

SMITIISONIAN

IIISCLLLALEOLS COLLECTIONS.

YOL. XXVIII.

"ETERY MAS IS AVALUABLE MEMBER OF SOCIETY WHO BY HIS OBRERYATIONF, REAEARCYES AND EXPERIMENTB PROCURES KNOWLEDGE FUR MEN,"-SMITHSON.

$$
\begin{aligned}
& 20036 \\
& \text { wasmington: }
\end{aligned}
$$

PUBLISHED BY THE SMITHEONIAN INSTITUTION.
1887.

ADTERTISEMENT.

The present scries, entitled "Smithsonian Miscellaneous Collections," is intended to embrace all the publications issued directly by the Smithsonian lustitution in octavo form ; those in quarto constituting the "Smithsonian Contributions to Knowledge." The quarto series inclutes memoirs embracing the records of extended original investigations and researches resulting in what are believed to be new truths, and constituting positive additions to the sum of human knowledge. The octavo series is desigued to contain reports on the present state of our knowledge of particular branches of science: instructions for collecting and digesting facts and materials for research : lists and synopses of species of the organic and inorganic world: museum catalogues: reports of explorations: aids to bibliographical investigations, etc., generally prepared at the expressed request of the Iustitution, and at its expense.

The position of a work in one or the other of the two series will sometimes depend upon whether the required illustrations can be presented more conveniently in the quarto or the octavo form.

In the Smithsonian Contributions to Knowledge, as well as in the present series, each article is separately paged and indexed, and the actual date of its publication is that given on its special title-page, and not that of the volume in which it is placed. In many cases, works have been published, and largely distributed, years before their combinations into volumes.

SPENCER F. BAIRD,

Secretary S. I.

Smithsonian $\mathfrak{f l t s c e l l a n f o u s ~} \mathfrak{C o l l e c t i o n s . ~}$

TABLES,

meteorological and Physical,

BY
ARNOLD GUYOT, P.D., LL.D., PROFESSOR OF GEOLOGY AND PHYSICAL GEOGRAPHY, COLLEGE OF NEW JERSEY.

FOURTH EDITION, REVISED AND ENLARGED.

Edited by WILLiAM LIBBEY, Jr., PROFESSOR OF PHYSICAL GEOGRAPHY, COLLEGE OF NEW JERSEY.

WASIIINGTON:
SMITHSONIAN INSTITUTION.

ADVERTISEMENT.

A quarter of a century has now elapsed since the publication of the last (the third) edition of Dr. Guyot's Meteorological and Physical Tables. This forms the first of an early projected series of "Tables of Constants" to which the Smithsonian Institution is gradually making important contributions. None has been in more general demand than this collection, and to its improvement and extension Prof. Guyot gratuitously devoted a large amount of time and laborions attention.
'The first edition, published in 1852 , comprised 212 pages. Five years later (in 1857) a second edition was published, with careful revision by the author; and the various series of Tables were so enlarged as to extend the work to over 600 pages. A third edition was published in 1859, with further amendments.

To this, the author, with untiring industry, has been making constant additions; and the present issue projected by him in 1879-from various delays occasioned by pressing professional occupations, as well as by illness and death in his family-has been about forn vears in passing through the press. The result is at last submitted in this fourth edition, which extends to about 750 pages.

Just before completing the last few tahles, the estimable and distinguished author departed this life, Feloruary 8, 1884, in the seventyseventh year of his age. Dr. Guyot had for thirty years been the honored Professor of Geology and Physlal Geograply in Princeton College.

The completion of the work has been entruster to his able assistant, Prof. William Libbey, Jr., who has conscientionsly and judiciously execnted his duties as the final editor. In the Preface to this edition he has indicated the character of the additions and re-arrangements adopted.

> SPENCER F. BAIRD, Secretary S. I.

Washington, September, 1884.

PREFACE

TO THE FIRST EDITION.

To PROF. JOSEPII HENRY,

 Secretary of the Smithsonian Institution. Sir, -In compliance with your instructions, I have prepared the collection of Meteorological Tables contained in the following pages. I have endeavored to render it useful, not only to the observers engaged in the system of Meteorological Observations now in operation ander the direction of the Smithsonian Institution, for whom it was immediately desigued, but also to any Meteorologist who may desire to compare and to work out portions of the vast amount of Meteorological Observations already accumulated in the stores of science.

The reduction of the observations and the extensive comparisons, without which Meteorology can do but little, require an amount of mechanical labor which renders it impossible for most observers to deduce for themselves the results of their own observations. The difficulty is still further increased by the diversity of the thermometrical and barometrical scales which Meteorologists, faithful to old habits rather than to science and to reason, choose to retain, notwithstanding the additional labor they thus gratuitously assume to themselves. 'To relieve the Meteorologist of a great portion of this labor, by means of tables sufficiently extensive to render calculations and even interpolations unnecessary, is to save his time and his forces in favor of science itself, and thus materially contribute to its advancement. But most of the tables useful in Meteorology being scattered through many volumes, which are often not of easy access, this collection will be, it is hoped, acceptable to the friends of Meteorology, ant will supply a want very much felt in this department of the physical sciences.

In the selection of the matter, I have been gnided by the idea that the tables which I sought for my own use might aiso be those most likely to be wanted by others. But I wish the following to be considered as a first collection, containing only the tables most appropriate to the present purpose. They are, therefore, arranged in different and independent series, with distinct paging, but constituting together a frame-work into which any tables may be readily inserted when wanted, either to make the collection more complete, or to present a choice of tables calculated from somewhat different elements, or adapted to various methods of calculation.
'The measurement of heights by means of the barometer being incimately comnected with Meteorology, it was thought not inappropriate to admit into this collection Hypsometrical 'Tables, destined to render this kind of calculations more easy and more rapid, and thus to increase the taste for a method so useful in physical geography. I have preferred the tables of Delcros, as uniting in the greatest degree simplicity and accuracy. 'Those of Gauss, Bessel, and Baily may be given afterwards.

Every table contains directions for its use, when necessary; moreover, the indication of the clements used in its calculation, and of the source from which it has been taken. When no remark is made as to this last point, the table has been expressly calculated for this volune.

Very respectfuliy,
Your obedient servant,
A. GUYOT.

Casmridge, Mass., December 15th. 1851.

PREFACE

TO THE SECOND EDITION.

To PROF. JOSEPII IIENRY,

Secretary of the Smithsonian Institution.

Sir, -

In sending to you the Meteorological Tables composing the first edition of this volume, published in 1852 , I expressed the desire that they be considered as a first collection, containing the talbles most needed at the time by the meteorological observers engaged in the system carried on under the supervision of the Smithsonian Institution, but destined to be increased. It was in that expectation, I remarked, that the tables had been arranged in independent series, as a kind of framework, into which a larger number could readily be inserted. It seemed, indeed, lighly desirahle to offer to the Meteorologist and Physical Geographer, not only the tables they daily need for working out the results of their observations, but also such a variety of tables, computed from different elements, or by different methods, or adapted to different measures, as to enable every one to choose among them those that he most approves, and at the same time properly to compare and to appreciate the results obtained by others.

Thanks to the congenial spirit with which the elerated views of the founder of the Smithsonian Institution are carried out, that character of general usefulness is not wanting in the present volume. With your agreement, the present edition contains more than three times as much matter as the first ; and a rapid indication of the additions will suffice to justify them, and to show that, in selecting or calculating the new tables, the object just mentioned was constantly kept in view

As to the tables in the first edition, I must remark that, several of them having been printed in my absence, the copy prepared for the printer, in which decimals had to be left out, failed to give always the nearest value. Though these errors are too small to have any importance whatsoever in Meteorology, a careful revision of all the tahles on the original computations was made, and they were corrected in the present edition The few actual misprints which were discovered are indicated in a table of errate to the first edition.

In the Thermometrical series six small tables have been added; they were prepared for converting into each other differential results given in degrees of any one of the three thermometrical scales, irrespective of their zero point.

The Hygrometrical series has been entirely reorganized. It only contained five tables, all in French measures, and the Appendix. It is now composed of twenty-seven, arranged in three divisions. In the first are found ten tables, hased on Regnanlt's hygrometrical eonstants, both in French and in English measures, in two corresponding sets, for the use of the prychrometer, the dew-point instruments, and for computing the weight of vaper in the air. The whole set in English measures, and Table V. in French measures, have been prepared for this edition. Being based on the best elements we now possess, they are given here for ordinary use. The second division contains the seren most important tables published in the Greemurirh Obsfrutious, and Glaisher's extensive Psychrometrical Table. These tables being much used in England, and the results obtained by them exhibiting no inconsiderable differences from those derived from the preceding ones, they are indispensable for comparing these results. The third division, composed of ten miscellancous tables, furnishes the means of comparing the different values of the force and the weight of vapor, especially those which have frequently been used in Germany, and also of reducing the indications of saussure's Hair-Hygrometer to the ordinary seale of moistmre. The Appendix has remained as in the first edition, but all the tables have been revised and corrected.

The Barometrical series, now in four divisions, has been increased from twelve to twentr-eight tables. Excepting three small tahles for capillary action, all the new ones have been comphted for this edition. The comparison, now so much needed, of the Russian barometer with the other seales, appears here for the first time.

The Hypsometrical series is almost entirely new. It contained only Delcros's table for barometric and Regnault's table for thermometric measurements, hesides two anxiliary tables and the thirteen small tables of the Appendix. It now offers twenty-three tables for harometrical measurement of heights, in which all the principal formula and scales are represented ; three for the measurement of heights by the thermometer, in French and in English measures; and a rich Apmendix of forty-four tables, more extensive and convenient than those in the old set, which afford the means of readily converting into each other all the measures usually employed for indicating altitudes.

The series of Meteorological Corrections for periodic and non-periodie variations, for all parts of the world, mostly due to the untiring industry of Professor Dove, is an addition which will surely be appreciated by those who know how difficult access to the original tables is for most Meteorol-
ogists. A few tables have been added to Dove's collection, computed by Glaisher, Captain Lefroy, and by myself. Most of the tahles refer to temperature, only two to moisture. 'Two tables of Barometrical Corrections have been placed in the Hypsometrical series, where they were needed, until they can be joined by others to make a set in this series, which still awaits new contributions, especially for these last two departments.

The Hiscellaneous series is but begun. I have prepared a list of useful tables, which would be no doubt welcome to the lover's of 'Terrestrial Physics, and which may be published at some future occasion, if you should then find it expedient.

The present collection being designed, not for the scientific only, but for the observers at large, the propriety of the explieit and popular form of the explanations which accompany the tables, and of the directions for using them, will readily be understood.

I close by the remark, that, in every instance, the works from which the tables were taken have been carefully noted, and due eredit given to their authors. For all the tables without author's names, I am myself responsible.

$$
\begin{aligned}
& \text { I remain, Sir, } \\
& \qquad \text { Very respectfully, yours, }
\end{aligned}
$$

A. GUYOT.

Princeton, N. J., December, 18.57.

PREIACE

TO THE TIIIRD EDITION.

A new series of Itygrometrical Tables, based on Regnault's Table of Elastic Forces of Vapor, has been published ly Mr. Glaisher, in London, 1850. As, however, the Psychrometrical Table has not been computed from Regnault's formula, but by means of empirical factors, the results differ from those contained in Table VII. B. A table containing Glaisher's empirical factors, therefore, has been added, and will be found on page 144 B .

Table XVIIl. of the Barometrical set, C, page 72, of the Second Edition, for redueing to the freezing point the Barometers with glass or wooden seales, copied from the Instructions of the Royal Society of London, and which is reprinted in most of the English works on Metcorology, haring been found erroneous, a new table has been computed and substituted for it. As a large mumber of observers still use barometers with wooden scales, it was found alvisable to enable them to make the needed interpolations at sight, by giving the corrections for every degree of the thermometer, from 0° to 100° Fahr., and for barometric heights ranging between 26 and 31 inches.

The small Table VI. D, page 48, of the Hypsometrical Tables by the writer, having been found useful for rapid computation of approximate results, a larger one of the same description, which allows to make at sight every interpolation, has been added, on page 92, as Table XIX'. The scientific traveller, wishing to determine, when asconding a monntain, the elevation of the physical or geological phenomena that he meets with, such as the stations of remarkable plants, limits of zones of vegetation, - the geologist who uses the ancroid barometer for geological sections, - the engineer who wishes to know, on the ground, approximately, his results, - will find it convenient to obtain the relative heights indicated by their instrument by a simple multiplication. The use of the table is explained page D 90 .

Some of the decimals in the smaller Tahle VI. D, page 48, above mentioned, have been slightly altered in order to make both tables agree.

In set E of Meteorological Corrections, a talle of corrections derived by Professor C. Dewey from the hourly observations of Professor Snell, at Amherst College, has been added, which will be of service especially to the numerons observers in New England and in the neighboring States.

The errata indicated in the Second Edition, and a few unimportant ones found since, have been corrected. No other changes have been made in this edition.
A. GUYOT.

Princeton, N. J., April, 1859.

PREFACE

TO THE FOURTHEDITION.

To PROF. SPENCER F. BAIRD, Secretary of the Smithsonian Institution.
 $$
\mathrm{Str},-
$$

I take pleasure in transmitting herewith the completed fourth edition of Guyot's Smithsonian Meteorological and Physical Tables.

A new arrangement of the tables composing the thitr edition of this book has allowed the insertion of quite a large number of new and useful tables:-

Series I., containing the Thermometrical Tables, has remained unchanged.

Series II., containing the Hygrometrical Tables, has been enlarged by an addition to Table vir. The Psychrometrical Tables of Dr. Guyot (pp. 108, 109) are based upon Regnault's modification of the formula of August ; which have been extended so as to include differences of $29^{\circ} .5$ in temperature between the wet and dry bulb thermometers.

Series III., containing the Barometrical Tables, has remained unchanged.

Series IV., containing the Hypsometrical Tables, is now limited to the first twenty-six tables of the same series in the former edition, and as a new section remains unchanged.

Series V. is partly new and partly old, seventeen of the remaining forty-four tables of the old series IV. having been retained as they were. Of the remainder, some have been discarded as of no further valueothers have been re-calculated from more recent data; and others are entirely new. The series now contains three sets of tables of Geographical Measures, as follows:-
a. For containing the most important measures of length used for indicating altitude; containing forty-mine tables.
b. For comparing the most important Gengraphical Distances ; containing ten tables.
c. For enmparing the most important measures of Geographical Surfaces; containing ten tables.

Series V., containing the Meteorological Tables, now becomes Series VI., with the same name, and remains unchanged.

Series VI., containing the Miscellaneous Tables, now becomes Series VII., and has heen considerably modified.

Table i., which formerly contained but about 60 names of ohservatories, now gives the names and loeations of over 150 , and, in addition to the data formerly given, the time west of Greenwich has been deemed of sufficient importance to be placed in the table.

Tables in., iII., iv., and v. remain the same as they were.
Table vi. is now a new table, giving the length of a degree of both the meridian and of the parallel in the various gengraphical measures. These have been calculated from Clarke's formula for the spheroid of revolution, of 1866.

Table vin. now contains tables for computing terrestrial surfaces, which are new and are also based upon Clarke's formula.

Table viri. is a new table, giving a comparison of the Standards of Length, of England, France, Belgium, Prussia, Russia, India, and Australia, made by Capt. A. R. Clarke, at the English Ordnance Survey Office, under the direction of Col. Sir Henry James, Director of the Ordnance Survey.

Table in. is a new table, giving the length of Insolation for any latitude, and for any day of the year.

All the corrections which have been found or which have been reported, have been made, and the book is now comparatively free from typographical errors; but it is hoped that the same kind courtesy which has prompted the friends, who have aided to make the book more perfect, will be continued in the future; and that all errors observed will be reported as soon as found, so that they may be corrected at some future time.

A general Index has been prepared for the whole Volume, which will greatly facilitate the use of the book, while the old plan of dividing it according to Series has also been retained.

I wish to acknowledge in this place my great indebtedness to you; and also to Mr. M. McNeill of the Princeton Observatory, for valuable assistance in computation and in proof-reading.

> I am,

> Yours most respectfully,
> WILLIAM LIBBEY, JR.

Princeton, N. J., July, 1884.

CONTENTS.

Tue Tables contained in this collection are divided into seven series, as follows:-
I. Thermometrical Tables, marked A.
II. Hygrometrical Tables, " B.
III. Barometrical Tables, "، C.
IV. Hypsometrical Tables, " D.
V. Geographical Measures, " E.
VI. Meteorological Corrections, " F.

V II. Miscellaneous Tables, " G.
Each series has an independent paging ruming through all the tables that it contains.

The letters A, B, C, D, E, F, G, at the bottom of each page, indicate the series, and the figure the folio of the series to which the page belongs.

The figure at the top of the page indicates the page number referred to in the index.

At the head of each series is found a detailed table of its contents.

GENERAL INDEX.

(The figures refer to the page number at the top of the page.)
PA㒾现
1
I. THERMOMETRICAL TABLES
Table I. Comparison of Fahreulheit's scale with Centigrade and Reaumur's, full degrees, from $+212^{\circ}$ to -39° 8
" II. Comparison of the Centigrade scale with Reaumur's and Fahren- heit's, full degrees, from $+100^{\circ}$ to $+50^{\circ}$ 10
". III. Comparison of Reammur's scale with Fahrenheit's and the Centi- grade, full degrees, from $+80^{\circ}$ to $+40^{\circ}$ 10
" IV. Conversion of degrees of Fahrenheit into Centigrade degrees, for every tenth of a degree, from $+122^{\circ}$ to $-76^{\circ} \mathrm{F}$. 13
" V. Conversion of degrees of Fahrenheit into degrees of Reaumur, for every tenth of a degree, from $+122^{\circ}$ to $-38^{\circ} \mathrm{F}$. 18
" VI. Conversion of Centigrade degrees into degrees of Falurenheit, for every tenth of a degree, from $+50^{\circ}$ to -54°, and from $+100^{\circ}$ to $+89^{\circ}$ C. 25
" VII. Conversion of Centigrade degrees into degrees of Reaumur, for every tenth of a degree, from $+40^{\circ}$ to $-40^{\circ} \mathrm{C}$. 28
" VIII. Conversion of degrees of Reaumur into degrees of Fahrenheit, for every tenth of a degree, from $+40^{\circ}$ to $-40^{\circ} \mathrm{R}$. 30
" IX. Conversion of degrees of Reaumur into Centigrade, degrees for every tenth of a degree, from $+40^{\circ}$ to $-40^{\circ} \mathrm{R}$. 32
" X. Value of any number of degrees of Fahrenheit, expressed by a cor- responding number of Centigrade degrees 34
" XI. Value of any number of degrees of Fahrenheit, expressed by a cor- responding number of degrees of Reaumur 34
" XII. Value of any number of Centigrade degrees, expressed by a cor- responding number of degrees of Reaumur 34
" XIII. Value of any number of Centigrade degrees, expressed by a cor- responding number of degrees of Fabrenheit 35
" XIV. Value of any number of degrees of Reaumur, expressed by a cor- responding number of Centigrade degrees 35
" XV. Value of any number of degrees of Reanmur, expressed by a cor- responding number of degrees of Fahrenheit 35
(XV)II. HYGROMETRICAI TABLES
Tables based on Regranlt's constants. a. In French measures.37
Table I. Elastic Force of Aqueous Vipor, by Regnanlt 46
-. II. Psychrometrical Tables, by Ilaeghens 48
.- III. For detucing the relative humidity from the Indications of Dew- point lnstruments, by Hacghens 66
-. IV. Factor $\frac{100}{F}$ for computing Relative Humidity 72
-. V. Weight of Vapor contained in a Cubic Metre of air 74
b. In English measures.
.. VI. Elastic Force of vapor, reduced from Regnault's table 78
.. Vil. Psychrometrical tables, by A. Guyot 82
.. VIII. For deducing the Relative Humidity from the Indications of Dew-point Iustroments, by A. Guyot 111
$\because \quad$ IN. Factor $\frac{100}{F}$ tor computing Reative Humidity 126
.. X. Weight of Vapor in a Cubic Foot of saturated air 130
Tables based on the constants used in the Greenacich obsprrations.

- SI. Elastic Force of Aqucous Vapor 137
-. XII. Psychrometrical Tables, by Glaisher 140
- X111. Factors for computing the Force of Vapor from Psychrometrical observations, by $A_{\text {pjohn's formula }}$ 176
" XIV. Factors for finding the Temperature of the Dew-pmint from the Readings of the Psychrometer 178
" XIV'. Factors for finding the 'Temperature of the Dew-point from the Readings of the Psychrometer 182
" XV . Weight of Vapor contained in a Cubie Foot of saturated air 179
" XV1. Factors for deducing the Weight of Vapor from the Indications of Dew-point Instruments 179
" XVII. For comparing the Weight of a Cubic Foot of dry and of satniated Air 180
Miscellaneous Tables.
" XVIII. Elastic Force of Vapor expressed in Millimetres by August 186
" XIX. Elastic Force of Vapor expressed in Millimetres by Kaemtz 188
" XX. Elastic Force of Vapor expressed in Millimetres by Magnus 188
". XXI. Elastic Force of Vapor in English Inches from the Royal So- ciety's Report 189
-" XXII. For showing the differences in the values of the Elastic Force of Vapor adopted by different authorities 190
" XXIII. Weight of Vapor in Grammes contained in a Cubic Metre of saturated air by Pouillet 192
" XXIV. Wright of Vapor in Grammes contained in a Cubic Metre of air, by Kaemtz 192
Table XXV. Force of Vapor and Relative Humidity corresponding to the degrees of Saussure's Hair Hygrometer, by Gay-hassac 198
" XXVI. For deducing the Relative Mumidity from the Indications of Saussure's Hair Hygrometer, by Haeghens 194
"XXVII. Relative Humidity corresponding to the degrees of Satussure's Hygrometer, by Kaemtz $1!. i$
Comparison of Quantities of Rain Water in different measnres.
Table I. Conversion of Centimetres into English Inches 200
، II. Conversion of Centimetres into French Inches and Lines 2010
" III. Conversion of English Inches into Centimetres 201
" IV. Conversion of English Inches into French Inches and Lines $\because 11$
* V. Conversion of French Inches and Lines into Centimetres $2(1)$
". VI. Conversion of French Inches and Lines into English Inches 203
III. BAROMETRICAL TABLES 20.5
Comparison of the different Barometrical Scales.
Table I. Comparison of the English and the Metrical Barometers 215
" II. Comparison of the English and the old French Barometers 219 219
" III. Comparison of the Metrical and the English Barometers 205
" IV. Comparison of the Metrical and the old French Barometers 231
" V. Comparison of the old French and the English Barometers 238
" VI. Comparison of the old French and the Metrical Barometers 243
"VII. Comparison of the Russian and the Metrical Barometers $\because 47$
" VIII. Comparison of the Russian and the old French Barometers 2.5
Comparison of Barometrical differences.
" IX. Conversion of English Inches into Millimetres $2 \% 3$
" X. Conversion of English Inches into French or Paris Lines 2.94
" XI. Conversion of Millimetres into English Inches 2.is
، XII. Conversion of Millimetres into French or Paris Lines 2.9
" XIII. Conversion of French or Paris Lines into Millimetres $2(0)$
". XIV. Conversion of French or Paris Lines into English Ineher $2(6)$
". XV. Conversion of Russian Half-Lines into Millimetres $2(6)$
". XVI. Conversion of Russian Half-Lines into Paris Lines 261
Reduction of Barometrical observations to the Freezing Point.
" XVII. Reduction of English Barometers with Brass scales 269
" XVIII. Reduction of English Barometers with Glass or Wooden Scales 276
" XIX. Reduction of the Metrical Barometer, by Delcros 2 s
" XX. Reduction of the Metrical Barometar, by Haeghens ≥ 87
" XXI. Reduction of the old Fremeh Barometer, by Kaemaz 380
Correction of Barometrical observations for Capillary action.
Table XXII. Correction to be applied to English Barometers for Capilary action 337
.. XXIII. Normal Height of Meniseus in millimetres, by Delcros 337
-. XXIV. Correction to be applied to Metrical Barometers for Capilary action, by Delcros 308
.. XXV. Depression of the Barometrical Column due to Capillary action -Pouillet $8: 39$
-. XXVI. Depression of the Barometrical Column due to Capillary action —Gehlers Wörterbuch 3:3!
.- XXVII. Depression of the Barometrical Column due to Capillary action reduced from Deleros' Tables 310
" XXVIII. Depression of the Barometrical Column due to Capillary action —Baily 340
IV. IIYPsOAIETRICAL TABLES 341
Tubles based on Laplace's Constants.
Table I. Delcror' Tables, in Metrical measures 319
" II. Guyot's Tables, in English measures $: 37$
357
357
.. IV. Gans' Tables, modified by Dippe, old French measures $3!7$
.- V. Dippe's Tables, for reducing Barometrical observations to another Level, and for compuing Heights, old French measures 398
.- VI. Babinct's Modification of Laplace's Formula 406
". VII. Baily's Tables, in English measmes 407
Tubles based on Bessel's Formula.
*V VII. Plantamou's Tables, in Metrical measures 410
Miscellaneons Tables.
- IX. Correction for the Hour of the Day at which the Observations lave been taken, Coefficients, by Berghans 418
" X. Correction for the Ifour of the Day, old Frencla measures 419
* XI. Correction to be applied to the Half-sums of the Temperatures olserved at Geneva and St. Bernard, and its Value in Metres at all Ifours and Seasons of the Year, by Plantamour 420
.- XII. Mean Ineight of the Barometer at the Level of the Sea in vari- ous Latitudes 423
- XIII. Mean Iteight of the Barometer in all months of the year 424
" XIV. Mean Height of the Barometer at all hours of the day 424
- SV. Tropic IIours of Daily Variation at Halle 425
" $\mathrm{XV}^{+\prime}$. Amplitade of Daily Variations in various Latiturles 425
Reducing the Barometer to the Level of the Sea 426
Table XVI. Height. in English Feet of a column of air corresponining to a Tenth of an Inch in the Barometer $4: 3$
.. XVII. Height, in French Feet of a column of air comerpunding to a Paris Line in the Barometer $4: 7$
- NVII. Height, in Metres of a column of air correponding to a Milli- metre in the Barometer $4 \div 7$
.. XIX. Height. in Metres of a colmmof air corresponding to a Milli- metre in the Barometer at different Temperatures and Elera- tions 4こ:." NIX'. Height, in English Fett of a column of air corresponding to atenth of an incl in the Barometer, at different Temperaturesand Elevations$4: 3$
* XX. Correction to be applied to the means of the Hours of Olmerva- tion to obtain the True Mean Barometrical Pressurr. Phila- lelphia $4: \% 1$
-. SXI. Correction to be applied to the means of the Hours of Oherera- tion to obtain the True Mean Barometrical Presure, Green- wich $4 \because 2$
-. NXII. For reducing Minutes into Decimals of an Hour $4: 3$

2. XXIII. Correction for currature and retraction $4: 1$
Thermometrical Mensurement of Heights.
.. XXIV. Regnault's Barometric Presures corresponding to the Tempera- ture of Boiling Water 435
.. XXV. Regnault's Barometric Pressures corresponding to the Tempera- ture of Boiling Water, revised by Moritz, in metrical mea- sures 412
.. XXVI. Regnault's Barometric Presures corresponding to the Tempura- ture of Boiling Water, revised by Moritz, in English meatures 44
V. GEOGRAPHICAL MEASURES 4.5
a.) Comparison of the measures of Length most generally used for indicating altitudes 119
Table I. Conversion of French Toises into Metres 4:11
" II. Conversion of French Toises into Paris Fept thin

* III. Conversion of French Toises into English Fert 461
.. iV. Conversion of French Toise into Rhine Feet $4 h_{1}$
.. V. Conversion of Metres into Toises 462
6 VI. Conversion of Metres into Paris Feet 463
.- VII. Conversion of Metres into English Feet 4 4ri
.. VIII. Conrersion of Metres into Rhine. or Prussian Fert 47
- IX. Conversion of Metres into Ftet of Vienna 4. 1
X. Conversion of Paris Feet into Toises 47.Table XI. Conversion of Paris Feet into Metres . . . 476able
SII. Conversion of Paris Feet into English Feet 477
6 . 6 III. Conversion of Paris Feet into Rhine Feet 478
. \quad XIV. Conversion of Paris Feet into Feet of Vienna 479
* \quad. Conversion of English Iards into French 'Ioises 480
6 XVI. Conversion of English Iards into Metres 480
6 XVII. Conversion of English Feet into Metres 481
6 XVIII. Conversion of Finglish Feet into Paris Feet 45°
6 SIX. Conversion of English Feet into Rhine Feet 483
66 XX. Conversion of English Feet into Feet of Vienna 484
". XXI. Conversion of IVlafter of Vienna monto Metres 485
. \quad XXII. Conversion of Klafter of Vienna into Paris Feet 486

6. XXIII. Conversion of Klafter of Vienna into English Feet 486
. XXIV. Conversion of Feet of Vienna into Metres 487
7. $\underset{\text {. Conversion of Feet of Viennainto Paris Feet }}{ }$ 488
. KXVI. Conversion of Feet of Vienna into English Feet 489
-6 XXVII. Conversion of Feet of Vienna into Rhine Feet 490
.. XXVIII. Conversion of Rhine Feet into French 'Ioises 491
" XXIX. Conversion of Rhine Feet into Metres 491.

* \quad S. Conversion of Rhine Feet into Paris Heet 492
. 6 XXI. Conversion of Rline Feet into Englisti feet 492
. XXXII. Conversion of Riline Feet into Feet of Vienna 493
" XXIII. Conversion of Bavarian Feet into Netres 493
6 $X X$ IV. Conversion of Dld Spanish or Castilian Varas into Netres 494
" x KXV. Conversion of Old Spanish Feet into Metres 494
* XXXVI. Conversion of Mexican Vilias into Metres 495

6. CXXII Conversion of Mexicun Feet into Metres 495

* XXXIII. Conversion of Mexican Feet into Finglish Feet 49\%
 196;
. . Conversion of Bolivian Feet into Metres 496
" "hi. Conversion of Bolivian Feet into Enolish Feet 496
.6 VJII. Conversion of Inclues into Duodecimal Itines 497
66 SlII. Conversion of Decimals of a Toise into Tert and Incins 417
6 Nuv. Conversion of Decimals of a Foot into Inclus innd I)no-decimal Lines498
↔ KI, VI. Conversion of Inches and Duodecinal Lines into IDecimals ot \& Toot 498
6 \quad. TLID. Tablefor Comparing the nost important measures of tanoth $49!$

6. KINIII. Conversion of Fanglish Fathoms into Metres 51)()
NDIX. Convelsion of Meties into finglish Fathoms 5) $0(1$
b.) Compurison of the most imporiant measures of Geographical Distances 501
Table I. Conversion ot Kilonetres into Anstrian Miles-TMasian MilesCerman Miles_Nintieal Jfagues_- French Leaguts_(teoglaphical Miles-Knglish Statute Miles-Rnssian Wersts$5(1.5$
Table Il. Conversion of Anstrian Miles into Kilometres-Prussian Miles _German Miles-Nautical Leagues-Frrench Leagues-Geo- graphical Miles_English Statute Miles-Russian Wersts 508

- III. Conversion of Prussian Miles into Kilometres-Austrian Miles- German Miles-Nantical Leagues-French Leagues_Geo- graphical Miles-English Statute Miles-Russian Wersts 511
.. IV. Conversion of German Miles into Kilometres-Austrian Miles -Prussian Miles - Nautical Leagnes - Freuch Leagues- Geographical Miles-English Statute Miles-Linssian Wersts 514
.. V. Conversion of Nautical Leagues into Kilometres-AustrianMiles_Prussian Miles—German Miles_French Leagues_Geographical Miles-English statute Miles-Russian Wersts517
". VI. Couversion of French Leagues into Kilometres-Austrian Miles—Prussian Miles_German Miles—Nautical Leagues_Geo-graphical Miles-English statute Miles-Russian Wersts520
". VII. Conversion of Geographical Miles into Kilometres-AustrianMiles-Prussian Miles-German Miles-Nautical Leagues-French Leagues-English Statute Miles_Russian Wersts523
.- VII. Conversion of English Statute Miles into Kilometres-Austrian Miles_Prussian Miles-German Miles—Namtical Leagues- French Leagues-Geographical Miles-Russian Wersts 526
- 1X. Conversion of Russian Wersts into Kilometres-Austrian Miles-l'russian Miles - German Miles - Nantical Leagues-French Leagues-Geographical Miles-English Statute Miles 52.9
". X. Table for Comparing the most Important Itinerary Measures 532
c.) Comparisen of the most important measures of Geographical Surfaces 533
'table l. Conversion of' Square Kilometres into Austrian Square Miles- Prussian Square Miles_German Square Miles - Nantical Square Leagnes - French Square Leagues - Geographical Square Miles_English Square Statute Miles-Russian Square Wersts 537
II. Conversion of Anstrian Square Miles into Square Kilometres- Prussian Square Miles-German Square Miles-Nautical Square Leagues - French Square Leagues - Geographical Square Miles_English Square Statute Miles_Russian Square Wersts 540" III. Conversion of Prussian Square Miles into Square Kilometres-Austrian Square Miles-German Square Miles-NauticalSquare Leagnes - French Square Leagues - GeographicalSquare Miles - English Square Statute Miles - RussianSquare Wersts543
" IV. Conversion of German Square Miles into Square Kilometres-Austrian Square Miles-Prussian Square Miles-NauticalSquare Leagues - French Square Leagues - GeographicalSquare Miles - English Square Statute Miles - RussianSquare Wersts546
Table V. Conversion of Nautical Square Leagues into Square Kilometres -Austrian Square Miles-Prussian Square Miles-German Square Miles_French Square Leagues-Geographical Square Miles_English Square Statute Miles_Russian Square Wersts 549
" VI. Conversion of French Square Leagues into Square Kilometres -Austrian Square Miles-Prussian Square Miles—German Square Miles - Nautical Square Leagues - Geographical Square Miles_English Square Statute Miles_Russian Square Wersts 55.3
" VII. Conversion of Geographical Square Miles into Square Kilo- metres-Austrian Square Miles - Prussian Square Miles- German Square Miles - Nautical Square Leagues-French Syuare Leagues - English Square Statute Miles - Russian Square Wersts 555
" VIII. Conversion of English Square Statute Miles into Square Kilo- metres-Austrian Square Miles - Prussian Square Miles_ German Square Miles-Nantical Square Leagues - French Square Leagues—Geographical Square Miles_Russian Square Wersts 558
" IX. Conversion of Russian Square Wersts into Square Kilometres -Austrian Square Miles_Prussian Square Miles_German Square Miles - Nautical Square Leagues - French Square Leagues_Geographical Square Miles_English Square Statute Miles 561
" X. Table for comparing the most important Measures of Surface 564
VI. METEOROLOGICAL TABLES FOR CORRECTING SERIES OF OBSERVATIONS FOR THE PERIODIC AND NON- PERIODIC VARIATIONS 56.5
Temperature.-Hourly Corrections for Periodic Variations.NORTIf AMERICA.
Table I. Washington, D. C. 579
، II. Philadelphia, Girard College 579
" III. 580
" IV. Frankfort Arsenal, Pa. 581
، $\quad \mathrm{V}$. 582
.، VI. Toronto, Canada West 583
." VII. 584
". VIII. 585
" IX. 586
" X. Montreal, Canada East 586
" XI. Sitka, Alaska 587
Table XII. Boothia Felix, Arctic America 588
XIII. Lake Athabasca, 589
" XIV. Melville Island, 589
XV. Hecla Cove, Spitzbergen 589
APPENDIX.
\mathbf{V}^{\prime}. Amherst College, Mass. 592
SOUTII AMERICA.
XVI. Rio Janeiro, Brazil 590
XVII 591
ASIA.
XVIII. Trivandrum, India 595
XIX. 596
XX. Madras, 597
XXI. " 598
XXII. Bombay, 599
XXIII. ،6 600
XXIV. Madras, 601
XXV. Bombay, 601
XXVI. Calcutta, 602
XXVII. 'Tiflis, Georgia 603
XXVIII. Pekin, China 603
XXIX. Nertchinsk, Siberia 604
XXX. 605
XXXI. Bernaul, G06
XXXII. " 607
XXXIII. 608
EdROPE
XXXIV. Rome, Italy 611
XXXY. Padua, 612
XXXYI. Geneva, Switzerland 613
XXXVII. " 613
XXXVII. St. Bernard, 614
XXXIX. 614
XL. Kremsmïnster, Austria 615
NLI. Salzburg, 616
XLII. Municl, Bavaria 616
XLIII. Prague, Bohemia 617
XLIV. 618
XLV. Plymouth, England 61!
XLVI. 620
Table XLYII. Brussels, Belginm 621
SLVII. $6 \div 2$
NLIX. Schwerin, Germany $62:$
L. Mühllansen, Prussia 623
LI. Utrecht, Hollam! 624
LII. Greenwich, England 624
" LIII. 625624
.. LT. Halle, Prussia 627
LVI. Göttingen, IIanover 628
LVII. Berlin, Prussia 629
" LVII. Salzuflen, Germany 630
" LYIX. Stettin, 631
" LX. Apremade, Sleswick 632
LXI. Leith, Scotland 633
LXII. " 634
" LXlII. Makerstown, Scotland 635
" LXIV. Dablin, Ireland 635
.. LNV. Catherinenburg, Russia 636
-• LNTI. 637
" LXVII. St. Petersburg, 637
" LAVIII. IIelsingfors, Finland 638
.. LXIX. St. Petersburg, Russia 639
.- LXX. Helsingsfors, Finland 640
". LXXI. Christiania, Norway 641
.. LXXII. Drontheim, 642
، LXXIII. Strait of Kara, Russia 643
.. LXXIV. Matoschkin Schar, Novaia Zemblia 644
.- LXAT. Bosekop, Norway 645
.. LXXV'. 645
AFRICA AND AUSTRALIA.
LXXVI. St. Helena 649
، LXXVII. Cape of Good Hope, Africa 649
" LXXVIII. Hobarton, 'Tasmania 650
Monthly Corrections for Non-Periodic Variations.
" LXXIX. Madras, India 654
" LXXX. Palermo, Sicily 655
" LXXXI. Milan, Italy 656
". LXXXII. Geneva, Switzerland 658
" LXXXIII. Viemna, Austria 660
-- LXXXIV. Ratisbon, Austria 661
" LXXXV. Stuttgart, South Germany 663page
Table LXXXVI. Carlsruhe, South Germany 664
" LNXXVII. Berlin, Prussia 66%
"LXXXVIII. Copenhagen, Denmark 669
" LXXXIX. Paris, France 671
" XC. Zwamenburg, Holland 67 2
". XCI. London, England 674
" XCII. Kinfams Castle, Scotland 676
.- XCIII. Tornei, Finland 676
." XCIV. Albany, N. Y. 677
" XCV. Salem, Mass. 67s
" XCVI. Reikiarik, Ieeland 679
". XCVII. Godthat, Greenland 679
Force of Vapor and Relatice Humidity.
" XCYIII. Greenwich, England, Force of Vapor, by Glaisher 68:;
" XCIX. Greenwich, England, Relative Humidity, by Glaisher 684
VII. MISCELLANEOCS ME'TEOROLOGICAL TABLES 68%
Table I. Positions of the Principal Observatories 689
" II. To convert parts of the Equator in Are into Sidereal Time, or to convert Terrestrial Longitude in Are into Time $69:$
" III. To convert Sidereal Time into parts of the Equator in Arc, or to convert Time into Terrestrial Longitude in Are 695
" IV. For converting Sidereal Time into Mean Solar Time, and Mean Solar Time into Sidereal Time 696
" V. Correction of the Time obtained by observation of the Sun in order to have the True Time of the Clock 697
" VI. Tables giving the Length of a Degree of the Meridian and of the Parallel 698
" VII. Tables for computing Terrestrial Surfares 703
" VIII. Comparison of the Standards of Length of England, France, Belgium, Prussia, Russia, India, and Australia 709
" IX. Table for giving the Length of Insolation for any given Latitude 711

METEOROLOGICAL TABLES.

SERIES I.
'I H ERMOMETRICAL TABLES.

CONTENTS.

COMPARISON OF THE THERMOMETRICAL SCALES.

(The figures refer to the folio at the hottom of the page.)
Table 1. Comparison of Fahrenheit's Scale with the Centigrade and Reau-
mur's, full degrees, from $+212^{\circ}$ to -39°, . . . 8
" Il Comparison of the Centigrade Scale with Reaumur's and Fahrenheit's, full degrees, from $+100^{\circ}$ to $+50^{\circ}$, 10
" III. Comparison of Reaumur's Scale with Fahrenheit's and the Centi-
grade, full degrees, from $+80^{\circ}$ to $+40^{\circ}$, 10
" IV. Conversion of Degrees of Fahrenheit into Centigrade Degrees, for every tenth of a degree, from $+122^{\circ}$ to -76° F., . . . 13
". V. Conversion of Degrees of Fahrenheit into Degrees of Reaumur, for \quad every tenth of a degree, from $+122^{\circ}$ to $-38^{\circ} \mathrm{F}$., . . . 18
" VI. Conversion of Centigrade Degrees into Degrees of Fahrenheit, for every tenth of a degree, from $+50^{\circ}$ to -54°, and from $+100^{\circ}$ to $+89^{\circ}$ C., 25
" VII. Conversion of Centigrade Degrees into Degrees of Reaumur, for every
tenth of a degree, from $+40^{\circ}$ to $-40^{\circ} \mathrm{C}$. 28
" VIII. Conversion of Degrees of Reaumur into Degrees of Fahrenheit, for every tenth of a degree, from $+40^{\circ}$ to -40° R., . . . 30
" IX. Conversion of Degrees of Reaumur into Centigrade Degrees for every $\begin{gathered}\text { tenth of a degree, from }+40^{\circ} \text { to }-40^{\circ} \text { R., } 32\end{gathered}$
" X. Value of any number of Degrees of Fahrenheit, expressed by a cor-
" XI. Value of any number of Degrees of Fahrenheit, expressed by a cor- $\quad 31$
'6 XII. Value of any number of Centigrade Degrees, expressed by a cor-
'6 XIII. Value of any number of Centigrade Degrees, expressed by a corresponding number of Degrees of Fabrenheit, 35
"XIV. Value of any number of Degrees of Reaumur, expressed by a cor-
responding number of Centigrade Degrees, 35
" XV. Value of any number of Degrees of Reaumur expressed by a cor-
responding number of Degrees of Fahrenheit, 35 A

I. - III.
 GENERAL COMPARISON

${ }^{0}$

THE THERMOMETRICAL SCALES,

OR

TABLES

showing the corresponding values of eacil full degree of failreniieit's, Centigrade, and reaumur's thermoneters, from $+212^{\circ}$ то -39° FAHRENHEIT.

©OMPARISON OF THE THERMOME'TRICAL SCALES.

The first three tables of this set give a simultaneous comparison of the three scales mostly used at present in Meteorology, and espeeially of the portion of the seales not comprised in the more extensive tables which follow them. They form thus a complement to these last tables; but as most' of the temperatures contained in them do not occur in Meteorology, the comparison of the full degrees was found sufficient.

These three tables have been taken from E. L. Schubarth's Collection of Physical Tables.' Berlin, 1836.

Tables IV. to IX. being more useful to the Meteorologist, the calculation has been carried out for every tenth of a degree. Tables VII. and IX. are from the Annuaire Météorologique de France; the others have been calculated.

A comparison of the Centigrade and Fahrenheit degrees near the boiling point, for every tenth of a degree, for the sake of the comparison of standard thermometers, will be found at the end of Table VI.

Tables X. to XV. will be found useful for comparing differential results, such as ranges of temperature, and any relative amount expressed in degrees of different acales, without reference to their respective zeros.

I COMPARISON OF FAHRENHEIT'S THERMOMETRICAL SCALE WITH THE

CENTIGRADE AND REAUMUR'S.

x° Fahr. $=\left(x^{\circ}-32^{\circ}\right) \frac{5}{9}$ Centig. $=\left(x^{\circ}-32^{\circ}\right) \frac{4}{9}$ Reaum.

Fahren.	Centigrade.	Reaumur.	Fahren.	Centigrade.	Reaumur.	Fahren.	Centigrade.	Reaumur.
+212	+100.00	+80.00	$+172$	+77.78	+62.22	$+132$	$+55.56$	+44.44
211	99.44	79.56	171	77.22	61.78	131	55.00	. 4.00
210	98.89	79.11	170	76.67	61.33	130	54.44	43.56
209	93.33	78.67	169	76.11	60.89	129	53.89	43.11
208	97.78	78.22	168	75.56	60.44	128	53.33	42.67
207	97.22	77.78	167	75.00	60.00	127	52.78	42.22
206	96.67	77.33	166	74.44	59.56	126	52.22	41.78
205	96.11	76.59	165	73.59	59.11	125	51.67	41.33
204	95.56	76.44	164	73.83	58.67	124	51.11	40.89
203	95.00	76.00	163	72.78	58.22	123	50.56	40.44
202	94.44	75.56	162	72.22	57.78	122	50.00	40.00
201	93.89	75.11	161	71.67	57.33	121	49.44	39.56
200	93.33	74.67	160	71.11	56.89	120	48.89	39.11
199	92.78	74.22	159	70.56	56.44	119	48.33	38.67
198	92.22	73.78	158	70.00	56.00	118	47.78	38.22
197	91.67	73.33	157	69.44	55.56	117	47.22	37.78
196	91.11	72.89	156	68.89	55.11	116	46.67	37.33
195	90.56	72.44	155	68.33	54.67	115	46.11	36.89
194	90.00	72.00	154	67.78	54.22	114	45.56	36.44
193	S9.44	71.56	153	67.22	53.78	113	45.00	36.00
192	88.89	71.11	152	66.67	53.33	112	44.44	35.56
191	58.33	70.67	151	66.11	52.89	111	43.89	35.11
190	87.78	70.22	150	65.56	52.44	110	43.33	34.67
189	87.22	69.78	149	65.00	52.00	109	4278	34.22
158	S6.67	69.33	148	64.44	51.56	108	42.22	33.78
187	86.11	68.89	147	63.89	51.11	107	41.67	33.33
186	85.56	68.44	146	63.33	50.67	106	41.11	32.89
185	85.00	68.00	145	62.78	50.22	105	40.56	32.44
184	84.44	67.56	144	62.22	49.78	104	40.00	32.00
183	83.59	67.11	143	61.67	49.33	103	39.44	31.56
152	83.33	66.67	142	61.11	48.89	102	38.89	31.11
181	82.78	66.22	141	60.56	48.44	101	38.33	30.67
180	82.22	65.78	140	60.00	48.00	100	37.78	30.22
179	81.67	65.33	139	59.44	47.56	99	37.22	29.78
178	81.11	64.89	138	58.89	47.11	98	36.67	29.33
177	80.56	64.44	137	58.33	46.67	97	36.11	28.89
176	80.00	64.00	136	57.78	46.22	96	35.56	28.44
175	79.44	63.56	135	57.22	45.78	95	$35 . \mathrm{rr}$	28.00
174	78.59	63.11	134	56.67	45.33	94	34.44	27.56
173	78.33	62.67	133	56.11	44.89	93	33.89	27.11

x° Fahr. $=\left(x^{\circ}-32^{\circ}\right){ }_{9}^{5}$ Centig. $=\left(x^{\circ}-32^{\circ}\right)_{4}^{4}$ Reaum.

Fahren.	Centigrade.	Reaumur.	Fahren.	Centigrade.	Reaumur.	Fahren.	Centigrade.	Reiumur.
+92	+33.33	+26.67	+48	+ 8.89	$+7.11$	$+4$	-15.56	-12.44
91	32.78	26.22	47	8.33	6.67	3	-16.11	-12.89
90	32.22	25.78	46	7.78	6.22	2	-16.67	-13.33
89	31.67	25.33	45	7.22	5.78	1	-17.22	-13.78
S8	31.11	24.89	44	6.67	5.33	0	-17.78	-14.22
87	30.56	24.44	43	6.11	4.89	- 1	-18.33	-14.67
86	30.00	24.00	42	5.56	4.44	-2	-18.89	-15.11
85	29.44	23.56	41	5.00	4.00	- 3	-19.44	-15.56
84.	28.89	23.11	40	4.44	3.56	- 4	-20.00	-16.00
83	25.33	22.67	39	3.89	3.11	- 5	-20.56	-16.44
82	27.78	22.22	38	3.33	2.67	- 6	-21.11	-16.89
S1	27.22	21.78	37	2.75	2.22	-7	-21.67	-17.33
80	26.67	21.33	36	2.22	1.78	-8	-22.22	-17.78
79	26.11 .	20.89	35	1.67	1.38	- 9	-22.78	-18.22
78	25.56	20.44	34	1.11	0.59	-10	-23.33	-18.67
77	25.00	20.00	33	0.56	0.44	-11	-23.89	-19.11
76	24.44	19.56	32	0.00	0.00	-12	-24.44	-19.56
75	23.89	19.11	31	-0.56	-0.44	-13	-25.00	-20.00
74	23.33	18.67	30	- 1.11	-0.s9	-14	-25.56	-20.41
73	22.78	18.22	29	- 1.67	- 1.33	-15	--26.11	-20.89
72	22.22	17.78	28	- 2.22	- 1.78	-16	-26.67	-21.33
71	21.67	17.33	27	- 2.78	- 2.22	-17	-27.22	-21.7S
70	21.11	16.89	26	- 3.33	- 2.67	-18	-27.78	-22.22
69	20.56	. 16.44	25	- 3.89	- 3.11	-19	-28.33	-22.67
68	20.00	16.00	24	- 4.44	- 3.56	-20	-25.89	-23.11
67	19.44	15.56	23	- 5.00	-4.00	-21	-29.44	-23.56
66	18.89	15.11	22	-5.56	- 4.44	-22	-30.00	-24.00
65	18.33	14.67	21	-6.11	- 4.89	-23	-30.56	-24.44
64	17.78	14.22	20	- 6.67	- 5.33	-24	-31.11	-24.89
63	17.22	13.78	19	- 7.22	- 578	-25	-31.67	-2.5.33
62	16.67	13.33	18	- 7.78	-6.22	-26	-32.22	-25.78
61	16.11	12.89	17	- 5.33	-6.67	-27	-32.78	-26.22
60	15.56	12.44	16	- 8.59	-7.11	-28	-33.33	-26.67
59	15.00	12.00	15	- 9.44	- 7.56	-29	-33.89	-27.11
58	14.44	11.56	14	-10.00	- 8.00	-30	-34.44	-27.56
57	13.59	11.11	13	-10.56	-8.44	-:31	-35.00	-28.00
56	13.33	10.67	12	-11.11	- 8.59	-32	-35.56	-28.44
55	12.78	10.22	11	-11.67	-9.33	-33	-36.11	-28.89
54	12.22	9.78	10	-12.22	-9.78	-34	-36.67	-29.33
53	11.67	9.33	9	-12.78	-10.22	-35	-37.22	-29.78
52	11.11	8.89	8	-13.33	-10.67	-36	-37.75	-30.22
51	10.56	8.44	7	-13.89	-11.11	-37	-38.33	-30.67
50	10.00	8.00	6	-14.44	-11.56	-38	-38.89	-31.11
49	9.44	7.56	5	-15.00	-12.00	-39	-39.44	-31.56
For the Continuation see Table IV. and V.								

A
II. COMPARISON OF THE CENTIGRADE THERMOMETER WITH REAUMUR'S AND FAHRENIIEIT'S.
x° Centig. $=\left(32+\frac{9}{5} x^{0}\right)$ Fahr. $=\frac{4}{5} x^{0}$ Reaum.

Centig.	Reaumur.	Fahrenheit.	Centig.	Reaumur.	Fahrenheit.	Centig.	Reaumur.	Fahrenheit.
$+100$	+80.0	$+212.0$	+83	+66.4	+181.4	$+66$	+52.8	+150.8
99	79.2	210.2	82	6.56	179.6	6.5	52.0	149.0
98	78.4	208.4	81	64.8	177.8	64	51.2	147.2
97	77.6	206.6	So	64.0	176.0	63	50.4	145.4
96	76.8	204.8	79	63.2	174.2	62	49.6	143.6
95	76.0	203.0	78	62.4	172.4	61	48.8	141.8
94	75.2	201.2	77	61.6	170.6	60	48.0	140.0
93	74.4	199.4	76	60.8	168.8	59	47.2	138.2
92	736	197.6	75	60.0	167.0	58	46.4	136.4
91	72.8	19.5 .8	74	59.2	16.). 2	57	45.6	134.6
90	72.0	194.0	73	58.4	163.4	56	4.8	132.8
89	71.2	192.2	72	57.6	161.6	55	44.0	131.0
88	70.4	190.4	71	. 26.3	1.59 .8	54	43.2	129.2
87	69.6	188.6	70	560	1.58 .0	53	42.4	127.4
86	68.8	186.8	69	5.52	156.2	52	41.6	125.6
85	68.0	185.0	68	54.4	154.4	51	40.8	123.8
84		183.2	67	53.6	152.6	50	40.0	122.0
For the Contmuation see Tables V. and VI.								
III. COMPARISON OF REAUMUR'S THERMOMETER WITH FAHRENIIEIT'S AND TILE CENTIGRADE. x° Reaum. $=\left(32^{2}+\frac{9}{4} r^{\infty}\right)$ Fahr. $=\frac{5}{4} x^{2}$ Centig.								
Reaumur.	Fahrenheit.	Centigrade.	Reaumur.	Fahrenleit.	Centigrade.	Reaumur.	Fahrenheit.	Centigrade.
$+80$	$+212.00$	$+100.00$	$+66$	$+180.50$	+82.50	$+52$	+149.00	$+65.00$
79	209.7.	98.75	65	17ヶ.2.5	81.25	51	146.75	63.75
78	207.50	97.50	64	176.00	80.00	50	14.4 .50	62.50
77	20.5 .2 .5	962.5	63	173.75	78.75	49	142.25	61.25
76	203.00	9.5 .00	62	171.50	77.50	48	140.00	60.00
75	200.75	93.75	61	169.2.5	76.25	47	137.75	58.75
74	198.50	92.50	60	167.00	75.00	46	135.50	57.50
73	196.25	91.25	59	164.7.5	73.75	45	183.25	56.25
72	194.00	90.00	58	162.50	72.50	44	131.00	5.5 00
71	191.75	88.75	57	160.25	71.25	43	128.75	63.75
70	189.50	87.50	56	158.00	70.00	42	126.50	52.50
69	187.25	86.25	55	155.75	68.75	41	124.25	51.25
68	185.00	85.00	54	153.50	67.50	40	122.00	50.00
67	182.75	83.75	53	151.25	66.25	39	119.75	4875
For the Continuation see Tables VIII. and IX.								

A

IV. - V.

COMPARISON
of

FAIIRENHEIT'S THERIIOMETER

WITH

THE CENTIGRADE AND WITH THAT OF REAUMLR,
or

TABLES
for converting the degrees of fahrenheit into centigrade degrees and into megrees of reaumur ;
giving the corresponding values for each tenth of a degree, Fron $+122^{\circ}$ ro - 76° Fallrenheit.
A

Degrees of Fahrenheit.	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
+122	$\begin{array}{r} \text { Centig. } \\ +50.00 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +50.06 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +50.11 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +50.17 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +50.22 \end{array}$	$\begin{array}{r} \text { Centig: } \\ +50.28 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +50.33 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +50.39 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +50.44 \end{array}$	$\begin{gathered} \text { Centig. } . \\ +50.50 \end{gathered}$
121	49.44	49.50	49.56	49.61	49.67	49.72	49.78	49.83	49.89	49.94
120	48.89	49.94	49.00	49.06	49.11	49.17	49.22	49.25	49.33	49.39
119	48.33	48.39	48.44	48.50	48.56	48.61	48.67	48.72	48.78	48.83
118	47.78	47.83	47.89	47.94	48.00	48.06	48.11	48.17	48.22	48.28
117	47.22	47.28	47.33	47.39	47.44	47.50	47.56	47.61	47.67	47.72
116	46.67	46.72	46.78	46.83	46.89	46.94	47.00	47.06	47.11	47.17
115	46.11	46.17	46.22	46.28	46.33	46.39	46.44	46.50	46.56	46.61
114	45.56	45.61	45.67	45.72	45.78	45.83	45.59	45.94	46.00	46.06
113	45.00	45.06	45.11	45.17	45.22	45.28	45.33	45.39	45.44	45.50
112	44.44	44.50	44.56	44.61	44.67	44.72	44.78	44.83	44.89	44.94
111	43.59	43.94	44.00	44.06	44.11	44.17	44.22	44.28	44.33	44.39
110	43.33	43.39	43.44	43.50	43.56	43.61	43.67	43.72	43.78	43.83
109	42.78	42.83	42.89	42.94	43.00	43.06	43.11	43.17	43.22	43.28
108	42.22	42.28	42.33	42.39	42.44	42.50	42.56	42.61	42.67	42.72
107	41.67	41.72	41.78	41.83	41.89	41.94	42.00	42.06	42.11	42.17
106	41.11	41.17	41.22	41.28	41.33	41.39	41.44	41.50	41.56	41.61
105	40.56	40.61	40.67	40.72	40.78	40.83	40.89	40.9 .4	41.00	41.06
104	40.00	40.06	40.11	40.17	40.22	40.28	40.33	40.39	40.44	40.50
103	39.44	39.50	39.56	39.61	39.67	39.72	39.78	39.83	39.59	39.94
102	38.89	38.94	39.00	39.06	39.11	39.17	39.22	39.28	39.33	39.39
101	38.33	38.39	38.44	38.50	35.56	38.61	38.67	38.72	38.78	38.83
100	37.78	37.83	37.59	37.94	38.00	38.06	38.11	38.17	38.22	38.25
99	37.22	37.28	37.33	37.39	37.44	37.50	37.56	37.61	37.67	37.72
98	36.67	36.72	36.78	36.53	36.89	36.94	37.00	37.06	37.11	37.17
97	36.11	36.17	36.22	36.28	36.33	36.39	36.44	36.50	36.56	36.61
96	35.56	35.61	35.67	35.72	35.78	35.83	35.89	35.94	36.00	36.06
95	35.00	35.06	35.11	35.17	35.22	35.28	35.33	35.39	35.44	35.50
94	34.44	34.50	34.56	34.61	34.67	34.72	34.78	34.83	34.89	34.94
93	33.89	33.94	34.00	34.06	34.11	34.17	34.22	34.28	34.33	34.39
92	33.33	33.39	33.44	33.50	33.56	33.61	33.67	33.72	33.78	33.83
91	32.78	32.83	32.89	32.94	33.00	33.06	33.11	33.17	33.22	33.28
90	32.22	32.28	32.33	32.39	32.44	32.50	32.56	32.61	32.67	32.72
89	31.67	31.72	31.75	31.83	31.89	31.94	32.00	32.06	32.11	33.17
88	31.11	31.17	31.22	31.28	31.33	31.39	31.44	31.50	31.56	31.61
87	30.56	30.61	30.67	30.72	30.78	30.83	30.89	30.94	31.00	31.06
86	30.00	30.06	30.11	30.17	30.22	30.28	30.33	30.39	30.44	30.50
85	29.44	29.50	29.56	29.61	29.67	29.72	29.78	29.83	29.59	29.94
84	25.89	28.94	29.00	29.06	29.11	29.17	29.22	29.28	29.33	29.39
83	28.33	28.39	28.44	28.50	28.56	28.61	28.67	28.72	28.78	28.83
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

If conversion of degrees of fahrenheit into centigrade degrees.

Degrees of Fahren. heit.	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
+82	$\begin{array}{r} \text { Centig. } \\ +27.78 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +27.83 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +27.89 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +27.94 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +28.00 \end{array}$	$\begin{gathered} \text { Centig. } \\ +28.06 \end{gathered}$	$\begin{array}{r} \text { Centig. } \\ +28.11 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +28.17 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +28.22 \end{array}$	$\begin{array}{r} \text { Centig. } \\ +28.28 \end{array}$
81	27.22	27.28	27.33	27.39	27.44	27.50	27.56	27.61	27.67	27.72
80	26.67	26.72	26.78	26.83	26.59	26.94	27.00	27.06	27.11	27.17
79	26.11	26.17	26.22	26.28	26.33	26.39	26.44	26.50	26.56	26.61
78	25.56	25.61	'25.67	25.72	25.78	25.83	25.59	25.94	26.00	26.06
77	25.00	25.06	25.11	25.17	25.22	2.9 .28	25.33	25.39	25.44	25.50
76	24.44	24.50	24.56	24.61	24.67	24.72	24.78	24.83	24.59	24.94
75	23.59	23.94	24.00	24.06	24.11	24.17	24.22	24.28	24.33	24.39
74	23.33	23.39	23.44	23.50	23.56	23.61	23.67	23.72	23.78	23.83
73	22.78	$2: 3.53$	22.59	22.94	23.00	23.06	23.11	23.17	23.22	23.28
72	22.22	22.28	22.33	22.39	22.44	22.50	22.56	22.61	22.67	22.72
71	21.67	21.72	21.78	21.53	21.89	21.94	22.00	22.06	22.11	22.17
70	21.11	21.17	21.22	21.28	21.33	21.39	21.44	21.50	21.56	21.61
69	20.56	20.61	20.67	20.72	20.78	20.83	20.89	2094	21.00	21.06
68	20.00	20.06	20.11	20.17	20.22	20.28	20.33	20.39	20.44	20.50
67	19.44	19.50	19.56	19.61	19.67	19.72	19.78	19.83	19.89	19.94
66	18.59	18.94	19.00	19.06	19.11	19.17	19.22	19.28	19.33	19.39
65	18.33	18.39	18.44	18.50	18.56	18.61	18.67	18.72	18.78	18.83
6.4	17.78	17.83	17.59	17.94	19.00	18.06	18.11	18.17	18.22	18.28
63	17.22	17.28	17.33	17.39	17.44	17.50	17.56	17.61	17.67	17.72
62	16.67	16.72	16.75	16.83	16.59	16.94	17.00	17.06	17.11	17.17
61	16.11	16.17	16.22	16.28	16.33	16.39	16.44	16.50	16.56	16.61
60	15.56	15.61	15.67	15.72	15.78	15.53	15.89	15.94	16.00	16.06
59	15.00	15.06	15.11	15.17	15.2.	15.25	1.5 .33	15.39	15.44	15.50
59	14.44	14.50	14.56	14.61	14.67	14.72	14.75	14.83	14.89	14.94
57	13.59	13.94	14.00	14.06	11.11	14.17	14.22	14.28	14.33	14.39
56	13.33	13.39	13.44	13.50	13.56	13.61	13.67	13.72	13.78	13.83
. 53	12.78	12.83	12.59	12.94	13.00	13.06	13.11	13.17	13.22	13.28
54	12.22	12.28	12.33	12.39	12.44	12.50	12.56	12.61	12.67	12.72
53	11.67	11.72	11.78	11.83	11.59	11.94	12.00	12.06	12.11	12.17
52	11.11	11.17	11.22	11.28	11.33	11.39	11.44	11.50	11.56	11.61
51	10.56	10.61	10.67	10.72	10.78	10.83	10.89	10.94	11.00	11.06
50	10.00	10.06	10.11	10.17	10.22	10.25	10.33	10.39	10.44	10.50
49	9.44	9.50	9.56	9.61	9.67	9.72	9.78	9.83	9.89	9.94
48	S.89	S. 94	9.00	9.06	9.11	9.17	9.22	9.28	9.33	9.39
47	8.33	8.39	8.44	8.50	8.56	8.61	8.67	8.72	8.78	8.83
46	7.78	7.83	7.89	7.94	8.00	8.06	8.11	8.17	8.22	8.28
45	7.22	7.28	7.33	7.39	7.44	7.50	756	7.61	7.67	7.72
44	6.67	6.72	6.78	6.83	6.59	6.94	7.00	7.06	7.11	7.17
43	6.11	6.17	6.22	6.28	6.33	6.39	6.44	6.50	6.56	6.61
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Degrees of Fahrenheit.	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7 \%	8.	9.
	Centig.	Centig.	Centig.	Centig.	Cer	Centig.	Centig.	ig.	Centig.	g.
-37	-38.33	--38.39	-38.44	-38.50	-38.56	-35.61	-38.67	-38.72	-38.78	-38.83
-38	-38.89	-38.94	-39.00	-39.06	-39.11	-39.17	-39.22	-39.28	-39.33	-39.39
-39	-39.44	-39.50	-39.56	-39.61	-39.67	-39.72	-39.78	-39.83	-39.89	-39.94
-40	-40.00	-40.06	-40.11	-40.17	-40.22	-40.28	-40.33	-40.39	-40.44	-40.50
-41	-40.56	-40.61	-40.67	-40.72	-40.78	-40.83	-40.59	-40.94	-41.00	-41.06
-42	-41.11	-41.17	-41.22	-41.28	-41.33	-41.39	-41.44	-41.50	-41.56	-41.61
-43	-41.67	-41.72	-41.78	-41.83	-41.89	-41.94	-42.00	-42.06	-42.11	-42.17
-44	-42.22	-42.28	-42.33	-42.39	-42.44	-42.50	-42.56	-42.61	-42.67	-42.72
-45	-42.78	-42.93	-42.59	-42.94	-43.00	-43.06	-43.11	-43.17	-43.22	-43.28
-46	-.13.33	-43.39	-43.44	-43.50	-43.56	-43.61	-43.67	-43.72	-43.78	-43.83
-47	-43.89	-43.94	-14.00	-44.06	-44.11	-44.17	-44.22	-44.28	-44.33	-44.39
-48	-44.44	-44.50	-44.56	-44.61	-44.67	-44.72	-44.78	-44.83	-44.89	-44.94
-49	-45.00	-4.5.06	- 45.11	-45.17	-4.5.22	-45.28	-45.33	-45.39	-45.44	-45.50
-50	-45.56	-45.61	-45.67	-45.72	-45.78	-45.83	-45.89	$-4.5 .94$	-16.00	-46.06
-51	-46.11	-46.17	-46.22	-46.28	-46.33	-46.39	-46.44	-46.50	-46.56	-46.61
-52	-46.67	-46.72	-46.78	-46.83	-46.89	-46.94	-47.00	-47.06	-47.11	-47.17
-58	-47.22	-47.28	-47.33	-47.39	-47.44	-47.50	-47.56	-47.61	-47.67	-47.72
-54	-47.78	-47.83	-47.59	-47.94	-48.00	-48.06	-48.11	-48.17	-48.22	-48.28
-55	-48.33	-48.39	-48.44	-48.50	-48.56	-48.61	-48.67	-48.72	-48.78	-48.83
-56	-43.59	-48.94	-49.00	-49.06	-49.11	-49.17	-49.22	$-49.2 \mathrm{~S}$	-49.33	-49.39
-57	-49.44	-49.50	-49.56	-49.61	-49.67	-49.72	-49.78	-49.53	-49.89	-49.94
-58	-50.00	-50.06	-50.11	-50.17	-50.22	-50.28	-50.33	-50.39	-50.44	-50.50
-59	-50.56	-50.61	-50.67	-50.72	-50.78	-50.53	-50.59	-50.94	-51.00	-51.06
-60	-51.11	-51.17	-51.22	-51.28	-51.33	-51.39	-51.44	-51.50	-51.56	-51.61
-61	-51.67	-51.72	-51.78	-51.83	-51.89	-51.94	-52.00	-52.06	-52.11	-52.17
-62	-52.22	-52.29	-52.33	-52.39	-52.44	-52.50	-52.56	-32.61	-52.67	-52.72
-63	-52.78	-52.83	-52.59	-52.91	-53.00	-53.06	-53.11	-53.17	-53.22	-53.28
-64	-53.33	-53.39	-53.44	-53.50	-53.56	-53.61	-53.67	-53.72	-53.75	-53.83
-65	-53.89	-53.94	-54.00	-54.06	-54.11	-54.17	-54.22	-54.2S	-54.33	-54.39
-66	-54.44	-54.50	-54.56	-54.61	-54.67	$-.54 .72$	-54.75	-54.83	-54.89	-54.94
-67	-5.5.00	-55.06	-5.5. 11	-55.17	-55.22	-5.5.29	-55.33	-55.39	-55.44	-55.50
-6S	-5.5.56	-55.61	-5.5.67	-55.72	-5.5.78	-.55.83	-55.59	-5.5.94	-56.00	-56.06
-69	-.56.11	-56.17	-56.22	-. 6.28	-56.39	-56.39	-56.44	-56.50	-56.56	-56.61
-70	-56.67	-56.72	-56.78	-56.83	-56.89	-56.94	-57.00	-57.06	-57.11	-57.17
-71	-57.22	-57.28	-57.33	-57.39	-57.44	$-.57 .50$	-57.56	-57.61	-57.67	-57.12
-72	-57.78	-57. 53	-57. 39	-57.94	-58.00	-58.06	-58.11	-58.16	-58.22	-58.28
-73	-58.33	-58.39	-58.44	-58.50	-58.56	-58.61	-58.67	-58.72	-.58.78	-58.83
-74	-58.39	-58.94	-59.00	-59.06	-59.11	-59.17	-59.22	-59.28	-59.33	-.59.39
-75	-59.44	-59.50	-59.56	-59.61	-59.87	-59.72	-59.78	-59.83	-59.59	-59.94
-76	-60.00	-60.06	-60.11	-60.17	-60.22	-60.28	-60.33	-60.39	-60.44	-60.50
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

A

Degrees of Fahtenheit.	Tenths of a Degree.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Reaumur.	Reaumur	Reammar	Reammur.	Reammur	Reaumur.	Reaumur.	Reaumar.	Reaumur.	Reammur.
+122	+40.00	+ +40.04	+40.09	+40.13	+10.18	+40.22	$+40.27$	$+10.31$	+40.36	+40.40
121	39.56	39.60	39.64	39.69	39.73	39.75	39.82	39.57	39.91	39.96
120	39.11	39.16	39.20	39.24	39.29	39.33	39.38	39.42.	39.47	39.51
119	38.67	38.71	38.76	38.50	35.84	38.89	38.93	35.95	39.02	39.07
119	38.22	38.27	35.31	35.36	38.40	38.41	38.49	35.53	38.58	38.62
117	37.78	3782	37.87	37.91	37.96	38.00	38.01	38.09	38.13	35.18
116	37.3;	37.35	37.42	37.47	37.51	3756	37.60	37.64	37.69	37.73
11.5	36.89	36.93	36.95	37.02	37.07	37.11	37.16	37.20	37.24	37.29
114	36.41	36.49	36.53	36.55	36.62	36.67	36.71	36.76	36.80	36.54
113	36.00	36.01	36.09	36.13	36.18	36.22	36.27	36.31	36.36	36.40
112	3.5.56	95.60	35.64	3569	35.73	3.5 .78	3.5.82	3.5 .87	35.91	35.96
111	3.5.11	35.16	3.5 .20	35.24	35.29	3.5 .33	3.5.35	3.5 .42	35.47	35.51
110	31.67	34.71	31.76	34.80	34.84	34.59	31.93	31.98	35.02	3.5 .07
109	34.22	34.27	31.31	34.36	34.40	34.44	34.49	34.53	34.58	34.62
108	33.78	33.82	33.87	33.91	33.96	34.00	34.01	31.09	34.13	34.18
107	33.33	33.38	33.42	33.47	33.51	33.56	33.60	33.64	33.69	33.73
106	32.59	32.93	32.95	33.02	33.07	33.11	33.16	33.20	33.24	33.29
10.5	32.44	32.49	32.53	32.58	32.62	32.67	32.71	32.76	32.50	32.84
104	32.00	32.04	32.09	32.13	3215	32.22	32.27	32.31	32.36	32.40
103	31.56	31.60	31.64	31.69	31.73	31.75	31.82	31.57	31.91	31.96
102	31.11	31.16	31.20	31.24	31.29	31.33	31.38	31.42	31.47	31.51
101	30.67	30.71	30.76	30.50	30.84	30.59	30.93	30.98	31.02	31.07
100	30.22	30.27	30.31	30.36	30.40	30.44	30.49	30.53	30.58	30.62
99	29.78	29.82	29.87	29.91	29.96	30.00	30.04	30.09	30.13	30.18
98	29.33	29.38	29.42	29.47	29.51	29.56	29.60	29.64	29.69	29.73
97	28.89	29.93	28.98	29.02	29.07	29.11	29.16	29.20	29.24	29.29
96	28.44	25.49	28.53	28.58	28.62	25.67	28.71	23.76	28.50	28.84
95	28.00	28.01	28.09	28.13	28.18	28.22	28.27	28.31	28.36	28.40
94	27.56	27.60	27.64	27.69	27.73	27.75	27.82	27.87	27.91	27.96
93	27.11	27.16	27.20	27.24	27.29	27.33	27.38	27.12	27.47	27.51
92	26.67	26.71	26.76	26.80	26.54	26.59	26.93	26.98	27.02	27.07
91	26.22	26.27	26.31	26.36	26.40	26.41	26.49	26.53	26.58	26.62
90	2.5.75	2.5. 8.	25.57	2.5.91	2.5 .96	26.00	26.01	26.09	26.13	26.18
S9	2.5.33	2.5 .39	25.42	25.47	25.51	2.5.56	25.60	25.61	25.69	25.73
88	24.59	24.93	21.98	25.02	25.07	25.11	25.16	25.20	25.24	2.5 .29
87	24.44	24.49	2453	21.58	24.62	24.67	24.71	24.76	24.80	24.84
86	24.00	24.04	24.09	24.1:3	2418	24.22	21.27	24.31	24.36	24.40
8.5	23.56	23.60	23.64	2369	23.73	23.75	23.82	23.87	2391	23.96
84	23.11	23.16	23.20	23.24	23.29	2333	23.38	23.42	23.47	23.51
83	22.67	22.71	22.76	22.80	22.54	22.59	22.93	22.95	23.02	23.07
82	22.22	22.27	22.34	22.36	22.40	22.44	22.49	22.53	22.58	22.62
	0.	1.	2.	3.	4.	5.	6.	7.	8.	O.

Derrees of Fahreuheit.	Tentis of a Degree.									
	0.	1.	2.	3.	4.	む.	6.	8.	8.	9.
	Reaumur P	Reaumur	Reanmur	Reaumur.	Reaumur.	Reaumur.	Reaumur	Reanmur.	Reaumui. B	Reatumur.
+81	+21.75	$+21.82$	+21.57	+21.91	$+21.96$	$+22.00$	$+2.24$	$+2 \cdot .09$	3	+22.15
80	21.33	21.35	21.42	21.47	21.51	21.56	21.60	21.64	21.69	21.73
79	20.59	20.93	20.98	21.02	21.07	21.11	21.16	21.20	21.24	21.29
78	20.44	20.49	20.53	20.55	20.62	20.67	20.71	20.76	20.80	20.84
77	20.00	20.04	20.09	20.13	20.18	20.23	20.27	20.31	20.36	20.40
76	19.66	19.60	19.64	19.69	19.73	19.78	19.82	19.57	19.91	19.96
75	19.11	19.16	19.20	19.24	19.29	19.33	19.38	19.42	19.47	19.51
74	18.67	18.71	18.76	18.50	1584	18.89	18.93	13.98	19.02	19.07
73	18.22	15.27	18.31	18.36	18.40	18.44	18.49	18.53	18.58	18.62
72	17.78	17.52	17.87	17.91	17.96	18.00	18.04	18.09	15.13	18.18
71	17.33	17.38	17.42	17.47	17.51	17.56	17.60	17.64	17.69	17.73
70	16.89	16.93	16.98	17.02	17.07	17.11	17.16	17.20	17.24	17.29
69	16.44	16.49	16.53	16.55	16.62	16.67	16.71	16.76	16.50	16.54
68	16.00	16.04	16.09	16.13	16.18	16.22	16.27	16.31	16.36	16.40
67	15.56	15.60	15.64	15.69	15.73	15.78	15.82	15.87	15.91	15.96
66	15.11	15.16	15.20	15.24	15.29	15.33	15.38	15.42	15.47	15.51
65	11.67	14.71	14.76	14.80	14.84	14.89	14.98	14.98	15.02	15.07
64	14.22	14.27	14.31	14.36	14.40	14.44	14.49	14.53	14.55	14.62
63	13.78	13.82	13.87	13.91	1396	14.00	14.04	14.09	14.13	14.18
63	13.33	13.35	13.42	13.47	13.51	13.56	13.60	13.64	13.69	13.73
61	12.89	12.93	12.98	13.02	13.07	13.11	13.16	13.20	13.24	13.29
60	12.44	12.49	12.53	12.58	12.62	12.67	12.71	12.76	12.80	12.84
	12.00	12.04	12.09	12.13	12.18	12.22	12.27	12.31	12.36	12.40
59	12.00				11.73	11.78	11.82	11.87	11.91	11.96
58	11.56	11.60	11.64 11.20	11.69 11.24	11.73 11.29	11.73 11.33	11.38	11.42	11.47	11.51
57	11.11	11.16	11.20	11.24	11.29	11.33	11.05	11.42		
56	10.67	10.71	10.76	10.80	10.84	10.89	10.93	10.98	11.02	11.07
55	10.22	10.27	10.31	10.36	10.40	10.44	10.49	10.53	10.58	10.62
5.	9.78	9.82	9.87	9.91	9.96	10.00	10.04	10.09	10.13	10.18
54	9.78 9.3 .3	9.82 9.38	9.42	9.47	9.51	9.56	9.60	9.64	9.69	9.73
53	9.33 8.59	9.35 8.93	9.42 8.93	9.47 9.02	9.51 9.07	9.11	9.16	9.20	9.24	9.29
52	S. 89	8.93	8.95	9.02	9.07	9.11	9.16			
51	8.14	8.49	8.53	8.58	8.62	8.67	8.71	8.76	8.80	8.84
50	8.00	S.04	8.09	8.13	8.18	8.22	8.27	8.31	8.36	8.40
	7.	7.60	7.64	7.69	7.73	7.78	7.82	7.87	7.91	7.96
15	7.	7.16	7.20	7.24	7.29	7.33	7.38	7.42	7.47	7.51
47	6.67	6.71	6.76	6.80	6.84	6.89	6.93	6.98	7.02	7.07
46	6.22	6.27	6.31	6.36	6.40	6.44	6.49	6.53	3.58	- 6.62
45	5.78	5.82	5.87	75.91	5.96	6.00	6.04	6.09	- 6.13	6.15
45					5.51	5.56	5.60	5.64	45.69	5.73
44	533	5.35	5.42	- 5.47	5.51	5.56	5.60 5.16	5.20	0 5.24	45.29
43	4.89	- 4.93	4.98	3.02	5.07	5.11	5.16	5.20	- 3.24	- 5.29
42	4.44	4.49	4.53	4.58	4.62	4.67	4.71	4.76	$3 \quad 4.80$) 4.54
$4:$	4.00	- 4.04	4.4 .09	9 4.13	4.18	4.22	4.27	4.31	14.36	$6 \quad .1 .40$
	0.	1.	2.	3.	4.	5.	6.	78	8.	9.

A

Degrees of Fahrelheit.	Tenths of a Degree.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Reaumur	Re:mume	Reammur.	Reammur.	Reaumur	Reaumur.	Reaumur.	Reaumur	Reaumur	Reaumur.
+40	+ 3.56	+ 3.60	+ 3.64	+ 3.69	+ 3.73	3.78	+ 3.82	$+3.57$	+3.91	$+3.96$
39	3.11	3.16	3.20	3.24	3.29	3.33	3.38	3.12	3.47	3.51
38	2.67	2.71	2.76	2.80	2.84	2.89	2.93	2.95	3.02	3.07
37	2.22	2.27	2.31	2.36	2.40	2.44	2.49	2.53	2.58	2.62
36	1.78	1.82	1.87	1.91	1.96	2.00	2.04	2.09	2.13	2.18
35	1.83	1.38	1.42	1.17	1.51	1.56	1.60	1.64	1.69	1.73
34	0.89	0.93	0.98	1.02	1.07	1.11	1.16	1.20	1.24	1.29
83	0.14	0.19	0.53	0.58	0.62	0.67	0.71	0.76	0.80	0.84
32	0.00	0.04	0.09	0.13	0.18	0.22	0.27	0.31	0.36	0.40
81	- 0.44	-0.10	-0.36	-0.31	- 0.27	-0.22	-0.15	-0.13	-0.09	- 0.04
30	- 0.89	-0.54	- 0.80	- 0.76	- 0.71	- 0.67	-0.62	- 0.58	- 0.53	- 0.49
29	- 1.33)	- 1.29	- 1.24	- 1.20	- 1.16	-1.11	- 1.07	-1.02	- 0.98	-0.93
28	- 1.78	- 1.73	- 1.69	- 1.61	-1.60	-1.56	- 1.51	- 1.17	- 1.12	- 1.38
27	- 2.22	- 2.15	-2.13	- 2.09	- 2.04	- 2.00	- 1.96	- 1.91	- 1.87	- 1.82
26	- 2.67	- 2.62	- 2.58	- 2.53	- 2.49	- 2.44	- 2.40	-2.36	- 2.31	- 2.27
2.5	- 3.11	- 3.07	- 3.02	- 2.98	- 2.93	-2.89	- 2.84	- 2.80	- 2.76	- 2.71
24	- 3.56	- 3.51	-3.47	- 3.42	- 3.35	- 3.33	- 3.29	-3.24	- 3.20	-3.16
23	- 4.00	- 3.96	- 3.91	-3.87	- 3.82	-3.78	- 3.73	-3.69	-3.64	- 3.60
22	- 4.44	-4.10	- 4.36	-4.31	- 4.27	- 4.22	- 4.18	- 4.13	- 4.09	- 4.04
21	- 4.39	-4.54	- 4.80	-4.76	- 4.71	-4.67	-4.62	- 4.58	-4.53	-4.49
20	- 5.33	- 5.29	- 5.24	- 5.20	- 5.16	- 5.11	-5.07	- 5.02	- 4.98	- 4.93
19	- 5.78	-5.73	- 5.69	- 5.64	- 5.60	-5.56	- 5.51	- 5.47	- 5.42	- 5.38
18	- 6.22	- 6.18	- 6.13	- 6.09	- 6.04	- 6.00	- 5.96	- 5.91	- 5.87	- 5.82
17	- 6.68	- 6.62	- 6.58	- 6.53	- 6.49	- 6.14	- 6.10	- 6.36	- 6.3 .31	- 6.27
16	- 7.11	- 7.07	- 7.02	- 6.98	- 6.93	-6.89	-6.54	- 6.80	-6.76	-6.71
15	- 7.56	- 7.51	- 7.17	-7.42	- 7.38	-7.33	- 7.29	- 7.24	- 7.20	-7.16
14	$1-8.00$	- 7.96	- 7.91	- 7.57	- 7.82	- 7.78	- 7.73	- 7.69	- 7.64	- 7.60
13	-8.11	- 5.40	- 8.36	- 8.31	- 8.27	- 8.22	- 8.18	- 8.13	- 8.09	-8.04
12	- 8.59	-8.81	-5.80	- 8.76	-8.71	- 8.67	- 8.62	-8.58	- 8.53	- 8.49
11	- 9.33	- 9.29	- 9.24	- 9.20	- 9.16	- 9.11	- 9.07	- 9.02	- 8.98	- 8.93
10	- 9.73	- 9.73	- 9.69	- 9.64	- 9.60	- 9.56	- 9.51	- 9.47	- 9.42	- 9.38
9	-10 22	-10.18	-10.13	-10.09	-10.04	-10.00	- 9.96	- 9.91	- 9.87	-9.82
8	-10.67	-10.62	-10.58	-10.53	-10.49	-10.44	-10.10	-10.36	-10.31	-10.27
7	-11.11	-11.07	-11.02	-10.93	-10.93	-10.89	-10.5.1	-10.80	-10.76	-10.71
6	-11.56	-11.51	-11.47	-11.42	-11.33	-11.33	-11.29	-11.24	-11.20	-11.16
5	-12.00	-11.96	-11.91	-11.87	-11.82	-11.78	-11.73	-11.69	-11.64	-11.60
4	-12.44	-12.4t,	-12.36	-12.31	-12.27	-12.22.	-12.18	-12.13	--12.09	-12.04
3	-12.89	-12.84	-12.80	-12.76	-12.71	-12.67	-12.62	-12.58	-12.53	-12.19
2	-13.33	-13.29	-13.21	-13.20	-13.16	-13.11	-13.07	-12.02	-12.98	-12.93
1	-13.78	-13.73	-13.69	-13.64	-13.60	-13.56	-13.51	-13.47	-13.42	-13.35
$+0$	-14.22	-14.18	-14.13	-11.09	-14.04	-14.00	-13.96	-13.91	-13.87	-13.52
	(1.	1.	2.	3.	4.		6.	7.	8.	9.
A					20					

Degrees of Fahrenheit.	Tenths of a Degree.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Reaumur.	Reaumur.	Reaumur.	Reaumur.	Reaumur	Reaumur.	Reaunur	Reaumur.	Reaumur.	
- 0	-14.22	-14.27	-14.31	-14.36	-14.40	-14.44	-14.49	-14.53	-14.58	-14.62
-	-14.67	-14.71	-14.76	-14.80	-14.84	-14.89	-14.93	-14.98	-15.02	-15.07
2	-15.11	-15.16	-15.20	-15.24	-15.29	-15 33	-15.38	-15.42	-15.47	-15.51
- 3	-15.56	-15.60	-15.64	-15.69	-15.73	-15.78	-15.82	-15.87	-15.91	-15.96
-4	-16.00	-16.04	-16.09	-16.13	-16.18	-16.22	-16.27	-16.31	-16.36	-16.40
- 5	-16.44	-16.49	-16.53	-16.58	-16.62	-16.67	-16.71	-16.76	-16.80	-16.84
6	-16.59	-17.93	-16.98	-17.02	-17.07	-17.11	-17.16	-17.20	-17.24	-17.29
- 7	-17.33	-17.38	-17.42	-17.47	-17.51	-17.56	-17.60	-17.64	-17.69	-17.73
- 8	-17.78	-18.52	-17.57	-17.91	-17.96	-18.00	-18.04	-18.09	-18.13	-18.13
-9	-18.22	-18.27	-18.31	-18.36	-18.40	-18.44	-18.19	-18.53	-18.58	-18.62
-10	-18.67	-18.71	-18.76	-18.80	-18.84	-18.59	-18.93	-18.98	-19.02	-19.07
-11	-19.11	-19.16	-19.20	-19.24	-19.29	-19.33	-19.38	-19.42	-19.47	-19.51
-12	-1956	-19.60	-19.64	-19.69	-19.73	-19.78	-19.52	-19.87	-19.91	-19.96
-13	-20.00	-20.04	-20.09	-20.13	-20.18	-20.22	-20.27	-20.31	-20.36	-20.40
-14	-20.44	-20.49	-20.53	-20.58	-20.62	-20.67	-20.71	-20.76	-20.80	-20.84
-15	-20.59	-20.93	-20.98	-21.02	-21.07	-21.11	-21.16	-21.20	-21.24	-21.29
-16	-21.33	-21.38	-21.42	-21.47	-21.51	-21.56	-21.60	-21.64	-21.69	-21.73
-17	-21.78	-21.82	-21.57	-21.91	-21.96	-22.00	-22.04	-22.09	-2.213	-22.18
-18	-22.22	-2.2.27	-22.31	-22.36	-22.40	-2.44	-23.49	-22.53	-2.2.58	-22.62
-19	-2.67	-22.71	-22.76	-22.80	-22.84	-22.89	-22.93	-22.98	-23.02	-23.07
-20	-23.11	-23.16	-23.20	-23.24	-23.29	-23.33	-23.38	-23.42	-23.47	-23 51
-21	-23.56	-23.60	-23.64	-23.69	-23.73	-23.78	-23.82	-23.87	-23.91	-23.96
-22	-24.00	-24.04	-24.09	-24.13	-2.1.18	-2 4.22	-24.27	-24.31	-24.36	-24.40
-23	-24.44	-24.49	-24.53	-24.58	-24.62	-24.67	-24.71	-24.76	-24.50	-24.84
-24	-24.59	-24.93	-24.98	$-2.5 .02$	-25.07	-25.11	-25.16	-25.20	-25.24	-25.29
-2:	-25.33	-25.35	-25.42	-2.5.47	-25.51	-25.56	-25.60	-2.5.64	-25.69	-25 73
-26	-25.78	-2.5.82	-25.87	-25.91	-25.96	-26.00	-26.04	-26.09	-26.13	-26.18
-27	-26.22	-26.27	-26.31	-26.36	-26.40	-26.44	-26.49	-26.53	-26.58	-26.62
-23	-26.67	-26.71	-26.76	-26.80	-26.84	-26.69	-26.93	-26.98	-27.02	-27.07
-29	-27.11	-27.16	-27.20	-27.24	-27.29	-27.33	-27.38	-27.42	-27.47	-27.51
-30	-27.56	-27.60	-27.64	-27.69	-27.73	-27.78	-27.82	-27.87	-27.91	-27.96
-31	-28.00	-28.04	-28.09	-28.13	-25.18	-28.22	-28.27	-28.31	-28.36	-28.40
-32	-23 44	-28.49	-28.53	-28.55	-28.62	-28.67	-28.71	-28.76	-28.50	-28.84
-33	-28.89	-28.93	-23.98	-29.02	-29.07	-29.11	-29.16	-29 20	-29.24	-29.29
-34	-29.33	-29.33	-29.42	-29.47	-29.51	-29.56	-29.60	-29.64	-29.69	-29.73
-35	-29.78	-29.82	-29.87	-29.91	-29.96	-30.00	-30.04	-30.09	-30.13	$-30 \cdot 18$
-36	-30.22	-30.27	-30.31	-30.36	-30.40	-30.44	-30.49	-30.53	-30.58	-30.62
-37	-30.67	-30.71	-30.76	-30.50	-30.84	-30.89	-30.93	-30.98	-31.02	-31.07
-35	-31.11	--31.16	-31.20	-31.24	-31.29	-31.33	-31.38	-31.42	-31.47	-31.51
-39	-31.56	-31.60	-31.64	-31.69	-31.73	-31.78	-31.82	-31.57	-31.91	-31.96
-40	-32.00	-30.04	-30.09	-30.13	-30.18	-30.22	-30.27	-30.31	-30.36	-30.40
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

A

VI.-VII.

C0MPARIS0N

of

THE CENTIGRADE THERMOMETER

WITH

TIIE THERMOMETERS OF FAHRENIIEIT AND OF REAUMUR, or

TABLES

FOR CONVERTING CENTIGRADE DEGREES INTO DEGREES OF FAHRENHEIT AND OF REAUMUR;
giving the corresponding values for eacif tenth of a degree, FROM + 50° TO - 54° CENTIGRADE.
A

Centigrade Derrees.	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	$\%$ \%	8.	9.
$+50$	$\begin{gathered} \text { Fahren. } \\ +122.00 \end{gathered}$	Fahren. $+122.18$	$\begin{aligned} & \text { Fahren. } \\ & +122.36 \end{aligned}$	$\begin{array}{\|} \text { Fahren. } \\ +122.54 \end{array}$	$\begin{array}{\|c\|} \text { Fahren. } \\ +122.72 \end{array}$	$\left\|\begin{array}{c} \text { Fahren. } \\ +122.90 \end{array}\right\|$	$\begin{array}{r} \text { Fahren. } \\ +123.08 \end{array}$	$\begin{aligned} & \text { Fahren. } \\ & +123.26 \end{aligned}$	$\begin{gathered} \text { Fahren. } \\ +123.44 \end{gathered}$	Fahren. $+123.62$
49	120.20	120.38	120.56	120.74	120.92	121.10	121.28	121.46	121.64	121.82
48	118.40	118.58	118.76	118.9 .11	119.12	119.30	119.48	119.66	119.84	120.02
47	116.60	116.75	116.96	117.14	117.32	117.50	117.68	117.86	118.04	118.22
46	114.50	114.98	115.16	115.34	115.52	115.70	115.88	116.06	116.24	116.42
45	113.00	113.18	113.36	113.54	113.72	113.90	114.08	114.26	114.44	114.62
44	111.20	111.38	111.56	111.74	111.92	112.10	112.28	112.46	112.64	112.82
43	109.40	109.58	109.76	109.94	110.12	110.30	110.48	110.66	110.8.t	111.02
42	107.60	107.75	107.96	105.14	108.52	105.50	105.68	108.86	109.04	109.22
41	105.80	105.98	106.16	106.34	106.52	106.70	106.58	107.06	107.24	107.42
40	104.00	104.18	104.36	104.5t	104.72	104.90	10.5 .08	105.26	105.44	105.62
39	102.20	102.38	102.56	102.74	102.92	103.10	103.28	103.46	103.64	103.52
38	100.40	100.58	100.76	100.94	101.12	101.30	101.48	101.66	101.84	102.02
37	98.60	98.78	98.96	99.14	99.32	99.50	99.68	99.86	100.04	100.22
36	96.50	96.95	97.16	97.34	97.52	97.70	97.88	98.06	98.24	98.42
35	95.00	95.18	95.36	95.54	95.72	95.90	96.08	96.26	96.44	96.62
34	93.20	93.38	93.56	93.74	93.92	94.10	94.28	94.46	94.64	94.82
33	91.40	91.58	91.76	91.94	92.12	92.30	92.48	92.66	92.84	93.02
32	89.60	89.78	89.96	90.14	90.32	90.50	90.68	90.86	91.04	91.22
31	87.50	87.98	88.16	88.34	88.52	88.70	85.38	89.06	89.24	89.42
										-
30	86.00	86.18	86.36	86.54	86.72	86.90	87.08	87.26	87.44	87.62
29	84.20	84.38	84.56	84.74	S4.92	55.10	85.28	85.46	85.64	85.82
28	82.40	82.58	82.76	82.94	83.12	83.30	83.48	83.66	83.84	84.02
27	80.60	80.78	80.96	81.14	81.32	81.50	81.68	81.86	82.04	82.22
26	78.80	78.98	79.16	79.34	79.52	79.70	79.58	80.06	80.24	80.42
25	77.00	77.18	77.36	77.54	77.72	77.90	78.08	78.26	78.44	$78.62{ }^{\text {² }}$
24	75.20	75.83	75.56	75.74	75.92	76.10	76.28	76.46	76.64	76.82
23	73.40	73.58	73.76	73.94	74.12	74.30	74.48	74.66	74.84	75.02
22	71.60	71.78	71.96	72.14	72.32	72.50	72.65	72.86	73.04	73.22
21	69.50	69.98	70.16	70.34	70.52	70.70	70.58	71.06	71.24	71.42
20	68.00	68.15	68.36	65.54	68.72	68.90	69.08	69.26	69.44	69.62
19	66.20	66.35	66.56	66.74	66.92	67.10	67.28	67.16	67.64	67.82
18	64.40	64.58	64.76	64.94	65.12	65.30	65.48	65.66	65.84	66.02
17	62.60	62.75	62.96	63.14	63.32	63.50	63.68	63.56	64.04	64.22
16	60.50	60.98	61.16	61.34	61.52	61.70	61.58	62.06	62.24	62.42
15	59.00	59.18	59.36	59.54	59.72	59.90	60.08	60.26	60.44	60.62
14	57.20	57.38	57.56	57.74	57.92	58.10	55.28	55.46	58.64	58.82
13	55.40	55.58	5.5 .76	55.94	56.12	56.30	56.48	56.66	56.8 .1	57.02
12	53.60	53.78	53.96	54.14	54.32	54.50	54.68	54.86	55.04	55.22
11	51.80	51.98	52.16	52.34	52.52	52.70	52.88	53.06	53.24	53.42
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

CentigradeDegrees.	Tenths of Degrees.									
	O.	1.	2.	3.	4.	¢.	6.	$\%$ \%	8.	9.
+10	0.00	Falren.	$\begin{aligned} & \text { Fahren. } \\ & \text { +50.30 } \end{aligned}$	Fahren.	Fahren.	Fahren. $+50.90$	Fahren $+51.08$	$\begin{aligned} & \text { Fahren. } \\ & \text { +5l. } \end{aligned}$	$\begin{aligned} & \text { Fahren. } \\ & +51.44 \end{aligned}$	Fahren.
9	48.20	48.38	48.56	48.74	48.92	49.10	49.25	49.46	49.64	49.82
S	46.40	46.58	46.76	46.94	17.12	47.30	47.48	47.66	47.84	45.02
7	44.60	44.78	44.96	45.14	43.32	45.50	45.68	45.86	46.04	46.22
6	42.50	42.98	43.16	43.34	43.52	43.70	43.58	44.06	44.24	44.42
5	41.00	41.18	41.36	41.54	41.72	41.90	42.08	42.26	42.44	42.62
4	39.20	39.38	39.56	39.74	39.92	40.10	40.28	40.46	40.64	40.82
3	37.40	37.58	37.76	37.94	38.12	38.30	38.48	38.66	38.84	39.02
2	35.60	33.78	35.96	36.14	36.32	36.50	36.68	36.86	37.04	37.22
1	33.50	33.98	34,16	34.34	34.52	34.70	34.58	35.06	35.24	35.42
0	32.00	32.18	32.36	32.54	32.72	32.90	33.08	33.26	33.44	33.62
- 0	32.00	31.82	31.64	31.46	31.25	31.10	30.92	30.71	30.56	30.38
-1	30.20	0.02	29.84	29.66	29.48	29.30	29.12	25.91	25.76	28.58
2	28.40	23.22	28.04	27.56	27.68	27.50	27.32	27.14	26.96	26.78
- 3	26.60	26.42	26.24	26.06	25.88	25.70	2.5 .52	2.5 .34	25.16	24.98
-	24.50	24.62	24.44	24.26	24.08	23.90	23.72	23.54	23.36	23.18
- 5	23.00	22.82	22.64	22.46	22.28	22.10	21.92	21.74	21.56	21.38
- 6	21.20	. 02	20.84	20.66	20.48	20.30	20.12	19.94	19.76	19.58
- 7	19.40	19.22	19.04	18.86	18.65	18.50	18.32	18.14	17.96	17.78
8	17.60	17.42	17.24	17.06	16.58	16.70	16.52	16.34	16.16	15.98
- 9	15.80	15.62	15.44	15.26	15.08	14.90	14.72	14.54	14.36	14.18
-10	14.00	13.82	13.64	13.46	13.28	13.10	12.92	12.74	12.56	12.38
-11	12.20	12.02	11.84	11.66	11.48	11.30	11.12	10.94	10.76	10.58
-12	10.40	10.22	10.04	9.56	9.68	9.50	9.32	9.14	8.90	8.78
-13	8. 60	8.12	8.24	S.06	7.85	7.70	7.52	7.34	7.16	6.98
-14.	6.80	6.62	6.44	6.26	6.08	5.90	5.72	5.54	5.36	5.18
-15	5.00	4.82	4.64	4.46	4.28	4.10	3.92	3.74	3.56	3.38
-16	3.20	3.02	2.84	2.66	2.48	2.30	2.12	1.94	1.76	1.58
-17	1.40	22	1.04	0.86	0.68	0.50	0.32	0.14	-0.04	-0.22
-18	- 0.40	-0.5s	-0.76	-0.94	- 1.12	- 1.30	- 1.48	- 1.66	- 1.84	- 2.02
-19	-2.20	- 2.38	- 2.56	- 2.74	- 2.92	- 3.10	-3.28	-3.46	-3.64	-3.82
-20	-4.00	- 4.18	- 4.36	-4.54	- 4.72	- 4.90	- 5.08	-5.26	- 5.4.4	- 5.62
-21	- 5.80	- 5.98	-6.16	-6.34	-6.52	- 6.70	- 6.38	- 7.06	- 724	- 7.42
-22	- 7.60	- 7.78	- 7.96	- 8.14	- 8.33	- 8.50	- 8.68	-8.56	-9.04	-9.22
-23	- 9.40	-9.58	9.76	- 9.94	-10.12	-10.30	-10.48	-10.66	-10.84	-11.02
-24	-11.20	-11.38	-11.56	-11.74	-11.92	-12.10	-12.28	-12.46	-12.64	-12.82
-25	-13.00	-13.15	-13.36	-13.54	-13.72	-13.90	-14.08	-14.26	-14.44	-14.62
-26	-14.50	-14.98	-15.16	-15.34	-15.52	-15.70	-15. 88	-16.06	-16.24	-16.42
-27	-16.60	-16.78	-16.96	-17.14	-17.32	-17.50	-17.68	-17.86	-18.04	-18.22
-28	-18.40	-18.58	-18.76	-18.91	-19.12	-19.30	-19.48	-19.66	-19.84	-20.02
-29	-20.20	-20.35	-20.56	-20.74	-20.92	-21.10	-21.29	-21.46	-21.64	-21.82
	o.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Centigrade Degrees.	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Fahren.									
-30	-22.00	-22.18	-22.36	-2.2.54	-22.72	-22.90	-23.08	-23.26	-23.44	-23.62
-31	-23.80	-23.98	-24.16	-24.34	-24.52	-24.70	-24.88	-2.5. 06	-25.24	-25.12
-32	-25.60	-25.78	-25.96	-26.14	-26.32	-26.50	-26.65	-26.86	-27.04	-27.22
-83	-27.40	-27.58	-27.76	-27.94	-28.12	-28.30	-28.45	-28.66	-28.84	-29.02
-34	-29.20	-29.38	-29.56	-29.74	-29.92	-30.10	-30.28	-30.46	-30.64	-30.82
-35	-31.00	-31.18	-31.36	-31.54	-31.72	-31.90	-32.08	-32.26	-32.44	-32.62
-36	-32.80	-32.98	-33.16	-33.34	-33.52	-33.70	-33.58	-34.06	-34.24	-34.42
-37	-34.60	-34.78	-34.96	-35.14	-35.32	-35.50	-35.68	-35. 86	-36.04	-36.29
-38	-36.40	-36.58	-36.76	-36.94	-37.12	-37.30	-37.48	-37.66	-37.84	-38.02
-39	-38.20	-38.38	-38.56	-38.74	-35.92	-39.10	-39.2S	-39.46	-39.64	-39.82
-40	-40.00	-40.18	-40.36	-40.54	-40.72	-40.90	-41.05	-41.26	-41.44	-41.62
-41	-41.80	-41.98	-42.16	-42.34	-42.52	-42.70	-42.88	-43.06	-43.24	-43.42
-42	-43.60	-43.78	-43.96	-44.14	-44.32	$-4.1 .50$	-44.68	-44.86	-45.04	-45.22
-43	-45.40	-45.58	-45.76	-45.94	-16.12	-46.30	-46.45	-46.66	-46.84	-47.02
-44	-47.20	-47.38	-47.56	-47.74	-47.92	-48.10	-48.28	-48.46	-48.64	-48.82
-45	-49.00	-49.18	-49.36	-49.54	-49.72	-49.90	-50.08	-50.26	-50.44	-50.62
-46	-50.80	-50.98	-51.16	-51.34	-51.53	-51.70	-51.88	-52.06	-52.24	-52.42
-47	-52.60	-52.78	-52.96	-53.14	-53.32	-53.50	-53.65	-53.86	-.54.04	-54.22
-48	-54.40	-54.58	-54.76	-54.94	-55.12	-55.30	$-5.5 .48$	$-5.5 .66$	$-5.5 .54$	-56.02
-49	-56.20	-56.38	-56.56	-56.74	-56.92	-57.10	-57.28	-57.46	-57.64	-57.82
-50	-58.00	-58.18	-58.36	-58.54	-55.72	-58.90	-59.08	-59.26	-59.44	-59.62
-51	-59.80	-59.98	-60.16	-60.34	-60.52	-60.70	-60.s8	-61.06	-61.24	-61.42
-52	-61.60	-61.78	-61.96	-62.14	-6.932	-62.50	-62.63	-62.86	-63.04	-63.22
-53	-63.40	-63.58	-63.76	-63.94	-64.12	-64.30	-64.18	-6i1.66	-64.84	-6.5.02
-54	-65.20	$-6.5 .38$	$-6.9 .56$	$-6.9 .74$	$-6.3 .92$	-66.10	-66.25	-66.46	-66.64	-66.82

TABLE FOR COMPARING THE CENTIGRADE AND FAIIRENIEIT'S TIIERMOMETERS NEAR THE BOILING POINT.

Centigrade Degrees.	0.	1.	2.	3.	1.	5.	6.	7.	8.	9.
	Fahren.	Fahren.	Fahren.	Fahren.	Fahren.	Fahren.	Fiahren.	Fahren.	Fahren.	Fahren.
100	212.00	212.18	212.36	212.54	212.72	212.90	213.08	213.26	213.44	213.62
99	210.20	210.38	210.56	210.74	210.92	211.10	211.28	211.46	211.64	211.82
98	203.40	208.58	205.76	208.94	209.12	209.30	209.48	209.66	209.84	210.02
97	206.60	206.78	206.96	207.14	207.32	207.50	207.65	207.86	20s.04	208.22
96	204.80	204.98	205.16	205.34	20.5.52	20.570	20.5.58	206.06	206.24	206.42
95	203.00	203.18	203.36	203.54	203.72	203.90	204.08	204.26	204.44	204.62
94	201.20	201.38	201.56	201.74	201.92	202.10	202.28	202.46	20264	202.82
93	199.40	199.58	199.76	199.94	200.12	200.30	200.48	20066	200.54	201.02
92	197.60	197.78	197.96	198.14	195.32	198.50	198.68	199.86	199.04	199.22
91	195.80	195.98	196.16	196.34	196.52	196.70	196.88	197.06	197.24	197.42
90	194.00	194.18	194.36	194.54	194.72	194.90	195.08	195.26	195.44	195.62
89	192.20	192.38	192.56	192.74	192.92	193.10	193.28	193.46	193.64	193.82

A
VII. CONVERSION OF CENTIGRADE DEGREES INTO DEGREES OF REAUMUR.

Centıgrade Degrees.	Tenths of Degrees.									
	0.	1.	2.	3.	1.	5.	6.	7.	8.	9.
	Rearm.	Reatum	Reaum.	$\begin{array}{r} \text { Resum. } \\ +\because \cdot \omega \cdot 1 \end{array}$	Reaun.	Reaum.	Reaum.	Reaum.	$\begin{aligned} & \text { Reaum. } \\ & +\boldsymbol{9 9 . 6 . 1} \end{aligned}$	$\begin{aligned} & \text { Reaum. } \\ & +32.72 \end{aligned}$
± 40	± 32.00	± 32.08	± 32.16	$\pm: 32.24$	± 32.32	± 32.40	± 32.48	± 32.56	± 32.64	± 32.72
39	31.20	31.28	31.36	31.44	31.52	31.60	31.65	31.76	31.84	31.92
38	30.40	30.48	30.56	30.64	30.72	30.50	30.58	30.96	31.04	31.12
37	29.60	29.68	29.76	29.84	29.92	30.00	30.08	30.16	30.24	30.32
36	28.80	28.88	28.96	29.04	29.12	29.20	29.28	29.36	29.44	29.52
35	28.00	28.08	28.16	28.24	28.32	28.40	28.48	25.56	28.64	28.72
34	27.20	27.28	27.36	27.44	27.52	27.60	27.68	27.76	27.84	27.92
33	26.40	26.48	26.56	26.64	26.72	26.80	26.88	26.96	27.04	27.12
- 32	25.60	25.65	25.76	25.84	25.92	26.00	26.08	26.16	26.2-4	26.32
31	24.80	24.88	24.96	25.04	25.12	25.20	25.28	25.36	25.44	25.52
30	24.00	24.08	24.16	24.24	25.32	24.40	24.48	24.56	24.64	24.72
29	23.20	23.28	23.36	23.44	23.52	23.60	23.68	23.76	23.54	23.92
28	22.40	22.48	22.56	22.64	22.72	22.50	22.58	22.96	23.04	23.12
27	21.60	21.68	21.76	21.84.	21.92	22.00	22.08	22.16	22.24	22.32
26	20.50	20.88	20.96	21.04	21.12	21.20	21.28	21.36	21.44	21.52
$2{ }^{*}$	20.00	20.08	20.16	20.24	20.32	20.40	20.48	20.56	20.64	20.72
24	19.20	19.28	19.36	19.44	19.52	19.60	19.68	19.76	19.84	19.92
23	18.40	18.48	18.56	18.64	18.72	18.80	18.88	18.96	1904	19.12
22	17.60	17.68	17.76	17.84	17.92	18.00	18.08	18.16	18.24	18.32
21	16.80	16.88	16.96	17.04	17.12	17.20	17.28	17.36	17.44	17.52
20	16.00	16.08	16.16	16.24	16.32	16.40	16.48	16.56	16.64	16.72
19	15.20	15.28	15.36	15.44	15.52	15.60	15.68	15.76	15.84	15.92
18	14.40	14.48	14.56	14.64	14.72	14.50	14.88	14.96	15.04	15.12
17	13.60	13.68	13.76	13.84	13.92	14.00	14.08	14.16	14.24	14.32
16	12.80	12.88	12.96	13.04	13.12	13.20	13.28	13.36	13.44	13.52
15	12.00	12.08	12.16	12.24	12.32	12.40	12.48	12.56	12.64	12.72
14	11.20	11.25	11.36	11.44	11.52	11.60	11.68	11.76	11.54	11.92
13	10.40	10.48	10.56	10.61	10.72	10.50	10.58	10.96	11.04	11.12
12	9.60	9.69	9.76	9.84	9.92	10.00	10.08	10.16	10.24	10.32
11	8.80	8.58	8.96	9.04	9.12	9.20	9.28	9.36	9.44	9.52
10	8.00	8.08	8.16	8.2 .1	8.32	8.40	8.48	8.56	8.64	8.72
9	7.20	7.28	7.36	7.44	7.52	7.60	7.68	7.76	7.84	7.92
8	6.40	6.48	6.56	6.64	6.72	6.80	6.85	6.96	7.04	7.12
7	5.60	5.68	5.76	5.84	5.92	6.00	6.08	6.16	6.24	6.32
6	4.50	4.88	4.96	5.04	5.12	5.20	5.25	5.36	5.44	5.52
5	4.00	4.08	4.16	4.24	4.32	4.40	4.48	4.56	4.64	4.72
4	3.20	3.25	3.36	3.44	3.52	3.60	3.68	3.76	3.84	3.9\%
3	2.40	2.48	2.56	2.64	2.72	2.80	2.88	2.96	3.04	3.12
2	1.60	1.68	1.76	1.54	1.92	2.00	2.08	2.16	2.24	2.32
1	0.80	0.88	0.96	1.04	1.12	1.20	1.28	1.36	1.44	1.52
O	0.	0,	.		-	,	,	-	\bigcirc	\bigcirc
0	0.00	0.08	0.16	0.24	0.32	0.40	0.48	0.56	0.6 .4	0.72
	©.	1.	2.	3.	1.	5.	6.	7.	8.	9.

VIII. -IX.

COMPARISON
of

REAUMUR'S TIIERMOMETER

WITH

TIIE TIIERMOMETER OF FAHRENHEIT AND THE CENTIGRADE TILERMOMETER,

OR

T A B L E S

FOR CONVERTING DEGREES of REAUMLR into DEGREES OF FAHRENiLEIT AND INTO CENTIfRADE DEGREES;
giving the corresponding values for eacil tentil of a degree, from $+40^{\circ}$ to - 40° reaumur.
vill. conversion of degrees of reaumur into degrees of fahrenheit.

Degrees of Reaumur.	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
4.40	$\begin{gathered} \text { Fahren. } \\ +122.00 \end{gathered}$	$\begin{gathered} \text { Fahren. } \\ +122.22 \end{gathered}$	$\begin{aligned} & \text { Fahren. } \\ & +122.45 \end{aligned}$	$\begin{aligned} & \text { Fahren. } \\ & +122.67 \end{aligned}$	$\begin{gathered} \text { Fahren. } \\ +122.90 \end{gathered}$	$\begin{gathered} \text { Fahren. } \\ +123.12 \end{gathered}$	$\begin{aligned} & \text { Fathren. } \\ & +123.3 . \end{aligned}$	$\begin{gathered} \text { Futren. } \\ +123.57 \end{gathered}$	$\begin{aligned} & \text { Fahren. } \\ & +123.50 \end{aligned}$	$\begin{gathered} \text { Fahren. } \\ +124.02 \end{gathered}$
39	119.75	119.97	120.20	120.42	120.65	120.57	121.10	121.32	121.55	121.77
39	117.50	117.72	117.95	118.17	118.40	118.62	118.55	119.07	119.30	119.52
37	115.25	115.47	115.80	115.92	116.15	116.37	116.60	116.82	117.05	117.27
36	113.00	113.22	113.45	113.67	113.90	114.12	114.35	114.57	114.80	115.02
35	110.75	110.97	111.20	111.42	111.65	111.87	112.10	112.32	112.55	112.77
31	108.50	105.72	105.9.5	109.17	109.40	109.62	109.55	110.07	110.30	110.52
33	106.25	106.47	106.70	106.92	107.15	107.37	107.60	107.82	108.05	108.27
32	104.00	104.22	104.45	104.67	104.90	105.12	105.3.5	105.57	105.50	106.02
31	101.75	101.97	102.20	102.42	102.6.	102.57	103.10	103.32	103.55	103.77
30	99.50	99.72	99.95	100.17	100.40	100.62	100.85	101.07	101.30	101.52
29	97.25	97.17	97.70	97.92	98.15	98.37	98.60	95.82	99.05	99.27
29	95.00	9.3 .22	95.45	95.67	95.90	96.12	96.35	96.57	96.30	97.02
27	92.75	92.97	93.20	93.42	93.65	93.57	94.10	94.32	94.55	94.77
26	90.50	90.72	90.95	91.17	91.40	91.62	91.55	92.07	92.30	92.52
25	88.2.5	88.47	88.70	88.92	89.15	89.37	89.60	89.92	90.05	90.27
24	86.00	86.22	86.45	6.67	6.90	\% 12	87.35	57.57)	85.02
23	83.75	83.97	84.20	81.42	84.6.5	S4.57	85.10	85.32	85.55	8.3.77
22	81.50	81.72	81.95	82.17	82.40	82.62	82.95	83.07	83.30	83.52
21	79.25	79.17	79.70	79.92	80.15	80.37	80.60	80.82	81.05	81.27
20	77.00	77.22	77.45	77.67	77.90	78.12	78.35	78.57	78.80	79.02
19	74.75	74.97	75.20	75.42	75.6 .4	75.87	76.10	76.32	76.55	76.77
18	72.50	72.72	72.9.5	73.17	73.40	73.62	73.85	74.07	74.30	74.52
17	70.25	70.47	70.70	70.92	71.15	71.37	71.60	71.82	72.05	72.27
16	68.00	65.22	68.45	65.67	68.90	69.12	69.35	69.57	69.50	70.02
15	6.5 .75	6.5 .97	66.20	66.42	66.65	66.57	67.10	67.32	67.55	67.77
14	63.50	63.72	63.9.5	64.17	64.40	64.62	64.85	6.9 .07	65.30	65.52
13	61.2 .5	61.17	61.70	61.92	62.15	62.37	62.60	62.52	63.05	63.27
12	59.00	59.22	59.45	59.67	59.90	60.12	60.3 .5	60.57	60.80	61.02
11	56.75	56.97	57.20	57.42	57.65	57.87	58.10	58.32	58.55	58.77
10	54.50	51.72	54.9.5	55.17	55.40	55.62	5.7.85	56.07	56.30	56.52
9	52.25	52.17	52.70	52.92	53.15	53.37	53.60	53.82	54.05	54.27
8	50.00	50.22	50.45	50.67	50.90	51.12	51.35	51.57	51.80	52.02
7	47.75	47.97	48.20	48.42	48.65	48.87	49.10	49.32	49.55	49.77
6	45.50	45.72	45.9.5	46.17	46.40	46.62	46.55	47.07	47.30	47.5?
5	43.25	43.17	43.70	43.92	44.15	44.37	44.60	44.52	45.05	15.27
4	41.00	41.22	41.45	41.67	41.90	42.12	42.35	42.57	42.80	43.02
3	38.75	38.97	39.20	39.42	39.65	39.57	40.10	10.32	40.55	10.77
2	36.50	36.72	36.95	37.17	37.40	37.62	37.85	38.07	38.30	38.52
1	34.2.5	34.17	34.70	34.92	35.15	35.37	35.60	35.82	36.05	36.27
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Degrees of Reaumur.	Tenths of Degrees.									
	O.	1.	2.	3.	1.	5.	6.	7.	8.	9.
$+0$	$\begin{gathered} \text { Fahren. } \\ +32.00 \end{gathered}$	$\begin{aligned} & \text { Fahren. } \\ & +32.22 \end{aligned}$	$\begin{aligned} & \text { Fahren. } \\ & +3.45 \end{aligned}$	Fahren. $+32.67$	Fahren. $\div 32.90$	Fahren. $+33.12$	$\begin{aligned} & \text { Fahren. } \\ & +33.35 \end{aligned}$	Fahren. $+33.57$	Fahren. $+33.80$	Fahren. $+34.02$
-0	32.00	31.77	31.55	31.32	31.10	30.87	30.65	30.42	30.20	29.97
-1	29.75	29.52	29.30	29.07	28.53	28.62	28.10	25.17	27.95	27.72
-2	27.50	27.27	27.05	26.82	26.60	26.37	26.15	25.92	2.5.70	25. 47
-3	25.25	2.5.02	24.90	24.57	24.35	21.12	23.90	23.67	23.45	23.22
-4	23.00	22.77	22.55	22.32	22.10	21.87	21.65	21.42	21.20	20.97
- 5	20.75	20.52	20:30	20.07	19.85	19.62	19.40	19.17	18.9.5	18.72
-6	18.50	18.27	18.05	17.82	17.60	17.37	17.15	16.92	16.70	16.47
-7	16.25	16.02	15.80	15.57	15.35	15.12	14.90	14.67	14.4 .5	14.22
- 8	14.00	13.77	13.55	13.32	13.10	12.57	12.65	12.42	12.20	11.97
-9	11.75	11.52	11.30	11.07	10.85	10.62	10.40	10.17	9.95	9.72
-10	9.50	9.27	9.05	8.82	8.60	8.37	8.15	7.92	7.70	7.47
-11	7.25	7.02	6.50	6.57	6.35	6.12	5.90	5.67	5.45	5.22
-12	5.00	4.77	4.55	4.32	4.10	3.87	3.65	3.42	3.20	2.97
-13	2.75	2.52	2.30	2.07	1.85	1.62	1.40	1.17	0.95	0.72
-14	0.50	0.27	0.05	- 0.17	- 0.40	- 0.62	-0.85	- 1.07	- 1.30	-1.52
-15	- 1.75	- 1.97	- 2.20	- 2.42	- 2.65	- 2.87	- 3.10	- 3.32	- 3.55	- 3.77
-16	- 4.00	- 4.22	- 4.45	- 4.67	- 4.90	- 5.12	- 5.35	-5.57	- 5.80	-6.02
-17	- 6.25	- 6.47	- 6.70	- 6.92	- 7.15	- 7.37	- 7.60	- 7.82	- 8.05	- 8.27
-18	- 8.50	- 8.72	- 8.9 .5	- 9.17	- 9.40	- 9.62	- 9.85	-10.07	-10.30	-10.52
-19	-10.75	-10.97	-11.20	-11.42	-11.65	-11.87	-12.10	-12.32	-12.55	-12.77
-20	-13.00	-13.22	-13.45	-13.67	-13.90	-14.12	-14.35	-14.57	-14.80	-15.02
-21	-15.25	-15.47	-15.70	-15.92	-16.15	-16.37	-16.60	-16.82	-17.0.	-17.27
-22	-17.50	-17.72	-17.9.	-18.17	-18.40	-18.62	-18.85	-19.07	-19.30	-19.52
-23	-19.75	-19.97	-20.20	-20.42	-20.65	-20.87	-21.10	-21.32	-21.5.5	-21.77
-24	-22.00	-22.22	-22.45	-22.67	-22.90	-23.12	-23.35	-23.57	-23.80	-24.02
-25	-24.25	-24.47	-24.70	-24.92	-25.15	-25.37	-25.60	-25.82	-26.05	-26.27
-26	-26.50	-26.72	-26.95	-27.17	-27.40	-27.62	-27.5.5	-29.07	-28.30	-2 5.52
-27	-28.75	-28.97	-29.20	-29.42	-29.65	-29.87	-30.10	-30.32	-30.55	-30.77
-28	-31.00	-31.22	-31.45	-81.67	-31.90	-32.12	-32.35	-32.57	-32.80	-33.02
-29	-33.25	-33.47	-33.70	-33.92	-34.15	-34.37	-34.60	-34.82	-35.05	-35.27
-30	-35.50	-35.72	-35.9.5	-36.17	-36.40	-36.62	-36.85	-37.07	-37.30	-37.52
-31	-37.75	-37.97	-38.20	-35.42	-38.65	-38.57	-39.10	-39.82	-39.55	-39.77
-32	-40.00	-40.22	-40.45	-40.67	-40.90	-41.12	-41.35	-41.57	-41.80	-42.02
-33	-42.25	-42.47	-42.70	-42.92	-43.15	-43.37	-43.60	-43.82	-44.0.5	-44.27
-34	-44.50	-44.72	-44.95	-45.17	-45.40	-45.62	-45.85	-46.07	-46.30	-46.52
-35	-46.75	-46.97	-47.20	-47.42	-47.65	-47.87	-4S.10	-48.32	-48.55	-48.77
-36	-49.00	-49.22	-49.45	-49.67	-49.90	-50.12	-50.35	-50.57	-50.80	-51.02
-37	-51.25	-51.47	-51.70	-51.92	-52.15	-52.37	-52.60	-52.82	-53.05	-53.27
-38	-53.50	-53.72	-53.95	-54.17	-54.40	-54.62	-54.85	-55.07	-55.30	-55.52
-39	-55.75	$-5.5 .97$	-56.20	-56.42	-56.65	-56.87	-57.10	-57.32	-57.55	-57.77
	©.	1.	2.	3.	4.	5.	6.	3.	8.	9.

A
18. CONVERSION OF DEGREES OF REAUMUR INTO CENTIGKADE DEGREES.

Degrees of Reaumur.	'Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Centig.									
± 40	± 50.00	± 50.13	± 50.25	± 50.38	± 50.50	${ }_{-}+50.63$	± 50.75	± 50.88	± 51.00	± 51.13
39	48.75	48.88	49.00	49.13	49.25	49.38	49.50	49.63	49.75	49.88
35	47.50	47.63	47.75	47.88	48.00	48.13	48.25	48.38	48.50	48.63
37	46.25	46.38	46.50	46.63	46.75	46.88	47.00	47.13	47.25	47.38
36	45.00	45.13	45.25	45.38	45.50	45.63	45.75	45.58	46.00	46.13
35	43.75	43.88	44.00	44.13	44.25	44.35	44.50	44.63	44.75	44.88
34	42.50	42.63	42.75	42.58	43.00	43.13	43.25	43.38	43.50	43.63
33	41.25	41.38	41.50	41.63	41.75	41.88	42.00	42.13	42.25	42.38
32	40.00	40.13	40.25	40.38	40.50	40.63	40.75	40.88	41.00	41.13
31	38.75	38.58	39.00	39.13	39.25	39.38	39.50	39.63	39.7	39.88
30	37.50	37.63	37.75	37.88	38.00	38.13	38.25	38.38	38.50	38.63
29	36.25	36.38	36.50	36.63	36.75	36.85	37.00	37.13	37.25	37.38
28	3.3 .00	35.13	35.25	35.38	35.50	35.63	35.75	35.88	36.00	36.13
27	33.75	33.58	34.00	34.13	34.25	34.38	34.50	34.63	34.75	34.88
26	32.50	32.63	32.75	32.88	33.00	33.13	33.25	33.38	33.50	33.63
25	31.25	31.38	31.50	31.63	31.75	31.85	32.00	32.13	32.25	32.38
24	30.00	30.13	30.25	30.38	30.50	30.63	30.75	30.88	31.00	31.13
23	28.75	28.88	29.00	29.13	29.25	29.38	29.50	29.63	29.75	29.88
22	27.50	27.63	27.75	27.88	28.00	28.13	28.25	28.38	28.50	2863
21	26.25	26.38	26.50	26.63	26.75	26.88	27.00	27.13	27.25	27.38
20	2.5 .00	25.13	25.25	25.38	25.50	25.63	25.75	2.5.88	26.00	20.13
19	23.75	23.88	24.00	24.13	24.25	24.38	24.50	24.63	24.75	24.88
18	22.50	22.63	22.75	22.88	23.00	23.13	23.25	23.38	23.50	23.63
17	21.25	21.38	21.50	21.63	21.75	21.85	22.00	22.13	22.25	22.38
16	20.00	20.13	20.25	20.38	20.50	20.63	20.75	20.88	21.00	21.13
15	18.75	18.88	19.00	19.13	19.25	19.38	19.50	19.63	19.75	19.88
14	17.50	17.63	17.75	17.88	18.00	18.13	18.25	18.38	18.50	18.63
13	16.2 .5	16.38	16.50	16.63	16.75	16.88	17.00	17.13	17.25	17.38
12	15.00	15.13	15.25	15.38	15.50	15.63	15.7.)	15.88	16.00	16.13
11	13.75	13.88	14.00	14.13	14.25	14.38	14.50	14.63	14.75	14.88
10	12.50	12.63	12.75	12.88	13.00	13.13	13.25	13.38	13.50	13.63
9	11.2.)	11.38	11.50	11.63	11.75	11.85	12.00	12.13	12.25	12.38
8	10.00	10.13	10.25	10.38	10.50	10.63	10.75	10.88	11.00	11.13
7	8.75	8.85	9.00	9.13	9.25	9.38	9.50	9.63	9.75	9.88
6	7.50	7.63	7.75	7.88	8.00	8.13	8.25	8.38	8.50	8.63
5	6.25	6.38	6.50	6.63	6.75	6.88	7.00	7.13	7.25	7.38
4	5.00	5.13	5.25	5.38	5.50	5.63	5.75	5.88	6.00	613
3	3.75	3.88	4.00	4.13	4.25	4.38	4.50	4.63	4.75	4.88
2	2.50	2.63	2.75	2.88	3.00	3.13	3.25	3.38	3.50	3.63
1	1.25	1.38	1.50	1.63	1.75	1.88	2.00	2.13	2.25	2.38
0	0.00	0.13	0.25	0.38	0.50	0.63	0.75	0.88	1.00	1.13
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

X. - XV.

TABLES

FOR

COMPARING THERMOMETRICAL DIFFERENCES

EXPRESSED IN DEGREES OF DIFFERENT SCALES,

IRRESPECTIVE OF THEIR ZERO POINT.
x. Number of degrees of fahrenheit = number of centigrade degrees.
4° Reaumur $=5^{3}$ Centigrale $=9^{\circ}$ Fahrenheit.

$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { Fahren- } \\ & \text { heit. } \end{aligned}$	Tenths of a Degree.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Cemig.	Centig.	Centig.	Centig.	Centig	Centig.	Centig.	Ceatig.	Centig.	Ceatig.
0	0.00	0.06	0.11	0.17	0.22	0.25	0.33	0.39	0.44	0.50
1	0.56	0.61	0.67	0.72	0.75	0.83	0.89	0.94	1.00	1.06
2	1.11	1.17	1.22	1.28	1.33	1.39	1.44	1.50	1.56	1.61
3	1.67	1.72	1.78	1.83	1.89	1.94	2.00	2.06	2.11	2.17
4	2.22	2.28	2.33	2.39	2.41	2.50	2.56	2.61	2.67	2.72
5	2.78	2.83	2.89	2.94	3.00	3.06	3.11	3.17	3.22	3.28
6	3.33	3.39	3.44	3.50	3.56	3.61	3.67	4.72	3.78	3.83
7	3.59	3.94	4.00	4.06	4.11	4.17	4.22	4.28	1.33	4.39
8	4.41	4.50	4.56	4.61	4.67	4.72	4.75	4.83	4.59	4.94
9	5.00	5.06	5.11	5.17	5.22	5.28	5.33	5.39	5.14	5.50

XI. Number of degrees of fahrenheit = number of degrees of reaumur.

$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { Fahren. } \\ & \text { heit. } \end{aligned}$	Temths of a Degree.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Reanmur.	f.eanmur.	Reaumur	Retumur	Remmur	Reammur	Reanmur.	Reaumur.	Reammur	Rexumu:
0	0.00	0.04	0.09	0.13	0.15	0.22	0.27	0.31	0.36	0 40
1	0.14	0.19	0.53	0.58	0.62	0.67	0.71	0.76	0.50	0.84
2	0.89	0.93	0.98	1.02	1.07	1.11	1.16	1.20	1.24	1.29
3	1.33	1.35	1.42	1.47	1.51	1.56	1.60	1.64	1.69	1.73
4	1.78	1.82	1.87	1.91	1.96	2.00	2.04	2.09	2.13	2.18
5	2.22	2.27	2.31	2.36	2.40	2.44	2.49	2.53	2.58	2.62
6	2.67	2.71	2.76	2.50	2.8 .4	2.59	2.93	2.98	3.02	3.07
7	3.11	3.16	3.20	3.21	3.29	3.33	3.35	312	3.17	3.51
8	3.56	3.60	3.64	3.69	3.73	3.79	3.82	3.57	:3.91	8.96
9	4.00	4.04	4.09	4.13	1.18	4.22	4.27	4.31	4.36	4.10

xif. NuMber of Centigrade degrees = Number of degrees of reaunur.

Centig. Degrees	Teuths of a Degree.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Rean'mar	R.pamur	Reaumur.	Reaumur.	Remunur	Reaumur	Rearmur.	Reabmur	Reaurmir	Reammur.
0	0.00	0.08	0.16	0.24	0.32	0.40	0.48	0.56	0.61	0.72
1	$0 . \infty 0$	0.58	0.98	1.04	1.12	1.20	1.28	1.36	1.4	1.52
2	1.60	1.65	1.76	1.84	1.92	2.00	2.08	2.16	2.21	2.32
3	2.10	2.49	2.96	2.64	2.72	2.80	2.88	2.96	3.04	3.12
4	3.20	3.28	3.36	3.44	3.52	3.60	3.65	3.76	3.34	3.92
5	4.00	4.03	4.16	4.24	4.32	4.10	4.48	4.56	4.64	4.72
6	4.80	4.98	4.96	5.04	5.12	5.20	5.28	5.36	5.14	5.92
7	5.60	5.69	5.76	5.84	5.92	6.00	6.03	6.16	6.24	6.32
8	6.40	6.45	6.56	6.64	6.72	6. 80	6.88	6.96	7.04	7.12
9	7.20	7.28	${ }^{*} .36$	7.44	7.52	7.60	7.68	7.76	7.54	7.92

xill. NUMBER OF CENTIGRADE DEGREES = NUMbER of DEGREES of FAHRENHEIT.
4° Reaumur $=5^{\prime}$ Centigrade $=9^{\prime}$ Fahrenheit.

Centig. Degrees	Tenths of a Degree.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Fahr.	Fahr.	Fahr.	Fahr	Fahr.	Fahr.	Fahr.	Fahr.	Fatr.	Fahr.
0	0.00	0.18	0.36	0.54	0.72	0.90	1.08	1.26	1.44	1.62
1	1.80	1.98	2.16	2.34	2.52	2.70	2.88	3.06	3.24	3.42
2	3.60	3.78	3.96	4.14	4.32	4.50	4.68	4.86	5.04	5.22
3	5.40	5.58	5.76	5.9 . 4	6.12	6.30	6.48	6.66	6.8 .1	7.02
4	7.20	7.38	7.56	7.74	7.92	8.10	8.28	8.46	8.64	8.82
5	9.00	9.18	9.36	9.54	9.72	9.90	10.08	10.26	10.44	10.62
6	10.50	10.98	11.16	11.34	11.52	11.70	11.88	12.06	12.24	12.42
7	12.60	12.75	12.96	13.14	13.32	13.50	13.68	13.86	14.04	14.22
8	14.40	14.58	14.76	14.94	15.12	15.30	15.48	15.66	15.84	16.02
9	16.20	16.38	1656	16.74	16.92	17.10	17.28	1:.46	17.64	17.82

xiv. Number of degrees of reaumur = number of centigrade degrees.

$\begin{gathered} \text { Degrees } \\ \text { of } \\ \text { Reaum. } \end{gathered}$	Tenths of a Degree.									
	O.	1.	2.	3.	4.	5.	6.	$\%$ \%	8.	9.
	Centig.	Centig.	Centig	Centig.						
0	0.00	0.12	0.25	0.37	0.50	0.62	0.75	0.87	1.00	1.12
1	1.25	1.37	1.50	1.62	1.75	1.87	2.00	2.12	2.25	2.37
2	2.50	2.62	2.75	2.57	3.00	3.12	3.25	3.37	3.50	2.62
3	3.75	3.87	4.00	4.12	4.25	4.37	4.50	4.62	4.75	4.87
4	5.00	5.12	5.25	5.37	5.50	5.62	5.75	5.87	6.00	3.12
5	6.25	6.37	6.50	6.62	6.75	6.57	7.00	7.12	7.25	7.37
6	7.50	7.62	7.75	7.87	8.00	8.12	8.25	8.37	8.50	8.62
7	8.75	8.87	9.00	9.12	9.25	9.37	9.50	9.62	9.75	9.87
8	10.00	10.12	10.25	10.37	10.50	10.62	10.75	10.57	11.00	11.12
9	11.25	11.37	11.50	11.62	11.75	11.87	12.00	12.12	12.25	12.37

xv. Number of degrees of reaumur = number of degrees of fahrenheit.

Degrees of Reaum.	Tenths of a Degree.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Fahr.	Fithr.								
0	0.00	0.22	0.45	0.67	0.90	1.12	1.35	1.57	1.80	2.02
1	2.25	2.17	2.70	2.92	3.15	3.37	3.60	3.82	4.05	4.27
2	4.50	4.72	4.95	5.17	5.10	5.62	5.85	6.07	6.30	6.52
3	6.75	6.97	7.20	7.42	7.65	7.87	8.10	8.32	8.55	8.77
4	9.00	9.22	9.45	9.67	9.90	10.12	10.35	10.57	10.80	11.02
5	11.25	11.47	11.70	11.92	12.15	12.37	12.60	12.82	13.05	13.27
6	13.50	13.72	13.95	14.17	11.40	14.62	14.85	15.07	15.30	15.52
7	15.75	15.97	16.20	16.42	16.65	16.87	17.10	17.32	17.55	17.77
8	18.00	18.22	18.45	18.67	18.90	19.12	19.35	19.57	19.80	20.02
9	20.25	20.47	20.70	20.92	21.15	21.37	21.60	21.82	22.05	22.27

[^0]
METEOROLOGICAL TABLES

SERIES II.

HYGROMETRICAL TABLES.

C 0 N TENTS.

(The figures refer to the folio at the bottom of the page.)
Practical Tables based on Regnault's Mygrometrical Constants.
a. In French Measures.
Page
Page
Table I. Elastic Force of Aqueous Vapor, by Regnault
Table I. Elastic Force of Aqueous Vapor, by Regnault 9 9
" II. Psychrometrical Tables, by Hacghens
" II. Psychrometrical Tables, by Hacghens 12 12
" III. For deducing the Relative Humidity from the Indications of Dew-
" III. For deducing the Relative Humidity from the Indications of Dew- Point Instruments, by Hacghens Point Instruments, by Hacghens 30 30
" IV. Factor $\frac{100}{\mathrm{~F}^{-}}$for computing Relative Humidity
" IV. Factor $\frac{100}{\mathrm{~F}^{-}}$for computing Relative Humidity 36 36
" V. Weight of Vapor contained in a Cubic Metre of Air
" V. Weight of Vapor contained in a Cubic Metre of Air 38 38
b. In English Measures.
b. In English Measures.
" VI. Elastic Force of Vapor, reduced from Reguault's Table
" VI. Elastic Force of Vapor, reduced from Reguault's Table 43 43
" VII. Psychrometrical Tables, by A. Guyot
" VII. Psychrometrical Tables, by A. Guyot 46 46
" VIII. For deducing the Relative Humidity from the Indications of Dew-
" VIII. For deducing the Relative Humidity from the Indications of Dew- Point Instruments, by A. Guyot Point Instruments, by A. Guyot 75 75
" IX. Factor $\frac{100}{\mathrm{~F}}$, for computing Relative Humidity
" IX. Factor $\frac{100}{\mathrm{~F}}$, for computing Relative Humidity 90 90
" X. Weight of Vapor in a Cubic Foot of Saturated Air
" X. Weight of Vapor in a Cubic Foot of Saturated Air 94 94
Practical Tables based on the Hygrometrical Constants adopted in the
Practical Tables based on the Hygrometrical Constants adopted in the Greenwich Observations. Greenwich Observations.
Table XI. Elastic Force of Aqueous Vapor
Table XI. Elastic Force of Aqueous Vapor 101 101
" XII. Psychrometrical Tables, by Glaisher
" XII. Psychrometrical Tables, by Glaisher 104 104
" XIII. Factors for computing the Force of Vapor from Psychrometrical
" XIII. Factors for computing the Force of Vapor from Psychrometrical Observations, by Apjohn's Formula Observations, by Apjohn's Formula 140 140
" XIV. Factors for finding the Temperature of the Dew-Point from the
" XIV. Factors for finding the Temperature of the Dew-Point from the Readings of the Psychrometer Readings of the Psychrometer 142 142
" XV. Weight of Vapor contained in a Cubic Foot of Saturated Air
" XV. Weight of Vapor contained in a Cubic Foot of Saturated Air 143 143
" XVI. Factors for deducing the Weight of Vapor from the Indications of
" XVI. Factors for deducing the Weight of Vapor from the Indications of Dew-Point Instruments . Dew-Point Instruments 143 143
" XVII. For comparing the Weight of a Cubic Foot of Dry and of Satu-
" XVII. For comparing the Weight of a Cubic Foot of Dry and of Satu- rated Air rated Air 144 144
" XIV'. Factors for finding the Temperature of the Dew-Point from the
" XIV'. Factors for finding the Temperature of the Dew-Point from the Readings of the Psychrometer Readings of the Psychrometer 146 146
B
B

Miscellaneous Tables for Comparison.

Page
Table XVIII. Elastic Force of Vapor, expressed in Millimetres, by August 150
" XIX. Elastic Force of Vapor, expressed in Millimetres, by Kaemtz 152
" XX. Elastic Force of Vapor, expressed in Millimetres, by Magnus 152
" XXI. Elastic Force of Vapor, in English Inches, from the Royal Society's Report 153
" XXII. For showing the Differences in the Values of the Elastic Force of Vapor adopted by different Authorities 154
" XXIII. Weight of Vapor, in Grammes, contained in a Cubic Metre of Saturated Air, by Pouillet 156
" XXIV. Weight of Vapor, in Grammes, contained in a Cubic Metre of Air, by Kaemtz 156
" XXV. Force of Vapor and Relative Humidity corresponding to the Degrees of Saussure's Hair-Hygrometer, by Gay-Lussae 157
" XXVI. For deducing the Relative Humidity from the Indications of Saussure's Hair-Hygrometer, by Haeghens 158
" XXVII. Relative Humidity corresponding to the Degrees of Saussure's Hygrometer, by Kaemtz 159
APPENDIX.
For comparing Quantities of Rain-water given in Different Measures.
Table 1. Conversion of Centimetres into English Inches 164
" II. Conversion of Centimetres into French Inches and Lines 164
" III. Conversion of English Inches into Centimetres 165
" IV. Conversion of English Inches into French Inches and Lines 165
" V. Conversion of French Inches and Lines into Centimetres 166
" VI. Conversion of French Inches and Lines into English Inehes 167

HYGROMETRICAL TABLES.

Hygrometers, or instruments used for determining the amount of aqueous vapor present in the air, are of three classes. In the first, we find the hygrometers based on the absorption of moisture by hygroscopic substances, the best of which is Saussure's Hair-Hygrometcr; in the second class, the Psychrometer, or wet-bulb thermometer, which gives the temperature of evaporation ; in the third, the various instruments designed for ascertaining the temperature of the dew-point. From the data furnished by each of these instruments, and a table of the elastic forces of vapor at different temperatures, the humidity of the air can be deduced with more or less accuracy.

The use of the hygroscopic substances as hygrometers having been nearly given up on account of the inaccuracy of the results, the variability of the instruments, and the difficulty, if not impossibility, of making them comparable, the psychrometer and the dew-point instruments represent the two methods now usually employed in Meteorology. The following set, therefore, contains extensive tables, in Frencis and English measures, for deducing the hygrometrical condition of the atmosphere from the indications of the Psychrometer and of the dew-point instruments, to which have been added tables of the weight of vapor, in a given space, at different temperatures, - an element often needed in Meteorology.

As, however, the results deduced from the same data furnished by the observations may considerably differ, according to the values of the elastic force of vapor, and the formule used in the computation, the tables have been arranged in two series.

The first series contains Regnault's table of the elastic forces of vapor, with tables of the three kinds above mentioned, together with a corresponding set in English measures. Tables V. to X. have bcen computed for this volume.

The second series gives the table of elastic forces of vapor deduced from Dalton's experiments, and adopted in the Greenwich Observations, together with the various tables based on it.

A third series of miscellaneous tables furnishes the means of comparing the different values of the elastic force and weight of vapor determined by various physicists, as well as the results of Saussure's Hair-Hygrometer, with those obtained by other methods.

An Appendix, containing tables for comparing the quantity of rain-water indicated in different measures, closes the set.

Though the first series of tables, based on Regnault's table of tensions, is recommended for ordinary use, as being derived from the determinations which seem to deserve the greatest degree of confidence, it was thought expedient to give also the Greenwich tables, which have been, and still are, so extensively used in England, in order to enable meteorologists to judge of the differences which exist between the results obtained by them and those dednced from the constants of Regnault and others.

PRACTICALTABLES,

IN

FRENCH MEASURES,

based on regnallt's hygronetrical constants.

TABLE

Abstract

of

THE ELASTIC FORCE OF AQUEOUS VAPOR,

expressed in millimetres of mercury for centigrade temperatures, BY REGNAULT.

This table contains the elastic forces of vapor corresponding to every tenth of a degree of temperature between -35° and $+40^{\circ}$ Centigrade, as determined by the experiments of V. Regnault, made by order of the French government, for the purpose of establishing the numerical value of the elements which enter into the computations concerning the steam-engine. These results are generally considered as the most accurate science possesses at present. They are published in the Mémoires de l'lnstitut, Tom. XXI.; and more correctly in Regnault's Etudes sur l'Hygrométrie, in the Amnales de Chimie et de Physique. In Vol. XV. Regnault gives the table of elastic forces for every tenth of a degrec from -10° to $+35^{\circ}$ Centigrade, which is reprinted in Table I. The numbers below - 10° and above $+35^{\circ}$, in the same table, have been taken from another table for every full degree, previously published in Vol. XI. p. 333 of the same periodical, and in the same volume of the Mémoires de l'Institut, extending from -32° to $+230^{\circ}$.

It should be remarked, however, that the numbers below zero, in the two tables just mentioned, having been computed from different formulas of interpolation, slightly disagree. In order to establish a continuity, therefore, the numbers in Table I. corresponding to full degrees from -10° to -35° have been formed by starting from the value due to -10° in the larger table of Regnault, and subtracting from it the difference between -10° and -11° in the other table, in order to find the value of - 11°, and so on, by subtracting successively the corresponding differences to -35°. For the fractions of degrees below -10°, the mean values have been adopted as sufficiently accurate for meteoroiogical purposes.

I. ELASTIC FORCE OF AQUEGUS VAPOR,

expressed in millimetres of mercury for centig bade temperatures.

By regnadlt.

$\begin{aligned} & \text { Tempera- } \\ & \text { ture } \\ & \text { Centigrade } \end{aligned}$	Tenths of Degrees.									
	0.	1.	2.	3.	1.	5.	6.	7.	8.	9.
\bigcirc	Millim.									
-3.3	0.221	0.219	0.216	0.214	0.211	0.209	0.267	0.204	0.202	0.199
-:31	0.217	0.244	0.242	0.219	0.237	0.234	0.231	0.299	0.226	0.2.4
-33	0.275	0.272	0.269	0.267	0.264	0.261	0.2 .58	0.255	0.253	0.250
-32	0.305	0.302	0.299	0.296	0.293	0.290	0.257	0.284	0.281	0.278
-31	0.337	0.331	0.331	0.327	0.324	0.321	0.318	0.315	0.311	0.30s
-30	0.371	0.368	0.364	0.361	0.3 .97	0.3.54	0.351	0.347	0.344	0.340
-29	0.409	0.405	0.401	0.398	0.391	0.390	0.3×6	0.382	0.379	0.375
-28	0.449	0.445	0.441	0.437	0.433	0.129	0.42 .5	0.421	0.417	0.113
-27	0.493	0.459	0.484	0.450	0.475	0.471	0.167	0.162	0.458	0.453
-26	0.540	0.535	0.531	0.526	0.521	0.516	0.512	0.507	0.502	0.498
-25	0.590	0.585	0.580	0.575	0.570	0.565	0.560	0.5 .55	0.550	0.545
-24	0.645	0.639	0.634	0.623	0.623	0.617	0.612	0.606	0.601	0.59.
-23	0.704	0.698	0.692	0.686	0.650	0.674	0.669	0.663	0.6 .57	0.651
-22	0.768	0.762	0.755	0.749	0.742	0.736	0.730	0.723	0.717	0.710
-21	0.838	0.531	0.524	0.817	0.810	0.503	0.796	0.789	0.782	0.755
-20	0.912	0.905	0.897	0.890	0.882	0.575	0.868	0.660	0.853	0.845
-19	0.993	0.985	0.977	0.969	0.961	0.9 .22	0.941	0.936	0.923	0.920
-15	1.050	1.071	1.063	1.0.54	1.06	1.036	1.028	1.019	1.010	1.062
-17	1.174	1.165	1.155	1.116	1.136	1.127	1.118	1.108	1.099	1.089
-16	1.275	1.265	1.255	1.245	1.235	1.224	1.214	1.204	1.194	1.184
-15	1.38 .3	1.374	1.363	1.352	1.311	1.330	1.319	1.308	1.297	1.2 s 6
-14	1.503	1.191	1.179	1. 468	1.4 .96	1.444	1.432	1.120	1.109	1.397
-13	1.63 I	1.618	1.605	1.593	1.580	1.567	1.5 .51	1.541	1.529	1.516
-12	1.769	1.754	$1.7+1$	1.727	1.713	1.699	1.656	1.672	1.6 .75	1.65
-11	1.918	1.903	1.888	1.873	1.853	1.813	1.823	1.513	1.798	1.753
-10	2.078	2.062	2.046	2.030	2.014	1.993	1.982	1.966	19.50	1.934
-9	2.261	2.242	2.223	2.204	2.186	2.168	2.150	2.132	2.114	2.096
-8	2.456	2.136	2.116	2.396	2.376	2.356	2.337	2.318	2.299	2.280
- 7	2.666	2.645	2.624	2.603	2.582	2.561	2.540	2.519	2.498	2.177
-6	2.890	2.567	2.844	2.521	2.798	2.776	2.754	2.732	2.710	2.688
- 5	3.131	3.106	3.082	3.0.58	3.0:3	3.010	2.946	2.962	2.938	2.914
- 4	3.357	3.361	3.335	3.369	3.253	3.257	3.231	3.206	3.181	3.156
-3	3.662	3.634	3.606	3.578	3.550	3.522	3.495	3.468	3.441	3.411
-2	3.955	3.925	3.595	3.865	3.636	3.807	3.778	3.749	3.720	3.691
-1	4.267	4.235	1.203	$4 . .71$	4.140	4.109	4.078	4.047	4.016	3.985
- 0	1.600	4.565	4.531	4.497	1463	4.430	4.397	4.364	4.331	4.299
,	O.	1.	2.	3.	1.	5.	6.	7.	8.	9.

Centigrade Degrees.	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
\bigcirc	Millim.	Millim.	Millim.	Millim.	Mıllim.	Millim.	Mullim.	Mıllim.	Millim.	Millim.
0	4.600	4.633	4.667	4.700	4.733	4.767	4.801	4.836	4.871	4.90 .5
1	4.940	4.975	5.011	5.047	5.082	5.118	5.155	5.191	5.228	5.265
2	5.302	5.340	5.378	5.416	5.4.5	5.191	5.530	5.569	5.608	5.647
3	5.687	5.727	5.767	5.507	5.848	5.889	5.930	5.972	6.014	6.055
4	6.097	6.140	6.183	6.226	6.270	6.313	6.3 .57	6.401	6.44 .5	6.490
5	6.534	6.580	6.625	6.671	6.717	6.763	6.810	6.857	6.90 .1	6.951
6	6.998	7.047	7.095	7.144	7.193	7.242	7.292	7.342	7.392	7.412
7	7.492	7.514	7.59 .5	7.647	7.699	7.751	7.804	7.8 .57	7.910	7.961
8	8.017	8.072	8.126	8.181	8.236	8.291	8.347	8.404	8.161	8.517
9	8.571	8.632	8.690	8.718	8.807	8.865	8.925	8.98 .3	9.045	9.103
10	9.165	9.227	9.288	9.350	9.412	9.174	9.537	9.601	9.665	9.728
11	9.792	9.857	9.923	9.959	10.054	10.120	10.187	10.25.5	10.322	10.889
12	10.457	10.526	10.596	10.665	10.734	10.804	10.875	10.947	11.019	11.090
13	11.162	11.235	11.309	11.383	11.456	11.530	11.605	11.681	11.757	11.532
14	11.903	11.986	12.064	12.142	12.220	12.298	12.378	12.458	12.5388	12.619
15	12.699	12.781	12.864	12.947	13.029	13.112	13.197	13.281	13.366	13.451
16	13.586	13.623	13.710	13.797	13.855	13.972	14.062	14.151	14.241	14.331
17	11.421	14.513	14.605	14.697	14.790	14.582	14.977	15.072	15.167	1.5 .262
18	15.3.57	15.454	15.5.52	15.6.50	15.747	15.845	15.945	16.015	16.14.5	16.246
19	16316	16.449	16.592	16.6.5.	16.7 .58	16.861	16.967	17.073	17.179	1728.5
20	17.391	17.500	17.605	17.717	17.826	17.935	18.047	15.159	18.271	18.353
21	15.19.7	18.610	18.724	18.839	18.954	19.069	19.187	19.305	19.423	19.511
22	19.6 .99	19.780	19.901	20.022	20.143	20.265	20.389	20.514	$\underline{20.639}$	20.763
2:3	20.885	21.016	21.14	21.272	21.400	21.528	21.659	21.790	21.921	22.0.33
24	22.184	2.2319	22.453	2.2585	2.2.723	22.558	22.996	2313.5	23.273	23.111
25	23.550	23.692	23.534	23.976	24.119	24.261	24.406	24.552	24.697	24.812
23	21.988	2.5.139	25.289	25.138	25.588	25.738	25.691	26.045	26.193	26.351
27	26.50 .5	26.663	26.820	26.978	27.136	27.294	27.455	27.617	27.778	27.989
-	29.101	28.267	25.433	29.599	28.765	28.931	29.101	29.271	29.141	29.612
23	29.782	29.956	30.131	30.30 .5	30.179	30.654	30.833	31.011	31.190	31.369
30	31.548	31.729	31.911	32.094	32.278	32.163	32.650	32.837	33.026	33.215
:1	33.406	33.596	33.787	33.980	34.174	34.368	34.564	34.761	34.959	35.1.59
3 ?	35359	3.5.5.59	3.5 .760	35.962	36.16 .5	36.370	36.576	36.78.3	36.991	37.200
:3;	37.410	37.621	37.833	38.045	38.258	38.173	38.689	38.906	39.124	39.311
$\therefore 1$	39.565	39.786	40.007	10.230	40.4.5	40.680	40.307	41.135	41.364	41.59 .5
: ${ }^{\text {l }}$	41.227	12.059	42.293	42.527	42.763	43.000	43.235	43.177	43.717	43.959
$\because 6$	14.201	11.44 .5	4.690	4.936	45.183	4.5 .131	45.681	15.932	46.184	+6.137
37	16.6.\%1	46.917	17.20:3	47.462	17.721	47.9×1	18.213	48.506	48.770	49.0835
沓	19.31)	49.570	49.8:39	50.110	50.3-2	50.655	50.929	51.205	51.481	51.759
31	52.03.	-2.320	52.602	52.585	53.170	53.4.6	53.743	54.032	51.822	51.613
49	5 5.406	5200	57.196	5.7.793	56.091	56.391	56.692	56.991	57.293	57.603
	0.	1.	2.	3.	4.	5.	6	8.	8.	9.

PSYCHROMETRICAL TABLES.
 giving mmediately the force of aqueous vapor and the relative humidiy FROM THE INDICATIONS OF THE PSYCHROMETER.

Calculated by M. T. Haeghens.

In his Etudes sur l'Hygrométrie,* M. V. Regnault discusses the theoretical bases of the formula of the Psychrometer, given by M. August, which was,

$$
x=f^{\prime}-\frac{0.565\left(t-t^{\prime}\right)}{610-t^{\prime}} h
$$

in which h represents the height of the barometer; t the temperature of the air given by the dry-bulb thermometer; t^{\prime} the temperature of the wet-bulb thermometer; f^{\prime} the force of aqueous vapor in the saturated air at a temperature equal to $t^{\prime} ; x$ the elastic force of aqueous vapor which exists in the air at the time of the observation.

After having modified some of the numerical values, which form the coefficients, M. Regnault adopted this formula,

$$
x=f^{\prime}-\frac{0.429\left(t-t^{\prime}\right)}{610-t^{\prime}} h .
$$

But comparative experiments, made by himself, showed that by substituting the coefficient 0.480 for that of 0.429 , the calculated results, and those obtained by direct observation, agree perfectly in the fractions of saturation, which are greater than 0.40 . This formula thus modified, or

$$
x=f^{\prime}-\frac{0.450\left(t-t^{\prime}\right)}{610-t^{\prime}} h
$$

has been used for calculating the following tables. In that part of the tables which supposes the wet-bulb to be covered with a film of ice, or below the freezing point, the value $610-t^{\prime}$, which represents the latent heat of aqueous vapor, has been changed into this: $610+79-t^{\prime}=689-t^{\prime}$.

The only hypothesis made, is that of a mean barometric pressure h, equal to 755 millimetres. If we take into account the causes of errors inherent to the psychrometer, and to the tables of the force of vapor, by means of which the absolute force of vapor is calculated, as well as to the differences of these tensions, taken at temperatures differing only by one tenth of a degree, it will be obvious that the correction due to the variations of barometric pressure can almost always be neglected. Nevertheless, a separate table has been calculated, giving the correction to be applied to the numbers in the Psychrometrical Tables for the heights of the barometer between 650 and 800 millimetres. It will be found at the end of the tables.

The disposition of the tables is the following :-
The temperatures are noted in centigrade degrees; the elastic force of vapor in the arr, or its pressure on the barometer, is expressed in millimetres of mercury; the rel-

[^1]ative humidity is indicated in per cent. of the full saturation of the air at the corresponding temperature of the dry-bulb thermometer t.

The first vertical column contains the indications of the wet-bulb thermometer t^{\prime}, begimning with the temperatures below the freezing point, when the bulb is coverer with ice, from -35°, and continuing from the freezing point up to $+35^{\circ}$ centigrade, the bulb being simply wet.

The second column gives the differences of the force of vapor for each tenth $\left(0^{\circ} .1\right)$ of a degree, between each full degree of the first column. It enables the observer to find out the correction for any fraction of a degree of the wet-bulb thermometer.

The following double columns give immediately the force of vapor and the relative humidity, corresponding to each degree of the wet-bulb, placed in the first column, on the same horizontal line, and to differences of the two thermoneters, or to $t-t^{\prime}$, taken at every two tenths of a degree.

The horizontal column at the bottom indicates the mean difference, for each tenth of a degree, of the force of vapor contained in the same horizontal line. It gives the correction for the intermediate differences of the thermometers; $0.1,0.3,0.5,0.7$, $0.9, \& c ., \& c$.

To meet the wants arising from the extreme climate of North America, the tables of Mr. Haeghens have been extended from -15° to -35° centigrade, and from $+30^{\circ}$ to $+35^{\circ}$ of temperature of the wet bulb, and to $+40^{\circ}$ of temperature of the dry-bulb thermometer. The forces of aqueous vapor of Regnault, as given in 'Table I., have been used for the calculations.

Use of the Tables.

Enter the tables with the difference of the two thermometers, or $t-t^{\prime}$, and with the temperature of the wet-bulb thermometer t^{\prime}, taking the first three pages, when the temperature of the wet-bulb is below the freezing point; and the following ones when it is above the freezing point.

Seek first the column at the head of which you find the difference of the thermometers; go down as far as the horizontal line, at the beginning of which you see the temperature of the wct-bulb thermometer; there you find the force of vapor, and the relative humidity corresponding to your observation.

Two corrections for fractions may be required for a complete caleulation of the force of vapor; one for the fractions of degrecs of the wet-bulb thermometer ; another for the intermediate differences of the two thermometers, viz. for $0.1,0.3,0.5$, 0.7 , \&c.

The first correction for fractions of degrees of the wet-bulb thermometer is found by multiplying the decimal fraction by the number placed in the second vertical column next to the whole degree, which number is the value of a tenth of a degree. The product must be added to the value of the full degree given in the table, when the temperature of the wet-bulb is above the freezing point: it must be subtracted when the temperatire is below the freezing point, and receives the sign -. This correction is too important to be neglected.

The second correction, less inportant, for the intermediate differences of the therB
mometers, which are greater by one tenth than those indicated in the tables, is given in the horizontal column at the bottom of the page. It is constant and always sub tractive.

Examples of Calculation.

Difference of thermometers, or $t-t^{\prime}=0^{\circ} .8$.
Temperature of the wet-bulb thermometer, $t^{\prime}=11^{\circ} .0$.
We find, page 18 , for $t-t^{\prime}$, fifth double column ; and for t^{\prime}, first column, The force of vapor in the air $=9^{\mathrm{mm}} .31$. Relative humidity, $=90$.

Difference of thermometers, or $t-t^{\prime}=7^{\circ} . .$.
Wet-bulb thermometer, or t^{\prime}, $\quad=17^{\circ} .9$.
We find, page 24 , for $t-t^{\prime},=7^{\circ} .2$, and $t^{\prime}=17^{\circ} .0$, force of vapor $10^{\mathrm{mm}} .02$.
Additive correction for fraction $0^{\circ} .9$, or $9 \times 0.09=0 \quad .81$.
Force of vapor in the air $=10 \quad .83$
Relative humidity, 46

$$
\begin{aligned}
& \text { Difference of thermometers, } t-t^{\prime}=6^{\circ} .5 \\
& \text { Wet-bulb thermometer, } t^{\prime} \\
& =23^{\circ} .6 .
\end{aligned}
$$

We find, page 23 , for $t^{\prime}=23^{\circ} .0$, and $t-t^{\prime}$, or difference, $=6^{\circ} .4$, force of vapor $1 t^{\text {nut }} .94$; applying immediately the correction found at the bottom of the page for one if nth more difference, or $6^{\circ} .4+0.1=6^{\circ} .5$, we have,
Force of vapor $=16^{\mathrm{mm}} .94-006$, or $\quad 16^{\mathrm{mm}} .88$.

Additive correction for fraction 0.6 of the wet-bulb, $6 \times 0.13=0 \quad .78$.

$$
\begin{aligned}
& \text { Force of vapor in the air }=17 . .66 . \\
& \text { Relative humidity, }
\end{aligned}
$$

The wet-bulb thermometer covered with ice.

$$
\text { Difference of thermometers, } t-t^{\prime}=2^{\circ} .8 \text {. }
$$

$$
\text { Wet-bulb thermometer (ice), } t^{\prime}=-8^{\circ} .5 \text {. }
$$

Page 17 gives for $t-t^{\prime}=\mathfrak{Z}^{\circ} .8$, and $t^{\prime}=-8^{\circ} .0$, foree of vapor $=1^{m m} .0$.
Subtractive correction for fraction 0.5 of wet-bulb, $5 \times 0.019=-0 \quad .1$.
Force of vapor in the air $=\mathbf{0} \quad \mathbf{. 9 .}$
Relative humidity, $\quad 30$.

Below the Freezing-Point; the Bulb covered with a Film of Ice

B

Below the Freexing-Point ; the Bulb covered with a Film of Ice.

Nean IIorizontal Difference of Force of Vapor for each $0^{\circ} .1=0.05 \mathrm{~mm}$.

Below the Freezing-Point ; the Bulb covered with a Film of Ice.

	Mean Vertical Ditlerence for exch $0^{\circ} .1$	t-1', Difference of Wet and Dry Bulb Thermometers.											
		20.4		20.6		$2 \times .8$		$8 \bigcirc 0$		$3^{\circ} \cdot \mathbf{2}$		$3{ }^{\circ} .4$	
		Force of Vapor.	Relative Hu-midity.	Force of Vapor	Relative Hu-midity.	Force of Vapor.	Relative Hu-midity.	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Itu- } \\ & \text { midi- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	Relative Hu-midity.	Ence or Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$
$\begin{gathered} \circ \\ -15 \\ -14 \\ -13 \\ -12 \\ -11 \end{gathered}$	Nillim.	Millim 0.15	9	Millim.	3	Millim.		Millim.		Millim.		Millim.	
	$\begin{aligned} & 0.011 \\ & 0.013 \\ & 0.013 \\ & 0.015 \end{aligned}$	0.27	15	0.16	9	0.06	4						
		0.39	20	0.29	14	0.19	9	0.08	4				
		0.53	25	0.42	19	0.32	14	0.2%	10	0.11	5		
		0.68	29	0.57	24	0.47	19	0.36	15	0.26	10	0.16	6
-10-9	0.016												
	0.018	0.83	33	0.73	28	0.63	24	0.52	20	0.42	16	0.32	12
		1.02	37	0.91	33	0.81	28	0.70	2.4	0.60	20	0.50	17
-9 -8	0.019	1.21	40	1.10	36	1.00	32	0.90	28	6.79	25	0.69	21
$\begin{aligned} & -7 \\ & -6 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.022 \end{aligned}$	1.42	44	1.31	40	1.21	36	1.11	32	1.00	29	0.90	26
		1.64	47	1.54	43	1.43	40	1.33	36	1.22	33	1.12	30
-5	0.024												
	0.025	1.88	50	1.77	46	1.67	43	1.57	40	1.46	36	1.36	33
- 4		2.13	52	2.03	49	1.92	46	1.82	43	1.71	40	1.61	37
- 3	0.027	2.40	55	2.30	52	2.19	48	2.09	45	1.99	43	1.88	40
$\begin{aligned} & -2 \\ & -1 \end{aligned}$	$\begin{aligned} & 0.029 \\ & 0.031 \end{aligned}$	2.70	57	2.59	54	2.49	51	2.38	48	2.25	46	2.17	43
		3.01	59	2.90	56	2.80	54	2.69	51	2.59	48	2.48	46
		$3 \bigcirc .6$		$3 \bigcirc .8$		40.0		40.2		4.4		40.6	
		Millim.		Millim.		Millim.		Nillim.		Millim.		Nillim.	
-15													
-14													
-13													
-12													
-11	0.016	0.05	2										
-10	0.018	0.21	8	0.11	4								
-9	0.019	0.39	13	0.29	9	0.19	6	0.08	3				
-8		0.55	18	0.18	14	0.38	11	0.27	8	0.17	5	0.06	2
$\begin{aligned} & -7 \\ & -6 \end{aligned}$	0.021	0.79	22	0.69	19	0.59	16	0.48	13	0.38	10	0.27	7
	0.022	1.91	26	0.91	23	0.81	20	0.70	17	0.60	15	0.49	12
-5	0.024												
	0.025	1.25	30	1.15	27	1.04	24	0.94	22	0.83	19	0.73	16
-4		1.50	34	1.40	31	1.30	28	1.19	26	1.09	23	0.98	20
-3	0.027	1.78	37	1.67	34	1.57	32	1.46	29	1.36	27	1.25	24
-2	0.0290.031	2.07	40	1.96	37	1.86	35	1.75	33	1.65	30	1.54	28
-1		2.38	43	2.27	40	2.17	38	2.06	36	1.96	34	1.85	31

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.05 \mathrm{~mm}$.

Wet-ButbThermo-meter.t^{\prime}Centi-gradeDegrees.	Mean Vertical Difference for each $0^{\circ} .1$.	$\mathbf{t}-\mathbf{t}^{\prime}$, Difference of Wet and Dry-Bulb Thermometers.											
		$0^{\circ} .0$		$0^{\circ} .2$		$0^{\circ} .4$		$0^{\circ} .6$		$0^{\circ} .8$		10.0	
		Force of Vapor.	Relative Humid ity.	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { mid } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hul- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { helve } \\ & \text { Hur } \\ & \text { Heit- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	Rela- itive Hu- nid- ity.
\bigcirc	Millim.	Millim.	100	Millim.	96	Millim		Millim.		Millim.		Millim.	
1	0.03 .	4.60 4.94	100	4.82	96	4.70	93	4.58	89	4.46	85	4.35	82
2	004	5.30	100	5.18	96	5.06	93	4.94	89	4.83	86	4.71	
3	0.040.04	5.69	100	5.57	97	5.45	93	5.33	90	5.21	87	5.09	83
4		$\begin{aligned} & 6.10 \\ & 6.53 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 5.98 \\ & 6.41 \end{aligned}$	$\begin{aligned} & 97 \\ & 97 \end{aligned}$	$\begin{aligned} & 5.86 \\ & 6.29 \end{aligned}$	$\begin{aligned} & 93 \\ & 94 \end{aligned}$	5.746.17	$\begin{aligned} & 90 \\ & 91 \end{aligned}$	$\begin{aligned} & 5.62 \\ & 6.05 \end{aligned}$	87	5.50	
5	0.04										88	5.94	85
	0.05												
6	0.05	7.00	100	6.88	97	6.76	94	6.64	91	6.52	88	6.40	
7		7.49	100	7.37	97	7.25	94	7.13	91	7.01	89	6.89	
8	0.05	S. 02	100	7.90	97	7.788.33	94	7.66	9292	7.548.09	89	7.42	
9	$\begin{aligned} & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.57 \\ & 9.17 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 8.45 \\ & 9.04 \end{aligned}$	$\begin{aligned} & 97 \\ & 97 \end{aligned}$			$\begin{aligned} & 8.21 \\ & 8.80 \end{aligned}$			8990		
10						$\begin{aligned} & 8.33 \\ & 8.92 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$		$\begin{aligned} & 92 \\ & 93 \end{aligned}$	$\begin{aligned} & 8.09 \\ & 8.68 \end{aligned}$		7.97 86 8.56 87	6
	0.06												
11	0.07	9.79	100	9.67	97	9.55	95	9.43	93	9.31	90	9.19	88
12		10.46	100	10.34	98	10.21	95	10.09	93	9.97	90	9.85	88
13	0.07	$\begin{aligned} & 11.16 \\ & 11.91 \end{aligned}$	100	11.04	98	10.92	95	10.50	93	10.68	91	10.56	89
14	0.07 0.08		100	11.79	98	11.66	95	11.54	93	11.42	91	11.30	89
15	0.08	12.70	100	12.58	98	12.46	96	12.33	93	12.21	91	12.09	89
	0.08												
16	0.09	13.54	100	13.41	98	13.29	96	13.17	94	13.05	92	12.93	90
17	0.09	14.42	100	14.30	98	14.18	96	14.05	9.4	13.93	92	13.81	90
18		15.36	100	15.23	98	15.11	96	14.99	94	14.87	92	14.75	90
19	0.10	16.35	100	16.22	98	16.10	96	15.98	94	15.86	92	15.73	91
20	0.10	17.39	100	17.27	98	17.15	96	17.02	94	16.90	92	16.78	91
	0.11												
21		18.50	100	18.37	98	18.25	96	18.13	94	18.00	92	17.88	91
22		19.66	100	19.54	98	1941	96	19.29	95	19.17	93	19.04	91
23		20.59	100	20.76	98	20.64	96	20.52	95	20.39	93	20.27	91
24		22.18	100	22.06	98	21.94	97	21.81	95	21.69	93	21.57	92
25	14	23.55	100	23.43	95	23.30	97	23.18	95	23.05	93	22.93	92
	0.14												
26		24.99	100	24.86	98	24.74	97	24.62	95	24.49	93	24.37	92
27		26.51	100	26.38	98	26.26	97	26.13	95	26.01	93	25.88	92
28		28.10	100	27.98	98°	27.85	97	27.73	95	27.60	93	27.48	92
29		29.78	100	29.66	98	29.53	97	29.41	95	29.28	94	29.16	92
30	0.15	31.55	100	31.42	98	31.30	97	31.17	95	30.05	94	30.92	93
	0.19												
31	0.20	33.40	100	33.28	95	33.15	97	33.03	96	32.90	94	32.78	93
32	0.20	35.36	100	35.23	99	35.11	97	34.98	96	34.66	94	34.73	93
33	0.21	37.41	100	37.28	99	37.16	98	37.03	96	36.91	94	36.78	93
34	0.23	39.56	100	39.43	99	39.31	98	39.18	96	39.06	94	38.93	93
35		41.83	109	41.70	99	41.58	98	41.45	96	41.33	95	41.20	93

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.06 \mathrm{~mm}$.

Wet-BulbThermometer.t t^{\prime}Centi-gradeDegrees	Mean Vertical Differ. ence for each $0^{\circ} .1$.	\mathbf{t} - \mathbf{t}, Difference of Wet and Dry Bulb Thermometers.											
		$1{ }^{\circ} .2$		10.4		10.6		$1{ }^{\circ} .8$		$2 \cdot 0$		$2{ }^{\circ} \mathbf{2}$	
		Force of Vapor.	$\begin{gathered} \text { Relative } \\ \text { Humid } \\ \text { ity. } \end{gathered}$	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { mit- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{aligned} & \text { Reld- } \\ & \text { tuve } \\ & \text { Hu- } \\ & \text { mid } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	Rela. tive $\mathrm{Ha}-$ mid. ity.	Force of Vapor.	Relative H H. mid ity.	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$
0	Millim.	Millim.	78	Mialim.	74	Millim.	71	$\begin{array}{\|c} \text { Millim. } \\ \mathbf{3 . 5 3} \end{array}$	67	$\begin{array}{\|c} \text { Millim. } \\ 3.4 \mathrm{I} \end{array}$	64	$\begin{array}{r} \text { Millim. } \\ 3.29 \end{array}$	61
	0.03	3.89		3.77		3.65							
1		4.23	79	4.11	75	3.99	72	3.87	69	3.75	66	3.63	63
2	0.04	4.59	80	4.47	76	4.35	73	4.23	70	4.11	67	3.99 65	
3		4.97	80	4.85	77	4.73	74	4.615.02	71	4.494.90	69	4.3766	
4	0.04	$\begin{aligned} & 5.38 \\ & 5.82 \end{aligned}$	$\begin{aligned} & 81 \\ & 82 \end{aligned}$	$\begin{aligned} & 5.26 \\ & 5.70 \end{aligned}$	$\begin{aligned} & 78 \\ & 79 \end{aligned}$	$\begin{aligned} & 5.14 \\ & 5.58 \end{aligned}$	$\begin{aligned} & 75 \\ & 77 \end{aligned}$		$\begin{aligned} & 73 \\ & 74 \end{aligned}$		70	4.7867	
5								$\begin{aligned} & 5.02 \\ & 5.46 \end{aligned}$		$\begin{array}{r} 4.90 \\ 5.34 \end{array}$	71	5.22 69	
6	0.05	6.28	83	6.16	S0	6.04	77	5.92	75	5.50	72	5.68	70
7		6.77	83	6.65	81	6.53	78	6.41	76	6.29	73	6.17	
8	0.05	7.29	84	7.17	81	7.05	79	6.93	76	6.81	74	6.69	
9	$\begin{aligned} & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 7.8 .5 \\ & 8.44 \end{aligned}$	$\begin{aligned} & 84 \\ & 85 \end{aligned}$	$\begin{aligned} & 7.73 \\ & 8.32 \end{aligned}$	$\begin{aligned} & 82 \\ & 83 \end{aligned}$	$\begin{aligned} & 7.61 \\ & 8.20 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 7.49 \\ & 8.08 \end{aligned}$	$\begin{aligned} & 77 \\ & 78 \end{aligned}$	$\begin{aligned} & 7.37 \\ & 7.96 \end{aligned}$	75	7.2587	
10											76	7.84	3
	0.06												
11	0.07	9.07	86	8.95	83	8.82	81	8.709.37	79	8.58	77	8.46	75
12		9.73	86	9.61	84	9.49	82		80	9.25	78	9.12 76	
13	$\begin{aligned} & 0.07 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 10.43 \\ & 11.18 \end{aligned}$	86	10.3111.06	84	10.19	82	9.37 10.07	80	9.9.5	78	9.83	76
14			87		85	10.9 ¢	83	10.81	81	10.69	79	10.57	77
15		11.97	87	11.85	85	11.73	83	11.60	81	11.48	so	11.36	78
	0.08												
16	0.09	12.80	88	12.68	86	12.56	84	12.44	82	12.32	S0	12.19	75
17		13.69	88	13.57	86	13.44	84	13.32	83	13.20	81	13.08	79
18	0.0	14.62	88	14.50	87	14.38	85	14.26	83	14.13	81	14.01	80
19		15.61	89	15.49	87	15.37	85	15.24	83	15.12	82	15.00	80
20	0.11	16.65	89	16.53	87	16.41	86	16.29	84	16.16	82	16.04	81
	0.11												
21		17.76	59	17.63	58	17.51	86	17.39	84	17.27	83	17.14	81
22		18.92	90	18.80	88	18.67	86	18.55	85	18.43	83	18.30	82
23		20.15	90	20.02	58	19.90	87	19.78	85	19.65	83	19.53	82
24	0.	21.44	90	21.32	88	21.20	87	21.07	85	20.95	84	20.82	82
25	0.14	2.2 .81	90	22.68	89	22.56	87	22.44	86	22.31	84	22.19	83
	0.14												
26		24.24	90	24.12	89	23.99	87	23.87	86	23.75	85	23.62	83
27		25.76	91	25.63	S9	2.5 .51	88	25.39	86	2.5.26	85	2.5 .14	83
28		27.35	91	27.23	89	27.10	88	26.98	87	26.86	85	26.73	84
29	18	29.03	91	28.91	90	28.78	88	28.66	87	28.53	85	28.41	84
30	0.15	30.80	91	30.67	90	30.55	89	30.42	87	30.30	86	30.17	84
	0.19												
31		32.65	91	32.53	90	32.40	89	32.28	87	32.15	86	32.03	8.5
32	0.21	34.61	91	34.48	90	34.36	89	34.23	88	34.11	86	33.98	85
33	0.21	36.66	92	36.53	90	36.41	89	36.28	88	36.16	86	36.03	8.5
34		38.81	92	38.68	90	35.56	89	38.43	88	38.31	87	38.18	85
35	0.23	41.07	92	40.94	91	40.82	89	40.69	88	40.57	87	40.44	86
		Mean	Horizont	al Differe	ce of	Force of	Vapor	each	$1=$	06 mm .			

Wet-BulbThermo-meter.t $^{\prime}$Centi-gradeDegrees.	Mean Vertical Difference for each $0^{\circ} .1$.	$\mathbf{t}-\mathbf{t}^{\prime}$, Difflerence of Wet and Dry-Bulb Thermometers.											
		$4{ }^{3} .8$		$5^{\circ} .0$		5.2		$5{ }^{\circ} .4$		$5^{\circ} .6$		$5^{\circ} .8$	
		Force of Vapor.	Relative Humid ity.	Force of Vapar.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{array}{\|l\|l} \text { Rela- } \\ \text { tive } \\ \text { Hu- } \\ \text { Hui- } \\ \text { mity- } \end{array}$	Force of Vapor.	Rela tive He- mid- ity.	Force of Vapor.	Rela tive Hu- mid ity.	Force of Vapor.	Rela- live Hu- midl- ity. it
\bigcirc	Millim.	Millim.											
0	0.03	1.75	27	1.63	25	1.51	23	1.39	21	1.27	19	1.15	17
1	0.04	2.08	30	1.97	28	1.85	26	1.73	2.4	1.61	22	1.49	20
2		2.44	33	2.32	31	2.20	29	2.08	27	1.96	25	1.85	23
3	0.04	2.82	36	2.70	34	2.55	32	2.46	30	2.34	28	2.22	26
4	$\begin{aligned} & 0.04 \\ & 0.04 \end{aligned}$	3.23	38	3.11	36	2.99	34	2.87	33	2.75	31	2.63	29
5		3.66	40	3.54	39	3.42	37	3.30	35	3.18	33	3.06	32
	0.05												
6	0.05	4.12	43	4.00	41	3.85	39	3.76	37	3.64	36	3.52	34
7		4.61	45	$4 \cdot 49$	43	4.37	41	4.25	40	4.13	38	4.01	36
	0.05	5.13	47	5.01	45	4.89	43	4.77	42	4.65	40	4.53	39
910	0.06	5.65	48	5.56	47	5.44	45	5.32	44	5.20	42	5.08	41
	0.66	6.27	50	6.15	48	6.02	47	5.90	45	5.78	44	5.66	42
	0.06												
11	0.07	6.89	52	6.77	50	6.65	49	6.53	17	6.10	46	6.25	44
12		7.55	53	7.43	52	7.31	50	7.15	49	7.06	47	6.94	46
13	0.07	8.25	55	8.13	53	8.01	52	7.88	50	7.76	49	7.64	47
14		8.99	56	8.87	54	8.75	53	8.62	51	8.50	50	8.38	49
	0.08	9.78	57	9.65	55	9.53	54	9.41	53	9.29	51	9.17	50
16	0.08												
	0.09	10.61	58	10.49	57	10.36	55	10.24	54	10.12	53	10.00	51
17	0.09	11.49	59	11.37	58	11.24	56	11.12	55	11.00	54	10.88	53
18		12.42	60	12.30	59	12.17	58	12.05	56	11.93	55	11.81	54
19	0.10	13.40	61	13.28	60	13.16	59	13.04	57	12.91	56	12.79	55
20	0.11	14.44	62	14.32	61	14.20	60	14.08	58	13.95	57	13.83	56
21	0.11												
	0.12	15.54	63	15.42	62	15.30	60	15.17	59	15.05	58	14.93	57
22	0.12	16.70	64	16.58	63	16.46	61	16.33	60	16.21	59	16.09	58
23		17.93	65	17.80	63	17.68	62	17.56	61	17.43	60	17.31	59
24	0.13	19.22	65	19.09	64	18.97	63	15.85	62	18.72	61	18.60	60
	0.14	20.58	66	20.46	65	20.33	64	20.21	63	20.08.	62	19.96	60
	0.14												
26	0.15	22.01	67	21.58	6.5	21.76	64	21.63	63	21.51	62	21.39	61
27	0.16	23.52	67	23.40	66	23.27	65	23.15	64	23.02	63	22.90	62
28		25.11	68	24.99	67	24.86	66	24.74	65	24.61	64	24.49	63
2930	0.17	26.79	68	26.66	67	26.54	66	26.41	65	26.29	64	26.16	63
	0.18	28.55	69	28.42	68	28.30	67	25.17	66	28.05	65	27.92	$6 i$
31	0.19												
	0.20	30.40	70	30.28	69	30.15	68	30.03	67	29.90	66	29.78	65
32	0.21	32.35	70	32.22	69	32.10	68	31.97	67	31.85	66	31.72	65
33		34.40	71	34.27	70	34.15	69	34.02	68	33.90	67	33.77	66
34	0.22	36.5 .5	71	36.42	70	36.30	69	36.17	68	36.05	67	35.92	66
35		38.80	71	38.68	70								

Mean Horizontal Difference of Force of Vapor for each $0^{\top} .1=0.06 \mathrm{~mm}$.

Wet-BulbThermometer.\mathbf{t}^{\prime}Centi-gradeDegrees	Mean Vertical Difference for each $0^{\circ} .1$.	t- \mathbf{t}^{\prime}, Difference of Wet and Dry-Bulb Thermometers.											
		$6^{\circ} \cdot 0$		$6^{\circ} .2$		$6^{\circ} .4$		$6^{\circ} .6$		$6^{\circ} .8$		$7{ }^{\circ} \cdot 0$	
		Force of Vapor.	Relative Humid. ity.	Force of Vapor.	$\begin{aligned} & \text { Hela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { Huid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tue } \\ & \text { Hu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	Rela tive Hu. midity.	Force of Vapor.	Rela tive Hu- mid. ity.	Furce of Vapor.	Rela- tive Hu- mud- ity.
\bigcirc	Millim.	Millim. 1.04	15	$\begin{array}{\|r} \text { Millim. } \\ 0.92 \end{array}$	13	$\begin{array}{r} \text { Millim. } \\ 0.80 \end{array}$	11	$\begin{array}{\|r} \hline \text { Millinı. } \\ 0.6 \mathrm{~S} \end{array}$	9	$\begin{array}{r} \text { Millim. } \\ 0.56 \end{array}$	8	$\begin{array}{\|r} \hline \text { Millim. } \\ 0.44 \end{array}$	6
1	$\begin{aligned} & 0.03 \\ & 0.04 \end{aligned}$	1.37	18	1.25	16	1.13	15	1.01	13	0.89	11	0.78	30
2		1.73	22	1.61	20	1.49	18	1.37	16	1.25	1.5	1.13	13
3	0.04	2.11	25	1.99	23	1.57	21	1.75	19	1.63	18	1.51	
4	0.04		28	2.39	26	2.27	2427	2.15	23	2.03	21	1.91	
5	0.04	$\begin{aligned} & 2.51 \\ & 2.94 \end{aligned}$	30	2.82	25			2.58	25	2.46	24	1.91 19 2.34 22	
	0.05												
6	0.05	3.40	33	3.28	31	3.16	29	3.04	28	2.92	26	2.80	25
7		3.59	35	3.77	33	3.65	32	3.53	30	3.413.92	29	3.2925	
8	0.05	4.414.96	37	4.25	35	4.16	34	4.04	33		3.9231	3.80 30	
9	$\begin{aligned} & 0.06 \\ & 0.06 \end{aligned}$		39	$\begin{aligned} & 4.8 .4 \\ & 5.42 \end{aligned}$	$\begin{aligned} & 38 \\ & 40 \end{aligned}$	$\begin{aligned} & 4.71 \\ & 5.30 \end{aligned}$	$\begin{aligned} & 36 \\ & 38 \end{aligned}$		$\begin{aligned} & 35 \\ & 37 \end{aligned}$	$\begin{aligned} & 4.47 \\ & 5.06 \end{aligned}$	$\begin{aligned} & 33 \\ & 35 \end{aligned}$	4.35	
10		$\begin{aligned} & 4.96 \\ & 5.54 \end{aligned}$						$\begin{aligned} & 4.59 \\ & 5.18 \end{aligned}$				4.94	34
	0.06												
11	0.07	6.16	43	6.04	41	5.92	40	5.80	39	5.68	37	5.56	36
12		6.82	44	6.70	43	6.58	42	6.46	41	6.34	39		35
13	0.07	$\begin{aligned} & 7.52 \\ & 8.26 \\ & 9.05 \end{aligned}$	46	7.40	45	7.28	43	7.16	42	7.03	41	6.91 40	
14	$\begin{aligned} & 0.07 \\ & 0.08 \end{aligned}$		$\begin{aligned} & 47 \\ & 49 \end{aligned}$	$\begin{aligned} & 8.14 \\ & 8.92 \end{aligned}$	$\begin{aligned} & 46 \\ & 48 \end{aligned}$	$\begin{aligned} & 5.02 \\ & 8.80 \end{aligned}$	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	$\begin{aligned} & 7.90 \\ & 8.68 \end{aligned}$	44	7.77	43	7.65	41
15									45	8.56	44	8.44	43
	0.08												
16	0.09	9.88	50	9.75	49	9.63	48	9.51	47	9.39	45	9.27	44
17	0.09	10.76	52	10.63	50	10.51	49	10.39	48	10.27	47	10.14	46
18		11.69	53	11.56	51	11.44	50	11.32	49	11.20	48	11.07	47
19	0.10	12.67	54	12.55	53	12.42	51	12.30	50	12.18	49	12.06	48
20	0.11	13.71	55	13.58	54	13.46	53	13.34	52	13.22	50	13.09	49
	0.11												
21		14.81	56	14.68	55	14.56	54	14.44	53	14.31	52	14.19	51
22		15.96	57	15.34	56	15.72	55	15.59	54	15.47	53	15.3.5	52
23	0.12 0.13	17.19	58	17.06	57	16.94	56	16.82	55	16.69	54	16.57	53
24		18.48	59	18.35	58	18.23	56	18.11	35	17.98	54	17.86	53
25	0.14	19.84	59	19.71	58	19.59	57	19.46	56	19.34	55	19.22	54
	0.14												
26		21.26	60	21.14	59	21.01	58	20.89	57	20.77	56	20.64	55
27	0.15	22.77	61	22.65	60	22.52	59	22.40	58	22.28	57	22.15	56
28	0.16	24.36	62	24.24	61	24.11	60	23.99	59	23.86	58	23.74	57
29	0.17	26.04	62	2.5.91	61	2.5 .79	60	25.66	59	25.54	58	2.5 .41	57
30	0.15	27.80	63	27.67	62	27.55	61	27.42	60	27.30	59	27.17	58
	0.19												
31		29.65	64	29.53	63	29.40	62	29.28	61	29.15	60	29.03	59
32		31.59	64	31.47	63	31.34	62	31.22	61	31.09	60	30.97	59
33		33.64	65	33.51	64	33.39	63	33.26	62	33.14	61	33.01	60
34													
35													
		Mean	Horizont	al Differen	nce of	Force of	Vapo	reach	$1=$	0.06 mm .			

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.06 \mathrm{~mm}$.

Mean Horizonta! Difference of Force of Vapor for each $0^{\circ} .1=0.06 \mathrm{~mm}$.

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=006 \mathrm{~mm}$.

Correc ion for the Barometrical Height.

III.

T A B L E
GIVING AT SIGHT THE RELATIVE HUMIDITY DEDUCED FROM THE INDIGA. TIONS OF THE DEW POINT INSTRUMENTS.
By M. T. Haeghens.

This table, whici has been published in the Amuaire Météorologique de Fi ance for 1850 , page 86 , and following, has been calculated by Mr. Haeghens, using Regnault's Tables of Elastic Forces of Vapor. It gives directly the relative humidity when the hygrometrical observations bave been made by means of dew point instruments like those of Daniell, Regnault, Bache, and others.

These hygrometers are destined to find out the temperature of the dew point, that is the temperature to which it would be necessary to lower the temperature of the air, in order that this air be completely saturated by the aqueous vapor which it contained at the time of the observation.

The force of vapor contained in the air, or its absolute humidity, is thus the maximum of force of vapor which corresponds to the temperature of the dew point; it is given directly in the Table I. of the Elastic Forces of Vapor, by Reguault.

The ratio of that maximum of force of vapor at the temperature of the dew point to the force of vapor which corresponds, in the same table, to the temperature of the suromuling air at the time of the observation, is the relative humidity. This ratio is given in hundredths in the following table, which relieves the observer of the trouble of calculating it.

Let $t=$ temperature of the air surrounding the instrument.
$t^{\prime}=$ temperature of the dew point.
$t-t^{\prime}=$ the difference between these two temperatures.
The first column, on the left, contains the temperature of the air t, in centigrade degrces. The following ones, headed with the differences, $t-t^{\prime}$, between the temperatures of the air and of the dew point, give the relative humidity corresponding to the two elements.

$$
\begin{array}{ccccc}
& \text { Tenp. of the } A \text { ir }=t . & \text { Dew point }=t^{t} . & \text { Difference } t-t^{t} . & \text { Relative Humidity } \\
\text { Example : } & 10^{\circ} .0 & 4^{\circ} .4 & 5^{\circ} .6 & 68
\end{array}
$$

Should the temperature of the air t^{\prime}, or the difference $t-t^{\prime}$, fall between the numbers found in the columns, it is obvious, by glancing at the table, that an interpolation at sight will always be easy.

1emper		$\mathbf{t}-\mathbf{t}^{\prime}=$ Difference of Temperatares of the Dew Point and of the Air.													
the wr	$10^{\circ} .0$	$0^{\circ} .2$	$0^{\circ} .4$	$10^{\circ} .16$	$0^{\circ} \cdot \mathrm{s}$	$1{ }^{\circ} .0$	$11^{\circ} .2$	$1{ }^{\circ} .1$	$1^{\circ} .6$	$1^{\circ} .8$	$3^{\circ} .11$	$2{ }^{\circ} .13$	$9^{\circ} .4$	$2^{\circ} .6$	$2{ }^{\circ} .8$
Cellig.	100	98	97	95	9	92	90	89	88	86	85	83	82	S0	79
-7	100	98	97	95	94	92	91	89	88	86	85	83	82	81	79
-1	100	98	97	95	94	92	91	89	88	s7	85	84	82	81	S0
-5	100	98	97	95	94	92	91	89	88	87	85	84	82	81	so
-4	100	98	97	93	94	92	91	89	88	87	85	84	83	81	80
--3	100	98	97	95	94	92	91	90	88	87	85	84	83	81	s0
\cdots	100	98	97	95	94	93	91	90	S8	S7	86	84	83	82	s0
-1	100	98	97	95	94	93	91	90	89	87	86	85	83	82	81
0	100	98	97	96	94	93	91	90	S9	87	86	85	83	82	81
$t 1$	100	99	97	96	9.5	93	92	90	59	88	86	85	84	83	81
2	100	99	97	96	95	93	92	91	89	88	87	85	84	83	82
3	100	99	97	96	9.3	93	92	91	89	88	87	86	84	83	82
4	100	99	97	96	95	93	92	91	89	58	87	86	85	83	82
5	100	99	97	96	95	93	92	91	90	88	87	86	8.5	83	82
6	100	99	97	96	95	93	92	91	90	88	87	86	85	84	82
7	100	99	97	96	95	93	92	91	90	89	87	86	85	84	83
8	100	99	97	96	95	93	92	91	90	89	87	86	85	84	83
9	100	99	97	96	95	94	92	91	90	59	87	86	85	84	53
10	100	99	97	96	95	94	92	91	90	89	S7	86	85	84	83
11	100	99	97	96	9.)	94	92	91	90	89	87	86	85	84	83
12	100	99	97	96	93	94	92	91	90	89	88	87	85	84	83
13	100	99	97	96	95	94	92	91	90	59	88	87	85	84	83
14	100	99	98	96	95	94	93	91	90	89	88	87	86	84	83
15	100	99	98	96	95	94	93	91	90	s9	88	87	86	84	83
16	100	99	98	96	95	94	93	91	90	89	88	87	86	85	84
17	100	99	98	96	95	94	93	91	90	S9	88	87	86	85	84
18	100	99	98	96	95	94	93	92	90	S9	88	S7	86	85	84
19	100	99	98	96	95	94	93	92	91	89	88	87	86	85	84
20	100	99	98	96	95	94	93	92	91	89	88	87	86	8.5	84
21	100	99	98	96	95	94	93	92	91	90	88	87	86	85	84
22	100	99	98	96	95	94	93	92	91	90	89	87	86	85	84
23	100	99	98	96	95	94	93	92	91	90	89	S8	86	83	84
24	100	99	98	97	95	94	93	92	91	90	S9	S8	87	85	S4
2.5	100	99	98	97	95	94	93	92	91	90	89	88	87	86	85
26	100	99	98	97	95	94	93	92	91	90	89	S8	87	86	8.5
27	100	99	98	97	9.5	94	93	92	91	90	89	88	87	S6	8.5
28	100	99	98	97	95	94	93	92	91	90	89	88	87	86	8.5
29	100	99	98	97	96	94	93	92	91	90	89	88	87	86	8.)
30	100	99	98	97	96	94	93	92	91	90	S9	88	87	86	85
31	100	99	98	97	96	94	93	92	91	90	89	88	87	86	85
32	100	99	98	97	96	94	93	92	91	90	S9	88	87	86	85
33	100	99	98	97	96	94	93	92	91	90	89	88	87	86	85
34	100	99	98	97	96	95	93	92	91	90	89	88	87	S6	85
3.5	100	99	98	97	96	95	93	92	91	90	89	88	87	86	85

Temper ature of $t=$															
	$3{ }^{\circ} .0$	30. 2	3.4	30.6	30.8	$4^{\circ} .0$	$4^{\circ} .2$	$4^{\circ} .4$	$4^{\circ} .6$	$4^{\circ} .8$	$5^{\circ} .0$	$5^{\circ} .2$	$5{ }^{\circ} .4$	$5^{\circ} .6$	$5^{\circ} .8$
Centig.	78	77	75	74	73	72	71	69	68	67	66	65	64	63	62
-7	78	77	75	74	73	72	71	69	68	67	66	65	64	63	62
-6	78	77	76	74	73	72	71	69	68	67	66	65	64	63	62
-5	79	77	76	75	73	72	71	70	68	67	66	65	64	63	62
-4	79	77	76	75	74	73	71	70	69	68	67	66	64	63	62
-3	79	77	76	75	74	73	72	70	69	68	67	66	65	64	63
-2	79	78	77	76	74	73	72	71	70	69	68	66	65	64	63
-1	79	78	77	76	75	73	72	71	70	69	68	67	66	65	64
0	80	78	77	76	75	74	73	71	70	69	68	67	66	65	6.
+1	80	79	78	77	75	74	73	72	71	70	69	68	66	65	64
2	81	79	78	77	76	75	74	72	71	70	69	68	67	66	65
3	81	80	78	77	76	75	74	73	72	71	70	69	68	66	65
4	81	80	79	78	77	75	74	73	72	71	70	69	68	67	66
5	S1	80	79	78	77	76	75	73	72	71	70	69	68	67	66
6	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67
7	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67
	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67
8	82	80	79	78	77	76	75	74	73	72	71	70	69	68	67
10	82	81	80	78	77	76	75	74	73	72	71	70	69	68	67
11	82	81	80	79	78	76	75	74	73	72	71	70	70	69	68
12	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68
13	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68
14	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68
15	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68
16	82	81	80	79	78	77	76	75	74	73	72	71	71	70	69
17	83	81	80	79	78	77	76	75	74	73	73	72	71	70	69
18	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69
19	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69
20	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69
21	83	82	81	80	79	78	77	76	75	74	73	72	71	70	70
22	83	82	81	80	79	78	77	76	75	74	73	73	72	71	70
23	83	82	81	80	79	78	77	76	75	74	74	73	72	71	70
24	83	82	81	80	79	78	77	77	76	75	74	73	72	71	70
25	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70
26	84	83	82	81	50	79	78	77	76	75	74	73	72	71	70
27	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70
28	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70
29	84	83	82	81	80	79	78	77	76	75	75	74	73	72	71
30	84	83	82	81	80	79	78	77	76	76	75	74	73	72	71
31	84	83	82	81	80	79	78	77	77	76	75	74	73	72	71
32	84	83	82	81	80	79	79	78	77	76	75	74	73	72	72
33	84	83	82	81	80	so	79	78	77	76	75	74	73	72	72
34	85	84	83	52	81	80	79	78	77	76	75	74	74	73	72
35	85	84	83	82	81	80	79	78	77	76	75	75	74	73	72

Teniper-ature ofthe air.$\mathbf{t}=-$	$\mathbf{t}-\mathbf{t}^{\prime}=$ Difference of Temperatures of the Dew Point and of the Air.														
	$6^{\circ} 0$	$6^{\circ} .2$	$6^{\circ} .4$	$0^{\circ} .6$	$6^{\circ} .8$	$7{ }^{\circ} .0$	$7{ }^{\circ} .2$	$7^{\circ} .4$	$7^{\circ} .6$	$7^{\circ} .8$	$8^{\circ} .0$	$8^{\circ} .2$	$8^{\circ} .4$	$8^{\circ} .6$	$8^{\circ} .8$
Centig.															
-7															
-6	61	60	59	58	57	56									
-5	61	60	59	58	58	57	56	55	54	53	52				
-4	62	61	60	59	58	57	56	55	54	53	52				
-3	62	61	60	59	58	57	56	55	54	53	53	52	51	50	49
-2	62	61	60	60	59	58	57	56	55	54	53	52	51	50	49
-1	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
0	63	62	61	60	59	58	57	56	55	54	53	53	52	51	50
+1	63	62	61	61	60	58	58	57	56	55	54	53	52	51	51
2	64	63	62	61	60	59	58	57	56	55	55	54	53	52	51
3	64	63	62	62	60	60	59	58	57	56	55	54	53	53	52
4	65	64	63	62	61	60	59	58	57	56	56	55	54	53	52
5	65	64	63	62	62	61	60	59	58	57	56	55	54	54	53
6	66	65	64	63	62	61	60	59	58	57	57	56	55	54	53
7	66	65	64	63	62	61	60	60	59	58	57	56	55	55	54
8	66	65	64	63	62	62	61	60	59	58	57	56	56	55	54
9	66	65	64	64	63	62	61	60	59	58	58	57	56	55	54
10	67	66	65	64	63	62	61	60	59	59	58	57	56	55	55
11	67	66	65	64	63	62	61	61	60	59	58	57	56	56	55
12	67	66	65	64	63	62	62	61	60	59	58	57	57	56	55
13	67	66	65	64	64	63	62	61	60	59	59	58	57	56	55
14	67	66	66	65	64	63	62	61	60	60	59	58	57	56	56
15	67	67	66	65	64	63	62	61	61	60	59	58	57	57	56
16	68	67	66	65	64	63	63	62	61	60	59	58	58	57	56
17	68	67	66	65	64	6.	63	62	61	60	59	59	58	57	56
18	68	67	66	65	65	64	63	62	61	60	60	59	58	57	57
19	68	67	67	66	65	64	63	62	62	61	60	59	58	58	57
20	68	68	67	66	65	64	63	63	62	61	60	59	59	58	57
21	69	68	67	66	65	64	64	63	62	61	60	60	59	58	57
22	69	68	67	66	65	65	64	63	62	61	61	60	59	58	58
23	69	68	67	67	66	65	64	63	62	62	61	60	59	59	58
24	69	68	68	67	66	65	64	63	63	62	61	60	60	59	58
23	69	69	68	67	66	65	64	64	63	62	61	61	60	59	58
26	70	69	68	67	66	65	65	64	63	62	61	61	60	59	58
27	70	69	68	67	66	66	65	64	63	62	62	61	60	59	59
28	70	69	68	67	67	66	65	6.	63	63	62	61	60	60	59
29	70	69	69	68	67	66	65	64	64	63	62	61	61	60	59
30	70	69	69	68	67	66	65	65	64	63	62	62	61	60	59
31	70	70	69	68	67	66	66	65	64	63	62	62	61	60	60
32	71	70	69	68	67	67	66	65	64	64	63	62	61	61	60
33	71	70	69	68	68	67	66	65	64	64	63	62	61	61	60
34	71	70	69	69	68	67	66	66	65	64	63	62	62	61	60
35	71	70	70	69	68	67	66	66	65	64	63	63	62	61	60

「emper athre of the alt. $\mathbf{t}=$	ference of Cemperatures of the Dew P														
	$9{ }^{\circ} .0$	$9^{\circ} .9$	$9^{\circ} .4$	$9^{\circ}, 6$	$9 \times .8$	$10^{\circ} .0$	$10^{\circ} .2$	$10^{\circ} .4$	$10^{\circ} .6$	$10^{\circ} .8$	$11^{\circ} .0$	$11^{\circ} .2$	$11^{\circ} .4$	$11^{\circ} .6$	$11^{c} .8$
Centig.															
-7															
-6															
-5															
-. 1															
- 3															
-2															
-1															
0															
+1	50														
2	50	19	49	48	47	46									
3	51	50	49	48	48	47	46	45	45	44	43				
4	51	51	50	49	48	47	47	46	45	44	44	43	42	42	41
5	52	51	50	49	49	48	47	46	46	45	44	13	43	42	41
6	52	52	51	50	49	48	48	47	46	45	45	44	43	43	42
7	53	52	51	51	50	49	48	47	47	46	45	45	44	43	42
S	53	52	52	51	50	49	49	48	47	46	46	45	44	44	43
9	54	53	52	51	50	50	49	48	48	47	46	45	45	44	43
10	54	53	52	51	51	50	49	49	48	47	47	46	45	44	44
11	54	53	53	52	51	50	50	49	48	48	47	46	46	45	44
12	54	54	53	52	51	51	50	49	49	48	47	47	46	45	45
13	55	54	53	52	52	51	50	50	49	48	47	47	46	46	45
14	55	54	53	53	52	51	50	50	49	45	48	47	46	46	45
15	55	54	54	53	52	51	51	50	49	49	48	47	47	46	45
16	55	55	54	53	52	52	51	50	50	49	48	48	47	46	46
17	56	55	54	53	53	52	51	51	50	49	49	48	47	47	46
18	56	5.5	54	54	53	52	51	51	50	49	49	48	47	47	46
19	56	55	55	54	53	52	52	51	50	50	49	48	48	47	47
20	56	56	55	54	53	53	52	51	51	50	49	49	48	47	47
21	57	56	55	54	54	53	52	52	. 51	50	50	49	48	48	47
22	57	56	55	55	54	53	53	52	51	50	50	49	49	48	47
23	57	56	56	55	54	53	53	52	51	51	50	49	49	48	48
2.1	57	57	56	5.5	54	5.4	53	52	52	51	50	50	49	48	48
25	58	57	56	55	55	54	53	53	52	51	51	50	49	49	48
26	58	57	56	56	55	54	53	53	52	51	51	50	50	49	48
27	58	57	56	56	55	54	54	53	52	52	51	50	50	49	48
28	58	57	57	56	55	55	54	53	53	52	51	51	50	49	49
29	58	58	57	56	56	35	54	5:3	53	52	52	51	50	50	49
30	59	58	57	57	56	55	54	54	53	52	52	51	51	50	49
31	59	58	57	57	56	55	55	54	53	53	52	51	51	50	49
32	59	58	58	57	56	56	55	54	54	53	52	52	51	50	50
33	59	59	58	57	56	56	55	54	54	53	52	52	51	51	50
34	60	59	58	57	57	56	55	55	54	53	53	52	52	51	50
35	60	59	58	58	57	56	56	55	54	54	53	52	52	51	50

TABLE IV.

```
FACTOR ['00, FOR COMPUTING THE RELATIVE HUMIDITY, OR THE DEGREE OF MOISTURE. OF THE AIR FROM ITS ABSOLUTE HUMIDITY, GIVEN IN MILLIMETRES.
```

By HAEGIIENS.
The Relative Humidity, or the degree of moisture of the air, is the ratio of the quantity of vapor contained in the air to the quantity it could contain at the tem. perature observed, if fully saturated.

If we call
The force of vapor contained in the air $=f$,
The maximum of the force of vapor at the temperature of the air $=\mathrm{F}$,
The point of saturation $=100$,
we have the proportion,
Relative Humidity : $100:: f: \mathrm{F}$,
and

$$
\underset{\mathbf{F}}{f \times 100}=\text { Relative Humidity in Hundredths. }
$$

But as $\underset{F}{f \times 100}=f \times \underset{F}{100}$, it is obvious that the operation indicated by the former expression, viz. $\stackrel{f \times{ }_{F} 100}{ }$, would be reduced to a simple multiplication, if we had a table of the factors ${ }_{F}^{100}$. Such a table is obtained by dividing the constant number 100 by each number in the Table of Elastic Forees of Vapor, and substituting the quotients to the tensions.

The following Table, taken from the Annuaire Météorologique de la France, for 1850, p. 79, gives the factor ${ }_{F}^{100}$ for every tenth of a degree from - 10 to $+35^{\circ}$ Centigrade, corresponding to the Forces of Vapor in Table I.

Use of the Table.

The force of vapor contained in the air being given in millimetres, multiply the number expressing it by the factor in the table corresponding to the temperature of the air at the time of the observation ; the result will be the Relative Humidity in Hundredths.

Examples.

1. Suppose the temperature of the air to be $=24^{\circ}$ Centigrade.
" " force of vapor in the air to be $=\mathbf{1 0 . 7 6}$ millimetres.
Opposite 24° is found in the table the factor 4.51 .
Then $\quad 10.76 \times 4.51=48.5$, Relative Humidity in Hundredths.
2. Suppose the temperature of the air to be $=16.7$.
" " force of vapor in the air to be $=1 \longleftrightarrow .07$.
Table gives for 16.7 the factor 7.07 .
Then $\quad 1: .07 \times 7.07=85.3$, Relative Humidity.
B

$\mathbf{t}=$ Temp. of Air, Centig.	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	s.	9.
$\begin{array}{r} 0 \\ -10 \end{array}$	48.1	48.5	48.9	49.3	49.7	50.1	50.5	50.9	51.4	51.8
9	44.2	44.6	45.0	45.4	45.7	46.1	46.5	46.9	47.3	47.7
8	40.7	41.1	41.4	41.7	42.1	+2.4	42.8	43.1	43.5	43.9
7	37.5	37.8	38.1	38.4	38.7	39.0	39.4	39.7	40.0	40.4
6	34.6	34.9	35.2	35.4	35.7	36.0	36.3	36.6	36.9	37.2
5	31.9	32.2	32.4	32.7	33.0	33.2	33.5	33.8	34.0	31.3
4	29.5	29.8	30.0	30.2	30.5	30.7	31.0	31.2	31.4	31.7
3	27.3	27.5	27.7	27.9	28.2	28.4	28.6	28.8	29.1	29.3
2	2.5 .3	25.5	25.7	2.7 .9	26.1	26.3	26.5	26.7	26.9	27.1
1	23.4	23.6	23.8	24.2	24.0	24.3	24.5	24.7	24.9	25.1
-0	21.7	21.9	22.1	22.2	22.4	22.6	22.8	22.9	23.1	23.3
+0	21.7	21.6	21.4	21.3	21.1	21.0	20.8	20.7	20.5	20.4
1	20.2	20.1	20.0	19.8	19.7	19.5	19.4	19.3	19.1	19.0
2	18.9	18.7	18.6	18.5	18.3	18.2	18.1	18.0	17.8	17.7
3	17.6	17.5	17.3	17.2	17.1	17.0	16.9	16.7	16.6	16.5
4	16.4	16.3	16.2	16.1	15.9	15.8	15.7	15.6	15.5	15.4
5	15.3	15.2	15.1	1.9 .0	14.9	14.8	14.7	14.6	14.5	14.4
6	14.3	14.2	14.1	14.0	13.9	13.8	13.7	13.6	13.5	13.4
7	13.4	13.3	13.2	13.1	13.0	13.9	12.8	12.7	12.6	12.6
8	12.5	12.4	12.3	12.2	12.1	12.1	12.0	11.9	11.8	11.7
9	11.7	11.6	11.5	11.4	11.4	11.3	11.2	11.1	11.1	11.0
10	10.9	10.8	10.8	10.7	10.6	10.6	10.5	10.4	10.3	10.3
11	10.2	10.1	10.1	10.0	9.95	9.88	9.82	9.75	9.69	9.63
12	9.56	9.50	9.44	9.38	9.32	9.26	9.20	9.13	9.08	9.02
13	8.96	8.90	8.84	8.79	8.73	8.67	8.62	8.56	8.51	8.45
14	8.40	8.34	8.29	8.24	8.18	8.15	8.08	8.03	7.98	7.92
15	7.87	7.82	7.77	7.72	7.63	7.63	7.58	7.53	7.18	7.43
16	7.39	7.34	7.29	7.25	7.20	7.16	7.11	7.07	7.02	6.98
17	6.93	6.89	6.85	6.80	6.76	6.72	6.68	6.63	6.59	6.55
18	6.51	6.47	6.43	6.39	6.35	6.31	6.27	6.23	6.19	6.16
19	6.12	6.03	6.04	6.00	5.97	5.93	5.89	5.86	5.82	5.79
20	5.75	5.71	5.68	5.64	5.61	5.58	5.54	5.51	5.47	5.44
21	5.41	5.37	5.34	5.31	5.27	5.24	5.21	5.18	5.15	5.12
22	5.09	5.06	5.02	4.99	4.96	4.93	4.90	4.87	4.85	4.82
23	4.79	4.76	4.73	4.70	4.67	4.65	4.62	4.59	4.56	4.53
24	4.51	4.48	4.45	4.43	4.40	4.37	4.35	4.32	4.30	4.27
25	4.25	4.22	4.20	4.17	4.15	4.12	4.10	4.07	4.05	4.03
26	4.00	3.98	3.9 .5	3.93	3.91	3.89	3.86	3.84	3.82	3.79
27	3.77	3.75	3.73	3.71	3.69	3.66	3.64	3.62	3.60	3.58
28	3.56	3.54	3.52	$3 . \% 0$	3.18	3.46	3.44	3.12	3.40	3.38
29	3.36	3.34	3.32	3.30	3.28	3.26	3.24	3.22	3.21	3.19
30	3.17	3.15	3.13	3.12	3.10	3.08	3.06	3.05	3.03	3.01
31	2.99	2.98	2.96	2.94	2.93	2.91	2.89	2.88	2.86	2.84
32	2.83	2.81	2.80	2.78	2.77	2.75	2.73	2.72	2.70	2.69
33	2.67	2.66	2.64	2.63	2.61	2.60	2.58	2.57	2.56	2.54
34	2.53	2.51	2.50	2.49	2.47	2.16	2.44	2.43	2.42	2.40
35	2.39	2.39	2.36	2.35	2.34	2.33	2.31	2.30	2.29	2.28

TABLE V.

WEIGHT OF VAPOR, IN GRAMMES,

CONTAINED IN A CUBIC METRE OF SATCRATED AIR UNDER A BAROMETRIC PRESSURE OF 760 MILLIMETRES, AND AT TEMPERATURES BETWEEN - 20° AND $+40^{\circ}$ CENTIGRADE.

The theoretic density of aqueous vapor is very nearly 0.622 , or $\frac{5}{8}$, of the density of the air at the same temperature and pressure. Regnault's experiments gatve similar results. From this ratio the weight of the vapor contained in a given volume of air, the temperature and humidity of which are known, can be computed.

If we call
$t=$ the temperature of the air;
$f=$ the elastic force of the vapor contained in the air at the time of the observation; $F=$ the maximum elastic force of vapor due to the temperature t, as given in the table;
$p=$ the weight of the vapor contained in a litre of air at the temperature t, and with a force of vapor f;
$P=$ the weight of vapor in a litre of air at the temperature t, and at full saturation, or F.

Then,

$$
p=0.622 \underset{1+0.0036 \bar{z} t}{1+29323 \mathrm{gr}} \cdot \stackrel{f}{1+60^{\mathrm{mmu}} \cdot}
$$

In which 1.293223 grammes is the weight of a litre of dry air, at the temperature of zero Centigrade, and under a barometric pressure of 760 millimetres, according to the determination of Regnault ; 0.00367 , the coefficient of the expansion of the air as foum by the same; 760 millimetres, the assumed normal burometric pressure.

The weight of a litre of air given by Reguault in the Mémoires de l'Institut, Tom. XXI. p. 157 , is 1.293187 grammes; but by correcting a slight error of computation (sce E. Ritter, Mémoires de la Société Physique de Genève, Tom. XIII. p. 361), it becomes, as given above, 1.293293 grammes.

In order to obtain the weight of vapor in a cubic metre, or 1000 litres, of saturated air, the formula becomes,

$$
P=0.622 \frac{1293.223^{3 r}}{1+0.00367 t} \cdot \frac{F}{760^{\text {min. }}} .
$$

From this formula Table V. has been computed. The tensions due to the temperatures in the first column are placed opposite the weights of vapor; they are taken from Table 1. It will be seen that, thronghout the table, the number of grammes of vapor nearly corresponds to the number of millimetres of pressure expressing the temsion.

The table of the weights of vapor given in Pouillet's Eléments des Physique, Tom. II. p. 707 , being based on older values, gives results somewhat different. In that published by Becquerel, Eléments de Physique Terrestre, p. 354, Regnault's tensions and coefficient of expansion of the air have been used, but the value of the weight of vapor in a litre of air formerly determined by Biot and Arago, viz. 1.29954 grammes, has been retained.
V. WEIGHT OF VAPOR, IN GRAMMES,

Contained in a cubic metre of saturated air,

At Temperatures between $-2^{\prime} \mathrm{JO}$ and +400 Centigrade.

$\begin{gathered} \text { Temperature } \\ \text { of } \\ \text { Dew-Point. } \end{gathered}$	Force of Vapor.	Weight ot Vapor.	Difference.	Temperature of Dew-Point.	Force of Vapor.	Weight ot Vapor.	Difference.
Centigrade.	Millimetres.	Grammes.	Grammes.	Centigrade.	Millimetres.	Grammes.	Grammes.
-20°	0.912	1.042	0.088	$+10^{\circ}$	9.165	9.357	
-19	0.993	1.130	0.088	11	9.792	$9.96{ }^{\circ}$	0.603
-18	1.050	1.224	0.094	12	10.457	10.601	0.639
-17	1.174	1.325	0.101	13	11.162	11.276	0.625
-16	1.275	1.434	0.109	14	11.908	11.988	0.712
-15	1.385	1.551	0.118	15	12.699	12.739	0.751
		1.551	0.127			12.789	0.793
-14	1.503	1.678	0.134	16	13.536	13.532	0.835
-13	1.631	1.813	0.134	17	14.421	14.367	0.805
-12	1.768	1.957	0.145	18	15.357	15.247	. 880
-11	1.918	2.114	0.157	19	16.316	16.173	0.926
-10	2.078	2.283	0.169	20	17.391	17.148	0.975
-9	2.261	2.475	0.192	21	18.495	18.171	1.026
			0.203			18.171	1.078
-8	2.456	2.678	0.218	22	19.6 .59	19.253	1.134
-7	2.666	2.896	0.218	23	20.888	20.387	1.134
-6	2.890	3.128	0.232	24	22.184	21.579	1.192
-5	3.131	3.376	0.248	25	23.550	22.831	1.252
	3.387		0.262	26			1.313
-4	3.387	3.638	0.281	26	24.988	24.144	1.380
-3	3.662	3.919	0.281	27	26.505	25.524	1.380
-2	3.955	4.217	0.298	28	28.101	26.971	1.447
-1	4.267	4.534	0.317	29	29.752	28.489	1.019
0	4.600	4.869	0.334	30			1.589
+1			0.341				1.666
+1	4.940	5.209	0.361	31	33.405	31.744	$1.74{ }^{\circ}$
2	5.302	5.571	0.361	32	35.359	33.491	1.74
3	5.687	5.953	0.383	33	37.410	35.317	1.827
4	6.097	6.360	0.406	34	39.565	37.230	1.913
5	6.534	6.791	0.431	35	41.827	39.231	2.001
6	6.998	7.247	0.456	36		11.393	2.092
6	6.958	7.247	0.484		4.201	41.323	2.187
7	7.492	7.731	0.484	37	46.691	43.510	2.184
8	8.017	8.243	0.512	38	49.302	45.795	2.285
9	8.574	8.785	0.54	39	52.039	48.182	2.387
$+10$	9.165	9.357	0.572	$+40$	54.906	50.674	2.492

PRACTICALTABLES,

IN

ENGLISH MEASURES,

BASED ON REGNAULT'S HYGROMETRICAL CONSTANTS.

V I.

TABLE OF THE ELASTIC FORCE OF AQUEOUS VAPOR,

EXPRESSED IN ENGLISH INCHES OF MERCURY FOR TEMPERATURES OF FAHRENHEIT, REDUCED FROM REGNAULT'S TABLE.

The values of the elastic force of vapor furnished by V. Regnault, which are found in Table I. of this Hygrometrical set, are derived from a series of experiments conducted, during several years, with great care, consummate skill, and all the means of prectsion which are at the disposal of modern science. The methods of investigation, and all the steps in each experiment, were minntely described and submitted to the judgment of the scientific, successively in separate papers in several volumes of the Annales de Chimie et de Physique, and collectively in his final Report to the Minister of Public Works, (see above, p. 9,) which fills Volume XXI. of the Mémoires de l'Institut de France. The confidence which has been deservedly granted to these determinations by nearly all scientific men, is increased by the fact that one of the best physicists and experimenters in Germany, Professor Maguus, came, about the same time, to results so little different, that both tables, for most purposes, may be cousitered identical. (Compare below, Table XXII.) It seems, therefore, that these values ought to be used in our hygrometrical tables, as has been done in France, in preference to the older and less reliable determinations on which they are baserl.

Though Regnault's table of the elastic force of vapor is considered, even, it is believed, by a majority of scientific men in Englant, as the most reliable which seience now porsesses, the author is not aware that any extensive reduction of it to English measures, such as is wanted for meteorological purposes, has been as yet published; still less a series of tables based on these values. Such a set of hygrometrical tables in English measures, corresponding to the preceding one in French measures, is offered here, which, it is hoped, supplies a real want felt by a large number of meteorologists.

Tible VI. is Regnault's Table of the Elastic Force of Vapor as given in Table I., rednced to English measures, in which the fourth decimal is given in order to secure the third, and otherwise to facilitate the computations. From these values Tables VII. to X. have been computed.
VI. ELASTIC FORCE OF AQUEOUS VAPOR,

Expressed in English Inches of Mercury for Temperatcres of Falirenheit.

Reduced from Regnault's Table.

Expressed in English Inches of Mercury for Temperatures of Fiahenheit.

Temperature of Fahrenheit.	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
-	Eng. In.	Eng In.	Eng. In.	Eng. In.						
32	0.1811	0.1818	0.1825	0.1833	0.1840	0.1847	0.1854	0.1861	0.1569	0.1876
33	0.1883	0.1591	0.1898	0.1906	0.1913	0.1921	0.1928	0.1936	0.1944	0.1951
34	0.1959	0.1967	0.1974	0.1982	0.1990	0.1998	0.2006	0.2013	0.2021	0.2029
35	0.2037	0.2045	0.2053	0.2061	0.2070	0.2077	0.2086	0.2094	0.2102	0.2111
36	0.2119	0.2127	0.2135	0.2144	0.2152	0.2161	0.2169	0.2178	0.2186	0.2195
37	0.2204	0.2212	0.2221	0.2230	0.2238	0.2247	0.2256	0.2265	0.2273	0.2282
38	0.2291	0.2300	0.2309	0.2318	0.2327	0.2336	0.2345	0.2354	0.2364	0.2373
39	0.2382	0.2391	0.2400	0.2410	0.2419	0.2428	0.2438	0.2447	0.2457	0.2466
40	0.2476	0.2485	0.2495	0.2504	0.2514	0.2524	0.2533	0.2543	0.2553	0.2563
41	0.2572	0.2582	0.2592	0.2602	0.2612	0.2622	0.2632	0.2642	0.2652	0.2662
42	0.2672	0.2682	0.2692	0.2702	0.2713	0.2723	0.2733	0.2744	0.2754	0.2764
43	0.2775	0.2785	0.2796	0.2807	0.2817	0.2828	0.2839	0.2850	0.2860	0.2571
44	0.2882	0.2893	0.2904	0.2915	0.2926	0.2937	0.2948	0.2960	0.2971	0.2982
45	0.2993	0.3005	0.3016	0.3028	0.3039	0.3050	0.3062	0.3074	0.3085	0.3097
46	0.3108	0.3120	0.3132	0.3144	0.3156	0.3168	0.3179	0.3191	0.3203	0.3215
47	0.3228	0.3240	0.3252	0.3264	0.3276	0.3289	0.3301	0.3313	0.3326	0.3338
48	0.3351	0.3363	0.3376	0.3388	0.3401	0.3414	0.3426	0.3439	0.3452	0.3465
49	0.3477	0.3490	0.3503	0.3516	0.3529	0.3542	0.3556	0.3569	0.3582	0.3595
50	0.3608	0.3622	0.3635	0.3648	0.3661	0.3675	0.3688	0.3702	0.3715	0.3729
51	0.3743	0.3756	0.3770	0.3784	0.3798	0.3812	0.3826	0.3840	0.3854	0.3868
52	0.3882	0.3896	0.3911	0.3925	0.3939	0.3954	0.3968	0.3983	0.3997	0.4012
53	0.4027	0.4041	0.4056	0.4071	0.4086	0.4101	0.4116	0.4131	0.4146	0.4161
54	0.4176	0.1191	0.4207	0.422:	0.4237	0.4253	0.4268	0.4284	0.4299	0.4315
55	0.4331	0.4346	0.4362	0.4378	0.4394	0.4410	0.4426	0.4442	0.4458	0.4474
56	0.4490	0.4507	0.4523	0.4539	0.4556	0.4572	0.4589	0.4605	0.4622	0.4638
57	0.4655	0.4672	0.4689	0.4705	0.4722	0.4739	0.4756	0.4773	04791	0.4808
58	0.4825	0.1842	0.4859	0.1876	0.4894	0.4912	0.4929	0.4947	0.4964	0.4982
5 S	0.5000	0.5017	0.5035	0.5053	0.5071	0.5089	0.5107	0.5125	0.5143	0.5161
60	0.5179	0.5198	0.5216	0.5234	0.5253	0.5271	0.5290	0.5301	0.5328	0.5546
61	0.5365	0.5384	0.5403	0.5422	0.5441	0.5461	0.5480	0.5499	0.5519	0.5538
62	0.5558	0.5577	0.5597	0.50 .17	0.5636	0.5656	0.5676	0.5696	0.5716	0.5736
63	0.5756	0.5777	0.5797	0.5817	0.5838	0.5858	0.5879	0.5899	0.5920	0.5941
64	0.5962	0.5983	0.6004	0.6025	0.6046	0.6067	0.6088	0.6109	0.6131	0.6152
65	0.6173	0.6195	0.6217	0.6238	0.6260	0.6282	0.6304	0.6325	0.6347	0.6369
66	0.6392	0.6414	0.6436	0.6458	0.6481	0.6503	0.6525	0.6548	06571	0.6593
67	0.6616	0.6639	0.6662	0.6685	0.6708	0.6731	0.6754	0.6777	0.6800	0.6824
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Expressed in English Inches of Mercury for Temperatures of Fairenineit.

Temperature of Fahrenheit.	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
\bigcirc	Eng. In.	Eng. In.	Eug. In.	Eug. In.	E, ig. ln .	Eng. In.	Eng. In.	Eng In.	Eng. In	Eng. In.
63	0.6547	0.6570	0.6594	0.6917	0.6911	0.6965	0.6959	0.701 ${ }^{\text {a }}$	${ }^{6} .7036$	0.7060
69	0.7054	0.7108	0.7133	0.7157	0.7181	0.7206	0.7230	0.725 .5	0.7290	0.7305
70	0.7329	0.73 .54	0.7379	0.740 .5	0.7430	0.7455	0.7480	0.7506	0.7531	0.7.9.7
71	0.7.583	0.7609	0.7631	0.7660	0.7636	0.7712	0.7539	0.7765	0.7791	0.7818
72	0.7844	0.7571	0.7597	0.7921	0.79.51	0.7978	0.5005	0.3032	0.8059	0.5056
73	0.8113	0.8141	0.8163	0.8196	0.8223	0.8251	0.9279	0.8307	0.8385	0.8363
71	0.8391	0.8419	0.8447	0.8476	0.5504	0.8533	0.8561	0.5590	0.5619	0.86 15
75	0.8676	0.870.5	0.873.	0.8764	0.5793	0.952.	0.5852	0.8881	0.5911	0.5940
76	0.5970	0.9000	0.9030	0.9060	0.9090	0.9120	0.9150	0.9180	0.9211	0.92 ll
77	0.9272	0.9302	0.9333	0.936 t	0.9395	0.9426	0.9457	0.9488	0.9519	0.9550
78	0.9582	0.9613	0.9645	0.9677	0.9709	0.9710	0.9773	0.9805	0.98 .37	0.9869
79	0.9902	0.9934	0.9967	1.0000	1.0033	1.0065	1.0099	1.0132	1.0163	1.0198
S0	1.02:32	1.0265	1.0299	1.0332	1.0366	1.0400	1.0134	1.0163	1.0503	1.0537
81	1.0572	1.0606	$1.06+1$	1.0675	1.0710	1.0745	1.0790	1.081 .5	1.0551	1.0886
82	1.0922	1.0957	1.0993	1.1028	1.1064	1.1100	1.1136	1.1172	1.1209	1.1245
83	1.1281	1.1818	1.185.	1.1391	1.1428	1.1465	1.1502	1.1539	1.1576	1.1614
84	1.16 .51	1.1659	1.1726	1.1764	1.1502	1.1840	1.1875	1.1916	1.19 .94	1.1993
85	1.20 .11	1.2070	1.2103	1.2147	1.2186	1.2225	1.2264	1.2303	1.2342	1.2351
86	1.2421	1.2160	1.2500	1.2510	1.2 .580	1.2620	1.2660	1.2700	1.2740	1.2781
87	1.28 .1	1.2862	1.2403	1.2944	1.2985	1.3026	1.3068	1.3109	1.3151	1.3192
85	1.3234	1.3276	1.3318	1.3361	1.3403	1.3.445	1.3188	1.3531	1.3573	1.3616
89	1.3659	1.3703	1.3746	1.3789	1.3833	1.3877	1.3920	1.3964	1.4003	1.4053
90	1.4097	1.4141	1.1186	1.4230	1.4275	1.4320	1.4365	1.4410	1.1456	1.4501
41	1.4 .546	1.1592	1.4639	1.465 .1	1.1730	1.7756	1.1922	1.4869	1.491 .5	1.4962
92	1.5005	1.5055	1.5102	1.5149	1.5197	1.5244	1.5291	1.5339	1.5357	1.5435
93	1.5482	1.5531	1.5579	1.5627	1.5676	1.5724	1.5773	1.582%	1.5871	1.5920
94	1.5969	1.6018	1.6068	1.6117	1.6167	1.6217	1.6267	1.6317	1.6367	1.6417
95	1.6463	1.6518	1.6569	1.6620	1.6671	1.6722	1.6773	1.682 .5	1.6876	1.6928
96	1.6980	1.7032	1.7084	1.7137	1.7189	1.7242	1.7295	1.7348	1.7401	1.7454
97	1.7505	1.7561	1.7615	1.7669	1.7723	1.7777	1.7831	1.7886	1.7940	1.7995
93	1.5050	1.8105	1.8160	1.8215	1.8271	1.8327	1.8382	1.8488	1.8494	1.8551
93	1.8607	1.8664	1.5720	1.8777	1.8834	1.8891	1.8949	1.9006	1.9064	1.9121
100	1.9179	1.9237	1.929.5	1.93.54	1.9412	1.9.171	1.9530	1.9789	1.9618	1.9707
101	1.9766	1.9826	1.9885	1.9945	2.0005	2.0065	2.0126	2.0186	2.0247	2.0307
102	2.0368	2.0129	2.0190	2.0.53	2.0613	2.0675	2.0737	2.0798	2.0861	2.0923
10:3	2.0935	2.1018	2.1110	2.1173	2.1236	2.1299	2.1362	2.1426	2.1489	2.1553
101	2.1617	2.1631	2.1745	2.1810	2.1874	2.1939	2.2004	2.2069	2.2135	2.2200
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

VII.

PSYCHROMETRICAL TAELES,

GIVING, IN ENGLISH INEHES OF MEREURY, THE ELASTIC FORCE OF VAPOR CONTAINED

 IN THE AIR, AND ITS RELATIVE HUMIDITY IN HUNDREDTHS;DERIVED FROM TIE INDICATIONS OF THE WET AND DRY BULB THERMOMETERS, IN DEGREES OF FAHRENIIEJT.

By A. Guyot.*

M. V. Regnault, in his Etudes sur l'Hygrométrie Annales de Chimie et de Physique, $3^{\text {me }}$ série, Tom. XV. p. 199, after having discussed the theoretical bases of the psychrometric formula given by August, and modified the numerical values of some of its coefficients, adopts the formula

$$
x=f-\frac{0.480\left(t-t^{\prime}\right)}{610-t^{\prime}} h
$$

for temperatures above the freezing-point; and when the temperature of the wet thermometer is below the freezing-point, the bulb being covered with a film of ice,

$$
x=f-\frac{0.480\left(t-t^{\prime}\right)}{689-t^{\prime}} h
$$

[^2]in which
x represents the force of vapor in the air at the time of the observation;
t, the temperature of the air in Centigrade degrees, indicated by the dry thermometer;
t^{\prime}, the temperature of evaporation given by the wet thermometer;
f, the force of vapor in a saturated air at the temperature t^{\prime};
h, the height of the barometer.

Substituting the Fahrenheit scale for the Centigrade, the formula, for temperatures above the freezing-point, reads

$$
x=f-\frac{0.480 \times \frac{5}{9}\left(t-t^{\prime}\right)}{610-\frac{5}{9}\left(t^{\prime}-32^{\circ}\right)} h=f-\frac{0.480\left(t-t^{\prime}\right)}{1130-t^{\prime}} h ;
$$

and below the freezing-point,

$$
x=f-\frac{0.480 \times \frac{5}{9}\left(t-t^{\prime}\right)}{689-\frac{5}{9}\left(t^{\prime}-32^{\circ}\right)} h=f-\frac{0.480\left(t-t^{\prime}\right)}{1272.2-t^{\prime}} h .
$$

Making, further, $h=$ 29.7 English inches, these formulæ become

$$
x=f-\frac{0.480\left(t-t^{\prime}\right)}{1130-t^{\prime}} 29.7=f-\frac{14.256\left(t-t^{\prime}\right)}{1130-t^{\prime}},
$$

and

$$
x=f-\frac{0.480\left(t-t^{\prime}\right)}{1272.2-t^{\prime}} 29.7=f-\frac{14.256\left(t-t^{\prime}\right)}{1272.2-t^{\prime}}
$$

The mean barometric pressure for which the table has been computed, viz. 29.7 inches, is, within a small fraction, the same as that adopted in Haeghens's Tables, No. II., which is 755 millimetres $=29.725$ Eng. inches. As that slight difference in the barometric pressure cannot cause, in the most extreme cases, a difference exceeding two thousandths of an inch in the elastic forces, the results in the two tables may be considered identical.

That barometric pressure, corresponding, in our latitudes, to a mean altitude of 250 to 300 feet above the sea, is likely to suit, without requiring a correction, the largest number of meteorological stations. Should the mean height of the barometer, in consequence of the elevation of the station, much differ from that adopted in the table, a constant correction can be determined, to be applied to the numbers in the table. At the end, page 72 , will be found a table which furnishes that correction for barometric heights between 20 and 31 inches, and for values of $t-t^{\prime}$ between 2° and 26° Fahrenheit.

The effect of the irregular variations of the barometer at the same station can, in most cases, be neglected; for the error due to that cause will scarcely ever exceed those which may arise from the uncertainty of the very elements on which the tables are based.

Arrangement of the Tables.

The same arrangement as is found in the Psychrometrical for the Centigrade scale has been adopted.

The first column at the left contains the indications of the wet-bulb thermometer, from - 31° to 105° Fahrenheit.

The second column gives the differences of the force of vapor for each tenth of a degree, between each two consecutive full degrees in the first column. It enables the observer easily to find the values for the fractions of degrees of the wet themometer.

The following double columns furnish the forces of vapor and the relative humidity corresponding to eath full degree of the wet-bulb thermometer given in the first column in the same horizontal line, and to the diflerence of the two thermometers, or t - t^{\prime}, found at the head of each column, for every half-degree from 0° to $26^{\circ} .5$. The relative bumidity, or the fraction of saturation, is given in bundredths, which is near enough for meteorological purposes ; but one decimal more has been added, though separated by a point, in order to facilitate the interpolations.

At the bottom of each page is found the mean difference, for each tenth of a degree, between the forces of vapor on the same line. It gives the means of finding the values for the intermediate differences of $t-t^{\prime}$, not found in the tables.

Use of the Tables.

Enter the tables with the difference of the two thermometers, or $t-t$, and the temperature of the wet-bulb thermometer, given by observation.

In the column healed by the observed difference of the thermometer, $t-t$, and on the horizontal line beaded by the observed temperature of the wet thermometer, t^{\prime}, are found the force of vapor, and the relative bumidity corresponding to these temperatures.

For the fractions of degrees of the wet thermometer, multiply the decimal fraction by the number placed in the second column between the full degree and the next, and add the product if the temperature is above, and subtract it if it is below zero Falrenbeit.

The intermediate values of $t-t^{\prime}$ not given in the table are found by subtracting the number in the line at the bottom of the page, multiplied by the number of additional tenths, from the value given in the table. This correction, being always very small, can usually be neglected.

For the relative humidity, interpolations at sight will generally suffice.

Examples.

1.

$$
\begin{aligned}
& \text { Dry thermometer, } \quad t=50^{\circ} \mathrm{F} . \\
& \text { Wet thermometer, } \quad t^{\prime}=43^{\circ} \mathrm{F} . \\
& \text { Difference, or } t-t^{\prime}=7^{\circ} \mathrm{F} .
\end{aligned}
$$

Page 58, we find for $t-t^{\prime}=7^{\circ}$ in the third double column, and for $t^{\prime}=43^{\circ}$ in the first column

$$
\begin{aligned}
& \text { Force of vapor in the air }=0.186 \text { inch. } \\
& \text { Relative humidity in hundredths }=51
\end{aligned}
$$

2.

Dry thermometer, $t=88^{\circ} .5 \mathrm{~F}$.
Wet thermometer, $t^{\prime}=76^{\circ} .3 \mathrm{~F}$.
Difference, $t-t^{\prime}=1 \gtrsim^{\circ} .2 \mathrm{~F}$.
Page 63, Table gives for $t-t^{\prime}=12$ and $t^{\prime}=76^{\circ}=0.735$ inch.
Add for fraction of $t^{\prime}=0.3, \quad 0.003 \times 3=0.009$
Subtract for fraction of $t-t^{\prime}=0^{\circ} .2, \quad .0013 \times 2=-0.003$
Force of vapor in the air $=0.741$
Relative humidity $=55$
\qquad
3.

Dry thermometer, $t=-4^{\circ} .5 \mathrm{~F}$.
Wet thermometer, $t^{\prime}=6^{\circ} .0 \mathrm{~F}$.
Difference, $t-t^{\prime}=1^{\circ} .5 \mathrm{~F}$.
Page 50, Table gives for $t-t^{\prime}=1^{\circ} .5$ and $t^{\prime}=-6^{\circ}=0.016$ inch.
Subtract for fraction of $t^{\prime}=0.5, \quad 0.0002 \times 5=-0.001$ Force of vapor in the air $=0.015$
Relative lamidity $=45$

Temperature, Fahrenheit. - Force of Vapor in English Inches. - Relative Kumidity in Hundredths.

Temperature, Fahrenheit. - Force of Vapor in English Inches. - Relative IIumidity in IIundredths.

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.0012$.

Temperature, Fahrenheit - Force of Vapor in English lnches.- Relative Humidity in Ilundredths.

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.0012$.

Temperature, Fahrenheit. - Force of Vapor in English Inches - Relative Humidity in IIundredths.

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.0012$.

Temperature, Fahrenheit - Force of Vapor in English Inches. - Relative Humidity in Hundredths

WetBulb meter $\mathrm{Pahr}_{\mathrm{L}}^{\mathrm{t}} \mathrm{n}$ heit.		t-t, or Difference of Wet and Dry Bulb Thermometers.											
		$0^{\circ} \cdot 0$		0.5		10.0		10.5		$2{ }^{\circ} \mathrm{O}$		20.5	
		Force of Valor.	Relative Hu-midity	Rela- tive Force of tive Vapor. Inid- mid- ity 				Force of Vapor.	Relative Ifu-midity.	Force of rapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Huu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$		
。		Eng. In.		Eng. In.		Eng In.		Eng In.		Eng. In.		Eng. In.	
32	2.0007	0.151	100	0.175	9 1.5	0.165	59.3	0.162	84.1	\| 0.155	79.2	0.149	74.4
83		0.188	100	10.182	94.7	0.175	59.5	0.169	84.5	0.162	79.7	0.156	75.0
34		0.196	100	0.189	94.5	0.183	89.8	0.176	84.9	0.170	80.2	0.163	75.6
35		0.204	100	0.197	94.9	0.191	90.0	0.154	85.3	0.178	50.7	$0.1 \% 1$	76.2
36		0.212	100	0.205	95.0	0.199	90.3	0.192	85.6	0.156	81.1	0.179	76.8
	. 0009												
37	-(009	0.220	100	0.214	9.5 .2	0.207	90.5	0.201	86.0	0.194	81.6	0.188	77.3
35		0.229	100	0.223	9.5.3	0.216	90.7	0.210	86.3	0.203	82.0	0.196	77.9
39		0.238	100	0.232	9.9 .4	0.225	91.0	0.219	86.6	0.212	82.4	0.206	78.4
40		0.245	100	0.241	9.5 .5	0.235	91.2	0.223	86.9	0.221	82.9	0.215	78.9
41		0.257	100	0.251	95.6	0.214	91.4	0.238	87.3	0.231	83.3	0.2.24	79.4
12		0.267	100	0.260	95.7	0.254	91.6	0.247	87.5	0.241	83.6	0.234	79.8
43		0.275	100	0.271	9.5 .8	0.264	91.8	0.258	87.8	0.251	84.0	0.245	80.3
4		0.298	100	0.282	95.9	0.275	92.0	0.268	88.1	0.262	84.3	0.255	80.7
45		0.299	100	0.293	96.0	$0.2 \leq 6$	92.1	0.280	88.3	0.273	84.7	0.266	81.1
46		0.311	100	0.304	96.1	0.297	92.3	0.291	88.6	0.254	85.0	0.278	81.5
	. 0012												
47		0.323	100	0.316	96.2	0.310	92.5	0.303	88.8	0.297	85.3	0.290	81.9
43		0.335	100	0.329	96.2	0.322	92.6	0.315	89.0	0.309	85.6	0.302	82.2
49	. 0013	0.315	100	0.341	96.3	0.33 .5	92.7	0.325	89.3	0.321	85.9	0.315	22.6
50	. 0013	0.361	100	0.354	96.4	0.345	92.9	0.341	89.5	0.334	86.1	0.32 6	82.9
51		0.374	100	0.368	96.5	0.361	93.0	0.354	89.7	0.348	86.4	0.341	83.2
	. 0014		100	0.389	96.5	0.375	93.9	0.362	89.9	0.362	86.7	0.355	83.6
3 3	. 0014	0.403	100	0.396	46.6	0.389	93.3	0.35	90.1	0.376	86.9	0.370	83.9
54	. 0015	0.413	100	0.411	96.7	0.104	93.4	0.:398	90.2	0.391	87.2	0.385	84.2
55		0.433	100	0.426	96.7	0.420	93.5	0.413	90.4	0.407	87.4	0.400	84.4
56	.0016	0.449	160	0.442	96.8	0.436	93.6	0.429	90.6	0.422	87.6	0.416	84.7
	. 0016												
57		0.466	100	0.459	96.8	0.152	93.7	0.446	90.7	0.439	87.5	0.432	85.0
53	.0017	0.452	100	0.476	96.9	0.169	93.9	0.463	90.9	0.456	88.0	0.449	85.2
59	017	0.500	100	0.493	96.9	0.157	94.0	0.480	91.0	0.473	88.2	0.467	8.5 .5
60	018	0.515	100	0.511	97.0	0.50 .5	94.1	0.498	91.2	0.491	S8.4	0.485	85.7
61	. 0019	0.537	100	0.530	97.0	0.523	94.2	0.517	91.3	0.510	88.6	0.503	85.9
62	. 0013	0.5 .56	100	0.549	97.1	0.512	9 ¢.2	0.536	91.5	0.529	88.8	0.522	86.2
(i3)	. 0120	0.576	100	0.569	97.1	0.562	94.3	0.556	91.6	0.549	89.0	0.542	86.4
61	. 00	0.596	100	0.559	97.2	0.553	94.4	0.576	91.7	0.569	89.1	0.563	86.6
6.5	. 002	0.617	100	0.611	97.2	0.604	94.5	0.597	91.9	0.591	89.3	0.584	86-8
66	.002	0.639	100	0.633	97.3	0.626	91.6	0.619	92.0	0.612	89..)	0.606	87.0
67	. 0023	0.662	100	0.655	97.3	0.648	94.7	0.642	92.1	0.635	89.6	0.62 S	87.2
Mean Horizontal Difference of Force of Vapor for each 00.1 $=0.0018$.													

Temperature, Fahrenheit. - Force of Vapor in English Inches - Relative IIumidivy in Hundredths.

Wet-BulbThermo-metert'Fahren-heit.	Mcan Vertical Dífference of Force of Vapor for each 00.1.	$\mathbf{t - t}$, or Difference of Wet and Dry Bulb Thermometers.											
		0.0		0.05		10.0		10.5		20.0		2.5	
		Force of Vapor.	Relative Hu-midity.	Force of Vapor.	Relative IIu-midity.	Force of Vapor.	Rclative Hu-midity.	Force of Vapor.	Rela. tive Hu-midity.	Force of Vapor.	Relative Hu-midity	Rela- Force of tive Vapor. Iud- mid. ity.	
63	0.0023	Eng. In.			97.3		94.7	$\begin{gathered} \text { Eng. In. } \\ 0.665 \end{gathered}$		$\begin{gathered} \text { Eng In. } \\ 0.658 \end{gathered}$	S9.8	Eng In.	
65		0.685	100	0.675		0.671						0.651	87.3
69	. 0024	0.708	100	0.702	97.4	0.695	94.8	0.653	92.3	0.682	89.9	0.675	87.5
70		0.733	100	0.726	97.4	0.720	94.9	0.713	92.4	0.706	90.0	0.649	87.7
71		0.759	100	0.752	97.5	0.745	95.0	0.735	92.5	0.731	90.2	0.725	87.9
72	.0026	0.754	100	0.778	97.5	0.771	95.0	0.764	92.7	0.757	90.3	0.751	88.0
.00:27													
73	. 0028	0.811	100	0.805	97.5	0.798	9.5 .1	0.791	92.7	0.754	90.4	0.778	88.2
74		0.539	100	0.832	976	0.826	95.2	0.319	92.5	0.512	90.6	0.805	88.3
75	. 0028	0.568	100	0.861	97.6	0.554	95.2	0.847	92.9	0.841	90.7	0.834	88.5
76	$\begin{aligned} & .0029 \\ & .0030 \end{aligned}$	0.897	100	0.590	97.6	0.883	95.3	0.877	93.0	0.870	90.8	0.563	85.6
77		0.927	100	0.920	97.7	0.914	95.4	0.907	93.1	0.900	90.9	0.893	88.8
	. 0031												
78	$\begin{array}{r} .0032 \\ .033 \end{array}$	0.958	100	0.9 .71	97.7	0.945	95.4	0.938	93.2	0.931	91.0	0.924	88.9
79		0.990	100	0.983	97.7	0.977	95.5	0.970	93.3	0.963	91.1	0.956	89.0
80		1.023	100	1.016	97.7	1.010	95.5	1.003	93.4	0.996	91.2	0.959	89.2
81	$\begin{aligned} & .0634 \\ & .0035 \end{aligned}$	1.057	100	1.050	97.8	1.044	95.6	1.037	93.4	1.030	91.3	1.023	89.3
82		1.092	100	1.085	97.8	1.079	95.6	1.072	93.5	1.065	91.4	1.058	89.4
	. 0036												
83	. 0037	1.128	100	1.121	97.8	1.115	95.7	1.108	93.6	1.101	91.5	1.094	89.5
84		1.165	100	1.153	97.8	1.152	95.7	1.14.	93.6	1.138	91.6	1.1:31	59.6
85	. 0038	1.203	100	1.196	97.9	1.189	95.8	1.183	93.7	1.176	91.7	1.169	89.7
86	$\begin{aligned} & .0039 \\ & .0040 \end{aligned}$	1.242	100	1.235	97.9	1.228	95.8	1.222	93.8	1.215	91.5	1.208	89.8
87		1.282	100	1.275	97.9	1.268	95.9	1.263	93.8	1.256	91.9	1.249	90.0
	.0041												
88	. 0042	1.323	100	1.317	97.9	1.310	95.9	1.303	93.9	1.296	92.0	1.259	90.1
89		1.366	100	1.359	97.9	1.352	95.9	1.345	94.0	1.339	92.0	1.332	90.2
90	. 0044	1.410	100	1.403	98.0	1.396	96.0	1.389	94.0	1.382	92.1	1.375	90.3
91	. 0045	1.455	100	1.448	98.0	1.441	96.0	1.434	94.1	1.427	92.2	1.420	90.3
92	. 0046	1.501	100	1.494	98.0	1.487	96.1	1.480	94.1	1.473	92.3	1.466	90.4
	. 0048												
93	. 0049	1.548	100	1.541	98.0	1.53 .5	96.1	1.528	94.2	1.521	92.4	1.514	90.5
94		1.597	100	1.590	98.1	1.583	96.1	1.576	94.3	1.569	92.4	1.562	90.6
95	. 0050	1.647	100	1.640	98.1	1.633	96.2	1.626	94.3	1.619	92.5	1.612	90.7
96	. 0051	1.698	100	1.691	98.1	1.684	96.2	1.677	9 +.4	1.670	92.6	1.664	90.8
97	. 0053	1.751	100	1.744	95.1	1.739	96.2	1.730	94.4	1.723	92.6	1.716	90.9
93	. 0054	1.505	100	1.798	98.1	1.791	96.3	1.784	94.5	1.777	92.7	1.770	90.9
	. 0056												
99		1.861	100	1.854	98.1	1.847	96.3	1.840	94.5	1.833	92.8	1. $\mathrm{S}^{2} 6$	91.0
100	.0057	1.918	100	1.911	98.2	1.904	96.3	1.597	94.6	1.890	92.8	1.853	91.1
101	. 0059	1.977	100	1.970	98.2	1.963	96.4	1.9 .56	94.6	1.949	92.9	1.942	91.2
102	. 0060	2.037	100	2.030	98.2	2.023	96.4	2.016	94.7	2.009	92.9	2.002	91.2
103	. 0062	2.098	100	2.092	98.2	2.055	96.4	2.078	94.7	2.071	93.0	2.064	91.3
104	. 0063	2.162	100	2.155	98.2	2.148	96.5	2.141	94.7	2.134	93.1	2.127	91.4
Mean Horizontal Difference of Force of Vapor for each $00.1=0.0013$.													

Temperature, Fahrenheit. - Force of Vapor in English Inches. - Relative IIumidity in Iundredths.

WetBulb Thermo meter 1 Fahrenheit.	Mean Vertical Diflerence of Force of Vapor for ench 0.1.	\mathbf{t} - \mathbf{t}^{\prime}, or Difference of Wet and Dry Bulb Thermometers											
		3.0		30.5		40.0		$4 \times .5$		5.0		5.5	
		Force of Vapor.	Relative IIt-millity	Foree of Vapor.	Relative Itu-midity.	Force of Vapor.	Relative Ill-mility.	Force of Vapor	Relative Ifu-midity.	Force of Vapor.	Rela tive IIu midity.	Force of Vapor.	Rela tive Hu-nidity
$\begin{gathered} 0 \\ 32 \\ 3 . \\ 34 \\ 35 \\ 36 \end{gathered}$	0.0007	Eng. In.		Eng. In.		Eug. In.		Eng. In.		Eng In.		Eng. In.	
		142	69.8	.136	65.3	0.129	61.0	0.123	56.8	116	52.7	0.110	15.8
	. 0007	0.149	70.5	0.143	66.1	0.136	61.9	0.130	57.7	0.123	53.7	0.117	50.0
	.000s	0.157	71.2	0.150	66.9	0.144	62.5	0.137	58.6	0.131	51.7	0.12!	51.2
	. 0008	0.16 .5	71.9	0.158	67.7	0.152	63.6	0.145	59.5	0.139	5.5 .7	0.132	52.3
		0.173	72.6	0.166	63.5	0.160	64.5	0.153	60.5	0.147	56.7	0.140	53.4
.0008		0.181	73.2	0.17 .5	69.2	0.162	65.3	0.162	61.4	0.155	57.7	0.119	54.5
29 .0009		0.190	73.5	0.183	69.9	0.177	66.1	0.170	62.3	0.164	55.7	0.157	55.5
. 1010		0.149	71.1	0.192	70.6	0.156	66.9	0.179	63.2	0.173	59.7	0.166	56.5
4011		0.208	75.0	0.902	71.3	0.19 .5	67.7	0.189	64.1	0.182	60.7	0.176	57.5
		0.218	75.6	0.211	72.0	0.205	68.4	0.198	65.0	0.192	61.7	0.185	35.5
. 0010													
42	. 0010	0.225	76.2	0.221	72.6	0.215	69.1	0.208	65.7	0.202	62.1	0.195	59.4
43		0.235	76.7	0.232	73.2	0.225	69.8	0.219	66.3	0.212	63.1	0.20 .5	60.2
44	. 0041	$0.2+9$	77.2	0.212	73.7	0.236	70.4	0.229	67.0	$0.2 \cdot 3$	63.8	0.216	(61.1
45	. 0011	0.260	$7 \% .7$	0.253	74.3	0.247	71.0	0.210	67.6	0.231	164.6	0.227	61.8
46	. 0011	0.271	75.1	0.26%	74.8	0.258	71.6	0.252	68.3	0.245	65.3	0235	62.6
46													
47	.001:3	0.283	78.6	0.277	75.3	0.270	72.2	0.264	68.9	0.257	66.0	$0.2 \% 0$	63.3
48		0.296	79.0	0.259	7.5 .8	0.282	72.7	0.276	69.6	0.269	66.7	0.263	61.0
49	. 0013	0.308	79.1	0.302	76.3	0.295	73.3	0.258	70.2	0.2-2	67.4	0.275	64.7
50	. 0013	0.321	79.8	0.315	76.7	0.305	73.8	0.301	70.9	0.295	6-.1	0.288	65.4
51	. 0013	0.335	80.2	0.328	77.2	0.321	74.3	0.315	71.4	0.308	65.7	0.302	66.0
5.$) .0014$													
		0.349	80.5	0.312	77.6	0.335	74.7	0.329	71.9	0.322	69.2	0.315	66.6
53	. 0014	0.36\%3	80.9	0.356	75.0	0.350	75.2	$0.34: 3$	72.5	0.336	69.8	0.330	67.2
54	. 0015	0.378	81.2	0.371	7-.4	0.365	75.6	0.358	72.9	0.3 J 1	70.3	0.345	67.8
5.5	. 0015	0.393	81.6	0.357	78.8	$0.3>0$	76.1	0.373	73.4	0.367	70.8	0.360	
56	. 0016	0.409	S1.9	0.403	79.1	0.396	76.5	0.389	73.9	0.883	71.3	0.376	65.9
57 ${ }^{\text {\% }}$													
		0.426	8.2 .2	0.419	79.5	0.412	76.9	0.406	74.3	0.399	71.8	0.392	69.4
58	. 0017	0.41:	82.5	0.436	79.8	0.12!)	77.2	0.423	74.8	0.116	72.3	0.109	69.9
59	. 0017	0.160	82.8	0.153	80.2	0.417	77.6	0.440	75.1	0.433	72.7	0.127	70.3
60	$\begin{aligned} & .0018 \\ & .0019 \end{aligned}$	0.478	¢3.1	0.17 I	80.5	0.16 .5	78.0	0.4 .58	75.5	0.451	73.1	0.445	70.8
61		0.497	S3.3	0.490	80.8	0.183	75.3	0.177	75.9	0.470	73.5	0.463	71.3
$6 . \quad .0019$													
		0.516	83.6	0.509	81.1	0.502	78.6	0.196	76.3	0.489	74.0	0.182	71.7
63	.00:30	0.536	83.8	0.529	81.4	0.522	79.0	0.516	76.6	0.509	74.8	0.502	72.1
64	.0020	0.556	84.1	0.519	81.7	0.543	79.3	0.536	77.0	0.529	74.7	0.523	72.5
6.5	$\begin{aligned} & .0021 \\ & .0022 \\ & .0023 \end{aligned}$	0.577	84.3	0.570	81.9	0.561	79.6	0.5 .57	77.3	0.5 .50	75.1	0.544	72.9
66		0.599	84.6	0.592	82.2	0.506	79.9	0.579	77.6	0.572	7.5 .1	0.566	73.3
67		0.622	84.8	0.615	82.4	0.605	80.2	0.601	75.0	0.595	75.8	0.588	73.7
Mean Ilorizontal Difference of Force of Vapor for each $0^{\circ} 1=0.0013$.													

Temp srature, Fahrenheit. - Force of Vapor in English Inches. - Relative Humidity in Hundredtha.

Wet-BulbThermo-metert^{1}Fabren-beit	MeanVerticalDiferenceof Forceof Vaporfor each0.1.	\mathbf{t} - \mathbf{t}^{\prime}, or Difference of Wet and Dry Buib Thermometers.												
		$3{ }^{\circ} .9$		30.5		4.0		$4{ }^{10} .5$		$5{ }^{\circ} .0$		50.5		
		$\begin{aligned} & \text { Force of } \\ & \text { Vapor. } \end{aligned}$	Rela- tive Lu- mid- ity in	Force of Yapor.	Relative 11u-midity.	Force of Vapor.	Relative 1Fu-midity.	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { 11u- } \\ & \text { midu- } \\ & \text { ity. } \end{aligned}$	Force of Vapor	$\begin{aligned} & \text { Rela } \\ & \text { tive } \\ & \text { Ilu } \\ & \text { mini- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	Relative Hu* midity.	
	0.0024.0024.0025.0026.0027	Eng. In		Eng. 1n.		Eng. 1n.		Eng. In.		Eng ln.		Eng. In.		
63		0.644 85.0		0.633	82.7	0.631	80.4	0.624	78.3	. 6	76.1	0.611	74.0	
69		0.665	85.2	0.661	82.9	0.655	80.7	0.648	78.6	0.641	76.4	0.635	74.4	
70		0.693	85.4	0.686	83.2	0.679	81.0	0.672	78.8	0.666	76.8	0.659	74.7	
71		0.715	85.6	0.714	83.1	0.704	81.2	0.693	79.1	0.691	77.1	0.654	75.1	
72		0.74	85.8	0.737	83.6	0.731	81.5	0.724	79.4	0.718	77.4	0.710	75.4	
		0.771												
73	.0028		56.0	0.764	83.8	0.757	81.7	0.751	79.7	0.744	77.6	0.737	75.7	
74		$\begin{aligned} & 0.771 \\ & 0.799 \end{aligned}$	56.2	0.792	S4.0	0.785	81.9	0.778	79.9	0.772	77.9	0.765	76.0	
75		0.527	S6.3	0.820	84.2	0.814	82.2	0.807	80.2	0.500	78.2	0.79:3	76.3	
76	. 0030	$\begin{aligned} & 0.856 \\ & 0.857 \end{aligned}$	86.5	0.550	84.4	0.843	82.4	0.536	S0.t	0.829	78.4	0.523	76.6	
77			86.7	0.880	84.6	0.573	82.6	0.566	50.6	0.560	78.7	0.553	76.8	
	. 0031	0.918												
	.0032	0.919												
79	. 0033					0.	83.0	0.929	1.1	0.922	79.2	0.916	77.4	
80		0.982	87.1	0.976	85.1	0.969	83.2	0.962	81.3	0.955	79.4	0.919	77.6	
81	. 0035	$\begin{aligned} & 1.016 \\ & 1.051 \end{aligned}$	87.3	1.010	85.3	1.003	83.4	0.996	81.5	0.989	79.7	0.952	77.9	
82														
83	. 0036													
84		1.124	87	1.117	85.8	1.111	83.9	1.104	82.1	1.096	. 3	090		
85		1.162	87.8	1.155	85.9	1.148	84.1	1.142	82.3	1.135	80.5	1.128	78.8	
86			87.9	1.194	86.1	1.187	84.2	1.181	82.4	1.174	80.7	1.167	79.0	
S7		$\begin{aligned} & 1.201 \\ & 1.242 \end{aligned}$	88.1	1.235	S6.2	1.228	84.4	1.222	82.6	1.215	80.9	1.208	79.2	
88	. 0041	1.282	85.2	1.276	86.3	1.269	84.6	1.262	82.8	1.2.5.	81.	1	9.	
89		1.32 .5	88.3	1.318	86.5	1.311	84.7	1.304	83.0	1.297	81.3	1.291	79.6	
90	.0044	1.369	88.4	1.362	86.6	1.355	84.9	1.348	83.1	1.341	81.4	1.33	9.8	
91	.0045	$\begin{array}{\|l\|l} 1.369 \\ 1.413 \\ 1.460 \end{array}$	88.5	1.407	86.7	1.400	85.0	1.393	83.3	1.386	81.6	1.379	0.0	
92			85.6	1.453	86.9	1.446	85.1	1.439	83.4	1.132	81.5	1.425	80.2	
	. 0047	1.507												
94	. 0049	$1 \begin{aligned} & 1.507 \\ & 1.556\end{aligned}$												
95	.0050	1.606	85.9	1.599		92		1.585						
96	. 0051	1.657	89.0	1.650	87.3	1.643	85.7	1.636	84.0	1.629	8.4	1.620	s0.9	
97	. 0	1.709	89.1	1.702	87.5	1.696	85.8	1.688	84.2	1.682	82.6	1.675	81.0	
98	. 0054	1.764	89.2	1.757	87.6	1.750	85.9	1.743	84.3	1.736	82.7	1.729	81.2	
	. 0055	1.819												
99			89.3	1.812	87.7	1.505	86.0	1.798	84.4	1.792	82.9	1.785	81.3	
100	57	1.576	89.4	1.869	87.8	1.863	86.2	1.856	84.6	1.849	-3.0	1.8.12	81.5	
101	.005s	1.935	89.5	1.923	87.9	1.921	86.3	1.914	84.7	1.907	83.2	J. 900	81.6	
102	.0060	1.99.)	89.6	1.988	88.0	1.981	86.4	1.974	84.9	1.967	83.3	1.961	81.3	
103		2.057	89.7	2.050	88.1	2.043	86.5	2.036	81.9	2.029	83.4	2.022	81.9	
104	.0063	$\left\|\begin{array}{l}2.057 \\ 2.120\end{array}\right\|$	59.8	2.113	88.2	2.106	866	2.099	85.1	2.092	83.5	2.085	82.1	

Mean IIorizontal Difference of Force of Vapor for each $0^{\circ} .1=0.0013$.

Temperature, Fahrenheit - Force of Vapor in English Inches. - Relative IIumidity in Ilundredths

Temperature, Fahrenheit. - Force of Vapor in English Inches - Relative Humidity in Hundredthe

Wet-BuIbThermo-metertFahren-heit.	MeanVerticalDiferenceof Forceof Vaporfor each$0^{\circ} .1$.	\mathbf{t} - \mathbf{t}, or Difference of Wet and Dry Bulb Thermometers.											
		$6^{\circ} .0$		$6^{\circ} .5$		$7 \bigcirc 0$		70.5		80.0		$88^{\text {c. }} 5$	
		Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	Relative Hu-midity.	Force of Vapor.	Relative 14. midity.	Force of Vapor.	Relative Hu-midity.	Force of Vapor.	Relative Hu-midity	Force of Vapor.	Relative Humid. ity.
68	0.0024	Eng. In.		Eng. In.		Eng. In.	68.1	Eng. In.	66.2	$\begin{gathered} \text { Eng In. } \\ 0.577 \end{gathered}$	$\left.64.4\right\|_{0.571} ^{\text {Eng In. }}$		62.6
68		0.604	72.0	0.597				0.584					
69	.0124	0.628	72.1	0.621	70.4	0.614	68.5	0.605	66.6	0.601	64.8	0.594	63.0
70	. 0025	0.652	72.7	0.646	70.8	0.639	68.9	0.632	67.1	0.625	65.3	0.619	63.3
71	. 0026	0.678	73.1	0.671	71.2	0.664	69.3	0.657	67.5	0.651	65.7	0.644	64.0
72		0.704	73.4	0.697	71.5	0.690	69.7	0.683	67.9	0.677	66.1	0.670	64.4
	. 0027												
73	.002s	0.730	73.8	0.724	71.9	0.717	70.1	0.710	68.3	0.703	66.5	0.697	64.8
74		0.758	74.1	0.751	72.2	0.745	70.4	0.738	68.7	0.731	66.9	0.724	65.3
75	. $0 \cap \geq 9$	0.787	74.1	0.750	72.6	0.773	70.8	0.766	69.0	0.760	67.3	0.753	65.7
76	. 0030	0.916	74.7	0.809	72.9	0.502	71.1	0.796	69.4	0.789	67.7	0.782	66.1
77	.0030	0.816	75.0	0.839	73.2	0.832	71.4	0.826	69.7	0.819	65.1	0.812	66.4
	. 0031												
78	.0032	0.877	75.3	0.870	73.5	0.863	71.8	0.857	70.1	0.850	68.4	0.843	66.8
79		0.909	75.6	0.902	73.8	0.895	72.1	0.888	70.4	0.882	68.8	0.875	67.2
80	.0033	0.942	75.8	0.935	74.1	0.928	72.4	0.921	70.7	0.915	69.1	0.908	67.5
81	$\begin{aligned} & .0034 \\ & .0035 \end{aligned}$	0.976	76.1	0.969	74.4	0.962	72.7	0.955	71.0	0.918	69.4	0.942	67.9
82		1.011	76.4	1.004	74.6	0.997	73.0	0.990	71.3	0.983	69.8	0.977	68.2
	. 0036												
83	. 0037	1.046	76.6	1.010	74.9	1.033	73.3	1.026	71.6	1.019	70.1	1.012	68.5
84		1.083	76.8	1.077	75.2	1.070	73.5	1.063	71.9	1.056	70.4	1.049	68.8
85	.003s	1.121	77.1	1.114	75.4	1.108	73.8	1.101	72.2	1.094	70.7	1.087	69.1
86	.1038 . 0439	1.160	77.3	1.153	75.7	1.147	74.1	1.140	72.5	1.133	70.9	1.126	69.4
87		1.201	77.5	1.194	75.9	1.187	7.1.3	1.181	72.7	1.174	71.2	1.167	69.7
	. 0040												
88	. 0042	1.241	77.7	1.235	76.1	1.228	74.6	1.221	73.0	1.214	71.5	1.207	70.0
89		1.284	78.0	1.277	76.4	1.270	74.8	1.263	73.3	1.256	71.8	1.250	70.3
90	.0044	1.327	78.2	1.321	76.6	1.314	75.0	1.307	73.5	1.300	72.0	1.293	70.6
91	. 0045	1.372	78.4	1.365	76.8	1.359	75.3	1.352	73.7	1.345	72.3	1.33s	70.8
92	. 0046	1.418	78.6	1.412	77.0	1.405	75.5	1.398	74.0	1.391	72.5	1.384	71.1
	. 0047												
93	. 0049	1.466	78.8	1.459	77.2	1.452	75.7	1.445	74.2	1.438	72.8	1.431	71.3
94	. 0050	1.514	79.0	1.507	77.4	1.501	75.9	1.49-4	74.4	1.457	73.0	1.480	71.6
95		1.564	79.1	1.557	77.6	1.5 .50	76.1	1.544	74.7	1.537	73.2	1.530	71.8
96	. 0051	1.615	79.3	1.608	77.8	1.602	76.3	1.595	74.9	1.588	73.4	1.581	72.1
97	. 0052	1.668	79.5	1.661	78.0	1.654	76.5	1.647	75.1	1.640	73.7	1.633	72.3
98	. 0054	1.722	79.7	1.715	78.2	1.708	76.7	1.701	75.3	1.694	73.9	1.688	72.5
	. 0056												
99	. 0057	1.778	79.8	1.771	78.4	1.764	76.9	1.757	75.5	1.750	74.1	1.743	72.7
100		1.83 .5	80.0	1.828	78.5	1.821	77.1	1.814	75.7	1.807	74.3	1.800	72.9
101	.0059	1.893	80.2	1.887	78.7	1.880	77.3	1.873	75.9	1.566	74.5	1.859	73.2
102	. 0060	1.954	80.3	1.947	78.9	1.940	77.4	1.933	76.1	1.926	74.7	1.919	73.4
103	$\begin{aligned} & .0061 \\ & .0063 \end{aligned}$	2.015	80.5	2.008	79.0	2.001	77.6	1.994	76.2	1.987	74.9	1.980	73.6
104		2.078	50.6	2.071	79.2	2.064	77.8	2.057	76.4	2.051	75.1	2.044	73.8

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.0013$.

Temperature, Fahrenheit. - Force of Vapor in English Inches - Relative IIumidity in IIundredths.

Wet-BubThermo-metertFahren-heit	MeanVerticalDifereareof Forceif Vaporfir euch$v^{\circ} .1$.	t- \mathbf{t}^{\prime}, or Difference of Wet and Dry Bulb Thermometers											
		9.0		$9 \bigcirc .5$		$10^{\circ} .0$		10.5		110.0		110.5	
		$\begin{aligned} & \text { 'orce of } \\ & \text { Vapor. } \end{aligned}$	Relative Hu-midity	Force of Vapor	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { mill- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	Relative Jua-niddity.	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { IIu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { tiru- } \\ & \text { nuid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{array}{\|c\|c\|c\|} \text { Rela- } \\ \text { tise } \\ \text { Iuu- } \\ \text { mid- } \\ \text { ity. } \end{array}$
\bigcirc	00007	Eny. 14	25.0	Eng. 1n	22.0	Eug. In.	19.2	$\begin{aligned} & \text { Eng. In } \\ & 0.045 \end{aligned}$	16.4	$\begin{gathered} \text { Eug. In. } \\ 0.035 \end{gathered}$	13.8		
32		0.061		0.053		0.051						0.032	11.2
33	$\cdots 07$	0.071	26.7	0.065	23.8	0.058	21.0	0.052	18.3	0.045	15.7	0.039	13.2
34		0.079	28.3	0.072	2.5.5	0.066	22.7	0.059	20.1	0.053	17.5	0.046	15.1
35	. 0008	0.057	29.9	0.080	27.1	0.07 .1	24.4	0.067	21.8	0.061	19.3	0.054	16.9
36	.000s	0.09 .5	31.4	0.058	28.7	0.082	26.0	0.075	23.5	0.069	21.1	0.062	18.7
	. 0008												
37	.0009	0.103	33.0	0.096	30.3	0.090	27.6	0.083	25.2	0.077	22.8	0.070	20.1
38		0.112	34.4	0.105	31.8	0.099	29.2	0.092	26.8	0.086	24.4	0.079	22.1
39	. 0009	0.121	35.9	0.114	33.3	0.108	30.7	0.101	28.4	0.094	26.1	0.088	23.8
40	$\begin{aligned} & .0009 \\ & .0010 \end{aligned}$	0.130	37.	0.123	31.5	0.117	32.2	0.110	29.9	0.104	$\because 7.6$	0.097	25.4
41		0.139	35.6	0.133	36.2	0.126	33.7	0.120	31.4	0.113	29.2	0.107	27.0
	. 0010												
42	. 0010	0.149	39.9	0.143	37.5	0.136	35.0	0.130	32.8	0.123	30.6	0.116	28.4
43		0.160	41.1	0.153	38.7	0.146	36.3	0.110	34.1	0.133	32.0	0.127	29.8
44	. 0010	0.170	42.3	0.163	39.3	0.157	37.6	0.150	35.4	0.144	33.3	0.137	31.2
45	$\begin{aligned} & .0011 \\ & .0011 \end{aligned}$	0.181	43.4	0.175	41.1	0.168	38.9	0.161	36.7	0.155	34.6	0.148	32.5
46		0.192	4.5	0.186	42.2	0.179	39.9	0.173	37.9	0.166	35.8	0.160	33.8
	. 0012												
47	. 0012	0.204	45.5	0.195	43.3	0.191	41.1	0.185	39.0	0.178	37.0	0.171	350
48		0.217	46.5	0.210	44.3	0.203	42.1	0.197	40.1	0.190	35.1	0.184	36.1
49	.0012	0.229	47.5	0.222	45.3	0.216	43.2	0.209	41.2	0.203	39.2	0.196	37.2
50	. 0013	0.242	48.4	0.235	46.3	0.22!	4.2	0.222	42.2	0.216	40.2	0.209	33.3
51	. 0013	0.255	49.3	0.219	47.2	0.242	45.2	0.236	43.2	0.229	41.2	0.222	39.3
	. 0014											0.236	
52	. 0015	0.269	50.2	0.263	48.1	0.256	46.1	0.249	4.1	0.243	42.2	0.236	40.3
53		0.254	51.1	0.277	19.0	0.270	47.0	0.264	45.1	0.2 .57	13.2	0.250	41.3
54	. 0015	0.298	51.9	0.292	49.8	0.255	47.9	0.279	46.0	0.272	4.4	0.265	42.3
55	. 0015	0.314	52.7	0.307	50.7	0.300	48.7	0.294	46.8	0.287	45.0	0.281	43.2
56	. 0016	0.330	53.5	0.323	51.4	0.316	49.5	0.310	47.7	0.303	45.9	0.296	44.1
	. 0016												
57	. 0017	0.316	54.3	0.339	52.2	0.333	50.3	0.326	48.5	0.319	46.7	0.313	44.9
58		0.363	55.0	0.356	52.9	0.350	51.1	0.343	49.2	0.336	47.5	0.330	4.5 .7
59	. 0017	0.350	55.7	0.373	53.6	0.367	51.8	0.360	50.0	0.354	48.2	0.317	46.5
60	$\begin{aligned} & .0018 \\ & .0018 \end{aligned}$	0.393	56.4	0.391	54.3	0.385	52.5	0.379	50.7	0.371	49.0	0.365	47.3
61		0.416	57.0	0.410	55.0	0.403	53.2	0.396	51.4	0.390	49.7	0.383	48.1
	. 0019												
62	.00:2	0. 436	57.6	0.429	55.6	0.422	53.9	0.116	52.1	0.409	50.4	0.102	48.8
63		0.455	58.2	0.449	56.3	0.442	54.5	0.135	. 52.8	0.429	51.1	0.422	495
64	. 0021	0.476	58.8	0.469	56.9	0.462	55.1	0.456	53.4	0.449	51.8	0.442	50.2
65	$\begin{array}{r} .0021 \\ 0022 \\ 0023 \end{array}$	0.197	59.3	0.490	57.5	0.483	55.8	0.177	54.1	0.470	52.4	0.463	50.8
66		0.519	59.9	0.512	58.0	0.505	56.3	0.498	54.7	0.492	53.1	0.485	51.5
67		0.512	60.3	0.531	58.6	0.527	569	0.52 I	5.5 .3	0.514	53.7	0.507	52.1

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.0013$.

Tcmperature, Fabreuheit. -- Force of Vapor in Enylish Inches. - Relative Humidity in IIundredths.

$\begin{gathered} \text { Wet- } \\ \text { Bulb } \\ \text { Thermo- } \\ \text { meter } \\ \mathbf{t}^{\prime} \\ \text { Fahren- } \\ \text { heit. } \end{gathered}$	$\underset{\text { Mertical }}{\substack{\text { Mcan } \\ \hline}}$ bilference of Force of rapor $0 \cdot 1$.	\mathbf{t} - \mathbf{t}^{\prime}, or Difference of Wet and Dry Beib Thermometers.											
		$9{ }^{\circ} .0$		90.5		$10^{\circ} 0$		$10^{\circ} .5$		110.0		110.5	
		Force of Vapor	$\begin{gathered} \text { Rela- } \\ \text { tive } \\ \text { Hu- } \\ \text { nitid- } \\ \text { ity. } \end{gathered}$	Force of Vapor.	Relative Hu-midity.	Force of Vapor.	Relative Hu-midity.	$\begin{aligned} & \text { Force of } \\ & \text { Vapor. } \end{aligned}$	Relative Hu-midity.	Force of Vapor.	Relative IIu midity.	Force of Vapor.	Rela. tive 11u-midity
-		Eng. In.		Fing. In.		Eng. In.		Eng. In.		Eng. In.		$\overline{\text { Cog. } 1 \mathrm{n}}$	
63			60.8	0.55	59.1	. 550	57.4	$0.5+4$	55.8	0.53	54.2	0.530	52.7
69	.0025	0.588	61.3	0.551	59.6	0.574	58.0	0.567	56.4	0.561	51.8	0.554	53.3
70		0.612	61.8	0.605	60.1	0.598	58.5	0.592	56.9	0.585	55.1	0.575	53.8
71	.0025 .00:2	0.637	62.3	0.630	60.6	0.624	59.0	0.617	57.4	0.610	55.9	0.603	54.4
72		0.663	62.7	0.656	61.1	0.650	59.5	0.643	58.0	0.636	56.4	0.629	54.9
	. 0027												
73	.00:27	0.390	63.2	0.683	61.6	0.677	60.0	0.670	58.4	0.663	56.9	0.656	55.5
74		0.718	63.6	0.711	62.0	0.704	60.5	0.697	5-.9	0.691	57.4	0.684	56.0
75	. 0023	0.746	64.0	0.739	62.5	0.733	60.9	0.726	59.4	0.719	57.9	0.712	56.5
76	$.0029$$.0030$	0.775	64.4	0.769	62.9	0.762	61.3	0.755	59.8	0.748	58.4	0.741	56.9
77		0.805	64.5	0.799	63.3	0.792	61.8	0.785	60.3	0.778	58.5	0.772	57.4
	. 0031												
78	.0032	0.836	65.2	0.829	63.7	0.523	62.2	0.816	60.7	0.509	59.2	0.802	57.8
79		0.868	65.6	0.861	64.1	0.555	62.6	0.818	61.1	0.541	59.7	0.534	58.3
80	. 0033	0.901	66.0	0.894	64.5	0.597	(63.0	0.581	61.5	0.574	60.1	0.567	58.7
81	$\begin{aligned} & .0034 \\ & .0035 \end{aligned}$	0.935	66.3	0.928	64.8	0.921	63.4	0.914	61.9	0.908	60.5	0.901	59.1
82		0.970	66.7	0.963	65.2	0.956	63.7	0.949	62.3	0.943	60.9	0.936	59.5
	. 0036												
83	. 0037	1.006	67.0	0.999	65.5	0.992	64.1	0.985	62.7	0.97S	61.3	0.972	59.9
84		1.042	67.3	1.036	65.9	1.029	64.4	1.022	63.0	1.015	61.7	1.005	60.3
85	.003s	1.050	67.7	1.073	66.2	1.067	64.5	1.060	63.4	1.053	62.0	1.016	60.7
86	$.0039$	1.119	65.0	1.112	66.5	1.106	65.1	1.099	63.7	1.092	62.4	1.08:5	61.0
87	. 0010	1.160	68.3	1.153	66.8	1.146	65.4	1.140	64.1	1.133	62.7	1.126	61.4
	. 0041												
88		1.200	68.6	$1.19+$	67.1	1.187	65.8	1.180	64.4	1.173	63.1	1.166	61.7
89	.0042	1.243	65.9	1.236	67.4	1.229	66.1	1.222	64.7	1.215	63. 4	1.208	62.1
90	. 0044	1.256	69.1	1.279	67.7	1.273	66.4	1.266	65.0	1.259	63.7	1.252	62.4
91	. 0045	1.331	69.4	1.324	63.0	1.317	66.7	1.311	65.3	1.304	64.0	1.297	62.7
92	. 0046	1.377	69.7	1.370	68.3	1.363	67.0	1.357	65.6	1.850	64.3	1.343	63.1
	. 0047												
93	. 0048	1.425	69.9	1.418	68.6	1.411	67.2	1.404	6.3. 9	1.397	64.6	1.390	63.4
94		1.473	70.2	1.466	65.5	1.459	67.5	1.452	66.2	1.446	64.9	1.439	63.7
9.5	. 0050	1.523	70.4	1.516	69.1	1.509	67.8	1.502	66.5	1.495	65.2	1.488	64.0
96	. 0051	1.574	70.7	1.567	69.4	1.560	68.0	1.553	66.7	1.546	65.5	1.539	64.2
97	.0053	1.627	70.9	1.620	69.6	1.613	68.3	1.606	67.0	1.599	65.8	1.592	64.5
98	.0054	1.681	71.2	1.674	69.8	1.667	68.5	1.660	67.3	1.653	66.0	1.646	64.8
	. 0056												
99	. 0057	1.736	71.4	1.729	70.1	1.722	68.8	1.716	67.5	1.709	66.3	1.702	65.1
100		1.793	71.6	1.786	70.3	1.780	69.0	1.773	67.8	1.766	66.5	1.759	65.3
101	. 0058	1.852	71.8	1.845	70.5	1.838	69.3	1.831	68.0	1.824	66.8	1.817	65.6
102	. 0060	1.912	72.0	1.905	70.8	1.898	69.5	1.891	68.2	1.884	67.0	1.877	65.5
103	.0062.0063	1.974	72.3	1.967	71.0	1.960	69.7	1.953	68.5	1.946	67.3	1.939	66.1
104		2.037	72.5	2.030	71.2	2.023	69.9	2.016	68.7	2.009	67.5	2.002	66.3

Mean IIorizontal Difference of Foree of Vapor for each $0^{\circ} .1=0.0013$.

Temperature, Falirenheit. - Force of Vapor in English Inches. - Relatire Humidity in Hundredths.

$\begin{gathered} \text { Wet- } \\ \text { Bulb } \\ \text { Therino- } \\ \text { metter } \\ \text { t } \\ \text { Falirenn- } \\ \text { heit. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Mean } \\ \text { Yertical } \\ \text { Dinfferene } \\ \text { of Force } \\ \text { of Viper } \\ \text { for each } \\ 0^{\circ} .1 . \end{gathered}\right.$	\mathbf{t} - \mathbf{t}, or Difference of Wet and Dry Bulb Thermometers.											
		1200		120.5		13°. 0		$13^{\circ} .5$		140.0		140.5	
		$\begin{gathered} \text { Force of } \\ \text { Vapor: } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Rela- } \\ \text { tive } \\ \text { Ilu- } \\ \text { mid- } \\ \text { ity } \end{gathered}\right.$	$\begin{aligned} & \text { Force of } \\ & \text { Vapor. } \end{aligned}$	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { llu- } \\ & \text { mill- } \\ & \text { ity } \end{aligned}$	$\begin{aligned} & \text { Force of } \\ & \text { Vapor. } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Rela- } \\ \text { tive } \\ \text { 11u- } \\ \text { mid- } \\ \text { ity } \end{gathered}\right.$	$\begin{gathered} \text { Force of } \\ \text { Vapor. } \end{gathered}$	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Ilu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	Relative Hu-midity.	Force of Vapor.	$\left\lvert\, \begin{gathered} \text { Rela- } \\ \text { tive } \\ \text { Hu- } \\ \text { Mud } \\ \text { mity. } \end{gathered}\right.$
\bigcirc	3.0007	Eug. In.	8.8	Eng. In.		Eng In.		Eng In.		Eng. In.		Eng. In.	
32		10.025				0.012	4.1						
33	. 0007	0.0:3	10.5	0.026	8.4	0.019	6.2	0.013	4.0				
31		0.040	12.7	0.033:	10.1	0.027	8.2	0.020	6.0	0.014	. 1		
35	.0107	0.048	14.6	0.041	12.3	0.0344	10.1	0.02 b	8.0	0.021	6.1	0.015	4.2
36	.000s	0.056	16.4	0.049	14.2	0.042	12.0	0.036	10.0	0.029	8.1	0.023	6.2
	.0008												
37	.0009	0.064	18.2	0.0.37	16.0	0.051	13.9	0.014	11.9	0.038	10.0	0.031	8.2
38		0.072	19.9	0.066	17.4	0.059	1.5 .7	0.053	13.7	0.046	11.9	0.040	10.1
39	$.0009$	0.081	21.6	0.075	19.5	0.068	17.5	0.062	15.5	0.055	13.7	0.049	11.9
40	$\begin{aligned} & .0009 \\ & .0010 \end{aligned}$	0.091	23.3	0.054	21.2	0.078	19.2	0.071	17.2	0.064	15.4	0.058	13.6
41		0.100	24.9	0.094	22.5	0.087	20.8	0.081	18.9	0.074	17.1	0.067	15.3
42	. 0010												
43	. 0010	0.120	27.8	0.114	2.5.5	0.107	23.9	0.100	22.0	0.095	20.1	0.087	18.3
44	. 0011	0.131	29.2	0.124	27.2	0.118	2.). 3	0.111	23.5	0.104	21.5	0.098	19.8
45	.0011	0.112	30.5	0.135	25.6	0.129	26.7	0.122	24.9	0.115	22.9	0.109	21.2
46	. 0011	0.153	31.8	0.146	30.0	0.140	25.1	0.133	26.3	0.127	24.3	0.119	22.7
47	. 0012	0.16 .5	33.0	0.158	31.2	0.152	29.3	0.145	6	138	257	0.132	0
48	. 0012	0.177	34.2	0.170	32.4	0.164	30.6	0.157	28.8	0.151	27.0	0.144	25.4
49	. 0013	0.190	33.3	0.183	3:3.5	0.176	31.7	0.170	30.0	0.163	25.3	0.157	26.7
50	. 1013	0.202	36.4	0.196	34.6	0.189	32.9	0.183	31.2	0.176	29.5	0.169	27.9
51	. 0014	0.216	37.5	0.209	35.7	0.202	31.0	0.196	32.3	0.189	30.7	0.183	29.1
52	. 0014	0.229	32.5	0.223	36.8	0.216	3.7. 1	0.210	33.4	0.203	31.8	0.196	30.2
53	. 0014	0.244	39.5	0.237	37.8	0.2:31	36.1	0.224	34.5	0.217	32.9	0.211	31.4
5.4	. 0015	0.259	40.5	0.252	35.5	0.24.)	37.1	0.239	35.5	0.232	34.0	0.226	32.4
55	. 0015	0.274	11.5)	0.267	39.8	0.261	38.1	0.254	36.5	0.247	35.0	0.241	33.5
56	. 0016	0.290	12.4	0.283	40.7	0.276	39.1	0.270	37.5	0.263	35.9	0.257	34.4
57	. 0016	0.306	43.2	0.299	41.6	0.293	400	0.296	38.4	0.250	36.9	0.273	35.4
58	. 0017	0.323	44.1	0.316	42.4	0.310	40.8	0.303	39.3	0.296	37.8	0.290	36.3
59	. 0017	0.310	4.9	0.334	43.3	0.327	41.7	0.320	40.1	0.314	38.7	0.307	37.2
60	. 0018	0.358	45.7	0.351	44.1	0.345	42.5	0.338	41.0	0.331	39.5	0.325	38.1
61	.0018	0.376	46.4	0.370	4.4.9	0.363	43.3	0.3 .54	41.8	0.3 .50	40.3	0.343	35.9
62	. 0019	0.396	47.2	0.389	45.6	0.392	44.1	0.376	42.6	0.369	11.2	0.362	39.8
63	. 0020	0.415	47.7	0.409	46.4	0.402	41.5	0.395	43.4	0.389	+1.9	0.382	40.6
64	.0021	0.436	48.6	0.429	47.1	0.422	45.6	0.416	44.1	0.409	42.7	0.402	41.3
65	.0021	0.457	49.3	0.450	47.8	0.44:	46.3	0.437	4.8	0.431	43.4	0.423	42.1
66	$\begin{aligned} & .024 \\ & .0023 \end{aligned}$	0.478	49.9	0.472	48.4	0.465	47.0	0.4 .58	45.5	0.452	4.1	0.445	42.8
67		0.501	50.6	0.494	49.1	0.457	47.6	0.481	46.2	0.474	4.8	0.467	43.5
Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.0013$.													

Temferature, Fahrenheit. - Force of Vapor in English Inches - Relative Humidity in Hundredths.

