirisions.
2 The mean of 19 days is given; to refer it to a complete month add 8 divisions.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{12}{|c|}{Hourly Series.} \\
\hline & (1) 2112 m & \(1^{4} 212^{\text {m }}\) & 2121起 \({ }^{10}\) & \(3^{4} 21{ }^{\text {d }}\) & \(4^{\mathrm{n} 21} 2^{1 \mathrm{~mm}}\) & \(5^{n} 21\). & \(6^{\text {a }} 211_{2} \mathrm{~m}\) & \(7^{\text {n }} 21_{2}^{1 / 4}\) & \(8^{\mathrm{h}} 21 \frac{1}{2 m}^{\text {m }}\) & \(9^{\text {b } 21} 21 \frac{1}{2 m}\) & \(10^{\prime 2} 212 \mathrm{~m}\) & 11"213 \({ }^{\text {ma }}\) \\
\hline 1-43. & Div's. & Div's. & Div's. & Div's. & Div's. & Dir's. & Div's. & Div's. & Div's. & Div's. & Div's. & Div's. \\
\hline Octobe & 983 & 978 & 980 & 978 & 976 & 978 & 977 & 980 & 984 & 987 & 991 & 992 \\
\hline Nio & 957 & 986 & 985 & 983 & 982 & 150 & 980 & 98.3 & 957 & 991 & 993 & 943 \\
\hline Deec. & 995 & 993 & 992 & 991 & 989 & 987 & 987 & 9.7 & 991 & 991 & 992 & 997 \\
\hline & 124 & \(21{ }_{2}^{\text {m }}\) & \(14^{\text {b }} 21{ }^{\text {dem }}\) & \(15^{\text {b }} 211^{\frac{1}{2 m}}\) & \(16^{\mathrm{n}} 211^{\text {m }}\) & \(17^{\mathrm{n}} 211^{\text {mi }}\) & \(18^{12} 213^{14}\) & \(19^{\text {² }} 21{ }^{1 \prime \prime}\) & \(20^{\text {h } 212 m}\) & \(21^{\text {n }} 21\) 告" & \(22^{1 / 21} 1^{\text {m }}\) & \(23^{\mathrm{n}} 21 \frac{1}{2 m}^{\text {m }}\) \\
\hline Oetober & 991 & 88 & 955 & 953 & 983 & 983 & 985 & 945 & 985 & 984 & & \\
\hline Nov. & 991 & 989 & 987 & 9\%6 & 984 & 985 & 980 & 9815 & 987 & 987 & 988 & 9:8 \\
\hline Dec. & 999 & 998 & 996 & 993 & 991 & 990 & 992 & 995 & 995 & 995 & 997 & 998 \\
\hline 1844. & \(0^{-2} 21 \frac{1}{2 m}\) & \(1^{\mathrm{n}} 21 \underline{2}^{\text {ma }}\) & \(2^{\text {n }} 211_{2}^{4}\) & \(3{ }^{\text {b }} 21{ }_{2}^{1 \mathrm{~m}}\) & \(4^{\text {b }} 212^{\frac{1}{n}}\) & \(5^{41} 21^{1 / 2 m}\) & \(6^{\text {t }} 21{ }^{\text {2 }}\) & \(7^{4} 21{ }^{112}\) & \(8^{41} 21\) ! \({ }^{10}\) & \(9^{4} 21 \frac{1}{2 m}\) & \(10^{\text {d }} 21{ }^{\text {m }}\) & "212 \({ }^{\text {"'I }}\) \\
\hline Januar & 1007 & 1005 & 1044 & 1002 & 1000 & 1000 & 999 & 999 & 1002 & 1005 & 1008 & 1011 \\
\hline Feb. & 1031 & 1031 & 1031 & 1029 & 1026 & 1026 & 1126 & 1028 & 1029 & 1030 & 1034 & 1036 \\
\hline March & 1051 & 1049 & 1048 & 1047 & 1046 & 1045 & 10t6 & 10.4 & 11052 & 1059 & 1061 & 11063 \\
\hline April & 1070 & 1069 & 1068 & 1045 & 1062 & 1062 & 1065 & 1005 & 1070 & 1178 & 1082 & 1082 \\
\hline May & 1065 & 1065 & 1063 & 1062 & 1062 & 1013 & 1061 & 1064 & 1068 & 1074 & 1075 & 1070 \\
\hline June & 1078 & 1077 & 1076 & 1077 & 1077
1106 & 11175
1105 & 1073
1104 & 1077
1104 & 11080 & 1082 & 11118 & 1081 \\
\hline July & 1102
1133 & 1103 & 1105
1134 & 1106 & 11183 & 11131 & 1130 & 1135 & 1143 & 1152 & 1153 & 1147 \\
\hline Stept. & 1102 & 1102 & 1102 & 1103 & 1099 & 1101 & 1100 & 1107 & 1117 & 1123 & 1127 & 1123 \\
\hline October & 1136 & 1132 & 1131 & 1127 & 1124 & -1128 & 1129 & 1134 & 1141 & 1147 & 1150 & 1145 \\
\hline Nov. & 1132 & 1131 & 1129 & 1128 & 1127 & 1123 & 1124 & 1125 & 1130 & 1137 & 1143 & 1145 \\
\hline Dec. & 1205 & 1203 & 1200 & 1198 & 1196 & 1194 & 1190 & 11.93 & 1194 & 1198 & 1209 & 1217 \\
\hline & \(12^{\text {n } 21 \frac{1}{3}}{ }^{\text {m }}\) & 13 21 \({ }_{2}^{1 \mathrm{~m}}\) & \(14^{\mathrm{h}} 21^{12^{\mathrm{m}}}\) & \(15^{\mathrm{h}} 212^{\text {mm}}\) & \(16^{\text {n }} 212^{\text {ma }}\) & 17921 \({ }^{\text {a }}\) & \(18^{\mathrm{n}} 21!^{\mathrm{ma}}\) & \(19^{4} 212{ }^{\text {m }}\) & \(20^{1+213}\) & \(21^{12} 211_{2}{ }^{\text {m }}\) & \(22^{\text {n }} 212{ }^{\text {m }}\) & \(23^{\mathrm{h}} 211^{\text {ni }}\) \\
\hline Jamuary & 1009 & 1006 & 1003 & 999 & 998 & 1000 & 1002 & 1003 & 1003 & 1004 & 1005 & 1007 \\
\hline Feb. & 1035 & 1032 & 1028 & 1028 & 1032 & 1031 & 1032 & 1033 & 1034 & 1033 & 1034 & 1033 \\
\hline March & 1068 & 1064 & 1057 & 1050 & 11153 & 1055 & 1055 & 1054 & 1052 & 1053 & 1153 & 1052 \\
\hline April & 1057 & 1072 & 1066 & 1062 & 1004 & 1062 & 1068 & 1070 & 1071 & 1072 & 1069 & 1072 \\
\hline May & 1164 & 1057 & 1053 & 1053 & 1051 & 1054 & 1059 & 1063 & 1064 & 1064 & 1063 & 1063 \\
\hline June & 1077 & 1072 & 1067 & 1065 & 1065 & 11067 & 1071 & 1073 & 1075 & 1077 & 1077 & 1078 \\
\hline July & 1106 & 1100 & 1096 & 1093 & 1092 & 1193 & 109\% & 1099 & 1101 & 1102 & 1103 & 1104 \\
\hline August & 1138 & 1129 & 1121 & 1119 & 1121 & 1127 & 1134 & 1135 & \(11: 36\) & 1135 & 1136 & 1135 \\
\hline Sept. & 1113 & 1102 & 1096 & 1094 & 119.9 & 11099 & 1102 & 1104 & 11105 & 1105
1136 & 1106 & 1110
1134 \\
\hline October & 1143 & 1138 & 1132 & 1133 & 1132 & 1136
1134 & 1137
\(11: 3\) & 1137
1139 & 1139
1137 & 1136 & 1137 & 11135 \\
\hline Nov.
Dec. & 1142
1217 & 1141
1212 & 1135
1207 & 1133
1212 & 1134
1197 & 1134
1198 & \(11: 4\)
1199 & 1139 & 1137
1199 & 1134
1203 & 1131 & 1135
1203 \\
\hline 1845. & \(0 \cdot 211\) & \(1^{\text {n } 2+\frac{11}{\prime \prime}}\) & \(2^{41} 21 \frac{18}{12}\) & \(3^{\text {b }} 21 \frac{1}{2}^{\text {m }}\) & \(4{ }^{\text {a }} 21{ }_{2}^{1} \mathrm{~m}\) & \(5 \mathrm{n} 21{ }_{2}^{1 \mathrm{~m}}\) & \(66^{17} 212^{2 m}\) & \(7^{14} 212^{\text {ni }}\) & \(8^{\mathrm{b}} 21 \frac{1}{2}^{\prime \prime}\) & \(9^{\text {b }} 211_{2}^{1} \mathrm{~m}\) & \(10^{\mathrm{n}} 21{ }^{1 \mathrm{~m}}\) & \(1^{\mathrm{h}} 21 \frac{1}{2}^{\frac{n}{}}\) \\
\hline Januar & 1234 & 1231 & 1232 & 1230 & 1228 & 1226 & 1225 & 1227 & 1231 & 1239 & 1245 & 1249 \\
\hline Febb. & 1231 & 1233 & 12.31 & 1229 & 1229 & 122 & 1223 & 1227 & 1233 & 1237 & 1245 & 1248 \\
\hline March & 1233 & 1236 & 1234 & 1235 & 1234 & 1234 & 1230 & 1233 & 1241 & 1249 & 1255 & 1261 \\
\hline April & 1255 & 1252 & 1251 & 1249 & 1247 & 1245 & 1243 & 1249 & 1257 & 1272 & 1282
1260 & 1281 \\
\hline May & 1244 & 1243 & 1241 & 1240
1280 & 1236 & 1233 & 1230
1269 & 1237
1273 & 1249
1280 & 1298 & 1260 & 1258
1296 \\
\hline June & 1281 & 1281 & 12-1 & 1280 & 1275 & 1274 & 1269 & 1273 & 1280 & 1291 & 1297 & 1296 \\
\hline & \(12^{\mathrm{n}} 212^{\mathrm{mm}}\) & \(13^{\text {4, } 21 \frac{1}{2} \mathrm{~m}}\) & \(14^{\text {n }} 211^{18}\) & \(15^{1 / 212 m}\) & \(16^{\mathrm{b}} 21\) \% & \(17^{\mathrm{n}} 211^{\text {m }}\) & \(18^{\text {h } 212 m}\) & \(19^{\text {n }} 21 \frac{1}{2 m}^{\text {ma }}\) & \(20^{\text {h }} 212^{1 / \mathrm{ml}}\) & \(21^{1121} 2^{\text {n }}\) & \(22^{1211 m}\) & \(23^{\mathrm{b}} 21 \frac{1}{2 m}^{\text {m }}\) \\
\hline January & 1246 & 1242 & 1239 & 1230 & 1234 & 1237 & 1238 & 1234 & 1233 & 1232 & 1232 & 1230 \\
\hline Feb. & 1250 & 1246 & 12:39 & 1235 & 12.34 & 1232 & 1233 & 1235 & 1235 & 1231 & 1231 & 1232 \\
\hline March & 1260 & 1253 & 1245 & 1239 & 1240 & 1242 & 1244 & 1241 & 1240 & 1237 & 1240 & 1239 \\
\hline April & 1273 & 1269 & 1257 & 12.55 & 1251 & 12.53
1241 & 1256
1246 & 1258 & 1259 & 1256 & 1253 & 1254 \\
\hline Ming
June & 1251
1259 & 1243
1285 & 1237
1276 & \(12: 37\)
1274 & 1237
1273 & 1241
1276 & 1246 & 1246
1285 & 1246
1284 & 1248 & \(12 \times 2\) & 12 \\
\hline
\end{tabular}

The differences in the successive ammal means indicate that the progressive change may be assumed to have been uniform from year to year, and applying the usual method we find an annual progressive change of 220 scale divisions.

Introduction of the Horizontal Dutensity in absolute measure and siparation of the effect of the loss of Magnetism of the Bifier bur from the effect due to the secular change of the Horizontal Intensity.-Although some experiments were made to determine the gradual loss of magnetism of the bar, as, for instance, in January, 1841, when the amount was found to be 0.9601 of the force in May, 1840, and again in June, 1841, when the amount was 0.9686 of its amount in January, 1841, yet the experiments do not extend over the whole period of observation, and consequently we are obliged to deduce the effect of the secular change of the horizontal intensity from other independent means, and, after converting it into scale divisions, we can assign the proper proportion of what is due to secular change and to loss of magnetism, in the whole progressive change of 220 scale divisions in a year.
In connection with the operations of the U. S. Coast Survey, Assistant Schott has investigated \({ }^{2}\) the secular change of the horizontal intensity at a number of stations on the Atlantic and Pacific coasts. At several stations the results were subsequently improved by a discussion of my observations for intensity, made in part in connection with a magnetic survey of Pennsylvania, and also extending into adjoining States, and, in one of the journeys, into Canada. From the complete material the values in the following table of observed horizontal and total intensities have been collected. The horizontal intensity \(I\) and the total intensity \(\phi\) are expressed in absolute measure (grains and feet).

\footnotetext{
s Report to Superiatendent, dated January 19, 1861.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline N". & Yrar. & Obmerver. & Reference from which the values were derived or taken. & \(X\). & D. \\
\hline 1 & 1-3\%.1 & Brache and Courteuay. & Trans. Amer. Plail. Soc., Vol. V, 1837. & 4.165 & 13.58 \\
\hline 2 & 1-36i.7 & Bache. & & 4.159 & 13.46 \\
\hline 3 & 1534.5 & Loomis. & Trans. Amer. Phil. Soc., Vol. VIll. & 4.149 & 13.41 \\
\hline 4 & \(1-41.9\) & Bache. & & & 13.41 \\
\hline 5 & 1441.5 & Locke. & Phil. Trans. Roy. Soc., 1846. & 4.172 & 13.51 \\
\hline * & 1841.8 & Bache. & & & 13.46 \\
\hline 7 & 1842.5 & Locke. & Phil. Trans. Roy. Soc., 1846. & 4.174 & 13.52 \\
\hline 8 & 1-42.8 & Lefroy. & " " 0 " & 4.176 & 13.50 \\
\hline 4 & 1.43.6 & Bathe. & & 4.172 & 13.415 \\
\hline 111 & 1.44 .5 & Locke. & Phil. Trans. Roy. Soc., 1846. & 4.162 & 13.47 \\
\hline 11 & \(1 \times 16.4\) & Locke. & U. S. Coast Survey Records. & 4.143 & 13.42 \\
\hline 11\% & 155.5.7 & Schott. & & 4.236 & 13.89 \\
\hline 113 & 1862.6 & Schott. & "6 6 6 & 4.088 & 13.30 \\
\hline
\end{tabular}

The first three obscrvations were not made at the Girard College grounds; and it appears from Prof. Loomis' observation when compared with Dr. Locke's, that a correction of 0.023 in the value of \(X\) should be added to these; to the twelfth observation I have assigned only half weight; it was probably made during a disturbance. From the general discussion an annual diminution in the horizontal force of 0.0011 parts was deduced for a number of stations on the Itlantic coast. At Toronto (rol. III of General Sabinc's Discussion) the amnual decrease was found 0.0010 in parts of the horizontal force. Being somewhat guided by these results, after several trials, the following combination of the results in the table has been adopted, as perhaps best representing the values for the time during which the Girard College observations were made, these latter being merely of a differential character:-
\begin{tabular}{ccc}
Combination. & Mean epoch. & Mean horiz'1 int. ズ. \\
\(1,2,3\) & 18.35 .1 & 4.191 \\
\(5,7,8,9\) & 1842.6 & 4.174 \\
\(10,11,12,1: 3\) & 1852.3 & 4.145
\end{tabular}

The annual diminution of \(X\) is 0.00330 , or, wheu expressed in parts of the horizontal force \(=0.0007\); its equivalent in scale divisions is 19.2 . The total annual change was found to be 220 scale divisions; hence, 200.8 scale divisions of annual change is due to loss of magnetism of the bar.

The mean epoch is 1844.0, and the corresponding mean \(I=4.1 \% 0\); the mean epoch of the observation taken at the Girard College, is January, 1843, f,r which, therefore, the mean value of \(X=4.173\). 'This value has been adopted whenever it was desirable to introduce the horizontal force in absolute measure.

Separation of the Larger Disturbences.-The observations having been referred to a uniform temperature, and corrected for progressive change, Peirce's criterion was applied separately to each month. For this purpose, a systematic application was made extending over the whole series of observations, commencing with the hour 0 and the month of July, next with the hour 2 and August, followed by hour 4 and September, and so on in regular progression. This process eliminates from the result the diumal variation and the ammual variation of the disturbances themselves. The value for \(0^{\mathrm{h}}\) in July, 1840, was omitted as affected by two very large disturbances. The following table shows the limiting value of difference from the

\footnotetext{
\({ }^{1}\) Added while this paper is passing through the press.
}
mean (the monthly mean for the respective hour), also the number of observations in each year subjected to the process:-
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Div's.} \\
\hline 1840-41 cx \(=\) & 53 & \(n\) & \(=241\) \\
\hline 1841-42 " & 44 & & 312 \\
\hline 1842-43 & 37 & & 309 \\
\hline 1843-44 & 29 & & 313 \\
\hline 1844-45 " & 33 & & 313 \\
\hline Mean value & 39 & Sum & 1488 \\
\hline
\end{tabular}

The limiting value derived from nearly 1,500 observations is 39 scale divisions, and the separate ammal values show plainly the effect of the eleven (ten?) year period, the year 1843-4 being a minimum year. Certain limits in the adoption of a separating value are allowable, and upon trial as to the actual number of disturt, ances separated, the value 33 scale divisions was finally adopted. Any observation differing 33 divisions or more from its respective monthly mean, was therefore marked and excluded from the mean. 33 divisions equal 0.0012 parts of the horizontal force, and in the value of the absolute scale it amounts to 0.005 . At Toronto the limiting value was \(1 t\) divisions, \(=0.0012\) parts of the horizontal force, equal to 0.004 in the absolute scale. (Vol. III of the Toronto Obscr's.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Table VI.-Shows tie Number of Observations and the Number of the Larger Disterbances Separated by the Talde 33, as the Limit, fur eaci Montif, Year, and the Whole Period.} \\
\hline \multirow{2}{*}{Mosta.} & \multicolumn{2}{|l|}{1840-1541.} & \multicolumn{2}{|l|}{1841-1842.} & \multicolumn{2}{|c|}{1542-1543} & \multicolumn{2}{|l|}{1543-1844.} & \multicolumn{2}{|l|}{154t-1545.} \\
\hline & Obser's. & Dist's. & Obser's. & Dist's. & Obser's. & Dist's. \({ }^{\text {a }}\) & Obser's. & Dist's. & Ohisers. & Dist's. \\
\hline July - - & 323 & 165 & 323 & 26 & 308 & 24 & 312
324 & 15 & 648
645 & \\
\hline August - & 308 & 73
54 & 312
310 & 17 & 321
308 & 4 & 312 & 16 & 640 & \\
\hline September . & 312 & 54 & 310
308 & 48 & 318
310 & 53 & 624 & 3 & 648 & 32 \\
\hline November & 293 & 49 & 312 & 32 & 312 & 15 & 624 & 1 & 624 & 42 \\
\hline December & 321 & 120 & 323 & 26 & 323 & 5 & 624 & 0 & 624 & 46 \\
\hline January . & 2111 & 23 & 311 & 14 & \(21 i^{3}\) & 0 & 646 & 3 & 64 & 27 \\
\hline February & 288 & 50 & 287 & 37 & \(24^{4}\) & 1 & 600 & 5 & 574 & 18 \\
\hline March . & 320 & 62 & 323 & 26 & \(27^{5}\) & 1 & 624 & 29 & 624 & 3 \\
\hline April . & 309 & 48 & 309 & 38 & 300 & 14 & 624 & 16 & 624 & 33 \\
\hline May - & 310 & 46 & 300 & 29 & 324 & 25 & 648 & 3 & 648 & \\
\hline June . - & \(225^{2}\) & 13 & 311 & 16 & 312 & 4 & 600 & & 600 & 56 \\
\hline Sums . & 3533 & 770 & 3729 & 330 & 2895 & 189 & 6562 & 112 & 7512 & 307 \\
\hline \multicolumn{9}{|l|}{Ratio . . . 1 dist. in 4.6 ob's. 1 dist. in 11.3 ob's. 1 dist. in 15.3 ob's. 1 dist. in 64.3 ob's.} & dist. & 4.4 ob \\
\hline \multicolumn{5}{|r|}{\multirow[t]{2}{*}{Total number of observations Total number of disturbances}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|r|}{24,231} & & \\
\hline & & & & & & & \multicolumn{2}{|r|}{1,698} & & \\
\hline
\end{tabular}

The limiting ralue separated, therefore, one in every 14.3 observations. At Toronto one in every 12.5 was marked as a disturbance.

\footnotetext{
1 In 17 days.
3 One observation a day.
* One observation a day.

2 In 19 days.
- One observation a day.
}

The larger disturbances having been \({ }^{-}\)excluded, new monthly means were taken, and the process was repeated several times, when required, until all readings differing 33 scale divisions or more had been excluded; the final means constitute the normals as given in the following table:-

> Table VIL-Monthly Normal of the Bi-Hourly and Hourly Readings of the Bifilar Magetoneter heilced tua Normal Temperatire and Corbected for Irregularity in the Progressive Change.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(0^{\text {b }} 22^{\text {n }}\) & \(2^{\text {a }} 22^{\text {m }}\) & \(4^{16} 22^{34}\) & \(6^{5} 22^{\text {n }}\) & \(8^{4} 22^{\text {m }}\) & 10422 m & \(12^{\text {b }} 22^{\text {m }}\) & \(14^{n \prime 2} 23^{m}\) & \(16^{\prime \prime} 22^{\text {m }}\) & \(18^{\mathrm{h}} 22^{\mathrm{m}}\) & \(20^{\text {b }} 22^{\mathrm{m}}\) & \(22^{\prime \prime} 22^{m}\) \\
\hline 1840. & Dir's. & Div's. & Div's. & I \({ }^{\text {iv's. }}\) & Div's. \\
\hline July & 113 & 117 & 89 & 50 & 312 & 116 & 94
134 & 59
103 & 52
111 & 22 & 93
121 & 108
126 \\
\hline August & 1115 & 112 & 117 & 116
\(1+1\) & 138
180 & 153
202 & 134 & 103 & 111 & 114 & 121 & 126
150 \\
\hline September & 15.5 & 147
\(1: 37\) & 138 & 148 & 150 & 216 & 159 & 10.5 & 148 & 146 & 148 & 151 \\
\hline Octoler \({ }^{\text {November }}\) & 15.5 & 150 & 144 & 133 & 144 & 1.4 & 175 & 157 & 151 & 148 & 144 & 160 \\
\hline December & 1915 & 188 & 176 & 166 & 178 & 2118 & 217 & 193 & 182 & 185 & 200 & 194 \\
\hline 1841. & (1) \(22 \times\) & \({ }^{6} 2^{\circ}\) & 4420 & \(6^{\text {b }} 222^{\text {m }}\) & \(8^{\text {n }} 222^{31}\) & 111023 & 12123'3| & \(14^{n}\) & \(16^{11} 2^{34}\) & \(15^{10} 22^{4}\) & \(21^{112} 22^{\text {m }}\) & \(22^{\text {b }} 22^{\text {nu }}\) \\
\hline Jannary \({ }^{\text {a }}\) & 094 & 310 & 29. & 254 & 281 & 302 & 323 & 311 & 289 & 296 & 301 & 302 \\
\hline February & 296 & 211 & 24.4 & 257 & 26.3 & 285 & 297 & -2. & 2.5 & 274 & 275 & 27.2 \\
\hline March & 240 & 27 & 217 & 237 & 11 & 294 & 268 & 26 & 20 & -82 & 264 & 272 \\
\hline April & 273 & 271 & 262 & \(22^{2}\) & 283 & 317 & 315 & 279 & i8 & 27 & 283 & 13 \\
\hline May & 311 & 305 & 306 & 297 & 306 & 323 & 313 & 301 & \(2 \cdot 4\) & 36 & 309 & 313 \\
\hline June \({ }^{2}\) & 392 & 390 & 392 & 356 & 419 & 411 & 345 & 32 & \(3-5\) & 392 & 418 & 392 \\
\hline July & 442 & 4.4 & 435 & 435 & 4.47 & 45.8 & 449 & 428 & 430 & \(4 \pm 4\) & 448 & 439 \\
\hline August & 490 & 494 & 4.7 & 482 & 501 & 518 & 5 & \(4{ }^{4}\) & 483 & 497 & 510 & 495 \\
\hline September & 510 & .114 & 515 & 5118 & \(5: 31\) & 54.3 & 537 & 5110 & 51.9 & 520 & 515 & 515 \\
\hline October & 531 & 517 & 518 & 514 & 526 & \(5: 7\) & 547 & 0.311 & \(5 \times 5\) & 527 & 529 & 8 \\
\hline Sovember & 519 & 517 & 515 & 509 & 514 & 529 & 581 & 514 & 515 & 513 & 516
550 & 518
5.2 \\
\hline December & 545 & 541 & 53. & 335 & 537 & 5.4 & \(56 \%\) & 54.3 & 545 & & & \\
\hline 1842. & \multicolumn{3}{|l|}{} & \(6^{1 / 2} 212^{\text {a }}\) & \multicolumn{3}{|l|}{} & \(14^{\prime 2} 21{ }^{\text {2 }}\) & \(\underline{16^{\prime \prime 2} 211^{\text {mi }}}\) & \multicolumn{2}{|l|}{} & 22021婁 \\
\hline January & 5t1 & 554 & 535 & - 505 & 5 & 573 & 57. & 589 & 504 & 504
580 & 563 & 564
578 \\
\hline February & 850 & 573 & 572 & 567 & 516 & 582 & 589 & 6,78
561 & 578 & 580 & 564
567 & 578
566 \\
\hline March & 54.5 & 55.9 & 557 & 50.4 & 514 & 574 & \%a & 50 & \%6\% & 0, & 608 & 566
611 \\
\hline April & 59.5 & & 597 & 594 & 60.4 & 620 & 615 & & 593 & 615 & (118 & 611
619 \\
\hline May & 614 & 610 & 611 & 605 & 121 & 6:3 & 122 & \({ }^{46} 16\) & \({ }^{6} 16\) & 61.9 & 648 & 619
6.50 \\
\hline June & 64.9 & 658 & 6.46 & \(6: 35\) & 649 & (is) & 18 & 6.9 & fi3s & 64 & 69 & 6.50 \\
\hline July & 598 & ting & 68. & 67.8 & 695 & 518 & 70 & 1ix1 & 17 & 690 & \(\underline{694}\) & -00 \\
\hline August & 699 & 1944 & (69) & 692 & 711 & 721 & 5111 & ¢6\% & 159 & 701 & 71.3 & \%02 \\
\hline September & 729 & 733 & 72 & 717 & 739 & 750 & 787 & \(7: 3\) & 727 & 737 & 737 & 734 \\
\hline October & 764 & 75.9 & 75 & 757 & 718 & 51 & 753 & \(7{ }^{7}\) & 776 & 768 & 769 & 764 \\
\hline November & 774 & 770 & 771 & 768 & 75 & 74.9 & \(7 \times 7\) & \(5 \times 1\) & 778 & 775 & 776 & 776 \\
\hline December & 780 & 73 & 775 & 773 & \(77^{7}\) & 790 & 795 & 7815 & 73 & 776 & 781 & 2 \\
\hline 1843. & \multicolumn{2}{|l|}{} & \multicolumn{3}{|l|}{} & \multicolumn{2}{|l|}{} & 1421: & 16"212" & \[
18 \cdot 21 \mathrm{~m}
\] & \[
21^{2} 21 \frac{1}{2}
\] & \[
22^{\mathrm{n} 21}
\] \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{January February March}} & \multirow[t]{3}{*}{\[
85.4
\]} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\[
s, 3
\]} & & \multicolumn{2}{|l|}{81.} & & \multicolumn{2}{|l|}{} \\
\hline & & & & & & & & 817 & & & & \\
\hline & & & & & & & & -2, & 860 & 861 & 865 & 859 \\
\hline April
May & -614 & 88.18 & 80 & 8.4
857 & 878 & -i: & 914, & 5 & 85 & \(8 \times 2\) & 80 & 863 \\
\hline June & -4, 1 & \(-8.9\) & -5ib & 853 & 65.3 & 4 & mat & 970 & 570 & 881 & 881 & \(8 \times 5\) \\
\hline July & 925 & 1124 & 424 & 1123 & ! : & ? & 1: 4 & :12, & 416 & \(\because 21\) & \(4 \times 8\) & 931 \\
\hline August & 431 & 930 & 31:1 & 12\% & \(9+7\) & 4, 4 & 4\% & 121 & 124 & 429 & 933 & \\
\hline Supternber & !17 & :17\% & \(\square\) & 469 & 931 & 492 & ! & 97 & 92 & 975 & 974 & 973 \\
\hline
\end{tabular}

1 The mean of 17 itays.
? The mean of 19 days.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{Hourly Serics．} \\
\hline & On 21 交 \({ }^{\text {m }}\)｜ & 14 21 ざ＂ & \(2^{4} 22^{\frac{1}{2}}{ }^{\prime \prime \prime}\) & \(3^{n+2182 m}\) & 4＂ 21 发＂ & \(5^{11} 211\) & 6＂ 21 ！\({ }^{\text {d }}\) & \(7{ }^{11} 21{ }^{\text {dam }}\) & \(8^{\prime \prime} 21{ }^{\text {a }}\)＂ & & \(10^{2} 21 \frac{1}{m}\) & 11221年＂ \\
\hline 1：43． & Div＇s． \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
October \\
November December
\end{tabular}} & 983 & 976 & 95.3 & 978 & 976 & 978 & 977 & 180 & 983 & 927 & 991 & － \\
\hline & 985 & 989 & 985 & 483 & 982 & \(9 \times 1\) & 980 & 903 & 957 & 991 & 992 & 943 \\
\hline & 995 & 993 & 992 & 991 & 969 & 987 & 987 & 987 & 991 & 991 & 992 & 994 \\
\hline & 12012 & 13＂21起＂ & \(14^{\prime 2} 21 \frac{1}{2 \prime \prime}^{\prime \prime}\) & \(15{ }^{\text {L2 }} 11_{2}{ }^{\text {m }}\) & \multicolumn{2}{|l|}{16＂21年＂＇ \(17 \times 21\) 年} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} \\
\hline \multirow[t]{2}{*}{Oetobar November December} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 991 \\
& 991 \\
& 999
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 989 \\
& 9899 \\
& 9998
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 985 \\
& 987 \\
& 9966
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 983 \\
& 9815 \\
& 993
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 9934 \\
& 994 \\
& 991
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 983 \\
& 985 \\
& 990
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 985 \\
& 946 \\
& 992 \\
& 992
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 945 \\
& 998 \\
& 945
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 985 \\
& 9.7 \\
& 99
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 986 \\
& 987 \\
& 995
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 983 \\
& 988 \\
& 997
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 984 \\
& 988 \\
& 998
\end{aligned}
\]} \\
\hline & & & & & & & & & & & & \\
\hline 18.4. & & \(1^{\text {4 }} 211^{\text {tum }}\) & 2＂ \(21{ }^{\text {²am }}\) & \(3{ }^{\text {n }} 211_{2}^{\text {ln }}\) & \(4^{4 \prime 2} 21 \frac{1}{2}{ }^{\text {m }}\) & & \(6^{\text {b }} 212^{1212}\) & \(7{ }^{\text {² }} 21{ }^{\text {d }}\) & 8 21 ！\({ }^{\text {a }}\) & & \(10.21{ }^{\frac{1}{2} \mathrm{~m}}\) & \(11^{\prime 2} 1\) ？\({ }^{\text {a }}\) \\
\hline January & 1006 & 1005 & 1004 & 1002 & 1000 & 1000 & 999 & 999 & 1002 & 1005 & 1008 & 1011 \\
\hline February & 1031 & 11131 & 1131 & 1029 & 11026 & 11213 & 1126 & 1028 & 1029 & 1030 & 103.4 & 1104 \\
\hline \({ }^{\text {March }}\) April & 1078 & 11047 & 1068 & 10 & 11046 & 11043 & 1064 & 11061 & 10 & \({ }_{1119} 104\) & 11058 & 1013
3168
108 \\
\hline May & 1065 & 1065 & 10＇3 & 1062 & 1062 & 1161 & 10til & 1064 & 1058 & 1106 & 10.7 & 1070 \\
\hline June & 1078 & 1107 & 1076 & 1077 & 1077 & 1075 & 1073 & 1177 & 1080 & 11082 & 1184 & 11181 \\
\hline July & 1102 & 1103 & 1105 & 1106 & 11010 & 1105 & 1104 & 1104 & 1109 & 1116 & 1118 & 1114 \\
\hline August & 1133 & 1134 & 1134 & 1133 & 1133 & 1131 & 1130 & 1135 & 1143 & 1152 & 1153 & 1147 \\
\hline September & 11133 & 1132 & 1107 & 1105 & 1101 & 11125 & 11129 & 1131 & 1114 & 1125 & 115 & 1115 \\
\hline November & 1131 & 1130 & 1127 & 1126 & 1125 & 1123 & 112 & 1125 & 1130 & 1135 & 1135 & 1142 \\
\hline \multirow[t]{2}{*}{December} & 1213 & 1202 & 1200 & 1198 & 1196 & 1194 & 1190 & 1193 & 1194 & 1197 & 1：09 & 1217 \\
\hline & \(12^{\prime 2} 22^{2 m}\) & \(13221{ }^{\text {dm }}\) & \(14^{\text {n2 }} 11^{\frac{1}{2}}\) & \(15^{2+212 m}\) & \(16^{\prime \prime 2} 2 \mathrm{~L}^{\text {m }}\) & \(\overline{10^{n} 211^{12}}\) & 18 c 21 ！ m & \(19^{1 / 212} 2^{\text {m }}\) & \(20^{1021}{ }^{\text {m }}\) & \(21.21{ }^{\text {ma }}\) & \(22.212 \times\) & 23 2121＂ \\
\hline January & 1009 & 1006 & 1003 & 999 & 995 & 1000 & 1002 & 1043 & 1003 & 1 ln 4 & 1014 & 1005 \\
\hline February & 1035 & 1032 & 1028 & 1028 & 1030 & 1031 & 1032 & 11133 & 1034 & 1033 & 1032 & 1030 \\
\hline Mareh & \({ }_{1063}^{1077}\) & 1061 & \({ }_{1}^{1057}\) & 1050 & 1051 & \({ }_{10}^{1050}\) & \({ }^{1050}\) & \({ }^{105}\) & 1050
100 & \({ }_{1}^{1048}\) & 1150
1068 & 11148
1069 \\
\hline \({ }^{\text {April }}\) & 1074 & 1071 & \({ }_{1053}^{1065}\) & 11053 & 1051 & \({ }_{1064}^{1024}\) & 11059 & 1048 & 11164 & 11064 & 1065 & 1063 \\
\hline June & 1077 & 1072 & 1007 & 1065 & 1065 & 1067 & 1071 & 1073 & 1175 & 1078 & 1077 & 1078 \\
\hline July & 1106 & 1100 & 1096 & 1093 & 1092 & 1093 & 1096 & 11993 & 1111 & 1102 & 1103 & 1104 \\
\hline August & 1138 & 1129 & 1121 & 1119 & 1121 & 1127 & 1134 & 113， & 1135 & 1134 & 1135 & 1135 \\
\hline September & 1115 & 1104 & 1097 & 1095 & 1095 & 1100 & 1102 & 1104 & 1104 & 1108 & 1107 & 1118 \\
\hline October & 1145 & 1137 & 1134 & 1130 & 1132 & 1134 & 1135 & 1137 & 1138 & 1134 & 1137 & 1135 \\
\hline November & 1136 & 1133 & 1129 & 1127 & 1124 & 1131 & 1123 & 1129 & 1130 & 1130 & 1131 & 1131 \\
\hline December & 1220 & 1212 & 1209 & 1202 & 1201 & 1201 & 1203 & 1198 & 1210 & 1204 & 1216 & 1206 \\
\hline 1845. & & \({ }^{14} 211^{\text {² }}\) & \(2^{\text {n }} 211^{\text {m }}\) & \(3{ }^{\text {b }} 211^{\text {m m }}\) & \(4^{n} 21^{\text {n }}\) & \(5^{\text {n }} 21 \frac{1}{1^{\text {max }}}\) & \(6^{\text {m }} 211_{2}^{\text {m }}\) & \(7{ }^{\text {b }} 21 \underline{l}^{\frac{1}{m}}\) & \(8^{\text {h } 212 \mathrm{~mm}}\) & \(9^{\text {h } 21!}\) & \(10 \cdot 21^{1 \frac{1}{n}}\) & \(11^{1 \times 212^{\prime \prime}}\) \\
\hline Jannary & 1233 & 1228 & 1231 & 1230 & 1223 & 1226 & 1225 & 1226 & 1231 & 1241 & 1248 & 1252 \\
\hline February & 1230 & 1230 & 1231 & 12299 & 1229 & 1226 & 1223 & 1227 & 1231 & 1236 & 1243 & 1244 \\
\hline March & 1236 & 1236 & 1234 & 1235 & 1234 & 1234 & 1231 & 1233 & 1241 & 1249 & 1275 & 1261 \\
\hline April & 1252 & 1250 & 1249 & 1247 & 1145 & 1243 & 1241 & 1244 & 1253 & 1268 & 1278 & 1241 \\
\hline May
June & 1244
1280 & 1243
1281 & 1241 & 1239
1281 & \begin{tabular}{l}
1236 \\
1275 \\
\hline
\end{tabular} & 1233
1271 & 1229 & \({ }_{1}^{1236}\) & 1251 & \({ }_{1291}^{1261}\) & 1262
1295 & 1258
1292 \\
\hline & \(12^{4} 21 \frac{1}{2}{ }^{\text {a }}\) & \(13^{\prime \prime 2} 1_{2}^{12 \prime \prime}\) & \(44^{\prime \prime 2} 212^{\underline{1 / 4}}\) & \(5^{5121}\) & & 17n21 \({ }^{\frac{1}{2}}\) & \(18{ }^{6} 211{ }^{\text {m }}\) & \(9 \mathrm{l} 1^{1 / \mathrm{m}}\) & \(20^{42} 11^{1} \mathrm{~m}\) & \(21^{\prime \prime 212}{ }^{\text {m }}\) & \(22^{\prime 2} 21\) & \(23^{n} 212^{\text {n }}\) \\
\hline January & 1249 & 1242 & 1239 & 1233 & 1229 & 12：30 & 1233 & 1231 & 1230 & 12311 & 1229 & 1229 \\
\hline Fubruary & 1250
1260 & 1242 & 1238 & 1231 & 1233 & 1229 & 1231 & 1233 & 1235 & 1231 & 1231 & 1232 \\
\hline April & \({ }_{1215}\) & 1267 & 1255 & 1252 & 1245 & \({ }_{125}^{129}\) & 12 & 12.4 & 12.85 & 1253 & 12．50 & 1254 \\
\hline May & 1253 & 1244 & 1238 & 1236 & 1237 & 1239 & 124.5 & 124 \({ }^{1}\) & 124 & 1248 & 1247 & 1242 \\
\hline June & 1：86 & 1290 & 1272 & 1269 & 1269 & 1273 & 127 & 1281 & 1280 & 1277 & 1279 & 1280 \\
\hline
\end{tabular}

Increase of scale readings corresponds to decrease of force．Value of one divi－ sion of the scale \(=0.0000365\) parts of the horizontal force，or in the absolute scale equal to 0.0001523 ．

 The rariation in the amplitude of the diumal motion of the horizontal fore is
subject to the same inequality of about eleven years as the declination, and the means of investigation will be analogous to those used in Part I of this discussion. For greater convenience, the preceding monthly normals were united into annual means and the results put into an analytical form, using Bessel's function applicable to periodical phenomena, and determining the numerical quantity by the application of the method of least squares.

In the following table of the regular solar diurnal variation of the horizontal force the means for 1842-43 depend only on nine months of observation; the correction given to refer them to twelve months of observation depends on the mean difference between the results of the same nine months and twelve months of the preceding and following year; this correction is nearly constant and the same within one scale division for the adjacent years. In the sccond corrected column for 1842-43 the effect of the annual inequality is thus climinated. In the year 1843-44 the results from nine months of observation at the odd hours were reduced to twelve months by means of corresponding differences in the series of even hours; thus (omitting the minutes) at hour 2 , mean of 12 months \(=1006\), mean of 9 months \(=1028\); at hour 3 for the same 9 months, mean \(=1026\), or 2 divisions less; at hour 3 for 12 months the mean is therefore 1004 , and the same result is found by comparing with the following hour 4 ; the mean is given in case of a difference in the two results.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
Table Vifi- Regular Solar Diurnal Variation of the Horizontal Force for each lear of Observation expressed in Scale Difisioxs. \\
Increased numbers indicate decrease of force. The minutes at the head of each column are to be added to the hours given in the first vertical column. Each year commences with the month of July.
\end{tabular}} \\
\hline \multirow[b]{2}{*}{Honir of the diay.} & \[
\begin{gathered}
140-+11 . \\
22^{2}
\end{gathered}
\] & \[
\begin{gathered}
15+1-42 . \\
21 \frac{3}{4} \\
\hline 10
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
1842-43(9 \text { m'thas }) . \\
212^{1210}
\end{gathered}\right.
\] & \[
\begin{aligned}
& \text { Corrive- } \\
& \text { tion. }
\end{aligned}
\] & \[
\begin{gathered}
1=22-43 \\
21!\mathrm{mi}
\end{gathered}
\] & \[
\begin{aligned}
& 15+3-44 . \\
& 21 \frac{14}{214}
\end{aligned}
\] & \[
\begin{gathered}
15+4-4 \overline{0} \\
21!{ }_{2}^{1 \mathrm{ma}}
\end{gathered}
\] \\
\hline & Div's. & Dir's. & Div's. & Div's. & Div's. & Div's. & Div's. \\
\hline \multirow[t]{19}{*}{0 (A. M.)
1
2
3
4
4
5
6
7
5
9
10
11
12
13
14
15
18
17
18
18
19
20
21
29
23
23} & 223 & 54. & 75 & +6 & 758 & 1008 & 1191 \\
\hline & 219 & 5.43 & 780 & + 6 & 786 & 1007
1006 & 1189 \\
\hline & & & & & & 1104 & 1188 \\
\hline & 214 & 545 & 775 & \(+6\) & \(7 \times 3\) & 10.13 & 1186 \\
\hline & & & & & & 1002 & 1184 \\
\hline & 206 & 542 & 774 & \(+6\) & 780 & 1002 & 1182 \\
\hline & & & & & & 1005 & 1186 \\
\hline & 226 & 552 & 788 & \(+5\) & 793 & 1010
1013 & 11.94 \\
\hline & 244 & 5 mb & 799 & +5 & 804 & 1017 & 12116 \\
\hline & & & & & & 1016 & 1207 \\
\hline & 241 & 5,\(6 ; 3\) & 792 & \(+6\) & 798 & 1014 & 1202
1195 \\
\hline & 221 & 547 & 7.1 & \(+7\) & 785 & 11005 & 1189 \\
\hline & & & & & & 1002 & \(11 \times 6\) \\
\hline & 215 & 547 & 78 & \(+7\) & 78.5 & 1002 & 1185 \\
\hline & & & & & & 100.4 & 1188 \\
\hline & 223 & 5.3 & 763 & \(+7\) & 790 & 1006
11008 & 1190
1191 \\
\hline & 225 & 58.4 & 7ット & \(+7\) & 793 & 1108 & 1191 \\
\hline & & & & & & 11419 & 1191 \\
\hline & & & & & & 1008 & 1191 \\
\hline \multirow[t]{2}{*}{Mean.} & 223.5 & 551.5 & & & 789.9 & 1007.4 & 1191.4 \\
\hline & \multicolumn{7}{|l|}{(Philadelphia local time, counted from midniglat to midnight, 24 hours.)} \\
\hline
\end{tabular}

The preceding mean diumal variations were put in the following analytical form, in which the angle \(\theta\) counts from midnight at the rate of \(15^{\circ}\) an hour.

To show the degree of correspondence in the formula when deduced from the observations of the even and odd hours separately, the results for the last year have been added, viz:-
Even hours \(I I=1191^{\circ} .3+4^{4} .20 \sin \left(\theta+271^{\circ} 28^{\prime}\right)+6^{4} .98 \sin \left(2 \theta+120036^{\prime}\right)+4^{4} .11 \sin \left(3 \theta+322^{3} 35^{\prime}\right)\) Odd hours \(\mathrm{H}=1191.5+4.60 \sin (\theta+27059)+6.73 \sin (2 \theta+12413)+4.12 \sin (3 \theta+32017)\)
The close agreement between the observed and computed values is shown generally in the annexed diagram.

The following table exhibits the differences for the year 1842-43, as an example of the numerical correspondence.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline A & M & Conputed. & & \(\mathrm{C}-0\). & P & M. & Computed. & Ohserved. & \(\mathrm{c}-\mathrm{o}\). \\
\hline \multicolumn{2}{|l|}{(1)21} & 768.7 & \(7 \times 8\) & \(+0.7\) & \multicolumn{2}{|l|}{\(12^{\text {m }} 212^{1 / 1}\)} & 799.5 & 798 & +1.5 \\
\hline 2 & \({ }^{18}\) & \(7-6.6\) & T-4 & +0.6 & 14 & & 787.6 & \(7 \times 8\) & -0.4 \\
\hline 4 & " & 781.3 & 783 & \(-1.7\) & 16 & \({ }^{6}\) & 784.5 & 785 & -0.5 \\
\hline 6 & " & \(7 \times 1.2\) & 740 & \(+1.2\) & Is & " & 790.2 & 790 & \(+0.2\) \\
\hline 8 & " & 792.5 & 713 & \(-0.5\) & 20 & " & 792.9 & 793 & \(-0.1\) \\
\hline 10 & " & 803.3 & 804 & -0.7 & 22 & " & 720.5 & 791 & -05 \\
\hline
\end{tabular}

The differences, using three terms in the equations, are within the uncertainty of the observed values. The probable error of a single representation is \(\pm 0.6\) scale divisions, or \(\pm 0.00009\) in the absolute scale.

The curves show a double progression in the daily motion, with a principal maximum of horizontal force in the morning, a principal minimum before noon, and a secondary maximum in the afternoon; the precise epochs (to the nearest five minutes) and extreme values were computed by means of the preceding formulæ.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\[
\begin{gathered}
\text { Year. } \\
\text { From July to } \\
\text { July. }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Principal A. M. Maximum of hor. force.} & \multicolumn{2}{|l|}{Principal A. M. minimum of hor. force.} & \multicolumn{3}{|c|}{Diurnal range iu} & \multicolumn{2}{|l|}{secondary P. M. maximum of hor. force.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Less than \\
A. 1 max. by div's.
\end{tabular}} \\
\hline & Epoch. & Amonnt. Div's. & Epoch. & Amonnt. Div's. & \begin{tabular}{l}
Scale \\
div's.
\end{tabular} & Parts of horizontal force. & Value in absol. scale. & Epochs. & \[
\begin{aligned}
& \text { Amonnt. } \\
& \text { Divis. }
\end{aligned}
\] & \\
\hline 1840-41 & \(5^{\text {h }} 45^{\text {tu }}\) & 207.3 & \(11^{\mathrm{h}} 0^{\mathrm{mm}}\) & 246.1 & 38.8 & 0.00142 & 0.0059 & \(4^{\text {n }} 05^{\text {m }}\) & 213.5 & 6.2 \\
\hline 1841-42 & 550 & 541.7 & 11 5 & 565.5 & 23.8 & 0.00087 & 0.0036 & 350 & 545.1 & 3.4 \\
\hline 1842-43 & 530 & 779.8 & \(70 \quad 55\) & 803.9 & 24.1 & 0.00088 & 0.10037 & 350 & 784.0 & 4.2 \\
\hline 1843-44 & 540 & 1001.7 & 1050 & 1016.9 & 15.2 & 0.00055 & 0.0023 & 40 & 1002.0 & 0.3 \\
\hline 1844-45 & 540 & 1182.4 & 1050 & 1206.6 & 24.2 & 0.00088 & 0.0 .137 & 40 & 1184.8 & 2.4 \\
\hline Mean & 541 & & 10.56 & & & & 0.0038 & 357 & & \\
\hline
\end{tabular}

The secondary maximum is reached about \(8^{h} 30^{\mathrm{nz}}\) P. M. with a comparatively small range.

The mean value of the force is attained about \(7^{\mathrm{h}} 55^{\mathrm{m}}\) A. M., and again about \(1^{1 \mathrm{~h}} 55^{\mathrm{m}} \mathrm{P}\). M., with considerable regularity ; it is again reached at \(6 \frac{33^{\mathrm{h}}}{}\) and \(11 \frac{1^{\mathrm{h}}}{2} \mathrm{P} . \mathrm{M}\)., though with less regularity.

At Toronto (see Vol. II. of the Toronto Observations) the diurnal variation of the horizontal force has a principal maximum at a little after 4 I. M., and a principal minimum at 10 or 11 A . M. ; the secondary maximum oceurs about \(6 \mathrm{~A} . \mathrm{M}\). There is, therefore, this specific difference in the diurnal motion at these two stations: in that at Philadelphia the morning maximum is the higher of the two, while at 'Toronto it is the aftemoon maximum. The difference between the two maxima, as shown above, is almost nothing in the minimum year 1843-44, but increases before (and after) this epoch in proportion to the interval. At 'Toronto the daily range seems to be slightly greater. 'The secondary minimum at Toronto occurs about 2 or 3 A. M., or about six hours later than at Philadelphia; this is a second though less significant point of difference.

The minimum daily range occurs in \(1843-44\); its value is then less than one-half what it was in 1840-41.

The following equation expresses the mean diumal range in scale divisions:-
\[
\mathrm{R}=+19.68-3.78(t-1843)+2.77(t-1843)^{2}
\]

It represents the observed values as follows:-
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{January,} & \multirow[b]{2}{*}{1841} & \multirow[b]{2}{*}{.} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{.} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Observed range.
\[
3 \mathrm{S.} .4
\]}} & \multirow[t]{2}{*}{Compated rauge. : \(\times\) 人:} \\
\hline & & & & & & & & & \\
\hline " & 1842 & . & . & . & . & . & . & 23.8 & 26.2 \\
\hline " & 1843 & . & & . & . & . & . & 24.1 & 19.7 \\
\hline " & 1844 & . & . & . & . & . & . & 15.2 & 18.7 \\
\hline " & 1845 & & & & . & & . & - 21.2 & 29.2 \\
\hline
\end{tabular}

The minimum range as given by the formula is in September, 1843. In Part I. of the discussion we found the minimum range of the declination in May, 184:3, and the minimum from the disturbances of the declination in August, 1843 .

Before procceding to the discussion of the disturbances in the horizontal fore, the formule given for the diumal variation require to be put in a different firm for future use and for convenience of comparison with other places.

The scale divisions were multiplied by the value of one division of the scath (0.0000365), and again by the value of \(X\) found for the year; the numerical constant was replaced by \(I\) and the angular quantities were changed by \(180^{\circ}\) so as to make increasing numbers correspond to increase of force; we then obtain in absolute measure the following expressions for the regular solar-diumal variation of the horizontal force at the Girard College:-

Year \(1840-41 \quad H=4.178+0.00091 \sin \left(\theta+72^{\circ} 14^{\prime}\right)+0.00178 \sin \left(2 \theta+301^{\circ} 16^{\prime}\right)+0.00090 \sin \left(3 \theta+134^{\circ} 42^{\prime}\right)\)
" \(1841-42 \mathrm{H}=4.175+0.00061 \sin (\theta+64(17)+0.00100 \sin (2 \theta+31132)+0.04069 \sin (3 \theta+13219)\)
\(" 1842-43 H=4.173+0.00063 \sin (\theta+70010)+0.00108 \sin (2 \theta+31224)+0.04105 \sin (3 \theta+14306)\)
\(\because 1843-44 \mathrm{H}=4.170+0.00033 \sin (\theta+9355)+0.00078 \sin (2 a+30858)+0.00436 \sin (3 \theta+13758)\)
" \(1844-45 \mathrm{H}=4.168+0.00067 \sin (\theta+9113)+0.00104 \sin (2 \theta+30325)+0.00013 \sin (3 \theta+14126)\) The angle \(\theta\) counts from midnight ; the middlo epoth to which each equation refers is January.

Investigation of the Eleven (Ten?) Fear Inequerlity in the Disturbunces of the Horizontal Magnetic Force.-In Table VI. the number of disturbances in each month has been given as found from the observations; these numbers are, however, not directly comparable with one another, first, on account of some omissions in the record, and secondly, on account of the change from a bi-hourly to an hourly series. For any incomplete month the number of disturbances for the whole month is obtained by simple proportion from the number during the part of the month recorded; for January, 1841, the total number becomes 35, for June, 1841 the total number is 18. For January, February, and March, 1843, the mean total number of the disturbances, as found in the same months in the preceding and following year, was substituted; this mean gave 8,20 , and 20 , respectively. The number of disturbances after October, 1843, were halved to make them comparable with the bi-hourly series. There were two anomalous months, July and December, 1840, in which the disturbances amount to 165 and 120 , with an anuual mean of 64 , whereas in the same months in the following year they only amount to 26 and 26 respectively, with an annual mean of 27 ; the mean amnual difference 37 was applied to the numbers found in 1841, which give 63 and 63 as a substitute for the anomalous values in July and December, 1840. This anomaly does not exist in the phenomenon itself, but is unquestionably due to the irregularity in the progressive change.
Table IX. contains the number of disturbances as distributed over the sevral years and months, all referred to a miform series of bi-hourly observations. To
this table the monthly means and their ratio，when compared with the annual mean， have been added；also，for comparison，the corresponding ratios found in Part I．of the discussion of the disturbances of the declination．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline MON゙TH． & 18．40－41． & 1841－42． & 1542－43． & 1943－44． & 1544－45． & Mean． & Hor．force． Ratio． & Declination． Ratio． \\
\hline July ．．．． & （63） & 26 & 24 & 15 & 0 & 26 & 1.09 & 0.86 \\
\hline August ．．．． & 73 & 17 & 3 & 11 & 2 & 21 & 0.89 & 1.59 \\
\hline September ．．．． & 54 & 41 & 44 & 16 & 13 & 34 & 1．43＊ & 1.36 \\
\hline October ．．． & 68 & 28 & 53 & 2 & 16 & 33 & 1.39 & \(2.12 *\) \\
\hline November ．．． & 49 & 32 & 15 & 0 & 21 & 24 & 1.00 & 1.08 \\
\hline Ducember ．．．． & （63） & 26 & 5 & 0 & 23 & 23 & 0.97 & 1.00 \\
\hline January ．．．．． & 35 & 14 & 8 & 1 & 13 & 14 & 0.59 & 0.77 \\
\hline February ．．． & 50 & 37 & 20 & 3 & 9 & 24 & 1.00 & 0.52 \\
\hline March ．．．．．． & 61 & 25 & 20 & 14 & 2 & 25 & 1.06 & 0.68 \\
\hline April ．．．．． & 48 & 38 & 14 & 8 & 16 & 25 & 1.06 & 0.91 \\
\hline Muy ．．．．．． & 46 & 30 & 25 & 2 & 10 & 23 & \[
0.97
\] & \[
0.58
\] \\
\hline June ．．．． & 18 & 16 & 4 & 0 & 28 & 13 & 0．55＊ & \(0.53{ }^{*}\) \\
\hline Sums & 625 & 830 & 235 & 72 & 153 & 285 & 12.00 & 12.00 \\
\hline Mean & 52 & 28 & 20 & 6 & 13 & 24 & & \\
\hline
\end{tabular}

In the columns of ratios the principal maxima and minima are indicated by an asterisk．
The amnual means exhibit plainly the eleven year inequality；they have been represented by the formula：－
\[
N=+14.4-10.2(t-1843)+4.8(t-1843)^{2}
\]

According to the formula，the minimum occurs in January， 1844.
We have next to consider the eleven year inequality in the magnitude of the disturbances of the horizontal force．Table X．contains the aggregate amount of the disturbances expressed in scale divisions，and also their mean amount obtained by application of the number of disturbances already given in Table VI．

For reasons already explained，the amount of disturbances in July，1840，equal to 10761 scale divisions，has been diminished in the ratio of \(165: 63\) ．The ratio of tach monthly mean to the mean amount of the year is also given，together with a column of corresponding ratios derived from the disturbances of the declination，as made out in Part I．of the discussion．

Maxima and minima in the colums of ratios are marked with an asterisk.
The inequality in the mean amount of the horizontal force disturbances in each year, indicates the year 1843-44 as the minimum year.

From the preceding results, we may assume the month of November, 1843, as the epoch for the minimum of the eleven (ten?) year inequality, as far as indicated by the differential observations of the horizontal force.

Further Analysis of the Disturbances of the Horizontal Force.-The distribution of the disturbances in number and mean amount over the several months of the year has been given in Tables IX. and X. From Table IX. we learn that the disturbances are greatest in number in September and March or Ipril, or about the time of the equinoxes, and least in number about January and June, or about the time of the solstices. At the autumnal equinox the numbers exceed those of the vernal equinox ; the same law was found at Toronto; also the numbers are smaller at the summer solstice than at the winter solstice, in perfect accordance with the result found at Toronto. These results are shown graphically on the annexed diagram, which contains also the ratio of the disturbances for the declination in which the same law is apparent.

> (B).-Distribution of tae Nember of Distcrbancea in tae several Montes of the Yeak. Full line for horizontal force. Dotted line for declination.

Table X. shows that, in reference to the average magnitude of the disturbances, the same law holds good, viz: the greatest relative magnitude occurring about the time of the equinoxes; the greatest amount corresponding to the autumnal equinox, and the least to about the time of the solstices, the smaller amount occurring near the summer solstice. The average magnitude of the disturbances of the declination was found subject to the same law.