$\begin{gathered} \text { Wet- } \\ \text { Mulb } \\ \text { Thermo- } \\ \text { meter } \\ \mathbf{t}^{\prime} \\ \text { Fahren- } \\ \text { heit. } \end{gathered}$	$\begin{array}{\|c\|} \text { Mean } \\ \text { Vertical } \\ \text { Difference } \\ \text { of Force } \\ \text { of Vapor } \\ \text { for each } \\ 0.1 . \end{array}$	$\mathbf{t - \mathbf { t } ^ { \prime }}$, or Difference of Wet and Dry Bulb Thermometers.											
		120.0		$12^{\circ} .5$		$13^{\circ} 0$		$13 \bigcirc .5$		140.0		140.5	
		Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { IIn- } \\ & \text { muid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{gathered} \text { Rela- } \\ \text { tive } \\ \text { Hu- } \\ \text { mid- } \\ \text { ity. } \end{gathered}$	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { 11u- } \\ & \text { 1nid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { IIu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { llu- } \\ & \text { mid- } \\ & \text { ity } \end{aligned}$	Force of Vajor.	Relative Humid. ty.
\bigcirc		Eng. In.		Eng. In.		Eng. In.		Eng. In.		g. In.		Eng In.	
68	0.0024	0.524	51.2	0.517	49.7	0.510	48.3	0.503	46.9	0.497	45.5	0.490	44.1
69	. 002	0.547	51.8	0.541	50.3	0.534	48.9	0.527	47.5	0.520	46.1	0.514	44.8
70	. 002	0.572	52.4	0.565	50.9	0.558	49.5	0.551	48.1	0.545	46.8	0.539	45.5
71	. 0026	0.597	52.9	0.590	51.5	0.553	50.1	0.577	18.7	0.570	47.4	0.563	46.1
72	.0020	0.623	53.5	0.616	22.1	0.609	50.7	0.603	49.3	0.596	48.0	0.589	46.7
	. 0026												
73		0.650	54.0	0.643	52.6	0.636	51.3	0.629	49.9	0.623	18.6	0.616	47.3
74		0.677	54.5	0.670	53.2	0.664	51.8	0.657	50.5	0.650	49.2	0.643	47.9
75		0.705	55.0	0.699	53.7	0.622	52.3	0.685	51.0	0.678	49.7	0.672	48.4
76		0.735	55.5	0.728	54.2	0.721	52.9	0.714	51.5	0.708	50.3	0.701	48.9
77		0.765	56.0	0.759	54.7	0.752	53.4	0.745	52.1	0.739	50.8	0.731	49.5
	. 0031												
78		0.796	56.5	0.782	55.2	0.752	53.8	0.775	52.5	0.768	51.3	0.762	50.0
79		0.827	56.9	0.821	55.6	0.814	54.3	0.507	53.0	0.800	51.8	0.794	50.5
80		0.860	57.3	0.853	56.1	0.817	54.5	0.840	53.5	0.833	52.2	0.826	51.0
81		0.394	57.8	0.887	56.5	0.880	55.2	0.574	53.9	0.867	52.7	0.560	51.4
82	.0035	0.929	58.2	0.922	56.9	0.915	55.6	0.909	54.4	0.902	53.2	0.895	51.9
	. 0036												
83		0.965	58.6	0.958	57.3	0.951	56.1	0.944	54.8	0.937	53.6	0.931	52.4
84		1.002	59.0	0.995	57.7	0.988	56.5	0.981	55.2	0.974	54.0	0.968	52.8
85		1.039	59.4	1.033	58.1	1.026	56.8	1.019	ธ5. 6	1.012	54.1	1.005	53.2
86		1.075	59.7	1.071	58.5	1.06 .5	57.2	1.058	56.0	1.051	54.8	1.044	53.6
87		1.119	60.1	1.112	58.5	1.105	57.6	1.099	56.4	1.092	55.2	1.085	54.0
	. 0041												
88		1.159	5	1.152	2	1.	58.0	1.	56.8	1.	5.	1.125	54.4
<9		1.202	60.9	1.19J	59.6	1.188	58.3	1.181	57.1	1.174	56.0	1.167	54.8
90		1.245	61.3	1.238	59.9	1.251	58.7	1.225	57.5	1.218	56.3	1.211	55.2
91		1.290	61.6	1.283	60.2	1.276	59.0	1.269	57.9	1.263	66.7	1.256	55.6
92		1.336	61.9	1.329	60.6	1.322	59.4	1.315	55.2	1.309	57.0	1.302	55.9
	. 0047												
93		1.383	62.2	1.376	60.9	1.370	59.7	1.363	58.5	1.356	57.4	1.349	56.3
94		1.432	62.5	1.425	61.2	1.418	60.0	1.411	58.9	1.404	57.7	1.897	56.6
95	. 0050	1.482	62.7	1.475	61.5	1.468	60.4	1.461	59.2	1.454	55.1	1.447	57.0
96	.00.31	1.533	63.0	1.526	61.8	1.519	60.7	1.512	59.5	1.505	58.4	1.498	57.3
97	. 0052	1.585	63.3	1.578	62.1	1.571	61.0	1.564	59.5	1.558	58.7	1.551	57.6
98	. 0054	1.639	63.6	1.632	62.4	1.625	61.3	1.618	60.1	1.612	59.0	1.605	57.9
99	. 0056	1.695	63.9	1.688	62.7	1.681	61.6	1.674	60.4	1.667	59.3	1.660	58.2
100	. 0057	1.752	64.2	1.745	63.0	1.735	62.0	1.731	60.7	1.724	59.6	1.717	55.5
101	. 0059	1.810	64.4	1.803	63.2	1.797	62.3	1.790	61.0	1.783	59.9	1.776	58.8
102	. 0060	1.870	64.7	1.863	63.5	1.857	62.6	1.850	61.3	1.543	60.2	1.836	59.1
103	. 0062	1.932	64.9	1.925	63.8	1.918	62.9	1.911	61.5	1.90 .4	60.4	1.897	59.4
104	. 0063	1.995	65.2	1.988	64.0	1.981	63.2	1.97\&	61.8	1.967	60.7	1.960	59.6

[^3]Temperature, Fahrenheit. - Force of Vapor in English Inches. - Relative Humidíty in Hundredths.

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.0013$.

Temperature, Fahrenheit. - Force of Vapor in English Inches. - Relative Mumidity in Hundredths.

Wet-BulbThermo-metert $^{\prime}$Fahren-heit.	Mean Vertical Difference of Force of Vapor for each 0.1 .	\mathbf{t} - \mathbf{t}^{\prime}, or Difference of Wet and Dry Bulb Thermometers.											
		150.0		$15^{\circ} .5$		$16^{\circ} 0$		$16^{\circ} .5$		180.0		$17^{\circ} .5$	
		Force of Vapor.	Relative Hu-midity	Force of Yapor.	Relative Hu-midity.	Force of Vapor.	Relative Hu-midity.	Force of Vapor.	Relative Hu-midity.	Force of Vapor	Relative Hu-midity.	Force of Vapor.	Rela. tive Ilu-midity
$\begin{gathered} 0 \\ 68 \\ 69 \\ 70 \\ 71 \\ 72 \end{gathered}$	0.0024		42	Eng. In. 0.47%		Eng. In. 0.470		Eng. In. 0.463	39.	Eng. In. 0.456	37.9	$\begin{gathered} \text { Eng. In. } \\ 0.450 \end{gathered}$	36.8
					41.		40.8		39.				
	.0024	0.507	43.5	0.500	42.3	0.594	41.0	0.487	39.8	0.480	38.7	0.473	37.5
		0.531	44.2	0.524	42.9	0.518	41.7	0.511	40.5	0.504	39.3	0.495	38.2
	$\begin{aligned} & .0025 \\ & .0026 \end{aligned}$	0.556	44.8	0.5 .50	43.6	0.543	42.4	0.536	41.2	0.529	40.0	0.523	38.9
		0.582	45.4	0.576	44.2	0.569	43.0	0.562	41.3	0.55 .5	40.7	0.549	39.5
	. 0027												
73	. 0028	0.609	46.0	0.602	44.8	0.596	43.6	0.589	42.4	0.582	41.3	0.575	40.2
74		0.637	46.6	0.630	45.4	0.623	44.2	0.616	43.0	0.610	41.9	0.603	40.8
75	. 0028	0.665	47.2	0.655	46.0	0.6 .51	44.8	0.645	43.6	0.638	42.5	0.631	41.4
76	.0029	0.694	47.7	0.687	46.5	0.651	45.4	0.674	44.2	0.667	43.1	0.660	42.0
77	. 0030	0.721	48.2	0.717	47.1	0.711	45.9	0.704	44.8	0.697	43.6	0.690	42.6
.0031													
78	. 0032	0.755	48.8	0.748	47.6	0.741	46.4	0.735	45.3	0.728	44.2	0.721	43.1
79		0.787	49.3	0.780	48.1	0.773	47.0	0.766	45.8	0.760	44.7	0.753	43.7
80	. 0033	0.820	49.8	0.813	48.6	0.806	47.5	0.799	46.4	0.792	45.3	0.786	44.2
81	. 0034	0.853	50.3	0.517	49.1	0.840	48.0	0.833	46.9	0.526	45.8	0.519	44.6
82	. 0035	0.858	50.7	0.831	49.6	0.875	48.5	0.863	47.4	0.861	46.3	0.854	45.1
	. 0036												
8	. 0037	0.924	51.2	0.917	50.0	0.910	48.9	0.903	47.5	0.597	46.8	0.890	15.6
84		0.961	51.6	0.9 .54	50.5	0.947	19.4	0.940	48.3	0.933	47.2	0.927	46.2
85	. 1038	0.998	52.1	0.992	50.9	0.985	49.8	0.973	48.7	0.971	47.7	0.96 .1	46.6
86	. 0039	1.037	52.5	1.030	51.3	1.024	50.3	1.017	49.2	1.010	48.1	1.003	47.1
87	. 0040	1.078	52.9	1.071	51.8	1.064	50.7	1.058	49.6	1.051	4 S .6	1.044	47.5
	. 0041												
88		1.118	53.3	1.111	52.3	1.105	51.1	1.098	50.0	1.091	49.0	1.084	48.0
89	. 0042	1.161	53.7	1.154	52.6	1.147	51.5	1.140	50.4	1.13:	49.4	1.126	48.4
90	. 0044	1.204	54.1	1.197	53.0	1.190	51.9	1.183	50.9	1.177	49.8	1.170	48.8
91	. 0045	1.249	54.5	1.242	53.4	1.235	52.3	1.228	51.2	1.221	50.2	1.215	49.2
92	. 0046	1.295	54.8	1.288	53.7	1.281	52.7	1.274	51.6	1.267	50.6	1.260	49.6
	. 0048												
93		1.342	55.2	1.335	54.1	1.328	53.0	1.321	52.0	1.315	51.0	1.308	50.0
94	. 0049	1.390	55.5	1.384	54.4	1.377	53.1	1.370	52.4	1.363	51.4	1.356	50.4
95	. 00.50	1.440	55.9	1.433	54.8	1.126	53.7	1.420	52.7	1.413	51.7	1.406	50.7
96	.0051	1.491	56.2	1.484	55.1	1.477	jı. 1	1.471	53.1	1.464	52.1	1.457	51.1
97	.0053	1.544	56.5	1.537	55.5	1.530	54.4	1.523	$5: 3$	1.516	52.4	1.509	51.5
98	. 0054	1.598	56.8	1.591	55.8	1.554	54.8	1.577	533. 6	1.570	52.8	1.563	51.8
	. 0056												
99		1.6 .33	57.2	1.646	56.1	1.639	55.1	1.6:33	54.1	1.626	53.1	1.619	52.1
100	. 0057	1.710	57.5	1.703	36.4	1.696	55.4	1.690	54.4	1.683	53.1	1.676	52.5
101	. 0059	1.769	57.8	1.762	56.7	1.75.7	5.9 .7	1.743	54.7	1.74 I	53.7	1.734	52.8
102	. 0060	1.829	58.0	1.423	57.0	1.815	. 6.0	1.809	55.0	1.802	54.0	1.794	53.1
103	. 0062	1.890	58.3	1.883	57.3	1.576	56.7	1.869	55.3	1.863	51.3	1.856	53.4
104	$.0063$	1.953	58.6	1.946	57.6	1.939	56.6	1.932	55.6	1.92.5	54.6	1.919	53.7

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.0913$.

Temptrature. Fabrenheit. - Foree of Tapor in English Inches. - Relative Humidity in Hundredths.

Temnerature, Fahrenheit. - Force of Vapor in English Inches - Relative Humidity in Hundredtha.

Wet-BulbThermo-metert^{\prime}Fehren-heit.	$\begin{gathered} \text { Mean } \\ \text { Yertical } \\ \text { Difference } \\ \text { of Force } \\ \text { of Vapor } \\ \text { for each } \\ 0^{\circ} .1 . \end{gathered}$	$\mathbf{t - t ^ { \prime }}$, or Difference of Wet and Dry Buib Thermometers.											
		18.0		180.5		$19^{\circ} .0$		$19^{\circ} .5$		$20^{\circ} .0$		20.5	
		Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { liu- } \\ & \text { mill- } \\ & \text { ity. } \end{aligned}$	Force of Yapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Ifu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	Fielative Hu midity.	Force of Vapor.	Relative Hu-midity.	Force of Vapor.	$\begin{aligned} & \text { Rola- } \\ & \text { tive } \\ & \text { IIu- } \\ & \text { mid- } \\ & \text { ity } \end{aligned}$	Force of Vapor	Rela tive Ifumil. ity.
\bigcirc		Eng. In.		Eng. In.		Eng. In.	33.5	$\begin{aligned} & \overline{\text { Eng. In. }} \\ & 0 .+23 \end{aligned}$		$\begin{gathered} \text { Eng ln. } \\ 0.416 \end{gathered}$	31.4	$\begin{array}{cc} \begin{array}{cc} \text { Eng In. } \\ 0.409 & 30.4 \end{array} \end{array}$	
68		0.44:3	35.7	0.436	34.6								
69	125	0.467	36.4	0.460	35.	0.453	34.2	0.446	33.2	0.440	32.2	0.433	31.2
70	. 0023	0.491	37.1	0.484	36.0	0.477	35.0	0.471	33.9	0.464	32.9	0.457	31.9
71		0.516	37.8	0.509	36.7	0.502	35.7	0.496	34.6	0.489	33.6	0.482	32.7
72	. 0026	0.542	38.5	0.535	37.4	0.528	36.3	0.522	35.3	0.515	34.3	0.508	33.4
	. 0026												
73	. 0027	0.569	39.1	0.562	32.0	0.555	37.0	0.548	36.0	0.542	35.0	0.535	34.0
74		0.596	39.7	0.559	38.7	0.583	37.7	0.576	36.6	0.569	35.7	0.562	34.7
75	. 0028	0.624	40.3	0.618	39.3	0.611	3s. 3	0.604	37.3	0.597	36.3	0.591	35.3
76	$\begin{aligned} & .0029 \\ & .0030 \end{aligned}$	0.654	40.9	0.647	39.9	0.640	3 3.9	0.633	37.9	0.627	36.9	0.620	35.9
77	. 0031	0.683	41.5	0.677	40.5	0.670	39.5	0.663	3-.5	0.656	37.5	0.650	36.5
78	.0032	0.714	42.1	0.707	41.0	0.701	40.0	0.694	39.0	0.657	38.1	0.680	37.1
79		0.746	42.6	0.739	11.6	0.732	40.6	0.726	39.6	0.719	38.6	0.712	37.7
so	. 0033	0.779	43.2	0.752	42.1	0.765	41.1	0.758	40.2	0.752	39.2	0.745	35.3
81	.n034	0.513	43.7	0.506	42.7	0.799	41.7	0.792	40.7	0.755	39.7	0.779	38.5
82	. $003 \overline{5}$	0.547	44.2	0.840	43.2	0.834	42.2	$0 . .27$	41.2	0.820	40.2	0.813	39.4
	. 0036												
83	. 0036	0.853	4.7	0.876	43.7	0.869	42.7	0.663	41.7	0.656	40.7	0.549	39.9
84		0.920	45.2	0.918	4.2	0.906	13.2	0.899	42.2	0.593	41.3	0.856	40.4
85	. 0038	0.958	45.6	0.9 .51	+1.6	0.914	43.7	0.937	42.7	0.930	11.5	0.923	40.9
86	.0639	0.996	16.1	0.989	45.1	0.983	4.1	0.976	43.2	0.969	42.3	0.962	41.3
87	. 0040 .	1.037	46.5	1.030	45.6	1.023	4.6	1.017	43.6	1.010	42.7	1.003	41.5
	-104 4												
88	. 0042	1.077	47.0	1.070	46.0	1.064	45.0	1.0 .57	44.1	1.050	43.2	1.043	42.3
89		1.119	17.4	1.113	46.4	1.106	45.5	1.099	44.5	1.092	43.6	1.055	42.7
90	.0n 43	1.163	47.8	1.156	46.9	1.149	45.9	1.142	45.0	1.136	14.1	1.129	43.2
91	$\begin{aligned} & .0045 \\ & .0047 \end{aligned}$	1.208	48.2	1.201	47.3	1.194	46.3	1.157	45.4	1.180	44.5	1.173	43.6
92		1.254	48.6	1.247	47.7	1.240	46.7	1.233	45.8	1.226	+4.9	1.219	4.0
	. 0043												
93	. 0049	1.301	49.0	1.294	45.1	1.237	47.1	1.250	46.2	1.273	45.3	1.266	4.4
94		1.319	49.4	$1.34{ }^{2}$	48.4	1.335	47.5	1.329	46.6	1.322	45.7	1.315	44.8
95	.0050	1.399	49.8	1.392	48.5	1.385	47.9	1.375	47.0	1.371	46.1	1.364	45.2
96	. 0051	1.450	50.1	1.443	49.2	1.436	45.3	1.429	47.3	$1.4 \geq 2$	46.5	1.415	45.6
97	. 0053	1.502	50.5	1.495	49.5	1.459	48.6	1.482	47.7	1.475	46.8	1.468	46.0
98	.005 4	1.556	50.8	1.549	49.9	1.543	49.0	1.536	48.1	1.529	47.2	1.522	46.3
	. 0055									1.584	47	1.577	46.7
100	. 0057	1.669	51.5	1.662	50.6	1.655	49.7	1.648	45.8	1.641	47.9	1.634	47.0
101	. 0038	1.727	51.8	1.720	50.9	1.713	50.0	1.706	49.1	1.700	45.2	1.693	47.4
102	. 0060	1.757	52.2	1.750	51.2	1.773	50.3	1.766	49.4	1.759	48.6	1.753	47.7
103	.0062.0063	1.849	52.5	1.542	51.5	1.635	50.7	1.828	49.5	1.521	48.9	1.814	48.9
104		1.912	52.8	1.905	51.9	1.698	31.0	1.891	50.1	1.584	49.2	1.877	48.4

Mean Horizontal Difference of Force of Vapor for each $0^{\circ} .1=0.0013$.

Temperature, Fahrenheit. - Force of Vapor in English Inches. - Relative Lumidity in Ifundrelths.

Temperature, Fahrenheit. - Force of Vapor in English Inches. - Relative Humidity in Hundredths.

Wet-BulbThermo-metertFahren-heit.		\mathbf{t} - \mathbf{t}^{\prime}, or Difference of Wet and Dry Bulb Thermometers.											
		210.0		210.5		240.0		220.5		$\mathbf{2} \mathbf{3}^{\circ} \mathbf{0}$		$23^{\circ} .5$	
		$\begin{aligned} & \text { Force of } \\ & \text { Vapor. } \end{aligned}$	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { IIn- } \\ & \text { mid- } \\ & \text { ity } \end{aligned}$	$\begin{aligned} & \text { Force of } \\ & \text { Vapor. } \end{aligned}$	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { mini- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	Relative Hu-midit y.	Force of Vapor.	Relative IIu. midity.	$\left\lvert\, \begin{aligned} & \text { Force of } \\ & \text { Vapor } \end{aligned}\right.$	Relative Hu-midity.
-	0.0024			Eng. In.		Eng. In.		Eng. In.		Eng In.		Eug. In:	
68		0.403	29.5		28.5	$0.3 \sim 9$	27.6	0.383	26.7	0.376	25.8	0.369	2.5 .0
69	.0024	0.426	30.2	0.420	29.3	0.413	28.4	0.406	27.5	0.399	26.6	0.393	25.8
70		0.451	31.0	0.444	30.1	0.437	29.1	0.430	28.2	0.424	27.4	0.417	26.5
71	. 0025	0.476	31.7	0.469	30.8	0.462	29.9	0.455	29.0	0.449	28.1	0.442	. 27.3
72	.0026	0.501	32.4	0.495	31.5	0.458	30.6	0.481	29.7	0.475	28.8	0.468 .	28.0
	. 0027			0.501		0.515	31.3	0.508	30.1	501	29.5	1	28.7
7	. 0023	0	3.8 .1	0.521	32.2	0.515	31.8	0.508	30.4	0.501	30.5	0.494	28.7
75	. 0022	0.556	31.4	0.577	33.5	0.542	32.6	0.535	31.7	0.5.59	30.9	0.522	30.0
76	$\begin{aligned} & .00 \cdot 9 \\ & .0030 \end{aligned}$	0.613	35.0	0.606	34.1	0.599	33.2	0.593	32.3	0.556	31.5	0.579	30.7
77		0.643	35.6	0.636	34.7	0.629	33.5	0.623	33.0	0.616	32.1	0.609	31.3
	. 0031												
78	. 0032	0.674	36.2	0.667	35.3	0.660	34.4	0.653	33.6	0.647	32.7	0.640	31.9
79		0.705	36.5	0.699	35.9	0.692	35.0	0.685	34.2	0.678	33.3	0.671	32.5
80	. 0033	0.738	37.4	0.731	36.5	0.724	3.9. 6	0.718	34.7	0.711	33.9	0.704	33.1
81	.0034	0.752	37.9	0.765	37.0	0.758	36.1	0.751	35.3	0.745	34.5	0.738	33.5
82	. 0035	0.806	38.4	0.500	37.6	0.793	36.7	0.756	35.8	0.779	35.0	0.772	34.2
	. 0036												
83	.0037	0.842	39.0	0.535	38.1	0.829	37.2	0.822	36.4	0.815	35.5	0.808	34.7
84		0.579	39.5	0.572	35.6	0.865	37.7	0.858	36.9	0.552	36.1	0.845	35.2
85	. 0038	0.917	40.0	0.910	39.1	0.903	38.2	0.896	37.4	0.589	36.6	0.882	35.8
86	$\begin{aligned} & .0039 \\ & .0040 \end{aligned}$	0.955	40.4	0.445	39.6	0.942	38.7	0.935	37.9	0.923	37.1	0.921	36.3
87		0.995	40.9	0.988	40.1	0.981	39.2	0.975	38.4	0.968	37.5	0.961	36.7
	. 0041												
88	. 0042	1.036	41.4	1.029	40.5	1.022	39.7	1.016	38.8	1.009	38.0	1.002	37.2
89		1.078	41.8	1.071	41.0	1.065	40.1	1.058	39.3	1.051	38.5	1.044	37.7
90	. 0044	1.122	4.3	1.115	41.1	1.108	40.6	1.101	39.7	1.094	38.9	1.085	38.1
91	.0045	1.166	42.7	1.160	41.9	1.153	41.0	1.116	40.2	1.139	39.4	1.132	35.6
92	. 0046	1.212	43.1	1.206	42.3	1.199	41.4	1.192	40.6	1.155	39.8	1.178	39.0
	. 0048												
93		1.260	43.5	1.253	42.7	1.216	41.9	1.239	41.0	1.232	40.2	1.225	39.4
94	. 0049	1.308	43.9	1.301	43.1	1.291	42.3	1.287	41.4	1.250	40.6	1.274	39.9
95	.0050	1.353	41.3	1.351	43.5	1.344	42.7	1.337	41.8	1.330	41.0	1.323	40.3
96	.0051	1.408	4.7	1.402	43.9	1.395	13.0	1.858	42.2	1.351	41.4	1.374	40.7
97	$\begin{aligned} & .0053 \\ & .0054 \end{aligned}$	1.461	+5. 1	1.454	44.3	1.447	43.4	1.440	12.6	1.133	41.8	1.426	41.1
98		1.515	45.5	1.508	44.6	1.501	43.5	1.494	43.0	1.487	42.2	1.480	41.4
	. 0056												
	. 0057			1.620		5	4.2	1.530	4.3		13.0		
	. 0059	1.627	46.2	1.620	45.4	1.613	14.5	1.607	43.7	1.600	43.0	1.593	42.2
101		1.686	46.5	1.679	4.5 .7	1.672	44.9	166.5	44.1	1.6 .78	43.3	1.651	12.5
102	. 0060	1.716	46.8	1.739	46.0	1.782	45.2	1.725	44.4	1.718	43.7	1.711	12.9
10:3	.0062	1.807	47.2	1.400	46.4	1.793	45.6	1.786	4.8	1.779	44.0	1.772	43.2
104	. 0063	1.870	47.5	1.863	46.7	1.856	45.9	1.849	45.1	1.542	4.3	1.435	43.6
			Hor	ntal 1	ference	of Force	of Vapo	or for ea	$0^{\circ} .1=$	$=0.0013$.			

Temperature, Fahrenheit. - Force of Vapor iu Euglish Inches. - Relative Humidity in Hundredths.

Temperature. Fahrenheit. - Foree of Vapor in English Inches. - Relative Mumidity in IIundredths.

$\left\lvert\, \begin{gathered} \text { Wet- } \\ \text { Bulb } \\ \text { Themmo } \\ \text { meter } \\ \text { } \left.\begin{array}{c} \text { t } \\ \text { Faren- } \\ \text { heit. } \end{array} \right\rvert\, \end{gathered}\right.$	MeanVerticalDiflerenceof Foreeof Vaporfor cach$0^{\circ} .1$.	t-t', or Difference of Wet and Dry Bulb Thermometers.											
		210.0		210.5		250.0		$25^{\circ} .5$		126.0		$26^{\circ} .5$	
		$\left\lvert\, \begin{gathered} \text { Force of } \\ \text { Yapor. } \end{gathered}\right.$	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Ifu- } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Int } \\ & \text { mid- } \\ & \text { ity. } \end{aligned}$	Force of Vapor.	Relative ILu-midity.	Force of Vapor.	Relative In midity.	Force of Vapor.	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hu- } \\ & \text { mid- } \\ & \text { ity } \end{aligned}$	Force of Vapor	Rela tive Hu* mid. ity.
$\stackrel{\circ}{68}$	0.0024	$\left\lvert\, \begin{gathered} \text { Eng. In. } \\ 0.363 \end{gathered}\right.$	24.2	Eng. In. 0.356		$\left\lvert\, \begin{gathered} \text { Eng. In. } \\ 0.349 \end{gathered}\right.$	22.5	$\begin{aligned} & \text { Eng. In. } \\ & 0.342 \end{aligned}$	21.8	Eng In. 0.336	21.8	$\begin{gathered} \text { Eng In. } \\ 0.329 \end{gathered}$	
65			24.2	0.550	23.3		22.5		21.8		21.5		20.3
69	. 0024	0.356	24.9	0.379	2.1 .1	0.373	23.3	0.366	22.6	0.359	21.8	0.352	21.1
70		0.410	25.7	0.403	24.9	0.397	24.1	0.390	23.3	$0.3>3$	22.6	0.377	21.9
71	$\begin{aligned} & .0025 \\ & .0026 \end{aligned}$	0.435	26.4	0.425	25.6	0.422	24.9	0.415	24.1	0.408	23.3	0.402	22.6
72		0.461	27.2	0.454	26.4	0.448	25.6	0.441	24.8	0.434	24.1	0.427	23.3
	.0027												
73	. 0028	0.188	27.9	0.481	27.1	0.474	26.3	0.467	25.5	0.461	24.8	0.454	24.0
74		0.515	25.5	0.505	27.7	0.502	27.0	0.495	26.2	0.488	25.5	0.481	24.7
75	$.0028$	0.513	29.2	0.537	28.4	0.530	27.6	0.523	26.5	0.516	26.1	0.510	25.4
76	.0029.0030	0.572	29.5	0.566	29.1	0.559	25.3	0.552	27.1	0.545	26.8	0.539	26.1
77		0.602	30.5	0.595	29.7	0.589	28.9	0.582	25.0	0.575	27.4	0.568	26.7
	. 0031												
78	.0032	0.633	31.1	0.626	30.3	0.619	29.5	0.613	28.7	0.606	28.0	0.599	27.3
76		0.665	31.7	0.6 5̄	30.9	0.651	30.1	0.644	29.3	0.635	28.6	0.631	27.9
80	$\begin{aligned} & .0033 \\ & .0034 \end{aligned}$	0.697	32.3	0.691	31.5	0.684	30.7	0.677	29.9	0.670	29.2	0.663	28.5
81		0.731	32.8	0.724	32.1	0.717	31.3	0.711	30.5	0.704	29.8	0.697	29.1
82	. 0035	0.766	33.4	0.759	32.6	0.752	31.8	0.745	31.0	0.735	30.4	0.732	29.7
	. 0036												
83	. 0037	0.501	33.9	0.795	33.2	0.788	32.4	0.781	31.6	0.774	30.9	0.767	30.2
84		0.538	34.5	0.831	33.7	0.824	32.9	0.818	32.1	0.511	31.5	0.804	30.7
85	. 0038	0.876	35.0	0.869	34.2	0.862	33.4	0.85.	32.7	0.848	32.0	0.842	31.3
86	$\begin{aligned} & .0639 \\ & .00+0 \end{aligned}$	0.914	35.5	0.908	34.7	0.901	33.9	0.594	33.2	0.887	32.5	0.880	31.8
87		0.951	36.0	0.947	35.2	0.940	34.4	0.934	33.7	0.927	33.0	0.920	32.3
	. 0041												
58	.004.2	0.995	36.4	0.985	35.7	0.981	34.9	0.975	34.2	0.965	33.5	0.961	32.5
89		1.037	36.9	1.030	36.1	1.024	35.4	1.017	34.7	1.010	33.9	1.003	33.2
90	. 0044	1.051	37.4	1.074	36.6	1.067	35.8	1.060	35.1	1.053	34.4	1.046	33.7
91	. 0045	1.125	37.8	1.118	37.1	1.112	36.3	1.105	35.6	1.098	34.9	1.091	34.2
92	. 0046	1.171	38.2	1.161	37.5	1.157	36.7	1.151	36.0	1.144	35.3	1.137	34.6
93	. 0048	1.218	38.7	1.211	37.9	1.205	37.1	1.195	36.5	1.191	35.7	1.184	35.0
94	. 0049	1.267	39.1	1.260	38.3	1.253	37.5	1.216	36.9	1.239	36.2	1.232	35.5
95	.0050	1.316	39.5	1.309	38.7	1.302	37.9	1.296	37.3	1.289	36.6	1.282	35.9
96	. 0051	1.367	39.9	1.360	39.1	1.353	38.3	1.346	37.7	1.340	37.0	1.333	36.3
97	. 0053	1.420	40.3	1.413	39.5	1. 406	38.7	1.399	38.1	1.392	37.4	1.355	36.7
98	. 0054	1.473	40.7	1.467	39.9	1.460	39.1	1.453	38.5	1.446	37.8	1.439	37.1
99	. 0056	1.529	41.1	1.522	40.3	1.515	39.5	1.508	38.9	1.501	38.2	1.494	37.5
100	.0657	1.586	41.4	1.579	40.7	1.572	39.9	1.565	39.2	1.558	38.5	1.551	37.9
101	$.0059$	1.644	41.8	1.637	41.0	1.630	40.3	1.623	39.6	1.616	38.9	1.609	38.2
102	. 0060	1.704	42.2	1.697	41.4	1.690	40.7	1.683	40.0	1.676	39.3	1.669	35.6
103		1.765	42.5	1.758	41.8	1.75	41.0	1.745	40.3	1.738	39.6	1.731	38.9
104	. 0063	1.829	42.8	1.821	42.1	1.811	41.4	1.807	40.7	1.500	40.0	1.793	39.3
Mean Horizontal Difference of Force of Vapor for eash $0^{\circ} .1=0.0013$.													

Temperature, Fahreuh it. - Force of Vapor in English Inches.-Relative Humidity in Inndredths.

Temperature, Fahrenheit.-Force of Vapor in English Inches.-Relative In midity in Hundredths,

$\begin{gathered} \text { Wet- } \\ \text { Bulb } \\ \text { Thermin } \\ \text { meter } \\ t^{\prime} \\ \text { Faliren- } \\ \text { heit. } \end{gathered}$	MeanVericalDitier-ence ofForee otHaporfor each$0^{\circ} .1$.	t-t', or Difference of Wet and Dry Bulb Thermometers.											
		280.0		28.5		25.0		250.5		29.0		290.5	
		$\begin{aligned} & \text { Force } \\ & \text { of } \\ & \text { of } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Rela- } \\ \text { tive } \\ \text { IIu- } \\ \text { midid- } \\ \text { ity. } \end{gathered}\right.$	Force of Vapor.	$\begin{gathered} \text { Rela- } \\ \text { tive } \\ \text { Hur } \\ \text { tuid- } \\ \text { ity. } \end{gathered}$	Force ot Vapor.	$\begin{gathered} \text { Rela- } \\ \text { tive } \\ \text { Hu- } \\ \text { mid- } \\ \text { ity. } \end{gathered}$	$\begin{aligned} & \text { Force } \\ & \text { of } \\ & \text { Vapor. } \end{aligned}$	$\begin{gathered} \text { Rela- } \\ \text { tive } \\ \text { Hu- } \\ \text { Hitd- } \\ \text { ity. } \end{gathered}$	$\begin{aligned} & \text { Force } \\ & \text { of } \\ & \text { fapor. } \end{aligned}$	$\begin{gathered} \text { Rela- } \\ \text { tive } \\ \text { Hu- } \\ \text { mid- } \\ \text { ity. } \end{gathered}$	$\begin{aligned} & \text { Force } \\ & \text { of } \\ & \text { Vapor. } \end{aligned}$	$\begin{aligned} & \text { Rela- } \\ & \text { tive } \\ & \text { Hui- } \\ & \text { mind- } \\ & \text { ity. } \end{aligned}$
\bigcirc								Eng.In.				5	
68		0.302	19.5	. 31	18.8	. 309	18.2	302	17.5	0.295	16.9	9	6.2
69		0.34	20.3	0.339	19.6	0.332	19.0	0.325	18.3	0.319	17.7	0.312	7.0
70	0.002	0.37	21.1	0.363	20.4	0.356	19.7	0.350	19.1	0.343	18.4	0.336	17.8
71	0.0	0.39	21.9	0.388	21.2	0.381	20.5	0.375	19.8	0.368	19.2	0.361	18.5
72	0.0	$0.4 * 1$	22.6	0.414	21.9	0.407	21.2	0.400	20.6	0.394	19.9	0.387	19.3
	0.0027												
	0.0												. 0
	0.0										21.3	0.441	20.7
75		0.5	24.7	0.496	24.0	0.489	23.3	0.48	2.2 .6	0.476	22.0	1.469	21.4
76		0.532	25.3	0.525	24.6	0.518	24.0	0.511	23.3	0.505	22.7	0.498	22.0
77		0.562	26.0	0.555	25.3	0.548	24.6	0.541	23.9	0.535	23.3	0.528	22.7
78	0.0												
79		0.624	27.2	0.617	26.5	0.610	. 8	0.	25.2	0.597	-4	O...	23.9
80		0.65	27.8	0.650	27.1	0.6i43	20.4	0.636	25.8	0.629	25.1	0.623	2.5
81		0.690	28.4	0.683	27.7	0.677	27.0	0.670	26.3	0.603	25.7	0.656	25.1
82		0.725	29.0	0.718	28.3	0.711	27.6	0.705	26.9	0.698	26.3	0.691	25.7
	0.0036			0.754	28								
84	0.0037	0.797	30.0	0.790	29.3	0.783	28.7	0.777	28.0	0.	27.4	0.763	6. 5
85	0.0039	0.835	30.6	0.828	29.9	0.821	29.2	0.814	28.5	0.808	27.9	0.801	27.3
86	0.11	0.87	31.1	0.867	30.4	0.860	29.7	0.853	29.1	0.846	28.4	0.839	27.6
87		0.913	31.6	0.906	30.9	0.899	30.2	0.893	29.6	0.886	28.9	0.879	8.3
88		0.95	32.1	0.947	31.4	0.940	30.7	0.933	30.1	0.927	29.4	0.920	8.8
89		0.996	32.5	0.989	31.9	0.983	31.2	0.976	30.6	0.969	29.9	0.962	9.3
90		1.040	33.0	1.033	3ミ.3	1.026	31.7	1.019	31.0	1.012	30.	1.005	29.8
91		1.084	33.5	1.077	32.8	1.070	32.1	1.064	31.5	1.057	30.9	1.050	30.3
92		1.	33.9	1.123	33.2	1.116	32.6	1.109	31.9	1.103	31.3	1.096	30.7
	0.0												
				1.218									31.2
	0.00.50			,								1.191	31.6
	0.0051							1.		1.2	32.6	1.241	32.0
96		1.326	35.6	1.319	34.9	1.312	34.3	1.305	33.6	1.29	33.0	1.291	32.4
9	0.0054	1.378	36.0	1.371	35.3	1.364	347	1.357	34.0	1.351	33.4	1.344	32.8
98	0.005	1.432	36.4	1.425	35.7	1.418	35.1	1.411	34.4	1.404	33.5	1.398	33.2
	0.005.												
	0.0057			1.480	. 1	1.473	35.5	1.467	34.8	1.460	34.2	1.453	3.6
100		1.544	37.2	1.537	36.5	1.530	35.9	1.523	35.2	1.516	34.6	1.510	34.0
101		1.603	37.6	1.596	36.9	1.589	30.2	1.582	35.6	1.575	35.1	1.568	4.
102		1.662	37.9	1.655	37.3	1.648	36.6	1.642	36.0	1.635	35.3	1.628	34.7
103		1.724	38.3	1.717	37.6	1.710	37.0	1.703	36.3	1.696	35.7	1.689	35.1
104	0.0063	1.787	38.6	1.779	38.0	1.773	37.3	1.766	36.7	1.759	36.1	1.752	35.5

Mean. Horizontal Difference of Force of Vapor for each $0^{0} .1=0.0013$.

Correction for Barometrical Height above or below the Normal Meight of 29.7 Inches.

TABLE VIII.

FOR DEDUCING THE RELATIVE HUMIDITY OF THE AIR FROM THE INDICATIONS, IN ENGLISH MEASURES, OF THE DEW-POINT INSTRUMENTS.

The object of every Dew-Point instrument is to ascertain, by causing a part of the apparatus to cool, the temperature at which the vapor contained in the air begins to condense, in the shape of light dew, on the cooled portion of the instrument. It is obvious that this is the temperature at which the atmosphere itself, if cooled likewise, would be fully saturated by the amount of vapor present in the air at the time of the observation.

The temperature of the dew-point being known, all the hygrometrical conditions of the air can be easily deduced from it.

The Absolute Humidity, or the total amount of vapor in the atmosphere, is expressed by the number, in the Tables of Elastic Forces of Vapor, due to that temperature.

The Relative Humidity, or the degree of moisture, being the ratio of the quantity of vapor actually contained in the air to the quantity it could contain if fully saturated, is expressed by the proportion

Relative Humidity : $1:$: Force of Vapor at Dew-Point : Maximum Force of Vapor. Calling the

Force of Vapor at the Temperature of the Dew-Point, f;
Force of Vapor at the Temperature of the Air, F;
then

$$
\text { Relative Humidity }=\frac{f}{\mathrm{~F}}
$$

It is thus found by dividing the force of vapor due, in the Table of Elastic Forces, to the temperature of the dew-point, by the maximum of the force of vapor duc, in the same table, to the temperature of the air at the time of the observation. F being always greater than f, when the air is not saturated, the Relative Humidity is expressed by a fraction, which is termed the fraction of saturation. Making the point of saturation $=100$, in order to obtain this fraction in hundredths, we have

$$
\text { Relative Humidity }=\frac{f \times \mathbf{1 0 0}}{\mathcal{F}^{\prime}} \text {. }
$$

Example.

Suppose the

Temperature of the Air, or \mathbf{t}, to be	$=43^{\circ} \mathrm{F}$.
Temperature of the Dew-Point, or \mathbf{t}^{\prime}, to be	$=35^{\circ} \mathrm{F}$.
Difference between the two, or $\mathbf{t}-\mathbf{t}^{\prime}$, to be	$=8^{\circ} \mathrm{F}$.

Taking in Table VI. the Elastic Forces due to t and \mathbf{t}^{\prime}, we have
$\underset{\text { Force of Sapor at at } \mathbf{t}^{\prime}}{\begin{array}{l}\text { fare }\end{array}}=\frac{.2037 \times 100}{2750}=73.4$, Relative Humidity in Hundredths.
The following 'Table VIII. gives, in hundredths, the fraction of saturation, or Relative Humidity, corresponding to each degree of t^{\prime}, or of the temperature of the air, from 0° to 104°; and for every half degree of $t-t^{\prime}$, or of the difference between the temperature of the air and of the dew-point, from $0 .{ }^{\circ} 5$ to $21 .{ }^{\circ} 5$. Regnault's Table of Elastic Forces of Vapor, reduced to English measures, has been used in the computation.

Though the fraction of saturation expressed in hundredths indicates the Relative Humidity with sufficient accuracy, the thousandths have been added to fucilitate, as remarked above in the preface to the Psychrometrical Tables, the interpolations for any number falling between those given in the table.

Use of the Table.
 Example.

Temperature of Air, or \mathbf{t}, being	$=69^{\circ} \mathrm{F}$.
Temperature of the Dew-Point, or \mathbf{t}^{\prime},	$=53^{\circ} \mathrm{F}$.
Difference, or $t-\mathbf{t}^{\prime}$,	$=9^{\circ} \mathrm{F}$.

Find out the Relative Humidity.
In the column of temperatures, the first on the left, find 62°; on the same horizontal line, in the column headed 9°, is found $7 \times .4$, which is the Relative Humidity required.

Should it seem desirable to compute the Relative Humidity for values of $\mathbf{t}-\mathbf{t}^{\prime}$. not contained in the table, the factors given below in Table IX. may be used. It may be seen, however, that an interpolation at sight will always suffice for meteorological purposes.

VIII.

FOR DEDUCING THE RELATIVE HUMIDITY OF THE AIR,

FRON THE INDICATIONS OF DEW•POINT INSTRUMENTS.

Relative IIumidity expressed in IIundredths, full Saturation being $=100$.

Temperature of Air, Fahreubeit.	$\mathbf{t}-\mathbf{t}^{\prime}=$ Difference of Temperatures of the Air and of the Dew-Point. - Fahrenheit.									
	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
0°	100.	97.7	95.4	93.2	91.0	88.9	86.8	84.8	82.8	と0.9
1	100.	97.7	95.5	93.3	91.1	89.0	86.9	84.9	82.9	81.0
2	100.	97.7	95.5	93.3	91.2	89.1	87.0	85.0	\&3.0	81.1
3	100.	97.8	95.5	93.4	91.2	89.2	87.1	85.1	\&3.1	81.2
4	100.	97.8	95.6	93.4	91.3	89.2	87.2	85.2	83.2	81.3
5	100.	97.8	9.5 .6	93.5	91.4	89.3	87.3	85.3	83.3	81.4
6	100.	97.8	9.5 .6	93.5	91.4	89.3	87.3	と5.3	83.3	81.5
7	100.	97.8	95.6	93.5	91.4	89.3	87.3	85.3	83. 4	81.5
8	100.	97.8	95.6	93.5	91.3	89.3	87.3	85.3	83.4	81.5
9	100.	97.8	95.6	93.5	91.3	89.3	87.3	85.3	83.4	81.5
10	100.	97.8	95.6	93.1	91.3	89.3	87.3	85.3	83.4	81.5
11	100.	97.8	95.6	93.4	91.3	89.3	87.3	85.3	83.4	81.6
12	100.	97.8	95.5	93.4	91.3	89.3	87.3	85.4	83.4	81.6
13	100.	97.8	95.5	93.4	91.3	89.3	57.3	85.4	83.5	81.6
14	100.	97.7	95.5	93.4	91.3	89.3	87.3	85.4	83.5	81.7
15	100.	97.7	9.5 .5	93.4	91.3	89.4	87.4	85.5	83.5	81.7
16	100.	97.7	95.5	93.4	91.3	89.3	87.3	85.4	83.5	81.6
17	100.	97.7	95.5	93.4	91.3	89.3	87.3	85.3	83.4	81.6
18	100.	97.7	95.5	93.4	91.3	89.3	87.3	85.3	83.4	81.5
19	100.	97.8	95.5	93.1	91.3	89.3	87.2	85.2	83.3	81.4
	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5

Temperature of Air, Fahrenheit.	$\mathbf{t}-\mathbf{t}^{\prime}=$ Difference of Temperatures of the Air and of the Dew-Point. - Fahrenheit.									
	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5
0°	79.0	77.2	75.4	73.6	71.9	70.1	68.5	66.9	65.3	63.7
1	79.1	77.3	75.5	73.7	72.0	70.2	68.6	67.0	65.4	63.8
2	79.2	77.4	75.6	73.8	72.1	70.3	68.7	67.1	65.5	64.0
3	79.3	77.5	75.7	73.9	72.2	70.5	68.8	67.2	65.6	64.1
4	79.4	77.6	75.8	74.0	72.3	70.6	68.9	67.3	65.7	64.2
5	79.5	77.7	75.9	74.1	72.4	70.7	69.1	67.4	65.8	64.4
6	79.6	77.8	76.0	71.2	72.5	70.8	69.2	67.6	66.0	64.5
7	79.6	77.8	76.0	74.3	72.6	70.9	69.3	67.7	66.1	64.6
S	79.6	77.9	76.1	74.4	72.7	71.0	69.4	67.8	66.2	64.7
9	79.7	77.9	76.1	74.4	72.7	71.1	69.5	67.9	66.3	64.8
10	79.7	77.9	76.2	74.5	72.8	71.2	69.6	68.0	66.4	64.9
11	79.7	78.0	76.2	74.5	72.8	71.2	69.6	68.0	66.5	64.9
12	79.8	78.0	76.2	74.5	72.9	71.2	69.6	68.0	66.5	65.0
13	79.8	75.0	76.3	74.6	72.9	71.3	69.6	68.1	66.5	65.0
14	79.8	78.1	76.3	74.6	72.9	71.3	69.6	68.1	66.5	65.1
15	79.8	78.1	76.3	74.6	72.9	71.3	69.7	68.1	66.6	65.1
16	79.5	78.0	76.2	74.5	72.9	71.2	69.6	68.1	66.5	65.1
17	79.7	77.9	76.1	74.5	72.8	71.2	69.6	68.0	66.5	65.0
18	79.6	77.8	76.1	74.4	72.7	71.1	69.5	68.0	66.5	65.0
19	79.6	77.8	76.0	74.3	72.7	71.1	69.5	68.0	66.4	65.0
	10.0	10.7	11.0	11.5	12.0	12.5	13.0	13.7	14.0	14.5
0°	62.1	60.7	59.2	57.7	56.3	54.9	53.6	52.3	51.0	49.8
1	62.3	60.8	59.3	57.9	56.5	55.1	53.7	52.5	51.2	50.0
2	62.4	61.0	59.5	58.1	56.6	55.3	53.9	52.7	51.4	50.1
3	62.6	61.1	59.6	58.2	56.8	5.5 .5	54.1	52.8	51.5	50.3
4	62.7	61.3	59.8	58.4	57.0	55.7	54.3	53.0	51.7	50.5
5	62.9	61.4	60.0	59.6	57.2	55.8	54.5	53.2	51.9	50.7
6	63.0	61.5	60.1	58.7	57.3	55.9	54.6	53.3	52.0	50.8
7	63.1	61.7	60.2	58.8	57.4	56.0	54.7	53.4	52.1	50.9
8	63.2	61.5	60.3	58.9	57.5	56.2	54.8	53.5	52.3	51.0
9	63.3	61.9	60.4	59.0	57.6	56.3	54.9	53.6	52.4	51.2
10	63.4	62.1	60.5	59.1	57.7	56.4	5.5 .0	53.8	52.5	51.3
11	63.5	62.1	60.6	59.2	57.8	56.5	55.1	53.9	52.6	51.4
12	63.5	62.1	60.6	59.3	57.9	56.6	55.2	54.0	52.7	51.5
13	63.5	622	60.7	59.3	58.0	56.6	55.3	54.1	52.8	51.6
11	63.6	62.3	60.8	59.4	58.1	56.7	55.4	54.2	52.9	51.7
15	63.6	62.3	60.8	59.5	58.1	56.8	55.5	54.3	53.0	51.8
16	63.6	62.3	60.8	59.5	55.1	56.3	55.5	54.3	53.0	51.8
17	63.6	6.2	60.8	59.4	58.1	56.7	55.5	54.2	53.0	51.8
18	63.5	62.2	60.7	59.4	58.0	56.7	55.1	54.2	53.0	51.8
19	63.5	62.1	60.7	59.3	58.0	56.6	55.4	54.2	52.9	51.8

Temperature of Air, Fahrenheit.	$\mathbf{t} \mathbf{t}^{\prime}=$ Difference of Temperatures of the Air and of the Dew-Point. - Fahrenheit.									
	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
20°	100.	97.8	95.6	93.4	91.3	89.2	87.2	85.2	83.2	81.3
21	100.	97.8	95.6	93.4	91.3	89.3	87.3	85.3	83.3	81.5
22	100.	97.8	95.6	93.5	91.4	89.3	87.3	85.4	83.4	81.6
23	100.	97.8	95.6	93.5	91.4	89.4	87.4	8.5.5	83.5	81.7
24	100.	97.8	95.7	93.5	91.5	89.5	87.5	85.5	83.6	81.8
25	100.	97.8	95.7	93.6	91.5	89.5	87.6	85.6	83.7	81.9
26	100.	97.8	95.7	93.6	91.6	89.6	87.7	85.7	83.8	82.0
27	100.	97.9	95.8	93.7	91.7	89.7	\$7.8	85.9	84.0	82.1
28	100.	97.9	9.5 .8	93.8	91.8	89.8	87.9	86.0	84.1	82.3
29	100.	97.9	95.9	93.8	91.8	89.9	88.0	86.1	84.2	82.4
30	100.	97.9	95.9	93.9	91.9	90.0	88.1	86.2	84.3	82.5
31	100.	98.0	96.0	94.0	92.0	90.1	88.2	86.4	84.5	82.7
32	100.	98.0	96.0	94.0	92.1	90.2	88.4	86.6	84.7	83.0
33	100.	98.0	96.1	94.1	92.2	90.4	88.6	86.7	84.9	83.2
34	100.	98.0	96.1	94.2	92.3	90.5	S8.7	86.9	85.1	83.4
35	100.	98.0	96.1	94.3	92.4	90.6	88.9	87.1	85.3	83.6
36	100.	98.1	96.2	94.3	92.5	90.7	85.9	87.1	85.4	83.7
37	100.	98.1	96.2	94.3	92.5	90.7	88.9	87.2	85.4	83.7
39	100.	98.1	96.2	94.3	92.5	90.7	89.0	87.2	85.5	83.8
39	100.	98.1	96.2	94.3	92.5	90.7	89.0	87.2	85.5	83.9
40	100.	98.1	96.2	94.4	92.5	90.8	89.0	87.3	85.6	83.9
41	100.	98.1	96.2	9.4 .4	92.6	90.8	89.1	87.3	85.7	84.0
42	100.	98.1	96.2	94.4	92.6	90.8	89.1	87.4	85.7	84.1
43	100.	98.1	96.3	94.4	92.6	90.9	89.2	87.5	85.8	84.2
44	100.	$9 \mathrm{S}$.	96.3	94.5	92.7	90.9	89.2	87.5	85.9	84.2
45	100.	98.1	96.3	94.5	92.7	91.0	89.3	87.6	85.9	84.3
46	100.	98.1	96.3	94.5	92.7	91.0	89.3	87.6	86.0	84.4
47	100.	95.1	96.3	94.5	92.8	91.0	89.3	87.7	86.0	84.4
48	100.	98.2	96.3	94.6	92.8	91.1	89.4	87.7	86.1	84.4
49	100.	98.2	96.4	94.6	92.8	91.1	89.4	87.7	86.1	84.5
50	100.	98.2	96.4	94.6	92.9	91.1	89.4	87.3	86.2	84.5
51	100.	98.2	96.4	94.6	92.9	91.2	89.5	87.8	86.2	S.4.6
52	100.	98.2	96.4	94.6	92.9	91.2	89.5	87.9	86.3	84.7
53	100.	98.2	96.4	$9+.7$	92.9	91.2	89.6	87.9	86.3	84.7
54	100.	98.2	96.4	94.7	93.0	91.3	89.6	88.0	86.4	84.8
55	100.	98.2	96.5	94.7	93.0	91.3	89.7	88.0	86.4	81.8
56	100.	98.2	96.5	94.7	93.0	91.4	89.7	88.1	86.5	84.9
57	100.	98.2	96.5	94.8	93.1	91.4	89.7	88.1	86.5	85.0
55	100.	93.2	96.5	9.4 .8	93.1	91.4	89.8	88.2	86.6	85.0
59	100.	98.2	96.5	94.8	93.1	91.5	89.8	83.2	86.6	8.5 .1
60	100.	98.2	96.5	94.8	93.2	91.5	89.9	88.3	86.7	8.5 .1
61	100.	98.3	96.5	94.9	93.2	91.5	89.9	88.3	86.7	85.2
62	100.	98.3	96.6	94.9	93.2	91.6	90.0	88.4	86.8	8.5 .3
	0.0	0.5	1.6	1.5	2.0	2.5	3.0	3.5	4.0	4.5

Temperature of Air, Fahren. heit.	$\mathbf{t}-\mathbf{t}^{\prime}=$ Difference of Temperatures of the Air and of the Dew-Point - Fahrenheit.									
	0.0	0.5	1.0	1.5	2.1	2.5	3.0	3.5	4.9	4.5
62°	100.	93.3	96.6	94.9	93.2	91.6	90.0	88.4	86.8	85.3
63	100.	98.3	96.6	94.9	93.2	91.6	90.0	88.4	86.8	85.3
6.4	100.	98.3	96.6	94.9	93.3	91.6	90.0	88.5	86.9	85.3
65	100.	93.3	96.6	94.9	93.3	91.7	90.1	88.5	86.9	85.4
68	100.	93.3	96.6	94.9	93.3	91.7	90.1	88.5	87.0	85.4
67	100.	95.3	96.6	95.0	93.3	91.7	90.1	88.6	87.0	55.5
63	100.	98.3	96.6	95.0	9:3.4	91.8	90.2	88.6	87.1	85.5
69	100.	98.3	96.6	95.0	93.4	91.8	90.2	88.7	87.2	85.6
70	100.	98.3	96.7	95.0	93.4	91.8	90.3	88.7	87.2	85.7
71	100.	98.3	96.7	95.0	93.4	91.9	90.3	88.8	87.2	85.8
72	100.	98.3	96.7	9.5 .1	93.5	91.9	90.3	88.8	87.3	85.8
73	100.	98.3	96.7	9.5	93.5	91.9	90.4	88.8	87.3	85.9
74	100.	98.3	96.7	9.9 .1	93.5	91.9	90.4	88.9	87.4	85.9
75	100.	98.3	96.7	95.1	93.5	92.0	90.4	88.9	87.4	86.0
76	100.	98.3	96.7	95.1	93.6	92.0	90.5	S9.0	87.5	86.0
77	100.	98.4	96.7	95.2	93.6	92.0	90.5	89.0	87.5	86.1
78	100.	98.4	96.7	95.2	93.6	92.1	90.5	89.1	S7.6	86.1
79	100.	93.4	96.5	95.2	93.6	92.1	90.6	89.1	87.6	86.2
s0	100.	98.4	96.8	95.2	93.6	92.1	90.6	89.1	87.7	86.2
81	100.	98.4	96.8	95.2	93.7	92.1	90.6	89.2	87.7	86.3
82	100.	95.4	96.8	95.2	93.7	92.2	90.7	89.2	87.8	86.3
83	100.	95.4	96.8	9.5 .3	93.7	92.2	90.7	89.3	87.8	86.4
84	100.	95.1	96.8	95.3	93.7	92.2	90.8	89.3	87.8	86.4
85	100.	98.4	96.8	95.3	93.8	9.3	90.8	89.3	57.9	86.5
86	100.	98.4	96.8	95.3	93.8	92.3	90.8	89.4	87.9	86.5
87	100.	95.4	96.9	95.3	93.8	92.3	90.9	89.4	88.0	86.6
88	100.	98.4	96.9	95.3	93.8	92.3	90.9	89.4	88.0	86.6
89	100.	98.4	96.9	95.4	93.9	92.4	90.9	89.5	88.1	86.7
90	100.	98.4	96.9	95.4	93.9	92.4	91.0	89.5	88.1	86.7
91	100.	98.4	96.9	95.4	93.9	92.4	91.0	89.6	88.2	86.8
92	100.	98.5	96.9	95.4	93.9	92.5	91.0	89.6	88.2	86.8
93	100.	98.5	96.9	95.4	93.9	92.5	91.1	89.6	88.2	86.9
94	100.	98.5	96.9	95.4	94.0	92.5	91.1	89.7	88.3	86.9
95	100.	95.5	97.0	95.5	94.0	92.5	91.1	89.7	88.3	S7.0
96	100.	95.5	97.0	95.5	9.4 .0	92.6	91.2	89.7	88.4	87.0
97	100.	98.5	97.0	95.5	94.0	92.6	91.2	89.8	88.4	87.0
98	100.	98.5	97.0	95.5	94.1	92.6	91.2	89.8	88.4	87.1
99	100.	98.5	97.0	95.5	94.1	92.7	91.3	89.9	88.5	S7.1
100	100.	98.5	97.0	95.6	94.1	92.7	913	89.9	S-. 5	87.2
101	100.	98.5	97.0	95.6	94.1	92.7	91.3	89.9	88.6	87.2
102	100.	98.5	97.0	95.6	94.2	92.7	91.4	90.0	$8 \bigcirc .6$	87.3
103	100.	98.5	97.0	95.6	94.2	92.5	91.1	90.0	88.7	87.3
104	100.	95.5	97.0	95.6	94.2	92.5	91.4	90.0	88.7	87.4
	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
B					81					

Temperature of Air, Fahrenheit.	$\mathbf{t}-\mathbf{t}^{\prime}=$ Difference of Temperatures of the Air and of the Dew-Point. - Fahrenheit.									
	5.0	5.5	6.0	6.5	8.0	7.5	8.0	8.5	9.0	9.5
20°	79.3	77.7	75.9	74.2	72.6	71.0	69.4	67.9	66.4	64.9
21	79.6	77.8	76.0	74.3	72.7	71.1	69.5	68.0	66.4	65.0
2.	79.7	77.9	76.1	74.4	72.8	71.2	69.6	68.0	66.5	65.0
23	79.8	78.0	76.2	74.6	72.9	71.3	69.6	68.1	66.5	65.0
21	79.9	73.1	76.4	74.7	73.0	71.4	69.7	68.1	66.6	65.1
25	80.0	78.2	76.5	74.5	73.1	71.5	69.8	68.2	66.6	65.1
26	80.2	78.4	76.6	74.9	73.2	71.7	70.0	68.4	66.8	65.3
27	80.3	78.5	76.5	75.1	78.4	71.8	70.1	68.6	67.0	65.5
28	80.5	78.7	76.9	75.2	73.6	72.0	70.3	68.8	67.2	65.7
29	80.6	75.8	77.1	75.4	73.7	72.1	70.5	68.9	67.4	65.9
30	80.7	78.9	77.2	75.6	73.9	72.3	70.7	69.1	67.6	66.1
31	81.0	79.2	77.5	75.8	74.2	72.6	71.0	69.4	67.9	66.4
32	81.2	79.4	77.7	76.1	74.4	72.8	71.3	69.7	68.2	66.7
33	81.4	79.7	75.0	76.4	74.7	73.1	71.5	70.0	68.5	67.0
31	81.7	79.9	78.3	76.6	75.0	73.4	71.8	70.3	68.8	67.3
35	81.9	80.2	78.5	76.9	75.3	73.7	72.1	70.6	69.1	67.6
36	82.0	80.3	78.6	77.0	7.9 .4	73.9	72.3	70.8	69.3	67.8
37	8.2	80.4	78.8	77.2	7.7 .6	74.0	72.5	71.0	69.5	68.1
35	82.1	80.5	78.9	77.3	75.8	74.2	72.7	71.2	69.8	68.3
39	82.2	S0.6	79.0	77.4	75.9	74.4	72.9	71.5	70.0	68.6
40	82.3	80.7	79.1	77.6	76.1	74.6	73.2	71.7	70.2	68.8
41	82.4	80.8	79.2	77.7	76.2	74.7	73.2	71.8	70.3	68.9
42	82.5	80.9	79.3	77.8	76.3	74.8	73.3	71.9	70.5	69.0
43	82.5	80.9	79.4	77.9	76.4	74.9	73.4	72.0	70.6	69.2
44	82.6	81.0	79.5	78.0	76.5	75.0	73.5	72.1	70.7	69.3
45	82.7	81.1	79.6	78.0	76.5	75.1	73.6	72.2	70.8	69.1
46	82.8	81.2	79.6	78.1	76.6	7.5 .1	73.7	72.3	70.9	69.5
47	8.2 .9	81.2	79.7	78.2	76.7	7.3 .2	73.9	72.4	71.0	69.6
48	82.9	81.3	79.8	78.2	76.8	75.3	73.9	72.5	71.1	69.7
49	82.9	81.3	79.8	78.3	76.8	7.5 .1	74.0	72.6	71.2	69.8
50	83.0	81.4	79.9	78.4	76.9	75.5	74.0	72.7	71.3	69.9
51	83.0	81.5	S0.0	78.5	77.0	75.5	74.1	72.8	71.4	70.0
52	83.1	81.5	80.0	78.5	77.1	7.9 .6	74.2	72.8	71.5	70.1
53	83.2	81.6	80.1	78.6	77.2	7.7	74.3	72.9	71.6	70.2
54	83.2	S 1.7	80.2	78.7	77.2	7.5 .8	74.4	73.0	71.7	70.3
55	53.3	81.5	80.3	78.8	77.3	75.9	74.5	73.1	71.8	70.4
56	83.4	81.8	80.3	78.9	77.4	76.0	74.6	73.2	71.9	70.5
57	83.4	81.9	80.4	78.9	77.5	76.1	74.7	73.3	72.0	70.6
59	$8: 3.5$	82.0	80.5	79.0	77.6	76.2	74.8	73.4	72.1	70.7
59	83.6	8.3 .0	S0.6	79.1	77.7	76.2	71.9	73.5	72.2	70.9
60	83.6	82.1	80.6	79.2	77.7	76.3	75.0	73.6	72.3	71.0
61	83.7	82.2	80.7	79.2	77.8	76.4	75.0	73.7	72.4	71.0
62	83.7	8.2 .2	80.8	79.3	77.9	76.3	75.1	73.8	72.4	71.1
	5.0	5.5	6.0	6. 5	7.0	7.5	8.0	8.5	3.0	9.5

Temperature of Air, Fahrenheit.	$\mathbf{t}-\mathbf{t}^{\prime}=$ Difference of Temperatures of the Air and of the Dew-Point. - Fahrenheit.									
	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5
62°	83.7	8.2.2	50.8	79.3	77.9	76.5	75.1	73.8	72.4	71.1
63	83.8	82.3	80.8	79.4	78.0	76.6	75.2	73.9	72.5	71.2
64	83.9	82.4	80.9	79.5	78.1	76.7	75.3	74.0	72.6	71.3
65	83.9	82.4	81.0	79.6	78.1	76.8	75.4	74.0	72.7	71.4
66	84.0	82.5	81.1	79.6	78.2	76.8	75.5	74.1	72.8	71.5
67	84.0	82.6	81.1	79.7	78.3	76.9	75.6	74.2	72.9	71.6
63	84.1	82.6	81.2	79.8	78.4	77.0	75.7	74.3	73.0	71.7
69	84.2	82.7	81.3	79.9	78.5	77.1	75.7	74.4	73.1	71.8
70	84.2	82.8	81.3	79.9	78.5	77.2	75.8	74.5	73.2	71.9
71	84.3	82.8	81.4	80.0	78.6	77.3	75.9	74.6	73.3	72.0
72	84.3	82.9	81.5	80.1	78.7	77.3	76.0	74.7	73.4	72.1
73	84.4	83.0	81.5	80.1	78.7	77.4	76.1	74.8	73.5	72.2
74	84.5	83.0	81.6	80.2	78.8	77.5	76.2	74.9	73.6	72.3
75	84.5	83.1	81.7	80.3	78.9	77.6	76.2	74.9	73.7	72.4
76	84.6	83.1	81.7	80.4	75.9	77.7	76.3	75.0	73.7	72.5
77	84.6	83.2	81.8	S0.4	79.0	77.7	76.4	75.1	73.8	72.6
79	84.7	83.3	81.9	80.5	79.1	77.8	76.5	75.2	73.9	72.7
79	84.7	83.3	81.9	80.6	79.1	77.9	76.6	75.3	74.0	72.8
80	84.8	83.4	82.0	80.6	79.2	78.0	76.7	75.4	74.1	72.9
81	84.9	83.5	82.1	80.7	79.3	73.0	76.7	75.5	74.2	73.0
82	84.9	83.5	82.1	80.8	79.4	78.1	76.8	75.5	74.3	73.0
83	85.0	83.6	82.2	80.8	79.4	78.2	76.9	75.6	74.4	73.1
S4	85.0	83.6	82.3	80.9	79.5	78.3	77.0	75.7	74.5	73.2
85	8.5 .1	83.7	82.3	81.0	79.6	78.4	77.1	75.8	74.6	73.3
86	85.1	83.7	82.4	81.1	79.7	78.4	77.1	75.9	74.6	73.4
87	85.2	83.8	82.)	81.1	79.8	78.5	77.2	76.0	74.7	73.5
88	8.5 .2	83.9	82.)	81.2	79.9	78.6	77.3	76.1	74.8	73.6
89	85.3	83.9	82.6	81.3	79.9	$7 \times .7$	77.4	76.1	74.9	73.7
90	85.3	84.0	82.6	81.3	80.0	78.7	77.5	76.2	75.0	73.8
91	85.4	84.0	82.7	81.1	80.1	78.5	77.5	76.3	75.1	73.9
92	85.4	84.1	82.8	81.5	80.2	78.9	77.6	76.4	75.2	74.0
93	85.5	84.2	82.8	81.5	80.2	79.0	77.7	76.5	75.2	74.0
94	8.5. 6	84.2	82.9	81.6	80.3	79.0	77.8	76.6	75.3	74.1
95	85.6	84.3	83.0	81.7	80.4	79.1	77.9	76.6	75.4	74.2
96	85.7	84.3	83.0	81.7	80.4	79.2	77.9	76.7	75.5	74.3
97	85.7	84.4	83.1	81.8	80.5	79.3	78.0	76.8	75.6	74.4
93	85.8	84.4	83.1	81.9	80.6	79.3	78.1	76.9	75.7	74.5
99	85.8	84.5	83.2	81.9	80.7	79.4	78.2	77.0	75.8	74.6
100	85.9	84.6	83.3	82.0	80.7	79.5	78.3	77.0	75.8	74.7
101	85.9	84.6	83.3	82.0	80.8	79.6	78.3	77.1	75.9	74.8
102	86.0	84.7	83.4	82.1	80.9	79.6	75.4	77.2	76.0	74.9
103	86.0	84.7	83.4	82.2	80.9	79.7	75.5	77.3	76.1	74.9
104	86.1	84.3	83.5	82.2	81.0	79.8	78.6	77.4	76.2	75.0
	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5

$\begin{aligned} & \text { Temper- } \\ & \text { ature } \\ & \text { of Air, } \\ & \text { Fahr n- } \\ & \text { heit. } \end{aligned}$	$\mathbf{t} \mathbf{t}^{\prime}=$ Difference of Temperatures of the Air and of the Dew-Point.-Fabrenheit.									
	19.0	10.5	11.0	11.5	12.0	1-2.5	13.0	13.5	14.0	14.5
20°	63..5	62.1	60.6	59.3	58.0	56.6	55.1	54.1	52.9	51.7
21	63.5	62.1	60.7	59.3	55.0	56.6	55.4	54.2	53.0	51.8
22	63.5	62.1	60.7	59.4	58.0	56.7	55.5	54.2	53.0	51.8
23	63.6	62.1	60.7	59.4	58.0	56.7	5.3.5	54.3	53.0	51.9
21	63.6	62.1	60.7	59.4	58.1	56.8	55.5	54.3	53.1	51.9
2.5	63.6	62.1	60.7	59.4	58.1	56.9	55.6	54.4	53.1	52.0
26	63.8	62.3	60.9	59.6	58.3	57.0		54.5	53.3	52.1
27	61.0	62.5	61.1	59.8	58.5	57.2	55.9	54.6	53.4	52.2
25	64.2	62.7	61.3	60.0	58.6	57.3	56.0	54.8	53.5	52.3
29	64.4	63.0	61.5	60.2	58.8	57.5	56.2	54.9	53.7	52.4
30	64.6	63.2	61.8	60.4	59.0	57.7	56.3	55.1	53.8	52.6
31	64.9	63.5	62.1	60.7	59.3	58.0	56.6	55.4	54.1	52.9
32	65.2	63.8	62.4	61.0	59.6	58.3	57.0	55.7	54.4	53.2
33	6.5 .5	64.1	62.7	61.3	59.9	58.6	57.3	56.0	54.7	53.5
34	65.8	64.4	63.0	61.6	60.2	55.9	57.6	56.3	55.0	53.8
3.5	66.1	64.7	63.3	61.9	60.5	59.2	57.9	56.6	55.4	54.1
36	66.4	64.9	63.5	62.1	60.8	59.5	58.2	56.9	55.6	51.4
37	66.6	6.9 .2	63.8	62.4	61.1	59.8	58.5	57.2	55.9	54.7
35	66.9	65.5)	64.1	62.7	61.4	60.1	$5 \times .8$	57.5	56.2	55.0
39	67.1	65.7	64.4	63.0	61.7	60.3	59.1	57.8	56.5	55.3
40	67.4	66.0	64.6	63.3	62.0	60.6	59.4	58.1	56.8	55.6
41	67.5	66.1	64.8	63.5	62.1	60.9	59.6	58.3	57.1	55.9
42	67.7	66.3	65.0	63.6	62.3	61.1	59.8	58.6	57.3	56.1
43	67.8	66.4	65.1	63.8	62.5	61.3	60.0	58.8	57.6	56.4
44	67.9	66.6	65.3	64.0	62.7	61.5	60.3	59.0	57.8	56.6
45	68.1	66.7	65.4	64.2	62.9	61.7	60.5	59.3	58.1	56.9
46	63.2	669	6.3 .6	64.3	63.0	61.8	60.6	59.4	58.2	57.0
47	65.3	67.0	65.7	64.4	63.2	61.9	60.7	59.5	58.3	57.2
48	68.4	67.1	65.5	64.5	633.3	62.0	60.8	59.6	58.5	57.3
49	68.5	67.2	67.9	61.6	63.4	62.1	61.0	59.8	58.6	57.4
50	63.6	67.3	66.0	64.7	63.5	62.2	61.1	59.9	58.7	57.6
51	68.7	67.4	66.1	64.9	63.6	62.4	61.2	60.0	58.9	57.7
52	65.5	67.5	66.2	65.0	63.7	62.5	61.3	60.1	59.0	57.5
53	68.9	67.6	66.4	65.1	63.9	62.6	61.4	60.3	59.1	58.0
54	69.0	67.7	66.5	65.2	64.0	62.7	61.6	60.4	59.2	58.1
55	69.1	67.5	66.6	65.3	64.1	62.9	61.7	60.5	59.4	58.2
56	69.2	67.9	66.7	65.4	64.2	63.0	61.8	60.6	59.5	58.4
57	69.3	69.1	66.8	65.6	64.3	63.1	61.9	60.8	59.6	58.5
59	69.5	68.2	66.9	65.7	61.4	63.2	62.1	60.9	59.8	58.6
59	69.6	68.3	67.0	65.8	64.6	63.4	62.2	61.0	59.9	588
60	69.7	68.4	67.1	67.9	64.7	63.5	62.3	61.2	60.0	58.9
61	69.8	68.5	67.2	66.0	64.8	63.6	62.4	61.3	60.1	59.0
62	69.9	62.6	67.4	66.1	64.9	6:3.7	62.6	61.4	60.3	59.1
	10.0	10.5	11.0	11.5	1 BO	10.3.7	13.0	13.5	18.0	14.5
B					64					

Temperature of Air, Fahrenheit.	$\mathbf{t}-\mathbf{t}^{\prime}=$ Difference of Temperatures of the Air and of the Dew-Point. - Fahrenheit.									
	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5
62°	69.9	68.6	67.4	66.1	64.9	63.7	62.6	61.4	60.3	59.1
63	70.0	68.7	67.5	66.2	65.0	63.8	62.7	61.5	60.4	59.3
64	70.1	68.8	67.6	66.3	65.1	64.0	62.8	61.6	60.5	59.4
65	70.2	63.9	67.7	66.5	65.3	64.1	62.9	61.8	60.6	59.5
66	70.3	69.0	67.8	66.6	65.4	64.2	63.0	61.9	60.8	59.7
67	70.4	69.1	67.9	66.7	65.5	64.3	63.2	62.0	60.9	59.8
65	70.5	69.2	68.0	66.8	65.6	64.4	63.3	62.1	61.0	59.9
69	70.6	69.3	63.1	66.9	6.7.7	64.5	63.4	62.3	61.1	60.0
70	70.7	69.4	68.2	67.0	65.8	64.7	63.5	62.4	61.3	60.2
71	70.9	69.5	68.3	67.1	65.9	64.8	63.6	62.5	61.4	60.3
72	70.9	69.6	68.4	67.2	66.0	64.9	63.7	62.6	61.5	60.4
73	71.0	69.7	68.5	67.3	66.2	6.5 .0	6:3.9	62.7	61.6	60.5
74	71.1	69.8	68.6	67.4	66.3	6.9 .1	64.0	62.8	61.7	60.7
75	71.1	69.9	68.7	67.5	66.4	6.5 .2	64.1	63.0	61.9	60.8
76	71.2	70.0	68.8	67.6	66.5	65.3	64.2	63.1	62.0	60.9
77	71.3	70.1	68.9	67.8	66.6	65.5	64.3	63.2	62.1	61.0
78	71.4	70.2	69.0	67.9	66.7	65.6	64.4	63.3	62.2	61.1
79	71.5	70.3	69.1	68.0	66.8	6.7 .7	64.5	63.4	62.3	61.3
80	71.6	70.4	69.2	68.1	66.9	6.5 .8	64.7	63.6	62.5	61.4
81	71.7	70.5	69.3	68.2	67.0	65.9	64.8	63.7	62.6	61.5
82	71.8	70.6	69.4	68.3	67.1	66.0	64.9	63.8	62.7	61.6
83	71.9	70.7	69.)	68.4	67.2	66.1	65.0	63.9	62.8	61.8
St	72.0	70.9	69.6	6.9.5	67.3	66.2	65.1	64.0	62.9	61.9
85	72.1	70.9	69.7	69.6	67.4	66.3	65.2	64.1	63.0	62.0
86	72.2	71.0	69.8	68.7	67.5	66.4	65.3	64.2	63.2	62.1
87	72.3	71.1	69.9	68.8	67.7	66.5	6.5 .4	64.4	63.3	62.2
88	72.4	71.2	70.0	$6 \checkmark .9$	67.8	66.6	65.5	64.5	63.4	62.3
89	72.5	71.3	70.1	69.0	67.9	66.8	65.7	64.6	63.5	62.5
90	72.6	71.4	70.2	69.1	68.0	66.9	65.5	64.7	63.6	62.6
91	72.7	71.4	70.3	69.2	68.1	67.0	65.9	64.8	63.7	62.7
92	72.8	71.5	70.4	69.3	68.2	67.1	66.0	64.9	63.9	62.8
93	72.9	71.6	70.5	69.4	68.3	67.2	66.1	65.0	64.0	62.9
94	72.9	71.7	70.6	69.5	68.4	67.3	66.2	65.1	64.1	63.0
95	73.0	71.8	70.7	69.6	63.5	67.4	66.3	65.2	64.2	63.2
96	73.1	71.9	70.8	69.7	68.6	67.5	66.4	65.4	64.3	63.3
97	73.2	72.0	70.9	69.5	68.7	67.6	66.5	6.5 .5	64.4	63.4
93	73.3	72.1	71.0	69.9	68.5	67.7	66.6	65.6	64.5	63.5
99	73.4	72.3	71.1	70.0	68.9	67.8	66.7	6.5 .7	64.6	63.6
100	73.5	72.4	71.2	70.1	69.0	67.9	66.8	6.5 .8	64.8	6:3.7
101	73.6	72.5	71.3	70.2	69.1	68.0	67.0	6.5 .9	64.9	63.9
102	73.7	72.6	71.4	70.3	69.2	68.1	67.1	66.0	65.0	64.0
103	73.8	72.7	71.5	70.4	69.3	68.2	67.2	66.1	65.1	64.1
104	73.9	72.8	71.6	70.5	69.4	68.3	67.3	66.2	6.5 .2	64.2
	10.0	10.5	11.0	1.1 .3	12.0	19.5	13.6	13.5	1. 1.0	14.3.5

Temperature of Air , Fahrenheit.	\mathbf{t} - $\mathbf{t}^{\prime}=$ Difference of Temperatures of the Air and of the Dew-Point. - Fahrenbeit.									
	15.0	15.5	16.0	16.5	18.0	17.5	18.0	18.5	19.0	18.5.
20°	50.6	49.5	43.4	47.3	46.2	45.1	44.1	43.1	42.1	41.2
21	50.6	49.5	48.4	+7.3	46.2	45.1	44.2	43.2	42.2	41.2
22	50.7	49.5	18.4	47.4	46.3	4.5 .2	44.2	43.2	42.2	41.3
23	50.7	49.6	48.5	47.4	46.3	45.2	44.2	43.3	42.3	41.3
24	50.7	49.6	48.5	17.4	46.4	45.3	44.3	43.3	42.3	41.4
2.5	50.8	49.7	18.5	47.5	46.4	45.4	44.3	43.3	42.4	41.4
26	50.9	49.9	48.6	47.6	46.5	45.4	44.4	43.4	42.4	41.5
27	51.0	49.9	48.7	47.7	46.6	4.5 .5	44.5	43.5	42.5	41.6
23	51.1	50.0	43.8	47.7	46.7	45.6	44.6	43.6	42.6	41.6
29	51.2	50.1	48.9	47.8	46.8	45.7	44.7	43.7	42.7	41.7
30	51.4	50.2	49.0	47.9	46.8	45.8	44.7	43.7	42.7	41.8
31	51.7	50.5	49.4	43.2	47.1	46.1	45.0	44.0	43.0	42.0
32	52.0	50.8	49.7	48.5	47.4	46.4	45.3	44.3	43.3	42.3
33	52.3	51.1	50.0	48.8	47.7	46.6	45.6	44.5	43.5	42.5
34	52.6	51.4	50.3	49.1	48.0	46.9	45.9	44.8	43.8	42.8
3.5	52.9	51.7	50.6	49.4	48.3	47.2	46.1	45.1	44.1	43.0
36	53.2	52.0	50.9	49.7	48.6	47.5	46.4	45.4	14.4	43.3
37	53.5	52.3	51.2	50.0	48.9	47.8	46.7	45.7	44.7	43.6
38	53.8	52.6	51.5	50.3	49.2	48.1	47.0	46.0	45.0	43.9
39	54.1	52.9	51.3	50.6	49.5	48.4	47.3	46.3	45.3	4.4 .2
40	54.4	53.2	52.1	50.9	49.8	48.7	47.6	46.6	4.7 .6	44.5
41	54.7	53.5	52.3	51.2	50.1	49.0	47.9	46.9	45.8	44.8
42	51.9	53.8	52.6	51.5	50.4	49.3	48.2	47.2	46.1	45.1
43	5.5 .2	54.0	52.9	51.8	50.7	49.6	48.5	47.5	46.4	45.4
44	55.5	54.3	53.2	52.1	50.9	49.9	48.8	47.7	46.7	45.7
45	53.7	54.6	53.4	52.3	51.2	50.2	49.1	48.0	47.0	46.0
46	5.5 .9	$5+7$	53.6	52.5	51.4	50.4	49.3	48.3	47.2	46.2
47	56.0	54.9	53.8	52.7	51.6	50.6	49.5	48.5	47.5	46.5
18	56.2	55.0	54.0	52.9	51.8	50.8	49.8	48.7	47.7	46.7
49	56.3	55.2	51.1	53.1	52.0	51.0	50.0	49.0	47.9	47.0
50	56.5	55.1	51.3	53.2	52.2	51.2	50.2	49.2	48.2	47.2
51	56.6	5.5 .5	51.4	53.4	52.3	51.3	50.3	49.3	48.3	47.4
52	56.7	5.5 .6	54.6	53.5	52.5	51.5	50.5	49.5	48.5	47.5
53	58.9	5.5 .8	54.7	53.6	52.6	51.6	50.6	49.6	48.6	47.7
54	57.0	55.9	54.8	53.8	52.7	51.7	50.7	49.8	48.8	47.8
55	57.1	56.0	5.5 .0	53.9	52.9	51.9	50.9	49.9	48.9	48.0
56	57.3	56.2	55.1	54.1	53.0	52.0	51.0	50.0	49.1	48.1
57	57.4	56.3	55.2	54.2	53.2	52.2	51.2	50.2	49.2	48.3
53	57.5	56.4	5.5 .4	54.3	53.3	52.3	51.3	50.3	49.4	48.4
59	57.7	56.6	5.5 .5	54.5	53.4	52.4	51.4	50.5	49.5	486
60	57.8	56.7	55.6	54.6	53.6	52.6	51.6	50.6	49.7	48.7
61	57.9	56.8	5.5 .8	54.7	53.7	52.7	51.7	50.8	49.8	48.9
62	58.0	57.0	5.5 .9	54.9	53.8	52.8	51.9	50.9	49.9	49.0
	1.5.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5

Temperature of Air, Fahrenheit.	$\mathbf{t}-\mathbf{t}^{\prime}=$ Difference of 'Temperatures of the Air and of the Dew-Point. - Fahrenheit.									
	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5
62°	58.0	57.0	55.9	54.9	53.8	52.8	51.9	50.9	49.9	49.0
63	58.2	57.1	56.0	55.0	54.0	53.0	52.0	51.0	50.1	49.1
64	58.3	57.2	56.2	55.1	54.1	53.1	52.1	51.2	50.2	49.3
65	58.4	57.4	56.3	55.3	54.3	53.3	52.3	51.3	50.4	49.4
66	58.6	57.5	56.4	55.4	54.4	53.4	52.4	51.5	50.5	49.6
67	58.7	57.6	56.6	55.5	54.5	53.5	52.6	51.6	50.6	49.7
68	58.8	57.8	56.7	55.7	54.7	53.7	52.7	51.7	50.8	49.9
69	59.0	57.9	56.8	55.8	54.8	53.8	52.8	51.9	50.9	50.0
70	59.1	58.0	57.0	55.9	54.9	53.9	53.0	52.0	51.1	50.1
71	59.2	58.2	57.1	56.1	55.1	54.1	53.1	52.1	51.2	50.3
72	59.3	58.3	57.2	56.2	55.2	54.2	53.2	52.3	51.3	50.4
73	59.5	58.4	57.4	56.3	55.3	54.3	53.4	52.4	51.5	50.6
74	59.6	58.5	57.5	56.5	55.5	54.5	53.5	52.6	51.6	50.7
75	59.7	55.7	57.6	56.6	55.6	54.6	53.6	52.7	51.7	50.8
76	59.8	58.8	57.8	56.7	55.7	54.7	53.8	52.8	51.9	51.0
77	60.0	58.9	57.9	56.9	55.9	54.9	53.9	530	52.0	51.1
78	60.1	59.1	58.0	57.0	56.0	55.0	54.0	53.1	52.2	51.2
79	60.2	59.2	58.1	57.1	56.1	55.1	54.2	53.2	52.3	51.4
80	60.3	59.3	58.3	57.3	56.3	55.3	54.3	53.4	52.4	51.5
81	60.5	59.4	58.4	57.4	56.4	55.4	54.5	53.5	52.6	51.7
82	60.6	59.6	58.5	57.5	56.5	55.5	54.6	53.6	52.7	51.8
83	60.7	59.7	58.6	57.6	56.6	55.7	54.7	53.8	52.8	51.9
84	60.8	59.8	58.8	57.8	56.8	55.8	54.8	53.9	53.0	52.1
85	60.9	59.9	58.9	57.9	56.9	55.9	55.0	54.0	53.1	52.2
86	61.1	60.0	59.0	58.0	57.0	56.1	55.1	54.2	53.2	52.3
87	61.2	60.2	59.1	58.1	57.2	56.2	55.2	54.3	53.4	52.5
88	61.3	60.3	59.3	58.3	57.3	56.3	55.4	54.4	53.5	52.6
89	61.4	60.4	59.4	58.4	57.4	56.5	55.5	54.6	53.7	52.7
90	61.6	60.5	59.5	58.5	57.6	56.6	55.6	54.7	53.5	52.9
91	61.7	60.7	59.6	58.7	57.7	56.7	55.8	54.8	53.9	53.0
92	61.8	60.8	59.8	58.8	57.8	56.9	55.9	55.0	54.1	53.2
93	61.9	60.9	59.9	58.9	57.9	57.0	56.0	55.1	54.2	53.3
94	62.0	61.0	60.0	59.0	58.1	57.1	56.2	55.2	54.3	53.4
95	62.1	61.1	60.1	59.2	58.2	57.2	56.3	55.4	54.5	53.6
96	62.3	61.3	60.3	59.3	58.3	57.4	56.4	55.5	54.6	53.7
97	62.4	61.4	60.4	59.4	58.4	57.5	56.5	55.6	54.7	53.8
98	62.5	61.5	60.5	59.5	58.6	57.6	56.7	55.8	54.9	54.0
99	62.6	61.6	60.6	59.6	58.7	57.7	56.9	55.9	55.0	54.1
100	62.7	61.7	60.7	59.8	58.8	57.9	56.9	56.0	55.1	54.2
101	62.8	61.9	60.9	59.9	58.9	58.0	57.1	56.2	55.3	54.4
102	63.0	62.0	61.0	60.0	59.1	58.1	57.2	56.3	55.4	54.5
103	63.1	62.1	61.1	60.1	59.2	58.3	57.3	56.4	55.5	54.6
104	63.2	62.2	61.2	60.3	59.3	58.4	57.5	56.6	55.7	54.8
	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5	19.0	19.5

B

Temperature of Air , Fahr uheit.	$\mathbf{t}-\mathbf{t}^{\prime}=$ Difference of Temperatures of the Air and of the Dew-Point.-Fahrenheit.									
	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5	24.0	28.5
20°	40.2	39.3	38.4	37.5	36.6	35.8	34.9	34.1	33.3	32.5
21	40.3	39.4	38.4	37.6	36.7	35.8	35.0	34.2	33.1	33.6
22	40.3	39.4	38.5	37.6	36.8	3.5.9	35.1	34.3	33.5	32.7
23	40.4	39.5	35.6	37.7	36.8	36.0	35.2	34.4	33.6	32.8
24	40.1	39.6	38.6	37.8	36.9	36.1	35.2	34.4	33.6	32.9
2.5	40.5	39.6	38.7	37.8	37.0	36.2	3.5 .3	34.5	33.7	33.0
26	40.5	39.7	38.8	37.9	37.0	36.2	35.4	34.6	33.8	83.1
27	40.6	39.7	38.8	38.0	37.1	36.3	35.5	34.7	33.9	33.1
28	40.7	39.8	38.9	38.0	37.2	36.3	35.5	34.7	34.0	33.2
29	40.8	39.9	38.9	38.1	37.2	36.4	35.6	34.5	3 +. 0	33.3
30	40.8	39.9	39.0	38.1	37.3	36.5	35.7	34.9	34.1	33.4
31	41.1	40.2	39.2	38.4	37.5	36.7	35.9	35.1	34.3	33.6
32	41.3	40.4	39.5	38.6	37.7	37.0	36.1	35.3	34.5	83.8
33	41.6	40.6	39.7	38.8	38.0	37.2	36.3	35.5	34.7	84.0
34	41.8	40.9	39.9	39.1	38.2	37.4	36.5	35.7	34.9	31.2
3.5	f2.1	41.1	40.2	39.3	38.4	37.7	36.7	35.9	35.1	34.4
36	42.3	41.4	40.4	39.6	$\cdot 38.7$	37.9	37.0	36.2	35.4	34.6
37	42.6	41.7	40.7	39.8	38.9	38.2	37.2	36.4	35.6	34.8
35	42.8	42.0	41.0	40.1	39.2	38.4	37.5	36.6	35.8	35.0
39	43.1	42.3	41.3	40.4	39.5	38.6	37.7	36.9	36.0	35.2
40	43.3	42.6	41.6	40.7	39.8	38.9	38.0	37.1	36.3	35.4
41	43.7	42.9	41.9	41.0	40.0	39.1	38.3	37.4	36.5	35.7
42	4.0	43.2	42.2	41.2	40.3	39.4	38.5	37.7	36.8	36.0
43	44.3	43.4	42.5	41.5	40.6	39.7	38.8	38.0	37.1	36.3
44	44.7	43.7	42.8	41.8	40.9	40.0	39.1	38.2	37.4	36.6
45	45.0	440	43.1	42.1	41.2	40.3	39.4	38.5	37.7	36.8
46	45.2	44.3	43.3	42.4	41.4	40.5	39.7	38.8	37.9	37.1
47	45.5	44.5	43.6	42.6	41.7	40.8	39.9	39.1	38.2	87.4
48	4.5 .7	44.5	43.9	42.9	42.0	41.1	40.2	39.3	38.5	87.6
49	46.0	45.0	44.1	43.2	42.2	41.3	40.5	39.6	38.7	37.9
50	46.2	45.3	4.3	43.4	42.5	41.6	40.7	39.9	39.0	37.2
51	46.4	4.). 4	44.5	43.6	42.7	41.8	40.9	40.1	39.2	38.4
52	46.6	45.5	44.7	43.8	42.9	42.0	41.2	40.3	39.5	38.6
53	46.7	45.8	4.9	44.0	43.1	42.2	41.4	40.5	39.7	38.9
54	46.9	46.0	45.1	44.2	43.3	42.4	41.6	40.8	39.9	39.1
55	47.0	46.1	45.2	44.4	43.5	42.6	41.8	41.0	40.1	39.3
56	47.2	46.3	45.4	44.5	43.6	42.8	42.0	41.1	40.3	39.5
57	47.3	46.4	45.5	4.4	43.8	42.9	42.1	41.3	40.5	39.6
58	47.5	46.6	4.78	44.8	43.9 .	43.1	42.3	41.4	40.6	39.8
59	47.6	46.7	45.8	45.0	44.1	43.2	42.4	41.6	40.8	40.0
60	47.8	46.9	46.0	45.1	44.2	43.4	42.5	41.7	40.9	40.1
61	47.9	47.0	46.1	45.3	44.4	43.5	42.7	41.9	41.1	40.3
62	48.1	47.2	46.3	45.4	44.5	43.7	42.8	42.0	41.2	40.4
	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5	24.0	24.5

Temperature of Air, Fahrenheit.	\mathbf{t} - $\mathbf{t}^{\prime}=$ Difference of Temperatures of the Air and of the Dew-Point. - Fahrenheit.									
	20.0	20.5	21.1	21.5	22.0	22.5	23.0	23.5	24.0	94.5
62°	48.1	47.2	46.3	45.4	44.5	43.7	42.8	42.0	41.2	40.4
63	48.2	47.3	46.4	45.5	44.7	43.8	43.0	42.2	41.4	40.6
64	48.4	47.5	46.6	4.5	44.8	4.0	43.1	42.3	41.5	40.7
65	48.6	47.6	46.7	45.8	45.0	44.1	43.3	42.5	41.7	40.9
66	48.7	47.8	46.9	46.0	45.1	44.3	43.4	42.6	41.8	41.0
67	48.8	47.9	47.0	46.1	45.3	44.4	43.6	42.8	42.0	41.2
68	48.9	45.0	47.2	46.3	45.4	44.6	43.7	42.9	42.1	41.3
69	49.1	48.2	47.3	46.4	45.6	44.7	43.9	43.1	42.3	41.5
70	49.2	48.3	47.4	46.6	45.7	44.9	44.0	43.2	4-.4	+1.6
71	49.4	48.5	47.6	46.7	45.9	45.0	44.2	43.4	42.6	41.8
72	49.5	48.6	47.7	46.9	46.0	45.2	44.3	43.5	42.7	41.9
73	49.6	48.8	47.9	47.0	46.1	45.3	44.5	43.7	42.9	42.1
74	49.8	48.9	48.0	47.1	46.3	45.4	44.6	43.8	43.0	42.2
75	49.9	49.0	48.2	47.3	46.4	45.6	44.8	44.0	43.1	42.4
76	50.1	49.2	48.3	47.4	46.6	45.7	44.9	4.1	43.3	42.5
77	50.2	49.3	48.5	47.6	46.7	45.9	45.1	4.2	43.4	42.6
78	50.3	49.5	48.6	47.7	46.9	46.0	45.2	44.4	43.6	42.8
79	50.5	49.6	49.7	47.8	47.0	46.2	45.3	44.5	43.7	43.0
80	50.6	49.7	49.9	48.0	47.2	46.3	45.5	44.7	43.9	43.1
81	50.8	49.9	49.0	48.1	47.3	46.5	45.6	44.8	44.0	43.2
82	50.9	50.0	49.2	48.3	47.4	46.6	45.8	45.0	44.2	43.4
83	51.0	50.1	49.3	48.4	47.6	46.8	45.9	45.1	44.3	43.5
84	51.2	50.3	49.1	48.6	47.7	46.9	46.1	45.3	44.5	43.7
85	51.3	50.4	49.6	48.7	47.9	47.0	46.2	45.4	44.6	43.5
S6	51.4	50.6	49.7	48.8	48.0	47.2	46.4	45.6	44.8	44.0
87	51.6	50.7	49.8	49.0	48.1	47.3	46.5	45.7	44.9	4.1
88	51.7	50.8	50.0	49.1	48.3	47.5	46.6	45.8	45.0	44.3
89	51.9	51.0	50.1	49.3	48.4	47.6	46.8	46.0	45.2	44.4
90	52.0	51.1	50.3	49.4	48.6	47.7	46.9	46.1	45.3	44.6
91	52.1	51.3	50.4	49.5	48.7	47.9	47.1	46.3	45.5	44.7
92	52.3	51.4	50.5	49.7	48.3	48.0	47.2	46.4	45.6	4.8
93	52.4	51.5	50.7	49.8	49.0	48.2	47.4	46.6	15.8	45.0
94	52.5	51.7	50.8	50.0	49.1	48.3	47.5	46.7	45.9	45.1
9.5	52.7	51.8	50.9	50.1	49.3	45.4	47.6	46.8	46.1	453
96	52.8	51.9	51.1	50.2	49.1	48.6	47.8	47.0	46.2	45.4
97	52.9	52.1	51.2	50.1	49.5	48.7	47.9	47.1	46.3	45.6
98	53.1	52.2	51.4	50.5	49.7	48.9	48.1	47.3	46.5	45.7
99	53.2	52.3	51.5	50.6	49.8	49.0	48.2	47.4	46.6	45.9
100	53.4	52.5	51.6	50.8	50.0	49.1	48.3	47.5	46.8	46.0
101	53.5	52.6	51.8	50.9	50.1	-19.3	48.5	47.7	46.9	46.2
102	53.6	52.8	51.9	51.1	50.2	49.4	48.6	47.8	47.1	46.3
103	53.8	52.9	52.0	51.2	50.4	49.6	48.8	48.0	47.2	46.4
104	53.9	53.0	52.2	51.3	50.5	49.7	48.9	48.1	47.3	46.6
	20.0	20.5	21.0	\$11.5	22.0	29.5	$\mathbf{2 3 . 0}$	23.5	21.0	24.5
B					ऽЭ					

TABLE IX.

```
FACTOR }\mp@subsup{}{F}{100},\mp@code{FOR COMPUTING THE RELATIVE HUMIDITY, OR THE DEGREE OF MOISTURE
        OF THE AIR, EXPRESSED IN HUNDREDTHS, FROM ITS ABSOLUTE
                        HUMIDITY GIVEN IN ENGLISH MEASURES.
```

The Relative Humidity, or the degree of moisture of the air, is, as explained above, the ratio of the quantity of vapor contained in the air to the quantity it could contain at the temperature observed, if fully saturated.

If we call
The force of vapor contained in the air $=f$,
The maximum of the force of vapor at the temperature of the air $=\mathrm{F}$,
The point of saturation $=100$,
we have the proportion,

$$
\text { Relative Humidity : } 100:: f: \mathrm{F} \text {, }
$$

and

$$
{ }_{F}^{f \times 100}=\text { Relative Humidity in Hundredths. }
$$

But as $\frac{f \times{ }_{\mathbf{F}}^{100}}{{ }^{10}}=f \times{ }_{\mathbf{F}}^{\mathbf{1 0 0}}$, it is obvious that the operation indicated by the former expression, viz. $\frac{f \times{ }_{\mathbf{F}}{ }^{100} \text {, would be reduced to a simple muttiplication, if we had a }}{}$ table of the factors ${ }_{F}^{100}$. Such a table is obtained by dividing the constant number 100 by each number in the 'Table of Elastic Forces of Vapor, and substituting the quotients for the tensions, or forees of vapor.

The following Table gives the factor ${ }_{F}^{100}$ for every tenth of a degree from 0° to 104° Fahrenheit, corresponding to the Forces of Vapor in Table VI., or Reguault's table reduced to English measures.

Use of the Table.

The force of vapor contained in the air, or its absolute humidity, being given in English measures, multiply the number expressing it by the factor in the table corresponding to the temperature of the air at the time of the observation; the result will be the Relatice Humidity in Hundredths.

Examples.

1. Suppose the temperature of the air to be $=60^{\circ}$ Fahrenheit.
" " foree of vapor in the air to be $=.388$ English inch.
Opposite 60° is found in the table the factor 193.1.
Then $\quad 0.388 \times 193.1=74.9$, Relative Humidity in Hundredths.
2. Suppose the temperature of the air to be $=74^{\circ} .5$ Fahrenheit.
" " force of vapor in the air to be $=.650$ English inch.
Table gives for $74^{\circ} .5$ the factor 117.2 .
Then $\quad 0.650 \times 117.2=76.2$, Relative Humidity required.
B
Ix. factor $\frac{100}{F}$, for COMPUTing the Relative humidity, or the degree of moisture of the Air,

EXPRESSED IN HUNDREDTHS, FROM ITS ABSOLUTE HUMIDITY
GIVEN IN ENGLISH INCHES.

Temperature of Air, Fahrenheit.	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
0°	2306	2295	2285	2275	2264	2254	2.43	22:33	2222	22.1
1	2201	2191	2181	2171	2162	2152	2142	2132	2122	2111
2	2101	2092	$\underline{2083}$	2074	2064	2055	2045	2036	2026	2017
3	2007	1998	1990	1981	1972	1963	19.54	1945	1936	1927
4	1918	1910	1901	1893	1885	1876	1868	1859	1851	1842
5	1834	1826	1818	1810	1802	1794	1786	1777	1769	1761
6	1753	1745	1733	1730	1722	1714	1707	1699	1691	1683
7	1675	1668	1660	1653	1616	1638	1631	1623	1616	1608
8	1600	1594	1557	1580	1572	1565	15.58	1551	1544	1537
9	1529	1523	1516	1509	1503	1496	1489	1482	1475	1469
10	1462	1455	1449	1443	1436	1430	1423	1417	1410	1404
11	1397	1391	1355	1379	1373	1367	1361	1355	1348	1342
12	1336	1330	1324	1319	1313	1307	1301	1295	1289	1284
13	1278	1272	1267	1261	1255	1250	1244	1239	1233	1228
14	$1 \because 22$	1217	1211	1206	1200	1195	1189	1184	1178	1173
15	1167	1162	1157	1151	1146	1141	1136	1130	1125	1120
16	1114	1109	1104	1099	1094	1089	1084	1079	1074	1069
17	1064	1059	1053	1050	1045	1040	1035	1031	1026	1021
18	1016	1012	1007	1003	998.2	993.6	989.1	984.5	979.9	975.3
19	970.6	966.4	962.2	957.9	953.7	949.4	945.0	940.7	936.3	931.9
20	927.5	923.5	919.5	915.5	911.4	907.4	903.3	S99.1	895.0	890.8
21	886.7	882.9	879.1	875.3	871.4	867.6	863.7	859.8	855.8	851.9
22	817.9	844.3	840.7	837.1	833.4	829.8	826.1	82.2 .4	818.7	815.0
23	SI1.2	807.8	S04.3	800.8	797.3	793.8	790.2	786.7	783.1	779.5
24	775.9	772.6	769.3	766.0	762.7	759.3	756.0	752.6	749.2	745.8
2.5	742.4	739.3	736.2	733.0	729.9	726.7	723.5	720.3	717.1	713.9
26	710.6	707.7	704.7	701.8	693.8	695.8	692.8	689.7	686.7	683.6
27	650.5	677.8	675.0	672.1	669.3	666.5	663.6	660.7	657.8	654.9
28	652.0	649.4	646.7	644.1	641.4	638.7	636.0	633.3	630.5	627.5
29	625.0	622.5	620.0	617.5	614.9	612.4	609.5	607.2	604.6	602.0
30	599.4	597.1	594.7	592.3	589.9	587.4	585.0	582.6	580.1	577.6
31	575.1	572.9	570.7	568.4	566.2	563.9	561.6	559.2	556.9	554.5
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

B

Temperature of Air, Fahrenheit.	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
32°	552.2	550.0	547.8	545.7	543.6	541.4	539.3	537.2	5:5.1	533.0
33	530.9	528.8	526.8	524.7	522.7	520.6	518.6	516.5	514.5	512.5
34	510.5	508.5	506.5	504.5	502.5	500.5	498.6	496.6	494.7	492.7
35	490.8	488.9	487.0	485.1	483.2	481.3	479.4	477.5	475.6	473.8
36	471.9	470.1	468.2	466.4	464.6	462.8	461.0	459.2	457.4	455.6
37	453.8	452.0	450.3	448.5	446.8	445.0	443.3	441.6	439.9	438.1
38	436.4	434.7	433.1	431.4	429.7	428.0	426.4	424.7	423.1	421.4
39	419.8	418.2	416.6	415.0	413.4	411.8	410.2	408.6	407.0	405.5
40	403.9	402.4	400.8	399.3	397.8	396.2	394.7	393.2	391.7	290.2
41	388.7	387.2	385.8	384.3	382.9	381.4	350.0	378.5	377.1	375.7
42	374.3	372.9	371.5	370.0	368.6	367.3	365.9	364.5	363.1	361.7
43	360.4	3.59 .0	357.6	356.3	354.9	353.6	352.3	350.9	349.6	348.3
44	347.0	345.6	3 4.3	343.0	341.7	340.4	339.2	337.9	336.6	335.3
45	334.1	332.8	331.6	330.3	328.1	327.8	326.6	325.4	324.1	322.9
46	321.7	320.5	319.3	318.1	316.9	315.7	314.5	313.3	312.2	311.0
47	309.8	308.7	307.5	306.4	305.2	304.1	302.9	301.8	300.7	299.6
43	295.5	297.3	296.2	293.1	294.0	292.9	291.9	290.8	259.7	2×8.6
49	2~7.6	286.5	283.4	281.4	283.3	282.3	281.3	280.2	279.2	278.2
50	277.1	276.1	275.1	274.1	273.1	272.1	271.1	270.1	269.1	268.2
51	267.2	266.2	265.2	264.3	263.3	262.3	261.4	260.4	259.5	258.5
52	2.57 .6	2.56 .6	255.7	2.54 .8	253.8	252.9	252.0	251.1	250.2	249.3
53	218.3	217.1	216.5	24.5 .6	24.7	243.9	243.0	242.1	241.2	240.3
54	239.5	238.6	237.7	236.9	236.0	23.5 .1	234.3	233.4	232.6	231.7
55	2:30.9	230.1	229.2	228.4	227.6	226.8	225.9	225.1	$22+.3$	223.5
50	22.7	221.9	221.1	220.3	219.5	218.7	217.9	217.1	216.4	215.6
57	214.8	214.0	213.3	212.5	211.8	211.0	210.2	209.5	208.7	208.0
58	207.3	206.5	205.8	20.5 .0	204.3	203.6	202.9	202.2	201.4	200.7
59	200.0	199.3	19 ¢. 6	197.9	197.2	196.5	195.8	19.5. 1	194.4	193.8
60	193.1	192.4	191.7	191.0	190.1	189.7	189.0	188.4	187.7	187.0
61	186.4	185.7	185.1	184.4	183.8	183.1	182.5	181.8	181.2	180.6
62	179.9	179.3	178.7	178.0	177.4	176.8	176.2	175.6	174.9	174.3
63	173.7	173.1	172.5	171.9	171.3	170.7	170.1	169.5	168.9	168.3
64	167.7	167.1	16 t.6	166.0	165.4	164.3	164.3	163.7	163.1	162.5
65	162.0	1614	160.9	160.3	159.7	159.2	158.6	158.1	157.5	157.0
66	156.5	15.5 .9	155.4	154.8	154.3	153.8	153.2	152.7	152.2	151.7
67	1.51 .1	150.6	150.1	149.6	149.1	145.6	148.1	147.6	147.1	146.6
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Temperature of Air. Fahrenbeit.	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7	8.	9.
-68 ${ }^{\circ}$	146.0	145.6	145.1	144.6	14.1	143.6	143.1	142.6	142.1	141.6
69	141.2	140.7	140.2	139.7	139.2	138.8	138.3	137.8	137.4	136.9
70	136.4	136.0	135.5	135.1	134.6	134.1	133.7	133.2	132.8	132.3
71	131.9	131.4	131.0	130.5	130.1	129.7	129.2	128.8	128.3	127.9
72	127.5	127.1	126.6	126.2	125.8	125.3	124.9	124.5	124.1	123.7
73	123.3	122.8	122.4	122.0	121.6	121.2	120.8	120.4	120.0	119.6
74	119.2	118.8	118.4	118.0	117.6	117.2	116.8	116.4	116.0	115.6
75	115.3	114.9	114.5	114.1	113.7	113.3	113.0	112.6	112.2	111.9
76	111.5	111.1	110.7	110.4	110.0	109.6	109.3	108.9	108.6	108.2
77	107.9	107.5	107.1	106.8	106.4	106.1	105.7	105.4	105.1	104.7
78	104.4	104.0	103.7	103.3	103.0	102.7	102.3	102.0	101.7	101.3
79	101.0	100.7	100.3	100.0	99.68	99.35	99.02	98.70	98.38	98.06
80	97.73	97.42	97.10	96.78	96.47	96.15	95.84	95.52	95.21	94.90
81	94.59	94.29	93.98	93.67	93.37	93.06	92.76	92.46	92.16	91.86
82	91.56	91.26	90.97	90.67	90.38	90.09	89.80	89.51	89.22	88.93
83	88.64	88.36	88.07	87.79	87.50	87.22	86.94	86.66	86.38	86.10
84	85.83	85.55	85.27	85.00	84.73	84.46	84.19	83.92	83.65	8:3.3
85	83.12	82.85	82.59	82.32	82.06	81.80	81.54	81.28	81.02	80.75
86	80.51	80.25	80.00	79.71	79.49	79.24	78.99	78.74	78.49	78.24
87	77.99	77.75	77.50	77.26	77.01	76.77	76.52	76.28	76.04	75.80
88	75.56	75.32	75.08	74.85	74.61	74.37	74.14	73.91	73.67	73.44
89	73.21	72.98	72.75	72.52	72.29	72.06	71.81	71.61	71.39	71.16
90	70.94	70.72	70.49	70.27	70.05	69.83	69.61	69.39	69.18	68.96
91	68.74	65.53	68.32	68.10	67.89	67.68	67.47	67.26	67.05	66.81
92	66.63	66.42	66.22	66.01	65.81	65.60	65.40	65.19	64.99	64.79
93	64.59	64.39	64.19	63.99	63.79	63.59	63.40	63.20	63.01	62.81
94	62.62	62.43	62.24	62.04	61.85	61.66	61.47	61.29	61.10	60.91
95	60.72	60.54	60.35	60.17	59.98	59.80	59.62	5943	59.25	59.07
96	58.89	58.71	58.53	58.35	58.17	58.00	57.82	57.64	57.47	57.29
97	57.12	56.94	56.77	56.60	56.42	56.25	56.08	55.91	5.5 .74	55.57
98	55.40	55.23	55.06	54.90	54.73	54.56	54.40	54.23	51.07	53.91
99	53.74	5358	53.42	53.26	53.09	52.93	52.77	52.61	52.45	52.30
100	52.14	51.98	51.82	51.67	51.51	51.36	51.20	51.05	50.90	50.74
101	50.59	50.44	50.29	50.14	49.99	49.84	49.69	49.54	49.39	49.24
102	49.10	48.95	48.80	48.66	48.51	48.37	48.22	48.08	47.94	47.79
103	47.65	47.51	47.37	47.23	47.09	46.95	46.81	46.67	46.53	46.40
104	46.26	46.12	45.99	45.85	45.72	45.58	45.45	45.31	45.18	45.04
	0.	1.	2.	3.	4.	5.	6.	7	8.	9.

TABLE X.

WEIGIIT OF VAPOR, IN GRAINS TROY,

CONTAINED IN A CUBIC FOOT OF SATURATED AIR, UNDER A BAROMETRIC PRESSURE OF 30 ENGLISH INCHES, AT TEMPERATURES BETWEEN 0° AND 105° FAHRENHEIT.

The weight of a litre of dry air at the temperature of zero Centigrade, or 32° Fahrenheit, and under a barometric pressure of 760 millimetres, as determined by the experiments of Regnault (Mémoires de l'Institut, Tom. XXI. p. 157), and corrected for a slight error of computation (see above, p. 38), is 1.293223 grammes. The coefficient of expansion of the air, according to the same physicist, is 0.00367 for 1° Centigrade ; and the theoretic density of vapor is nearly 0.622 , or $\frac{5}{8}$, of that of the air at the same temperature and pressure. From these elements the weight of the vapor contained in a determined volume of air, the temperature and humidity of which are known, can be deduced.

Reducing these values to English measures, 1 litre being $=61.02705$ cubic inches, and I gramme $=15.43208$ grains Troy, we have

$$
1.293223 \text { grammes }=19.9571208 \text { grains, }
$$

and
61.027051 cubic inches : 19.9571208 grains : : 1 cubic inch : 0.32702 grain.

Therefore, the weight of a cubic foot of dry air, at $3 \mathfrak{Z}^{\circ}$ Fahreuheit, under a pressure of 760 millimetres, or 29.922 English inches, is $=0.32702$ grain $\times 1728=565.0923$ grains Troy. Under a barometric pressure of 30 inches, it becomes

$$
\frac{30}{29922} \times 565.0923=566.5654 \text { grains. }
$$

The cocfficient for the expansion of the air becomes 0.0020361 of its bulk for 1° Fithenheit.

Now, if we call
$t=$ the temperature of the air;
$W=$ the weight of vapor in a saturated air at the temperature t;
$\mathrm{F}=$ the maximum of the force of vapor due to the temperature t, as given in the tables;
then the weight of the vapor contained in a cubic foot of saturated air is given by the formula

$$
\mathrm{W}=0.622 \frac{566.5654 \text { grains }}{1+0.002036 \times\left(t-32^{\circ}\right)} \cdot \frac{\mathrm{F}}{30}
$$

from which the values in Table X. have been computed. The forces of vapor due to the temperatures in the first column are those of Regnault, as given in Table VI.

It is evident, that, in order to find the weight of the vapor contained in the air at any state of humidity and pressure, it suffices to substitute for the normal values of $\frac{\mathrm{F}}{30}$ the force of vapor and the barometric pressure given by the observation.

x. Weight of vapor, in grains troy,

CONTAINED IN A CUBIC FOOT OF SATURATED AIR, AT TEMPERATURES
BETWEEN 0° AND 105° FAHRENHEIT.

Temperature of Air, Fahren.	Force of Vapor in Eug. Iuches.	Weight of Vapor in Grains.	Difference.	Temperature of Air, Fahren.	Force of Vapor in Eng. Inches.	Weight of Vapor in Grains.	Difference.	Temperature of Air, Fahren	Force of Vapor in Eng. Inches.	Weight of Vapor in Grains.	Differeuce.
0°	0.04:3	0.545		35°	0.204	2.379		70°	0.733	7.992	
1	0.045	0.569	0.0	36	0.212	2.469		71	0.758	8.252	0.261
2	0.018	0.595		37	0.220	2.563	0.093	72	0.784	8.521	0.268
3	0.0 .50	0.621	0.027	38	0.229	2.659	0.0	73	0.811	8.797	0.276
4	0.052	0.649	0.028	39	0.238	2.759	0.100	74	0.839	9.051	0.284
			0.0:9				0.103				0.291
5	0.055	0.678		40	0.248	2.862		75	0.865	9.372	
6	0.0 .57	0.708	0.030	41	0.257	2.967	0.106	76	0.697	9.670	0.298
7	0.060	0.739		42	0.267	3.076	0.109	77	0.927	9.977	0.307
8	0.062	0.772		43	0.277	3.189	0.113	78	0.958	10.292	0.315
9	0.065	0.506	0.034	44	0.288	3.306	0.116	79	0.940	10.616	0.324
			0.035				0.120				0.332
10	0.068	0.841		45	0.299	3.426		80	1.023	10.9 .49	
11	0.072	0.878	0.037	46	0.311	3.5 .50	0.124	81	1.057	11.291	0.342
12	0.075	0.916	0.	, 47	$0 .: 323$	3.679	0.129	82	1.092	11.643	0.352
13	0.078	0.957	0.040	48	0.335	3.511	0.133	83	1.128	. 0	0.361
14	0.052	0.949	0.042	49	0.348	3.948	0.137	S4	1.165	12.376	0.371
			0.044				0.141			12.376	0.380
15	0.086	1.013		50	0.361	4.089		85	1.203	12.756	
16	0.090	1.090	0.046	51	0.374	4.234	0.145	86	1.212	13.146	0.390
17	0.034	$1.13{ }^{\text {P }}$	0.049	52	0.388	4.38:3	0.149	87	1.282	13.546	0.400
18	0.098	1.190	0.051	53	0.403	4.537	0.154	88	3		0.411
19			0.053	5			0.159		1.38		0.421
19	0.103		0.055	54	4	4.696	0.163	89	6	14.375	0.432
20	0.109	1.299		55	0.133	4.860		90	1.410	14.810	
21	0.113	1.3 .55	0.057	56	0.449	5.028	0.168	91	1.455	15.254	0.143
22	0.118	1.415	0.059	57	0.166	5.202	0.174	92	1.501	15.709	0.855
23	0.123	1.47	0.062	58	0.48	5.381	0.179		1.548		0.467
24	0.129	1.54	0.064	59	500	5.566	0.185	94	597		0.479
		1.5	0.066	5	0.50	5.566	0.190	94	1.597	16.654	0.491
25	0.135	1.606		60	0.518	5.756		95	1.647	17.145	
26	0.141	$1.67 \pm$	0.068	61	0.337	5.952	0.196	96	1.698	17.648	0.503
27		1.745	0.070	$6 \cdot$	0.55		0.202		1.71		0.516
8		1.745	0.073	6		6.	0.208	9	1.8	18.164	0.529
28	0.153	1.817		63	0.576	6.361		98	1.805	18.693	0.5.12
29	0.160	1.892	0.077	64	0.596	6.575	0.220	99	1.861	19.235	0.545
30	0.167	1.969		65	0.617	6.795		100	1.918	19.790	
31	0.174	2.046	0.077	66	0.639	7.021	0.226	101	1.977	20.357	0.567
			0.080				0.232				0.582
32	0.181	2.126	082	67	0.662	7.253	0.239	102	2.037	20.935	0.596
33	0.188	2.208		68	0.685	7.493	0.289	103	2.099	21.535	0.596
31	0.196	2.292	0.084	69	0.703	7.739	0.246	104	2.162	22.146	0.611
35	0.204	2.379	0.057	70	0.733	7.992	0.253	105	2.227	22.771	0.625

B
95

PRACTICAL TABLES,

ENGLISH MEASURES,

BASED ON THE HYGROMETRICAL CONSTANTA ADOPTED IN THE GREENWICH OBSERVATIONS.

TABLE

OF

THE ELASTIC FORCES OF AQUEOUS VAPOR,

UNDER A PRESSURE OF 30 INCHES, EXPRESSED IN ENGLISH INCHES OF MERCURY FOR TEMPERATURES OF FAHRENHEIT, ADOPTED IN THE GREENWICH OBSERVATIONS.

This table contains the values of the elastic force of vapor for temperatures from 0° to 90° Fahrenheit, derived from Dalton's experiments by Biot's formula, by Anderson, and published in Edinburgh Encyclopadia, Art. Hygrometry. It is republished, without the last decimal, in the volumes of the Greenwich Magnetic and Meteorological Obserrations, and on it are based the various hygrometrical tables published by Mr. Glaisher, either in the Greenwich volumes, or separately, most of which will be found below, Tables XII. to XVII.

Since Dalton published his experiments, numerous attempts have been made by various skilful physicists to determine with greater accuracy the elastic foree of vapor. Dr. Ure in England, Regnault in France, and Magnus in Germany, deserve in this respect a special notice.

The last two experimenters having arrived simultaneonsly at results nearly identical, and then experiments having been conducted with all the care that modern science requires, and the means that it can secure, their determinations seem to command an especial confidence, and to deserve the preference over all others. It is, therefore, much to be regretted that the usefuhess of the following otherwise so vahtiable tables, the formation of which involved so much labor, is in a measure impaired by the fact that they were computed from elements which cannot be regarded as the most reliable we now possess.
XI.

T A B L. E

OF TIIE

ELASTIC FORCE OF AQUEOUS VAPOR,
mNDER A barometric pressure of 30 inches, EXPressed in english anchet op mercury for temperatures of fahrenheit.

From the Greenwicil Observations.

From the Greenwich Observations.

Temperature Fabren heit	Teaths of Degrees.									
	0.	1.	2.	3.	1.	5.	6.	7.	8.	9.
-	Eng. In.	Eng. In	Eug. In	Eng. In.						
21	0.134	0.135	0.135	0.136	0.136	0.1:7	0.1 .7	0.138	0.135	0.139
22	0.139	0.140	0.140	0.141	$0.1+1$	0.142	0.142	0.143	0.143	0.144
23	0.14	0.145	0.119	0.146	0.146	0.117	0.147	0.148	0.148	0.149
24	0.150	0.150	0.1 .1	0.152	0.152	0.1.52	0.153	0.153	0.154	0.155
25	0.155	0.156	0.156	0.157	0.157	0.150	0.158	0.159	0.160	0.160
26	0.161	0.161	0.162	0.163	0.163	0.164	0.161	0.165	0.165	0.166
27	0.167	0.167	0.165	0.168	0.169	0.170	0.170	0.171	0.172	0.172
28	0.173	0.173	0.174	0.175	0.175	0.176	0.177	0.177	0.178	9.178
29	0.179	0.150	0.180	0.181	0.182	0.152	0.153	0.184	0.184	0.185
30	0.1×6	0.186	0.187	0.158	0.158	0.189	0.190	0.190	0.191	0.192
31	0.192	0.193	0.194	0.194	0.195	0.196	0.197	0.197	0.198	0.198
32	0.199	0.200	0.201	0.201	0.202	0.203	0.204	0.204	0.205	0.206
33	0.207	0.207	0.208	0.209	0.210	0.210	0.211	0.212	0.213	0.213
34	0.211	0.215	0.216	0.216	0.217	0.218	0.219	0.219	0.2\%0	0.221
3.5	0.222	0.223	0.223	0.224	0.225	0.226	0.227	0.227	0.228	0.229
36	0.230	0.231	0.231	0.232	0.233	0.234	0.235	0.235	0.236	0.237
37	0.2:3	0.2:39	0.240	0.240	0.241	0.242	0.243	0.244	0.245	0.246
38	0.246	0.247	0.245	0.219	0.250	0.251	0.252	0.253	0.253	0.254
39	0.2 .55	0.256	0.257	0.258	0.259	0.260	0.261	0.262	0.263	0.263
40	0.264	0.265	0.266	0.267	0.268	0.269	0.270	0.271	0.272	0.273
41	0.274	0.275	0.276	0.277	0.278	0.279	0.280	0.281	0.282	0282
42	0.283	0.284	0.255	0.286	0.257	0.2ss	0.289	0.290	0.291	0.292
13	0.293	0.295	0.296	0.297	0.298	0.299	0.300	0.301	0.302	0.303
4	0.304	0.30 .5	0.306	0.307	0.308	0.309	0310 .	0.311	0.312	0.313
45	0.315	0.316	0.317	0.313	0.319	0.320	0.321	0.322	0.323	0.324
46	0.326	0.327	0.323	0.329	0.330	0.331	0.332	0.333	0.335	0.336
16	0.337	0.338	0.339	0.340	0.342	0.343	0.344	0.345	0.346	0.318
4	0.819	0.350	0.351	0.352	0.354	0.355	0.356	0.357	0.358	0.360
49	0.361	0.362	0.363	0.365	0.366	0.367	0.368	0.370	0.371	0.372
50	6.373	0.375	0.376	0.377	0.379	0.380	0.381	0.382	0.383	0.385
51	0.386	0.388	0.359	0.390	0.392	0.393	0.394	0.396	0.397	0.398
52	0.400	0.401	0.402	0.404	0.40 .5	0.407	0.408	0.109	0.411	0.412
53	0.414	0.415	0.416	0.418	0.419	0.421	0.422	0.423	0.425	0.426
51	0.428	0.429	0.431	0.432	0.434	0.435	0.437	0.438	0.440	0.441
55	0.442	0.444	0.445	0.447	0.449	0.450	0.452	0.453	0.455	0456
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

From the Greenwich Observations.

XII.

PSYCHROMETRICAL TABLE,

GIVING THE TEMPERATURE OF THE DEW-POINT, THE FOREE AND THE WEIGHT OF VAPOR JN THE ATMOSPHERE, AND ITS RELATIVE JUMIDITY, DEDUCED FROM THE INDICATIONS OF THE PSYCHROMETER, OR DRY AND WET BULB THERMOMETERS.

By James Glaisher.

'This elaborate table, first published in London, in 1847, in pamphlet form, by J. Glaisher, of the Royal Observatory at Greenwich, is based on the tables of elastic forces of vapor deduced from Dalton's experiments, and given above, Table XI.

The weight of a cubic foot of dry air at 32° Fahrenheit, and under the barometric pressure of 30 inches, which has been adopted by Glaisher, and from which the weight of vapor in a cubic foot of air is derived, is the mean of the determinations obtained by Shuckburgh and by Biot and Arago, which is 563.2154 grains Troy; 563 being the number actually used in the calculations. See Preface to the Table, p. 13, and also the Greenwich Meteorologieal Obsercations for 1842, p. xlvi.

The coefficient of the expansion of air which has been employed is that determined by the experiments of Gay-Lussac, according to which the air expands $\mathbf{0 . 0 0 3 7 5}$ of its bulk for 1° Centigrade, or $\frac{1}{480}$ for 1° Fahrenbeit.

All these values, as may be seen by comparing Tables VI. and XI. of the elastic forces, and also page $9 \bullet$, materially differ from those more recently determined with great care by Regnault, and on which are based the Psychrometrical Tables given above, page 50 et seq. This will account for the no inconsiderable differences often found between the results in the two tables derived from the same data. A few examples, taken from various parts of the tables, may be given here, in order to enable the meteorologist to judge of the amount of the diserepancies which may occur in the results when computed from different hygrometrical constants.

1. Suppose the temperature of the air indicated by the dry thermome$\begin{aligned} \text { ter to be } & =10^{\circ} \mathrm{F} . \\ & =\frac{9^{\circ} \mathrm{F} .}{1^{\circ} \mathrm{F} .}\end{aligned}$
Then, Glaisher's table gives, The Force of Vapor $\quad=0.065$ inch. 'The Relative Ilumidity $=0.730$
Guyot's table gives,
The Force of Vapor $\quad=0.054$ inch.
The Relative Humidity $=0.791$
B
2. By observation we have,

$$
\begin{aligned}
\text { Dry Thermometer } & =50^{\circ} \mathrm{F} . \\
\text { Wet Thermometer } & =40^{\circ} \mathrm{F} \\
\text { Difference } & =10^{\circ} \mathrm{F} .
\end{aligned}
$$

Then, by Glaisher's table, we find,
Force of Vapor $\quad=0.186$ inch.
Relative Humidity $=0.495$
And by Guyot's table, we find,
Force of Vapor $\quad=0.117$ inch.
Relative Humidity $=0.322$
3. The reading of the

$$
\begin{aligned}
\text { Dry Thermometer is } & =90^{\circ} \mathrm{F} . \\
\text { Wet Thermometer is } & =70^{\circ} \mathrm{F} . \\
\text { Difference } & =20^{\circ} \mathrm{F} .
\end{aligned}
$$

By Glaisher's table we have,

Force of Vapor	$=0.523$ inch.
Relative Humidity	$=0.381$

And by Guyot's table,
Force of Vapor $\quad=0.464$ inch.
Relative Humidity $=0.329$
The temperatures of the Dew-Point, given in Glaisher's tables, have been computed by means of the empirical factors given below, page 140 , and in the manner there described. See Preface to the Table, page 11.

Arrangement of the Table.

In the first two columns, at the left, are found the indications, in degrees of Fahrenheit, of the dry and wet bulb thermometers. In the following columns, in their order, and opposite to each of the temperatures of the wet thermometer, are given the temperature of the dew-point ; the force of vapor, in English inches; the weight of vapor, in grains, contained in a cubic foot of air ; the amount of the same required for saturation ; and the relative bumidity in thousandths, corresponding to the difference of temperature between the two thermometers. The second half of the page, at the right, furnishes, in seven columns, the weight, in grains, of a cubic foot of air, under various barometric pressures from 28 to 31 inches, and in the different hygrometric conditions indicated by the differences of the two thermometers. These numbers have been computed in the manner described below, page $\mathbf{1 4 2}$.

The range of the table extends from 10° to 90° of the dry thermometer, or of the temperature of the air. From 10° to 34° Fahrenheit the results are calculated for every second, third, and fifth of a degree of the wet thermometer, and for extreme differeaces of the temperature of evaporation ranging from 2° to 5° below the temperature of the air. From 34° to 90° the results are given only for every full deg'ce of the wet thermometer, and for extreme differences gradually increasing
from 5° to 27°. This range falls short of the wauts of the extreme ctimate of North America, where temperatures above 90° and far below 10° are of usual occurrence over a great portion of the continent. The same may be said of the range of the differences between the two thermometers in the first part of the table. The double interpolation for the fractions of degrees of both thermometers being rather too large to be neglected, its application becomes inconvenient.

Use of the Table.

Enter the table with the observed temperatures of the dry and wet bulb thermometers. On the same line as the last, and in their appropriate columns, the results deduced from these data will be found.

Example.

The observation has given,
Temperature of the air by the dry thermometer $\quad=62^{\circ} \mathrm{F}$.
Temperature of evaporation by the wet-bulb thermometer $=53^{\circ} \mathrm{F}$.
Page 1:39, find in the first column, headed Reading of the Dry Thermometer, the temperature of 62°, and in the second, that of the wet, 53°. On the line beginning with 53° are found, in their respective columns, the results deduced from these data, viz.:-

The temperature of the Dew-point
The force of vapor in the air The weight of vapor in a eubic foot of air
The amount of vapor required for saturation
The relative humidity in thousandths

$$
\begin{aligned}
& =46^{\circ} .7 \mathrm{~F} . \\
& =0.333 \text { inch. } \\
& =3.72 \text { grains. } \\
& =2.53 \text { grains. } \\
& =0.595
\end{aligned}
$$

Reading of Thermometer, Fahr.		$\begin{aligned} & \text { Temp } \\ & \text { of } \\ & \text { Dew- } \\ & \text { Point, } \\ & \text { Fahr. } \end{aligned}$	Force of Vapor in English Inches.	Weight of Vapor		Humidity, Satura1000.	Weight in Grains of a Cubic Foot of Air.								
				$\begin{aligned} & \text { Requ. } \\ & \text { for } \end{aligned}$	Height of the Barometer in English Inches.										
Dry.	Wet.			Foot of Air.	of aCn bic Ft.		$\operatorname{ing.}_{28.0}$	in.	$\begin{array}{\|c\|} \operatorname{ing} .0 \\ \mathbf{9 . 0} \\ \hline \end{array}$	$\operatorname{in.}_{29.5}$	$\operatorname{in.}_{\mathbf{3 0 . 0}}$	$\operatorname{in}_{\mathbf{3 0} .5}$			
10°				in.	gr.		gr		gr.	gr.	r.	gr.	gr.	r.	gr.
	10.0	10.0	0.089	1.11	0.00	1.000	550.1	560.0	569.8	579.6	559.4	599.2	609.0		
	9.8	8.3	0.084	1.05	0.06	0.946	550.2	560.1	569.9	579.7	589.5	599.3	609.1		
	9.6	6.6	0.079	0.98	0.13	0.883	550.2	560.1	569.9	579.7	589.5	599.3	609.1		
	9.4	4.9	0.074	0.92	0.19	0.829	550.2	560.1	569.9	579.7	559.5	599.3	609.1		
	9.	3.2	0.069	0.86	0.25	0.775	550.3	560.2	570.0	579.8	589.6	599.4	609.2		
	9.0	1.5	0.065	0.81	0.30	0.730	550.3	560.3	570.0	579.8	589.6	599.4	609.3		
11	11.0	11.0	0.093	1.15	0.00	1.000	548.9	558.7	565.5	578.3	589.1	597.9	607.7		
	10.8	9.3	0.087	1.08	0.07	0.939	548.9	558.7	568.5	578.3	588.1	597.9	607.7		
	10.6	7.6	0.082	1.02	0.13	0.887	549.0	558.8	568.6	578.4	588.2	598.0	607.5		
	10.4	5.9	0.077	0.96	0.19	0.835	549.0	558.8	568.6	578.4	588.2	598.0	607.8		
	10.2	4.2	0.072	0.90	0.25	0.783	549.0	558.8	568.6	578.4	588.2	598.0	607.8		
	10.0	2.5	0.067	0.84	0.31	0.731	549.1	558.9	568.7	5786	585.3	595.1	607.9		
	9.	0.8	0.063	0.78	0.37	0.679	549.1	558.9	568.7	578.6	588.3	598.1	607.9		
12	12.0	12.0	0.096	1.19	0.00	1.000	547.7	557.5	567.2	577.0	586.8	596.6	606.4		
	11.8	10.3	0.090	1.12	0.07	0.942	547.7	557.5	567.2	577.0	586.8	596.6	606.4		
	11.6	8.6	0.085	1.05	0.14	0.883	547.8	557.6	567.3	577.1	586.9	596.7	606.5		
	11.4	6.9	0.080	0.99	0.20	0.832	547.8	557.6	567.3	577.1	586.9	596.7	606.5		
	11.2	5.2	0.075	0.93	0.26	0.782	547.8	557.6	567.3	577.1	586.9	596.7	606.5		
	11.0	3.5	0.070	0.87	0.32	0.731	547.9	557.7	567.4	577.2	587.0	596.5	606.6		
	10.8	1.8	0.066	0.81	0.38	0.681	547.9	557.7	567.4	577.2	587.0	596.8	606.6		
	10.6	0.1	0.061	0.76	0.43	0.639	547.9	557.7	567.4	577.2	587.0	596.8	606.6		
13	13.0	13.0	0.100	1.24	0.00	1.000	546.5	556.3	566.0	575.8	585.5	595.3	605.0		
	12.8	11.3	0.094	1.16	0.08	0.936	546.5	556.3	566.0	575.8	585.5	595.3	605.0		
	12.6	9.6	0.088	1.08	0.16	0.871	546.6	556.4	566.1	575.9	585.6	595.4	605.1		
	12.4	7.9	0.083	1.02	0.22	0.823	546.7	556.5	566.2	576.0	585.7	595.5	605.2		
	12.2	6.2	0.077	0.97	0.27	0.783	546.7	556.5	566.2	576.0	585.7	595.5	605.2		
	12.0	4.5	0.073	0.91	0.33	0.734	546.7	556.5	566.2	576.0	585.7	595.5	605.2		
	11.8	2.8	0.068	0.84	0.40	0.678	546.8	556.6	566.3	576.1	585.8	595.6	605.3		
	11.6	1.1	0.064	0.79	0.45	0.637	546.8	556.6	566.3	576.1	585.8	595.6	605.3		
14	14.0	14.0	0.104	1.28	0.00	1.000	545.3	555.0	564.7	574.4	584.2	594.0	603.7		
	13.8	12.3	0.097	1.20	0.08	0.938	545.3	555.0	564.7	574.4	584.2	594.0	603.7		
	13.6	10.6	0.091	1.12	0.16	0.875	545.4	555.1	564.8	574.5	584.3	594.1	603.8		
	13.4	8.9	0.086	1.06	0.22	0.828	545.4	555.1	564.8	574.5	584.3	594.1	603.8		
	13.2	7.2	0.080	1.00	0.28	0.782	545.4	555.1	564.8	574.5	584.3	594.1	603.8		
	13.0	5.5	0.075	0.93	0.35	0.727	545.5	555.2	564.9	574.6	584.4	594.2	603.9		
	12.8	3.8	0.071	0.87	0.41	0.650	545.5	555.2	564.9	574.6	584.4	594.2	603.9		
	12.6	2.1	0.066	0.82	0.46	0.641	545.6	555.3	565.0	574.7	584.5	594.2	603.9		
15	15.0	15.0	0.108	1.32	0.00	1.000	544.0	553.8	563.5	573.2	582.9	592.6	602.3		
	14.8	13.3	0.101	1.24	0.08	0.940	544.0	553.8	563.5	573.2	582.9	592.6	602.3		
	14.6	11.6	0.095	1.16	0.16	0.879	544.1	553.9	563.6	573.3	583.0	592.7	602.4		
	14.4	9.9	0.089	1.10	0.22	0.833	544.1	553.9	563.6	573.3	583.0	592.7	602.4		
	14.2	8.2	0.083	1.04	0.28	0.788	544.2	554.0	563.7	573.4	583.1	592.8	602.5		
	14.0	6.5	0.078	0.97	0.35	0.735	544.2	554.0	563.7	573.4	583.1	592.8	602.5		
	13.8	4.8	0.073	0.90	0.42	0.682	544.2	554.0	563.7	573.4	583.1	592.8	602.5		
	13.6	3.1	0.069	0.85	0.47	0.644	544.3	554.1	563.8	573.5	583.2	592.9	602.6		

Reading of Thermometer, Fahr.		$\begin{aligned} & \text { Temp } \\ & \text { of } \\ & \text { Dew- } \\ & \text { Point, } \\ & \text { Fahr. } \end{aligned}$	Force of Vapor English lnches.	Weight of Vapor		Humidity, Saturation $=$ 1000.	Weight in Grains of a Cubic Foot of Air.							
		$\begin{aligned} & \text { In a } \\ & \text { Cubic } \\ & \text { Foot of } \\ & \text { Air. } \end{aligned}$		Reqd. for Sat'n. of aCn bic Ft . of Air.	Height of the Barometer in English Inches.									
					${ }_{28.0}^{i n .}$		in.	$\operatorname{in}_{\mathbf{2 9 . 0}}$	${ }_{29.5}^{\text {in. }}$	in.	$\operatorname{in.}_{\mathbf{3 0 . 5}}$	$\sin ^{\text {in }}$		
Dry.	Wet.													
21°	\bigcirc	\bigcirc	in.	gr.	gr			gr.	gr.	gr.	r.	gr.	gr.	r.
	21.0	21.0	0.134	1.63	0.00	1.000	537.0	546.6	556.1	565.7	575.3	584.9	594.5	
	20.8	19.3	0.126	1.53	0.10	0.939	537.0	546.6	556.1	565.7	575.3	384.9	594.5	
	20.6	17.6	0.118	1.44	0.19	0.954	537.1	546.7	556.2	565.8	575.4	585.0	594.6	
	20.4	15.9	0.111	1.36	0.27	0.835	537.1	546.7	556.2	565.8	575.4	585.0	594.6	
	20.2	14.2	0.104	1.28	0.35	0.785	537.2	546.8	556.3	565.9	575.5	585.1	594.7	
	20.0	12.5	0.098	1.20	0.13	0.736	537.2	546.8	556.3	565.9	575.5	585.1	594.7	
	19.8	10.8	0.092	1.12	0.51	0.687	537.3	546.9	556.4	566.0	575.6	585.2	594.8	
	19.6	9.1	0.086	1.05	0.58	0.644	537.3	546.9	556.4	566.0	575.6	585.2	594.8	
	19.4	7.4	0.051	0.99	0.64	0.607	537.3	546.9	556.4	566.0	575.6	585.2	594.8	
22	22.0	22.0	0.139	1.69	0.00	1.000	535.7	545.3	554.9	564.5	574.0	583.6	593.1	
	21.8	20.3	0.131	1.59	0.10	0.941	535.8	545.4	555.0	564.6	574.1	583.7	593.2	
	21.6	18.6	0.123	1.49	0.20	0.882	535.8	54.5 .4	555.0	564.6	574.1	583.7	593.2	
	21.4	16.9	0.115	1. 40	0.29	0.825	535.9	545.5	555.1	564.7	574.2	583.8	593.3	
	21.2	15.2	0.108	1.31	0.38	0.775	535.9	545.5	555.1	564.7	574.2	583.8	593.3	
	21.0	13.5	0.102	1.23	0.46	0.728	536.0	545.6	555.2	564.8	574.3	583.9	593.4	
	20.8	11.8	0.096	1.16	0.53	0.686	536.0	545.6	555.2	564.8	574.3	583.9	593.4	
	20.6	10.1	0.090	1.09	0.60	0.645	536.1	545.7	555.3	564.9	574.4	584.0	593.5	
	20.4	8.4	0.084	1.02	0.67	0.604	536.1	545.7	555.3	564.9	574.4	584.0	593.5	
	20.2	6.7	0.079	0.96	0.73	0.568	536.1	545.7	555.3	564.9	574.4	584.0	593.5	
23	23.0	23.0	0.144	1.75	0.00	1.000	534.6	544.2	553.7	563.3	572.8	582.4	591.9	
	22.8	21.3	0.136	1.65	0.10	0.943	534.6	544.2	553.7	563.3	572.8	582.4	591.9	
	22.6	19.6	0.127	1.55	0.20	0.856	534.7	544.3	553.8	563.4	572.9	582.5	592.0	
	22.4	17.9	0.120	1.45	0.30	0.829	534.7	544.3	553.8	563.1	572.9	582.5	592.0	
	22.2	16.2	0.112	1.36	0.39	0.777	534.8	544.4	553.9	563.5	573.0	582.6	592.1	
	22.0	14.5	0.106	1.25	0.47	0.731	534.8	544.4	553.9	563.5	573.0	582.6	592.1	
	21.8	12.8	0.099	1.21	0.54	0.691	534.9	544.5	554.0	563.6	573.1	582.7	592.2	
	21.6	11.1	0.093	1.13	0.62	0.646	534.9	544.5	554.0	563.6	573.1	582.7	592.2	
	21.4	9.4	0.057	1.06	0.69	0.606	535.0	544.6	554.1	563.7	573.2	582.8	592.3	
	21.2	7.7	0.082	1.00	0.75	0.571	535.0	544.6	554.1	563.7	573.2	552.8	592.3	
24	24.0	24.0	0.150	1.81	0.00	1.000	533.4	542.9	552.4	562.0	571.5	581.1	590.6	
	23.8	22.5	0.142	1.72	0.09	0.951	533.5	543.0	552.5	562.1	571.6	581.2	590.7	
	23.6	21.1	0.135	1.63	0.18	0.901	533.5	543.1	552.5	562.1	571.6	581.2	590.7	
	23.4	19.6	0.127	1.55	0.26	0.856	533.6	543.2	552.6	562.2	571.7	581.3	590.8	
	23.2	18.2	0.121	1.46	0.35	0.807	533.6	543.2	552.6	562.2	571.7	581.3	590.8	
	23.0	16.7	0.115	1.38	0.43	0.762	533.7	543.3	552.7	562.3	571.8	581.4	590.9	
	22.8	15.2	0.105	1.31	0.50	0.724	533.7	543.3	552.7	562.3	571.8	581.4	590.9	
	22.6	13.8	0.103	1.24	0.57	0.685	533.7	543.3	552.7	562.3	571.8	581.4	590.9	
	22.4	12.3	0.097	1.18	0.63	0.652	533.8	543.4	552.8	562.4	571.9	581.0	591.0	
	22.2	10.8	- 0.091	1.12	- 0.69	0.634	533.8	543.4	552.8	562.4	571.9	581.5	591.0	
1														

Keading of Thermoueter, Fithr.		Temp of DewPoint, Fahr.	Force of Fapor in English Inches.	{f4a8444b8-6dc6-4900-b01d-e4533305a469} Wei of V}$\substack{\text { In a } \\ \text { Cubic }}$	ght apos Reqd. for Sat'n.	$\begin{gathered} \text { Hu- } \\ \text { midity, } \\ \text { Satura- } \\ \text { tion }= \\ 1000 . \end{gathered}$	Weight in Grains of a Cubic Foot of Air.						
Dry.	Wet.			Air.	bic Ft. of Air.		$\operatorname{in}_{\mathbf{i n}}^{\$.0}$	$\operatorname{in.}_{28.5}$	$\operatorname{in.}_{\mathbf{2 9 . 0}}$	$\operatorname{in.}_{\mathbf{2 9 . 5}}$	$\operatorname{ing}^{\text {in.0 }}$	$\frac{\operatorname{in}}{80.5}$	$\begin{gathered} \text { in } \\ 31.0 \end{gathered}$
25°	\bigcirc	\bigcirc	in.	gr	gr		gr.	gr.	gr.	gr.	gr.	gr .	gr.
	25.0	2.5 .0	0.15 .5	1.57	0.00	1.000	532.3	541.8	551.3	560.8	570.3	579.8	559.3
	24.8	23. 7	0.148	1.78	0.09	0.9.52	532.3	541.5	551.3	560.8	570.3	579.8	5.9 .3
	24.6	2.2 .1	0.141	1.70	0.17	0.909	532.4	541.9	551.4	560.9	570.4	579.9	589.4
	24.4	21.2	0.135	1.62	0.25	0.867	532.4	541.9	551.4	560.9	570.4	579.9	559.1
	24.2	19.9	0.129	1.55	0.32	0.829	532.4	541.9	55i.4	560.9	570.4	579.9	559.4
	24.0	18.6	0.123	1.48	0.49	0.791	532.5	542.0	551.5	561.0	570.5	580.0	589.5
	23.8	17.3	0.117	1.41	0.46	0.754	532.5	542.0	551.5	561.0	570.5	580.0	589.5
	23.6	16.0	0.112	1.34	0.53	0.717	532.6	542.1	551.6	561.1	570.6	580.1	589.6
	23.4	14.8	0.107	1.28	0.59	0.685	532.6	542.1	551.6	56 I .1	570.6	580.1	559.6
	23.2	13.5	0.102	1.22	0.65	0.653	532.6	542.1	551.6	561.1	570.6	580.1	589.6
26	26.0	26.0	0.161	1.93	0.00	1.000	531.1	540.6	550.0	559.5	569.0	578.5	588.0
	25.8	24.8	0.154	1.85	0.08	0.959	531.2	$5 \cdot 10.7$	550.1	559.6	569.1	578.6	588.1
	25.6	23.6	0.147	1.78	0.15	0.923	531.2	540.7	550.1	559.6	569.1	575.6	585.1
	25.4	23.3	0.111	1.70	0.23	0.881	531.2	540.7	550.1	559.6	569.1	578.6	588.1
	25.2	21.2	0.135	1.62	0.31	0.539	531.3	540.8	550.2	559.7	569.2	578.7	588.2
	25.0	19.9	0.129	1.55	0.38	0.804	531.3	5408	550.2	559.7	569.2	578.7	588.2
	2 2. 8	18.7	0.123	1.48	0.45	0.767	531.4	540.9	550.3	559.8	569.3	578.8	588.3
	24.6	17.5	0.118	1.41	0.52	0.731	531.4	510.9	550.3	559.8	569.3	578.8	588.3
	24.4	16.2	0.112	1.35	0.58	0.700	531.4	540.9	550.3	559.8	569.3	578.8	58.3
	24.2	15.0	0.108	1.29	0.64	0.668	531.5	541.0	550.4	559.9	569.4	578.9	58..4
27	27.0	27.0	0.167	2.00	0.00	1.000	529.9	539.4	548.9	558.4	567.8	577.3	586.7
	26.7	25.2	0.156	1.88	0.12	0.940	529.9	539.4	548.9	558.4	567.8	577.4	586.8
	26.4	$2: 3.3$	0.146	1.76	0.24	0.880	530.0	589.5	549.0	5.58 .5	567.9	577.5	586.9
	26.1	21.5	0.137	1.64	0.36	0.820	530.1	539.6	549.1	558.6	568.0	577.6	587.0
	25.8	19.7	0.128	1.53	0.47	0.765	530.1	539.6	549.1	558.6	568.0	577.6	557.0
	2.5 .5	17.8	0.119	1.43	0.57	0.715	530.2	539.7	549.2	558.7	568.1	577.7	587.1
	25.2	16.0	0.112	1.34	0.66	0.670	530.3	539.8	549.3	5.58 .8	568.2	577.8	557.2
	24.9	14.2	0.104	1.26	0.74	0.630	530.3	539.8	549.3	558.8	568.2	577.8	587.2
	24.6	12.4	0.098	1.17	0.83	0.585	530.4	539.9	549.4	558.9	568.3	577.9	557.3
	24.3	10.5	0.091	1.09	0.91	0.545	530.5	540.0	549.5	559.0	568.3	577.9	557.3
28	28.0	28.0	0.173	2.07	0.00	1.000	528.7	538.1	547.6	557.0	566.5	575.9	58.3 .4
	27.7	26.3	0.163	1.95	0.12	0.942	528.8	538.2	547.7	557.1	566.6	576.0	585..
	27.1	24.6	0.153	1.84	0.23	0.889	$52 \mathrm{S.9}$	538.3	547.8	5.75	566.7	576.1	585.6
	27.1	22.9	0.141	1.73	0.34	0.836	528.9	5:38.3	547.8	557.2	566.7	576.1	58.5 .6
	26.8	21.2	0.135	1.6%	0.45	0.783	529.0	535.4	547.9	557.3	566.8	576.2	555.7
	26.5	19.4	0.126	1.52	0.55	0.734	529.1	538.5	548.0	557.4	566.9	576.3	585.8
	26.2	17.7	0.119	1.42	0.65	0.686	529.1	538.5	548.0	557.4	566.9	576.3	585.5
	25.9	16.0	0.112	1.34	0.73	0.648	529.2	538.6	548.1	557.5	567.0	576.4	. 88.5 .9
	25.6	14.3	0.105	1.26	0.82	0.604	529.2	538.6	548.1	557.5	567.0	576.4	585.9
1	25.3	12.6	0.098	1.18	0.59	0.571	529.2	538.6	548.1	557.5	567.0	576.4	555.9

Reading of Thermometer, Fahr.		$\begin{aligned} & \text { Temp } \\ & \text { of } \\ & \text { Dew- } \\ & \text { Point, } \\ & \text { Fahr. } \end{aligned}$	$\begin{array}{\|c\|} \text { Force } \\ \text { of } \\ \text { Vapor } \\ \text { in } \\ \text { Euglish } \\ \text { lnches. } \end{array}$	Weight of Vapor		IIumidity, Saturation $=$ 1 Ou0.	Weight in Grains of a Cubic Foot of Air.							
		In a Cubic Foot of Air.		Reqd Sat'n. of aCubic Ft. of Air.	Ileight of the Barometer in English Inches.									
					$\operatorname{in}_{28.0}$		$\begin{gathered} \text { in. } \\ 28.5 \end{gathered}$	$\underset{\mathbf{2 9 . 0}}{\text { in. }}$	$\operatorname{in}_{\mathbf{2 9} .5}$	$\sin _{30.0}$	$\operatorname{in.}_{\mathbf{3 0 . 5}}$	$\mathbf{3 n}^{\text {in.0 }}$		
Dry.	Wet.													
29°	-	\bigcirc	in.	gr.	gr			gr.	gr.	gr.	gr.	gr	gr.	gr.
	29.0	29.0	0.179	2.14	0.00	1.000	527.6	537.0	5465	555.9	565.3	574.7	5S4.1	
	28.7	27.5	0.170	2.03	0.11	0.949	527.7	537.1	546.6	556.0	565.4	574.8	584.2	
	28.4	26.0	0.161	1.92	0.22	0.898	527.7	537.1	546.6	556.0	56.5.4	574.8	584.2	
	28.1	24.5	0.152	1.82	0.32	0.851	527.8	537.2	546.7	556.1	265.5	574.9	584.3	
	27.8	23.0	0.144	1.73	0.41	0.809	527.8	537.2	546.7	556.1	565.5	574.9	584.3	
	27.5	21.5	0.137	1.64	0.50	0.766	527.9	537.3	546.7	556.2	565.6	575.0	584.5	
	27.2	20.0	0.129	1.55	0.59	0.725	528.0	537.4	5468	556.2	565.7	575.1	584.6	
	26.9	18.5	0.122	1.47	0.67	0.687	528.0	537.4	546.8	556.3	565.7	575.2	584.6	
	26.6	17.0	0.116	1.38	0.76	0.645	528.1	537.5	546.9	556.4	565.8	575.3	584.7	
	26.3	15.5	0.110	1.30	0.84	0.617	528.1	537.5	546.9	556.4	565.8	575.3	58.1.7	
30	30.0	30.0	0.186	2.21	0.00	1.000	526.5	535.9	515.3	554.7	564.1	573.5	582.9	
	29.7	28.6	0.177	2.10	0.11	0.951	526.5	535.9	545.3	554.7	564.1	573.5	582.9	
	29.4	27.2	0.168	2.00	0.21	0.905	526.6	536.0	545.4	554.8	564.2	573.6	583.0	
	29.1	25.9	0.160	1.91	0.130	0.864	526.7	536.1	545.5	554.9	564.3	573.7	583.1	
	28.8	24.5	0.152	1.82	0.39	0.824	526.7	536.1	545.5	554.9	564.3	573.7	583.1	
	28.5	23.1	0.145	1.73	0.48	0.783	526.8	536.2	545.6	555.0	564.4	573.8	583.2	
	28.2	21.7	0.138	1.64	0.57	0.742	526.8	536.2	545.6	555.0	564.4	573.8	583.2	
	27.9	20.3	0.131	1.56	0.6.5	0.706	526.9	536.3	545.7	555.1	564.5	573.9	583.3	
	27.6	19.0	0.12.	1.49	0.72	0.674	526.9	536.3	545.7	555.1	564.5	573.9	583.3	
	27.3	17.6	0.118	1.42	0.79	0.643	527.0	536.4	545.8	555.2	564.6	574.0	583.4	
31	31.0	31.0	0.192	2.29	0.00	1.000	525.4	534.7	544.1	553.5	562.9	572.3	581.7	
	30.7	29.9	0.185	2.20	0.09	0.961	525. 4	534.7	544.1	553.5	562.9	572.3	581.7	
	30.4	28.8	0.178	2.12	0.17	0.926	525.5	534.8	544.2	553.6	563.0	572.4	581.8	
	30.1	27.7	0.171	2.04	0.2.5	0.891	525.5	534.8	54.2	553.6	563.0	572.4	581.8	
	29.8	26.6	0.164	1.95	0.34	0.852	525.6	534.9	544.3	553.7	563.1	572.5	581.9	
	29.5	2.5	0.158	1.87	0.42	0.817	525.6	534.9	544.3	553.7	563.1	572.5	581.9	
	29.2	24.4	0.152	1.80	0.49	0.786	525.6	534.9	544.3	553.7	563.1	572.5	581.9	
	28.9	23.4	0.146	1.73	0.56	0.756	525.7	535.0	544.4	553.8	563.2	572.6	582.0	
	28.6	22.3	0.141	1.67	0.62	0.729	525.7	535.0	544.4	553.8	563.2	572.6	582.0	
	25.3	21.2	0.135	1.60	0.69	0.699	525.7	535.0	544.4	553.8	563.2	572.6	582.0	
32	32.0	32.0	0.199	2.37	0.00	1.000	524.2	533.5	542.9	552.3	561.6	570.9	580.3	
	31.6	30.8	0.191	2.27	0.10	0.958	524.3	533.6	543.0	552.4	561.7	571.0	580.4	
	31.2	29.5	0.182	2.17	0.20	0.916	524.4	533.7	543.1	552.5	561.8	571.1	580.5	
	30.8	28.3	0.175	2.07	0.30	0.874	524.4	533.7	543.1	552.5	561.8	571.1	580.6	
	30.4	27.0	0.167	1.98	0.39	0.836	524.5	533.8	543.2	552.6	561.9	571.2	550.6	
	30.0	25.8	0.160	1.90	0.47	0.802	524.5	533.8	543.2	552.6	561.9	571.2	580.6	
	29.6	24.6	0.153	1.82	0.55	0.768	524.6	533.9	543.3	552.7	562.0	571.3	580.7	
	29.2	23.3	0.146	1.74	0.63	0.735	524.6	533.9	543.3	552.7	562.0	571.3	580.7	
	28.8	22.1	0.140	1.67	0.70	0.705	524.6	533.9	543.3	552.7	562.0	571.3	580.7	
	28.4	20.8	0.133	1.60	0.77	0.675	524.7	534.0	543.4	552.8	562.1	571.4	580.8	

Reading of Thernometer, Fahr.		$\begin{aligned} & \text { Temp } \\ & \text { of } \\ & \text { Dew- } \\ & \text { Point, } \\ & \text { Fahr. } \end{aligned}$	Force of Vapor in English Inches.	Weight of Vapor		$\begin{aligned} & \text { IIu- } \\ & \text { midity, } \\ & \text { Satura- } \\ & \text { tiou }= \\ & 1000 . \end{aligned}$	Weight in Grains of a Cubic Foot of Air.								
				$\begin{aligned} & \text { Reqd. } \\ & \text { for } \end{aligned}$	Height of the Barometer in Euglish Inches.										
Dry.	Wet.			Air.	bie Ft. of Air.		in.	$\operatorname{in.}_{28.5}$	$\operatorname{in.}_{\mathbf{2 9 . 0}}$	$\begin{gathered} \text { in. } \\ 29.5 \end{gathered}$	$\begin{array}{\|c\|} \operatorname{in} . \\ \mathbf{3 0 . 0} \end{array}$	$\frac{\operatorname{in}}{\mathbf{3 0 . 5}}$	$\begin{gathered} \operatorname{in} \\ \mathbf{3 1 . 0} \end{gathered}$		
33°	$\stackrel{0}{33.0}$		33.0	in. 0.207	gr. 2.45		gr 0.00	1.000	$\begin{aligned} & \text { gr. } \\ & 23.0 \end{aligned}$	gr.	gr. 5.11 .7	gr.	gr.	$\begin{gathered} \text { gr. } \\ 569.7 \end{gathered}$	$\begin{gathered} \mathrm{gr} . \\ 579.1 \end{gathered}$
			0.19	2.33	0.12	0.951	,				50.5	69.8	79.3		
		0.	0	2.22	0.2 :	0.906	5			3	560.6	569.9	79.3		
	31.5	28.8	0.178	2.11	0.34	0.562	523.3	532.7	542.0	551.4	560.7	570.0	579.4		
	31.0	27.4	0.169	2.01	0.44	0.821	523.3	532.7	542.0	551.4	560.7	570.0	579.4		
	30.5	26.0	0.161	1.91	0.54	0.780	523.4	532.8	542.1	551.5	560.8	570.1	579.5		
	30.0	24.6	0.15%	1.82	0.63	0.743	523.4	532.8	542.1	551.5	560.8	570.1	579.5		
	29.5	23.2	0.145	1.74	0.71	0.711	523.5	532.9	542.2	551.6	560.9	570.2	579.6		
	29.0	21.8	0.138	1.65	0.80	0.674	523.5	532.9	542.2	551.6	560.9	570.2	579.6		
	28.5	20.4	0.131	1.57	0.88	0.641	523.6	533.0	542.3	551.7	561.0	570.3	579.7		
34	34.0	34.0	0.214	2.53	0.00	1.000	521.9	531.2	540.6	549.9	559.2	568.5	577.8		
	33.5	32.7	0.204	2.42	0.11	0.957	522.0	531.4	540.7	550.0	559.3	568.6	577.9		
	33.0	31.4	0.195	2.31	0.22	0.913	522.0	531.4	540.7	550.0	559.3	568.6	577.9		
	32.5	30.1	0.186	2.21	0.32	0.574	522.1	531.5	540.8	550.1	559.4	568.7	578.0		
	32.0	28.8	0.175	2.11	0.12	0.834	522.1	531.5	540.8	550.1	559.4	568.7	575.0		
35	31.5	27.5	0.170	2.01	0.52	0.795	522.2	531.6	540.9	550.2	559.5	568.8	578.1		
	31.0	26.2	0.162	1.91	0.62	0.755	522.3	531.7	541.0	550.3	559.6	568.9	578.2		
	30.5	24.9	0.153	1.83	0.70	0.724	522.3	531.7	541.0	550.3	559.6	568.9	578.2		
	30.0	23.6	0.147	1.75	0.78	0.692	522.4	531.5	541.1	550.4	559.7	569.0	578.3		
	29.5	22.3	0.141	1.67	0.86	0.660	522.4	531.8	541.1	550.4	559.7	569.0	578.3		
	29.0	21.0	0.134	1.59	0.94	0.629	522.5	531.9	541.2	550.5	559.8	569.1	578.4		
	35	35.0	0.222	2.62	0.00	1.000	520.8	530.1	539.4	548.7	558.0	567.3	576.6		
	34	32.5	0.203	2.40	0.22	0.916	520.9	530.2	539.5	548.8	558.1	567.4	576.7		
	33	30.0	0.186	2.19	0.43	0.836	521.0	530.3	539.6	548.9	558.3	567.5	576.8		
	32	27.5	0.170	2.00	0.62	0.764	521.1	530.4	539.7	549.0	558.4	567.6	576.9		
	31	25.0	0.155	1.53	0.79	0.698	521.2	530.5	539.8	549.1	558.5	567.7	577.0		
36	30	22.5	0.142	1.68	0.94	0.641	521.3	530.6	539.9	549.2	558.6	567.8	577.1		
	29	20.0	0.129	1.53	1.09	0.584	521.3	530.7	540.0	549.8	558.6	567.9	577.2		
	28	17.5	0.117	1.39	1.23	0.531	521.4	530.8	540.1	549.4	558.7	568.0	577.3		
	27	15.0	0.103	1.27	1.35	0.485	521.5	530.9	540.2	549.5	558.7	568.1	577.4		
	36	36.0	0.230	2.71	0.00	1.000	519.7	529.0	538.3	547.5	5.56 .9	566.1	575.4		
	35	33.5	0.210	2.48	0.23	0.915	519.8	529.1	538.4	547.6	556.9	566.2	575.5		
	34	31.0	0.192	2.27	0.44	0.838	519.9	529.2	538.5	547.7	557.0	566.3	575.6		
	33	28.5	0.176	2.07	0.64	0.764	520.0	529.3	538.6	547.8	557.1	566.4	575.7		
	32	26.0	0.161	1.89	0.82	0.698	520.1	529.4	538.7	547.9	557.2	566.5	575.8		
	31	23.5	0.147	1.74	0.97	0.642	520.2	529.5	538.8	548.0	557.3	566.6	575.9		
	30	21.0	0.134	1.58	1.13	0.583	520.3	529.6	535.9	518.1	557.4	566.7	576.0		
	29	18.5	0.122	1.45	1.26	0.5:35	520.4	529.7	539.0	548.2	557.5	566.8	576.1		
	28	16.0	0.112	1.32	1.39	0.487	520.5	529.8	539.1	548.3	557.6	566.9	576.2		

Reading of Thermometer, Filir.		Temp. of JewPoint, Fahr.	Force of Vapor in English Incues.	$\begin{array}{r} \text { Weit } \\ \text { of } \mathrm{V} \\ \ln \mathrm{a} \end{array}$	ight apor Reqd. for	$\begin{aligned} & \text { Hu- } \\ & \text { midity, } \\ & \text { Sarura- } \\ & \text { tion }= \\ & 1.000 . \end{aligned}$	Weight in Grains of a Cubic Foot of Air.						
Dry.	We			Font of Air.	bic Ft. of Air .		$\operatorname{in.}_{28.0}$	$\operatorname{in.}_{2 \% .5}$	$\operatorname{in.~}_{29.0}$	$\operatorname{in.}_{\mathbf{i n} .5}$	$\operatorname{in}_{\mathrm{in} .}^{\mathbf{3} .0}$	${ }_{\mathbf{3 0} .5}^{\text {in. }}$	$\mathbf{i n .}$
\bigcirc	-	\bigcirc	in.	gr	gr		gr.	gr.	gr	gr.	gr	gr.	gr.
41	41	41.0	0.274	3.19	0.00	1.000	514.1	52:3.3	532.5	541.6	550.8	560.0	569.2
	40	38.8	0.253	2.96	0.23	0.928	514.2	523.4	532.6	541.7	550.9	5601	509.3
	39	36.6	0.235	2.74	0.45	0.659	51.1 .3	523.5	5327	541.8	551.0	560.2	569.4
	38	34.4	0.217	2.54	0.6 .5	0.796	514.4	523.6	532.8	541.9	551.1	560.3	569.5
	37	32.2	0.201	2.35	0.84	0.737	514.5	523.7	532.9	54.0	551.2	560.1	54.96
	36	30.0	0.186	2.16	1.03	0.677	514.6	523.8	533.0	542.1	551.3	560.5	569.7
	35	27.8	0.172	2.01	1.18	0.630	514.7	523.9	5331	542.2	551.4	560.6	569.8
	34	2.5 .6	0.158	1.85	1.34	0580	514.8	524.0	533.2	542.3	551.5	560.7	563.9 .9
	33	23.4	0.146	1.71	1.18	0.5336	514.9	524.1	5333.3	542.4	551.6	560.8	570.0
	32	21.2	0.135	1.58	1.61	0.495	514.9	524.1	533.3	542.5	551.7	560.9	570.1
	31	19.0	0.125	1.46	1.73	0.458	515.0	524.2	533.4	542.6	551.8	561.0	570.2
42	42	42.0	0.283	3.30	0.00	1.000	513.0	522.2	531.3	540.5	549.6	558.8	5679
	41	39.8	0.263	3.06	0.24	0.927	513.1	522.3	531.4	540.6	549.7	558.9	568.0
	40	37.6	0.243	2.83	0.47	0.8 .38	513.2	522.4	531.5	540.7	549.9	559.0	568.1
	39	3.5 .4	0.225	2.63	0.67	0.797	513.3	52.3.5	531.6	540.8	550.0	559.1	568.2
	38	33.2	0.208	2.43	0.87	0.736	51:3.4	522.6	531.7	540.9	5.50 .1	559.2	568.3
	37	31.0	0.192	2.24	1.06	0.679	513.5	522.7	531.8	541.0	5.50 .2	599.3	568.4
	36	28.8	0.178	2.08	1.22	0.631	513.6	52.2 .6	531.9	541.1	550.3	5.59 .4	568.5
	85	26.6	0.164	1.91	1.39	0.579	513.7	522.9	$5: 32.0$	541.2	550.4	5.59 .5	56s. 6
	34	24.1	0.152	1.77	1.58	0.536	513.8	52:3.0	$5: 32.1$	$5+1.3$	550.5	559.6	568.7
	33	22.2	0.140	1.6:3	1.67	0.494	513.9	523.1	$5: 32.2$	541.4	5.50 .6	559.7	568.8
	32	20.0	0.129	1.51	1.79	0.6 .58	513.9	523.1	532.3	541.5	5.50 .6	559.8	569.0
43	43	43.0	0.293	3.11	0.00	1.000	511.8	520.9	530.1	539.3	548.4	5.37.5	5667
	42	40.8	0.272	3.16	0.2 .5	0.927	511.9	521.0	530.2	589.4	518.6	557.7	566.9
	41	38.6	0.252	2.93	0.18	0.8 .59	512.0	521.1	5:30.3	$5: 39.5$	548.7	557.8	567.0
	40	36.1	0.283	2.71	0.70	0.795	512.1	521.2	5:30.4	539.6	548.8	557.9	567.1
	39	34.2	0.216	2.51	0.90	0.736	512.2	521.3	$5: 30.5$	5:19.7	548.9	558.0	567.2
	38	32.0	0.199	2.32	1.09	0.650	512.3	521.4	530.7	539.8	549.0	558.1	567.8
	37	29.8	0.184	2.15	1.26	0.630	512.4	521.5	530.8	539.9	549.1	558.2	$56 \% .4$
	36	27.6	0.170	1.98	1.18	0.581	512.5	$5 \because 1.6$	530.9	510.0	549.2	558.8	567.5
	3.3	2.5 .1	0.1 .97	1.82	1.59	0.534	512.6	521.7	531.0	540.1	549.3	558.4	567.6
	34	23.2	0.115	1.69	1.72	0.49 .5	512.7	521.8	5:31.1	510.3	5.49 .4	555.5	567.7
	33	21.0	0.134	1.56	1.85	0.458	512.9	52.3 .0	581.2	540.3	549.5	555.6	567.8
44	44	44.0	0.304	3 52	0.00	1000	510.8	519.9	529.0	538.1	547.3	556.4	56.5 .5
	43	41.8	0.252	3.27	0.2 .5	0.929	510.9	520.0	529.1	538.2	547.5	556.5	565.7
	42	39.6	0.261	3.02	0.50	0.858	511.0	520.1	5292	538.3	547.6	556.6	565.8
	41	37.1	0.241	2.80	0.72	0.796	511.1	520.2	529.3	538.4	547.7	556.7	56.5 .9
	40	3.5 .2	$0.2 \cdot 3$	2.60	0.92	0.739	511.2	520.3	529.4	538.5	547.8	556.8	566.0
	39	33.0	0.207	2.10	1.12	0.682	511.3	520.4	529.5	538.6	547.9	556.9	566.1
	38	30.8	0.191	2.23	1.30	0.631	511.4	520.5	529.6	538.7	548.0	557.0	566.2
	37	28.6	0.177	2.0 .5	1.47	0.582	511.5	520.6	529.7	538.8	548.1	557.1	566.3
	36	26.4	0.16:3	1.89	1.63	0.537	511.6	520.7	529.8	538.9	548.2	557.2	566.4
	35	21.2	0.1 .51	1.75	1.77	0.497	511.7	520.8	529.9	539.0	548.3	557.3	566.5
	34	22.0	0.139	1.62	1.90	0.160	511.7	520.8	530.0	589.1	548.3	5.57 .1	566.6

Reading of 'Thermoneter, Fialur.		$\begin{aligned} & \text { Temp. } \\ & \text { of } \\ & \text { ofew- } \\ & \text { Poont, } \\ & \text { Fuhr. } \end{aligned}$	$\begin{gathered} \text { Force } \\ \text { of } \\ \text { Vinpor } \\ \text { int } \\ \text { English } \\ \text { lnches. } \end{gathered}$	Weight of Viapor		Humidity, Satura$1011=$1.000.	Weight in Grains of a Cubic Foot of Air.								
		In a			Height of the Barometer in English Inches.										
Dry.	Wet.			Air	of actu- bic F't. of Air.		$\stackrel{i n}{28.0}$	$\operatorname{in.}_{28.5}^{2}$	$\mathrm{in}_{\mathbf{2 9 . 0}}$	$\cos _{29.5}$	$\begin{gathered} \text { in. } \\ \mathbf{3 0 . 0} \end{gathered}$	$\operatorname{sin.~}_{\mathbf{3 @} \mathbf{5}}$	31.		
45			\bigcirc	in.	gr		gr.		09.7	18.	-7	-	16	gr.	4
	4.5	4.5 .0	0.31 .5	3.64	0.00	1.000	509.7	518.8	527.9	537.0	546.1	555.2	564.3		
	41	+2.9	0.292	3.39	0.25	0.931	509.8	518.9	525.0	537.1	546.3	5553	564.5		
	43	40.8	0.272	3.14	0.50	0.863	509.9	519.0	5251	537.2	546.4	555.4	564.6		
	12	38.7	0.253	2.92	0.72	0.802	510.0	519.1	525.2	537.3	546.5	555.5	564.7		
	41	36.6	0.23.5	2.70	0.91	0.742	510.1	519.2	528.3	537.4	546.6	555.6	5648		
	40	34.5	0.218	2.52	1.12	0.692	510.2	519.3	528.4	537.5	546.7	5.55 .7	564.9		
	39	32.4	0.203	2.34	1.30	0.643	510.3	519.4	5285	537.6	546.8	555.8	565.0		
	38	30.3	0.188	2.16	1.45	0593	510.4	519.5	528.6	537.7	546.9	5.55.9	565.1		
	37	28.2	0.174	2.01	1.63	0.552	510.5	519.6	528.7	537.8	547.0	556.0	56.5 .2		
	36	26.1	0.161	1.57	1.77	0.514	510.6	519.7	528.8	537.9	547.1	556.1	565.3		
	35	24.0	0.1 .50	1.73	1.91	0.475	510.7	519.8	525.9	538.0	547.2	556.3	565.4		
46	46	46.0	0.326	3.76	0.00	1.000	508.6	517.7	526.7	335.8	544.9	554.0	563.1		
	45	43.9	0.3')3	3.50	0.26	0.931	508.7	517.8	526.8	535.9	545.0	554.1	563.2		
	44	41.8	0.232	3.25	0.51	0.864	505.8	517.9	526.9	5:36.0	545.1	554.2	563.3		
	43	39.7	0.262	3.02	0.74	0.803	508.9	518.0	527.0	536.1	545.2	554.3	563.4		
	42	37.6	0.243	2.90	0.96	0.74. 5	509.0	518.1	527.2	536.3	545.4	554.5	563.6		
	41	3.5.5	0.226	2.61	1.15	0.694	509.1	518.2	527.3	536.4	545.5	554.6	563.7		
	40	33.4	0.210	2.42	1.34	0.643	509.2	518.3	527.1	536.5	5.55 .6	554.7	563.8		
	39	31.3	0.114	$\underline{2.24}$	1.52	0.596	509.3	518.4	527.5	536.6	545.7	554.8	563.9		
	38	29.2	0.180	2.08	1.68	0.553	509.4	518.5	527.6	536.7	545.8	554.9	564.0		
	37	27.1	0.167	1.93	1.83	0.514	509.5	518.6	527.7	5:36.8	515.9	555.0	564.1		
	36	25.0	0.15.5	1.79	1.97	0.476	509.5	518.6	527.7	536.8	545.9	555.0	564.1		
47	47	7.0	0.337	3.88	0.00	1.000	507.5	516.5	525.6	534.7	543.8	552.8	561.9		
	46	44.9	0.:313	3.62	0.26	0.933:	507.6	516.6	32.5 .7	534.8	543.9	552.9	562.0		
	4.5	42.5	0.291	3.36	0.52	0.866	507.8	516.7	525.9	5355.0	544.1	553.1	562.2		
	4	40.7	0.271	3.12	0.76	0.604	507.9	516.8	526.0	535.1	544.2	5.33 .2	562.3		
	43	38.6	0.2 .52	2.90	0.98	0.717	508.0	516.9	526.1	535.2	544.3	553.3	562.4		
	42	36.5	0.234	2.70	1.18	0.696	50ヶ. 1	517.0	526.3	53.5.3	544.4	55\%.4	562.5		
	41	34.1	0.217	2.51	1.37	0.647	508.2	517.1	526.3	53.5.4	544.5	553.5	562.6		
	40	32.3	0.201	2.32	1.36	0.998	508.3	517.2	526.4	5:35.5	541.6	553.6	562.7		
	39	30.2	0.187	2.16	1.72	0.5 .57	508.4	517.3	526.5	53.3.6	544.7	553.7	562.8		
	38	29.1	0.173	2.00	1.88	0.515	508.5	517.1	5266	533.7	544.8	553.6	562.9		
	37	26.0	0.161	185	2.03	0.177	508.5	517.6	526.7	535.6	544.9	554.0	563.1		
48	. 18	48.0	0.349	4.01	0.00	1.000	506.1	515.4	524.5	533.5	512.6	551.6	560.7		
	47	45.9	0.321	3.73	0.28	0.930	506.5	515.5	524.6	533.7	542.8	551.8	560.9		
	46	43.2	0.302	3.47	0.51	086.5	506.6	515.6	5247	533.8	54.9	551.9	561.0		
	4.5	41.7	0.281	3.23	0.78	0.50 .5	5067	51.5 .7	524.8	5:3:.9	543.0	552.0	561.1		
	4	39.6	0.361	3.00	1.01	0.748	506.8	515.8	524.9	$53+.0$	543.1	5.22 .1	561.2		
	43	87.5	0.212	2.79	1.22	0.696	506.9	51.5.9	52.5.0	534.1	543.2	552.2	561.3		
	42	35.4	0.225	2.60	1.41	0.648	507.0	516.0	52.5.1	534.2	543.3	552.3	561.4		
	4^{1}	33.3	0.209	2.40	1.61	0.995	507.1	516.1	525.2	5:3.4	543.5	552.5	561.5		
	40	31.2	0.191	2.21	1.77	0.5 .58	507.2	516.2	525.3	531.5	543.5	$55: 2.5$	561.6		
	39	29.1	0.180	2.07	1.91	0.316	507.3	516.3	52.5 .4	584.6	543.6	552.6	561.6		
	39	27.0	0.167	1.92	2.09	0.479	507.4	516.4	52.5 .5	531.7	$5+3.6$	552.7	561.7		
	37	24.9	0.1.35	1.77	2.21	0.441	507.4	516.4	525.6	534.7	513.7	552.8	561.8		

Reading of Thermometer, Fahr.		Temp of DewPoint, Fahr.	Force of Vapor in English Inches.	Weight of Vapor		$\begin{aligned} & \text { IIu- } \\ & \text { midity, } \\ & \text { Satura- } \\ & \text { tion }= \\ & 1000 . \end{aligned}$	Weight in Grains of a Cubic Foot of Air.								
				Reqd.											
					Height of the Barometer in English Inches.										
Dry.	Wet.			Air.	bic F t. of Air.		$\operatorname{in}_{28.0}$	$\operatorname{ing}_{28.5}$	$\operatorname{in.}_{\mathbf{2 9} .0}$	$\operatorname{in.}_{29.5}$	$\operatorname{ing}_{\mathbf{3 0} .0}$	$\operatorname{ing}_{\mathbf{3 0} .5}$	$\operatorname{in}^{\text {in }}$		
$\begin{array}{r} \circ \\ 49 \end{array}$	\bigcirc		\bigcirc	in.	gr.		gr		gr.	gr.	gr .	gr.	gr.	gr.	r.
	49		49.0	0.361	4.14	0.00	1.000	505.3	514.3	523.3	53.3 .3	541.4	550.4	559.4	
	48	46.9	0.336	3.55	0.29	0.930	505.4	514.4	523.4	532.4	541.5	550.5	559.5		
	47	44.8	0.312	3.59	0.55	0.567	505.6	514.6	523.6	532.6	541.7	550.7	559.7		
	46	42.7	0.290	3.34	0.80	0.807	505.7	514.7	523.7	532.7	541.8	550.6	559.8		
	45	40.6	0.270	3.10	1.04	0.749	505.9	514.9	523.8	532.9	542.0	551.0	560.0		
	44	38.5	0.251	2.88	1.26	0.696	506.0	515.0	523.9	533.0	542.1	551.1	560.1		
	43	36.4	0.233	2.68	1.46	0.647	506.1	515.1	524.0	533.1	542.2	551.2	560.2		
	42	34.3	0.216	2.49	1.65	0.601	506.2	515.2	524.1	533.2	542.3	551.3	560.3		
	41	32.2	0.201	2.32	1.82	0.560	506.3	515.3	524.2	5333.3	542.4	5.51 .4	560.4		
	40	30.1	0.186	2.14	2.00	0.517	506.3	515.3	5243	533.4	542.5	551.5	560.5		
	39	28.0	0.173	1.99	2.15	0.481	506.4	515.4	524.4	533.5	542.6	551.6	560.6		
	38	25.9	0.160	1.84	2.30	0.444	506.4	51.5 .4	524.4	533.5	542.6	551.6	560.6		
50	50	50.0	0.373	4.28	0.00	1.000	504.1	513.1	522.1	531.1	540.2	549.2	558.2		
	49	45.0	0.349	3.99	0.29	0.932	504.2	513.2	522.2	531.2	540.3	519.3	558.3		
	48	46.0	0.326	3.73	0.55	0.571	504.4	513.4	522.4	531.4	540.5	549.5	558.5		
	47	44.0	0.304	3.48	0.80	0.813	504.5	513.5	524.5	531.5	540.6	549.6	558.6		
	46	42.0	0.283	3.25	1.03	0.759	504.6	513.6	522.6	531.6	540.7	5.49 .7	558.7		
	45	40.0	0.264	3.03	1.25	0.708	504.5	513.8	522.8	531.8	540.9	549.9	558.9		
	44	38.0	0.246	2.82	1.46	0.659	504.9	513.9	522.9	532.0	541.0	550.0	559.0		
	43	36.0	0.230	2.63	1.65	0.614	505.1	514.1	523.1	5:92.1	541.2	550.2	559.2		
	42	34.0	0.214	2.45	1.83	0.572	505.2	514.2	523.2	532.2	541.3	550.3	559.3		
	41	32.0	0.199	2.28	2.00	0.533	50.5 .3	514.3	523.3	532.3	541.4	550.4	559.4		
	40	30.0	0.186	2.12	2.16	0.49 .5	505.4	514.4	523.4	532.4	541.5	550.5	559.5		
	39	28.0	0.173	1.97	2.31	0.460	505.5	514.5	523.5	5332.5	541.6	550.6	559.6		
51	51	51.0	0.38	4.42	0.00	1.000	503.1	512.1	521.1	530.0	539.0	548.0	557.0		
	50	49.0	0.361	4.12	0.30	0.932	503.2	512.2	521.2	530.1	539.1	548.1	$55 \% .1$		
	49	47.0	0.337	3.85	0.57	0.871	503.3	512.3	521.3	530.3	539.3	548.3	557.3		
	48	45.0	0.315	3.60	0.82	0.514	503.4	512.4	521.4	530.4	539.-1	548.4	557.4		
	47	43.0	0.293	3.36	1.06	0.760	503.5	512.5	521.5	530.5	539.5	548.5	557.5		
	46	41.0	0.274	3.13	1.29	0.708	503.7	512.7	521.7	5:30.7	539.7	548.7	557.7		
	45	39.0	0.255	2.92	1.50	0.661	503.8	512.8	521.5	530.8	539.8	548.8	557.8		
	44	37.0	0.235	2.72	1.70	0.615	503.9	512.9	521.9	5:30.9	539.9	548.9	557.9		
	43	3.5 .0	0.222	2.54	1.85	0.575	504.0	513.0	522.0	531.0	540.0	5.19 .0	555.0		
	42	33.0	0.207	2.36	2.06	0.534	504.1	513.1	5221	531.1	540.1	549.1	5.58 .1		
	41	31.0	0.192	2.20	2.22	0.498	504.2	513.2	522.2	531.2	540.3	549.3	558.3		
	40	29.0	0.179	2.05	2.37	0.464	504.3	513.3	523.3	5:31.3	540.4	549.4	559.4		
52	52	52.0	0.400	4.56	0.00	1.000	502.1	511.0	520.0	528.9	537.9	$5-16.8$	55.5.5		
	51	50.0	0.373	4.26	0.30	0.9:34	502.2	511.1	520.1	529.0	538.0	546.9	55.5.9		
	50	48.0	0.349	3.98	0.58	0.873	502.4	511.3	520.3	529.2	538.2	547.1	5.56 .1		
	49	46.0	0.326	3.72	0.84	0.816	502.5	511.4	520.4	529.3	5:36.3	5.47 .2	556.2		
	48	44.0	0.304	3.47	1.09	0.761	502.6	511.5	520.5	529.4	538.4	5.47 .3	556.3		
	47	42.0	0.283	3.23	1.33	0.709	502.8	511.7	520.7	529.6	538.6	547.5	556.5		
	16	40.0	0.264	3.02	1.54	0.662	502.9	511.5	520.8	529.7	538.7	547.6	556.6		
	45	38.0	0.246	2.81	1.75	0.616	502.9	511.9	520.9	529.8	538.8	547.8	556.8		
	44	36.0	0.230	2.63	1.93	0.577	503.1	512.0	521.0	529.9	539.0	548.0	557.0		
	43	34.0	0.214	2.44	2.12	0.535	50.3 .2	512.1	521.1	530.0	539.1	548.1	557.1		
	42	32.0	0.199	2.28	2.28	0.500	50.3 .3	512.3	521.3	530.2	5399.2	548.2	$55 \% .2$		
	41	$\left.\right\|_{1} 30.0$	0.156	2.13	2.43	0.467	503.4	512.4	521.4	530.3	539.3	548.3	557.3		

Reading of Thermometer, Fahr.		$\begin{aligned} & \text { Temp. } \\ & \text { of } \\ & \text { Dew- } \\ & \text { Point, } \\ & \text { Fahr. } \end{aligned}$	$\begin{aligned} & \text { Force } \\ & \text { of } \\ & \text { Vapor } \\ & \text { in } \\ & \text { English } \\ & \text { Inches. } \end{aligned}$	Weight of Vapor		$\begin{aligned} & \text { Hu- } \\ & \text { midity, } \\ & \text { Satura- } \\ & \text { tion }= \\ & 1.000 . \end{aligned}$	Weight in Grains of a Cubic Foot of Air.								
		In a			Height of the Barometer in English Inches.										
Dry.	Wet.			Foot of Air.	of aCu tic Ft. of Air.		${ }_{28.0}^{\text {in. }}$	$\operatorname{in.}_{28.5}$	$\begin{array}{r} \text { in. } \\ \mathbf{2 9 . 0} \end{array}$	$\operatorname{in.}_{\mathbf{2 9 . 5}}$	$\begin{aligned} & \text { in. } \\ & \mathbf{0 . 0} \\ & \hline \end{aligned}$	$\operatorname{in.}_{\mathbf{3 0 . 5}}$	$3 \mathrm{in} .0$		
53			-	in.	gr		gr.		gr.	gr.	gr.	$\mathrm{gr}_{\text {gr }}$	gr.	${ }_{\text {gr }}$	6
	53	53.0	0.414	4.71	0.00	1.000	500.9	509.8	518.8	527.7	536.7	545.6	554.6		
	52	51.0	0.386	4.40	0.31	0.934	501.1	510.0	519.0	527.9	536.9	5458	55.4 .8		
	51	49.0	0.361	4.11	0.60	0.873	501.2	510.1	5191	528.0	537.0	545.9	554.9		
	50	47.0	0.337	3.84	0.87	0.815	501.4	510.3	519.3	528.2	537.2	546.1	555.1		
	49	45.0	0.315	3.58	1.13	0.760	501.5	510.4	519.4	528.3	537.3	546.2	555.2		
	48	43.0	0.293	3.34	1.37	0.709	501.6	510.5	519.5	528.4	537.4	546.3	555.3		
	47	41.0	0.274	3.12	1.59	0.662	501.7	510.6	5196	528.5	537.5	546.4	555.4		
	46	39.0	0.255	2.91	1.80	0.618	501.5	510.7	519.7	528.6	537.6	546.5	555.5		
	45	37.0	0.238	2.71	2.00	0.575	502.0	510.9	519.9	528.8	537.8	546.7	555.7		
	44	35.0	0.222	2.53	2.18	0.537	502.1	511.0	520.0	528.9	537.9	546.8	555.8		
	43	330	0.207	2.35	2.36	0.499	502.1	511.0	520.0	528.9	238.0	546.9	55.5.9		
	42	31.0	0.192	2.18	2.53	0.463	502.2	511.1	520.1	529.0	538.1	547.0	556.0		
54	54	54.0	0.428	4.86	0.00	1.000	499.9	505.8	517.8	526.7	535.6	544.5	553.5		
	53	52.0	0.400	4.54	0.32	0.934	500.0	508.9	517.9	526.8	535.7	54.6	553.6		
	52	50.0	0.373	4.25	0.61	0.875	500.2	509.1	518.1	527.0	535.9	544.5	553.8		
	51	48.0	0.349	3.96	0.90	0.815	500.3	509.2	518.2	527.1	536.0	544.9	553.9		
	50	46.0	0.326	3.70	1.16	0.761	500.4	509.3	518.3	527.2	536.1	545.0	554.0		
	49	4.0	0.304	3.45	1.41	0.709	500.6	509.5	518.5	527.4	536.3	545.2	554.2		
	48	42.0	0.283	3.23	1.63	0.665	500.7	509.6	518.6	527.5	536.4	545.3	554.3		
	47	40.0	0.264	3.01	1.85	0.619	500.8	509.7	518.7	527.6	536.5	545.4	554.4		
	46	38.0	0.246	2.80	2.06	0.576	500.9	509.8	518.8	527.7	536.7	545.6	554.6		
	45	36.0	0.230	2.61	2.25	0.537	501.0	509.9	518.9	527.8	536.8	545.7	554.7		
	4	34.0	0.214	2.43	2.43	0.500	501.1	510.0	519.0	527.9	536.9	545.8	55.48		
	43	32.0	0.199	2.27	2.59	0.467	501.2	510.1	519.1	528.0	537.0	545.9	554.9		
	42	30.0	0.186	2.10	2.76	0.432	501.3	510.2	519.2	528.1	537.1	546.0	555.0		
	41	28.0	0.173	1.96	2.90	0.403	501.1	510.3	519.3	528.2	537.2	546.1	555.1		
	40	26.0	0.161	1.82	3.04	0.375	501.5	510.4	519.4	528.3	537.3	546.2	555.2		
55	55	55.0	0.442	5.02	0.00	1.000	498.8	507.7	516.6	525.5	53.4	543.3	552.2		
	54	53.3	0.418	4.74	0.23	0.944	499.0	507.9	516.8	525.7	53.1 .6	543.5	5.52 .4		
	53	51.6	0.394	4.46	0.56	0.888	499.1	508.0	516.9	525.8	534.7	543.6	552.5		
	52	49.9	0.372	4.23	0.79	0.843	499.3	508.2	517.1	526.0	534.9	543.8	552.7		
	51	48.2	0.3 .51	3.98	1.04	0.793	499.4	508.3	517.2	526.1	535.0	543.9	552.8		
	50	46.5	0.331	376	1.26	0.749	499.5	508.4	517.3	526.2	535.1	544.0	552.9		
	49	4.8	0.312	3.55	1.47	0.707	499.7	508.6	517.5	526.3	535,3	544.2	553.1		
	48	43.1	0.295	3.34	1.68	0.665	499.8	508.7	517.6	526.5	535.4	544.3	553.3		
	47	41.4	0.278	3.14	1.88	0626	499.8	508.7	517.6	526.6	535.5	544.4	5.53 .4		
	46	39.7	0.262	2.97	2.05	0.591	499.9	505.8	517.7	526.7	535.6	544.5	5.53.5		
	45	38.0	0.246	2.79	2.23	0.5 .56	500.0	508.9	517.9	526.8	535.7	54.6	553.6		
	4	36.3	0.232	2.64	2.38	0.526	500.1	509.0	518.0	526.9	535.8	544.7	558.7		
	43	34.6	0.219	2.17	2.55	0.492	500.2	509.1	518.1	527.0	535.9	544.8	553.8		
	42	32.9	0.206	2.32	2.70	0.462	500.3	509.2	518.2	527.1	536.0	544.9	553.9		
	41	31.2	0.194	2.20	2.82	0.438	500.4	509.3	518.3	527.1	5:6.0	54+.9	554.0		
	40	29.5	0.182	2.07	2.95	0.412	500.5	509.3	518.4	527.2	536.1	545.0	554.1		
	39	27.8	0.172	1.95	3.07	0.388	500.6	509.1	518.5	527.3	536.2	545.1	5.4 .2		
	38	26.1	0.161	1.83	3.19	0.365	500.7	509.5	518.6	527.4	536.2	545.1	551.2		

Reading of Thermometer, Faur.		Temp. of DewPoint, Fahr.	Force of Vapor in English Inches.	Weight of Vajor		Ifumidity, Saturation $=$ 1.000.	Weight in Grains of a Cubic Foot of Air								
		a		Requd. for	Height of the Barometer in English Inches.										
Dry				Air.	bic Ft. of Air.		$\operatorname{in.}_{28.0}$	$\mathrm{in}_{2}^{28.5}$	$\begin{array}{\|c\|} \text { in. } \\ 28.0 \end{array}$	$\operatorname{in.}_{2(9.5)}$	$\begin{gathered} \mathrm{in}_{3} \\ \mathbf{3 0 . 0} \end{gathered}$	$\frac{\mathrm{in} .}{36.5}$	$\begin{aligned} & i n . \\ & 31.0 \end{aligned}$		
			\bigcirc	in.	gr		gr.		gr	gr.	gr .	gr.	gr.	r.	gr.
66	66	66.0	0.638	7.08	0.00	1.000	187.0	495.7	504.4	513.1	521.8	520.5	539.2		
	65	6.4 .4	0.605	6.72	0.36	0.949	487.2	495.9	504.6	51:.3	522.0	53817	539.1		
	64	62.8	0.574	6.35	0.73	0.597	457.3	196.0	5047	513.4	522.1	330.8	589.5		
	63	61.2	0.544	6.04	1.04	0.5 .53	187.5	496.2	504.9	513.6	522.3	5:31.0	539.7		
	62	59.6	0.516	5.72	1.36	$0.80{ }^{\circ}$	157.7	496.4	50.3 .1	513.8	52.2 .5	531.2	$5: 399$		
	61	58.0	0.489	5.42	1.66	0.766	487.9	496.6	505.3	514.0	522.7	$5: 31.4$	540.1		
	60	56.1	0.464	5.14	1.94	0.726	488.0	496.7	50.54	514.1	522.5	533.5	510.2		
	59	54.8	0.440	4.85	2.20	0.689	458.1	496.8	50.5 .5	$51+.2$	523.0	531.7	510.4		
	53	53.2	0.416	4.62	2.46	0.652	488.2	496.9	505.6	514.3	523.1	531.8	540.5		
	57	51.6	0.394	4.37	2.71	0.619	488.4	497.1	505.5	514.5	52:3.3	5:32.0	540.7		
	56	50.0	0.373	4.15	2.93	0.586	488.5	497.2	505.9	514.6	52:3.4	533.2 .1	510.8		
	55	48.1	0.354	3.92	3.16	0.553	188.6	497.3	506.1	514.8	523.5	5:32.2	$5+1.0$		
	51	46.8	0.335	3.72	3.36	0.525	488.8	497.5	506.3	51.5 .0	523.7	532.4	5.11 .2		
	53	45.2	0.317	3.51	3.57	0.496	488.9	497.6	506.4	515.1	523.8	532.5	$5+1.3$		
	52	43.6	0.300	3.33	3.75	0.470	489.0	497.7	506.5	515.2	523.9	5:32.6	541.1		
	51	42.0	0.233	3.14	3.94	0.443	459.1	497.8	506.6	515.3	524.0	532.7	541.5		
	50	10.1	0.263	2.97	4.11	0.419	489.2	497.9	506.7	515.4	524.1	533.8	541.6		
	49	35.8	0.25:3	2.81	4.27	0.397	489.3	493.0	506.8	515.5	524.2	532.9	541.7		
	45	37.2	0.240	2.66	4.42	0.376	489.4	498.1	506.9	515.6	524.3	533.0	541.8		
	47	35.6	0.227	2.51	4.57	0.35 .5	489.4	498.1	506.9	515.6	524.3	533.0	5-41.8		
	46	34.0	0.214	2.37	4.71	0.335	489.5	498.2	507.0	515.7	52.4 .4	5833.1	541.9		
	45	32.4	0.202	221	4.84	0.316	489.6	498.3	507.1	515.8	524.5	5:33.2	542.0		
	44	30.8	0.191	2.12	4.96	0.999	489.7	498.4	507.2	515.9	524.6	533.3	42.1		
	43	29.2	0.180	2.00	5.0 s	0.2 si	489.7	$19 \mathrm{S.4}$	507.2	515.9	524.6	533.3	542.1		
67	67	67.0	0.659	7.30	0.00	1.000	485.9	494.6	503.3	512.0	520.6	529.3	538.0		
	66	6.5 .4	0.626	6.98;	$0 .: 37$	0.919	486.1	491.8	503.5	512.2	520.8	529.5	538.2		
	6.5	63.8	0.593	6.5 .5	0.75	0.597	486.3	49.5.0	503.7	512.4	521.0	529.7	588.4		
	64	62.2	0.56:3	6.23	1.07	0.853	486.5	49.5.2	503.9	512.6	521.2	529.9	.338.6		
	63	60.6	0.534	5.931	1.39	0.810	186.7	49.5 .4	501.1	512.8	521.4	530.1	53.8		
	62	59.0	0.506	5.60	1.70	0.767	486.8	495.5	501.2	512.9	521.6	530.3	589.0		
	61	57.4	0.480	5.81	1.99	0.725	486.9	49.5 .6	504.3	513.0	521.7	530.4	589.1		
	60	55.5	0.455	5.04	2.26	0.691	487.1	49.5 .8	501.5	513.2	521.9	530.6	539.3		
	59	54.2	. 0.481	1.77	2.53	0.65:3	487.2	49.\%.9	504.6	513.3	522.0	530.7	589.4		
	53	52.6	0.405	4.52	2.78	0.619	487.3	496.0	504.7	513.4	52.21	530.8	539.5		
	57	51.0	0.336	4.25	3.02	0.586	487.5	496.2	504.9	513.6	$52 \cdot 2.3$	531.0	539.7		
	56	49.1	0.366	4.0 .5	3.25	0.555	487.6	496.3	50.5 .0	513.7	522.4	531.1	539.5		
	5.)	17.8	0.316	3.8:3	3.47	0.524	487.9	496.5	50.5 .1	513.8	52.2 .6	531.2	549.9		
	54	46.2	0.328	3.62	365	0.49 j	457.9	196.6	50.5 .2	513.9	522.7	531.3	540.0		
	53	4.6	0.310	3.43	3.87	0.470	488.0	496.7	50.5 .3	514.0	52.2 .8	531.4	540.1		
	52	43.0	0.393	3.25	4.05	0.445	488.1	496.8	504.4	514.1	522.9	531.5	540.2		
	51	41.4	0.278	3.08	1.22	0.422	488.2	496.9	50.5 .5	514.2	523.0	531.6	540.3		
	50	39.5	0.263	2.91	4.39	0.399	483.4	497.1	50.5 .7	514.4	523.1	531.8	540.5		
	49	39.2	$0.2+8$	2.75	4.55	0.377	488.5	497.2	50.5 .8	514.5	523.2	531.9	540.6		

Reading of Thermometer, Fuhr.		$\begin{aligned} & \text { Temp } \\ & \text { of } \\ & \text { Dew- } \\ & \text { Point, } \\ & \text { Fahr. } \end{aligned}$	Force of Vapor in Euglish Inches.	Weight of Vapor		Humidity, Saturation $=$ I 000 .	Weight in Grains of a Cubic Foot of Air.								
				Reqd.	Height of the Barometer in English Inches.										
Dry.	Wet.			Air.	bic $\mathbf{F}^{\prime} \mathrm{t}$. of Air.		in.	$\operatorname{ing}_{28.5}$	$\operatorname{in}_{\mathbf{2 0}}$	$\operatorname{in.}_{29.5}$	$\operatorname{in.}_{\mathbf{3 0 . 0}}$	$\operatorname{in}_{\mathbf{3 0} .5}$	$\sin ^{\text {in. }}$		
67	\bigcirc		\bigcirc	in.	gr		gr		gr.	gr.	gr	gr.	gr.	gr.	r.
	49		35.2	0.248	2.75	4.55	0.377	488.5	497.2	505.8	514.5	523.2	531.9	540.6	
	48	36.6	0.235	2.60	4.70	0.356	488.6	497.3	505.9	514.6	523.3	532.0	540.7		
	47	35.0	0.222	2.46	4.84	0.337	488.7	497.4	505.9	514.7	52:3.4	532.1	540.8		
	46	33.4	0.210	2.32	4.98	0.318	488.7	497.4	506.0	514.7	523.4	532.1	540.8		
	45	31.8	0.198	2.19	5.11	0.301	488.8	497.5	506.1	514.8	523.5	532.2	540.9		
	44	30.2	0.187	2.07	5.23	0.254	488.9	497.6	506.2	514.9	523.6	532.3	541.0		
68	68	68.0	0.681	7.53	0.00	1.000	484.9	493.5	502.2	510.8	519.5	528.1	536.8		
	67	66.4	0.6 .46	7.15	0.38	0.949	48.5 .1	493.8	502.5	511.1	519.7	528.4	537.1		
	66	64.8	0.613	6.77	0.76	0.899	485.3	494.0	502.6	511.2	519.9	525.6	537.3		
	65	63.2	0.552	6.43	1.10	0.854	485.5	494.2	5028	511.4	520.1	528.8	$53 \% .5$		
	64	61.6	$0.55:$	6.10	1.43	0.810	485.7	494.4	503.0	511.6	520.3	529.0	537.7		
	63	60.0	0.523	5.78	1.75	0.765	485.8	49.4 .5	503.1	511.8	520.5	529.2	537.9		
	62	58.4	0.496	5.47	2.06	0.726	485.9	494.6	503.3	512.0	520.7	529.4	535.1		
	61	56.8	0.470	5.20	2.33	0.691	486.0	494.7	503.4	512.1	520.8	529.5	538.3		
	60	5.5.2	0.445	4.93	2.60	0.655	486.2	494.9	503.6	512.3	521.0	529.7	538.5		
	59	5:3.6	0.422	4.67	2.86	0.620	486.3	495.0	503.7	512.4	521.1	529.3	535.6		
	58	52.0	0.100	4.42	3.11	0.557	486.4	495.1	503.8	512.5	521.2	529.9	538.6		
	57	50.4	0.379	4.19	3.34	0.556	486.6	495.3	504.0	512.7	521.4	530.1	598.8		
	56	48.8	0.358	3.96	3.57	0.526	486.7	495.4	504.1	512.8	521.5	530.2	535.9		
	55	47.2	0.339	3.75	3.75	0.495	486.8	495.5	504.2	512.9	521.6	530.3	539.0		
	54	45.6	0.321	3.54	3.99	0.470	456.9	495.6	504.3	513.0	521.7	530.4	539.1		
	53	44.0	0.304	3.35	4.18	0.445	487.0	495.7	504.4	513.1	521.8	530.5	539.2		
	5	42.4	0.257	3.17	4.36	0.421	487.1	495.8	504.5	513.2	521.9	530.6	539.3		
	51	40.8	0.272	8.00	4.53	0.399	187.2	495.9	504.6	513.3	522.0	530.7	539.4		
	50	39.2	0.257	2.84	4.69	0.377	487.3	496.0	504.7	513.4	522.1	530.8	539.5		
	49	37.6	0.243	2.68	4.85	0.356	457.4	496.1	504.8	513.5	522.2	530.9	539.6		
	48	36.0	0.230	2.54	4.99	0.337	487.5	496.2	504.9	513.6	522.3	531.0	539.7		
	47	34.4	0.217	2.10	5.13	0.319	487.6	496.3	505.0	513.7	5.22 .4	531.1	539.8		
	46	32.5	0.20 .5	2.27	5.26	0.302	487.6	496.3	50.5 .0	513.7	522.1	531.1	539.8		
	45	31.2	0.194	2.15	5.35	0.286	487.7	496.4	50.5 .1	513.8	522.5	531.2	539.9		
	41	29.6	0.153	2.04	5.49	0.371	487.8	496.5	505.2	513.9	522.6	531.3	540.0		
69	69	69.0	0.704	7.76	0.00	1.000	483.8	492.4	501.1	509.7	518.3	527.0	535.6		
	68	67.4	0.665	7.37	0.39	0.950	484.0	492.6	501.3	509.9	518.5	527.2	53.5 .8		
	67	65.8	0.634	7.00	0.76	0.902	484.2	492.8	5015	510.1	518.7	527.4	536.0		
	66	61.2	0.601	6.63	1.13	0.854	484.4	493.0	501.7	510.3	518.9	527.6	5:36.2		
	6.5	62.6	0.570	6.29	1.47	0.810	484.6	493.2	501.9	510.5	519.1	527.8	536.4		
	6.4	61.0	0.541	5.97	1.79	0.769	484.8	493.4	502.1	510.7	519.3	528.0	536.6		
	63	59.4	0.513	5.65	2.11	0.728	485.0	493.6	502.3	510.9	519.5	528.2	536.8		
	62	57.8	0.186	5.37	2.39	0.693	485.1	493.7	502.4	511.0	519.6	528.3	$5: 36.9$		
	61	56.2	0.161	5.09	2.67	0.657	485.1	493.7	502.6	511.2	319.8	528.5	537.1		
	60	54.6	0.137	4.82	2.94	0.621	485.2	493.9	502.7	511.3	519.9	$52 \mathrm{S.6}$	537.3		
	59	53.0	0.114	4.57	3.19	0.589	185.4	494.1	502.8	511.5	520.1	528.8	537.5		
	58	51.4	0.392	4.33	3.48	0.558	485.5	49 4.2	502.9	511.6	520.2	528.9	537.6		

Rewding of Thermometer, Fahr.		Temp of DewPoint, Fahr.	Force of Vapor in English Inches.	Weight of Vapor		Humidity, Saturation $=$ 1000.	Weight in Grains of a Cubic Foot of Air.						
		In a for Cubic sat'n. Foot of of aCu- Air. Die Ft. of Air.		Height of the Barometer in English Inches.									
							in.	in.	n.	in.			
Dry.	Wet.				$28.0{ }^{6}$		2 \%.3	29.0					
$\begin{array}{r} \circ \\ 69 \end{array}$	\bigcirc						in.	gr.	gr		gr.		
	58	51.40	0.392	4.33 3	3.430	0.55 S	485.54	191.25	502.9 5	511.65	520.2	9	537.6
	57	49.80	0.371	4.09 3	3.670	0.5274	485.7 4	494.45	503.15	511.85	520.45	529.1 5	537.8
	56	48.20	0.351	3.87 3	3.890	0.499	485.84	494.55	503.25	511.95	520.5 5	$529.2{ }^{5}$	537.9
	55	46.60	0.332	3.664	4.100	0.472	485.94	494.65	503.3	512.0	520.6	529.3 5	538.0
	54	45.0	0.315	3.47 4	4.290	0.447	486.0	494.75	503.4	512.15	520.7	529.45	5:38.1
	53	43.4	0.298	3.29 4	4.470	0.424	456.1	494.8	503.5	512.25	520.8	529.5	535.2
	52	41.5	0.282	3.11 t	4.650	0.401	486.24	494.9	503.6	512.35	520.9	529.6	538.3
70									83.7	512.4	521.0	529.7	5:38.4
	51	40.2	0.266	2.94	4.520			495.0	0.. 7	51.5	5.21.1	529.8	538.5
	50	38.6	0.252	2.78	4.950	0.358	486.4	495.1	503.8	512.5	521.1	529.8	
	49	37.0	0.238	2.635	5.130	0.339	486.5	495.2	503.9	512.6	521.2	529.9	535.6
	48	35.4	0.225	2.49	5.27 0,	0.321	456.6	495.3	504.0	512.7	521.3	530.0	535.7
	47	33.8	0.213	2.34	5.420	0.30:2	456.7	49.5 .4	504.1	512.8	521.4	530.1	535.5
	46	32.2	0.201	2.20	5.56	0.284	486.8	495.5	504.2	512.9	521.5	530.2	538.9
	45	30.6	0.190	2.06	5.70	0.266	486.8	495.5	504.2	512.9	521.5	530.2	535.9
	70	70.0	0.727	8.00	0.00	1.000	482.8	491.4	500.0	508.6	517.2	525.8	534.4
	69	68.5	0.692	7.62	0.38	0.953	483.0	491.6	500.2	505.8	517.4	526.0	534.6
	68	67.0	0.659	7.26	0.74	0.907	483.2	491.5	500.4	509.0	517.6	526.2	534.5
	67	65.5	0.62 S	6.91	1.09	0.865	483.3	491.9	500.5	509.1	517.7	526.3	534.9
	66	64.0	0.597	6.57	1.43	0.522	483.5	492.1	500.7	509.3	517.9	526.5	535.1
	65	62.5	0.568	6.25	1.75	0.781	483.7	492.3	500.9	509.5	518.1	526.7	535.3
	64	61.0	0.541	5.95	2.05	0.744	453.8	492.4	501.0	509.6	518.3	526.9	535.5
	63	59.5	0.515	5.66	2.34	0.708	484.0	492.6	501.2	509.8	518.5	527.1	535.7
	62	58.0	0.489	5.38	2.62	0.672	454.2	492.8	501.4	510.0	518.7	527.3	535.9
	61	56.5	0.465	5.12	2.53	0.640	484.3	492.9	501.5	510.1	518.8	527.4	536.0
			0.442	4.87	3.13	0.609	454.4	493.0	501.6	510.2	518.9	527.5	536.1
			0.421	14.62	3.38	0.578	454.6	493.2	501.8	510.4	519.1	527.7	536.3
		52.0	0.400	4.40	3.60	0.550	454.7	493.3	501.9	510.5	519.2	527.8	536.4
	58 57	52.0 50.5	0.400 0.380	(4.18	3.60	0.522	484.8	493.4	502.0	510.6	519.3	527.9	536.5
	57	50.5	0.350	4.15									
			0.361	13.96	4.04	0.495	484.9	493.5	502.1	510.7	519.4	528.0) 536.6
	56	49.0	0.361 0.343	13.96 3 3.76	4.04 4.24	0.470	485.1	493.7	502.8	510.9	519.6	528.2	536.8
	55	47.5	0.34 .3	3.76				493.5	502.4	511.0	519.7	528.3	536.9
	54	46.0	0.326	$6 \quad 3.57$	4.43	0.446	485.2	493.5 19.3	502.4	511.0	519.8	528.4	4537.0
	53	44.5	0.309	9 3.40	4.60	0.425	485.3	493.9	502.5	511.1	519.8	528.4	5 537.1
	52	43.0	0.292	23.23	4.77	0.404	485.4	$449+0$	502.6	- 511.2	519.9	528.5	5537.1
	51	41.5	50.279	9 3.07	4.93	0.384	48.5 .5	5494.1	5027	7511.3	520.0	- 228.6	6537.2
	50	40.0	0.264	42.81	5.19	0.351	485.5	5494.1	502. 7	7 511.3	520.0	528.6	6 537.2
									$50 \cdot 8$	511.4	+ 520.1	1528.7	7 537.
	49	38.5	50.251	51 2.76	6.24	40.345	5485.6	6 494.2	502.8	8511.4	4520.1	528.7	- 53.ロ
	45	-37.0	0.238	882.63	5.37	70.329	485.7	7494.3	-502.9) 511.5	5520.2	258.8	8 537.
	47	735.5	50.226	$26 \quad 2.50$	5.50	0.313	455.5	S 494.4	4503.0	(511.6	6520.3	3528.9	9537.5
	46	6 34.0	0.214	142.37	75.63	30.296	6 485.8	8 494.4	4503.0	0511.6	6 520.3	3528.9	9537.5
	45	534.0 32.5	50.203	032.24	45.76	60.280	0483.9	9494.5	5503.1	1511.7	7 520.4	4529.0	0537.6
			0 0.192	922.12	2.5 .58	80.265	$5 \quad 486.0$	$0 \quad 494.6$	6503.2	2511.8	3520.5	$5 \quad 529.1$	1537.7
		31.0	$5{ }^{5}$	822.01	15.94	1 0.251	1 186.1	1494.7	\% 503.3		9 520.6	6 529.2	2 537.
	4	\| 29.5	5 - 0.152	- 2.01	- 5.95								

Reading of Ther-mometer, Fathr.		$\begin{aligned} & \text { Temp. } \\ & \text { of } \\ & \text { oew- } \\ & \text { Pount, } \\ & \text { Fahr. } \end{aligned}$	$\begin{gathered} \text { Force } \\ \text { of } \\ \text { Vapor } \\ \text { in } \\ \text { Enylish } \\ \text { Inches. } \end{gathered}$	Weight of Vapor		$\begin{gathered} \text { Hu- } \\ \text { midity, } \\ \text { Satura- } \\ \text { tion }= \\ 1.0000 . \end{gathered}$	Weight in Grains of a Cubic Foot of Air.								
		Ina		$\begin{aligned} & \text { Reqd. } \\ & \text { for } \end{aligned}$	Height of the Barometer in English Inches.										
Dry.	Wet.			Air.	of acuof Air.		$\operatorname{ing}_{28.0}$	$\operatorname{in.~}_{23.5}$	$\begin{array}{c\|c\|} \hline 9.0 \\ \hline 9.0 \end{array}$	$\operatorname{in}_{\mathbf{i n} .5}$	$\operatorname{in}_{3 \oplus .0}$	30.5	$3 \text { in. } 0$		
	\bigcirc			in.	gr		gr.						gr		gr.
74	74	74.0	0.827	9.04	0.00	1.000	475.4	486.9	495.5	504.0	512.6	521.1	529.7		
	73	72.5	0.787	8.60	0.44	0.951	478.6	487.1	495.7	504.2	512.8	521.3	529.9		
	72	71.0	0.751	5.20	0.84	0.907	478.8	487.3	4959	504.4	513.0	521.5	530.1		
	71	69.5	0.715	7.81	1.23	0.864	479.0	487.5	496.1	504.6	513.2	521.7	530.3		
	70	68.0	0.681	7.44	1.60	0.823	479.2	487.7	496.3	504.8	513.4	521.9	530.5		
	69	66.5	0.618	7.05	1.96	0.783	479.4	487.9	496.5	505.0	513.6	522.1	530.7		
	68	65.0	0.617	6.75	2.29	0.747	479.6	488.1	4967	505.2	513.8	52.2 .3	530.9		
	67	63.5	0.588	6.41	2.63	0.709	479.8	488.3	496.9	505.4	514.0	522.5	531.1		
	66	62.0	0.559	6.10	2.94	0.675	480.0	188.5	497.1	505.6	514.2	522.7	531.3		
	65	60.5	0.532	5.81	3.23	0.643	480.1	488.7	497.3	505.9	514.4	522.9	531.5		
	64	59.0	0.506	5.52	3.52	0.611	480.3	455.9	497.5	506.1	314.6	523.2	531.8		
	63	57.5	0.481	5.24	3.50	0.550	480.5	489.1	497.7	506.3	514.8	523.4	532.0		
	62	56.0	0.458	4.99	4.05	0.552	450.6	489.2	497.8	506.4	514.9	523.5	532.1		
	61	54.5	0.435	4.75	4.29	0.525	480.7	489.3	497.9	506.5	515.0	523.6	532.2		
	60	53.0	0.414	4.52	4.52	0.500	480.9	489.5	498.1	506.7	515.2	523.5	532.4		
	59	51.5	0.393	4.29	4.75	0.475	481.0	489.6	498.2	506.8	515.3	523.9	532.5		
	58	50.0	0.373	4.08	4.96	0.451	481.1	489.7	498.3	506.9	515.4	524.0	532.6		
	57	18.5	0.355	3.86	5.18	0.427	481.2	189.8	498.4	507.0	515.5	524.1	532.7		
	56	47.0	0.337	3.66	5.38	0.405	181.3	189.9	498.5	507.1	515.6	524.2	532.5		
	55	45.5	0.320	3.48	5.56	0.385	481.4	490.0	498.6	507.2	515.7	524.3	532.9		
	54	44.0	0.304	3.32	5.72	0.367	481.5	490.1	498.7	507.3	515.8	524.4	533.0		
	53	42.5	0.288	3.15	5.59	0.348	481.6	490.2	498.6	507.4	515.9	524.5	533.1		
	52	11.0	0.274	2.99	6.05	0.331	481.7	490.3	498.9	507.5	516.0	524.6	533.2		
	51	39.5	0.260	2.83	6.21	0.313	481.5	490.4	499.0	507.6	516.1	524.7	533.3		
	50	38.0	0.246	2.69	6.35	0.298	481.9	490.5	499.1	507.7	516.2	524.8	533.4		
	49	36.5	0.234	2.55	6.49	0.282	481.9	490.5	499.1	507.7	516.2	524.8	533.4		
	48	3.5 .0	0.222	2.42	6.62	0.268	482.0	490.6	499.2	507.8	516.3	524.9	533.5		
	47	33.5	0.210	2.30	6.74	0.254	482.1	490.7	499.2	507.9	516.4	525.0	533.6		
75	75	75.0	0.8 .54	9.31	0.00	1.000	477.4	485.9	494.4	502.9	511.5	520.0	528.5		
	74	73.5	0.514	8.87	0.44	0.9 .33	177.6	486.1	194.6	503.1	511.7	520.2	528.7		
	73	72.0	0.776	8.4 .5	0.56	0.908	477.8	446.3	49 -. 3	503.3	511.9	520.4	528.9		
	72	70.5	0.7:39	8.0 .5	1.26	0.865	178.0	486.5	495.0	503.5	512.]	520.6	529.1		
	71	69.0	0.704	7.67	1.61	0.824	475.2	4 $\times 6.7$	19.5 .2	503.7	512.3	520.8	529.3		
	70	67.5	0.670	7.30	2.01	0.784	478.3	486.5	19.5 .3	503.8	512.5	521.0	529.5		
	69	66.0	0.638	6.95	2.36	0.746	478.5	4.7 .0	49.5 .5	504.0	512.7	521.2	529.7		
	68	64.5	0.607	6.62	2.69	0.711	478.7	157.2	19.5 .7	304.2	512.9	521.4	529.9		
	67	63.0	0.578	6.30	3.01	0.677	478.9	157.1	49.5 .9	504.4	513.1	521.6	530.1		
	66	61.5	0.5 .50	5.99	3.32	0.643	479.1	157.6	496.1	504.6	513.3	521.8	530.3		
	65	60.0	0.52.3	5.69	3.62	0.611	479.3	457.8	196.4	504.9	513.5	522.0	530.6		
	64	58.5	0.498	5.42	3.59	0.582	479.5	48 B .0	496.6	50.5.1	513.7	-22.2	530.8		
	63	57.0	0.173	5.1.5	4.16	0.553	479.6	485.1	196.7	505.2	513.8	52:23	530.9		
	62	5.5.5	0.450	1.90	4.41	0.526	479.7	4, 1.2	496.5	50.5 .3	513.9	522.4	531.0		

Readin r of Thermometer, Fahr.		Temp DewPoint, Fahr.	Force of Vapor in English Inches.	$\frac{\begin{array}{c} \text { Wei } \\ \text { of Vi } \end{array}}{\text { In a }}$	ght apur Reqd. for	$\begin{aligned} & \text { Hu- } \\ & \text { midity, } \\ & \text { Satura- } \\ & \text { tion }= \\ & 10 v 0 . \end{aligned}$	Weight in Grains of a Cubic Poot of Air.						
Dry.	Wet			Air.	bic Ft. of Air.		in.	$\operatorname{in.}_{2}^{2} .5$	$\operatorname{in.}_{29.0}$	29.5	30.0	30.5	${ }_{\mathbf{i n} .}^{\text {in.0 }}$
76	${ }^{\circ}$	5.	in. 0.450	gr. 1.90	gr.	0.526	gr. 79.7	$\begin{gathered} \mathrm{gr} . \\ 48 \times .2 \end{gathered}$	$\begin{gathered} \text { gr. } \\ 496.5 \end{gathered}$	gr. 505.3	gr. 513.9	gr.	gr.
	6	54.0	0.4 .98	4.66	4.6 .5	0.501	. 9	. 4		505.5	14.1	. 6	. 2
	60	59.5	0.407	4.43	4.88	0.476	480.0	455.5	497.1	505.6	514.2	522.7	$5: 31.3$
	59	51.0	0.386	4.21	5.10	0.452	450.1	488.6	497.2	50.5 .7	514.3	522.s	$5: 31.4$
	55	49.5	0.367	4.00	5.31	0.429	420.3	483.8	497.4	505.9	514.5	523.0	531.6
	57	48.0	0.349	3.79	5.52	0.407	450.4	458.9	497.5	506.0	514.6	523.1	531.7
	56	16.5	0.331	3.60	5.71	0.357	450.5	459.0	$49 \% .6$	506.1	514.7	523.2	531.8
	55	45.0	0.315	3.42	5.89	0.367	480.6	489.1	497.7	506.2	514.8	523.3	531.9
	54	43.5	0.299	3.25	6.06	0.349	400.7	489.2	497.8	506.3	514.9	523.4	532.0
	53	12.0	0.253	3.09	6.22	0.332	480.5	489.3	497.9	506.4	515.0	523.5	532.1
	52	40.5	0.269	2.93	6.35	0.315	480.8	489.3	497.9	506.4	515.0	533.5	532.1
	51	39.0	9.255	2.78	6.53	0.299	480.9	489.4	498.0	506.5	515.1	523.6	53.3 .2
	50	37.5	0.242	2.64	6.67	0.284	481.0	489.5	498.1	506.6	515.2	523.7	532.3
	49	36.0	0.230	2.51	6.80	0.270	4 S 1.1	459.6	498.2	506.7	515.3	523.8	532.4
	48	34.5	0.218	2.39	6.92	0.257	451.2	489.7	498.3	506.5	515.4	523.9	532.5
	76	76.0	0.882	9.60	0.00	1.000	476.3	484.8	493.3	501.8	510.3	519.8	507.3
	75	74.5	0.840	9.14	0.46	0.952	476.6	485.1	493.6	502.1	510.6	519.1	527.6
	74	73.0	0.801	8.71	0.89	0.907	476.5	485.3	493.8	502.3	510.8	519.3	527.8
	73	71.5	0.763	8.30	1.30	0.865	477.0	48.5 .5	494.0	502.6	511.1	519.6	528.1
	72	70.0	0.727	7.90	1.70	0.823	477.2	485.7	494.3	502.8	511.3	519.5	528.3
	71	68.5	0.692	7.53	2.07	0.754	477.4	485.9	494.5	503.0	511.5	520.0	528.5
	70	67.0	0.659	7.17	2.43	0.747	477.6	486.1	494.7	503.2	511.7	520.2	528.7
	69	65.5	0.62 S	6.53	2.77	0.711	477.8	486.3	494.9	503.4	511.9	520.4	528.9
	65	64.0	0.597	6.49	3.11	0.676	477.9	486.4	49.5 .0	503.6	512.1	520.6	529.2
	67	6.2 .5	0.56 s	6.16	3.44	0.642	478.1	486.6	46.5 .2	503.8	512.3	520.8	529.4
	66	61.0	$0.5+1$	5.55	3.72	0.613	478.2	486.7	495.3	503.9	512.4	520.9	529.5
	65	59.5	0.515	5.59	4.01	0.582	478.3	486.8	495.4	504.0	512.5	521.0	529.6
	6	58.0	0.489	5.31	4.29	0.553	478.5	487.0	495.6	504.2	512.7	521.2	529.5
	63	56.5	0.465	5.06	4.54	$0.5 \cdot 7$	478.6	457.1	495.7	504.3	512.5	521.3	529.9
	62	55.0	0.442	4.81	4.79	0.501	478.8	457.3	49.5 .9	504.5	513.0	521.5	530.1
	61	53.5	0.421	4.57	5.03	0.476	479.0	437.5	496.1	504.7	513.2	521.7	530.3
	60	52.0	0.400	4.34	5.26	0.452	479.1	457.6	496.2	504.8	513.3	521.8	530.4
	59	50.5	0.380	4.13	5.47	0.430	499.2	487.7	496.3	504.9	513.4	521.9	530.5
	58	49.0	0.361	3.92	5.65	0.405	499.3	487.8	496.4	50.5 .0	513.5	522.0	530.6
	57	47.5	0.343	3.73	5.87	0.359	499.4	457.9	496.5	505.1	513.6	522.1	530.7
	56	46.0	0.326	3.54	6.06	0.369	499.5	488.0	496.6	50.5 .2	513.7	522.2	530.8
	55	44.5	0.309	3.36	6.24	0.351	499.6	-158.1	496.7	50.5 .3	513.8	522.3	530.9
	54	43.0	0.293	3.19	6.41	0.332	499.7	488.2	496.5	50.5 .4	513.9	52.2 .4	531.0
	53	41.5	0.279	3.03	6.57	0.316	499.8	488.3	496.9	50.5 .5	514.0	522.5	531.1
	52	40.0	0.264	2.89	6.72	0.301	499.9	488.4	497.0	50.5 .6	514.1	522.6	531.2
	51	33.5	0.251	2.73	6.57	0.284	500.0	488.5	497.1	505.7	514.2	522.7	531.3
	50	37.0	0.238	2.59	7.01	0.269	500.1	485.6	497.2	50.5 .5	514.3	522.8	531.4
	49	3.5 .5	0.226	3.46	7.14	0.256	500.2	488.7	497.3	50.5 .9	514.4	522.9	531.5

Reading of Thermometer, Fahr.		Temp. of DewPoint, Fahr.	Force of Vapor in English Inches.	Weight of Vapor		$\Pi и-$ midity, Saturation $=$ 1.000.	Weight in Grains of a Cubic Foot of Air.								
		In a		Reqd. for Sat'n	Height of the Barometer in English Inches.										
Dry.	Wet.			Air.	bic Ft . of Air.		$\operatorname{in}_{28.0}$	28.5	$\operatorname{in}_{\mathbf{2 9 . 0}}$	$\inf _{29.5}$	$\begin{gathered} \operatorname{in.} \\ \mathbf{3 0 . 0} \end{gathered}$	$\inf _{30.5}$	${ }_{3}^{\operatorname{in} .} 0$		
-	\bigcirc		\bigcirc	in.	gr.		gr.		gr.	gr.	gr.	gr.	gr.	gr.	gr .
77	77	77.0	0.910	9.89	0.00	1.000	475.3	483.8	492.3	500.8	509.2	517.7	526.2		
	76	75.5	0.868	9.42	0.47	0.953	475.5	+84.0	492.5	501.0	509.4	517.9	526.4		
	75	74.0	0.827	8.99	0.90	0.909	475.7	484.2	492.7	501.2	509.6	518.1	526.6		
	74	72.5	0.787	8.57	1.32	0.867	475.9	484.4	492.9	501.4	509.9	518.4	526.9		
	73	71.0	0.751	8.15	1.74	0.824	176.1	484.6	493.1	501.6	510.1	518.6	527.1		
	72	69.5	0.715	7.77	2.12	0.756	476.3	484.8	493.3	501.8	510.3	518.8	527.3		
	71	68.0	0.681	7.40	2.49	0.748	476.5	485.0	493.5	502.0	510.5	519.0	527.5		
	70	66.5	0.648	7.04	2.85	0.712	476.7	485.2	493.7	50.2 .2	510.7	519.2	527.7		
	69	65.0	0.617	6.71	3.18	0.678	476.9	485.4	493.9	502.4	510.9	519.4	527.9		
	68	63.5	0.598	6.37	3.52	0.641	477.0	485.6	494.1	502.6	511.1	519.6	528.1		
	67	62.0	0.5 .59	6.06	3.83	0.613	477.2	485.8	494.3	502.8	511.3	519.8	528.3		
	66	60.5	0.532	5.77	4.12	0.583	477.4	486.0	494.5	503.0	511.5	520.0	528.5		
	65	59.0	0.506	5.49	4.40	0.556	477.5	486.1	494.6	503.1	511.6	520.1	528.6		
	64	57.5	0.481	5.21	4.68	0.527	477.7	486.3	494.8	503.3	511.8	520.3	52S.8		
	63	56.0	0.45 S	4.96	4.93	0.501	477.9	486.5	495.0	503.5	512.0	520.5	529.0		
	62	54.5	0.435	4.70	5.19	0.476	478.0	486.6	495.1	503.7	512.1	520.6	529.1		
	61	53.0	0.414	4.49	5.40	0.454	478.0	486.6	495.1	50:3.7	512.2	520.7	529.3		
	60	51.5	0.393	4.26	5.63	0.431	478.1	486.7	49.5	503.8	512.3	520.8	529.4		
	59	50.0	0.373	4.05	5.84	0.410	478.2	486.8	49.5 .3	503.9	512.4	520.9	529.5		
	58	48.5	0.355	3.85	6.0.4	0.389	478.3	486.9	495.4	504.0	512.5	521.0	529.6		
	57	-17.0	0.337	3.65	6.24	0.369	478.5	487.1	495.6	504.1	512.7	521.2	529.8		
	56	45.5	0.320	3.47	6.42	0.351	478.6	487.2	495.7	504.2	512.8	521.3	529.9		
	55	44.0	0.304	3.29	6.60	0.333	478.7	487.3	495.8	50.1 .3	512.9	521.4	536.0		
	54	42.5	0.288	3.13	6.76	0.317	478.8	487.4	49.5	504.4	513.0	521.5	530.1		
	53	41.0	0.274	2.97	6.92	0.301	478.9	487.5	496.0	504.5	513.1	521.6	530.2		
	52	39.5	0.260	2.82	7.07	0.255	479.0	457.6	496.1	504.6	513.2	521.7	530.3		
	51	38.0	0.246	2.67	7.22	0.270	479.1	487.7	496.2	504.7	513.3	521.8	530.4		
	50	36.5	0.234	2.53	7.36	0.256	479.1	487.7	496.2	504.7	513.3	521.8	530.4		
78	78	78.0	0.940	10.19	0.00	1.000	474.1	452.5	491.0	499.4	508.0	516.4	524.9		
	77	76.5	0.896	9.72	0.47	0.954	474.4	482.9	491.4	499.9	509.8	516.7	525.2		
	76	75.0	0.854	9.25	0.94	0.903	474.7	483.2	491.6	500.1	508.6	517.1	525.6		
	75	73.5	0.814	8.83	1.37	0.865	474.9	458.4	491.8	500.3	508.8	517.3	525.8		
	74	72.0	0.776	8.40	1.79	0.821	475.2	483.7	492.1	500.6	509.1	517.6	526.1		
	73	70.5	0.739	8.00	2.19	0.78 .5	475.4	483.9	492.3	500.8	500.3	517.8	526.3		
	72	69.0	0.704	7.62	2.57	0.748	475.6	484.1	492.5	501.0	509.5	518.0	526.5		
	71	67.5	0.670	7.25	2.94	0.711	475.5	484.3	492.7	501.2	509.7	518.2	526.7		
	70	66.0	0.638	6.91	3.28	0.678	475.9	484.4	492.9	501.4	509.9	518.4	526.9		
	69	64.5	0.607	6.58	3.61	0.616	476.1	484.6	493.1	501.6	510.1	$51 . .6$	527.1		
	68	63.0	0.578	6.26	3.93	0.614	476.3	484.8	493.8	501.8	510.3	518.8	527.3		
	67	61.5	0.5 .50	5.96	4.23	0.585	476.4	484.9	493.4	501.9	510.4	518.9	527.4		
	66	60.0	0.523	5.66	4.53	0.55.5	476.6	485.1	493.6	502.1	510.6	519.1	527.6		
	6.5	58.5	0.498	5.35	4.51	0.528	+76.8	485.3	493.5	502.3	510.5	519.8	527.8		

Reading of Thermometer, Fahr.		$\begin{aligned} & \text { Temp } \\ & \text { of } \\ & \text { Dewr } \\ & \text { Point, } \\ & \text { Fahr. } \end{aligned}$	Force of Vapor in English Inches.	Weight of Vapor		$\begin{array}{\|c\|} \text { Hu- } \\ \text { nidity, } \\ \text { satnra- } \\ \text { tion } \\ 1000 . \\ 100 . \end{array}$	Weight in Grains of a Cubic Foot of Air.						
				$\begin{aligned} & \text { Reqd. } \\ & \text { for } \end{aligned}$	Height of the Barometer in English Inches.								
Dry.	Wet.			Foot of Air.	of act of Air.		$\stackrel{\text { in. }}{28.0}$	$\operatorname{in.}_{28.5}$	$\operatorname{in}_{\mathbf{2 9 . 0}}$	$\operatorname{in.}_{\substack{\text { in. } \\ \hline}}$	$\operatorname{in.}_{\mathbf{3 0 . 0}}$	$\begin{gathered} \text { in. } \\ \mathbf{3 0 . 5} \end{gathered}$	$\mathbf{3}^{\text {in. }} \mathbf{0}$
78	\bigcirc		\bigcirc	iv.	gr.		gr.		gr.				
	65	58.5	0.498	5.38	4.81	0.528	476.8	485.3	493.8	502.3	510.8	519.3	527.8
	64	57.0	0.473	5.12	5.07	0.502	476.8	485.3	493.9	502.4	510.9	519.4	527.9
	63	55.5	0.450	4.88	5.31	0.479	476.9	485.4	494.0	50.5	511.0	519.5	528.0
	62	54.0	0.428	4.63	5.56	0.454	477.1	485.6	494.2	50.2 .7	511.2	519.7	528.2
	61	52.5	0.407	4.40	5.79	0.432	477.2	485.7	494.3	502.8	511.3	519.8	528.3
	60	51.0	0.386	4.18	6.01	0.409	477.3	485.8	494.4	502.9	511.4	519.9	528.4
	59	49.5	0.367	3.98	6.21	0.391	477.4	485.9	494.5	503.0	511.5	520.0	528.5
	58	48.0	0.349	3.78	6.41	0.371	477.5	486.0	494.6	503.1	511.6	520.1	528.6
	57	46.5	0.331	3.59	6.60	0.352	477.6	456.1	494.7	503.2	511.7	520.2	528.7
	56	45.0	0.315	3.41	6.78	0.335	477.8	486.3	494.8	503.3	511.9	520.4	528.9
	55	43.5	0.299	3.24	6.9 .5	0.315	477.9	486.4	494.9	503.4	512.0	520.5	529.0
	54	42.0	0.253	3.07	7.12	0.301	478.0	486.5	495.0	503.5	512.1	520.6	529.1
	53	40.5	0.269	2.92	7.27	0.257	478.1	486.5	495.0	503.5	512.1	520.6	529.1
	52	39.0	0.255	2.77	7.42	0.272	478.2	486.6	495.1	503.6	512.2	520.7	529.2
	51	37.5	0.242	2.63	7.56	0.258	478.3	486.7	495.2	503.7	512.3	520.8	529.3
79	79	79.0	0.970	10.50	0.00	1.000	473.1	481.5	490.0	493.4	506.9	515.3	523.8
	78	77.5	0.925	10.01	0.49	0.953	473.4	481.8	490.3	495.7	507.2	515.6	524.1
	77	76.0	0.582	9.54	0.96	0.909	473.7	482.1	490.6	499.0	507.5	515.9	524.4
	76	74.5	0.840	9.10	1.40	0.867	473.8	482.2	490.7	499.2	507.7	516.2	524.7
	75	73.0	0.801	8.66	1.54	0.525	474.0	482.4	490.9	499.4	507.9	516.4	524.9
	74	71.5	0.763	8.25	2.25	0.786	474.3	482.7	491.2	499.7	508.2	516.7	525.2
	73	70.0	0.727	7.86	2.64	0.749	474.5	482.9	491.4	499.9	508.4	516.9	525.4
	72	68.5	0.692	7.48	3.02	0.712	471.7	483.1	491.6	500.1	508.6	517.1	52.5.6
	71	67.0	0.659	7.12	3.38	0.678	474.9	453.4	491.9	500.1	508.8	517.3	525.8
	70	65.5	0.628	6.79	3.71	0.647	475.1	453.6	462.1	500.6	509.0	517.5	526.0
	69	64.0	0.597	6.45	4.05	0.614	475.3	483.8	492.3	500.8	509.2	517.7	526.2
	68	62.5	0.565	6.14	4.36	0.555	475.4	483.9	492.4	500.9	509.3	517.8	526.3
	67	61.0	0.541	5.84	4.66	0.556	475.6	484.1	492.6	501.1	509.5	518.0	526.5
	66	59.5	0.515	5.55	4.95	0.529	475.7	484.2	492.7	501.2	з09.6	518.1	526.6
	65	58.0	0.489	5.28	5.22	0.503	475.8	484.3	492.8	501.3	509.8	518.3	526.8
	64	56.5	0.465	5.02	5.48	0.478	476.0	484.5	493.0	501.5	510.0	518.5	527.0
	63	55.0	0.44^{2}	4.78	5.72	0.455	476.1	454.6	493.1	501.6	510.1	518.6	527.1
	62	53.5	0.421	4.54	5.96	0.432	476.3	484.8	493.3	501.8	510.3	518.8	527.3
	61	52.0	0.400	4.31	6.19	0.410	476.4	484.9	493.4	501.9	510.4	518.9	527.4
	60	50.5	0.380	4.10	6.40	0.390	476.5	455.0	493.5	502.0	510.5	519.0	527.5
	59	49.0	0.361	3.90	6.60	0.371	476.6	485.1	493.6	502.1	510.6	519.1	527.6
	58	47.5	0.343	3.71	6.79	0.35:3	476.7	485.2	493.7	502.2	510.7	519.2	527.7
	57	46.0	0.326	3.52	6.95	0.335	476.5	485.3	493.5	502.3	510.8	519.3	527.5
	56	44.5	0.309	3.34	7.16	0.318	476.9	48.5 .4	493.9	502.4	510.9	519.4	527.9
	55	43.0	0.293	3.17	7.33	0.301	477.0	485.5	494.0	502.5	511.0	519.5	528.0
	54	41.5	0.279	3.01	7.49	0.257	177.1	48.6	494.1	502.6	511.1	519.6	528.1
	53	40.0	0.264	2.86	7.64	0.272	477.2	455.7	494.2	502.7	511.2	519.7	528.2
	52	35.5	0.2 .51	2.72	7.78	0.260	477.3	485.8	494.3	502.8	511.3	519.5	525.3

Reading of Thermometer, Fithr.		Temp. of DewPoint, Fahr.	Force of Vapor in Enghish Inches.	Weight of Vapor		IIn-Situration \leftrightharpoons 1.000.	Weight in Grains of a Cubic Foot of Air.								
		In a Cubic		Reqd. for Sat'n	Height of the Barometer in English Inches										
Dry.	Wet.			Air.	bic Ft. of Air.		$18.8 .0$	$\text { iv. } 28 . \frac{1}{8}$	$\stackrel{\text { in. }}{24.0}$	$\operatorname{in}_{199.5}$	$\begin{array}{\|c\|c\|} \text { in. } \\ \mathbf{3 0 . 0} \end{array}$	$\operatorname{in.}_{30.5}$	31.0		
	-		\bigcirc	in.	gr		gr .		gr .	gr.	gr	gr.	gr	gr .	gr
S0	80	80.0	1.001	10.81	0.00	1.000	472.0	480.4	485.9	497.3	50.5 .7	5141	522.6		
	79	78.5	0.95 .5	10.31	0.50	0.954	472.3	480.7	489.1	497.5	506.0	514.4	522.9		
	78	77.0	0.910	9.53	0.98	0.909	472.5	480.9	4594	497.9	506.3	514.7	523.2		
	77	75.5	0.568	9.37	1.44	0.867	472.7	181.1	489.6	$49 \mathrm{S}$.	506.5	514.9	523.4		
	76	74.0	0.527	8.9:3	1.58	$0 . .26$	173.0	481.4	489.9	498.4	506.8	515.2	523.7		
	75	72.5	0.787	8.50	2.31	0.786	473.2	481.6	490.1	498.6	507.0	515.4	523.9		
	74	71.0	0.751	S. 11	2.70	0.750	473.4	451.8	4903	498.8	507.2	515.6	524.1		
	78	69.5	0.715°	7.71	3.10	0.713	473.6	482.1	490.6	499.1	507.5	515.9	524.4		
	72	65.0	0.681	7.35	3.46	0.680	473.8	48.2 .3	490.8	499.3	507.7	516.1	524.6		
	71	66.5	0.648	6.99	3.82	0.647	474.0	48.5	491.0	499.5	507.9	516.3	524.8		
	70	65.0	0.617	6.66	4.15	0.616	474.2	45.2 .7	491.2	499.7	50.1	516.5	525.0		
	69	63.5	0.558	6.33	4.48	0.586	474.4	482.9	491.4	499.9	505.3	516.7	525.2		
	65	62.0	0.559	6.03	4.78	0.558	474.5	483.0	491.5	500.0	508.4	516.8	525.3		
	67	60.5	0.532	5.74	5.07	0.531	474.7	483.2	491.7	500.2	509.6	517.0	525.5		
	66	59.0	0.506	5.45	5.36	0.501	474.9	483.4	491.9	500.4	508.8	517.2	525.7		
	65	57.5	0.451	5.18	5.63	0.179	475.0	483.5	492.0	500.5	508.9	517.3	525.8		
	64	56.0	0.458	4.93	5.96	0.456	475.2	483.7	492.2	500.7	509.1	517.5	526.0		
	6.3	54.5	0.43.5	4.69	6.12	0.484	175.3	483.5	492.3	500.8	509.2	517.6	526.1		
	62	53.0	0.414	4.46	6.35	0.413	475.4	483.9	492.4	500.9	509.3	517.7	526.2		
	61	51.5	0.393	4.23	6.58	0.391	475.5	484.0	492.5	501.0	509.4	517.8	526.3		
	60	50.0	0.373	4.02	6.79	0.372	475.6	484.1	492.6	501.1	509.5	517.9	526.4		
	59	48.5	0.355	3.82	6.99	0.353	475.7	484.2	492.7	501.2	509.6	518.0	526.5		
	58	47.0	0.337	3.63	7.18	0.336	17.5 .9	481.4	492.9	501.4	509.8	518.2	526.7		
	57	45.5	0.320	3.45	7.36	0.319	476.0	454.5	493.1	501.5	509.9	518.3	526.8		
	56	44.0	0.304	3.27	7.54	0.302	476.1	431.6	493.2	501.6	510.0	518.4	526.9		
	55	42.5	0.288	3.11	7.70	0.288	476.2	434.7	493.3	501.7	510.1	515.5	527.0		
	54	41.0	0.274	2.96	7.85	0.274	476.8	454.8	493.4	501.8	510.2	518.6	527.1		
	53	39.5	0.260	2.83	7.99	0.261	476.3	484.8	493.1	501.8	510.2	518.6	527.1		
81	81	81.0	1.034	11.14	0.00	1.000	-171.0	479.4	457.8	196.2	50.4 .6	513.0	521.1		
	80	79.5	0.986	10.62	0.52	0.9.5:3	471.3	479.7	485.1	496.5	501.9	513.3	521.7		
	79	78.0	0.910	10.13	1.01	0.910	471.5	479.9	485.1	496.8	50.5 .2	. 513.6	522.1		
	78	76.5	0.596	9.6.2	1.49	0.566	471.7	450.1	488.6	497.0	50.5 .4	513.8	522.3		
	77	75.0	0.854	9.20	1.94	0.826	472.0	480.4	458.9	197.3	50.5. 7	314.1	522.6		
	76	73.5	0.814	8.77	2.37	0.787	472.2	480.6	189.1	497.5	50.5 .9	514.3	522.8		
	75	72.0	0.776	8.35	2.79	0.750	472.5	450.9	-189. 1	497.8	506.2	514.6	523.1		
	74	70.5	0.739	7.9.5	3.19	0.713	472.6	481.0	189.5	497.9	506.1	514.8	523.3		
	73	69.0	0.701	7.57	3.57	0.680	472.8	451.2	189.7	49.1	506.6	515.0	523.5		
	72	67.5	0.670	7.21	3.93	0.647	173.0	481.4	189.!)	498.3	506.8	515.2	523.7		
	71	66.0	0.638	6.87	4.27	0.617	473.2	451.6	490.1	498.5	507.0	515.4	$5<0.9$		
	70	61.5	0.607	6.54	4.60	0.587	473.4	451.9	490.3	$4!8.7$	507.2	515.6	5241		
	69	63.30	0.578	6.22	4.92	0.555	473.6	452.0	490.5	498.9	507.4	515.8	524.3		
	68	61.5	0.550	5.92	5.92	0.531	473.7	483.2	490.7	499.1	507.6	516.0	524.5		

Feading of Thermometer, Fahr.		Temp. of DewPoint, Fahr.	Force Vapor in English Inches.	Weight. of Vapor		Humidity, Saturition $=$ 1.000.	Weight in Grains of a Cubic Foot of Air.								
		In a for Cubic Sat'n. Foot of of aCu- Air. bic Ft. of Air .		Height of the Barometer in English Inches.											
Dry.	Wet.				in.		$\operatorname{in}_{28.5}$	$\operatorname{in.}_{\mathbf{2 9} \mathbf{9} .0}$	${ }^{\text {in. }}$	$\operatorname{ing}_{30.0}$	$\operatorname{in.}_{\mathbf{3 0 . 5}}$	$\sin _{\text {in. }}^{\text {Tin }}$			
$\begin{gathered} c \\ 81 \end{gathered}$	0	\bigcirc		in.	gr .		gr		gr.	gr.	gr.	g	gr .	gr.	gr .
	68	61.5	0.550	5.92	5.22	0.531	473.7	482.2	490.7	499.1	507.6	516.0	524.5		
	67	60.0	0.523	5.62	5.52	0.505	473.8	482.3	490.8	499.2	507.7	516.1	524.6		
	66	55.5	0.498	5.31	5.83	0.477	474.0	482.5	491.0	499.4	507.9	516.3	524.8		
	63	57.0	0.473	5.08	6.06	0.456	474.1	482.6	491.1	499.5	508.0	516.4	524.9		
	64	55.5	0.450	4.84	6.30	0.434	474.3	482.8	491.3	499.7	508.2	516.6	525.1		
	63	54.0	0.428	4.60	6.54	0.413	474.4	482.9	491.4	499.8	508.3	516.7	525.2		
	62	52.5	0.407	4.37	6.77	0.392	474.5	483.0	491.5	499.9	508.4	516.8	525.3		
	61	51.0	0.386	4.15	6.99	0.373	474.6	483.1	491.6	500.0	508.5	516.9	525.4		
	60	49.5	0.367	3.95	7.19	0.355	474.7	483.2	491.7	500.1	508.6	517.0	525.5		
	59	48.0	0.349	3.75	7.39	0.337	474.9	483.4	491.9	500.3	508.5	517.2	525.7		
	58	46.5	0.331	3.56	7.55	0.320	475.0	483.5	492.0	500.4	508.9	517.3	525.8		
	57	45.0	0.315	3.35	7.76	0.303	475.1	483.6	492.1	500.5	509.0	517.4	525.9		
	56	43.5	0.299	3.21	7.93	0.289	475.2	483.7	492.2	500.6	509.1	517.5	526.0		
	55	42	0.283	3.05	8.09	0.274	475.3	483.8	492.3	500.7	509.2	517.6	526.1		
	5	. 10.5	0.269	2.90	8.24	0.260	475.3	483.8	492.3	500.7	509.2	517.6	526.1		
82	82	82.	1.067	11.47	0.00	1.00	470.0	478.4	486.8	495.2	503.5	511.9	520.3		
	81	80.5	1.017	10.91	0.53	0.954	470.3	478.7	457.0	49.5 .4	503.8	512.2	520.6		
	80	79.0	0.970	10.44	1.03	0.910	470.6	479.0	487.3	495.7	504.1	512.5	520.9		
	79	77.5	0.925	9.95	1.52	0.865	470.7	479.1	487.5	49.5 .9	504.3	512.7	521.1		
	78	76.0	0.882	9.49	1.98	0.827	471.0	479.4	487.8	496.2	504.6	513.0	521.4		
	77	74.	0.840	9.03	2.44	0.757	471.2	179.6	488.0	496.4	504.8	513.2	521.6		
	76	73.0	0.801	8.60	2.37	0.750	471.5	479.9	488.3	496.7	505.1	513.5	521.9		
	75	71	0.763	8.19	3.25	0.714	471.6	480.0	488.5	496.9	505.3	513.7	522.1		
	74	70.	0.727	7.81	3.66	0.68	471.8	480.2	458.6	497.1	505.5	513.9	522.4		
	73	68.5	0.692	7.43	4.04	0.645	472.0	480.4	488.8	497.3	505.7	514.1	522.6		
	72	67.0	0.6 .59	7.08	4.39	0.618	472.2	480.6	489.0	497.5	505.9	514.3	52.2 .8		
	71	65.5	0.628	6.75	1.72	0.588	472.4	480.8	489.2	497.7	506.1	514.5	523.0		
	70	64.0	0.597	6.41	5.06	0.559	472.5	480.8	489.4	497.9	506.3	514.7	523.2		
	69	62.5	0.568	6.10	5.37	0.532	472.6	481.0	489.5	498.0	506.4	514.8	523.3		
	68	61.0	0.541	5.81	5.66	0.507	472.8	481.2	489.7	498.2	506.6	515.0	523.5		
	67	59.5	0.515	5.52	5.95	0.481	473.0	481.4	489.9	498.4	506.8	515.2	523.7		
	66	58.0	0.489	5.25	6.22	0.458	473.1	481.5	490.0	498.3	506.9	515.3	523.8		
	65	56.5	0.465	4.99	6.15	0.435	473.2	481.6	490.1	498.6	507.0	515.4	523.9		
	64	55.0	0.442	4.75	6.72	0.414	473.4	481.8	4903	498.8	507.2	515.6	524.1		
	63	53.5	0.421	4.51	6.96	0.393	473.5	452.0	490.5	499.0	507.4	515.5	524.3		
	62	52.0	0.100	4.29	7.18	0.374	473.6	482.1	490.6	499.1	507.5	515.9	524.4		
	61	50.5	0.350	4.08	7.39	0.356	473.7	182.2	490.7	499.2	507.6	516.0	524.4		
	60	49.0	0.361	3.87	7.60	0.337	473.8	482.3	490.8	499.3	507.7	516.1	$5 \leq 4.5$		
	59	47.5	0.313	3.68	7.79	0.320	473.9	482.4	490.9	499.4	507.9	516.2	524.6		
	55	46.0	0.326	3.50	7.97	0.305	474.0	482.5	491.0	499.5	507.9	516.3	524.7		
	57	44.5	0.309	3.32	8.15	0.289	474.1	482.6	491.1	499.6	50ヶ.0	516.4	524.8		
	56	43.0	0.293	3.15	8.32	0.274	474.2	482.7	491.2	499.7	508.1	516.5	524.9		
	55	41.5	0.279	2.99	\% 8.48	0.260	474.3	482.8	491.3	499.8	508.2	516.6	525.1		

Reading of Thermometer, Fahr.		Temp. of DewPoint, Fabr.	Force of Vapor in English Incues.	Weight of Vapor		IIumidity, Saturation $=$ 1.1000.	Weight in Grains of a Cubic Foot of Air.								
				Requd. for	Height of the Barometer in Euglish Inches.										
Dry.	Wet.			Air	bic Ft. of Aic.		$\left\lvert\, \begin{gathered} \text { in. } \\ 28.0 \end{gathered}\right.$	$\frac{\mathrm{in} .}{28.5}$	$\begin{gathered} \text { ins. } \\ \mathbf{2 4 . 0} \end{gathered}$	$\operatorname{in}_{ \pm 8.5}$	$\begin{gathered} \text { in. } \\ \mathbf{3 4 . 0} \end{gathered}$	$\frac{\operatorname{in.}}{\mathbf{3} \mathbf{1} .5}$	$\begin{array}{\|c} \text { in. } \\ \mathbf{3 1 . 0} \end{array}$		
	\bigcirc		\bigcirc	in.	gr		gr .		gr.	gr.	gr	gr.	gr	gr.	gr.
83	83	83.0	1.101	11.82	0.00	1.000	468.8	477.2	485.5	493.9	50.2 .3	510.6	519.0		
	82	81.5	1.050	11.27	0.55	0.953	469.1	477.5	485.8	49.4 .2	502.6	511.0	519.4		
	SI	80.0	1.001	10.75	1.07	0.909	469.4	477.8	4861	494.5	502.9	511.3	519.7		
	80	78.5	0.955	10.25	1.57	0.868	469.7	473.1	486.4	494.8	503.2	511.6	520.0		
	79	77.0	0.910	9.78	2.04	0.82 s	470.0	478.4	486.7	49.\%. 1	503.5	511.9	520.3		
	78	75.5	0.568	9.31	2.51	0.786	470.3	478.7	487.0	495.1	503.8	512.2	520.6		
	77	74.0	0.827	8.85	2.94	0.751	470.5	478.9	487.2	495.6	504.0	512.4	520.8		
	76	72.5	0.757	8.45	3.37	0.715	470.6	479.0	487.4	49.5 .8	504.2	512.6	521.0		
	75	71.0	0.751	8.05	3.77	0.681	470.8	479.2	487.6	496.0	504.4	512.8	521.2		
	74	69.5	0.715	7.66	4.16	0.647	471.0	479.4	187.8	496.2	504.6	513.0	521.4		
	73	68.0	0.681	7.30	4.52	0.618	471.2	479.6	488.0	496.4	504.8	513.2	521.6		
	72	66.5	0.618	6.95	4.87	0.588	471.4	479.8	488.2	496.6	505.0	513.4	521.8		
	71	65.0	0.617	6.62	5.20	0.560	471.6	480.0	188.4	496.8	505.2	513.6	522.0		
	70	63.5	0.588	6.29	5.53	0.533	471.7	480.1	458.5	497.0	505.4	513.8	522.3		
	69	62.0	0.559	5.99	5.83	0.507	471.9	480.3	488.7	197.2	505.6	514.0	522.5		
	68	60.5	0.532	5.70	6.12	0.482	472.0	480.4	488.3	497.3	505.7	514.1	522.6		
	67	59.0	0.506	5.42	6.40	0.459	472.2	480.6	489.0	497.5	50.5 .9	514.3	522.8		
	66	57.5	0.451	5.15	6.67	0.435	472.4	480.5	159.2	497.7	506.1	514.5	523.0		
	65	56.0	0.458	4.90	6.92	0.114	+72.4	480.8	459.3	497.8	506.2	514.6	523.1		
	64	54.5	0.135	4.66	7.18	0.394	472.5	480.9	489.4	497.9	506.3	514.7	523.2		
	63	53.0	0.414	4.43	7.39	0.375	472.7	481.1	489.6	498.1	506.5	514.9	523.4		
	62	51.5	0.393	4.21	7.61	0.356	472.8	481.2	489.7	498.2	506.6	515.0	523.5		
	61	50.0	0.373	1.00	7.82	0.339	472.9	4 S1.3	189.8	498.3	506.7	515.1	523.6		
	60	48.5	0.355	3.80	8.02	0.322	473.1	481.4	489.9	498.4	506.8	515.2	523.7		
	59	47.0	0.337	3.60	8.22	0.30 .5	473.2	481.5	490.0	498.5	506.9	51.5.3	523.8		
	58	4.5 .5	0.320	3.42	8.40	0.289	473.3	481.6	490.1	498.6	507.0	515.4	23.9		
	57	44.0	0.304	3.25	8.57	0.276	473.4	451.7	490.2	498.7	507.1	515.5	524.0		
	56	42.5	0.258	3.09	8.73	0.261	473.5	481.8	490.3	495.8	507.2	515.6	524.1		
8.1	84	84.0	1.136	12.17	0.00	1.000	167.8	476.2	484.5	492.7	501.2	509.6	517.9		
	83	82.5	1.083	11.61	056	0.9 .54	468.1	476.4	481.8	493.2	501.5	509.8	518.2		
	82	81.0	1.034	11.07	1.10	0.910	468.4	476.7	48.5 .1	493.5	501.8	510.1	518.5		
	81	79.5	0.986	10.5 .5	1.62	0.867	469.6	476.9	15.5 .4	493.7	502.1	510.5	518.8		
	80	78.0	0.940	10.07	2.10	0.527	469.9	177.3	45.3 .7	49 4.0	502.1	510.8	519.1		
	79	76.5	0.896	9.59	2.58	0.788	169.1	477.5	485.9	494.2	502.6	511.0	519.3		
	78	75.0	0.854	9.14	3.03	0.751	469.4	477. \times	486.1	494.5	502.9	511.3	519.7		
	77	73.5	0.814	8.71	3.16	0.716	469.6	475.0	$486: 3$	491.7	503.1	511.5	519.9		
	76	72.0	0.776	8.30	3.87	0.650	469.8	175.2	4865.5	494.9	503.83	511.7	520.1		
	75	70.5	0.739	7.90	4.27	0.619	470.1	478.5	466.8	46.5 .2	50:3.6	512.0	520.1		
	74	69.0	0.704	7.53	1.64	0.619	470.3	+78.7	487.0	49.5 .4	503.8	512.2	520.6		
	73	67.5	0.670	7.17	5.00	0.589	470.5	478.9	487.2	49.5 .6	501.0	512.4	520.8		
	72	66.0	0.638	6.83	5.34	0.561	470.6	479.0	457.4	49.5 .8	504.2	512.6	521.0		
	71	64.5	0.607	6.50	5.67	0.531	470.7	479.1	487.)	49.5 .9	504.3	512.7	521.1		

Reading of Thermometer, Fahr.		Temp. of DewPoint, Fabr.	Force of Vapor in English Inches.	Weight of Vajor		Humidity, Saturation $=$ 1.000.	Weight in Grains of Cubic Foot of Air.								
		In a		$\begin{aligned} & \text { Reqd. } \\ & \text { for } \end{aligned}$	Height of the Barometer in English Inches.										
Dry.	Wet.			Air.	bic ft . of Air.		$\operatorname{in}_{8.0}^{8.0}$	in.	$\operatorname{in}_{\mathbf{2} .}^{\mathbf{2} .0}$	${ }_{29.5}^{\text {in. }}$	in. 30.0	in. 30.5	$3 \text { in. }$		
- 8	-		$\begin{array}{r} \circ \\ \mathrm{S} 9 . \end{array}$	$\begin{aligned} & \text { in. } \\ & 1.326 \end{aligned}$	$\begin{gathered} g r \\ 14.08 \end{gathered}$		gr	1.000		$\begin{gathered} \mathrm{gr} . \\ 470.6 \end{gathered}$	$\begin{gathered} \mathrm{gr} \\ 478.9 \end{gathered}$	gr. 107.1		gr. 036	gr. 11.9
	88	87.5	1.266	13.14	0.64	0.954	46.3 .7	470.9	479.2	157.4	495.7	503.9	512.2		
	87	56.0	1.209	12.84	1.24	0.912	463.0	471.2	4795	187.8	496.1	504.4	512.7		
	86	84.5	1.153	12.24	1.54	0.869	$46: 3.3$	471.5	479.8	188.1	496.4	504.7	513.0		
	85	83.0	1.101	11.68	2.40	0.830	163.6	471.8	450.1	458.4	496.7	505.0	513.3		
	84	81.5	1.050	1 I .18	2.95	0.791	464.0	472.2	450.5	485.8	497.1	505.4	513.7		
	83	80.0	1.001	10.62	3.46	0.754	464.2	472.5	480 s	489.1	497.4	505.7	514.0		
	82	78.5	0.955	10.13	3.95	0.719	464.4	479.7	481.0	489.3	447.6	505.9	514.2		
	S1	77.0	0.910	9.66	1.42	0.656	464.7	473.0	481.3	454.6	497.9	506.2	514.5		
	80	75.5	0.568	9.20	4.55	0.6.73	464.9	473.2	451.5	189.5	498.1	506.4	514.7		
	79	74.0	0.827	8.7%	5.31	0.623	46.5 .2	473.5	451.8	490.1	498.4	506.7	515.0		
	78	72.5	0.75%	8.35	5.73	0.593	46.5.4	473.7	482.0	490.3	495.6	506.9	515.2		
	77	71.0	0.751	7.96	6.12	0.565	46.5 .6	473.9	482.2	490.5	499.8	507.1	515.4		
	76	69.5	0.715	7.57	6.51	0.537	465.5	474.1	482.4	490.7	499.0	507.3	515.7		
	75	68.	0.681	7.21	6.87	0.512	466.0	474.3	482.6	490.9	499.2	507.5	515.8		
	74	66.5	0.648	6.87	7.21	0.188	466.2	474.5	482.8	491.1	499.4	507.7	516.0		
	73	65.0	0.617	6.54	7.51	0.465	466.3	474.6	182.9	491.2	499.6	507.9	516.3		
	72	63.5	0.585	6.22	7.86	0.442	466.5	474.8	483.1	491.4	499.8	508.1	516.5		
	71	62.0	0.559	5.91	8.17	0.420	466.7	475.0	458.3	491.7	500.0	508.3	516.7		
	70	60.5	0.532	5.62	8.46	0.399	466.8	475.1	483.4	491.8	500.1	508.4	516.8		
	69	59.0	0.506	53.5	8.73	0.380	467.0	475.3	453.6	492.0	500.3	508.6	517.0		
	68	57.5	0.481	5.0 S	9.00	0.361	467.1	475.4	483.7	492.1	500.4	508.7	517.1		
	67	56.0	0.458	4.84	9.24	0.343	467.2	475.5	453.5	492.2	500.5	508.8	517.2		
	66	54.5	0.435	4.61	9.47	$0.3 \cdot 7$	467.4	475.7	483.9	492.4	500.7	509.1	517.4		
	65	53.0	0.414	4.39	9.69	0.312	467.5	475.5	484.1	492.5	500.8	509.2	517.5		
	64	51.5	0.393	4.17	9.91	0.296	467.6	175.9	484.2	492.6	500.9	509.8	517.6		
	63	50.0	0.373	3.96	10.12	0.281	467.7	476.1	454.3	49.2 .7	501.0	509.1	517.7		
	62	48.5	0.355	3.76	$10.3 \pm$	0.267	467.8	476.2	454.4	-192.8	501.1	509.5	517.8		
90	90	90.0	1.368	14.50	0.00	1.000	461.3	469.5	477.8	486.0	494.3	502.5	510.8		
	89	88.5	1.306	13.84	0.66	0.9.54	461.6	469.8	478.1	486.3	494.6	502.8	511.1		
	88	87.0	1.247	13.22	1.23	0.910	462.0	470.2	478.5	486.7	49.5 .0	503.2	511.5		
	87	85.5	1.190	12.61	1.89	0.570	462.3	470.5	478.5	487.0	495.3	503.5	511.5		
	86	S4.0	1.136	12.03	2.47	0.830	462.7	470.9	479.2	487.4	495.7	503.9	512.1		
	85	S2.5	1.083	11.47	3.03	0.791	46:3.0	471.2	479.5	487.7	496.0	504.2	512.5		
	84	81.0	1.034	10.94	3.56	0.755	463.2	471.5	479.8	488.0	496.3	504.5	512.8		
	83	79.5	0.986	10.43	4.07	0.719	463.4	471.7	480.0	488.2	496.5	504.7	513.0		
	82	78.0	0.9 .40	9.95	4.55	0.686	463.7	472.0	480.3	488.5	196.8	505.0	513.3		
	81	76.5	0.896	9.48	5.02	0.653	464.0	472.3	480.6	488.8	497.1	505.3	513.6		
	80	75.0	0.854	9.03	5.47	0.622	464.2	472.5	480.7	488.9	497.3	505.5	513.9		
	79	73.5	0.814	8.61	5.89	0.594	464.3	472.6	450.9	489.1	497.5	505.7	514.1		
	78	72.0	0.776	8.20	6.30	0.565	464.5	472.8	451.1	489.3	497.7	505.9	514.3		
	77	70.5	0.739	7.50	6.70	0.538	464.7	473.0	481.3	489.5	497.9	506.1	514.5		

Reading of Thermometer, Fahr.		$\begin{aligned} & \text { Temp } \\ & \text { of } \\ & \text { Dew- } \\ & \text { Point, } \\ & \text { Fahr. } \end{aligned}$	Force of Vapor in Euglish Inches.	Weight of Viapor		$\begin{gathered} \text { IIu- } \\ \text { midity, } \\ \text { Saturis- } \\ \text { tion }= \\ 1000 . \end{gathered}$	Weight in Grains of a Cubic Foot of Air.								
				Reqd.	Height of the Barometer in English Inches.										
Dry.	Wet.			Foot of	bic Ft. of Air.		$2 \mathbf{i n .}$	$\operatorname{in}_{28.5}$	$\operatorname{in.}_{\mathbf{2 9} .0}$	$\operatorname{inn}_{29.5}$	in.	$\operatorname{in}_{\mathbf{3 0} .5}$	$\operatorname{in}_{\mathbf{i n}}^{1.0}$		
0	0		0	in.	gr.		gr		gr.	gr.	gr.	gr.	gr .	gr.	gr.
90	77	70.5	0.739	7.80	6.70	0.538	464.7	473.0	481.3	489.5	497.9	506.1	514.5		
	76	69.0	0.704	7.43	7.07	0.512	46.5 .0	473.3	451.6	489.8	498.2	506.4	514.8		
	7.5	67.5	0.670	7.08	7.42	0.458	46.5 .2	473.5	481.5	490.0	495.4	506.6	515.0		
	74	66.0	0.635	6.74	7.76	0.46. 5	46.5 .4	473.7	452.0	490.2	493.6	506.8	515.2		
	73	64.5	0.607	6.42	8.05	0.443	46.5.6	473.9	482.2	490.4	498.8	507.0	515.4		
	72	63.0	0.573	6.10	8.40	0.421	46.5 .7	474.0	450.3	490.5	493.9	507.1	515.5		
	71	61.5	0.550	5.81	8.69	0.400	465.9	474.2	482.5	490.7	499.1	507.3	515.7		
	70	60.0	0.523	5.52	5.98	0.381	466.1	474.4	482.8	491.0	499.3	507.5	515.9		
	69	58.5	0.498	5.25	9.3.)	0.362	466.2	474.5	+82.9	491.1	499.4	507.6	516.0		
	65	57.0	0.173	4.99	9.51	0.341	466.4	474.7	183.1	491.3	499.6	507.8	516.2		
	67	5.5.5	0.450	4.74	9.76	0.327	466.5	474.8	483.2	491.4	499.7	507.9	516.3		
	66	54.0	0.428	4.52	9.98	0.312	466.6	474.9	453.3	491.5	499.8	508.0	516.4		
	65	52.5	0.107	4.30	10.20	0.297	466.7	475.0	483.4	491.6	499.9	$50 \mathrm{S.1}$	516.5		
	64	51.0	0.356	4.09	10.41	0.252	466.9	475.2	483.6	491.8	500.1	508.3	516.6		
	63	49.5	0.367	3.90	10.60	0.269	467.0	475.3	483.7	491.9	500.2	508.4	516.7		

TABLE XIII.

FACTORS FOR COMPUTING THE FORCE OF VAPOR, FROM THE READINGS OF THE PSYCHROMETER, BY APJOHN'S FORMULA.

Dr. Apjohn's formala for deducing the fore of vapor, and the temperature of the dew-point, from the readings of the Psychrometer as given in the Proccedings of the Royal Irish Academy for 1840, is

$$
f^{\prime \prime}=f^{\prime}-\frac{d}{88} \times \frac{h}{30}
$$

when the readings of the wet-bulb thermometer are above $3 \mathfrak{2}^{\circ}$ Fahr., in which formula $f^{\prime \prime}=$ the force of vapor at the temperature of the dew-point in degrees of Fahr., $f^{\prime}=$ the foree of vapor at the temperature of evaporation given by the wet-bulb thermometer,
$d=$ the difference between the readings of the dry and wet thermometers,
$h^{\prime}=$ the beight of the barometer in Engush inches at the time of the observation.
When the readings of the wet-bulb thermometer are below $3 \mathfrak{Z}^{\circ}$ Fahr., and the bulb is covered with ice, the formula becomes

$$
f^{\prime \prime}=f^{\prime}-\frac{d}{96} \times \frac{h}{30^{*}}
$$

The factors in the following table, which is taken from the Greenwich Observations for 1813 , represent $\frac{d}{88} \times \frac{1}{30}$ and $\frac{d}{46} \times \frac{1}{30}$, computed for all differences between the wet and dry bulb thermometers, or values of d, from 0° to 21°.

Use of the Table.

To find out the force of vapor in the air, and the temperature of the dew-point, by means of these factors, let the factor corresponding to d, or the difference between the wet and dry thermometer in the first column, be multiplied moto the observed neight of the barometer, and subtract the result from the force of vapor, in Table XI., due to the temperature of evaporatian. indicated by the wet-bulb thermom+ter; the rest is the force of vapor in the air at the time of the observation; and the $e \mathrm{em}$ perature of the dew-point is that which is gue to it in Table XI.

Example.

The observation gives,
Dry-bulb thermometer $=79^{\circ}$ Fahr., or the temperature of the air.
Wet-bulb " $=69^{\circ}$ " or temperature of evaporation.
Difference $\quad \mathbf{1 0}^{5}$
Height of barometer 29.7 English inches.
In the Table, $\mathfrak{D d}$ part, is found, - factor for a difference of $10^{\circ}=0.00379 \times 29.7$, o: height of barometer $=0.113$, which, subtracted from the force of vapor due to 69°, in Table NI., $=0.701-0.113$, gives force of vapor in the air $=0.591$ inches, and temperature of the dew-point $62^{\circ} .5$.

When the temperature of the wet bulb is below $3 \mathfrak{2}^{\circ}$ Fahrenheit, fine factors in the first part of the Table must be used.

177
XIII. FACTOR $\frac{a}{96} \times \frac{1}{30}$, FOR COMPUTING THE FORCE OF VAPOR BY APJOHN'S FOMMULA.

Below 320 Fahrenheit; the Wet Bulb covered with a Film of Ice.

$\begin{gathered} \text { d, or } \\ \text { Difference } \\ \text { of Wet and } \\ \text { Dry Bulb } \\ \text { Therm. } \end{gathered}$	Tenths of Degrees.									
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	0.00000	0.00003	0.00007	0.00010	$0.0001 \cdot$	0.00017	0.00020	0.0002 \&	0.00027	0.00030
1	. 00034	. 00037	. 00041	. 00044	. 00047	. 00051	. 00054	.0005s	. 00061	.00064
2	. 00068	. 00071	. 00075	. 00078	. 00081	. 00085	. 00088	. 00092	. 00095	. 00099
3	. 00102	. 00105	. 00109	. 00112	. 00116	. 00119	. 00122	. 00126	. 00129	. 00133
4	. 00136	. 00139	. 00143	. 00146	. 00150	. 00153	. 00156	. 00160	. 00163	. 00167
5	. 00170	. 00173	.00177	. 00180	. 00184	. 00187	. 00190	. 00194	. 00198	. 00201
6	. 00204	. 00207	. 00211	. 00214	. 00218	. 00221	. 00224	. 00228	. 00231	. 00235
7	. 00238	. 00241	. 00245	. 00248	. 00252	. 00255	. 00255	. 00262	. 00265	. 00269
8	. 00272	. 00275	. 00279	. 00282	. 00285	. 00289	. 00292	. 00296	. 00299	. 00302
9	. 00306	.00309	. 00313	. 00316	. 00319	. 00323	. 00326	. 00330	. 00333	. 00337
10	. 00340	. 00343	.00347	. 00350	. 00354	. 00357	. 00360	. 00364	. 00367	. 00370

Reading of Wet-Bulb Thermometer above 320 Fahrenheit.										
d, orDifferenceof Wet andDry BulbTherm.	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	0.00000	0.00004	0.00008	0.00011	0.00015	0.00019	0.00023	0.00027	0.00030	0.00034
1	. 00038	. 00042	. 00046	. 00019	.000.53	. 00057	. 00061	. 00064	. 00068	.00072
2	. 00076	. 00080	. 00083	. 00087	. 00091	. 00095	. 00098	. 00102	. 00106	. 00110
3	. 00114	. 00118	. 00121	. 00125	. 00129	. 00132	. 00137	. 00140	. 00144	. 00148
4	. 00151	. 00135	. 00159	. 00163	. 00167	. 00171	. 00174	. 00178	. 00182	. 00186
5	. 00189	. 00193	. 00197	. 00201	. 00205	. 00209	. 00212	. 00216	. 00220	. 00224
6	. 00228	. 00231	. 00235	. 00239	. 00242	. 00246	. 00250	. 00254	. 00258	. 00261
7	. 00265	. 00269	. 00273	. 00277	. 00280	. 00284	. 00288	. 00292	. 00295	.00299
8	. 00303	. 00307	. 00311	.00315	. 00318	. 00322	. 00326	. 00330	. 00333	. 00337
9	. 00341	. 003.45	. 00349	. 00352	. 00356	. 00360	. 00364	. 00368	. 00371	. 00375
10	. 00379	. 00383	. 00386	. 00390	. 00394	. 00398	. 00401	. 00405	. 00409	. 00412
11	. 00416	. 00420	. 00424	. 00428	. 00432	. 00436	. 00439	. 00443	. 00447	. 00451
12	. 00454	. 00458	. 00462	. 00466	. 00470	. 00474	. 00477	. 00481	. 00485	.00459
13	.00493	. 00496	. 00500	.00504	. 00508	. 00511	. 00515	. 00519	. 00522	. 00526
14	. 00530	. 00534	. 00538	. 00541	. 00545	. 00549	. 00553	.00556	. 00560	. 00564
15	. 00568	. 00572	. 00576	. 00580	. 00584	. 00587	. 00591	. 00.595	. 00598	. 00602
16	. 00606	. 00610	. 00614	. 00618	.00622	. 00625	. 00629	. 00633	.00636	. 00640
17	. 00644	. 00648	. 00652	. 00655	. 00659	. 00663	. 00666	. 00670	. 00674	. 00678
18	. 00632	. 00686	. 00690	. 00693	. 00697	. 00701	. 00704	.00708	. 00712	. 00716
19	. 00720	.00724	. 00728	. 00731	.00735	. 00739	. 00742	. 00746	.00750	.00754
20	. 00758	. 00761	. 00765	. 00769	.00773	. 00777	. 00780	. 00784	. 00788	.00792

In the Greenwich Magnetic and Meteorological Observations for 1842 and 1843, Mr. Glaisher discussed the relation between the temperature of evaporation given by the Wet-bulb Thermometer and the temperature of the Dew-Point as given by Daniell's Hygrometer. Comparing the observations taken simultaneously every six hours with the Psychrometer, and with Daniell's Dew-Point Hygrometer, and dividing the average difference between the temperatures of the Wet and Dry bulb by the average difference of the temperature of the Dew-Point and of the Air, he obtained the empirical factors given in the following Table.

The observations from which they are deduced are those taken at the Observatory in the years 1841 to $\mathbf{1 8 4 5}$, for the temperatures below $35^{\circ} \mathrm{F}$., and in the years 1841 to 1843 , for the temperatures above $35^{\circ} \mathrm{F}$.

The observations made at Toronto Observatory, Canada West, in similar circumstances, in the years 1840 to 1842 , were also compared in the same manner, and the factors derived from them showed a very close accordance for temperatures above $30^{\circ} \mathrm{F}$., but were found smatler at temperatures below $30^{\circ} \mathrm{F}$.

The errors in the temperature of the Dew-Point, which may result by using the Greenwich factors, though frequently within half a degree, often amount, however, to ± 2 or 3 degrees, and, in extreme cases, to ± 4 or 5 degrees, as shown in the volume of the Greenwich Observations for 1842, p. 60 of the Abstracts.

Use of the Table.

Multiply the difference between the Wet-bulb and Dry-bulb Thermometers by the factor standing in the Table opposite the reading of the Dry-bulb, and subtract the product from the reading of the Dry-bulb; the remainder will be the temperature of the Dew-Point.

Example. - Dry-bulb $=62^{\circ} \mathrm{F} . ;$ Wet-bulb $=55^{\circ} ;$ Difference $=7^{\circ}$.
Opposite $6 \mathfrak{Z}^{\circ}$, in the first column, stands the factor 1.7 , which multiplied by 7°, the difference, gives $11^{\circ} .9$, to be subtracted from the Dry-bulb; or $62^{\circ}-11^{\circ} .9=50^{\circ} .1$, temperature of the Dew-Point.
XIV. FACTORS TO FFND OUT THE TEMPERATURE OF THE DEW-POINT FROM THE READINGS OF THE PSYCHROMETER. - GLAISHER.

Dry-Bulb Therm. Fahreu.	Factors.	Dry-Bulb 'Therm. Fihren.	Factors.	Dry-Bulb Therm. Fahren.	Factors.	Dry-Bulb 'therm. Fahren.	Factors.	Dry-Bulb Therm. Fabren.	Factors.
21°	8.5	35°	2.6	49°	2.2	63°	1.7	77°	1.5
22	8.5	36	2.6	50	2.1	64	1.7	78	1.5
23	8.5	37	2.5	51	2.1	65	1.7	79	1.5
24	7.3	38	2.5	52	2.0	66	1.6	80	1.5
25	6.4	39	2.5	53	2.0	67	1.6	81	1.5
26	6.1	40	2.4	54	2.0	68	1.6	82	1.5
27	5.9	41	2.4	55	2.0	69	1.5	83	1.5
28	5.7	42	2.4	56	1.9	70	1.5	84	1.5
29	5.0	43	2.4	57	1.9	71	1.5	85	1.5
30	4.6	44	2.3	58	1.9	72	1.5	86	1.5
31	3.6	45	2.3	59	1.8	73	1.5	87	1.5
32	3.1	46	2.3	60	1.8	74	1.5	88	1.5
33	2.8	47	2.2	61	1.8	75	1.5	89	1.5
34	2.6	48	2.2	62	1.7	76	1.5	90	1.5

XV. WEIGHT OF VAPOR, IN GRAINS Troy, CONTAINED IN A CUBIC FOOT OF SATURATED AIR, AT TEMPERATURES BETWEEN 0° AND 94° FAHRENiLEIT.

From the Greenwich Observations.

Temper ature Fahren.		Temperature of Air, Fahres		Temperof Air, Fahren.	Weight of Vapor, Grains.	Temperature Fahren	$\begin{aligned} & \text { Weight } \\ & \text { of Yipor, } \end{aligned}$ $\stackrel{\text { m }}{\text { Grains. }}$	Temperof Air Fahren.	Weight of Viaror, Grains.
0°	0.78	19°	1.52	38°	2.59	57°	5.34	76°	9.60
1	0.81	20	1.58	39	2.99	58	5.51	77	9.89
2	0.84	21	1.63	40	3.09	59	5.69	78	10.19
3	0.57	22	1.69	41	3.19	60	5.57	79	10.50
4	0.90	23	1.75	42	3.30	61	6.06	80	10.81
5	0.93	24	1.81	43	3.41	62	6.25	81	11.14
6	0.97	25	1.87	44	3.52	63	6.45	82	11.47
7	1.00	26	1.93	45	3.64	64	6.65	83	11.52
8	1.04	27	2.00	46	3.76	65	6.87	84	12.17
9	1.07	28	2.07	47	3.58	66	7.08	85	12.53
10	1.11	29	2.14	48	4.01	67	7.30	86	12.91
11	1.15	30	2.21	49	4.14	68	7.53	87	13.29
12	1.19	31	2.29	50	4.28	69	7.76	88	13.68
13	1.24	32	2.37	51	4.42	70	8.00	89	14.08
14	1.23	33	2.45	52	4.56	71	8.25	90	14.50
15	1.32	34	2.53	53	4.71	72	8.50	91	14.91
16	1.37	35	2.62	54	4.86	73	8.76	92	15.33
17	1.41	36	2.71	55	5.02	74	9.04	93	15.76
18	1.47	37	2.80	56	518	75	9.81	94	16.22

XVI. FACTORS TO DEDUCE THE WEIGHT OF VAPOR CONTAINED IN A CUBIC FOOT OF AIR, AT THE TIME OF A GIVEN OBSERVATION, FROM THE indications of dew-point instruments. - Greenw. Obs.
$t=$ Temperature of Air; $\mathbf{t}^{\prime}=$ Temperature of Dew-Point.

$\begin{aligned} & \text { Difference } \\ & \text { or } \\ & \mathbf{t}-\mathbf{t}^{\prime} . \end{aligned}$	Factors.	$\begin{gathered} \text { Difference } \\ \text { or } \\ \mathbf{t}-\mathbf{t}^{\prime \prime} . \end{gathered}$	Faetors	$\begin{gathered} \text { Difference } \\ \text { or } \\ \mathbf{t}-\mathbf{t}^{\prime \prime} . \end{gathered}$	Factors.	$\left\lvert\, \begin{gathered} \text { Difference } \\ \text { or } \\ \mathbf{t}-\mathbf{t}^{\prime \prime} . \end{gathered}\right.$	Factors.	$\begin{gathered} \text { Difference } \\ \text { or } \\ \mathbf{t}-\mathbf{t}^{\prime \prime} . \end{gathered}$	Factors.
1	0.999	9	0.982	17	0.966	2.5	0.9 .51	33	0.935
2	0.996	10	0.980	18	0.964	26	0.949	34	0.934
3	0.994	11	0.978	19	0.962	27	0.9 .47	35	0.932
4	0.992	12	0.976	20	0.960	28	0.945	36	0.930
5	0.990	13	0.974	21	0.9 .58	29	0.943	37	0.929
6	0.988	14	0.972	22	0.956	30	0.912	38	0.927
7	0.986	15	0.970	23	0.954	31	0.939	39	0.925
8	0.984	16	0.968	24	0.952	32	0.937	40	0.923

Use of Table XVI. - The difference between the temperatures of the air and of the Dew-Point being known, multiply the factor in the Table corresponding to that difference into the weight of a cubic foot of vapor at the temperature of the Dew-Point, as given in Table XV., and the product will be the weight of vapor in a cubic foot of air at the time of the observation.

Example. - Temperature of air $=60^{\circ} \mathrm{F} . ;$ Dew-Point $=52^{\circ}$; Diff. $=8^{\circ}$.
Table gives for a difference of 8°, factor 0.984 ; Table XV. gives weight of a cubic foot of vapor at temperature $5 \mathfrak{P}^{\circ}=4 . .^{\mathrm{gr}} 56$.

Hence, $0.984 \times 4.56=4^{\mathrm{gr} .} .49$, the weight of vapor required.

TAミIE オT：

Or

 ニ．

Enamit：

\pm

Mr. Glaisher published in London, in 1856, another series of Hygrometrical Tables, which were unknown to the writer when the Second Edition of this volume was issued. They are based on Regnault's Table of Elastic Forces of Vapor, and on the coefficient of the expansion of the air as determined by the same physicist. The Psychrometrical 'Table, however, is not computed from Regnault's formula, but by first finding out, in the manner described on page 140, the temperatures of the dewpoint from the readings of the Psychrometer, by means of the empirical factors given below, in Table XIV'., and then taking the corresponding values of the force of vapor from Regnault's table. These factors have been derived from the combination of all simultaneons observations of the dry and wet bulb thermometers with those of Daniell's hygrometer, taken at the Royal Observatory, Greenwich, from the year 1841 to 1854, with some observations taken at high temperatures in India, and others at low and medium temperatures at Toronto; they are, therefore, more correct than those given in Table XIV. page 140. The results in this new Psychrometrical Table, nevertheless, by no means entirely coincide with those given by the formula, as a comparison with those in Table VII. will show.

XIV'. FACTORS TO FIND OUT THE TEMPERATURE OF THE DEW-POINT FROM THE readings of the psychroneter. - Glaisher.

Dry-Bulb Therm. Fahren.	Factors.	Dry-Bulb Therm. Fihren.	Factors.	Dry-Bulb Therm. Fahren.	Factors.	Dry-Bulb Therm. Fahren.	Factors.	Dry-Bulb Therm. Fahren.	Factors.
$\begin{gathered} \circ \\ 10 \end{gathered}$	8.78	$\begin{gathered} \circ \\ 28 \end{gathered}$	5.12	$\begin{gathered} \circ \\ 46 \end{gathered}$	2.14	64	1.83	$\stackrel{\circ}{82}$	1.67
11	8.78	29	4.63	47	2.12	65	1.82	83	1.67
12	8.78	30	4.15	48	2.10	66	1.81	84	1.66
13	8.77	31	3.70	49	2.08	67	1.80	85	1.65
14	8.76	32	3.32	50	2.06	68	1.79	86	1.65
15	8.75	33	3.01	51	2.04	69	1.78	87	1.64
16	8.70	34	2.77	52	2.02	70	1.77	88	1.64
17	8.62	3.5	2.60	53	2.00	71	1.76	89	1.63
18	8.50	36	2.50	54	1.98	72	1.75	90	1.63
19	8.34	37	2.42	55	1.96	73	1.74	91	1.62
20	8.14	38	2.36	56	1.94	74	1.73	92	1.62
21	7.88	39	2.32	57	1.92	75	1.72	93	1.61
22	7.60	40	2.29	58	1.90	76	1.71	94	1.60
23	7.28	41	2.26	59	1.59	77	1.70	95	1.60
24	6.92	42	2.23	60	1.88	78	1.69	96	1.59
25	6.53	43	2.20	61	1.87	79	1.69	97	1.59
26	6.08	44	2.18	62	1.86	S0	1.68	98	1.58
27	5.61	45	2.16	63	1.85	81	1.68	99	1.58
28	5.12	46	2.14	64	1.83	82	1.67	100	1.57

MISCELLANE0US TABLES,

FOR

COMPARING THE HYGROMETRICAL RESULTS OBTAINED BY DIFFERENT AUTHORITIES.147

MISCELLANEOUS TABLES.

The object of these Tables is to afford the means of comparing the different determinations of the hygrometrical elements which have been obtained, or adopted, by various physicists, especially the values of the elastic forces of vapor given in other tables than those contained in the preceding pages.

Table XVIII., giving the elastic forces of vapor, expressed in millimetres of mercury, for Centigrade temperatures, was calculated by August from Dalton's experiments, and reduced to French measures in the translation of Kaemtz's Meteorology, by Chas. Martins, page 70, from which it has been taken. On these values are based the first psychrometrical tables published by August, in Berlin, 1825.

Table XIX. is the table computed by Kaemtz from his own experiments. It is found, reduced to French measures, in the same volume, page 68.

Table XX. furnishes the results of the experiments made by Professor Magnus, in Berlin, and published in Poggendorf's Aunalen, Tom. LXI. p. 226, and also in the Annales de Chimie et de Physique, $3^{\text {me }}$ série, Tom. XII. p. 88, from which this table was copied.

Table XXI. has been published by the Committee of Physics and Meteorology of the Royal Society, in their Report on the Objects of Scientific Inquiry in these Sciences, London, 1840, p. 89. The values which it contains are not derived from new experiments, but are probably computed from those existing at that time.

Table XXII. furnishes a synoptic view of the differences in the values of the force of vapor adopted by various authorities, prepared with the view of facilitating their comparison. A reference to their respective origin will be found below, page 152.

Table XXIII., showing the weight, in grammes, of the vapor contained in a cubic metre of saturated air, at different temperatures, is taken from Pouillet's Eléments de Physique, Tom. II. p. 707.
'Table XXIV. gives the weights as derived from August's experiments, in Kaemtz's Vorlesungen über Meteorologie. The table is copied from the French translation, by Martins, page 73. The tensions have been added, opposite the weights, and are extracted from August's table.

Table XXV. is found in Biot's Traité de Physique, Tom. I. p. 533.

XVIII. ELASTIC FORCE OF AQUEOUS VAPOR,

EXPRESSED IN MILLIMETRES OF MERCURY FOR EVERY TENTH OF A CENTIGRADE DEGREE.

Catculated by AUGUST.

Centigrade Degrees.	Tentlis of Degrees.									
	0.	1.	2.	3.	1.	5.	6.	7.	8.	9.
\bigcirc	Millim.	Millim.	Miliim.	Millim.	Millim.	Millim.	Millim.	Millim.	Millim.	Mitlim
-31	0.45	0.45	0.45	0.44	0.44	0.43	0.43	0.42	0.42	0.41
-30	0.50	0.49	0.49	0.48	0.18	0.47	0.47	0.46	0.46	0.45
-29	0.5.4	0.54	0.54	0.53	0.53	0.52	0.52	0.51	0.51	0.50
-28	0.59	0.58	0.58	0.57	0.57	0.56	0.56	0.55	0.55	0.54
-27	0.63	0.63	0.63	0.62	0.62	0.61	0.61	0.60	0.60	0.59
-26	0.70	0.69	0.68	0.68	0.67	0.66	0.66	0.65	0.64	0.64
-25	0.77	0.76	0.75	0.75	0.74	0.73	0.73	0.72	0.71	0.71
-24	0.83	0.83	0.82	0.82	0.81	0.80	0.80	0.79	0.78	0.78
-23	0.90	0.89	0.88	0.88	0.87	0.86	0.86	0.85	0.84	0.84
-22	0.99	0.98	0.97	0.96	0.95	0.95	0.94	0.93	0.92	0.91
-21	1.06	1.05	1.04	1.04	1.03	1.02	1.02	1.01	1.00	1.00
-20	1.15	1.14	1.13	1.12	1.11	1.11	1.10	1.09	1.08	1.07
-19	1.26	1.25	1.24	1.23	1.22	1.21	1.20	1.18	1.17	1.16
-18	1.33	1.32	1.31	1.31	1.30	1.29	1.29	1.28	1.27	1.27
-17	1.44	1.43	1.42	1.41	1.40	1.39	1.38	1.36	1.35	1.34
-16	1.56	1.54	1.53	1.52	1.51	1.50	1.49	1.47	1.46	1.45
-15	1.69	1.68	1.67	1.65	1.64	1.63	1.61	1.60	1.59	1.57
-14	1.80	1.79	1.78	1.77	1.76	1.75	1.74	1.72	1.71	1.70
-13	1.96	1.94	1.93	1.91	1.89	1.88	1.86	1.85	1.83	1.82
-12	2.12	2.10	2.09	2.07	2.05	2.04	2.02	2.01	1.99	1.98
-11	2.30	2.28	2.26	2.25	2.23	2.21	2.19	2.17	2.16	2.14
-10	2.48	2.46	2.44	2.43	2.41	2.39	2.37	2.35	2.34	2.32
-9	2.66	2.64	2.62	2.61	2.59	2.57	2.55	2.53	2.52	2.50
-8	2.86	2.84	2.82	2.80	2.78	2.76	2.74	2.72	2.70	2.68
-7	3.09	3.06	3.04	3.02	3.00	2.97	2.95	2.93	2.91	2.88
-6	3.32	3.29	3.27	3.25	3.23	3.20	3.18	3.16	3.14	3.11
- 5	3.56	3.56	3.54	3.51	3.48	3.46	3.43	3.40	3.37	3.35
-4	3.83	3.80	3.78	3.75	3.72	3.70	3.67	3.64	3.61	3.59
- 3	4.11	4.07	4.05	4.02	3.99	3.97	3.94	3.91	3.88	3.86
-. 2	4.40	4.37	4.34	4.32	4.29	4.26	4.23	4.20	4.17	4.14
-1	4.71	4.68	4.65	4.62	4.59	4.56	4.53	4.49	4.46	4.43
- 0	5.05	5.01	4.98	4.95	4.91	4.88	4.85	4.81	4.78	4.74
+ 0	5.05	5.09	5.12	5.16	๖. 19	5.23	5.27	5.30	5.34	5.37
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

NIX. ELASTIC FORCE OF AQUEOUS VAPOR,

Expressed in millimetres of mercury, for centigrade temperatures.
Br KAEMTZ

Temperature CentiGrade.	Force of Vapor.	Temperature Centigrade	Force of Vapor.						
\bigcirc	Millim.								
-2.5	0.65	-12	1.92	0	4.58	12	10.24	24	21.43
-24	0.72	-11	2.05	1	4.92	13	10.91	25	22.74
-23	0.79	-10	2.21	2	5.26	14	11.62	26	24.16
-22	0.86	-9	2.39	3	5.64	15	12.38	27	25.56
-21	0.92	-8	2.57	4	6.01	16	13.17	28	27.07
-20	1.01	-7	2.78	5	6.45	17	14.03	29	28.67
-19	1.10	-6	2.98	6	6.90	18	14.93	30	30.36
-18	1.20	- 5	3.20	7	7.33	19	15.86	31	32.17
-17	1.29	-4	3.45	8	7.89	20	16.87	32	33.95
-16	1.40	-3	3.70	9	8.41	21	17.91	33	3.5 .95
-15	1.51	-2	3.97	10	9.00	22	19.04	34	37.99
-14	1.62	-1	4.26	11	9.58	23	20.21	35	40.15
-13	1.76	0	4.58	12	10.24	24	21.43	36	42.40

XX. ELASTIC FORCE OF AQUEOLS VAPOR, EXPRESSED IN MILLIMETRES OF MERCERY, FOR CENTIGRADE TEMPERATCRES.

Br MAGNUS.