If we separate the disturbances which increase the force from those which decrease it, we may form the two following tables of the distribution of the disturbances in number and average amount over the several months of the years.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{Table XI.-Annual Inequality in the Number of Disturbinces, Increasing and Decreasiyg the Horizontala Furce.} \\
\hline & \multicolumn{2}{|r|}{1541-41.} & \multicolumn{2}{|l|}{1-41-42.} & \multicolumn{2}{|l|}{1543-43.} & \multicolumn{2}{|l|}{154, 3 -4.} & \multicolumn{2}{|l|}{1sth-is.} & \multicolumn{2}{|c|}{sum.} & \multicolumn{2}{|r|}{Ratios.} \\
\hline & Iue. & 1 erc & Ine. & n.e. & tuc. & bes & Iuc. & 1rem & Itue. & Dece. & lue. & bee. & Inc. & Dec. \\
\hline July & (3) & (25) & 6 & \(\cdots 1\) & 5 & 19 & 1 & 14 & 11 & 0 & 50 & 78 & 1.2 & 1.0 \\
\hline Aucust & & (5) & 6 & 11 & 1 & 2 & 2 & 9 & 0 & 2 & 27 & 79 & 0.7 & 1.0 \\
\hline September & 25 & 29 & 5 & 36 & 38 & 6 & 11 & 5 & \(?\) & 4 & 88 & 80 & 2.1* & 1.1 \\
\hline Oetober & 18 & 50 & 11 & 17 & 37 & 11 & 1 & 1 & 8 & 8 & 75 & 92 & 1.8 & 1.2 \\
\hline November & 13 & 36 & 1 & 81 & 4 & 11 & 0 & 0 & 0 & 21 & 18 & 99 & 0.4 & 1.3* \\
\hline December & (25) & (35) & 8 & 15 & 0 & 5 & 0 & 0 & 1.5 & 8 & 48 & 69 & 1.1 & 0.9 \\
\hline January & 19 & 16 & 6 & 8 & 3 & 5 & 0 & 1 & 3 & 10 & 31 & 40 & 0.8 & 0.6 \\
\hline Fehruary & 15 & 35 & 4 & 33 & 2 & 18 & 0 & 3 & 1 & 3 & \(\because 1\) & 98 & 0.5 & 1.2 \\
\hline March & 17 & 44 & 10 & 16 & 3 & 17 & 0 & 14 & 1 & 1 & 31 & 12 & 0.8 & 1.2 \\
\hline \(\mathrm{A}_{\text {pril }}\) & 18 & 30 & 14 & 24 & 1 & 13 & 1 & 7 & 11 & 16 & 34 & 90 & 0.8 & 1.2 \\
\hline May & 24 & 22 & 16 & 13 & 10 & 15 & 1 & 1 & 5 & 5 & 56 & 56 & 1.3 & 0.7 \\
\hline Juse & 9 & 9 & 6 & 10 & 1 & 3 & 0 & 0 & 7 & 21 & 23 & 43 & 0.5* & 0.6* \\
\hline Sum & 239 & 389 & 93 & 337 & 105 & 130 & 17 & 55 & 48 & 105 & 502 & 916 & 12.0 & 12.0 \\
\hline
\end{tabular}

In each year the number of disturbances increasing the force is less than the number which decreases it; the numbers of incrase are to the numbers of decrease as \(1: 1.8\). The numbers of the monthly ratio for the increasing disturbances exhibit the same law as found in Table IX.: with respect to the numbers for the decreasing force the law is apparently less distinctly marked; the maximum seems to occur about two months later (before the winter solstice), at a time when the number for increasing foree is apparently at its minimum. This indistinetness in the law may possithy be due to an irregular distribution in reference to the hours of the day, and could only disappear through a longer series of olservations.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|l|}{Table Xil.-Annual Inequality in the Mban Amoent of the Disturbances of the Horizuntal Force. A giregate Amount for Increasing and Decreasing Distlribances, expressed in Scale Divisions.} \\
\hline \multirow{2}{*}{Mouth.} & \multicolumn{2}{|l|}{1s40-4.} & \multicolumn{2}{|r|}{1841-42.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|c|}
1842-3.3 . \\
\hline \text { Inc. Bee. }
\end{array}
\]}} & \multicolumn{2}{|l|}{1943-4.} & \multicolumn{2}{|l|}{1944-6i.} & \multicolumn{2}{|r|}{1540-45.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Avor, an't. Inc. | Dive.}} & \multicolumn{2}{|l|}{Ration,} \\
\hline & Inc. & Dec & Inc. & Dec. & & & Ine. & Dee. & Inc. & Der. & Ine. & Dine. & & & Inc. & Drc \\
\hline July & (2202) & (1887) & 214 & 943 & 292 & 1003 & 41 & 628 & 0 & \({ }^{0}\) & 274.9 & 4461 & \({ }^{5} 5^{1}\) & 57 & 1.2 & 1.1 \\
\hline August & & 3290 & 261 & 494 & & & & 412 & & 142 & 1175 & 44018 & 44 & & 1.0 & 1.0 \\
\hline Sept. & 1082 & 2010 & 186 & 2889 & 1857 & 242 & 452 & 218 & 873 & 355 & 4450 & 5704 & 45 & 5 & 1.0 & 1.1 \\
\hline October & 726 & 2994 & 421 & 863 & 1685 & 714 & 128 & 41 & 691 & 721 & 3651 & 5333 & 44 & 53 & 1.0 & 1.0 \\
\hline Nov. & 520 & 1870 & 35 & 1956 & 185 & 730 & \({ }_{0}^{0}\) & 34 & & 2173 & \({ }^{740}\) & \({ }_{6}^{6763}\) & 41 & 56 & 0.9 & 1.1 \\
\hline Dec. & 2204 & 4311 & \(\stackrel{289}{231}\) & \({ }^{936}\) & 0 & 239
0 & 0 & 111 & \({ }_{1}^{1483}\) & 810
1100 & 3976 & \({ }^{6286}\) & 47 & 56 & 1.0 & 1.1 \\
\hline January & 723 & \({ }^{4} 46\) & 231 & 370 & \({ }_{0}^{0}\) & \(4{ }_{4}^{0}\) & 0 & 111 & 302 & \(\underset{\substack{1100 \\ 816}}{ }\) & \(\begin{array}{r}1256 \\ \hline 89\end{array}\) & 2044 & 48 & 50 & 1.1 & 0.8 \\
\hline \({ }_{\text {Feb. }}^{\text {Fench }}\) & \({ }_{6}^{649}\) & 2469 & \({ }_{415}^{140}\) & \({ }^{1652}\) & 0 & 43 & 0 & 2012 & \({ }_{37}^{0}\) & 816
90 & \({ }_{1} 695\) & 4747
4771 & 42
39 & 52 & 1.0
0.9 & 1.0 \\
\hline April & 732 & 1406 & 550 & 1525 & 54 & 622 & 75 & \(7 \times 6\) & 41 & 1563 & 1459 & 5902 & 40 & 52 & 0.9 & 1.0 \\
\hline May & 1000 & 1456 & 696 & 515 & 412 & 775 & \(8: 3\) & 48 & 398 & 391 & 25.59 & 3185 & 42 & 52 & 1.0 & 1.0 \\
\hline June & 307 & 253 & 254 & 510 & 50 & 114 & 0 & 0 & 604 & 1784 & 1245 & 2663 & 44 & 44 & 1.0 & 0.8 \\
\hline Sum & 11582 & \begin{tabular}{|c}
24424 \\
414
\end{tabular} & \({ }_{93}{ }^{2}\) & \[
13444
\] & \[
4586
\] & \[
4602
\] & 848 & \[
380
\] & \[
4429
\] & 19927 & \[
25167
\] & \[
56267
\] & & & 12.0 & 12.0 \\
\hline Mean & 46 & 59 & 40 & 57 & 47 & 50 & 42 & 47 & 46 & 47 & 45 & 54 & & & & \\
\hline
\end{tabular}

The average amount of a disturbance increasing the horizontal force is 45 scale divisions, or 0.0069 in absolute measure; the average amount of a disturbance decreasing the same is 54 scale divisions, or 0.0082 in absolute value. The ratio of these numbers is as \(1: 1.2\), whereas at Toronto the ratio is \(1: 6.4\).

The law of the monthly inequality for amount of increasing or decreasing disturbances is, as in the preceding case, very indistinct and further obscured by the small absolute amount of variation.

In the following Table, XIII., the larger disturbances have been distributed over the different hours of their occurrence; in this combination the bi-hourly series (of the even hours) of observation has been used throughout.
\begin{tabular}{|c|c|c|c|c|}
\hline Hour. & Aggregate amonnt in sc. div. & Number of occurreuce. & Average amonut. & Fation nombers. \\
\hline 0 (Midnight) & 8116 & 142 & 57 & 1.12 \\
\hline 2 (Midnit & 5967 & 109 & 55 & 0.86 \\
\hline 4 & 4961 & 93 & 53 & 0.73\% \\
\hline 6 & 4751* & 94 & 51 & 0.74 \\
\hline 8 & 5562 & 104 & 53 & 0.83 \\
\hline 10 & 7721* & 146 & 53 & 1.15 \\
\hline 12 (Noon) & 6825 & 161 & 42 & 1.27* \\
\hline 14 & 6636 & 127 & 52 & 1.00 \\
\hline 16 & 6634 & 135 & 49 & 1.07 \\
\hline 18 & 6894 & 132 & 52 & 1.05 \\
\hline 20 & 7574 & 139 & 55 & 1.09 \\
\hline 22 & 7358 & \(13: 9\) & 5.3 & 1.09 \\
\hline
\end{tabular}

Directing our attention to the columns of aggregate amount and of ratios of number of occurrence, we find a principal maximum about 11 A. M., which seems to correspond to the secondury maximum of corresponding ratios at 'Toronto occurring about three hours earlier; the principal minimum occurs about 5 . . M., which corresponds to the secomdary minimum at Toronto occurring between 5 and 6 A . M.; again, at Philadelphia, the sccondary maximum at midnight is about two hous earlier than the principut maximum at Toronto, and the secondary minimum about

4 P. M. corresponds in time to the principal minimum at Toronto occurring between 2 and 6 P. M. 'Thus, the curves at the two stations, representing the diurnal variation of the disturbances (irrespective of increase or decrease) of the horizontal force, is double crested with an exchange of the principal and sccondary maximum and also of the principal and secondary minimum.

In the next Table, XIV., the dimmal variation of the disturbances is exhibited separately for disturbances increasing and disturbances decreasing the horizontal force.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Hour.} & \multicolumn{3}{|l|}{Disterbances Increasing Horizontal Force.} & \multicolumn{3}{|l|}{Dietcrbances Decreaetng Horizontal Force.} & \multirow[b]{2}{*}{Excess of aggregate decrease over aggregate increase.} \\
\hline & Number of occurrences & Aggregate amount. & Ratio. & Number of occurrences & Agsregate amıant. & Ratio. & \\
\hline 0 (Midn't) & 57 & 2878 & 1.28 & 85 & 52:38 & 1.21 & 2360 \\
\hline 2 & 44 & 2173 & 0.97 & 65 & 3794 & 0.87 & 1621 \\
\hline 4 & 42 & 1998 & 0.89 & 51 & 2963* & 0.68 & 965 \\
\hline 6 & 28 & 1213* & 0.54 & 66 & 3538 & 0.81 & 2325 \\
\hline 8 & 48 & 2345 & 1.04 & 54 & 3217 & 0.74 & 872 \\
\hline 10 & 61 & 2732 & 1.22 & 85 & 4989 & 1.15 & 2257 \\
\hline 12 (Noon) & 74 & 3134* & 1.39 & 87 & 3491 & 0.85 & 557 \\
\hline 14 & 48 & 2239 & 1.00 & 79 & 4397 & 1.01 & 2158 \\
\hline 16 & 49 & 2200 & 0.98 & 86 & 4434 & 1.03 & 2234 \\
\hline 18 & 45 & 2005 & 0.89 & 87 & 4889 & 1.13 & 2884 \\
\hline 20 & 39 & 1758 & 0.78 & 110 & \(5816^{*}\) & 1.34 & 4058 \\
\hline 22 & 50 & 2296 & 1.02 & 89 & 5062 & 1.18 & 2766 \\
\hline Sums. & 585 & 26971 & 12.00 & 936 & 52028 & 12.00 & 25057 \\
\hline
\end{tabular}

The disturbances increasing and those decreasing the horizontal force evidently follow different laws; at Toronto they were found completely opposed; they are less so at Philadelphia. The principal maximum of increasing disturbances (at noon) seem to be contemporaneous with a secondary minimum of the decreasing disturbances; again the principal maximum of the decreasing disturbances (at 8 P . M.) corresponds to a secondary minimum of the increasing disturbances. In reference to the main feature, the maximum disturbance of those increasing the force and of those decreasing the force, the Philadelphia ratios show even a greater resemblance to the results at St. Helena and the Cape of Good Hope than to those at Toronto. It the two sonthern stations the maximum in the disturbances which increase occurs at 11 A . M. and the maximum in the disturbances which decrease occurs about 6 or 7 P. M. (See Vol. II. of the St. Helena Obscrvations.)

Table XIV. contains also the hourly excess of the aggregate amount of the disturbances which decrease the horizontal force over those which increase the same. If we divide the numbers by the whole number of days of observation (nearly 1500) we obtain the diurnal disturbance variation expressed in scale divisions.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Hour.} & \multicolumn{5}{|c|}{Table XV.-Diernal Disturbance Variation.} \\
\hline & s. D & In abmolute mrasure & Hour. & s. p. & In absolute measure. \\
\hline \({ }_{0}^{0}\) (Midn't) & 1.6 & 0.00024 & 12 (Noon) & 0.4 & 0.00006 \\
\hline & 1.1 & 17 & & 1.4 & 21 \\
\hline \({ }_{6}\) & 1.6 & \({ }_{2+}^{11}\) & 18 & 2.0 & 30 \\
\hline 8 & 0.6 & 09 & 20 & 2.8 & 43 \\
\hline 10 & 1.5 & 23 & 22 & 1.9 & 29 \\
\hline
\end{tabular}

The average amount by which the disturbances tend to decrease the diumal variation of the horizontal force is 1.4 scale divisions or 0.00021 in the absolute scale. The maximum effect takes place at 8 P. M., at exactly the same hour when the declination disturbances reach their greatest effect.

In the preceding Tables, XIII., XIV., and XV., to the hours indicated \(21 \frac{1}{2}\) minutes should be added, the observations being made so much later than the even hours.

The preceding discussion shows that for two stations, even at a comparatively short distance, as for Philadelphia and 'Toronto, there are, generally speaking, some close coincidences in the laws derived from independent observations; but there are also certain differences in other results; yet it must not be forgotten that for a strict comparability we require, if not simultaneous observations, at least observations extending over similar parts or the whole of an eleven year period. The Philadelphia series includes a minimum year of that inequality, with the greater extent of observations before that epoch, whereas at Toronto the series begins after the minimum epoch and barely extends to a maximum year.

For the purpose of obtaining a better view of the absolute amount of the disturbances and their frequency of occurrence, \({ }^{1}\) they were classified in nine groups of equal differences of 20 scale divisions; the number of disturbances in each was found as follows:-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{In scale divisions.} & \multicolumn{3}{|r|}{Limits Adopted.} & & & & \multirow{2}{*}{Number of disturbances.} \\
\hline & \multicolumn{3}{|l|}{In parts of horizontal force.} & \multicolumn{3}{|l|}{In the sbsolute sale.} & \\
\hline 33 to 53 & 0.0012 & & 0.0019 & 0.005 & to & 0.008 & 1159 \\
\hline 53 " 73 & 19 & & 27 & 08 & 6 & 11 & 348 \\
\hline 73 แ 93 & 27 & 4 & 34 & 11 & " & 14 & 93 \\
\hline 93 " 113 & & 4 & 41 & 14 & " & 17 & 45 \\
\hline 113 " 133 & 41 & " & 48 & 17 & " & 20 & 27 \\
\hline 133 " 153 & 48 & \(1:\) & 55 & 20 & " & 23 & 14 \\
\hline 153 " 173 & & " & 62 & 23 & " & 26 & 4 \\
\hline 173 " 193 & 62 & " & 70 & & " & 29 & 6 \\
\hline 193 " 213 & 0.0070 & & 0.0077 & 0.029 & & 0.032 & 2 \\
\hline Beyond. & & & & & & & 0 \\
\hline
\end{tabular}

The numbers in the last column cannot be considered as entirely independent of the eleven year period, and in attempting to apply the theory of probabilities in

\footnotetext{
\({ }^{1}\) A table analogons to that given above. showing the distribution of the disturbances in declination, is here added for comparison :-
}

reference to the number of disturbances which ought to occur between the assigned limits, it became apparent that the larger disturbances greatly preponderate, a fact no doubt intimately connected with the difficulty in correctly allowing for the progressive change during the first year of observation.

\section*{PARTV.}

\section*{INVESTIGATION}
-F TIIF

SOLAR-HIURNAL VARIATTON AND OF THE ANXUAI, INEQUALITY OF THE: HORIZON'IL COMPONENT OF THE MAGNETIC FORCE

\title{
INVESTIGATION
}

\author{
OF TUE \\ SOLAR-DIURNAL VARIATION, AND OF THE ANNUAL INEQUALITY OF THE HORIZONTAL COMPONENT OF THE MAGNETIC FORCF.
}

The discussion of the diurnal and annual variations of the horizontal force is based on the resulting monthly normal values for each observation hour as given in the preceding part (IV.), in which the horizontal force has been discussed in relation to the ten or eleven year period, and which also contains the investigation of the disturbances; in the same part all necessary statements are given relating to the instrumental data and the absolute values of the horizontal force.

The normals, as has been shown, are referred to a uniform standard temperature; they are corrected for irregularity in the progressive change, and are necessarily freed from all the larger disturbances. The use of the normals instead of the simple means of the readings (corrected for difference of temperature) will insure greater regularity in the variations of the horizontal force, now under consideration.

The diurnal rariation requires an arrangement of the five year series of monthly normals according to the months of the year and hours of the day; in general, the method of interpolation for an occasional omission in either a month or hour, is the same as that used in Part II. of the discussion of the Girard College obscrvations: there is, however, this difference in the tabulation of the monthly values, that in the present case the results are consolidated in a five years' arrangement, and in consequence the year commences with the month of July. This arrangement was preferred, particularly since it was found desirable to make no use of the observations in the first month of the series.

Tabulation of monthly normals for each observing hour and each observing year, beginning and ending with July. The individual values are taken from Table VII. of the preceding Part IV.

After applying the corrections of - 19 scale divisions to the normals for January, 1841, and of +8 scale divisions to those of June, 1841, to allow for defective number of observations in these months, a further correction of +68 scale divisions was applied to all values between July, 1840, and May, 1841, inclusive, and of +60 to all values between July, 1840, and December, 1840, inclusive, to allow for defects in the regularity of the progressive change, thus making the total correction for the latter months \(=128\) scale divisions. The above corrections, when divided by 5,
in order to give the correction to the means derived from five years, become, there fore: for months betwern July and December inclusive, +26 ; for Janamy +10 ; for February, March, \(\Lambda_{\mathrm{p}}\) ril, and May +14 ; for \(J\) une +2 . These corrections are constant for cach hour of the day in any one month, and consequently do not affect the diumal rariation; but they have nevertheless been applied at once to facilitate subsequent deductions. Their origin has also been explained in the remarks accompanying Table V. of the preceding part.
The following example of the process of interpolation for the odd hour values will suffice for all similar cases: Required the mean normal from the 5 year serics for \(5^{10} 21 \frac{1}{2}{ }^{\mathrm{m}}\) A. M. in June (see tabular values and results below). The mean normals for the two last years at \(4^{\mathrm{h}} 21 \frac{1}{2}^{\mathrm{m}}, 5^{\mathrm{h}} 21 \frac{1}{2} \frac{1}{2}^{\text {m }}\), and \(6^{\mathrm{h}} 21 \frac{1}{\frac{1}{2}^{\mathrm{m}}}\), are 1176,1173 , and 1169 respectively; the mean at \(5^{11} 21 \frac{1 \frac{1}{2}^{\mathrm{m}}}{}\) is therefore 3 divisions less than the mean at \(4^{n} 21 \frac{1}{2} \mathrm{~m}\), and since the mean of the 5 year serics at \(4^{\mathrm{h}} 21 \frac{1 \mathrm{~m}}{} \mathrm{~m}\) is 853 , the result for \(5^{11} 21 \frac{1}{2} \mathrm{~m}\) becomes 849 ; again, adding 4 divisions to 847 , the mean at \(6^{\text {n }} 21 \frac{1}{2}\) m , we find 851 ; the mean of the two values, or 850 , is that given in the table, to which +2 has been added, making the final result 852. The means of the odd hours, thus found from the adjacent even hours, in general, do not differ by as much as a scale division.
The time given in the tables of the normals is mean local time, counting from midnight to midnight to twenty-four hours. The observations were taken (on the average) \(21 \frac{1}{2}\) minutes after the full hours, as indicated in the tables. Increase of scale readings indicates decrease of horizontal force; the value of a scale division equals 0.0000365 parts of the horizontal force, or 0.0001523 in absolute measure, the mean horizontal foree being 4.173 (in absolute measure). Proper woights have been given to the normals of the even and odd hours, in proportion to the number of olservations, as will be seen hereafter. Other special remarks will be found at the end of the month to which they refer.

Tabulation of the hourly normals for each month and the mean of the five year scries, expressed in scale division readings and reduced to the standard temperature of \(63^{\circ}\) (Fahrenheit's scale), also corrected for all irregularities in the progressive change. The regular progressive and secular change, therefore, remains in the tabular quantities.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{Normals of the Mforizoxtil Forme for July} \\
\hline Year. & \(0^{6}\) & \(1^{\text {n }}\) & \(2^{\text {b }}\) & \(3^{\text {b }}\) & & 5 & \(8^{18}\) & 7 & * & \(9{ }^{\text {b }}\) & \(11^{1 /}\) & \(11^{\prime \prime}\) & \\
\hline 18.40 & 113 & & 97 & & 89 & & 51 & & 11.2 & & \(11 ;\) & & \\
\hline 1841 & \(44{ }^{2}\) & & 442 & & 4:3\% & & 435 & & 447 & & 45 & & \\
\hline 1842 & 692 & & (is6 \({ }^{\circ}\) & & \(68:\) & & 198 & & 1:95 & & 51\% & & \\
\hline 1843 & 927 & & 924 & & 124 & & 923 & & . 935 & & 1.11 & & \\
\hline 1844 & 1102 & 1103 & 1105 & 1106 & 1106 & 1105 & 1114 & 1104 & 11.9 & 111ti & 1118 & 1114 & \\
\hline \(\underset{\text { Meferred mean }}{\text { Meat }}\) & 605 & 653 & (65) & 649 & 6.47 & 642 & 638 & 13.4 & 660 & 4:196 & \(6{ }^{1}\) & G14. & \\
\hline Constant correction +26
Normals . . . & 681 & 679 & 677 & 675 & 673 & 6118 & 664 & 673 & & 692 & 694 & 690 & \\
\hline Year. & \({ }_{\text {Noon }}^{12^{\text {h }}}\) & \(13^{\text {h }}\) & \(14^{\text {b }}\) & \(15^{\prime}\) & \(10^{3}\) & \(17^{\text {h }}\) & & \(10^{\prime \prime}\) & 243 & \(2]^{6}\) & \(22^{n}\) & 23 & +211m \\
\hline 1840 & & & 59 & & 52 & & 12 & & 43 & & 108 & & \\
\hline 1841 & & & 424 & & 430 & & 4.4 & & 448 & & 439 & & \\
\hline 1842 & & & 680 & & 677 & & 69\% & & 964 & & 700 & & \\
\hline 1843 & & 1100 & 3096 & 1093 & & 1093 & & 1099 & & 1102 & \[
\begin{array}{r}
931 \\
1103
\end{array}
\] & 1104 & \\
\hline \begin{tabular}{l}
Mean \\
Referred mean
\end{tabular} & \[
657
\] & \(64 i ;\) & 637 & 634 & \[
633
\] & 640 & \[
649
\] & 651 & 653 & ¢ 655 & 656 & \({ }^{65 \%}\) & \\
\hline \begin{tabular}{l}
Constant correction +26 \\
Normals
\end{tabular} & 683 & 652 & 0663 & 660 & 6is! & B6it & 675 & 177 & 679 & 681 & 682 & ¢53 & \\
\hline \multicolumn{14}{|c|}{Monthly mean normal from the even hours \(\left(+212^{m 1}\right)\) (i76.3, weight 5. " " odd " " 676.3 " 1.} \\
\hline
\end{tabular}

The values for 1843 within brackets are interpolated by means of the continued radings at \(14^{\mathrm{h}} 21 \frac{1}{2}^{\mathrm{m}}\); at this hour the difference of reading from the preceding year is 259 , which added to the values of 1842 gave resulting normals for 1843 ; in the same manner the reading in 1843 at \(14^{\mathrm{h}} 21 \frac{1}{2} \mathrm{~m}\) when compared with the reading in the following year (1844) leaves the difference 185, which quantity when subtracted from each hourly value in 1844 gives a second determination for the year 1843; the mean of the two determinations for each hour has been inserted above.

The values of 1843 inclosed in brackets are derived from the reading at \(14^{\text {h }} 21 \frac{1}{2} \mathrm{~m}\) in the same manner as explained in the preceding month.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & M111 & S OF & THE I & Tori\% & Ntas & Fon & CE FOD & MA & RCM. & & & & \\
\hline lear. & \(6^{10}\) & \(1{ }^{11}\) & 2 & \(3^{4}\) & 4 & 5 & 6 & \(7^{\text {h }}\) & s1 & 91 & \(10^{10}\) & \(11^{4}\) & + 212 \\
\hline 1-11 & 265 & & 272 & & 267 & & 257 & & 271 & & 29.4 & & \\
\hline 1042 & 5 & & 52.9 & & 85.7 & & \(55^{4}\) & & 56.3 & & 5.74 & & \\
\hline 1043 & (527) & & (-2) & & (\(8-22)\) & & (819) & & (627) & & (536) & & \\
\hline 1s4t & 1145 & 10.4 & 1140 & 1046 & 1146 & 1043 & 1143 & 1047 & 1050 & 1054 & 1057 & 1063 & \\
\hline 154 & 123. & 1230 & 1234 & 1235 & 1234 & 1234 & 1231 & 1233 & 1241 & 1249 & 1255 & 1261 & \\
\hline \[
\begin{aligned}
& \text { Mean } \\
& \text { Referred mean . . }
\end{aligned}
\] & 759 & 7-8 & 787 & 786 & 785 & 783 & 781 & 765 & 790 & 798 & 803 & 808 & \\
\hline Constant correction +14
Nornais & 803 & 802 & 801 & 8010 & 799 & 797 & 795 & 799 & 804 & 812 & 817 & 822 & \\
\hline Year. & 12 & \(13^{n}\) & \(14^{\prime \prime}\) & \(15^{\text {n }}\) & \(16^{3}\) & \(17^{\text {n }}\) & \(18^{\text {h }}\) & \(19^{\text {h }}\) & 20 & \(21^{11}\) & \(22^{\text {h }}\) & \(23 *\) & + 21 d! \\
\hline 1041 & 2 c & & 26 & & 266 & & 282 & & 264 & & 272 & & \\
\hline 1-42. & 575 & & 561 & & \% 515 & & 571 & & 567 & & 566 & & \\
\hline 1643 & (-3.9) & & 529 & & (888) & & (31) & & (-5) & & (625) & & \\
\hline 154 & 11103 & 1001 & 11057 & 1050 & 1051 & 1050 & 11150 & 1052 & 11050 & 1048 & 160 & 1048
1239 & \\
\hline 1845 . & 126 & 1253 & 1245 & 12:39 & 1241 & 1242 & 124 & 1241 & 1239 & & 1240 & 1239 & \\
\hline \begin{tabular}{l}
Mazn \\
Referren mean
\end{tabular} & & (1I) & 792 & 787 & \[
790
\] & \[
793
\] & \[
796
\] & 79.4 & 790 & 689 & 791 & 7311 & \\
\hline \[
\begin{aligned}
& \text { Constant correction }+14 \\
& \text { Normals }
\end{aligned}
\] & \(-19\) & s14 & 500 & 81 & 804 & 507 & 510 & 418 & 804 & 803 & 805 & 804 & \\
\hline \multicolumn{14}{|c|}{\begin{tabular}{l}
Monthly mean nomal from the even hours \(\left(+21 \frac{1}{2} \mathrm{~m}\right)\) Su5.6, weight 4 . \\
" " " " " oll " " 805.e, " 2.
\end{tabular}} \\
\hline
\end{tabular}

The values for 1843 are intexpolated as in the preceding two months

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year.} & \multicolumn{13}{|l|}{} \\
\hline & 111 & \(1{ }^{\text {n }}\) & 2 & \(3{ }^{3}\) & \(4{ }^{\prime \prime}\) & \(5{ }^{\text {b }}\) & \(0^{4}\) & \(7^{\text {a }}\) & 8 & ! 1 & 1101 & \(11^{\prime \prime}\) & +212 \\
\hline 1841 & 311
314
151 & & 305
6110 & & (3178 & & 2:7 & & 306 & & 323 & & \\
\hline 1543 & 814 & & 86 & & 558 & & 8.57 & & 85 & & 872 & & \\
\hline 1844 . . . & 1065 & 11065 & 1063 & 1062 & 1162 & 1061 & 10ti & 116.4 & 1148 & 1176 & 110 & 1以\% & \\
\hline 1845 . & 124 & 1243 & 1241 & 12:3 & 12:\% & 1233 & 1229 & 1236 & 1251 & 1261 & 129 & 1254 & \\
\hline Mean & 42 & & 816 & & 815 & & 810 & & 94 & & \(8: 33\) & & \\
\hline & & & & & & & & & & & & & \\
\hline Normals . & 8.34 & 833 & 830 & 829 & 829 & 826 & 824 & 823 & 838 & 843 & 847 & 843 & \\
\hline Year & \[
\frac{122^{n}}{\text { Noun }}
\] & \(13^{\text {b }}\) & \(14^{\text {n }}\) & \(15^{\text { }}\) & \(16^{\text {b }}\) & \(11^{\text {n }}\) & \(18^{\prime \prime}\) & \(19^{n}\) & 213 & \(21^{11}\) & \(22^{24}\) & \(23{ }^{\prime \prime}\) & + 21 年" \\
\hline 1541. & 318 & & 301 & & 294 & & 306 & & 309 & & 313 & & \\
\hline & 6122
864
864 & & \(\begin{array}{r}606 \\ \hline 855 \\ \hline\end{array}\) & & 647
8.56 & & \({ }_{6}^{615}\) & & 618
867 & & 619 & & \\
\hline \(1844 . . .!\) & 11164 & 1057 & 1053 & 1053 & 1051 & 1054 & 1169 & 1063 & 1064 & 1064 & 1065 & 1063 & \\
\hline 1845 & 1253 & 124 & 1238 & 123i & 1237 & 1239 & 1245 & \(12+6\) & 1246 & 1124 & 1247 & 124: & \\
\hline \begin{tabular}{l}
Mean \\
heferred mean
\end{tabular} & 823 & 816 & 811 & 810 & 809 & 811 & 817 & 818 & 821 & 822 & 21 & 418 & \\
\hline \begin{tabular}{l}
\[
\text { Constant correction }+14
\] \\
Normals
\end{tabular} & 837 & 830 & 825 & 824 & 823 & 825 & 831 & 832 & 835 & (3) & 4.35 & 83.2 & \\
\hline \multicolumn{14}{|c|}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{Normals of the Forizontal Force for June.} \\
\hline Year. & \(0^{11}\) & \(1^{\text {b }}\) & \(2{ }^{4}\) & \(3^{\text {b }}\) & 4 & \(5^{\text {b }}\) & (5) \({ }^{1 /}\) & \(7^{1}\) & \(8^{\text {h }}\) & \(9{ }^{\text {b }}\) & \(10^{\text {b }}\) & \(11^{\text {b }}\) & \(+21 \frac{1}{2}{ }^{\text {n }}\) \\
\hline 1841 & 392 & & 390 & & 392 & & 356 & & 400 & & 401 & & \\
\hline 18.22 & 649 & & 652 & & 646 & & 638 & & 649 & & 659 & & \\
\hline 1843 & 881 & & 879 & & 876 & & 873 & & 883 & & 894 & & \\
\hline 1844 & 1075 & 1077 & 10.6 & 1117 & 1077 & 1075 & 1073 & 11176 & 10-0 & 1082 & 1184 & 1081 & \\
\hline 1845 & 1280 & 1281 & 1281 & 1281 & 1275 & 1271 & 1266 & 1273 & 1282 & 1293 & 1295 & 1292 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Mean
Referred mean . .}} & & 856 & & 853 & & 847 & & 859 & & 867 & & \\
\hline & & 856 & & 856 & & 850 & & 853 & & 865 & & 864 & \\
\hline \multirow[t]{2}{*}{Constant correction + 2
Normals} & & & & & & & & & & & & & \\
\hline & 858 & 858 & 858 & 858 & 855 & 852 & 849 & 855 & 861 & 867 & 869 & 866 & \\
\hline Year. & 123 & \(13^{\text {n }}\) & 14 & \(15^{4}\) & \(16^{\text {h }}\) & \(17^{\text {h }}\) & \(18^{11}\) & \(19^{n}\) & 204 & \(21^{\text {n }}\) & \(22^{\text {b }}\) & \(23^{\text {b }}\) & \(+21{ }^{\prime \prime}\) \\
\hline \multirow[t]{5}{*}{\(\begin{array}{llllllll}1841 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & . \\ 1842 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & . \\ 1843 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \\ 1844 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \\ 1545 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \end{array}\)} & 395 & & 382 & & \(3 \times 5\) & & 392 & & 402 & & 392 & & \\
\hline & 450 & & 639 & & 0:38 & & 64. & & 648 & & 650 & & \\
\hline & & & 870 & & 8711 & & 881 & & 881 & & 885 & & \\
\hline & 10.7 & 1072 & 1067 & 1065 & 1015 & 10167 & 1071 & 1073 & 11175 & 1077 & 1077 & 1078 & \\
\hline & 12N6 & 1280 & 1272 & 1249 & 1269 & 1273 & 1278 & 1251 & 1250 & 1277 & 1279 & 1280 & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Mean \\
Referred mean
\end{tabular}} & 858 & & 840 & & 845 & & 55.4 & & 857 & & 857 & & \\
\hline & & §53 & & 8.45 & & 849 & & 556 & & 856 & & 657 & \\
\hline Constaut correction +2 & 810 & 555 & 8.48 & 847 & 847 & 851 & S5(j & 85 & 859 & 854 & 859 & 859 & \\
\hline \multicolumn{14}{|c|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{

```

        Incrase of scale readings lemotes decrease of force.
    ```} \\
\hline 1540－1－45． & \(0{ }^{\text {h }}\) & \(1{ }^{\text {n }}\) & 2 & 31 & 4 & \(5^{1 /}\) & 6 & 8 & \(8^{3}\) & \(9{ }^{\text {n }}\) & \(10^{\text {h }}\) & \(11^{1 /}\) & ＋21管 \\
\hline July ． & 1.81
\(6: 15\) & 409 & 167 & 655
609 & 673
499 & 6145 & 644
693 & 673
702 & （6） & 792 & 694
726 & 690
718 & \\
\hline Aurust． & 720 & & 78 & 715 & 714 & 713 & 711 & 721 & 735 & 74 & 749 & 745 & \\
\hline Suptmber． & 735 & 731 & 731 & 727 & 725 & 725 & 729 & 734 & 739 & 746 & 751 & 7511 & \\
\hline Wetober \({ }^{\text {Nobember }}\) & 739 & 738 & 736 & 734 & 733 & 7831 & 7.8 & 732 & 737 & 743 & 746 & 751 & \\
\hline December ． & 782 & 767 & 766 & 764 & 761 & 759 & 75 & 758 & 711 & 766 & 755 & 783 & \\
\hline Jamuary ． & 794 & 792 & 742 & 790 & 788 & 787 & 786 & 784 & \(786^{\circ}\) & 795 & 802 & 818 & \\
\hline February ． & 800 & 718 & 7.16 & 796 & 795 & 743 & 791 & 793 & 795 & 810 & 818 & 810 & \\
\hline March ． & 80.3 & 802 & 801 & 800 & 799 & 797 & 795 & 799 & 814 & 812 & 817 & 822 & \\
\hline April ． & 824 & 823 & 823 & 820
809 & 818
-9.9 & 817 & 817
821 & － & 829
\(8: 3\) & －416 & 849
847 & 8513 & \\
\hline May ． & \begin{tabular}{l}
6.34 \\
8.5 \\
\hline
\end{tabular} & 88.3 & 830 & 829
858 & －29 & －26 & 824
\(84!\) & 6.9
855 & 838 & 846 & 88 & 860 & \\
\hline Junt & & & & & & & & & & & & & \\
\hline Year & 771.5 & 769.8 & 748.1 & 767.4 & 75.5 .7 & 763．7 & 711.9 & 764.7 & 713.7 & 71.3 & －-6.1 & 7－6．5 & \\
\hline Summer & 769．2 & \(76 . .3\) & 515 & 7616.3 & 764.7 & 761.8 & 751.7 & 766.7 & 737．2 & 785.7 & 78.0 & 785．7 & \\
\hline Winter & 773.8 & 771.3 & 770．3 & 765.5 & 766.8 & 765.7 & 764.2 & 766.7 & 740 & 777.0 & 783. & 787.3 & \\
\hline 1541－1845． & \(12^{n}\) & \(13^{11}\) & \(14^{\text {n }}\) & \(15^{17}\) & \(16^{\text {n }}\) & \(1 \%^{14}\) & \(15^{\text {b }}\) & \(19^{4}\) & \(20^{14}\) & \(21^{\text {h }}\) & \(22^{\text {h }}\) & \(23^{\prime}\) & \(212^{\text {mu }}\) \\
\hline July & 63 & 1972 & 66：3 & 640 & 659 & 6 btb & 17．） & 677 & 679 & 681 & 652 & 6－3 & \\
\hline August． & 718 & 1898 & tisy & 689 & 89 & 6919 & \(7 川 1\) & 7113 & 714 & 713 & 70.4 & 702 & \\
\hline Suptember & 736 & 726 & 720 & 718 & 71.9 & 723 & 724 & 725 & 73 & 725 & T22 & 722 & \\
\hline October & 751 & 747 & 743 & 340 & 739 & 739 & 738 & 739 & 740 & 739 & 739 & 738 & \\
\hline November． & 750 & 746 & 740 & 738 & 737 & 739 & 736 & 736 & 737 & 739 & \(7 \pm 1\) & 740 & \\
\hline December． & 785 & 778 & 773 & 7 7 & 754 & 765 & 717 & 768 & 771 & 772 & 772 & 771 & \\
\hline Jamuary & 818 & 801 & 7915 & 790 & 787 & 790 & 793 & 7！） 4 & 793 & 79. & 794 & 796 & \\
\hline February & 813 & 808 & 804 & 800 & 81 & 800 & \(8: 11\) & 814 & 80，\({ }^{\text {c }}\) & 802 & 800 & 800 & \\
\hline March ． & \(81: 9\) & 81.4 & 416 & －111 & 804 & 817 & 810 & 508 & 804 & 603 & 805 & \(4{ }^{4} 4\) & \\
\hline April & 84.5 & 83.9 & 827 & 884 & 822 & 820 & 827 & \(8 \geq 7\) & 830 & 8.30 & 828 & 827 & \\
\hline May． & 837 & －30 & 82.5 & 524
847 & 833 & 825 & \(8: 31\) & \[
\begin{aligned}
& 832 \\
& 858
\end{aligned}
\] & 835
859 & 836
858 & 835
859 & 859 & \\
\hline June & 460 & 8.5 & 848 & \(8 \pm 7\) & －47 & 8.1 & & & & & & & \\
\hline Year & 72.9 & 776.2 & 76.9 .5 & 763.5 & 760.2 & 768.6 & 771.6 & 72.6 & 713． 4 & 773.5 & 713.4 & & \\
\hline Summer ． & 778.2 & 570.10 & 76.0 & 764.2 & 751.3 & 74.3 & 769.1 & 7313 & 771.7 & 772.2 & 711. & & \\
\hline Wiater ．． & 787.7 & フェッ．3 & 777.0 & 72.8 & 7120 & 773.3 & 74.2 & 77.8 & 710．2 & 174.5 & 710. & \％ 14.8 & \\
\hline
\end{tabular}

In the preceding table the normals for the summer half year comprise the months between April and september inclusive；those for the winter half year comprise the months between October and March inclusive．

The following table contains the mean values of the normals for each month and scason．

 hourly nomals of Tathle 1 ．from their respective monthly mean value as given in Table II，the difference（in scale divisions）will represent the regular solar－diurnal
variation for earh month in the year．In like manner wo obtain the dimmal aria－ tion of the horizontal fore－free of the larger disturbances－for the summer and winter half，and for the whole year．Table HI，will exhibit these differencos after their conversion from scale divisions into parts of the horizontal fores（one scale division equalling 0.0000365 parts of the horizontal force）．The tabular numbers are expressed in units of the sixth phace of decimals．A plus sign indi－ cates a greater force，a minus sign a less force than the mean value．Casting the eye over the vertical columns，we obtain also a view of the anual inequality of the diumal variation，which will be examined further on．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{14}{|l|}{\begin{tabular}{l}
 \\
Madixetic Force exphessed dn pats of the Horizoxtsh force． \\
A plus sign indicates greater force thin the mean．For convenience sake，the first three decimals（（1，（14n） have been placed on the side of the tathe．
\end{tabular}} \\
\hline & 1840－1845． & \(0^{\text {L }}\) & \(1{ }^{11}\) & 2 c & \(3^{4}\) & 4 & 5 & \(6^{31}\) & \(7^{1 /}\) & \(8^{\text {h }}\) & \(9^{3}\) & \(10^{4}\) & \(11^{\text {b }}\) & ＋ 213 l \\
\hline \multirow{11}{*}{－} & July & \(-171\) & －098 & －125 & \(+0.7\) & \(+120\) & ＋ & \(+449\) & ＋120 & －3：3 & －578 & －titi & －449 & \\
\hline & Ausust & \(+153\) & ＋116 & \(+116\) & \(+153\) & \(+116\) & ＋26 & \(+335\) & \(+017\) & －430 & －395 & －－8．85 & －55； & \\
\hline & September & \(+168\) & ＋241 & ＋16 & ＋241 & ＋357 & ＋423 & \(+481\) & \(+131\) & \(-380\) & －T08 & －8．1 & －－1 & \\
\hline & October & ＋116 & ＋262 & \(+269\) & \(+408\) & \(+481\) & \(+372\) & ＋335 & ＋153 & －109 & －24 & － 167 & －： 30 & \\
\hline & November & －013 & ＋018 & ＋091 & ＋164 & ＋200 & ＋310 & ＋3－31 & \(+\because 37\) & ＋11． & －1ft & －273 & －45， & \\
\hline & December & －131 & ＋0． 1 & ＋188 & ＋161 & \(+270\) & ＋ 343 & ＋453 & ＋350 & ＋2511 & ＋168 & －－241 & －5：33 & \\
\hline & Janmary & －025 & ＋047 & ＋047 & ＋120 & ＋193 & ＋280 & ＋266 & ＋：39 & ＋266 & －－0i6］ & －318 & －5．316 & \\
\hline & February & ＋022 & ＋095 & \(+146\) & \(+168\) & ＋204 & ＋277 & ＋350 & ＋ 74 & ＋ 24 & \(+122\) & －－270 & －343 & \\
\hline & Mareh & ＋098 & ＋134 & ＋171 & ＋207 & ＋\({ }^{2} 4\) & ＋317 & ＋390 & ＋244 & ＋1191 & －－230 & \(-412\) & －59， & \\
\hline & April & ＋157 & ＋193 & ＋193 & ＋303 & ＋371 & ＋412 & \(+412\) & －－30：3 & \(-025\) & －43 & －-1.5 & －－24 & \\
\hline & May & －065 & －029 & ＋080 & ＋116 & +116
+065 & ＋2： & ＋299 & ＋115 & －211 & －50 & － 5411 & －\(\because 4\) & \\
\hline & & －043 & －043 & －0．43 & －043 & ＋065 & 175 & 284 & －165 & －153 & －33： & －445 & －3\％ & \\
\hline & Year & \(+022\) & ＋082 & \(+118\) & \(+170\) & ＋2：31 & ＋304 & ＋370 & ＋198 & － 100 & －－ & －\(\quad 111\) & 一－20 & \\
\hline & Summer & +033
+010 & \(+063\) & ＋182 & \(+136\) & \(+197\) & ＋300 & \(+377\) & ＋127 & －259 & － 517 & －1311 & －5id & \\
\hline & Winter & ＋010 & ＋101 & ＋134 & ＋205 & ＋265 & ＋308 & \(+363\) & & ＋1：28 & \(-1015\) & －300 & －がい & \\
\hline \multirow{16}{*}{\[
\begin{aligned}
& E \\
& = \\
& \hline
\end{aligned}
\]} & 1840－1845． & \[
12^{h}
\] & \(13^{4}\) & \(14^{14}\) & \(15^{\text {a }}\) & 26 & \(17^{11}\) & \(18^{4}\) & \(10^{\prime \prime}\) & 20 & 217 & 2 & \(\cdots\) & 213 \\
\hline & July & －244 & \(+1.7\) & ＋485 & \(+595\) & ＋631 & ＋376 & ＋047 & － 125 & －04＊ & －171 & － 44 & － 24 & \\
\hline & August & －211 & ＋153 & ＋481 & ＋518 & \(+372\) & ＋226 & ＋ 943 & － 19 & － 16 & －-2.9 & － 110.5 & ＋197 & \\
\hline & September & －416 & －0．31 & ＋168 & ＋241 & ＋214 & ＋058 & ＋102 & － 1115 & ＋168 & －015 & ＋ & ＋1195 & \\
\hline & October & －467 & －321 & －175 & －065 & － & － \(0^{-9}\) & ＋ 1117 & －12， & －195 & －109 & －182 & ＋曲： & \\
\hline & November & \(-119\) & －273 & － 054 & ＋015 & ＋1154 & －018 & ＋091 & ＋11：1 & ＋1054 & －018 & －1891 & －11．1 & \\
\hline & December & － 605 & －350 & －168 & ＋015 & \(+161\) & \(+124\) & ＋051 & ＋115 & －103 & －131 & －1：1 & －mas & \\
\hline & January & －534 & \(-317\) & －098 & \(+120\) & ＋230 & ＋120 & ＋011 & －1125 & ＋011 & －025 & －105 & －1988 & \\
\hline & February & －453 & －270 & \(-124\) & ＋022 & －115 & ＋022 & －015 & \(-124\) & \(-197\) & －051 & ＋02 & ＋1123 & \\
\hline & Mareh & －485 & －303 & －011 & ＋111 & ＋0631 & －047 & －157 & －1188 & ＋06i1 & ＋098 & ＋1025 & ＋118i & \\
\hline & April & －609 & \(-391\) & ＋0．47 & \(+157\) & ＋230 & ＋230 & ＋047 & ＋6．4 & － 1141 & －010 & ＋011 & ＋147 & \\
\hline & May & －175 & ＋1180 & ＋262 & ＋299 & \(+335\) & ＋262 & ＋143 & ＋1017 & －112 & \(-139\) & －102 & ＋ 018 & \\
\hline & June & －116 & \(+065\) & ＋321 & \(+357\) & ＋357 & \(+211\) & ＋029 & －043 & － 1001 & －143 & －1301 & －1159 & \\
\hline & Year & －395 & \(-152\) & ＋095 & ＋204 & \(+216\) & ＋128 & ＋018 & －019 & －14．9 & 一051 & － 0.51 & 11：3 & \\
\hline & Summer & －295 & ＋002 & \[
+294
\] & ＋361 & \(+355\) & \(+227\) & ＋087 & －009 & －05s & \(-0.6\) & －0104 & －1128 & \\
\hline & Winter & －494 & \(-306\) & －105 & ＋047 & ＋077 & ＋029 & －002 & －027 & －08：3 & －026 & －139 & － 120 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{Table IV} \\
\hline \multicolumn{15}{|r|}{Table IV. is derived fom Trable III. We multiplication with the ahsolute value of the horizontal foree (4.1.3); it contains, therefore, the regular solar-diurnal variation of the horizontal force in absolute measure. A phas sigu imbicates greater force than the mean. Tho places of decimals have been placed on the side of the table.} \\
\hline & 1540-1845. & \((1)^{1}\) & \(1^{4}\) & 2 & 3 & & & & \(7^{11}\) & , & + & \(10^{\text {b }}\) & 111 & \(+21 \underline{2}^{\text {m }}\) \\
\hline & Ausu & - 1171 & -144 & \[
\begin{aligned}
& -1110 \\
& +045
\end{aligned}
\] & & \[
\begin{aligned}
& +0.50 \\
& +114
\end{aligned}
\] & \[
\begin{array}{|c|}
+127 \\
+109
\end{array}
\] & \[
\begin{aligned}
& 180 \\
& +140
\end{aligned}
\] & \[
\begin{aligned}
& +10.11 \\
& +1.113
\end{aligned}
\] & \[
\begin{aligned}
& -147 \\
& { }_{10}^{100}
\end{aligned}
\] & - & \[
\begin{aligned}
& -270 \\
& -362
\end{aligned}
\] & \[
\left|\begin{array}{l|}
-208 \\
-2+1
\end{array}\right|
\] & \\
\hline & \begin{tabular}{l}
Angust \\
steptembur
\end{tabular} & \[
\begin{aligned}
& +11,6 \\
& +1170
\end{aligned}
\] & \[
\begin{aligned}
& +145 \\
& +101
\end{aligned}
\] & \[
\begin{aligned}
& +045 \\
& +1171
\end{aligned}
\] & +161 & +115
+162 & \[
\begin{aligned}
& +10: \\
& +177
\end{aligned}
\] & +140
+201 & +1505 & -159 & - 20.915 & -372 & -326 & \\
\hline & Oetober & - \({ }^{\text {c }} 48\) & +1193 & +119 & +190 & + & +15. & +140 & +115.4 & -112 & -119 & -195 & \(-180\) & \\
\hline & Noremule & - & +1915 & +135 & +1965 & +143 & +12: & +169 & +1993 & +122 & -148 & 14 & -190 & \\
\hline & Decembe & -055 & +121 & \(\underline{+137}\) & + 06 & +11:3 & +143 & \(+1 \times 9\) & +15: & +113 & + 017 & \({ }_{-131}{ }^{11}\) & -223 & \\
\hline & January & - 010 & +120 & +12010 & +050 & \(+1181\) & +1993 & +111 & +141 & +117
+185 & -125 & -132
-113 & 二224 & \\
\hline \(\stackrel{\text { \% }}{ }\) & February & \[
\begin{gathered}
+019 \\
+041
\end{gathered}
\] & +041
+056 & +1011
+191 & +170 & +115
+102 & +111
+13 & +146
+143 & +116
+112 & +1055 & +096 & -172 & -248 & \\
\hline & \[
\begin{aligned}
& \text { Mareh } \\
& \text { April }
\end{aligned}
\] & +018 & +0.1 & +0.1 & +127 & +159 & +159 & +172 & \(+127\) & - 111 & \(-1!3\) & -315 & -344 & \\
\hline & May & -027 & -012 & +16:3 & +148 & +04* & +094 & +125 & & & -210 & -226 & -16\% & \\
\hline & June & -(118 & -119 & -115 & -015 & +12-4 & +173 & & 127 & -(1) 4 & & -150 & -1411 & \\
\hline & & & +0.34 & + 14.8 & +171 & +i996 & \(+127\) & \(+1.5\) & -1153 & S & -141 & -213 & -220 & \\
\hline & Summer & +114
+014 & & & & & +125
+129 & +158
+152 & 1053
+114 & -1118
+158 & & -135 & & \\
\hline & 18411-145. & & \(13^{\text {n }}\) & \(14^{4}\) & \(15^{4}\) & \(16^{3}\) & & \(18{ }^{4}\) & & & \(21^{\text {h }}\) & \(22^{\text {b }}\) & \(23{ }^{\text {b }}\) & 21!" \\
\hline & & -112 & +1065 & + & +245 & \(+263\) & +159 & +120 & -1111 & - -141 & -171 & -102 & -102 & \\
\hline & Augast & -174 & +1121 & +2!11 & +216 & +155
+0.5 & +1944 & + 018 & - 1112 & -1127
+124 & - \({ }^{112}\) & - 127
+140 & +013
+1411 & \\
\hline & september & -174 & - 131 & +1711 & \({ }_{+}^{+1111}\) & +005 & +024 & +109 & - 11112 & \({ }_{-127}^{+124}\) & - 012 & \({ }_{-012}^{+010}\) & +(1103 & \\
\hline & Noremher & -175 & - 114 & - 122 & +010 & +022 & -(114) & +1138 & +1138 & +022 & -018 & -138 & -1122 & \\
\hline & December & -293 & -14 & -070 & +006 & +067 & +152 & +121 & +1100 & -14, & - -055 & - 10 & - \(1+0\) & \\
\hline & January & 2 & -1:32 & -0 41 & +050 & +096 & +150 & \(+005\) & - 1110 & & -(10) & -1110 & \(-101\) & \\
\hline & - February & \(-159\) & -113 & - 15 & +10404 & -0063 & +109\% & - \(1 \times 10\) & 二102 & -002 & -012 & +199 & +in9 & \\
\hline & March & --203 & 7 & - 010.5 & +1171 & +05 & - & -103 & -190 & +125 & +045 & +140 & + & \\
\hline & \({ }_{\text {April }}\) & - 1173 & & +124
+110 & +125 & +14" & +1m & +1088 & +10.3 & -143 & -159 & - 4.43 & +(1)2 & \\
\hline & June & -145 & + 027 & \(+1: 4\) & +149 & +149 & +1188 & +112 & -018 & -103: & -118 & -1133 & 33 & \\
\hline & & & & & & & & & -(in) & -123) & & -021 & 1-011 & \\
\hline & Summer & -123 & +(101) & +123 & +151 & +145 & +195 & +015 & -104 & -121 & -032 & \(-0.27\) & 7-112 & \\
\hline & Winter & -2016 & -120 & -44 & +120 & +1132 & \(2+112\) & -(10) & -(111 & - \({ }^{116}\) & -011 & -016 & - -010 & \\
\hline
\end{tabular}

Anment Inequality in the Diumal Tervition of the Itorizontal Foree.-The distinctive feature of the diurnal variation is shown in the annexed diagram (A), constructed from the mean ammal and half-yearly values given in the preceding table, IV. It exhibits in the annual mean, as its characteristic type, a maximum value about 6 A . M., a minimum value about 11 . M., a secondary maximum value about \(3 \frac{1}{2} \mathrm{P}\). M., and a secondary minimum about 9 P . M. For the half year when the sun has north declination, the moming minimum becomes smaller and the afternoon maximum larger, thus increasing the diumal range; the converse takes place in the other half of the year, when the sum has south declination. The 6 A. M. maximum remains nearly unchanger throughout the year. The average summer range (April to September inclusive) is 0.0046 , and the average winter range (October to March inclusive) is 0.0025 , both expressed in absolute measure. The range between the morning maximum and the morning minimum is 0.0045 in summer and 0.0036 in winter, as will be explained further on.

This semi-ammal change in the diumal amplitude is more conspicuonsly represonted in the amexed diagram (B), derived from diagram (A) by straightening out the ammual curve and using it as an axis of abscisse for laying off the differences between the amual values and the summer and winter values at the same respective hours of the day.

This diagram (B) may, with advantage, be compared with the analogous one representing the ammal change of the diumal variation of the declination as given in Part II. of this discussion. The construction is the same in either case.

At 6 A. M. there is hardly any change throughout the year. The maximum variation, in the course of a year, takesplace at 9. A. M. (range \(0.0019+\frac{1}{4}\) absolute menares): about \(11 \frac{1}{2}\) A. M. there is an 'porth of no variation; at \(2 P\). M1. a secomed maximm is reathed (range 0.00165) : arain at \(7 \frac{1}{2}\) and 11 P . Al points of mo
variation are reached. Owing to the prominent ammal variation near 2 P. M., the range of the diurnal rariation between the moming minimum at \(11 \mathrm{~A} . \mathrm{M}\). and the afternoon maximum at \(3 \frac{1}{2}\) P. MI is of more interest in the discussion of the diumal fluctuation of the horizontal force than the 6 A . M. and 11 A . M. range, which lotter range, as we have seem, is slightly greater than the first one.

To find the turning epochs of the annual variation, the monthly values for the hours \(9 \mathrm{~A} . \mathrm{M}\). and 2 P . M., when it is best developed, were taken from Table IV., and each value was again compared with its amual mean.

Casting the eye orer the columns headed "differences," we see by the change of fign and the magnitude of the ralues that the transition from a positive to a negative ralue occurs some time after the equinoxes, and that the maximum rariation is reached about the time of the solstices-a result in close correspondence with the ronclusions reached in the discussion of the amual inequality in the diurnal variation of the declination (lart II. of the discussion). For convenience in the analytical treatment, a column headed "mean difference" has been added to Table V'., whtained be changing the signs of the 2 P. M. differences (the annual variation bring then opposite to the morning values), and taking the mean of the \(9 \mathrm{~A} . \mathrm{M}\). and 2 P. M. differences. The values in this column are tolerably well represented be the following formula:-
\[
\Delta_{n}=+0.00129 \sin \left(6+799^{\circ}\right)+0.0001 \mathrm{~s} \sin \left(2 \theta+191^{\circ}\right) .
\]
the angle \(\theta\) counting from January 1 . at the rate of \(30^{\circ}\) a month. Aecordingly, we find the transition to take place shortly before the middle of April and October, or : hout twenty-two days after the equinoxes. This is about twelve days later than the epoch found in Part II. for the declination.
 of investigation and proper comparisom with similar results at other localities, the values wiven in Table I hate been put in an analytical form, and are represented by the following exprewions. It will be seen that the difference between any monthly normal mean and the comresponding mean in Table S . of Part IV., which bitter mean is affereted with the disturbaneres, does not exeeed \(2 \frac{1}{2}\) scale divisions. This stath differane inember also a small effert due to the neeressity of different
methods of interpolation in the construction of the two tables. In the determination of the numerical quantities (by application of the method of least squares) in the monthly equations, due attention was paid to the relative weights of the values for the even and odd hours. 'The coefficients are expressed in seale divisions (inereasing numbers denoting decrease of force), and the angle 0 counts from midnight at the rate of \(15^{\circ}\) an hour.

We have also: For summer half year (April to September inclusive), for winter half year (October to March inclusive), and for the whole year, the following expressions for the regular solar diumal variations:-
\[
\begin{aligned}
& \text { For summer, } \quad \Lambda_{n}=+760^{2} .1+3.79 \sin \left(0+293^{\circ} 49^{\prime}\right)+9^{4} .11 \sin \left(2 \theta+1399^{\circ} 10^{\prime}\right) \\
& +5^{4} .36 \sin \left(3 \theta+329^{\circ} 17^{\prime}\right)+1^{4} .42 \sin \left(4 \theta+202^{\circ}\right) \\
& \text { For winter, } \quad \Delta_{n}=+754^{4} .1+5^{4} .36 \sin \left(0+231^{\circ} 36^{\prime}\right)+6^{d} .04 \sin \left(2 \theta+104^{\circ} 46^{\prime}\right) \\
& +2^{4} .88 \sin \left(3 \theta+293^{\circ} 54^{\prime}\right)+1^{d} .11 \sin \left(4 \theta+108^{\circ}\right) \\
& \text { For ycar, } \quad \Delta_{h}=+72^{2} .1+3^{d} .95 \sin \left(0+256^{\circ} 199^{\prime}\right)+7^{d} .25 \sin \left(2 \theta+125^{\circ} 05^{\prime}\right) \\
& +3^{4} .96 \sin \left(3 \theta+317^{\circ} 31^{\prime}\right)+0^{4} .86 \sin \left(4 \theta+165^{\circ}\right)
\end{aligned}
\]

The following expressions for January may serve as specimens of the agreement of the result derived from the even and odd hours independently:-
\[
\text { From cren hours, } \begin{aligned}
& \Delta_{n}=793^{\prime \prime} .3+3^{4} .81 \sin \left(0+234^{\circ} 01^{\prime}\right)+6^{4} .56 \sin \left(2 \theta+94^{\circ} 32^{\prime}\right) \\
&+4^{4} .10 \sin \left(3 \theta+280^{\circ} 19^{\prime}\right)+2^{\mathrm{d}} .08 \sin \left(4 \theta+86^{\circ}\right) \\
& \text { From odd hours, } \quad \begin{aligned}
\Delta_{n}= & =793^{\mathrm{d}} .4
\end{aligned}+3^{4} .71 \sin \left(\theta+234^{\circ} 35^{\prime}\right)+6^{\mathrm{d}} .56 \sin \left(2 \theta+101^{\circ} 32^{\prime}\right) \\
&+3^{4} .76 \sin \left(3 \theta+286^{\circ} 00^{\prime}\right)+1^{4} .85 \sin \left(4 \theta+119^{\circ}\right)
\end{aligned}
\]
giving to the first equation the weight \(\stackrel{2}{ }\) and to the second the weight 1 , we obtain the equation as given above.

The following comparison will show the agreement of the observed and computed values we have for August:-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (A. M.) & Compated. & observed. & \(\Delta\) & (1. M.) & Computed. & Observed. & \(\Delta\) \\
\hline \(0^{12} 211^{\text {mu }}\) & 698.3 & 698 & -1 & & 707.7
695.1 & 708
698 & 0
-3 \\
\hline \(\underline{1}\) "، & 698.3
699.6 & 699
699 & \(+1\) & 13 " & \(66^{68.4}\) & 6,89 & -1 \\
\hline 3 ، & 699.7 & 698 & +2 & 15 " & 888.7 & 688 & +1 \\
\hline 4 " & 697.6 & 699 & -1 & 16 " & \(69 \% .5\) & 692 & \({ }^{0}\) \\
\hline 5 " & 694.3 & 695 & -1 & 17 " & 697.1 & 696 & \(+1\) \\
\hline 6 " & 694.5 & 69.3 & +1 & 18 " & 701.3 & 701 & -1 \\
\hline \(7{ }^{6}\) & 701.2 & 7 (1) & -1 & 19 " & 702.6 & 7013 & 0 \\
\hline 8 " & 712.7 & 714 & -1 & 20 " & 714.5 & 7114 & 0 \\
\hline 9 " & 723.6 & 724 & 11 & 21 " & 70.4 .8 & 703 & \(+2\) \\
\hline 10 " & 7271 & 726 & \(+1\) & 22 " & 703.3 & 7114 & -1 \\
\hline 11 " & 720.4 & 718 & +2 & 23 " & 700.6 & 702 & -1 \\
\hline
\end{tabular}

Diagrams C and D exhibit the regular solar-diumal variation of the horizontal force; the dots represent the observations directly taken from Table 1; the curves give the computed values from the preceding equations. These diagrams also exhibit the general agreement between the observed and computed valucs. The summer months are represented on diagram C , the winter months on diagram \(\mathbf{D}\); their comparison shows plainly the much greater range of the diurnal variation when the sun is north of the equator than when south of it, as was also the case with the magnetic declination.
(C.)-Solar-diornal Variation of the Morizontal Force; April to Saftember, 1840 to 1845.

Scale divisions. \(\quad 1^{\prime \prime}=0.0000365\) parts of the horizontal fonce.

Table VI. contains the coefficients \(B_{1} B_{2} B_{3} B_{4}\) of the general equation:\(\Delta_{1}=A+B_{1} \sin \left(\theta+C_{1}\right)+B_{2} \sin \left(2 \theta+C_{2}\right)+B_{3} \sin \left(3 \theta+C_{3}\right)+B_{4} \sin \left(4 \theta+C_{4}\right)\) "xpressed in parts of the horizontal force, by multiplying the corresponding quantities in the preceding equations with the value of a scale division. The angles \(C_{1} C_{2} C_{3} C_{4}\) will be found in Table VII.; they are the same as given before, increased by \(180^{\circ}\), so as to make a corresponding change in the direction of the scale readings; increasing numbers will now indicate increasing force.

The first three decimals \((0.000)\) have been placed in front of the table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Table VI.} \\
\hline Mosth. & & \(\mathrm{B}_{1}\) & \(\mathrm{B}_{2}\) & \(\mathrm{B}_{3}\) & \(\mathrm{B}_{4}\) \\
\hline January & & 138 & 239 & 146 & 1173 \\
\hline Felruary & & 2012 & 167 & 119 & 060 \\
\hline April \({ }_{\text {arch }}\)..\(: .0\). & & 239
279 & 195
349 & 154 & 970 \\
\hline May & & 082 & 245 & 161 & (49) \\
\hline June & & 1177 & 234 & 164 & \({ }_{0} 13\) \\
\hline July & \(\stackrel{3}{8}\) & 125 & 420 & 224 & 029 \\
\hline August - . & & 194 & 379 & 248 & 105 \\
\hline September . . . & & 295 & 350 & 258 & 10 \\
\hline October & & 294 & 234 & 1148 & 111 \\
\hline Novemher . . . & & 151 & 222 & 071 & 017 \\
\hline Deceubler . . . & & 184 & 295 & 145 & 1188 \\
\hline Summer & & 138 & 333 & 196 & 1152 \\
\hline Winter & & 196 & 220 & 115 & (14) \\
\hline Year & & 144 & 265 & 145 & 1031 \\
\hline
\end{tabular}

In Table VII. the same quantities are given in absolute measure; the first two places of decimals \((0.00)\) are placed at the head of the columns. (Increasing numbers denote increase of force.) The numerical values of \(A\) will be found in connection with the discussion of the annual variation of the horizontal force.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Table VII.} \\
\hline Monte. & \[
\begin{gathered}
\mathbf{B}_{1} \\
0.00
\end{gathered}
\] & C & \[
\begin{aligned}
& \mathrm{B}_{\mathbf{2}} \\
& 0.00
\end{aligned}
\] & \(\mathrm{C}_{2}\) & \[
\begin{aligned}
& \mathbf{B}_{3} \\
& 0.00
\end{aligned}
\] & \(\mathrm{C}_{3}\) & \(B_{4}\)
0.00 & C \({ }_{4}\) \\
\hline Jannary . . . & 057 & \(56052 \prime\) & 100 & \(276052^{\prime}\) & 011 & \(102{ }^{13}\) & 130 & 274 \\
\hline February & 084 & \(38 \quad 26\) & 070 & 28229 & 050 & 10240 & 025 & 301 \\
\hline March - & 100 & \(63 \quad 31\) & 082 & 29414 & 0164 & 1360 & 029 & 293 \\
\hline April & 117 & \(77 \quad 37\) & 146 & 30306 & 079 & 12644 & 018 & 343 \\
\hline May & 034 & 13431 & 119 & 32053 & 0.57 & 15005 & 020 & 34 \\
\hline June & 032 & 17603 & 098 & 32032 & 068 & 14714 & 014 & 36 \\
\hline Jaly & 052 & 18411 & 175 & 31911 & 09.4 & \(150 \quad 15\) & 012 & 30 \\
\hline August . . . & 081 & 13058 & 158 & 33346 & 104 & 15555 & 0.44 & 23 \\
\hline September . . . & 122 & 9157 & 146 & \(317 \quad 25\) & 108 & \(\begin{array}{lll}365 & 17\end{array}\) & 030 & 35 \\
\hline October . . . & 123 & 5757 & 098 & 30337 & 020 & 14520 & 0105 & 354 \\
\hline November . . & 063 & 5736 & 093 & 28001 & 129 & 13045 & 007 & 31 \\
\hline December & 077 & 3248 & 123 & 27414 & 0011 & 8917 & 020 & 218 \\
\hline Summer . & & 11349 & 139 & 31910 & 082 & 14917 & 022 & 22 \\
\hline Winter & 082 & 5136 & 092 & 24446 & 044 & 11354 & 017 & 288 \\
\hline Year & 060 & 7819 & 111 & 30505 & 060 & 13731 & 013 & 345 \\
\hline
\end{tabular}

On diagram E the average value of the diumal variation throughout the year, together with the summer and winter value, has been represented as resulting from the numerical quantities in the above table. It exhibits the noticeable feature in the annual curve of a greater morning maximum (about 6 A . M.) than afternoon maximum (about \(3 \frac{1}{2}\) P. M.), whereas in the summer curve it is the afternoon maximum which is the greater of the two. \({ }^{1}\) In the winter scason the contrast is more

\footnotetext{
\({ }^{1}\) The same is the case at Prague ; in May, June, and July, the afternoon maximum was the greater of the two. Karl Kreil, in vol. VIII. Proceedings of the Academy of Sciences of Viemna, 1855: "Resultate aus den magnetischen Beobachtungen zu Prag."
}
marked, tho moming maximum being considerably greator. 'These curves also show Hhe gradmal whifing of the maxima and minimm to a later hour in winter that in smmmer, : phemomenon also well exhibited in the preceding diagrame (: and 1). 'The: momerical values of this chamere of hours will be given in tabular form further
 ally whe fendare of the dimmal curve.

 masimann fal minimum, and of the afternom maximum. 'The values for the
 maximnm mul minimmm is whith the nearest righth minnte: that of the I' M. masimmm within the mearest tont minute. 'lhe time for the J. N. secondary minhmmen is within the mearest home. 'The smonnt of rhange of horizontal forer is -xpmesed in seald divisions.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Table VIII.} \\
\hline hontii. & \multicolumn{2}{|l|}{Moramg muximum.} & \multicolumn{2}{|l|}{Murumb minimum.} & \multicolumn{2}{|l|}{Afteravoa tuaximum.} & \multicolumn{2}{|l|}{} & \[
\begin{aligned}
& \text { Intiryal } \\
& \text { A. M, min } \\
& \text { 1. M. max. }
\end{aligned}
\] \\
\hline January & \(7{ }^{11} 10^{\text {m }}\) & \(-91.2\) & 11150 & \(+150.7\) & \(4{ }^{111} 1 \mathrm{~mm}^{1 \mathrm{~m}}\) & \(-5.3\) & \(11{ }^{11}\) & \(+2^{4}\) & \(4{ }^{12014}\) \\
\hline February & 715 & - 9.6 & 1140 & +12.7 & 4101 & - 0.9 .9 & 7 & +2 & 4211 \\
\hline Marel & 615 & - 9.2 & 1130 & +16.4 & 320 & \(-2.3\) & 6 & +3 & 3511 \\
\hline April & (1) 110 & \(-12.3\) & 1120 & +22.3 & 355 & \(-6.6\) & 9 & +3 & 435 \\
\hline May . . & 550 & - 7.9 & 1025 & +15.5 & 310 & \(-9.8\) & 9 & +4 & 445 \\
\hline Junt & 550 & - 6.3 & 1030 & +12.5 & 320 & \(-10.4\) & 8 & +3 & 45 \\
\hline July & 535 & \(-9.9\) & 1030 & +19.3 & 325 & -17.5 & 9 & + 6 & 455 \\
\hline Angust. & 555 & \(-8.5\) & 1010 & +24.8 & 245 & \(-14.2\) & 9 & +3 & 435 \\
\hline September & 535 & -14.9 & 1020 & +25.9 & 305 & - 6.7 & 7 & -1 & 445 \\
\hline October & 5100 & \(-12.6\) & 1115 & +13.7 & 510 & \(-0.1\) & 9 & +2 & 55 \\
\hline Novatuber . & \({ }^{6} 100\) & - 9.98 & 1125 & +11.0 & 515 & - 3.0 & 11 & +0 & 5.51 \\
\hline December . & 7115 & -12.1 & 1205 & +16.1 & 435 & \(-5.1\) & 10 & +4 & 430 \\
\hline Summer & 550 & - 9.8 & 1030 & +19.6 & 325 & \(-10.5\) & 2 ta & +3 & 45 \\
\hline Winter . & 615 & - 9.4 & 1145 & +13.9 & 410 & \(-2.2\) & 21 & +2 & 425 \\
\hline Year. & 555 & - 9.6 & 1100 & +15.6 & 335 & \(-6.0\) & 2013 & +2.5 & 435 \\
\hline
\end{tabular}

The extreme variation in the epoch of the \(A\). M. maximum is therefore \(2^{\mathrm{n}} 15^{\mathrm{m}}\); the variation for the A. M. minimum is \(1^{n} 55^{m}\); for the \(P^{P}\). M. maximum it is \(2^{n} 30^{\mathrm{m}}\), and for the secondary afternoon minimum between 3 and 4 hours. In all cases, the earlier hours occur in the summer season.

Table IX. shows the diurnal range, expressed in scale divisions, parts of the horizontal force and in absolute measure. In the second column the range between the A. M. maximum and minimum is given; in the third column that between the A. M. minimum and the P. M. maximum. These two amplitudes for A. M., and for A. M. and P. M., are further illustrated in diagram F , which shows the curve to be double crested, with maxima near the time of the equinoxes, and the greater of these near the autumnal equinox.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MONTH. & 'Fur A. M. & A. M. Fur io m. & For A. M. & F. M. and I' M. & Fur A. M. & \[
\text { For } \begin{aligned}
& \text { For } \mathrm{M} . \mathrm{M}
\end{aligned}
\] \\
\hline January . . & 24 ". 8 & 214.0 & 0.000191 & 0.0 ¢0\%77 & 0.0038 & 0.0032 \\
\hline February & 22.3 & 13.6 & 181 & 050 & 34 & 21 \\
\hline March & 25.6 & 18.7 & 093 & (his & 39 & 29 \\
\hline April & 34.8 & 29.1 & 127 & 106 & 53 & 45 \\
\hline May & 23.4 & 25.3 & 08.5 & 092 & 36 & 38 \\
\hline June & 18.8 & 22.9 & 069 & 18.4 & 29 & 35 \\
\hline July & 29.2 & 36.8 & \(10 \%\) & 1:34 & 45 & 56 \\
\hline Angust & 33.3 & 39.0 & 122 & 14: & 51 & 59 \\
\hline September & 40.8 & 32.6 & 149 & 119 & 62 & 50 \\
\hline October & 21.3 & 13.6 & 096 & 050 & \[
40
\] & \[
21
\] \\
\hline November. . . . & 20.8 & 14.0 & 076 & 0.51
0.7 & & \[
\begin{array}{r}
21 \\
0.01032
\end{array}
\] \\
\hline Decemher . . . - & 28.2 & 21.2 & & 077 & & \\
\hline Simmmer - . & 29.4 & 30.1 & 0.00107 & 0,061110 & & \\
\hline \(\underset{\text { Year }}{\text { Winter }}\). \({ }^{\text {a }}\) & 23.3
25.2 & 16.1
21.6 & 0.006185
0.00092 & 0.014059
0.00079 & \[
\begin{aligned}
& 0.01036 \\
& 0.0038
\end{aligned}
\] & 0.11145 0.01133 \\
\hline & & & & & & \\
\hline & \multicolumn{2}{|l|}{In meale divinions.} & \multicolumn{2}{|l|}{In pmits of the harimatal furce.} & \multicolumn{2}{|l|}{Lu abmulnte maaniry.} \\
\hline
\end{tabular}

The next table contains the epochs when the mean horizontal force is reached in each day, as computed by the preceding formule. The diumal curves intersect the axis of abscisse four times, of which the table contains only the A. M. and first P. M. intersection: those later in the afternoon and near midnight oecur in summer, winter, and whole year at 7 P. M., \(5 \frac{3}{4}\) P. M., and \(6 \frac{1}{2}\) P. M. respectively, and at \(11 \frac{1}{1}\) P'. M., 12 P' M., and \(11 \frac{3}{1}\) P. M. respectively.

The above times are generally correct within two minutes (according to the formule). The morning hour of average daily horizontal force is less variable in the course of a year than the afternoon hour.

The following table contains the computed diumal variation of the horizontal forece. The values have been expressed in absolute measure. It compares directly with Table \(1 \mathrm{~V}^{\prime}\)., which contains the observed values. It will be useful for the interpolation of observations, or for their reduction to the mean value of the day from observations taken at irregular hours. The table also forms the basis for the construction of diagram (i.

Table XI.-Competed Solar-Dilrnal Yariation of the horizontal Furce in Absolute Measure.
The first two places of decimals (\(0.0(0)\) are placed in front of the table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1840-1845. & \(0{ }^{1 /}\) & \(1{ }^{\text {n }}\) & \(2^{14}\) & \(3^{\text {h }}\) & \(4^{\text {h }}\) & \(5^{14}\) & \(6^{\text {4 }}\) & 7 & \(8{ }^{11}\) & \(9^{\text {b }}\) & \(10^{\text {m }}\) & \(11^{\text {b }}\) & +21 \\
\hline \multirow{12}{*}{है} & July & -061 & -061 & -030 & +015 & +091 & \(+137\) & +137 & +(14i) & \(-107\) & -244 & -290 & -244 & \\
\hline & August & +122 & +061 & +030 & +030 & +061 & +122 & +122 & +015 & -167 & -335 & -381 & -274 & \\
\hline & September & +061 & +161 & +061 & +107 & +182 & +229 & +198 & +1061 & -152 & \(-320\) & \(-381\) & \(-320\) & \\
\hline & October & +046 & +091 & +122 & \(+167\) & +182 & +182 & \(+137\) & \(+1176\) & -030 & -122 & -182 & -213 & \\
\hline & November & 010 & +015 & +030 & +061 & \(+107\) & +152 & +152 & +122 & +130 & -061 & -137 & \(-167\) & \\
\hline & December & - 046 & 000 & +130 & +061 & +091 & +137 & \(+167\) & +182 & \(+122\) & +015 & -122 & -229 & \\
\hline & January & -030 & 000 & +030 & +046 & +061 & +091 & +107 & +122 & \(+191\) & -015 & \(-137\) & \(-229\) & \\
\hline & Fetbruary & +030 & +061 & +076 & +076 & +091 & \(+107\) & \(+137\) & +152 & +137 & +015 & \(-107\) & -182 & \\
\hline & March & +046 & +061 & +076 & \(+107\) & +107 & +137 & +137 & +122 & +030 & -076 & -198 & -244 & \\
\hline & April & +061 & \(+076\) & +091 & \(+107\) & +137 & \(+167\) & +182 & +122 & -015 & -198 & \(-320\) & \(-351\) & \\
\hline & May & 000 & 000 & 000 & +030 & +061 & \(+107\) & +107 & +046 & -076 & \(-198\) & -244 & \(-1 \times 2\) & \\
\hline & June & -015 & -030 & -030 & 000 & +046 & +091 & +091 & +046 & -061 & -152 & \(-182\) & \(-305\) & \\
\hline & & & & & & & & & & & & & & \\
\hline \multirow{13}{*}{} & 1840-1845. & \[
\begin{gathered}
12^{\mathrm{h}} \\
\text { Noou. }
\end{gathered}
\] & \(13^{\text {b }}\) & \(14^{\text {h }}\) & \(15^{\text {h }}\) & 16 \({ }^{5}\) & 17 \({ }^{\text {h }}\) & \(18^{\prime \prime}\) & \(19^{\text {h }}\) & \(20^{\text {b }}\) & \(21^{\text {b }}\) & \(22^{\text {b }}\) & \(23^{\text {h }}\) & \(12^{\text {n }}\) \\
\hline & & -091 & +076 & \(+213\) & +259 & \(+229\) & +152 & +046 & -(115 & -061 & -091 & -076 & - 016 & \\
\hline & Angust & -091 & +107 & +213 & +198 & +152 & +076 & +030 & -015 & -030 & -046 & -015 & +015 & \\
\hline & September & -152 & -015 & +091 & +107 & +076 & +046 & +015 & 000 & + 130 & +030 & +0413 & +07i & \\
\hline & October & -182 & -137 & -076 & -030 & -015 & 000 & 000 & -015 & -015 & -030 & -015 & +015 & \\
\hline & November & -137 & -091 & -046 & 000 & +030 & +046 & +646 & +030 & +015 & 000 & -015 & -015 & \\
\hline & December & -244 & -182 & -076 & +015 & +061 & +061 & +015 & -015 & -046 & -061 & -076 & -061 & \\
\hline & January & -229 & -137 & -030 & +061 & +076 & +046 & \(+015\) & -015 & -030 & -015 & -015 & -130 & \\
\hline & February & -182 & \(-107\) & -030 & +015 & +015 & -015 & -030 & -030 & -030 & -015 & -015 & 000 & \\
\hline & March & -198 & \(-107\) & 000 & +046 & +015 & -015 & -046 & --030 & +015 & +046 & +046 & +046 & \\
\hline & April & -274 & \(-137\) & 000
+122 & \(+076\) & +091 & +061 & +030 & 000 & -030 & -0.30 & 000 & +030 & \\
\hline & May & \(-076\) & +046 & \(+122\) & +152 & \(+122\) & +076 & +030
+030 & -015 & -046 & -0¢1 & - 14413 & -015 & \\
\hline & June & -046 & +061 & \(+137\) & \(+167\) & +137 & +076 & +030 & - 115 & -030 & -046 & -030 & - 015 & \\
\hline
\end{tabular}

Diagram \(G\) exhibits the changes in the horizontal force (in absolute measure) from the monthly normal value for each hour of the day and for each month of the year. The three variables are: the hour of the day, the month of the year, and the difference of the horizontal force from the normal. The contour lines of the magnetic surface differ 0.0005 of horizontal foree in absolute measure. Full lines indicate greater value, lines of dashes less value than the mean; dotted lines represent the normal value.

Annmel lariation of the Horizontal Force.-For the discussion of the annual variation we make use of the monthly normal readings of the horizontal force as given in Table II. If \(m\) equals the monthly effect of the total progressive change, we obtain from the twelve equations by the usual method the value \(m=+15.49\), and the correction for progressive change for July and Junc, for instance, becomes +5.5 m and -5.5 m respectively. The following table contains the monthly normals uncorrected and corrected for progressive change; also the differences from the mean for each month, constituting the amual variation,

With the exception of the month of November, the values given above for the annual variation are tolerably regular in their progression, and considering the delicacy of the test applied to the observations in deducing the ammal variation, this exceptional irregularity in the November value will not affect the general conclusion. We have as the general result: a greater horizontal force in summer (from April to August), and a smaller horizontal force in winter (from September to March) than the average annual value. The maximum occurs in July (at Toronto in June), and the minimum in January (at Toronto in December).
For Toronto we have the expression for the annual variation:-
\[
3.531+0.002 \sin \left(\theta+312^{\circ}\right)
\]

For Philadelphia (omitting the November value):
\[
4.176+0.001 \sin \left(\theta+306^{\circ}\right)
\]
the angle \(\theta\) in both equations counting from January 15 th.
The annual range is 0.0021 (in absolute measure). The transition appears to take place about the time of the equinoxes or a short time before.

Table XIII. contains the monthly normal values of the horizontal force in absolute measure, obtained by adding (algebraically) 4.1730 to the values in the last column of Table XII. These numbers, it will be observed, are corrected for secular change; if we apply the same we obtain the resulting monthly mean values of the horizontal force answering to the epoch January, 1843. The quantity \(A\), mentioned in the explanatory remarks to Table VII., is given in the last column of Table XIII.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{'TABLE XIII.} \\
\hline \multicolumn{5}{|c|}{MONTH.} & Normals corrected for secular change. & Mouthly meang (uffected with secular chstage). \\
\hline July . & & - & & - & 4.1746 & 4.1759 \\
\hline August & & . & . & . & 4.1730 & 4.1740 \\
\hline September & & . & & . & 4.1720 & 4.1727 \\
\hline October . & & . & & . & 4.1723 & 4.1728 \\
\hline November & & - & - & - & 4.1746 & 4.1749 \\
\hline December & & - & - & . & 4.1724 & 4.1725 \\
\hline Jamuary . & & - & - & - & 4.1710 & 4.1709 \\
\hline February & & . & - & . & 4.1722 & 4.1719 \\
\hline March & - & , & - & - & 4.1738 & 4.1733 \\
\hline April & & - & - & - & 4.1727 & 4.1720 \\
\hline May & . & - & - & - & 4.1745 & 4.1735 \\
\hline June & - & - & - & - & 4.1731 & 4.1718 \\
\hline Mront & & - & - & - & 4.1730 & 4.1730 \\
\hline
\end{tabular}

\section*{PARTVI.}

\section*{INVESTIGATION \\ GF TILE}
lunar influence on tife magnetic uorizontal force
(61)
-

\title{
INVESTIGATION
}

\author{
OF THE \\ INFLUENCE OF THH MOON ON THE MAGNLTLC HORIZONTAL FORCE
}

The method pursued in the investigation of the lunar effect on the horizontal force is, in gencral, the same as that explained in Part III. of the discussions of the Girard College observations. The process may be briefly recapitulated as follows: Each horizontal force obscrvation, after it had been corrected for the effect of difference from the standard temperature and for progressive change, the disturbed readings being omitted (as fully explained in Part IV.), was marked with its corresponding lunar hour; the observation nearest to the time of the moon's upper transit over the true meridian of the observatory was marked \(0^{h}\), that nearest to the lower transit was marked \(12^{h}\), and the observations between, for western and eastern hour angles of the moon, were marked with the proper lunar hour by interpolation. In the hourly series where thirtcen observations are recorded in twelve lunar hours, that obscrvation which is nearest midway between any two consecutive lunar hours was omitted. Each observation and reduced reading thus marked with its corresponding lunar hour was subtracted from the monthly normal belonging to its respective hour, and these differences were set down in tabular form, arranged according to lunar hours and keeping cach monthly result separate for future combination. Let \(n=\) any normal belonging to any reduced reading \(r\), the following tables contain the mean monthly values of the differences \(n-r\); a positive sign, therefore, indicates greater force, a negative sign less force than the normal. It need hardly be repeated that in the original record of the horizontal force increasing numbers denote a decrease of the force. The gratest possible difference is 33 , the number of scale divisions, which, according to the criterion, separates a disturbed from an undisturbed observation. For the formation of these differences which amount to more than 22,000 , the manuscript tables of the reduced record were used: these tables have already been referred to in the preceding P'art IV:.

The units in which the differences \(n-r\) are expressed are scale divisions, one division being equal 0.0000365 parts of the horizontal force, or equal to 0.000152 in absolute measure, the mean \(X^{Y}\) being \(=4.173\) (in units of grains and feet).

The lunar effect on terrestrial magnetism being exceedingly minute, the proeess required for its elucidation is proportionally delicate; all the recular and irrecular
deviations arising from other sources must first be eliminated. In the method, as indicated above, the magnetic disturbances (as far as they could be recognized as such), the diumal and amual solar variation, as well as the eleven (or ten) year incquality and secular change, are all eliminated, leaving numbers fitted for the lunar research.
The readings taken in the month of June, 1840, have not been used in this discussion (these had likewise been rejected in the two preceding parts), on account of the imperfect manner in which the allowance for the progressive change could only be made at that time. For the lunar hour 21 in July, 1840, the number of differences is so small that the mean had necessarily to be reduced; one-fourth of its amount was set down in the table. In January, February, and March, 1843, the observations were discontinued, excepting a single daily reading. These months, therefore, do not occur in the lunar discussion.

The number of obscrvations used are distributed over the several months and years, as shown in the following table.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Table II- Distiribution of tife Number of \\
Observations according to Western and Eastern IIour Angles of the Moon.
\end{tabular}} \\
\hline £EAR. & Wextera home angles. & Eastern hour amules \\
\hline 1840-41 & 1371 & 1393 \\
\hline 1841-42 & 1 tiss & 1712 \\
\hline 1842-43 & 1320 & 1313 \\
\hline 1843-44 & 3138 & 3133 \\
\hline 1844-45 & 3409 & 3478 \\
\hline Sum & 11016 & 11029 \\
\hline
\end{tabular}

Tables III., IV., V., VI. and VII. contain the monthly and annual means of the lunar diumal variation for the years 1840 to 1845. The numbers are expressed in scale divisions.

\footnotetext{
* Commencement of the hourly scries.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{ of the Moon.} \\
\hline 1840-41. & & \(1{ }^{\text {b }}\) & \(2^{13}\) & \(3^{\text {in }}\) & \(4{ }^{17}\) & \(5{ }^{\text {h }}\) & \(6^{17}\) & 7 & 8 & \(9^{\text {h }}\) & \(10^{\mathrm{n}}\) & \(11^{\text {n }}\) \\
\hline July & +2 & +1 & \(+3\) & -9 & +3 & \(+7\) & -1 & -17 & \(+12\) & -4 & -3 & -8 \\
\hline August & 0 & -4 & +3 & -5 & \(+6\) & \(+2\) & \(-4\) & - 4 & -2 & +2 & \(+5\) & -1 \\
\hline Suptember & -2 & 0 & \(+8\) & +1 & 0 & \(-4\) & -5 & \(+2\) & \(-4\) & -7 & +8 & \(+4\) \\
\hline October & -3 & -1 & -1 & +" & 0 & -4 & -4 & +-1 & -7 & \(+7\) & \(+4\) & \(+10\) \\
\hline November & -6 & +3 & 0 & -4 & +1 & -5 & \(+4\) & -- 4 & -4 & \(+1\) & +6 & -1 \\
\hline December & -4 & -3 & +3 & + 4 & \(+2\) & \(-7\) & \(-5\) & - 3 & 0 & +3 & -8 & \(+9\) \\
\hline January & +1 & +3 & -1 & +88 & -7 & \(+3\) & -8. & +1 & \(-9\) & -4 & & \(+2\) \\
\hline February & +7 & +5 & 0 & \(+6\) & -3 & +4. & \(-2\) & 0 & \(-4\) & 0 & \(-2\) & 0 \\
\hline March & \(-4\) & +4 & +1 & & +3 & +3 & -7 & \(-1\) & + 8 & \(+1\) & +3 & \(-2\) \\
\hline April & 3 & +6 & +1 & -2 & -2 & \(-1\) & -1 & + 3 & -1 & --2 & \(+1\) & \(-1\) \\
\hline May
June & +3
-1 & -3 & +1 & -1 & -8
+4 & +2
+4 & -1
+5 & +1
+8 & - 6 & + & \(+2\) & -5 \\
\hline & & & & & +4 & & +5 & + 8 & - 1 & \(+1\) & & - \\
\hline Mean & -0.4 & +0.5 & \(+1.5\) & -0.3 & -0.1 & \(+0.3\) & -2.4 & \(-1.3\) & \(-1.5\) & -0.2 & \(+1.3\) & \(-0.1\) \\
\hline 1840-41. & \[
\begin{gathered}
12^{\mathrm{h}} \\
\text { Low. cul. }
\end{gathered}
\] & \(13^{\text {b }}\) & \(14^{\text {n }}\) & \(15^{\text {b }}\) & \(16^{\text {b }}\) & \(16^{\text {b }}\) & \(18^{\prime \prime}\) & \(19^{4}\) & \(20^{4}\) & 214 & \(22^{3}\) & 23. \\
\hline July & +11
+7 & \(-9\) & \(-5\) & & & & -2 & \(-5\) & \(+6\) & -5 & -4 & -2 \\
\hline August
September & +7
+7
-2 & +6
+1 & +9
+2 & +1
+6 & +5
+5 & +2
+4 & +5 & -3
+1 & - & -11 & -1 & -2 \\
\hline September October & - 26 & -1 & +2
-3 & +6
+4 & +5
-7 & +4
+3 & -4 & +1 & -2 & -3 & -1 & \(-2\) \\
\hline November & -12 & +1
+1 & -1 & + 4 & -6 & + & +1 & -1 & +4 & +6 & +1 & +5 \\
\hline December & + 6 & + 9 & +2 & +10 & -3 & +2 & \(-6\) & -12 & -3 & \(-6\) & +3 & + 5 \\
\hline January & 2 & \(-4\) & +3 & \(-1\) & +1 & -1 & + 4 & -2 & -2 & +1 & +3 & +7 \\
\hline February & - 5 & \(+4\) & -4 & -7 & -6 & \(+5\) & \(+1\) & +2 & +1 & - 5 & +3 & \(+4\) \\
\hline March & -4 & 0 & -5 & + 2 & -1 & \(+4\) & \(-10\) & +2 & -2 & \(-2\) & +2 & \(+2\) \\
\hline April & -1 & - 3 & +3 & - 8 & -3 & -4 & 0 & \(+3\) & -2 & +2 & +4 & +2 \\
\hline May & +8 & -3 & & - 3 & 0 & 0 & - 9 & + 8 & +3 & - 2 & -2 & +2 \\
\hline June & + 8 & - 4 & \(+6\) & -5 & +-7 & -8 & - 5 & - 7 & 0 & \(-7\) & \(+1\) & -11 \\
\hline Mean & + 1.0 & +0.8 & +0.1 & \(+0 . t\) & -0.2 & \(+0.6\) & 2.3 & -1. & +0.6 & - 2.1 & +1. & \(+1.2\) \\
\hline
\end{tabular}

Table IV＇，Dhferences from the Monthly Normals，1841－42，Western Holr Angles of the Moon．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1841－42． & & \(1{ }^{\text {n }}\) & \(2^{\text {n }}\) & \(3{ }^{\text {n }}\) & \(4{ }^{\text {n }}\) & \(5{ }^{\text {h }}\) & \(6^{\text {b }}\) & \(7{ }^{\text {b }}\) & \(8^{n}\) & \(9^{\text {h }}\) & 10 & \(11^{\text {n }}\) \\
\hline July & \(+4\) & ＋5 & \(\bigcirc\) & \(+8\) & \(-4\) & \({ }^{0}\) & ＋ & －2 & \({ }^{0}\) & －8 & ＋ & ＋ 5 \\
\hline August & －1 & ＋8 & -2
\(+\quad 2\) & \(\pm 2\) & ＋2 & \(\pm 3\) & ＋3 & －3 & －\({ }^{5}\) & \({ }_{0}^{0}\) & ＋1 & +5
+10 \\
\hline September & －3 & \({ }_{-1}^{+8}\) & ＋ 2
+4 & ＋4 & \({ }_{0}^{0}\) & －1 & －-1 & －\({ }_{+4}^{4}\) & +1
+1 & －20 & － 0 & +10
+1 \\
\hline October
November & \(+{ }_{0}\) & \(\underline{+1}\) & ＋3 & ＋1 & －7 & 0 & －3 & －1 & \(+6\) & ＋3 & ＋1 & ＋3 \\
\hline December & ＋8 & －4 & ＋12 & \(-2\) & －1 & －3 & ＋2 & －3 & \(-2\) & －1 & －3 & 0 \\
\hline January & －2 & ＋8 & \(+2\) & ＋2 & －1 & ＋7 & \({ }^{0}\) & ＋3 & －2 & ＋1 & \(+5\) & 0 \\
\hline February & －5 & ＋1 & \(-1\) & \(-3\) & ＋4 & \(+2\) & ＋4 & －7 & －5 & ＋5 & 0 & \(+2\) \\
\hline March & ＋4 & ＋3 & \(+2\) & －1 & ＋2 & －1 & ＋2 & \({ }^{0}\) & －1 & －1 & －2 & －3 \\
\hline April & 0 & － & ＋1 & \({ }^{0}\) & 0 & ＋4 & ＋1 & ＋3 & \(+2\) & －1 & \({ }^{0}\) & ＋1 \\
\hline May & \({ }^{0}\) & －2 & ＋10 & ＋1 & \(+5\) & ＋4 & \(+6\) & －4 & ＋5 & －7 & －3 & －4 \\
\hline June & ＋1 & 0 & ＋ 3 & 0 & ＋4 & －3 & －1 & －3 & －5 & －5 & 0 & －3 \\
\hline Meau & ＋1．1 & ＋2．0 & ＋2．5 & ＋0．9 & ＋0．3 & ＋1．1 & ＋0．7 & －1．1 & －0．4 & －1．3 & －0．2 & ＋1．0 \\
\hline 1841－42． & \[
\underset{\text { Low cul }}{12^{\mathrm{b}}}
\] & \(13^{\text {b }}\) & \(14^{\text {n }}\) & \(15^{\text {b }}\) & \(16^{\text {h }}\) & \(17^{\text {h }}\) & \(18^{\text {b }}\) & \(19^{\text {b }}\) & \(20^{\text {n }}\) & \(21^{\text {b }}\) & \(22^{\text {b }}\) & \(23^{\square}\) \\
\hline July & ＋3 & －5 & ＋3 & \(+5\) & \(+1\) & －1 & －8 & －4 & ＋1 & －1 & － 1 & ＋3 \\
\hline August & ＋1 & ＋3 & 0
+0 & \(\pm 2\) & +1
+5 & －5 & － 1 & +3
-2 & \(\underline{+1}\) & \(\square_{+4}\) & －5 & \(\pm 6\) \\
\hline September & +3
+3 & \(\pm{ }_{-1}\) & \({ }_{-3}^{+2}\) & －\({ }^{6}\) & \(\pm\) & －3 & ＋7 & －3 & －1 & －3 & －1 & ＋1 \\
\hline November & －1 & ＋4 & ＋3 & －6 & －1 & －5 & ＋1 & －2 & 0 & －3 & －4 & －3 \\
\hline Decemher & －1 & 0 & －1 & ＋2 & \(-4\) & －3 & －1 & ＋1 & ＋1 & ＋1 & ＋6 & ＋1 \\
\hline \(\sqrt{\text { anairy }}\) & ＋4 & －2 & －2 & －4 & －1 & －5 & －3 & －3 & ＋5 & 0 & －3 & ＋2 \\
\hline F＇tbruary & ＋7 & ＋1 & ＋1 & －2 & －3 & 0 & －8 & ＋6 & －7 & ＋1 & ＋3 & ＋2 \\
\hline March & －2 & ＋3 & －2 & 0 & －6 & －1 & 0 & －2 & －1 & ＋2 & －6 & －1 \\
\hline April & ＋1 & ＋1 & ＋3 & －3 & ＋1 & －1 & －3 & ＋2 & －5 & －3 & －2 & ＋1 \\
\hline May & ， & \(-5\) & －3 & －3 & ＋4 & －6 & ＋6 & \(-4\) & 0 & ＋3 & ＋4 & ＋2 \\
\hline June & －4 & －2 & －4 & ＋2 & 0 & ＋2 & ＋2 & ＋6 & ＋6 & －2 & ＋2 & ＋4 \\
\hline Mean & ＋1．2 & －0．1 & －0．2 & －1．5 & －0．6 & －2．4 & －1．1 & －0．2 & －0．3 & －0．3 & －1．0 & ＋1．4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Tabhe V.-Differences prom the Monthly Normal.s, 1842-43, Wemtren Ifuer Aniles of tie Moon.} \\
\hline 1842-43. & \(\stackrel{0^{\text {a }}}{\text { Up. cul. }}\) & \(1{ }^{\text {b }}\) & 24 & \(3{ }^{4}\) & \(4^{\text {h }}\) & 5 & \(6^{11}\) & 7 & 8 & 9 & \(10^{10}\) & \(11^{\text {b }}\) \\
\hline July & +3 & -3 & +2 & -1 & +1 & 0 & \(+7\) & +2 & 0 & -4 & \(+1\) & - \\
\hline Angust & +3 & \(+1\) & -3 & 0 & -1 & -4 & -3 & +4 & +2 & +1 & +1 & +:3 \\
\hline Spptember & +3 & -6 & -1 & +9 & +4 & \(-1\) & \(+7\) & +1 & 0 & +2 & -3 & "1 \\
\hline Octuber & +2 & -7 & 0 , & +1 & -6 & +3 & -1 & +3 & -3 & +5 & -3 & +2 \\
\hline November & +1 & +3 & \(-1\) & +2 & +1 & \(+1\) & 0 & -2 & -2 & --1 & -4 & +1 \\
\hline December & -2 & -3 & -6 & +1 & -5 & 0 & -2 & 0 & +1 & -1. & \(+5\) & 0 \\
\hline January & -. - & -. & -. & . . - & -. - & ... & & -. . & \(\ldots\) & -. & - - & -. \\
\hline February & -. - & - - - & - . . & -.- & & & & & & . . & - . . & ... \\
\hline March & --- & --- & --- & --- & -- & \(\cdots\) & \(\cdots\) & -- & - & --- & -. & --- \\
\hline April & -1 & +2 & 0 & \(+10\) & \(+4\) & \(+9\) & -1 & \(+1\) & -3 & -1 & \(+1\) & -4 \\
\hline May & +3 & \(-2\) & \(+2\) & \(+5\) & +3 & \(+4\) & -1 & \(+9\) & -1 & +1 & -6 & +3 \\
\hline June & -6 & +7 & -4 & -1 & 0 & +2 & - & -1 & --5 & \(+4\) & -1 & \(+3\) \\
\hline Mean & +0.7 & -0.9 & \(-1.0\) & \(+2.9\) & +0.1 & \(+1.6\) & \(+0.7\) & +1.9 & \(-1.2\) & \(+0.5\) & \(-1.0\) & \({ }^{0.0}\) \\
\hline 1842-43. & \[
\left\lvert\, \begin{gathered}
12^{\mathrm{b}} \\
\mathrm{~L} \% \mathrm{w}, \mathrm{cul}
\end{gathered}\right.
\] & \(13^{\text {h }}\) & \(14^{\text {b }}\) & \(15^{\text {b }}\) & \(16^{4}\) & \(17^{4}\) & \(18^{4}\) & 198 & \(20^{1}\) & \(21^{n}\) & 22 & \(23{ }^{\text {b }}\) \\
\hline \begin{tabular}{l}
July \\
August
\end{tabular} & +1
+2 & +1
+1 & +4
+1 & -2
+2 & +4
+2 & -3
-4 & -4
+3 & \(-1\) & 0
-1 & -2
+2 & +3
\(+\quad 2\) & -1
-2 \\
\hline September & +6 & -1 & -1 & \(\pm 8\) & -3 & -1 & \(\pm\) & -1 & -2 & +2 & +1 & \\
\hline October & -7 & -3 & +2 & -1 & +1 & 0 & -1 & \(+4\) & \(+4\) & -3 & \(+11\) & +3 \\
\hline November & -2 & -2 & -1 & -3 & +1 & \(+4\) & --1 & \(+8\) & 0 & \(+1\) & +1 & +2 \\
\hline December & \(+3\) & +3 & +2 & +1 & \(+3\) & 0 & \(+1\) & \(+2\) & -2 & \(+4\) & - 3 & +3 \\
\hline January & & - . - & ..- & -. & --- & -. & -. - & -- & --. & -. - & -. - & -. - \\
\hline February & --- & - . . & -. - & -- & -- & --- & -- - & - - & -. & -- - & ... & -.. \\
\hline March & -- & -- & -- & -- & - & -- & -- & -- & --- & --- & - & - - \\
\hline April & +2 & -2 & +3
+4 & +2
+0 & 0
+1 & -2 & -5
-3 & 0
-1 & -3 & -2 & +1 & -1 \\
\hline May
June & 0 & +1
+3 & +4
-1 & 0
+4 & +1
-2 & -4
+2 & -3
-3 & -1
-3 & -1
+2 & -1
+1 & -1 & +2 \\
\hline Mean & +0.1 & +0.1 & +1.4 & -0.6 & \(+0.8\) & -0.9 & -1.9 & +0.1 & \(-0.3\) & -0.8 & +0.9 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{} \\
\hline 1843-44. & & \(1^{\text {" }}\) & 2 & 34 & \(4{ }^{11}\) & 5 & \(6{ }^{6}\) & 7 & \(8{ }^{\circ}\) & 9 h & 1010 & \(11^{\text {n }}\) \\
\hline Jaly & \(+6\) & \(+4\) & +2 & \({ }_{-1}^{+4}\) & +5
+2 & \(\underline{+1}\) & +3 & +1
+4 & +11 & -2
-1 & -5 & -2 \\
\hline Anzust & + & \(\pm 2\) & 11
-3
-8 & - +6 & \(+{ }_{0}\) & \({ }_{-2}^{+1}\) & \(-1\) & \(+4\) & -1 & 0 & -2 & 0 \\
\hline Oetobur & -1 & +4 & \(+3\) & \(+5\) & +2 & +3 & +2 & +1 & \({ }^{11}\) & -2 & -1 & -3 \\
\hline Corrmler & +1 & +1 & 0 & " & 0 & 0 & & -2 & & & \(+1\) & +1 \\
\hline Pecember & \(+2\) & +1 & \(+\cdots\) & 0 & & -2 & -1 & -1 & -1 & -2 & +1 & -1 \\
\hline lamary & \(+1\) & \({ }^{0}\) & +1 & + & -1 & -1 & \(+1\) & +1 & +1
+3 & 0 & 1 & 2 \\
\hline (i.lnuary & \(\mathrm{-r}_{1}^{1}\) & -1
-3 & +1
+1 & +2
+1 & +1
+1 & -1
+1 & + & 0
+2 & +3 & 0
+2 & -1
+1 & +2
+1 \\
\hline April & \(+2\) & +2 & +3 & \(+2\) & 0 & 0 & \(+1\) & \(+1\) & -1 & -2 & \(-3\) & -2 \\
\hline May & -2 & & , & -1 & -2 & \({ }^{0}\) & -1 & -1 & -2 & -1 & 0 & -1 \\
\hline Jun+ & 0 & -2 & 1 & 10 & +2 & +2 & +2 & +2 & +1 & -1 & -2 & 11 \\
\hline Mran & +0.9 & -1.4 & \(+1.8\) & +1.5 & +0.9 & \(-1.3\) & +0.4 & +0.3 & +0.1 & -0.8 & -1.2 & - 1.6 \\
\hline 184:3-4. & \[
\left\lvert\, \begin{gathered}
124 \\
1, n w \cdot m l
\end{gathered}\right.
\] & 1.34 & \(14^{\text {n }}\) & \(15^{n}\) & \(16^{\text {b }}\) & \(17^{\text {b }}\) & \(18^{\text {b }}\) & 19 \({ }^{\text {n }}\) & \(2{ }^{\text {\% }}\) & \(21^{\text {n }}\) & \(22^{\text {b }}\) & \(23{ }^{\text {n }}\) \\
\hline July & -2 & -7 & - \({ }^{-2}\) & -3
-1 & +3 & -1 & +4 & \(\pm{ }^{-2}\) & +1
+1 & -1
-2 & +2
+4 & +2 \\
\hline Augnzt & +4
+3 & 1 & + & - & +8 & +2 & - 6 & & & -3 & -2 & 0 \\
\hline Oetoluer & -3 & -4 & -2 & -1 & -2 & "1 & 0 & -1 & -1 & +1 & -2 & -1 \\
\hline November & +1 & +2 & +2 & +2 & +2 & 11 & -1 & -2 & -1 & -1 & 0 & -1 \\
\hline Decembur & 0 & +1 & +1 & 0 & +1 & -1 & -3 & -4 & -4 & -3 & -2 & 0 \\
\hline Jumary & +1 & +2 & -1 & \(-1\) & -1 & \(-2\) & - & \(-1\) & +1 & +2 & \(+1\) & +2 \\
\hline February & +2 & +1 & +1 & +2 & +2 & -3 & -2 & \(+1\) & -2 & -1 & \(\pm 1\) & -2 \\
\hline Mareh & \(+1\) & " & 1 & & & "18 & \(-1\) & -1 & -1 & -1 & \({ }_{-1}^{+1}\) & -3 \\
\hline April
May & 4 & " & -11 & 0 & \(+{ }_{0}\) & \(\cdots\) & -3 & +1
+1 & +1 & +1 & +2 & +1 \\
\hline June & 1 & +2 & +1 & +3 & +2 & " & -1 & 0 & , & -1 & -2 & 0 \\
\hline Mean & +11.3 & -0.2 & +1.2 & \(+1.3\) & \(+1.3\) & - 11.15 & -10.9 & \(-1.7\) & -0.9 & -1. & & -11.2 \\
\hline
\end{tabular}

Fqual weight has been given to cach monthly result in the formation of the annual me:m.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{} \\
\hline \[
1844-45 .
\] & \[
\begin{gathered}
0^{\mathrm{h}} \\
\text { ve. }
\end{gathered}
\] & \(1{ }^{16}\) & \(\underbrace{14}\) & : \({ }^{1}\) & \(4{ }^{11}\) & 54 & 1;1 & 71 & \(8^{6}\) & 96 & 104 & \(11^{\text {m }}\) \\
\hline July & 11 & \(+1\) & \(+1\) & +1 & 11 & \(+1\) & \[
+\because
\] & \(+\because\) & 11 & +1 & 11 & -2 \\
\hline August & -3 & \(+1\) & -1 & 11 & +2 & 11 & \[
+1
\] & +3 & +1 & -3 & - & +1 \\
\hline septeruber & -2 & 1 & \(-1\) & 11 & --3 & +2 & 11 & \(+3\) & \(+2\) & \(+2\) & +2 & \(+4\) \\
\hline October & 0 & \(+4\) & \(+5\) & +2 & \(+3\) & +4 & +2 & 0 & 0 & +1 & -3 & 11 \\
\hline November & -1 & + 3 & \(+1\) & +2 & \(+1\) & \(+3\) & \(+3\) & \(+3\) & \(+3\) & +3 & \(+2\) & -1 \\
\hline December & -1 & 11 & --1 & 1 & --2 & -:3 & \(-3\) & \(-2\) & -1 & \(-1\) & +1 & -1 \\
\hline January & \(+1\) & \(+2\) & \(+4\) & -2 & -3 & \(-4\) & -1 & -3 & 11 & -1 & \(+4\) & \(+\because\) \\
\hline February & \(+1\) & \(+1\) & 0 & 11 & +1 & - -1 & \(+1\) & +: & -1 & \(-2\) & 11 & +4 \\
\hline Marela & \(+1\) & \(-3\) & -3 & \(-3\) & 1 & 0 & +1 & \(+1\) & 11 & \(+1\) & \(+1\) & 11 \\
\hline April & -4 & \(+2\) & \(+2\) & +2 & 11 & \(+2\) & 0 & +: & -2 & - 2 & \(-1\) & \(-1\) \\
\hline May & \[
+2
\] & 0 & + & + & (1) & \(-2\) & 0 & \(-1\) & \(-2\) & -2 & \(+1\) & 11 \\
\hline June & \[
\text { - } 5
\] & \(-4\) & -3 & -1 & 11 & \(+3\) & +1 & \(+1\) & \(+1\) & 1 & -5 & \(-1\) \\
\hline Mean & --1.9 & \(+0.6\) & + 0.5 & \(+0.3\) & 1.0 & \(+1.6\) & + 0.6 & +0.9 & \(+0.1\) & \(-11.3\) & 0.11 & +11.2 \\
\hline 184445. & \begin{tabular}{l}
\[
12
\] \\
Low cul
\end{tabular} & 1:3" & \(14^{1 /}\) & \(15^{11}\) & \(16^{14}\) & 17 & 18\% & \(19^{4}\) & \(20^{4}\) & \(21^{11}\) & \(22^{4}\) & \(23^{\prime \prime}\) \\
\hline July & 0 & 0 & \(+1\) & & & & & & & & & -3 \\
\hline August & \(+3\) & \(+2\) & \(+3\) & \(-1\) & 0 & -2 & 0 & \[
0
\] & -3 & -3. & 1 & - 2 \\
\hline Sepiember & +2 & +3 & +1 & +1 & -1 & -2 & -3 & -3 & \(-4\) & --3 & -4 & -4 \\
\hline October & \(+1\) & \(+2\) & \(+1\) & \(+2\) & 1 & \(-2\) & \(-2\) & -4 & -4 & --i & (1) & -2 \\
\hline November & -1 & \(-4\) & 0 & -2 & 0 & 0 & \(-3\) & \(-2\) & \(-1\) & \(+1\) & -4 & -3 \\
\hline December & \(+1\) & 1 & \(-1\) & +2 & 0 & \(+2\) & +2 & \(+1\) & 0 & \(+3\) & \(+2\) & 11 \\
\hline January & \(+4\) & 0 & +2 & -1 & --5 & \(-4\) & -4 & \(-4\) & 0 & \(+2\) & \(+1\) & +2 \\
\hline February & +1 & \(+2\) & \(+1\) & \(-1\) & -3 & -1 & \(-2\) & \(\ldots 1\) & -5 & -1 & -1 & -1 \\
\hline March & +1 & +2 & \(-1\) & 0 & \[
+4
\] & \(+3\) & \(+2\) & \(+1\) & -3 & -2 & \(-1\) & -3 \\
\hline April & -2 & +1 & 0 & 0 & \[
+1
\] & \(+1\) & +3 & \(-1\) & \(-3\) & \(-4\) & -8 & \(-4\) \\
\hline May & +1 & -2 & \(-2\) & \(-2\) & \(-3\) & 0 & \(-1\) & 0 & \(+1\) & -3 & 0 & \(+2\) \\
\hline June & +1 & -1 & +1 & \(+2\) & -1 & \(+4\) & \(+4\) & \(+3\) & \(+2\) & \(+\stackrel{3}{3}\) & 0 & -1 \\
\hline Mean & \(+1.0\) & \(+11.4\) & +-0.5 & 0.0 & - 0.7 & \(-11.1\) & -0.3. & -0.8 & -1.3 & -1.2 & \(-1.0\) & \(-1.6\) \\
\hline
\end{tabular}

Table Yili- Recaitchation (ef the Anvia Means exhbiting the Litar-Difreah,
 Divisioxs.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Jrly to July. & & \(1^{\text {In }}\) & \(2^{11}\) & 31 & 4 & 5 & fir & \(7{ }^{7}\) & g & 910 & \(10^{3}\) & 13" \\
\hline 1840-41 & -0.4 & +0.5 & +1.5 & \(-1.3\) & -0.1 & & \(-2.4\) & \(-1.3\) & -1.5 & - 1.2 & +1.3 & \\
\hline & \({ }_{+1.1}^{1.1}\) & \({ }_{-1.9}^{+2.0}\) & \({ }_{-1.11}^{+2.5}\) & & +0.3 & \({ }_{+1.6}^{+1.1}\) & \(+11.7\) & & & -1.3. & & \(+1.10\) \\
\hline ¢ & +0.6 & +0.4 & & +1.5 & & \({ }_{-0.3}\) & +1.4 & +0.3 & +0.1 & \({ }_{-0 .}\) & \(-1.2\) & \\
\hline 1844-45 & -0.9 & +1.6 & \(+10.5\) & +1.3 & 19.0 & +11.13 & +0.15 & +0.9 & +0.1 & -11.3 & -1." & +1. \\
\hline Hean & \(+0.3\) & +'. & 11.9 & +1.1 & +1, 2 & +0. & \(1 . .1\) & \(t+1\) & -10.6 & -1.4 & -1. & +1.1 \\
\hline Tuly to July. & T...w. cul & \(1.3{ }^{\text {b }}\) & \(14^{4}\) & 1,510 & \(16^{\circ}\) & \(17 \times\) & 1s" & 19.9 & \(2{ }^{201}\) & \(21^{1 /}\) & \% & 23 \\
\hline & +1.010 & +1.. & & \(\pm\) & - 11.0 & & & & +0.6 & \(-2.1\) & (1) & +1. \\
\hline \(1811-43\)
\(1842-43\) & +1.2
+0.1 & +0.1 & -10.2
+1.4 & & - & - & \({ }^{-1.1}\) & +1.1 & -11.3 & - & -1. & \(+\) \\
\hline 1543-44 & +11.3 & -11.2 & +11.2 & \(+1.3\) & +1.3 & -11.6 & & - & & & & \\
\hline 18+4-45 & +1.0 & +10.t & +11.5 & 10.4 & -11.7 & -10.1 & --1 & -11 & - & & \(-1.0\) & -1 \\
\hline Меаи & +0.7 & + 1.2 & +11. 4 & \(-1.3\) & +1.1 & \(-1.7\) & \(-1.3\) & -1 & -0.5 & -1.0 & 1 & \\
\hline
\end{tabular}

If we give weight to the amnual means according to the number of obscrvations, they would be; one for the first and second year, three-fourths for the third year, one and three-fourths for the next year, and two for the last year: a general examination, however, shows that, owing to the disturbing effect of the progressive change, the monthly means are very nearly of equal value, derived either from the bi-hourly or the hourly serics. It will also be shown in the sequel that the lunar diurnal variation is nearly the same in the summer and winter seasons; the means of Table V. and the final means of Table VIII. have therefore been adopted without reference to combinations or weights.

A comparison of the values of Table VIII. among themselves shows them to be very irregular, although derived from many thousand observations; a five year series of observations seems barely sufficient to exhibit a tolerably regular progression. In the following table two groups lave been formed, one of results from three years, 1840 to 1843 , comprising 8, 797 olservations, the other from the remaining two years comprising 13,248 observations. From these it appears that the lunar diumal variation during these two periods exhilits the same gencral character.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Groups. & \(0^{\text {b }}\) & \(1{ }^{\text {b }}\) & \(2^{\text {b }}\) & \(3^{\prime \prime}\) & 4 & \(5{ }^{\text {b }}\) & \(6^{11}\) & 7 & \(8^{\text {b }}\) & \(y^{n}\) & \(10^{\mathrm{h}}\) & \(11^{\text {n }}\) \\
\hline \[
\begin{aligned}
& 18(1)-43 \\
& 1843-45
\end{aligned}
\] & \[
\begin{array}{r}
+0.5 \\
0.0
\end{array}
\] & +0.5
+0.5 & +1.0
+0.7 & +1.2
+0.9 & +0.1
+0.4 & +1.0
+0.3 & -0.3
+0.5 & -0.2
+0.6 & -1.0
+0.1 & -0.3 & \(\begin{array}{r}0.0 \\ -0.6 \\ \hline\end{array}\) & +0.3
-0.2 \\
\hline Ciroups. & 124 & \(13^{\prime \prime}\) & \(14{ }^{\prime \prime}\) & \(15^{4}\) & \(1 i^{17}\) & \(17^{\text {b }}\) & \(18^{\prime \prime}\) & \(19^{11}\) & \(20^{\mathrm{h}}\) & \(21^{\text {b }}\) & \(22^{\text {b }}\) & \(23^{11}\) \\
\hline \[
\begin{aligned}
& 1840-43 \\
& 1843-45
\end{aligned}
\] & \[
\begin{aligned}
& +0.8 \\
& +0.7
\end{aligned}
\] & +1.3
+0.1 & +0.4
+0.4 & -0.6
+0.2 & 0.0
+0.3 & - 0.9
-0.4 & -1.8
-0.6 & -0.5
-0.7 & 0.0
-1.3 & \(-1.2\) & +0.2
-0.5 & +0.9
-0.9 \\
\hline
\end{tabular}

Before proceeding to the analysis of the final result of Table VIII, the separate results have been combined into summer and winter groups; the first group comprising the months from April to September, the second group the months from October to March.

Table IX. exhibits the lumar diurnal variation of the horizontal force during the summer and winter seasons.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{\begin{tabular}{l}
Table IX.-Lumar-Dicirah Vamation in Sqmaer. \\
(lu seate divisions.)
\end{tabular}} \\
\hline Apr. to Sept. & & \(\mathrm{I}^{11}\) & \(2^{\text {n }}\) & \(3^{4}\) & \(4{ }^{\text {b }}\) & 5 & \(6^{\text {b }}\) & \(7{ }^{\text {a }}\) & \(\delta^{\text {b }}\) & \(9^{\text {b }}\) & \(10^{4}\) & \(11^{14}\) \\
\hline 184 \(41-41\) & +0.7 & -0.9 & +2.7 & \(-3.2\) & \(+1.5\) & +1.7 & \(-1.1\) & \(-1.5\) & -0.3 & -1.7 & +2.11 & \(\overline{-3.2}\) \\
\hline 1841-42 & \(+0.2\) & & +2.3 & +1.7 & \(+1.2\) & +1.2 & +1.7 & -1.5 & -0.3 & -3.5 & -11.5 & +1.5 \\
\hline 1442-43 & +1.8 & -0.2 & - 11.7 & \(+3.6\) & +1.8 & +1.7 & \(+1.5\) & & \(-1.2\) & \(+0.5\) & \(-1.2\) & - 0.5 \\
\hline 1843-44 & +1.5 & +0.5 & +0.3 & +1.7 & +1.2 & -0.5 & +0.2 & +0.5 & -0.3 & -1.2 & -2.3 & -1.2 \\
\hline 1844-43 & \(-2.0\) & & 0.0 & +1.7 & 0.0 & +1.0 & + 0.7 & +1.7 & 0.0 & -0.7 & - 0.1 .8 & \(-0.3\) \\
\hline \multirow[t]{2}{*}{Mean} & +1.2 & +0.2 & +0.9 & +0.9 & +0.4 & \(+1.0\) & +0.4 & +0.4 & \(-0.4\) & -1.3 & -0.6 & -0.7 \\
\hline & 13 & \(13^{\text {n }}\) & \(14^{\text {n }}\) & 15 \({ }^{\text {h }}\) & \(16^{\text {n }}\) & \(17^{\prime \prime}\) & \(18^{\text {b }}\) & \(19^{\text {b }}\) & \(20^{4}\) & \(21^{4}\) & \(22^{\text {a }}\) & \(23^{\text {n }}\) \\
\hline 1540-41 & \(+5.8\) & \(-2.3\) & +2.5 & \(-1.2\) & \(+3.2\) & -1.0 & -1.3 & -10.5 & +1.7 & \(-4.3\) & -1.3 & -2.2 \\
\hline 18.11-42 & \(+0.7\) & -1.0 & +1.2 & -11.5 & +2.0 & -2.0 & -1.5 & +0.2 & -0.2 & -0.3 & -1.2 & +2.5 \\
\hline 1842-43 & +1.2 & +0.5 & +1.7 & -0.3 & \(+0.3\) & \(-2.0\) & -2.7 & -1.8 & -0.8 & -1.5 & -0.2 & \(-1.3\) \\
\hline 184,3-44 & \(+0.2\) & -0.8 & \(+0.3\) & +0.3 & +2.2 & -0.2 & -0.7 & 0.0 & -0.5 & -1.0 & +0.5 & +0.5 \\
\hline 1844-45 & +0.8 & \(+0.5\) & +0.7 & 0.0 & -0.7 & \(+0.2\) & +0.5 & -0.2 & -1.5 & -2.2 & -1.5 & \(-2.0\) \\
\hline Mean & +1.7 & \(-0.6\) & +1.1 & -0.3 & +1.4 & -1.0 & \(-1.1\) & -0.5 & -0.3 & -1.9 & -0.5 & -0.5 \\
\hline \multicolumn{13}{|c|}{\begin{tabular}{l}
Linar-Dilrafal Variation in Winter. \\
(In seale divisions.)
\end{tabular}} \\
\hline Oct. to Mar. & \[
\mathrm{tup}_{\mathrm{p} . \mathrm{cul}}^{\mathrm{on}^{\prime}}
\] & \(1{ }^{\text {n }}\) & \(2^{\text {n }}\) & \(3^{\text {n }}\) & \(4^{\text {n }}\) & \(5{ }^{4}\) & \(6^{4}\) & \% & \(8{ }^{\text {b }}\) & \(9^{\text {a }}\) & \(10^{14}\) & \(11^{\text {h }}\) \\
\hline 1840-41 & -1.5 & +1.8 & +0.3 & +2.5 & -0.7 & -1.0 & -3.7 & -1.0 & -2.7 & +1.3 & +0.5 & +3.0 \\
\hline 1841-42 & +2.0 & +2.2 & +2.7 & +0.2 & --0.5 & +1.0 & \(+0.7\) & -0.7 & -0.5 & +0.8 & +0.2 & +0.5 \\
\hline 1842-43 & \(+0.3\) & -2.3 & -2.3 & +1.3 & \(-3.3\) & 1.3 & \(-^{-1.0}\) & +0.3 & -1.3 & +1.0 & -0.7 & +1.0 \\
\hline 1843-44 & +0.2 & +0.3 & \(+1.2\) & +1.3 & \(+0.5\) & +0.0 & \(+0.7\) & + 0.2 & +0.5 & -0.3 & 0.0 & 0.0 \\
\hline 184445 & +0.2 & +1.2 & +1.0 & -0.2 & 0.0 & +0.2 & +0.5 & \(+0.2\) & +0.2 & +0.2 & +0.8 & \(+0.7\) \\
\hline Меаи & \(+0.2\) & +0.6 & +0.6 & +1.0 & -0.8 & +0.3 & \(-0.6\) & \(-0.2\) & -0.8 & +0.6 & +0.2 & +1.0 \\
\hline & \(12^{\text {b }}\) & \(13^{4}\) & \(14^{4}\) & \(15^{\text {n }}\) & \(16^{6 \prime}\) & \(17^{\circ}\) & \(18^{\text {b }}\) & 19 \({ }^{\text {h }}\) & \(20^{\text {b }}\) & \(21^{\text {b }}\) & \(22^{\text {b }}\) & \(23^{\text {b }}\) \\
\hline 1840-41 & -3.8 & +4.0 & \(-2.3\) & +2.0 & \(-3.7\) & +2.2 & -3.3 & -2.2 & -0.5 & 0. \({ }^{\text {a }}\) & +1.5 & +4.7 \\
\hline 1841-42 & +1.7 & +0.8 & \(-0.7\) & -2.5 & -3.2 & -2.8 & \(-0.7\) & \(-0.5\) & -0.5 & -0.3 & -0. \({ }^{\text {c }}\) & \(+0.3\) \\
\hline 1842-43 & \(-2.0\) & -0.7 & +1.0 & -1.0 & \(+1.7\) & +1.3 & \(-0.3\) & +4.0 & \(+0.7\) & \(+0.7\) & +3.0 & +2.3 \\
\hline 1843-44 & +0.3 & +0.3 & 0.0 & \(+{ }^{+0.3}\) & +0.3 & -1.0 & \(-1.2\) & \(-1.3\) & \(-1.3\) & -0.5 & -0.5 & -0.8 \\
\hline 1844-45 & +1.2 & +0.3 & +0.3 & 0.0 & \(-0.7\) & -0.3 & -1.2 & -1.5 & -2.2 & -0.3 & -0.7 & -1.2 \\
\hline Mean & -0.5 & +0.9 & -0.3 & -0.2 & -1.1 & -0.1 & -1.3 & -0.3 & \(-^{0.8}\) & -0.1 & +0.5 & +1.1 \\
\hline
\end{tabular}

The results are exhibited in the annexed diagram. The number of observations (about 11,000 for each group) is evidently too small to climinate the greater irregularities.

U. C. (Western hour angles of the moon.) L. C. (Eastern hour angles of the moon.) U. C.
-.-. summer deflection
If there is any marked difference in the lunar diumal variation in the summer and winter season, the summer range is slightly greater than the winter range; as to the epoch, there is no doubt that in winter the lunar maxima and minima are earlier than in summer. It is a remarkable fact that we have found the same features in the lunar effect on the declination, viz, a greater amplitude in summer and an carlier occurrence of the maxima and minima in winter; the amount of the shifting of the two curres appears to be nearly the same. From the ten year series of observations at Prague (1840-49) Mr. Karl Kireil found a larger lunar effect in the summer months than in the winter months.

Recurring to the final values of the luna-diurnal variation of the horizontal foree, as given in Table VIII, they can be represented by the ustal Besselian form of periodic functions.

The angle \(\theta\) counts from the moon's upper culmination westward at the rate of \(15^{\circ}\) to an hour; a + sign indicated greater, a - sign, less force than the avcrage normal. The observed values are represented by the following expression:-\(H_{\mathbb{C}}=-0.01+0.40 \sin \left(\theta+133^{\circ} 29^{\prime}\right)+0.60 \sin \left(2 \theta+3 x^{\circ} 43^{\prime}\right)+0.155 \sin (3 \theta\) \(+244^{\circ} 31^{\prime}\))
The three coefficients are expressed in scale divisions; if expressed in parts of the horizontal fore the equation may be written as follows: (\(1 /\) signifies millionth parts of the force.)
\[
\begin{aligned}
& M M M \\
& I_{\mathbb{C}}=-0.36+14.60 \sin (\theta+185.5)+21.90 \sin (2 \theta+38.5)+0.64 \sin (3 \theta+ \\
& 2+4^{\circ} .5 \text {) }
\end{aligned}
\]

If expressed in absolute measure and if \(n=\) number of hours after the upper culmination, it may be written
\[
\begin{gathered}
H_{\mathbb{C}}=-1 . \bar{M}+61.0 \sin \left(1.5 n+13^{\circ} .5\right)+91.5 \sin \left(30 n+39^{\circ}\right)+23.6 \sin (45 n+ \\
\left.244^{\circ} .5 .\right)
\end{gathered}
\]

The curve is double-crested and is exhibited, together with the observed values, in the annexed diagram. It presents two maxima and two minima, which are found from the equation
\[
\frac{d I I}{d \theta}=0=+0.40 \cos \left(\theta+133^{\circ}\right)+1.20 \cos \left(2 \theta+39^{\circ}\right)+0.45 \cos \left(3 \theta+245^{\circ}\right)
\]

The lumar effect on the declination we have found likewise to present two maxima and two minima. (See Part III. of the discussion.)

We find: Principal maximum \(2^{\mathrm{h}} 52^{\mathrm{m}}\) after Upper Calmination; +0.87 scale divisions.
\begin{tabular}{llllllllll}
Secondary & 1 & 7 & \("\) & Lower & \("\) & +0.51 & \("\) & " \\
Principal minimum & 6 & 41 & \("\) & \("\) & \("\) & -0.87 & \("\) & \("\) \\
Secondary & " & 8 & 19 & \("\) & Upper" & \("\) & -0.45 & \("\) & \("\)
\end{tabular}

The epoch of the horizontal force tide for the high values is nearly 2 hours after the culminations, and for the low values it is \(7 \frac{1}{2}\) hours after the same phases.

For Makerstoun, in Scotland, at Gencral Sir Thomas M. Brisbane's observatory, in \(1843-46\), Mr. J. A. Broun found (Trans. Royal Society of Edinburgh, Vol. XIX. p. 11, 1849) the smaller maximum of the horizontal force 2 hours after upper culmination, the greater maximum \(1 \frac{1}{4}\) hours after the lower culmination, the smaller minimum 8 hours after the upper culmination, and the greater minimum 9 hours after the lower culmination.

At Prague all extremes appear from 2 to 3 hours later. Mr. Karl Kreil (Denkschriften of the Imperial Academy of Sciences, at Viema, Vol. V. 1853), found from the ten year series at Prague (1840-49) maxima of horizontal force between four and five hours after the upper and lower culminations, the latter being the greater of the two; and minima between ten and eleven hours after the same epoch, that after the upper culmination being the greater of the two.

From the Toronto obscrrations, continued for five years, Major-Gencral Sabine deduced the formula (see Vol. III. of the Toronto Magnetical and Metcorological Observations, London, 185).
\[
\Delta_{x}=+0.05+0.215 \sin (11+3.53 .6)+0.3324 \sin \left(2 a+13^{\circ} .5\right)
\]

The cocfficients are in decimals of scale divisions (1 div. \(=0.000087\)) parts of the horizontal force); the angle \(a\) counts from the superior culmination, giving a curve of which the gencral features are in exact accordance with those deduced from the Philadelphia observations, viz: a principal maximum after Upper Culmination, followed by the sccondary minimum; the secondary maximum after the Lower Culmination, followed by a principal minimum. The times and amount of these values are compared in the following Table \(\mathbf{X}\).

Probable crror of any single representation of the Philadelphia values \(= \pm 0^{4} .25\) \(= \pm 0.000009\) parts of the horizontal force \(= \pm 0.000038\) in absolute measure.

Investigation of the Itwizontal Force in Reference to the Lunar Phases.-The following process of reduction has been adopted: After marking the days of the full and now moon, and also the days preceding and following, the daily means of the horizontal force readings were taken (alrearly corrected for difference of temperature and progressive change.) In the place of any disturbed observation, the monthly normal, belonging to the respective hour, was substituted before taking the daily mean. All accidental omissions in the record of the hourly or bi-hourly series were supplied by the hourly normal of the month. The means thus obtained are independent of the solar diurnal variation. The monthly normal was next rompared with each daily mean and the differences (normal minus mean) were tabulated.

A positive sign signifies a greater; a negative sign, a less force than the normal value. As the results deduced from a single year are yet too much affected by the incidental irregularities of the observations, the collective results from the five year series (1840-4.) are herewith presented.
\begin{tabular}{|c|c|c|c|}
\hline & Stale divimobs. & Inute of the fine fiver & \\
\hline One day before full moon & -1.0 & - ! , ¢иш\% & -0.010 (1) 5 \\
\hline On the day of full moon & \(-1.5\) & 二-10.114005 & -6,04123 \\
\hline One day after full moon . . & -1.2 & & - 0.0061403 \\
\hline One day before nem moon. & +0.0 & +0,0\%mone & +0.0n)(10) \\
\hline On the day of new moon - & +2.4 & +0.01\% & +10.1103038 \\
\hline One day after new moon . . & +0.3 & +0.entul 3 & +0.01014 \\
\hline Difference for new-full moon . & 3.9 & \(0.00074{ }^{5}\) & 0.004661 \\
\hline
\end{tabular}

The arerage number of observations from which any one of the abowe six means were deduced, is over 800 , and the probable error, in scale divisions, of any one of the results is \(\pm 0.7\) (nearly).

From the Makerstoun observations, Broun found for the ycars 1843-46, a minimum at the time of the full moon, and a maximum at the time of the new moon; Kreil, from the Prague obscrvations, between 1843-46, found the same result, all in accordance with the Philadelphia results, as given abore. It must be remarked, however, that after the year 1848 , Kreil found that the signs were reversed and consequently it appears that the lunar influence on the horizontal force is subject to a cycle of short period. This last remark does not apply to the effect of the moon's declination and variations in distance.

Influence of the Moon's Changes of Dectination on the Horizontal Force.-The method of investigation is precisely the same as that adopted for the phases. We find:-
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Table XII.} \\
\hline One day before the greatest north declination & \[
\begin{aligned}
& \text { Seate divinions } \\
& +\quad 11.8
\end{aligned}
\] \\
\hline On the day of "، " " & \[
\text { +0.6 }\} \text { Mean +1.1. }
\] \\
\hline Ono day after " " & +2.2 \(\int\) Меad +1.1. \\
\hline Two days after " " & +0.9) \\
\hline On the day of the moon's crossing the equator & -1.2 I'robable error of any one result \(\pm 0.2\). \\
\hline One day before the greatest south declination & -3.4 \\
\hline \(\begin{array}{llll}\text { On the day of } \\ \text { One day after } & \text { " } & \text { " } & \text { " } \\ \text { O }\end{array}\) & -0.9 - Mean -0.6. \\
\hline Two days after " " " & +1.0 \\
\hline
\end{tabular}

It seems probable that the greatest effect takes place rather a day after than on the day of the moon's greatest declination. 'Taking means, as indicated in the above table, we find about the time of the maximum north declination an increase of horizontal force of 1.1 scale divisions (or 0.000040 parts of the horizontal force): at the time of the moon's crossing the equator the foree is decreased 1.2 scale divisions (or 0.000044 parts of the horizontal forec) ; the horizontal force also appears decreased about the time of the moon's greatest sonth declination; the amount is about half that of the other two cases, and is somewhat doubtful, from an apparently excessive value on the preeceling day.

According to Brom，there is at Makerstoun a maximum horizontal foree at the time of the moon＇s greatest north and south declination，with a minimum force at the time of her crossing the equator；in two cases，therefore，viz：for north decli－ nation and no declination，the Makerstom and Philadelphia results agree；while in the third case they disagree or remain doubtful．Kreil＇s results，from the Prague observations，do not appear to me sufficiently decisive and regular to admit of com－ parison．

Influnese of the Meme＇s Veriution in Distunce on the Ilorizontal Force．－By a process of reduction similar to that followed in the preceding investigation we find：－
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Table XIII．} \\
\hline One day before perigee On the day of One day after & \(\cdots\) & \(\cdots \quad\). & \(\cdots \quad . \quad . \quad\). & \[
\begin{gathered}
\text { Scate divisions. } \\
-1.5 \\
-1.9 \\
-2.0
\end{gathered}
\] & \[
\} \text { Mean }-1.8
\] \\
\hline One day before apogee On the day of One day after & & & & \[
\begin{aligned}
& +2.3 \\
& +2.3 \\
& +2.7
\end{aligned}
\] & \[
\} \text { Mean -2.4. }
\] \\
\hline
\end{tabular}

The probable crror of any one result is about the same as in the preceding re－ sults（Tables XI and XII．）．The results for rariation in the moon＇s distance are more consistent and satisfactory than those depending on the phases and declination changes．The lunar effect is to diminish the horizontal force by its 0.000006 part in perigee，and to increase it by its 0.000088 part when she is in apogec．

The Prague results are the same，viz：a greater horizontal force at and after the moon＇s apogee than at and after her perigee；a three years＇series of observations at Milan，however，do not agree therewith．

In no branch of magnetic research would additional results from independent observations，particularly at stations widely apart，be more aceptable and valuable tham in the study of the lunar effect in its various manifestations．
```