Temperature Centi-	Force of Vapor.	Temperature grade.	Force of Vapor.		Force of Vapor.	Temperature grade gr	Force of Vapor.	Temperature grade. grad	Force of Vapor.
\bigcirc	sillim.	\bigcirc	sillim	-	Millim.	\bigcirc	Millim.	\bigcirc	Sillim.
-20	0.916	-7	2.671	6	6.439	19	16.34.	32	35.419
-19	0.999	-6	2.886	7	7.436	20	17.396	33	37.473
-18	1.089	-5	3.115	8	7.964	21	18.505	34	39.630
-17	1.186	-4	3.361	9	8.52.	22	19.67 .5	35	41.893
-16	1.290	-3	3.624	10	9.126	23	20.909	36	4.265
-15	1.403	-2	3.905	11	9.751	24	22.211	37	46.758
-14	1.525	-1	4.205	12	10.421	25	23.582	38	49.368
-13	1.655	0	4.525	13	11.130	26	25.026	39	52.103
-12	1.796	+1	4.867	14	11.882	27	26.547	40	54.964
-11	1.947	2	5.231	15	12.677	28	28.148	41	57.969
-10	2.109	3	5.619	16	13.519	29	29.832	42	61.109
-9	2.284	4	6.032	17	14.409	30	31.602	43	64.396
- 8	2.471	5	6.471	18	15.351	31	33.464	44	67.833

XXI. ELAStic FORCE OF AQUEOUS VAPOR,

EXPRESSED IN ENGLISH INCHES OF MERCURY, FOR TEMPERATURES OF FAIIRENHEIT.

From the Royal Society's Report.

$\begin{aligned} & \text { Temperature } \\ & \text { of } \\ & \text { Air. } \end{aligned}$	Force of Vapor.	$\begin{gathered} \text { Temperature } \\ \text { of } \\ \text { Air. } \end{gathered}$	$\begin{aligned} & \text { Force } \\ & \text { of } \\ & \text { vapor. } \end{aligned}$	$\begin{gathered} \text { Temperature } \\ \text { of } \\ \text { Air. } \end{gathered}$	Foree of Vapor.	$\begin{aligned} & \text { Temperature } \\ & \text { of } \\ & \text { Air. } \end{aligned}$	Force of Vapor.
Fahrenheit.	Eng. Inches.	Fahrenheit.	Eng Inches.	Fahrenheit.	Eng. Inches.	Fahrenheit.	Eng. Inches.
$0{ }^{\circ}$	0.0 .51	31°	0.179	62°	0.551	$93{ }^{\circ}$	1.514
1	0.0 .38	32	0.186	63	0.570	94	1.562
2	0.056	33	0.193	64	0.590	95	1.610
3	0.0 .58	34	0.200	65	0.611	96	1.660
4	0.060	35	0.208	66	0.632	97	1.712
5	0.063	36	0.216	37	0.654	98	1.764
6	0.066	37	0.224	68	0.676	99	1.819
7	0.069	38	0.233	69	0.699	100	1.574
8	0.071	39	0.242	70	0.723	101	1.931
9	0.071	40	0.251	71	0.748	102	1.990
10	0.078	41	0.260	72	0.773	103	2.050
11	0.081	42	0.270	73	0.799	104	2.112
12	0.084	43	0.280	74	0.826	10.5	2.176
13	0.088	44	0.291	75	0.8 .54	106	2.241
14	0.092	45	0.302	76	0.882	107	2.307
15	0.095	46	0.313	77	0.911	108	2.376
16	0.099	47	0.324	78	0.942	109	2.447
17	0.103	48	0.336	79	0.973	110	2.519
18	0.107	49	0.349	80	1.005	111	2.593
19	0.112	50	0.361	81	1.036	112	2.669
20	0.116	51	0.375	82	1.072	113	2.747
21	0.121	52	0.389	83	1.106	114	2.826
22	0.126	53	0.402	84	1.142	115	2.908
23	0.131	5.4	0.417	85	1.179	116	2.992
24	0.136	55	0.432	86	1.217	117	3.078
25	0.142	56	0.447	87	1.256	118	3.166
26	0.147	57	0.463	88	1.296	119	3.257
27	0.153	58	0.480	89	1.337	120	3.349
28	0.159	59	0.497	90	1.380	121	3.444
29	0.165	60	0.514	91	1.423	122	3.542
30	0.172	61	0.332	92	1.468	123	3.641
31	0.179	62	0.551	93	1.514	124	3.743

B

TABLE XXII.

```
FOR SHOWING THE DIFFERENCES IN THE VALUES OF THE ELASTJC FORCE OF
    AQUEOUS VAPOR ADOPTED BY DIFFERENT AUTHORITIES.
```

The following synoptic view of the values of the elastic force of vapor adopted by various authoritics, furnishes the means of readily comparing them, and of appreciating the amount of the differences which they exhibit. The values are given both in English and in French measures.

Dalton's values are copied from the Edinburgh Encyclopadia, Art. Hygrometry. Those adopted in the Greenwich Observations are found in the same article, and also in the volumes published annually by that Observatory. Biot's table of tensions is, in fact, the same, computed by Pouillet from Dalton's results, by Biot's formula, and published in Biot's Traité de Physique, Tom. I. p. 531. Dr. Ure's results are taken from his Memoir in the Philosophical Transactions for 1818, p. 347. In the column beaded "Daniell" are given the forces of vapor as found in the table published in his Meteorological Essays, 2 d edition, p. 596, a table computed by Galbraith, from Dr. Ure's expcriments, by the formula of Ivory.

For the columns headed Royal Society, August, Kaemtz, Magnus, and Regnault, see above, p. 147.

```
B\(15 t\)
```

xxif. FOR SHOWING THE DIfferences in the valles of the elastic FORCE OF AQUEOUS VAPOR, ADOPTED BY DIFFERENT AUTHORITIES.

FORCE OF VAPOR EXPRESSED IN ENGLISH INCHES FOR TEMPERATURES OF FAHRENHEIT.

Temperature of Air, Fahrenheit.	Force of Vapor according to									Temperature of Air, Fahrenheit.
	Dalton.	```Green- wich Observa- tions.```	Ure.	Daniell.	Royal Society.	August.	Kaemtz.	Magnus.	Regnault.	
\bigcirc	Eng. In.	\bigcirc								
0	0.064	0.061	0.068	0.051	0.053	0.048	0.044	0.043	0
10	0.090	0.059		0.098	0.078	0.052	0.074	0.070	0.068	10
20	0.129	0.129	-•••	0.140	0.116	0.124	0.112	0.108	0.108	20
30	0.186	0.186		0.200	0.172	0.184	0.166	0.164	0.167	30
32	0.200	0.199	0.200	0.216	0.156	0.199	0.180	0.175	0.181	32
40	0.263	0.264	0.250	0.280	0.251	0.269	0.244	0.245	0.248	40
50	0.375	0.373	0.360	0.400	0.361	0.390	0.354	0.359	0.361	50
60	0.524	0.523	0.516	0.560	0.516	$0.5 \downarrow 7$	0.505	0.517	0.518	60
70	0.721	0.727	0.726	0.770	0.723	0.766	0.710	0.733	0.733	70
80	1.000	1.001	1.010	1.060	1.005	1.058	0.958	1.025	1.023	80
90	1.360	1.368	1.360	1.430	1.380	1.442	1.354	1.412	1.410	90
95	1.580	1.594	1.640	1.636	1.562	1.67%	1.581	1.649	1.647	95
100	1.560	1.852	1.860	- • •	1.871			1.921	1.918	100

FORCE OF VAPOR EXPRESSED IN MILLIMETRES FOR CENTIGRADE
TEAPERATURES.

Temperature of Air, Centigrade.	Force of Yapor according to									Temperature of Air, C'entigrade.
	Dalton.	```Green- wich Observa- tions.```	Biot,	Daniell.	Royal Suciety.	August.	Kaemtz.	Magnus.	Regnauit.	
\bigcirc	Millim.	Millim.	Nillim.	Millim.	Millim.	Millim.	Millim.	Millim.	Millim.	\bigcirc
-20	-•••		1.33			1.15	1.01	0.91	0.91	-20
-15	1.93	1.88	I. 88	2.11	1.60	1.69	1.51	1.40	1.38	-15
-10	2.64	2.62	2.63	2.92	2.34	2.48	2.21	2.11	2.08	-10
-5	3.66	3.66	3.66	4.01	3.33	3.56	3.20	3.11	3.13	-5
0	5.08	5.06	5.06	5.49	4.72	5.05	4.58	4.52	4.60	0
+ 5	6.93	6.95	6.95	7.42	6.60	7.08	6.45	6.47	6.53	$+5$
10	9.52	9.48	9.47	10.16	9.17	9.90	9.00	9.13	9.16	10
15	12.88	12.55	12.84	13.79	12.62	13.44	12.38	12.65	12.70	15
20	17.17	17.30	17.31	18.3t	17.17	18.20	16.57	17.10	17.39	20
25	23.11	23.12	23.09	24.54	23.14	24.15	22.74	23.58	23.55	25
30	30.73	30.70	30.64	32.33	30.91	32.39	30.36	31.60	31.55	30
35	40.13	10.47	40.40	41.55	40.89	42.59	40.15	41.89	41.83	35
40		-	53.00		53.64		-•••	54.96	54.91	40

xxili. Weight of vapor, in grammes, contained in a cubic metre of saturated air, at temperatures between - 20° and + 40° centigrade. - poulletet.

Temperature of Dew-Point	Force Vapor.	$\begin{aligned} & \text { Weight } \\ & \text { of } \\ & \text { Vapor. } \end{aligned}$	Temperature of Dew-Point.	$\begin{aligned} & \text { Foree } \\ & \text { of } \\ & \text { Vapor. } \end{aligned}$	$\begin{aligned} & \text { Weight } \\ & \text { of } \\ & \text { Vapor. } \end{aligned}$	Temperature of Dew-Point.	$\begin{gathered} \text { Foree } \\ \text { of } \\ \text { Vapor. } \end{gathered}$	Weight Vapor.
Centigrade	Millim.	Grammes.	Centigrade.	Nillim.	Grammes.	Centigrade.	Millim	Grammes.
-20°	1.3	1.5	11°	10.1	10.3	26°	24.4	23.9
-15	1.9	2.1	12	10.7	10.9	27	25.9	25.1
-10	2.6	2.9	13	11.4	11.6	28	27.4	26.4
- 5	3.7	4.0	14	12.1	12.2	29	29.0	27.9
0	5.0	5.4	15	12.8	13.0	30	30.6	29.4
+1	5.4	5.7	16	13.6	13.7	31	32.4	31.0
2	5.7	6.1	17	14.5	14.5	32	34.3	32.6
3	6.1	6.5	18	15.4	15.3	33	36.2	34.3
4	6.5	6.9	19	16.3	16.2	34	38.3	36.2
5	6.9	7.3	20	17.3	17.1	35	40.4	38.1
6	7.4	7.7	21	18.3	18.1	36	42.7	40.2
7	7.9	8.2	22	19.4	19.1	37	45.0	42.2
8	8.4	8.7	23	20.6	20.2	38	47.6	44.4
9	8.9	9.2	24	21.8	21.3	39	50.1	46.7
10	9.5	9.7	25	23.1	22.5	40	53.0	49.2

XXIV. WEIGHT of Vapor, in grammes, contained in a cubic metre of saturated air, at temperatures between - 25° and $+36^{\circ}$ centigr. - kaemtz.

Temperature of Dew-Point.	Force of Yapor	$\begin{aligned} & \text { Weight } \\ & \text { of } \\ & \text { Vapor. } \end{aligned}$	Temiperature of Dew-Point.	Force of Yapor.	Weight of Yapor.	Temperature of Dew-Point.	$\begin{gathered} \text { Foree } \\ \text { of } \\ \text { Vapor. } \end{gathered}$	Weight yapor.
Centigrade -25°	$\begin{gathered} \text { Millim. } \\ 0.77 \end{gathered}$	$\begin{gathered} \text { Grammes. } \\ 0.93 \end{gathered}$	Ceutigrale -4°	$\begin{gathered} \text { Millim. } \\ 3 .>3 \end{gathered}$	Grammes 4.37	Centigrade. 16°	Millim. 14.28	Grammes. 14.97
-24	0.83	1.01	-3	4.11	4.70	17	15.20	15.84
-23	0.90	1.10	-2	4.40	5.01	18	16.08	16.76
-22	0.99	1.19	-1	4.71	5.32	19	17.01	17.75
-21	1.06	1.26	0	5.05	5.66	20	18.20	18.77
-20	1.15	1.38	+1	5.41	6.00	21	19.33	19.82
-19	1.26	1.47	2	5.80	6.42	22	20.51	20.91
-18	1.3:3	1.60	3	6.20	6.34	23	21.75	22.09
-17	1.44	1.74	4	6.63	7.32	24	23.01	23.36
-16	1.56	1.84	5	7.08	7.77	25	24.18	24.61
-15	1.69	2.00	6	7.58	8.25	26	25.81	25.96
-14	1.80	2.14	7	8.10	8.79	26	27.39	27.34
-13	1.96	2.33	8	8.64	9.30	28	28.96	28.81
-12	2.12	2.18	9	9.23	9.86	29	30.63	30.35
-11	2.30	2.63	10	9.90	10.57	30	32.39	31.93
-10	2.48	2.87	11	10.49	11.18	31	34.24	33.65
-9	2.66	3.08	12	11.17	11.33	32	36.18	35.45
- 5	2.86	3.30	13	11.86	12.57	33	38.21	37.20
- 7	3.09	3.53	14	12.66	13.33	34	. 10.38	39.12
-6	3.32	3.80	15	13.44	14.17	35	42.59	41.13
-5	3.56	4.08	16	14.28	14.97	36	44.96	43.17

xXV. FORCES OF VAPOR AND RELATIVE HUMIDITY,

CORRESPONDING TO THE DEGREES OF SAUSSURE'S HAIR-HYGROMETER, AT THE TEMPERATURE OF 10° CENTIGRADE.

From the Experiments of Gay-Lussac.

The force of vapor is expressed in hundredths, the tension at full saturation heing represented by 100 .

TABLE

EOR

dedccing the relative humidity in hundredths, from the indications of Saussure's halr-hygrometer;

Caleulated from the Experiments of Melloni.

By M. T. Haeghens.

The Hair-Hygrometer of Saussure having been formerly used for long series of observations, and being still employed by some meteorologists, notwithstanding the imperfection of this instrument, on account of its giving directly the rclative humidity without calculation, it was desirable to ascertain the correspondence of the degrees of that hygrometer with the relative humidity cxpressed in hundredths, as in the preceding table. Though these instruments compared with each other, show very often great discrepancies in their indications, yet a large number of them agree sufficiently well with the experiments of Melloni, August, and others, to allow the following table of comparison to be constructed, which table may be considered as giring good approximations. For the calculation of it, Mr. Haeghens used the results of Melloni, which agree also satisfactorily with a series of observations very carefully made by M. Delcros. See Annuaire Météorologique de la France, pour 1850.

RELATIVE HUMIDITY IN HUNDREDTIS.

TABLE XYVII.

The following Table shows the Relative Humidity, in hundredths, corresponding to the degrees of Saussure's Hair-Hygrometer, as determined by various physieists. It is found in Kaemtz, Vorlesungen über Meteorologie, page 100 ; also in the French translation by Martins, Cours de Méléorologie, page 80.
XXVI. RELATIVE HUMIDIty, CORRESponding to the degrees of Saussure's HAIR-HYGRONETER.

Saturation $=100$.

	Relative Ilumidity according to				DegreesofIlair-IIygrometer.
	Gay-Lussac.	Prinsep.	August.	Melloni.	
100°	100.0	100.0	100.0	100.0	100°
95	89.1	88.7	9.1 .0	90.8	95
90	79.1	78.2	86.0	83.1	90
85	69.6	68.3	79.0	76.5	8.5
80	61.2	59.2	71.0	6-. 9	80
7.5	53.8	50.6	64.0	62.0	75
70	47.2	43.6	56.0	5.5	70
65	41.4	37.2	48.0	49.6	6.5
60	36.3	31.5	41.0	+4.0	60
55	31.8	26.3	36.0	39.1	55
50	27.9	21.8	31.0	34.6	50
45	24.1	17.7	27.0	29.8	45
40	20.5	14.3	23.0	27.0	40
35	17.7	11.4	19.0	23.5	35
30	14.8	9.1	16.0	19.0	30
25	12.0	7.1	13.0	16.1	2.5
20	9.4	. 1.9	10.0	11.7	20
1.5	7.0	3.0	7.0	8.3	15
10	4.6	1.6	4.0	5.0	10
5	2.2	0.6	2.0	2.6	5
0	0.0	0.0	0.0	0.0	0
B					

A P P ENDIX

co

THE HYGROMETRICAL TABLES.

FOR

COMPARING THE QUAN'TI'IIES OF RAIN-WATER

' ${ }_{\text {He }}$ three kinds of measures which are most in use for noting the quantities of rain and melted snow, are the Centimetres and Mitlimetres in France, the Paris or French inches and lines in Germany, and the English inches and decimals in England, America, and also in Russia, the Russian foot being the same as the English foot. 'The following tables will facilitate the comparison of these various measures with each other.

A glance at the tables will show that the first column on the left contains the numbers to be converted, and the heads of the following columns the fractions of these numbers, or units, each of which is one tenth of those in the first column. Shorter tables, at the bottom, give, when necessary, the value of proportional parts still smaller than those found in the larger tables.

Evample.

Let 13 Centimetres be converted into French inches and lines.
Take, in Table II., the line beginning with 10 Centimetres in the first column, follow that line as far as the column beaded 3 Centimetres, and there will be found the number of 4 inches 9.63 lines, which is the corresponding value in French inches of $10 \not-3$, or 13 Centimetres.

If the number is followed by a fraction, as for instance, 13.5 Centimetres, or 135 Millimetres, we find, -

$$
\begin{aligned}
& \text { In the larger table } 13 \text { Centimetres }=4.9,63 \\
& \text { In the smaller table at the bottom } 5 \text { Millimetres }=.2,216 \\
& \text { Or } \overline{\mathbf{1 3} .5} \text { Centimetres }=\overline{4.11,846}
\end{aligned}
$$

When the measures which are to be compared are both subdivided into decimal parts, the equivalents of the numbers greater than 9.9 may be found by moving the decimal point.

Example.

Let 316.7 Centimetres be converted into English inches.
In Table I., in the column headed 4, on the fourth line, we find $\quad 3.4$ Centimetres $=1.3386$ English inches.
Moving the decimal point by two places we have
310 Centimetres $=$ 133.86 English inches.
Then, in the column lieaded 7 , on the
line begiming with 6 , we find
Making together
B
6.7 Centimetres $=\quad 2.64$
$\overline{346.7}$ Centimetres $=\overline{136.50}$ English inches. 163

1 Centimetre $=0.3937079$ English Inch.

Centimetres.	Millimetres.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Eng.Inch.	Eng.Luch.	Eng. Inch	Eng.lnch.	Eng.Inch.	Eng.Inch.	Eug. Inch.	Eng.Inch.	Eng.luch	Eng.Inch.
0	0.0000	0.0394	0.0787	0.1181	0.1575	0.1969	0.2362	0.2756	0.3150	03543
1	0.3937	0.4331	0.4724	0.5118	0.5512	0.5906	0.6299	0.6633	0.8087	0.7480
2	0.7874	0.3268	0.8662	0.9055	0.9449	0.9843	1.0236	1.0630	1.1024	1.1418
3	1.1811	1.2205	1.2599	1.2992	1.3386	1.3780	1.4173	1.4567	1.4961	1.5355
1	1.5748	1.6142	1.6536	1.6929	1.7323	1.7717	1.8111	1.8504	1.8898	1.9292
5	1.9685	2.0079	2.0473	2.0867	2.1260	2.1654	2.2048	2.2441	2.2835	2.3229
6	2.3622	2.4016	2.4410	2.4804	2.5197	2.5591	2.5955	2.6378	2.6752	2.7166
7	2.7560	2.7953	2.8347	2.8741	2.9134	2.9528	2.9922	3.0316	3.0709	3.1103
8	3.1497	3.1890	3.2284	3.2678	3.3071	3.3465	3.3859	3.1253	3.4646	3.5040
9	3.5434	3.5827	3.62. 1	3.6615	8.7009	3.7402	3.7796	3.8190	3.8583	3.8977

II. CONVERSION OF CENTIMETRES INTO FRENCH INCHES, LINES, AND DECIMALS.

I Centimetre $=0$. inches 4.43296 Paris lines.

Centimetres.	Units.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Fr.1n. Lin	Lin.		Fr.In. Lin.	Fr.In. Lin.	Fr.In.Lin	Fr.In. ${ }^{\text {Li }}$	In. Lin.	Fr.ln. Lin.	Fr.In, Lin
0	0. 0,00	0. 4,43	0. 8,87	1. 1,30	1. 5,73	1.10,16	2. 2,60	2. 7,03	2.11,16	3. 3,90
10	3. 8,33	4. 0,76	4. 5,20	4. 9,63	5. 2,06	5. 6,49	5.10,93	6. 3,36	6. 7,79	7. 0,23
20	7. 4,66	7. 9,09	8. 1,53	8. 5,96	S.10,39	9. 2,82	9. 7,26	9.11,69	10. 4,12	10. 8,56
30	11. 0,99	1. 5,42	11. 9,85	12. 2,29	12. 6,72	12.11,15	13. 3,59	3. 8,02	14. 0,45	1.1. 4,89
40	14. 9,32	5. 1,75	15. 6,18	15.10,62	16. 3,05	16. 7,48	16.11,92	7. 4,35	17. 5,78	18. 1,22
50	18. 5,65	8.10,0S	19. 2,51	19. 6,9	19.11,38	20. 3,81	20. 5,25	1. 0,68	21. 5,11	21. 9,54
60	22. 1,98	6,41	$22.10,54$	23. 3,28	3. 7,71	24. 0,14	24. 4,58	4. 9,01	25. 1,44	25. 5,97
70	25.10,31	2,74	26. 7,17	26.11,61	27. 4,04	27. 8,17	25. 0,90	8. 5,34	28. 9,77	29. 2,20
80	29. 6,64	$9.11,07$	30.3,50	30. 7,93	31. 0,37	31. 4,50	31. 9,23	2. 1,67	32. 6,10	$32.10,53$
90	33. 2,97:	7,40	33.11,83	34. 4,26	4. 8,70	3.5. 1,13	35. 5,56	5.10,00	36. 2,43	$36 \quad 6,96$

$\|_{\text {Centim. }} \mid$ Fr.In. Lin. \mid Centim. Fr.In. Lin. \mid Centim. Fr.In. Lin $|\mid$ Centim. Fr.In. Lin. $|$ Centim. Fr. In. Lin.

CONVERSION OF CENTIMETRES INTO FRENCH LINES AND DECINALS.

Centimetres.	Units.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Fr. Lines.	Fr. Lines,	Fr. Lines.	Fr. Lines	Fr. Lines.					
0	0.00	4.43	8.87	13.30	17.73	22.16	26.60	31.03	3.5. 16	39.90
10	44.33	48.76	53.20	57.63	62.06	66.49	7093	75.36	79.79	84.23
20	85.66	93.09	97.53	101.96	106.39	110.92	115.26	119.69	124.12	128.56
30	132.99	137.42	141.85	146.29	150.72	155.15	159.59	164.02	168.45	172.89
40	177.32	181.75	186.18	190.62	195.0.5	199.48	203.92	208.3.)	212.78	217.22
50	221.65	226.08	230.51	234.9 .5	239.38	243.81	248.25	2.23 .68	2.57 .11	261.54
60	26.5.98	270.41	274.84	279.28	283.71	288.14	292.58	297.01	301.44	30.5 .57
70	310.31	314.74	319.17	323.61	328.04	332.47	336.90	341.34	345.77	350.20
S0	354.64	359.07	363.50	367.93	372.37	376.80	381.23	385.67	390.10	394.58
90	398.97	403.40	407.83	412.26	416.70	$\underline{+21.13}$	42.5 .56	430.00	434.43	438.86

CONVERSION OF MILLIMETRES INTO FRENCH LINES AND DECIMALS.

	10.	1.	2.	3.	1.	5.	6.	7.	8.	9.	
	\|	Fr. Lines.	$\begin{array}{\|c\|} \hline \text { Fr. Lines. } \\ 0.443 \end{array}$	$\begin{gathered} \text { Fr. Lines. } \\ 0.887 \end{gathered}$	$\begin{array}{\|c\|} \text { Fr. Lines. } \\ 1.330 \end{array}$	$\begin{array}{\|c\|} \text { Fr. Lines } \\ 1.773 \end{array}$	$\begin{array}{\|c\|} \hline \text { Fr. Lines. } \\ 2.216 \end{array}$	$\begin{gathered} \text { Fr. Lines. } \\ 2.660 \end{gathered}$	$\left\lvert\, \begin{array}{\|c\|} \text { Fr. Lines. } \\ 3.103 \end{array}\right.$	$\begin{array}{\|c\|} \hline \text { Fr. Lines. } \\ 3.546 \end{array}$	$\begin{array}{\|c} \text { Fr. Lines. } \\ 3.990 \end{array}$
B	164										

I English Inch $=2.53995$ Centimetres.

1 French Inch $=2.7070$ Centimetres.

French luches.	Units.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
0	Centim. 0.00	Centim. 2.71	Centim. 5.41	Centim. 5.12	Centim. 10.53	Centim. 13.53	Centim. 16.94	Centim. 18.95	Centim. 21.66	Centim. 24.36
10	27.07	29.78	32.48	35.19	37.90	40.60	43.31	46.02	48.73	51.43
20	54.14	56.85	59.5.	62.26	64.97	67.67	70.35	73.09	75.80	78.50
30	81.21	83.92	S6.62	89.33	92.04	94.74	97.45	100.16	102.87	105.57
40	108.28	110.99	113.69	116.40	119.11	121.81	124.52	127.23	129.94	132.64
50	135.35	138.06	140.76	143.47	146.18	148.88	151.59	154.30	157.01	159.71
60	162.42	165.13	167.83	170.54	172.25	175.95	178.66	181.37	184.08	186.78
70	189.49	192.20	194.90	197.61	200.32	203.02	20.7 .73	208.44	211.15	213.5 .5
80	216.56	219.07	2.21 .97	2.24 .65	227.39	230.09	232.80	235.51	238.22	240.92
90	243.63	246.34	249.04	2.51 .75	254.46	257.16	259.87	262.58	265.29	267.99
100	270.70	273.41	276.11	278.52	281.53	284.23	$2 \bigcirc 6.94$	289.65	292.36	295.06
110	297.77	300.45	303.18	305.59	308.60	311.30	314.01	316.72	319.42	322.13
120	324.84	327.95	330.25	332.96	335.67	335.37	341.08	343.79	346.49	349.20
130	3.51 .91	354.62	357.32	360.03	362.74	365.44	865.15	370.86	$3 \pi 3.56$	376.27
140	375.95	351.69	384.39	387.10	359.81	392.51	395.22	397.93	400.63	403.34
150	406.05	405.76	411.46	414.17	416.88	419.58	422.29	425.00	427.70	430.41
160	433.12	435.83	438.53	441.24	443.95	446.65	449.36	452.07	454.77	457.48
170	460.19	462.90	465.60	468.31	471.02	473.72	476.43	479.14	48184	484.55
180	487.26	489.97	492.67	495.35	498.09	500.79	503.50	506.21	508.91	511.62
190	514.33	517.04	519.74	522.45	52.5.16	527.86	530.57	533.28	535.98	538.69
200	$5+1.40$	544.11	546.81	549.52	552.23	5.54 .93	5.57 .64	560.35	563.0.5	565.76
Conversion of french lines into centimetres.										
1 French Line $=0.22558$ Centimetre ,										
French Lines.	Terths of a Line.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Centim.	Cenim.	Centim.							
0	0.000	0.023	0.045	0.063	0.090	0.113	0.135	0.158	0.180	0203
1	0.226	0.248	0.271	0.293	0.316	0.338	0.361	0.383	0.406	0.429
2	0.451	0.474	0.496	0.519	0.541	0.564	0.557	0.609	0.632	0.6 .54
3	0.677	0699	0.722	0.744	0.767	0.790	0.812	0.535	0.857	0.880
4	0.902	0.925	0.947	0.970	0.993	1.015	1.038	1.060	1.083	1.105
5	1.128	1.150	1.173	1.196	1.218	1.241	1.263	1.286	1.308	1.331
6	1.353	1.376	1.399	1.421	1.444	1.466	1.489	1.511	1.534	1.557
7	1.579	1.602	1.624	1.647	1.669	1.692	1.714	1.737	1.760	1.782
8	1.505	1.527	1.850	1.872	1.895	1.917	1.940	1.963	1.985	2.008
9	2.030	2.053	2.075	2.095	2.120	2.143	2.166	2.188	2.211	2.233
10	2.256	2.278	2.301	2.324	2.346	2.369	2.391	2.414	2.436	2.459
11	2.481	2.504	2.527	2.549	2.572	2.594	2.617	2.639	2.662	2.684
12	2.707	2.730	2.752	2.775	2.797	2.820	2.842	2.86 .5	2.887	2.910
B	166									

1 French Inch $=1.065765$ English Inch.

CONVERSION OF FRENCH LINES INTO ENGLISH INCHES.
1 French Line $=0.088814$ English Inch.

French L!ues.	Tenths of a Line.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Eug.Iuch.	Eng.Inch.	Eng.Inch.	Eng.Inch	Eng luch.	Eng. Jnch.	Eng luch.	Eng.Inch 0.0622	Eng. Inch. 0.0711	Eng lnch. 0.0799
0	0.0000	0.0089	0.0178	0.0266	0.0355	0.0444	0.0533	0.0622	0.0711	
1	0.0888	0.0977	0.1066	0.1155	0.1243	0.1332	0.1421	0.1510	0.1599	0.1687
2	0.1776	0.1865	0.1954	0.2013	0.2132	0.2220	0.2309	0.2398	0.2487	0.2576
3	0.2664	0.2753	0.2842	0.2931	0.3020	0.3108	0.3197	0.3286	0.3375	0.3464
4	0.3553	0.3641	0.3730	0.3819	0.3908	0.3997	0.1085	0.4174	0.1263	0.4352
5	0.4441	0.4530	0.4618	0.4707	0.4796	0.1885	0.4974	0.5062	0.5151	0.5240
6	0	0.5418	0.5506	0.5595	0.5684	0.5773	0.5862	0.5951	0.6039	0.6128
7	0.6217	0.6306	0.6395	0.6483	0.6572	0.6661	0.6750	0.6539	0.6927	0.7016
8	0.7105	0.7194	07283	0.7372	0.7460	0.7549	0.7638	0.7727	0.7816	0.7904
9	0.7993	0.8082	0.8171	0.8260	0.8349	0.8437	0.8526	0.8615	0.8704	0.8793
10	0.8881	0.8970	0.9059	0.9148	0.9237	0.9325	0.9414	0.9503	0.9592	0.9681
11	0.9770	0.9858	0.9947	1.0036	1.0125	1.0214	1.0302	1.0391	1.0480	1.0569
12	1.0658	1.0746	1.0835	1.0924	1.1013	1.1102	1.1191	1.1279	1.1365	1.1457

METEOROLOGICAL TABLES.

SERIES IIL

BAROMETRICAL TABLES.

C 0 NTENTS.

(The figures refer to the folio at the bottom of the page.)
For Comparing the different Barometrical Scales.
Table I. Comparison of the English and the Metrieal Barometers 11
" II. Comparison of the English and the Old French Barometers 15
" 1ll. Comparison of the Metrical and the English Barometers 21
" IV. Comparison of the Metrical and the Oid Freneh Barometers 27
" V. Comparison of the Old French and the English Barometers 35
" VI. Comparison of the Old Freneh and the Metrical Barometers 39
" Vll. Comparison of the Russian and the Metrieal Barometers 46
" VIII. Comparison of the Russian and the Old French Barometers 48
For Comparing Barometrical Differences.
"6 IX. Conversion of English Inches into Millimetres 53
" X. Conversion of English lnches into French or Paris Lines 53
" XI. Conversion of Millimetres into English Inches 54
6 Xll. Conversion of Millimetres into French or Paris Lines 55
" Xlll. Conversion of French or Paris Lines into Millimetres 56
" XIV. Conversion of French or Paris Lines into English Inches 56
" XV. Conversion of Russian Half-Lines into Millimetres 57
" XVI. Conversion of Russian ITalf-Lines into Paris Lines 57For Rechuing Barometrical Observations to the Freezing Point.
" XVII. Reduction of English Barometers with Brass Scales 65
6 XVIIl. Reduction of English Barometers with Glass, or Wooden Scales 72
" XIX. Reduction of the Metrical Earometer, by Delcros 73
" XX. Reduction of the Metrical Barometer, by Haeghens 81

* XXI. Reduction of the Old French Barometer, by Kaemtz 124For Correcting Barometrical Obsereations for Capillary Action.
" XXIJ. Correction to be applied to English Barometers for Capillary Action 131
" XXIII. Normal Height of Meniscus in Millimetres, by Deleros 131
" XXIV. Correction to be applied to Metrical Barometers for Capillary Action, by Deleros 139
" XXV. Depression of the Barometrical Column due to Capillary Action. - Pouillet 133
" XXVI. Depression of the Barometrical Column due to Capillary Action. - Gehler's Wörterb. 133
"XXVII. Depression of the Barometrical Column due to Capillary Action, reduced from Delcros' 'Table 134
"XXVIII. Depression of the Barometrical Column due to Capillary Action. - Baily 131

COMPARISON

of

THE BAROMETRICAL SCALES,

VR

T A B L E S

FOR CONVERTLNG THE INDICATIONS OF THE ENGLISII, METRICAL, OLD FRENCH, AND RCSSAN BAROMETERS INTO EACH OTIER

COMPARISON

OF

'I'HEBAROMETRICALSCALES.

The following tables are intended for converting into each other the four most tmportant Barometrical Scales. They are sufficiently detailed to save the labor of any calculation or even of interpolation for the ordinary wants of Meteorology. But before maxing use of them, for comparing the observations taken with barometers of different scales, it is necessary to reduce the observed heights to the temperatar: of the freezing point, or to any other temperature, provided it be the same for all, by means of the tables calculated for this purpose, and which will be found below. The reason of it may be readily understood.

The length of the bars of metal, or of other substances, which represent the stand ard measures of length which obtain among different nations, varying with the temperature, it was necessary to determine a fixed point of temperature at which they really ought to have the length adopted as the standard unit of measure. This temperature is the normal temperature of the standard, and the length of the stand-ard-bar, at this temperature, is the true length of it.

If the normal temperature of the various standards used for dividing Barometrical Scales were the same, the heights of the barometrical column, taken with these scales, could be compared directly, provided the seales be made of the same substance, brass, for instance, because their variations above or below this normal temperature would remain parallel with each other. But unfortunately it is not so. The English Yard is a standard at the temperature of 62° Fabrenheit ; the Old French Toise, at 13° Reaumur; the Metre, at the freezing point, or zero Centigrade. Thus metallic rods intended to represent these varions mits of measure give the trme or standard length only when at these respective temperatures; at any other temperature they are longer or shorter than the standard, and their subdivisions, inches, lines, or millimetres, partake of the error.

It is obvious, therefore, that the barometrical heights, taken with different scales, cannot be compared directly by means of the following tables, which give the relation between these scales at their respective normal temperatures. For suppose the temperature of the three barometers to be the freezing point, or 33° Fuhrenheit, C
the scale of the Metrical Barometer alone will actually represent the standard len n_{i} th and the millimeters will have the true length; while the inches and lines of the Old French and of the English Barometers will be too short, causing thus the barometrical column to appear too high. If the temperature of the instruments be $6 z^{\circ}$ Fahrenheit, the divisions of the English Barometer will have the true standard length, and those of the Old French Barometer nearly so ; but the millimeters of the Metrical Barometer will be too long, causing the barometrical column to appear too low. It is to neutralize the effect of those inequalitics arising from the expansion of the scale that it is necessary, before comparing the observations taken with the three barometers, to reduce them to the same temperature. This is done by means of the tables above mentioned, for reducing the barometer to the freezing point, which suppose the scales to be of brass from top to bottom, and which take into account the expansion or contraction they undergo by the variations of temperature.

But in doing so, we must be aware that the accuracy of the comparison depends in part upon the correctness of the indications of the attached thermometers, which determine the amount of the correction to be applicd for reducing the barometers to the freezing point. If the thermometers do not agree, an error is introduced which will affect the height of the reduced columns, and the fimal comparison. Therefore the correction of the attached thermometers ought to be ascertained and applied to tnem before the reduction is made; or if this correction is unknown, it will be well to place the instruments to be compared in the most favorable conditions for taking the same temperature, and then to take the temperature given by one of the thermometers to reduce both barometers. If the correction of the attached thermometer has not been applied before the reduction, it will be contained, after the reduction, in the total correction of the instrument. If it be so, this circumstance must be indicated.
In computing the following tables, the value of the Mctre, as determined by Capt. Kater, (Philosoph. Tramsact. for 1818, p. 109, and Baily's Astronomical Tables, p. 192,) has been idopted, viz. 1 Metre, at 0° Centigrade $=39.37079$ English inches, at $6 \exists^{\circ}$ Falhenheit. The relation of the Metre (legal) to the Old French system of measures is known to be 1 Metre $=443.296$ French or Paris lines. From these equations are derived the clements used in the computations, which are found at the head of each table.

Besides the larger Tables I. - VIII., a set of smaller ones, Tables IX. - XVI., has been added, which will be found useful for comparing Barometrical differences, such as runges, amount of variation in a given time, $\mathcal{\&} c$., expressed in measures of different scales, in which only small quantities occur that are not found in the large tables.
I. - II.

COMPARISON
of

TIIE ENGLISII BAROMETER

WITII

TIIE METRICAL AND TIIE OLD FRENCI BAROMETERS,

OR

T A B L E S

for converting exglisil inciles into milhimetres, and into frexcil or paris line and dechmals;

GIVING TIIE VALUES CORRESPONDING TO EVERY TENTU OF AN INCII, FROM 9 TO 19 INCIES ; AND TO EVERY IIINDREDTII, FROM

19 TO 3l.5 ENGLISH INCHES.

C

USE OF TABLE I.

Example.

The English Barometer reads 20.657 inches. What would be the corresponding beight in the Metrical Barometer?

In Table I., first column on the left, look out the line of 20 inches 6 tenths; on that line, in the sixth column, headed 5 hundredths, is found the value in millimetres for
20.65 inches $=524.50$ millimetres.

At the bottom of the page, for 0.007 " $=0.18$ " Or for $20.657 \quad "=524.68$ " which would be the reading of the Metrical Barometer.

This example may serve for all tables, throughout the volume, which are constructed on the same plan.

1 English Inch $=25.39954$ Millimetres.

English Inches.	Tenths of an Inch.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
9	$\begin{aligned} & \text { Millim. } \\ & 228.60 \end{aligned}$	$\begin{array}{\|c} \text { Millim. } \\ 231.14 \end{array}$	$\begin{array}{\|c} \text { Mıllim. } \\ 233.68 \\ \hline \end{array}$	$\begin{gathered} \text { Millim. } \\ 236.22 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 238.76 \end{aligned}$	$\begin{gathered} \text { Mutlim. } \\ 2+1.30 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 243.84 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 246.38 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 2+8.9 .2 \end{aligned}$	$\begin{array}{\|c\|c\|} \text { Millim } \\ 2.51 .46 \end{array}$
10	254.00	256.54	259.08	261.62	264.16	266.70	269.24	271.78	274.32	276.85
11	279.39	281.93	284.47	257.01	289.55	292.09	294.63	297.17	299.71	302.25
12	304.79	307.33	309.87	312.41	314.9 .5	317.49	320.03	322.57	32.5 .11	327.65
13	330.19	332.73	335.27	337.81	340.35	342.89	345.43	347.97	350.51	353.05
14	.355.59	358.13	360.67	363.21	365.75	368.29	370.83	373.37	375.91	378.45
15	380.99	383.53	386.07	358.61	391.15	393.69	396.23	398.77	401.31	403.85
16	406.39	408.93	411.47	414.01	416.55	419.09	421.63	424.17	426.71	429.25
17	431.79	434.33	436.87	439.41	441.95	444.49	447.03	449.57	452.11	454.65
18	457.19	459.73	462.27	464.81	467.35	469.89	472.13	474.97	477.51	400.05
$\left\{\begin{array}{c} \text { English } \\ \text { Huches and } \\ \text { tenths } \end{array}\right.$	Hundredths of an lach.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
19.0	$\begin{aligned} & \text { Millim. } \\ & 482.59 \end{aligned}$	$\begin{aligned} & \text { M1111m. } \\ & 482.85 \end{aligned}$	$\begin{aligned} & \text { Millun. } \\ & 483.10 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 483.35 \end{aligned}$	$\begin{aligned} & \text { Millim } \\ & 483.61 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 483.86 \end{aligned}$	$\begin{aligned} & \text { Millim } \\ & \mathbf{4 5 4 . 1 2} \end{aligned}$	$\begin{aligned} & \text { Minlim } \\ & 48+.37 \end{aligned}$	$\begin{aligned} & \text { Millim } \\ & 184.62 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & +54.88 \end{aligned}$
1	485.13	485.39	48.5 .64	485.89	456.15	456.40	486.66	486.91	487.16	457.42
2	457.67	487.93	488.18	488.43	488.69	458.94	489.20	459.45	489.70	459.96
3	490.21	490.47	490.72	490.97	491.23	491.45	491.74	491.99	49.24	492.50
4	492.75	493.01	493.26	493.51	493.77	494.02	494.29	494.53	494.79	495.04
5	495.29	495.55	495.80	496.05	496.31	496.56	496.81	497.07	497.32	497.58
6	497.83	498.08	498.34	495.59	498.85	499.10	499.35	499.61	499.86	500.12
7	500.37	500.62	500.88	501.13	501.39	501.64	501.89	502.15	502.40	502.66
8	502.91	503.16	503.42	503.67	503.93	504.15	504.43	504.69	504.91	505.20
9	505.45	505.70	50596	506.21	506.47	506.72	505.97	507.23	507.45	507.74
20.0	507.99	505.24	508.50	508.75	509.01	509.26	509.51	509.77	510.02	510.28
1	510.53	510.78	511.04	511.29	511.55	511.80	512.05	512.31	512.56	512.82
2	513.07	513.32	513.58	513.83	514.09	514.34	514.59	514.85	515.10	515.36
3	515.61	515.86	516.12	516.37	516.63	516.88	517.13	517.39	517.64	517.90
4	518.15	518.40	518.66	518.91	519.17	519.42	519.67	519.93	520.18	520.44
5	520.69	520.94	521.20	521.4.5	521.71	521.96	522.21	522.47	522.72	522.98
6	523.23	523.48	523.74	523.99	524.2.	524.50	521.75	525.01	525.26	32.5.\% 2
7	52.577	526.02	526.25	526.53	526.79	527.04	527.29	527.55	527.80	528.06
8	528.31	528.56	528.82	529.07	529.33	529.58	529.83	530.09	530.34	530.60
9	530.85	531.10	531.36	531.61	5:31.87	532.12	532.37	532.63	532.88	533.11

Thousandths of an foch.

0.	1.	2.	3.	4.	§.	6.	7.	8.	9.
0.0	0.03	0.05	0.08	0.10	0.13	0.15	0.18	0.20	0.23

C
11

$\left\lvert\, \begin{gathered} \text { English } \\ \text { hiches athd } \\ \text { tenths. } \end{gathered}\right.$	Hundredths of an lach.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
21.0	$\begin{gathered} \text { Millim } \\ 533.39 \end{gathered}$	$\begin{gathered} \text { Mıllim. } \\ 533.64 \end{gathered}$	$\begin{gathered} \text { Mitlim } \\ 533.90 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 534.15 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 53.4 .41 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 534.66 \end{aligned}$	$\begin{aligned} & \text { Mıllim. } \\ & 534.91 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 535.17 \end{aligned}$	$\begin{aligned} & \text { M1lim. } \\ & 535.42 \end{aligned}$	$\begin{gathered} \text { Milhm } \\ 53.5 .68 \end{gathered}$
1	535.93	536.18	536.44	5366.69	536.95	537.20	537.45	537.71	537.96	53822
2	538.47	538.72	538.98	539.23	5:39.19	539.74	539.99	540.25	540.50	54076
3	541.01	541.26	541.52	541.77	542.03	542.28	54253	542.79	543.04	543.30
4	543.55	543.80	544.06	24.4.31	544.57	544.82	545.07	545.33	545.58	545.84
5	546.09	546.34	546.60	546.85	517.11	547.36	547.61	547.87	548.12	518.38
6	548.63	548.88	549.14	549.39	519.65	549.90	550.15	550.41	550.66	550.92
7	551.17	5.31 .42	5.51 .68	5.51 .93	552.19	5.52 .4	5.52 .69	552.95	553.20	553.46
8	553.71	553.96	5.94 .22	554.47	554.73	554.98	555.23	55549	555.74	55600
9	556.25	556.50	556.76	557.01	557.27	557.52	557.77	558.03	558.28	558.54
29.0	558.79	559.04	559.30	559.55	559.81	560.06	560.31	560.57	560.82	561.08
1	561.33	561.58	561.84	562.09	562.35	56260	56.2 .85	563.11	563.36	563.62
2	563.57	564.12	564.38	564.63	564.89	565.14	56.5.39	56\%.65	565.90	566.16
3	566.41	566.66	566.92	567.17	567.43	567.68	567.93	568.19	568.44	568.70
4	568.95	569.20	569.46	569.71	569.97	570.22	570.47	570.73	570.98	571.24
5	571.49	571.74	572.00	572.25	572.51	572.76	573.01	573.27	573.52	573.78
6	574.03	574.28	574.54	574.79	575.05	575.30	575.55	575.81	576.06	576.32
7	576.57	576.82	577.08	57733	577.59	577.84	578.09	578.35	578.60	578.86
8	579.11	579.36	579.62	579.87	580.13	580.38	580.63	580.89	581.14	581.40
9	581.65	581.90	582.16	552.41	582.67	582.92	583.17	583.43	583.68	583.94
23.0	584.19	584.44	584.70	584.95	585.21	585.46	585.71	585.97	586.22	586.48
1	586.73	586.98	587.24	587.49	557.75	588.00	588.25	588.51	588.76	589.02
2	559.27	589.52	589.78	590.03	590.29	590.54	590.79	591.05	591.30	591..56
3	591.81	592.06	592.32	592.57	592.83	593.08	593.33	593.59	593.84	594.10
4	594.35	594.60	594.86	595.11	595.37	595.62	595.87	596.13	596.38	596.64
5	596.89	597.14	597.40	597.65	597.91	598.16	598.41	598.67	59892	599.18
6	599.43	599.68	599.94	600.19	600.45	600.70	600.95	601.21	601.46	601.72
7	601.97	602.22	602.48	602.73	602.99	60324	603.49	603.75	604.00	604.26
8	601.51	604.76	605.02	605.27	605.53	605.78	606.03	606.29	606.54	606.79
9	607.0.5	607.30	607.56	607.81	608.06	608.32	605.57	608.83	609.08	609.33
28.0	609.59	609.84	610.10	610.35	610.60	610.86	611.11	611.37	611.62	61187
1	612.13	612.38	61264	612.89	613.14	613.40	613.65	613.91	614.16	614.41
2	614.67	614.92	615.18	61543	615.68	615.9-4	616.19	616.45	616.70	616.9.
3	617.21	617.46	617.72	617.97	618.22	618.48	618.73	618.99	619.24	619.49
4	619.75	620.00	620.26	620.51	620.76	621.02	621.27	621.53	621.78	622.03
				Thnusa	ndths of	n Inch.				
O.	1.	2.	3.	4.)		6.	7.	8.	9.
0.0	0.03	0.05	0.08	0.10	0.1		. 15	0.18	0.20	0.23

English fuchers and tenths.	Hundredths of an Inc h.									
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.
24.5	$\begin{aligned} & \text { Millim } \\ & 622.29 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 622.54 \end{aligned}$	$\begin{aligned} & \text { Millim } \\ & 622.80 \end{aligned}$	$\begin{aligned} & \text { Millim } \\ & 623.05 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 623.30 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 623.56 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 623.81 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 624.07 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 624.32 \end{aligned}$	$\begin{aligned} & \text { Lillim. } \\ & 624.57 \end{aligned}$
6	624.83	625.08	625.34	625.59	625.84	626.10	626.35	626.61	626.86	627.11
7	627.37	627.62	627.88	628.13	628.38	628.64	628.59	629.15	629.40	629.65
8	629.91	630.16	630.12	630.67	630.92	631.15	631.43	631.69	631.94	$632.1)$
9	632.15	632.70	632.96	633.21	633.46	633.72	633.97	634.23	634.48	634.73
25.0	634.99	635.24	635.50	637.75	636.00	636.26	636.51	636.77	637.02	637.27
1	637.53	637.78	638.04	638.29	638.54	038.50	639.05	639.31	639.56	639.81
2	640.07	640.32	640.58	640.83	641.08	641.34	641.59	641.85	642.10	642.35
3	642.61	642.86	643.12	643.37	643.62	643.85	644.13	644.39	644.64	614.89
4	645.15	645.40	645.66	645.91	646.16	616.42	646.67	616.93	647.18	647.43
5	647.69	617.94	648.20	648.45	648.70	618.96	619.21	649.47	649.72	649.97
6	650.23	6.50 .48	650.74	6.50 .99	651.24	651.50	651.75	652.01	652.26	6.52 .51
7	652.77	653.02	6.33 .28	653.53	653.78	651.04	6.54 .29	654.55	65.4 .80	655.05
8	6.55 .31	6.55 .56	655.82	6.56 .07	6.56 .32	6.56 .55	656.83	657.09	657.34	657.59
9	657.85	658.10	658.36	658.61	658.56	6.59 .12	659.37	659.63	659.88	660.13
26.0	660.39	660.64	660.90	661.15	661.40	661.66	661.91	662.17	662.42	66267
1	662.93	663.18	663.41	663.69	663.94	664.20	664.45	664.71	664.96	665.21
2	665.17	665.72	66.5 .98	666.23	666.48	666.74	666.99	667.25	667.50	667.7.
3	668.01	668.26	665.52	665.77	669.02	669.28	669.53	669.79	670.04	670.29
4	670.55	$670 \cdot 80$	671.06	671.31	671.56	671.82	672.07	672.33	672.58	672.83
5	67309	673.34	673.60	673.85	674.10	674.36	674.61	674.87	675.12	67537
6	675.63	675.88	676.14	676.39	676.64	676.90	677.15	677.41	677.66	677.91
7	678.17	678.12	678.68	678.93	679.18	679.44	679.69	679.93	680.20	680.45
8	680.71	680.96	681.22	651.47	681.72	681.98	652.23	68249	68.74	682.93
9	653.25	683.50	683.76	684.01	654.26	684.52	684.77	685.03	685.28	685.53
27.0	68.5 .79	686.04	686.30	656.55	686.80	697.06	687.31	687.57	657.82	68807
1	653.33	688.55	688.54	69909	659.34	659.60	689.85	690.11	690.36	690.61
2	690.87	691.12	691.38	691.63	691.88	692.14	692.39	692.65	692.90	693.15
3	693.11	693.66	693.92	694.17	694.42	694.65	694.93	695.19	69.3 .44	69.3.69
4	695.95	696.20	696.46	696.71	696.96	697.22	697.47	697.73	697.98	698.23
5	698.49	698.74	699.00	699.25	699.50	699.76	700.01	700.27	700.52	700.77
6	701.03	701.25	701.54	701.79	702.04	702.30	702.55	702.81	703.06	703.31
7	705.57	703.82	704.08	704.33	704.58	704.84	705.09	705.35	705.60	70.85
8	706.11	706.36	706.62	706.57	707.12	707.38	707.63	707.89	708.14	705.39
9	708.65	708.90	709.16	709.41	709.66	709.92	710.17	710.43	710.68	710.93
				Thou	sandths of	an Inch.				
0.	1.	2.	3.			5.	6.	7.	8.	9.
0.0	0.03	0.05	0.08			13	0.15	0.18	0.20	0.23

C

1 English Inch $=11.2595$ French or Paris Lines.

English Inches.	Tenths of an Inch.									
	0.	1.	2.	3.	1.	5.	6.	7.	8.	9.
11	Par lines. 123.85	Par.lines.	Par.lines.	Par.lines. 127.23	Par.lines. 1.23.36	Par lines. 129.	Yar.lines, 130.61	Par.liues.	Par.lines.	Par.lines.
11		124.98	126.11	127.23	123.36	129.45	130.61	131.74	132.56	133.99
12	13.5.11	136.24	137.37	138.49	139.62	140.74	141.87	143.00	144.12	145.25
13	146.37	147.50	148.63	149.75	150.88	152.00	153.13	154.26	1.5 .5 .35	156.51
14	157.63	158.76	159.88	161.01	162.14	163.26	164.39	165.51	166.61	167.77
15	163.59	170.02	171.14	172.27	17340	174.52	175.65	176.77	177.90	179.03
16	150.15	181.28	182.40	183.53	184.66	185.78	186.91	185.03	189.16	190.29
Hundredths of an Inch.										
0.	1.	2.	3.	4.			6.	7.	8.	9.
0.000	0.113	0.22.	0.338	0.	0 0.	563	. 676	0.788	0.901	1.013
$\begin{array}{\|c\|} \text { English } \\ \text { Inches and } \\ \text { Tenths. } \end{array}$	Ifundredths of an Inch.									
	0.	1.	2.	3.		5.	6.	7.	8.	9.
17.0	Par.lines. 191.41	Par.lines 191.52	Par.lines.	Par.lines. 191.75	Par.lines 191.86	Par lines. 19197	Par.lines. 192.09	Par-lines.	Par.lines. 192.31	Par.lines.
1	192.54	192.6.5	192.76	192.85	192.99	193.10	193.21	193.33	193.44	193.5. 5
2	193.66	193.78	193.89	191.00	194.11	194.23	194.3 t	194.45	194.56	194.68
3	194.79	194.90	195.01	195.13	195.24	195.35	195.46	19.5 .58	195.69	195.80
4	195.92	196.03	196.14	196.25	196.37	196.18	196.59	196.70	196.52	196.93
5	197.04	197.15	197.27	197.35	197.49	197.60	197.72	197.83	197.94	198.0.3
6	193.17	198.28	198.39	198.50	198.62	198.73	198.84	198.96	199.07	199.18
7	199.29	199.41	199.52	199.63	199.74	199.86	199.97	200.08	200.19	200.31
8	200.42	200.53	200.64	200.76	200.57	200.98	201.09	201.21	201.32	201.43
9	201.55	201.66	201.77	201.88	202.00	202.11	202.22	202.33	202.45	202.56
18.0	202.67	202.78	202.90	203.01	203.12	203.23	203.35	203.46	203.57	203.68
1	203.80	203.91	204.02	204.13	204.2 .5	204.36	204.47	204.59	204.70	204.51
2	201.92	205.04	20.7.15	205.26	205.37	205.49	20.5.60	20.5.71	20.5. 82	20.5.94
3	206.0.5	206.16	206.27	206.39	206.50	206.61	206.72	206.84	206.95	207.06
4	207.17	207.29	207.40	207.51	207.63	207.74	207.85	207.96	205.05	208.19
5	208.30	208.41	208.53	208.64	208.75	203.86	208.98	209.09	209.20	209.31
6	209.43	209.54	209.65	209.76	209.58	209.99	210.10	210.21	210.33	210.44
7	210.55	210.67	210.78	210.89	211.00	211.12	211.23	211.34	211.45	211.57
8	211.65	211.79	211.90	212.02	212.13	212.24	212.35	212.47	212.58	212.69
9	212.80	212.92	213.03	213.14	213.25	213.37	213.48	213.59	213.71	213.82
19.0	213.93	214.04	214.16	214.27	214.35	214.49	214.61	214.72	214.83	214.94
1	215.06	21.5 .17	215.28	215.39	215.51	215.62	215.73	215.54	215.96	216.07
2	216.18	216.29	216.41	216.52	216.63	216.75	216.86	216.97	217.08	217.20
3	217.31	217.42	217.53	217.65	217.76	217.57	217.98	218.10	218.21	218.32
4	218.43	218.55	218.66	218.77	218.88	219.00	219.11	219.22	219.34	219.45
5	219.56	219.67	219.79	219.90	220.01	220.12	220.24	220.35	220.46	220.57
6	220.69	220.80	220.91	221.02	221.14	221.25	221.36	221.47	221.59	221.70
7	221.81	221.92	22.24	222.15	222.26	222.35	222.49	222.60	222.71	222.83
8	222.94	223.0.5	223.16	223.28	223.39	223.50	223.61	223.73	223.84	223.95
9	224.06	224.18	224.29	$2 \cdot 4.40$	224.51	224.63	224.74	221.85	224.96	225.08

1 English Inch $=11.2595$ French or Paris Lines.

1 English Inch $=11.2595$ French or Paris Lines.

EuglishInches andTenths.	Ifundredths of an Inch.									
	θ.	1.	2.	3.	4.	5.	6.	7	8.	P.
	Par.lines.	Par.lines.	Par.lines.	Par lines.	Parlines.	Par.tines.	Par.lines	Par.lines	Par.lines.	Par.lines.
21.0	270.23	270.34	270.45	270.57	270.68	270.79	270.90	271.02	271.13	271.24
1	271.35	271.47	271.58	271.69	271.80	271.92	272.03	27.14	272.25	272.37
2	272.15	272.59	272.71	272.82	272.93	273.04	273.16	273.27	273.35	273.49
3	273.61	273.72	273.83	273.94	274.06	274.17	274.28	274.39	274.51	274.62
4	271.73	274.84	274.96	275.07	275.18	275.29	275.41	275.52	275.63	275.75
5	275.86	275.97	276.08	276.20	276.31	276.42	276.53	276.65	276.76	276.87
6	276.93	277.10	277.21	277.32	277.43	277.55	277.66	277.77	277.5	27ヶ.00
7	278.11	278.22	278.33	278.45	278.56	278.67	275.79	278.90	279.91	279.12
S	279.24	279.35	279.46	279.57	279.69	279.50	279.91	280.02	200.14	250.2.;
9	280.36	280.47	280.59	250.70	280.81	280.92	281.04	281.15	281.26	251.35
25.0	281.19	281.60	281.71	281.83	281.91	282.05	282.16	282.28	282.39	282.50
1	28.61	282.73	252.54	282.95	283.06	283.18	283.29	283. 40	253.51	283.63
2	283.74	283.85	283.96	234.08	284.19	284.30	28.4 .4	284.53	254.64	284.75
3	254.87	284.98	285.09	285.20	285.32	285.13	285.54	285.6.5	285.77	285.08
4	285.99	286.10	286.22	286.33	286.44	286.55	286.67	256.78	286.59	287.00
5	287.12	287.23	257.34	287.46	287.57	287.68	257.79	287.91	298.02	288.13
6	2-5.24	288.36	288.47	288.58	288.69	288.81	288.92	2-9.03	289.14	289.26
7	289.37	289.48	289.59	289.71	289.82	289.93	290.04	290.16	290.27	290.38
8	290.50	290.61	290.72	290.83	290.9.	291.06	291.17	291.28	291.40	291.51
9	291.62	291.73	291.85	291.96	292.07	292.18	292.30	292.41	292.52	292.63
26.0	292.75	29.26	29.97	293.08	293.20	293.31	293.42	293.54	293.65	293.76
1	293.87	293.99	$29+10$	294.21	294.32	294.44	294.55	294.66	294.77	294.89
2	293.00	295.11	295.22	295.34	295.45	29.5.56	295.67	295.79	29.5 .90	296.01
3	296.12	296.24	296.3.)	296.16	296.58	296.69	296.80	296.91	297.03	297.14
4	297.25	297.36	297.48	297.59	297.70	297.81	297.93	298.04	298.15	298.26
5	295.38	298.49	298.60	298.71	298.83	298.94	299.05	299.17	299.28	299.39
6	299.50	299.62	299.73	299.84	299.95	300.07	300.15	300.29	300.10	300.52
7	300.63	300.74	300.85	300.97	301.08	301.19	301.30	301.42	301.53	301.64
8	30175	301.87	301.98	302.09	302.20	302.32	302.43	302.54	302.66	302.77
9	302.88	302.99	303.11	303.22	303.33	303.44	303.56	303.67	303.78	303.59
27.0	304.01	304.12	304.23	304.34	304.46	304.57	304.68	304.79	304.91	305.02
1	30.3.13	305.25	305.36	305.47	305.58	305.70	305.81	305.92	306.03	306.15
2	306.26	306.37	306.45	306.60	306.71	306.52	306.93	307.05	307.16	307.27
3	307.38	307.50	307.61	307.72	307.83	307.95	305.06	308.17	308.29	308.10
4	308.51	308.62	308.74	308.85	308.96	309.07	309.19	309.30	309.41	309.52
5	309.64	309.75	309.86	309.97	310.09	310.20	310.31	310.42	310.54	310.65
6	310.76	310.87	310.99	311.10	311.21	311.33	311.44	311.55	311.66	311.78
7	311.89	312.00	312.11	312.23	312.34	312.45	312.56	312.68	312.79	312.90
8	313.01	313.13	313.24	313.35	313.46	313.58	313.69	313.60	313.91	314.03
9	314.14	314.25	314.37	314.48	314.59	314.70	314.82	314.93	315.04	315.15
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

1 English Inch $=11.2595$ French or Paris Lines.

English Inches and Tenths.	Hundredths of an Iuch.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	Э.
	Par.lines.	Par.lines.	Par.lines.	Par lines.	Par.lines.	Par.lines.	Par.lines.	Par.lines.	Par.lines.	Par.lines.
28.0	315.27	315.38	315.49	315.60	315.72	315.53	315.94	316.05	316.17	316.28
1	316.39	316.50	316.62	316.73	316.54	316.95	317.07	317.18	317.29	317.41
2	317.52	317.63	317.74	317.86	317.97	318.08	318.19	318.31	318.42	318.53
3	318.64	318.76	318.87	318.98	319.09	319.21	319.32	319.43	319.54	319.66
4	319.77	319.88	319.99	320.11	320.22	320.33	320.45	320.56	320.67	3.30 .78
5	320.90	321.01	321.12	321.23	321.35	321.46	321.57	321.65	321.80	321.91
6	322.02	322.13	322.25	322.36	322.47	322.58	322.70	322.81	322.92	323.04
7	323.15	323.26	323.37	323.49	323.60	323.71	323.52	323.94	324.05	324.16
8	324.27	324.39	3.4 .50	324.61	324.72	324.84	324.95	325.06	325.17	325.29
9	325.40	325.51	325.62	325.74	325.85	325.96	326.08	326.19	326.30	326.41
29.0	326.53	326.64	326.75	326.56	326.98	327.09	327.20	327.31	327.43	327.54
1	327.6 .5	327.76	327.88	327.99	325.10	328.21	328.33	328.44	328.55	328.66
2	328.75	328.89	329.00	329.12	329.23	329.34	329.45	329.57	329.68	329.79
3	329.90	330.02	330.13	330.24	330.35	330.47	330.58	330.69	330.80	330.92
4	331.03	331.14	331.25	331.37	331.45	331.59	331.70	331.82	331.93	332.04
5	332.16	332.27	332.38	332.49	332.61	332.72	332.83	332.94	333.06	333.17
6	333.28	333.39	333.51	333.62	333.73	333.54	333.96	334.07	33-1.18	331.29
7	334.41	334.52	334.63	334.74	334.86	334.97	335.08	335.20	335.31	335.42
8	335.53	335.65	335.76	335.87	335.98	336.10	336.21	336.32	336.43	336.55
9	336.66	336.77	336.88	337.00	337.11	337.28	337.33	337.45	337.56	337.67
30.0	337.78	337.90	335.01	338.12	338.24	338.35	338.46	338.57	338.69	338.80
1	338.91	339.02	389.14	339.25	339.36	339.47	339.59	339.70	339.51	339.92
2	310.04	340.15	340.26	340.37	340.49	340.60	340.71	340.83	340.94	341.05
3	341.16	341.28	341.39	341.50	341.61	341.73	341.84	341.95	342.06	342.18
4	342.29	342.40	342.51	342.63	342.74	342.85	342.96	343.08	343.19	343.30
5	343.41	343.53	343.64	343.75	343.87	313.98	344.09	344.30	344.32	344.43
6	344.54	344.6.	314.77	344.88	344.39	345.10	34.5 .22	345.33	345.44	345.55
7	345.67	345.78	345.89	346.00	346.12	346.23	$3+6.34$	346.45	346.57	346.68
8	346.79	316.91	$3+7.02$	347.13	347.24	347.36	347.47	347.58	347.69	347.81
9	347.92	348.03	348.14	348.26	348.37	318.18	348.59	348.71	348.82	348.93
31.0	349.04	349.16	349.27	349.38	349.49	349.61	349.72	349.53	349.95	350.06
1	350.17	350.28	350.40	350.51	350.62	350.73	350.85	350.96	351.07	351.18
2	351.30	3.51 .41	351.52	351.63	351.75	351.86	351.97	352.08	352.20	352.31
3	352.42	352.53	352.65	3.52 .76	352.87	3.52 .99	353.10	353.21	353.32	353.44
4	353.55	353.66	353.77	353.89	354.00	3.54 .11	354.22	354.34	354.45	354.56
5	354.67	354.79	354.90	355.01	355.12	35.5 .24	: 55.35	355.46	355.57	355.69
6	3.5.5.80	355.91	356.03	356.14	356.25	356.36	$\because 56.48$	356.59	356.70	356.81

Thousandths of an Inch.

0.	1.	9.	3.	4.	5.	6.	7.	8.	3.
0.000	0.011	0.023	0.034	0.045	0.056	0.068	0.079	0.090	0.101

III. - IV.

C0MPARIS0N

of

TIIE METRICAL BAROMETER

WITII

TIIE ENGLISH AND TIIE OLD FRENCH BAROMETERS,
or

TABLES

FOR CONVERTING MILLIMETREA INTO ENGLISII INCIIEA AND DECIMALS, AND INTG FRENCH OR PARIS LINES;

GIVING THE VALUES CORRESDONDING TO EVERY MLLLDETRE FROM 250 TO 600; AND TO EVERY TENTII OF A MLLIMETRE FROH 600 TO 800 MLLLMETRES.

C

1 Metre $=39.37079$ English Inches.

Tenths of Millimetres.

0.	1.	2.	3.	4.	す.	6.	\%.	8.	9.
0.000	0.004	0.005	0.012	0.016	0.020	0.024	0.028	0.031	0.035

1 Metre $=39.37079$ English Inches.

Millime-tres	Tenths of Millimetres.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Eur In.	Eug. In.	Eng. In.	Eng In.	Eng. In.					
600	23.622	23.626	28.6830	23.634	23.635	23.642	23.646	23.650	23.654	23.658
601	23.662	23.666	23.670	23.674	23.678	23.652	23.685	23.659	23.693	23.697
60.2	23.701	23.705	23.709	23.713	23.717	23.721	23.725	23.729	23.733	23.737
693	23.741	23.745	23.745	23.752	23.756	23.760	23.764	23.768	23.772	23.776
604	23.780	23.784	23.755	23.792	23.796	23.500	23.804	23.808	23.811	23.815
60.5	23.519	23.823	23.527	23.831	23.835	23.639	23.843	23.847	23.851	23.555
606	23.5.59	23.863	23.867	23.871	23.97:	23.675	23.852	23.886	23.590	23.894
607	23.898	23.902	23.906	23.910	23.914	23.915	23.922	23.926	23.930	23.934
608	23.937	23.941	23.945	23.949	23.953	23.957	23.961	23.965	23.969	23.973
609	23.977	23.951	23.985	23.959	23.993	23.996	24.000	24.004	24.008	24.012
610	24.016	24.020	24.024	24.028	24.032	24.036	24.010	24.044	24.048	24.052
611	24.056	24.0 .59	24.06 :	24.067	24.071	21.075	24.079	24.083	24.057	24.091
612	24.09 .5	24.099	24.103	24.107	24.111	24.115	24.119	24.123	24.126	24.130
613	24.134	21.188	24.142	24.146	24.150	24.154	24.158	24.162	24.166	24.170
614	24.174	24.175	24.182	24.18 .5	24.189	24.193	24.197	24.201	24.205	24.209
615	24.213	24.217	24.221	24.22.	24.229	24.238	24.237	24.241	24.245	24.248
616	24.252	24.256	21.260	24.264	24.265	21.272	24.276	24.280	24.284	24.288
617	24.292	24.296	24.300	24.304	24.305	24.311	24.315	24.319	24.323	24.327
615	24.331	24.335	24.339	24.343	24.347	24.3.51	24.355	24.359	24.363	24.367
$619{ }^{\prime}$	24.371	24.374	24.378	24.382	24.386	24.390	24.394	24.398	24.402	24.406
620	24.110	24.414	24.418	24.422	24.426	24.430	24.434	24.437	24.441	24.445
621	24.449	24.4 .53	24.457	24.461	24.46 .5	24.169	24.473	24.177	21.481	24.485
622	24.459	24.493	24.497	24.500	24.504	24.50 S	24.512	24.516	24.520	24.524
623	24.528	24.532	24.536	24.510	24.54	24.518	24.552	24.5 .56	24.559	24.563
624	24.567	24.571	24.575	24.579	24.583	24.587	24.591	24.595	24.509	24.503
6.25	24.607	24.611	24.615	24.619	24.622	24.626	24.630	24.634	24.638	24.642
626	24.616	$2+.6 .50$	24.6 .54	24.6.55	24.669	$\underline{2} 4.666$	24.670	21.674	24.678	24.682
627	24.695	24.659	24.693	24.697	24.701	24.70 .5	24.709	24.713	24.717	24.721
6. 25	24.72 .5	21.729	24.733	21.737	24.711	24.745	24.745	24.752	24.756	24.760
629	21.764	24.768	24.752	24.776	24.780	24.754	24.788	24.792	24.796	24.800
6.30	24.504	24.908	24.811	24.815	21.819	24.823	24.527	24.831	21.835	24.839
631	$24.84 ;$	24.847	24.851	21.855	24.859	24.863	24.867	24.571	24.874	24.878
632	24.882	24.586	24.890	24.894	24.898	24.902	24.906	21.910	24.914	24.918
633	24.922	24.926	24.930	24.93 t	24.937	$24.9+1$	24.945	24.949	24.9.):	24.957
$6: 9$	24.961	24.96 .5	24.969	$24.9 \% 3$	24.977	24.981	24.98 .5	24.989	24.993	24.997
63.5	2.5 .000	25.004	25.005	25.012	2.5 .016	25.020	25.024	25.028	25.032	25.036
636	25.040	2.5 .014	25.048	25.052	25.0.56	25.060	25.063	25.067	2.5 .071	25.075
63\%	2.5 .079	25.083	2.5 .027	2.5 .091	25.09.5	25.099	25.103	25.107	25.111	25.115
635	2.5 .119	25.123	2.5.126	25.130	25.134	25.138	25.142	25.146	25.150	25.154
639	25.1.5	2.5 .162	2.5 .166	25.170	2.5 .174	2.5 .178	25.182	25.185	25.189	25.193
	0.	1.	2.	3.	4	5	6.	7.	8.	D.

1 Metre $=39.37079$ English Inches

	Tenths of Millimetres.									
	O.	1.	2.	3	4.	5.	6.	7.	8.	9.
	Eag. In.	Eng. In.	Eng. In.	Evg. In	Eng Ja.	Eng. In.	Eng. In.	Eng. In.	Eng. In.	n.
640	25.197	25.201	25.205	2.209	25.213	25.217	2.5.221	25.22 .5	2.5 .299	2.5.23:3
641	25.237	25.241	25.245	25.245	25.252	2.5256	25.260	25.261	25.268	25.272
642	25.276	25.280	25.284	25.288	25.292	25.296	25.300	25.30 .1	25.308	25.311
643	25.315	2.5 .319	25.323	25.327	25.3331	25.335	25.3:39	25.348	2.5 .347	2.5 .351
644	2.5 .355	25.359	25.363	2.5 .367	25.371	25.374	25.375	25.382	25.386	25.390
645	25.394	25.398	25.402	25.406	25.410	25.414	25.418	25.422	25.426	2.5. 130
646	2.543 .1	25.437	25.441	2.5 .445	25.449	25.453	25.457	25.161	2.5.46.5	2.5 .469
647	25.473	2.5.177	25.481	2.5 .18 .5	2.5 .489	25493	25.497	25.500	25.504	25.508
648	25.512	25.516	25.520	2.5.521	25.528	25.532	2.5.536	25.540	25.544	25.515
649	25.552	25.556	25.560	25.563	2.5 .567	25.571	25.575	25.579	25.583	2.5 .557
650	25.591	25.595	25.599	25.603	2.5.607	2.5 .611	25.615	25.619	25.623	2.5. 626
651	25.630	2.5.634	25.635	2.5 .642	25.646	2.5 .650	25.654	25.658	25.662	2.5 .666
652	2.5 .670	2.5.674	25.678	25.682	25.656	2.5 .689	2.5 .693	25.697	25.701	25.703
653	2.5 .709	2.5 .713	2.5 .717	25.721	2.5.72.	2.5 .729	2.5 .733	25.737	25.741	25.745
654	2.5.745	25.752	25.756	25.760	25.764	25.768	25.772	25.776	25.780	25.784
655	25.788	2.5 .792	25.796	25.800	25.804	25.805	25.811	25.815	25.819	25.823
656	25.827	25.831	25.835	25.539	25.843	25.847	25.8 .51	25.855	25.859	25.863
657	25.867	2.5 .571	2.5 .574	25.575	25.882	25.586	25.590	2.5.894	25.898	25.902
658	2.5.906	2.5 .910	25.914	2.5 .918	2.5 .923	25.926	25.930	25.934	25.937	25.941
659	25.945	25.949	25.953	2.5 .957	25.961	25.965	25.969	25.973	25.977	25.981
660	25.985	2.5 .989	25.993	25.997	26.000	26.004	26.008	26.012	26.016	26.020
661	26.024	26.028	26.032	26.036	26.040	26.044	26.018	26.052	26.056	26.060
662	26.063	26.067	26.071	26.075	26.079	26.053	26.087	26.091	26.095	$\supseteq 6.099$
663	26.103	26.107	26.111	26.115	26.119	26.123	26.126	26.130	26.134	26.138
664	26.142	26.146	26.150	26.154	26.158	26.162	26.166	26.170	26.174	26.178
665	26.182	26.186	26.189	26.193	26.197	26.201	26.205	26.209	26.213	26.217
666	26221	26.225	26.229	26.233	26.237	26.241	26.245	26.249	26.2.5	26.256
667	26.260	26.264	26.268	26.272	26.276	26.280	26.254	26.288	26.292	26.296
663	26.300	26.304	26.308	26.311	26.315	26.319	26.323	26.327	26.331	26.385
669	26.339	26.3.43	26.347	26.351	26.355	26.359	26.363	26.367	26.371	26.374
670	26.375	26.382	26.386	26.390	26.394	26.398	26.402	26.406	26.110	26.114
671	26.415	26.422	26.426	26.430	26.434	26.437	26.441	26.445	26.449	26.453
672	26.457	26.461	26.465	26.469	26.473	26.477	26.481	26.48 .5	26.489	26.493
673	26.497	26.500	26.504	26.50 s	26.512	26.516	26.520	26.524	26.528	26.532
674	26.536	26.540	26.544	26.548	26.552	26.556	26.560	26.563	26.567	26.571
675	26.575	26.579	26.583	26.557	26.591	26.595	26.599	26.603	26.607	26.611
676	26.615	26.619	26.623	26.626	26.630	26.634	26.638	26.612	26.646	26.650
677	26.654	26.659	26.662	26.666	26.670	26.674	26.678	26.652	26.686	26.689
678	26.693	26.697	26.701	26.70 .5	26.709	26.713	26.717	26.721	26.725	26.729
679	26.733	26.737	26.741	26.745	26.749	26.752	26.756	26.760	26.764	26.768
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

1 Metre $=39.8 .079$ English Inches.

Millimetres.	Tenths of Millimetres.									
	0.	1.	2.	3.	4.	\%.	6.	γ.	8.	B.
	Eng. In.	Eng. In.	Eng. In.	Eng 1 n .	Eng. In.					
650	26.772	26.776	26.780	26.781	26.758	26.792	26.796	26.500	26.504	26.50s
651	26.812	26.815	26.819	$\underline{26.523}$	26.827	26.831	26.835	26.839	26.843	26.847
652	26.551	26.855	26.839	26.863	26.567	26.571	26.875	26.578	26.882	26.506
653	26.890	26.594	26.598	26.902	26.906	26.910	26.914	26.915	26.922	$\stackrel{26.92}{ } 6$
634	26.930	26.934	26.937	26.941	26.945	26.949	26.953	26.957	26.961	26.965
685	26.969	26.973	26.977	26.981	26.985	26.959	26.993	26.997	27.000	27.004
686	27.005	27.012	27.016	27.020	27.024	27.025	27.032	27.036	27.040	27.044
687	27.045	27.0.72	27.056	27.060	27.063	27.067	27.071	27.075	27.079	27.083
658	27.087	27.091	27.095	27.099	27.103	27.107	27.111	27.115	27.119	27.123
689	27.126	27.130	27.134	27.138	27.142	27.146	27.150	27.154	27.158	27.162
690	27.166	27.170	27.174	27.178	27.182	27.186	27.189	27.193	27.197	27.201
691	27.205	27.209	27.213	27.217	27.221	27.225	27.229	27.233	27.237	27.241
692	27.245	27.249	27.252	27.256	27.260	27.26 .1	27.265	27.272	27.276	27.280
693	27.284	27.285	27.292	27.296	27.300	27.304	27.308	27.312	27.315	27.319
694	27.323	27.327	27.331	27.335	27.339	27.343	27.347	27.351	27.35.	27.359
69.5	27.363	27.367	27.371	27.875	27.378	27.352	27.386	27.390	27.394	27.398
696	27.402	27.406	27.410	27.414	27.418	27.422	27.426	27.430	27.434	27.438
697	27.441	27.445	27.449	27.453	27.457	27.461	27.465	27.469	27.173	27.477
698	27.181	27.455	27.489	27.493	27.497	27.500	27.504	27.508	27.512	27.516
699	27.520	27.524	27.525	27.532	27.536	27.540	27.544	27.548	27.552	27.556
700	27.560	27.563	27.567	27.571	27.575	27.579	27.583	27.587	27.591	27.595
701	27.599	27.603	27.607	27.611	27.615	27.619	27.623	27.626	27.630	27.634
702	27.638	27.642	27.646	27.650	27.654	27.6 .98	27.662	27.666	27.670	27.674
703	27.675	27.682	27.686	27.689	27.693	27.697	27.701	27.705	27.709	27.713
704	27.717	27.721	27.725	27.729	27.733	27.737	27.741	27.745	27.749	27.752
70.5	27.756	27.760	27.764	27.765	27.772	27.776	27.780	27.781	27.788	27.792
706	27.796	27.500	27.804	27.808	27.812	27.815	27.519	27.523	$27.8 \cdot 7$	27.831
707	27.535	27.839	27.543	27.847	27.551	27.855	27.859	27.863	27.867	27.571
705	27.875	27.575	27.882	27.886	27.590	27.894	27.598	27.902	27.906	27.910
709	27.914	27.918	27.922	27.926	27.930	27.934	27.938	27.941	27.945	27.949
710	27.953	27.957	27.961	27.965	27.969	27.973	27.977	27.981	27.985	27.989
711	27.993	27.997	28.001	28.004	28.005	28.012	28.016	28.020	28.024	28.028
712	28.032	28.036	28.010	28.044	28.045	25.052	28.0.26	28.060	28.063	28.067
713	28.071	28.075	28.079	28.083	25.087	28.091	28.095	28.099	25.103	28.107
714	28.111	28.115	28.119	28.123	23.126	28.130	28.134	28.138	2 S .142	$2 \mathrm{S.146}$
715	23.150	25.154	28.158	28.162	28.166	28.170	28.174	28.178	28.182	28.156
716	28.189	28.193	23.197	28.201	28.205	25.209	28.213	28.217	28.221	28.225
717	28.229	28.233	28.237	29.241	28.245	28.249	28.252	28.256	28.260	28.264
718	28.268	25.272	28.276	25.280	28.284	29.285	28.292	28.296	28.300	28.304
719	28.308	28.312	29.315	28.319	28.323	25.327	28.331	28.335	28.339	28.343
	0.	1.	2.	3.	4.	5.	6.	7.	8.	D.

1 Metre $=39.37079$ English Inches

Millimetres.	Tenths of Millimetres.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Eng. In.	Eng. In.	Eug. In.	Eng. In.	Eng In.	Eng. In.				
720	28.347	25.351	28.3.5.	28.359	28.363	28.367	2S.3\%1	28.375	25.378	28.352
721	28.386	28.390	28.394	28.398	28.402	28.406	28.410	2R.414	25.418	28.422
722	28.126	28.430	28.434	28.438	28.441	28.445	28.449	28.453	28.457	28.461
723	2マ.46.5	25.469	28.473	28.477	2S.481	28.485	28.489	28.493	28.497	28.501
724	28.504	23.508	28.512	28.516	28.520	$2 \mathrm{S.524}$	28.528	28.532	28.536	28.540
72%	28.544	28.548	28.5 .52	28.5 .56	28.560	28.564	28.567	28.571	2 Q .575	28.579
726	28.583	25.587	28.591	28.595	25.599	25.603	28.607	28.611	28.615	28.619
727	28.62:3	29.6:37	28.630	28.634	28.638	28.642	28.646	28.650	25.6 .54	28.658
728	25.662	28.666	25.670	28.674	25.678	25.682	28.656	28.659	28.693	28.697
729	28.701	28.705	28.709	28.713	28.717	28.721	28.725	28.729	28.733	2 S .737
730	28.741	28.74.)	28.749	28.752	28.756	28.760	28.764	28.768	28.772	28.7\%6
731	28.750	28.784	28.758	28.792	25.796	$2 \mathrm{S}$.	28.604	28.808	28.812	28.815
732	28.519	25.523	25.527	28.8:31	28.835	28.539	28.543	28.847	28.8 .51	28.855
738	28.859	95.863	28.967	25.871	28.875	25.975	28.882	28.886	28.890	28.59!
734	28.898	28.902	28.906	28.910	28.914	28.918	28.922	28.926	28.930	28.934
735	28.935	28.941	28.945	28.949	28.953	28.957	25.961	28.965	$2 \mathrm{S.969}$	28.978
736	28.977	25.981	28.985	28.989	28.993	28.997	29.001	29.004	29.008	29.012
737	29.016	29.020	29.024	29.025	29.032	29.036	29.040	29.044	29.015	29.052
738	29.0 .56	29.060	29.064	$\underline{9} 9.067$	29.071	29.075	29.079	29.083	29.087	29.091
739	29.095	29.099	29.10:3	29.107	29.111	29.115	29.119	29.123	29.127	29.130
740	29.134	29.135	29.142	29.146	29.150	29.154	29.158	29.162	29.166	29.170
741	29.174	29.175	29.182	29.186	29.190	29.193	29.197	29.201	29.205	29.209
742	29.213	29.217	29.221	29.225	29.229	29.23:3	29.237	29.241	29.245	29.249
743	29.252	29.2.56	29.260	29.264	29.265	29.272	29.276	29.280	29.284	29.258
744	29.292	29.296	29.300	29.304	29.305	29.312	29.315	29.319	29.328	29.327
745	29.331	29.335	29.339	29.343	29.347	29.351	29.355	29.359	29.363	29.367
7.46	29.371	29.375	29.378	29.352	29.386	29.390	29.394	29.398	29.402	29.406
747	29.410	29.414	29.418	29.122	29.426	29.130	29.134	29.438	29.441	29.445
745	29.449	29.453	29.457	29.461	29.465	29.469	29.473	29.477	29.481	29.485
749	29.459	29.498	29.497	29.501	$29.50 \downarrow$	29.508	29.512	29.516	29.520	29.524
750	29.528	29.582	29.536	29.540	29.544	29.548	29.552	29.556	29.560	29.564
751	29.567	29.571	29.575	29.579	29.583	29.557	$29.59]$	29.595.	29.599	29.603
752	29.607	29.611	29.615	29.619	29.623	$29.6 \div 7$	29.630	29.634	29.638	29.642
753	29.646	29.6 .50	29.6 .54	29.6 .58	29.662	29.666	29.670	29.674	29.678	29.652
754	29.6×6	29.690	29.693	29.697	29.701	29.705	29.709	29.713	29.717	29.721
755	29.725	29.729	29.733	29.737	29.741	29.745	29.749	29.753	29.756	29.760
756	29.764	29.765	29.772	29.756	29.780	29.784	29.788	29.792	29.796	29.800
757	29.504	29.905	29.812	29.515	29.819	29.523	29.827	29.931	29.835	29.839
758	29.813	29.847	29.851	29.8 .55	29.859	29.868	29.867	29.871	29.875	29.878
759	29.882	29.586	29.890	29.894	29.598	29.902	29.906	29.910	29.914	29.918
	0.	1.	2.	3.	- 4.	5.	6.	7.	8.	Э.

1 Metre $=39.37079$ English Inches.

Nillimetres.	Tenths of Millimetres.									
	0.	1.	2.	3.	4.	δ.	6.	7.	8.	D.
	Eng. In.	Eng. In.	Eng. In.	Eng In.	Eng. In.	Eng. In.	Eng. In.	Eng. In	Eng. In.	Eng. In.
760	29.922	29.926	29.930	29.934	29.938	29.941	29.945	29.949	29.953	29.9 .57
761	29.961	29.965	29.969	29.973	29.977	29.981	29.985	39.989	29.993	29.997
762	30.001	30.004	30.008	30.012	30.016	30.020	30.024	30.028	30.032	30.036
763	30.040	30.044	30.048	30.052	30.056	30.060	30.064	30.067	30.071	30075
764	30.079	30.083	30.087	30.091	30.095	30.099	30.103	30.107	30.111	30.115
765	30.119	30.123	30.127	30.180	30.134	30.138	30.142	30.146	30.150	30.154
766	30.155	?0.162	30.166	30.170	30.174	30.178	30.182	30.156	30.190	30.193
767	30.197	30.201	30.30 .5	30.209	30.213	30.217	30.221	30.225	30.229	30.233
768	30.237	30.241	30.245	30.249	30.253	30.256	30.260	30.264	30.268	30.272
769	30.276	30.280	30.284	30.288	30.292	30.296	30.300	30.304	30.30 s	30.312
770	30.316	30319	30.323	30.327	30.331	30.335	30.389	30.343	30.347	30.351
771	30.355	30.3 .59	30.363	30.367	30.371	30.375	30.379	30.382	30.356	30.390
772	:30.394	30.393	30.402	30.406	30.410	30.414	30.418	30.422	30.126	30.430
773	30.184	30.438	30.411	30.145	30.449	30.453	30.457	30.461	30.465	30.169
774	30.473	30.477	30.481	30.485	30.489	30.493	30.497	30.501	30.504	30.508
775	30.512	30.516	30.520	30.524	30.528	30.532	30.536	30.540	30.544	30.548
776	30.5 .52	30.5 .56	30.560	30.561	30.567	30.571	30.575	30.579	30.583	30.557
777	30.591	30.595	30.599	30.603	30.607	30.611	30.615	30.619	30.623	30.627
778	30.630	30.634	30.638	30.612	30.616	30.650	30.6 .54	30.658	30.662	30.666
779	30.670	30.674	30.678	30.652	30.656	30.690	30.693	30.697	30.701	30.705
780	30.709	30.713	30.717	30.721	30.725	30.729	30.733	30.737	30.741	30.745
781	30.749	30.753	30.756	30.760	30.764	30.768	30.772	30.776	30.780	30.754
782	:30.788	30.792	30.796	30.500	30.804	30.808	30.512	30.816	30.819	30.823
78.3	30.827	30.831	30.835	30.539	30.843	30.847	30.851	30.555	30.559	30.863
784	30.867	30.571	30.875	30.579	30.852	30.886	30.590	30.894	30.595	30.902
785	30.906	30.910	30.914	30.918	30.922	30.926	30.930	30.93-4	30.938	30.942
786	30.945	30.949	30.953	30.957	30.961	30.965	30.969	30.973	30.977	30.981
75^{*}	30.955	30.989	30.993	30.997	31.001	31.004	31.008	31.012	31.016	31.020
788	31.024	31.028	31.032	31.036	31.040	31.044	31.048	31.0 .52	3].056	31.060
789	31.064	31.067	31.071	31.07 .7	31.079	31.083	31.087	31.091	31.095	31.099
790	31.103	31.107	31.111	81.115	31.119	31.123	31.127	31.130	31.131	31.138
791	31.142	31.116	31.150	31.154	31.158	31.162	31.166	31.170	31.174	31.175
792	31.152	31.186	31.190	31.193	31.197	31.201	31.20 .3	31.209	31.213	31.217
793	31.221	31.22 .5	31.229	31.233	31.237	$31.2+1$	31.24 .5	31.249	31.253	31.256
994	31.260	31.261	31.265	31.272	31.276	31.280	31.284	31.258	31.292	31.296
795	31.300	31.304	31.308	31.312	31.316	31.319	31.323	31.327	31.331	31.335
796	:31.339	31.843	31.347	31.351	31.355	31.359	31.36:3	31.367	31.371	31.375
797	31.379	31.382	31.386	31.390	31.394	31.398	31.102	31.406	31.410	31.414
798	31.418	31.122	31.426	31.130	31.434	31.438	31.412	31.445	31.149	31.453
799	31.457	31.161	31.46 .7	31.469	31.473	31.477	31.451	31.485	31.189	31.493
800	31.497	31.501	31.505	31.508	31.512	31.516	31.520	31.524	31.528	31.532
				IIundredth	s of Mill	etres.				
0.	1.	2.	3.	4.			b.	7.	8.	9.
. 0000	. 0004	. 0008	. 0012	.0016		20 . 0	024 . 0	0028	. 0031	. 0035

1 Millimetre $=0.443296$ French or Paris Line.

Millimetres Tens.	Millimetres. Units.									
	0.	1.	2.	3.	4.	5.	6.	7	8.	9.
	Par.lines.	Par.lines	Par.lines	Par.lines	Par.lines.	Par.lines.	Par.lines.	Par.lines.	Par.lines.	latr.lines,
300	132.99	133.43	133.88	134.32	134.76	135.21	135.65	136.09	136.54	136.98
310	137.12	137.87	138.31	138.75	139.19	139.64	140.08	140.52	140.97	141.41
320	141.85	142.30	142.74	143.18	143.63	144.07	144.51	14.96	145.40	145.54
330	146.29	146.73	147.17	147.62	148.06	148.50	148.95	149.39	149.83	150.28
340	150.72	151.16	151.61	152.05	152.49	152.94	153.38	153.82	154.27	151.71
350	155.15	155.60	156.04	156.48	156.93	157.37	157.81	158.26	158.70	159.14
360	159.59	160.03	160.47	160.92	161.36	161.80	162.25	162.69	163.13	163.58
370	164.02	164.46	164.91	165.35	165.79	166.24	166.68	167.12	167.57	168.01
380	168.45	165.90	169.34	169.75	170.23	170.67	171.11	171.56	172.00	172.44
390	172.89	173.33	173.77	174.22	174.66	175.10	175.55	175.99	176.13	176.88
400	177.32	177.76	178.20	178.65	179.09	179.53	179.95	180.42	180.86	181.31
410	181.75	182.19	182.64	153.08	183.52	183.97	184.41	184.55	18.5 .30	185.74
420	186.18	186.63	187.07	187.51	187.96	188.10	188.84	189.29	189.73	190.17
430	190.62	191.06	191.50	191.95	192.89	192.83	193.28	193.72	194.16	194.61
+40	195.05	195.49	195.94	196.38	196.82	197.27	197.71	198.15	198.60	199.04
450	199.48	199.93	200.37	200.81	201.26	201.70	202.14	202.59	203.03	203.17
460	203.92	204.36	204.50	205.25	205.69	206.13	206.58	207.02	207.46	207.91
470	208.35	208.79	209.24	209.68	210.12	210.57	211.01	211.45	211.90	212.34
450	212.78	213.23	213.67	214.11	214.56	215.00	215.44	21.5 .58	216.33	216.77
490	217.22	217.66	218.10	218.54	218.99	219.43	219.87	220.32	220.76	221.20
500	221.65	222.09	222.53	222.98	223.42	223.56	224.31	224.75	225.19	22.5 .64
510	226.08	226.52	226.97	227.41	227.55	228.30	228.74	229.18	229.63	2:3.07
520	230.51	230.96	231.40	231.84	232.29	232.73	233.17	233.62	234.06	234.50
530	234.95	235.39	235.83	236.28	236.72	237.16	237.61	238.05	238.49	235.94
540	239.38	239.52	240.27	240.71	241.15	241.60	242.04	242.48	212.93	243.37
5.50	243.81	244.26	244.70	2.15 .14	245.59	246.03	246.47	246.92	247.36	247.80
560	248.25	248.69	249.13	249.57	250.01	250.46	250.91	251.35	251.79	252.21
570	252.68	2.53 .12	253.57	254.01	254.45	254.90	255.34	255.78	256.23	256.67
580	2.57 .11	257.55	258.00	258.44	258.58	259.32	259.77	260.21	260.66	261.10
590	261.54	261.99	262.43	262.87	263.32	263.76	264.20	264.65	265.09	265.53

Tenths of Millimetres.

0.	1.	2.	3.	4.	お.	6.	\%.	8.	\%.
0.000	0.044	0.089	0.133	0.177	0.222	0.266	0.310	0.355	0.399

Hundredths of Millimetres.

0.000	0.004	0.009	0.013	0.018	0.022	0.027	0.031	0.035

1 Nillimetre $=0.443290$ French Line．

Millime－ tres．	Teaths of Millimetres．									
	0.	1.	2.	3.	1.	5.	6.	7.	8.	9.
	Par lines．	Partines．	Par．lines．	Par．hines．	P＇ar．lines．	Parlines．	Parlines．	Par．lines．	Par．li	Pir．lines．
600	26.5 .95	266.02	266.07	266.11	2666.15	266.20	2665.24	266.29	266	266.38
601	266.42	266.47	266.51	2666.55	266.60	266.64	266.69	2666.73	266．75	2665.5
602	2666.86	266.91	266.95	267.00	267.04	$\underline{267.09}$	267．1：	207.17	267.22	267.26
603	267.31	2677.3 .5	267.10	267.41	267.45	267.93	267.67	267.62	267.66	267.71
60.4	267．7．5	267.50	267.84	267.58	267.93	267.97	268.02	265.06	265.11	26\％．15
60.5	268.19	268.24	268.28	26マ．33）	268.37	265．42	26 P .16	268.50	269．5．）	268.59
606	268.64	268.68	265.73	265.77	268.41	268.56	268.90	265.9 .5	268.99	269.04
607	269.08	269.13	269.17	269.21	269.26	269.39	269.85	$26: 9.39$	269.44	269.15
608	269.52	269.57	269.61	269.66	269.70	269.75	269.79	269.83	269．ns	269.92
609	269.97	270.01	270.06	270.10	270.14	270.19	270.23	270.23	270.32	270.37
610	270.41	270.5	270.50	270.54	270.59	270.63	270.68	27073	270.77	270.81
611	270.55	270.90	270.94	270.99	271.03	271.08	271.12	271.16	271.21	271.25
612	271.30	271.31	271.39	271.13	271.17	271.52	271.56	271.61	271.65	271.70
613	271.74	271.75	271.83	271.57	271.92	271.96	272．01	272.0 .5	272.10	272.14
614	27.15	272.23	272.27	272.32	272.36	272.41	272.45	272.19	272.54	272.58
61.5	272.63	272.67	272.72	272.76	272.50	272.85	272.89	2ここ．91	272.95	273.03
616	273.07	273.11	273.16	273.20	273.25	273.29	273.34	273.38	273.12	273.17
617	273.51	273.56	273.60	273.65	273.69	273.74	273.78	27：3．54	273.57	273.91
618	273.96	274.00	274.05	271.09	27.1 .13	274.19	274.22	271.27	274.31	271.36
619	274.10	271.11	274．49	274.53	271.58	274.62	274.67	271.71	274.75	274.60
620	274.51	274.59	271.93	274.98	27.5 .02	275.07	275.11	27.5 .15	275．20	275.24
621	275.29	275.33	275.38	27．3．42	27.5 .46	27.5 .51	275.55	27．5．60	275.64	275.69
622	275.73	275.77	27.5 .82	275.86	275.91	275．9．5	276.00	276.01	276.0 s	276.13
623	276.17	276.22	276.26	276.31	276.35	276.35	276.44	276.15	276.53	276.57
621	276.62	276.66	276.71	276.75	276.79	276.84	276.88	27693	276.97	277.02
62.5	277.06	277.10	277.15	277.19	277.24	277.28	277.33	277.37	277.41	277.16
626	277.50	277.55	277.59	277.64	277.55	275．72	277.77	27\％．－1	277.46	277.90
627	277.95	277.99	278.04	278.08	27ヶ．12	275．17	27－21	2こく．26	27ヶ．30	278.35
628	278.39	278.43	278.48	278.52	278.57	275．61	27－．66	27ヶ．70	278.74	278.79
629	278.53	278.58	278.92	278.97	279.01	279.05	279.10	279.14	279.19	279.23
630	279.28	279.32	279.37	279.41	279.45	279.50	279.54	279.59	279.63	279.68
631	279.72	279.76	279.81	279.85	279.90	279．94	279.99	2～0．0．3	$2 \bigcirc 0.0 \div$	2～0．12
	2×0.16	$2 \checkmark 0.21$	280．2．5	250.30	250．31	250．39	250.43	2×0.17	280.52	200．56
633	280.61	250.65	280.70	2－0．74	250．73	200.83	280.57	2－0．92	280.96	281.01
63 t	281.05	281.09	281.14	281.18	281.23	281.27	281.32	281.36	281.40	281.45
63.5	281.49	281.54	281.58	281.63	281.67	281.71	281.76	281．80	281.85	281．89
636	281.94	281.98	282.02	282.07	282.11	282.16	282.20	282.2 .5	28.2 .29	25234
$6: 7$	2×2.38	28.12	252.47	252．51	282.56	282.60	282.60	2×2.69	282．73	2 S 2.78
633	28.82	28.3 .87	282.91	282.96	$\underline{283.00}$	283.04	2×3.09	283.13	$2 \mathrm{2S3.18}$	283.22
639	283.27	253.31	283.35	283.40	283.44	283.49	283．53	283.58	253.62	283．67
	O．	1	2.	3.	4.	5	6.	7.	8.	9.

1 Millimetre $=0.443296$ French Line.

Millimetres.	Tenths of Millimetres.									
	0.	1.	2.	3.	1.	5.	6.	7.	8.	9.
	Par.lines.	Par.lines.	Par.lines.	Par.lines.	Par lines.	Par.lines.	P:ar.lines.	Par.lines.	Par.lines.	Par.lines.
640	$2 \mathrm{S3} .71$	283.7.	283.80	283.54	283.59	283.93	283.98	284.02	284.06	284.11
611	284.15	254.20	284.24	284.29	284.33	284.37	284.42	254.46	254.51	254.5 .5
642	284.60	284.61	254.68	284.73	284.77	284.82	254.86	284.91	284.95	254.99
643	255.04	285.08	285.13	23.5 .17	20.5 .22	285.26	285.31	28.5.35	28.5 .39	25.5 .44
644	285.45	285.53	285.57	285.62	28.5 .66	285.70	285.75	285.79	25.5 .84	285.58
64.7	25.5 .93	285.97	286.01	286.06	256.10	286.15	286.19	256.24	286.28	286.32
616	256.37	2 s 6.11	286.46	236.50	256.55	256.59	286.6t	286.68	286.72	$2 \checkmark 6.77$
647	256.51	$2 \leq 6.86$	256.90	286.95	$2 \bigcirc 6.99$	257.03	257.05	257.12	257.17	257.2:
645	257.26	257.30	257.34	257.39	257.43	257.48	287.52	287.57	257.61	257.65
649	257.70	287.74	237.79	287.83	257.88	287.92	287.96	288.01	288.05	288.10
650	285.11	285.19	288.23	288.28	238.32	288.36	288.41	288.45	288.50	288.54
6.51	288.59	258.63	288.67	288.72	288.76	288.81	288.95	288.90	288.94	285.98
652	2-9.03	289.07	289.12	289.16	289.21	289.25	259.29	259.34	2~9.38	289.43
653	289.17	289.52	289.56	289.61	289.65	289.69	289.74	289.78	289.83	289.57
654	289.92	289.96	290.00	290.05	290.09	290.14	290.18	290.23	290.27	290.31
655	290.36	290.40	290.45	290.49	290.54	290.58	290.62	290.67	290.71	290.76
656	290.80	290.85	290.89	290.94	290.98	291.02	291.07	291.11	291.16	291.20
6.77	291.25	291.29	291.33	291.38	291.42	291.47	291.51	291.56	291.60	291.64
658	291.69	291.73	291.78	291.82	291.57	291.91	291.95	29.200	292.04	292.09
659	292.13	292.18	292.22	292.26	292.31	292.35	292.40	292.44	292.49	29.53
660	292.58	292.62	292.66	292.71	29.75	29.50	29.84	292.89	292.93	292.97
661	293.02	293.06	293.11	293.15	293.20	293.24	293.25	293.33	293.37	293.42
662	293.46	293.51	293.55	293.59	293.64	293.68	293.73	293.77	293.32	293.86
663	293.91	293.95	293.99	291.04	294.05	294.13	294.17	294.22	294.26	294.30
664	294.35	294.39	294.44	294.48	294.53	294.57	294.61	294.66	294.70	294.75
66.5	294.79	294.84	294.88	294.92	294.97	295.01	295.06	295.10	295.15	295.19
666	295.24	29.5 .23	29.5.32	29.3 .37	295.41	295.46	295.50	29.5.5.	29.5.59	295.63
667	295.68	295.72	29.5 .77	29.5 .81	295.86	29.5 .90	29.5.94	29.5.99	296.03	296.08
663	296.12	296.17	296.21	296.2.5	296.30	296.34	296.39	296.43	296.48	296.52
669	296.56	296.61	29665	296.70	296.74	296.79	296.53	296.88	296.92	296.96
670	297.01	297.05	297.10	297.14	297.19	297.23	297.27	297.32	297.36	297.41
671	297.45	297.50	297.54	297.58	297.63	297.67	297.72	297.76	297.81	297.85
672	297.89	297.94	297.98	298.03	298.07	298.12	298.16	298.21	298.25	298.29
673	298.34	298.38	295.43	298.47	298.52	293.56	295.60	295.65	298.69	298.74
674	298.78	298.83	298.87	298.91	298.96	299.00	299.05	299.09	299.14	299.18
67.5	299.22	299.27	299.31	299.36	299.40	299.45	299.49	299.54	299.58	299.62
676	299.67	299.71	299.76	299.50	299.85	299.89	299.93	299.98	300.02	300.07
677	300.11	300.16	300.20	300.24	300.29	300.33	300.35	300.42	300.47	300.51
678	300.55	300.60	300.64	300.69	300.73	300.78	300.82	300.86	300.91	300.95
679	301.00	301.04	301.09	301.13	301.18	301.22	301.26	301.31	301.35	301.40
	6.	1.	2.	3.	4.	5.	6.	7.	8.	9.

1 Millimetre $=0.443296$ Freach 1 ine.

Millimetres.	Tenths of Millimetres.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Par lines.	Par.lines.	Par.lines.	Par.lines.	Par.lines.	Par.lines	Par.lines.	Par.lines.	Par.lines.	Par.lines.
680	301.44	301.49	301.53	301.57	301.62	301.66	301.71	301.75	301.80	301.84
6 S	301.58	301.93	301.97	302.02	302.06	302.11	302.15	302.19	302.24	302.28
692	302.33	302.37	302.42	302.46	302.51	302.55	302.59	302.64	302.68	302.73
693	302.77	302.92	302.86	302.90	302.95	302.99	303.04	303.05	303.13	303.17
634	303.21	303.26	$30: 3.30$	303.35	303.39	303.44	303.15	303.52	303.57	303.61
685	303.66	303.70	303.75	303.79	30.3.83	30.8 .88	303.92	303.97	304.01	304.06
656	304.10	304.15	304.19	30.1 .23	304.25	304.32	304.37	304.41	304.46	304.50
687	304.54	301.59	304.63	304.65	304.72	304.77	304.81	304.85	304.90	304.91
689	304.99	30.5.0:3	305.08	30.5 .12	305.16	30.5 .21	305.25	30.5 .30	30.9 .34	30.5 .39
659	305.43	305.45	30.5 .52	305.56	305.61	305.65	305.70	305.71	305.79	305.83
690	30.5 .87	30.5.92	30.5 .96	306.01	306.05	306.10	306.14	306.18	306.23	306.27
691	306.32	306.36	306.41	306.45	306.19	306.51	306.58	306.63	306.67	306.72
692	306.76	306.81	306.85	306.59	306.94	306.95	307.03	307.07	307.12	307.16
693	307.20	:307.2.5	307.29	307.34	307.38	307.43	307.47	307.51	307.56	307.60
$69+$	307.65	307.69	307.74	307.78	307.82	307.87	307.91	307.96	308.00	308.05
69.5	308.09	309.13	308.18	305.22	308.27	305.31	308.36	308.40	308.45	308.49
696	30.8 .53	$30 \mathrm{S.5}$	308.62	308.67	308.71	308.76	308.80	308.84	308.59	308.93
697	305.95	309.02	309.07	309.11	309.15	309.20	309.24	309.29	309.33	309.38
698	309.12	309.46	309.51	309.5 .5	309.60	309.64	809.69	309.73	309.78	309.52
699	309.86	309.91	309.95	310.00	310.04	310.09	310.13	310.17	310.22	310.26
700	310.31	310.35	310.40	310.44	310.48	310.53	310.57	310.62	310.66	310.71
701	310.75	310.79	310.84	310.83	310.93	310.97	311.02	311.06	311.11	311.15
702	311.19	311.24	311.23	311.3:3	311.37	311.42	311.46	311.50	311.55	311.59
70.3	311.64	:311.68	311.73	311.77	311.81	311.86	311.90	811.95	311.99	312.04
704	312.08	312.12	312.17	312.21	312.26	312.30	312.35	312.39	312.43	312.45
70.5	312.52	312.57	312.61	312.66	312.70	312.75	312.79	312.83	312.85	312.92
706	312.97	313.01	313.06	313.10	313.14	313.19	313.23	313.25	313.32	313.37
707	313.41	313.45	313.50	313.54	313.59	313.63	313.65	318.72	313.76	313.81
708	313.85	313.90	313.94	313.99	314.03	314.05	314.12	314.16	314.21	314.25
709	311.30	314.34	314.39	314.43	314.47	314.52	314.56	314.61	314.65	314.70
710	314.71	314.88	314.83	311.87	314.92	314.96	315.01	315.0.)	315.09	315.14
711	315.18	31.5 .23	315.27	315.32	315.36	315.41	315.45	315.49	315.54	315.58
712	315.63	315.67	315.72	315.76	315.80	315.8 .5	315.89	315.94	315.98	316.03
713	316.07	316.11	316.16	316.20	316.2 .5	316.29	316.34	316.38	316.12	316.47
714	316.51	316.56	316.60	316.65	316.69	316.73	316.78	316.82	316.87	316.91
715	316.96	317.00	317.05	317.09	317.13	317.18	317.22	317.27	317.31	317.36
716	317.10	317.4	317.49	317.53	317.58	317.62	317.67	317.71	317.75	317.80
717	317.84	317.59	317.93	317.98	318.02	318.06	318.11	318.15	318.20	318.24
718	318.29	315.33	318.38	318.42	318.46	318.51	318.5 .5	318.60	318.64	318.69
719	318.73	318.77	318.82	318.86	318.91	318.95	319.00	319.04	319.03	319.13
	0.	1.	$\stackrel{2}{2}$.	3.	4.	5.	6.	7.	8.	9.

C

1 Millimetre $=0.443296$ French Line

Millimetres.	Tenths of Millimetres.									
	O.	1.	2.	3.	4.	5.	6.	7	8.	9.
	Par.lines.									
720	319.17	319.22	319.26	319.31	319.35	319.39	319.44	319.48	319.53	319.57
721	319.62	319.66	319.70	319.75	319.79	319.84	319.88	319.93	319.97	320.02
722	320.06	320.10	320.15	320.19	320.24	320.28	320.33	320.37	320.41	320.46
723	320.50	320.55	320.59	320.64	320.68	320.72	320.77	320.81	320.86	320.90
724	320.95	320.99	321.03	321.08	321.12	321.17	321.21	321.26	321.30	321.35
725	321.39	321.43	321.48	321.52	321.57	321.61	321.66	321.70	321.74	321.79
726	321.83	321.88	321.92	321.97	322.01	322.05	322.10	322.14	322.19	322.23
727	322.28	322.32	322.36	322.41	322.45	:322.50	322.54	322.59	32.2 .63	322.65
728	322.72	322.76	322.81	32.2 .85	322.90	322.94	322.99	323.03	323.07	323.12
729	323.16	323.21	323.25	323.30	323.34	323.38	323.43	323.47	323.52	323.56
730	323.61	323.65	323.69	323.74	323.78	323.83	323.87	323.92	323.96	324.00
731	324.05	324.09	324.14	324.18	324.23	324.27	324.32	324.36	324.40	324.45
732	324.49	324.54	324.58	324.63	324.67	324.71	324.76	324.80	324.8 .3	324.89
733	324.94	324.98	325.02	325.07	325.11	325.16	325.20	325.25	325.29	325.33
734	325.38	325.42	325.47	325.51	325.56	32.7.60	325.65	325.69	325.73	325.78
735	325.82	325.57	325.91	335.96	326.00	326.04	326.09	326.13	326.18	326.22
736	326.27	326.31	326.35	326.40	326.44	326.49	326.53	326.58	326.62	326.66
737	326.71	326.75	326.80	326.84	326.59	326.93	326.98	327.02	327.06	327.11
738	327.15	327.20	327.24	327.29	327.33	327.37	327.42	327.16	327.51	327.55
739	327.60	327.64	327.68	327.73	327.77	327.82	327.86	327.91	327.95	327.99
740	325.04	328.05	328.13	328.17	328.22	328.26	328.30	328.35	328.39	320.11
741	328.48	328.53	328.57	328.62	328.66	328.70	328.75	328.79	328.84	328. 88
742	328.93	328.97	329.01	329.06	329.10	329.15	329.19	329.24	329.28	329.32
743	329.37	329.41	329.46	329.50	329.55	329.59	329.63	329.68	329.72	329.77
744	329.81	329.86	329.90	329.95	329.99	330.03	330.08	330.12	330.17	330.21
745	330.26	330.30	330.34	330.39	330.43	330.45	330.52	330.57	330.61	330.65
746	330.70	330.74	330.79	330.83	330.88	330.92	330.96	331.01	331.05	331.10
747	331.14	331.19	331.23	331.28	331.32	331.36	331.41	331.45	331.50	331.54
748	331.59	331.63	331.67	381.72	331.76	331.81	331.85	381.90	331.94	331.98
749	332.03	332.07	332.12	332.16	332.21	332.25	33.2 .29	332.34	332.38	332.43
750	332.47	332.52	332.56	332.60	332.65	332.69	332.74	332.78	332.83	332.87
751	332.92	332.96	333.00	333.05	333.09	333.14	333.18	333.23	333.27	333.31
752	333.36	333.40	333.45	333.49	333.54	333.58	333.62	333.67	333.71	333.76
75.3	333.80	333.85	333.89	333.93	333.98	334.02	334.07	334.11	334.16	334.20
754	334.25	334.29	334.33	334.38	334.42	334.47	334.51	334.56	334.60	334.64
755	334.69	334.73	334.78	334.82	$3: 4.87$	334.91	334.95	335.00	335.04	335.09
756	335.13	335.18	335.22	335.26	$3: 35.31$	335.35	335.40	335.44	335.49	335.53
757	335.58	335.62	335.66	335.71	335.75	335.80	335.84	335.89	335.93	335.97
758	336.02	336.06	336.11	336.15	336.20	336.24	336.28	336.33	386.37	336.42
759	336.46	336.51	336.55	336.59	3:6.64	336.68	336.73	336.77	336.82	336.56
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

1 Millimetre $=0.443296$ French Line

Millimetres.	Tenths of Millimetres.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Par.lines.									
760	336.90	336.9 .5	336.99	337.04	337.05	337.13	337.17	337.22	337.26	337.30
761	337.35	337.39	337.44	337.48	337.53	337.57	337.61	337.66	337.70	337.75
762	337.79	337.54	337.58	337.92	337.97	338.01	338.06	338.10	338.15	335.19
763	335.23	338.25	335.32	338.37	338.41	338.46	335.50	338.55	$3: 3.59$	338.63
764	333.65	338.72	338.77	338.51	$33 \mathrm{S}$.	335.90	338.94	335.99	339.03	339.08
76.5	339.12	339.17	339.21	339.25	339.30	339.34	339.39	339.43	339.48	339.52
766	339.56	339.61	339.65	339.70	339.74	339.79	339.83	339.87	339.92	339.96
767	340.01	340.0 .5	340.10	340.14	340.19	340.23	340.27	340.32	340.36	340.41
768	340.45	340.50	340.54	340.55	340.63	340.67	340.72	340.76	340.81	340.55
769	340.89	340.94	340.98	341.03	341.07	341.12	341.16	$3+1.20$	341.25	341.29
770	341.34	341.38	341.43	341.47	341.52	341.56	341.60	$3 \mathrm{H1.6.5}$	341.69	341.74
771	341.78	341.53	341.87	341.91	341.96	342.00	34.2 .05	342.09	312.14	342.18
772	312.22	342.27	342.3 I	342.36	312.40	342.45	342.49	342.53	312.58	342.62
773	342.67	342.71	342.76	342.80	342.85	342.89	342.93	342.98	343.02	343.07
774	343.11	343.16	343.20	343.24	343.29	343.33	343.3 S	343.42	343.47	343.51
775	343.55	343.60	343.64	348.69	343.73	343.78	343.82	343.86	343.91	343.95
776	314.00	344.04	344.09	344.13	344.17	344.22	344.26	344.31	344.35	344.10
777	344.4	344.49	344.53	344.57	344.62	$3+4.66$	344.71	344.75	344.80	344.84
778	344.85	344.93	3.14 .97	345.02	34.3. 06	345.11	345.15	345.19	345.24	34.7 .28
779	345.33	345.37	345.42	345.46	345.50	345.55	345.59	345.64	345.68	345.73
780	34.5 .77	345.82	345.86	345.90	345.95	34.5 .99	346.04	346.08	346.13	346.17
781	346.21	346.26	346.30	346.35	346.39	346.44	346.45	346.52	346.57	346.61
752	346.66	346.70	346.75	346.79	346.83	346.88	346.92	346.97	347.01	347.06
783	347.10	347.15	347.19	347.23	347.25	347.32	347.37	347.41	347.46	347.50
784	347.54	347.59	347.63	347.68	347.72	347.77	347.81	347.85	347.90	347.94
785	347.99	348.03	348.08	348.12	348.16	348.21	348.25	348.30	348.34	348.39
786	348.43	348.47	348.52	345.56	348.61	348.6.5	348.70	348.74	348.79	348.83
787	348.57	348.92	348.96	349.01	349.05	349.10	349.14	349.18	349.23	349.27
788	349.32	349.36	349.41	349.45	349.49	349.54	349.38	349.63	349.67	349.72
789	349.76	349.80	349.85	349.89	349.94	349.9 S	350.03	350.07	350.12	350.16
790	350.20	350.25	350.29	350.34	350.38	350.43	350.47	350.51	350.56	350.60
791	350.65	350.69	350.74	350.78	350.52	350.87	350.91	350.96	351.00	351.05
792	3.51 .09	351.13	351.18	3.51 .22	3.51 .27	351.31	351.36	351.40	351.44	351.49
793	351.53	351.58	351.62	351.67	351.71	351.76	3.51 .80	351.84	351.89	351.93
794	351.95	352.02	352.07	352.11	352.15	352.20	352.24	352.29	352.33	352.38
79.5	3.52 .42	352.46	352.51	352.55	3.52 .60	352.64	352.69	352.73	352.77	352.82
796	352.86	352.91	352.95	353.00	353.04	353.09	353.13	353.17	353.22	353.26
797	353.31	353.35	353.40	353.44	35.3.48	353.53	353.57	353.62	353.66	353.71
795	353.75	358.79	353.84	353.88	353.93	353.97	354.02	354.06	354.10	354.15
799	354.19	354.24	354.28	354.33	354.37	354.42	354.46	354.50	354.55	354.59
800	354.64	354.68	354.73	354.77	354.81	354.86	354.90	354.93	354.99	355.04
-	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

V. - VI.

COMPARISON
${ }^{07}$

TIIE OLD FRENCII BAROMETER

WITH

TIIE ENGLISII AND TIIE METRICAL BAROMETERS,
or

TABLES

For converting frencil or paris line into enclisil inclies and decimals, and into millimetres:

GIVEN TIE VALUES CORRESPONDING TO EVERY PARIS LINE FROM 120 to 216 LINES, OR FROM 10 TO 18 INCHES ; AND TO EVEIV TENTII $O F$ A LINE FROM 216 TO 348 liNes, OR From 18 TO 29 FRENCH inches.

TABLE V .

MM. J. J. Polil and J. Schabus have published, in the number for March, 1852, of the Proceetings of the Imperial Acarlemy of V'ienna, Class of Nathematics and Netural Philosophy, a set of short Thermometrical and Barometrical Reduction Tatbes, among which is found a table for the reduction of the Old French Barometrical Scale into the English. As this table shows slight discrepancies from the one given in the following pages, it may not be out of place to state that they arise from an aecidental error in the equation used by MM. Pohl and Schabus in computing their table. Adtopting, as they do, Bird's value of the metre, viz.

1 metre $=39.37062$ English inches,
the value of the Paris line is
1 Paris line $=0.055813$ English inches.
But the table seems to have been computed by using the equation
1 Paris line $=0.058823$ English inches,
which gives, at the end of the table, 345 lines $\times .058523=30.9104$ English inches,
instead of
thus causing an error

$$
\begin{aligned}
348 " \times .058513 & =30.9069 \quad " \\
& =0.0035
\end{aligned}
$$

which, of course, gradually diminishes in lower numbers.

1 Paris Line $=0.088814$ English Inch

French or Paris Lines. Tens.	Units.									
	(1.	1.	*	3.	4.	5.	6.	7.	8.	9.
$\begin{gathered} 10 \text { Inch. } \\ 120 \end{gathered}$	Eug. In. 10.6 .58	$\begin{aligned} & \text { Eny In. } \\ & 10.746 \end{aligned}$	$\begin{aligned} & \text { Eng. In. } \\ & 10.835 \end{aligned}$	$\begin{aligned} & \text { Eng. In } \\ & 10.9 .24 \end{aligned}$	Eug In 11.013	Eng. In. 11.102	$\begin{aligned} & \text { Eng. In } \\ & 11.191 \end{aligned}$	$\begin{aligned} & \text { Eng. In. } \\ & 11.279 \end{aligned}$	Eng In. 11.365	Eug In. 11.457
130	11.546	11.635	11.733	11.812	11.901	11.990	12.079	12.168	12.256	12.345
140	12.431	12.523	12.612	12.700	12.759	12.878	12.967	13.0 .56	13.144	13.23:3
150	13.32.2	13.411	13.500	13.559	13.67\%	13.766	13.8.55	13.944	14.033	14.121
160	14.210	14.299	14.385	14.177	14.565	14.654	14.743	14.532	14.921	1.5 .010
170	15.095	15.187	15.276	15.36 .5	15.451	15.542	15.631	15.720	15.509	15.898
150	15957	16.075	16.164	16.253	16.342	$16.4 \% 1$	16.519	16.605	16.697	16.7こ6
190	16.87.	16.963	17.0 .52	17.111	17.230	17.319	17.408	17.496	17.58 .5	17.1,51
200	17.763	17.5.92	17.940	18.029	19.118	18.207	18.296	15.384	18.473	1-.562
210	18.6.3]	18.710	18.529	18.917	19.006	19.09.)	19.184	19.273	19.361	19.4.0
Pariz Lines.	Tenths.									
	6.	1.	2.	33.	4.	3.	6.	8.	8.	3.
$\begin{gathered} 18 \text { Inch. } \\ 216 \end{gathered}$	$\begin{aligned} & \text { Eng. In. } \\ & 19.194 \end{aligned}$	Eng. ln. 19.193	$\begin{aligned} & \text { Eng } \ln \text {. } \\ & 19.20 .2 \end{aligned}$	$\begin{gathered} \text { Eng In } \\ 19.210 \end{gathered}$	$\begin{gathered} \text { Eng. In } \\ 19.219 \end{gathered}$	$\begin{aligned} & \text { Eng. In } \\ & 19.2 .25 \end{aligned}$	Eng. In. 19.287	Eng. In. $19.2+6$	Eng. In. 19.955	$\begin{aligned} & \text { Eng. In } \\ & 19.261 \end{aligned}$
217	19.273	$19.2-2$	19.290	19.299	19.309	19.317	19.326	1938.5	19.344	9.353
218	19.361	19.370	19.379	19.385	19.397	19.406	19.415	19.129	19.-133	19.141
219	19.4.50	19.459	19.468	19.17%	19.456	19.49.7	19.504	19.512	19.521	19.580
2.20	19.539	19.548	19.557	19.566	19.57.	19.553	19.592	19.601	19.610	19.619
$2 \cdot 1$	19.623	19.637	19.646	19.655	19.663	19.672	19.681	19.690	19.699	19.708
22.2	19.717	19.726	19.734	19.743	19.7.72	19.761	19.750	19.7\%9	19.788	19.797
$2 \cdot 28$	19.806	19.811	19.52:3	19.532	19.840	19.850	19.559	19.865	19.87\%	19.85 .5
$2 \cdot 4$	19.994	19.903	19.912	19.921	19.930	19.939	19.948	19.957	19.965	19.974
2.).5	$19.9 \leq 3$	19.992	20.001	20.010	20.019	20.02 s	20.036	20.045	20.051	20.063
226	20.072	20.081	20.090	20.099	20.107	20.116	20.125	20.134	20.143	20.152
227	20.16 I	20.170	20.179	20.187	20.196	20.205	20.214	20.223	20.232	$20.2+1$
19 Inch.				1						
228	20.250	20.2 .75	20.267	20.276	20.25 .5	20.294	20.303	20.312	20.321	20.330
$2 \cdot 9$	20.33 S	20.317	20.3 .36	20.365	20.374	20.353	20.392	20.401	20.109	20.415
230	20.427	20.436	20.445	20.454	20.463	20.472	20.151	20.489	20.198	$\because 0.507$
231	20.516	20.525	20.584	20.513	20.552	20.560	20.569	20.578	20.567	20.596
23.2	20.605	20.614	20.623	20.631	20.640	20.649	20.658	20.667	20.676	20.655
238	20.694	20.703	20.711	20.720	20.729	20.738	20.747	20.756	20.765	20.754
234	20.782	20.791	20.800	20.809	20.615	20.827	20.836	20.545	20.854	20.862
23.5	20.871	20.580	20.889	20.898	20.907	20.916	20.925	20.933	20.942	20.951
236	20.960	20.969	20.978	20.957	20.996	21.005	21.013	21.022	21.031	21.040
237	21.049	21.058	21.067	21.076	21.081	21.093	21.102	21.111	21.120	21.129
235	21.13 -	21.147	21.155	21.164	21.173	21.182	21.191	21.200	21.209	21.218
239	21.227	21.235	21.244	21.253	21.262	21.271	21.280	21.289	21.292	21.806

Ifundredths of a Line.

0.	1.	2.	3.	4.	す.	6.	\%.	8.	(\%.
.000	.001	.002	.003	.004	.004	.005	.006	.007	.008

1 Paris Line $=0.088814$ English Inch.

French or ParisLines.	Tenths of a Line.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
20 Inches.	Eng. In.	Eug. In.	Eng. In.	Eng. In.	Eng. In.	Evg. In.	g. In.	In.	ng. In.	In.
240	21.315	21.324	21.333	21.342	21.351	21.360	21.369	21.375	21.386	21.395
241	21.104	21.413	21.422	21.431	21.440	21.449	21.457	21.466	21.475	21.484
212	21.493	21.502	21.511	21.520	21.529	21.537	21.546	21.555	21.564	21.573
243	21.582	21.591	21.600	21.608	21.617	21.626	21.635	21.644	21.653	21.662
244	21.671	21.679	21.688	21.697	21.706	21.715	21.724	21.733	21.742	21.751
245	21.759	21.765	21.777	21.756	21.795	21.504	21.813	21.522	21.830	21.839
246	21.819	21.957	21.866	21.875	21.884	21.593	21.902	21.910	21.919	21.928
217	21.937	21.946	21.95 .5	21.964	21.973	21.981	21.990	21.999	22.005	22.017
248	22.026	22.0335	22.044	22.053	22.061	22.070	22.079	22.088	22.097	22.106
219	22.11.5	22.124	22.132	22.141	22.150	22.159	22.168	22.177	22186	22.195
2.50	22.203	22.212	22.221	22.230	22.239	22.248	22.257	29.266	22.275	22.283
2.11	22.292	22.301	22.310	22.319	22.328	22.337	22.346	22.354	22.363	22.372
$21 \mathrm{In} .=$										
2.5	22.381	22.390	22.399	22.405	22.417	22.426	22.434	22.443	22.452	22.461
253	22.170	22.479	22.188	22.497	22.50.5	22.514	22.523	22.532	22.511	22.550
2.54	22.559	22.563	22.577	22.585	22.594	22.603	22.612	22.621	22.630	22.639
2.5	22.643	22.656	22.665	22.671	22.683	22.692	22.701	22.710	22.719	23.728
2.56	22.736	22.74.5	22.754	22.763	22.772	22.781	22.790	22.799	22.507	22.816
2.5	22.525	22.834	22.543	2.852	22.861	22.870	22.878	22.857	22.896	22.905
255	22.914	22.923	22.932	22.941	22.950	22.953	22.967	22.976	22.985	22.994
2.59	23.003	23.012	23.021	23.029	23.035	23.047	23.056	23.065	23.074	23.083
260	23.092	23.101	23.109	23.118	23.127	23.136	23.145	23.154	23.163	23.172
261	23.180	23.189	23.193	23.207	23.216	23.225	23.234	23.243	23.252	23.260
262	23.269	23.278	23.257	23.296	23.305	23.314	23.323	23.331	23.340	23.349
263	23.358	23.367	23.376	23.355	23.394	23.102	23.411	23.420	23.129	23.438
$32 \mathrm{ln} .=$										
264	23.447	23.456	23.465	23.474	23.182	23.191	23.500	23.509	23.518	23.527
26.3	23.536	23.54.	23.553	23.562	23.571	23.580	23.589	23.598	23.607	23.616
266	23.625	23.6333	23.642	23.651	23.660	23.669	23.675	23.687	23.696	23.704
267	23.713	23.722	23.731	23.740	23.749	23.759	23.767	23.776	23.784	23.793
269	23.802	23.511	23.820	23.929	23.835	23.547	23.855	23.864	23.873	23.882
269	23.891	23.900	23.909	23.918	23.926	23.935	23.944	23.953	23.962	23.971
270	23.980	23.989	23.995	24.006	24.015	24.024	24.033	24.042	24.051	24.060
271	21.069	24.077	24.056	24.095	24.10 .1	24.113	24.122	24.131	24.140	24.149
272	21.157	24.166	24.17.	24.184	21.193	24.202	24.211	24.220	24.228	24.237
273	21.246	24.25.	21.264	24.273	24.252	24.291	24.300	24.308	24.317	24.326
274	21.335	24.344	24.353	21.362	24.371	24.379	24.388	24.397	24.406	24.415
275	24.421	24.433	24.442	24.450	24.459	24.468	24.477	24.486	24.49.5	24.504

Hundredths of a Line.

1 Paris Line $=0.08581 \pm$ English Inch.

French or ParisLines.	Tenths of a Line.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
23 Inches.	Eng. In.	Eng. In.	Eng. In.	Eng. Tr.	Eng. In.					
276	24.513	24.522	24.530	24.539	24.548	24.557	24.566	24.575	24.584	24.593
277	24.601	24.610	24.619	24.628	24.637	24.646	24.655	24.664	24.673	24.681
278	24.690	24.699	24.703	24.717	24.726	24.735	24.744	24.752	24.761	24.770
279	24.779	24.788	24.797	24.806	24.815	24.824	24.532	24.841	24.850	24.559
280	24.868	24.577	24.586	24.895	24.903	24.912	24.921	24.930	24.939	24.945
231	24.957	24.966	24.974	24.983	24.992	25.001	25.010	25.019	25.028	25.037
282	25.046	25.054	25.063	25.072	25.681	25.090	25.099	25.108	25.117	25.125
283	25.131	25.143	25.152	25.161	25.170	25.179	25.188	25.197	25.205	25.214
284	25.223	25.232	25.241	25.250	25.259	25.265	25.276	25.285	25.294	25.303
285	25.312	25.321	25.330	25.339	25.348	25.356	25.365	25.374	25.383	25.392
286	25.401	25.410	25.419	25.427	25.436	25.445	25.454	25.463	25.472	25.481
287	25.490	25.498	25.507	25.516	25.525	25.534	25.513	25.552	25.561	25.570
24.10										
288	25.578	25.587	25.596	25.605	25.614	25.623	25.632	25.641	25.649	25.658
289	25.667	25.676	25.655	25.694	25.703	25.712	25.721	25.729	25.738	25.747
290	25.756	25.765	25.784	25.783	25.792	25.800	25.809	25.518	25.827	25.536
291	25.845	25.554	25.863	25.872	25.880	25.589	25.898	25.907	25.916	25.925
292	25.934	25.943	25.951	25.960	25.969	25.978	25.987	25.996	26.005	26.014
293	26.023	26.031	26.040	26.049	26.058	26.067	26.076	26.085	26.094	26.102
294	26.111	26.120	26.129	26.138	26.147	26.156	26.165	26.173	26.182	26.191
295	26.200	26.209	26.218	26.227	26.236	26.245	26.253	26.262	26.271	26.280
296	26.289	26.298	26.307	26.316	26.324	26.333	26.342	26.351	26.360	26.369
297	26.378	26.387	26.396	26.404	26.413	26.122	26.431	26.440	26.449	26.458
298	26.467	26.475	26.484	26.493	26.50 3	26.511	26.520	26.529	26.538	26.547
299	26.555	26.564	26.573	26.582	26.591	26.600	26.609	26.618	26.626	26.635
$25 \mathrm{In} .=$										
300	26.644	26.653	26.662	26.671	26.680	26.689	26.697	26.706	26.715	26.724
301	26.733	26.742	26.751	26.760	26.769	26.777	26.786	26.795	26.804	26.813
302	26.822	26.831	26.840	26.848	26.857	26.566	26.575	26.854	26.593	26.902
303	26.911	26.920	26.928	26.937	26.946	26.955	26.964	26.973	26.982	26.991
304	26.999	27.008	27.017	27.026	27.085	27.044	27.053	27.062	27.071	27.079
305	27.083	27.097	27.106	27.115	27.124	27.133	27.142	27.150	27.159	27.168
306	27.177	27.186	27.195	27.204	27.213	27.221	27.230	27.239	27.248	27.257
307	27.266	27.275	27.284	27.293	27.301	27.310	27.319	27.328	27.337	27.346
308	27.355	27.364	27.372	27.381	27.390	27.399	27.408	27.417	27.426	27.435
309	27.44\%	27.452	27.461	27.470	27.479	27.488	27.497	27.506	27.515	27.523
310	27.532	27.541	27.550	27.559	27.568	27.577	27.586	27.595	27.603	27.612
311	27.621	27.630	27.639	27.648	27.657	27.666	27.674	27.683	27.692	27.701

Hundredths of a Line.

$\mathbf{0 .}$	$\mathbf{1 .}$	$\mathbf{2 .}$	$\mathbf{3 .}$	$\mathbf{4 .}$	$\mathbf{\text { 5. }}$	6.	\%.	8.	9.
.0000	.0009	.0018	.0027	.0036	.0044	.0053	.0062	.0071	.0080

1 Paris Line $=0.088814$ English Inch.

French or ParisLines.	Tenths of a Line.									
	0.	1.	2.	3.	4.	5.	6.	7 \%	8.	9.
26 Inches.	Eng. In.	n.								
312	27.710	27.719	27.728	27.737	27.745	27.754	27.763	27.772	27.781	27.790
313	27.799	27.808	27.817	27.825	27.834	27.843	27.852	27.861	27.870	27.879
314	27.883	27.896	27.905	27.914	27.923	27.932	27.941	27.950	27.959	27.968
315	27.976	27.985	27.994	28.003	28.012	28.021	28.030	28.039	28.047	28.056
316	28.065	28.074	28.083	28.092	28.101	28.110	28.119	28.127	28.136	28.145
317	28.154	28.163	28.172	28.181	28.190	28.198	28.207	28.216	28.225	28.234
318	28.243	28.252	23.261	28.269	28.278	28.287	28.296	28.305	28.314	28.323
319	29.332	28.341	28.349	25.358	28.367	28.376	28.385	28.394	28.403	28.412
320	28.420	28.429	28.438	28.447	28.456	28.465	28.474	28.483	28.492	28.500
321	28.509	28.518	28.527	28.536	28.545	25.554	28.563	28.571	28.580	28.589
322	28.593	28.607	28.616	28.625	28.634	28.643	28.651	28.660	28.669	28.678
323	28.687	28.696	28.705	28.714	28.722	28.731	25.740	28.749	28.758	28.767
$27 \mathrm{In} .=$										
324	28.776	28.785	23.793	28.802	28.811	28.820	28.829	28.838	28.847	28.856
325	28.865	28.873	28.582	28.891	23.900	28.909	28.918	28.927	28.936	28.944
326	28.953	28.962	28.971	28.980	28.989	28.998	29.007	29.016	29.024	29.03:3
327	29.042	29.051	29.060	29.069	29.078	29.087	29.095	29.104	29.113	29.122
328	29.131	29.140	29.149	29.158	29.167	29.175	29.184	29.193	29.202	29.211
329	29.220	29.229	29.238	29.246	29.255	29.264	29.273	29.282	29.291	29.300
330	29.309	29.318	29.326	29.335	29.344	29.353	29.362	29.371	29.380	29.389
331	29.397	29.406	29.415	29.424	29.433	29.442	29.451	29.460	29.468	29.477
332	29.486	29.495	29.504	29.513	29.522	29.531	29.540	29.548	29.557	29.566
333	29.575	29.584	29.593	29.602	29.611	29.619	29.628	29.637	29.646	29.655
334	29.664	29.673	29.682	29.691	29.699	29.708	29.717	29.726	29.735	29.744
335	29.753	29.762	29.770	29.779	29.788	29.797	29.806	29.815	29.824	29.833
$28 \mathrm{In} .=$										
336	29.842	29.850	29.859	29.568	29.577	29.886	29.895	29.904	29.913	29.921
337	29.930	29.939	29.948	29.957	29.966	29.975	29.984	29.992	30.001	30.010
338	30.019	30.029	30.037	30.046	30.055	30.064	30.072	30.081	30.090	30.099
339	30.108	30.117	30.126	30.135	30.143	30.152	30.161	30.170	30.179	30.188
340	30.197	30.206	30.215	30.223	30.232	30.241	30.250	30.259	30.268	30.277
341	30.286	30.294	30.303	30.312	30.321	30.330	30.339	30.348	30.357	30.366
342	30.374	30.383	30.392	30.401	30.410	30.419	30.428	30.437	30.445	30.454
343	30.463	30.472	30.481	30.490	30.499	30.508	30.516	30.525	30.534	30.543
344	30.552	30.561	30.570	30.579	30.588	30.596	30.605	30.614	30.623	30.632
345	30.641	30.650	30.659	30.667	30.676	30.685	30.694	30.703	30.712	30.721
346	30.730	30.739	30.747	30.756	30.765	30.774	30.783	30.792	30.801	39.810
347	30.818	30.827	30.836	30.845	30.854	30.863	30.872	30.881	30.590	30.898
$\begin{gathered} 29 \mathrm{In} .= \\ 348 \end{gathered}$	30.907	30.916	30.925	30.934	30.943	30.952	30.961	30.969	30.978	30.987

Mundredths of a Line.

1 Paris Line $=2.255829$ Milimetres

French or ParisLines. Tens.	Units.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{gathered} 10 \text { Inch. } \\ 120 \end{gathered}$	Millim. 270.70	$\begin{aligned} & \text { Millim. } \\ & 272.96 \end{aligned}$	Millim. 27.5.21	Millim. 277.47	$\begin{gathered} \text { Millim. } \\ 279.72 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 281.98 \end{aligned}$	Millim. 284.2 .3	Millim. 256.49	Millim. $250.7 .5$	Millim. 291.00
130	293.26	295.51	297.77	300.03	302.28	304.54	306.79	309.05	311.30	313.56
140	315.82	318.07	320.33	32.58	324.54	327.10	329.35	331.61	333.56	336.12
150	335.37	340.63	312.59	345.14	347.40	349.65	3.51 .91	354.17	3.56 .42	358.68
160	360.93	363.19	365.44	367.70	369.96	372.21	374.47	376.72	:75.95	381.24
170	383.49	385.75	338.00	390.26	392.51	394.77	397.03	399.28	401.54	403.79
180	406.0.5	408.30	410.56	412.52	415.07	417.33	419.58	421.84	424.10	426.35
190	425.61	430.86	433.12	435.37	4:7.63	439.59	442.14	+4.40	+16.65	+48.91
200	451.17	453.42	45.5 .65	457.93	460.19	462.44	464.70	466.96	469.21	471.47
210	+73.72	475.95	478.24	480.49	482.75	485.00	487.26	489.51	491.77	494.03
					Tenths	a Line.				
Paris Lines.	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
18 Inch.	Nillim. $+87.26$		Millim.		Millim.	Millim.	Millim. 488.61	Millim. 188.84	Millim. 159.06	Millim. 189.99
								491.09	491.32	
217		459.74	489.97	490.19	490.42	490.64	490.87	491.09	491.32	491.5.)
218	491.77	492.00	492.22	492.45	492.67	492.90	493.12	493.35	493.58	493.80
219	494.03	494.25	494.48	494.70	494.93	495.15	495.38	495.61	495.83	496.06
220	496.28	496.51	496.73	496.96	497.18	497.41	497.64	497.86	498.09	498.31
221	498.54	498.76	498.99	499.21	499.44	499.67	499.89	500.12	500.34	500.57
222	500.79	501.02	501.25	501.47	501.70	501.92	502.15	502.37	502.60	502.82
223	503.05	503.28	503.50	503.73	503.9.	504.18	504.40	504.63	504.85	505.08
224	505.31	505.53	505.76	505.98	506.21	506.43	506.66	506.88	507.11	507.34
225	507.56	507.79	508.01	508.24	508.46	508.69	508.91	509.14	509.37	509.59
226	-509.82	510.04	510.27	510.49	510.72	510.95	511.17	511.40	511.62	511.65
227	512.07	512.30	512.52	512.75	512.98	513.20	513.43	513.65	513.88	514.10
19 Inch.										
228	514.33	514.55	514.78	515.01	515.23	515.46	515.68	515.91	516.13	516.36
229	516.58	516.81	517.04	517.26	517.49	517.71	517.94	518.16	518.39	518.61
230	518.84	519.07	519.29	519.52	519.74	519.97	520.19	520.42	520.65	520.87
231	521.10	521.32	521.55	521.77	522.00	522.22	522.45	522.68	522.90	523.13
232	523.35	523.58	523.80	524.03	52-4.25	524.48	524.71	524.93	525.16	525.38
233	525.61	525.83	526.06	526.28	526.51	526.74	526.96	527.19	527.41	527.64
234	527.86	528.09	$52 \mathrm{S.32}$	525.54	528.77	528.99	529.22	529.44	529.67	529.89
235	530.12	530.35	530.57	530.80	531.02	531.25	531.47	531.70	531.92	532.15
236	532.38	532.60	532.83	533.05	533.28	533.50	533.73	533.95	534.18	534.41
237	534.63	534.86	535.08	535.31	535.53	535.76	535.98	536.21	536.44	536.66
238	536.59	537.11	537.34	537.56	537.79	538.02	539.24	538.47	538.69	538.92
239	539.14	539.37	539.59	539.82	540.05	540.27	540.50	540.72	540.95	541.17

Tenths of a Line.

0.	1.	2.	3.	4.	5.	6.	\%.	8.	9.
0.00	0.23	0.45	0.68	0.90	1.13	1.35	1.5 s	1.80	2.03

1 Paris Line $=2.255829$ Millimetres.

Paris or French Lines.	Tenths of a Line.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
20 Inches.	Millim.	Millim.	Millim.	Nillim.	Millim.	Iillim.	Millim.	Millim.	Millim.	Millim.
210	541.40	541.62	541.8 .5	512.08	542.30	512.53	542.75	542.98	543.20	543.43
211	543.65	543.85	544.11	544.33	544.56	544.78	545.01	545.23	545.46	545.69
212	54.5 .91	546.14	546.36	546.59	546.81	517.04	547.26	547.19	517.72	547.9 .1
24.3	543.17	548.39	518.62	5-n.S	549.67	-19.29	549.52	549.75	549.97	550.20
244	550.42	550.65	5.50 .87	551.10	551.32	551.55	551.75	552.00	552.23	552.45
245	552.68	552.90	553.13	5.53 .35	553.58	553.81	554.03	554.26	554.48	554.71
2.16	5.54 .93	55.5 .16	55.5 .39	555.61	555.84	556.06	556.29	556.51	556.74	556.96
217	557.19	557.42	557.61	557.87	558.09	558.32	558.54	5.58 .77	558.99	559.22
248	5.59 .45	559.67	559.90	560.12	560.35	560.57	560.80	561.02	561.25	561.45
249	561.70	561.93	56\%.15	562.38	562.60	562.83	563.05	563.28	563.51	563.73
2.50	563.96	564.15	564.41	564.63	564.86	565.09	56.5 .31	56.5 .54	56.5 .76	565.99
2.31	566.21	566.44	$566.6{ }^{\circ}$	566.59	567.12	567.34	567.57	567.79	568.02	568.24
21 Inches. 2.52	568.47	568.69	568.92	569.15	569.37	569.60	569.82	570.05	570.27	570.50
25.3	570.72	570.95	571.18	571.40	571.63	571.85	572.08	572.30	572.53	572.75
254	572.98	573.21	573.43	573.66	573.88	574.11	574.83	574.56	574.79	575.01
25.5	575.24	575.46	575.69	575.91	576.14	576.36	576.59	576.82	577.04	577.27
256	577.49	577.72	577.94	578.17	578.39	578.62	575.85	579.07	579.30	579.52
257	579.75	579.97	580.20	580.42	550.65	580.85	581.10	581.33	581.55	581.78
258	582.00	582.33	592.46	582.68	582.91	583.13	583.36	583.5S	553.81	584.03
259	584.26	584.49	584.71	584.94	585.16	585.39	585.61	585.84	586.06	586.29
260	586.52	586.74	556.97	587.19	587.42	587.64	587.8	588.09	588.32	588.55
261	588.77	589.00	589.22	589.45	589.67	589.90	590.12	590.35	590.58	590.80
26.2	591.03	591.25	591.18	591.70	591.93	592.16	592.38	592.61	592.83	593.06
263	593.28	593.51	593.73	593.96	594.19	594.41	$59+.64$	594.86	595.09	595.31
$2 \boldsymbol{2}$ Inches. 264		59	595.99	596.	596.14		596	597.	597.34	597.57
		59	595.99	596.	596.44		596	.97	597	597.07
265	597.79	598.02	545.25	598.47	598.70	598.92	599.15	599.37	599.60	599.82
266	600.05	600.28	600.50	600.73	600.95	601.18	601.40	601.63	601.86	602.08
267	602.31	602.53	602.76	602.98	603.21	603.43	603.66	603.89	604.11	604.34
265	604.56	604.79	605.01	60.5 .24	605.46	605.69	605.92	606.11	606.37	606.59
269	606.82	607.04	607.27	607.49	607.72	607.95	608.17	608.10	605.62	608.55
270	609.07	609.30	609.52	609.75	609.98	610.20	610.43	610.65	610.85	611.10
271	611.38	611.56	611.78	612.01	612.23	612.46	612.68	612.91	613.13	613.36
272	613.59	613.81	614.04	614.26	614.49	614.71	614.94	615.16	615.39	615.62
273	615.84	616.07	616.29	616.52	616.74	616.97	617.19	617.42	617.65	617.87
274	615.10	619.32	618.55	618.77	619.00	619.23	619.45	619.68	619.90	620.13
275	620.35	620.55	620.50	6:21.03	621.26	621.48	621.71	621.93	622.16	622.38

Hundredths of a Line.

0.	1.	2.	3.	4.	お.	6.	7.	8.	9.
	0.000	0.023	0.045	0.068	0.090	0.113	0.135	0.158	0.180

1 Paris Line $=2.255829$ Millimetres.

Paris or French Lines.	Tenths of a Line.									
	©.	1.	2.	3.	4.	5.	6.	7.	8.	¢.
23 Inches.	Millim.	Millim.	Millim.	Millim.		lillim.	Millim.	Millim.	Millim.	Millim.
276	622.61	622.83	623.06	623.29	623.	623.74	623.96	624.19	624.41	624.64
277	624.56	625.09	625.32	625.54	625.77	625.99	626.22	626.44	626.67	626.59
278	627.12	627.35	627.57	627.80	628.02	628.25	628.47	628.70	628.93	629.15
279	629.38	629.60	629.83	630.05	630.28	630.50	630.73	630.96	6:31.18	631.41
280	631.63	631.86	632.08	632.31	632.53	632.76	632.99	633.21	633.14	633.66
231	633.89	634.11	634.34	634.56	634.79	635.02	635.24	635.47	635.69	635.92
252	636.14	636.37	636.59	636.52	637.05	637.27	637.50	637.72	637.95	638.17
283	638.40	638.63	638.85	639.05	639.30	639.53	639.75	639.98	640.20	640.43
284	640.66	640.83	641.11	641.33	641.56	641.78	642.01	642.23	643.16	642.69
285	642.91	643.14	643.36	643.59	643.81	644.04	644.26	644.49	644.72	644.94
286	645.17	64.5.39	645.62	645.84	646.07	646.30	646.52	646.75	646.97	647.20
297	617.42	647.65	647.87	648.10	648.33	648.55	648.78	649.00	649.23	649.45
2finches.										
288	649.68	649.90	650.13	650.36	650.58	650.81	651.03	651.26	651.48	651.71
289	651.93	652.16	652.39	652.61	652.84	653.06	653.29	653.51	653.74	653.96
290	6.54 .19	654.42	654.64	654.87	655.09	655.32	655.54	655.77	656.00	6.56 .22
291	656.45	656.67	656.90	657.12	657.35	657.57	657.80	658.03	658.25	658.48
292	6.58 .70	658.93	659.15	659.38	659.60	659.83	660.06	660.28	660.51	660.73
293	660.96	661.18	661.41	661.63	661.86	662.09	662.31	662.54	662.76	662.99
294	663.21	663.44	663.66	663.89	664.12	664.34	664.57	664.79	665.02	665.24
295	665.47	665.70	665.92	666.15	666.37	666.60	666.82	667.05	667.27	667.50
296	667.73	667.95	66 S .18	665.10	663.63	668.85	669.08	669.30	669.53	669.76
297	669.98	670.21	670.43	670.66	670.58	671.11	671.33	671.56	671.79	672.01
298	672.24	672.46	672.69	672.91	673.14	673.36	673.59	673.82	674.04	674.27
299	674.49	674.72	674.94	675.17	675.40	675.62	675.85	676.07	676.30	676.52
$\begin{gathered} 25 \text { Inches. } \\ 300 \end{gathered}$	676.75	676.97	677.20	677.43	677.65	677.83	678.10	673.33	678.55	678.78
301	679.00	679.23	679.46	679.68	679.91	680.13	650.36	680.58	680.81	681.03
302	651.26	651.49	681.71	651.94	682.16	682.39	682.61	652.84	683.07	683.29
303	683.52	68:3.74	683.97	684.19	684.42	684.64	684.57	68.5 .10	685.32	685.55
304	655.77	686.00	656.22	656.45	656.67	636.90	657.13	657.35	687.58	657.80
305	685.03	688.25	688.48	688.70	688.93	659.16	689.38	689.61	689.83	690.06
306	690.28	690.51	690.73	690.96	691.19	691.41	691.64	691.86	692.09	692.31
307	692.54	692.77	692.99	693.22	693.44	693.67	693.89	694.12	694.34	694.57
308	694.80	695.02	695.25	695.47	695.70	69.5 .92	696.15	696.37	696.60	696.83
309	697.05	697.28	697.50	697.73	697.95	698.18	698.40	695.63	698.86	699.08
310	699.31	699.53	699.76	699.98	700.21	700.43	700.66	700.89	701.11	701.3-1
311	701.56	701.79	702.01	702.24	702.47	702.69	702.92	703.14	703.37	703.59

Hundredths of a Line.

0.	1.	2.	3.	4.	5.	6.	\%.	8.	9.
0.000	0.023	0.045	0.068	0.090	0.113	0.135	0.158	0.180	0.203

1 Paris Line $=2.255829$ Millimetres.

Paris or French Lines.	Tenths of a Line.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
26 Incbes.	Millim.	Millim.	Millinn.	Mill	Milli	Nillim.	.	Nillim.	Millim.	Nillim.
312	703.82	704.04	704.27	704.50	704.72	704.95	705.17	705.40	705.62	705.85
313	706.07	706.30	706.53	706.75	706.98	707.20	707.43	707.65	707.88	708.10
314	705.33	705.56	708.75	7199.01	709.23	709.46	709.68	709.91	710.13	710.36
315	710.59	710.81	711.04	711.26	711.49	711.71	711.94	712.17	712.39	712.62
316	712.54	713.07	713.29	713.52	713.74	713.97	714.20	714.42	714.65	714.57
317	715.10	715.32	715.53	715.77	716.00	716.23	716.45	716.68	716.90	717.13
318	717.35	717.58	717.50	718.03	718.26	718.48	718.71	718.93	719.16	719.35
319	719.61	719.84	720.06	720.29	720.51	720.74	720.96	721.19	721.41	721.64
320	721.57	723.09	722.32	72.2 .54	722.77	722.99	723.22	723.44	723.67	723.90
321	724.12	724.35	724.57	724.80	725.02	725.25	725.47	725.70	725.93	726.15
322	726.35	726.60	726.53	727.05	727.25	727.50	727.73	727.96	728.18	728.41
323	728.63	728.86	729.08	729.31	729.54	729.76	729.99	730.21	730.44	730.66
27 Inches.										
325		731.11	731	731.5	731.79	732.02	73	732.47	732.69	2
							\% 3	734.72	\%34.	735.17
	735.40	735.63	735.85	736.08	736.30	736.53	736.75	736.98	737.20	737.43
327	737.66	737.88	739.11	735.33	738.56	735.78	739.01	739.24	739.46	739.69
323	739.91	740.14	740.36	740.59	740.81	741.04	741.27	741.49	741.72	741.94
329	742.17	742.39	742.62	742.84	743.07	743.30	743.52	743.75	743.97	744.20
330	744.42	744.65	$7+4.87$	745.10	745.33	745.55	745.78	746.00	746.23	746.45
331	746.65	746.90	747.13	747.36	747.58	717.81	745.03	748.26	748.48	748.71
332	75.94	749.16	749.39	719.61	749.54	750.06	750.29	750.51	750.74	750.97
333	7.51 .19	751.42	751.64	751.87	752.09	752.32	752.54	752.77	753.00	753.22
334	733.45	753.67	753.90	754.12	754.3.5	754.57	754.80	755.03	755.25	755.48
33.5	755.70	755.93	756.15	756.38	756.61	756.83	757.06	757.28	757.51	757.73
2x Inches.										
336	757.96	759.18	758.41	7.58 .64	758.86	759.09	759.31	759.54	759.76	759.99
337	760.21	760.44	760.67	760.89	761.12	761.34	761.57	761.79	762.02	762.24
338	762.47	762.70	762.92	763.15	763.37	763.60	763.5.	764.05	764.27	764.50
339	764.73	764.95	765.18	76.5 .40	765.63	765.55	766.08	766.31	766.53	766.76
340	766.93	767.21	767.43	767.66	767.58	765.11	768.34	765.56	768.79	769.01
341	769.24	769.46	769.69	769.91	770.14	770.37	770.59	770.82	771.04	771.27
342	771.49	771.72	771.94	772.17	772.40	772.62	772.55	773.07	773.30	773.52
343	783.75	773.97	734.20	754.43	784.65	774.58	775.10	77.5 .33	775.55	775.75
344	T76.0]	776.23	776.46	776.68	786.91	777.13	777.36	777.58	777.81	778.04
345	テ-26	778.49	78.71	738.94	779.16	779.39	779.61	779.84	780.07	780.29
346	750.52	780.74	780.97	781.19	781.42	781.64	751.87	782.10	782.32	782.55
317	782.75	753.00	783.22	753.45	783.67	783.90	754.13	784.35	784.58	784.50
$\begin{gathered} 29 \text { Inches. } \\ 318 \end{gathered}$	78..03	7-5.25	78.5 .45	785.71	785.93	756.16	7S6.3	786.61	786.63	787.06

Mundreatths of a Line.

0.	1.	2.	3.	4.	す.	6.	\%.	8.	(.)
0.000	0.023	0.045	0.068	0.090	0.113	0.135	0.158	0.180	0.203

VII. - VIII.
comparison
$O F$

THE RUSSIAN BAROMETER

WITH

THE METRICAL AND THE OLD FRENCI BAROMETERS,
or

T A B L E S

FOR CONVERTING RUSSIAN HALF-LINES INTO MILLIMETRES, AND INTO FRENCII OR PARIS LINES;

GIVING THE VALUES CORRESPONDING TO EVERY HALf-Line froni 440 TO 540 , OR FROM 22 TO 27 INCHES; AND TO EVERY TENTH, FROM 540 TO 610 HALF-LINES, OR FROM 27 TO 30.5 ENGLISII INCHES.

RUSSIANBAROMETER.

A fegular system of Meteorological Observations has been established by order of the Russian government throughout the extensive regions placed urater its sway, and a vast amount of observations made in Europe, in Asia, and in North America have already been published. The scale of the barometer employed in this system is divided in units, each of which is equal to one half of a Russian, or English decimal line, that is, $1=0.05$ of an inch, 600 half-lines of the Russian Barometer being $=30$ inches of the English Barometer.

The conversion of this scale, which is the English scale, slightly modified in its form, is easy. It suffices to divide the Russian heights by two, and to put back, by une figure, the decimal point, in order to have them converted into English inches and decimals. This transformation is so easy to effect, that a peculiar table for it would seem superfluous.

The normal temperature of the standard being the same as that of the English, that is, $13^{\circ} \frac{1}{3}$ Reaumur, or 62° Fahrenheit, the reduction of the Russian Barometer to the freezing point can be made by means of the table for reducing the English Barometers. But the attached thermometer being that of Reaumur, its indications must be first converted into degrees of Fahrenheit.

Tables VII. and VIII., which follow, have been computed in order to render more easy the comparison and the use of the Barometrical Observations recorded in the large collection, published annually by order of the Emperor of Russia, under the name of Annuaire Météorologique et Magnétique du Corps des Ingénicurs des Mines.

1 Russian Half-Line $=1.269977$ Millimetres.

Russian Half-Lines.	Units or Russian Half-Lines.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	Э.
ax lneh.	Millim.	Millim. 560.06	Millim. 56133	Millin: $56 \cdot 60$	Millim. 563.87	Millim.	Millin.	Millim.	Dillim. 569.95	Millim. 570.92
	538.79	560.06	561.33	562.60	563.57	565.14	566.41	567.65	568.95	570.22
450	571.49	572.76	574.03	575.30	576.57	577.84	579.11	5S0.38	581.65	582.92
460	584.19	58.5 .46	586.73	588.00	589.27	590.54	591.81	593.05	594.35	595.62
470	596.89	598.16	599.43	600.70	601.97	603.24	604.51	605.78	607.05	60 S .32
480	609.59	610.86	612.13	613.40	614.67	615.94	617.21	618.48	619.75	621.02
24.5 In .										
490	622.29	623.56	624.83	626.10	627.37	628.64	629.91	631.18	632.45	633.72
500	634.99	636.26	637.53	635.80	640.07	641.34	642.61	6.13 .88	645.15	646.42
510	647.69	648.96	650.23	651.50	652.77	654.04	655.31	656.58	657.85	659.12
520	660.39	661.66	662.93	664.20	665.47	666.74	668.01	669.28	670.55	671.82
530	673.09	674.36	67.).63	676.90	678.17	679.44	650.71	681.98	683.25	684.52
Russian Half-Lines	Tenths.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	D.
27 Inch.	Millim. 655.79	Millim. 655.91	Nillim. 686.04	Milim. 686.17	Dillim. 656.30	Millim. 656.42	Millim. 656.55	Millim. 686.68	Millim. 686.80	Millim. 686.93
	687.06	687.18	657.31	687.44	687.57	687.69	687.82	687.95	688.07	688.20
542	688.33	658.45	688.58	688.71	688.84	688.96	689.09	689.22	689.34	689.47
543	689.60	689.72	689.85	659.98	690.11	690.23	690.36	690.49	690.61	690.74
544	690.87	690.99	691.12	691.25	691.38	691.50	691.63	691.76	691.88	692.01
545	692.14	692.26	692.39	692.52	692.65	692.77	692.90	693.03	693.15	693.28
546	693.41	693.53	693.66	693.79	693.91	694.04	694.17	694.30	694.42	694.55
547	694.68	694.80	694.93	695.06	695.19	695.31	695.44	695.57	695.69	695.82
548	695.95	696.07	696.20	696.33	696.46	696.58	696.71	696.84	696.96	697.09
549	697.22	697.34	697.47	697.60	697.73	697.85	697.98	698.11	698.23	698.36
2\%.5 ln .										
550	698.49	698.61	698.74	698.87	699.00	699.12	699.25	699.38	699.50	699.63
551	699.76	699.88	700.01	700.14	700.27	700.39	700.52	700.65	700.77	700.90
552	701.03	701.15	701.28	701.41	701.54	701.66	701.79	701.92	702.04	702.17
553	702.30	702.42	702.55	702.68	702.81	702.93	703.06	703.19	70:3.31	703.44
554	703.57	703.69	703.82	703.95	704.08	704.20	704.33	704.46	704.58	704.71
555	704.84	704.96	705.09	705.22	705.35	705.47	705.60	705.73	705.85	705.98
556	706.11	706.23	706.36	706.49	706.62	706.74	706.57	707.00	707.12	707.25
557	707.38	707.50	707.63	707.76	707.89	708.01	708.14	708.27	708.39	708.52
558	705.6 .5	708.77	708.90	709.03	709.16	709.28	709.41	709.54	709.66	709.79
559	709.92	710.14	710.27	710.40	710.53	710.65	710.78	710.81	710.93	711.06
28 Inch.										
560	711.19	711.81	711.44	711.57	711.70	711.82	711.95	712.08	712.20	712.33
561	712.46	712.55	712.71	712.84	712.97	713.09	713.22	713.35	713.47	713.60
562	713.73	713.85	718.98	714.11	714.24	714.36	714.49	714.62	714.74	714.87
563	715.00	715.12	715.25	715.35	715.51	715.63	715.76	715.89	716.01	716.14
564	716.27	716.39	716.52	716.65	716.78	716.90	717.03	717.16	717.28	717.41
565	717.54	717.66	717.79	717.92	718.04	718.17	718.30	718.43	718.55	718.68
566	718.81	718.93	719.06	719.19	719.31	719.44	719.57	719.70	719.82	719.95
567	720.08	720.20	720.33	720.46	720.58	720.71	720.84	720.97	721.09	721.22
568	721.35	721.47	721.60	721.73	721.85	721.98	722.11	722.24	722.36	722.49
569	7.22.62	722.74	722.87	723.00	723.12	723.25	723.38	723.51	723.63	723.76

1 Russian Half-Line $=1.269977$ Millimetre.

1 Rnssian Half-Tine $=0.562966$ Paris Line.

Russian Half-Linea.	Uuits or Russian Malf-Lines.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
2.2 Inch.	Par. line.	Par. line	Par. line	Par line.	Par line	Par line.	Par line	Par line	Par line.	Par. line.
440	247.71	245.27	245.54	249.40	249.96	250.52	251.09	251.65	2.52 .21	252.78
4.50	253.31	253.90	2.54 .47	2.55 .03	255.59	256.15	25672	257.25	257.84	258.41
460	2.58 .97	259.53	260.09	260.66	261.22	263.78	262.3.)	$26 \div 3.91$	263.47	264.04
470	264.60	265.16	265.72	266.29	266.85	267.11	267.93	268.54	269.10	269.67
480	230.23	270.79	271.35	271.92	272.18	273.04	273.61	274.17	274.73	275.80
24.5 In.										
490	275.86	276.42	276.98	277.55	278.11	275.67	279.24	279.80	280.36	250.93
500	281.49	282.05	28.61	283.15	283.74	284.30	284.87	255.43	28.5 .99	286.55
510	287.12	257.65	288.24	288.81	259.37	289.93	290.50	291.06	291.62	292.18
520	29.2 .75	293.31	293.87	294.44	295.00	295.56	296.13	296.69	297.25	297.81
530	295.35	295.94	299.50	300.07	300.63	301.19	301.76	302.32	302.58	303.44
Russian Halt-Lines	Tenths.									
	0	1.	2.	3.	4.	5.	6.	7.	8.	9.
27 Iuch.	Par. line.	Par line.	Par line.	Par line.	Par. line	Par line.	Par. line.	Par. line	Par. line	Par. line.
540	304.01	304.06	304.12	304.15	304.23	304.29	304.34	30.1 .40	304.16	304.51
541	304.57	304.63	304.68	304.74	304.80	304.85	304.91	304.96	305.02	305.08
542	305.13	305.19	305.25	305.30	305.36	305.41	305.47	30.5 .53	305.58	305.64
543	305.70	30.5 .75	305.81	305.86	305.92	305.98	306.03	306.09	306.15	306.20
544	306.26	306.32	306.37	306.43	306.18	306.54	306.60	306.65	306.71	306.77
515	306.52	306.89	306.93	306.99	307.05	307.10	307.16	307.22	307.27	307.33
546	307.33	307.44	307.50	307.55	307.61	307.67	307.72	307.78	307.84	307.89
547	307.95	$30<.00$	305.06	308.12	308.17	305.23	308.29	305.34	308.40	308.45
548	308.51	308.57	308.62	308.65	308.74	308.79	308.85	308.90	308.96	309.02
549	309.07	309.13	309.19	309.24	309.30	309.36	309.41	309.47	309.52	309.58
27.5 In.										
550	309.64	309.69	309.75	309.81	309.86	309.92	309.97	310.03	310.09	310.14
551	310.20	310.26	310.31	310.37	310.42	310.48	310.54	310.59	310.65	310.71
552	310.76	310.82	310.88	310.93	310.99	311.04	311.10	311.16	311.21	311.27
553	311.33	311.38	311.44	311.49	311.55	311.61	311.66	311.72	311.78	311.83
554	311.89	311.95	312.00	312.06	312.11	312.17	312.23	312.28	312.34	312.40
555	312.15	312.51	312.56	312.62	312.68	312.73	312.79	312.85	312.90	312.96
556	313.01	313.07	313.13	313.15	313.24	313.30	313.35	313.41	313.47	313.52
557	313.56	313.63	313.69	313.75	313.80	313.86	313.92	313.97	314.03	314.08
558	314.14	314.20	314.25	314.31	314.37	314.42	314.15	314.53	314.59	314.65
559	314.70	314.76	314.82	314.87	314.93	314.99	315.04	315.10	315.15	315.21
28 Inch.										
560	315.27	315.32	315.38	315.44	315.49	315.55	315.60	315.66	315.72	315.77
561	315.83	315.89	315.94	316.00	316.05	316.11	316.17	316.22	316.28	316.34
562	316.39	316.45	316.51	316.56	316.62	316.67	316.73	316.79	316.84	316.90
563	316.96	317.01	317.07	317.12	317.18	317.24	317.29	317.35	317.41	317.46
564	317.52	317.57	317.63	317.69	317.74	317.80	317.86	317.91	317.97	318.03
565	318.08	318.14	318.19	318.25	318.31	318.36	318.42	318.48	315.53	318.59
566	318.64	318.70	318.76	318.81	318.57	318.93	318.98	319.04	319.09	319.15
567	319.21	319.26	319.32	319.39	319.43	319.49	319.55	319.60	319.66	319.71
568	319.77	319.S3	319.88	319.94	320.00	320.05	320.11	320.16	320.22	320.28
569	320.33	320.39	320.45	320.50	320.56	320.61	320.67	320.73	320.78	320.84

1 Russian Half-Line $=0.5629 .6$ Paris Line.

Russian Half-Lines.	Tenths.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
28.5 Inch.	Par. line.	Par. linc.	Par. line.							
570	320.90	320.95	321.01	321.07	321.12	321.18	321.23	321.29	321.35	321.40
571	321.46	321.52	321.57	321.63	321.68	321.74	321.80	321.85	321.91	321.97
572	322.02	322.08	32.2 .13	32.219	322.25	322.30	322.36	322.42	322.47	322.53
573	322.59	32.2 .64	32.2 .70	322.75	322.81	322.87	322.92	322.98	323.04	323.09
574	323.15	323.20	323.26	323.32	323.37	323.43	323.49	323.54	323.60	323.65
575	323.71	323.77	323.82	323.85	323.94	323.99	324.05	324.11	324.16	324.22
576	324.27	324.33	324.39	324.41	324.50	324.56	324.61	324.67	321.72	324.78
577	324.84	324.89	324.95	325.01	325.06	325.12	325.17	325.23	325.29	325.34
578	325.40	32.5 .46	325.51	32.5 .57	325.63	325.68	325.74	325.79	325.85	325.91
579	325.96	326.02	326.05	326.13	326.19	326.24	326.30	326.36	326.41	326.47
29 Inch.										
590	326.53	326.58	326.64	326.69	326.75	326.81	326.86	326.92	326.95	327.13
581	327.09	327.15	327.20	327.26	327.31	327.37	327.43	327.48	327.54	327.60
582	327.65	327.71	327.76	327.82	327.88	827.93	327.99	325.05	328.10	328.16
583	328.22	328.27	325.33	328.35	328.44	325.50	328.55	328.61	328.67	325.72
584	$32 \mathrm{S.78}$	328.83	328.89	328.95	329.00	329.06	329.12	329.17	329.23	329.25
58.5	329.34	329.40	329.45	329.51	329.57	329.62	329.68	329.74	329.79	329.85
586	329.90	329.96	330.02	330.07	330.13	330.19	330.24	330.30	330.35	330.41
587	330.47	330.52	330.58	330.64	330.69	330.75	330.80	330.86	330.92	330.97
588	331.03	331.09	331.14	331.20	331.26	331.31	331.37	331.42	331.48	331.54
589	331.59	331.65	331.71	331.76	331.82	331.57	331.93	331.99	332.04	332.10
29.5 Ic .										
590	332.16	332.21	332.27	332.32	332.38	332.44	332.49	332.55	332.61	332.66
591	332.72	332.78	332.53	332.59	332.94	333.00	333.06	333.11	333.17	333.23
592	333.28	333.34	333.39	333.45	333.51	333.56	333.62	333.68	333.73	333.79
593	3.33 .84	333.90	333.96	334.01	334.07	334.13	334.18	334.24	334.30	334.35
594	334.41	334.46	334.52	334.58	334.63	334.69	334.75	334.80	334.86	334.91
595	334.97	335.03	335.08	335.14	335.20	335.25	335.31	33.5 .36	335.42	335.48
596	335.53	335.59	335.67	335.70	335.76	335.82	335.87	335.93	335.98	336.04
6.97	336.10	336.15	336.21	336.27	336.32	336.38	336.43	336.49	336.55	336.60
598	336.66	336.72	336.77	336.83	336.88	336.94	337.00	337.05	337.11	$3: 37.17$
599	337.22	337.2 S	337.34	337.39	337.45	337.50	337.56	337.62	337.67	337.73
30 Inch.										
600	337.79	337.84	337.90	337.95	338.01	338.07	338.12	335.18	388.24	338.29
601	335.35	335.40	338.46	338.52	338.57	338.63	335.69	338.74	338.80	338.86
602	388.91	338.97	339.02	339.08	339.14	339.19	339.25	339.31	339.36	339.42
603	339.47	339.53	339.59	339.64	339.70	339.76	339.81	339.57	339.92	389.98
604	340.04	340.09	340.15	340.21	340.26	340.32	340.38	340.43	810.49	340.54
60.5	340.60	340.66	340.71	340.77	340.83	340.58	340.94	340.99	341.05	341.11
606	341.16	341.22	341.28	341.33	341.39	341.44	341.50	341.56	311.61	311.6%
607	341.73	341.78	341.84	341.90	341.95	342.01	342.06	342.12	342.18	342.23
608	342.29	342.35	342.40	342.46	342.51	342.57	342.63	342.65	312.74	342.80
609	342.85	342.91	342.96	343.02	343.08	343.13	343.19	343.25	313.30	343.36
Hundredths.										
0.000	0.006	0.011	0.017	0.022	20.02		034	. 039	0.045	0.051

IX. - XVI.

$$
\text { C } 0 \text { MPARIS } 0 \mathrm{~N}
$$

OF

BAROMETRICAL DIFFERENCES

Expressed In measubes of Different scales,
or

TABLES

FOR CONVERTING ENGLISF/ INCIIES, MILLIMETRES, PARIS LINES, AND RUSSIAN HALF-LINES INTO EACH OTHER.

1 English Inch $=25.3995+$ Milhimetres.

$\begin{array}{\|c\|} \text { English } \\ \text { Inches and } \\ \text { Tenthis. } \end{array}$	Lundredths of an Inch.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Millim.	Millim.	Millim.	Millim.	Millim.	Nillim.	Millim.	Millim.	Millim.	Millim.
0.0	0.000	0.254	0.508	0762	1.016	1.270	1.524	1.778	2.032	2.286
0.1	2.540	2.794	3.048	3.302	3.556	3.810	4.064	4.318	4.572	4.826
0.2	5.050	5.334	5.588	5.842	6.096	6.350	6.604	6.558	7.112	7.366
0.3	7.620	7.874	8.128	8.382	8.636	8.890	9.144	9.398	9.652	9.906
0.4	10.160	10.414	10.668	10.922	11.176	11.430	11.684	11.938	12.192	12.446
0.5	12.700	12.954	13.208	13.462	13.716	13.970	14.224	14.478	14.732	14.986
0.6	15.240	15.49 .4	15.748	16.002	16.256	16.510	16.764	17.018	17.272	17.526
0.7	17.780	18.034	18.288	18.542	18.796	19.050	19.304	19.558	19.812	20.066
0.8	20.320	20.574	20.828	21.082	21.336	21.590	21.844	22.098	22.352	22.606
0.9	22.860	23.114	23.368	23.622	23.876	24.130	24.384	24.638	24.592	25.146
1.0	25.400	25.654	25.908	26.162	26.416	26.670	26.924	27.178	27.432	27.685
1.1	27.939	28.193	28.447	28.701	28.955	29.209	29.463	29.717	29.971	30.225
1.2	30.479	30.733	30.987	31.241	31.495	31.749	32.003	32.257	32.511	32.765
1.3	33.019	33.273	33.527	33.781	34.035	34.289	34.543	34.797	35.051	35.305
1.4	35.559	35.813	36.067	36.321	36.575	36.829	37.083	37.337	37.591	37.845
1.5	38.099	38.353	38.607	38.861	39.115	39.369	39.623	39.877	40.131	40.355
1.6	40.639	40.893	41.147	41.401	41.655	41.909	42.163	42.417	42.671	42.925
1.7	43.179	43.433	43.657	43.941	44.195	44.449	44.703	44.957	45.211	45.465
1.8	45.719	45.973	46.227	46.481	46.735	46.989	47.243	47.497	47.751	48.005

X. CONVERSION OF ENGLISH INCHES INTO FRENCH OR PARIS LINES.

1 English Inch $=11.259515$ Paris Lines.

$\begin{gathered} \text { English } \\ \text { Inches and } \\ \text { Tenths. } \end{gathered}$	Hundreaths of an Inch.									
	0.	1.	2.	3.	1.	5.	6.	7.	8.	9.
	Par. line.									
0.0	0.000	0.113	0.225	0.338	0.450	0.563	0.676	0.758	0.901	1.013
0.1	1.126	1.239	1.351	1.464	1.576	1.689	1.802	1.914	2.027	2.139
0.2	2.252	2.364	2.477	2.590	2.702	2.815	2.927	3.040	3.153	3.265
0.3	3.378	3.490	3.603	3.716	3.528	3.941	4.053	4.166	4.279	4.391
0.4	4.50 .4	4.616	4.729	4.842	4.954	5.067	5.179	5.292	5.405	5.517
0.5	5.630	5.742	5.855	5.968	6.080	6.193	6.305	6.418	6.531	6.643
0.6	6.756	6.868	6.981	7.093	7.206	7.319	7.431	7.544	7.656	7.769
0.7	7.882	7.994	8.107	8.219	8.332	8.445	8.557	8.670	8.782	8.895
0.8	9.003	9.120	9.233	9.345	9.458	9.571	9.683	9.796	9.908	10.021
0.9	10.134	10.246	10.359	10.471	10.584	10.697	10.809	10.922	11.034	11.147
1.0	11.260	11.372	11.485	11.597	11.710	11.822	11.935	12.048	12.160	12.273
1.1	12.385	12.498	12.611	12.723	12.836	12.945	13.061	13.174	13.286	13.399
1.2	13.511	13.624	13.737	13.849	13.962	14.074	14.187	14.300	14.412	14.525
1.3	14.637	14.750	14.563	14.975	15.088	15.200	15.313	15.426	15.538	15.651
1.4	15.763	15.876	15.988	16.101	16.214	16.326	16.439	16.551	16.664	16.777
1.5	16.889	17.002	17.114	17.227	17.340	17.452	17.565	17.677	17.790	17.903
1.6	18.015	18.128	18.240	18.353	18.466	18.578	18.691	18.803	18.916	19.029
1.7	19.141	19.254	19.366	19.479	19.592	19.704	19.817	19.929	20.042	20.155
1.8	20.267	20.380	20.492	20.605	20.717	20.530	20.943	21.055	21.168	21.280

1 Metre $=39.37079$ English Inches

Millimetres.	Tenths of a Millimetre.									
	0.	1.	2.	3.	1.	5.	6.	7.	8.	9.
	Eng. In.	Eng. In.	Eng. In.	Eng. In.	Eng In.	Eng. In.				
0	0.0000	0.0039	0.0079	0.0118	0.0157	0.0197	0.0236	$0.02 \div 6$	0.0:315	0.0354
1	0.0391	0.0433	0.0472	0.0512	0.0 .5 .51	0.0591	0.0630	0.0669	0.0709	0.0748
2	0.0787	0.0527	0.0866	0.0906	0.0945	0.0984	0.1024	0.1063	0.1102	0.1142
3	0.1181	0.1220	0.1260	0.1299	0.1339	0.1375	0.1417	0.1457	0.1496	0.1535
4	0.1575	0.1614	0.1654	0.1693	0.1732	0.1772	0.1511	0.1850	0.1590	0.1929
5	0.1969	0.2005	0.2047	0.2087	0.2126	0.2165	0.2205	0.2244	0.2283	0.2323
6	0.2362	0.2402	0.2441	0.2450	0.2520	0.25 .59	0.2595	0.2638	0.2677	0.2717
7	0.2756	0.2795	0.2835	0.2874	0.2913	0.2953	0.2992	0.3032	0.3071	0.3110
8	0.3150	0.3189	0.3228	0.3268	0.3307	0.3347	0.3386	0.3425	0.3465	0.3504
9	0.3543	0.3553	0.3622	0.3661	0.3701	0.3740	0.3780	0.3819	0.3858	0.3898
10	0.3937	0.3976	0.4016	0.4055	0.4095	0.4134	0.4173	0.1213	0.4252	0.4291
11	0.4331	0.4370	0.4410	0.4449	0.4488	0.4528	0.4567	0.4606	0.4646	0.1685
12	0.4724	0.4764	0.1803	0.4813	0.4882	0.4921	0.4961	0.5000	0.5039	0.5079
13	0.5118	0.5158	0.5197	0.5236	0.5276	0.5315	0.5354	0.5394	0.5433	0.5473
14	0.5512	0.5551	0.5591	0.5630	0.5669	0.5709	0.5748	0.5788	0.5527	0.5866
15	0.5906	0.594 .7	0.5954	0.6024	0.6063	0.6102	0.6142	0.6181	0.6221	0.6260
16	0.6299	0.6339	0.6378	0.6417	0.6457	0.6496	0.6536	0.6575	0.6614	0.6654
17	0.6693	0.6732	$0.67 \% 2$	0.6511	0.68 .51	0.6890	0.6929	0.6969	0.7008	0.7047
18	0.7087	0.7126	0.716 .5	0.7205	0.7244	0.7284	0.7823	0.7362	0.7402	0.7441
19	0.7480	0.7520	0.7559	0.7599	0.7638	0.7677	0.7717	0.7756	0.7795	0.7835
20	0.7874	0.7914	0.79 .3 .3	0.7992	0.8032	0.8071	0.8110	0.8150	0.8189	0.8228
21	0.8265	0.6307	0.5347	0.8386	0.8425	0.846 .3	0.8504	0.5543	0.8583	0.5622
22	0.8662	0.5701	0.5740	0.8780	0.8519	0.58 .55	0.8598	0.8937	0.5977	0.9016
23	0.9055	0.9095	0.9134	0.9173	0.9213	0.9252	0.9292	0.9331	0.9370	0.9410
24	0.9449	0.9458	0.9528	0.9 .567	0.9606	0.9616	0.9685	0.9725	0.9764	0.9803
25	0.9843	0.9852	0.9921	0.9961	1.0000	1.0040	1.0079	1.0118	1.0155	1.0197
26	1.0236	1.0276	1.0315	1.035.5	1.0394	1.0433	1.0473	1.0512	1.0551	1.0591
27	1.0630	1.0669	1.0709	1.0748	1.07*8	1.0527	1.0866	1.0906	1.0945	1.0954
28	1.1024	1.1063	1.1103	1.1142	1.1181	1.1221	1.1260	1.1299	1.1339	1.1378
29	1.1418	1.1457	1.1496	1.1536	1.1575	1.1614	1.1654	1.1693	1.1732	1.1772
30	1.1811	1.1851	1.1890	1.1929	1.1969	1.2008	1.2047	1.2087	1.2126	1.2166
31	1.220 .5	1.2244	1.2234	1.2323	1.2362	1.2402	1.2441	1.2481	1.2520	1.2559
32	1.2599	1.2638	1.2677	1.2717	1.2756	1.2796	1.2835	1.2874	1.2914	1.29 .53
33	1.2992	1.3032	1.3071	1.3110	1.3150	1.3159	1.3229	1.3268	1.3307	1.3347
31	1.3356	1.3425	1.3465	1.3504	1.3544	1.3583	1.3622	1.3662	1.3701	1.3740
3.5	1.3780	1.3819	1.3859	1.3898	1.3937	1.3977	1.4016	1.4055	1.4095	1.4134
36	1.4173	1.4213	1.4252	1.4292	1.4331	1.4370	1.4410	1.4449	1.4488	1.1528
37	1.4567	1.4607	1.4646	1.4695	1.4725	1.4764	1.1803	1.4843	1.4882	1.4922
33	1.4961	1.5000	1.5010	1.5079	1.5118	1.5158	1.5197	1.5236	1.5276	1.5315
39	1.5355	1.5394	1.5438	1.5473	1.5512	1.55 .51	1.5591	1.5630	1.5670	1.5709
40	1.5745	1.5788	1.5827	1.5566	1.5906	1.594 .5	1.5985	1.6024	1.6063	1.6103
	0.	1.	2.	3.	4.	5.	6.	7.	8.	Э.

1 Millimetre $=0.443296$ Paris Line.

Millimetres	Tenths of a Millimetre.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Par. line.	Par. line	Par. line.							
0	0.000	0.044	0.089	0.133	0.177	0.222	0.266	0.310	0.355	0.399
1	0.443	0.488	0.532	0.576	0.621	0.665	0.709	0.754	0.795	0.842
2	0.557	0.931	0.975	1.020	1.064	1.108	1.153	1.197	1.241	1.2s6
3	1.330	1.374	1.419	1.463	1.507	1.552	1.596	1.640	1.685	1.729
4	1.773	1.818	1.862	1.906	1.950	1.995	2.039	2.083	2.128	2.172
5	2.216	2.261	2.305	2.349	2.394	2.438	2.482	2.527	2.571	2.615
6	2.660	2.701	2.748	2.793	2.837	2.881	2.926	2.970	3.014	3.059
7	3.103	3.147	3.192	3.236	3.280	3.32 .5	3.369	3.413	3.458	3.502
8	3.546	3.591	3.635	3.679	3.724	3.768	3.812	3.857	3.901	3.945
9	3.990	4.034	4.078	4.123	4.167	4.211	4.256	4.300	4.344	4.389
10	4.433	4.477	4.522	4.566	4.610	4.655	4.699	4.743	4.788	4.832
11	4.576	4.921	4.965	5.009	5.054	5.098	5.142	5.187	5.231	5.275
12	5.320	5.364	5.408	5.453	5.497	5.541	5.586	5.630	5.674	5.719
13	5.763	5.807	5.851	5.896	5.940	5.984	6.029	6.073	6.117	6.162
14	6.206	6.2.50	6.295	6.339	6.383	6.428	6.472	6.516	6.561	6.605
15	6.649	6.694	6.738	6.782	6.827	6.871	6.915	6.960	7.004	7.048
16	7.093	7.137	7.151	7.226	7.270	7.314	7.359	7.403	7.447	7.492
17	7.536	7.580	7.625	7.669	7.713	7.758	7.802	7.846	7.891	7.935
18	7.979	8.021	8.068	8.112	8.157	8.201	8.245	8.290	$8.33!$	8.378
19	8.423	8.467	8.511	8.556	8.600	8.644	8.689	8.733	8.777	8.822
20	8.866	8.910	8.953	8.999	9.043	9.058	9.132	9.176	9.221	9.26 .5
21	9.309	9.3 .54	9.398	9.442	9.487	9.531	9.575	9.620	9.664	9.708
22	9.753	9.797	9.541	9.886	9.930	9.974	10.018	10.063	10.107	10.151
23	10.196	10.240	10.284	10.329	10.373	10.417	10.462	10.506	10.550	10.595
24	10.639	10.653	10.728	10.772	10.816	10.861	10.905	10.949	10.994	11.038
25	11.082	11.127	11.171	11.215	11.260	11.304	11.348	11.393	11.437	11.481
26	11.526	11.570	11.614	11.6 .59	11.703	11.747	11.792	11.836	11.880	11.925
27	11.969	12.013	12.058	12.102	12.146	12.191	12.235	12.279	12.324	12.368
28	12.412	12.457	12.501	12.545	12.590	12.634	12.678	12.723	12.767	12.811
29	12.556	12.900	12.944	12.989	13.033	13.077	13.122	13.166	13.210	13.255
30	13.299	13.343	13.388	13.432	13.476	13.521	13.565	13.609	13.654	13.698
31	13.742	13.786	13.831	13.575	13.919	13.964	14.008	14.052	14.097	14.141
32	14.185	14.2:30	14.274	14.318	14.363	14.407	14.451	14.496	14.540	14.584
33	14.629	14.673	14.717	14.762	14.806	14.850	14.895	14.939	14.983	15.028
34	1.3.072	15.116	15.161	15.205	15.249	15.294	15.338	15.382	15.427	15.471
35	15.515	15.560	15.604	15.648	15.693	15.737	15.781	15.826	15.870	15.914
36	15.959	16.003	16.047	16.092	16.136	16.180	16.225	16.269	16.313	16.358
37	16.102	16.446	16.491	16.535	16.579	16.624	16.668	16.712	16.757	16.801
38	16.845	16.890	16.934	16.978	17.023	17.067	17.111	17.156	17.200	17.24.4
39	17.289	17.333	17.377	17.422	17.466	17.510	17.555	17.599	17.643	17.688
40	17.732	17.776	17.820	17.865	17.909	17.953	17.998	18.042	18.086	18.131
	©.	1.	2.	3.	1.	5.	6.	7.	8.	9.

260 xili conversion of the french or paris lines into millimetres.
1 Paris Line $=2.255529$ Millimetres.

Paris Lines.	Tenths of a Line.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Millim.									
0	0.000	0.226	0.451	0.677	0.902	1.128	1.353	1.579	1.805	2.030
1	2.256	2.481	2.707	2.933	3.158	3.384	3.609	3.835	4.060	4.286
2	4.512	4.737	4.963	5.188	5.414	5.640	5.865	6.091	6.316	6.542
3	6.767	6.993	7.219	7.444	7.670	7.895	8.121	8.347	8.572	8.798
4	9.023	9.249	9.474	9.700	9.926	10.151	10.377	10.602	10.828	11.054
5	11.279	11.505	11.730	11.956	12.181	12.407	12.633	12.558	13.084	13.309
6	13.53 .5	13.761	13.986	14.212	14.437	14.663	14.888	15.114	15.340	15.565
7	15.791	16.016	16.242	16.468	16.693	16.919	17.144	17.370	17.59 .5	17.821
8	18.047	18.27\%	18.498	18.723	18.949	19.175	19.400	19.626	19.851	20.077
9	20.302	20.528	20.754	20.979	21.205	21.430	21.656	21.88.	22.107	22.333
10	22.558	22.784	23.009	23.235	23.461	23.656	23.912	24.137	24.363	24.589
11	24.814	25.040	25.265	25.491	25.716	25.942	26.168	26.393	26.619	26.844
12	27.070	27.296	27.521	27.747	27.972	28.198	28.423	28.649	28.575	29.100
13	29.326	29.551	29.777	30.003	30.228	30.454	30.679	30.905	31.130	31.356
14	31.582	31.807	32.033	32.258	32.485	32.711	32.936	33.162	33.387	33.613
15	33.837	34.063	34.289	34.514	34.740	34.965	35.191	35.417	35.642	35.865
16	36.093	36.319	36.544	$36.7 \% 0$	36.996	37.221	37.447	37.672	37.898	38.124
17	35.349	38.575	38.800	39.026	39.251	39.477	39.703	39.928	40.154	40.379
18	40.605	40.831	41.056	41.282	41.507	41.733	41.9 .58	42.154	42.410	42.635

XIV. CONVERSION OF FRENCH OR PARIS LINES INTO ENGLISH INCHES.

1 Paris Line $=0.088814$ English Inch.

Paris Lines.	Tenths of a Line.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Eng. In.	Eng. In.	Eng. In.	Eng. In.	Eng. In	Eng. In.				
0	0.0000	0.0089	0.0178	0.0266	0.0355	0.0444	0.0533	0.06.22	0.0711	0.0799
1	0.0588	0.0977	0.1066	0.1155	0.1243	0.1832	0.1421	0.1510	0.1599	0.1687
2	0.1776	0.1565	0.1954	0.2043	0.2132	0.2220	0.2309	0.2398	0.2487	0.2576
3	0.2664	0.2753	0.2842	0.2931	0.3020	0.3108	0.3197	0.3286	0.3375	0.3464
4	0.3553	0.3641	0.3730	0.3819	0.3908	0.3997	0.4085	0.4174	0.4263	0.4352
5	0.4441	0.4530	0.4618	0.4707	0.4796	0.4885	0.4974	0.5062	0.5151	0.5240
6	0.5329	0.5418	0.5506	0.5595	0.5684	0.5773	0.5862	0.5951	0.6039	0.6128
7	0.6217	0.6306	0.6395	0.6483	0.6572	0.6661	0.6750	0.6839	0.6927	0.7016
8	0.7105	0.7194	0.7283	0.7372	0.7460	0.7549	0.7638	0.7727	0.7816	0.7904
9	0.7993	0.5082	0.8171	0.8260	0.8349	0.8437	0.8526	0.8615	0.8704	0.8793
10	0.8881	0.8970	0.9059	0.9148	0.9237	0.9325	0.9414	0.9503	0.9592	0.9681
11	0.97\%0	0.9855	0.9947	1.0036	1.0125	1.0214	1.0302	1.0391	1.0480	1.0569
12	1.0658	1.0746	1.0835	1.0924	1.1013	1.1102	1.1191	1.1279	1.1368	1.1457
13	1.1546	1.1635	1.1723	1.1812	1.1901	1.1990	1.2079	1.2168	1.2256	1.2345
14	1.2434	1.2523	1.2612	1.2700	1.2789	1.2878	1.2967	1.3056	1.3144	1.3233
15	1.3322	1.3411	1.3500	1.3589	1.3677	1.3766	1.3855	1.3944	1.4033	1.4121
16	1.4210	1.4299	1.4388	1.4477	1.4565	1.4654	1.4743	1.4832	1.4921	1.5010
17	1.5098	1.5187	1.5276	1.5365	1.5454	1.5542	1.5631	1.5720	1.5809	1.5898
18	1.5987	1.6075	1.6164	1.62 .53	1.6342	1.6431	1.6519	1.6608	1.6697	1.6786

1 Russian Half-Line $=1.269977$ Millimetres.

Russian Half-Lines.	Tenths.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Millim.	Millim.	Millim.	Millim.	Millim.	Nillim.	Milli	Milli	Millim.	
0	0.000	0.127	0.254	0.381	2.508	. 635	0.762	0.889	1.016	1.143
1	1.270	1.397	1.524	1.651	.. 778	1.905	2.032	2.159	2.286	2.413
2	2.540	2.667	2.794	2.921	3.048	3.175	3.302	3.429	3.556	3.683
3	3.810	3.937	4.064	4.191	4.318	4.445	4.572	4.699	4.826	4.953
4	5.080	5.207	5.334	5.461	5.588	5.715	5.8 .42	5.969	6.096	6.223
5	6.350	6.477	6.604	6.731	6.858	6.985	7.112	7.239	7.366	7.493
6	7.620	7.747	7.874	8.001	8.128	8.255	8.382	8.509	8.636	8.763
7	8.890	9.017	9.144	9.271	9.398	9.525	9.652	9.779	9.906	10.033
8	10.160	10.287	10.414	10.541	10.668	10.795	10.922	11.049	11.176	11.303
9	11.430	11.557	11.684	11.811	11.938	12.065	12.192	12.319	12.446	12.573
10	12.700	12.827	12.954	13.081	13.208	13.335	13.462	13.589	13.716	13.843
11	13.970	14.097	14.224	14.351	14.478	14.605	14.732	14.859	14986	15.113
12	15.240	15.367	15.494	15.621	15.748	15.875	16.002	16.129	16.256	16.383
13	16.510	10.637	16.764	16.891	17.018	17.145	17.272	17.399	17.526	17.653
14	17.780	17.907	18.034	18.161	18.288	18.415	18.542	18.669	18.796	18.923
15	19.050	19.177	19.304	19.431	19.558	19.685	19.812	19.939	20.066	20.193
16	20.320	20.447	20.574	20.701	20.828	20.955	21.082	21.209	21.336	21.463
17	21.590	21.717	21.844	21.971	22.098	22.225	22.352	22.479	22.606	22.733
18	22.860	22.987	23.114	23.241	23.368	23.495	23.622	23.749	23.576	24.003

XVI. CONVERSION OF RUSSIAN HALF-LINES INTO PARIS LINES.

1 Russian Half-Line $=0.562976$ Paris Line.

Russian Half-Lines.	Tenths.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Par. line	Par. line.	Par. iine.							
0	0.000	0.056	0.113	0.169	0.225	0.281	0.338	0.394	0.450	0.507
1	0.563	0.619	0.676	0.732	0.788	0.8.4.	0.901	0.957	1.013	1.070
2	1.126	1.182	1.239	1.295	1.351	1.407	1.464	1.520	1.576	1.633
3	1.689	1.745	1.802	1.558	1.914	1.970	2.027	2.083	2.139	2.196
4	2.252	2.308	2.364	2.421	2.477	2.533	2.590	2.646	2.702	2.759
5	2.815	2.871	2.927	2.984	3.040	3.096	3.153	3.209	3.265	3.322
6	3.378	3.434	3.490	3.547	3.603	3.659	3.716	3.772	3.823	3.885
7	3.941	3.997	4.053	4.110	4.166	4.222	4.279	4.335	4.391	4.448
8	4.504	4.560	4.616	4.673	4.729	4.755	4.842	4.898	4.954	5.010
9	5.067	5.123	5.179	5.236	5.292	5.348	5.405	5.461	5.517	5.573
10	5.630	5.686	5.742	5.799	5.855	5.911	5.968	6.024	6.080	6.136
11	6.193	6.249	6.305	6.362	6.418	6.474	6.531	6.587	6.643	6.699
12	6.756	6.812	6.868	6.925	6.981	7.037	7.093	7.150	7.206	7.262
13	7.319	7.375	7.431	7.488	7.544	7.600	7.656	7.713	7.769	7.825
14	7.882	7.938	7.994	8.051	8.107	8.163	8.219	8.276	8.332	8.388
15	8.445	8.501	8.557	8.614	8.670	8.726	8.782	8.839	8.895	8.951
16	9.008	9.064	9.120	9.177	9.233	9.289	9.345	9.402	9.458	9.514
17	9.571	9.627	9.683	9.739	9.796	9.852	9.908	9.965	10.021	10.077
18	10.134	10.190	10.246	10.302	10.359	10.415	10.471	10.528	10.584	10.640

T A B L E S

FOR

REDUCING BAROMETRICAL OBSERVATIONS,

 TAKEN AT ANY TEMPERATURE,to the temperature of the freezing point.

TABLES

FOR

日EDUCING THE BAROMETRICAL OBSERVATIONS TAKEN AT ANY TEMPERATURE TO GIE TEMPERATURE OF THE FREEZING POINT.

The variations of the mercurial column in a stationary barometer are due to two causes, the changes of atmospheric pressure and the variations of temperature of the mercury, which affect the length of the column by changing its density. The variations of atmospheric pressure, which alone the barometer is destined to ascertain, are therefore hidden, and their observation falsified by the expansion or contraction of the mercury due to changes of temperature. For, supposing that, while the atmospheric pressure remains the same, the temperature of the instrument becomes lower, the mercurial column wi.: bccome shorter, and the barometer will appear to fall ; if the pressure becomes less, but the temperature increases, the expansion of the mercury will tend to compensate the diminution of pressure, and the barometer may remain stationary, or even may rise, while it ought to be falling ; in other cases the action of temperature will tend to increase the amount of the changes of the barometrical height. It is therefore evident that successive observations, with the same barumeter, do not give directly the actual changes of atmospheric pressure, unless they have been taken exactly at the same temperature, a case which, in practice, seldom occurs. Likewise simultaneous observations, taken with various barometers, do not geve directly the actual differences of the absolute pressure of the atmosphere above the instruments. To obtain the true barometrical heights, that is, the action of the atmospheric pressure alone, the influence of the temperature must first be eliminated from the observed heights. This is done by reducing, by means of the following Tables, the various barometrical columns to the length they would have at a given temperature, which is the same for all. For the sake of convenient comparison, the freezing point has been almost universally adopted as the standard temperature to which all observations are to be reduced.

Construction of the Tables.

In all the following Tables the barometers are supposed to be furnished with brass scales, extending from the surface of the mercury in the cistern to the top of the mercurial column. The correction to be applied is therefore composed of two elements : the correction for the expansion of the mercury, and that for the expansion of the scale; both of which ought to be. and have been, taken into account.

Indeed, the correction for the expansion of mercury is not sufficient to reduce the readings to the height which the barometer would indicate, under the same pressure, at the temperature of the freezing point. For when the temperature rises the mer curial column expands; but then the scale also grows longer, and this will tend to lower the reading of the height. The correction for the expansion of the mercury S.
must thus be diminished by the amount of that of the scale, that is, by nearly ${ }_{1} \frac{1}{0}$: this being the proportion between the expansion of brass and that of mercury.

It is also the expausion of the scale which causes an apparent anomaly in the Tables for the Reduction of the English and Old French Barometers. It can be seen, that, though the observations are to be reduced to the freezing point, or to 32° Fahrenheit and zero Reaumur, the Tables give still a correction for observations taken at that temperature. The reason of it is, that the normal length of the English and (Old French standards has not been determined at the temperature of the freezing point, as is the case with the metre, but respectively at the temperatures of 62° Fahrenheit and 13° Reaumur. It is thus only at these temperatures that the scales graduated with these standards have their true length. Above and below, the inches of the scales are longer or shorter than the inches of the standards. At the freezing point, therefore, the correction for the expansion of the mercury is null, but that for the expansion of the scale is not. The scale bemg too short, the reading will be too high, and a subtractive correction must still be applied, which will be gradually compensated at lower temperatures by the now additive correction of the mercurial column. Thus the point of no correction will occur at $28^{\circ} .5$ Fahrenheit, instead of 32°, in the English Barometer, and at - $1^{\circ} .5$ Reaumur, instead of zero, in the Old French.

Schumacher has calculated and published in his Collection of Tables, \&c., and in his Jahr?uch for 1836, 1837, and 1838, extensive tables for the reduction of the Enylish, Old French, and Metrical Barometers, using the following general formula : -

Let $h=$ observed height.
" $t=$ temperature of the attached thermometer.
" $T=$ temperature to which the observed height is to be reduced.
" $m=$ expansion, in volume, of mercury.
" $l=$ linear expansion of brass.
" $\vartheta=$ normal temperature of the standard scale.
The reduction to the freezing point will be given by the formula, -

$$
h \cdot \frac{m(t-T)-l(t-\vartheta)}{1+m(t-T)}
$$

The following tables, which may be found more convenient for ordinary use, have been calculated from the same formula. Table XVII., published in the Instructions of the Royal Society of London, is mostly abstracted from the table of Sehumacher. It gives the reduction of the English Barometer, adopting the following values: -

Let $h=$ observed height in English inches.
" $t=$ temperature of attached thermometer in degrees of Fahrenheit.
" $m=$ expansion, in volume, of mercury for one degree Fahrenheit $=0.0001001$.
" $l=$ linear expansion of brass for one degree Fahrenheit $=0.0000104344$.
The normal temperature of standard being $=6 \mathfrak{Z}^{\circ}$.
The reduction to $3 \mathfrak{I}^{\circ}$ Fahrenheit will be given then by the formula,

$$
H-h . \frac{m(t-32)-l(t-62)}{1+m(t-32)}
$$

The elements for the other tables are found at the head of each.
XVII.

ENGLISH BAROMETFR.

TABLE

giving the correction to be applied to english BAROMETERS,

With brass scales extending from the cistern to the top of the mercurial column, for reducing the observations to thirty-two degrees fahrenheit.

Table XVII.

The following Table, calculated after that of Schumacher, has been adopted by the Cummittee of Physics and Meteorology of the Royal Society of London. It gives immediately the correction for every degree of Fahrenheit, and for every half-inch from 20 up to 31 inches. The scale of the barometer is supposed to be of brass, extending from the cistern to the top of the mercurial column. The difference of expansion of brass and mercury is taken into account. The standard temperature of the yard being 62° Fahr., and not 32° Fahr., the difference of expansion of the scale and of the mercurial column carries the point of no correction down to 29° Fahr. Therefore, from 29° up the correction mui Le iubtracted from, from 29° down it must be added to, the observed height.

Examples of Calculation.

Barometer, observea helght, 30.231
Attached thermometer 82° Fahr.
See in the last page the column of 30 inches; go down as far as the horizontal lime corresponding with 82° in the first vertical column, which contains the temperatures ; you will find there the correction -.143. We have thus:-

It will be easy to apply also the correction for fractions of a degree Fahrenheit for example : -

Barometer, observed height, 28.358
Attached thermometer 71.3
In the column of 28.5 inches, we find that the difference between the correction for 71° and that for 72° is .003 ; dividing this difference proportionally to the fraction, we have for three tenths of a degree a correction of -.001 , which added to -.108 , the correction for ${ }^{7} 1^{\circ}$, makes a total correction of, -. 109

$$
\text { And barometer at } 32^{\circ} \text { Fahr., . . . } \overline{28.249}
$$

Degraes of Fahrenhet.	English Inches.								Degrees of Fihrenheit
	20	20.5	21	21.5	22	22.5	23	23.5	
0	+.051	$+.053$	+ 054	+ 055	+. 056	+. 058	+. 059	$+.060$	$\stackrel{0}{0}$
1	. 049	. 051	.052	. 053	. 054	. 056	057	. 058	1
2	. 048	. 049	. 050	. 051	. 052	. 054	. 055	. 056	2
3	. 046	. 047	. 048	. 049	. 050	052	. 053	. 054	3
4	. 044	. 045	. 046	. 047	. 048	. 050	. 051	. 052	4
5	. 042	. 043	. 044	. 045	. 046	. 048	. 049	. 050	5
6	$+040$	$+.042$	+. 042	+. 044	+.044	$+.046$	+. 047	+. 048	6
7	. 039	. 040	. 041	042	. 042	. 044	. 044	. 046	7
8	037	. 038	.039	. 040	. 041	. 041	. 042	. 043	8
9	. 035	. 036	. 037	. 038	. 039	. 039	. 040	. 041	9
10	. 033	. 034	. 035	. 036	. 037	. 037	. 038	. 039	10
11	+.031	+.032	+.033	+.034	$+.035$	$+.035$	+. 036	+.037	11
12	. 030	. 030	031	032	. 033	. 033	. 034	. 035	12
13	. 028	. 029	. 029	. 030	. 031	. 031	. 032	. 033	13
14	. 026	. 027	. 027	. 028	. 029	. 029	. 030	. 031	14
15	. 024	. 025	. 026	. $0 \geq 6$. 027	. 027	. 028	. 029	15
16	+.022	+.023	+.024	+.024	+. 025	+.025	+. 026	+. 026	16
17	. 021	. 021	. 022	. 022	. 023	. 023	. 024	. 024	17
18	. 019	. 019	. 020	. 020	. 021	. 021	. 022	. 022	18
19	. 017	. 018	. 018	. 018	. 019	. 019	. 020	. 020	19
20	. 015	. 016	. 016	. 016	. 017	. 017	. 018	. 018	20
21	+.014	+.014	+014	+.015	+. 015	+.015	+. 015	+.016	21
22	. 012	. 012	012	. 013	. 013	. 013	. 013	. 014	22
23	. 010	. 010	. 010	. 011	. 011	. 011	. 011	. 012	23
24	. 008	. 008	. 009	. 009	. 009	. 009	. 009	. 010	24
25	. 006	. 007	. 007	. 007	.007	. 007	. 007	. 007	25
26	$+.005$	+.005	$+.005$	+. 005	$+.005$	+. 005	+. 005	+. 005	20
27	. 003	. 003	. 003	. 00.3	. 003	. 003	. 003	. 003	27
28	. 001	. 001	. 001	. 001	. 001	. 001	. 001	. 001	28
29	-.001	$-.001$	-001	-. 001	-. 001	$-.001$	-. 001	-. 001	29
30	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	30
31	-. 005	-. 005	$-.005$	-. 005	-. 005	-. 005	-. 005	-. 005	31
32	. 006	. 006	. 007	. 007	. 007	. 007	. 007	. 007	32
33	. 008	. 008	. 008	. 009	. 009	. 009	. 009	. 010	33
34	. 010	. 010	. 010	. 011	. 011	. 011	. 011	. 012	34
35	.012	. 012	. 012	. 013	. 013	. 013	. 013	. 014	35
36	-. 013	-. 014	$-.014$	-. 014	-. 015	-. 015	-. 016	-016	36
37	. 015	. 016	. 016	. 016	. 017	. 017	. 018	. 018	37
38	. 017	. 017	. 018	. 018	. 019	. 019	. 020	. 020	38
39	. 019	. 019	. 020	. 020	. 021	. 021	. 022	. 02.2	39
40	. 021	. 021	. 022	. 022	. 023	. 023	. 024	. 024	40
41	-. 022	-. 023	-. 024	-. 024	-. 025	-. 025	-. 026	-.026	41
42	. 024	. 025	. 025	. 026	. 027	. 027	. 028	. 028	42
43	. 026	. 027	. 027	. 028	. 029	. 029	. 030	.031	43
44	. 028	. 029	. 029	. 030	. 031	.03]	. 032	. 033	44
45	. 030	. 030	. 031	. 032	. 033	. 033	. 034	. 035	45
46	-.031	$-.032$	$-.033$	-. 034	-. 035	-. 035	$-.036$	-. 037	46
17	. 033	. 034	. 035	. 036	. 036	. 037	. 038	. 039	47
18	. 035	036	. 037	. 038	. 038	. 039	. 040	. 041	48
49	. 037	. 038	.039	. 040	. 040	. 041	. 042	. 043	49
50	. 038	. 039	. 040	. 041	. 042	043	044	. 045	50

Degrees of Fahrenhert.	English Inches.								Degrees of Falirenheit.
	24	24.5	25	25.5	26	26.5	27	27.5	
${ }_{0}$	+. 061	+. 063	+.064	+. 065	+. 067	+. 068	+. 069	+.071	0
1	. 059	. 061	. 062	. 063	. 064	. 065	. 067	. 068	
2	. 057	. 058	. 060	. 061	. 062	. 063	. 064	. 066	2
3	. 055	. 056	. 057	. 059	. 060	. 061	. 062	. 063	3
4	. 053	.054	. 055	. 056	. 057	. 058	. 059	. 061	4
5	. 051	. 052	. 053	. 054	. 055	. 056	. 057	. 058	5
6	+. 049	$+.050$	+.051	$+.052$	+.053	$+.054$	+. 055	+. 056	
7	. 046	. 047	. 048	. 049	. 050	. 051	. 052	. 053	7
8	. 044	. 045	. 046	. 047	. 048	. 049	. 050	. 051	8
9	. 042	. 043	. 044	. 045	. 046	. 046	. 047	. 048	9
10	. 040	. 041	. 042	. 042	. 043	. 044	. 045	. 046	10
11	+.038	+. 039	+.039	$+.040$	+. 041	+. 042	+. 042	+. 043	11
12	. 036	. 036	. 037	. 038	. 039	. 039	. 040	. 041	12
13	. 033	. 034	. 035	. 036	. 036	. 037	. 038	. 038	13
14	. 031	. 032	. 033	. 033	. 034	. 035	. 035	. 036	14
15	. 029	. 030	. 030	. 031	.032	. 032	. 033	. 033	15
16	+. 027	+.028	+. 028	+. 029	+. 029	+. 030	+. 030	+. 031	16
17	. 02.5	. 025	. 026	. 026	. 027	. 027	. 028	. 028	17
18	. 023	. 023	. 024	. 024	. 025	. 025	. 025	. 026	18
19	. 021	. 021	. 021	. 022	. 022	. 023	. 023	. 024	19
20	. 018	. 019	. 019	. 020	. 020	. 020	. 021	. 021	z0
21	$+.016$	$+.017$	+.017	+. 017	+. 018	+. 018	+. 018	+. 019	21
22	. 014	. 014	. 015	. 015	. 015	. 016	. 016	. 016	22
23	. 012	. 012	. 012	. 013	. 013	. 013	. 013	. 014	23
24	. 010	. 010	. 010	. 010	. 011	. 011	. 011	. 011	24
25	. 008	. 008	. 008	. 008	. 008	. 008	. 009	. 009	25
26	+. 005	$+.006$	$+.006$	$+.006$	$+.006$	+. 006	+. 006	+. 006	26
27	. 003	. 003	. 003	. 003	. 004	. 004	. 004	. 004	27
28	. 001	. 001	. 001	. 001	. 001	.001	. 001	. 001	28
29	-. 001	-. 0001	-001	-.001	-. 001	-.001	-. 001	-. 001	29
30	. 003	. 003	. 003	. 004	. 004	. 004	. 004	. 004	30
31	-. 005	-. 006	-. 006	-. 006	-. 006	-. 006	-.006	-. 006	31
32	. 008	. 008	. 008	. 008	. 008	. 008	. 008	. 009	32
33	. 010	. 010	. 010	. 010	. 011	. 011	. 011	. 011	33
34	. 012	. 012	. 012	. 013	. 013	. 013	.013	. 014	34
35	. 014	. 014	. 015	. 015	. 015	. 015	. 016	016	35
36	-. 016	-. 017	$-.017$	-. 017	-. 017	-. 018	-. 018	-. 019	36
37	'. 018	. 019	. 019	. 019	. 020	. 020	. 021	. 021	37
38	. 020	. 021	. 021	. 022	. 022	. 023	. 023	. 023	38
39	. 023	. 023	. 024	. 024	. 024	. 025	. 025	. 026	39
40	. 025	. 025	. 026	. 026	. 027	. 027	. 028	. 028	40
41	-. 027	-. 027	-. 028	-. 029	-. 029	-. 030	-. 030	-.031	41
42	. 029	. 030	. 030	. 031	. 031	032	. 033	. 033	42
43	. 031	. 032	. 032	. 033	. 034	. 034	. 035	. 036	43
44	. 033	. 034	. 035	. 035	. 036	. 037	. 037	. 038	44
45	. 035	. 036	. 037	. 038	. 038	. 039	. 040	. 041	45
46	$-.038$	-. 038	-. 039	-. 040	-. 041	-. 042	-. 042	-. 043	46
47	. 040	. 041	. 041	. 042	. 043	. 044	. 045	. 046	47
48	. 042	. 043	. 044	. 045	. 045	. 046	. 047	. 048	48
49	.044	. 045	. 046	. 047	. 048	. 049	. 050	. 050	49
50	. 046	. 047	. 048	. 049	. 050	. 051	. 052	. 053	50

Degrees of Fahrenheit.	English Inches.								Degrees of Fahrenheit.
	24	24.5	25	25.5	26	26.5	27	27.5	
51	-. 048	-. 049	-. 050	-. 051	-052	-. 053	-. 054	-. 055	51
52	. 050	. 052	. 0.53	. 054	. 055	. 056	. 057	. 058	52
53	. 053	. 054	. 055	. 056	. 057	. 058	. 059	. 060	53
54	. 055	. 056	. 057	. 058	. 059	060	. 062	. 063	54
55	. 057	. 058	. 059	. 060	. 062	. 063	. 064	. 065	55
56	-. 059	-. 060	-. 061	-. 06.3	-. 064	-. 065	-. 066	-. 068	56
57	. 061	. 062	. 064	. 065	. 066	. 068	. 069	. 070	57
58	. 063	. 065	. 066	. 067	. 069	. 070	. 071	. 073	58
59	. 065	. 067	. 068	. 070	. 071	. 072	. 074	. 075	59
60	. 068	. 069	. 070	. 072	. 073	. 075	. 076	. 077	60
61	$-.070$	-. 071	-. 073	-. 074	-. 075	-. 077	-. 078	-. 080	61
62	. 072	. 073	. 075	. 076	. 078	. 079	. 081	. 082	62
63	. 074	. 076	. 077	. 079	. 080	. 188	. 083	. 085	63
64	. 076	. 078	. 079	. 081	. 082	. 084	. 086	. 087	64
65	. 078	. 080	. 082	. 083	. 085	. 086	. 088	. 090	65
66	$-.080$	-. 082	-. 084	-. 085	-. 087	-. 089	-. 090	-. 092	66
67	. 083	. 084	. 086	. 088	. 089	. 091	. 093	. 095	67
68	. 085	. 086	. 088	. 090	. 092	. 094	. 095	. 097	68
69	. 087	. 089	. 090	. 092	. 094	. 096	. 098	. 100	69
70	. 089	. 091	. 093	. 095	. 096	. 098	. 100	. 102	70
71	-. 091	$-.093$	-. 095	-. 097	-. 099	-. 101	-. 102	-. 104	71
72	. 093	. 095	. 097	. 099	.101	. 103	. 105	. 107	72
73	. 095	. 097	. 099	. 101	. 103	. 105	.107	. 109	73
74	. 097	. 099	. 102	. 104	. 106	. 108	. 110	. 112	74
75	. 100	. 102	. 104	. 106	. 108	. 110	.112	. 114	75
76	-. 102	-. 104	-. 106	-. 108	-. 110	-. 112	-. 114	-. 117	76
77	. 104	. 106	. 108	. 110	. 112	. 115	117	. 119	77
78	. 106	. 108	. 110	. 113	. 115	. 117	. 119	. 122	78
79	. 108	. 110	. 113	. 115	.117	. 119	. 122	. 124	79
80	. 110	. 113	. 115	. 117	. 119	. 122	. 124	. 126	80
81	-. 112	-. 115	-117	-. 119	-. 122	-. 124	$-.126$	-. 129	81
82	. 114	. 117	. 119	. 122	. 124	. 126	. 129	. 131	82
83	. 117	. 119	. 121	. 124	. 126	. 129	. 131	. 134	83
84	. 119	. 121	. 124	. 126	. 129	. 131	. 134	. 136	84
85	.121	. 123	. 126	. 128	. 131	. 133	. 136	. 139	85
86	-. 123	-. 126	-. 128	-. 131	-. 133	-. 136	-. 138	-. 141	86
87	. 125	. 128	. 130	. 133	. 136	. 138	. 141	. 143	87
88	. 127	. 130	. 133	. 135	. 138	.141	. 143	. 146	88
89	. 129	. 132	. 135	. 137	. 140	. 143	. 146	. 148	89
90	. 131	. 134	. 137	. 140	. 142	. 145	. 148	. 151	90
91	-. 134	--. 136	-. 139	-. 142	-. 145	-. 148	-. 150	-. 153	91
92	. 136	. 139	. 141	. 144	. 147	. 150	. 153	. 156	92
93	. 138	. 141	. 144	. 147	. 149	. 152	. 155	. 158	93
94	. 140	. 143	. 146	. 149	. 152	. 155	. 157	. 161	94
95	. 142	. 145	. 148	. 151	. 154	. 157	. 160	. 163	95
96	-. 144	-. 147	-. 150	-. 153	-. 156	-. 159	-. 162	-. 165	96
97	. 146	. 149	. 152	. 156	. 159	. 162	. 165	. 168	97
98	. 148	. 152	. 155	. 158	. 161	. 164	. 167	. 170	98
99	. 151	. 154	. 157	. 160	. 163	. 166	. 169	. 173	99
100	. 153	. 156	. 159	. 162	. 165	. 169	. 172	. 175	100

Degrees of Fahren. heit.	English Inches.							Degrees of Fahrenheit.
	28	28.5	29	29.5	30	30.5	31	
$\stackrel{0}{0}$	+. 072	+.073	+.074	+. 076	+. 077	+. 078	+. 080	${ }_{0} 0$
1	. 069	. 071	. 072	. 073	. 074	. 076	. 077	1
2	. 067	. 068	. 069	.070	.072	. 073	. 074	2
3	064	. 065	. 067	. 068	. 069	.070	. 071	3
4	. 062	. 063	. 064	. 065	. 066	. 067	. 068	4
5	. 059	. 060	. 061	. 062	. 063	. 065	. 066	5
6	+.057	+.058	+ 059	+. 060	+. 061	+. 062	+. 063	6
7	. 054	. 055	. 056	057	.058	. 059	. 060	7
8	. 052	. 053	. 054	. 054	. 055	. 056	. 057	8
9	. 049	. 050	. 051	. 052	. 053	. 054	. 054	9
10	. 047	. 047	. 048	. 049	. 050	. 051	. 052	10
11	+.044	+. 045	+ 046	+. 046	+. 047	+. 048	+. 049	11
12	. 042	. 042	. 043	. 044	. 045	. 045	. 046	12
13	. 039	. 040	. 040	. 041	. 042	. 043	. 043	13
14	. 037	. 037	. 038	. 038	. 039	. 040	. 040	14
15	. 034	. 035	. 035	. 036	. 036	. 037	. 038	15
16	+.032	+.032	+.033	+.033	+.034	+. 034	+. 035	16
17	. 029	. 030	. 030	. 031	. 031	. 032	. 032	17
18	. 026	. 027	. 027	. 028	. 028	. 029	. 029	18
19	. 024	.024	. 025	. 025	. 026	. 026	. 027	19
20	. 021	. 022	. 022	.023	. 023	. 023	. 024	20
21	+. 019	$+.019$	$+.020$	+. 020	+. 020	+. 021	+. 021	21
22	. 016	. 017	. 017	. 017	. 018	. 018	. 018	22
23	. 014	. 014	. 014	. 015	. 015	. 015	. 015	23
24	. 011	. 012	012	. 012	. 012	. 012	. 013	24
25	. 009	. 009	. 009	-.009	. 009	. 010	. 010	25
26	$+.006$	+. 005	$+.007$	+. 007	+. 007	+. 007	$+.007$	26
27	.004	. 004	. 004	. 004	. 004	. 004	. 004	27
28	. 001	. 001	.001	. 001	. 001	. 001	. 001	28
29	-.001	-. 0001	-001	-.001	-.001	-. 001	-.001	29
30	. 004	. 004	. 004	. 004	. 004	. 004	. 004	30
31	$-.006$	-. 006	-007	$-.007$	$-.007$	-. 007	-. 007	31
32	. 009	. 003	. 009	. 009	. 009	. 010	. 010	32
33	. 011	. 012	. 012	. 012	. 012	. 012	. 012	33
34	. 014	. 014	014	. 015	. 015	. 015	. 015	34
35	. 016	. 017	. 017	. 017	. 018	. 018	. 018	35
36	-. 019	-. 019	-. 020	-. 020	-. 020	-021	$-.021$	36
37	. 021	. 022	. 022	.02?	.023	. 023	. 024	37
48	. 024	. 024	. 025	. 025	. 026	. 026	. 026	38
39	. 026	. 027	. 027	. 028	. 028	. 029	. 029	39
40	. 029	. 029	. 030	. 030	. 031	. 031	. 032	40
41	$-.031$	$-.032$	-. 033	-. 033	$-.034$	-. 034	-. 035	41
42	. 034	. 034	. 035	. 036	. 036	. 037	. 037	42
43	. 036	. 037	. 038	. 038	. 039	. 040	. 040	43
44	. 039	. 040	. 040	. 041	. 042	. 042	. 043	44
45	. 041	. 042	. 043	. 044	. 044	. 045	. 046	45
46	-. 044	$-.045$	-. 04.5	-. 046	$-.047$	-. 048	-. 049	46
47	. 046	. 047	. 048	. 049	050	. 051	. 051	47
48	. 049	. 050	. 051	. 052	. 052	. 053	. 054	48
49	. 051	. 052	. 053	. 054	. 055	. 056	. 057	49
50	. 054	. 0.55	. 056	057	. 058	. 059	. 060	50

Degrees of Fahrenheit.	English Inches.							Degrees of Fatuenheit.
	28	28.5	29	29.5	30	30.5	31	
51	-. 056	-. 057	-. 058	-. 059	-. 060	-. 061	-. 062	51
52	. 059	. 060	. 061	. 062	. 063	. 064	. 065	52
53	. 061	. 063	064	. 065	. 066	. 067	. 068	53
54	. 064	. 065	. 066	. 067	. 068	. 070	. 071	54
55	. 066	. 068	. 069	. 070	. 071	. 072	. 073	55
56	-. 069	-. 070	-. 071	-. 073	-. 074	-. 075	-. 076	56
57	. 071	. 073	. 074	. 075	. 076	.078	.079	57
58	. 074	. 075	. 077	. 078	. 079	.081	. 082	58
59	. 076	. 078	. 079	. 080	. 082	. 083	. 085	59
60	. 079	. 080	. 082	. 083	. 085	. 086	. 087	60
61	-. 081	-. 083	$-.084$	$-.086$	-. 087	-. 089	-. 090	61
62	. 084	. 085	. 087	. 088	. 090	. 091	. 093	62
63	. 086	. 088	.089	. 091	. 093	. 094	. 096	63
64	. 089	. 090	. 092	. 094	. 095	. 097	. 098	64
65	. 091	. 093	. 095	. 096	. 098	. 100	. 101	65
66	-. 094	-. 096	-. 097	-. 099	-. 101	-. 102	-104	66
67	. 096	. 098	. 100	. 102	. 103	10.5	. 107	67
68	. 099	.101	. 102	104	. 106	. 108	. 109	68
69	. 101	. 103	. 105	. 107	. 109	. 110	.112	69
70	. 104	.106	. 108	. 109	. 111	. 113	. 115	70
71	-. 106	-. 108	-. 110	-. 112	-. 114	-. 116	-. 118	71
72	. 109	. 111	. 113	. 115	. 117	. 119	. 120	72
73	. 111	. 113	. 115	. 117	. 119	. 121	.123	73
74	.114	. 116	. 118	. 120	.122	. 124	. 126	74
75	. 116	. 118	. 120	.122	. 125	. 127	. 129	75
76	-. 119	-. 121	-. 123	- 12.5	-. 127	-. 129	- 131	76
77	. 121	. 123	. 126	128	.130)	. 132	. 134	77
78	. 124	.126	.128	. 130	. 133	. 135	. 137	78
79	. 126	. 128	. 131	. 133	. 135	. 137	. 140	79
80	. 129	. 131	. 133	. 136	. 138	. 140	. 143	80
81	-. 131	-. 134	-.136	-. 138	-. 141	-. 143	-. 145	81
82	. 134	. 136	. 138	.141	.143	. 146	. 148	82
83	. 136	. 139	.141	. 14.3	. 146	. 148	. 151	83
84	. 139	. 141	. 144	. 146	. 149	. 151	ist	84
85	. 141	. 144	. 146	. 149	.151	. 154	. 156	85
86	-. 144	-. 146	-. 149	-. 151	-. 154	-. 156	-. 159	86
87	. 146	. 149	. 151	. 154	. 157	. 159	. 162	87
88	. 149	. 151	. 154	. 157	. 159	. 162	. 165	88
89	. 151	. 154	. 156	. 159	.162	. 165	. 167	89
90	. 153	. 156	. 159	. 162	. 164	. 167	. 170	90
91	-. 156	-. 159	-. 162	-. 165	-. 167	- 170	-173	91
92	. 158	. 161	164	. 167	.170	.172	. 175	92
93	. 161	. 164	. 167	. 170	.172	. 75	. 178	93
94	. 163	. 166	. 169	. 172	. 175	.177	. 180	94
95	. 166	. 169	. 172	. 175	. 178	. 180	. 183	95
96	-. 168	-. 171	-.174	-. 178	-. 181	-. 183	-. 186	96
97	. 171	. 174	. 177	. 180	. 183	. 186	. 189	97
98	. 173	. 176	. 179	. 183	. 186	. 188	. 191	98
99	. 176	. 179	. 182	. 185	. 188	. 191	. 194	99
100	. 178	. 181	. 184	. 188	. 191	. 194	197	100

TABLE XVIJ.

FOR REDUCING THE INDICATIONS OF ENGLISH BAROMETERS, WITH WOODEN OR glass scales, to the freezing point.

In most of the common barometers the seale is engraved upon a short plate of brass, or of ivory, fixed upon the wooden frame of the instrument. In such a case, the compound expansion of the two substances can only be guessed at, and the correction to be applied to the observations for reducing them to the freezing point cannot be determined with precision. As a near approximation for such imperfect instruments, the following table may be used. In computing this table, the expansion of glass, which is less than that of brass and greater than that of wood, has been substituted for that of brass, as an approximate value for a scale composed of these last two substances. The table thus gives the true correction, in English inches, for the barometers, the graduation of which is engraved on the glass tube itself. It answers equally for any English barometer with wooden scale, whatever be the substance of which the short plate bearing the graduation is made.

CORRECTIONS TO BE APPLIED TO ENGLISH BAROMETERS, WITH WOODEN OR GLASS SCALES, TO REDUCE THE OBSERYATIONS TO THE FREEZING POINT.

Expansion of Mercury for 1° Fahr. $=0.0001001$; of Glass for 1° Fahr. $=0.00000444$.

Attached Thermom- eter, Fanren- heit	Barometer in English Inches.										
	26	-26.5	27	27.5	28	28.5	29	29.5	30	30.5	31
0	+.076	$+.077$	$+.079$	$+.080$	+. 082	$+.059$	$+.085$	$+.086$	$+.088$	$+.089$	$+.090$
1	+.073	+.075	+.076	+. 078	+. 079	+.0s0	+.082	+.083	+.085	+.086	+.088
2	+.071	+.072	+.074	+.075	+.076	+.078	+.079	$+.080$	+.082	+. 083	+.085
3	$+.068$	+.070	$+.071$	+.072	+.074	+.075	$+.076$	+.078	+. 079	$+.080$	+.082
4	$+.066$	+.067	+. 069	$+.070$	+. 071	+.072	+.074	$+.075$	$+.076$	$+.077$	+. 079
5	+.064	+.065	$+.066$	$+.067$	$+.068$	+.070	+. 071	+. 072	$+.073$	+.074	+.076
6	+.061	+.062	$+.063$	+.065	+. 066	+.067	+.068	+. 069	+. 070	+.072	+.073
7	+.059	+.060	+.061	$+.062$	+. 063	+.064	+.065	+.067	$+.065$	$+.069$	$+.070$
8	+. 056	+.037	+.059	+.059	$+.060$	+. 061	+.063	+.064	+. 065	$+.066$	+. 067
9	$+.054$	+.05.	+.056	$+.057$	+.038	+.059	$+.060$	${ }^{+}+.061$	$+.062$	$+.063$	$+.064$
10	$+.051$	$+.0 .92$	+.05\%	$+.054$	$+.0 .55$	$+.0 .56$	$+.057$	+.058	+. 059	$+.060$	+. 061
11	+. 049	+.050	+.031	$+.051$	+.052	+.053	$+.054$	+.0.55	+.056	$+.057$	+.058
12	+. 046	$+.047$	$+.048$	+.049	$+.050$	+.0.51	$+.052$	$+.052$	+.053	$+.054$	+.055
13	$+.044$	$+.045$	+.04.5	$+.046$	$+.047$	+. 048	+. 049	$+.0 .50$	+. 050	+. 051	+. 052
14	+.041	$+.042$	$+.043$	+.044	+. 044	+. 045	$+.046$	$+.047$	$+.048$	$+.048$	$+.049$
15	+. 039	+. 039	$+.040$	$+.041$	$+.042$	$+.042$	$+.043$	+.044	$+.045$	$+.045$	+. 046
16	+.036	+.037	+.035	+.038	$+.039$	$+.040$	$+.010$	+.041	$+.042$	$+.043$	+.043
17	+.034	+.034	+.035	$+.036$	$+.036$	+.037	+.038	$+.038$	+.039	+. 040	$+.040$
18	+.031	+.032	+.032	+.033	+.034	+.034	+.035	+. 036	+. 036	+.037	+. 037
19	+.029	+.029	$+.030$	+.030	+.031	+.032	+. 032	+.033	$+.033$	+.034	+.034
20	$+.026$	+.027	+.027	+. 028	$+.028$	$+.029$	+.029	$+.030$	$+.030$	+.031	+.031

Barometer with Glass or Wooden Scale.

Attached Thermoneter, Fahrenheit.	Barometer in English Inches.										
	26	26.5	27	27.5	28	28.5	29	29.5	30	30.5	31
$21{ }^{\circ}$	+.024	+.02t	+. 025	+.02.5	$+.026$	$+.026$	+. 027	$+.027$	+.028	+. 028	+.028
22	+.021	$+.022$	$+.022$	+.023	$+.022$	$+.023$	$+.024$	$+.024$	$+.025$	$+.025$	+.025
23	+. 019	$+.019$	$+.020$	$+.020$	$+.020$	$+.021$	$+.021$	$+.021$	+.022	$+.022$	+.023
21	+. 016	$+.017$	$+.017$	$+.017$	+.018	+.018	+.015	$+.019$	$+.019$	$+.019$	$+.020$
25	$+.014$	$+.014$	+.014	$+.015$	$+.015$	$+.015$	$+.016$	$+.016$	+. 016	$+.016$	$+.017$
26	+. 011	$+.012$	$+.012$	+.012	+.012	$+.013$	$+.013$	$+.013$	$+.013$	$+.013$	+.014
27	+. 009	+. 009	$+.009$	+. 009	+.010	+.010	+. 010	+. 010	+. 010	+.011	+.011
28	+.006	+.007	+. 007	+.007	$+.007$	+. 007	+.007	+.007	$+.007$	$+.008$	$+.008$
29	+.004	$+.004$	+.004	$+.004$	$+.004$	$+.004$	$+.004$	+.005	+. 005	+. 005	+. 005
30	$+.002$	$+.002$	$+.002$	$+.002$	$+.002$	$+.002$	$+.002$	$+.002$	+.002	+.002	+. 002
31	-. 001	-. 001	-.001	-. 001	-. 001	-. 001	-. 001	-. 001	-. 001	$-.001$	-. 001
32	-. 003	$-.004$	-.004	-.004	-.004	$-.004$	-.004	-. 004	-. 004	-.004	-.004
33	-. 006	-. 006	-.006	-. 006	-. 006	-. 007	-. 007	-.007	-. 007	-. 007	-. 007
34	-. 008	$-.009$	$-.009$	-. 009	-.009	-. 009	-. 009	-. 010	-. .10	$-.010$	$-.010$
35	-. 011	$-.011$	-. 911	-. 012	-. 012	-. 012	-. 012	-. 012	-. 613	-. 013	-. 013
36	-. 013	-. 014	-.014	-. 014	-. 014	-. 015	-. 015	-. 015	-. 015	--. 016	-. 016
37	-. 016	-. 016	-. 017	-. 017	-. 017	-. 017	-. 018	-. 018	-. 018	-. 019	-. 019
38	-. 018	$-.019$	-. 019	$-.019$	$-.020$	$-.020$	$-.020$	$-.021$	-. 021	-. 022	-. 022
39	-.021	$-.021$	$-.022$	$-.022$	-. 022	$-.023$	-.023	$-.024$	-. 024	-.024	-. 025
40	$-.023$	-.024	-.024	-. 025	-.025	$-.026$	-. 026	$-.026$	-. 027	-. 027	-.028
41	-. 026	$-.026$	-. 027	$-.027$	-. 028	-. 028	-. 029	$-.029$	$-.030$	$-.030$	-.031
42	-.025	-. 029	-.029	-.030	-.030	-. 031	-.032	-.032	-. 033	-.033	-.034
43	-.031	-. 031	-. 032	$-.033$	-.033	-.034	-. 033	-. 035	-.036	-.036	-.037
4.4	-.033	-.034	-.035	-. 035	-.036	-. 036	-. 036	-.035	-. 038	-.039	-. 040
45	$-.036$	-. 036	-. 037	-.033	-.038	-. 039	-. 039	-. 041	-. 0.41	-. 042	$-.043$
46	-.038	-. 039	$-.040$	-. 040	$-.041$	$-.042$	-. 042	$-.043$	$-.044$	-. 045	$-.046$
47	-.041	-. 041	$-.042$	$-.043$	-.044	-. 045	$-.044$	$-.016$	-. 047	-. 048	-. 049
48	-. 013	-. 041	-. 045	$-.046$	-. 047	$-.047$	$-.047$	-. 049	-. 050	-. 0.51	-.0.51
49	-. 046	-. 046	$-.047$	-. 048	-. 019	-.050	-.050	-.0.52	-.0.93	$-.054$	$-.054$
50	-.048	-. 049	$-.050$	-.051	-.052	-.053	$-.054$	-.0̄5	-. 056	-. 056	-. 057
51	-. 051	$-.052$	-. 053	$-.054$	-. 055	-. 055	-.0.56	-. 057	$-.0 .58$	$-.059$	$-.060$
52	-.0.53	-. 054	-. 055	-.056	-. 0.57	-.0.58	-.0.59	-. 060	-. 061	-. 062	-. 063
53	-.0.56	$-.057$	-. 055	-.059	-. 060	$-.061$	-.062	-. 063	-. 064	-. 06.5	-. 066
54	-.058	-.0.59	-. 060	-. 061	-.063	-.064	-.06.)	-. 066	-. 067	-. 068	-. 069
55	-. 061	$-.062$	$-.063$	$-.064$	-. 065	$-.066$	-. 068	$-.069$	-. 070	$-.071$	-. 072
56	-. 063	-. 064	-. 06.5	-. 067	-. 068	-. 069	-. 070	-. 071	-. 073	-. 074	-. 075
57	-. 065	-. 067	-. 068	-. 069	-. 071	$-.072$	$-.073$	-. 074	-. 076	-. 077	-. 078
53	-. 068	-. 069	-. 071	-.072	-. 073	-.074	-.076	-. 077	-. 078	-. 080	-. 081
59	-.070	-.072	-. 073	$-.074$	-. 076	-. 077	-. 079	-. 080	-. 081	-.083	-.054
60	-. 073	-.074	-. 076	-.077	-. 079	-.080	-. 081	$-.083$	-. 084	-. 085	-. 087

Barometer with Glass or Wooden Scale.

Attached Thermom eter, Fahrenheit.	Barometer in English Inches.										
	26	26.5	27	27.5	28	28.5	29	29.5	30	30.5	31
61	-.075	-. 077	-. 075	-. 080	-. 051	-. 083	-.084	-. 086	-. 087	-. 088	-. 090
62	-. 078	-. 079	-.0ъ1	-.032	-.084	-.085	$-.087$	-.058	-. 090	-. 091	-. 093
63	-.080	-.082	-. 083	-.08.5	-.086	-. 08 s	-. 090	-. 091	-. 093	-.094	$-.096$
61	-.083	-.084	-. 086	-. 088	-.089	-. 091	-.092	-.094	-. 096	-. 097	-. 099
65	$-.055$	-.007	-. 089.	-. 090	-. 092	-. 093	-.095	-. 097	-. 098	$-.100$	-. 102
66	-. 098	-. 039	-. 091	$-.093$	-. 091	-. 096	-. 098	-. 100	-. 101	-. 103	-. 104
67	-. 030	-.092	-. 094	-.09.5	-. 097	-. 099	-. 101	$-.102$	-. 104	-. 106	-. 108
68	-.093	-.094	-. 096	-.095	-. 100	-. 102	-.103	-. 105	-. 107	-. 109	$-.110$
69	-.09.	-. 097	-. 099	-. 101	$-.102$	-. 101	$-.106$	-. 108	-. 110	-. 112	-. 113
70	$-.093$	-. 099	-. 101	-. 103	-. 105	-. 107	-. 109	-. 111	-. 113	-.114	-. 116
71	-. 100	-. 102	-. 104	-. 106	-. 108	-. 110	$-.112$	-. 114	-. 115	-. 117	-. 119
72	-.103	-.10.	-. 106	-. 103	-. 110	-.112	-.114	-. 116	-. 118	-. 120	-. 122
73	-.105	-. 107	-. 109	-. 111	-. 113	-.115	-. 117	-. 119	-. 121	-. 123	-. 125
7.4	-. 107	-. 110	-. 112	-.114	-. 116	-. 118	-. 120	$-.122$	-.124	-.126	$-.128$
75	-. 110	-.112	-. 114	-. 116	-. 118	-. 121	$-.123$	-. 125	-. 127	-. 129	-. 131
76	-.112	-. 115	-. 117	-. 119	-. 121	-. 123	-. 125	-. 128	$-.130$	-. 132	-. 134
77	-.115	-. 117	-. 119	$-.121$	-.124	-. 126	-. 128	-. 130	-.133	-. 135	-. 137
78	-. 117	$-.120$	$-.122$	-.121	-.126	-. 129	-.131	-.13:	-. 135	-. 138	$-.140$
79	-. 120	-.122	-.124	-. 127	-. 129	-. 131	-.134	-. 136	-. 135	$-.141$	$-.143$
so	-.122	-. 125	$-.127$	$-.129$	-. 132	-. 134	-. 136	-. 139	-.141	-. 143	-. 146
81	-.12.5	$-.127$	-. 130	-.132	-. 134	-. 137	-. 139	-. 142	-.144	-. 146	-. 149
82	-.127	-.1:30	-.132	-.135	-. 137	-. 139	-.142	-.141	-. 147	-. 119	-. 152
83	-.130	-.132	-.13)	-.137	-. 140	$-.142$	$-.115$	-. 147	-.150	-. 152	$-.155$
84	-.132	-. 135	-. 137	$-.140$	$-.142$	$-.14 .5$	$-.147$	-. 150	$-.152$	-.155	-. 158
85	-.135	-. 137	$-.140$	-142	-.14.5	-. 147	-. 150	-. 153	-. 155	-. 158	-. 160
86	-137	-. 140	-.142	-.14.	-. 142	-. 150	$-.153$	-.15.5	-.158	-. 161	-. 163
87	-. 139	-142	-. 145	-. 148	-. 150	-.153	-. 156	-. 1.15	-. 161	$-.164$	-. 166
88	-.142	-.14.	-. 147	$-.150$	-.1.53	-. 156	-.155	-. 161	-. 164	-. 167	-. 169
s9	-. 144	-. 147	-. 150	$-.153$	-.156	-. 158	-. 161	-. 16.4	-. 167	-. 169	-.172
90	-. 147	-. 150	-. 153	-. 15.5	-. 158	-. 161	-. 164	-. 167	-. 169	$-.172$	-. 175
91	-. 149	-.152	-. 155	-. 158	-. 161	-.164	-. 167	-. 169	-.172	-.17.	-.178
92	-.152	-.15\%	-. 158	-. 161	-. 163	-. 166	-. 169	-.172	-. 175	-. 178	-. 181
93	-.154	-.1.57	-. 160	-.163	-. 166	$-.169$	$-.172$	-.17.5	-.178	-. 181	-.184
94	-. 1.57	-. 160	-. 163	-. 166	$-.169$	$-.172$	-. 175	-. 178	-. 181	-.184	-. 157
9.5	-. 159	$-.162$	-. 165	-. 165	-.171	-.17.4	-. 178	-. 181	-. 184	$-.157$	$-.190$
96	-. 162	-.16.5	-. 168	-. 171	-.174	-.177	-. 180	-. 183	-. 186	$-.190$	-. 193
97	-. 164	-. 167	-. 170	-.174	$-.177$	-. 180	$-.183$	-. 186	-. 189	-.192	-. 196
98	-. 167	-. 170	-. 173	-.176	-. 179	-. 183	$-.186$	-. 189	-. 192	-. 195	-. 199
99	-. 169	$-.172$	-.17.5	-.179	-. 182	-.185	$-.183$	-.192	-. 195	-. 198	-. 201
109	-.171	-.17.)	-.179	-.1-1	-.155	-. 185	-. 191	-:191	-.198	-.201	-. 204

XIX.

METRICAL BAROMETER.

T A B L E

FOR

\&EDUCING 10 THE FREEZING POINT THE P 4 ROMETRICAI COLUMN,

MEASURED BY BRASS SCALES, EXTENDING FRON THE CISTERN sO THE TOP; CALCULATED FROM 260 TO 865 MILLIMETRES, AND FOR EACH DEGREE CENTIGRADE.

By M. T. Delcrus.

C

Table XIX.
'This table has been calculated by using the following coefficients of dilatation : Brass, linear dilatation, from Laplace and Lavoisier for $100^{\circ} \mathrm{C} .=0.0018782$. Mercury, dilatation in volume, from Dulong and Petit for $100^{\circ} \mathrm{C} .=0.0180180$.
Dilatation of the mercurial column for $100^{\circ} \mathrm{C}$. . . $=0.0161398$.
Dilatation of the mercurial column for $1^{\circ} \mathrm{C}$. . . $=0.0001614$.
Observed height reduced to freezing point,

$$
H=h-h(0.0001614) . \quad T=h-h\left(\frac{T}{6196}\right) .
$$

The second term of this last formula is given by the table. when the temperature T and the height h of $t a s$ barometer are known; this correction must be subtracted from the observed height h, when the temperature is above freezing point; it is to be added when the temperature is below zero, or freezing point.

This table allows the barometrical heights taken at the highest summits, and 'n the deepest mines, to be corrected.

Examples of Calculation.

Heightof Ule Barone ter.	temperatulie centigrade.								
	$1{ }^{\circ}$	2°	3°	$4{ }^{\circ}$	5°	6	$7{ }^{\circ}$	8°	9°
Millim	Millim.	Millim.	Millim.	Millim.	Millim	Millim,	Millim.	Nillim.	Millim.
460	0.0742	0.1485	0.2227	0.2970	0.371	0.445	0.520	0.594	0.668
465	0.0750	0.1501	0.2251	0.3002	0.375	0.450	0.525	0.600	0.675
470	0.0759	0.1517	0.2276	0.303 .4	0.379	0.455	0.531	0.607	0.683
475	0.0767	0.1533	0.2300	0.3066	0.383	0.460	0.537	0.613	0.690
480	0.0775	0.1549	0.2324	0.3099	0.387	0.465	0.542	0.620	0.697
485	0.0783	0.1565	0.2348	0.3131	0.391	0.470	0.548	0.626	0.704
490	0.0791	0.1582	0.2373	0.3163	0.395	0.474	0.554	0.633	0.712
49.5	0.0800	0.1598	0.2397	0.3195	0.399	0.479	0.559	0.639	0.719
510	0.0807	0.1614	0.2421	0.3228	0.403	0.484	0.565	0.646	0.726
505	0.0815	0.1630	0.2445	0.3260	0.407	0.489	0.570	0.652	0.734
510	0.0823	0.1646	0.2469	0.3293	0.412	0.494	0.576	0.658	0.741
515	0.0831	0.1662	0.2493	0.3325	0.416	0.499	0.582	0.665	0.748
520	0.0839	0.1679	0.2518	0.3357	0.420	0.504	0.587	0.671	0.755
525	0.0847	0.1695	0.2542	0.3359	0.424	0.508	0.593	0.678	0.763
530	0.0555	0.1711	0.2566	0.3422	0.428	0.513	0.599	0.684	0.770
535	0.0863	0.1727	0.2.590	0.3454	0.432	0.518	0.604	0.691	0.777
540	0.0872	0.1743	0.2615	0.3486	0.436	0.523	0.610	0.697	0.784
545	00879	0.1759	0.2639	0.3518	0.440	0.528	0.616	0.704	0.792
550	0.0888	0.1775	0.2663	0.3551	0.444	0.533	0.621	0.710	0.799
555	0.0896	0.1791	0.2687	0.3583	0.448	0.537	0.627	0.717	0.806
560	0.0904	0.1808	0.2712	0.3615	0.452	0.542	0.633	0.723	0.813
56.5	0.0912	0.1824	0.2736	0.3647	0.456	0.547	0.638	0.730	0.521
570	0.0920	0.1840	0.2760	0.3680	0.460	0.552	0.644	0.736	0.828
575	0.0928	0.1856	0.2784	0.3712	0.464	0.557	0.650	0.742	0.835
580	0.0936	0.1872	0.2808	0.3744	0.468	0.562	0.655	0.749	0.842
585	0.0944	0.1888	0.2833	0.3777	0.472	0.566	0.661	0.755	0.850
590	00952	0.1904	0.2557	0.3809	0.476	0.571	0.667	0.762	0.857
595	0.0960	0.1921	0.2881	0.3841	0.450	0.576	0.672	0.768	0.864
600	0.0968	0.1937	0.2905	0.387 t	0.484	0.581	0.678	0.775	0.872
605	0.0976	0.1953	0.2929	0.3906	0.488	0.586	0.683	0.781	0.879
610	0.0985	0.1969	0.2954	0.3938	0.492	0.591	0.689	0.788	0.886
615	0.0993	0.198 .5	0.2978	0.3970	0.496	0.595	0.695	0.794	0.893
620	0.1001	0.2001	0.3002	0.4003	0.500	0.600	0.700	0.800	0.901
625	0.1009	0.2017	0.3026	0.4035	0.504	0.605	0.706	0.807	0.908
630	0.1017	0.2034	0.3050	0.4067	0.50 s	0.610	0.712	0.813	0.915
635	0.1025	0.2050	0.3074	0.4099	0.512	0.615	0.717	0.820	0.922
640	0.1033	0.2066	0.3099	0.4132	0.516	0.620	0.723	0.826	0.930
645	0.1041	0.2082	0.3123	0.4164	0.520	0.625	0.729	0.833	0.937
650	0.1049	0.2098	0.3147	0.4196	0.524	0.629	0.734	0.839	0.944
655	0.1057	0.2114	0.3172	0.4229	0.529	0.634	0.740	0.846	0.951
660	0.1065	0.2130	0.3196	0.4261	0.533	0.639	0.746	0.852	0.959
	$1{ }^{\circ}$	2°	3°	$4{ }^{\circ}$	5°	6	$7{ }^{\circ}$	8°	9°

Height of the Barome ter.	TEMPERATURE CENTIGRADE.								
	$1{ }^{\circ}$	2°	$3{ }^{\circ}$	4°	5°	6°	7°	8°	$9{ }^{\text {P }}$
Millim.	Millien.								
665	0.1073	0.2146	0.3220	0.4293	0.537	0.644	0.751	0.859	0.966
670	0.1081	0.2163	0.3244	0.4326	0.541	0.649	0.757	0.565	0.973
675	0.1089	0.2179	0.3265	0.4358	0.545	0.654	0.763	0.871	0.950
650	0.1097	0.2195	0.3292	0.4390	$\cdot 0.549$	0.658	0.768	0.878	0.958
685	0.1106	0.2211	0.3317	0.4423	0.553	0.663	0.774	0.884	0.995
690	0.1114	0.2227	0.3341	0.4455	0.557	0.668	0.780	0.591	1.002
695	0.1122	0.2233	0.336 .5	0.4487	0.561	0.673	0.785	0.897	1.010
700	0.1130	0.2260	0.3389	0.4520	0.565	0.678	0.791	0.904	1.017
705	0.1138	0.2276	0.3414	0.4552	0.569	0.683	0.797	0.910	1.024
710	0.1146	0.2292	0.3438	0.4584	0.573	0.688	0.502	0.917	1.031
715	0.1154	0.2308	0.3462	0.4616	0.577	0.691	0.808	0.923	1.039
720	0.1162	0.2324	0.3486	0.4648	0.581	0.697	0.813	0.930	1.046
725	0.1170	0.2340	0.3510	0.4650	0.585	0.702	0.819	0.936	1.053
730	0.1178	0.2356	0.3535	0.4713	0.589	0.707	0.825	0.943	1.060
735	0.1186	0.2372	0.3559	0.4745	0.593	0.712	0.830	0.949	1.065
740	0.1104	0.2389	0.3583	0.4777	0.597	0.717	0.836	0.955	1.075
745	0.1202	0.2405	0.3607	0.4509	0.601	0.721	0.542	0.962	1.082
750	0.1210	0.2421	0.3631	0.4842	0.605	0.726	0.847	0.968	1.089
75.5	0.1218	0.2437	0.3655	0.4874	0.609	0.731	0.853	0.975	1.097
760	0.1227	0.2453	0.3680	0.4906	0.613	0.736	0.859	0.981	1.104
765	0.1235	0.2469	0.3704	0.4939	0.617	0.741	0.864	0.988	1.111
770	0.1243	0.2456	0.3729	0.4971	0.621	0.746	0.870	0.994	1.118
775	0.1251	0.2502	0.3752	0.5003	0.625	0.750	0.876	1.001	1.126
750	0.1259	0.2518	0.3777	0.5036	0.629	0.755	0.581	1.007	1.133
785	0.1267	0.2534	0.3801	0.5068	0.633	0.760	0.888	1.014	1.140
790	0.1275	0.2550	0.3825	0.5100	0.637	0.765	0.893	1.020	1.148
795	0.1283	0.2566	0.3849	0.5132	0.641	0.770	0.898	1.026	1.155
800	0.1291	0.2582	0.3574	0.516 .5	0.646	0.775	0.904	1.033	1.162
805	0.1299	0.2598	0.3898	0.5197	0.650	0.780	0.909	1.039	1.169
810	0.1307	0.2615	0.3922	0.5230	0.654	0.784	0.915	1.046	1.177
815	0.1315	0.2621	0.3946	0.5262	0.658	0.789	0.921	1.052	1.184
820	0.1323	0.2647	0.3970	0.5294	0662	0.794	0.926	1.059	1.191
825	0.1331	0.2653	0.3994	0.3326	0.666	0.799	0.932	1.065	1.198
830	0.1340	0.2679	0.4019	0.5358	0.670	0.804	0.938	1.072	1.206
835	0.1348	$0 . £ 695$	0.4043	0.5391	0.674	0.509	0.943	1.078	1.213
840	0.13 .56	0.2712	0.4067	0.5423	0.678	0.513	0.949	1.085	1.220
845	0.1364	0.2729	0.4091	0.545 .5	0.682	0.518	0.955	1.091	1.227
850	0.1372	0.2744	0.4116	0.5488	0.686	0.823	0.960	1.097	1.235
855	0.1350	0.2760	0.4140	0.5520	0.690	0.828	0.966	1.101	1.242
860	0.1358	0.2776	0.4164	0.5552	0.694	0.833	0.972	1.110	1.249
86.5	0.1396	0.2792	0.4198	0.5584	0.698	0.838	0.977	1.117	1.256
	$1{ }^{\circ}$	$\mathbf{2}^{\circ}$	$3{ }^{\circ}$	$4{ }^{\circ}$	5°	6°	7°	8°	9°

XX .

METRICAL BAROMETER.

T A BLE

FOR
REDUCING T0 THE FREEZING POINT THE BAROMETRICAL
COLUMN,
i!SURED BY BRASS SCALES, EXTENDING FROM THE CISTERN TO THE TOP; CAC. CUlated for the heights between 605 and 800 millimetres, and for every tenth of a degree, from 0° to \dagger and - 35° centigrade.

By M. T. Haeghens.

TABLEXX.

'Inis table has been calculated by using the same coefficients of dilatation as in the preceding table, viz.: -

Brass, linear dilatation, from Laplace ard Lavoisier for $100^{\circ} \mathrm{C}=0.0018782$.
Mercury, dilatation in volume, from Dulong and Petit for $100^{\circ} \mathrm{C}=0.0180180$.
Dilatation of the mercurial column for $100^{\circ} \mathrm{C}$. . . $=0.0161398$.
Dilatation of the mercurial column for $1^{\circ} \mathrm{C}$. . . . $=0.0001614$.
This table, calculated for the reduction of long series of meteorological observations, gives immediately the value of the correction for each tenth of a degree up to $35^{\circ} \mathrm{C}$. above, and down to $35^{\circ} \mathrm{C}$. below, the freezing point, and for mercurial columns extending from 605 to 800 millimetres.

Examples of Calculation.

Barometer, observed height, $\quad 754.17$
Temperature of the attached thermometer, $+17^{\circ} .8$.

For finding the correction, seek in the horizontal column, headed barometer, at the head of the pages, the corresponding height of the barometer; it will be found, p. 31,
 containing the temperatures, 17°, follow then horizontally this line as far as the column of 8 tenths, and you find there 2.17 millimetres, which is the correction, or the quantity to be subtracted for reducing the observed height to zero. We have thus: -

If the temperature is below zero, the correction will be additive.

Observed height,		7×972
Temperature of the attached thermometer, - $8^{\circ} .4$.		
Additive correction.	. . .	+0.99
	Barometer at zero,	730.71

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : $605^{\mathrm{mm} .}$ (from 602.51 to 607.50) .									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\stackrel{\circ}{\circ}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.0 .4 \end{gathered}$	$\begin{array}{\|c} \text { Millim. } \\ 0.05 \end{array}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Nillim. } \\ 0.09 \end{gathered}$
1	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
2	0.20	0.21	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28
3	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38
4	0.39	0.40	0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.48
5	0.49	0.50	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58
6	0.59	0.60	0.61	0.62	0.63	0.63	0.64	0.65	0.66	0.67
7	0.68	0.69	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77
8	0.78	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.86	0.87
9	0.88	0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97
10	0.98	0.99	1.00	1.01	1.02	1.03	1.04	1.05	1.05	1.06
11	1.07	1.08	1.09	1.10	1.11	1.12	1.13	1.14	1.15	1.16
12	1.17	1.18	1.19	1.20	1.21	1.22	1.23	1.24	1.25	1.26
13	1.27	1.28	1.29	1.30	1.31	1.32	1.33	1.34	1.35	1.36
14	1.37	1.38	1.39	1.40	1.11	1.42	1.43	1.44	1.45	1.46
15	1.46	1.47	1.48	1.49	1.50	1.51	1.52	1.53	1.54	1.55
16	1.56	1.57	1.58	1.59	1.60	1.61	1.62	1.63	1.64	1.65
17	1.66	1.67	1.68	1.69	1.70	1.71	1.72	1.73	1.74	1.75
18	1.76	1.77	1.78	1.79	1.80	1.81	1.82	1.83	1.84	1.85
19	1.86	1.87	1.87	1.88	1.89	1.90	1.91	1.92	1.93	1.94
20	1.95	1.96	1.97	1.98	1.99	2.00	2.01	2.02	2.03	2.04
21	2.05	2.06	2.07	2.08	2.09	2.10	2.11	2.12	2.13	2.14
22	2.15	2.16	2.17	2.18	2.19	2.20	2.21	2.22	2.23	2.24
23	2.25	2.26	2.27	2.28	2.29	2.29	2.30	2.31	2.32	2.33
24	2.34	2.35	2.36	2.37	2.38	2.39	2.40	2.41	2.42	2.43
25	2.44	2.45	2.46	2.47	2.18	2.49	2.50	2.51	2.52	2.53
26	2.54	2.5 .5	2.56	2.57	2.58	2.59	2.60	2.61	2.62	2.63
27	2.64	2.65	2.66	2.67	2.68	2.69	2.70	2.71	2.71	2.72
28	2.73	2.74	2.75	2.76	2.77	2.78	2.79	2.80	2.81	2.82
29	2.83	2.84	2.85	2.86	2.87	2.58	2.89	2.90	2.91	2.92
30	2.93	2.91	2.95	2.96	2.97	2.98	2.99	3.00	3.01	3.02
31	3.03	3.04	3.05	3.06	3.07	3.08	3.09	3.10	3.11	3.12
32	3.12	3.13	3.14	3.15	3.16	3.17	3.18	3.19	3.20	3.21
33	3.22	3.23	3.24	3.25	3.26	3.27	3.28	3.29	3.30	3.31
34	3.32	3.33	3.34	3.35	3.36	3.37	3.38	3.39	3.40	3.41
35	3.42	3.13	3.44	3.45	3.46	3.47	3.48	3.49	3.50	3.51
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : $610^{\mathrm{mm} .}$ (from 607.51 to 619.50)									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\stackrel{0}{0}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millım. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Mıllin. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millım. } \\ 0.09 \end{gathered}$
1	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
2	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29
3	0.30	0.31	0.32	0.32	0.33	0.34	0.35	0.36	0.37	0.38
4	$0.39{ }^{\circ}$	0.40	0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.48
5	0.49	0.50	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58
6	0.59	0.60	0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68
7	0.69	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78
8	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88
9	0.59	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.96	0.97
10	0.98	0.99	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07
11	1.08	1.09	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17
12	1.18	1.19	1.20	1.21	1.22	1.23	1.24	1.25	1.26	1.27
13	1.28	1.29	1.30	1.31	1.32	1.33	1.34	1.35	1.36	1.37
14	1.38	1.39	1.40	1.41	1.42	1.43	1.44	1.45	1.46	1.47
15	1.48	1.49	1.50	1.51	1.52	1.53	1.54	1.55	1.56	1.57
16	1.58	1.59	1.59	1.60	1.61	1.62	1.63	1.64	1.65	1.66
17	1.67	1.68	1.69	1.70	1.71	1.72	1.73	1.74	1.75	1.76
18	1.77	1.78	1.79	1.80	1.81	1.82	1.83	1.84	1.85	1.86
19	1.87	1.88	1.59	1.90	1.91	1.92	1.93	1.94 .	1.95	1.96
20	1.97	1.93	1.99	2.00	2.01	2.02	2.03	2.04	2.05	2.06
21	2.07	2.08	2.09	2.10	2.11	2.12	2.13	2.14	2.15	2.16
22	2.17	2.15	2.19	2.20	2.21	2.22	2.23	2.23	2.24	2.25
23	2.26	2.27	2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.35
24	2.36	2.37	2.38	2.39	2.40	2.41	2.42	2.43	2.44	2.45
25	2.46	2.47	2.48	2.49	2.50	2.51	2.52	2.53	2.54	2.55
26	2.56	2.57	2.58	2.59	2.60	2.61	2.62	2.63	2.64	2.65
27	2.66	2.67	2.68	2.69	2.70	2.71	2.72	2.73	2.74	2.75
28	2.76	2.77	2.78	2.79	2.80	2.81	2.82	2.53	2.54	2.85
29	2.86	2.86	2.87	2.88	2.89	2.90	2.91	2.92	2.93	2.91
30	2.95	2.96	2.97	2.98	2.99	3.00	3.01	3.02	3.03	3.04
31	3.05	3.06	3.07	3.08	3.09	3.10	3.11	3.12	3.13	3.14
32	3.15	3.16	3.17	3.18	3.19	3.20	3.21	3.22	3.23	3.24
33	3.25	3.26	3.27	3.28	3.29	3.30	3.31	3.32	3.33	3.34
34	3.35	3.36	3.37	3.33	3.39	3.40	3.41	3.42	3.43	3.44
35	3.45	3.46	3.47	3.48	3.49	3.50	3.51	3.52	3.5:	3.54
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Cen'i- } \\ \text { grade } \\ \text { g: } 5 \times 38 \end{gathered}$	BAROMETER : $615{ }^{\text {mm. }}$ (from 612.51 to 617.50) .									
	Tenths of Degrees.									
	D.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\stackrel{u}{0}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{aligned} & \text { Millem } \\ & 0 . \mathrm{cl} \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millım. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$
1	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
2	0.20	0.21	0.32	0.23	0.24	0.25	0.26	0.27	0.28	0.29
3	0.30	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39
4	0.40	0.41	0.42	0.13	0.44	0.45	0.46	0.47	0.48	0.49
5	0.50	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59
6	0.69	0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	0.68
7	0.69	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78
8	0.79	0.50	0.81	0.52	0.83	0.84	0.85	0.86	0.87	0.88
9	0.59	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98
10	0.99	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08
11	1.09	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18
12	1.19	1.20	1.21	1.22	1.23	1.24	1.25	1.26	1.27	1.28
13	1.29	1.30	1.31	1.32	1.33	1.34	1.35	1.36	1.37	1.38
14	1.39	1.10	1.41	1.42	1.43	1.44	1.45	1.46	1.47	1.48
15	1.49	1.50	1.51	1.52	1.53	1.54	1.55	1.56	1.57	1.58
16	1.59	1.60	1.61	1.62	1.63	1.64	1.65	1.66	1.67	1.68
17	1.69	1.70	1.71	1.72	1.73	1.74	1.75	1.76	1.77	1.78
18	1.79	1.80	1.81	1.82	1.83	1.84	1.85	1.86	1.87	1.88
19	1.89	1.90	1.91	1.92	1.93	1.94	1.95	1.96	1.97	1.98
20	1.99	2.00	2.01	2.01	2.02	2.03	2.04	2.05	2.06	2.07
21	2.08	2.09	2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.17
22	2.18	2.19	2.20	2.21	2.22	2.23	2.24	2.25	2.26	2.27
23	2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.35	2.36	2.37
24	2.38	2.39	2.40	2.41	2.12	2.43	2.44	2.45	2.46	2.47
25	2.48	2.19	2.50	\%.51	2.52	2.53	2.54	2.55	2.56	2.57
26	2.58	2.59	2.60	2.61	2.62	2.63	2.64	2.65	2.66	2.67
27	2.68	2.69	2.70	2.71	2.72	2.73	2.74	2.75	2.76	2.77
28	2.78	2.79	2.80	2.81	2.82	2.83	2.84	2.85	2.86	2.87
29	2.58	2.89	2.90	2.91	2.92	2.93	2.94	2.95	2.96	2.97
30	2.98	2.99	3.00	3.01	3.02	3.03	3.04	3.05	3.06	3.07
31	3.08	3.09	3.10	3.11	3.12	3.13	3.14	3.15	3.16	3.17
32	3.18	3.19	3.20	3.21	3.22	3.23	3.24	3.25	3.26	3.27
33	3.28	3.29	3.30	3.31	3.32	3.33	3.34	3.35	3.36	3.36
$3 \cdot 1$	3.37	3.38	3.39	3.40	3.41	3.42	3.43	3.44	3.45	3.46
35	3.47	3.48	3.49	3.50	3.51	3.52	3.53	3.54	3.55	3.56
	O.	1.	$\stackrel{2}{ }$	3.	4.	5.	6.	7.	8.	9.

Centigrade Degrees.	BAROMETER : $620^{\mathrm{mm} .}$ (from 617.51 to 622.50)									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	*.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	Millim. 0.01	Millim. 0.02	Milinn. 0.03	Millım. 0.0 .4	Millim. 0.05	Millim. 0.06	Millim. 0.07	$\begin{gathered} \text { Millim } \\ \hline 0.0 \mathrm{~s} \end{gathered}$	Millim. 0.09
1	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
2	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29
3	0.30	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39
4	0.40	0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49
5	0.50	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59
6	0.60	0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	0.69
7	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79
8	0.80	0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89
9	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
10	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09
11	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19
12	1.20	1.21	1.22	1.23	1.24	1.25	1.26	1.27	1.28	1.29
13	1.30	1.31	1.32	1.33	1.34	1.35	1.36	1.37	1.38	1.39
14	1.40	1.41	1.42	1.43	1.44	1.45	1.46	1.17	1.48	1.49
15	1.50	1.51	1.52	1.53	1.54	1.55	1.56	1.57	1.58	1.59
16	1.60	1.61	1.62	1.63	1.64	1.65	1.66	1.67	1.68	1.69
17	1.70	1.71	1.72	1.73	1.74	1.75	1.76	1.77	1.78	1.79
18	1.80	1.81	1.82	1.83	1.84	1.85	1.86	1.87	1.88	1.89
19	1.90	1.91	1.92	1.93	1.94	1.95	1.96	1.97	1.98	1.99
20	2.00	2.01	2.02	2.03	2.04	2.05	2.06	2.07	2.08	2.09
21	2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.17	2.18	2.19
22	2.20	2.21	2.22	2.23	2.24	2.25	2.26	2.27	2.28	2.29
23	2.30	2.31	2.32	2.33	2.34	2.35	2.36	2.37	2.38	2.39
24	2.40	2.41	2.42	2.43	2.44	2.45	2.46	2.47	2.48	2.49
25	2.50	2.51	2.52	2.53	2.54	2.55	2.56	2.57	2.58	2.59
26	2.60	2.61	2.62	2.63	2.64	2.65	2.66	2.67	2.65	2.69
27	2.70	2.71	2.72	2.73	2.74	2.75	2.76	2.77	2.78	2.79
28	2.80	2.81	2.82	2.83	2.84	2.85	2.86	2.87	2.88	2.89
29	2.90	2.91	2.92	2.93	2.94	2.95	2.96	2.97	2.98	2.99
30	3.00	3.01	3.02	3.03	3.04	3.05	3.06	3.07	3.08	3.09
31	3.10	3.11	3.12	3.13	3.14	3.15	3.16	3.17	3.18	3.19
32	3.20	3.21	3.22	3.23	3.24	3.25	3.26	3.27	3.28	3.29
33	3.30	3.31	3.32	3.33	3.34	3.35	3.36	3.37	3.38	3.39
34	3.40	3.41	3.42	3.43	3.44	3.45	3.16	3.47	3.48	3.49
35	3.50	3.51	3.52	3.53	3.54	3.55	3.56	3.57	3.58	3.59
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Centigrade Degrees.	BAROMETER : $625^{\text {mm. }}$ (from 622.51 to 627.50),									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	\$.	9.
\bigcirc	Millim. 0.00	Millim. 0.01	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	Millim. 0.03	Millim.	$\begin{aligned} & \text { Millim. } \\ & 0.05 . \end{aligned}$	Millim. 0.06	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$
1	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
2	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29
3	0.30	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39
4	0.40	0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49
5	0.50	0.51	0.52	0.53	0.54	0.55	0.56	0.58	0.59	0.60
6	0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	0.69	0.70
7	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.80
8	0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.90
9	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.00
10	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10
11	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.20
12	1.21	1.22	1.23	1.24	1.25	1.26	1.27	1.28	1.29	1.30
13	1.31	1.32	1.33	1.34	1.35	1.36	1.37	1.38	1.39	1.40
14	1.41	1.42	1.43	1.44	1.45	1.46	1.47	1.48	1.49	1.50
15	1.51	1.52	1.53	1.54	1.55	1.56	1.57	1.58	1.59	1.60
16	1.61	1.62	1.63	1.64	1.65	1.66	1.67	1.68	1.69	1.70
17	1.71	1.73	1.74	1.75	1.76	1.77	1.78	1.79	1.80	1.81
18	1.82	1.83	1.84	1.85	1.86	1.87	1.88	1.89	1.90	1.91
19	1.92	1.93	1.94	1.95	1.96 .	1.97	1.98	1.99	2.00	2.01
20	2.02	2.03	2.04	2.05	2.06	2.07	2.05	2.09	2.10	2.11
21	2.12	2.13	2.14	2.15	2.16	2.17	2.18	2.19	2.20	2.21
22	2.22	2.23	2.24	2.25	2.26	2.27	2.28	2.29	2.30	2.31
23	2.32	2.33	2.34	2.35	2.36	2.37	2.38	2.39	2.40	2.41
24	2.42	2.43	2.44	2.45	2.46	2.47	2.48	2.49	2.50	2.51
25	2.52	2.53	2.54	2.55	2.56	2.57	2.58	2.59	2.60	2.61
26	2.62	2.63	2.64	2.65	2.66	2.67	2.68	2.69	2.70	2.71
27	2.72	2.73	2.74	2.75	2.76	2.77	2.78	2.79	2.80	2.81
28	2.82	2.83	2.84	2.85	2.87	2.88	2.89	2.90	2.91	2.92
29	2.93	2.94	2.95	2.96	2.97	2.98	2.99	3.00	3.01	3.02
30	3.03	3.04	3.05	3.06	3.07	3.08	3.09	3.10	3.11	3.12
31	3.13	3.14	3.15	3.16	3.17	3.18	3.19	3.20	3.21	3.22
32	3.23	3.24	3.25	3.26	3.27	3.28	3.29	3.30	3.31	3.32
33	3.33	3.34	3.35	3.36	3.37	3.38	3.39	3.40	3.41	3.12
34	3.43	3.44	3.45	3.46	3.47	3.48	3.49	3.50	3.51	3.52
35	3.53	3.54	3.55	3.56	3.57	3.58	3.59	3.60	3.61	3.62
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Centigrade Ilegrees.	BAROMETER : 630^{mm}. (from 627.51 to 632.50) .									
	Tenths of Degrees.									
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.
\bigcirc	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{array}{\|c} \text { Millim. } \\ 0.05 \end{array}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	Millim. 0.07	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$
1	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
2	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29
3	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.40
4	0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.50
5	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60
6	0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	0.69	0.70
7	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.80
8	0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.90
9	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.00	1.01
10	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1.11
11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.20	1.21
12	1.22	1.23	1.24	1.25	1.26	1.27	1.28	1.29	1.30	1.31
13	1.32	1.33	1.34	1.35	1.36	1.37	1.38	1.39	1.40	1.41
14	1.42	1.43	1.44	1.45	1.46	1.47	1.48	1.49	1.50	1.52
15	1.53	1.54	1.55	1.56	1.57	1.58	1.59	1.60	1.61	1.62
16	1.63	1.64	1.65	1.66	1.67	1.68	1.69	1.70	1.71	1.72
17	1.73	1.74	1.75	1.76	1.77	1.78	1.79	1.80	1.81	1.82
18	1.83	1.84	1.85	1.86	1.87	1.88	1.89	1.90	1.91	1.92
19	1.93	1.94	1.95	1.96	1.97	1.98	1.99	2.00	2.01	2.02
20	2.03	2.04	2.05	2.06	2.07	2.08	2.09	2.10	2.11	2.13
21	2.14	2.15	2.16	2.17	2.18	2.19	2.20	2.21	2.22	2.23
22	2.24	2.25	2.26	2.27	2.28	2.29	2.30	2.31	2.32	2.33
23	2.34	2.35	236	2.37	2.38	2.39	2.40	2.41	2.42	2.43
24	2.44	2.45	2.46	2.47	2.48	2.49	2.50	2.51	2.52	2.53
25	2.54	2.55	2.56	2.57	2.58	2.59	2.60	2.61	2.62	2.63
26	2.64	2.65	2.66	2.67	2.68	2.69	2.70	2.71	2.73	2.74
27	2.75	2.76	2.77	2.78	2.79	2.80	2.81	2.82	2.83	2.84
28	2.85	2.86	2.87	2.88	2.89	2.90	2.91	2.92	2.93	2.94
29	2.95	2.96	2.97	2.98	2.99	3.00	3.01	3.02	3.03	3.04
30	3.05	3.06	3.07	3.08	3.09	3.10	3.11	3.12	3.13	3.14
31	3.15	3.16	3.17	3.18	3.19	3.20	3.21	3.22	3.23	3.24
32	3.25	3.26	3.27	3.28	3.29	3.30	3.31	3.32	3.34	3.35
33	3.36	3.37	3.38	3.39	3.40	3.41	3.42	3.43	3.44	3.45
34	3.46	3.47	3.18	3.49	3.50	3.51	3.52	3.53	3.54	3.55
35	3.56	3.57	3.58	3.59	3.60	3.61	3.62	3.63	3.64	3.65
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

C

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROME'TER : $635{ }^{\text {mm. }}$ (from 632.5l to 637.50).									
	Tenths of Degrees.									
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.
\circ	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.01 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.04 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millum. } \\ 0.09 \end{gathered}$
1	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19
2	0.20	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30
3	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.40
4	0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.50
5	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60
6	0.61	0.63	0.64	0.65	0.66	0.67	0.68	0.69	0.70	0.71
7	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.80	0.81
8	0.52	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.90	0.91
9	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.00	1.01
10	1.02	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1.11	1.12
11	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.20	1.21	1.22
12	1.23	1.24	1.25	1.26	1.27	1.28	1.29	1.30	1.31	1.32
13	1.33	1.34	1.35	1.36	1.37	1.38	1.39	1.40	1.41	1.42
14	1.43	1.45	1.46	1.47	1.48	1.49	1.50	1.51	1.52	1.53
15	1.54	1.55	1.56	1.57	1.58	1.59	1.60	1.61	1.62	1.63
16	1.64	1.65	1.66	1.67	1.68	1.69	1.70	1.71	1.72	1.73
17	1.74	1.75	1.76	1.77	1.78	1.79	1.50	1.81	1.82	1.83
18	1.54	1.86	1.87	1.85	1.89	1.90	1.91	1.92	1.93	1.94
19	1.95	1.96	1.97	1.98	1.99	2.00	2.01	2.02	2.03	2.04
20	2.05	2.06	2.07	2.08	2.09	2.10	2.11	2.12	2.13	2.14
21	2.15	2.16	2.17	2.18	2.19	2.20	2.21	2.22	2.23	2.24
22	2.25	2.27	2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.35
23	2.36	2.37	2.38	2.39	2.40	2.41	2.42	2.43	2.44	2.45
24	2.46	2.47	2.48	2.49	2.50	2.51	2.52	2.53	2.54	2.55
25	2.56	2.57	2.58	2.59	2.60	2.61	2.62	2.63	2.64	2.65
26	2.66	2.67	2.69	2.70	2.71	2.72	2.73	2.74	2.75	2.76
27	2.77	2.78	2.79	2.80	2.81	2.82	2.83	2.84	2.85	2.86
28	2.87	2.88	2.89	2.90	2.91	2.92	2.93	2.94	2.95	2.96
29	2.97	2.98	2.99	3.00	3.01	3.02	3.03	3.04	3.05	3.06
30	3.07	3.08	3.10	3.11	3.12	3.13	3.14	3.15	3.16	3.17
31	3.18	3.19	3.20	3.21	3.22	3.23	3.24	3.25	3.26	3.27
32	3.28	3.29	3.30	3.31	3.32	3.33	3.34	3.35	3.36	3.37
83	3.38	3.39	3.40	3.41	3.42	3.13	3.44	3.45	3.46	3.47
34	3.48	3.49	3.51	3.52	3.53	3.54	3.55	3.56	3.57	3.58
35	3.59	3.60	3.61	3.62	3.63	3.64	3.65	3.66	3.67	3.68
	(1.	1.	2.	3.	4.	5.	6.	7 \%	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROME'TER : $640^{\mathrm{mm} .}$ (from 637.51 to 642.50).									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7	-	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millım. } \\ 0.03 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.04 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.0 \mathrm{~S} \end{gathered}$	$\begin{aligned} & \text { Millım. } \\ & 0.09 \end{aligned}$
1	0.10	0.11	0.12	0.13	0.14	0.15	0.17	0.18	0.19	0.20
2	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.23	0.29	0.30
3	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.35	0.39	0.40
4	0.41	0.42	0.43	0.44	0.45	0.46	0.48	0.49	0.50	0.51
5	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61
6	0.62	0.63	0.64	0.65	0.66	0.67	0.68	0.69	0.70	0.71
7	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.80	0.81	0.82
8	0.53	0.8.4	0.85	0.86	0.87	0.88	0.89	0.90	0.91	0.92
9	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.00	1.01	1.02
10	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.11	1.12	1.13
11	1.14	1.15	1.16	1.17	1.18	1.19	1.20	1.21	1.22	1.23
12	1.24	1.25	1.26	1.27	1.28	1.29	1.30	1.31	1.32	1.33
13	1.34	1.35	1.36	1.37	1.38	1.39	1.40	1.42	1.43	1.44
14	1.45	1.46	1.47	1.48	1.49	1.50	1.51	1.52	1.53	1.54
15	1.55	1.56	1.57	1.58	1.59	1.60	1.61	1.62	1.63	1.64
16	1.65	1.66	1.67	1.68	1.69	1.70	1.71	1.72	1.74	1.75
17	1.76	1.77	1.78	1.79	1.50	1.81	1.82	1.53	1.84	1.85
18	1.86	1.57	1.88	1.89	1.90	1.91	1.92	1.93	1.94	1.95
19	1.96	1.97	1.98	1.99	2.00	2.01	2.02	2.03	2.05	2.06
20	2.07	2.08	2.09	2.10	2.11	2.12	2.13	2.14	2.15	2.16
21	2.17	2.18	2.19	2.20	2.21	2.22	2.23	2.24	2.25	2.26
22	2.27	2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.36	2.37
23	2.38	2.39	2.40	2.41	2.12	2.43	2.44	2.45	2.16	2.47
24	2.48	2.49	2.50	2.51	2.52	2.53	2.54	2.55	2.56	2.57
25	2.58	2.59	2.60	2.61	2.62	2.63	2.64	2.65	2.66	2.68
26	2.69	2.70	2.71	2.72	2.73	2.74	2.75	2.76	2.77	2.78
27	2.79	2.80	2.81	2.82	2.83	2.84	2.55	2.86	2.87	2.85
28	2.89	2.90	2.91	2.92	2.93	2.94	2.95	2.96	2.97	2.99
29	3.00	3.01	3.02	3.03	3.04	3.05	3.06	3.07	3.08	3.09
30	3.10	3.11	3.12	3.13	3.14	3.15	3.16	3.17	3.18	3.19
31	3.20	3.21	3.22	3.23	3.24	3.25	3.26	3.27	3.28	3.30
32	3.31	3.32	3.33	3.34	3.35	3.36	3.37	3.38	3.39	3.40
33	3.41	3.42	3.43	3.44	3.45	3.46	3.47	3.45	3.49	3.50
34	3.51	3.52	3.53	3.54	3.55	3.56	3.57	3.53	3.59	3.60
35	3.62	3.63	3.64	3.65	3.66	3.67	3.68	3.69	3.70	3.71
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { crate } \\ \text { geryres. } \end{gathered}$	BAROMETER : $645{ }^{\text {mm. }}$ (from 642.51 to 647.50).									
	Tenths of Degrees.									
	o.	1.	2.	3.	4.	5.	6.	7.	s.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim } \\ 0.00 \end{gathered}$	$\begin{gathered} \hline \text { Mullim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Milum. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Mıllım. } \\ 0.04 \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Milim. } \\ 0.05 \end{array} \end{array}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millin. } \\ 0.08 \end{gathered}$	$\begin{aligned} & \text { Millım. } \\ & 0.09 \end{aligned}$
1	0.10	0.11	0.12	0.14	0.15	0.16	0.17	0.18	0.19	0.20
2	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.25	0.29	0.30
3	0.31	0.32	0.33	0.34	0.3.5	0.36	0.37	0.39	0.40	0.41
4	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.50	0.51
5	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61
6	0.62	0.64	0.65	0.66	0.67	0.63	0.69	0.70	0.71	0.72
7	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.80	0.81	0.82
8	0.53	0.54	0.55	0.86	0.87	0.88	0.90	0.91	0.92	0.93
9	0.94	0.9.5	0.96	0.97	0.98	0.99	1.00	1.01	1.02	1.03
10	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1.11	1.12	1.13
11	1.15	1.16	1.17	1.18	1.19	1.20	1.21	1.22	1.23	1.24
12	1.25	1.26	1.27	1.28	1.29	1.30	1.31	1.32	1.33	1.34
13	1.35	1.36	1.37	1.38	1.39	1.41	1.42	1.43	1.44	1.45
14	1.46	1.47	1.48	1.49	1.50	1.51	1.52	1.53	1.54	1.55
15	1.56	1.57	1.58	1.59	1.60	1.61	1.62	1.63	1.64	1.66
16	1.67	1.68	1.69	1.70	1.71	1.72	1.73	1.74	1.75	1.76
17	1.77	1.78	1.79	1.80	1.81	1.82	1.83	1.84	1.85	1.86
18	1.87	1.88	1.59	1.91	1.92	1.93	1.94	1.95	1.96	1.97
19	1.98	1.99	2.00	2.01	2.02	2.03	2.04	2.05	2.06	2.07
20	2.08	2.09	2.10	2.11	2.12	2.13	2.14	2.15	2.17	2.18
21	2.19	2.20	2.21	2.22	2.23	2.24	2.25	2.26	2.27	2.28
22	2.29	2.30	2.31	2.32	2.33	2.31	2.35	2.36	2.37	2.38
23	2.39	2.40	2.42	2.43	2.44	2.4.	2.46	2.47	2.48	2.49
24	2.50	2.51	2.92	2.53	2.54	2.95	2.56	2.57	2.58	2.59
25	2.60	2.61	2.62	2.63	2.64	2.65	2.66	2.67	2.69	2.70
26	2.71	2.72	2.73	2.74	2.75	2.76	2.77	2.78	2.79	2.80
27	2.01	2.82	2.83	2.81	2.85	2.86	2.87	2.88	2.59	2.90
29	2.9,	2.93	2.94	2.95	2.96	2.97	2.98	2.99	3.00	3.01
29	3.02	3.03	3.04	3.05	3.06	3.07	3.08	3.09	3.10	3.11
30	3.12	3.13	3.14	3.15	3.16	3.18	3.19	3.20	3.21	3.22
31	3.23	3.24	3.25	3.26	3.27	3.28	3.29	3.30	3.31	3.32
32	3.33	3.34	3.35	3.36	3.37	3.38	3.39	3.40	3.41	3.42
33	3.44	3.45	3.46	3.47	3.48	3.49	3.50	3.51	3.52	3.53
34	3.54	3.55	3.56	3.57	3.58	3.59	3.60	3.61	3.62	3.63
35	3.64	3.65	3.66	3.67	3.68	3.69	3.70	3.71	3.72	3.73
	o.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi. } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : $655^{\mathrm{mm} .}$ (from 652.51 to 657.50).									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millım. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20
2	0.21	0.22	0.23	0.24	0.25	0.26	0.28	0.29	0.30	0.31
3	0.32	0.33	0.34	0.35	0.36	0.37	0.33	0.39	0.40	0.41
4	0.42	0.43	0.44	0.46	0.47	0.48	0.49	0.50	0.51	0.52
5	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62
6	0.63	0.65	0.66	0.67	0.68	0.69	0.70	0.71	0.72	0.73
7	0.74	0.75	0.76	0.77	0.78	0.79	0.80	0.81	0.83	0.84
S	0.85	0.86	0.57	0.88	0.89	0.90	0.91	0.92	0.93	0.94
9	0.95	0.96	0.97	0.98	0.99	1.00	1.02	1.03	1.04	1.05
10	1.06	1.07	1.08	1.09	1.10	1.11	1.12	1.13	1.14	1.15
11	1.16	1.17	1.18	1.20	1.21	1.22	1.23	1.24	1.25	1.26
12	1.27	1.28	1.29	1.30	1.31	1.32	1.33	1.34	1.35	1.36
13	1.37	1.39	1.40	1.41	1.42	1.43	1.44	1.45	1.46	1.47
14	1.48	1.49	1.50	1.51	1.52	1.53	1.54	1.55	1.57	1.58
15	1.59	1.60	1.61	1.62	1.63	1.64	1.65	1.66	1.67	1.68
16	1.69	1.70	1.71	1.72	1.73	1.74	1.76	1.77	1.78	1.79
17	1.80	1.81	1.82	1.83	1.84	1.85	1.86	1.87	1.88	1.89
18	1.90	1.91	1.92	1.94	1.95	1.96	1.97	1.98	1.99	2.00
19	2.01	2.02	2.03	2.04	2.05	2.06	2.07	2.08	2.09	2.10
20	2.11	2.13	2.14	2.15	2.16	2.17	2.18	2.19	2.20	2.21
21	2.22	2.23	2.24	2.25	2.26	2.27	2.28	2.29	2.31	2.32
22	2.33	2.34	2.35	2.36	2.37	2.38	2.39	$2.4 '$	2.41	2.42
23	2.43	2.44	2.45	2.46	2.47	2.48	2.50	2.51	2.52	2.53
24	2.54	2.55	2.56	2.57	2.58	2.59	2.60	2.61	2.62	2.63
25	2.64	2.65	2.66	2.68	2.69	2.70	2.71	2.72	2.73	2.74
26	2.75	2.76	2.77	2.78	2.79	2.80	2.81	2.82	2.83	2.84
27	2.85	2.87	2.58	2.59	2.90	2.91	2.92	2.93	2.94	2.95
28	2.96	2.97	2.98	2.99	3.00	3.01	3.02	3.03	3.05	3.06
29	3.07	3.08	3.09	3.10	3.11	3.12	3.13	3.14	3.15	3.16
30	3.17	3.18	3.19	3.20	3.21	3.22	3.24	3.25	3.26	3.27
31	3.28	3.29	3.30	3.31	3.32	3.33	3.34	3.35	3.36	3.37
32	3.35	3.39	3.40	3.42	3.43	3.44	3.45	3.46	3.47	3.48
33	3.49	3.50	3.51	3.52	3.583	3.54	3.55	3.56	3.57	3.58
34	3.59	3.61	3.62	3.63	3.64	3.65	3.66	3.67	3.68	3.69
35	3.70	3.71	3.72	3.73	3.74	3.75	3.76	3.77	3.79	3.80
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Centi grade Jegrees.	BAROMETER : $660^{\mathrm{mm} .}$ (from 657.51 to 662.50)									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
0	Millim. 0.00	Millim. 0.01	Millim. 0.02	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.08 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20
2	0.21	0.22	0.23	0.25	0.26	0.27	0.28	0.29	0.30	0.31
3	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.41	0.42
4	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.50	0.51	0.52
5	0.53	0.54	0.55	0.57	0.58	0.59	0.60	0.61	0.62	0.63
6	0.64	0.65	0.66	0.67	0.68	0.69	0.70	0.71	0.72	0.74
7	0.75	0.76	0.77	0.78	0.79	0.80	0.81	0.82	0.83	0.84
8	0.85	0.86	0.87	0.88	0.90	0.91	0.92	0.93	0.94	0.95
9	0.96	0.97	0.98	0.99	1.00	1.01	1.02	1.03	1.04	1.06
10	1.07	1.08	1.09	1.10	1.11	1.12	1.13	1.14	1.15	1.16
11	1.17	1.18	1.19	1.20	1.21	1.23	1.24	1.25	1.26	1.27
12	1.28	1.29	1.30	1.31	1.32	1.33	1.34	1.35	1.36	1.37
13	1.39	1.40	1.41	1.42	1.43	1.44	1.45	1.46	1.47	1.48
14	1.49	1.50	1.51	1.52	1.53	1.55	1.56	1.57	1.58	1.59
15	1.60	1.61	1.62	1.63	1.64	1.65	1.66	1.67	1.68	1.69
16	1.70	1.72	1.73	1.74	1.75	1.76	1.77	1.78	1.79	1.80
17	1.81	1.82	1.83	1.84	1.85	1.86	1.88	1.89	1.90	1.91
18	1.92	1.93	1.94	1.95	1.96	1.97	1.98	1.99	2.00	2.01
19	2.02	2.04	2.05	2.06	2.07	2.08	2.09	2.10	2.11	2.12
20	2.13	2.14	2.15	2.16	2.17	2.18	2.19	2.21	2.22	2.23
21	2.24	2.25	2.26	2.27	2.28	2.29	2.30	2.31	2.32	2.33
22	2.34	2.35	2.37	2.38	2.39	2.40	2.41	2.12	2.43	2.44
23	2.45	2.46	2.47	2.48	2.49	2.50	2.51	2.53	2.54	2.55
24	2.56	2.57	2.58	2.59	2.60	2.61	2.62	2.63	2.64	2.65
25	2.66	2.67	2.68	2.70	2.71	2.72	2.73	2.74	2.75	2.76
26	2.77	2.78	2.79	2.80	2.81	2.82	2.83	2.84	2.86	2.87
27	2.88	2.89	2.90	2.91	2.92	2.93	2.94	2.95	2.96	2.97
28	2.98	2.99	3.00	3.02	3.03	3.04	3.05	3.06	3.07	3.08
29	3.09	3.10	3.11	3.12	3.13	3.14	3.15	3.16	3.17	319
30	3.20	3.21	3.22	3.23	3.24	3.25	3.26	3.27	3.28	3.29
31	3.30	3.31	3.32	3.33	3.35	3.36	3.37	3.38	3.39	3.40
32	3.41	3.42	3.43	3.44	3.45	3.46	3.47	3.48	3.49	3.51
33	3.52	3.53	3.54	3.55	3.56	3.57	3.58	3.59	3.60	3.61
34	3.62	3.63	3.64	3.65	3.66	3.68	3.69	3.70	3.71	3.72
35	3.73	3.74	3.75	3.76	3.77	3.75	3.79	3.80	3.81	3.82
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{aligned} & \text { Centi- } \\ & \text { grade } \\ & \text { Degrees. } \end{aligned}$	BAROMETER : $665{ }^{\mathrm{mm}}$. (from 662.51 to 667.50),									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\stackrel{\bigcirc}{0}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.05 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { M1llim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	011	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20
2	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30	0.31
3	0.32	0.33	0.34	0.35	0.37	0.38	0.39	0.40	0.41	0.42
4	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.51	0.52	0.53
5	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62	0.63
6	0.64	0.66	0.67	0.68	0.69	0.70	0.71	0.72	0.73	0.74
7	0.75	0.76	0.77	0.78	0.79	0.81	0.82	0.83	0.84	0.85
8	0.86	0.57	0.88	0.89	0.90	0.91	0.92	0.93	0.95	0.96
9	0.97	0.98	0.99	1.00	1.01	1.02	1.03	1.04	1.05	1.06
10	1.07	1.08	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17
11	1.18	1.19	1.20	1.21	1.22	1.23	1.25	1.26	1.27	1.28
12	1.29	1.30	1.31	1.32	1.33	1.34	1.35	1.36	1.37	1.39
13	1.40	1.41	1.42	1.43	1.44	1.45	1.46	1.47	1.48	1.49
14	1.50	1.51	1.52	1.51	1.55	1.56	1.57	1.58	1.59	1.60
15	1.61	1.62	1.63	1.64	1.65	1.66	1.67	1.69	1.70	1.71
16	1.72	1.73	1.74	1.75	1.76	1.77	1.78	1.79	1.80	1.81
17	1.83	1.84	1.85	1.86	1.87	1.88	1.89	1.90	1.91	1.92
18	1.93	1.94	1.95	1.96	1.98	1.99	2.00	2.01	2.02	2.03
19	2.04	2.05	2.06	2.07	2.08	2.09	2.10	2.11	2.13	2.14
20	2.15	2.16	2.17	2.18	2.19	2.20	2.21	2.22	2.23	2.24
21	2.25	2.27	2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.35
22	2.36	2.37	2.38	2.39	2.40	2.42	2.43	2.44	2.45	2.46
23	2.17	2.48	2.49	2.50	2.51	2.52	2.53	2.54	2.56	2.57
24	2.58	2.59	2.60	2.61	2.62	2.63	2.64	2.65	2.66	2.67
25	2.68	2.69	2.71	2.72	2.73	2.74	2.75	2.76	2.77	2.78
26	2.79	2.80	2.81	2.82	2.83	2.84	2.86	2.87	2.88	2.89
27	2.90	2.91	2.92	2.93	2.94	2.95	2.96	2.97	2.98	3.00
28	3.01	3.02	3.03	3.04	3.05	3.06	3.07	3.08	3.09	3.10
29	3.11	3.12	3.13	3.15	3.16	3.17	3.18	3.19	3.20	5.21
30	3.22	3.23	3.24	3.25	3.26	3.27	3.28	3.30	3.31	3.32
31	3.33	3.34	3.35	3.36	3.37	3.38	3.39	3.40	3.41	3.42
32	3.44	345	3.46	3.47	3.48	3.49	3.50	3.51	3.52	3.53
33	3.54	3.55	3.56	3.57	3.59	3.60	3.61	3.62	3.63	3.64
34	3.65	3.66	3.67	3.68	3.69	3.70	3.71	3.72	3.74	3.7\%
35	3.76	3.77	3.78	3.79	3.85	3.81	3.82	3.83	3.84	3.85
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Centi- grade Degrees.	BAROMETER • $670^{\mathrm{mm} .}$ (from 667.51 to 67250.)									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.05 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.20	0.21
2	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30	0.31
3	0.32	0.34	0.35	0.36	0.37	0.38	0.39	0.40	0.41	0.42
4	0.43	0.44	0.45	0.47	0.48	0.49	0.50	0.51	0.52	0.53
5	0.54	0.55	0.56	0.57	0.58	0.60	0.61	0.62	0.63	0.64
6	0.65	0.66	0.67	0.68	0.69	0.70	0.71	0.73	0.74	0.75
7	0.76	0.77	0.78	0.79	0.80	0.81	0.82	0.83	0.84	0.85
8	0.87	0.58	0.59	0.90	0.91	0.92	0.93	0.94	0.95	0.96
9	0.97	0.98	1.00	1.01	1.02	1.03	104	1.05	1.06	1.07
10	1.08	1.09	1.10	1.11	1.13	1.14	1.15	1.16	1.17	1.18
11	1.19	1.20	1.21	1.22	1.23	1.24	1.25	1.27	1.28	1.29
12	1.30	1.31	1.32	1.33	1.34	1.35	1.36	1.37	1.38	1.40
13	1.41	1.42	1.43	1.44	1.45	1.46	1.47	1.48	1.49	1.50
14	1.51	1.53	1.54	1.53	1.56	1.57	1.58	1.59	1.60	1.61
15)	1.62	1.63	1.64	1.66	1.67	1.68	1.69	1.70	1.71	1.72
16	1.73	1.74	1.75	1.76	1.77	1.78	1.80	1.81	1.82	1.83
17	1.84	1.85	1.86	1.57	1.88	1.89	1.90	1.91	1.92	1.94
18	1.95	1.96	1.97	1.98	1.99	2.00	2.01	2.02	2.03	2.04
19	2.06	2.07	2.08	2.09	2.10	2.11	2.12	2.13	2.14	2.15
20	2.16	2.17	2.18	2.20	2.21	2.22	2.23	2.24	2.25	2.26
21	2.27	2.28	2.29	2.30	2.31	2.33	2.34	2.35	2.36	2.37
22	2.38	2.39	2.40	2.41	2.42	2.43	2.44	2.46	2.47	2.48
23	2.49	2.50	2.51	2.52	2.53	2.54	2.55	2.56	2.57	2.59
24	2.60	2.61	2.62	2.63	2.64	2.65	2.66	2.67	2.68	2.69
25	2.70	2.71	2.73	2.74	2.75	2.76	2.77	2.78	2.79	2.50
26	2.81	2.82	2.83	2.84	2.56	2.87	2.88	2.89	2.90	2.91
27	2.92	2.93	2.94	2.95	2.96	2.97	2.99	3.00	3.01	3.02
28	3.03	3.04	3.05	3.06	3.07	3.08	3.09	3.10	3.11	3.13
29	3.14	3.15	3.16	3.17	3.18	3.19	3.20	3.21	3.22	3.23
30	3.24	3.26	3.27	3.28	3.29	3.30	3.31	3.32	3.33	3.34
31	3.35	3.36	3.37	3.39	3.40	3.41	3.42	$3 \cdot 43$	3.44	3.45
32	3.46	3.47	3.48	3.49	3.50	3.52	3.53	3.54	3.55	3.56
33	3.57	3.58	3.59	3.60	3.61	3.62	3.63	3.64	3.66	3.67
34	3.68	3.69	3.70	3.71	3.72	3.73	3.74	3.75	3.76	377
35	3.79	3.50	3.81	3.82	3.83	3.84	385	3.86	3.87	3.58
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

	BAROME'TER : 675^{mm} (from 679.51 to 677.50).									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	Millim. 0.03	Millim. 0.04	Millim. 0.05	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.0 \mathrm{~S} \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	Millim. 0.10
1	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.19	0.20	0.21
2	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.31	0.32
3	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.40	0.41	0.42
4	0.44	0.45	0.46	0.17	0.48	0.49	0.50	0.51	0.52	0.53
5	0.54	0.56	0.57	0.58	0.59	0.60	0.61	0.62	0.63	0.64
6	0.65	0.66	0.63	0.69	0.70	0.71	0.72	0.73	0.74	0.75
7	0.76	0.77	0.78	0.80	0.81	0.82	0.83	0.84	0.85	0.56
8	0.57	0.58	0.89	0.90	0.92	0.93	0.94	0.95	0.96	0.97
9	0.98	0.99	1.00	1.01	1.02	1.03	1.05	1.06	1.07	1.08
10	1.09	1.10	1.11	1.12	1.13	1.14	1.15	1.17	1.18	1.19
11	1.20	1.21	1.22	1.23	1.24	1.25	1.26	1.27	1.29	1.30
12	1.31	1.32	1.33	1.34	1.35	1.36	1.37	1.38	1.39	1.41
13	1.42	1.43	1.44	1.45	1.46	1.47	1.48	1.49	1.50	1.51
14	1.53	1.54	1.55	1.56	1.57	1.58	1.59	1.60	1.61	1.62
15	1.63	1.65	1.66	1.67	1.68	1.69	1.70	1.71	1.72	1.73
16	1.74	1.75	1.76	1.78	1.79	1.80	1.81	1.82	1.83	1.84
17	1.85	1.86	1.87	1.88	1.90	1.91	1.92	1.93	1.94	1.95
18	1.96	1.97	1.98	1.99	2.00	2.02	2.03	2.04	2.05	2.06
19	2.07	2.08	2.09	2.10	2.11	2.12	2.14	2.15	2.16	2.17
20	2.18	2.19	2.20	2.21	2.22	2.23	2.24	2.26	2.27	2.28
21	2.29	2.30	2.31	2.32	2.33	2.34	2.35	2.36	2.38	2.39
22	2.40	2.41	2.42	2.43	2.44	2.45	2.46	2.47	2.48	2.49
23	2.51	2.52	2.53	2.54	2.55	2.56	2.57	2.58	2.59	2.60
24	2.61	2.63	2.64	2.65	2.66	2.67	2.68	2.69	2.70	2.71
25	2.72	2.73	2.75	2.76	2.77	2.78	2.79	2.80	2.81	2.82
26	2.93	2.84	2.85	2.87	2.88	2.89	2.90	2.91	2.92	2.93
27	2.94	2.95	2.96	2.97	2.99	3.00	3.01	3.02	3.03	3.04
28	3.05	3.06	3.07	3.08	3.09	3.10	3.12	3.13	$3 \cdot 14$	3.15
29	3.16	3.17	3.18	3.19	3.20	3.21	3.22	3.24	3.25	3.26
30	3.27	3.28	3.29	3.30	3.31	3.32	3.33	3.34	3.36	3.37
31	3.38	3.39	3.40	3.41	3.42	3.43	3.44	3.45	3.46	3.48
32	3.49	3.50	3.51	3.52	3.53	3.54	3.55	3.56	3.57	3.58
- 33	3.60	3.61	3.62	3.63	3.64	3.65	3.66	3.67	3.68	3.69
34	3.70	3.72	3.73	3.74	3.75	3.76	3.77	3.78	3.79	3.50
35	3.51	3.82	3.83	3.85	3.86	3.87	3.88	3.89	3.90	3.91
	0.	1.	2.	3.	4.	5.	6.	7.	8.	D.