PUBLISHEH EG THE MMIHSONIAN INSTITETION,
W.\&\&|INなTGNとITY.
Nпvemferi, 151f:.

```

SMITHSONIAN CONTRIBUTIONS TO KNOWLED(XE.

\section*{RECORDS AND RESULTS}

\title{
magNeTic survey of penisylvania
}

AND PARTS OF ADJACENT STATES,

IN

1840 AND 1841, WITH SOMH ADDITIONAL RFCORDS AND RLSUTTS 9F 1K34-3. 1843 AND 1862, AND A MAP.

BY

> A. D. BACHE, LL.D., F.R.S.,

MEM. CORR. ACAD. RG. PARIR; PRFST. NAT. ACAD. SCIENCRE; SUPRRINTENDENT U. S. COAST SURVEY.

\section*{CONTENTS.}
Introduction\(\checkmark\)
Abstract of record of the magnetic tour of 1840 J
Abstract of record of the magnetic tour of 1841 8
Abstract of record of the magnetic tour of 1843 17
Reduction of the magnetic declinations 2.5
Distribution of the magnetic declinations 45
Reduction of the magnetic dip and intensity 45
Distribution of the magnetic dip Ci4
Distribution of the magnetic intensity. \(7:\)

\section*{INTRODUCTION.}

In the years 1840 and 1841 , I made a detailed magnetic survey of Pennsylvania, and adjacent parts of New York, Ohio, and Maryland, determining at a number of stations, suitably selected with regard to the course of the iso-magnetic lines, the magnetic declination, dip, and intensity; to these I added some dip and intensity observations in 1843, while on a tour through Western New York and Canada.

The total number of declination stations is 16 , and of dip and intensity stations 48. On assuming the duties of Superintendent of the U. S. Coast Surver, in 1843, I could not find the necessary leisure to work up these observations, although Mr. J. Ruth and Mr. G. Davidson had commenced preparing, under my direction, a partial abstract confined to dip and intensity observations, and to relative results. In the spring of 1862 , I availed myself of the services of Charles A. Schott, assistant in the U.S. Coast Survey, who reduced, under my dircction, the obscrvations, discussed the distribution of the three magnetic clements, presenting the latter results also graphically, and prepared this report for the press.

In the summer of \(1862, \mathrm{Mr}\). Schott visited six of the stations previously occupied by me, and redetermined the magnetic elements. Three of these stations falling within the scope of the operations of the U.S. Coast Survey were at the expense of the Coast Survey, the observations at the three Western stations were secured by the liberality of the Secretary of the Smithsonian Institution who, at the same time, offered to publish the observations and results in the Smithsonian Contributions to Knowledge.

The observations of 1862 greatly enhance the value of my older operations, and furnish the means of presenting results for two epochs about 20 years apart, thus not only giving the most modern values, but also determining, by the known secular change of the three elements, any intermediate results.

The fruit of these labors, undertaken for this continent, at a comparatively carly period, and comprising the three elements, and the whole conducted systematically, with instruments well constructed for the time, will no doubt afford adequate means of watching, hereafter, the secular changes of tomestrial magnetism within the geographical extent of this survey.

The declinations were determined with a new Gambey declinometer belonging to the Girard College, the astronomical observations were made with a sextant and vertical circle and chronometer (Grant, No. 3861). The dip was determined with a portable circle by Robinson, the total intensity with Lloyd needles by Robinson, and the horizontal intensity by a magnetic bar and cylinder according to the method described by me in the American Phil. Trans., Vol, V, 1837, in which the vibrations are made in a rarified medium.

\title{
MAGNETIC SURVEY of PENSSYLANIA.
}
(INCLUDLNG l'ART OK OHIO AND MARYLAND.)
FIRST MAGNETLC TOUR OF 1840.

Abstract of Results for Relative Intensily and Dip at 16 Stutions.

Harrisburg, Pa.-Opposite arenue, between Capitol and State-house to E., near centre of grass plot, say 100 feet from building. Clear, wind N. W.

Duncan's Island, Pa.- Wout 15 miles north of Harrisburg. Iu field E. of barn, under large walnut tree, 400 fect from N. E. end of barn.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. & Time. & Nreedle. & Dip. & Temp. Fillir & Dip when loated. & Dip realuced. & Relative total inteusity. \\
\hline July \({ }_{\text {un }}\) & & No. 1
No. 3 & \[
\begin{aligned}
& 72^{\circ} \quad 36^{\prime} .2 \\
& 72 \quad 30.9
\end{aligned}
\] & \(85^{\circ} .5\) & \[
\begin{aligned}
-30 & 45^{\prime} .0 \\
-0^{\circ} & 23.2
\end{aligned}
\] & \[
\begin{array}{ll}
72^{\circ} & 31^{\prime} .8 \\
72 & 38.2
\end{array}
\] & \[
\begin{aligned}
& 1.0270 \\
& 1.0455
\end{aligned}
\] \\
\hline & & & & \multicolumn{2}{|l|}{Mcan} & \(72 \quad 35.0\) & 1.0362 \\
\hline
\end{tabular}

Lewistown, Pa.-Across creek to south of town, about 100 yards to west of road, and along
a street or road.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. & Time. & Newtle. & Dip. & Temp. Fahr. & Dip when loaded. & Dip reduced. & lielativa totit intensily. \\
\hline July 29 & 5h \(300^{\mathrm{m}}\) A.M. & \[
\begin{aligned}
& \text { No. } 1 \\
& \text { No. } 3
\end{aligned}
\] & \(72^{\circ} 34^{\prime} .4\) & \[
\begin{aligned}
& 14^{\circ} \\
& 13
\end{aligned}
\] & \[
\begin{array}{ccc}
-3^{\circ} & 16^{\prime} .4 \\
-0 & 40.6
\end{array}
\] & \(72^{\circ} 30 \cdot 0\) & \[
\begin{aligned}
& 1.0300 \\
& 1.0440^{1}
\end{aligned}
\] \\
\hline & & & & \multicolumn{2}{|l|}{Mean} & 7230.0 & 1.0370 \\
\hline
\end{tabular}

Clear, wind X., slight aurora last night.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Economy, Pa.} \\
\hline Dite. & Time. & Needle. & Dip. & Temp. Filhr. & Dip when foaded. & Dip reduced. & Relative tutal intenmity. \\
\hline Aug. \({ }^{\text {c }}\) & & \[
\begin{aligned}
& \text { No. } 1 \\
& \text { No. } 3
\end{aligned}
\] & \(72^{\circ} 23^{\prime} .7\) & \(86^{\circ}\) & \(17^{\circ} 54^{\prime} .5^{1}\) & \(72^{\circ} 35^{\prime} .0\) & 1.1662 \\
\hline \multicolumn{8}{|r|}{} \\
\hline
\end{tabular}

Homewrood, near Pittsburg, Pa.—Six miles S. E. from Pittshurg, under trees near gully in front of house, nearly \(N\). of it.

Wheeling, Va-ZZanc's Island, opposite Whecling, to north of hotel, near cast bank of river branch.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. & Timo. & Needle. & Dip. & Temp. Fishr. & Dip when luaded. & Dip reduced. & \\
\hline \multirow[t]{3}{*}{\(\operatorname{Ang.~}_{6} 16\)} & \multirow[t]{3}{*}{\(9^{\text {h }}\) А. M.} & No. 1 & \(73^{\circ} 133^{\prime} .6\) & \(75^{\circ}\) & \(14^{\circ} 02^{\prime} .6\) & \(73^{\circ} 09^{\prime} .2\) & 1.1425 \\
\hline & & No. 3 & 72 01.t & 75 & 1609.2 & \(72 \quad 08.7\) & 1.1587 \\
\hline & & & & \multicolumn{2}{|r|}{Mean} & \(72 \quad 08.9\) & 1.1506 \\
\hline
\end{tabular}

Johnson's Tavern, near Brownsville, Pa.-In cornfeld in rear of inn, house bears W. of S., N. E. corner distant 350 yards.

Frostburgh, Md.-On national road, east of mountain.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. & Time. & Needle. & Dip. & Temp, Fabr. & Dip when toaded. & Dip realuced. & \begin{tabular}{c}
Replative tutual \\
iutronsity \\
\hline
\end{tabular} \\
\hline Aug. 20 & \(0^{\text {h }} 100^{\text {m }}\) P.M. & No. 1 & \(71^{\circ} 39^{\prime} .6\) & \(79^{\circ}\) & \(16^{\circ} 5.22^{\prime} 3\) & \(71^{\circ} 35^{\prime} .2\) & 1.1723 \\
\hline & & No. 3 & 7120.0 & is & 1843.1 & \(71 \quad 27.3\) & 1.1900 \\
\hline & & & & \multicolumn{2}{|r|}{Mean} & \(71 \quad 31.3\) & 1.1811 \\
\hline
\end{tabular}

Cumuli, wind S. by E.

Irwin's Mill, near IMercersburg, Pa.-Ten miles from Clear Spring, Md., and six miles from Mereerstharg. Fild (limestone) to N. W.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Dita. & Time. & Needte. & Temp. Filur. & No. of series. & \(\underset{\substack{\text { Mo of } \\ \text { vibratious. }}}{\text { a }}\) & & Corr \({ }^{\text {d }}\). & \\
\hline \multirow[t]{4}{*}{\[
\text { Aug. } 24
\]} & Nuon & Cylinder & \(75^{\circ} .5\) & 2 & 160 & \(344^{8} 4.5\) & \(34^{5} .419\) & 1.0068 \\
\hline & & & 96,0 & \(\stackrel{2}{2}\) & 160 & 34.45 & 34.419 & 1.006: 8 \\
\hline & \(2{ }^{\prime \prime} \mathrm{P} . \mathrm{M}\). & Bar & 92.0 & 1 & & 36.62 & 36.482 & \\
\hline & & & & & Mean & . . & . . & 1.0068 \\
\hline
\end{tabular}

Baltimore.-Second square N. E. from Washington Monument.

\section*{magnetic survey of penfsylvania.}
(INCLUDING PART OF OHIO AND NEW YORK.)

\section*{SECOND MAGNETIC TOUR OF 1841.}

Aldstruct of Relative Intensity and Dip at 20 Shations.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Philadelphia.-Contiuued.} \\
\hline Daste. & Time. & Niedte. & Dip. & Temp. Fuidr. & Dip when Luaded. & Dip redruced. & Rolutiva tutal \{ut+umity. \\
\hline July \({ }^{\text {c }}\) " & \(2^{\mathrm{h}} 10^{\mathrm{m}} \mathrm{I}^{\prime} \cdot \mathrm{M}\). & \[
\begin{aligned}
& \text { No. } 1 \\
& \text { No. } 3
\end{aligned}
\] & \(\begin{array}{ccc}71^{\circ} & 533^{\prime} .4 \\ 71 & 46.8\end{array}\) & \[
\begin{aligned}
& 92^{\circ} .5 \\
& 87.6
\end{aligned}
\] & \[
\begin{array}{cc}
17^{\circ} & 54^{\prime} .5 \\
19 & 31.4
\end{array}
\] & \[
\begin{aligned}
& 71^{\circ} 54^{\prime} .1 \\
& 71^{5} 56.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.1762 \\
& 1.1893
\end{aligned}
\] \\
\hline \multicolumn{8}{|r|}{Mean . \(\quad\)\begin{tabular}{lll|l|}
71 & 55.3 & 1.1827
\end{tabular}} \\
\hline
\end{tabular}
N. B. Needle No. 1. Weight in last hole of end B.

No. 3. " hole nearest to end B.

Doylestown, Pa.-Twenty-four miles N. of Philadelphia, by turnpike. 150 feet N. 500 W of middle of back of Methodist Epis. Church, on west side of a crooked apple tree.

Clear, cirro-cumulus, wind fresh from S. W.

Easton, Pa.-Yard S. of Lafayette College.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Dite. & Time. & Ncedle. & Dip. & Temp. Falur. & Dip whirn Laikd & Dip rearaced. & \\
\hline \multirow[t]{2}{*}{\({ }_{\text {July }}{ }_{\text {\% }}^{\text {22 }}\)} & \(4^{\text {h }} 40 \mathrm{~m}\) P. M. & \[
\begin{aligned}
& \text { No. } 1 \\
& \text { No. } 8
\end{aligned}
\] & \[
\begin{array}{cc}
79^{\circ} & 43^{\prime} .3 \\
72 & 24.3
\end{array}
\] & \[
\begin{array}{r}
875.5 \\
85.5
\end{array}
\] & \[
\begin{array}{r}
17^{\circ} \\
19 \\
19 \\
02^{\prime} .2 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
72^{\circ} & 44^{\prime} .0 \\
72 & 34.0
\end{array}
\] & \[
\begin{aligned}
& 1.1572 \\
& 1.1800
\end{aligned}
\] \\
\hline & & & & \multicolumn{2}{|l|}{Mean} & \(72 \quad 39.0\) & 1.1686 \\
\hline
\end{tabular}

Wilkesbarre, Pa.-On a small knoll to N. E. of town. Under a chestunt tree near river bank, same side as town.
After completing observations with needle No. 1 , wind too high, moved into valley to N. E. New station bears from steeple of Preshyterian Church N. \(54^{\circ} \mathrm{E}\)., and the old station from the new bears N. \(55^{\circ}\) W., about 120 fect.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Dato. & Time. & Needlo. & Dip. & Temp. Falhr. & Dip when loamed. & Dip reduced. & \\
\hline July 26 & & No. 1 & \(73^{\circ} 00 x^{\prime} .8\) & \(6.6{ }^{\circ}\) & \(16^{\circ} 33^{\prime} 4\) & \(73^{\circ} 099\) & 1.1483 \\
\hline & & No. 3 & 73800.7 & cis & \(18 \quad 57.3\) & 73110.4 & 1.165\% \\
\hline \multicolumn{7}{|r|}{Mean . . . 7310.0} & 1.1570 \\
\hline
\end{tabular}

Clear, cumulus, wind fresh from \(\mathbf{W}\). of N .

Warren, Ohio.-In a field \(\mathbf{N}\). of town, under walnut tree, about \(\frac{1}{8}\) of a mile from American Hutel, and \(\frac{1}{6}\) of a mile from brick house (white). Centre bears S. \(15 \frac{1^{\circ}}{}{ }^{\circ} \mathrm{E}\).
N. W. and of American Hutel bears S. \(177^{\frac{1}{4}}\) E.

Wooden church (4 points), N. W. corner of steeple bears S. \(15 \frac{10}{}{ }^{\circ} \mathrm{W}\). 512 paces from waluat tree to back of American Hotel.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1atte. & Time. & Neelle. & Dip. & Temp. Fahr. & \[
\underset{y}{\text { mip when loaded. }}
\] & \({ }^{\text {Dip reluced. }}\) & \\
\hline \multirow[t]{2}{*}{Aus. 6} & \(11^{\text {h }} 50^{\text {m }}\) A. M. & No. 1 & \(73^{\circ} 01^{\prime} .0\) & 730.5 & \(15^{\circ} 20^{\prime} .2\) & \(77^{\circ} 001{ }^{\prime} .7\) & 1.1410 \\
\hline & \(005 \mathrm{P} . \mathrm{M}\). & No. 3 & \(72 \quad 48.3\) & 73.5 & 17555 & 7258.0 & 1.1609 \\
\hline \multicolumn{5}{|r|}{Mean} & & \(72 \quad 59.9\) & 1.1510 \\
\hline
\end{tabular}

Ashtabula Landing, Ohio.-Near the shore of the lake, \(2 \frac{1}{4}\) miles north from A shtabula, under an oak in a glen.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. & Time. & Needle. & Dip. & Temp. Fahr. & \(\mathrm{Dip}^{\text {pip when luaded. }}\) & Dip reluced. & Relativs total
iutuasity. \\
\hline Aug. 7 & \(00^{\frac{12}{h}}\) P. M. & No. 1 & \(73^{\circ} \quad 23{ }^{\prime} .7\) & 730.5 & \(13^{\circ} 47^{\prime} .9\) & \(73^{\circ} 24^{\prime} .4\) & 1.1258 \\
\hline " " & & No. 3 & \(73 \quad 12.9\) & 73.5 & \(16 \quad 40.9\) & \(73 \quad 22.6\) & 1.1461 \\
\hline \multicolumn{8}{|r|}{Mean . . . 73 23.5 \({ }^{\text {a }}\) (1.1359} \\
\hline
\end{tabular}

Clear and warm, wind \(W\).

Erie, Pa.-Residence of Rev. Mr. Reid, in field about 40 fect to the S. E., near the road, unter elder bushes

Clear, cumulus, wind N , of W., brisk.

Dunkirk, N. Y.-In front of house of Major 'T. S. Brown.
S. edge of beacon-light from station reads
\(90^{\circ} 27^{\prime} 50^{\prime \prime}\)
S. E. corner of Brown's house \(144 \quad 0530\)
S. E. corner of hotel \(158 \quad 37 \quad 30\)

Middle and upper las of middle and upper window of large brick house (MeDonald's) .
\(\begin{array}{lll}180 & 41 & 47\end{array}\)
Station in woods S. of Brown's house, marked with cedar post.

Clear, gentle breeze from N. W.

Ellicottville, N. Y.-Near Talley Creck, 100 yards S. E. from Episcopal Church. Station 113 chains nearly E. from transit meridian line, Aug. 15. Aug. 16, station S. of former under an elm tree near the creck (Gr. Valley).

Belvidere, N. Y.-Residence of Judge Church. In orchard S. of the house.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. & Time. & Seedie. & Dip. & Temp. Fahr & Dip when loaded. & Dip reduced. & Relative tutal iutenaity. \\
\hline Aug. 17 & & \[
\begin{aligned}
& \text { No. } 1 \\
& \text { No. } 3
\end{aligned}
\] & \[
\begin{array}{lr}
74^{\circ} & 10^{\prime} .2 \\
73 & 58.4
\end{array}
\] & \[
\begin{aligned}
& 86^{\circ} \\
& 86
\end{aligned}
\] & \[
\begin{array}{cc}
15^{\circ} & 30^{\prime} .6 \\
18 & 00.3
\end{array}
\] & \[
\begin{array}{lll}
74^{\circ} & 10^{\prime} .9 \\
74 & 08.1
\end{array}
\] & \[
\begin{aligned}
& 1.1281 \\
& 1.1454
\end{aligned}
\] \\
\hline \multicolumn{8}{|r|}{Mean . . \({ }^{\text {M }}\)} \\
\hline
\end{tabular}

Bath, N. Y.-Observations for latitude in field S. W. from court-house. Aug. 19, place to W. of former, and about 130 feet from it.

Cloudy and clear by turns.

Owego, N. Y.-Near Owego Hotel, on bank of river.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. & Time. & Nuedle. & Dip. & Temp. Fuhr. & \(\underset{\theta}{\text { Dip wlien loaded. }}\) & Dip reduced. & Rielative total intensity. \\
\hline \multirow[t]{3}{*}{\[
\operatorname{Aug}_{4} \mathrm{gl}
\]} & \(10^{\text {h }}\) A. M. & No. 1 & \(74^{\circ} 11^{\prime} .0\) & \(76^{\circ} .0\) & \(13^{\circ} 33^{\prime} .9\) & \(34^{\circ} 11^{\prime} .7\) & \[
1.1155
\] \\
\hline & & No. 3 & \(74 \quad 06.3\) & 78.0 & \(16 \quad 48.5\) & ¢4 16.0 & 1.1355 \\
\hline & & & & Mean & . . & \(74 \quad 13.9\) & 1.1255 \\
\hline
\end{tabular}

Silver Lake, Pa.-Near east end of residence of Dr. Rose.

\section*{magnetic survey of western new york.}
(PART OF CANADA, ALGO NIEW JERSEY AND I BNNSYLVANIA.)
TIHRD MAGNETIC TOUR OF 1843.

Abstrart of Results for Relative Imensity and Dip at 15 Stations.

3

West Point, N. Y.-N North of Mansfield House, 5 feet N. W. of pier marking Courtenay's Stations.

Clear, calm.

Union College, Schenectady, N. Y.-Under large pophar tree in Dr. Potter's garden, 15 yards from s. W. end of College.

Utica, N. Y.-On the hill S. of the city; residence of Jutge M. S. Miller, Esy., S. W. comer of John and Ruterer sitpects.
\(\therefore\). W . comer of house, \(\mathrm{S} .12^{\circ} \mathrm{W}\).
N. E.

ㄷ. \(\mathrm{x}^{\circ} \mathrm{E}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline He. & Tima. & Numbe. & mip. & Temp. Filur. & Dip when luaded & Dip realuced. & \({ }_{\substack{\text { Relative totul } \\ \text { inteurity. }}}^{\substack{\text { chen }}}\) \\
\hline July \(\geq\) Q & \(33^{\text {n }} 300^{\text {m }}\) I'. M. & No. 1 & \(74^{\circ}+9^{\prime} .16\) & \(83^{\circ} .5\) & \(15^{\circ} 48^{\prime} .5\) & \(74^{\circ} 511^{\prime} 2\) & 1.1220 \\
\hline & (i) 00 & Nı. : & i4 314 & 80.5 & \(19 \quad 31.6\) & it 49.4 & 1.1465 \\
\hline & & & \multicolumn{3}{|c|}{Mean} & \(74 \quad 50.3\) & 1.1342 \\
\hline
\end{tabular}

Clonds.

Syracuse, N. Y.-Centre of meadow owned by Aaton Burk and John Wilkinson, midst of clump of chestnut trees, south side of road.

Geneva, N. Y.-New cemetery west of public square. East side of path opposite, aud 30 feet from monument of Gidcon Lee.

Rochester, N. Y.-Mount IIope Cemetery, near large oak tree, S. \(25^{\circ} \mathrm{E}\). of ohelisk momment of Mrs. Mary Bruoks.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline nate. & Tine. & Nualle. & Dip. & Temp. Fahr, & Dip when loaded. & Dip reluced. & \\
\hline Aug. 1 & \(3^{\text {h }} 14^{\text {m }}\) IP. M & No. 1 & 740 \(411^{\prime} .6\) & 69.5 & \(\begin{array}{ll}15^{\circ} & 13^{\prime} .7 \\ 19 & 0.7\end{array}\) & \(\begin{array}{ll}74^{\circ} & 43^{\prime} \cdot 2 \\ 74 & 43.7\end{array}\) & \[
1.119 \%
\] \\
\hline \multicolumn{8}{|r|}{Mean . . 74 43.5} \\
\hline
\end{tabular}

Clear, wind N. W.

Niagara Falls, N. Y.-On Goat Island, in hollow leading to the Biddle stairs, which bear about N. \(35^{\circ} \mathrm{W}\)., large bass-wood tree intervenes.

Niagara Falls.-Dritish side, opposite centre of American Fall, near to N. of large limestone rock terminating in a bluff.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. & Time. & Needle. & Dip. & Temp. Fallr. & \(\mathrm{Dip}^{\text {w }}\) when loaded. & Dip refuced. & Relitive toral intensity. \\
\hline Ang. 4 & \(4^{\text {t }} 12^{\text {and }}\) P. M & \[
\begin{aligned}
& \text { No. } 1 \\
& \text { No. } 3
\end{aligned}
\] & \[
\begin{aligned}
& 74^{\circ} 52^{\prime} .0 \\
& 74 \\
& \hline 2.7
\end{aligned}
\] & \(79^{\circ} .0\) & \[
\begin{array}{ll}
14^{\circ} & 21^{\prime} .2 \\
18 & 15.2
\end{array}
\] & \[
\begin{aligned}
& 74^{\circ} 53^{\prime} .16 \\
& 74 \quad 52.7
\end{aligned}
\] & \[
\begin{aligned}
& 1.1197 \\
& 1.1373
\end{aligned}
\] \\
\hline \multicolumn{8}{|r|}{Mean . . . 74.53 .2 1.1250} \\
\hline
\end{tabular}

Cloudy, cumulus, wind s. W .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Magnetic Observatory, Toronto, Canada.} \\
\hline Pate. & Tти\% & Nedue. & Temp. Fihr. & Xin. of serien & \[
\begin{gathered}
\text { Xit of } \\
\text { wilutations. }
\end{gathered}
\] & & Curr'd. & \\
\hline Aug. & & \[
\begin{aligned}
& \text { C'ylimter } \\
& \text { Bar }
\end{aligned}
\] & \[
\begin{gathered}
78^{\circ} .7 \\
79.0
\end{gathered}
\] & \(\stackrel{2}{2}\) & \[
\begin{gathered}
550 \\
500
\end{gathered}
\] & \[
\begin{gathered}
38^{8} .112 \\
40.205
\end{gathered}
\] & \[
\begin{aligned}
& 35^{8} .075 \\
& 40.116
\end{aligned}
\] & \[
\begin{aligned}
& 0.8483 \\
& 0.8472
\end{aligned}
\] \\
\hline \multicolumn{9}{|r|}{Mean 0.8478} \\
\hline
\end{tabular}

\footnotetext{
Clomdy, cmmalus, wind is. R
}

Oswego, N. Y.-On river bank, 120 yards above bridge on left bank, under three trees grown together.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. & Time. & Needle. & Dip. & Temp. Fahr. & Lip when loaded. & Dip reduced. & Rellative total inteu-ity. \\
\hline \multirow[t]{2}{*}{Aug. \(_{6} 8\)} & \multirow[t]{2}{*}{\(4^{\text {h }}\) I \({ }_{6}\) M.} & No. 1 & \(75^{\circ} 05^{\prime} .9\) & \(75^{\circ} \mathrm{7}\) & \(15^{\circ} 20^{\prime} .2\) & \(75^{\circ} 07^{\prime} .5\) & 1.1159 \\
\hline & & No. 3 & \(74 \quad 56.7\) & 75.7 & \(19 \quad 57.4\) & 7506.7 & 1.1453 \\
\hline \multicolumn{5}{|r|}{Mean} & . . & \(75 \quad 0 \% .1\) & 1.1306 \\
\hline
\end{tabular}

\section*{Cloudy, cumulus.}

Ogdensburgh, N. Y.-At Mile Point, under small pine tree, on river bank.

Quebec, Canada.-In the Governor's garden, side of alley from gate to Wolfe's battery, 20 military paces from entrance gate.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date. & Tirue. & Sicedle. & Dip. & Temp. Fahr. & Dip when loaded. & Dip reduced. & Relative Intal inteusity. \\
\hline \multirow[t]{5}{*}{\[
\text { Ang. } 14 .
\]} & \[
\begin{aligned}
& 10^{\mathrm{h}} 00^{\mathrm{Im}} \text { A. M. } \\
& 1022
\end{aligned}
\] & \[
\begin{aligned}
& \text { No. } 1 \\
& \text { No. }
\end{aligned}
\] & \[
\begin{array}{cc}
77^{\circ} & 08^{\prime} .5 \\
77 & 07.6
\end{array}
\] & \[
\begin{gathered}
77^{\circ} .0 \\
77.2
\end{gathered}
\] & \[
\begin{array}{ll}
16^{\circ} & 54^{\prime} .3 \\
21 & 24.5
\end{array}
\] & \(\begin{array}{lll}77^{\circ} & 10^{\prime} .1 \\ 7 \% & 17.6\end{array}\) & \[
\begin{aligned}
& 1.1019 \\
& 1.1245
\end{aligned}
\] \\
\hline & & & & Mean & . . . & \%7 13.9 & 1.1132 \\
\hline & - & Date. & Time. & Needle. & Dip. & & \\
\hline & & \[
\text { Aug. } 14
\] & \(10^{1} 43^{\prime \prime 2}\) A.M. & \[
\begin{aligned}
& \text { No. } 1 \\
& \text { No. }
\end{aligned}
\] & \[
\begin{aligned}
& 77^{\circ} 099^{\prime} .8 \\
& 77 \quad 14.2
\end{aligned}
\] & & \\
\hline & & & Mean & - & \(77 \quad 12.0\) & & \\
\hline
\end{tabular}

Out of the city of Quebee, on the St. Louis Arenue; second house on arenue near road on eity side from Wolfe's Monument. In garlen of Mr . Sampson, S . W. of house, under small apple tree.

Montreal, Canada, St. Helen's Island. South shore of island, at foot of hill, just below two large chins growing close together, one rod below elms.

Troy, N. Y.-In orchard of \(\mathbf{M r}\). Albert \(\mathbf{P}^{\prime}\). Heart, under apple tree, thited foom yad fence 65 prees S . W. from house; above river 230 feet.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Bate. & Time. & Seedle. & \(\mathrm{DiP}_{\mathrm{p}}\). & Tempr Fuhr & Dip when fordond & Dip railucul. & \\
\hline \[
\operatorname{Aug}_{6} \operatorname{lis}_{6}
\] & \(\left\lvert\, \begin{array}{ll}10^{\mathrm{h}} 3 & 30^{\mathrm{mt}} \text { A. } \mathrm{M} \\ 10 & 48\end{array}\right.\) & No. 1
No. 3 & \(74^{\circ} 44^{\prime} .6\)
\(74 \quad 39.6\) & \[
\begin{aligned}
& 81^{\circ} .5 \\
& 81.0
\end{aligned}
\] & \[
\begin{array}{cc}
16^{\circ} & 39^{\prime} .1 \\
20 & 54.2
\end{array}
\] & \[
\begin{aligned}
& 74^{\circ} 465^{\prime} .2 \\
& 74 \\
& 49.6
\end{aligned}
\] & \[
\begin{aligned}
& 1.1283 \\
& 1.1508
\end{aligned}
\] \\
\hline & & & \multicolumn{2}{|r|}{Mean} & & if 4\%.9 & 1.1421 \\
\hline
\end{tabular}

Girard College, Philadelphia.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Diue. & Time. & Sopdle & Dip. & Temir Fath: & Bip whou lwaded. & Dip refuced. & Rmintive total imturily \\
\hline \multirow[t]{6}{*}{\[
\text { Ang. } \underset{4}{6}
\]} & \[
6^{6^{h}} \mathrm{P} . \mathrm{M} .
\] & \[
\begin{aligned}
& \text { No. } 1 \\
& \text { No. }_{3}
\end{aligned}
\] & \[
\begin{gathered}
71^{\circ} 54^{\prime} .0 \\
115 \\
51.2
\end{gathered}
\] & 820.4 & \(21^{\circ} 42.9\) & \[
\begin{aligned}
& 71^{\circ} 55 \prime .6 \\
& 72010 \\
& \text { Con'v. }
\end{aligned}
\] & \[
\begin{array}{r}
1.2074 \\
-0.0141
\end{array}
\] \\
\hline & & & \multicolumn{2}{|l|}{Mean of both needles} & . . . & \(71 \quad 58.4\) & 1.1933 \\
\hline & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Difference No. 1 ami No. 3, July 20, 1843 \\

\end{tabular}}} & & \[
+0.02 \times 1
\] & \\
\hline & & & & & . - & +0.02s & \\
\hline & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Mean difference. \\
Corrn = half difference
\end{tabular}}} & . . & . . & +0.020 & \\
\hline & & & & & - - & - +0.014 & \\
\hline
\end{tabular}

For these observations, see Vol. II. of Girard Collecre Maghetic ame Metcomological obsopvations, p. 1540 .
\begin{tabular}{|c|c|c|c|}
\hline Date. & Time. & Neede. & Dip. \\
\hline Sept. 5 & \[
10^{\mathrm{h}} \underset{6}{\mathrm{~A}} . \mathrm{M} .
\] & \[
\begin{aligned}
& \text { No. } 1 \\
& \text { No. } 2
\end{aligned}
\] & \(71^{\circ} 59.6\) \\
\hline
\end{tabular}

Sce Vol. II. of Girard College Magnetic and Meteorological Observations, p. 1542.

See Vol. Il. of Gimad College Magnetic and Mctcorological Observations, pp. 1542-43.
\begin{tabular}{|c|c|c|c|}
\hline Date. & Time. & Suedie. & 17 p \\
\hline Sept. 12 & 10 A .11. & No. 1 & \(71^{\circ} 58.2\) \\
\hline " & & No. 2 & ¢155.9 \\
\hline \multicolumn{4}{|c|}{Mean . . 1} \\
\hline
\end{tabular}

See Vol. II, of Girard College Magnetic and Metcorological Observations, pp. 1543-44.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Girard College, Philadelphia.-Continued.} \\
\hline Dite: & Time & x conle, & Dip. & Terrp. Fahr. & Dip when loaded. & Dip reluced. & Relative fotal ateusity. \\
\hline \(\therefore \cdots\) & \(1_{2}^{\mathrm{h}} \mathrm{P}^{\ldots}\). & \[
\begin{aligned}
& \text { No. } 1 \\
& \text { No. } 3
\end{aligned}
\] & \[
\begin{array}{ll}
\hline 71^{\circ} & 57^{\prime} .1 \\
71 & 48.4
\end{array}
\] & \[
\begin{array}{r}
62 \circ 7 \\
62.6
\end{array}
\] & \(21^{\circ} 34^{\prime} .0\) & \(711^{\circ} 588^{\prime} .7\)
\(71 \quad 58.4\)
Corr'n. & \[
\begin{array}{r}
1.2069 \\
-0.0141
\end{array}
\] \\
\hline & & & Mean of bot & needles & . . & \(71 \quad 58.6\) & 1.1928 \\
\hline \multicolumn{8}{|l|}{She Vor. II. of Girard College Magnetic and Meteorological Obserrations, pp. 1544-45.} \\
\hline
\end{tabular}

\title{
ABSTRACT AND REDUCRION OF ObSERVATIONS FOR DECLINATION.
}

\section*{OBSERVED IN PENNSYLVANIA AND ADJACENT STATES IN 1840 AND 1841.}

Tiese obscrvations were made with a Gambey Declinometer belonging to the Girard College.

One division (small) of the scale was found equal to \(14^{\prime \prime} .54\), as determined in 1844, at Sandy Hook, by Lieut. G. M. Bache (Sce Coast Survey records). 1 large division \(=60\) small divisions.

The observations were made with telescope direct, with slit to the right hand or \(E\)., and with telescope inverted, with slit to the left or \(W\).; also with needle direct or hairs up, and with necdle inverted or hairs down. With needle north, W. readings are + , E. readings -; with needle south, west readings are - , east readings + .

Throughout the record the apparent direction (E. or W.) is given, the same is to be understood in this reduction ; apparent E. is real W., and when the angle is west of true north, apparent east is + for the north end of the needle, but as the azimuth circle reads from north to east this sign is to be reversed if we apply the correction directly to the circle reading.

The accompanying papers contain also the reduction of the observations for time, for azimuth, and for latitude.

Declination Stations of 1840.
\begin{tabular}{ll}
1. Harrisburg. & 4. Johnson's Tavern, near Brownsville. \\
2. Huntingdon. & 5. Irwin's Mill, near Mercersburg. \\
3. Homewood, near Pittsburg. & 6. Baltimore.
\end{tabular} Chronometer, Grant No. 3861, London (Pocket Chr.).
For chronometer error and rate.

Daily rate \(=2^{8} .06\) (travelling rate).
Between July 15 and July 21, the daily rate was \(3^{8} .3\) (stationary rate).

No. 1. Harrisburg.-Lat. \(40^{\circ} 16^{\prime}\); long. \(76^{\circ} 53^{\prime}\). July 25, 1840.

Observations for azimuth of Polaris.

Tel. direct.
\begin{tabular}{|c|c|c|}
\hline & Chron. & time. \\
\hline & \({ }^{\text {b }} 48^{\text {m }}\) & \(46^{3 .} 0\) \\
\hline & 51 & 53.8 \\
\hline & 54 & 52.0 \\
\hline & 51 & 50.6 \\
\hline
\end{tabular}
\begin{tabular}{c}
Circle reads. \\
\(301^{\circ} 15^{\prime}\) \\
16 \\
16 \\
15 \\
17 \\
\hline
\end{tabular}\(\left|\begin{array}{cc}10\end{array}\right|\)

Tel. reverse.
\begin{tabular}{cc}
Chron. time. & \begin{tabular}{c}
Circle reads.
\end{tabular} \\
\begin{tabular}{c}
\(2^{\mathrm{h}}\) \\
\(04^{\mathrm{m}}\)
\end{tabular} \(06^{\mathrm{g} .4}\) & \(301^{\circ} 19^{\prime}\) \\
08 & \(00^{\prime \prime}\) \\
08 & 13.6
\end{tabular}

No. 2. Huntingdon.-Lat. \(40^{\circ} 30^{\prime} .5\); long. \(78^{\circ} 02^{\prime}\). July \(30,1840\).

Abstract of Observations for Azimuth of Polaris.
Tel. direct, set \(1 . \quad\) Set 2.

\footnotetext{
\({ }^{1}\) The azimuth of Polaris is computed by Struve's method. (See Sawitsch's Astronomy, rol. 3.)
}

No. 3. Homewood, near Pittsburg.-Lat. \(40^{\circ} 28^{\prime}\); long. \(79^{\circ} 59^{\prime} .5 . \quad\) Aug. 10, 1840.
Abstract of Declination Observations.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Set I.} & \multicolumn{2}{|c|}{Set II.} \\
\hline N. end. & S. end. & N. end. & S. end. \\
\hline 255.3 E. & 523.5 E. & 327.9 E . & 433.5 E. \\
\hline 317.5 E. & 528.8 E. & 434.7 E. & 338.2 E. \\
\hline 217.0 E . & 551.0 E. & & \\
\hline 220.1 E. & 5 48.3 E. & & \\
\hline -2 42.5 & \(+537.9\) & -401.3 & +405.8 \\
\hline & \(=+0^{\circ} 21^{\prime} .3\) & +0 & \(+0^{\circ} 00^{\prime} .5\) \\
\hline Circle reads, & 28431.9 & & 28449.8 \\
\hline Magnetic meridian & , 28453.2 & & 28450.3 \\
\hline
\end{tabular}

Giving double weight to set I.
Magnetic meridian reads, \(284^{\circ} 52^{\prime} .2\).
Abstract of Observations for Azimuth of Polaris.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Mean of times & . & - & - & . & \(6^{\text {b }} 32^{\text {m }}\) & \(25^{3.8}\) \\
\hline Mean circle reading . & . & . & . & & \(286{ }^{\circ} 16^{\prime}\) & 32'1 \\
\hline Aug. 10, chron. fast. & . & - & - & & \(5^{\text {h }} 21^{\text {m }}\) & \(22^{8 .} 4\) \\
\hline Chron. time of observation & - & - & - & . & 632 & 25.8 \\
\hline Mean " " & & - & - & & 1311 & 03.4 \\
\hline Corresponding sid. time & - & - & - & & 2230 & 13.0 \\
\hline R. A. of Polaris & - & - & - & & & 30.2 \\
\hline Hour angle & - & - & - & & & 42.8 \\
\hline Azimuth of Polaris & - & . & - & . & & \(16^{\prime} .3\) \\
\hline Reading of Polaris & - & - & - & & 286 & 16.5 \\
\hline " astron. meridian & - & - & - & & 285 & 00.2 \\
\hline " magnetic meridian & . & . & . & . & 284 & 52.2 \\
\hline Magnetic declination W. & - & - & - & & 0 & 08.0 \\
\hline
\end{tabular}

No. 4. Johnson's Tavern, near Brownsville,-Aug. 17, 1840. Lat. \(39^{\circ} 59^{\prime} .5\); long. \(799^{\circ} 47^{\prime} 8\).

Abstract of Declination Observations.

Abstract of Observations for Azimuth of Polaris.

No. 5. Irwin's Mill, near Mercersburg.-Aug. 24, 1840. Lat. \(39^{\circ} 47^{\prime}\); long. \(75^{\circ} 56^{\prime}\).
Abstract of Declination Observations.

Abstract of Observations for Azimuth of Polaris.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Mean of times & . & . & - & & \(1^{\text {b }} 13{ }^{\text {m }}\) & 35.0 \\
\hline Mean circle reading & - & . & - & & \(326^{\circ} 13\) & 29' \\
\hline Aug. 24, chron. fast & - & . & - & & \(5^{\text {h }} 13^{\text {m }}\) & \(39^{3} .8\) \\
\hline Chron time of observation & & - & & & 113 & 35.0 \\
\hline Mean " & & - & & & 759 & 55.2 \\
\hline Corresponding sid. time & - & - & - & & 1813 & 24.3 \\
\hline R. A. of Polaris & . & - & . & & 102 & 38.9 \\
\hline Hour angle & & . & & & 1710 & 45.4 \\
\hline Azimuth of Polaris & - & . & & & \multicolumn{2}{|r|}{\(1{ }^{\circ} 57^{\prime} .1\)} \\
\hline Reading of Polaris & & . & & & 326 & 13.4 \\
\hline " ast. meridian & . & . & & & 324 & 16.3 \\
\hline " magnetic meridian & & & & & 32:3 & 21.9 \\
\hline Magnetic declination W. & & . & & & 0 & 54.4 \\
\hline
\end{tabular}

No. 6. Baltimore-Aug. 27, 1840. Lat. \(39^{\circ} 17^{\prime} .8\); long. \(76^{\circ} 36^{\prime} .6\).
Abstract of Declination Observations.

Alstract of Observations for Azimuth of Polaris.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Mean of times & - & . & - & . & \(12^{\text {h }} 59^{\text {m }}\) & \(04^{8} .9\) \\
\hline Mean circle reading . & - & - & & & \(215012^{\prime}\) & \(44^{\prime \prime}\) \\
\hline Aug. 27 , chron. fast. & & & & & \(5^{\text {h }} 08^{\text {m }}\) & \(28^{3} .5\) \\
\hline Chron time of observation & . & - & - & & 1259 & 04.9 \\
\hline Mean " & - & - & - & & 750 & 36.4 \\
\hline Corresponding sid. time & & - & - & - & 1815 & 52.7 \\
\hline R. A. of Polaris & - & - & - & . & 102 & 40.6 \\
\hline Hour angle & - & - & - & & 1713 & 12.1 \\
\hline Azimuth of Polaris & - & . & & . & \multicolumn{2}{|r|}{\(1^{\circ} 56^{\prime} .6\)} \\
\hline Reading of Polaris & - & - & - & . & 215 & 12.7 \\
\hline " astrom. meridiau & . & - & - & - & 213 & 16.1 \\
\hline " magnetic meridian & & & . & . & 210 & 59.6 \\
\hline Magnetic declination W. & - & . & . & & 2 & 16.5 \\
\hline
\end{tabular}

Recapitulation of Results for Magnetic Declination, 1840.
\begin{tabular}{|c|c|c|}
\hline 1. IIarrisburg & July 25, & \(3{ }^{\circ} 12^{\prime} .5 \mathrm{~W}\) \\
\hline 2. Huntingdon & July 30, & 152.3 \\
\hline 3. Homewood, near Pittsburg & Aug. 10, & \(\begin{array}{ll}0 & 08.0\end{array}\) \\
\hline 4. Johnson's Tavern, near Brownsville & Aug. 17, & 25.2 \\
\hline 5. Irwin's Mill, near Mereersburg & Aug. 24, & \(0 \quad 54.4\) \\
\hline 6. Baltimore & Aug. 27, & 216.5 \\
\hline
\end{tabular}

Declination Stations of 1841.
1. Philadelphia.
6. Erie.
2. Easton.
7. Dunkirk.
3. Williamsport.
8. Ellicottville.
4. Curwinsville.
9. Bath.
5. Mercer.
10. Silver Lake.

\section*{Chronometer Grant No. 3961, London.}

For chronometer crror and rate.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{July 19, Philadelphia time}} & & \multicolumn{2}{|l|}{Chron fast.} & \multirow[t]{2}{*}{Dally rate gaiaing \(2^{8 .} 03\)} \\
\hline & & & & \(0^{\text {h }} 00\) & \(06^{9} .0\) & \\
\hline Ang. 30, & " & " & & 01 & 31.4 & 2.11 \\
\hline S'ept. 14, & " & " & & 02 & & \\
\hline
\end{tabular}
(Previous to July 19, the chron, was gaining \(2^{8} .0\) per day.)
The longitule of the State house, to which the above refers, is \(75^{\circ} 08^{\prime} 41^{\prime \prime} .9\), or in time \(5^{\mathrm{h}} 00^{\mathrm{m}} 34^{.8} 8\).

Philadelphia.—July 20, 1841 . Lat. \(39^{\circ} 58^{\prime} .4\); long. \(75^{\circ} 10^{\prime} 0\).
Abstract of Declination Olservations.

Abstract of Observations for Azimuth of Polaris.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Mean of times & & & & & & & \({ }^{5} 52^{9 .} 7\) \\
\hline Mean circle reading & & & & & & & 25' \\
\hline July 20, chron. fast & & & & & & \(00^{\text {ma }}\) & \(13^{\text { }} .2\) \\
\hline Chron, time of obserration & & & & & 8 & & 52.7 \\
\hline Mean " " & & & & & & & 39.5 \\
\hline Corresponding sid. time & . & & & & 16 & 29 & 16.8 \\
\hline R. A. of Polaris & & & & & & 02 & 37.2 \\
\hline Hour angle & & & & & 15 & 26 & 39.6 \\
\hline Azimuth of Polaris & & & & & & & \(33^{\prime} .3\) \\
\hline Reading of Polaris & & & & & & 224 & 33.4 \\
\hline " ast. meridian & & & & & & 223 & 00.1 \\
\hline " magnetic meridian & & & & & & 219 & 03.0 \\
\hline Maguetic Declination W. & & & & & & 3 & 57.1 \\
\hline
\end{tabular}

Faston.-July 23, 1841. Lat. \(40^{\circ} 42^{\prime} ;\) long. \(75^{\circ} 15^{\prime}\).
Abstract of Declination Olbservations.

Abstract of Observations for Azimuth of Polaris.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Mean of times & & . & . & . & & \multicolumn{3}{|r|}{\(4^{\text {h }} 5033^{m} 050.0\)} \\
\hline Mean circle reading & & . & - & . & . & & +05 & ' \(41^{\prime \prime}\) \\
\hline July 23, chron. first & & - & - & , & & & \(\mathrm{h}^{1} 00^{\mathrm{ml}}\) & \(34^{8} .8\) \\
\hline Chron. time of observation & & & & & & & 53 & (05.0 \\
\hline Mean " & & - & & & & K & 52 & 30.3 \\
\hline Corresponding sid. time & & & & & & 119 & 58 & 54.3 \\
\hline R. A. of Polaris & & & & & & & 02 & 39.5 \\
\hline Hour angle & & & & & & 15 & 56 & 19.8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Azimuth of & Iolaris & & . & . & - & \multicolumn{2}{|r|}{\(1{ }^{\circ} 43^{\prime} .3\)} \\
\hline Reading of & Polaris & & . & & & 338 & 05.7 \\
\hline " & ast. meridian & - & - & - & & 336 & 22.4 \\
\hline " & magnetic meridian & & & & - & 332 & 44.4 \\
\hline Magnetic d & eclination W. & & & & & 3 & 38.0 \\
\hline
\end{tabular}

Williamsport.-July 28, 1841. Lat. \(41^{\circ} 14^{\prime} .0\); long. \(77^{\circ} 03^{\prime} .5\).
Abstract of Declination Observations.

S. end.
021.9 W.
102.6 W.
015.0 W .
018.7 W .
-0 29.6
\begin{tabular}{lll}
Azimuth circle reads, & 241 & 22.2 \\
Marnetic meridian reads, & & 241 \\
\hline
\end{tabular}
Abstract of Observations on the Sun for time.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Set. & Curon. time. & Obs'd donhle alt. of suı's ceutre. & True altitude. & Computed mean time. & Chron. fast. \\
\hline 1 & \(2^{\text {h }} 38^{\text {m }} 11^{\text {s }}\). 4 & \(104^{\circ} 12^{\prime} 28^{\prime \prime}\) & \(52^{\circ} 05^{\prime} 31^{\prime \prime}\) & \(2^{\mathrm{h}} 30^{\mathrm{m}} 16^{\mathrm{s}} .6\) & \(\mathrm{T}^{\text {m }} 45^{\text {b }} .8\) \\
\hline 2 & \(250 \quad 27.5\) & 99585 & \(49 \quad 58 \quad 20\) & \(\begin{array}{llll}2 & 42 & 34.4\end{array}\) & 753.1 \\
\hline 3 & 30359.2 & \(95 \quad 1313\) & \(47 \quad 3546\) & 25602.4 & 756.8 \\
\hline \multicolumn{5}{|c|}{Mean} & \(7 \quad 54.5\) \\
\hline
\end{tabular}

Abstract of Observations on Polaris for Latitude.
\begin{tabular}{|c|c|}
\hline Set I. & Set II. \\
\hline \(9^{\text {h }} 41^{\text {m }} 17^{8} .5\) & \(9^{\text {h }} 59^{\mathrm{m}} 34^{\text {b }}\).7 \\
\hline \(81^{\circ} 39^{\prime} 06^{\prime \prime}\) & \(81051^{\prime} 50^{\prime \prime}\) \\
\hline \(40 \quad 4823\) & \(40 \quad 5445\) \\
\hline \(9^{\text {h }} 333^{\text {m }} 23^{\text {s }} .0\) & \(9^{\text {h }} 51^{\mathrm{m}} 40^{\text {a }} .2\) \\
\hline . 175942.8 & \(1818 \quad 03.0\) \\
\hline 10242.9 & \(1 \begin{array}{lll}1 & 02 & 42.9\end{array}\) \\
\hline . \(16 \quad 56 \quad 59.9\) & \(\begin{array}{lll}17 & 15 & 20.1\end{array}\) \\
\hline . \(41^{\circ} 14^{\prime} 26^{\prime \prime}\) & \(41^{\circ} 13^{\prime} 40^{\prime \prime}\) \\
\hline Mean, \(41{ }^{\circ}\) & \\
\hline
\end{tabular}

Abstract of Observations for Azimuth of Polaris.

Curwinsville.- A ug. 1, 1stl. Lat. \(400^{\circ} 7^{\prime} .7\); long. \(78^{\circ} 3 \bar{J}^{\prime}\)
Abstract of Declination Oliservalions.

Alstract of Olservations on Arcturus for time.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Chron. time & & - & - & - & & \(34^{10} \mathbf{2} 0^{3}\) \\
\hline Observed double alt. & . & - & . & & & \(14^{\prime} 22^{\prime \prime}\) \\
\hline True alt. & & & & & & 3550 \\
\hline Computed mean time & & . & & & \(!{ }^{\prime \prime}\) & \(19^{m} 59^{8}\) \\
\hline Chroll. fast & & & & & 0 & 14 24 \\
\hline
\end{tabular}

A lostract of Observations for Latitusle.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{2}{|r|}{Jupiter.} & \multicolumn{2}{|l|}{} \\
\hline Chron. time & . & & \(8^{n}\) & \(35^{\text {ma }} 39^{\text {a }}\) & & 5 \\
\hline Observed double alt. & . & & & \(25^{\prime} 25^{\prime \prime}\) & & \(\bigcirc\) \\
\hline True altitude & & - & 27 & 1046 & 40 & \\
\hline Mean time & & & \(\mathrm{S}^{4}\) & \(21^{\mathrm{m}} 15^{\text {s }}\) & & 4 \\
\hline Corresponding sid. time & . & . & 17 & 0310 & & 25 \\
\hline R. A. of star & - & & 16 & \(33 \quad 58\) & 1 & 02 \\
\hline Hour angle & . & & 0 & 2912 & & 22 \\
\hline Latitude & - & & & \(55^{\prime 2} 26^{\prime \prime}\) & & 58 \\
\hline Mean & & & & & & \\
\hline
\end{tabular}

Abstract of Observations for Azimuth of Polaris.

Mercer.- Iug. 4, 1841. Lat. \(41^{\circ} 13^{\prime} .8 ;\) long. \(80^{\circ} 16^{\prime}\).
Abstract of Declination Observations.

Abstract of Obserrations on Jupiter for Latitude.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Chron time & - & . & - & & - & \(8^{\text {h }}\) & & \({ }^{\text {n }} 45^{\text {s }} .7\) \\
\hline Observed double alt. . & - & . & . & . & . & \(52^{\circ}\) & 30 & ' \(48^{\prime \prime}\) \\
\hline 'True altitude & . & - & - & . & - & 26 & 13 & 23 \\
\hline Mean time & - & - & - & - & - & \(8^{\text {h }}\) & \(29^{\text {n }}\) & \(35^{\text {5 }}\) \\
\hline Correspouding sid. time & & - & - & - & - & 17 & 23 & 22 \\
\hline IV. A. of Jupiter & - & . & - & - & - & 16 & 33 & 50 \\
\hline Hour angle. & . & - & - & - & - & 0 & 49 & 32 \\
\hline Latitude & & . & . & & & \(41^{\circ}\) & & \(45^{\prime \prime}\) \\
\hline
\end{tabular}

Abstract of Observations for Azimuth of the Sun, Aug. 5

Erie.-Aug. 9, 1841. Lat. \(42^{\circ} 07^{\prime} .5\); long. \(80^{\circ} 06^{\prime}\).
Ahstract of Declination Olservations.

Abstract of Observations for time, equal double Altitudes of sun.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Set} & & \multicolumn{3}{|c|}{A. M .} & \multicolumn{3}{|c|}{r.m.} & \multicolumn{2}{|l|}{Elapendume} \\
\hline & & 9 & & \(42^{3} .3\) & 3 & & 19*.7 & \(\mathrm{F}^{1 / 8}\) & :37. 4 \\
\hline 2 & . . & 10 & 18 & 23.2 & 2 & 33 & 53.4 & 415 & 311.2 \\
\hline 3 & & 10 & 38 & 39.8 & 2 & 1: & 39.7 & 334 & 59.9 \\
\hline & Mean & 10 & 06 & 35.1 & 2 & 45 & 37.6 & \(43!\) & 02.5 \\
\hline \multicolumn{5}{|l|}{Middle chron. time} & & & & \(0^{\text {b }} 26\) & \(06^{*} .3\) \\
\hline \multicolumn{3}{|l|}{Equation of equal alts.} & & & & & & & +8.0 \\
\hline \multicolumn{3}{|l|}{Equation of time} & & & & & & -5 & 10.3 \\
\hline \multicolumn{2}{|l|}{Chron. fast} & & & & & & . & & \\
\hline
\end{tabular}

Abstract of Observations for Latitude.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Jupiter. & Saturn I. & Satura 12. & Satura ili. & Polarim. \\
\hline Chron. time & \(8{ }^{81} 199^{\text {m }} 33^{5} .0\) & \(8^{\mathrm{h}} 32^{\text {m }} 3.99^{5} .2\) & (91) \(02^{m} 02^{8 .} .8\) & \(9^{\text {h }} 0 \mathrm{Sm}^{\mathrm{m}} 0 \mathrm{x}^{3} .0\) & \(10^{1} 11{ }^{m} 57^{8} .2\) \\
\hline Ohserved double alt. & \(51^{\circ} 32^{\prime} 266^{\prime \prime}\) & \(50^{\circ} 28^{\prime} 13^{\prime \prime}\) & \(50^{\circ} 51{ }^{\prime} 20^{\prime \prime}\) & \(50^{\circ} 43^{\prime} 57^{\prime \prime}\) & \(84^{\circ} 14^{\prime} 23^{\prime \prime}\) \\
\hline True altitude & 254408 & \(25 \quad 1158\) & \(25 \quad 2333\) & 251951 & 420601 \\
\hline Mean time. & \(7^{\text {h }} 588^{\text {m }}\) 29 9.0 & \(8^{\mathrm{h}} 11^{\mathrm{m}} 35^{5} .2\) & \(8^{4} 400^{\text {m }} 58^{\text {s }} .8\) & \(8^{\text {b }} 47^{\text {m }} 04^{8} .0\) & \(9^{5} 500^{\mathrm{m}} 53^{\text {a }}\) \\
\hline Correspond'g sid. time & 1711154.6 & 1782503.0 & \(17 \quad 5431.5\) & & 19048 \\
\hline R. A. of star & \(16333 \quad 52.0\) & 174619.3 & 1746193 & 174619.3 & 10252 \\
\hline Hour angle & \(\begin{array}{lllll}0 & 38 & 02.5\end{array}\) & \(23 \quad 3843.7\) & 0 os 12.2 & \(01+17.8\) & 180145 \\
\hline Latitude . & \(42^{\circ} 08^{\prime} 28^{\prime \prime}\) & \(42^{\circ} 08^{\prime} 45^{\prime \prime}\) & \(42^{\circ} 06^{\prime} 43^{\prime \prime}\) & \(42^{\circ} 07^{\prime} 00^{\prime \prime}\) & \(42^{\circ} 066^{\prime} 26^{\prime \prime}\) \\
\hline \multicolumn{6}{|r|}{Mean . . . \(42^{\circ} 07^{\prime \prime} 28^{\prime \prime}\)} \\
\hline
\end{tabular}

Abstract of Observations for Azimuth of Polaris.

Dunkirk-1841. Lat. \(42^{\circ} 29^{\prime} .3\); long. \(29^{\circ} 22^{\prime}\).
Abstract of Observations for time, equal double Altitudes of Sun.

\begin{tabular}{|c|c|c|c|}
\hline Aug. 12 & \[
\stackrel{\text { A. M. }}{9^{\text {h }} 2 \mathrm{I}^{\mathrm{m}} 04^{\mathrm{s}} .7}
\] & \[
\begin{gathered}
\text { P. M. } \\
3^{2} 24^{\mathrm{m}} 17^{8 .} .7
\end{gathered}
\] & \[
\begin{gathered}
\text { Elapsed time. } \\
6^{\mathrm{h}} 03^{m} 13^{s} .0
\end{gathered}
\] \\
\hline Middle chron. time & . . & . & \(0^{\mathrm{b}} 22^{\text {m }} 41^{\text {s }} .2\) \\
\hline Equation of equal alts. & . . & . \(\quad\) & +09.4 \\
\hline Equation of time & . . & . . & -4 42.8 \\
\hline Cluron. fast & - - & . \(\cdot\) & \(\begin{array}{llll}0 & 18 & 07.8\end{array}\) \\
\hline Aug. 13 & \[
\begin{gathered}
\text { A. M. } \\
9^{\text {h }} 16^{\mathrm{m}} 25^{\mathrm{B}} .9
\end{gathered}
\] & \[
\begin{gathered}
\text { P. M. } \\
3^{\mathrm{h}} 28^{\mathrm{m}} 36^{8.9} .9
\end{gathered}
\] & \[
\begin{aligned}
& \text { Elapsed time. } \\
& 6^{\mathrm{h}} 12^{\mathrm{m}} 11^{5} .0
\end{aligned}
\] \\
\hline Midtle chron, time & . & . . & \(0^{\mathrm{h}} 22^{\text {m }} 31^{\text {m }}\). 4 \\
\hline Equation of equal alts. & & . & +09.7 \\
\hline Equation of time & & - . & -4 32.6 \\
\hline Chron. fast & & . \({ }^{\text {b }}\) & \(\begin{array}{llll}0 & 18 & 08.5\end{array}\) \\
\hline
\end{tabular}

\section*{Abstract of Observations for Latitude.}

Polaris, Aug. 11.
\[
\text { Set } \mathrm{I} \quad \text { Set II. }
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Chron time & & . & \(10^{\text {h }} 10^{\text {ma }} 53^{9} .8\) & & 22 & \(24^{8} .2\) \\
\hline Olserved double alt. . & & & \(85^{\circ} 06^{\prime} 09^{\prime \prime}\) & & 1 & \({ }^{\prime} 48^{\prime \prime}\) \\
\hline True altitude & & & \(42 \quad 32 \quad 10\) & & 3 & 30 \\
\hline Mean time & & . & \(9^{\text {h }} 52^{\text {m }} 46^{\text {s. }} 6\) & & & 179.0 \\
\hline Corresponding sid. time & & . & \(\begin{array}{llll}19 & 14 & 22.9\end{array}\) & 19 & 25 & 55.2 \\
\hline 12. A. of Polaris & & - & \(1 \begin{array}{lll}1 & 02 & 53.4\end{array}\) & & 02 & 53.4 \\
\hline Hour angle & & - & \(\begin{array}{llll}18 & 11 & 29.5\end{array}\) & & 23 & 01.8 \\
\hline Latitude & & & \(42^{\circ} 28^{\prime} 41^{\prime \prime}\) & & 2 & 19 \({ }^{\prime \prime}\) \\
\hline Mean & & & . 42 & & & \\
\hline
\end{tabular}

Polaris, Aug. 13.
\begin{tabular}{|c|c|c|c|}
\hline Chron. time & \[
\begin{gathered}
\text { Set I. } \\
8^{\mathrm{h}} 57^{\mathrm{m}} 35^{\mathrm{s}} .2
\end{gathered}
\] & \[
\underset{9^{\mathrm{h}} 14^{\mathrm{sec}} 31^{\mathrm{m}} .5}{ }
\] & \[
\begin{gathered}
\text { Set III. } \\
9^{\text {h }} 31^{\mathrm{mm}} 22^{s} .3
\end{gathered}
\] \\
\hline Obs'd double alt. & \(84^{\circ} 13^{\prime} 52^{\prime \prime}\) & \(84^{\circ} 30^{\prime} 18^{\prime \prime}\) & \(84^{\circ} 42^{\prime} 27^{\prime \prime}\) \\
\hline True allitude & \(4205 \quad 20\) & \(42 \quad 13 \quad 33\) & \(42 \quad 1938\) \\
\hline Mean time & \(8^{\prime \prime} 39^{\text {m }} 25^{65} .7\) & \(8^{\mathrm{h}} 56^{\mathrm{m}} 23^{8} .0\) & \(9^{\mathrm{h}} 183^{\mathrm{m}} 12^{5} .8\) \\
\hline Correspond. sid. time & 180844.1 & \(18 \quad 2543.2\) & 184235.6 \\
\hline R. A. of I'olaris & \(\begin{array}{llll}1 & 02 & 54.5\end{array}\) & 10254.5 & 10284.5 \\
\hline Hour angle & \(\begin{array}{llll}17 & 05 & 49.6\end{array}\) & \(17 \quad 2248.7\) & 178941.1 \\
\hline Latitude & \(42^{\circ} 25^{\prime} 53^{\prime \prime}\) & \(42^{\circ} 2 \mathrm{~T}^{\prime} 22^{\prime \prime}\) & \(42^{\circ} 26^{\prime} 41^{\prime \prime}\) \\
\hline Mean & & \(42^{\circ} 26^{\prime} 39^{\prime \prime}\) & \\
\hline
\end{tabular}

Chron time .
Observed double altitude
'True altitude
Mean time
Corresponding sid. time
R. A. of Aquile

Hour angle
Latitule
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
9^{\text {h }} 51^{\text {mit I }} 31^{3}
\]}} & \multicolumn{2}{|r|}{Sot 11.} \\
\hline & & & \(17^{\text {m }} 13^{3} .9\) \\
\hline \(109{ }^{\circ}\) & \(40^{\prime} 42^{\prime \prime}\) & \(111^{\circ}\) & \(32^{\prime} 17^{\prime \prime}\) \\
\hline 54 & \(49 \quad 08\) & 55 & \(44 \quad 56\) \\
\hline \(9{ }^{18}\) & \(3.33^{\mathrm{m}} 2.33^{3} .1\) & & \(59^{\mathrm{m}} 04^{4} .8\) \\
\hline 19 & \(02 \quad 49.2\) & 19 & \(\begin{array}{ll}28 & 35.2\end{array}\) \\
\hline 19 & 43050 & 19 & \(43 \quad 05.3\) \\
\hline 23 & 19843.9 & 23 & \(45 \quad 29.9\) \\
\hline \(42^{\circ}\) & \(30^{\prime} 27^{\prime \prime}\) & & \(33^{\prime} 43\) \\
\hline
\end{tabular}
\[
\text { Mean . . . } 42^{\circ} 32^{\prime} 05^{\prime \prime}
\]

Aug. 12, 1841. Abstract of Declination Ohservations.

-0 09.1
\(=-1)^{\circ}\left(122^{2} .2\right.\)
Azimuth cirde reads, \(\quad 10101.5\)
Kagnetic meridian reads, \(100 \quad 59.3\) Abstract of Observations for Azimuth of Pularis.

Ellicottville.-Aug. 14, 1841. Lat. \(42^{\circ} 18^{\prime} 1\); long. is \(42^{\prime}\).
Abstract of Declination Olservations.

Anstract of Ohservations for Azimuth of l'utaris

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Azimuth of & Pelaris & & & - & & \multicolumn{2}{|r|}{\(2^{\circ} 02^{\prime} .2\)} \\
\hline deading of & Polaris & & & & & 238 & 19.2 \\
\hline Jors & ast. meridian & . & - & . & & 236 & 17.0 \\
\hline .. & magnetic meridian & & & & & 233 & 41.3 \\
\hline Magnetic de & eclination 11 . & & & & & 2 & 35.7 \\
\hline
\end{tabular}

Abstract of Olservations for time. Aug. 15.

Abstract of Observations for Latitude. Aug. 15.
\begin{tabular}{|c|c|c|c|}
\hline Chron time & \[
\begin{aligned}
& \text { Jupiter. } \\
& 8^{\mathrm{h}} 02^{\mathrm{n}} 00^{\mathrm{s}} .7
\end{aligned}
\] & \[
\begin{gathered}
\text { Siturn. } \\
8^{\mathrm{h}} 23^{\mathrm{m}} 52^{\mathrm{s}} .7
\end{gathered}
\] & \[
\begin{gathered}
\alpha_{\text {Aquile. }} \\
10^{\mathrm{h}} 11^{m \mathrm{~m}} 55^{8} .9
\end{gathered}
\] \\
\hline onserved double alt. & \(50^{\circ} 24^{\prime} 09^{\prime \prime}\) & \(50^{\circ} 31^{\prime} 24^{\prime \prime}\) & \(112^{\circ} 10^{\prime} 36{ }^{\prime \prime}\) \\
\hline 'True altitude & \(25 \quad 09 \quad 31\) & \(\begin{array}{lll}25 & 13 & 08\end{array}\) & 560408 \\
\hline Mean time & \(7^{\mathrm{h}} 46^{\text {mam }} 30^{\text {s. }}\), & \(8^{\mathrm{h}} 05^{\mathrm{m}} 22^{8} .2\) & \(9^{\mathrm{n}} 56^{\mathrm{n}} 25^{\mathrm{s}} .4\) \\
\hline Correspond. sid. time & \(\begin{array}{lll}17 & 23 & 31.4\end{array}\) & \(17 \quad 45 \quad 27.0\) & \(\begin{array}{lll}19 & 33 & 47.8\end{array}\) \\
\hline R. A. of star & \(\begin{array}{llll}16 & 34 & 19.8\end{array}\) & \(\begin{array}{llll}17 & 45 & 34.6\end{array}\) & 194305.3 \\
\hline Hour angle & \(\begin{array}{lllll}0 & 49 & 11.6\end{array}\) & \(\begin{array}{lllll}23 & 59 & 52.4\end{array}\) & 235042.5 \\
\hline Latitude & \(42^{\circ} 16^{\prime} 57^{\prime \prime}\) & \(42^{\circ} 18^{\prime} 07^{\prime \prime}\) & \(42^{\circ} 19^{\prime} 15^{\prime \prime}\) \\
\hline Mean & & \(42^{\circ} 18^{\prime} 06^{\prime \prime}\) & \\
\hline
\end{tabular}

Bath.-Iug. 19, 1841. Lat. \(42^{\circ} 20^{\prime} .8\); long. \(55^{\circ} 21^{\prime}\).
Abstract of Declination Olservations.

\section*{Abstract of Observations for Azimuth of Polaris.}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Azimuth of Polaris & & & & & 04'. \({ }^{\text {\% }}\) \\
\hline Reading of Polaris & & & & 318 & 29.2 \\
\hline ast. meridian & & & & 816 & 24.4 \\
\hline magnetic meridian & & & & 312 & 5.3 .0 \\
\hline Magnetie derlination W. & & & & & 31.4 \\
\hline
\end{tabular}

Ahstract of Observatioms for Latitude. Aum. I8, 1841.

Silver Lake-Ang. 23, 1841. Lat. \(41^{\circ} 56^{\prime} .6\); long. \(76^{\circ} 05^{\prime}\).
Abstract of Observations for time, equal double Altitudes of Sun.

Abstract of Observations for Latitude.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Chron. time & & & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { Saturn. } \\
8^{\mathrm{h}} 36^{\mathrm{m}} 11^{8.2}, 2
\end{gathered}
\]} & \multicolumn{3}{|r|}{\[
\begin{gathered}
\text { Poluris. } \\
8^{\text {lit }} 52^{\mathrm{m}} 25^{5} .9
\end{gathered}
\]} \\
\hline Observed double alt. & & & & & \(30^{\prime \prime}\) & & 4 & ' \(15^{\prime \prime}\) \\
\hline True altitude & & & & 18 & 03 & 41 & 52 & 32 \\
\hline Mean time & & & \(8^{\text {h }}\) & & \(31^{2} .6\) & & 4 & 4 \(46^{3} .3\) \\
\hline Corresponding sid. time & & & 18 & 40 & 10.3 & 18 & 56 & 27.7 \\
\hline R. A. of star & & & 17 & & 57.0 & 1 & 03 & 00.7 \\
\hline Hour angle & & & 0 & & 13.3 & 17 & 53 & 27.0 \\
\hline Latitude & & & \(41^{\circ}\) & 56 & \(55^{\prime \prime}\) & \(41^{\circ}\) & 56 & \(18^{\prime \prime}\) \\
\hline Mean & & & & & & & & \\
\hline
\end{tabular}

Abstract of Observations for Declination.

\section*{Abstract of Observations for Azimuth of Polaris.}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Mean of times & . & . & & . & \multicolumn{3}{|r|}{\(9^{\text {h }} 33^{\mathrm{m}} 59^{8 .} 4\)} \\
\hline Mean circle reading & & - & & & & & \({ }^{\prime} 32^{\prime \prime}\) \\
\hline Mean time of ohservation & & & & & & 29 & \({ }^{4} 19\). 8 \\
\hline Correspondingsid. time & . & - & - & . & 19 & & 05.8 \\
\hline IV. A. of Polaris & - & - & - & & & 03 & 00.8 \\
\hline 11 our angle & & - & & & 18 & & 08.0 \\
\hline Azimuth of Polaris & & - & & & & & 03'.1 \\
\hline Realing of Polaris & & - & - & & & 305 & 57.5 \\
\hline " ast. meridian & . & - & . & . & & \(30: 3\) & 54.4 \\
\hline " magnetie meridian & . & . & . & & & 299 & 24.2 \\
\hline Magnetic declination W. & - & - & . & - & & & \\
\hline
\end{tabular}

Girard College, Philadelphia.-Nov. 1, 1841. Lat. \(39^{\circ} 58^{\prime} .4\); long. \(55^{\circ} 10^{\prime} .0\).
Abstract of Observations for Declination.

Abstract of Observations for Azimuth of Polaris.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Mean of times & . & . & . & . & \multicolumn{2}{|l|}{\(8^{\mathrm{h}} 08^{\mathrm{m}} 50^{\text {a }}\). 6} \\
\hline Mean circle reading . & . & - & - & & \(135{ }^{\circ} 17^{\prime}\) & \(7^{\prime} 41^{\prime \prime}\) \\
\hline Chron, fast & . & . & . & . & \(0^{\text {h }} 01^{\text {m }}\) & \({ }^{\text {m }} 34^{\text {f }} .0\) \\
\hline Mean tine of ohservation & - & - & . & . & 807 & 16.6 \\
\hline Corresponding sid. time & & - & . & & 2251 & 50.2 \\
\hline R. A. of Polaris & - & - & . & . & 103 & 15.7 \\
\hline Itour angle & - & - & - & . & 2148 & 34.5 \\
\hline Azimuth of Polaris & & & & & & -06'.2 \\
\hline Reading of Polaris & & - & - & . & 135 & 17.7 \\
\hline " ast. meridian & & . & & & 134 & 11.5 \\
\hline " magnetic meridian & & . & . & & 130 & 21.2 \\
\hline Magnetic declination W. & & . & . & . & & 50.3 \\
\hline
\end{tabular}

\section*{Recapitllation of Resclts for Magnetic Declination, 1841.}

1 Philadelphia
2 E¿aston
8 Williamsport
Curwinswille
Mercer
Erie
IHukirk
Ellicuttrille
Bath
10 Silver Lake

July 20, and Nov. 1, \(3 \circ 53^{\prime} .7 \mathrm{~W}\).
July 23, 338.0 W.
July 2世, 331.2 W
Aug. 1, 1 45.1 W.
Ang. 4, \(0 \quad 51.2 \mathrm{E}\).
\(\begin{array}{llll}\text { Aug. } 9, & 0 & 30.0 & \mathrm{~W} .\end{array}\)
Aug. 12, \(\quad 0 \quad 52.5 \mathrm{~W}\)
Ang. 14, \(2 \quad 35.7 \mathrm{~W}\).
Ang. 19, 331.4 W
Aug. 23, 430.2 W .

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Williamspurt & & & & & & " \(11^{\prime} .11\) \\
\hline ('urwinstille & & & & & & 0.17 .7 \\
\hline Mereer & & . & & & & 13.8 \\
\hline Lrie & & & & & & 1175 \\
\hline Dunkirk & & & & & & 293: \\
\hline Ellicottville & & & & & & \(1 \times 1\) \\
\hline liath & & & & & & 20.4 \\
\hline Silver Lake & & & & & & 5ta \\
\hline
\end{tabular}

Comparistm of Dectination for Secular Change. Results of 1840-41, and of 1815.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{4}{|r|}{1592, (sethut).} & \multicolumn{2}{|l|}{Annual inirram.} \\
\hline Phitadelphia, Girard College, & July and Nov., & 144, & 3 & 5:3'. 7 & W. & 5 & & IV & \(3{ }^{\prime} .2\) \\
\hline Marrishurg, & July, & 1540 & 3 & 12.5 & " & 8 & 44.5 & " & 1.5 \\
\hline Williamsport, & July, & 154, & 3 & 31.2 & " & 4 & 2.3.7 & " & 2.6 \\
\hline Johnson's 'Tav., near Brownsville, & Ang., & 1540, & 0 & 25.2 & " & 1 & 13.6 & " & 2.2 \\
\hline Erie & Aur., & 1841, & 1 & 30.0 & " & 1 & 330 & " & 3.0 \\
\hline Bath & Aug., & 1841, & 3 & 31.4 & " & 4 & 47.9 & " & 3.6 \\
\hline & Mean & & & & & & & & \\
\hline
\end{tabular}

Marrishurg was occupied in July, 1862 , and all the other stations of 1862 in Ingust.

\section*{Chronometric Results for Longitule.}

In the tour of 1840 , the error and rate of chronometer determined at Philadelphia was depended upon for time. The longitudes of the stations were taken from the best authorities.

In the tour of 1841 , observations for time were made at stations, and the error of the chronometer was determined at Philadelphio, before setting out, and after return.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
July 1:. Corr'n to chron. \\
Aug. 30.
\end{tabular} & & \[
\begin{aligned}
& -0^{n} \\
& -0100^{n-2} \\
& -0
\end{aligned} 01
\] & & \[
\begin{aligned}
& f^{5} .0 \\
& 1.4
\end{aligned}
\] & & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { maily ratre } \\
& \text {-2:.10; }
\end{aligned}
\]} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
K. Ohsid corrin to chrom. \\
Corron to drom. by rate, Phila
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
AリL 11. \\

\end{tabular}} & \multicolumn{3}{|l|}{} & & \multicolumn{2}{|l|}{} \\
\hline & -1) 010 & 22.7 & & -11 & (11) 51.7 & 7 - 11 & -0) 110 & \\
\hline Dilit. of homer. & 017 & 11.5 & & & 17 1:3:1 & & \(11 i\) & 11.4 \\
\hline Lomre of Ihakink hy chron. (mean) & & - & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Eilicottrille. Ang. 15, obsid corr'in to chron. \\
Corr'n to chron. by rate, Philadelphia
\end{tabular} & \[
\begin{array}{ccc}
-0^{\mathrm{h}} & 15^{\mathrm{m}} & 32^{\mathrm{x}} 6 \\
-0 & 01 & 00.8
\end{array}
\] \\
\hline Diff. of long. & \(\begin{array}{llll}0 & 14 & 31.8\end{array}\) \\
\hline Long. of Ellicottville by chron. & \(78^{\circ} 46^{\prime} .6\) \\
\hline Silver Lake.-Aug. 2:3, ohs'd cort'n to chrom. & - \(0^{\mathrm{h}} 04^{\mathrm{m}} 39^{5} .6\) \\
\hline Corr'n to chron. by rate, Philadel \({ }^{\text {phia }}\) & -0 \(001 \begin{array}{lll}\text { 17.1 }\end{array}\) \\
\hline Diff. of Joug. & \(\begin{array}{llll}0 & 03 & 22.5\end{array}\) \\
\hline Long. of Silver Lake by chron. & \(75^{\circ} 5 y^{\prime} .3\) \\
\hline
\end{tabular}

Milford.—Aug. 26, 1841. Lat. \(41^{\circ} 199^{\prime} 0\).
Abstract of Observations on the Sun for time.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Set.} & Chron time. & Obsed double alte. of sun a ceutre. & True altitude. & Computed mean time. & Chrun fast. \\
\hline \multirow[t]{4}{*}{II.} & & & - & \(9^{\mathrm{h}} 51^{\text {m }} 05^{8} .3\) & \(90^{\circ} 35^{\prime} 28^{\prime \prime}\) & \(47^{\circ} 46^{\prime} 20^{\prime \prime}\) & \(9^{\mathrm{h}} 50^{\mathrm{m}} 45^{\mathrm{s}} .7\) & \(0^{\text {h }} 000^{\text {m }} 19^{3} .6\) \\
\hline & . & . & . & \(\begin{array}{llll}10 & 18 & 20.3\end{array}\) & 1030930 & 51 33 28 & \(\begin{array}{llll}10 & 17 & 54.6\end{array}\) & \(\begin{array}{llll}0 & 00 & 25.7\end{array}\) \\
\hline & . & & . & \(\begin{array}{llll}10 & 31 & 00.9\end{array}\) & \(106 \quad 20 \quad 45\) & 530907 & \(\begin{array}{llll}10 & 30 & 43.7\end{array}\) & \(\begin{array}{llll}0 & 00 & 17.2\end{array}\) \\
\hline & & & & & \multicolumn{2}{|r|}{Mean} & . . & \(\begin{array}{lll}0 & 00 & 20.8\end{array}\) \\
\hline
\end{tabular}

\({ }^{1}\) Coltou's Map, soc 10'.
\({ }^{2}\) Colton's Map, 790 22'.5.

\section*{geograpilical positions of tie magnetic stations.}

\section*{Tuble of Geographical Posilions}

Taken from special observations; H. F. Walling's large map of Pemnsylrania; J. H. French's large map of New York; the U. S. Coast Survey; and from Railroad and Canal map of l'ennsylvania, Tanner, 1834, and other sources.

Tour of 1840, through Southern Pennsylvania, and part of Ohio, Virginia, and Maryland.

Tour of 1841, through Northerin Pennsylvania, and part of Oltio and New York.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Doylestown,} & \multirow[b]{2}{*}{Fa.} & \multirow[b]{2}{*}{.} & \multirow[b]{2}{*}{-} & & \multicolumn{2}{|l|}{L.aticuta.} & \multicolumn{2}{|l|}{1.0ngitube.} \\
\hline & & & & . & & \(1 x^{\prime}\) & & \(10^{\prime}\) \\
\hline Easton, & " & . & . & . & 410 & 4 & 75 & 15 \\
\hline Wilkesbarre, & " & . & . & . & 41 & 14 & 75 & 58 \\
\hline Williamsport, & " & . & . & . & * 41 & 14.0 & +7 & 02 \\
\hline & " & . & . & . & 40 & 5 & 77 & 44 \\
\hline Curwinsville, & " & . & . & & * 40 & 525 & +88 & 36 \\
\hline Perlin's Tavern, & " & . & . & - & 41 & \(11 ;\) & 79 & \(31 \%\) \\
\hline Mercer, & " & . & . & - & 41 & 1:3.女 & 50 & \(1 i\) \\
\hline Warren, & Ohio & . & . & . & 41 & 17 & *1) & 50 \\
\hline A shtabula Landing, & " & . & . & - & 4 & ら! & So & 47 \\
\hline Erie, & Pa & - & - & . & * 42 & 05. 5 & +60 & (11\% \\
\hline I) unkirk, & N. Y. & . & . & . & * 4 2 & -9, 3 & 15! & 23 \\
\hline Ellicottrille, & ، & . & . & - & * 4 ² & \(1 \times 1\) & 17\% & 44 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Belvidere,} & \multirow[b]{2}{*}{N. Y'.} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} & \multicolumn{2}{|l|}{Latitude.} & \multicolumn{2}{|l|}{Longitule,} \\
\hline & & & & 42 & 13 & 78 & 06 \\
\hline 13ath, & " & . & . & * 42 & 20.8 & 77 & 21 \\
\hline Owege, & " & . & . & 42 & 0 s & 26 & 17 \\
\hline Silver Lake, & " & . & & * 41 & 56.6 & +65 & 02 \\
\hline Milford, & P a. & & & 41 & & +74 & 51.5 \\
\hline liushkill, & " & & & 41 & 07 & 75 & 02 \\
\hline
\end{tabular}

Tour of 1843, through New York, and part of Canala and New Jersey.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Irinceton, & N. J. & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Latitude. } \\
& 40^{\circ} 20^{\prime} .7
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { L.uncituite. } \\
& 74^{\circ} 39^{\prime} .6
\end{aligned}
\]} \\
\hline sidumectary. & ger N & & 42 & \(4 \times\) & 73 & 57 \\
\hline U'tica, & " & & 4.3 & 0.5 & 75 & 14 \\
\hline Syracuse, & " & & 43 & \(0: 3\) & if & \(09.3{ }^{2}\) \\
\hline Genera, & " & & 42 & \(5: 3\) & 8 & 12 \\
\hline West Point, & " & & 41 & 23.4 & 7:3 & 57.0 \\
\hline Rochester, & " & & 43 & 07 & 75 & 39 \\
\hline Niagara Falls, & " & & 43 & 04 & 79 & 05 \\
\hline Toronto, & Camada W & & 43 & 39.5 & 79 & 21.5 \\
\hline Oswego, & N. Y. & & 43 & 26 & 76 & 35 \\
\hline Ogdensburgh, & " & & 44 & 42 & 75 & 31 \\
\hline Qucbee, & Canada E. & & 46 & 48 & 71 & 14 \\
\hline Montreal, & " & & 45 & 30 & 73 & 35 \\
\hline Troy, & N. Y. & & 42 & 43.7 & 73 & 40.7 \\
\hline
\end{tabular}

Latitudes detcrmined astronomically are marked with an asterisk \(\left(^{*}\right)\); longitudes determined astrommically, combined with other determinations, are marked with a cross (\(\dagger\)).

\footnotetext{
- From telegraphie determanation; see report of the Regents oi the University of the State of New York, lsiod.
}

\section*{distribletion of tie magietic drclivation.}
Destribution of the Magmetie Pertination for the Erimeth, 1xt2.0.

\section*{From the comparison of Ohservations for secular change, we have:-}

General Table of results referred to the enmmon epoch 1842.0 .

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline S. & \multicolumn{4}{|c|}{Station.} & Leatitude. & Longitule. & Deel. W. 18120 \\
\hline 1 & Harrishurg & & & & \(40^{\circ} .27\) & \(766^{\circ} 88\) & 30.27 \\
\hline 2 & Huntingdon & . . & . & . & 40.51 & 78.03 & 1.94 \\
\hline 3 & Sear I'itastarg & . . & & & 40.45 & 79.93 & 0.90 \\
\hline \(t\) & " Brownsville & . . & & & 39.99 & \%9.80 & 0.4 \% \\
\hline 5 & " Mercersburg & . . & . & & 33.78 & 77.93 & 0.97 \\
\hline (i) & Baltimme & . . & & & 39.30 & 76.61 & 2.34 \\
\hline 7 & I'hiladelphia & - . & . & . & 839 & 75.17 & 3.89 \\
\hline \(\checkmark\) & Easton & . . & . & & 40.70 & 75.25 & 3. 65 \\
\hline 9 & Williataspart & . . & . & - & 41.23 & 37113 & 3.54 \\
\hline 10 & C'urwinsville & . . & . & & 40.96 & Tx.60 & 1. 1.7 \\
\hline 11 & Marcer & . . & . & & 41.23 & 80.27 & -0.83 \\
\hline 12 & Eric & - . & . & & 42.13 & 80.10 & 0.52 \\
\hline 13 & Dunkirk & . . & . & . & 42.49 & 79,38 & 0.90 \\
\hline 14 & Ellicottville & . . & & & 42.30 & 78.73 & 2.62 \\
\hline 15 & B:th & . . & & . & 42.35 & T¢. 35 & 3.55 \\
\hline 16 & Silver Lake & - . & . & . & 41.94 & 76.03 & 4.52 \\
\hline & & Mean & . & & 40.98 & 77.95 & 2.08 \\
\hline
\end{tabular}

The small extent of the survey, as well as the comparatively small number of observations, will not permit the introduction of curvature in the isogonic lines; they are therefore treated as straight lines. This assumption also serves for the recognition of any local disturbances as indicated by the differences of observed and computed values.
\[
\begin{aligned}
& \text { Let } D=+2^{\circ} .08+x d L+y d M \cos L \\
& \text { Where } d L=\text { Lat. }-40^{\circ} .98 \\
& \quad \| M=\text { Long. }-7 \% .95
\end{aligned}
\]

The 16 conditional equations have been formed, and the values of \(x y \& D\) found from the normal equations, are as follows:-
\[
\begin{gathered}
x=+0.5102 \\
y=-1.206 \\
D=+2.08+0.5102 \pi L-1.206 a M \cos L .
\end{gathered}
\]

A comparison of the observed and computed declinations shows the necessity of introducing a term involving \(d L d M C\) cos \(L\); this has been done and the solution of the normal equations gives us the following expression:-
\[
D=+2^{\circ} .14+0.513 d L-1.231 d M \cos L-0.203 d L d M \cos L .
\]

Comparison of Observed and Computed Valacs.

The curves of 11020 40 pass through the following positions:-
\begin{tabular}{|c|c|c|c|}
\hline \(10^{\circ}\) & lat. \(41^{\circ} 00^{\prime}\) & lat. \(42030{ }^{\prime}\) & lat. \(3: 9030^{\prime}\) \\
\hline & long. \(80 \quad 15\) & long. \(80 \quad 33\) & loug. 795 \\
\hline \(9 \bigcirc\) & lat. \(41^{\circ} 00^{\prime}\) & lat. \(42030{ }^{\prime}\) & lat. \(39030^{\prime}\) \\
\hline & long. 7807 & long. is 46 & long. 7505 \\
\hline \(4^{\circ}\) & lat. \(41^{\circ} 00^{\prime}\) & lat. \(42030{ }^{\prime}\) & lat. \(39030{ }^{\prime}\) \\
\hline & long. 7556 & lung. 7659 & loug. if 17 \\
\hline
\end{tabular}

These curves have been finally adopted.

\title{
determivation of tie magnetic intexsity and dip,
}

\author{
\(1831-5,1810,18 \cdot 11,1 \mathrm{ND} 181 \%\)
}

Determination of the Maynetic Intensity.
A. Relitive horizontal intensity by vibrations of a bar (necdle \(A\)), and of a cylinder (needle (').
13. Relative total intensity by deflections of Lloyd needles with weights.
C. Magnetic inclination.

\section*{Correction for Temperature to the observal Time of Viluration.}

The cocfficient of temperature \(m\) has been determined by special experiments which, together with the result, are published in the Trans. of the Amer. Phil. Society, Philadelphia, Vol. V. new series, Part III. 1837, Art. XXVIII. "On the relative horizontal intensities of terrestrial magnetism at several places, by A . D. Bache and E. H. Courtenay."

The bar is called in that paper needle \(A\), and the cylinder ncedle \(C\); on page 443 the value of the temperature cocfficient is stated as follows:-
\[
\begin{aligned}
& \text { For the bar, } \quad m=0.000117 \\
& \text { For the cylinder, } \quad m=0.000052 \\
& \text { Let } T^{\prime}=\text { time of oscillation at temp. } t \\
& T^{\prime \prime}= \\
& \text { then } T=T^{\prime \prime}\left\{1-m\left(t^{\prime}-t\right)\right\}
\end{aligned}
\]

The above numerical values were used in reducing the time of 10 vibrations to the adopted standerd temperature \(60^{\circ}\) Fahr.
\(\begin{array}{ll}\log m \text { for the bar, } & 6.0651 \mathrm{k} 6 \\ \log m \text { for the cylinder, } & 5.716003\end{array}\)

Muynetic Surrey of 1840-41.
Recapitulation of Magnetic Results at (iirard College, Philadelphia,
Time of 10 vibrations, reduced to temp. \(60^{\circ}\), and correction for linss of imenguetism.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\multirow[b]{2}{*}{bate.}} & \multicolumn{2}{|c|}{1u*゙tiッu.} & \multicolumn{2}{|c|}{fative changer.} \\
\hline & & & & & Cylimmer. & Butr & Cylinder. & Bar. \\
\hline July 16,1840 & & & - & & \(34^{3} .480\) & 36\%.7\% & & \\
\hline Nov. 3, 1st0 & & & & & 31.6;41 & 36.841 & & \\
\hline July \(20,1 s+1\) & & & & & \(34.7+1\) & 36i. \(8 \% 6\) & + 0.00140 .2 & + 0.003160 \\
\hline Nuv. 1, 1st1 & & - & - & & \(34 . \times 1\) & 3f. 9117 & +0.0010810 & + 0.00006\% \\
\hline
\end{tabular}

The daily change being known, we can compute the time of 10 vibrations at Philadelphia corresponding in time to the observations made at any of the other stations in 1840 and 1841, and thus obtain, by comparison, the relative horizontal intensity at each station, lhiladelphia being 1.000; and introducing the horizontal intensity in absolute measure for Girard College, Philadelphia, we can express the magnetic intensity, at all the stations risited, in the same measure.

The sccular change in the horizontal intensity has been shown by Assistant Schott (U. S. Coast Survey Report, 1861, Appendix, No. 22) to be small. He found, for a number of stations near the Athantic const, the ammal secular change to be on the average - 0.001 (in parts of the horizontal force, the negative sign indicating a diminution). The effect of the secular change may, therefore, be safely considered as imperceptible during the interval of the magnetie surver in 1840 and in 1841, each trip extending over a period of but little more than a month.

The following table contains the duration of 10 vibrations reduced to \(60^{\circ}\) Fuhr. observed at stations in 1840 and in 1841, together with the corresponding duration as it would have been observed at Girard College and the deduced horizontal intensity, Philadelphia being 1.000 .

Relative horizontal intensity \(I I=\frac{T^{2}}{T_{1}{ }^{2}}\)
where \(T=\) time of 10 ribrations (at \(60^{\circ}\)) at Philaddphia, and \(T_{1}=" \quad\) " at any other station.

\section*{Whaguctic Surcey of 18tis.}

The trip in 1stis oceupicd less than one month, and since the nerolles wore mot again vibrated after returning to Philadelphia, we adopt the same rate of change as found in 1840 and 1841 , viz. for the cylinder \(+0.0012 \%\), and for ther helr \(+0.0000 \%\).

We have at Mhilarlelphia-
Time of 10 vibrations, reduced to \(60^{\circ}\), cylinder 35".045, July \(20,184 \%\).
bar 36.914.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sintion. & Datu. & & \begin{tabular}{l}
 \\
vllutitinn raluced \\
t: tolyp. B
\end{tabular} & & \begin{tabular}{l}
firl: \\
Hutere hormantit delyhiat \(=1.04 \times \mathrm{m}\)
\end{tabular} \\
\hline \multirow[t]{2}{*}{Union Collewe, Sham.} & \multirow[t]{2}{*}{duly 21, 1543} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \\
& 13 \\
& 1
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 84.420 \\
& 40.3 \geq 3
\end{aligned}
\]} & \[
\begin{aligned}
& 35^{n} .0446 \\
& 36.415
\end{aligned}
\] & \[
\begin{aligned}
& 0 . \times 411 \times \\
& 0.83-1
\end{aligned}
\] \\
\hline & & & & Mean & 0.8354 \\
\hline \multirow[t]{2}{*}{Syracuse} & \multirow[t]{2}{*}{July 29, 184:} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \\
& 1 ;
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3 \times 604 \\
& 39.959
\end{aligned}
\]} & \[
\begin{aligned}
& 85.1059 \\
& 36.419
\end{aligned}
\] & \[
\begin{aligned}
& 0.85099 \\
& 0.8537
\end{aligned}
\] \\
\hline & & & & Mean & 0.8523 \\
\hline \multirow[t]{2}{*}{Geneva} & \multirow[t]{2}{*}{July 31, 1843} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{O} \\
& \mathrm{Z}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 37.548 \\
& 39.5198
\end{aligned}
\]} & \[
\begin{aligned}
& 35.059 \\
& 30.921
\end{aligned}
\] & \[
\begin{aligned}
& 0.8718 \\
& 0.8707
\end{aligned}
\] \\
\hline & & & & Mean & 0.8 .12 \\
\hline Niagara Falls & Ang. 3, 1443 & \[
\begin{aligned}
& \left(B^{1}\right. \\
& B^{1}
\end{aligned}
\] & \[
35.933
\] & \(35.06: 3\) & 0.8544 \\
\hline \multirow[t]{2}{*}{Toronto} & \multirow[t]{2}{*}{Aug. 7, 1×43} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { C } \\
& \text { B }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3 \times .075 \\
& 40.114
\end{aligned}
\]} & \[
\begin{aligned}
& 35.064 \\
& 36.925
\end{aligned}
\] & \[
\begin{aligned}
& 0.8483 \\
& 0.8422
\end{aligned}
\] \\
\hline & & & & M & 0.8478 \\
\hline \multirow[t]{2}{*}{Ogdensburgh} & \multirow[t]{2}{*}{Aug. 8, 1843} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \\
& 13
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 89.514 \\
& 41.505
\end{aligned}
\]} & \[
\begin{aligned}
& 35.060 \\
& 36.926
\end{aligned}
\] & \[
\begin{aligned}
& 0.7567 \\
& 0.7915
\end{aligned}
\] \\
\hline & & & & Mean & 0.75196 \\
\hline \multirow[t]{2}{*}{Montreal .} & \multirow[t]{2}{*}{Aug. 15, 184,} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{~B}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 40.674 \\
& 42.740
\end{aligned}
\]} & 35.078
36.930 & \[
\begin{aligned}
& 0.7437 \\
& 0.746 .6
\end{aligned}
\] \\
\hline & & & & Mean & 0.7451 \\
\hline \multicolumn{6}{|c|}{- Observations imperfect.} \\
\hline
\end{tabular}

In 1843, at Toronto, the horizontal intensity in absolute measure was retermined by licuts. Lefroy and Younghusband at the magnetic observatory (sece Mr. Schott's report of Jan. 19, 1861, L. S. Coast Survey Report, 1461), and found to be 3.5:37. hence by the above proportion Philadelphia beromes \(4.17 \%\), a value in excellont agreement with the other determinations at this place.

If we compare with Montreal, we have Lient. Lefroy's determination at sit. Helen's in 184:3, 3.08:3, hence Philadelphia becomes 4.138, t value not quite w accordant as that found from the comparison with Toronto.

For the introduction of the absolute value for the stations visited in 1840 . Wr
have, from 1)r. Locke's observations at Baltimore in 1841 , at St. Mary's, 4.261 ; at the rity, 4.23 s ; mean, 4.250; which gives for Philadelphia 4.146 . At Philadelphia we have Prof. 1,oomis' determination in \(1839,4.149\) (Chestnut Street), and I)r. Locke's, \(4.1 \%\), at the Girard College, the mean of which will be 4.160 . This value may be adopted for the 1840 series.

For the stations oceupied in 1841, the mean of the absolute values used in 1840 and 1stis for Philadelphia, viz, 4.166 , has been used as the base number.

Accordingly, we obtain the following magnetic horizontal intensities, expressed in terms of the absolute scale (British mits):-

Comention of the Ebnomenen ame Americen Sries of 1836, '37, '38, and 1840.'
The series of observations made in Emope in the years \(1836,{ }^{\prime} 37\), and '38, when the same cylinder and bar magnets were used, previously and subsequently used at Philadelphia and other places, wive us additional means of introducing the absolute measures of the horizontal force, though in a somewhat circuitous way.

Icoorling to Gencral Sabine, the total foree at Woolwich, in June, 1846, may be taken at 10.384 ; Dr. Lamont thinks that the total force in Europe has but a small, if any change; we may therefore take 10.388 to represent the total force in

\footnotetext{
1 Art. IX, Transactions Amorican Philosophical Society, Mhiadelphia, Vol. VII, new series, Part I, 18\&i. Onservations of the Magetie Intmsity at tweuty-one stations in lourme By A. D. Bache, LL.D., l'resident of the (iirard College of Wrphatas.
}

1 NBG and \(\because 3 T\); the dip was observed by me at London (at Westbonme (ireon) and found to be \(69^{\circ} 17{ }^{\circ} .8\) in June, \(183 \%\). The adopted annual decrease of the dip being ' \(2^{\prime} . t\), we have the dip at London, in Nov. \(1836,69^{\circ} 19^{\prime} .2\), and in F'(b). \(1 \times 37\). \(69^{\circ} 18^{\prime} .6\). The horizontal intensity at London (Woolwich) becomes therefore in Nov. \(1836,3.669\), and in Fob. 1837, 3.670, and in June, 1837, 3.67\%. From thw gencral table of results we have further the relative horizontal intensities at Edinbureh (Feb. 1837), at Dublin (Nov. 1836), and at London (June, 1837), 0.841, 0.879 , and 0.939 respectively, whence the horizontal intensitics, in absolute measure, at these localities and times, we for Dublin 3.436, and for Edimburgh 3.247. It Philadelphia, the vibrations of the bar magnet and magnet \(B\) were observed in sept. 1836, and also afterwards at the above European stations from which, in my manuscript record, the relative intensitios were deduced as follows: Philadelphia 1.0000, Dublin 0.8300, and Edinburgh 0.7957. Using the above absolute values for Dublin and Edinburgh, Philadelphia becomes, from comparison with Dublin, 4.140 , and from comparison with Edinburgh 4.131 , mean of the determinations 4.136. The difference in the intensity at Girard College and the house in Chestnut Strect we find, by comparison of Prof. Loomis' observations in 1839 (4.149), with Dr. Locke's in \(18 \not 11(4.172)\), is 0.023 , hence the magnetic intensity at Girard College in Scpt. 1836, from comparison with the European stations, becomes 4.159 ; the value actually used for the survey in 1840 was 4.160 , and since the effect of the secular change for this interval of four years must be small, there is no reason for changing the value adopted, it being correct within the limits of uncertainty of the several comparisons.

For comparison and the effect of secular chanere in X, we have the followint
 of 1461):-

At Philadelphia.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1835.0 & Pachar id & C'ourtenay & & . & . & 4.105 \\
\hline \(15: 36.7\) & Bambe & . . & & & & 4.159 \\
\hline 18:39.5 & Lommis & . . & & & & 4.140 \\
\hline 1811.5 & Locke & . . & . & . & & 4.172 \\
\hline 1842.5 & Locke & . . & & & & 4.171 \\
\hline 1842.8 & Lefroy & , & , & & & 4.176 \\
\hline 1843.6 & Bache & . . & . & . & & 4.172 \\
\hline 1844.5 & Locke & . & . & . & & 4.162 \\
\hline 1846.4 & Locke & & . & . & & 4.143 \\
\hline 155.9. 7 & Schott & . . & . & & & 4.2.2i \\
\hline 1862.6 & Schott & - & . & - & & 4.158 \\
\hline
\end{tabular}

\section*{It Baltimore.}

At Montreal.

Magnetic Tour of 1834 and 1835 , in the Northeastern Stutes.
(In comnection with Prof. Courtenay.)
The results of the observations for horizontal intensity, as published in Vol. V (new scries) of the Transactions of the American Philosophical Society, Part III, 1837, are expressed in relative measure, Philadelphia being taken as unit. It seems to be desirable to present these results, expressed in terms of the absolute scale, and I have, therefore, inserted them here in connection with my other determinations.

From Mr. Schott's collection of intensities we have, at New York (Columbia (ollege), in 1822, the intensity 3.981 (Col. Sabine observer); and in 1841 , in the same locality, 4.018 (Dr. Locke observer); whence the horizontal intensity in 1835 is 4.006 , from which we obtain for Philadelphia, in 1835, the value
\[
4.006 \times \frac{1.00000}{0.94705}=4.23
\]

In 1836, the value found was 4.16 ; the mean of these determinations I have alopted as the nearest value that can at present be assigned, viz., 4.195.

We have, accordingly, the following table of results:-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{1834-35.} \\
\hline Thiladelphia, & 15:3-5 & & & & 1.00000 & 4.195 \\
\hline West I'oint, & - & & & . & 0.92150 & 8.866 \\
\hline New York, & " & & . & & 0.94705 & 3.973 \\
\hline Newport, IR. I., & 18:35 & & & & 0.900 st & 3.759 \\
\hline Providenee, R. I., & ، & & & & 0.89869 & 3. 7 \% 0 \\
\hline Springfeld, Mass. & * & & & & 0.88711 & 3.721 \\
\hline Albany, N.I., & " & . & . & . & 0.85290 & 3.578 \\
\hline
\end{tabular}

That the value adopted for Philadelphia is very nearly correct (and will not bear diminution), may be inferred from the following comparison and the known latw of secular change of the horizontal intensity. The comparison is obtained from Mr. Schott's collection:-

\section*{A1 West Point.}

Reduction of the relative Tolal Intemsity Dlsemations h!y Lloyrt's Nectles.
Let \(\delta=\) true dip,
\(\zeta=\) dip by a lioyd needle when mloaded,
\(\varepsilon=\) correction to \(\zeta\),
then \(\delta=\zeta+\varepsilon, \quad \varepsilon\) may be assmmod as constant for cach tour.
For finding the value of \(s\) we have the following results:-

We have, therefore, the following values of \(z:-\)
\[
\begin{aligned}
& \text { 1841. } \quad .0 .7+1 .: \quad \cdots+9.7+0.7 \\
& 144 \%+1.7+11 . \% \quad+10.0+0.8
\end{aligned}
\]
'owrertion for lows of 'mandisur.-In my paper on the magnetic obscrvations and results in Europe during 18.36, '3i, '38. I have shown that during the short

\footnotetext{
\({ }^{1}\) Dip by needle Nu. 1. \({ }^{2}\) Mean by tro mealles, wiz, No. 1, 71~55.2, and No. 2, 71~ 55'.9.
}
interval of a month，the loss of magnetism of the Lloyd Necdles is too small to require any correction．

\section*{Table of Resulting Dipss．}

At those stations where the lloyd needles were used，the dip was obtained by applying the correction \(\varepsilon\) to the results by the needle when unloaded；when the dip was also observed in the ordinary way，the result by the Lloyd needle was allowed the weight one－half，as it depends on half the number of observations．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Results for dip in 1840.} \\
\hline \multicolumn{5}{|c|}{Station．} & Date． & Xeedre & 1 l 1 and 2. & & \\
\hline Philadelphia & ． & ． & & ． & July 21 & & 51＇．7 & 71054.4 & \(71^{\circ} 522^{\prime} .6\) \\
\hline Reading & ． & ． & & ． & July e：3 & & & \(\begin{array}{lll}72 & 32.2\end{array}\) & \\
\hline Harrisburg & ． & ． & & ． & July 25 & T2 & 18.8 & 72 23.8 & \(72 \quad 20.5\) \\
\hline Duncan＇s Island & ． & & & & July 27 & & & 123500 & \\
\hline Lewistown
Huntingdon & － & & & & July 29 & & & \({ }^{172} 300.0\) & \\
\hline Armagh & ． & － & & － & & 72 & 16.9 & \(\begin{array}{ll}72 & 19.6 \\ 72 & 18.7 \\ 72 & \end{array}\) & 22 17.8 \\
\hline Economy & ． & ． & & & Aug． 8 & & & 272350 & \\
\hline Homewood & ． & ． & & & Aug． 10 & & 32.6 & \(72 \quad 31.0\) & 1932．1 \\
\hline Steubenville & ． & & & & Aug． 15 & & & 7232.8 & \\
\hline Wheeling & ． & ． & & & Aug． 16 & & & \(720 \times .9\) & \\
\hline Johnson＇s Tavern & ． & ． & & & Aug． 18 & & 54.7 & \(71 \quad 51.2\) & \(71 \quad 53.5\) \\
\hline Frostburgh & ． & ． & & & Aug． 20 & & & 7131.3 & \\
\hline Irwin＇s Mill & ． & ． & & & Aug． 24 & 71 & 49.1 & 7143.8 & \(71 \quad 47.3\) \\
\hline Baltimore & ． & ． & & & Aug． 27 & & 35.4 & 7131.0 & \(\begin{array}{ll}1 & 33.9\end{array}\) \\
\hline Frenchtown & ． & ． & & & & & & 7140.2 & \\
\hline Pliladelphia & ． & ． & & & Ang． 28 & & 51.6 & 7156.0 & 71 \\
\hline & & & & & ip in 1841. & & & & \\
\hline Philadelphia & & & & & A pril 26
July 20 & & \(0.5 x^{\prime} .1\)
57.8 & 720
71
71
705
50 & \begin{tabular}{l}
r2000＇． 6 \\
7157.0
\end{tabular} \\
\hline Doylestown & ． & ＂ & & & July 22 & & & \(\begin{array}{lll}12 & 23.1\end{array}\) & \\
\hline Easton． & ． & ． & & & July 2.2 & & & \(72 \quad 39.0\) & \\
\hline Wilkesharre & ． & ． & & & July er & & & 7310.0 & \\
\hline Williamsport & ． & － & & & July 28 & & 5.5 .5 & \(72 \quad 52.3\) & 7254.4 \\
\hline Bellefonte & ． & ． & & & July 30 & & & 7242.3 & \\
\hline Curwinsville & ． & ． & & & Ang． 1 & & 48.8 & 7251.4 & 22 49．7 \\
\hline Berlin＇s Tavern & ． & ． & & ． & Aug．\({ }^{\text {a }}\) & & & 7252.8 & \\
\hline Mercer & ． & ． & & ． & Aug． 5 & & 56.8 & \(72 \quad 580\) & 72 57.2 \\
\hline Warren & ． & ． & & & Aug． 6 & & & 7259.9 & \\
\hline Ashtabula Landing & ． & ． & & & Ang．\({ }^{\text {a }}\) & & & \(73 \quad 23.5\) & \\
\hline Erie ．． & ． & ． & & & Aug． 8 & & 44.0 & 73 49．2 & 7846 \\
\hline Dunkirk & － & ． & & & Aug．13 & & & if 17．2 & \\
\hline Ellicottville & ． & ． & & ． & Aug． 16 & & 20.2 & it 12．9 & it 17.8 \\
\hline Belvidere & ． & ． & & ． & Aug． 17 & & & it 09.5 & \\
\hline Bath & ． & ． & & & Aug． 19 & & 28.5 & i4 20．5 & if 27.5 \\
\hline Owego ． & ． & ． & & & Aug． 20 & & & it 13.3 & \\
\hline Silver Lake & ． & ． & & & Aug．23 & & 40．1 & \(\begin{array}{ll}3 & 44.4\end{array}\) & 73 \\
\hline Milford． & － & － & & & Aug． 215 & & 4.7 & 7347.3 & 73 46．6 \\
\hline Bushkill & － & － & & & & & & 7381.4 & \\
\hline Philadelphia & ． & \(\stackrel{\square}{*}\) & & － & Oct． & & & \(\begin{array}{ll}71 & 58.6 \\ 61 & 59.1\end{array}\) & 7158.2 \\
\hline
\end{tabular}

Recapitulation of the observed Dip at Philadelphia.

By means of the preceding results for horizontal intensity \(\mathbf{X}\), and dip \(\delta\), we find the total intensity \(\phi\), as follows:-
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{I'hiladelphia,} & \multicolumn{5}{|c|}{\(\phi=\mathbf{X} \sec \delta\).} \\
\hline & 1840. & 中 & & 1841. & ¢ \\
\hline & July, & 13.37 & Philadelphia, & April, & 13.49 \\
\hline Marrishurg, & ، & 13.44 & " & July, & 13.45 \\
\hline Huntingdon, & " & 13.51 & Williamsport, & * & 13.55 \\
\hline Homewood, & Alug., & 13.49 & Curwinsville, & Aug., & 13.55 \\
\hline Johnson's 'Tav., & " & 13.54 & Mercer, & " & 13.64 \\
\hline Irwin's Mill, & " & 13.40 & Erie, & " & 13.57 \\
\hline Baltimore, & " & 13.49 & Ellicottville, & " & 13.77 \\
\hline Philadelphia, & Oct., & 13.38 & Bath, & " & 13.72 \\
\hline & & & Silver Lake, & " & 13.47 \\
\hline & & & Milford, & " & 13.50 \\
\hline & & & Philadelphat, & Oct., & 13.46 \\
\hline & & & " & Nov., & 13.47 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) From the 2d Vol. of the Cirard College Magnetical and Meteorological observations, we find the dip at Phila. delphia as follows:-
\[
\text { Ll. 1, } 71.5: 2 \text {, and Lul. } 3,71-43^{\prime} 3 ;
\]
\({ }^{2}\) Dip from 2d Vol. of (iirard College oberrations.
}

Recapitulation of \(p\) at Philalelphia
\begin{tabular}{|c|c|c|}
\hline & 14n3． & － \\
\hline Philadelphist， & July， & 13.46 \\
\hline Sehenectady， & ＂ & 13.45 \\
\hline Syracuse， & \({ }^{6}\) & 18.61 \\
\hline Geneva， & ／ & 13． 183 \\
\hline Niagara Fall & Aug．， & 13．6．4 \\
\hline Toronto， & ＂ & 12 \\
\hline Ogrlenshurgh & ، & 18 \\
\hline Montreal， & ، & 13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & Menaw． \\
\hline July，1810， & 13．37） & \\
\hline Oct．，1840， & 13．38 & 13.41 \\
\hline April，1841， & 13．43） & \\
\hline July，1841， & 13．4i） & \\
\hline Oct．，1sil， & 13．14 & 13．46 \\
\hline Nov．，1841， & 13．47） & \\
\hline July，184\％， & 13．4； & 13.46 \\
\hline
\end{tabular}

The above values of \(\phi\) will furnish the means for the introduction of the total intensity at the remaining stations where the doyd nedles alone have been used．

Comparison of ralues for \(\phi\) ，with deteminations hy other observers．

\section*{Philadelphia．}

Baltimore．

\section*{Montreal．}

\section*{Toronto}
1843.0 Lefroy N Youmbhastand ．． 13.90

1843．6 Bache ．．．．． 13.84
1845．5 Lefroy ．．．．．． 13.93

Retatice Intensities by the Lloyd Needles.
Temperature corvection.-For the old London weights.
No special observations to determine the temperature cocfficient have been made, we may deduce it, however, from the following combination of observations at the Girard College Station, Philadelphia:-

For Lloyd Needle No. 1.
\[
\begin{array}{rcrrrr}
\text { July } 21,1840, & t=56^{\circ} .5 & \theta= & -1^{\circ} & 09^{\prime} .9 & \text { (weight in third hole). } \\
\text { Oct. } 2 \times, 1840, & 52.0 & & +1 & 28.9 & \text { " } \\
\Delta t=24.5 & \Delta \theta & =-2 & 38.8
\end{array}
\]

In Vol. II of the Magnetic and Meteorological Observations at Girard College (p. 1537), we find the additional obscrration:-
\[
\begin{aligned}
& \text { Inly 20, 1843, } \quad t=75.2 \quad 0=+0^{\circ} 42^{\prime} .7 \quad \text { (position of weiglit not stated). } \\
& \text { For Lloyd Needle No. } 3 . \\
& \text { July 21, 1840, } t=77^{\circ} .0 \quad 0=+1^{\circ} 09^{\prime} .1 \\
& \text { Oet. 28, 1840, } \quad 50.0 \quad+2 \quad 37.2 \\
& \Delta t=27.0 \quad \Delta \theta=-1 \quad 28.1 \\
& \text { hence } \Delta \theta=-3.3 \Delta t
\end{aligned}
\]

In Vol. II of the Magnetic and Meteorological Observations at Girard College (p. 1537), we find the additional obscrvation :-
\[
\text { July 20, 1843, } \quad \mathrm{t}=55^{\circ} .8 \quad \theta=+4^{\circ} 48^{\prime} .0 \quad \text { (position of weight not stated). }
\]

The mean of both needles gives \(\theta=\theta^{\prime}\left\{1-4^{\prime} .9\left(t-t^{\prime}\right)\right\}\)
The mean temperature would have to be taken as the standard temperature to which all obscrvations for relative horizontal intensity are to be referred.
N.B. For the old weights the sign of the angle 0 has significance.

These weights were also used in Europe.
We may safely assume that within the interval of the survey the needles have not perceptibly lost in their magnetism. The total intensity is also very nearly constant for any one place.

Temperature Correction.-For the new or pin weights.
Lloyd Needle No. 1.
\begin{tabular}{|c|c|c|c|}
\hline Oct. 28, 1840, & \(\mathrm{t}=52^{\circ} .0\) & \(\theta=17^{\circ} 15^{\prime} .3\) & (pin in third hole). \\
\hline April 26, 1841, & 68.0 & \(18 \quad 06.7\) & - \\
\hline July 20,1841 , & 92.5 & 1754.5 & " " \\
\hline \multicolumn{4}{|c|}{Lloyd Nemlle No. 3.} \\
\hline Oct. 28, 1840, & \(1=50^{\circ} .0\) & \(\theta=19023^{\prime} .0\) & (pin in third hole). \\
\hline April 26, 1841. & 68.0 & 1355.9 & ، ، \\
\hline July \(20,1 \times 41\). & 87.6 & 1981.4 & " " \\
\hline
\end{tabular}

From these observations it would appear that the incidental crrors of observation, or other acridental causes, exercise a greater influence on the resulting angle than the change due to changes of temperature within the above range.

I have therefore concluded to apply no temperature correction to the olservations in which the old London or the pin weights were nsed, which in any case would necessarily be small.

In Vol. II of the Magnetic and Metcorological Observations at Girard College, we find the following additional observations (see pp. 1537-8, 1540, 1842-3, 1545):-

> Llogd Needle No. I.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
July 20, 1843, \\
Sept. 5, 1843,
\end{tabular} & \[
\begin{array}{r}
\mathrm{t}=\begin{array}{r}
75^{\circ} .2 \\
82.8
\end{array}
\end{array}
\] & \[
\begin{array}{r}
0=18^{\circ} 266^{\prime} .1 \\
1836.0
\end{array}
\] & \begin{tabular}{l}
(position of pin not stated). \\
(pin weight in third hole).
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Lloyd Needle No. 3.} \\
\hline July 20, 1843, & \(t=730.3\) & \(t=21^{\circ} 34^{\prime} .1\) & (pusition of pin not stated). \\
\hline Aug. 26, 1843, & 8.4 & 2142.9 & (pin weight in third hole). \\
\hline Sept. 5, 1843, & 82.9 & \(21 \quad 48.7\) & " ، \\
\hline Sept. 12, 1843, & 62.6 & 2134.0 & " " \\
\hline
\end{tabular}

These observations tend to the same conclusion arrived at above.
Considering the results of 1840 and 1841 , and comparing them with those of 1843, it seems, upon the whole, preferable to apply no temperature correction for either needle or weight.

Computation of the Relative and Absolute Total Intensity by Dr. Lloyd's Statical Method.
(See Trans. Royal Irish Academy for 1836, also Report of the British Association for Adrancement of Science for 1835.)
\[
\begin{aligned}
\text { Let } \delta & =\text { magnetic dip, } \\
\zeta & =\text { the inclination of a Lloyd necdle when unloaded, } \\
\theta & \text { " loaded, } \\
\rho & =\text { ratio of moment of needle to added weight, } \\
\delta & =\zeta+\varepsilon, \quad \sin \varepsilon=\rho \frac{\cos \zeta}{\sin \theta} \sin (\zeta-\theta), \\
\phi & =\text { total magnetic force, } \\
\beta & =\text { a coefficient, } \\
\phi & =\beta \cos \theta \\
\sin (\delta-\theta), ~ f o r ~ a n y ~ o t h e r ~ s t a t i o n ~ & \phi_{1}=\frac{\beta \cos \theta_{1}}{\sin \left(\delta_{1}-\theta_{1}\right)} .
\end{aligned}
\]

Hence for the ratio of total force at any two stations-
\[
\begin{aligned}
& \phi=\cos \theta \quad \sin \left(\delta_{1}-\theta_{1}\right) \\
& \phi_{1}=\cos \theta_{1} \cdot \\
& \sin (\delta-(1)
\end{aligned}
\]
 of observation.

The mean of these values was taken at all the stations where the total foree was also determined by the vibrations of the eylinder and har in comertion with the dip.

The total fore in absolute measure for each station where the Lloyd necdles alone were used, was then obtained by comparison of its value with this mean value.

The final horizontal force was found by the formula
\[
X=\phi \cos \delta .
\]

\section*{distribution of tie magnetic Inclisation.}

Distribution of the Magnetic Dip and Construction of the Isoclinal Lines for 1842.
For the more convenient application of the usual analytical expression for the representation of the observed dips, and for their interpolation, the stations have been divided into six groups, as follows:-

\footnotetext{
\({ }^{1}\) The dip is the mean from groups of Dec. 1840, Oct. 1841, and Aug. 1843.
\({ }^{2}\) This station has been added to the discussion as we have observations in 1840 and 1841 ; see Appendix, No. 26, Coast Survey Report of 1858. Mean dip from several observers in \(1841.0,71018^{\prime} .3\), and in 1842.5 , \(71013^{\prime} .5\) : mean \(71015 \cdot 9\), in 1841.8 .
}
(64)

\footnotetext{
\({ }^{1}\) See Appendix, No. 32, C. S. Report of 1s5, This. station was adted owine to the mum-rous observations taken in this locality. (At Lanatic Asylum, dip 1841.3, 72 \(41^{\prime}\). 0 , in 1842.5, 72 38.'3.)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Recapitulation. - Number of observations 48.} \\
\hline \multicolumn{6}{|c|}{Station.} & Latitude. & Longitude. & Date. & Observed dip. \\
\hline Group & I, No. 10 & & - & & & \(39^{\circ} 57^{\prime} .1\) & \(76^{\circ} 166^{\prime} .8\) & 1841.0 & \(72^{\circ} 04^{\prime} .4\) \\
\hline " & II, "6 7 & . & . & . & . & \(40 \quad 15.4\) & \(79 \quad 54.9\) & 1840.6 & 72 \\
\hline " & HII, " 7 & . & . & & . & 4148.0 & 7987.4 & 1841.6 & 73 30.7 \\
\hline " & IV, " 10 & . & . & & - & \(41 \quad 24.5\) & \(77 \quad 16.9\) & 1841.4 & 7317.7 \\
\hline " & Y, " 6 & . & - & & . & \(43 \quad 12.1\) & 7738.6 & 1843.6 & \(\begin{array}{ll}74 & 52.9\end{array}\) \\
\hline " & VI, " 8 & - & . & & . & 4141.6 & \(74 \quad 24.8\) & 1842.9 & 73 \\
\hline & & Mean & & & . & \(41 \quad 23.1\) & \(77 \quad 34.9\) & 1841.85 & 7317.8 \\
\hline
\end{tabular}

By comparing the differences in latitude and the corresponding differences in dip for each place with the mean values of the group, their general accordance was ascertained. None of the differences were large enough to require an exclusion from the serics. It need hardly be remarked that a slight consideration shows that the dip depends almost exclusively upon the latitude; the longitude factors will, therefore, necessarily be very small.

Method of Discussion.-The interpolation formula, proposed by the Rev. H. Lloyd in 1838 (see the eighth report of the British Association, Vol. VII, p. 91), will be used here in a slightly altered form, to allow for the convergence of the meridians.

Let \(I=\) resulting dip or inclination.
\(I_{0}=\) assumed mean dip for the cpoch adopted (1812.0), and the mean latitude and longitude, \(i\) its correction.
\(d L=\) difference of latitude, \(d M=\) difference of longitude, \(x, y, z, p, q\), as well as \(i\) are to be determined by application of the method of least squares, from the obscrrations themselves.
\[
I=I_{0}+i+x d L+y d M \cos L+z d L d M \cos L+1^{\prime 2} L^{2}+q d M I^{2} \cos ^{2} L .
\]

Correction to epoch.--The mean epoch of the six groups is November, 1841, for which we can substitute without material loss of accuracy January, 1842 (or 1842.0). Comparing the observations made by Mr. Schott, in July and August, 1862, with the corresponding obscrvations about the epoch 1842, we have the following table of differences of results for an interval of nearly 20 years:-
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Dite. & Dip. & Dite. & Dip. & Average annual
increase. \\
\hline Washington & Sept. 1841 & \(71^{\circ} 15^{\prime} .9\) & Ang. 1862 & \(71^{\circ} 19^{\prime} .0\) & \(+0^{\prime} .15\) \\
\hline Harrisburg & July 1840 & 7220.5 & July 1862 & \(72 \quad 31.6\) & +0.50 \\
\hline Near Brownsville & Aug. 1840 & 7153.5 & July 1862 & 7156.9 & +0.15 \\
\hline Erie & Aug. 1841 & 7346.6 & Aug. 1862 & \(73 \quad 52.2\) & +0.27 \\
\hline Bath . & Aug. 1841 & \(74 \quad 27.5\) & Aug. 1862 & 7426.2 & \(-0.06\) \\
\hline Willammport & July 1841 & 7254.4 & Aug. 1862 & 7251.0 & \(-0.16\) \\
\hline Philadelphia & Feb. 1842 & \(\begin{array}{lll}71 & 51.1\end{array}\) & Aur. 1862 & \(\begin{array}{ll}72 & 05.8\end{array}\) & +0.43 \\
\hline \multicolumn{4}{|c|}{Mean} & . . & \(+0.18\) \\
\hline
\end{tabular}

The increase in the dip is therefore very slight, and if we consider that, accorling to Mr. Schott's investigation (Appendix, No. 32, Coast Survey Report for 1856) the dip near the Atlantic coast, about the years \(1841-184\), was at its minimum value, and hence could not have changed sensibly for sereral years, we can without any sacrifice of accuracy in our reduction, use our results as if all belonging to the mean epoch 1842.0. No reduction to epoch has therefore been applied. It is probable that the present ammal increase amounts to about 1 '. At 'I'oronto, between 1844 and 1855 (see Vol. III), the amual increase was 0.8 .

In the formula of interpolation, I retain the factor \(\cos L\), thus making it comparable with similar expressions, for other localities, where the introduction of cos \(L\) may be more important:

The value of the magnetic surrey of Pennsylvania is increased from the fact that the isoclinal lines are presented for an epoch at which the dip was probably near its minimum value.

The conditional cquations are of the form-
\[
0=I_{0}-I+i+x d L+y d M \cos L+z d L d M \cos L+p^{d} d L^{2}+q d M L^{2} \cos ^{2} L .
\]

We find from the solution of the normal equations, the expression,
\[
\begin{gathered}
I=73^{\circ} .26+0.876 d L-0.076 d M \cos L-0.023 d L d M \cos L+0.007 d L^{2}+0.013 \\
d L^{2} \cos ^{2} L
\end{gathered}
\]
\[
\begin{array}{r}
\text { where } d L=\text { lat. }-41^{\circ} .38 \\
d M=\text { long. }-77.58 .
\end{array}
\]

This equation represents the mean values as follows:-

The preceding investigation was made for the purpose of ascertaining what terms should be finally admitted in the discussion.

Next, nine groups of five or six observations in each, arranged, in regard to their geographical position and area, with as much regularity as the nature of the case admits of, give,

The trial of an equation of the form,
\[
I=I_{0}+i+\operatorname{col} L+y M M \cos L+\pi M \cos L ;
\]
and of the form,
\[
I=I_{0}+i+r l L+!M M \cos L+M^{M} M^{2} \cos ^{2} L
\]
showed that the extent of the survey is not sufficiently great to admit of the deter-
mination of curvature of the isoclinal lines; and, finally, the following expression was adopted:-
\[
I=73^{\circ} .25+0.912 d L-0.069 d .1 I \cos L .
\]

This equation represents the observations as follows:-

The isoclinal lines of \(71^{\circ}, 72^{\circ}, 73^{\circ}, 74^{\circ}\), and \(75^{\circ}\), pass through the following positions:- \({ }_{斤 1}\)
. Long. \(7^{\circ} 00^{\prime}\) Lat. 3849
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(72^{\circ}\)} & . & . & Long. \(75^{\circ} 00^{\prime}\) & \(78^{\circ} 00{ }^{\prime}\) & \(81^{\circ} 00^{\prime}\) \\
\hline & & & Lat. 3949 & 3959 & 4010 \\
\hline \multirow[t]{2}{*}{\(73^{\circ}\).} & . & & Long. \(74^{\circ} 00^{\prime}\) & ヶ8 \(8^{\circ} 00^{\prime}\) & \(81^{\circ} 00^{\prime}\) \\
\hline & & & Lat. \(40 \quad 50\) & 4105 & 4115 \\
\hline \multirow[t]{2}{*}{it \({ }^{\circ}\).} & . & & . Long. \(74^{\circ} 00^{\prime}\) & \(78^{\circ} 00{ }^{\prime}\) & \(81^{\circ} 00^{\prime}\) \\
\hline & & & Lat. 4157 & 4211 & 4222 \\
\hline \multirow[t]{2}{*}{550.} & . & . & Long. \(15^{\circ} 00^{\prime}\) & \(45^{\circ} 00\) & \(79000^{\prime}\) \\
\hline & & & Lat. 4307 & 4313 & 4320 \\
\hline
\end{tabular}

These lines have been finally adopted.
Comparison of the Observed and Computed Dip.
(All stations where the dip has been found indirectly only, by means of the Lloyd needles, are marked with an asterisk; 27 in number. Total number of stations, 48.)

The probable crror of any single observation is \(\pm 0^{\circ} .12= \pm 7^{\prime} .2\); the probable error of any observation with the regular dip needles, and the lloyd needles combined, is \(\pm 0^{\circ} .13\) : with the latter needles'alone, \(\pm 0^{\circ} .11\). This shows that the irregularities in the observed dip are due to local attractions rather than to imperfections in the needles employed. It is proper, therefore, to assign equal weights to results by the direct and indirect method of observing.

If we apply Peirce's criterion for the rejection of observations differing too much from the regular value indicated by all other observations, we find the limit of rejection to be \(\pm 0^{\circ} .46\), or \(\pm 28^{\prime}\); the maximum difference in the preceding table is \(25^{\prime}\); hence no obscrvation is excluded.

General Sabine's resulting isoclinal lines, in his seventh contribution to terrestrial magnetism (Phit. Trans. Roy. Soc, Part III, 1846, p. 237), refer to an average period between 1840 and 1842, and correspond in their position very closely to those now presented; they are deduced from independent data.

\section*{DISTRIBUTION OF THE MAGNETLC IORMONTAL FORCE and total force}

Distributione of the Mugutic Morizontal Intersity coud Construction of Isontymemeir Lines for 1842.

If we group the observed intensities in the same manner as the dip, the mean epoch 1842.0 may likewise be assumed, and all observed intensities be reduced to that date.

Correction to Epreh.-We have the following direct comparisons:-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Date. & \(x\). & Date. & \(\mathrm{X}_{1}\). & \(x-x_{1}\). & Aumal decrease \\
\hline Washington \({ }^{1}\) & Jan. 1843 & 4.820 & Aug. 1862 & 4.955 & 0.065 & 0.0033 \\
\hline Harrishurg & July \(18 \pm 0\) & 4.078 & July " & 4.012 & 0.066 & 0.00:30 \\
\hline Near Brownsville & Aug. 1840 & 4.207 & July " & 4.138 & 0.069 & \(0.00: 31\) \\
\hline Erie . . & Aug. 1841 & 3.792 & Aug. " & 8.728 & 0.064 & 0.0033 \\
\hline Bath . . & Ang. 1841 & 3.675 & Aug. " & 3.639 & 0.038 & 0.0018 \\
\hline Williamsport & July 1841 & 3.98:\% & Aug. " & 3.924 & 0.053 & 0.0028 \\
\hline Philadelphia \({ }^{\text {a }}\) & Jau. 1842 & 4.166 & Aug. " & 4.088 & 0.078 & 0.0039 \\
\hline & & & \multicolumn{2}{|c|}{Mean} & & 0.0030 \\
\hline
\end{tabular}

The average ammul decrease in the value of X between 1840 and 1862, is, therefore, 0.0030 , or, when expressed in parts of X , equal to 0.00076 . This result agrees tolerably well with that deduced by Assistant Chas. A. Schott in the Coast Survey Report of 1861 , where 0.00110 was found.

Supposing the dip to increase at the rate of \(1^{\prime}\) a \(y\) yar, and the total intensity to remain constant, the corresponding decrease of the horizontal intensity would amount to nearly the quantity found above; we camot, therefore, as yet decide whether the total intensity remains stationary, or is slightly changing.

\footnotetext{
1 From Coast Survey Report of 1861 (yet in manuscript). \(1842.5, \mathrm{X}=4.347\), Captain Letfroy. \(1843.5,=4.292, \mathrm{Dr}\). Locke. Mean, 1843.0, \(=4.320\)
\({ }^{2}\) In July and Nov. 1840, \(\mathrm{X}=4.160\)
In July and Nov. \(1841,=4.164\}\) Mean, 4.166 for 1842.0 .
In July, \(\quad 1843,=4.172\))
}

At Toronto (See Vol. III) the ammal decrease of X between 1845 and 1852 inclusive, was \(0,00: 37\) (in absolute measure), or when expressed in parts of \(\mathbf{X}\), 0.00105.

Formation of groups for the analytical expression of the distribution of the magnetic horizontal force, referred to the epoch 1842.0 .

At stations marked with an asterisk, the horizontal force was determined by vibrations; at those not so marked, the horizontal force was determined by Lloyd's, statical method.

lat \(X=\) resulting horizontal force, \(X_{0}=\) assumed mean horizontal force for 1842.0 at the mean latitude and mean longitude, \(x\) its correction.
\({ }^{\lambda} L=\) difference of latitude, \(d M=\) difference of longitude, \(x, y, z, p, q\), and \(\chi\) to be determined from the observations \(X=X_{0}+\chi+x d L+y d M \cos L+z d L d M \cos L+p d L^{2}+q d M M^{2} \cos ^{2} L\).
Forming the conditional and normal equations we find the expression
\[
\begin{gathered}
X=3.890-0.1787 d L+0.0085 d M \cos L+0.0161 d L d M \cos L-0.0017 d L^{2} \\
+0.0027 d M^{2} \cos ^{2} L .
\end{gathered}
\]
where \(d L=\) Lat. \(-41^{\circ} .38\)
\(d M=\) Long.-77.58.
This formula is applied for determining the relative weights of the observations from vibrations and by deflections of the dipping nuedle; for this purpose the horizontal force was computed by the formula, and the results compared with observation. From the differences we find the probable error of an observation (and local irregularity \()= \pm 0.036\) for the bar and cylinder vibrations, and \(\pm 0.062\) for the Lloyd needle deflections and dip; the relative weights, therefore, become 754 for the former, and 257 for the latter, or nearly as 3 to 1 . These weights have been adopted.

Formation of nine groups of five or six observations in each, with weights. The arrangement is the same as in the case of the dip. The sum of the weights for each group is, as near as may be cqual.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Group I.} \\
\hline & & Lattite. & Longitude. & x . & Weight. \\
\hline New York & . & \(40^{\circ} .78\) & \(73^{\circ} .94\) & 4.014 & 3 \\
\hline Easton & & 40.70 & 75.25 & 4.120 & 1 \\
\hline Princeton & . & 40.35 & 74.66 & 4.227 & 1 \\
\hline Doylestown & . & 40.30 & 75.17 & 4.188 & 1 \\
\hline Reading & . & 40.32 & 75.92 & 3.996 & 1 \\
\hline Philadelphia & . & 39.97 & 75.17 & 4.166 & 3 \\
\hline Mean ly weights & . & 40.39 & 74.83 & 4.107 & \(\Sigma w=10\) \\
\hline \multicolumn{6}{|c|}{Group II.} \\
\hline Frenchtown & & \(399^{\circ} .58\) & 750.85 & 4.308 & 1 \\
\hline Baltimore & & 39.30 & 76.61 & 4.261 & 3 \\
\hline Washington & & 38.89 & 77.00 & 4.323 & 1 \\
\hline Warrishurg & & 40.27 & 76.88 & 4.074 & 3 \\
\hline Near Mercershurg & . & 39.78 & 77.93 & 4.184 & 3 \\
\hline Mean by weights & & 39.68 & 77.01 & 4.199 & \(\Sigma w=11\) \\
\hline
\end{tabular}

\[
\begin{gathered}
X=X_{0}+\chi+x d L+y d M \cos L+z d L d M \cos L+p^{2} d L^{2}+q d M^{2} \cos ^{2} L \\
d L=\text { Lat. }-41^{\circ} .34 \\
d M=\text { Long. }-77.45 .
\end{gathered}
\]

Forming the conditional and normal equations, we deduce:-
N \(3.920-0.1936 d L+0.0146 d M \cos L+0.0203 d L d M \cos L-0.01587 d L^{2}\) \(-0.0005 d V^{2} \cos ^{2} L\).
It is, howerer, preferable to shorten the formula, and use instead, the following:-

The next and last hypothesis，
\[
X=3.900-0.1934 \pi L+0.013+\pi M \cos L,
\]
in which the isodynamic lines are treated as straight lines presents，perhaps，the best and most simple expression of the irreguler distribution of the horizontal force．These lines rum nearly parallel with the dip lines．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Comparison of Observed and Computed Values on this hypothesis．} \\
\hline \multicolumn{7}{|c|}{Group．} & \[
\underset{\text { obscrved. }}{\mathrm{X}}
\] & \[
\stackrel{\underset{\text { computea. }}{\mathrm{X}}}{\text { and }}
\] & \[
\begin{gathered}
\text { Ohserved } \\
- \text { coupruated. }
\end{gathered}
\] \\
\hline I ． & & － & ． & － & － & － & 4.107 & 4.057 & ＋ 0.050 \\
\hline II． & & & & & ． & ． & 4.199 & 4.216 & \[
-0.017
\] \\
\hline III． & & & & & ． & ． & 4.103 & 4.143 & \[
-0.040
\] \\
\hline IV． & & ． & & & ． & ． & 3.912 & 3.876 & \(+0.036\) \\
\hline V ． & & ． & ． & & ． & ． & 4.035 & 4.085 & 0.000 \\
\hline VI． & & ． & & ． & ． & ． & 3.618 & 3.616 & \[
+0.002
\] \\
\hline VII. & & － & － & － & － & ． & 3.858 & 3.846 & \[
+0.012
\] \\
\hline VIII. & & ． & ． & ． & ． & ． & 3.606
3.665 & 3.605
3.708 & +0.001
\(-0.04 \%\) \\
\hline 1. & & － & － & － & ， & － & 3．666） & 3.608 & －0．043 \\
\hline
\end{tabular}

The difference between the lines of this and the previous hypothesis shows th， large amount of local irregularity．

The lines of this hypothesis pass through the following positions：－

The observed and computed values of \(\mathbf{X}\) by the previous and last hypotheses, compare as follows:-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Station.} & \(\underset{\text { observed. }}{\text { ¢ }}\) & \(\underbrace{}_{\substack{\text { b by previous } \\ \text { hyputhesis. }}}\) & \(\triangle\) & & \(\Delta\) \\
\hline *Philadelphia & & , & 4.17 & 4.19 & \(-0.02\) & 4.14 & +0.03 \\
\hline Doylestown & & & 4.19 & 4.11 & +0.08 & 4.08 & +0.11 \\
\hline Easton & & & 4.12 & 4.02 & +0.10 & 4.00 & +0.12 \\
\hline Reading . & & . & 4.00 & 4.10 & \(-0.10\) & 4.08 & -0.08 \\
\hline Frenchtown & & & 4.31 & 4.27 & \(+0.04\) & 4.22 & - 0.09 \\
\hline * Baltimore & & & 4.26 & 4.32 & -0.06 & 4.29 & -0.03 \\
\hline Washingtou & & . & 4.32 & 4.38 & -0.06 & 4.37 & -0.05 \\
\hline * Itarrisburg & & & 4.07 & 4.11 & -0 04 & 4.10 & -0.03 \\
\hline Duncan's Island & & & 3.96 & 4.08 & -0.12 & 4.07 & -0.11 \\
\hline * Near Mercersburg & & & 4.18 & 4.21 & \(-0.03\) & 4.20 & -0.02 \\
\hline Armagh & & & 4.03 & 4.06 & -0.03 & 4.08 & -0.05 \\
\hline Frostburg & & & 4.29 & 4.20 & +0.09 & 4.24 & +0.05 \\
\hline * Near Brownsvillc. & & & 4.20 & 4.14 & +0.06 & 4.19 & +0.01 \\
\hline * Near Pittsburg & & & 4.05 & 4.06 & -0.01 & 4.09 & -0.04 \\
\hline Economy . & - & . & 4.00 & 4.04 & -0.04 & 4.07 & -0.07 \\
\hline Wheeling. & & & 4.05 & 4.11 & -0.06 & 4.17 & -0.12 \\
\hline Steubenville & & & 3.94 & 4.07 & \(-0.13\) & 4.11 & -0.17 \\
\hline Warren & & & 3.98 & 3.94 & +0.04 & 3.95 & +0.03 \\
\hline * Mercer & & & 4.00 & 3.94 & +0.06 & 3.95 & +0.05 \\
\hline Ashtabula & . & & 3.84 & 3.80 & +0.04 & 3.83 & +0.01 \\
\hline *Erie & . & & 3.79 & 3.81 & -0.02 & 3.77 & +0.02 \\
\hline Dunkirk & & . & 3.62 & 3.70 & -0.08 & 3.70 & -0.08 \\
\hline * Ellicottville & . & & 3.72 & 3.75 & -0.03 & 3.73 & -0.01 \\
\hline Berlin's Tavern & . & . & 4.02 & 3.93 & +0.09 & 3.94 & +0.08 \\
\hline *Curwinsville & . & & 4.00 & 3.98 & +0.02 & 3.99 & +0.01 \\
\hline Belvidere . & & & 3.67 & 3.75 & -0.08 & 3.74 & -0.07 \\
\hline * Bath & . & - & 3.68 & 3.70 & -0.02 & 3.70 & -0.02 \\
\hline Owego . & . & . & 3.61 & 3.73 & -0.12 & 3.74 & -0.13 \\
\hline *Silver Lake & . & & 3.78 & 3.76 & +0.02 & 3.77 & \(+0.01\) \\
\hline Wilkesharre & . & . & 3.96 & 3.93 & +0.03 & 3.91 & +0.05 \\
\hline *Williamsport & . & & 3.98 & 3.92 & \(+0.06\) & 3.92 & \(+0.06\) \\
\hline Bellefonte. & . & . & 4.07 & 3.99 & +0.08 & 3.99 & +0.08 \\
\hline Lewistown & . & & 3.98 & 4.05 & -0.07 & 4.05 & \(-0.07\) \\
\hline * Huntingrlon & . & . & 4.10 & 4.06 & +0.04 & 4.07 & +0.03 \\
\hline * Niagara Falls & . & . & 3.57 & 3.62 & -0.05 & 3.58 & \(-0.01\) \\
\hline *Toronto . & . & & 3.54 & 3.53 & +0.01 & 3.47 & +0.07 \\
\hline Rochester. & & & 3.56 & 3.57 & -0.01 & 3.56 & 0.00 \\
\hline *Geneva . & . & & 3.64 & 3.59 & \(+0.05\) & 3.60 & +0.04 \\
\hline *Syracuse . & & & 3.56 & 3.53 & +0.03 & 3.56 & 0.00 \\
\hline Oswego & & & 3.47 & 3.46 & +0.01 & 3.49 & \(-0.02\) \\
\hline Utica & & & 3.55 & 3.49 & +0.06 & 3.54 & +0.01 \\
\hline *Schenectady & & & 3.51 & 3.51 & 0.00 & 3.58 & -0.07 \\
\hline Troy & & - & 3.58 & 3.52 & \(+0.06\) & 3.59 & \(-0.01\) \\
\hline West Point & & . & 4.04 & 3.85 & +0.19 & 3.86 & +0.18 \\
\hline * New York & & . & 4.01 & 4.01 & 0.00 & 3.97 & +0.04 \\
\hline * Milford & & . & 3.7\% & 3.88 & -0.11 & 3.88 & -0.11 \\
\hline Bushkill & & . & 3.86 & 3.92 & \(-0.06\) & 3.92 & -0.06 \\
\hline Princeton. & . & - & 4.23 & 4.07 & +0.16 & 4.06 & +0.17 \\
\hline
\end{tabular}

For the last hypothesis (straight lines) we find the probable error of an observation and local irregularity from the bar and cylinder vibrations, \(\pm 0.029\); and from the lloyd needle deflections and dip, \(\pm 0.062\). For the previous hypothesis, these quantities are respectively, \(\pm 0.030\) and \(\pm 0.059\), showing but little gain in the representation of the olscrvations by the additional term \(d L d M \cos L\).

For the general representation, the probable errors are \(\pm 0.050\) and \(\pm 0.051\).

Representation of the Total Force．
From the expressions
\[
\begin{aligned}
& \lambda=3.900-0.1934 \mathrm{dL}+0.0134 \mathrm{~d} \mathrm{~d} \cos L, \\
& I=73^{\circ} .25+0.912 \quad \mathrm{dL}-0.0690 \mathrm{dM} \cos L,
\end{aligned}
\]
we have to deduce the total force \(\phi=X\) sed \(I\) ．
In the expression for \(X, d L=\) lat．\(-41^{\circ} .34\) and \(d \lambda=\) long．－ 73.45 ．
In the expression for \(I, d L=\) lat．\(-41^{\circ} .32\) and \(d M=\) long．－ 77.39 ．
We have in
\(\left.\begin{array}{ll}\text { Long．} 81^{\circ} .00 & \quad \begin{array}{l}=4.200 \\ \text { Lat．} \\ \text { La．97 }\end{array} \\ \text { Long．} 77^{\circ} .50 & I=71^{\circ} .828\end{array}\right\} \phi=13.47\)

Assuming in the expression for the total force，
\[
\begin{aligned}
& \phi=\phi_{0}+f+x d L+y d M \cos L, \\
& d L \text { and } d M \text { as in the expression for } X \text { we find :- } \\
& \phi=13.55+0.0451 d L-0.00682 d M / \cos L .
\end{aligned}
\]

The lines of equal total force of \(13.45,13.5,13.55\) ，and 13.6 pass through the following positions：－
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{13.45} & \multirow[t]{2}{*}{．} & \multirow[t]{2}{*}{．} & Long． \(81{ }^{\circ}\) & \multicolumn{2}{|l|}{Long． 81.5} \\
\hline & & & Lat． \(39^{\circ} 31^{\prime}\) & Lat． \(399^{\circ} 07^{\prime}\) & \\
\hline \multirow[t]{2}{*}{13.50} & \multirow[t]{2}{*}{．} & \multirow[t]{2}{*}{，} & ．Long． \(81^{\circ}\) & Long．\({ }^{\text {r }}\)－ 5 & Leng． \(74^{\circ}\) \\
\hline & & & Lat． \(40{ }^{\circ} 37^{\prime}\) & Lat． \(40^{\circ} 13^{\prime}\) & Lat． \(39^{\circ} 49^{\prime}\) \\
\hline \multirow[t]{2}{*}{13.55} & \multirow[t]{2}{*}{－} & \multirow[t]{2}{*}{－} & Long． \(81{ }^{\circ}\) & Long． 780.5 & Long． \(74^{\circ}\) \\
\hline & & & Tat． \(41^{\circ} 43^{\prime}\) & Lat． \(41^{\circ} 19{ }^{\prime}\) & Lat． \(40^{\circ} 55^{\prime}\) \\
\hline \multirow[t]{2}{*}{13.60} & \multirow[t]{2}{*}{．} & & Long， \(81{ }^{\circ}\) & Long． \(77^{\circ} .5\) & Long． \(\mathrm{it}^{\circ}\) \\
\hline & & & Lat． \(42{ }^{\circ} 49^{\prime}\) & Lat． \(42^{\circ} 25^{\prime}\) & Lat． \(42^{\circ} 01^{\prime}\) \\
\hline
\end{tabular}

The observed and computed values of \(\phi\) at the stations where the bar and r！linder were employed，compare as follows：－
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{station.} & -ubuerved. & - computed. & Observed-Cumputed. \\
\hline Philadelphiar & . & & & 13.45 & 13.50 & -0.05 \\
\hline Harrisburg & . & . & & 13.44 & 13.50 & -0.06 \\
\hline Huatingdon & . & . & & 13.51 & 13.51 & 0.00 \\
\hline Homewood & . & . & & 13.49 & 13.50 & -0.01 \\
\hline Johnson's Tavern & - & & & 13.54 & 13.48 & +0.06 \\
\hline Irwin's Mill & . & . & & 13.40 & 13.48 & -0.08 \\
\hline laltimore & . & - & . & 13.49 & 13.46 & +0.03 \\
\hline Williamsport. & . & . & . & 13.55 & 13.55 & 0.00 \\
\hline Curwiusville . & . & . & . & 13.55 & 13.53 & \(+0.02\) \\
\hline Mercer & - & - & . & 13.64 & 13.53 & +0.11 \\
\hline Erie & - & . & . & 13.57 & 13.57 & 0.00 \\
\hline Ellicottville & . & . & . & 13.75 & 13.59 & +0.18 \\
\hline Bath & . & . & . & 13.72 & 13.60 & +0.12 \\
\hline Silver Lake & . & . & . & 13.47 & 13.58 & -0.11 \\
\hline Milford & & . & . & 13.50 & 13.56 & -0.06 \\
\hline Schenectady & - & . & . & 13.45 & 13.63 & -0.18 \\
\hline Syracuse & & . & . & 13.61 & 13.63 & \(-0.02\) \\
\hline Geneva & . & . & . & 13.63 & 13.62 & \(+0.01\) \\
\hline Niagara Falls & . & . & . & 13.64 & 13.62 & \(+0.02\) \\
\hline Toronto . & . & . & . & 13.84 & 13.65 & +0.19 \\
\hline
\end{tabular}

The probable error of any representation is \(\pm 0.066\).

\section*{RESEARCHES}

LPON TAE

\title{
ANATOIIY AND PHYSIOLOGY OF RESPIRATION
}

1N THE

\section*{CHELONIA.}

BY
S. WEIR MITCHELL, M. D. axd (EEORGE R. MOREHOLSE, M. D.

COMMISSION

TO WHICH THIS PAPERIIAS BEEN REFERRED.

Prof. Jeffries Wyman,
Prof. Joseph Lemy
Joseph Henry,
secretary S. \(I\).

\footnotetext{
COLLINS, PRINTER
philadelpila.
}

PREFACE.

With certain slight exceptions, which we have pointed out in the text, the following essay is in the strictest possible sense the joint protuction of its two authors, who are equally responsible for all of its statements.

The woodeuts owe much of their accuracy to the skill of the engrater, Mr. Wilhelm, to whose experience as an anatomical draughtsman the authors are under obligation.
They entertain the wish that the novel views of the present paper may induer comparative anatomists and physiologists to examine afresh the respiratory mechanism of other reptiles, and also of birds-a labor in which they indulge the hope of sharing.
s. WeIf MITCHEIL,

No. 122n Walnut Ktreet, Philadelphia
GEO. R. MOREHOTSE,
Nin. 227 South Nioth Strent, Philadelphat

\section*{TABLE OF CONTENTS.}
Preface
AgeList of wood-cets

\section*{CHAPTER I}
ANATOMY OF THE RESPIRATORY APCALATIS OF CHELONIA.
Introductory remarks]
Anatomical history 1
Dissertation on the respiration of the tortoise, by Robert 'Townson 2
Bojanus, "Anatomia 'Iestudinis Europææ" f
Cuvier on respiration in turtles. 6
His criticism on Townson i
Dumeril and Bibron, "mechanism of respiration in chelonians" i
Anatomy of respiratory organs in chelydra serpentina 8
Hyoid bone, description of 8
Laryngeal cartilages \(?\)
Trachea 9
Relations of lungs ?
Absence of striated muscular fibre in langs 3
Chelydra serpentina, the typical turtle of our rescarches 9
General plan of respiratory apparatus 10
Respiratory myology 10
Peculiarities of, in different genera 10
Chelydra serpentina, description of 10
Respiratory act 111
Expiratory mesisle 11
Dissection to expose the musele of expration 11
Appearance of expiratory musele 11
Origin and insertions of the anterior and puatriou leellies of 11
Tendon of 11
Relation of this muscle to the lungs 1.3
Inspiratory musela 1.3
Position of 10
Dissection to expose it 1.3
Description of 13
Its muscular fibres 18
Origin and insertion of \(1:\)
Central tendon 1:
Homologue of Poupart's ligament 13
Relation of inspiratory muscle to expiratory musele 13
Glottic musseles 14
Crico-arytenoid 14
PAC: F
Crien-hyond 11
(0)igin and insertinns of 14
Respiratory masele in Chehonividae 11
In Chelunia mydas 11
Respiratory mus les in Eimydoida 11
In Nectemydoidar. 15
P'tychemys ruposia
Ptychemys mobiliensis 1.
Graptemys geographica 16
Malacoclemmys palustris 16
Chrssemys pieta 17
In Clemmydoide.
17
17
Namemys guttata
Namemys guttata
17
17
Calemys Mihhenbergii 17
In Cistudinina.
Cistudo Virginea 17
Table of origin of repiriatory mustes of Emydodide with dimensions of species 18
Pevoliarities of origin of the expiratory muscles in comection with the habits of Emydoide 18
Semal apmoratus of respirafion in Chelomians 18
Meduila oblongata 19
P'ar vagum 19
Origin and course of 19
Saperior laryugeal nerve 19
Communicatimg brameh of 19
Branch wo rice-arytenoid muscle 19
Branch to crico-logod musele 19
Disection to expose chasm of superior laryngeal nerve 19
Sensitive tibres of superior laryngeal nerve 19
Inferjor larynural nerve 19
Origin and course of 19
Distribution to crico-arytenoid muscle 19

CIIAPTER II.

PHYSIOLOGY OF TIF RFAPIRATORY APIARATIS OF CHELONIA.
TVianer of theories of (Cbelonitn respiration 20
R. Townson on 20
Malpighi on 20
Milne Eilwarts on 21
T. Rymer Jobee on 21
Mïller, Carpenter, Agassiz, on 21
Peranit on 22
Tanmy, Haro on 22
Townson's views most corred 93
Views of one of the anthors in previous paper 2:3
Divisum of subjert for staty 23
Extemally visible phemomena of respiration -24
Nmber of respirations per minute 24
Elements of the respiratory act 24
Appearance of glotis 24
Function of hyoid apparatus 24

\section*{LISTOFW00D-CUTS.}
page
Figure 1. Hyoid bone 8
Figure ㄹ. Largngeal "urtages:-A. ('ricoid cartilage with arytenoid cartilage superimposed.B. Cricoid rartilage9
Figure 3. Muscles of inspiration and expiration 12
Figure 4. Glotic museles and nerves 14
Figure 5. Diagram of origin of expiratory muscle 15
Fignre 6. The interommunicating nerse sem from below 12
Figure 7. Appearance of the glottis when nlasel (A), when open in respiration (B) 25
Figure 8. Diagram of the interommunicating nerve 35

\title{
RESEARCHES
}

OFON TEA
anatomy and physiology of respiration in the cielonia.

\section*{CIIAPTER I.}

In the whole animal series there is scarcely a creature that would be less likely to suggest itself as a field for discovery than the Turtle. Its temptingly curious form, its world-wide distribution, its limited means of escape and of defence, would seem to combine to render it an easy and early object of investigation to the naturalist. And yet the history of Chelonians is full of discordant observations; functions have been misinterpreted, and even important parts of structure have been asserted to exist by some, and again denied by others, until at the present day the uncertain record has forced opinion into error, and permitted the conduct of one of the most important processes of life, that of respiration, to remain misunderstood, and the means of its accomplishment neglected and in part unknown. The view now entertained by the leading authorities upon the subject, that Turtles inspire by an act of deglutition, as do the frogs, has prevailed from the first, and doubtless arose from the panting movements of the under part of the throat, common to both orders, and among turtles, especially observable in marine species. It will be the object of this paper to show that this view is incorrect, that turtles do not swallow the air in breathing, but that their respiratory act is effected by inspiratory and expiratory muscles situated within the trunk.

The solid thorax clearly indicates that Chelonians do not enjoy the perfect respiratory mechanism of the highest vertebrates. The ordinary tranquil respiration of mammals, when the ribs are at rest and the cavity of the thorax is enlarged by the descent of the diaphragm alone, is, however, very strikingly analogous to that of turtles, in which the carity of the shield is enlarged by the contraction of the muscles of the flanks.

In tracing the anatomical history of the organs of respiration in Chelonians, the earliest work to which we have had access is a "Dissertation on the Respiration of the Tortoise," by Robert Townson, LL. D., written at Göttingen, May, 1795; and as we find in it a brief review of all that was known previously upon the subject, we have taken the privilege of embodying this rave and interesting paper in the present sketch. This we do more checrfully as an act of justice to the author; for, having conducted our inquiry with a full knowledge of the opinions of modern
authorities, we were surprised, on afterwards learning the singularly truthful views of Townson, to find they had fallen mappreciated, and that, in many instances, they had not even been honored by a notiec, or, when so noticed, had been mentioned only to be condemned.

Physhological Obsertations on the Amphibia. Dissertation the Third, on the Respicution of the Tortoise. Robert Townson.

The first inspection of the structure of the animals I have lately treated of, the Ranee and Salamandre of Linneres, will show that respiration camot be performed in them as it is in man and animals similar to him; the absence of the osseous parts and diaphragm is sufficient to demonstrate this; and though, on the records of physiology, there are instances of the continuation of respiration after the mobility of the osseous parts had ceased, yet, as these were only instances of suffering nature, where the accompanying assistant, the diaphragm, still continued in full energy, physiologists ought, likewise, in examining the structure of the animals I am now to treat of, the Tortoise-tribe, to have suspected that this function was not performed in them as it is in us. Yet these hints given by this anomalous structure have either been neglected or made an improper use of, and the manner of their respiring remains in the greatest obscurity to the present hour. Before I proceed to show the present state of our knowledge on this subject, by giving the opinions of the celebrated anatomists and physiologists who have written upon it, I will just observe that, as the impossibility of respiration being performed in the frog-tribe, in the usual manner, consists in the absence of the ribs and diaphragm, so here the immobility of the whole bones of the trunk, and absence of the diaphragm, form the insuperable hindrance, and not a deficiency of solid parts as in the preceding; for a modification of the ribs and sternum here envelops the avhole animal. The diaphragin, though said by some to exist, is really wanting. Blasius, however, asserts its existence, and describes it thus: "Diaphragma insigne admodum, oblique a pectoris anteriore inferioresque parte sursum adscendet, lateribus primo, hinc dorso firmiter adharrens; altiorem adeoque situm in posticis obtinct, quam in anticis, contra ac in homine, canibus bobus alissque animalibus observamus, ubi auteriora sublimem majis locum habent posterioribus. Membranosum hoc totum notatur, similiter ae in avibus variis deprehendimus, nullis fibris cameis manifeste gaudens. Distinguit equidem thoracem a ventre inferiore, ast non sit in animalibus aliis: Pulmones enim cum hic sese in hoe magis, quam illo ventre exhibeant magne parte, diaphragmate haud includuntur, imo vix aliqua parte. Extendit se supra hepar partesque alias ipsi adsitas, usque ad vesicam urinariam cui valide adeo unitur tota superficie superiore ut non nisi magno artificio separari queat. Superius pericardio jungitur." But I am convinced he has taken the peritoneum for it. I have sought for it in vain, as well as other zootomists; neither Gotwald nor Wallbaum has observed it, and the French academicians, who dissected one near five feet long, say, that "la tortuc a non seulement son écaille, qui lui sont lieu de thorax, absolument immobile, mais nous ne lui arons trouté n'y de diaphragme, n'y d'autres parties qui puissent supplier à ce mowement." This deficiency of the requisite mechanism for respira-
tion has led some physiologists to explain this important function upon principles inconsistent with sound physiology, analogy, or experience. Perault attributes the expansion of the lungs, and consequent inspiration, to the elasticity of the membranes forming their cells; and the expiration to the compression of muscles, of which, he says, these animals have plenty. "Apparement," he says, "il est necessaire de supposer que l'inspiration se fait par: le ressort des ligamens durs et fermes qui composent les mailles qui ont été décrites: en sorte que lorsque les muscles qui peuvent comprimer le poumon viennent à se relacher, les ligamens s'étendent et élargissant les ouvertes de toutes les vessies augment la capacité de tout le poumon." Varnier boldly asserted that the whole process of respiration, both expiration as well as inspiration, was effected by the lungs themselves alone, by the means of their muscular texture, as a muscular network surrounded them, by which means they could respire by the alternate dilatation and contraction of the vesicules without the aid of the other instruments of respiration. He says, "Je parvins à me démontrer à moimême que le poumon de la tortue etoit entouré d'un réseau musculaire que par ce moyen ils étoit parfaitement irritable, qu'ils avoit une action propre, indépendente des autres agens de la respiration et qu'ils pouvoit inspirer par lui même;" and soon after adds, "le muscle du poumon de la tortue qui produit un mouvement convulsive," and then says that, "dans le tortue le poumon est cellulaire; les cellules se correspondent comme dans la grenouille; le muscle enveloppe toute la masse, et en se contractant la remue toute entière;" and concludes his memoire by saying, "le poumon est un organ actif; qu'il est le premier et le principal agent de la respiration, et que cette fonction dépend, comme dans les amphibies, de la dilatation et contraction alternative des vésicules qui determinent alternativement la contraction des muscles inspirateurs et expirateurs, et cela indépendamment de la volonté." Admitting the lungs to possess this muscular texture, which could not be perceived by Haller and the best anatomists, they would still be ill adapted to inflate by their own power. "We learn, through the Transactions of the Royal Academy of Paris, that it was the opinion of Monsieur Taurry that they breathed only in walking. "La tortue est enfirmée entre deux écailles immobiles, et clles n'a d'ailleurs aucun diaphragme qui puisse servir ì une compression alternative des poumons. Dans cette difficulté d'expliquer sa respiration, Monsieur Taurry s'est avisé d'en rapporter la cause au mouvement du marcher; quand la tortue est en repos, sa t̂te et ses pies sont retirés sous l'écaille supérieure, et la peau qui l'enveloppe entièrement est plissé, mais quand l'animal marche, il pousse au dchors sa tête et ses pies; sa peau s'étend, puisqu'elle est tirée par ces parties, et par conséquent clle forme intérieurement un plus grand espace, et c'est dans cet espace vuide que l'air extérieur est obligé d'entrer." This explanation, which is very anomalous with everything we know of this function in other animals, I put to the test of the following experiments, which proved it erroneous. I took the Testudo orbicularis in its contracted state, and wrapt it up in paper, binding it all round with bandages so fast, that the testa and sternum were brought so near before as not to admit the exit of the head. I then made an aperture in the paper opposite to its nose, and thus deprived of every motion, I placed it before the flame of a candle, yet I found not only that it blew the flame, but sometimes so strongly as nearly to extinguish it.

This experiment, though conclusive against the opinion of Taury, I strengthen by another; in this I kept the legs out, binding them very firmly under the sternum, the head being contracted as before, yet I still observed that it breathed, and as in the former experiment, sometimes with great force. The respiration, therefore, of the tortoise has no more connection with its other motions than that of other animals. But Morgagni, who was, as I have mentioned in the second dissertation, acquainted with the mamer of respiring in frogs, which I have given in detail, supposes that the tortoise respires in the same manner; for, speaking of the frog, he says: "Inspiratio autem iis instrumentis per quæ inferior bucce pars amplificata animal contracta ærem in pulmones compellit;" and then adds, "quin imo id ipsum, dum fluvialem quandam testudinem vivam inciderem, observavi invenique, totam cam partem quæ intra cavitatem mandibulæ inferioris est, multum posse extrorsum curvari ut hinc ær immitti posset, pulmones vero fibrarum rite firmari, ut hine ar vicissim posset remitti." Notwithstanding the high reputation of Morgagni, I must dissent from the opinion of the tortoise respiring like the frog. I will not say that none of the genus do respire in this manner, as I have had no opportunity of examining any of the turtles. I wish to be understood as speaking of the Testudo orbicularis, my observations having chiefly been confined to this species, though I think I may say the same of the greeca and palustris. Yet the opinion of this celebrated man is supported by Coiter and Varnier saving that, after the sternum is taken off, and the lungs are laid bare, the animal can still inflate them. But if, after the sternum was taken off, the peritoneum cut through, and the lungs laid bare, these appeared to Coiter and Varnier to inflate, this might not have proceeded from any power residing in the lungs themselves, nor from any air being impelled into them by the muscles of the throat, but by the parts in contact with them, as the neck before, and the muscles behind (which I shall soon describe), shortening them, in which case they would appear more distended, though the quantity of air within was not increased. The tortoises which I opened I never observed to inflate their lungs as the frogs do; nor did the anatomists mentioned by Valentini observe it, for they say, "Pulmones enim depressi remanebent, nec inflabuntur ab illa aeris attractione quod fieri potuisset tamen ab animali adhuc vivente licet capite truncato, quod ego subito, antequam aperiri, curarem, abscindi jusseram." Yet adds, "Vitalis autem haec testudo actiones habuit hore spatio absque corde sed et absque capite; nam perlas movit ad tactum nostrum et sine eodem quoque retraxit." These are the opinions of the older anatomists; and amongst the moderns I know of none who have said anything on this subject. Being dissatisfied with them, I entered into the investigation by actual observation, and opened one for this purpose. The sternum being taken off with great care, the periosteum presents itself as a strong white membrane like parchment; when I had cut through this, I found many muscles inserted into it, particularly over the scapuler and os pubis, which, in the contracted state of the animal, are not far asunder. Just above the os pubis it is connected to the peritoneum ; by this means these bones, with their muscles, are cnclosed as in a bag, having the peritonæum beneath, and the periosteum above; the scapula, and their connected bones and muscles, are enclosed in the same manner. The peritonæum being cut through,
and the intestinal canal, liver, \&c., removed, the lungs, consisting of two lobes, are seen covering nearly the whole of the teste; they are cellular, as in the frog, and consist of two lobes, one on each side of the spina dorsi, each of which is subdivided into four or five indistinct lobules. The cellular texture of these is not uniform; the cells of the middle lobules being the smallest, and those of the last lobule the greatest; this lobule is likewise loose, not being tied down on the sides nor beneath, the rest are tied down to the spine. My attention was soon called to observe the structure and office of some muscles in the region of the flanks, which I observed often to be in motion, contracting and extending alternately, and though placed by the side of the hind legs, these were not moved by them. Further, they were placed at the end of the last lobule of the lungs, and they appeared to retain their irritability the longest. This was sufficient to lead me to conjecture that these might be the parts by which respiration in these animals was performed; and to see them act in their natural position I sawed off, in another tortoise, that part of the shell which covers them, and I then saw them constantly working. One was now placed nearly in a perpendicular direction, and another, or part of the same, was placed nearer the sternum, lying almost in a horizontal direction. The first in its contraction receded from the testa inwards, whilst the latter, in its contraction, observed a contrary direction. When I attributed to them the office of expirator and inspirator muscles, which I supposed them to perform, I was embarrassed, because I could not conceive how a muscle could be a constrictor with its convex side; yet when the expirator, by contracting, had receded from the shell inwards, it appeared, when viewed from without, to be concave. But this difficulty ceased as soon as I had opened the animal and dissected the parts, for I then found the following admirable contrivance of nature. This part is composed of two distinct muscles, with their risings and insertions quite different, yet firmly connected in the middle by cellular membrane. The first rises from the testa near the spina dorsi, and is inserted into the peritonæum; this is the constrictor of the lungs, or the muscle of expiration. The other is nearly spread over the whole cavity between the upper and under shell, where the hind legs are drawn in during the contracted state of the animal, being inserted into the margin of the testa above, and the margin of the sternum below. The places of insertion of these muscles, and their connection in the middle being known, there is then no difficulty in explaining why the muscle, while acting as a constrictor, appeared concave, as it was only the inspirator brought into that position by its antagonist; nor any difficulty in conceiving how they carry on the function of respiration; for the expirator being comnected, as I have already said, to the testa below and to the peritonæum above, envelops in a manner the last movable lobule of the lungs; when, therefore, it contracts, it compresses this part of the lungs, and by that means expels the air; then ceasing to act, the other contracts, and draws the former with it, thus a vacuum is formed, into which the air rushes, as in the respiration of those animals which have a thorax.

To prove that this explanation was well-founded, and that the motions of these muscles were really those of respiration, I made the following experiment. I fastened on the nose of a tortoise a little valve made of white paper, which covered
the nostrils, and with the assistance of a friend, I watched the motions of the soft parts lying within the hollow where the hind legs came out, and I found that these motions perfectly correspouded with the motions of the valre, which was put into motion by the expirations and inspirations of the animal. In this manner I conceive respiration to be carried on in the tortoise, without, however, meaning to extend this explanation to the whole of the genus Testudo, some families of which I have never yet had an opportunity to examine. These animals will therefore materially differ from those of the two preceding families in the mode of respiring; the air in them being driven into the lungs by the muscles of the throat, which act like a pair of bellows, whilst in these it is performed by the lungs following the motions of their containing parts, and they will therefore differ from the animals having a thorax chiefly in the form and situation of the parts. Respiration is not, I think, the only office of the muscles which I have just described; they are closely comected to the bladder, and to them, I think, this animal is indebted for the power it possesses of sucking in water by the anus, as I mentioned in my last dissertation ; but this investigation I must leave to another time.

It will thus be secn, while this close observer fully realized that respiration in the turtle was not effected by deglutition, but by muscles of expiration and inspiration situated in the flank spaces, yet, failing to recognize the true office of the anterior muscles, his conception of the respiratory process was necessarily imperfect and insufficient, and to this, no doubt, must be ascribed the neglect into which his views have fallen.

In 1819 appeared the most important contribution to the literature of the subject, the monograph of Ludovicus Henricus Bosancs, on the Anatomy of the Testudo Europese. This work being purely anatomical, we have no means of judging as to the author's knowledge of the muscular apparatus concened in respiration, exeept by the nomenclature he adopts, and some details of description. The inspiratory muscle and the posterior belly of the expiratory muscle are grouped as abdominal muscles, and described as the obliquus and transversus-abdominis, while the anterior belly of the expiratory museles, under the name of diaphragmaticus, is thus referred to: "A corpore vertebre dorsi quarte et tertire et a costa tertia oriundus, triplici fasciculo complanato, divergentibus cundo; quorum bini ad marginem internum pulmonis, sui lateris, descendunt eique agglutinantur; tertius vero supra pulmonis anterius extremum revolutes ad peritoneum (a pulmonum facie inferiore versus cardiam et hepar deflecteus) desinit." It is, no doubt, probable that these names have been determined by supposed homologies of the muscles, and yet we may reasonably conclude that Bojanus had not perceived any relationship between the diaphragmaticus and the transversus abdominis, and did not realize that the broad fibrous membrane extending between them was their common tendon. This conecption is essential to the full realization of the respiratory process.
G. De Cuther, bearing in mind the type of batrachian respiration, regards the alternate contraction and dilatation of the throat as movements of deglutition of air, and thinks them a sufficient and the only means by which inspiration is effected. 'The expulion of the air from the lungs loe refers to the agency of two museles in
the flank, the obliquus and transversus of Bojanus, at the same time calling attention to the fact that 'Townson has crroneously attributed to one of these (the obliquus) the function of an inspirator. He thinks also that the analogues of the quadratus lumborum and the rectus abdominis, by compressing the viscera, may assist in expiration. In his Leçons d'Anatomic Comparéc, vol. vii. p. 216, Durernoy's edition, 1840, we find his opinion in detail.
"Le même mécanisme est mis en jou dans les chéloniens. La déglutition de l'air est le seul moyen dont ils puissent se servir pour faire entrer ce fluide dans leurs poumons. Ils dilatent et contractent leur gorge altcrnativement, ayant la bouche fermée, absolument comme les batraciens et par les mêmes puissances. Il est expulsée par deux pairs de muscles analogues à ceux du bas-ventre des animaux précedents. Ces muscles remplissent l'intervalle postérieur du sternum et de la carapace, dans lequel se replient les extrémités pelviennes dans l'état de repos, et c'est à cet endroit qu'on aperçoit dans les chélonicns les mouvements de contraction et de dilatation qui, dans les mammifìres, se voient dans toute l'étendue du ventre.(1) La première paire ou l'externe résemblent à l'oblique descendant, clle s'attache à tout le bord antérieur du bassin, à la carapace et au stcrnum, et s'étcnd dans tout l'intervalle postéricur de ces deux parties. L'interne ou l'analogue du transwerse est composé de fibres transversales s'attachent supéricurement à la moitié postéricur de la carapace près des vertèbres, descendent en dehors des viscères, les enveloppent et viennent aboutir inférieurement à une aponevreuse moyenne. Celle-ci passe en partie sous la face inférieure de la vessic, et doit scrvir à la vider lorsque ces muscles se contractent. Ils ne comprennent immédiatement qu'une petite portion des poumons; mais leur action s'exercant plus fortement sur les viscères du bas-rentre, ceux-ci pressent à leur tour les premicrs organes et en expulsent l'air. Les muscles analogues du quarré des lombes et du droit abdominal qui ont été décrits (t. i, \(\mathrm{pp} .488,489\)) doivent aussi comprimer les viscères abdominaux, et par leur moyens les poumons. Les chéloniens qui ont leur cavité viscérale divisé par le pleuropéritoine à la manière de celle des oiscaux, ont une de ces cloisons celle qui descend de la partie antérieure du bouclier dorsal, au devant du foie, constituéc comme un diaphragme par des fibres musculaires et aponerretiques. Bojanus décrit un muscle diaphragmatique pair composé de fibres musculaires épanouies de chaque côté sur cette cloison, que nous avons fait connaitre comme une sorte de diaphragme (t. iv, 2 l partic, p. 651). Son action, quoique faible, peut contribucr à l'expiration en comprenant les poumons.