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : $680{ }^{\text {mm. }}$ (from 677.51 to 682.50).									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
\bigcirc	Millim	Millim.	Millim.	Millim.	Millim	Millim.	Millim.	Millim.	Millim.	Millim.
0	0.00	0.01	0.02	0.03	0.01	0.05	0.07	0.08	0.09	0.10
1	0.11	0.12	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.21
2	0.22	0.23	0.24	0.25	0.26	0.27	0.29	0.30	0.31	0.32
3	0.33	0.34	0.35	0.36	0.37	0.38	0.40	0.41	0.42	0.43
4	0.44	0.45	0.46	0.47	0.48	0.49	0.50	0.52	0.53	0.54
5	9.55	0.56	0.57	0.58	0.59	0.60	0.61	0.63	0.64	0.65
6	0.66	0.67	0.68	0.69	0.70	0.71	0.72	0.74	0.75	0.76
7	0.77	0.78	0.79	0.80	0.81	0.82	0.83	0.85	0.86	0.87
8	0.88	0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.97	0.98
9	0.99	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.08	1.09
10	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.19	1.20
11	1.21	1.22	1.23	1.24	1.25	1.26	1.27	1.28	1.30	1.31
12	1.32	1.33	1.34	1.35	1.36	1.37	1.38	1.39	1.40	1.42
13	1.43	1.44	1.45	1.46	1.47	1.48	1.49	1.50	1.51	1.53
14	1.54	1.55	1.56	1.57	1.58	1.59	1.60	1.61	1.62	1.64
15	1.65	1.66	1.67	1.68	1.69	1.70	1.71	1.72	1.73	1.75
16	1.76	1.77	1.78	1.79	1.80	1.81	1.82	1.83	1.84	1.85
17	1.87	1:88	1.89	1.90	1.91	1.92	1.93	1.94	1.95	1.96
18	1.98	1.99	2.00	2.01	2.02	2.03	2.04	2.05	2.06	2.07
19	2.09	2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.17	2.18
20	2.20	2.21	2.22	2.23	2.24	2.25	2.26	2.27	2.28	2.29
21	2.30	2.32	2.33	2.34	2.35	2.36	2.37	2.38	2.39	2.40
22	2.41	2.43	2.44	2.45	2.46	2.47	2.48	2.49	2.50	2.51
23	2.52	2.54	2.55	2.56	2.57	2.58	2.59	2.60	2.61	2.62
24	2.63	2.65	2.66	2.67	2.68	2.69	2.70	2.71	2.72	2.73
25	2.74	2.75	2.77	2.78	2.79	2.80	2.81	2.82	2.83	2.84
26	2.85	2.86	2.88	2.89	2.90	2.91	2.92	2.93	2.94	2.95
27	2.96	2.97	2.99	3.00	3.01	3.02	3.03	3.04	3.05	3.06
28	3.07	3.08	3.10	3.11	3.12	3.13	3.14	3.15	3.16	3.17
29	3.18	3.19	3.20	3.22	3.23	3.24	3.25	3.26	3.27	3.28
30	3.29	3.30	3.31	3.33	3.34	3.35	3.36	3.37	3.38	3.39
31	3.40	3.41	3.42	3.44	3.45	3.46	3.47	3.48	3.49	3.50
32	3.51	3.52	3.53	3.54	3.56	3.57	3.58	3.59	3.60	3.61
33	3.62	3.63	3.64	3.65	3.67	3.68	3.69	3.70	3.71	3.72
34	3.73	3.74	3.75	3.76	3.78	3.79	3.80	3.81	3.82	3.83
35	3.84	3.85	3.86	3.87	3.89	3.90	3.91	3.92	3.93	3.94
	©.	1.	2.	3.	4.	5.	6.	7 。	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROME'TER : $685{ }^{\text {mm. }}$ (from 682.51 to 687.50)									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7 \%	8.	9.
\bigcirc	Millim.	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{array}{\|c} \text { Millim } \\ 0.06 \end{array}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Mıllim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	0.11	0.12	0.13	0.14	0.15	0.17	0.18	0.19	0.20	0.21
2	0.22	0.23	0.24	0.25	0.27	0.28	0.29	0.30	0.31	0.32
3	0.33	0.34	0.35	0.36	0.38	0.39	0.40	0.41	0.42	0.43
4	0.44	0.45	0.46	0.48	0.49	0.50	0.51	0.52	0.53	0.54
5	0.55	0.56	0.57	0.59	0.60	0.61	0.62	0.63	0.64	0.65
6	0.66	0.67	0.69	0.70	0.71	0.72	0.73	0.74	0.75	0.76
7	0.77	0.78	0.80	0.81	0.82	0.53	0.84	0.85	0.86	0.87
8	0.88	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98
9	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09
10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.21
11	1.22	1.23	1.24	1.25	1.26	1.27	1.28	1.29	1.30	1.32
12	1.33	1.34	1.35	1.36	1.37	1.38	1.39	1.40	1.42	1.43
13	1.44	1.45	1.46	1.47	1.48	1.49	1.50	1.51	1.53	1.54
14	1.55	1.56	1.57	1.58	1.59	1.60	1.61	1.63	1.64	1.65
15	1.66	1.67	1.68	1.69	1.70	1.71	1.72	1.74	1.75	1.76
16	1.77	1.78	1.79	1.50	1.81	1.82	1.84	1.55	1.86	1.87
17	1.88	1.89	1.90	1.91	1.92	1.93	1.95	1.96	1.97	1.98
18	1.99	2.00	2.01	2.02	2.03	2.05	2.06	2.07	2.08	2.09
19	2.10	2.11	2.12	2.13	2.14	2.16	2.17	2.18	2.19	2.20
20	2.21	2.22	2.23	2.24	2.26	2.27	2.28	2.29	2.30	2.31
21	2.32	2.33	2.34	2.35	2.37	2.38	2.39	2.40	2.41	2.42
22	2.43	2.44	2.45	2.47	2.48	2.49	2.50	2.51	2.52	2.53
23	2.54	2.55	2.56	2.58	2.59	2.60	2.61	2.62	2.63	2.64
24	2.65	2.66	2.68	2.69	2.70	2.71	2.72	2.73	2.74	2.75
25	2.76	2.78	2.79	2.50	2.81	2.82	2.83	2.84	2.55	2.86
26	2.57	2.89	2.90	2.91	2.92	2.93	2.94	2.95	2.96	2.97
27	2.99	3.00	3.01	3.02	3.03	3.04	3.05	3.06	3.07	3.08
28	3.10	3.11	3.12	3.13	3.14	3.15	3.16	3.17	3.18	3.20
29	3.21	3.22	3.23	3.24	3.25	3.26	3.27	3.28	3.29	5.31
30	3.32	3.33	3.34	3.35	3.36	3.37	3.38	3.39	3.41	3.42
31	3.43	3.44	3.45	3.46	3.47	3.48	3.49	3.50	3.52	3.53
32	3.54	3.55	3.56	3.57	3.58	3.59	3.60	3.62	3.63	3.64
33	3.65	3.66	3.67	3.68	3.69	3.70	3.71	3.73	3.74	3.75
34	3.76	3.77	3.78	3.79	3.80	3.81	3.83	3.84	3.8.5	3.86
35	3.87	3.58	3.59	3.90	3.91	3.92	3.94	3.95	3.96	3.97
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi. } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : 690^{mm}. (from 687.51 to 69250).									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.04 \end{aligned}$	$\begin{array}{\|c} \text { Millin. } \\ 0.06 \end{array}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	Millim. 0.09	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	0.11	0.12	0.13	0.14	0.16	0.17	0.18	0.19	0.20	0.21
2	0.22	0.23	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.32
3	0.33	0.35	0.36	0.37	0.38	0.39	0.40	0.41	0.42	0.43
4	0.45	0.46	0.47	0.48	0.49	0.50	0.51	0.52	0.53	0.55
5	0.56	0.57	0.58	0.59	0.60	0.61	0.62	0.63	0.65	0.66
6	0.67	0.68	0.69	0.70	0.71	0.72	0.74	0.75	0.76	0.77
7	0.78	0.79	0.85	0.81	0.82	0.84	0.85	0.86	0.87	0.88
8	0.59	0.90	0.91	0.92	0.94	0.95	0.96	0.97	0.98	0.99
9	1.00	1.01	1.02	1.04	1.05	1.06	1.07	1.08	1.09	1.10
10	1.11	1.12	1.14	1.15	1.16	1.17	1.18	1.19	1.20	1.21
11	1.23	1.24	1.25	1.26	1.27	1.28	1.29	1.20	1.31	1.33
12	1.34	1.35	1.36	1.37	1.38	1.39	1.40	1.41	1.43	1.44
13	1.45	1.46	1.47	1.48	1.49	1.50	1.51	1.53	1.54	1.55
14	1.56	1.57	1.58	1.59	1.60	1.61	1.63	1.64	1.65	1.66
15	1.67	1.68	1.69	1.70	1.72	1.73	1.74	1.75	1.76	1.77
16	1.78	1.79	1.80	1.82	1.83	1.84	1.85	1.86	1.87	1.88
17	1.89	1.90	1.92	1.93	1.94	1.95	1.96	1.97	1.98	1.99
18	2.00	2.02	2.03	2.0 .1	2.05	2.06	2.07	2.08	2.09	2.10
19	2.12	2.13	2.14	2.15	2.16	2.17	2.18	2.19	2.21	2.22
20	2.23	2.24	2.25	2.26	2.27	2.28	2.29	2.31	2.32	2.33
21	2.34	2.35	2.36	2.37	2.38	2.39	2.41	2.42	2.43	2.44
22	2.45	2.46	2.47	2.48	2.49	2.51	2.52	2.53	2.54	2.55
23	2.56	2.57	2.58	2.59	2.61	2.62	2.63	2.64	2.65	2.66
24	2.67	2.68	2.70	2.71	2.72	2.73	2.74	2.75	2.76	2.77
25	2.78	2.80	2.81	2.82	2.83	2.84	2.85	2.86	2.87	2.58
26	2.90	2.91	2.92	2.93	2.94	2.95	2.96	2.97	2.98	3.00
27	3.01	3.02	3.03	3.04	3.05	3.06	3.07	3.08	3.10	3.11
28	3.12	3.13	3.14	3.15	3.16	3.17	3.19	3.20	3.21	3.22
29	2.23	3.24	3.25	3.26	3.27	3.29	3.30	3.31	3.32	3.33
30	3.34	3.35	3.36	3.37	3.39	3.40	3.41	3.42	3.43	3.44
31	3.45	3.46	3.47	3.49	3.50	3.51	3.52	3.53	3.54	3.55
32	3.56	3.57	3.59	3.60	3.61	3.62	3.63	3.64	3.65	3.66
33	3.68	3.69	3.70	3.71	3.72	3.73	3.74	3.75	3.76	3.78
3.4	3.79	3.80	3.81	3.82	3.83	3.84	3.85	3.86	3.88	3.89
35	3.90	3.91	3.92	3.93	3.94	3.95	3.96	3.98	3.99	4.00
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Centigrate Degrees.	BAROME'TER : $695{ }^{\text {mm. }}$ (from 692.51 to 697.50)									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{array}{\|c} \hline \text { Millim. } \\ 0.00 \\ \hline \end{array}$	$\begin{gathered} \text { Nillim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.03 \end{aligned}$	$\begin{gathered} \text { Millim } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	0.11	0.12	0.13	0.15	0.16	0.17	0.18	0.19	0.20	0.21
2	0.22	0.24	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.33
3	0.34	0.35	0.36	0.37	0.38	0.39	0.40	0.42	0.43	0.44
4	0.45	0.46	0.47	0.48	0.49	0.50	0.52	0.53	0.54	0.55
5	0.56	0.57	0.58	0.59	0.61	0.62	0.63	0.64	0.65	0.66
6	0.67	0.68	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77
7	0.79	0.80	0.81	0.52	0.83	0.54	0.85	0.86	0.87	0.89
8	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.98	0.99	1.00
9	1.01	1.02	1.03	1.04	1.05	1.07	1.08	1.09	1.10	1.11
10	1.12	1.13	1.14	1.16	1.17	1.18	1.19	1.20	1.21	1.22
11	1.23	1.25	1.26	1.27	1.28	1.29	1.30	1.31	1.32	1.33
12	1.35	1.36	1.37	1.38	1.39	1.40	1.41	1.42	1.44	1.45
13	1.46	1.47	1.48	1.49	1.50	1.51	1.52	1.54	1.55	1.56
14	1.57	1.58	1.59	1.60	1.61	1.63	1.64	1.65	1.66	1.67
15	1.68	1.69	1.71	1.72	1.73	1.74	1.75	1.76	1.77	1.78
16	1.79	1.81	1.82	1.83	1.84	1.85	1.86	1.87	1.88	1.90
17	1.91	1.92	1.93	1.94	1.95	1.96	1.97	1.99	2.00	2.01
18	2.02	2.03	2.04	2.05	2.06	2.08	2.09	2.10	2.11	2.12
19	2.13	2.14	2.15	2.16	2.18	2.19	2.20	2.21	2.22	2.23
20	2.24	2.25	2.27	2.28	2.29	2.30	2.31	2.32	2.33	2.34
21	2.36	2.37	2.38	2.39	2.40	2.41	2.42	2.43	2.45	2.16
22	2.47	2.48	2.49	2.50	2.51	2.52	2.53	2.55	2.56	2.57
23	2.58	2.59	2.60	2.61	2.62	2.64	2.65	2.66	2.67	2.65
24	2.69	2.70	2.71	2.73	2.74	2.75	2.76	2.77	2.75	2.79
25	2.50	2.82	2.83	2.84	2.85	2.86	2.57	2.88	2.89	2.91
26	2.92	2.93	2.94	2.95	2.96	2.97	2.98	3.00	3.01	3.02
27	3.03	3.04	3.05	3.06	3.07	3.08	3.10	3.11	3.12	3.13
28	3.14	3.15	3.16	3.17	3.19	3.20	3.21	3.22	3.23	3.24
29	3.25	3.26	3.28	3.29	3.30	3.31	3.32	3.33	3.34	3.35
30	3.37	3.38	3.39	3.40	3.41	3.42	3.43	3.44	3.45	3.47
31	3.48	3.49	3.50	3.51	3.52	3.53	3.54	3.56	3.57	3.58
32	3.59	3.60	3.61	3.62	3.63	3.65	3.66	3.67	3.68	3.69
33	3.70	3.71	3.72	3.74	3.75	3.76	3.77	3.78	3.79	3.80
34	3.81	3.83	3.84	3.85	3.86	3.57	3.58	3.59	3.90	3.91
35	3.93	3.94	3.95	3.96	3.97	3.98	3.99	4.00	4.02	4.03
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : $700^{\text {nin. }}$ (from 697.51 to 702.50)									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
0	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.02 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 0.03 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	0.11	0.12	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21
2	0.23	024	0.25	0.26	0.27	0.28	0.29	0.31	0.32	0.33
3	0.34	0.35	0.36	0.37	0.38	0.40	0.41	0.42	0.43	0.44
4	0.4.)	0.46	0.17	0.49	0.50	0.51	0.52	0.53	0.54	0.55
5	0.56	0.58	0.59	0.60	0.61	0.62	0.63	0.64	0.66	0.67
6	0.68	0.69	0.70	0.71	0.72	0.73	0.75	0.76	0.77	0.78
7	0.79	0.50	0.81	0.82	0.84	0.85	0.86	0.57	0.88	0.89
8	0.90	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.01
9	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.10	1.11	1.12
10	1.13	1.14	1.15	1.16	1.17	1.19	1.20	1.21	1.22	1.23
11	1.24	1.25	1.27	1.28	1.29	1.30	1.31	1.32	1.33	1.34
12	1.36	1.37	1.38	1.39	1.40	1.41	1.42	1.43	1.45	1.46
13	1.47	1.45	1.49	1.50	1.51	1.53	1.54	1.55	1.56	1.57
14	1.58	1.59	1.60	1.62	1.63	1.64	1.65	1.66	1.67	1.68
15	1.69	1.71	1.72	1.73	1.74	1.75	1.76	1.77	1.79	1.50
16	1.81	1.82	1.83	1.84	1.85	1.86	1.88	1.89	1.90	1.91
17	1.92	1.93	1.94	1.95	1.97	1.98	1.99	2.00	2.01	2.02
18	2.03	2.04	2.06	2.07	2.08	2.09	2.10	2.11	2.12	2.14
19	2.15	2.16	2.17	2.18	2.19	2.20	2.21	2.23	2.24	2.25
20	2.26	2.27	2.28	2.99	2.30	2.32	2.33	2.34	2.35	2.36
21	2.37	2.35	2.40	2.41	2.42	2.43	2.44	2.45	2.46	2.17
22	2.49	2.50	2.51	2.52	2.53	2.54	2.5 .5	2.56	2.58	2.59
23	2.60	2.61	2.62	2.63	2.64	2.66	2.67	2.68	2.69	2.70
24	2.71	2.72	2.73	2.75	2.76	2.77	2.78	2.79	2.80	2.81
25	2.82	2.84	2.85	2.86	2.87	2.88	2.89	2.90	2.91	2.93
26	2.94	2.95	2.96	2.97	2.98	2.99	3.01	3.02	3.03	3.04
27	3.05	3.06	3.07	3.08	3.10	3.11	3.12	3.13	3.14	3.15
28	3.16	3.17	3.19	3.20	3.21	3.22	3.23	3.24	3.25	3.27
29	3.28	3.29	3.30	3.31	3.32	3.33	3.34	3.36	3.37	3.38
30	3.39	3.40	3.41	3.42	3.43	3.45	3.46	3.47	3.48	3.49
31	3.50	3.51	3.52	3.54	3.55	3.56	3.57	3.58	3.59	3.60
32	3.62	3.63	3.64	3.6 .5	3.66	3.67	3.68	3.69	3.71	3.72
33	3.73	3.74	3.75	3.76	3.77	3.78	3.80	3.81	3.82	3.83
34	3.84	3.55	3.86	3.88	3.89	3.90	3.91	3.92	3.93	3.94
35	3.95	3.97	3.98	3.99	4.00	4.01	4.02	4.03	4.04	4.06
	O.	1.	2.	3.	4.	5.	6.	\%.	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : $705{ }^{\text {mm. }}$ (from 702.51 to 707.50) .									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.05 \end{aligned}$	$\begin{array}{\|c\|c} \text { Millim. } \\ 0.06 \end{array}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.0 \mathrm{~s} \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	0.11	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.22
2	0.23	0.24	0.25	0.26	0.27	0.28	0.30	0.31	0.32	033
3	0.34	0.35	0.36	0.38	0.39	0.40	0.41	0.42	0.43	0.44
4	0.46	0.47	0.18	0.19	0.50	0.51	0.52	0.53	0.55	0.56
5	0.57	0.58	0.59	0.60	0.61	0.63	0.64	0.65	0.66	0.67
6	0.68	0.69	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.79
7	0.50	0.81	0.82	0.83	0.84	0.85	0.86	0.88	0.89	0.90
8	0.91	0.92	0.93	0.94	0.96	0.97	0.98	0.99	1.00	1.01
9	1.02	1.04	1.05	1.06	1.07	1.08	109	1.10	1.12	1.13
10	1.14	1.15	1.16	1.17	1.18	1.19	1.21	1.22	1.23	1.24
11	1.25	1.26	1.27	1.29	1.30	1.31	1.32	1.33	1.34	1.35
12	1.37	1.38	1.39	1.40	1.41	1.42	1.43	1.45	1.46	1.47
13	1.48	1.49	1.50	1.51	1.52	1.54	1.55	1.56	1.57	1.58
14	1.59	1.60	1.62	1.63	1.64	1.65	1.66	1.67	1.68	1.70
15	1.71	1.72	1.73	1.74	1.75	1.76	1.78	1.79	1.80	1.81
16	1.82	1.83	1.84	1.85	1.57	1.58	1.89	1.90	1.91	1.92
17	1.93	1.95	1.96	1.97	1.98	1.99	2.00	2.01	2.03	2.04
18	2.05	2.06	2.07	2.08	2.09	2.11	2.12	2.13	2.14	2.15
19	2.16	2.17	2.18	2.20	2.21	2.22	2.23	2.24	2.25	2.26
20	2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.36	2.37	2.38
21	2.39	2.40	2.41	2.42	2.44	2.45	2.46	2.47	2.48	2.49
22	2.50	2.51	2.53	2.54	2.55	2.56	2.57	2.58	2.59	2.61
23	2.62	2.63	2.64	2.6 .5	2.66	2.67	2.69	2.70	2.71	2.72
24	2.73	2.74	2.75	2.77	2.78	2.79	2.80	2.81	2.52	2.83
25	2.84	2.86	2.87	2.85	2.89	2.90	2.91	2.92	2.94	2.95
26	2.96	2.97	2.98	2.99	3.00	3.02	3.03	3.04	3.05	3.06
27	3.07	3.08	3.10	3.11	3.12	3.13	3.14	3.15	3.16	3.17
28	3.19	3.20	3.21	3.22	3.23	3.24	3.25	3.27	3.28	3.29
29	3.30	3.31	3.32	3.33	3.35	3.36	3.37	3.38	3.39	3.40
30	3.41	3.42	3.44	3.45	3.46	3.47	3.48	3.49	3.50	3.52
31	3.53	3.54	3.55	3.56	3.57	3.58	3.60	3.61	3.62	3.63
32	3.64	3.65	3.66	3.65	3.69	3.70	3.71	3.72	3.73	3.74
33	3.75	3.77	3.78	3.79	3.80	3.81	3.82	3.53	3.55	3.86
34	3.87	3.58	3.89	3.90	3.91	3.93	3.94	3.95	3.96	3.97
35	3.98	3.99	4.01	4.02	4.03	4.04	4.05	4.06	4.07	4.08
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Centigraile Degrees	BAROMETER : $710^{\mathrm{mm} .}$ (from 707.51 to 712.50)									
	Tenths of Degrees.									
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.
0	Millim. 0.00	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	0.11	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.21	0.22
2	0.23	0.24	0.25	0.26	0.25	0.29	0.30	0.31	0.32	0.33
3	0.34	0.36	0.37	0.38	0.39	0.40	0.41	0.42	0.44	0.45
4	0.46	0.47	0.48	0.49	0.50	0.52	0.53	0.54	0.5.)	0.56
5	0.57	0.58	0.60	0.61	0.62	0.63	0.64	0.63	0.66	0.68
6	0.69	0.70	0.71	0.72	0.73	0.74	0.76	0.77	0.78	0.79
7	0.80	0.81	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.91
8	0.92	0.93	0.94	0.95	0.96	0.97	0.99	1.00	1.01	1.02
9	1.03	1.04	1.05	1.07	1.08	1.09	1.10	1.11	1.12	1.13
10	1.15	1.16	1.17	1.18	1.19	1.20	1.21	1.23	1.24	1.25
11	1.26	1.27	1.28	1.29	1.31	1.32	1.33	1.34	1.35	1.36
12	1.38	1.39	1.40	1.41	1.42	1.43	1.44	1.46	1.47	1.45
13	1.49	1.50	1.51	1.52	1.54	1.55	1.56	1.57	1.58	1.59
14	1.60	1.62	1.63	1.64	1.65	1.66	1.67	1.68	1.70	1.71
15	1.72	1.73	1.74	1.75	1.76	1.78	1.79	1.80	1.81	1.82
16	1.83	1.84	1.86	1.87	1.88	1.89	1.90	1.91	1.93	1.94
17	1.95	1.96	1.97	1.98	1.99	2.01	2.02	2.03	2.04	2.05
18	2.06	2.07	2.09	2.10	2.11	2.12	2.13	2.14	2.15	2.17
19	2.18	2.19	2.20	2.21	2.22	2.23	2.2 .5	2.26	2.27	2.28
20	2.29	2.30	2.31	2.33	2.34	2.35	2.36	2.37	2.38	2.40
21	2.41	2.42	2.43	2.44	2.45	2.46	2.48	2.49	2.50	2.51
22	2.52	2.53	2.54	2.56	2.57	2.58	2.59	2.60	2.61	2.62
23	2.64	2.65	2.66	2.67	2.68	2.69	2.70	2.72	2.73	2.74
24	2.75	2.76	2.77	2.78	2.80	2.81	2.82	2.83	2.84	2.85
25	2.86	2.88	2.89	2.90	2.91	2.92	2.93	2.95	2.96	2.97
26	2.98	2.99	3.00	3.01	3.03	3.04	3.05	3.06	3.07	3.08
27	3.09	3.11	3.12	3.13	3.14	3.15	3.16	3.17	3.19	3.20
28	3.21	3.22	3.23	3.24	3.25	3.27	3.28	3.29	3.30	3.31
29	3.32	3.33	3.35	3.36	3.37	3.38	3.39	3.40	3.41	3.43
30	3.44	3.45	3.46	3.47	3.48	3.50	3.51	3.52	3.53	3.54
31	3.55	3.56	3.58	3.59	3.60	3.61	3.62	3.63	3.64	3.66
32	3.67	3.68	3.69	3.70	3.71	3.72	3.74	3.75	3.76	3.77
33	3.78	3.79	3.80	3.82	3.83	3.84	3.85	3.86	3.87	3.58
34	3.90	3.91	3.92	3.93	3.94	3.95	3.96	3.98	3.99	4.00
35	4.01	4.02	4.03	4.05	4.06	4.07	4.08	4.09	4.10	4.11
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { grate } \\ \text { Degrees } \end{gathered}$	BAROMETER : 715 ${ }^{\text {min. }}$ (from 712.51 to 717.50) .									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{gathered} \circ \\ 0 \end{gathered}$	$\begin{gathered} \text { Millitn. } \\ 0.00 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.01 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Tillim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.0 \mathrm{~s} \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.20	0.21	0.22
2	0.23	0.24	0.25	0.27	0.28	0.29	0.30	0.31	0.32	0.33
3	0.35	0.36	0.37	0.38	0.39	0.40	0.42	0.43	0.44	0.45
4	0.16	0.47	0.48	0.50	0.51	0.52	0.53	0.54	0.55	0.57
5	0.58	0.59	0.60	0.61	0.62	0.63	0.65	0.66	0.67	0.68
6	0.69	0.70	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.80
7	0.81	0.82	0.83	0.84	0.85	0.87	0.88	0.89	0.90	0.91
8	0.92	0.93	0.95	0.96	0.97	0.98	0.99	1.00	1.02	1.03
9	1.04	1.05	1.06	1.07	1.08	1.10	1.11	1.12	1.13	1.14
10	1.15	1.17	1.18	1.19	1.20	1.21	1.22	1.23	1.25	1.26
11	1.27	1.28	1.29	1.30	1.32	1.33	1.34	1.35	1.36	1.37
12	1.35	1.40	1.41	1.42	1.43	1.44	1.45	1.47	1.48	1.49
13	1.50	1.51	1.52	1.53	1.55	1.56	1.57	1.58	1.59	1.60
11	1.62	1.63	1.64	1.65	1.66	1.67	1.65	1.70	1.71	1.72
15	1.73	1.71	1.75	1.77	1.78	1.79	1.80	1.81	1.82	1.83
16	1.85	1.56	1.87	1.88	1.89	1.90	1.92	1.93	1.94	1.95
17	1.96	1.97	1.98	2.00	2.01	2.02	2.03	2.04	2.05	2.07
18	2.08	2.09	2.10	2.11	2.12	2.13	2.15	2.16	2.17	2.18
19	2.19	2.20	2.22	2.23	2.24	2.25	2.26	2.27	2.28	2.30
20	2.31	2.32	2.33	2.34	2.35	2.37	2.38	2.39	2.40	2.41
21	2.42	2.13	2.45	2.46	2.47	2.45	2.49	2.50	2.52	2.53
22	2.54	2.55	2.56	2.57	2.58	2.60	2.61	2.62	2.63	2.64
23	2.65	2.67	2.68	2.69	2.70	2.71	2.72	2.74	2.75	2.76
24	2.77	2.75	2.79	2.80	2.82	2.83	2.84	2.85	2.86	2.87
25	2.89	2.90	2.91	2.92	2.93	2.94	2.95	2.97	2.98	2.99
26	3.00	3.01	3.02	3.04	3.05	3.06	3.07	3.08	3.09	3.10
27	3.12	3.13	3.14	3.15	3.16	3.17	3.19	3.20	3.21	3.22
28	3.23	3.24	3.25	327	3.28	3.29	3.30	3.31	3.32	3.34
29	3.35	3.36	3.37	3.38	3.39	3.40	3.42	3.43	3.44	3.45
30	3.46	3.47	3.49	3.50	3.51	3.52	3.53	3.54	3.55	3.57
31	3.58	3.59	3.60	3.61	3.62	3.64	3.65	3.66	3.67	3.68
32	3.69	3.70	3.72	3.73	3.74	3.75	3.76	3.77	3.79	3.80
33	3.81	3.92	3.83	3.84	3.55	3.57	3.88	3.89	3.90	3.41
34	3.92	394	3.95	3.96	3.97	3.98	3.99	4.00	4.02	4.03
35	4.04	4.05	4.06	4.07	4.09	4.10	4.11	4.12	4.13	4.14
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : 720 mm (from 717.51 to 722.50)									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{aligned} & \text { Mıllim. } \\ & 0.01 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Miilim. } \\ 0.03 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.05 \end{aligned}$	$\begin{array}{\|c\|c} \text { Millim } \\ 0.06 \end{array}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$
1	0.12	0.13	0.14	0.15	0.16	0.17	0.19	0.20	0.21	0.22
2	0.23	0.24	0.26	0.27	0.28	0.29	0.30	0.31	0.33	0.34
3	0.35	0.36	0.37	0.38	0.40	0.11	0.42	0.43	0.44	0.45
4	0.46	0.48	0.49	0.50	0.51	0.52	0.53	0.55	0.56	0.57
5	0.58	0.59	0.60	0.62	0.63	0.64	0.65	0.66	0.67	0.69
6	0.70	0.71	0.72	0.73	0.74	0.76	0.77	0.78	0.79	0.80
7	0.81	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.91	0.92
8	0.93	0.94	0.95	0.96	0.98	0.99	1.00	1.01	1.02	1.03
9	1.05	1.06	1.07	1.08	1.09	1.10	1.12	1.13	1.14	1.1.5
10	1.16	1.17	1.19	1.20	1.21	1.22	1.23	1.24	1.26	1.27
11	1.28	1.29	1.30	1.31	1.32	1.34	1.35	1.36	1.37	1.38
12	1.39	1.41	1.42	1.43	1.44	1.45	1.46	1.48	1.49	1.50
13	1.51	1.52	1.53	1.55	1.56	1.57	1.58	1.59	1.60	1.62
14	1.63	1.64	1.65	1.66	1.67	1.69	1.70	1.71	1.72	1.73
15	1.74	1.75	1.77	1.78	1.79	1.80	1.81	1.82	1.84	1.85
16	1.86	1.87	1.88	1.89	1.91	1.92	1.93	1.94	1.95	1.96
17	1.98	1.99	2.00	2.01	2.02	2.03	2.05	2.06	2.07	2.08
18	2.09	2.10	2.11	2.13	2.14	2.15	2.16	2.17	2.18	2.20
19	2.21	2.22	2.23	2.24	2.25	2.27	2.28	2.29	2.30	2.31
20	2.32	2.34	2.35	2.36	2.37	2.38	2.39	2.41	2.42	2.43
21	2.44	2.45	2.46	2.48	2.49	2.50	2.51	2.52	2.53	2.54
22	2.56	2.57	2.58	2.59	2.60	2.61	2.63	2.64	2.65	2.66
23	2.67	2.68	2.70	2.71	2.72	2.73	2.74	2.75	2.77	2.78
24	2.79	2.80	2.81	2.82	2.84	2.85	2.86	2.87	2.88	2.89
25	2.91	2.92	2.93	2.94	2.95	2.96	2.97	2.99	3.00	3.01
26	3.02	3.03	3.04	3.06	3.07	3.08	3.09	3.10	3.11	3.13
27	3.14	3.15	3.16	3.17	3.18	3.20	3.21	3.22	3.23	3.24
25	3.25	3.27	3.28	3.29	3.30	3.31	3.32	3.34	3.35	3.36
29	3.37	3.38	3.39	3.40	3.42	3.43	$3 \cdot 44$	3.45	3.46	5.47
30	3.49	3.50	3.51	3.52	3.53	3.54	3.56	3.57	3.58	3.59
31	3.60	3.61	3.63	3.64	3.65	3.66	3.67	3.68	3.70	3.71
32	3.72	3.73	3.74	3.75	3.77	3.78	3.79	3.80	3.81	3.82
33	3.83	3.85	3.86	3.87	3.88	3.59	3.90	3.92	3.93	3.94
34	3.95	3.96	3.97	3.99	4.00	4.01	4.02	4.03	4.04	4.06
35	4.07	4.08	4.09	4.10	4.11	4.13	4.14	4.15	4.16	4.17
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi. } \\ \text { grate } \\ \text { Degrees } \end{gathered}$	BAROMETER : $725^{\text {nmm. }}$ (from 722.51 to 72750).									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7 .	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Mullim. } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{array}{\|c} \text { Millim. } \\ 0.06 \end{array}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \mathrm{M} \mathrm{H}_{1 \mathrm{lim}} . \\ 0.09 \end{gathered}$	Millim. 0.11
1	0.12	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.21	0.22
2	0.23	0.25	0.26	0.27	0.28	0.29	0.30	0.32	0.33	0.34
3	0.35	0.36	0.37	0.39	0.40	0.41	0.42	0.43	0.44	0.46
4	0.47	0.48	0.49	0.50	0.51	0.53	0.54	0.55	0.56	0.57
5	0.59	0.60	0.61	0.62	0.63	0.64	0.66	0.67	0.68	0.69
6	0.70	0.71	0.73	0.74	0.75	0.76	0.77	0.78	0.80	0.81
7	0.82	0.83	0.84	0.85	0.87	0.88	0.89	0.90	0.91	0.92
8	0.94	0.95	0.96	0.97	0.98	0.99	1.01	1.02	1.03	1.0.4
9	1.05	1.06	1.08	1.09	1.10	1.11	1.12	1.14	1.15	1.16
10	1.17	1.18	1.19	1.21	1.22	1.23	1.24	1.25	1.26	1.28
11	1.29	1.30	1.31	1.32	1.33	1.35	1.36	1.37	1.38	1.39
12	1.40	1.42	1.43	1.44	1.45	1.46	1.47	1.49	1.50	1.51
13	1.52	1.53	1.54	1.56	1.57	1.58	1.59	1.60	1.61	1.63
14	1.64	1.65	1.66	1.67	1.69	1.70	1.71	1.72	1.73	1.74
15	1.76	1.77	1.78	1.79	1.80	1.81	1.83	1.84	1.85	1.86
16	1.87	1.88	1.90	1.91	1.92	1.93	1.94	1.95	1.97	1.98
17	1.99	2.00	2.01	2.02	2.04	2.05	2.06	2.07	2.08	2.09
18	2.11	2.12	2.13	2.14	2.15	2.16	2.18	2.19	2.20	2.21
19	2.22	2.23	2.25	2.26	2.27	2.28	2.29	2.31	2.32	2.33
20	2.34	2.35	2.86	2.38	2.39	2.40	2.41	2.42	2.43	2.45
21	2.46	2.47	2.48	2.49	2.50	2.52	2.53	2.54	2.55	2.56
22	2.57	2.59	2.60	261	2.62	2.63	2.64	2.66	2.67	2.68
23	2.69	2.70	2.71	2.73	2.74	2.75	2.76	2.77	2.78	2.80
24	2.81	2.82	2.83	2.84	2.86	2.87	2.88	2.89	2.90	2.91
25	2.93	2.94	2.95	2.96	2.97	2.98	3.00	3.01	3.02	3.03
26	3.04	3.05	3.07	3.08	3.09	3.10	3.11	3.12	3.14	3.15
27	3.16	3.17	3.18	3.19	3.21	3.22	3.23	3.24	3.25	3.26
28	3.28	3.29	3.30	3.31	3.32	3.33	3.35	3.36	3.37	3.38
29	3.39	3.41	3.42	3.43	3.44	3.45	3.16	3.48	3.49	3.50
30	3.51	3.52	3.53	3.55	3.56	3.57	3.58	3.59	3.60	3.62
31	3.63	3.64	3.65	3.66	3.67	3.69	3.70	3.71	3.72	3.73
32	3.74	3.76	3.77	3.78	3.79	3.80	3.81	3.83	3.84	3.55
33	3.86	3.87	3.88	3.90	3.91	3.92	3.93	3.94	3.96	3.97
34	3.98	3.99	4.00	4.01	4.03	4.04	4.05	4.06	4.07	4.08
35	4.10	4.11	4.12	4.13	4.14	4.15	4.17	4.18	4.19	4.20
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi. } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : $730^{\text {mm. }}$ (from 727.51 to 732.50) .									
	Tenths of Degrees.									
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \hline \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Mıllim. } \\ 0.01 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.02 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 0.01 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.06 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.07 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.09 \end{aligned}$	Millim. 0.11
1	0.12	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.21	0.22
2	0.24	025	0.26	0.27	0.28	0.29	0.31	0.32	0.33	0.34
3	035	0.37	0.38	0.39	0.40	0.41	0.12	0.44	0.45	0.46
4	0.47	0.48	0.49	0.51	0.52	0.53	0.54	0.55	0.57	0.58
5	0.59	0.60	0.61	0.62	0.64	0.65	0.66	0.67	0.68	0.70
6	0.71	0.72	0.73	0.74	0.75	0.77	0.78	0.79	0.80	0.81
7	0.82	0.84	0.85	0.86	0.87	0.88	090	0.91	0.92	0.93
8	0.94	0.9.)	0.97	0.98	0.99	1.00	1.01	1.03	1.04	1.05
9	1.06	1.07	1.05	1.10	1.11	1.12	1.13	1.14	1.15	1.17
10	1.18	1.19	1.20	1.21	1.23	1.24	1.25	1.26	1.27	1.28
11	1.30	1.31	1.32	1.33	1.34	1.35	1.37	1.38	1.39	1.40
12	1.41	1.43	1.44	1.45	1.46	1.47	1.48	1.50	1.51	1.52
13	1.53	1.54	1.56	1.57	1.58	1.59	1.60	1.61	1.63	1.64
14	1.65	1.66	1.67	1.68	1.70	1.71	1.72	1.73	1.74	1.76
15	1.77	1.75	1.79	1.80	1.81	1.83	1.84	1.85	1.86	1.87
16	1.89	1.90	1.91	1.92	1.93	1.94	1.96	1.97	1.98	1.99
17	2.00	201	2.03	2.04	2.05	2.06	2.07	2.09	2.10	2.11
18	2.12	2.13	2.14	2.16	2.17	2.18	2.19	2.20	2.22	2.23
19	2.24	2.25	2.26	2.27	2.29	2.30	2.31	2.32	2.33	2.34
20	2.36	2.37	2.38	2.39	2.40	2.42	2.43	2.44	2.45	2.46
21	2.47	2.49	2.50	2.51	2.52	2.53	2.54	2.56	2.57	2.58
22	2.59	2.60	2.62	2.63	2.64	2.65	2.66	2.67	2.69	2.70
23	2.71	2.72	2.73	2.75	2.76	2.77	2.78	2.79	2.80	2.82
24	2.83	2.84	2.85	2.86	2.87	2.89	2.90	2.91	2.92	2.93
25	2.95	2.96	2.97	2.98	2.99	3.01	3.02	3.03	3.04	3.05
26	3.06	3.08	3.09	3.10	3.11	3.12	3.13	3.15	3.16	3.17
27	3.18	3.19	3.20	3.22	3.23	3.24	3.25	3.26	3.28	3.29
28	3.30	3.31	3.32	3.33	3.35	3.36	3.37	3.38	3.39	3.41
29	3.42	3.43	3.44	3.45	3.46	3.48	3.49	3.50	3.51	5.52
30	3.53	3.5.5	3.56	3.57	3.58	3.59	3.61	3.62	3.63	3.64
31	3.65	3.66	3.68	3.69	3.70	3.71	372	3.73	3.75	3.76
32	3.77	3.78	3.79	3.81	3.82	3.83	3.84	3.85	3.56	3.58
33	3.89	3.90	3.91	3.92	3.94	3.95	3.96	3.97	3.98	3.99
34	4.01	4.02	4.03	4.04	4.05	4.06	4.07	4.09	4.10	4.11
35	4.12	4.14	4.15	4.16	4.17	4.18	4.19	4.21	4.22	4.23
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Centigrade Degrees.	BAROMETER : $740{ }^{\text {mm. }}$ (from 737.51 to 742.50)									
	Tenths of Degrees.									
	©.	1	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.0 \mathrm{~s} \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.11 \end{gathered}$
1	0.12	0.13	0.14	0.16	0.17	0.18	0.19	0.20	0.21	0.23
2	0.24	0.25	0.26	0.27	0.29	0.30	0.31	0.32	0.33	0.35
3	0.36	0.37	0.38	0.39	0.41	0.42	0.43	0.44	0.45	0.47
4	0.48	0.49	0.50	0.51	0.53	0.54	0.55	0.56	0.57	0.59
5	0.60	0.61	0.62	0.63	0.64	0.66	0.67	0.68	0.69	0.70
6	0.72	0.73	0.74	0.75	0.76	0.78	0.79	0.50	0.81	0.82
7	0.84	0.85	0.86	0.87	0.88	0.90	0.91	0.92	0.93	0.94
8	0.96	0.97	0.98	0.99	1.00	1.02	1.03	1.04	1.05	1.06
9	1.07	1.09	1.10	1.11	1.12	1.13	1.15	1.16	1.17	1.18
10	1.19	1.21	1.22	1.23	1.24	1.25	1.27	1.28	1.29	1.30
11	1.31	1.33	1.34	1.35	1.36	1.37	1.39	1.40	1.41	1.42
12	1.43	1.45	1.46	1.47	1.48	1.49	1.50	1.52	1.53	1.54
13	1.55	1.56	1.58	1.59	1.60	1.61	1.62	1.64	1.65	1.66
14	1.67	1.68	1.70	1.71	1.72	1.73	1.74	1.76	1.77	1.78
15	1.79	1.80	1.82	1.83	1.84	1.85	1.86	1.88	1.89	1.90
16	1.91	1.92	1.93	1.95	1.96	1.97	1.98	1.99	2.01	2.02
17	2.03	2.04	2.05	2.07	2.08	2.09	2.10	2.11	2.13	2.14
18	2.15	2.16	2.17	2.19	2.20	2.21	2.22	2.23	2.25	2.26
19	2.27	2.28	2.29	2.31	2.32	2.33	2.34	2.35	2.36	2.38
20	2.39	2.40	2.41	2.42	2.44	2.45	2.46	2.47	2.48	2.50
21	2.51	2.52	2.53	2.54	2.56	2.57	2.58	2.59	2.60	2.62
22	2.63	2.64	2.65	2.66	2.68	2.69	2.70	2.71	2.72	2.74
23	2.75	2.76	2.77	2.78	2.79	2.81	2.82	2.83	2.84	2.85
24	2.87	2.88	2.89	2.90	2.91	2.93	2.94	2.95	2.96	2.97
25	2.99	3.00	3.01	3.02	3.03	3.05	3.06	3.07	3.08	3.09
26	3.11	3.12	3.13	3.14	3.15	3.17	3.18	3.19	3.20	3.21
27	3.22	3.24	3.25	3.26	3.27	3.28	3.30	3.31	3.32	3.33
28	3.34	3.36	3.37	3.38	3.39	3.40	3.42	3.43	3.44	3.45
29	3.46	3.48	3.49	3.50	3.51	3.52	3.54	3.55	3.56	3.57
30	3.58	3.60	3.61	3.62	3.63	3.64	3.65	3.67	3.68	3.69
31	3.70	3.71	3.73	3.74	3.75	3.76	3.77	3.79	3.80	3.81
32	3.82	3.83	3.85	3.86	3.57	3.88	3.89	3.91	3.92	3.93
33	3.94	3.95	3.97	3.98	3.99	4.00	4.01	4.02	4.04	4.05
34	4.06	4.07	4.08	4.10	4.11	4.12	4.13	4.14	4.16	4.17
35	4.18	4.19	4.20	4.22	4.23	4.24	4.25	4.26	4.28	4.29
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { gratle } \\ \text { Degrees. } \end{gathered}$	BAROMETER : 745^{mm}. (from $\mathbf{7 4 2 . 5 1}$ to $\mathbf{7 4 7 . 5 0}$) .									
	Tenths of Degrees.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { M1llim. } \\ 0.02 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.04 \end{aligned}$	$\begin{gathered} \text { Millim } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.07 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 0.0 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 0.10 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.11 \end{gathered}$
1	0.12	0.13	0.14	0.16	0.17	0.18	0.19	0.20	0.22	0.23
2	0.24	0.25	0.26	0.28	0.29	0.30	0.31	0.32	0.34	0.35
3	0.36	0.37	0.38	0.40	0.41	0.42	0.43	0.44	0.46	0.47
4	0.15	0.49	0.51	0.52	0.53	0.54	0.55	0.57	0.58	0.59
5	0.60	0.61	0.63	0.64	0.65	0.66	0.67	0.69	0.70	0.71
6	0.72	0.73	0.7.)	0.76	0.77	0.78	0.79	0.81	0.82	0.83
7	0.84	0.85	0.57	0.85	0.59	0.90	0.91	0.93	0.94	0.95
8	0.96	0.97	0.99	1.00	1.01	1.02	1.03	1.05	1.06	1.07
9	1.08	1.09	1.11	1.12	1.13	1.14	1.15	1.17	1.18	1.19
10	1.20	1.21	1.23	1.24	1.25	1.26	1.27	1.29	1.30	1.31
11	1.32	1.33	1.35	1.36	1.37	1.38	1.39	1.41	1.42	1.43
12	1.44	1.45	1.47	1.48	1.49	1.50	1.52	1.53	1.54	1.55
13	1.56	1.58	1.59	1.60	1.61	1.62	1.64	1.65	1.66	1.67
14	1.68	1.70	1.71	1.72	1.73	1.74	1.76	1.77	1.78	1.79
15	1.80	1.82	1.83	1.84	1.85	1.86	1.88	1.89	1.90	1.91
16	1.92	1.94	1.95	1.96	1.97	1.98	2.00	2.01	2.02	2.03
17	2.04	2.06	2.07	2.08	2.09	2.10	2.12	2.13	2.14	2.15
18	2.16	2.18	2.19	2.20	2.21	2.22	2.24	2.25	2.26	2.27
19	2.28	2.30	2.31	2.32	2.33	2.34	2.36	2.37	2.38	2.39
20	2.40	2.42	2.43	2.44	2.45	2.46	2.48	2.49	2.50	2.51
21	2.53	2.54	2.55	2.56	2.57	2.59	2.60	2.61	2.62	2.63
22	2.65	2.66	2.67	2.68	2.69	2.71	2.72	2.73	2.74	2.75
23	2.77	2.75	2.79	2.80	2.81	2.83	2.54	2.85	2.86	2.87
24	2.89	2.90	2.91	2.92	2.93	2.95	2.96	2.97	2.98	2.99
25	3.01	3.02	3.03	3.04	3.05	3.07	3.08	3.09	3.10	3.11
26	3.13	3.14	3.15	3.16	3.17	3.19	3.20	3.21	3.22	3.23
27	3.25	3.26	3.27	3.28	3.29	3.31	3.32	3.33	3.34	3.35
28	3.37	3.38	3.39	3.10	3.41	3.43	3.44	3.45	3.46	3.48
29	3.49	3.50	3.51	3.52	3.54	3.55	3.56	3.57	3.58	3.60
30	3.61	3.62	3.63	3.64	3.66	3.67	3.68	3.69	3.70	3.72
31	3.73	3.74	3.75	3.76	3.75	3.79	3.80	3.81	3.82	3.84
32	3.85	3.86	3.87	3.88	3.90	3.91	3.92	3.93	3.94	3.96
33	3.97	3.98	3.99	4.00	4.02	4.03	4.04	4.05	4.06	4.08
34	4.09	4.10	4.11	4.12	4.14	4.15	4.16	4.17	4.18	4.20
35	4.21	4.22	4.23	4.24	4.26	4.27	4.28	4.29	4.30	4.32
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : $750{ }^{\text {mm. }}$ (from 747.51 to 752.50) .									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	$\%$ \%	8.	9.
0	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.01 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 0.02 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.05 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.07 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.0 \mathrm{~s} \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.11 \end{gathered}$
1	0.12	0.13	0.15	0.16	0.17	0.18	0.19	0.21	0.22	0.23
2	0.24	0.25	0.27	0.28	0.29	0.30	0.31	0.33	0.34	0.35
3	0.36	0.35	0.39	0.40	0.41	0.42	0.44	0.45	0.46	0.47
4	0.48	0.50	0.51	0.52	0.53	0.55	0.56	0.57	0.58	0.59
5	0.61	0.62	0.63	0.64	0.65	0.67	0.68	0.69	0.70	0.71
6	0.73	0.74	0.75	0.76	0.77	0.79	0.80	0.81	0.82	0.84
7	0.85	0.86	0.87	0.58	0.90	0.91	0.92	0.93	0.94	0.96
8	0.97	0.98	0.99	1.00	1.02	1.03	1.04	1.05	1.07	1.08
9	1.09	1.10	1.11	1.13	1.14	1.15	1.16	1.17	1.19	1.20
10	1.21	1.22	1.23	1.25	1.26	1.27	1.28	1.30	1.31	1.32
11	1.33	1.34	1.36	1.37	1.38	1.39	1.40	1.42	1.43	1.44
12	1.45	1.46	1.48	1.49	1.50	1.51	1.53	1.54	1.55	1.56
13	1.57	1.59	1.60	1.61	1.62	1.63	1.65	1.66	1.67	1.68
14	1.69	1.71	1.72	1.73	1.74	1.76	1.77	1.78	1.79	1.80
15	1.82	1.83	1.84	1.85	1.86	1.88	1.89	1.90	1.91	1.92
16	1.94	1.95	1.96	1.97	1.99	2.00	2.01	2.02	2.03	2.05
17	2.06	2.07	2.08	2.09	2.11	2.12	2.13	2.14	2.15	2.17
18	2.18	2.19	2.20	2.21	2.23	2.24	2.25	2.26	2.28	2.29
19	2.30	2.31	2.32	2.34	2.35	2.36	2.87	$\underline{2} .38$	2.40	2.41
20	2.42	2.43	2.45	2.46	2.47	2.48	2.49	2.51	2.52	2.53
21	2.54	2.55	2.57	2.58	2.59	2.60	2.61	2.63	2.64	2.65
22	2.66	2.68	2.69	2.70	2.71	2.72	2.73	2.75	2.76	2.77
23	2.78	2.80	2.81	2.82	2.83	2.84	2.86	2.87	2.88	2.89
24	2.91	2.92	2.93	2.94	2.95	2.97	2.98	2.99	3.00	8.01
25	3.03	3.04	3.05	3.06	3.07	3.09	3.10	3.11	3.12	3.14
26	3.15	3.16	3.17	3.18	3.20	3.21	3.22	3.23	3.24	3.26
27	3.27	3.28	3.29	3.30	3.32	3.33	3.34	3.35	3.37	3.38
28	3.39	3.40	3.41	3.43	3.44	3.4.5	3.46	3.47	3.49	3.50
29	3.51	3.52	3.54	3.55	3.56	3.57	3.58	3.60	3.61	3.62
30	3.63	3.64	3.66	3.67	3.68	3.69	3.70	3.72	3.73	3.74
31	3.75	3.76	3.78	3.79	3.80	3.81	3.83	3.84	3.85	3.86
32	3.57	3.59	3.90	3.94	3.92	3.93	3.95	3.96	3.97	3.98
33	3.99	4.01	4.02	4.03	4.04	4.06	4.07	4.08	4.09	4.10
34	4.12	4.13	4.14	4.15	4.16	4.18	4.19	4.20	4.21	4.22
35	4.24	4.25	4.26	4.27	4.29	4.30	4.31	4.32	4.33	4.35
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROME'TER : $760{ }^{\text {mm. }}$ (from 757.51 to 762.50)									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Mıllim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Mıllim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Mıllim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.11 \end{gathered}$
1	0.12	0.13	0.15	0.16	0.17	0.18	0.20	0.21	0.22	0.23
2	0.25	0.26	0.27	0.28	0.29	0.31	0.32	0.33	0.34	0.36
3	0.37	0.38	0.39	0.40	0.42	0.43	0.44	0.45	0.47	0.48
4	0.49	0.50	0.52	0.53	0.54	0.55	0.56	0.58	0.59	0.60
5	0.61	0.63	0.64	0.65	0.66	0.67	0.69	0.70	0.71	0.72
6	0.74	0.75	0.76	0.77	0.79	0.80	0.81	0.82	0.83	0.85
7	0.86	0.87	0.88	0.90	0.91	0.92	0.93	0.94	0.96	0.97
8	0.98	0.99	1.01	1.02	1.03	1.04	1.05	1.07	1.08	1.09
9	1.10	1.12	1.13	1.14	1.15	1.17	1.18	1.19	1.20	1.21
10	1.23	1.24	1.25	1.26	1.28	1.29	1.30	1.31	1.32	1.34
11	1.35	1.36	1.37	1.39	1.40	1.41	1.42	1.44	1.45	1.46
12	1.47	1.48	1.50	1.51	1.52	1.53	1.55	1.56	1.57	1.58
13	1.59	1.61	1.62	1.63	1.64	1.66	1.67	1.68	1.69	1.71
14	1.72	1.73	1.74	1.75	1.77	1.78	1.79	1.50	1.82	1.83
15	1.84	1.85	1.56	1.88	1.89	1.90	1.91	1.93	1.94	1.95
16	1.96	1.97	1.99	2.00	2.01	2.02	2.04	2.05	2.06	2.07
17	2.09	2.10	2.11	2.12	2.13	2.15	2.16	2.17	2.18	2.20
18	2.21	2.22	2.23	2.24	2.26	2.27	2.28	2.29	2.31	2.32
19	2.33	2.34	2.36	2.37	2.38	2.39	2.40	2.42	2.43	2.44
20	2.45	2.47	2.48	2.49	2.50	2.51	2.53	2.54	2.55	2.56
21	2.58	2.59	2.60	2.61	2.63	2.64	2.65	2.66	2.67	2.69
22	2.70	2.71	2.72	2.74	2.75	2.76	2.77	2.78	2.80	2.81
23	2.92	2.83	2.85	2.86	2.87	2.88	2.89	2.91	2.92	2.93
24	2.94	2.96	2.97	2.98	2.99	3.01	3.02	3.03	3.04	3.05
25	3.07	3.08	3.09	3.10	3.12	3.13	3.14	3.15	3.16	3.18
26	3.19	3.20 ,	3.21	3.23	3.24	3.25	3.26	3.28	3.29	3.30
27	3.31	$3 \cdot 32$	3.34	3.35	3.36	3.37	3.39	3.40	3.41	3.42
28	3.43	$3 \cdot 45$	3.46	3.47	3.48	3.50	3.51	3.52	3.53	3.54
29	3.56	3.57	3.58	3.59	3.61	3.62	3.63	3.64	3.66	S.67
30	3.68	3.69	3.70	3.72	3.73	3.74	3.75	3.77	3.78	3.79
31	3.80	3.81	3.83	3.84	3.85	3.86	3.88	3.59	3.90	3.91
32	3.93	3.94	3.95	3.96	3.97	3.99	4.00	4.01	4.02	4.04
33	4.05	4.06	4.07	4.08	4.10	4.11	4.12	4.13	4.15	4.16
34	4.17	$4 \cdot 18$	4.20	4.21	4.22	4.23	4.24	4.26	4.27	4.28
35	4.29	4.31	4.32	4.33	4.34	4.35	4.37	4.35	4.39	4.40
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : 765 ${ }^{\text {mm. }}$ (from 762.51 to 76750).									
	Tenths of Degrees.									
	0.	1.	2.	3.	1.	5.	6.	7.	8.	9.
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{array}{\|c} \hline \text { Millim. } \\ 0.06 \end{array}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millım. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.11 \end{gathered}$
1	0.12	0.14	0.15	0.16	0.17	0.19	0.20	0.21	0.22	0.23
2	0.25	0.26	0.27	0.25	0.30	0.31	0.32	0.33	0.35	0.36
3	0.37	0.38	0.40	0.41	0.42	0.43	0.44	0.46	0.47	0.48
4	0.49	0.51	0.52	0.53	0.54	0.56	0.57	0.58	0.59	0.61
5	0.62	0.63	0.64	0.65	0.67	0.68	0.69	0.70	0.72	0.73
6	0.74	0.75	0.77	0.78	0.79	0.80	0.82	0.53	0.84	0.85
7	0.86	0.88	0.89	0.90	0.91	0.93	09.4	0.95	0.96	0.98
8	0.99	1.00	1.01	1.02	1.04	1.05	1.06	1.07	1.09	1.10
9	1.11	1.12	1.14	1.15	1.16	1.17	1.19	1.20	1.21	1.22
10	1.23	1.25	1.26	1.27	1.28	1.30	1.31	1.32	1.33	1.35
11	1.36	1.37	1.38	1.40	1.41	1.42	1.43	1.4	1.46	1.47
12	1.48	1.49	1.51	1.52	1.53	1.54	1.56	1.57	1.58	1.59
13	1.61	1.62	1.63	1.64	1.65	1.67	1.65	1.69	1.70	1.72
14	1.73	1.74	1.75	1.77	1.78	1.79	1.50	1.82	1.83	1.54
15	1.85	1.86	1.88	1.89	1.90	1.91	1.93	1.94	195	1.96
16	1.98	1.99	2.00	2.01	2.02	2.04	2.05	2.06	2.07	2.09
17	2.10	2.11	2.12	2.14	2.15	2.16	2.17	2.19	2.20	2.21
18	2.22	2.23	2.25	2.26	2.27	2.28	2.30	2.31	2.32	2.33
19	2.35	2.36	2.37	2.38	2.10	2.41	2.42	2.43	2.44	2.46
20	2.47	2.18	2.49	2.51	2.52	2.53	2.54	2.56	2.57	2.58
21	2.59	2.61	2.62	2.63	2.64	2.65	2.67	2.68	2.69	2.70
22	2.72	2.73	2.74	2.75	2.77	2.78	2.79	2.80	2.82	2.83
23	2.84	2.85	2.86	2.88	2.89	2.90	2.91	2.93	2.94	2.95
24	2.96	2.98	2.99	3.00	3.01	3.03	3.04	3.05	3.06	3.07
25	3.09	3.10	3.11	3.12	3.14	3.15	3.16	3.17	3.19	3.20
26	3.21	3.22	3.23	3.25	3.26	3.27	3.28	3.30	3.31	3.32
27	3.33	3.35	3.36	3.37	3.38	3.40	3.41	3.42	3.43	3.44
28	3.46	3.47	3.48	3.49	3.51	3.52	3.53	3.54	3.56	3.57
29	3.58	3.59	3.61	3.62	3.63	3.64	3.65	3.67	3.68	3.69
30	3.70	3.72	3.73	3.74	3.75	3.77	3.78	3.79	3.50	3.82
31	3.83	3.84	3.85	3.86	3.88	389	3.90	3.91	3.93	3.94
32	3.95	3.96	3.98	3.99	4.00	4.01	4.03	4.04	4.05	4.06
33	4.07	4.09	4.10	4.11	4.12	4.14	4.15	4.16	4.17	4.19
34	4.20	4.21	4.22	4.24	4.25	4.26	4.27	4.28	4.30	4.31
35	4.32	4.33	4.35	4.36	4.37	4.38	4.40	4.41	4.42	4.43
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
C					114					

Centigrade Degrees	BAROME'ГER : 770^{mm} (from 767.51 to $77 \mathbf{2} .50$) .									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.02 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.07 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.11 \end{gathered}$
1	0.12	0.14	0.15	0.16	0.17	0.19	0.20	0.21	0.22	0.24
2	0.25	0.26	0.27	0.29	0.30	0.31	0.32	0.34	0.35	0.36
3	0.37	0.39	0.40	0.41	0.42	0.43	0.45	0.46	0.47	0.48
4	0.50	0.51	0.52	0.53	0.55	0.56	0.57	0.58	0.60	0.61
5	0.62	0.63	0.65	0.66	0.67	0.68	0.70	0.71	0.72	0.73
6	0.75	0.76	0.77	0.78	0.50	0.81	0.82	0.53	0.85	0.86
7	0.87	0.58	0.89	0.91	0.92	0.93	0.94	0.96	0.97	0.98
8	0.99	1.01	1.02	1.03	1.04	1.06	1.07	1.08	1.09	1.11
9	1.12	1.13	1.14	1.16	1.17	1.18	1.19	1.21	1.22	1.23
10	1.24	1.26	1.27	1.28	1.29	1.30	1.32	1.33	1.34	1.35
11	1.37	1.38	1.39	1.40	1.42	1.43	1.44	1.45	1.47	1.48
12	1.49	1.50	1.52	1.53	1.54	1.55	1.57	1.58	1.59	1.60
13	1.62	1.63	1.64	1.65	1.67	1.68	1.69	1.70	1.72	1.73
14	1.74	1.75	1.76	1.78	1.79	1.80	1.81	1.83	1.84	1.55
15	1.86	1.88	1.89	1.90	1.91	1.93	1.94	1.95	1.96	1.98
16	1.99	2.00	2.01	2.03	2.04	2.05	2.06	2.08	2.09	2.10
17	2.11	2.13	2.14	2.15	2.16	2.17	2.19	2.20	2.21	2.22
18	2.24	2.25	2.26	2.27	2.29	2.30	2.31	2.32	2.34	2.35
19	2.36	2.37	2.39	2.40	2.41	2.42	2.44	2.45	2.46	2.47
20	2.49	2.50	2.51	2.52	2.54	2.55	2.56	2.57	2.58	2.60
21	2.61	2.62	2.63	2.65	2.66	2.67	2.68	2.70	2.71	2.72
22	2.73	2.75	2.76	2.77	2.78	2.80	2.81	2.82	2.83	2.85
23	2.86	2.87	2.88	2.90	2.91	2.92	2.93	2.95	2.96	2.97
24	2.98	3.00	3.01	3.02	3.03	3.04	3.06	3.07	3.08	3.09
25	3.11	3.12	3.13	3.14	3.16	3.17	3.18	3.19	3.21	3.22
26	3.23	3.24	3.26	3.27	3.28	3.29	3.31	3.32	3.33	3.34
27	3.36	3.37	3.38	3.39	3.41	3.42	3.43	3.44	3.45	3.47
28	3.48	3.49	3.50	3.52	3.53	3.54	3.55	3.57	3.58	3.59
29	3.60	3.62	3.63	3.64	3.65	3.67	3.68	3.69	3.70	3.72
30	3.73	3.74	3.75	3.77	3.78	3.79	3.50	3.82	3.53	3.8 .4
31	3.85	3.87	3.88	3.89	3.90	3.91	3.93	3.94	3.95	3.96
32	3.98	3.99	4.00	4.01	4.03	4.04	4.05	4.06	4.08	4.09
33	4.10	4.11	4.13	4.14	4.15	4.16	4.18	4.19	4.20	4.21
34	4.23	4.24	4.25	4.26	4.28	4.29	4.30	4.31	4.32	4.34
35	4.35	4.36	4.37	4.39	4.40	4.41	4.42	4.44	4.45	4.46
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Centigrade Degrees.	BAROMETER : $775^{\text {mm. }}$ (from 772.51 to 777.50) .									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	Millim. 0.03	$\begin{gathered} \text { Millim. } \\ 0.0 .4 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.05 \end{gathered}$	Millim. 0.06	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.11 \end{gathered}$
1	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.21	0.23	0.24
2	0.25	0.26	0.28	0.29	0.30	0.31	0.33	0.3.1	0.35	0.36
3	0.38	0.39	0.40	0.41	0.43	0.44	0.45	0.16	0.48	0.49
4	0.50	0.51	0.53	0.54	0.55	0.56	0.58	0.59	0.60	0.61
5	0.63	0.64	0.65	0.66	0.68	0.69	0.70	0.71	0.73	0.74
6	0.75	0.76	0.78	0.79	0.80	0.81	0.83	0.84	0.85	0.86
7	0.88	0.89	0.90	0.91	0.93	0.94	0.95	0.96	0.98	0.99
8	1.00	1.01	1.03	1.04	1.05	1.06	1.09	1.09	1.10	1.11
9	1.13	1.14	1.15	1.16	1.18	1.19	1.20	1.21	1.23	1.24
10	1.25	1.26	1.28	1.29	1.30	1.31	1.33	1.34	1.35	1.36
11	1.38	1.39	1.40	1.41	1.43	1.44	1.45	1.46	1.48	1.49
12	1.50	1.51	1.53	1.54	1.55	1.56	1.58	1.59	1.60	1.61
13	1.63	1.64	1.65	1.66	1.68	1.69	1.70	1.71	1.73	1.74
14	1.75	1.76	1.78	1.79	1.50	1.81	1.83	1.84	1.85	1.86
15	1.88	1.89	1.90	1.91	1.93	1.94	1.95	1.96	1.98	1.99
16	2.00	2.01	2.03	2.04	2.05	2.06	2.08	2.09	2.10	2.11
17	2.13	2.14	2.15	2.16	2.18	2.19	2.20	2.21	2.23	2.24
18	2.25	2.26	2.98	2.29	2.30	2.31	2.33	2.34	2.35	2.36
19	2.38	2.39	2.40	2.41	2.43	2.44	2.45	2.46	2.48	2.49
20	2.50	2.51	2.53	2.54	2.55	2.56	2.58	2.59	2.60	2.61
21	2.63	2.64	2.65	2.66	2.68	2.69	2.70	2.71	2.73	2.74
22	2.75	2.76	2.78	2.79	2.80	2.81	2.83	2.84	2.85	2.86
23	2.58	2.89	2.90	2.91	2.93	2.94	2.95	2.96	2.98	2.99
24	3.00	3.01	3.03	3.04	3.05	3.06	3.08	3.09	3.10	3.11
25	3.13	3.14	3.15	3.16	3.18	3.19	3.20	3.21	3.23	3.24
26	3.25	S. 26	3.28	3.29	3.30	3.31	3.33	3.34	3.35	3.36
27	3.38	3.39	3.40	3.41	3.43	3.44	3.45	3.46	3.48	3.49
28	3.50	3.51	3.53	3.54	3.55	3.56	3.58	3.59	3.60	3.61
29	3.63	3.64	3.65	3.66	3.68	3.69	3.70	3.72	3.73	3.74
30	3.75	3.77	3.78	3.79	3.80	3.82	3.83	3.84	3.85	3.87
31	3.88	3.89	3.90	3.92	3.93	3.94	3.95	3.97	3.98	3.99
32	4.00	4.02	4.03	4.04	4.05	4.07	4.08	4.09	4.10	4.12
33	4.13	4.14	4.15	4.17	4.18	4.19	4.20	4.22	4.23	4.24
34	4.25	4.27	4.28	4.29	4.30	4.32	4.33	4.34	4.35	4.37
35	4.38	4.39	4.40	4.42	4.43	4.44	4.45	4.47	4.48	4.49
	(1).	1.	2.	3.	4.	5.	6.	7.	8.	9.

$\begin{gathered} \text { Centi- } \\ \text { grade } \\ \text { Degrees. } \end{gathered}$	BAROMETER : $780{ }^{\mathrm{mm} .}$ (from 777.51 to 782.50)									
	Tenths of Degrees.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.01 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.0 \mathrm{~s} \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.11 \end{gathered}$
1	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.21	0.23	0.24
2	0.25	0.26	0.25	0.29	0.30	0.31	0.33	0.34	0.3.)	0.37
3	0.38	0.39	0.40	0.42	0.43	0.44	0.45	0.47	0.48	0.49
4	0.50	0.52	0.53	0.54	0.55	0.57	0.58	0.59	0.60	0.62
5	0.63	0.64	0.65	0.67	0.68	0.69	0.70	0.72	0.73	0.74
6	0.76	0.77	0.78	0.79	0.81	0.82	0.83	0.84	0.86	0.87
7	$0 . \varepsilon$	0.89	0.91	0.92	0.93	0.94	0.96	0.97	0.98	0.99
8	1.01	1.02	1.03	1.0 t	1.06	1.07	1.08	1.10	1.11	1.12
9	1.13	1.15	1.16	1.17	1.18	1.20	1.21	1.22	1.23	1.2.)
10	1.26	1.27	1.28	1.30	1.31	1.32	1.33	1.35	1.36	1.37
11	1.38	1.40	1.41	1.42	1.44	1.45	1.46	1.47	1.49	1.50
12	1.51	1.52	1.54	1.55	1.56	1.57	1.59	1.60	1.61	1.62
13	1.64	1.65	1.66	1.67	1.69	1.70	1.71	1.72	1.74	1.75
14	1.76	1.78	1.79	1.80	1.81	1.83	1.84	1.85	1.56	1.88
15	1.89	1.90	1.91	1.93	1.94	1.95	1.96	1.98	1.99	2.00
16	2.01	2.03	2.04	2.05	2.06	2.08	2.09	2.10	2.11	2.13
17	2.14	2.15	2.17	2.18	2.19	2.20	2.22	2.23	2.24	2.25
18	2.27	2.28	2.29	2.30	2.32	2.33	2.34	2.35	2.37	2.38
19	2.39	2.40	2.42	2.43	2.44	2.45	2.47	2.48	2.49	2.51
20	2.52	2.53	2.54	2.56	2.57	2.58	2.59	2.61	2.62	2.63
21	2.64	2.66	2.67	2.68	2.69	2.71	2.72	2.73	2.74	2.76
22	2.77	2.78	2.79	2.81	2.82	2.83	2.85	2.86	2.57	2.88
23	2.90	2.91	2.92	2.93	2.95	2.96	2.97	2.98	3.00	3.01
24	3.02	3.03	3.05	3.06	3.07	3.08	3.10	3.11	3.12	3.14
25	3.15	3.16	3.17	3.19	3.20	3.21	3.22	3.24	3.25	3.26
26	3.27	3.29	3.30	3.31	3.32	3.34	3.35	3.36	3.37	3.39
27	3.40	3.41	3.42	3.44	3.45	3.46	3.47	3.49	3.50	3.51
28	3.52	3.54	3.55	3.56	3.58	3.59	3.60	3.61	3.63	3.64
29	3.65	3.66	3.68	3.69	3.70	3.71	3.73	3.74	3.75	5.76
30	3.78	3.79	3.80	3.81	3.83	3.84	3.85	3.86	3.88	3.59
31	3.90	3.92	3.93	3.94	3.95	3.97	3.98	3.99	4.00	4.02
32	4.03	4.04	4.05	4.07	4.08	4.09	4.10	4.12	4.13	4.14
33	4.15	4.17	4.18	4.19	4.20	4.22	4.23	4.24	4.26	4.27
34	4.28	4.29	4.31	4.32	4.33	4.34	4.36	4.37	4.38	4.39
35	4.41	4.42	4.43	4.44	4.46	4.47	4.48	4.49	4.51	4.52
	©.	1.	2.	3.	4.	5.	6.		8.	9.

$\left\lvert\, \begin{gathered} \text { Centi } \\ \text { grade } \\ \text { Degrees. } \end{gathered}\right.$	BAROMETER : $785{ }^{\text {mm. }}$ (from 782.51 to 787.50) .									
					Tenths of	Degrees.				
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Millhm. } \\ 0.00 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.01 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.03 \end{gathered}$	$\begin{aligned} & \text { Mıllim. } \\ & 0.04 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.05 \end{gathered}$	$\begin{array}{\|c} \hline \text { Millim. } \\ 0.06 \end{array}$	$\begin{gathered} \text { Millim. } \\ 0.0 \mathrm{~s} \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.11 \end{gathered}$
1	0.13	0.14	0.15	0.16	0.18	0.19	0.20	0.22	0.23	0.24
2	0.25	0.27	0.28	0.29	0.30	0.32	0.33	0.34	0.35	0.37
3	0.38	0.39	0.41	0.42	0.43	0.44	0.46	0.47	0.48	0.49
4	0.51	0.52	0.53	0.54	0.56	0.57	0.58	0.60	0.61	0.62
5	0.63	0.65	0.66	0.67	0.68	0.70	0.71	0.72	0.73	0.75
6	0.76	0.77	0.79	0.50	0.81	0.82	0.84	0.85	0.86	0.87
7	0.89	0.90	0.91	0.92	0.94	0.95	0.96	0.98	0.99	1.00
8	1.01	1.03	1.04	1.05	1.06	1.05	1.09	1.10	1.11	1.13
9	1.11	1.15	1.17	1.18	1.19	1.20	1.22	1.23	1.24	1.25
10	1.27	1.28	1.29	1.30	1.32	1.33	1.34	1.36	1.37	1.38
11	1.39	1.41	1.42	1.43	1.44	1.46	1.47	1.48	1.50	1.51
12	1.52	1.53	1.55	1.56	1.57	1.58	1.60	1.61	1.62	1.63
13	1.65	1.66	1.67	1.69	1.70	1.71	1.72	1.74	1.75	1.76
14	1.77	1.79	1.80	1.81	1.82	1.84	1.85	1.86	1.88	1.89
15	1.90	1.91	1.93	1.94	1.95	1.96	1.98	1.99	2.00	2.01
16	2.03	2.04	2.05	2.07	2.08	2.09	2.10	2.12	2.13	2.14
17	2.15	2.17	2.18	2.19	2.20	2.22	2.23	2.24	2.26	2.27
18	2.28	2.29	2.31	2.32	2.33	2.34	2.36	2.37	2.38	2.39
19	2.11	2.42	2.43	2.45	2.46	2.47	2.48	2.50	2.51	2.52
20	2.53	2.55	2.56	2.57	2.58	2.60	2.61	2.62	2.64	2.65
21	2.66	2.67	2.69	2.70	2.71	2.72	2.74	2.75	2.76	2.77
22	2.79	2.80	2.81	2.83	2.84	2.85	2.86	2.88	2.89	2.90
23	2.91	2.93	2.94	2.95	2.96	2.98	2.99	3.00	3.02	3.03
24	3.04	3.05	307	3.08	3.09	3.10	3.12	3.13	3.14	3.15
25	3.17	3.18	3.19	3.21	3.22	3.23	3.24	3.26	3.27	3.28
26	3.29	3.31	3.32	3.33	3.34	3.36	3.37	3.38	3.40	3.41
27	3.12	3.43	3.45	3.46	3.47	3.48	3.50	351	3.52	3.53
28	3.5.)	3.56	3.57	3.59	3.60	3.61	3.62	3.64	3.65	3.66
29	3.67	3.69	3.70	3.71	3.72	3.74	3.7.)	3.76	3.78	3.79
30	3.80	3.81	3.83	3.84	3.85	3.86	3.88	3.89	3.90	3.91
31	3.93	3.94	3.95	3.97	3.98	3.99	4.00	4.02	4.03	4.04
32	4.05	4.07	4.09	4.09	4.11	4.12	4.13	4.14	4.16	4.17
33	4.15	4.19	4.21	4.22	4.23	4.24	4.26	4.27	4.28	4.30
34	4.31	4.32	4.33	4.35	4.36	4.37	4.35	4.40	4.41	4.42
35	4.43	4.45	4.46	4.17	4.49	4.50	4.51	4.52	4.54	4.55
	©.	1.	2.	3.	4.	3.	6.	7	8.	9.

$\begin{array}{\|c\|} \text { Centi- } \\ \text { grate } \\ \text { Degrees. } \end{array}$	BAROMETER : 790 ${ }^{\text {mm. }}$ (from 787.51 to 792.50).									
	Tenths of Degrees.									
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{gathered} \text { Mıllim. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { M1llim. } \\ 0.01 \end{gathered}$	$\begin{aligned} & \text { Millim. } \\ & 0.03 \end{aligned}$	$\begin{gathered} \text { Millim. } \\ 0.04 \end{gathered}$	$\begin{gathered} \text { Millim } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.08 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.09 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.10 \end{gathered}$	$\begin{gathered} \text { Millim. } \\ 0.11 \end{gathered}$
1	0.13	0.14	0.15	0.17	0.18	0.19	0.20	0.22	0.23	0.24
2	0.26	0.27	0.28	0.29	0.31	0.32	0.33	0.34	0.36	0.37
3	0.38	0.10	0.41	0.42	0.43	0.45	0.46	0.47	0.48	0.50
4	0.51	0.52	0.54	0.55	0.56	0.57	0.59	0.60	0.61	0.62
5	0.64	0.65	0.66	0.68	0.69	0.70	0.71	0.73	0.74	0.75
6	0.77	0.78	0.79	0.80	0.82	0.83	0.84	0.85	0.87	0.98
7	0.89	0.91	0.92	0.93	0.94	0.96	0.97	0.98	0.99	1.01
8	1.02	1.03	1.05	1.06	1.07	1.08	1.10	1.11	1.12	1.13
9	1.15	1.16	1.17	1.19	1.20	1.21	1.22	1.24	1.25	1.26
10	1.28	1.29	1.30	1.31	1.33	1.34	1.35	1.36	1.38	1.39
11	1.40	1.42	1.43	1.44	1.45	1.47	1.48	1.49	1.50	1.52
12	1.53	1.54	1.56	1.57	1.58	1.59	1.61	1.62	1.63	1.64
13	1.66	1.67	1.68	1.70	1.71	1.72	1.73	1.75	1.76	1.77
14	1.79	1.80	1.81	1.82	1.84	1.85	1.86	1.87	1.89	1.90
15	1.91	1.93	1.94	1.95	1.96	1.98	1.99	2.00	2.01	2.03
16	2.04	2.05	2.07	2.08	2.09	2.10	2.12	2.13	2.14	2.15
17	2.17	2.18	2.19	2.21	2.22	2.23	2.24	2.26	2.27	2.28
18	2.30	2.31	2.32	2.33	2.35	2.36	2.37	238	2.40	2.41
19	2.42	2.44	2.45	2.46	2.47	2.49	2.50	2.51	2.52	2.54
20	2.55	2.56	2.58	2.59	2.60	2.61	2.63	2.64	2.65	2.66
21	2.68	2.69	2.70	2.72	2.73	2.74	2.75	2.77	2.78	2.79
22	2.81	2.82	2.83	2.84	2.86	2.87	2.88	2.89	2.91	2.92
23	2.93	2.95	2.96	2.97	2.98	3.00	3.01	3.02	3.03	3.05
24	3.06	3.07	3.09	3.10	3.11	3.12	3.14	3.15	3.16	3.17
25	3.19	3.20	3.21	3.23	3.24	3.25	3.26	3.28	3.29	3.30
26	3.32	333	3.34	3.35	3.37	3.38	3.39	3.40	3.42	3.43
27	3.44	3.46	3.47	3.48	3.49	3.51	3.52	3.53	3.54	3.56
28	3.55	3.58	3.60	3.61	3.62	3.63	3.6 .5	3.66	3.67	3.68
29	3.70	3.71	3.72	3.74	3.75	3.76	3.77	3.79	3.80	3.81
30	3.83	3.84	3.85	3.86	3.88	3.89	3.90	3.91	3.93	3.94
31	3.95	3.97	3.98	3.99	4.00	4.02	4.03	4.04	4.05	4.07
32	4.08	4.09	4.11	4.12	4.13	4.14	4.16	4.17	4.18	4.19
33	4.21	4.22	4.23	4.25	4.26	4.27	4.28	4.30	4.31	4.32
34	4.34	4.35	436	4.37	4.39	4.40	4.41	4.42	4.44	4.45
35	4.46	4.48	4.49	4.50	4.51	4.53	4.54	4.55	4.56	4.58
	0.	1.	2.	3.	4.	5.	6.	7.	8.	4.
C					119					

XXI.

OLD FRENCH BAROMETER.

T A B L E

FOR
reducing to the freezing point the observations taken with old frencif baroneters,

PROVIDED WITH BRASS SCALES, EXTENDING FROM THE CISTERN TO THE TOP OF THE MERCURIAL COLUMN; CALCULATED FROM 240 TO 345 LiNES, OR FROM 23 INCHES 4 LINES TO 28 inches 9 Lines. By Kaemtz.

TABLE XYI

This table is taken from Kaemrz's Lehrbuch der Meteorologie, Vol. II. p. 236. To render it more useful, the first page, giving the corrections for Barometrical Heights between 210 and 280 Paris lines, has been added.
The values adopted by Kaemtz for reducing the Old French Barometer are the following: -

Let $h=$ observed height in French lines.
" $t=$ temperature of attached thermometer in degrees of Reaumur.
" $m=$ expansion of mercury between 0 and 80° Reaumur $=0.018018$.
" $l=$ linear expansion of brass between 0 and 80° Reaumur $=0.0018782$.
The normal temperature of standard being $=13^{\circ}$ Reaumur.
And the formula becomes, -

$$
-h \cdot \frac{m \times t-l(t-13)}{1+m \times t}
$$

The Table gives the corrections only for full degrees and for every fifth line; but the intermediate values can easily be found by an interpolation at sight.

Example of Rerluction.

Observed height $=395.32$ lines.
Attached thermometer $=12.5$ Ie aumur.
In the line beginning with 12°, and in the vertical column headed 325 ines,
we find, \quad Correction for $1 \mathfrak{Z}^{\circ}=-0.89$ lines.
Interpolation for $0^{\circ} .5=-0.03 \quad$ "
Correction for $1 \beth^{\circ} .5=-0.92$ "
And we have,

Height at the freezing point $=324.40$ lines.

Normal Temperature of the Scale $=130$ Reaumur.

Attached Thermometer. Degrees of Reaumur.	Barometer in Paris Lines.								Attached Thermometer. Degrees ot Reacmur.
	240	245	2.50	255	260	265	270	275	
0	Par. Lines.	Par Lines.	Par. Lines.	Par Lines.	Par. Lines.	Par. Lines	Par. Lines.	Par. Lines	\bigcirc
-15	+0.65	+0.66	+0.68	+0.69	+0.70	$+0.72$	+0.73	$+0.75$	-15
-14	0.60	0.61	0.63	0.64	0.65	0.67	0.68	0.69	-14
-13	0.55	0.57	0.58	0.59	0.60	0.61	0.62	0.64	-13
-12	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	-12
-11	0.46	0.47	0.48	0.49	0.50	0.51	0.52	0.52	-11
-10	0.41	0.42	0.43	0.44	0.44	0.45	0.46	0.47	-10
-9	+0.36	+0.37	+0.38	+0.33	$+0.39$	+0.40	+0.41	+0.41	-9
-8	0.31	0.32	0.33	0.33	0.34	0.35	0.35	0.36	-8
-7	0.27	0.27	0.28	0.23	0.29	0.29	0.30	0.30	-7
-6	0.22	0.22	0.23	0.23	0.24	0.24	0.24	0.25	-6
- 5	0.17	0.17	0.18	0.18	0.18	0.19	0.19	0.19	-5
- 4	+0.12	+0.12	+0.13	+0.13	+0.13	+0.13	+0.14	+0.14	-4
- 3	0.07	0.07	0.08	0.08	0.08	0.03	0.08	0.08	- 3
- 2	+0.02	+0.03	+0.03	+0.03	$+0.03$	+0.03	+0.03	+0.03	- 2
- 1	-0.02	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-1
0	-0.07	-0.07	-0.08	-0.03	-0.03	-0.08	-0.08	-0.08	0
+1	-0.12	-0.12	-0.13	-0.13	-0.13	-0.13	-0.14	-0.14	+1
2	0.17	0.17	0.18	0.18	0.18	0.19	0.19	0.19	2
3	0.22	0.22	0.23	0.23	0.24	0.24	0.24	0.25	3
4	0.27	0.27	0.28	0.25	0.29	0.29	0.30	0.30	4
5	0.31	0.32	0.33	0.33	0.34	0.35	0.35	0.36	5
$+6$	-0.36	-0.37	-0.38	-0.38	-0.39	-0.40	-0.41	-0.41	$+6$
7	0.41	0.42	0.43	0.44	0.44	0.45	0.46	0.47	7
8	0.46	0.47	0.48	0.49	0.50	0.51	0.52	0.52	8
9	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	9
10	0.55	0.57	0.58	0.59	0.60	0.61	0.62	0.64	10
$+11$	-0.60	-0.61	-0.63	-0.64	-0.65	-0.67	-0.68	-0.69	$+11$
12	0.65	0.66	0.68	0.69	0.70	0.72	0.73	0.75	12
13	0.70	0.71	0.73	0.74	0.76	0.77	0.79	0.80	13
14	0.75	0.76	0.78	0.79	0.81	0.82	0.84	0.86	14
15	0.80	0.81	0.83	0.84	0.86	0.53	0.89	0.91	15
+16	-0.84	-0.86	-0.88	-0.90	-0.91	-0.93	-0.95	-0.97	+16
17	0.89	0.91	0.93	0.95	0.97	0.98	1.00	1.02	17
18	0.94	0.96	0.98	1.00	1.02	1.04	1.06	1.08	18
19	0.99	1.01	1.03	1.05	1.07	1.09	1.11	1.13	19
20	1.04	1.06	1.08	1.10	1.12	1.14	1.17	1.19	20
+21	-1.08	-1.11	-1.13	-1.15	-1.17	-I. 20	-1.22	-1.24	+21
22	1.13	1.16	1.18	1.20	1.23	1.25	1.27	1.30	22
23	1.18	1.20	1.23	1.25	1.28	1.30	1.33	1.35	23
24	1.23	1.25	1.28	1.31	1.33	1.36	1.38	1.41	24
25	1.28	1.30	1.33	1.36	1.38	1.41	1.44	1.46	25

Normal Temperature of the Scale $=13^{\circ}$ Reaumur.

Attached Thermometer. Degrees of Reaumir.	Barmmeter in Paris Lines.							Attached Thermom. eter. Degrees of Reaumur.
	280	28.5	290	295	300	305	310	
$\begin{array}{r} 0 \\ -15 \end{array}$	$\begin{gathered} \text { Par Lin } \stackrel{s}{ } . \\ +0.77 \end{gathered}$	$\begin{gathered} \text { Par. Lines. } \\ +0.78 \end{gathered}$	Par. Lines. $+0.79$	Par Lines. $+0.81$	Par. Lines. $+0.82$	Par. Lines. $+0.84$	Par. Lides. $+0.85$	-15
-14	0.71	073	0.74	0.75	0.76	0.77	0.79	-14
-13	0.65	0.67	0.68	0.69	0.70	0.71	0.72	-13
-12	0.60	0.61	0.62	0.63	0.64	0.65	0.66	-12
-11	0.54	0.55	0.56	0.57	0.58	0.59	0.60	-11
-10	0.48	0.49	0.50	0.51	0.52	0.53	0.54	-10
-9	$+0.43$	+0.44	+0.44	$+0.45$	$+0.46$	$+0.46$	$+0.47$	-9
-8	0.37	0.38	0.38	0.39	0.40	0.40	0.41	-8
-7	0.31	0.32	0.32	0.33	0.34	0.34	0.35	-7
-6	0.26	0.26	0.26	0.27	0.27	0.28	0.28	-6
-5	0.20	0.20	0.21	0.21	0.21	0.22	0.22	-5
-4	+0.14	$+0.15$	$+0.15$	$+0.15$	$+0.15$	+0.16	+0.16	-4
-3	0.09	0.09	0.09	0.09	0.09	0.09	0.09	-3
-2	$+0.03$	$+0.03$	$+0.03$	$+0.03$	$+0.03$	+0.03	$+0.03$	-2
-1	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-1
0	-0.08	-0.09	-0.09	-0.09	-0.09	-0.09	-0.09	0
$+1$	-0.14	-0.14	-0.15	-0.15	-0.15	-0.15	-0.16	$+1$
2	0.20	0.20	0.21	0.21	0.21	0.22	0.22	2
3	0.26	0.26	0.27	0.27	0.27	0.28	0.28	3
4	0.31	0.32	0.32	0.33	0.33	0.34	0.35	4
5	0.37	0.37	0.38	0.39	0.40	0.40	0.41	5
$+6$	-0.43	-0.43	-0.44	-0.45	-0.46	-0.46	-0.47	± 6
7	0.48	0.49	0.50	0.51	0.52	0.53	0.53	7
8	0.54	0.55	0.56	0.57	0.58	0.59	0.60	8
9	0.60	0.61	0.62	0.63	064	0.65	0.66	9
10	0.65	0.66	0.68	0.69	0.70	0.71	0.72	10
+11	-0.71	-0.72	-0.74	-0.75	-0.76	-0.77	-0.79	+11
12	0.77	0.78	0.80	0.81	0.82	0.84	0.85	12
13	0.52	0.84	0.85	0.57	0.88	0.90	0.91	13
14	0.88	0.90	0.91	0.93	0.94	0.96	0.98	14
15	0.94	0.95	0.97	0.99	1.00	1.02	1.0t	15
$+16$	-0.99	-1.01	-1.03	-1.05	-1.07	-1.08	-1.10	+16
17	1.05	1.07	1.09	1.11	1.13	1.15	1.16	17
18	1.11	1.13	1.15	1.17	1.19	1.21	1.23	18
19	1.16	1.18	1.21	1.23	1.25	1.27	1.29	19
20	1.22	1.24	1.27	1.29	1.31	1.33	1.35	20
+21	-1.28	-1.30	-1.33	-1.35	-1.37	-1.39	-1.42	+21
22	1.34	1.36	1.38	1.41	1.43	1.45	1.48	22
23	1.39	1.41	1.44	1.47	1.49	1.52	1.54	23
24	1.45	1.47	1.50	1.53	1.55	1.58	1.60	24
25	1.50	1.53	1.56	1.59	1.61	1.64	1.67	25

Normal Temperature of the Scale $=13^{\circ}$ Reaumur.

Attached Thermom. eter. Degrees of Reaumur.	Barometer in Paris Lines.							Attacherl Thermometer. Degrees of Reaumur
	315	320	325	330	335	340	315	
15	Par. Lines. +0.86	Par, Lines, $+0.88$	$\begin{gathered} \text { Par. Lines. } \\ +0.59 \end{gathered}$	Par. Lines. $+0.90$	Par. Lines. $+0.92$	Par. Lines. $+0.93$	Par. Lines. $+0.9 .5$	$\begin{array}{r} 5 \\ -15 \end{array}$
-14	0.80	081	0.83	0.54	0.85	0.56	0.88	-14
-13	0.74	0.75	0.76	0.78	0.78	0.79	0.81	-13
-12	0.67	0.68	0.69	0.70	0.71	0.73	0.74	-12
-11	0.61	0.62	0.63	0.64	0.65	0.66	0.67	-11
-10	0.54	0.55	0.56	0.57	0.58	0.59	0.60	-10
-9	+0.18	+0.49	+0.50	$+0.50$	+0.51	+0.52	+0.53	-9
-8	0.42	0.42	0.43	0.41	0.44	0.45	0.46	-8
-7	0.35	0.36	0.36	0.37	0.37	0.38	0.39	- 7
- 6	0.29	0.29	0.30	0.30	0.31	0.31	0.32	- 6
-5	0.22	0.23	0.23	0.24	0.24	0.24	0.25	- 5
-4	+0.16	+0.16	± 0.17	$+0.17$	+017	$+0.17$	+0.18	- 1
-3	0.10	0.10	0.10	0.10	0.10	0.10	0.11	- 3
- 2	+0.03	± 0.03	$+0.03$	- 0.03	$+0.03$	+0.03	$+0.04$	-2
-1	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	- 1
0	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10	0
+1	-0.16	-0.16	-0.16	-0.17	-0.17	-0.17	-0.17	$+1$
2	0.22	0.23	0.23	0.23	0.24	0.24	0.24	2
3	0.29	0.29	0.30	0.30	0.31	0.31	0.31	3
4	0.35	0.36	0.36	0.37	0.37	0.38	0.35	4
5	0.42	0.42	0.43	0.4	0.44	0.45	0.45	5
$+6$	-0.48	-0.49	-0.49	-0.50	-0.51	-0.52	-0.53	$+6$
7	0.54	0.55	0.56	0.57	0.58	0.59	0.60	7
8	0.61	0.62	0.63	0.64	0.65	0.66	0.67	8
9	0.67	0.68	0.69	0.70	0.71	0.72	0.74	9
10	0.74	0.75	0.76	0.77	0.78	0.79	0.81	10
+11	-0.80	-0.81	-0.82	-0.84	-0.85	-0.86	-0.88	+11
12	0.86	0.88	0.59	0.90	0.92	0.93	0.95	12
13	0.93	0.94	0.96	0.97	0.99	1.00	1.02	13
14	0.99	1.01	1.02	1.04	1.0.5	1.07	1.09	14
15	1.05	1.07	1.09	1.10	1.12	1.14	1.16	15
+16	-1.12	-1.14	-1.15	-1.17	-1.19	-1.21	-1.23	$+16$
17^{4}	1.18	1.20	1.22	1.24	1.26	1.25	1.30	17
18	1.25	1.27	1.29	1.31	1.33	1.35	1.37	18
19	1.31	1.33	135	1.37	1.39	1.41	1.44	19
20	1.37	1.40	1.42	\therefore 2.:	1.46	1.48	1.51	20
+21	-1.44	-1.46	-1.48	-1.51	-1.53	-1.55	-1.58	+21
22	1.50	1.53	1.55	1.57	1.60	1.62	1.65	22
23	1.57	1.59	1.62	1.64	1.67	1.69	1.72	23
24	1.63	1.66	1.68	1.71	1.73	1.76	1.79	24
25	1.69	1.72	1.75	1.78	1.80	1.83	1.56	25

TABLES

FOR CORRECTING THE

DEPRESSION OF THE BAROMETRICAL COLUMN DUE TO CAPILLARY ACTION.

CORRECTION FOR CAPILLARY ACTION.

Ir is known that the effects of capillary action are not the same in different liquids. In a tube plunged in water, the liquid in the tube rises higher than the level of the water in the vessel, and terminates by a concave surface, which is called a concare meniscus. In a tube plunged in mercury the liquid in the tube stands lower than the mercury in the vessel, and terminates by a convex surface, or a convex meniscus. It is thus evident that the mereurial column in the tube of a Barometer does not rise to its true height, and that it needs to be corrected for the depression due to capillarity, before it indicates the real pressure of the atmosphere.

La Place, in the Mécanique Céleste, Tom. IV., has shown that the value of that correction depends upon the form of the meniscus, and gave a formula to compute it. As this form varies in tubes of different bores, so does the depression, which diminishes as the diameter of the tube increases. The form of the meniscus, however, was supposed to be the same in tubes of the same diameter, and constant in the same tube; and on this supposition the tables generally used for correcting the capiltary action have been computed. But more accurate observations have proved that, owing to various causes not yet all well understood, the form of the meniscus is often different in tubes of the same diameter, and that it is even variable in the tube of the same instrument.

It thus became necessary to construct new tables, taking into consideration, in a given case, both the diameter of the tube and the form of the meniscus. Such tables, with a double entry, have been given by Schleiermacher, in the Bibliothèque Universelle de Genève, Tom. VIII.; by Bravais, in the Amatcs de Physique et de Chimie, Tom. V. p. 508 ; and by Delcros. The numbers in these tables agree very closely; but as Delcros's table is more extended than that of Schleirmacher, and in a more convenient form than that of Bravais, it is given below, together with a reduction of it to English measures, for the ordinary use.

The other tables may serve for comparison.
Table XXII., from the Report of the Committee of Physics and Meteorology of the Royal Society of London, 1840 , gives the correction to be applied to English barometers for capillary action in boiled and momiled tubes. It takes into account the diameter of the tube, but not the variations of the height of the meniscus, or of the convexity which terminates the barometrical column. This last element is supposed to be in its normal state, and constant.

Tables XXIII. and XXIV., by Deleros, in the Annnaire Météorologique de France, for 1849, give the means of finding the true correction to be applied to metrical barometers for capillary action.

The first shows the normal height of the meniscus when in contact with the air (as is the case in the inferior branch of a siphon barometer), and in the barometric vacuum at the top of the column, in tubes of different bores. It enables the observer to judge better of its variations.

Table XXIV. has been calculated by Delcros after the formulas of Schleiermacher, making the constant x equal to $6^{n m m} .5278$, being the mean value between that of GayLussac $=6^{m \mathrm{~m} .} .5262$, and that of Schleiermacher $=6^{\mathrm{mm} .} .5295$. It gives the amount of the capillary action in millimetres of mercury, taking into account both the size of the bore, or the internal radius of the tube, which will be found in the vertical argument, and the height of the meniscus, given in the horizontal argument. The internal radius of the tube is supposed to be known; the height of the meniscus, or the vertical distance from the base, that is, from the sharp line where the mercury ceases to be in contact with the walls of the tube, to the very top of the convexity, can be ascertained by measuring it several times by means of the vernier.

Example: - Suppose the internal radius of the tube to be $3{ }^{\mathrm{mm} .} .2$, and the height of the meniscus to be $0^{\mathrm{mm}} .8$; seek in the first vertical column the number $3^{\mathrm{mm}} .2$; follow then the horizontal line as far as the vertical column headed $0^{m \mathrm{~m} .} .8$, you find there the number $0^{\mathrm{mm} .776}$, which is the amount of the depression due to capillary action, or the value of the correction to be added to the observation.

Table XXV. is taken from Pouillet's Eléments de Physique, Vol. II. p. 698 (1853).
Table XXVI. is found in Gehter's Physicalisches Wörterbuch, and in Schubarth, Physicalische Tabellen, p. 21.

Table XXVII., which is Deleros's table reduced into English measures, gives the means of correcting with more accuracy the indications of the English barometers. For its use, see, above, the explanation to Table XXIV.

Table XXVIII. is from Baily's Astronomical Tables.
XXII. Table for the Correction to be added to Englisil Baroneters for Capillary Action.

Diameter of Tube.	Correction for	
	Unhoiled Tubes.	Boiled Tubes.
	Inch.	Inch.
0.60	0.004	0.002
0.50	0.007	0.003
0.45	0.010	0.005
0.40	0.014	0.007
0.35	0.020	0.010
0.30	0.023	0.014
0.25	0.040	0.020
0.20	0.060	0.029
0.15	0.083	0.044
0.10	0.142	0.070

XXIII. Table of the Meight of tee Meniscus of the Baronetrical Colume.

131

				$\begin{array}{lccc} 0 \text { N } \\ \infty & \infty \\ \infty & \infty \\ \hline \end{array}$		$09+\infty \infty$ 	$0 \omega+\infty \infty$ － 0000	\bigcirc
－	0	$\text { 刍 }=:=\approx=$	$z=7 \pm y$	\＃$=$ こ	z $=$ z			$\stackrel{9}{6}$
	＊		$\pm \pm=5$	$z=\therefore=\begin{aligned} & \infty \\ & \infty \\ & 0\end{aligned}$				∞ 0 0
	${ }^{*}$	$\text { 寄 }=:=\approx=$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		구오요 ล61～ー 00000	a1 $\stackrel{12}{0}$ 0
	18		$\pm \pm \pm \pm$		$\begin{aligned} & \infty 10 \\ & 0 \\ & 0 \\ & 10 \\ & 10 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0$			$\stackrel{10}{7}$
	－	$\text { 要 }=:==$	$=\Xi=\overrightarrow{2}$					$\stackrel{\infty}{\infty}$
	0	$\left\lvert\, \frac{\dot{\Xi}}{\underset{\Xi}{\Xi}}=:=\div\right.$	$==\underset{\sim}{6}$	$\begin{aligned} & 9.0 .80 \\ & N=0 \\ & =1000 \\ & -1000 \end{aligned}$				$\stackrel{9}{9}$
	0		$==$					$\stackrel{1}{1}$ $\stackrel{1}{0}$ 0
		离 $=:=$	$=\begin{aligned} & n \\ & \infty \\ & \infty \\ & 0 \\ & \cdots \end{aligned}$		$\begin{aligned} & \text { H. } \\ & \text { N } \\ & 0 \end{aligned}$			Ј Ј
								$\stackrel{12}{8}$ $\stackrel{-1}{0}$
	－	$\text { 音 }=:==\begin{gathered} \text { GU } \\ \text { GU } \\ \text { Gi } \end{gathered}$		$\begin{aligned} & 1210 \\ & 10 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0$			$\underset{6}{6} \underset{6}{6} \underset{6}{0}$	10 8 8 0
	e			$\begin{array}{llll} 0 & 0 & 10 & 8 \\ 0 & 1 & 1 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 \end{array}$				10 0 8 0
				$\begin{array}{llll} 8 & -7 & \\ 0 & 0 \\ 0 & 0 \\ 0 & 10 \\ 0 & 0 & 0 \end{array}$	$\begin{aligned} & \overrightarrow{0} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			10 0 0 0
	\bigcirc			$\begin{array}{llll} \infty & 10 & 10 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{llll} 9 & 0 & 0 & 19 \\ 10 & 12 \\ 0 & 61 \\ 0 & 61 \\ 0 & 0 & 0 \\ 0 \end{array}$			$\xrightarrow{10}$
	18					$\begin{aligned} & \overrightarrow{6}=\frac{\infty}{6} \\ & \hdashline-0 \\ & 0 \\ & 0 \end{aligned}$		10 10 0 0
	3					$\begin{aligned} & 0 \\ & =9 \\ & \vdots=0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		7 0
	6					$\begin{aligned} & \infty 10 \\ & =0 \\ & 60 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0=0$		$\stackrel{¢}{\text { ®ิ }}$
	0							11 0 0 0
	\cdots				$\begin{array}{lll} 0 & 1 \\ 6 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$		$\begin{aligned} & 9 \\ & -0 \\ & 0 \\ & 0 \end{aligned} \frac{120}{0} 00$	O
		-		$\begin{array}{lll} 0 & \infty \\ \Leftrightarrow<\infty & \infty \\ \infty \end{array}$	$\begin{gathered} 0 \\ \dot{\sim}+\underset{j}{+}+\infty \\ \rightarrow+i \end{gathered}$		ف	\bigcirc

C
XXV. DEPRESSION OF THE BAROMETRICAL COLUMN DUE TO CAPILLARY ACTION.

From Pouillet.

Internal Diameter of Tube.	Depression	Differences.	Internal Diameter of Tube.	Depression.	Differences.	Internal Diameter of Tube	Depression.	Differences
Millimetres.	Millimetres.	Millimet.	Millimetres.	Millimetres.	Millimet.	Millimetres.	Nillimetres.	Millimet.
2.00	4.579		8.50	0.604		15.00	0.127	
2.50	3.595	0.985	9.00	0.534	0.070	15.50	0.112	0.015
		0.692			0.06 I	16.00	0.099	0.013
3.00	2.902	0.487	9.50	0.473	0.051	16.00	0.099	0.012
3.50	2.415		10.00	0.419	0.054	16.50	0.087	0.010
4.00	2.053	0.362	10.50	0.372	0.047 0.042	17.00	0.077	0.010 0.009
4.50	1.752		11.00	0.330		17.50	0.068	
5.00	1.507	0.245	11.50	0.293	0.037	18.00	0.060	0.008
5.50	1.306	0.201	12.00	0.260	0.033	18.50	0.053	0.007
		0.170			0.030	19.00	0.0 .17	0.006
6.00	1.136	0.141	12.50	0.230	0.026	19.00	$0.0 \cdot 17$	0.006
6.50	0.995	0.118	13.00	0.204	0.023	19.50	0.041	0.005
7.00	0.877		13.50	0.181		20.00	0.036	
7.50	0.775	0.102	14.00	0.161	0.020	20.50	0.032	0.004
8.00	0.684	0.09 I	14.50	0.143	0.018	21.00	U.028	0.004
		0.080			0.016			

XXVI DEPRESSION OF THE BAROMETRICAL COLUMN DUE TO CAPILLARY ACTION.

Internal Diameter of Tube.	Depression according to				Internal Diameter of Tube.	Depression according to			
	La Place	Young.	Ivory.	Cavendish.		La Place.	Young	Ivory.	Cavendish
Millimetres. 2.00	$\begin{aligned} & \text { Millim. } \\ & \mathbf{4 . 4 5 4} \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 4.587 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 4.888 \end{aligned}$	$\begin{array}{r} \text { Millim. } \\ 4.472 \end{array}$	Nillimetres. 11.50	$\begin{gathered} \text { Millim. } \\ 0.315 \end{gathered}$	Nillim.	Millim.	Nillim.
2.50	3.568				12.00	0.281	0.242	0.253	0.200
3.00	2.918	2.986	2.988	3.054	12.50	0.250			
3.50	2.442				13.00	0.223	0.188	0.196	0.170
4.00	2.068	2.063	2.066	2.187	13.50	0.198			
4.50	1.774				14.00	0.176	0.144	0.15:	0.150
5.00	1.534	1.510	1.513	1.735	14.50	0.156			
5.50	1.337				15.00	0.137	0.111	0.118	0.131
6.00	1.171	1.139	1.134	1.377	15.50	0.121			
6.50	1.030				16.00	0.107	0.088	0.087	
7.00	0.909	0.869	0.868	1.073	16.50	0.094			
7.50	0.803				17.00	0.083	0.068	0.071	
8.00	0.712	0.669	0.673	0.820	17.50	0.073			
8.50	0.632				18.00	0.064	0.053	0.054	
9.00	0.562	0.517	0.521	0.608	18.50	0.056			
9.50	0.500				19.00	0.049	0.041	0.042	
10.00	0.445	0.402	0.406	0.406	19.50	0.043			
10.50	0.397				20.00	0.038	0.031	0.031	
11.00	0.354	0.311	0.316	0.270	20.50	0.034			
11.50	0.815				21.00	0.030	0.024	0.024	

XXVII. DEPRESSION OF THE BAROMETRICAL COLUMN DUE TO CAPILLARY ACTION, REDUCED INTO ENGLISH INCHES FROM DELCROS'S TABLE.

	Height of Meniscus in Thousandths of an English Inch.													
Tube.	5	10	15	20	25	30	35	40	45	50	55	60	65	70
Eng. In.	Iuch.	Inch.												
0.10	0.040	0.076	0.109	0.136	0.155									
0.12	. 027	. 053	. 076	. 097	. 114									
0.14	. 019	. 038	. 036	. 071	.085	0.097								
0.16	. 015	. 029	. 042	. 055	. 066	. 076	0.084							
0.18	. 011	. 022	. 033	. 043	. 052	. 060	. 067	0.073						
0.20	. 009	. 018	. 026	. 034	. 042	. 049	. 055	. 060	0.064					
0.22	. 007	. 014	. 021	. 028	. 034	. 040	. 045	. 049	. 053	0.057				
0.24	. 006	. 012	. 017	.023	. 025	. 033	. 037	. 041	. 045	. 048	0.050			
0.26	. 00.5	. 010	. 014	. 019	. 023	. 027	. 031	. 035	. 038	. 040	. 043	0.045		
0.28	. 004	. 005	. 012	. 016	. 019	. 023	. 026	. 029	. 032	. 034	. 036	. 038		
0.30	. 003	. 007	. 010	. 013	. 016	. 019	. 022	. 025	. 027	. 029	. 031	. 033	0.034	
0.32	. 003	. 006	. 009	. 011	. 014	. 016	. 019	. 021	. 023	. 025	. 027	. 028	. 030	
0.34	. 002	.005	. 007	. 010	. 012	. 014	. 016	. 018	. 020	. 032	.023	. 024	. 026	
0.36	. 002	. 004	. 006	. 005	. 010	. 012	. 014	. 016	. 017	. 019	. 020	. 021	.022	
0.38	. 002	. 004	. 005	. 007	. 009	. 010	. 012	. 013	. 015	. 016	. 017	. 018	. 019	
0.40	. 002	. 003	. 005	. 006	. 008	. 009	. 010	. 012	. 013	. 014	. 015	. 016	. 017	
0.42	. 001	. 003	. 004	. 005	. 007	. 003	. 009	. 010	. 011	.012	. 013	. 014	. 015	0.015
0.44	. 001	. 002	. 004	. 005	. 006	. 007	. 008	. 009	. 010	. 011	. 011	. 012	. 013	. 013
0.46	. 001	. 002	. 003	. 004	. 005	. 006	. 007	. 008	. 008	. 009	. 010	. 011	. 011	. 012
0.48	. 001	. 002	. 003	. 004	. 004	. 005	. 006	. 007	. 007	. 008	. 009	. 009	. 010	. 010
0.50	. 001	. 002	. 002	.003	. 004	. 004	. 005	. 006	. 006	. 007	. 008	. 008	. 008	. 009
0.52	. 001	. 001	. 002	.003	. 003	. 004	. 005	. 005	. 006	. 006	. 007	. 007	. 007	. 008
0.54	. 001	. 001	. 002	. 002	. 003	. 003	. 004	. 004	. 005	. 005	. 006	. 006	. 006	. 007
	5	10	15	20	25	30	35	40	45	50	5.5	60	65	70

XXVII: DEPRESSION OF THE BAROMETRICAL COLUMN DUE TO CAPILLARY action, expressed in english inches. - Baily.

Diameter of Tube.	Depression according to			Diameter of Tube.	Depression according to		
	Ivory.	Young.	La Place.		Ivory.	Young.	La Place.
Eng. Inch. 0.05	Eng. Inch. 0.2949	Eug. Inch. 0.2964	$\begin{gathered} \text { Eng. Inch. } \\ 0 . \text {. . . } \end{gathered}$	Eng. Inch. 0.35	Eng Inch. 0.0212	Eng. Inch. 0.0196	Eng. Inch. 0.0216
0.10	. 1404	. 1424	.1394	0.10	. 0154	. 0139	. 0159
0.15	.0965	. 0880	.0554	0.45	. 0112	. 0100	. 0117
0.20	. 0.583	. 0589	.0550	0.50	. 0082	.0074	. 0087
0.25	. 0409	. 0404	. 0412	0.60	. 0043	. 0045	. 0046
0.30	. 0293	. 0250	. 0296	0.70	. 0023		. 0024
0.35	0.0212	0.0196	0.0216	0.50	0.0012	0...	0.0013

METE0R0L0GICAL TABLES

sERIES IV.

HYPSOMETRICAL TABLES.

C 0 NTENTS.

(The figures refer to the folio at the bottom of the page.)

1. Baronetrical Measurement of Heights.

Page
On the Tables and Formulæ 7
Tables based on Laplace's Constants
Table I. Delcros' Tables, in Metrical Measures 9
" II. Guyot's Tables, in English Measures 31
" III. Loomis' Tables, in English Measures 47
" IV. Gauss' Tables, modified by Dippe, Old French Measures 52
" V. Dippe's Tables, for reducing Barometrical Observations to anotherLevel, and for computing Heights, Old French Measures58
" VI. Babinet's Modification of Laplace's Formula 66
" VII. Baily's Tables, in English Measures 67
Tables based on Bessel's Formula.
" VIII. Plantamour's Tables, in Metrical Measures 70
Miscellaneous Tables." IX. Correction for the Hour of the Day at which the Observations havebeen taken, Coefficients by Berghaus78
" X. Correction for the Hour of the Day, Old French Measures 79" XI. Correction to be applied to the Half-Sums of the Temperaturesobserved at Geneva and St. Bernard, and its Value in Metres atall Hours and Seasons of the Year, by Plantamour80
Computing Altitudes by the Height of the Barometer at the Sea- Level 81
" XII. Mean Height of the Barometer at the Level of the Sea in various Latitudes 83
" XIII. Mean Height of the Barometer in all Months of the Year 84
" XIV. Mean Height of the Barometer at all Hours of the Day 84
" XV. Tropic Hours of Daily Variation at Halle 85
" XV'. Amplitude of Daily Variations in Various Latitudes $8 \overline{5}$
Reducing the Barometer to the Level of the Sea 86
" XVI. Height, in English Feet, of a Column of Air corresponding to a Tenth of an Inch in the Barometer 87
" XVII. Height, in French Feet, of a Column of Air corresponding to a Paris Line in the Barometer 87
Table XVIII. Height, in Metres, of a Column of Air corresponding to a Page
Millimetre in the Barometer
" XIX. Height, in Metres, of a Column of Air corresponding to a Millimetre in the Barometer at different Temperatures and Elevations89
" XIX^{\prime}. Height, in English Feet, of a Column of Air, corresponding to a Tenth of an Inch in the Barometer, at different Temperatures and Elevations 90
" XX. Correction to be app!ied to the Means of the Hours of Observation to obtain the True Mean Barometical Pressure, Philadelphia 91
" XXI. Correction to be applied to the Means of the Hours of Observation to obtain the true Mean Barometrical Pressure, Greenwich 92
XXII. For reducing Minutes into Decimals of an Hour . . . 93
XXIII. Correction for Curvature and Refraction 94
2. Thermometrical Measurement of Heights.
" XXIV. Regnault's Barometric Pressures corresponding to the Temperature of Boiling Water
" XXV. Regnault's Barometric Pressures corresponding to the Temperature of Boiling Water, revised by Moritz, in Metrical Measures 102
" XXVI. Regnault's Barometric Pressures corresponding to the Temperature of Boiling Water, revised by Moritz, in English Measures 104

BAR0METRICAL

MEASUREMENT OF HEIGHTS,

OR

TABLES

FOR COMPUTING DIFFERENCES OF ELEVATION FROM BAROMETRICAL OBSERVATIONS.

IIYPSOMETRICAL TABLES

FOR

COMPUTING DIFFERENCES OF ELEVATION FROM BAROMETRICAL OBSERVATIONS.

Numerous determinations of altitude are one of the great desiderata of physical science, and no more ready means for obtaining them is at the disposal of the seientifie man than the Barometer. A traveller, furnished with the improved and convenient instruments we can now command, and with some experience in using them, can take a large number of barometric observations for determining heights, at the cost of little trouble or time. It is, however, quite otherwise with the eomputations by which the results are obtained. The prospect of that tedious and time-robbing labor not only too often cools the zeal of the observer, but a vast amount of data aetually collected remain of no avail from the want of having been computed.

The object of this much enlarged set of Hypsometrical Tables is to facilitate the task of the computer. It contains practical tables adapted to the three usual barometrical scales, and, among them, No. I., II., and V. are so disposed as to dispense with the use of logarithms, and to reduce the computation to the simplest arithmetieal operations. The others suppose the use of logarithms, a method which may still be preferred by some observers.

As these various tables represent the development of the principal formulæ which have been proposed, the computer is enabled to compare the results obtained by each of them, and to select that which he most approves.

These formulæ may be referred to two classes, the respective types of which are Laplace's and Bessel's formulæ.

Laplace, in the Mécanique Céleste, Tom. IV. p. 292, gave a complete solution of the problem, and proposed a formula which soon superseded the older and less aceurate formulæ of De Lue, Shuckburgh, and others. The coefficients which enter in it were derived from the best determinations of the needed physical constants which science could then furnish, the most important of which are the relative weight of the air and of the mercury, and the rate of expansion of air by heat. The first was assumed to be ${ }_{\overline{10} \frac{1}{4} \overline{4} 7}$, according to the experiments of Biot and Arago; and the barometrical coefficient deduced from it, 18317 metres. This coefficient was, however, empirically increased to $\mathbf{1 8 3 3 6}$ metres, in order to adjust the results of the formula to those furnished by the careful trigonometrical measurements made by Ramond for the purpose of testing its correctness. It becomes 18393 metres when including the correction due to the effect of the decrease of gravity with the height on the density of the mereurial column and of the air. The coefficient expressing the expansion of the air by heat, as determined by Gay-Lussae, viz. 0.00375 of its bulk for one Centigrade degree, was adopted, but Laplace inereased it to 0.004 , in order to take into the account the effect of the greater expansive power of the vapors contained in the atmosphere.

These values have been retained in the different formulæ proposed later by Gauss, in Schumacher's Jahrbuch for 1840, by Schmidt, Mathem. und Physische Geographie, II. p. 205, and by Baily, Astronomical Tables, p. 183, which, therefore, only change the form without changing the results. D'Aubuisson, in his formula and tables, Traité de Géognosie, p. 488, only reduced the barometrical coefficient to its theoretical value, which he determined to be 18365 metres, leaving unchanged the other coefficients of Laplace's formula.

Bessel first introduced, in his formula, Astronomische Nachrichten, No. 356, a separate correction for the effect of moisture. The correction for the temperature of the air is computed in his tables for two values of the coefficient, that of Gay-Lussac, 0.00375 , and that of Rudberg, 0.00365 . Laplace's barometrical coefficient is retained, but the correction for the decrease of gravity is considerably modified.

In Elie Ritter's formula, in the Mémoires de la Societé de Physique de Genève, Tom. XIII. p. 343 , the corrections for temperature and moisture are also separated; but other values of the barometrical and thermometrical coefficients, derived from Regnault's determinations, are used, and a new method is proposed for applying the correction due to the expansion of air, which is made proportional to the square of the difference between the observed temperatures at each station.

Baeyer's formula, recently published in Poggendorf's Annalen der Physik und Chemie, Tom. XCVIII. p. 371, does not belong to either of the two classes just mentioned; for while it keeps Laplace's barometrical and thermometrical coefficients, it corrects the effect of temperature by a method analogous to that of Ritter, and it entirely neglects the effect of aqueous vapor.

In the following set the tables of Delcros, Guyot, and Loomis develop the formula of Laplace. The much larger tables of Delcros render unnecessary those of Oltmanns, which are yearly reprinted in the Annuaire du Bureau des Longitudes. Instead of Gauss's tables will be found the tables of Dippe, which are computed from the same formula, but are more extended. Baily's tables close the first series. The tables of Plantamour, computed from Bessel's formula, are given here in preference to Bessel's tables, because Plantamour substituted for Laplace's barometrical coefficient that derived from the probably more accurate determination of the relative weight of the air and mercury by Regnault, viz. 18404.8 metres. E. Ritter's tables, computed from his own formula, give perhaps, in extreme cases, better results; but as, in ordinary circumstances, the altitudes obtained do not much differ from those furnished by the less complicated tables of Plantamour, they were not reprinted here.

The miscellaneous tables which follow furnish useful materials for solving several questions connected with the barometrical measurements.

Regnault's table of Barometric Pressures corresponding to Temperatures of the Boiling Point of Water, revised by Moritz, and its reduction to English measures, will be found a valuable addition for thermometrical measurements of heights.

I.

TABLES

FOR

DETERMINING DIFFERENCES OF LEVEL BY MEANS OF BAROMETRICAL OBSERVATIONS,

Computed from the complete formula of laplace,
By M. T. Delcros.

Construction of the Tables.

If we take $z=$ difference of level of the two barometers,
$a=$ earth's mean radius $=6366200$ metres,
$\mathrm{L}=$ mean latitude between the two stations,
and further: -

$$
\text { At Station. }\left\{\begin{array}{l}
\text { Lower. }\left\{\begin{array}{l}
h=\text { observed height of the barometer, } \\
\text { T=temperature of the barometer, } \\
t=\text { temperature of the air, } \\
\text { Upper. }\left\{\begin{array}{l}
h^{\prime}=\text { observed height of the barometer, } \\
\Gamma^{\prime}=\text { temperature of the barometer } \\
t^{\prime}=\text { temperature of the air }
\end{array}\right.
\end{array}\right. \text {, }
\end{array}\right.
$$

and if we make finally $\mathrm{H}=h+h^{\prime}$. $\left(\frac{\mathrm{T}-\mathrm{T}^{\prime}}{6196}\right)$,
we shall have, according to Laplace, the following general and complete equation :-

$$
z=18336 \text { metres } \times\left\{\begin{array}{l}
\left(1+\frac{2 \cdot\left(t+t^{\prime}\right)}{1000}\right) \\
(1+0.0028371 \cos .2 \cdot \mathrm{~L}) \\
\left(\left(1+\frac{z}{a}\right) \cdot \log \cdot\left(\frac{h}{\mathrm{H}}\right)+\frac{z}{a} 0.868589\right)
\end{array}\right\}
$$

after the proper transformations this equation becomes:-
introducing into this expression the value in metres of a, the eurth's mean radius making $z=\log .\left(\frac{h}{H}\right) 18336$ and $\log .\left(\frac{h}{H}\right)=\left(\frac{z}{18336}\right)$, which can be done without sensible error, the above formula takes the following form, sufficiently accurate for practical purposes : -

$$
z=\log \cdot\left(\frac{h}{H}\right) \cdot 18336 \text { metres } \times\left\{\begin{array}{l}
\left(1+\frac{\left(2 .\left\langle t+t^{\prime}\right.\right.}{1000}\right) \\
(1+0.0028371 \cos .2 . L) \\
\left(1+\frac{z+15926}{63662200}\right)
\end{array}\right\}
$$

the four factors of which can easily be developed in tables, as has been done by Mr. Oltmanns. But though this savant chose to develop also the second factor, I found it better not to do so, partly because the calculation of it is very easy, and also or account of the great extent it would have been necessary to give to this table, in order to avoid troublesome interpolations.

In the calculation of h^{\prime}. $\left(\frac{T-T T^{\prime}}{615 t^{\prime}}\right)$, Mr. Oltmanns used the constant coefficient of the absolute expansion of the mercurial column; I took that of the relative expansion of the mereury and of the brass scale. It is obvious, therefore, that if the scale of the barometer employed was of wood, glass, iron, or of another substance, it would be necessary to make use of as many different coefficients, and the Table II. could not be used. Moreover, Oltmanns combined the last two factors of the general formula in one single table with double entry. This table I have calculated, extending it sufficiently to avoid a double interpolation; but as it seemed to me much too extensive, I substituted for it Tables III. and IV., which are more condensed. without rendering any troublesome interpolation necessary.

I carried the calculation of these tables beyond the limits at which Oltmanns chose to stop, in order that they may answer for the most extreme cases.

At the head of each table will be found the factor of which it is the development; this makes any other explanation superfluous.

All these tables give, at sight, the numbers wanted; only when very great precision is desired, a slight interpolation, at sight, and very easy to apply, may be required. My principal object was to relieve the computer of the troublesome and annoying labor of interpolations.

1 added to these four tables the small Table V., taken from the Annuaire $d u$ Bureau des Longitudes of Paris. It will be seldom used.

When calculating differences of level, in the same order, with the tables, and by the complete formula of Laplace, the results thus obtained never differ by more than one decimetre in the most extreme cases. The following example will illustrate this statement. I take the observation made in a balloon, by Cay-Lussac, at Paris, as an extreme case, which is very well adapted to manifest the errors of the tables, if there were any, by comparing the results obtained by means of them with those of the direct calculation according to the complete formula of Laplace, from which they are derived.

Example of Calculation by the complete Formula of Laplace and by the Tables Height of the Balloon of Gay-Lussac.
The observation gave: -
Bailoon $h^{\prime}=328.80 \quad \mathrm{~T}^{\prime}=-9.5 \quad t^{\prime}=-9^{\circ} .5$
Paris $\quad h=765.68 \quad \mathrm{~T}=+30.8 \quad t=+30.8$

$$
\mathrm{T}-\mathrm{T}^{\prime}=+40.3 \quad\left(t+t^{\prime}\right)=+21.3 \text { et } 2\left(t+t^{\prime}\right)=42^{\circ} .6
$$

With these data the formula of Laplace gives the following calculation : -
Log. $h^{\prime} .=398.80 \quad=2.5169318$

Log. $\left(\mathrm{T}-\mathrm{T}^{\prime}\right)=+40.3=1.6053050$
Log. dilat. coefficient $=0.0001614=6.2079035$
Corr. $a=+\quad \underset{298.14}{\text { Milli. }} \log .=\overline{0.3301403}$

Log. cos. $2 \mathrm{~L}=97^{\circ} 40^{\prime}=-\quad 9.1251872$
Log. constant $=0.0028371=+\quad \mathbf{7 . 4 5 2 8 7 4 6}$
$\log .(\mathrm{A}+a)=6679.79 .=+\quad 3.8247629$
$\log .((0.0028371 . \operatorname{Cos.} 2 \mathrm{~L}) \times(\mathrm{A}+a))=-0.4028247$

Corr. temp. air $=v=284.45 \quad=(6.677 \times 42.6)$

$(\mathrm{A}+a+\beta+v+\delta)=6986.74$
Altitude barom. Paris $=48.70$
Altitude of balloon $=7035.44$ by the formula of Laplace.

Now iet us calculate by the tables, placing side by side the corresponding results given by the formula of Laplace.

Balloon $h^{\prime}=\begin{gathered}\text { Millim. } \\ 328.80\end{gathered} \quad \mathrm{~T}^{\prime}=-9.5 \quad t^{\circ}=$	9.5
Paris $h=765.68 \quad \mathrm{~T}=+30.8 \quad t=+$	
with $\left\{\begin{array}{l}h^{\prime}=328.80 \\ h=765.68\end{array}\right\}$ Table I. gives $\left\{\begin{array}{l}1478.4 \\ 8209.8\end{array}\right.$	By the formu Laplace we f
with $\left(\mathrm{T}^{\prime}-\mathrm{T}\right)=-40^{\circ} .3$, Table II. gives $a=-52.0$	
$(\mathrm{A}+a)=6679.4$	$\begin{gathered} \text { Meetres. } \\ 6679.79 \end{gathered}$
with $\mathrm{L}=48^{\circ} 50^{\prime}$, Table III. gives $a=-2.3$	2.53
$(\mathrm{A}+a+\beta)=6677.1$	6677.26
with $2\left(t+t^{\prime}\right)$ direct calculation gives $v=$ + 284.5	+ 284.45
$(\mathrm{A}+a+\beta+v)=6961.6$	6961.71
with 6960, Table IV. gives $\delta=$ 25.1	+ 25.03
$(\mathrm{A}+a+\beta+v+\delta)=6986.7$	6986.74
Altitude of barometer at Paris $=+48.7$	+ 48.70
Therefore altitude of balloon $=7035.4$	7035.44

Two results which are sensibly identical. This ought not to astonish us; the tables being the exact development of the formula, they ought to give the same results, provided in both cases nothing has been neglected, and the four factors have been calculated in the same relative order.

Delcros.

Disposition and Use of the Tables.

The disposition of the tables is the following : -
In Table I., the first column on the left contains the height of the barometer in millimetres, corrected for the error of the instrument.

The second column headed N (number), gives in metres the first two figures of the number corresponding to each height of the barometer in the first column ; the third column, headed 0.0 , gives the remaining figures for the full number of millimetres; the following columns give the remaining figures for the same number of millimetres and each decimal fraction of a millimetre which may follow it. The value of the hundredths is to be found in the last column.

Example: - Height of Barometer $=761.00$.
We look out in the first column for the number 761, and we find on the same line in the second column, 81 ; in the third column, headed 0.0 , or full number, 61.1. The corresponding number is thus 8161.1 metres.

Height of barometer $=761.35$.
The second column gives 81 ; the column headed 0.3 gives, on the same line, 64.2. The corresponding number is then 8164.2 . Adding the value of five hundredths of milim., being $0^{\circ} .5$, as indicated in the last column, we have 8164.7 metres, corresponding to 761.35 millim.

The other four tables need no further explanation.
To calculate, by means of the tables, a difference of level from two barometrical observations, proceed in the following manner:--

1. Take the height of the barometer at the lower station, or h, and seek in Table I. the number corresponding to this height. Seek likewise the number corresponding to the height of the barometer at the upper station. Subtract the second from the first. The remainder is the approximate difference of level between the two stations. Then apply the following corrections.
2. Correction to be applied for the temperature of the barometers.

If ' T^{\prime} be the temperature of the attached thermometer at the upper station, and T that of the attached thermometer at the lower station, take the difference, or ' T^{\prime} - ' T , and seek in Table II. the number corresponding to this difference.

When T^{\prime} is smaller than T , that is, when the temperature of the attached thermometer of the upper station is lower than that of the lower station, the correction is to be subtracted from the approximate height; when T^{\prime} is greater than T , it is to be added.
3. Correction for the temperature of the air.

The first correction having been applied, multiply the number obtained, or N, by the double sum of the temperatures of the air at both stations, and divide the prodnet by 1000 ; the number thus found, or the quantity expressed by $\frac{\mathrm{N}}{1100)}$. $2\left(t+t^{\prime}\right)$ is the correction in metres which is to be added to the preceding number N.
4. Tables III. and IV. give two corrections; the first due to the decrease of gravitation in latitude, which is to be added when the mean latitude of the places of observation is between the 45 th parallel and the equator ; and to be subtracted when it is between the same parallel and the poles, as indicated at the head of the columns. The second correction, due to the decrease of gravitation on the vertical line, is always additice.
5. Table V. gives another small correction to be added in the case of the lower station being very clevated above the level of the ocean.

Examples of Calculation.
Measurement of the Height of Guanaxuato. By M. de Humboldt.

Barometer at the upper station,
Barometer at the level of the sea, D

$$
\begin{array}{lll}
h^{\prime}=600.95 & \mathrm{~T}^{\prime}=21.3 & t^{\prime}=21.3 \\
h=763.15 & \mathrm{~T}=25.3 & t=25.3
\end{array}
$$

$$
10
$$

Table I. gives the corresponding numbers,
$\left\{\begin{array}{l}h=8183.5 \\ h^{\prime}=6280.8\end{array}\right.$

Difference,
1902.7

Table II. gives for T^{\prime} - T ,
Difference,
$\frac{\mathrm{N}}{100 .} \cdot 2\left(t+t^{\prime}\right)=1.897 \times 93.2$,
Table III. gives for mean latitude of 21°,
Table IV. gives for decrease of gravitation in the vertical line,
Hence altitude of Guanaxuato above the ocean,
Sum,
$-\frac{5.2}{1897.5}=\mathrm{N}$
$+176.8$
2074.3
$+\quad 4.3$
$+6.0$
2084.6

Measurement of the height of Mont Blanc, August 29, 1844. By MM. Bravais and Martins.

Table I. gives for numbers corresponding to

$$
\left\{\begin{array}{l}
h=7826.0 \\
h^{\prime}=\frac{3504.4}{4321.6}
\end{array}\right.
$$

Table II. gives for $\mathrm{T}^{\prime}-\mathrm{T}$,
Difference,

TABLE I. - Giving $\mathrm{A}=18336 \times \log . \mathrm{H}$ or $h \ldots$, , argument H or h in Millimetres.

$\begin{aligned} & \text { Barom- } \\ & \text { eter } \\ & H \text { or } \mathrm{h} . \end{aligned}$	N .	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\left\lvert\, \begin{gathered} \text { Parts } \\ \text { for cach } \\ \text { o.01tmm. } \end{gathered}\right.$
Milli.	Metr.	Metres	Metres.	Metr.								
288	4	23.4	26.2	28.9	31.7	34.4	37.2	40.0	42.7	45.5	48.2	10.3
289	4	51.0	53.8	56.5	59.3	62.0	64.8	67.5	70.3	73.0	75.8	20.5
290	4	78.5	81.3	84.0	86.7	89.5	92.2	95.0	97.7			
290	5									00.4	03.2	41.1
291	5	05.9	08.7	11.4	14.1	16.8	19.6	22.3	25.0	27.8	30.5	$5{ }_{5} 1.4$
292	5	33.2	36.0	38.7	41.4	44.1	46.8	49.6	52.3	55.0	57.7	6 6 1.6
293	5	60.5	63.2	65.9	68.6	71.3	74.0	76.7	79.5	82.2	84.9	71.9
294	5	87.6	90.3	93.0	95.7	98.4						88.2
294	6						01.1	03.8	06.5	09.2	11.9	9 2.4
295	6	14.6	17.3	20.0	22.7	25.4	28.1	30.8	33.5	36.2	38.9	
296	6	41.6	44.3	47.0	49.6	52.3	55.0	57.7	60.4	63.1	65.8	
297	6	68.4	71.1	73.8	76.5	79.1	81.8	84.5	87.2	89.9	92.5	
298	6	95.2	97.9									
298	7			00.5	03.2	05.9	08.6	11.2	13.9	16.6	19.2	
299	7	21.9	24.5	27.2	29.9	32.5	35.2	37.8	40.5	43.2	45.8	
300	7	48.5	51.1	53.8	56.4	59.1	61.7	64.4	67.0	69.7	72.3	
301	7	75.0	77.6	80.3	82.9	85.5	88.2	90.8	93.5	96.1	98.7	
302	8	01.4	04.0	06.6	09.3	11.9	14.5	17.2	19.8	22.4	25.1	
303	8	27.7	30.3	33.0	35.6	38.2	40.8	43.5	46.1	48.6	51.3	
304	8	54.0	56.6	59.2	61.8	64.4	67.0	69.6	72.3	74.9	77.5	
305	8	80.1	82.7	85.3	87.9	90.5	93.1	95.7	98.3			
305	9									01.0	03.6	
306	9	06.2	08.8	11.4	14.0	16.6	19.2	21.8	24.4	27.0	29.6	1 - 0.3
307	9	32.1	34.7	37.3	39.9	42.5	45.1	47.7	50.3	52.9	55.5	2 0.5
308	9	58.0	60.6	63.2	65.8	68.4	70.9	73.5	76.1	78.7	81.3	3 0.8
309	9	83.9	86.4	89.0	91.6	94.1	96.7	99.3				41.0
309	10								01.9	04.4	07.0	51.3
310	10	09.6	12.1	14.7	17.3	19.8	22.4	25.0	27.5	30.1	32.7	611.5
311	10	35.2	37.8	40.3	42.9	45.5	48.0	50.6	53.1	55.7	58.2	71.8
312	10	60.8	63.3	65.9	68.4	71.0	73.5	76.1	78.6	81.2	83.7	8 2.1
313	10	86.3	88.8	91.4	93.9	96.4	99.0					9 2.3
313	11							01.5	04.1	06.6	09.1	
814	11	11.7	14.2	16.7	19.3	21.8	24.3	26.9	29.4	31.9	34.5	
315	11	37.0	39.5	42.0	44.6	47.1	49.6	52.1	54.7	57.2	59.7	
316	11	62.2	64.8	67.3	69.8	72.3	74.8	77.3	79.9	82.4	84.9	
317	11	87.4	89.9	92.4	94.9	97.4	99.9					
317	12							02.4	05.0	07.5	10.0	
318	12	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0	32.5	35.0	
319	12	37.5	40.0	42.5	45.0	47.5	50.0	52.4	54.9	57.4	59.9	
320	12	62.4	64.9	67.4	69.9	72.3	74.8	77.3	79.8	82.3	84.8	
321	12	87.2	89.7	92.2	94.7	92.1	99.6					
321	13							02.1	04.6	07.1	09.5	
322	13	12.0	14.5	17.0	19.4	21.9	24.4	26.8	29.3	31.8	34.2	
323	13	36.7	39.2	41.6	44.1	46.6	49.0	51.5	53.9	56.4	58.9	
324	13	61.3	63.8	66.2	68.7	71.1	73.6	76.1	78.5	81.0	83.4	
325	13	85.9	88.3	90.8	93.2	95.7	98.1					
32.5	14							00.5	03.0	05.4	07.9	
Barometer Hor h.	N.	0.0	0.1	0.2	0.3	0. 4	0.5	0.6	0.7	0.8	0.9	$\left\|\begin{array}{c} \text { Parts } \\ \text { for each } \\ 0.01 \mathrm{~mm} . \end{array}\right\|$

326 to $\mathbf{3 6 4} 4^{\mathrm{mn}}$.

$\begin{aligned} & \text { Barom- } \\ & \begin{array}{l} \text { eter } \\ H \text { or } \mathrm{h} \end{array} \end{aligned}$	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\left\lvert\, \begin{gathered} \text { Parts } \\ \text { for each } \\ 0.01 \mathrm{~mm} \end{gathered}\right.$
Milli.	Metr.	Metres.	Metres.	Metres.	Netres.	Metres	Metres.	TIetres.	Metres.	Metres.	Metres.	Metr.
326	14	10.3	12.8	15.2	17.6	20.1	22.5	25.0	27.4	29.8	32.3	${ }^{1} \mid 0.2$
327	14	34.7	37.2	39.6	12.0	44.5	46.9	49.3	51.7	54.2	56.6	20.5
325	14	59.0	615	63.9	66.3	68.7	71.2	73.6	76.0	78.4	80.9	3 0.7
329	14	83.3	85.7	88.1	90.5	92.9	95.4	97.8				41.0
329	15								00.2	02.6	05.0	51.2
330	15	07.4	09.9	12.3	14.7	17.1	19.5	21.9	24.3	26.7	29.1	611.5
331	15	31.5	33.9	36.3	38.7	41.2	43.6	46.0	48.4	50.8	53.2	7 1.7
3:32	15	55.6	58.0	60.4	62.8	6.5 .1	67.5	69.9	72.3	74.7	77.1	$8 \quad 2.0$
333	15	79.5	81.9	84.3	86.7	89.1	91.4	93.8	96.2	98.6		92.2
333	16										01.0	
331	16	03.4	05.8	08.1	10.5	12.9	15.3	17.7	20.0	22.4	24.8	
335	16	27.2	29.6	31.9	34.3	36.7	39.1	41.4	43.8	46.2	48.8	
336	16	50.9	53.3	55.7	58.0	60.4	62.5	65.1	67.5	69.9	72.2	110.2
337	16	74.6	77.0	79.3	81.7	84.0	86.4	88.8	91.1	93.5	95.8	2 0.4
338	16	98.2										3 0.7
338	17		00.5	02.9	05.2	07.6	10.0	12.3	14.7	17.0	19.4	41.0
339	17	21.7	24.1	26.4	28.8	31.1	33.4	35.5	38.1	40.5	42.8	51.2
340	17	45.2	47.5	49.8	52.2	54.5	56.9	59.2	61.5	63.9	66.2	6 1.5
341	17	68.6	70.9	73.2	75.6	77.9	s0.2	82.6	84.9	87.2	89.5	71.7
342	17	91.9	94.2	96.5	98.9							8 1.9
312	18					01.2	03.5	05.8	08.2	10.5	12.8	92.2
343	18	15.1	17.4	19.8	22.1	24.4	26.7	29.0	31.4	33.7	36.0	
344	18	38.3	40.6	42.9	4.5 .2	17.6	49.9	52.2	54.5	56.8	59.1	
34.5	18	61.4	63.7	66.0	63.3	70.6	73.0	75.3	77.6	79.9	82.2	
346	18	84.5	86.8	89.1	91.4	93.7	96.0	98.3				
346	19								00.6	02.9	05.2	
3.17	19	07.5	09.6	12.0	14.3	16.6	18.9	21.2	23.5	25.8	28.1	
348	19	30.4	32.7	34.9	37.2	39.5	11.8	4.1	46.4	18.6	50.9	
349	19	53.2	55.5	57.8	60.1	62.3	64.6	66.9	69.2	71.5	73.7	
350	19	76.0	78.3	80.6	82.8	85.1	87.4	89.6	91.9	94.2	96.5	
8.51	19	95.7										$\begin{array}{lll}2 & 0.4\end{array}$
351	20		01.0	03.3	05.5	07.8	10.1	12.3	14.6	16.8	19.1	3 0.7
352	20	21.4	23.6	25.9	28.2	30.4	32.7	34.9	37.2	39.5	41.7	40.9
353	20	44.0	46.2	48.5	50.7	53.0	55.2	57.5	59.7	62.0	64.2	51.1
3.54	20	66.5	68.7	71.0	73.2	75.5	77.7	80.0	82.2	84.5	86.7	6 1.3
355	20	89.0	91.2	93.4	95.7	97.9						71.6
355	21						00.2	02.4	04.6	06.9	09.1	81.8
356	21	11.4	13.6	15.8	18.1	20.3	22.5	24.8	27.0	29.2	31.5	$\begin{array}{lll}9 & 2.1\end{array}$
357	21	33.7	35.9	38.2	40.4	42.6	4.8	47.1	49.3	51.5	53.7	
358	21	56.0	58.2	60.4	62.6	64.9	67.1	69.3	71.5	73.7	76.0	
359	21	78.2	80.1	82.6	84.8	87.0	89.3	91.5	93.7	95.9	98.1	
360	22	00.3	02.5	04.8	07.0	09.2	11.4	13.6	15.8	18.0	20.2	
361	22	22.4	24.6	26.8	29.0	31.2	33.4	35.6	37.9	40.1	42.3	
362	22	4.5	46.7	48.9	51.0	53.2	55.4	57.6	59.8	62.0	64.2	
363	22	66.4	68.6	70.8	73.0	75.2	77.4	79.6	81.8	83.9	86.1	
36.4	22	88.3	90.. 5	92.7	91.9	97.1	99.3					
364	23							01.4	03.6	05.8	08.0	
$\begin{aligned} & \text { Broni } \\ & \text { eter } \\ & \text { IHorh. } \end{aligned}$	N	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\begin{gathered} \text { Parts } \\ \text { for each } \\ 0.01 \mathrm{~mm} \\ \hline \end{gathered}$

365 to $\mathbf{4 0 3}^{\mathrm{mm} .}$

Barometer Horh.	N.	0.0	0.1	O.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Parts for each 0.01 mm .
Milli.	Metr.	Metres.	Metres.	Metres	Metres.	Metr.						
365	23	10.2	12.4	14.5	16.7	18.9	21.1	23.2	25.4	27.6	29.8	10.2
366	23	32.0	34.1	36.3	38.5	40.7	42.8	45.0	47.2	49.3	51.5	20.4
367	23	53.7	55.9	58.0	60.2	62.4	64.5	66.7	65.9	71.0	73.2	
368	23	75.4	77.5	79.7	81.8	84.0	86.2	88.3	90.5	92.6	94.8	40.9
369	23	97.0	99.1									51.1
369	24			01.3	03.4	05.6	07.7	09.9	12.1	14.2	16.4	$6{ }_{6} 1.3$
370	24	18.5	20.6	22.8	24.9	27.1	29.2	31.4	33.5	35.7	37.8	71.5
371	24	40.0	42.1	44.3	46.4	48.6	50.7	52.9	55.0	57.2	59.3	8 1.7
372	24	61.5	63.6	65.8	67.9	70.1	72.2	74.3	76.5	78.6	80.8	9 \| 1.9
373	24	82.9	85.0	87.2	89.3	91.4	93.6	95.7	97.8	99.9		
373	25										02.1	
374	25	04.2	06.3	08.4	10.6	12.7	14.8	16.9	19.0	21.2	23.3	
375	25	25.4	27.5	29.6	31.8	33.9	36.0	38.1	40.2	42.4	44.5	
376	25	46.6	48.7	50.8	53.0	55.1	57.2	59.3	61.4	63.6	65.7	
377	25	67.8	69.9	72.0	74.1	76.2	78.3	80.5	82.6	84.7	86.8	
378	25	88.9	91.0	93.1	95.2	97.3	99.4					
378	26							01.5	03.6	05.7	07.8	
379	26	09.9	12.0	14.1	16.2	18.3	20.4	22.5	24.6	26.7	28.8	
380	26	30.9	33.0	35.1	37.2	39.3	41.3	43.4	45.5	47.6	49.7	
381	26	51.8	53.9	56.0	58.1	60.2	62.2	64.3	66.4	65.5	70.6	
38.2	26	72.7	74.8	76.9	78.9	81.0	83.1	85.2	87.3	89.3	91.4	
383	26	93.5	95.6	97.7	99.7							
383	27.					01.8	03.9	06.0	08.1	10.1	12.2	1.0 .2
384	27	14.3	16.4	18.4	205	22.6	24.6	26.7	28.8	30.9	32.9	2.0 .4
385	27	35.0	37.1	39.1	41.2	43.2	45.3	47.4	49.4	51.5	53.5	30.6
386	27	55.6	57.7	59.7	61.8	63.8	65.9	68.0	70.0	72.1	74.1	40.9
357	27	76.2	78.3	80.3	82.4	84.4	86.5	88.6	90.6	92.7	94.7	$5 \begin{array}{ll}5 & 1.1\end{array}$
388	27	96.8	98.8									$\begin{array}{lll}6 & 1.3\end{array}$
388	28			00.9	02.9	05.0	07.0	09.1	11.1	13.2	15.2	$7 \quad 1.5$
389	28	17.3	19.3	21.4	23.4	25.5	27.5	29.6	31.6	33.7	35.7	8 1.7
390	28	37.8	39.8	41.9	43.9	46.0	48.0	50.0	52.1	54.1	56.2	9 1.9
391	28	58.2	60.2	62.3	64.3	66.3	68.3	70.4	72.4	74.4	76.5	
392	28	78.5	S0.5	82.6	84.6	86.6	88.6	90.7	92.7	94.7	96.8	
393	28	98.8										
393	29		00.8	02.8	04.9	06.9	08.9	10.9	12.9	15.0	17.0	
394	29	19.0	21.0	23.0	25.1	27.1	29.1	31.1	33.1	35.2	37.2	
395	29	39.2	41.2	43.2	45.2	47.2	49.2	51.3	53.3	55.3	57.3	
396	29	59.3	61.3	63.3	65.3	67.3	69.3	71.4	73.4	75.4	77.4	
397	29	79.4	81.4	83.4	85.4	87.4	89.4	91.5	93.5	95.5	97.5	
398	29	99.5										
398	30		01.5	03.5	0.5 .5	07.5	09.5	11.5	13.5	15.5	17.5	
399	30	19.5	21.5	23.5	25.5	27.5	29.4	31.4	33.4	35.4	37.4	
400	30	39.4	41.4	43.4	45.4	47.4	49.4	51.3	53.3	55.3	57.3	
401	30	59.3	61.3	63.3	65.2	67.2	69.2	71.2	73.2	75.1	77.1	
402	30	79.1	81.1	83.1	85.0	87.0	89.0	91.0	93.0	94.9	96.9	
403	30	98.9										
$\left\|\begin{array}{c} \text { ?arom- } \\ \text { eter } \\ \therefore \text { or } \mathrm{t} . \end{array}\right\|$	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\begin{gathered} \text { Parts } \\ \text { fir each } \\ 0.01 \mathrm{~mm} . \end{gathered}$

403 to 442^{mm}.

$\left\lvert\, \begin{gathered} \text { Barom- } \\ \text { eter } \\ \text { Hor h. } \end{gathered}\right.$	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Parts for each 10.01 mm .
Milli.	Metr	Metres.	Metres.	Metres.	Metres.	Metres	Metres.	Metres.	Metres.	Metres.	Metres.	Metr.
403	31		00.9	02.8	04.8	06.8	08.7	10.7	12.7	14.7	16.6	10.2
404	31	18.6	20.6	22.5	24.5	26.5	28.4	30.4	32.4	34.4	36.3	
405	31	38.3	40.3	42.2	44.2	46.1	48.1	50.1	52.0	54.0	55.9	
406	31	57.9	59.9	61.8	63.8	65.7	67.7	69.7	71.6	73.6	75.5	40.8
407	31	77.5	79.5	81.4	83.4	85.3	87.3	89.3	91.2	93.2	95.1	51.0
408	31	97.1	99.0									
408	32			01.0	02.9	04.9	06.8	08.8	10.7	12.7	14.6	$7 \begin{array}{ll}7 & 1.4\end{array}$
409	32	16.6	18.5	20.5	22.4	24.4	26.3	28.2	30.2	32.1	34.1	
410	32	36.0	37.9	39.9	41.8	43.8	45.7	47.6	49.6	51.5	53.5	$\begin{array}{ll}9 & 1.8\end{array}$
411	32	55.4	57.3	59.3	61.2	63.2	65.1	67.0	69.0	70.9	72.9	
412	32	74.8	76.7	78.7	50.6	82.5	84.4	86.4	88.3	90.2	92.2	
413	32	94.1	96.0	97.9	99.9							
413	33					01.8	03.7	05.6	07.5	09.5	11.4	
414	33	13.3	15.2	17.1	19.1	21.0	22.9	2.48	26.7	25.7	30.6	
415	33	32.5	34.4	36.3	38.3	40.2	42.1	44.0	45.9	47.9	49.8	
416	33	51.7	53.6	55.5	57.4	59.3	61.2	63.2	65.1	67.0	68.9	
417	33	70.8	72.7	74.6	76.5	78.4	80.3	82.3	84.2	86.1	88.0	
418	33	89.9	91.8	93.7	95.6	97.5	99.4					
418	34							01.3	03.2	05.1	07.0	
419	34	08.9	10.8	12.7	14.6	16.5	18.4	20.3	22.2	24.1	26.0	
420	34	27.9	29.8	31.7	33.6	35.5	37.3	39.2	41.1	43.0	44.9	
421	34	46.8	48.7	50.6	52.5	54.4	56.2	58.1	60.0	61.9	63.8	
422	34	65.7	67.6	69.5	71.4	73.3	75.1	77.0	78.9	80.8	82.7	10.2
423	34	84.6	86.5	88.4	90.2	92.1	94.0	95.9	97.8	99.6		2 0.4
423	35										01.5	3 3, 0.6
424	35	03.4	05.3	07.2	09.0	10.9	12.8	14.7	16.6	18.4	20.3	4 0.8
425	35	22.2	24.1	25.9	27.8	29.6	31.5	33.4	35.2	37.1	38.9	5 1.0 6 1.2
426	35	40.8	42.7	44.5	46.4	48.3	50.1	52.0	53.9	55.8	57.6	71.4
427	35	59.5	61.4	63.2	65.1	67.0	68.8	70.7	72.6	74.5	76.3	881.6
428	35	78.2	80.1	81.9	83.8	85.6	87.5	89.4	91.2	93.1	91.9	9 1.8
429	35	96.8	98.6									
429	36			00.5	02.3	04.2	06.0	07.9	09.7	11.6	13.4	
430	36	15.3	17.1	19.0	20.8	22.7	24.6	26.4	28.2	30.1	31.9	
431	36	33.8	35.6	37.5	39.3	41.2	43.0	44.8	46.7	48.5	50.4	
432	36	52.2	54.0	5.5.9	57.7	59.6	61.4	63.2	6.5 .1	66.9	68.8	
433	36	70.6	72.4	74.3	76.1	78.0	79.8	81.6	83.5	85.3	87.2	
434	36	89.0	90.8	92.7	94.5	96.3	98.1					
434	37							00.0	01.8	03.6	05.5	
435	37	07.3	09.1	11.0	12.8	14.6	16.4	18.3	20.1	21.9	238	
436	37	25.6	27.4	29.2	31.1	32.9	34.7	36.5	38.3	40.2	42.0	
437	37	43.8	45.6	47.5	49.3	51.1	52.9	54.8	56.6	58.4	60.3	
438	37	62.1	63.9	6.9 .7	67.6	69.4	71.2	73.0	74.8	76.7	78.5	
439	37	80.3	82.1	83.9	85.7	87.5	89.3	91.2	93.0	94.8	96.6	
440	37	98.4										
440	38		00.2	02.0	03.8	0.5 .6	07.5	09.3	11.1	12.9	14.7	
441	38	16.5	18.3	20.1	21.9	23.7	25.5	27.3	29.1	30.9	32.7	
442	38	34.5	36.3	38.1	39.9	41.7	43.5	45.3	47.1	48.9	50.7	
$\begin{aligned} & \text { Brom- } \\ & \text { eter } \\ & \text { B or } h . \end{aligned}$	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Parts for each 001 mm .

443 to $482^{\mathrm{mm} .}$

BaromH orh	N.	Tenth of Millimetre.										$\left\|\begin{array}{c} \text { Parts } \\ \text { for each } \\ 0.01 \mathrm{~mm} . \end{array}\right\|$
		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
Milli.	Metr.	Metres.	Metr.									
443	38	52.5	54.3	56.1	57.9	59.7	61.4	63.2	65.0	66.8	68.6	
444	38	70.4	72.2	74.0	75.8	77.6	79.3	81.1	82.9	84.7	S6.5	
445	38	88.3	90.1	91.9	93.7	95.5	97.2	99.0				
445	39								00.8	02.6	04.4	
446	39	06.2	08.0	09.8	11.5	13.3	15.1	16.9	18.7	20.4	22.2	
4.47	39	24.0	25.9	27.6	29.3	31.1	32.9	34.7	36.5	38.2	40.0	
4.48	39	41.8	43.6	45.4	47.1	48.9	50.7	52.5	54.3	56.0	57.8	
449	39	59.6	61.4	63.1	64.9	66.7	68.4	70.2	72.0	73.8	75.5	
450	39	77.3	79.1	80.8	82.6	84.3	86.1	87.9	89.6	91.4	93.1	
451	39	94.9	96.7	98.4								
451	40				00.2	02.0	03.7	05.5	07.3	09.1	10.8	
452	40	12.6	14.4	16.1	17.9	19.6	21.4	23.2	24.9	26.7	28.4	
453	40	30.2	32.0	33.7	35.5	37.2	39.0	40.8	42.5	44.3	46.0	
454	40	47.8	49.5	51.3	53.0	54.8	56.5	58.3	60.0	61.8	63.5	
455	40	65.3	67.0	63.8	70.5	72.3	74.0	75.8	77.5	79.3	81.0	10.2
456	40	82.8	84.5	86.3	88.0	89.8	91.5	93.2	9.3.0	96.7	98.5	20.3
457	41	00.2	01.9	03.7	05.4	97.2	08.9	10.6	12.4	14.1	15.9	3 O
458	41	17.6	19.3	21.1	22.8	246	26.3	28.0	29.8	31.5	33.3	40.7
459	41	35.0	36.7	35.5	40.2	41.3	43.6	45.4	47.1	45.8	50.6	50.9
160	41	52.3	54.0	55.8	57.5	59.2	60.9	62.7	64.4	66.1	67.9	61.0
461	41	69.6	71.3	73.1	74.8	76.5	78.2	80.0	81.7	83.4	85.2	71.2
462	41	86.9	88.6	90.3	92.1	93.5	95.5	97.2	98.9			8 8 1.4
462	42									00.7	02.3	911.6
463	42	04.1	05.8	07.5	09.3	11.0	12.7	14.4	16.1	17.9	19.6	
464	42	21.3	23.0	24.7	26.4	28.1	29.8	31.6	33.3	35.0	36.7	
465	42	38.4	40.1	41.8	43.5	45.2	46.9	48.7	50.4	52.1	53.5	
466	42	55.5	57.2	58.9	60.6	62.3	64.0	65.8	67.5	69.2	70.9	
467	42	72.6	-74.3	76.0	77.7	79.4	81.1	S2.8	84.5	86.2	87.9	
463	42	89.6	91.3	93.0	94.7	96.4	98.1	99.8				
468	43								01.5	03.2	04.9	
469	43	06.6	08.3	10.0	11.7	13.4	15.1	16.8	18.5	20.2	21.9	
470	43	23.6	25.3	27.0	28.7	30.4	32.0	33.7	3.7.4	37.1	38.8	
471	43	40.5	42.2	43.9	45.6	47.3	48.9	50.6	52.3	54.0	55.7	
472	43	57.4	59.1	60.8	62.5	64.2	65.8	67.5	69.2	70.9	72.6	
473	43	74.3	76.0	77.7	79.3	81.0	82.7	84.4	86.1	87.7	89.4	
474	43	91.1	92.8	94.5	96.1	97.8	99.5					
474	44							01.2	02.9	04.5	06.2	
475	44	07.9	09.6	11.2	12.9	14.6	16.2	17.9	19.6	21.3	22.9	
476	44	24.6	26.3	27.9	29.6	31.3	33.9	35.6	37.3	39.0	40.6	
477	44	41.3	43.0	44.6	46.3	48.0	49.6	51.3	53.0	54.7	56.3	
478	44	58.0	59.7	61.3	63.0	64.7	66.3	68.0	69.7	71.4	73.0	
479	44	74.7	76.4	78.0	79.7	81.3	83.0	84.7	86.3	88.0	89.6	
480	44	91.3	93.0	94.6	96.3	97.9	99.6					
480	45							01.3	02.9	04.6	06.2	
481	45	07.9	09.5	11.2	12.8	14.5	16.1	17.7	19.4	21.0	22.7	
482	45	24.3	25.9	27.6	29.2	30.9	32.5	34.2	35.8	37.5	39.1	
Baromeler Horh.	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\begin{gathered} \text { Parts } \\ \text { for each } \\ 0.01 \mathrm{mn} . . \end{gathered}$

483 to 524^{mm}.

$\begin{aligned} & \text { Barm- } \\ & \text { eter } \\ & \text { eor } \mathrm{ct} \text {. } \end{aligned}$	N .	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\begin{gathered} \text { Parts } \\ \text { for each } \\ 0.01 \mathrm{~mm} . \end{gathered}$
Milli.	Metr.	Metres.	Metres.	Metres.	Metres.	Netres	Metres.	Metres.	Metres.	Metres,	Metres.	Merr.
453	45	40.6	42.4	4.4	45.7	47.4	49.0	50.7	52.3	54.0	55.6	10.2
184	45	57.3	58.9	60.6	62.2	63.9	655	67.1	68.8	70.4	72.1	
185	45	73.7	75.3	77.0	78.6	80.3	81.9	83.6	85.2	86.9	88.5	
486	45	90.2	91.8	93.5	95.1	96.8	98.4					40.6
486	46							00.0	01.7	03.3	05.0	5 0.8
457	46	06.6	0 S 2	09.9	11.5	13.1	14.7	16.4	18.0	19.6	21.3	$\begin{array}{lll}6 & 1.0\end{array}$
488	46	22.9	24.5	26.2	27.8	29.4	31.0	32.7	34.3	35.9	37.6	71.1
489	46	39.2	40.8	42.4	44.1	45.7	17.3	48.9	50.5	52.2	53.8	$8 \quad 1.3$
490	46	55.4	57.0	58.6	60.3	61.9	63.5	65.1	66.7	68.4	70.0	981.4
491	46	71.6	73.2	74.9	76.5	78.1	79.7	81.4	83.0	84.6	86.3	
492	46	87.9	89.5	91.1	92.8	94.4	96.0	97.6	99.2			
492	47									00.9	02.5	
493	47	04.1	05.7	07.3	08.9	10.5	12.1	13.8	15.4	17.0	18.6	
494	47	20.2	21.8	23.4	25.0	26.6	28.2	29.9	31.5	33.1	34.7	
495	47	36.3	37.9	39.5	41.1	42.7	4.3	45.9	47.5	49.1	507	
496	47	52.3	53.9	55.5	57.1	58.7	60.3	61.9	63.5	65.1	66.7	
497	47	68.3	69.9	71.5	73.1	74.7	76.3	78.0	79.6	81.2	82.8	
498	47	84.4	86.0	87.6	89.2	90.8	92.4	$9+.0$	95.6	97.2	95.8	
499	18	00.4	02.0	03.6	05.2	06.5	08.3	09.9	11.5	13.1	14.7	
500	48	16.3	17.9	19.5	21.1	22.7	24.2	25.8	27.4	89.0	30.6	
501	48	32.2	33.8	35.4	37.0	38.6	40.1	41.7	43.3	44.9	46.5	
502	48	48.1	49.7	51.3	52.9	54.5	56.0	57.6	59.2	60.8	62.4	
503	48	64.0	65.6	67.2	68.7	70.3	71.9	73.5	75.1	76.6	78.2	
504	48	79.8	81.4	83.0	84.5	S6.1	87.7	89.3	90.9	92.4	9.4.0	
50.5	48	95.6	97.2	93.7								
50.5	49				00.3	01.9	03.4	05.0	06.6	08.2	09.7	
506	49	11.3	12.9	14.4	16.0	17.6	19.1	20.7	2.23	23.9	25.4	
507	49	27.0	28.6	30.1	31.7	33.3	34.8	36.4	38.0	39.6	41.1	
508	49	42.7	44.3	45.8	47.4	49.0	50.5	52.1	53.7	55.3	56.8	
509	49	58.4	60.0	61.5	63.1	64.6	66.2	67.8	69.3	70.9	72.4	
510	49	74.0	75.6	77.1	78.7	80.2	81.8	83.4	84.9	86.5	88.0	
511	49	89.6	91.2	92.7	91.3	95.8	97.4	99.0				
511	50								00.5	02.1	03.6	
512	50	05.2	06.7	08.3	09.8	11.4	12.9	14.5	16.0	17.6	19.1	
513	50	20.7	22.2	23.8	25.3	26.9	28.4	30.0	31.5	3: 1	31.6	
314	50	36.2	37.7	39.3	40.8	42.4	43.9	45.5	46.0	48.6	50.1	
515	50	51.7	53.2	54.8	56.3	57.9	59.4	61.0	62.5	64.1	65.6	
516	50	67.2	68.7	70.3	71.8	73.4	74.9	76.4	78.0	79.5	81.1	
517	50	S2.6	84.1	55.7	87.2	88.7	90.2	91.8	93.3	94.8	96.4	
518	50	97.9	99.4									
518	51			01.0	02.5	04.1	05.6	07.1	08.7	10.2	11.8	
319	51	13.3	14.8	16.4	17.9	194	20.9	22.5	24.0	25.5	27.1	
520	51	28.6	30.1	31.7	33.2	34.7	36.2	37.8	39.3	40.8	42.4	
521	51	43.9	45.4	47.0	48.5	50.0	51.5	53.1	51.6	56.1	57.7	
522	51	59.2	60.7	62.2	63.8	6.5 .3	66.5	68.3	69.8	71.4	72.9	
523	51	74.4	75.9	77.5	79.0	80.5	82.0	83.6	85.1	86.6	88.2	
524	51	59.7	91.2	92.7	94.3	95.8	97.3	98.8				
$\begin{aligned} & \text { Sarom. } \\ & \text { eter } \\ & \text { Hor } . \end{aligned}$	N.	0.0	0.1	0.9	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\begin{gathered} \text { Parts } \\ \text { for rach } \\ \text { ontmen. } \end{gathered}$

524 to $565{ }^{\mathrm{mm}}$.

Bavm. eter Hor h .	N.	0.0	0.1	0.9	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Parts for each 0.01 mm .
Milli. 524	Neir. 52	Metres.	Metres.	Metres.	Metres.	Metres	Metres.	Metres.	Merres. 00.3	Metres. 01.9	Metres 03.4	Metr.
525	52	04.9	06.4	07.9	09.4	10.9	12.4	14.0	15.5	17.0	18.5	
526	52	20.0	21.5	23.0	24.5	26.0	27.5	29.1	30.6	32.1	33.6	
527	52	35.1	36.6	38.1	39.6	41.1	42.6	44.2	45.7	47.2	48.7	
528	52	50.2	51.7	53.2	54.7	56.2	57.7	59.3	60.8	62.3	63.8	
529	52	65.3	66.8	65.3	69.8	71.3	72.8	-4.3	75.8	77.3	78.8	10.1
530	52	80.3	81.8	83.3	84.8	86.3	87.8	89.3	90.8	92.3	93.8	20.3
531	52	95.3	96.8	98.3	99.8							S 0.4
531	53					01.3	02.8	04.3	05.8	07.3	05.8	40.6
532	$5: 3$	10.3	11.8	13.3	14.8	16.3	17.8	19.3	20.8	22.3	23.5	50.7
533	53	25.3	26.8	28.3	29.8	31.3	32.7	34.2	3.5 .7	37.2	38.7	60.9
534	53	40.2	41.7	43.2	44.7	46.2	47.6	49.1	50.6	52.1	53.6	71.0
533	53	55.1	56.5	58.1	59.6	61.1	62.5	64.0	65.5	67.0	65.5	$8 \quad 1.2$
536	53	70.0	71.5	73.0	74.4	75.9	77.4	75.9	80.4	81.8	83.3	$9 \quad 1.3$
537	53	S 4.8	86.3	87.8	89.2	90.7	92.2	93.7	95.2	96.6	98.1	
538	53	99.6										
538	54		01.1	02.6	04.0	05.5	07.0	08.5	10.0	11.4	12.9	
539	54	14.4	15.9	17.4	18.8	20.3	21.8	23.3	24.8	26.2	27.7	
540	54	29.2	30.7	32.1	33.6	35.1	36.5	38.0	39.5	41.0	42.4	
541	54	43.9	45.4	46.8	48.3	49.8	51.2	52.7	54.2	55.7	57.1	
542	54	58.6	60.1	61.5	63.0	64.5	66.0	67.4	65.9	70.4	71.8	
543	54	73.3	74.8	76.2	77.7	79.1	80.6	82.1	83.5	85.0	86.4	
544	54	87.9	89.4	90.8	92.3	93.7	95.2	96.7	98.1	99.6		
544	55										01.0	
545	55	02.5	04.0	05.4	06.9	08.4	09.5	11.3	12 S	14.3	15.7	
546	55	17.2	18.7	20.1	21.6	23.0	24.5	26.0	27.4	28.9	30.3	
547	55	31.8	33.3	34.7	36.1	37.6	39.0	40.5	41.9	43.4	44.8	
548	55	46.3	47.7	49.2	50.6	52.1	53.5	55.0	56.4	57.9	59.3	
549	55	60.8	62.2	63.7	65.1	66.6	68.0	69.5	70.9	72.4	73.8	
550	55	75.3	76.7	78.2	79.6	81.1	82.5	84.0	85.4	86.9	88.3	
551	55	89.8	91.2	92.7	94.1	95.6	97.0	98.4	99.9			
551	56									01.3	02.8	10.1
552	56	04.2	05.6	07.1	08.5	10.0	11.4	12.8	14.3	15.7	17.2	20.3
553	56	18.6	20.0	21.5	22.9	24.4	23.8	27.2	28.7	30.1	31.6	30.4
554	56	33.0	34.4	3.5 .9	37.3	38.8	40.2	41.6	43.1	41.5	46.0	40.6
555	56	47.4	48.8	50.3	51.7	53.1	54.5	56.0	57.4	58.8	60.3	$5,0.7$
556	56	61.7	63.1	64.6	66.0	67.4	68.5	70.3	71.7	73.1	746	610.3
557	56	76.0	77.4	78.9	80.3	81.7	83.1	84.6	86.0	87.4	85.9	71.0
5.58	57	90.3	91.7	93.2	94.6	96.0	97.4	98.9				81.2
558	57								00.3	01.7	03.2	9) 1.3
559	57	04.6	06.0	07.4	08.9	10.3	11.7	13.1	14.5	16.0	17.4	
560	57	18.8	20.2	21.6	28.1	24.5	25.9	27.3	28.7	30.2	31.6	
561	57	33.0	34.4	3.5 .8	37.3	38.7	40.1	41.5	42.9	4.4 .4	45.8	
562	57	47.2	48.6	50.0	51.4	52.8	542	55.7	57.1	58.5	59.9	
563	57	61.3	627	64.1	65.5	66.9	68.3	69.8	71.2	72.6	74.0	
564	57	75.4	76.8	78.2	79.6	81.0	82.4	83.9	85.3	86.7	88.1	
565	57	89.5	90.9	92.4	93.8	95.2	96.6	98.0	99.4			
$\left\{\begin{array}{l} \text { Birom- } \\ \text { eter } \\ \text { Horh } \end{array}\right.$	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Parts for pab 0.01 mm .

56.5 to $605^{m \mathrm{~m}}$.

Burnin. eter Horh.	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\left\|\begin{array}{c} \text { Parts } \\ \text { for each } \\ 0.01 \mathrm{~mm} . \end{array}\right\|$
Milli.	Metr. 58	Metres.	Metres.	Metres.	Netres.	Metres.	Metres.	Metres.	Metres.	Metres. 00.8	Metres 02.2	Metr.
566	58	0:3.6	0.5 .0	06.4	07.8	09.2	10.6	12.1	13.5	14.9	16.3	
567	58	17.7	19.1	20.5	21.9	23.3	24.7	26.1	27.5	28.9	30.3	
568	58	31.7	33.1	34.5	3.9.9	37.3	38.7	40.1	41.5	42.9	44.3	
569	58	45.7	47.1	49.5	49.9	51.3	52.7	54.1	55.5	56.9	58.3	
570	58	59.7	61.1	62.5	63.9	65.3	66.7	68.1	69.5	70.9	72.3	
571	58	73.7	75.1	76.5	77.9	79.3	80.6	82.0	83.4	84.8	86.2	
572	58	87.6	89.0	90.4	91.8	93.2	94.5	95.9	97.3	98.7		
572	59										00.1	
573	59	01.5	02.9	04.3	0.5 .7	07.1	08.4	09.8	11.2	12.6	14.0	
574	59	15.4	16.8	18.2	19.6	21.0	23.3	23.7	25.1	26.5	27.9	
575	59	29.3	30.7	32.1	33.4	34.8	36.2	37.6	39.0	40.3	41.7	
576	59	43.1	44.5	45.9	47.2	48.6	50.0	51.4	52.8	54.1	55.5	10.1
577	59	50.9	58.3	59.7	61.0	62.4	63.8	65.2	66.6	67.9	69.3	$2{ }^{2} \mathbf{0 . 3}$
578	59	70.7	72.1	73.5	74.8	76.2	77.6	79.0	80.4	81.7	83.1	
579	59	84.5	S5.9	87.2	88.6	90.0	91.3	92.7	94.1	95.5	96.8	
550	59	98.2	99.6									$\begin{array}{ll}5 & 0.7\end{array}$
580	60			00.9	02.3	03.7	05.0	06.4	07.8	09.2	10.5	$6{ }_{6}^{6} 0.8$
581	60	11.9	13.3	14.6	16.0	17.4	18.7	20.1	21.5	22.9	24.2	71.0
582	60	25.6	27.0	28.3	29.7	31.1	32.4	33.8	35.2	36.6	37.9	8 1.1
583	60	39.3	40.7	42.0	43.4	44.7	46.1	47.5	48.8	50.2	51.5	91.2
584	60	52.9	54.3	5.5	57.0	58.4	59.7	61.1	62.5	63.9	65.2	
585	60	66.6	68.0	69.3	707	720	73.4	74.8	76.1	77.5	78.8	
596	60	50.2	81.6	82.9	84.3	85.6	87.0	88.4	89.7	91.1	92.4	
587	60	93.8	95.1	96.5	97.8	99.2						
587	61						00.5	01.9	03.2	04.6	0.5 .9	
588	61	07.3	08.6	10.0	11.3	12.7	14.0	15.4	16.7	18.1	19.4	
589	61	20.8	22.1	23.5	24.8	26.2	27.5	28.9	30.2	31.6	32.9	
590	61	34.3	35.6	37.0	38.3	39.7	41.0	12.4	43.7	45.1	46.4	
591	61	47.8	49.1	50.5	51.8	53.2	54.5	55.9	57.2	58.6	59.9	
592	61	61.3	62.6	64.0	65.3	66.7	68.0	69.3	70.7	72.0	73.4	
593	61	74.7	76.0	77.4	78.7	80.1	81.4	82.7	84.1	85.4	86.8	
594	61	88.1	89.4	90.8	92.1	93.5	94.8	96.1	97.5	98.8		
594	62										00.2	
59.5	62	01.5	02.8	04.2	05.5	06.9	08.2	09.5	10.9	12.2	13.6	
596	62	14.9	16.2	17.6	18.9	20.2	21.5	22.9	24.2	25.5	26.9	
597	62	28.2	29.5	30.9	32.2	33.6	34.9	36.2	37.6	38.9	40.3	
598	62	41.6	42.9	44.3	45.6	46.9	48.2	49.6	50.9	52.2	53.6	
599	62	54.9	56.2	57.6	58.9	60.2	61.5	62.9	64.2	65.5	66.9	
600	62	68.2	69.5	70.8	72.2	73.5	74.8	76.1	77.1	78.8	80.1	
601	62	81.4	82.7	84.1	85.4	86.7	88.0	89.4	90.7	92.0	93.4	
602	62	94.7	96.0	97.3	98.7							
602	63					00.0	01.3	02.6	03.9	05.3	06.6	
$(6) 3$	63	07.9	09.2	10.5	11.9	13.2	14.5	15.8	17.1	18.5	19.8	
604	63	21.1	22.4	23.7	25.1	26.4	27.7	29.0	30.3	31.7	33.0	
605	63	34.3	35.6	36.9	38.2	39.5	40.8	12.2	43.5	44.8	46.1	
$\begin{aligned} & \text { Rarom. } \\ & \text { eler } \\ & \text { Horb } \end{aligned}$	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\left\|\begin{array}{c} \text { Parts } \\ \text { for each } \\ 0.01 \mathrm{~mm} \end{array}\right\|$

606 to 61^{mm}.

Burorr eter H or h .	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\left\|\begin{array}{c} \text { Parts } \\ \text { for each } \\ 0.01 \mathrm{~mm} . \end{array}\right\|$
Milli. M	Metr	Metres.	Netres.			Metr.						
606	63	47.4	48.7	50.0	51.3	2.	53.9	5.5.3	6.6	7.9	59.	
607	63	60.5	61.8	63.1	64.5	63.8	67.1	68.4	69.7	71.1	72.4	
608	63	73.7	75.0	76.3	77.6	78.9	802	81.5	82.8	84.1	8.5 .4	
609	63	86.7	88.0	89.3	90.6	91.9	93.2	94.6	95.9	97.2	98.5	
610	63	99.3										
610	61		01.1	02.4	03.7	05.0	063	07.6	08.9	10.2	11.5	
611	64	12.8	141	15.4	16.7	18.0	19.3	20.7	22.0	233	24.6	
312	64	25.9	27.2	28.5	29.8	31.1	32.4	33.7	35.0	36.3	37.6	
613	64	35.9	40.2	41.5	42.8	44.1	45.4	46.7	48.0	49.3	50.6	
614	64	51.9	53.2	54.5	55.8	57.1	58.3	59.6	60.9	6.2	63.5	
615	61	64.8	66.1	67.4	68.7	70.0	71.2	72.5	73.8	75.1	76.4	
616	64	77.7	79.0	50.3	81.6	82.9	84.2	85.5	86.8	88.1	89.4	
617	64	90.7	92.0	93.3	94.6	93.9	97.1	98.4	99.7			
617	65									01.0	02.3	
618	65	03.6	04.9	06.2	07.4	03.7	10.0	11.3	12.6	13.8	15.1	
619	6.5	16.4	17.7	19.0	20.3	21.6	22.8	24.1	25.4	26.7	28.0	
620	6.5	29.3	30.6	31.9	33.1	34.4	35.7	37.0	38.3	39.5	40.8	
621	6.5	42.1	43.4	4.4	45.9	47.2	48.5	49.8	51.1	52.3	53.6	$1{ }^{1} 0.1$
622	65	54.9	56.2	57.5	58.7	60.0	61.3	62.6	639	65.1	66.4	20.2
623	65	67.7	69.0	70.3	71.5	72.8	74.1	75.4	76.7	77.9	79.2	30.4
624	6.5	80.5	81.8	83.0	84.3	85.6	S6.8	88.1	89.4	90.7	91.9	4 0.5 5 0.6
62.5	6.5	93.2	94.5	95.8	97.0	98.3	99.6					6 0.8 7 0.9
62.5	66							00.9	02.2	03.4 16.2	01.7 17.4	$\begin{array}{ll}7 & 0.9 \\ 8 & 1.9\end{array}$
626	66	06.0	07.3	08.5	09.8	11.1	12.3	13.6	14.9 27.6	16.2 28.9	17.4 30.1	$\begin{array}{ll} 8 & 1.0 \\ 9 & 1.1 \end{array}$
627	66	18.7	20.0	21.2	22.5	23.3	25.0	26.3	27.6	28.9	30.1	$9 \quad 1.1$
628	66	31.4	32.7	33.9	36.2	56.4	37.7	39.0	40.2	41.5	12.7	
629	66	44.0	45.3	46.5	47.8	49.1	50.3	51.6	52.9	54.2	5.5	
630	66	56.7	58.0	59.2	60.5	61.7	63.0	64.3	65.5	66.3	68.0	
631	66	69.3	70.6	71.8	73.1	74.4	75.6	76.9	78.2	79.5	80.7	
632	66	82.0	83.2	84.5	85.7	87.0	88.2	89.5	90.7	92.0	93.2	
633	66	94.5	95.8	97.0	98.3	99.5						
6:3	67						00.8	02.1	03.3	04.6	05.8	
63.4	67	07.1	08.4	09.6	10.9	12.1	13.4	14.7	15.9	17.2	18.4	
63.5	67	19.7	20.9	2.2	23.4	24.7	2.5 .9	27.2	25.4	29.7	30.9	
6336	67	32.2	33.4	34.7	35.9	37.2	38.4	39.7	40.9	42.2	43.4	
6\%7	67	4.7	45.9	47.2	48.4	49.7	50.9	52.2	53.4	54.7	55.9	
635	67	57.2	58.4	59.7	60.9	62.2	63.4	64.7	65.9	67.2	68.4	
639	67	69.7	70.9	72.2	73.4	74.7	75.9	77.1	75.4	79.6	80.9	
6 \%	67	82.1	83.3	84.6	85.8	87.1	88.3	89.6	90.8	92.1	93.3	
641	67	9 4.6	95.8	97.1	98.3	99.6						
6.41	68						00.8	02.0	03.3	16.9	0.9 .8 18.2	
642	63	07.0	08.2	09.5	10.7	12.0	13.2	14.4	13.7	16.9	15.2 30.5	
643	68	19.4	20.6	21.9	23.1	24.3	2.5.5	26.8			30.5	
644	65	31.7	32.9	34.2	35.4	36.7	37.9	39.1			42.9 55.2	
64.5	69	4.1	45.3	46.6	47.8	49.0	50.2	51.5	52.7	53.9	63.2	
646	68	56.4	57.6	58.9	60.1	61.3	62.5	63.8	6.5 .0	66.2	67.5	
647	68	68.7	69.9	71.2	72.4	73.6	74.8	76.1	77.3	78.5	79.8	
Brom- eter Horh.	N	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Parts fir each 0.04 mm 0.1 mm

648 to $689^{\mathrm{mm} .}$.

Barom eter H or h .	N.	0.0	0.1	0.2	0.3	0.1	0.5	0.6	0.7	0.8	0.9	$\begin{gathered} \text { Parts } \\ \text { for each } \\ 0.01 \mathrm{~mm} \end{gathered}$
Milli.	Metr.	Netres.	Metres.	Metres.	IIetres.	Netres.	Metres.	Metres.	Netres.	Metres.	Metres.	Metr.
648	68	81.0	52.2	83.5	84.7	85.9	87.1	88.4	89.6	90.8	92.1	
649	68	93.3	94.5	95.8	97.0	98.2	99.4					
619	69							00.7	01.9	03.1	04.4	
6.30	69	05.6	06.8	09.0	09.3	10.5	11.7	12.9	14.1	15.4	16.6	
6.51	69	17.8	19.0	20.2	21.5	22.7	23.9	25.1	26.3	27.6	25.8	
6.52	69	30.0	31.2	32.4	33.7	34.9	36.1	37.3	38.5	39.8	41.0	
6.33	69	42.2	43.4	44.6	45.9	17.1	48.3	19.5	50.7	52.0	53.2	
6.94	69	54.4	5.6	56.8	58.1	59.3	60.5	61.7	62.9	64.2	65.4	
6.55	69	66.6	67.8	69.0	70.2	71.4	72.6	73.9	75.1	76.3	77.5	
6.56	69	78.7	79.9	81.1	S.2.4	83.6	84.8	86.0	87.2	88.5	59.7	
6.5%	69	90.9	92.1	93.3	94.5	95.7	96.9	98.2	99.4			
6.57	70									00.6	01.8	
6.58	70	03.0	04.2	05.4	06.6	07.8	09.0	10.3	11.5	12.7	13.9	
6.59	70	15.1	16.3	17.5	18.7	19.9	21.1	2.2.4	23.6	24.8	26.0	
660	70	27.2	28.4	29.6	30.8	32.0	33.2	34.4	35.6	36.8	35.0	10.1
661	70	39.2	40.4	41.6	42.8	44.0	45.2	46.4	47.6	48.8	50.0	20.2
662	70	51.2	52.4	53.6	54.8	56.0	57.2	58.5	59.7	60.9	62.1	$3{ }^{3} \mathbf{0 , 4}$
663	70	63.3	64.5	65.7	66.9	65.1	69.3	70.5	71.7	72.9	74.1	40.5
664	70	75.3	76.5	77.7	78.9	S0.1	81.2	8.4	\$3.6	S4.8	86.0	50.6
66.5	70	87.2	88.4	S9.6	90.8	92.0	93.2	94.4	95.6	96.8	98.0	60.7
666	70	99.2										70.8
666	71		00.4	01.6	02.8	04.0	05.2	06.4	07.6	08.8	10.0	81.0
667	31	11.2	12.4	13.6	14.8	16.0	17.1	18.3	19.5	20.7	21.9	9 l 1.1
668	71	23.1	24.3	2.5	26.7	27.9	29.0	30.2	31.4	32.6	33.8	
669	71	35.0	36.2	37.4	38.6	39.8	40.9	42.1	43.3	44.5	45.7	
670	71	46.9	48.1	49.3	50.5	51.7	52.8	54.0	55.2	56.4	57.6	
671	71	58.8	60.0	61.2	62.3	63.5	64.7	65.9	67.1	68.2	69.4	
672	71	70.6	71.8	73.0	74.2	75.4	76.5	77.7	78.9	80.1	81.3	
673	71	82.5	83.7	84.9	86.0	87.2	88.4	89.6	90.8	91.9	93.1	
674	71	94.3	95.5	96.7	97.8	99.0						
634	72						00.2	01.4	02.6	03.7	04.9	
675	22	06.1	07.3	08.5	09.6	10.8	12.0	13.2	14.4	15.5	16.7	
676	72	17.9	19.1	20.3	21.4	22.6	23.8	2.5.0	26.2	27.3	28.5	
677	72	29.7	30.9	32.0	33.2	34.4	35.5	36.7	37.9	39.1	40.2	
678	72	41.4	42.6	43.8	44.9	16.1	47.3	18.5	49.7	50.8	52.0	
679	72	53.2	54.4	55.5	56.7	57.9	59.0	60.2	61.4	62.6	63.7	
650	72	64.9	66.1	67.2	68.4	69.6	70.7	71.9	73.1	74.3	75.4	
681	72	76.6	77.8	78.9	80.1	81.3	82.4	83.6	84.8	86.0	87.1	1 \| 0.1
682	72	88.3	89.5	90.6	91.8	93.0	94.1	95.3	96.5	97.7	98.8	20.2
653	73	00.0	01.2	02.3	03.5	04.6	05.8	07.0	08.1	09.3	10.4	3 0.3
634	73	11.6	12.8	13.9	15.1	16.2	17.4	18.6	19.7	20.9	22.0	40.5
655	73	23.2	24.4	2.5.5	26.7	27.8	29.0	30.2	31.3	32.5	33.6	$5 \quad 0.6$
656	73	34.8	36.0	37.1	38.3	39.4	40.6	41.5	42.9	44.1	45.2	$\begin{array}{lll}6 & 0.7\end{array}$
657	73	46.4	47.6	48.7	49.9	51.0	52.2	53.4	54.5	55.7	56.8	70.8
658	73	58.0	59.2	60.3	61.5	62.6	63.8	65.0	66.1	67.3	68.4	8 0.9
689	73	69.6	70.7	71.9	73.0	74.2	75.3	76.5	77.6	78.8	79.9	91.1
$\begin{aligned} & \text { Barom. } \\ & \text { eter } \\ & \text { Hor } h \end{aligned}$	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\begin{aligned} & \text { Parts } \\ & \text { finr each } \\ & 001 \text { mo. } \end{aligned}$

690 to 730^{mm}.

$\left\{\begin{array}{l} \text { B irom- } \\ \text { eter } \\ \mathrm{H} \text { or } \mathrm{h} . \end{array}\right.$	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\begin{aligned} & \text { Parts } \\ & \text { for each } \\ & 0.01 \mathrm{~mm} . \end{aligned}$
Milti.	Metr	Metres.	Metres.	Metres	Metres.	Metres.	Netres.	Metres.	Metres.	Metres.	Metres.	Metr.
690	73	81.1	82.3	83.4	84.6	85.7	86.9	88.1	89.2	90.4	91.5	
691	73	92.7	93.8	95.0	96.1	97.3	98.4	99.6				
691	74								00.7	01.9	03.0	
692	74	04.2	05.3	06.5	07.6	08.8	09.9	11.1	12.2	13.4	14.5	
693	74	15.7	16.8	18.0	19.1	20.3	21.4	22.6	23.7	24.9	26.0	
694	74	27.2	28.3	29.5	30.6	31.8	32.9	34.1	35.2	36.4	37.5	
695	74	35.7	39.8	41.0	42.1	43.3	44.4	45.5	46.7	47.8	49.0	
696	74	50.1	51.2	52.4	53.5	54.7	5.5 .8	56.9	58.1	59.2	60.4	
697	74	61.5	62.6	63.8	64.9	66.1	67.2	68.3	69.5	70.6	71.8	
698	74	72.9	74.0	75.2	76.3	77.5	78.6	79.7	80.9	82.0	83.2	
699	74	84.3	85.4	86.6	87.7	88.9	90.0	91.1	92.3	93.4	94.6	
700	74	95.7	96.8	98.0	99.1							
700	75					00.3	01.4	02.5	03.7	04.8	06.0	
701	75	07.1	08.2	09.4	10.5	11.6	12.7	13.9	15.0	16.1	17.3	
702	75	18.4	19.5	20.7	21.8	23.0	24.1	25.2	26.4	27.5	28.7	
703	75	29.8	30.9	32.1	33.2	34.3	35.4	36.6	37.7	32.8	40.0	
704	75	41.1	42.2	43.4	4.5	45.6	46.7	47.9	49.0	50.1	51.3	
705	75	52.4	53.5	54.7	55.8	56.9	59.0	59.2	60.3	61.4	62.6	
706	75	63.7	64.8	66.0	67.1	68.2	69.3	70.5	71.6	72.7	73.9	
707	75	75.0	76.1	77.2	78.4	79.5	80.6	81.7	82.8	84.0	85.1	
708	75	86.2	87.3	88.5	89.6	90.7	91.8	93.0	94.1	95.2	96.4	
709	75	97.5	98.6	99.7								
709	76				00.9	02.0	03.1	04.2	05.3	06.5	07.6	
710	76	08.7	09.8	10.9	12.1	13.2	14.3	15.4	16.5	17.7	18.8	
711	76	19.9	21.0	2.2 .1	23.3	24.4	25.5	26.6	27.7	28.9	30.0	
712	76	31.1	32.2	33.3	34.4	35.5	36.6	37.8	38.9	40.0	41.1	10.1
713	76	42.2	43.3	44.4	45.6	46.7	47.5	45.9	50.0	51.2	52.3	20.2
714	76	53.4	54.5	55.6	56.8	57.9	59.0	60.1	61.2	62.4	63.5	30.3
715	76	64.6	65.7	66.8	67.9	69.0	70.1	71.3	72.4	73.5	74.6	40.4
716	76	75.7	76.5	77.9	79.0	80.1	81.2	82.4	83.5	84.6	85.7	50.5
717	76	86.8	87.9	89.0	90.1	91.2	92.3	93.5	94.6	95.7	96.8	60.7
718	76	97.9	99.0									70.8
718	77			00.1	01.2	02.3	03.4	04.6	05.7	06.8	07.9	$8 \quad 0.9$
719	77	09.0	10.1	11.2	12.3	13.4	14.5	13.7	16.9	17.9	19.0	91.0
720	77	20.1	21.2	22.3	23.4	24.5	2.5. 6	26.7	27.8	28.9	30.0	
721	77	31.1	32.2	33.3	34.4	35.5	36.6	37.7	38.8	39.9	41.0	
722	77	42.1	43.2	4.3	45.4	46.5	47.6	18.7	49.8	50.9	52.0	
723	77	53.1	54.2	55.3	56.4	57.5	55.6	59.8	60.9	62.0	63.1	
724	77	64.2	65.3	66.4	67.5	68.6	69.6	70.7	71.8	72.9	74.0	
725	77	75.1	76.2	77.3	78.4	79.5	80.6	81.7	82.8	83.9	85.0	
726	77	86.1	87.2	58.3	89.4	90.5	91.6	9.2 .7	93.8	94.9	96.0	
727	77	97.1	98.2	99.3								
727	78				00.4	01.5	02.5	03.6	04.7	05.8	06.9	
729	78	08.0	09.1	10.2	11.3	12.4	135	14.6	15.7	16.8	17.9	
724	78	19.0	201	21.2	22.3	23.4	24.4	25.5	26.6	27.7	28.8	
730	78	29.9	31.0	32.1	33.3	34.3	353	36.4	37.5	38.6	39.7	
$\left\lvert\, \begin{aligned} & \text { Barmm- } \\ & \text { eter } \\ & \text { Hor h. } \end{aligned}\right.$	N.	0.0	0.1	O. ${ }^{2}$	0.3	0.4	0.5	0.6	0.7	0.8	0.9	$\begin{gathered} \text { Parts } \\ \text { for each } \\ 001 \mathrm{~mm} . \end{gathered}$

731 to $\mathbf{7 7 0}^{\mathrm{mm}}$.

Barom eter Horh.	N.	0.0	6.1	O.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Parts for sawn 0.01 mm .
Milli.	Metr.	Metres.	Metres.	Metres	Metres.	Metr.						
731	78	40.8	41.9	43.0	4.1	45.2	46.2	47.3	48.4	49.5	50.6	
732	78	51.7	52.8	53.9	54.9	56.0	57.0	58.2	59.3	60.3	61.4	
733	78	62.5	63.6	64.7	65.8	66.9	67.9	69.0	70.1	71.2	72.3	
734	78	73.4	74.5	75.6	76.6	77.7	78.8	79.9	81.0	82.0	83.1	
735	78	84.2	85.3	86.4	87.5	88.6	89.6	90.7	91.8	92.9	94.0	
736	78	95.1	96.2	97.3	98.3	99.4						
736	79						00.5	01.6	02.7	03.7	04.8	
737	79	05.9	07.0	08.1	09.1	10.2	11.3	12.4	13.5	14.5	15.6	
738	79	16.7	17.8	18.9	19.9	21.0	22.1	23.2	24.3	25.3	26.4	
739	79	27.5	28.6	29.6	30.7	31.8	32.8	33.9	35.0	36.1	37.1	
740	79	38.2	39.3	40.4	41.4	42.5	43.6	44.7	45.8	46.8	47.9	
741	79	49.0	501	51.1	52.2	53.3	54.3	5.5 .4	56.5	57.6	58.6	
742	79	59.7	60.8	61.8	62.9	64.0	65.0	66.1	67.2	68.3	69.3	
743	79	70.4	71.5	72.6	73.6	74.7	75.8	76.9	78.0	79.0	80.1	
744	79	81.2	82.3	83.3	84.4	85.5	86.5	87.6	88.7	89.8	90.8	
745	79	91.9	93.0	94.0	95.1	96.1	97.2	98.3	99.3			
745	80									00.4	01.4	
746	80	02.5	03.6	04.6	05.7	06.8	07.8	08.9	10.0	11.1	12.3	
747	80	13.2	14.3	15.3	16.4	17.4	18.5	19.6	20.6	21.7	22.7	
748	80	23.8	24.9	25.9	27.0	28.0	29.1	30.2	31.2	32.3	33.3	
749	80	34.4	35.5	36.5	37.6	38.7	39.7	40.8	41.9	43.0	44.0	
750	S0	45.1	46.2	47.3	48.4	49.4	50.5	51.6	52.6	53.7	54.7	
751	80	55.7	56.8	57.8	58.9	59.9	61.0	62.1	63.1	64.2	65.2	
752	80	66.3	67.4	68.4	69.5	70.5	71.6	72.7	73.7	74.8	75.8	
753	80	76.9	78.0	79.0	80.1	81.1	82.2	83.3	84.3	85.4	86.4	
754	80	87.5	88.5	89.6	90.6	91.7	92.7	93.8	94.8	95.9	96.9	${ }_{1} 0.1$
755	80	98.0	99.1									$\begin{array}{lll}2 & 0.2\end{array}$
755	81			00.1	01.2	02.2	03.3	04.4	05.4	06.5	07.5	30.3
756	81	08.6	09.6	10.7	11.7	12.8	13.8	14.9	15.9	17.0	18.0	40.4
757	81	19.1	20.1	21.2	22.2	23.3	24.3	25.4	26.4	27.5	28.5	5 0.5
758	81	29.6	30.6	31.7	32.7	33.8	34.8	35.9	36.9	38.0	39.0	60.6
759	81	40.1	41.1	42.2	43.2	44.3	45.3	46.4	47.4	48.5	49.5	7 0.7 8 0.8
760	81	50.6	51.6	52.7	53.7	54.8	55.8	56.9	57.9	59.0	60.0	9 0.9
761	81	61.1	62.1	63.2	64.2	65.3	66.3	67.3	68.4	69.4	70.5	
762	81	71.5	72.5	73.6	74.6	75.7	76.7	77.8	78.8	79.9	80.9	
763	81	82.0	83.0	84.1	85.1	86.2	87.2	88.2	89.3	90.3	91.4	
764	81	92.4	93.4	94.5	95.5	96.6	97.6	98.6	99.7			
76.4	82									00.7	01.8	
76.5	82	02.8	03.8	04.9	0.5 .9	07.0	08.0	09.0	10.1	11.1	12.2	
766	82	13.2	14.2	15.3	16.3	17.4	18.4	19.4	20.5	21.5	22.6	
767	82	23.6	24.6	25.7	26.7	27.8	28.8	29.8	30.9	31.9	33.0	
768	82	34.0	35.0	36.1	37.1	38.2	39.2	40.2	41.3	42.3	43.4	
769	82	44.4	45.4	46.5	47.5	48.5	49.5	50.6	51.6	52.6	53.7	
770	82	54.7	55.7	56.8	57.8	58.8	59.8	60.9	61.9	62.9	64.0	
$\left\lvert\, \begin{aligned} & \text { Barom- } \\ & \text { eler } \\ & \text { Hor or } . \end{aligned}\right.$	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Parts for each $0.01: \mathrm{mm}$.

771 to $810^{\text {man. }}$

$\left\lvert\, \begin{aligned} & \text { Barom- } \\ & \text { eter } \\ & \text { Horh. } \end{aligned}\right.$	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Parts for each 0.01 mm .
Milli.	Metr.	Metres.	Metres.	Metres	Metres.	Metres.	Merres.	Metres.	Metres.	Metres.	Metres.	Metr.
771	82	65.0	66.0	67.1	68.1	69.2	70.2	71.2	72.3	73.3	74.4	
772	82	75.4	76.4	77.5	78.5	79.5	80.5	81.6	82.6	83.6	84.7	
773	82	85.7	86.7	87.8	88.8	89.8	90.8	91.9	92.9	93.9	95.0	
774	82	96.0	97.0	98.0	99.1							
774	83					00.1	01.1	02.1	03.1	04.2	05.2	
775	83	06.2	07.2	08.3	09.3	10.3	11.3	12.4	13.4	14.4	15.5	
776	83	16.5	17.5	18.5	19.6	20.6	21.6	22.6	23.6	24.7	25.7	
777	83	26.7	27.7	28.8	29.8	30.8	31.8	32.9	33.9	34.9	36.0	
778	83	37.0	38.0	39.0	40.1	41.1	42.1	43.1	44.1	45.2	46.2	
779	83	47.2	48.2	49.2	50.3	51.3	52.3	53.3	54.3	55.4	56.4	
780	83	57.4	58.4	59.4	60.5	61.5	62.5	63.5	64.5	65.6	66.6	
781	83	67.6	68.6	69.6	70.7	71.7	72.7	73.7	74.7	75.8	76.8	
782	83	77.8	78.8	79.8	80.9	81.9	82.9	83.9	84.9	86.0	87.0	
783	83	88.0	89.0	90.0	91.1	92.1	93.1	94.1	95.1	96.2	97.2	
784	83	98.2	99.2									
78.1	84			00.2	01.2	02.2	03.2	04.3	05.3	06.3	07.3	
785	84	08.3	09.3	10.3	11.4	12.4	13.4	14.4	15.4	16.5	17.5	
756	84	18.5	19.5	20.5	21.5	22.5	23.5	24.6	25.6	26.6	27.6	
787	84	28.6	29.6	30.6	31.6	32.6	33.6	34.7	35.7	36.7	37.7	
788	84	38.7	39.7	40.7	41.7	42.7	43.7	44.8	45.8	46.8	47.8	
789	84	48.8	49.8	50.8	51.8	52.8	53.8	54.9	55.9	56.9	57.9	
790	84	58.9	59.9	60.9	61.9	62.9	63.9	65.0	66.0	67.0	68.0	
791	84	68.9	69.9	70.9	71.9	72.9	73.9	75.0	76.0	77.0	78.0	$1{ }^{1} 0.1$
792	84	79.0	80.0	81.0	82.0	83.0	84.0	85.0	86.0	87.0	88.0	$2 \begin{array}{lll}2 & 0.2\end{array}$
793	84	89.0	90.0	91.0	92.0	93.0	94.0	95.1	96.1	97.1	98.1	$3{ }^{3} 0.3$
79 ¢	84	99.1										40.4
79.	85		00.1	01.1	02.1	03.1	04.1	05.1	06.1	07.1	08.1	50.5
79.5	85	09.1	10.1	11.1	12.1	13.1	14.1	15.1	16.1	17.1	18.1	60.6
796	85	19.1	20.1	21.1	22.1	23.1	24.1	25.1	26.1	27.1	28.1	$7 \begin{array}{ll}7 & 0.7\end{array}$
797	85	29.1	30.1	31.1	32.1	33.1	34.1	35.1	36.1	37.1	38.1	880.8
798	85	39.1	40.1	41.1	42.1	43.1	44.1	45.1	46.1	47.1	48.1	9 0.9
799	85	49.1	50.1	51.1	52.0	53.0	54.1	55.0	56.0	57.0	58.0	
800	85	59.0	60.0	61.0	62.0	63.0	64.0	65.0	66.0	67.0	68.0	
801	85	69.0	70.0	70.9	71.9	72.9	73.9	74.9	75.9	76.9	77.9	
802	85	78.9	79.9	80.9	81.9	82.9	83.9	84.9	85.8	86.8	87.8	
803	85	88.8	89.8	90.8	91.8	92.8	93.8	94.8	95.8	96.7	97.7	
804	85	98.7	99.7									
804	86			00.7	01.7	02.7	03.7	04.7	05.7	06.6	07.6	
805	86	08.6	09.6	10.6	11.6	12.6	13.6	14.6	15.5	16.5	17.5	
806	86	18.5	19.5	20.5	21.5	22.5	23.4	24.4	25.4	26.4	27.4	
807	86	28.4	29.4	30.4	31.3	32.3	33.3	34.3	35.3	36.3	37.3	
808	86	38.3	39.2	40.2	41.2	42.2	43.2	44.2	45.1	46.1	47.1	
809	86	48.1	49.1	50.1	51.1	52.0	53.0	54.0	55.0	56.0	57.0	
810	86	57.9	58.9	59.9	60.9	61.9	62.8	63.8	64.8	65.8	66.8	
Barom. eter Hor h.	N.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Parts fir eact 0.01 mm .

TABLE II. Correction for Difference of Temperature of Attached Thermometers.

Temperature of Darometers at Station $\left\{\begin{array}{l}\text { Upyer }=\mathrm{T}^{\prime} \\ \text { Luwer }=\text { T }\end{array}\right.$									
$T^{\prime}-T$ Centig.	Correct. Metres.	$\mathrm{T}^{\prime}-\mathrm{T}$ Centigrade.	Correct. Metres.	$\mathrm{T}^{\prime}-\mathrm{T}$ Centigrade.	Correct. Metres.	$\mathbf{T}^{\prime}-\mathrm{T}$ Centigrade.	Correct. Metres.	$\mathrm{T}^{\prime}-\mathrm{T}$ Centigrade.	Correct. Metres.
0.0	0.0	8.0	10.3	16.0	20.6	24.0	30.9	32.0	41.3
0.2	0.3	8.2	10.6	16.2	20.9	24.2	31.2	32.2	41.5
0.4	0.5	8.4	10.8	16.4	21.1	24.4	31.5	32.4	41.8
0.6	0.8	8.6	11.1	16.6	21.4	24.6	31.7	32.6	42.0
0.5	1.0	8.8	11.3	16.8	21.7	24.5	32.0	32.8	42.3
1.0	1.3	9.0	11.6	17.0	21.9	25.0	32.2	33.0	42.5
1.2	1.5	9.2	11.9	17.2	2.2.2	25.2	32.5	33.2	42.8
1.4	1.8	9.4	12.1	17.4	22.4	25.4	32.7	33.4	43.1
1.6	2.1	9.6	12.4	17.6	22.7	25.6	33.0	33.6	43.3
1.8	2.3	9.8	12.6	17.8	22.9	25.8	33.3	33.8	43.6
2.0	2.6	10.0	12.9	18.0	23.2	26.0	33.5	34.0	43.8
2.2	2.8	10.2	13.1	18.2	23.5	26.2	33.8	34.2	4.1
2.4	3.1	10.4	13.4	18.4	23.7	26.4	34.0	34.4	44.3
2.6	3.4	10.6	13.7	18.6	24.0	26.6	34.3	34.6	44.6
2.8	3.6	10.8	13.9	18.8	24.2	26.8	34.6	34.8	44.9
3.0	3.9	11.0	14.2	19.0	24.5	27.0	34.8	35.0	45.1
3.2	4.1	11.2	14.5	19.2	24.8	27.2	35.1	35.2	45.4
3.4	4.4	11.4	14.7	19.4	25.0	27.4	35.3	35.4	45.6
3.6	4.6	11.6	15.0	19.6	25.3	27.6	35.6	35.6	45.9
3.8	4.9	11.8	15.2	19.8	25.5	27.8	35.8	35.8	46.2
40	5.2	12.0	15.5	20.0	25.8	28.0	36.1	36.0	46.4
4.2	5.4	12.2	15.5	20.2	26.0	28.2	36.4	36.2	46.7
1.1	5.7	12.4	16.0	20.4	26.3	28.4	36.6	36.4	46.9
4.6	5.9	12.6	16.3	20.6	26.6	29.6	36.9	36.6	47.2
4.8	6.2	12.8	16.5	20.8	26.8	28.8	37.1	36.8	47.4
5.0	6.4	13.0	16.8	21.0	27.1	29.0	37.4	37.0	47.7
5.2	6.7	13.2	17.0	21.2	27.3	29.2	37.6	37.2	48.0
5.4	7.0	13.4	17.3	21.4	27.6	29.4	37.9	37.4	48.2
5.6	7.2	13.6	17.5	21.6	27.8	29.6	38.2	37.6	48.5
58	7.5	13.8	17.8	21.8	28.1	29.8	38.4	37.8	48.7
6.0	7.7	14.0	18.0	2.0	28.4	30.0	38.7	38.0	49.0
6.2	8.0	14.2	18.3	22.2	28.6	30.2	38.9	38.2	49.2
6.4	8.3	14.4	18.5	$2 \cdot .4$	28.9	30.4	39.2	38.4	49.5)
6.6	8.5	14.6	18.8	22.6	29.1	30.6	39.5	38.6	49.8
6.8	8.8	14.8	19.0	22.8	29.4	30.8	39.7	38.8	50.0
70	9.0	15.0	19.3	23.0	29.7	31.0	40.0	39.0	50.3
7.2	9.3	15.2	19.6	23.2	29.9	31.2	40.2	39.2	50.5
7.4	9.5	15.4	198	23.4	30.2	31.4	40.5	39.4	50.8
7.6	9.8	15.6	20.1	23.6	30.4	31.6	40.7	39.6	51.1
7.9	10.1	15.8	20.3	23.8	30.7	31.8	41.0	39.8	51.3
8.0	10.3	16.0	20.6	24.0	30.9	32.0	41.3	40.0	516

This Table supposes the scale to be of brass from the top to the cistern. If it were of glass or of wood, the argument T^{\prime} - T ought to be diminished at the ratio of $5+$ to $6:$.

In computing by the formula of Laplace, we begin by reducing the barometers to the same temperature by means of the following formula: $\mathrm{H}=h^{\prime}+h^{\prime}\binom{\mathrm{T}-\mathrm{T}}{6196}$. Table II. saves this tronble, and gives, in metres, the correction due to the difference of temperature of the barometers.

TABLE III. Correction for Decrease of Gravitation in Latitude.

$$
\boldsymbol{\beta}=(0.0028371 \operatorname{cosin} .2 L) . \quad(A+\alpha+\boldsymbol{\beta})
$$

The Argument is the Mean Latitude between the two Stations.

LAT	DE.	Correction, in metres, for								
	on.	1000	2000	3000	4000	5000	6000	7000	8000	9000
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$9{ }_{0}^{\circ}$	2.8	5.7	8.5	11.3	14.2	17.0	199	22.7	25.7
1	89	2.8	5.7	8.5	11.3	14.2	17.0	19.8	22.7	25.6
2	88	2.8	5.7	8.5	11.3	14.1	17.0	19.8	22.6	25.5
3	87	2.8	5.6	8.5	11.3	14.1	16.9	19.7	22.6	25.4
4	86	2.8	5.6	8.4	11.2	14.0	16.9	19.7	22.5	25.3
5	85	2.8	5.6	8.4	11.2	14.0	16.8	19.6	22.3	25.1
6	84	2.8	5.5	8.3	11.1	13.9	16.6	19.4	22.2	25.0
7	83	2.7	5.5	8.2	11.0	13.8	16.5	19.3	22.0	24.8
8	82	2.7	5.4	8.2	10.9	13.6	16.4	19.1	21.8	24.5
9	81	2.7	5.4	8.1	10.8	13.5	16.2	18.9	21.6	24.3
10	80	2.7	5.3	8.0	10.7	13.3	16.0	18.7	21.3	24.0
11	79	2.6	5.2	7.9	10.5	13.1	15.8	18.4	21.0	23.7
12	78	2.6	5.2	7.8	10.4	13.0	15.5	18.1	20.7	23.3
13	77	2.5	5.1	7.6	10.2	12.7	15.3	17.8	20.4	22.9
14	76	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5
15	75	2.5	4.9	7.4	9.8	12.3	14.7	17.2	19.7	22.1
16	74	2.4	4.8	7.2	9.6	12.0	14.4	16.8	19.2	21.6
17	73	2.4	4.7	7.0	9.4	11.8	14.1	16.5	18.8	21.2
18	72	2.3	4.6	6.9	9.2	11.5	13.8	16.1	18.4	20.7
19	71	2.2	4.5	6.7	8.9	11.2	13.4	15.6	17.9	20.1
20	70	2.2	4.3	6.5	8.7	10.9	13.0	15.2	17.4	19.6
21	69	2.1	4.2	6.3	8.4	10.5	12.6	14.7	16.9	19.0
22	68	2.0	4.1	6.1	8.2	10.2	12.2	14.3	16.3	18.4
23	67	2.0	3.9	5.9	7.9	9.8	11.8	13.8	15.8	17.7
24	66	1.9	3.8	5.7	7.6	9.5	11.4	13.3	15.2	17.1
25	63	1.8	3.6	5.5	7.3	9.1	10.9	12.8	14.6	16.4
26	64	1.7	3.5	5.2	7.0	8.7	10.5	12.2	14.0	15.7
27	63	1.7	3.3	5.0	6.7	8.3	10.0	11.7	13.3	15.0
28	62	1.6	3.2	4.8	6.3	7.9	9.5	11.1	12.7	14.3
29	61	1.5	3.0	4.5	6.0	7.5	9.0	10.5	12.0	13.5
30	60	1.4	2.8	4.3	5.7	7.1	8.5	9.9	11.3	12.8
31	59	1.3	2.7	4.0	5.3	6.6	8.0	9.3	106	12.0
32	58	1.2	2.5	3.7	5.0	6.2	7.5	8.7	9.9	11.2
33	57	1.1	2.3	3.5	4.6	5.8	6.9	8.1	9.2	10.4
34	56	1.1	2.1	3.2	4.2	5.3	6.4	7.4	8.5	9.6
3.5	55	1.0	1.9	2.9	3.9	4.8	5.8	6.8	7.8	8.7
36	54	0.9	1.7	2.6	3.5	4.4	5.3	6.1	7.0	79
37	53	0.8	1.6	2.3	3.1	3.9	4.7	5.5	6.2	7.0
38	52	0.7	1.4	2.1	2.7	3.4	4.1	4.8	5.5	6.2
39	51	0.6	1.2	1.8	2.4	2.9	3.5	4.1	4.7	5.3
40	50	0.5	1.0	1.5	2.0	2.5	3.0	3.4	3.9	4.4
41	49	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.5
42	48	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7
43	47	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
44	46	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
45	45	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table IV. Correction for Decrease of Gravitation on a Vertical Line.

$$
\begin{gathered}
\delta=\left(\frac{A+\alpha+\hat{\beta}+v+15296}{6366200}\right) \times \mathbf{A}(+\alpha+\beta+v) . \\
\text { Argument }=(A+\alpha+\beta+v) .
\end{gathered}
$$

Approximate Difference of Level.	Correspond. Correction Positive.	Approximate Difference of Level.	Correspond. Correction Positive.	Approximate Difference of Level.	Correspond. Correction Positive.	Approximate Ditference of Level.	Correspond. Correction Positive.
Merres.	Metres.						
100	0.2	2100	6.0	4100	12.9	6100	21.1
200	0.5	2200	6.3	4200	13.3	6200	21.6
300	0.8	2300	6.6	4300	13.7	6300	22.0
400	1.0	2400	6.9	4400	14.1	6400	22.5
500	1.3	2500	7.3	4500	14.5	6500	22.9
600	1.6	2600	7.6	4600	14.9	6600	23.4
700	1.8	2700	7.9	4700	15.3	6700	23.9
800	2.1	2800	8.3	4800	15.7	6800	24.3
900	2.4	2900	8.6	4900	16.1	6900	24.8
1000	2.7	3000	8.9	5000	16.5	7000	25.3
1100	2.9	3100	9.3	5100	16.9	7100	25.7
1200	3.2	3200	9.6	5200	17.3	7200	26.2
1300	3.5	3300	10.0	5300	17.7	7300	26.7
1400	3.8	3400	10.3	5400	18.1	7400	27.2
1500	4.1	3500	10.7	5500	18.5	7500	27.7
1600	4.4	3600	11.1	5600	19.0	7600	28.1
1700	4.7	3700	11.4	5700	19.4	7700	28.6
1800	5.0	3800	11.8	5800	19.8	7800	29.1
1900	5.3	3900	12.2	5900	20.3	7900	29.6
2000	5.6	4000	12.5	6000	20.7	8000	30.1

TABLE V. Correction for the Elevation of the Lower Station above Ocean.
Argument $=$ Height of Barometer at Lower Station.

Anproximate Difference of Level.	Height of Barometer at Lower Station in Millimetres.							
	400	450	500	550	600	650	700	750
Metres.								
1000	1.7	1.4	1.1	0.9	0.6	0.4	0.2	0.0
2000	3.4	2.8	2.2	1.7	1.3	0.8	0.4	0.1
3000	5.1	4.2	3.3	2.6	1.9	1.3	0.7	0.1
4000	6.8	5.6	4.4	3.4	2.5	1.7	0.9	0.1
5000	8.5	6.9	5.5	4.3	3.1	2.1	1.1	0.1
6000	10.3	8.3	6.7	5.2	3.8	2.5	1.3	0.2
7000	12.0	9.7	7.8	6.0	4.4	2.9	1.5	0.2
8000	13.7	11.1	8.9	6.9	5.0	3.4	1.8	0.2
9000	15.4	12.5	10.0	7.7	5.7	3.8	2.0	0.3

I I.

TABLES

FOR COMPUTING DIFFERENCES OF ELEVATION FROM BAROMETRICAL OBSERVATIONS.
BY A. GUYOT.
Tables which, like the preceding ones by Delcros, in metrical measures, are sufficiently extensive to save the necessity of interpolations, relieve the computer of most of his trouble, and considerably reduce the chances of error in the computations. They thus render to science itself a real service, by inducing observers to determine a larger number of points, and to secure the accuracy of the results by repeating their observations at the same point in various atmospheric circumstances, both of which they can do without fear of being overwhelmed by the labor of the computation.

Similar tables are here offered to the observers who use instruments graduated to English measures. Like those of Delcros, the new tables are based on Laplace's formula, with a slight modification of only one constant. They dispense with the use of logarithms, and give the differences of level corresponding to every thousandth of an inch from 12 to 31 inches by means of the simplest arithmetical operations, so that the data being prepared and corrected, the computation of an elevation takes but a few minutes, and is done with scarcely any chance of error.

Laplace's formula and constants were adopted for the computation of the tables in preference to others found in the following sets for reasons which a few words will explain.

It has been remarked, page 9, that, in consequence of Laplace's constants having been retained in Gauss's, Schmidt's, and Baily's formule, they all give similar results; but that Bessel's formula differs in separating the correction due to the moisture of the air from that due to its temperature, while in Laplace's, and in the formulæ just mentioned, both are united. To introduce a separate correction for the expansion of aqueous vapor is, in the writer's view, a doubtful improvement. The laws of the distribution and transmission of moisture through the atmosphere are too little known, and its amount, especially in mountain regions, is too variable, and depends too much upon local winds and local condensation, to allow a reasonable hope of obtaining the mean humidity of the layer of air between the two stations by means of hygrometrical observations taken at each of them. 'These doubts are confirmed by the experience of the author and of many other observers, which shows that, on an average, Laplace's method works not only as well as the other, but more uniformly well. At any rate, the gain, if there is any, is not clear enough to compensate for the undesirable complication of the formula.

Though the several co-efficients of Laplace's formula need perhaps to be modified according to more recent and probably more accurate determinations of the physical constants on which they depend, as has been proposed by Plantamour, E. Ritter, and lately by the writer himself in a paper read before the American Association for the Advancement of Science at their meeting in Montreal, they have been retained in preparing the following tables, partly because it was found that the errors due to
the various co-efficients nearly compensate each other ; partly on the ground that, until a severe test, by means of actual comparative measurements made for the purpose, has shown the expediency of these modifications, it seemed desirable to adhere to the old constants, and thus to preserve a uniformity in the results with the tables of Oltmans, Delcros, Gauss, Baily, and others, which have already been extensively used. The substitution of the co-efficient 0.00260 , expressing, according to Schmidt's computation (Mathem. und Physic. Geogr., Il. p. 202), the variation of gravity in latitude, for the value 0.002837 , does not sensibly alter the altitudes obtained.

The close agrecment of the determinations furnished by Laplace's formula, in barometrical measurements carefully conducted, marle in favorable circumstances, and during the warm season, with those obtained from repeated trigonometrical observations, or by the spirit-level, strongly testifies in favor of its general correctness. A few striking examples will suffice to show it.

The altitude of Mont Blanc, measured by the barometer, by MM. Bravais and Martins, on the 29th of August, 1844, and computed by Delcros, by means of nine corresponding stations situated on all siles of the mountain (see Anmuaire Météorologique de France, for 1851 , p. 274), was found to be 4810 metres. The altitude of the same point, being the mean of seven of the most elaborate and reliable geodetic measurements, which cost nearly twenty years of labor, is 4809.6 metres.

For smaller elcvations the formula seems to answer equally well.
The barometrical measurement of Mount Washington, in New Hampshire, by the author, on the 8th and 9 th of August, 1851, gave, by Delcros's Tables, for the mean of eight observations, taken at different hours of the day, 5466.7 English feet above Gorham, N. H., 6285.7 above high tide, and 6291.7 feet above the mean level of the ocean in Portland harbor. In August, 1852, W. A. Goodwin, Civil Engineer, starting from Gorham Railroad Station, found, by the spirit-level, Mount Washington to be 6285.5 feet above mean tide. In September, 1853, Captain T. J. Cram, of the Topographical Engineers, executed, in behalf of the Coast Survey, a careful measurement with the spirit-level, on the same line, for the purpose of testing the various methods of measuring altitudes, and found Mount Washington to be 6:93 English feet above the mean level of the ocean.

In lower latitudes the formula showed equally good results. By a barometrical measurement in July, 1856, the altitude of the highest peak of the Black Mountain, North Carolina, about Lat. 36°, was found by the author to be 6701 English feet; and that of the highest Mountain House 5248 feet. In September, 1857, Major T. C. Turner, Chief Engineer of the Morganton Railroad, ran a line of levels from the same point which was used as the lower station for the barometrical measurement, to the top of the highest peak, and found its altitude to be 6711 English feet, and that of the Mountain House 5246 feet. Other points on the line agreed equally well.

Such an agreement, in so considerable elevations, is all that can be desired.
These figurcs show conclusively, that, when the errors which may arise from the great variability of the data furnished by the instruments have been removed by a repetition, in various states of the atmosphere, and by a proper combination of simultaneous observations at stations not too distant from each other, those which remain and may be attributed to the formula cannot be considerable. But, on the other
band, we have no right to expect such results from single observations, taken, perhaps, in unsettled weather, without paying any regard to the time of the day at which they were made, to the distance or the non-simultaneity of the corresponding observations, or to other unfavorable circumstances. It is too well known that in such cases large errors may and do actually occur ; but for these the formula ought not to be held responsible.

Arrangement of the Tables.

If' we call
$h=$ the observed height of the barometer
$\left.\begin{array}{l}\tau=\text { the temperature of the barometer } \\ t=\text { the temperature of the air }\end{array}\right\}$ at the lower station;
$h^{\prime}=$ the observed height of the barometer
$\tau^{\prime}=$ the temperature of the barometer $\}$ at the upper station.
$t^{\prime}=$ the temperature of the air
If we make, further,
$Z=$ the difference of level between the two barometers ;
$L=$ the mean latitude between the two stations;
$H=$ the height of the barometer at the upper station reduced to the temperature of the barometer at the lower station ; or,
$H=h^{\prime}\left\{1+0.00008967\left(\tau-\tau^{\prime}\right)\right\}$;
The expansion of the mercurial column, measured by a brass seale, for 1° Fahrenheit $=0.00008967$;
The increase of gravity from the equator to the poles $=0.00520048$, or 0.00260 to the 45 th degree of latitude ;

The earth's mean radius $=20,886,860$ English feet;
Then, Laplace's formula, reduced to English.measures, reads as follows :

$$
Z=\log \frac{h}{H} \times 60158.6 \text { English feet }\left\{\begin{array}{l}
\left(1+\frac{t+t^{\prime}-64}{900}\right) \\
(1+0.00260 \cos 2 L) \\
\left(1+\frac{z+52952}{20886860}+\frac{h}{10443430}\right)
\end{array}\right.
$$

Table I. gives, in English feet, the value of $\log H$ or $h \times 60158.6$ for every hundredth of an inch, from 12 to 31 mehes in the barometer, together with the value of the additional thousandths, in a separate column. These values have been diminished by a constant, which does not alter the difference required.

Table II. gives the correction 2.343 feet $\times\left(\tau-\tau^{\prime}\right)$ for the difference of the temperatures of the barometers at the two stations, or $\tau-\tau^{\prime}$. As the temperature at the upper station is generally lower, $\tau-\tau^{\prime}$ is usually positive, and the correction negative. It becomes positive when the temperature of the upper barometer is higher, and $\boldsymbol{\tau}-\boldsymbol{\tau}^{\prime}$ negative. When the heights of the barometers have been reduced to the same temperature, or to the freezing point, this table will not be used.

Table IV. shows the correction $D^{\prime} \frac{\tilde{z}+52252}{20886860}$ to be applied to the approximate altitude for the decrease of gravity on a vertical acting on the density of the mercurial column. It is always additive.

Table V. furnishes the small correction $\frac{h}{10443430}$ for the decrease of gravity on a vertical acting on the density of the air ; the height of the barometer h at the lower station representing its approximate altitude. Like the preceding correction, it is always additive.

Use of the Tables.

In Table I. find first the numbers corresponding to the observed beights of the barometer h and h^{\prime}. Suppose, for instance, $h=\mathbf{9 9 . 3 4 5} \mathrm{in}$.; find in the first column on the left the number 29.3 ; on the same horizontal line, in the column headed 0.4 , is given the number corrosponding to $29.34=28121.7$; in the last column but one on the right, we find for $.005=4.5$, or for $29.345=28126.2$. Take likewise the value of h^{\prime}, and find the difference.

If the barometrical heights have not been previously reduced to the same temperature, or to the freezing point, apply to the difference the correction found in Table II. opposite the number representing $\tau-\tau^{\prime}$; we thus obtain the approximate difference of level, D.

For computing the correction due to the expansion of the air according to its temperature, or $D \times\left(\frac{t+t^{\prime}-64}{900}\right)$, make the sum of the temperatures, subtract from that sum 64 ; multiply the rest into the approximate difference D, and divide the product by 900 . This correction is of the same sign as $\left(t+t^{\prime}-64\right)$. By apply. ing it, we obtain a second approximate difference of level, D^{\prime}.

In Table III., with D^{\prime} and the mean latitude of the stations, find the correction for variation of gravity in latitude, and add it to D^{\prime}, paying due attention to the sign.

In Table IV. with D^{\prime}, and in 'Tablc V. with D^{\prime} and the height of the barometer at the lower station, take the corrections for the decrease of gravity on a vertical, and add them to the approximate difference of level.

The sum thus found is the true difference of level between the two stations, or Z; by alding the elevation of the lower station above the level of the sca, when known, we obtain the altitude of the upper station.

The use of the small table, VI., by means of which approximate differences of level can be obtained by a single multiplication, is explained below, page 90.

Example 1.

Measurement of Mount Washington, New Hampshire, by A. Guyot, August 8th, 1851, 4 P. м. ; the barometer at the lower station being at 825 English feet above the mean level of the sea; at the upper station at one foot below the summit.

The observation gave,

Gorham, Mount Washington,	Barometer.	Attached Thermometer.	Temperature of Air.
	$h=29.272 \mathrm{in}$.	$\tau=70^{\circ} .70 \mathrm{~F}$.	$t=72^{\circ} .05 \mathrm{~F}$.
	$h^{\prime}=24.030{ }^{\text {a }}$	$\tau^{\prime}=54^{\circ} .52 \mathrm{~F}$.	$t^{\prime}=50^{\circ} .54 \mathrm{~F}$.
		$\tau^{\prime}=16^{\circ} .38 \mathrm{~F}$.	$\begin{array}{r} 122^{\circ} .59 \mathrm{~F} . \\ -64^{\circ} \end{array}$
		$t+t^{\prime}$	$64=58^{\circ} .59 \mathrm{~F}$.

Example 2.

Measurement of the highest peak of the Black Mountain, in North Carolina, July 11th, 1856, by A. Guyot.

By observation we have at,

Table I. gives for $h=24.934$. 23,870.4
" " for $h^{\prime}=23.662$. . . . 22,502.4
Difference, 1,368.0
Table II. gives for $\tau-\tau^{\prime}=2.7$. . . . -6.3
Approximate difference, $D=1,361.7$
$\frac{D \times\left(t+t^{\prime}-64\right)}{900}=\frac{1362 \times 56.7}{900}=\quad 85.8$
Second approximate difference, $D^{\prime}=1,447.5$
Table III. gives for $D^{\prime}=1448$ and Lat. 36°. . 1.2
Table IV. gives for $D^{\prime}=1448$. . . . 3.8
Table V. gives for $D^{\prime}=1448$ and $h=25 \quad$. . 0.7
Highest peak above Mountain House, or . . $Z=1,453.2$
Mountain House above the sea 5,248.4
Black Mountain, highest peak above the sea, or altitude, 6,701.6 Eng. ft.

				へ $\underset{\sim}{\text { ® }} \underset{\sim}{\text { ¢ }}$		
		$\stackrel{ \pm}{ \pm}$		$\underset{\sim}{\underset{\sim}{E}} \quad \underset{\sim}{\square}$	$\overline{10}-\infty$	
		－acm	\rightarrow 1ser	σ－\quad－	90－150	∞
$\stackrel{\rightharpoonup}{\theta}$						
$\stackrel{\infty}{\theta}$						
	＊					
	$\dot{\theta}$					
	$\hat{\theta}$			－宗念是会	$\bigcirc \rightarrow \infty=\infty$会 	
	＊					
	$\stackrel{0}{0}$					
	，					
	－					
		$\begin{aligned} & \stackrel{0}{0} \infty \\ & 0 \\ & 0 \end{aligned} 0$				
		10 •日 $\stackrel{\varrho}{\oplus} \dot{\sim} \dot{\sim}$	O		O	

Barometer in Eng. Inch.	Hundredths of an 1nch.										$\left\lvert\, \begin{gathered} \text { Thousamiths } \\ \text { of an } \\ \text { Inch } \end{gathered}\right.$		$\begin{aligned} & \text { Baronieter } \\ & \text { in in } \\ & \text { Eng. Inch. } \end{aligned}$
	.00	. 01	.02	. 03	. 01	.0.5	.06	. 17	.08	. 09			
	Eng. Feet.	Eng. Feet.	Eng. Feet.	Eng. Feet.	Eug. Feet.	Eng. Fcet.	Eng. Feet.	Eng Feet. 1.393.6	Eng. Feet 12109.9	Eng Feet.			
16.0	12.279 .6	12295.9	12312.2	12328.5	12344.8	12361.1	12377.4	12393.6	12409.9	12426.1		Feet.	16.0
16.1	$12+42.4$	12458.6	12474.8	12191.0	12507.2	12523.4	12539.6	12.555 .7	12571.9	12588.0		Feet.	16.1
16.2	12604.2	12620.3	12636.4	12652.5	12668.6	12684.7	12700.8	12716.9	12732.9	1274~. 9	1	1.6	16.2
16.3	12765.0	12781.0	12797.0	12813.0	12829.0	12845.0	12861.0	12376.9	12592.9	12908.8	2	3.1	16.3
16.4	12924.8	12940.7	12956.6	12972.5	12988.4	13004.3	13020.2	13036.0	13051.9	13067.7	3	4.7	16.4
16.5	13053.6	13099.4	13115.2	13131.0	13146.8	13162.6	13178.4	13194.2	13210.0	13225.7	4	6.3	16.5
16.6	13241.5	13257.2	132\% 2.9	13288.6	13304.3	13320.0	13335.7	18351.4	133671	13382.7	5	7.8	16.6
16.7	13392.4	13414.0	$13+29.6$	13445.2	13160.8	13476.4	13492.0	13507.6	13523.2	13538.7	6	9.4	16.7
16.8	13554.3	13569.8	13.555 .1	13600.9	13616.4	13631.9	13647.4	13662.9	13678.4	13693.9	7	11.0	16.8
16.9	13709.4	13724.8	13740.3	13755.7	13771.1	13756.5	13501.9	13517.3	13832.7	13848.1	8	12.5	16.9
17.0	13863.5	13878.8	13891.2	13909.6	13924.9	13940.2	13955.6	13970.9	13986.2	14001.5	9	14.1	17.0
17.1	11016.8	14032.0	14047.3	14062.6	14077.8	14093.0	14108.3	14123.5	14138.7	14153.9			17.1
17.2	14169.1	14184.3	14199.4	14214.6	142.29 .8	14244.9	14.260 .1	14275.2	14290.3	14305.5			17.2
17.3	11320.6	14335.7	14350.8	11365.8	1.1380 .9	14396.0	14+11.0	$14+26.1$	1444.1	1456.2			17.3
17.4	14471.2	144×6.2	14501.2	14516.2	14531.2	14546.1	14561.1	14576.1	14591.0	14605.9	1	1.5	17.4
17.5	14620.9	14635.8	14650.7	14665.6	14680.5	14695.4	14710.3	14725.2	14740.1	147.54.9	2	2.9	17.5
17.6	14769.8	14754.6	14799.4	14814.3	14829.1	14843.9	14858.7	14873.5	14888.2	14903.0	3	4.4	17.6
17.7	14917.8	14932.5	14947.3	14962.0	14976.8	14991.5	15006.2	15020.9	15035.6	15050.3	4	5.8	17.7
17.8	1506.5 .0	1.5079 .6	1509 4.3	15109.0	15123.6	15138.2	15152.9	15167.5	15182.1	15196.7	5	7.3	17.8
17.9	15211.3	15225.9	15240.5	15255.0	15269.6	15284.2	15298.7	15313.3	15327.8	15342.4	6	8.8	17.9
18.0	15356.8	15371.3	15385.8	15400.3	15114.8	15429.3	15443.7	15458.2	15472.7	15487.1	7	10.2	18.0
18.1	1.5501 .5	15516.0	15530.4	15544.8	15559.2	15.573 .6	15588.0	15602.4	15616.8	15631.2	8	11.7	18.1
12.2	15645.5	15659.9	15674.2	15688.5	15702.9	15717.2	15731.5	15745.8	15760.1	15774.4	9	13.1	18.2
18.3	15789.6	15:02.9	15817.2	15831.4	15945.7	158.59 .9	15974.2	15888.4	1590.2	15916.8			18.3
18.4	15931.0	15945.2	15959.4	15973.6	15957.8	16001.9	16016.1	16030.2	16044.4	16053.5			18.4

		突		¢i		
		$-\infty \times$	＋100－6	$\bigcirc \quad-$	$\therefore \infty+\cdots$	－
	$\stackrel{\text { ® }}{\text { ¢ }}$					
	＊．					
	$\stackrel{\sim}{0}$					
	$\stackrel{*}{*}$					
	$\stackrel{\square}{\circ}$					
	E．					
	\％					
	\％̀．					
	\％					
	$\stackrel{\ominus}{6}$					
D						

			¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		へ⿵冂人入入y	¢
		荀		\cdots	$\square \bigcirc$	$\cdots \stackrel{0}{6}$
		－as 80	100 No	－	$\cdots \rightarrow 1001$	$\infty \quad \infty$
	$\stackrel{\ominus}{\ominus}$					
	$\stackrel{\infty}{\theta}$					
	＊					
	ẹ					
	θ		$00-0 \%$ $\therefore \therefore 8$ 			
	$\stackrel{0}{6}$	 				
	81					
	$\stackrel{\square}{0}$					
	θ			－a $9 \rightarrow 6$ $\dot{\sigma} \dot{\sim} \dot{\sim}$ 		
					侖	

		$\stackrel{\substack{\text { ¢ }}}{\substack{\circ \\ 0}}$	¢	$\bar{\infty}$	¢	¢ 8
			+ 0000	a -	N $0 \rightarrow+106$	\cdots
	$\hat{\theta}$					
	$\stackrel{\infty}{\theta}$					
	\%					
	$\stackrel{\ominus}{6}$					
	$\stackrel{10}{9}$					
	-					
	$\stackrel{\leftrightarrow}{\ominus}$					
	犬̂.					
	방					
	¢					
		 				No N N M O.

－	－ 0×6 ¢ 0 ¢ 0		$\begin{array}{llll} \circ & 0 & 0 \\ \dot{8} & 0 \\ \hline \end{array}$	
	－ 0		$\begin{array}{llll} 0 & 9 & 0 \\ \dot{\theta} & 0 \\ 0 & 0 \\ \hline \end{array}$	
1－			$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	
F			$\begin{array}{lllll} 0 & 9 & 0 & 0 & 0 \\ 0 & 0 \\ \hline & 8 \\ \hline & \stackrel{0}{6} & 0 \\ 0 \end{array}$	
			$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \text { 品 } \end{array}$	
	\bigcirc－	$\begin{aligned} & 0 \\ & \hline 9 \\ & \hline \end{aligned}$		$\begin{array}{llll} 10 & 0 & 0 & 0 \\ \infty \\ \text { क } \\ \hline \end{array}$
	¢			
Fi	$\circ \frac{0}{\circ} \frac{0}{\infty}$			
		둥	$\text { O. } \overline{\mathrm{O}} \mathrm{O}$	
	回			
	会	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		
		$\begin{array}{llll} 10 \\ 0 & 0 \\ \hline \end{array}$	$\begin{array}{lll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \hline \end{array}$	

\％	$\stackrel{8}{19}$	$\dot{t i}_{i=1}^{0} 00000$				
	웅		T		近	
	（1） 0 0 0 0				＂心	
	${ }_{0}^{\circ} \stackrel{0}{*}$	$\underset{\sim}{0}$	$\infty 0$	$\cdots \stackrel{C O}{\infty} \dot{\sim}$	OTOM	¢
	－		∞	N「N0 ¢ ¢ ¢	迷 6	©
	－				¢	
	$\begin{array}{rrr} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$				on 숭	
	$\begin{array}{ll}\circ \\ 0 \\ 0 \\ 0 & 0 \\ -1\end{array}$			O		
	\bigcirc					
	－ 0				$\underset{\sim}{\infty} \underset{\sim}{\circ} \underset{\sim}{\circ} \underset{\sim}{\circ}$	
	－					
	$\stackrel{\circ}{\circ}_{0}^{\circ}$					
	\bigcirc			的		
	－				No	
	－		$\dot{\infty} \dot{\theta} \dot{\theta} \dot{\theta}$			
	－${ }_{\text {¢ }}$	芴或				
	\bigcirc		ミニロ O			
			$\begin{array}{lcc} 0 & 0 & 0 \\ \underline{0}-8 \\ \hline \end{array}$		$\begin{array}{lll} 0 & 0 \\ \dot{O} \\ \hline \end{array}$	
	\bigcirc					
	－${ }^{-1}$	$\underset{\sim}{\dot{\otimes}} \underset{\sim}{\dot{N}} \underset{\sim}{\circ} \underset{\sim}{\circ} \underset{\sim}{\circ}$	Hoccoc			$\overline{4}$
	$\bigcirc{ }^{\circ} \mathrm{O}$					
	\bigcirc					
			$\begin{array}{lll} 8 \\ 8 \\ 8 & 8 \\ 8 & 8 \\ \hline \end{array}$			

IV. Coblection FOR			V. Correction for tile Heigilt of the Lower Station. - Positice.							VI. Height of a Column of Air, corresponifng to One Tentif of an INci in the Barometer.										
Approximate Dif-		$\begin{aligned} & \text { we of } \\ & \text { on a } \\ & \text { ical. } \\ & \text { cive. } \end{aligned}$	ILeight of the Barometer, in English Inehes, at Lower Station.							Barometer Keading in English Inehes.	Temperature of the Air, Fahrenheit, being									
of Level.		+500	16	18	20	$2{ }^{2}$	1		28		40°	45°	$50{ }^{\circ}$	$5.5{ }^{\circ}$	60°	65°	70°	8.50	80°	$8.5{ }^{\circ}$
Enr Feet 1000	Feet.	Feet. 3.9	Feet.	Feet 1.3	$\begin{aligned} & \text { Feet } \\ & \text { 1. } 0 \end{aligned}$	$\begin{array}{r} \text { Feet. } \\ 0.5 \end{array}$	$\begin{array}{r} \text { Feet. } \\ 0.6 \end{array}$	Feet. 0.4	Feet. 0.2	18.5	Feet. 14.6	Feet. 146.1	$\begin{aligned} & \text { Feet. } \\ & 147.7 \end{aligned}$	$\begin{gathered} \text { Feet. } \\ 149.3 \end{gathered}$	$\begin{gathered} \text { Feet. } \\ 150.9 \end{gathered}$	$\begin{gathered} \text { Feet. } \\ 152.5 \end{gathered}$	Feet. 154.0	$\begin{aligned} & \text { Feet. } \\ & 155.7 \end{aligned}$	$\begin{gathered} \text { Feet. } \\ 157.2 \end{gathered}$	$\begin{aligned} & \text { Feet. } \\ & 15.8 .8 \end{aligned}$
2000	5.2	6.6	3.1	2.5	2.0	1.5	1.1	0.7	0.3	19.0	140.8	142.3	143.5	145.4	146.9	148.4	150.0	151.5	153.1	154.6
3000	7.9	9.3	4.7	3.8	3.0	2.3	1.7	1.1	0.5	19.5	137.1	$13 \bigcirc .6$	140.1	141.6	143.1	144.6	146.1	147.6	149.1	150.6
4000	10.8	12.2	6.3	5.1	4.0	3.1	2.2	1.4	0.7	20.0	$13: 3.7$	135.2	136.6	138.1	1:39.6	141.0	142.5	143.9	14.5 .4	146.9
5000	13.7	15.2	7.8	6.4	5.0	3.8	2.8	1.8	0.8	20.5	130.5	131.9	13:3 3	134.7	136.1	1:7.6	139.0	140.1	141.8	143.3
6000	16.7	18.3	9.1	7.6	6.0	4.6	3.3	2.1	1.0	21.0	127.3	120.7	130.1	181.5	182.9	131.3	13.5 .7	137.0	138.4	139.8
7000	19.9	21.5	11.0	8.9	7.1	5.4	3.9	2.5	1.2	21.5	121.3	12.5 .7	127.0	128.4	129.7	131.1	132.4	133.8	125.1	1:6.5
8000	23.1	21.7	12.5	10.2	8.1	6.2	4.1	2.8	1.3	22.0	121.5	$12 \cdot 3.9$	124.2	125.5	126.8	128.2	129.5	130.8	132.2	123.5
9000	26.4	23.1	14.1	11.4	9.1	6.9	5.0	3.2	1.5	2.3 .5	118.9	120.1	121.4	12.2 .7	124.0	125.3	126.6	127.9	129.2	130.5
10000	29.8	31.5	1.5 .7	12.7	10.1	7.7	5.5	3.5	1.7	2:3.0	116.2	11\%.5	118.6	120.0	121.3	122.6	123.8	125.1	126.4	127.7
11000	:33.3	35.1	17.2	14.0	11.1	8.7	6.1	3.9	1.8	23.5	113.7	115.0	1162	117.5	11.8 .7	120.0	121.2	122.5	123.7	124.9
12000	3.3 .9	38.7	18.8	15.3	12.1	9.2	6.6	4.2	2.0	24.0	111.3	112. i	113.8	1150	116.2	117.4	118.6	119.9	121.1	122.3
13000	40.6	42.5	20.4	16.5	1.2.1	10.0	7.2	4.6	2.2	24.5	109.1	110.3	111.5	112.6	113.8	115.0	116.2	117.3	118.6	119.8
14000	4.4	46.3	21.9	17.8	14.1	10.8	7.7	4.9	2.3	2.9 .0	106.9	10.3.1	109.3	110.4	111.6	112.8	113.9	115.1	116.3	117.4
15000	48.3	50.3	23.5	19.1	1.5 .1	11.5)	8.3	5.3	2.5	2.5 .5	104.8	105.9	10\%.1	108.2	109.3	110.5	111.6	112.8	113.9	115.1
16000	52.3	54.3	25.1	20.3	16.1	12.3	8.3	5.6	2.7	26.0	102.7	10:3.9	10.5.0	106.1	$10: .2$	108.4	109.5	110.6	111.7	112.8
17000	56.4	58.4	26.6	21.6	17.1	1:3.1	9.1	6.0	2.8	26.5	100.9	102.0	103.1	101.2	10.5.3	106.4	107.5	108.6	109.7	110.8
18000	60.5	62.6	28.2	22.9	18.1	13.8	9.9	6.3	3.0	27.0	99.0	100.]	101.2	112:3	103.3	104.4	10.5 .5	106.6	107.6	10. 7
19000	64.8	67.0	29.8	21.1	19.2	14.6	10.5	6.7	3.2	27.5	97.2	98.2	99.3	10¢.3	101.4	102.5	103.5	104.6	10.5 .6	106.7
20000	6.9 .2	71.4	31.3	2.5 .4	20.2	15.4	11.0	7.0	3.3	28.0	9.).4	965	97.5	98.6	99.6	100.7	101.7	102.8	103.8	104.8
21000	73.6	75.9	32.9	26.7	21.2	16.1	11.6	7.4	3.5	28.5	93.8	94.8	95.8	96.9	97.9	98.9	99.9	100.9	101.9	103.0
$2 \cdot 3000$	78.2	80.5)	34.5	28.0	22.2	16.9	12.1	7.7	3.7	29.0	92.1	93.1	91.1	95.1	96.2	97.2	98.2	99.2	100.2	101.2
23000	8.3 .9	85.2	36.0	29.2	23.2	17.7	12.7	8.1	3.8	29.5	90.6	91.6	92.6	$9: 3.6$	91.5	9.5 .5	96.5	97.5	98.5	99.5
24000	87.6	90.0	37.6	30.5	24.2	18.5	13.2	8.4	4.0	30.0	89.1	90.0	91.0	92.0	92.9	93.9	94.9	95.9	96.8	97.8
25000	93.5	91.9	39.1	31.8	25.2	19.2	13.8	8.8	4.1	30.5	87.6	88.5	89.5	904	91.1	923	93.3	94.2	95.2	96.1

TABLE

for

compting the difference in the heights of two places py means of the barometer.

By Prof. Elias Loomis.

This table was computed from the formula of Laplace, modified in accordance with the results of more recent determinations.

Suppose that we have observed

$$
\begin{aligned}
& \text { At the lower station. }\left\{\begin{array}{l}
\mathrm{H}, \text { the height of the barometer, } \\
\mathrm{T}, \text { the temperature of the barometer, } \\
t, \text { the temperature of the air, }
\end{array}\right. \\
& \text { At the upper station. }\left\{\begin{array}{l}
h^{\prime}, \text { he height of the barometer, } \\
\mathrm{T}^{\prime}, \text { the temperature of the barometer, } \\
t^{\prime}, \text { the temperature of the air. }
\end{array}\right.
\end{aligned}
$$

Represent by s the height of the lower station above the level of the sea, by L the lat.tude of the place, and by h the observed height h^{\prime} reduced to the temperature $\boldsymbol{\Gamma}$.

The difference of level x between the two stations is given by the formula,

$$
x=60158.6 \mathrm{ft} . \times \log \cdot \frac{\mathrm{H}}{h} \times\left\{\begin{array}{c}
\left(1+\frac{t+t^{\prime}-64}{2010}\right) \\
(1+0.00265 \cos .2 \mathrm{~L}) \\
\left(1+\frac{x+52251}{20586629}+\frac{s}{104+4315}\right)
\end{array}\right\}
$$

But h represents the height h^{\prime} reduced from the temperature T^{\prime} to the temperature T. The expansion of mercury for 1° Fahr. is 0.0001000 ; that of the brass which forms the scale of the barometer is 0.0000104 ; the difference is 0.0000896 . Hence we have $h=h^{\prime}\left\{1+0.0000896\left(\mathrm{~T}-\mathrm{T}^{\prime}\right)\right\}$.

Therefore,

$$
\text { 60158. } 6 \mathrm{ft} . \log \cdot \frac{\mathrm{H}}{h}=60158.6 \mathrm{ft} . \log . \frac{\mathrm{H}}{h^{\prime}}-2.3409 \mathrm{ft} .\left(\mathrm{T}-\mathrm{T}^{\prime}\right) .
$$

Part I. of the accompanying Table furnishes in English feet the value of the expression $60158.6 \log$. H for heights of the barometer from 11 to 31 inches; only they have all been diminished by the constant 27541.5 feet which does rot change the difference

$$
60158.6 \text { log. } \mathrm{H}-60158.6 \log . h .
$$

Part II. furnishes the correction - $2.3409\left(\mathrm{~T}-\mathrm{T}^{\prime}\right)$ depending upon the difference ' $\mathrm{T}-\mathrm{T}$ ' of the temperatures of the barometers at the two stations. This cor-
rection is generally negative. It would be positive if $\mathrm{T}-\mathrm{T}^{\prime}$ were negative; that is if the temperature ' T^{\prime} of the barometer at the upper station exceeded the temperature T at the lower station.

Part III. gives the correction $\mathrm{A} \times 0.00265 \cos .2 \mathrm{~L}$, to be applied to the approximate altitude A, and which arises from the variation of gravity from the latitude of 45 degrees, to the latitude L of the place of observation. This correction has the same sign as cos. 2 L ; that is, it is positive from the equator to 45 degrees, and negative from 45 degrees to the pole.

Part IV. gives the correction $A \times \frac{A+5223}{20>629}$, which is always to be added to the approximate height A, and which is due to the diminution of gravity on the vertical.

Part V. furnishes for the approximate difference of Ievel A the small correction $\mathrm{A} \times \frac{s}{104+4315}$ corresponding to several values of the height s of the lower station. But in place of s there has been substituted as the argument of the table, the height H of the barometer at this station.

IMethod of Computation.

Take from Part I. the two numbers corresponding to the observed barometric heights H and h^{\prime}. From their difference subtract the correction 2.3409 (T - ' I ', found in Part II. with the difference T - T^{\prime} of the thermometers attached to the barometers. We thus obtain an approximate altitude a.

We then calculate the correction $a \frac{t+t^{t}-64}{900}$ for the temperature of the air, by multiplying the nine-hundredth part of a by the sum of the temperatures t and t^{\prime} diminished by 64 . This correction is of the same sign as $t+t^{\prime}-64$. We thus obtain a second approximate altitude A.

With A and the latitude of the place L , we seek in Part III. the correction $\mathrm{A} \times$ $0.00265 \cos .2 \mathrm{~L}$ arising from the variation of gravity with the latitude.

For the approximate height A, Part IV. gives the correction $A \times \frac{A+522 \pi 1}{210 \sim 629}$ arising from the diminution of gravity on a vertical. This correction is always additive.

Finally, when the height s of the lower station is considerable, the small correction $\mathrm{A} \times \frac{s}{1041315}$ may be found in Part V. This correction is always additive.

Example 1.

M. Humboldt made the following observations on the mountain of Guanaxuato, in Mexico, in Latitude 21°, viz.

	Upper station.	Lower station near the sea.
Thermometer in open air,	$t^{\prime}=70^{\circ} .3$	$t=77^{\circ} .5$
Thermometer to barometer, $\mathrm{T}^{\prime}=70^{\circ} .3$	$\mathrm{~T}=77^{\circ} .5$	
Barometer,	$h^{\prime}=23.66$	$\mathrm{H}=30.046$

Required the difference in the height of the two stations.

$$
\begin{array}{ll}
\mathrm{D} & 48
\end{array}
$$

Part I. gives $\left\{\begin{array}{l}\text { for } \mathrm{H}=30.046 \text { inches } \\ \text { for } h=23.66 \text { inches }\end{array}\right.$	$\begin{aligned} & 27649.7 \\ & 2 i 406.9 \end{aligned}$
Difference	6242.8
Part II. gives for $\mathrm{T}-\mathrm{T}^{\prime}=7^{\circ} .2$,	-16.9
Approximate altitude a,	6225.9
$\frac{a}{900}\left(t+t^{\prime}-64\right)=6.918 \times 83.8$,	+579.7
Second approximate altitude A,	6805.6
Part III. gives for $\mathrm{A}=6806$, and $\mathrm{L}=21^{\circ}$,	+13.3
Part IV. gives for 6806,	+19.3
Height above the sea,	6838.2

Example 2.

M. Gay Lussac in his celebrated balloon ascent in 1805 , found his barometer to indicate 12.945 English inches, the temperature being $14^{\circ} .9$ Fahrenheit. The barometer at Paris at the same time indicated 30.145 English inches with a temperature of $87^{\circ} .44$ Fahrenheit. Required the elevation of the balloon above Paris.

$\text { Part I. gives }\left\{\begin{array}{l} \text { for } \mathrm{H}=30.145 \text { inches } \\ \text { for } h^{\prime}=12.945 \text { inches } \end{array}\right.$	27735.6 5650.4
Difference,	22085.2
Part II. gives for $\mathrm{T}-\mathrm{T}^{\prime}=72^{\circ} .54$,	-169.9
Approximate altitude a,	21915.3
$\frac{a}{900}\left(t+t^{\prime}-64\right)=24.35 \times 38.34$,	+933.6
Second approximate altitude A,	22848.9
Part III. gives for $\mathrm{A}=22848$, and $\mathrm{L}=48^{\circ} 50^{\circ}$	-8.2
Part IV. gives for 22848,	+82.1
Height of balloon above Paris,	22922.8

D

PART I. Argument, the observed IIeight of the Barometer at either Station,											
Inches.	Feet.	Diff.									
11.0	1396.9		16.0	11186.3		21.0	18291.0		26.0	23871.0	
11.1	1633.3		16.1	11349.1		21.1	18415.1		26.1	23971.3	0.3
11.2	1567.6		16.2	11510.9		21.2	18538.7		26.2	24071.2	9
11.3	2099.9		16.3	11671.7		21.3	15661.6		26.3	24170.7	99.5
11.4	2330.1		16.4	11831.5		21.4	18784.0		26.4	24269.8	99.1
11.5	2558.3		16.5	11990.3	158.8	21.5	18905.8		26.5	24368.6	98.8
11.6	2784.5		16.6	12148.2	157.9	21.6	19027.0		26.6	24467.0	98.4
11.7	3008.7		16.7	12305. 1	156.9	21.7	19147.7	120.7	26.7	24565.1	98.1
11.8	3231.1		16.8	12461.0	15	21.8	19267.8	120.1	26.8	24662.7	97.6
11.9	3451.6		16.9	12616.1	155.1	21.9	19387.4	119.6	26.9	24760.0	97.3
12.0	3670.2	2	17.0	12770.2	15	22.0	19506.4	119.0	27.0	24857.0	97.0
12.1	3887.0	6.8	17.1	12923.5	153.3	22.1	19624.9	118.5	27.1	24953.6	96.6
12.2	4102.0	215.0	17.2	13075.8	152.3	22.2	19742.9	118.0	2	25049.8	96.2
12.3	5315.3	213.3	17.3	13227.3	151.5	22.3	19860.3	117.4	3	. 7	95.9
12.4	4526.9	211.6	17.4	13377.9	150.6	22.4	19977.2	116.9	,	2	95.5
12.5	4736.7	209.8	17.5	13527.6	149.7	22.5	20093.6	116.4	27.5	25336.4	95.2
12.6	4944.9	208.2	17.6	13676.5	148.9	22.6	20209.4	115.8	27.6		94.8
12.7	5151.4	206.5	17.7	13S24.5	148.0	22.7	20324.8	115.4	27.7		94.5
12.8	5356.4	205.0	17.8	13971.7	147.2	22.8	20439.6	114.8	27.8		94.2
12.9	5559.7	203.3	17.9	14118.0	116.3	22.9	20554.0	114.4	27.9	25713.7	93.8
13.0	51761.4		18.0	14263.6	145.6	23.0	20667.8	113.8	28.0	25807.1	93.4
13.1	5961.6		18.1	14408.3	$1+$	23.1	20781.1	113.3	28.1	25900.3	93.2
13.2	6160.3	198.7	18.2	14552.3	$14+0$	23.2	20894.0	112.9	28.2	25993.1	92.8
13.3	57.5	19	18.3	14695.4	143.1	23.3	21006.4	112.4	. 3	26085.6	92.5
13.4	65.53 .2	195.7	18.4	14837.8	142.4	23.4	21118.3	111.9	28.4	26177.7	92.1
13.5	6747.5	19	18.5	14979.4	141.6	23.5	21229.7	111.4	28.5	26269.6	91.9
13.6	6940.3	19	18.6	15120.3	140.9	23.6	21340.6	110.9	28.6	26361.1	91.5
13.7	7131.7	19	18.7	15260.3	140.0	23.7	21451.1	110.5	28.7	6452.3	91.2
13.8	7321.7	190.0	18.8	15399.7	139.4	23.8	21561.1	110.0	28.8	26543.2	90.9
13.9	7.510 .3	188.6	18.9	15538.3	138.6	23.9	21670.6	109.5	28.9	26633.7	90.5
14.0	7697.6	187.3	19.0	15676.2	137.9	24.0	21779.7	109.1	29.0	26724.0	90.3
14.1	7883.6		19.1	15818.3		24.1	21888.4		29.1	26813.9	89.9
14.2	8068.2		19.2	15949.8		24.2	21996.6		29.2	26903.5	89.6
14.3	82.51 .5		19.3	16085.5		21.3	22104.3	107.7	29.3	26992.8	89.3
14.4	8433.6		19.4	16220.5		24.	22211.6	10	29.4	27081.9	89.1
14.5	8614.4		19.5	16354.8	134.3	24.5	22318.4	10	29.5	27170.6	85.7
14.6	8794.0		19.6	16488.5	133.7	21.6	22.124 .8	106.4	29.6	27259.0	88.4
14.7	8972.3		19.7	16621.4	132.9	24.7	22.530 .8	106.0		7347.1	88.1
14.8	9149.5		. 8	16753.7	132.3	24.8	23	105.6			87.8
14.9	9325.5		19.9	16855.3	131.6			105		-	87.6
15.0	9500.3	17	20.0	17016.3	131.0	25.0		104.8			87.2
15.1	9673.8	17	20.1	17146.6	130.3	25.1		104.3			86.9
15.2	9846.2	172.4	20.2	17276.3	129.7	25.2		103.5			56.7
15.3	10017.5	171.3	20.3	17405.3	129.0	? 5.3		103.5			86.4
15.4	10157.7	170.2	20.4	17533.7	128.4	25.4		103.1			86.9
15.5	10356.8	169.1	20.5	17661.4	127.7	25.5		102.6			85.8
15.6	10524.5	168.0	20.6	17788.6	127.2	25.6		102.3			85.6
15.7	10691.8	167.0	20.7	17915.1	126.5	25.7		101.8		51	85.2
15.8	10857.7	165.9	20.8	18041.0	12.5 .9	25.8		101.5			85.0
15.9	11022.5	164.8	20.9	18166.3	125.3	25.9		101.1		25297.3	84.7
16.0	11186.3	163.8	21.0	18291.0	124.7	2.9 .9	23871.0	100.7	30.9 31.0	28382.0 28466.4	84.4

PART II.
Correction due to $\mathrm{T}-\mathrm{T}^{\prime}$, or the Difference of the Temperatures of the Barometers at the two Stations.
This Correction is Negative when the Temperature at the Upper Station is louest, and wipe vers t.

T $-\mathrm{T}^{\prime}$.	Correction.	$\mathrm{T}-\mathrm{T}^{\text {d }}$.	Correetion.	T- T^{\prime}.	Correction.	T-T.	Correction.	$\mathrm{T}-\mathrm{I}^{\text {\% }}$	Correction.	T- T'.	Correetion.
Fah't.	Feet.	Fah't.	Feet.	Fah't.	Feet.	Fah't.	Feet.	Fah't.	Foet.	Fah't.	Feet.
-		1		\bigcirc		\bigcirc		\bigcirc		6	
1	2.3	14	32.8	27	63.2	40	93.6	53	124.1	66	154.5
2	4.7	15	35.1	28	6.5 .5	41	96.0	54	126.4	67	156.8
3	7.0	16	37.5	29	67.9	42	98.3	55	128.7	68	159.2
4	9.4	17	39.8	30	70.2	43	100.7	56	131.1	69	161.5
5	11.7	18	42.1	31	72.6	44	103.0	57	133.4	70	163.9
6	14.0	19	44.5	32	74.9	45	105.3	58	135.5	71	166.2
7	16.4	20	46.8	33	77.3	46	107.7	59	138.1	72	168.6
8	18.7	21	49.2	34	79.6	47	110.0	60	140.4	73	170.9
9	21.1	22	51.5	35	81.9	48	112.4	61	142.8	74	173.3
10	23.4	23	53.8	36	84.3	49	114.7	62	145.1	75	175.6
11	25.8	24	56.2	37	86.6	50	117.0	63	147.5	76	177.9
12	28.1	25	58.5	38	89.0	51	119.4	64	149.8	77	180.3
13	30.4	26	60.9	39	91.3	52	121.7	65	152.2	78	182.6

App. Alt.	PART III. Correction due to the Change of Gravity from the Latitnde of 450 to the Latitude of the Ilace of Observation. Positice from Lat. 00 to 450 ; Negative from Lat. 450 to 900 .						$\begin{aligned} & \text { PART } \\ & \text { IV. } \\ & \text { Correction } \\ & \text { for } \\ & \text { Decrease } \\ & \text { of Gravity } \\ & \text { on a } \\ & \text { Vertical. } \\ & \text { Always } \\ & \text { Positive. } \end{aligned}$	PART V. Correction due to the Height of the Lower Station. Always Positive.							AppAlt.
	Latitude.							Height of Barometer at Lower Station.							
	00	100	200	300	400										
	900	0	700	600	500			16 in.	18 in.	0 in.	22 in.	$24 \mathrm{in}$.	26 in.	in.	
Feet.	t.	t.	t.	t.	Feet.	Feet.	Feet.	'eet.							
100	6	. 5	. 0	1.3	0.5	0	2.5	. 6	1.3	1.0	0.8	0.6	0.4	0.2	1000
2000	5.3	5.0	4.1	2.6	0.9	0	5.2	3.1	2.5	2.0	1.5	1.1	0.7	0.3	2000
3000	7.9	7.5	6.1	4.0	1.4	0	7.9	4.7	3.8	3.0	2.3	1.7	1.1	0.5	3000
4000	10.6	10.0	8.1	5.3	1.8	0	10.8	6.3	5.1	4.0	3.1	2.2	1.4	0.7	4000
5000	13.2	12.4	10.1	6.6	2.3	0	13.7	7.8	6.4	5.0	3.8	2.8	1.8	0.8	5000
6000	15.9	14.9	12.2	7.9	2.8	0	16.7	9.4	7.6	6.0	4.6	3.3	2.1	1.0	6000
7000	18.5	17.4	14.2	9.3	3.2	0	19.9	11.0	8.9	7.1	5.4	3.9	2.5	1.2	7000
8000	21.2	19.9	16.2	10.6	3.7	0	23.1	12.5	10.2	8.1	6.2	4.4	2.8	1.3	s000
9000	23.8	22.4	18.3	11.9	4.1	0	26.4	14.1	11.4	9.1	6.9	5.0	3.2	1.5	9000
10000	26.5	24.9	20.3	13.2	4.6	0	29.8	15.7	12.7	10.1	7.7	5.5	3.5	1.7	10000
11000	29.1	27.4	22.3	14.6	5.1	0	33.3	17.2	14.0	11.1	8.5	6.1	3.9	1.8	11000
12000	31.8	29.9	24.4	15.9	5.5	0	36.9	18.8	15.3	12.1	9.2	6.6	4.2	2.0	12900
13000	34.4	32.4	26.4	17.2	6.0	0	40.6	20.4	16.5	13.1	10.0	7.2	4.	2.2	1:000
14000	37.1	34.9	28.4	18.5	6.4	0	44.4	21.9	17.8	14.1	10.8	7.7	4.9	2.3	14000
15000	39.7	37.3	30.4	19.9	6.9	0	48.3	23.5	19.1	15.1	11.5	8.3	5.3	2.5	15000
16000	42.4	39.8	32.5	21.2	7.4	0	52.3	25.1	20.3	16.1	12.3	8.5	5.6	2.7	16000
17000	45.0	42.3	34.5	22.5	7.8	0	56.4	26.6	21.6	17.1	13.1	9.4	6.0	2.8	17000
18000	47.7	44.8	36.5	23.8	8.3	0	60.5	28.2	22.9	18.1	13.8	9.9	6.3	3.	18000
19000	50.3	47.3	38.6	25.2	8.7	0	64.8	29.8	24.1	19.2	14.6	10.5	6.7	3.2	19000
20000	53.0	49.8	40.6	26.5	2	0	69.2	31.3	25.4	20.2	15.4	11.0	7.0	3.3	20000
21000	55.6	52.3	42.6	27.8	9.7	0	73.6	32.9	26.7	21.2	16.1	11.6	7.4	3.	21000
22000	58.3	54.8	44.7	29.1	10.1	0	78.2	34.5	28.0	22.2	16.9	12.	7.7	3.7	22000
23000	60.9	57.3	16.7	30.5	10.6	0	82.9	36.0	29.2	23.2	17.7	12.	8.1	3.8	23000
24000	63.6	59.8	48.7	31.8	11.0	0	87.6	37.6	30.5	24.2	18.5	13.2	8.4	4.0	24000
25000	66.2	62.2	50.7	33.1	11.5	0	92.5	39.1	31.8	25.2	19.2	13.8	8.8		25000

I V.

TABLES

FOR REDUCING RAROMETRICAL OBSERVATIONS TO THE LEVEL OF THE SEA, OR TO ANY OTHER LEVEL, AND FOR COMPUTING DIFFERENCES OF ELEVATION MEASURED BY THE BAROMETER, BY M. C. DIPPE.

The following tables, published by M. C. Dippe, in the Astronomische Nachrichten, No. 1056, November, 1856, are a modification and extension of Gauss's tables, published in Schumacher's Jahrbuch, for 1836 and the following years, which are based on the formula of Laplace. In this new form they answer a double purpose. They give the means of solving a problem which often occurs in Meteorology, viz. : The difference of clevation between two stations, and the temperature of the air at both, being known, to reluce the height of the barometer at one of the stations to the height it would have at the other. They are likewise adapted to the computation of heights from baromerrical observations.

The formola of Laplace, which has been used, the Metres being reduced to Toises, and the Centigrade degrees to degrees of Reammur, reads as follows:

$$
h=9407.73\left(1+\begin{array}{c}
t+t^{\prime} \\
400
\end{array}\right)(1+a \cos 2 \phi)\left(1+\frac{h}{r}\right)\left\{\log \frac{b}{b^{\prime}}+2 \log \left(1+\frac{h}{r}\right)\right\} .
$$

Where t and $t^{\prime}=$ the temperatures of the air, in degrees of Reaumur, at the lower and upper station,
b and $b^{\prime}=$ the height of the barometer, in any seale, reduced to the freezing point, at the lower and upper station,
$h=$ the difference of level, in toises, between the two stations,
$r=$ the distance, in toises, of the lower station to the centre of the Earth,
$\phi=$ the latitude of the place of observation,
$a=$ the inerease of gravity from the equator to the poles.
Making, besides, $m=$ the modulus of the common logarithms, the formula becomes, with sufficient accuracy,

$$
\log b-\log b^{\prime}=h\left\{\begin{array}{c}
1 \\
9407.73
\end{array} \cdot \frac{1}{1++_{400}^{t+t^{\prime}}}-\frac{2 m}{r}\right\} \cdot 1+\begin{gathered}
1 \\
1+a \cos 2 \phi
\end{gathered} \frac{1}{1+\frac{h}{r}} .
$$

Assuming r, or the radins of the Earth, at 45° latitude $=3266631$ toises, and $a=0.002595$, instead of 0.002845 adopted in Gauss's tables, and making

$$
\begin{aligned}
& u=\log b-\log b^{\prime}, \\
& a=\log \left(\begin{array}{c}
1 \\
9407.73
\end{array} \cdot \frac{1}{1+{ }_{400^{-}}^{t+t^{i}}}-\frac{2 m}{r}\right), \\
& c=-m a \cos 2 \phi, \\
& c^{\prime}=-\frac{m h}{r},
\end{aligned}
$$

then the reduction of the height of the barometer to another level is given by the formula,

> 1. $\quad \log u=\log h+a+c+c^{\prime} ;$
> 2. $\quad \log b=\log b^{\prime}+u$.

Table I. contains the values of a for the argument $t+t^{\prime} ; 10$ units are to be subtracted from the characteristic.

Table II. gives the values of c for the argument ϕ, or the correction for the change of gravity in latitude, which is negative from 0° to 45°, positive from 45° to 90°.

Table III. furnishes the values of c^{\prime} for the argument h in toises, or the correction for the decrease of gravity on the vertical. Both in Tables II. and III. the values of c and c^{\prime} are given in units of the fifth decimal place.

The difference of elevation of the two stations is given by the formula,

$$
\begin{aligned}
& \text { 1. } \quad u=\log b-\log b^{\prime} \\
& \text { 2. } \quad \log h=\log u+\mathrm{A}+c+c^{\prime}
\end{aligned}
$$

in which A is the arithmetical complement of a, and the corrections c and c^{\prime} receive contrary signs. For the sake of convenience, the values of A have been placed in Table I., and in Table III. the correction for A is found in another column, with the more convenient argument $v=\log u+\mathrm{A}$.

If the heights of the barometers have not been reduced to the freezing point, then, B and B^{\prime} being the unreduced heights of the barometers, and T and T^{\prime} the temperature of the attached thermometer in degrees of Reaumur,

$$
b: b^{\prime}=\frac{\mathrm{B}}{1+\mathrm{T}_{4440}}: \frac{\mathrm{B}^{\prime}}{1+{ }_{4440}^{\mathrm{T}^{\prime}}},
$$

and making ${ }_{4440}^{m}=\beta$,

$$
u=\log b-\log b^{\prime}=(\log \mathrm{B}-\beta \mathrm{T})-\left(\log \mathrm{B}^{\prime}-\beta \mathrm{T}^{\prime}\right)
$$

Instead of $\beta=0.000098$, we can write with sufficient accuracy 0.00010 .

Use of the Tables.

These tables can be used in any latitude, and for any barometrical scale; but the indications of the barometers must be reduced to the freezing point; and the temperatures of the air must be given in degrecs of Reaumur. The tables suppose the use of logarithms with 5 decimals, such as those of Lalande, and give the results in toises.

I. For Reducing Barometrical Observations to another Level.

$$
\text { Given } h \text { in toises, } t, t^{\prime}, \phi, \text { and } b \text { or } b^{\prime}
$$

To find b or b^{\prime}.
In Table I. with the argument $t+t^{\prime}$, take a,
In Table II. with the argument ϕ, take c,
In Table III. with the argument h, take c^{\prime},
the last two corrections being given in units of the fifth decimal, making $\log h+a+c+c^{\prime}-10$ (whole units) $=\log u$.
Then we have

> for a level lower by h toises, $\log b=\log b^{\prime}+u$; for a level higher by h toises, $\log b^{\prime}=\log b-u$.

If h, or the difference of elevation, is given in metres, take c^{\prime}, which is always negative, from Table III. (for A) with the argument $v=\log h+9.71$, and write

$$
\log u=9.71018+\log h+a+c+c^{\prime}-10 \text { (whole units). }
$$

Then again is $\log b=\log b^{\prime}+u$.
D

Erample 1.

Suppose the height of the barometer, reduced to the freezing point, to be $b^{\prime}=$ 295.39 Paris lines; the temperature of the air $t^{\prime}=11^{\circ} .8$ Reammur, and the latitude $\phi=51^{\circ} 48^{\prime}$; the increase of heat downwards being 1° Reaummr for 100 toises. What is the beight of the barometer, reduced to the freezing point, at a station lower by $h=498.2$ toises ?

$$
\text { In th case } t=t^{\prime}+4^{\circ} .98=16^{\circ} .78 \text {, and } t+t^{\prime}=\mathbf{2} 8^{\circ} .58
$$

Then

	$\log h=$	2.69740
Table I. for $28^{\circ} .58$ gives	Table I. or 25.58 gives $\quad a=\quad .99538$	5.99538
Table II. for $51^{\circ} 48^{\prime}$ gives $\quad c=+0.000 \geq 6$ Table III, for 498 toises gives $c^{\prime}=-0.00007$		
$\log u=$		$\begin{aligned} & 8.69297 \\ & 0.04931 \end{aligned}$
$\log b^{\prime}=$		2.47010
$\log b=$		251971
Barometer at the lower station $b=$		330.90

Example 2.

Suppose the reduced barometer $b^{\prime}=598.6$ millimetres; the temperature of the arr $t^{\prime}=18^{\circ} .0$ Centigrade $=14^{\circ} .4$ Reaumur ; the difference of cheration $h=2: 17$ metres, $\phi=3^{\circ}$. The temperature of the an the lower station $t=22^{\circ} .5$ Centigrade $=22^{\circ} .0$ Reaumur, and $t+t^{\prime}=36^{\circ} .4$ Reaumur.

$$
\begin{aligned}
& \text { Then } \quad \log h=\left\{\begin{array}{r}
\log 2217=\quad 3.34577 \\
+\quad 9.71018
\end{array}\right. \\
& 3.05595 \quad v=3.06 \\
& a=5.98750 \\
& c=-0.00112 \\
& c^{\prime}=-0.00015 \\
& \log u=9.01218-10 \\
& u=011020 \\
& \log b^{\prime}=9.77714 \\
& \log b=9.88734 \\
& \text { Barometer at the lower station } \delta=771.5 \text { millimetres. }
\end{aligned}
$$

2. For Computing Differences of Eleration from Barometrical Observations.

Given the unreduced height of the barometer at the lower and upper station, B and B^{\prime}; the temperatures of the attached thermometers, T and ' Γ^{\prime}; the temperatures of the air, t and t^{\prime}; and the latitude, ϕ.

To find h, or the difference of elevation between the two stations.
Subtract $\left(\log \mathrm{B}^{\prime}-10 \mathrm{~T}^{\prime}\right)$ from $(\log \mathrm{B}-10 \mathrm{~T})$, paying due attention to the nature of the signs of T and T^{\prime}, and taking the numbers $10{ }^{\mathrm{T}} \mathrm{T}$ and $10^{\prime} \mathrm{T}^{\prime}$ as units of the fifth decimal. Calling then $(\log \mathrm{B}-10 \mathrm{C})-\left(\log \mathrm{B}^{\prime}-10 \mathrm{~T}^{\prime}\right)=u$, or if the heights of the Barometers are reduced to the freezing point, $\log b-\log b^{\prime}=u$, take,

In Table I., A with the argument $t+t^{\prime}$, and make $r=\log u+\mathrm{A}$.
In Tible Il., with the argument ϕ, take c reversing the sign.

In Table III., for A, with the argument v, take c^{\prime}, which, in this case, is always positive ; then, remembering that the values of c and c^{\prime} are given in units of the fifth decimal, we have,

$v+c+c^{\prime}$	$=\log h$ in toises,
$v+c+c^{\prime}+0.28982$	$=\log h$ in metres,
$v+c+c^{\prime}+0.80584$	$=\log h$ in English feet.

Example 1.

U. station $\mathrm{B}^{\prime}=268.215$ Paris lines $; \mathrm{T}^{\prime}=+8.40 \mathrm{R} . ; t=+7.92 \mathrm{R}$.

$$
t+t^{\prime}=\quad 23.88 \mathrm{R}
$$

$$
\begin{aligned}
& \log B=2.51722-10 \times 15.88=2.51563 \\
& \log B=2.42848-10 \times 8.4=2.42764 \\
& u=0.08799 \\
& \log u=\quad 8.94443 \\
& \mathrm{~A}=3.9998{ }^{2} \\
& r=\quad 2.9495 \\
& c=-0.00002 \\
& c^{\prime}=+0.00012 \\
& \log h=\quad 2.94435 \\
& h=879.74 \text { toises. }
\end{aligned}
$$

Example 2.
L. stition $\mathrm{B}=763.15$ millımetres $; \mathrm{T}=t=20.3 \mathrm{Cent}=20.24 \mathrm{R} . ; \phi=21$.
U. station $\mathrm{B}^{\prime}=600.95$ millimetres $; ~ \mathrm{~T}^{\prime}=t^{\prime}=21.3$ Cent. $=17.04 \mathrm{R}$.

$$
\begin{aligned}
& t+t^{\prime}=37.28 \mathrm{R} . \\
& \log \mathrm{B}=9.89261-10 \times 20.24=9.88059 \\
& \log \mathrm{~B}^{\prime}=9.77884-10 \times 17.04=9.77714 \\
& u=0.10345 \\
& \log u=9.01473 \\
& \mathrm{~A}=4.01337 \\
& v=3.02810 \\
& c=+0.00084 \\
& c^{\prime}=+0.00014 \\
& \log h=3.02908 \text { for toises. } \\
& \log h=0.28982 \\
& \log h=3.31890 \text { for metres. } \\
& \\
& \log h=3.02908 \text { for toises. } \\
& 0.30584
\end{aligned}
$$

I. Argument: Sum of the Temperatures of the Air in Degrees of Reaumur.

$\left\lvert\, \begin{gathered} t+t^{\prime} \\ \text { Reaumur. } \end{gathered}\right.$	Correctiou for			$t+t^{\prime}$ Reaumur	Correction for		
	a	Difference.	A		${ }^{\prime}$	Difference.	A
-60°	6.09617		3.90383	-0°	6.0.1776		3.952 .24
-59	6.09189	128	3.90511	-19	6.04661	1.9	3.95339
-58	6.09362	127	3.90638	-18	6.04547	114	3.95453
-5\%	6.09235	127	3.90765	-17	6.04431	11.3	3.95566
-56	6.09108	127	3.90092	-16	6.04320	114	3.95680
-5.5	6.0898.		3.91018	-15	6.01207		3.95793
-54	6.00.56	126	3.91144	-14	6.0409 t	11.3	3.95906
-5.3	6.0-330	126	3.91270	-13	6.03981	11.	3.96019
-52	$6.0-60.5$	123	3.9139 .5	-12	6.0:3069	11.	3.96131
-51	6.00150	125	3.91520	-11	6.03757	112	3.96243
-50	6.083 .56		3.91644	-10	6.03645		3.963 .55
-49	$6.0-281$	120	3.91769	-9	6.035.33	112	3.96467
-48	6.0×108	1.0	3.91592	-8	6.0342	111	3.96578
-47	6.07984	124	3.92016	-7	6.03311	111	$3.966<9$
-46	6.07861		3.92139	-6	6.03201	110	3.96799
-45	6.07738		3.92262	- 5	6.03090		3.96910
-4t	6.07016	122	3.92354	-4	18.02950	110	3.97020
-13	6.07494	12.	3.92506	- 3	6.02 s 71	109	3.97129
-42	$6.07: 372$	122	3.12628	- 2	6.02761	110	3.97239
-41	6.07250	122	3.92750	- 1	6.02652	109	3.97345
		121				109	
-40	6.07129		3.92871	0	6.02543		3.97457
-39	6.07009		3.92991	+1	6.02 .434	109	3.97566
-38	6.06-48	121	83.93112	2	6.02326	jes	3.97674
-:37	6.06768	120	3.93232	3	6.02217	109	3.97783
-36	6.06645	120	3.93352	4	6.02109	108	3.97891
-3.5	6.065 .59		3.93471	5	6.02002		3.97998
-:31	6.06410		3.93590	6	6.01895	107	3.9810 .5
-33	6.0629 .9		3.93709	7	6.01787	10	3.98213
-32	6.06178	118	3.93827	8	6.01680	107	$398: 20$
-31	6.0505 .5		3.93945	9	6.01574	106	3.98126
		118				106	
-30	6.0 .5937		3.91063	10	6.01468		3.98 .532
-29	6.05519	118	3.94181	11	6.01362	106	3.98638
-28	6.0 .5702	117	3.94298	12	6.01256	106	3.94744
--27	6.0 .585	117	3.94415	13	6.01150	106	3.98550
-26	6.05469	116	3.94531	14	6.01045	105	3.98955
-6	6.0.54	117	3.915	1		105	
-25	6.053 .52		3.94648	15	6.00940		3.99060
-24	6.05236		3.94764	16	6.00835		3.99165
-23	6.05121	110	3.94879	17	6.00731	104	3.99269
-22	6.0 .5005	116	3.94995	15	6.00626	105	3.99374
-21	6.04890	115	3.9 .5110	19	6.00532	104	3.99478
-20	6.04776	114	3.95224	+20	6.00418	104	3.99 .582

(Continued.)