"Peut être que les poumons se contractent aussi par une force propre que réside dans le réseau tendineux qui entre dans leur composition (Art. 11, de cette Leron, p. 130).
"N. 1. Je crois l'avoir fait connaître le premier (Bull. de la Soc. Phil. an. xiii, No. 97, p. 279) en démontrant, contrairement à l'opinion de Townson, que les muscles du bas-ventre sont l'un et l'autre des muscles expirateur. Fit cependant c'est à cet auteur qu'on attribue l'explication que j'ai donnéc en montrant l'inexactitude de la sienne."

Dumeril et Bibron, vol. i. p. 176,1834 , described briefly the mechanism of respiration in chelonians thus: air centers the buccal cavity through the mose, then
the ficshy tongue is applied to the posterior nares so as to close them, and the mylo-hyoid floor of the mouth contracts, to force the imprisoned air into the lung. A succession of such acts fills it.

Before entering upon the details of description, it may be well to premise, that this anatomical section of our paper is intended mainly as an exposition of the muscular and neural apparatus by means of which the movements of air to and from the lungs are effected in chelonians, and while, to render the subject more intelligible, we shall rehearse the general anatomy of the organs of respiration, we shall avoid all questions of structure or function irrelative to the point of inquiry, referring the reader desirous of such knowledge to the more general works on comparative anatomy.

Underlying the floor of the mouth, and embracing with its cornua the sides of the pharynx posterior to the jaw, is the hyoid apparatus, or the tongue-bone, Fig. 1,

Fig. 1. \(n, a^{\prime}\), lesser cormua; \(b, b\), greater cornua; \(r, c\), cartilaginous processes; \(d, d\), ossicles for attachment of suspensory ligaments; \(r\), body of bone; \(f\), fenestrum, closed by cartilage; \(g\), articulations of cornua with body.
an instrument conspicuous for the part it has evidently played in fixing upon its possessor the batrachian type of respiration. It consists of an clongated body, excavated for the lodgment of the larynx and upper rings of the trachea, and of a cartilaginons process and two bony cornua on cach side, connected with it by movable articulations. To the extremity of the anterior or major cornu is attached a knob or ossicle, for the reception of the suspensory ligament. This ligament arises from the mastoid process of the temporal bone of the cranium, and forms the fulcrum on which the apparatus swings backwards and forwards, moved by alternate contractions of the genio-hyoid and omo-hyoid, and other muscles of the neck. The hyoid
bone, in its movements, carries with it the glottis, and removes it from obstructions during inspiration. The larynx, Iig. \(2, \mathrm{~A}\) and B , consists of a largely-developed cricoid cartilage and two arytenoid cartilages. The cricoid rests in the bowl of the hyoid bone, is somewhat helmet-shaped, and has on its under surface a visor-like oval fenestrum. This fenestrum is covered by membrane, and is traversed from side to side by the chiasm of the superior laryngeal nerves, of which we shall speak more fully hereafter. Superiorly the cricoid presents an oval opening, filled in by membrane, upon which rest the arytenoid cartilages, one on either side, with the glottic slit

A
b \(b^{\prime}\). Cricoid cartilage; \(c\), left arytenoid cartilage; \(a^{\prime}\), cartilaginous tubercle capping the apex of the arytenoid cartilage; \(a\), oval fenestrum of cricoid, filled in with membrane.

Fig. 2.

b. Cricoid cartilage; a, superior opening; \(c\), trachea.
between them. The arytenoid cartilages, Fig. 2, A, c, are two irregularly triangular solids, opposing flat surfaces to each other, their bases incorporated with the superior cricoid membrane, and their apices extending vertically, and terminating in a small cartilaginous tubercle. They are the framework upon which the crico-hyoid and crico-arytenoid muscles act, in closing and opening the glottis. The trachea, smaller in diameter than the cricoid bulb, descends the neck, inclining to the left side, until opposite the margin of the shell it divides into two bronchi, which, curving right and left, open free into the corresponding lungs, at the under and inner edge, a little behind the anterior extremity. The lungs are two wedge-shaped sacs, the base of the wedge being anterior. They lie in contact with the vault of the dorsal shield, and are separated from each other by the large retractor muscles of the neck, the bloodvessels, and nerves. They are anterior and above the peritoneal sac, except the posterior pointed extremity, which projects into that cavity, carrying with it a covering of peritoneum. The walls of the lungs being elastic lend aid to the act of expiration, but as they give no evidence of muscular fibre to mechanical or galvanic stimuli or to the microscope, it is impossible, for this and for other reasons, to suppose with Varnier that they possess any intrinsic power to assist in the act of inspiration.

The turtle which has served us for most of our experiments, is Chelydra Serpentina, the well-known Snapping Turtle of the United States. Selected at first from the facility with which we could procure fine specimens, we soon found that its well developed muscular system and its exposed flanks admirably fitted it for the study of respiratory myology, while its middle rank among Testudinata led us to expect, in its organization, more striking ordinal characters than we would find in the extreme marine or terrestrial families. We have therefore adopted Chelydra

Serpentina as our typical turtle, and will describe in detail the apparatus of respiration as we find it in this species, noting, subsequently, the modifications of structure existing in the different genera that we have had the opportunity to examine. In all turtles we have found the general plan of the respiratory apparatus constant, an inspiratory muscle in each ftank, and an expiratory muscle with four bellies, two anterior and two posterior, comected by a broad membranous tendon, inclosing the viscera and capable of compressing them against the under surface of the dorsal shield. The discrepancies characterizing different genera principally affect the origin of the anterior belly of the expiratory muscle; these may naturally be arranged in two groups, those in which the origin is anterior (about the second rib), (see Fig. 5) and extends nearly across the width of the shicld, and those in which the origin is posterior (about the third or fouth rib), and in extent more limited. The specimens we have had the opportunity to examine are too few to cnable us to determine whether this structural diversity can be received as an element in determining generic rank. We will content ourselves, therefore, at present, with the description of each specimen, including a brief notice of its habits and shellmeasurements, which may serve as a nucleus for future and more extended observations.

Chelydra Serpentina is a carnivorous turtle living in the water, under bank-eaves, or at the bottom of streams, and yet capable of moving over the land with facility. The under surface of the body is much exposed, the plastron being small and cruciform, and connected with the carapace by a narrow bridge, which widens to join the fourth, fifth, and sixth ribs. The flank spaces are large, flat, and unprotected, and the extremities incapable of complete retraction under the shell. The height of the trunk compared with the width and length of the carapace is as one to three and three and a half.

Carcfully watching the animal while breathing, we notice synchronous movements of the trumk, of the throat, and of the glottis within the mouth. With the first element of the respiratory act, expiration, the glottis opens, the hyoid apparatus descends and widens, the shoulders sink and the flanks become increasingly concave; then follows immediately the inspiratory effort, the glottis remaining open, the throat narrows, the flanks become tense, and the shoulders are pushed forwards as the act culminates; afterwards the muscles relax, the glottis closes, and the creature is at rest until again impelled to renew the air in its lungs, when the same sequence of expiration, inspiration and pause is repeated.

We shall follow the order of the elements of the respiratory act in describing the apparatus by which it is effected. And first, of the muscles of expiration. For the purpose of dissection, it is desirable to place the animal upon its back and fix it, by extending and securing its head, tail, and extremitics. Separate with a saw the bony bridges connecting the plastron with the carapace, and sweeping a knife close to the inner surface of the former, divide from before, backwards, the deltoid, pectoral, pelvic and flank muscles, the acromial articulations posterior to the first pair of sternal bones, and the loose cellular bands binding the visceral sac to the middle line. This permits the removal of the plastron. Drawing the shoulders forward, cut the ligaments, holding the scapule to the spine anterior to the first rib,
which loosens the entire muscular and boriy mass, and facilitates its detachment. The section should be made with the lung partially inflated, to secure from injury the anterior belly of the expiratory muscle, which lies in contact with the posterior surface of the serratus magnus. The further removal of the tissues of the flank, and their careful separation from the posterior belly of the expiratory muscle to which they are adherent, completes the exposure.

Looking at the result of our dissection, we find a tendinous and muscular sac occupying the dorsal shield, filling its entire width in the middle and most of its length; its general form is cordate, the apex dipping into the pelvis, and its anterior notch giving place to the heart and the muscles and vessels of the neck. Much the larger portion of the sac visible is tendon (Fig. 3, \(g, g^{\prime}\)), and has hitherto been regarded as peritoneum, but a closer scrutiny would have revealed its fibres gathering from all sides towards an oval centre, in which they are inseparably interwoven. The tendon in many places can be lifted from the peritoneum, by which it is lined. Curving around its anterior and posterior borders are muscular fringes (Fig. \(3, d, d^{\prime}\) and \(c\)), the fibres running from the carapace in lines parallel to the long axis of the trunk. These are the anterior and posterior bellies of the expiratory muscle, the diaphragmaticus and transversus abdominis of Bojanus. These muscles are inserted into the common tendon, and in contracting compress the contained viscera against the shell and expel the air from the lungs. Dividing the tendon through its middle from side to side, and removing the abdominal organs and permitting the lungs to collapse, we are enabled to obtain a satisfactory view of the origin of these muscular bellies from within.

The posterior belly arises from the pelvic fascia from a point opposite the anterior third of the ilium backwards to the spine, from the eighth vertebra, and by tendinous fibres from the carapace as far as the sixth rib, the line of origin slowly leaving the spinal column as it reaches forwards. Turning outwards at an obtuse angle, after joining the sixth rib, the muscle follows its posterior edge until near its extremity, where it inclines forwards and terminates at the fifth rib as it joins the marginal plates, a point corresponding very nearly with the pelvic end of the suture connecting the carapace and plastron.

From this sigma-shaped origin the fibres curve backwards and downwards, embracing the abdominal viscera, and unite with the tendon below, forming a regular and well-defined line, varying in position as the muscle is contracting or at rest. Fig. \(3, c\), represents the lungs distended and the muscle relaxed. This belly, considered by itself, is a strong membranous muscle, somewhat triangular in shape, the apex being at the cdge of the shell, and the base at the pelvis. In a turtle weighing sixteen pounds, the fibres at the apex measured one-half inch in length, while in the middle and at the base they measured respectively five and one-half and four inches.

The anterior belly arises from the vertebral margins of the second and third intercostal spaces, from the second costal arch, from the second rib along two-thirds of its length, and across the carapace in a line curving backwards and outwards, from the third and fourth ribs, near their junction with the marginal plates. It will thus be seen that the outermost origins of the anterior and posterior bellies closely approxi-
mate above the plastron where it meets the upper shield, while at the middle line of the body the origins are separated by the distance of the eighth from the third vertebra. The fibres composing the anterior belly are close and firm for the outer

Fig. 3.

Fig. 3. Muscles of inspiration and expiration.- \(u u^{\prime}\) " \(u^{\prime \prime} u^{\prime \prime \prime}\), margin of carapace; \(u^{\prime} u^{\prime}\), portion of plastron in position ; \(c\) posterior belly of the expiratory muscle on the right side; \(d d^{\prime}\), anterior bellies of the expiratory muscle; e, reticulated portion showing the lung beneath; \(f^{\prime} f^{\prime}\), inspiratory muscle of the left side; \(f^{\prime \prime}\), central tendon; \(f^{\prime \prime \prime}\), tendinous ligament; g \(g^{\prime}\), tendon of expiratory muscle; \(h\), muscular fibres beneath the tendon \(g g^{\prime}\), and attached to the lung.
half, while those capping the inner portion are fewer in number and reticulated, permitting the lung to be seen through their interspaces. (See Fig. 3, e.) The part of the muscle which arises from the vertebræ covers that triangular surface of the lung which looks towards the interpulmonary notch, while that of costal origin spreads over the anterior face of the lung, sheathing its entire thickness when the organ is fully inflated. A few of the fibres capping the anterior and superior extremity of the lung continue their course over the under surface of that organ, spreading fan-like towards its outer edge, and being inserted into its adherent peritoneal covering. They are represented by the dotted lines (Fig. 3, h). These fibres are much more largely developed in some other genera, and seem to have the power of drawing the lung in towards the spine, and keeping it well under the viscera when compressed during expiration.

The inspiratory muscles (Fig. 3, \(f j^{\prime \prime}\)) are to be sought for in the flank spaces at the under and posterior portion of the trunk, into which the hind limbs of the animal are drawn during repose. There is one muscle in each flank, superficial, and readily displayed, by reason of the loose cellular connection it has with the tissues concealing it. Turning aside the skin and fascia loaded with adipose matter, as it often is in this locality, we at once expose this beautiful sheet of muscular fibre, during contraction, stretching like a drum-head over the entire space, and fitting closely its irregular boundary. Through its centre, from before backwards, runs a flat tendon (Fig. 3, \(f^{\prime \prime}\)), averaging in width one-sixth of the breadth of the muscle, and receiving throughout its length, on both sides, the insertion of fibres. It is usually a single band, but in several specimens we found it irregularly double, being divided by islets or patches of muscular fibre. In some form, however, it exists in all Chelydra, and constitutes a striking feature of the muscle, its white pearly hue contrasting boldly with the crimson fringes between which it is placed. In some families it loses its significance, dwindling to a central raphé, or more rarely is absent altogether. The direction of the muscular fibres is transverse, especially in the anterior part of the space; behind and outside of the tendon they diverge to accommodate themselves to the circular sweep of the carapace. Being attached to no other mobile part than the central tendon, we may consider that as their insertion ; their origin embracing the entire circumference of the space. Beginning with the posterior sternal bone, we may trace its fibres coming from the inner edge of the plastron, where it curves around the flank, from within the marginal plates of the carapace, from the fascia filling the space posterior to the sacrum, and along the pelvic muscles from a ligament, the counterpart of Poupart's ligament in man, stretching between the ilium and pubis. The fibres arising from the anterior end of this ligament underlie the lowest fibres from the plastron, and give to the latter a falciform appearance, represented in (Fig. 3, \(f^{\prime \prime \prime}\)). On the upper side, the inspiratory muscle is attached by cellular tissue to the posterior belly of the muscle of expiration, and by the contraction of this latter muscle during the . expulsion of air from the lung, is carried downwards and forwards into a strongly concave position, most favorable for its own subsequent effort.

The capability of the turtle to hold the air in its lung at will, or when subjected to great external pressure, as must constantly occur in marine species,

Fig. 4.

Fig. 4. Glottic muscles and nerves. -a a', rioo-hyoid: the muscle orerlying it is the arien-aryte. uoid: \(\ell\), superior laryugeal nerve: \(\ell\), commmaicatimg brameh; \(b^{\prime \prime}\), lirawh to whoarytenoid; \(b^{\prime \prime \prime}\), branch to crico-hyoid; c, recurrent laryngeal; d d', glattic slit ; e, point of hyoid bone; \(f\), tongue.
is determined by two pairs of muscles situated about the glottis, and controlling its movements. These are the crico-arytenoid and the crico-hyoid of Bojanus; to the former is intrusted the opening of the glottic lips, while the latter, acting as a sphincter, serves to close them. 'The crico-arytenoid (Fig. 4) lies beneath the mucous membrane, superficial to the crico-hyoid, and crossing it nearly at right angles. It arises from the sides of the cricoid cartilage anteriorly, and is inserted into the body and rertical limb of the arytenoid as far is its extreme point.

The crico-hyoid (Fig. 4, u \(u^{\prime}\)) arises from the body of the hyoid bone anterior to the depression for the larymx, its middle resting upon and exterior to the arytenoid cartilage. It is inserted into the cricoid cartilage at its anterior raphe. The muscles of the two sides approximate each other at their origins, and interlace at their insertions, forming an elliptical muscle surrounding the rima glottidis.

Our opportumities for studying the arrangement of the respiratory muscles in other turtles than Chelydra have been limited to the representatives of two families, Chelomioide and Emydoide.
Among the Chelonians wo have examined but one species, Chelonia mydas, the Green 'lurtle of the Atlantir. Ocem, Its habits are entirely aruatic, seeking the land only for the purpose of depositime its egess. The body is flat, the under surface well covered by the plation, lawing, howerer, maked flank spaces, as in the snapper. The union betwern the plastron and carapace extends from the second to the seventh rib. The inspiratory muscles occupy the flanks, arising a half inch or more within that part of their boundary which is formed by the plastron. The central tendon exists, and is wide and irregular, and extends the whole length of the muscle.

The origin of the expiratory muscles is smilar to that found in Chelydra; the muscular bellies are shorter, howerer, and the common tendon broader and longer in accordance with the shape of the turtle.

The dimensions of the shell are-length, 38 inches; width, 28 inches; elevation, 13 inches.

Among the Emydoidee we have examined individuals from eight genera, and find them to present considerable variations in the origin of the anterior belly of the muscle of expiration. And as these diffirences seem to characterize groups in harmony with the sublivisions of Agassiz, founded on minor differences of form observed in this family, we shall follow his classification in their description.

The first subdivision suggested by this distinguished observer, and styled Nectemydoide, is thus characterized: "The body is rather flat. The bridge connecting the plastron and carapace is wide, but that. The hind legs are stouter than the
fore legs, and provided with a broad web, extenting beyond the articulation of the nail joint. The representatives of this group are the largest and most aquatic of the whole family." Of the genera included in this sub-family we have observed four: Ptychemys, Graptemys, Malacorlemmys and Chrysmys.

Fig. 5.

Fig. 5. Diagram of carapace of turtle, showing with the dotted lines the two principal types of origin of the expiratory muscle. The left side of the diagram shows the line of origin in the most aquatic species. The right side that of the most terrestrial. The numbers indicate the ribs.

Ptychemys rugosa, Ag.-The inspiratory muscles are found in the flanks as usual, but they have no central tendon, a simple line or raphé marking the junction of the converging fibres.

The anterior belly of the expiratory muscles arises from the vertebral margin of the fourth and fifth intercostal spaces and from the surface of the fourth rib near its posterior edge for a distance one-third its length. From this right-angular origin the fibres diverge, expanding over the upper and anterior surface of the lung, to join the common tendon at the anterior and inferior pulmonary margin. The fibres extending back on the under surface of the lung, as indicated by the dotted lines (Fig. 3, h), are numerous and large in this species, and seem almost to foreshadow the muscular separation between the thoracic and abdominal viscera in higher vertebrates.

The posterior belly in its origin presents no variation from that of the Snapper. Its outermost fibres, however, are much developed, forming a muscular band which reaches forwards nearly as far as the anterior junction of the carapace and plastron. The dimensions of this turtle are-length, 11 inches; ywidth, \(8_{1 \overline{0}}^{10}\) inches; and elevation, 5 inches.

Ptychemys mobiliensis.-Shell measurements. Length, 1312 inches; width, \(9 \frac{4}{16}\) inches; elevation, \(6 \frac{1}{16}\) inches. The general shape and appearance of this turtle resembles \(P\). rugosa. The anterior and posterior extremities of the bridge con-
necting the plastron and carapace are much more strongly involute than we have observed in any other species. When the shell is separated, they appear like four projecting keels directed towards each other, the front ones looking inwards and backwards, and the posterior ones looking inwards and slightly forwards. The concavities thus formed before and behind, external to the keels, lodge projecting portions of the lungs. The anterior and posterior keels projecting into the space usually occupied by the air sacs, deeply indent them, and cause them to present a lobulated appearance, which they retain when removed from the shell. Besides these four large indentations, there are smaller ones, in the edge of the lungs, one in front and two or more between the keels. To the inner side and behind the posterior keel lies the large posterior lobe occupying chiefly the flank space immediately above and in front of the inspiratory muscle. The reticulations of its interior structure are much larger and more coarsely marked than those of other parts of the lung.

The anterior belly of the expiratory muscle arises from the vertebral margins of the third and fourth intercostal spaces, and from the carapace in a line diverging at an angle of \(30^{\circ}\) from the spine for the space of two inches, crossing the fourth rib. From this origin the fibres cover the front of the lung, the anterior and interior ones being distributed as in P. rugosa, and owing to the intrusion of the anterior keel upon the lung, the external fibres are displaced, so to speak, with the portions of lung to which they belong, which portions lie immediately back of the ridge or keel so often referred to. The largest band of those lateral fibres finds its way between the two lobules of the lung which lie first and second in order of succession behind the ridge. The posterior belly arises from the pelvic fascia, from the eighth and seventh vertebræ, and from a curved line whose convexity looks forwards, and which terminates in front of the posterior projecting keel about two and a half inches above the posterior angle of junction of the carapace and plastron. This line is rendered more sharply convex at its external third by the projection inwards of the keel alluded to. The muscular fibres curve around the posterior part of the lung. The inner ones for half the width of the muscle are about two and a quarter inches long; and from this point they increase gradually in length to the external edge, where they are longest, extending forward in a tongue-like band about five and a half inches. In the single specimen examined we found on the left side a few additional fibres reaching forwards and inwards at least two inches beyond the main body of the muscle. The inspiratory muscle arises as in P. rugosa. It has a linear central tendon, bifid at its posterior extremity, the shorter terminating arm being external. Into the tendon and its branches the muscular fibres are inserted as in other species.

In Graptemys geographica, Ag., the inspiratory muscle is, in its general features, the same as described in other species, and differs only in not having even a central raphé, the convergent fibres interlacing at the middle of the muscle in an imperfect network which serves to replace the tendon usually found in this situation. The anterior belly of the expiratory muscle arises from the vertebral margin of the third and fourth intercostal spaces, and continuously from the costal margin of the third space nearly its entire circumference, and from the surface of the fourth and fifth ribs. The lines of origin diverge at an angle of \(30^{\circ}\) from the anterior margin of the third intercostal space, and in this specimen, the inner line bordering the spine measures
three-fourths of an inch, and the outer one, stretching along the intercostal space and across the shicld, one inch and three-eighths; from this origin the fibres spread over the anterior part of the lung and are inserted into the common tendon and into the peritoncal covering of its under surface. The posterior belly is similar to that of P. rugosa, the muscular band underlying the bridge which joins the carapace and plastron being somewhat wider. The dimensions are-length, \(8 \frac{1}{2}\) inches; width, 6 inches ; elevation, \(3 \frac{1}{1}\) inches.

In Malacoclemmys palustris, Ag., the inspiratory muscle is the same as in Geographica. The anterior belly of the expiratory muscle arises from the third and fourth spaces at their vertebral margins, and from a line running across the shield to the fourth rib, diverging at an angle of about \(70^{\circ}\).

The posterior belly is like that of geographica. The dimensions are-length, 7 inches; width, \(4 \frac{3}{8}\) inches; elevation, \(3 \frac{6}{8}\) inches.

Chrysemys picta, Gray.-Inspiratory muscles as in E. terrapin. The anterior belly of the expiratory muscle arises from the vertebral margins of the third and fourth intercostal spaces and a slip from the fifth, and from across the carapace to the junction of the fourth and fifth ribs, the divergence being about \(30^{\circ}\).

The posterior belly as in geographica. Dimensions-Length, \(4 \frac{3}{3}\) inches; width, \(3 \frac{2}{8}\) inches; elevation, \(1 \frac{6}{8}\) inches.

Of the second and third subdivisions we have examined no specimens. The fourth, Clemmydoidæ, is characterized by "their more arched though elongated form, and the more compact structure of their fcet, the front and hind pairs of which are more nearly equal, and their toes united by a smaller web; they are less aquatic and generally smaller than the preceding." Of these we have dissected representatives of three genera, Nanemys, Calemys and Glyptemys.

In Nanemys guttata, Ag., the inspiratory muscle presents no peculiarities. The anterior belly of the expiratory muscle arises from the vertebral margins of the second and third intercostal spaces and from part of the fourth, and from the posterior edge of the second rib as far as its extremity; from this extensive origin the fibres descend over the lungs, covering the front and anterior part of their lateral walls.

The posterior belly resembles that of the Snapper. Dimensions are-length, \(4_{1 \frac{1}{6}} \frac{1}{6}\) inches; width, \(2 \frac{6}{3}\) inches; elevation, \(1_{1 \frac{9}{16}}\) inches.

In Calemys Miuhenbergii, Ag., the muscles are the same as in guttata. Dimen-sions-length, \(3^{7}\) inches; width, \(2 \frac{5}{8}\) inches; elevation, \(1 \frac{4}{8}\) inches.

In Glyptemys insentyta, Ag., the muscles are the same as in guttata. Dimen-sions-length, \(4_{\frac{9}{16}}\) inches; width, \(3_{\frac{7}{16}}\) inches; clevation, \(1 \frac{\mathrm{~K}}{\mathrm{~S}}\) inches.

In the fifth subdivision, Cistudinina, "the body is remarkably short and high, slightly oblong, and almost round. The plastron, which is movable upon itself and upon the carapace, as in the Evemydoidre, is also connected with the carapace by a narrow bridge; but the feet are very different, the toes, as in the Testudinina, being nearly free of web. Their habits are completely terrestrial." Of this subfamily we have examined one species, Cistudo Virginca, Ag. The flank spaces in which the inspiratory muscles play are extremely deep, owing to the high carapace. The amount of muscular fibre is relatively greater than in the other turtles, and the central tendon is narrow, and irregularly triangular in shape. The
anterior belly of the expiratory muscle arises from the vertebral margins of the second and third intercostal spaces and from the second rib throughout its length.

The posterior belly is like in origin to that of other Emydoidx; the muscular fibers are longer, however, and terminate squarely in the tendon, as does also the anterior belly.

For convenience of reference, we have thrown into a tabular form the measurements and muscular origins of the above genera.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sprcies. & Mode of Life. & \multicolumn{3}{|l|}{Dimensions in inches.} & \multicolumn{2}{|l|}{Origin of Respiratory Muscles.} \\
\hline Nectemyboide. & & L. & w. & E. & & \\
\hline Plychemys rugosa & & & \(88_{16}^{16}\) & & 4th and 5th & rtebre. \\
\hline mobiliensis & & 1316 & \[
\begin{aligned}
& 9,6 \\
& 9,18
\end{aligned}
\] & \(6{ }_{6}{ }^{1} 6\) & 3 d and 4th & \\
\hline Graptemys geographica & Aquatic. & \(8{ }^{\frac{1}{2}}\) & 6 & \(3{ }^{3}\) & 3 al and 4th & " \\
\hline Malacoclemmys palustris & & 7 & \(4{ }^{1}\) & : & \(3{ }^{3}\) and 4th & " \\
\hline Chrysemys picta. & & \(4 \frac{1}{4}\) & \(3 \frac{1}{4}\) & 14 & 3 d and 4th & ، \\
\hline Clemmiydide. & & & & & & \\
\hline Nanemys gutata & & \({ }_{4}{ }^{1} \frac{1}{6}\) & \({ }^{23}\) & \(1{ }_{1}{ }^{9} 5\) & 2d and 3d & " \\
\hline Calemys muhlentergii & Less aquatic. & 37 & & \(1{ }^{14}\) & 2 d and 3d & " \\
\hline Glyptemys insculpta & & \(4{ }_{1}{ }^{46}\) & \(3{ }_{16}^{7}\) & \(1 \frac{6}{8}\) & 2 d and 3 d & . \\
\hline Cistuminine. Cistudo virginea & Terrestrial. & \(4{ }_{8}^{8}\) & \(3 \frac{3}{8}\) & \(2 \frac{2}{6}\) & 2d and 3d & " \\
\hline
\end{tabular}

A glance at the table will show that in the most aquatic species of Emydoidæ the origin of the anterior belly of the muscle of expiration is from nearly the middle of the shell; while in the less aquatic and terrestrial genera it is from the forward part, and much more extensive. This arrangement is too uniform to be passed by umoticed, although our facts are so few that we cannot form any conclusions as to its generic meaning. Whether the same diversity of origin exists in the genera of other families, and bears a similar relation to their family rank, and also whether this origin is modified during the development of the turtle, we must leave for future inquiry.
The neural apparatus of respiration in Chelonians, as in the Mammalia, consists essentially of the nervis vagns supplying the larynx, of spinal nerves distributed to the respiratory muscles of the trunk, and of the medulla oblongata, the common centre through which the synchronous movements of the glottis and of the flanks are incited and controlled. Between the ganglionic enlargements supplying the upper and lower extremitics, the spinal cord is attenuated, the nerves coming from this region being restricted, by the existence of a bony thorax, almost entirely to those concerned in the movements of respiration. The disposition of the trunks of these nerres closely resembles that of the intercostals in man. Escaping from the spinal canal at the interertebral formina they traverse the carapace in parallel lines between the ribs, giving off branches from time to time to their appropriate muscles. By dissection and by mechanical irritation of the peripheral end of the cut nere, exciting contraction of different fibres, we have determined that the filaments finally distributed to the expiratory musele are derived from the first, second and third dorsal nerves for the anterior belly, and from the fifth, sixth and seventh for the posterior belly. The sixth and seventh nerses are also the sources of supply to the muscles of inspiration, the serenth being distributed over the inner or pelvic side,
and the sixth to those fibres comecting the central tendon and carapace. Section of the medulla spinalis in the cervical region effectually intereepts communication between these nerves and their usual source of excitation. Under these circumstances the muscles of the trunk remain at rest, although the movements of the glottis indicate that the creature feels the respiratory need. These glottic movements continue normal even after the further section of both pneumogastrics.

The respiratory nerve of the larynx, the par vagum, cmanating from the medulla oblongata, passes out of the cranium at the posterior jugular foramen, and courses down the neck within the sheath of the cervical vessels. Soon after leaving the skull, it gives off the superior laryngeals, and low down in the neck, opposite the aorta, the inferior laryngeal, the two branches that interest us at present. The superior laryngeal (Fig. 4, b), soon after separating from the parent nerve, approaches the major comm of the hyoid bone, and under shelter of its posterior border, follows it closely to its junction with the body, then winding spirally forwards, it crosses the articulation, and runs along the margin of the excavation in close proximity with the larynx. In this position it gives off three principal branches. 1st. A communicating branch (Fig. 4, \(b^{\prime}\)); 2d. A branch to the crico-arytenoid, or opening muscle of the glottis (Fig. 4, \(l^{\prime \prime}\)); and 3d. A branch to the crico-hyoid or glottic sphincter (Fig. 4, \(\ell^{\prime \prime \prime}\)). The communicating branch (Fig. 6) is a relatively large nerve, but has hitherto escaped observation; it is easily brought into view by dividing the trachea and lifting it forwards. It passes beneath the larynx directly from side to side, traversing the membrane of the cricoid fenestrum, about its middle. It is composed of fibres derived in part from each of the superior laryngeal nerves, which cross each other, to be distributed to the glottic muscles of the side opposite to that from which they originate. This remarkable nerve, we belicre, furnishes the only known instance in nerve anatomy of an extracranial chiasm.

Fig. 6. The intercommunicating nerve seen from below.- \(a a^{\prime}\), superior laryngeal nerves; \(a^{\prime \prime}\), intercommunicating nerve crossing the fenestrum of the cricoid cartilage; b, crico-arytenoid muscle; \(c\), cricohyoid muscle. Some few filaments penctrate the cricoid membrane, to be distributed to the mucous membrane of the larynx, and are doubtless sensitive fibres. At page 20 of the physiological section, will be found the experiments by which we have determined the function of this intercommunicating nerve.

The second and third branches present no peculiarities; they penetrate the muscles and are lost to view. Sometimes, however, they can be seen to divide into three or more filaments before so doing.

Fig. 4, \(c\).-The pneumogastric, before reaching the aorta, gives off a branch, which, winding around the arch, changes its course upwards, and soon divides into two nerves; one crossing the neck enters the osophageal tissue-the other, the recurrent laryngeal (Fig. \(4, c\)), joins the trachea, and, in close contact with its side, follows it to the larynx, and enters the crico-arytenoid muscle. There are no fibres from the recurent distributed to the crico-hyoid directly, or indirectly through communication with the superior laryngeal.

\section*{CHAPTER II.}

TIIE preeceding chapter has been altogether taken up with anatomical descriptions of the respiratory organs and their appendages. So much that was new wats met with during our dissections, that it was thought better to separate the description of the anatomy from the physiological statements. We have thus the physiology of the respiratory organs still to describe, and this can now be done without repeating any more of the anatomical detail than is necessary to enable the reader to comprehend the actions of the organs concemed.
The history of the theories entertained as to the nature of the respiratory motions in turtles, appears to us one of the most extraordinary in the records of science. Totally misunderstood by the carlier naturalists and biologists, or confounded as to type with the respiration of Batrachians, this function in turtles was first rightly comprehended, at least to some extent, by R. Townson in the latter part of the last century. How far he went, and how far he was correct, we shall more fully point out in another place. The authority of more eminent naturalists, and an obstinate disposition to associate the turtle with the frog, and to insist on similarity as to the execution of their functions, gradually drew attention from Townson's statement, and more modern authors have paid it no deference whatever; yet, as we shall distinctly show, all the later writers are utterly wrong, and his opinions as to the facts in question are thus far the only ones which seem to be correct. In reading his very ingenious essay, which we have elsewhere quoted at length, p. 2, it is hard to see how the statements and evidence could have failed of more respectful and permanent attention. A complete review of the theories entertained in regard to the respiratory function in Chelonian reptiles, will more fully illustrate the above remarks.

As early as 1719, Malpighi \({ }^{1}\) described the respiration of turtles as similar to that of frogs. Both alike were supposed to distend the lungs by swallowing air, so that, in place of air being drawn into the lung-sacs, it was forced into them by the movements of parts above the trachea; but while in the frog this was effected plainly through the aid of the bellows-like mouth, in the turtles their vast hyoid apparatus was by some supposed to constitute a forcing pump of similar purpose and nature. 'The authors of Malpighi's cra shared these opinions, and with the one notable exepption alove mentioned, they have stood almost uncontradicted up to the date of a paper by one of the authors of the present essay.

The latest and best work on comparative anatomy and physiology \({ }^{1}\) thus describes its author's conclusions as to this sulject: "C"est aussi par des mouvements de déglutition que la majeure partic de l'air inspiré est poussée dans les poumons chez les tortues; mais ici ce mode de respiration est nécessité par une disposition organique inverse de celle que je viens de signaler chez les Batraciens." M. Edwards then proceeds to point out the rigid form of the turtle's frame, the absence of mobile ribs, and the consequent necessity for the belief that the lungs in these animals cannot be dilated from without, as occurs in mammals. The same opinion is held by nearly all writers at the present time; but some, in place of describing the process as one of deglutition, effected alone by muscles on the floor of the mouth, regard the hyoid apparatus as the true forcing pump concerned in propelling air into the interior. Thus, T. Rymer Jones, \({ }^{2}\) after describing the fixity of the bones of the chest in turtles, adds, that " under these circumstances, as a compensation for the want of mobility in the chest, the os hyoides and the muscles of the throat are converted into a kind of bellows, by which the air is forced mechanically into the lungs, and they are thus distended at pleasure." In fact, the submaxillary space with the hyoid arches, are in continual motion in turtles, and this movement precisely resembles the like action in frogs; but while in these latter it is really a respiratory act, in turtles, as we shall show, it has other purposes, and, while it has deceived observers, may be proved to have no influence of any moment in carrying on the breathing process. Muller \({ }^{3}\) gives a like account, and adds, that expiration is effected by means of muscles between the lower shield or plastron, and the posterior extremities. Carpenter \({ }^{4}\) has a brief description of the respiration in chelonia, which corresponds to the general opinion already quoted above.

Prof. Agassiz's description \({ }^{5}\) being one of the latest, and certainly one of the most authoritative statements, we quote in full, to complete our history of the generally received ideas as to the mechanism of chelonian respiration.
"Here, again, we meet with a very striking ordinal character. The turtles swallow the air they breathe. The breast box, which includes the lungs, being immovable, a respiration like that of the other reptiles, the birds, and mammalia, performed by the expansion and compression of the breast box, and consequently of the lungs, is impossible. Owing to the peculiar structure of their trunk, breathing is therefore only possible for turtles, by a pressure of the air from the mouth down into the lungs; but though we are persuaded that this swallowing of the air constitutes the main act in the process of breathing, still we are inclined to believe, against the opinion of other anatomists, that the diaphragm, which in turtles is very much developed, and attached to the lungs, takes also its part in that act. Moreover, the muscles of the shoulder and of the pelvic region may assist in that

\footnotetext{
\({ }^{1}\) Milne Edwards, Leçons sur la Physiologie et l'Anatomie comparée de l'Homme et des Animaux, t. deuxième, deuxième partie, p. 387. 1858. Paris.
: The General Structure of the Animal Kingdom, p. 567.
\({ }^{s}\) Physiology-London translation, p. 360 , vol. ii.
- Gen. and Comp. Phys., p. 493.
\({ }^{3}\) Contributions to the Natural Mistory of the United States, vol. i. p. 281.
}
operation, either by immediately compressing the lungs, which generally extend in turtles from one end of the trunk to the other, or by pressing the bowels against them.
"The act of swallowing the air is chiefly performed by the apparatus of the tongue-bone, and the tongue itself, which, by its large size, facilitates the operation. Being drawn backwards and upwards, this organ shuts up the choannæ, and at the same time opens the slit of the windpipe, situated just at its base, thus giving to the air a passage into the windpipe, and at the same time preventing its entrance through the choannæ into the nose. In this way, the tongue takes the place, in a certain sense, of the velum palatinum of the higher vertebrata, which is wanting in turtles. After the air has passed into the windpipe, the tongue is drawn forwards, and thus the longitudinal glottis is again closed, while now the choannæ are again opened to a free communication with the carity of the mouth."

Professor Agassiz adds, in a following note:-
-. We find the same mode of breathing in the class of Batrachians, but for an entirely different reason, namely, on account of the absence of ribs."

Also. ": The existence of a diaphragm is erroneously denied to turtles by Dumeril and Bibron, Rerpétologic générale, 1, p. 175."

In the above description, Prof. Agassiz exhibits some donbt as to the correctness of received views on this subject, and speaks of the musculus diaphragmaticus (Bojanus) as having something to do with the art of respiration, which he thinks may also be aided by other muscular parts, as those concerned in locomotion, and by certain pelvic muscles which he does not specify by name.

We shall show as we proceed that, although the muscle eovering the lungs may be homologous with the diaphragm of mammals, it is really a muscle of expiration, and therefore not analogons to the diaphragm when regarded from a phesiological stand-point.

Except for the purpose of completing this brief history of opinions held now or abandoned, it is only requisite to allude to the views of Perault, who attributed the inspiratory act to the elasticity of the lungs, and the expiratory motion to muscles of which, he says naively, the turtle has an abundance. M. Taury, whose views Milne Edwards partially indorses, attributed the whole respiratory act to the changes in the capacity of the chest, caused during locomotion, by the adrance of the head and limbs from and their retraction within the carapace. M. Haro' supports the same views, but, although both are successful in showing that these movements may alter the capacity of the chest-box, and thus under some circumstances modify respiration, neither has prowed that respiration relies for its continued occurrence upon these motions, nor would such a supposition be entertained for a moment by any one who surveyed the mechanical conditions which are effective in carrying on respiration in other anmals. That the locomotive movements may, and perhaps do at times montigy the respiratory process, may be taken for granted. That other agents are constantly employed in this function is not less clear, nor shall we have any difficulty in disproving M. Maro's theory by unanswerable facts.

\footnotetext{
- Mem. sur le respiration des Grenouilles, Ann, des Se. Nat. 2 serie, t. xviii. p. 4 .
}

The author to whom we have alluded as the only one who has approached to a clear comprehension of the true mechanism of respiration in turtles is Robert Townson, LL. D. \({ }^{1}\) 'The anatomy of the respiratory muscles of the breast-box is described by this author, as we have elsewhere shown, with much correctness. His statement as to the mechanism of the movements of the chest and belly muscles in breathing are, also, remarkably truthful, and are approached in this particular by those of no other or later authors.

He came to the conclusion, as we have seen, p. 6, that the turtle and frog do not breathe alike, but that while the latter forces air into the lungs, the former possesses a type of respiratory movement closely analogous to that of the mammal.

He described an inspiratory muscle in the posterior flanks, and an expiratory muscle covering the back of each lung, and attached to a broad tendinous expansion, ruming forward, to be inserted in front on the carapace, above the lung. To do full justice to this most ingenious and neglected observer, we have quoted, in connection with the anatomy of our subject, the experiments, by means of which he proved that turtles do not force air into the lungs, p. 6, and by which he also showed that they draw the air into the chest, by muscles attached to the breast-box, and expel it through the aid of the expiratory muscle covering the posterior end of the lung.

Considering the period at which he wrote, nothing could be clearer than the above statement, and we are amazed, that its obvious truth should have so long escaped recognition.

In the summer of 1861, one of us, Dr. Weir Mitchell, while engaged in studying the blood-pressure in the snapping turtle, Chelydra serpentina, became convinced that the prevailing views as to the respiratory mechanism of Chelonian reptiles were totally incorrect. Accordingly he partially studied the subject, and incidentally embodied his opinions in an essay upon the blood-pressure in the snapping turtle. \({ }^{2}\) At the time referred to, Dr. Mitchell was unacquainted with Townson's researches. The views of Dr. Mitchell, and the experiments by which he supported them, will be found scattered through the text of the present essay, of which, indeed, they form the basis. In the summer of 1862 , the present authors took up anew the study of the respiration in turtles, and have endeavored to render it as complete as possible. In so doing they have been fortunate enough to carry the subject far beyond the crude cxperiments of Townson, and to discover anatomical and physiological facts of the utmost interest and novelty, which have hitherto escaped attention.

To facilitate the comprehension of the subject, we shall divide the physiological part of this essay in the following mamer:-

1st. The externally visible phenomena of respiration.
2 d . Physiology of the muscles of respiration.
3d. Physiology of the respiratory nerves.

\footnotetext{
\({ }^{1}\) Tracts and Olnervations in Natural Histury in Physiology. London, 1799. Cuvier's views and his criticism of Townson may be found appended to the full quotation of Townson's dissertation, at p . 6 of this essar.
\({ }^{2}\) American Phil. Trans., Phil. 1862.
}

When a turtle of any kind is observed with care, it will be seen that it breathes at very irregular intervals. These are much prolonged when it is in the water, and half an hour or more may clapse before it rises to the top, to take two or three respirations, preparatory to a second plunge. When, during summer weather, the snapping turtle was placed on a table, and observed in air, its respiration averaged one to every two minutes and a half, although certain individuals breathed more rarely, and all irregularly. The box turtle breathes still less frequently. A large snapper observed for some time, gave the following record:--Ten respirations were noted with the intervals between them, which were as follows:-1, 2, \(1, \frac{1}{2}, 5, \frac{1}{2}, 1,4,3\), \(2, \frac{1}{2}\) minutes respectively. In another the respirations during an hour were at almost perfectly regular intervals of two mimutes. The size of the turtles did not seem to bear any notable relation to the number of respirations per minute.

During the respiratory act in the snapping turtle, C. serpentina, the box turtle Cistudo Virginea, the green turtle Chel. mydas, and several Emydre, we have noticed carefully the exact details of the motions of the various parts. The head and neck, the flank spaces in front of and behind the limbs, these themselves, and the mouth, glottis, and hyoid apparatus, have been scrutinized with care in hundreds of instances, and with these results.

Turtles breathe easily with the mouth open or shut. This fact alone deprives their respiration of all resemblance to that of Batrachians.

The respiratory process is threefold, and consists of-
1. Complete expiration.
2. Complete and very full inspiration.
3. An appearance of slight, or partial expiration, followed by a pause of greater or less duration.

During the period which precedes this serics of movements, the turtle being at rest, the spaces between the posterior members and the plastron and carapace are nearly level, or only a little concave. The shoulders are pushed forward somewhat, the lungs being full at this time, while the large hyoid apparatus is usually dilated or drawn backwards and downwards. Sometimes it is in continual motion, like that of the frog when breathing, but in the turtle this rise and fall of the hyoid arches has no essential connection with that function. When, during the inter-respiratory pause, we open the jaws the same movements of the hyoid apparatus may still be seen, nor is it easy at these times to assign to them any very obvious purpose. The glottis may be seen at rest, as a linear slit, Fig. 7, A, in the centre of an ovoidal slightly elevated mound, just back of the tongue, on the floor of the mouth. The first respiratory act is one of expiration. Whether the mouth be opened for observation or not, the following movements occur: The hyoid apparatus descends and broadens laterally especially at its posterior part, carrying the glottis back and a little down. The object of this action we suppose to be, the separation of the glottis from contact with the roof of the mouth, in order that the air may the more readily enter it after passing through the nares. At the moment of beginning to expire the glottis opens wide, so as to form a rhombic figure (Fig. 7, B.) It remains thus until the whole respiratory act is completed. Meamwhile, during expiration the limbs fall in towards the shell
quite passively, and the flank spaces in front of the posterior limbs sink so as to present deeply concave surfaces.

Fig. 7, A. The glottis closed.- \(a a^{\prime}\), the line formed by the glottic lips when the animal is not breathing; \(b\), the prominent central part of the glottic lips, indicating the summit of the arytenoid cartilage; \(c\), tongue ; \(d\), lower jaw.

Fig. 7.

A full inspiration instantly follows. The flank spaces become flat and tense, rising to a level. The glottis remains open. The hyoid arches adrance, and at the close of the inspiration the shoulders are pushed passively forward.

As soon as the lungs are completely filled, a very slight expiration relieves them of the surplus air, the flank spaces sinking a little, the hyoid arch at rest, the glottis closing at the end of the expiration. The final action here described appears to be due to the cessation of activity on the part of the inspiratory muscles and to the passive falling in of the limbs displaced during their contraction. The lungs are thus left full of air, and ready for the next act of respiration. Whenever a turtle in air breathes, these triple actions occur, but when under water it occasionally expires air, and does not rise to renew the supply until some time has passed by.

Type of respiration in Chelonia.-We are now prepared to examine the subject from another point of view. A superficial observer, or one who accepts the present belief, sees in the motions of the hyoid arches a movement in appearance corresponding to the respiratory play of the floor of the frog's mouth. Yet the slightest anatomical examination should have shown that, while in the frog the nostrils have valves essential to their mode of breathing, in the turtle there are none, while the form of the horny lips in the latter animal renders it impossible to make the mouth so air-tight as to act the part of a chamber in the supposed process of pumping air into the lungs. On the other hand, the laryngeal cavity is also too small to act as a chamber, nor does the hyoid arch, in its descent, enlarge the laryngeal area.

When, at the beginning of this research, one of us observed the turtle (snapper) breathing with an open mouth, while watching a chance to bite, he was at once convinced that the agents of respiratory movement were below the trachea, and the
following very simple experiments converted this conviction into the most absolute ecrtainty-a certainty which every future step served but to illustrate from new points of vicw.

On page Tr of the memoir of Dr. Weir Mitchell, previously cited, are to be found the experiments above alluded to. The trachea of a large snapping turtle was cut across, after which breathing went on at the usual rate, or more often, owing to causes presently to be mentioned. Next, a bent glass tube, two millimetres in width, was adapted to the upper or outer end of the divided trachea, and allowed to dip into water. If the breathing power resided in the hyoid arches, larynx, and mouth, the water in the tube should have been forced downwards during inspiration, but, although respiration continued, the fluid moved at this time only about one millimetre, and even this was plainly due to the motion of opening and closing the glottic lips, which occurs synchronously with the respiratory movements in the breast-box.

The same bent tube was next adapted securcly to the lower end of the divided trachea, and again dipped into water as before. At each subsequent inspiration the water was forcibly and largely drawn up into the lung, and again rejected during expiration. After this no doubt could exist as to the locality in which arose the mechanical force productive of respiration. With this convincing proof the subject was laid aside for the future and more thorough investigation, of which this essay is the record.

Function of the repiratory muscles of the Turtle.-A large snapping turtle was secured on its back, and an incision made over the flank space, between the posterior limb and the plastron and carapace. The skin and superficial fascia were then carefully removed so as to expose the whole muscle which fills this space, and which has already been fully described.

When inspiration took place, the muscle contracted, and as it is possessed of a central tendon from which radiate fibres in all directions, the result of their shortening was to convert its previous deeply concave surface into one which was nearly level, while at the same time the air rushed through the open glottis into the lung. The analogy between this muscle and the diaphragm of mammals was absolutely perfect. The central tendon, the converging muscular fibres, and the form of movement resulting from this beautiful arrangement, all united to suggest the rescmblance. The inspiratory function of this muscle was palpably evident, nor could any other office be possibly assigned to it, because it was attached to no movable bone or other parts susceptible of motion.

Repeated galvanization of this muscle served further to demonstrate its purpose. Finally, the muscles on both sides were removed, when all inspiratory power was lost. The turtle could empty its lungs, but possessed no power to fill them anew.

The muscles engaged in expiration were next made the subject of study. At first we were led to believe, that the elastic contractility of the lungs might alone suffice to empty them, but this was opposed to all physiological analogy, and the power with which expiration occurred was too great to allow us to suppose that no muscular force intervened for its production.

To examine this part of the subject, a turtle (snapper) was secured, as usual, and
the plastron removed, with the exception of a rim at the back and on each side, to which remained attached the fibres of the inspiratory muscles. After a few minutes the turtle expired the air in the lung. During this action, the fascia covering the lungs below, and lying between the peritoneum and the plastron, was observed to become tense, owing to the contraction of the two sheets of muscle, which terminate this tendon anteriorly and posteriorly, and find origin in the carapace.

Recalling the full anatomical description already given, it will be remembered, that the lungs and abdominal viscera are covered outside of, and below the peritoneal sac, by a white membranous tendon, which extends across the middle line, and is firmly attached to the pericardium, as well as by firm arcolar tissue to the central line of the plastron or lower shell. The muscular bellies arising from this covering tendon, fold over the lung in front and behind. Opposite to the inspiratory muscles are also areolar fibres, binding its tendon to the fascia of the expiratory muscle above it. When the four bellies of this muscle, or muscles contract, the lungs are acted upon directly, or by being compressed through the medium of the other viscera which are, so to speak, grasped during this powerful movement. At the same time, the passive inspiratory muscles are drawn up with the retreating lungs, owing to the pressure of the external air, and to the close union between the two sets of antagonistic muscles. Although the pericardium is also fastened to the expiratory tendon, this sac is so firmly bound to the plastron below it, that it does not appear to be disturbed during expiration, unless the connecting fibres are divided, in which case the heart sac and its contents are strongly drawn from the plastron, as the air is expired from the lung.

As in the case of the inspiratory muscle, the expiratory muscle was also tested by observing its action when exposed in the living animal, and by galvanizing its fibres. The purpose of this singular shect of muscle and connecting tendon admits then of no doubt. Aided by the elasticity of the lung, it empties that viscus of air, and no other muscle appears to lend it any aid.

The third period of respiratory movement is marked by the closure of the glottis, and by the relaxation of the muscle of inspiration, the limbs then settling passively to their new positions. Hence the general appearance of a slight expiration at the end of the inspiratory act.

It is impossible to review this account of the respiration in chelonians, without being struck with the simplicity of the plan. A box containing all the viscera of the chest and belly has an open space on each side, filled by a muscle of peculiar form, whose contraction increases the size of the visceral cavity, and thus causes air to rush into it. Within the breast-box, the lungs and visceral mass embraced by a single muscle, obey its contraction in effecting expiration, and as the risceral cavity thus becomes smaller, the inspiratory flank muscles curve in to fill the gap.

After the most careful investigation, we can discover no other respiratory muscles within the breast-box.

The muscular apparatus of the glottis is equally simple. There is a muscle to open it, and another muscle to close it. Here, as in the rest of this portion of our essay, we shall not commit ourselves by names, which, although they may recognize homologies, confuse the reader, who has sometimes to bear in mind that their
functions may be exactly the reverse of those of the human muscle whose name they carry.

The two glottic muscles have already been fully described; when both are cut away or paralyzed, by section of their nerves, the glottis still closes, owing to the elasticity of its cartilages, but it does not shat firmly, and if the lungs be previously filled with air, a large part always escapes. Under ordinary circumstances, the glottic lips are closely pressed together by the sphincter-like muscle which we have described and figured. The mass of its fibres lie below the opening muscle, and are parallel to the direction of the glottic lip, while its comections are principally at the anterior and posterior end of the glottic line. When contracted, as it always is more or less strongly during the interval between two respirations, it would tend to pucker the glottis somewhat, if it were not that the anterior and posterior insertion are firmly fixed, by the parts in front of and behind them respectively. Thus attached, the only influence it can exert, is to close the glottis whose lips stiffened by the arytenoid cartilages facilitate the process.

The opening muscle lies outside of the closing muscle, nearly at right angles to it, and immediately under the mucous membrane of the glottic mound. At the moment when expiration begins the respiratory act, this opening muscle contracts so as to draw the glottic lips wide open and permit the air to escape. Then follows a full inspiration, the glottis still open, and lastly it is closed by the constrictor muscle just after the great flank muscles of inspiration cease to act.

The downward movement of the hyoid arches is effected by the omo-hyoid and other muscles of the neck. It appears to be intended to remove the glottis from contact with the roof of the mouth during the act of respiration. The upward motion of the hỵoid apparatus is produced by a thin sheet of muscular fibres spread transversely across it and over the whole upper part of the neck.

The function of all of the above muscles was determined by simple observation, by stimulating them directly, and by irritating their nerves.

The necessity for closing the glottis firmly in these animals becomes obvious, when we reflect, that not only must they be enabled to retain the air, but when under water be competent to exclude that fluid from the lungs. In fact, when we divide the trachea, or in any way paralyze the glottic muscles, the power of retaining air in the lungs is totally lost for a time. The moment the respiratory muscles cease to act, the elasticity of the lung asserts itself, and that viscus is immediately emptied. Aftcr a day or two, however, a curious change may be noticed; the turtle breathes as usual, but in place of allowing the air to escape through the open trachea, the animal holds the inspiratory muscle contracted, and thus retains the air in the lung a considerable time after each inspiration. There seems to be some urgent nccessity for thus holding the air a long time in the lung, and perhaps for keeping the lung distended. The instinctive provision for these purposes when the usual means fail, is well worthy of note. As we proceed with the study of the laryngeal nerves, we shall have further occasion to observe the great importance of the glottis, and to wonder at the singular means to which creative power has resorted, in order to secure the orifice from the ordinary chances of accident and disease.

The physiology of the nerves of respiration in turtles has been the subject of
our most careful and complete study. So novel and surprising were some of its results that we have felt it right to surround ourselves with more than common precautions. For this purpose we have repeated our experiments and dissections on several species of turtles, and on numerous individuals of each species, until incessant repetition left no question unanswered, and no conclusion doubtful.

We shall study,
1st. The physiology of the pneumogastric nerve and its branches, so far as they concern the respiratory function.

2d. The physiology of the nerves which supply the respiratory muscles of the breast-box. For all necessary details as to the anatomy of the vagus nerve and its branches we refer to the former part of this memoir. Here it will only be requisite to repeat that, as in most mammals, the larynx receives a superior laryngeal nerve, and an inferior or recurrent laryngeal trunk. The superior, which in man is the nerve of sensation to the larynx, is in turtles distributed to the mucous membrane of that organ, and also to both of the glottic muscles. The recurrent laryngeal, which in man is the principal motor nerve to the larynx and glottis, is in turtles also motor, but it sends branches only to the opening muscle. The remaining peculiarities will be better understood as we proceed to state in sequence the experiments which led to their discovery.

Experiment.-A large turtle (snapper) was sccured on its back, its mouth held open. It breathed well at intervals of two minutes or more. The recurrent nerves were exposed and galvanized at the middle third of the trachea. Irritation by this agent and by mechanical means, caused the lips of the glottis to open, although not very freely. The two nerves were then divided, and the trachea cut across. The glottic movements continued perfect, and were synchronous with the respiratory motions of the breast-box. The muscles of the right side over the hyoid apparatus were then removed, the covering fascia beneath them dissected off, and the superior laryngeal nerve discovered lying under the shelter of the superior hyoid wing. Irritation of this nerve or its fellow on the opposite side caused the outer edge of the glottic lips to open, while the inner edge appeared to be forcibly closed at the same time. On cutting the nerves across, and stimulating the peripheral ends, like results were observed.

The left superior laryngeal nerve being intact, galvanization of the centric end of the divided nerve on the right side caused first, closure of the inner lips and opening of the outer lips of the glottis; and second, violent and general muscular movements and winking, apparently expressive of acute pain.

Finally the left superior laryngeal nerve was divided, when complete paralysis of the glottis ensued.

Order of section, and results:-
1. Section of both inferior laryngeal nerves, causing glottis to open; glottic movements perfect after section.
2. Cut right superior laryngeal nerve, causing glottis to open superficially and to close below ; galvanization of outer end of nerve caused same result ; galvanization of centric end gave signs of sensibility and reflex closure of glottis, and opening of its outer lips.
3. Section of left superior laryngeal nerve; complete paralysis of glottis.

Experiment.-A small snapper was secured as usual, and the hyoid apparatus separated from the lower jaw and turned up for convenience of observing glottis. We then cut subcutaneously the left superior laryngeal nerve, causing motion in the glottic lips. 'This section slightly lessened the power to move the glottic lips on the side cut. We next divided, in like manner, the right superior laryngeal nerve. The power to open the glottis remained but little impaired, but the air could no longer be retained in the lungs. Respiration went on as usual, but when inspiration was complete and the muscles relaxed, the glottic lips fell together by virtue of their own clasticity, although this seemed insufficient to balance the contractile force of the expanded lung, whose contents therefore escaped. Then followed renewed inspiratory efforts, necessitated by the loss of power to close the glottis, until the animal learned to hold the air in its lungs by keeping tense, for a time, the flank muscles of inspiration. The left and right inferior laryngeal nerves having next been divided, entire paralysis of the glottis ensued, the flaccid lips falling together valve-like when efforts were made to inhale air, while, if air was blown into the lungs, it escaped withont difficulty.
```

Order of section, rand ressults:-
Section of loft superior larymgeal. $\left\{\begin{array}{c}\text { (ilottie lips comvulsed } \\ \text { by section. }\end{array}\right.$
Section of right superior laryngeal. $\left\{\begin{array}{c}\text { Loss of power to close } \\ \text { glottis firmly }\end{array}\right.$
Section of both recurrent laryugeals. $\left\{\begin{array}{c}\text { Complete paralysis of glottis; } \\ \text { loss of power to open glottis. }\end{array}\right.$

```

The above experiments, repeated upwards of twelve times on the Chrysemys picta, the Cistudo virginea, the Chelonia mydas, and the Chelydra serpentina, left no doubt in our minds as to the functions of the two laryngeal nerves in turtles. Careful dissections enabled us morcover to trace these nerves so as to show that, while the inferior laryngeal is distributed only to the opening muscle of the larynx, the superior laryngeal sends branches to both the dilating and the constricting muscles.

This anatomical arrangement explained to us some of the difficulties which we had encountered while testing the function of the muscles by means of irritants applied to the nerves. 'Thus, when the upper nerves were irritated, the glottis opened at the outer lip and closed within, because the irritant necessarily acted both on the nerve fibres of the closing and of the opening muscles. Again, when the lower nerve, inferior laryngeal, was galvanized, it caused the lips of the glottis to open, but not freely, because the motion of the lips seemed to act reflectively as a cause of irritation through the mucous branches of the superior laryngeal on to its nerve centres, and thence by its motor fibres upon the opponent closing muscles. When, however, the superior laryngeal nerves were cut, the closing power was abolished, and then, irritation of the inferior nerves produced more perfect dilatation of the glottic chink. We have thus determined by every necessary means that the superior laryngeal nerves in turtles are the nerves of sensibility for the mucous membrane of the larynx and glottis. That they are the motor nerres of
all the true glotic muscles, and enjoy thus the ability to open and to close this orifice, and that the inferior laryngeal nerves are the motor nerves of the dilating muscles only, and have not sensibility or power to close the glottis.

What then is the reason of this double distribution of two nerves to one muscle? Upon this question we shall presently return. It seems highly probable that both nerves usually act at once to open the glottis, since galvanization of either set of nerves does not fully effect this exid, while, when both sets of nerves are stimulated, the glottis opens wide.

The distribution and functions of the two laryngeal nerves in turtles are thus scen to be totally different from what we see in mammals. In them, as we need only to remind the reader, the superior laryngeal is a nerve of sensation chictly, and although it possesses also a motor filament, this, in man at least, is distributed to a muscle, the crico-thyroid, which has neither homologue nor analogue in chelonian reptiles. In mammals the inferior laryngeal is, as in the turtle, a motor nerre, but it supplies alike the dilating and the closing muscles of the glottis.

On reference to the anatomical part of this essay, it will be seen that the hypoglossal nerve lies close to the track of the superior laryngeal nerve, and might readily be confounded with it, when the intention is to find and divide the latter alone. The nerve in question supplies muscular branches to the tongue only.

Thus far the physiology of the glottic nerves in turtles, although determined for the first time, and shown to present points of great interest and novelty, has not exhibited any peculiarity so exceptional as that to which we shall now direct attention.

This was brought to our notice while further pursuing the study of the functions of the glottic nerves. The mode in which it was first suspected, then discovered, and finally set in clear light by every available means, will be best set forth in the following record of our experiments and inferences, in the order in which they occurred.

Experiment.-A small snapper, one and a half pounds in weight, was secured as usual. Its respiratory acts observed to be perfect, and the two inferior laryngeal nerves divided one after the other, causing twitching of the glottic lips. After this the glottis still opened and shut as before, and, indeed, equally as well. It was plain, as we have already seen, that the superior laryngeal nerves could open and shut the glottis without other aid. Next, the right superior laryngeal nerve was cut at the middle of the upper hyoid cornu, and the glottis was carcfully observed.

The section caused twitching of the glottic lip, and at the next respiration, to our great surprise, both sides of the glottis, the right as well as the left, opened equally well. In fact there was no difference. A close inspection satisfied us that the section of the nerve was complete.

If now we recall the facts, that the glottis of both sides was moring despite the section of both recurrents and one superior larmgeal nerve, it will be seen how mysterious this must have appeared to those who first observed it. We came to the conclusion either that there existed some mechanical arrangement of the glottis and its muscles, which enabled one side, while in motion, to communicate that movement to the other, or, that there was a direct nerve communication between
the right and left superior nerves of the larynx. The first hypothesis was unsupported by anything that we knew of the parts. The second seemed unlikely, since on reflection we could recall no instance of a true chiasm of any nerves except those of sight. We hastened to examine the question by new experiments.

Experiment.-Snapper, weight two pounds. We exposed and galvanized the left inferior laryngeal nerve, thus causing both lips of the glottis to open. The same result was obtained with the right nerve. This fact, observed by us in other cases, was soon found to be due to the difficulty of insulating the current in one nerve. When, however, we made use of mechanical irritants, stimulation of one nerve affected only the glottic lips of the same side.

The right inferior laryngeal nerve was then cut, and immediately afterwards the right superior laryngeal nerve. The glottis still moved as well as before these sections. Next, we cut the left recurrent (inferior laryngeal nerve), thus leaving the left superior laryngeal the only nerve entire. Nevertheless, the glottic lips on both sides opened and shut, as well and as completely as ever. Lastly, we cut this remaining nerve, causing total paralysis of the glottis, and the usual results as to respiration.

Order of section, and results:-
1st. Cut right recurrent nerve (inferior laryngeal) and rig t superior laryngeal nerve; glottis continues to move perfectly on both sides.

2d. Cut left recurrent (left inferior laryngeal); glottic action perfect on both sides.
3d. Cut left superior laryngeal nerve; total paralysis of glottis.
Experiment.-Snapping turtle, weight three and a half pounds. We dissected the hyoid apparatus from its connection with the lower jaw, and held it back, thus freely exposing to view the chink of the glottis. Up to this time we had reached the conclusion, that somewhere on the fenestrum in the cricoid cartilage there might be a branch of communication between the two superior laryngeal nerves of the larynx. Therefore, on the turtle prepared as above described, we made an incision on to the fenestral mombrane, between the larynx and the hyoid bone, opposite to the junction of the superior cornu with this bone. The section made a little to the left of the modian line caused slight twitching in the glottic muscles, but had no influence on the respiratory motions of the glottis.

The two inferior laryngeal nerves were next divided, and still the glottis moved as perfectly as before. The left superior laryngeal nerve was divided at the middle of the upper hyoid cornu, and immediately all motion of the left side of the glottis ceased, the right side moving during respiration as usual, although somewhat feebly, owing perhaps to loss of blood during the first part of the experiment.

Section of the right superior laryngeal nerve completed the paralysis of the glottis.
Order of section, and results:-
1 st. Section through supposed site of communicating nerve; no effect as to respiratory movements.

2d. Section of both inferior laryngeal nerves; no further effect of any permanent nature.

3d. Section of left superior laryngeal nerve ; paralysis of left glottic lip.
4th. Section of right superior laryngeal nerve; complete paralysis of glottis

The above experiments led us, irresistibly, to the conclusion, that there must be a chiasm of the two superior laryngeal nerves, and it only remained to prove, with the scalpel, the presence of this branch. A careful series of dissections on large turtles of various species and genera, satisfactorily proved that we were not mistaken. In every case the nerve was readily found, and the physiological prediction as to its existence verified in the most absolute manner.

The discovery of a new nerve in turtles, and upon ground over which the accurate knife of Bojanus had passed, called for a still more rigorous testing of our previous results. For this purpose the following experiments were made.

The first of this second series is of unusual value, owing to circumstances which arose incidentally.

Experiment.-Snapping turtle, weight nineteen and three-quarter pounds. We cut down on the middle line of the hyoid bone and divided it throughout its length with a hair-saw and nippers. When this operation is done with care, it exposes to the operator enough of the cricoid fenestrum to enable him to cut the communicating nerve at its central part. Next, both recurrent nerves were divided at the middle of their course. The section, and after stimulation of the right nerve, had no effect on the glottis, which we thought singular. Section of the right superior laryngeal nerve was satisfactorily made as usual, the nerve being readily exposed and divided. To our surprise, the right glottic lip became paralyzed almost totally, the left side moving in respiration as usual. This result was opposed to all our former experiments. After a rigid examination of the conditions of this last experiment, and finding in them no explanation of the contradiction which it offered, we dissected, with scrupulous care, the whole track of the pneumogastric nerve and its branches to the larynx, as well as that organ itself. The following appearances were noted: On the left mucous lip of the glottis, a small white patch of diseased tissue. The inner end of the right upper hyoid cornu was enlarged to double its normal size; thus of necessity stretching the right superior laryngeal nerve where it crosses the cornu at its inner end. On the left side the superior laryngeal nerve was perfect up to the point at which it gave off the interlateral communicating branch. This latter nerve, lying on the cricoid fenestrum, was involved in a mass of diseased tissue, which extended between the trachea and the body of the hyoid bone, from its lower part to a point about one-quarter of an inch above the fenestrum. 'This disease, doubtless, affected the communicating branch, so as to cause partial paralysis of the right glottic lip to follow section of the corresponding superior laryngeal nerve. Had the interlateral branch been completely destroyed, section of one laryngeal nerve must have produced entive paralysis of the glottic lip on the side operated upon.

This observation, which at first promised to cast doubt upon those which preceded it, thus proved at last the most conclusive evidence of the correctness of the view to which we had arrived. An accident of disease or injury had so altered the communication between the two superior nerves of the larrnx, as to make unnecessary the section, which would under ordinary circumstances have followed as the third step in the experiment.

Experiment.-This cxperinent was designed to be a repetition of the plan of the last one, but in dividing the hyoid bone to reach the nerve at the middle line, the saw, accidentally carried too deep, touched the membrane on which runs the nerve. Section of the recurrents followed with the usual negative result. Section of the right superior laryngeal nerve produced paralysis in the right glottic lip. If our former view be correct, then in the present case we must have cut the communicating branch with the saw. In the above experiments, the sections and results may be thus stated:-
1. Section of interlateral communication between the two superior laryngeal nerves; glottic respiratory motions as usual.
2. Section of both inferior laryngeal nerves; glottic respiratory motions as usual.
3. Section of right superior laryngeal nerve; paralysis of right lip of glottis.

Experiment. - Snapper, weight four pounds. We cut first the two inferior laryngeals; next we divided the right superior laryngeal. The glottic movements were still perfect. One nerve was sustaining unimpaired the whole ordinary motions of the glottis in respiration. Indeed, the closest scrutiny failed to discover in its action any departure from the condition of health. Lastly, we sawed through the hyoid bone, glottic acts still regular. Then with a hook we lifted the nerve and divided it. Instantly a respiration followed, but the right glottic lip was now motionless. Order of section, and results:-
1. Section of both inferior laryngeal nerves.
2. Section of right superior laryngeal nerve; after which the glottis moved in respiration as usual.
3. Section of median intercommunicating nerve; paralysis of right glottic lip.

Experiment.-This turtle had been used for other purposes, and had undergone an hour before scction of the middle cervical spine. The respiratory motions of the breast-box had ceased, but at intervals the glottis opened and closed with normal regularity. The trachea was divided, and with it both recurrent laryngeal nerves. Next we cut the interlateral communicating nerve. The glottic acts still remained perfect. Lastly, we exposed the left superior laryngeal nerve, and divided it, causing instant paralysis of the left glottic lip.

Order of section, and results:-
1. Section of both recurrent laryngeal nerves.
2. Section of communicating branch; glottic acts perfect.
3. Section of left superior laryngeal nerve; paralysis of left glottic lip.

As further illustration, we give in brief the order of section and results in two box-turtles.

Experiment.
1. Section of both inferior laryngeal nerves; glottic motion perfect.
2. Section of right superior laryngeal nerve; glottic motion perfect.
3. Section of communicating nerve; paralysis of right lip of glottis.
4. Section of left superior laryngeal nerve; total paralysis of glottis.

Erperiment.
1. Section of communicating nerve.
2. Section of right superior laryngeal ; glottic acts perfect, perhaps not closing
firmly on the right side ; the right glottic lip now relied alone on the recurrent nerve for opening power.
3. Scetion of right recurrent (inferior laryngeal nerve) ; paralysis of right glottic lip.

The above stated experiments were repeated very frequently, and always with the like results. If the evidence which we have given be reliable, we have now proved that in turtles there exists a communication between the right and left superior laryngeal nerves, of the nature of a true chiasm precisely like that of the optic nerves, and, so far as we know, the only instance thus far discovered of this anatomical peculiarity in nerves exterior to the great centres.

Fig. 8.

Fig. 8. Diagram of the chiasm of the superior laryngeal nerves.-a \(a^{\prime}\), intercommunicating fibres of the right uerve; \(\& b^{\prime}\), similar tibres from the lelt nerve.

The diagram, Fig. 8, illustrates our views in regard to the track of the nerve fibres. Part of each nerve probably proceeds directly to the two glottic muscles of its own side, while another strand crosses over through the interlateral trunk to be similarly distributed to the two muscles of the opposite side.

Keeping this in view, we can now see how one single superior laryngeal nerve may move the glottis on both sides, until the chiasm is divided, when it will be left in connection only with the muscles on its own side of the glottis.

Having thus established the fact of a chiasm between the superior glottic nerves, it was requisite to ascertain whether the inferior or recurrent laryngeal nerves entered into communication with the superior nerves, or whether they possessed any similar interlateral connection of their own.

Experiment.-Snapper, weight six pounds. We divided first the right and left superior laryngeal nerves. The glottis opened as usual, but had lost its power to close firmly.

Section of the right recurrent which followed, as the next step, produced paralysis of the right glottic lip.

Galvanization of one recurrent caused opening of only the corresponding lip of the glottis. Repetitions of the above experiment led to no different result.

Order of section, and results:-
1. Section of both superior laryngeal nerves; loss of closing power.
2. Section of right inferior laryngeal nerve; loss of opening power in right lip of glottis.

We inferred from the above stated experiment and the repetitions of it, that no interlateral nerve fibres connected the two inferior laryngeal nerves. Furthermore, we failed to discover any branch to which such a function could have been assigned.

The object of the very extraordinary and really exceptional arrangements, which we have here pointed out, is not altogether clear. We arrive only at the general conclusion, that the integrity of the glottic function in turtles, appears to have been guarded with unusual care. Why this should be the case in aquatic chelonians it is easy to understand, but the necessity for it in terrestrial species seems to us less obvious, yet it is as perfect in the box turtle as in the emydæ and chelonure. Perhaps the need for such precautions in all may be due to the fact that all retain the inspired air during long periods, even when on land. Paralysis of the closing power of the glottis would allow the air to escape instantly, and would oblige the animal to make repeated and therefore laborious inspiratory efforts. Paralysis of the opening power would insure death from apnœa. Hence we have two sets of nerves controlling the opening muscles. One entire set may be destroyed and yet respiration continue. Even one of those remaining, if these be the upper nerves, may be lost, and still the glottis fulfil its entire duty in the train of breathing movements. Thus, also, in regard to the closing power. The elasticity of the glottic lips is one agent, although but a subsidiary one. Then we have the interlateral communication between the two superior laryngeal nerves, which alone can forcibly close the chink of the glottis. By virtue of this true chiasm one of these nerves being injured, the other is ample to effect the normal purpose of both.

Nor is it less curious to observe how artfully the whole apparatus has been guarded against accident.

The lower or recurrent laryngeal nerves lie alongside of the trachea, sheltered by its projecting form. 'The superior nerves are protected in their course by the superior hyoid comu, and the larynx and its singular nervons circle are deeply buried beneath, or rather above the strong bony and cartilaginous body of the hyoid bone. Nature seems to have been lavish of expedients for securing the safety of these most important parts.

Before leaving this portion of our subject, it may not be amiss to state that we have made a number of experiments on birds and manmals, to ascertain whether any such chiasm exists in the glottic nerves of these animals. But in all cases section of one motor nerve caused loss of movement in its own side of the larynx, and we therefore conclude that this arrangement does not extend to the classes in question. Whether or not it is to be found in Batrachia and ophidian reptiles, we have not as yet ascertained.

The remaining physiology of the pneumogastric nerve in turtles is not less obscure than in other animals. As in these latter, so in turtles, it sends branches to the trachea, lungs and heart.

We have cut the nerve in a number of turtles, some of whom survived upwards
of a month and then exhibited no marked evidence of diseased lungs. In others, there was oceasionally found an abscess at the base of the neck. This pathological occurrence is, however, a common one in turtles caught with the hook, and cannot, with any probability, be supposed to be due to the section of the pneumogastric.

The only striking effect of this section was, the constant sensibility which the nerve then exhibited. At the moment of dividing or crushing it, the animal showed every possible evidence of acute pain. Irritation of the centric end of the cut nerve gave rise to like phenomena, while stimulation of the peripheral end caused no such results.

A number of careful experiments were made to ascertain whether these irritations of the nerve produced any instant effect, either upon the inspiratory or expiratory muscles of the breast-box. But in no case did the stimulation seem to influence them to movement.

Galvanization of the pneumogastric nerve in turtles arrests the heart's movements. Gentle irritation of the trunk causes the heart to beat more rapidly. Section of one nerve causes the heart to quicken its pulsations. Division of both nerves induces still more rapid action, but in either case the heart, after a few hours, regains its original rate of pulsation.

The nerves which supply motor endowments to the internal respiratory muscles need no special illustration here. They are fully described in the anatomical section of this essay. It only remains to add, that their office and relation to the muscles was tested by stimulating them with galvanism and by dividing them, so as to cause paralysis of the muscles in question.

The centre, to which proceed impressions, giving rise therein to respiratory impulses, appears to be, as in other animals, the medulla oblongata. The site of the respiratory ganglions would scarcely have attracted our attention, however, had it not been, that, in the following experiment, a fact was noticed which induced us to examine the question more fully.

Experiment.-In a turtle previously used to examine the offices of the laryngeal nerves, and in whom the glottis could still open on one side, we divided the cervical spine at its upper third, and continucd to watch the respiratory muscles. To our surprise the flank muscles acted at intervals for thirty minutes, but the two sides no longer moved synchronously. At one moment the right muscle contracted, at another the left, and the movements of both were irregular and sometimes incomplete.

It appeared to us, that these motions after section of the spine might be merely the rhythmic repetition of habitual movements, such as, according to BrownSéquard, appear sometimes in the diaphragms of mammals even. Long after these muscles in the turtle ceased to move, all the other reflex acts continued, and excepting these, almost every muscle below the point of section could be excited easily to reflex motion; neither was there any longer a synchronism of action between the respiratory muscles of the glottis and those of the breast-box.

Experiment.-Turtle, weight six pounds. In this case, also, the cervical spine was divided, but although the reflex activity of most of the parts below the section was remarkable, the respiratory muscles alone failed to respond to excitation of distant
parts. During the spasm caused by the section of the spine, the expiratory muscles, contracting, emptied the lungs, which were not again filled with air.

Experiment.-Turtle, weight 4 pounds. The sympathetic nerves on both sides, in this turtle, had been cut several weeks, and the wounds in the neck were nearly healed. The animal seemed well and very active. The cervical spine was divided with little loss of blood. General spasm ensued, the glottis opened, expiration followed, but no after inspiration, and the glottis closed. During an hour no inspiration occurred, although the glottis opened and shut at about the usual respiratory intervals. To make more sure of this, the trachea was cut across, the lung fully inflated, and a tube secured in the lower end of the trachea. Through a short caoutchouc tube the trachea was thus connected with Poiseuille's hæmadynamometer, filled to its \(0^{\circ}\) with mercury ; on turning a stopcock the column rose about two millimetres, the glottis continuing in repose. Then the glottis opened, but no synchronous contraction of the lung muscles took place; indeed, the slightest must have been indicated instantly by the mercurial column. During frequent repetitions of glottic motion, no correspondent activity was at any time exhibited by the respiratory muscles of the breast-box. It follows, therefore, that while the flank respiratory muscles may after separation from their nerve centres move for a time, as do other habitually rhythmical muscles like the heart, that these motions do not occur in all cases, and that they are plainly not dependent on a respiratory centre below the line of spinal section.

The regular movements of the glottis were, as we we have shown, uninterrupted by the section of the cervical spinc. The question arose as to the exciting cause of these motions. That they were not due to impulses propagated through the main trunks of the pneumogastric nerves, was shown by their continuance after the successive division of these two nerves below the origin of the glottic nerves. It thus became plain that the medulla must receive its excitations from the head alone, perhaps through the fifth pair of nerves, which acted as affcrent trunks, the motor nerves of the larynx completing the nervons circle as efferent branches. Hence the continued action of the glottis after division of the cervical spine.

The principal points in the foregoing paper to which we desire to draw attention as novelties are as follows:-

1st. In Chelonians the superior laryngeal nerve is distributed both to the opening and closing muscles of the glottis.

2 d . The inferior laryngeal nerve is distributed solely to the opening muscle of the glottis.

3d. A true chiasm exists between the two superior laryngeal nerves.
4th. The expiratory muscle lies within the breast-box, and consists of anterior and posterior bellies connected by a strong tendon continuous across the middle line, and common to both sides of the animal.

5th. The inspiratory muscles occupy the flank spaces on either side.
6th. Inspiration is effected by the contraction of the flank muscles, which in appearance strongly resemble the diaphragms of superior animals.

7th. Expiration is effected by the consentaneous action of the four muscular bellies above described, which thus compress the viscera against the lungs. The
act of respiration consists of an expiration and an inspiration, during which the glottis remains open.

8th. The opening of the glottis is effected through the agency of the superior and inferior laryngeal nerves, both of which are distributed to the dilating muscle of the glottis. The superior laryngeal nerve presides over the closure of the glottis, being in part distributed to its sphincter muscle. The elastic contractility of the glottic cartilages aids in closing this orifice. After section of the superior laryngeal nerves, the glottis may still be opened by the agency of the inferior laryngeal nerves, its imperfect closure being then effected by means of the elasticity of its cartilaginous lips. The chiasm of the superior laryngeal nerves enables one of these nerves to open and shut the glottis after section or disease of the opposite nerve and of both inferior laryngeals.

Physiologists have therefore been in error when describing the respiration of Chelonians as analogous to that of Batrachians, since it far more closely resembles the breathing of the higher vertebrates.

\section*{APPENDIX.}

Since committing to the press the preceding paper, we have had the opportunity of examining the respiratory apparatus of one of the Trionychide. \({ }^{1}\) The striking characters of this family and its border rank amongst fresh-water turtles, render a knowledge of its respiratory structure of peculiar interest, and constitute our apology for this appendix.

Amyda mutica, Fitz. - The general plan of arrangement of the respiratory muscles is the same as herctofore described, the inspiratory muscles occupying the flank spaces, and the expiratory muscle being attached to the dorsal shield and inclosing the viscera. The origin of each inspiratory muscle, in detail, is as follows: From the bony edge of the plastron, from the carapace at the line of termination of the ribs, from the fascia lata, where the thigh bounds the flank space, from the spinous process of the ilium and thence to the place of beginning on the plastron. The central tendon into which these fibres are inserted, is a mere raphæ posteriorly, but widens anteriorly into a lance-shaped extremity, one-fourth of an inch wide at its widest part. The whole muscle is relatively large compared with that of other species. The expiratory muscle presents greater variation in origin and form than the inspiratory muscle; the fibres are longer than in other turtles examined, and the anterior and posterior bellies broader. These bellies meet at their outer margins and leave no space under the bridge of the plastron where the muscular fringe is absent when the muscle is viewed from below, as exists in the snapper, Fig. 3. The effect of this widened muscular margin is to diminish the size of the common tendon, and reveal its true character more strikingly than in other families. On dividing the tendon and removing the viscera, the muscular fibres are obscrved spreading out across the dorsal shield in fan-like radii from each intercostal space, from the first to the sixth inclusive. The third intercostal space gives attachment to the strongest fibres, causing it to appear as the centre from which the whole muscle radiates, the fibres rumning forward and outward across the area of a quarter circle constituting the anterior belly, and those running backwards over a similar area, the posterior belly. More precisely, however, the origin of the anterior belly is from the first and second intercostal spaces and from the costal margin of the third space:

\footnotetext{
- For living specimens of Amyde mutica, we are indebted to Mr. Robert I. Walker, of Alleghens County, Pemsylrania
}
from these points the fibres extend in a prevailing direction forwards, over the anterior quarter shell towards its periphery, and then, arching around the viscera, are inserted into the central tendon. At the line where the muscle leaves the shell it receives additional fibres. The posterior belly arises from the sixth, fifth, and fourth intercostal spaces, and from the vertebral margin of the third space (overlying the fibres of the anterior belly that come from this space), and stretches over the posterior quarter circle of the shell, to be inserted into the common tendon. It receives reinforcements of fibres where it leaves the shell to inclose the viscera, as does the anterior belly.
```