$t+t^{\prime}$ Reauniur.	Correction for				Correction for		
	(ℓ	Difference.	A	Reanmur.	a	Difference.	A
$+20^{\circ}$	6.00418	103	3.99582	$+40^{\circ}$	5.9×393	09	4.01607
21	6.00315	103	3.99685	41	5.94294	99	4.01706
22	6.00212	103	3.99788	42	5.98195	99	4.01805
23	6.00108	104	3.99592	43	5.9 .9097	98	4.01903
24	6.00006	102	3.99994	44	5.97998	99	4.02002
25	5.99903		4.00097	45	5.97900		4.02100
26	5.99801	102	4.00199	46	5.97503	98	4.02197
27	5.99699	102	4.00301	47	5.97705	98	4.02295
28	5.99597	102	4.00403	48	5.97603	97	4.02392
29	5.99495	10.	4.00505	49	5.97511	97	4.02489
		101				97	
30	5.99394		4.00606	50	5.97414		4.02556
31	5.992 ! ${ }^{3}$	101	4.00707	51	5.97317	97	4.02653
32	5.99192	101	4.00808	52	5.97221	96	4.02779
33	5.99091	101	4.00909	53	5.97124	97	4.02576
34	5.98991	100	4.01009	54	5.97028	96	4.02972
		101				95	-
35	5.98890		4.01110	55	5.96933		4.03067
36	5.98790		4.01210	56	5.96837	96	4.03163
37	5.95691	99	4.01309	57	5.96512	95	4.03255
38	5.93591	100	4.01409	59	5.96646	96	4.038 .54
39	5.98492	99	4.01509	59	5.96551	9.	4.034 .49

II. Latitude. - Correction for a.

For A reverse the Signs of c.								
ϕ	c	ϕ	ϕ	c	ϕ	ϕ	c	ϕ
\bigcirc		-	-		-	\bigcirc		-
0	-113+	90	15	- $93+$	75	30	$-56+$	60
1	113	89	16	96	74	31	53	59
2	112	88	17	93	73	32	49	58
3	112	S7	18	91	72	33	46	57
4	112	86	19	89	71	34	42	56
5	111	85	20	86	70	35	39	55
6	110	84	21	84	69	36	35	54
7	109	83	22	81	68	37	31	53
8	103	82	23	78	67	38	27	52
9	107	81	24	75	66	39	23	51
10	106	80	2.5	72	6.5	40	20	50
11	104	79	26	69	61	41	16	49
12	103	78	27	66	63	42	12	48
13	101	77	28	63	62	43	8	47
14	100	76	29	60	61	44	4	46
15	-98+	75	30	$-56+$	60	45	-0+	45

III. Decrease of Giravity on the Vertical. - Correction

For a, argument h, in Toises, c^{\prime} always Negative				For A, arg. ${ }^{2}$, c^{\prime} always l'ositive.	
h	c^{\prime}	11	c^{\prime}	\%	c^{\prime}
100	1	1600	21	1.8	1
200	3	1760	23	1.9	1
300	4	1800	21	2.0	1
400	5	1900	25	2.1	2
500	7	2000	27	2.2	2
				2.3	3
600	8	2100	29	2.4	8
700	9	2200	29	2.5	4
800	11	2:30	31	2.6	5
900	12	2400	32	2.7	7
1000	18	2560	33	2.3	8
				2.9	11
1100	1.7	2600	35	3.0	13
1200	16	2700	36	3.1	17
1300	17	2800	37	3.2	21
1400	19	2900	39	3.3	27
1500	20	3000	40	3.4	33
				3.5	42
1600	21	3500	47	3.6	53

V.

TABLES

FOR REDUCING BAROMETRICAL OBSERVATIONS TO ANOTHER LEVEL, AND FOR COMPUTING

 ' DIFFFRENCES OF ELEVATION MEASURED BY THE BAROMETER, BY M. C. DIPPE.In No. 1088 of the Astronomische Nachrichten, published in June, 1857, Dr. Dipre gives the following set of Tables for reducing barometrical observations to another level, and for computing heights. These tables, being based, as the preceding ones (IV.), on the formula of Laplace, and computed with the same constants, give results nearly identical, but dispense with the use of logarithms.

Use of the Tables.

The tables suppose the height of the barometer to be expressed in French inches or Paris lines, and the temperature in degrees of Reaumur; they give the differences of level in French toises.

The signs used have the following signification : -

$$
\begin{gathered}
\text { At Lower } \\
\text { Station. }
\end{gathered}\left\{\begin{array}{l}
\mathrm{B}=\text { Observed Height of Barometer in Paris lines. } \\
\mathrm{T}=\text { Attached Thermometer in degrees of Reaumur. } \\
b=\text { Barometer reduced to the freezing point. } \\
t=\text { Temperature of the air, detached Thermometer. }
\end{array}\right.
$$

I. For Reducing Barometrical Olservations to another Level.

Given, h in toises, t, t^{\prime}, ϕ, and b or b^{\prime}.
To find l or b^{\prime}.

D

$$
\text { Make first } \mathcal{Q} \tau={ }_{2}^{t+t} \text { and } \tau, \text { and }
$$

In 'Table I., with the argument 2τ, take τ^{\prime};
In Table III., with the arguments h and r, take C ;
In 'Table IV., with the arguments h and ϕ, take C^{\prime};
Make, further,

$$
u=h+\mathrm{C}+\mathrm{C}^{\prime} \text { and }{ }_{100}^{u} \tau^{\prime}
$$

And if b^{\prime} be given, and b required,
In Table II., with the argument l, take II ;
then is

$$
\mathrm{H}=\mathrm{II}+\left(u-\frac{u}{100} \tau^{\prime}\right)
$$

and the height of the barometer, in Table II., due to II, is b required.
If b be given, and b^{\prime} required for a level higher by h toises, then,
In Table II., with the argument b, take H^{i}.
Make, further,

$$
\mathrm{H}^{\prime}=\mathrm{H}-\left(u-\frac{u}{100} \tau^{\prime}\right),
$$

and b^{\prime} is the height of the barometer in Table II., corresponding to H^{\prime}.

Example 1.

Suppose the height of the barometer reduced to the freezing point to be $b^{\prime}=$ 295.39 Paris lines; the temperature of the air $t^{\prime}=11^{\circ} .8$ Reammur; and the latitude $\phi=51^{\circ} .48$; the increase of heat downwards being 1° Reammur for 100 toises. What is the height of the barometer reduced to the freezing point, at a station lower by $h=498.2$ toises?

In this case,

$$
\begin{gathered}
t^{\prime}=11^{\circ} .8 ; t=11^{\circ} .8+4^{\circ} .98 ; t+t^{\prime}=98^{\circ} .58 ; \\
2 \tau=\frac{t+t}{2}=14^{\circ} .29 ; \tau=7^{\circ} .15
\end{gathered}
$$

and according to Table I.

$$
\tau^{\prime}=+6.67
$$

With h and τ, in Table III., we find $\mathrm{C}=-1.4$
With h and ϕ, in Table IV., we find $\mathrm{C}^{\prime}=+0.3$

$$
\text { We add } h=498.2
$$

and we have $u=497.1$;

$$
-{ }_{100}^{u} \tau=-33.15
$$

$$
\mathrm{H}=\overline{831.81}
$$

Finally, with H, in Table II., we find $b=330.91$ Paris lines, which is the required height of the barometer at the lower station. Gauss's tables (IV.) would give $b=$ 330.90 lines.

Example 2.

Suppose $b^{\prime}=330.46$ Paris lines ; $t^{\prime}=-12^{\circ} .3$ Reaumur ; $h^{\prime}=99.7$ toises; $\phi=62^{\circ}$.

In this case, assuming $t=t^{\prime}$,

$$
2 \tau=\frac{t+t^{\prime}}{2}=-12^{\circ} .3 ; \tau=-6.15 ;
$$

and according to Table I. $\quad \tau^{\prime}=-6.55$.
With h and τ, in Table III., take $\mathrm{C}=-0.2$
With h and ϕ, in Table IV., take $\mathrm{C}^{\prime}=+0.1$
Add $h=$ 92. $\%$

$$
H=924.89
$$

With H, in Table II., we find $b=338.53$ Paris lines. Gauss's tables (IV.) wou'd give $b=338.54$ lines.

II. For Computing Differences of Elevation from Barometrical Olservations.

Suppose to be given $\mathrm{B}, \mathrm{B}^{\prime}, \mathrm{T}, \mathrm{T}^{\prime}, t, t^{\prime}, \phi$; required h.

$$
\text { Make first } \tau=\frac{t+t^{\prime}}{4} \text { and } \mathrm{T}-\mathrm{T}^{\prime}
$$

Then in Table II., with the argument $\left\{\begin{array}{l}\mathrm{B} \text { take } \mathrm{H}, \\ \mathrm{B}^{\prime} \text { take } \mathrm{H}^{\prime},\end{array}\right.$ and make

$$
u=\left(\mathrm{H}-\mathrm{H}^{\prime}\right)+\frac{\mathrm{H}}{100} \mathrm{H}^{\prime} \tau-\left(\mathrm{T}-\mathrm{T}^{\prime}\right)
$$

in which each full degree of ' $\mathrm{T}-\mathrm{T}^{\prime}$ corresponds to a toise.
Further, in Table III., with u and τ, take C reversing the sign;
in 'Table IV., with u and ϕ, take C^{\prime} reversing the sign ;
in Table V., with $T-T^{\prime}$ and τ, take C^{\prime} with the signs of $\mathrm{T}-\mathrm{T}^{\prime}$.
Then the difference of elevation required is

$$
h=u+\mathrm{C}+\mathrm{C}^{\prime}+\mathrm{C}^{\prime \prime}
$$

If the heights of the barometer, reduced to the freezing point, or b and b^{\prime}, are given,
then in Table II., with the argument, $\left\{\begin{array}{l}b \text { take } H \\ b^{\prime} \text { take } I^{\prime},\end{array}\right.$
and make

$$
u=\mathrm{H}-\mathrm{H}^{\prime}+\frac{\mathrm{H}-\mathrm{H}^{\prime}}{100} \tau .
$$

Further, in Table III., take C reversing the sign ;
in Table IV., take C reversing the sign ;
and

$$
h=u+\mathrm{C}+\mathrm{C}^{\prime} .
$$

D

Example 1.

Suppose to be given,
$\mathrm{B}=333.6$ Paris lines; $\mathrm{T}=+17^{\circ} .0$ Reaumur ; $t=+19^{\circ} .0 \mathrm{R} . ; \phi=48^{\circ}$.
$\mathrm{B}^{\prime}=289.9$ Paris lines $; \mathrm{T}^{\prime}=+16^{\circ} .3$ Reammur $; t^{\prime}=+15^{\circ} .2 \mathrm{R}$.

$$
\begin{array}{rlrl}
\mathrm{T}-\mathrm{T}^{\prime}=0^{\circ} .7 & t+t^{\prime} & =+34^{\circ} .2 \\
r & =+8.55
\end{array}
$$

In Table II. with B take $\mathrm{H}=864.9$
" with B^{\prime} take $\mathrm{H}^{\prime}=291.2$

In Table III., with u and τ, take $\mathrm{C}=+1.8$
In 'Table IV., with u and ϕ, take $\mathrm{C}^{\prime}=-0.2$
In Table V., with $\mathrm{T}-\mathrm{T}^{\prime}$ and r take $\mathrm{C}^{\prime \prime}=0.0$
Difference of elevation, or $h=623.66$ toises.
Gauss's Tables give 623.64 toises.

Example 2.

Suppose to be given,
$b=342.68$ Paris lines $; t=-10^{\circ} .38$ Reaumur $; \phi=65^{\circ}$.
$b^{\prime}=285.47$ Paris lines ; $t^{\prime}=-14^{\circ} .94$ Reaumur ; $\mathrm{T}-\mathrm{T}^{\prime}=0^{\circ}$. R.

$$
\begin{aligned}
t+t^{\prime} & =-25^{\circ} .32 \\
\tau & =-6.33
\end{aligned}
$$

In Table II. with b take $\mathrm{H}=974.58$
" with b^{\prime} take $\mathrm{H}^{\prime}=228.28$

$$
\begin{aligned}
& \mathrm{H}-\mathrm{H}^{\prime}=746.30 \\
& \mathrm{H}-\mathrm{H}^{\prime} \\
& 100=-47.24 \\
& u=699.06
\end{aligned}
$$

In Table III., with u and τ, take $\mathrm{C}=+1.8$

$$
\mathrm{II}_{\mathbf{1 0 0}} \mathrm{II}^{\prime}{ }_{\tau}-47.2 t
$$

In Table IV., with u and ϕ, take $\mathrm{C}^{\prime}=-1.2$
$h=699.66$
Gauss's Tables give $h=699.72$ toises.

$$
\begin{aligned}
& \mathrm{H}-\mathrm{H}^{\prime}=\overline{\mathbf{5 7}} .7 \\
& { }_{-100}^{\mathrm{H}-\mathrm{H}^{\prime}} \tau=49.06 \\
& -\left(\mathrm{T}-\mathrm{T}^{\prime}\right)=-0.7
\end{aligned}
$$

$$
\begin{aligned}
& u=62 \mathrm{~S} .06
\end{aligned}
$$

TABLES

FOR REDUCING BAROMETRICAL OBSERVATIONS TO ANOTHER LEVEL, AND FOR COMPUTING DIFFERENCES OF ELEVATION, BY M. C. DIPPE.

Table I. - Argument, the observed Meight of the Barometer at either Station.

Barometeris l'aris lines. B or B^{\prime}	Tenths of a Line.									
	0	1	2	3	4	5	6	7	8	9
	If or II^{\prime} in Toises $=$									
270	0.7	2.2	3.7	5.2	6.7	8.2	9.7	11.2	12.8	14.3
271	15.8	17.3	18.3	20.3	21.8	23.3	24.8	26.3	27.8	29.3
272	30.5	32.3	33.8	35.3	36.8	33.3	39.8	41.3	42.8	44.3
273	45.8	47.3	48.5	50.3	51.8	53.3	54.8	56.3	57.8	59.3
274	60.8	62.2	63.7	6.5 .2	66.7	68.2	69.7	71.2	72.7	74.1
27.5	75.6	77.1	78.6	80.1	81.6	83.1	84.5	S6.0	87.5	89.0
276	90.5	91.9	93.4	94.9	96.4	97.9	99.3	100.8	102.3	103.5
277	10.5.2	106.7	108.2	109.7	111.1	112.6	114.1	115.6	117.0	118.5
278	120.0	121.4	122.9	124.4	12.5. 5	127.3	123.8	130.2	131.7	133.2
279	131.6	136.1	137.6	139.0	140.5	142.0	143.4	144.9	146.3	147.8
280	149.3	150.7	152.2	153.6	155.1	156.5	158.0	159.5	160.9	162.4
281	163.8	165.3	166.7	168.2	169.6	171.1	172.5	174.0	175.4	176.9
282	178.3	179.8	181.2	182.7	184.1	185.6	157.0	188.5	189.9	191.4
253	192.8	194.2	195.7	197.1	198.6	200.0	201.4	202.9	204.3	205.8
284	207.2	208.6	210.1	211.5	213.0	214.4	215.8	217.3	218.7	220.1
285	221.6	223.0	2.24 .4	225.9	227.3	228.7	230.2	231.6	233.0	234.5
286	235.9	237.3	238.7	240.2	241.6	243.0	244.4	245.9	247.3	248.7
287	250.1	251.6	253.0	254.4	255.8	257.3	235.7	260.1	261.5	262.9
289	278.5	279.9	281.3	282.5	281.2	285.6	257.0	288.4	289.8	291.2
290	292.6	294.0	29.4	296.8	298.3	299.7	301.1	302.5	303.9	30.5 .3
291	306.7	308.1	309.5	310.9	312.3	313.7	315.1	316.5	317.9	319.3
292	320.7	3221	323.5	324.9	326.3	3.7 .7	329.1	3:30.5	331.9	333.3
293	334.7	336.1	3:37.5	335.9	340.2	341.6	343.0	34.4	345.8	347.2
29 t	348.6	350.0	351.1	352.8	354.2	355.5	356.9	358.3	359.7	361.1
29.5	362.5	363.9	36.5.2	366.6	368.0	369.4	370.8	372.2	373.5	374.9
296	376.3	377.7	379.1	300.4	351.8	383.2	$3 ¢ 4.6$	35.5 .9	357.3	388.7
297	390.1	391.5	392.8	394.2	395.6	397.0	398.3	399.7	401.1	402.4
293	403.8	40.5 .2	406.5	407.9	409.3	410.7	412.0	413.4	414.8	416.1
299	417.5	418.9	420.2	421.6	423.0	424.3	425.7	427.1	428.4	429.5
25 Inch										
1300	431.1	433.5	433.9	435.2	436.6	487.9	439.3	440.7	42.0	44.4
301	+41.7	446.1	477.5	44.8	4.50 .2	4.51 .5	+52.9	454.2	455.6	4.56 .9
302	458.3	459.6	461.0	462.3	463.7	465.0	466.4	467.8	469.1	470.5
303	471.9	473.1	474.5	475.8	477.2	478.5	479.9	451.2	45.26	483.9
304	485.3	486.6	487.9	489.3	490.6	492.0	493.3	491.7	496.0	497.3
305	498.7	500.0	501.4	502.7	504.0	505.4	506.7	508.0	509.4	510.7
306	512.0	513.4	514.7	516.0	517.4	518.7	520.1	521.4	522.7	524.0

Table I. Contimued.

Barometer in l'aris Lines.					Tenths of a Line.					
	0	1	2	3	4	5	6	7	8	9
306	512.0	513.4	514.7	516.0	517.4	518.7	520.1	521.4	522.7	524.0
307	525.4	526.7	528.0	529.4	530.7	532.0	533.4	534.7	536.0	537.4
308	533.7	540.0	541.3	542.6	544.0	545.3	546.6	547.9	549.3	550.6
309	551.9	553.2	554.6	5.5.5.9	5.57 .2	558.5	559.8	561.2	562.5	563.8
310	565.1	566.4	567.8	569.1	570.4	571.7	573.0	574.3	575.6	576.9
311	578.3	579.6	580.9	582.2	583.5	584.8	586.1	587.5	588.8	590.1
26 Inch										
312	591.4	592.7	594.0	59.5 .3	596.6	597.9	599.2	600.6	601.9	603.2
318	604.5	60.5 .8	607.1	605.4	609.7	611.0	612.3	613.6	614.9	616.2
314	617.5	618.9	620.1	621.4	62.2 .7	624.0	625.3	626.6	627.9	629.2
315	630.5	681.8	633.1	634.4	635.7	637.0	638.3	639.5	640.8	642.1
316	643.4	644.7	646.0	647.3	618.6	649.9	651.2	652.5	633.8	655.1
317	656.3	657.6	655.9	660.2	661.5	662.8	664.1	665.4	666.6	667.9
319	669.2	670.5	671.8	673.1	674.3	675.6	676.9	678.2	679.5	650.8
319	652.0	683.3	684.6	685.9	687.2	688.4	689.7	691.0	692.3	693.6
320	691.8	696.1	697.4	698.7	699.9	701.2	702.5	703.8	705.0	706.3
321	707.6	705.9	710.1	711.4	712.7	713.9	715.2	716.5	717.7	719.0
322	720.3	721.6	722.8	724.1	72.5 .1	726.6	727.9	729.2	730.4	731.7
323	733.0	734.2	735.5	736.7	738.0	739.3	740.5	741.8	743.1	744.3
28 Inch.										
324	745.6	746.8	748.1	749.4	750.6	751.9	753.2	754.4	75.5 .7	756.9
325	755.2	739.4	760.7	761.9	763.2	764.5	76.5 .7	767.0	768.2	769.5
326	770.7	772.0	773.2	774.5	775.7	777.0	778.2	779.5	750.7	782.0
3.7	753.2	784.5	78.5 .7	787.0	783.2	759.5	790.7	792.0	793.2	794.5
328	79.5 .7	797.0	799.2	799.4	S00.7	801.9	803.2	804.4	80.3 .7	806.9
329	S08.2	809.4	S10.6	S11.9	813.1	814.4	S15.6	S16.8	818.1	819.3
330	820.6	821.8	823.0	S24.3	825.5	826.7	828.0	S29.2	830.4	831.7
331	8:32.9	\$34.2	835.4	S3(i.6	8:37.9	839.1	840.3	841.6	842.S	844.0
332	845.2	846.5	847.7	848.9	8.50.2	851.4	8.52 .6	8.53.9	8.55 .1	8.56 .8
3:3:3	857.5	S.58.3	860.0	861.2	862.4	84.3 .7	864.9	866.1	867.3	865.6
331	869.8	S71.0	872.2	873.4	874.7	88.5 .9	877.1	878.3	8796	880.8
33.5	S82.0	883.2	854.4	883.7	886.9	888.1	889.3	890.5	891.7	893.0
28 Inch										
$3 \cdot 36$	894.2	89.5 .4	896.6	897.8	899.0	900.3	901.5	902.7	90.3 .9	90.5 .1
$3: 77$	909.3	907.5	908.7	909.9	911.2	912.4	913.6	914.8	916.0	917.2
338	918.4	919.6	920.9	92.2	92:3.3	9.24 .5	925.7	926.9	925.1	929.3
339	930.5	931.7	932.9	931.1	935.3	936.5	937.7	935.9	940.1	911.3
340	912.5	913.7	$9+1.9$	9.46 .1	947.3	918.5	949.7	950.9	9.52 .1	953.3
341	9545	9557	956.9	958.1	959.3	9605	961.7	962.9	964.1	965.3
3.12	966.5	967.7	968.9	970.1	971.3	9725	973.7	974.5	976.0	977.2
313	978.4	979.6	9 K 0.8	98.0	$9 \div 3.2$	$9 \mathrm{si4.4}$	$9-.5 .6$	986.8	9 - . 9	9.9 .1
344	990.3	991.5	992.7	993.9	99.5.1	996.2	997.4	998.6	999.8	1001.0
31.5	1002.2	1003.4	1004.5	1005.7	1006.9	100<. 1	1009.8	1010.5	1011.6	1012.8
346	1014.0	1015.2	1016.4	1017.5	1018.7	1019.9	1021.1	1022.3	102:3.4	1024.6
317	102.5. 8	1027.0	1028.1	1029.3	1030.5	1031.7	1032.8	1031.0	1035.2	1036.4
$\begin{gathered} 29 \text { Inch } \\ 318 \end{gathered}$	1037.5	10.32 .7	1039.9	1011.1	1042.2	1048.4	1044.6	104.5. 5	11)469	1048.1

D

Table II.
correction for the temperature of the air.
Argument, $2 \tau=\begin{gathered}t+t^{\prime} \\ 2\end{gathered}$.

2 I	τ^{\prime}	Diff.	2 I	τ^{\prime}	Diff.	2τ	τ^{\prime}	Dift.	2τ	τ^{\prime}	Diff.
-25	-14.29		-12	-6.38		+ 1	+0.50		+14	+ 6.54	
-24	-13.64		-11	-5.82	. 56	2	0.99	- 49	15	6.98	0.44
-23	-13.00	. 64	-10	-5.26	0.26	3	1.18	. 49	16	7.41	. 43
-22	-12.36	64	-9	-4.71	0.55	4	1.96	. 18	17	7.83	0.42
-21	-11.73		- 8	-4.17		5	2.14	0.48	18	8.26	. 13
		0.62			0.54			0.47			0.42
-20	-11.11		-7	-3.63		6	2.91		19	8.68	
-19	-10.50		-6	-8.09		7	3.38		20	9.09	
-18	- 9.59	0.61	- 5	-2.56	0.53	8	3.85	0.47	21	9.50	0.41
-17	- 9.29	0.60	- 4	-2.04	0.52	9	4.31	0.46	22	9.91	0.41
-16	- 8.70		-3	-1.52		10	1.86		23	10.31	
		0.59			0.51			0.45			0.10
-15	-8.11		- 2	-1.0		11	5.21		24	10.71	
-14	- 7.53		- 1	-0.50		12	5.66		25	11.11	
-13	-6.9.5		0	0.00		13	6.10		26	11.50	
-12	-6.38	0.57	+1	+0.50		+14	+6.51	0.44	+27	+11.89	0.39

Table III. for C.
Arguments, h and τ.
In computing Heights reverse the signs of C. Arguments, τ and u

$\begin{aligned} & h,(1) \\ & \text { Toises. } \end{aligned}$	τ, in Degrees of Reaumur $=$								
	-16°	-19 ${ }^{\circ}$	-8 ${ }^{\circ}$	-10	0°	$+4^{\circ}$	$+8^{\circ}$	+120	$+16^{\circ}$
50	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
100	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3
150	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4
200	0.4	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.6
2.50	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.7
300	0.7	0.7	0.7	0.7	0.8	0.8	0.8	0.9	0.9
350	0.8	0.8	0.8	0.9	0.9	0.9	1.0	1.0	1.1
400	0.9	0.9	1.0	1.0	1.0	1.1	1.1	1.2	1.2
450	1.0	1.1	1.1	1.1	1.2	1.2	1.3	1.3	1.4
500	1.1	1.2	1.2	1.3	1.3	1.4	1.4	1.5	1.5
550	1.2	1.3	1.4	1.4	1.5	1.5	1.6	1.6	1.7
600	1.4	1.4	1.5	1.6	1.6	1.7	1.7	1.8	1.9
650	1.5	1.6	1.6	1.7	1.5	1.8	1.9	1.9	2.0
700	1.6	1.7	1.8	1.8	1.9	2.0	2.0	2.1	2.2
750	1.7	1.8	1.9	2.0	2.0	2.1	2.2	2.3	2.3
800	1.9	2.0	2.0	2.1	2.2	2.3	2.4	2.4	2.5
850	2.0	2.1	2.2	2.3	2.3	2.4	2.5	2.6	2.7
900	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9
9.50	2.3	2.4	2.5	2.6	2.7	2.7	2.9	3.0	3.1
1000	2.4	2.5	2.6	2.7	2.8	2.9	3.1	3.2	3.3

Table lV. for C'.
CORRECTION IN TOISES FOR THE CHANGE OF GRAVITY IN LATITUDE.

Latitude.		Approximate Difference of Level, in Toises.									
-	+	100	200	300	400	500	600	700	804	900	1000
0	90	0.3	0.5	0.8	1.0	1.3	1.6	1.8	2.1	2.3	2.6
5	85	0.3	0.5	0.5	1.0	1.3	1.5	1.8	2.0	2.3	2.6
10	¢0	0.3	0.5	0.7	1.0	1.2	1.5	1.7	2.0	22	2.4
15	7.)	0.2	0.4	0.7	0.9	1.1	1.3	1.6	1.8	2.0	9.3
20	70	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
2.5	65	0.2	0.3	0.5	0.7	0.8	1.0	1.2	1.3	1.5	1.7
30	60	0.1	0.3	0.4	0.5	0.6	0.8	0.9	1.0	1.2	1.3
35	5.5	0.1	0.2	0.3	0.4	0.4	0.5	0.6	0.7	0.8	0.9
36	54	0.1	0.2	0.2	0.3	0.4	0.5	0.6	0.6	0.7	0.8
37	53	0.1	0.1	0.2	0.3	0.4	0.5	0.5	0.6	0.6	0.7
38	52	0.1	0.1	0.2	0.3	0.3	0.4	0.4	0.5	0.6	0.6
39	51	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.4	0.5	0.5
40	50	0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.4	0.5
41	49	0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.3	0.4
42	48	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.3
43	47	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2
44	46	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1
45	45	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table V. for C".
Arguments τ and $T-T^{\prime}$. To be ased only in computing Heights.

$\mathrm{T}-\mathrm{T}^{\text {t }}$	Correction for T-T, in Toises, with the same sign ; ${ }^{\text {r }}=$								
Re:umur	-120	-10°	-80	$-6{ }^{\circ}$	$-401-20$	0°	+20	$+4^{\circ}$	$+6^{\circ}$
0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0
1	0.2	0.2	0.2	0.1	$0.1 \quad 0.1$	0.1	0.1	0.0	0.0
2	0.4	03	0.3	0.3	0.20 .2	0.2	0.1	0.1	0.0
3	0.6	0.5	0.5	0.4	$0.4 \quad 0.3$	0.2	0.2	0.1	0.1
4	0.5	0.7	0.6	0.5	0.50 .4	0.3	0.2	0.2	0.1
5	1.0	09	0.8	0.7	0.60 .5	04	0.3	0.2	0.1
6	1.1	1.0	0.9	0.8	$0.7 \quad 0.6$	0.5	0.1	0.3	0.1
7	1.3	1.2	1.1	0.9	0.8 0.7	0.6	0.4	0.3	0.2
8	1.5	1.4	12	1.1	0.9 0.8	0.6	0.5	0.3	0.2
9	1.7	1.6	1.4	1.2	1.109	0.7	0.6	0.4	0.2
10	1.9	1.7	1.5	1.4	1.21 .0	0.8	0.6	0.4	0.2
Correction for $\mathbf{T}-\mathrm{T}^{\prime}$ with contrary sign ; ${ }^{\top}=$									
T- \mathbf{T}^{\prime}	$+8^{\circ}$	$+10^{\circ}$	+120	$+11^{\circ}$	$\mathbf{T}-\mathbf{T}^{\prime}$	$+8^{\circ}$	$+10^{\circ}$	+130	$+10^{\circ}$
1	0.0	0.0	0.0	0.0	6	0.0	0.1	0.2	0.3
2	0.0	0.0	0.1	0.1	7	0.0	0.1	0.2	0.3
3	0.0	0.0	0.1	0.1	8	0.0	0.1	0.2	0.4
4	0.0	0.0	0.1	0.2	9	0.0	0.1	0.2	0.4
5	0.0	0.1	0.2	0.2	10	0.0	0.1	0.3	0.4

D
65

LAPLACE'S FORMULA FOR COMPUTING DIFFERENCES OF ELEVATION FROM BAROMETRICAL OBSERVATIONS, MODIFIED BY BABINET.

In the Comptes Rendus de l'Académie des Sciences for March, 1851, M. Babinet propose's the following modification of Laplace's formula, the object of which is to dispetse both with the use of logarithms and with tables of any kind.

Laplace's formula is,

$$
z=18393 \text { metres }(\log \mathrm{H}-\log h)\left[1+\frac{2(\mathrm{~T}+t)}{1000^{-}}\right]
$$

\approx being the difference of level between the two stations,
H, the height of barometer at the lower station,
h, the height of barometer at the upper station,
' F , temperature of air at the lower station,
t, temperature of air at the upper station.
The two barometers are supposed to be reduced to the same temperature. The small correction for the latitude is omitted.

For elevations less than 1000 metres, and even for much greater elevations, if approximate results only are needed, the formula may be transformed into the following :

$$
z=16000 \text { metres } \frac{\mathrm{II}-h}{\mathrm{H}+h}\left[1+\frac{2(\mathrm{~T}+t)}{1000}\right] .
$$

Example 1.

Suppose,
at lower station, barometer at zero Cent. $=755^{\mathrm{mm}}$; temperature of air 15° Cent. at upper station, barometer at zero Cent. $=745^{\mathrm{mm}}$; temperature of air 10° Cent.

$$
\begin{array}{lc}
\mathrm{H}-h=10^{\mathrm{mm} .} & \mathrm{T}+t=25^{\circ} \text { Cent. } \\
\mathrm{II}+h=1500^{\mathrm{min} .} & 2(\mathrm{~T}+t)={ }_{\mathrm{T}}^{500 \sigma}=.05 .
\end{array}
$$

Then $\quad z=16000_{\frac{10}{150} \sigma} \times(1.05)=112$ metres.
Laplace's formula, by Deleros's tables, would give 111.6 metres.

Example 2.

Suppose,
at luwer station, harometer at zero Cent. $=730^{\mathrm{mm}}$; temperature of air 20° Cent. at upper station, barometer at zero Cent. $=635^{m m}$; temperature of air 15° Cent.

$$
\begin{aligned}
\mathrm{H}-h & =95^{\mathrm{mm} .} & \mathrm{T}+t & =35^{\circ} \text { Cent. } \\
\mathrm{H}+h & =1365^{\mathrm{mm} .} & 2(\mathrm{~T}+t) & =\mathrm{T}^{70} \overline{0} \bar{\sigma}=.07 .
\end{aligned}
$$

Then $\quad z=16000_{1} \frac{95}{3} \frac{5}{5} \times(1.07)=1191.5$ metres.
Laplace's formula, by Deleros's tables, would give 1191.1 metres.
For greater elevations an intermediate station may be supposed.
Babinet's formula reduced to English measures becomes,

$$
\left.z=52494 \text { English feet } \begin{array}{l}
\mathrm{II}-h+h
\end{array} \mathrm{II}+\frac{(\mathrm{T}+t-64)}{900}\right]
$$

but as, in this form, it loses the simplicity of its coefficient, it will be found, on trial, that its use requires rather more computing than the author's tables (II.), p. 38, which give more accurate results.

VII.

TABLES

FOR COMPUTING THE DIFFFRENCE IN THE HEIGHTS OF TWO PLACES BY MEANS OF THE BAROMETER. - BAILY.

Baily, in his Astronomical Tables and Formula, page 111, gives the following final formula :

$$
\begin{aligned}
x= & 60345.51\left\{1+.0011111\left(t+t^{\prime}-64^{\circ}\right)\right\} \\
& \times \log \text { of }\left\{\begin{array}{l}
1 \\
\left.\beta^{\prime} \times \frac{1}{1+.0001\left(\tau-\tau^{\prime}\right)}\right\}
\end{array}\right\} \times\{1+.002695 \cos 2 \phi\}
\end{aligned}
$$

Where $\phi=$ the latitude of the place,
$\left.\begin{array}{l}\beta=\text { the height of the barometer, } \\ \tau=\text { the temperature, Fahrenheit, of the mercury, } \\ t=\text { the temperature, Fahrenheit, of the air, }\end{array}\right\} \begin{aligned} & \text { at the lower } \\ & \text { station. }\end{aligned}$
$\beta^{\prime}=$ the height of the barometer,
$\left.\begin{array}{l}\tau^{\prime}=\text { the temperature, Fahrenheit, of the mercury, } \\ t^{\prime}=\text { the temperature, Fahrenheit, of the air. }\end{array}\right\} \begin{gathered}\text { at the upper } \\ \text { station. }\end{gathered}$
The numerical values assumed are as follows:-
The constant barometrical coefficient
The expansion of moist air for 1° Fahrenheit
$=60158.53$ English feet.

The expansion of mercury for 1° Fahrenheit
$=.0022222$.

The increase of gravitation from Equator to Poles
$=.0001001$.

The radius of the Earth at ϕ
$=.00539$.
The height of lower station assumed
$=20898: 40$ English feet.
$=4000$ English feet.

$$
\begin{aligned}
\text { Make } A & =\text { the } \log \text { of the first term, in English feet. } \\
B & =\text { the } \log \text { of } 1+.0001\left(\tau-\tau^{\prime}\right) . \\
\mathrm{C} & =\text { the } \log \text { of the last term. } \\
\mathrm{D} & =\log \beta-\left(\log \beta^{\prime}+\mathrm{B}\right) .
\end{aligned}
$$

Then, by the tables which follow, the logarithm of the difference of altitude in English feet

$$
=\mathrm{A}+\mathrm{C}+\log \mathrm{D}
$$

Baily's Tables have been recomputed and extended by Downes, for Lee's Collection of Tables and Formulce (2d edit. pp. 84, 85). These new tables are given here as revised by Mr. Downes for this volume.
I. Thermoneters in the Open Air.

$t+t^{\prime}$	A								
\bigcirc		\bigcirc		-		\bigcirc		\bigcirc	
1	4.74913	37	4.76742	73	4.78497	109	4.90183	145	4.81807
2	4.74965	38	4.76791	74	4.78544	110	4.50229	146	4.818 .51
3	4.75016	39	4.76811	75	4.78592	111	4.80275	147	4.81896
4	4.75068	40	4.76591	76	4.786 .10	112	4.80321	148	4.81940
5	4.75120	41	4.76940	77	4.78687	113	4.50367	149	4.81984
6	4.75171	42	4.76990	78	4.78735	114	$4.80+13$	150	4.82028
7	4.75233	43	4.77039	79	4.78782	115	4.80458	151	4.82072
8	4.75274	44	477089	80	4.78330	116	4.50 .504	152	4.82116
9	4.75326	45	4.75138	81	4.78875	117	4.80550	153	4.82160
10	4.75377	46	4.77187	82	4.78925	118	4.80595	154	4.82204
11	4.75429	47	4.77236	83	4.75972	119	4.80641	155	4.82248
12	4.75480	48	4.77285	84	4.79019	120	4.80688	156	4.52291
13	4.75531	49	4.77335	85	4.79066	121	4.80731	157	4.8233 .7
14	475582	50	4.77384	86	4.79113	122	4.60777	158	4.82379
15	4.75633	51	4.77433	87	4.79160	123	4.80822	159	4.82423
16	4.75684	52	4.77482	88	4.79207	124	4.80867	160	4.82466
17	4.75735	53	4.77530	89	4.792 .54	125	4.80913	161	4.82510
18	4.75786	54	4.77579	90	4.79301	126	4.80958	162	4.52553
19	4.75837	55	4.77628	91	4.79318	127	4.81003	163	4.82597
20	4.75588	56	4.77677	92	4.79395	128	4.81048	164	4.826 .40
21	4.75938	57	4.77725	93	$479+42$	129	4.81093	165	4.92684
22	4.75989	58	4.77374	94	4.79489	130	4.81138	166	4.82727
23	4.76040	59	4.77523	9.5	4.79535	131	4.81183	167	$4.827 \% 0$
24	4.76090	60	4.77871	96	4.79 .582	132	4.81228	168	4.82814
25	4.76141	61	4.77919	97	4.79628	133	4.81273	169	4.82857
26	4.76191	62	4.77968	98	4.79675	1:'4	4.81317	170	4.82900
27	4.76241	63	4.78016	99	4.79721	135	4.81362	171	4.82943
28	4.76292	64	4.78065	100	4.79768	136	4.81407	172	4.82986
29	4.76342	6.5	4.78113	101	4.79814	137	4.81452	173	4.53029
30	4.76392	66	4.78161	102	4.79861	138	4.81496	174	4.83078
31	4.76412	67	4.78209	103	4.79907	139	4.815 .41	175	4.8311 b
32	4.76492	68	4.78257	104	4.79953	140	4.81585	176	4.83158
33	4.76542	69	4.75305	10.5	4.79999	141	4.81630	177	4.83201
34	4.76592	70	4.78353	106	4.80045	142	4.61674	178	$4.832+4$
35	4.76642	71	4.78401	107	4.80091	143	4.81719	179	4.83257
36	4.76692	72	$4.78+49$	108	4.80137	144	4.81763	180	4.83330

$\tau-\tau^{\prime}$	II.	Attached	'Thermoneter.		13	III. Latitude of the Place.	
	B	$\tau-\tau^{\prime}$	B	$\boldsymbol{\tau}-\tau^{\prime}$		ϕ	C
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	0.00000	20	0.00087	$\begin{array}{r} \circ \\ 40 \end{array}$	0.00174	\bigcirc	0.00117
1	0.00 .10 t	21	0.00091	41	0.00175	5	0.00115
2	0.00009	22	0.00096	42	0.00182	10	0.00110
3	0.00018	23	0.00100	43	0.00187	15	0.00101
4	0.00017	24	0.00104	44	0.00191	20	0.00090
5	0.00022	25	0.00109	45	0.0019 .5	25	0.00075
6	0.00026	26	0.00113	46	0.00200	30	0.00058
7	0.000:0	27	0.00117	47	$0.00 \cdot 0 \cdot 4$	35	0.00040
8	0.0003 .5	28	0.00122	48	0.00208	40	0.00020
9	0.00039	29	0.00126	49	0.00212	45	0.00000
10	0.00043	30	0.00130	50	0.00217	50	9.99980
11	0.00018	31	000135	51	000221	5.5	9.99960
12	0.00052	32	0.00139	52	0.00225	60	9.99942
13	0.00056	33	$0.001+3$	53	0.00230	65	9.99925
14	0.00001	34	0.00148	54	0.00234	70	9.99910
15	0.00065	35	0.00152	55	0.00238	75	9.99900
16	0.00069	36	0.00156	56	0.00213	s0	9.99890
17	0.00074	37	0.00161	57	0.00247	85	9.99885
18	0.00078	33	000165	58	0.00251	90	9.99853
19	0.00083	39	0.00169	59	0.00256		

Example.
Upper Station. Lower Station.
'Thermometer in open air, $\quad t^{\prime}=70.4, \quad t=77.6$.
Attached Thermometer $, \quad \tau^{\prime}=70.4, \quad \tau=77.6$.
Barometer,
$\beta^{\prime}=23.66$ inches, $\beta=30.05$ inches.
Latitude of the place $\quad \phi=21^{\circ}$.

$$
\begin{aligned}
& \mathrm{B}=0.00031 \\
& \log \beta^{\prime}=1.37401 \\
& 1.37432 \\
& \log \beta=1.47784 \\
& \mathrm{D}=0.10352
\end{aligned}
$$

VIII.

TABLES

```
FOR COMPUTING DIFFERENCES OF ELEVATION FROM BAROMETRICAL OBSERVATIONS; BASED ON BESSEL'S FORMULA.
```

By E. PLANTAMOUR.
[These Tables, computed by Professor E. Plantamour, Director of the Observatory at Geneva, Switzerland, are foum in Vol. XIH. P'urt 1, of the Mémoires de la Société de Physique, \oint c. de Genève, p. 63, together with the following explanations.]

In No. 356 of the Astronomische Nachrichten, Bessel published a paper on the measurement of heights by means of the barometer, in which he deduces a formula which contains a factor depending on the humidity of the air. This formula is:

$$
\log \frac{\mathrm{P}}{\mathrm{P}^{\prime}}=\frac{(g) . \mathrm{H}^{\prime}-\mathrm{H}}{\mathrm{~L}(1+\mathrm{K} \mathrm{~T})}\left[1-a \frac{0.002561}{\gamma \mathrm{PP}^{\prime}} \cdot 10^{0.0279712 \mathrm{~T}-0.0000625826 \mathrm{~T}^{2}}\right]
$$

where the various quantities have the following signification: -
h being the elevation of the lower station, and
h^{\prime} the elevation of the upper station above the level of the sea,
$a=$ the radius of the Earth,
$\mathrm{H}=\frac{\mathrm{a} h}{\mathrm{a}+h}$,
$\mathrm{H}^{\prime}=\frac{\mathrm{a} h^{\prime}}{\mathrm{a}+h^{\prime}}$;
$\mathrm{P}=$ the weight of the atmosphere at the lower station,
$\mathrm{P}^{\prime}=$ the weight of the atmosphere at the upper station, the unit of weight assumed being the pressure of a column of mercury
of 336.905 Paris lines, at the temperature of the freezing point, or zero Reaumur, and under the 45 th degree of latitude.
$(g)=$ the gravity, at the level of the sea, in the mean latitude between the two places of observation.

Therefore, calling ϕ the latitude,
$(g)=1-0.0026257 \cos \phi$,
$\mathrm{L}=$ the constant barometrical coefficient depending on the relative density of the mercury and of the air,
$K=$ the coefficient of the expansion of the air,
$\mathrm{T}=$ the mean temperature of the layer of air between the lower and upper station,
$a=$ the fraction of saturation of the same layer.

The second term in the parenthesis, destined to take into account the aqueous vapor in the air, was obtained by assuming that the elastic force of vapor for a temperature T is represented, in unit of weight, by the expression,

$$
p=0.0067407 \times 10^{0.0279712 \mathrm{~T}-0.0000625826 \mathrm{~T}^{2} .}
$$

Multiplying the second member by 336.905 we find the expression of the elastic force of vapor that Laplace deduced from Dalton's experiments. Substituting, in the computation, Regnault's results, the numerical value of these coefficients is somewhat changed, and we find then

$$
p=0.0060527 \times 10^{0.0301975 \mathrm{~T}-0.000080170 \mathrm{~T} .}
$$

Bessel's tables give the difference of elevation in toises. The logarithm of the difference is obtained by the sum of four logarithms. The same form is preserved in the following tables; but the differences of elevation are given in metres.

The term due to the expansion of the air is computed in Bessel's tables for two values of the coefficient, viz. that of Gay-Lussac, 0.00375 , and that of Rudberg, 0.003648 ; in the new tables it is only computed for that of Regnault, 0.003665 .

The relative density of dry air at the freezing point, under a barometrical pressure of $0^{m .} .76$, and at the 45 th degree of latitude, and of mercury in the same circumstances, adopted by Bessel, is that determined by the experiments of Biot and Arago, viz. 10466.8°. The value of that constant derived from Regnault's experiments has been substituted. Regnault found the weight of a litre of dry air, at zero Centigrade, under a pressure of $0^{\mathrm{m}} .76$, and at the latitude of Parss, to be 1.293187 grammes, which, reduced to the gravity of the 45 th degree of latitude, becomes 1.292732 grammes. The weight of a litre of mercury, at zero Centigrade, he found to be 13596 grammes; the ratio is thus:

$$
\mathrm{D}=\frac{1}{10517.3}
$$

or about ² $_{2} \frac{1}{9}$ smaller than the value adopted by Bessel. If the constant coefficient L is expressed by $\mathrm{L}=\frac{0^{\mathrm{m} .} \cdot 76}{\mathrm{D} \cdot \mu^{\mu}}$, μ being the modulus of the common logarithms, its numerical valuc becomes

$$
\mathrm{L}=18404^{\mathrm{m}} .8
$$

In order to reduce the formula into tables, Bessel caused it to undergo several modifications, which we have followed, introducing the values of the constants above mentioned.

Let b and b^{\prime} be the heights of the barometer, expressed in the metrical scale, at the two stations; t and t^{\prime}, the temperatures of the mercury measured with a brass scale; we have,

$$
\mathrm{P}=\underset{0^{\mathrm{m} \cdot} \cdot 76}{l} \cdot(g) \cdot\binom{a}{a+h}^{2}(1+0.00001879 t),
$$

and

$$
\mathrm{P}^{\prime}=\frac{\psi^{\prime}}{0^{\mathrm{m}} \cdot 76} \cdot(g) \cdot\binom{\mathrm{a}}{\mathrm{a}+h^{\prime}}^{2}\left(1+0.00001879 t^{\prime}\right) .
$$

Therefore,
$\log \mathrm{P}=\log b+\log (g)-\log 0^{\mathrm{m} .76}-\frac{2 \mathrm{II} \mu}{\mathrm{a}}-\mu t[0.00018018-0.00001879]$, $\log \mathrm{P}^{\prime}=\log b^{\prime}+\log (g)-\log 0^{m} .76-{ }^{2} \mathrm{H}^{\prime} \mu-\mu t^{\prime}[0.00018018-0.00001879]$.

If we call $\mathrm{B}, \mathrm{B}^{\prime}$ the heights of the barometer reducel to the freezing point, which we obtain by making

$$
\begin{gathered}
\log \mathrm{B}=\log b-t \cdot 0.000070095 ; \quad \log \mathrm{B}^{\prime}=\log b^{\prime}-t^{\prime} \cdot 0.000070095 \\
\log \frac{\mathrm{P}}{\mathrm{P}^{\prime}}=\log \mathrm{B}-\log \mathrm{B}^{\prime}+\underset{7329755}{\mathrm{IH}-\mathrm{II}}
\end{gathered}
$$

and with sufficient accuracy,

$$
\sqrt{ } \mathrm{PP}^{\prime}=\underset{0^{m} \cdot .76^{\circ}}{V B B^{\prime}}
$$

Substituting these expressions in the formula, it becomes,

$$
\log B-\log B^{\prime}=
$$

If we set instead of a the half sum $\frac{a+a}{2}$ of the fraction of saturation observed at both stations, we fiud, after some transformations,

D

$$
\begin{aligned}
& \log \mathrm{B}-\log \mathrm{B}^{\prime}=\frac{(g)\left(\mathrm{H}^{\prime}-\mathrm{II}\right)(397.25-\mathrm{KT})}{398.25 \cdot \mathrm{~L}(1+\mathrm{KT})} \times \\
& \quad\left[1-\frac{\left(a+a^{\prime}\right) \cdot 0.34807}{\left(397.25-\mathrm{K} \mathrm{~T}^{2}\right) \vee \mathrm{BB}^{\prime}} \cdot 10^{0.0301975 \mathrm{~T}-0.000080170 \mathrm{~T}^{2}}\right] .
\end{aligned}
$$

Making further,

$$
\begin{gathered}
\mathrm{V}=\frac{398.25}{397.25-\mathrm{KT}} \mathrm{~L}(\mathrm{l}+\mathrm{KT}) \\
\mathrm{W}=\begin{array}{c}
0.34807 \\
397.25-\mathrm{KT}
\end{array} \cdot 10^{0.0301975 \mathrm{~T}-0.000080170 \mathrm{~T}^{2}}
\end{gathered}
$$

we shall have for the logarithm of the approximate difference of level between the two stations $\mathrm{H}^{\prime}-\mathrm{H}$,

$$
\begin{aligned}
& \log \left(\mathrm{H}^{\prime}-\mathrm{H}\right)=\log \left[\log \mathrm{B}-\log \mathrm{B}^{\prime}\right] \\
& \quad+\log \mathrm{V}+\log \frac{1}{1-W^{a}+a^{\prime}}+\log \underset{1}{(g) B^{\prime}}
\end{aligned}
$$

Table I. gives the values of $\log \mathrm{V}$ and $\log \mathrm{W}$, both of which only depend on the temperature; the argument is the sum of the temperature of the air, τ and τ^{\prime}, observed at both stations, supposing $\tau+\tau^{\prime}=2^{\prime} \Gamma$.

Table II. gives the factor depending on the humidity of the air; with the argument

$$
\mathrm{W} \cdot \log \frac{\left(a+a^{\prime}\right)}{\sqrt{ } B^{\prime}},
$$

we obtain

$$
\log \frac{1}{1-W \begin{array}{c}
\left(a+a^{\prime}\right) \\
V \mathrm{~B} B^{\prime}
\end{array}}=\log \mathrm{V}
$$

Table III. gives the factor depending on the latitude for every degree, viz.

$$
\log \mathrm{G}^{\prime}=\log \begin{gathered}
1 \\
(g)
\end{gathered}
$$

The logarithm of the approximate difference is thus given by the sum of four logarithms. To obtain the exact elevation, the small correction found in Table IV. must be added to the number corresponding to that logarithm. For we have, with the necessary accuracy,

$$
h^{\prime}-h=\mathrm{H}^{\prime}-\mathrm{H}+\mathrm{H}^{\prime 2}-\frac{\mathrm{H}^{2}}{\mathrm{a}}
$$

Table IV. gives, for every 200 metres, the quantity $\frac{H^{2}}{a}$; the number in the table corresponding to $\frac{\mathrm{H}^{\prime}{ }^{2}}{\mathrm{a}}$ must be added to the approximate elevation; and the number corresponding to $\frac{H^{2}}{a}$ must be subtracted from the same.

D

Use of the Tables.

Reduce first the observed height of the barometer at both stations to the freezing point by means of the usual tables, or by the logarithmic formula,

$$
\log \mathrm{B}=\log b-t \cdot 0.00007, \quad \log \mathrm{~B}^{\prime}=\log b^{\prime}-t^{\prime} 0.00007
$$

b and b^{\prime} being, in fractions of metre, the observed heights at the temperatures t and t^{\prime} marked by the attached thermometers; and B and B^{\prime} the reduced height at the lower and upper station.

Take the difference of $\log B$ and $\log B^{\prime}$, and find, in the tables of the common logarithms, the lograthm of that difference, viz. $\log \left(\log B-\log B^{\prime}\right) ;$ find also the logarithm of the product $\sqrt{ } \mathrm{BB}^{\prime}$, or

$$
\log \sqrt{ } B B^{\prime}=\frac{\log B+\log B^{\prime}}{2}
$$

Make further the sum $\tau+\tau^{\prime}$ of the temperature of the air at both stations, and likewise the sum of $a+a^{\prime}$ of the fraction of saturation.

Then, in Table I., with argument $\tau+\tau^{\prime}$, take $\log \mathrm{V}$ and $\log \mathrm{W}$; further, to $\log \mathrm{W}$ add $\log \left(a+a^{\prime}\right)$, and subtract $\log \sqrt{ } \mathrm{BB}^{\prime}$; and with the logarithm thus obtained as argument, take in Table II. $\log \mathrm{V}^{\prime}$.
'Table III. with the mean latitude of the stations gives $\log \mathrm{G}^{\prime}$.
H^{\prime} - II being the approximate difference of level between the two stations, we have

$$
\log \left(H^{\prime}-H\right)=\log \left(\log B-\log B^{\prime}\right)+\log V+\log V^{\prime}+\log C^{\prime}
$$

The altitude of the lower station being known, we deduce from $\mathrm{H}^{\prime}-\mathrm{H}$ the approximate altitude, HI^{\prime}, of the upper station ; h^{\prime}, the exact altitude, or $h^{\prime}-h$, the difference of elevation, is given by the formula,

$$
h^{\prime}-h=\mathrm{H}^{\prime}-\mathrm{H}+\frac{\mathrm{I}^{\prime 2}}{\mathrm{a}}-\frac{\mathrm{H}^{2}}{\mathrm{a}} .
$$

Table IV. gives the values of $\frac{\mathrm{I}^{\prime 2}}{\mathrm{a}}$ and $\frac{\mathrm{H}^{2}}{\mathrm{a}}$ for the values of H^{\prime} or H for every ≥ 00 metres.

Example 1.

Computing the height of St. Bernard, taking Geneva, 407 metres above the level of the sea, as the lower station. The observation gives,

$$
\begin{aligned}
\mathrm{B}= & 796.43 \text { millimetres } \\
\tau= & +8^{\circ} .97 \text { Centigrade } \\
a= & 0.77 \\
& \log \mathrm{~B}=9.86119 \\
\log \mathrm{~B}^{\prime}= & 9.75100 \\
& \log \mathrm{~B}-\log \mathrm{B}^{\prime}=0.11019
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{B}^{\prime}=563.64 \text { millimetres } \\
& \tau^{\prime}=-1^{\circ} .89 \text { Centig. } \tau+\tau^{\prime}=+7^{\circ} .08 \\
& a^{\prime}=0.80 \quad a+a^{\prime}=157
\end{aligned}
$$

$$
\log \sqrt{ }\left(\mathrm{BB}^{\prime}\right)=9.8061
$$

$$
\text { Table I. } \log W=7.0511
$$

$$
\log \left(a+a^{\prime}\right)=0.1959
$$

$$
\log \begin{gathered}
\left(a+a^{\prime}\right) \\
\left(B B^{\prime}\right.
\end{gathered} \cdot W=\overline{7.4409}
$$

$$
\log \left[\log B-\log B^{\prime}\right]=\mathbf{9 . 0 4 2 1 5}
$$

In Table I. argt. $\tau+\tau^{\prime}=+7.08, \log \mathrm{~V}=4.27164$
In Table II. argt. 7.4409, $\quad \log \mathrm{V}^{\prime}=\quad 0.00120$
In Table III. argt. $46^{\circ}, \quad \log \mathrm{G}^{\prime}=-0.00004$
$\log \left(\mathrm{H}^{\prime}-\mathrm{H}\right)=\overline{3.31495}$

$$
\mathrm{H}^{\prime}-\mathrm{H}=2065.1 \text { metres. }
$$

In Table IV. $\frac{\mathrm{H}^{\prime 2}}{\mathrm{a}}-\frac{\mathrm{H}^{2}}{\mathrm{a}}=+0.9$
$h^{\prime}-h=2066.0$
Geneva altitude $h=407.0$
St. Bernard above the level of the sea $h^{\prime}=2473.0$ metres.

Example 2.

Computing the height of Mont Blane from the observations of Bravais and Martins, on the 29th of August, 1844, taking St. Bernard (2473.0 metres) as the lower station. The observation gives,

TABLE I.$\text { Argument }=\tau+\tau^{\prime} . \text { Centigrade Degrees. }$									$\begin{aligned} & \text { TABLE IV. } \\ & \text { Arg't. = Height. } \end{aligned}$	
$\tau+{ }^{t}$.	log. V.	\log. W.	+ -1 .	log. V.	log. W.	+ ${ }^{1}$	log. V.	Iog. W.	$\begin{aligned} & \mathbf{H}^{\mathbf{H}} . \end{aligned}$	\pm
\bigcirc			O			\bigcirc			Metres.	Metres.
-24	4.24644	6.5362	$+15$	4.27783	7.1692	+54	4.30711	7.7033	200	0.01
-23	4.24728	6.5441	+16	4.27561	7.1539	+55	4.30784	7.7160	400	0.03
-22	4.24811	6.5620	+17	4.27938	7.1985	+56	4.30856	7.7287	600	0.06
-21	4.24894	6.5797	+18	4.28016	7.2131	+57	4.30929	7.7413	800	0.10
-20	4.24977	6.5974	+19	4.28093	7.2275	+58	4.31001	7.7539	1000	0.16
-19	4.25059	6.6157	+20	4.28170	7.2420	+59	4.31073	7.7664	1200	0.23
-18	4.25142	6.6341	+21	4.28247	7.2564	+60	4.31145	7.7789	1400	0.31
-17	4.25225	6.6521	+22	4.28323	7.2708	+61	4.31217	7.7914	1600	0.40
-16	4.25307	6.6700	$+23$	4.28400	7.2850	$+62$	4.31288	7.8038	1800	0.51
-15	4.25389	6.6879	+24	4.28477	7.2993	+63	4.31360	7.8161	2000	0.63
-14	4.25471	6.7057	+25	4.28553	7.3135	+64	4.31432	7.8285	2200	0.76
-13	4.25553	6.7232	+26	4.28629	7.3276	+65	4.31503	7.8407	2400	0.90
-12	4.25634	6.7407	+27	4.28705	7.3417	+66	4.31574	7.8530	2600	1.06
-11	4.25716	6.7581	+28	4.28781	7.3557				2800	1.23
-10	4.25797	6.7755	+29	4.25857	7.3697				3000	1.41
-9	4.25878	6.7926	+30	4.28933	7.3837				3200	1.61
-8	4.25959	6.8096	+31	4.29008	7.3975				3400	1.82
-7	4.26040	6.8266	+32	4.29084	7.4114				3600	2.04
-6	4.26121	6.8436	+33	4.29159	7.4252				3800	2.27
-5	4.26202	6.8603	+34	4.29234	7.4389				4000	2.51
-4	4.26282	6.8770	+35	4.29319	7.4526				4200	2.77
- 3	4.26362	6.8935	+36	4.29384	7.4662				4400	3.04
- 2	4.26443	6.9100	+37	4.29459	7.4798				4600	3.32
- 1	4.26523	6.9263	+38	4.29534	7.4933				4800	3.62
0	4.26603	6.9426	+39	4.29608	7.5068				5000	3.93
$+1$	4.26682	6.9581	+40	4.29683	7.5202				5200	4.25
$+2$	4.26762	6.9736	+41	4.29757	7.5836				5400	4.58
+ 3	4.26841	6.9889	+ 42	4.29831	7.5470				5600	4.93
+ 4	4.26921	7.0043	$+43$	4.29905	7.5602				5800	5.28
$+5$	4.27000	7.0195	+44	4.29979	7.5735				6000	5.65
+ 6	4.27079	7.0347	+ 45	4.30053	7.5867				6200	6.04
+ 7	4.27157	7.0499	$+46$	4.30127	7.5999				6400	6.43
+8	4.27236	7.0650	$+47$	4.30200	7.6130				6600	6.84
+ 9	4.27315	7.0800	+48	4.30273	7.6260				6800	7.26
+10	4.27393	7.0950	+49	4.30347	7.6390				7000	7.70
+11	4.27471	7.1099	+50	4.30420	7.6519				7200	8.14
+12	4.27550	7.1248	+51	$4.30-493$	7.6618				7400	8.60
+13	4.27628	7.1397	+52	4.30566	7.6777					
+14	4.27705	7.1545	+53	4.30639	7.6905					
+15	4.27783	7.1692	+54	4.30711	7.7033					

TABLE II.$\text { Argument }=\log . \mathrm{W} \cdot \frac{\left(\kappa+x^{\prime}\right)}{\left(\mathbf{B} \overline{\mathbf{B}^{\prime}}\right.} .$						TABLE III. Argument $=$ Latitude.			
Argum't.	$\log . \mathrm{V}^{\prime}$.	Argun't.	$\log . V^{\prime}$.	Argum't.	log. V^{\prime}.	¢.	lig. G'.	c.	$\log . \mathrm{G}^{\prime}$.
6.5	0.00014	7.70	0.00218	8.09	0.00538	\bigcirc	+0.00114	+	+0.00020
6.6	0.00017	7.71	0.00223	8.10	0.00550	1	+0.00114	41	$+0.00016$
6.7	0.00022	7.72	0.00229	8.11	0.00563	2	+0.00114	42	+0.00012
6.8	0.00027	7.73	0.00234	8.12	0.00576	3	+0.00114	43	+0.00008
6.9	0.00034	7.74	0.00239	8.13	0.00590	4	$+0.00113$	44	$+0.00004$
7.0	0.00043	7.75	0.00245	8.14	0.00604	5	+0.00112	45	0.00000
7.1	0.00055	7.76	0.00251	8.15	0.00618	6	+0.00112	46	-0.00004
7.2	0.00069	7.77	0.00256	8.16	0.00632	7	+0.00111	47	-0.00008
7.3	0.00087	7.78	0.00262	8.17	0.00647	8	$+0.00110$	48	-0.00012
7.4	0.00109	7.79	0.00269	8.18	0.00662	9	+0.00109	49	-0.00016
7.41	0.00112	7.80	0.00275	8.19	0.00678	10	$+0.00107$	50	-0.00020
7.42	0.00114	7.81	0.00281	8.20	0.0069 +	11	+0.00106	51	-0.00024
7.43	0.00117	7.82	0.00288	8.21	0.00710	12	+0.00104	52	-0.00028
7.44	0.00120	7.83	0.00295	8.22	0.00727	13	+0.00103	53	-0.00031
7.45	0.00123	7.84	0.00302	8.23	0.00744	14	+0.00101	54	-0.00035
7.46	0.00125	7.55	0.00309	8.24	0.00761	15	+0.00099	55	-0.00039
7.47	0.00128	7.86	0.00316	8.25	0.00779	16	+0.00097	56	-0.000 43
7.48	0.00131	7.57	0.00323	8.26	0.00798	17	+0.00095	57	-0.00046
7.49	0.00134	7.58	0.00331	8.27	0.00816	18	$+0.00092$	58	-0.00050
7.50	0.00138	7.89	0.00338	8.28	0.00835	19	+0.00090	59	-0.00054
7.51	0.00141	7.90	0.00346	8.29	0.00855	20	+0.00087	60	-0.00057
7.52	0.00144	7.91	0.00354	8.30	0.00875	21	+0.0008.5	61	-0.00060
7.53	0.00147	7.92	0.00363	8.31	0.00596	22	+0.00082	62	-0.00064
7.54	0.00151	7.93	0.00371	8.32	0.00917	23	$+0.00079$	$6: 3$	-0.00067
7.55	0.00154	7.94	0.00380	8.33	0.00939	24	+0.00076	64	-0.00070
7.56	0.00158	7.95	0.00389	8.34	0.00961	25	+0.00073	65	-0.00073
7.57	0.00162	7.96	0.00398	8.35	0.00933	26	$+0.00070$	66	-0.00076
7.58	0.00165	7.97	0.00407			27	+0.00067	67	-0.00079
7.59	0.00169	7.98	0.00417			28	+0.00064	68	-0.00082
7.60	0.00173	7.99	0.00427			29	+0.00060	69	-0.00085
7.61	0.00177	8.00	0.00437			30	+0.00057	70	-0.00087
7.62	0.00181	8.01	0.00447			31	+0.00054	71	-0.00690
7.63	0.00186	8.02	0.00457			32	+0.00050	72	-0.000932
7.64	0.00190	8.03	0.00468			33	+0.000 46	73	-0.60094
7.65	0.00194	8.04	0.00479			34	$+0.000 \div 3$	74	-0.00097
7.66	0.00199	8.05	0.00490			35	+0.00039	75	-0.00099
${ }^{7} .67$	0.00201	8.06	0.00502			36	+0.00035	76	-0.00101
7.68	0.00208	8.07	0.00513			37	+0.00031	77	-0.00102
7.69	0.00213	8.08	0.00525			38	+0.00028	78	-0.00104
7.70	0.00218	8.09	0.00538			39	+0.00024	79	-0.00106
						40	+0.00020	s0	-0.00107

CORRECTION

FOR TIHE HOUR OF THE DAY AND THE SEASON OF THE YEAR AT WHLCII TIIE OBSERVATIONS IIAVE BEEN TAKEN.

In all the precedmg tables, the mean temperature of the layer of air between the two stations is assumed to be given by the half-sum of the temperatures observed at each station, or by $\frac{t+t^{\prime}}{2}$. Experience, however, has proved that this assumption is not true under all meteorological circumstances, and that, not to speak of more irregular influences, the temperature expressed by $\frac{t+t^{\prime}}{2}$ differs in + or - from the true mean temperature by a quantity which considerably varics with the hour of the day, the season of the year, and the elevation at which the observations are taken. The amount of the correction for the temperature of the air, as given by the various formulas, thus needs to be modified accordingly. In the absence of the dita necessary for establishing the law of the decrease of heat on the vertical in the various layers of the atmosphere, at the different periods of the day and of the year, and in different latitudes, which alone would furnish the means of determining the true value of this correction in these various circumstances, the following empirical tables enable us to form a judgment of the mportance of that correction.

Tables IX. and X. are taken from Berghans, Grundriss der Geographie, p. 91, and in the Tables accompanying the same work, p. 71. The correction to be applied for the hour of the day at which the observations have been taken, is found by multiplying the approximate height obtained by the factors in Table IX, giving to the correction the sign of the factor. This table and the following are calculated to be used in the climate of Germany, and for elevations not much exceeding 5,000 feet. The influence of the seasons on the correction is not taken into the account; jurging from Table X., the correction may be, perhaps, too small for the summer months, and may better answer for the autumn. Using these factors, we obtain for the differences of level, in toises, placed at the head of each column, in 'Table X., the correction corresponding to each hour, from $6 \mathrm{~A} . \mathrm{M}$. to $10 \mathrm{P} . \mathrm{M}$.

> TABLE IX.

CORLECTION FOR THE HOUR OF THE DAY.

Hour.	Factor,	Hour.	Factor	Hous.	Factor
A. M. 6	$+0.0075$	Noon.	-0.0054	P. M. 5	-0.0011
7	+0.0050	P. M. 1	-0.0057	6	+0.0013
8	+0.0025	2	-0.00.59	7	+0.0022
9	-0.0005	3	-0.0045	8	+0.0032
10	-0.0035	4	-0.0031	9	+0.00 +3
11	-0.0044	5	-0.0011	10	+0.0054

TABI.E X.
 CORRECTION FOR THE HOUR OF THE DAY.

Argument, the Ilour, and the Approvimate Heigut in toises.

Correction, in Toises, for										
Hour.	100	200	300	400	500	600	800	800	900	Hour.
A. M. 6	$+0.7$	$+1.5$	+2.2	$+3.0$	$+3.7$	$+4.5$	$+5.2$	$+6.0$	$+6.7$	$6 \mathrm{~A} . \mathrm{M}$.
7	$+0.5$	+1.0	$+1.5$	$+2.0$	+2.5	$+3.0$	+3.5	$+4.0$	$+4.5$	7
8	$+0.2$	$+0.5$	$+0.7$	$+1.0$	+1.2	$+1.5$	+1.8	$+2.0$	+2.3	8
9	-0.0	-0.1	-0.1	-0.2	-0.2	-0.3	-0.3	-0.4	-0.4	9
10	-0.3	-0.7	-1.0	-1.4	-2.1	-2.4	-2.8	-3.1	-3.5	10
11	-0.1	-0.9	-1.3	-1.8	-2.2	-2.7	-3.1	-3.6	-4.0	11
Noon.	-0.7	-1.1	-1.6	-2.2	-2.7	-3.3	-3.8	-4.4	-1.9	Noon.
P. M. 1	-0.6	-1.1	-1.7	-2.3	-2.8	-3.4	-4.0	-4.5	-5.1	$1 \mathrm{P} . \mathrm{M}$.
2	-0.6	-1.2	-1.8	-2.4	-3.0	-3.5	-1.1	-4.7	-5.3	2
3	-0.4	-0.9	-1.3	-1.9	-2.2	-2.7	-31	-3.6	-4.0	3
4	-0.3	-0.6	-0.9	-1.2	-1.5	-1.8	-2.1	-2.4	-2.7	4
5	-0.1	-0.2	-0.3	-0.4	-0.5	-0.6	-0.7	-0.8	-0.9	5
6	$+0.1$	$+0.2$	$+0.4$	$+0.5$	$+0.5$	$+0.8$	$+0.9$	$+1.0$	+1.1	6
7	$+0.2$	$+0.4$	$+0.7$	$+0.9$	$+1.1$	$+1.3$	$+1.6$	+1.8	$+2.0$	7
8	$+0.3$	$+0.6$	$+0.9$	+1.3	+1.6	$+1.9$	$+2.2$	+2.5	+2.9	8
9	$+0.4$	$+0.9$	+1.3	+1.7	$+2.1$	$+2.6$	$+3.0$	+3.4	+3.9	9
10	$+0.5$	$+1.1$	+1.6	$+2.1$	$+2.7$	+3.2	$+2.8$	+4.3	+4.8	10

Table XI. is found in the Résumé des Observations Thermométrique et Barométriques faites à Genère et au Grand St. Bernard pendant les dix amnéps 1841 à 1ヶ50, a very elaborate paper by Professor E. Plantamour, Director of the Observatory at Geneva, published in Vol. XIII. of the Mémoires de la Société de. Physique de Genève. The author, after having determined the difference of clevation between Geneva (407.0 metres above the level of the sca) and the Great St. Bernard, by means of the corresponding observations, made during these 10 years, and using his own tables given above, reversed the problem. Assuming the difference of level thus fond, viz. 2066 metres, to be the true height of the layer of air between the two stations, and its weight being given by the barometrical observations, he deduced from these data its mean density, and from the density its mean temperature at every even hour in every month of the year. Comparing these mean temperatures with those given at the same hours by the half-sum of the temperatures taken at the upper and the lower station, he found the differences contained in Table Xl., which are the corrections to be applied to the half-sums of the temperatures to obtain, in this particular case, the true mean temperatures. The second part of the table has been computed by multiplying each temperature in the first by 7.5 metres, in order to show the value of that correction in barometrical measurements.

D

TABLE XI.

CORRECTION TO BE APPLIED TO THE HALF-SUMS OF THE TEMPERATURES OF TIIE AIR, OBSERVED AT GENEVA AND AT THE GREAT ST, BERNARD, TO OBTAIN THE TRUE MEAN TEMPERATURE OF THE AIR BETWEEN THE TWO STATIONS.

Correction, in Ceutigrade Degrees, for													
Hour	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Noon.	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	-0.5	-1.7	-3.0	-3.9	-4.1	-4.4	-44	-3.8	-2.7	-1.6	-0.4	$+0.7$	-2.5
2	$\begin{aligned} & -0.2 \\ & +0.4 \end{aligned}$	-1.5	-2.8	-3.7	-4.0	-1.4	-4.4	-3.8	-2.6	-1.5	-0.2	$+0.7$	-2.3
4		-0.6	-1.6	-2.5	-2.7	-3.4	-3.6	-2.9	-1.7	-0.7	$+0.4$	+1.3	-1.5
6	$+1.2$	$+0.7$	-0.2	-0.9	-1.3	-2.1	-2.2	-1.6	-0.5	$+0.4$	$+1.3$	$+2.1$	-0.3
8	$+1.5$	$+1.4$	$+0.6$	0.0	0.0	-0.6	-0.7	-0.5	+0.3	+1.3	+1.7	$+2.6$	$+0.6$
10	$+1.7$	$+1.5$	+1.2	$+0.6$	$+0.7$	+0.5	-0.1	$+0.1$	$+0.8$	$+1.7$	$+1.5$	$+2.6$	+1.1
Midnight.	$+1.9$	$+1.8$	$+1.9$	$+1.3$	$+1.8$	$+1.6$	$+0.9$	$+1.2$	$+1.3$	$+2.3$	$+2.1$	$+2.5$	$+1.7$
2	$+2.0$	$+2.2$	$+2.5$	$+1.9$	$+2.2$	$+2.0$	$+1.5$	$+2.0$	+1.9	$+2.5$	+2.4	$+2.6$	$+2.2$
4	$+2.3$	$+2.5$	$+2.6$	$+1.8$	$+1.7$	+1.4	+1.1	+1.8	$+2.1$	$+2.5$	$+2.7$	+29	$+2.1$
6	$+2.0$	$+2.0$	$+1.7$	$+0.7$	$+0.1$	$+0.1$	0.0	$+0.7$	$+1.5$	$+1.7$	$+2.3$	$+2.9$	$+1.3$
8	$+1.5$	+1.1	0.0	-1.3	-2.0	-2.2	-2.4	-1.7	-0.4	+0.6	$+1.7$	$+25$	-0.3
10	$+0.4$	-0.4	-2.0	-3.1	-3.5	-3.8	-3.7	-3.1	-2.0	-1.0	$+0.3$	$+1.3$	-1.7
Mean,	$+1.2$	+0.8	$+0.1$	-0.8	-0.9	-1.2	-1.5	-0.9	-0.2	$+0.7$	$+1.3$	$+2.1$	0.0
	Correction, in Metres, for												
Hour.	Jin.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Noon.	$-3.7-12.7$		-22.5	-29.2	-30.7	-33.0	-33.0	-28.5	-20.2	-12.0	-3.0	$+5.2$	-18.7
2	$-1.5-11.2$		-21.0	-27.7	-30.0	-33.0	-33.0	-28.5	-19.5	-11.2	-1.5	$+5.2$	-17.2
4	$+3.0-4.5$		-12.0	-18.7	-20.2	-05.5	-27.0	-21.7	-12.7	-5.2	+ 3.0	$+9.7$	-11.2
6	$+9.0+5.2$		-1.5	-6.7	-9.7	-15.7	-16.5	-12.0	-3.7	$+3.0$	+ 9.7	$+15.7$	-2.2
8	$+11.2+10.5$		$+4.5$	0.0	0.0	-4.5	-5.2	-3.7	$+2.2$	$+9.7$	+12.7	$+19.5$	+ 4.5
10	$+12.7$	$+11.2$	$+9.0$	$+4.5$	$+5.2$	$+3.7$	-0.7	$+0.7$	$+6.0$	$+12.7$	$+13.5$	$+19.5$	$+8.5$
Milluight.	$+14.5+13.5$		$+14.5$	$+9.7$	$+13.5$	$+12.0$	$+6.7$	$+9.0$	$+9.7$	$+17.2$	$+15.7$	$+18.7$	$+12.7$
2	$+15.0$	$+16.5$	$+18.7$	$+14.2$	$+16.5$	$+15.0$	+11.2	$+15.0$	$+14.2$	$+18.7$	$+18.0$	$+19.5$	$+16.5$
4	+17.2	$+18.7$	' +19.5	$+13.5$	$+12.7$	$+10.5$	$+8.2$	+13.5	$+15.7$	$+18.7$	$+20.2$	$+21.7$	$+15.7$
6	+15.0	$+15.0$	$+12.7$	+ 5.2	$+3.0$	$+0.7$	0.0	+ 5.2	+11.2	$+12.7$	$+17.2$	$+21.7$	$+9.7$
8	$\begin{aligned} & +11.2 \\ & +\quad 3.0 \end{aligned}$	$+8.2$	0.0	-9.7	-15.0	-16.5	-18.0	-12.7	-3.0	$+4.5$	$+12.7$	$+18.7$	-2.2
10		-3.0	-15.0	-33.2	-26.2	-28.5	-27.7	-23.2	-15.0	-7.5	$+2.2$	$+9.7$	-12.7
Mean,	$+9.0$	$+6.0$	$+0.7$	-6.0	-6.7	-9.0	-11.2	-6.7	-1.5	$+5.2$	$+9.7$	$+15.7$	0.0

The elevation of a place in the interior of a continent where regular meteorological observations are made, may be ascertained by taking the yearly means of the barometer reduced to the freezing point, and of the temperature of the air, as data for the upper station, and the yearly means of the reduced barometer and of the free thermometer at the level of the sea, as the data for the lower station. The Hypsometric Tables then will give the difference of level. As observation, however, has shown that the mean height of the barometer at the level of the sea is not the same in all latitudes, it is necessary to take for such a comparison the mean height of the barometer which belongs to the latitude of the station the elevation of which is to be computed, or that which is nearest to it.
'Table Nll., published by Schouw, in Porgendorf's Annalen, and in the Comptes Rendus de l'Académie des Sciences, 'Tom. III. p. 573, gives in Paris lines the mean height of the barometer in various latitudes. The reduction into millimetres is from Martins's French translation of Kaemtz's Meteorology, p. 278 ; the corresponding values in English inches, and the new stations, Savannah, (ia., Philadelphia, Pa., and Cambridge, Mass., have been added. The mean heights last mentioned have been derived from three years of observations at Savannah, by Dr. John F. P'osey, from June, $\mathbf{1 8 5 3}$, to Jme, 1856 , published in the American Almanac; from four years of hourly observations at (rirard College, Philadelphia, by I'rof. A. D. Bache ; and from ten years of observations at Cambridge Observatory. They have been reduced to a common absolute standard and to mean tide-water at the respective places.

These mean barometric heights, corrected for the variation of gravity in latitude, according to the proposition of Poggendorf, by the formula $b=b 45$ ($1-0.0025935$ $\cos \rightleftharpoons \phi$), where b is the height of the barometer in latitude ϕ, and $b 45$ the corresponding height at the forty-fifth degree of latitude, are found in another column. For computing the elevations, the uncorrected heights are to be used.

The mean barometric pressure, as shown by 'Table XIII. from Kaemtz's Précis de Météorologie, French translation, p. 281, is not the same in all seasons, and the monthly means differ by a quantity which also varies with the latitude. If, therefore, the height of an inland station is to be ascertained from the barometrical means of one or more months only, the computation must be made with the mean pressure in the corresponding months at the level of the sea; or if this is not known, the yearly means taken from Table XII. must be corrected for the difference between the monthly means of the given month, or months, and the annual mean in the same latitnde, as derived from the comparison of the numbers in Table XIII.

Example.

Suppose an inland station, in latitude $40^{\circ} \mathrm{N}$.; the mean barometric pressure for July is 26.30 iuches, and its elevation is to be computed from it.

Table XII. gives for latitude 40°, at Philadelphia, reduced to the level of the sea, 30.053 inches. Table XIII. gives as the mean for July, at the same place, 759.80 millimetres, and for the year, 760.25 milimetres (both not reduced to the levet of the sea), difference - 0.45 millimetres $=-0.017$ English inches, which is to be subtracted from the annual mean, 30.053 , to reduce it to the mean of July; or D
$30.053-0.017=30.036$. This last number is to be used in the computation, with the mean temperature of July at both stations.

Towards the tropical regions, the irregular or non-periodic variations of the barometer, which in high and middle latitudes are so considemble as to render simultaneous observations indispensable for the measurement of heights, gradually decrease and nearly cease to exist, while the monthly and daily periodic variations, which are small in high latitudes, considerably increase. Within the tropics, therefore, the oscilations of the barometer being far more uniform, observations made during a short period of time, or even single observations, may be used for computing heights, without corresponding observations, by referring them to the mean pressure at the level of the sea as to a constant, provided this last has been corrected for the monthly and daily periodic variation at the place.

Table XIII. fumishes the means of applying the correction for the monthly variation, as deseribed above. 'Table XIV., which gives the mean beight of the barometer at all hours of the day in various latitudes, enables the observer to correct the data according to the hour at which the observations have been taken. This table is from Kaemtz's Vorlesungen über Meteorologie, French translation, p. 249. 'The column Bossekop is from the observations of the French Scientific Expedition in the North; the column Philadelphia, from the observations at Girard College, has been added.

The correction for the hourly variation is found by taking the difference between the mean of the hour of observation and the daily mean, and eorrecting accordingly, with due regard to the signs, either the yearly mean at the sea level, or the observation at the upper station.

Example.

The barometer at Caracas, latitude $10^{\circ} 30^{\prime} \mathrm{N}$., on the 20 th of August, at 4 o'clock P. M., reads 680.57 millimetres.

In Table XII the mean height of the barometer at La Guayra, lat. $10^{\circ} \mathrm{N} . \quad$. $=760.17$ millimetres,

By 'Table XIII, we find for August a correction . . $=-\quad 2.95$
Mean barometer in August $=757.22$
In Table XIV. daily mean - mean at 4 P. M. gives for 4 P. M. a correction = - 1.17

Nean barometer at La Guayra in August, at 4 P. M. $\quad=\quad 756.05$ millimetres, which is the number to be used for the computation of the beight of Caracas. In this case, however, the monthly correction, being derived from a higher latitude, may be too small. Both corrections can of course be applied, with contrary signs, to the observation at Caracas, leaving then the mean height at the level of the sea as a constant.

TABLE XII.

mean height of the barometer,

IN VARIOUS LATITUDES, REDUCED TO THE LEVEL OF THE SEA, AND TO THE
FREEZING POINT.

XIIf. MEAN HEGGE UF THE BARONETER, N ALL MONTHS OF THE YEAK, N Varioés Latitides.
$\mathrm{v}:$: n-lucel to the Lerel of the sea.

Pace: Latiaie.	$\begin{aligned} & \mathrm{H}, 5 \mathrm{Na} \\ & 23=y \end{aligned}$	$\begin{gathered} \text { CML } \\ \text { CiII } \\ 2 \div=3: 3 \end{gathered}$	$\begin{aligned} & \mathrm{M}_{\mathrm{ACa}} \\ & 22=11^{\prime} \end{aligned}$	$\begin{aligned} & I_{11 F O} \\ & 30=2^{\prime} \end{aligned}$	$\begin{gathered} \therefore 1- \\ \cdots S_{1} \\ 32^{\circ} 5^{\prime} \end{gathered}$	$\begin{aligned} & \text { PHILA- } \\ & \text { FELPAIA. } \\ & 39=5 s^{\prime} \end{aligned}$	$\begin{aligned} & \text { Case } \\ & \text { ERIDGE } \\ & 420.23^{\prime} \end{aligned}$	P, ह1: $t E^{\circ} 50^{\prime}$	$\begin{gathered} \text { st. PE- } \\ \text { TERSBLR } \\ 590 \quad 5 b^{\prime} \end{gathered}$
Jian.	-55.24	764.57	707.93	76.20	762.50	760.97	761.37	758.86	762.54
Fer.	700.15	75.5.0 0	705.01	-	763.76	759.63	260.90	7.59 .09	763.10
March.	700.us	756.24	-06.03	7.59 .43	-63.0.5	760.51	- 59.09	756.33	760.76
Amil.	-59.5	753.53	901.93	760.10	763.10	760.0 .5	759.37	755.15	761.19
May.	758.14	750.-1	761.64	75:.23	763.39	759.09	7.59 .63	75.5 .61	760.94
June.	760.67	745.10	757.31	754.42	764.37	759.22	75:.91	73.85	759.23
Jriv,	260.67	717.54	757.91	7.53 .90	764.02	754.00	760.34	756.52	75.25
Ave	758.33	7i5..53	757.91	754.06	765.54	760.54	761.11	756.74	7.59.94
\bigcirc	735.45	751.93	7102.22	758.70	763.36	761.25	261.83	7.56 .61	761.19
It.	75..19	755.25	703.37	259.70	763.13	760.6 E	761.07	754.42	760.52
Nor.	751.25	7:3\%	760.17	700.76	763.41	760.49	760.55	755.75	7.50 .05
Dec.	763.62	7100.59	708.65	761.32	761.12	760.92	760.50	755.09	76.0 .22
Iear.	800.25	7.54.54	763.15	75.3 .32	763.41	760.25	760.44	7.56 .46	760.57

Nif. MEAN height of the barometer, at all holrs of the day, w Variots latitides.
So: reluced to the Lerel of the Sea.

Piaces.		Cumata.	$\mathrm{L}_{\mathrm{L}_{\mathrm{A}}}$	$\underset{\text { CliL }}{\text { Cita. }}$	PhiladelPHIA.	Padta.	Halle	$\begin{gathered} \text { St. PEE } \\ \text { TEFSBLRG } \end{gathered}$	Boremor.
Latisule.	020	$10=2$	$0=35^{\prime \prime}$ s	20		$45^{\circ}-24^{\prime} \times$	- 29'x.		90 58's.
Onserers.	Horner.	$\begin{aligned} & \text { LIum- } \\ & \text { indit. } \end{aligned}$	Bous-intralt	Balfour	Bache	Ciminello.	Kaemtz	Kupffer.	Erarais.
	$\frac{\text { Milim. }}{202}$	Milim. $7.56 .-6$	$\begin{aligned} & \text { Millim. } \\ & 7.59 .654 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 7.5=.50 \end{aligned}$	Milim. 760.49	Millim 757.01	$\begin{aligned} & \text { Millim. } \\ & \text { i53.23 } \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 759.3 .5 \end{aligned}$	Millim. 754.90
1	7-50.2)	-76.53	759.34	75-6.62	760.45	756.90	753.14	-•	..
2	751.7	7.56 .21	753.05	75.57	760.41	7.56 .54	753.05	759.32	7.54 .79
3	751.63	75.5 .29	$75=.81$	758.49	760.34	750.78	752.99	-•	-
4	751.32	75.5 .166	75.65	75.47	760.89	756.74	752.99	759.32	754.80
5	-51.6.5	75.5.79	750.0.5	7.59 .44	760.49	7.56 .75	753.34	-•	.
6	7.51 .45	7.56 .15	759.32	759.69	760.75	7540.99	753.12	7.59 .39	7.54 .65
7	759.43	756.55	-59.94	759.16	761.00	7.515 .99	753.24	-	.-
s	752.9.5	7.53 .93	760.50	7.59.35	761.15	757.01	7.53.37	7.59 .49	7.54.7.5
9	253.16	757.31	7.59.63	760.11	761.22	757.08	753.44	. ${ }^{\text {c }}$. ${ }^{\text {a }}$
1)	-53.1.5	7-57.32	760.50	-160.19	\%61.17	757.14	7.53 .46	7.59 .51	7.54 .96
11	752.00	75.501	7.59.99	76).09	760.97	757.07	753.40	-*	-•
Som.	752.35	3.54 .57	7.59.41	759.61	760.56	757.02	7.53.29	759.47	75.01
1	751.05	7.5.5.97	7.5.91	-59.23	760.13	756.5	753.11	-*	'.
2	7.51.55	75.5.4	753.41	755.39	7.59 .53	7.56 .67	752.99	T59.35	754.96
3	-51.15	-5.5.14	758.12	\%.53.12	759.65	7.56 .54	752.89	-6	-•
4	\%1.02	754.945	75.05	7.57 .91	759.65	7.56 .47	753.54	759.82	754.82
5	7.51 .31	7.55 .14	7.5. 10	7.57 .43	7.59 .70	7.56 .46	752.56	-	-•
6	751.71	755.41	7.58 .10	7.55 .01	7.59.65	756.50	7.52 .91	759.31	754.57
7	751.93)	75.5.91	7-5.90	75.02	760.05	756.63	753.02	-•	.
5	753.3.	7.56.21	759.19	758.54	760.31	756.79	753.14	759.32	754.59
9	7.5.74	7.53.59	7.59 .69	759.24	760.49	756.92	7:3.24	'	-6
1.9	7.52.5	7.53 .97	-79.93	7.59 .33	760.59	7.57 .02	753.31	\%59.36	754.92
11	752.-6	75\%.15	7.59 .93	75.09	760.72	7.57 .02	753.29	-•	..
Mean.	7.3. 3.13	7.50 .33	7.39.22	7.58 .57	760.43	7.56 .83	783.19	7.59 .35	754.65

Table XIV. shows that, after all irregular variations of the barometer have been eliminated. there remains a double period of rise and fall within the twenty-iour hours, and that the amplitude of these daily oscillations is greatesi within the tropics, and goes on diminishing towards the polar regions.

According to Kaemtz, the mean time of the daily maxima and minima, or the mean tropic hours for the northern hemisphere, are as follows:-

> | The minimum of the afternoon is reached at $4.05 \mathrm{P} . \mathrm{M}$. |
| :--- |
| The maximum of the evening is reached at |
| $0.11 \mathrm{P} . \mathrm{M}$. |
| The minimum of the night is reached at |
| The maximum of the morning is reached at |
| Th. |
| $.35 \mathrm{~A} . \mathrm{A}$. |

Even in temperate and high latitudes these diurnal variations, though small, must be taken into account. if great accuracy is required. in reduciner corresponding ubservations made at a somewhat different hour to the time of the observation at the station the height of which is to be determined. But in so doing, it must be remembered that the times of the minima and maxima change with the seasons, as is shown by 'Table XV. from Kaemiz, p. 251 of the French translation.
XV. TROPIC HOURS OF THE DAILY TARIATION OF THE BARONETER AT HALLE.

LAT. $51^{2} 30 \mathrm{~N}$.

Month.	$\left.\right\|_{\text {P. M. }} ^{\text {Mimum, }}$	$\begin{gathered} \text { Maximum. } \\ \text { P. I. } \end{gathered}$	Minimum. A. M.	Maximum. A. M.	Month.	$\begin{gathered} \text { Minimum. } \\ \text { P. } 3 . \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \text { P } 1 . \text {. } \end{gathered}$	$\underset{A . \mathrm{M}}{\mathrm{Minimum.}}$	$\begin{aligned} & \text { Maximum, } \\ & \text { A y. } \end{aligned}$
	h	h.	h .	h .		h.	h.	h.	h.
Jan.	2.81	9.17	4.91	9.91	Juls,	5.21	11.04	3.04	2.73
Fef)	3.43	9.46	3.:6	$9.6{ }^{\circ}$	Aur.	4.86	10.66	3.06	8.46
March,	3.52	9.00	3.5	10.10	Supt.	4.95	10.45	3.45	9.71
April,	4.46	10.27	3.53	9.53	Oct.	4.17	10.24	3.97	10.07
May,	5.43	10.93	3.03	9.13	Nus.	3.52	9.55	4.65	$10.0=$
June,	5.20	10.93	2.83	8.83	Dec.	3.15	9.11	4.91	10.15

This shifting of the times of maxima and minima with the seasons diminishes with the latitude, and tends to disappear towards the equator. with the inequali:y of the days and nights. The elevation above the level of the sea also canses a change in the tropic hours of the daily variation which is not yet sufficiently studied.

Table XIV. gives evidence that the amplitude of the hourly oscilation is greatest under the equator, and gradually decreases towards the pole. Katm:z computes its mean value in various latitudes and at the level of the sea, as follows:-

XV'. AMPLITLDE OF DAILY VARIATIONS IN VARIOCS LATITUDES.

Latitude	Variation.	Latitude.	Variation	Latitude.	Variation	Latitude	Variation.
	Millim.	$\bigcirc 1$	Nillim.	01	Millim.	\bigcirc	Mthim.
$0 \quad 0$	2.23	2355	1.50	394	1.13	5233	0.45
$526 \times$.	2.26	29.98	1.55	4334	0.90	5717	0.23
1752	2.033	$3+26$	1.8 .5	4) 1	0.67	62.5	0.00

The amplitude also decreases with the elevation, at least in our latitudes: it was found to be on the Faulhorn, in Swizerland, 9000 feet above the sea level, $0: 27$ millimetres, while it was 0.90 millimetres at Geneva.

To reduce barometric means taken at a given elevation to the height they would have if taken at the level of the sea, or barometric observations made at different elevations to a common level, in order to eliminate the influence of altitude in the comparison of barometric pressures, is a problem, the solution of which is often neederl in meteorolosy.

For a complete and aecurate reduction, embracing all cases, Tables IV. and V., by Dippe, given above, pages 54 et seq., may be-used. But when the difference of height between the two stations, or above the sea-level, does not exceed a few hundred feet, the small tables XVI. to XIX., in three different scales, will be found more convenient.
'Tables XVI. and XVII, have been computed from the constants of Laplace's formula, the barometric cocfficient, ineluding the correetion for the decrease of gravity on a vertical, being respectively $60,345.51$ English feet and $56,6: 1.83$ Paris feet; and the coefficient for expansion of moist air 0.00222 and 0.005 .

In 'Table XVIII. the coefficient 18,120 metres, deduced from Regnault's experiments (see Proccedings of the Amer. Assoc. for Adv. of Science, 1857), and his coefficient for expansion of dry air, 0.003665 , increased to 0.0039 , in order to include the effect of moisture, have been used.

Use of the Tables.

The correction for reducing the barometer to the level of the sca is found by the formula

$$
\mathrm{C}=\frac{f}{\mathrm{~N}} \times \frac{h^{\prime}}{h},
$$

where C is the correction required ; f, the elevation of the station; N , the number in the tables; h^{\prime}, the reading of the barometer; h, the normal height of barometer at the sea-level.

Example.

At Cambridge Observatory, Massachusetts, at 71.34 English feet above mean tide, the incan barmeter is $=29.939$ inches; the mean temperature $47^{\circ} .3$ Fahrenheit; what would be the height at the level of the sea?

In Table XVI, we tike for $47^{\circ} .3=90.49$, or, in order to get the correction in a fraction of an inch, 901.9 .

Then

$$
\mathrm{C}=\frac{71.34}{904.9} \times \frac{29.939}{30}=0.079, \text { correction required }
$$

and
$29.939+0.079=: 30.018$ inches, height of the barometer at the level of the sea.
It will be seen that the quantity represented by the second member can be neglected without causing a sensible error in the eorrection. In this case the error does not amoms to .001 ; it scarcely would reach .002 for 250 feet of elevation; so that the reduction can be made in most cases by a simple division; viz. $\frac{t^{\prime}}{\mathrm{N}}$.
x VI. heigit, in english feet, of a column of air corresponding to a tenth of an exglish incil in the barometer, at temperatures between 32° AND 100° FAHRENHEIT,
The Barometrie Pressure at the Lower Station being $=30$ English Inehes.

Temperature of Air,	$\begin{gathered} \text { Meight } \\ \text { in } \\ \text { Luriixh } \\ \text { Eeet. } \end{gathered}$	Temperature of Air, Fahren.	Height ${ }_{\text {in }}^{\text {in }}$ Feet	Temperature of Air, Fahren.	Hejght English Feet.	Temperature of Fahren.	Height in English Feet.	Temperatule of Air, Fahren.	$\begin{aligned} & \text { Height } \\ & \text { in } \\ & \text { English } \\ & \text { Fett. } \end{aligned}$
32°	87.51	46°	90.23	60°	92.9.5	74°	95.67	87°	98.20
33	87.70	47	90.42	61	93.15	75	9.5 .87	88	98.40
31	87.90	48	90.62	62	93.34	76	96.06	89	98.59
35	88.09	49	90.81	63	93.53	77	96.26	90	98.79
36	85.23	50	91.01	6.	93.73	78	96.45	91	98.68
37	84.19	51	91.20	6.5	93.92	79	96.65	92	99.17
38	82.67	52	91.40	66	94.12	so	96.84	93	99.37
39	$8 \times .57$	53	91.59	67	94.31	81	97.04	94	99.56
40	89.96	54	91.78	65	91.51	82	97.23	9.5	99.76
41	89.26	55	91.98	69	91.70	83	97.42	96	99.95
42	89.15	56	92.17	70	94.90	84	97.62	97	100.15
43	89.65	57	92.37	71	95.09	8.5	97.81	98	100.34
44	89.51	58	92.56	72	9.5 .29	¢ 6	98.01	99	100.5-4
4.)	90.03	59	92.76	73	95.48	87	98.20	100	100.73

XVII. HEIGHT, IN FRENCH FEET, OF A COLUMN OF AIR CORRESPONDING TO A paris line in the barometer, at temperatures of the air BETWEEN 0° AND 34° REAUMUR,

The Barometric Pressure at the Lower Station being $=337$ Paris Lines.

Temperature of Air. Reaumor.	Iheight $\stackrel{\text { in }}{\text { French }}$ Feet.	Temperature of Air, Reaumur	$\begin{aligned} & \text { Height } \\ & \text { in } \\ & \text { French } \\ & \text { Feet. } \end{aligned}$	Temperature of Air Reaumur.	Height French Feet.	Temperature of Air, Reaumur.	$\begin{aligned} & \text { Height } \\ & \text { in } \\ & \text { Freneh } \\ & \text { Feet. } \end{aligned}$	Temperatture of Air, Leamur.	$\begin{aligned} & \text { Height } \\ & \text { in } \\ & \text { French } \\ & \text { Heet } \end{aligned}$
0°	73.08	7°	75.63	14°	78.19	21°	80.75	23°	83.31
1	73.44	8	76.00	1.5	78.56	22	81.11	29	83.67
2	73.51	9	76.36	16	78.92	23	\$1.48	30	81.04
3	71.17	10	76.73	17	79.29	24	81.85	31	84.40
4	74.5t	11	77.10	18	79.65	2.5	82.21	32	84.77
5	74.90	12	77.46	19	80.02	26	82.58	33	8.5.13
6	75.27	13	77.83	20	80.38	27	82.94	34	85.50

XVili. height, in metres, of a column of alr corresponding to a millimetre in the barometer, at temperatures between
0° AND 39° CEntigrade,
The Barometric Pressure at the Lower Station being $=767$ Millimetres.

Temperature of Air, Centigr	$\begin{aligned} & \text { II imight } \\ & \text { int } \\ & \text { netres } \end{aligned}$	Temperature of $\xrightarrow{\text { Air, }}$	$\begin{gathered} \text { Height } \\ \text { in } \\ \text { Metres. } \end{gathered}$	Temperature of Air, Ceutigr.	$\begin{aligned} & \text { Height } \\ & \text { int } \\ & \text { metres. } \end{aligned}$	Temperature of Air, Centigr.	$\begin{aligned} & \text { light } \begin{array}{l} \text { in } \\ \text { metre } \end{array} \end{aligned}$	Temper- ature of ature Centigr	$\begin{aligned} & \text { Height } \\ & \text { in } \\ & \text { metres. } \end{aligned}$
0°	10.54	5°	10.86	16°	11.19	24°	11.52	32°	11.85
1	10.58	9	10.91	17	11.23	2.5	11.56	33	11.89
2	10.62	10	10.95	18	11.28	26	11.60	31	11.93
3	10.66	11	10.99	19	11.32	27	11.64	35	11.97
4	10.70	12	11.03	20	11.36	23	11.69	36	12.01
5	10.74	13	11.07	21	11.40	29	11.73	37	12.06
6	10.78	14	11.11	22	11.44	80	11.77	28	12.14
7	10.82	15	11.15	23	11.48	31	11.81	39	12.14

Table XIX. gives, in metrical measure, the values of a millimetre in the barometer at different elevations and Centigrade temperatures. The values are derived from Laplace's eonstants, as in 'Tables XVI. and XVIt.

This table may be used, as the preceding ones, for reducing barometricat observations to the level of the sea, and also to any other level by a similar process.

Example.

Suppose the barometer to read 700 millimetres at the altitude of 750 metres, the temperature of air being $=16^{\circ}$ Centigrade; what would be the readmg at a station lower by 350 metres, assuming the temperature of the air downwards to increase at the rate of 1° Centigrade for 185 metres?

The temperature of air at lower station will be $16^{\circ}+1^{\circ} .9=17^{\circ} .9$
The approximate height of barometer about 73 eentimetres.
Then, in Table NIX. we find for 16° and 70 centimetres, $12.15-$
$\because \quad 6 \quad 6$ for $17^{\circ} .9$ and 73 centimetres, 11.73
Nean 11.94
And
${ }_{11.94}^{350}=\mathbf{2 9 . 3 1}$, or barometer at lower station $700+29.31=799.31$ millimetres.
Delcros's tables, with these data, would give for the difference of level 319.76 , instead of 350 metres; the corresponding error in the height of the barometrieal column does not exceed 0.08 millimetre, and thus remains within the limits of error which may be expected in an ordinary observation.

The prineipal object of this table, however, is to furnish the scicntific traveller with the means of readily computing on the spot approximate differences of level, by simply multiptying the difference between the readings of the barometer at each station by the half sum of the numbers in the table corresponding to the data given by the observations.

Excomple.

Suppose the barometer at the lower station to rad 739.5, and at the upper station 703.2 millimetres; the temperature of the air being respectively 18° and 16° Centigrade.

The difference of the barometers, supposed to be reduced to the same temperature, is 29.3 millimetres.

Then, Table XIX. gives for 18° Centigrade and 73 eentimetres, 11.73
" " for 16° Centigrade and 70 centimetres, 12.15

$$
\text { Half sum, or mean, } \quad 11.94
$$

And, $99.3 \times 11.94=349.8$ metres $=$ difference of level requred.
By the large tables of Deleros, we find for the same data 350.1 metres.
'This table ean be considered as a complement to Deleros's tables, and may save the traveller the trouble of carrying the larger tables.

A similar table in English measures is found above, at the end of the author's larger tables ('Table Vl.), page 48 of this series, and another, more extensive one, below, page 9%, the use of which is explained by the examples just given. JIEIGHT, IN METRES, OF A COLUMN OF AIR, CORRESPONDING TO A MILLIMETRE, IN THE BAROMETER, AT DIFFERENT TEMPERATURES AND ELEVATIONS.

Temperature of $\xrightarrow{\text { Air, }}$ Clis.	Barometer at the Lower Station, Reading in Centimetres.									
	76	75	71	73	78	71	70	69	68	67
-	Metres.	Metres	Metres.	Metres.	Metres	Metres.	Metres	Netres	Metres.	Metres.
0	10.52	10.66	10.s0	10.94	11.10	11.26	11.42	11.59	11.75	11.93
2	10.60	10.74	10.89	11.03	11.19	11.35	11.51	11.68	11.85	12.03
4	10.69	10.83	10.97	11.12	11.28	11.44	11.60	11.77	11.94	12.13
6	10.77	10.91	11.06	11.20	11.37	11.53	11.69	11.86	12.04	12.22
8	10.85	11.00	11.15	11.29	11.46	11.62	11.78	11.96	12.13	12.32
10	10.94	11.08	11.23	11.38	11.55	11.71	11.57	12.05	12.22	12.41
12	11.02	11.17	11.32	11.47	11.63	11.80	11.97	12.14	12.32	12.51
14	11.11	11.25	11.41	11.55	11.72	11.69	12.06	12.23	12.41	12.60
16	11.19	11.34	11.49	11.64	11.81	11.98	12.15	12.33	12.51	12.70
18	11.27	11.43	11.58	11.73	11.90	12.07	12.24	12.42	12.60	12.79
20	11.36	11.51	11.67	11.82	11.99	12.16	12.33	12.51	12.69	12.89
22	11.44	11.60	11.75	11.90	12.08	12.25	12.42	12.61	12.79	12.99
24	11.53	11.68	11.84	11.99	12.17	12.34	12.51	12.70	12.88	13.08
26	11.61	11.77	11.93	12.03	12.26	12.13	12.61	12.79	12.98	13.18
28	11.70	11.85	12.01	12.17	12.35	12.52	12.70	12.88	13.07	13.27
30	11.78	11.94	12.10	12.2.5	12.43	12.61	12.79	12.98	13.16	13.37
32	11.86	12.02	12.18	12.34	12.52	12.70	12.88	13.07	13.26	13.46
34	11.95	12.11	12.27	12.43	12.61	12.79	12.97	13.16	13.35	13.56
36	12.03	12.19	12.36	12.52	12.70	12.98	13.06	13.25	13.45	13.65
35	12.12	12.28	12.44	12.60	12.79	12.97	13.15	13.35	13.54	13.75
emper-					ometer in	Centimetr				
$\xrightarrow[\text { Air. }]{\text { Centiy }}$	63	65	61	63	62	61	60	59	58	57
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	Metres 12.11	Metres. 12.30	Metres. 12.49	Metres. 12.69	Metres. 12.89	Metres. $1: 3.10$	Metres. 13.32	Metres 13.55	Metres. 13.78	Metres. 14.03
2	12.21	12.40	12.59	12.79	13.00	13.21	13.43	13.66	13.89	14.14
4	12.31	12.50	12.69	12.89	13.10	13.31	13.54	13.77	14.00	14.25
6	12.10	12.60	12.79	13.00	13.20	13.12	13.64	13.58	14.11	14.36
S	12.50	12.69	12.89	13.10	13.31	13.52	13.75	13.98	14.22	14.47
10	12.60	12.79	12.99	13.20	13.41	13.63	13.56	14.09	14.34	14.59
12	12.69	12.89	13.09	13.30	13.51	13.73	13.96	14.20	14.45	14.70
14	12.79	12.99	13.19	13.10	13.62	13.84	14.07	14.31	14.56	14.81
16	12.89	13.09	13.29	1350	13.72	13.94	14.18	14.42	14.67	14.92
13	12.98	13.19	13.39	13.61	13.82	14.05	14.28	14.53	14.78	15.04
20	13.09	13.28	13.49	13.71	13.93	14.15	14.39	14.63	14.89	15.15
22	13.18	13.38	13.59	13.81	14.03	14.26	14.50	14.74	15.00	15.26
24	13.27	13.18	13.69	13.91	14.13	14.26	14.60	14.85	15.11	15.37
26	13.37	13.58	13.79	14.01	14.24	14.47	14.71	14.96	15.22	15.48
28	13.47	13.68	13.89	14.11	14.34	14.57	14.82	15.07	15.33	15.60
30	13.67	13.78	13.99	14.22	14.41	14.68	14.92	15.18	15.44	15.71
32	13.66	13.87	14.09	14.32	14.35	14.75	15.03	15.28	15.55	15.82
34	13.76	13.97	14.19	14.4 .4	14.65	14.89	15.14	15.39	15.66	15.93
36	13.56	14.07	14.29	14.52	14.75	1499	15.24	15.50	15.77	16.05

XIX. HEIGIT, IN ENGLISH FEET, OF A COLUMN OF AIR, CORRESPONDING TO A TENTH OF AN INCH IN THE BAROMETER, AT DIFFERENT TEMPERATURES AND ELEVATIONS.

Barometer Hewting in English Inches.	Temperature of the Air, Fahrenheit, being											
	40°	43°	50°	55°	60°	6.50	70°	8.50	80°	85°	90°	95°
22.0	121.5	122.8	124.2	125.5	126.8	128.2	129.5	130.8	132.1	133.5	134.8	136.1
22.2	120.4	121.7	123.1	$124+$	125.7	127.0	128.3	129.6	130.9	132.2	133.6	134.9
22.4	119.3	120.6	121.9	123.2	124.6	125.9	127.2	128.5	129.8	131.1	132.4	133.7
22.6	118.2	119.5	120.8	12.2 .1	123.1	124.7	126.0	127.3	128.6	129.9	131.2	132.4
22.8	117.2	118.5	119.8	121.1	122.3	123.6	124.9	126.2	127.5	128.5	130.0	131.3
23.0	116.2	117.5	118.7	120.0	121.3	122.6	123.8	12.5 .1	126.4	127.6	129.9	130.2
23.2	115.2	116.5	117.7	119.0	120.2	121.5	122.7	124.0	125.3	126.5	127.8	129.0
23.1	114.2	115.5	116.7	118.0	119.2	120.5	121.7	123.0	124.2	125.4	126.7	127.9
23.6	1132	111.1	11.37	116.9	118.1	119.4	120.6	121.8	123.1	121.3	125.5	1268
23.8	112.3	113.5	114.8	116.0	1172	118.4	119.7	120.9	122.1	123.3	124.6	12.5 .8
24.0	111.4	112.6	113.8	11.5 .0	116.2	117.4	118.7	119.9	121.1	122.3	123.5	124.7
21.2	110.5	111.7	112.9	111.1	115.3	116.5	117.7	118.9	120.1	121.3	122.5	123.7
21.1	109.5	110.7	111.9	113.1	114.3	115.5	116.7	117.9	119.1	120.3	121.5	122.7
24.6	103.6	109.8	111.0	112.2	113.4	114.6	115.8	116.9	118.1	119.3	120.5	121.7
24.8	107.8	108.9	110.1	111.3	112.5	113.7	114.8	116.0	117.2	118.4	119.5	120.7
25.0	106.9	108.1	109.2	110.4	111.6	112.7	113.9	115.1	116.2	117.4	118.6	119.7
25.2	106.0	107.2	10.8 .4	109.5	110.7	111.8	113.0	114.1	115.3	116.5	117.6	118.8
2.5 .4	105.2	106.4	107.5	105.7	109.8	111.0	112.I	113.3	114.4	115.6	116.7	117.9
2.5 .6	101.4	10.5.5	$10 \stackrel{5}{ } 7$	107.3	103.9	110.1	I11.2	112.4	113.5	111.6	115.8	116.9
25.8	103.6	104.7	10.5 .8	107.0	102. 1	109.2	110.4	111.5	112.6	113.8	114.9	116.0
26.0	102.8	103.9	105.0	106.]	107.3	108.4	109.5	110.6	111.8	112.9	114.0	115.1
26.2	102.0	103.1	104.2	105.3	106.5	107.6	108.7	$10 \% .8$	110.9	112.0	$11: 3.1$	111.2
26.1	101.2	102.3	103.4	101.6	105.7	106.8	107.9	109.0	110.1	111.2	112.3	113.4
26.6	1005	101.6	102.7	$10: .8$	104.9	106.0	107.1	108.2	109.3	110.4	111.4	112.5
26.8	99.7	100.8	101.9	103.0	104.1	10.5.2	106.3	107.4	108.5	109.5	110.6	111.7
27.0	99.0	100.1	101.2	102.2	103.3	104.1	10.5 .5	106.6	107.6	108.7	109.8	110.9
27.2	9 マ. 3	99.3	100.4	101..5	102.6	103.6	104.7	10.9 .8	106.8	107.9	109.0	110.1
27.1	97.5	98.6	99.7	100.7	101.8	102.9	103.9	105.0	106.1	107.1	105.2	109.3
27.6	96.8	97.9	98.9	100.0	101.1	102.1	103.2	104.2	105.3	106.3	167.4	108.5
27.8	96.1	97.2	98.2	99.8	100.3	101.1	102.4	103.5	104.5	10.5 .6	106.6	107.7
28.0	95.1	96.5	97.5	98.6	99.6	100.6	101.7	102.7	103.8	104.8	1059	106.9
28.2	91.8	9.5 .8	96.8	97.9	95.9	99.9	101.0	102.0	103.0	10.1 .1	105.1	106.1
23.4	94.1	9.5 .1	96.1	97.2	98.2	99.2	100.2	101.3	102.3	103.3	164.3	105.4
28.6	93.4	94.4	9.3..	96.5	97.5	98.5	99.5	100.6	101.6	102.6	103.6	10.4 .6
23.8	92.5	93.8	94.8	95.8	96.8	97.8	98.8	998	100.8	101.8	102.8	103.8
29.0	92.1	93.1	91.1	9.5 .1	96.2	97.2	98.2	99.2	100.2	101.2	1022	103.2
29.2	91.3	92.5	93.5	94.5	95.5	96.5	97.5	9.土.5	99.5	100.5	101.5	102.5
29.4	90.9	91.9	92.9	93.9	91.8	95.8	96.8	97.8	98.8	998	100.8	101.8
29.6	90.3	91.3	92.2	93.2	91.2	95.2	96.2	97.2	98.2	99.1	100.1	101.1
29.8	89.7	90.6	91.6	92.6	93.6	94.5	9.5 .5	96.5	97.5	98.5	99.4	100.4
30.0	89.1	90.0	91.0	92.0	92.9	93.9	91.9	9.5 .9	96.8	97.8	98.8	99.7
30.2	88.5	89.1	90.4	91.4	92.3	93.3	91.3	9.5 .2	96.2	97.2	98.1	99.1
30.4	87.9	88.8	89.8	90.8	91.7	92.71	93.6	91.6	9.9 .6	96.5	97.5	98.4

When the Barometrical means to be used have been derived from observations taken at such hours of the day as, if combined, do not give the true mean pressure, they must be reduced to the true means by using the Tables XX. and XXI. These tables give the corrections to be applied to the hourly means, in each month, for reducing them to the means which would have been given by observations made at each of the twenty-four hours. The correction for any given set of hours is found by taking the mean of the corrections due to each of the combined hours, paying due attention to the signs. Table XX. has been computed from the hourly observations made under the superintendence of Professor A. D. Bache, at Girard College, Philadelphia. Table XXI. is from the Greenwich Observations, by Glaisher.

XX.

Nortif America. - Philadelpila. Lat. $39^{\circ} 53^{\prime} \mathrm{N} . ~ L o n g .75^{\circ} 11^{\prime}$ W. Greemu.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Barometric Pressure of the respective Days, Months, and of the Year.

Barometer in English Inches.

Hour	Jan.	Feb.	March	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec	Year
	Iuch.	Inch. -.0099	Inch. -.007	In	Iuch			Inch.					
1			-.002	-. 001	03	+. 00	1	001	+.005	$+.007$	+.007	11	7
2	-.		-. 001	+.00	7	+.010	+. 001	00.1	+. 010	+.011	+.011	. 016	+. 0030
3	-.00-	+.002	9	+.	7	+.	3	0.5	+. 009	+. 011	+.007	4	6
4	-.00:3	$+.003$	+. 0099			+. 002	. 000	001	005	+.007		. 010	+. 0038
5	-00.3	. 000	$+.002$	-. 0	.006	-. 00	. 0	00	. 006	-. 0	-.006	-. 008	-.0050
	-. 00	-. 004	$-.011$	$-.02$	9	-. 0	-. 019	-.017	-.016	-. 012	-.012	1.5	$-.0147$
7	-.	13			6	-. 0	02.5	-.023	-. 023		019	$-.023$	-.0222
8				-.0:	I	-. 02	-.02ム	-.026	029	-.030	S	029	-. 0290
9	-. 040	026	-.02s	$-.03$	-.02~	-. 02	$-.027$	-. 0	0	-. 029	-. 0	.0:0	$-.0807$
10	$-.0$	026	-. 02	$-.03$	-. 021	-. 02	$-.026$	-.030	$-.029$	-. 02	-.038	032	$-.0296$
11		-	-	-.02:3	8	$-.019$	-. 019	'	-. 021	-.014	- -017	11	55
Noon.				-	6	-. 0	12	-. 012	009	$+.001$	+.006	$+.005$	-0037
,		+. 017	+.014	+. 006	005	. 000	, 00	. 000	+.00.	$+.006$	+ +.023	$+.024$	+. 0107
2	+. 037	$+.032$	+.031	$+.021$	017	$+.011$	+.011	$+.012$	$+.020$	+.02-	+.033	+.031	+.0240
3	+.034	+. 031	$+.034$	+. 03	$+.028$	+. 019	$+.020$	$+.022$	$+.024$	8	+.033	031	. 0287
4		+.032	+	+	2	$+.027$	+ 027	+.027		8	+.027	0	+.0306
s	+	+.021	+.02.	+.036	034	+.030	$+.028$	+.029	02\%	. 021	01	26	. 0268
6	+	+.014	+. 016	$+.031$	$+.027$	$+.023$	$+.025$	$+.02 \mathrm{~S}$.023	+.012	$+.00 .5$	021	+.0202
7	+. 003	+. 006	+.007	+.022	$+.016$	+. 018	$+.021$	+.018	$+.016$	+.001	-. 00	8	+.0123
8		. 000	-.003	+	+.002	+. 010	+.011	+ . 008	7	. 009	-. 00	013	+. 0040
9	-. 002	-. 008	-.010	+.00	-. 010	. 000	+. 00	+.003	1	-.013	-.00	012	-. 0027
10	-.003	-. 012	-. 011	-. 00	-. 018	$-.00$	-. 00	. 001	-. 005	-. 016	-. 010	08	-.0065
11	$+.002$	011	-. 017	-. 0	-. 019	-. 005	$-.00$	$-.002$	$-.004$	-. 009	,-.003	005	-.0064
2, 10	+. 008	$+.005$	+.00\%	-. 0	. $00:$	-. 00	-. 0	. 002	. 000	. 000	$+.00$. 009	+.001
$7,2,9$	+. 008	+. 004	. 000	-.	$-.00$	-.		-. 003	. 00	-. 002	$+.002$	$+.005$. 000
$9,12,3,9$. 000	$-.001$	-.001	-						-. 003	-. 001	+.00;)	. 0

Corrections to be applied to the Means of the Hours of Observation, or Sets of Hours, to obtain the true Mean Barometric Pressure for the respective Months.-Glaisher.

Engliah Inches

Hours.	Jan.	Feb.	March	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
	Inch.	Inch.	In	Inch.	lnch.	Inc		Luch.	Inch.	$\overline{\text { Iuch. }}$		Inch.	
Midn											-. 011		. 005
1	. 001	. 004	. 013	. 000	. 002	. 004	. 000	. 000	. 000	. 004	-. 005	. 001	. 002
2	. 002	. 008	. 020	. 007	. 004	. 005	. 003	. 007	. 005	010	. 003	. 006	. 007
3	. 005	. 012	. 023	. 010	. 005	. 004	. 005	. 011	. 010	. 015	. 008	010	. 009
4	. 011	. 014	.022	. 011	. 005	. 001	. 005	. 014	. 012	. 020	. 013	. 012	. 012
5	. 015	15	19	. 011	96	-. 002	. 006	. 011	. 014	.022	. 016	. 014	. 012
6	. 015	. 012	. 012	. 006	. 006	-.006	. 002	. 005	. 010	. 018	. 015	. 011	. 009
7	. 010	. 007	. 005	-.003	. 006	-. 010	-. 004	. 000	. 001	. 008	. 010	. 006	. 003
8	. 003	. 000	-. 004	-.008		-. 012		-. 007	-. 006	-. 003	03	4	. 003
9	-. 003	-. 008	-.010	-. 011	. 007	-. 012	-. 010	-. 008	-. 011	-. 009	-. 005	-. 010	-. 009
10	-. 010	-. 015	-.015	-.014	09	-. 011	-. 010	-. 009	-. 013	-. 014	-. 007	-.015	-. 012
11	-. 014	-.016	-. 015	-.011	-. 006	-. 009	-. 009	-. 008	-.010	-. 014	-. 005	-. 015	-. 011
Noon	-.		-.	-	2	-	-. 006	05	3	-. 010	,	-. 009	-. 006
1	. 002	-.006	-. 005	-. 004	000	-. 003	-.003	. 000	. 000	-. 003	. 007	. 003	-. 001
2	. 005	3	. 000	. 003	.003	03	. 001	. 003	. 004	. 004	011	08	004
3	. 004	. 006	003	. 009	. 006	. 007	. 00.5	. 005	. 008	. 005	. 010	. 010	. 006
4	. 002	08	. 00.5	. 004	. 010	. 013	. 009	. 009	. 010	. 003	. 008	09	007
5	.000	96	04	14	. 014	17	13	. 011	. 011	. 000	. 004	. 006	. 008
6	-.003	.002	. 000	. 011	. 015	. 017	.013	. 011	. 006	-.005	. 000	. 002	. 006
7	-. 00	-.004	-. 006	-.007	. 010	. 014	. 010	. 005	. 000	-. 008	-. 006	-.003	. 000
8	-.			-. 005	00	. 008	-	-	-. 005	-. 011	-. 012	-. 006	-. 005
9	-. 0	-.009	-. 0	-.	-. 006	. 003	-. 001	-. 010	09	-. 014	-. 017	-. 0.9	-. 008
10	-.	-. 007	-. 012	-.	-.008	-.002	-	-	-. 011	-. 012	-. 019	-.010	-.010
11	-. 004	-.009	-. 010	-. 012	-. 008	-. 002	-.012	-.015	-. 011	-. 009	-. 017	-. 009	-. 009
6. 6	. 006	7	6	. 008	. 011	. 005	S	. 008	. 008	. 006	. 007	. 006	. 008
7. 7	02	2	. 000	-. 005	. 008	. 002	.003	. 002	. 000	. 000	. 002	.02	. 001
8. 8	-.002	03	-. 008	-. 006	.002	02	2	-. 006	-. 006	-. 007	-.004	-. 001	-. 004
99	-. 007	. 000	-.013	-. 010	-. 006	-. 004			,	-. 012	1	-. 009	-. 009
10.10	-. 007	-. 011	-. 011	-.013	-. 009	-. 006	-. 007	-. 012	. 012	-.013	-.013	-. 012	-. 011
7. 2. 9	. 003	. 001	-.003	-.003	. 001	-. 001	-. 001	-. 002	-. 001	-.001	. 001	. 002	. 001
6. 28	. 005	003	. 000	. 001	. 003	. 002	. 002	. 001	003	. 004	. 005	. 00	. 003
6. 210	5	. 003	00	-. 001	. 000	-. 002	-. 001	-.002	. 001	. 003	. 002	. 003	. 001
6. 2: 6	.006	. 006	. 004	. 007	. 008	-. 005	. 005	. 006	. 007	. 006	. 009	. 007	. 006
7. 2	. 007	. 005	. 003	. 000	. 004	-. 001	-. 001	. 002	.002	.006	. 010	. 007	. 003
8. 2	. 004	. 002	-.002	-.002	. 003	-. 004	-. 003	-. 002	-. 001	. 000	. 007	. 006	. 001
8. 1	. 002	-. 003	-.004	-006	. 001	-. 007	-. 006	-. 003	-. 003	-. 003	. 00.5	. 003	-. 002
1	. 006	. 001	. 000	-.003	. 003	-.006	-.	. 000	.00	. 00	. 008	. 004	. 001
9.12.3.9	-. 004	-.00.5	-. 008	-. 005	-.002	-. 002	3	-. 004	-. 004	-. 007	-. 002	. 004	-. 004

The numbers without sign must be added: those with the sign - must be subtracted.

XXII. TABLE TO REDUCE, BY INTERPOLATION,

THE OBSERVATIONS TO THE SAME ABSOLUTE TIME.

DECIMALS OF AN HOUR.

Min.	Decimal.										
1	.017	11	.183	21	.350	31	.517	41	.683	51	.850
2	.033	12	.200	22	.367	32	.533	42	.700	52	.867
3	.050	13	.217	23	.383	33	.550	43	.717	53	.583
4	.067	14	.233	24	.400	34	.567	44	.733	54	.900
5	.053	15	.250	25	.417	35	.583	45	.750	55	.917
6	.100	16	.267	26	.433	36	.600	46	.767	56	.933
7	.117	17	.283	27	.450	37	.617	47	.783	57	.950
8	.133	18	.300	28	.467	38	.633	48	.800	58	.967
9	.150	19	.317	29	.483	39	.650	49	.817	59	.983
10	.167	20	.333	30	.500	40	.667	50	.833	60	1000

Table for Correction of Curvature and Refraction.

From a mountain, when furnished with a barometer, or with an apparatus for determining the temperature of boiling water, and a pocket level, an observer can find the elevations of distant points, which are in sight, but lower than the mountain itself on which he stands. He has only to seek, with the level, the point on the slope of the mountain which corresponds to the point at a distance that he wishes to determine, and to take there a barometrical, or a boiling point observation. This observation is to be calculated in the usual way, but the result must be corrected for the curvature of the surface of the globe, and for the atmospheric refraction, by means of the following Table.

This method, which furnishes the means of multiplying, without much trouble, the measurements of heights, gives approximations which are sufficient for most of the purposes of Physical Geography. It may even seem preferable to direct measurements for determining the mean elevation of certain physical lines, which are best estimated when seen from a distance; such as the :opper limit of the growth of trees, the limits of different kinds of vegetation, that of permanent snow, that of the mean elevation of the crest of a mountain range, \&c.
'rable XXIII. is taken from Captain Lee's Collection of Tables and Formula, 2 d edit., page 81.

D

Showing the Difference of the Apparent and True Level, in feet and decimals, for Distances in feet and miles.

Distances in Feet.	Correction in Feet.			Distances in Miles.	Correction in Feet.		
	For Curvature.	For Re. fraction.	For Curva. ture and Refraction.		For Curvature.	For Refraction.	For Curvature and Refraction.
100	. 00024	. 00004	. 00020	$\frac{1}{4}$. 0417	. 0060	. 0357
150	. 00054	. 00008	. 00046	$\frac{1}{2}$. 1668	. 0238	. 1430
200	. 00094	. 00013	. 00083	${ }_{4}^{3}$.3752	. 0536	. 3216
250	. 00149	. 00021	. 00128	1	. 6670	. 0953	. 5717
300	. 00215	. 00031	. 00184	$1 \frac{1}{2}$	1.5008	. 2144	1.2864
330	. 00293	. 00042	. 00251	2	2.6680	. 3811	2.2869
400	. 00383	. 00055	. 00328	$2 \frac{1}{2}$	4.1688	. 5955	35733
450	. 00484	. 00069	. 00415	3	6.0030	. 8561	5.1469
500	. 00598	. 00085	. 00513	$3 \frac{1}{2}$	8.1708	1.1673	7.0035
550	.00724	. 00103	. 00621	4	10.6720	1.5246	9.1474
600	. 00861	. 00123	. 00738	$4 \frac{1}{2}$	13.5468	1.9295	11.5773
650	. 01010	. 00144	. 00866	5	16.6750	2.3821	14.2929
700	. 01172	. 00167	. 01005	$5 \frac{1}{2}$	20.1769	2.8824	17.2945
750	. 01345	. 00192	. 01153	6	24.0120	3.4303	20.5817
800	. 01531	. 00219	. 01312	$6 \frac{1}{2}$	28.1809	4.0258	24.1551
850	. 01728	. 00247	. 01481	7	32.6830	4.6690	28.0143
900	. 01938	. 00277	. 01661	$7 \frac{1}{2}$	37.5190	5.3599	32.1591
950	. 02159	. 00308	. 01851	S	42.6880	6.0997	36.5883
1000	. 02392	. 00333	. 02059	$8 \frac{1}{2}$	48.1910	6.8844	413066
1050	. 02638	. 00377	. 02261	9	54.0270	7.7181	46.3089
1100	. 02895	.00414	. 02481	$9 \frac{1}{2}$	60.1971	8.5996	51.5975
1150	.03164	. 00452	. 02712	10	66.7000	9.5286	57.1714
1200	. 03445	. 00492	. 02953	11	80.7070	11.5296	69.1774
1250	. 03738	.00.534	. 03204	12	96.0480	13.7211	82.3269
1300	. 04043	. 00578	. 03465	13	112.7230	16.1033	96.6197
1350	. 04361	. 00623	. 03738	14	130.7320	18.6760	112.0 .560
1400	. 04659	.00670	. 04019	15	150.0750	21.4393	128.63.77
1450	. 05030	. 00719	. 04311	16	170.7520	24.3931	116.3 .589
1500	. 05383	. 00769	. 04614	17	192.7630	27.5376	165.22.54
1550	. 05748	. 00821	. 04927	18	216.1086	30.8727	185.2359
1600	. 06125	. 00875	. 0.5250	19	240.7870	34.3981	206.3889
1650	. 06514	. 00931	. 05583	20	266.8000	38.1143	228.6557
1700	. 06914	. 00988	. 05926				
1750 .	. 07327	. 01047	. 06280				
1800	. 07752	. 01107	. 06645				.
1850	. 08188	. 01170	. 07018				
1900	. 08637	. 01234	. 07403				
1950	. 09098	. 01300	. 07798				
2000	. 09570	. 01367	. 08203				

THERM0METRICAL

MEASUREMENT OF HEIGHTS,

or

TABLES

FOR DEDUCING DIFFERENCES OF LEVEL FROM OBSERVATIONS OF THE TEMPERATURE OF BOILING WATER.

TIIERMOMETRICAL MEASUREMENT OF HEIGHTS.

TABLES

FOR DEDUCING DIFFERENCES OF LEVEL FROM THE TFMPERATURE OF TIIE
BOILING POINT OF WATER.

When water is heated in the open air, the elastic force of the vapors produced from it gradually increases, until it becomes equal to the incumbent weight of the atmosphere. Then, the pressure of the atmosphere being overcome, the steam cscapes rapidly in large bubbles, and the water boils. The temperature at which, in the open air, water boils, thus depends upon the weight of the atmospheric column above it, and under a less barometrie pressure the water will boil at a lower temperature than under a greater pressure. Now, as the weight of the atmosphere decreases with the elevation, it is obvious that, in ascending a mountain, the higher the station where an observation is taken, the lower the temperature at which water boils at that station will be.

The difference of elevation between two places, therefore, can be deduced from the temperature of boiling water observed at each station. It is only necessary to find the barometric pressures which correspond to those temperatures, and, the atmospheric pressures at both places being known, to compute the difference of level by a formula, or by the tables given above for computing heights from barometrical observations.

From the above, it may be seen that the heights determined by means of the temperature of boiling water are less reliable than those deluced from barometrical observations. Both derive the difference of altitudc from the difference of atmospheric pressure. But the temperature of boiling water gives only indirectly the atmospheric pressure, which is given dircctly by the barometer. This method is thus liable to all the chances of error which may affect the measurements by means of the barometer, besides adding to them new ones peculiar to itself, the prineipal of which, not to speak of the differences exhibited in the various tables of the foree of vapor, is the diffieulty of ascertaining with the necessary aecuracy the true temperature of boiling water. In the present state of thermometry it would hardly be safe, indeed, 10 answer, in the most favorable cireumstanees, for quantities so small as hundredths of degrees, even when the thermometer has been constructed with the utmost care ; moreover, the quality of the glass of the instrumen, the form and the substance of the vessel containing the water, the nature of the water itself, the place at which the butb of the thermometer is placed, whether in the current of steam or in the water, --- all these cireumstances canse no inconsidemble variations to take place in the indications of thermometers observed under the same atmospheric
pressure. Owing to these various causes, an observation of the boiling point, differing by one tenth of a degree from the true temperature, ought to be still admitted as a good one. Now, as the tables show, an error of one tenth of a degree Centigrade in the temperature of boiling water would canse an error of Ω millimetres in the barometric pressure, or of from 70 to 80 feet in the final result, white with a good barometer the error of pressure will hardly ever exceed one tenth of a millimetre, making a difference of 3 feet in altitude.

Notwithstanding these imperfections, the hypsometric thermometer, or thermobarometer, is of the greatest utility to travellers traversing distant or rough countries, on account of its being more conveniently transporterl, and much less liable to accidents than the mereurial barometer. The best form for it is that contrived and deseribed by Regnault in the Amales de Chimie et de Physique, Tom. XIV. p. 202. It consists of an aceurate thermometer with long degrecs, subdivided into tenths, whose bulb is placed, about $\mathfrak{2}$ or $\mathbf{3}$ centimetres above the surface of the water, in the steam arising from distilled water in a cylindrical vessel, the water being made to boil by a spirit-lamp. The whole instrument when closed is about 6 inches long; when drawn out for observation, about 14 inches.

Table XXIV. of barometric pressures corresponding to temperatures of boiling water, has been calculated by Regnault from his Tables of Forces of Vapor, and published in the Amales de Chimie et de Physique, Tom. XIV. p. ≈ 00. It gives, in millimetres of mercury, the barometric pressures corresponding to every tenth of a Centigrade degree ; for greater convenience, the values for every hundredth have been added.

The accuracy of this table has been tested by dircet observation by Mr. Wisse, a traveller competent in such matters, who noted down simultancously the temperatures of the boiling point of water and the height of the barometer, in various parts of the Andes, up to the summit of the voleano of Pichincha, ineluding in his observations barometrical pressures ranging from 752 to 430 millimetres of mercury. The agreement between the barometric pressures given here by Regnault and those found by Wisse are very satisfactory, the differences never exceeding a few tenths of a millimetre. See Annales de Chimie et de Physique, Tom. XXVIII. p. $1 \supseteq 3$.

Table XXV. is the same table, revised by A. Moritz, who, in a communication to the Académie des Sciences, in October, 1856, called the attention to some slight errors of computation in Regnault's table, and gave the corrected numbers for every whole degree from 40° to 102° Centigrade. Those numbers are given here from E 0° upwards, as published in the Journal de l'Institut; the values for every tenth of a degree, and their differences, bave been computed to fit the table for practical use. The comparison of the two tables will show that the corrections mostly amount to a few hundredths, and never exceed one tenth of a millimetre.

Table XXVl. is table XXV. reduced to English measures.
XXIV. BAROMETRIC PRESSURES CORRESPONDING TO TEMPERATURES OF BOILING WATER. I

Centig. Degrees.	Hundredths of a Degree.									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
-	Millim.	Nillim.	Millim.							
8.5 .0	433.04	433.21	433.38	433.55	433.72	433.69	434.07	434.24	434.41	434.58
85.1	434.75	434.92	435.09	43.5 .26	435.43	435.60	43.5 .78	435.95	436.12	436.29
8.5.2	436.46	436.63	436.80	436.97	437.14	437.31	437.49	437.66	437.83	438.00
85.3	438.17	438.34	438.51	438.69	438.56	439.03	439.20	439.37	439.55	439.72
85.4	439.59	440.06	440.23	440.41	440.58	440.75	440.93	441.10	441.27	441.45
83.5	441.62	441.79	441.97	442.14	142.31	442.48	442.66	442.83	443.00	443.18
85.6	443.35	433.52	443.70	443.87	44.05	44.22	44.39	4457	44.74	444.92
85.7	445.09	445.26	445.44	445.61	445.79	445.96	446.14	446.31	446.49	446.67
85.8	446.84	447.01	447.19	447.36	447.54	447.71	447.89	448.06	448.24	448.41
85.9	448.59	448.76	488.94	449.11	449.29	449.46	449.64	449.81	449.99	450.16
86.0	450.34	450.52	4.50 .69	450.87	451.04	451.22	451.40	451.57	451.75	451.92
86.1	452.10	452.28	452.45	452.63	452.81	452.98	453.16	453.34	453.52	453.69
86.2	453.87	454.05	454.22	454.40	454.58	454.75	454.93	455.11	455.29	455.46
86.3	455.64	45.5 .82	456.00	456.17	456.35	456.53	456.71	456.89	457.06	457.24
86.4	457.42	457.60	457.78	457.96	458.14	458.31	458.49	458.67	458.85	4.59 .03
86.5	459.21	459.39	459.57	459.75	459.93	460.10	460.28	460.46	460.64	460.82
86.6	461.00	461.18	461.36	461.54	461.72	461.90	462.08	462.26	462.44	462.62
86.7	462.80	46298	463.16	463.34	463.52	463.70	463.88	464.06	464.24	164.42
86.8	464.60	464.78	464.96	465.14	465.32	465.50	465.69	465.87	466.05	466.23
86.9	466.41	466.59	466.77	466.95	467.13	467.31	467.50	467.68	467.86	465.04
87.0	468.22	468.40	468.58	468.77	468.9.5	469.13	469.31	469.49	469.68	469.86
87.1	470.01	470.22	470.41	470.59	470.77	470.95	471.14	471.32	471.50	471.69
87.2	471.87	472.05	472.24	472.42	472.60	472.78	472.97	473.15	473.33	473.52
87.3	473.70	473.88	474.07	174.25	474.44	474.62	474.50	474.99	475.77	47.5 .36
87.4	475.54	475.72	475.91	476.09	476.28	476.46	476.64	476.83	477.01	477.20
87.5	477.38	477.56	477.75	477.93	479.12	478.30	478.49	478.67	478.86	479.04
87.6	479.23	479.41	479.60	479.78	479.97	450.15	450.34	480.52	480.71	480.89
87.7	481.08	481.27	481.45	481.64	481.82	482.01	482.20	48238	482.57	482.75
57.8	452.94	453.13	483.31	483.50	483.69	183.57	484.06	484.2.	484.44	484.62
87.9	484.81	485.00	485.19	485.37	485.56	485.75	485.94	486.13	486.31	486.50
85.0	486.69	486.58	487.07	487.2.5	487.44	487.63	487.82	488.01	498.19	488.38
88.1	485.57	488.76	188.9.7	489.13	489.32	489.51	489.70	489.89	490.07	490.26
88.2	490.45	490.64	490.83	491.02	491.21	491.39	491.58	491.77	491.96	192.15
88.3	492.34	492.53	492.72	492.91	493.10	493.29	493.48	493.67	493.86	494.0 .5
88.4	494.24	49.43	494.62	494.81	495.00	495.19	495.39	495.58	49.5 .77	495.96
88.5	496.15	496.34	496.53	496.72	496.91	497.10	497.30	497.49	497.68	497.87
88.6	49806	498.25	498.44	498.64	498.83	499.02	499.21	499.40	499.60	499.79
88.7	499.98	500.17	500.36	500.56	500.75	500.94	501.13	501.32	501.52	501.71
88.8	501.90	502.09	502.28	502.48	502.67	502.56	503.0.)	503.24	503.44	503.63
88.9	503.82	504.01	504.21	504.40	504.60	504.79	504.98	505.18	50.5 .37	505.57
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.

2 barometric pressures corhesponding to temperatures of boaling water

Centig. Degrees.	Hundredths of a Degree.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
9,	Millim.	Millin.	Millim.							
89.0	505.76	505.95	506.15	506.34	506.54	506.73	506.92	507.12	507.31	507.51
89.1	507.70	507.89	508.09	505.28	508.48	508.67	508.87	509.06	509.26	509.45
89.2	509.65	509.84	510.04	510.23	510.43	510.62	510.52	511.01	511.21	511.40
89.3	511.60	511.80	511.99	512.19	512.38	512.58	512.78	512.97	513.17	513.36
89.4	513.56	513.76	513.95	514.15	514.35	514.54	514.74	514.94	515.14	515.33
89.5	515.53	515.73	515.92	516.12	516.32	516.51	516.71	516.91	517.11	517.30
89.6	517.50	517.70	517.90	518.09	518.29	. 518.49	518.69	518.89	519.08	519.28
89.7	519.48	519.68	519.88	520.07	520.27	520.47	520.67	520.87	521.06	521.26
89.8	521.46	521.66	521.86	522.06	522.26	522.46	522.66	522.86	523.05	523.25
89.9	523.45	523.65	523.85	524.05	524.25	524.45	524.65	524.85	525.05	52.5 .25
90.0	525.45	525.65	525.85	526.05	526.25	526.45	526.65	526.85	527.05	527.25
90.1	527.45	527.65	527.8.5	528.05	528.25	528.45	528.66	528.86	529.06	529.26
90.2	529.46	529.66	529.86	530.07	530.27	530.47	530.67	530.87	531.08	531.28
90.3	531.48	531.68	531.85	532.09	532.29	532.49	532.69	532.89	533.10	533.30
90.4	533.50	533.70	533.91	534.11	534.31	534.51	534.72	534.92	535.12	535.33
90.5	535.53	535.73	535.94	536.14	536.35	536.55	536.75	536.96	537.16	537.37
90.6	537.57	537.77	537.98	538.18	538.39	538.59	538.79	539.00	539.20	539.41
90.7	539.61	539.81	540.02	540.22	540.43	540.63	540.84	541.04	541.25	541.45
90.8	541.66	541.87	542.07	542.28	542.48	542.69	542.90	543.10	543.31	543.51
90.9	513.72	543.93	544.13	544.34	544.54	541.75	544.96	545.16	545.37	545.57
91.0	545.78	545.99	546.19	546.40	546.61	546.8]	547.03	547.23	547.44	547.61
91.1	547.85	548.06	548.26	548.47	548.68	548.88	549.09	549.30	549.51	549.71
91.2	549.92	550.13	550.34	5.50 .54	550.75	550.96	551.17	551.38	551.58	551.79
91.3	552.00	552.21	552.42	552.63	552.84	553.04	553.25	553.46	553.67	553.88
91.4	554.09	554.30	554.51	554.72	554.93	5.55 .14	555.35	555.56	555.77	555.98
91.5	556.19	556.40	556.61	5.56 .82	5.57.03	5.57 .24	557.45	557.66	557.87	558.08
91.6	558.29	558.50	5.58 .71	558.92	559.13	559.34	559.55	559.76	559.97	560.18
91.7	560.39	560.60	560 sl	561.03	561.24	561.45	561.66	561.87	562.09	562.30
91.8	562.51	562.72	562.93	563.15	563.36	563.57	563.78	563.99	564.21	564.42
91.9	564.63	564.86	565.06	565.27	565.48	565.69	565.91	566.12	566.33	566.55
92.0	566.76	566.97	567.19	567.40	567.61	567.85	568.04	568.25	568.46	568.68
92.1	568.89	569.10	569.32	569.53	569.75	569.96	570.17	570.39	570.60	570.82
92.2	571.03	571.24	571.46	571.67	571.89	572.10	572.32	572.53	572.75	572.96
92.3	573.18	573.40	573.61	573.83	574.04	574.26	574.48	571.69	574.91	575.12
92.4	575.34	575.56	575.77	575.99	576.20	576.42	576.64	576.85	577.07	577.28
92.5	577.50	577.72	577.93	578.15	578.37	578.58	578.80	579.02	579.24	579.45
92.6	579.67	579.89	550.10	580.32	580.54	580.75	580.97	581.19	581.41	581.62
92.7	581.84	582.06	582.28	582.49	582.71	582.93	583.15	583.37	583.58	583.80
92.8	584.02	584.24	584.46	584.65	584.90	58.5 .11	555.33	585.55	58.577	585.99
92.9	586.21	586.43	586.65	586.87	587.09	587.31	587.53	587.75	557.97	588.19
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

Centig.Degrees.	Hundredths of a Degree.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
93.0	Slillim.	Tiillim.	Nillim. 505.85	Inllim.	$\begin{aligned} & \text { Millim. } \\ & 589.29 \end{aligned}$	Millim. 589.51	$\begin{aligned} & \text { Millim. } \\ & 589.73 \end{aligned}$	$\begin{aligned} & \text { Millim. } \\ & 5 \$ 9.9 . \end{aligned}$	Millim. 590.17	Millim. 590.39
93.0	508.41	$5=5.63$	553.55	589.07	589.29	589.51	5s9.73	559.95		
93.1	590.61	590.83	591.05	591.27	591.49	591.71	591.94	59.16	592.38	592.60
93.2	592.52	593.04	593.26	593.49	593.71	593.93	594.15	594.37	594.60	594.82
93.3	59.04	595.26	595.43	595.71	595.93	596.15	596.37	59659	596.82	597.04
93.4	597.26	597.48	597.71	597.93	598.15	598.37	598.60	598.52	599.04	599.27
93.5	599.49	599.71	599.94	600.16	600.38	600.60	600.83	601.05	601.27	601.50
93.6	601.72	601.94	602.17	602.39	602.62	602.84	603.07	603.29	$603 . \mathrm{T}$ 2	603.74
93.7	603.97	604.19	604.42	604.64	604.37	605.09	605.32	605.54	605.74	60.5 .99
93.3	606.22	606.45	606.67	606.90	607.12	607.3.5	607.55	607.50	605.03	608.25
93.9	605.45	605.71	603.93	609.16	609.35	609.61	609.84	610.06	610.29	61051
94.0	610.74	610.97	611.19	611.42	611.65	611.57	612.10	612.33	612.56	612.78
94.1	613.01	613.24	613.47	613.69	613.92	614.15	614.38	614.61	614.83	615.06
94.2	61.5 .29	61.5 .52	615.75	615.97	616.21	616.43	616.66	616.89	617.12	617.35
94.3	617.58	617.51	618.04	618.27	618.50	615.72	618.95	619.18	619.41	619.64
94.4	619.57	620.10	620.33	620.56	620.79	621.02	621.25	621.48	621.71	621.94
94.5	62.17	622.40	622.63	62.2 .86	623.09	623.32	623.56	623.79	624.02	624.2.5
94.6	624.45	624.71	62.94	625.17	62.5 .40	625.63	62.5 .87	626.10	626.33	626.56
94.7	626.79	627.02	627.25	627.49	627.72	62795	628.18	628.41	628.6 .5	628.88
94.5	629.11	629.34	629.58	629.81	630.04	630.27	630.51	630.74	630.97	631.21
94.9	631.44	631.67	631.91	632.14	632.35	632.61	63.34	633.08	633.31	633.5.5
95.0	633.78	634.01	634.25	634.48	634.72	634.9.5	635.18	635.42	635.65	635.89
9.9 .1	636.12	636.3.)	636.59	6:36.82	637.06	637.29	637.53	637.76	638.00	638.23
9.92	635.47	635.71	638.94	639.18	639.41	639.65	639.89	640.12	640.36	640.59
95.3	640.83	641.07	641.30	641.54	641.77	642.01	642.25	64248	642.72	642.95
95.4	643.19	643.4:	643.67	643.90	644.14	644.38	644.62	644.86	645.09	645.33
95.5)	64.5 .57	645.81	646.05	646.28	646.52	646.76	647.00	647.24	647.47	647.71
9.5	647.95	645.19	645.43	648.697	645.91	649.14	649.39	649.62	649.86	6.50 .10
95.7	6.50 .34	650.58	6.50 .52	6.51 .06	6.51 .30	$6.31 . .38$	6.51 .77	652.0]	6.52 .25	6.52 .49
95.8	6.52 .73	6.52 .97	6.33 .21	6.53.4.3	653.69	653.93	654.17	6.54.41	654.65	654.89
95.9	65.5 .13	6.55 .37	6.55 .61	655.5 .5	656.09	6.56 .33	656.58	656.s2	657.06	657.30
96.0	6.57 .54	6.37 .78	6.58 .02	658.26	6.58 .50	658.74	6.58 .99	6.99 .23	659.47	659.71
96.1	6.59 .95	660.19	66043	660.63	660.92	661.16	661.40	661.64	661.89	662.13
96.2	66.37	662.61	662.56	663.10	663.34	663.58	663.53	664.07	664.31	664.56
96.3	664.50	655.04	66.29	66.5 .53	665.7s	666.02	666.26	666.51	666.75	667.00
96.4	667.24	667.48	667.73	667.97	668.22	668.16	668.71	665.95	669.20	669.44
96.5	669.69	669.93	670.18	670.42	670.67	670.91	671.16	671.10	671.65	671.99
96.6	67.14	672.39	672.63	672.58	673.12	673.37	673.62	67386	674.11	674.35
967	674.60	674.55	675.09	675.34	675.59	675.83	676.08	676.33	676.58	676.82
96.8	677.07	677.32	677.57	677.81	675.06	675.31	675.56	678.81	679.05	679.30
96.9	679.55	679.80	6×0.05	650.29	$650 . \overline{4}$	680.79	681.04	681.29	681.53	681.78
	0.	1.	2.	3.	4.	5.	6.	$\%$ \%	8.	9.

f barometric pressures corresponding to temperatures of bolling water.

TABLE XXV.

BAROMETRIC PRESSURES CORRESPONDING TO TEMPERATURES OF THE BOILING POINT OF WATER,

EXPRESSED IN MILLIMETRES OF MERCURY FOR CENTIGRADE TEMPERATURES.

By Regnallt, Revised by Moritz.

Boiling Point, Centigrade.	$\begin{gathered} \text { Barometer } \\ \text { in } \\ \text { Millimetres. } \end{gathered}$	Difference.	Boiling Point, Centigrade	$\begin{gathered} \text { Barometer } \\ \text { in } \\ \text { Millimetres. } \end{gathered}$	Difference.	Boiling Point, Centigrade.	$\begin{gathered} \text { Barometer } \\ \text { in } \\ \text { nillimetres. } \end{gathered}$	Difference.
\bigcirc			\bigcirc			-		
80.0	354.62		83.0	400.07		86.0	450.30	
80.1	3.56 .06	1.44	83.1	401.66	1.60	86.1	452.06	1.76
80.2	357.50	1.45	83.2	403.26	1.60	86.2	4.53.83	1.77
80.3	3.58 .96	1.45	83.3	404.87	1.61	86.3	455.60	1.77
80.4	360.41	1.46	83.4	406.48	1.61	86.4	457.33	1.78
		1.46			1.62		457.33	1.78
80.5	361.87		83.5	408.10		86.5	459.17	
80.6	363.34	1.47	83.6	409.72	1.62	S6. 6	460.96	1.79
S0.7	364.51	1.47	83.7	411.35	1.63	86.7	-10.96	1.80
80.9	366.29	1.45	83.8	412.98	1.63	86.8	615	1.80
80.9	367.77	1.48	83.9	\$14.62	1.64	86.9	466.36	1.81
		1.49			1.64		466.36	1.81
81.0	369.26		84.0	416.26		87.0	468.17	
81.1	370.75	1.49	84.1	417.91	1.65	87.1	469.99	1.82
81.2	372.25	1.50	84.2	419.57	1.66	87.2	471.52	1.83
81.3	373.75	1.50	84.3	421.23	1.66	87.3	473.65	1.83
81.4	375.25	1.51	84.4	42.89	1.67	87.4	475.49	1.84
		1.51			1.67		175.4	1.84
81.5	376.77	1.5	84.5	421.56		87.5	477.33	
81.6	378.28	1.52	84.6	426.24	1.68	87.6	479.18	1.85
81.7	379.81	1.52	84.7	427.92	1.68	87.7	481.0.4	1.86
81.8	381.3:3	1.53	84.8	429.61	1.69	87.8	482.90	1.86
81.9	352.87	1.53	84.9	431.30	1.69			1.87
		1.54		431.30	1.70	87.9	484.76	1.87
82.0	384.40		85.0	433.00		88.0	486.64	
82.1	355.93	1.54	85.1	434.71	1.70	\$8.1	485.52	1.88
82.2	357.49	1.05	85.2	436.42	1.71	88.2	490.40	1.89
82.3	389.0 .5	1.55	85.3	438.13	1.72	85.3	49.299	1.89
82.4	390.61	1.56	85.4	439.85	1.72	88.4	494.19	1.90
		1.56			1.73		49.19	1.90
82.5	392.17		85.5	441.58		88.5	496.09	
82.6	393.74	1.57	85.6	443.31	1.73	88.6	498.00	1.91
82.7	395.31	1.57	85.7	445.05	1.74	88.7	500.92	1.92
82.8	396.89	1.58	85.8	446.80	1.74	83.8		1.92
82.9	39 P .18	1.58	85.9	448.55	1.75	88.9		1.93
83.0	400.07	1.59	86.0	450.30	1.76	89.0	$50.5 .70$	1.93

D
102

Boiling Boint, Centigrade.	$\begin{aligned} & \text { Barometer } \\ & \text { in } \\ & \text { villimetres. } \end{aligned}$	Difference.	Roiling l'oint, Centigrade	$\begin{gathered} \text { Barometer } \\ \text { in } \\ \text { Milliuletres. } \end{gathered}$	Difference.	Boiling Point, Centigrade	Barometer in Nillimetres.	Difference
\bigcirc			\bigcirc			\bigcirc		
89.0	50.3 .70	1.94	93.0	588.33	$2 \cdot 10$	97.0	651.93	2.49
89.1	507.65	1.94	93.1	590.53	2.8	97.1	684.42	2.49
89.2	509.59	1.93	93.2	592.74	2.21	97.2	6×6.92	$2 . .00$
89.3	511.51	1.95	93.3	59.1 .96	2.22	97.3	$6-9.42$	2.51
. 4	513.50	1.96	93.4	597.18	2.22	97.4	691.94	2.51
		1.97			2.23			2.52
89.5	515.47		93.5	599.41		97.5	694.46	
89.6	517.41	1.97	93.6	601.65	2.26	97.6	696.98	2.53
89.7	519.42	1.98	93.7	603.89	2.24	97.7	694.52	2.54
89.8	521.40	1.95	$9: 3.8$	606.14	$2 \cdot 25$	97.8	702.06	2.54
89.9	523.39	1.99	9:3.9	608.40	2.26	97.9	704.62	2.55
		2.60			2.26	.		2.56
90.0	525.39		91.0	610.66		98.0	707.17	
90.1	5.27 .40	2.10	94.1	612.93	2.27	98.1	709.74	2.57
90.2	529.41	2.01	94.2	615.21	2.25	98.2	712.31	2.57
90	531.19	2.02	94.3	6	2.29	95.3	714.90	2.58
		2.02			2.29			2.59
90.4	533.44	2.63	94.4	619.79	2.30	93.4	717.49	2.60
90.5	53.3.47		94.5	622.09		98.5	720.08	
90.6	537.51	2.04	94.6	$62+.39$	2.31	98.6	722.69	. 61
90.7	539.55	2.04	$9+.7$	626.71	2.3	98.7	725.30	2.61
90.5	$5+1.60$	2.05	94.8	629.93	2.32	98.8	727.93	2.62
90.9	$5+3.65$	2.05	9.4 .9	631.36	2.33	98.9	730.55	2.63
90.9	$5+3.65$	2.06	94.9	6.3136	2.33		730.55	2.64
91.0	54.5 .71		95.0	633.69		99.0	733.19	
91.1	547.78	2.07	95.1	636.03	2.34	99.1	$7: 35.84$	2.64
91.2	549.86	2.07	9.5 .2	638.38	2.35	99.2	738.49	$\because .65$
	$5 \pm .86$	2.08	9.5		2.36	09.3	711.15	2.66
91.3	551.9 t	2.09	9.5 .3	640.74	2.36	$99 . .3$	741.1:	2.67
91.4	554.03	2.09	95.4	643.10	2.37	99.4	743.52	2.68
91.5	556.12		95.5	615.48		99.5	716.50	
91.6	558.23	2.10	9.5 .6	647.86	2.38	99.6	749.18	2.68
		2.11			2.39			2.69
91.7	560.33	2.11	95.7	650.24	2.39	99.7	7.51 .67	2.70
91.8	562.14	2.1	95.5	652.63		99.8	754.37	
91.9	564.56	2.12	95.9	655.04	2.40	99.9	75728	2.71
		2.13			2.41			2.72
92.0	566.69		96.0	657.44		100.0	760.00	
92.1	568.82	2.13	96.1	659.86	2.42	100.1	762.73	2.73
		2.14			2.42	100.9	765.16	2.73
92.2	570.96	2.15	96.2	662.25	2.43	100.2	76.9 .46	2.74
92.3	573.11	2.15	96.3	664.71	2.4.	100.3	768.20	2.75
92.4	575.27	2.15	96.4	667.15	2.44	100.4	770.95	2.65
		2.16			2.44			2.76
92.5	577.43		965	669.59		100.5	773.71	
92.6	57	2.17	96.6	672.05	2.15	100.6	776.47	2.77
	57.59	2.17			2.46			2.77
92.7	581.77	2.18	96.7	674.51	2.47	100.7	779.25	2.78
92.8	588.95	2.18	96.8	676.97	2.47	100.8	7 72.03	2.18
92.9	586.14	2.19	96.9	679.45	2.47	100.9	784.82	2.79
9:3.0	$58 \times .33$	2.19	97.0	681.93	2.48	101.0	787.62	2.60

T A BLE X X VI。

BAROMETRIC PRESSURES CORRESPONDING TO TEMPERATURES OF TIE BOLLING POINT OF WATER,

EXPRESSED IN ENGLISH INCHES FOR TEMPERATURES OF FAHRENHEIT.

Reduced from Regiadlt's Table, revised by Moritz.

$\begin{aligned} & \text { Boiling } \\ & \text { Print, } \\ & \text { Fahreu. } \end{aligned}$	$\begin{aligned} & \text { Barom- } \\ & \text { eter } \\ & \text { in } \\ & \text { English } \\ & \text { Inches. } \end{aligned}$	Difference	$\begin{aligned} & \text { Boiling } \\ & \text { Print, } \\ & \text { Fahren. } \end{aligned}$	Barom- eter 11 Engrish Inches.	Differeuce.	$\begin{aligned} & \text { Boiling } \\ & \text { Point, } \\ & \text { Fahren } \end{aligned}$	$\begin{aligned} & \text { Barom- } \\ & \text { eter } \\ & \text { in } \\ & \text { Enylish } \\ & \text { Inches. } \end{aligned}$	Differeace.	$\begin{aligned} & \text { Boiling } \\ & \text { Point, } \\ & \text { Fahren. } \end{aligned}$	$\begin{aligned} & \text { Barma- } \\ & \text { eter } \\ & \text { in } \\ & \text { English } \\ & \text { Inches. } \end{aligned}$	Difference.
		$\begin{array}{r} 0.037 \\ .037 \\ .037 \\ .037 \\ .038 \end{array}$	$\stackrel{\circ}{158.0}$	18.195	0.039	\bigcirc	19.407	0.042	$\stackrel{\circ}{194.0}$	20.685	0.044
135.0	17.045					191.0					
185.1	17.08 .5		188.1			191.1			194.1	20.729	
185.2	17.122		188.2	18.274	. 039	191.2	19.490	.04.2	194.2	20.773	4
185.3	17.160		188.3	18.314	. 039	191.3	19.532	. 042	194.3	20.817	.044
155.4	17.197		188.4	18.353	$\begin{array}{r} 040 \\ .040 \end{array}$	191.4	19573	$\begin{aligned} & .042 \\ & .042 \end{aligned}$	194.4	20.861	$\begin{aligned} & .044 \\ & .044 \end{aligned}$
185.5	17.235		188.5	18.393	. 040	$\begin{aligned} & 191.5 \\ & 191.6 \end{aligned}$	19.615	. $0+2$	$\begin{aligned} & 194.5 \\ & 194.6 \end{aligned}$	20.905	. 044
18.5 .6	17.272	.038	189.6	18.483						$\begin{aligned} & 20.949 \\ & 20.993 \end{aligned}$	
185.7	17.310	. 038	188.7	18.472	40	$\begin{aligned} & 191.6 \\ & 191.7 \end{aligned}$	$\begin{aligned} & 19.657 \\ & 19.699 \end{aligned}$. 042	194.7		$\begin{aligned} & .044 \\ & .044 \end{aligned}$
18.5 .8	17.:34	. 038	188.8	18.512	$\begin{aligned} & .040 \\ & .040 \end{aligned}$	$\begin{aligned} & 191.5 \\ & 191.9 \end{aligned}$	$\begin{aligned} & 19.7 .71 \\ & 19.783 \end{aligned}$	042	$\begin{aligned} & 194.8 \\ & 194.9 \end{aligned}$	$\begin{aligned} & 21.038 \\ & 21.082 \end{aligned}$	
185.9	17.3.5	. 038	188.9	18.552				042			$\begin{aligned} & .044 \\ & .044 \end{aligned}$
		. 038			. 040			.042			
186.0	17.423			18.5	. 040	19	19	.042	195.0	21.126	. 045
$1: 6.1$	17.161		159.1	18.632		192.1	19.865			$\begin{aligned} & 21.171 \\ & 21.216 \end{aligned}$	
$3 \sim 6.2$	17.499		189.2	18.672			19.910	. 0.42	195.2		.04.)
186.3	17.537	.038	159.3	18.712	. 040	192.3	$\begin{aligned} & 19.9 .52 \\ & 19.995 \end{aligned}$.042	19.5.3	21.260	$\begin{aligned} & .045 \\ & .045 \end{aligned}$
186.1	17.575	38	189.4	18.753	$.040$. 043	195.4	21.805	
		. 038									. 045
186.5	17.614	. 038	189.5	18.793	. 040	$\begin{aligned} & 192.5 \\ & 192.6 \end{aligned}$	20.037	- 0.13	$\begin{aligned} & 195.5 \\ & 19.5 .6 \end{aligned}$	21.350	. 045
186.6	17.6.92			18.833			20.050			21.395	
186.7	17.630		189.7	18.854		192.7	20.123	. 043	195.7	21.440	.045.045
186.9	17.729		159.8	18.914	. 041 . 041	$\begin{aligned} & 192.8 \\ & 192.9 \end{aligned}$	20.166	$\begin{aligned} & .043 \\ & .043 \\ & .043 \end{aligned}$	$\begin{aligned} & 195.8 \\ & 195.9 \end{aligned}$	$\begin{aligned} & 21.185 \\ & 21.530 \end{aligned}$	
186.9	17.767		159.9	18955			20.208				$\begin{aligned} & .045 \\ & .045 \end{aligned}$
		. 039									
187.0	17.806		190.0	$18.996$$19036$. 041	$\begin{aligned} & 193.0 \\ & 193.1 \end{aligned}$	$\begin{aligned} & 20.251 \\ & 20.294 \end{aligned}$. 043	$\begin{aligned} & 196.0 \\ & 196.1 \end{aligned}$	21.576	.fi45
157.1	17.844	.039								21.621	
157.2	17.88:3		190.2	19.077	. 041	193.2	20.338	$\begin{aligned} & .043 \\ & .043 \end{aligned}$	$\begin{aligned} & 196.2 \\ & 196.3 \end{aligned}$	21.666	. 0.46
157.3	17.922	$\begin{aligned} & .039 \\ & .039 \end{aligned}$	$\begin{aligned} & 190.3 \\ & 190.4 \end{aligned}$	$\begin{aligned} & 19.118 \\ & 19.159 \end{aligned}$	$\begin{aligned} & .0+1 \\ & .0+1 \end{aligned}$	$\begin{aligned} & 193.3 \\ & 193.4 \end{aligned}$	$\begin{aligned} & 20.341 \\ & 20.424 \end{aligned}$			21.712	
157.4	17.961							$\begin{aligned} & .043 \\ & .043 \end{aligned}$	196.4	21.758	$\begin{array}{r} .046 \\ .046 \end{array}$
187.5	18.000	$\begin{array}{r} .039 \\ .039 \\ .039 \\ 039 \\ \mathbf{0 . 0 3 9} \end{array}$	$\begin{aligned} & 190.5 \\ & 190.6 \\ & 190.7 \\ & 190.8 \\ & 190.9 \\ & 191.0 \end{aligned}$	$\begin{aligned} & 19.200 \\ & 19.241 \\ & 19.253 \\ & 19.324 \\ & 19.36 .5 \\ & 19.407 \end{aligned}$	$\begin{array}{r} .041 \\ .041 \\ .041 \\ .041 \\ 0.041 \end{array}$	$\begin{aligned} & 193.5 \\ & 193.6 \\ & 193.7 \\ & 193.8 \\ & 193.9 \\ & 194.0 \end{aligned}$	$\begin{aligned} & 20.467 \\ & 20.511 \\ & 20.554 \\ & 20.598 \\ & 20.641 \\ & 20.685 \end{aligned}$	$\begin{gathered} .043 \\ .043 \\ .044 \\ .044 \\ 0.044 \end{gathered}$	$\begin{aligned} & 196.5 \\ & 196.6 \\ & 196.7 \\ & 196.8 \\ & 196.9 \\ & 197.0 \end{aligned}$		$\begin{array}{r} .046 \\ .046 \\ .046 \\ .046 \\ 0.046 \end{array}$
187.6	18.039										
157.7	18.078										
157.8	19.117										
187.9	18.156										
189.0	18.195										

Boiling Pont, Fuhren	$\begin{gathered} \text { Barom- } \\ \text { eter } \\ \text { in } \\ \text { Eurgish1 } \\ \text { luches } \end{gathered}$	Difference	Boiling Point. Fathren	$\begin{aligned} & \text { Barom- } \\ & \text { eter } \\ & \text { in } \\ & \text { English } \\ & \text { lucbes. } \end{aligned}$	Difference	Boiling Point, Pr Fahren	$\begin{aligned} & \text { Barom- } \\ & \text { eter } \\ & \text { in } \\ & \text { English } \\ & \text { lnches. } \end{aligned}$	Difference.	$\begin{aligned} & \text { Boiling } \\ & \text { Proint, } \\ & \text { Fahren. } \end{aligned}$	$\begin{aligned} & \text { Barom- - } \\ & \text { eter } \\ & \text { in } \\ & \text { English } \\ & \text { Inches. } \end{aligned}$	Differeuce.
\bigcirc		$\begin{gathered} 0.046 \\ .046 \\ .046 \\ .046 \\ .046 \end{gathered}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & 23.943 \\ & 23.993 \end{aligned}$	$\begin{array}{r} 0.049 \\ .050 \end{array}$	\bigcirc	$\begin{aligned} & 25.990 \\ & 26.043 \end{aligned}$		209.0 209.1	$\begin{aligned} & 28.180 \\ & 98.937 \end{aligned}$	0.057
197.0	22.033		201.0			205.0					
197.1	22.079		201.1			205.1					
197.2	22.125		$\begin{aligned} & 201.2 \\ & 201.3 \end{aligned}$	$\begin{aligned} & 23.993 \\ & 24.042 \end{aligned}$		205.2	26.096	. 053	209.2	28.293	.0.57
197.3	2.272			$\begin{aligned} & 24.042 \\ & 24.092 \end{aligned}$. 050	205.3	26.149	$\begin{aligned} & .053 \\ & .053 \end{aligned}$	$\begin{aligned} & 209.3 \\ & 209.4 \end{aligned}$	$\begin{aligned} & 28.3 .50 \\ & 28.407 \end{aligned}$. 057
197.4	22.218		201.4	24.142	$\begin{aligned} & .050 \\ & .050 \end{aligned}$	205.4	26.19 26202				. 057
197.5	22.264	. 047	$\begin{aligned} & 201.5 \\ & 201.6 \end{aligned}$	24.191	. 050	$\begin{aligned} & 205.5 \\ & 205.6 \end{aligned}$	26.255	. 053	$\begin{aligned} & 209.5 \\ & 209.6 \end{aligned}$	28.464	. 057
197.6	22.311			24.241			26.309				
197.7	22.358	$\begin{aligned} & .047 \\ & .047 \end{aligned}$	201.7	24.291	. 050	205.7	26.362	. 054	209.7	28.579	. 057
197.8	22.404		201.8	24.341	.050	$\begin{aligned} & 205.8 \\ & 205.9 \end{aligned}$	$\begin{aligned} & 26.416 \\ & 26.470 \end{aligned}$.054	209.8	23.636	. 057
197.9	22.451	. 047	201.9	24.391	$\begin{aligned} & .050 \\ & .050 \end{aligned}$			$\begin{aligned} & .054 \\ & .054 \end{aligned}$	209.9	28.693	. 058
195.0	22.198	. 047	202.0	24.442	. 050	$\begin{aligned} & 206.0 \\ & 206.1 \end{aligned}$	26.52326.577	.054	$\begin{aligned} & 210.0 \\ & 210.1 \end{aligned}$	$\begin{aligned} & 28.751 \\ & 28.809 \end{aligned}$. 058
192.1	22.545	. 047	202.1	24.492							
198.2	22.592			21.542	. 050	$\begin{aligned} & 206.1 \\ & 206.2 \end{aligned}$	26.577 26.631	. 054	210.2	28.866	$\begin{aligned} & .058 \\ & .058 \end{aligned}$
198.3	22.639	$\text { . } 047$	$\begin{aligned} & 202.3 \\ & 202.4 \end{aligned}$	$\begin{aligned} & 24.593 \\ & 24.644 \end{aligned}$	$\begin{aligned} & .050 \\ & .051 \end{aligned}$	$\begin{aligned} & 206.3 \\ & 206.4 \end{aligned}$	$\begin{aligned} & 26.685 \\ & 26.740 \end{aligned}$	$\begin{array}{r} .054 \\ .054 \end{array}$	210.3	$\begin{aligned} & 28.924 \\ & 28.982 \end{aligned}$	
198.4	22.686								210.4		. 058
198.5	22.731	047	20.5	24.694	. 051		26.794	.054	210.5	29.040	. 058
198.6	22.781		202.6	24.745		206.6	26.848			29.098	
198.7	22.829	. 047		24.796	.051	206.7		. 054	210.7	29.156	$\begin{aligned} & .058 \\ & .058 \end{aligned}$
192.8	22.676	.048	202.8	24.847	. 05	$\begin{aligned} & 206.8 \\ & 206.9 \end{aligned}$	$\begin{aligned} & 26.957 \\ & 27.012 \end{aligned}$	$\begin{aligned} & .055 \\ & .055 \end{aligned}$	210.8	29.215	
195.9	22.924	. 048	202.9	24.593	. 051				210.9	29.273	. 058
								.05\%			. 059
199.0	22.971	. 048	203.0		. 051	,	27	. 035	211.0	29.331	
199.1	2:3.019		$\begin{aligned} & 203.1 \\ & 203.2 \end{aligned}$	25.000		207.1	27.121		211.1	29.390	0.59
199.2	23.067	. 048		25.0 .51	. 051	207.2	27.176	5	211.2	29.449	
199.3	23.115		$\begin{aligned} & 203.3 \\ & 203.4 \end{aligned}$	$\begin{aligned} & 2.5 .103 \\ & 25.154 \end{aligned}$	051	207.3207.4	$\begin{aligned} & 27.231 \\ & 27.286 \end{aligned}$	$\begin{aligned} & .05 \overline{5} \\ & .055 \\ & .055 \end{aligned}$	$\begin{aligned} & 211.3 \\ & 211.4 \end{aligned}$	$\begin{aligned} & 29.508 \\ & 29.566 \end{aligned}$	$\begin{aligned} & .059 \\ & .059 \\ & .059 \end{aligned}$
199.4	23.163	. 048			.051						
		. 043			. 052						
199.5	23.211		203.5	25.206	052	$\begin{aligned} & 207.5 \\ & 207.6 \end{aligned}$	$\begin{aligned} & 27.341 \\ & 27.397 \end{aligned}$.055	$\begin{aligned} & 211.5 \\ & 211.6 \end{aligned}$	29.625	-0.99
199.9;	23.259	. 045	203.6	25.257						29.684	
199.7	23.308		203.7	25.309		207.7	27.452		211.7	29.744	. 059
199.8	23.356		203.8	25.361	.05	207.8	27.507		211.8	29.803	.059
199.9	23.40.5		203.9	25.413		207.9	27.563		211.9	29.862	. 05
		. 049			.052			. 056			.059
200.0	23.453		204.0	25.465		208.0	27.618		212.0	29.922	
200.1	23.502		204.1	25.517		208.1	27.671		212.1	29.981	.060
200.2	23.550		204.2	25.569		208.2	27.730		212.2	30.041	.06
20.3	23.599		204.3	25.621		208.3	27.786		212.3	30.101	
200.4	23.648		204.4	2.9.674		208.4	27.842		212.4	30.161	
200.5	23.697		204.5	2.5.726		208.5	27.898		212.5	30.221	
200.6	23.746		204.6	25.779		208.6	27.954	. 056	212.6	30.281	. 060
200.7	23.79 .5		204.7	25.831	. 053	208.7	28.011	. 0	212.7	30.341	. 060
200.8	23.845		204.8	25.884	-053	208.8	28.067	. 05	212.8	30.401	. 060
200.9	23.594	. 049	204.9	25.937	.053	208.9	28.123	. 056	212.9	30.461	. 060
201.0	23.943	0.049	205.0	25.990	0.053	209.0	28.180	0.057	213.0	30.522	0.060

METEOROLOGICAL AND PHYSICAL TABLES.

geographical measures.

SERIES V.
AN APPENDIX TO THE HYPSONETRIC TABLES.

TABLES

FOR COMPARING THE MOST IMPORTANT GEOGRAPHICAL MEASURES OF LENGTH AND OF SURFACE.

a) Tables for comparing the most important measures of lexgtif used for indicating altitudes.
b) Tables for comparing the most mportant meastres of geographical distances.
c) Tables for comparing the most important measures of geographical surfaces.

a) TABLES

FOR

COMPARING THE MOST IMPORTANT MEASURES OF LENGTH USED FOR INDICATING ALTITUDES.

CONTENTS.

> (The figures refer to the folio at the bottom of the page.)

TABLES FOR COMPARING TIIE MOST IMPORTANT MEASURES OF LENGTU USED FUR INDICATING ALTITUDES.

PAGE
On the Various Standards of Measure, and their Relations . . . 7

Comparison of the Measures of Length most generally used for indicating Altitudes.
Table I. Conversion of French Toises into Metres 11
" II. Conversion of Fremeh Toises into Paris Feet . . . 14
" III. Conversion of French Toises into English Feet . . . 1.j
" IV. Conversion of French Toises into Rhine Feet . . . 1.)

For converting Metres into different Measures.
" V. Conversion of Metres into Toises 1 i)
" VI. Conversion of Metres into Paris Feet 17
" VII. Conversion of Metres into English Fpet 20
"V VIII. Conversion of Metres into Rhine or Prossian Feet . . 2s
" IX. Concersion of Metres into Feet of Vienna 2s

For converting Paris or French Feet into different Measures.
" X. Conversion of Paris Feet into Toises 29
" XI. Conversion of Paris Feet into Metres 30
" XII. Conversion of Paris Feet into English Feet . . . :31
" XIII. Conversion of Paris Feet into Rhine Feet 82
" XIV. Conversion of Paris Feet into Feet of Vienna . . . 33

For converting English Yards and Feet into different Measures.
" XV. Conversion of English Yards into French 'Toises . . . 34
" XVI. Conversion of English Yards into Metres 34
" XVII. Conversion of English Fpet into Metres 3.5
" XVIII. Conversion of English Feet into Paris Fpet . . . 36
" XIX. Conversion of English Feet into Rhine Fept 87
" XX. Conversion of English Feet into Feet of Vienna. . . 38 E
Fur converting Klafter and Feet of Vienna into different Measures.
Table XXI. Conversion of Klatter of Viema into Metres 39
،. XXII. Conversion of Klatter of Viema into Paris Feet 40
" XXIII. Conversion of Klatter of Viemna into English Feet 40
" XXIV. Consersion of Feet of Viemat into Metres 41
" XXV. Conversion of Feet of Viema into Paris Feet 4.
" XXVI. Comversion of Feet of Viema into English Feet $4: 3$
" XXVII. Conversion of Feet of Vienna into Rhine Feet 44
For concerting lime or Prussian Feet into different Measures.
" XXVIII. Conversion of Rhine Feet into French Toises 45
" XXIX. Conversion of Rhine Feet into Metres 45
" XXX. Conversion of Rline Feet into Paris Feet 46
" XXXI. Conversion of Rhine Feet into English Feet 46
" XXXII. Conversion of Rhine Feet into Feet of Vienna 47
" XXXIII. Consersion of Bavarian Feet into Metres 47
For converting Spanish, Mexican, and Bolivian Varas and Feet into different Measures.
" XXXIV. Conversion of Old Spanish or Castilian Varas into Metres 48
". XXXV. Conversion of Old Spanish Feet into Metres 48
" XXXVI. Consersion of Mexican Varas into Metres $4!$
" XXXVII. Conversion of Mexican Feet into Metres $4!$
" XXXVIII. Conversion of Mexican Feet into English Feet 49
" XXXIX. Conversion of Bolivian Varas into Metres 50
" XL. Consersion of Bolivian Feet into Metres 50
". XLI. Conversion of Bolivian Feet into English Feet 50
For converting Fractional Parts of a Toise and of a Foot into each other.
" XLII. Conversion of Inches into Duodecimal Lines 51
" XLIII. Conversion of Decimals of a Toise into Feet and Inches 51
" XLIV. Conversion of Decimals of a Foot into Inches and Deci- mals 52
" XLV. Conversion of Decimals of a Foot into Inches and Duo- decimal Lines 52
" XLVI. Conversion of Inches and Duodecimal Lines into Decimals of a Foot 52
" XLVII. Table for comparing the most important Measures of Length 5:
" XLVIII. Table for the conversion of English Fathoms into Metres 54
" XLIX. Table for the conversion of Metres into English Fathoms 54^{-}

COMPARISON

OF THE

MEASURES OF LENGTH MOST GENERALLY CSED FOR INDICATING ALTITUDES.

Ir is too well known that the measures used in scientific researches among civilized nations are not uniform, as the convenience of all would require. In France the metre is employed; in England and North America, the yard and its third part, the English foot; in Germany, most commonly, the Old French or Paris foot, the sixth part of the French toise called the Toise du Pérou; at the same time, however, though not so extensively, the Rhine foot, in Denmark and Holland, and especially in Prussia, where it has been declared, moder the name of Prussian foot, the legal measure in that kingdom; in Austria, the klafter of Vienna and its sixth part, the foot of Vienna; in Switzerland, the Swiss or federal foot, which has been adjusted to the metrical system, and is three-tenths of a metre; and so on.

The numerous altitudes ascertained, either by private efforts, or in connection with the public works, and especially with the extensive geodetic olerations carried on by the governments of these varions countries for the survey of a regular map, are expressed in the measures respectively adopted by each of them. These heights, however, before they can be compared, require to be uniformly reduced to one of these measures. Their relation to each other, therefore, is given here, together with numerous reduction tables, designed to save both the useless expenditure of time and the almost unavoidable errors arising from so numerous reductions.

The exact relation of the standard measures above mentioned is not easily ascertained, and the numbers given by the best authorities by no means always agree; for the manufacture of exact copies of a standard scale, and the accurate comparison of it, require considerable skill, and belong to the most delicate operations of physics. The numbers used for computing the following tables have been adopted, after a careful review of the authorities, as the most reliable. A few words on the most important original legal standards of measures may not be unwelcome. For further details on the subject the reader is referred principally to Dove's work, Maus und Messen, 2d edition, Berlin, 1835.

The principal original, legal standards are the following :-

1. The Toise du Pérou, the old Freneh standard, made in 1735, in Paris, by Langlois, under the direction of Godin, is a bar of iron which has its standard length at the temperature of 13° Réaumur. It is known as the Toise du Péron, because it was used by the French Academicians Bouguer and La Condamine in their measurement
of an arc of the meridian in Peru. What follows will show that it may almost be called the only common standard, to which all the others are referred for comparison.
2. The Mètre is a standard bar of platina, made by Lenoir in Paris, which has its normal length at the temperature of zero Centigrade, or the freezing point. Its length is intended to make it a natural standard, and to represent the ten-millionth part of the terrestrial are comprised between the equator and the pole, or of a quarter of the meridian. The length of this are given by the measurement, ordered for the purpose by the Assemblée Nationale, of the are of the meridian between Barcelona, through France, to Dunkirk, combincd with the measurements previously made in Peru and in Lapland, gave for the distance of the equator from the pole 5, 130,740 toises, with an ellipticity of $\frac{1}{3} \frac{1}{4}$, and for the length of the metre 443.29596 lines of the toise du Pérou, assumed to be 443.296 lines, or 3 feet 11.296 lines. This last quantity was declared in 1799 to be the length of the legal metre, and vrai et définitif', and is the length of Lenoir's platina standarl. Later, and more extensive measurements in various parts of the globe, however, seem to indicate that this quantity is somewhat too small. The results of these various measurements, carefully combined and computed by Bessel, would make the quarter of the meridian $10,000,856$ metres, and the metre $=443.29979$ Paris lines ; Schmidt's computation would make it 443.29977 lines, and both numbers are confirmed by Airy's results. The legal metre is thns, in fact, as Dove remarks, a legalized part of the toise du l'érou, and this last remains the primitive standard. But it must be arded that a natural standard, in the absolute sense of the word, is a utopian one, which everchanging Nature never will give us. The metre is, for all practical purposes, what it was intended to be, a natural standard; though it must be confessed that, in practice, the question is not whether, and how far, a standard is a natural or a conventional one, but how readily and accurately it can be obtained, or recovered when lost.
3. The English Stundard Fard is a brass bar, made by Bird in 1760 , which was declared, by act of Parliament, 1st May, 1825, the legal measure of length when at the temperature of 62° Fahreulitit, under the name of Imperial Standard. Another standard, sometimes also called Parliamentary Standard, was made by Bird in 17.58. Sir George Shuckburgh found both to be nearly identical, at least within 0.0002 of an inch. (Philos. Trans. for 1798, p. 170.)

Another scale of brass, however, made by Troughton for Sir George Shuckburgh, described in the Philosophical Transactions for 1798, and known as Shuckburgh's scale, obtained among scientific men, perhaps, a higher degree of authority, on account of the great aceuracy of its division, and of its apparatus, devised by Troughton, for delicate comparisons. The scale was used by Captain Kater, in 1818, in his researches for determining the length of the pendulum beating a second at London, and also the length of the metre, expressed in English inches of the imperial standard. (IMilos. Trens. for 1818.)

Numerous attempts to determine the relation between the English and the French meakures show no inconsiderable discrepancies in their results. Omitting the older comparisons with the toise, we give here the value of the metre in English imperial inches as resulting from the most reliable comparisons.

A standard scale made and divided by Troughton, and in all particulars identical with Shuckburgh's scale, was brought to France in 1801 by Pictet. The comparison of it with the standard metre, made by Prony, Legendre, and Méchain, gave, after due reduction of the two standards to their respective normal temperatures,

1 metre at 32° Fahr. $=39.371$ English imperial inches at 62° Fahr.
This determination was adopted for all reductions in Kelly's Universal Cambist, and in the French translation of the work, published in Paris in 1823.

A new comparison was made with great care by Captain H. Kater, in 1818. (See Philos. Trans. for 1818 , p. 103.) The standards used were a brass scale metre, by Fortin, terminated with parallel planes (mètre à bouts), and a bar of platina on whieh the length of the metre was marked by two very fine lines (mètre à traits). Both were compared with Shuckburgh's scale, and a double series of experiments gave as the mean result:-
Brass metre at 32° Fahr. $=39.37076$ inches of Shuckburgh's scale at 62° Fahr. Platina metre at 32° Fahr. $=\frac{39.37081}{39.37079}$ Mean \quad " \quad " \quad " \quad "

On this value of the metre are based the reduction tables by Matthieu, published yearly in the Annucire du Bureau des Lougitudes ; and it has come into general use, both in Europe and in this country.

Captain Kater gives besides, in the same paper, p. 109, note, the value of the metre compared with Bird's Parliamentary standard as being
1 metre at $32^{\circ} \mathrm{F}=39.37062 \mathrm{imp}$. inches of Bird's Parliamentary standard at $62^{\circ} \mathrm{F}$. This value has been adopted by Dove, as being the legal one, in his reduction tables in his work Matas und Messen, p. 175, etc., and by many German authorities.

According to Bailey's experiments, made in 1835, when engaged in constructing a new standard for the Royal Astronomical Society (Memoirs R. Ast. Soc., vol. ix.), the value of the metre is (Lee, Collection of T'ables and Formula, p. 62)

1 metre at $32^{\circ} \mathrm{F} .=39.370092$ imperial standard inches at $62^{\circ} \mathrm{F}$.
The original legal standards having been lost in the fire which destroyed, in 1834, the Parliament Houses, an act of Parliament provided for the construction of new ones. An extensive and most careful comparison of the standards of length of England, Belgium, Prussia, Russia, India, Australia, was made at the Ordnance Survey office at Southampton by Capt. A. R. Clarke, R.E., under the direction of Sir Henry James, Director, the results of which were published in London in 1866. This comparison gives the relation of the imperial standard to the metre as

1 metre at $32^{\circ} \mathrm{F} .=39.370488$ inches of the imperial standard at $62^{\circ} \mathrm{F}$.
The value adopted in computing the tables in this volume, before this last comparison was made, is that determined by Capt. Kater in 1818, viz. :-
1 metre at $32^{\circ} \mathrm{F} .=39.37079$ English inches of the imperial standard at $62^{\circ} \mathrm{F}$.
The difference between these two equivalents of the metre is so small that, for practical purposes, the substitution of Clarke's value, implying such laborious com-
putations, would hardly be justified. For the present, therefore, it seems best not to introduce here this new value, which, after all, may not be a final one.

It may not be out of place to remark that Schumacher, in the first edition of his Sammlung von Hiulfstafeln, used the value 1 metre $=39.3827$ English inches, as given in the Base du Système Métrique; but this number, which expresses the relation of both standards when at the freezing point, becomes 39.37079 when they are respectively reduced to their normal temperatures. Schumacher's tables, therefore, must be corrected accordingly.
4. The actual standard of length of the United States is a brass scale of eightytwo inches in length, prepared for the Coast Survey of the United States, by Troughton of London, meant to be identical with the English Imperial Standard, and deposited in the office of weights and measures. The temperature at which it is a standard is 62° Falurenheit, and the yard measure is traced between the 27 th and 63 d inches of the scale. (See Report on the Construction and Distribution of Weights and Mertsures, by Prof. A. D. Bache, 1857.)

IIassler, first Superintendent of the United States Coast Survey, made an elaborate comparison of eleven different standard metres with the brass scale of eighty-two inches, by Troughton. Three of the standard metres, certified to be correct by high authorities, seem to deserve especial confidence: 1. An iron metre, presented to Mr. Hassler by Tralles, which was one of the three that Tralles had made by Lenoir at the same time with those distributed to the committee on the weights and measures. 2. Another metre of iron, also by Lenoir, verified by Bouvard and Arago, and declared by them to be identical with the original. 3. A platina standard by Fortin verified by Arago, and found to be $\mathrm{TO}_{\mathrm{TO}}^{\mathrm{I}} \mathrm{O}$ of a millimetre too long, for which error allowance was made. Their comparison with the Troughton scale at the temperature of the freezing point gave :-

1. Iron metre of Tralles $=39.3809171$ inches of the Troughton scale.
2. Iron metre of Lenoir $=39.3799487$ " " "
3. Platina metre of Fortin $=39.3804194 \quad$ " ${ }^{4}$

Or, correcting for expansion, and reducing them to their respective standard tem peratures :-

1. Iron metre of Tralles at $32^{\circ}-\mathrm{F} .=39.36850$ English inches of the
2. Iron metre of Lenoir at $\left.32^{\circ} \mathrm{F} .=39.36754\right\}$ Troughton scale of
3. Platina metre of Fortin at $32^{\circ} \mathrm{F} .=39.36789$ (inches at $62^{\circ} \mathrm{F}$.

Hassler, in his Report to Congress on Weights and Measures, in 1832, adopts the first value, viz. :-

1 metre at $32^{\circ} \mathrm{F} .=39.3809171$ inches of the Troughton scale at $32^{\circ} \mathrm{F} . ;$
which reduced by Prof. A. Bache, his successor, by means of the coefficient of expansion by heat used by Hassler, became

1 metre at $32^{\circ}=39.36850535$ United States standard inches at $62^{\circ} \mathrm{F}$.
This scale and its metric equivalent was regarded as the United States standard from which copies were to be made.

This value differs materially from those given by other careful comparisons, while, on the other hand, the close accordance of the numbers corresponding to the
various standard metres proved the accuracy of Hassler's method of comparison. But as the yard of the Troughton scale had been accepted as the standard of length of the United States (see Report on Weights and Measures, by Prof. Bache, 1857) it seemed advisable to call it, as is done in the Coast Survey Reports, the American yard, and its subdivisions, the American foot and inch, and to consider it as a new standard similar to, but not identical with, the English imperial standard. (Coast Survey Report for 1853.)

In 1856, however, two copies of the new British standards, viz., a bronze standard, No. 11, and a wrought-iron standard, No. 57, were presented by the British govermnent to the United States. A series of elaborate comparisons of these new standards with the Troughton scale of 82 inches were made from 1876-1878 by Prof. J. E. Hilgard, now Superintendent of the Coast Survey, the results of which were published in 1880, in Appendix No. 12, of Report for 1877. These researehes prove that, taking into account the influence of the nature of the material of the standards, and using new, and more correct, coefficients for expansion by heat to reduce them to the same temperature, no material difference is found to exist between the American yard on the Troughton scale and the English imperial yard; only the Troughton scale at $62^{\circ} \mathrm{F}$. is 0.00083 inch longer than the imperial yard at $62{ }^{\circ} \mathrm{F}$. ; or, otherwise expressed, the mean yard of the United States at $59^{\circ} .62 \mathrm{~F}$. is equal to the British standard yard at $62^{\circ} \mathrm{F}$.

In confirmation of this conclusion it is well to remark that the value of the metre derived from Hassler's comparisons and reduced to 62° by Prof. Bache, as above stated, when properly corrected with the new elements, stands as follows :-

Hassler's value of the metre reduced to $62^{\circ} \mathrm{F} . \quad=39.36851$ Eng. inches.
Correction for difference in rate of expansion + .00109 "
Correction for excess of Troughton scale in one metre +.00090 "
Hassler's comparison corrected reduction $\quad=39.37050 \quad$ " which is almost identical with Clarke's valne.

Thus the American yard, as a distinct one from the Engtish standard yard, is happily abolished. In consequence the tables for the conversion of the American yards and feet have been omitted in the present edition.
5. The Klufter of Vienna is a silver line let into a prismatic bar of iron, on which the length of the klafter was engraved by Voigtänder. It has its normal length at 13° Ré mmur, and was declared by law, in 1816 , the standard Klafter of Vienna. On the same silver line the French toise is marked, from the standard toise sent, in 1760, by La Caille and La Condamine to the Observatory of Vienna. Comparisons made by lrof. Stamper with this standard gave for its value in metres 1 Klafter of Viema $=1.8366657$ metre, which value was universally used until about 1850.

New comparisons of the Vienna standard with various French standards deposited in the Russian Imperial Observatory, made in 1850 by the Astronomer W. Struve, with the utmost care and scientific precision, gave as a result

$$
1 \text { Klafter of Vienna }=1.8964843 \text { metre, }
$$

which value is now admitted as the most reliable. (Memoirs of the Austrian Acadeny of Sciences, vol. v. p. 117, and Sitzungs Berichte, Muthemut. Nutur-
wissench. Klasse, vol. xliv.) Struve's value has been adopted in computing the tables in this edition.
6. The Prussiun Foot is marked on a standard iron bar, 3 feet long, made by Pistor in Berlin; it is a standard at the temperature of 13° Réaumur. The length of the Prussian foot was declared by law to be $=139.13$ lines of the toise du Pérou.
7. Spain and the old Spantish Colonies of America. The French metrical system of weights and measures was introduced into Spain by law in July, 1849 ; but its introduction was only finished in 1859. The old measures, however, continued to have a considerable local significance. Among the different values assigned to them the most important are those of the Castilian Vara, or Vara de Burgos, and of the Castilian foot, the relation of which to the metre is given officially in the Anuario de la Direccion de Hidrografia, Madrid, 1863, as follows :-

1 Castilian foot $=0.278635$ metre; hence
1 Castilian vara $=0.8359050$ metre
1 Castilian foot $=0.9141732$ English foot.
These values have been used in computing the tables in this fourth edition, in preference to the older ones, from which the tables in the previous editions were derived.

In the late Spanish Colonies of Mexico and South America the measures of the mother country continued to be in use after their separation from it. But owing, no doubt, to the imperfection of local standards, cousiderable divergences were found to exist, which caused no little confusion in the practical use of these measures. To obviate this inconvenience some of the States, as Mexico in 1862, Chile already in 1848, decreed the introduction of the French metric system. But as in practice the people continued to use the old measures, most of the States found it necessary to fix a legal value for the vara in relation to the metre. Thus Mexico determined by law, in 1845, the legal value of the Mexican vara to be

$$
\begin{aligned}
& 1 \text { vara }=0.838 \text { metre } ; \text { hence } \\
& 1 \text { Mexican foot }=0.2793333 \\
& 1 \text { Mexican foot }=0.9164645 \text { English foot. }
\end{aligned}
$$

Guatemala, San Salvador, Honduras, Nicaragua, Costa Rica use the Mexican rara and foot.

Arcording to Col. T. Ondarza, one of the authors of the official map of Bolivia, the Bolivian government has declared the value of the $\mathrm{S}_{\text {panish }}$ vara to be in the ratio of 100 metres $=118$ varas. This value was adopted by him in publishing his altitudes. Thus

$$
\begin{aligned}
& 1 \text { Bolivian vara }=1.18 \quad \text { metre; hence } \\
& 1 \text { Bolivian foot }=0.28248 .59 \quad \text { " } \\
& 1 \text { Bolivian foot }=0.92680776 \text { English foot. }
\end{aligned}
$$

Chile and Peru use the same value of the vara and foot as Bolivia. Venezuela, New Granada, and Ecuador have adopted a value of the vara very nearly equal to the old Caștilian, viz.:-

$$
\begin{aligned}
1 \text { vara } & =0.836 \quad \text { metre. } \\
1 \text { foot } & =0.278664 \quad \cdots \\
& 12
\end{aligned}
$$

New tables derived from the above values of the Spanish measures are given in this edition instead of those found in the previous ones.

In the Argentine Confederation, the Spanish vara was made

> 1 Spanish vara $=0.866 \quad$ metre ; hence
> 1 Spanish foot $=0.288667 \quad$ "
> 1 Spanish foot $=0.9470703$ English foot.

In Brazil the old Portuguese measures are still in force with only very slight changes for adjustment to the metre.
1 palmo $\quad=0.22000$ metre
1 vara, $\quad 5$ palmos $=1.1000$ metre or 1 metre $=3.030303$ vara.
1 foot, Pé, 1 $\frac{1}{2}$ palmos $=0.33000$ metre or 1 metre $=0.9090909$ foot, Pé.

The above information on the old Spanish measures is gathered from Belm's Geographisches Juhrbuch, Band I. and II. The three general "Tables for comparing the most important measures of length, of distances, and of surface," are taken from the same source.

At the head of each table will be found the value from which it was computed.
The tables give directly the reduction of any whole number not exceeding four figures, and larger numbers, within the limits needed for altitudes, by means of a single addition.

Example.

Reduce 25,351 English feet into metres.
In Table XVII., on the line beginning with 25,000 and in the column headed 300 , take for
$25,300=7711.30$ metres.
In the second part of the table, on the line beginning' with 50 , and in column headed 1 , take for

$$
\text { English feet } \frac{51}{25,351}=\sqrt{3726.84} \quad "
$$

When Clarke's spheroid (1866) is used-
German mile $\quad=\frac{1}{15}$ equatorial degree $=7421.3802$ metres, $\log 3.87048468$
Nautical league $=\frac{1}{20}$ equatorial degree $=5566.0351$ metres, $\log 3.74554594$
French league $=\frac{1}{2}$ equatorial degree $=4452.8281$ metres, $\log 3.64863593$
Naut. or geog. mile $=\frac{1}{60}$ equatorial degree $=1855.3450$ metres, $\log 3.26842469$
The tables for the conversion of fathoms into metres, and for the conversion of metres into fathoms, need the following explanation: The exact equivalent of any desired depth in either measure between 100 and 9900 can be obtained directly from the table; for any depth below 100, the equivalent can be found by looking for the value corresponding to the same number as though it were hundreds, and then remove the decimal point the required number of places to the left.

Example.

Reduce 62 fathoms to metres.
In the first line of the table under 600 we find 60 fathoms $=109.726$ metres.
In the first line of the table under 200 we find $2 \quad "=3.657$ "
Therefore 62 " $=113.383$ "

E

 13
TO CONVERT

FRENCH TOISES

INTO DIFFERENT MEASURES OF LENGTH.

1. CONVERSION OF FRENCH TOISES INTO METRES.

1 Toise $=1.94903631$ Metre .

1 Toise $=6.3945916$ English Feet .

Toises. Teus.	Units.									
	0.	1.	2.	3.	1.	5.	6.	\%.	s.	9.
	Eus. feet	Eng. feet	Eng. feet	Eug. feet	Eng. fee	ng. feet				
0	0.000	6.395	12.789	19.184	25.578	31.973	38.368	44.763	51.157	57.551
10	63.946	70.340	76.735	83.130	89.524	95.919	102.313	108.708	115.103	121.497
20	127.592	134.286	140.681	147.076	153.470	159.865	166.259	$17 \pm .654$	179.049	43
30	191.838	198.232	204.627	211.021	217.416	233.811	230.205	236.600	242.994	389
40	255.784	262.178	268.573	274.967	281.362	287.757	294.151	300.546	306.940	313.335
50	319.729	326.124	332.519	338.913	345.308	351.702	358.097	364.492	370.886	377.281
60	383.675	390.070	$396.4{ }^{\text {c5 }}$	402.859	409.254	415.648	422.043	428.438	434.832	441.227
70	47.621	454.016	460.410	466.805	473.200	479.594	485.989	492.383	498.778	505.173
80	511.567	517.962	524.356	530.751	537.146	. 43.540	549.935	556.329	562.724	569.119
90	575.513	581.90 s	588.302	594.697	601.091	607.486	613.881	620.275	626.670	633.06 +
Thousands.	Handreds.									
	0.	100.	200.	300.	100.	500.	600.	700.	S00.	900.
	Eng. feet	Eus. feet	Eng. feet	Eng. feet	Eng. feet	Eog.feet	Eng. feet	Eng. feet	Eng. feet	Eng. feet
0	0.0	639.5	1278.9	1918.4	2557.8	3197.3	3836.8	4476.2	5115.7	5755.1
1000	6394.6	7034.0	7673.5	8313.0	8952.4	9591.9	10231.3	10870.8	11510.3	12149.7
2000	12789.2	13428.6	14068.1	14707.6	15347.0	15986.5	16625.9	17265.4	17904.9	18544.3
3000	19183.8	19823.2	20462.7	21102.1	21741.6	22381.1	23020.5	23660.0	24299.4	24938.9
4000	-25578.4	26217.8	26857.3	327496.7	28136.2	28775.7	29415.1	30054.6	30694.0	31333.5
5000	\|31972.9	32612. 4	33251.9	33891.3	34530.6	35170.2	35809.7	36449.2	37088.6	37725.1

IV. CONVERSION OF FRENCII TOISES INTO RHINE OR PRUSSIAN FEET.

1 Toise $=6.2100194$ Rhine Feet.

Toises. Tens.	Uuits.									
	O.	1.	2.	3.	4.	5.	6.	\%.	8.	9.
	Rhine ft 0.000	Rhine ft. 6.210	Rhine ft.	Rhine ft. 18.630	Rhine ft.	Rhine ft.	Rhine ft.	Rhine ft.	Rhiue ft. 49.680	Rhine ft.
10			12.420 74.520	0						
10	62.100 124.200	130.410	136.620	80.730 14.830						${ }^{\circ}$
20	124.200	130.410	136.620	142.830	149.040	155.250	161.461			1
30	186.301	192.511	198.721	204.931	211.141	217.351	223.561	229.771	235.981	242.191
40	248.401	254.611	260.821	267.031	273.241	279.451	285.661	291.871	298.081	304.291
50	310.501	316.711	322.921	329.131	335.341	341.551	347.761	353.971	360.181	366.391
60	372.601	378.811	385.021	391.231	397.441	403.651	409.861	416.071	42.281	428.491
70	434.701	440.911	447.121	453.331	459.541	465.751	471.961	478.171	484.382	490.592
80	496.802	503.012	509.222	515.432	521.642	527.852	534.062	540.272	546.482	552.692
90	558.90	. 112	571.322	577.532	583.742	589.952	596.162	602	08.582	314.792
Thousands.	Hundreds.									
	0.	100.	200.	300.	409.	500.	680.	700.	500.	900.
	Rhine ft.	Rhine ft	Rhine ft.	Rhine ft.	Rhine ft.	Rhine ft.				
0	0.0	621.0	1242.0	1863.0	2484.0	3105.0	3726.0	4347.0	4968.0	5589.0
1000	6210.0	6831.0	7452.0	8073.0	8694.0	9315.0	9936.0	10570.0	11178.0	11799.0
2000	12420.0	13041.0	13662.0	14283.0	14904.0	15525.0	16146.1	16767.1	17388.1	18009.1
3000	18630.1	19251.1	19872.1	20493.1	21114.1	21735.1	22356.1	22977.1	23598.1	24219.1
4000	24840.1	25461.1	26082.1	26703.1	27324.1	27945.1	28566.1	29187.1	29808.1	30429.1
5000	31050.1	$316 \% 1.1$	32292.1	32913.1	33534.1	34155.1	34776.1	35397.1	36018.1	36639.1

TO CONVERT

METRES

into different measures of length.

1 LEGAL METRE $=443.296$ FRENCH OR PARIS LINES.
V. CONVERSION OF METRES INTO TOISES AND DECIMALS.

1 Metre $=0.513074074$ Toise.

1 Metre $=3.078444$ Paris Feet.

Metres. Tens.	res. Un									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Fr. Feet.	Fr Feet.	Fr. Feet.							
0	0.00	3.05	6.16	9.24	12.31	15.39	18.47	21.55	24.63	27.71
10	30.78	33.86	36.94	40.02	43.10	46.18	49.26	52.33	55.41	58.49
20	61.57	64.65	67.73	70.30	73.88	76.96	80.04	83.12	86.20	89.27
30	92.35	95.43	98.51	101.59	104.67	107.75	110.82	113.90	116.98	120.06
40	123.14	126.22	129.29	132.37	135.45	138.53	141.61	144.69	147.77	150.84
50	153.92	157.00	160.08	163.16	166.24	169.31	172.39	175.47	178.55	181.63
60	184.71	187.79	190.86	193.94	197.02	200.10	203.18	206.26	209.33	212.41
70	215.49	218.57	221.65	224.73	227.80	230.88	233.96	237.04	240.12	243.20
80	246.28	249.35	252.43	255.51	258.59	261.67	264.75	267.82	270.90	273.98
90	277.06	280.14	283.22	286.30	289.37	292.45	295.53	298.61	301.69	304.77
100	307.84	310.92	314.00	317.08	320.16	323.24	326.32	329.39	332.47	335.55
110	338.63	341.71	344.79	347.86	350.94	354.02	357.10	360.18	363.26	366.33
120	369.41	372.49	375.57	378.65	381.73	384.81	387.88	390.96	394.04	397.12
130	400.20	403.28	406.35	409.43	412.51	415.59	418.67	421.75	424.83	427.90
140	430.98	434.06	437.14	440.22	443.30	446.37	449.45	452.53	455.61	458.69
150	461.77	464.85	467.92	471.00	474.08	477.16	480.24	483.32	486.39	489.47
160	492.55	495.63	498.71	501.79	504.86	507.94	511.02	514.10	517.18	520.26
170	523.34	526.41	529.49	532.57	535.65	538.73	541.81	544.88	547.96	551.04
180	554.12	557.20	560.28	563.36	566.43	569.51	572.59	575.67	578.75	581.83
190	584.90	587.98	591.06	594.14	597.22	600.30	603.38	606.45	609.53	612.61
200	615.69	618.77	621.85	624.92	628.00	631.08	631.16	637.24	640.32	$6+3.39$
210	646.47	649.55	652.63	655.71	658.79	661.87	$66+.94$	668.02	671.10	674.18
220	677.26	680.34	683.41	656.49	689.57	692.65	695.73	698.81	701.89	704.96
230	708.04	711.12	714.20	717.28	720.36	723.43	726.51	729.59	732.67	735.75
240	738.83	741.90	744.98	748.06	751.14	754.22	757.30	760.38	763.45	766.53
250	769.61	772.69	775.77	778.85	781.92	785.00	788.08	791.16	794.24	797.32
260	800.40	803.47	806.55	S09.63	812.71	815.79	818.87	821.94	825.02	828.10
270	831.18	834.26	837.34	S40.42	843.49	846.57	849.65	852.73	855.81	858.89
280	861.96	865.04	868.12	\$71.20	874.28	877.36	880.43	883.51	886.59	889.67
290	892.75	895.83	898.91	901.98	905.06	908.14	911.22	914.30	917.38	920.45
300	923.53	926.61	929.69	932.77	935.85	938.93	942.00	945.08	948.16	951.24
310	954.32	957.40	960.47	963.55	966.63	969.71	972.79	975.87	978.95	982.02
320	95.50	988.18	991.26	994.34	997.42	1000.49	1003.57	1006.65	1009.73	1012.81
330	1015.89	1018.96	1022.04	1025.12	1028.20	1031.28	1034.36	1037.44	1040.51	1043.59
340	1046.67	1049.75	1052.83	1055.91	1058.98	1062.06	1065.14	1065.22	1071.30	1074.38
350	1077.46	1080.53	1083.61	1086.69	1089.77	1092.85	1095.93	1099.00	1102.08	1105.16
360	1108.21	1111.32	1114.40	1117.48	1120.55	1123.63	1126.71	1129.79	1132.87	1135.95
370	1139.02	1142.10	1145.18	1148.26	$1151.3+$	1154.42	1157.49	1160.57	1163.6 .5	1166.73
350	1169.81	1172.89	1175.97	1179.04	1182.12	1185.20	1189.28	1191.36	1194.44	1197.51
390	1200.59	1203.67	1206.75	1209.83	1212.91	1215.99	1219.06	1222.14	1225.22	1225.30
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.

1 Metre $=3.078444$ Paris Feet.

Metres. Tens.	Metres. Units									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Fr. Feet.	Fr. F	Fr Feet.	Fr. Feet.						
400	1231.38	1234.46	1237.53	1240.61	1243.69	1246.77	1249.85	1252.93	1256.01	1259.05
410	1262.16	126.5.24	1268.32	1271.40	1274.18	1277.55	1280.63	1283.71	1286.79	1289.87
420	1292.95	1296.02	1299.10	1302.18	1305.26	1308.34	1311.42	1314.50	1317.57	1320.65
430	1323.73	1326.81	1329.59	$1: 332.97$	1336.04	1339.12	1342.20	1345.28	1348.36	1351.44
440	1354.52	1357.59	1360.67	1363.75	1366.83	1369.91	1372.99	1376.06	1379.14	1352.22
450	1385.30	1388.38	1391.46	1394.54	1397.61	1400.69	1403.77	1406.85	1409.93	1413.01
460	1416.08	1419.16	1422.24	1425.32	1428.10	1431.48	1434.55	1437.63	1440.71	1443.79
470	1446.87	1449.95	1458.03	1456.10	1459.1 S	1462.26	146.7 .34	1468.12	1471.50	1474.57
480	1477.65	1480.73	1483.81	1486.89	1489.97	1493.05	1496.12	1499.20	1502.28	1505.36
490	1503.44	1511.52	1514.59	1517.67	1520.75	1523.83	1526.91	1529.99	1533.07	1536.14
500	1539.22	1542.30	1545.38	1548.16	1551.54	1554.61	1.557 .69	1560.77	1563.85	1566.93
510	1570.01	1573.08	1576.16	1579.24	1582.32	158.5 .40	1588.48	1591.56	1594.63	1597.71
520	1600.79	1603.87	1606.95	1610.03	1613.10	1616.18	1619.26	1622.34	1625.42	1628.50
530	1631.58	1634.65	1637.73	1640.81	1643.89	1646.97	1650.05	1653.12	1656.20	1659.28
540	1662.36	1665.44	1668.52	1671.60	1674.67	1677.75	I 680.83	1653.91	1686.99	1690.07
550	1693.14	1696.22	1699.30	1702.35	1705.46	1708.54	1711.61	1714.69	1717.77	1720.85
560	1723.93	1727.01	1730.09	1733.16	1736.24	1739.32	1742.10	1745.45	1748.56	1751.63
570	1751.71	1757.79	1760.87	1763.95	1767.03	1770.11	1773.18	1776.26	1779.34	1782.42
580	1785.50	1758.55	1791.65	1794.73	1797.81	1800.89	1803.97	1807.05	1810.13	1813.20
590	1816.38.	1819.36	1522.44	1525.52	1528.60	1831.67	1834.75	1837.83	1840.91	1843.99
600	1847.07	18.50.14	1853.22	1556.30	1859.38	1862.46	1865.54	1868.62	1871.69	1874.77
610	1877.85	1880.93	1884.01	1587.09	1890.16	1893.24	1896.32	1899.10	1902.48	1905.56
620	1908.64	1911.71	1914.79	1917.87	1920.95	1924.03	1927.11	1930.18	1933.26	1936.34
630	1939.42	1942.50	1945.55	1948.66	1951.73	1954.81	1957.89	1960.97	$196+.05$	1967.13
640	1970.20	1973.28	1976.36	1979.44	1982.52	1955.60	1988.67	1991.75	1994.83	1997.91
650	2000.99	2004.07	2007	2010.22	2013.30	2016.38	2019.46	2022.54	2025.62	2028.69
660	2031.77	2034.85	2037.9	2041.01	2044.09	2047.17	20.50 .24	2053.32	2056.40	2059.48
670	2062.56	2065.64	2068.7	2071.79	2074.87	2077.95	2081.03	2054.11	2087.19	2090.26
680	2093.34	2096.42	2099.50	2102.58	2105.66	2108.73	2111.81	2114.89	2117.97	2121.05
690	2124.13	2127.20	2130.28	2133.36	2136.44	2139.52	2142.60	2145.68	2148.75	2151.83
700	2154.91	2157.99	2161.07	2164.15	2167.22	2170.30	2173.38	2176.46	2179.54	2182.62
710	218.5 .70	2185.77	2191.85	2194.93	2198.01	2201.09	2204.17	2207.24	2210.32	2213.40
720	2216.48	2219.56	2222.64	2225.72	2228.79	2231.87	2234.95	2238.03	$22+1.11$	2244.19
730	22.47 .26	22.30 .34	2253.42	22.56 .50	22.59..38	2262.66	2265.73	2268.81	2271.89	2274.97
740	2278.0.5	2281.13	2284.21	2287.28	2290.36	2293.44	2296.52	2299.60	2302.68	2305.75
750	2308.83	2311.91	2314.99	2318.07	2321.15	2324.23	2327.30	2330.38	2333.46	2336.54
760	2339.62	2342.70	$23+5.77$	2348.85	23.11 .93	2355.01	2358.09	2361.17	2364.24	2367.32
770	2370.40	2373.48	2376.56	2379.64	2382.72	2385.79	2388.87	2391.95	2395.03	2398.11
780	2401.19	2404.26	2407.34	2410.42	2413.50	2416.58	2419.66	2122.74	2425.81	2428.89
790	2431.97	2435.05	2438.13	2441.21	2444.28	2447.36	2450.44	2453.52	2456.60	2459.68
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

1 Metre $=3.0 \mathbf{7} 8444$ Paris Feet.

1 Metre $=3.23089917$ English Feet.

Hetres.	Metres. (Units.)									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Eug. Feet.	Eug. Feet.	Eng.Feet.	Eng. Feet.	Eng.Feet.	Eng.Feet.	Eng Feet.	Eng. Feet.	Eng Feet.	Eng. Fect.
0	0.0	3.28	6.56	9.84	13.12	16.40	19.69	22.97	26.25	29.53
10	32.51	36.09	39.37	42.65	45.93	49.21	52.49	55.78	59.06	62.34
20	6.5 .62	68.90	72.15	75.46	78.74	82.02	85.30	88.58	91.87	95.15
30	98.13	101.71	104.99	108.27	111.55	114.83	118.11	121.39	124.67	127.96
40	131.24	134.52	137.80	141.08	14.36	147.64	150.92	154.20	157.48	160.76
50	164.04	167.33	170.61	173.89	177.17	180.45	183.73	187.01	190.29	193.57
60	196.85	200.13	203.42	206.70	209.98	213.26	216.54	219.82	223.10	226.38
70	299.66	232.94	236.22	239.51	242.79	246.07	249.35	252.63	255.91	259.19
so	262.17	265.75	269.03	272.31	275.60	278.88	282.16	255.44	288.72	292.00
90	295.28	293.56	301.84	305.12	308.40	311.69	314.97	318.25	321.53	324.81
100	328.09	331.37	334.65	337.93	341.21	344.49	347.78	351.06	354.34	357.62
110	360.90	364.18	367.46	370.74	374.02	377.30	380.58	388.87	387.15	390.43
120	393.71	396.99	400.27	403.55	406.83	410.11	413.39	416.67	419.96	423.24
130	426.52	129.50	433.08	436.36	439.64	442.92	446.20	4.49 .48	452.78	456.04
140	459.33	462.61	465.89	469.17	472.45	475.73	479.01	482.29	485.57	488.85
150	492.13	495.42	495.70	501.98	505.26	508.54	511.82	515.10	518.38	521.66
160	521.94	528.22	531.51	534.79	538.07	541.35	544.63	547.91	551.19	554.47
170	557.75	561.03	564.31	567.60	570.88	574.16	$57 \% .44$	580.72	584.00	587.28
180	590.56	593.54	597.12	600.40	603.69	606.97	610.25	613.53	616.81	620.09
190	623.37	626.65	629.93	633.21	636.49	639.75	643.06	646.34	649.62	652.90
200	6.76 .18	659.46	662.74	666.02	669.30	672.58	675.87	679.15	682.43	685.71
210	688.99	692.27	695.55	698.83	702.11	705.39	708.67	711.96	715.24	718.52
220	721.50	725.08	728.36	731.64	734.92	738.20	741.48	744.76	748.05	751.33
230	754.61	757.89	761.17	764.45	767.73	771.01	774.29	777.57	780.85	784.13
240	787.42	790.70	793.98	797.26	800.54	803.82	807.10	810.38	\$13.66	816.94
250	820.22	823.51	826.79	8:30.07	833.35	S36.63	839.91	843.19	846.47	849.75
260	853.0:3	8.56 .31	559.60	862.85	866.16	869.44	872.72	876.00	879.28	882.56
270	855.54	889.12	892.40	595. 69	898.97	902.25	905.53	908.81	912.09	915.37
280	918.65	921.93	925.21	928.19	931.78	935.06	938.34	941.62	944.90	948.18
290	951.46	954.74	958.02	961.30	964.58	967.87	971.15	974.43	977.71	980.99
300	984.27	987.5.5	990.83	994.11	997.39	1000.67	1003.96	1007.24	1010.52	1013.80
310	1017.08	1020.36	1023.64	1026.92	1030.20	1033.48	1036.76	1040.05	1043.33	1046.61
320	1049.59	1053.17	10.56 .45	1059.73	1063.01	1066.29	1069.57	1072.85	1076.13	1079.42
330	1052.70	1085.98	1089.26	1092.54	1095.92	1099.10	1102.38	1105.66	1108.94	1112.22
340	1115.51	1118.79	1122.07	112.5.35	1128.63	1131.91	1135.19	1138.47	1141.75	1145.03
350	1148.31	1151.60	1154.88	1158.16	1161.44	1164.72	1168.00	1171.28	1174.56	1177.84
360	1181.12	1184.40	1157.69	1190.97	1194.25	1197.53	1200.81	1204.09	1207.37	1210.65
370	1213.93	1217.21	1220.49	1223.78	1227.06	1230.34	1233.62	1236.90	1240.18	1243.46
380	1246.74	1250.02	1253.30	1256.58	1259.87	1263.15	1266.43	1269.71	1272.99	1276.27
390	1279.55	1292.83	1286.11	1289.39	1292.67	1295.96	1299.24	1302.52	1305.80	1309.08
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

400 to $\mathbf{8 9 9}$.

800 to 1199.

Metros.	Metres. (Units.)									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Eng.Feet.	Eng.Feet.	Eng.Feet.	Eng. Ftet.	Eug. Feet.	Eng.Feet.	Eng.Feet.	Eug. Feer.	Eng.Fet.	Eng.Feet.
S00	2624.72	2628.00	2631.25	2634.56	$26: 37.84$	2641.12	2644.40	2647.69	2650.97	2654.25
810	2657.53	2660.81	2664.09	2667.37	2670.65	2673.93	2677.21	2680.49	2683.78	2687.06
S20	2690.34	2693.62	2696.90	2700.18	2703.46	2706.74	2710.02	2713.30	2716.55	2719.87
830	2723.15	2726.43	2729.71	2732.99	2736.27	2739.55	2742.83	2746.11	2749.39	2752.67
840	2755.96	2759.24	2762.52	2765.50	2769.08	2772.36	2775.64	2778.92	2782.20	2785.48
850	2788.76	2792.05	2795.33	2798.61	2501.89	2505.17	2808.45	2811.73	2815.01	2818.29
860	2821.57	2824.85	2825.14	2-31.42	2834.70	2837.98	2841.26	2844.54	28.47 .82	2551.10
870	2854.38	28.57 .66	2860.94	2864.22	2867.51	2870.79	2874.07	2577.55	2880.63	2883.91
880	2887.19	2590.47	2893.75	2597.03	2900.31	2903.60	2906.88	2910.16	2913.44	2916.72
890	2920.00	2923.28	2926.56	2929.54	2933.12	2936.40	2939.69	$29+2.97$	2946.25	2949.53
900	29.92.81	2956.09	2959.37	2962.65	2965.93	2969.21	2972.49	2975.78	2979.06	2982.34
910	2985.62	2985.90	2992.15	2995.46	2998.74	3002.02	3005.30	3005.58	3011.57	3015.15
920	3018.43	3021.71	3024.99	3028.27	8031.55	3034.53	3035.11	3041.89	$30+4.67$	3047.96
930	3051.24	3054.52	3057.80	3061.05	3064.36	3067.64	3070.92	307420	3077.4	3080.76
940	3084.05	3087.33	3090.61	3093.89	3097.17	3100.45	3103.7 \%	3107.01	3110.29	3113.57
950	3116.85	3120.14	3123.42	3126.70	3129.98	3133.26	3136.54	3139.82	3143.10	3146.38
960	3149.66	3152.94	3156.22	3159.51	3162.79	3166.07	3169.3.5	3172.63	:3175.91	3179.19
980	3182.47	3185.75	:159.03	3192.31	3195.60	3198.8s	3202.16	3205.44	3208.72	3212.00
980	3215.28	3218.56	3221.84	3225.12	3228.40	3231.69	3234.97	32:38.25	3241.53	3244.81
990	3248.09	3251.37	32.54 .65	3257.9:3	3261.21	:3264.49	3267.75	3271.06	3271.34	3277.62
1000	3280.90	3294.18	3287.46	3290.74	3291.02	3297.30	3300.58	3309.87	3307.15	3310.43
1010	3:313.71	3316.99	3320.27	3323.55	3326.83	3330.11	3333.89	3336.67	3339.96	3343.24
1020	3346.52	$33+9.80$	3353.08	3356.36	3359.64	3362.92	3366.20	3369.48	3372.76	3376.05
1030	3:799.33	3382.61	3385.89	3389.17	3392.45	3395.73	3399.01	3402.29	3405.57	3108.85
10.40	3412.14	3415.42	3418.70	3421.98	3425.26	3428.54	3431.82	343.5.10	3438.38	3441.66
1050	344.94	3448.22	:3551.51	34.54.79	3458.07	3461.35	3464.63	3167.91	3471.19	3474.47
1060	3177.7 .3	3481.03	3484.31	3157.60	3490.88	3494.16	3497.44	3500.72	3504.00	3507.28
10\%0	3.510 .56	3.513 .84	3.517 .12	3520.40	35.3 .69	3526.97	$35: 30.25$	3533.53	3536.81	3540.09
1080	3543.37	3.546 .65	3549.93	3353.21	3556.19	35.59 .78	356:3.06	3566.34	3569.62	3572.90
1090	3576.18	3379.16	3582.74	3586.02	3589.3)	3592.58	3595.87	3599.15	3602.43	3605.71
1100	3608.99	3612.27	3615.5 .5	3618.83	3622.11	3625.39	3628.67	3631.96	3635.24	3638.52
1110	3641.50	3645.08	$36+8.36$	3651.64	3654.92	36.5. 20	36661.48	3664.76	3668.05	3671.33
1120	3671.61	3677.59	3681.17	3684.45	3687.73	3691.01	:3694.29	3697.57	3700.85	3704.14
1130	3707.42	3710.70	3713.98	3717.26	3720.54	3723.52	3827.10	37:30 38	3733.66	3736.94
1140	3740.22	3743.51	3746.79	3750.07	3753.35	37.66 .63	3759.91	37663.19	3766.47	3769.75
1150	3773.03	377631	3779.60	3782.88	3786.16	3759.44	3792.72	3796.00	3799.28	3802.56
1160	3805.84	3809.12	3812.40	381.5.69	3818.97	3820.25	3255.53	3828.81	3832.09	3835.37
1170	3838.65	3841.93	3845.21	3848.49	3851.78	3855. 06	38.58.:3 4	3561.62	3564.90	3868.18
1180	3571.46	3574.71	3878.02	3581.30	3854.58	3587.87	3891.15	3594.43	3597.71	3900.99
1190	3904.27	3907.55	3910.83	3914.11	3917.39	3920.67	3923.96	3927.24	3930.52	3933.80
	(.	1.	2.	3.	4.	5.	6.	7.	8.	9.

1200 to 1599.

Metres.	Metres. (Units.)									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Eng.Feet.	Eng.Feet.	Eng.Feet.	Eng. Feet.	Fing. Feet.	Eng. Feet.	Eng. Feet.	Eng.Feet.	Eng.Feet.	Eng.Feet.
1200	3937.08	3940.36	3943.64	3946.92	395020	39.35 .45	3956.76	3960.05	3963.33	3966.61
1210	3969.59	3973.17	3976.45	3979.73	3983.01	3986.29	3989.57	3992.85	3996.14	3999.42
1220	4002.70	1005.98	4009.26	4012.54	4015.82	4019.10	1022.38	4025.66	4028.94	4032.23
1230	4035.51	40:38.79	$40+2.07$	4015.35	4048.63	4051.91	405.5.19	1058.47	1061.75	1065.03
1240	4068.31	4071.60	4074.88	4078.16	4081.44	4054.72	1088.00	4091.28	$409+.56$	4097.84
12.50	4101.12	4104.40	4107.69	1110.97	4111.25	4117.53	4120.81	4124.09	4127.37	4130.6 .3
1260	+133.93	4137.21	4140.49	4143.78	4147.06	4150.34	4153.62	4156.90	4160.18	4163.46
1270	4166.74	4170.02	4173.30	4176.58	4179.87	4853.15	4186.43	4189.71	4192.99	4196.27
1250	4199.5 .5	4202.83	4206.11	4209.39	4212.67	4215.96	4219.24	1222.52	4225.50	1299.68
1290	4232.36	4235.64	4238.92	4212.20	4245.48	4248.76	4252.05	4255.33	4255.61	4261.59
1300	4265.17	4268.45	4271.73	4275.01	4278.29	4281.57	4284.55	4288.14	4291.42	4294.70
1310	4297.98	4301.26	4304.54	4307.82	4311.10	4314.35	4317.66	4320.94	4324.23	4327.51
1320	4330.79	4334.07	4337.35	4340.63	4343.91	4347.19	4350.47	4353.75	4357.03	4360.31
1330	4363.60	1366.88	4370.16	4373.44	4376.72	4380.00	4383.28	4386.56	4359.84	4393.12
1340	4396.40	4399.69	4402.97	4406.25	4409.53	4412.81	416.09	4419.37	4.122 .65	425.93
1350	4429.21	4432.49	4435.78	4439.06	4 42.34	4455.62	4448.90	4452.18	445.56	4458.74
1360	4462.02	465.30	4468.58	4471.87	4775.15	4478.43	481.71	4484.99	+189.27	4491.55
1370	449 4.83	4493.11	4501.39	4504.67	4507.96	4511.24	4514.52	4517.80	4521.08	4524.36
1380	4.227 .64	4530.92	4534.20	4537.48	4540.76	4544.05	4547.33	4.50 .61	4553.69	4.57 .17
1390	4560.45	4563.73	4567.01	4570.29	4573.57	4576.85	4580.14	4583.42	4586.70	4589.98
1400	4593.26	4596.54	4599.82	4603.10	4606.38	4609.66	461294	4616.23	4619.51	4622.79
1410	4626.07	4629.35	4632.63	4635.91	4639.19	4642.47	4645.75	$46+9.03$	4652.31	4655.60
1420	46.58 .88	4662.16	466.5.44	4668.72	4(672.00	4675.28	4678.56	4681.84	4655.12	4688.40
1430	4691.69	4694.97	4698.25	4701.53	4704.81	4708.09	4711.37	4714.65	4717.93	4721.21
1440	4724.49	4727.78	4731.06	4734.34	4737.62	4740.90	4744.18	4747.46	4750.74	4754.02
1450	4757.30	4760.58	4763.87	4767.15	4770.43	4773.71	4776.99	4780.27	4783.55	4786.83
1460	4790.11	4793.39	4796.67	4799.96	4803.24	4806.52	4809.50	4813.08	4816.36	1819.64
1470	4522.92	1826.20	4829.48	4832.76	4836.05	4839.33	48.2 .61	4845.89	4849.17	4852.45
1480	455.73	4859.01	4862.29	486.5 .57	1268.85	4872.14	4875.42	4878.70	4881.98	4885.26
1490	4588.54	4891.s2	1595.10	4898.38	4901.66	4904.94	4908.23	4911.51	4914.79	4918.07
1500	4921.3 .5	4924.63	4927.91	4931.19	4934.47	4937.75	4941.03	4944.31	4947.60	4950.85
1510	49.4 .16	4957.44	4960.72	4964.00	4967.28	4970.56	4973.84	4977.12	4980.40	4983.69
1.520	4986.17	4990.25	4993.53	4996.81	5000.09	5003.37	5006.65	5009.93	5013.21	. 3016.49
1530	5019.78	5023.06	5026.34	5029.62	5032.90	5036.18	5039.46	5042.74	5016.02	5049.30
1540	50.52.5S	5055.87	5059.15	5062.43	506.5 .71	.5068.99	5072.27	5075.55	5078.53	5082.11
15.50	5085.39	5058.67	5091.96	509.5.24	5098.52	5101.80	510.5.08	5108.36	5111.64	5111.92
1.560	5118.20	5121.48	5124.76	5128.05	51:31.33	513161	5137.59	5141.17	5144.45	5147.73
1570	5151.01	5154.29	5157.57	5160.55	5164.14	5167.42	5170.70	5173.98	5177.26	5180.51
1580	5183.82	5187.10	5190.38	5193.66	5196.94	5200.23	5203.51	5206.79	5210.07	5213.35
1590	5216.63	5219.91	5223.19	5226.17	5229.75	5233.03	5236.32	5239.60	. 2242.88	5246.16
	0.	1.	2.	3.	4.	5.	6.	7 .	8.	9.

1600 to 2000.

Metres.	Metres. (Units.)									
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Eng. Feet.	Eug. Feet.	Eng. Feet.	Eng. Feet.	Enr Feet.	Eng.Feet.	Fing. Feet.	Eug. Feet.	Eng Feet.	Fug. Feet.
3600	5249.44	5252.72	5256.00	5259.25	5262.56	5265.84	5269.12	5272.40	5275.69	5275.97
1610	5282.25	525.5 .53	5288.51	5292.09	5295.37	5298.65	5301.93	5305.21	5305.49	5311.78
1620	5315.06	5:315.34	5321.62	5324.90	532\%.1s	5331.46	5334.74	5338.02	5341.30	$53+4.58$
1630	5347.87	53.51.15	5354.43	5357.71	5360.99	5364.27	5367.55	5370.85	5371.11	5377.39
1640	5350.67	5383.96	5357.24	5390.52	5393.50	5397.08	5400.36	5403.64	5406.92	5410.20
1650	5413.18	5416.76	5420.0 .5	5423.33	5426.61	5429.59	5433.17	5436.45	5439.73	5443.01
1660	5416.29	5449.57	5452.85	5456.14	54.59 .42	5.462 .70	5465.98	5469.26	5472.54	5475.82
1670	5479.10	5482.38	5485.66	5488.9 .4	$5492 \cdot 2: 3$	549.5 .51	5495.79	5502.07	5505.35	5508.63
1680	5511.91	5515.19	5515.47	5521.75	5525.03	5528.32	5531.60	5534.88	5538.16	55.11 .44
1690	5544.72	5548.00	5551.28	5554.56	5557.84	5561.12	5564.40	5567.69	5570.97	5574.25
1700	5577.33	5590.81	5584.09	5587.37	5590.65	5593.93	5597.21	5600.49	5603.78	5607.06
1710	5610.34	5613.62	5616.90	5620.18	5623.46	5626.74	5630.02	5633.30	5636.58	5639.57
1720	5643.15	5646.43	5649.71	5652.99	56.56 .27	5659.55	5662.83	5666.11	5669.39	5672.67
1730	5675.96	5679.24	5682.52	5685.80	5689.08	5692.36	5695.64	5698.92	5702.20	5705.48
1740	5708.76	5712.05	5715.33	5718.61	5721.89	5725.17	5728.45	5731.73	5735.01	5738.29
1750	5741.57	5744.85	5718.14	5751.42	5754.70	5757.98	5761.26	5764.54	5767.82	5771.10
1760	5774.38	5777.66	5780.94	5784.23	5757.51	5790.79	5794.07	5797.35	5800.63	5803.91
1770	5807.19	5810.47	5813.75	5S17.03	5820.32	5 5 23.60	5826.88	5830.16	5833.14	5836.72
1780	5840.00	. 8483.28	5846.56	5849.84	5853.12	58.66 .10	5859.69	5862.97	5866.25	5869.53
1790	5872.81	5576.09	5879.37	5882.65	5555.93	5889.21	5892.49	5895.78	5899.06	5902.34
1800	5905.62	5908.90	5912.18	5915.46	5918.74	5922.02	5925.30	5928.58	5931.87	5935.15
1810	59:35.13	5941.71	$59+4.99$	$59+8.27$	5951.55	5954.53	5958.11	5961.39	5964.67	5967.96
1520	5971.24	5974.52	5977.80	5981.08	5984.36	5987.64	5990.92	5994.20	5997.48	6000.76
1830	6004.0 .5	6007.3:	6010.61	6013.89	6017.17	6020.45	6023.73	6027.01	6030.29	6033.57
1840	60:36.85	6010.14	6043.42	6046.70	6049.98	6053.26	6056.54	6059.82	6063.10	6066.38
1850	6069.66	6072.94	6076.23	6079.51	6082.79	6086.07	6089.35	6092.63	6095.91	6099.19
1560	6102.17	610.7.75	6109.03	6112.32	6115.60	6118.58	6122.16	(i125.44	6128.72	6132.00
1870	613.5 .28	61:88.56	6141.84	6145.12	6148.40	6151.69	61.54 .97	6155.25	616].53	6164.81
1880	6168.09	6171.37	6174.65	6177.93	6181.21	6184.19	6187.78	6191.06	6194.34	6197.62
1890	6200.90	6204.15	6207.46	6210.74	6214.02	621730	6230.58	6223.87	6227.15	6230.43
1900	6233.71	6236.99	6240.27	6243.55	6246.83	(62.50.1]	62.53 .39	6256.67	6259.96	6263.24
1910	6266.52	6269.80	6273.08	6276,36	6279.6 .1	6282.92	6286.20	62-9.18	6292.76	6296.05
1920	6299.3:	6302.61	630589	6309.17	$6: 312.15$	(331.5.7:3	6.929 .01	6322.29	6325.57	63.28 .85
1930	633214	63:3.7. 42	6338.70	6341.98	6345.26	6315.54	6.351 .82	6355.10	6358.38	6361.66
1940	6364.94	6368.23	6371.51	6374.79	6375.07	63.1 .35	6354.63	6387.91	6391.19	6394.47
19.70	6397.75	16101.03	6104.32	6407.60	6130.88	6414.16	(i417.44	6120.72	6424.00	6127.28
1960	6430.56	6433.84	6137.12	6 ± 40.41	6443.69	6446.97	6450.2 .5	6453.53	6456.81	6460.09
1970	6463.37	6466.65	6469.93	6473.21	6.476.49	6479.78	648:3.06	$6486.3+$	6489.62	6492.90
1980	6196.18	6499.4t	6502.74	6506.02	6.509 .30	6.512 .58	6.515 .87	6.119 .15	6522.43	6525.71
1990	6528.99	6.532 .27	6535.5 .5	6538.83	6542.11	6.545 .39	6.548 .67	6.551 .96	65.55 .24	6558.52
2000	6561.80	6565.08	6568.36	6571.64	6.574 .92	6.578 .20	6.581 .48	6584.76	6588.05	6591.33
	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.

2000 to $\mathbf{2 3 9 9}$.

Metres.	Metrea. (Units)									
	0.	1.	2.	3.	4.			7.	8.	9.
	Eng.Feet.	Eng.Feet.	Eng.Feet.	Eng.Feet.	Eng. Feel	Eng.Feet	Eng.	Ig.Feet	Eug.Feet.	Eny Fret.
2000	6561.80	6565.08	6568.36	6571.64	6574.92	6578.20	6581.18	6554.76	6588.05	6591.33
2010	6594.61	6597.89	6601.17	6604.45	6607.73	6611.01	6614.29	6617.57	6620.85	6624.14
2020	662742	6630.70	6633.98	6637.26	6640.54	6643.82	6647.10	6650.38	6653.66	6656.94
2030	6660.23	6663.51	6666.79	6670.07	6673.35	6676.63	6679.91	6653.19	6686.47	6659.75
2040	6693.03	6696.32	6699.60	6702.88	6706.16	6709.44	6712.72	6716.00	6719.25	6722.56
2050	6725.84	6729.12	6732.41	6735.69	6738.97	6742.25	6745.53	6748.81	6752.09	6755.37
2060	6758.65	6761.93	6765.21	6768.49	6771.78	6775.06	6778.34	6781.62	6784.90	6755.18
2070	6791.46	6794.74	6798.02	6801.30	6804.58	6807.87	6811.15	6814.43	6817.71	6820.99
2080	6824.27	6527.55	6830.83	6834.11	6837.39	6840.67	6843.96	6847.24	6850.52	6853.80
2090	6857.08	6860.36	6563.64	6866.92	6870.20	6873.48	6576.76	6880.05	6883.33	6886.61
2100	6889.89	6893.17	6896.45	6899.73	6903.01	6906.29	6909.57	6912.85	6916.14	6919.42
2110	6922.70	6925.98	6929.26	6932.54	6935.82	6939.10	69 12.38	6945.66	6948.94	6952.23
2120	695.51	6958.79	6962.07	6965.35	6968.63	6971.91	6975.19	6978.47	6981.75	$698 . \overline{0} 03$
2130	6988.32	6991.60	6994.88	6998.16	7001.44	7004.72	7008.00	7011.28	7014.56	7017.84
2140	7021.12	7024.41	7027.69	7030.97	7034.25	7037.53	7040.81	7044.09	7047.37	7050.65
2150	7053.93	7057.21	7060.49	7063.78	7067.06	7070.34	7073.62	7076.90	7080.18	7083.46
2160	7086.74	7090.02	7093.30	7096.58	7099.87	7103.15	7106.43	7109.71	7112.99	7116.27
2170	7119.55	7122.83	7125.11	7129.39	7132.67	7135.96	7139.24	7142.52	7145.80	7149.08
2180	7152.36	7155.64	7158.92	7162.20	7165.48	7168.76	7172.05	7175.33	7178.61	7181.89
2190	7185.17	7188.45	7191.73	7195.01		7201.57	7204.85	7208.14	7211.42	7214.70
2200	7217.98	7221.26	7224.54	7227.82	7231.10	7234.3	7237.66	7240.94	7244.23	7247.51
2210	7250.79	7254.07	7257.35	7260.63	7263.91	7267.19	7270.47	7273.75	7277.03	7250.32
2220	7283.60	7286.88	7290.16	7293.44	7296.72	7300.00	7303.28	7306.56	7309.84	7313.12
2230	7316.41	7319.69	7322.97	7326.25	7329.53	7332.81	7336.09	7339.37	7342.65	7345.93
2240	7349.21	7352.49	7355.78	7359.06	7362.34	7365.62	7368.90	7372.18	7375.46	7378.74
2250	7382.02	7385.30	7388.58	7391.87	7395.15	7398.43	7401.71	7404.99	7408.27	7411.55
2260	7414.83	7418.11	7421.39	7424.67	7427.96	7431.24	7434.52	7437.80	7441.05	744.36
2270	7447.64	7450.92	7454.20	7457.48	7460.76	7464.05	7467.33	7470.61	7473.89	7477.17
2280	7480.45	7483.73	7487.01	7490.29	7493.57	7496.85	7500.14	7503.42	7506.70	7509.98
2290	7513.26	7516.54	7519.82	7523.10	7526.38	7529.66	7532.94	7536.23	7539.51	7542.79
2300	7546.07	7549.35	7552.64	7555.91	7559.19	7562.47	7565.75	7569.03	7572.32	7575.60
2310	7578.85	7582.16	7585.44	7588.72	7592.00	7595.28	7598.56	7601.84	7605.12	7608.41
2320	7611.69	7614.97	7618.25	7621.53	7624.81	7628.09	7631.37	7634.65	7637.93	7641.21
2330	7644.50	7647.78	7651.06	7654.34	76.37 .62	7660.90	7664.18	7667.46	7670.74	7674.02
2340	7677.30	7680.58	\%683.87	7687.15	7690.43	7693.71	7696.99	7700.27	7703.55	7706.83
2350	7710.11	7713.39	7716.67	7719.96	7723.24	7726.52	7729.50	7733.08	7736.36	7739.64
2360	7742.92	7746.20	7749.48	7752.76	7756.05	7759.33	7762.61	7765.89	7769.17	7772.45
2370	7775.73	7779.01	7782.29	7785.57	7788.85	7792.14	7795.42	7798.70	7801.98	7805.26
2380	7808.54	7811.82	7815.10	7818.38	7821.66	7824.94	7828.23	7831.51	7834.79	7838.07
2390	7841.35	7844.63	7847.91	7851.19	7854.47	7857.75	7861.03	7864.32	7867.60	7870.88
	©.	1	2.	3.	4	5	6.	7.	8.	9.

E
$\mathbf{2 1 0 0}$ to $\mathbf{2 7 9 9 .}$

Metres.	Metres. (Units)									
	(1).	1.	\pm.	3.	.	5.	6.	8.	8.	9.
	Etg.F	is.Feet.	Eng.Feet.	Eng Fees	Eng.Fer.	Eng.Ftel	Eur.Feet.	Ens Fent	Eng.Feet	Eng Frel.
2100	7874.16	7877.44	7880.72	7884.00	7857.25	7890.56	7893.04	7897.12	7900.41	7903.69
2410	7906.97	7910.25	791:3.53	7916.81	7920.09	7923.3.37	7926.65	7929.93	7933.21	7936.50
2120	7939.78	7913.06	7916.34	$79+9.62$	79.52 .90	7956.15	79.59 .46	7962.74	7966.02	7969.30
2130	7972.59	797.5 .57	7979.15	7983.43	790.5 .71	7988.94	7992.27	799.5 .5 .5	7995.83	8002.11
2110	-00.5.39	8008.67	8011.96	8015.24	5015.52	5021.80	802.).05	8028.36	5031.64	5034.92
21.50	8038.20	3041.48	3044.76	80-18.0.5	S051.33	80.54 .61	5057.89	8061.17	8064.45	8067.73
2160	-071.01	8071.29	8077.57	80×0.85	s08.1.14	8087.42	8090.70	8093.95	8097.26	8100.54
2170	810.3.82	8107.10	811038	8113.66	S116.94	8120.22	8123.51	8126.79	81:30.07	S133.35
2100	-136.6:3	8139.41	8143.19	8116.47	S149.75	8153.03	S156.32	S159.60	S162. ¢	8166.16
2190	8169.44	8172.72	8176.00	8179.2\%	8182.56	815.5.84	8159.12	8192.41	8195.69	8198.97
2.500	820.3.2.5	820.7.53	8.308.81	8212.09	221.5 .37	2018.6.7	8221.93	8.235.21	8228.50	8231.78
2.510	2.235.06	8.2.38.31	$82+1.62$	$82+4.90$	8.2fo.15	52.71.16	-254.74	8.258.02	8261.30	5264.59
2.520	$\checkmark 267.87$	3271.15	8274.43	8277.71	8.280 .99	8281.27	8257.55	5290.83	6291.11	5297.39
2.530	5300.67	23033.96	8307.24	8310.52	¢3I3.80	8317.0s	8320.36	3323.64	8326.92	8330.20
2.510	8333.48	5336.76	8310.05	8343.33	$83+6.61$	8319.89	8353.17	5356.45	$8: 359.73$	8363.01
2.5 .30	8366.29	8369.37	8372.8.5	8376.14	8379.42	8382.70	8385.98	8359.26	8392.54	8395.82
2.560	8399.10	8402.35	8105.66	8108.94	S412.23	8455.51	8+15.79	8422.07	8425.35	84.28 .63
2570	8431.91	8435.19	8483.47	8441.75	S445.03	8448.32	8451.60	8454.88	8458.16	8461.44
2.530	8461.72	8468.00	S171.28	$8+74.56$	8477.84	8481.12	84S4.41	8487.69	8490.97	8494.25
2.590	5497.53	5500.81	S504.09	8507.37	8510.65	8513.93	8517.21	5520.50	8523.7S	8527.06
2600	5.530 .34	5533.62	8.536.90	8510.18	85.43.46	8.546 .74	8550.02	8553.30	S556.58	8559.87
2630	8.563 .15	8566.43	5569.71	6.572.99	5.76 .27	8579.55	8582.83	8586.11	8589.39	8592.67
2620	859.5 .96	8599.24	8602.52	860.3.80	8609.08	8612.36	8615.64	8618.92	8622.20	8625.48
2630	-628.76	86:32.0.)	8635.33	8638.61	8641.89	864.5 .17	5648.45	S651.73	86.55 .01	S658.29
2640	8661.57	5664.85	8665.14	8671.42	8674.70	8677.98	8681.26	8684.54	S687.82	S691.10
26.50	8691.39	5697.66	8700.94	5701.23	8707.51	\$710.79	3714.07	8717.35	8720.63	8723.91
2660	8727.19	8730.47	S733.7.7	8737.03	8740.32	8713.60	$87+16.88$	8750.16	5753.41	8756.72
2670	8760.00	876:3.2S	8766.56	8769.81	8773.12	8776.4]	8779.69	8782.97	8786.25	8789.53
2650	-792. 1	87!6.0.9	8799.37	880.2.6.3	S805.93	8809.21	8812.50	8815.75	8819.06	8822.34
2690	5825.62	8828.90	883:.18	8835.46	8838.74	$88+2.02$	8845.30	8848.59	8851.87	8855.15
2700	8858.43	8861.71	8861.99	8868.27	8871.55	8874.83	8878.11	8881.39	8884.67	8887.96
2710	8891.24	8591.52	8897.80	8901.08	8904.36	8907.64	8910.92	$891+.20$	8917.48	8920.76
2720	8926.0.)	8927.33	89:30.61	8933.89	8937.17	8940.45	S943.73	$89+7.01$	8950.29	8953.57
2730	59.56.8.)	8960.14	896:3.42	8966.70	8969.98	8973.26	8976.54	8979.82	8983.10	8986.38
2710	S989.66	8992.91	8996.23	8999.ち1	9002.79	9006.07	9009.35	9012.63	9015.91	9019.19
2750	9022.17	902.5.75	9029.03	9032.32	903.5 .60	9038.88	9042.16	9045.44	9018.72	9052.00
2760	90.55 .28	90.58.56	9061.84	9065.	9068.41	9071.69	9074.97	9075.2.5	9081.53	9081.81
2770	9085.09	9091.:37	$909+.65$	9097.9	9101.21	9104.50	9107.78	9111.06	9114.34	9117.62
2780	9120.90	9124.18	9127.16	9130.74	$913+.02$	9137.30	9140.59	9143.87	9147.15	9150.43
2790	9153.71	9156.99	9160.27	9163.55	9166.83	9170.11	9173.39	9176.68	9179.96	9183.24
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.

2800 to 3000.

Metres.	Metres. (Units)										
	©.	$1 .$	$\underline{2}$	3.	4.	5.	6.	7.	8.	9.	
	Enute	Es.Feet.	Eng Feet.	Eıg.Feel.	Eng Fret.	E $!$ Feet.	Ende.Feer.	Eug Feet.	Eng.Fept.	Eng.Feet.	
2800	9186.53	9189.50	9193.08	9196.36	9199.64	9202.92	9206.20	9209.15	9212.76	9216.05	
2810	9219.33	9222.61	922.5.89	9229.17	9232.45	9235.73	92:39.01	9242.29	924.5 .57	92.18 .55	
2520	9232.14	925.5 .12	9258.70	9261.90	9265.26	9268.54	9271.82	9275.10	9275.38	9281.66	
2830	9254.94	9285.23	9291.51	9291.79	9295.07	9301.35	$930-4.64$	9307.91	4311.19	9314.47	
2840	9317.75	9:321.03	9321.32	9327.60	9:330.58	19334.16	9337.44	9340.72	9344.00	9347.28	
2850	9350.56	933.33.84	9357.12	9360.11	9363.69	9366.97	9370.25	9373.53	9376.81	9380.09	
2960	93833.37	9356.65	9389.9:3	9:393 21	$9: 396.50$	9899.7	9403.06	9406.34	9409.62	9412.90	
2870	9416.18	9419.16	9422.74	9426.02	94.29 .30	94:32.59	9435.87	9439.15	9442.43	$9+45.71$	
2850	9448.99	9152.27	9455.55	9458.43	9462.11	9465.39	9468.65	9471.96	9475.24	9478.52	
2890	9481.80	948.5 .08	9488.36	9491.64	9494.92	9498.20	9501.48	9504.76	9505.05	9511.33	
2900	9514.61	9.517 .89	9521.17	9.524 .45	9.527 .73	9531.01	95:34.29	9537.57	9540.85	9544.14	
2910	9547.12	9.5 .50 .70	'9553.98	9.5.57.26	9560.54	9563.82	9567.10	9570.38	9573.66	9576.94	
2920	9580.23	9583.51	'9556.79	9.590 .07	9593.35	9596.63	9599.91	9603.19	9606.47	9609.75	
2930	9613.03	9616.32	9619.60	962.85	9626.16	9629.44	9632.72	9636.00	9639.28	9642.56	
2940	9645.54	9649.12	9652.41	9655.69	9658.97	966:2.2	3665.53	9665.81	9672.09	9675.37	
2950	9678.62	9691.93	9685.21	9688.50	9691.78	9695.06	9698.34	9701.62	9704.90	9708.18	
2960	9711.16	9714.74	9718.02	9721.30	$972+.59$	9727.87	9731.15	9734.43	9737.71	9740.99	
2970	9744.27	9847.55	97.50 .83	9754.11	97.57 .39	9760.68	9763.96	9767.24	9770.52	9773.80	
2950	9777.08	9780.36	9783.64	9786.92	9790.20	9793.48	9796.76	9800.05	8803.38	9806.61	
2990	9809.8.9	9813.17	9816.45	9819.73	982:3.01	9826.29	9829.57	9832.85	S36.14	9839.42	
3000	\|9842.70		9845.98	9849.26	98.32.54	9555.82	9859.10	9562.38	9865.66	9868.94	9572.23

Proportional Parts.

VIII. conversion of metres into rhine or prussian feet and decimals.

1 Metre $=3.1861995$ Rhine Feet.

Metres. Thousands.	Hundreds.									
	(1).	100.	200.	300.	400.	500.	(i00.	700.	800.	900.
0	Rhine ft.	Rhineft.	Mhine ft. 637.9	MLineft.	$\begin{array}{r} \text { Rhineft. } \\ 197+6 \end{array}$	Rhine ft. 1593.1	Rhineft. 1911.7	Rhiue ft. 0.0.30. 3	Rhine ft.	Rhine ft.
0		318.6	637.2	955.9	1274.5	1593.1	1911.7	230.3	2549.0	. 6
1000	3186.2	3504.8	3823.4	4142.1	4460.7	4779.3	5097.9	5416.5	5735.2	6053.8
2000	6372.4	6691.0	7009.6	7328.3	7646.9	7965.5	8284.1	8602.7	8921.4	9240.11
3000	9558.6	9877.2 1	10195. 8	10514.5	10833.1	11151.7	11470.3	11788.9	12107.6	$12+26.2$
4000	12744.8	13063.4	13382.01	13700.7	14019.3	14337.9	14656.5	14975.1	15293.8	15612.4
5000	15931.0	16249.6	16568.2	16886.9	5.5	17524.1	17842.7	18161.3	1848	
6000	19117.2	19435.8	19	20073.1	20391.7	07	21028.9	21347.5	21666	
7000	22303.4	$22(62.0$	22940.6	23259.3	577.9	23896	24215.1	24533.7	2485	
8000	25489.6	25808.2	26126.8	26445.5	26764.1	27082.7	7401.3	. 9	28038	28357.2
9000	28675.8		29313.0	29631.7	29950.3	30268.9	30587.5	30906.1	31224.8	31543.4
IX. conversion of metres into feet of vienna. 1 Metre $=3.1637488$ Vienna Feet.										
Metres. Thousands.	Hundreds.									
	(1)	D0.	-200.	300.	400.	500.	600.	904.	800.	900.
0	Vieu. ft. 0.00	$\begin{aligned} & \text { Vieu. ft. } \\ & 316.37 \end{aligned}$	$\begin{array}{r} \text { Vien. } \mathrm{ft} . \\ 632.75 \end{array}$	$\begin{aligned} & \text { Vien. ft. } \\ & 949.12 \end{aligned}$	$\begin{gathered} \text { Vien. ft. } \\ 1265.50 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Vien. ft. } \\ 1581.87 \end{gathered}\right.$	$\begin{gathered} \text { Vien.ft. } \\ 1898.25 \end{gathered}$	Vien. ft. 2214.62	Vien. ft. 2531.00	$\begin{aligned} & \text { Vien. ft. } \\ & 2847.37 \end{aligned}$
1000	3163.7	3480.1	3796.5	4112.9	4429.2	4745.6	5062.0	5378.4	5694.7	6011.1
2000	6327.5	6653.9	6960.2	7276.6	7593.0	7909.4	8205.7	8542.1	8858.5	9174.9
3000	9491.2	9807.6	10124.0	10440.4	10756.8	11073.1	11389.5	11705.9	12022.3	12338.6
4000	12655.0	12971.4	13257.7	13604.1	13920.5	14236.9	14553.3	14869.6	15186.0	15502.4
5000	15818.7	16135.1	16451.5	16767.9	17084.2	17400.6	17717.0	18033.4	18349.7	18666.1
6000	18.982 .5	19298.9	19615.2	19931.6	20248.0	20564.4	20880.7	21197.1	21513.5	21829.9
7000	$\because 2146.2$	22460.6	22.79 .0	23095.4	23411.7	23728.1	24044.5	24360.9	24677.2	-4993.6
81000	25310.0	126.4	25942.8	26259.1	265575.5	26891.9	27208.2	27524.6	27841.0	28157.4
9000	2483.7	$2-790.1$	29106.5	29422.9	29739.2	30055.6	30372.0	30688.4	31004.7	31321.1
Tens.	Units.									
	D.		2.	3.	4.	5.	6.	7.	8.	9.
	Vien. ft.	Vien. ft	Vien. ft.	Vien, ft.	Vien. ft.					
0	0.00	3.16	6.33	9.49	12.65	15.82	18.98	22.15	25.31	28.47
10	31.64	34.80	37.96	41.13	44.29	47.46	50.62	53.78	56.93	60.11
20	63.27	66.54	69.60	72.77	75.93	79.09	82.26	85.42	88.58	91.75
30	94.91	98.08	101.24	104.40	107.57	110.73	113.69	117.06	120.22	123.39
40	126.55	129.71	132.88	136.04	139.20	142.37	145.53	148.70	151.86	155.02
50	158.19	161.35	164.51	167.68	170.84	174.01	177.17	180.33	183.50	186.66
60	189.82	192.99	196.15	199.32	202.48	205.64	208.81	211.97	215.13	218.30
70	221.46	ㄴ.4.63	$\underline{2} 7.79$	230.95	234.12	237.28	240.44	243.61	246.77	249.94
80	253.10	256.26	259.43	262.59	265.75	268.92	272.08	275.25	278.41	281.57
90	284.74	287.90	291.06	294.23	297.39	300.56	303.72	306.88	310.05	313.21

TO CONVERT

PARIS OR FRENCH FEET

INTO DIFFERENT MEASURES OF LENGTH.

X. CONVERSION OF PARIS OR FRENCH FEET INTO TOISES.

1 French Foot $=0.1666666$ Toise.

	Hundreds.									
Thousands.	0.	100.	200.	300.	400.	500.	600.	700.	800.	900.
0	Toises. 0.00	Toises. 16.67	Toises. 33.33	Toises. 50.00	Toises. 66.67	Toises 83.33	Toises. 100.00	Toises. 116.67	Toises. 133.33	$\begin{aligned} & \text { Toises. } \\ & 150.00 \end{aligned}$
1000	166.67	183.33	200.00	216.67	233.33	250.00	266.67	283.33	300.00	316.67
2000	333.33	350.00	366.67	383.33	400.00	416.67	433.33	450.00	466.67	483.33
3000	500.00	516.67	533.33	550.00	566.67	583.33	600.00	616.67	633.33	650.00
4000	666.67	683.33	700.00	716.67	733.33	750.00	766.67	753.33	800.00	816.67
5000	833.33	850.00	866.67	883.33	900.00	916.67	933.33	950.00	966.67	983.33
6000	1000.00	1016.67	1033.33	1050.00	1066.67	1083.33	1100.00	1116.67	1133.33	1150.00
7000	1166.67	1183.33	1200.00	1216.67	1233.33	12.50 .00	1266.67	1283.33	1300.00	1316.67
8000	1333.33	1350.00	1366.67	1383.33	1400.00	1416.67	1433.33	1450.00	1466.67	1483.33
9000	1500.00	1516.67	1533.33	1550.00	1566.67	1583.33	1600.00	1616.67	1633.33	1650.00
10000	1666.67	1683.33	1700.00	1716.67	1733.33	1750.00	1766.67	1783.33	1800.00	1816.67
11000	1833.33	1850.00	1866.67	1883.33	1900.00	1916.67	1933.33	1950.00	1966.67	1983.33
12000	2000.00	2016.67	2033.33	2050.00	2066.67	2083.33	2100.00	2116.67	2133.33	2150.00
13000	2166.67	2183.33	2200.00	2216.67	2233.33	2250.00	2266.67	2283.33	2300.00	2316.67
14000	2333.33	2350.00	2366.67	2383.33	2400.00	2 ± 16.67	2433.33	2450.00	2466.67	2483.33
15000	2500.00	2516.67	2533.33	2550.00	2566.67	2583.33	2600.00	2616.67	2633.33	2650.00
16000	2666.67	2683.33	2700.00	\|2716.67	2733.33	2750.00	2766.67	2783.33	2800.00	2816.67
17000	2833.33	$2 \checkmark 50.00$	2866.67	2883.33	2900.00	2916.67	2933.33	2950.00	2966.67	2953.33
18000	3000.00	3016.67	3033.33	3050.00	3066.67	3083.33	3100.00	3116.67	3133.33	3150.00
19000	3166.67	3183.33	3200.00	3216.67	3233.33	3250.00	3266.67	3253.33	3300.00	3316.67
20000	3333.33	3350.00	3366.67	3383.33	3400.00	3416.67	3433.33	3450.00	3466.67	3483.33
21000	3500.00	3516.67	3533.33	35.50 .00	3566.67	3583.33	3600.00	3616.67	3633.33	3650.00
22000	3666.67	3653.33	3700.00	3716.67	3733.33	3750.00	3766.67	3783.33	3800.00	3816.67
23000	3833.33	3850.00	3866.67	3583.33	3900.00	3916.67	3933.33	3950.00	3966.67	3983.33
24000	4000.00	4016.67	4033.33	4050.00	4066.67	4083.33	4100.00	4116.67	4133.33	4150.00
25000	4166.67	4183.33	4200.00	4216.67	4233.33	42.50 .00	4266.67	428:3.33	4300.00	4316.67
26000	4333.33	4350.00	4366.67	4383.33	4400.00	4416.67	4433.33	4450.00	4466.67	4483.33

	Hus incis．									
	0.	100.	200.	300.	100.	500．	600.	700.	800.	900.
0	Me:es.	Me：ses $3 .+2$	$\begin{aligned} & M_{0}=2=8 \\ & n \neq .0 \end{aligned}$	$\begin{aligned} & \text { Moses. } \\ & 4: 4.4 \bar{n} \end{aligned}$	$\begin{aligned} & \text { Yeses. } \\ & 120.44 \end{aligned}$	$\begin{aligned} & \text { Me:zes } \\ & 102+2 \end{aligned}$	$\begin{aligned} & \text { Me:2s. } \\ & 19+64) \end{aligned}$	$\begin{aligned} & \text { Me: es } \\ & 22: .34 \end{aligned}$	$\begin{aligned} & \text { Metere } \\ & 234=9 \end{aligned}$	$\begin{aligned} & \text { Metres } \\ & 242.34 \end{aligned}$
300？	$\therefore 2 \pm$－	259．32	S－0．？1	422．20	＋5．$=$		514．74	5．5．2．	5－4．：1	617.19
2000	－	$0-2.10$	－114．n5	$\therefore-13$	－：4．61	－12．10	－46．3－	－－．	404.85	$4+2.03$
20？${ }^{\text {a }}$	ソーがこ	1．1：－）		1071．42	1104.45	$1130.4+$	1109．42	1011.91	1234.34	1260．0：
403	1294.36	1831．04	1364.33	1340．：	$1+20 \cdot 20$	1+611.:	$1+24.26$	15215.75	1550.23	$1501 . \% 1$
570	$152+29$	1ヶ゙かった	10．0．10	1：21．65	1：54．38	$15-6.2$	1－19．10	－31．0	18～4．07	19168.55
5ima	$14.4 .9+$	$14-1.52$	2014.0	$23^{2}+6.4$	－－－ 4 －	2111．46	$21+3.44$	2160.42	$290-.91$	$22+1.39$
－0） 0	－2－3．．	2S in．3n	－385－6t	$23: 1.33$	240301	2435．3n	－40ッ－：	2 O 11.20	2533.7	2.906 .23
－ 210	$270-72$	2031.27	26からカー	2645．1：	2720.651	－8081．14	－43．5	－6．10	$2-5 \cdot .59$	2－41．07
0000	20.3 .55	20.93 .04	$24-5.52$	022．01	3053.49	$30-54$	115.46	150．9	31.3 .43	3215.41
1009？	$32=-34$		313.35	345	$335-33$	－10	$3+43.30$		3505.2	3540.75
1107	8590．3．23	Sncs． 2	3038.30	3 B 00.04	3503.17	3－35．8．55	3.65 .14	3－00．62	3－33．11	3－65． 59
1278	3－0．0：	34330.51	39.33 .04	304532	402－（1）	$1+600.49$	4092．4，	4125．46	4157.94	4190.43
13007	422.41	4255．49	4－3－：－	＋320．36	＋352．－5	43－5．33	417．．2	44.10 .30	4＋2． $5=$	4515．29
$1+009$	4547.85	$45=0.24$	4612.72	4645.10	$40: 7.59$	4710.07	4742.56	4：73．04	t－07．5？	$t=40.01$
15079	4502.50	49050.05	4487.56	49010.04	5002.53	5035.01	5065.49	5094.45	5132．46	5164.95
16）	519\％．43	5224.41	3282040	3244.9	5327．37	5359．：5	5382.33	$5+2.20$	545\％．30	54－6．79
1707	552.27	55.54 .25	$55=-2.2+$	的14．\％2	56.52 .21		517．17	5749.66	5ご2．14	$5-14.63$
1507）	5×2.811	$5-7.4 .34$	541200	3444.55	547－．05	50009．53	（1） 2.01	6054.50	6106.9	6139．75
14000	01：1．05	6204.43	5238.42	5254.40	6301．－	6334.37	6360.55	0894.34	6431.5	6．464．30
2017）？	544n．－4	5.529 .27	6551．－7	5.594 .24	65.26 .72	56.59 .21	6591.69	6724.15	85.56 .66	6．59．14
210 m	5021.53	6－54．11	ricebibu	$6419.0=$	5451.55	6u－4．015	－016．33	－ 044.02	7081.50	7113.93
22070	：14nit：	：17－．95	－211．4t	：243．9．2	7250	730－．99	－341．37	－373．－6	7406.34	7435.32
23007	7－7．31	－503．79	7536.2 －	730．8．06	7601．24	7633．73	－666．21	－n9 54	7：31．1＝	：：63．66
$2+009$	：－90．15	$\therefore 2.53$	$7=61.11$	$\therefore 93.60$	－923．0．	－953．5：	－991．05	－023．53	＝056．02	－0 $0=2.50$
23009	－120．90	－153．17	－ 155.95	－2］5．44	$\therefore 251.92$	－233．41	5815.59	－415．37	583＝0．56	S 413.34
2009	－ 445.93	－ 4 T： 31	－510．－4 $=$	2－543．2－	－5：5．7i5	－60－24	－640．73	－ 5.3 .3 .21	$-.05 .70$	$=-738.15$
25	$\therefore \therefore 0.0$ ¢	$\cdots 33.15$	$\cdots 2.68$	－85．12	－ 4 mon ．n0	－933．0＝	－965．5．57	－442－．05	90：30．54	9063.02

Tni？s．

	0.	1.	2.	3.	1.	5.	6.	$\%$	8.	9.
0		$\begin{aligned} & 14=5=5 \\ & 10.32+0 \end{aligned}$	$\begin{aligned} & 1+5=5 \\ & 0.0+47 \end{aligned}$	$\begin{aligned} & \text { Meses. } \\ & 0.4 .45 \end{aligned}$	$\begin{aligned} & \text { Yetres. } \\ & 1.2494 \end{aligned}$	$\begin{aligned} & \text { Me:res. } \\ & 1.6242 \end{aligned}$	$\begin{aligned} & \text { Metres } \\ & 1.4490 \end{aligned}$	$\begin{aligned} & \text { Me:res. } \\ & 2.2739 \end{aligned}$	Meites． $2.54=7$	$\begin{aligned} & \text { Yetres. } \\ & 2.9236 \end{aligned}$
10	3.24 .4	3.53 .32	$3.90-1$	4.2229	4．54\％	$4.0-26$	5．19：4	5.3223	5．547］	6.1719
20	$6.496=$	5．－215	－． 1455	7．4：33	7.7981	－ 21210	－．44．5	$\therefore .707$	9．095．5	9.4203
30	4.7452	17．0：00	$10.39+4$	10.7147	11.044 .5	11.3594	11.6942	12.0141	12.3439	12.565
40	12.4×35	13．31 3 4	13．5433	13.9651	14.2929	14．617＝	14.9426	15.2675	15.5923	15．9171
50	15.2429	16.5659	15．541n	1：．215．5	17．5413	1\％．5562	15.1910	5．515	18．8407	19.16 .55
69	19．44）4	$19: 152$	20.1400	20.4549	20．7－97	21．114ti	21.439	1．－542	2.0591	22.4139
70	22．83＝	23.0538	23.3 － 4	23.7133	24.0351	$\underline{-2.3530}$	$2465:$	25.0126	25.3375	25.6623
50	25．9－72	25.3120	$25.535=$	25.9517	27.2 －6．	－2－6．6114	$27.93 \square^{2}$	$2=.2610$	28.5559	5.9107.
90	29.2355	29.5304	29．8552	30.2101	30.5349	30．8．597	31.1546	31.5094	31.8343	32.1591

גII．CONVERSION OF PARIS OR FRENCH FEET INTO FNOTISH FEET AND DECIKAES．

	Haclueds．									
Thousands．	0.	100.	200.	300.	100.	500.	600.	700.	500.	900.
0	$\begin{gathered} \text { Erge fest } \\ 0.0 \end{gathered}$	$\begin{gathered} E n \geq f 6: \\ 105.6 \end{gathered}$	$\begin{aligned} E_{D} & =f \in e t . \\ & 213.2 \end{aligned}$	$\begin{aligned} \text { En }=\text { Snt } \\ 319.7 \end{aligned}$	$\begin{gathered} E_{L I}=f \text { fer. } \\ +26.3 \end{gathered}$	$\begin{array}{r} \text { Etz } \mathrm{Enct} \\ 53.2 .9 \end{array}$	$\begin{array}{r} E_{E}: \text { Et: } \\ 639.5 \end{array}$	$\begin{aligned} x_{2} z \\ i+0.0 \end{aligned}$	$\begin{aligned} E_{n}= & =52.5 \\ & =52 \end{aligned}$	EIE E6e 959.2
1000	1065．${ }^{\text {a }}$	1172．3	12：－9．9	13.5 .5	1492.1	159－6	1：05．2	1－11．0	1915.4	2025.0
2000	$2131 . .5$	$2.3=.1$	$23+4.7$	24.51 .3	255%	2564.4	2：71．0	2－5\％．b	$29=4.1$	2040.7
3000	3197.3	3303.9	3410.4	3517．0	3623.6	3730.2	3－36．	3943.83	＋049．9	4150.5
4000	4263.1	4359.6	4455.2	$45=2.6$	4659.4	479．3．9	4902.5	5009.1	5115.7	5223.3
5000	5325.5	5435.4	5542.0	564 5.6	5：5．5． 1	5－61．7	5965.3	6074．9	$61-1.4$	620：．0
6090	63394.6	6501.2	5607.7	6514.3	か－20．9	5927.5	70：34．1	7140.5	724.2	7353．$=$
\％000	i460．4	－ 5 964．9	76.3 .5	Ti＝0．1	7－－6．7	7993． 2	＝049．－	$\because 200.4$	－313．9	－ 414.5
$=000$	5526.1	5632.7	$=739.3$	S－45．9	－953．4	90.59 .9	916.5 .6	$92: 2.2$	9378	4.453
9000	9.991 .9	9659.5	$9=05.0$	9y11．6	1001－．2	10124.8	10231．3	10337.9	10444.5	105.51 .1
10000	1055\％．7	1075：．2	10こ：0．5	10978.4	11054.0	11197.5	11297.1	11403.7	11510.3	1516.5
11000	11：23．	$11=33.0$	11935.6	12043.1	12144.7	12250.3	12362.4	12.54 .5	12595.0	2ヶこ2．5
12000	127－9．2	12995．	13002.8	$1310-.9$	13215.5	13：32．1	13＋2－．5	13535．2	186＋1．$=$	183が， 4
13000	$13=55.0$	13961.5	$1406 \leq .1$	1417．7	$142=1.3$	143こ\％．	1449＋．4	$1+5{ }^{\circ} 1$	14707.6	14614.1
14000	14920.7	1.5027 .3	1.5133 .9	1.2240 .4	15347.0	15453.6	1.5550 .2	15ヶロら：－	15748.3	$15=-8.9$
15000	15956.5	16093.1	16199.6	15305．2	15412．5	16519.4	6625.9	6．32．5	5839.1	16945．7
16009	17052．2	1715s．	17255.4	1：3：2．0	174% ．6	$175=3.1$	1：59］．7	17：3－．3	17914.9	1－011．4
17030	1511－．0	1－224．5	1－331．2	$1=437.7$	$1-544.3$	15650.9	1：575．5	$1=-64.0$	1－970．5	14275
1－030	191－3．	19290.4	19395.9	14.503 .5	19610.1	19715.7	19023.2	19929．	20035.4	20143.0
19000	20249.5	20356.1	20462.7	20.569 .3	20575.5	207：2．4	$20=99.0$	20945.5	21102.2	$2120 \cdot 7$
20000	21315.3	21421.9	21523.5	21635.0	21741.6	2155.2	22054.5	2.151 .8	22158.9	22274.5
21000	22351.1	$22+56.7$	22594.2	22700.5	22000.4	22914.0	23020.5	23127.1	23233.7	$238+0.3$
22000	$23+46 .=$	23.553 .4	23550.0	23750	23－ 23.1	23479.7	$240-6.3$	$2+142.4$	22.404 .5	$2+405.0$
23090	24512.6	24519.2	24－25：	24532.3	$2493-9$	25045.5	25152.1	$2525=.15$	25355.2	25＋i］．$=$
24000	255%－4	25654.9	25791.5	$25 \leq 9 \leq .1$	26004.7	26111.3	25217.5	20324.4	26431.0	25537.6
25000	26644.1	26750.7	26534．3	26953.9	28050.4	2717.0	ごご33．5	27390.2	$27+96.7$	$2: 803.3$
26000	27509.9	$2 こ 16.5$	27923.1	$2<029.6$	$2-13 n .2$	$2-242.5$	2－344．4	$2=455.9$	$2-552.5$	2－5i5．1
27000	25755．7	2ごく？．2	2－995．8	24095.4	24202.0	$2930-.5$	29415.1	29521.7	24525.3	24784.9

ப品：

	0.	1.	2.	3.	1.	．）．	6.	$\%$	9	9.
0	$\begin{gathered} E_{n}=f \text { fet } \\ 0.000 \end{gathered}$	$\begin{gathered} E_{0 y} \text { fere } \\ 1.056 \end{gathered}$	$\begin{array}{r} \text { Enz. Feez } \\ 2.132 \end{array}$	$\begin{array}{r} \text { Enz feet } \\ 3.197 \end{array}$	$\begin{array}{r} \text { En=fus! } \\ 4.2+3! \end{array}$	$\begin{array}{r} \text { Enz } \\ 5.304 \end{array}$	$\begin{gathered} E_{n}=f=: \\ 6.395 \end{gathered}$	$\begin{gathered} E_{5}=\text { iem: } \\ 7.400 \end{gathered}$	$\begin{gathered} \text { En }=\text { fer: } \\ =.520 \end{gathered}$	$\begin{array}{r} \text { ED }=20+ \\ 4.592 \end{array}$
10	10.655	11.823	12.759	13．9．53	14．421	$15.9 \leq 6$	17．052	1：．11：	19.1 － 4	20.2511
20	21.315	$2 \cdot 2.3=1$	23.445	$\underline{24.513}$	25.5%	25.644	27.710	2．8．75	29．－4］	30.467
30	31.973	33.039	34.104	35.150	36.236	37．302	32．365	39.433	40． 499	555
40	42.631	43.696	＋4．762	45.20	45.294	＋7．9．59	49.025	50.041	51.157	52.223
50	53.259	54.354	55.420	56．4－6	57．5．51	53．617	59．63．3	50.759	51.514	52．：30
60	63.946	65.012	66.05	67.143	65.204	64.35	－0．341	－1．40n	－2．4：2	－3．5．53
70	74.604	75．669	76．735	7\％．001	78.567	79．933	50.995	E2nnt	－3．130	－ 4.195
80	S5．261	56.327	E7．393	－8．4．99	－9．52t	90.590	91.655	92.722	63．7－5	94.853
90	95.919	96．9E5	98.050	99.116	$100.1=2$	101．24	102.318	103．85：9	104.445	10.5 .511

478

XIII. conversion of paris or french feet into rhine or prussian feet.

1 Paris Foot $=1.03,00323$ Rhine Foot.

French	Hundreds									
Thousands.	0.	100.	-300.	300.	100.	5000.	609.	700.	S00.	980.
0	$\begin{array}{r} \text { Rhiseft. } \\ 0.00 \end{array}$	Rhiuett. 103.50	Rhine ft. 207.00	Rhiue ft . 310.50	$\begin{array}{r} \text { Rhine ft. } \\ 414.00 \end{array}$	$\begin{array}{r} \text { Rhine ft. } \\ 517.50 \end{array}$	Rhane fi. 621.00	$\begin{aligned} & \text { Rhine ft. } \\ & 7 \because 4.50 \end{aligned}$	Rhiue ft. と2. 000	$\begin{array}{r} \text { Thine ft. } \\ 931.50 \end{array}$
1000	1035.00	1138.50	$12+2.00$	1345.50	1449.00	1552.50	1650.00	1759.51	1863.01'	1966.51
2000	2070.01	2173.51	2277.01	2380.51	2484.01	2587.51	2691.01	2764.51	2898.01	3001.51
3000	310.5 .01	3208.51	3312.01	3415.51	3519.01	3622.51	37.26 .01	3829.51	3933.01	4036.51
4000	4140.01	4243.51	4307.01	4450.51	4554.01	4657.51	4761.01	4864.51	4968.01	5071.51
5000	5175.01	5278.52		.52	5589.02	5692.52	5796.02	5899.52	6003.02	6106.52
6000	${ }^{1} 210.02$	6313.52	(6417.02	0.52	6694.02	15727.52	8831.02	6934.52	7035.02	7141.52
7000	T-45.02	7345.52	7552.02	5.5	7659.02	7762.	60.02	7669.52	8073.02	8176.52
8000	8280.102	-3-3.52	-457.02	8590.52	5684.03	8797.53	8907.03	9014.53	9108.03	9211.53
9000	9315.03	418.53	2522.03	9625.53	9729.03	9832.53	9936.03	10039.53	10143.03	10246.53
10000	10350.0	10453.5	105.57 .0	10660.5	10764.0	10867.5	10971.0	11074.5	11178.0	11281.5
11000	11355.0	11458.5	11592.0	11695.5	11799.0	11902.5	12006.0	12109.5	12213.0	12316.5
12000	12420.0	12523.5	12627.0	12730.5	12834.0	12937.5	13041.0	$131+4.5$	13245.0	13351.5
13000	13455.0	13558.5	13662.0	13765.5	13569.0	13972.5	14076.0	1417:9.5	14283.0	11386.5
14000	14490.0	14593.5	14697.0	14800.5	14904.0	15007.5	15111.0	15.214 .5	15318.0	15421.5
15000	15525.0	15608.4	32.0	15835.5	15939.0	16042.5	16146.0	1624.9.5	16353.0	16456.6
16000	16560.1	16663.6	16767.1	16570.6	16974.1	17077.6	17181.1	17284.6	17385.1	17491.6
17000	17595.1	176998.6	17502. 1	17905.6	18009.1	18112.6	18216.1	18:319.6	15423.1	18526.6
15900	18630.1	15733.6	1-837.1	18940.6	19044.1	19147.6	19251.1	19354.6	19458.1	19561.6
19000	19665.1	19768.6	19572.1	19	20079.1	20182.6	20286.1	20389.6	20493.1	20596.6
20000	20700.1	20803.6	20907.1	21010.6	21114.1	-17.0	21321.1	21424.6	21528.1	21631.6
21600	21735.1	$21 \sim 38.6$	21942.1	22045.6	2.214! 1	22052.	22356.1	22459.6	22563.1	22666.6
22000	22770.1	2.253 .6	22977.1	23080.6	23184.1	23287.	23391.1	28.494 .6	23598.1	23701.6
23000	23805.1	23908.6	24012.1	$2+115.6$	$2+219.1$	24322.6	$2+426.1$	24529.6	24633.1	24736.6
24000	-4 40.0	24943.6	25047.1	25150.6	25254.1	25357.6	25461.1	25564.6	25668.1	25771.6
25000	25875.	978.6	26082.1	26185.6	26289.1	26392.6	26596.1	26699.6	26703.1	26806.6
26000	-6910.	013.6	27117.1	27220.6	27321.1	27427.6	27.51 .1	27634.6	27738.1	27841.6
27000	2794	14	$2-152.1$	255.	28359.1	28462.6	28566.1	28669.6	8773.1	-876.6
2-400	2s!	183	1	29290.6	29394.1	29497.	29601.0	29714.6	29808.0	29911.6
						nits.				
	d.	1.	2.	3.	4.	5.	6.	8.	5.	9.
0	Rhine ft 0.00	Rhine ft. 1.04	Rhiueft.	Rhineft. 3.11	Rhine ft. 4.14	Rhiue ft. 5. 18	Rhine ft. 6.21	Phine ft. 7.25	$\begin{gathered} \text { Rhine ft. } \\ 8.28 \end{gathered}$	Rhine ft. 9.32
10	10.35	11.39	12.42	13.46	14.49	15.53	16.56	17.60	18.63	19.67
20	20.71	21.74	22.77	23.81	24.84	25.88	24.91	27.95	28.98	30.02
30	31.05	32.09	33.12	34.16	35.19	31.23	37.26	38.30	39.33	41.37
40	41.40	42.44	43.47	4.51	45.54	46.58	47.61	48.65	49.68	50.72
50	51.75	52.79	53.82	54.86	55.89	56.93	57.96	59.00	60.03	61.07
60	62.10	63.14	64.17	65.21	66.84	67.28	68.31	69.35	70.38	71.42
70	72.45	73.49	74.52	75.56	76.59	77.63	78.66	79.70	80.73	S1.77
80	82.80	83.84	84.87	85.91	86.94	87.98	89.01	90.05	91.08	92.12
90	93.15	94.19	95.22	96.26	97.29	98.33	99.36	100.40	101.43	102.47

1 Paris Foot $=1.027710$.

rench	Hundreds.									
Tho	0	100.	200	300.	400.	500.	600.	700.	860.	900.
0	Vien. ft. 0.00	$\begin{aligned} & \text { Vien. ft. } \\ & 102.77 \end{aligned}$	Vien. ft. 205.54	Vien. ft. 308.31	Vien. it. 411.08	$\begin{array}{r} \text { Vien. ft. } \\ 513.85 \end{array}$	Vieu. ft. 616.63	Vieu. ft. 719.40	Vien, ft. 822.17	Vien. ft. 924.94
1000	1027.71	1130.48	1233.25	1336.02	1438.79	1541.56	$16+4.34$	1747.11	1849.88	1952.65
2000	2055.42	2158.19	2260.96	2363.73	2466.50	2569.27	2672.05	2774.62	2877.59	2980.36
3000	3083.13	3155.90	67	3391.44	3494.21	3596.98	3699.76	3802.53	3905.30	4008.07
4000	4110.84	4213.61	4316.38	419.15	4521.92	4624.69	4727.47	4830.24	4933.01	5035.78
5000		5	5344.09	5446.86	5549.63	5652.40	5755.18	5857.95	5960.72	6063.49
6000	6166.26	6269.03	6371.80	. 57	6577.34	6680.11	6762.89	6885.66	6988.43	7091.20
7000	7193.97	7296.74	7399.51	7502.28	7605.05	7707.82	7810.60	7913.37	8016.14	8118.91
8000	¢221.68	8324.45	8427.2	8529.99	8632.76	5735.53	8838.31	8941.08	9043.85	9146.62
9000	9949.39	9352.1	!	7.70	9660.47	9763.24	9866.02	9968.79	10071.56	10174.33
10000	10277.1	10379.9	10	. 4	10688.2	10791.0	10893.7	10996.5	11099.3	11202.0
11000	11304.8	11407.6	11510.	11613.1	11715.9	11818.7	11921.4	12024.2	12127.0	12220.7
12000	12332.5	12435.	38.1	12640.8	12743.6	12846.4	12949.1	13051.9	13154.7	13257.5
13000	13360.2	13463.1	13565.	13668.5	13771.3	13874.1	13976.9	14079.6	14182.4	$14 \div 85.2$
14000	14357.9	14490.7	14593.5	14696.3	14799.0	14901.8	15004.6	15107.3	15210.1	15313.6
15000	15415.6	15518.4	15621.2	15724.0	15826.7	15929.5	16032.3	16135.0	16237.8	16340.6
16000	16443.4	16546.1	16648.9	16751.7	16854.4	16957.2	17060.0	17162.6	17265.5	17368.3
17000	17471.1	17573.8	17		17882.2	17984.9	18087.7	18190.5	18293.2	18306.0
18000	18498.8	18601.6	18704. 3	18807.0	18903.9	19012.6	19115.4	19218.2	19320.9	19423.7
19000	19526.5	19629.3	19732.0	19834. 8	19937.6	20040.3	20143.1	20245.9	20348.7	20451.4
20000	20554.2	20657.0	20759.7	20862.5	20965.3	21068.1	21170.8	21273.6	21376.4	21479.1
21000	21581.9	21684.7	21757.5	21890.2	21993.0	22095.8	22198.5	22301.3	22404.1	22506.8
22000	22609.6	22712.4	22815.	22917.9	23020.7	23123.5	23226.2	23329.0	23431.8	23534.6
23000	23637.3	23740.1	23842	23945.6	24048.4	-24151.2	224254.0	24356.7	24459.5	24562.3
24000	24665.0	24767.8	24570.6	24973.4	25076.1	25178.9	25281.7	25384.4	25487.2	25589.0
25000	25692.7	25795.5	25898.3	26001.1	26103.8	26206.6	- 26309.4	26412.1	26514.9	26617.7
26000	26720.5	26823.2	26926.0	27028.8	27131.5	27243.3	27337.1	27439.9	27542.6	27645.4
27000	27748.2	27850.9	27953.7	28056.5	28159.3	28262.0	128364.8	28467.6	28570.3	28673.1
28000	28775.9	28878.7	28981	'29084.2	29187.0	129289.7	29392.5	29495.3	29598.0	29700.8

Units.

Tens.	Units.									
	O.	1.	2.	3.	4.	5.	6.	\%.	S.	9.
	Vien. ft.	Vien. ft.	Vien. ft.	Vien. ft .	Vien. ft.	Vien. ft.	Vien, ft.	Vien. ft. 7.19	Yien. ft. 8 の.)	Vieu. ft. $9 \cdot 95$
0	0.00	1.03	2.06	3.08	4.11	5.14	6.17	7.19	8.22	9.25
10	10.28	11.30	12.33	13.36	14.39	15.42	16.44	17.47	18.50	19.53
20	20.55	21.58	22.61	23.64	24.67	25.69	26.72	27.75	28.78	29.80
30	30.83	31.86	32.89	33.91	34.94	35.97	37.00	38.03	39.05	40.08
40	41.11	42.14	43.16	4.19	45.22	46.25	47.27	48.30	49.33	50.36
50	51.39	52.41	53.44	54.47	55.50	56.52	57.55	58.58	59.61	60.63
60	61.66	62.69	63.72	64.75	65.77	66.80	67.83	68.86	69.88	70.91
70	71.94	72.97	74.00	75.02	76.05	77.08	78.11	79.13	80.16	81.19
80	82.22	83.24	84.27	85.30	86.33	87.36	88.38	89.41	90.44	91.47
90	92.49	93.52	94.55	95.58	96.60	97.63	98.66	99.69	100.72	101.74

TO CONVERT

ENGLISH YARDS AND FEET

INTO DIFFERENT MEASURES OF LENGTH.

XV. CONVERSION OF ENGLISH YARDS INTO FRENCH TOISES.

1 English Yard $=0.4691465$ Toise.

	Hundreis.									
Thousands.	0.	100.	200.	300.	400.	500.	600.	700.	800.	\$00.
	Toises	Toises.	Toises	Toises.	Toises	Toises.	Toises	Toises.	Toises.	Toises.
0	0.00	46.91	93.83	140.74	1*7.66	234.57	281.49	32840	375.32	422.23
1000	169.15	516.06	562.98	609.89	656.80	703.72	750.63	797.55	844.46	891.38
2000	935.29	95.21	1032.12	1079.04	1125.95	1172.87	1219.78	1266.70	1313.61	1360.52
3000	1407.44	1454.35	1501.27	1545.18	159.5 .10	1642.01	1688.93	1735.84	1782.76	1839.67
4000	1876.59	1923.50	1970.41	2017.33	2064.24	2111.16	2158.07	2.204 .99	2251.90	2298.82
5000	23.4.73	2392.65	2439.56	2486.18	2533.39	2580.31	2627.29	2674.13	2721.0 .7	2767.96
6000	2514.88	2561.79	2908.71	2955.62	3002.54	3049.45	3096.37	3143.28	3190.20	22:37.11
7000	3284.02	3830.94	3377.85	3424.77	3471.68	3518.60	3565.51	3612.43	3659.34	3706.26
8000	3753.17	3800.09	3847.00	3593.92	3910.83	3987.74	4034.66	4081.57	4128.49	4175.40
9000	+292.32	4269.23	$4: 316.15$	4363.06	4109.98	4456.89	4503.81	+550.72	4597.63	4644.55

XVI. CONVERSION OF ENGLISH YARDS INTO METRES.

1 English Fard $=0.91438348$ Metre.

	Hundreds.									
Thousands.	0.	100.	200.	300.	400.	500.	600.	700.	800.	900.
0	Metres. 0.00	Metres. 91.44	$\begin{aligned} & \text { Metres } \\ & 182.88 \end{aligned}$	Metres. 274.32	Metres. 365.75	Metres. 457.19	Metres. 548.63	Metres. $6+0.07$	Metres. 731.51	Metres 822.95
1000	914.38	100.5.82	1097.26	1188.70	1280.14	1371.58	1463.01	1554.45	1645.89	1737.33
2000	1828.77	1920.21	2011.64	2103.08	2194.52	228.5.96	2377.40	2468.84	2.560 .27	2651.71
3000	2743.15	2834.59	2926.03	3017.47	3108.90	3200.34	3291.78	3383.22	3474.66	3566.10
4000	3657.53	3718.97	3840.41	3931.85	402:3.29	1114.73	+206.16	4297.60	4389.04	480.48
5000	4571.92	4663.36	1754.79	4846.23	4937.67	5029.11	5120.55	5211.99	5303.42	5.994 .86
6000	5486.30	5577.74	5669.18	5760.62	5852.05	5943.49	6034.93	6126.37	6217.81	6309.25
7000	6100.65	6492.12	6583.56	6675.00	6766.44	6857.88	6949.31	7040.75	7132.19	7223.63
8000	7315.07	7406.51	7197.94	7589.38	7680.82	7772.26	7863.70	7955.14	8046.57	8138.01
9000	8229 45	8320.59	8412.33	8503.77	8595.20]	8656.64	8778.08	8869.52	8960.96	9052.40

1 English Foot $=0.30479449$ Metre.

	Hundreds.									
T	O.	100.	200.	300.	100.	500.	600.	700.	800.	900.
0	$\begin{gathered} \text { Metres. } \\ 000.000 \end{gathered}$	$\begin{gathered} \text { Metres. } \\ 30.4794 \end{gathered}$	$\begin{gathered} \text { Metres. } \\ 60.9 .589 \end{gathered}$	$\begin{gathered} \text { Metres. } \\ 91.4383 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Metres. } \\ 121.918 \\ \hline \end{array}$	Metres. 152.397	$\begin{gathered} \text { Metres. } \\ 182.877 \end{gathered}$	$\begin{gathered} \text { Metres. } \\ 213.356 \end{gathered}$	$\begin{gathered} \text { Metres. } \\ 243.836 \end{gathered}$	
1000	304.794	335.274	365.763	396.233	426.712	457.192	187.671	\$18.151	548.630	579.110
2000	609.589	640.068	670.548	701.027	731.507	761.986	792.466	822.945	853.425	883.904
3000	914.383	944.563	975.342	1005.82	1036.30	1066.78	1097.26	1127.74	1158.22	1188.70
4000	1219.18	1249.66	1280.14	1310.62	1341.10	1371.58	1402.05	1432.53	1463.01	1493.49
5000	1523.97	1554.45	1584.93	1615.41	1645.89	1676.37	1706.85	1737.33	1767.81	1798.29
6000	1828.77	1859.25	1859.73	1920.21	1950.68	1981.16	2011.64	2042.12	2072.60	2103.08
7000	2133.56	2164.04	2194.52	2225.00	2255.4S	2285.96	2316.44	2346.92	2377.40	2407.88
8000	2438.36	2468.84	2499.31	2529.79	2560.27	2590.75	2621.23	2651.71	2682,19	2712.67
9000	2743.15	2773.63	2804.11	2834.59	2865.07	289.5 .55	2926.03	2956.51	2986.99	3017.17
10000	3047.94	3078.42	3108.90	3139.38	3169.86	3200.34	3230.82	3261.30	3291.75	3322.26
11000	3352.74	3383.22	3413.70	344.18	3474.66	3505.14	3535.62	3566.10	3596.57	3627.05
12000	3657.53	3688.01	3718.49	3748.97	3779.45	3809.93	3840.41	3870.89	3901.37	3931.55
13000	3962.33	3992.81	4023.29	4053.77	4084.25	4114.73	4145.21	1175.68	1206.16	4236.64
1.1000	4267.12	4297.60	4228.08	4358.56	4359.04	4119.52	4450.00	4480.48	4510.96	4541.44
15000	4571.92	4602.40	4632.88	4663.36	4693.84	+724.31	4754.79	4785.27	4815.75	4846.23
16000	4876.71	4907.19	4937.67	4968.15	4998.63	5029.11	5059.59	5090.07	5120.55	5151.03
17000	5181.51	5211.99	5242.47	5272.94	5303.42	5333.90	5364.38	5394.86	542.5.34	5455.82
18000	5486.30	5516.78	5547.26	5577.74	5608.22	5638.70	5669.18	5699.66	5730.14	5760.62
19000	5791.10	5821.57	5852.05	5882.53	5913.01	5943.49	5973.97	6004.45	6034.93	6065.41
20000	6095.59	6125.37	6156.85	6157.33	6217.81	6248.29	6278.77	6309.2 :	6339.73	6370.20
21000	6400.68	6431.16	6461.64	6492.12	6522.60	6553.08	6583.56	6614.01	6644.52	6675.00
22000	6705.48	6735.96	6766.44	6796.92	6827.40	6857.88	6888.36	6918.83	6949.31	6979.79
23000	7010.27	7040.75	7071.23	7101.71	7132.19	7162.67	7193.15	7223.63	7254.11	7284.59
24000	7315.07	7345.55	7376.03	7406.51	7436.99	7467.47	7497.94	7528.42	75.58 .90	7589.38
25000	7619.86	7650.34	7650.82	7711.30	7741.78	7772.26	7802.74	7833.2	7863.70	7894.18
26000	7921.66	7955.14	7985.62	S016.10	8046.57	8077.05	8107.53	8138.01	8168.49	8198.97
27000	8229.45	82.59.93	8290.41	8320.89	5351.37	8381.85	8412.33	8442.81	8473.29	8503.77
28000	8534.25	8564.73 \|	8595.20	8625.68	8656.16	8686.64	8717.12	8747.60	78.08	8508.56
					Uni					
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Metres.	Metres	M	Netres.	Metres.	Metres.	Met	Metres.	Metres.	Metres.
0	0.00000	0.30479	0.60959	0.91438	1.21918	1.52397	1.82877	2.13356	2.43836	2.74315
10	3.04794	3.35274	3.65753	3.96233	4.26712	4.57192	4.57671	5.18151	5.48630	5.79110
20	6.09589	6.40068	6.70548	7.01027	7.31507	7.61986	7.92466	S.22945	8.53425	8.83904
30	9.14383	9.44863	9.75342	10.0582	10.3630	10.6678	10.9726	11.2774	11.5822	11.8870
40	12.1918	12.4966	12.8014	13.1062	13.4110	13.7158	14.0205	14.3253	14.6301	14.9349
50	15.2397	15.5445	15.8493	16.1541	16.4589	16.7637	17.0685	17.3733	17.6781	17.9829
60	18.2877	18.5925	18.8973	19.2021	19.5068	19.8116	20.1164	20.4212	20.7260	21.0308
70	21.3356	21.6404	21.9452	22.2500	22.5548	22.8596	23.1644	2:3.4692	23.7740	24.0789
80	24.3836	24.6884	24.9931	25.2979	25.6027	25.9075	26.2123	26.5171	26.8219	27.1267
90	27.4315	27.7363	28.0411	28.3459	28.6507	28.9555	29.2603	29.5651	29.8699	30.1747

XVIII CONVERSION OF FNGLISH FEIT INTO FRENCH OR PARIS FEET AND DECIMALS.

1 English Foot $=0.938292$. Paris Foot.

	Hundreds.									
Thousands.	©.	100.	-180.	300.	100.	500.	600.	700.	800.	¢05.
	Par. Feet.	Par Fuet.	Par. Feet	Par Feet	lar jet	*	Par	I'ar Feet	Par Feet	Par feet.
0	000.0	93.5	158.7	2-1.5	375.:	469.1	56\%.0	656.8	7.90 .6	844.5
1000	938.3	10.32. 1	1126.0	1219.5	1313.6	1407.1	1501.3	159.5 .1	16.5 -. 9	1752.8
2000	1876.6	1970.4	2064.2	2155.1	2251.9	234.5 .7	2439.6	2.533 .4	2627.2	$2 \% 21.0$
3000	2811.9	2908.7	3002.5	3096.4	3190.2	3281.0	$38 \div 7.9$	3471.7	3.56 .5 .5	3659.3
4000	3753.2	3847.0	3910.8	4031.7	4128.5	12:2.3	4316.1	+410.0	4.503 .8	4.997 .6
5000	4691.5	4785.3	4879.1	4973.0	50666.8	5160.6	52.54.4	$53+8.3$	5442.1	5535.3
6000	5629.5	5723.6	5817.4	5911.2	6005.1	$609 ¢ .9$	6192.7	6286.6	6380.4	6474.2
7000	6568.0	6661.9	675.5 .7	6819.5	69 I3.4	7037.2	7181.0	7224.9	7318.7	7112.5
8000	7.506 .3	$76 \mathrm{no.2}$	7694.0	7787.8	7881.7	7975.5	5069.3	S163.1	82.77 .0	8350.8
9000	S $4+1.6$	8538.5	8632.3	5726.1	8820.0	5913.8	9007.6	9101.4	9195.3	9289.1
10000	9382.9	9476.8	9570.6	9661.1	9758.2	9852.1	9945.9	10039.7	10133.6	1022\%.4
11000	10321.2	10415.0	10.308.9	10602.7	10696.5	10790.4	10854.2	10978.0	11071.9	11165.7
12000	11259.5	11353.8	11417.2	11.541 .0	116:34.8	1725.7	11822.5	11916.3	12010.1	12104.0
13000	12197.8	12291.6	12385.5	12479.3	12573.1	12667.0	12760.8	12854.6	12948.1	13042.3
14000	13136.1	13239.9	13323.8	13417.6	13511.4	13605.2	13699.1	13792.9	13886.7	13980.6
1.9000	11071.1	14165.2	14262.0	14355.9	11449.7	4.543 .5	14637.4	14731.2	14825.0	14918.9
16000	15012.7	15106.5	1.5200 .3	1.5294 .2	153×5.0	15181.8	1.5 .75 .7	1.5669 .5	15763.3	158.77.1
17000	1.5951 .0	16014.8	161:38.6	16232.5	16326.3	16120.1	16.514 .0	16607.5	16701.6	16795.4
15030	16ss9.:3	16983.1	17076.9	17170.8	172616	17355.4	17452.2	17546.1	17639.9	17733.7
19000	17827.6	17921.1	18015.2	18109.0	18202.9	18296.7	18390.5	18434.4	15575.2	18672.0
20000	1876.3.9	188.59.7	189.33.5	19047.3	$19] 41.2$	1923.5 .0	19328.8	19422.7	19.516 .5	19610.3
21000	19704.1	19798. 0	19891.8	19955.6	$20079 . .5$	20173.3	20267.1	20361.0	20454.8	20.548 .6
22000	20642.4	20736.3	20830.1	20923.9	21017.8	21111.6	2120.5 .4	21299.2	21393.1	21456.9
23000	21550.7	21674.6	21768.4	21562.2	219.56 .0	22049.9	22143.7	22237.5	22331.4	22425.2
24090	22519.0	22612.9	22706.7	22300.5	22894.3	22958.2	23082.0	23175.8	23269.7	23363.5
25000	291.57 .3	235.51 .1	23645.0	23738.5	23832.6	23926.5	24020.3	24114.1	24208.0	21301.8
26000	$24: 395.6$	24459.4	24583.3	24677.1	21750.9	24864.8	24958.6	25052.4	2.5146 .2	25240.1
27000	253:33.9	25427.7	25521.6	25615.4	25709.2	25803.1	2.5896 .9	25990.7	26084.5	26178.1
2 SO 0	26.72 .2	26366.0	26459.9	26.553 .7	26647.5	6741.	26535.2	26929.0	27022.8	27116.7
					Uni					
	O.	1.		3.			6.	3.	8.	9.
	Par. Feet.	Par. Feet.	Par Fect.	Par. Feet.	Par keet	ar. Feet	l'ar. Feet.	Par. Feet.	Par.Feet.	1 'ar Feet.
0	0.00	0.94	1.85	2.81	3.75	4.69	563	6.57	7.51	8.44
10	9.38	10.32	11.26	12.20	13.14	14.0%	15.01	15.95	16.59	17.83
20	18.77	19.70	20.61	21.58	22.52	23.16	24.40	25.33	26.27	27.21
80	28.15	29.09	30.03	30.96	31.90	32.84	33.75	34.72	35.66	36.59
40	37.5.3	38.47	39.41	40.35	41.2 S	42.22	43.16	44.10	45.01	45.98
50	46.91	47.85	48.79	49.73	50.67	51.61	52.54	53.48	54.42	55.36
60	56.30	57.24	58.17	59.11	60.05	60.99	61.93	62.87	63.80	64.7 -1
70	65.65	66.62	67.56	68.50	69.13	70.37	71.31	72.25	73.19	74.13
80	75.06	76.00	76.91	77.88	78.82	79.75	80.69	81.63	8.2 .57	83.51
90	84.4.	85.38	86.32	87.26	88.20	89.14	90.08	91.01	91.95	92.89

1 Eughos Fout $=0.9711362$ Rhine Fout.

Euglish	Hundreds.									
Thonsauds.	0.	100.	200.	3046	400.	504.	600.	800.	stob.	900.
0	Phine tt. 0.00	Rametr. 97.11 97.11	Hhine It. 194.23	Rhinett. 291.34	$\begin{aligned} & \text { Khine } \\ & 38 \text {. } \end{aligned}$	Rhine it. 485.57		Rhatit.	Rame 1t.	libine 1 t -74.02
1060	971.14	1068.25	1165.36	1262.48	1359.59	1456.70	1553.68	1650.93	1748	16
2000	1942.27	2039.35	2136.50	2233.61	2330.75	2427.84	2524.95	2620.07	2719.1	¢16.29
3000	2913.41	3010.52	3117.64	3204.75	3301.86	3398.98	3496.09	3593.20	3690	787.43
4000	3884.54	3981.66	4078.77	4175.69	4273.00	4370.11	4467.23	4564.34	4661.	4758.57
5000	4855.68	4952.79	5049.91	5147.02	5244.14	5341.25	5438.36	5535.48	5632.59	729.70
6000	5826.82	5923.93	5021.04	6118.16	6215.27	6312.39	409.50	6506.61	6603.73	15700.84
7000	¢797.95	16895.07	6992.18	7089.29	7186.41	7283.52	7380.64	7477.75	7574.86	7671.98
8000	7769.09	7866.2u	7963.32	8060.43	8157.54	8254.66	8351.77	-448.88	8546.00	8643.11
9000	8740.23	8837.34	8:334.45	9031.57	9128.68°	'9225.79	9322.91	9420.02	'9517.13	9614.25
10.100	9611.4	9808.5	9905.6		10		10294.0	10391.2		
11000	10683.5	10779.9	10876.7		11071.0		11265.2	11362.3		
12000	11653.6	11750.7	11847.9	11945.0	12042.1	1~139.2	12236.3	12333.4	12430.	10527.7
13000	12624.8	12721.9	12819.0	12916.1	13013.2	13110.3	13207.5	13304.6	13-401.	13498.8
14000	13595.9	13693.0	13790.1	13887.2	13984.4	14081.5	14178.6	14275.7	14372.	14469.9
15000	14567.0	14664.2	61.3	14858.4	14955.5		15149.7	15	15344	1.1
16000	15539.2	15635.	15732.4	15529.5	15926.6	16023.7	16120.9	16218.0	16315.1	16412.2
17000	16509.3	16606.4	16703.5	14800.7	16897.8	16994.9	17092.0	17189.1	17286.	17383.3
18000	17480.5	17577.6	74.7	17771.8	17868.9	17966.0	18063.1	18160.2	18257	6354.5
19000	18451.6	18545.7	18645.8	18742.9	18840.0	18937.2	19034.3	19131.4	19228.	19325.6
20000	$19+22.7$	19519.8	19617.0	19714.1	19811.2	19908.3	20005.4	20102.5	20199	20296.7
21000	20393.9	20491.0	20585.1	20685.2	20782.3	-(i879.4	20976.5	21073.7	21170.	21267.9
22000	21365.0	214162.1	21559.2	21656.3	$21753 .:$	21850.6	21947.7	22044.	22141	22833.0
23000	22336.1	$224: 3.2$	22.350 .4	22627.5	22724	20821.7	22918.6	23015.9	23113.	23210.2
240.00	23307.3	23404.4	23501.5	23598.6	$23695^{\circ} 7$	23792.8	23589.0	23987.1	24084.	4181.3
25000	24278.4	24375.5	2472.6	24569.7	24566.9	24764.0	24861.1	2495	505	25152.4
21000	25249.5	25346.7	25443.8	25540.9	25638.0	25735.1	25832.2	929	26026.	3.6
27000	26220.7	26317.8	26 ± 14.9	26512.0	26609.1	26706.2	26803.4	26900.5	26997.	27094.7
28000	27191	27288.9	27386.0	483.2	27580.3	27677.4	27774.5	?787	27968.	8065.8
					Uni	its.				
	0.	1.	2.	3.	4.	5.	6.	$\%$	8.	9.
	Rhine ft.	Rhineft.	Rhine ft.	Khine tt .	Rhine ft.					
0	0.00	0.97	1.94	2.91	3.88	4.86	5.83	6.60	7.77	8.74
10	9.71	10.68	11.65	12.62	13.60	14.57	15.54	16.51	17.48	18.45
20	19.42	20.39	21.36	22.34	23.31	24.28	25.25	26.22	27.19	28.16
30	29.13	30.11	31.08	32.05	33.02	33.99	34.96	35.93	36.90	37.87
40	38.85	39.82	40.79	41.76	42.73	43.70	44.67	45.64	46.61	47.59
50	48.56	49.53	50.50	51.47	52.44	53.41	54.38	55.35	56.33	57.30
60	58.27	59.24	60.21	61.18	62.15	63.12	64.09	65.07	66.04	67.01
70	67.98	68.95	69.92	70.89	71.86	72.84	73.81	74.78	75.75	76.72
80	77.69	78.66	79.63	80.60	81.58	82.55	83.52	84.49	85.46	86.43
90	87.40	88.37	89.34	90.32	91.29	92.26	93.23	94.20	95.17	96.14

1 English Foot $=0.9642932$ Foot of Vienna.

$\begin{aligned} & \text { Engtish } \\ & \text { Feet. } \end{aligned}$ Thousands.	Hundreds.									
	0.	100.	200.	300.	400.	500.	600.	700.	500.	900.
0	Yien. ft. 0.00	Vien. 1t. 96.43	$\begin{array}{r} \text { Vien. ft. } \\ 192.86 \end{array}$	Vien. ft. 289.29	Vien. ft. 385.72	$\begin{array}{\|c} \hline \text { Vien. ft. } \\ 482.15 \end{array}$	Vien. ft. 578.58	Vien. ft. 675.01	Vien. fit 771.4	ien. tt. 867.86
1000	964.29	1060.72	1157.15	1253.58	1350.01	1446.44	1542.87	1639.30	1735.73	832.16
2000	1928.59	2025.02	2121.45	2217.87	2314.30	2410.73	2507.16	2603.59	2700.12	2796.45
3000	2892.85	2989.31	3055.74	3182.17	3278.60	3375.03	3471.46	3567.88	3664.31	760.74
4000	3857.17	3953.60	4050.03	4146.46	4242.89	4339.32	4435.75	4532.18	4628.61	4725.04
5000	4821.47	4917.90	5014.32	5110.75	5207.18	5303.31	5400.04	5496.47	5592.90	5689.33
6000	5785.76	5882.19	5978.62	'6075.05	6171.48	6267.91	6364.34	6460.76	6557.19	6653.62
7000	6750.05	6846.48	6942.91	7039.34	7135.77	7232.20	7328.63	7425.06	7521.49	7617.92
8000	7714.35	7810.77	7907.20	8003.63	8100.06	8196.49	8292.92	8389.35	8485.78	'8582.21
9000	8678.64	8775.07	8871.50	8967.93	9064.36	9160.79	9257.21	9353.6	0.07	546.50
10000	9642.93	9739.36	9835.79	9932.22	10028.6	10125.1	10221.5	10317.9	10414.4	10510.8
11000	10607.2	10703.7	10800.1	10896.5	10992.9	11089.4	11185.8	11282.2	11378.7	5.1
12000	11571.5	11667.9	11764.4	11860.8	11957.2	12053.7	12150.1	12246.5	12343.0	12439.4
13000	12535.8	12632.2	12728.7	12825.1	12921.5	13018.0	13114.4	13210.8	13307.2	13403.7
14000	13500.1	13596.5	13693.0	13789.4	13885.8	13982.3	14078.7	14175.1	14271.5	14368.0
15000	14464.4	14560.8	14657.3	14753.7	14850.1	14946.5	15043.0	15139.4	5235.8	15332.3
16000	15428.7	15525.1	15621.5	15718.0	15814.4	15910.8	16007.3	16103.7	6200. 1	6296.6
17600	16393.0	16489.4	16585.6	16682.3	16788.7	16885.1	16971.6	17068.0	7164.4	7260.8
18000	17357.3	17453.7	17550.1	17646.6	17743.0	17839.4	17935.9	18032.3	1812s.7	18205.1
19000	18321.6	18418.0	18514.4	18610.9	18707.3	18803.7	18900.1	18996.6	19093.0	19189.4
20000	19285.9	19382.3	19478.7	19575.2	19671.6	19768.0	19864.4	19960.9	20057.3	20153.7
21000	20250.2	0346.6	20443.0	20539.4	20635.9	20732.3	20828.7	20925.	21021.	21118.0
22000	21214.	21310.9	21407.3	21503.7	21600.2	21696.6	21793.0	21889.	21.985 .9	22082.3
23000	22178.7	22275.	22371.6	22468.0	22564.5	22660.9	29757.3	22853.7	22950.2	23046.6
24000	23143.0	23239.5	23335.9	23432.3	23528.8	23625.2	23721.6	23818.0	23914.5	24010.9
25000	24107.3	24203.8	24300.2	24396.6	24493.0	24589.5	24685.9	24782.3	24878.8	24975.2
26000	25071.6	25168.1	25264.5	25360.9	25457.3	25553.8	25650.2	25746.6	25843.1	25939.5
27000	26035.9	26132.3	26228.8	26325.2	26421.6	26518.1	26614.5	26710.	26807	26903.8
28000	2700	27096	27193.1	27289.5	27385.9	2748	27578.8	,75	771	7868.1
						nits.				
	O.	1	2.	3.	4.	5.	6.	$\%$.	8.	9.
	Vien. ft.	Vien. ft	Vien. ft.	Vien. ft.	Vien. ft.	Yien. ft.	Vien. ft.	Vien. ft.	Vien. ft.	Vien. ft.
0	0.00	0.96	. 92	2.	3.85)	5.78	6.75	7.71	8.68
10	9.64	10.61	11.57	12.54	13.50	14.46	15.43	16.39	17.36	18.32
20	19.29	20.25	21.21	22.18	23.14	24.11	25.07	26.04	27.00	27.96
30	28.93	29.89	30.86	31.89	32.79	33.75	34.71	35.68	36.64	37.61
40	38.57	39.54	40.50	41.46	42.43	43.39	44.36	45.32	46.29	47.25
50	48.21	49.18	50.14	51.11	52.07	53.04	54.00	54.96	55.93	56.89
60	57.86	58.82	59.79	60.75	61.71	62.68	63.64	64.61	65.57	66.54
70	67.50	68.46	69.43	70.39	71.36	72.32	73.29	74.25	75.21	76.18
80	77.14	78.11	79.07	80.04	81.00	81.96	82.93	83.89	84.86	85.82
90	86.79	87.75	88.71	89.68	90.64	91.61	92.57	93.54	94.50	95.47

TO CONVERT

区LAFTERAND FEET OF VIENNA

INTO DIFFERENT MEASURES OF LENGTH.

XXI. conversion of hlafter of vienna into metres.

1 Klatter of Vieuna $=1.5964843$ Metres.

Klafter of Vieuna. Thousands.	Hundreds.									
	0.	100.	200.	300.	400.	500.	600.	700.	S00.	900.
0	$\begin{array}{r} \text { Metres. } \\ 0.00 \end{array}$	Metres. 189.65	Metres. 379.30	$\begin{gathered} \text { Metres. } \\ 568.95 \end{gathered}$	Metres. 758.59	Metres. 948.24	$\begin{gathered} \text { Metres. } \\ 1137.89 \end{gathered}$	Metres. 1327.54	Mtares. 1517.19	$\begin{gathered} \text { Metres. } \\ 1706.84 \end{gathered}$
1000	1896.48	2086.13	2275.78	2465.43	2655.08	2844.73	3034.37	3224.02	3413.67	3603.32
2000	3792.97:	3982.62	172.27	4361.91	4551.56	4741.21	4930.36	5120.51	5310.16	5499.80
3000	5689.45	5879.10	6068.75	6258.40	6446.05	6637.69	6827.34	7016.99	7206.64	7396.29
4000	7585.94	7775.59	7965.23	8154.88	8344.53	8534.18	8723.83	8913.45	9103.12	9292.76
5000	9482.4	9672.1	9861.7	10051.4	10241.0	10430.7	10620.3	10810.0	10999.6	11189.3
6000	11378.9	11568.6	11758.2	11947.9	12137.5	12327.2	12516.8	12706.4	12596.1	13085.7
7000	13275.4	13465.0	13654.7	13844.3	14034.0	14223.6	14413.3	14602.9	14792.6	14982.2
8000	15171.9	15361.5	15551.2	15740.8	15930..)	16120.1	16309.8	16499.4	16689.1	6878.7
9000	17068.	17258.0	17447.7	76	17827.0	1801.	18206	$18395 .!$	18585.	18775.2
Klafter.					Uni	its.				
Tens.	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Metres.									
0	0.00	1.90	3.79	5.69	7.59	9.48	11.38	13.28	15.17	17.07
10	18.96	20.86	22.76	24.65	26.55	28.45	30.34	32.24	34.14	36.03
20	37.93	39.83	41.72	43.62	45.52	47.41	49.31	51.21	53.10	55.00
30	56.89	58.79	60.69	62.58	64.48	66.38	68.27	70.17	72.07	73.96
40	75.86	77.76	79.65	81.55	83.45	85.34	87.24	89.13	91.03	92.93
50	94.82	96.72	98.62	100.51	102. 41	104.31	106.20	108.10	110.00	111.89
60	113.79	115.69	117.58	119.48	121.37	123.27	125.17	127.06	128.96	130.86
70	132.75	134.65	136.55	138.44	140.34	142.24	144.13	146.03	147.93	149.82
80	151.72	153.62	155.51	157.41	159.30	161.20	163.10	164.99	166.89	168.79
90	170.68	172.58	174.48	176.37	178.27	180.17	182.06	183.96	185.86	187.75
E					39					

1 Klafter of Vituuat $=5$ s 382220 Paris Feet.

Klatter	Hundreds.									
Tliousands	0.	140.	200.	300.	100.	500.	600.	\%80.	st0.	seo.
${ }^{1}$	Paris ft . 0.1	Paris ft. 583.	Paris ft. 1167.6	Paris ft. 1751.5	$\begin{gathered} \hline \text { Paris ft. } \\ 2335.3 \end{gathered}$	Paris to. 2919.1	Patas ti. 3.02 .9	ft .	$\xrightarrow{\text { Paris } t 1}$	Pall is it
1000	5838.2	64423.0	7005.9	7585.7	8173.5	8757.3	93-41.2	9925.0	10508.8	11092.0
2000	11676.4	122060.3	$128+4.1$	13427.9	14011.7	14595.6	15179.4	15763.2	16347.0	169.30.と
3000	17514.7	18098.5	18683.3	19266.1	19850.0	20433.	21117.	21601.4	$\cdots 2185.2$	2969.1
4000	23352	23936	24	25	20,488.2	21	26855	27439 6	2-10.3.5	2
k lafter.	Units.									
Teus.	0.	1.	2.	3.		5.	6.	7.	s.	9.
0	$\begin{array}{r} \text { Paris ft. } \\ 0.00 \end{array}$	$\begin{array}{r} \text { Paris } \mathrm{ft} . \\ 5.84 \end{array}$	Paris ft. 11.68	$\begin{array}{r} \text { Paris } \mathrm{ft} \text {. } \\ 17.51 \end{array}$	$\begin{gathered} \text { l'aris } \mathrm{ft} \\ 2.3 .35 \\ . \end{gathered}$	$\begin{array}{r} \hline \text { Paris ft. } \\ 29.19 \end{array}$	Paris ft. $35.0 ;$	Paris ft. 40.57	Paris ft 46.71	$\begin{aligned} & \text { P:aris ft. } \\ & 52.54 \end{aligned}$
10	58.35	64.22	70.06	75.90	81.74	87.57	93.41	99.25	105.02	110.93
20	116.76	122.60	128.44	134.28	141.12	145.96	151.79	157.63	163.47	16.3 .31
30	175.15	181.98	186.82	192.68	195.50	204.34	210.1	216.01	201.85	$2-7.69$
40	233.53	239.37	245.21	251.04	256.88	262.72	268.51	274.40	280.23	286.17
50	291.91	297.75	303.55:	309.43	315.26	321.10	.296.92	332.78	338.62	344.46
${ }^{6} 0$	350.29	356.13	361.97	367.81	373.65	379.48	345.3:	391.16	397.01	402.84
70	408.65	414.51	420.3:	426.19	432.03	437.87	443.71	449.54	455.36i	461.22
80	417.11	420.90	478.7:	4.4 .57	490.41	496.25	502.0.	507.93	513.	519.60
90	625.44	531.28	537.1:	042.95	548.7!	554.623	560.45	5ti6.31	572.15	577.98

XXill. conversion of klafter of vienna into englisil feet.
1 Klafter of Vienna $=6.229173$ English Fect.

Klafter of	Hundreds.									
Thunsands.	D.	140.	\therefore C0.	360.	400.	500.	(i)0.	910	\$00.	SCO.
0	$\begin{array}{\|} \text { Eug. feet } \\ 0.0 \end{array}$	$\begin{gathered} \text { Eng. feet } \\ 622.2 \end{gathered}$	Exy.feet	$\begin{gathered} \text { Eug. feet } \\ 1866.7 \end{gathered}$	Eug. fret	$\left.\begin{array}{\|c\|} \hline \text { Fug. freet } \\ 31111 \end{array} \right\rvert\,$	$\begin{array}{r} \text { Eng. feet } \\ 3733.3 \end{array}$	Ens.feet	$\begin{array}{r} \text { Eng, fret } \\ 4977.7 \end{array}$	$\begin{gathered} \text { Eng. feet } \\ 5600.0 \end{gathered}$
1000	922.2	6844.4	7466.13	8088.8	8711.0	9333.3	9955.5	10577.7	11199.9	11 S22. 1
2000	12444.3	13066.6	13685.8	14311.0	14933.2	1:555.4	16177.6	16799.9	17422.1	18144.3
3000	18666.5	19288.7	19911.0	20533.2	21155.3	21777.c	23390.8	23020.0	23644.	42(6.5
4000	24488.7	25.510 .9	133.1	26755.3	27377.6	27999.	-8692.	-44.	-98fik.	0.488.6
Kiafter.					Uni	its.				
Tens.	0.	1.	-2.	3.	4.	5.	6.	7.	8.	9.
	Eng. feet	Eng. freet	Erg.feel	Eng. feet	Eng. feet	Eng. feet	Eus. fret	Eng. feei	Euc. fre:	Eny. feet
0	0.00	6.22	12.4-	18.67	24.85	31.11	37.33	43.56	49.76	56,00
10	62.22	68.47	74.67	80.89	87.11	93.83	99.55	10.5.78	112.04	118.22
20	124.44	130.67	136.80	143.11	149.38	155.55	161.78	168.00	174.20	180.44
30	186.67	192.89	199.11	205.33	211.55	217.78	224.00	230.22	236.44	242.66
40	248.89	255.11	261.33	267.55	273.78	280.00	286.22	292.44	298.65	304.89
50	311.11	317.33	323.55	329.78	336.00	342.20	348.44	354.66	360.89	367.11
60	373.33	379.55	385.77	392.00	398.22	404.44	410.66	416.89	423.11	429.38
70	435.55	441.76	448.00	454.22	460.44	466.66	472.84	479.11	485.3.3	491.55
80	497.77	504.00	510.22	514.44	52.266	528.86	535.11	541.33	547.55	553.77
80	560.00	546.22	572.44	578.66	584.88	\| 591.11	597.38	603.55	6e9. 77	616.0 cm

1 Fout of Vienta $=03$ itusor Metre.

Feet of	Hundreds.									
Thousands.	0.	100.	200.	300.	400.	500.	600.		SDO.	306.
	Metres.	Metren.		Metres.		Metres.	Net	Me	.	
0	0.00	31.61	(3). $2: 2$	94.50	126.43	158.04	189.65	$2: 1.26$	252.86	$2-4.47$
1000	316.08	347.69	379.30	410.90	+42.51	474.12	505.73	537.34	568.95	600.55
2000	632.16	663.77	695.38	726.94	758.59	790.20	$8: 1.81$	853.42	855.03	\$116.63
3000	948.24	979.55	1011.46	1043.07	1074.67	1106.2 s	1137.8!	1169.50	1201.11	1232.71
4000	1264.32	1295.93	1327.54	1359.15	1390.761	1423.36	1453.97	1485.58	1517.19	1548.80
5000	1580.40	1612.01	1643.60	1675.23	1706.84	38.44	1770.05	1801.66	7	68
6000	18.16 .45	1928.09	1959.70	1:991.31	2022.92	2054.52	2086.13	$\underline{2} 117.7$	149.3.9	2180.96
7000	2212.56	2244.17	2-25.75	2:307.3!	$2339.00 \mid$	2370.61	2402.21	2433.	465.	$2+47.04$
stare	25 ± 5.65	2560.25	2591.86	2623.47	2655.08	2686.69	2718.29	2749.9	781.5	2813.12
9000	2844.73	2876.33	2907.94	2939.55		002.75	3034.37	3065.98	3097.59	3129.20
10000	3160.81	3192.42	32.24 .0	3255.64	3287.24	3318.85	. 350.46	3382.06	13.	. 28
11000	3476.89	3508.50	. 35411.14	3.571 .71	3603.323	3634.95	36666.54	3698.1	72	. 36
12000	3792.97	38.24 .58	3856.1c	Scs7.79	3919.403	951.01	.3982. 62	4014.2	1045.	1077.44
13000	4109.05	4140.66	1172.ご	1203.87	42:5. 48	267.05	4298.711	4230.3	4361.91	893.52
14000	4425.13	4456.74	4488.35	4.519 .95	4551.56	583.17	4614.78	$4646.3!$	4677.	4709.60
15090	4741.21.	472.82	4814.43	45315.03	4867.64	4899.25	4930.86	4962.47	4994. 08	025.68
16600	50.77 .29	5085.90	.120.51	$\bigcirc 152.12$	5183.725	$215.3: 3$	-246.94	5278.55	5310.1	41.76
17000	5373.37	5444.98	5436.59	-148.20	$54!49.80$	531.41	5563.02	5594.63	5626	657.4
Is.100	5089.45	5721.06	-752.67	5784.28	5815.88	47.4	5879.10	5910.71	5942.3	73.93
19000	6005.53	6037.14	0058.75	6700.36		63.57	15195.18	6226.79	6255.4	6290.01
20600	(3321.61	4353.22	i384.83	6416.44	6448.056	479.6.	i511.26	6542.87	6574.4	3606.09
21000	6633.69	4609.30	;700.91	732.52	6764.13	795.7-4	-207.3	6858.95	15990.5	922. 17
22000	6983.78	(19)85.35	7016.99	7048.60	7080.217	111.62	7143.	7175.03	7206.6	.25
23600	7289.86	7301.415	7333.07	7364.68	7396.297	7427.90	7459.50	491.11	5	554.33
$\because 4000$	7555.94	7617.54	7649.15	7680.76		7743.92	-775.5!	7807.20	7535.6	270.41
25000	7902.02	7933.63	7965.23	7996.84	8028.45	8060.06	-091.67	123.27	R154	186.49
2.0100	ع̌28.10	-249.71	8281.31	$8: 312.92$	$8: 3+4.53$	376.14	-407.7	8439.3	8471.9	5.012 .57
27000	5334.16	8565.79	5.597 .4	8629.00	8660.61	6992.22	-723.	555.	87	\$18.65
25000	80.50 .2				8976.69	08.301	, 1439.		103.	. 733
Fect of					Unit					
Tens.	0.	1.	2.	3.	1.	5.	6.	\%.	S.	9.
	Metres.	Metres.	Metres.	M+tro.	Metres.	Tetres.	Metres.	Metres.	Metres.	M + He
0	0.00	0.32	0.63	0.95	1.26	1.58	1.90	2.21	2.53	2.84
10	3.16	3.48	3.79	4.11	4.43	4.74	5.06	5.37	5.69	6.01
20	13.32	6.64	6.95	7.27	7.59	7.90	8.22	8.53	8.85	9.17
30	9.49	9.80	10.11	10.43	10.75	11.06	11.38	11.69	12.01	12.33
40	12.64	12.96	13.28	13.59	13.91	14.23	14.54	14.86	15.17	15.49
50	15.80	16.12	16.44	16.75	17.07	17.38	17.70	18.02	18.33	18.65
60	18.96	19.28	19.60	19.91	20.23	20.55	20.86	21.18	21.4!	21.¢1
70	22.13	22.44	22.76	23.07	23.39	23.71	24.02	24.34	24.65	24.97
80	25.29	25.60	25.92	26.23	26.55	26.57	27.18	27.50	27.82	28.13
90	29.45	28.76	29.08	29.40	29.71	30.03	30.34	30.66	30.98	31.29

1 Foot of Vienua $=0.9730370$ Paris Foot.

Feet of	Hundreds.									
Thousauds.	0.	140.	200.	300.	400.	500.	600.	700.	s00.	900.
0	$\begin{aligned} & \text { Parisft. } \\ & 0.00 \end{aligned}$	$\begin{array}{r} \text { Paris it. } \\ 97.30 \end{array}$	$\begin{aligned} & \text { Pais } \mathrm{ft} \\ & 19 . \\ & 19 . \mathrm{ti} \end{aligned}$	Paris ft 201.91	$\left\|\begin{array}{r} \text { Paris } \mathrm{ft} \\ 389.21 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Paris ft. } \\ 486.52 \end{gathered}\right.$	l'aris ft. 583.80	$\begin{gathered} \text { P'aris it. } \\ 681.13 \end{gathered}$	Paris ft. 778.43	$\begin{aligned} & \text { Patis } \mathrm{ft} \\ & 875.73 \end{aligned}$
1000	973.04	1070.34	1167.64	1264.95	1362.25	1459.56	1556.86	1654.16	1751.47	1848.77
2000	1946.07	2043.38	2140.68	2937.99	2335.29	2432.59	2529.90	2627.20	27.4 .50	2821.81
3000	2919.11	3016.41	3113.72	3211.02	3308.33	3405.63	3502.93	3600.24	3697.54	794.84
4000	38.92 .15	3989.45	4086.76	4184.06	4281.36	4378.67	4475.97	4573.27	4670.58	4767.88
5000	4865.18	4962.49	5059.79	5157.10	5254.40	5351.70	5449.01	5546.31	5643.61	5740.93
6000	58.38 .22	59:35.53	6032.83	6130.13	6227.44	3324.74	6422. 04	6519.35	ti616.65	6713.96
7000	6811.26	6908.56	7005.87	7103.17	7200.47	7297.78	7395.08	7492.38	7589.69	7686.99
8000	7784.30	7881.60	7978.94	2076.21	8173.51	8870.81	-368.12	8465.42	8562. 73	8666.03
90000	8757.38	-5.54.64	S951.94	9049.24	9146.55	9243.65	9341.16	9438.46	9535.76	91633.07
10000	9730.37	9827.67	9924.91	10022. 3	10119.6	10216.9	10314.2	10411.5	10508.8	10606.1
11000	10703.4	10800.7	10898.1	10995.3	11092.6	11189.9	$7 . \geq$	113×4.5	11481.8	11579.1
12000	111676.4	11773.7	11871.1	11968.4	12065.7	12163.0	12260.3	12957.6	12454.9	12552.2
13000	12644. 5	12746.8	12×4.1	12941.4	13038.7	13136.0	3233.3	13330.6	13427.9	13525.2
14000	13622.5	13719.8	13817.1	13914.4	14011.7	14109.0	4206.3	14303.6	14400.9	14498.3
15000	14595.6	14692.9	14790.2	14887.5	14984.8	15082.1	15179.4	15276.7	15374.1	15471.3
16000	15506.6	15665.9	15763.2	15860.5	15957.8	16055.1	16152.4	16249.7	$1(3347.0$	16.44 .3
17000	16541.6	16638.9	16736.2	16833.5	16930.8	17028.1	17125.5	17222. 6	17320.1	17417.4
18000	17514.7	17612.0	17709.3	17806.6	17903.9	18001.2	18098.5	18195.6	15393.1	18350.4
19000	18487.7	18585.0	18682. 3	18779.6	18876.9	18974.2	19071.5	19168.8	19266.1	19363.4
20000	19460.7	19	(1)	,	19850.0		6	20141.9	20239	20336.5
21000	$20433 . \mathrm{c}$	20531.	-	207	20883.0	20920.	21017	21114.9	2121	21309.5
22000	21406.5	21504.1	21601.4	21698.	21796.0	21893.3	21990	22087.9	22185.	20.2 .5
23000	22379.9	22477.2	22574.5	22 (\%)	22769.1	22866.4	22913.7	23061.	23158.	23255.6
24000	23352.9	23450.2	23547.5	23644.8	23742.1	23539.4	23936.6	24034.0	24131.3	24228.6
25000	24325.9	24	4590.5	24617.	24715.1	-4812.	7	7.1	25104.	01.7
26000	25299.1	25396.3	25493.6	25590.9	25688.2	25785.5	25882.8	25980.1	26077.	26174.7
27040	26272.11	26369.3	26466.6	26563.9	26661.2	2758.5	9085	26953.1	27050.4	27147.7
28040					27634.8	-731	のT80	27906		120.8
et of					Unit	its.				
Tens.	0.	1.	2.	3.		5.	6.	7.	8.	9.
0	$\begin{gathered} \text { Parin ft. } \\ 0.00 \end{gathered}$	Parisft. 0.97	$\begin{gathered} \text { Paris ft. } \\ 1.95 \end{gathered}$	Paris ft. 2.92	$\begin{gathered} \text { Paris ft. } \\ 3.89 \end{gathered}$	$\begin{gathered} \text { 1atrsit } \\ 4.87 \end{gathered}$	$\begin{gathered} \text { Paris } \mathrm{ft} \\ 5.84 \end{gathered}$	$\begin{gathered} \text { Paris ft. } \\ 6.81 \end{gathered}$	$\begin{gathered} \hline 1 \text { arso } \mathrm{ft} . \\ 7.78 \end{gathered}$	$\begin{gathered} \text { Paris ft. } \\ 8.76 \end{gathered}$
10	9.73	10.70	11.68	12.65	13.62	14.60	15.57	16.54	17.51	18.49
20	19.4i	20.43	21.41	22.38	23.35	¢4.33	25.30	26.97	27.25	28.22
30	29.19	30.16	31.14	32.11	33.08	34.06	35.03	36.00	36.98	37.95
40	38.92	39.89	40.87	41.84	42.81	43.79	4.76	45.73	46.71	47.68
50	48.65	49.62	50.60	51.57	52. 5.4	53.52	54.49	55.46	56.44	57.41
60	58.38	59.36	60.33	61.30	62.27	63.25	64.22	65.19	66.17	67.14
70	68.11	69.09	70.06	71.03	72.00	72.98	73.95	74.92	75.90	76.87
80	77.84	78.82	79.79	80.76	81.74	82.71	83.68	84.65	85.63	Sti.c)
90	87.57	88.55	89.52	90.49	91.47	92.44	93.41	94.36	95.36;	! . 38

1 Foot of Vienna $=1.037029$ Egglish Feet.

Feet of	Hundreds.									
Thousands	0.	100.	200.	300.	400.	500.	600.	700.	S00.	D00.
	Eug. feet	Eng. feet	Enc.	Eng. feet	Eng. feet	Eng. feet				
0	0.00	103.70	207.41	311.11	414.81	518.51	622.22	725.92	829.62	933.33
1000	1037.03	1140.73	1244.43	1348.14	1451.84	1555.54	1659.25	762.95	1866.65	1970.36
2000	2074.06	2177.76	2281.46	2385.17	2488.87	2592.57	2696.28	2799.98	2903.68	3007.38
3000	3111.09	3246.79	3318.49	3422.20	3525.90	3629.60	3733.30	3837.01	3940.71	4044.41
4000	4148.12	4251.82	4355.52	4459.22	4562.93	4660.63	4770.33	4874.04	4977.74	5081.44
5000	5185.14	5988.85	5392.55	5496.25	5599.96	5703.66	5807.36	5911.07	16014.77	6118.47
6000	6232.17	6325.88	6429.58	6533.28	6636.99	6740.69	6844.39	6948.09	7051.80	7155.50
7000	7259.20	7362.91	7466.61	7570.31	7674.01	7777.72	7881.42	7985.12	8088.83	-192.53
8000	8296.23	8399.93	8503.64	8607.34	8711.04	8814.75	8918.45	902. 15	9125.86	9229.56
9000	9333.26	9436.96	9540.67	9644.37	97.45 .07	9851.78	9955.48	10059.2	10162.9	10266.6
10000	10370.3	10474.0	10577.7	10681.4	10785.1	10888.8	10992.5	11096.2	11199.9	11303.6
11000	11407.3	11511.0	11614.7	11718.4	11822.1	11925.8	12029.5	12133.	12236.9	12340.6
12000	12444.4	125.48.1	12651.8	12755.5	12859.2	12962.9	13066.6	13170.	13274.0	13377.7
13000	13481.4	13585.1	13688.8	13792.5	13596.2	13999.9	14103.6	14207.	14311.0	14414.7
14000	14518.4	$1462 \mathrm{S}$.	14725.8	14829.5	14933.2	1503 b. 9	15140.6	15244.3	15348.0	15451.7
15000	15555.4	15659.1	15762.8	15866.5	15970.3	16074.0	16177.7	16281.4	16385.1	16488.8
16000	16592.5	16690.2	16799.9	16903.6	17007.3	17111.0	17214.7	17318.4	17422.1	17525.8
17000	17629.5	17733.2	17836.9	17940.6	18044.3	18148.0	18251.7	18355. 4	18459.1	18562.8
18000	18666.5	18770.2	18873.9	18977.6	19081.3	19185.0	19288.7	19392.4	19496.1	9600.0
19000	19703.6	19807.3	19911.0	20014.7	20118.4	20222.1	20325.5	20429.5	20533.2	20636.9
20000	20740.6	20844.3	20948.0	21051.7	21155.4	21259.1	21362.8	21466.5	21570.	21673.9
21000	21777.6	21881.3	21985.0	22088.7	22192.4	22296.1	22399.8	29503.5	22607	710.9
22000	22814.6	22918.	23022.0	23125.8	33229.5	23333.2	23436.9	23540.6	-3644	23748.0
23000	23851.7	23955.4	24059.1	24162.8	$2+266.5$	24370.2	2473.9	24577.6	24681.	24785.0
24000	24888.7	24992.4	25096.1	25199.8	25303.5	25407.2	25510.9	25014.6	25718.3	25822.0
25000	2.925 .7	26029.4	26133.1	26236.8	20340.5	26444.2	26547.9	26651.6	26755.4	26859.1
26000	26962.8	27066.5	27170.2	27273.9	27377.6	27481.3	27585.0	27688.7	27792	27896.1
27000	27999.8	28103.	28207.	28310.9	28414.6	28518.3	28622.0	28725.7	28829	8933.1
28000	$\underline{2903}$				2917		39659	-9762.7	$2986+$	29970.1
of					Uni	its.				
Tens.	0.	1.	2.	3.	4.	5.	6.	7.	5.	9.
	Eng. feet	Eng. feet	Eng. feet	Eug. feet	Ens. feet	Eug. feet	Eng. feet	Eng. feet	Eng. feet	Eng. feet
0	0.00	1.04	2.07	3.11	4.15	5.19	6.22	7.26	8.30	9.33
10	10.37	11.41	12.44	13.48	14.52	15.56	16.59	17.63	18.67	19.70
20	20.74	21.78	22.81	23.85	24.89	25.93	26.96	28.00	29.04	30.07
30	31.11	32.15	33.18	34.22	35.26	36.30	37.33	38.37	39.41	40.44
40	41.48	42.52	43.56	44.59	45.63	46.67	47.70	48.74	49.78	50.81
50	51.85	52.89	53.93	54.96	56.00	57.04	58.07	59.11	60.15	61.18
60	62.22	$6: 3.26$	64.30	65.33	66.37	67.41	68.44	69.48	71.52	71.56
70	72.59	73.63	74.67	75.70	76.74	77.78	78.81	79.85	80.89	81.93
80	82.96	84.00	85.04	86.07	87.11	88.15	89.18	90.22	91.26	92.30
90	93.33	94.37	95.41	96.44	97.48	98.52	99.55	100.59	101.63	102.67

XXVIl. conversion of feet of vienna into rhine or prussian feet.

1 Foot of Vienna $=1.007096$ Rhine Feet.

Feet ot	Hundreds.									
Thousands.	6.	100.	200.	300.	400.	\%00.	600.	700.	800.	380.
0	Rhine ft 0.00	Rhine tt. 100.71	Rhine ft. 201.42	$\begin{array}{\|r\|} \text { Rhine ft. } \\ 302.13 \end{array}$	$\begin{gathered} \text { Rhine it } \\ 402.84 \end{gathered}$	$\begin{array}{r} \text { Rhine ft. } \\ 503.55 \end{array}$	Rhine ft. $60.4 .26$	704.97	$\begin{aligned} & \text { Rhume } \mathrm{ft} \\ & 8(1.5 .68 \end{aligned}$	$\begin{aligned} & \text { hinurft. } \\ & 906.39 \end{aligned}$
1000	1007.10	1107.81	1208.52	1309.20	409.93	1510.64	1611.35	712.	12.	13.45
2000	2014.19	2114.90	2215.61	2316.32	2417.03	2517.74	2618.4	719.1	19.	20.58
3000	3021.29 :	3028.00	3222.71	3323.42	$3+24.13$	3524.84	3625.55	T	826.9	27.67
4000	4108.3 s	4129.09	4239.80	4330.51	4431.22	4531.93	4632.	33.3	4834.	93-4.77
5000	5035.48	5136.19	5236.90	5337.61	5438.32	39.03				
6000	6042.58	6143.29	6244.00	6344.70	(644\%). 41	65546.12	6646.8	747.	6.45.	94-.96
7000	7144.9.67	7150.38	7251.09	7351.80	7452.51	7503.22	7653.93	54.6	555.	956.06
8000	-056.75	¢157.48	8258.19	-358.90	± 459.61	8560.32	8661.03	761.7	8662.	163.15
9000	9063.86	9164.57	9265.28	9365.99	9466.70	95067.41	9668.1	768.	69	5
10000	10071.0	10171.7	10272.4	10373.1	10473.8	1574.5	10	775	10876	. 3
11000	11078.1	11178.8	11279.5	11380.2	11450.9	11581.6	11688.	1783	1883.	1984.4
12000	12055.2	12 ± 85.9	12086.6	12387.3	12488.0	12508.7	126E9.4	2790.1	2c910.	2991.5
13000	13093.2	13193.0	13293.7	13394.4	13495.1	13595.6	13696.5	3797.	38.97.	3998.5
14000	14099.3	14200.1	14300.8	14401.5	14502.2	14602.9	14703.6	480	4905	5005.7
15000	15106.4	1.507 .1	15307.9	1.7408 .6	15509.3	15610.0	15710.7	15811.4	5912.	16012.8
16000	16113.5	16214.2	16315.0	16415.7	16516.4	16617.1	16717.8	1681	6919	. 9
170018	17120.6	17221.3	17322.1	17422.8	17523.5	17624.2	17724.	7825	7992.	8107.0
18000	18127.7	18228.4	18329.1	18429.9	18530.6	18631.3	18732.0	188:2.	18933.	19084.1
19000	19134. 6	19235.5	19336.2	19437.0	19537.7	19638.4	19739.1	19839.8	19940.5	20041.2
20000	20141.9	20242.6	20343.3	20444.0	2054.8	20645.5	20746.2	20846.9	20947.6	21048.3
21000	21145.0	21249.7	21350.4	21451.1	21551.9	21652.6	21753.	21854.	2954.	2955.4
22000	22156.1	22956.8	2 ± 357.5	22458.2	22559.0	22659.7	22760.	2861	22961	23062.5
23000	23163.2	23263.9	23364.6	23465.3	23566.0	231666.8	23767	3868	23968	24069.6
24000	$\because 4170.3$	- 4231.0	24371.7	24172	24573.1	24673.9	2477	24875	24976.	25076.7
25000	25177.4	25278.1	2.3378 .8	25479.5	25580.2	25188.9	25781	5882	25983.	$\underline{96083.8}$
26000	26184.5	26285	26385.9	26486.6	26587.3	26688.1	2175	S88	69910	7090.9
27000	$\because 191.6$	27292	-7393.0	27493.	27594.4	7695.1	27795.	889.	799	50:8.0
28000	2		08100.1		28601.5	5702	-	8903	900	9105. 1
of						its.				
Tens.	O.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Phineft.	Rhineft.	Rhineft.	Rhine ft.	Rhine it	Rhine ft .	Rhine ft	Mhneft.	Hhine ft .	Rhineft.
0	0.00	1.01	2.01	3.02	4.03	5.04	6.04	7.05	8.06	9.06
10	10.07	11.08	12.09	13.09	14.10	15.11	16.11	17.12	18.13	19.13
20	20.14	21.15	22.16	23.16	24.17	28.18	26.18	27.19	28.20	29.21
30	30.21	31.22	32.23	33.23	34.24	35.25	36.26	37.26	38.27	39.28
40	40.28	41.89	42.30	43.31	44.31	45.32	46.33	47.33	48.34	49.35
50	50.35	51.36	52.37	53.38	54.38	55.39	56.40	57.40	58.41	59.42
60	60.43	61.43	62.44	63.45	(64.45	(65.46	66.47	67.48	68.48	69.49
70	70.50	71.50	72.51	73.52	74.53	75.53	76.54	77.55	78.55	79.56
80	80.57	81.57	82.58	83.59	84.60	85.60	86.61	87.62	88.62	89.63
90	00.64	91.65	92.65	93.66	94.67	95.178	96.68	97.69	98.70	99.70

TO CONVERT

RHINE OR PRUSSIAN FEET

1NTO DIFFERENT MEASURES OF LENGTH.

XXVIII. conversion of riline or prussian feet into frencil toises.

1 Rhiue Foot $=0.1610301$ Toise.

Khine f	Hundreds.									
Thousands.	0.	100.	200.	300.	400.	500.	600.	700.	S660.	900.
0	Toises. 0.00	Tuises. 16.10	Tuises. 32.21	Toisen. 48.31	$\begin{gathered} \text { Tuises. } \\ 64.41 \end{gathered}$	Toises. 80.52	Tuises. 96.62	Toises. 112.72	$\begin{aligned} & \text { Tuises. } \\ & 128.8 \end{aligned}$	Toines. 14.93
1000	161.03	177.13	193.24	209.34	225.4t	241.55	257.65	273.75	259.65	305.96
2000	322.06	338.16	354.27	370.37	386.47	402.58	418.68	434.78	450.88	466.99
3000	483.09	499.19	515.30	531.411	547.50	563.61	579.71	595.81	611.91	62.02
4009	634.12	650.22	666.33	692.43	708.53	724.64	740.74	756.84	772.94	789.05
XXIX. conversion of rhine or prussian feet into metres. 1 Rhine Foot $=0.31305350$ Metre.										
Rhine feet. Thonsands.	Rhine Fect. Ifundreds.									
	0.	100.	0800.	300.	100.	D90.	600.	300.	800.	900.
	Metres.	Metres	Metres	Metres.	Metres.	Metres.	Metres.	Metres.	Metres.	M.tres.
0	0.00	31.39	62.77	94.16	125.54	156.93	188.31	219.70	251.08	282.47
1000	313.85	345.24	376.62	408.01	439.39	470.75	502.17	533.55	564.94	596.32
2000	627.71	659.0 !	690.4	721.86	753.25	784.63	816.02	847.40	578.90	910.18
3000	941.56	972.95	1004.33	1035.72	1067.10	1098.49	1129.87	1161.26	1192.64	1224.03
4000	1255.41	1286.80	1318.18	1349.57	1380.96	1412.34	1443.73	1475.11	1506.50	1537.88
5000	1569.27	1600.65	1632.04	1663.42	1694.81	1726.19	1757.58	1788.97	1520.35	1851.74
6000	1883.12	1914.51	1945.89	1977.2	2008.66	2040.05	2071.43	2102.82	2134.20	2165.59
7000	2196.97	2238.30	2259.75	2291.13	2322.52	2353.90	2385.29	2416.15	$2+48.0$	2479.44
8000	2510.8	2542.21	2573.60	2604.9	2636.37	2667.76	2699.14	2730.53	2761.9	793.30
9000	2824	-550.07		918.	50.22	2981.61	3012.9	304 4.38	3075	107.15
Rhine feet. Tens.	Uuits.									
	0.	1.	2.	3	4.	5.	6.	7.	8.	9.
	Metres.	Metre	Metres	Mctres.						
0	0.00	0.31	0.63	0.94	1.26	1.57	1.88	2.211	2.51	2.82
10	3.14	3.45	3.77	4.08	4.39	4.71	5.02	5.84	5.65	5.96
20	6.28	6.59	6.90	7.22	7.53	7.85	8.16	8.47	8.79	9.10
30	9.42	9.73	10.04	10.36	10.67	10.98	11.30	11.61	11.93	12.24
40	12.55	12.87	13.18	13.50	13.81	14.12	14.44	14.75	15.06	15.38
50	15.69	16.01	16.32	16.63	16.95	17.26	17.58	17.89	18.20	18.52
60	18.83	19.15	19.46	19.77	20.09	20.40	20.71	21.03	21.34	21.66
70	21.97	22.28	22.60	22.91	23.23	23.54	23.85	24.17	24.48	24.79
80	25.10	25.42	25.74	26.05	26.36	26.68	26.99	27.31	27.62	27.93
90	28.25	28.56	28.87	29.19	29.50	29.82	30.13	30.44	30.76	31.07

XXX. conversion of rhine or prussian feet into french feet and DECIMALS.
1 Rhine Foot $=0.96615056$ French Foot.

Rhine Feet.	Rhine Feet. Hundreds.									
Thousands.	(1).	100.	2200.	300.	400.	500.	600.	700.	S00.	90 (1).
0	$\begin{array}{r} \text { Fr. teet. } \\ 0.00 \end{array}$	Fr. teet. 96.62	Fr. teet. 193.94	Fr. feet. 289.85	$\begin{gathered} \hline \text { Fr. feet. } \\ 386.47 \end{gathered}$	$\begin{gathered} \text { Fr. feet. } \\ 483.09 \end{gathered}$	$\begin{array}{r} \text { Fr. feet } \\ 579.71 \end{array}$	Fr. feet. 676.33	Fr. feet. 772.94	$\begin{array}{\|c\|} \text { Fr. feet. } \\ 869.56 \end{array}$
1000	966.18	1062.80	1159.42	1256.03	1352.65	1449.27	1545.89	1642.51	1739.13	1835.74
2000	1932.36	2028.98	2125.60	2202.22	2318.83	2415.45	2512.07	2608.69	2705.31	2801.92
3000	2898.54	2995.16	3091.78	3188.40	3285.01	3381.63	3478.25	3574.87	3671.49	3781.10
4000	3864.72	3961.34	4057.96	4154.58	4251.19	4347.81	4444.43	4541.05	4637.67	4734.28
5000	4830.90	4927.52	5034.14	5120.76	5217.38	5313.99	5410.61	5507.23	5603.85	5700.47
6000	5797.08	5893.70	5990.32	6086.94	6183.56	6280.17	6376.79	6473.41	6570.03	6666.65
7000	6763.26	6859.88	6956.50	7053.12	7149.74	7246.35	7342.97	7439.59	7536.21	7632.83
8000	7629.44	7526.06	7922.68	8019.30	8115.92	8212.53	8309.15	8405.77	8502.39	8509.01
9000	8695.63	8792.24	5858.86	8985.48	9082.10	9178.72	9275.33	9371.95	9468.57	9565.19

XXXI. Conversion of rhine or prussian feet into english feet.

1 Rhine Foot $=1.0297217$ English Feet.

Rhine Feet.	Hondreds.									
Thonsands.	(1).	100.	200.	300.	400.	509.	600.	700.	800.	300.
0	Eng. (1.1) (1)	Eng. ft. 102.97	Eng. ft. 205.94	$\begin{gathered} \text { Eng. ft. } \\ 305.92 \end{gathered}$	$\begin{gathered} \hline \text { Eng. ft. } \\ 411.89 \end{gathered}$	$\begin{aligned} & \text { Eng. ft. } \\ & 514.86 \end{aligned}$	$\begin{gathered} \text { Eng. ft. } \\ 617.83 \end{gathered}$	Eng. ft. 720.81	Eng. ft. 823.78	$\begin{gathered} \text { Eng. ft. } \\ 926.75 \end{gathered}$
1000	1029.72	1132.69	1235.67	1338.64	1411.61	1544.58	1647.55	1750.53	1853.50	1956.47
2000	2059.44	2162.42	2265.39	2368.36	2471.33	2574.30	2677.28	2780.25	2883.22	2986.19
3000	3089.17	3192.14	3295.11	3398.08	3501.05	3604.03	3707.00	3809.97	3912.94	4015.92
4000	4118.59	4221.86	4324.83	4427.80	4530.78	4633.75	4736.72	4839.69	4942.66	5045.64
5000	5148.61	5251.58	,5354.55	5457.53	5560.50	5663.47	5766.44	5869.41	5972.39	6075.36
6000	${ }^{1} 6178.33$	6281.30)	6384.28	6487.25	6590.22	6693.19	6796.16	6899.14	7002.11	7105.08
7000	7208.05	$7311.0{ }^{\circ}$	7414.00	7516.97	7619.94	7722.91	7825.89	7928.86	8031.83	8134.80
8000	8837.77	83-40.75,	S443.72	8546.69	8649.66	8752. 64	8855.61	8958.5¢	9061.55	9164.52
9000	9267.50	9370.47	9473.44	9576.41	9679.38	9782.36	9885.33	9988.30	10091.3	10194.2
Rhine Feet.					Uni	its.				
Tens.	0.	1.	2.	3.	4.	5.	6.	7.	s.	9.
0	$\begin{gathered} \text { Eng. ft. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { Eng. ft. } \\ 1.03 \end{gathered}$	$\begin{aligned} & \text { Eng. ft } \\ & 2.06 \end{aligned}$	$\begin{gathered} \text { Eng. ft. } \\ 3.09 \end{gathered}$	$\begin{gathered} \text { Eag ft. } \\ 4.12 \end{gathered}$	$\begin{gathered} \text { Eng. ft. } \\ 5.15 \end{gathered}$	$\begin{array}{r} \hline \text { Eug. ft. } \\ 6.18 \end{array}$	$\begin{array}{r} \text { Eng. ft } \\ 7.21 \end{array}$	$\begin{gathered} \text { Eng. } \mathrm{ft} \\ 8.24 \end{gathered}$	$\begin{gathered} \text { Eng. ft. } \\ 9.27 \end{gathered}$
10	10.30	11.33	12.36	13.39	14.42	15.45	16.48	17.51	18.53	19.56
20	20.69	21.62	22.65	23.68	24.71	25.74	26.77	27.80	28.83	29.86
30	30.89	31.92	32.95	33.98	35.01	36.04	37.07	38.10	39.13	40.16
40	41.19	42.22	43.25	44.28	45.31	46.34	47.37	48.40	49.43	50.46
50	51.49	52.52	53.55	54.58	55.60	56.63	57.66	58.69	59.72	60.75
60	61.78	62.81	63.84	64.87	65.90	66.93	67.96	68.99	70.02	71.05
70	72.08	73.11	74.14	75.17	76.20	77.23	78.26	79.29	80.32	81.35
80	82.38	83.41	8.4 .44	85.47	86.50	87.53	88.56	89.59	90.62	91.65
90	92.67	93.70	94.73	95.76	96.79	97.82	98.85	99.88	100.91	101.94

XXXII. conversion of rhine or prussian feet into feet of vienna.

1 Rhine Foot $=0.9929336$ Foot of Vienua.

Rhine feet. Thousands.	Hundreds.									
	(b.	100.	200.	300.	400.	500.	600.	700.	sob.	900.
0	Vien. ft. 0.00	Vien. ft. 99.30	Vien. ft. 198.59	Vien. ft. 297.89	$\begin{array}{\|r} V i e n, f t . \\ 397.18 \end{array}$	Vien. ft . 496.48	Vien. ft. 595.77	Vien. ft. 695.07	$\begin{array}{\|r\|} \hline \text { Vien. ft. } \\ 794.36 \end{array}$	Vien. ft. 893.66
1000	992.95	1092.25	1191.54	1290.84	1390.14	1489.43	1588.73	1688.02	1787.32	1886.61
2000	1985.91	2085.20	2184.50	2283.79	2383.09	2482.38	2581.68	2680.97	2780.27	2879.57
3000	2978.86	3078.16	3177.45	3276.75	3376.04	3475.34	3574.63	3673.93	3773.22	3872.52
4000	3971.81	4071.11	4170.41	$4 \geq 69.70$	4369.00	+468.29	4567.59	4666.88	4766.18	4865.47
5000	4964.77	5064.06	5163.36	5262.65	5361.95	5461.24	5560.54	5659.84	5759.13	5858.43
6000	5957.72	6057.02	6156.31	6255.61	6354.90	6454.20	6553.49	6652.79	6752.08	6851.38
7000	6950.68	7049.97	7149.27	7248.56	7347.86	747.15	7546.45	7645.74	7745.04	7844.33
8000	7943.63	8042.92	8142.22	8241.51	8340.81	8440.11	8539.40	8638.70	8737.99	8837.29
9000	S936.58	9035.88	9135.17	9234.47	9333.76	9433.06	9532.35	9631.65	9730.95	9830.24
Rhine feet.					Uni	its.				
Tens.	0.	1.	2.	3.	4.	5.	6.	\%.	8.	9.
	Vien. ft.	Vien. ft.	Vien ft.	Vien. ft.	Vien ft.	Vien. ft.	Vien. ft .	Vien. ft.	Vien. ft.	Vien. ft.
0	0.00	0.99	1.99	2.98	3.97	4.96	5.96	6.95	7.94	8.94
10	9.93	10.92	11.92	12.91	13.90	14.89	15.89	16.88	17.87	18.87
20	19.86	20.85	21.84	22.84	23.83	24.82	25.82	26.81	27.80	28.80
30	29.79	30.78	31.77	32.77	33.76	34.75	35.75	36.74	37.73	38.73
40	39.72	40.71	41.70	42.70	43.69	44.68	45.68	46.67	47.66	48.65
50	49.65	50.64	51.63	52.63	53.62	54.61	55.61	56.60	57.59	58.58
60	59.58	60.57	61.56	62.56	63.55	64.54	65.53	66.53	67.52	68.51
70	69.51	70.50	71.49	72.49	73.48	74.47	75.46	76.46	77.45	78.44
80	79.44	80.43	81.42	82.42	83.41	84.40	85.39	S6.39	87.38	88.37
90	89.37	90.36	91.35	92.34	93.34	94.33	95.32	96.32	97.31	98.30

XXXIII. conversion of bavarian feet into metres.

1 Batvarian Foot $=0.2918 .992$ Metre

Bavarian	Hundreds.									
Thousands.	O.	100.	200.	300.	400.	500.	600.	700.	S00.	900.
	Metres.		Metres.							
0	0.00	29.19	58.37	S7.56	116.74	145.93	175.12	204.30	233.49	262.67
1000	291.86	321.05	350.23	379.42	408.60	437.79	466.97	496.16	525.35	554.53
2000	583.72	612.90	642.09	671.28	700.46	729.65	758.83	788.02	817.21	846.39
3000	875.58	904.76	933.95	963.14	992.32	1021.51	1050.69	1079.88	109.06	25
4000	1167.44	1196.62	1225.81	1254.99	1284.18	1313.37	1342.55	1371.74	1400.92	1430.11
5000	1459.30	1488.48	1517.67	1546.85	1576.04	1605.23	1634.41	1663.60	1692.78	1721.97
6000	1751.16	1780.34	1809.53	1838.71	1867.90	1597.08	1926.27	1955.46	1984.6	013.83
7000	2043.01	2072.20	2101.39	2130.57	2159.76	2188.94	2218.13	2247.32	2276.50	2305.69
8000	2334.87	2364.06	2393.25	2422.43	2451.62	-480.80	2509.99	2539.17	2568.36	2597.55
9000	2626.73	2655.92	2685.10	2714.29	2743.48	2772.66	2801.85	2831.03	2860.22	2889.41

TO CONVERT

THE OLD SPANISH, MEXICAN, AND BOLIVIAN VARAS AND FEE'T

INTO DIFFERENT MEASURES OF LENGTH.

Abstract

YXXIV. CONVERSION OF SPANISH VARAS INTO METRES. 1 spani h Vara $=0.83590$ io Metre.

1 Mexicau Vara $=0.038$ Metre.

Mexican	Hundreds.									
Thousands.	0.	100.	200.	300.	409.	500.	600.	700.	cose	900.
0	Metres. 0.0	Metres. 83.8	Metres. 167.6	Metres. 251.4	$\begin{gathered} \text { Metres. } \\ 335.2 \end{gathered}$	Merres. 419.0	Metres. $50-2$	Metres. 586.6	Metres. 670.4	$\begin{array}{r} \text { Metres. } \mid \\ 754.2 \end{array}$
1000	838.0	921.8	1005.6	1089.4	1173.2	1257.0	1340.8	1434.6	1508.4	1592.2
2000	1676.0	1759.8	1843.6	1927.4	2011.2	2095.0	2178.8	2262.6	2346.4	2430.2
3000	2514.0	2597.8	2681.6	2765.4	2849.2	2933.4	3016.8	3100.6	3184.4	3268.2
4000	3352.0	3435.8	3519.6	3603.4	3687.2	3771.0	3554.8	3938.6	402.2.4	4106.2
5000	4190.0	4273.8	4357.6	4441.4	45.25 .2	4609.0	4692.8	4776.6	4860.4	494.2
6000	51428.0	5111.8	5195.6	5279.4	5363.2	5447.0	5530.8	5614.6	5695.4	578..2
7000	5886.0	5949.8	6033.6	6117.4	6201.2	6285.1	6368.8	6452.6	6536.4	6620.2
Sinoo	6704.0	6787.8	6871.6	6955.4	7039.2	7123.0	7206.8	7290.6	73.4 .4	7458.2
SOPO)	7542.0	76925.8	7709.6	7793.4	7877.2	7961.11	8044.8	8128.6	8212.4	8296.2
XXXVII. Conversion of mexican feet into metres. 1 Mexican Foot $=0.2793333$ Metre.										
Mexican	Huadreds.									
Thonsands.	0.	10	(1).	300.	100.	5(1).	600.	300.	8000	9009.
	Metres.	Menes.	Metres.							
0	0.00	27.93	55.87	83.80	111.73	139.67	167.60	195.53	2.23 .47	251.40
1000	279.33	307.27	335.20	363.13	391.07	419.00	446.93	474.87	502.80	530.73
2000	558.67	586.60	614.53	642.46	670.40	698.33	726.27	754.20	782.13	810.07
3000	838.00	865.93	893.57	021.80	949.73	977.67	1005.60	1033.53	$10<1.47$	1089.4
4000	1117.33	1145.27	1173.20	1201.13	1229.07	1257.00	1284.93	1312.87	$13 \div 0.80$	1368.73
5000	1396.67	1424.60	1452.53	1480.47	1508.40	1536.33	1564.27	1592.20	1620.13	1448.07
6000	1676.00	1703.93	1731.87	1759.80	1787.73	1815.67	1843.60	1871.53	1890.15	1927.40
7000	1955.33	1983.27	2011.20	2039.13	2067.07	2095.00	2122.93	2150.87	$\because 178.80$	2206.73
8000	2234.67	2262.60	2290.53	2318.47	2346.40	2374.33	2402.27	2430.20	-2158.1	2486.07
98000	2514.00	25.41 .93	25,69.87	2597.81	2425.73	2653.67	2681.60	2709.53	2787.47	2765.40

XXXVIII. conversion of mexican feet into englisil feet.

1 Mexican Fout $=0.91640477$ English Fuot.

Mexican	Hundreds.									
Thousands	(1).	100.	$\because 00$.	300.	100.	5000.	6 (10).	\% 0 (1).	E0N.	980.
	Ens. feet	Eng. feet	Eng. feet	Eug. feet	Eng. feet					
0	0.00	91.65	183.29	27.4 .94	366.59	458.23	549.88	641.53	733.17	824.82
1000	916.4 ;	1008.81	1099.76	1191.40	1283.0.5	1374.70	1466.34	1557.99	1649.64	1741.28
2000	1832.93	1924.58	2016.22	2107.87	2199.51	2291.16	$\underline{382.81}$	$2+74.45$	2506.10	2657.75
3000	2749.39	2841.04	2932.69	3024.33	3115.94	3207.63	3299.27	3390.92	3452.56	3574.21
4000	3665.86	3757.50	3849.15	3940.80	4032.44	4124.09	4215.74	4307.38	4399.03	4490.68
5000	4582.32	4673.97	4765.62	4857.26	4948.91	5040.16	5132.20	5223.85	5315.49	5407.14
6090	5498.79	5590.43	5682.08	5773.73	5865.37	5957.02	6048.67	6140.31	6291.96	6323.60
7000	6415.25	15506.90	6598.54	6690.19	6781.84	6873.48	6965.13	7056.75	7148.42	7210.07
S000	7331.72	7423.36	7515.01	7606.66	7698.30	7789.95	7881.59	7973.24	80c-2.89	'8150.53
9000	18248.18	8339.83	8431.47	8523.12	8614.77	8706.41	8798.06	8889.71	8981.35	9073.00

XXXIX. conversion of bolivian, chlilan, and peruvian varas into metres.

1 Bolivian, Chilian, and Peruvian Yara $=0.5474576$ Metre.

Bolivian	Hundreds.									
Thousands.	0.	100.	200.	360.	400.	500.	600.	760.	S00.	900.
1000									677.97	762.71
2000							355.93	1440.68	1525.42	1610.17
2000	1694	1779.66	18	1949.15	3.90	2118.64	2203.39	2288.14	2372.88	2457.63
3000	2542.37	2627.12	2711.86	2796.61	2881.36	2966.10	3050.85	3135.59	3220.34	3305.08
4000	3389.83	3474.58	3559.32	3644.07	3728.81	3813.56	3898.30	3983.05	4067.80	4152.54
5000	4237.29	4322.03	4406.78	4491.53	4576.27	4661.02	4745.76	4820.51	4915.25	5000.00
6000	5084.75	5169.49	5254.24	5338.98	5423.73	5508.47	5593.22	5677.97	5762.71	5847.46
7000	5932.20	6016.95	6101.69	6186.44	6271.19	6355.93	6440.68	6525.4*	6610.17	6694.92
8000	6779.66	6864.41	6949.15	7038.90	7118.64	7203.39	7288.14	7372.88	7457.63	7542.37
9000	7627.12	7711.86	7796.61	7881.36	7966.10	8050.85	8135.59	8200.34	8305.08	8389.83

XL. conversion of bolivian, chilian, and peruvian feet into metres. 1 Bolivian Foot $=0.25248587$ Metre.

Bolivian	Hundreds.									
Thousauds.	0.	100.	200.	300.	400.	500.	600.	\%00.	S80.	900.
	Metres.									
0	0.00	28.25	56.50	84.75	112.99	141.24	169.49	197.74	225.99	254.24
1000	282.49	310.73	338.98	367.23	395.48	423.73	451.98	480.23	508.47	536.72
2000	564.97	593.22	621.47	649.72	677.97	706.21	734.46	762.71	790.96	819.2
3000	847.46	875.71	903.95	932.20	960.45	988.70	1016.95	1045.20	1073.45	1101.69
4000	1129.94	1158.19	1186.44	1214.69	1242.94	1271.19	1299.44	1327.68	1355.93	1384.18
5000	1412.43	1440.68	1468.93	1497.18	1525.42	1553.67	1581.92	1610.17	1638.42	1666.67
6000	1694.92	1723.16	1751.41	1779.66	1807.91	1836.16	1864.41	1892.66	1920.90	1949.15
7000	1977.40	2005.65	033.90	2062.15	2090.40	2118.64	2146.89	2175.14	2203.39	2231.64
8000	2259.89	2288.14	2316.38	2344.63	2372.88	2401.13	2429.38	2457.63	2485.88	2514.12
9000	2042.37	2570.62	2598.87	2627.12	2655.37	2683.62	2711.86	27.10 .11	2768.36	2796.61

XLI. conversion of bolivian, chilian, and peruvian feet into english feet.
1 Bolivian Foot $=0.9265078$ English Foot.

Bolivian	Hundreds.									
Thousauds	0.	100.	200.	300.	400.	50.	600.	'900.	SOO.	500.
	Eng. feet	Eng. feet	Eng.feet	Eng. feet	Eng. fert	Eng. feet	Enc. fuet	Eng. feet	Eng. feet	Eng. feet
0	0.00	32.68	185.36	278.04	370.72	463.40	556.08	648.77	741.45	834.13
1000	926.81	1019.49	1112.17	1204.85	1297.53	1390.21	1482.89	1575.57	1668.25	1760.9:
2000	1853.62	1946.30	2038.98	2131.66	2924.34	2317.02	2409.70	2502.38	2595.06	2687.74
3000	2780.42	2878.10	2965.78	3058.47	3151.15	3243.83	3386.51	3429.19	3521.87	3614.55
4000	3707.23	3799.91	3892.59	3985.27	4077.95	4170.64	4263.32	4356.00	4448.68	4541.36
5000	4634.04	4726.72	4819.40	4912.08	5004.76	5097.44	5190.12	5282.80	5375.49	5468.17
6000	5560.85	5653.53	5746.21	5838.89	5931.57	6024.25	6116.93	6209.61	6302.29	6394.97
7000	6.487 .65	6580.34	6673.02	6765.70	6858.38	6951.06	7043.74	7136.42	7229.10	7321.78
8000	7414.46	7507.14	7599.82	7692.50	7785.19	7877.87	7970.55	S063.23	8155.91	8248.59
9090	8341.27	8433.95	8526.63	8619.31	8711.99	8804.67	8897.35	8090.04	9082.72	9175.40

TO CONVERT

FRAC'IIONAL PARTS OF A TOISE AND OF A FOOT

INTO EACH OTHER.

XLII. CONVERSION OF INCHES INTO DUODECIMAL LINES.

1 Inch $=12$ lines.

Inches. Tens.	. Inches. Units.									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Lines.	Lines.	Lines.	Lines.	Lines	Lines	Lines.	Lines.	Lines.	Lines.
0	0	12	24	36	48	60	72	84	96	108
10	120	132	144	156	168	180	192	204	216	22;
20	240	252	264	276	288	300	312	324	336	348
30	360	372	384	396	408	420	432	444	456	468
40	480	492	504	516	528	540	552	564	576	588
50	600	612	624	636	648	660	672	684	696	708
60	720	732	744	756	768	780	792	804	816	828
70	840	852	864	876	888	900	912	924	936	948
80	960	972	984	996	1008	1020	1032	1041	1056	1068
90	1080	1092	1104	1116	1128	1110	1152	1164	1176	1188
100	1200	1212	1224	1236	1248	1260	1272	1284	1296	1305

XLIII. CONVERSION OF DECIMALS OF A TOISE INTO FEET AND INCHES.

1 Toise $=6$ Feet $=72$ Inches $=864$ Lines.

	Hundredths of a Toise.									
Tenths	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
0.0	ft in lin 0.0.0.00	ft. in. lin 0. $0.8,64$	ft. in. lin 0. 1. 5,28	ft. in. lin. $0.2 .1,92$	ft . in lin. 0. $2 \cdot 10,56$	ft. in. lin. 0. 3.7,20	ft. in. lin. 0. 4. 3,84	ft.in. lin.	ft. in. lin	ft. in. lin
0.1	$0.7 .2,40$	0. $7.11,04$	0. 8. 7,68	0. 9. 4,32	0.10. 0,96	0.10.9,60	6,24	2,88	0.11,52	. 8,16
0.2	1.2.4,50	1. 3. 1,14	1. $3 \cdot 10,08$	1. 4. 6,72	1. 5. 3,36	1. $6.0,00$	1. 6. 8,64	1.7. 5,28	1. 8. 1,92	1. $8.10,56$
0.3	1.9.7,20	1.10. 3,84	1.11. 0,45	1.11. 9,12	2. 0. 5,76	2. 1.2,40	2. 1.11,0t	2.2. 7,68	2. 3. 4,32	2. 4. 0,96
0.4	2.4.9,60	2. 5. 6,24	2. 6. 2,88	2. $6.11,52$	2. 7. 8,16	2. 8.4,50	2. 9. 1,44	2.9.10,08	2.10.6,72	2.11. 3,36
0.5	3.0.0,00	3. $0.8,64$	3. 1. 5,28	3. 2. 1,92	3. $2 \cdot 10,56$	3. 3.7,20	3. 4. 3,84	3.5. 0,48	3. 5. 9,12	3. 6. 5,76
0.6	3.7.2,40	3. $7.11,04$	3. 8. 7,68	3. 9. 1,32	3.10. 0,96	3.10.9,60	3.11. 6,24	4.0. 2,88	4. $0.11,52$	4. 1. 8,16
0.7	4.2.4,80	4. 3. 1,44	4. 3.10,08	4. 4. 6,72	+. 5. 3,36	4. 6.0,00	4. 6. 8,64	4.7. 5,28	4. 8. 1,92	4. 8.10,56
0.8	4.9.7,20	4.10. 3,84	4.11. 0,48	4.11. 9,12	5. 0. 5,76	5. 1.2,40	5. 1.11,04	5.2. 7,68	5. 3. 4,325	5. 4. 0,96
0.9	5.4.9,60	5. 5. 6,24	5. 6. 2,88	5. 6.11,52	5. 7. 8,16	5. 8.4,80	5. 9. 1,44	5.9.10,08	5.10. 6,72	5.11. 3,36

Feet. Tentlis.	Hundreaths of a Foot.									
	©.	1.	2.	3.	4.	5.	6.	7.	8.	9.
	Inches.	Inches	Inches	Inches.	Inches	Inches.	Inches.	Inches.	Inches	Inches.
0.0	0.00	0.12	0.24	0.36	0.48	0.60	0.72	0.84	0.96	1.08
0.1	1.20	1.32	1.44	1.56	1.68	1.80	1.92	2.04	2.16	2.28
0.2	2.10	2.52	2.64	2.76	2.88	3.00	3.12	3.24	3.36	3.48
0.3	3.60	3.72	3.84	3.96	4.08	4.20	4.32	4.44	4.56	4.68
0.4	4.80	4.92	5.04	5.16	5.28	5.40	5.52	5.64	5.76	5.88
0.5	6.00	6.12	6.24	6.36	6.48	6.60	6.72	6.84	6.96	7.08
0.6	7.20	7.32	7.44	7.56	7.68	7.80	7.92	8.04	8.16	8.25
0.7	8.10	8.52	8.64	8.76	8.88	9.00	9.12	9.24	9.36	9.48
0.8	9.60	9.72	9.84	9.96	10.08	10.20	10.32	10.44	10.56	10.68
0.9	10.80	10.92	11.04	11.16	11.28	11.40	11.52	11.64	11.76	11.88

XLV. CONVERSION OF DECIMALS OF A FOOT INTO INCHES AND DUODECIMAL LINES.

	Hundredths of a Foot							
Tenths.	0. 1.	2.	3.14.	5.	6.	7.	8.	9.
	In. Line. In Line.	In Line.	In. Line. In. Line.	In Line	In. Line	In Line	Line	In. Line.
0.0	0.0,00 0. 1,44	0. 2,38	0. 4,32 $0.5,76$	0.7,20	0. 8,64	0.10,08	0.11,52	1. 0,96
0.1	1.2, 10 1. 3,84	1. 5,28	1. 6,72 1. 8,16	1.9,60	1.11,04	2. 0,48	2. 1,92	2. 3,36
0.2	2.4,50 2. 6,21	2. 7,68	2. 9,12 $2.10,56$	3.0,00	3. 1,44	3. 2,88	3. 4,32	3. 5,76
0.3	3.7,20 3. 8,64	3.10,08	3.11,52 4. 0,96	4.2,40	4. 3, 44	4. 5,28	4. 6,72	4. 8,16
0.4	$49,60 \quad 4.11,04$	5. 0,48	5. 1,92 5. 3,36	5.4,50	5. 6,24	5. 7,68	5. 9,12	5.10,56
0.5	6.0.00 6. 1,44	6. 2,58	6. 4,32 6. 5,76	6.7,20	6. 8,64	6.10,08	6.11,52	7. 0,96
0.6	$7.2,10 \quad 7.3,84$	7. 5,29	7. 6,72 7. 8,16	7.9,60	7.11,04	8. 0,48	8. 1,92	8. 3,36
0.7	$8.4,50$ 8. 6,24	8. 7,68	8. 9,12 8.10,56	9.0,00	9. 1,44	9. 2,58	9. 4,32	9. 5,76
0.8	9.7,20 9. 8,64	9.10,08	9.11,52 10. 0,96	10.2,40	10. 3,84	10. 5,28	10. 6,72	10. 8,16
0.9	10.9.60 10.11,04	11. 0,45	11. 1,92 11. 3,36	11.4,50	11. 6,24	11. 7,68	11. 9,12	11.10,56

XLVI. CONVERSION OF INCHES AND DUODECIMAL LINES INTO DECIMALS OF A FOOT.

1 Inch $=008333$ of a Foot. $\quad 1$ Line $=\mathbb{C} 006944$ of a Foot.

Inches.	Lines											
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.
	Foot.	Foot.	Foot	Foot.	Foot.	Foot.	Foot.	Foot.	Foot	Foot.	Foot	Foot.
0	0.0000	0.0069	0.0139	0.0208	0.0278	0.0347	0.0417	0.0486	0.0556	0.0625	0.0694	0.0764
1	0.0333	0.0903	0.0972	0.1042	0.1111	0.1181	0.1250	0.1319	0.1389	0.1458	0.1528	0.1597
2	0.1667	0.1736	0.1806	0.1875	0.1944	0.2014	0.2083	0.2153	0.2222	0.2292	0.2361	0.2431
3	0.2500	0.2569	0.2639	0.2708	0.2778	0.2847	0.2917	0.2986	0.3056	0.3125	0.3194	0.3264
4	0.3533	0.3103	0.3172	0.3542	0.3611	0.3681	0.3750	0.3819	0.3889	0.3958	0.1028	0.4097
5	0.4167	0.4236	0.4306	0.4375	0.444	0.4514	0.4583	0.4653	0.4722	0.4792	0.4861	0.4931
6	0.5000	0.5069	0.5139	0.5208	0.5278	0.5347	0.5417	0.5-186	0.5556	0.562 .5	0.5694	0.5764
7	0.5833	0.5903	0.5972	0.6042	0.6111	0.6181	0.6250	0.6319	0.6389	0.6458	0.6528	0.6597
8	0.6667	0.6736^{\prime}	0.6806	0.6575	0.6944	0.7014	0.7083	0.7153	0.7222	0.7292	0.7361	0.7431
9	0.7500	0.7569	0.7639	0.7708	0.7778	0.7847	0.7917	0.7986	0.8056	0.8125	0.8194	0.8264
10	0.8333	0.8403	0.8472	0.8542	0.8611	0.8681	0.8750	0.8819	0.8889	0.8958	0.9028	0.9097
11	0.9167	0.9236	0.9306	0.9375	0.9444	0.9514	0.9583	0.9653	0.9722	0.9792	0.9861	0.9931

XLVII. TABLE FOR COMPARING THE MOST IMPORTANT MEASURES OF LENGTH.

French metre.	French toise.	Foot of Paris.	English, or Russian foot.	Swedish foot.	$\begin{aligned} & \text { Norwegian } \\ & \text { foot. } \end{aligned}$	Rhine, or Prussian foot.	Austrian, or Klafter of Vienna.	Austrian, or foot of Vienna.	Spanish vara.	Spanish foot.
I	0.5130741	3.078444	3.280899	3.368126	3.187116	3.186200	0.5272915	3.163749	1.196308	3.588925
	9.7101801	0.4883313	0.5159929	0.5273883	0.5033979	0.5032730	9.7220507	0.5002020	0.0778431	0.5549644
1.949036	1	6.000000	6.394592	6.564599	6.211805	6.210019	1.027710	6.166261	2.331648	6.994945
0.2898199		0.7781513	0.8058128	0.8172082	0.7432128	0.7930929	0.0118707	0.7900219	0.3676630	0.8447843
0.3248394	0.1666667	I	1.065765	1.094100	1.035301	1.035003	0.1712850	1.027710	0.3886080	1.165824
95116687	9.2218487		0.0276615	0.0390570	0.0150666	0.0149417	9.2337194	0.0118707	9.5595117	0.0666330
0.3047945	0.1563822	0.9382930	I	1.026586	0.9714155	0.9711362	0.1607155	0.9642932	0.3646282	1.093885
9.4840071	9.1941872	9.9723385		0.0113954	9.9574050	9.9872801	9.2060579	9.9542091	9.5618502	0.0369715
0.2969010	0.1523322	0.9139933	0.9741024	1	0.9462580	0.9459860	0.1565534	0.9393202	0.3551851	1.065555
9.4726117	9.1827918	9.9609430	9.9856046		9.9760096	9.9758847	9.1946624	9.9728137	9.5504518	0.0275761
0.3137633	0.1609838	0.9659028	1.029426	1.056794	I	0.9997125	0.1654447	0.9926682	0.3753576	1.126073
9.4966021	9.2067822	9.9549334	0.0125950	0.0239904		9.9998751	9.2186508	9.9965041	9.5744452	0.0515665
0.3138535	0.1610301	0.9661806	1.029722	1.057098	1.000288	I	0.1654923	0.9929536	0.3754655	1.126397
9.4967270	9.2069071	9.9850583	0.0127199	0.0241153	0.0001249		0.2187777	9.9969290	9.574.5701	0.0516913
1.896484	0.9730370	5.838222	6.222173	6.387598	6.044316	6.042579	1	6.000000	2.268780	6.806339
0.2779193	9.9881293	0.7662806	0.7939421	0.8033376	0.7813472	0.7812223		0.7781513	0.3557923	0.8329136
0.3160807	0.1621728	0.9730370	1.037029	1.064600	1.007386	1.007096	0.1666667	I	0.3781300	1.134390
9.4997950	9.2099781	9.9881293	0.0157909	0.0271863	0.0031959	0.0030710	9.2218487		9.5776411	0.0547624
0.8359050	0.4288812	2.573287	2.742520	2.815433	2.664126	2.663360	0.4407656	2.644593	I	3.000000
9.9221.569	9.6323370	0.4104883	0.4381498	0.4495452	0.4255548	0.4254299	9.6442077	0.4223589		0.4771213
0.2786350	0.1429604	0.8577623	0.9141732	0.9384777	0.8880421	0.8877868	0.1469219	0.8815311	0.333333	1
9.44503.56	9.1552157	9.9333670	9.9610285	9.9721239	9.9484335	9.9483087	9.1670864	9.9452376	9.5228787	

In this table each measure named at the head of its vertical column, occurs once as unit, and all the numbers, on the same horizontal line,
XLVHII CONVLRSIGN OF ENGLASH FATHODS INTO METRES.

Fatioms.	Hundreds.									
	O.	100.	200.	300.	400.	500.	600.	'900.	808.	500.
Thousands. 0	Metres. 0.00	Metres. 182.88	Metres. 365.75	Metres. 548.63	Metres. 731.51	Metres. 914.38	Metres. 1097.26	$\begin{gathered} \text { Metres. } \\ 1 \because 80.14 \end{gathered}$	$\begin{gathered} \text { Metres. } \\ 1463.01 \end{gathered}$	Metres. 1645.89
1000						914.38	1097.26	1280.14	1463.11	1645.89
1000	1828.77	2011.65	2194.52	2377.40	2560.28	2743.15	2926.03	3105.91	3291.78	3474.66
2000	3657.53	38.40 .41	4023.28	4206.16	4389.04	4571.91	4754.79	4937.67	5120.54	5303.42
3000	5486.30	5669.18	5852.05	6034.93	6217.81	6400.68	6583.56	6766.44	6949.31	7132.19
4000	7315.07	7497.95	7680.82	7863.70	8046.58	8229.45	8412.33	8595.21	8778.08	8960.96
5000	9143.83	9326.71	9509.58	9692.46	9875.34	10058.21	10241.09	10423.97	10606.84	10789.72
6000	10972.60	11155.48	11338.35	11521.23	11704.11	11886.98	12069.86	12252.73	12435.61	12618.49
7000	12801.37	12984.25	13167.12	13350.00	13535.88	13715.75	13898.63	14081.51	14264.38	14447.26
8000	14630.14	14813.02	14995.89	15178.77	15361.65	15544.52	15727.40	15910.27	16093.15	16276.03
9000	16.458 .90	16641.78	16824.65	17007.53	17190.41	17373.28	17556.16	17739.04	17921.92	18104.80

XIIX. CONVERSIon of METRES into English fathoms.
(1 Metre $=0.546817$ English Fathoms [0.7375420].)

b) TABLES

FOR

COMPARING fHE MOST IMPORTANT MEASURES OF GEOGRAPHICAL DISTANCAS.

CONTENTS.

(The figures refer to the folio at the bottom of the page.)

TABLES FOR COMPARING TIIE MOST IMPORTANT MEASURES OF GEOGRAPHICAL DISTANCES.

Conversion of the different litinerary Measures into each other.
Table I. Conversion of Kilometres into Austrian Miles-Prussian MilesGerman Miles-Nautical Leagnes-French Leagues-Geographical Miles - English Statute Miles-Russian Wersts
" II. Conversion of Austrian Miles into Kilometres-Prussian MilesGerman Miles—Nautical Leagues-French Leagues-Geographical Miles_English Statute Miles-Russian Wersts
onversion of Prussian Miles into Kilometres-Austrian MilesGerman Miles-Nautical Leagues-French Leagues-Geographical Miles-English Statute Miles-Russian Wersts .

65
Conversion of German Miles into Kilometres-Austrian Miles-
Prussian Miles_Nautical Leagues_French Leagues-Geographical Miles—English Statute Miles_Russian Wersts . . 68
، V. Conversion of Nautical Leagues into Kilometres-Austrian Miles _Prussian Miles_German Miles_French Leagues_Geographical Miles—English Statute Miles_Russian Wersts . . . 71
" VI. Conversion of French Leagues into Kilometres-Austrian MilesPrussian Miles_German Miles_Nautical Leagues_Geographical Miles_English Statute Miles_Russian Wersts .
" VII. Conversion of Geographical Miles into Kilometres-Austrian Miles
_Prussian Miles_German Miles_Nautical Leagues_French Leagues_English Statute Miles—Russian Wersts
"VIII. Conversion of English Statute Miles into Kilometres-Austrian Miles - Prussian Miles_German Miles_Nautical Leagnes_ French Leagues_Geographical Miles-Russian Wersts80
" IX. Conversion of Russian Wersts into Kilometres-Austrian Miles-
Prussian Miles - German Miles-Nantical Leagues - French
Leagues_Geographical Miles_English Statute Miles . . 83
" X. Table for comparing the most important Itinerary Measures . 86

Kilometres.	$\begin{aligned} & \text { Austrian } \\ & \text { Miles. } \end{aligned}$	Prussian Miles.	$\begin{gathered} \text { German } \\ \text { Miles. } \\ \mathbf{1 5}=1^{\circ} \text { Eq. } \end{gathered}$	Nautical Leagues. $20=1^{\circ}$ Eq. $20=10 \mathrm{Eq} .$	$\begin{gathered} \text { French } \\ \text { Leagues. } \\ 25=1^{\circ} \text { Eq. } \end{gathered}$	Geograpli'l or Nautical Miles. $60=1^{\circ} \mathrm{Eq}$	English Statute Miles.	Russian Wersts.
1,000	131.82	132.76	134.76	179.68	224.60	539.05	621.38	937.40
2,000	263.65	265.52	269.53	359.37	449.21	1078.10	1242.77	1874.80
3,000	395.47	398.27	404.29	539.05	673.81	1617.16	1864.15	2812.20
4,000	527.29	531.03	539.05	718.74	898.42	2156.21	2485.53	3749.60
5,000	659.11	663.79	673.81	898.42	1123.02	2695.26	3106.91	4687.00
6,000	790.94	796.55	808.58	1078.10	1347.63	3234.31	3728.30	5624.40
7,000	922.76	929.31	943.34	1257.79	1572.23	3773.36	4349.68	6561.80
8,000	1054.58	1062.07	1078.10	1437.47	1796.84	4312.41	4971.06	7499.20
9,000	1186.41	1194.82	1212.87	1617.16	2021.44	4851.46	5592.44	8436.60
10,000	1318.23	1327.58	1347.63	1796.84	2246.05	5390.52	6213.82	9374.00
100	13.18	13.28	13.48	17.97	22.46	53.91	62.14	93.74
200	26.36	26.55	26.95	35.94	44.92	107.81	124.28	187.48
300	39.55	39.83	40.43	53.91	67.38	161.72	186.42	281.22
400	52.73	53.10	53.91	71.87	89.84	215.62	248.55	374.96
500	65.91	66.38	67.38	89.84	112.30	269.53	310.69	468.70
600	79.09	79.65	80.86	107.81	134.76	323.43	372.83	562.44
700	92.28	92.93	94.33	125.78	157.22	377.34	434.97	60.6 .18
800	105.46	106.21	107.81	143.75	179.68	431.24	497.11	749.92
900	118.64	119.48	121.29	161.72	202.14	485.15	559.24	843.66
1000	131.82	132.76	134.76	179.68	224.60	539.05	621.38	937.40
1	0.13	0.13	0.13	0.18	0.22	0.54	0.62	0.94
2	0.26	0.27	0.27	0.36	0.45	1.08	1.24	1.87
3	0.40	0.40	0.40	0.54	0.67	1.62	1.86	2.81
4	0.53	0.53	0.54	0.72	0.90	2.16	2.49	3.75
5	0.66	0.66	0.67	0.90	1.12	2.70	3.11	4.69
6	0.79	0.80	0.81	1.08	1.35	3.23	3.73	5.62
7	0.92	0.93	0.94	1.26	1.57	3.77	4.35	6.56
8	1.06	1.06	1.08	1.44	1.80	4.31	4.97	7.50
9	1.19	1.19	1.21	1.62	2.02	4.85	5.59	8.44
10	1.32	1.33	1.35	1.80	2.25	5.39	6.21	9.37
11	1.45	1.46	1.48	1.98	2.47	5.93	6.84	10.31
12	1.58	1.59	1.62	2.16	2.70	6.47	7.46	11.25
13	1.71	1.73	1.75	2.34	2.92	7.01	8.08	12.19
14	1.85	1.86	1.89	2.52	3.14	7.55	8.70	13.12
15	1.98	1.99	2.02	2.70	3.37	8.09	9.32	14.06
16	2.11	2.12	2.16	2.87	3.60	8.62	9.94	15.00
17	2.24	2.26	2.29	3.05	3.82	9.16	10.56	15.94
18	2.37	2.39	2.43	3.23	4.04	9.70	11.18	16.87
19	2.50	2.52	2.56	3.41	4.27	10.24	11.81	17.81
20	2.64	2.66	2.70	3.59	4.49	10.78	12.43	18.75

kilometres into different geographical measures of distance.

$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	Prussian Miles.	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \text { Eq. } . \end{gathered}$	$\begin{gathered} \text { Nautical } \\ \text { Leagues. } \\ 20=1^{\circ} \mathrm{Eq} . \end{gathered}$	$\begin{gathered} \text { French } \\ \text { Leayues. } \\ 25=1^{\circ} \mathrm{Eq} . \end{gathered}$	Geograph'l or Nautical Miles. $60=1^{\circ} \mathrm{Eq}$.	English Statute Miles.	Rnsslan Wersts.
21	2.77	2.79	2.83	3.77	4.72	11.32	13.05	19.69
22	2.90	2.92	2.96	3.95	4.94	11.86	13.67	20.62
23	3.03	3.05	3.10	4.13	5.17	12.40	14.29	21.56
24	3.16	3.19	3.23	4.31	5.39	12.94	14.91	22.50
25	3.30	3.32	3.37	4.49	5.62	13.48	15.53	23.44
26	3.43	3.45	3.50	4.67	5.84	14.02	16.16	24.37
27	3.56	3.58	3.64	4.85	6.06	14.55	16.78	25.31
28	3.69	3.72	3.77	5.03	6.29	15.09	17.50	26.25
29	3.82	3.85	3.91	5.21	6.51	15.63	18.02	27.18
30	3.95	3.98	4.04	5.39	6.74	16.17	18.64	28.12
31	4.09	4.12	4.18	5.57	6.96	16.71	19.26	29.06
32	4.22	4.25	4.31	5.75	7.19	17.25	19.88	30.00
33	4.35	4.38	4.45	5.43	7.41	17.79	20.51	30.93
34	4.48	4.51	4.58	6.11	7.64	18.33	21.13	31.87
35	4.61	4.65	4.72	6.29	7.86	18.87	21.75	32.81
36	4.75	4.78	4.85	6.47	8.09	19.41	22.37	33.75
37	4.88	4.91	4.99	6.65	8.31	19.94	22.99	34.68
38	5.01	5.04	5.12	6.83	8.53	20.48	23.61	35.62
39	5.14	5.18	5.26	7.01	8.76	21.02	24.23	36.56
40	5.27	5.31	5.39	7.19	8.98	21.56	24.86	37,50
41	5.40	5.44	5.53	7.37	9.21	22.10	25.48	38.43
42	5.54	5.58	5.66	7.55	9.43	22.64	26.10	39.37
43	5.67	5.71	5.79	7.73	9.66	23.18	26.72	40.31
44	5.80	5.84	5.93	7.91	9.88	23.72	27.34	41.25
45	5.93	5.97	6.06	8.09	10.11	24.26	27.96	42.18
46	6.06	6.11	6.20	8.27	10.33	24.80	28.58	43.12
47	6.80	6.24	6.33	8.45	10.56	25.34	29.21	44.06
48	6.33	6.37	6.47	8.62	10.78	25.87	29.83	45.00
49	6.46	6.51	6.60	8.80	11.01	26.41	30.45	45.93
50	6.59	6.64	6.74	8.98	11.23	26.95	31.07	46.87
51	6.72	6.77	6.87	9.16	11.45	27.49	31.69	47.81
52	6.85	6.90	7.01	9.34	11.68	28.03	32.31	48.74
53	6.99	7.03	7.14	9.52	11.90	28.57	32.93	49.68
54	7.12	7.17	7.28	9.70	12.13	29.11	33.55	50.62
55	7.25	7.30	7.41	9.88	12.35	29.65	34.18	51.56
56	7.38	7.43	7.55	10.06	12.58	30.19	34.90	52.49
57	7.51	7.57	7.68	10.24	12.80	30.73	35.42	53.43
58	7.65	7.70	7.82	10.42	13.03	31.27	36.04	54.37
59	7.78	7.83	7.95	10.60	13.25	31.80	36.66	55.31
60	7.91	7.97	8.09	10.78	13.48	32.33	37.28	56.24

KILOMETRES INTO DIFFERENT GEOGRAPHCAL MEASURES OF DISTANCE. 507

$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	Prussian Miles.	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \mathrm{Eq} . \end{gathered}$	Nautical Leagues. $20=1^{\circ} \mathrm{Eq}$.	French Leagues. $25=1^{\circ} \mathrm{Eq} .$	Geograph'l or Nautical Miles. $60=1^{\circ} \mathrm{Eq}$.	English Statute Miles.	Russian Wersts.
61	8.04	8.10	8.22	10.96	13.70	32.88	37.90	57.18
62	8.17	8.23	8.36	11.14	13.93	33.42	38.53	58.12
63	8.30	8.36	8.49	11.32	14.15	33.96	39.15	59.06
64	8.44	8.50	8.62	11.50	14.37	34.50	39.77	59.99
65	8.57	8.63	8.76	11.68	14.60	35.04	40.39	60.93
66	8.70	8.76	8.89	11.86	14.82	35.58	41.01	61.87
67	8.83	8.89	9.03	12.04	15.05	36.12	41.63	62.81
68	8.96	9.03	9.16	12.22	15.27	36.66	42.25	63.74
69	9.10	9.16	9.30	12.40	15.50	37.19	42.88	64.68
70	9.23	9.29	9.43	12.58	15.72	37.73	43.50	65.62
71	9.36	9.43	9.57	12.76	15.95	38.27	44.12	66.56
72	9.49	9.56	9.70	12.94	16.17	38.81	44.74	67.49
73	9.62	9.69	9.84	13.12	16.40	39.35	45.36	68.43
74	9.75	9.82	9.97	13.30	16.62	39.89	45.98	69.37
75	9.89	9.96	10.11	13.48	16.85	40.43	46.60	70.31
76	10.02	10.09	10.24	13.65	17.07	40.97	47.23	71.24
77	10.15	10.22	10.38	13.84	17.29	41.51	47.85	72.18
78	10.28	10.36	10.51	14.02	17.52	42.05	48.47	73.12
79	10.41	10.49	10.65	14.20	17.74	42.59	49.09	74.05
80	10.55	10.62	10.78	14.37	17.97	43.12	49.71	74.99
81	10.68	10.75	10.92	14.55	18.19	43.66	50.33	75.93
82	10.81	10.89	11.05	14.73	18.42	44.20	50.95	76.87
83	10.94	11.02	11.19	14.91	18.64	44.74	51.57	77.80
84	11.07	11.15	11.32	15.09	18.87	45.28	52.20	78.74
85	11.20	11.28	11.45	15.27	19.09	45.82	52.82	79.68
86	11.34	11.42	11.59	15.45	19.32	46.36	53.44	80.62
87	11.47	11.55	11.72	15.63	19.54	46.90	54.06	81.55
88	11.60	11.68	11.86	15.81	19.77	47.44	54.68	82.49
89	11.73	11.82	11.99	15.99	19.99	47.98	55.30	83.43
90	11.86	11.95	12.13	16.17	20.21	48.51	55.92	84.37
91	12.00	12.08	12.26	16.35	20.44	49.05	56.55	85.30
92	12.13	12.21	12.40	16.53	20.66	49.59	57.17	86.24
93	12.26	12.35	12.53	16.71	20.89	50.13	57.79	87.18
94	12.39	12.48	12.67	16.89	21.11	50.67	58.41	88.12
95	12.52	12.61	12.80	17.07	21.34	51.21	59.03	89.05
96	12.66	12.74	12.94	17.25	21.56	51.74	59.65	89.99
97	12.79	12.88	13.07	17.43	21.79	52.29	60.27	90.93
98	12.92	13.01	13.21	17.61	22.01	52.83	60.90	91.87
99	13.05	13.14	- 13.34	17.79	22.24	53.37	61.52	92.80
100	13.18	13.28	13.48	17.97	22.46	53.91	62.14	93.74

E

508
II. austrian miles into different geographical measures of distance.

$\begin{aligned} & \text { Austrian } \\ & \text { Miles. } \end{aligned}$	Kilo- metres.	$\begin{aligned} & \text { Prussian } \\ & \text { Miles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 1 \dot{j}=1^{\circ} \text { Eq. } \end{gathered}$	Nautical Leagues. $20=1^{\circ} \mathrm{Eq}$.	French Leagues. $2 \overline{5}=1^{\circ} \mathrm{Eq} .$	Geograph'l or Nautical Miles. $60=1^{\circ} \mathrm{Eq}$.	English Statute Miles.	Russian Wersts.
1,000	7585.94	1007.10	1022.30	1363.07	1703.84	4089.21	4713.77	7111.06
2,000	15171.87	2014.19	2044.61	2726.14	3407.68	8178.42	9427.54	14222.11
3,000	22757.81	3021.29	3066.91	4089.21	5111.52	12267.64	14141.30	21333.17
4,000	30343.75	4028.39	4089.21	5452.28	6815.35	16356.85	18855.07	28444.22
5,000	37929.69	5035.48	5111.52	6815.35	8519.19	20446.06	23568.84	35555.28
6,000	45515.62	6042.58	6133.82	8178.42	10223.03	24535.27	28282.61	42666.33
7,000	53101.56	7049.67	7156.12	9541.50	11926.87	28624.49	32996.38	49777.39
8,000	60687.50	8056.77	8178.42	10904.57	13630.71	32713.70	37710.14	56888.45
9,000	68273.43	9063.87	9200.73	12267.64	15334.55	36802.91	42423.91	63999.50
10,000	75859.37	10070.96	10223.03	13630.71	17038.38	40892.12	47137.68	71110.56
100	75859	100.71	102.23	136.31	170.38	408.92	471.38	711.11
200	151719	201.42	204.46	272.61	340.77	817.84	942.75	1422.21
300	2275.78	302.13	306.69	408.92	511.15	1226.76	1414.13	2133.32
400	3034.37	402.84	408.92	545.23	681.54	1635.68	1885.51	2844.42
500	3792.97	503.55	511.15	681.54	851.92	2044.61	2356.88	3555.53
600	4551.56	604.26	613.38	817.84	1022.30	2453.53	2828.26	4266.63
700	5310.16	704.97	715.61	954.15	1192.69	2862.45	3299.64	4977.74
800	6068.75	805.68	817.84	1090.46	1363.07	3271.37	3771.01	5688.84
900	6827.34	906.39	920.07	1226.76	1533.45	3680.29	4242.39	6399.95
1000	7585.94	1007.10	1022.30	1363.07	1703.84	4089.21	4713.77	7111.06
1	7.59	1.01	1.02	1.36	1.70	4.09	4.71	7.11
2	15.17	2.01	2.04	2.73	3.41	8.18	9.43	14.22
3	22.76	3.02	3.07	4.09	5.11	12.27	14.14	21.33
4	30.34	4.03	4.09	5.45	6.82	16.36	18.86	28.44
5	37.93	5.04	5.11	6.82	8.52	20.45	23.57	35.56
6	45.52	6.04	6.13	8.18	10.22	24.54	28.28	42.67
7	53.10	7.05	7.16	9.54	11.93	28.62	33.00	49.78
8	60.69	8.06	8.18	10.90	13.63	32.71	37.71	56.89
9	68.27	9.06	9.20	12.27	15.33	36.80	42.42	64.00
10	75.86	10.07	10.22	13.63	17.04	40.89	47.14	71.11
11	83.45	11.08	11.25	14.99	18.74	44.98	51.85	78.22
12	91.03	12.09	12.27	16.36	20.45	49.07	56.57	85.33
13	98.62	13.09	13.29	17.72	22.15	53.16	61.28	92.44
14	106.20	14.10	14.31	19.08	23.85	57.25	65.99	99.55
15	113.79	15.11	15.33	20.45	25.56	61.34	70.71	106.67
16	121.37	16.11	16.36	21.81	27.26	65.43	75.42	113.78
17	128.96	17.12	17.38	23.17	28.97	69.52	80.13	120.89
18	136.55	18.13	18.40	24.54	30.67	73.61	84.85	128.00
19	144.13	19.13	19.42	25.90	32.37	77.70	89.56	135.11
20	151.72	20.14	20.45	27.26	34.08	81.78	94.28	142.22

aUSTrian mles into different geographical mfasures of distance.

$\begin{aligned} & \text { Austrian } \\ & \text { Miles. } \end{aligned}$	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	$\begin{aligned} & \text { Prussian } \\ & \text { Mnles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { Milies. } \\ 15=1^{\circ} \mathrm{Eq} . \end{gathered}$	Nautical Leagues. $20=1^{\circ} \mathrm{Eq}$.	French Learues. $25=1^{\circ} \mathrm{Eq}$.	Geograph'l or Nautical Miles. $60=1^{\circ}$ Eq.	English statute Miles.	Russian Wersts.
$\because 1$	159.30	21.15	21.47	28.62	35.78	85.87	98.99	149.33
22	166.89	22.16	22.49	29.99	37.48	89.96	103.70	156.44
23	174.48	23.16	23.51	31.35	39.19	94.05	108.42	163.55
24	182.06	24.17	24.54	32.71	40.89	98.14	113.13	170.67
25	189.65	25.18	25.56	34.08	42.60	102.23	117.84	177.75
26	197.23	26.18	26.58	35.44	44.30	106.32	122.56	184.89
27	204.82	27.19	27.60	36.80	46.00	110.41	127.27	192.00
28	212.41	28.20	28.62	38.17	47.71	114.50	131.99	199.11
29	219.99	29.21	29.65	39.53	49.41	118.59	136.70	206.22
30	227.58	30.21	30.67	40.89	51.12	122. 68	141.41	213.33
31	235.16	31.22	31.69	42.26	52.82	126.77	146.13	220.44
32	242.75	32.23	32.71	43.62	54.52	130.85	150.84	227.55
33	250.34	33.23	33.74	44.98	56.23	134.94	155.55	234.66°
34	257.92	34.24	34.76	46.34	57.93	139.03	160.27	241.78
35	265.51	35.25	35.78	47.71	59.63	143.12	164.98	248.89
36	273.09	36.26	36.80	49.07	61.34	147.21	160.70	256.00
37	280.68	37.26	37.83	50.43	63.04	151.30	174.41	263.11
38	288.27	38.27	38.85	51.80	64.75	155.39	179.12	270.22
39	295.85	39.28	39.87	53.16	66.45	159.48	183.84	277.33
40	303.44	40.28	40.89	54.52	68.15	163.57	188.55	284.44
41	311.02	41.29	41.91	55.89	69.86	167.66	193.26	291.55
42	318.61	42.30	42.94	57.25	71.56	171.75	197.98	298.66
43	326.20	43.31	43.96	58.61	73.27	175.84	202.69	305.78
44	333.78	44.31	44.98	59.98	74.97	179.93	207.41	312.89
45	341.37	45.32	46.00	61.34	76.67	184.01	212.12	320.00
46	348.95	46.33	47.03	62.70	78.38	188.10	216.83	327.11
47	356.54	47.33	48.05	64.06	80.08	192.19	221.55	334.22
48	364.12	48.34	49.07	65.43	81.78	196.28	226.26	341.33
49	371.71	49.35	50.09	66.79	83.49	200.37	230.97	348.44
50	379.30	50.35	51.12	68.15	85.19	204.46	235.69	355.55
51	386.58	51.36	52.14	69.52	86.90	208.55	240.40	362.66
52	394.47	52.37	53.16	70.88	88.60	212.64	245.12	369.77
53	402.05	53.38	54.18	72.24	90.30	216.73	249.83	376.89
54	409.64	54.38	55.20	73.61	92.01	220.82	254.54	384.00
55	417.23	55.39	56.23	74.97	93.71	224.91	259.26	391.11
56	424.81	56.40	57.25	76.33	95.41	229.00	263.97	398.22
57	432.40	57.40	58.27	77.70	97.12	233.69	268.68	405.33
58	439.98	58.41	59.29	79.06	98.82	237.17	273.40	412.44
59	447.57	59.42	60.32	80.42	100.53	241.26	278.11	419.55
60	455.16	60.43	61.34	81.78	102.23	245.35	282.83	426.66

510
aUstrian miles into different geographical measures of distance.

$\begin{aligned} & \text { Anstrian } \\ & \text { Miles. } \end{aligned}$	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	$\begin{aligned} & \text { Prussian } \\ & \text { Miles. } \end{aligned}$	$\begin{aligned} & \text { German } \\ & \text { Miles. } \\ & 15=1^{\circ} \mathrm{Eq} . \end{aligned}$	Nautical Learues. $20=10 \mathrm{Eq}$ $20=1^{\circ} \mathrm{Eq}$.	French Leagues. $2 \overline{5}=1^{\circ}$ Eq.	Geograph'i or Nautical Miles. $60=1^{\circ} \mathrm{Eq}_{\mathrm{q}}$.	English statute Miles.	Russian Wersts.
61	462.74	61.43	63.36	83.15	103.93	249.44	287.54	433.77
62	470.33	62.44	63.38	84.51	105.64	253.53	292.25	440.89
63	477.91	63.45	64.41	85.87	107.34	257.62	296.97	448.00
64	485.50	64.45	65.43	87.24	109.05	261.71	301.68	455.11
65	493.09	65.46	66.45	88.60	110.75	265.80	306.39	462.22
66	500.67	66.47	67.47	89.96	112.45	269.89	311.11	469.33
67	508.26	67.48	68.49	91.33	114.16	273.98	315.82	476.44
68	515.84	68.48	69.52	92.69	115.86	278.07	320.54	483.55
69	523.43	69.49	70.54	94.05	117.56	282.16	325.25	490.66
70	531.02	70.50	71.56	95.41	119.27	286.24	329.96	497.77
71	538.60	71.50	72.58	96.78	120.97	290.33	334.68	504.88
72	546.19	72.51	73.61	98.14	122.68	294.42	339.39	512.00
73	553.77	73.52	74.63	99.50	124.38	298.51	344.11	519.11
74	561.36	74.53	75.65	100.87	126.08	302.60	348.82	526.22
75	568.95	75.53	76.67	102.23	127.79	306.69	353.53	533.33
76	576.53	76.54	77.70	103.59	129.49	310.78	358.25	540.44
77	584.12	77.55	78.72	104.98	131.20	314.87	362.96	547.55
78	591.70	78.55	79.74	106.32	132.90	318.96	367.67	554.66
79	599.29	79.56	80.76	107.68	134.60	323.05	372.39	561.77
S0	606.57	80.57	81.78	109.05	136.31	327.14	377.10	568.88
81	614.46	81.57	82.81	110.41	138.01	331.23	381.82	576.00
82	622.05	82.58	83.83	111.77	139.71	335.32	386.53	583.11
83	629.63	83.59	84. 85	113.13	141.42	339.40	391.24	590.22
84	637.22	84.60	85.87	114.50	143.12	343.49	395.96	597.33
85	644.80	85.60	86.90	115.86	144.83	347.58	400.67	604.44
86	652.39	86.61	87.92	117.22	146.53	351.67	405.38	611.55
87	659.98	87.62	88.94	118.59	148.23	355.76	410.10	618.66
88	667.56	88.62	89.96	119.95	149.94	359.85	414.81	625.77
89	675.15	89.63	90.98	121.31	151.64	363.94	419.53	632.88
90	682.73	90.64	92.01	129.68	153.35	368.03	424.24	640.00
91	690.32	91.65	93.03	124.04	155.05	372.12	428.95	647.11
92	697.91	92.65	94.05	125.40	156.75	376.21	433.67	654.22
93	705.49	93.66	95.07	126.77	158.46	380.30	438.38	661.33
94	713.08	94.67	96.10	128.13	160.16	384.39	443.09	668.44
95	720.66	95.67	97.12	129.49	161.86	388.48	447.81	675.55
96	728.25	96.68	98.14	130.85	163.57	392.56	452.52	682.66
97	735.84	97.69	99.16	132.22	165.27	396.65	457.24	689.77
98	743.42	98.70	100.19	133.58	166.98	400.74	461.95	696.88
99	751.01	99.70	101.21	134.94	168.68	404.83	466.67	703.99
100	758.59	100.71	102.23	136.31	170.38	408.92	471.38	711.11

III. prussian miles into different geographical measures of distance. 511

$\begin{aligned} & \text { Prassian } \\ & \text { Miles. } \end{aligned}$	Kilometres.	Austrian Miles.	$\begin{aligned} & \text { German } \\ & \text { Miles. } \\ & 15=1^{\circ} \mathrm{Eq} . \end{aligned}$	Nautical Learues. $20=1^{\circ} \mathrm{Eq}$. $20=1^{\circ} \mathrm{Eq}$.	French Leagues. $25=10 \mathrm{Eq}$.	$\begin{aligned} & \text { Geograph'l } \\ & \text { or Nautical } \\ & \text { Milies. } \\ & 60=1^{\circ} \mathbf{E}_{q} . \\ & \hline \end{aligned}$	English statute Miles.	Russian Wersts.
1,000	7532.48	992.95	1015.10	1353.47	1691.83	4060.40	4680.55	7060.95
2,000	15064.97	1985.91	2030.20	2706.93	3383.67	8120.80	9361.11	14121.90
3,000	22597.45	2978.86	3045.30	4060.40	5075.50	12181.19	14041.66	21182.85
4,000	30129.94	3971.81	4060.40	5413.86	6767.33	16241.59	18722.21	28243.79
5,000	37662.42	4964.77	5075.50	6767.33	8459.16	20301.99	23402.77	35304.74
6,000	45194.90	5957.72	6090.60	8120.80	10151.00	-4362.39	28083.32	42365.69
7,000	52727.39	6950.68	7105.70	9474.26	11842.83	28422.79	32763.87	49426.64
8,000	60259.87	7943.63	8120.80	10827.73	13534.66	32483.19	37444.43	56487.59
9,000	67992.36	8936.58	9135.90	12181.19	15226.49	36543.58	42124.98	63548.54
10,000	75324.84	9929.54	10151.00	13534.66	16918.33	40603.98	46805.53	70609.49
100	753.25	99.30	101.51	135.35	169.18	406.04	468.06	706.09
200	1506.50	198.59	203.02	270.69	338.37	812.08	936.11	1412.19
300	2259.75	297.89	304.53	406.04	507.55	1218.12	1404.17	2118.28
400	3012.99	397.18	406.04	541.39	676.73	1624.16	1872.22	2824.38
500	3766.24	496.48	507.55	676.73	845.92	2030.20	2340.28	3530.47
600	4519.49	595.77	609.06	812.08	1015.10	2436.24	2808.33	4236.57
700	5272.74	695.07	710.57	947.43	1184.28	2842.28	3276.39	4942.66
800	6025.99	794.36	812.08	1082.77	1353.47	3248.32	3744.44	5648.76
900	6799.24	893.66	913.59	1218.12	1523.65	3654.36	4212.50	6354.85
1000	7532.48	992.95	1015.10	1353.47	1691.83	4060.40	4680.55	7060.95
1	7.53	0.99	1.02	1.35	1.69	4.06	4.68	7.06
2	15.06	1.99	2.03	2.71	3.38	8.12	9.36	14.12
3	22.60	2.98	3.05	4.06	5.08	12.18	14.04	21.18
4	30.13	3.97	4.06	5.41	6.77	16.24	18.72	28.24
5	37.66	4.96	5.08	6.77	8.46	20.30	23.40	35.30
6	45.19	5.96	6.09	8.12	10.15	24.36	28.08	42.37
7	52.73	6.95	7.11	9.47	11.84	28.42	32.76	49.43
8	60.26	7.94	8.12	10.83	13.53	32.48	37.44	56.49
9	67.79	8.94	9.14	12.18	15.23	36.54	42.12	63.55
10	75.32	9.93	10.15	13.53	16.92	40.60	46.81	70.61
11	82.86	10.92	11.17	14.89	18.61	44.66	51.49	77.67
12	90.39	11.92	12.18	16.24	20.30	48.72	56.17	84.73
13	97.92	12.91	13.20	17.60	21.99	52.79	60.85	91.79
14	105.45	13.90	14.21	18.95	23.69	56.85	65.53	98.85
15	112.99	14.89	15.23	20.30	25.38	60.91	70.21	105.91
16	120.52	15.89	16.24	21.66	27.07	64.97	74.89	112.98
17	128.05	16.88	17.26	23.01	28.76	69.03	79.57	120.04
18	135.58	17.87	18.27	24.36	30.45	73.09	84.25	127.10
19	143.12	18.87	19.29	25.72	32.14	77.15	88.93	134.16
20	150.65	19.86	20.30	27.07	33.84	81.21	93.61	141.22

512
prussian miles into different geographical measures of distance.

Prussian Miles.	Kilometres.	Austrian Miles.	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \mathbf{E q} . \end{gathered}$	Nautical Leagues. $20=1^{\circ} \mathrm{Eq}$.	French Leagues. $25=1^{\circ} \mathrm{Eq}$ -	Geograph'1 or Nauticai Miles. $60=1^{\circ} \mathrm{Eq}$.	English statute Miles.	Russian Wersts.
21	158.18	20.85	21.32	28.42	35.53	85.27	98.29	148.28
22	165.71	21.84	22.33	29.78	37.22	89.33	102.97	155.34
23	173.25	22.84	23.35	31.13	38.91	93.39	107.65	162.40
24	180.78	23.83	24.36	32.48	40.60	97.45	112.33	169.46
25	188.31	24.82	25.38	33.84	42.30	101.51	117.01	176.52
26	195.84	25.81	26.39	35.19	43.99	105.57	121.69	183.58
27	203.38	26.81	27.41	36.54	45.68	109.63	126.37	190.65
28	210.91	27.80	28.42	37.90	47.37	113.69	131.06	197.71
29	218.44	28.80	29.44	39.25	49.06	117.75	135.74	204.77
30	225.97	29.79	30.45	40.60	50.75	121.81	140.42	211.83
31	233.51	30.78	31.47	41.96	52.45	125.87	145.10	218.89
32	241.04	31.77	32.48	43.31	54.14	129.93	149.78	225.95
33	248.57	32.77	33.50	44.66	55.83	133.99	154.46	233.01
34	256.10	33.76	34.51	46.02	57.52	138.05	159.14	240.07
35	263.64	34.75	35.53	47.37	59.21	142.11	163.82	247.13
36	271.17	35.75	36.54	48.72	60.91	146.17	168.50	254.19
37	278.70	36.74	37.56	50.08	62.60	150.24	173.18	261.26
38	286.23	37.73	38.57	51.43	64.39	154.30	177.86	268.32
39	293.77	38.73	39.59	52.79	65.98	158.36	182.54	275.38
40	301.30	39.72	40.60	54.14	67.67	162.42	187.22	282.44
41	308.83	40.71	41.62	55.49	69.37	166.48	191.90	289.50
42	316.36	41.70	42.63	56.85	71.06	170.54	196.58	$\underline{296.56}$
43	323.90	42.70	43.65	58.20	72.75	174.60	201.26	303.62
44	331.43	43.69	44.66	59.55	74.44	178.66	205.94	310.68
45	338.96	44.68	45.69	60.91	76.13	182.72	210.62	317.74
46	346.49	45.68	46.69	62.26	77.82	186.78	215.31	324.80
47	353.03	46.67	47.72	63.61	79.52	190.84	219.99	331.86
48	361.56	47.66	48.72	64.97	81.21	194.90	224.67	335.93
49	369.09	48.65	49.75	66.32	82.90	198.96	229.35	345.99
50	376.62	49.65	50.75	67.67	84.59	203.02	234.03	353.05
51	384.16	50.64	51.77	69.03	86.28	207.08	238.71	360.11
52	391.69	51.63	52.79	70.38	87.98	211.14	243.39	367.17
53	399.22	52.63	53.80	- 71.73	89.67	215.20	248.07	374.23
54	406.75	53.62	54.82	73.09	91.36	219.26	252.75	381.29
55	414.29	54.61	55.83	74.44	93.05	223.32	257.43	388.35
56	421.82	55.61	56.85	75.79	94.74	227.38	262.11	395.41
57	429.35	56.60	57.86	77.15	96.43	231.44	266.79	402.47
58	436.88	57.59	58.88	78.50	98.13	235.50	271.47	409.53
59	444.42	58.58	59.89	79.85	99.82	239.56	276.15	416.60
60	451.95	59.58	60.91	81.21	101.51	243.62	280.83	423.66

PRUSSIAN MILES INTO DIFFERENT GEOGRAPHICAL MEASURES OF DISTANCE.

$\begin{aligned} & \text { Prussian } \\ & \text { Miles. } \end{aligned}$	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	$\begin{gathered} \text { German } \\ \text { Mile } \\ 15=1-E_{1} . \end{gathered}$	$\begin{aligned} & \text { Nautical } \\ & \text { Leagues } \\ & 20=1^{0} \mathrm{E}_{4} . \end{aligned}$	$\begin{gathered} \text { French } \\ \text { Leatabes. } \\ 25=10 \text { E.4. } \end{gathered}$	$\begin{gathered} \text { Gergraph't } \\ \text { or Nautical } \\ \text { Miles. } \\ 60=1^{\circ} \mathrm{Eq} . \end{gathered}$	En livh statute Miles.	$\begin{aligned} & \text { Russian } \\ & \text { Wersts. } \end{aligned}$
61	459.48	60.57	61.92	82.56	103.20	247.68	285.51	430.72
62	467.01	61.56	62.94	83.91	104.89	251.74	290.19	437.78
63	474.55	63.56	63.95	85.27	106.59	255.81	294.87	44.84
64	483.08	63.55	64.97	86.62	108.28	259.87	299.56	451.90
65	489.61	64.54	65.98	87.98	109.97	263.93	304.24	455.96
66	497.14	65.53	67.00	89.33	111.66	267.99	308.92	466.02
67	504.68	66.53	68.01	90.68	113.35	272.05	313.60	473.118
68	512.21	67.52	69.03	92.04	115.04	276.11	318.28	480.14
69	519.74	68.51	70.14	93.39	116.74	280.17	322.96	487.21
70	527.27	69.51	71.06	94.74	118.42	284.23	327.64	494.27
71	534.81	70.50	72.07	96.10	120.12	288.29	332.32	501.33
72	542.34	71.49	73.09	97.45	121.81	292.35	337.00	508.33
73	549.87	72.49	74.10	98.80	123.50	296.41	341.68	515.45
74	557.40	73.48	75.12	100.16	125.20	300.47	346.36	522.51
75	564.94	74.47	76.13	101.51	126.89	304.53	351.04	529.57
76	572.47	75.46	77.15	102.86	128.58	308.59	355.72	536.63
77	580.00	76.46	78.16	104.22	130.27	312.65	360.40	543.69
78	587.53	77.45	79.18	105.57	131.96	316.71	365.08	550.75
79	595.07	78.44	80.19	106.92	133.65	320.77	369.76	557.81
80	602.60	79.44	81.21	108.28	135.35	324.83	374.44	564.88
81	610.13	80.43	82.22	109.63	137.04	328.89	379.12	571.94
82	617.66	81.42	83.84	110.98	138.73	332.95	383.81	578.10
83	625.20	82.42	84.25	112.34	140.42	337.01	388.49	586.06
84	632.73	83.41	85.27	113.69	142.11	341.07	393.17	593.12
85	640.26	84.40	88.08	115.04	143.81	345.13	397.85	600.18
86	647.79	85.39	87.30	116.40	145.50	349.19	402.53	607.24
87	655.33	86.39	88.31	117.75	147.19	353.25	407.21	614.30
88	662.86	87.38	89.33	119.11	148.58	357.32	411.89	621.36
89	670.39	88.37	90.34	120.46	150.57	361.38	416.57	628.42
90	677.92	89.37	91.36	121.81	152.26	365.44	421.25	635.49
91	685.46	90.36	92.37	123.17	153.96	369.50	425.93	642.55
92	692.99	91.35	93.39	124.52	155.65	373.56	430.61	649.61
93	700.52	92.34	94.40	125.87	157.34	377.62	435.29	656.67
94	708.0 .5	93.34	95.42	127.23	159.03	381.68	439.97	663.73
95	715.59	94.33	96.43	128.58	160.72	385.74	444.65	670.79
96	723.12	95.32	97.45	129.93	162.42	359.80	449.33	677.85
97	730.65	96.32	98.46	131.29	164.11	393.86	454.01	684.91
98	738.18	97.31	99.48	132.64	165.80	397.92	458.69	691.97
99	745.72	98.30	100.49	133.99	167.49	401.98	463.38	699.03
100	753.25	99.30	101.51	135.35	169.18	406.04	468.06	706.09

514

IV. german miles into different geographical measures of distance.

German Miles.	Kilowetres.	Austrian Miles.	Prussian Miles.	Nautical Leagues. $20=1^{\circ} \mathrm{Eq}$.	French Leagues. $25=1^{\circ}$ Eq.	Geograph'l or Nantical Miles. $60=1^{\circ} \mathrm{Eq} q$.	English statute Miles.	Russian Wersts.
1,000	7420.44	978.18	985.13	1333.33	1666.67	4000.00	4610.93	6955.92
2,000	14840.88	1956.37	1970.25	2666.67	3333.33	8000.00	9221.86	13911.83
3,000	22261.32	2934.55	2955.38	4000.00	5000.00	12000.00	13832.79	20867.75
4,000	29681.75	3912.73	3940.51	5333.33	6666.67	16000.00	18443.72	27823.67
5,000	37102.19	4890.92	4925.63	6666.67	8333.33	20000.00	23054.66	34779.59
6,000	44522.63	5869.10	5910.75	8000.00	10000.00	24000.00	27665.59	41735.50
7,000	51943.07	6847.28	6895.88	9333.33	11666.67	28000.00	32276.52	48691.42
8,000	59363.51	7825.47	7881.00	10666.67	13333.33	32000.00	36887.45	55647.34
9,000	66783.95	8803.65	8866.13	12000.00	15000.00	36000.00	41498.38	62603.26
10,000	74204.39	9781.83	9851.25	13333.33	16666.66	40000.00	46109.31	69559.17
100	742.04	97.82	98.51	133.33	166.67	400.00	461.09	695.59
200	1484.09	195.64	197.03	266.67	333.33	800.00	922.19	1391.18
300	22.6 .13	293.46	295.54	400.00	500.00	1200.00	1383.28	2086.78
400	2968.18	391.27	394.05	533.33	666.67	1600.00	1844.37	2782.37
500	3710.22	489.09	492.56	666.67	833.33	2000.00	2305.47	3477.96
600	4452.26	586.91	591.08	800.00	1000.00	2400.00	2766.56	4173.55
700	5194.31	684.73	689.59	933.33	1166.67	2800.00	3227.65	4869.14
800	5936.35	782.55	788.10	1066.67	1333.33	3200.00	3688.74	5564.73
900	6678.39	880.37	886.61	1200.00	1500.00	3600.00	4149.84	6260.33
1000	7420.44	978.18	985.13	1333.33	1666.67	4000.00	4610.93	6955.92
1	7.42	0.98	0.99	1.33	1.67	4.00	4.61	6.96
2	14.84	1.96	1.97	2.67	3.33	8.00	9.22	13.91
3	22.26	2.93	2.96	3.00	5.00	12.00	13.83	20.87
4	29.68	3.91	3.94	5.33	6.67	16.00	18.44	27.82
5	37.10	4.89	4.93	6.67	8.33	20.00	23.05	34.78
6	44.52	5.87	5.91	8.00	10.00	24.00	27.67	41.74
7	51.94	6.85	6.90	9.33	11.67	28.00	32.28	48.69
8	59.36	7.83	7.88	10.67	13.33	32.00	36.89	55.65
9	66.78	8.80	8.87	12.00	15.00	36.00	41.50	62.60
10	74.20	9.78	9.85	13.33	16.67	40.00	46.11	69.56
11	81.62	10.76	10.84	14.67	18.33	44.00	50.72	76.52
12	89.05	11.74	11.82	16.00	20.00	48.00	55.33	83.47
13	96.47	12.72	12.81	17.33	21.67	52.00	59.94	90.43
14	103.89	13.69	13.79	18.67	23.33	56.00	64.55	97.38
15	111.31	14.67	14.78	20.00	25.00	60.00	69.16	104.34
16	118.73	15.65	15.76	21.33	26.67	64.00	72.77	111.29
17	126.15	16.62	16.75	22.67	28.33	68.00	78.39	118.25
18	133.57	17.61	17.73	24.00	30.00	72.00	83.00	125.21
19	140.99	18.59	18.72	25.33	31.67	76.00	87.61	132.16
20	148.41	19.56	19.70	26.67	33.33	80.00	92.22	139.12

german miles into different geograpiilcal measures of distance.

german miles into difperent geugraphical measures of distance.

$\begin{aligned} & \text { German } \\ & \text { Miles. } \end{aligned}$	$\begin{gathered} \text { Kilo- } \\ \text { metres. } \end{gathered}$	$\begin{aligned} & \text { Anstrian } \\ & \text { Miles. } \end{aligned}$	Prussian Miles.	Nautical Leagues. $20=1^{\circ} \mathrm{Eq}$.	French Leagues. $25=1^{\circ} \mathrm{Eq}$.	Geograph'1 or Nautical $\begin{gathered} \text { Miles. } \\ =1^{\circ} \\ \text { Eq. } \end{gathered}$	English statute Miles.	Russian Wersts.
61	45.2 .65	59.67	60.09	81.33	101.67	244.00	281.27	424.31
62	450.07	60.65	61.08	82.67	103.33	248.00	285.88	431.27
63	467.49	61.63	62.06	84.00	105.00	252.00	290.49	438.22
64	474.91	62.60	63.05	85.33	106.67	256.00	295.10	445.18
65	4 2.33	63.58	6.4 .03	80.67	108.33	260.00	299.71	452.13
66	489.75	64.56	65.02	88.00	110.00	264.00	304.32	459.09
67	497.17	65.54	66.00	89.33	111.67	268.00	308.93	466.05
68	504.59	66.52	63.99	90.67	113.33	272.00	313.54	473.00
69	512.01	67.49	67.97	92.00	115.00	276.00	318.15	479.96
70	519.43	68.47	68.96	93.33	116.67	250.00	322.77	486.91
71	526.85	69.45	69.94	94.66	118.33	284.00	327.38	493.87
72	534.27	70.43	70.93	96.00	120.00	285.00	331.99	500.83
73	541.69	71.41	71.91	97.33	121.67	292.00	336.60	507.78
74	543.11	72.39	72.90	95.66	123.33	296.00	341.21	514.74
75	556.53	73.36	73.85	100.00	125.00	300.00	345.82	521.69
76	563.95	74.34	74.87	101.33	126.67	304.00	350.43	528.65
77	571.37	75.32	75.85	102.67	128.33	305.00	355.64	535.61
78	578.79	76.30	76.84	104.00	130.00	31.00	359.65	542.56
79	588.21	77.28	77.82	105.33	131.67	316.00	364.26	549.52
80	593.64	75.25	78.81	106.67	133.33	320.00	368.87	556.47
81	601.106	79.23	79.80	108.00	135.00	324.00	373.49	563.43
82	608.40	80.21	80.78	109.33	136.67	328.00	378.10	570.39
83	615.90	81.19	81.74	110.67	135.33	33.00	352.71	577.34
64	623.32	82.17	82.75	112.00	140.00	336.00	357.32	584.30
8.5	630.74	83.15	83.74	113.33	141.67	340.00	391.93	591.25
86	638.16	84.12	84.72	114.67	143.33	344.00	396.54	598.21
67	645.5	ع5.10	85.71	116.00	145.00	34800	401.15	605.16
\&s	653.00	86.05	86.69	117.33	146.67	352.00	405.76	$61 \% .12$
89	660.42	85.06	87.68	118.67	148.33	356.00	410.97	619.08
90	667.54	88.04	88.66	120.00	150.00	360.00	414.95	626.03
91	675.25	89.01	89.65	121.33	151.67	364.00	419.60	632.99
92	682.65	89.99	90.63	122.67	153.33	365.00	424.21	639.94
93	690.10	90.97	91.62	124.00	155.00	372.00	428.82	646.90
94	697.52	91.95	92.60	125.33	156.67	376.00	433.43	653.86
95	704.94	92.93	93.59	126.67	155.33	380.00	438.04	660.81
96	712.36	93.91	94.57	128.00	160.00	38400	442.65	667.77
97	719.78	94.65	95.56	129.33	161.67	359.00	447.26	674.72
98	727.20	95.86	96.54	130.67	163.33	392.00	451.87	681.68
99	734.62	96.84	97.53	132.00	165.00	396.00	456.48	688.64
100	742.64	97.82	98.51	133.33	166.67	400.00	441.09	795.59

V. nautical leagues into different geographical measures of distance.

Nautical Leagues.	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { Miles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \text { Eq. } \end{gathered}$	$\begin{gathered} \text { French } \\ \text { Leagues. } \\ 25=10 \text { Eq. } \end{gathered}$	Geograph'l or Nautical miles. $60=1^{\circ} \mathrm{Eq}$.	English Statute Miles.	Russian Wersts.
1,000	5565.33	733.64	738.84	750.00	1250.00	3000.00	3458.20	5216.94
2,000	11130.66	1467.28	1477.69	1500.00	2500.00	6000.00	6916.40	10433.88
3,000	16695.99	2200.91	2216.53	2250.00	3750.00	9000.00	10374.59	15650.81
4,000	22261.32	2934.55	2955.38	3000.00	5000.00	12000.00	13832.79	20867.75
5,000	27826.64	3668.19	3694.22	3750.00	6250.00	15000.00	17291.00	26084.69
6,000	33391.98	4401.83	44.33 .06	4500.00	7500.00	18000.00	20749.19	31301.63
7,000	38957.30	5135.46	5171.91	5250.00	8750.00	21000.00	24207.39	36518.57
8,000	44522.63	5869.10	5910.75	6000.00	10000.00	24000.00	27665.58	41735.50
9,000	50057.96	6602.74	6649.59	6750.00	11250.00	27000.00	31123.78	46952.44
10,000	55653.29	7336.38	7388.44	7500.00	12500.00	30000.00	34581.98	52169.38
100	556.53	73.30	73.88	75.00	125.00	300.00	345.82	521.69
200	1113.07	146.73	147.77	150.00	250.00	600.00	691.64	10.43 .39
300	1669.60	220.09	221.65	225.00	375.00	900.00	1037.46	1565.08
400	2226.13	293.46	295.54	300.00	500.00	1200.00	1383.28	2086.78
500	2782.66	366.82	369.42	375.00	625.00	1500.00	1729.10	2608.47
600	3339.20	440.18	443.31	450.00	750.00	1800.00	2074.92	3130.16
700	3895.73	513.55	517.19	525.00	875.00	2100.00	2420.74	3651.86
800	4452.26	586.91	591.08	600.00	1000.00	2400.00	2766.56	4173.55
900	5008.80	660.27	664.96	675.00	1125.00	2700.00	3112.38	4695.24
1000	5565.33	733.64	738.84	750.00	1250.00	3000.00	3458.20	5216.94
1	5.57	0.73	0.74	0.75	1.25	3.00	3.46	5.22
2	11.13	1.47	1.48	1.50	2.50	6.00	6.92	10.43
3	16.70	2.20	2.22	2.25	3.75	9.00	10.37	15.65
4	22.26	2.93	2.96	3.00	5.00	12.00	13.83	20.87
5	27.83	3.67	3.69	3.75	6.25	15.00	17.29	26.08
6	33.39	4.40	4.43	4.50	7.50	18.00	20.75	31.30
7	38.96	5.14	5.17	5.25	8.75	21.00	24.21	36.52
8	44.52	5.87	5.91	6.00	10.00	24.00	27.67	41.74
9	50.09	6.60	6.65	6.75	11.25	27.00	31.12	46.95
10	55.65	7.34	7.39	7.50	12.50	30.00	34.5 S	52.17
11	61.22	8.07	8.13	8.25	13.75	33.00	38.04	57.39
12	66.78	8.80	8.87	9.00	15.00	36.00	41.50	62.60
13	72.35	9.54	9.60	9.75	16.25	39.00	44.96	67.82
14	77.91	10.27	10.34	10.50	17.50	42.00	48.41	73.04
15	83.48	11.00	11.08	11.25	18.75	45.00	51.87	78.25
16	89.05	11.74	11.82	12.00	20.00	48.00	55.33	83.47
17	94.61	12.47	12.56	12.75	21.25	51.00	58.79	88.69
18	100.18	13.21	13.30	13.50	22.50	54.00	62.25	93.90
19	105.74	13.94	14.04	14.25	23.75	57.00	65.71	99.12
20	111.31	14.67	14.78	15.00	25.00	60.00	69.16	104.34

NAUTICAL LEAGUES INTO DIFFERENT GEOGRAPIICAL MEASURES OF DISTANCE.

Nautical Leagues.	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	Prussian Miles.	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \mathrm{E}_{4} . \end{gathered}$	$\begin{gathered} \text { French } \\ \mathbf{L} \text { Lengues. } \\ 20=10 \mathbf{E q} . \end{gathered}$	Geograph'l or Nautical Miles. $60=1^{\circ}$ Eq.	English statute Miles.	Russian Wersts.
21	116.87	15.41	15.52	15.75	26.25	63.00	72.62	109.56
22	123.44	16.14	16.25	16.50	27.50	66.00	75.08	114.77
23	128.00	16.87	16.99	17.25	28.75	69.00	79.54	11999
24	133.57	17.61	17.73	18.00	30.00	72.00	83.00	125.21
25	139.13	18.34	18.47	18.75	31.25	75.00	86.46	130.42
26	144.70	19.07	19.21	19.50	32.50	78.00	89.91	135.64
27	150.26	19.81	19.95	20.25	33.75	81.00	93.37	140.86
28	155.83	20.54	20.69	21.00	35.00	84.00	96.83	146.07
29	161.39	21.28	21.43	21.75	36.25	87.00	100.2.'	151.29
30	166.96	22.01	22.17	22.50	37.50	90.00	103.75	156.51
31	172.53	22.74	22.90	23.25	38.75	93.00	107.20	161.73
32	178.09	23.48	23.64	24.00	40.00	96.00	110.66	166.94
33	183.66	24.21	24.38	24.75	41.25	99.00	114.12	172.16
34	159.22	24.94	25.12	25.50	42.50	102.00	117.58	177.38
35	194.79	25.68	25.86	26.25	43.75	105.00	121.04	182.59
36	200.35	26.41	26.60	27.00	45.00	108.00	124.50	187.81
37	205.92	27.14	27.33	27.75	46.25	111.00	127.95	193.03
38	211.48	27.88	28.08	28.50	47.50	114.00	131.41	198.24
39	217.05	28.61	28.81	29.25	48.75	117.00	134.87	203.46
40	222.61	29.35	29.55	30.00	50.00	120.00	138.33	208.68
41	228.18	30.08	30.29	30.75	51.25	123.00	141.79	213.90
42	233.74	30.81	31.03	31.50	52.50	126.00	145.24	219.12
43	239.31	31.55	31.77	32.25	53.75	129.00	148.70	224.33
44	244.87	32.28	32.51	33.00	55.00	132.00	152.16	229.55
45	250.44	33.01	33.25	33.75	56.25	135.00	155.62	234.76
46	256.01	33.75	33.99	34.50	57.50	138.00	159.08	239.98
47	261.57	34.48	34.73	35.25	58.75	141.00	162.54	245.20
48	267.14	35.21	35.46	36.00	60.00	144.00	165.99	250.41
49	272.70	35.95	36.20	36.75	61.25	147.00	169.45	255.63
50	278.26	36.68	36.94	37.50	62.50	150.00	172.91	260.85
51	283.83	37.42	37.68	38.25	63.75	153.00	176.37	266.06
52	289.40	38.15	38.42	39.00	65.00	156.00	179.83	271.28
53	294.96	38.88	39.16	39.75	66.25	159.00	183.28	276.50
54	300.53	39.62	39.90	40.50	67.50	162.00	186.74	281.79
55	306.09	40.35	40.64	41.25	68.75	165.00	190.20	286.93
56	311.66	41.08	41.38	42.00	70.00	168.00	193.66	292.15
57	317.22	41.82	42.11	42.75	71.25	171.00	197.12	297.37
58	322.79	42.55	42.85	43.50	72.50	174.00	200.58	302.58
59	328.35	43.28	43.59	44.25	73.75	177.00	$\bigcirc 04.03$	307.80
60	333.92	4.02	44.33	45.00	75.00	180.00	207.49	313.02

naUtical Leagues into different geographical measures of distance.

Nantical Leagues.	$\begin{gathered} \text { Kilo- } \\ \text { metres. } \end{gathered}$	Austrian Miles.	$\begin{aligned} & \text { Prussiau } \\ & \text { Miles. } \end{aligned}$	$\begin{aligned} & \text { German } \\ & \text { Miles. } \\ & 15=1^{\circ} \text { Eq. } \end{aligned}$	$\begin{gathered} \text { French } \\ \text { Leagues. } \\ 25=1^{0} \mathrm{Eq} . \end{gathered}$	Geograph'l or Nautical Miles. $60=1^{\circ}$ Eq.	English Statute Miles.	Russian Werets.
61	339.49	44.75	45.07	45.75	76.25	183.00	210.95	318.23
62	345.05	45.49	45.81	46.50	77.50	186.00	214.41	323.45
63	350.62	46.22	46.55	47.25	78.75	189.00	217.87	328.67
64	356.18	46.95	47.29	48.00	80.00	192.00	221.33	333.88
65	361.75	47.69	48.02	48.75	81.25	195.00	224.78	339.10
66	367.31	48.42	48.76	49.50	82.50	198.00	228.24	34.3 .32
67	372.88	49.15	49.50	50.25	83.75	201.00	231.70	349.54
68	378.44	49.89	50.24	51.00	85.00	204.00	235.16	354.75
69	384.01	50.62	50.98	51.75	86.25	207.00	238.62	359.97
70	389.57	51.35	51.72	52.50	87.50	210.00	242.07	365.19
71	395.14	52.09	52. 46	53.25	88.75	213.00	245.53	370.40
72	400.70	52.82	53.20	54.00	90.00	216.00	248.99	375.62
73	406.27	53.56	53.94	54.75	91.25	219.00	252.45	380.84
74	411.83	54.29	54.67	55.50	92.50	22.00	255.91	386.05
75	417.40	55.02	55.41	56.25	93.75	225.00	259.37	391.27
76	422.96	55.76	56.15	57.00	95.00	228.00	262.82	396.49
77	428.53	56.49	56.89	57.75	96.25	231.00	266.28	401.70
78	434.10	57.22	57.63	58.50	97.50	234.00	269.74	406.92
79	439.66	57.96	58.37	59.25	98.75	237.00	273.20	412.14
80	445.23	58.69	59.11	60.00	100.00	240.00	276.66	417.36
81	450.79	59.42	59.85	60.75	101.25	243.00	280.11	422.57
82	456.36	60.16	60.59	61.50	102.50	246.00	283.57	427.79
83	461.92	60.89	61.32	62.25	103.75	249.00	287.03	433.01
84	467.49	61.63	62.06	63.00	105.00	252.00	290.49	438.22
85	473.05	62.36	62.80	63.75	106.25	255.00	293.95	443.44
86	478.62	63.09	63.54	64.50	107.50	258.00	297.41	448.66
87	484.18	63.83	64.28	65.25	108.75	261.00	300.86	453.87
88	489.75	64.56	65.02	66.00	110.00	264.00	304.32	459.09
89	495.31	65.29	65.76	66.75	111.25	267.00	307.78	464.31
90	500.88	66.03	66.50	67.50	112.50	270.00	311.24	469.53
91	506.44	66.76	67.23	68.25	113.75	273.00	314.70	474.74
92	512.01	67.49	67.97	69.00	115.00	276.00	318.15	479.96
93	517.58	68.23	68.71	69.75	116.25	279.00	321.61	485.18
94	523.14	68.96	69.45	70.50	117.50	282.00	325.07	490.39
95	528.71	69.70	70.19	71.25	118.75	285.00	328.53	495.61
96	534.27	70.43	70.93	72.00	120.00	288.00	331.99	500.83
97	539.84	71.16	71.67	72.75	121.25	291.00	335.45	506.04
98	545.40	71.90	72.41	73.50	122.50	294.00	338.90	511.26
99	550.97	72.63	73.15	74.25	123.75	297.00	342.36	516.48
100	556.53	73.36	73.88	75.00	125.00	300.00	345.82	521.69

TI. french leagues into different geugraphical measures of distance.

$\begin{aligned} & \text { French } \\ & \text { Leagues. } \end{aligned}$	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { Miles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { M11es. } \\ 15=1^{\circ} \mathrm{Eq} . \end{gathered}$	Nautical Leasues. $20=1^{\circ} \mathrm{E}_{1}$.	$\begin{gathered} \text { Geugraph }{ }^{\prime} \\ \text { or Nautacal } \\ \text { Miles. } \\ 60=1^{\circ} \mathrm{E} q . \end{gathered}$	English statute Miles.	$\begin{aligned} & \text { Rnssian } \\ & \text { Wersts. } \end{aligned}$
1,000	4452.26	586.91	591.07	600.00	800.00	2400.00	2766.56	4173.55
2,000	8904.53	1173.82	118.2 .15	1200.00	1600.00	4806.00	5533.12	8347.10
3,000	13356.79	1760.73	1773.22	1800.00	2400.00	7200.00	8299.67	12520.65
4.000	17809.05	2347.64	2364.30	2400.00	3200.00	9600.00	11066.23	16694.20
5,000	22261.32	2934.55	2955.38	3000.00	4000.00	12000.00	13832.79	20867.75
6,000	23713.58	3521.46	3546.45	3600.00	4800.00	14400.00	16599.35	25041.30
7,000	31165.84	4108.37	4137.53	+200.00	5600.00	16800.00	19365.91	29214.85
8,000	35618.10	469\%.28	4728.60	4800.00	6400.00	19200.00	22132.46	33388.40
9,000	40070.37	5282.19	5319.68	5400.00	7200.00	21600.00	24899.02	37561.95
10,000	44523.63	5869.10	5910.75	6000.00	8000.00	24000.00	27665.58	41735.50
100	44.23	58.69	59.11	60.00	80.00	240.00	276.66	417.36
200	890.45	117.38	118.22	120.00	160.00	480.00	553.31	834.71
300	1335.68	176.07	177.32	180.00	240.00	720.00	829.97	1252.07
400	1780.91	234.76	236.43	240.00	320.00	960.00	1106.62	1669.42
500	2226.13	293.46	295.54	300.00	400.00	1200.00	1383.28	2086.78
600	2671.36	352.15	354.65	360.00	480.00	1440.00	1859.93	2504.13
700	3116.58	410.84	413.75	420.00	560.00	1680.00	1936.59	2921.49
800	3561.81	469.53	472.86	480.00	640.00	1920.00	2213.25	3338.84
900	4007.04	$52 \mathrm{S.22}$	531.97	540.00	720.00	2160.00	2489.90	3756.20
1000	452.26	586.91	591.07	600.00	800.00	2400.00	2766.56	4173.55
1	4.45	0.59	0.59	0.60	0.80	2.40	2.77	4.17
2	8.90	1.17	1.18	1.20	1.60	4.80	5.53	8.35
3	13.36	1.76	1.77	1.80	2.40	7.20	8.30	12.52
4	17.81	2.35	2.36	2.40	3.20	9.60	11.07	16.69
5	22.26	2.93	2.96	3.00	4.00	12.00	13.83	20.87
6	26.71	3.52	3.55	3.60	4.80	14.40	16.60	25.04
7	31.17	4.11	4.14	4.20	5.60	16.80	19.37	29.21
8	35.62	4.70	4.73	4.80	6.40	19.20	22.13	33.39
9	40.07	5.28	5.32	5.40	7.20	21.60	24.90	37.56
10	44.52	5.87	5.91	6.00	8.00	24.00	27.67	41.74
11	48.97	6.46	6.50	6.60	8.80	26.40	30.43	45.91
12	53.43	7.04	7.09	7.20	9.60	28.80	33.20	50.08
13	57.88	7.63	7.68	7.80	10.40	31.20	35.97	54.26
14	62.33	8.22	8.28	8.40	11.20	33.60	38.73	58.43
15	66.78	8.80	8.87	9.00	12.00	36.00	41.50	62.60
16	71.24	9.39	9.46	9.60	12.80	38.40	44.26	66.78
17	75.69	9.98	10.05	10.20	13.60	40.80	47.03	70.95
18	80.14	10.56	10.64	10.80	14.40	43.20	49.80	75.12
19	84.59	11.15	11.23	11.40	15.20	45.60	52.56	79.30
20	89.05	11.74	11.82	12.00	16.00	48.00	55.33	83.47

FRENCH LEAGUES INTO DIFFERENT GEOGRAPHICAL MEASURES OF DISTANCE.

$\begin{aligned} & \text { French } \\ & \text { Leagues. } \end{aligned}$	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	Prussian Miles.	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \mathrm{Eq.} . \end{gathered}$	$\begin{aligned} & \text { Nautical } \\ & \text { Leacues. } \\ & 20=10 \text { Eq. } \end{aligned}$	Geograph'l or Nantical Miles. $60=1^{\circ}$ Eq.	English Statute Miles.	Russian Wersts.
21	93.50	12.33	12.41	12.60	16.80	50.40	58.10	87.64
22	97.95	12.91	13.00	13.20	17.60	52.80	60.86	91.82
23	102.40	13.50	13.59	13.80	18.40	55.20	63.63	95.99
24	106.85	14.09	14.19	14.40	19.20	57.60	66.40	100.17
25	111.31	14.67	14.78	15.00	20.00	60.00	69.16	104.34
26	115.76	15.26	15.37	15.60	20.80	62.40	71.93	108.51
27	120.21	15.85	15.96	16.20	21.60	64.80	74.70	112.69
28	124.66	16.43	16.55	16.80	22.40	67.20	77.46	116.86
29	129.12	17.02	17.14	17.40	23.20	69.60	80.23	121.03
30	133.57	17.61	17.73	18.00	24.00	72.00	83.00	125.21
31	138.02	18.19	18.32	18.60	24.80	74.40	85.76	129.38
32	142.47	18.78	18.91	19.20	25.60	76.80	88.53	133.55
33	146.92	19.37	19.51	1980	26.40	79.20	91.30	137.73
34	151.38	19.95	20.10	20.40	27.20	81.60	94.06	141.90
35	155.83	20.54	20.69	21.00	28.00	84.00	96.83	146.07
36	160.28	21.13	21.28	21.60	28.80	86.40	99.60	150.25
37	164.73	21.72	21.87	22.20	29.60	88.80	102.36	154.42
38	169.19	22.30	22.46	22.80	30.40	91.20	105.13	158.59
39	173.64	22.89	23.05	23.40	31.20	93.60	107.90	162.77
40	178.09	23.48	23.64	24.00	32.00	96.00	110.66	166.94
41	182.54	24.06	24.23	24.60	32.80	98.40	113.43	171.12
42	187.00	24.65	24.83	25.20	33.60	100.80	116.20	175.29
43	191.45	25.24	25.42	25.80	34.40	103.20	118.96	179.46
44	195.90	25.82	26.01	26.40	35.20	105.60	121.73	183.64
45	200.35	26.41	26.60	27.00	36.00	108.00	124.50	187.81
46	204.80	27.00	27.19	27.60	36.80	110.40	127.26	191.98
47	209.26	27.58	27.78	28.20	37.60	112.80	130.02	196.16
48	213.71	28.17	28.37	28.80	38.40	115.20	132.79	200.33
49	218.16	28.76	28.96	29.40	39.20	117.60	135.56	204.50
50	222.61	29.35	29.55	30.00	40.00	120.00	138.33	208.68
51	227.07	29.93	30.14	30.60	40.80	122.40	141.09	212.85
52	231.52	30.52	30.74	31.20	41.60	124.80	143.86	217.02
53	235.97	31.11	31.33	31.80	42.40	127.20	146.63	221.20
54	240.42	31.69	31.92	32.40	43.20	129.60	149.39	225.37
55	244.87	32.28	32.51	33.00	44.00	132.00	152.16	229.55
56	249.33	32.87	33.10	33.60	44.80	134.40	154.93	233.72
57	253.78	33.45	33.69	34.20	45.60	136.80	157.69	237.69
58	258.23	34.04	34.28	34.80	46.40	139.20	160.46	242.67
59	262.68	34.63	34.87	35.40	47.20	141.60	163.23	246.24
60	267.14	35.21	35.46	36.00	48.00	144.00	165.99	250.41

french leagues into different geographical measures of distance.

$\begin{aligned} & \text { French } \\ & \text { Leagues. } \end{aligned}$	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austriau Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { Miles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \mathrm{Eq} . \end{gathered}$	Nautical Leagues. $20=10$ $20=1^{\circ} \mathrm{E} 4$.	$\begin{gathered} \text { Geograph1’ } \\ \text { or Nautical } \\ \text { Miles. } \\ 60=1^{\circ} \text { Eq. } \\ \hline \end{gathered}$	Euglish statute Miles.	Russian Wersts.
61	271.59	35.80	36.06	36.60	48.80	146.40	168.76	254.59
62	276.04	36.39	36.65	37.20	49.60	148.80	171.53	258.76
63	280.49	36.98	37.24	37.80	50.40	151.20	174.29	262.93
64	284.94	37.56	37.83	38.40	51.20	153.60	177.06	267.11
65	289.40	38.15	35.42	39.00	52.00	156.00	179.83	271.28
66	293.85	38.74	39.01	39.60	52.80	158.40	182.59	275.45
67	298.30	39.32	39.60	40.20	53.60	160.80	185.36	279.63
68	302.75	39.91	40.19	40.80	54.40	163.20	188.13	283.80
69	307.21	40.50	40.78	41.40	55.20	165.60	190.69	287.97
70	311.66	41.08	41.38	42.00	56.00	168.00	193.66	292.15
71	316.11	41.67	41.97	42.60	56.80	170.40	196.43	296.32
72	320.56	42.26	42.56	43.20	57.60	172.80	199.19	300.50
73	325.02	42.84	43.15	43.80	58.40	175.20	201.96	304.67
74	329.47	43.43	43.74	44.40	59.20	177.60	204.73	308.84
75	333.92	44.02	44.33	45.00	60.00	180.00	207.49	313.02
76	338.37	44.61	44.92	45.60	60.80	182.40	210.26	317.19
77	342.82	45.19	45.51	46.20	61.60	184.80	213.03	321.36
78	347.28	45.78	46.10	41.80	62.40	187.20	215.79	325.54
79	351.73	419.37	46.69	47.40	63.20	189.60	218.56	329.71
80	356.18	46.95	47.29	48.00	64.00	192.00	221.32	333.88
81	360.63	47.54	47.88	48.60	64.80	194.40	224.09	338.00^{2}
82	36509	48.13	48.47	49.20	65.60	196.80	226.86	342.23
83	369.54	45.71	49.06	49.80	66.40	199.20	229.62	346.40
84	373.99	49.30	49.65	50.40	67.20	201.60	232.39	350.58
85	378.44	49.89	50.24	51.00	68.00	204.00	235.16	354.75
86	382.89	50.47	50.83	51.60	68.80	206.40	237.92	358.93
s7	387.35	51.06	51.42	52.20	69.60	208.80	240.69	363.10
88	391.80	51.65	52.01	52.80	70.40	211.20	243.46	367.27
89	396.25	52.24	52.61	53.40	71.20	213.60	246.22	371.45
90	400.70	52.82	53.20	54.00	72.00	216.00	248.99	375.62
91	405.16	53.41	53.79	54.60	72.80	218.40	251.76	379.79
92	409.61	54.00	54.38	55.20	73.60	220.80	254.52	383.97
93	414.06	54.58	54.97	55.80	74.40	223.20	257.29	388.14
94	418.51	55.17	55.56	56.40	75.20	225.60	260.06	392.31
95	422.96	55.76	56.15	57.00	76.00	228.40	262.82	396.49
96	427.42	$56 . \dot{3} 4$	56.74	57.60	76.80	230.40	265.59	400.66
97	431.57	56.93	57.33	58.20	77.60	232.80	268.36	404.83
98	436.32	57.52	57.93	58.80	78.40	235.20	271.12	409.01
99	440.77	58.10	58.52	59.40	79.20	237.60	273.89	413.18
100	445.23	58.69	59.11	60.00	80.00	240.00	276.66	417.36

VII. aeographical or nautical miles into different geographical measures of distange.

Geographical Miles.	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	Prussian Miles.	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \mathbf{E}_{\mathrm{I}} . \end{gathered}$	Nautical Leagues. $20=10 \mathrm{Eq}$ $20=1^{\circ} \mathrm{Eq}$.	FrenchLeagues. $25=10$ $25=1^{\circ} \mathrm{Eq}$	English Statute Miles.	Russian Wersts.
1,000	1855.11	244.55	246.28	250.00	333.33	416.67	1152.73	1738.98
2,000	3710.22	489.09	492.56	500.00	666.67	833.33	2305.47	3477.96
3,000	5565.33	733.64	738.84	750.00	1000.00	1250.00	3458.20	5216.94
4,000	7420.44	978.18	985.13	1000.00	1333.33	1666.67	4610.93	6955.92
5,000	9275.55	1202.73	1231.41	1250.00	1666.67	2083.33	5763.66	8694.90
6,000	11130.66	1467.28	1477.69	1500.00	2000.00	2500.00	6916.40	10433.88
7,000	12985.77	1711.82	1783.97	1750.00	2333.33	2916.67	8069.13	12172.86
8,000	14840.88	1956.37	1970.25	2000.00	2666.67	3333.33	9221.66	13911.83
9,000	16695.99	2200.91	2216.53	2250.00	3000.00	3750.00	10374.59	15650.81
10,000	18551.10	2445.46	2462.81	2500.00	3333.33	4166.67	11527.33	17389.79
100	185.51	24.45	24.63	25.00	33.33	41.67	115.27	173.90
200	371.02	48.91	49.26	50.00	66.67	83.33	230.55	347.80
300	556.53	73.36	73.88	75.00	100.00	125.00	345.82	521.69
400	742.04	97.82	98.51	100.00	133.33	166.67	461.09	695.59
500	927.56	122.27	123.14	125.00	166.67	208.33	576.37	869.49
600	1113.07	146.73	147.77	150.00	200.00	250.00	691.64	10.43 .39
700	1298.58	171.18	172.40	175.00	233.33	291.67	806.91	1217.29
800	1484.09	195.64	197.03	200.00	266.67	333.33	922.19	1391.18
900	1669.60	220.09	221.65	225.00	300.00	375.00	1037.46	1565.08
1000	1855.11	244:55	246.28	250.00	333.33	410.67	1152.73	1738.98
1	1.86	0.24	0.25	0.25	0.33	0.42	1.15	1.74
2	3.71	0.49	0.49	0.50	0.67	0.83	2.31	3.48
3	5.57	0.73	0.74	0.75	1.00	1.25	3.46	5.22
4	7.42	0.98	0.99	1.00	1.33	1.67	4.61	6.96
5	9.28	1.22	1.23	1.25	1.67	2.08	5.76	8.69
6	11.13	1.47	1.48	1.50	2.00	2.50	6.92	10.43
7	12.99	1.71	1.72	1.75	2.33	2.92	8.07	12.17
8	14.84	1.96	1.97	2.00	2.67	3.33	9.22	13.91
9	16.70	2.20	2.22	2.25	3.00	3.75	10.37	15.65
10	18.55	2.45	2.46	2.50	3.33	4.17	11.53	17.39
11	20.41	2.69	2.71	2.75	3.67	4.58	12.68	19.13
12	22.26	2.93	2.96	3.01	4.00	5.00	13.83	20.87
13	24.12	3.18	3.20	3.25	4.33	5.42	14.99	22.61
14	25.97	3.42	3.45	3.50	4.67	5.83	16.14	24.35
15	27.83	3.67	3.69	3.75	5.00	6.25	17.29	26.08
16	29.68	3.91	3.94	4.00	5.33	6.67	18.44	27.82
17	31.54	4.16	4.19	4.25	5.67	7.08	19.60	29.56
18	33.39	4.40	4.43	4.50	6.00	7.50	20.75	31.30
19	35.25	4.65	4.68	4.75	6.33	7.97	21.90	33.04
20	37.10	4.89	4.93	5.00	6.67	8.33	23.05	34.78

Gevgraphical or nautical miles intu different geographical measures of DISTANCE.

Geogralhical Miles.	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { Miles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { Mile } \\ 15=1^{\circ} \text { Eq. } \end{gathered}$	Nautical Leagues. $20=1^{\circ} \mathrm{E}_{1}$.	$\begin{gathered} \text { Freuch } \\ \text { Leataes. } \\ 2 \bar{j}=1^{\circ} \mathrm{Eq} . \end{gathered}$	English Scatute Miles.	$\begin{aligned} & \text { Russian } \\ & \text { Wersts. } \end{aligned}$
21	38.96	5.14	5.17	5.25	7.00	8.75	24.21	36.52
22	40.81	5.38	5.42	5.50	7.33	9.17	25.36	35.26
23	42.67	5.62	5.66	5.75	7.67	9.58	26.51	40.00
-4	44.52	5.87	5.91	6.00	8.00	10.00	27.67	41.74
25	46.38	6.11	6.16	6.25	8.33	10.42	28.82	43.47
26	48.23	6.36	6.40	6.50	8.67	10.83	29.97	4.51
27	50.09	6.60	6.65	6.75	9.00	11.25	31.12	46.95
28	51.94	(6. 5.5	6.90	7.00	9.33	11.67	32.28	48.69
29	53.80	7.09	7.14	7.25	9.67	12.08	33.43	50.43
30	55.65	7.34	7.39	7.50	10.00	12.41	34.58	52.17
31	57.51	7.58	7.63	7.75	10.33	12.92	35.73	53.91
32	59.36	7.83	7.88	8.100	10.67	13.33	36.85	55.65
33	61.22	8.07	8.13	8.25	11.00	13.75	38.04	57.39
34	63.67	8.31	8.37	8.50	11.33	14.17	39.19	59.13
35	64.93	8.56	8.62	8.75	11.67	14.58	40.35	60.86
36	66.78	8.80	8.87	9.00	12.00	15.00	41.50	62.60
37	68.64	9.05	9.11	9.25	12.33	15.42	42.65	64.34
38	70.49	9.24	9.36	9.50	12.67	15.83	43.80	66.08
39	72.35	9.54	9.60	9.75	13.00	16.25	4.96	67. 2
40	74.20	9.78	9.85	10.00	13.33	16.67	46.11	69.56
41	76.06	10.03	10.10	10.25	13.67	17.08	47.26	71.30
42	77.91	10.27	10.34	10.50	14.00	17.49	48.41	73.04
43	79.77	10.52	10.59	10.75	14.33	17.92	49.57	74.78
44	81.62	10.76	10.84	11.00	14.67	18.33	50.72	76.52
45	83.48	11.00	11.08	11.25	15.00	18.75	51.87	78.25
46	85.34	11.25	11.33	11.50	15.33	19.17	53.03	79.99
47	87.19	11.49	11.58	11.75	15.67	19.58	54.18	81.73
48	89.05	11.74	11.82	12.00	16.00	20.00	55.33	83.47
49	90.90	11.98	12.07	12.25	16.33	20.42	56.48	85.21
50	92.76	12.23	12.31	12.50	16.67	20.83	57.64	86.95
51	94.61	12.47	12.56	12.75	17.00	21.25	58.79	88.69
52	96.47	12.72	12.81	13.00	17.33	21.67	59.94	90.43
53	98.32	12.96	13.05	13.25	17.67	22.108	61.09	92.17
54	100.18	13.21	13.30	13.50	18.00	22.50	62.25	93.90
55	102.03	13.45	13.55	13.75	18.33	22.92	63.40	95.64
56	103.89	13.69	13.79	14.00	18.67	23.33	64.55	97.38
57	105.74	13.94	14.04	14.25	19.00	23.75	65.71	99.12
58	107.60	14.18	14.28	14.50	19.33	24.17	66.86	100.86
59	109.45	14.43	14.53	14.75	19.67	24.58	68.01	102.60
60	111.31	14.67	14.78	15.00	20.00	25.00	69.16	104.34

geograpilical or nautical miles intu different geographical measurfs of Distance.

Geographical miles.	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { Miles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \dot{E}_{1} . \end{gathered}$	$\begin{aligned} & \text { Nautical } \\ & \text { Learatas. } \\ & 20=10 \text { Eq. } \end{aligned}$	$\begin{aligned} & \text { French } \\ & \text { Leatues. } \\ & 2.5=1^{0} \text { Eq. } \end{aligned}$	English statute Miles.	Russian Wersts.
61	113.16	14.92	15.02	15.25	20.33	25.42	70.32	106.08
62	115.02	15.16	15.27	15.50	20.67	25.83	71.47	107.82
63	116.87	15.41	15.52	15.75	21.00	26.25	72.62	109.56
64	118.73	15.65	15.76	16.00	21.33	26.67	73.77	111.29
65	120.5 s	15.90	16.01	16.25	21.67	27.08	74.93	113.03
66	122.44	16.14	16.25	16.50	22.00	27.50	76.17	114.77
67	124.29	16.38	16.50	16.75	22.33	27.92	77.23	116.51
68	126.15	16.63	16.75	17.00	22.67	28.33	78.39	118.25
69	128.00	16.87	16.99	17.25	23.00	28.75	79.54	119.99
70	129.86	17.12	17.24	17.50	23.33	29.17	80.69	121.73
71	131.71	17.36	17.49	17.75	23.67	29.58	81.84	123.47
72	133.57	17.61	17.73	18.00	24.00	30.00	83.00	125.21
73	135.42	17.85	17.98	18.25	24.33	30.42	84.15	126.95
74	137.28	18.10	18.22	18.50	24.67	30.83	85.30	128.68
75	139.13	18.34	18.47	18.75	25.00	31.25	86.46	130.42
76	140.99	18.59	18.72	19.00	25.33	31.67	87.61	132.16
77	142.84	18.83	18.96	19.25	25.67	32.08	88.76	133.90
78	144.70	19.07	19.21	19.50	26.00	32.50	89.91	135.64
79	146.55	19.32	19.46	19.75	26.33	32.82	91.07	137.38
80	148.41	19.56	19.70	20.00	26.67	33.33	92.29	139.12
81	150.26	19.81	19.95	20.25	27.00	33.75	93.37	140.86
82	152.12	20.05	20.20	20.50	27.33	34.17	94.52	142.60
83	153.97	20.30	20.44	20.75	27.67	34.58	05.68	144.34
84	155.83	20.54	20.69	21.00	28.00	35.00	96.83	146.07
85	157.68	20.79	20.93	21.25	28.33	35.42	97.98	147.81
86	159.54	21.03	21.18	21.50	28.67	35.83	99.13	149.55
87	161.39	21.28	21.43	21.75	29.00	36.25	100.29	151.89
88	163.25	21.52	21.67	22.00	29.33	36.67	101.44	153.03
89	165.10	21.76	21.92	22.25	29.67	37.08	102.59	154.77
90	166.96	22.01	22.17	22.50	30.00	37.50	103.75	156.51
91	168.82	22.25	22.41	22.75	30.33	37.92	104.90	158.25
92	170.67	22.50	23.66	23.00	30.67	38.33	106.05	159.99
93	172.53	22.74	22.90	23.25	31.00	38.75	107.20	1161.73
94	174.38	22.99	23.15	23.50	31.33	39.17	108.36	163.46
95	176.24	23.23	23.40	23.75	31.67	39.58	109.51	165.20
96	178.09	23.48	23.64	24.00	32.00	40.00	110.66	166.94
97	179.95	23.72	23.89	24.25	32.33	40.42	111.82	168.68
98	181.80	23.97	24.14	24.50	32.67	40.83	112.97	170.42
99	183.66	24.21	24.38	24.75	33.00	41.25	114.12	172.17
100	185.51	24.45	24.63	25.00	33.33	41.67	115.27	173.90

VIII. english statute miles into different qeograpiital measures of DISTANCE

English statute Miles.	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { Miles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \text { Eq. } \end{gathered}$	$\begin{aligned} & \text { Nautical } \\ & \text { Learues. } \\ & 20=1^{\circ} \mathbf{E q}_{1} . \end{aligned}$	$\begin{gathered} \text { French } \\ \text { Leagues. } \\ 2=1^{\circ} \text { Eq. } \end{gathered}$	Geograph'l or Nautical Miles. $60=1^{\circ} \mathrm{E}_{4}$.	Russian Wersts.
1,000	1609.31	212.14	213.65	216.88	289.17	361.46	867.50	1508.57
2,000	3218.63	424.29	427.30	433.75	578.34	722.92	1735.01	3017.14
3,000	4827.94	636.43	640.95	650.63	867.50	1084.38	2602.51	4525.71
4,000	6437.26	848.58	854.60	867.50	1156.67	1445.84	3470.02	6034.29
5,000	5046.57	1060.72	1068.25	1084.38	1445.84	1807.30	4337.52	7542.86
6,000	9655.89	1272.87	1281.90	1301.26	1735.01	2168.76	5205.02	9051.43
7,000	11265.20	1485.01	1495.55	1518.13	2024.18	2530.22	6072.53	10560.00
8,000	12874.52	1697.16	1709.20	1735.01	2313.34	2891.68	6940.03	12068.57
9,000	14483.83	1909.30	1922.85	1951.88	2602.51	32.53 .14	7807.54	13577.14
10,000	16093.15	2121.45	2136.50	2168.76	2891.68	3614.60	8675.04	15085.71
100	160.93	21.21	21.36	21.69	28.92	36.15	86.75	150.86
200	321. 56	42.43	42.73	43.38	57.83	72.29	173.50	301.71
300	482.79	63.64	64.09	65.06	86.75	108.44	260.95	452.57
400	64.3 .73	84.86	85.46	86.75	115.67	144.58	347.00	603.43
500	804.66	106.07	106.82	108.44	14.58	180.73	433.75	754.29
600	965.59	127.29	128.19	130.13	173.50	216.88	520.50	905.14
700	1126.52	148.50	149.55	151.81	202.4:	253.112	607.25	1056.00
800	1247.45	169.72	170.92	173.50	231.33	289.17	694.00	1206.86
900	1448.38	190.93	192.28	195.19	260.25	325.31	780.75	1357.71
1000	1609.31	212.14	213.65	216.88	289.17	361.46	867.50	1508.57
1	1.61	0.21	0.21	0.22	0.29	0.36	0.87	1.51
2	3.22	0.42	0.43	0.43	0.58	0.72	1.74	3.02
3	4.83	0.64	0.64	0.65	0.87	1.08	2.60	4.53
4	6.44	0.85	0.85	0.87	1.16°	1.45	3.47	6.03
5	8.05	1.06	1.07	1.08	1.45	1.81	4.34	7.54
6	9.66	1.27	1.28	1.30	1.74	2.17	5.21	9.05
7	11.27	1.49	1.50	1.52	2.02	2.53	6.07	10.56
8	12.57	1.70	1.71	1.74	2.31	2.89	6.94	12.07
9	14.48	1.91	1.92	1.95	2.60	3.25	7.81	13.58
10	16.09	2.12	2.14	2.17	2.89	3.61	8.68	15.09
11	17.70	2.33	2.35	2.39	3.18	3.98	9.54	16.59
12	19.31	2.55	2.56	2.60	3.47	4.34	10.41	18.10
13	20.92	2.76	2.78	2.82	3.76	4.70	11.28	19.61
14	22.53	2.97	2.99	3.04	4.05	5.06	12.15	21.12
15	24.14	3.18	3.20	3.25	4.34	5.42	13.01	22.63
16	25.75	3.39	3.42	3.47	4.63	5.78	13.88	24.14
17	27.36	3.61	3.63	3.69	4.92	6.14	14.75	25.65
18	28.97	3.82	3.85	3.90	5.21	6.51	15.62	27.15
19	30.57	4.03	4.06	4.12	5.49	6.87	16.48	28.66
20	32.19	4.24	4.27	4.34	5.78	7.23	17.35	30.17

ENGLISH STATU'TE MILES INTO DIFFERENT GEOGRAPHICAL MEASURES OF DISTANCE.

English Statute Miles.	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	Prussian Miles.	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \text { Eq. } \end{gathered}$	$\begin{gathered} \text { Nautical } \\ \text { Learoes. } \\ 20=1^{\circ} \mathrm{Eq} . \end{gathered}$	$\begin{gathered} \text { French } \\ \text { Leatarues. } \\ 25=1 \cup \mathrm{E}_{4} . \end{gathered}$	Gengrapt'l or Nautical Miles. $60=1^{\circ} \mathrm{Eq}$.	$\begin{aligned} & \text { Russian } \\ & \text { Wersts. } \end{aligned}$
21	33.80	4.46	4.49	4.55	6.07	7.59	18.22	31.68
22	35.40	4.67	4.70	4.77	6.36	7.95	19.09	33.19
23	37.01	4.88	4.91	4.99	6.65	8.31	19.95	34.70
24	38.62	5.09	5.13	5.21	6.94	8.68	20.82	36.21
25	40.83	5.30	5.34	5.42	7.23	9.04	21.69	37.71
26	41.84	5.52	5.55	5.64	7.52	9.40	22.56	39.22
27	43.45	5.73	5.77	5.86	7.81	9.76	23.42	40.73
28	45.06	5.94	5.98	6.07	8.10	10.12	24.29	42.24
29	46.67	6.15	6.20	6.29	8.39	10.48	25.16	43.75
30	48.28	6.36	6.41	6.51	8.68	10.84	26.03	45.26
31	49.89	6.58	6.62	6.72	8.96	11.21	26.89	46.77
32	51.50	6.79	6.84	6.94	9.25	11.57	27.76	48.27
33	53.11	7.00	7.05	7.16	9.54	11.92	28.63	49.78
34	54.72	7.21	7.26	7.37	9.83	12.29	29.50	51.29
35	56.33	7.43	7.48	7.59	10.12	12.65	30.36	52.80
36	57.94	7.64	7.69	7.81	10.41	13.01	31.23	54.31
37	59.54	7.85	7.91	8.02	10.70	13.37	32.10	55.82
38	61.15	8.06	8.12	8.24	10.99	13.74	32.97	57.33
39	62.76	8.27	8.33	8.46	11.28	14.10	33.83	58.83
40	64.37	8.49	8.55	8.68	11.57	14.46	34.70	60.34
41	65.98	8.70	8.76	8.89	11.86	14.82	35.57	61.85
42	67.59	8.91	8.97	9.11	12.15	15.18	36.44	63.36
43	69.20	9.12	9.19	9.33	12.43	15.54	37.30	64.87
44	70.81	9.33	9.40	9.54	12.72	15.90	38.17	66.38
45	72.42	9.55	9.61	9.76	13.01	16.27	39.04	67.89
46	74.03	9.76	9.83	9.98	13.30	16.63	39.91	69.39
47	75.64	9.97	10.04	10.19	13.59	16.99	40.77	70.90
48	77.25	10.18	10.26	10.41	13.88	17.35	41.64	72.41
49	78.86	10.40	10.47	10.63	14.17	17.71	42.51	73.92
50	80.47	10.61	10.68	10.84	14.46	18.07	43.38	75.43
51	82.08	10.82	10.90	11.06	14.75	18.43	44.24	76.94
52	83.68	11.03	11.11	11.28	15.04	18.80	45.11	78.45
53	85.29	11.24	11.32	11.49	15.33	19.16	45.98	79.95
54	86.90	11.46	11.54	11.71	15.62	19.52	46.85	81.46
55	88.51	11.67	11.75	11.93	15.90	19.88	47.71	82.97
56	90.12	11.88	11.96	12.15	16.19	20.24	48.58	84.48
57	91.73	12.09	12.18	12.36	16.48	20.60	49.45	85.99
58	93.34	12.30	12.39	12.58	16.77	20.96	50.32	87.50
59	94.95	12.52	12.61	12.80	17.06	21.33	51.18	89.01
60	96.56	12.73	12.82	13.01	17.35	21.69	52.05	90.51

ENGLISII STATUTE MLES INTO DIFFERENT GEGGRAPHICAL MEASURES OF DISTANCE.

English Statute Miles.	$\begin{gathered} \text { Kilo- } \\ \text { metres. } \end{gathered}$	Austrian Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { Myles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} E_{4} . \end{gathered}$	$\begin{aligned} & \text { Nantical } \\ & \text { Learanes. } \\ & 20=10 \mathrm{Eq.} \end{aligned}$	$\begin{gathered} \text { Frencl } \\ \text { Lastaes. } \\ 2 \overline{5}=1^{\circ} \mathrm{Eq}_{\mathrm{f}} . \end{gathered}$		$\begin{aligned} & \text { Russian } \\ & \text { Wersts. } \end{aligned}$
61	98.17	12.94	13.03	13.23	17.64	22.45	52.92	92.12
62	99.78	13.15	13.25	13.45	17.93	22.41	53.79	93.53
63	101.39	13.37	13.46	13.66	18.22	22.77	54.65	95.04
64	102.00	13.58	13.67	13.88	18.51	23.13	55.52	96.55
(6)	104.61	13.79	13.69	14.10	18.80	23.49	56.39	98.06
66	106.21	14.00	14.10	14.31	19.09	23.86	57.26	99.57
67	107.82	14.21	14.31	14.53	19.37	24.22	58.12	101.07
68	104.43	14.43	14.53	14.75	19.66	24.58	58.99	102.58
69	111.04	14.64	14.74	14.96	19.95	24.94	59.86	104.09
70	112.65	14.85	14.96	15.18	20.24	25.30	60.73	105.60
71	114.26	15.06	15.17	15.40	20.53	25.66	61.59	107.11
72	115.57	15.27	15.38	15.62	20.82	26.03	62.46	108.62
73	117.48	15.49	15.60	15.83	21.11	26.39	63.33	110.13
74	119.09	15.70	15.81	16.05	21.40	26.75	64.20	111.63
75	120.70	15.91	16.02	16.27	21.69	27.11	65.06	113.14
76	12.31	16.12	16.24	16.48	21.98	27.47	65.93	114.65
77	123.92	16.34	16.45	16.70	22.27	27.83	66.80	116.16
78	125.53	16.55	16.66	16.92	22.56	29.19	67.67	117.67
79	127.14	16.76	16.88	17.13	22.84	28.56	68.53	119.18
80	128.75	16.97	17.09	17.35	23.13	28.92	69.40	120.69
81	130.35	17.18	17.31	17.57	23.42	29.28	70.27	122.19
82	131.96	17.40	17.52	17.78	23.71	29.64	71.14	123.70
83	133.57	17.61	17.73	18.00	24.00	30.00	72.00	125.21
84	135.18	17.82	17.95	18.22	24.29	30.36	72.87	126.72
85	136.79	18.03	18.16	18.43	24.58	30.72	73.74	128.23
86	138.40	18.24	18.37	18.65	24.87	31.09	74.61	129.74
87	140.01	15.46	18.59	18.87	25.16	31.46	75.47	131.25
88	141.62	18.67	18.80	19.09	25.45	31.82	76.34	132.75
89	143.23	18.88	19.01	19.30	25.74	32.18	77.21	184.26
90	144.84	19.09	19.23	19.52	26.03	32.53	78.08	135.77
91	146.45	19.31	19.44	19.74	26.31	32.59	78.94	137.28
92	148.06	19.52	19.66	19.95	26.60	33.25	79.81	138.79
93	149.67	19.73	19.87	20.17	26.59	33.82	80.68	140.30
94	151.28	19.94	20.08	20.39	27.18	34.18	81.55	141.81
95	152.88	20.15	20.30	20.60	27.47	34.54	82.41	143.31
96	154.49	20.37	21.51	20.82	27.76	34.90	83.28	144.82
97	156.10	20.58	21.72	21.04	28.05	35.26	84.15	146.33
98	157.71	20.79	20.94	21.25	28.34	35.62	85.02	147.84
99	159.32	21.00	21.15	21.47	28.63	35.98	85.88	149.35
100	160.93	21.21	21.36	21.69	28.12	36.15	86.75	150.86

IX. russian wersts into different geographical measures of distance.

Russian Wersts.	Kilo-	Austrian Miles.	Prussian Miles.	$\begin{aligned} & \text { German } \\ & \text { Miles. } \\ & 15=I^{\circ} \mathbf{E q} . \end{aligned}$	Nautical Learues. $20=1^{\circ}$ Eq.	$\begin{gathered} \text { French } \\ \text { Leayues. } \\ 2=1^{0} \text { Eq. } \end{gathered}$	Geograph'1 or Nautical Miles. $60=1^{\circ} \mathrm{Eq}$.	English Statute Miles.
1,000	1066.78	140.63	141.62	143.76	191.68	239.60	575.05	662.88
2,000	2133.56	281.25	283.25	287.53	383.37	479.21	1150.10	1325.76
3,000	3200.34	421.88	424.87	431.29	575.05	718.81	1725.15	1988.64
4,000	4267.12	562.50	566.50	575.05	766.73	958.42	2300.20	2651.52
5,000	5333.90	703.13	708.12	718.81	958.42	1198.02	2875.25	3314.39
6,000	6400.68	843.76	849.74	862.58	1150.10	1437.62	3450.30	3977.27
7,000	7467.47	984.38	991.37	1006.3 4	1341.78	1677.23	4025.35	4640.15
8,000	8534.25	1125.01	1132.99	1150.10	1533.47	1916.83	4600.40	5303.03
9,000	9601.03	1265.63	1274.62	1293.86	1725.15	2156.44	5175.45	5965.91
10,000	10667.81	1406.26	1416.24	1437.62	1916.83	2396.04	5750.50	6628.79
100	106.68	14.06	14.16	14.38	19.17	23.96	57.50	66.29
200	213.36	28.13	28.32	28.75	38.34	47.92	115.01	132.58
300	320.03	42.19	42.49	43.13	57.50	71.88	172.51	198.86
400	426.71	56.25	56.65	57.51	76.67	95.84	230.02	265.15
500	533.39	70.31	70.81	71.88	95.84	119.80	287.52	331.44
600	640.07	84.38	84.97	86.26	115.01	143.76	345.03	397.73
700	746.75	98.44	99.14	100.63	134.18	167.72	402.53	464.02
800	853.42	112.50	113.30	115.01	153.35	191.68	460.04	530.30
900	960.10	126.56	127.46	129.39	172.51	215.64	517.54	596.59
1000	1066.78	140.63	141.62	143.76	191.68	239.60	575.05	662.88
1	1.07	0.14	0.14	0.14	0.19	0.24	0.58	0.66
2	2.13	0.28	0.28	0.29	0.38	0.48	1.15	1.33
3	3.20	0.42	0.42	0.43	0.58	0.72	1.73	1.99
4	4.27	0.56	0.57	0.58	0.77	0.96	2.30	2.65
5	5.33	0.70	0.71	0.72	0.96	1.20	2.88	3.31
6	6.40	0.84	0.85	0.86	1.15	1.44	3.45	3.98
7	7.47	0.98	0.99	1.01	1.34	1.68	4.03	4.64
8	8.53	1.13	1.13	1.15	1.53	1.92	4.60	5.30
9	9.60	1.27	1.27	1.29	1.73	2.16	5.18	5.97
10	10.67	1.41	1.42	1.44	1.92	2.40	5.75	6.63
11	11.73	1.55	1.56	1.58	2.11	2.64	6.33	7.29
12	12.80	1.69	1.70	1.73	2.30	2.88	6.90	7.95
13	13.87	1.83	1.84	1.87	2.49	3.11	7.48	8.62
14	14.93	1.97	1.98	2.01	2.68	3.35	8.05	9.28
15	16.00	2.11	2.12	2.16	2.88	3.59	8.63	9.94
16	17.07	2.25	2.27	2.30	3.07	3.83	9.20	10.61
17	18.14	2.39	2.41	2.44	3.26	4.07	9.78	11.27
18	19.20	2.53	2.55	2.59	3.45	4.31	10.35	11.93
19	20.27	2.67	2.69	2.73	3.64	4.55	10.93	12.59
20	21.34	2.81	2.83	2.88	3.83	4.79	11.50	13.26

RUSSIAN WERSTS INTO DIFFERENT GEOGRAPHICAL MEASURES OF DISTANCE.

Russian Wersts.	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	Prussian Miles.	$\begin{aligned} & \text { German } \\ & \text { Miles. } \\ & 15=1^{\circ} \mathrm{Eq} . \end{aligned}$	Nautical Leagues. $20=10 \mathrm{Eq}$. $20=1^{\circ} \mathrm{Eq}$.	$\begin{gathered} \text { Freuch } \\ \text { Leagues. } \\ 20=1^{\circ} \text { Eq. } \end{gathered}$	Geograph'l or Niantical Miles. $60=1^{\circ} \mathrm{Eq}$.	English Statute Miles.
21	22.40	2.95	2.97	3.02	4.03	5.03	12.08	13.92
22	23.47	3.09	3.12	3.16	4.22	5.27	12.65	14.58
23	24.54	3.23	3.26	3.31	4.41	5.51	13.23	15.25
24	25.60	3.38	3.40	3.45	4.60	5.75	13.80	15.91
25	26.67	3.52	3.54	3.59	4.79	5.99	14.38	16.57
26	27.74	3.66	3.68	3.74	4.98	6.23	14.95	17.23
27	28.80	3.80	3.82	3.88	5.18	6.47	15.53	17.90
28	29.87	3.94	3.97	4.03	5.37	6.71	16.10	18.56
29	30.94	4.08	4.11	4.17	5.56	6.95	16.68	19.22
30	32.00	4.22	4.25	4.31	5.75	7.19	17.25	19.89
31	33.07	4.36	4.39	4.46	5.94	7.43	17.83	20.55
32	34.14	4.50	4.53	4.60	6.13	7.67	18.40	21.21
33	35.20	4.64	4.67	4.74	6.33	7.91	18.98	21.88
34	36.27	4.78	4.82	4.89	6.52	8.15	19.55	22.54
35	37.34	4.92	4.90	5.03	6.71	8.39	20.13	23.20
36	38.40	5.06	5.10	5.18	6.90	8.63	20.70	23.86
37	39.47	5.20	5.24	5.32	7.09	8.87	21.28	24.53
38	40.54	5.34	5.38	5.46	7.28	9.10	21.85	25.19
39	41.60	5.48	5.52	5.61	7.48	9.34	22.43	25.85
40	42.67	5.63	5.66	5.75	7.67	9.58	23.00	26.52
41	43.74	5.77	5.81	5.89	7.86	9.82	23.58	27.18
42	44.80	5.91	5.95	6.04	8.05	10.06	24.15	27.84
43	45.87	6.05	6.09	6.18	8.24	10.30	24.73	28.50
44	46.94	6.19	6.23	6.33	8.43	10.54	25.30	29.17
45	48.01	6.33	6.37	6.47	8.63	10.78	25.88	29.83
46	49.07	6.47	6.51	6.61	8.52	11.02	26.45	30.49
47	50.14	6.61	6.66	6.76	9.01	11.26	27.03	31.16
48	51.21	6.75	6.80	6.90	9.20	11.50	27.60	31.82
49	52.27	6.89	6.94	7.04	9.39	11.74	28.18	32.48
50	53.34	7.03	7.08	7.19	9.58	11.98	28.75	33.14
51	54.41	7.17	7.22	7.33	9.78	12.22	29.33	33.81
52	55.47	7.31	7.36	7.45	9.97	12.46	29.90	34.47
53	56.54	7.45	7.51	7.62	10.16	12.70	30.48	35.13
54	57.61	7.59	7.65	7.76	10.35	12.94	31.05	35.80
55	58.67	7.73	7.79	7.91	10.54	13.18	31.63	36.46
56	59.74	7.88	7.93	8.05	10.73	13.42	32.20	37.12
57	60.81	8.02	8.07	8.19	10.93	13.66	32.78	37.78
58	61.87	8.16	8.21	8.34	11.12	13.90	33.35	38.45
59	62.94	830	8.36	8.48	11.31	14.14	33.93	39.11
60	64.01	8.44	8.50	8.63	11.50	14.38	34.50	39.77

RUSSIAN Wersts into different geographical measures of distance.

$\begin{aligned} & \text { Russiau } \\ & \text { Wersts. } \end{aligned}$	$\begin{aligned} & \text { Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { Miles. } \end{aligned}$	$\begin{aligned} & \text { German } \\ & \text { Miles. } \\ & 15=1^{\circ} \mathrm{Eq} . \end{aligned}$	Nantical Leagues. $20=1^{\circ} \mathrm{Eq}$.	French Leasues. $25=1^{\circ} \mathrm{Eq}$.	Geograph'l or Nautical Miles. $60=1^{\circ}$ Eq.	English statute Miles.
61	65.07	8.58	8.64	8.77	11.69	14.62	35.08	40.44
62	66.14	8.72	8.78	8.91	11.88	14.86	35.65	41.10
63	67.21	8.86	8.92	9.06	12.08	15.10	36.23	41.76
64	68.27	9.00	9.06	9.20	12.27	15.33	36.80	42.42
65	69.34	9.14	9.21	9.34	12.46	15.57	37.38	43.09
66	70.41	9.28	9.35	9.49	12.65	15.81	37.95	43.75
67	71.47	9.42	9.49	9.63	12.84	16.05	38.53	44.41
68	72.54	9.56	9.63	9.78	13.03	16.29	39.10	45.08
69	73.61	9.70	9.77	9.92	13.23	16.53	39.68	45.74
70	74.67	9.84	9.91	10.06	13.42	16.77	40.25	46.40
71	75.74	9.98	10.06	10.21	13.61	17.01	40.83	47.06
72	76.81	10.12	10.20	10.35	13.80	17.25	41.40	47.73
73	77.87	10.27	10.34	10.49	13.99	17.49	41.98	48.39
74	78.94	10.41	10.48	10.64	14.18	17.73	42.55	49.05
75	80.01	10.55	10.62	10.78	14.38	17.97	43.13	49.72
76	81.08	10.69	10.76	10.93	14.57	18.21	43.70	50.38
77	82.14	10.83	10.91	11.07	14.76	18.45	44.28	51.04
78	83.21	10.97	11.05	11.21	14.95	18.69	44.85	51.70
79	84.28	11.11	11.19	11.36	15.14	1893	45.43	52.37
80	85.34	11.25	11.33	11.50	15.33	19.17	46.00	53.03
81	86.41	11.39	11.47	11.64	15.53	19.41	46.58	53.69
82	87.48	11.53	11.61	11.79	15.72	19.65	47.15	54.36
83	88.54	11.67	11.75	11.93	15.91	19.89	47.73	55.02
84	89.61	11.81	11.90	12.08	16.10	20.13	48.30	55.68
85	90.68	11.95	12.04	12.22	16.29	20.37	48.88	56.34
86	91.74	12.09	12.18	12.36	16.48	20.61	49.45	57.01
87	92.81	12.23	12.32	12.51	16.68	20.85	50.03	57.67
88	93.88	12.38	12.46	12.65	16.87	21.09	50.60	58.33
89	94.94	12.52	12.60	12.79	17.06	21.32	51.18	59.00
90	96.01	12.66	12.75	12.94	17.25	21.56	51.75	59.66
91	97.08	12.80	12.89	13.08	17.44	21.80	52.33	60.32
92	98.14	12.94	13.03	13.23	17.63	22.04	52.90	60.98
93	99.21	13.08	13.17	13.37	17.83	22.28	53.48	61.65
94	100.28	13.22	13.31	13.51	18.02	22.52	54.05	62.31
95	101.34	13.36	13.45	13.66	18.21	22.76	54.63	62.97
96	102.41	13.50	13.60	13.80	18.40	23.00	55.20	63.64
97	103.48	13.64	13.74	13.94	18.59	23.24	55.78	64.30
98	104.55	13.78	13.88	14.09	18.78	23.48	56.35	64.96
99	105.61	13.92	14.02	14.23	18.98	23.72	56.93	65.63
100	106.68	14.06	14.16	14.38	19.17	23.96	57.50	66.29

X. comparative table of the most important itinerary or linear measures of distances.

c) TABLES

FOR

COMPARING THE MOST IMPORTANT MEASURES OF GEOGRAPHICAL SURFACES.

CONTENTS.

(The figures refer to the folio at the bottom of the page.)

TABLES FOR COMPARING TIE MOST IMPORTANT MEASURES OF GEOGRAPIIICAL SURFACES.

Conversion of the different Surface Measures into each other.
Table I. Conversion of Square Kilometres into Austrian Square Miles-
Prussian Square Miles—German Square Miles_Natieal Square
Leagues_French Square Leagues—Geographical Square Miles
" II. Conversion of Austrian Square Miles into Square KilometresPrussian Square Miles_German Square Miles_Nautical Square Leagues_French Square Leagues_Geographical Square Miles —English Square Statute Miles_Russian Square Wersts . 94
" III. Conversion of Prussian Square Miles into Square KilometresAustrian Square Miles-German Square Miles_Nautical Square Leagues_French Square Leagues_Geographical Square Miles -English Square Statute Miles-Russian Square Wersts97
" IV. Conversion of German Square Miles into Square KilometresAustrian Square Miles - Prussian Square Miles - Nautical Square Leagues_French Square Leagues_Geographical Square Miles_English Square Statute Miles_Russian Square Wersts 100
" V. Conversion of Nautical Square Leagues into Square KilometresAustrian Square Miles_Prussian Square Miles_German Square Miles_Freneh Square Leagues_Geographical Square Miles_English Square Statute Miles_Russian Square Wersts 103
" VL. Conversion of French Square Leagues into Square KilometresAustrian Square Miles-Prussian Square Miles_German Square Miles_Nautical Square Leagues-Geographical Square MilesEnglish Square Statute Miles_Russian Square Wersts
" VII. Conversion of Geographical Square Miles into Square Kilometres -Austrian Square Miles_Prussian Square Miles_German Square Miles - Nautical Square Leagnes _ French Square Leagues_-English Square Statute Miles—Russian Square Wersts 109
PAGE
Table VIII. Conversion of English Square Statute Miles into Square Kilo- metres-Austrian Square Miles_Prussian Square Miles_ German Square Miles_Nautical Square Leagues_French Square Leagues - Geographical Square Miles - Russian Square Wersts 112
" IX. Conversion of Russian Square Wersts into Square Kilo-metres_Austrian Square Miles_-Prussian Square Miles-German Square Miles_Nautical Square Leagues_FrenchSquare Leagues - Geographical Square Miles - EnglishSquare Statute Miles115
" X. Table for comparing the most important Measures of Surface 118
E 90
I. Square kilometres into different geographical square measures.

Sq. Kilometres.	Austrian Sq. Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { Sq. Miles. } \end{aligned}$	German Sq. Miles. $15=1^{\circ}$ Eq.	$\begin{aligned} & \text { Nautical } \\ & \text { square } \\ & \text { Leagues. } \\ & 20=1^{\circ} \mathrm{Eq} . \end{aligned}$	$\begin{gathered} \text { French } \\ \text { square } \\ \text { Leagues. } \\ 2 \overline{5}=1^{\circ} \text { Eq. } \end{gathered}$	Geograph'1 or Nautical Sq. Miles. $60=1^{\circ} \mathrm{E} 4$	English square Miles.	Russian square Wersts.
1,000	17.37727	17.62477	18.16105	32.28630	50.4473	290.5767	386.1161	878.7183
2,000	34.75454	35.24955	36.32209	64.57261	100.8947	581.1534	772.2323	1757.437
3,000	52.13181	52.87432	54.48314	96.85891	151.3420	871.7302	1158.348	2636.155
4,000	69.50907	70.49910	72.64415	129.1452	201.7894	1162.307	1544.464	3514.873
5,000	86.88634	88.12387	90.80523	161.4315	252.2367	1452.884	1930.581	4393.592
6,000	104.2636	105.7486	108.9663	193.7178	302.6841	1743.460	2316.697	5272.310
7,000	121.6409	123.3734	127.1273	226.0041	353.1314	2034.037	2702.813	6151.028
8,000	139.0181	140.9982	145.2884	258.2904	403.5788	2324.614	3088.929	7029.747
9,000	156.3954	158.6230	163.4494	290.5767	454.0261	2615.191	3475.045	7908.465
10,000	173.7727	176.2477	181.6105	322.8630	504.4735	2905.767	3861.161	5787.183
100	1.74	1.76	1.82	3.23	5.04	29.06	38.61	87.87
200	3.48	3.52	3.63	6.46	10.09	58.12	77.22	175.74
300	5.21	5.29	5.45	9.69	15.13	87.17	115.83	263.62
400	6.95	7.05	7.26	12.91	20.18	110.23	154.45	351.49
500	8.69	8.81	9.08	16.14	25.22	145.29	193.06	439.36
600	10.43	10.57	10.90	19.37	30.27	174.35	231.67	527.23
700	12.16	12.34	12.71	22.60	35.31	203.40	270.28	615.10
800	13.90	14.10	14.53	25.83	40.36	232.46	308.89	702.97
900	15.64	15.86	16.34	29.06	45.40	261.52	347.50	790.85
1000	17.38	17.62	18.16	32.29	50.45	290.58	386.12	878.72
1	0.02	0.02	0.02	0.03	0.05	0.29	0.39	0.88
2	0.03	0.04	0.04	0.06	0.10	0.58	0.77	1.76
3	0.05	0.05	0.05	0.10	0.15	0.87	1.16	2.64
4	0.07	0.07	0.07	0.13	0.20	1.16	1.54	3.51
5	0.09	0.09	0.09	0.16	0.25	1.45	1.93	4.39
6	0.10	0.11	0.11	0.19	0.30	1.74	2.32	5.27
7	0.12	0.12	0.13	0.23	0.35	2.03	2.70	6.15
8	0.14	0.14	0.15	0.26	0.40	2.32	3.09	7.03
9	0.16	0.16	0.16	0.29	0.45	2.62	3.48	7.91
10	0.17	0.18	0.18	0.32	0.50	2.91	3.86	8.79
11	0.19	0.19	0.20	0.36	0.55	3.20	4.25	9.67
12	0.21	0.21	0.22	0.39	0.61	3.49	4.63	10.54
13	0.23	0.23	0.24	0.42	0.66	3.78	5.02	11.42
14	0.24	0.25	0.25	0.45	0.71	4.07	5.41	12.30
15	0.26	0.26	0.27	0.48	0.76	4.36	5.79	13.18
16	0.28	0.28	0.29	0.52	0.81	4.65	6.18	14.06
17	0.30	0.30	0.31	0.55	0.86	4.94	6.56	14.94
18	0.31	0.32	0.33	0.58	0.91	5.23	6.95	15.82
19	0.33	0.33	0.35	0.61	0.96	5.52	7.34	16.70
20	0.35	0.35	0.36	0.65	1.01	5.81	7.72	17.57

SQUARE KILOMETRES INTO DIFFEREN'I GEOGRAPIICAL SQUARE MEASURES.

Sq. Kilometres.	Austrian sy Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { sq. Miles. } \end{aligned}$	German sq Miles. $15=10 \mathrm{Eq}$. $15=1^{\circ} \mathrm{Eq}$.	Naulical square Leagues. $20=1^{\circ} \mathrm{Eq}$.	French Square Leagues. $25=1^{\circ} \mathrm{E}_{4}$.	Geograph'l or Nautical Sq. Miles. $60=1^{\circ} \mathrm{Eq}$.	Eoglish sycare Miles.	Russian square Wersts.
21	0.36	0.37	0.38	0.68	1.06	6.10	8.11	18.45
22	0.38	0.39	0.40	0.71	1.11	6.39	8.49	19.33
23	0.40	0.41	0.42	0.74	1.16	6.68	8.88	20.21
24	0.42	0.42	0.44	0.77	1.21	6.97	9.27	21.09
25	0.43	0.44	0.45	0.81	1.26	7.26	9.65	21.97
26	0.45	0.46	0.47	0.84	- 1.31	7.55	10.04	22.85
27	0.47	0.48	0.49	0.87	1.36	7.85	10.43	23.73
28	0.49	0.49	0.51	0.91	1.41	8.14	10.81	24.60
29	0.50	0.51	0.53	0.94	1.46	8.43	11.20	25.48
30	0.52	0.53	0.54	0.97	1.51	8.72	11.58	26.36
31	0.54	0.55	0.56	1.00	1.56	9.01	11.97	27.24
32	0.56	0.56	0.58	1.03	1.61	9.30	12.36	28.12
33	0.57	0.58	0.60	1.07	1.66	9.59	12.74	29.00
34	0.59	0.60	0.62	1.10	1.72	9.88	13.13	29.88
35	0.60	0.62	0.64	1.13	1.77	10.17	13.51	30.76
36	0.63	0.63	0.65	1.16	1.82	10.46	13.90	31.63
37	0.64	0.65	0.67	1.19	1.87	10.75	14.29	32.51
38	0.66	0.67	0.69	1.23	1.92	11.04	14.67	33.39
39	0.68	0.69	0.71	1.26	1.97	11.33	15.06	34.27
40	0.70	0.70	0.73	1.29	2.02	11.62	15.44	35.15
41	0.71	0.72	0.74	1.32	2.07	11.91	15.83	36.03
42	0.73	0.74	0.76	1.36	2.12	12.20	16.22	36.91
43	0.75	0.76	0.78	1.39	2.17	12.49	16.60	37.78
44	0.76	0.78	0.80	1.42	2.22	12.79	16.99	38.66
45	0.78	0.79	0.82	1.45	2.27	13.08	17.38	39.54
46	0.80	0.81	0.84	1.49	2.32	13.37	17.76	40.42
47	0.82	0.83	0.85	1.52	2.37	13.66	18.15	41.30
48	0.83	0.85	0.87	1.55	2.42	13.95	18.53	42.18
49	0.85	0.86	0.89	1.58	2.47	14.24	18.92	43.06
50	0.87	0.88	0.91	1.61	2.52	14.53	19.31	43.94
51	0.89	0.90	0.93	1.65	2.57	14.82	19.69	44.81
52	0.90	0.92	0.94	1.68	2.62	15.11	20.08	45.69
53	0.92	0.93	0.96	1.71	2.67	15.40	20.46	46.57
54	0.94	0.95	0.98	1.74	2.72	15.69	20.85	47.45
55	0.96	0.97	1.00	1.78	2.77	15.98	<1.24	48.33
56	0.97	0.99	1.02	1.81	283	16.27	21.62	49.21
57	0.99	1.00	1.04	1.84	2.88	16.56	22.01	50.09
58	1.01	1.02	1.05	1.87	2.93	16.85	22.39	50.97
59	1.03	1.04	1.07	1.90	2.98	17.14	22.78	51.84
60	1.04	1.06	1.09	1.94	3.03	17.43	23.17	52.72

539
SQUARE KILOMETRES INTO DIFFERENT GEOGRAPHICAL SQUARE MEASURES.

Sq. Kilo metres.	Austrian Sq. Miles.	Prussian Sq. Miles.	German Sq. Miles. $15=1^{\circ} \mathrm{Eq}$.	Nautical square Leacues. $20=1^{\circ} \mathrm{Eq}$.	French Square Leagues. $25=1^{\circ} \mathrm{Eq}$.	Geograph'l or Nautical Sq. Miles. $60=1^{\circ} \mathrm{E}_{4}$.	Euglish Square Miles.	Russian Square Wersts.
61	1.06	1.08	1.11	1.97	3.08	17.72	23.55	53.60
62	1.08	1.09	1.13	2.00	3.13	18.02	23.94	54.48
63	1.09	1.11	1.14	2.03	3.18	18.31	24.33	55.36
64	1.11	1.13	1.16	2.07	3.23	18.60	24.71	56.24
65	1.13	1.15	1.18	2.10	3.28	18.89	25.10	57.12
66	1.15	1.16	1.20	2.13	3.33	19.18	25.48	58.00
67	1.16	1.18	1.22	2.16	3.38	19.47	25.87	58.87
68	1.18	1.20	1.23	2.20	3.43	19.76	26.26	59.75
69	1.20	1.22	1.25	2.83	3.48	20.05	26.64	60.63
70	1.22	1.23	1.27	2.26	3.53	20.34	27.03	61.51
71	1.23	1.25	1.29	2.29	3.58	20.63	27.41	62.39
72	1.25	1.27	1.31	2.32	3.63	20.92	27.80	63.27
73	1.27	1.29	1.33	2.36	3.68	21.21	28.19	64.15
74	1.29	1.30	1.34	2.39	3.73	21.50	28.57	65.03
75	1.30	1.32	1.36	2.42	3.78	21.79	28.96	65.90
76	1.32	1.34	1.38	2.45	3.83	22.08	29.34	66.78
77	1.34	1.36	1.40	2.49	3.88	22.37	29.73	67.66
78	1.36	1.37	1.42	2.52	3.93	22.66	30.12	68.54
79	1.37	1.39	1.43	2.55	3.99	22.96	30.50	69.42
80	1.39	1.41	1.45	2.58	4.04	23.25	30.89	70.30
81	1.41	1.43	1.47	2.62	4.09	23.54	31.28	71.18
82	1.42	1.45	1.49	2.65	4.14	23.53	31.66	72.05
83	1.44	1.46	1.51	2.68	4.19	24.12	32.05	72.93
84	1.46	1.48	1.53	2.71	4.24	24.41	32.43	73.81
85	1.48	1.50	1.54	2.74	4.29	24.70	32.82	74.69
86	1.49	1.52	1.56	2.78	4.34	24.99	33.21	75.57
87	1.51	1.53	1.58	2.81	4.39	25.28	33.59	76.45
88	1.53	1.55	1.60	2.84	4.44	25.57	33.98	77.33
89	1.55	1.57	1.62	2.87	4.49	25.86	34.36	78.21
90	1.56	1.59	1.63	2.91	4.54	26.15	34.75	79.08
91	1.58	1.60	1.65	2.94	4.59	26.44	35.14	79.96
92	1.60	1.62	1.67	2.97	4.64	26.73	35.52	80.84
93	1.61	1.64	1.69	3.00	4.69	27.02	35.91	81.72
94	1.63	1.66	1.71	3.03	4.74	27.31	36.29	82.60
95	1.65	1.67	1.73	3.07	4.79	27.60	36.68	83.48
96	1.67	1.69	1.74	3.10	4.84	27.90	37.07	84.36
97	1.69	1.71	1.76	3.13	4.89	28.19	37.45	85.24
98	1.70	1.73	1.78	3.16	4.94	28.48	37.84	86.11
99	1.72	1.74	1.80	3.20	4.99	28.77	38.23	86.99
100	1.74	1.76	1.82	3.23	5.04	29.06	38.61	88.87

II. austrian square miles into different geographical square measures.

Anstrian Sq. Miles.	Sq. Kilometres.	$\begin{aligned} & \text { Prussian } \\ & \text { Sq. Miles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { si. Miles. } \\ 15=10 \text { EiI. } \end{gathered}$	$\begin{aligned} & \text { Nautical } \\ & \text { Square } \\ & \text { Leagues. } \\ & 20=10 \mathrm{Eq} . \end{aligned}$	French Square Leagnes. $2.5=1^{\circ} \mathrm{Eq}$.	Geograph'l or Natutical Sq. Miles. $60=1^{\circ} \mathrm{Eq}$.	Eoglish square Miles.	Russian square Wersts.
1,000	57546.44	1014.243	1045.104	1857.962	2903.066	16721.66	22219.61	50567.11
2,000	115092.9	2028.486	2090.207	3715.924	5806.131	33443.31	44439.22	101134.2
3,000	172639.3	3142.729	3135.311	5573.886	8709.197	50164.97	66658.83	151701.3
4,000	230185.8	$4056.97 \because$	4180.414	7431.848	11612.26	66886.63	88878.44	202268.5
5,000	287732.2	5071.216	5225.518	9289.810	14515.33	83608.29	111098.0	252835.6
6,000	345278.7	6085.459	6270.622	11147.77	17418.39	100329.9	133317.7	303402.7
7,000	402825.1	7099.702	7315.725	13005.73	20321.46	117051.6	155537.3	353969.8
8,000	460371.5	8113.945	8360.829	14563.70	23224.52	133773.3	177756.9	404536.9
9,000	517918.0	9128.188	9405.932	16721.66	26127.59	150494.9	199976.5	455104.0
10,000	575464.4	10142.43	10451.04	18579.62	29030.66	167216.6	222196.1	505671.1
100	5754.64	101.42	104.51	185.80	290.31	1672.17	2221.96	5056.72
200	11509.29	202.85	209.02	371.59	580.61	3344.33	4443.92	10113.42
300	17263.93	304.27	313.53	557.39	870.92	5016.50	6665.88	15170.13
400	23018.58	405.70	418.04	743.18	1161.23	6688.66	8887.84	20226.85
500	28773.22	507.12	522.55	928.98	1451.53	8360.83	11109.80	25283.56
600	34527.87	608.55	627.06	1114.78	1741.84	10032.99	13331.77	30340.27
700	40282.51	709.97	731.57	1300.57	2032.15	11705.16	15553.73	35396.98
800	46037.15	811.39	836.08	1486.37	2322.45	13377.33	17775.69	40453.69
900	51791.24	912.82	940.59	1672.17	2612.76	15049.49	19997.65	45510.40
1000	57546.44	1014.24	1045.10	1857.96	2903.07	16721.66	22219.61	50567.11
1	57.55	1.01	1.05	1.86	2.90	16.72	22.22	50.57
2	115.09	2.03	2.09	3.72	5.81	33.44	$44.4{ }^{4}$	101.13
3	172.64	3.04	3.14	5.57	8.71	50.16	66.66	151.70
4	230.19	4.06	4.18	7.43	11.61	66.89	88.88	202.27
5	287.73	5.07	5.23	9.29	14.52	83.61	111.10	252.84
6	345.28	6.09	6.27	11.15	17.42	100.33	133.32	303.40
7	402.83	7.10	7.32	13.01	20.32	117.05	155.54	353.97
8	460.37	8.11	8.36	14.86	23.22	133.77	177.76	404.54
9	517.92	9.13	9.41	16.72	26.13	150.49	199.98	455.10
10	575.46	10.14	10.45	18.58	29.03	167.22	222.20	505.67
11	633.01	11.16	11.50	20.44	31.93	183.94	244.42	556.24
12	690.56	12.17	12.54	22.30	34.84	200.66	266.64	606.81
13	748.10	13.19	13.59	24.15	37.74	217.38	288.85	657.37
14	805.65	14.20	14.63	26.01	40.64	234.10	311.07	707.94
15	863.20	15.21	15.68	27.87	43.55	250.8	333.29	758.51
16	920.74	16.23	16.72	29.73	46.45	267.55	355.51	809.07
17	978.29	17.24	17.77	31.59	49.35	284.27	377.7:	859.64
18	1035.83	18.26	18.81	33.44	52.26	300.99	399.95	910.21
19	1093.38	19.27	19.86	35.30	55.16	317.71	422.17	960.78
20	1150.93	20.28	20.90	37.16	58.06	334.45	444.38	1011.34

541
AUSTRIAN SQUARE MILES INTO DIFFERENT GEOGRAPHICAL SQUARE MEASURES.

Austrian Sq. Miles.	Sq. Kilometres.	Prussian Sq. Miles.	German $15=10 \mathrm{Eq} .$	Nautical Square Leagues. $20=1^{\circ} \mathrm{Eq}$.	French Square Leagues. $25=1^{\circ} \mathrm{E}_{1}$.	Geograph'l or Nautical sq. Miles. $60=1^{\circ} \mathrm{E}_{4}$.	English Square Miles.	Russian Square Wersts.
21	1208.48	21.30	21.95	39.02	60.96	351.15	466.61	1061.91
22	1266.02	22.31	22.99	40.88	63.87	367.88	488.83	1112.48
23	1323.57	23.33	24.04	42.73	66.77	384.60	511.05	1163.04
24	1381.11	24.34	25.08	44.59	69.67	401.32	533.27	1213.61
35	1438.66	25.36	26.13	46.45	72.58	418.04	555.49	1264.18
26	1496.21	26.37	27.17	48.31	75.48	434.76	577.71	1314.74
27	1553.75	27.38	28.22	50.16	78.38	451.48	599.93	1365.31
28	1611.30	28.40	29.26	52.02	81.29	468.21	622.15	1415.88
29	1668.85	29.41	30.31	53.88	84.19	484.93	644.37	1466.45
30	1726.39	30.43	31.35	55.74	87.09	501.65	666.59	1517.01
31	1783.94	31.44	32.40	57.60	90.00	518.37	688.81	1567.58
32	1841.49	32.46	33.44	59.45	92.90	535.09	711.03	1618.15
33	1899.03	33.47	34.49	61.31	95.80	551.81	733.25	1668.71
34	1956.58	34.48	35.53	63.17	98.70	568.54	755.47	1719.28
35	2014.13	35.50	36.58	65.03	101.61	585.26	777.69	1769.85
36	2071.67	36.51	37.62	66.89	104.51	601.98	799.91	1820.42
37	2129.22	37.53	38.67	68.74	107.41	618.70	822.13	1870.98
38	2186.76	38.54	39.71	70.60	110.32	635.42	84.35	1921.55
39	2244.31	39.56	40.76	72.46	113.22	652.14	866.56	1972.12
40	2301.86	40.57	41.80	74.32	116.12	668.87	888.78	2022.68
41	2359.40	41.58	42.85	76.18	119.03	685.59	911.00	2073.25
42	2416.95	42.60	43.89	78.03	121.93	702.31	933.22	2123.82
43	2474.50	43.61	44.94	79.89	124.83	719.03	955.44	2174.39
44	2532.04	44.63	45.98	81.75	127.73	735.75	977.66	2224.95
45	2589.59	45.64	47.03	83.61	130.64	752.47	999.88	2275.52
46	26.47 .14	46.66	48.07	85.47	133.54	769.20	1022.10	2326.09
47	2704.68	47.67	49.12	87.32	136.44	785.92	1044.32	2376.65
48	2762.23	48.68	50.16	89.18	139.35	802.64	1066.54	2427.22
49	2819.78	49.70	51.21	91.04	142.25	819.36	1088.76	2477.79
50	2877.32	50.71	52.25	92.90	145.15	836.08	1110.98	2528.36
51	2934.87	51.73	53.30	94.76	148.06	852.80	1133.20	2578.92
52	2992.42	52.74	54.34	96.61	150.96	869.53	1155.42	2629.49
53	3049.96	53.75	55.39	98.47	153.86	886.25	1177.64	2680.06
54	3107.51	54.77	56.44	100.33	156.77	902.97	1199.86	2730.62
55	3165.05	55.78	57.48	102.19	159.67	919.69	1222.08	2781.19
56	3222.60	56.80	58.53	104.05	162.57	936.41	1244.30	2831.76
57	3280.15	57.81	59.57	105.90	165.47	953.13	1266.52	2882.33
58	3337.69	58.83	60.62	107.76	168.38	969.86	1288.74	2932.89
59	3395.24	59.84	61.66	109.62	171.28	986.58	1310.96	$\underline{9} 983.46$
60	3452.79	60.85	62.71	111.48	174.18	1003.30	1333.18	3034.03

E

AUSTRIAN SQUARE MLLES INTO DIFFERENT GEOGRAPHICAL SQUARE MEASURES.

Austrian Sq. Miles.	Sq. Kilometres.	Prussian Sq. Miles.	$\begin{aligned} & \text { German } \\ & \mathrm{Sq} . \text { Miles. } \\ & 15=1^{\circ} \mathrm{Eq} . \end{aligned}$	Nautical Square Leagues. $20=1^{\circ} \mathrm{Eq}$	French Square Leagues. $25=1^{\circ} \mathrm{Eq}$.	Geograph'l or Nautical Sq. Miles. $60=1^{\circ} \mathrm{Eq}$	English Square Miles.	Russian Square Wersts.
61	3510.33	61.87	63.75	113.34	177.09	1020.02	1355.40	3084.59
62	3567.88	62.88	64.80	115.19	180.00	1036.74	1377.62	3135.16
63	3625.43	63.90	65.84	117.05	182.89	1053.46	1399.84	3185.73
64	3682.97	64.91	66.89	118.91	185.80	1070.19	1422.05	3236.30
65	3740.52	65.93	67.93	120.77	188.70	1086.91	1444.27	3286.86
66	3798.07	66.94	68.98	122.63	191.60	1103.63	1466.49	3337.43
67	3855.61	67.95	70.02	124.48	194.51	1120.35	1488.71	3388.00
68	3913.16	68.97	71.07	126.34	197.41	1137.07	1510.93	3438.56
69	3970.70	69.98	72.11	128.20	200.31	1153.79	1533.15	3489.13
70	4028.25	71.00	73.16	130.06	203.21	1170.52	1555.37	3539.70
71	4085.80	72.01	74.20	131.91	206.12	1187.24	1577.59	3590.27
72	4143.34	73.03	75.25	133.77	209.02	1203.96	1599.81	3640.83
73	4200.89	74.04	76.29	135.63	211.92	1220.68	1622.03	3691.40
74	4258.44	75.05	77.34	137.49	214.83	1237.40	1644.25	3741.97
75	4315.98	76.07	78.38	139.35	217.73	1254.12	1666.47	3792.53
76	4373.53	77.08	79.43	141.20	220.63	1270.85	1688.69	3843.10
77	4431.08	78.10	80.47	143.06	223.54	1287.57	1710.91	3593.67
78	4488.62	79.11	81.52	144.92	226.44	1304.29	1733.13	3944.23
79	4546.17	80.13	82.56	146.78	229.34	1321.01	1755.35	3994.80
80	4603.72	81.14	83.61	148.64	232.25	1337.73	1777.57	4045.37
81	4661.26	82.15	84.65	150.49	235.15	1354.45	1799.79	4095.94
82	4718.81	83.17	85.70	152.35	238.05	1371.18	1822.01	4146.50
83	4776.35	84.18	86.74	154.21	240.95	1387.90	1844.23	4197.07
84	4833.90	85.20	87.79	156.07	243.86	1404.62	1866.45	4247.64
85	4891.45	86.21	S8.83	157.93	246.76	1421.34	1888.67	4298.20
86	4948.99	87.22	89.88	159.78	249.66	1438.06	1910.89	4348.77
87	5006.54	88.24	90.92	161.64	252.57	1454.78	1933.11	4399.34
88	5064.09	89.25	91.97	163.50	255.47	1471.51	1955.33	4449.91
59	5121.64	90.27	93.01	165.36	258.37	1488.23	1977.55	4500.47
90	5179.18	91.28	94.06	167.22	261.28	1504.95	1999.76	4551.04
91	5236.73	92.30	95.10	169.07	264.18	1521.67	2021.98	4601.61
92	5294.27	93.31	96.15	170.93	267.08	1538.39	2044.20	4652.17
93	5351.82	94.32	97.19	172.79	269.99	1555.11	2066.42	4702.74
94	5409.37	95.34	98.24	174.65	272.89	1571.84	2088.64	4753.31
95	5466.91	96.35	99.28	176.51	275.79	1588.56	2110.86	4803.88
96	5524.46	97.37	100.33	178.36	278.69	1605.2 S	2133.08	4854.44
97	5582.00	98.38	101.38	180.22	281.60	1622.00	2155.30	4905.01
98	5639.55	89.40	102.42	182.09	284.50	1638.72	2177.52	4955.58
99	5697.10	100.41	103.47	183.94	287.40	1655.44	2199.74	5006.14
100	5754.64	101.42	104.51	185.80	290.31	1672.17	2221.96	5056.72

543
III. prussian square miles into different geographical square measures.

Prussian Sq. Miles.	Sq. Kilometres.	$\begin{aligned} & \text { Austrian } \\ & \text { Sq. Miles. } \end{aligned}$	$\begin{aligned} & \text { German } \\ & \text { Sq. Miles. } \\ & 1 \delta=1^{\circ} \mathrm{Eq} . \end{aligned}$	Nautical Square Learues $20=1^{\circ} \mathrm{Eq}$.	$\begin{gathered} \text { French } \\ \text { Square } \\ \text { Learues. } \\ 25=1^{\circ} \text { Eq. } \end{gathered}$	Geograph'l or Nautical Sq. Miles. $60=1^{\circ} \mathrm{E}_{1}$	English Square miles.	Russian Square Wersts.
1,000	56738.31	985.957	1030.427	1831.870	2862.297	16486.33	21907.58	49857.01
2,000	113476.6	1971.914	2060.854	3663.741	5724.595	32973.66	43815.16	99714.19
3,000	170214.9	2957.871	3091.281	5495.611	8586.892	49460.50	65722.73	149571.3
4,000	226953.3	3943.828	4121.709	7327.482	11449.19	65947.34	87630.31	199428.4
5,000	283691.6	4929.785	5152.136	9159.353	14311.49	82434.17	109537.9	249285.5
6,000	340429.9	5915.742	6182.563	10991.22	17173.78	98921.00	131445.5	299142.6
7,000	397168.2	6901.698	7212.990	12823.09	20036.08	115407.8	153353.0	348999.7
8,000	453906.5	7887.655	8243.417	14654.96	22898.38	131894.7	175260.6	398856.8
9,000	510644.8	8873.612	9273.844	16486.83	25760.68	148381.5	197168.2	448713.9
10,000	567383.1	9859.569	10304.271	18318.70	28622.97	164868.3	219075.8	498571.0
100	5673.83	98.60	103.04	183.19	286.23	1648.68	2190.76	4985.70
200	11347.66	197.19	206.09	366.37	572.46	3297.37	4381.52	9971.42
300	17021.49	295.79	309.13	549.56	858.69	4946.05	6573.27	14957.1:
400	22695.33	394.38	412.17	732.75	1144.92	6594.73	8763.03	19942.84
500	28369.16	492.98	515.21	915.94	1431.15	8243.41	10953.79	24928.55
600	34042.99	591.57	618.26	1099.12	1717.38	9892.10	13144.55	29914.26
700	39716.82	690.17	721.30	1282.31	2003.61	11540.78	15335.30	34899.97
800	45390.65	788.77	824.34	1465.50	2289.84	13189.47	17526.06	39885.6
900	51064.48	887.36	927.38	1648.68	2576.07	14838.15	19716.82	44871.39
1000	56738.31	985.96	1030.43	1831.87	2862.30	16486.83	21907.58	49857.01
1	56.74	0.99	1.03	1.83	2.86	16.49	21.91	49.86
2	113.48	1.97	2.06	3.66	5.72	32.97	43.82	99.71
3	170.21	2.96	3.09	5.50	8.59	49.46	65.72	149.57
4	226.95	3.94	4.12	7.33	11.45	65.95	87.63	199.48
5	283.69	4.93	5.15	9.16	14.31	82.43	109.54	249.28
6	340.43	5.92	6.18	10.99	17.17	98.92	131.45	299.14
7	397.17	6.90	7.21	12.82	20.04	115.41	153.35	349.00
8	453.91	7.89	8.24	14.65	22.90	131.89	175.26	398.86
9	510.64	8.87	9.27	16.49	25.76	148.38	197.17	448.71
10	567.38	9.86	10.30	18.32	28.62	164.87	219.08	498.57
11	624.12	10.85	11.33	20.15	31.49	181.36	240.98	548.43
12	680.86	11.83	12.37	21.98	34.35	197.84	262.89	598.29
13	737.60	12.82	13.40	23.81	37.21	214.33	284.80	648.14
14	794.34	13.80	14.43	25.65	40.07	231.82	306.71	698.00
15	851.07	14.79	15.46	27.48	42.93	247.30	328.61	747.86
16	907.81	15.78	16.49	29.31	45.80	263.79	350.52	797.71
17	964.55	16.76	17.52	31.14	48.66	280.28	372.43	847.57
18	1021.29	17.75	18.55	32.97	51.52	296.76	394.34	897.43
19	1078.03	18.73	19.58	34.81	54.38	313.25	416.24	947.28
20	1134.77	19.72	20.61	36.64	57.25	329.74	438.15	997.14

544
PrUSSIAN SQUARE MILES INTO DIFFERENT GEOGRAPHICAL SQUARE MEASURES.

Prussian Sq. Miles.	Sq. Kilo. metres.	Austrian Sq. Miles.	$\begin{aligned} & \text { German } \\ & \text { Sq. Milies. } \\ & 15=1^{\circ} \text { Eq. } \end{aligned}$	$\begin{gathered} \text { Nautical } \\ \text { square } \\ \text { Lerayues. } \\ 20=1^{\circ} \mathrm{Eq} . \end{gathered}$	French Square Leagues. $25=1^{\circ} \mathrm{E} 4$.	Geograph'l or Nautical sq. Miles. $60=1^{\circ}$ Eq.	English square Miles.	Russian Square Wersts.
21	1191.50	20.71	21.64	38.47	60.11	346.22	460.06	1047.00
22	1248.24	21.69	22.67	40.30	62.97	362.71	481.97	1096.86
23	1304.98	22.68	23.70	42.13	65.83	379.20	503.87	1146.71
24	1361.72	23.66	24.73	43.96	68.70	395.68	525.78	1196.57
25	1418.46	24.65	25.76	45.80	71.56	412.17	547.69	1246.43
26	1475.20	25.63	26.79	47.63	74.42	428.66	569.60	1296.28
27	1531.93	26.62	27.82	49.46	77.28	445.14	591.50	1346.14
28	1588.67	27.61	28.85	51.29	80.14	461.63	613.41	1396.00
29	1645.41	28.59	29.88	53.12	83.01	478.12	635.32	1445.85
30	1702.15	29.58	30.91	54.96	85.87	494.61	657.23	1495.71
31	1758.89	30.56	31.94	56.79	88.73	511.09	679.13	1545.57
32	1815.63	31.55	32.97	58.62	91.59	527.58	701.04	1595.43
33	1872.36	32.54	34.00	60.45	94.46	544.07	722.95	1645.28
34	1929.10	33.52	35.03	62.28	97.32	560.55	74.86	1695.14
35	1985.84	34.51	36.06	64.12	100.18	577.04	766.77	1745.00
36	2042.58	35.49	37.10	65.95	103.04	593.53	788.67	1794.85
37	2099.32	36.48	38.13	67.78	105.91	610.01	810.58	1844.71
38	2156.06	37.47	39.16	69.61	108.77	626.50	832.49	1894.57
39	2212.79	38.45	40.19	71.44	111.63	642.99	854.40	1944.42
40	2269.53	39.44	41.22	73.27	114.49	659.47	876.30	1994.28
41	2326.27	40.42	42.25	75.11	117.35	675.96	898.21	20.44 .14
42	2383.01	41.41	43.28	76.94	120.22	692.45	920.12	2094.00
43	2439.75	42.40	44.31	78.77	123.08	708.93	942.03	2143.85
44	2496.49	43.38	45.34	80.60	125.94	725.42	963.93	2193.71
45	2553.22	44.37	46.37	82.43	128.80	741.91	985.84	2243.57
46	2609.96	45.35	47.40	84.27	131.67	758.39	1007.75	2293.42
47	2666.70	46.34	48.43	86.10	134.53	774.88	1029.66	2343.28
48	2723.44	47.33	49.46	87.93	137.39	791.37	1051.56	2393.14
49	2780.18	48.31	50.49	89.76	140.25	807.85	1073.47	2443.00
50	2836.92	49.30	51.52	91.59	143.11	824.34	1095.38	2492.85
51	2893.65	50.28	52.55	93.43	145.98	840.83	1117.29	2542.71
52	2950.39	51.27	53.58	95.26	148.84	857.32	1139.19	2592.57
53	3007.13	52.26	54.61	97.09	151.70	873.80	1161.10	2642.42
54	3163.87	53.24	55.64	98.92	154.56	890.29	1183.01	2692.28
55	3120.61	54.23	56.67	100.75	157.43	906.78	1204.92	2742.14
56	3177.35	55.21	57.70	102.58	160.29	923.26	1226.82	2791.99
57	3234.0S	56.20	58.73	104.42	163.15	939.75	1248.73	2841.85
58	3290.82	57.19	59.76	106.25	166.01	956.24	1270.64	2891.71
59	3347.56	58.17	60.80	108.08	168.88	972.72	1292.55	2941.56
60	3404.30	59.16	61.83	109.91	171.74	989.21	1314.45	2991.42

prussian square miles into different geograplical square measures.

Prussian Sq. Miles.	Sq. Kilo- metres.	Austrian Sq. Miles.	German Su. Miles. $15=1^{\circ} \mathrm{Eq}$.	Nautical Square Lengues. $20=1^{\circ} \mathrm{E} 4$	French square Leagues. $2 \overline{0}=1^{\circ} \mathrm{Eq}$.	Geograph'1 or Nauticai sq. Miles. $60=1^{\circ}$ Eq.	English square Miles.	Russian square Wersts.
61	3461.04	60.14	62.86	111.74	174.60	1005.70	1336.36	3041.28
62	3517.78	61.13	63.89	113.58	177.46	1022.18	1358.27	3091.13
63	3574.51	62.12	64.92	115.41	180.32	1035.67	1380.18	3140.99
64	3631.25	63.10	65.95	117.24	183.19	1055.16	1402.08	3190.85
65	3687.99	64.09	66.98	119.07	186.05	1071.64	1423.99	3240.71
66	3744.73	65.07	68.01	120.90	188.91	1088.13	1445.90	3290.56
67	3801.47	66.06	69.04	122.74	191.77	1104.62	1467.81	3340.42
68	$3858.21{ }^{\circ}$	67.05	70.07	124.57	194.64	1121.10	1489.72	3390.28
69	3914.94	68.03	71.10	126.40	197.50	1137.59	1511.62	3440.13
70	3971.68	69.02	72.13	128.23	200.36	1154.08	1533.53	3489.99
71	4028.42	70.00	73.16	130.06	203.22	1170.57	1555.44	3539.85
72	4085.16	70.99	74.19	131.89	206.09	1187.05	1577.35	3589.71
73	4141.90	71.97	75.22	133.73	208.95	1203.54	1599.25	3639.56
74	4195.64	72.96	76.25	135.56	211.81	1220.03	1621.16	3689.42
75	4255.37	73.95	77.28	137.39	214.67	1236.51	1643.07	3739.28
76	4312.11	74.93	78.31	139.22	217.53	1253.00	1664.98	3789.13
77	4368.85	75.92	79.34	141.05	220.40	1269.49	1686.58	3838.99
78	4425.59	76.90	80.37	142.89	223.26	1285.97	1708.79	3888.85
79	4482.33	77.89	81.40	14.72	226.12	1302.46	1730.80	3938.70
S0	4539.07	78.88	82.43	146.55	228.98	1318.95	1752.61	3988.56
81	4595.80	79.86	83.46	148.38	231.85	1335.43	1774.51	4038.42
82	4652.54	80.85	84.50	150.21	234.71	1351.92	1796.42	4088.28
83	4709.28	81.83	85.53	152.05	237.57	1368.41	1818.33	4138.13
84	4766.02	82.82	86.56	153.88	240.43	1384.89	1840.24	4187.99
85.	4822.76	83.81	87.59	155.71	243.30	1401.38	1862.14	4237.85
86	4879.49	84.79	88.62	157.54	246.16	1417.87	1884.05	4287.70
87	4936.23	55.78	89.65	159.37	249.02	1434.35	1905.96	4337.56
88	4992.97	86.76	90.68	161.20	251.88	1450.84	1927.87	4357.42
89	5049.71	87.75	91.71	163.04	254.74	1467.33	1949.77	4437.27
90	5106.45	88.74	92.74	164.87	257.61	1483.81	1971.68	4487.13
91	5163.19	89.72	93.77	166.70	260.47	1500.30	1993.59	4536.99
92	5219.92	90.71	94.80	168.53	263.33	1516.79	2015.50	4586.85
93	5276.66	91.69	95.83	170.36	266.19	153:3.28	2037.40	4636.70
94	5333.40	92.68	96.86	172.20	269.06	1549.76	2059.31	4686.56
95	5390.14	93.67	97.89	174.03	271.92	1566.25	2081.22	4736.42
96	5446.88	94.65	98.92	175.86	274.78	1582.74	2103.13	4786.27
97	5503.62	95.64	99.95	177.69	277.64	1599.22	2125.04	4836.13
98	5560.35	96.62	100.98	179.52	280.51	1615.71	2146.94	4885.99
99	5617.09	97.61	102.01	181.36	283.37	1632.20	2168.85	4935.84
100	5673.83	98.60	103.04	183.19	286.23	1648.68	2190.76	4985.71

546
IV. german square miles into different geographical square measures.

$\begin{gathered} \text { German } \\ \text { sq. Miles. } \\ 10=1^{\circ} \mathrm{Eq} . \end{gathered}$	Sq. Kilometres.	Austrian Sq. Miles.	Prussian Sq. Miles.	Nantical Square Leagues. $20=1^{\circ} \mathrm{Eq}$.	French Square Leagues. $25=1^{\circ} \mathrm{Eq}$.	Geograph'l or Nautical sq. Miles. $60=1^{\circ} \mathrm{E} 4$.	English square Miles.	Russian Square Wersts.
1,000	55062.91	956.8429	970.4713	1777.778	2777.778	16000.00	21260.68	48384.79
2,000	110125.8	1913.686	1940.943	3555.556	5555.556	32000.00	42521.35	96769.57
3,000	165188.7	2870.529	2911.414	5333.333	8333.333	48000.00	63782.03	145154.4
4,000	220251.6	3827.372	3881.885	7111.111	11111.111	64000.00	85042.71	193539.1
5,000	275314.5	4784.215	4852.357	8888.889	13888.89	80000.00	106303.4	241923.9
6,000	330377.4	5741.058	5822.828	10666.67	16666.67	96000.00	127564.1	290308.7
7,000	385440.4	6697.901	6793.299	12444.44	19444.44	112000.0	148824.7	338693.5
8,000	440503.3	7654.744	7763.771	14222.22	22222.22	128000.0	170085.4	387078.3
9,000	495566.2	8611.586	8734.242	16000.00	25000.00	144000.0	191346.1	435463.1
10,000	550629.1	9568.429	9704.713	17777.78	27777.78	160000.0	212606.8	483847.9
100	5506.29	95.68	97.05	177.78	277.78	1600.00	2126.07	4838.48
200	11012.55	191.37	194.09	355.56	555.56	3200.00	4252.14	9676.96
300	16518.87	287.06	291.14	533.33	833.33	4800.00	6378.20	14515.44
400	22025.16	382.74	388.19	711.11	1111.11	640000	8504.27	19353.91
500	27531.45	478.42	485.24	888.89	1388.89	8000.00	10630.34	24192.39
600	33037.74	574.11	582.28	1066.67	1666.67	9600.00	12756.41	29030.87
700	38544.04	669.79	679.33	1244.44	1944.44	11200.00	14882.47	33869.35
800	44050.33	765.47	776.38	1422.22	2292.22	12800.00	17008.54	38707.83
900	49556.62	S61.16	873.42	1600.00	2500.00	14400.00	19134.61	43546.31
1000	55062.91	956.84	970.47	1777.78	2777.78	16000.00	21260.68	48384.79
1	55.06	0.96	0.97	1.78	2.78	16.00	21.26	48.38
2	110.13	1.91	1.94	3.56	5.56	32.00	42.52	96.77
3	165.19	2.87	2.91	5.33	8.33	48.00	63.78	145.15
4	220.25	3.83	3.88	7.11	11.11	64.00	85.04	193.54
5	275.31	4.78	4.85	8.89	13.89	80.00	106.30	241.92
6	330.38	5.74	5.82	10.67	16.67	96.00	127.56	290.31
7	385.44	6.70	6.79	12.44	19.44	112.00	148.82	338.69
8	440.50	7.65	7.76	14.22	22.22	128.00	170.09	387.08
9	495.57	8.61	8.73	16.00	25.00	144.00	191.35	435.46
10	550.63	9.57	9.70	17.78	27.78	160.00	212.61	483.85
11	605.69	10.53	10.68	19.56	30.56	176.00	233.87	532.23
12	660.75	11.48	11.65	21.33	33.33	192.00	255.13	580.62
13	715.82	12.44	12.62	23.11	36.11	208.00	276.39	629.00
14	770.88	13.40	13.59	24.89	38.89	224.00	297.65	677.39
15	825.94	14.35	14.56	26.67	41.67	240.00	318.91	725.77
16	881.01	15.31	15.52	28.44	44.44	256.00	340.17	774.16
17	936.07	16.27	16.50	30.22	47.22	272.00	361.43	822.54
18	991.13	17.22	17.47	32.00	50.00	288.00	382.69	870.93
19	1046.20	18.18	18.44	33.78	52.78	304.00	403.95	919.31
20	1101.26	19.14	19.41	35.56	55.56	320.00	425.21	967.70

547
GERMAN SQUARE MILES INTO DIFFERENT GEOGRAPHICAL SQUARE MEASURES.

$\begin{aligned} & \text { German } \\ & \text { Sq. Miles. } \\ & 10=1^{\circ} \text { Eq. } \end{aligned}$	Sq. Kilometres.	Austrian sq. Miles.	Prussian Sq Miles.	$\begin{aligned} & \text { Nautical } \\ & \text { fquare } \\ & \text { Leagues. } \\ & 20=10 \mathrm{Eq} . \end{aligned}$	French Square Leagues. $25=1^{\circ} \mathrm{Eq}$.	Geograph'l or Nautical -q Miles. $60=1^{\circ} \mathrm{E} 4$.	English Equare Miles.	Russian Square Wersts.
21	1156.32	20.09	20.38	37.33	58.33	336.00	446.47	1016.08
22	1211.38	21.05	21.35	39.11	61.11	352.00	467.73	1064.47
23	1266.45	22.01	22.32	40.89	63.89	368.00	489.00	1112.85
24	1321.51	22.96	23.29	42.67	66.67	384.00	510.26	1161.23
25	1376.57	23.92	24.26	44.44	69.44	400.00	531.52	1209.62
26	1431.64	24.88	25.23	46.22	72.22	416.00	552.78	1258.00
27	1485.70	25.83	26.20	48.00	75.00	432.00	574.04	1306.39
28	1541.76	26.79	27.17	49.78	77.78	448.00	595.30	1354.77
29	1596.82	27.75	28.14	51.56	80.56	464.00	616.56	1403.16
30	1651.89	28.71	29.11	53.33	83.33	480.00	637.82	1451.54
31	1706.95	29.66	30.08	55.11	86.11	496.00	659.08	1499.93
32	1762.01	30.62	31.06	56.89	88.89	512.00	680.34	1548.31
33	1817.08	31.58	32.03	38.67	91.67	528.00	701.60	1596.70
34	1872.14	32.53	33.00	60.44	94.44	544.00	722.86	1645.08
35	1927.20	33.49	34.00	62.22	97.22	560.00	744.12	1693.47
36	1982.26	34.45	34.94	64.00	100.00	576.00	765.38	1741.85
37	2037.33	35.40	35.91	65.78	102.78	592.00	786.65	1790.24
38	2092.39	36.36	36.88	67.56	105.56	608.00	807.91	1838.62
39	2147.45	37.32	37.85	69.33	108.33	624.00	829.17	1857.01
40	2202.52	38.27	38.82	71.11	111.11	640.00	850.43	1935.39
41	2257.58	39.23	39.79	72.59	113.89	656.00	871.69	1983.78
42	2312.64	40.19	40.76	74.67	116.67	672.00	892.95	2032.16
43	2367.70	41.14	41.73	76.44	119.44	688.00	914.21	2080.55
44	2422.76	42.10	42.70	78.22	122.22	704.00	935.47	2128.93
45	2477.83	43.06	43.67	80.00	125.00	720.00	956.73	2177.32
46	2532.89	44.01	44.64	81.78	127.78	736.00	977.99	2225.70
47	2587.96	44.97	45.61	83.56	130.56	752.00	999.25	2274.09
48	2642.02	45.93	46.58	85.33	133.33	768.00	1020.51	2322.47
49	2698.08	46.89	47.55	87.11	136.11	784.00	1041.77	2370.85
50	2753.14	47.84	48.52	88.89	138.89	800.00	1063.03	24.19 .24
51	2808.21	48.80	49.49	90.67	141.67	816.00	1084.29	2467.62
52	2863.27	49.76	50.46	92.44	144.44	832.00	1105.56	2516.01
53	2918.33	50.71	51.43	94.22	147.22	848.00	1126.82	2564.39
54	2973.40	51.67	52.41	96.00	150.00	864.00	1148.08	2612.78
55	3029.46	52.63	53.36	97.78	152.78	880.00	1169.34	2661.16
56	3083.52	53.58	54.35	99.56	155.56	896.00	1190.60	2709.55
57	3138.59	54.54	55.32	101.33	158.33	912.00	1211.86	2757.93
58	3193.65	55.50	56.29	103.11	161.11	928.00	1233.12	2806.32
59	3248.71	56.45	57.26	104.89	164.89	944.00	1254.38	2854.70
60	3303.77	57.41	58.23	106.67	166.67	960.00	1275.64	2903.09

german square miles into different geographical square measures.

$\begin{gathered} \text { German } \\ \text { Sq. Miles. } \\ 15=1^{\circ} \mathrm{Eq} . \end{gathered}$	Sq. Kilometres.	$\begin{aligned} & \text { Austrian } \\ & \text { Sq. Miles. } \end{aligned}$	Prussian Sq. Miles.	Nautical square Leagues. $20=1^{\circ} \mathrm{Eq}$.	$\begin{gathered} \text { French } \\ \text { square } \\ \text { Leayues. } \\ 25=1^{\circ} \text { Eq. } \end{gathered}$	Geograph'l or Nautical Eq Miles. $60=1^{\circ}$ Eq.	English Square Miles.	Russian square Wersts.
61	3358.84	58.37	59.20	108.44	169.44	976.00	1296.90	2951.47
62	3413.90	59.32	60.17	110.22	172.22	992.00	1318.16	2999.86
63	3468.96	60.28	61.14	112.00	175.00	1008.00	1339.42	3048.24
64	3524.03	61.24	62.11	113.78	177.78	1024.00	1360.68	3096.63
65	3579.09	62.19	63.08	115.56	180.56	1040.00	1381.94	3145.01
66	3634.15	63.15	64.05	117.33	183.33	1056.00	1403.20	3193.40
67	3689.21	64.11	65.02	119.11	186.11	1072.00	1424.47	3241.78
68	3744.28	65.07	65.99	120.89	188.69	1088.00	1445.73	3290.17
69	3799.34	66.02	66.96	122.67	191.67	1104.00	1466.99	3338.55
70	3854.40	66.98	67.93	124.44	194.44	1120.00	1488.25	3386.94
71	3909.47	67.94	68.90	126.22	197.22	1136.00	1509.51	3435.32
72	3964.53	68.89	69.87	128.00	200.00	1152.00	1530.77	3483.71
73	4019.59	69.85	70.84	129.78	202.78	1168.00	1552.03	3532.09
74	4074.66	70.81	71.81	131.56	205.56	1184.00	1573.29	3580.47
75	4129.72	71.76	72.79	133.33	208.33	1200.00	1594.55	3628.86
76	4184.78	72.72	73.76	135.11	211.11	1216.00	1615.81	3677.24
77	4239.84	73.68	74.73	136.89	213.89	1232.00	1637.07	3725.63
78	4294.91	74.63	75.70	138.67	216.67	1248.00	1658.33	3774.01
79	4349.97	75.59	76.67	140.44	219.44	1264.00	1679.59	3822.40
80	4405.03	76.55	77.63	142.22	222.22	1280.00	1700.85	3870.78
81	4460.10	77.50	78.61	144.00	225.00	1296.00	1722.11	3919.17
82	4515.16	78.46	79.58	145.78	227.78	1312.00	1743.38	3967.55
83	4570.22	79.42	80.55	147.56	230.56	1328.00	1764.64	4015.94
84	4625.28	80.37	81.52	149.33	233.33	1344.00	1785.90	4064.32
85	4680.35	81.33	82.49	151.11	236.11	1360.00	1807.16	4112.71
86	4735.41	82.28	83.46	152.89	235.89	1376.00	1828.42	4161.09
87	4790.47	83.25	84.43	154.67	241.67	1392.00	1849.68	4209.48
88	4845.54	84.20	85.40	156.44	244.44	1408.00	1870.94	4257.86
89	4900.60	85.16	86.37	158.22	247.22	1424.00	1892.20	4306.25
90	4955.66	86.12	87.34 .	160.00	250.00	1440.00	1913.46	4354.63
91	5010.73	87.07	88.31	161.78	252.78	1456.00	1934.72	4403.02
92	5065.79	88.03	89.28	163.56	255.56	1472.00	1955.98	4451.40
93	5120.85	88.99	90.25	165.33	258.33	1488.00	1977.24	4499.79
94	5175.91	89.94	91.22	167.11	261.11	1504.00	1998.50	4548.17
95	5230.98	90.90	92.19	168.89	263.89	1520.00	2019.76	4596.56
96	5286.04	91.86	93.17	170.67	266.67	1536.00	2041.03	4644.94
97	5341.10	92.81	94.14	172.44	269.44	1552.00	2062.29	4693.32
98	5396.17	93.77	95.11	174.22	272.22	1568.00	2083.55	4741.71
99	5451.23	94.73	96.08	176.00	275.00	1584.00	2104.81	4790.09
100	5506.29	95.68	97.05	177.78	277.78	1600.00	2126.07	4838.48

Nautical Square Leagues. $20=1^{\circ}$ Eq.	Sq. Kilometres.	Austrian Sq. Miles.	Prussian Sq. Miles.	$\begin{aligned} & \text { German } \\ & \text { sq. Miles. } \\ & 1 s=1^{\circ} \text { Eq. } \end{aligned}$	French Square Leagues. $25=1^{\circ} \mathrm{Eq}$.	Geograph'l or Nautical aq Miles. $60=10 \mathrm{Eq}$.	English square Miles.	Russian Square Wersts.
1,000	30972.89	538.2242	545.8901	562.5000	1562.500	9000.000	11959.13	27216.44
2,000	61945.77	1076.448	1091.780	1125.000	3125.000	18000.00	23918.26	54432.87
3,000	92918.66	1614.672	1637.670	1687.500	4687.500	27000.00	35877.39	81649.31
4,000	123891.5	2152.897	2183.561	2250.000	6250.000	36000.00	47836.52	108865.7
5,000	154864.4	2691.121	2799.451	2812.500	7812.500	45000.00	59795.65	136082.2
6,000	185837.3	3239.345	3275.341	3375.000	9375.000	54000.00	71754.78	163298.6
7,000	216810.2	3767.569	3821.231	3937.500	10937.50	53000.00	83713.91	190515.1
8,000	247783.1	4305.793	4367.121	4500.000	12500.00	72000.00	95673.04	217731.5
9,000	278756.0	4844.017	4913.011	5062.500	14062.50	81000.00	107632.2	244947.9
10,000	30972S.9	5382.242	5458.901	5625.000	15625.00	90000.00	119591.3	272164.4
100	3097.29	53.82	54.59	56.25	156.25	900.00	1195.91	2721.64
200	6194.58	107.64	109.18	112.50	312.50	1800.00	2391.83	5443.29
300	9291.87	161.47	163.77	168.75	468.75	2700.00	3557.74	S164.93
400	12389.15	215.29	218.36	225.00	625.00	3600.00	4753.65	10886.57
500	15486.44	269.11	272.95	281.25	781.25	4500.00	5979.57	13608.22
600	18583.73	322.93	327.53	337.50	937.50	5400.00	7175.48	16329.86
700	21681.02	376.76	382.12	393.75	1093.75	6300.00	8371.39	19051.51
800	24778.31	430.58	436.71	450.00	1250.00	7200.00	9567.30	21773.15
900	27875.60	484.40	491.30	506.25	1406.25	8100.00	10763.22	24494.79
1000	30972.89	538.22	545.89	562.50	1562.50	9000.00	11959.13	27216.44
1	30.97	0.54	0.55	0.56	1.56	9.00	11.96	27.22
2	61.95	1.08	1.09	1.12	3.12	18.00	23.92	54.43
3	92.92	1.61	1.64	1.69	4.69	27.00	35.88	81.65
4	123.89	2.15	2.18	2.25	6.25	36.00	47.84	108.87
5	154.86	2.69	2.73	2.81	7.81	45.00	59.80	136.08
6	185.84	3.23	3.28	3.37	9.37	54.00	71.75	163.30
7	216.81	3.77	3.82	3.94	10.94	63.00	83.71	190.51
8	247.78	4.31	4.37	4.50	12.50	72.00	95.67	217.73
9	278.76	4.84	4.91	5.06	14.06	81.00	107.63	244.95
10	309.73	5.38	5.46	5.62	15.62	90.00	119.59	272.16
11	340.70	5.92	6.00	6.19	17.19	99.00	131.55	299.38
12	371.67	6.46	6.55	6.75	18.75	108.00	143.51	326.60
13	402.65	7.00	7.10	7.31	20.31	117.00	155.47	353.81
14	433.62	7.54	7.64	7.87	21.87	126.00	167.43	381.03
15	464.59	8.07	8.19	8.44	23.44	135.00	179.39	408.25
16	495.57	8.61	8.73	9.00	25.00	144.00	191.35	435.46
17.	526.54	9.15	9.28	9.56	26.56	153.00	203.31	462.68
18	557.51	9.69	9.83	10.12	28.12	162.00	215.26	499.90
19	588.48	10.23	10.37	10.69	29.69	171.00	227.22	517.11
20	619.46	10.76	10.92	11.25	31.25	180.00	239.18	544.33

NAUTICAL SQUARE LEAGUES INTO DIFFERENT GEOGRAPIICAL SQUARE MEASURES.

$\begin{gathered} \text { Nautical } \\ \text { square } \\ \text { Leayues. } \\ 20=10 \text { Eq. } \end{gathered}$	Sq. Kilometres.	$\begin{aligned} & \text { Austrian } \\ & \text { Sq. Miles. } \end{aligned}$	$\begin{aligned} & \text { Prussian } \\ & \text { Sq. Miles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { Sq. Miles. } \\ \mathbf{1 5}=1^{\circ} \text { Eq. } \end{gathered}$	$\begin{gathered} \text { French } \\ \text { Square } \\ \text { Leagues. } \\ \text { 2. }=10 \text { Eq. } \end{gathered}$	Geograph'l or Nautical Sq Miles. $60=1^{\circ} \mathrm{E} q$.	English Square Miles.	Russian square Wersto
21	650.43	11.30	11.46	11.81	32.81	189.00	251.14	571.55
22	681.40	11.84	12.01	12.37	34.37	198.00	263.10	598.76
23	712.37	12.38	12.56	12.94	35.94	207.00	275.06	625.98
24	743.35	12.92	13.10	13.50	37.50	216.00	287.02	653.19
25	774.32	13.46	13.65	14.06	39.06	225.00	298.98	680.41
26	805.29	13.99	14.19	14.62	40.62	234.00	310.94	707.63
27	836.27	14.53 .	14.74	15.19	42.19	243.00	322.90	734.84
28	867.24	15.07	15.28	15.75	43.75	252.00	334.86	762.06
29	- 898.21	15.61	15.83	16.31	45.31	261.00	346.81	789.28
30	929.19	16.15	16.38	16.87	46.87	270.00	358.77	816.49
31	960.16	16.68	16.92	17.44	48.44	279.00	370.73	843.71
32	. 991.13	17.22	17.47	18.00	50.00	288.00	382.69	870.93
33	102.2 .11	17.76	18.01	18.515	51.56	297.00	394.65	898.14
34	1053.08	18.30	18.56	19.12	53.12	306.00	406.61	925.36
35	1084.05	18.84	19.11	19.69	54.69	315.00	418.57	952.58
36	1115.02	19.38	19.65	20.25	56.25	324.00	430.53	979.79
37	1146.00	19.91	20.20	20.81	57.81	333.00	442.49	1007.01
38	1176.97	20.45	20.74	21.37	59.37	342.00	454.45	1034.22
39	1207.94	20.99	21.29	21.94	60.94	351.00	466.41	1061.44
40	1238.92	21.53	21.84	22.50	62.50	360.00	478.37	1088.66
41	1269.89	22.07	22.38	23.06	64.06	369.00	490.32	1115.87
42	1300.86	22.61	22.98	23.62	65.62	378.00	502.28	1143.09
43	1331.83	23.14	23.47	24.19	67.19	387.00	514.24	1170.31
44	1362.81	23.68	24.02	24.75	68.75	396.00	526.20	1197.52
45	1393.78	24.22	24.57	25.31	70.31	405.00	538.16	1224.74
46	1424.75	24.76	25.11	25.87	71.87	414.00	550.12	1251.96
47	1455.73	25.30	25.66	26.44	73.44	423.00	562.08	1279.17
48	1486.70	25.83	26.20	27.00	75.00	432.00	574.04	1306.39
49	1517.67	26.37	26.75	27.56	76.56	441.00	586.00	1333.61
50	1548.64	26.91	27.29	28.12	78.12	450.00	597.96	1360.82
51	1579.69	27.45	27.84	28.69	79.69	459.00	609.92	1388.04
52	1610.59	27.99	28.39	29.25	81.25	468.00	621.87	1415.26
53	16.41 .56	28.53	28.93	29.81	82.81 .	477.00	633.83	1442.47
54	1672.54	29.06	29.48	30.37	84.37	486.00	645.79	1469.69
55	1703.51	29.60	30.02	30.94	85.94	495.00	657.75	1496.90
56	1734.48	30.14	30.57	31.50	87.50	504.00	669.71	1524.12
57	1765.45	30.68	31.12	32.06	89.06	513.00	681.67	1551.34
58	1896.43	31.21	31.66	32.62	90.62	522.00	693.63	1578.55
59	1821.40	31.76	32.21	33.19	92.19	531.00	705.59	1605.77
60	1858.37	32.29	32.75	33.75	93.75	540.00	717.55	1632.99

nautical square leagues into different geographical square measures.

Nautical Square Leagues. $20=1^{\circ} \mathrm{E}$.	Sq. Kilometres.	Austrian Sq. Miles.	Prussian Sq. Miles.	German Sq. Miles. $15=1^{\circ}$ Eq.	French Square Leagues. $25=1^{\circ}$ Eq.	Geograph'l or Nautical Sq. Miles. $60=1^{\circ} \mathrm{E}_{\mathrm{T}}$.	English square Miles.	Russian Square Wersts.
61	1889.35	32.83	33.30	34.31	95.31	549.00	729.51	1660.20
62	1920.32	33.37	33.85	34.87	96.87	558.00	741.47	1687.42
63	1951.29	33.91	34.39	35.44	98.44	567.00	753.43	1714.64
64	1982.26	34.45	34.94	36.00	100.00	576.00	765.38	1741.85
65	2013.24	34.98	35.48	36.56	101.56	585.00	777.34	1769.07
66	2044.21	35.52	36.03	37.12	103.12	594.00	789.30	1796.39
67	2075.18	36.06	36.57	37.69	104.69	603.00	801.26	1823.50
68	2106.16	36.60	37.12	38.25	106.25	612.00	813.22	1850.72
69	2137.13	37.14	37.67	38.81	107.81	621.00	ع25.18	1877.93
70	2168.10	37.68	38.21	39.37	109.37	630.00	837.74	1905.15
71	2199.08	38.21	38.76	39.94	110.94	639.00	849.10	1932.37
72	2230.05	38.75	39.30	40.50	112.50	648.00	861.06	1959.58
73	2261.02	39.29	39.85	41.06	114.06	657.00	873.02	1986.80
74	2291.99	39.83	40.40	41.62	115.62	666.00	884.98	2014.02
75	2322.97	40.37	40.94	42.19	117.19	675.00	896.93	2041.23
76	2353.94	40.91	41.49	42.75	118.75	684.00	908.89	2068.45
77	2384.91	41.44	42.03	43.31	120.31	693.00	920.85	2095.67
78	2415.89	41.98	42.58	43.87	121.87	702.00	932.81	2122.88
79	2446.86	42.52	43.13	44.44	123.44	711.00	944.77	2150.10
80	2477.83	43.06	43.67	45.00	125.00	720.00	956.73	2177.32
81	2508.81	43.60	44.22	45.56	126.56	729.00	968.69	2204.53
82	2539.78	44.13	44.76	46.12	128.12	738.00	980.65	2231.75
83	2570.75	44.67	45.31	40.69	129.69	747.00	992.61	2258.97
84	2601.72	45.21	45.85	47.25	131.25	756.00	1004.57	2286.18
85	2632.70	45.75	46.40	47.81	132.81	765.00	1016.53	2313.40
86	2663.67	46.29	46.95	48.37	134.37	774.00	1028.49	2340.61
87	2694.64	46.83	47.49	48.94	135.94	783.00	1040.44	2367.83
88	2725.62	47.36	48.04	49.50	137.50	792.00	1052.40	2395.05
89	2756.59	47.90	48.58	50.06	139.06	801.00	1064.36	2422.26
90	2787.56	48.44	49.13	50.62	140.62	810.00	1076.32	2449.48
91	2818.53	48.98	49.68	51.19	142.19	819.00	1088.28	2476.70
92	2849.51	49.52	50.22	51.75	143.75	828.00	1100.24	2503.91
93	2880.48	50.05	50.77	52.31	145.31	837.00	1112.20	2531.13
94	2911.45	50.59	51.31	52.87	146.87	846.00	1124.16	2558.35
95	2942.43	51.13	51.86	53.44	148.44	855.00	1136.12	2585.56
96	2973.40	51.67	52.41	54.00	150.00	864.00	1148.08	2612.78
97	3004.37	52.21	52.95	54.56	151.5 ;	873.00	1160.04	2640.00
98	3035.34	52.75	53.50	55.12	153.12	882.00	1171.99	2667.21
99	3066.32	53.28	54.04	55.69	154.69	891.00	1183.95	2694.43
100	3097.29	53.82	54.59	56.25	156.25	900.00	1195.91	2721.64

VI. french square leagues into different geggraphical square measures

$\begin{aligned} & \text { French } \\ & \text { square. } \\ & \text { Leaves. } \\ & 25=1^{\circ} \text { Eq. } \end{aligned}$	sq. Kilometres.	Austrian sq. Miles.	Prussian Sq. Miles.	$\begin{aligned} & \text { German } \\ & \text { Sq. Miles. } \\ & 1 b=1^{\circ} \mathrm{Eq} . \end{aligned}$	Nautical square Leagues. $20=1^{\circ} \mathrm{Eq}$	Geograph'l or Natulucal Sy Miles. $60=1^{\circ} \mathrm{Eq}$	English square Miles.	Russian Square Wersts.
1,000	19822.63	344.463	349.370	360.000	640.000	5760.00	7653.844	17418.52
2,000	39645.27	688.927	698.739	720.000	1280.000	11520.00	15307.69	34837.05
3,000	59467.90	1033.390	1048.109	1080.000	1920.000	17250.00	22961.53	52255.57
4,000	79290.54	1377.853	1397.479	$1+40.000$	2560.000	23040.00	30615.37	69674.09
5,000	99113.15	1722.317	1746.848	1800.000	3200.000	28800.00	38269.22	87092.61
6,000	118935.8	2066.781	2096.218	2160.000	3840.000	34560.00	45923.06	104511.1
7,000	138758.4	2411.244	2445.588	2520.000	4480.000	40320.00	53576.90	121929.7
8,000	158581.1	2755.708	2794.957	2880.000	5120.000	46080.00	61230.75	139348.2
9,000	178403.7	3100.171	3144.307	3240.000	5760.000	51840.00	68884.59	156766.7
10,000	198226.3	344.635	34.93697	3600.000	6400.000	57600.00	76538.43	174185.2
100	1982.26	34.45	34.94	36.00	64.00	576.00	765.38	1741.85
200	3964.53	68.89	69.87	72.00	128.00	1152.00	1530.77	3483.71
300	5946.79	103.34	104.81	108.00	192.00	1728.00	2296.15	5225.56
400	7929.05	137.79	139.75	144.00	256.00	2304.00	3061.54	6967.41
500	9911.32	172.23	174.68	180.00	320.00	2880.00	3826.92	8709.26
600	11893.58	206.68	209.62	216.00	384.00	3456.00	4592.31	10451.11
700	13875.84	241.12	24.56	252.00	448.00	4032.00	5357.69	12192.97
800	1:858.11	275.57	279.50	288.00	512.00	4608.00	6123.08	13934.82
900	17840.37	310.02	314.43	324.00	576.00	5184.00	6888.46	15676.67
1000	19822.63	344.46	349.37	360.00	640.00	5760.00	7653.84	17418.52
1	19.82	0.34	- 0.35	0.36	0.64	5.76	7.65	17.42
2	39.65	0.69	0.70	0.72	1.28	11.52	15.31	34.84
3	59.47	1.03	1.05	1.08	1.92	17.28	22.96	52.26
4	79.29	1.38	1.40	1.44	2.56	23.04	30.62	69.67
5	99.11	1.72	1.75	1.80	3.20	28.80	38.27	87.09
6	118.94	2.07	2.10	2.16	3.84	34.56	45.92	104.51
7	138.76	2.41	2.45	2.52	4.48	40.32	53.58 .	121.93
8	158.58	2.76	2.79	2.88	5.12	46.08	61.23	139.35
9	178.40	3.10	3.14	3.24	5.76	51.84	68.88	156.77
10	198.23	3.44	3.49	3.60	6.40	57.60	76.54	174.18
11	218.05	3.79	3.84	3.96	7.04	63.36	84.19	191.60
12	237.87	4.13	4.19	4.32	7.68	69.12	91.85	209.02
13	257.69	4.48	4.54	4.68	8.32	74.85	99.50	226.44
14	277.52	4.82	4.59	5.04	8.96	80.64	107.15	243.86
15	297.34	5.17	5.24	5.40	9.60	86.40	114.81	261.28
16	317.16	5.51	5.59	5.76	10.24	92.16	122.46	278.70
17	336.98	5.86	5.94	6.12	10.88	97.92	130.12	296.11
18	356.81	6.20	6.29	6.48	11.52	103.68	137.77	313.53
19	376.63	6.54	6.64	6.84	12.16	109.44	145.42	330.95
20	396.45	6.89	6.99	7.20	12.80	115.20	153.08	348.37

French square leagues into different geographlcal square measures.

French Square Leagues. $25=1^{\circ} \mathrm{Eq}$.	Sq. Kilometres.	Austrian Sq. Miles.	Prussian Sq. Miles.	Germian Sq. Miles. $15=1^{\circ} \mathrm{Eq}$.	Nautical square Leagues. $20=1^{\circ}$ Eq.	$\left\lvert\, \begin{gathered} \text { Geograph's } \\ \text { or Nautica } \\ \text { Sq. Miles. } \\ 60=1^{\circ} \text { Eq. } \end{gathered}\right.$	English Square Miles.	Russian square Wersts.
21	416.28	7.23	7.34	7.56	13.44	120.96	160.73	365.79
22	436.10	7.58	7.69	7.92	14.08	126.72	168.38	383.21
23	455.92	7.92	8.04	8.28	14.72	132.48	176.04	400.63
24	475.74	8.27	8.38	8.64	15.36	13824	183.69	418.04
25	495.57	8.61	8.73	9.00	16.00	144.00	191.35	435.46
26	515.39	8.96	9.08	0.36	16.64	149.76	199.00	452.88
27	535.21	9.30	9.43	9.72	17.28	155.52	206.65	470.30
28	555.03	9.65	9.78	10.08	17.92	161.28	214.31	487.72
29	574.86	9.99	10.13	10.44	18.56	167.04	221.96	505.14
30	594.68	10.33	10.48	10.80	19.20	172.80	229.62	522.56
31	614.50	10.68	10.83	11.16	19.84	178.56	237.27	539.97
32	634.32	11.02	11.18	11.52	20.48	184.32	244.92	557.39
33	654.15	11.37	11.53	11.88	21.12	190.08	252.58	574.81
34	673.97	11.71	11.88	12.24	21.76	195.84	260.23	592.23
35	693.79	12.06	12.23	12.60	22.40	201.60	267.88	609.65
36	713.61	12.40	12.58	12.96	23.04	207.36	275.54	627.07
37	733.44	12.75	12.93	13.32	23.68	213.12	283.19	644.49
38	753.26	13.09	13.28	13.68	24.32	218.88	290.85	661.90
39	773.08	13.43	13.63	14.04	24.96	224.64	298.50	679.32
40	792.91	13.78 .	13.97	14.40	25.60	230.40	306.15	696.74
41	812.73	14.12	14.32	14.76	26.24	236.16	313.81	714.16
42	832.55	14.47	14.67	15.12	26.88	241.92	321.46	731.58
43	852.37	14.81	15.02	15.48	27.52	247.68	329.12	749.00
44	872.20	15.16	15.37	15.84	28.16	253.44	336.77	766.41
45	892.02	15.50	15.72	16.20	28.80	259.20	344.42	783.83
46	901.84	15.85	16.07	16.56	29.44	264.96	352.08	801.25
47	931.66	16.19	16.42	16.92	30.08	270.72	359.73	818.67
48	951.49	16.53	16.77	17.28	30.72	276.48	367.38	836.09
49	971.31	16.88	17.12	17.64	31.36	282.24	375.04	853.51
50	991.13	17.22	17.47	18.00	32.00	288.00	382.69	870.93
51	1010.95	17.57	17.82	18.36	32.64	293.76	390.35	888.34
52	1030.78	17.91	18.17	18.72	33.28	299.52	398.00	905.76
53	1050.60	18.26	18.52	19.08	33.92	305.28	405.65	923.18
54	1070.42	18.60	18.87	19.44	34.56	311.04	413.31	940.60
55	1090.24	18.95	19.22	19.80	35.20	316.80	420.96	958.02
56	1110.07	19.29	19.56	20.16	35.84	322.56	428.62	975.44
57	1129.89	19.63	19.91	20.52	36.48	328.32	436.27	992.86
58	1149.71	19.98	20.26	20.88	37.12	334.08	443.92	1010.27
59	1169.54	20.32	20.61	21.24	37.76	339.84	451.58	1027.69
60	1189.36	20.67	20.96	21.60	38.40	345.60	459.23	1045.11

554
FRENCH SQUARE LEAGUES INTO DIFFERENT GEOGRAPHICAL SQUARE MEASURES.

French Square Leagues. $25=1^{\circ} \mathrm{Eq}$	Sq. Kilometres.	Austrian Sq. Miles.	Prussian Sq. Miles.	$\begin{aligned} & \text { German } \\ & \text { Sq. Miles. } \\ & 15=1^{\circ} \text { Eq. } \end{aligned}$	Nautical square Leagues. $20=1^{\circ} \mathrm{Eq}$.	Geograph'l or Nautical Sq. Miles. $60=1^{\circ}$ Eq.	English Square Miles.	Russian Square Wersts.
61	1209.18	21.01	21.31	21.96	39.04	351.36	466.88	1062.53
62	1229.00	21.36	21.66	22.32	39.68	357.12	474.54	1079.95
63	1248.83	21.70	22.01	22.68	40.32	362.88	482.19	1097.37
64	1268.65	22.05	22.36	23.04	40.96	368.64 .	489.85	1114.79
65	1288.47	22.39	22.71	23.40	41.60	374.40	497.50	1132.20
66	1308.29	22.73	23.06	23.76	42.24	380.16	505.15	1149.62
67	1328.12	23.08	23.41	24.12	42.88	385.92	512.81	1167.0.4
68	1347.94	23.42	23.76	24.48	43.52	391.68	520.46	1184.46
69	1367.76	23.77	24.11	24.84	44.16	397.4	528.12	1201.88
70	1387.58	24.11	24.46	25.20	44.80	403.20	535.77	1219.30
71	1407.41	24.46	24.81	25.56	45.44	408.96	543.42	1236.72
72	$14 \cdot 27.23$	24.80	25.15	25.92	46.08	414.72	551.08	1254.13
73	1447.05	25.15	25.50	26.28	46.72	420.48	558.73	1271.55
74	1466.87	25.49	25.85	26.64	47.36	426.24	566.38	1288.97
75	1486.70	25.83	26.20	27.00	48.00	432.00	574.04	1306.39
76	1506.52	26.18	26.55	27.36	48.64	437.76	581.69	1323.81
77	1526.34	26.52	26.90	27.72	49.28	443.52	589.35	1341.23
78	1546.17	26.87	27.25	28.08	49.92	449.28	597.00	1358.64
79	1565.99	27.21	27.60	28.44	50.56	+45.04	604.65	1376.06
80	1585.81	27.56	27.95	28.80	51.20	460.80	612.31	1393.48
81	1605.63	27.90	28.30	29.16	51.84	466.56	619.96	1410.90
82	1625.46	28.25	28.65	29.52	52.48	472.32	627.62	1428.32
83	1645.28	25.59	29.00	29.88	53.12	478.08	635.27	$1+45.74$
84	1665.16	28.93	29.35	30.24	53.76	483.84	642.92	1463.16
85	1684.92	29.28	29.70	30.60	54.40	489.60	650.58	1480.57
86	1704.75	29.62	30.05	30.96	55.04	495.36	658.23	1497.99
87	1724.57	29.97	30.40	31.32	55.78	501.12	665.88	1515.41
88	1744.39	30.31	30.74	31.68	56.32	506.88	673.54	1532.83
89	1764.21	30.66	31.09	32.04	56.96	512.64	681.19	1550.25
90	1784.04	31.00	31.44	33.40	57.60	518.40	688.85	1567.67
91	1803.86	31.35	31.79	32.76	58.24	524.16	696.50	1585.09
92	1833.65	31.69	32.14	33.12	58.88	529.92	704.15	1602.50
93	1843.51	32.04	32.49	33.48	59.52	535.68	711.81	1619.92
94	1863.33	32.38	32.84	33.84	60.16	541.44	719.46	1637.3.4
95	1883.15	32.72	33.19	34.20	60.80	547.20	727.12	1654.76
96	1902.97	33.07	33.54	34.56	61.44	552.96	734.77	1672.18
97	1922.80	33.41	33.89	34.92	62.08	558.72	742.42	1689.60
98	1942.62	33.76	34.24	35.28	62.72	564.48	750.08	1707.02
99	1962.44	34.10	34.59	35.64	63.36	570.24	757.73	1724.43
100	1982.26	34.45	34.94	36.00	64.00	576.00	765.38	1741.85

JI. geographical or nautical square miles into different geographical square measures.

Geograph or Naut. Sq . Miles. $60=1^{\circ} \mathrm{Eq}$ 。	Sq. Kilometres.	Austrian Sq. Miles.	Prussian Sq. Miles.	German Sq. Miles. $15=1^{\circ} \mathrm{Eq}$.	Nautical Square Leagues. $20=1^{\circ} \mathrm{Eq}$.	French Square Leagues. $25=1^{\circ} \mathrm{Eq}$	English Square Miles.	Russian Square Wersts.
1,000	3441.43	59.80268	60.65446	62.5000	111.1111	173.6111	1328.792	3024.049
2,000	6882.86	119.6054	121.3089	125.000	222.2222	347.2222	2657.555	6048.098
3,000	10324.30	179.4081	181.9634	187.500	333.3333	520.8333	3986.377	9072.147
4,000	13765.73	239.2107	242.6178	250.000	444.4444	694.4444	5315.169	12096.20
5,000	17207.16	299.0134	303.2723	312.500	555.5556	868.0556	6643.964	15120.25
6,000	20648.59	358.8161	363.9268	375.000	666.6667	1041.667	7972.754	18144.29
7,000	24090.02	418.6188	424.5812	437.500	777.7778	1215.278	9301.546	21168.34
8,000	27531.45	478.4215	485.2357	500.000	888.8889	1388.889	10630.34	24192.39
9,000	30972.89	538.2242	545.8901	562.500	1000.000	1562.500	11959.13	27216.44
10,000	34414.32	598.0268	606.5446	625.000	1111.111	1736.111	13287.92	30240.49
100	344.14	5.98	6.07	6.25	11.11	17.36	132.88	302.40
200	688.29	11.96	12.13	12.50	22.22	34.72	265.76	604.81
300	1032.43	17.94	18.20	18.75	33.33	52.08	398.64	907.21
400	1376.57	23.92	24.26	25.00	44.44	69.44	531.52	1209.62
500	1720.72	29.90	30.33	31.25	55.56	86.81	664.40	1512.02
600	2064.86	35.88	36.39	37.50	66.67	104.17	797.28	1814.43
700	2409.00	41.86	42.46	43.75	77.78	121.53	930.15	2116.83
800	2753.15	47.84	48.52	50.00	88.89	138.89	1063.03	2419.24
900	3097.29	53.82	54.59	56.25	100.00	156.25	1195.91	2721.64
1000	3441.43	59.80	60.65	62.50	111.11	173.61	1328.79	3024.05
1	3.44	0.06	0.06	0.06	0.11	0.17	1.33	3.02
2	6.88	0.12	0.12	0.12	0.22	0.35	2.66	6.05
3	10.32	0.18	0.18	0.19	0.33	0.52	3.99	9.07
4	13.77	0.24	0.24	0.25	0.44	0.69	5.32	12.10
5	17.21	0.30	0.30	0.31	0.56	0.87	6.64	15.12
6	20.65	0.36	0.36	0.37	0.67	1.04	7.97	18.14
7	24.09	0.42	0.42	0.44	0.78	1.22	9.30	21.17
8	27.53	0.48	0.49	0.50	0.89	1.39	10.63	24.19
9	30.97	0.54	0.55	0.56	1.00	1.56	11.96	27.22
10	34.41	0.60	0.61	0.62	1.11	1.74	13.29	30.24
11	37.86	0.66	0.67	0.69	1.22	1.91	14.62	33.26
12	41.30	0.72	0.73	0.75	1.33	2.08	15.95	36.29
13	44.74	0.78	0.79	0.81	1.44	2.26	17.27	39.31
14	48.18	0.84	0.85	0.87	1.56	2.43	18.60	42.34
15	51.62	0.90	0.91	0.94	1.67	2.60	19.93	45.36
16	55.06	0.96	0.97	1.00	1.78	2.78	21.26	48.38
17	58.50	1.02	1.03	1.06	1.89	2.95	22.59	51.41
18	61.95	1.08	1.09	1.12	2.00	3.12	23.92	54.43
19	65.39	1.14	1.15	1.19	2.11	3.30	25.25	57.46
20	68.83	1.20	1.21	1.25	2.22	3.47	26.58	60.48

geographical or nautical square miles into different geographical square measures.

Geograph. or Naut. Sy. Miles. $60=1^{\circ} \mathrm{Eq}$	Sq. Kilometres.	Austrian sq. Miles.	Prussiau Sq. Miles.	$\begin{aligned} & \text { Gernian } \\ & \text { sq. Miles. } \\ & 10=1^{\circ} \mathrm{Eq} . \end{aligned}$	$\begin{gathered} \text { Natical } \\ \text { square } \\ \text { Leaunes. } \\ 20=1^{\circ} \mathbf{E q} . \end{gathered}$	French Square Leagues. $25=1^{\circ} \mathrm{E} 4$.	Euglish Square Miles.	Russiau Square Wersts.
21	72.27	1.26	1.27	1.31	2.33	3.65	27.90	63.51
22	75.71	1.32	1.33	1.37	2.44	3.82	29.23	66.53
23	79.15	1.38	1.40	1.44	2.56	3.99	30.56	69.55
24	82.59	1.44	1.46	1.50	2.67	4.17	31.89	72.58
25	86.04	1.50	1.52	1.56	2.78	4.34	33.28	75.60
26	89.48	1.55	1.58	1.62	2.89	4.51	34.55	78.63
27	92.92	1.61	1.64	1.69	3.00	4.69	35.88	81.65
28	96.36	1.67	1.70	1.75	3.11	4.86	37.21	84.67
29	99.80	1.73	1.76	1.81	3.22	5.03	38.53	87.70
30	103.24	1.79	1.82	1.87	3.33	5.21	39.86	90.72
31	106.68	1.85	1.88	1.94	3.44	5.38	41.19	93.75
32	110.13	1.91	1.94	2.00	3.56	5.56	42.52	96.77
33	113.57	1.97	2.00	2.06	3.67	5.72	43.85	99.79
34	117.01	2.03	2.06	2.12	3.78	5.90	45.18	102.82
35	120.45	2.09	2.12	2.19	3.89	6.08	46.51	105.84
36	123.89	2.15	2.18	2.25	4.00	6.25	47.84	108.87
37	127.33	2.21	2.24	2.31	4.11	6.42	49.17	111.89
38	130.77	2.27	2.30	2.37	4.22	6.60	50.49	114.91
39	134.22	2.33	2.37	2.44	4.33	6.77	51.82	117.94
40	137.66	2.39	2.43	2.50	4.44	6.94	53.15	120.96
41	141.10	2.45	2.49	2.56	4.56	7.12	54.48	123.99
42	144.54	2.51	2.55	2.62	4.67	7.29	55.81	127.01
43	147.98	2.57	2.61	2.69	4.78	7.47	57.14	13003
44	151.42	2.63	2.67	2.75	4.89	7.64	58.47	133.06
45	154.86	2.69	2.73	2.81	5.00	7.81	59.80	136.08
46	158.31	2.75	2.79	2.87	5.11	7.99	61.12	139.11
47	161.75	2.81	2.85	2.94	5.22	8.16	62.45	142.13
48	165.19	2.87	2.91	3.00	5.33	8.33	63.78	145.15
49	168.63	2.93	2.97	3.06	5.44	8.51	65.11	148.18
50	172.07	2.99	3.03	3.12	5.56	8.68	66.44	151.20
51	175.51	3.05	3.09	3.19	5.67	8.85	67.77	154.23
52	178.96	3.11	3.15	3.25	5.78	9.03	69.10	157.95
53	182.40	3.17	3.21	3.31	5.89	9.20	70.43	160.27
54	185.84	3.23	3.28	3.37	6.00	9.37	71.75	163.30
55	189.28	3.29	3.34	3.44	6.11	9.55	73.08	166.32
56	192.72	3.35	3.40	3.50	6.22	9.72	74.41	169.35
57	196.16	3.41	3.46	3.56	6.33	9.90	75.74	172.37
58	199.60	3.47	3.52	3.62	6.44	10.67	77.07	175.39
59	203.04	3.53	3.58	3.69	6.56	10.24	78.40	178.42
60	206.49	3.59	3.64	3.75	6.67	10.42	79.73	181.44

geographical or nautical square mlles into different geographical SQUARE MEASURES.

Geograph. or Naut. Sq. Miles. $60=1^{\circ} \mathrm{Eq}$.	Sq. Kilometres.	Austrian Sq. Miles.	Prussian Sq. Miles.	$\begin{aligned} & \text { German } \\ & \mathrm{Sq} . \mathrm{Milites} . \\ & 10=1^{\circ} \mathrm{Eq} . \end{aligned}$	Nautical Square Leagues. $20=1^{\circ} \mathrm{Eq}$.	$\begin{gathered} \text { French } \\ \text { Square } \\ \text { Leagues. } \\ 25=1^{0} \text { Eq. } \end{gathered}$	English Square Miles.	Russian square Wersts.
61	209.93	3.65	3.70	3.81	6.78	10.59	81.06	184.47
62	213.37	3.71	3.76	3.87	6.89	10.76	82.39	187.49
63	216.81	3.77	3.82	3.94	7.00	10.94	83.71	190.52
64	220.25	3.83	3.88	4.00	7.11	11.11	85.04	193.54
65	223.69	3.89	3.94	4.06	7.22	11.28	86.37	196.56
66	227.13	3.95	4.00	4.12	7.33	11.46	87.70	199.59
67	230.58	4.01	4.06	4.19	7.44	11.63	89.03	202.61
68	234.02	4.07	4.12	4.25	$7.56{ }^{\circ}$	11.81	90.36	205.64
69	237.46	4.13	4.19	4.31	7.67	11.98	91.69	208.66
70	240.90	4.19	4.25	4.37	7.78	12.15	93.02	211.68
71	244.34	4.25	4.31	4.44	7.89	12.33	94.34	214.71
72	247.78	4.31	4.37	4.50	8.00	12.50	95.67	217.73
73	251.22	4.37	4.43	4.56	8.11	12.67	97.00	220.76
74	254.67	4.43	4.49	4.62	8.22	12.85	98.33	223.78
75	258.11	4.49	4.55	4.69	8.33	13.07	99.66	226.80
76	261.55	4.55	4.61	4.75	8.44	13.19	100.99	229.83
77	264.99	4.60	4.67	4.81	8.56	13.37	102.32	232.85
78	268.43	4.66	4.73	4.87	8.67	13.54	103.65	235.88
79	271.87	4.72	4.79	4.94	8.78	13.72	104.97	238.90
80	275.31	4.78	4.85	5.00	8.89	13.89	106.30	241.92
81	278.76	4.84	4.91	5.06	9.00	14.06	107.63	244.95
82	282.20	4.90	4.97	5.12	9.11	14.24	108.96	247.97
83	285.64	4.96	5.03	5.19	9.22	14.41	110.29	251.00
84	289.08	5.0 ?	5.09	5.25	9.33	14.58	111.62	254.02
85	292.52	5.08	5.16	5.31	9.44	14.76	112.95	257.04
86	295.96	5.14	5.22	5.37	9.56	14.93	114.28	260.07
87	299.40	5.20	5.28	5.44	9.67	15.10	115.60	263.09
88	302.85	5.26	5.34	5.50	9.78	15.28	116.93	266.12
89	306.29	5.32	5.40	5.56	9.89	15.45	118.26	269.14
90	309.73	5.38	5.46	5.62	10.00	15.62	119.59	272.16
91	313.17	5.44	5.52	5.69	10.11	15.80	120.92	275.19
92	316.61	5.50	5.58	5.75	10.22	15.97	122.25	278.21
93	320.05	5.56	5.64	5.81	10.33	16.15	123.58	281.24
94	323.49	5.62	5.70	5.87	10.44	16.32	124.91	284.26
95	326.94	5.68	5.76	5.94	10.56	16.49	126.24	287.28
96	330.38	5.74	5.82	6.00	10.67	16.67	127.56	290.31
97	333.82	5.80	5.88	6.06	10.78	16.84	128.89	293.33
98	337.26	5.86	5.94	6.12	10.89	17.01	130.22	296.36
99	340.70	5.92	6.00	6.19	11.00	17.19	131.55	299.38
100	344.14	5.98	6.07	6.25	11.11	17.36	132.88	302.40

VlII. englisil square miles into different geographical square measnres.