PVRGISHERBY THESMITHSONIAN INSTITMTION,
WASHIN(;TON. I. r
APRIL, 156%.

```
```


[^0]:    1 Each memoir is separately pacel and imlexed.

[^1]:    - The fullowing unte is appended: One end of the cord represented a fixed point, by being anchored to the bottom; the free em, with an attached weight, rose and fell with the brig, and recorded its motion on the grooved circumference of atheel. This method was liable to objections, but it was corrected by daily somblings. The movements of our vessel partook of those of the flue in which she was imbedhed, and were unaccompanich by any lateral deviation.
    ${ }^{2}$ The following is an extract from Mr. Sunntag's letter to me, dated New York, March 23, 1860: "The circumference of the wheel (of the pulley-gauge) was divided into feet and tenths of a foot, and the recorts by the sounding line are also expressed in feet and decimals. The records of the wheel are very uncertain, as often the rope slid over the whed without turning it, owing to the ice which surrounded the axis."

[^2]:    Fon the past ten days the fide rearister has not been reliable on account of the rope slipping.

[^3]:    ${ }^{1}$ See my discussion of the astronomical observations of the expedition in vol. XII of the Suithsonian Coutributions to Knowledge, 1860 .

[^4]:    Fath. Feet. Inch. Correction.
    Dec. 23. Sounding at noon $6 \quad 3 \quad 8 \quad 8 \quad-16.3$ mean of sounding and curves.
    " 24 . "

    | -15.7 | 6 | 6 | 6 |
    | :--- | :--- | :--- | :--- |
    | -17.9 | 6 | $"$ | 6 |
    | +0.6 | 6 | 6 | 6 |
    | -1.3 | 6 | 6 | $"$ |

    $\begin{array}{lllllllllll}" 25 & 6 & " & 6 & 3 & 0 & -17.9 & \text { " } \\ \text { " } 26 . & \text { " } & \text { " } & 7 & 1 & 0 & +0.6 & \text { " } & \text { " } & \text { " } \\ " & 27 . & \text { " } & \text { " } & 7 & 2 & 0 & -1.3 & \text { " } & \text { " } & \text { " }\end{array}$
    $\begin{array}{lllllll}" & 2 \% & \text { " } & \text { " } & 7 & 2 & 0 \\ \text { " } & 28 & \text { " } & \text { " } & 7 & 4 & 6\end{array}$
    (Ebb tide at $2 \frac{1}{2}$ P. M.) Correction -2.7 mean of sounding and
    curves; afternoon corrections from the curves. Between this date and the commencement of the second series
    the observations are too much affected by irregularities to be inserted.

[^5]:    Fath. Frort. Iuch,
    March 24. Soundings at noon is 206
    " $25 . \quad$ " $6 \quad 6 \quad 3 \quad 6$
    " 20. " " 6 " 0 "
    " 27. No sounding.
    " 28. Sounding at noon $7 \quad 40$ Correction by soundiug -6.6, by curve - 5.2 , mean - 5.9
    " 29. " " 7

[^6]:    Correction derived from sounding and curves.

    From this day there is but one reading at each half hour.
    "6. No sounding.
    " 7. Sounding at noon $6 \quad 3 \quad 0$
    
    $\begin{array}{lllllll}\text { " } & 9 . & \text { " } & & 7 & 7 & 1\end{array}$

[^7]:    ${ }^{1}$ See an Elementary Treatise on the Tides, by J. W. Lubbock, Esq., Loudon, 1839.

[^8]:    ${ }^{1}$ Ab account of the Equilibrium, Laplace's and the Wave Theories, will be found in the Encycloprdia of Astronomy, forming a portion of the Encyclopædia Metropolitana, London, 1848; article "On Tides and Waves," by G. B. Airy, Esq., Astronomer Royal.
    ${ }^{2}$ Phil. Trans. Royal Society, 1834, Part I. On the Empirical Laws of the Tides in the Port of London, with some Reflections on the Theory; by the Rev. W. Whewell.

    See also Phil. Trans. Royal Society, 1836, Part I. Researches on the Tides, fourth series: On the Empirical Laws of the Tides in the Port of Liverpool. By the Rev. W. Whewell.

[^9]:    ${ }^{1}$ For comparison of different values for this ratio, the following have been selected : $\frac{S^{\prime \prime}}{M^{\prime \prime}}$ for London, 0.379 ; for Plymouth, 0.407 ; from the discussions of the Superintendent of the U. S. Coast Survey, for Key West, 0.325 ; San Diego, 0.39; and San Francisco, 0.342. (Annual Reports of 1853 and '54.) $\frac{S^{\prime \prime \prime}}{M^{\prime \prime \prime}}$ for Dundee, 0.27 - ; for Brest, 0.346 ; for Plymouth, 0.294 .

[^10]:    ${ }^{1}$ On this point the reader may consult Whewell's 9th series of tidal researches: "Laws of the Tides from a Short Series of Observations," Phil. Trans. 1838; also Airy, "Tides and Wares," articles 552 and following.
    ${ }^{3}$ Researches on the Tides, sixth serics. On the Results of tun Extensive System of Tide Observations made on the Coasts of Eurone and America in June, 1835. By the Rev. W. Whewell. Phil. Trans. Roy. Suc. 1836.

    Researches on the Tides, serenth series. On the Diurnal Inequality of the Ueight of the Tide, especially at Plymouth and Singapore. By the same anthor. I'hil. Trans. 183 t.

    Researches on the 'lides, eighth series. On the Progress of the Diurnal Inequality Wave along the Coasts of Europe. By the same author. Phil. Trans. Roy. Soc. 1837.
    ${ }^{3}$ Note on a Discussion of Tidal Observations at Cat Island in the Gulf of Mexico, by Prof. A. D. Bache. Coast Survey Report for 1851, Ap, No. r ; Additional Notes thereto, Coast Survey Report for 1852, A 1 . No. No.

    On the Thiles at Key Weat and of the Western Comet of the Unitell states. Coast Survey Report for 1853, Ap1. Nus. 27 aml 28 . By Prof. A. D. Pache.

    Comparison of the Jimmal Inequality of the 'Tides at sim Diego, San Franciseo, and Astoria, on the Pacitie Coast of the Limind states. Coast survey Report for 1804, App. No. 26. By Prof. A. D. Bache.

    Apmoximate Co-Tidal Lines of Diumat and Stmi-Dimmal Tides of the Const of the United States on the Gulf of Mexico. Comst survey Report for 1856, $\Lambda_{\text {pp }}$. No. 85. By Prof. A. D. Bache.

    Fur the theoretioal investigation of the diumal tide, see also Airys Tides and Waves, articles 46 and following ; and articles stig and following.

[^11]:    "A Table showing tie Comparisons of Six Thernometers, made at Different Temperatures, on board the Yachit Fox.

[^12]:    ${ }^{2}$ This thermometer was used throughout the winter of 1857-58 as the "registering thermometer"subsequently broken.

    2 This thermometer was used from September, 1858, to August, 1859. It has been brought home.
    ${ }^{3}$ This thermometer was used on board H. M. S. Assistance, at Grifith's Island, during the winter of 1850-51; has been brought home.

[^13]:    ${ }^{1}$ The interpolated value for 8 P. M. on the 21 st is $35^{\circ} .6$.

[^14]:    ${ }^{1}$ Explained at length by Sir J. Herschel in the article "Meteorologys," Vol. NIT, 8th edition of the Encyclopredia Livitamica.
    ${ }^{2}$ These numbers were given in my disenssion of the meteorological observations of the second Grimell Expedition, under command of Dr. E. K. Kanc. See Vul. XI of the Smithsonian Contributions to Knowledge, 1859.

[^15]:    ${ }^{1}$ Sere results given on page 111 of my discussion of Dr. Kane's meteorological ohservations, Vol. XI of the Smithemian Contributions to Knowledge. As explained elsewhere (and confirmed by Mr. Sonntag and Ir. Hayes), the true direction of the wind was actually observed at Van Rensselacr Harbor; home, the results given in the paper cited above required a comesponding change.

[^16]:    * Went into winter quarters, Port Kennedy.

[^17]:    * Steamed ont of Port Kennedy.

[^18]:    ${ }^{2}$ See my discassion of the winds in the Smithsonian Contributions to Knowledge, Vol. XI. Meteorological OHservations in the Aretic Seas, by E. K. Kane, U.S. N., p. 77. It is to be remarked that, according to Mr. somntag and Dr. IIayes, the true direction, and not the magnetic direction, was observed at Vian Renssclaer llarbor-a statement otherwise confirmed in the discussion of the winds at that station; a corresponding change of the results is therefore to be made. [S.]

[^19]:    ${ }^{1}$ These results are here published for the first time.

[^20]:    * Indicates storms in which the direction of the wind is completely reversed; they belong to the rotatory storms or cyclones. Two of these turn from the N. E. to thes. W., and the third from the S. E. to the N. W.

[^21]:    1 The mean of 11 days, from Sept. 20th to 30th.
    ${ }^{3}$ The mean of 21 days, from Felb. 1st to 9th, and from Fel. 17th to 28th.
    ${ }^{3}$ The mean of 16 days, from April 1st to 16 th.

[^22]:    ${ }^{1}$ Exchanging the magnetic for the true direction, on page 111 of Dr. Kane's meteorological record and discussion; a correction already referred to before.

[^23]:    ${ }^{1}$ Specific gravity of sea water marked with an asterisk (*), taken from the fourth number of Metenological Papers, published by the Board of Trade. London, 1860. At 8 P. M. at anchor in 7 fathoms water, one-third of a mile off shore ; bad holding ground; coaling at Rittenbenk.
    ${ }^{2}$ The specific gravity of the surface water fell from 1.0270 on the $9 t h$, to 1.0218 on the 10 th. The yacht is said to hare been off the glacier, and was surrounded hy bergs, the fresh water from which probably caused the diminution in the specific gravity at the surface. The specific gravity of the fresh water ou a bery was 1.0010 .
    ${ }^{3}$ Specifie gravity in 114 fathoms . . . . 1.028 Temperature . . . . 30 . 0
    
    ${ }^{4}$ Cape Walker, N. Go E. (true) ; Cape Melville, N. $14^{\circ}$ W. (hue). 15

[^24]:    1Thickness of snor falling during three or four weeks, 2 ? inches; thickness of ice one month old, 15.5 inches.

[^25]:    ${ }^{1}$ Notices of auroras inclosed within brackets mere taken from the fourth number of Meteorological Papurs of the Board of Trade.
    [7th, midnight. Faint in S. W. (trne) horizon, $25^{\prime}$ in hreadth, and about $29=$ in extent, of a pale yollow color at times, oscillating and decreasing in extent to $14^{5}$; again on following night in N. N. W. horizon.]
    ${ }^{2}$ [9th, midnight. In south to east (true) pale yellow to pale erean, with rays streaming towards the zenith, about 7 abore horizon, and rising apparmety just alove a bank of fog, which gradmally overcame amd obscured it. There were no ribrations or scintillations, but at times it appearel broken up in detached pieces. It continued for an bour and a quarter.]

[^26]:    ${ }^{1}$ Hard packed snow ${ }^{1}$ inches thick.

[^27]:    ' At $1 \frac{1}{2}$ fathoms, 275.

[^28]:    - Their decpest works are about the same as that of the old tin mines of Cornwall, which were wrought before the conquest of Britain by the Romans.

[^29]:    ${ }^{1}$ Table LXVI, of this volume, exhibits the solar-diurnal variation of the declination after the separation and omission of the larger disturbances; whereas Table VII, of the preceding volume, similar in form, differs from the latter, being derived from all the observations including the disturbances.

[^30]:    1 The sign + being generally taken to signify west declination, it has been retained to indicate a movement of the north end of the magnet to the west.

[^31]:    1 The annual variation of the diurnal motion has been made the subject of a particular discussion by General Sabine, in papers presented to the British Association and the Royal Society. See Reports of the British Association, 1854, pp. 355-368, and Transactions of Royal Society, May 18, 1854, pp. 67-82; also, article XXVIII, Philosophical Transactions, 1851.

[^32]:    2 For another development of the formula, see Rev. Dr. H. Lloyd, "On the Mean Results of Obserrations," Traneactions Royal Irish Academy, 1848, Tol. XXII, Part I. Dublin, 1849.

[^33]:    ${ }^{1}$ For the purpose of showing the correspondence when the above equation is deduced independently, from the observations at the even and odd hours, I add here the values for the two cases:-

    From even hours, $\quad \Delta d=+2^{\prime} .170 \sin \left(15 n+213^{\circ} 27^{\prime}\right)+1^{\prime} .888 \sin \left(30 n+38^{\circ} 59^{\prime}\right)$
    $+0^{\prime} .729 \sin \left(45 n+244^{\circ} 57^{\prime}\right)+0^{\prime} .183 \sin \left(60 n+83^{\circ} 26^{\prime}\right)$
    $\Delta d=+2^{\prime} .159 \sin \left(15 n+215^{\circ} 19^{\prime}\right)+1^{\prime} .835 \sin \left(30 n+38^{\circ} 31^{\prime}\right)$
    $+0^{\prime} .848 \sin \left(45 n+243^{\circ} 49^{\prime}\right)+0^{\prime} .24^{\prime} \sin \left(60 n+82^{\circ} 01^{\prime}\right)$

[^34]:    ${ }^{1}$ Vol. III., Table LXVI ; compare also with Table VII. of Tol. II.
    $=$ Trans. Royal Irish Academy, Vol. XXII., Part I., Table III.
    ${ }^{3}$ Academy of Sciences at Vienna, Vol. VIII. of Math. Section, Table II.

[^35]:    ${ }^{1}$ It may be proper to give here, in full, Dr. Lloyd's instructive note on this subject, in his discussion of the Dublin observations: "The determination of the annual variation is much more difficult than that

[^36]:    of the diurnal, both on account of the much smaller frequency of the period, and the difficulty of preserving the instrument in the same unchanged condition during the much longer time, or of determining and allowing for its changes when they do occur. Accordingly, although the annual period may be traced in the olservations of Gilpin and is decidedly displayed in those of Bowditch, it has evaded the researches of recent observers. There is but a faint indication of its existence in the Göttingen observations, which were made at the hours of 8 A. M. and 1 P. M., and Professor Gauss and Dr. Goldschmidt find, in their analysis of these observations, no important fluctuation dependent on season. A similar negative result is deduced hy Dr. Lamont from the Munich observations, which were made twelve times in the day."
    ${ }^{2}$ This ralue ( $+6^{\prime} .5$ ), as resulting from a different combination of observed and partly interpolated values, may not be preferable to that $\left(+4^{\prime} .5\right)$ deduced in Part I. of this discussion, but must necessarily be employed in the present investigation. The most reliable value, $+5^{\prime} .0$, was deduced from independent ()servations, as already remarked, and lies between the two.

[^37]:    ${ }^{1}$ In reference to methods and results, in general, on this subject, the following papers may be consulted: Observations in Magnetism and Meteorology made at Makerstown, in Scotland, in the obserratory of General Sir Thomas M. Brisbane, Bart., in 1845 and 1846, forming vol. xix., part i. of the Trans. Royal Society of Edinburgh. By John Allan Broun. Edinburgh, 1849; also vol. xix. part ii., containing the general results (1850).

    Einfluss des Mondes auf die magnetische Declination by Carl Kreil. Vol. iii. of the Proceedings of the Mathematical and Physical Section of the Imperial Academy of Sciences of Viema, 1852 ; also, vol. v., ibid., 1853.

    Philosophical Trans. Royal Society, art. xix., 1853: On the Influence of the Moon on the Magnetic Declination at Toronto, St. Helena, and Hobarton. By Col. E. Sabine.

    Phil. Trans. Royal Society, art. xxii., 1856: On the Lunar-diurnal Magnetic Variation at Toronto. By Major General E. Sabine. And-

    Phil. Trans. Royal Society, art. i., 1857 : On the evidence of the Existence of the Decennial Inequality in the Solar-diurnal Magnetic Variations and its Non-existence in the Lunar-diurnal Variation, of the Declination at Molarton. By Major General E. Sabine.

[^38]:    ${ }^{1}$ The tabular values for this month are expressed in parts of the new or observatory seale, the quantities having heen converted from parts of the old or college seale into parts of the new seale.
    a The tabular numbers refer' to the new scale, the values for the first eighteen days of the month having heen conserted as alove.

    * Attention was prid to the half-monthly normals for the hour sh. 19 tm. (mean observatory time).
    * The index correction, on and after the twenty-thind day of the month, was applied before the differences were taken.

[^39]:    ${ }^{2}$ The corrected daily means for the month of February, 1841, should, therefore, real as follows :-

    | 18t | - | . | 1163.5 | 10th | . | - | 1131.1 | 19th | - | - | - | 1127.9 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 21 | - | - | 1144.8 | 11th | - | - | 1103.8 | 20 th | - | . |  | 1130.0 |
    | 3 d | - | - | 1141.9 | 12th | - | - | 1082.5 | 22d |  |  |  | 1182.9 |
    | 4th | - | . | 1133.0 | 13th | - | - | 1188.5 | 23d |  | . |  | 1182.6 |
    | 5 th | - | - | 1138.1 | 15th | - | - | 1100.0 | 24th | . | - | . | 1128.0 |
    | 6 th | - | - | 1138.6 | 16 th | - | - | 1122.1 | 25 th | - | . | - | 1107.7 |
    | 8th | . | - | 1181.2 | 17th | - | - | 1139.7 | 26th | - | - | - | 1144.6 |
    | 9th | - | - | 1150.6 | 18th | - | - | 1137.0 | 2ith | - | - | . | 1162.3 |
    | Mean |  |  |  | - |  |  |  | . | - | - | - | 1135.7 |

    For January, 1843,
    For February, 1843,
    For March, 1843,
    $803^{\text {d }} .7$ at $59^{\circ} .2$
    $798^{\prime 1} .9$ at $51^{\circ} .9$
    $815^{\prime .} .1$ at $48^{\circ} .7$

    On the 15th of April, 184\%, the instrument was carefully examined and found in adjustment.

    At $6^{\mathrm{h}} 50^{\mathrm{m}}$ on May 4,1843 , the bifilar was disturbed, but readjusted on May 5 , before the regular observation at $2^{h} 21^{\mathrm{m}} \mathrm{P}$. M. A correction of -16 divisions during the interval is to be applied to the readings. After this date the instrument remained undisturbed.

    We have, therefore, for discussion the following continuous series of monthly means of the readings of the bifilar magnetometer with its corresponding mean temperature. The series extends over five years and one month. 'To obtain a better view of the series, the correction of -900 divisions for the first twelve months has been applied, it gives a negative value to the June mean of 1840 .

    | 'Table I.-Recartulation of Monthly Mean Readings of the Bifllar Magetometer, Corrected so as to present a continuous Series. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 1840-41. | 1841-42. | 1842-43. | 1843-44. | 1844 45. |
    | June . | -85.4 | +432.3 | $+663.5$ | +901.0 | +1042.0 |
    | Jaly . . . | +90.1 | 463.9 | 7111.2 | 946.5 | 1129.6 |
    | August . . . | 146.2 | 511.6 | 718.1 | 956.3 | 1149.5 |
    | Scptember . . | 162.1 | 537.9 | 740.3 | 985.4 | 1124.8 |
    | October . . . | 149.4 | 515.1 | 768.8 | 988.6 | 1140.7 |
    | November . | 136.8 | 503.1 | 777.8 | 983.7 | 1135.1 |
    | Decomber . | 154.0 | 535.4 | 755.9 | 986.1 | 1191.3 |
    | January . . | 234.8 | 561.0 | 803.7 | 988.3 | 1227.2 |
    | February . | 235.7 | 576.4 | 798.9 | 1018.1 | 1221.6 |
    | March . . . | 248.9 | 572.1 | 815.1 | 1052.1 | 1235.3 |
    | April . . . | 266.5 | 606.7 | 86.9 .5 | 1067.6 | 1257.3 |
    | May . . . . | 307.8 | 625.1 | 873.6 | 1072.4 | 1250.8 |
    | June . . . . | ... | ... | ... | ... | 1291.7 |
    | Temperature of the bifilar magnet. |  |  |  |  |  |
    | June . . . . | $+720.1$ | +740.1 | $+710.3$ |  | +72.9 |
    | July . . . | 75.6 | 77.3 | 76.8 | 76.8 | 77.8 |
    | August . . | 75.5 | 75.4 | 74.7 | 77.2 | 75.8 |
    | September . | 65.0 | 70.6 | 72.5 | 73.1 | 71.5 |
    | October . . | 58.7 | 53.7 | 67.9 | 66.3 | 68.8 |
    | November . | 47.4 | 47.1 | 61.8 | 60.5 | 61.5 |
    | December . | 35.7 | 55.4 | 57.3 | 57.7 | 57.4 |
    | January . . | 36.5 | 61.5 | 59.2 | 51.7 | 58.8 |
    | February . . | 34.7 | 60.5 | 51.9 | 54.6 | 53.6 |
    | March - . . | 43.5 | 64.1 | 48.7 | 62.8 | 58.2 |
    | April . . . | 50.5 | 65.5 | 67.4 | 63.8 | 64.1 |
    | May • - | 60.3 | 68.3 | 68.4 | 68.9 | 64.3 |
    | June • . . . | ... | ... | ... | ... | 74.8 |

    Under the supposition of a uniform progression in the change of the mean monthly readings (due to change in the horizontal force and loss of magnetism of the bar) the bifilar readings for a given period may be represented by the form :-

    $$
    B=B_{m}+\Delta e x+\Delta t y
    $$

    where $B_{m}$ a mean bifilar reading for the period.
    $x$ the change during a period.
    $y$ the change in the reading due to a change of $1^{\circ}$ Fahr.

    ```
 \Deltae```