$\begin{aligned} & \text { English } \\ & \text { Square } \\ & \text { Miles. } \end{aligned}$	Sq. Kilometres.	Austrian Sq. Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { Sq. Miles. } \end{aligned}$	$\begin{gathered} \text { German } \\ \text { sq. Milees. } \\ 1 \delta=1^{\circ} \mathbf{E q} . \end{gathered}$	$\begin{gathered} \text { Nautical } \\ \text { Square } \\ \text { Learues. } \\ 20=1^{\circ} \text { Eq. } \end{gathered}$	$\begin{gathered} \text { Freuch } \\ \text { Square } \\ \text { Leagues. } \\ 25=10 \text { Eq. } \end{gathered}$	Geograph'l or Nautical Sq. Miles. $60=1^{\circ} \mathrm{E}_{1}$.	Russian Square Wersts.
1,000	2589.894	45.00529	45.64631	47.03519	83.61812	130.6534	752.5631	2275.788
2,000	5179.789	90.01058	91.29261	94.07038	167.2362	261.3068	1505.126	4551.575
3,000	7769.683	135.0159	136.9389	141.1056	250.8544	391.9602	2257.689	6827.363
4,000	10359.58	180.0117	182.5852	188.1408	334.4725	522.6136	3010.252	9103.151
5,000	12949.47	225.0265	228.2315	235.1760	418.0906	653.2671	3762.815	11378.94
6,000	15539.37	270.0318	273.8778	282.2112	501.7087	783.9205	4515.379	13654.73
7,000	18129.26	315.0470	319.5241	329.2463	585.3268	914.5739	5267.942	15930.51
8,000	20719.16	360.0423	365.1704	376.2815	668.9450	1045.227	6020.505	18206.30
9,000	23309.05	405.0476	410.8168	423.3167	752.5631	1175.881	6773.068	20482.09
10,000	25898.94	450.0529	456.4631	470.3519	836.1812	1306.534	7525.631	22757.88
100	258.99	4.50	4.56	4.70	8.36	13.07	75.26	227.58
200	517.98	9.00	9.13	9.41	16.72	26.13	150.51	455.16
300	776.97	13.50	13.69	14.11	25.09	39.20	225.77	682.74
400	1035.96	18.00	18.26	18.81	33.45	52.26	301.03	910.32
500	1294.95	22.50	22.82	23.52	41.81	65.33	376.28	1137.89
600	1555.39	27.00	27.39	28.22	50.17	78.39	451.54	1365.47
700	1812.93	31.50	31.95	32.92	58.53	91.46	$5 \geq 6.79$	1593.05
800	2071.92	36.00	36.52	37.63	66.89	104.52	602.05	1820.63
900	2330.91,	40.50	41.08	42.33	75.26	117.59	677.31	2048.21
1000	2589.89	45.01	45.65	47.04	83.62	130.65	752.56	2275.79
1	2.59	0.05	0.05	0.05	0.08	0.13	0.75	2.28
2	5.18	0.09	0.09	0.09	0.17	0.26	1.51	4.55
3	7.77	0.14	0.14	0.14	0.25	0.39	2.26	6.83
4	10.36	0.18	0.18	0.19	0.33	0.52	3.01	9.10
5	12.95	0.23	0.23	0.24	0.42	0.65	3.76	11.38
6	15.54	0.27	0.27	0.28	0.50	0.78	4.52	13.65
7	18.13	0.32	0.32	0.33	0.59	0.91	5.27	15.93
8	20.72	0.36	0.37	0.38	0.67	1.05	6.02	18.20
9	23.31	0.41	0.41	0.43	075	1.18	6.77	20.48
10	25.90	0.45	0.46	0.47	0.84	1.31	7.53	22.76
11	28.49	0.50	0.50	0.52	0.92	1.44	8.28	25.03
12	31.08	0.54	0.55	0.56	1.00	1.57	9.03	27.31
13	33.67	0.59	0.59	0.61	1.09	1.70	9.78	29.59
14	36.26	0.63	0.64	0.66	1.17	1.83	10.54	31.86
15	38.85	0.68	0.68	0.71	1.25	1.96	11.29	34.14
16	41.44	0.72	0.73	0.75	1.34	2.09	12.04	36.41
17	44.03	0.77	0.78	0.80	1.42	2.22	12.79	38.69
18	46.62	0.81	0.82	0.85	1.51	2.35	13.55	40.96
19	49.21	0.86	0.87	0.89	1.59	2.48	14.30	43.23
20	51.80	0.90	0.91	0.94	1.67	2.61	15.05	45.52

english square miles into different geographical square measures.

English Square Miles.	Sq. Kilometres.	Austrian sq. Miles.	Prussian Sq. Miles.	$\begin{aligned} & \text { German } \\ & \text { Sq. Miles. } \\ & 15=1^{\circ} \mathrm{Eq} . \end{aligned}$	$\begin{gathered} \text { Nautical } \\ \text { Square } \\ \text { Leayues. } \\ 20=1^{\circ} \mathrm{Eq} . \end{gathered}$	French Square Leagues. $25=1^{\circ}$ E 1.	Geograph'l or Nautical Sq. Miles. $60=1^{\circ} \mathrm{Eq}$	Russian Square Wersts.
21	54.39	0.95	0.96	0.99	1.76	2.74	15.80	47.79
22	56.98	0.99	1.00	1.03	1.84	2.87	16.56	50.07
23	59.57	1.04	1.05	1.08	1.92	3.01	17.31	52.34
24	62.16	1.08	1.10	1.13	2.01	3.14	18.06	54.62
25	64.75	1.13	1.14	1.18	2.09	3.27	18.81	56.89
26	67.34	1.17	1.19	1.22	2.17	3.40	19.57	59.17
27	69.93	1.22	1.23	1.27	2.26	3.53	20.32	61.45
28	72.52	1.26	1.28	1.32	2.34	3.66	21.07	63.72
29	75.11	1.31	1.32	1.36	2.42	3.79	21.82	66.00
30	77.70	1.35	1.37	1.41	2.51	3.92	22.58	68.27
31	80.29	1.40	1.42	1.46	2.59	4.05	23.33	70.55
32	82.88	1.44	1.46	1.51	2.68	4.18	24.08	72.83
33	85.47	1.49	1.51	1.55	2.76	4.31	24.83	75.10
34	88.06	1.53	1.55	1.60	2.84	4.44	25.59	77.38
35	90.65	1.58	1.60	1.65	2.93	4.57	26.34	79.65
36	93.24	1.62	1.64	1.69	3.01	4.70	27.09	81.93
37	95.83	1.67	1.69	1.74	3.09	4.83	27.84	84.20
38	98.42	1.71	1.73	1.78	3.18	4.96	28.60	86.48
39	101.01	1.76	1.78	1.83	3.26	5.00	29.35	88.76
40	103.60	1.80	1.83	1.88	3.34	5.23	30.10	91.03
41	106.19	1.85	1.87	1.93	3.43	5.36	30.86	93.31
42	108.78	1.89	1.92	1.98	3.51	5.49	31.61	95.58
43	111.37	1.94	1.96	2.02	3.60	5.62	32.36	97.86
44	113.96	1.98	2.01	2.07	3.68	5.75	33.11	100.13
45	116.55	2.03	2.05	2.12	3.76	5.88	33.87	102.41
46	119.14	2.07	2.10	2.16	3.85	6.01	34.62	104.69
47	121.73	2.12	2.15	2.21	3.93	6.14	35.37	106.96
48	124.31	2.16	2.19	2.26	4.01	6.27	36.12	109.24
49	126.90	2.21	2.24	2.30	4.10	6.40	36.88	111.51
50	129.49	2.25	2.98	2.35	4.18	6.53	37.63	113.79
51	132.08	2.30	2.33	2.40	4.26	6.66	38.38	116.07
52	134.67	2.34	2.37	2.45	4.34	6.79	39.13	118.34
53	137.26	2.39	2.42	2.49	4.43	6.92	39.89	120.62
54	139.85	2.43	2.46	2.54	4.52	7.06	40.64	122.89
55	142.44	2.48	2.51	2.59	4.60	7.19	41.39	125.17
56	145.03	2.52	2.56	2.63	4.68	7.32	42.14	127.44
57	147.62	2.57	2.60	2.68	4.77	7.45	42.90	129.72
58	150.21	2.61	2.65	2.73	4.85	7.58	43.65	132.00
59	152.80	2.66	2.69	2.78	4.93	7.71	44.40	134.27
60	155.39	2.70	2.74	2.82	5.02	7.84	45.15	136.55

560
english square miles into different geographical square measures.

English Square Miles. Miles.	Sq. Kilometres.	$\begin{aligned} & \text { Austrian } \\ & \text { sq. Miles. } \end{aligned}$	Prussian Sq. Miles.	$\begin{gathered} \text { German } \\ \text { Sq. Miles. } \\ 15=1^{\circ} \mathbf{E}, \end{gathered}$	Nautical square Leagues. $20=1^{\circ} \mathrm{Eq}$.	$\begin{gathered} \text { French } \\ \text { Square } \\ \text { Leatues. } \\ 25=1^{\circ} \text { E } 4 . \end{gathered}$	$\begin{aligned} & \text { Geograph'l } \\ & \text { or Nautical } \\ & \text { sq. Miles. } \\ & 60=1^{\circ} \text { Eq. } \end{aligned}$	Russian square Wersts.
61	157.98	2.75	2.78	2.87	5.10	7.97	45.91	138.82
62	160.57	2.79	2.83	2.92	5.18	8.10	46.66	141.10
63	163.16	2.84	2.88	2.96	5.27	8.23	47.41	143.37
64	165.75	2.88	2.92	3.01	5.35	8.36	48.16	145.65
65	168.34	2.93	2.97	3.06	5.44	8.49	48.92	147.93
66	170.93	2.97	3.01	3.10	5.52	8.62	49.67	150.20
67	173.52	3.02	3.06	3.15	5.60	8.75	50.42	152.48
68	176.11	3.06	3.10	3.20	5.69	8.88	51.17	154.75
69	178.70	3.11	3.15	3.25	5.77	9.02	51.93	157.03
70	181.29	3.15	3.20	3.29	5.85	9.15	52.68	159.31
71	183.83	3.20	3.24	3.34	5.94	9.28	53.43	161.58
72	186.47	3.24	3.29	3.39	6.02	9.41	54.18	163.86
73	189.06	3.29	3.33	3.44	6.10	9.54	54.94	166.13
74	191.65	3.33	3.38	3.48	6.19	9.67	55.69	168.41
75	194.24	3.35	3.42	3.53	6.27	9.80	56.44	170.68
76	196.83	3.42	3.47	3.57	6.35	9.93	57.19	172.96
77	199.42	3.47	3.51	3.62	6.44	10.05	57.95	175.24
78	202.01	3.51	3.56	3.67	6.52	10.19	58.70	177.51
79	204.60	3.56	3.61	3.72	6.61	10.32	59.45	179.79
80	207.19	3.60	3.65	3.76	6.69	10.45	60.20	182.06
81	209.78	3.65	3.70	3.81	6.77	10.58	60.96	184.34
82	212.37	3.69	3.74	3.86	6.86	10.71	61.71	186.61
83	214.96	3.74	3.79	3.90	$6.9 \pm$	10.84	62.46	188.89
84	217.55	3.78	3.83	3.95	7.02	10.97	63.22	191.17
85	220.14	3.83	3.88	4.00	7.11	11.11	63.97	193.44
86	222.73	3.87	3.93	4.05	7.19	11.24	64.72	195.72
87	225.32	3.92	3.97	4.09	7.27	11.37	65.47	197.99
88	237.91	3.96	4.02	4.14	7.36	11.50	66.23	200.27
89	230.50	4.01	4.06	4.19	7.44	11.63	66.98	202.55
90	233.09	4.05	4.11	4.23	7.53	11.76	67.73	204.82
91	235.68	4.10	4.15	4.28	7.61	11.99	68.48	207.10
92	238.27	4.14	4.20	4.33	7.69	12.02	69.24	209.37
93	240.86	4.19	4.25	4.37	7.78	12.15	69.99	211.65
94	243.45	4.23	4.29	4.42	7.86	12.28	70.74	213.92
95	246.04	4.28	4.34	4.47	7.94	12.41	71.49	216.20
96	248.63	4.32	4.38	4.52	8.03	12.54	72.25	218.48
97	251.22	4.37	4.43	4.56	8.11	12.67	73.00	220.75
98	253.81	4.41	4.47	4.61	8.19	12.80	73.75	223.03
99	256.40	4.46	4.52	4.66	8.28	12.93	74.50	225.30
100	258.99	4.50	4.56	4.70	8.36	13.07	75.26	227.58

IX. square wersts into different geographical square measures. 561

Russian Square Wersts.	Sq. Kilometres.	Austrian sq. Miles.	Prussian Sq. Miles.	German Sq. Miles. $15=1^{\circ} \mathrm{Eq}$.	Nautical square Leagues. $20=1^{\circ} \mathrm{Eq}$.	French square Leagues. $20=1^{\circ} \mathrm{Eq}$.	Geograph'l or Nautical Sq. Miles. $60=1^{\circ} \mathrm{Eq}$.	English Square Mijes.
1,000.	1138.021	19.77570	20.05737	20.66765	36.74250	57.41015	330.6825	439.4083
2,000	2976.042	39.55140	40.11473	41.33531	73.48499	114.8203	661.3649	878.8166
3,000	3414.062	$59.3: 710$	60.17210	62.00296	110.2275	172.2304	992.0474	1318.225
4,000	4552.083	79.10279	81.22946	82.67061	146.9700	229.6406	1322.730	1757.633
5,000	5690.104	98.87849	100.2868	103.3383	183.7125	287.0507	1653.412	2197.041
6,000	6828.125	118.6542	120.3442	124.0059	220.4550	344.4609	1984.095	2636.450
7,000	7966.146	138.4299	140.4116	144.6736	257.1975	401.8710	2314.757	3075.858
8,000	9104.166°	158.2056	160.4589	165.3412	293.9460	459.2812	2645.460	3515.266
9,000	10242.19	177.9813	180.5163	186.0189	330.6825	516.6913	2976.142	3954.675
10,000	11380.21	197.7570	200.5737	206.6765	367.4250	574.1015	3306.825	4394.083
100	113.80	1.98	2.01	2.07	3.67	5.74	33.07	43.94
200	237.60	3.96	4.01	4.13	7.35	11.48	66.14	87.88
300	341.41	5.93	6.02	6.20	11.02	17.22	99.21	131.82
400	455.21	7.91	8.02	8.27	14.70	22.96	132.27	175.76
500	569.01	9.89	10.03	10.33	18.37	28.71	165.34	219.70
600	682.81	11.87	12.03	12.40	22.05	34.45	198.41	263.64
700	796.61	13.84	14.04	14.47	25.72	40.19	231.48	307.59
800	$910.4 *$	15.82	16.04	16.53	29.39	45.93	264.55	351.53
900	1024.21	17.80	18.15	18.60	33.07	51.67	297.61	395.47
1000	$1138.0{ }^{\circ}$	19.78	20.06	20.67	36.74	57.41	330.68	439.41
1	1.14	0.02	0.02	0.02	0.04	0.06	0.33	0.44
2	2.28	0.04	0.04	0.04	0.07	0.11	0.66	0.88
3	3.41	0.06	0.06	0.06	0.11	0.17	0.99	1.32
4	4.55	0.08	0.08	0.08	0.15	0.23	1.32	1.76
5	5.69	0.10	0.10	0.10	0.18	0.29	1.65	2.20
6	6.83	0.12	0.12	0.12	0.24	0.34	1.98	2.64
7	7.97	0.14	0.14	0.14	0.26	0.40	2.31	3.08
8	9.10	0.16	0.16	0.17	0.29	0.46	2.65	3.52
9	10.24	0.18	0.18	0.19	0.33	0.52	2.98	3.95
10	11.38	0.20	0.20	0.21	0.36	0.57	3.31	4.39
11	12.52	0.22	0.22	0.23	0.40	0.63	3.64	4.83
12	13.66	0.24	0.24	0.25	0.44	0.69	3.97	5.27
13	14.79	0.26	0.26	0.27	0.48	0.75	4.30	5.71
14	15.93	0.28	0.28	0.29	0.51	0.80	4.63	6.15
15	17.07	0.30	0.30	0.31	0.55	0.86	4.96	6.59
16	18.21	0.32	0.32	0.33	0.59	0.92	5.29	7.03
17	19.35	0.34	0.34	0.35	0.62	0.98	5.62	7.47
18	20.48	0.36	0.36	0.37	0.66	1.03	5.95	7.91
19	21.62	0.38	0.38	0.39	0.70	1.09	6.28	8.35
20	22.76	0.40	0.40	0.41	0.73	1.15	6.61	8.79

SQUARE WERSTS INTO DIFFERENT GEOGRAPHICAL SQUARE MEASURES.

$\begin{aligned} & \text { Russian } \\ & \text { square } \\ & \text { Wersts } \end{aligned}$ Wersts.	Sq. Kilo- metres.	$\begin{aligned} & \text { Austrian } \\ & \text { Sq. Miles. } \end{aligned}$	Prussian Sq. Miles.	German Sq. Miles. $15=1^{\circ} \mathrm{Eq} .$	Nautical square Leagues. $20=1^{\circ} \mathrm{Eq}$. $20=1^{\circ} \mathrm{Eq}$.	French Square Leagnes. $2 j=1^{\circ} \mathrm{Eq}$.	Geograph'l or Nautical Sq. Miles. $60=1^{\circ} \mathrm{Eq}$.	English Square Miles.
21	23.90	0.42	0.42	0.43	0.77	1.21	6.94	9.23
22	25.04	0.44	0.44	0.45	0.81	1.26	7.28	9.67
23	26.17	0.45	0.46	0.48	0.85	1.32	7.61	10.11
24	27.31	0.47	0.48	0.50	0.88	1.38	7.94	10.55
25	28.45	0.49	0.50	0.52	0.92	1.44	8.27	10.99
26	29.59	0.51	0.52	0.54	0.96	1.49	8.60	11.42
27	30.73	0.53	0.54	0.56	0.99	1.55	8.93	11.86
28	31.86	0.55	0.56	0.58	1.03	1.61	9.26	12.30
29	33.00	0.57	0.58	0.60	1.07	1.66	9.59	12.74
30	34.14	0.59	0.60	0.62	1.10	1.72	9.92	13.18
31	35.28	0.61	0.62	0.64	1.14	1.78	10.25	13.62
32	36.42	0.63	0.64	0.66	1.18	1.84	10.58	14.06
33	37.55	0.65	0.66	0.68	1.21	1.89	10.91	14.50
34	38.69	0.67	0.68	0.70	1.25	1.95	11.24	14.94
35	39.83	0.69	0.70	0.72	1.29	2.01	11.57	15.38
36	40.97	0.71	0.72	0.74	1.32	2.07	11.90	15.82
37	42.11	0.73	0.74	0.76	1.36	2.12	12.24	16.26
38	43.24	0.75	0.76	0.79	1.40	2.18	12.57	16.70
39	44.38	0.77	0.78	0.81	1.43	2.24	12.90	17.16
40	45.52	0.79	0.80	0.83	1.47	2.30	13.23	17.58
41	46.66	0.81	0.82	0.85	1.51	2.35	13.56	18.02
42	47.80	0.83	0.84	0.87	1.54	2.41	13.89	18.46
43	48.93	0.85	0.86	0.89	1.58	2.47	14.22	18.89
44	50.07	0.87	0.88	0.91	1.62	2.53	14.55	19.33
45	51.21	0.89	0.90	0.93	1.65	2.58	14.88	19.77
46	52.35	0.91	0.92	0.95	1.69	2.64	15.21	20.21
47	53.49	0.93	0.94	0.97	1.73	2.70	15.54	20.65
48	54.62	0.95	0.96	0.99	1.76	2.76	15.87	21.09
49	55.76	0.97	0.98	1.01	1.80	2.81	16.20	21.53
50	56.90	0.99	1.00	1.03	1.84	2.87	16.53	21.97
51	58.04	1.01	1.02	1.05	1.87	2.93	16.86	22.41
52	59.18	1.03	1.04	1.07	1.91	2.99	17.20	22.85
53	60.32	1.05	1.06	1.10	1.95	3.04	17.53	23.29
54	61.45	1.07	1.08	1.12	1.98	3.10	17.86	23.73
55	62.59	1.09	1.10	1.14	2.02	3.16	18.19	24.17
56	63.73	1.11	1.12	1.16	2.06	3.21	18.52	24.61
57	64.87	1.13	1.14	1.18	2.09	3.27	18.85	25.05
58	66.01	1.15	1.16	1.20	2.13	3.33	19.18	25.49
59	67.14	1.17	1.18	1.22	2.17	3.39	19.51	25.93
60	68.28	1.19	1.20	1.24	2.20	3.44	19.84	26.36

square wersts into different geographical square measures.

Russian square Wersts.	$\begin{aligned} & \text { Sq. Kilo- } \\ & \text { metres. } \end{aligned}$	Austrian Sq. Miles.	$\begin{aligned} & \text { Prussian } \\ & \text { Sq. Niles. } \end{aligned}$	German sq. Miles. $15=1^{\circ} \mathrm{Eq}$.	Nautical square Leagues. $20=1^{\circ}$ Eq.	French Square Leagues. $2 \overline{0}=1^{\circ} \mathrm{Eq}$.	Geograph'l or Aautical Sq. Mijes. $60=1^{\circ} \mathrm{E} q$.	English square Miles.
61	69.42	1.21	1.22	1.26	2.24	3.50	20.17	26.80
62	70.56	1.23	1.24	1.28	2.28	3.56	20.50	27.24
63	71.70	1.25	1.26	1.30	2.31	3.62	20.83	27.68
64	72.83	1.27	1.28	1.32	2.35	3.67	21.16	28.12
65	73.97	1.89	1.30	1.34	2.39	3.73	21.49	28.56
66	75.11	1.31	1.32	1.36	2.43	3.79	21.83	29.00
67	76.25	1.32	1.34	1.38	2.46	3.85	22.16	29.44
68	77.39	1.34	1.36	1.41	2.50	3.90	22.49	30.88
69	78.52	1.36	1.38	1.43	2.54	3.96	22.82	30.32
70	79.66	1.38	1.40	1.45	2.57	4.02	23.15	30.76
71	80.80	1.40	1.42	1.47	2.61	4.08	23.48	31.20
72	81.94	1.42	1.44	1.49	2.65	4.13	23.81	31.64
73	83.08	1.44	1.46	1.51	2.68	4.19	24.14	32.08
74	84.21	1.46	1.48	1.53	2.72	4.25	24.47	32.52
75	85.35	1.48	1.50	1.55	2.76	4.31	24.80	32.96
76	86.49	1.50	1.52	1.57	2.79	4.36	25.13	33.40
77	87.63	1.52	1.54	1.59	2.83	4.42	25.46	33.83
78	88.77	1.54	1.56	1.61	2.87	4.47	25.79	34.27
79	89.90	1.56	1.58	1.63	2.90	4.54	26.12	34.71
80	91.04	1.58	1.60	1.65	2.94	4.59	26.45	35.15
81	92.18	1.60	1.62	1.67	2.98	4.65	26.79	35.59
82	93.32	1.62	1.64	1.69	3.01	4.71	27.12	36.03
83	94.46	1.64	1.66	1.72	3.05	4.77	27.45	36.47
84	95.59	1.66	1.68	1.74	3.09	4.82	27.78	36.91
85	96.73	1.68	1.70	1.76	3.12	4.88	28.11	37.35
86	97.87	1.70	1.72	1.78	3.16	4.94	28.44	37.79
87	99.01	1.72	1.74	1.80	3.20	4.99	28.77	38.23
88	100.15	1.74	1.76	1.82	3.23	5.05	29.10	38.67
89	101.28	1.76	1.78	1.84	3.27	5.11	29.43	39.11
90	102.42	1.78	1.80	: 1.86	3.31	5.17	29.76	39.55
91	103.56	1.80	1.83	1.88	3.34	5.22	30.09	39.99
92	104.70	1.82	1.85	1.90	3.38	5.28	30.42	40.43
93	105.84	1.84	1.87	1.92	3.42	5.34	30.75	40.86
94	106.97	1.86	1.89	1.94	3.45	5.40	31.08	41.30
95	108.11	1.88	1.91	1.96	3.49	5.45	31.41	41.74
96	109.25	1.90	1.93	1.98	3.53	5.51	31.75	42.18
97	110.39	1.92	1.95	2.00	3.56	5.57	32.08	42.62
98	111.53	1.94	1.97	2.03	3.60	5.63	32.41	43.06
99	112.66	1.96	1.99	2.05	3.64	5.68	32.74	43.50
100	113.80	1.98	2.01	2.07	3.67	5.74	33.07	43.94

X. COMPARATIVE TABLE OF THE MOST IMPORTANT MEASURES OF SURFACE.

Square Kilometre.	$\begin{gathered} \text { Austrian } \\ \text { Square Mile. } \end{gathered}$	Prussian Square Mile.	German Square Mile. $15=1^{\circ}$ Equator	Nautical Square League. $20=1^{\circ}$ Equator.	French Square League. $25=1^{\circ}$ Equator $25=1^{\circ}$ Equator.	Geographical or Nautical Square Mile. $60=1^{\circ}$ Equator.	$\begin{aligned} & \text { English } \\ & \text { Square Mile. } \end{aligned}$	$\begin{gathered} \text { Russlan } \\ \text { Square Werst. } \end{gathered}$	Swedish Square Mile.	Spanish Square legua antigua.
1	0.017377	0.017625	0.018161	0.032286	0.050447	0.290577	0.386116	0.878718	0.008753	0.032201
0	8.239982	8.246124	8.259141	8.509018	8.702 38	9.463261	9.586718	9.943850	7.942172	8.507869
57.5464	1	1.01424	1.04510	1.85796	2.90307	16.72166	22.2196	50.5671	0.503721	1.85305
1.760018	0	0.006142	0.019159	0.269037	0.4628 .57	1.223279	1.346736	1.703868	9.702190	0.267887
56.7383	0.985957	1	1.03043	1.83187	2.86230	16.48683	21.9076	49.8570	0.496647	1.82703
1.753876	9.993858	0	c.013017	0.262595	0.456715	1.217137	$1.3+0594$	1.697726	9.696048	0.261745
55.0629	0.956843	0.970471	1	1.77778	2.77778	16.000000	21.2607	48.3848	0.481982	1.77308
1.740859	9.9503 .41	9.956983	0	0.249577	0.443697	1.204120	1.327577	1.684709	9.683031	0.248728
30.9729	0.538224	0.545890	0.562500	1	1.56250	9.000000	11.9591	27.2164	0.271115	0.997357
1.490982	9.73963	9.737105	9.750123	0	0.193820	0.954243	1.077700	1.434831	9.433153	9.998850
19.8226	0.344463	0.349370	0.360000	0.640000	1	5.760000	7.65384	17.4185	0.173513	0.638308
1.297162	9.537143	9.743285	9.556303	9.506180	0	0.760423	0.883850	1.241011	9.239333	9.505030
3.44143	0.059803	0.060654	0.062500	0.111111	0.173611	1	1.328792	3.024049	0.030124	0.110816
0.536739	8.776723	8.782859	8.795880	9.045757	9.239577	0	0.123457	0.480559	8.478913	9.044601
2.58989	0.045005	0.045646	0.047035	0.083618	0.130653	0.752563	1	2.27579	0.022670	0.083397
0.413282	8.653264	8.659406	8.672423	8.922300	9.116120	9.876.44	0	0.357132	8.355452	8.921151
1.13802	0.019776	0.020057	0.020668	0.036742	0.057410	0.330683	0.439408	1	0.009961	0.036645
0.056150	8.296132	8.302274	8315291	8.565169	8.755989	9.519412	9.642868	0	7.998322	8.564019
114.247	1.98523	2.01350	2.07477	3.68847	5.76324	33.19628	44.1109	100.387	1	3.67872
2.057845	0.297810	0.303952	0.316969	0.566847	0.760667	1.521059	1.644546	2.001678	0	0.565697
31.0550	0.539651	0.547337	0.563991	1.00265	1.56654	9.02400	. 11.9908	27.2866	0.271833	1
1.492131	9.732113	9.738255	9.751272	0001150	0.194970	0.955399	1.078849	1.435981	9.434303	0

[^4]
METEOROLOGICAL TABLES.

SERIES VI.

METEOROLOGICAL CORRECTIONS,

618

TABLES

for correcting series of observations for the periodic and non-periodic variations.

CONTENTS.

[The figures refer to the folio at the bottom of the page. - The letters near them mean, $\mathrm{D} .=$ calculated by Dove ; Gl. = Glaisher ; G. $=$ Guyot $; L .=$ Lefroy. For the letters before the latitudes, see page 12.]

Temperature.

Hourly Corrections for Periodic V'ariations.

NORTH AMERICA.

Station. Latitude. Scale. Page.

Table I. Washington, District Columbia,
" II. Philadelphia, Girard College,
" III. Philadelphia, Girard College,
" IV. Frankfort Arsenal, Penn.,
". V. Frankfort Arsenal, Penn.,
" VI. Toronto, Canada West,
" VII. 'Toronto, Canada West,
" VIII. Toronto, Canada West,
" IX. Toronto, Canada West,
" X. Montreal, Canada East,
" XI. Sitka, Alaska,
" XII. Boothia Felix, Arctic America,
" XIII. Lake Athabasca, Arctic America,
"XIV. Melville Island, Arctic America,
" XV. Hecla Cove, Spitzbergen,
Appendix.
". V'. Amherst College, Mass.,

B 1. $\overbrace{8}^{8} 54 \mathrm{~N}$. Reau. D. 15
$\mathrm{A}^{\prime} 3$. 3958 N . Reau. D. 15
$\mathrm{A}^{\prime} 3.3958 \mathrm{~N}$. Fahr. G. 16
C. 3957 N. Reau. D. 17
C. 3957 N. Fahr. D. 18
B. 4340 N. Fahr. D. 19
B. 4340 N . Reau. D. 20

A'6. 4340 N. Fahr. L. 21
A^{\prime} 6. 4340 N. Reau. D. 22
$\mathrm{A}^{\prime}{ }_{1} .4530 \mathrm{~N}$. Fahr. G. 22
A's. 573 N. Reau. D. 23
A. $\quad 6959 \mathrm{~N}$. Reau. D. 24
C. 59 N. Fahr. L. 25
C. 7447 N. Reau. D. 25
C. $\quad 7955$ N. Reau. D. 25
$\mathrm{A}^{\prime} 1.4222 \mathrm{~N}$. Fahr. D. 28

SOUTH AMERICA.

| " XVI. Rio Janeiro, Brazil, | C. | 2254 S. | Fiahr. | D. | 26 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| " XVII. Rio Janeiro, Brazil, | C. | 2254 S. | Reau. | D. | 27 |

		Station.		Latitude.	Scale.	Page.
Table	XVIII.	Trevandrum, India,	A.	831 N .	Fahr.	D. 31
،	NIX.	Trevandrum, India,	A.	831 N .	Reau.	D. 32
'	XX.	Madras, India,	A.	134 N.	Fahr.	D. 33
"	XXI.	Madras, India,	A.	134 N.	Reau.	D. 34
"	XXII.	Bumbay, India,	A.	1856 N.	Fahr.	D. 35
"	XXII.	Bombay, India,	A.	1856 N.	Reau.	D. 36
'6	SXIV.	Madras, India,	$\mathrm{A}^{\prime}{ }^{\text {a }}$.	134 N .	Reau.	D. 37
"	XXV.	Bombay, India,	A^{\prime}.	1856 N.	Reau.	D. 37
"	XXV1.	Calcutta, India,	$\mathrm{A}^{\prime} 2$.	2233 N .	Reau.	D. 38
"	XXVII.	Tifis, Georgia,	$\mathrm{A}^{\prime}{ }^{\text {d }}$.	4141 N.	Reau.	D. 39
"	XSVIII.	Peking, China,	$\mathrm{A}^{\prime}{ }^{\text {d }}$.	3954 N .	Reau.	D. 39
"	SXIX.	Nertchinsk, Siberia,	$\mathrm{A}^{\prime} 6$.	5118 N.	Reau.	D. 40
"	XXX.	Nertchinsk, Siberia,	A.	5118 N.	Reau.	D. 41
"	XXXI.	Barnaul, Siberia,	A.	5320 N .	Fahr.	D. 42
'6	SXXII.	Barnaul, Siberia,	A.	5320 N.	Reau.	D. 43
"	XXXIII.	Barnaul, Siberia,	$\mathrm{A}^{\prime} 6$.	5320 N .	Reau.	D. 44

EUROPE.
" XXXIV. Rome, Italy,
" XXXV. Padua, Italy,
" XXXVI. Geneva, Switzerland,
" XXXVH. Geneva, Switzerland,
" XXXVIII. St. Bernard, Switzerland,
" XXXIX. St. Bernard, Switzerland,
" XL. Kremsmiinster, Austria,
" XLI. Salzburg, Austria,
" XLIl. Munich, Bavaria,
" XLIII. Prague, Bohemia,
" XLIV. Prague, Bohemia, XLV. Plymouth, England, XLVI. Plymonth, England, XLVII. Brussels, Belgium,
" XLVIII. Brussels, Belgium,
" XLIX. Schwerin, Germany,
" L. Miihhhausen, Prussia,
" LI. Utrecht, Holland,
" LII. Greenwich, England,
" LIII. Greenwich, England,
" LIV. Greenwich, England,
" LV. Halle, Prussia,
" LVI. Göttingen, Hanover,
C. 4154 N. Reau. D. 47
C. 4524 N. Reau. D. 48

C 10. 46 12 N. Reau. D. 49
C^{\prime} 4. 4612 N. Reau. D. 49
C 10. 4552 N. Reau. D. 50
C^{\prime} t. 4552 N. Reau. D. 50
C. 483 N. Reau. D. 51

A'6. 4748 N. Reau. D. 52
A^{\prime}. 489 N . Reau. D. 52
A $^{\prime} 10.505 \mathrm{~N}$. Reau. D. 53
A. 505 N . Reau. D. 54
C. 5022 N. Fahr. D. 55
C. 5022 N. Reau. D. 56
B. 5051 N . Reau. D. 57

B'. 5051 N . Reau. D. 58
B's. 5336 N . Reau. D. 58
C. 5113 N. Reau. D. 59

A'2. 525 N . Reau. D. 60
B7. 5129 N. Reau. D. 60
B. $\quad 5129$ N. Reau. D. 61
B. $\quad 5129 \mathrm{~N} . \quad$ Fahr. Gl. 62
C. 5130 N . Reau. D. 63
C. 5132 N. Reau. D. 64

AFRICA AND AUSTRALIA.

Monthly Corrections for Non-periodic Variations.

	Station.	Latitude.	Scale.		Page.
Table LXXIX.	Madras, India,	$13{ }^{\circ} 4 \mathrm{~N}$.	Reau.	D.	90
LXXX.	Palermo, Sicily,	387 N.	Reau.	D.	91
LXXXI.	Milan, Italy,	4528 N.	Reau.	D.	92
LXXXII.	Geneva, Switzerland,	4612 N.	Reau.	D.	94
" LXXXIII.	Vienna, Austria,	4813 N.	Reau.	D.	96
" LXXXIV.	Ratisbon, Austria,	491 N.	Reau.	D.	97
" LXXXV.	Stuttgart, South Germany,	4846 N.	Rean.	D.	99
" LXXXVI.	Carlsruhe, South Germany,	491 N.	Reau.	D.	100
" LXXXVII.	Berlin, Prussia,	5230 N .	Reau.	D.	102
" LXXXVIII.	Copenhagen, Denmark,	5541 N .	Reau.	D.	105
LXXXIX.	Paris, France,	4850 N .	Reau.	D.	107
XC.	Zwanenburg, Holland,	5223 N .	Reau.	D.	108
XCI.	London, England,	5130 N .	Reau.	D.	110

Station.
Table XCII. Kinfauns Castle, Scotland,
" XClII. Torneå, Finland,
" XCIV. Albany, N. Y., North America,
" XCV. Salem, Mass., North America,
" XCVI. Reikiavik, Iceland,
" XCVII. Godthaab, Greenland,

Latitude. Scale. Sage.
5624 N. Reau. D. 112
6550 N. Reau. D. 112
4239 N. Reau. D. 113
4231 N . Reau. D. 114
648 N. Reau. D. 115
6410 N. Reau. D. 115

Force of Vapor and Relative Humidity.
Hourly Corrections for Periodic Variations.
" XCVIII. Greenwich, England, Force of Vapor, by Glaisher, . . 119
" XCIX. Greenwich, England, Relative Humidity, by Glaisher, . 120

METEOROLOGICAL CORRECTIONS.

One of the prominent objects of a prolonged series of meteorological observations is to determine the mean condition of the atmosphere, during a given interval of time, such as a day, a month, or a year, as to its temperature, moisture, and barometric pressure. In order to furnish the true means of these elements, free from the periodic changes which depend upon the daily course of the sun and upon the seasons, the observations ought to be made at equal intervals of time, and be so often repeated as actually to represent the sum of the variations which took place during the stated time. It is generally admitted that observations taken at every one of the twentyfour hours of the day give means which do not sensibly differ from the means which would be obtained from a still larger number of observations during the same time; so that means derived from hourly observations may be considered as the true daily, monthly, and annual means of the year in which the observations were taken.

However, as the means of a given month, or year, will generally be found somewhat to differ from those of another year, at the same place, from causes which are not of a periodic nature, it is obvious that the absolute means can only be derived from the means of a series of years, in which the differences arising from these nonperiodic variations may be considered as sufficiently balancing each other.

Hourly observations can be expected only from a very few stations, favored with peculiar arrangements for the purpose. By far the larger number of observers must necessarily confine themselves to three or four observations a day. The means, therefore, deduced from such a set of observations, generally differ from the true means which would be given by hourly observations, by a quantity which varies with the hours selected for the observations. If that quantity, however, is known by having been previously determined for every hour, or set of hours, by a long series
of hourly obscrvations taken at some station in a similar climatic situation, it is evident that, whatever be the hours at which observations are taken, the means derived from them can always be reduced to the true means by correcting them for that difference.

The following tables furnish such corrections, both for periodic and non-periodic variations of temperature, and for stations situated in various latitudes. They give the quantities which must be added to, or subtracted from, the hourly means, in order to obtain the true means of the day, of the month, and of the year.

Two tables of the same description, for moisture, which may be considered as specimens of the kind, close the set.

Two other tables, for correcting the mean barometric pressures, are found at the end of the Hypsometrical Tables, pp. 92, 93.

CORRECTIONS FOR TEMPERATURE.

HOURLY CORRECTIONS FOR PERIODIC VARIATIONS, or

TABLES

for reducing the means of the observations taken at any hour of the day to the true mean temperature of the day, of the month, and of the year.

HOURLY CORRECTIONS FOR PERIODIC VARIATIONS,

ов

corrections to be applied to the means of the hours of observation, or sets of hours, in order to obtain the true mean temperatures of the respective days, months, and of the year.

The following set contains all the tables for correcting the means of observations on atmospheric temperature for the effect of diurnal variation which have been published by Dove, together with a few others of the same description. Dove's tables are found in two papers, published in the Memoirs of the Royal Academy of Berlin for 1846 and for 1856, and in the first Report on the Observations of the Meteorological Institute of Prussia, Berlin, 1851.
In the first paper are twenty-nine tables, in Reaumur's scale, nine of which have been republished, in Fahrenheit's scale, in the Proceedings of the British Association for 1847, and will also be found below. In that series the corrections have been formed by finding first the differences between the hourly and the true means, and then computing the observations by Bessel's formula, in order to eliminate the accidental irregularitics due to the shortness of the period during which the observations were taken. Calling x the horary angle reckoned from noon, Bessel's formula is

$$
t x=u+u^{\prime} \sin \left(x+U^{\prime}\right)+u^{\prime \prime} \sin \left(2 x+U^{\prime \prime}\right)+u^{\prime \prime \prime} \sin \left(3 x+U^{\prime \prime \prime}\right) .
$$

The stations at which hourly observations were made are Trevandrum, Madras, Bombay, Salzuflen, Prague, St. Petersburg, Catharinenburg, Barnaul, Nertchinsk, Matosclikin-Schar, Strait of Kara, and Boothia Felix. Bi-hourly observations were taken at Brussels, Greenwich, and Toronto ; in all others the night observations are wanting, and were obtained by interpolation. Moreover, in several stations the number of observations was small, at Madras even only thirty-six days. The tables of that series may be readily distinguished from those belonging to the same stations in the second, by their containing the corrections for several sets of hours, which are not found in the tables of the other.

In Dove's second series, and in all other tables, the corrections given are simply the differences, with reverse signs, between the hourly and the true means, excepting, however, the stations of Toronto, in which the corrections were computed, by Bessel's formula, by Colonel Sabine ; of Prague, by Jelineck ; of Salzburg, and those of Geneva and St. Bernard, by Plantamour.
The observations from which these tables are derived were made hourly at Hobarton during 8 years; at the Cape of Good Hope, for $5 \frac{1}{4}$ years; St. Helena, 5 years; Madras, 5 years ; Bombay, 4 years ; Calcutta, $1 \frac{1}{2}$ years; Toronto, 6 years; Philadelphia, 3 years; Makerstoun, 3 years; Utrecht, $1 \frac{3}{2}$ years; Prague, $10 \frac{1}{2}$ years; Munich, 7 ycars; Salzburg, 6 years; St. Petersburg, 10 years; Catherinenburg, 6 years; Barnaul, $\mathbf{5}$ years; Tiffis, 4 years; Nertchinsk, 6 years; Peking, 4 years; Sitka, $\mathbf{5}$ years. In the following stations the observations were bi-hourly : - Washington, for $1 \frac{1}{2}$ years; Greenwich, 7 years; Dublin, 4 years; Brussels, 9 years; Geneva and St. Bernard, 4 years; Schwerin, $\mathbf{3}$ years.

The observations made in England, and in her colonies, are found in the various goverıment publications. Those of the Russian stations are taken from the Annuaire Météorologique et Magnétique des Ingénieurs des Mines, and in the Annales de
l'Observatoire Physique Central de Russie. The observations made at Pragne, Munich, Geneva, with those at St. Bernard, Makerstoun, Greenwich, Brussels, and Washington, were published by their respective Observatories; those of Utrecht, by BuysBallot; of Dublin, by Lloyd, in his Notes on the Meteorology of Ireland; those of Schwerin were communicated in manuscript by Dippe; the observations at Melville Island are published in No. 42 of the Parliamentary papers for 1854 ; and those at Bossekop, by Martins and Bravais, in the Voyage de la Commission Scientifique du Nord.

The tables of this second series being mostly deduced from longer serics of observations than those in the first, when the same station is found in both, the table in the second is generally to be preferred.

Glaisher's table for Greenwich has been taken from the Greenwich Obserrations. Captain Lefroy kindly furnished the tables for Toronto and Lake Athabasca. 'To him the author is also indebted for the observations made at Montreal by Mr. McCord, from which 'Table X. was computed. Table III., for Philadelphia, was deduced by the writer from the observations made at Girard College under the direction of Prof. A. D. Bache.

In order to facilitate the selection of the tables, they are marked in the table of contents with capitals, which have the following signification:-

A and B mean that the tables have been derived from hourly and bi-hourly observations, and have been computed by Bessel's formula; C, that the tables contain values obtained by interpolation.
$\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and C^{\prime} indicate the tables based respectively on hourly and bi-hourly or partly interpolated observations, which give simply the differences between the hourly and the truc means.

The figures added to the letters indicate the number of years during which the observations used in forming the table were carried on. The stations are arranged, in each continent, in the order of their latitude.

Use of the Tables.

In order to reduce meteorological means obtained from any set of hours to the true means, the table best suited to the purpose must first be selected. The diurnal variation changing with the seasons, the latitude, the altitude, and the distance from the sea-shore, the station which comes nearest, in all these respects, to the station the observations of which are to be corrected, must be adopted.

Suppose the thermometer has been observed at Baltimore, during the month of January, at 7 A. M., 1 P. M., and 7 P. M., and the monthly means of these hours to be respectively $27^{\circ}, 35^{\circ}$, and 31° Fahrenbeit. We take Table III., Philadelphia, it being the nearest in latitude and climatic situation. We find the correction for the hours 7, 1, and 7, and we have

Observ	red Means.	Corrections.		True Means.
For 7 A. M.	27°	$+3^{\circ} .63$	$=$	$30^{\circ} .63$
For 1 P. M.	35°	- $3^{\circ} .87$	$=$	$31^{\circ} .13$
For 7 P. M.	31°	$-1^{\circ} .13$	$=$	$29^{\circ} .87$
Sums,	93°	$-\overline{10.37}$	=	$91^{\circ} .63$
Means,	31°	- $0^{\circ} .46$	二	$30^{\circ} .54$ True Mean for January.

It is obvious that the corrections can be applied, either separately to each hour, as is done above, or collectively, in taking the mean of the three bourly corrections and applying it to the mean of the three observations, as in the last line, which is the more convenient method. Therefore, in order to find the correction for any set of hours, it suffices to take the mean of the corrections given in the table for the hours composing the set. The true daily means can be found in the same way, and the true yearly means can be derived from the corrected monthly means, or by applying the corrections given in the last column.

HoURLY C0RRECTIONS

FOR

PERIODIC VARIATIONS.

NORTH AMERICA. - SOUTH AMERICA.

North America. - Washington. Lat. $38^{\circ} 54^{\prime}$ N. Long. $77^{\circ} 3^{\prime}$ W. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the lear. - Dove.

Degrees of Reaumur.

North America. - Philadelphia. Lat. $39^{\circ} 58^{\prime}$ N. Long. $75^{\circ} 11^{\prime}$ W. Greenw.

Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean Temperatures of the respective Days, Months, and of the Year. - Guxot.
Degrees of Fabrenheit.

Hour.	Jan.	Feb.	March.	Aprit.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year
Miduight	1.47	2.90	2.90	4.13	4.68	5.28	4.70	4.37	4.47	3.80	2.70	1.40	3.57
1	2.13	3.37	3.6:3	4.88	5.25	5.93	5.57	4.93	4.60	4.17	2.73	1.83	4.08
2	2.20	3.57	4.17	5.88	5.9 .5	6.45	6.10	5.43	5.00	4.87	3.20	2.20	4.59
3	2.57	4.43	4.50	6.28	6.68	7.23	6.53	5.50	5.47	5.27	3.37	2.53	503
4	2.80	4.67	4.70	6.75	7.38	7.68	6.90	6.17	5.77	5.77	3.90	2.87	5.45
5	3.07	4.83	5.63	6.95	7.15	7.10	7.033	6.50	6.03	6.23	4.10	3.10	5.70
6	3.10	5.10	5.50	6.4.)	5.93	5.73	5.50	5.93	5.97	6.60	4.23	3.23	5.32
7	3.63	5.17	5.03	4.90	3.80	3.28	3.50	4.13	4.38	5.37	4.20	3.07	4.20
8	3.17	3.3:3	2.60	2.50	1.48	0.90	1.27	1.50	1.93	2.40	2.70	2.57	2.16
9	1.77	1.33	$0 . \sim 0$	0.58	-0.85	-1.15	-0.77	-0.43	-0.10	-0.37	0.57	1.17	0.19
10	0.0%	-0.83	-1.03	-1.58	2.38	-2.75	-2.20	-2.37	-2.43	-2.67	-1.27	-0.50	-1.66
11	-1.	2.63	-3.10	-3.40	90	-4.33	-3.87	-4.13	-4.27	-4.43	-2.	2.07	-3.37
Noon.	-2.70	-3.93	-4.43	-4.72	-5.03	$-.5 .63$	-5.03	-5.27	-5.50	-5.90	-4.00	-2.87	-4.58
1	-3.87	-5.27	-5.50	-6.38	-6.0	-6.88	-5.93	-6.00	-6.47	-7.10	-5.10	-3.67	-5.69
2	-1.57	-.5.97	-6.17	-7.12	-6.98	-7.15	-6.63	-6.83	-7.20	-7.80	-5.67	-4.13	-6.40
3	-1.70	-6.30	-6.90	-7.63	-7.5.5	-7.63	7.03	-7.00	-7.33	7.80	-5.60	4.	-6.64
4	-1.18	-6.00	-6.7.	$-7.6 .5$	-7.78	-7.73	-683	-6.70	-7.13	-7.53	-5.07		-6.44
5	-2.90	-4.N7	-. 5.67	-7.00	-7.33	-6.85	-6.57	-6.07	-6.23	-5.57	-3.30	-2.47	-5.40
6	-2.0:	-3.03	-3.60	-5.55	-.5..53	-5.55	-5.13	-4.57	-3.97	-3.03	-1.87	-1.43	-3.77
7	-1.13	-1.77	-1.97	-2.70	-2.58	-3.10	-3.20	-2.30	-1.70	-1.20	-0.77	-0.70	-1.95
8	-0.4\%	-0.43	-0.13	-0.60	-0.13	0.15	0.08	0.03	0.63	0.37	0.15	-0.10	-0.11
9	0.17	$0.3)$	0.7 \%	0.83	1.4	1.85	1.33	1.37	18.3	1.43	0.63	0.20	1.01
10	0.77	1.13	1.7	2.15	2.50	3.10	2.17	2.47	3.00	2.77	1.00	0.60	2.00
11	1.27	1.7.	2.17	3.30	3.93	4.30	3.53	3.23	3.70	3.63	1.77	0.90	2.78
6, 6	$0.6{ }^{-}$	1.01	0.9.)	0.45	0.20	0.09	0.34	0.68	1.00	1.79	1.18	0.90	0.78
7, 7	. 2	1.70	1.53	1.10	0.46	0.09	0.15	0.92	1.32	2.09	1.7	1.19	1.13
8, 8	1. ${ }^{\text {a }}$	1.15	1.18	0.8.)	0.68	0.53	0.67	0.77	1.01	1.38	1.3	1.2	1.04
9,9	0.9 ;	0.29	0.76	0.72	0.32	0.35	0.28	0.47	0.72	0.53	0.6	0.69	0.66
10, 10	0.42	0.15	0.35	0.81	0.21	0.18	0.14	0.0 .5	0.29	0.05	-0.1	0.0	0.17
$7,2,9$	-0.22	-0.1	-0.15	-0.53	-0.57	-0.77	-0.61	-0.44	-0.3.5	-0.33	-0.2	-0.29	-0.39
$6,2,8$	-0.5\%	-0.13	-0.37	-0. 12	-0.39	-0.52	-0.37	-0.2:	-0.20	-0.28	-0.4	-0.67	-0.41
$6,2,10$	-0.13	0.0.)	0.53	0.74	0.58	0.46	0.55	0.52	0.59	0.	-0.1	-0.10	0.44
6, 2, 6	-1.0	-0.72	-1.42	-2.07	-2.19	-2.42	-1.43	-1.82	-1.7	-1.	-1.1	-0.78	-1.14
7, 2	-0.47	-0.10	-0.57	-1.11	-1.59	-2.09	-1.57	$-1.3 .5$	-1.	-1.2	-0.7	-0.5	-1.09
8,2	-0.70	-1.32	-1.65	-2.31	-2.7	-3.28	-2.65	-2.67	-2.9	-2.7	-1.	-0.7	-2.10
8, 1	-0.35	-0.97	-1.3.5	-1.94	-2.30	-2.99	-2.33	-2.25	-2.53	-2.35	-1.2	-0.55	-1.76
7, 1	-0.12	-0.07	-0.2i	-0.74	-1.14	-1.80	-1.22	-0.9	-1.0	-0.8	-0.	-0.3	-0.75
$9,12,3,9$	-1.37	-2.15	-2.4.5	-2.73	-2.90	-3.14	1-2.88	-2.83	-9.8	-3.16	-2.	-1.4	-2.53

N. America. - Frankfort Arsenal. Lat. $39^{\circ} 57^{\prime}$ N. Long. $75^{\circ} 8^{\prime}$ W. Greenw.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	1.34	1.46	1.75	1.87	2.60	3.41	3.07	2.69	2.63	2.40	1.18	1.34	2.15
2	1.51	1.73	2.13	2.33)	3.0 .5	3.73	3.51	3.04	3.05	2.67	1.27	1.50	2.46
3	1.82	1.98	2.56	2.88	3.43	3.92	3.83	3.32	3.49	2.94	1.41	1.66	2.77
4	2.13	2.23	2.90	3.29	3.57	3.84	3.84	3.36	3.73	3.13	1.51	1.80	2.94
5	231	2.46	2.95	3.31	3.32	3.36	3.40	2.99	3.54	3.12	1.73	1.87	2.86
6	2.25	2.35	2.62	2.83	2.65	2.46	2.52	2.21	2.84	2.82	1.38	1.80	2.39
7	1.88	2.01	1.91	1.94	1.66	1.26	1.34	1.15	1.71	2.19	1.06	1.52	1.64
8	1.22	1.33	0.94	0.85	0.57	-0.03	0.08	0.01	0.36	1.26	0.58	0.97	0.68
9	0.34	0.30	-0.07	-0.20	-0.45	-1.20	-1.06	-1.00	-0.96	0.12	-0.02	0.18	-0.34
10	-0.62	-0.72	-1.00	-1.05	-1.29	-2.11	-1.96	-1.78	-2.06	-1.13	-0.70	-0.76	-1.27
11	-1.54	-1.77	-1.76	-1.69	-1.97	-2.74	-2.64	-2.34	-2.89	-2.33	-1.12	-1.70	-2.04
Noo	-2.30	-2.60	-2.32	-2.22	-2.35	-3.17	-3.16	-2.78	-3.47	-3.35	-1.96	-2.45	-2.65
1	-2	-30	-2.74	-2.72	-3.07	-3.51	-3.58	-3.16	-3.86	-4.05	-2.38	-2.87	-3.15
2	-3.02	-3.18	-3.01	-3.19	-3.52	-3.77	-3.87	-3.48	-4.07	-4.36	-2.54	-2.89	-3.41
3	-2.92	-2.93	-3.10	-3.53	-3.78	-3.89	-3.94	-3.61	-4.02	-4.22	-2.40	-2.54	-3.41
4	-2.53	-2.44	-2.95	-3.55	-3.70	-3.75	-3.67	-3.42	-3.63	-3.66	-1.96	-1.94	-3.10
5	-1.90	-1.87	-2.50	-3.11	-3.20	-3.23	-3.00	-2.81	-2.84	-2.75	-1.52	-1.23	-2.50
6	-1.1	-1.11	-1.78	-2.23	-2.31	-2.33	-2.00	-1.83	-1.72	-1.65	-0.56	-0.5.5	-1.60
7	-0.0.37	-0.46	-0.92	-1.09	-1.19	-1.16	-0.83	-0.67	-0.48	-0.54	0.14	0.01	-0.63
8	0.29	0.12	-0.06	0.02	-0.10	0.07	0.28	0.43	0.66	0.43	0.69	0.42	0.27
9	0.76	0.66	0.61	0.85	0.50	1.17	1.17	1.29	1.49	1.17	1.02	0.71	0.98
10	1.02	0.93	1.0	1.32	1.43	2.02	1.79	1.81	1.96	1.66	1.15	090	1.42
11	1.13	1.18	1.3	1.5	1.85	2.61	2.24	2.15	2.18	1.96	0.91	1.06	1.67
Midn. .	1.19	1.36	1.48	1.62	2.01	3.04	2.63	2.40	2.35	2.18	1.15	1.20	1.88
6. 6	0.56	0.62	0.42	0.30	0.17	0.07	0.26	0.19	0.56	0.58	0.41	0.62	0.40
7. 7	0.76	0.78	0.5	0.4	0.24	0.05	0.26	0.24	0.62	0.83	0.60	0.76	0.51
8. 8	0.76	0.72	0.44	0.43	0.24	0.02	0.18	0.22	0.51	0.85	0.63	0.70	0.48
9. 9	0.5	0.4	0.27	0.33	0.18	-0.02	0.06	0.14	0.26	0.64	0.50	0.44	0.32
10.10	0.20	0.11	0.03	0.13	0.07	-0.05	-0.08	0.03	-0.05	0.26	0.23	0.07	0.08
7. 2. 9	-0.13	-0.17	-0.16	-0.13	-0.35	-0.45	-0.45	-0.35	-0.29	-0.33	-0.15	-0.22	-0.27
6. 2. 8	-0.16	-0.24	-0.15	-0.11	-0.32	-0.41	-0.36	-0.28	-0.19	-0.37	-0.16	-0.22	-0.25
6. 2.10	005	0.03	0.22	0.32	0.19	0.24	0.15	0.19	0.24	0.04	0.00	-0.06	0.14
6. 2. 6	-0.64	-0.65	-0.72	-0.86	-1.06	-1.21	-1.12	-1.03	-0.98	-1.06	-0.57	-0.55	-0.57
7. 2	-0.57	-059	-0.55	-0.63	-0.93	-1.26	-1.27	-1.17	-1.18	-1.09	-0.74	-0.69	-0.89
ช. 2	-0.90	-0.93	-1.04	-1.17	-1.43	-1.90	-1.90	-1.74	-1.86	-I.55	-0.98	-0.96	-1.37
8. 1	-0.82	-0.84	-0.90	-0.94	-1.25	-1.77	-1.75	-1.55	-1.75	-1.40	-0.90	-0.95	-1.24
7. 1	-0.49	-0.50	-0.42	-0.39	-0.71	-1.13	-1.12	-1.10	-1.08	-0.93	-0.66	-0.68	-0.76
9.12.3.9	-1.03	-1.14	-1.22	-1.28	-1.45	-1.77	-1.75	-1.53	-1.74	-1.57	-0.84	-1.03	-1.36
7.2.2(9)	0.10	0.04	-0.03	0.11	-0.07	-0.04	-0.05	0.06	0.16	0.04	0.14	0.01	0.04
Dail.ext.	-0.36	-0.36	-0.08	-0.12	-0. 11	0.02	-0.05	-0.13	-0.17	-0.62	-0.41	-0.51	-0.21

The numbers without sign must be added ; those with the sign - must be subtracted.
N. America. - Frankfort Arsenal. Lat. $39^{\circ} 57^{\prime}$ N. Long. $75^{\circ} 8^{\prime}$ W. Greenw. Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Fahrenheit

The numbers without sign must be alded; those with the sign - must be subtracted.
N. America. - Toronto. Lat. $43^{\circ} 39^{\prime} 35^{\prime \prime}$ N. Long. $79^{\circ} 21^{\prime} 30^{\prime \prime}$ W. Greemw.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Fahrenheit.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	1.87	0.92	3.04	4,43	5.90	5.94	6.30	5.06	5.74	4.16	1.91	1.04	3.87
2	2.16	1.33	3.56	5.11	6.64	6.62	7.13	5.68	6.68	1.68	2.14	1.13	4.41
3	2.39	1.91	4.19	5.76	7.36	7.29	8.01	6.82	7.63	5.04	2.39	1.40	5.02
4	2.68	2.66	4.75	6.17	7.65	7.56	8.44	7.61	8.19	5.20	2.61	1.78	5.45
5	3.02	3.40	4.95	5.94	7.07	6.98	7.88	7.49	7.94	5.02	2.68	2.16	5.38
6	3.29	3.92	4.61	4.97	5.49	5.38	6.14	6.14	6.71	4.45	2.52	2.39	4.68
7	3.26	3.98	3.65	3.35	3.17	3.04	3.49	3.67	4.52	3.44	2.0 .5	2.27	3.33
8	2.72	3.40	2.12	1.42	0.68	0.43	0.52	0.68	1.78	1.91	1.15	1.71	1.55
9	1.58	2.33	0.29	-0.50	-1.51	-1.85	-2.12	-2.09	-1.06	-0.05	-0.07	0.79	-0.36
10	0.00	0.61	-1.60	-2.07	-3.08	-3.47	-4.01	-4.14	-3.62	-2.25	-1.46	-0.34	-2.12
11	-1.71	-1.15	-3.26	-3.26	-4.14	-4.16	-5.15	-5.33	-5.72	-4.39	-2.79	-1.44	-3.55
N	-3.11	-2.66	-4.55	-4.19	-5.00	-5.18	-5.90	-5.96	-7.25	-6.12	-3.78	-2.30	-4.66
1				-5	-5.99	-5.94	-6.59	-6.50	-8.33	-7.11	-4.28	-2.77	-5 45
2	- 9 9	-	-5	-5	-7.16	-6.89	-7.	-7.11	-8.89	-7.25	4	6	-594
2	-0.95	$\left.\right\|_{-4.07} ^{-3.9 .2}$			-8.15	-7.74	-8.28	-7.70	-8.87	-6.53	-3.51	-2.66	-6.08
3	-3.53	-3.92	-5.60	-6.35	-8.15	-7.74 -8.08	-8.28 -8.55	-7.70 -7.81	-8.87 -8.12	-6.33 -5.18	--3.51	-2.26	-5.72
4	-2.84	-3.33	-5.02	-6.18	-8.51	-8.08	-8.55	-7.81	-8.12	-5.18	-2.52	-2.23	-5.72
								-6.95	-6.59	-3.53	-1.44	-1.71	-4.84
5		-2	-	-	-			-6.95	-6.59	-1.91	-1.44		
6	-1.62	-1.89	-2.75	-4.66	-5.83	-5.65	-5.94	-5.00	-4.43	-1.91	-0.45	-1.13	-3.44
7	-1.24	-1.24	-1.31	-2.81	-3.08	-3.04	-3.17	-2.25	-1.94	-0.50	0.32	-0.54	-1.73
8	-0.85	-0.68	0.05	-0.77	-0.16	-0.18	-0.18	0.65	0.43	0.65	0.86	0.02	-0.02
9	-0.43	-0.25	1.15	1.06	2.30	2.30	2.39	2.97	2.30	1.53	1.17	0.47	1.42
10	0.16	0.11	1.89	2.41	3.94	3.98	4.14	4.32	3.58	2.25	1.37	0.81	2.41
11	0.83	0.3	2.34	3.26	4.82	4.93	5.11	4.77	4.37	2.90	1.53	0.97	3.02
Midn.	1.42	0.63	2.66	3.85	5.33	5.45	5.64	4.8 .1	5.00	3.56	1.71	1.01	3.42
6. 6	0.83	1.01	0.95	0.16	-0.18	0.14	0.11	0.56	1.13	1.28	1.04	0.63	0.61
7. 7	1.01	1.27	1.17	0.29	$-0.0 .5$	0.00	0.16	0.72	1.28	1.49	1.19	0.86	0.81
8. 8	0.92	1.37	1.08	0.34	0.27	0.14	0.16	0.68	1.10	1.28	1.01	0.86	0.77
9. 9	0.59	0.99	0.72	0.29	0.41	0.23	0.14	0.45	0.63	0.74	0.56	0.63	0.54
10.10	0.07	0.36	0.14	0.16	0.43	0.27	0.07	0.09	-0.02	0.00	-0.05	0.23	0.14
7. 2. 9	-0.38	-0.11	-0.32	-0.45	-0.56	-0.52	-0.51	-0.16	-0.70	-077	-0.32	$-0.0 .5$	-0.41
6. 2. 8	-0.52	-0.27	-0.36	-0.52	-0.61	-0.56	-0.50	-0.11	-0.59	-0.70	-0.25	-0.16	-0.43
6. 2.10	-0.18	-0.02	0.27	0.54	0.77	0.83	0.95	1.13	0.47	-0.18	-0.09	0.11	0.38
6. 2. 6	-0.77	-0.68	-1.28	-1.82	-2.50	-2.39	-2.43	-1.98	-2.21	$-1.5 .5$	-0.70	-0.54	-1.58
					-2.00	-1.94	-2.00	-1.73	-2.18	-1.91	-1.06	-0.29	-1.31
7. 2	-0	-0	-1.04	-1.19	-2.00	-1.94	-2.00	-1.73		-1.91		-0.59	-2. 21
8. 2	-0.63	-0.34	-1.80	-2.18	-3.24	-3.24	-3.49	-3.22	-3.56	-2.68	-1.51	-0.59	-2.21
8. 1	-0.59	-0.14	-1.62	-1.80	-2.66	-2.77	-3.04	-2.93	-3.29	-2.61	-1.58	-0.54	-1.96
\%. 1	-0.32	0.16	-0.86	-0.81	-1.42	-1.46	-1.55	-1.42	-1.91	-1.85	-1.13	-0.25	-1.06
9.12 .3		-1.1	-2.18	-2.50	-3.03	-3.13	-3.19	-3.20	-3.71	-2.79	-1.55	-0.92	-2.43
7. $2.2(9)$	-0.41	-0.16	0.07	-0.07	0.16	0.18	0.20	0.63	0.07	-0.18	- 0.07	0.09	0.05

N. America. - Toronto. Lat. $43^{\circ} 39^{\prime} 35^{\prime \prime}$ N. Long. $79^{\circ} 21^{\prime} 30^{\prime \prime}$ W. Greenw.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.83	0.41	1.35	1.97	2.62	2.64	2.80	2.25	2.55	1.85	0.85	0.46	1.72
2	0.96	0.59	1.58	2.27	2.95	2.94	3.17	2.57	2.97	2.08	0.95	0.50	1.96
3	1.06	0.85	1.86	2.56	3.27	3.24	3.56	3.03	3.39	2.24	1.06	0.62	2.23
4	1.19	1.18	2.11	2.74	3.40	3.36	3.75	3.38	3.64	2.31	1.16	0.79	2.42
5	1.34	1.51	2.20	2.64	3.14	3.10	3.50	3.33	3.53	2.23	1.19	0.96	2.39
6	1.46	1.74	2.05	2.21	2.44	2.39	2.73	2.73	2.98	1.99	1.12	1.06	2.08
7	1.45	1.77	1.62	1.50	1.41	1.35	1.55	1.63	2.01	1.53	0.91	1.01	1.48
8	1.21	1.51	0.94	0.63	0.30	0.19	0.23	0.30	0.79	0.85	0.51	0.76	0.69
9	0.70	0.99	0.13	-0.22	-0.67	-0.82	-0.94	-0.93	-0.47	-0.02	-0.03	0.35	-0.16
10	-0.00	0.27	-0.71	-0.92	-1.37	-1.54	-1.78	-1.84	-1.61	-1.00	-0.65	-0.15	-0.94
11	-0.76	-0.51	-1.45	-1.45	-1.84	-1.98	-2.29	-2.37	-2.54	-1.95	-1.24	-0.64	-1.59
Noo	-1.35	-1.18	-2.02	-1.86	-2.22	-2.30	-2.62	-2.65	-3.22	-2.72	-1.68	-1.02	-2.07
1	-1.73	-1.63	-2.38	-2.22	-2.66	-2.64	-2.93	-2.89	-3.70	-3.16	-1.90	-1.23	-2.42
2	-1.77	-1.81	-2.54	-2.56	-3.18	-3.06	-3.32	-3.16	-3.95	-3.22	-1.84	-1.27	-2.64
3	-1.57	-1.74	-2.49	-2.82	-3.62	-3.44	-3.68	-3.42	-3.94	-2.90	-1.56	-1.18	-2.70
4	-1.26	-1.50	-2.23	-2.85	-3.78	-3.59	-3.80	-3.47	-3.61	-2.30	-1.12	-0.99	-2.54
5	-0.95	-1.17	-1.79	-2.64	-3.45	-3.30	-3.48	-3.09	-2.93	-1.57	-0.64	-0.76	-2.15
6	-0.72	-0.84	-1.22	-2.07	-2.59	-2.51	-2.64	-2.22	-1.97	-0.85	-0.20	-0.50	-1.53
7	-0.55	-0.55	-0.58	-1.25	-1.37	-1.35	-1.41	-1.00	-0.86	-0.22	0.14	-0.24	-0.77
8	-0.39	-0.30	0.02	-0.34	-0.07	-0.08	-0.08	0.29	0.19	0.29	0.36	0.01	-0.01
9	-0.19	-0.11	0.51	0.47	1.02	1.02	1.06	1.32	1.02	0.68	0.52	0.21	0.63
10	0.07	0.05	0.84	1.07	1.75	1.77	1.84	1.92	1.59	1.00	0.61	0.36	1.07
11	0.37	0.17	1.04	1.45	2.14	2.19	2.27	2.12	1.94	1.29	0.68	0.43	1.34
Midn.	0.63	0.28	1.18	1.71	2.37	2.42	2.53	2.15	2.22	1.58	0.76	0.45	1.52
6. 6	0.37	0.45	0.42	0.07	-0.08	-0.06	0.05	0.25	0.50	0.57	0.46	0.28	0.27
7. 7	0.45	0.61	0.52	0.13	0.02	0.00	0.07	0.32	0.57	0.66	0.53	0.38	0.36
8. 8	0.41	0.61	0.48	0.15	0.12	0.06	0.07	0.30	0.49	0.57	0.45	0.38	0.34
9. 9	0.26	0.44	0.32	0.13	0.15	0.10	0.06	0.20	0.28	0.33	0.25	0.28	0.24
10.10	0.03	0.16	0.06	0.07	0.19	0.12	0.03	0.04	-0.01	0.00	-0.02	0.10	0.06
7. 2. 9	-0.17	-0.0.5	-0.14	-0.20	-0.25	-0.23	-0.24	-0.07	-0.31	-0.34	-0.14	-0.02	-0.18
6.2. 8	-0.23	-0.12	-0.16	-0.23	-0.2	-0.25	-0.22	-0.05	-0.26	-0.31	-0.11	-0.07	-0.19
6. 2.10	-0.08	-0.01	0.12	0.24	0.34	0.37	0.42	0.50	0.21	-0.08	-0.04	0.05	0.17
6. 2. 6	-0.34	-0.30	-0.57	-0.81	-1.11	-1.06	-1.08	-0.88	-0.98	-0.69	-0.31	-0.24	-0.70
7. 2	-0.16	-0.02	-0.46	-0.53	-0.89	-0.86	-0.89	-0.77	-0.97	-0.8.5	-0.47	-0.13	-0.58
8. 2							-1.55						
8									-1.46				-0.87
7. 1	-0.14	0.07	-0.38	-0.36	-0.63	-0.65	-0.69	-0.63	-0.85	-0.82	-0.50	-0.11	-0.47
9.12.3.9	-0.61	-0.51	-0.97	-1.11	-1.37	-1.39	'-1.55	-1.42	-1.65	-1.24	-0.69	-0.41	-1.08
7. 2.2(9)	-0.18	-0.07	0.03	-0.03	0.07	0.08	0.09	0.28	0.03	-0.08	0.03	0.04	0.02
Dail ext	-0.16	-0.02	-0.17	-0.07	-0.19	-0.12	-0.03	'0.05	-0.16	-0.16	-0.36	-0.11	-0

The numbers without sign must be added; those with the sign - must be subtractea.

North America. - Toronto. Lat. $43^{\circ} 40^{\prime}$ N. Long. $79^{\circ} 21^{\prime}$ W. Greemw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Lefroy.

Degrees of Fahrenheit.

Hour.	Jan.	Feb.	March.	Aprit.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec	Year.
Midnight.	1.47	1.73	2.63	3.22	5.02	5.15	6.37	5.33	5.96	3.22	1.80	0.90	3.57
1	1.95	2.09	3.11	3.79	5.93	6.00	7.13	6.06	4.57	3.80	2.10	1.50	4.00
2	2.05	2.46	3.47	4.48	6.77	6.70	7.63	6.69	5.17	4.13	2.36	1.85	4.48
3	2.20	2.82	3.76	5.08	7.45	7.50	8.41	7.29	5.59	4.31	2.66	1.96	4.92
4	2.28	3.20	4.07	5.38	7.93	8.06	9.03	7.63	6.18	4.64	2.85	2.01	5.27
5	2.46	3.62	4.35	5.75	7.53	7.88	9.02	7.89	6.77	4.77	2.76	2.07	5.43
6	1.83	4.23	4.75	5.48	5.40	5.21	5.92	6.57	6.17	4.71	2.52	2.39	4.60
7	1.94	4.34	3.93	3.22	2.43	2.41	2.38	3.28	3.68	3.94	2.52	2.55	3.05
S	1.66	3.29	1.89	1.09	0.06	0.10	-0.31	0.21	1.02	1.66	1.53	2.12	1.25
9	0.63	1.02	-0.25	-1.01	-2.11	-1.82	-2.39	-2.26	-1.52	-1.01	0.01	0.92	-0.52
10	-0.59	-0.95	-1.91	-2.4.)	-3.51	-3.49	-3.98	-4.18	-3.47	-2.93	-1.41	-0.53	-2.47
11	-1.70	2.44	-3.1	-3.83	-4.92	-4.77	-5.49	-5.57	-4.85	-4.33	-2.44	-1.72	-3.77
Noon.	-2.	-3.56	-4.15	-4.86	-5.87	-5.88	-6.72	-6.39	-5.95	-5.36	-3.34	-2.52	-4.76
1	-2.92	-4.49	-4.79	-5.72	-6.83	-6.59	-7.58	-7.11	-6.58	-5.76	-3.74	-3.06	-5.43
2	-3.20	-4.88	-5.31	-6.14	-7.13	-7.03	-8.26	-7.62	-6.96	-6.04	-3.82	-3.31	-5.81
3	-3.16	-4.90	-5.15	-6.16	-7.20	7.37	-8.34	-7.98	-7.01	-5.85	-3.64	-3.13	-5.52
4	-2.63	-4.47	-4.65	-5.8 1	-7.17	-7.60	-8.25	-7.79	-6.75	-5.17	-2.83	-2.47	-5.47
5	-1.68	-3.30	-3.92	-5.12	-6.80	-7.18	-7.93	-7.20	-5.78	-3.40	-1.58	-1.49	-4.61
6	-0.90	-1.87	-2.35	-3.12	-5.05	-5.73	-6.57	-5.39	-3.16	-1.37	-0.76	-0.82	-3.12
7	-0.40	-0.98	-0.91	-0.94	-2.19	-2.99	-3.28	-1.64	-0.43	-0.25	-0.15	-0.47	-1.22
8	-0.12	-0.13	0.03	0.66	0.43	0.33	0.68	1.23	0.81	0.48	0.19	-0.12	0.38
9	0.07	0.52	1.00	1.78	2.31	2.44	2.99	2.70	1.90	1.25	0.44	0.18	1.46
10	0.44	1.06	1.63	2.59	3.29	3.80	4.24	3.73	2.94	1.97	0.78	0.47	2.24
11	0.77	1.60	2.01	3.07	1.20	4.76	5.21	4.54	3.61	2.65	1.13	0.59	2.85
6, 6	0.16	1.18	1.20	1.03	0.17	-0.26	-0.32	0.59	1.50	1.67	1.38	0.78	0.74
7, 7	0.77	1.67	1.51	1.14	0.12	-0.29	-0.45	0.82	1.62	1.84	1.18	1.04	0.91
8, 8	0.77	1.58	0.96	0.87	0.24	0.21	0.18	0.72	0.91	1.45	0.95	1.15	0.82
9,9	0.35	0.77	0.37	0.38	0.10	0.31	0.30	0.22	0.19	0.10	0.22	0.55	0.32
10, 10	-0.07	0.05	-0.14	-0.07	-0.26	0.25	0.13	-0.22	-0.26	-0.48	-0.31	-0.03	-0.11
6, 2, 10	-0.31	0.14	0.36	0.64	0.52	0.66	0.63	0.89	0.72	0.21	-0.17	-0.15	0.34
7, 2, 9	-0.40	-0.0	-0.09	-0.35	-0.80	-0.73	-0.96	-0.55	-0.46	-0.28	-0.29	-0.19	-0.43
$9,12,3,9$	-1.23	-1.73	-2.01	-2.56	-3.22	-3.16	-3.6I	-3.48	-3.14	-2.74	-1.63	-1.14	-2.18
Mean.	25.82	23.70	29.79	41.99	52.92	60.67	66.39	65.86	57.55	44.14	36.18	27.40	44.37

The numbers without sign must be added ; those with the sign - must be subtracted.
F

North America. - Toronto. Lat. $43^{\circ} 40^{\prime}$ N. Long. $79^{\circ} 21^{\prime}$ W. Gr.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hour	Jan.	Feb	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Miln.	.6s	0.51	1.10	1.45	2.24	2.36	2.91	2.43	1.76	1.44	0.51	0.40	1.53
1	0.88	0.98	1.31	0.75	2.62	2.67	3.29	2.72	2.03	1.71	0.94	0.66	1.80
2	0.92	1.13	1.48	2.08	2.99	2.98	3.54	3.02	2.29	1.85	1.06	0.83	2.01
3	0.99	1.82	1.61	2.17	3.31	3.32	3.56	3.32	2.49	1.92	1.20	0.88	2.20
4	1.03	1.45	1.78	2.36	3.52	3.58	4.14	3.18	2.76	2.06	1.25	0.90	2.36
5	1.11	1.61	2.01	2.52	3.49	3.49	4.16	3.57	3.04	2.13	1.23	0.91	2.44
6	0.79	. 5	2.13	2.47	40	2.32	2.74	2.92	2.74	2.04	1.11	1.09	2.05
7	0.5	1.92	1.75	1.45	1.08	1.07	1.11	1.60	1.60	1.70	1.11	1.16	1.36
S	0.73	1.47	0.87	0.15	0.09	0.03	-0.05	0.15	0.38	0.70	0.64	0.97	0.56
9	0.30	0.44	-0.10	-0.43	-0.94	-0.81	-1.03	-0.96	-0.69	-0.49	-0.04	0.45	-0.36
10	-0.25'	- 0.45	-0.87	-1.11	-1.69	-1.55	-1.78	-1.84	-1.57	-1.35	-0.68	-0.20	1.11
11	-0.77	-1.16	-1.41	-1.72	-2.20	-2.12	-2.47	-2.48	-2.20	-1.96	-1.13	-0.75	-1.70
Noon.	-1.12	-1.69	-1.87	-2.18	-2.62	-2.61	-3.0.5	-3.04	-2.64	-2.36	-1.	-1.	-2.15
1	-1.31	-2.07	-2.16	-2.60	-3.03	-2.93	-3.46	-3.25	-2.90	-2.5.5	-1.66	-1.42	-2.45
2	-1.46	-2.25	41	-2.76	-3.18	-3.12	-3.84	-3.51	-3.08	-2.70	-1.69	-1.49	-2.62
3	-1.14	-2.24	-2.32	-2.80	-3.21	-3.29	-3.92	-3.66	-3.09	-2.60	-1.62	-1.38	-2.63
4	-1.21	-2.00	-2.11	-2.62	-3.19	-3.40	-3.93	-3.60	-3.00	-2.28	-1.2	1.09	-2.47
5	-0.77	-1.47	. 78	-2.30	-3.02	-3.13	-3.72	-3.35	-2.57	. 50		. 67	-2.08
6	-0.40	,	-1.03	-1.50	-2.2 4	-2.55	-3.05	-2.51	-1.38	-0.59	-0.32	-0.36	-1.40
7	-0.17	-0.38	-0.39	-0.37	-0.96	-1.33	-1.54	-0.74	-0.18	-0.10	-0.06	-0.21	-0.53
8	-0.03	0.00	0.05	0.33	0.21	0.13	0.33	0.56	0.39	0.23	0.08	-0.0.t	0.19
9	0.06	0.28	0.50	0.81	1.02	1.09	1.38	1.26	0.85	0.57	0.20	0.07	0.67
10	0.23	0.53	0.79	1.16	1.4.5	1.69	1.93	1.72	1.32	0.90	0.36	0.20	1.02
11	0.37	0.76	1.08	1.38	1.86	2.12	2.45	2.07	1.60	1.20	0.52	0.25	1.31
Mean.	-2.97	-3.59	-0.99	4.72	9.29	12.75	15.11	15.00	11.37	5.42	1.58	-2.03	

X.

Nortil America. - Montreal. Lat. $45^{\circ} 30^{\prime}$ N. Long. 73° © \mathfrak{P}^{\prime} E. Gr. Degrees of Fahrenheit.

Hour.	Aur.	Sept.	Oct.	Tov.	Dee.	Jan.	Feb.	March.	April.	May.	June.	July.	Year.
Miln.	4.00	8.89	2.83	1.36	1.65	1.10	1.28	1.31	2.52	4.55	5.2 .5	4.39	2.85
2	5.39	4.34	4.01	1.59	1.00	2.36	2.69	2.88	4.37	6.95	7.42	7.17	4.20
4	6.34	5.60	4.84	1.81	1.35	2.88	3.36	5.56	7.09	6.95	7.18	7.57	4.96
6	5.99	4.59	4.83	1.36	1.32	3.54	3.90	5.22	5.56	6.61	5.55	5.46	4.50
8	2.79	2.19	2.52	0.78	0.92	3.10	3.22	8.30	3.44	3.06	0.88	0.60	2.24
10	-1.74	-1.15	-0.99	-0.41	0.21	-0.21	-0.81	-0.03	-0.79	-0.97	-1.75	-2.55	-0.93
Noon.	-5.63	-5.43	-4.22	-1.87	-1.22	-2.52	-3.50	-4.23	-5.01	-7.10	-5.17	-5.46	-4.30
2	-7.93	-6.60	-6.96	-2.37	- 3.5	-4.07	-5.43	-6 49	-5.99	-8.76	-7.72	-7.36	-6.02
4	-7.72	-6.70	-5.62	-2.52	-3.29	-3.88	-3.60	-5.96	-.5. 79	-8.35	-7.00	-7.51	-5.65
6	-5.63	-2.80	-2.79	-1.01	-1.30	-1.77	-1.50	-3.43	-3.88	-3.87	-5.02	-5.40	-3.20
8	-0.70	0.10	-0.2.5	0.03	0.02	-0.90	-0.59	-1.23	-0.81	-1.61	-1.10	-0.67	-0.65
10	1.99	2.39	1.12	1.18	0.59	0.17	0.22	-0 30	0.64	-1.87	2.47	2.64	1.30
Mean.	66.40	57.70	48.31	30.39	23.42	8.10	20.84	27.31	4.2 .27	56.61	6438	70.39	43.01

The numbers without sign mast be added ; those with the sigu - must be subtracted.

North America. - Montreal, Contimued.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year.

Degrees of Fahrenheit.

The numbers without sign must be added : those with the sign - must be subtracted.

Arctic America. - Boothia Felix. Lat. $69^{\circ} 59^{\prime}$ N. Long. $9 \mathfrak{P}^{\circ} 1^{\prime}$ W. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.08	0.42	1.61	2.17	2.64	2.38	1.78	1.34	0.56	0.30	0.02	0.12	1.12
2	0.10	0.28	1.85	2.25	2.75	2.55	1.78	1.30	0.62	0.32	0.18	0.13	1.15
3	0.11	0.25	2.10	2.30	2.61	2.45	1.65	1.17	0.66	0.33	0.29	0.10	1.12
4	0.11	0.21	2.30	2.26	2.23	2.05	1.35	1.02	0.66	0.34	0.31	0.06	1.02
5	0.10	0.22	2.38	2.02	1.76	1.39	0.99	0.86	0.56	0.32	0.24	0.02	0.87
6	0.10	0.26	2.23	1.53	1.02	0.65	0.61	0.70	0.46	0.27	0.13	-0.04	0.64
7	0.09	0.29	1.77	0.81	0.35	-0.04	0.26	0.50	0.27	0.17	0.02	-0.07	0.37
8	0.08	0.22	0.98	-0.06	-0.32	-0.58	-0.03	0.24	0.05	0.01	0.01	-0.10	0.04
9	0.06	0.05	-0.06	-0.98	-0.95	-0.99	-0.37	-0.10	-0.12	-0.20	-0.04	-0.10	-0.32
10	0.02	-0.26	-1.22	-1.81	-1.54	-1.33	-0.70	-0.49	-0.43	-0.41	-0.14	-0.10	-0.70
11	-0.02	-0.58	-2.28	-2.45	-2.06	-1.66	-1.05	-0.86	-0.65	-0.59	-0.26	-0.11	-1.05
N	-0.05	-0.87	-3.05	-2.86	-2.46	-2.02	-1.13	-1.16	-0.82	-0.69	-0.32	-0.12	-1.32
1	-0.	-1.02	-3.38	-3.03	-2.66	-2.33	-1.70	-1.34	-0.93	-0.68	-0.30	-0.14	-1.47
2	-0.1	-0.98	-3.26	-2.96	-2.65	-2.48	-1.86	-1.38	-0.94	-0.57	-0.19	-0.13	-1.46
3	-0.1	-0.78	-2.7	-2.67	-2.40	-2.38	-1.78	-1.32	-0.93	-0.38	-0.04	-0.10	-1.31
4	-0.14	-0.46	-2	-2.18	-1.98	-1.98	-1.56	-1.18	-0.68	-0.18	0.06	-0.05	-1.03
5	-0.	-0.14	-1.29	-1.50	-1.45	-1.36	-1.18	-1.01	-0.44	0.01	0.24	0.01	-0.69
6	-0.09	0.13	-0.57	-0.74	-0.55	-0.66	$-0.7 \mathrm{~S}$	-0.78	-0.17	0.14	0.31	0.07	-0.34
7	-0.	0.32	0.0	0.06	-0.34	-0.01	-0.34	-0.50	0.08	0.22	0.36	0.10	-0.01
8	-0.05	0.43	0.44	0.78	0.20	0.51	0.07	-0.16	0.26	0.25	0.38	0.11	0.27
9	-0.03	0.50	0.76	1.35	0.74	0.92	0.50	0.24	0.38	0.26	0.38	0.10	0.53
10	-0.02	0.51	0.99	1.74	1.28	1.26	0.90	0.66	0.44	0.26	0.35	0.10	0.71
11	0.0	0.52	1.19	1.95	1.	1.63	1.20	1.01	0.48	0.26	0.28	0.09	0.37
Midn. .	0.05	0.49	1.38	2.08	2.30	2.04	1.59	1.25	0.51	0.28	0.15	0.12	1.02
6. 6	0.01	0.20	0.83	0.40	0.07	-0.01	-0.09	-0.04	0.15	0.21	0.09	0.02	0.15
7.	0	0.3	0.89	0.44	0.01	-0.03	-0.04	-0.00	0.18	0.20	0.17	0.02	0.18
8. 8	0	0.3	0.71	0.36	-0.06	-0.04	0.02	0.04	0.16	0.13	0.20	0.01	0.16
9. 9	0.02	0.2	0.35	0.19	-0.11	-0.04	0.07	0.07	0.13	0.03	0.17	-0.00	0.10
10.10	-0.00	0.13	-0.12	-0.04	-0.13	-0.04	0.10	0.09	0.01	-0.08	0.11	-0.00	0.00
7. 2. 9	-0.03	-0.06	-0.24	-0.27	-0.52	-0.53	-0.37	-0.21	-0.10	-0.05	0.06	-0.03	-0.20
6. 2. 8	-0.03	-0.10	-0.20	-0.22	-0.48	-0.44	-0.39	-0.28	-0.07	-0.02	0.02	-0.02	-0.19
6. 2.10	-0.0	-0.07	-0.01	0.10	-0.12	-0.19	-0.12	-0.01	-0.01	-0.01	0.01	-0.02	-0.04
6. 2. 6	-0.04	-0.20	-0.53	-0.72	-0.84	-0.83	-0.68	-0.49	-0.22	-0.05	-0.00	-0.03	-0.39
7. 2	-0.03	-0.35	-0.75	-1.08	-1.15	-1.26	-0.80	-0.44	-0.34	-0.20	-0.11	-0.10	
8. 2	-0.03	-0.38	-1.14	-1.51	-1.49	-1.53	-0.95	-0.57	-0.45	-0.2S	-0.09	-0.12	-0.71
8. 1	-0.02	-0.40	-1.20	-1.55	-1.49	-1.46	-0.87	-0.55	-0.44	-0.34	-0.15	-0.12	-0.72
7. 1	-0.01	-0.37	-0.81	-1.11	-1.16	-1.19	-0.72	-0.42	-0.33	-0.26	-0.16	-0.11	-0.55
9.12.3.9	-0.0.4	-0.25	-1.25	-1.29	-1.27	-1.12	-0.77	-0.59	-0.37	-0.25	-0.01	-0.06	
7.2.2(9)	-0.03	0.08	0.01	0.14	-0.21	-0.17	-0.15	-0.10	0.02	0.03	0.14	-0.00	-0.02
Dail. ext.	-0.02	-0.25	-0.50	-0.37	0.05	0.04	-0.04	-0.02	-0.14	-0.18	0.03	-0.01	-0.16

The numbers without sign must be added; those with the sign - must be subtracted.
N. America. - Lake Athabasca. Lat. 59° N. Long. 111° W. Greemw. Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Lefroy.

The corrections for April and May are derived from observations made at Fort Simpson, Lat. 620 N.
Degrees of Fahrenheit.

Hour.	April.	May.	October.	November.	December.	January.	February.
daily ext.	1.58	1.71	0.33	0.25	-0.17	0.77	1.19
6, 6	1.15	0.51	1.07	0.59	0.27	0.84	1.19
7,7	1.50	0.16	0.76	0.54	0.30	0.58	1.31
8, 8	1.72	0.18	0.69	0.55	0.62	0.95	1.27
9, 9	0.54	0.30	0.37	0.32	0.84	0.80	0.78
10, 10	-0.43	-0.03	-0.32	-0.06	0.34	0.12	0.31
11, 11	-1.68	-1.20	-0.57	-0.37	0.10	-0.62	-0.23
6, 2, 10	0.47	0.46	-0.31	-0.21	-0.22	-0.17	-0.05
7, 3, 11	0.46	0.59	-0.40	-0.16	017	0.06	-0.26
Mean.	32.48	44.56	21.44	9.76	0.40	-23.00	4.79

XIV.

Arctic America. - Melville Island. Lat. $74^{\circ} 47^{\prime}$ N. Long. $110^{\circ} 48^{\prime}$ W. Gr.Dove.
Degrees of Reaumur.

Ifour.	January.	February.	March.	October.	Hour.	November.	December.
A.M. 1	0.12	0.10	1.01	0.04	A.M. 2	-0.12	-0.09
3	0.18	0.05	1.22	0.12	4	-0.02	-0.06
5	0.07	0.25	090	0.24	6	0.00	0.11
7	0.11	0.29	0.57	0.20	8	-0.22	0.07
9	-0 13	-0.24	0.29	-0.15	10	-0.38	0.11
11	-0.3.5	-0.43	-1.33	-0.46	12	-0.41	0.24
P.M. 1	-0.22	-0.6.5	-1.72	-0.43	P.M. 2	-0.27	0.14
3	-0.2.5	-0.52	-1.00	0.22	4	0.16	0.00
5	0.04	0.04	-0.43	-0.24	6	0.27	-0.12
7	0.04	0.24	0.06	-0.10	5	0.38	-0.26
9	0.11	0.35	0.33	0.11	10	0.36	-0.12
11	0.40	0.49	0.66	0.43	12	0.2.	0.00
Mean.	-29.75	-27.58	-22.73	-1432	Mean.	-18.6.5	-25.75

XV.

Spitzbergen. - Hecla Cove. Lat. $79^{\circ} 55^{\prime}$ N. Long. $16^{\circ} 49^{\prime}$ E. Gr.Dove.
Degrees of Reaumur.

Hour	June.	July.	Augast.	Hour.	June.	July.	Angust.
A.M. I	0.63	0.62	0.42	P.M. 1	-0.67	-0.67	-0.63
3	0.43	0.84	0.54	3	-0.58	-0.42	-0.58
5	0.26	$0 . .51$	0.53	5	-0.27	-0.14	-0.32
7	-0.12	-0.02	0.25	7	0.26	-0.17	-0.06
9	-0.29	-0.09	-0.09	9	0.21	0.06	0.14
11	-0.17	-0.49	-0.45	11	0.61	0.26	0.24
				Mean.	1.71	3.63	2.84

The numbers without sign must be added; those with the sigu - must be subtracted.

XVI.

S. America. - Rio Janeiro. Lat. $22^{\circ} 54^{\prime}$ S. Long. $43^{\circ} 16^{\prime}$ W. Greemw.

Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.
Degrees of Fahrenheit.

Hours.	Jan.	Feb,	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.74	1.51	1.80	0.90	1.13	0.56	1.85	1.31	1.04	0.97	1.76	1.31	1.24
2	1.64	2.41	2.45	1.64	2.12	1.53	2.75	2.00	1.69	1.64	2.32	2.05	2.03
3	2.50	3.11	3.02	2.32	2.93	243	3.47	2.66	2.27	2.21	2.75	266	2.70
4	3.08	3.90	3.24	2.79	3.38	3.04	3.87	3.04	2.59	2.50	2.93	2.99	3.06
5	3.22	3.29	3.15	2.90	3.40	3.29	3.83	3.08	2.66	2.52	279	2.99	3.08
6	2.93	2.84	2.75	2.75	3.06	3.20	3.47	2.79	2.41	2.27	2.32	2.68	2.79
7	2.30	2.21	2.14	2.30	2.48	2.84	2.70	2.25	2.00	1.82	1.67	2.12	2.23
8	1.49	1.49	1.40	1.71	1.55	2.39	1.96	1.60	1.46	1.23	0.90	1.40	1.58
9	0.63	0.72	0.59	1.04	1.15	1.82	1.15	0.90	0.86	0.65	0.14	0.59	0.86
10	-0.07	-0.05	-0.23	0.32	0.50	1.13	0.32	0.23	0.18	0.05	-0.56	-0.23	-0.14
11	-0.75	-0.66	-1.01	-0.45	-0.23	0.32	-0.50	-0.50	-0.54	-0.59	-1.22	-1.04	-0.61
Noon.	-1.40	-1.64	-1.71	-1.22	-0.99	-0.65	-1.31	-1.19	-1.26	-1.22	-1.80	-1.82	-1.35
1	-2.00	-2.30	-2.30	-1.94	-1.71	-1.67	-2.16	-1.91	-1.89	-1.78	-2.32	-2.43	-2.03
2	-2.41	-2.75	-2.66	-2. 11	-2.30	-2.48	-2.88	-2.48	-2 34	-2.16	-2.66	-2.81	-2.52
3	-2.59	-2.85	-2.84	-2.66	-2.66	-2.99	-3.40	-2 84	-2.50	-2.27	-2.79	-2.86	-2.77
4	-2.45	-2.70	-2.77	-2.57	-2.75	-3.04	-3.60	-2.93	-2.36	-2.12	-2.66	-2.59	-2 70
5	-2 05	-2.30	-2.50	-2.21	-2.54	-2.75	-3.47	-2.68	-2.00	-1.75	-2.25	-2.09	-2.39
6	-1.51	-1.82	-2.12	-1.76	-2.21	-2.23	-3.04	-2.23	-1.55	-1 37	-1.67	-1.49	-1.91
7	-1.04	-1.40	-1.67	-1.25	-1.89	-1.76	-2.39	-1.67	1.13	-1.04	-1.08	-0.99	-1.44
8	-0.72	-1.13	-1.22	-0.95	-1.67	-1.42	-1.85	-1.13	-0.83	-0.77	-0 59	-0.61	-1.08
9	-0.59	-0.92	-0.77	-0.72	-1.44	-1.26	-1.22	-0.70	-0.61	-0.61	-0.14	-0.38	-0.79
0	-0.56	-0.63	-0.25	-0.52	-1.13	-1.13	-0.59	-0.32	-0.41	-0.45	0.23	-0 16	-0.50
11	-0.41	-0.14	0.36	-0.25	-0.63	-0.86	0.09	0.09	-0.09	-0.16	0.65	0.14	0.09
Midn.	0.00	0.59	1.06	0.23	0.14	-0.29	0.92	0.61	0.35	0.32	1.15	0.65	0.47
6. 6	0.72	0.52	0.32	0.50	0.43	0.50	0.30	0.29	0.43	0.45	0.34	0.61	0.45
7. 7	0.63	0.41	0.25	0.52	0.29	0.54	0.16	0.29	0.45	0.41	0.29	0.56	0.41
8. 8	35	018	0.09	0.38	0.09	0.50	0.07	0.25	0.32	0.27	0.16	0.41	0.25
9. 9	0.05	-0.11	-0.09	-0.16	-0.16	0.29	-0.05	0.11	0.14	0.05	0.00	0.11	0.05
10.10	-0.32	-0.34	-0.2.5	-0.11	-0.32	0.00	-0.14	-0.05	-0.11	-0.20	-0.18	-0.20	-0.18
7. 2. 9	-0.23	-0.50	-0.43	-0.27	-0.43	-0.29	-0.47	-0.32	-0.32	-0.32	-0.38	-0.36	-0.36
6. 2.8	-007	-0.34	-0.38	-0.20	-0.29	-0.23	-0.43	-0.27	-0.25	-0.23	-0.32	-0.25	-0.27
6. 2.10	-0.02	-0.18	-0.05	-0.07	-0.11	-0.14	0.00	0.00	-0.11	-0.11	-0.05	-0.09	-0.07
6. 2. 6	-0.3 t	-0.59	-0.68	-0.47	-0.47	-0.50	-0.81	-0.63	-0.50	-0.43	-0.68	-0.54	-0.56
7. 2	-0.07	-0.27	-0.27	-0.07	0.09	0.15	-0.09	-0.11	-0.18	-0.18	-0.50	-0.36	-0.16
8. 2	-0.47	-0.63	-0.63	-0.36	-0.23	-0.05	-0.47	-0.45	-0.45	-0 45	-0.88	-0 72	-0.47
8. 1	-0.27	-0.41	-0.45	-0.11	0.07	0.36	-0.11	-0.16	-0.23	-0.25	-0.72	-0.52	-0.23
7.	0.16	-0.0.5	-0.09	0.18	0.38	059	-0.27	018	007	0.02	-0.34	-0.16	-0.11
9.12.3.9	-0.97	-1.19	-1.19	-0.90	-0.99	-0 77	-1.19	-0.97	-0 88	-0.86	-1.15	-1.13	-1.01
7. 2.2(9)	-0.32	-0.61	-0.52	-0.38	-0.68	-6.54	-0.65	-0.41	-0.38	-0.38	-0.32	-0.36	-0.47
nail. ext.	0.32	0.27	0.20	0.14	0.34	0.14	0.14	0.09	0.09	0.14	0.07	0.07	0.16

XVII.

S. America. - Rio Janeiro. Lat. $22^{\circ} 54^{\prime}$ S. Long. $43^{\circ} 16^{\prime}$ W. Greemo.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nor.	Dec.	Mean.
Morn. 1	0.33	0.67	0.80	0.40	0.50	0.25	0.82	0.58	0.16	0.43	0.78	0.58	0.55
2	0.73	1.07	110	0.73	0.94	0.68	1.22	0.89	0.75	0.73	1.03	0.91	0.90
3	1.11	1.38	1.34	1.03	1.30	1.08	1.54	1.18	101	0.98	1.22	1.18	1.20
4	1.37	1.51	1.44	1.24	1.50	1.35	1.72	1.35	1.15	1.11	1.30	1.33	1.36
5	1.43	1.46	1.40	1.29	1.51	1.46	1.70	1.37	1.18	1.12	1.24	1.33	1.37
6	1.30	1.26	1.22	1.22	1.36	1.42	1.54	1.24	1.07	1.01	1.03	1.19	1.24
7	1.02	0.98	0.95	1.02	1.10	1.26	1.20	1.00	0.89	0.81	0.74	0.94	0.99
8	0.66	0.66	0.62	0.76	0.82	1.06	0.87	0.71	065	0.57	0.40	0.62	0.70
9	0.30	0.32	0.26	0.46	0.51	0.81	0.51	0.40	0.38	0.30	0.06	0.26	0.38
10	-0.03	-0.02	-0.10	0.14	0.22	0.50	0.14	0.10	0.08	0.02	-0.25	-0.10	0.06
11	-0.34	-0.38	-0.45	-0.20	-0.10	0.14	-0.22	-0.22	-0.24	-0.26	-0.54	-0.46	-0.27
Noon.	-0.62	-0.73	-0.76	-0.54	-0.4	-0.29	-0.53	-0.53	-0.56	-0.54	-0.80	-0.81	-0.60
1	-0.89	-1.02	-1.02	-0.86	-0.76	-0.74	-0.96	-0.85	-0.84	-0.79	-1.03	-1.0	-0.90
2	-1.07	-1.22	-1.18	-1.07	-1.02	-1.10	-1.28	-1.10	-1.01	-0.96	-1.18	-1.2	-1.12
3	-1.15	-1.28	-1.26	-1.18	-1.18	-1.33	-1.31	-1.26	-1.11	-1.01	-1.24	-1.27	-1.23
4	-1.09	-1.20	-1.23	-1.14	-1.22	-1.35	-1.60	-1.30	-1.05	-0.94	-1.1s	1.1	-1.20
5	-0.91	-1.02	-1.11	-0.98	-1.13	-1.22	-1.54	-1.19	-0.89	-0.79	-1.00	-0.93	-1.06
6	-0.67	-0.81	-0.94	-0.78	-0.98	-0.99	-1.3.5	-0.99	-0.69	-0.61	-0.74	-0.66	-0.85
7	-0.46	-0.62	-0.74	-0.57	-0.54	-0.78	-1.06	-0.74	-0.50	-0.46	-0.48	-0.4	-0.64
8	-0.32	-0.50	-0.54	-0.12	-0.74	-0.63	-0.82	-0.50	-0.37	-0.34	-0.26	-0.27	-0.48
9	-0.26	-0.41	-0.34	-0.32	-0.64	-0.56	-0.54	-0.31	-0.27	-0.27	-0.06	-0.17	-0.35
10	-0.2.	-0.28	-0.11	-0.23	-0.50	-0.50	-0.26	-0.14	-0.18	-0.20	0.10	-0.07	-0.22
11	-0.18	-0.06	16	-0.11	-0.28	-0.38	0.04	-0 04	-0.04	-0.07	0.29	0.06	-0.04
Midn.	0.00	0.26	0.47	0.10	0.06	-0.13	0.41	0.27	0.17	0.14	0.51	0.29	0.21
6. 6	0.32	0.23	0.14	0.22	0.19	0.22	0.10	013	0.19	0.20	0.15	027	0.20
7. 7	0.28	0.18	0.11	0.23	0.13	0.24	0.07	0.13	0.20	0.18	0.13	0.25	0.18
8. 8	. 17	0.05	0.04	0.17	0.04	0.22	0.03	0.11	0.14	0.12	0.0	0.18	0.11
99	0.02	-0.05	-0.04	0.07	-0.07	0.13	-0.02	0.05	0.06	0.02	-0.00	0.0	0.02
10.10	-0.14	-0.15	-0.11	-0.05	-0.14	-0.00	-0.06	-0.02	-0.05	-0. 19	-0.08	-0.09	-0.08
7.2. 9	-0.10	-0.22	-0.19	-0.12	-0.19	-0.13	-0.21	0.14	-0.14	-0.14	-0.17	-0.16	-0.16
6. 2. s	-0.03	-0.15	-0.17	-0.09	-0.13	-0.10	-0.19	-0.12	-0.11	-0.10	-0.14	-0.11	-0.12
6. 2.10	-0.01	-0 08	-0.02	-0.03	-0.05	-0.06	-0.00	-0.00	-0.05	-0.05	-0.02	-0.04	-0.03
6. 2. 6	-0.15	-0.26	-0.30	-0.21	-0.21	-0.22	-0.36	-0.23	-0.22	-0.19	-0.30	-0.24	-0.25
7. 2	-0.03	-0.12	-0.12	-0.03	0.04	0.08	-0.04	-0 05	-0.08	-0.08	-0.2 2	-0.16	-9.07
8. 2	-0.21	-0.28	-0.28	-0.16	-0.10	-0.02	-0.21	-0) 20	-0.20	-0.20	-0.39	-0.32	-0.21
8.	-0.12	-0.18	-0.20	-0.05	0.03	16	-0.05	- 0.07	-0.10	-0.11	-0.32	-0.23	-0.10
7.	0.07	-0.02	-0.04	008	0.17	0.26	0.12	0.08	0.03	0.01	-0.15	-0.07	0.05
9.12.3.9	-0.43	-0 33	-0.53	-0.40	-0.44	-0.34	-0 53	-0. 3	-0.39	-0.38	-0.51	-0.50	-0.45
7. 2.2(9)	-0.14	-0.27	-0.23	-0.17	-0.30	-0.24	-0.29	-0.18	-0.17	-0.17	-0.14	-0.16	-0.21
Dail.ext.	0.14	0.12	0.09	0.06	0.15	0.06	0.06	0.04	0.04	0.06	0.03	0.03	0.07

The numbers without sign must be added ; those with the sign - must be subtracted.
N. America. - Amherst College. - Lat. $42^{\circ} 22^{\prime}$ N. Long. $72^{\circ} 30^{\prime}$ W. Greenw.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dewey.

Degrees of Fahrenheit.

Hour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Morn. 1	3.90	2.78	4.73	. 23	5.51	6.64	6.39	5.14	5.36	4.87	2.34	1.63	4.63
2	4.24	3.03	4.81	6.69	6.48	7.28	6.83	5.66	6.12	5.65	2.99	2.20	5.16
3	4.13	3.20	5.36	7.42	7.41	7.92	7.28	6.03	6.92	6.46	3.49	2.55	5.68
4	4.50	3.94	5.69	7.85	7.58	8.04	7.42	6.29	6.56	7.09	3.72	2.70	6.06
5	4.72	4.20	6.04	8.12	8.18	7.80	7.54	. 66	7.88	7.72	4.03	3.32	6.35
6	68	4.78	6.12	7.77	6.77	5.96	6.02	5.51	7.14	7.65	4.34	3.78	5.93
7	4.75	4.78	4.62	5.97	4.22	4.20	3.80	45	5.32	6.87	1.28	3.97	4.77
8	3.83	3.75	2.08	3.04	1.62	1.40	1.09	1.96	2.52	4.31	2.68	4.13	2.70
9	1.46	1.45	-0.46	0.08	-0.60	-0.88	-0.57	-0.93	-0.56	0.83	0.34	2.40	0.19
10	1.26	-0	-2.57	- 2.69	-1.12	-3.12	-3.80	-3.0	-3.32	-2.24	-1.43	-0.55	-2.34
11	-4.10		-4.77	- 5.65	-5.12	-5.68	-6.43	-5	. 04	-5.02	-3.01	-2.76	-4.73
Noon.	2			-	5	-8.08	-8.50	-6.86	-8.16	-7.06	-5.01	-4.30	-6.63
1	-7.46			- 9.46	5	-9.36	83	-		-8.24	-6.12	-6.14	.84
2	-7.80	-6	3.1	-10.42	-8.75	-9.00	-9.50	-7.86	-9.50	-9.28	-5.97	-6.30	-8.26
3	-7.32	-5. 8	1	-9.81	-8.27	-S.60	-7.50	-7.67	-9.20	-9.24	-5.28	-5.60	-7.70
4	-5.84	-4	23	-8.61	. 86	-7.84	17	-6.23	-8.40	-8.24	-3.85	-3.76	-6.66
5	-3.32	-3.10	65	- 7.04	-5.97	-6.00	-5.83	-5.26	-6.44	-5.6. 5	-2.28	-2.03	-4.88
6	-2.06	-1	16	- 4.50	-4.08	-4.20	-4.17	-2.82	. 52	-3.50	-0.85	-0.68	-2.92
7	0.24	-1.0	7	- 1.69	-2.35	-1.92	-1.54	-1	-1.47	-1.24	-0.64	-0.31	-1.11
8	0.6-1	-0.43	0.93	0.27	-0.19	0.04	0.98	0.3	0.11	0.13	0.08	0.20	0.26
9	50	0.28	89	1.77	. 6	96	5	1.59	. 99	1.16	0.80	0.69	1.53
10	2.01	0.5	29	31	2.73	3.20	3.79	3.02	3.53	1.90	1.16	1.20	2.48
11	2.42	1.19	29	23	3.99	4.20	4.24	3.79	4.61	3.24	1.96	1.58	3.31
Midnight.	2.50	1.70	4.85	4.92	4.75	5.48	5.31	4.52	5.34	4.09	2.40	1.98	3.99
3, 9, 3, 9	-0.05	-0.22	-0.08	-0.13	0.05	0.10	0.49	0.26	-0.21	-0.20	-0.16	-0.01	-0.01
9,9	8	0.8	72	93	53	0.54	9	0.33	. 72	1.00	0.57	1.55	. 86
10, 10	0.33	-0	0.36	0.31	. 81	0.04	0.00	-0.51	0.11	-0.17	-0.13	0.33	0.12
7, 2, 9	-0.48	-0.33	-0.61	-0.89	-0.96	-0.95	-0.58	-0.60	-0.83	-0.42	-0.29	-0.55	-0.65
6, 2, 10	-0	-0		-0.24	0.25	0.0	0.10	0.32	0.39	0.09	-0.16	-0.44	0.01
7, 2, 10	-0.3.	-0.04	-0.14	- 0.38	-0	. 53	-0.64	-0.12	-0.32	-0.17	-0.18	-0.38	-0.32
7, 2, 11	-0.21	-0.03	0.19	- 0.07	-0.18	-0.20	-0.49	0.14	0.04	0.28	0.09	-0.25	-0.07
$\left.\begin{array}{\|c}7,8,2,24 \\ 10,12\end{array}\right\}$	-0.09	0.02	13	0.00	-0.12	-0.13	-0.08	0.20	0.1	. 07	3	0.17	0.03
$7,2,2,(9)$	-0.01	-0.18	0.01	-0.23	-0.30	-0.22	0.10	-0.05	-0.12	-0.02	-0.02	-0.24	-0.11
Mean.	22.94	28.57	34.81	43.54	56.92	61.60	71.61	67.44	59.80	50.46	34.80	29.28	47.23

The numbers without sign must be added. those with the sign - must be subtracted.
The above Table has heen derived from one year of hourly observations made at Amberst College, Massachusetts, in 1839, under the direction of Professor Snell, and communicated by Professor Chester Dewey. It gives the simple differences of the monthly means of each hour from the monthly means of the twenty-four hours which are found in the last line.

II OURLY C0RRECTIONS

FOR

PERIODIC VARIATIONS.

A SIA.

India. - Trevandrum. Lat. $8^{\circ} 31^{\prime}$ N. Long. $74^{\circ} 50^{\prime}$ E. Greenu.
Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean Temperatures of the respective Days, Months, and of the Year. - Dove.
Degrees of Fahrenheit.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	4.41	4.03	3.50	3.85	3.26	2.66	2.41	2.88	2.99	3.06	3.33	4.25	3.42
2	5.13	4.95	4.64	4.46	3.80	3.02	2.75	3.24	3.44	3.44	3.83	4.86	3.96
3	6.03	6.12	5.67	5.15	4.39	3.47	3.17	3.74	3.98	3.92	4.46	5.67	4.66
4	6.95	7.31	6.64	5.74	4.82	3.80	3.58	4.21	4.48	4.34	5.04	6.50	5.29
5	7.56	8.15	7.13	5.81	4.52	3.53	3.76	4.41	4.61	4.46	5.22	6.93	5.56
6	7.34	8.01	6.73	5.11	4.14	3.35	3.49	4.07	4.14	4.01	4.73	6.57	5.15
7	6.01	6.59	5.20	3.53	2.81	2.34	2.68	3.06	3.02	2.85	3.40	5.11	3.59
8	3.56	3.92 I	2.66	1.22	0.95	0.90	1.3 .5	1.49	1.26	1.13	1.40	2.70	1.87
9	0.41	0.50	-0.47	-1.42	-1.13	-0.74	-0.27	-0.45	-0.81	-0.99	-0.92	-0.29	-0.54
10	-2.84	-2.97	-3.53	-3.89	-3.04	-2.30	-1.91	-2.41	-2.86	-3.06	-3.11	-3 24	-2.93
11	-5.51	-5.85	-5.94	-5.76	-4.48	-3.53	-3.33	-4.05	-4.50	-4.73	-4.75	-5.58	-4.84
N	-7.25	-7.58	-7.36	-6.82	-5.33	-4.34	-4.32	-5.18	-5.54	-5.72	-5.67	-7.00	-6.01
1	-7.92	-8.17	-7.72	-7.04	-5.60	-4.68	-4.79	-5.69	-5.87	-5.94	-5.90	-7.49	-6.41
2	-7.76	-7.83	-7.22	-6.59	-5.38	-4.61	-4.77	-5.60	-5.60	-5.54	-5.60	-7.25	-6.14
3	-7.09	-6.98	-6.26	-5.65	-4.79	-4.19	-4.30	-5.04	-4.86	-4.66	-4.95	-6.57	-5.45
4	-6.17	-5.99	-5.06	-4.46	-3.94	-3.47	-3.51	-4.10	-3.80	-3.53	-4.12	-5.67	-4.48
5	-5.16	-4.88	-3.83	-3.11	-2.88	-2.52	-2.52	-2.90	-2.59	-2.32	-315	-4.61	-8.38
6	-3.92	3.74	-2.57	-1.71	-1.69	-1.42	-1.40	-1.58	-1.31	-1.10	- 2.03	-3.35	-2.16
7	-2.5	-2.45	-1.31	-0.34	-0.50	-0.32	-0.29	-0.27	-0.11	0.00	-0.81	-1.89	-0.90
8	-0.92	-1.04	-0.07	0.92	0.63	0.70	0.68	0.90	0.92	0.97	0.38	-0.32	0.32
9	0.68	0.38	1.06	1.91	1.53	1.46	1.40	1.76	1.69	1.71	1.42	1.19	1.35
10	2.0	1.6	1.96	2.61	2.16	1.96	1.85	2.30	2.18	2.25	2.21	2.43	2.14
11	3	2	2.6	3.0	2.	2.23	2.09	2.51	2.48	2.57	2.68	3.26	2.66
Midn.	3.83	3.31	3.17	3.42	2.88	2.41	2.23	2.68	2.70	2.81	2.99	3.80	3.02
6. 6	1.71	2.14	2.09	1.71	1.24	0.97	1.04	1.24	1.42	1.46	1.35	1.60	1.51
7. 7	1.76	2.07	1.96	1.60	1.17	1.01	1.19	1.40	1.44	1.44	1.28	1.62	1.49
8. 8	1.33	1.44	1.31	1.06	0.79	0.79	1.01	1.19	1.08	1.06	0.88	1.19	1.10
9. 9	0.54	0.43	0.29	0.2 .5	0.20	0.36	0.56	0.65	0.43	0.36	0.25	0.45	0.41
10.10	-0.41	-0.65	-0.79	-0.63	-0.45	-0.18	-0.02	-0.07	-0.34	-0.41	-0.45	-0.40	-0.41
7. 2. 9	-0..36	-0.29	-0.32	-0.38	- -0.34	-0.27	-0.23	-0.27	-0.29	-0.32	-0.27	-0.32	-0.32
6. 2. 8	-0.45	-0.29	-0.18	-0.18	-0.20	-0.18	-0.20	-0.20	-0.18	-0.18	-0.16	-0.34	-0.23
6. 2.10	0.51	0.61	0.50	0.38	0.32	0.23	0.18	0.25	0.25	0.25	0.45	0.59	0.38
6. 2. 6	-1.44	-1.19	-1.01	-1.06	-0.97	-0.90	-0.90	-1.04	-0.92	-0.88	-0.97	-1.35	-1.06
7. 2	-0.88	-0.63	-1.01	-1.53	-1.28	-1.15	-1.06	-1.28	-1.31	-1.33	-1.10	-1.08	-1.13
8. 2	-0.88	-0.63	-1.01	-1.53	$\left\lvert\, \begin{aligned} & -1.28 \\ & -2.23\end{aligned}\right.$	-1.15 -1.57	-1.06 -1.71	-2.07	-1.31	-2.21	-2.12	-2.27	-2.14
8. 1			-2.54		-2.23	-1.87	-1.71 -1.73	-2.12	-2.32	-2.41	-2.25	-2.41	-2.27
7. 1	-0.18		-2..94	-1.76	$\left\lvert\, \begin{aligned} & -2.34 \\ & -1.40\end{aligned}\right.$	-1.89	$\left(\begin{array}{l}-1.78 \\ -1.06\end{array}\right.$	-2.12 -1.33	-1.4.4	-1.53	-1.26	-1.19	-1.26
7. 1	-0.9	-0.79	-1.26	-1.86	-1.40	-1.17	-1.06	-1.33	-1.44	1.53			
9.12 .3 .9	-3.31	-3.42	-3.26	-2.99	-2.43	-1.96	-1.87	-2.23	-2.39	-2.41	-2.54	-3.17	-2.66
7. $2.2(9)$	-0.11	-0.11	0.02	0.20	0.14	0.16	0.18	0.25	0.20	0.20	0.16	0.07	0.11

The numbers without sign must be added ; those with the sign - must be subtracted.
XIX.

India. - Trevandrum. Lat. $8^{\circ} 31^{\prime}$ N. Long. $74^{\circ} 50^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	Narch.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	1.96	1.79	1.69	1.7	1.45	1.18	1.07	1.28	1.33	1.36	1.4	1.8	1.52
2	2.28	2.20	2.06	1.95	1.69	1.34	1.22	1.44	1.53	1.53	1.70	2.16	1.76
3	2.68	2.72	2.52	2.29	1.95	1.54	1.41	1.66	1.77	1.74	1.98	2.52	2.07
4	3.09	3.25	2.95	2.55	2.14	1.69	1.59	1.87	1.90	1.93	2.2	2.89	2.35
5	3.36	3.62	3.17	2.58	2.1	1.70	1.67	1.96	2.05	1.98	2.32	3.08	2.47
6	3.26	3.56	2.99	2.27	1.85	1.49	1.55	1.51	1.84	1.75	2.1	2.	2.29
7	2.67	2.93	2.31	1.57	1.2 .5	1.04	1.19	1.36	1.34	1.28	1.5	2.	1.73
8	1.58	1.74	1.18	05	0.42	0.40	0.60	0.66	0.56	0.50	0.62	1.	0.83
9	0.18	0.22	-0.21	-0.63	-0.50	-0.33	-0.12	-0.20	-0.36	-0.44	-0.41	-0	-0.24
10	-1.26	-1.32	-1.57	-1.73	-1.35	-1.02	-0.85	-1.07	-1.27	-1.36	-1.38	-1.4	-1.30
11	-2.45	-2.60	-2.6.	-2.96	-1.99	-1.57	-1.45	-1.80	-2.00	-2.1	-2.11	-2.4	-2.15
Noon.	-3.22	-3.37	-3.27	-3.03	-2.37	-1.93	-1.92	-2.30	-246	-2.54	-2.52	-3.1	-2.67
1	-3.52	-3.63	-3.43	-3.13	-2.49	-2 08	-2.13	-2.53	-2.61	-2.6	-2.62	-3.3	-2.85
2	-3.45	-3.48	-3.21	-2.93	-2.39	- - 0.05	-2.12	-2.49	-2.49	-2.46	-2.49	-3.22	-2.73
3	-3.15	-3.10	-2.75	-2.31	-2.13	-1.86	-1.91	-2.24	-2.16	-2.07	-2.20	-2.92	-2.42
4	-2.74	2.66	-2.25	-1.98	-1.7	1.54	-156	-1.82	-1.69	-1.57	-1.83	-2.52	-1.99
5	-2.28	-2.17	-1.70	-1	-1	-1.12	-1.12	-1.29	-1.15	-1.03	-1.40	-2.05	-1.50
6	-1.74	-1.66	-1.14	-0.76	-0.75	-0.4.3	-0.62	-0.70	-0.58	-0.49	-0.90	-1.49	-0.96
7	-1.11	-1.09	-0.58	-0.15	-0.22	-0.14	-0.13	-0.12	-0.05	0.00	-0.36	-0.84	-0.40
8	-0.41	-0.46	-0.03	0.41	028	$0 . .1$	0.30	0.40	0.41	0.43	0.17	-0.14	0.14
9	0.30	0.17	0.47	0.85	0.68	0.65	0.62	0.78	0.75	0.76	0.63	0.53	0.60
10	0.91	073	0.87	1.16	0.96	0.87	0.82	1.02	0.97	1.00	0.98	1.08	0.95
11	1.37	1.14	1.17	1.36	1.14	0.99	0.93	1.13	1.10	1.14	1.19	1.45	1.18
Midn.	1.70	1.47	1.41	1.52	1.28	1.07.	0.99	1.19	120	1.25	1.33	1.69	1.34
6. 6	0.76	0.95	0.93	0.76	0.55	0.43	0.46	0.55	0.63	0.65	0.60	0.71	0.67
7. 7	0.78	092	0.87	0.71	0.52	0.45	0.53	0.62	064	0.64	0.57	0.72	0.66
8. 8	0.59	064	0.58	0.47	0.35	0.35	0.45	0.53	048	0.47	0.39	0.53	0.49
9. 9	0.24	0.19	0.13	0.11	0.09	0.16	0.25	0.29	6.19	0.16	0.11	0.20	0.18
10.10	-0.18	-0.29	-0.35	-0.28	-0.20	-0.08	-0.01	-0.03	-0.15	-0.18	-0.20	-0.18	-0.18
7. 2. 9	-0.16	-0.13	-0.14	-0.17	-0.15	-0.12	-0.10	-0.12	-0.13	-0.14	-0.12	-0.14	-0.14
6. 2. 8	-0.20	-0.13	-0.08	-0.08	-0.09	-0.08	-0.09	-0.09	-0.08	-0.08	-0.0	-0.15	-0.10
6. 2.10	0.4	0.27	0.22	0.17	0.14	0.10	0.05	0.11	0.11	0.11	0.20	0.26	0.17
6. 2. 6	-0.64	-0.53	-0.45	-0.47	-0.43	-0.40	-0.40	-0.46	-0.41	-0.39	-0.43	-0.60	-0.47
7. 2	-0.39	-0.28	-0.45	-0.68	-0.57	-0.51	-0.47	-0.57	-0.58	-0.59	-0.49	-0.48	-0.50
8. 2	-0.9.4	-0.57	-1.02	-1.20	-0.99	-0.83	-0.76	-0.92	-0.97	-0.98	-0.94	-1.01	-0.95
8. 1	-0.97	-0.95	-1 13	-1.30	-1.04	-0.84	-0.77	-0.94	-1 03	-1.07	-1.00	. 0	-1.01
7. 1	-0.43	-0.85	-0.56	-0.78	-0.62	-0.52	-0.47	-0.59	-0.64	-0.68	-0.56	-0.53	-0.56
9.12.3.9	-1.47	-1.52	-1.45	-1.33	-1.08	-0.87	-0.83	-0.99	-1.06	-1.07	-1.1	-1.41	-1.18
7. $2.2(9)$	-0.05	-0.05	0.01	0.09	0.06	0.07	0.08	0.11	0.09	0.09	0.07	0.03	0.05
Dail.ext.	-0.08	-0.01	-0.13	-0.28	-0.18	-0.19	-0.23	-0.29	-0.28	-0.33	-0.15	-0.13	-0.19

India. - Madras. Lat. $13^{\circ} 4^{\prime}$ N. Long. $80^{\circ} 19^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Fabrenheit.

The uumbers without sign must be added; those with the sigu - must be subtracted.

India. - Madras. Lat. $13^{\circ} 4^{\prime}$ N. Long. $80^{\circ} 19^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	1.41	1.22	1.32	1.06	1.26	1.15	0.93	0.83	1.26	1.18	1.0	1.38	1.17
2	1.79	1.64	1.42	1.36	1.59	1.42	1.09	1.40	1.52	1.46	1.32	1.50	1.46
3	2.14	2.10	1.50	1.76	1.94	1.70	1.26	1.66	1.67	1.70	1.70	1.68	1.73
4	2.38	2.42	1.53	2.10	2.17	1.90	1.42	1.66	1.70	1.58	1.90	1.93	1.92
5	2.42	2.43	1.61	2.20	2.18	1.95	1.42	1.45	1.62	1.88	2.02	2.17	1.95
6	2.22	2.05	1.48	1.91	1.86	1.77	1.33	1.10	1.39	1.64	1.81	2.25	1.73
7	1.76	1.30	1.14	1.24	1.19	1.30	1.12	0.75	1.02	1.14	1.27	2.00	1.27
8	1.05	0.36	0.54	0.30	0.27	0.70	0.78	0.46	0.47	0.10	0.50	1.32	0.60
9	0.15	-0.39	-0.23	-0.71	-0.75	-0.06	0.35	0.16	-0.23	-0.46	-0.3	0.27	-0.20
10	-0.8.	-1.38	-1.04	-1.56	-1.67	-0.82	-0.21	-0.18	-1.02	-1.26	-1.10	-0.94	-1.00
11	-1.74	-1.94	-1.70	-2.12	-2.31	-1.46	-0.86	-0.62	-1.75	-1.83	-1.75	-2.20	-1.69
Noon.	-2.18	-2.23	-2.06	-2.36	-2.58	-1.94	-1.52	-1.12	-2.29	-2.18	-2.12	-2.76	-2.14
1	-2.90	-2.34	-2.10	-2.34	-2.48	-2.20	-2.13	-1.57	-2.47	-2.17	-2.25	-2.98	-2.33
2	-2.97	-2.30	-1.88	-2.14	-2.13	-2.24	-2.47	-1.52	-2.27	-1.91	-2.18	-2.76	-2.26
3	-2.68	-2.12	-1.52	-1.84	-1.62	-2.07	-2.48	-1.77	-1.77	-1.50	-1.9	-2.25	-1.97
4	-2.14	-1.81	-1.14	-1.46	-1.11	-1.74	-2.12	-1.43	-1.12	-1.08	-1.61	-1.65	-1.53
5	-1.47	-1.34	-0.83	-1.00	-0.65	-1.28	-1.44	-0.94	-0.50	-0.70	-1.10	-1.13	-1.03
6	-0.81	-0.78	-0.58	-0.48	-0.27	-0.78	-0.65	-0.46	-0.06	-0.38	-0.58	-0.72	-0.55
7	-0.26	-0.18	-0.35	0.04	0.02	-0.30	0.08	-0.14	0.18	-0.14	-0.14	-0.39	-0.13
8	0.13	0.30	-0.05	0.49	0.26	0.12	0.62	-0.04	0.27	0.06	0.36	-0.06	0.20
9	0.38	0.62	0.42	0.71	0.45	0.42	0.86	-0.06	0.33	0.26	0.64	0.30	0.44
10	0.58	0.77	0.60	0.90	0.61	0.63	0.91	-0.06	0.44	0.46	0.81	0.66	0.61
11	0.79	0.84	0.91	0.91	0.78	0.79	0.87	0.11	0.66	0.67	0.83	0.99	0.76
Midn.	1.06	0.96	1.16	0.92	0.98	0.94	0.84	0.47	0.95	0.91	0.59	1.22	0.94
6. 6	0.71	0.64	0.45	0.72	0.80	0.50	0.34	0.32	0.67	0.63	0.62	0.77	0.60
7. 7	0.75	0.56	0.40	0.64	0.61	0.50	0.60	0.31	0.60	0.50	0.57	0.81	0.57
8. 8	0.59	0.33	0.23	0.40	0.27	0.41	0.70	0.21	0.37	0.23	0.43	0.63	040
9. 9	0.27	0.02	0.10	-0.00	-0.15	0.18	0.61	0.05	0.05	-0.10	0.15	0.29	0.12
10.10	-0.12	-0.31	-0.22	-0.33	-0.53	-0.10	-0.35	-0.12	-0.29	-0.40	-0.15	-0.14	-0.20
7. 2. 9	-0.28	-0.13	-0.11	-0.06	-0.16	-0.17	-0.16	-0.38	-0.31	-0.17	0.09	-0.15	-0.18
6. 2.8	-0.2 1	0.02	-0.16	0.09	-0.00	12	-0.17	-0.25	-0.20	-0.07	0.01	-0.19	-0.11
6. 2.10	-0.06	0.17	0.07	0.22	0.11	0.05	-0.08	-0.26	-0.15	0.06	0.15	0.0 .5	003
6. 2. 6	-0.52	-0.34	-0.33	-0.24	-0.18	-0.42	-0.60	-0.39	-0.31	-0.22	-0.32	-0.41	-0.36
7. 2	-0.61	-0.50	-0.37	-0.45	-0.47	-0.47	-0 6s	-0.54	-0.63	-0.32	-0. 46	0.35	-0.50
8. 2	-0.96	-0.97	-0.67	-0.92	-0.93	-0.77	-0.55	-0.68	-0.90	-0.76	-0.8	-0.72	-0.83
8.	-0.93	-0.99	-0.78	-1.02	-1.11	-0.75	-0.68	-0.56	-1.00	-0.89	-0.8	-0.8	-0.87
7. 1	-0.57	-0.52	-0.48	-0.55	-0.65	-0.45	-0.51	-0.41	-0.73	-0.52	-0.49	-0.49	-0 53
9.12.3.9	-1.16	-1.08	-0.8.5	-1.05	-1.13	-0.01	-0.7)	-0.70	-0.99	-0.97	-0.95	-1.11	-0.97
7. 2.2(9)	-0.11	0.06	0.03	0.13	-0.01	-0.03	009	-0.30	-0.15	-0.06	0.09	-0.04	-0.03
Dallext.	-0.2S	0.05	-0.25	-0.08	-0.20	-0.15	-0.53	-0.08	-0.39	-0.15	-0.12	-0.37	-0.19

India. - Bombay. Lat. $18^{\circ} 56^{\prime}$ N. Long. $72^{\circ} 54^{\prime}$ E. Greenv.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Fahrenheit.

Hours.	Jan.	Feb.	March.	April.	Hay.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	1.49	1.40	0.99	1.13	1.42	1.15	0.79	0.97	0.56	1.49	2.03	1.55	1.26
2	1.80	1.69	1.33	1.51	178.	1.40	0.88	1.13	0.97	1.57	2.18	1.87	1.53
3	2.27	2.21	1.91	2.05	2.14	1.69	0.90	1.24	1.24	2.32	2.45	2.41	1.91
4	2.86	2.84	2.59	2.48	2.32	1.91	0.90	1.31	1.53	2.75	2.81	3.11	2.27
5	3.47	3.40	3.04	2.61	2.23	1.96	0.86	1.31	1.71	2.95	3.11	3.78	2.54
4	3.83	3.62	3.06	2.34	1.80	1.50	0.79	1.24	1.67	2.79	3.15	4.16	2.52
7	3.69	3.33	2.54	1.67	1.15	1.42	0.65	1.04	1.22	2.21	2.79	4.01	2.14
8	2.97	2.48	1.58	0.77	036	0.88	0.38	0.74	0.79	1.28	1.91	3.24	1.44
9	1.69	1.22	0.38	-0.14	-0.41	0.23	0.00	0.32	0.09	0.16	0.63	1.87	0.50
10	0.07	-0.23	-0.77	-0.90	-1.06	-0.43	-0.52	-0.20	-0.65	-0.95	-0.83	0.16	-0.52
11	-1.55	-1.55	-1.67	-1.49	-1.55	-6.08	-6.08	-0.79	-1.28	-1.91	-2.21	-1.60	-1.49
N	-2.86	-2.61	-2.30	-1.91	-1.94	-1.64	-1.55	-1.35	-1.80	-2.59	-3.29	-3.08	-2.25
1	-3.69	-3.29	-2.66	-2.25	-2.21	-2.12	-1.82	-1.78	-2.12	-2.99	-3.92	4.10	2.75
2	-3.98	-3.60	-2.84	-2.50	-2.34	-2.41	-1.78	-2.00	-2.25	-3.13	-4.07	-4.59	-2.95
3	-3.85	-3.65	-2.86	-2	-2.32	-2.45	-1.44	-1.98	-2.16	-2.99	-3.55	-4.55	-2.90
4	-3.42	-3.42	-2.72	-2.50	-2.09	-2.25	-0.92	-1.69	-1.87	-2.66	-3.33	-4.12	-2.59
5	4		-2.34					-1.24		-2.14	-2.61	-3.38	-2.07
5											8		
6				-								-2.45	-1.40
7	-1.49	-1.44	-0.88	-0.54	-0.35	-0.47	0.38	-0.23	0.05	-0.72	-0.88	-1.46	-0.68
8	-0.79	-0.56	-0.07	0.23	0.18	0.14	0.50	0.16	0.47	-0.02	0.00	-0.52	-0.02
9	-0.1	0.23	0.56	0.72	059	0.54	0.54	1.43	0.86	0.52	0.77	0.29	0.50
10	0.47	0.81	0.90	0.92	0.53	0.79	0.54	0.59	0.99	0.88	1.35	0.86	0.83
11	0.92	1.10	0.97	0.92	0.99	096	0.61	0.72	0.97	1.08	1.71	1.19	1.01
Midn.	1.24	1.26	0.92	0.95	1.15	0.99	0.70	0.83	0.88	1.26	1.91	1.37	1.13
6. 6	0.81	0.68	0.68	0.50	0.38	0.34	0.43	0.25	0.45	0.68	0.70	0.86	0.56
7. 7	1.10	0.95	0.83	0.56	0.38	0.47	0.52	0.41	0.63	0.74	0.95	1.28	0.74
8. 8	1.08	0.97	0.77	0.50	0.27	0.50	0.45	0.45	0.63	0.63	0.95	1.35	0.72
9. 9	0.79	0.72	0.47	0.29	0.09	0.38	0.27	0.36	0.47	0.34	0.70	1.08	0.50
10.10	0.27	0.29	0.07	0.00	-0.11	0.18	0.02	0.20	0.18	-0.05	0.25	0.52	0.16
7. 2. 9	-0.14	-0.02	0.09	$-0.0 .5$	-0.20	-0.16	-0.20	-0.18	-0.07	-0.14	-0.18	-0.09	-0.11
6. 2. 8	-0.3	-0.15	0.03	0.02	-0.11	-0.16	-0.16	-0.20	-0.05	-0.11	-0.32	-0.32	-0.16
6. 2.10	0.11	0.27	033	02.5	0.09	0.07	-0.16	-0.07	0.14	0.18	0.14	0.14	0.14
6. 2. 6	-0.79	-0.74	-0.50	-0.52	-0.52	-0.59	-0.29	-0.50	-0.45	-0.61	-0.90	-0.97	-0.61
7	-0.16	-0.14	-0.16	-0.43	-0.61	-0.50	-0.56	-0.50	-0.52	-0.47	-0.65	-0.29	-0.41
8. 2	-0.52	-0.56	-0.63	-0.88	-0.99	-0.7%	-0.70	-0.63	-0.74	-0.92	-1.08	-0.68	-0.77
S. 1	-0.36	-0.41	-0.54	-0.79	-0.92	-0.63	-0.72	-0.52	-0.68	-0.86	-1.01	-0.43	-0.65
7. 1	0.00	002	-0.07	-029	-0.54	-0.36	-0.59	-0.38	-0.45	-0.41	-0.56	-0.05	-0.32
9.12.3.9	-1.2s	-1.22	-1.06	-0.99	-1.01	-0.83	-0.61	-0.65	-0.77	-1.24	-1.44	-1.37	-1.04
7. $2.2(9)$	-0.11	0.05	0.20	0.16	0.00	0.02	-0.02	-0.02	0.18	0.02	0.07	0.00	0.05

India. - Bombay. Lat. $18^{\circ} 56^{\prime}$ N. Long. $72^{\circ} 54^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean Temperatures of the respective Days, Months, and of the Year. - Dove.
Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.66	0.62	0.44	0.50	0.63	0.51	0.35	0.43	038	0.66	0.90	0.69	0.56
2	0.80	0.75	0.59	0.67	0.79	0.62	0.39	0.50	0.43	0.83	0.97	0.83	0.68
3	1.01	0.98	0.85	0.91	0.95	0.75	0.40	0.55	0.55	103	1.09	1.07	0.85
4	1.27	1.26	1.15	1.10	1.03	0.85	0.40	0.58	0.68	1.22	1.25	1.38	1.01
5	1.54	1.51	1.35	1.16	0.99	0.87	0.38	0.58	0.76	1.31	1.38	1.68	1.13
6	70	1.61	1.36	1.04	0.80	0.80	0.35	0.55	0.74	1.24	1.40	1.85	1.12
7	1.64	1.48	1.13	0.74	0.51	0.63	0.29	0.46	0.54	0.98	1.24	1.78	0.95
8	1.32	1.10	0.70	0.34	0.16	0.39	0.17	0.33	0.35	0.57	0.85	1.44	0.64
9	75	0.54	0.17	-0.06	-0.18	0.10	-0.	0.1	0.04	0.07	0.28	0.	0.22
10	0.03	-0.10	-0.34	-0.40	-0.47	-0.19	-0.23	-0.09	-0.29	-0.42	-0.37	0.07	-0.23
11	-0.69	-0.69	-0.74	-0.66	-0.69	-0.48	-0.48	-0.35	-0.57	-0.85	-0.98	-0.7	-0 66
Noon	-1.27	-1.16	-1.02	-0.85	-0.86	-0.73	-0.69	-0.60	-0.80	-1.15	-1.46	-1.37	-1.00
1	-1.64	-1.46	-1.18	-1.00	-0.98	-0.9	-0.81	-0.7	-0	-133	-1.74	-1.82	-1.22
2	-1.77	-1.60	-1.26	-1.11	-1.04	-1.07	-0.79	-0.89	-1.00	-1 39	-1.81	-2.0	-1.31
3	-1.71	-1	-1.27	-1.16	-1. 03	-1.09	-0.64	-0.88	-0.96	-1 33	-1.71	-2.02	-1.29
4	-1.52	-1.52	-I. 21	-1.11	-0.93	-1.00	41	-0.75	-0.83	-1.18	-1.48	-1.83	-1.15
5	-1.26	-1.31	-1	-0.92	-0	-0.79	-0.17	-0.55	-0.61	-0.95	-1.16	-1.50	-0.92
6	-0	1	-0.76	-0.61	-0.46	-0.51	0.04	-0.32	-0.33	-0.65	-0.79	-1.09	-0.62
7	-0.	-0.64	-0.39	-0.24	-0.1	-0.21	0.17	-0.10	0.02	-0.32	-0.39	-0.65	-0.30
8	-0.35	-0.25	0.03	0.10	0.08	0.06	0.22	0.07	0.21	-0.01	0.	-0.23	-0 01
9	-0.05	10	0.25	0.32	0.26	0.24	0.24	0.	0.38	0.23	0.34	0.13	0.22
10	21	. 36	0.40	041	0.37	0.35	0.24	0.2	0.44	0.39	060	0.38	0.37
11	0.41	0.49	0.43	0.41	0.44	0.40	0.27	0.3	0.4	0.48	0.76	0.83	0.45
Midn.	0.55	0.56	0.41	0.42	0.51	0.44	0.31	0.37	0.39	0.56	0.85	0.61	0.50
6. 6	0.36	0.30	0.30	0.22	0.17	0.15	0.19	0.11	0.20	0.30	0.31	035	0.25
7. 7	49	0.42	. 37	0.25	0.17	0.21	0.23	0.1	0.28	0.33	0.42	057	0.33
8. 8	0.48	0.43	34	0.22	0.12	0.22	0.20	0.20	028	0.28	042	0.60	0.32
9. 9	35	032	0.21	0.13	0.04	0.17	0.12	0.16	0.21	0.15	0.31	0.48	0.22
10.10	0.12	0.13	0.03	0.00	-0.05	0.08	0.01	0.09	0.08	-0.02	0.11	0.23	0.07
7. 2. 9	-0.06	-0.01	0.4	-0.02	-0.09	-0.07	0.09	-0.0s	-0.03	-0.06	-0.08	-0.0.4	-0.05
6. 2.8	14	-0.08	0.02	01	-0.05	-0.07	. 07	-0.09	-0.02	-0.05	-0.14	-0.14	-0.07
6. 2.10	005	0.12	0.17	0.11	0.04	0.03	. 07	-0.03	0.06	008	0.06	0.06	0.06
6. 2. 6	-0.35	-0.33	-0.22	-0.23	-0.23	-0.26	. 13	-0.22	-0.20	-0.27	-0.40	-0.43	-0.27
7. 2	-0.07	-0.06	-0.07	-0.19	-0.27	. 22	25	0.22	-0.23	0.21	-0.29	-0.13	-0.18
8. 2	-0.23	-0.25	-0.28	-0.39	-0.44	-0.34	1	-0.28	0.33	0.41	-0.48	-0.30	-0.34
8.	-0.16	-0.18	-0.24	-0.33	-0.11	-0.28	32	-0 23	-0.30	0.38	0.4	0.19	-0.29
7. 1	0.00	0.01	-0.03	-0.13	-0.2f	-0.16	-0.26	-0.17	-0.20	-0.18	-0.25	-0.02	-0.14
9.12.2.9	-0.57	-0.54	-0.47	-0.44	-0.45	-0.37		. 29	-0.34	-0.55	-0.6.	-0.61	-0.46
7. 2.2(9)	-0.06	0.02	0.09	0.07	0.00	0.01	-0.01	-0.01	0.08	0.01	0.03	000	0.02
Dail.ext.	-0.04	-0.01	0.05	0.01	0.00	-0.11	$1-0.21$	-0.16	-0.12	-0.04	-0.21	-0.10	-0.09

India. - Madras. Lat. $13^{\circ} 4^{\prime}$ N. Long. $80^{\circ} 19^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Midn.	0.91	1.13	1.00	1.62	1.22	1.35	1.19	1.27	1.04	0.82	0.91	0.84	1.11
1	1.13	1.45	1.29	1.37	1.47	1.56	1.38	1.34	1.20	1.01	1.13	1.00	1.28
2	1.32	1.76	1.60	1.59	1.65	1.72	1.58	1.51	1.38	1.24	1.35	1.17	1.49
3	1.48	2.01	1.88	1.81	1.81	1.90	1.75	1.64	1.58	1.39	1.56	1.32	1.68
4	1.61	2.25	2.13	1.96	1.98	2.08	1.92	1.77	1.76	1.54	1.74	1.42	1.55
5	1.74	2.44	2.33	1.98	2.08	2.20	2.07	1.93	1.88	1.65	1.88	1.60	1.98
6	1.80	2.51	2.27	1.68	1.72	1.87	1.92	1.81	1.70	1.46	1.80	1.66	1.85
7	1.08	1.48	1.13	0.79	0.92	1.12	1.30	1.24	1.08	0.50	1.89	1.06	1.07
8	-0.02	0.13	0.07	-0.08	-0.05	0.17	0.47	0.44	0.32	0.06	-0.25	0.00	0.10
9	-0.90	-0.86	-0.84	-1.07	-1.08	-0.77	-0.34	-0.40	-0.50	-0.56	-1.11	-0.77	-0.77
10	-1.45	-1.60	-1.63	-1.84	-2.08	-1.63	-1.19	-1.22	-1.32	-1.04	-1.57	-1.36	-1.49
11	-1.79	-2.14	-2.14	-2.15	-2.56	-2.23	-1.89	-1.85	-2.02	-1.41	-1.82	-1.61	-1.47
Noon.	-1.97	-2.25	-2.38	-2.5	-2.61	-2.60	-2.45	-2.35	-2.24	-1.67	-1.92	-1.75	-2.23
1	-1.96	-2.38	-2.41	-2.46	-2.51	-2.69	-2.70	-2.56	-2.24	-1.66	-1.89	-1.72	-2.26
2	-1.84	-2.36	-2.22	-2.20	-2.22	-2.53	-2.67	-2.40	-2.07	-1.58	-1.66	-1.60	-2.11
3	-1.54	-2.16	-1.90	-1.81	-1.78	-2.05	-2.19	-2.04	-1.66	-1.35	-1.36	-1.25	-1.76
4	-1.07	-1.62	-].38	-1.18	-1.09	-1.59	-1.66	-1.53	-1.14	-1.06	-0.88	-0.91	-1.26
5	-0.53	-1.01	-0.74	-0.46	-0.45	-0.55	-0.97	-0.82	-0.64	-0.56	-0.39	-0.45	-0.66
6	-0.17	-0.49	-0.23	0.09	0.05	-0.26	-0.36	-0.31	-0.23	-0.28	-0.11	-0.17	-0.21
7	0.04	-0.16	0.07	0.37	0.31	0.16	0.07	0.06	0.03	-0.08	0.0 .1	0.00	0.08
8	0.24	0.12	0.26	0.44	0.53	0.43	0.37	0.33	0.21	0.07	0.21	0.15	0.28
9	0.42	0.36	0.43	0.70	0.70	0.63	0.60	0.52	0.44	0.22	0.33	0.30	0.47
10	0.62	0.59	0.62	0.84	0.87	0.94	0.83	0.73	0.62	0.40	0.48	0.16	0.67
11	0.82	0.83	0.82	1.00	1.04	1.07	1.02	0.95	0.84	0.57	0.65	0.64	0.85
Mean.	19.90	20.76	22.83	23.83	24.49	24.45	24.10	23.34	22.89	21.86	20.68	19.89	

XXV.

India. - Bombay. Lat. $18^{\circ} 56^{\prime}$ N. Long. $72^{\circ} 54^{\prime}$ E. Greenw. - Dove.
Degrees of Reaumur.

Hour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Midn.	1.76	1.65	1.43	1.40	1.30	0.80	0.57	0.59	0.92	1.36	1.74	1.98	1.29
1	1.91	1.88	1.65	1.54	1.40	0.89	0.65	0.64	0.98	1.52	1.80	2.00	1.10
2	2.04	2.04	1.80	1.75	1.54	0.98	0.63	1.16	1.09	1.62	1.97	2.18	1.56
3	2.18	2.22	1.90	1.92	1.69	0.94	0.65	0.81	1.18	1.74	2.11	2.28	1.63
4	2.39	2.44	2.26	2.02	1.81	1.04	0.76	0.82	1.25	1.89	2.23	2.41	1.78
5	2.65	2.68	2.42	2.26	1.92	1.09	0.83	0.90	1.2.5	1.96	2.40	2.62	1.92
6	2.85	2.88	2.60	2.20	1.65	1.03	0.84	0.84	1.21	2.00	2.55	2.66	1.94
7	2.53	2.37	1.61	0.76	0.44	0.60	0.55	0.51	0.61	1.02	1.47	2.08	1.21
8	0.72	0.18	-1.04	-0.62	-0.51	-0.01	0.02	0.08	-0.20	-0.31	-0.12	0.20	-0.11
9	-1.04	-1.05	-1.49	-1.53	-1.30	-0.46	-0.46	-0.45	-0.84	-1.53	-1.40	-1.00	-1.05
10	-2.40	-2.29	-2.28	-2.00	-1.73	-0.79	-0.74	-0.76	-1.32	-2.17	-2.35	-2.14	-1.75
11	-3.08	-2.98	-2.54	-2.20	-2.08	-1.18	-1.07	-1.12	-1.5]	-2.38	-3.15	-3.94	-2.19

The numbers without sign must be added; those with the sign - must be subtracted.

India. - Bombay, Contimued.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hour.	Jan.	b.	Mar	April.	May.	June.	July.	Aug.	Scirt.	Oct.	Nov.	Dee	ar.
Noou.	-3.40	-3.29	-2.5	2.4	-2.32	-1.40	-1.09	-1.34	-1.72	-2.39	-3.26	-3.32	-2.37
1	-3.	-3.1	-2.6	-2	-2.28	-1.50	-1.12	-1.35	-1.77	-2.2	-2.96	-3.35	-2.32
2	-2.78	-2.99	-2.56	-2.32	-2.14	-1.52	-0.97	-1.35	-1.55	-2.09	-2.55	-2.97	-2.14
3	-2.38	-2.54	-2.25	-2.05	-1.85	-1.31	-0.85	-1.09	-1.37	-1.79	-2.22	-2.59	-1.86
4	-1.96	-2.07	-1.72	-1.49	-1.36	-0.89	-0.63	-0.76	-0.95	-1.38	-1.55	-2.03	-1.40
5	-1.30	-1.41	-1.08	-0.96	-0.53	-0.49	-0.36	-0.34	-0.36	-0.61	-0.67	-1.09	-0.79
6	-0.64	-0.44	-0.16	. 00	0.09	-0.02	0.03	0.13	0.14	0.01	-0.14	-0.52	-0.13
7	-0.2s	-0.07	0.19	0.43	0.63	0.22	0.21	0.26	0.28	0.30	0.09	-0.23	0.17
8	0.00	23	18	0.66	0.87	0.39	. 28	0.34	0.44	0.53	0.36	0.10	0.39
9	0.58	0.63	0.80	0.83	0.92	0.44	0.36	0.41	0.58	0.76	0.8	0.75	0.66
10	1.16	1.15	1.04	1.09	0.9.J	0.52	0.41	0.52	0.78	0.96	1.32	1.35	0.94
11	1.47	1.48	1.20	1.24	1.17	0.71	0.48	0.56	0.89	1.15	1.58	1.65	1.13
Mean.	18.39	19.30	21.00	22.50	23.43	22.35	21.67	21.45	21.42	22.08	21.28	19.54	

XXVI.

India.-Chlcutta。Lat. $22^{\circ} 33^{\prime} 5^{\prime \prime}$ N. Long. $88^{\circ} 19^{\prime} 2^{\prime \prime}$ E. Greenw. - Dove. Degrees of Reaumur.

Hlour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dee.	Year
Midn.	1.86	1.69	2.06	1.60	1.90	1.12	0.69	0.69	0.71	1.00	1.24	1.51	1.34
1	2.24	2.00	2.37	1.96	2.06	1.12	0.50	0.78	0.76	1.17	1.47	1.77	1.54
2	2.3.3	2.22	2.62	2.18	2.21	1.16	0.91	0.85	0.84	1.26	1.69	2.00	1.71
3	2.80	2.44	2.84	2.27	2.32	1.29	1.02	0.92	0.93	1.26	1.82	2.31	1.85
4	3.06	2.71	3.05	2.10	2.41	1.29	1.11	0.96	1.04	1.46	2.00	2.40	1.99
5	3.33	2.89	3.25	2.47	2.50	1.34	1.24	1.07	1.16	1.53	2.22	2.66	2.14
6	53	3.11	. 1	. 53	4	1.34	1.24	1.12	1.1	1.62	2.36	. 80	2.22
7	3.71	3.24	3.42	2.22	1.90	1.03	0.96	0.89	0.93	0.86	2.31	2.93	2.03
8	2.73	2.20	1.97	. 18	0.81	0.45	0.42	0.32	0.27	0.31	0.93	1.68	1.11
9	0.91	0.71	0.46	.11	-0.34	-0.13	-0.16	-0.22	-0.24	-0.47	-0.13	0.35	0.07
10	-0.78	-0.62	-0.95	-0.44	-1.39	-0.66	-0.69	-0.33	-0.73	-0.58	-1.02	-0.76	-0.75
11	-2.09	-1.64	-2.14	-1.82	-2.14	-1.15	-1.13	-1.08	-1.16	-1.60	-1.91	-1.87	-1.64
Noon.	-3.31	-	-3.16	-2.67	-2.76	-1.60	-1.51	-1.51	-1.40	-1.94	-2.44	-2.80	-2.31
1	-4.14	-3.28	-3.57	-3.09	-3.12	-1.68	-1.58	-1.5.5	-1.44	-2.05	-2.80	-3.29	-2.66
2	-4.52	-3.64	-4.2.5	-3.47	-3.32	-1.73	-1.29	-1.80	-1.63	-2.12	-3.07	-3.69	-2.88
3	-4.6.5	-3.87	-4.40	-3.62	-3.43	-1.92	-1.24	-1.20	-1.27	-1.83	-2.98	-3.69	-2.84
4	-3.75	-3.69	4.23	3.40	-3.10	-1.53	-0 96	-0.95	-0.91	1.49	-2.18	-2.76	-2.41
5	-3.07	-3.13	3.36	-2.73	-2.43	-1.20	-0.64	-0.68	-0.56	0.9	-1.60	-2.18	-1.88
6	-1.87	-1.91	-1.96	-1.42	-1.23	-0.57	-0.31	-0.31	-0.16	-0.25	-0.76	-1.34	-1.01
7	-0.96	-0.93	-0.78	-0.31	-0.14	-0.11	-0.07	-0.09	0.04	0.13	-0.22	-0.63	-0.31
8	-0.20	-0.22	0.00	0.40	0.68	0.20	0.09	0.25	0.22	0.42	0.27	-0.05	0.17
9	0.42	0.38	0.73	0.89	1.08	0.19	0.22	0.45	0.33	0.60	0.62	0.44	0.5 .5
10	0.9 .3	0.80	1.22	1.20	1.46	0.63	0.36	0.56	0.47	0.75	1.07	0.93	0.57
11	1.37	1.20	1.66	1.54	1.64	0.74	0.49	0.65	0.60	0.88	1.16	1.20	1.09
Mam.	15.49	17.57	21.19	23.51	24.01	23.29	22.68	22.86	22.42	21.73	18.88	16.36	

Asia. - Tiflis. Lat. $41^{\circ} 41^{\prime}$ N. Long. $45^{\circ} 17^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

The numbers without sign must be added; those with the sign - must be subtracted.

China. - Peking, Continued.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur

Hour.	Jan.	Feb.	March.	April.	May.	June.	July	Aug	Sept.	Oct.	Nov.	Dec.	Year
Noon.	-2.83	-2.80	-2.93	-2.92	-5.05	-2.92	-2.24	-2.02	-2.77	-3.03	-2.39	-2.64	-2.71
1	-3.01	-3.54	-3.54	-3.59	-3.74	-3.55	-2.65	-2.64	-3.10	-3.65	-2.87	-3.18	-3.25
2	-3.37	-3.84	-4.03	-3.98	-4.08	-3.97	-2.88	-2.90	-3.38	-3.96	-3.07	-3.41	-3.57
3	-3.30	-3.94	-4.12	-4.06	-4.24	-4.00	-2.85	-2.94	-3.44	-3.97	-2.88	-2.74	-3.55
4	-2.88	-3.65	-3.92	-3.86	-4.03	-3.74	-2.74	-2.79	-3.06	-2.43	-2.23	-2.50	-3.15
5	-1.79	-2.83	-3.21	-3.24	-3.65	-3.31	-2.36	-2.20	-2.34	-2.34	-1.18	-1.34	-2.48
6	-0.97	-1.79	-2.20	-2.34	-3.04	-2.44	-1.76	-1.45	-1.18	-1.12	-0.59	-0.64	-1.63
7	-0.48	-0.15	-1.05	-1.13	-1.18	-1.21	-0.72	-0.45	-0.50	-0.54	-0.48	-0.26	-0.68
8	-0.02	-0.27	-0.30	-0.33	-0.19	-0.11	0.12	0.08	0.09	-0.02	0.01	0.18	-0.06
9	0.30	0.26	0.26	0.24	0.59	0.59	0.63	0.51	0.57	0.12	0.30	0.54	0.43
10	0.57	0.73	0.83	0.84	1.15	1.14	1.04	0.83	0.97	0.86	0.59	0.77	0.86
11	0.90	1.20	1.30	1.28	1.67	1.65	1.35	1.18	1.32	1.00	0.51	1.01	1.22
Me:n.	-3.57	-2.04	3.12	9.66	15.83	19.61	21.27	19.30	15.68	9.61	1.79	-2.44	

XXIX.

Siberia. - Nertciminsk. Lat. $51^{\circ} 18^{\prime}$ N. Long. $117^{\circ} 20^{\prime}$ E. Gr. - Dove.
Degrees of Reaumur.

Hour.	Jan.	Feb.	March.	Aprit.	May	June.	July	Aug.	Sept	Oct	Nov	Dee.	Year
Midn.	0.78	1.38	1.92	2.53	3.10	3.13	2.63	2.51	2.12	1.66	0.96	0.75	1.96
1	1.06	1.61	2.25	2.95	3.71	3.55	3.00	2.87	2.58	1.93	1.22	0.94	2.31
2	1.24	1.91	2.65	3.36	4.20	3.98	3.34	3.25	2.93	2.27	1.42	1.16	2.64
3	1.45	2.15	3.02	3.75	4.78	4.32	3.64	3.57	3.28	2.57	1.70	1.33	2.96
4	1.70	2.40	3.38	4.09	5.04	4.29	3.86	3.79	3.62	2.80	1.91	1.45	3.19
5	1.93	2.72	3.70	4.15	3.97	3.27	3.17	3.68	3.97	3.80	2.06	1.63	3.10
6	2.03	2.94	3.89	2.96	2.3	2.03	1.99	2.61	3.63	3.16	2.15	. 76	2.63
7	2.26	3.00	2.88	1.43	0.82	0.74	1.01	1.31	2.07	2.46	2.35	1.95	1.86
8	2.20	1.82	1.36	0.19	-0.53	-0.45	-1.28	0.11	0.66	0.84	1.61	1.95	0.71
9	0.56	-0.20	-0.12	-1.32	-1.77	-1.59	-1.25	-1.08	-0.72	-0.69	-0.03	0.62	-0.63
10	-0.96	-1.27	-1.71	-2.35	-2.73	-2.52	-2.13	-2.10	-1.99	-1.52	-1.17	-0.89	-1.80
11	-1.90	-2.34	-2.61	-3.08	-3.34	-3.17	-2.79	-2.91	-2.94	-2.78	-2.12	-1.85	-2.65
Noon.	-2.70	-3.16	-3.43	-3.70	-3.82	-3.62	-3.28	-3.49	-3.71	-3.41	-2.84	-2.58	-3.31
1	-3.06	-3.75	-396	-4.01	-4.08	-3.80	-3.58	-3.76	-4.09	-3.75	-3.09	-2.55	-3.65
2	-3.00	-3.80	-4.23	-4.05	-4.10	-3.73	-3.66	-3.92	-1.20	-3.66	-2.97	-2.52	-3.66
3	-2.50	-3.47	-4.03	. 81	-3.99	-3.59	-3.48	-3.79	-3.86	-3.26	-2.27	-1.87	-3.33
4	-1.54	-2.73	-3.53	-3.18	-3.55	-3.24	-3.0 2	-3.21	-3.34	-2.43	-1.34	-0.96	-2.70
5	-0.7	-1.61	-2.75	85	-3.02	-3.73	-2.38	-2.56	-2.48	-1.42	-0.87	-0.43	-1.98
6	-0.23	-0.63	-1.71	-1.97	-2.27	-2.06	-1.73	-1.68	-1.22	-0.50	-0.10	-0.17	-1.20
7	0.02	0.01	-0.31	-0.34	-0.93	-0.93	-0.82	-0.66	-0.49	-0.24	-0.17	-0.70	-0.17
8	0.13	0.39	0.24	0.61	0.27	0.97	0.37	0.41	0.34	0.30	0.06	0.08	0.29
9	0.27	0.63	0.66	1.19	1.34	1.32	1.24	1.30	0.99	0.64	0.34	0.22	0.84
10	0.13	0.86	1.06	1.72	1.92	2.02	1.78	1.70	1.30	1.01	0.54	0.43	1.23
11	0.57	1.16	1.17	2.17	2.63	2.63	2.29	2.14	1.71	1.31	0.75	0.56	1.62
Mcam.	-21.9	-17.94	-5.8.5	0.01	7.51	1.75	13.91	11.91	6.55	-1.50	-13.44	-21.36	

The nuubers without sign must be added ; those with the sign - must be subtracted.

Siberia. - Nertchinsk. Lat. $51^{\circ} 18^{\prime}$ N. Long. $119^{\circ} 21^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Mouths, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March	A pril.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.91	1.42	2.07	2.69	4.07	4.29	3.07	3.00	2.16	2.31	0.76	0.66	2.28
2	1.00	1.68	. 7	3.29	4.69	4.71	3.46	3.48	2.96	2.79	0.96	0.74	2.69
3	1.15	2.08	3.16	3.78	5.08	4.90	3.75	3.89	3.27	3.26	1.26	0.84	3.04
4	1.42	2.55	3.63	3.97	4.98	4.70	3.76	4.04	3.81	3.61	1.66	1.07	3.26
5	1.78	2.84	3.73	3.69	4.24	3.96	3.37	3.72	3.94	3.66	2.06	1.41	3.20
6	2.07	2.80	3.28	2.88	2.86	2.67	2.54	2.89	3.15	3.30	2.30	1.75	2.71
7	2.06	2.28	2.31	1.63	1.07	0.99	1.37	1.62	2.38	2.47	2.18	1.87	1.85
8	1.60	1.28	0.99	0.16	-0.78	-0.79	0.06	0.15	0.87	1.24	1.58	1.59	0.66
9	0.65	-0.05	-0.41	-1.26	-2.33	-2.34	-1.19	-1.25	-0.70	-0.23	0.55	0.57	-0.64
10	-0.59	-1.4:	-1.67	-2.42	-3.40	-3.41	-1.98	-2.38	-1.74	-1.70	-0.69	-0.17	-1.50
11	-1.79	-2.58	-2.64	-3.22	-3.98	-3.97	-2.92	-3.15	-2.99	-2.96	-1.84	-1.23	-2.77
Noon.	-2.61	-3.29	-3.25	-3.64	-4.19	-4.12	-3.38	-3.61	-3.49	-3.84	-2.60	-2.01	-3.34
1	-2.87	-3.49	-3.61	-3.76	-4.22	-4.05	-3.64	-3.83	-3.69	-4.25	-2.81	-2.30	-3.54
2	-2.56	-3.27	-3.74	-3.65	-4.18	-3.92	-3.72	-3.85	-4.00	-4.20	-2.50	-2.08	-3.48
3	-1.89	-2.76	-3.65	-3.33	-4.03	-3.77	-3.62	-3.75	-3.54	-3.77	-1.87	-1.54	-3.13
4	-1.14	-2.12	-3.31	-2.84	-3.69	-3.54	-3.29	-3.40	-3.24	-3.08	-1.17	-0.92	-2.65
5	-0.56	-1.45	-2.65	-2.17	-3.04	-3.07	-2.68	-2.76	-2.68	-2.24	-0.61	-0.47	-2.03
6	-0.23	-0.81	-1.78	-1.39	-2.08	-2.30	-1.82	-1.86	-1.54	-1.36	-0.27	-0.25	-1.31
7	-0.11	-0.21	-0.77	-0.56	-0.92	-1.23	-0.81	-0.80	-0.86	-0.54	-0.12	-0.23	-0.60
8	-0.04	0.31	0.18	0.20	0.26	0.00	0.20	0.24	0.17	0.17	-0.25	-0.24	0.12
9	0.09	0.74	0.90	0.82	1.29	1.21	1.06	1.11	0.97	0.74	0.05	-0.17	0.73
10	0.31	1.02	1.34	1.29	2.11	2.25	1.51	1.74	1.17	1.18	0.20	0.02	1.18
11	0.57	1.19	1.56	1.71	2.78	3.09	2.23	2.19	1.73	1.54	0.39	0.28	1.61
Midn.	0.78	1.29	1.76	2.15	3.41	3.75	2.65	2.57	1.88	1.90	0.58	0.52	1.94
6. 6	0.92	1.00	0.75	0.75	0.39	0.19	0.36	0.52	080	0.97	1.01	0.75	0.70
7. 7	0.98	1.04	. 77	0.53	0.07	-0.12	0.28	0.41	0.76	0.97	1.03	0.82	0.63
8. 8	0.78	0.50	0.58	0.18	-0.26	-0.39	0.13	0.20	0.52	0.71	0.77	0.67	0.39
9.9	0.37	0.34	0.24	-0.22	-0.52	-0.56	-0.06	-0.07	0.13	0.26	0.30	0.35	0.0 .5
10.10	-0.14	-0.20	-0.16	-0.57	-0.65	-0.58	-0.24	-0.32	-0.29	-0.26	-0.25	-0.07	-0.31
7. 2. 9	-0.14	-0.08	-0.18	-0 40	-0.61	-0.57	-0.43	-0.38	-0.22	-0.33	-0.09	-0.13	-0.30
6. 2. 8	-0.18	-0.0.5	-0.09	-0.19	-0.35	-0.42	-0.33	-0.25	-0.23	-0.24	-0.08	-0.19	-0.22
6. 2.10	-0.06	0.18	0.29	0.17	0.26	0.33	0.11	0.25	0.11	0.09	0.00	-0.01	0.14
6. 2. 6	-0.24	-0.43	-0.75	0.72	-1.13	-1.18	-1.00	-0.95	-0.80	-0.75	-0.16	-0.19	-0.69
7. 2	-0.41	-0.61	-0.65			-1.53	-1	-1.11	-0.66	-0.89	-0.32	-0.22	-0.8.5
8. 2	-0	1.34	-1.60	-1.85	-2.32	-2.26	-1.78	-1.88	-1.69	-1.78	-0.97	-0.71	-159
8. 1	-0	. 11	-1.31	-1.80	-2.50	-2.42	-1.79	-1.84	-1.11	-1.51	-0.62	-0.36	-'.14
7. 1	-0.25	-0.50	-0.72	-1.01	-1.56	-1.47	-1.18	-1.13	-0.81	-0.57	-0.16	-0.11	-0.81
9.12.3.9	-0 48	-1.00	-1.38	-1		-2.36	-1	-1.87	-1.57	-1.48	9.46	-0.25	-1.41
7. 2.2(9)	-0.08	0.12	0.09	-0.09	-0.13	-0.13	-0.06	-0.01	0.08	-0.04	-0.05	-0.14	-0.04
Thail.ext.	-0.40	-0.33	-0.01	-0.11	0.43	0.39	0.02	0.08	-0.03	-0.30	-0.26	-0.22	-0.14

The numbers without sign must th: added: thase with the sign - must be subtracted.

XXXI.

Siberia. - Barnaul. Lat. $53^{\circ} 20^{\prime}$ N. Long. $83^{\circ} 27^{\prime}$ E. Greenv.
Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean Temperatures of the respective Days, Months, and of the Year. - Dove.
Degrees of Fahrenheit.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec	Mean.
Morn. 1	2.54	1.85	4.70	5.49	8. 82	7.83	8.37	7.11	5.45	3.06	2.48	1.82	495
2	2.81	2.14	5.47	6.30	10.19	8.87	9.77	8.35	6.50	3.78	2.97	2.00	5.76
3	2.70	2.45	6.28	7.07	10.96	9.59	10.69	9.52	7.6.3	4.52	3.35	2.07	6.41
4	2.39	2.81	7.02	7.45	10.76	9.14	10.67	10.15	8.48	5.15	3.71	2.18	6.66
5	2.07	3.13	7.43	7.09	9.32	7.58	9.50	9.77	860	5.47	4.01	2.45	6.37
6	1.96	3.33	9.38	5.87	6.68	5.45	7.18	8.12	5.58	5.29	4.16	2.79	5.65
7	2.00	3.20	5.90	3.87	3.38	2.50	4.05	5.36	270	4.46	3.96	2.99	3.94
8	1.95	2.59	3.71	1.37	-0.11	-0.18	0.70	1.96		2.97	3.15	2.70	1.96
9	53	1.37	0.86	-1.28	-3.02	-2.48	-2.32	-1.44	-0 56	0.99	1.64	1.73	-0.25
10	0.45	-0.36	-2.18	-3.74	-3.06	-4.61	-4.68	-432	-367	-122	-0.41	0.11	-2.48
11	-1.22	-2.30	-4.91	-5.78	-6.35	-5.99	-6.35	-6.48	-621	-3 31	-2.61	-1.76	-4.43
Noo	-3.08	-403	-6.89	-7.34	-7.20	-7.31	-7.52	-7.97	-7.99	-5.00	-4.48	-3.42	-6.01
1	-4.59	-5.13	-797	-8.35	-8.03	-8.39	-8 42	-8.96	-8.96	-6.05	-558	-4.39	-7.07
2	-5.27	-5.38	-8.21	-8.71	-8.75	-8.78	-9.16	-9.63	-9.23	-6.39	-5.72	-4.48	-7.47
3	-4.93	-4.77	-7.76	-8 39	-9.41	-8 91	-9.56	-9.88	-8.82	-6.03	-502	-3.78	-7.27
4	-378	-3.56	-6.84	-7.34	-9.50	-8.01	-9.36	-9.50	-7.81	-5.22	-3.85	-2 68	-6.46
5	-2.	-2.14	-5.65	-5.58	-8.66	-6.32	-8.3.5	-8.28	-6.26	-4.05	-2.57	-1.60	--5.15
6	-0.90	-0.83	-6.46	-3.35	-6.82	-4.39	-6.49	-6.19	-4.25	-2.75	-1.55	-0 83	-3.74
7	0.02	0.09	-2.61	-1.04	-4.16	-1.94	-4.01	-3.51	-2 07	-1.49	-0.86	-0.43	-1.82
8	0.47	0.63	-0.97	1.04	-1.31	0.11	-1.31	-0.68	0.02	-0.36	-0.41	-0 23	-0.25
9	0.70	0.92	0.63	2.61	1.46	1.50	1.24	1.80	1.76	0.54	0.00	0.00	1.13
10	0.95	1.10	2.00	3.62	3.78	3.49	3.38	3.67	2.99	1.28	0.52	0.38	2.27
11	1.42	1.28	3.13	4.25	5.69	4.75	5.20	4.97	3.85	187	1.15	0.92	3.22
Midn.	2.03	1.55	3.98	4.82	7.36	6.26	6.82	6.03	4.59	2.45	1.85	1.44	4.10
6. 6	0.54	1.24	1.46	1.26	-0.07	0.54	0.34	0.97	1.69	1.28	1.31	099	0.97
7. 7	1.01	1.64	1.64	1.42	-0.41	0.27	0.02	0.92	1.76	1.49	1.55	128	1.06
8. 8	1.24	1.62	1.37	22	-0.72	-0 05	-0.29	0.65	1.35	1.31	137	1.24	0.86
9.9	1.10	1.15	0.74	0.68	-0.79	-0.34	-0.54	0.18	0.59	0.77	0.83	0.56	0.43
10.10	0.70	0.38	-0.09	-0.07	-0.63	-0.56	-0.65	-0.34	-0.34	0.0.5	007	0.25	-0.11
7. 2. 9	-0.86	-0.43	-0.56	-0	. 31	-1.49	-1.28	-0.83	-0.63	-0.47	-0.59	-0.50	-0.81
6. 2. 8	-0.95	-0.47	0.07	-0.61	-1.13	-1.08	-1.10	-0.72	-0.52	-0 50	-0 65	-0.63	-0 70
6. 2.10	-0.79	-0.32	1.06	0.27	0.56	005	0.47	0.72	0.47	0.07	-0.34	-0.43	0.16
6. 2. 6	-1.10	-0.97	-1.76	-2.07	-2.97	-2.57	-2.81	-2.57	-1.94	-1.28	-1.04	083	-1.85
7. 2	-1.64	-1.09	-1.16	-2.42	-2.70	-3.14	-2.56	-2.11	-1.83	-0 97	-0.88	-0.75	-1.77
8. 2	-1.65	-1.40	-2 25	-3.67	-4.45	-4.48	-1.23	-3.84	-3.27	-171	-1.29	-0.59	-2 76
8. 1	-1.31	-1.27	-2.13	-3.49	-4.07	-4.29	-3.86	-3.50	-3.13	-1.54	-1.22	-0.85	-2.56
7. 1	-1.30	-0.97	-1.01	-2.24	-2 33	-2.95	-2.19	-1.80	-1.69	-0.80	-0.81	-0.70	-1.57
912.39	-1.45	-1.62	-3.29	-3.60	-4.55	-4.23	-4.5)	-4.37	-3 92	. 39	-1.96	-1.37	-3.11
7. $2.2(9)$	-0.47	-0.09	-0.27	0.09	-0.63	-0.68	-0.6.5	-0.18	-0.05	-0.23	-0.45	-0.38	-0.34
Dail. ext.	-1.24	-1.04	0.59	-0.63	0.74	0.34	0.56	0.14	-0 32	-0.47	-079	-0.74	-0.41

Siberia. - Barnaul. Lat. $53^{\circ} 20^{\prime}$ N. Long. $83^{\circ} 27^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Ocı.	Nov.	Dec.	Mean.
Morn. 1	1.13	0.82	2.09	2.44	3.92	3.48	3.72	3.16	2.42	1.36	1.10	0.51	2.20
2	1.25	0.95	2.43	2.80	4.53	3.94	4.34	3.71	2.89	1.68	1.32	0.59	2.56
3	1.20	1.10	2.79	3.14	4.87	4.26	4.73	4.23	3.40	2.01	1.49	0.92	2.85
4	1.06	1.25	3.12	3.31	4.78	4.06	4.74	4.51	3.77	2.29	1.65	0.97	2.96
5	0.92	1.39	3.30	3.15	4.14	¢.37	4.22	4.34	3.82	2.43	1.78	1.09	2.83
6	0.87	1.48	4.17	2.61	2.97	2.42	3.19	3.61	3.40	2.35	1.55	1.24	2.51
7	0.89	1.42	2.62	1.72	1.50	1.11	1.80	2.38	2.48	1.98	1.76	1.33	1.75
8	0.88	1.15	1.65	0.61	-0.05	-0.08	0.31	0.57	1.20	1.32	1.40	1.20	0.87
9	0.65	0.61	0.38	-0.57	-1.34	-1.10	-1.03	-0.64	-0.25	0.44	0.73	0.77	-0.11
10	0.20	-0.16	-0.97	-1.66	-2.25	-2.05	-2.08	-1.92	-1.63	-0.54	-0.18	0.05	-1.10
11	-0.54	-1.02	-2.18	-2.57	-2.82	-2.66	-2.82	-2.88	-2.76	-1.47	-1.16	-0.78	-1.97
Noo	-1.37	-1.79	-3.06	-3.26	-3.20	-3.25	-3.34	-3.54	-3.55	-2.22	-1.99	-1.52	-2.67
1	-2.04	-2.28	-3.54	-3.71	-3.57	-3.73	-3.74	-3.98	-3.98	-2.69	-2.48	-1.95	--3.14
2	-2.34	-2.39	-3.65	-3.87	-3.90	-3.90	-4.07	-4.28	-4.10	-2.84	-2.54	-1.99	-3.32
3	-2.19	-2.12	-3.45	-3.73	-4.18	-3.96	-4.25	-4.39	-3.92	-2.69	-2.23	-1.68	-3.23
4	-1.68	-1.58	-3.04	-3.26	-4.22	-3.56	-4.16	-4.22	-3.47	-2.32	-1.71	-1.19	-2.87
5	-1.00	-0.95	-2.51	-2.48	-3.85	-2.81	-3.71	-3.68	-2.78	-1.80	-1.14	-0.71	-2.29
6	-0.40	-0.37	-2.87	-1.49	-3.08	-1.95	-2.85	--9.75	-1.89	-1.22	-0.69	-0.37	-1.66
7	0.01	0.04	-1.16	-0.46	-1.85	-0.86	-1.78	-1.56	-0.92	-0.66	-0.38	-0.19	-0.81
8	0.21	0.28	-0.43	0.46	-0.58	0.05	-0.58	-0.30	0.01	-0.16	-0.18	-0.10	-0.11
9	0.31	0.41	0.28	1.16	0.6.)	0.80	0.55	0.80	0.78	0.24	0.00	0.00	0.50
10	0.42	0.49	0.89	1.61	1.68	1.55	1.50	1.63	1.33	0.57	0.23	0.17	1.01
11	0.63	0.57	1.39	1.89	2.53	2.11	2.31	2.21	1.71	0.83	0.51	0.41	1.43
Midn.	0.90	0.69	1.77	2.14	3.27	2.78	3.03	2.68	2.04	1.09	0.82	0.64	1.82
6. 6	0.24	0.55	0.65	0.56	-0.03	0.24	0.15	0.43	0.75	0.57	0.58	0.44	0.43
7. 7	0.45	0.73	0.73	0.63	-0.15	0.12	0.01	0.41	0.78	0.66	0.69	0.57	0.47
8. 8	0.5 .5	0.72	0.61	0.54	-0.32	-0.02	-0.13	0.29	0.60	0.58	0.61	0.55	0.38
9. 9	0.49	0.51	0.33	0.30	-0.3.)	-0.15	-0.24	0.08	0.26	0.34	0.37	0.38	0.19
10.10	0.31	0.17	-0.04	-0.03	$-0.2 \mathrm{~S}$	-0.25	-0.29	-0.15	-0.15	0.02	0.03	0.11	-0.05
7.2. 9	-0.38	-0.19	-0.25	-0.33	-0.58	-n. + it	-0.57	-0.37	-0.28	-0.21	-0.26	-0.22	-0.36
6.2. 8	-0.42	-0.21	0.03	-0.27	-0.50	- - 43	-0.49	-0.32	-0.23	-0.22	-0.29	-0.28	-0.31
6. 2.10	-0.3.	-0.14	0.47	0.12	0.2 .5	0.02	0.21	0.32	0.21	0.03	-0.15	-0.19	0.07
6. 2. 6	-0.62	-0.43	-0.78	-0.92	-1.32	-1.14	-1.25	-1.14	-0.86	-0.57	-0.46	-0.37	-0.82
7. 2	-0.73	-0.49	-0.52	-1.80	-1.20	-1.40	-1.14	-0.95	-0.81	-0.43	-0.39	-0.33	-0.79
S. 2	-0.73	-0.62	-1.0	-1.63	-1.98	-1.99	-1.88	-1.71	-1.45	-0.76	-0.57	-0.40	-1.23
S. 1	-0.58	-0.57	-0.9.)	-1.55	-1.81	-1.91	-1.72	-1.56	-1.39	-0.69	-0.54	-0.38	-1.14
7. 1	-0.58	-0.43	-0.46	-1.00	-1.04	-1.31	-0.97	-0.80	-0.75	-0.36	-0.36	-0.31	-0.70
9.12.3.9	-0.64	-0.72	-1.46	-1.60	-2.02	-1.58	-2.02	-1.94	-1.74	-1.06	-0.87	-0.61	-1.38
7. $2.2(9)$	-0.21	-0.04	-0.12	0.04	-0.23	-0.30	-0.29	-0.08	-0.02	-0.10	-0.20	-0.17	-0.15
Dail.ext.	-0.5.5	-0.46	0.26	-0.28	0.33	0.15	0.25	0.06	-0.14	-0.21	-0.35	-0.33	-0.18

Siberia. - Barnaul. Lat. $53^{\circ} 20^{\prime}$ N. Long. $83^{\circ} 27^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of lieaumur.

Hour.	Jan.	Feb.	Mareh.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dee.	Year.
Midn.	0.99	1.98	2.43	2.65	3.70	3.75	3.18	3.10	2.50	1.99	1.06	0.77	2.39
1	1.15	2.21	2.78	3.03	4.11	4.30	4.07	3.50	3.20	2.24	1.22	0.86	2.72
2	1.26	2.36	3.13	3.24	4.47	4.83	4.49	3.90	3.63	2.50	1.89	0.95	3.00
3	1.41	2.47	3.34	3.49	4.72	4.95	4.77	4.29	3.92	2.69	1.46	1.01 ,	3.21
4	1.56	2.56	3.61	3.59	4.20	4.11	4.10	4.23	4.11	2.89	1.51	1.07	3.18
5	1.55	2.65	3.70	2.73	2.85	3.12	3.34	3.60	3.90	2.91	1.57	1.10	2.76
6	1.61	2.69	2.90	1.58	1.44	1.75	1.88	2.29	3.06	2.68	1.59	1.09	2.05
7	1.53	2.30	1.63	0.46	0.23	0.49	0.50	0.85	1.54	1.54	1.50	1.18	1.17
8	0.94	1.15	0.13	-0.69	-0.80	-0.65	-0.54	-0.51	-0.08	0.57	0.9 .5	0.93	0.14
9	0.27	-0.47	-1.3	-1.80	-1.91	-1.78	-1.51	-1.79	-1.62	-0.73	-0.03	0.11	-1.08
10	-0.79	-1.90	-2.36	-2.68	-2.71	-2.75	-2.70	-2.80	-2.84	-1.96	-1.12	$-0.8{ }^{\prime}$	-2.12
11	-1.69	-2.95	-3.31	-3.27	-3.39	-3.39	-3.44	-3.41	-3.75	-2.81	-1.93	-1.62	-2.91
Noon	-2.35	-3.89	-3.75	-3.66	-3.73	-3.98	-3.90	-3.81	-4.19	-3.48	-2.42	-2.04	-3.44
1	-2.61	-1.25	-4.11	-3.65	-4.04	-1.19	-4.09	-4.11	-1.41	-3.72	-2.57	-2.12	-3.66
2	-2.39	-4.23	-4.07	-3.65	-4.13	-4.34	-4.21	-4.10	-4.34	-3.64	-2.39	-1.70	-3.60
3	-1.88	-3.62	-3.69	-3.89	-4.09	-4.19	-3.89	-3.91	-4.11	-3.17	-1.66	-1.09	-3.22
4	-1.19	-2.30	-2.67	-2.62	-3.51	-3.57	-3.6.5	-3.68	-3.21	-2.58	-1.05	-0.76	-2.56
5	-0.8I	-1.30	-1.69	-1.82	-3.09	-3.04	-3.07	-2.78	-2.29	-1.49	-0.71	-0.53	-1.59
6	-0.41	-0.56	-0.81	-0.62	-1.92	-2.19	-2.09	-1.54	$-1.0 .3$	-0.72	-0.33	-0.28	-1.05
7	-0.20	0.09	0.35	0.27	-0.46	-0.84	-0.69	-0.20	-0.17	-0.08	-0.03	-0.02	-0.17
8	0.12	0.69	0.39	0.99	0.77	0.51	0.52	0.67	0.60	0.81	0.23	0.19	0.50
9	0.32	1.08	0.88	1.50	1.64	1.48	1.12	1.46	1.26	0.52	0.42	0.39	1.06
10	0.73	1.47	1.16	2.02	2.42	2.31	2.22	2.04	1.85	1.29	0.59	0.58	1.58
11	0.78	1.76	1.92	2.35	3.11	3.0.)	2.88	2.58	2.36	1.68	0.83	0.75	2.00
Mean.	-14.71	-13.47	-5.47	1.77	7.78	13.62	14.98	12.76	7.53	1.58	-8.36	-13.07	1.94

The numbers without sign must be added; those with the sign - must be subtracted.

IIOURLYCORRECTIONS

FOR

PERIODIC VARIATIONS.

EUROPE.

XxxIV.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	A pril.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.90	1.08	1.22	1.55	1.85	2.44	2.17	2.20	1.63	1.5	1.15	0.93	1.55
2	0.99	1.26	1.50	1.S4	2.10	2.59	2.41	2.49	1.91	1.75	1.29	1.02	176
3	1.14	1.58	1.96	2.31	256	3.02	2.99	3.00	2.38	2.12	1.53	1.19	2.15
4	1.36	1.99	2.46	2.80	3.06	3.51	3.68	3.54	2.91	2.58	1.87	1.43	2.60
5	1.60	2.36	2.80	3.07	330	3.71	4.06	3.79	3.25	2.9	2.22	1.70	2.90
6	1.77	2.52	2.76	2.92	3.04	3.36	3.81	3.53	3.17	3.10	2.42	1.87	2.86
7	1.74	2.33	2.24	2.25	2.19	2.38	2.82	2.62	2.58	2.82	2.33	1.83	2.34
8	1.40	1.73	1.29	1.15	0.93	0.98	1.27	1.22	1.51	2.05	1.82	1.47	1.40
9	0.72	0.78	0.10	-0.15	-0.47	-0.51	-0.44	-0.35	0.15	0.8	0.93	0.78	020
10	-0.24	-0.3S	-1.08	-1.39	-1.68	-1.75	-1.89	-1.78	-1.23	-0.58	-0.22	-0.15	-1.03
11	-1.27	-1.54	-2.06	-2.36	-2.53	-2.59	-2.57	-2.84	-2.41	-2.00	-1.41	-1.14	-2.09
Noo	-2.15	-2.49	-2.71	-2.98	-3.01	-3.08	-3.38	-3.49	-3.24	-3.14	-2.39	-1.99	-2.84
1	-2.69	-3.07	-3.02	-3.27	-3.23	-3.40	-3.61	-3.51	-3.70	-3.82	-3.00	-2.52	-3.26
2	-2.78	-3.2	-3.04	-3.23	-3.31	-3.70	-3.76	-3.92	-3.80	-3.99	-3.16	-2.66	-3.39
3	-2.44	-3.0	-2.8	-3.10	-3.31	-3.97	-3.89	-3.87	-3.59	-3.69	-2.93	-2.44	-3.26
4	-1.83	-2.5	-2.45	-2.72	-3.14	-4.05	-3.88	-3.62	-3.11	-3.04	-2.41	-1.95	-2.89
5	-1.11	-1.81	-1.89	-2.15	-2.70	-3.70	-3.53	-3.05	-2.38	-2.21	-1.76	-1.35	-2.30
6	-0.45	-1.05	-1.20	-1.39	-1.9 I	-2.79	-2.67	-2.18	-1.48	-1.3	- . 09	-0.75	-1.52
7	0.0 .5	-0.34	-0.44	-0.53	-0.84	-1.42	-1.38	-1.01	-0.51	-0.50	-11.48	-0.24	-0.64
8	0.39	0.25	0.26	0.30	0.29	0.13	0.08	0.21	0.38	0.19	0.05	0.17	0.23
9	0.59	0.67	0.75	0.94	1.22	1.46	1.33	1.22	1.0.)	0.71	0.46	0.46	0.91
10	071	0.90	1.07	1.31	1.76	229	2.10	1.86	1.43	1.05	0.76	0.66	1.33
11	0.78	0.99	1.1 .5	1.44	1.93	2.57	2.33	2.11	1.54	1.24	0.95	0.79	1.49
Midn.	0.84	1.02	1.15	1.46	1.88	2.51	224	2.14	1.55	1.36	1.06	0.86	1.51
6. 6	0.66	0.74	0.78	0.76	0.57	0.28	0.57	0.68	0.85	0.89	0.67	0.56	0.67
7. 7	0.90	1.00	0.90	0.86	0.68	0.48	0.72	0.80	1.03	1.16	0.92	0.50	0.85
8. 8	0.89	0.99	0.77	0.72	0.61	0.55	0.67	0.71	095	1.12	0.94	0.52	0.81
9. 9	0.6.)	0 72	0.44	0.40	0.37	0.45	0.45	043	0.60	0.78	0.70	0.62	0.55
10.10	0.24	0.26	-0.01	-0.04	0.04	0.27	0.10	0.04	0.10	0.23	0.27	0.26	0.15
7. 2, 9	-0.15	-0.08	-0.01	-0.03	0.03	0.05	0.13	-0.03	-0.06	-0.15	-0.12	-0.12	-0.05
6. 2. 8	-0 21	-0.16	-0.01	-0.02	0.01	-0.07	0.04	-0.06	-0.08	-0.23	-0.23	-0.21	-0.10
6. 2.10	-0.10	0.06	0.26	0.32	0.50	0.65	0.72	0.49	0.27	0.05	0.01	-0.04	0.27
6. 2. 6	-0.49	-0.59	-0.49	-0.58	-0.73	-1.04	-0.57	-0.86	-0.70	-0.74	-0.61	-0.51	-0 65
7. 2	-0.52	-0.46	-0.40	-0.52	-0.56	-0.66	-0.47	-0.6.	-0.61	- 0.59	-0.42	-0.42	-0.52
8. 2	-0.69	-0.76	-0.88	-1.07	-1.19	-1.36	-1.25	-1.35	-1.15	- 97	-0.67	-0.60	-1.00
8. 1	-0.65	-0.67	-0.8	-1.06	-1.15	-1.21	-1.17	-1.30	-1.10	-0.89	-0.5	-0.53	-0.93
7. 1	-0.48	-0.37	-0.39	-0.51	-0.52	-0.51	-0.40	-0.60	-056	-9.50	-0.34	-0.50	-0.46
9.12.3.9	-0.82	-102	-1.17	-1.32	-139	-1.53	-1.60	-1.62	-1.41	-1.32	-0 98	-0.50	-1.25
7. 2.2(9)	0.04	0.11	0.19	0.21	0.33	0.40	0.43	0.29	0.22	0.06	0.02	0.02	0.19
Dail.ext.	-0.51	-0.37	-0.12	-0.11	-0.01	-0.17	0.09	-0.07	-0.28	-0.45	-0.37	-0.40	-0.25

The numbers without sign must be added : those with the sign - must be subtracted.

Italy. - Padua. Lat. $45^{\circ} 24^{\prime}$ N. Long. $11^{\circ} 52^{\prime}$ E. Greemw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean Temperatures of the respective Days, Months, and of the Year. - Dove.
Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Mom. 1	058	0.57	0.89	1.23	2.43	2.21	2.86	2.27	159	0.86	1.04	0.83	1.45
2	0.58	0 sl	1.20	1.49	2.70	2.40	3.20	2.70	1.85	1.03	1.16	0.96	1.67
3	0.76	097	1.42	166	3.00	2.68	3.53	3.05	2.10	1.20	1.26	0.98	1.88
4	0.79	1.13	1.68	1.97	3.14	2.71	3.78	3.44	2.34	1.39	1.35	1.05	2.06
5	1.06	1.31	189	2.26	2.97	2.39	3.34	3.44	2.66	1.58	1:42	1.12	2.12
6	1.13	1.46	2.06	2.22	1.96	1.22	2.07	2.93	2.54	154	1.49	1.16	1.82
7	1.25	1.58	1.86	1.82	0.66	0.08	0.56	1.82	1.78	1.37	1.58	1.23	1.30
8	1.07	1.42	0.66	1.03	-0.23	-0.65	-0.25	0.58	0.79	0.81	0.97	1.00	0.60
9	0.70	0.82	0.61	0.18	-1.07	-1.24	-163	-1.65	-0.58	0.18	0.02	0.33	-0.28
10	0.10	-0.08	-0.s3	-0.42	-1.70	-1.66	-2 29	-1.90	-1.03	-0.51	-0.81	-0.26	-0.95
11	-0.58	-0.62	-0.87	-0.85	-2.: 0	-2.23	-2.77	-2.38	-1.56	-0.99	-1.51	-1.05	-1.48
Noor	-0.98	-1.24	-1.32	-1.27	-2.74	-2.52	-3.16	-2.97	-2.14	-1.41	-2.02	-1.50	-1.94
1	-1.3s	-1.45	-1.54	-1.68	-2.88	-2.61	-3.53	-3.34	-2.54	-1.74	-2.42	-1.90	-2.25
2	-1.51	-1.62	-1.74	-1.92	-2.94	-2.62	-3.74	-3.73	-2.84	-2.01	-2.53	-2.06	-2.44
3	-1.45	-1.65	-1.90	-2.14	-2.94	-2.59	-3.54	-3.81	-2.87	-2.04	-2.22	-1.68	-2.40
4	-1.18	-1.34	-1.71	-2.10	-2.67	-2.20	-2.82	-3.23	-2.38	-1.94	-1.53	-1.14	-2.02
5	-0.87	-0.98	-1.39	-1.98	-2.08	-1.60	-2.44	-2.49	-1.60	-1.05	-0.73	-0.74	-1.50
6	-0.59	-0.79	-1.02	-1.51	-1.20	-1.00	-1.41	-1.34	-0.83	-0.54	-0.15	-0.33	-0.89
7	-0.32	-0.62	-0.73	-1.12	-0.26	-0.12	-0.46	-0.32	-0.18	-0.14	0.12	-0.15	-0.36
8	-0.07	-0.42	-0.43	-0.47	-0.14	0.38	1.01	0.50	-0.10	0.05	0.33	0.04	0.06
9	0.05	-0.14	-0	-0.11	1.11	1.38	1.54	1.01	0.23	0.26	0.49	026	0.50
10	0.18	0.09	0.24	0.27	1.44	1.72	1.67	1.36	0.58	0.52	0.72	0.46	0.77
11	0.29	0.31	0.48	0.60	1.75	1.86	2.14	1.78	0.84	0.68	0.86	0.59	1.02
Midn.	0.37	0.49	0.72	0.85	2.02	2.10	2.43	2.23	1.36	0.78	0.94	0.70	1.25
6. 6	0.27	0.34	0.52	0.36	0.38	0.11	0.33	0.80	0.86	050	0.67	0.42	0.46
7. 7	047	0.48	0.57	0.3 .5	0.20	-0.02	0.05	0.75	0.50	0.62	0.55	0.54	0.47
8. 8	0.50	0.50	0.12	0.28	-0.19	-0.14	0.38	0.54	0.35	0.43	0.65	0.52	0.33
9. 9	0.38	0.34	0.26	0.04	0.02	0.07	-0.05	-0.32	-0.18	0.22	0.26	0.30	0.11
10.10	0.14	0.01	-0.30	-0.08	-0.13	0.03	-0.31	-0.27	-0.23	0.01	-0.05	0.10	-0.09
7. 2. 9	-0.07	-0.06	0.01	-0.07	-0.39	-0.39	-0.5.5	-0.30	-0.28	-0.13	-0.16	-0.19	-0.21
6. 2.	-0.15	19	-0.04	-0.06	-0.37	-0.34	-0.22	-0.10	-0.13	-0.14	-0.24	-0.29	-0.19
6. 2.10	-0.0\%	. 22	19	0.19	0.15	0.11	-0.00	0.19	$0 . r 9$	002	-0.11	-0.15	0.05
6. 2. 6	-0.32	-0.32	-0.23\|	-0.40	-0.73	-0.80	-1.03	-0.71	-0.38	-0.34	-0.40	-0.41	-0.51
7. 2	-0.13	-0.02	0.06	-0.05	-1.14	-1.27	-1.59	-0 96	-0.53	-0.32	-049	-0.42	-0.57
8. 2	-0.22	-0.10	-0.54	-0.45	-1.59	-1.64	-2.00	-1.58	-1.03	-0.60	-0.79	-0.53	-0.92
8. 1	-0.16	-0.02	-0.14	-0.33	-1.56	-1.63	-1.89	-1.38	-0.88	0.4	0.73	-0.45	-0.83
7. 1	-007	0.07	0.16	0.07	-1.11	-1.27	-1.49	-0.76	-0.38	-0.19	-0.42	-0.34	-0.48
9.12.ア.9	-0.42	-0.55	-0.68	-0.84	-1.41	-1.24	-1.70	-1.86	-1 34	-0.75	-0.93	-0.65	-1.03
7. 2.2(9)	-0.04	-0.08	-0.02	-0 08	-0.02	0.06	-0.03	0.13	-0.15	-0.03	-0.00	-0.08	-0.04
Dail.ext.	-0. 3	-0.04	0.08	0.06	0.10	0.05	002	-0.19	-0.11	-0.23	-0.49	-0.42	-0.16

Switzerland. - Geneva. Lat. $46^{\circ} 1 \mathbf{2}^{\prime}$ N. Long. $6^{\circ} 9^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean Temperatures of the respective Days, Months, and of the Year. - Dove.
Degrees of Reaumur.

Hour. ${ }^{\prime \prime}$	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Midn.	0.50	0.68	1.35	1.68	2.16	2.77	2.54	2.38	1.86	1.44	0.80	0.49	1.56
1	0.62	0.93	1.88	2.14	2.72	3.32	3.19	3.08	2.41	1.71	0.97	0.54	1.95
2	0.74	1.01	2.34	2.53	3.16	3.65	3.70	3.65	2.93	1.95	1.14	0.61	2.29
3	0.53	1.22	2.70	2.76	3.40	3.74	3.59	4.03	3.34	2.14	1.30	0.70	2.50
4	0.92	1.46	2.59	2.78	3.34	3.50	3.80	4.00	3.49	2.22	1.43	0.81	2.55
5	0.98	1.66	2.63	2.54	2.93	2.58	3.26	3.52	3.30	2.14	1.51	0.91	2.37
6	1.02	1.75	2.49	2.03	2.22	2.03	2.39	2.65	2.72	1.85	1.48	0.97	1.97
7	0.97	1.66	1.90	1.33	1.28	1.05	1.38	1.54	1.84	1.34	1.26	0.92	1.37
S	0.78	1.33	1.09	0.50	0.27	0.08	0.26	0.37	0.78	0.65	0.84	0.70	0.64
9	0.46	0.74	0.17	-0.34	-0.69	-0.82	-0.71	-0.70	-0.30	-0.15	0.23	0.34	-0.16
10	-0.02	-0.01	-0.75	-1.10	-1.51	-1.57	-1.53	-1.53	-1.26	-0.98	-0.47	-0.16	-0.91
11	-0.57	-0.80	-1.61	-1.75	-2.17	-2.18	-2.24	-2.29	-2.06	-1.70	-1.14	-0.67	-1.60
Noon.	-1.06	-1.49	-2.26	-2.23	-2.66	-2.70	-2.74	-2.85	-2.66	-2.29	-1.66	-1.10	-2.14
1	-1.40	-1.95	-2.70	-2.55	-2.95	-3.10	-3.18	-3.29	-3.08	-2.53	-1.94	-1.37	-2.51
2	-1.50	-2.18	-2.87	-2.67	-3.12	-3.35	-3.48	-3.55	-3.29	-2.55	-1.94	-1.41	-2.66
3	-1.41	-2.10	-2.51	-2.61	-3.07	-3.42	-3.51	-3.65	-3.28	-2.41	-1.74	-1.26	-2.61
4	-1.14	-1.82	-2.54	-2.37	-2.80	-3.25	-3.37	-3.43	-3.04	-2.06	-1.38	-0.97	-2.35
5	-0.79	-1.37	-2.10	-1.9	-2.32	-2.78	-2.90	-2.92	-2.57	-1.59	-0.99	-0.64	-1.91
6	-0.46	$-0.9 .4$	-1.59	-1.46	-1.70	-2.11	-2.22	-2.15	-1.9	-1.06	-0.62	-0.32	-1.38
7	-0.20	-0.51	-1.06	-0.90	-1.00	-1.29	-1.40	-1.31	-1.16	-0.53	-0.30	-0.07	-0.51
8	-0.01	-0.14	-0.54	-0.34	-0.29	-0.12	-0.49	-0.46	-0.42	-0.02	-0.03	0.11	-0.26
9	0.12	0.14	0.0.)	0.20	0.38	0.47	0.34	0.32	0.26	0.42	0.20	0.24	0.26
10	0.2 .5	0.37	0.42	0.70	0.91	1.30	1.10	1.02	0.83	0.82	0.42	0.34	0.71
11	0.37	0.54	0.90	1.20	1.51	2.07	1.57	1.70	1.35	1.15	0.62	0.41	1.14
Mean	-0.53	1.24	3.11	6.77	10.37	13.31	14.30	13.58	11.46	7.48	3.76	0.55	

Xxxvir.

Switzerland.-Geneva. Lat. $46^{\circ} 12^{\prime}$ N. Long. $6^{\circ} 9^{\prime}$ E. Gr.-Dove.
Degrees of Reaumur.

Hour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nor.	Dec.	Year.
Midn.	0.4 .5	0.69	1.26	1.44	1.54	1.98	2.12	1.63	1.44	0.94	0.50	0.59	1.21
2	0.70	0.96	2.21	$2.62{ }^{1}$	2.60	8.20	3.15	2.83	2.72	1.46	0.73	0.66	1.99
4	1.01	1.8:3	2.91	3.36	3.11	3.55	3.82	3.51	$3.26{ }^{\prime}$	1.90	1.02	0.80	2.46
6	1.19	1.49	2.70	2.87	2.26	2.38	2.47	2.82	2.79	1.74	1.13	0.97	2.07
S	1.22	1.22	1.42	0.74	0.27	0.13	0.29	0.19	0.72	0.94	0.90	0.9 .5	0.77
10	-0.02	-0.25	-0.65	-1.70	-1.30	-1.34	-1.25	-1.01	-1.10	-0.73	-0.26	-0.14	-0.73
Noon.	-0.18	-1.30	-1.97	-2.14	-2.42	-2.54	-2.50	-2.34	-2.38	-1.86	-1.18	-1.22	-1.91
2	-1.69	-1.70	-2.82	-2.94	-2.97	-3.09	-3.11	-3.17	-3.03	-2.3.	-1.5.)	-1.46	-2.49
4	-1.30	-1.61	-2.70	-2.94	-2. 16	-2.87	-2.59	-3.04	-2.86	-1.53	-1.19	-1.0.5	-2.20
6	-0.54	-0.90	-1.79	-2.06	-1.40	-1.59	-2.24	-2.04	-1.74	-0.88	-0.45	-0.43	-1.36
8	-0.09	-0.21	-0.89	-0.70	-0.10	$-0.2 .5$	-0.58	-0.35	-0.38	-0.08	0.03	0.10	-0.29
10	0.20	0.29	0.34	0.40	0.86	0.75	0.78	0.69	0.57	0.47	0.29	0.18	0.49
Mean	1.20	0.17	2.28	6.81	9.48	12.82	14.43	13.74	10.66	7.73	3.30	0.12	

The numbers without sion must be added ; those with the sign - must be subtracted.

Switzerland. - St. Bernard. Lat. $45^{\circ} 52^{\prime}$ N. Long. $9^{\circ} 22^{\prime}$ E. Gr.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Iieaumur.

Hour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dee.	Year.
Midn.	0.48	0.81	1.34	1.96	2.10	1.72	1.62	1.30	0.76	1.02	0.59	0.31	1.17
1	0.63	0.91	1.58	2.22	2.45	1.99	1.93	1.53	0.97	1.17	0.66	0.33	1.36
2	0.81	1.09	1.82	2.40	2.73	2.15	2.14	1.52	1.17	1.30	0.78	0.40	1.55
3	0.99	1.26	1.98	2.46	2.81	2.24	2.24	1.94	1.34	1.36	0.89	0.50	1.67
4	1.05	1.38	2.02	2.34	2.67	2.14	2.17	1.91	1.41	1.34	0.98	0.52	1.66
5	1.08	1.34	1.84	2.00	2.28	1.88	1.90	1.70	1.3.5	1.19	0.98	0.66	1.52
6	0.91	1.14	1.42	1.45	1.72	1.42	1.44	1.34	1.14	0.92	0.86	0.62	1.20
7	0.60	0.74	0.79	0.70	0.51	0.81	0.82	0.76	0.77	0.5:3	0.61	0.50	0.73
8	0.1	0.18	0.00	-0.16	-0.03	0.09	0.10	0.12	0.29	0.06	0.26	0.26	0.11
9	-0.31	-0.48	-0.55	-1.06	-1.10	-0.66	-0.66	-0.53	-0.26	-0.46	-0.22	-0.06	-0.55
10	-0.75	-1.13	-1.63	-1.86	-1.94	-1.36	-1.34	-1.13	-0.78	-0.94	-0.68	-0.41	-1.16
11	-1.14	-1.66	-2.23	-2.50	-2.58	-1.95	-1.90	-1.60	-1.22	-1.33	-1.09	-0.71	-1.66
Noon.	-1.34	-1.98	-2.58	-2.87	-2.96	-2.34	-2.26	-1.90	-1.51	-1.58	-1.36	-0.94	-1.97
1	-1.38	-2.04	-2.62	-2.98	-3.06	-2.51	-2.40	-2.02	-1.62	-1.66	-1.47	-1.03	-2.07
2	-1.24	-1.86	-2.33	-2.78	-2.89	-2.44	-2.33	-1.94	-1.56	-1.59	-1.89	-0.99	-1.95
3	-0.98	-1.47	-1.92	-2.36	-2.51	-2.21	-2.08	-1.74	-1.35	-1.35	-1.16	-0.82	-1.66
4	-0.6.5	-0.97	-1.34	-1.79	-1.98	-1.80	-1.70	-1.42	-1.05	-1.07	-0.83	-0.57	-1.26
5	-0.32	-0.43	-0.73	-1.17	-1.40	-1.32	-1.26	-1.06	-0.70	-0.72	-0.46	-0.27	-0.82
6	-0.0.3	0.04	-0.19	-0.54	-0.81	-0.80	-0.30	-0.70	-0.38	-0.36	-0.10	0.00	-0.39
7	0.14	0.39	0.25	0.04	-0.25	-0.2s	-0.34	-0.34	-0.11	-0.03	0.19	0.21	-0.01
8	0.25	0.60	0.56	0.54	0.27	0.20	0.09	0.00	0.10	0.24	0.38	0.3 .1	0.30
9	0.30	0.69	0.78	0.96	0.76	0.63	0.50	0.32	0.27	0.47	0.19	0.38	0.55
10	0.34	0.72	0.96	1.33	1.22	1.02	0.59	0.64	0.42	0.67	0.53	0.38	0.76
11	0.38	0.74	1.14	1.66	1.68	1.40	1.26	0.97	0.58	0.85	0.55	0.33	0.96
Mean.	-8.26	-6.62	-5.72\|	-2.97	0.74	3.55	4.82	4.32	2.40	-0.91	-3.95	-5.86	

SXXIX.

Switzerland. -St. Bernard. Lat. $45^{\circ} 5 \mathfrak{2}^{\prime}$ N. Long. $9^{\circ} \underset{2}{ } \mathfrak{Z}^{\prime}$ E. Gr. - Dove.
Degrees of Reaumur.

Hour.	Jan.	Fet.	Ma	Alril.	May.	June.	July	Aug.	pt.		Nor.		Year.
Midn.	0.34	0.55	0.75	1.19	1.26	1.39	1.02	1.08	0.81	0.66	0.33	0.25	0.80
2	0.52	0.75	1.14	1.64	1.75	1.88	1.62	1.53	1.16	0.94	0.12	0.27	1.14
4	0.82	06	50	St	1.91	1.98	1.52	1.71	1.34	. 1	0.65	0.4	1.35
6	6.	. 6	20	1.50	1.53	1.46	1.46	1.27	0.98	0.88	0.50	. 32	1.05
8	0.48	0.26	0.14	-0.03	-0.25	0.01	0.22	0.16	0.05	0.29	0.27	0.15	0.14
10	-0.35	-0.91	-1.06	-1.26	-1.39	-1.18	-1.11	-0.9	O. 8	0.6	-0.54	-0.23	-0.88
Nuon	-1	-1.66	-1.74	-2	-2.15	-1.92	-1.81	-1.77	-1.58	1.45	-1.26	-0.91	1.65
2	-1.37	-1.5.5	-1.89	-2.12	-2.12	-2.23	-2.01	-1 97	-1.54	-1.52	-1.23	-1.22	-1.73
4	-0.	-0.71	-1.14	-1.5.)	-1.47	-1.65	-1.49	-1.30	-0.8	-0.86	-0.37	-0.02	-0.99
6	09	0.17	09	-0.26	-0.3.5	-0.71	-0.57	-0.46	-0.26	-0.07	0.0	0.22	-0.17
8	0.25	0.44	0.49	. 49	. 50	. 35	. 30	. 2	0.26	0.2	0.70	0.30	0.35
10	37	0.55	0.55	0.71	0.76	0.64	0.56	0.43	0.46	0.43	0.40	0.40	0.52
Mea	-6.0	-8.83	-6	-3.	-0.	2.71	4.82	1.70	2.07	-0.36	-5.46	-6.18	

The numbers without sign must be added; those with the sigu - must be subtracted.

Austria. - Kremsmünster. Lat. $48^{\circ} 3^{\prime}$ N. Long. $14^{\circ} 7^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Ang.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.58	0.90	1.05	1.14	2.30	2.77	1.86	1.94	1.52	1.26	0.61	0.40	1.36
2	0.66	1.03	1.30	1.36	2.66	3.08	2.16	2.26	1.94	1.58	0.72	0.42	1.60
3	0.71	1.07	1.57	1.63	2.84	3.14	2.35	2.50	2.32	1.82	0.78	0.42	1.76
4	0.78	1.12	1.50	1.88	2.78	2.90	2.34	2.54	2.58	1.97	0.83	0.42	1.83
5	0.84	1.19	1.90	1.99	2.44	2.32	2.08	2.30	2.60	1.98	0.88	0.46	1.75
6	0.88	1.24	1.82	1.88	1.86	1.54	1.54	1.80	2.34	1.91	0.93	0.54	1.52
7	0.84	1.26	1.50	1.41	1.11	0.68	0.94	1.11	1.81	1.63	0.92	0.59	1.15
8	0.67	1.07	0.96	0.87	0.31	-0.15	0.23	0.35	1.09	1.21	0.80	0.56	0.66
9	0.35	0.67	0.30	0.14	-0.45	-0.86	-0.42	-0.37	0.28	0.62	0.51	0.38	0.10
10	-0.10	0.01	-0.41	-0.58	-1.10	-1.42	-0.9.	-0.98	-0.52	-0.13	0.06	0.05	-0.56
11	-0.58	-0.72	-1.06	-1.20	-1.65	-1.84	-1.39	-1.47	-1.23	-0.92	-0.47	-0.38	-1.08
No	-0.98	-1.37	-1.56	-1.65	-2.09	-2.17	-1.75	-1.86	-1.81	-1.68	-0.97	-0.78	-1.36
1	-1.22	-1.78	-1. 89	-1.93	-2.42	-2.42	-2.05	-2.21	-2.28	-2.25	-1.30	-1.03	-1.90
2	-1.26	-1.90	-2.02	-2.06	-2.62	-2.58	-2.26	-2.38	-2.56	-2.53	-1.40	-1.09	-2.05
3	-1.12	-1.69	-1.99	-2.04	-2.67	-2.62	-2.33	-2.46	-2.65	-2.49	-1.28	-0.94	-2.02
4	-0.86	-1.32	-1.79	-1.89	-2.51	-2.49	-2.22	-2.34	-2.52	-2.17	-1.01	-0.66	-1.98
5	-0.59	-0.92	-1.48	-1.60	-2.15	-2.16	-1.88	-2.00	-2.18	-1.69	-0.68	-0.35	-1.47
6	-0.35	-0.57	-1.08	-1.18	-1.62	-1.66	-1.38	-1.49	-1.66	-1.14	-0.41	-0.11	-1.05
7	-0.18	-0.36	-0.65	-0.68	-0.98	-1.03	-0.76	-0.86	-1.05	-0.66	-0.22	0.02	-0.62
8	-0.04	-0.19	-0.23	-0.17	-0.34	-0.35	-0.15	-0.24	-0.46	-0.26	-0.11	0.09	-0.20
9	0.07	-0.02	0.13	0.28	0.28	0.34	0.38	0.30	0.05	0.06	-0.02	0.12	0.16
10	0.20	0.18	0.42	0.61	0.84	1.02	0.82	0.76	0.46	0.34	0.11	0.18	0.49
11	0.34	0.46	0.63	0.82	1.36	1.65	1.19	1.15	0.80	0.63	0.27	0.25	0.50
Midn.	0.47	0.70	0.83	0.97	1.8	2.27	1.52	1.53	1.14	0.94	0.46	0.34	1.08
6. 6	0.27	0.34	0.37	0.35	0.12	-0.06	0.08	0.16	0.34	0.39	0.26	0.22	0.24
7. 7	0.33	0.45	0.43	0.37	0.07	-0.18	0.09	0.13	0.38	0.48	0.35	0.29	0.27
8. 8	0.32	0.44	0.37	0.35	-0.02	-0.10	0.04	$0.1) 6$	0.32	0.48	0.35	0.24	0.24
9. 9	0.21	0.33	0.22	0.21	-0.09	-0.26	-0.02	- f .04	0.17	0.34	0.25	0.2 .5	0.13
10.10	0.05	0.10	0.01	0.02	-0.13	-0.20	-0.07	1.11	-0.03	0.11	0.09	0.12	0.00
7. 2. 9	-0.12	-0.22	-0.13	-0.12	-0.41	-0.52	-0.31	-0.32	-0.23	-0.28	-0.17	-0.16	-0.25
6. 2. 8	-0.14	-0.28	-0.14	-0.12	-0.37	-0.46	-0.29	-0.27	-0.23	-0.29	-0.19	-0.15	-0.24
6. 2.10	-0.06	-0.16	0.07	0.14	0.03	-0.01	0.03	0.06	0.08	-0.09	-0.12	-0.12	-0.01
6. 2. 6	-0.24	-0.41	-0.43	-0.45	-0.79	-0.90	-0.70	-0.69	-0.63	-0.94	-0.36	-0.15	-0.56
7. 2	-0.21	-0.32	-0.26	-0.33	-0.76	-0.95	-0.66	-0.63	-0.3S	-0.45	-0.24	-0.25	-0.45
8. 2	-0.30	-0.42	-0.53	-0.60	-1.16	-1.22	-1.02	-1.02	-0.74	-0.66	-0.30	-0.27	-0.69
8. 1	-0.28	-0.36	-0.47	-0.53	-1.06	-1.14	-0.91	-0.93	-0.60	-0.52	-0.25	-0.24	-0.61
7. 1	-0.19	-0.26	-0.20	-0.26	-0.66	-0.87	-0.56	-0.55	-0.24	-0.31	-0.19	-0.22	-0.38
9.12.3.9	-0.42	-0.60	-0.78	-0.82	-1.2	-1.	-1.03	-1.10	-1.03	-0.87	-0.44	-0.31	-0.83
7. $2.2(9)$	-0.07	-0.17	-0.07	-0.02	-0.24	-0.31	-0.15	-0.17	-0.14	-0.19	-0.13	-0.07	-0.14
Dail.ext.	-0.19	-0.32	-0.06	-0.04	0.09	0.36	0.01	0.04	-0.03	-0.28	-0.24	-0.25	-0.08

The numbers without sign must be added : those with the sign - must be subtracted.

Austria.- Salzburg. Lat. $47^{\circ} 48^{\prime}$ N. Long. $13^{\circ} 1^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Ifour.	Jan.	Feb.	March.	Aprit.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Midn.	0.54	0.70	1.06	1.31	2.03	2.07	1.87	1.57	1.21	1.02	0.48	ct 2	1.19
1	0.59	0.79	1.29	1.58	2.37	2.27	2.13	1.81	1.45	1.15	0.65	0.50	. 38
2	0.72	0.97	0.51	1.79	2.64	2.56	2.36	2.05	1.61	1.27	0.81	0.59	1.49
3	0.82	1.08	1.75	2.04	2.90	2.73	, 2.64	2.24	1.87	1.41	0.88	0.70	1.75
4	0.96	1.09	1.89	2.21	3.10	2.82	2.62	2.23	2.04	1.52	0.91	0.69	1.84
5	1.03	1.25	2.01	2.37	3.10	2.75	2.59	2.24	2.14	1.72	1.03	0.81	1.92
6	1.06	1.3	2.14	2.28	2.76	2.	2.31	2.26	2.18	1.77	1.03	0.87	1.57
7	1.09	1.36	2.06	1.86	1.8	1.53	1.61	1.74	1.94	1.74	1.06	0.94	1.57
8	1.12	1.24	1.58	1.06	0.84	0.63	0.67	0.89	1.15	1.26	1.07	1.00	1.04
9	0.91	0.75	0.76	0.14	-0.10	-0.25	0.20	0.04	0.33	0.48	0.64	0.74	0.39
10	0.38	0.04	-0.06	-0.67	-0.92	-1.10	-0.97	-0.76	-0.53	-0.35	0.06	0.21	-0.39
11	-0.26	-0.62	-0.96	-1.39	-1.80	-1.87	-1.63	-1.40	-1.25	-1.17	-0.62	-0.35	-1.11
Noon	-0.90	-1.19	-1.75	-1.99	-2.36	-2.90	-2.1	-2.13	-2.00	-1.54	-1.25	-0.93	-1.78
1	-1.47	-1.68	-2.26	-2.48	-2.82	-2.8	-2.59	-2.59	-1.48	-2.39	-1.68	-1.47	-2.15
2	-1.70	-1.96	-2.55	-2.74	-3.08	-3.03	-2.77	-2.73	-2.71	-2.55	-1.85	-1.64	-2.44
3	-1.65	-2.04	-2.61	-2.74	-3.21	-3.04	-2.90	-2.75	-2.67	-2.51	-1.75	-1.55	-2.45
4	-1.40	-1.80	-2.55	-2.60	-3.27	-3.00	-2.90	-2.85	-2.56	-2.21	-1.37	-1.19	-2.31
5	-1.00	-1.46	-2.26	-2.10	-2.97	-2.64	-2.64	-2.46	-2.09	-1.63	-0.85	-0.72	-1.90
6	-0.60	-0.76	-1.51	-1.52	-2.27	-2.10	-2.05	-1.78	-1.31	-0.83	-0.35	-0.42	-1.29
7	-0.31	-0.27	-0.76	-0.75	-1.43	-1.21	-1.24	-0.55	-0.48	-0.29	-0.10	-0.15	-0.65
8	-0.25	-0.02	-0.16	-0.07	-0.43	-0.13	-0.24	0.06	0.15	0.16	0.11	0.04	-0.06
9	-0.04	0.20	0.17	0.51	0.48	0.71	0.67	0.70	0.50	0.48	0.24	0.17	0.40
10	0.12	0.43	0.46	0.81	1.03	1.41	1.22	1.09	0.78	0.76	0.34	0.33	0.73
11	0.28	0.53	0.76	1.08	1.50	1.70	1.56	1.38	0.76	1.03	0.52	0.41	0.96
Mean.	-2 71	1.14	2.49	6.90	10.42	13.22	13.93	13.66	10.30	7.37	1.52	1.63	

XLII.

Germany. - Munich. Lat, $48^{\circ} 9^{\prime}$ N. Long. $11^{\circ} 37^{\prime}$ E. Greenw. - Dove.
Degrees of Reaumur.

Hour	Jan.	Feb.	March.	April.	M y.	June	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Midn.	0.71	0.92	1.54	2.27	2.68	2.49	2.84	2.37	2.17	1.53	0.91	0.46	1.73
1	0.90	1.04	1.83	2.37	3.02	3.06	3.27	2.64	2.33	1.59	0.87	0.58	1.96
2	0.97	1.18	2.04	2.62	3.30	3.39	3.56	2.94	2.61	1.67	0.94	0.67	2.16
3	1.04	1.30	2.16	2.89	3.61	3.66	3.80	3.19	2.81	1.78	1.00	0.77	2.33
4	1.03	1.33	2.25	3.12	3.85	3.82	4.05	3.41	2.98	1.91	1.04	0.85	2.47
5	1.07	1.43	2.37	3.29	3.69	3.25	3.71	3.50	3.16	2.01	1.12	0.92	2.46
6	1.14	1.52	2.56	2.93	2.61	211	2.41	2.79	3.08	2.14	113	0.99	2.12
7	1.17	1.55	2.17	1.50	1.21	0.77	0.93	1.48	2.22	1.84	1.13	0.97	1.44
8	1.10	1.14	1.14	0.36	-0.07	-0.35	-0.28	0.18	0.59	0.99	0.75	0.88	0.54
9	0.46	0.36	-0.11	-0.79	-1.00	-1.21	-1.25	-1.05	-0.74	-0.24	0.06	0.41	-0.42
10	-0.72	-0.61	-1.18	-1.80	-1.99	-1.96	-2.12	-1.88	-1.70	-1.34	-0.79	-0.42	-1.38
11	-1.06	-1.46	-2.04	-2.39	-2.59	-2.69	-2.66	-2.58	-2.61	-2.19	-1.49	-0.97	-2.06

The numbers without sigu must be added ; those with the sign - must be subtracted.

Germany. - Munich, Contimued.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Itour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Noon	-1.70	-1.93	-2.67	-2.99	-3.28	-2.98	-3.14	-3.09	-3.18	-2.69	-1.94	-1.02	-2.55
1	-2.03	-2.31	-3.01	-3.27	-3.59	-3.41	-3.48	-3.55	-3.58	-3.08	-2.23	-1.83	-2.95
2	-2.15	-2.40	-3.24	-3.60	-3.77	-3.79	-3.75	-3.72	-3.74	-3.15	-2.05	-1.85	-3.10
3	-1.83	-2.15	-3.17	-3.45	-3.77	-3.54	-3.83	-3.58	-3.56	-2.87	-1.75	-1.43	-2.91
4	-1.08	-1.67	-2.64	-3.15	-3.41	-3.34	-3.49	-3.30	-3.24	-2.27	-1.02	-0.76	-2.45
5	-0.46	-0.95	-1.98	-2.51	-2.87	-2.80	-3.07	-2.76	-2.56	-1.27	-0.43	-0.34	83
6	-0.1	-0.37	-0.94	-1.53	-2.05	-1.94	-2.32	-1.81	-1.29	-0.44	-0.12	-0.13	-1.09
7	0.04	-0.07	-0.20	-0.36	-0.74	-0.84	-2.99	-0.47	-0.30	0.08	0.20	0.06	-0.47
8	0.23	0.22	0.28	0.40	0.41	0.61	0.40	0.55	0.37	0.56	0.44	0.14	0.38
9	0.39	0.45	0.55	0.91	1.13	1.35	1.20	1.15	0.93	0.88	0.57	0.23	0.81
10	0.49	0.59	1.02	1.31	1.65	1.86	1.87	1.60	1.40	1.14	0.74	0.33	1.17
11	0.61	0.77	1.33	1.69	2.18	2.28	2.41	2.06	1.80	1.34	0.85	0.40	1.48
Mean.	-2.15	-0.12	0.75	5.57	9.29	12.74	13.65	12.93	9.45	6.25	1.55	-1.28	

XLIII.

Bohemia.-Prague. Lat. $50^{\circ} 5^{\prime}$ N. Long. $14^{\circ} 25^{\prime}$ E. Greenu.-Dove. Degrees of Reaumur.

Itour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug	Sept	Oct.	Nov.	Dec.	Year.
Midn	0.30	. 52	1.03	1.47	1.70	1.68	1.72	1.17	1.23	0.84	0.36	0.25	1.02
1	0.40	0.60	1.14	1.68	1.97	1.97	2.05	1.78	1.49	1.02	0.45	0.32	1.24
2	0.50	0.71	1.29	1.95	2.25	2.23	2.34	2.10	1.72	1.19	0.54	0.39	. 43
3	0.55	0.63	44	2.17	2.46	2.17	2.60	2.35	. 96	1.81	0.61	0.50	. 61
4	0.65	. 89	1.60	2.39	2.75	2.71	2.91	2.63	2.19	1.49	0.70	0.56	1.79
5	0.71	0.99	1.72	2.64	2.96	2.86	3.07	2.88	2.43	1.65	0.77	0.65	1.94
6	0.77	1.00	1.81	2.75	2.96	.71	2.92	2.93	2.61	1.73	2	2	8
7	0.68	0.99	1.53	2.32	2.11	1.88	2.13	2.34	2.29	1.65	0.79	0.73	1.62
8	0.73	. 58	1.28	1.29	0.98	0.82	1.02	1.30	1.62	1.29	0.66	0.70	1.05
9	0.62	0.57	0.63	0.32	0.06	-0.14	0.17	0.21	0.60	0.70	0.41	0.54	0.39
10	0.26	0.15	-0.11	-0.53	-0.91	-0.93	-0.95	-0.77	-0.51	-0.10	-0.12	0.17	-0.36
11	-0.16	-0.45	-0.77	-1.51	-1.60	-1.58	-1.62	-1.50	-1.46	-0.86	-0.46	-0.22	-1.02
Noon	-0	-0	-1.37	-	-	-	-	-2.18	-2.02	-1.	-0.	-0.65	-1.55
1	-0.93	-1.27	-1.83	-2.4	-2.56	-2.15	-2.59	-2.61	-2.56	-2.0	-1.13	-0.95	-1.95
2	-1.10	-1.50	-2.20	-2.74	-2.80	-2.73	-2.83	-2.69	-2.84	. 3	1.2.)	1.07	-2.19
3	-1.11	-1.51	-2.29	-2.85	-2.90	-2.79	-2.93	-3.01	-2.96	2.8	1.28	0.99	-2.25
4	-0.93	-1.35	-2.20	-2.76	-2.92	-2.71	-2.92	-2.55	-2.78	-2.10	-0.87	-0.79	-2.09
5	-0.63	-0.97	-1.83	-2.46	-2.53	-2.56	-2.83	-2.66	-2.35	-1.58	-0.62	0.55	¢
6	-0.44	-0.61	-1.26	-1.9	-2.17	-2.10	-2.36	-2.11	-1.64	-1.01	-0.36	-0.37	-1.36
7	-0.31	-0.32	-0.70	-1.12	-1.49	-1.37	-1.59	-1.23	-0.87	-0.5 4	-0.19	-0.21	-0.83
8	-0.23	-0.06	-0.24	-0.33	-0.51	-0.39	-0.58	-0.34	-0.24	-0.10	0.01	-0.19	-0.25
9	0.01	0.12	0.09	0.20	0.27	0.30	0.22	0.20	0.27	0.23	0.16	0.06	0.18
10	0.10	0.26	0.40	0.72	0.50	0.91	0.90	0.81	0.74	0.51	0.29	0.16	0.55
11	0.19	0.39	0.66	1.12	1.24	1.28	1.32	1.20	1.08	0.85	0.4:3	0.25	0.83
Mean.	-1.69	0.61	2.20	7.27	11.27	14.47	15.66	15.01	11.52	7.91	3.82	-0.12	

The numbers without sign must be added ; those with the sign - must be subtracted.

Bohemia. - Prague. Lat. $50^{\circ} 5^{\prime}$ N. Long. $14^{\circ} 24^{\prime}$ E. Greenv.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	Juty.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.45	0.76	0.86	1.73	1.47	1.90	1.93	1.59	1.46	1.06	0.73	0.45	1.20
2	0.52	0.85	1.05	2.06	1.77	2.22	2.24	1.8.)	1.69	1.18	0.79	0.52	1.40
3	0.54	0.98	1.24	245	2.08	2.62	2.36	2.04	1.85	1.23	0.82	0.54	1.56
4	0.53	1.06	1.42	2.82	2.31	3.02	2.27	2.10	1.95	1.24	0.78	0.55	1.67
5	0.50	1.14	1.55	3.02	2.35	3.22	2.01	2.01	1.97	1.22	0.78	0.60	1.70
6	0.49	1.15	1.60	2.92	2.12	3.03	1.62	1.76	1.90	1.19	0.50	0.70	1.61
7	0.47	1.09	1.51	2.43	1.62	2.40	1.16	1.36	1.69	1.10	0.77	0.80	1.37
8	0.42	0.91	1.24	1.59	0.92	1.40	0.66	0.83	1.28	0.90	0.69	0.82	0.97
9	0.29	0.55	0.77	0.53	0.15	0.24	0.10	0.19	0.64	0.51	0.42	0.67	0.42
10	0.08	-1.01	0.16	-0.56	-0.57	-0.85	-0.52	-0.51	-0.20	-0.07	-0.02	0.31	-0.31
11	-0.2	1.19	-0.52	-1.52	-1.16	-1.68	-1.19	-1.23	-1.14	-0.78	-0.55	-1.18	-0.95
Noon.	-0.52	1.10	-1.16	-2.25	-1.60	-2.23	-1.84	-1.86	-2.00	-1.47	-1.10	-0.70	-1.49
1	-0	-1.51				-2.55	-2.37	-		99	-1.47	1.08	-1.91
2	-0.	0	9	-3.00	-2.14	-2.76	-2.66	-2.57	9	-2.21	-1.58	1.23	-2.13
3	-0.85	64	-1.92	-3.08	-2.26	-2.92	-2.65	-2.53	-2.76	-2.08	-1.44	. 13	-2.11
4	-0.71		5	-2.97	-2.26	-2.98	-2.36	-2.23	. 31	. 68	-1.08	-0.87	-1.88
5	-0.5	-1.0.5	-1.45	5	-2.05	-	6	. 75	70	14	-0.67	-0.56	-1.52
6	-0.31	66	10	-2.13	1	-2.45	-1.28	-1.18	1.07	. 60	-0.31	-0.31	-1.09
7	-0.16	34	-0.73	-	-1.17	-1.75	-0.73	-0.62	-0.52	-0.17	-0.04	-0.17	-0.65
8	-0.06	-0.09	-0.40	-0.64	-0.56	-0.85	-0.24	-0.12	-0.08	0.13	0.10	-0.11	-0.24
9	0.02	0.11	10	0.11	0.03	0.06	0.19	0.30	0.26	0.34	0.20	0.07	0.12
10	0.11	5	18	0.71	0.52	0.81	0.61	0.65	0.57	0.51	0.32	0.01	0.53
11	0.22		0.	. 15	0.89	1.32	1.05	0.97	0.87	0.70	0.44	0.14	0.77
Midn.	0.34	061	0.65	1.46	1.18	1.64	1.51	1.28	1.17	0.89	0.61	0.31	0.97
6. 6	0.09	0.24	0.25	0.40	0.21	0.29	0.17	0.29	0.42	0.29	0.25	0.19	0.26
7. 7	0.15	0.35	0.39	0.50	0.22	0.33	0.22	0.37	0.59	0.47	0.37	0.32	0.36
8. 8	0.18	0.41	0.42	. 47	. 18	0.27	0.21	0.36	0.60	0.51	0.39	0.35	0.36
9. 9	0.16	3	0.34	0.32	0.90	0.15	0.15	0.25	0.45	0.42	0.31	0.30	0.27
10.10	0.09	0.17	0.17	0.08	-0.03	-0.02	0.04	0.07	0.18	0.22	0.15	0.16	0.11
7. 2. 9	-0.13	-0.17	-0.16	-0.15	-0.16	-0.10	-0.44	-0.30	. 31	-0.26	-0.2	0.17	-0.21
6. 2.8	-0.15	-0.21	-0.23	-0.24	-0.19	-0.19	-0.	-0.31	-0.36	-0.30	-0.23	-0.21	-0.25
6. 2.10	-0.09	0.27	-0.04	0.21	0.17	0.36	-0.14	-0.05	-0.1	-0.17	0.15	-0.17	0.01
6. 2. 6	-0.23	-0.40	-0 46		-0.58	-0.73	-0.77	-0.66	-0.69	-0.54	-0.36	-0.28	-0.54
7. 2	-0.2	31	-0.19	-0.29	-0.26	-0.18	-0.75	. 61	. 60	0.56	-0.41	-0.22	-0.38
8.	-0		. 33	-	-0.61	-0 68	-1.00	0.87	. 81	-0.66	-0.45	-0.	-0.58
8.		30	-0.20	-0.58	-0.50	-0.58	-0 86	0.75	. 68	0.55	-0.39	0.	-0.97
7. 1	-0.15	-0.21	-0.06	-0.16	-0.15	-0.08	-0.61	-0.49	-0.47	-0.45	0.35	-0.14	-0.28
9.12.3.9	-0.27	-0.52	-0.60	-1.17	-0.92	-1.21	-1.05	-0.98	-0.97	0.68	0.48	-0.31	-0.76
7. $2.2(9)$	-0.09	-0.10	5	-0.09	-0.12	-0.06	-0.28	-0.15	-0.17	-0.11	-0.10	-0.14	-0.13
Dail.ext.	-0.17	-0.18	-0.16	-0.03	0.05	0.12	-0.15	-0.24	-0.46	-0.49	-0.38	-0.21	-0.22

The r.umbers without sign must be added: those with the sign - must be subtracted.

XLV.

England. - Plymouth. Lat. $50^{\circ} 22^{\prime}$ N. Long. $4^{\circ} 7^{\prime}$ W. Greemb.
Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

England. - Plynouth. Lat. $50^{\circ} 22^{\prime}$ N. Long. $4^{\circ} 7^{\prime}$ W. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.38	0.65	1.03	1.78	2.28	1.93	2.11	1.85	1.44	1.18	0.70	0.42	1.31
2	0.40	0.74	1.17	1.97	2.64	2.14	2.39	2.13	1.60	1.24	0.75	0.38	1.46
3	0.44	0.83	1.34	2.18	2.94	2.28	2.53	2.42	1.79	1.34	0.50	0.33	1.60
4	0.51	0.94	1.47	2.28	3.00	2.22	2.48	$2 . .56$	1.93	1.47	0.87	0.36	1.67
5	0.61	1.05	1.51	2.18	2.68	2.03	2.14	2.41	1.89	1.56	0.93	0.46	1.62
6	0.68	1.10	1.37	1.77	1.94	1.24	1.49	1.87	1.61	1.50	0.95	0.58	1.34
7	0.65	1.02	1.00	1.06	0.89	0.42	0.63	1.00	1.03	1.18	0.84	0.62	0.86
8	0.49	0.74	0.43	0.13	-0.24	-0.45	-0.29	-0.05	0.22	0.56	0.55	0.50	0.22
9	0.16	0.26	0.28	-0.86	-1.28	-1.20	-1.14	-1.06	-0.68	-0.29	0.07	0.18	-0.51
10	-0.27	-0.37	-0.99	-1.75	-2.03	-1.72	-1.79	-1.57	-1.53	-1.20	-0.52	-0.27	-1.19
11	-0.70	-1.00	-1.58	-2.40	-2.50	-2.06	-2.23	-2.35	-2.19	-1.96	-1.08	-0.74	-1.74
Noon	-1.03	-1.48	-1.97	-2.74	-2.72	-2.19	-2.48	-2.61	-2.55	-2.40	-1.46	-1.08	-2.06
1	-1.17	-1.71	-2.09	-2.83	-2.83	-2.23	-2.58	-2.65	-2.63	-2.45	-1.58	-1.20	-2.16
2	-1.11	-1.64	-1.97	-2.66	-2.53	-2.18	-2.56	-2.54	-2.44	-2.15	-1.43	$-1: 09$	-2.05
3	-0.87	-1.34	-1.66	-2.32	-2.72	-2.06	-2.40	-2.34	-2.06	-1.65	-1.09	-0.82	-1.78
4	-0.56	-0.92	-1.25	-1.84	-2.43	-1.79	-2.06	-2.01	-1.55	-1.09	-0.69	-0.49	-1.39
5	-0.26	-0.49	-0.78	-1.27	-1.92	-1.35	-1.54	-1.53	-0.97	-0.59	-0.34	-0.18	0.94
6	-0.03	-0.17	-0.33	-0.63	-1.1	-0.77	-0.89	-0.99	-0.39	-0.20	-0.10	0.02	7
7	0.13	0.04	0.06	-0.00	-0.36	-0.12	-0.17	-0.21	0.16	0.10	0.03	0	2
8	0.22	0.16	0.38	0.56	0.44	0.33	0.49	0.47	0.61	0.35	0.11	0.23	0.36
9	0.28	0.25	0.60	1.00	1.05	0.98	1.01	0.99	0.94	0.59	0.21	0.32	0.69
10	0.32	0.34	0.75	1.30	1.46	1.30	1.38	1.32	1.15	0.82	0.34	0.39	0.91
11	0.3	0.44	0.8	1.49	1.7	1.53	1.63	1.51	1.26	0.99	0.48	0.45	1.06
Milln	0.37	0.56	0.92	1.63	1.9	1.72	1.87	1.65	1.33	1.10	0.61	0.46	1.18
6. 6	0.33	0.47	0.59	0.57	0.38	0.24	0.30	0.44	0.61	0.65	0.43	0.30	0.44
7. 7	0.39	0.53	0.53	0.53	0.27	0.15	0.23	0.40	0.60	0.64	0.44	0.39	0.42
8. 8	0.36	0.45	0.41	0.35	0.10	-0.06	0.10	0.21	0.42	0.46	0.33	0.37	0.29
9. 9	0.2	0.26	0.16	0.07	-0.12	-0.11	-0.07	-0.04	0.13	0.15	0.14	0.25	0.09
10.10	0.03	-0.0 2	-0.12	-0.2:	-0.29	-0.21	-0.21	-0.28	-0.19	-0.19	-0.09	0.06	-0.14
7.2. 9	-0.0	-0.12	-0.12	-0.20	-0.30	-0.26	-0.31	-0.18	-0.16	-0.13	-0.13	-0.05	-0.17
6. 2. 8	-0.07	-0.13	-0.07	-0.11	-0.15	-0.20	-0.19	-0.07	-0.07	-0.10	-0.12	-0.0	-0.11
6. 2.10	-0.04	-0.07	0.05	0.14	0.19	0.12	0.10	0.22	0.11	0.06	-0.05	-0.04	0.07
6. 2. 6	-0.15	-0.2	-0.31	-0.51	-0.69	-0.57	-0.6	-0.55	-0.41	-0.28	-0.19	-0.1	-0.39
7. 2	-0.23	-0.31	-0.42	-0.80	-0.97	-0.85	-0.97	-0.77	-0.71	-0.4	-0.3	-0.	0
8. 2	-0.31	-0.45	-0.77	-1.27	-1.54	-1.32	-1.43	-1.30	-1.11	-0.8	-0.44	-0.30	0.92
8. 1	-0.34	-0.49	-0.s3	-1.35	-1.54	-1.34	-1.44	-1.3	-1.21	-0.95	0.52	-0.30	8
7. 1	-0.26	-0.35	-0.55	-0.89	-0.97	-0.91	-0.98	-0.83	-0.80	-0.64	-0.37	-0.2	-0.65
9.12 .3 .9	-0.37	-0.58	-0.83	-1.23	-1.42	-1.12	-1.2	-1.2	-1.09	-0.94	-0.57	-0.3	-0.92
7. 2.2(9)	0.03	-0.03	0.06	0.10	0.04	0.05	0.02	0.11	0.12	0.05	-0.04	0.04	0.05
Dail.ext.	-0.2.5	-0.31	-0.99	-0.9?	0.09	0.0 .3	-0.03	-0.05	-0.35	-0.45	-0.3	-0.2	-0.25

[^5]
XLVII.

Belgium. - Brussels. Lat. $50^{\circ} 51^{\prime}$ N. Long. $4^{\circ} 2 \mathfrak{P}^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	A pril.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.58	0.67	1.19	2.23	2.57	2.83	2.34	2.49	1.71	0.85	0.49	0.73	1.56
2	0.60	0.73	1.36	2.59	2.59	3.12	2.57	2.84	2.00	0.99	0.49	0.39	1.71
3	0.60	0.79	1.54	2.99	3.17	3.18	2.74	3.20	2.33	1.15	0.54	0.08	1.86
4	0.60	0.86	1.70	3.29	3.28	3.14	2.74	3.42	2.57	1.31	0.65	0.02	1.97
5	0.62	0.92	1.79	3.29	3.06	2.71	2.47	3.32	2.58	1.40	0.77	0.25	1.93
6	0.64	0.97	1.74	2.86	2.45	2.00	1.58	2.82	2.28	1.35	0.85	0.65	1.71
7	0.61	0.93	1.50	2.01	1.52	1.10	1.06	1.94	1.67	1.11	0.81	0.97	1.27
8	0.46	0.75	1.03	0.86	0.44	0.16	0.15	0.82	0.82	0.68	0.58	0.97	0.64
9	0.18	0.39	0.39	-0.35	-0.59	-0.61	-0.69	-0.34	-0.14	0.05	0.19	0.56	-0.08
10	-0.22	-0.13	-0.36	-1.42	-1.43	-1.35	-1.33	-1.37	-1.06	-0.60	-0.31	-0.13	-0.81
11	-0.65	-0.71	-1.11	-2.23	-2.06	-1.86	-1.77	-2.19	-1.86	-1.23	-0.80	-0.84	-1.44
N	-1.01	-1.23	-1.72	-2.77	-2.52	-2.27	-2.06	-2.81	-2.48	-1.71	-1.16	-1.29	-1.92
1	-1.20	-1.57	-2.13	-3.11	-2.59	-2.65	-2.29	-3.27	-2.88	-1.96	-1.32	-1.33	-2.22
2	-1.19	-1.65	-2.29	-3.29	-3.21	-2.97	-2.51	-3.55	-3.05	-1.95	-1.27	-1.03	-2.33
3	-0.99	-I. 49	-2.21	-3.33	-3.40	-3.25	-2.69	-3.69	-2.98	-1.71	-1.05	-0.59	-2.28
4	-0.70	-1.14	-1.93	-3.18	-3.36	-3.16	-2.71	-3.53	-2.63	-1.31	-0.75	-0.26	-2.06
5	-0.39	-0.72	-1.51	-2.76	-2.97	-2.83	-2.47	-3.02	-2.05	-0.84	-0.45	-0.16	$-1.6 \mathrm{~S}$
6	-0.15	-0.33	-1.03	-2.05	-2.21	-2.17	-1.91	--2.19	-1.30	-0.39	-0.18	-0.25	-1.18
7	0.02	-0.03	-0.55	-1.13	-1.20	-1.28	-1.11	-1.15	-0.49	-0.01	0.03	-0.37	-0.61
8	0.12	0.17	-0.10	-0.16	-0.12	-0.31	-0.20	-0.09	0.23	0.28	0.19	-0.33	-0.03
9	0.21	0.31	0.28	0.69	0.82	0.68	0.64	0.82	0.78	0.48	0.32	0.05	0.50
10	0.31	0.41	0.59	1.31	1.51	1.37	1.31	1.48	1.13	0.60	0.41	0.37	0.90
11	0.42	0.50	0.83	1.70	1.96	1.97	1.77	1.89	1.33	0.68	0.47	0.75	1.19
Miln.	0.52	0.59	1.02	1.96	2.28	2.44	2.08	2.19	1.49	0.75	0.49	0.89	1.39
6. 6	0.25	0.32	0.35	0.41	0.12	-0.09	-0.01	0.31	0.49	0.48	0.33	0.20	0.26
7. 7	0.31	0.4 .5	0.47	0.44	0.16	-0.09	-0.02	0.39	0.59	0.55	0.42	0.30	0.33
8. 8	0.29	0.46	0.47	0.35	0.16	-0.07	-0.03	0.37	0.53	0.48	0.39	0.32	0.31
9. 9	0.20	0.3 .5	0.34	0.1	0.12	0.04	-0.02	0.24	0.32	0.28	0.25	0.25	0.21
10.10	0.05	0.14	0.11	0.05	0.04	0.01	-0.01	0.05	0.03	0.00	0.05	0.12	0.05
7. 2. 9	-0.12	-0.14	-0.17	-0.20	-0.29	-0.40	-0.27	-0.27	-0.20	-0.12	-0.05	-0.04	-0.19
6. 2. 8	-0.14	-0.17	-0.22	-0.20	-0.29	-0.43	-0.28	-0.28	-0.18	-0.11	-0.08	-0.24	-0.22
6. 2.10	-0.08	-0.09	0.01	0.29	0.25	0.13	0.23	0.24	0.12	0.00	-0.00	-0.00	0.09
6. 2. 6	-0.23	-0.34	-0.53	-0.83	-0.99	-1.05	-0.85	-0.98	-0.69	-0.33	-0.20	-0.21	-0.60
7. 2	-0.29	-0.36	-0.40	-0.64	-0.85	-0.94	-0.73	-0.8	-0 69	-0.42	-0.23	-0.03	-0.53
8. 2	-0.37	-0.45	-0.63	-1.22	-1.39	-1.41	-1.18	-1.38	-1.12	-0.6	-0.35	-0.03	-0.85
8. 1	-0.37	-0.41	-0.55	-1.13	-1.23	-1.25	-1.07	-1.23	-1.03	-0.6	-0.37	-0.18	-0.79
7. 1	-0.30	-0.32	-0.32	-0.55	-0.69	-0.78	-0.62	-0.67	-0.61	-0.43	-0.26	-0.18	-0.48
9.12.2.9	-0.40	-0.51	-0.82	-1.44	-1.42	-1.36	-1.20	-1.51	-1.21	-0.72	0.43	-0.34	-0.95
$72.2(9)$	-0.04	-0.03	-0.06	0.03	-0.01	-0.13	-0.04	-0.00	0.05	0.03	0.05	-0.04	-0.02
Dail.ext.	-0.28	-0.34	-0.25	-0.02	-0.06	-0.04	0.02	-0.14	-0.24	-0.28	-0.24	-0.18	-0.18

The numbers without sign must be added ; those with the sign - must be subtracted

XLVIII.

Belgium. - Brussels. Lat. $50^{\circ} 51^{\prime}$ N. Long. $4^{\circ} 22^{\prime}$ E. Greenv.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respeetive Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hfour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nor.	Dec.	Year.
Miln.	0.30	0.60	1.09	1.72	2.27	2.46	2.20	1.88	1.52	0.92	0.51	0.30	1.31
2	0.56	0.82	1.39	2.19	3.00	2.82	2.77	2.44	2.03	1.20	0.77	0.47	1.70
4	0.64	0.97	1.66	2.64	3.32	3.53	3.14	2.76	2.38	1.44	0.83	0.62	1.99
6	0.66	1.03	1.83	2.43	2.44	2.27	2.30	2.44	2.47	1.56	0.93	0.63	1.75
8	0.67	0.84	1.02	0.76	0.49	0.41	0.32	0.68	1.03	0.96	0.79	0.63	0.72
9	0.36	0.33	0.21	-0.35	0.61	-0.61	-0.63	-0.39	-0.14	0.07	0.21	0.34	0.00
10	0.07	-0.09	-0.54	-1.18	-1.43	-1.32	-1.36	-1.26	-1.19	-0.78	-0.36	-0.08	-0.79
Noon.	-0.92	-1.27	-178	-2.42	-2.61	-2.47	-2.35	-2.47	-2.46	-1.87	-1.27	-0.83	-1.89
2	-1.15	-1.65	-2.30	-2.95	-3.22	-3.21	-2.92	-3.08	-3.04	-2.17	-1.42	-1.04	-2.35
4	-0.72	-1.19	-2.04	-2.63	-3.15	-3.18	-2.90	-2.93	-2.70	-1.61	-0.90	-0.65	-2.05
6	-0.21	-0.49	-0.94	-1.71	-2.44	-2.57	-2.38	-1.57	-1.21	-0.37	-0.28	-0.18	-1.22
8	-0.03	-0.0.5	-0.00	0.13	0.0 .5	-0.16	-0.15	0.17	0.21	0.23	0.07	-0.03	0.03
9	0.13	0.17	0.31	0.63	0.76	0.80	0.79	0.76	0.64	0.43	0.24	0.07	0.48
10	0.20	0.30	0.58	1.04	1.25	1.45	1.39	1.27	1.01	0.54	0.38	0.14	0.80
Mean.	0.52	2.45	3.56	7.27	10.37	13.10	13.69	13.58	11.22	7.69	4.72	1.89	

XLIX.

Germany. - Schwerin. Lat. $53^{\circ} 36^{\prime}$ N. Long. $11^{\circ} 30^{\prime}$ E. Gr.-Dove.
Degrees of Reaumur.

Hour.	Jan.	Feh.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Midn.	0.0 .5	0.49	0.92	1.66	1.97	2.10	2.12	1.92	1.70	0.87	0.21	0.16	1.18
2	0.08	0.69	1.20	2.17	2.44	2.69	2.72	2.41	2.19	1.14	0.24	0.34	1.53
4	0.27	083	1.43	2.53	2.96	2.97	2.96	2.62	2.54	1.51	0.42	0.48	1.79
6	0.35	0.86	1.62	2.67	2.07	1.80	1.94	2.13	2.70	1.67	0.62	0.48	1.55
8	0.59	1.19	1.24	0.98	0.56	0.25	0.12	0.32	0.95	1.21	0.70	0.63	0.73
10	0.17	0.18	-0.11	-0.97	-1.15	-1.20	-1.26	-1.17	-1.12	-0.34	0.01	0.13	-0.57
Noon.	-0.42	-0.97	-1.32	-2.34	-2.47	-2.36	-2.20	-2.29	-2.42	-1.50	-0.77	-0.43	-1.65
2	-0.61	-0.72	-2.21	-3.50	-3.38	-3.23	-3.26	-3.45	-3.58	-2.54	-0.91	-0.68	-2.42
4	-0.43	-1.22	-2.13	-2.86	-2.70	-2.62	-2.76	-2.76	-3.03	-1.85	-0.62	-0.62	-1.97
6	-0.02	-0.42	-0.95	-1.54	-1.62	-1.71	-1.70	-1.37	-1.32	-0.55	-0.23	-0.2	-0.98
8	-0.07	-0.07	-0.11	0.13	0.11	-0.02	0.08	0.34	0.26	0.16	0.02	-0.14	0.06
10	0.06	0.21	0.45	1.01	1.15	1.28	1.29	1.30	1.19	0.57	0.24	-0.02	0.73
Mean.	-1.05	-2.00	1.18	5.26	8.45	12.19	13.50	13.02	10.42	7.48	1.42	-1.38	

The numbers without sign must be added ; those with the sign - must be subtracted.

Prussia. - Mühlhausen. Lat. $51^{\circ} 13^{\prime}$ N. Long. $10^{\circ} 27^{\prime}$ E. Greemu.
Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean Temperatures of the respective Days, Months, and of the Year. - Dove.
Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.71	1.28	1.10	1.84	2.40	3.56	2.91	2.49	1.95	1.39	0.47	0.58	1.72
2	0.75	1.30	1.28	2.19	2.80	3.97	3.30	2.80	2.20	1.65	0.53	0.59	1.95
3	0.77	1.33	1.46	2.40	3.06	4.16	3.50	3.06	3.29	1.85	0.60	0.60	2.17
4	0.52	1.40	1.60	2.74	3.06	3.98	3.42	3.14	2.70	1.99	0.66	0.62	2.18
5	0.86	1.47	1.62	2.61	2.67	3.40	3.00	2.98	2.73	2.05	0.68	0.66	2.06
6	0.91	1.50	1.46	2.25	2.06	2.49	2.22	2.51	2.46	1.93	0.63	0.67	1.76
7	0.86	1.36	1.11	1.41	1.15	1.32	1.20	1.73	1.03	1.50	0.46	0.59	1.14
8	0.62	0.98	0.55	0.58	0.16	0.11	0.09	0.86	0.87	0.84	0.16	0.46	0.52
9	0.21	0.33	-0.02	-0.38	-0.75	-1.02	-0.97	-0.36	-0.26	-0.03	-0.22	0.03	-0.29
10	-0.38	-0.50	-0.70	-1.16	-1.50	-1.98	-1.82	-1.38	-1.40	-0.99	-0.62	-0.54	-1.08
11	-0.93	-1.35	-1.30	-1.97	-2.06	-2.77	-2.46	-2.24	-2.42	-1.88	-0.92	-0.77	-1.76
Noon.	-1.38	-2.02	-1.76	-2.42	-2.44	-3.39	-2.94	-2.89	-3.14	-2.53	-1.09	-1.06	-2.26
1	-1.58	-2.38	-2.02	-2.50	-2.71	-3.86	-3.26	-3.29	-3.52	-2.82	-1.08	-1.15	-2.54
2	-1.52	-2.38	-2.07	-2.94	-2.87	-4.14	-3.42	-3.46	-3.54	-2.99	-0.89	-1.10	-2.61
3	-1.24	-2.07	-1.90	-2.85	-2.89	-4.13	-3.36	-3.39	-3.23	-2.48	-0.66	-0.81	-2.42
4	-0.84	-1.56	-1.58	-2.39	-2.69	-3.78	-3.06	-3.07	-2.65	-1.89	-0.39	-0.50	-2.03
5	-0.44	-1.02	-1.11	-1.95	-2.19	-3.06	-2.52	-2.51	-1.89	-1.21	-0.14	-0.23	-1.52
6	-0.20	-0.54	-0.62	-1. 20	-1.59	-2.10	-1.76	-1.76	-1.06	-0.58	0.02	-0.02	-0.95
7	-0.04	-0.17	-0.18	-0.47	-0. 03	-1.02	-0.85	-0.90	-0.24	-0.03	0.06	0.12	-0.38
8	0.18	0.13	0.16	0.09	-0.08	0.05	0.03	-0.05	0.50	0.38	0.22	0.26	0.16
9	0.27	0.41	0.45	0.53	0.58	1.01	0.81	0.71	0.99	0.70	0.26	0.32	0.59
10	0.37	0.66	0.64	0.59	1.10	1.76	1.46	1.24	1.35	0.91	0.34	0.40	0.93
11	0.53	0.89	0.78	1.14	1.56	2.42	2.01	1.78	1.58	1.10	0.38	0.47	1.22
Midn. .	0.64	1.08	0.94	1.58	1.98	3.05	3.29	2.16	1.75	1.26	0.42	0.54	1.56
6. 6	0.36	0.48	0.42	0.53	0.24	0.20	0.23	0.38	0.70	0.68	0.33	0.33	0.41
7. 7	0.41	0.60	0.47	0.47	0.16	0.15	0.18	0.42	0.40	0.74	0.26	0.36	0.35
8. 8	0.40	0.56	0.36	0.34	0.04	0.08	0.06	0.41	0.69	0.61	0.19	0.36	0.34
9. 9	0.24	0.37	0.22	0.08	-0.09	-0.01	-0.08	0.18	0.37	0.34	0.02	0.18	0.15
10.10	-0.01	0.08	-0.03	-0.14	-0.20	-0.11	-0.18	-0.07	-0.03	-0.04	-0.14	-0.07	-0.0S
7. 2. 9	-0.13	-0.20	-0.17	-0.23	-0.38	-0.60	-0.47	-0.34	-0.51	-0.26	-0.06	-0.06	-0.29
6. 2. 8	-0.14	-0.25	-0.15	-0.20	-0.30	-0.53	-0.39	-0.33	-0.19	-0.23	-0.01	-0.06	-0.23
6. 2.10	-0.08	-0.07	0.01	0.07	0.10	0.04	0.09	0.10	0.09	-0.05	0.03	-0.01	0.03
6. 2. 6	-0.27	-0.47	-0.41	-0.63	-0.80	-1.25	-0.99	-0.90	-0.71	-0.55	-0.08	-0.15	-0.60
7. 2	-0.33	-0.51	-0.48	-0.77	-0.86	-1.41	-1.11	-0.87	-1.26	-0.75	-0.22	-0.26	-0.74
8. 2	-0.45	-0.70	-0.76	-1.18	-1.36	-2.02	-1.67	-1.30	-1.34	-1.08	-0.37	-0.32	-1.05
8. 1	-0.48	-0.70	-0.74	-1.11	-1.28	-1.85	-1.59	-1.22	-1.33	-0.99	-0.46	-0.35	-1.01
7. 1	-0.36	-0.51	-0.46	-0.70	-0.78	-1.27	-1.03	-0.78	-1.25	-0.66	-0.31	-0.25	-0.70
9.12 .3 .9	-0.54	-0.84	-0.81	-1.28	-1.38	-1.88	-1.62	-1.48	-1.41	-1.09	-0.43	-0.38	-1.10
7. $2.2(9)$	-0.03	-0.05	-0.02	-0.12	-0.14	-0.20	-0.15	-0.08	-0.13	-0.02	0.02	0.03	-0.07
Dail.ext.	-0.34	-0.44	-0.23	-0.10	0.09	0.01	0.04	-0.16	-0.13	-0.17	-0.21	-0.2	-0.22

Holland. - Utrecht. Lat. $52^{\circ} 5^{\prime}$ N. Long. $5^{\circ} 8^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.-
Midn.	0.36	0.62	1.13	1.71	2.56	2.74	2.64	1.57	1.91	1.07	0.76	0.11	1.44
1	0.37	0.74	1.18	1.87	2.86	3.29	2.67	1.91	2.10	1.11	0.70	0.19	1.58
2	0.46	0.82	1.21	2.00	3.00	3.21	2.82	2.02	2.21	1.18	0.78	0.32	1.67
3	0.51	0.87	1.27	2.10	3.02	3.25	2.97	2.07	2.34	1.25	0.82	0.42	1.74
4	0.57	0.90	1.31	2.16	2.70	2.84	2.76	2.06	2.45	1.31	0.82	0.44	1.69
5	0.61	0.97	1.26	1.92	1.50	1.82	1.86	1.80	2.42	1.42	0.90	0.50	1.44
6	0.66	0.98	1.02	1.30	0.67	0.44	0.33	1.05	1.87	1.22	0.91	0.46	0.91
7	0.64	0.84	0.62	0.37	-0.38	-0.70	-0.77	0.04	0.72	0.39	0.78	0.38	0.24
S	0.50	0.56	-0.01	-0.40	-1.17	-1.50	-1.28	-0.68	-0.39	0.12	0.29	0.31	-0.30
9	0.13	-0.07	-0.5.3	-1.20	-1.68	-2.02	-1.69	-1.33	-1.12	-0.50	-0.22	0.14	-0.84
10	-0.26	-0.49	-1.0.5	-1.71	-2.06	-2.42	-2.02	-1.65	-1.79	-1.12	-0.71	-0.14	-1.29
11	-0.62	-0.97	-1.50	-2.16	-2.46	-2.78	-2.27	-1.57	-2.34	-1.68	-1.15	-0.33	-1.68
Noon.	-0.8.5	-1.34	-1.77	-2.41	-2.78	-2.94	-2.53	-2.16	-2.83	-1.98	-1.49	-0.62	-1.97
1	-0.98	-1.58	-1.88	-2.42	-2.94	-3.00	-2.61	-2.40	-3.07	-2.11	-1.62	-0.75	-2.11
2	-1.02	-1.54	-1.82	-2.12	-2.83	-2.94	-2.60	-2.30	-2.99	-1.99	-1.43	-0.66	-2.05
3	-0.81	-1.21	-1.54	-2.24	-2.55	-2.64	-1.58	-2.13	-2.68	-1.64	-1.08	-0.47	-1.72
4	-0.60	-0.89	-1.25	-1.52	-2.06	-2.20	-2.00	-1.79	-2.06	-1.10	-0.70	-0.23	-1.39
5	-0.3.	-0.48	-0.75	-1.23	-1.42	-1.53	-1.62	-1.30	-1.34	-0.52	-0.42	-0.17	-0.93
6	-0.19	-0.21	-0.24	-0.47	-0.76	-0.74	-0.76	-0.61	-0.52	-0.11	-0.18	-0.10	-0.41
7	-0.0.5	-0.03	0.14	020	0.07	0.17	0.02	0.14	0.10	0.22	-0.02	-0.03	0.06
8	0.0 .5	0.12	0.45	0.72	0.55	1.01	0.82	0.86	0.62	0.53	0.18	0.02	0.52
9	0.22	0.23	0.74	1.13	1.51	1.77	1.50	1.24	1.17	0.84	0.40	0.06	0.90
10	0.36	0.40	0.94	1.41	1.92	2.25	1.96	1.52	1.51	1.01	0.58	0.04	1.16
11	0.36	0.67	1.02	1.58	2.16	2.53	2.17	1.70	1.76	1.14	1.06	0.02	1.35
Mean	-2.83	4.18	3.20	7.14	10.55	12.95	13.75	12.90	10.87	6.58	4.65	0.76	

LII.

England. - Greenwich. Lat. $51^{\circ} 28^{\prime} 38^{\prime \prime}$ N. Long. $0^{\circ} 0^{\prime}$. -Dove.
Degrees of Reaumur.

IIour	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nor.	Dee.	Year.
A.M. 1	0.44	0.75	1.44	2.32	2.72	3.24	2.73	2.49	2.05	1.34	0.67	0.47	1.72
3	0.62	0.94	1.66	2.66	3.04	3.70	3.11	2.82	2.40	1.42	0.80	0.56	1.98
5	0.75	1.06	1.92	2.84	2.84	3.25	2.91	2.89	2.58	1.54	0.57	0.56	2.00
7	0.86	1.05	1.60	1.31	0.75	0.80	0.88	1.22	1.65	1.26	0.88	0.60	1.07
9	0.41	0.24	-0.22	-0.82	-1.30	-1.52	-1.14	-1.14	-0.76	-0.30	0.11	0.24	-0.50
11	-0.74	-1.03	-1.90	-2.48	-2.60	-2.91	-2.67	-2.64	-2.57	-1.88	-1.06	-0.73	-1.93
P.M. 1	-1.2.	-1.73	-2.62	-3.31	-3.36	-3.75	-3.17	-3.40	-3.28	-2.40	-1.64	-1.20	-2.59
3	-1.10	-1.59	-2.43	-3.08	-3.02	-3.60	-3.09	-3.20	-2.94	-2.04	-1.26	-0.85	-2.35
5	-0.36	-0.63	-1.33	-2.04	-2.05	-2.51	-2.2 4	-2.11	-1.65	-0.73	-0.38	-0.24	-1.37
7	0.03	0.0 .5	0.09	-0.16	-0.29	-0.58	-0.50	-0.11	0.04	0.11	0.09	0.00	-0.10
9	0.10	0.32	0.71	0.99	1.20	1.40	1.13	1.22	0.89	0.63	0.40	0.21	0.77
11	0.23	0.54	1.11	1.77	2.06	2.52	2.08	1.96	1.60	1.07	0.53	0.37	1.33
Mean	2.48	2.53	4.53	6.71	9.62	12.47	13.08	12.98	11.12	7.71	5.47	309	

The numbers without sign must be added; those with the sign - must be subtracted.

England. - Greenwich. Lat. $51^{\circ} 29^{\prime}$ N. Long. $0^{\circ} 0^{\prime}$.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.38	0.68	1.29	2.21	2.72	3.13	2.61	2.61	1.89	1.28	0.60	0.40	1.65
2	0.63	0.82	1.44	2.31	2.85	3.30	2.71	2.68	2.06	1.45	0.75	0.52	1.79
3	0.53	0.95	1.62	2.14	2.91	3.41	2.71	2.78	2.92	1.56	0.88	0.59	1.91
4	0.93	1.02	1.82	2.54	2.85	3.40	2.71	2.86	2.34	1.60	0.95	0.62	1.97
5	0.93	1.03	1.95	2.46	2.60	3.14	2.53	2.81	2.35	1.56	0.95	0.62	1.91
6	0.84	0.97	1.93	2.17	2.08	2.52	2.11	2.48	2.15	1.42	0.89	0.60	1.68
7	0.71	0.54	1.66	1.56	1.2.)	1.53	1.38	1.77	1.67	1.15	0.75	0.57	1.24
8	0.53	0.61	1.11	0.66	0.20	0.28	0.40	0.72	0.88	0.71	0.52	0.48	0.59
9	0.30	0.26	0.30	-0.37	-0.92	-1.02	-0.71	-0.55	-0.13	0.09	0.19	0.28	-0.19
10	-0.01	-0.20	-0.63	-1.13	-1.94	-2.12	-1.73	-1.78	-1.23	-0.66	-0.26	-0.0.4	-1.01
11	-0.39	$-0.7 .5$	-1.60	-2.30	-2.70	-2.89	-2.51	-2.79	-2.22	-1.43	-0.77	-0.16	-1.73
Noon.	-0.79	-1.27	-2.35	-2.87	-3.13	-3.28	-2.94	-3.43	-2.94	-2.07	-1.25	-0.87	-2.27
1	-1.12	-1.66	-2.79	-3.17	-3.26	-3.39	-3.04	-3.69	-3.28	-2.45	-1.59	-1.17	-2.5.5
2	-1.28	-1.81	-2.85	-3.14	-3.16	-3.34	-2.91	-3.63	-3.23	-2.18	-1.69	-1.25	-2.56
3	-1.21	-1.67	-2.57	-2.92	-2.90	-3.21	-2.67	-3.34	-2.56	-2.17	-1.51	-1.10	-2.31
4	-0.95	-1.29	-2.05	-2.54	-2.54	-3.01	-2.38	-2.89	-2.28	-1.63	-1.10	-0.76	-1.95
5	-0.58	-0.78	-1.40	-1.97	-2.06	-2.67	-2.30	-2.30	-1.60	-1.01	-0.59	-0.36	1.45
6	-0.22	-0.26	-0.75	-1.34	-1.45	-2.10	-1.57	-1.56	-0.91	-0.43	-0.10	-0.01	-0.89
7	0.03	0.14	-0.17	-0.60	-0.71	-1.26	-0.96	-0.69	-0.27	0.02	0.24	0.20	-0.34
8	0.11	0.37	0.30	0.17	0.11	-0.24	-0.19	0.24	0.29	0.32	0.41	0.26	0.18
9	0.08	0.46	0.65	0.84	0.92	0.81	0.64	1.11	0.77	0.52	0.44	0.23	0.62
10	0.03	0.18	0.59	1.42	1.62	1.74	1.41	1.81	1.17	0.69	0.41	0.19	0.99
11	0.04	0.49	1.05	1.81	2.16	2.42	2.01	2.27	1.47	0.87	0.40	0.20	1.27
Midn.	0.16	0.56	1.17	2.03	2.51	2.86	2.40	2.51	1.70	1.08	0.16	0.28	1.48
6. 6	0.31	0.36	$0 . .59$	0.42	0.31	0.21	0.27	0.46	0.62	0.50	0.39	0.30	0.40
7.7	0.37	0.49	0.75	0.45	0.27	0.13	0.21	0.54	0.70	0.59	0.50	0.38	0.45
8. 8	0.32	0.49	0.71	0.42	0.16	0.02	0.10	0.48	0.59	0.52	0.17	0.37	0.39
9. 9	0.19	0.36	0.48	0.24	0.00	-0.10	-0.01	0.28	0.32	0.31	0.91	0.2 .5	0.22
10.10	0.01	0.14	0.1	-0.00	-0.16	-0.19	-0.16	0.01	-0.03	0.02	0.08	0.07	-0.01
7.2. 9	-0.16	-0.17	-0.18	-0.2.)	-0.33	-0.33	-0.30	-0.25	-0.26	-0.27	-0.17	-0.15	-0.24
6. 2. 8	-0.11	-0.16	-0.21	-0.97	-0.32	-0.35	-0.33	-0.30	-0.26	-0.25	-0.13	-0.13	-0.2 t
6. 2.10	-0.14	-0.12	-0.01	0.15	0.18	0.31	-0.20	0.22	0.03	-0.12	-0.13	-0.15	0.04
6. 2. 6	-0.22	-0.37	-0.56	-0.77	-0.91	-0.97	-0.79	-0.90	-0.66	-0.50	-0.30	-0.22	-0.59
7. 2	-0.29	-0.49	-0.60	-0.79	-0.96	-0.91	-0.7%	-0.93	-0.78	-0.67	-0.47	-0.31	-0.67
8. 2	-0.38	-0.60	-0.97	-1.24	-1.48	-1.53	-1.26	-1.46	-1.18	-0.89	-0.5	-0.39	-0.99
8. 1	-0.30	-0.53	-0.34	-1.26	-1.53	-1.56	-1.31	-1.49	-1.20	-0.87	-0.5	-0.35	-0.98
7. 1	-0.21	-0.41	-0.57	-0.81	-1.01	-0.93	-0.83	-0.96	-0.81	-0.65	-0.42	-0.30	-0.66
9.12.3.9	-0.41	-0.56	-0.99	-1.33	-1.51	-1.68	-1.42	-1.55	-1.29	-0.91	-0.53	-0.37	-1.05
7. $2.2(9)$	-0.10	-0.01	0.03	0.03	-0.02	-0.05	-0.06	0.09	-0.01	-0.07	-0.02	-0.06	-0.02
Dail.ext.	-0.18	-0.39	-0.45	-0.32	-0.18	0.01	-0.15	-0.42	-0.47	-0.	-0.37	-0.39	30

The numbers without sign must be added; those with the sign - must be subtracted.

England. - Greenwich. Lat. $51^{\circ} 29^{\prime}$ N. Long. $0^{\circ} 0^{\prime}$.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean ' Cemperatures of the respective Days, Months, and of the Year. - Glaisher.

Degrees of Fahrenheit.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Midn	1.0	1.6	2.9	4.8	5.4	6.2	5.0	5.1	4.0	2.9	1.7	0.9	3.5
1	0.9	1.8	3.0	5.2	6.0	7.1	5.5	5.5	4.5	3.0	1.8	1.0	3.8
2	1.2	2.0	3.3	5.7	6.1	8.0	6.0	6.0	5.5	3.4	2.0	1.2	4.2
3	1.3	2.1	3.6	6.2	6.7	8.7	6.4	6.3	6.4	3.6	2.0	1.3	4.5
4	1.6	2.3	3.9	6.6	6.7	9.3	6.6	6.5	6.6	3.8	2.1	1.4	4.6
5	1.8	2.2	4.0	6.7	6.3	8.8	6.2	6.5	6.2	3.8	2.0	1.4	4.7
6	1.9	2.3	3.9	6.0	4.8	6.4	4.5	5.5	5.3	3.5	1.9	1.4	3.9
7	1.9	2.1	3.6	4.3	2.6	3.0	2.5	3.3	4.0	2.8	1.7	1.5	2.8
8	1.5	1.6	2.5	2.0	0.5	0.0	0.0	0.9	2.1	1.6	1.0	1.3	1.2
9	1.0	0.7	0.2	-0.9	-2.0	-2.5	-2.0	-1.6	-0.4	0.0	0.4	0.9	-0.5
10	0.2	-0.5	-1.9	-3.2	-4.0	-4.5	-4.0	-3.5	-3.0	-2.0	-0.6	0.0	-2.2
11	-1.3	-2.1	-3.5	-5.3	-5.5	-5.8	-5.4	-5.4	-5.0	-3.8	-2.0	-1.3	-3.9
Noon.	-2.3	-3.2	-5.0	-6.8	-6.7	-7.3	-6.4	-6.5	-6.4	-5.1	-3.1	-2.1	-5.1
1	-2.9	-3.9	-5.8	-7.9	-7.5	-8.1	-6.7	-7.5	-7.1	-5.5	-8.5	-2.4	-5.7
2	-3.0	-3.9	-5.8	-8.2	-7.7	-8.6	-6.7	-7.7	-7.1	-4.9	-3.6	-2.3	-5.8
3	-2.5	-3.6	-5.5	-7.7	-7.8	-8.4	-6.5	-7.0	-6.6	-3.7	-3.0	-1.9	-5.3
4	-1.9	-2.8	-4.5	-6.7	-6.1	-7.4	-5.8	-5.5	-5.5	-2.8	-2.1	-1.3	-4.4
5	-1.1	-1.6	-3.3	-5.4	-4.8	-6.1	-4.9	-3.6	-4.2	-1.7	-1.2	-0.8	-3.2
6	-0.6	-0.6	-1.8	-3.5	-3.0	-4.5	-3.5	-2.0	-2.5	-0.8	-0.4	-0.4	-2.0
7	-0.3	0.3	-0.4	-1.1	-1.0	-2.4	-1.5	-0.5	-0.6	0.0	0.1	-0.1	-0.6
8	0.1	0.6	0.9	0.7	0.9	0.0	0.3	1.0	1.0	0.7	0.6	0.2	0.6
9	0.4	1.0	1.7	2.0	2.3	1.8	1.9	2.4	1.8	1.3	1.0	0.4	1.5
10	0.6	1.3	2.3	3.2	3.5	3.6	3.3	3.3	2.7	1.9	1.3	0.5	2.3
11	0.7	1.5	2.6	4.1	4.5	5.0	4.2	4.3	3.4	2.4	1.5	0.8	2.9
6. 6	0.6	0.9	1.0	1.2	0.9	0.9	0.5	1.7	1.4	1.3	0.8	0.5	0.9
7. 7	0.8	1.2	1.6	1.6	0.8	0.3	0.5	1.4	1.7	1.4	0.9	0.7	1.1
8. 8	0.8	1.1	1.7	1.3	0.7	0.0	0.1	0.9	1.5	1.1	0.8	0.8	0.9
9. 9	0.7	0.8	0.9	0.5	0.1	-0.3	-0.0	0.4	0.7	0.6	0.7	0.6	0.5
10.10	0.4	0.4	0.2	0.0	-0.2	-0.4	-0.4	-0.1	-0.1	-0.0	0.4	0.2	0.0
7.2.9	-0.2	-0.3	-0.2	-0.6	-0.9	-1.2	-0.8	-0.7	-0.4	-0.2	-0.3	-0.1	-0.5
6. 2. 8	-0.3	-0.8	-0.3	-0.5	-0.7	-0.7	-0.6	-0.4	-0.3	-0.2	-0.4	-0.2	-0.4
6. 2.10	-0.2	-0.1	0.1	0.3	0.2	0.5	0.4	0.3	0.3	0.2	-0.1	-0.1	0.1
6. 2. 6	-0.6	-0.7	-1.2	-1.9	-1.9	-2.2	-1.9	-1.4	-1.4	-0.7	-0.7	-0.4	-1.3
7. 2	-0.5	-0.9	-1.1	-1.9	-2.5	-2.8	-2.1	-2.2	-1.5	-1.0	-0.9	-0.4	-1.5
8. 2	-0.7	-1.1	-1.6	-3.1	-3.6	-4.3	-3.3	-3.4	-2.5	-1.7	-1.3	-0.5	-2.3
8. 1	-0.7	-1.1	-1.6	-2.9	-3.5	-4.0	-3.4	-3.3	-2.5	-1.9	-1.3	-0.5	-2.2
7. 1	-0.5	-0.9	-1.1	-1.8	-2.4	-2.6	-2.1	-2.1	-1.5	-1.4	-0.9	-0.4	-1.5
9.12.3.9	-0.8	-1.3	-2.1	-3.3	-3.4	-4.1	-3.2	-3.2	-2.9	-1.9	-1.2	-0.7	-2.4

Prussia. - Halle. Lat. $51^{\circ} 30^{\prime}$ N. Long. $11^{\circ} 57^{\prime}$ E. Greenu.
Corrections to be applied to the Means of the Hours of Olservation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb	March	A pril.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.53	1.00	1.36	2.52	3.98	3.91	3.72	3.32	2.70	2.01	0.95	0.46	2.21
2	0.56	1.14	1.58	2.86	4.10	3.94	3.82	3.57	2.99	2.22	0.97	0.48	2.35
3	0.60	1.26	1.74	3.00	3.78	3.62	3.56	3.56	3.12	2.37	1.01	0.50	2.34
4	0.66	1.34	1.82	2.94	43.10	2.95	2.97	3.27	3.02	2.41	1.03	0.54	2.17
5	0.72	1.36	1.72	2.62	2.18	2.09	2.14	2.64	2.62	2.25	1.00	0.55	1.82
6	0.72	1.30	1.42	1.98	1.30	1.18	1.24	1.90	1.97	1.90	0.92	0.55	1.37
7	0.65	1.10	0.94	1.07	0.32	0.25	0.23	0.84	0.98	1.32	0.74	0.55	0.75
8	0.36	0.53	0.20	0.03	-0.56	-0.58	-0.6	-0	0.12	0.33	0.30	0.25	0.02
9	0.05	0.08	-0.66	-0.9	-1.34	-1.34	-1.30	-1.20	-1.14	-0.71	-0.31	-0.09	-0.76
10	-0.45	-0.7	-1.1	-1.	-2.09	-2.01	-1.99	-2.10	-2.03	-1.66	-0.87	-0.54	-1.46
11	-0.82	-1.29	-1.7	2.	-2.66	-2.68	-2.65	-2.90	-2.72	-2.44	-1.35	-0.90	-2.06
Noon	-1.09	-1.7\%	-2.0	-3.08	-3.14	7	-3.16	-3.35	-3.11	-2.86	-1.66	-1.08	-2.45
1	-1.17	-2.02	-2.22	-3.32	-3.33	-3.35	-3.46	-3.53	-3.30	-3.01	-1.73	-1.09	-2.63
2	-1.06	-1.86	-2.10	-3.26	-3.37	-3.46	-3.54	-3.57	-3.27	-2.76	-1.52	-0.9	-2.56
3	-0.8	-1.49	-1.86	-2.90	-3.13	-3.23	-3.29	-3.30	-2.98	-2.32	-1.14	-0.74	-2.27
4	-0.53	-1.01	-1.42	-2.39	. 74	74	-2.76	-2.84	-2.50	-1.81	-0.75	-0.42	-1.83
5	-0.30	-0.59	-0.91	-1.78	-2.24	-2.22	-2.1	-1.97	-	-1.20	-0.40	-0.20	1.82
6	-0.13	-0.29	-0.52	-0.9	-1.55	-1.50	-1.39	-1.38	-1.12	-0.69	-0.14	-0.03	-0.51
7	-0.	0.0	-0.0		86	-0.73	-0.55	-0.59	-0.38	-0.21	0.04	0.09	-0.31
8	0.11	0.13	0.26	0.32	-0.10	0.07	0.26	0.15	0.29	0.25	0.21	0.22	-0.18
9	0.21	0.30	0.59	0.58	0.68	0.90	1.09	0.90	0.87	0.68	0.39	0.34	0.65
10	0.31	0.46	0.79	1.33	1.64	1.s]	1.87	1.61	1.42	1.12	0.59	0.37	1.11
11	0.41	0.6	0.98	1.78	2.61	2.69	2.64	2.30	1.90	1.47	0.76	0.40	1.55
Midn. .	0.48	0.83	1.16	2.17	3.43	3.42	3.29	2.86	2.33	1.77	0.89	0.43	.92
6.	0.21	0.39	0.41	0.42	-0.03	-0.07	-0.01	0.34	0.40	0.53	0.30	0.18	0.26
7. 7	0.30	0.51	0.45	0.51	-0.14	-0.16	-0.08	0.26	0.43	0.61	0.39	0.28	0.28
8. 8	0.33	0.51	0.44	0.3	-0.27	-0.24	-0.16	0.13	0.30	0.56	0.39	0.32	0.22
9. 9	0.24	0.33	0.23	0.18	-0.33	-0.26	-0.16	-0.03	0.21	0.29	0.26	0.25	0.10
10.10	0.13	0.11	-0.04	-0.05	-0.33	-0.22	-0.11	-0.15	-0.14	-0.02	0.04	0.13	-0.05
7.2. 9	-0.11	-0.20	-0.18	-0.34	-0.71	-0.70	-0.65	-0.49	-0.35	-0.29	-0.20	-0.10	-0.36
6. 2. 8	-0.15	-0.25	-0.19	$-0.3 .5$	-0.67	-0.66	-0.62	-0.19	-0.35	-0.32	-0.2:	-0.15	-0.37
6. 2.10	-0.08	-0.12	0.03	0.06	-0.16	-0.12	-0.08	-0.00	0.06	-0.03	-0.11	-0.0	-0.05
6.2. 6	-0.25	-0.12	-0.47	-0.83	-1.13	-1.16	-1.16	-0.95	-0.84	-0.	-0.38	0.2	-0.71
7. 2	-0.23	-0.36	-0.40	-0.67	-1.02	-1.09	-1.1	-0.82	-0.	-0.	-0.41	-0.2	-0.69
8. 2	-0.26	-0.46	-0.64	-1.13	-1.51	-1.55	-1.62	-1.3.	-1.1	-0. 5	0.5	-0.2	-0.94
8. 1	-0.22	-0.34	-0.56	-1.01	-1.41	-1.41	-1.47	-1.2	-1.0	-0.77	. 4	-0.	-0.85
7. 1	-0.19	-0.24	-0.32	-0.55	-0.92	-0.95	-0.96	-0.73	-0.57	-0.43	-0.37	-0.25	-0.54
9.12.3.9	-0.35	-0.62	-0.8	-1.37	-1.67	-1.66	-1.6	-1	-1.4	-1.16	-0.59	-0.34	-1. 10
7. $2.2(9)$	-0.06	-0.12	-0.07	-0.18	-0.56	-0.51	-0.4	-0.3	-0.19	-0.1	0.10	-0.0	-0.23
Dail.ext.	-0.23	-1.38	-0.20	-0.16	0.37	0.24	0.14	0.00	-0.09	-0.30	-0.35	-0.26	-0.14

IIanover. - Göttingen. Lat. $51^{\circ} 32^{\prime} \mathrm{N}$. Long. $9^{\circ} 56^{\prime}$ E. Greemu.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.90	1.13	1.58	2.24	3.31	3.43	3.56	3.35	2.31	1.58	0.69	0.60	2.06
2	0.92	1.14	1.77	2.49	3.70	3.71	3.82	3.70	2.68	1.75	0.74	0.59	2.25
3	0.94	1.16	2.01	2.79	3.93	3.73	3.92	3.92	3.23	1.94	0.52	0.58	2.41
4	0.99	1.20	2.22	3.04	3.91	3.57	3.79	3.89	3.63	2.10	0.92	0.58	2.49
5	1.15	1.26	2.29	3.08	3.55	3.10	3.36	3.52	3.62	2.15	1.00	0.62	2.39
6	1.12	1.20	2.10	2.73	2.62	2.22	2.59	2.79	3.50	1.99	1.08	0.66	2.05
7	1.13	1.14	1.77	2.24	1.75	1.21	1.40	1.69	2.62	1.58	0.94	0.65	1.51
8	1.12	0.80	1.02	0.89	0.75	0.49	0.48	0.56	1.36	1.08	0.53	0.54	0.80
9	0.50	-0.0s	-0.14	-0.16	-0.47	-0.55	-0.65	-0.68	-0.22	-0.21	0.10	0.30	-0.19
10	-0.37	-0.88	-1.09	-1.32	-1.53	-1.60	-2.22	-1.84	-1.45	-0.82	-0.42	-0.02	-1.13
11	-1.26	-1.78	-1.57	-2.30	-2.59	-2.53	-2.74	-2.83	-2.45	-1.74	-0.99	-0.74	-1.99
Noon.	-1.83	-2.17	-2.43	-2.98	-3.30	-3.19	-3.48	-3.52	-3.37	-2.50	-1.46	-1.12	-2.61
1	-2.02	-2.32	-2.81	-3.37	-3.82	-3.72	-3.78	-3.82	-3.80	-2.89	-1.58	-1.42	2.95
2	-2.03	-2.23	-3.05	-3.56	-3.98	-4.03	-4.09	-4.15	-4.00	-2.98	-1.60	-1.28	-3.08
3	-1.74	-1.98	-2.88	-3.48	-3 95	-3.91	-4.00	-4.03	-4.03	-2.84	-1.32	1.02	2.93
4	-1.23	-1.35	-2.48	-3.24	-3.67	-3.65	-3.82	-3.71	-3.62	-2.40	-0.90	-0.66	2.56
5	-0.79	-0.59	-1.79	-2.64	-3.13	-3.09	-3.18	-3.15	-2.94	-1.74	-0.54	-0.36	2.00
6	-0.33	-0.04	-1.06	-1.86	-2.40	-2.20	-2.40	-2.32	-1.97	-0.94	-0.23	-0.14	-1.32
7	-0.05	0.31	-0.26	-0.50	-1.44	-1.16	-1.30	-1.09	-0.87	-0.30	0.01	0.06	-0.57
8	0.24	0.58	0.34	0.04	0.22	-0.15	0.03	0.13	0.05	0.24	0.17	0.20	0.14
9	0.40	0.82	0.78	0.77	0.88	0.79	1.09	1.05	0.78	0.71	0.30	0.30	0.72
10	0.57	0.94	1.05	1.30	1.59	1.73	1.87	1.62	1.28	1.02	0.42	0.10	1.15
11	0.71	1.01	1.30	1.75	2.29	2.69	2.62	2.26	1.71	1.35	0.56	0.44	1.56
Midn.	0.58	1.07	1.54	2.11	2.52	3.01	3.18	2.93	2.00	1.44	0.62	0.56	1.22
6. 6	0.40	0.58	0.52	0.44	0.11	0.01	0.10	0.24	0.77	0.53	0.43	0.26	0.37
7. 7	0.54	0.73	0.76	0.72	0.17	0.03	0.05	0.30	0.88	0.64	0.48	0.36	0.47
8. 8	0.68	0.69	0.68	0.47	0.27	0.17	0.26	0.35	0.71	0.66	0.35	0.37	0.47
9. 9	0.45	0.37	0.32	0.31	0.21	0.12	0.22	0.19	0.28	0.25	0.20	0.30	0.27
10.10	0.10	0.03	-0.02	-0.01	0.03	. 07	-0.19	-0.11	-0.09	0.10	-0.00	0.19	0.01
7. 2. 9	-0.17	-0.09	-0.17	-0.18	-0.44	-0.68	-0.53	-0.47	-0.20	-0.23	-0.12	-0.11	-0.28
6. 2.8	-0.22	-0.15	-0.20	-0.26	-0.53	-0.65	-0.49	-0.41	-0.15	-0.25	-0.12	-0.14	-0.30
6. 2.10	-0.11	-0.03	0.03	0.16	0.05	-0.03	0.12	0.09	0.26	0.01	-0.03	-0.07	0.04
6. 2.6	-0.41	-0.36	-0.67	-0.90	-1.25	-1.34	-1.30	-1.23	-0.82	-0.64	-0.25	-0.25	-0.79
7. 2	-0.45	-0.5.5	-0.64	-0.66	-1.10	-1.41	-1.35	-1.23	-0.69	-0.70	-0.33	-0.32	-0.79
8. 2	-0.46	-0.72	-1.02	-1.34	-1.62	-1.77	-1.81	-1.80	-1.32	-0.95	-0.54	-0.	-1.14
8. 1	-0.45	-0.76	-0.90	-1.24	-1.54	-1.62	-1.65	-1.63	-1.22	-0.91	-0.53	-0.	1.07
7. 1	-0.45	-0.59	-0.5	0.57	-1.02	-1.26	-1.19	-1.07	-0.59	-0.66	-0.32	-0.39	-0.72
9.12.3.9	-0.67	-0.85	-1.17	.	-1.71	.	-1.76	-1.80	-1.71	-1.21	0.60	0.39	1.25
7. $2.2(9)$	-0.03	0.14	0.07	0.06	-0.11	-0.31	-0.13	-0.09	0.05	0.01	-0.02	-0.01	-0.03
Dail. ext.	-0.44	-0.53	-0.38	-0.24	-0	-0.15	-0.09	-0.12	-0.20	-0.42	-0.26	-0.38	-0.30

The numbers without sign must be added; those with the sign - must be subtracted.

LVII.

Prussia. - Berlin. Lat. $52^{\circ} 30^{\prime}$ N. Long. $13^{\circ} 24^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

LVIII.

Germany. - Salzuflen. Lat. $52^{\circ} 5^{\prime} \mathrm{N}$. Long. $8^{\circ} 40^{\prime}$ E. Greemw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean Temperatures of the respective Days, Months, and of the Year. - Dove.
Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Lec.	Mean.
Morn. 1	0.00	1.10	1.0.5	2.11	2.41	2.57	2.0 .5	1.71	2.12	1.24	0.90	0.31	1.46
2	0.5 .5	1.22	1.20	2.44	2.93	2.85	2.27	2.01	2.44	1.55	1.26	0.48	1.77
3	0.60	1.27	1.34	2.64	3.29	2.98	2.39	2.23	2.74	1.82	1.53	0.65	- 1.96
4	0.62	1.26	1.38	2.62	3.37	2.86	2.32	2.26	2.87	1.98	1.64	0.78	2.00
5	0.72	1.18	1.29	2.35	3.08	2.47	1.99	2.00	2.71	1.97	1.58	0.83	1.85
6	0.62	1.01	1.06	1.80	2.41	1.53	1.42	1.45	2.18	1.75	1.37	0.79	1.48
7	0.51	0.75	0.70	1.05	1.45	1.02	0.70	0.79	1.34	1.34	1.04	0.64	0.94
8	0.31	0.41	0.25	0.20	0.38	0.15	-0.06	0.08	0.30	0.75	0.62	0.38	0.31
9	0.08	-0.03	-0.22	-0.63	-0.59	-0.67	-0.74	-0.54	-0.65	0.09	0.14	0.06	-0.31
10	-0.33	-0.53	-0.68	-1.36	-1.42	-1.35	-1.15	-1.02	-1.47	-0.63	-0.35	-0.2 4	-0.88
11	-0.74	-1.02	-1.06	-1.93	-1.96	-1.94	-1.62	-1.38	-2.08	-1.27	-0.02	-0.48	-1.29
Noon.	-0.91	-1.42	-1.39	-2.32	-2.31	-2.39	-1.90	-1.72	-2.41	-1.78	-1.18	-0.62	-1.70
1	-1.01	-1.65	-1.59	-2.54	-2.53	-2.72	-2.13	-2.03	-2.75	-2.09	-1.48	-0.64	-1.93
2	-0.94	-1.74	-1.65	-2.60	-2.66	-2.91	-2.30	-2.30	-2.90	-2.18	-1.56	-0.58	-2.03
3	-0.79	-1.58	-1.56	-2.49	-2.72	-2.92	-2.36	-2.12	-2.90	-2.06	-1.46	-0.50	-1.98
4	-0.50	-1.29	-1.33	-2.21	-2.65	-2.71	-2.24	-2.30	-2.70	-1.76	-1.22	-0.41	-1.78
5	-0.20	-0.90	-0.98	-1.77	-2.39	-2.26	-1.89	-1.87	-2.25	-1.34	-0.92	-0.35	-1.43
6	-0.10	-0.51	-0.56	-1.22	-1.94	-1.62	-1.32	-1.22	-1.55	-0.90	-0.6.	-0.32	-0.99
7	0.01	-0.17	-0.15	-0.62	-1.34	-0.56	-0.62	0.47	-0.71	-0.47	-0.44	-0.30	-0.51
8	0.08	0.11	0.19	-0.04	-0.65	-0.09	0.09	0.21	0.12	-0.11	-0.31	-0.27	-0.06
9	0.14	0.34	0.45	0.48	0.04	0.62	0.70	0.71	0.81	0.18	-0.20	-0.21	0.34
10	0.21	0.55	0.63	0.94	0.68	1.22	1.26	1.03	1.30	0.42	-0.06	-0.12	0.67
11	0.22	0.74	0.77	1.34	1.27	1.74	1.52	1.25	1.61	0.66	0.18	0.01	0.94
Midn.	0.40	0.93	0.90	1.74	1.84	2.18	1.50	1.45	1.86	0.94	0.50	0.15	1.22
6. 6	0.26	0.25	0.25	0.29	0.24	0.11	0.0 .5	0.13	0.32	0.43	036	0.24	0.24
7. 7	0.26	0.29	0.29	0.22	0.06	0.08	0.04	0.16	0.32	0.44	0.30	0.17	0.22
8. 8	020	0.26	0.22	0.08	-0.14	0.03	0.02	0.15	0.21	0.32	0.16	0.06	0.13
9. 9	0.11	0.16	0.12	-0.08	-0.2s	-0.03	-0.02	0.09	0.08	0.14	-0.03	-0.08	0.02
10.10	-0.06	0.01	-0.03	-0.21	-0.37	-0.08	0.06	0.01	-0.09	-0.11	-0.21	-0.18	-0.11
7. 2. 9	-0.10	-0.22	-0.17	-0.36	-0.39	-0.42	-0 30	-0.27	-0.25	-0.22	-0.24	-0.0.5	-0.25
6. 2. 8	-0.08	-0.21	-0.13	-0.28	-0.30	-0.39	-0.26	-0.20	-0.20	-0.1s	-0.17	-0.02	-0 20
6. 2.10	-0.0. 4	-0.06	0.01	0.05	0.14	0.05	0.13	007	0.19	-0.00	-0.08	0.03	0.04
6. 2. 6	-0.14	-0.41	-0.38	-0.67	-0.73	-0.90	-0.73	-0.68	-0.76	-0.44	-0.28	-0.04	-0.51
7. 2	-0.22	-0.50	-0.48	-0.78	-0.61	-0.9.)	-0.80	-0.76	-0.7s	-0.42	-0.26	0.03	-0.54
8. 2	-0.32	-0.67	-0.70	-1.20	-1.14	-1.38	-1.18	-1.11	-1.30	-0.72	-0.47	-0.10	-0.86
8. 1	-0.3.5	-0.64	-0.67	-1.17	-1.08	-1.29	-1.10	-0.98	-1.23	-0.67	-0.43	-0.13	-0.81
7. 1	-0.25	-0.47	-0.45	-0.75	-0.54	-0.85	-0.72	-0.62	-0.71	-0.38	-0.22	-0.00	-0.50
9.12.3.9	-0.37	-0.67	-0.68	-1.24	-1.40	-1.34	-1.08	-0.99	-1.29	-0.89	-0.68	-0.32	-0.91
7. $2.2(9)$	-0.04	-0.08	-0.01	-0.15	-0.28	-0.16	-0.05	-0.02	0.02	-0.12	-0.23	-0.09	-0.10
Dail.ext.	-0.15	-0.24	-0.14	0.02	0.33	0.03	0.02	-0.08	-0.02	-0.10	0.04	0.10	-0.02

Prussia. - Stettin. Lat. $53^{\circ} 25$ N. Long. $14^{\circ} 34^{\prime}$ E. Greemb.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hour.	Jan.	Feb	Mareb.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Noy.	Dec.	Year.
Midnight.	0.26	0.54	0.98	1.66	2.21	2.21	1.83	1.93	1.53	0.95	0.50	0.39	1.24
1	0.35	0.59	1.17	1.91	2.66	2.46	2.25	2.24	1.61	1.01	0.44	0.46	1.43
2	0.4.3	0.70	1.30	2.15	3.03	2.84	2.62	2.54	1.87	1.13	0.47	0.50	163
3	0.49	0.85	1.41	2.39	3.39	3.10	2.95	2.83	2.11	1.24	0.51	0.56	1.99
4	0.53	0.89	1.51	2.60	3.55	3.08	3.07	3.05	2.33	1.33	0.55	0.61	1.92
5	0.57	0.97	1.63	2.67	3.45	2.75	2.55	3.10	2.46	1.40	0.55	0.64	1.92
6	0.55	0.94	1.62	2.10	2.78	2.12	2.21	2.78	2.45	1.42	0.60	0.56	1.70
7	0.46	0.83	1.37	1.70	1.63	1.17	1.31	2.02	1.95	1.25	0.52	0.46	1.23
S	0.36	0.66	0.90	0.69	0.33	0.20	0.35	0.96	1.11	0.79	0.4 \%	0.38	0.59
9	0.22	0.36	0.23	-0.4	-0.58	-0.72	-0.53	-0.26	-0.05	0.16	0.13	0.23	-0.13
10	-0.04	-0.02	-0.44	-1.36	-1.87	-1.54	-1.33	-1.40	-1.1]	-0.5.j	-0.22	-0.03	-0 83
11	-0.36	-0.53	-1.06	-2.07	-2.62	2.18	-1.96	-2.23	-1.96	-1.2;	-0.60	-0.3.5	-1.43
Noon.	-0.63	-0.93	-1.59	-2.50	-3.09	-2.59	-2.46	-2.93	-2.58	-1.68	-0.90	-0.64	-1.ss
1	-0.81	-1.26	-1.92	-2.80	-3.36	-2.90	-2.81	-3.88	-2.88	$-1.9 \bigcirc$	-1.06	-0.86	-2.17
2	-0.90	1.33	-2.08	-2.9	-3.50	-2.99	-2.99	-3.50	-2.99	-2.06	-1.06	-0.94	-2.28
3	-0.75	-1.34	-2.06	-2.94	-3.35	-2.90	-2.80	-3.38	-2.52	. 68	-0.9	-0.56	-2.16
4	-0.63	1.15	1.8	-2.54	-2.99	-2.99	-2.60	-3.03	-2.44	-i. 43	-0.65	-0.70	-1.92
5	-0.41	-0.83	-1.43	-2.02	-2.46	-2.46	-2.15	-2.40	-1.55	-0.99	-0.39	-0.48	-1.49
6	-0.25	-0.46	-0.90	-1.32	1.74	-1.74	-1.62	-1.68	-1.14	-0.46	-0.19	-0.30	-0.98
7	-0.11	-0.23	-0.40	-0.55	-0.s9	-0.69	-0.93	-0.75	-0.52	-0.10	-0.00	-0.15	-0.46
8	0.01	-0.01	-0.02	0.10	-0.14	-0.14	-0.17	0.02	0.06	0.17	0.15	-0.06	-0.00
9	0.08	0.16	0.32	0.65	0.73	0.73	0.65	0.74	0.60	0.39	$0 .: 0$	0.07	0.31
10	0.20	0.30	0.61	1.10	1.30	1.30	1.03	1.20	1.00	0.58	0.43	0.22	0.77
11	0.25	0.42	0.79	1.42	1.76	1.76	1.47	1.60	1.31	0.74	0.50	0.32	1.03
6, 6	0.15	0.24	0.36	0.54	0.52	0.19	0.29	0.55	0.6 .5	0.48	0.21	0.13	0.36
7, 7	0.17	0.30	0.18	0.57	0.37	0.14	0.19	0.62	0.73	0.57	0.26	0.14	0.35
s, s	0.19	0.31	0.44	0.38	0.10	0.03	0.09	0.19	0.59	0.45	0.31	0.16	0.30
9, 9	0.15	0.26	0.25	0.13	-0.05	0.01	-0.03	0.24	0.28	0.25	0.22	0.15	0.16
10, 10	0.08	0.14	0.09	-0.13	-0.29	-0.12	-0.15	-0.10	-0.06	0.02	0.11	0.10	-0.03
7, 1	-0.17	-0.21	-0.67	-0.55	-0.86	-0.86	-0.75	-0.65	-0.45		-0.27	-0.20	-0.50
7, 2, 9	-0.13	-0.13	-0.13	-0.19	-0.38	-0.36	-0.10	-0.25	-0.1	-0.11	-0.08	-0.14	-0.21
6, 2, 10	-0.05	-0.05	0.38	0.19	0.19	0.14	0.08	0.16	0.15	-0.02	-0.01	-0.05	0.09
Daily ext.	-0.16	-0.21	-0.23	-0.14	0.04	0.06		-0.20	-0.27	-0.32	-0.23	-0.15	-0.15

The numbers without sign must be added : those with the sigu - must be subtracted.

Sleswick. - Apenrade. Lat. $55^{\circ} 3^{\prime}$ N. Lomg. $9^{\circ} 25^{\prime}$ E. Greenw.
Corrections to be applied to the Mcans of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of licaumur.

Hours.	$J_{\text {dan }}$	Feb.	Ma,	April.	May.	June.	July.	Ang.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.26	0.69	0.98	1.73	3.18	3.82	2.50	2.61	2.16	1.06	0.54	0.31	1.65
2	0.31	0.78	1.14	1.83	317	3.90	2.38	2.66	2.29	1.19	0.59	0.35	1.72
3	0.38	0.79	1.26	1.98	3.02	3.82	2.13	2.66	2.54	1.30	0.61	0.37	1.74
4	0.42	0.75	1.34	2.10	2.71	3.50	1.78	2.64	2.62	1.37	0.66	0.38	1.69
5	0.44	0.69	1.31	2.02	2.22	2.89	1.35	2.18	2.13	1.36	0.69	0.40	1.50
6	0.50	0.62	1.18	1.63	1.54	1.94	0.86	1.56	2.02	1.25	0.69	0.40	1.18
7	0.17	0.54	0.90	1.15	0.70	0.83	0.30	0.77	1.15	0.97	0.61	0.37	0.73
8	0.39	0.38	0.50	0.41	-0.23	-0.34	-0.29	-0.15	0.18	0.52	0.42	0.27	0.17
9	0.23	0.10	-0	-0.12	-1.14	-1.38	-0.87	-1.10	-0.88	-0.10	0.10	0.10	-0.44
10	-0.06	-0.32	-0.66	-1.22	-1.90	-2.16	-1.10	-1.98	-1.71	-0.79	-0.30	-0.15	-1.00
11	-0.36	-0.75	-1.15	-1.90	-2.19	-2.66	-1.80	-2.42	-2.38	-1.35	-0.68	-0.43	-1.41
Noon.	-0.62	-1.19	-1.62	-2.42	-2.86	-2.98	-2.09	-2.74	-2.79	-1.94	-0.98	-0.66	-1.91
1	-0.78	-1.40	-1.90	-2.75	-3.08	-3.24	-2.23	-2.89	-3.03	-2.15	-1.10	-0.78	-2.11
2	-0.69	-1.34	-1.96	-2.59	-3.16	-3.19	-2.27	-2.90	-3.08	-2.07	-1.02	-0.75	-2.14
3	-0.61	-1.06	-1.78	-2.79	-3.10	-3 68	-2.21	-2.78	-2.93	-1.74	-0.82	-0.59	-2.01
4	-0.38	-0.64	-1.41	-2.43	-2.56	-3.62	-2.02	-2.39	-2.54	-1.23	-0.59	-0.38	-1.71
5	-0.16	-0.23	-0.92	-1.80	-2.40	-3.34	-1.70		93	-0.71	-0.29	-0.15	-1.30
6	-0.03	0.0 .5	-0.42	-0.99	-1.70	-2.57	-1.18	-1.	-1.13	-0.25	-0.12	0.02	-0.80
7	0.01	0.18	0.02	-0.12	-0.79	-1.12	-0.57	-0.47	-0.26	0.10	0.02	0.10	-0.27
8	0.03	0.18	0.33	0.66	0.22	-0.07	0.18	0.40	0.56	0.34	0.03	0.14	0.25
9	0.01	0.17	0.54	1.2.)	1.22	1.25	0.97	1.21	1.21	0.51	0.09	0.15	0.71
10	0.02	0.22	0.66	1.57	2.05	2.33	1.63	1.72	1.61	0.65	0.18	0.18	1.07
11	0.07	0.33	0.76	1.69	2.66	3.10	2.14	2.25	1.83	0.5 .5	0.30	0.21	1.35
Midn.	0.15	0.52	0.86	1.70	3.02	3.57	2.43	1.68	1.97	0.92	0.42	0.26	1.46
6. 6	0.24	0.34	0.38	0.32	-0.05	-0.32	-0.16	0.17	0.15	0.50	0.29	0.21	0.19
7. 7	0.24	0.36	0.16	.52	-0 0.5	-0.30	-0 14	0.15	0.16	0.54	0.30	0.24	0.23
8. 8	0.21	0.28	0.12	0.54	-0.0.1	-0.21	-0.06	0.11	0.37	0.43	0.2	0.21	0.21
9. 9	0.11	0.14	0.26	$0 .+2$	0.04	-0.07	0.0 .5	0.06	0.19	0.21	0.10	0.13	0.14
10.10	-0.02	-0.05	-0.00	0.18	0.08	0.09	0.12	-0.13	-0.05	-0.07	-0.06	0.02	0.01
7. 2. 9	-0.08	-0.21	-0.17	-0.16	-0.41	-0.47	-0.33	-0.31	-0.23	-0.20	-0.11	-0.08	-0.23
6. 2.8	-0.0.5	-0.15	-0.15	-0.20	-0.47	-0.54	-0.41	-0.31	-0.17	-0.16	-0.10	-0.07	-0.23
6. 2.10	-0.06	-0.17	-0.04	0.10	0.14	0.26	0.07	0.13	0.18	-0.06	-0.05	-0.06	0.04
6. 2. 6	-0.07	-0.22	-0.40	-0.75	-1.11	-1.37	-0 86	-0.86	-0.73	-0.36	-0.15	-0.11	-0.5s
7. 2	-0.11	-0.40	-0.53	-0.87	-1. 23	-1.33	-0.99	-1.07	-0.9.)	-0.55	-0.21	-0.19	-0.70
8. 2	-0.1.5	-0.48	-0.73	-1.24	-1.70	-1.92	-1.28	-1.54	-1.45	-0.78	-0.30	-0.21	-0.98
8. 1	-0.20	-0.51	-0.70	-1.17	-1.66	-1.79	-1.26	-1.54	-1.43	-0.82	-0.34	-0.26	-0.97
71	-0.16	-0.43	-0.50	-0.50	-1.19	-1.21	-0.97	-1.06	-0.93	-0.59	-0.25	-0.21	-0.69
9.12.3.7	-0.2.5	-0.50	-0.72	-1.10	-1.47	-1.70	-1.0.)	-1.35	-1.34	-0.82	-0.40	-0.25	-0.91
7. 2.2(9)	-0.06	-0.12	0.01	0.19	0.01	-0.04	-0.01	0.07	0.13	-0.02	-0.06	-0.02	0.01
Dail.ext.	-0.14	-0.31	-0.31	-0.40	0.01	0.11	0.12	-0.12	-0.23	-0.39	-0.21	-0.19	-0.20

The numbers without sign must be added; those with the sign - must be subtracted.

Scotland. - Leith. Lat. $55^{\circ} 59^{\prime}$ N. Long. $3^{\circ} 10^{\prime}$ E. Greemw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Fahrenheit.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.38	0.56	1.76	3.02	3.04	3.29	4.10	2.95	2.54	1.10	1.26	0.72	2.09
2	0.61	0.77	1.98	3.92	3.47	3.62	4.28	3.20	2.77	1.19	1.53	0.65	2.33
3	0.6 S	0.77	2.41	4.57	3.96	3.74	4.66	3.49	3.29	1.31	1.40	0.61	2.57
4	0.95	0.95	2.59	5.31	4.41	3.98	5.11	3.71	3.65	1.33	1.46	0.70	2.84
5	1.06	1.17	2.75	5.49	4.28	3.94	4.59	3.65	3.78	1.62	1.37	0.77	2.87
6	1.06	1.31	2.75	5.36	3.51	3.04	3.56	3.26	3.51	2.03	1.28	0.59	2.61
7	0.97	1.24	2.48	3.47	2.66	2.25	2.39	2.25	2.75	1.62	1.06	0.68	1.98
8	0.88	1.26	1.80	2.18	1.40	1.10	1.15	1.08	1.46	0.97	1.04	0.54	1.24
9	0.61	0.77	0.81	-0.27	0.11	-0.18	-0.23	-0.50	-0.14	0.32	0.56	0.32	0.18
10	0.16	-0.07	0.18	-2.00	-1.06	-1.31	-1.37	-1.26	-1.10	-0.83	-0.34	-0.02	-0.75
11	-0.34	-0.97	-1.22	-3.02	-2.00	-2.30	-2.25	-2.03	-2.21	-1.71	-1.33	-0.56	-1.69
Noo	-1.04	-1.69	-2.61	-3.92	-2.75	-2.79	-3.58	-2.99	-3.13	-2.36	-1.96	-1.3	2.51
1	-1.42	-2.25	-2.97	-4.37	-3.35	-3.15	-3.67	-3.44	-3.92	-2.79	-2.30	-1.51	-2.93
2	-1.55	-2.23	-3.29	-4.73	-3.78	-3.83	-4.07	-3.65	-4.28	-2.84	-2.57	-1.55	-3.20
3	-1.60	-2.27	-3.35	-5.09	-3.85	-4.37	-4.37	-3.65	-4.16	-2.57	-2.63	-1.13	-3.26
4	-1.19	-1.73	-3.33	-4.79	-4.19	-3.94	-4.46	-3.87	-3.56	-1.96	-1.69	-0.83	-2.96
5	-0.68	-0.9.)	-2.84	-4.25	-4.03	-3.71	-4.57	-3.76	-3.56	-1.31	-1.04	-0.50	-2.60
6	-0.45	-0.47	-2.14	-3.83	-3.51	-3.29	-4.41	-3.47	-2.30	-0.59	-0.65	-0.27	-2.12
7	-0.09	-0.09	-1.17	-2.45	-2.61	-2.52	-3.58	-1.69	-0.97	0.05	-0.25	0.18	-1.27
8	0.14	0.32	-0.45	-0.81	-1.17	-0.79	-1.31	-0.41	-0.16	0.59	0.05	0.29	-0.31
9	0.23	0.61	0.25	0.38	0.32	0.50	0.43	0.59	0.59	0.72	0.32	0.36	0.44
10	0.1	0.8	0.77	1.08	0.86	1.8	1.71	1.58	1.24	1.15	0.79	0.41	1.04
11	0.32	0.9	1.31	2.1	1.69	2.1	2.52	2.23	1.67	1.60	1.19	0.54	1.53
Midn.	0.38	1.01	1.44	2.68	2.32	2.6 S	3.44	2.77	2.27	1.49	1.42	0.59	1.87
6. 6	0.32	0.43	0.34	0.77	0.00	-0.14	-0.43	-0.11	0.61	0.72	0.32	0.16	0.25
7. 7	0.45	0.59	0.65	0.52	0.02	-0.14	-0.61	0.29	0.90	0.83	0.41	0.43	0.36
8. 8	0.52	0.79	0.68	0.70	0.11	0.16	-0.09	0.34	0.65	0.79	0.54	0.43	0.47
9. 9	0.43	0.70	0.54	0.07	0.23	0.16	0.11	0.05	0.23	0.52	0.45	0.34	0.32
10.10	0.18	0.41	0.47	-0.47	-0.11	0.29	0.18	0.16	0.07	0.16	0.23	0.20	0.15
7. 2. 9	-0.14	-0.14	-0.18	-0.29	-0.27	-0.36	-0.43	-0.27	-0.32	-0.16	-0.41	-0.18	-0.26
6. 2. 8	-0.14	-0.20	-0.32	-007	-0.47	-0.52	-0.61	-0.27	-0.32	-0.07	-0.41	-0.23	-0.30
6. 2.10	-0.11	-0.02	0.09	0.56	0.20	0.36	0.11	0.41	0.16	0.11	-0.16	-0.18	0.15
6. 2. 6	-0.32	-0.47	-0.88	-1.06	-1.26	-1.35	-1.64	-1.28	-1.01	-0.47	-0.65	-0.41	-0.90
7. 2	-0.32	-0.50	-0.41	-0.63	-0.56	-0.79	-0.86	-0.70	-0.77	-0.61	-0.77	-0.15	-0.61
8. 2	-0.36	-0.50	-0.74	-1.28	-1.19	-1.37	-1.46	-1.28	-1.42	-0.95	-0.77	-0.5	-0.99
8. 1	-0.27	-0.50	-0.59	-1.10	-0.99	-1.04	-1.26	-1.19	-1.24	-0.92	-0.63	-0.50	-0.85
7. 1	-0.23	-0.52	-0.25	-0.45	-0.36	-0.45	-0.65	-0.61	-0.59	-0.59	-0.63	0.41	-0.47
\%.12.3.9	-0.45	-0.65	-1.24	-2.23	-1.55	-1.71	-1.94	-1.64	-1.71	-0.97	-0.92	-0.45	-1.29
7. $2.2(9)$	-0.05	0.07	-0.09	-0.14	-0.14	-0.16	-0.20	-0.07	-0.09	0.07	-0.23	-0.05	-0.09
Dail. ext.	-0.27	-0.49	-0.29	0.20	-0.11	-0.20	0.27	-0.09	-0.25	-0.40	-0.56	-0.40	-0: 0

LXII.

Scotland. - Leith. Lat. $55^{\circ} 59^{\prime}$ N. Long. $3^{\circ} 10^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.
Degrees of lieaumur.

Hours.	Jan.	Feb.	Narch.	April.	Nay.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.17	0.38	0.78	1.34	1.35	1. 16	1.82	1.31	1.13	0.49	0.56	0.32	0.93
2	0.27	0.34	0.68	1.74	1.54	161	1.90	1.42	1.23	0.53	0.68	0.29	1.04
3	0.30	0.34	1.07	2.033	1.76	1.66	2.07	15.5	1.46	0.58	0.62	0.97	1.14
4	0.42	0.42	1.15	2.36	1.96	1.77	2.27	1.65	1.62	0.59	0.65	0.31	1.26
5	0.47	0.52	1.22	2.44	1.90	1.75	2.04	1.62	1.68	0.72	0.61	0.34	1.28
6	0.47	0.58	1.24	2.38	1.56	1.35	1.55	1.45	1.56	0.90	0.57	0.26	1.16
7	0.43	0.55	1.10	1.54	1.18	1.00	1.06	1.00	1.22	0.72	0.47	0.30	0.58
8	0.39	0.56	0.80	0.97	0.62	0.19	0.51	0.48	0.65	0.43	0.46	0.24	0.55
9	0.27	0.34	0.86	-0.12	0.05	-0.0s	-0	-0.22	-0.06	0.14	0.25	0.14	0.08
10	0.07	-0.03	0.08	-0.89	-0.47	-0.58	-0.61	-0.56	-0.49	-0.37	-0.15	-0.01	-0.33
11	-0.15	-0.43	-0.54	-1.34	-0.89	-1.02	-1.00	-0.90	-0.98	-0.76	-0.59	-0.38	-0.75
No	-0.46	-0.75	-1.16	-1.74	-1.22	-1.24	-1.59	-1.83	-1.39	-1.05	-0.87	-0.59	-1.12
1	-0.63	-1.00	-1.32	-1.94	-1.49	-1	-1.63	-1.53	-1	-1.24	-1.02	-0.67	-1.30
2	-0.70	-0.99	-1.16	-2.10	-1.68	-1.70	-1.81	-1.62	-1.90	-1.26	-1.14	-0.69	-1.42
3	-0.71	-1.01	-1.50	-2.26	-1.71	-1.94	-1.94	-1.62	-1.85	-1.14	-1.17	-0.50	5
4	-0.53	-0.77	-1.18	-2.13	-1.86	-1.75	-1.98	-1.72	-1.58	-0.87	-0.75	-0.37	-1.32
5													
5	-0												
6	-0.20	-0.21	-0.95	-1.70	-1.56	-1. 46	-1.96	-1.54	-1.02	-0.26	-0.30	-0.12	-0.94
7	-0.04	-0.0.4	-0.52	-1.09	-1.16	-1.12	-1.59	-0.75	-0.43	0.02	-0.11	0.08	-0.56
8	0.06	0.14	-0.20	-0.36	-0.52	-0.3	-0.5s	-0.18	-0.07	0.26	0.02	0.13	-0.14
9	0.10	0.27	0.11	0.17	0.14	0.22	0.19	0.26	0.26	0.32	0.14	0.16	0.20
10	0.08	0.39	0.34	0.45	0.38	0.84	0.76	0.70	0.5.5	0.51	0.35	0.18	0.46
11	0.14	0.44	0.58	0.97	0.75	0.96	1.12	0.99	0.74	0.71	0.53	0.24	0.68
Midn. .	0.17	0.45	0.64	1.19	1.03	1.19	1.53	1.23	1.01	0.66	0.63	0.26	0.83
6. 6	0.14	0.19	0.15	0.34	0.00	-0.06	-0.19	-0.05	0.27	0.32	0.14	0.07	0.11
7. 7	0.2	0.2	0.29	0.23	0.01	-0.06	-0.27	0.13	0.40	0.37	0.18	0.19	0.16
S. 8	0.2	0.3	0.30	0.31	0.05	0.07	-0.04	0.15	0.29	0.35	0.24	0.19	0.21
9. 9	0.19	0.31	0.24	0.03	0.10	0.07	0.05	0.02	0.10	0.23	0.20	0.15	0.14
10.10	0.08	0.18	21	-0.21	-0.05	0.13	0.08	0.07	0.03	0.07	0.10	0.09	0.06
7. 2. 9	-0.06	-0.0	-0.08	-0.13	-0.1	-0.16	-0.19	-0.12	-0.14	-0.07	-0.18	-0.08	-0.12
6. 2. S	-0.0	O.0	-0.14	-0.	-0.2]	-0.23	-0.27	-0.12	-0.14	-0.03	-0.18	-0.10	-0.13
6. 2.10	-0	-0.01	0.04	0.25	0.09	0.16	0.15	0.18	0.07	0.05	-0.07	-0.08	0.07
6.2. 6	-0.14	-0.21	-0.39	-0.47	-0.56	-0.60	-0.73	-0.57	-0.45	-0.21	-0.29	-0.18	-0.10
7.	-0.	0.2	-0.	-0.28	-0.25	-0.35	-0.38	-0.31	-0.34	-0.27	-0.34	-0.20	-0. 27
8. 2	-0.16	-0.22	-0.33	-0.57	-0.53	-0.61	-0.65	-0.57	-0.63	-0.12	-0.34	-0.23	-0.44
8. 1	-0.12	-0.22	-0.26	-0.49	-0.44	-0.46	-0.56	-0.53	-0.55	-0.41	-0.28	-0.22	-0.38
7. 1	-0.10	-0.23	-0.11	-0.20	-0.16	-0.20	-0.29	-0.27	-0.26	-0.26	-0.28	-0.18	-0.21
9.12.3.9	-0.20	-0.29	-0.55	-0.99	-0.69	-0.76	-0.86	-0.73	-0.76	-0.43	-0.41	0.20	0.57
7. $2.2(9)$	-0.02	0.03	-0.04	-0.06	-0.06	-0.07	-0.09	-0.03	-0.04	0.03	-0.10	-0.02	-0.04
Dail.ext.	-0.12	-0.22	-013	0.09	0.05	-0.09	0.12	-0.04	-0.11	-0.18	-0.25	-0.18	-0.09

The numbers without sign must be added; those with the sign - must be subtracted.

Scotland. - Makerstoun. Lat. $55^{\circ} 36^{\prime}$ N. Long. $2^{\circ} 31^{\prime}$ W. Gr.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Midn.	0.67	0.88	1.24	2.30	2.00	2.25	2.10	1.98	1.95	0.88	0.46	0.24	1.41
1	0.76	0.92	1.37	2.52	2.04	2.43	2.44	2.24	2.15	0.88	0.46	0.16	1.53
2	0.78	1.08	1.37	2.70	2.33	2.54	2.57	2.38	2.26	1.06	0.60	0.18	1.65
3	0.76	1.06	1.48	2.79	2.55	2.65	2.79	2.56	2.35	1.57	0.60	0.29	1.79
4	0.67	1.01	1.66 +	2.96	2.51	2.43	2.70	2.56	2.48	1.20	0.68	0.40	1.77
5	0.75	0.92	1.77	2.88	2.06	1.96	2.21	2.44	2.46	1.40	0.60	0.44	1.66
6	0.60	0.85	1.73	2.25	1.31	1.12	1.35	1.78	2.22	1.31	0.66	0.51	1.31
7	0.31	0.99	1.26	1.43	0.48	0.32	0.46	0.91	1.24	1.26	0.66	0.44	0.83
8	0.53	0.79	0.46	0.36	-0.25	-0.51	-0.39	-0.09	0.00	0.62	0.66	0.40	0.22
9	0.33 .	0.08	-0.33	-0.79	-0.94	-1.11	-0.96	-1.02	-1.00	-0.16	0.08	0.22	-0.47
10	-0.22	-0.72	-1.12	-1.86	-1.52	-1.68	-1.59	-1.78	-1.92	-0.96	-0.47	-0.20	-1.17
11	-0.84	-1.21	-1.67	-2.55	-2.09	-2.26	-2.14	-2.33	-2.45	-1.63	-0.94	-0.62	-1.73
Noon.	-1.36	-1.61	-2.09	-3.06	-2.31	-2.48	-2.45	-2.73	-2.67	-2.03	-1.34	-0.93	-2.09
1	-1.71	-2.03	-2 27	-3.44	-2.69	-2.75	-2.48	-2.87	-3.03	-2.25	-1.56	-1.13	-2.35
2	-1.67	-2.05	-2.36	-3.57	-2.65	-2.57	-2.52	-2.93	-3.12	-2.20	-1.47	-0.96	-2.34
3	-1.29	-1.68	-2.32	-3.52	-2.65	-2.28	-2.54	-2.73	-2.55	-1.83	-0.96	-0.60	-2.10
4	-0.71	-1.30	-1.80	-3.0.5	-2.27	-1.95	-2.23	-2.47	-2.29	-1.23	-0.45	-0.16	-1.66
5	-0.13	-0.50	-1.20	-2.30	-1.76	-1.64	-1.81	-1.78	-1.49	-0.49	-0.07	-0.11	-1.11
6	0.18	-0.08	-0 40	-1.39	-0.98	-0.9.5	-1.34	-1.07	-0.60	-0.09	0.13	0.18	-0.53
7	0.29	0.15	0.08	-0.19	-0.18	-0.40	-0.59	-0.18	0.06	0.17	0.17	0.18	-0.04
8	0.31	0.37	0.16	0.52	0.62	0.36	0.35	0.56	0.46	0.40	0.25	0.15	0.41
9	0.29	0.52	0.73	1.21	1.15	1.00	0.95	1.09	0.95	0.64	0.37	0.24	0.76
10	0.27	0.64	0.95	1.74	1.46	1.56	1.48	1.58	1.33	0.73	0.46	0.31	1.04
11	0.22	0.79	1.06	2.08	1.77	1.94	1.70	1.89	1.51	0.73	0.40	0.36	1.20
Mean.	1.53	0.35	206	5.96	6.56	10.25	10.12	10.00	8.51	6.64	4.60	1.16	

LXIV.

Degrees of Reanmur.

Hour.	Jan.	Fel.	Mareh.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nor.	Dec.	Year.
A.M. 1	0.53	0.53	1.56	2.18	2.53	2.76	2.18	2.22	1.64	1.16	0.53	0.36	1.52
3	0.80	0.71	1.64	2.40	2.89	3.11	2.53	2.10	1.87	1.42	0.67	0.49	1.74
5	0.93	0.98	1.64	2.49	2.31	2.18	2.18	2.53	1.57	1.73	0.76	0.55	1.68
7	0.81	0.93	1.35	0.58	-0.22	-0.59	-0.36	0.40	1.07	1.56	0.20	0.53	0.56
9	0.36	0.18	-0.31	-1.11	-1.24	-1.38	-1.10	-1.16	-0.76	-0.09	0.27	0.36	-0.50
11	-0.98	-0.07	-1.82	-2.40	-2.18	-2.09	-2.04	-2.27	-2.13	-1.91	-0.98	-0.71	-1.71
P.M. 1	-1.60	-1.78	-2.67	-2.93	-2.62	-2.40	-2.27	-2.62	-2.67	-2.44	-1.56	-1.16	-2.23
3	-1.33	-1.47	-2.44	-2.84	-2.71	-2.31	-2.27	-2 49	-2.22	-2.04	-1.11	-0.67	-1.99
5	-0.44	0.14	-1.29	-1.82	-1.82	-1.57	-1.64	-1.73	-1.29	-0.84	-0.27	-0.18	-1.14
7	0.09	0.18	0.18	0.04	-0.27	-0.44	-0.27	-0.09	0.27	0.04	0.04	0.09	-0.01
9	0.22	0.31	0.76	1.20	1.29	1.24	1.20	1.16	0.93	0.58	0.36	0.18	0.79
11	0.36	0.40	1.07	1.73	1.96	2.04	1.87	1.64	1.42	084	0.44	0.22	1.17
Mean.	4.09	4.75	5.10	6.66	9.51	11.86	12.48	12.31	10.79	7.73	599	4.88	

The numbers without sign must be added; those with the sign - must be subtracted.

Russia. - Catharinenburg. Lat. $56^{\circ} 50^{\prime}$ N. Long. $60^{\circ} 34^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.59	0.91	1.54	1.97	3.09	3.69	3.51	2.49	1.99	0.68	0.47	0.65	1.82
2	0.58	0.59	2.09	2.41	3.52	4.15	3.76	2.93	2.27	0.54	0.42	0.67	2.04
3	0.53	0.87	2.42	2.87	3.80	4.35	3.96	3.42	2.60	1.04	0.36	0.64	2.24
4	0.48	0.89	2.80	3.21	3.82	1.17	4.01	3.78	2.89	1.23	0.35	0.61	2.35
5	0.58	0.95	3.11	3.23	3.45	3.54	3.78	3.79	2.98	1.36	0.43	0.63	2.32
6	0.54	1.00	3.15	2.83	2.67	2.49	3.18	3.30	2.74	1.36	0.55	0.72	2.04
7	0.60	0.94	2.76	1.99	1.57	1.18	2.21	2.29	2.11	1.17	0.64	0.81	1.52
8	0.56	0.71	1.90	0.84	0.31	0.17	0.98	0.94	1.16	0.80	0.60	0.80	0.79
9	0.37	0.27	0.65	-0.41	-0.88	-1.35	-0.34	-0.48	0.05	0.28	0.37	0.61	-0.07
10	-0.0.	-0.33	-0.75	-1.52	-1.85	-2.23	-1.61	-1.70	-1.03	-0.32	-0.02	0.21	-0.93
11	-0.60	-0.97	-2.03	-2.34	-2.53	-2.79	-2.72	-2.55	-1.93	-0.89	-0.49	-0.34	-1.68
Noon.	-0.98	-1.17	-3.00	2.83	2.98	-3.13	-3.64	-3.03	-2.58	-1.34	-0. 59	-0.90	-2.23
1	-1.30	-1.75	-3.52	-3.04	-3.25	-3.35	-4.33	-3.25	-2.98	-1.62	-1.12	-1.32	-2.57
2	-1.37	-1.77	-3.62	-3.03	-3.41	-3.50	-4.78	-3.34	-3.16	-1.69	-1.13	-1.50	-2.69
3	-1.19	-1.55	-3.39	-2.58	-3.46	-3.56	-4.90	-3.36	-3.17	-1.58	-0.95	-1.40	-2.62
4	-0.84	-1.19	-2.96	-2.60	-3.33	-3.46	-4.62	-3.27	-2.98	-1.31	-0.66	-1.10	-2.36
5	-0.3 4	-0.79	-2.40	-2.18	-2.93	-3.09	-3.90	-2.98	-2.57	-0.96	-0.37	-0.73	-1.94
6	-0.11	-0.42	-1.77	-1.61	-2.29	-2.43	-2.77	-2.39	-1.93	-0.58	-0.14	-0.39	-1.40
7	0.11	-0.10	-1.08	-0.92	-1.41	-1.52	-1.39	-1.53	-1.12	-0.23	0.01	-0.14	-0.78
8	0.22	0.17	0.36	-0.22	-0.42	-0.48	0.03	-0.53	-0.26	0.06	0.12	0.03	0.14
9	0.30	0.42	0.32	0.42	0.53	0.56	1.28	0.43	0.52	0.26	0.22	0.15	0.45
10	0.37	0.63	0.90	0.91	1.35	1.51	2.22	1.20	1.13	0.40	0.33	0.28	0.95
11	0.36	0.80	1.32	1.29	2.03	2.35	2.84	1.74	1.52	0.48	0.42	0.43	1.30
Midn.	0.55	0.89	1.62	1.61	2.59	3.07	3.23	2.12	1.77	0.56	0.48	0.57	1.59
6. 6	0.21	0.27	0.69	0.61	0.19	0.03	0.20	0.45	0.40	0.39	0.21	0.17	0.32
7. 7	0.35	0.42	0.84	0.53	0.08	-0.17	0.41	0.38	0.49	0.47	0.33	0.33	0.37
8. 8	0.39	0.44	0.75	0.31	-0.03	-0.33	0.51	0.20	0.45	0.43	0.36	0.41	0.32
9. 9	0.33	0.84	0.49	0.01	-0.17	-0.39	0.17	-0.03	0.29	0.27	0.29	0.38	0.19
10.10	0.18	0.15	0.08	-0.30	-0.25	-0.36	0.31	-0.25	0.05	0.01	0.15	0.25	0.00
7. 2. 9	-0.16	-0.14	-0.18	-0.21	-0.44	-0.59	-0.43	-0.21	-0.18	-0.09	-0.09	-0.18	-0.20
6.2. 8	-0.20	-0.20	-0.28	-0.14	-0.39	-0.50	-0.52	-0.19	-0.23	-0.09	-0.15	-0.25	-0.26
6. 2.10	-0.15	-0.05	0.14	0.24	0.20	0.17	0.21	0.39	0.24	0.02	0.08	-0.17	0.10
6. 2. 6	-0.31	-0.40	-0.75	-0.60	-0.01	-1.15	-1.46	-0.81	-0.78	-0.30	-0.24	-0.39	-0.68
7. 2	-0.3.3	-0.42	-0.43	-0.52	-0.92	-1.16	-1.29	-0.53	-0.53	-0.26	-0.25	-0.35	-0.59
8. 2	-0.41	-0.54	-0.86	-1.10	-1.55	-1.84	-1.90	-1.20	-1.00	-0.45	-0.27	-0.35	-0.96
8. 1	-0.37	-0.52	-0.81	-1.10	-1.47	-1.76	-1.68	-1.16	-0.91	-0.41	-0.26	-0.26	-0.89
7. 1	-0.35	-0.41	-0.38	-0.53	-0.84	-1.09	-1.06	-0.18	-0.44	-0.23	-0.24	-0.26	-0.53
9.12.3.9	-0.38	-0.58	-1.36	-1.43	-1.70	-1.87	-1.90	-1.61	-1.30	-0.60	-0.31	-0.39	-1.12
7. $2.2(9)$	-0.04	-0.00	-0.06	-0.0.5	-0.20	-0.30	-0.00	-0.05	0.00	0.00	-0.01	-0.10	0.06
Dail.ext.	- 0.39	-0.39	-0.24	0.10	0.18	0.40	-0.45	0.22	0.17	-0.17	-0.25	-0.35	-0.17

Russia. - Catharinenburg. Lat. $56^{\circ} 50^{\prime}$ N. Long. $60^{\circ} 34^{\prime}$ E. Greemw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reammur.

Hour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov	Dec.	Year.
Midn.	0.42	1.07	1.70	2.12	2.64	3.06	2.93	2.16	1.96	0.59	0.47	0.47	1.66
1	0.52	1.19	2.00	2.40	3.11	3.51	3.41	2.49	2.31	1.08	0.51	0.50	1.92
2	0.52	1.25	2.23	2.82	3.49	3.90	3.86	2.76	2.58	0.99	0.54	0.52	2.12
3	0.55	1.41	2.53	3.05	3.73	4.15	4.11	3.03	2.83	1.47	0.58	0.54	2.33
4	0.63	1.52	2.75	3.26	3.74	3.92	4.28	3.22	3.06	1.61	0.68	0.58	2.44
5	0.68	1.67	2.85	3.24	3.27	3.35	3.66	3.14	3.22	1.67	0.71	0.61	2.34
6	0.73	1.76	3.06	2.24	2.27	1.99	2.47	2.45	3.04	1. 69	0.82	0.64	1.93
7	0.81	1.76	2.59	1.61	0.59	0.61	1.02	1.37	2.27	1.53	0.85	0.65	1.33
S	0.83	1.51	1.46	0.34	-0.24	-0.53	-0.28	0.15	0.85	0.91	0.77	0.58	$0 . .34$
9	0.67	0.73	-0.06	-0.81	-1.09	-1.46	-1.45	-0.97	-0.57	-0.03	0.33	0.39	-0.36
10	0.13	-0.45	-1.45	-1.99	-1.94	-2.23	-2.35	-1.72	-1.68	-0.78	-0.22	-0.08	-1.23
11	-0.57	-1.44	-2.39	-2.62	-2.72	-2.93	-3.10	-2.54	-2.50	-1.46	-0.72	-0.71	-1.95
Noon.	-1.04	-2.13	-2.95	-3.09	-3.19	-3.33	-3.58	-2.99	-3.09	-1.73	--1.0:3	-1.19	-2.45
1	-1.39	-2.58	-3.27	-3.22	-3.23	-3.48	-3.57	-3.04	-3.32	-1.99	-1.25	-1.4.	-2.65
2	-1.50	-2.74	-3.38	-3.26	-3.41	-3.59	-3.55	-3.02	-3.36	-2.02	-1.23	-1.29	-2.70
3	-1.28	-2.37	-3.18	-2.86	-3.14	-3.37	-3.40	-3.03	-3.48	-2.23	-1.11	-1.00	-2.54
4	-0.85	-1.97	-2.82	-2.6.5	-2.99	-3.05	-3.15	-2.83	-3.18	-1.61	-0.79	-0.6	-2.21
5	-0.50	-1.28	-2.20	-2.14	-2.60	-2.49	-2.67	-2.37	-2.48	-0.95	-0.47	-0.33	-1.71
6	-0.22	-0.74	-1.37	-]. 46	-1.98	-1.98	-2.14	-1.66	-1.56	-0.56	-0.26	-0.1	-1.17
7	0.00	-0.25	-0.67	-0.59	-0.95	-1.17	-1.29	-0.79	-0.65	-0.22	-0.07	0.02	-0.55
8	0.10	0.05	-0.12	0.13	-0.04	-0.12	-0.16	0.11	0.07	0.06	0.06	0.11	0.02
9	0.17	0.40	0.44	0.65	0.85	0.96	0.83	0.84	0.67	0.36	0.16	0.26	0.55
10	0.24	0.65	0.94	1.13	1.53	1.88	1.67	1.39	1.25	0.53	0.27	0.39	0.99
11	0.34	0.86	1.34	1.58	2.13	2.51	2.36	1.81	1.65	0.74	0.40	0.56	1.36
Mean.	-10.76	-9.50	-5.83	0.47	6.31	12.08	14.53	10.61	6.32	1.41	-6.11	11.68	
R	IA.	St. P	Peter	URC		LX t. 59° grees of	VII. 56^{\prime} Reaum		. 30	$18^{\prime} \mathrm{F}$	Gr.	- D	
Hour.	Jan.	Feb.	March.	April.	Nay.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Midn.	0.14	0.38	0.73	1.44	2.08	1.99	1.77	1.68	1.17	0.52	0.15	0.17	1.02
1	0.21	0.44	0.99	1.68	2.43	2.29	2.05	2.02	1.38	0.60	0.17	0.21	1.21
2	0.25	0.46	1.22	1.91	2.70	2.56	2.24	2.24	1.58	0.65	0.15	0.27	1.3 .5
3	0.30	0.52	1.33	2.11	2.91	2.73	2.43	2.48	1.75	0.73	0.25	0.34	1.49
4	0.38	0.63	1.56	2.24	2.56	2.44	2.32	2.59	1.87	0.78	0.30	0.36	1.53
5	0.43	0.72	1.71	2.28	2.38	1.97	1.92	2.40	1.96	0.84	0.34	0.34	1.44
6	0.45	0.76	1.75	1.95	1.72	1.33	1.33	1.96	1.90	0.90	037	0.30	1.23
7	0.41	0.78	1.57	1.32	0.93	0.63	0.64	1.19	1.47	0.82	0.37	0.29	0.87
8	0.42	0.60	1.07	0.65	0.14	-0.04	0.05	0.42	0.81	0.57	0.32	0.2.5	0.44
9	0.35	0.40	0.40	-0.05	-0.59	-0.69	-0.56	-0.40	0.00	0.20	0.17	0.17	0.05
10	0.13	-0.0.	-0.19	-0.78	-1.30	-1.21	-1.12	-1.07	-0.71	-0.22	0.00	0.04	-0.54
11	-0.20	-0.48	-0.86	-1.42	-1.92	-1.71	-1.58	-1.64	-1.27	-0.61	-0.20	-0.14	-1.00

The numbers without sigu must be added ; those with the sign - must be subtracted.

Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hour.	Jan.	b.	March.	Aprit.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Noon.	-0.38	-0.90	-1.31	-1.93	-2.30	-1.99	-1.89	-2.10	-1.72	-0.94	-0.37	-0.30	-1.34
1	-0.63	-0.97	-1.62	-2.10	-2.41	-2.17	-2.03	-2.47	-2.26	-1.75	-0.64	-0.48	-1.63
2	-0.66	-1.04	-1.88	-2.36	-2.65	-2.32	-2.15	-2.60	-2.34	-1.29	-0.63	-0.58	-1.71
3	-0.5.5	-0.99	-1.94	-2.49	-2.90	-2.45	-2.29	-2.64	-2.31	-1.06	-0.46	-0.40	-1.71
1	-0.33	-0.53	-1.92	-2.65	-2.92	-2.60	-2.41	-2.80	-2.27	-0.86	-0.20	-0.31	-1.68
5	-0.2.5	-0.45	-1.53	-2.31	-2.4S	-2.23	-2.06	-2.45	-1.76	-0.50	-0.16	-0.22	-1.37
6	-0.19	-0.26	-1.02	-1.43	-1.65	-1.41	-1.30	-1.41	-0.9	-0.2.)	-0.11	-0.14	-0.84
7	-0.15	-0.16	-0.55	-0.61	-0.74	-0.71	-0.63	-062	-0.35	-0.09	-0.05	-0.10	-0.10
8	-0.14	-0.03	-0.25	-0.03	0.06	-0.03	0.02	0.09	0.07	0.07	0.01	0.08	-0.01
9	-0.11	0.08	0.03	0.47	0.79	0.67	0.64	0.65	0.40	0.18	0.08	0.03	0.33
10	-0.03	0.17	0.24	0.54	1.22	1.2.)	1.18	1.05	0.66	0.33	0.08	0.02	0.58
11	0.06	0.30	0.50	1.17	1.76	1.65	1.45	1.40	0.91	0.45	0.11	0.11	0.82
Mean.	-7.41	-6.73	-3.36	1.10	7.01	11.3	13.39	13.55	8.43	3.61	-0.n0	-3.75	

LXVIII.

Russia. - Helsingfors. Lat. $60^{\circ} 10^{\prime}$ N. Long. $24^{\circ} 57^{\prime}$ E. Gr. - Dòve. Degrees of Reaumur.

Hour.	Jan.	Fet,	March.	April.	May.	June.	July	Aug.	Sept.	Oct.	Nor.	Sec.	Year
Midn.	0.06	0.47	1.28	1.61	1.61	2.01	1.6 .5	1.36	0.83	0.37	0.18	0.20	0.97
1	0.13	0.49	1.48	1.87	1.94	2.44	1.90	1.68	1.03	0.45	0.15	0.21	1.15
2	0.16	0.52	1.64	2.07	2.21	2.84	2.17	1.98	1.21	0.55	0.18	0.18	1.31
3	0.23	0.67	1.84	2.21	2.58	3.04	2.45	2.23	1.35	0.65	0.23	0.15	1.47
4	0.35	0.64	1.91	2.37	2.68	2.77	2.42	2.49	1.48	0.62	0.28	0.23	1.52
5	0.38	0.77	1.93	2.34	2.23	2.21	2.05	2.41	1.63	0.67	0.33	0.10	1.43
6	0.38	0.92	2.01	1.74	1.31	1.31	1.33	1.81	1.63	0.75	0.33	0.03	1.13
7	0.41	0.99	1.78	1.14	0.58	0.51	0.5.)	1.11	1.28	0.73	0.86	0.01	0.79
S	0.43	$0.99{ }^{1}$	1.04	0.17	-0.19	-0.36	-0.10	0.26	0.58	0.57	0.35	0.00	0.31
9	0.35	0.55	0.04	-8.73	-0.86	-0.83	-0.73	-0.56	-0.09	0.83	0.25	0.06	-0.18
10	0.05	-0.20	-0.89	-1.49	-1.39	-1.29	-1.23	-1.12	$-0.6 .5$	-0.15	0.13	-0.07	-0.69
11	-0.19	-0.93	-1.19	-1.93	-1.76	-1.83	-1.65	-1.59	-1.05	-0.47	-0.19	-0.32	-1.09
Noon.	-0.72	-1.25	-2.36	-2.26	-1.82	-1.76	-1.80	-2.02	-1.67	-0.90	-0.59	-0.42	-1.46
1	-0.79	-1.50	-2.62	-2.46	-2.12	-2.06	-2.13	-2.26	-1.82	-1.08	-0.70	-0.45	-1.67
2	-0.74	-1.60	-2.62	-2.56	-2.19	-2.36	-2.25	-2.31	-1.8.5	-1.10	-0.64	-0.12	-1.72
3	-0.49	-1.33	-2.46	-2.37	-2.16	-2.49	-2.13	-2.17	$-1.7 .5$	-0.95	-0.50	-0.22	-1.58
4	-9.21	-0.90	-2.12	-1.89	-1.82	-2.16	-1.75	-1.81	-1.52	-0.77	-0.29	-0.02	-1.28
5	-0.12	-0.43	-1.56	-1.59	-1	-1.89	-1.48	-1.64	-1.20	-0.43	-0.17	0.03	-1.00
6	-0.04	-0.21	-0.79	-1.09	-1.09	-1.53	-1.15	-1.19	-0.72	-0.25	-0.09	-0.02	-0.68
7	0.03	0.07	-0.29	-0.49	-0.86	-0.96	-0.65	-0.64	-0.27	-0.13	-0.04	0.01	-0.35
8	0.03	0.20	0.01	0.14	-0.16	-0.36	-0.10	-0.14	0.05	-0.03	0.00	0.11	-0.02
9	0.10	0.25	0.41	0.64	0.44	0.37	0.5 .5	0.28	0.23	0.0 .5	0.06	0.13	0.29
10	0.0 s	0.3 .5	0.74	1.04	0.94	1.04	1.02	0.71	0.43	0.13	0.10	0.18	0.56
11	0.01	0.42	1.01	1.37	1.34	1.54	1.37	1.06	0.63	0.27	0.18	0.15	0.78
Mean.	$-.5 .02$	-7.43	-3.89	-0.06	5.11	10.84	12.75	14.11	9.23	4.55	1.13	-3.42	

The numbers without sign must be added; those with the sigu - must be subtracted.

Russia. - Petersburg. Lat. $59^{\circ} 56^{\prime}$ N. Long. $30^{\circ} 18^{\prime}$ E. Greemv.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Ang.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.20	0.38	0.92	1.52	2.59	2.10	1.98	2.08	1.39	0.72	0.14	0.17	1.21
2	0.23	0.37	1.10	1.75	2.84	2.69	2.26	2.43	1.67	0.77	0.13	0.27	1.38
3	0.22	0.39	1.30	2.01	3.03	2.90	2.49	2.79	1.97	0.82	0.14	0.33	1.53
4	0.21	0.43	1.49	2.19	3.05	2.91	2.57	3.01	2.20	0.88	0.16	0.35	1.62
5	0.26	0.50	1.59	2.17	2.79	2.60	2.37	2.92	2.25	0.95	0.20	0.35	1.58
6	0.37	0.57	1.56	1.58	2.20	1.98	1.88	2.16	2.06	0.95	0.23	0.34	1.38
7	0.51	0.56	1.36	1.35	1.27	1.13	1.15	1.70	1.62	0.92	0.23	0.33	1.01
8	0.59	0.46	0.99	0.68	0.41	0.24	0.34	0.79	1.01	0.72	0.16	0.31	0.56
9	0.53	0.23	0.47	-0.02	-0.47	-0.53	-0.40	-0.10	1	. 36	0.03	0.27	0.06
10	0.33	-0.09	-0.13	-0.65	-1.16	-1.09	-0.97	-0.86	-0.42	-0.09	-0.16	0.18	-0.43
11	0.01	-0.43	-0.74	-1.18	-1.65	-1. 49	-1.37	-1.17	-1.12	-0.58	-0.35	0.03	-0.86
Noon.	-0.34	-0.73	-1.28	-1.62	-2.09	-1.83	-1.67	-2.01	-1.75	-0.99	-0.49	-0.15	-1.25
1	-0.59	-0.92	-1.68	-2.01	-2.50	-2.20	-1.98	-2.53	-2.29	-1.27	-0.54	-0.32	-1.57
2	-0.68	-0.9.5	-1.89	-2.33	-2.91	-2.62	-2.31	-3.01	-2.67	-1.36	-0.49	-0.4.4	-1.81
3	-0.61	-0.86	-1.92	-2.52	-3.2.)	-2.98	-2.58	-3.35	-2.81	-1.30	-0.35	-0.48	-1.92
4	-0.45	-0.67	-1.75	-2.50	-3.36	-3.12	. 68	-3.39	-2.6.)	-1.12	-0.18	-0.44	-1.86
5	-0.27	-0.44	-1.	-2.10	-3.1	-2.89	-2.46	-3.02	-2.19	-0.88	-0.02	-0.36	-1.61
6	-0.15	-0.22	-1.04	-1.01	-2.44	-2.26	-1.94	-2.26	-1.50	-0.62	0.10	-0.26	-1.18
7	-0.12	-0.02	-0.60	-0.86	-1.37	-1.33	-1.15	-1.25	-0.72	-0.37	0.17	-0.19	$\rightarrow 0.65$
8	-0.13	0.13	-0.20	-0.10	-0.34	-0.31	-0.29	-0.20	-0.01	-0.12	0.19	-0.14	-0.13
9	-0.14	0.24	0.14	0.54	0.69	0.61	0.49	0.66	0.53	0.11	0.19	-0.12	0.33
10	-0.09	0.32	0.40	0.96	1.47	1.30	1.07	1.24	0.37	0.33	0.18	-0.09	0.66
11	0.02	0.37	0.59	1.20	2.00	1.77	1.45	1.58	1.05	0.50	0.17	-0.02	0.89
Miãn.	0.12	0.38	0.75	1.35	2.33	2.11	1.73	1.81	1.20	0.63	0.16	0.07	1.05
6. 6	0.11	0.18	0.26	0.14	-0.12	-0.14	-0.03	0.10	0.28	0.18	0.17	0.04	0.10
7. 7	0.20	0.27	0.38	0.25	-0.05	-0.10	-0.00	0.23	0.45	0.28	0.20	0.07	0.15
8. 8	0.23	0.29	0.40	0.29	0.01	-0.04	0.03	0.29	0.50	0.30	0.18	0.09	0.22
9. 9	0.20	0.21	0.31	0.26	0.11	0.04	0.04	0.28	0.42	0.24	0.11	0.08	0.19
10.10	0.12	0.12	0.13	0.15	0.16	0.11	0.05	0.19	0.22	0.12	0.01	0.05	0.12
7. 2. 9	-0.10	-0.05	-0.13	-0.15	-0.32	-0.29	-0.22	-0.22	-0.17	-0.11	-0.02	-0.08	-0.16
6. 2. 8	-0.15	-0.03	-0.18	-0.18	-0.3.5	-0.32	-0.24	-0.25	-0.21	-0.17	-0.02	-0.08	-0.19
6. 2.10	-0.13	-0.02	0.02	0.17	0.25	0.22	0.21	0.23	0.09	-0.02	-0.03	-0.06	0.08
6. 2. 6	-0.15	-0.20	-0.46	-0.69	-1.05	-0.97	-0.79	-0.94	-0.70	-0.33	-0.05	-0.12	-0.54
7. 2	-0.09	-0.20	-0.27	-0.49	-0.82	-0.75	-0.58	-0.66	-0.53	-0.22	-0.13	-0.06	-0.40
8. 2	-0.05	-0.25	-0.45	-0.83	-1.25	-1.19	-0.99	-1.11	-0.83	-0.32	-0.17	-0.07	-0.63
8. 1	0.00	-0.23	-0.35	-0.67	-1.05	-0.98	-0.82	-0.87	-0.64	-0.29	-0.19	-0.01	-0.51
7. 1	-0.04	-0.18	-0.16	-0.33	-0.62	-0.54	-0.42	-0.42	-0.34	-0.18	-0.16	0.01	-0.28
9.12.3.9	-0.14	-0.28	-0.65	-0.91	-1.28	-1.18	-1.04	-1.20	-0.93	-0.46	-0.16	-0.12	-0.70
7. $2.2(9)$	-0.11	0.02	-0.06	0.03	-0.07	-0.07	-0.05	0.00	0.00	-0.06	0.03	-0.09	-0.04
Dail.cxt.	-0.0.5	-0.19	-0.17	-0.17	-0.16	-0.11	-0.06	-0.19	-0.28	-0.19	-0.16	-0.07	-0.15

The numbers without sign must be added ; those with the sign - must be subtracted.

Russia. - Helsingfors. Lat. $60^{\circ} 10^{\prime}$ N. Long. $24^{\circ} 57^{\prime}$ E. Greemw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean 'Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	Juty.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.47	0.85	1.40	2.10	2.49	3.37	3.16	2.58	1.6	1.06	0.64	0.34	1.67
2	0.79	1.25	1.86	3.18	2.82	3.78	3.48	2.96	2.0	1.45	0.99	0.68	2.11
3	0.99	1.55	2.28	2.79	2.59	3.74	3.45	3.11	2.45	1.70	1.22	0.91	2.26
4	1.13	1.71	2.52	2.75	2.62	3.22	3.02	2.92	2.61	1.74	1.26	0.97	2.21
5	1.06	1.66	2.49	2.41	2.06	2.32	2.25	2.39	2.40	1.51	1.09	0.84	1.57
6	0.86	1.43	2.16	1.76	1.30	1.24	1.23	1..59	1.84	1.10	0.76	0.59	1.32
7	0.58	1.07	1.54	0.92	0.49	0.20	0.17	0.64	1.06	0.59	0.38	0.31	0.67
8	0.28	0.60	0.79	0.05	-0.26	-0.65	-0.78	-0.28	0.21	0.08	0.02	0.07	0.01
9	0.01	0.10	-0.05	-0.74	-0.87	-1.26	-1.51	-1.07	-0.58	-0.38	-0.27	-0.10	-0.56
10	-0.25	-0.42	-0.87	-1.35	-1.34	-1.65	-2.02	-1.68	-1.23	-0.77	-0.48	-0.22	-1.02
11	-0.48	-0.91	-1.56	-1.50	-1.70	-1.93	-2.35	-2.12	-1.71	-1.07	-0.64	-0.32	-1.38
Noon	-0.70	-1.29	-2.06	-2.10	-1.98	-2.16	-2.54	-2.43	-2.04	-1.30	-0.76	-0.43	-1.65
1	-0.86	-1.54	-2 36	-2.30	-2.19	-2.36	-2 65	-2.61	-2.23	-1.42	-0.55	-0.54	-1.83
2	-0.92	-1.60	-2.45	-2.37	-2.32	-2.51	-2.66	-2.66	-2.30	-1.43	-0.58	-0.61	-1.89
3	-0.84	-1.47	-2.32	-2.31	-2.31	-2.55	-2.55	-2.5.5	-2.20	-1.30	-0.82	-0.60	-1.82
4	-0.73	-1.20	-2.01	-2.10	-2.11	-2.42	-2.27	-2.26	-1.92	-1.05	-0.68	-0.49	-1.60
5	-0.52	-0.87	-1.56	-1.73	-1.77	-2.13	-1.85	-1.80	-1.48	-0.74	-0.48	-0.33	-1.27
6	-0.32	-0.57	-1.07	-1.25	-1.30	-1.71	-1.30	-1.24	-0.95	-0.44	-0.2s	-0.18	-0.88
7	-0.19	-0.38	-0.60	-0.72	-0.78	-1.20	-0.68	-0.62	-0.42	-0.22	-0.16	-0.11	-0.51
8	-0.15	-0.25	-0.20	-0.21	-0.24	-0.61	-0.04	-0.03	-0.00	-0.10	-0.12	-0.12	-0.17
9	-0.16	-0.18	0.10	0.26	0.29	0.07	0.61	0.52	0.31	-0.03	-0.12	-0.20	0.12
10	-0.16	-0.0s	0.36	0.69	0.82	0.87	1.27	1.03	0.54	0.08	-0.10	-0.25	0.42
11	-0.06	0.12	0.63	1.15	1.10	1.75	1.95	1.54	0.79	0.29	0.02	-0 19	0.78
Midn.	0.16	0.44	0.96	1.60	1.97	2.63	2.61	2.08	1.14	0.63	0.28	0.02	1.21
6. 6	0.27	0.43	0.5 .5	0.26	-0.00	-0.24	-0.04	0.18	0.45	0.33	0.24	0.21	0.22
7. 7	0.20	0.35	0.49	0.10	-0.15	-0.50	-0.26	0.01	0.32	0.19	0.11	0.10	0.08
8. 8	0.07	0.18	0.30	-0.08	-0.25	-0.63	-0.41	-0.16	0.11	-0.01	-0.05	-0.03	-0.08
9. 9	-0.08	-0.04	0.03	-0.24	-0.29	-0.60	-0.45	-0.28	-0.14	-0.21	-0.20	-0.15	-0.22
10.10	-0.21	-0.2.5	-0.26	-0.33	-0.26	-0.39	-0.38	-0.33	-0.35	-0.35	-0.29	-0.24	-0.30
7. 2. 9	-0.17	-0.24	-0.26	-0.40	-0.51	-0.75	-0.63	-0.50	-0.31	-0.29	-0.2]	-0.17	-0.87
6.2. 8	-0.07	-0.14	-0.16	-0.27	-0.12	-0.63	-0.49	-0.37	-0.15	-0.14	-0.08	-0.05	-0.25
6. 2.10	-0.07	-0.08	0.02	0.03	-0.07	-0.13	-0.0:	-0.01	0.03	-0.08	-0.07	-0.09	-0.05
6. 2. 6	-0.13	-0.2.5	-0.4.	-0.62	-0.77	-0.99	-0.91	-0.74	-0.47	-0.26	-0.13	-0.07	-0.49
7. 2	-0.17	-0.27	-0.44	-0.73	-0.92	-1.	-1.25		-0.62	-0.42	0.25	-0.15	-0.62
8. 2	-0.32	-0.50	-0.83	-1.16	-1.29	-1.58	-1.72	-1.47	-1.0.	-0.68	-0.43	-0.27	-0.94
8. 1	-0.29	-0.47	-0.79	-1.13	-1.23	-1.51	-1.72	-1.4.	-1.01	-0.67	-0.42	0.24	-0.91
7. 1	-0.14	-0.24	-0.40	-0.69	-0.s5	-1.08	-1.24	-0.99	-0.59	-0.42	-0.24	-0.12	-0.58
9.12.3.9	-0.42	-0.71	-1.05	-1.22	-1.22	-1.48	-1.50	-1.38	-1 13	-0.75	-0.49	-0.33	-0.98
7. 2.2(9)	-0.17	-0.22	-0.17	-0.23	-0.31	-0.54	-0.32	-0.25	-0.16	-0.23	-0.19	-0.1s	-0.25
Dail.ext.	0.11	0.06	0.04	041	0.29	0.62	0.41	0.23	0.16	0.16	0.19	0.18	0.19

The numbers without sign must be added; those with the sign - must be subtracted.

Normay. - Ciristiania. Lat. $59^{\circ} 55^{\prime}$ N. Long. $10^{\circ} 43^{\prime}$ E. Greemw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Iear. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	A pril.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.16	0.89	1.07	1.56	2.55	2.58	2.21	2.04	1.64	0.74	0.52	0.22	1.35
2	0.21	0.94	1.30	1.88	2.85	3.15	2.53	2.23	1.88	0.82	0.50	0.21	1.54
3	0.27	1.17	1.51	2.03	3.23	3.28	2.64	2.41	2.03	0.94	0.49	0.28	1.69
4	0.32	1.49	1.67	2.12	3.21	3.05	2.62	2.60	2.07	1.06	0.55	0.30	1.84
5	0.38	1.60	1.82	2.23	2.55	2.39	2.09	2.44	2.14	1.16	0.51	0.22	1.63
6	0.47	1.54	1.69	1.81	1.63	1.31	1.37	1.98	2.10	1.16	0.60	0.11	1.31
7	0.51	1.67	1.71	1.28	0.71	0.43	0.58	1.00	1.50	1.13	0.46	0.19	0.93
8	0.54	1.42	1.29	0.56	0.07	-0.32	-0.22	0.10	0.62	0.75	0.38	0.15	0.44
9	0.48	1.11	0.36	-0.06	-0.52	-0.86	-0.78	-0.59	0.01	0.15	0.17	0.16	-0.03
10	0.24	0.27	-0.35	-0.67	-1.19	-1.57	-1.26	-1.23	-0.78	-0.48	-0.23	0.11	-0.59
11	-0.17	-0.69	-0.96	-1.38	-1.66	-2.05	-1.74	-1.67	-1.44	-1.00	-0.76	-0.20	-1.14
N	-0.67	-1.32	-1.48	-1.80	-2.17	-2.29	-2.02	-2.11	-2.02	-1.30	-1.06	-0.40	-1.55
1	-0.87	-1.90	-1.74	-2.22	-2.46	-2.50	-2.21	-2.35	-2.41	-1.59	-1.15	-0.42	-1.82
2	-1.04	-2.22	-1.95	-2.32	-2.46	-2.40	-2.20	-2.50	-2.54	-1.67	-1.15	-0.35	-1.90
3	-0.91	-2.29	-2.16	-2.26	-2.54	-2.47	-2.21	-2.50	-2.50	-1.58	-0.88	-0.23	-1.88
4	-0.62	-2.00	-1.99	-2.11	-2.53	-2.29	-2.00	-2.32	-2.35	-1.33	-0.55	-0.12	-1.68
5	-0.35	-1.42	-1.58	-1.80	-2.20	-2.14	-1.87	-1.97	-1.80	-0.90	-0.23	-0.06	-1.36
6	-0.12	-1.10	-1.10	-1.27	-1.82	-1.70	-1.48	-1.48	-1.21	-0.52	-0.02	-0.03	-0.99
7	-0.01	-0.60	-0.6.5	-0.70	-1.35	-0.98	-0.89	-0.78	-0.57	-0.24	0.11	-0.10	-0.58
8	0.12	-0.32	-0.20	-0.14	-0.44	-0.31	-0.30	-0.10	0.02	0.18	0.23	-0.13	-0.1%
9	0.16	0.09	0.09	0.36	0.24	0.44	0.45	0.55	0.36	0.36	0.27	-0.05	0.28
10	0.27	0.34	0.36	0.70	0.93	1.20	1.06	1.08	0.81	0.58	0.33	-0.04	0.6:3
11	0.3	0.52	0.53	0.99	1.46	1.76	1.63	1.41	1.06	0.75	0.43	0.10	0.91
Midn.	0.33	0.86	0.77	1.20	1.90	2.31	2.00	1.75	1.38	0.95	0.48	0.09	1.17
6. 6	0.18	0.22	0.30	0.27	-0.10	-0.20	-0.06	0.25	0.45	0.32	0.29	0.04	0.16
7. 7	0.25	0.54	0.53	0.29	-0.32	-0.28	-0.16	0.11	0.47	0.45	0.29	0.05	0.18
8. 8	0.33	0.55	0.55	0.21	-0.19	-0.32	-0.26	0.00	0.32	0.47	0.31	0.01	0.16
9. 9	0.32	0.60	0.23	0.15	-0.14	-0.21	-0.17	-0.02	0.19	0.26	0.22	0.06	0.12
10.10	0.26	0.31	0.01	0.05	-0.13	-0.18	-0.10	-0.08	0.02	0.0.5	0.05	0.04	0.02
7. 2. 9	-0.12	-0.15	-0.05	-0.23	-0.50	-0.51	-0.39	-0.32	-0.23	-0.06	-0.14	-0.07	-0.23
6. 2. 8	-0.15	-0.83	-0.15	-0.22	-0.42	-0.47	-0.38	-0.21	-0.14	-0.11	-0.11	-0.12	-0.23
6. 2.10	-0.10	-0.11	0.03	0.06	0.03	0.04	0.08	0.19	0.12	0.02	-0.07	-0.09	0.02
6. 2. 6	-0.23	-0.59	-0.45	-0.59	-0.76	-0.67	-0.70	-0.67	-0.55	-0.34	-0.19	-0.11	-0.49
7. 2	-0.27	-0.28	-0.12	-0.52	-0.88	-0.99	-0.81				-0.35		
8. 2	-0.25	-0.40	-0.33	-0.88	-1.20	-1.04	-0.99				-0.		
8. 1	-0.17		-0.23			09					-0.39		
7. 1	-0.18	-0.12	-0.02		-0.88	-1.04	-0.82		-0.46	-0.23	-0.35	-0.12	-0.50
	- 18				-0.88	1.04	-0.82		-0.46	-0.23	-0..35	-0.12	-0.50
9.12.3.9	-0.56	-0.60	-0.80	-0.94	-1.25	-1.29	-1.14	-1.16	-1.04	-0.59	-0.38	-0.13	-0.82
7. $2.2(9)$	-0.05	-0.09	-0.02	-0.08	-0.32	-0.27	-0.18	-0.10	-0.08	0.05	-0.04	-0.07	-0.11
Dail.ext.	-0.25	-0.31	-0.17	-0.05	0.35	0.39	0.22	0.05	-0.20	-0.26	-0.28	-0.06	-0.05

The numbers without sign must be added; those with the sign - must be subtracted.

LXXII.

Norway. - Dronthem. Lat. $63^{\circ} 26^{\prime}$ N. Long. $10^{\circ} 25^{\prime}$ E. Greemv.
Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean Temperatures of the respective Days, Months, and of the Year. - Dove.
Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.29	0.41	0.77	1.94	2.63	2.64	2.53	2.51	1.37	0.89	0.27	0.33	1.38
2	0.25	0.50	0.95	2.09	2.97	2.76	2.75	2.65	1.48	0.91	0.31	0.31	1.50
3	0.22	0.64	1.11	2.19	3.13	2.82	2.77	2.91	1.59	0.97	0.23	0.42	1.58
4	0.20	0.71	1.27	2.32	3.03	2.82	2.65	2.77	1.55	1.07	0.28	0.34	1.58
5	0.13	0.75	1.37	2.05	2.76	2.52	2.35	2.58	1.59	0.86	0.30	0.42	1.47
6	0.11	0.82	1.42	1.67	2.30	1.96	1.86	2.13	1.49	0.71	0.14	0.43	1.25
7	0.04	0.58	1.35	1.36	1.68	1.39	1.17	1.58	1.07	0.42	0.00	0.36	0.92
8	0.08	0.23	1.17	0.94	0.83	0.61	0.40	1.02	0.57	0.06	-0.02	0.36	0.52
9	0.00	-0.08	0.41	-0.02	-0.28	-0.03	-0.14	0.22	-0.07	-0.29	-0.14	0.19	-0.02
10	-0.09	-0.48	-0.13	-0.85	-1.29	-0.92	-1.30	-1.22	-0.89	-0.59	-0.16	0.02	-0.65
11	-0.16	-0.78	-0.65	-1.90	-2.09	-2.01	-1.95	-2.63	-1.34	-0.88	-0.33	-0.12	-1.24
Noo	-0.59	-1.08	-1.35	-2.57	-2.81	-2.43	-2.77	-3.21	-2.05	-1.20	-0.38	-0.42	-1.75
1	-0.80	-1.22	-1.70	-2.66	-3.28	-3.25	-3.20	-3.39	-2.12	-1.14	-0.44	-0.42	-1.97
2	-0.68	-1.15	-1.70	-2.46	-3.27	-3.32	-3.07	-3.36	-2.28	-1.09	-0.42	-0.47	-1.94
3	-0.48	-0.80	-1.51	-2.29	-3.25	-3.05	-3.06	-3.21	-1.85	-1.07	-0.28	-0.37	-1.76
4	-0.36	-0.56	-1.37	-1.83	-2.90	-2.78	-2.41	-2.81	-1.43	-0.86	-0.16	-0.29	-1.48
5	-0.29	-0.36	-1.07	-1.30	-2.20	-2.45	-2.02	-2.23	-1.09	-0.50	-0.06	-0.22	-1.15
6	-0.17	-0.11	-0.75	-0.90	-1.70	-1.84	-1.15	-1.27	-0.79	-0.51	0.08	-0.23	-0.78
7	0.09	-0.04	-0.54	-0.57	-1.03	-1.00	-0.61	-0.68	-0.32	-0.28	0.09	-0.30	-0.43
8	0.27	0.17	-0.27	-0.20	-0.37	0.04	0.01	0.11	0.03	-0.02	0.17	-0.19	-0.02
9	0.45	0.37	0.00	0.16	0.50	0.41	0.66	0.51	0.43	0.22	0.05	-0.11	0.30
10	0.52	0.53	0.23	0.61	1.10	1.08	1.17	1.18	0.75	0.55	0.13	-0.06	0.65
11	0.47	0.50	0.43	0.90	1.61	1.63	1.48	1.67	1.02	0.74	0.11	0.02	0.88
Midn.	0.45	0.49	0.63	1.27	1.92	2.07	1.88	2.13	1.28	1.14	0.19	0.02	1.12
6. 6	-0.03	0.36	0.34	0.39	0.30	0.06	0.36	0.43	0.35	0.10	0.11	0.10	0.24
7. 7	0.07	0.27	0.41	0.40	0.33	0.20	0.28	0.45	0.38	0.07	0.05	0.03	0.24
8. 8	0.18	0.20	0.45	0.37	0.23	0.33	0.21	0.57	0.30	0.02	0.08	0.09	0.25
9. 9	0.23	0.15	0.21	0.07	0.11	0.19	0.26	0.37	0.18	-0.04	-0.05	0.04	0.14
10.10	0.22	0.03	0.05	-0.1	-0.10	0.08	-0.07	-0.02	-0.07	-0.02	-0.02	-0.02	0.00
7. 2. 9	-0.06	-0.07	-0.12	-0.31	-0.36	-0.51	-0.41	-0.42	-0.26	-0.15	-0.12	-0.07	-0.24
6. 2. 8	-0.10	-0.05	-0.18	-0.3:;	-0.4	-0.44	-0.40	-0.37	-0.25	-0.13	-0.04	-0.08	-0.23
6. 2.10	-0.02	0.07	-0.02	-0.06	0.04	-0.09	-0.01	-0.02	-0.01	0.06	-0.05	-0.03	-0.01
6. 2. 6	-0.25	-0.62	-0.39	-0.56	-0.89	-1.06	-0.79	-0.83	-0.53	-0.30	-0.07	-0.09	-0.53
7. 2	-0.32	-0.29	-0.18	-0.55	-0. 80	-0.97	-0.9	-0.89	-0.61	-0.34	-0.21	-0.06	-0.51
8. 2	-0.30	0.46	-0.27	-0.76	-1.22	-1.36	-1.3	-1.17	-0.86	-0.52	-0.22	-0.06	-0.63
8. 1	-0.36	-0.50	-0.27	-0.	-1.23	-1.32	-1.40	-1.19	-0.75	-0.54	-0.23	-0.03	-0.73
7. 1	-0.38	-0.32	-0.1S	-0.65	-0.80	-0.93	-1.02	-0.91	-0.53	-0.36	-0.22	-0.03	-0.53
9.12.3.9	-0.16	-0.10	-0.62	-1.1	-1.46	-1.28	-1.33	-1.42	-0.89	-0.59	-0.1	-0.18	-0.87
7. $2.2(9)$	0.07	0.04	-0.09	-0.19	-0.15	-0.28	-0.15	-0.19	-0.09	-0.16	-0.02	-0.12	-0.11
Dail.ext.	-0.14	-0.20	-0.14	-0.17	-0.08	-0.25	-0.22	-0.24	-0.35	-0.07	-0.	-0.02	-0.16

LXXIII.

Strait of Kara. Lat. $70^{\circ} 37^{\prime}$ N. Long. $57^{\circ} 47^{\prime}$ E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	0.27	0.38	1.66	2.53	2.26	1.86	1.37	0.62	0.33	0.00	0.08	0.5	0.99
2	0.24	0.38	1.78	2.67	2.22	1.68	1.24	0.58	0.40	0.02	0.14	0.42	0.98
3	0.22	0.40	1.86	2.66	2.06	1.41	1.03	0.53	0.49	0.02	0.14	0.26	0.92
4	0.23	0.12	1.85	2.44	1.82	1.12	0.79	0.47	0.58	0.06	0.15	0.11	0.84
5	0.25	0.42	1.80	1.98	1.48	0.82	0.54	0.38	0.61	0.17	0.22	-0.00	0.72
6	0.27	0.33	1.55	1.30	1.01	0.49	0.25	0.26	0.58	0.29	0.36	-0.15	0.55
7	0.29	0.16	1.10	0.52	0.40	0.10	-0.05	0.10	0.42	0.35	0.52	-0.29	0.30
8	0.30	0.08	0.42	-0.27	-0.30	-0.33	-0.35	-0.07	0.27	0.32	0.64	-0.42	0.01
9	0.26	0.30	-0.43	-0.98	-1.01	-0.78	-0.66	-0.23	0.01	0.18	0.66	-0.5.	-0.32
10	0.1	-0.50	-1.32	-1.55	-1.63	-1.19	-0.65	-0.36	-0.28	0.02	0.55	-0.61	-0.63
11	0.04	-0.64	-2.07	-2.13	-2.06	-1.45	-0.98	-0.16	-0.54	-0.25	0.33	-0.62	-0.91
N	-0.1	-0.70	-2.56	-2.41	-2.27	-1.62	-1.04	-0.55	-0.72	-0.37	0.18	-0.5.	-1.07
1	-0.31	-0.70	-2.70	-2.67	-2	-1.62	-1.03	-0.63	-0.81	-0.43	-0.13	-0.44	-1.14
2	-0.49	-0.64	-2.52	-2.81	-2.11	-1.54	-1.00	-0.71	-0.78	-0.36	-0.25	-0.31	-1.13
3	-0.6	-0.53	-2.10	-2.75	-1.88	-1.40	-0.95	-0.76	-0.66	-0.23	-0.30	-0.21	-1.03
4	-0.63	-0.38	-1.54	-2.46	-1.61	-1.25	-0.90	-0.69	-0.49	-0.10	-0.32	-0.11	-0.87
5	-0.58	-0.21	-0.98	-1.91	-1.30	-1.05	-0.78	-0.59	-0.30	0.02	-0.35	-0.04	-0.67
6	-0.46	-0.02	-0.47	-1.18	-0.90	-0.76	-0.59	-0.38	-0.13	0.07	-0.41	0.06	-0.43
7	-0.26	0.14	-0.04	-0.37	-0.40	-0.35	-0.29	-0.09	0.06	0.08	-0.18	0.18	-0.15
8	-0.06	0.32	0.3	0.42	0.20	0.18	0.11	0.22	0.11	0.07	-0.52	0.33	0.14
9	0.11	0.42	0.67	1.08	0.53	0.78	0.54	0.46	0.17	0.06	-0.49	0.18	0.43
10	0.2	0.4	0.98	1.59	1.42	1.31	0.9 .4	0.62	0.20	0.06	-0.38	0.61	0.67
11	0.28	0.44	1.25	1.98	1.8	1.7	1.23	0.68	0.23	0.06	-0.20	0.66	0.85
Midn.	0.29	0.40	1.48	2.29	2.16	1.90	1.3	0.66	0.27	0.01	-0.03	0.64	0.95
6. 6	0.10	0.16	0.54	0.06	0.06	-0.14	-0.17	-0.06	0.23	0.18	-0.03	-0.05	0.06
7. 7	0.0	0.1	0.53	0.08	-0.00	-0.13	-0.17	0.01	0.24	0.22	0.02	-0.06	0.08
8. S	0.1	0.12	0.38	0.08	-0.05	-0.05	-0.12	0.08	0.19	0.20	0.06	-0.05	0.08
9. 9	0.19	0.06	0.12	0.05	-0.09	-0.00	-0.06	0.12	0.09	0.12	0.09	-0.03	0.05
10.10	0.20	-0.02	-0.17	0.01	-0.11	0.06	0.05	0.13	-0.0.	0.04	0.09	-0.00	0.02
7. 2. 9	-0.03	-0.02	-0.25	-0.40	-0.29	-0.22	-0.17	-0.05	-0.06	0.02	-0.07	-0.0.4	-0.12
6. 2. 8	-0.09	-0.00	-0.21	-0.36	-0.30	-0.29	-0.21	-0.08	-0.03	-0.00	-0.14	-0.04	-0.15
6. 2.10	-0.00	0.05	-0.00	0.03	0.11	0.09	0.06	0.06	-0.00	-0.00	-0.09	0.05	0.03
6. 2. 6	-0.23	-0.11	-0.48	-0.90	-0.67	-0.60	-0.45	-0.28	-0.11	-0.00	-0.10	-0.13	0.34
7. 2	-0.10	-0.24	-0.71	-1.15	-0.86	-0.72	-0.53	-0.31	-0.18	-0.01	0.14	30	
8. 2	-0.10	-0.36	-1.05	-1.54	-1.21	-0.94	-0.68	-0.39	-0.26	-0.02	0.20	37	
8. 1	-0.01	-0.39	-1.14	-1.4	-1.28	$-0.9 \mathrm{~S}$	-0.69	-0.35	-0.27	-0.06	0.26	-0. 13	
7. 1	-0.01	-0.27	-0.80	-1.08	-0.93	-0.76	-0.54	-0.27	-0.20	-0.04	0.20	-0.37	-0.42
9.12.3.9	-0.09	-0.28	-1.11	-1.27	-1.08	-0.76	-0.53	-0.27	-0.30	-0.09	-0.01	-0.20	-0.50
$72.2(9)$	0.01	0.09	-0.02	-0.03	-0.01	0.03	0.01	0.08	-0.01	0.03	-0.18	0.09	0.01
Dail. ext.	-0.17	-0.12	-0.41	-0.07	-0.01	0.14	0.17	-0.04	-0.10	-0.04	0.07	0.02	-9.08

LXXIV.

Novaia Zemlia. - Matoschkin Schar. Lat. 73° - ' N. Long. $57^{\circ} 20^{\prime}$ E. Gr.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Morn. 1	-0.22	0.16	0.46	1.63	2.42	1.70	1.18	0.73	1.08	-0.49	-0.14	-0.11	0.70
2	-0.30	0.09	0.70	1.34	2.28	1.54	1.20	0.79	0.88	-0.47	-0.14	0.05	0.66
3	-0.31	0.01	0.91	1.15	1.89	1.26	1.11	0.80	0.62	-0.22	-0.10	0.17	0.61
4	-0.26	-0.06	1.02	1.09	1.41	0.93	0.94	0.72	0.46	0.02	-0.00	0.26	0.54
5	-0.14	-0.09	0.99	0.81	0.85	0.61	0.73	0.55	0.46	0.20	0.10	0.34	0.45
6	-0.03	-0.09	0.86	0.63	0.26	0.30	0.47	0.30	0.56	0.26	0.20	0.41	0.34
7	0.06	-0.07	0.62	0.09	-0.38	-0.02	0.18	0.01	0.58	0.18	0.26	0.45	0.16
8	0.10	-0.05	0.34	-0.50	-1.03	-0.38	-0.13	-0.30	0.38	0.06	0.26	0.46	-0.07
9	0.10	- 0.05	0.02	-1.14	-1.65	-0.78	-0.46	-0.58	-0.00	-0.06	0.24	0.43	-0.33
10	0.07	-0.06	-0.25	-1.78	-2.17	-1.16	-0.75	-0.79	-0.71	-0.19	0.18	0.37	-0.61
11	0.05	-0.10	-0.58	-2.02	-2.53	-1.45	-0.97	-0.91	-1.24	-0.14	0.15	0.28	-0.79
Noo	0.05	-0.13	-0.78	-2.09	-2.67	-1.58	-1.08	-0.93	-1.46	-0.12	0.11	0.18	-0.88
1	0.06	-0.14	-0.93	-1.93	-2.58	-1.52	-1.06	-0.85	-1.32	-0.10	0.08	0.10	-0.85
2	0.09	-0.14	-0.96	-1.62	-2.28	-1.32	-0.96	-0.70	-0.59	-0.09	0.02	-0.0.2	-0.74
3	0.10	-0.11	-0.88	-1.26	-1.83	-1.05	-0.81	-0.52	-0.40	-0.07	-0.04	-0.11	-0.58
4	0.10	-0.07	-0.71	-0.80	-1.30	-0.75	-0.66	-0.32	-0.07	-0.02	-0.10	-0.20	-0.41
5	10	-0.03	-0.50	-0.54	-0.72	-0.57	-0.54	-0.14	-0.02	0.10	-0.15	-0.26	-0.28
6	0.10	0.02	-0.30	-0.26	-0.14	-0.38	-0.43	-0.00	-0.17	0.26	-0.20	-0.36	-0.16
7	0.10	0.06	-0.16	0.30	0.46	-0.16	-0.30	0.12	-0.35	0.40	-0.15	-0.43	-0.01
8	0.12	0.10	-0.09	0.70	1.04	0.15	-0.11	0.21	-0.36	0.46	-0.14	-0.48	0.13
9	0.12	0.15	-0.06	1.24	1.59	0.56	0.14	0.30	-0.12	0.36	-0.10	-0.49	0.31
10	0.08	0.19	-0.02	1.50	2.06	1.02	0.46	0.39	0.33	0.18	-0.08	-0.44	0.47
11	$\bigcirc 0.00$	0.21	0.09	1.75	2.40	1.42	0.78	0.50	0.79	-0.15	-0.08	-0.34	0.61
Midn.	-0.11	0.20	0.23	1.72	2.55	1.66	1.03	0.62	1.06	-0.39	-0.11	-0.22	0.69
6. 6	0.04	0.04	0.28	0.19	0.06	-0.04	0.02	0.15	0.20	0.26	0.00	0.03	0.10
7. 7	0.08	0.01	0.23	0.20	0.04	-0.09	-0.06	0.07	0.12	0.29	0.04	0.01	0.08
8. 8	0.11	0.03	0.13	0.10	0.01	-0.12	-0.12	-0.05	0.01	0.26	0.06	-0.01	0.03
9. 9	0.11	0.05	-0.02	0.05	-0.03	-0.11	-0.16	-0.14	-0.06	0.15	0.07	-0.03	-0.01
10.10	0.08	0.07	-0.15	-0.14	-0.06	-0.07	-0.15	-0.20	-0.19	-0.01	0.05	-0.04	-0.07
7. 2. 9	0.09	-0.02	-0.13	-0.10	-0.36	-0.26	-0.21	-0.13	-0.14	0.15	0.06	-0.02	-0.09
6. 2. 8	0.06	-0.04	-0.06	-0.10	-0.33	-0.29	-0.20	-0.06	-0.23	0.21	0.03	-0.03	-0.09
6. 2.10	0.0 .5	-0.01	-0.04	0.17	0.01	-0.00	-0.01	-0.00	-0.00	0.12	0.05	-0.02	0.03
6. 2. 6	0.05	-0.07	-0.13	-0.42	-0.72	-0.47	-0.31	-0.13	-0.17	0.14	0.01	0.01	-0.18
7. 2	0.08	-0.11	-0.17	-0.77	-1.33	-0.67	-0.39	-0.35	-0.16	0.05	0.14	0.22	-0.29
8. 2	0.10	-0.10	-0.31	-1.06	-1.66	-0.85	-0.55	-0.50	-0.26	-0.02	0.14	0.22	-0.40
8. 1	0.08	-0.10	-0.30	-1.22	-1.81	-0.95	-0.60	-0.58	-0.47	-0.02	0.17	0.28	-0.46
7. 1	0.06	-0.11	-0.16	-0.92	-1.48	-0.77	-0.44	-0.42	-0.37	0.04	0.17	0.28	-0.34
9.12.3.9	0.09	-0.04	-0.43	-0.81	-1.14	-0.71	-0.55	-0.43	-0.50	0.03	0.05	-0.00	-0.37
7. 2.2(9)	0.10	0.02	-0.12	0.24	0.13	-0.06	-0.13	-0.02	-0.14	0.20	0.02	-0.14	0.01
Dail.ext.	-0.10	0.04	0.03	-0.17	-0.06	0.06	0.06	-0.07	-0.19	-0.02	0.03	-0.02	-0.09

The numbers without sign must be added; those with the sign - must be subtracted.

Norway. - Bossekop. Lat. $69^{\circ} 58^{\prime}$ N. Long. 22° E. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true
Mean Temperatures of the respective Days, Months, and of the Year. - Dove.
Degrees of Reaumur.

Hour.	Jan.	Feb.	March.	April.	Sept.	Oct.	Nov.	Dec.	80 Days without Sun.
A.M. 2	-0.26	0.36	1.37	-••	1.20	0.66	0.04	0.35	0.04
4	-0.11	0.30	1.78		1.01	0.53	-0.03	0.12	0.10
6	0.00	0.50	1.90		1.22	0.73	0.04	0.28	0.08
8	0.09	0.26	1.18	0.36	0.62	0.41	0.07	0.10	0.02
10	-0.13	-0.19	-1.09	-0.83	-1.01	-0.29	-0.15	-0.14	-0.19
Noon.	0.18	-0.79	-2.39	-1.29	-1.66	-1.05	-0.13	-0.09	-0.03
2	0.20	-1.02	-2.55	-1.22	-1.69	-1.02	-0.09	-0.34	-0.10
4	0.30	-0.11	-2.38	-0.82	-1.54	-0.50	0.09	-0.38	0.06
6	0.18	0.06	-0.57	-0.10	-0.27	-0.17	0.18	-0.23	0.09
8	0.12	0.16	0.46	0.70	0.39	0.09	0.14	-0.26	0.02
10	-0.31	0.21	1.19	1.44	0.79	0.13	-0.03	0.14	-0.10
12	-0.27	0.22	1.39	1.83	0.89	0.49	-0.13	0.17	-0.10
Mean.	-7.67	-6.39	-7.55	-0.77	5.91	-1.62	-6.55	-5.66	-7.66

LXXV'.

Norway. - Bossekop. Lat. $69^{\circ} 58^{\prime} \mathrm{N}$. Long. 22° E. Greenw.
Centigrade Degrees.

Hour.	Jan.	Feb.	March.	April.	Sept.	Oct.	Nov.	Dee.	80 Days without Sun.
A.M. 2	-0.32	0.45	1.71		1.50	0.62	0.0.5	0.44	0.05
4	-0.14	0.37	2.22		1.26	0.66	-0.04	0.52	0.12
6	0.00	0.62	2.37		1.52	0.91	0.05	0.35	0.10
8	0.11	0.32	1.47	0.45	0.77	0.51	0.09	0.12	0.02
10	-0.16	-0.24	-1.36	-1.06	-1.26	-0.36	-0.19	-0.17	-0.24
Noon.	0.22	-0.99	-2.98	-1.62	-2.07	-1.31	-0.16	-0.11	-0.04
2	0.25	-1.27	-3.56	-1.52	-2.11	-1.27	-0.11	-0.42	-0.12
4	0.37	-0.14	-2.97	-1.02	-1.92	-0.62	0.11	-0.47	0.07
6	0.22	0.07	-0.71	-0.12	-0.34	-0.21	0.22	-0.29	0.11
8	0.15	0.20	0.57	0.87	0.49	0.11	0.17	-0.32	0.02
10	-0.42	0.26	1.48	1.80	0.99	0.16	-0.04	0.17	-0.12
12	-0.34	0.27	1.73	2.29	1.11	0.61	-0.16	0.21	-0.12
Mean.	-9.59	-7.99	-9.44	-0.96	7.39	-2.02	-8.19	-7.07	-9.57

H0URLY CORRECTIONS

FOR

PERIODIC VARIATIONS.

AFRICA.-AUSTRALIA.

LXXVI.

Africa. - St. Helena. Lat. $155^{\circ} 55^{\prime}$ S. Long. $5^{\circ} 43^{\prime}$ W. Greenw.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
Midn.	0.76	0.70	0.63	0.58	0.52	0.43	0.48	0.43	0.52	0.62	0.71	0.73	0.59
1	0.55	0.76	0.71	0.66	0.61	0.48	0.53	0.48	0.56	0.71	0.78	0.81	0.66
2	0.93	0.54	0.77	0.70	0.66	0.54	0.56	0.53	0.62	0.78	0.56	0.90	0.72
3	1.03	0.92	0.86	0.76	0.73	0.59	0.62	0.63	0.69	0.86	0.95	0.98	0.80
4	1.06	1.00	0.92	0.81	0.80	0.65	0.66	0.66	0.76	0.91	0.99	1.02	0.55
5	1.11	1.04	0.93	0.86	0.83	0.67	0.69	0.73	0.79	0.94	1.02	1.08	0.89
6	1.15	1.07	0.98	0.93	0.83	0.68	0.72	0.74	0.83	0.99	1.07	1.09	0.92
7	1.16	1.08	0.97	0.94	0.59	0.71	0.75	0.79	0.81	0.96	1.03	1.06	0.93
8	0.95	0.99	0.78	0.85	0.88	0.69	0.72	0.72	0.72	0.77	0.50	0.98	0.52
9	0.53	0.63	0.52	0.49	0.46	0.42	0.41	0.13	0.42	0.38	0.40	0.48	0.46
10	-0.05	0.06	-0.07	-0.04	-0.0s	-0.04	-0.0.4	-0.02	-0.0.	-0.17	-0.16	-0.09	-0.06
11	-0.62	-0.55	-0.49	-0.51	-0.47	-0.40	-0.40	-0.40	-0.55	-0.66	-0.67	-0.56	-0.52
Noon.	-1	-1.06	-0.95	-1.00	-0.96	-0.73	-0.76	-0.50	-0.92	-1.11	-1.12	-1.08	-0.97
1	-1.64	-1.46	-1.28	-1.31	-1.20	-1.04	-1.06	-1.12	-1.25	-1.45	-1.60	-1.52	-1.33
2	-1.81	-1.67	-1.48	-1.46	-1.32	-1.20	-1.26	-1.2.	-1.42	-1.67	-1.80	-1.80	-1.51
3	-1.76	-1.78	-1.62	-1.50	-1.35	-1.18	-1.24	-1.31	-1.38	-1.64	-1.84	-1.82	-1.54
4	-1.69	-1.66	-1.54	-1.35	-1.2 4	-1.03	-1.12	-1.13	-1.20	-1.37	-1.64	-1.76	-1.39
5	-1.48	-1.38	-1.27	-1.06	-0.94	-0.78	-0.34	-0.86	-0.91	-0.99	-1.24	-1.38	-1.09
6	-0	-0.	-0.83	-0.61	-0.47	-0.40	-0.44	-0.42	-0.43	-0.48	-0.66	-0.92	-0.62
7	-0.27	-0.33	-0.23	-0.11	-0.23	-0.03	-0.07	-0.03	0.01	0.02	-0.04	-0.18	-0.13
8	0.26	0.21	0.18	0.20	-0.12	0.17	0.13	0.15	0.23	0.29	0.32	0.30	0.19
9	0.47	0.44	0.34	0.34	0.14	0.26	0.23	0.25	0.32	0.26	0.48	0.48	0.33
10	0.60	0.55	0.48	0.44	0.11	0.32	0.33	0.32	0.38	0.49	0.56	0.58	0.46
11	0.69	0.64	0.55	0.51	0.45	0.39	0.38	0.38	0.46	0.55	0.64	0.67	0.53
Mean.	14.21	15.04	15.22	14.93	13.80	12.48	11.55	11.19	11.14	11.66	12.37	13.23	
						LX	II.						
Africa.-Cape of Good Hore.													
Hour	Ja	Feb	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nor		ear.
Midn.	1.69	1.50	1.51	1.37	1.00	0.88	1.04	0.85	1.07	1.45	1.62	5	1.32
1	2.80	1.64	1.64	1.49	1.07	1.01	1.20	1.03	1.2.)	1.62	1.79	2.01	1.55
2	1.89	1.74	1.81	1.61	1.14	1.09	1.33	1.14	1.39	1.72	1.98	2.16	1.58
3	2.01	1.92	1.92	1.70	1.24	1.16	1.43	1.23	1.54	1.82	2.12	2.30	1.70
4	2.10	2.00	2.05	1.88	1.34	1.30	1.53	1.37	1.63	1.92	2.21	2.42	1.81
5	1.96	2.13	2.13	1.93	1.46	1.42	1.59	1.53	1.59	1.93	1.92	2.01	1.50
6	1.06	1.53	1.97	1.98	1.59	1.48	1.73	1.55	1.62	1.26	0.85	0.86	1.46
7	0.15	0.70	1.21	1.39	1.41	1.47	1.57	1.22	0.81	0.39	-0.02	-0.20	0.84
8	-0.53	-0.01	0.16	- 0.36	0.53	0.86	0.77	0.64	-0.06	-0.46	-0.67	-0.81	0.06
9	-1.10	-0.80	-0.76	-0.68	-0.39	-0.12	-0.24	-0.42	-0.82	-1.24	-1.25	-1.36	-0.77
10	-1.72	-1.65	-1.66	-1.48	-1.10	-0.90	-1.09	-1.08	-1.41	-1.82	-1.80	-1.90	-1.47
11	-2.23	-2.31	-2.37	-2.10	-1.64	-1.46	-1.72	-1.63	-1.9.5	-2.25	-2.24	-2.2.)	-2.00

The numbers without sigu must be added ; those with the sign - must be subtracted.

Africa. - Cape of Good Hope, Continued.
Corrections to be applied to the Means of the Hours of Observation to obtain the true Mean Temperatures of the respective Days, Months, and of the Year. - Dove.

Degrees of Reaumur.

Hour.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dee.	Year.
Noon.	-2.48	-2.72	-2.66	-2.56	-2.09	-1.92	-2.11	-1.88	-2.15	-2.45	-2.46	-2.52	-2.33
1	-2.54	-2.74	-2.95	-2.81	-2.20	-2.07	-2.33	-2.04	-2.23	-2.55	-2.48	-2.61	-2.46
2	-2.42	-2.54	-2.86	-2.79	-2.14	-2.06	-2.33	-1.97	-2.18	-2.44	-2.30	-2.44	-2.37
3	-2.16	-2.20	-2.51	-2.42	-1.84	-1.86	-2.13	-1.77	-1.82	-2.08	-2.01	-2.16	-2.08
4	-1.75	-1.70	-1.78	-1.75	-1.28	-1.23	-1.49	-1.32	-1.28	-1.52	-1.66	-1.90	-1.56
5	-1.21	-1.09	-1.03	-0.71	-0.6 I	-0.64	-0.76	-0.57	-0.56	-0.71	-1.05	-1.28	-0.85
6	-0.16	-0.13	-0.10	-0.03	-0.21	-0.29	-0.33	-0.17	0.00	0.20	-0.01	-0.15	-0.12
7	0.65	0.54	0.35	0.22	0.09	-0.05	-0.03	012	0.30	0.57	0.60	0.63	0.33
8	0.95	0.79	0.61	0.48	0.36	0.19	0.26	0.32	0.51	0.36	0.92	0.96	0.60
9	1.14	1.00	0.92	0.73	0.54	0.40	0.45	0.46	0.69	1.09	1.10	1.20	0.81
10	1.30	1.14	1.14	1.00	0.78	0.61	0.69	0.65	0.97	1.26	1.31	1.46	1.03
11	1.55	1.32	1.29	1.22	0.95	0.81	0.91	0.76	1.02	1.44	1.48	1.67	1.20
Mean.	15.81	15.96	15.00	13.61	11.38	9.81	9.96	10.06	11.01	12.43	13.54	14.82	

LXXVIII.

Australia. - Hobarton. Lat. $42^{\circ} 53^{\prime}$ S. Long. $147^{\circ} 21^{\prime}$ E. Gr. - Dove.
Degrees of Reaumur.

Hour	Jan	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	De	Year.
Midn.	2.31	1.95	78	1.31	0.88	. 66	0.72	1.10	1.51	1.99	2.44	2.45	1.59
1	2.59	2.17	99	1.41	1.03	0.76	0.86	1.36	1.71	2.19	2.67	2.76	79
2	2.59	2.32	2.19	1.62	1.11	0.88	1.01	1.43	1.93	2.45	2.77	2.95	. 96
3	3.09	2.53	2.39	1.75	1.23	0.97	1.16	1.58	2.06	2.68	2.98	3.24	. 14
4	3.20	2.68	2.49	1.85	1.31	1.15	1.23	1.69	2.20	2.80	3.11	3.38	2.26
5	3.33	2.82	2.54	1.99	1.44	1.15	1.40	1.82	2.32	2.85	2.99	3.13	2.31
6	2.62	2.59	2.64	2.11	1.5	1.29	1.5	1.91	2.34	2.60	2.24	2.24	2.14
7	18	1.73	2.10	2.00	1.60	1.37	1.50	1.90	1.84	1.61	1.16	1.03	1.61
8	0.27	0.68	1.05	1.30	1.27	1.26	1.31	1.32	0.93	0.41	0.01	-0.24	0.80
9	-0.88	-0.56	-0.17	0.21	0.45	0.60	0.60	0.44	-0.21	-0.70	-1.13	-1.27	-0.22
10	-1.92	-1.61	-1.28	-0.85	-0.46	-0.18	-0.21	-0.52	-1.21	-1.68	-2.10	-2.16	-1.18
11	-2.75	-2.34	-2.24	-1.78	-1.29	-0.96	-1.01	-1.53	-2.09	-2.54	-2.89	-2.85	-2.02
Noon.	-3	-3.22	-3	-2.58	-2.0	-1.67	-1.67	-2.28	-2.70	-3.10	-3.43	-3.36	-2.71
1	-3.82	-3.52	-3 18	-2.95	-2.42	-2.08	-2.17	-2.73	-3.14	-3.48	-3.72	-3.67	-3.10
2	-3.91	-3.54	-3.63	-3.11	-2.53	-2.22	-2.38	-2.91	-3.25	-3.18	-3.67	-3.56	-3.18
3	-3.60	-3.36	$-3+3$	-2.87	-2.3	-2.02	-2.23	-2.71	-3.10	-3.32	-3.33	-3.45	-2.98
4	-3.20	-2.94	-2.92	-2.23	-1.69	-1.43	-1.73	-2.20	-2.53	-3.04	-3.12	-3.12	-2.51
5	-2.57	-2.22	-2.02	-1.35	-0.92	-0.73	-1.01	-1.37	-1.59	-2.02	-2.30	-2.56	-1.72
6	-1.38	-1.04	-0 84	-0.56	-0.36	-0.25	-0.48	-0.64	-0.65	-0.80	-1.01	-1.38	-1.78
7	-0.13	-0.20	-0.04	-0.05	0.01	0.00	0.12	-0.13	0.01	0.05	0.20	-0.09	-0.02
8	0.82	0.68	0.45	0.32	0.27	0.24	0.14	0.21	0.46	0.55	0.90	0.89	0.49
9	1.31	1.13	0.82	0.57	0.42	0.24	0.34	0.57	0.79	1.00	1.41	1.51	0.84
10	1.71	1.47	1.19	0.84	0.62	0.40	0.50	0.79	1.08	1.34	1.75	1.91	1.13
11	2.05	1.77	1.47	1.06	0.77	0.54	0.64	0.93	1.31	1.63	2.05	2.25	1.37
Mean.	3.35	13.96	11.96	9.41	7.69	5.93	5.21	6.24	7.97	9.39	11.38	12.95	

The numbers without sign must be added; those with the sign - must be subtracted.

CORRECTIONS FOR TEMPERATURE.

MONTHLY AND YEARLY
CORRECTIONS FOR NON-PERIODIC VARIATIONS,
OR
\section*{TABLES}
FOR REDUCING THE MONTULY AND YEARLY MEANS OF SINGLE yEARS TO THE MEANS DERIVED FROB A SERIES OF Years.

TABLES

```
FOR REDUCING THE MONTHLY AND YEARLY MEANS OF SINGLE YEARS TO THE
    MEANS DERIVED FROM A SERIES OF YEARS.
```

Observation shows that the monthly and annual mean temperature of a place somewhat varies from year to year. No law, however, has been as yet discovered as to the course of these oscillations. It follows that the means derived from observations carried on during a single year are but approximations to the true means. These last must be obtained from observations made for a series of years, during which these irregular variations become insensible by compensating cach other ; and it is obvious that their accuracy increases with the number of years which compose the series.

Professor Dove, having proved by his researches that these abnormal temperatures above and below the average of a whole month, or of a year, are apt to be felt simultaneously on extensive tracts of country, concluded that the means of a single year could be made available for obtaining the true means of the place, by being corrected for the non-periodic variations by means of normal stations in the same meteorological region, in which those elements had been more accurately determined by the observations of a long series of years. Comparing, namely, the means of a given year with the means derived from the whole series, we find a difference in + or - , which, applied, with reverse signs, to the means of the same year in the neighboring station to be corrected, will reduce, with a good degree of probability, the means of that particular year to the means which would have been obtamed from a long series of years similar to that of the normal station.

The following tables, LXXIX. to XCVII., have been selected from those given by Dove in his five papers on the non-periodic variations of the atmospheric temperature, to be found in the Memoirs of the Academy of Sciences of Berlin for the years $1838,1839,1842,1848$, and 1853 , to which we must refer for further details. 'They furnish normal stations for various latitudes; the columns contain the corrections for every month, viz. the differences, with reverse signs, between the monthly means in the year indicated in the first and last columns, and the means derived from the whole series, which are contained in the line at the bottom.

Region of the Monsoons. - Madras.
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc			\bigcirc	\bigcirc	\bigcirc		
1796	0.00	0.24	0.00	0.36	-0.10	-1.48	-1.16	-1.15	-0.31	-0.28	-0.47	-0.51	1796
1797			0.66	0.53	0.39	0.56	0.09	0.85	-0.09	-0.33	0.16	-0.02	1797
1798	-0.13	1.12	0.40			0.39	0.53	-0.31	0.27	0.56	-0.16	0.20	1798
1799	-0.13	-0.08	0.62	0.36	0.26	-0.06	-1.20	0.00	-0.36	0.38	-1.44	0.25	1799
1800	0.40	0.41	0.57	1.20	-0.23	-0.50	-1.02	-0.40	-0.58	0.20	0.47	-0.60	1800
1801	0.44	0.01	1.77			-0.59	-0.67	0.63	-0.49	-0.02	-0.20	0.25	1801
1802	0.44	0.86	1.77	1.02	-0.36	0.65	0.58	-0.04	1.60	0.43	-0.02	-0.28	1802
1503	0.22	0.21	0.80	0.53	-0 32	0.08	0.18	0.80	0.80	0.38	0.33	0.65	1803
1804	1.64	1.18	0.75	1.38	0.70	0.70	1.24	0.00	0.58	0.38	0.91	0.29	1904
1805	0.27	0.41	0.66	-0.36	0.61	0.52	-0.76	-0.22	-0.27	-0.33	0.69	0.65	1805
1806	0.00	-0.39	-0 09	0.09	-0.41	-1.61	0.00	-0.13	1.07	0.47	0.96	0.12	1806
1807	0.22	-1.54	-3.20	-5.47	-1.79	0.48	1.20	-0.17	-0.09	-0.64	-0.20	0.78	1807
1813	0.80	0.37	0.13	0.96	1.12	-0.32	0.44	-0.22	-0.18	0.25	-0.38	-1.04	1813
1814	-0.36	-0.39	-0.58	0.04	-2.99	1.10	1.38	0.29	-0.22	0.07	-0.20	-0.37	1814
1515	-0.98	0.32	-0.67	2.00	1.55	-1.39	-0.98	0.27	0.31	-0.73	-0.91	-0.82	1815
1816	-1.09	-1.76	-1.56	-0.93	0.44	0.39	-0.44	-0.71	-0.67	-0.20	0.33	-0.51	1816
1817	-0.58	-0.70	-0.67	-0.62	0.12	-0.19	0.67	0.29	-0.71	-0.55	-0.96	0.52	1817
1818	0.22	0.32	-0.s0	-0.04	1.41	0.65	-1.33	-2.00	-0.15	-0.55	-0.56	-0.37	1818
1819	-1.78	-1.28	-0.76	-0.13	0.45	0.88	0.44	0.98	-0.31	0.03	0.78	0.16	1819
1820	-0.67	-0.30	-0.55	0.5	-1.16	-0.32	0.18	0.23	-0.09	0.47	0.69	0.47	1820
1821	1.02	0.64	1.06	-1.51	0.26	0.05	0.58	0.94	-0.04	-0.02	0.20	0.20	1821
Means.	19.19	20.07	21.30	22.41	24.41	24.96	23.84	23.43	23.03	22.16	20.74	19.45	Mea
1822	-0.36	0.37	0.41	-0.28	0.07	-0.95	-0.76	0.72	-0.37	-0.70	-0.35	-0.19	1822
1523	0.31	0.37	-0.21	0.30	0.15	0.29	0.22	0.17	-0.60	0.72	0.27	0.97	1823
18.4	0.71	0.59	0.27	0.52	-0.02	0.60	1.55	0.88	1.36	-0.93	0.14	0.26	1824
18.5	-0.09	0.37	-0.21	0.12	0.24	-0.29	0.04	-0.36	0.03	0.32	0.59	-0.59	1825
1826	0.80	0.24	0.45	0.92	0.78	-1.17	0.04	-0.36	0.25	0.81	0.36	0.30	1826
1827	-0.09	-0.29	-0.17	0.17	-1.27	-0.46	-0.01	-0.09	-0.15	-0.13	0.54	0.08	1827
1828	07	0.51	-0.57	-0.59	-0.42	0.34	-0.23	0.04	-0.60	-0.17	0.81	0.21	1828
1529	0.09	-0.69	-0.35	0.08	-0.11	0.16	-0.89	-0.01	0.16	0.54	0.23	0.12	1829
1830	-0.27	-0.74	0.01	-0.32	-2.73	-0.15	-0.36	-0.23	0.25	1.12	0.68	0.53	1830
1831	0.31	1.49	1.66	0.48	1.59	1.36	0.04	0.67	0.70	0.41	0.41	0.53	1831
1832	-0.49	-0.29	1.26	1.73	2.51	2.65	1.64	2.40	0.34	-0.25	0.46		1832
1533	0.36	0.91	-0.19	0.97	0.83	0.83	1.33	0.40	0.16	0.41	0.19	1.06	1833
1834	0.18	0.60	. 3.5	-0.58	1.31	0.12	-0.98	-0.18	-0.15	-0.03	0.01	-0.01	1834
183.5	-0.66	-0.73	-0.5	-1.07	-0.24	-0.96	-0.67	-0.45	-0.46	-0.7	-0.48	-0.94	1835
18:36	-0.75	-0.73	-1.41	-0.72	0.60	0.12	-0.58	-1.29	-0.24	0.15	-0.92	-1.03	1236
1837	-0.31	-0.02	0.06	-0.63	-1.17	-0.41	-0.40	-0.05	0.03	-0.34	-0.17	-0.85	1837
1858	-1.24	-0.69	-0.30	. 04	-0.33	-0.24	0.75	-0.05	0.65	-0.12	-0.57	-0.41	1838
1839	0.36	-0.11	-0.12	-0.4.5	-0.15	-0.41	-0.49	-0.93	-0.68	0.68	-0.53	0.71	1839
1840	-0.13	-0.42	-0.70	0.17	0.29	0.2 .5	-0.45	0.27	-0.75	0.19	-1.14	-0.32	18.10
1541	0.05	-0.16	-0.17	-0.58	-1.17	-0.81	0.35	-0.71	0.74	-1.28	-0.34	-0.27	1841
1842	-0.09	-0.51	-0.08	-0.49	0.47	0.07	0.00	0.09	-0.86	-0.30	-0.30	-0.23	1842
1843	0.23	-0.02	-0.03	0.22	-1.53	-1.0.1	- 2.22	0.44	0.16	-0.52	0.23	-0.32	184.3
Means.	29.53	21.31	22.92	24.27	25.62	25.35	24.31	23.73	23.70	22.92	21.32	20.67	Means.

The numbers without sign must be subtracted; those with the sign - must be added.

Sicily. - Palermo.
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
791	-	\bigcirc	-	\bigcirc	-0.44	$-0.32 \mid$	-0.52	$\stackrel{\circ}{\circ} \mathrm{O} .95$	$\stackrel{\circ}{-0.67}$	$\begin{gathered} \circ \\ -0.36 \end{gathered}$	$\stackrel{\circ}{1.73}$	$\begin{aligned} & \circ \\ & 0.00 \end{aligned}$	1791
1792	1.18	0.51	0.09	0.12	-0.48	1.12	-1.01	-1.65	-0.63	0.22	-0.53	-0.96	1792
1793	-1.68	-0.38	-0.33	-1.63	-2.04	-1.83	-1.28	-1.14	0.86	-0.54	-0.25	0.44	1793
1794	-0.04	-0.69	-0.51	0.59	-0.79	-1.92	-0.81	-0.48	-0.14	-0.69	-0.29	-0.47	1794
1795	-1.62	1.27	0.78	-0.10	0.12	-0.59	-1.12	-0.34	-0.72		-0.23	0.18	1795
1796	0.78	0.58	-0.84	-1.56	-0.19	-0.59	-0.39	-0.01	0.40	1.11	0.00	0.98	1796
1797	-0.24	-0.29	-1.15	-0.19	-0.24	-0.70	-0.56	0.39	0.15	0.13	-0.12	0.16	1797
1798	0.03	0.20	0.78	-0.90	-0.99	-0.45	0.72	-0.41	0.00	-1.00	1.97	0.31	1798
1799	-1.75	1.38	0.52	0.64	-0.35	0.08	0.37	0.75	0.48	1.40	-0.32	0.40	1799
1800	2.27	2.96	0.69	2.46	0.63	-0.14	0.26	-0.41	-0.58	0.02	-0.18	0.09	1500
1801	-0.11	0.76	1.45	0.24	-0.10	-0.16	1.26	-0.56	-0.07	1.04	1.04	1.64	1801
1802	0.09	-0.16	0.47	-1.01	-0.30	2.50	0.17	0.72	0.42	0.77	1.51	1.40	1802
1803	67	-1.69		2.08	-1.08	0.66	0.04	0.52	0.31	-0.65	1.42	0.42	1803
1804	. 3	-0.82	0.16	0.21	0.14	1.30	1.12	0.12	-0.14	0.31	1.22	1.40	1804
1505	0.80	0.69	-0.68	-1.59	-1.59	1.21	-0.65	-0.34	-1.52	0.06	-1.55	-1.02	1805
1806	-1.15	0.64	-0.04	-0.50	0.41	0.10	-0.14	-0.85	-1.16	-0.43	-0.14	0.40	1806
1807	-1.06	0.16	0.34	-1.21	0.74	0.90	1.37	0.92	2.80	1.26	1.95	-0.07	1807
1808	-0.24	-1.22	-0.86	-1.36	-0.48	-0.43	0.88	0.04	2.42	-1.92	-0.29	-2.31	1808
1809	0.57	-0.31	0.23	-0.50	-0.48	0.86	1.46	-0.23	-0.67	-1.67	-1.36	-0.9s	1809
1510	0.01	-0.27	2.49	0.28	0.50	-0.63	-0.54	-0.19	-0.29	-0.67	0.06	-0.91	1810
1811	-0.15	0.69	-0.91	0.24	0.43	1.46	0.97	0.26	0.04	0.95	0.00	-0.76	1811
1812	-1.51	0.40	0.00	-0.39	-0.61	0.15	-1.32	-0.21	-0.69	-0.16	0.35	-0.18	1812
1813	-1.51	-1.02	-0.80	-0.52	0.79	0.32	-0.92	-1.25	-1.00	1.31	0.04	-1.18	1813
1814	0.54	-3.04	-0.88	0.04	-1.46	-0.59	-0.96	-0.56	-2.03	-0.49	-0.52	-0.42	1814
1815	-0.46	0.07	0.29	0.90	0.61	-0.63	-1.12	-2.01	-0.78	0.22	0.08	-0.78	1815
1816	-0.40	-0.31	-0.71	-0.54	0.05	-1.94	-0.65	-0.48	-0.50	-1.09	-0.63	-1.24	1816
1817	-0.11	-0.09	-0.15			0.32	-0.39	0.46	-0.34	0.11	-0.47	-0.02	1817
1818	-0.66	0.87		1.21	0.19	-1.10	-0.25	-0.45	0.24	-0.78	0.33	0.62	1818
1819	-1.02	0.18	0.72	0.97	-0.12	-0.21	-0.28	-0.34	-0.32	0.82	1.11	0.82	1819
1820	1.89	-0.11	-0.97	0.37	2.03	0.68	0.48				-0.65	0.29	1820
1821	1.92	-0.76	0.49	0.50	0.55	-0.74	-0.30	-0.21	0.51	-0.74	-0.72	0.69	1821
1822	-1.28	-1.11	-0.53		0.68	2.97	1.48	1.46	1.88	1.51	0.06	0.18	1822
1823	0.52	1.78	-0.80	0.28	0.99	0.30	-0.36	0.35	-0.34	-0.76	-1.63	-0.53	1823
1824	-0.91	0.42	-1.04	-1.01	1.25	-0.25	-0.70	1.86	0.13	1.51	0.64	0.51	1824
1825	-1.04	-1.02	-0.17	0.12	0.30	-0.45	-0.10	0.46	0.55	-1.00	-0.05	1.67	1825
1826	-0.s8	0.56	-0.29	-0.59	-1.08	-0.74	0.39	0.52	1.35	0.46	-0.87	-0.24	1826
1827	0.07	0.83	0.82	-0.51	0.18	-1.30	0.80	1.33	-0.73	0.50	-1.76	-0.04	1827
1828	-0.16	0.20	0.23	0.29	1.99	1.28	2.48	1.10	0.74	-0.34	0.06	-0.37	1828
1829	0.79	-1.90	1.12	2.49	-0.09	-0.47	0.16	-0.12	0.41	-0.38	-0.35	-0.16	1829
Means.	8.35	8.27	9.40	11.52	14.35	17.12	19.25	19.48	17.60	14.78	11.69	9.44	Means

The numbers without sign must be subtracted; those with the sign - must be added

North Italy. - Milan.
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	-	-	\bigcirc	\bigcirc	-	\bigcirc		-	-	\bigcirc	\bigcirc	
1763	-1.32	1.58	-0.60	0.27	-2.28	-0.79	0.68	1.11	-1.11	-1.69	-0.56	1.02	1763
1761	1.68	1.98	-0.70	-0.63	1.32	0.91	-0.12	-1.29	-1.21	-1.19	-0.26	1.52	1764
1765	3.83	-0.92	0.60	0.47	-1.08	0.11	-2.62	-1.69	-0.11	0.11	0.24	-0.98	1765
1766	-3.42	-1.52	-0.10	$0 . .57$	0.02	1.31	-1.32	-0.19	-1.21	-0.49	2.14	-0.68	1766
1767	-4.22	0.38	0.10	-0.93	-1.08	-1.19	0.78	-0.69		- •		-0.88	1767
1768	-0.82	-1.22	-1.50	0.37	-0.58	-2.19	0.68	0.51	-•	- •	0.64	-0.78	1768
1769	1.85	-0.42	-0.50	-1.63	-0.18	1.01	-0.52	1.51		-2.19	1.24	0.62	1769
1770	-0.52	0.98	-0.60	-0.33	-0.38	0.81	-0.72	0.01	1.99	0.51	1.04	-0.68	1770
1771	1.78	-0.52	-0.60	-1.43	1.02	-0.19	0.68	1.51	0.49	-0.69	-1.06	2.32	1771
1772	1.58	$2,4 *$	2.50	0.57	-0.58	1.61	1.38	0.41	0.29	2.01	1.94	2.02	1772
1773	1.58	-0.42	-0.80	-0.03	-0.18	-	-1.72	-1.29	0.69	1.61	0.34	1.82	1773
1774	0.48	0.08	0.70	0.77	-0.28	0.51	-0.12	1.31	-0.31	-1.09	-0.96	-2.68	1774
1775	0.38	2.08	1.60	0.47	-0.58	0.71	0.78	-0.09	-0.31	-1.79	-0.16	-0.88	1775
1776	-0.32	-0.02	1.30	0.97	-1.28	0.11	0.48	0.41	-0.71	0.11	-0.36	-1.18	1776
1777	-1.52	-1.42	1.30	-0.23	-1.08	-0.79	-1.22	0.51	0.19	0.41	1.24	-1.98	1777
1778	0.38	0.08	-1.90	1.47	0.62	-0.29	0.98	0.81	-0.81	-0.09	0.64	1.72	1778
1779	-3.52	1.98	0.00	1.07	1.72	-1.39	0.18	-0.19	1.59	1.51	-0.16	1.82	1779
1780	-0.62	-1.92	2.70	-0.43	1.72	1.51	0.78	0.11	-0.51	1.81	-0.16	-1.05	1780
1781	-0.12	0.35	1.90	1.4	0.22	0.01	1.78	0.41	0.59	-0.89	0.04	1.42	1781
1752	2.18	-2. 12	-0.70	-1.03	-1.08	1.21	2.08	0.91	-0.31	-1.79	-2.16	-0.58	1782
1783	0.98	1.15	-0.60	0.97	0.	-0.99	1.08	-0.29	-0.31	1.51	0.24	-1.88	1783
1784	0.18	-2.02	0.50	-2.03	2.62	2.11	1.38	0.61	1.49	-1.49	-0.16	-1.18	1784
1785	0.58	-1.12	-3.80	-1.23	0.72	1.21	0.68	0.61	2.69	0.41	0.74	2.02	1785
1756	0.18	0.68	-0.90	0.87	0.72	0.81	-0.52	-0.89	1.09	-1.89	-0.3i	-0.45	1786
1787	-0.32	0.08	0.90	-0.03	-1.98	1.71	-0.02	1.61	0.09	0.81	0.84	1.72	1787
1788	2.78	1.08	2.30	1.37	-0.18	1.51	2.78	-0.39	0.99	0.21	-0.86	-2.88	1788
1759	-1.72	0.93	-1.70	1.37	2.22	-0.79	0.28	0.11	0.29	0.31	-1.26	-2.35	1789
1790	-0.12	1.48	-0.20	-1.73	1.62	0.71	-0.72	1.21	0.19	2.21	1.21	0.02	1790
1791	2.48	1.08	1.20	1.57	-0.18	-0.49	0.58	1.51	009	-0.29	-0.46	1.92	1791
1792	0.98	-0.12	1.30	1.87	-0.15	0.21	0.08	0.11	-0.11	0.71	0.54	$-0.0 \mathrm{~s}$	1792
1793	-1.22	-0.02	0	-1.43	-0.38	0.01	1.78	-0.29	2.49	1.31	1.44	2.22	1793
1791	2.28	3.08	2.00	2.37	-0.08	0.81	1.78	0.21	-1.11	-0.49	1.84	-0.38	1794
1795	-3.72	-3.12	-0.20	1.37	1.52	-0.79	-1.42	0.91	0.49	1.71	-0.16	1.52	1795
1796	2.48	1.18	-1.70	-0.13	-0.28	-0.29	-0.12	0.71	1.39	0.41	1.24	-1.38	1796
1797	0.75	0.18	-1.40	0.67	1.22	-1.59	1.18	$2 . .71$	1.09	-0.59	0.94	1.32	1797
1798	1.78	2.08	0.20	0.27	0.72	-0.09	0.48	0.51	0.29	-0.39	-0.86	-2.05	1798
1799	-3.23	0.88	0.60	-1.23	-0.98	-1.49	-0.62	0.41	1.39	0.51	-0.96	-1.18	1799
1800	1.75	4.55	-1.10	2.67	1.32	-1.59	0.38	-0.09	0.49	0.01	1.24	-0.08	1800
1801	1.38	1.08	1.50	0.77	0.39	-0.39	-0.62	-0.79	0.49	0.61	0.04	0.02	1801
1802	0.18	1.18	8 0.70	0.87	-0.08	1.71	0.28	2.21	1.09	2.81	1.04	1.52	1802
1803	2.35	-3.82	0.30	1.47	-0.85	1.11	0.78	1.11	-0.91	-0.49	0.31	0.22	1803

The numbers without sign must be subtracted; those with the sign - must be added.
LXXXI.

North Italy. - Milan (contimued).

For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	○ ${ }^{\circ}$) 0	\bigcirc	
1804	3.98	-1.82	-0.60	-0.03	1.32	2.11		-0.39	0.49	0.71	-0.36	-0.18	1804
1ऽ05	-0.12	-0.02	-0.10	-2.03	-0.75	0.21	-0.42	-0.29	0.79	-1.19	-2.36	-1.55	1805
1806	0.18	1.68	0.10	-1.53	0.32	1.01	-0.52	-1.19	-0.41	-0.19	1.34	1.92	1506
1807	0.58	0.28	-2.40	-1.33	1.32	0.21	1.18	1.71	0.19	1.71	1.34	$-0.0 \mathrm{~s}$	1807
1808	-1.02	-1.62	-3.80	-1.23	1.62	-0.49	1.98	-0.69		-2.39	0.24	-2.08	1808
1509	0.48	1.98	-1.40	-2.63	1.02	0.51	-0.52	0.21	-0.51	-0.19	-0.96	0.22	1809
1810	0.08	-0.72	1.90	-0.23	0.22	-1.49	-2.12	-0.79	0.59	1.11	0.34	1.83	1810
1811	-0.72	1.48	1.70	1.47	1.82	-0 29	1.18	-0.49	0.39	2.21	2.24	-0.38	1811
1812	-3.32	-0.32	-0.40	-1.73	0.92	1.01	-0.82	-0.59	-1.41	0.11	-2.96	-2.38	1812
1813	-0.12	1.08	0.50	1.07	1.52	-0.99	-3.12	-1.09	-1.11	0.21	-0.56	1.32	1813
1514	-0.12	-4.42	-1.40	0.77	-1.98	-1.09	-0.12	-1.09	-1.91	-0.69	1.04	1.82	1814
1815	-2.02	-0.32	1.90	0.77	1.22	-0.49	-1.22	-1.39	0.29	0.81	-1.26	-1.75	1815
1816	-0.52	-2.92	-1.20	-0.93	-0.58	-1.49	-2.22	-3.69	-0.51	0.41	-1.46	-1.88	1816
1817	-2.52	2.08	0.30	-2.83	-1.28	0.21	-3.52	-0.59	0.89	-1.89	0.44	-0.18	1817
1818	0.48	3.34	0.70	0.37	-3.80	0.26	0.53	-0.79	-0.23	0.48	1.13	-0.39	1818
1819	0.00	0.73	1.48	1.35	-0.02	-0.53	0.32	-0.50	0.48	0.46	0.98	0.30	1819
1820	-0.79	0.58	-0.56	1.60	1.03	-0.45	-0.48	1.76	-0.09	-0.30	-0.72	-0.03	1820
1521	0.80	-0.15	-0.52	0.59	0.10	-2.20	-1.46	0.43	1.01	-0.29	0.78	0.35	1821
1822	1.81	1.28	2.10	0.99	1.05	3.31	0.53	0.26	0.78	0.66	1.38	-0.48	1822
1823	-1.92	-0.25	-0.37	-0.5.	0.93	-0.78	-0.60	0.53	1.18	0.11	-1.37	0.01	1823
1824	1.01	1.49	-0.40	-0.85	-0.16	-1.57	1.33	0.90	0.71	0.23	1.25	2.07	1824
1525	1.39	0.62	-2.38	1.21	-0.17	0.32	0.05	0.53	0.86	-0.81	0.82	3.92	1825
1826	-2.18	0.44	0.76	-0.72	-1.23	-0.09	0.18	1.55	0.71	1.48	-0.56	1.16	1826
1827	0.36	-1.72	1.12	0.73	0.46	-1.26	1.20	-0.60	-1.06	1.37	-1.46	0.25	1527
1828	1.38	-0.36	1.49	0.64	0.45	1.27	1.38	0.19	0.47	0.38	-0.81	0.60	1528
1829	-0.04	-2.79	0.05	0.05	-0.03	0.23	0.22	-1.15	-0.89	-0.40	-1.68	-1.90	1829
1830	-3.72	-3.45	1.66	2.66	0.66	-0.33	1.71	1.02	-0.79	-0.81	0.99	0.60	1830
1831	0.38	-0.51	0.73	0.19	-1.12	-0.56	0.12	$-1.0 .5$	-1.08	1.77	0.2.4	1.34	1831
1832	0.41	0.52	-0.21	-0.68	-2.07	-1.27	0.03	0.49	-1.15	-0.47	-0.41	-1.71	1832
1833	-0.17	1.18	-0.59	-1.23	2.00	0.37	-2.28	-2.77	-3.20	-1.36	0.14	1.37	1833
1834	0.17	-0.80	-0.19	-1.97	0.53	-0.31	-0.23	-1.16	0.41	-0.79	-0.23	-0.94	1834
1835	1.03	0.76	-0.44	-0.88	-1.01	-1.47	-2.59	-2.35	-2.01	-2.24	-3.27	-2.69	1835
1836	-2..51	-2.08	-0.05	-1.07	-3.41	-0.49	-0.97	-1.09	-2.48	-0.65	-2.16	-0.02	1836
1837	-0.83	-4.75	-3.12	-2.41	-3.58	0.64	-1.29	0.37	-2.40	-1.93	-1.76	-0.36	1837
1538	-2.16	-2.39	-0.72	-2.7	-0.98	-0.75	-0.78	-1.55	-1.5s	-1.74	0.08	-0.80	18:38
Means.	0.52	2.82	6.40	10.03	14.08	17.09	18.92	18.39	15.31	10.79	5.76	2.08	Means.

The numbers without sign must be subtracted; those with the sign - must be added.

Switzerland. - Geneva.
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	-	-	
1765	-1.86	-0.01	-2.35	-0.11	-0.6	-1.71	-0.92	-1.25	-1.42	0.99	0.77	0.08	1768
1769	0.92	0.16	-1.05	0.13	-0.71	-1.57	-1.11	-1.43	-0.89	-3.00	1.62	0.61	1769
1770	-1.25	-1.3	-1.72	-2.40	-1.20	-1.3	-2.97	-1.24	0.49	-0.81	0.35	0.42	1770
1771	0.53	-0.67	0.17	-2.6s	0.34	-1.84	0.07	-1.45	-0.57	-0.17	-1.80	1.66	1771
1772	0.61	2.57	1.76	-0.41	-2.23	0.35	-0.72	-0.47	0.52	1.34	1.29	1.16	1772
1773	1	-1.84	-1.18		-1.64	-0.87	-2.03	-1.70	-0.12	-0.35	-0.12	1.01	1773
1774	1.22	0.91	2.38	0.73	-0.94	-0.47	-1.27	0.42	$-1.0 \mathrm{~s}$	-1.45	-1.18	-2.03	1774
1775	0.89	1.89	0.99	-1.60	-1.90	0.54	-0.84	-0.82	-0.02	-0.24	0.33	-0.68	1775
1776	-1.78	1.92	1.55	0.18	-1.96	0.09	0.20	0.28	-1.50	0.26	-0.26	-0.09	1776
1777	-0.41	-0.76	2.46	-1.23	-1.51	-0.38	-1.12	0.45	-0.41	1.27	0.21	-1.72	1777
1778	0.03	-0.93	0.86	0.78	-0.09	-0.76	1.59	0.6 S	-1.85	0.32	0.76	1.85	1778
1779	-3.43	-0.28	-0.14	1.70	0.97	-1.22	-0.61	-0.45	0.48	1.77	0.57	2.70	1779
1780	-1	-1.63	2.35	-0.86	09	1.1	0.95	1.16	0.14	0.51	-1.02	-1.25	1780
1781	0.9	1.09	0.37	2.15	1.7	0.	-1.17	0.30	0.76	-0.47	1.69	2.97	1781
1782	2.22	-3.74	-0.53	-0.9.5	-1.76	0.15	-1.10	-0.72	-0.97	-1.06	-1.83	-2.04	1782
1783	2.01	1.68	-0.27	-0.71	-0	-1	1.75	-0.94	0.17	0.93	0.81	1.03	1783
1784	-1.06	-2.0	-0.13	-2.51	1.73	1.69	0.84	-1.62	1.40	-1.67	-0.76	-3.35	1784
1785	0.58	-3.26	-6.75	-5.48	-0.19	0.30	-0.33	-1.75	0.94	-0.40	0.11	0.42	1785
1786	0.41	0.08	-1.62	0.69	-0.25	1.92	-0.99	-1.22	-0.59	-1.71	-0.69	0.19	1786
1787	-1.99	-1.15	1.76	-0.30	-1.98	0.79	-0.70	0.21	-0.27	0.41	0.72	2.83	1787
1788	1.01	2.06	2.19	1.04	113	1.04	1.61	-0.45	0.71	-0.83	-2.15	-4.48	788
1789	-1.17	1.12	-1.97	1.19	1.71	-1.25	-0.80	-0.19	-0.57	-0.59	-1.59	-0.17	1789
1790	0.3	0.75	0.99	-0.73	1.52	0.94	-1.10	0.63	-0.84	1.95	1.13	0.78	1790
1791	2.40	0.	-0.02	2.86	0.	1.04	0.98	2.30	0.98	0.72	-1.37	1.30	1791
1792	1.22	-0.2	2.11	1.81	-0.12	1.14	1.03	0.83	-0.09	1.37	0.86	0.45	1792
1793	-0.52	1.05	1.77	0.0 S	-0.0	0.2	3.12	2.49	-0.12	1.24	0.61	1.19	1793
1794	0.1	2.2	1.9	3.26	0.7	1.10	2.11	0.39	-0.74	-0.28	0.	-1.75	1794
1795	-4.85	0.3	0.26	1.76	1.32	1	-0.73	1.34	1.51	1.92	-0.96	1.11	1795
1796	1.25	0.72	-2.15	-0.06	0.60	0.60	0.37	0.80	1.61	0.41	-0.1	-1.92	1796
1797	0.11	-1.41	-1.05	1.49	2.14	-1.2s	2.21	1.28	0.71	$-0.0 \mathrm{~s}$	0.71	1.61	1797
1798	0.53	-1.17	-1.02	0.83	1.00	1.29	0.45	0.81	0.18	-0.29	0.44	-0.96	1795
1799	-1.57	1.71	-0.16	-1.	-1.	-1.16	-0.13	0.67	0.21	-0	-0.7 4	-2.59	1799
1800	1.64	0.06	-1.66	2.43	2.40	-0.8:3	1.48	0.82	0.96	$-1.5 .5$	0.63	-0.27	1800
Means.	-0.43	0.75	3.08	7.19	11.21	14.03	15.44	14.85	11.49	7.32	3.34	0.57	Means.
1796	2.27	0.07	-2.14	-0.25	-0.91	-0.64	-1.10	0.16	0.70	$0.0 \mathrm{~S}^{1}$	-0.68	-1.70	1796
1797	0.45	-0.8.	-0.66	0.97	0.67	-2.03	1.27	0.71	-0.18	-0.26	0.47	1.58	1797
1798	0.68	-0.25	-0.40	0.96	-0.23	0.32	-0.64	-0.14	0.12	-0.02	-0.76	-1.36	1798
1799	--1.44	1.93	-0.26	-1.60	-1.50	-0.49	-0.46	0.33	0.19	-0.26	-1.24	-3.30	1799
1800	2.06	0.03	-1.53	2.85	1.66	-0.97	1.62	0.70	0.41	-1.16	0.67	-0.32	1800
1801	1.81	0.13	1.43	0.74	0.43	-0.26	0.42	0.15	0.90	0.84	0.67	0.95	1801
1802	-3.98	-0.35	0.94	1.18	0.53	1.66	-0.12	2.68	1.72	2.51	0.63	0.58	1802
1803	-0.26	-2.58	0.24	2.05	-1.42	0.89	2.20	2.25	-0.79	-0.57	1.0	1.58	1803
1804	4.58	-1.55	-0.19	0.30	1.50	2.02	0.04	0.47	0.59	0.22	1.36	-0.59	1801

Switzerland. - Geneva (continued).
For Keducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc						\bigcirc	0.73	0.18		2, 19	$\begin{gathered} \circ \\ -1.64 \end{gathered}$	1805
1805	-0.41	-0.	-0	-1.35	-1.22	-0.49			0.15				1806
1806	3.23	1.83	0.12	-1.80	1.33	1.66	0.08	-0.39	0.11	1.10	1.34	2.42	1806
1807	-1.10	0.24	-2.65	-1.47	1.42	0.43	2.66	3.03	-0.5s	1.42	0.39	-2.48	1807
1808	-0.49	-3.14	-2.58	-1.87	1.14	-1.33	0.70	0.59	-0.14	-2.40	-0.28	-2.99	1808
1809	2.23	1.95	0.19	-3.68	-0.06	0.12	-0.43	-0.32	- 1.00	-1.05	-1.76	0.70	1809
1810	-3.14	-3.34	3.08	-0.28	0.29	-0.45	-1.01	-0.70	1.37	1.26	1.05	1.19	1810
1811	-2	98	1.46	1.34	1.23	1.52	1.53	-0.11	0.70	2.21	0.71	-0.8.5	1811
1812	-3.92	10	-0	-1.54	0.27	0.02	-0.37	-0.69	-0.43	0.13	-1.80	-2.74	1812
1813	-1.74	1.51	-0.69	0.53	0.54	-0.84	-2.10	-1.02	-1.14	0.78	-0.49	0.32	1813
1814	-1.32	-3.92	-1.44	0.96	-1.74	-0.26	0.37	-0.66	-1.74	-0.87	0.95	2.34	1814
1815	-2.24	1.43	2.17	1.06	0.82	0.08	0.20	-0.59	0.54	1.43	-1.57	-0.39	1815
1816	-0.13	-1.33	2.5	-0.48	-0.54	-1.41	-2.40	-2.14	-0.47	0.59	-1.05	-0.02	1816
1817	2.50	2.35	0.29	-2.11	-1.34	1.35	-0.25	-0.71	2.16	-1.58	0.85	-0.45	1817
1818	0.54	0.69	0.13	-0.08	-1.26	0.66	1.41	-0.41	-0.89	-0.29	1.60	-0.26	1818
1819	1.86	0.98	0.82	00	-0.21	-0.19	0.07	-0.34	0.42	0.07	-0.40	0.95	1819
1820	10	. 54	-1.24	2.07	0.39	-0.59	-0.65	. 84	-1.93	-0.31	-2.16	0.02	1820
1821		-1.31	0.94	. 71	-1.19	-1.54	-1.17	0.62	0.26	0.27	2.34	3.36	1821
1822	0.20	27	3.06	0.47	1.32	3.85	0.27	-0.85	-0.07	0.69	1.60	-2.32	1822
1823	-1		-0.29	-0.42	0.17	-1.62	-1.54	-1.04	-0.42	-2.10	-1.97	1.04	1823
1824	-0	-0.30	-1.84	-2.05	-1.50	-2.0.)	0.17	-1.49	-1.23	-1.58	0.03	1.30	1824
1825	-0.07	-0.55	-1.09	1.69	-0.63	0.26	-0.40	-0.11	0.88	0.30	0.54	2.76	1825
Means.	-0.42	1.87	4.70	8.79	13.45	15.81	17.67	17.66	14.70	9.73	5.23	1.27	Means.
1826	-3.23	1.12	47	0.34	-1.04	-0.06	0.90	2.57	1.22	0.95	-1.19	0.03	1826
1827	1.49	-2.15	02	1.29	0.90	-0.07	1.95	0.66	0.24	0.99	-2.02	2.56	1827
1828	2.82	1.06	0.70	0.81	1.22	0.89	0.59	-0.80	0.86	0.96	0.62	0.91	1828
1829	-0.8	-0.6.3	0.10	0.25	-0.06	-0.83	0.15	-0.59	-0.71	-1.52	-1.28	-3.87	1829
1830	-4	-1.74	1.20	2.70	0.57	-0.49	0.53	-0.01	-0.94	-0.86	0.46	-0.90	1830
1831	-1.10	0.46	67	1.54	0.53	-0.11	-0.02	-0.02	-0.29	2.16	0.58	0.90	1831
1832	0	0.36	-0.25	0.45	-0.40	-0.83	0.81	2.29	-0.39	0.07	-0.02	0.62	1832
1833	-0.06		-0	-0	2.67	3	-1.29	-1.17	-0.17	0.59	0.39	3.28	1833
1834	5.06		0	-0.70	2.28	1.53	1.94	1.07	2.74	0.68	0.71	-1.18	1834
1835	1.15	40	-0.44	-0.06	0.56	0.15	1.69	0.40	22	-1.34	-2.27	-2.66	1835
1836		-0.04	82	-0.95	-2.14	0.17	0.57	0.28	-0.62	0.14	-0.02	0.50	1836
1837	0.37	52	-2.94	-1	-2.18	1.21	-0.58	1.41	-1.16	-0.39	-1.06	-0.46	1837
1838	-3.64	-0.91	0.25	-1.75	-0.11	-0.71	-0.56	-1.23	-0.58	-0.61	1.18	-0.57	1838
1839	0.55	-0.07	-0.42	-1.55	-0.97	1.14	0.24	-1.73	-0.58	1.11	1.	2.81	1839
1840	2.60	02	-3.22	71	-0.10	-0.37	-2.32	-0.01	-0.56	6-1.74	1.43	-3.14	1840
1841	0.45	-0.25	- 0.77	-0.69	2	2-1.71	-1.98	-1.37	0.09	0.90	0.2	0.89	1841
1842	-5.18	-2.84	10.56	-0.58	0.02	21.00	-0.19	0.78	-1.08	-2.18	-1.03	-0.71	1842
1843	1.50) 2.22	-0.34	0.27	-1.60	-2.56	-2.35	-0.73	0.60	-0.2	0.25	-0.83	1843
1844													1844
1845	1.70	-3.33	-1.77	70.49	-1.98	80.47	0.06	-1,53	1.10	0.40	1.54	1.74	1845
Means	-0.72	20.98	\% 4.16	(7.03	10.77	713.61	14.96	14.59	11.84	47.98	3.98	1.30	Means

The numbers without sign must be subtracted; those with the sign - aust be added

South Germany. - Vienna.
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	0	-	-	-	\bigcirc	\bigcirc	c	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
1775	-1.43	1.86	1.21	-2.35	-2.77	1.32	-0.4I	1.29	0.84	0.26	0.29	-1.09	1775
1776	-4.30	0.57	0.70	-1.11	-2.30	-0.42	-0.24	0.25	-1.42	-1.53	-1.32	-2.19	1776
1777	-1.79	-1.24	0.32	-2.93	-0.22	-0.10	-1.17	0.57	-1.38	-0.53	0.35	-1.00	1777
1778	1.92	-1.04	0.18	1.89	0.04	-0.43	1.18	0.95	-0.89	-0.54	0.87	3.61	1778
1779	-1.75	3.15	2.27	3.05	1.24	-1.32	-1.35	-0.07	0.65	1.00	0.43	3.01	1779
1780	-1.68	3.04	2.73	-1.38	-0.18	-0.92	-0.70	-0.48	-1.08	0.51	0.19	-1.99	1780
1781	-0.87	0.05	0.77	0.86	0.25	1.44	-0.06	2.31	I. 40	-0.4.	1.84	0.34	1781
1782	2.72	-2.63	0.60	-0.06	0.54	1.82	2.74	0.85	0.86	-0.76	-1.50	0.62	1782
1783	3.59	4.12	-0.08	0.65	1.51	1.94	1.66	1.81	2.12	1.59	0.58	-2.56	1783
1784	-3.51	-1.87	-0.42	-1.36	1.69	0.86	0.47	0.49	1.93	-2.56	0.70	0.03	1784
1785	-0.73	-0.93	-5.63	-3.04	-0.67	-1.47	-0.83	-0.86	2.11	-0.55	0.41	0.17	1785
1786	0.52	0.16	-0.04	1.84	-1.12	0.2 .5	-1.54	-1.85	-0.92	-2.11	-2.12	0.60	1786
1757	-0.39	1.47	0.65	-1.46	-2.11	1.11	-0.40	0.35	-0.78	1.10	0.93	2.52	1787
1785	2.22	0.17	0.81	0.05	-0.36	1.18	2.28	-1.72	1.00	-0.29	-1.39	-6.79	1788
1789	-0.49	2.00	-2.43	1.19	2.15	-0.49	0.40	-0.60	0.37	0.77	0.73	0.21	1789
1790	0.86	2.87	0.31	-1.11	1.20	1.56	-1.10	0.31	-0.93	-0.76	-0.43	2.09	1790
1791	4.29	1.01	1.63	1.33	-0.44	-0.33	-0.37	0.67	-0.84	-0.40	-0.46	0.89	1791
1792	0.56	-1.24	0.47	0.35	-0.96	0.62	0.38	0.26	-0.93	-1.11	-0.24	0.56	1792
1793	-1.55	1.27	-1.00	-2.40	-1.23	-1.05	1.81	1.86	-0.07	1.13	0.64	1.99	1793
1794	2.24	2.99	1.9.)	3.74	1.35	1.55	2.92	-0.75	-1.38	-0.19	0.33	-0.95	1794
1795	-4.94	-1.29	0.23	1.81	-0.0.7	1.44	-1.95	0.31	-0.17	2.75	-1.00	2.28	1795
1796	5.23	1.32	-2.73	-1.52	0.48	-0.04	0.14	0.58	1.96	0.84	-0.14	-1.48	1796
1797	1.58	1.02	-0.71	2.10	294	0.65	1.95	2.17	2.01	1.23	0.54	1.11	1797
1798	1.96	2.83	1.40	0.65	0.26	0.84	0.14	1.29	1.62	-0.17	-0.68	-3.68	1798
1799	-5.34	-2.08	-0.83	-0.13	-0.45	-1.16	-0.58	1.00	-0.50	0.4.)	0.58	-2.94	1799
1800	0.74	-0.19	-3.31	5.57	1.90	-1.45	-0.44	1.49	0.27	-0.40	1.57	0.10	1800
1801	1.85	-0.21	2.47	0.80	1.83	-0.	-1.18	-1.32	1.37	1.94	1.71	0.99	1801
1802	-0.43	-1.34	0.89	0.73	-1.14	1.33	1.02	1.6 .5	0.35	2.10	1.94	1.40	1802
1803	-2.68	-3.46	-0.50	2.49	-1.59	-0.75	0.23	0.08	-2.12	-0.45	1.24	0.27	1503
1804	3.12	-0.59	-2.44	0.05	0.29	-0.10	0.25	-0.5]	0.80	0.48	-2.47	-2.40	180.1
1805	-0.48	-1.18	-1.28	-2.16	-1.85	-0.79	-1.26	-1.61	-0.04	-2.89	-2.19	0.24	1805
1806	4.04	2.12	1.07	-2.07	1.84	-0.02	-0.16	-0.62	0.56	-0.80	1.60	3.45	1806
1807	1.08	1.96	-1.54	-1.18	1.23	-0.34	1.25	4.74	0.17	$1 .: 37$	1.96	0.46	1807
1808	I.20	-0.51	-4.99	-1.20	1.42	0.15	1.30	1.80	1.13	-0.97	-0.32	-3.65	1808
1509	-0.08	1.54	-1.13	-2.51	0.89	0.27	0.23	0.79	0.11	-1.31	-0.75	1.67	1809
1810	-0.71	-0.03	2.03	-0.74	0.50	$-1.6 .5$	0.52	0.15	2.26	-0.1s	-0.09	2.01	1810
1811	-3.58	-0.91	2.03	0.75	3.12	4.62	2.56	0.99	0.42	3.63	1.20	0.19	1811
1812	-2.13	0.53	0.67	-2.67	0.65	0.35	-0.87	-0.52	-1.32	2.04	-0.3t	-3.96	1812
1813	-1.84	3.07	-0.76	I. 56	0.36	-1.82	-1.34	-I. 80	-1.34	-0.37	-0.24	0.65	1813
1814	-0.34	4-4.37	-0.55	1.54	-2.19	-1.76	0.66	-0.21	-2.45	-0.73	0.32	2.19	1814
1815	-1.03	2.39	2.06	0.10	0.52	0.28	-1.51	-1.29	-1.20	0.06	-1.07	-2.37	1815
1816	1.8	-0.80	-0.19	0.09	-0.95	-0.73	-1.58	-1.39	$-0.9 .5$	-0.73	-0.39	-1.45	1816
1817	3.24	3.75	0.51	-4.08	0.53	2.18	-0.03	-0.25	0.56	-2.29	1.0)	0.16	1817
1818	2.77	0.78	1.84	2.01	-0.11	0.55	0.13	-0.71	0.41	0.84	0.60	-1.31	1818
1819	1.22	2.04	1.94	1.17	-0.75	51.01	0.66	-0.35	0.71	-0.12	0.51	-1.21	1819

South Germany. - Vienna (continued).
F،r Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	-	-		0	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	,	-	
1820	-2.47	0.36	-0.86	1.78	1.97	-1.18	-0.96	2.36	-0.71	0.16	-0.36	-1.49	1820
1821	2.22	-1.56	-0.72	1.57	-0.81	-3.08	-1.83	-0.76	0.51	-0.12	1.93	2.90	1821
1522	2.85	1.63	3.44	1.05	1.21	1.50	1.16	-0.27	0.06	2.12	0.44	-0.27	1822
1523	-4.55	0.68	0.80	-0.29	0.42	-0.68	-1.35	0.15	0.36	1.13	0.29	1.35	1523
1324	1.77	2.31	0.09	-0.72	-0.74	-0.60	-0.22	-0.53	1.36	0.60	1.56	4.00	1824
1825	3.15	0.50	-1.59	1.02	-0.14	-0.31	-0.72	-0.17	-0.62	-1.71	1.74	3.11	1825
1826	-3.65	-2.12	0.91	-0.12	-2.42	-0.38	1.34	2.06	0.69	0.89	-0.32	1.78	1826
1827	0.69	-2.92	1.61	1.65	1.33	1.19	1.67	-1.06	-0.57	0.82	-3.48	0.83	1827
1828	0.19	-2.22	0.88	1.30	-0.16	0.21	0.63	-1.49	-0.70	-0.82	0.48	1.57	1828
1829	-1.66	-3.79	-1.87	-0.23	-2.26	-2	-0.32	-2.62	-0.31	-2.12	-3.62	-6.11	1529
1830	-5.31	-3.23	-0.44	0.94	-0.39	0.33	0.02	-0.04	-1.81	-1.68	0.76	1.13	1830
1831	-1.42	0.26	0.43	2.23	-0.90	-1.86	0.33	-1.01	-1.96	2.02	-0.16	-0.04	1831
1832	0.55	0.61	0.04	-0.16	-1.90	-1.46	-1.29	0.32	-0.86	0.04	-1.57	-1.86	1832
1833	-3.35	2.33	0.24	-1.40	2.57	1.20	-2.26	-2.80	-1.22	-0.55	0.23	4.03	1833
1834	4.67	0.32	-0.29	-1.17	2.24	. 1.65	2.61	1.26	2.85	-0.08	-0.89	1.2.)	1834
1835	1.71	1.46		-1.10	0.27	-0.07	0.92	0.19	0.09	-0.76	-3.77	-1.39	1835
1836	-0.08	0.29	3.84	0.00	-2.95	0.30	-0.18	-0.78	-0.89	0.91	-1.00	2.44	1536
1837	0.20	-2.39	-1.96	-1.18	-2.57	-1.38	-2.96	0.84	-2.22	-0.82	-0.74	-0.95	1837
1838	-5.10	-4.14	-0.50	-2.44	-0.76	-0.74	-1.39	-2.29	-0.03	-1.75	-0.65	-0.54	1838
1839	1.12	0.73	-2.31	-3.85	-2.04	1.06	0.36	-2.23	0.23	1.05	1.55	0.70	1839
1840	1.03	-0.85	-3.76	-0.55	-1.59	$-1.0 .5$	-1.56	-1.94	-0.11	-2.03	2.09	-7.72	1840
1841	0.33	-3.24	0.65	0.93	2.19	-1.02	0.5.5	-1.10	0.24	2.04	0.28	2.27	1841
Means.	-1.22	0.63	3.85	8.66	13.31	15.72	17.14	16.77	13.25	8.51	3.67	0.39	Means.

LXXXIV. South Germany. - Ratisbon.

The numbers without sign must be subtracted ; those with the sign - must be added
LXXXIV.

South Germany. - Ratisbon (continued).
For Reducing the Monthly and Yearly Means of Single Years to the Means derivod from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	${ }^{\circ}$		\bigcirc	c	-	\bigcirc							
1792	-0.57	-0.21	1.41	1.17	-1.12	0.87	0.66	0.88	-1.01	0.0 .5	0.17	0.89	1792
1793	-1.17	1.26	0.53	-1.81	-1.23	-0.76	1.56	1.09	-0.47	1.87	0.95	1.26	1793
1794	2.30	3.01	3.0 .5	3.04	1. 19	1.69	2.5.	-0.80	-1.00	1.24	0.67	-0.78	1794
1795	-5.0.5	-0.89	-0.10	1.96	-0.82	1.39	-2.22	0.29	1.08	3.11	-0.98	2.26	1795
1796	4.26	. 59	-1.6\%	-0.77	-0.85	0.05	0.47	0.93	2.24	0.28	-0.38	-2.04	1796
1797	1.46	1.52	-0.17	2.09	2.60	-0.72	2.14	1.73	0.75	0.06	1.00	1.59	1797
1798	1.85	1.94	0.18	1.02	0.66	1.65	0.50	1.26	1.08	-0.73	-0.68	-2.69	1798
1799	-5.61	0.14	-0.29	-1.87	-1.37	-0.53	-0.91	-2.86	-0.60	-0.23	-0.35	-3.81	1799
1800	15	0.63	-2.63	4.66	1.80	-1.12	0.32	1.53	0.43	-0.69	1.30	0.63	1800
1801	2.72	0.1	1.82	0.76	2.45	-0.75	-0.30	0.13	1.15	1.60	1.45	0.81	1801
1802	-3.20	-0.90	0.29	0.62	0.16	1.66	-0.04	2.80	0.73	2.40	0.63	0.71	1802
1803	-1.24	-2.05	-0.06	2.70	-1.78	-0.31	1.70	1.31	-0.96	-0.33	0.29	0.93	1803
1804	3.34	-0.86	-1.18	-0.49	1.17	0.88	0.29	-0.14	1.27	1.09	-0.71	-1.68	1804
1805	-1.41	-1.00	-0.34	-1.27	-1.76	-0.88	-0.8s	-1.60	0.71	-2.03	-1.91	-0.21	1805
1806	4.22	2.45	0.40	-2.24	2.47	0.16	-0.49	0.15	0.86	0.04	1.94	3.58	1806
1807	1.19	18	-1.17	-1.32	1.24	0.16	2.87	4.63	-0.94	1.58	1.03	1.54	1807
1508	,	-0.73	-2.7	-1.93	2.02	-0.45	1.61	1.19	0.33	-1.97	-0.23	-5.46	1808
1809	0.38	2.19	-0.40	-2.9	0.71	-0.25	0.02	0.23	-0.31	-0.76	-0.86	0.93	1809
1810	-1.72	-2.39	0.86	-0.63	-0.0.5	-1.00	-0.41	0.17	2.72	0.52	0.04	1.89	1810
1811	-2.93	-0.16	2.09	1.48	2.23	2.85	1.75	0.24	0.43	2.24	1.43	-0.25	1811
1812	-1.383	1.05	0.28	-2.87	0.13	-1.15	-2.18	-1.41	-1.39	0.60	-1.99	-4.72	1812
1813	-3.03	0.99	-1.15	0.46	-0.60	-1.86	-1.73	-2.10	-1.47	-0.50	-0.75	-0.33	1813
1814	-1.37	-4.71	-2.93	0.49	-2.79	-2.39	-0.12	-1.12	-2.45	-1.50	0.65	1.77	1814
1515	-1.30	1.05	1.15	-0.37	-0.16	-0.74	--2.23	-2.07	-1.35	-0.70	-1.37	-2.26	1815
1816	1.36	-1.83	-1.23	-0.93	-2.69	-2.21	-2.42	-2.56	-2.04	-0.93	-1.49	-0.75	1816
1817	2.51	2.12	-1.1.	-5.01	-1.93	0.61	-1.79	-1.89	0.56	-3.22	0.63	-0.70	1817
1818	$2.0 \times$	0.29	-0.16	0.27	-1.72	-0.02	-0.	-2.27	-1.09	-0.71	0.41	-2.08	1818
1819	1.19	0.60	0.64	-0.09	-0.76	0.15	-0.0.)	-0.33	-0.28	-0.75	-0.99	-1.34	1819
18.20	-2.13	-0.3.5	-2.26	0.3 s	-0.17	-2.89	-1.66	0.93	-2.25	-1.22	-1.63	-1.66	1820
1521	1.1	-3.06	-1.51	0.99	-2.18	-3.01	-2.77	-1.15	-0.06	-0.99	1.51	2.53	1521
1823	2.21	0.6 .3	1.92	0.26	0.53	2.43	0.49	-0.87	-0.56	0.7%	0.45	-2.29	1822
1833	-4.17	0.86	0.11	-1.72	0.20	-0.97	-1.0.5	0.13	0.38	0.02	-0.61	1.05	1823
1824	0.92	0.35	-1.0	-2.10	-1.74	-1.07	-0.11	-0.51	0.97	-0.26	1.14	3.93	1824
1825	2.80	0.39	$-1.0 .5$	2.12	0.93	0.56	0.51	0.32	1.31	0.21	3.06	4.15	1825
1826	-3.57	-0.34	1.39	0.17	-1.04	1.05	1.99	3.61	1.61	1.38	-0.28	0.92	1826
1527	0.09	-4.95	1.00	1.31	1.20	1.05	2.06	-0.57	0.93	1.35	-1.30	2.93	1827
1828	2.12	0.27	0.51	0.31	-0.77	0.39	0.35	-2.47	-1.9.	-0.20	0.61	2.28	1829
1829	--0.85	-3.13	-1.38	0.30	-1.14	-1.11	-0.20	-2.37	-1.3	-1.41	-3.79	-5.79	1829
1830	-5.98	-3.61	1.17	0.77	-0.12	-0.94	0.50	-1.28	-1.05	-0.88	1.14	-0.58	1830
1831	-2.09	-082	0.70	3.60	-0.15	-1.36	-0.09	-0.12	-1.57	2.40	2.27	0.26	1831
1832	0.77	1.28	0.09	0.21	-2.45	-0.57	-1.18	0.59	-0.98	0.16	-0.71	0.25	1832
1833	-3.05	3.32	0.21	-1.45	2.29	1.06	-1.70	-3.06	-2.01	-0.90	2.78	3.95	1833
1534	5.52	-0.43	$-0.2 .5$	-1.69	0.99	0.44	4.59	2.48	1.21	10.50	0.74	1.36	1834
Means.	-2.42	' -0.09	3.09	7.55	11.94	13.72	14.85	14.62	11.69) 7.11	2.22	-0.71	Means

The numbers without sign must be subtracted ; those with the sigu - must be added.

South Germany. - Stuttgard.

For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	Aprit.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc		\bigcirc				,	\bigcirc		\bigcirc		\bigcirc	
1792	0.64	-1.23	1.78		-1.12	-0.30	1.04	1.70	-0.70	1.30	-0.73	0.44	1792
1793	-1.41	1.64	0.37	-1.36	-1.24	-0.31	2.52	1.84	-0.84	1.71	0.66	2.10	1793
1794	2.02	3.72	2.76	3.26	0.41	1.30	2.75	0.12	-1.34	0.32	0.85	-1.72	1794
1795	-4.88	0.36	0.65	2.51	0.64	1.43	-1.01	1.33	1.93		-0.49	3.76	1795
1796	6.17	1.90	-2.51	-0.67	-0.32	0.10	-0.36	0.23	2.34	0.13	-0.87	-2.18	1796
1797	2.46	0.08	-0.27	1.88		-1.30	2.86	1.01	1.04	0.36	1.82	3.02	1797
1798	0.65	1.44	0.69	1.16	0.66	1.21	0.14	0.66	1.36	0.53	0.33	-2.05	1798
1799	-3.46	1.77	-0.78	-1.30	-0.89	-0.75	-0.99	0.32	-0.04	-0.15	0.42	-4.70	1799
1800	3.03	-0.92	-2.04	4.56	2.03	-1.81	0.00	0.79	0.84	-0.37	1.61	-0.15	1800
1801	3.95	0.97	1.98	0.24	0.94	-0.54	0.91	1.42	2.32	2.89	1.30	1.46	1801
1802	-2.55	-0.02	0.80	2.13	0.23	1.53	-0.24	2.22	0.62	2.08	0.81	1.41	1802
1803	-0.81	-1.90	-1.31	1.49	-2.28	0.05	1.21	1.28	-1.78	-0.90	0.46	1.36	1803
1804	4.61	-0.98	-1.05	-0.22	0.78	0.92	-0.35	-0.66	2.88	0.74	0.56	-1.56	1804
1505	-1.03	-0.28	-0.60	-1.38	-2.16	-1.35	-1.28	-1.44	0.38	-2.73	-2.17	0.06	1805
1806	-2.78	2.77	1.10	-1.99	1.37	-0.27	-0.62	-0.59	-0.27	0.03	1.67	4.55	1806
1807	0.76	1.58	-2.43	1.14	-1.02	-0.21	2.15	3.23	-0.74	1.71	1.37	-0.94	1807
1805	95	-1.23	-3.55	1.35	1.96	-0.98	0.54	0.77	-0.34	-1.49	-0.17	-4.02	1808
1809	1.56	3.64	0.69	-2.58	0.84	-0.65	-0.36	0.16	0.30	-1.05	-1.65	2.12	1809
1810	-1.56	-2.45	2.11	-4.12	-0.25	-0.95	-0.26	-0.48	2.08	0.09	1.44	0.97	1810
1811	-3.01	0.49	2.31	0.97	1.41	1.41	0.75	-0.38	-0.04	3.02	1.28	-0.04	1811
1812	-2.36	26	-0.23	-3.17	0.64	0.37	-1.85	17	-0.49	0.01	-2.28	-4.81	1812
1813	-2.25	0.28	-0.42	0.53	0.13	-1.45	-1.96	-3.00	-1.63	-0.34	-1.15	-0.70	1813
1814	-1.96	-3.96	-3.67	9	-2.14	-1.52	0.26	76	-1.56	-1.3.4	0.69	2.13	1814
1815	-1.92	1.26	2.15	0.39	0.71	-0.42	-1.95	-1.4	-0.48	0.03	-2.30	-1.44	1815
1816	0.69	-2.37	-0.60	-0.68	-2.22	-2.63	-2.45	-2.34	-0.85	-0.17	-2.45	-0.82	1816
1817	3.31	1.47	-0.71	-3.71	-1.78	0.92	-1.5.4	-0 97	1.08	-3.25	1.01	-0.49	1817
1818	2.67	0.40	0.41	1.33	-0.82	1.06	0.15	-0.91	-0.70	-0.91	1.62	-2.04	1818
1819	-0.61	1.54	0.89	. 21	0.29	0.36	1.02	0.36	-0.92	-0.02	-0.95	1.16	1819
1520	-1.64	-0.06	-2.16	1	-0.0.5	-1.91	-1.37	1.10	1.	-1.11	-2.51	-0.66	1820
1821	13	-2.72	0.19	1.52	98	-2.26	-1.97	0.15	0.77	-0.62	2.42	3.25	1821
1822	2.11	1.58	2.61	0.51	1.43	2.90	0.08	-0.85	-0.48	1.33	1.82	-3.09	1822
1823	-2.76	1.25	-0.05	-0.77	0.92	-1. 12	-1.19	0.25	-0.38	-1.03	-1.37	1.70	1823
1824	0.79	0.79	-0.89	-1.61	-1.0.5	-0.98	0.30	-0.39	0.65	0.44	2.52	3.81	1824
1825	1.92	-0.37	-1.36	1.85	0.27	0.26	0.19	0.02	-0.61	-0.64	1.27	2.74	1825
1826	-4.81	1.06	1.16	0.19	-0.93	0.54	1.70	1.78	1.51	1.43	-1.07	0.54	1826
1827	-0.49	-5.36	1.47	1.22	1.60	0.23	1.10	-0.45	0.08	0.67	-2.41	2.98	1827
1828	3.10	-0.35	0.61	0.54	0.43	0.97	1.02	-1.10	0.07	-0.61	-0.17	1.19	1828
1829	-2.45	-3.10	-0.58	0.46	-0.36	-0.61	0.45	-1.13	-1.50	-1.66	-2.s	-5.91	1829

[^6]
LXXXV.

South Germany. - Stuttgard (contimued).
For Reducing the Monthly and Yearly Means of Single Years to the Means derived
from Series of Years.
Degrees of Reaumur.

Year.	Jan.	Feb.	March.	A pril.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	,	\bigcirc	,	\bigcirc	,	\bigcirc	-	
1830	-6.40	-3.47	1.62	2.06	0.90	-0.38	1.05	0.00	-1.43	-0.89	0.90	-0.74	1530
1831	-0.73	1.25	1.68	1.44	-0.11	-0.09	1.22	-0.10	-1.15	2.92	0.15	1.26	1831
1832	0.10	-0.76	-0.64	0.13	-0.93	-0.59	-0.22	0.75	-1.05	-0.78	-1.41	0.05	1832
1833	-2.56	2.99	-0.99	-1.31	3.38	2.06	-1.46	-2.81	-1.35	-1.03	-0.13	3.18	1833
1834	5.05	0.14	-0.60	-1.87	2.16	1.33	2.74	0.90	1.73	-0.06	0.12	-0.27	1834
1835	1.53	1.20	-0.15	-0.90	-0.53	0.28	1.62	-0.21	0.60	-1.20	-3.22	-2.85	1835
18.36	0.45	-1.27	3.18	-0.90	-2.14	0.64	0.22	0.46	-1.21	0.47	-0.01	1.04	1836
1837	0.90	0.24	-2.68	-2.54	-2.23	1.16	-1.19	1.17	-1.94	-0.60	-0.40	0.04	1837
1838	-4.43	-2.08	0.21	-2.32	-0.45	-0.03	-0.36	-0.90	0.64	-0.36	1.03	-1.34	1838
1839	0.78	-0.63	-1.31	-2.71	-1.07	2.30	0.58	-1.55	0.64	0.84	1.07	1.95	1839
1940	1.82	0.15	-2.90	1.36	0.29	0.16	-1.42	-0.23	-0.26	-2.39	1.10	-5.61	1840
18.4	0.89	-1.98	2.09	0.53	3.42	-1.55	-1.93	-0.69	1.6 .3	1.24	1.22	2.85	1841
1842	-1.50	-1.05	1.36	-0.47	1.35	1.74	0.35	2.64	0.07	-2.47	-1.82	-0.20	1842
1843	2.07	1.54	0.15	0.60	-1.06	-1.48	-0.68	0.20	-0.15	0.02 .	0.67	0.23	1843
18.44	0.31	-0.91	-0.30	1.42	-1.01	1.39	-1.99	-2.17	0.56	0.39	0.91	-3.18	1844
Means.	-0.80	1.64	3.97	7.80	11.87	14.03	15.18	15.02	12.05	8.05	4.11	1.25	Means.

LXXXYI. South Germany - Carlsruhe.

South Germany. - Cirlsrume (continued).
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	
1507	0.02	1.11	-2.83	-1.34	1.19	-0.28	2.34	3.15	-1.57	1.30	1.21	-0.53	1807
1805	1.38	-1.25	-3.54	-1.63	2.40	-0.41	1.94	0.96	-0.54	$-1.2 \mathrm{~S}$	-0.24	-3.75	1808
1809	1.24	3.25	0.52	-3.16	0.41	-1.22	-0.61	-0.33	-0.80	-1.36	-1.90	1.60	1809
1810	-3.19	-2.78	1.26	-0.17	-0.60	-0.62	-0.65	-0.46	1.58	-0.05	0.84	1.69	1810
1811	-2.40	1.17	2.79	1.65	2.32	1.55	0.78	-0.29	0.53	2.92	1.21	0.48	1511
1812	-2.09	1.47	-0.16	-2.96	0.83	-0.50	-1.53	-0.27	-0.24	1.33	-1.42	-3.80	1812
1813	-0.84	2.15	0.57	1.50	0.12	-1.01	-1.75	-1.78	-1.15	0.27	-0.11	-0.89	1813
1814	-1.51	-3.24	-1.56	1.82	-1.65	-1.66	0.07	-1.12	-1.07	-0.68	0.82	2.67	1814
1815	-2.35	2.31	2.67	0.75	1.10	-0.57	-1.75	-1.03	0.09	0.62	-1.99	-1.02	1815
1816	1.38	-2.00	-0.27	0.27	-2.23	-2.48	-2.61	-2.16	-0.89	-0.33	-2.14	0.17	1816
1817	3.56	2.16	-0.36	-3.14	-1.63	0.87	-1.47	-1.40	1.60	-2.82	1.75	0.13	1817
1818	2.91	1.12	0.59	1.53	-1.44	1.00	0.34	-1.01	-0.50	-0.63	1.49	-2.11	1818
1819	1.85	1.30	0.75	1.42	0.49	0.15	0.42	0.64	0.49	-0.15	-0.75	0.31	1819
1820	-1.09	0.55	-1.3.	2.19	0.22	-2.16	-0.96	0.66	-1.20	-0.61	-1.80	0.00	18.20
1521	2.31	-1.59	0.73	1.75	-1.87	-2.01	-2.03	0.14	0.17	-0.68	2.72	3.52	1821
1822	2.52	2.96	4.0 .4	1.75	2.11	3.77	0.56	-0.14	0.46	1.19	2.66	-1.31	1822
1823	-2.23	2.20	1.05	-0.09	1.23	-1.02	-1.14	0.87	0.24	-0.27	-0.11	2.95	1823
1824	1.39	1.95	-0.10	-0.89	-1.13	-0.65	0.32	-0.22	1.04	0.66	2.65	4.09	1824
1825	1.92	0.28	-0.76	1.43	-0.15	-0.41	0.85	5.49	1.15	0.15	1.51	3.05	1825
1826	-3.4	1.35	1.13	0.20	-1.25	1.06	2.12	2.86	1.75	1.94	-0.21	0.93	1826
1827	-0.55	-5.10	1.19	1.50	1.25	1.01	2.06	0.00	1.15	1.34	-2.01	2.85	1827
1828	3.18	0.41	1.17	0.82	0.74	1.19	0.91	-1.22	0.48	0.28	-0.33	1.85	1823
1529	-2.12	-2.33	-0.05	0.72	-0.04	0.21	0.50	-1.17	-0.85	-0.60	-1.8S	-4.97	1829
1830	-5.83	-2.98	2.14	2.21	0.81	-0.22	0.86	-0.13	-1.01	-0.17	1.31	-0.32	1830
1831	-0.98	0.96	1.65	1.83	-0.50	-0.61	0.38	0.40	-0.81	3.26	0.30	1.64	1831
1832	0.10	-0.27	0.23	0.96	-0.85	-0.49	-0.01	1.02	-0.59	0.18	-0.68	0.9.3	1832
1833	-2.63	3.41	-0.71	-0.78	2.9 .4	1.45	-1.24	-2.23	-1.05	-0.17	0.51	4.43	1833
1834	5.74	0.29	0.76	-1.12	1.87	1.12	2.76	1.35	1.82	0.53	0.79	0.29	1834
1835	1.77	1.74	0.11	-0.90	-0.68	0.13	1.46	-0.17	-0.03	-0.83	-2.92	-2.23	1835
1836	0.43	-0.55	3.27	-0.66	-1.99	0.47	0.21	0.47	1.67	0.82	0.66	1.56	1836
1837	1.30	0.80	-1.86	-2.33	-2.05	1.26	-0.86	1.24	-1.66	0.28	0.46	0.72	1837
1838	-4.35	-2.13	0.21	-2.36	-0.33	-0.21	-0.36	-1.20	0.44	-0.02	1.10	-0.52	1838
1539	0.88	0.67	-0.73	--2.24	-0.54	2.28	0.16	-0.47	0.09	1.20	1.49	2.20	1839
1840	1.37	-0.69	-2.82	1.28	-0.51	0.23	-1.39	0.34	-0.22	-2.04	1.81	-5.32	1840
Means.	-0.17	1.93	4.39	8.31	12.40	14.43	15.80	15.41	12.60	8.30	4.16	1.35	Means.

LXXXVII.

North Germany. - Berlin.

For Keducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reatrmur.

Yeas.	Jan.	Feb.	March	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	0	\bigcirc	\bigcirc		-	-	-	\bigcirc	-	c	-	\bigcirc	
1719	2.44	0.21	1.50	0.69	1.45	2.38	3.13	1.86	0.08	0.66	2.09	-1.02	1719
1720	2.27	0.40	-0.14	0.70	1.34	0.94	2.01	0.31	0.10	1.62	-0.03	1.47	1720
1721	2.35	-1.80	-1.53	2.23	-0.9 I	1.21	-0.67	-0.17	0.54	0.40	1.69	0.07	1721
1728	1.50	-2.28	2.39	0.65	1.24	0.26	-0.38	-1.36	-0.10	0.66	-0.58	-1.51	1728
1729	-3.18	-1.46	-3.57	-2.11		- •	-	-•		- •		-•	1729
1730	1.64	0.20	0.29	0.70	0.00	0.12	-0.62	-0.03	-0.69	-2.55	1.99	-0.48	1730
1731	-2.00	-1.75	-0.67	-1.67	-1.33	-0.89	-1.44	-0.62	-0.25	1.85	0.67	0.26	1731
1732	-1.50	1.34	1.05	1.34	0.29	-1.54	-1.95	-0.98	-0.84	1.14	-0.78	-3.99	1732
1733	2.69	2.54	0.86	1.59	-1.77	-2.71	-0.38	-0.97	-2.02	-0.33	0.21	2.46	1733
1734	0.40	2.51	1.86	0.55	-0.54	-1.26	-0.62	-0.93	-0.54	0.65	-2.85	-1.03	1734
1735	1.79	0.30	1.81	1.49	-0.87	-0.33	-1.38	-0.64	0.91	-1.01	-1.07	-0.17	1735
1736	-0.08	-0.92	-0.73	0.55	-0.68	-0.87	-0.24	0.64	-0.98	0.23	-0.09	1.18	1736
1737	1.83	0.55	1.57	-1.36	0.77	0.11	-0.77	-1.65	-0.10	-0.39	-0.83	-0.05	1737
1738	-0.55	0.55	1.11	1.54	-0.08	-0.42	-0.79	-0.38	-0.03	0.88	-2.21	0.90	1738
1739	-0.17	2.06	1.11	-1.65	0.64	-0.96	0.99	-123	0.91	-2.62	-5.35	-0.01	1739
1740	-6.	-6.54	-3.28	-3.15	-3.49	-1.70	-0.96	-0.62	1.62	-3.12	-2.35	-0.18	1740
1741	-0.93	1.88	-0.71	-1.38	-1.90	-1.59	0.17	-0.54	-0.20	1.22	1.77	-0.16	1741
1742	-1.23	1.08	-0.99	-2.16	-1.83	-0.72	-0.66	-1.26	-1.78	0.19	0.70	-3.22	1742
1743	1.32	0.99	-0.58	-1.94	0.28	1.05	-1.46	0.32	-0.50	-1.44	2.77	0.84	1743
1744	-1.95	-2.42	-0.09	2.3	0.10	-1.47	0.25	-0.60	0.94	2.10	1.25	-0.39	1644
1745	-1.92	-1.26	-0.10	0.20	0.73	1.01	0.01	0.17	0.10	1.15	2.17	-2.36	1745
1746	0.1	0.0 .3	-1.88	-0.39	0.43	-0.72	1.11	-0.43	0.44	-1.06	-0.53	1.69	1746
1747	-0.17	3.49	-2.09	0.70	-0.67	2.34	-0.33	0.18	1.43	0.43	0.21	1.04	1747
1748	-1.17	-1.70	-2.29	0.22	1.53	2.11	0.56	2.85	-0.14	0.00	1.79	3.19	1745
1749	2.28	0.47	-1.52	-0.14	1.58	0.21	0.39	1.64	0.3:3	0.05	-0.63	1.28	1749
1750	1.19	3.22	3.57	1.26	0.30	1.06	1.97	1.56	0.26	-0.55		-0.06	1750
1751	-0.45	-1.70	2.79	-0.86	3.59	2.39	1.78	3.12	0.42	-0.04			1751
Means.	-0.19	0.69	2.65	6.51	10.63	12.82	14.02	13.14	11.06	6.53	3.15	1.24	Means.
1755	-4.56	-6.47		0.54				-0.25				2.14	1755
1756	4.13	2.63	1.85	1.77	0.37	2.55	1.50	-0.35	1.61	1.62	-0.38	-1.43	1756
1757	1.17	2.37	1.71		-0.39	1.47	3.25	0.22	-1.70	-2.88	1.21	-1.25	1757
1758	-2.57	-0.17	0.13	-0.21	1.08	0.18	-0.86	0.55	-1.11	-0.97	0.16	0.38	1758
1759	3.26	1.79	1.18	-0.01	-1.45	0.87	1.15	0.60	-0.45	1.09	-2.21	-3.85	1759
1760	-0.56	-1.48	-0.81	0.34	0.33	0.57	-0.29	0.03	0.87	0.98	0.12	2.05	1760
1761	0.97	1.65	2.51	-0.01	1.55	1.9 .7	-0.62	1.88	2.30	-1.02	-0.12	-3.08	1761
1762	2.11	-0.01	-1.88	1.88	0.42	0.27	-0.19	-1.45	0.23	-1.34	-0.32	-1.82	1762
1763	-2.25	3.02	-0.40	-0.55	-0.34	0.17	0.92	1.32	-0.86	-0.57	-0.25	2.67	1763
1764	2.91	2.58	-0.10	-0.30	1.71	-1.94	1.43	-0.60	-1.70	-0.63	-1.32	-1.54	1764
1765	1.64	-2.90	1.70	0.78	-2.50	-0.88	-1.92	1.12	-1.16	1.20	0.15	0.03	1765
1766	-0.10	-0.12	1.01	2.07	1.17	0.30	-0.:	-0.25	0.73	-0.43	0.48	-0.26	1766
1767	-5.54	1.74	0.01	-1.58	-1.03	-1.65	-0.23	0.98	0.42	0.95	2.03	-1.75	1767

The numbers without sign must be subtracted; those with he sign - must be added.

North Germany. - Berlin (continued).
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	c	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
1768	-3.52	-0.98	-1.25	-0.11	-0.68	-0.06	0.28	-0.08	-1.03	-0.48	0.54	0.47	1768
1769	1.22	-0.74	0.75	0.11	-1.01	-1.01	-0.71	-1.07	0.58	-2.26	0.26	0.84	1769
1770	-0.20	-0.21	-3.16	-1.09	-0.11	-1.20	-0.35	-0.08	0.62	0.81	0.16	1.92	1770
1771	-1.24	-3.28	-8. 10	-3.27	2.04	-0.21	-0.82	-2.12	-0.46	0.76	-1.47	0.95	1771
1772	0.66	1.20	0.86	-0.86	-2.50	-0.10	-1.40	-0.4]	0.60	1.62	1.89	1.38	1772
1773	2.50	-1.00	-0.61	0.49	1.37	-1.22	-0.85	0.06	0.57	1.89	-0.92	2.21	1773
Means.	-0.13	1.64	3.87	7.71	11.94	15.23	16.18	15.34	12.12	7.73	4.38	1.85	Means.
1774	1.50	2.26	2.29	1.56	-0.05	0.69	-1.56	-1.92	-1.61	0.71	-3.70	-0.75	1774
1775	0.95	3.20	2.53	-0.65	-0.72	3.26	1.88	1.61	2.00	1.23	-0.8!	2.16	1775
1776	-5.55	2.42	2.10	-0.13	-2.11	1.19	1.21	0.32	0.12	-0.47	0.70	0.54	1776
1777	0.04	-1.67	0.67	-1.12	0.52	0.04	-0.60	-0.01	-1.71	0.23	2.23	0.75	1777
1778	-0.58	-1.72	1.09	1.98	0.67	0.30	1.02	0.66	-0.67	-1.69	1.44	3.84	1778
1779	0.33	3.82	2.99	2.39	0.61	-0.30	0.74	1.71	1.59	1.95	0.90	2.26	1779
1780	-1.06	-2.02	3.37	-1.27	0.72	0.24	0.45	0.99	-0.03	1.46	-0.34	-0.70	1780
1781	-0.44	0.53	2.05	1.85	1.19	1.97	2.02	2.56	1.60	-0.39	0.80	0.01	1781
1782	3.15	-2.86	-0.39	-0.87	0.33	1.78	1.52	0.21	1.75	-0.30	-1.13	0.78	1782
1783	3.19	3.67	-0.58	0.86	1.38	2.71	1.45	0.71	0.36	0.34	0.50	-1.51	1783
1784	-3.97	-3.54	-1.68	-2.30	0.58	0.20	-0.75	-1.35	0.02	-2.21	1.29	-0.94	1784
1785	0.47	-3.28	-5.74	-2.54	-1.48	-0.84	-0.70	-1.12	0.61	-0.31	1.09	-1.42	178.5
1786	1. 81	-0.93	-2.32	1.60	-1.25	0.54	-1.71	-1. 26	-1.86	-1.97	-3.64	-0.16	1786
1787	-0.29	1.35	2.0 .5	-1.31	-0.77	0.99	-0.6.)	-0.59	-0.17	1.32	0.69	2.07	1787
1788	2.46	-1.26	-1.47	0.10	0.45	1.64	1.64	-1.21	1.20	-0.35	-0.79	-8.64	1788
1789	-1.93	1.46	-4.45	0.01	1.85	0.14	0.11	0.36	1.85	0.64	0.89	3.5.5	1789
1790	3.05	2.82	2.19	-1.67	1.70	0.58	-1.13	-0.54	-0.48	-0.14	-0.30	1.92	1790
1791	3.9	1.52	1.47	1.74	-1.16	0.19	0.78	1.08	-0.78	0.22	-0.89	1.35	1791
1792		-1.89	0.80	1.45	-0.81	0.83	1.59	0.46	-0.98	-0.30	-0.01	1.14	1792
1793	-0.70	2.14	0.61	-0.68	-0.58	-1.34	1.68	0.22	-0.83	1.99	0.99	2.05	1793
1794	1.18	2.56	3.66	3.12	0.18	1.77	2.79	-0.59	-1.62	0.37	1.53	-2.14	1794
1795	-5.23	-0.36	-0.84	2.88	-1.78	2.10	-0.92	-0.37	1.27	3.36	0.10	3.14	1795
1796	6.51	0.68	-1.70	-0.34	-0.46	0.38	0.48	1.33	1.74	0.07	-0.60	-1.92	1796
1797	1.60	1.89	0.66	1.09	1.41	-0.23	1.55	1.26	2.02	0.55	-0.80	1.81	1797
1798	1.79	1.57	-0.07	1.29	0.76	1.20	0.38	0.92	1.24	-0.17	-0.45	-3.54	1798
1799	-2.97	-4.47	-1.65	-2.12	-2 27	-1.53	-1.05	-0.32	-0.65	-0.70	0.48	-4.41	1799
1800	-1.12	-3.61	-4.09	4.43	2.33	-3.06	-1.99	0.22	0.67	-0.41	1.47	0.00	1800
1801	1.88	-1.02	1.84	0.0 .5	3.00	-1.37	-0.61	-0.68	1.01	1.40	0.93	0.84	1801
1802	-1.00	0.50	1.65	0.45	-2.37	-1.01	-1.54	1.54	-0.08	3.04	0.78	1.51	1802
1803	-5.33	2.02	-0.16	2.81	-1.36	-1.46	2.03	1.80	-1.82	-0.45	0.65	-0.39	1803
1804	1.51	-1.48	-3.11	-1.06	1.04	-0.54	0.10	-0.73	1.17	-0.02	-2.40	-3.92	180.4
1805	-3.90	-1.94	-0.48	-1.58	1.36	-1.53	-1.18	-1.83	0.55	-3.53	-2.58	1.24	1805
1806	3.02	0.94	0.19	-2.82	0.99	-2.26	-1.35	-0.98	0.41	-0.12	1.47	4.14	1806
1807	1.62	0.18	-1.97	-1.43	-0.42	-1.50	0.42	3.72	-2.15	0.02	1.11	1.53	1807

North Germany. - Berlin (contimued).
For Reducing the Monthly and Yearly Means of Single Years to the Means derivea from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		-		,	\bigcirc	\bigcirc	1	
1805	0.83	-1.07	-3.39	-2.80	0.80	-0.42	1.19	0.69	-0.54	-1.56	-1.	-4.40	1808
1809	-3.31	1.64	-1.09	$-3.3 .1$	0.99	-0.89	-0.48	0.36	0.29	-0.99	0.02	2.23	1809
1810	-0.99	-1.66	0.40	-1.41	-1.88	-1.93	-0.05	-0.47	1.16	-1.33	0.09	1.22	1510
1511	-2.93	-0.72	2.01	-0.15	3.07	2.67	0.94	-0.59	-0.72	2.21	0.35	1.50	1811
1512	-1.14	-0.2	-1.	-3.9	-1.20		-2.37	-0.78	-1.81	1.14	-1.57	-5.52	1812
1813	-1.20	2.38	0.21	1.	-0.73	1.38	-1.27	-2.07	-0.62	-1.30	0.05	1.02	1813
1814	-2.12	-5.52	-2.78	1.	-2.92	-1.99	1.02	-1.34	-2.23	-1.21	0.53	1.26	1814
1815	-2.81	1.14	1.56	-0.45	-0.15	0.61	-2.98	-1.57	-1.95	0.42	-0.69	-1.37	1815
1816	0.95	-2.27	-0.65	-0.21	-2.68	-1.54	-1.32	-2.59	-1.64	-1.23	-1.96	-0.39	1816
1817	2.55	1.79	-0.19	-3.86	-0.49	1.0 .1	-1.57	-0.55	1.43	-2.57	2.37	-0.14	1817
1818	2.54	0.19	1.56	0.53	0.22	0.95	. 72	-1.41	0.14	-0.58	-0.60	-0.89	1818
1819	2.51	1.57	1.59	0.85	1.00	2.28	1.42	1.60	0.81	-0.41	-0.66	-2.61	1819
1520	-3.0s	0.34	-0.02	1.52	1	-2.38	-2.08	1.23	-0.75	0.99	-1.57	-1.88	1820
1821	1.52	-1.05	0.14	3.28	-0.45	-2.17	-1.51	-0.78	0.91	1.33	3.27	3.44	1821
Means.	-1.59	0.3	2.2	6.89	11.36	13.73	15.16	15.00	11.83	7.16	2.61	-0.32	Means.
1822	3.39	3.67	3.22	1.55	0.59	0.58	0.77	-0.	-1.24	1.36	1.55	-3.18	1822
1823	-7.56	-0.25	0.41	-1.82	-0.26	-0.78	-1.76	1.03	-0.34	0.66	1.01	1.12	1823
18.4	3.67	2.45	0.29	-0.52	-1.04	-0.75	-0.56	-0.58	1.27	0.56	1.96	2.69	18.24
182.5	3.92	0.92	-2.26	0.86	-0.15	-1.10	-0.47	0.05	0.54	-0.12	1.30	2.03	182.5
1826	-3.44	1.98		-0.19	-0.24	1.20	3.03	3.00	0.35	0.71	-0.33	0.49	1826
1827		90	1.25	2.29	1.95	1.33	0.80	-0.04	1.09	0.83	-2.24	1.16	1827
1828	-0.2	$-0.5 .5$	0.6	1.22	0.33	0.30	1.17	-0.71	-0.15	-0.28	0.17	0.47	1828
1529	-2.8	-2	-1.23	0.41	-0.29	0.12	0.41	-0.5	-0.16	-1.6	-2.54	-8.25	1829
1830	-4.21	-2.70	1.09	1.53	0.30	0.07	0.35	-0.	-0.57	-0.69	1.47	-1.79	1830
1831	-1.8	0.75	0.40	2.21	-0.94	-1.34	0.36	0.	-1.2.2	1.77	-0.54	0.11	1831
1832	0.76	1.12	0.42	0.32	-1.43	-0.33	-2.40	0.	-1.22	-0.	-0.63	-0.24	1832
1833	-0.56	3.16	-0.1	-1.82	3.46	1.33	-0.45	-3.12	-0.48	-0.93	0.14	2.48	$18: 33$
1834	4.73	1.31	1.00	-0.68	1.82	1.23	3.65	2.34	0.74	-0.2	0.56	0.36	1834
183.5	2.81	2.37	0.57	-0.91	-0.86	0.13	0.21	-0.59	1.	-0.9	-2.7	-1.77	1835
1836	1.37	1.11	3.42	0.07	-2.55	0.20	-1.0s	-1.49	-1.06	1.00	-1.10	0.26	1836
1837	1.91	0.38	-1.98	-1.68	-1.42	-0.69	-1.11	1.20	-0.92	0.37	0.72	-0.57	1887
$18: 38$	-6.30	-3.63	0.1	-1.42	-0.24	035	-0.22	-1.78	1.27	-0.59	-1.14	-0.33	1838
1839	0.79	1.50	-1.9	-2.54	0.58	0.95	0.77	-0.44	1.10	0.15	1.10	-1.49	1839
1840	-0.09	0.6 .3	0.23	-0.07	-0.03	0.16	0.27	-0.07	-0.05	0.09	-0.05	-0.33	1840
1841	-0.01	-4.0.3	0.91	1.01	2.51	-0.88	-1.10	-0.01	0.58	1.29	0.75	1.62	1841
1842	-1.34	0.39	0.93	-1.52	0.75	-0.54	-0.84	3.13	0.42	-1.55	-2.82	0.71	1842
1843	2.40	2.45	-1.09	0.44	-2.01	-1.00	-0.41	1.17	-0.64	-0.66	1.42	1.96	1843
1844	1.00	-0.96	-1.50	0.48	0.56	-1.00	-2.:	-1.6	0.36	-0.2	0.56	2.41	1844
1845	1.65	-4.55	-6.24	0.28	-1.48	0.49	0.90	-0.9	-0.93	-0.18	1.26	0.33	1845
Means.	-1.90	-0.15	2.74	6.58	10.92	13.94	15.04	14.13	11.75	797	3.25	1.32	Means

The numbers without sign must be subtracted; those with the sign - must be added.

Denmark. - Copenhagen.
For Reducing the Monthly and Yearly Means of Single Years to the Means deriven from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	,		,		\bigcirc	,	,	,	\bigcirc		10	
1767	-3.89	0.34	0.52	-1.49	-1.83	-1.99	-1.40	-0.47	0.22	-0.75	1.58	-0.29	1767
1768	-0.67	-0.14	$-\mathrm{I} .01$	0.11	-0.82	-0.50	-0.18	-0.59	-1.37	-0.49	0.57	1.66	1768
1769	1.74	0.79	1.44	0.30	-0.70	-0.50	-0.42	-1.21	-0.17	-1.92	0.03	0.37	1769
17\%0	0.19	1.64	-2.57	-0.77	-0.32	-0.88	0.21	0.36	1.11	1.38	-0.18	0.69	1770
1771	-1.20	-2.18	-3.96	-3.14	0.27	1.50	-0.33	-2.04	-0.90	0.03	-1.11	1.10	1771
1772	-0.88	-1.71	-2.53	-1.72	-1.94	-0.51	-0.56	-0.59	0.83	1.49	2.39	1.33	1772
1773	1.78	-0.46	0.35	0.33	0.83	-0.54	0.50	0.81	0.45	1.73	0.81	0.94	1773
1774	-2.37	0.34	0.87	0.83	-0.09	0.37	0.0.1	-0.65	-1.07	-0.3	-5.39	-2.55	1774
1775	-0.51	1.79	1.72	0.21	-0.09	2.13	1.39	1.72	2.60	0.78	-1.97	0.71	1775
1776	-5.22	1.18	1.49	0.73	-0.87	1.61	2.30	1.35	0.59	0.6	0.77	0.69	1776
1782	2.38	-0.61	-0.99	-0.62	-0.63	3.43	0.12	0.32	0.99	-1.09	-1.42	0.07	1782
1783	0.81	2.57	-0.38	2.01	1.97	2.36	3.05	1.56	1.67	1.91	-0.06	-0.87	1783
1784	-2.02	-0.59	-2.41	-1.51	0.24	0.07	-0.31	-0.21	0.18	-0.78	1.16	-0.76	1784
1785	0.53	-2.27	-2.96	-1.04	-1.52	0.78	-0.33	-0.46	0.10	-0.03	1.55	-0.20	1785
1786	0.13	0.06	-2.69	0.83	-1.08	1.45	-0.35	-0.41	-0.74	-1.2	-2.91	-0.04	1786
1787	0.94	2.21	2.09	-0.20	0.07	0.01	0.06	-0.31	0.58	1.81	-0.40	0.26	1787
1785	2.02	0.63	-1.14	0.95	1.00	1.28	-0.93	0.38	1.71	-0.31	-0.19	-6.92	1788
1798	1.15	2.27	1.31	2.48	2.71	2.06	2.00	2.15	1.09	1.01	0.01	-2.29	1798
1799	-0.71	-4.50	-1.94	-1.59	-2.12	-0.44	-0.18	-0.43	0.21	0.56	1.27	-2.55	1799
1800	-0.96	-2.07	-3.57	2.60	1.77	-1.69	-0.89	0.42	0.21	1.19	1.78	1.20	1800
1801	1.28	0.75	2.92	1.44	2.93	-0.10	1.30	0.58	0.69	2.17	1.97	0.46	1801
1802	-0.56	1.04	1.90		-1.78	-2.26	-3.12	-0.56	-0.87	0.98	0.45	0.32	1802
1803	-3.02	-1.58	-0.39	1.86	-1.69	-2.02	-0.21	-0.14	-1.76	-0.90	-0.31	-1.36	1803
1804	2.01	-1.47	-1.92	-0.58	0.25	-0.57	-0.30	0.12	1.23	0.77	-1.74	-2.85	1804
1805	-1.79	-2.02	0.26	-1.03	-2.14	-3.46	-1.48	-1.03	0.77	-2.53	-0.56	0.77	1805
1806	1.90	1.64	-0.49	-1.59	0.03	-2.28	-1.79	-0.08	1.32	0.35	1.27	2.54	1806
1507	1.75	1.46	-0.55	-0.56	-0.37	-1.60	-0.17	2.54	-2.22	0.02	0.19	0.77	1807
1803	1.04	-0.77	-1.30	-1.40	0.19	0.02	1.26	1.34	1.10	-0.14	-0.85	-2.12	1808
1809	-2.64	0.30	-0.42	-2.52	0.60	-0.91	-0.59	0.47	0.30	-0.14	-0.23	1.65	1809
1810	0.60	-0.28	0.05	-1.19	-2.69	-1.01	-0.07	-0.29	0.51	-0.79	-0.22	0.10	1810
1811	-0.65	0.23	2.16	-0.71	1.75	0.96	2.07	-0.32	-0.26	1.28	1.12	1.07	1811
1812	0.40	1.21	-1.55	-2.62	-1.63	-0.97	-2.38	-0.61	-1.67	1.36	-1.14	-3.56	1812
1813	0.23	2.66	1.50	0.55	-1.01	-1.00	0.44	-0.89	-0.53	-2.01	0.20	0.97	1813
1814	-3.81	-4.01	-2.15	0.28	-2.99	-1.97	0.13	-0.87	-1.05	-0.58	1.22	0.85	1814
1515	-0.67	1.47	1.82	0.30	-0.26	-1.26	-1.95	-0.81	-1.11	0.59	0.20	-0.66	1815
1816	0.72	-1.56	-0.05	-0.49	-2.69	-1.87	-0.19	-1.86	-0.89	-10.7	-0.95	-0.31	1816

The numbers without sign must be subtracted; those with the sign - must be added.

Denmark. - Copenhagen (contimued).
For Reducing the Monthly and Yearly Means of Single Years to the Means derivea from Series of Years.

Year.	Jan.	Feb.	March	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	5	\bigcirc	0.	\bigcirc	\bigcirc	\bigcirc	-		\bigcirc	0	0	
1817	2.79	2.98	1.13	-1.10	-0.01	-1.04	-1.53	-1.38	0.62	-2.24	1.41	-1.71	1817
1818	1.99	1.73	2.40	-1.05	-0.05	0.97	1.29	-0.24	0.69	0.87	1.48	0.20	1818
1519	3.46	2.30	2.39	1.56	1.25	1.69	1.58	3.28		-0.79	-1.03	-1.26	1819
1820	-1.67	0.51	0.52	1.55	0.25	-1.16	-0.36	-0.33	-0.60	-0.64	-0.56	-0.87	1820
1821	0.36	0.16	0.24	2.24	-0.43	-1.77	-1.81	-0.86	0.67	1.62	1.65	2.47	1821
1822	2.56	3.82	3.64	2.28	1.59	0.87	0.24	-0.17	-0.64	1.52	2.63	0.56	1822
1523	-2.60	-0.08	0.70	-0.04	0.51	0.15	-0.94	0.41	0.47	1.02	1.88	1.74	1523
1824	3.65	2.36	0.97	0.91	0.14	1.22	-0.61	-0.48	1.62	0.09	1.20	2.15	1824
1826		-•	-•	-•	4.30	5.91	7.76	, 6.63	-•		-•	2.04	1826
1527	0.16	-2.30	0.59	2.14	1.44	1.93	0.09	-0.29	1.48	1.16	-1.20	2.30	1827
1828	-0.07	0.43	1.37	0.58	1.31	1.34	1.36	0.26	0.41	0.46	0.61	0.50	1828
1829	-1.14	-3.06	-0.95	-1.00	1.84	1.50	-0.23	-1.01	0.03	-1.43	-2.91	-3.60	1529
1830	-2.26	-2.85	1.39	0.69	-0.18	-0.86	0.30	-0.81	-0.95	0.15	1.75	-0.22	1830
1831	-1.60	0.61	-0.16	1.87	0.31	0.85	2.52	1.55	-0.59	2.71	-0.65	1.91	1831
1832	1.52	1.73	1.55	1.84	-0.23	1.29	-0.94	-0.06	-0.98	0.60	-0.47	0.58	1832
1833	0.05	1.50	-0.45	-0.72	2.32	0.72	0.79	-2.27	0.05	0.63	0.77	1.32	1833
1534	2.26	1.71	2.23	0.90	1.98	0.72	3.60	3.26	0.11	-0.05	0.22	0.59	1834
1835	1.87	2.16	1.66	-0.02	-0.92	1.17	1.03	-0.57	0.09	$-0.5 .5$	-1.44	-0.88	1835
1836	0.29	0.63	2.71	0.14	-0.17	0.21	-0.89	-1.86	-1.62	-0.15	-1.34	0.09	1836
1837	0.17	0.54	-1.08	-1.50	-1.10	0.05	-0.21	0.60	-0.80	-0.06	-0.91	-0.75	1837
1838	-2.8.3	4.8 .5	-0.56	-2.63	-0.97	-0.70	-0.09	-2.25	-0.44	-1.82	-2.01	-0.25	1838
1839	-0.17	-0.38	-2.06	-2.80	0.49	0.13	0.23	-1.2 t	-0.10	0.11	-0.19	-2.12	1839
1840	-0.63	-0.39	-0.64	0.35	-2.64	-2.17	-8.2.	-1.79	-1.9.7	-3.75	-0.51	$-2.6 .5$	1840
1841	-1.14	-2.52	0.97	0.62	2.21	-1.37	-2.56	-0.97	-0.71	-0.38	-0.36	2.37	1841
1842	-0.26	1.43	2.05	0.61	1.75	-0.11	-0.99	2.73	0.31	-0.85	-1.57	2.36	1842
184.3	1.82	0.79	-0.33	0.46	-0.96	-0.25	-0.67	1.03	-0.20	-1.23	3 0.86	2.99	1843
1844	0.07	-2.48	-1.50	0.74	1.49	-1.12	-2.17	-1.12	-0.62	-0.29) 0.46	-1.43	1844
184.5	1.24	-4.16	-4.45	0.54	-1.01	0.20	0.22	-0.86	-1.26	-1.04	11.28	0.59	1845
Means.	-1.16	-0.80	0.5 .5	4.45	8.98	12.45	13.81	13.50	10.36	7.05	3 3.12	0.68	Means.

France. - Paris.

For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	A pril.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	\bigcirc		,	,	\bigcirc		\bigcirc	\bigcirc	-	0	-	
1806	3.35	1.38	0.28	-1.54	2.07	0.77	0.64	-0.38	0.53	-0.	1.6	4.00	1806
1807	0.34	1.39	-2.74	-0.63	1.28	-0.52	1.94	2.34	-2.08	1.1	-0.7	-1.7.3	1807
1808	0.42	-1.42	-2.19	-2.23	2.55	-0.30	2.14	0.66	-0.78	-1.7	0.58	-1.87	1808
1809	2.95	2.91	0.42	-2.72	0.54	-1.38	-1.08	-0.36	-0.81	-1.0	-1.54	1.04	1809
1810	-2.90	-1.11	1.16	-0.42	-0.62	-0.06	-0.74	-0.70	1.75	0.25	0.80	1.30	1810
1811	-1.83	2.31	1.90	1.58	2.14	0.25	0.44	-0.66	0.95	2.55	1.38	0.72	1811
1812	-0.32	1.63	-0.82	-1.92	0.88	-0.75	-0.96	-0.46	-0.17	0.5	-1.95	-3.71	1812
1813	-1.18	1.33	-0.23	0.71	0.48	-1.26	-1.12	-1.42	-1.35	0.2	-0.6	-0.17	1813
1814	-1.70	-3.37	-2.30	1.30	-1.67	-1.17	0.46	-0.91	-0.26	-1.22	-0.51	2.02	1814
1815	-1.98	2.39	2.29	0.36	0.18	-0.89	-0.93	-0.54	-0.11	0.77	-2.70	-1.34	1815
1816	0.54	-1.69	-0.71	0.10	-1.40	-1.83	-2.53	-2.37	-1.26	0.2	-2.24	0.07	1816
1817	2.48	2.2	-0.20	-2.02	-1.70	0.61	-1.34	-1.66	0.99	-3.16	1.80	-1.12	1817
1818	1.94	-0.21	-0.15	1.20	-0.65	1.75	1.14	-0.18	0.0 .5	0.38	1.98	-1.23	1818
1819	2.43	0.95	0.16	1.31	0.02	-0.85	0.30	0.78	0.55	-0.12	-1.66	-0.30	1819
1820	-2.02	-0.93	-1.42	1.20	-0.30	-1.37	-0.35	0.11	-1.19	-0.9	-1.30	-0.22	1820
1821	1.02	-2.5	0.54	1.34	-1.95	-2.05	-1.39	1.20	0.55	-0.14	2.70	3.10	1521
1822	1.96	1.52	2.6	1.0	1.72	3.26	0.09	0.42	0.15	1.72	1.82	-3.42	1522
1823	-1.79	0.88	-0.14	-0.62	0.50	-1.69	-1.23	0.46	0.00	-0.58	-0.5 4	1.58	1823
1824	0.61	0.63	-1.00	-0.54	-1.52	-0.61	-0.02	-0.17	0.89	0.54	2.30	2.74	1894
1825	1.23	0.06	-0.94	1.54	-0.22	-0.05	1.24	0.70	1.77	0.75	0.40	2.18	1823
1826	-2.77	1.73	0.56	0.27	-1.48	1.35	1.59	2.10	1.11	1.7	-1.08	1.72	1826
1827	-1.63	-4.14	1.14	1.14	0.18	-0.09	0.85	-0.43	0.46	1.	-0.77	2.58	1827
1828	3.23	0.50	0.29	0.50	0.46	0.34	0.34	-0.74	0.74	-0.30	0.51	0.89	$18: 8$
1829	-3.16	-0.97	-0.75	-0.08	0.32	0.05	-0.10	-1.30	-1.53	-1.01	-1.64	-5.70	18.9
1830	-3.42	-2.59	2.51	1.68	0.11	-0.82	0.16	-1.23	-1.50	-0.44	0.83	-0.82	1830
1831	0.13	1.53	1.85	1.30	-0.20	-0.12	0.86	0.12	-0.3.5	2.83	-0.10	1.50	1831
1832	-0.36	-0.59	-0.93	0.65	-1.05	0.22	0.68	1.87	-0.10	0.06	-0.10	0.53	1832
1833	-1.73	2	-1.82	-0.38	2.54	1.06	-0.24	-1.65	-1.53	0.57	-0.61	3.46	18:33
1834	4.34	-0.42	0.67	-0.70	1.59	0.70	1.25	0.69	1.24	0.29	-0.05	-0.02	1834
1835	1.35	1.69	-0.14	-0.38	-0.55	0.18	1.92	1.42	0.36	-0.92	-1.10	-2.84	1835
1836	0.55	-1.0.3	1.62	-1.02	-1.67	1.06	0.56	0.30	-1.24	4-0.04	0.66	0.36	1836
1837	0.39	0.97	-3.26	-3.34	-2.79	1.14	-0.32	1.26	-0.84	40.04	-0.62	0.60	1837
1838	-5.21	-5.03	0.26	-2.52	-0.23	-0.68	-0.32	-0.42	-0.12	-0.04	0.74	-1.48	1833
1839	0.75	0.73	-0.62	-1.70	-0.71	1.62	-0.04	-0.86	0.00	-0.56	1.10	1.60	1839
1840	1.23	-0.47	-2.58	2.26	0.49	1.02	-1.08	0.98	-0.64	4-1.40	0.99	-4.76	1840
1841	0.47	-1.35	1.94	0.42	2.25	-1.26	-1.68	-0.50	2.28	0.12	2.02	1.48	1841
1842	-2.6.5	0.33	1.30	0.26	0.05	2.66	0.52	3.18	-0.12	-2.25	-1.10	0.36	1842
1843	2.07	-0.39	1.06	0.50	-0.31	-0.86	-0.48	0.70	0.96	60.12	2. 0.54	0.60	1843
1844	0.83	-1.31	0.15	2.22	-1.35	0.54	-1.12	-2.34	0.24	$4-0.36$) 0.26	-3.40	1844
Means.	1.53	3.35	5.33	7.90	11.59	13.66	14.96	14.82	12.52	29.00	0 5.41	2.92	Means

The numbers witnout sign must be subtracted; those with the sign - must be added.

Holland. - Zwanenburg.

For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	\bigcirc	-	-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	
1743	0.60	1.40	-0.15	-2.69	-0. 40	0.59	-1.15	0.0.)	-0.22	-2.27	1.83	-0.23	1743
1744	-0.91	-2.36	-0.74	-0.80	-0.89	-0.26	-1.02	-1.23	-0.71	0.39	0.66	0.21	1744
1745	0.15	-1.64	-0.70	-0.43	-0.04	-0.69	-0.92	-1.20	0.02	-0.27	-0.50	-2.16	1745
1746	-0.82	-1.70	-2.19	-1.20	1.36	-0.62	0.04	-1.28	-0.65	-2.09	-2.80	1.02	1746
1747	-0.47	2.16	-2.29	-0.15	-0.52	0.92	-0.65	-0.21	0.34	-0.49	1.62	1.60	1747
1748	-0.24	-2.63	-4.14	-2.12	-0.31	1.45	0.08	0.39	-0.03	0.28	1.65	3.46	1748
1749	2.68	0.11	-1.09	-0.52	1.11	-2.30	-0.10	0.23	-0.11	-0.35	-0.4.	1.6.)	1749
1750	-0.34	2.60	2.88	-0.06	0.14	-0.10	0.97	-0.45	0.75	-1.2.5	-1.63	-0.3 I	1750
1751	1.09	-2.29	1.33	-0.60	-1.21	-0.10	$-0.7 \mathrm{~S}$	-0.52	-1.19	-0.48	-1.31	0.33	1751
1752	1.71	-0.56	. 7	3	-1.10	0.95	-0.18	-0.09	0.39	0.07	0.90	1.37	1752
1753	-1.80	-0.11	1.34	0.01	-0.30	1.19	-0.34	-1.00	0.30	0.59	-0.88	0.67	1753
1754	0.64	-1.14	-2.23	-1.40	0.41	-0.49	-1.33	-0.16	-0.44	0.61	0.05	-0.36	1754
17.55	-1.95	-3.19	-1.24	1.72	-1.37	1.59	-0.31	-1.33	-1.12	-0.08	-0.03	1.22	1755
1756	3.20	1.32	0.38	-1.37	-1.53	0.97	0.80	-0.50	0.74	-0.31	-1.13	-2.60	1756
1757	-2.22	-0.59	0.00	1.00	-1.01	-0.11	2.37	0.36	-0.21	-1.09	1.43	-0.09	1757
1758	-1.28	0.37	0.41	-0.39	1.95	0.29	-1.41	- . 99	-0.17	0.21	0.05	0.36	1758
1759	2.86	2.13	1.49	0.86	-0.58	0.99	1.66	0.71	-0.07	1.05	-1.54	-2.68	1759
1760	-1.64	-0.69	0.15	0.77	-0.22	1.31	-0.15	-0.40	1.14	0.28	1.08	2.67	1760
176 I	1.78	1.90	2.37	0.17	0.92	0.56	-0.61	1.16	0.67	-1.75	0.34	-1.59	1761
1762	2.10	0.09	$-1.2 .3$	2.37	0.93	0.67	0.30	-1.31	-0.04	-1.98	-1.37	-2.02	1762
1763	-4.88		-0.34	-0.24	-1.04	0.28	-0.08	0.2	-0.56	-0.99	0.56	1.52	1763
1764	3.37	2.52	0.17	0.52	1.71	0.02	1.43	-0.32	-1.14	-0.74	-0.45	-1.01	1764
1765	2.24	-2.13	2.30	1.62	0.27	1.22	-0.84	0.85	-0.05	1.24	0.08	-0.82	1765
1766	-0.22	-0.78	0.72	1.67	0.37	0.35	0.20	0.45	0.49	0.32	0.46	-0.68	1766
1767	-3.34	2.34	1.05	-0.63	-1.36	-0.94	-0.80	0.36	0.98	0.71	2.15	-1.33	1767
1768	-1.94	0.9	-0.07	-0.09	-0.02	0.54	0.65	0.33	-1.27	-0.37	0.70	0.72	1768
1769	1.19	0.09	0.85	0.99	-0.2I	-0.53	0.53	-0.06	0.48	-1.71	0.58	1.43	1769
1770	1.45	0.92	-1.12	-1.04	-0.15	-0.34	0.02	1.20	1.59	0.19	0.06	2.01	1770
1771	-0.50	-1.4	-2.33	-2.59	1.72	0.26	-0.29	-1.01	0.04	0.59	0.69	1.68	1771
1772	0.11	0.21	0.6	-0.50	-1.11	1.19	0.57	0.36	0.83	2.68	2.36	1.16	1772
1773	3.38	-0.57	1.36	0.81	0.35	0.31	-0.16	1.17	0.66	1.79	1.51	1.76	1773
1774	0.58	1.62	2.18	1.30	0.08	0.96	1.12	0.51	-0.30	1.23	-1.84	-0.45	1774
1775	1.31	3.40	2.12	1.04	-0.12	2.19	0.75	0.88	1.84	1.25	-1.53	1.65	1775
1776	-4.40	1.20	1.99	1.45	-0.85	1.11	1.56	0.47	-0.0 I	1.31	0.46	0.05	1776
1777	-0.23	-1.57	1.14	-0.56	0.15	-0.19	-0.07	0.88	0.60	0.73	1.97	-0.60	1777
1778	-1.26	-1.70	-0.55	0.36	0.71	0.43	1.43	0.51	-1.58	-2.02	1.08	2.90	1778
1779	-0.28	2.55	1.79	1.21	0.61	-0.77	0.60	1.51	1.27	1.6 I	0.19	0.53	1779
17~0	-1.54	-0.56	2.65	-0.78	1.07	-0.51	-0.25	2.04	1.08	1.03	-0.07	-1.09	1780

The numbers without sigo must be subtracted ; those with the sign - must be added.

Holland. - Zwanenburg (continued).
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	A pril.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	\bigcirc	-	-	,	\bigcirc	,	,	\bigcirc	\bigcirc		\bigcirc	
1781	-0.97	1.18	1.18	1.23	0.37	2.47	1.04	1.56	0.91	0.75	0.36	0.39	1781
1782	2.88	-1.88	-0.56	-1.11	-1.09	0.77	0.34	-0.54	0.50	-0.93	-2.43	-0.89	1782
1783	2.39	2.13	-1.31	1.24	-0.05	0.92	2.75	0.93	0.44	0.73	0.48	-2.74	1783
1784	-3.26	-3.01	-2.04	-2.16	1.23	0.15	-0.37	-0.80	0.94	-2.30	0.80	-1.60	1784
1785	-0.06	-2.34	-3.32	-1.54	-0.96	-0.46	-0.01	-0.59	1.14	0.40	0.41	-1.70	1785
1786	0.35	-0.08	-3.19	0.44	-0.59	0.72	-1.80	-0.75	-1.55	-1.49	-3.59	-0.23	1786
1787	-0.23	1.24	1.52	-0.90	-1.11	-0.11	-0.82	-0.56					1787
1788	2.20	-0.42	-1.15	0.24	0.58	1.05	0.57	-0.66	0.30	0.33	-0.73	-6.23	1788
1789	-2.66	0.98	-3.65	-1.64	0.56	-0.65	-0.58	-0.07	-0.40	-1.13	-1.10	1.84	1789
1790	2.20	2.51	1.53	-2.00	0.89	-0.72	-1.76	-1.25	-1.73	-0.86	-1.71	0.89	1790
1791	2.74	1.29	1.23	1.34	-1.21	-1.25	-1.20	-0.1.	-0.74	-0.60	-0.79	-0.53	1791
1792	1.06	-0.38	0.03	1.70	-1.11	-0.93	-0.07	0.27	-1.53	-1.13	-0.14	1.05	1792
1793	0.52	1.59	0.03	-1.40	-1.61	-1.70	0.67	-0.65	-1.65	0.98	-0.17	1.60	1793
1794	-0.21	2.09	2.58	2.59	-0.76	-0.43	1.52	-0.87	-1.14	-0.54	0.41	-2.08	1794
1795	-4.52	-1.53	-0.92	0.85	-1.88	-0.18	-2.29	-0.08	1.51	2.39	0.37	2.87	1795
1796	4.72	1.76	-0.99	1.00	-0.63	-0.50	-0.91	0.02	0.64	-0.80	-0.46	-2.07	1796
1797	0.84	0.52	-0.18	0.81	0.52	-1.18	1.38	0.01	-0.78	-0.60	0.32	1.59	1797
1798	1.45	1.73	0.31	1.22	0.11	0.77	-0.05	0.36	0.19	0.68	-0.17	-3.49	1798
1799	-2.11	-2.00	-1.77	-2.19	-1.68	-1.83	-1.47	-1.08	-0.72	-0.63	0.59	-3.54	1799
1800	-0.65	-1.76	-1.97	2.08	1.85	-2.10	-1.32	0.04	0.50	0.02	1.12	-0.46	1800
1801	1.97	-0.59	1.61	0.26	0.68	-1.43	-0.76	0.32	0.45	1.16	0.53	0.47	1801
1802	-0.75	0.24	0.56	0.55	-1.10	-0.28	-1.69	1.08	0.03	1.15	0.54	1.19	1802
1803	-3.04	-2.29	0.00	2.06	-1.55	-0.92	1.43	0.75	-1.11	0.06	0.29	0.43	1803
1804	3.30	0.13	-0.92	-0.84	1.35	0.26	0.03	-0.20	1.57	0.62	-1.79	-2.84	1804
1805	-1.22	-0.36	-0.07	-0.56	-2.16	-1.97	-1.18	0.05	1.47	-2.00	-1.69	0.94	1805
1806	3.14	1.58	0.2.	-1.95	1.79	-0.52	0.13	0.67	1.41	0.23	2.52	4.12	1806
1807	2.36	1.74	-1.32	-0.37	1.09	-0.17	1.64	2.53	-1.40	1.63	-0.15	0.84	1807
1808	1.19	0.07	-1.71	-2.02	2.07	-0.46	2.62	1.64	0.24	-1.35	-0.05	-1.50	1808
1809				-2.53	1.30	-1.03	-0.47	0.09	-0.27	-1.32	-0.99	0.68	1809
1810	-1.94	-1.39	-0.36	-0.41	-1.76	-0.96	0.05	-0.07	0.99	-0.63	-0.03	1.06	1810
1811	-2.75	0.55	1.41	1.16	2.75	1.53	0.47	-0.30	-0.49	2.40	1.80	1.05	1811
1812	0.81	1.20	-1.21	-2.48	0.16	-0.68	-1.28	-0.56	-0.62	0.46	-2.11	-4.00	1812
1813	-0.84	1.53	0.16	0.04	0.85	-0.32	-0.12	-0.91	-0.75	-1.32	-0.76	-1.31	1813
1814	-3.33	-4.20	-2.89	1.27	-2.01	-1.86	0.44	-0.66	-0.72	-1.44	-0.17	0.17	1814
1815	-2.69	0.96	2.23	0.59	0.59	-0.03	-1.63	-0.77	-0.54	0.07	-0.97	-1.90	1815
1816	0.52	-1.64	-0.78	-0.28	-1.48	-2.28	-1.31	-1.85	-1.14	-0.12	-2.06	-0.45	1816
1817	2.36	2.31	0.19	-2.12	-1.38	0.84	-0.83	-1.30	0.69	-3.16	1.83	-0.67	1817
1818	1.96	-0.40	0.40	-0.21	-0.56	1.69	0.99	-0.64	-0.36	-0.34	0.7	-1.22	1818

The numbers without sign must be subtracted; those with the sign - must be added.

Holland. - Zwanenburg (continued).
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reanmur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	,		-	0.81	091	0.50			0.55	-0.79	${ }_{-1}{ }^{\circ} 18$	- ${ }_{-2.18}$	
1819	1.47	1.04	0.68	0.84	0.91	0.50	0.56	1.12	0.55	-0.79			1819
1820	-2.89	-1.49	-1.21	0.72	0.12	-1.71	-1.06	-0.11	-0.93	-0.81	-1.84	-1.59	1820
1821	-0.67	-1.32	-0.16	1.66	-1.24	-1.91	-1.81	-0.14	0.72	0.20	1.72	2.08	1821
1822	2.64	1.93	2.26	0.40	1.53	1.65	0.24	-0.19	-0.88	0.74	1.99	-2.95	1822
1823	-6.29	-0.94	0.11	-1.19	0.44	-1.88	-0.99	0.12	-0.37	-0.66	0.90	1.65	1823
1824	2.30	0.20	-0.22	-0.78	-0.47	-0.40	-0.19	0.00	1.03	0.36	1.52	2.59	1824
1825	2.63	0.60	-1.42	0.43	0.12	0.00	-0.04	-0.36	1.20	1.04	1.03	1.70	1825
1826	-2.57	0.97	0.87	0.17	-0.59	1.52	2.12	2.01	0.30	1.95	0.16	1.99	1826
1827	-0.65	-3.83	0.58	0.93	0.40	-0.24	0.14	-0.55	-0.14	0.88	-0.91	2.79	1827
1828	0.75	-0.75	1.05	0.43	0.49	0.70	0.79	-0.6.	0.43	0.24	-0.18	1.96	1828
1829	-3.35	-2.47	-1.43	-0.45	0.10	-0.37	-0.42	-1.35	-1.52	-0.43	-1.61	-5.77	1829
1830	-2.70	-4.01	0.50	0.75	0.13	-1.45	0.59	-1.17	-1.45	0.34	1.00	-1.80	1830
1831	-1.07	0.04	1.24	1.61	-0.10	-0.09	0.90	0.66	-0.14	3.16	6 0.66	1.72	1831
1832	-0.77	-1.34	-0.43	0.55	-1.49	-0.07	-1.74	-0.12	-0.64	0.48	-1.37	0.72	1832
1833	-2.12	1.33	-1.62	-0.68	2.22	0.92	-0.48	-2.08	-0.99	0.11	1 0.44	3.07	1833
1834	4.21	0.40	1.15	-0.87	1.31	0.57	1.80	1.00	0.86	0.68	-0.31	1.42	1834
1835	1.21	1.81	0.47	-0.76	-1.09	0.92	0.47	0.07	-0.22	-0.77	-1.44	-0.44	1835
Means.	0.99	3.14	3.86	6.50	10.12	12.45	13.97	14.13	12.30	8.61	1.84	2.16	Means.

XCl. England. - London.

Degrees of Reaumur.

| 1794 | -0.96 | 2.72 | 1.23 | 1.64 | -0.99 | -0.43 | 1.53 | -0.38 | -1.35 | -0.61 | 0.36 | -1.10 | 1794 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1795 | -5.04 | -2.08 | -1.26 | -0.23 | -0.46 | -1.98 | -0.04 | 0.11 | 1.76 | 1.61 | -0.88 | 2.46 | 1795 |
| 1796 | 4.42 | 0.50 | -1.00 | 1.10 | -1.26 | -1.00 | -1.28 | -0.51 | 1.23 | -1.45 | -0.97 | -3.76 | 1796 |
| 1797 | -0.01 | -1.44 | -1.51 | -0.45 | -0.70 | -1.56 | 0.62 | -0.82 | -0.97 | -1.34 | -0.44 | 0.93 | 1797 |
| 1798 | -3.44 | -0.28 | -0.12 | 1.41 | 0.44 | 1.31 | -0.10 | 0.88 | -0.11 | 0.09 | -1.24 | -2.39 | 1798 |
| | | | | | | | | | | | | | |
| 1799 | -1.00 | -1.05 | -1.74 | -1.94 | -1.39 | -1.34 | -0.79 | -1.40 | -1.19 | -1.02 | 0.13 | -2.79 | 1799 |
| 1800 | 0.59 | -2.04 | -1.70 | 1.14 | 0.66 | -1.37 | 0.66 | 1.23 | 0.42 | -0.66 | -0.15 | -0.24 | 1800 |
| 1801 | 1.64 | -0.08 | 1.26 | -0.35 | -0.10 | -0.09 | -0.48 | 0.76 | 0.88 | 0.33 | -1.08 | -1.37 | 1801 |
| 1802 | -1.21 | 0.11 | -0.04 | 1.14 | -1.50 | -0.66 | -2.20 | 1.74 | 0.49 | 0.23 | -0.89 | -0.56 | 1802 |
| 1803 | -0.92 | -1.03 | 0.51 | 0.88 | -1.12 | -0.89 | 0.97 | 0.41 | -1.77 | -0.40 | -0.31 | 0.98 | 1803 |
| | | | | | | | | | | | | | |
| 1804 | 3.39 | -0.73 | 0.00 | -0.95 | 1.80 | 1.07 | -0.57 | -0.20 | 1.16 | 0.66 | 0.68 | -1.52 | 1804 |
| 1805 | -0.52 | 0.04 | 0.34 | -0.20 | -1.38 | -1.49 | -0.89 | 0.60 | 1.15 | -1.06 | -1.17 | 0.08 | 1805 |
| 1806 | 2.27 | 1.27 | -0.23 | -1.21 | 1.00 | 0.64 | -0.06 | 0.38 | 0.16 | 0.54 | 2.11 | 3.64 | 1806 |
| 1807 | 0.64 | 0.54 | -1.80 | -0.14 | 1.05 | -0.34 | 1.07 | 1.36 | -1.61 | 1.44 | -1.60 | -1.19 | 1807 |
| 1805 | 0.64 | -1.01 | -1.80 | -1.43 | 1.99 | 0.02 | 1.87 | 0.82 | -0.55 | -1.76 | 0.58 | -1.32 | 1808 |
| 1809 | -0.11 | 2.36 | 0.6 .5 | -2.05 | 1.23 | -0.38 | -0.75 | -1.09 | -0.24 | -0.08 | -1.33 | 0.72 | 1809 |

The numbers without sign must be subtracted; those with the sign - must be added

England. - London (continued).
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	\bigcirc	,	0	,	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	
1810	-0.47	0.01	0.38	0.12	-1.44	0.20	-0.44	-0.16	1.32	0.95	0.32	-0.03	1810
1811	-1.09	0.85	1.54	1.64	2.03	0.51	0.36	-0.51	0.83	2.50	1.29	-0.16	1811
1812	0.42	1.43	-0.68	-1.56	-0.19	-1.09	-1.24	-1.89	-0.64	-1.10	-0.75	0.90	1812
1813	-0.51	1.34	0.87	-0.81	0.12	-0.96	-0.97	-1.00	-0.99	-1.05	-0.84	-1.01	1813
1814	-3.80	-2.21	-2.55	1.06	-1.66	-2.03	-0.04	-0.91	-0.72	-1.10	-0.75	0.90	1814
1815	-1.49	1.34	1.94	0.44	1.19	0.24	-0.53	-0.07	2.48	0.55	-1.42	-0.83	1815
1816	0.64	-0.70	-0.64	-0.50	-0.99	-1.27	-2.35	-1.18	0.96	0.28	-1.24	-0.48	1816
1517	1.84	2.05	0.25	-0.63	-1.75	0.77	-1.46	-2.60	-0.81	-1.76	2.14	-0.70	1817
1818	1.67	-1.32	0.03	0.04	-0.06	2.24	2.40	1.98	2.30	2.06	3.20	-0.08	1818
1819	2.29	0.85	1.36	1.37	0.88	-0.69	0.36	1.58	0.70	3.08	-0.75	-0.74	1819
1820	-1.44	-0.66	0.25	1.68	-0.01	-0.74	-0.71	-1.18	-0.99	-0.96	-0.22	0.59	1820
1821	1.04	-0.97	0.87	2.08	-1.26	-1.80	-1.55	0.47	1.28	0.32	2.32	2.32	1821
1822	2.16	2.19	2.78	0.48	1.45	1.57	0.36	0.29	-0.24	1.04	2.36	-1.14	1822
1823	-1.40	0.19	0.16	-0.10	2.16	0.33	0.14	0.78	0.39	-0.56	0.54	0.55	1823
1824	0.78	2.41	-0.73	-0.94	-1.48	-1.40	0.00	-0.29	0.48	-0.03	1.38	1.08	1824
1825	1.31	-0.21	-1.17	1.28	0.08	-0.03	1.47	0.38	1.63	0.32	-0.84	0.59	1825
1826	-1.49	1.61		1.46	1.16	1.97	1.69	1.67	0.30	1.28	-1.11	1.19	1826
1827	-0.96	-3.19	0.74	0.39	-0.08	-0.40	0.74	-0.73	0.21	0.84	-0.28	1.99	1827
1828	1.73	0.54	1.00	0.28	0.70	0.88	0.36	-0.62	0.52	-0.16	0.65	2.37	1828
1829	-1.76	-0.24	-1.08	-0.85	0.50	0.35	-0.48	-1.22	-1.41	-1.16	-1.60	-3.14	1829
1830	-2.31	-2.17	1.98	1.15	-1.39	-1.09	0.65	-1.09	-1.37	0.32	0.63	-2.12	1830
1831	-0.73	1.01	1.16	1.21	-0.21	0.55	1.49	1.29	-0.04	2.39	-0.08	1.21	1831
1832	0.13	-0.56	-0.42	0.35	-0.70	0.57	-0.20	0.18	-0.06	0.52	0.47	1.08	1832
1833	-0.64	1.45	-1.68	-0.10	2.72	0.66	-0.13	-1.31	-1.41	0.24	0.16	2.21	1833
1834	3.73	0.48	1.16	-0.48	1.59	1.20	1.29	0.76	0.70	0.10	0.45	0.35	1834
1835	0.82	0.81	-0.22	0.30	-0.12	0.71	0.87	1.09	0.21	-0.90	0.05	-1.76	1835
1836	0.80	-0.99	0.94	-1.12	-1.28	0.48	0.18	-1.11	-1.50	-1.14	-0.55	0.28	1836
1837	0.73	0.74	-2.22	-2.79	-2.01	0.04	0.05	-0.16	-0.75	0.21	-0.57	1.17	1837
1838	-2.93	-2.57	0.18	-1.50	-0.88	0.02	-0.31	-0.42	-0.92	0.10	-0.68	-0.03	1838
1839	0.73	0.14	-1.08	-2.48	-1.24	0.66	-0.35	-0.73	-1.06	-0.52	0.67	-0.21	1839
1840	1.27	-0.50	-1.97	-0.01	0.14	1.02	-0.77	0.73	-1.10	-1.32	0.	-2.41	1840
1841	-0.38	-1.41	2.58	0.61	2.08	2.17	-1.02	-0.02	0.16	-0.01	0.40	1.06	1841
1842	-1.02	0.81	1.47	-0.43	0.59	2.84	0.18	2.11	0.19	-1.70	0.36	62.50	1842
Means.	2.38	3.81	5.00	7.30	10.46	12.92	14.26	14.07	12.06	8.88	5.51	3.81	Means

The numbers without sign must be subtracted ; those with the sign - must be added.

Scotland. - Kinfauns Castle.

For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
												\bigcirc	
1814	-4.71	-1.63	-1.73	0.56	-2.46	-2.36	-0.60	-1.12	-0.34	-1.16	-1.61	-1.46	1814
1815	-1.69	1.13	0.16	-0.03	0.95	0.24	-0.12	0.23	0.27	0.74	-1.68	-2.47	1815
1816	-0.24	-1.60	-1.49	-1.58	-0.74	-0.60	-0.96	-0.53	-0.99	-0.24	-1.12	-1.84	1816
1817	1.60	1.29	-0.44	0.33	-1.12	0.50	-0.43	-1.11	0.18	-2.22	1.78	-1.38	1817
1818	0.51	-1.03	-1.41	-1.59	1.03	1.43	0.85	-0.22	-0.15	2.34	2.54	0.25	1818
1819	0.85	-0.88	0.67	-0.20	-0.36	-0.85	0.07	2.00	0.30	-0.32	-2.35	-2.60	1819
1820	-2.43	0.95	0.33	1.10	0.20	-0.12	0.39	-0.26	-0.36	-1.20	0.15	0.36	1820
1821	0.55	0.97	0.26	1.12	-1.09	-0.45	-0.01	0.84	1.44	0.83	0.38	0.73	1821
1822	1.85	1.25	1.08	0.79	0.97	2.04	0.50	0.26	-0.81	0.48	1.38	-0.61	1822
1823	-0.91	-1.69	-0.16	-0.60	0.63	-1.01	-0.92	-0.55	-0.15	-0.56	2.02	-0.04	1823
1824	2.64	1.29	-0.56	0.39	0.18	0.26	0.43	0.03	0.24	-2.16	-0.16	0.35	1824
1825	1.94	0.84	0.45	0.82	-0.09	0.31	1.59	1.53	1.85	1.79	-0.32	0.80	1825
1827	0.68	-0.77	0.02	0.73	0.51	0.38	0.16	0.37	1.48	2.48	-0.99	2.23	1827
1828	2.50	1.44	1.63	0.69	1.20	1.23	0.93	1.03	1.23	1.10	2.05	2.73	1828
1829	-0.38	0.96	0.42	-0.48	0.87	1.00	-0.12	-0.44	-1.02	0.34	-0.19	0.02	1829
1830	0.40	-0.22	2.07	0.97	0.60	-0.63	0.50	-1.13	0.11	1.33	0.92	-0.89	1830
1832	1.91	1.27	0.92	1.22	-0.19	0.50	0.24	0.93	1.35	1.53	-0.56	0.40	1832
1833	-1.40	0.51	-0.41	0.32	2.79	0.59	0.67	-0.98	-0.24	0.53	0.12	0.57	1833
1834	2.23	0.97	1.05	0.51	1.01	0.53	0.93	0.34	0.28	0.49	0.14	0.57	1834
1835	-0.27	0.72	-0.08	0.23	-0.58	0.20	-0.17	1.09	-0.10	-1.10	-0.31	-0.34	1835
1836	0.59	-0.67	-0.70	-0.81	0.10	-0.54	-1.16	-1.09	-1.67	-0.86	-0.94	-0.05	1836
1837	-0.07	0.20	-2.26	-2.35	-1.70	-0.05	0.52	-1.13	-1.32	0.23	-1.18	1.74	1837
1838	-2.58	-4.61	-0.83	-1.44	-1.75	-1.03	-0.04	-0.24	-0.53	-0.55	2.73	0.48	1838
1839	-0.90	-0.79	-1.56	-1.24	-1.18	-0.45	-0.34	-0.79	-0.64	-0.17	0.11	-0.35	1839
1840	0.65	-0.26	-0.07	1.00	-0.72	-0.40	-1.30	0.21	-1.29	-0.63	-0.17	-0.58	1840
1841	-2.19	-0.09	2.25	-0.25	0.51	-1.07	-0.83	-0.20	0.51	-1.52	-1.94	-0.49	1841
1842	-1.17	0.49	0.35	-0.07	0.48	0.02	-0.83	1.24	0.32	-1.52	-0.81	1.81	1842
Means.	1.77	2.74	3.87	5.71	8.13	10.58	11.76	11.28	9.52	6.72	4.35	2.96	Means.

XCIII. Finland. - Tornea.

| 1801 | | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1502 | -0.57 | -0.17 | -0.15 | 0.10 | -2.88 | -0.66 | -2.03 | -1.60 | -1.60 | 1.30 | -2.10 | -4.06 | 1801 |
| 1803 | -3.50 | -0.90 | -0.13 | 1.57 | 1.69 | -0.44 | -0.58 | 0.93 | -0.90 | 1.18 | 0.71 | -3.67 | 1803 |
| 1804 | -2.50 | -4.82 | -2.34 | 1.99 | 1.50 | -0.97 | 0.78 | -0.70 | -0.21 | 1.19 | 1.46 | -4.01 | 180.4 |
| 1805 | 3.36 | -2.94 | -1.15 | -0.79 | -1.56 | -2.90 | -1.03 | 0.62 | -1.34 | -4.62 | -2.83 | -2.98 | 1805 |
| 1806 | 2.91 | 1.91 | -0.03 | 2.02 | 1.00 | -1.18 | -1.90 | 2.00 | 1.20 | 0.13 | -0.97 | 0.74 | 1806 |
| 1807 | -3.40 | 1.94 | -1.25 | -2.57 | -1.93 | -0.61 | 0.34 | 0.89 | -1.41 | -2.30 | -0.20 | -0.92 | 1807 |
| 1808 | 1.80 | -1.50 | 0.19 | -2.31 | 1.14 | 2.65 | 0.53 | -0.11 | -0.51 | 3.53 | 2.24 | -3.74 | 1808 |
| 1809 | -7.19 | -3.99 | -2.74 | -3.78 | -1.91 | 0.62 | -0.50 | 1.16 | -0.34 | -0.25 | -1.67 | 8.07 | 1809 |
| 1810 | -2.18 | -2.36 | -2.41 | -2.45 | -6.45 | -0.68 | -2.13 | -0.68 | -1.34 | -1.23 | -4.13 | -2.20 | 1810 |
| 1811 | 2.98 | -2.74 | 3.64 | -2.04 | -0.69 | 0.42 | -0.91 | -2.66 | -1.05 | -1.90 | -0.10 | -2.06 | 1811 |
| 1812 | 1.18 | 1.85 | -3.37 | -1.39 | 0.55 | -2.94 | -2.53 | -1.20 | -2.85 | -0.78 | -4.18 | -1.15 | 1812 |
| 1813 | 1.32 | 1.15 | 1.70 | 1.88 | -0.71 | -1.58 | 1.87 | 0.08 | 1.58 | -2.89 | 3.65 | -1.43 | 1813 |

The numbers without sign must be subtracted; those with the sign - must be added.

Finland. - Tornea (continued).
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nor.	nec.	Year.
1814	$\stackrel{\bigcirc}{-7.01}$	2.	-1.85	0.92	-0.59		$\stackrel{\circ}{4.65}$	4.46	$\stackrel{\circ}{2.60}$	0.44	${ }_{-0.15}$	-4.50	1814
1815	22	3.16	0.66	.27	3.22	5.58	4.70	5.03	4.02	3.38	4.30	4.82	1815
1816	27	-8.23	-4.25	50	-3.05	-0.12	0.18	-0.41	1.97	0.16	1.17	2.29	1816
1:17	3.54	-2.13	-2.78	0.19	2.42	-1.14	0.65	-1.34	-0.36	-1.14	-0.07	-2.8.5	1817
${ }_{1} 18$	3.46	-3.34	-1.07	-2.61	-3.48	-0.92	2.98	-2.55	0.09	1.08	2.89	5.83	1818
1819	4.47	-0.15	-0.50	-2.07	23	1.46	. 90	2.22	1.04	-4.58	-3.62	-2.15	181
1820	-5.74	-0.22	-0	-1.32	-0.73	1.62	. 13	-0.17	0.18	-2.17	-1.94	-2.67	1820
1821	-2.18	1.12	0.50	83	2	-3.70	-2.44	-1.32	-0.58	. 58	-1.52	-4.13	1821
1822	0.13	6.44	5.68	4.22	1.67	-1.39	-0.89	1.75	-0.14	0.47	-2.05	4.46	1822
1823	-4.01	-1.08	15	0.66	0.87	-0.43	-0.09	-0.73	-0.86	2.06	-1.38	1.26	1823
1824	0.71	4.20	1.75	-0.22	-0.40	0.29	-0.89	-0	5	-2.18	-1.01	-0.96	1824
1825	3.99	12	1.83	78	-0.29	-0.43	-1.53	-0.17	6.34	2.14	2.35	3.2	1825
1826	1.99	. 70	99	0.50	2.65	1.56	2.28	1.70	-0.70	2.67	3.23	3.74	6
1827	0.03	0.00	0.59	-2.13	2.39	79	-2.00	-1.64	1.21	-1.53	-0.56	5.68	1827
1828	-0.50	-0.84	-1.77	-0.66	2.84	0.18	-1.73	-0.73	-2.86	1.1	0.50	1.69	1828
1829	1.26	-4.27	-2.69	-2.53	1.26	-0.31	0.30	-1.82	38	-1.78	-0.33	2.86	1829
1830	0.99	0.80	2.08	-0.54	-1.10	-0.66	-0.89	-1.73	-0.88	-0.03	3.44	-1.22	1830
1831	-3.98	-0.07	-2.31	2.01	0.98	1.98	0.81	0.79	-0.54	0.01	2.99		1831
1832	5.26	8.25	3.64	2.92	0.10	0.51	-1.11	-1.22	-3.67	2.86			1832
Means.	-12.5	-10.76	-7.19	-1.62	4.01	10.59	13.05	10.81	6.22	0.26	-6.27	-10.32	Means.

XCIV. North America. - Albany, N. Y.

Degrees of Reaumur.

1826	1.92	2.44	1.65	-1.02	3.23	1.07	0.72	1.09	1.57	1.46	0.81	0.35	1826
1827	-2.91	1.07	1.15	1.62	-0.02	0.05	0.55	0.08	0.43	1.14	-1.72	0.77	1827
1828	2.80	4.52	$2.10-$	-0.83	0.76	2.66	-0.41	1.33	0.35	-0.31	0.76	3.17	1828
1829	-0.21	-2.27	-0.87	0.12	2.09	0.03	-1.54	-0.42	-1.93	0.92	0.50	3.63	1829
1830	0.28	-0.11	1.41	3.64	-0.21	-0.92	0.81	0.27	0.19	1.42	3.83	4.71	1830
1831	-1.3	-1	2.77	1.89	1.07	2.11	0.32	1.01	1.00	1.52	0.63	-4.94	1831
1832	0.18	-0.57	0.16	-1.29 -	-1.35	0.19	-0.31	-0.31	0.53	0.67	1.15	0.76	1832
1833	2.34-	-1.34-	-1.15	1.75	1.53	-2.35	-1.06	-1.47	-0.55	-0.55	-0.61	0.18	1833
1834	-1.18	3.73	0.67	0.65	-0 05	-1.12	1.59	-0.03	0.27	-1.31	-0.36	-1.13	1834
1835	-1.06	-1.50	-0.98-	-1.59 -	-0.57	-0.34	-0.43	-0.90	-2.14	1.45	0.31	-3.06	1835
1836	-0.35	-3.59	-3.18 -	-2.27	-0.95	-1.30	0.20	-2.39	-0.39	-3.06	-0.62	-0.92	1836
1837	-3.40	-0.72	-1.94	-2.02	-1.23	0.07	-0.95	-0.9>	-0.60	-0.89	0.33	-0.49	1837
1838	3.34	-4.01	0.97 -	-3.07	-1.26	1.78	0.31	0.27	0.36	-0.68	-1.47	-2.11	1838
1839	-0.2.	1.62	0.14	0.79	-0.79	-1.79	0.15	-0.14	0.41	0.99	-0.94	-0.19	1839
1840	-3.32	3.14	0.60	1.32	0.96	-0.14	0.94	0.81	-0.91	0.28	0.28	-1.26	1840
1841	1.95	-0.72	-1.19-	-2.58	-1.13	1.90	0.	1.23	0.88	-1.72	-0.49	0.86	1841
1842	2.03	3.15	2.06	0.62	-1.96	-0.95	0.28	0.13	-1.09	-0.12	-1.00	-1.69	1842
1843	2.65	-3.06	-4.26-	-0.62	-0.62	-0.64	-0.55	0.64	0.85	-1.24	-1.11	0.93	1843
1844	-3.74	-0.15	0.27	2.97	0.47	-0.29	-0.60	-0.19	0.72	0.02	-0.20	0.17	1844
Means.	-3.58	-3.08	1.28	7.04	12.33	16.02	17.80	16.96	13.06	7.64	2.70	$\mid-165$	Means

The numbers without sign must be subtracted; those with the sign - must be added.

North America. - Salem, Mass.
For Reducing the Monthly and Yearly Means of Single Years to the Means derivad from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
1787	0.40	-1.37	0.2	-0.24	$\stackrel{0}{-0.61}$	-0.84	$\begin{gathered} 0 \\ -1.53 \end{gathered}$	-0.28	-1.13	-1.00	$\begin{aligned} & 0 \\ & 0.58 \end{aligned}$	$\begin{aligned} & \circ \\ & 0.07 \end{aligned}$	1757
1787	-1.38			-0.24		-0.84 -1.39	-1.5 .3 0.14	-0.2.17	-1.13	-1.00 -1.00	0.58 2.03	0.07 -1.60	1787
1788 1789	-1.88			-0.47	-1.94	-1.89	-0.	-0.17 0.05	-0.87	-1.00	2.03	-1.60 1.18	1788
	17	,		-0.47	-1.94	0.61	-0.	0.05	-0.47	-2.	0.47	1.15	789
1790	1.17	-1.04	-1.32	-1.47	-0.50	-0.50	-0.75	-1.50	-1.02	-0.56	-0.97	-2.82	1790
1791	0.17	-1.48	0.90	0.64	1.50	1.16	-0.08	0.16	-0.69	-2.23	-0.42	0.07	1791
1792	-2.94	-0.37	1.79	0.87	1.61	-0.84	-0.64	-0.28	-1.80	0.77	0.92	-1.15	1792
1793	1.03	0.70	1.42	1.51	2.55	2.07	0.59	0.75	0.37	-0.09	0.07	-0.10	1793
1794	0.95	-0.25	1.91	1.19	1.16	0.11	0.52	0.58	0.75	-1.26	-0.16	4.35	1794
1795	0.20	-0.50	0.54	0.21	0.39	0.12	-0.31	1.85	1.04	1.24	0.36	1.51	1795
1796	1.18	0.12	-0.37	1.1	-0.11	0.40	0.39	0.80	-0.06	-0.55	-1.26	-3.02	1796
1797	-1.15	2.24	0.55	-0.26	-1.2.	0.41	1.40	-0.45	-0.64	-0.83	-1.72	-2.52	1797
1798	0.68	-0.89	0.54	0.76	1.4	0.60	0.46	2.29	0.53	0.81	-1.57	-3.03	1798
1799	0.28	0.08	0.31	0.51	0.6	0.58	0.15	0.99	0.27	-0.16	-0.53	-0.53	1799
1800	0.31	0.24	-0.31	1.92	-0.12	1.22	1.15	0.11	0.04	0.43	-0.93	1.63	1800
1801	0.40	0.46	1.51	0.21	1.69	0.08	0.35	0.49	1.41	0.96	0.17	0.30	1801
1802	3.79	-0.16	0.76	0.31	-1.34	0.13	0.13	0.85	1.19	1.87	1.23	1.19	1802
1803	1.12	2.15	0.67	0.38	-0.81	0.53	-0.03	1.09	-0.24	0.96	-0.71	1.99	1803
1804	-0.48	0.08	-0.48	-0.98	1.55	0.20	-0.25	-0.44	0.28	-1.05	0.16	-1.76	1804
180.5	-1.46	1.02	1.92	1.45	0.91	0.11	1.40	052	1.23	-0.82	0.13	3.24	1805
1806	0.48	1.60	-1.83	-2.28	-0.44	-0.19	-1.12	-0.77	-0.52	-0.04	0.15	-0.06	1806
1807	-1.0.5	-1.13	-1.30	-0.31	-0.80	-0.62	0.05	0.00	-1.08	0.22	-0.65	2.45	1807
1508	0.13	1.41	1.55	0.37	-0.74	0.04	-0.15	-0.86	0.54	-0.72	0.69	0.72	1808
1809	-1.15	-1.73	-1.36	0.31	-0.24	-0.42	-1.90	-0.76	-0.95	3.00	-2.19	2.04	1809
1510	0.11	0.9 .5	-0.68	0.70	0.84	0.04	-0.93	-0.39	0.46	-0.12	-0.24	-0.34	1810
1511	0.30	0.11	1.69	-0.01	0.65	0.43	0.16	0.14	0.58	1.74	0.67	-0.34	1811
1812	-1.51	-1	-2.68	-1.05	-3.22	-2.04	-2.13	-1.64	-2.07	-0.30	-0.90	-0.73	1812
1813	-1.09	-0.34	-2.55	0.03	-1.46	-0.95	-1.17	0.44	1.02	-0.62	0.83	-0.70	1813
1814	-0.73	0.80	-0.51	1.08	0.76	-1.58	-0.30	-0.94	-0.57	-0.07	0.39	-1.78	1814
1815	-0.93	-1.98	0.2	-1.47	-1.49	-0.16	1.12	-1.82	-0.50	-0.69	1.07	-0.45	1815
1816	-0.16	0.07	-2.14	-0.44	-1.36	-2.36	-2.49	-1.31	-1.77	0.17	1.79	0.31	1816
1817	-0.71	-3.48	-1.43	-0.73	-0.44	-1.65	-0.52	-0.76	0.18	-0.70	0.78	0.68	1817
1818	-0.51	-3.56	0.14	-2.31	-0.42	1.17	0.85	-0.01	-0.84	0.61	1.92	-1.94	1818
1819	2.45	4.91	-2.30	-1.06	-0.23	1.33	0.64	0.59	1.63	0.64	1.26	-0.43	1819
1820	-1.5]	1.00	-0.22	-0.07	-0.93	0.51	1.95	0.26	1.52	-0.17	-0.98	-2.49	1820
1821	-2.75	1.50	-0.80	-0.97	-0.37	0.36	-1.05	0.83	-0.11	-0.05	0.42	-1.31	1821
1822	-1.60	-0.50	1.64	-0.87	1.77	0.09	0.44	0.06	1.54	0.75	0.96	0.12	1822
1823	0.37	-1.99	-0.99	0.20	-1.19	-0.42	-0.19	0.35	-1.63	-0.58	-1.72	0.52	1823
1824	2.28	0.47	-0.11	0.62	-0.84	-0.59	-0.14	-1.08	0.12	0.21	-0.61	1.43	1824
1825	1.30	1.27	2.16	1.49	0.69	1.74	2.36	-0.12	-1.05	0.70	-0.14	0.62	1825
1826	0.96	1.11	0.10	-1.05	2.95	0.04	1.56	-0.13	0.75	0.23	0.19	0.55	1826
1827	-1.49	0.52	0.64	1.56	-0.03	-0.60	-0.35	-0.82	-0.28	1.13	-2.74	0.01	1827
1828	2.42	4.05	1.10	-0.97	-0.68	1.06	0.36	0.96	0.37	-0.19	1.17	2.04	1828
Means.	-2.8	-1.85	1.54	6.36	11.0.5	15.61	17.97	17.17	13.80	8.56	3.53	-0.63	Means

The numbers without sign must be subtracted; those with the sign - must be added.
XCVI.

Iceland. - Reikiavik.
For Reducing the Monthly and Yearly Means of Single Years to the Means derived from Series of Years.

Degrees of Reaumur.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
	\bigcirc	-		-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
1823	1.80	-0.56	0.10	2.09	-0.60	0.06	2.44	1.76	0.84	-1.50	0.18	-0.86	1823
1824	-0.32	0.61	-0.05	2.16	2.95	4.63	3.12	1.53	-0.73	-2.37	-3.64	-3.99	1824
. 825	-1.07	-0.40	3.04	0.98	0.50	0.33	1.70	0.66	2.34	1.68	-0.81	-0.92	1825
1826	-0.19	2.84	2.15	-0.79	1.58	-1.10	-0.75	-0.18	1.24	1.12	0.36	1.17	1826
1827	-0.72	1.93	-3.80	-0.86	0.67	0.86	0.14	1.73	0.64	2.29	2.26	0.88	1827
1828	1.98	2.48	1.54	1.29	2.37	0.53	3.15	3.98	3.07	3.26	0.94	2.77	1828
1829	1.02	-0.09	0.20	0.56	0.79	0.26	1.21	2.21	-0.20	-1.16	0.03	1.86	1829
1830	1.59	-0.58	-1.22	-0.72	2.44	0.52	-0.80	0.68	0.85	2.09	-0.35	-2.60	1830
1831	0.28	-0.95	2.58	1.39	-1.76	1.44	-1.89	-1.85	-0.37	0.95	-0.76	1.45	1831
1832	0.71	-0.48	-1.77	0.17	-2.20	-1.87	-2.80	-2.94	-2.59	-0.12	1.22	-0.29	
													1832
1833	1.41	-0.13	1.93	-0.21	-0.57	-0.40	-1.96	-2.14	-1.22	-0.79	0.31	-1.64	1833
1834	-0.43	0.10	0.73	0.14	-1.35	-1.99	-1.81	-2.41	-1.44	-1.13	0.22	2.76	1834
1835	-4.08	-1.92	-1.55	-1.32	-2.35	-1.97	-1.62	-0.38	-0.64	-2.41	1.55	1.30	1835
1836	-1.56	-3.24	-2.00	-3.01	-0.37	-0.94	-0.59	$-2.6 \mathrm{~S}$	-1.80	-1.67	-1.52	-1.95	1836
1837	-0.42	0.43	-2.23	-1.91	-2.07	-0.32	0.40						1837
Means.	-1.00	-1.60	-1.07	1.84	5.54	8.67	10.78	9.27	6.42	2.19	-0.60	-1.15	Means.

XCVII. Greenland. - Godthaab.

Degrees of Reaumur.

1796								-•	. .	-2.52\|	1.51	2.19	1796
1797	0.91	-2.08	-0.73	-1.96	1.14	0.27	1.40	1.31	0.77	1.02	2.22	0.87	1797
1798	-1.30	0.53	3.98	0.08	0.37	-0.39	0.39	0.07	-0.37	-0.67	0.83	-0.08	1798
1799	-0.40	3.08	-1.87	0.47	0.37	-0.71	-0.47	-0.72	0.62	-0.43	-0.91	4.72	1799
1800	2.75	0.22	2.32	-0.68	1.52	1.05	0.35	0.88	-0.42	0.48	0.05	0.07	1800
1801	-0.86	2.63	0.00	-1.00	-2.86	-1.61	0.89	0.92	-0.39	0.19	0.22	1.94	1801
1802	1.85	-2.99	-3.76	-2.68	-0.44		. .						1802
1816							0.09	-0.98	-0.12	-0.15	-0.01	-6.91	1816
1817	-1.55	-2.46	-4.17	0.37	-1.32	-0.79	-1.63	-0.28	-0.41	-1.65	-0.52	-1.73	1817
1818	-5.58	-5.13	-4.00	2.56	-0.90	-0.84	0.52	0.15	-0.71	-1.97	-1.82	-0.42	1818
1819	-2.74	,	-0.35	0.98	-0.91	-0.97	-3.78	-2.29	-2.30	1.78	1.38	3.15	1819
1820	4.16	0.14	0.35	-2.15	0.97	0.66	-0.96	-1.57	-0.72	-0.06	1.60	1.19	1820
1821	0.04	0.42	1.30	1.00	-0.07	0.63							182\%
1841									0.45	0.14	-0.27	0.23	1841
1842	1.13	-1.15	-1.12	1.56	2.03	0.37	0.89	0.34	1.39	1.95	-0.37	-1.37	1842
1843	0.11	4.74	4.65	2.18	1.18	1.16	1.52	0.72	1.57	1.66	-2.89	-3.93	1843
1844	-0.13	0.40	-0.51	-3.10	-1.29	0.79	0.78	1.39	0.66	0.19	-1.08	0.01	1844
1845	1.54	0.76	3.98	2.34	0.24	0.32							1845
Means.	-8.72	8.64	-7.29	-4.44	0.07	3.15	4.41	3.93	1.62	-0.96	-4.47	-6.45	Means.

The numbers without sign must be subtracted; those with the sign - must be added.

CORRECTIONS

FOR

FORCE OF VAPOR AND RELATIVE HUMIDITY.

HOURLY CORRECTIONS FOR PERIODIC VARLATIONS,
or

TABLES

FOR REDUCING THE MEANS OF THE OBSERVATIONS TAKEN AT ANY HOUR OF THE DAY TO THE TRUE MEAN FORCE OF VAPOR AND RELATIVE HUMIDITY OF THE DAY, OF THE MONTH, AND OF THE YEAR.

England.-Greenwich. Lat. $51^{\circ} 29^{\prime} \mathrm{N} . ;$ Long. $0^{\circ} 0^{\prime}$.
Corrections to be applied to the Means of the Hours of Observation, or Sets of Hours, to obtain the true Mean Force of Vapor for the respective Months. (Glaisher.)

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
	Inc	In			Inch.			Inch.				Inch.	Inch.
Midn. .	. 006	. 006	. 008	. 017	. 026	. 031	. 028	. 025	. 024	. 018	. 010	. 009	. 017
1	. 011	. 008	. 010	. 021	. 028	. 037	. 031	. 031	. 030	. 020	. 012	. 010	. 021
2	. 015	. 010	. 011	. 024	. 031	. 043	. 036	. 035	. 035	. 021	. 015	. 010	. 024
3	. 015	. 011	. 013	. 027	. 032	. 0.48	. 038	. 039	. 037	. 023	. 017	. 011	. 026
4	. 015	. 013	. 015	. 029	.031	. 047	. 037	. 040	. 040	. 025	. 019	. 011	. 027
5	. 015	. 014	. 016	. 029	. 027	. 037	. 031	. 038	. 040	. 023	. 021	. 011	. 025
6	. 014	. 015	. 016	. 025	. 019	. 022	. 019	. 029	. 033	. 021	. 021	. 010	. 020
7	. 013	. 014	. 014	. 016	. 007	. 008	. 007	. 014	. 022	. 018	. 018	. 009	. 013
8	. 010	. 010	. 010	. 005	-. 005	-. 004	$-.004$. 000	. 010	. 011	. 012	. 007	. 005
9	. 007	. 006	. 005	. 005	-. 016	-. 015	-. 014	-. 012	-. 005	. 005	. 005	. 005	-. 002
10	. 002	. 000	-. 003	-. 013	-.024	-. 027	-. 019	-. 021	-. 019	-. 005	-. 004	. 001	-. 010
11	-. 004	-. 005	-. 007	$-.020$	-. 028	-. 036	-.025	-. 027	-. 027	-. 009	-. 010	-. 004	-. 017
Noon.	-. 00	-. 0	-. 012	-. 026	-. 030	-. 042	-. 029	-. 030	-. 030	-. 015	-. 017	-. 007	-. 021
1	-. 008	-.013	-. 013	-. 027	-. 030	-. 045	-. 033	-. 032	-. 030	-. 018	-. 019	-. 008	$-.023$
2	-. 007	-. 015	-. 013	-. 027	-.028	-. 043	-.034	-. 034	-. 029	-. 017	-. 020	-. 008	$-.023$
3	. 007	. 012	-. 012	-. 025	-. 026	-. 039	-. 033	-. 031	-. 027	-.014	-. 016	-. 008	-. 021
4	-. 007	. 010	-. 010	$-.020$	-. 021	-. 035	-. 028	-. 027	-. 021	$-.009$	$-.010$	-. 007	-. 017
5	-. 004	-. 006	-. 006	-.014	-. 015	-. 025	-. 021	-. 020	-. 017	-.006	-. 005	-. 005	-. 012
6	-. 002	-. 004	-. 002	-. 006	-. 010	-. 017	-. 016	-. 015	-. 010	-.004	. 000	-. 003	-. 007
7	-. 001	-.001	. 002	. 001	$-.004$	-. 007	-. 007	-.006	-. 003	. 003	. 004	$-.001$	-. 002
8	. 000	. 001	. 004	. 005	. 005	. 005	. 004	. 004	. 004	. 005	. 006	. 001	. 004
9	. 000	. 003	. 005	. 007	. 013	. 015	. 010	. 010	. 008	. 008	. 008	. 004	. 007
10	. 001	. 004	. 007	. 010	. 017	. 023	. 017	. 015	. 013	. 011	. 009	. 005	. 011
11	. 002	. 005	. 008	. 014	. 022	. 029	. 024	. 020	. 018	. 014	. 010	. 006	. 014
6. 6	. 006	. 005	. 007	. 009	. 005	. 003	. 001	. 007	. 012	. 008	. 010	. 004	. 006
7. 7	. 006	. 006	. 008	. 009	. 001	. 000	. 000	. 004	. 009	. 011	. 011	. 00.4	. 005
8. 8	. 005	. 005	. 007	. 005	. 000	. 000	. 000	. 002	.007	. 008	. 009	. 004	. 005
9. 9	. 003	. 004	. 005	. 006	-. 002	. 000	-. 002	-. 001	. 002	. 006	. 007	. 004	. 003
10.10	. 001	. 002	. 002	-. 002	-. 003	-. 002	-. 001	-. 003	-. 003	. 003	. 002	. 003	. 000
7. 2. 9	. 002	. 001	. 002	-. 001	$-.003$	$-.007$	$-.006$	$-.003$. 000	. 003	. 002	. 002	$-.001$
6.2. 8	. 002	. 000	. 002	. 001	-. 001	$-.005$	$-.004$	-. 000	. 003	. 003	. 002	. 001	. 000
6. 2.10	. 003	. 001	. 003	. 003	. 002	. 001	. 001	. 003	. 006	. 005	. 003	. 002	. 003
6. 2.6	. 002	-. 001	. 000	$-.003$	$-.006$	$-.013$	-. 010	-. 007	-. 002	. 000	. 000	$-.000$	$-.065$
7. 2	. 003	-. 000	. 000	-. 005	-. 011	-. 017	-. 014	-. 010	-. 003	. 000	-. 001	. 000	-. 005
8. 2	. 001	-. 002	-. 001	-. 011	-. 017	-. 023	-. 019	-. 017	-. 009	-. 003	$-.004$	$-.000$	$-.009$
8. 1	. 001	-. 001	-. 001	-. 011	-. 017	-. 025	-. 018	-. 016	-. 010	-. 004	-.004	-. 000	-. 009
7. 1	. 002	. 001	. 000	-. 005	-. 012	-. 018	-. 013	-. 009	-. 004	$-.000$	$-.000$. 000	$-.005$
9.12.3.9	-. 002	$-.003$	-. 003	-. 010	-. 015	-.020	-. 016	-. 016	-. 013	-. 004	-. 005	-. 001	-. 009

The numbers without sign must be added; those with the sign - must be subtracted.

England.-Greenwich. Lat. $51^{\circ} 29^{\prime}$ N.; Long. $0^{\circ} 0^{\prime}$.
Corrections to be applied to the Means of the Hours of Observation, or Sets of Hours to obtain the true Mean Humidity for the respective Months. (Glaisher.)

Thousandths.

Hours.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Mean.
Midn.	-. 013	-. 021	-. 063	-. 095	-.087	-. 105	-. 091	$-.096$	-. 080	-. 053	-. 018	-. 011	-. 061
1	. 002	-. 021	-. 065	-. 106	-. 100	-. 114	-.095	-. 104	$-.080$	-. 059	-. 009	-. 012	-.064
2	. 004	-.026	-.066	-. 116	-. 108	-. 125	-. 107	-. 113	-. 085	-. 066	-.011	-. 017	-. 069
3	-. 003	-. 033	-. 067	-. 123	-. 113	-. 132	116	-. 117	-. 091	-.070	-020	-. 019	-.075
4	-. 013	-. 036	-. 068	-. 126	-. 114	-. 138	-. 120	-. 123	-. 097	-.075	-.030	-. 024	$-.080$
5	-. 019	-. 035	-. 066	-. 125	-. 106	-. 139	-. 120	$-.123$	-.098	-. 077	-.030	-.024	-. 080
6	-. 021	-. 034	-. 063	-. 112	-. 085	-. 107	-. 097	-. 107	-.097	-. 071	-.033	-.026	-. 071
7	-. 020	-. 030	$-.055$	-. 080	-.059	$-.065$	-. 055	-. 061	-.080	$-.058$	-.031	-. 025	-. 052
8			-. 035	-. 065	-.024	-. 015	-. 005	-. 020	-. 047	-. 037	-. 021	-. 018	-. 027
9	-. 017	-. 007	-. 003	-.034	. 018	. 035	41	. 030	.000	-. 009	-. 008	-. 007	. 003
10	-. 004	. 009	. 031	-. 015	. 051	78	. 080	070	. 042	. 025	.008	.008	. 032
11	. 011	. 028	. 060	. 022	. 083	. 100	. 104	. 102	. 082	. 060	. 027	. 022	. 058
No	. 031	. 045	. 084	. 070	. 110	. 123	. 114	. 127	. 115	. 088	. 040	. 033	. 082
1	. 054	. 058	. 100	. 132	. 126	. 137	. 119	. 142	.131	. 109	. 050	. 046	. 100
2	. 059	. 065	. 106	. 151	. 125	. 135	. 123	. 145	. 132	. 113	. 054	. 048	. 105
3	. 048	. 065	. 104	. 147	. 118	. 123	. 121	. 138	. 126	. 108	. 047	. 036	. 098
4	. 036	. 053	. 087	28	. 108	13	. 111	. 120	. 103	. 089	. 032	. 024	. 084
5	. 021	. 032	. 063	10	. 091	. 099	. 095	. 100	. 071	. 055	. 018	. 013	. 064
6	. 007	. 009	. 035	. 088	. 074	. 078	. 062	. 071	. 044	. 030	. 005	. 004	. 042
7	-. 005	-. 010	. 010	. 059	. 052	. 049	. 025	. 036	. 009	. 007	$-.005$	$-.003$. 019
8	-. 01	3	-. 010	. 020	. 022	. 010	$-.015$. 000	-. 015	-. 011	-. 012	-. 005	-. 004
9	-. 01	-. 029	-.032	-. 030	-.018	-. 025	$-.040$	-. 038	-. 040	$-.025$	-. 017	00	$-.026$
10	-. 019	-. 030	-. 048	-. 058	-. 050	-. 060	-. 068	$-.067$	-.058	-. 039	-. 020	-. 008	$-.044$
11	-. 018	-. 036	-	-. 080	-. 075	$-.085$	$-.080$	-.08.)	$-.071$	-. 048	$-.020$	$-.009$	-. 055
6. 6	-. 007	-. 012	-. 012	-. 012	-. 005	-. 015	-. 017	-. 018	-. 027	-. 020	-. 014	-. 011	-. 015
7. 7	-. 012	-. 020	-. 023	-. 010	-.004	-. 008	-. 015	-. 012	-.035	-. 026	-. 018	-. 014	-. 017
8. 8	-. 017	-. 021	-. 023	-. 022	-.001	-. 003	$-.010$	$-.010$	-. 031	-. 024	-. 016	-. 011	$-.016$
9. 9	-.016	-. 018	-. 018	-. 032	. 000	. 005	00	-. 004	-.026	-. 017	-. 012	-. 007	-.012
10.10	-.011	-. 010	-. 009	-. 037	. 000	. 009	. 006	. 001	-. 008	-. 007	-. 006	. 000	$-.006$
7. 2. 9	. 008	. 002	. 006	. 014	. 016	. 015	. 009	. 015	. 004	. 010	. 002	. 005	. 009
6. 2. 8	. 008		. 01	. 019	. 021	$) 13$. 004	. 013	. 016	. 010	. 003	006	. 010
6. 2.10	-. 006	. 000	-. 0	-. 0	-. 0	-. 010	. 014	-. 009	-. 008	. 001	. 000	. 005	$-.00{ }^{-2}$
6. 2. 6	. 015	. 013	. 027	. 042	. 038	. 035	. 029	. 036	. 026	. 024	. 009	. 009	.028
7. 2	. 019	. 017	. 026	. 036	. 033	. 035	. 034	. 042	. 026	. 027	. 012	. 011	. 026
8. 2	. 019	. 022	. 036	. 043	. 050	. 060	. 059	. 062	. 042	. 038	. 016	. 015	. 039
8. 1	. 017	. 019	. 032	. 034	. 051	. 061	. 057	. 061	. 042	. 036	. 014	. 014	. 037
7. 1	.017	. 014	. 023	. 026	. 033	. 036	. 032	. 041	. 025	. 026	. 009	. 010	. 024
9.12.3.9	. 011	-. 018	. 038	. 038	. 032	. 064	. ${ }^{5} 9$. 064	. 050	. 040	. 016	. 014	. 037

METEOROLOGICAL TABLES.

SERIES VII.

MISCELLANEOUS TABLES,

USEFUL IN

TERRESTRIAL PHYSICS AND METEOROLOGY.

CONTENTS.

Table I. Positions of the Principal Observatories. From the American, English, and German Nantical Almanacs 5
". II. To convert Parts of the Equator in Are into Sidereal Time, or to convert Terrestrial Longitude in Are into Time. From Downes, U. S. Almanac for 1845, as given in Lee's Tables and Formula, $2 d$ edition, p. 146 et seq. 9
" III. To convert Sidereal Time into D'arts of the Equator in Are, or toconvert time into Terrestrial Longitude in Are. From Downes,U. S. Almanac for 1845, p. 150, and Lee's Tables and Formula11
" IV. For converting Sidereal Time into Mean Solar Time, and Mean Solar Time into Sidereal Time. From Lee's Tables and Formule 12
" V. Correction of the Time obtained by Observation of the Sun, in order to have the True Time of the Clock. Communicated by Prof. B. Peirce, of Harvard University 13
" VI. Tables giving the length of a Degree of the Meridian and of the Parallel, calculated according to the formula of Clarke 14
6. VII. For computing Terrestrial Surfaces, based on the preceding Tables 19

1) Quadrilateral surfaces of 1 degree 20
2) 6 6 6 2 degrees 22
3) 6 6 ، 6 23
4) " 6 ، 10 23
5) 6 " " $6,10,20$, and 30 minutes 24
" VIII. Comparison of the Standards of Length of England, France, Belgium, Prussia, Russia, India, and Australia 25
". IX. Table giving the length of Insolation for any given Latitude 27

POSITIONS OF THE PRINCIPAL OBSERVATORIES.

(North Latitudes and West Longitudes are considered as positive.)

if. to convert parts of the equator in arc into sidireal time, oa to Convert terrestrial longitude in arc into time.

694 to convert parts of the equator in arc into sidereal time, or to convert terrestrial longitude in arc into time.

Degrees.											
Arc.	Time.										
0	h. m.	-	h m .	\bigcirc	h. m.	0	h. m.	\bigcirc	h. m.	-	h. m.
241	164	261	1724	281	1844	301	$20 \quad 4$	321	2124	341	2244
242	16 S	262	1728	282	1848	302	$20 \quad 8$	322	2128	342	2248
243	1612	263	1732	283	1852	303	2012	323	2132	343	2252
244	1616	264	1736	284	1856	304	2016	324	2136	344	2256
245	1620	265	1740	285	$19 \quad 0$	305	2020	325	2140	345	230
246	1624	266	1744	$\stackrel{286}{ }$	194	306	2024	326	2144	346	$23 \quad 4$
247	1628	267	1748	287	198	307	2028	327	2148	347	23 8
248	1632	268	1752	288	1912	308	2032	328	2152	348	2312
249	1636	269	1756	289	1916	309	2036	329	2156	349	2316
250	1640	276	180	290	1920	310	2040	330	220	350	2320
251	1644	271	184.	291	1924	311	2044	331	224	351	2324
252	1648	272	$15 \quad 8$	292	19	312	2048	332	228	352	$23 \quad 28$
253	1652	273	1812	293	1932	313	2052	338	2212	353	2332
254	1656	274	1516	294	1936	314	2056	334	2216	354	2336
255	170	275	1820	295	1940	315	210	335	2220	355	2340
256	174	276	1824	296	1944	316	214	336	2224	356	2344
257	178	277	1828	297	1948	317	218	337	2228	357	2348
258	1712	278	1832	298	1952	318	2112	338	2232	358	2352
259	1716	279	1836	299	1956	319	2116	339	2236	359	2356
260	1720	280	1840	300	$20 \quad 0$	320	2120	340	2240	360	$24 \quad 0$
Minutes.											
	m. s.	,	m. s.		m. s.		m. ${ }^{8}$		m. s.		m. s.
1	04	11	044	21	124	31	24	41	244	51	324
2	08	12	048	22	128	32	28	42	248	52	328
3	$\begin{array}{ll}0 & 12\end{array}$	13	052	23	132	33	212	43	252	53	332
4	016	14	056	24	136	34	216	44	256	54	336
5	020	15	10	25	140	35	220	45	30	55	340
6	024	16	14	26	144	36	224	46	34	56	344
7	028	17	18	27	148	37	228	47	38	57	348
8	$0 \quad 32$	18	112	28	152	38	232	48	312	58	352
9	036	19	116	29	156	39	236	49	316	59	356
10	$0 \quad 40$	20	120	30	20	40	240	50	320	60	40
Seconds											
	s.	"	s.	I	s.	,	s.	"	s.	,	s.
1	0.067	11	0.733	21	1.400	31	2.067	41	2.733	51	3.400
2	0.133	12	0.500	22	1.467	32	2.138	42	2.800	52	3.467
3	0.200	13	0.867	23	1.533	33	2.200	43	2.867	53	3.533
4	0.267	14	0.933	24	1.600	34	2.267	44	2.933	54	3.600
5	0.333	15	1.000	25	1.667	35	2.333	45	3.000	55	3.667
6	0.400	16	1.067	26	1.733	36	2.400	46	3.067	56	3.733
7	0.467	17	1.133	27	1.800	37	2.467	47	3.133	57	3.800
8	0.533	18	1.200	28	1.867	38	2.533	48	3.200	58	3.867
9	0.600	19	1.267	29	1.933	39	2.600	49	3.267	59	3.933
10	0.667	20	1.333	30	2.000	40	2.667	50	3.333	60	4.000

III. TO CONVERT SIDEREAL TIME INTO PARTS OF THF EQUATOR IN ARC, OR TO CONVERT TIME INTO TERRESTRIAL LONGITUDE IN ARC.

Hours.											
Time.	Arc.	Time	Arc	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.
h.	${ }^{\circ}$	h	\bigcirc	h.	\bigcirc	h.	\bigcirc	h.	\bigcirc	h.	\bigcirc
1	15	5	75	9	135	13	195	17	25.5	21	315
2	30	6	90	10	150	14	210	18	270	22	330
3	45	7	105	11	165	15	225	19	285	23	345
4	60	8	120	12	180	16	240	20	300	24	360
Minvies											
m	-	m.	-	m .	\bigcirc,	m .	\bigcirc	m.	\bigcirc	m.	
1	015	11	245	21	515	31	745	41	1015	51	1245
2	030	12	30	22	530	32	80	42	1030	52	130
3	045	13	315	23	$\bigcirc 45$	33	815	43	1045	53	1315
4	10	14	330	24	60	34	830	44	110	54	1330
5	115	15	345	25	615	35	845	45	1115	55	1345
6	130	16	40	26	630	36	$9 \quad 0$	46	1130	56	140
7	145	17	415	27	645	37	915	47	1145	57	1415
8	20	18	430	28	70	38	930	48	120	58	1430
9	215	19	445	29	715	39	945	49	1215	59	1445
10	230	20	50	30	730	40	100	50	1230	60	150
Seconds											
s.	$\begin{array}{ll}1 & \prime \prime \\ 0 & 15\end{array}$	s.	1 2 15	21	${ }^{\prime} 5115$	s.	$1 / 15$ 7	s.	10 15	s.	19 ${ }^{\prime \prime}$
2	030	12	30	22	530	32	80	42	1030	52	130
3	045	13	315	23	545	33	815	43	1045	53	13 15
4	10	14	330	24	60	34	830	44	110	54	1330
5	115	15	345	25	615	35	845	45	1115	55	1345
6	130	16	40	26	630	36	90	46	1130	56	140
7	145	17	415	27	645	37	915	47	1145	57	1415
8	20	18	430	23	70	38	930	48	120	58	1430
9	215	19	445	29	715	39	945	49	1215	59	1145
10	230	20	50	30	730	40	$10 \quad 0$	50	1230	60	150
Tenths of Seconds.											
s.		,	"	s.		s		${ }^{\text {s }}$		s.	"
0.01	0.15	0.18	2.70	0.35	5.25	0.52	7.80	0.69	10.35	0.86	12.90
0.02	0.30	0.19	2.85	0.36	5.40	0.53	7.95	0.70	10.50	0.87	13.05
0.03	0.45	0.20	3.00	0.37	5.55	0.54	8.10	0.71	10.65	0.88	13.20
0.04	0.60	0.21	3.15	0.38	5.70	0.55	8.25	0.72	10.80	0.89	13.35
0.05	0.75	0.22	3.30	0.39	5.85	0.96	8.40	0.73	10.95	0.90	13.50
0.06	0.90	0.23	3.45	0.40	6.00	0.57	8.55	0.74	11.10	0.91	13.65
0.07	1.05	0.24	3.60	0.41	6.15	0.58	8.70	0.75	- 11.25	0.92	13.80
0.08	1.20	0.25	3.75	0.12	6.30	0.59	8.85	0.76	11.40	0.93	13.9.5
0.09	1.35	0.26	3.90	0.43	6.45	0.60	9.00	0.77	11.55	0.94	14.10
0.10	1.50	0.27	4.05	0.44	6.60	0.61	9.15	0.78	11.70	0.95	14.25
0.11	1.65	0.28	4.20 .	0.45	6.75	0.62	9.30	0.79	11.85	0.96	14.40
0.12	1.80	0.29	4.35	0.46	6.90	0.63	9.45	0.80	12.00	0.97	14.55
0.13	1.95	0.30	4.50	0.47	7.05	0.64	9.60	0.81	12.15	0.98	14.70
0.14	2.10	0.31	4.65	0.48	7.20	0.65	9.75	0.82	12.30	0.99	14.85
0.15	2.25	0.32	480	0.49	7.35	0.66	9.90	0.83	12.45	1.00	15.00
0.16	2.40	0.38	4.95	0.50	7.50	0.67	10.05	0.94	12.60		
0.17	2.55	0.34	5.10	0.51	7.65	0.68	10.20	0.85	12.75		

IV. FOR CONVERTING SIDEREAL TIME INTO MEAN SOLAR TIME, AND MEAN TIME INTO SIDEREAL TIME.

hochs.			minctes.						SECONDS.			
Hours	Mean 'line.	Sidereal 'lime.	Minutes.	Mean Time	sidereal Time.	Minutes.	$\begin{aligned} & \text { Mean } \\ & \text { Time. } \end{aligned}$	Silereal 'lime	Sec- onds.		Seconds.	$\begin{gathered} \text { Mehn } \\ \text { or } \\ \text { Silereal } \\ \text { Témee } \end{gathered}$
	11 s .	m E .		s.	8.		ε.	8		8.		8.
1	0 O.8.83	0 9.86	1	0.16	0.16	31	5.08	5.09	1	0.00	31	0.09
2	01966	019.71	2	0.33	0.33	32	5.24	5.26	2	0.01	32	0.09
3	029.49	029.57	3	0.49	0.49	33	5.41	5.42	3	0.01	33	0.09
4	039.32	039.43	4	0.66	0.66	34	5.57	5.59	4	0.01	34	0.09
5	049.15	049.28	5	0.82	0.82	35	5.75	5.75	5	0.01	35	0.10
6	058.95	059.14	6	0.98	0.99	36	5.90	5.91	6	0.02	36	0.10
7	18.51	19.00	7	1.15	1.15	37	6.06	6.08	7	0.02	37	0.10
8	115.64	118.85	8	1.31	1.31	38	6.23	6.24	8	0.02	38	0.10
9	125.47	128.71	9	1.47	1.48	39	6.39	6.41	9	0.03	39	0.11
10	135.30	138.57	10	1.64	1.64	40	6.55	6.57	10	0.03	40	0.11
11	148.13	148.42	11	1.80	1.81	41	6.72	6.74	11	0.03	41	0.11
12	157.96	158.25	12	1.97	1.97	12	6.88	6.90	12	0.03	42	012
13	27.75	28.13	13	213	2.14	43	7.05	706	13	0.04	43	0.12
14	217.61	217.99	14	2.29	2.30	4	7.21	7.23	14	0.04	4	0.12
15	227.44	227.85	15	2.16	2.46	45	7.37	7.39	15	0.04	45	0.12
16	237.27	237.70	16	2.62	2.63	46	7.54	7.56	16	0.04	46	013
17	247.10	247.56	17	2.79	2.79	47	7.70	772	17	005	47	0.13
13	256.93	257.42	18	2.95	2.96	45	7.86	7.89	18	0.05	48	0.13
19	36.76	$\begin{array}{lll}3 & 7.27\end{array}$	19	3.11	312	49	8.03	805	19	0.05	49	0.13
20	316.59	317.13	20	3.28	3.29	50	8.19	8.21	20	0.06	50	0.14
21	326.42	326.99	21	3.44	3.45	51	8.36	8.35	21	0.06	51	0.14
$\because 2$	3 36.25	336.84	22	3.60	3.61	52	8.52	8.54	22	0.06	52	0.14
23	$3+6.03$	3 46.70	23	3.77	3.79	53	8.68	8.71	23	0.06	53	015
24	35.5 .91	356.56	24	3.93	3.94	54	8.55	8.87	24	0.07	54	0.15
25	± 5.74	46.41	25	4.10	4.11	55	9.01	9.04	25	0.07	55	0.15
26	415.57	416.27	26	4.26	4.27	56	9.17	9.20	26	0.07	56	0.15
27	425.40	$+26.13$	27	4.42	4.43	57	9.34	9.36	27	0.07	57	0.16
$2 \cdot$	43.5 .23	435.95	28	4.59	4.60	58	9.50	9.53	28	0.08	58	0.16
29	445.06	4 4.5.84	29	4.75	4.76	59	9.67	9.69	29	0.08	59	0.16
30	454.89	$+5.5 .69$	30	4.92	4.93	60	9.83	9.86	30	0.08	60	0.16

G
V. CORRECTION OF TIIE TME obtained by obsERYATION OF THE SUN, in ORDER TO HAVE THE TRUE TIME OF THE ClOCK.

	Jan.	Feb.	Mar.	Apr.	Apr.	May.	June.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Dec.	
	Add.	Add.	Add.	Add.	Subt.	Subt.	Subt.	Add.	Add.	Add.	Subt.	Subt.	Subt.	Subt.	Add.	
	Min.															
1	4	14	13	4	-•	3	3	-•	3	6	0	10	16	11	. .	1
2	4	14	12	4	-•	3	2	. -	4	6	0	11	16	10	-•	2
3	5	14	12	3	-•	3	2	, •	4	6	1	11	16	10	-•	3
4	5	14	12	3	-•	3	2	-•	4	6	1	11	16	10	-•	4
5	6	14	12	3	-•	4	2	-•	4	6	1	12	16	9	- .	5
6	6	14	12	2	-•	4	2	-•	4	6	2	12	16	9	- .	6
7	7	14	11	2	-•	4	2	-•	4	5	2	12	16	8	- •	7
8	7	15	11	2	-•	4	1	-•	5	5	2	12	16	8	-•	8
9	8	15	11	2	- .	4	1	-•	5	5	3	13	16	7	- .	9
10	8	15	11	1	.	4	1	-•	5	5	3	13	16	7	. \cdot	10
11	9	15	10	1	-•	4	1	-•	5	5	3	13	16	6	-•	11
12	9	15	10	1	-	4	1	-•	5	5	4	13	16	6	- -	12
13	9	15	10	1	-•	4	0	-•	5	5	4	14	16	5	- .	13
14	10	14	9	0	- .	4	0	-•	5	4	5	14	15	5	- -	1.4
15	10	14	9	0	-•	4	0	-•	6	4	5	14	15	4	- -	15
16	10	14	9	0	-•	4	0	-•	6	4	5	14	15	4	.	16
17	11	14	9	0	-•	4	0	-•	6	4	6	15	15	3	. -	17
18	11	14	8	-•	1	4	-•	1	6	4	6	15	15	3		18
19	11	14	8		1	4	-•	1	6	3	6	15	14	2		19
20	11	14	8		1	4		1	6	3	7	15	14	2	-•	20
21	12	14	7		1	4		1	6	3	7	15	14	1	-	21
22	12	14	7		2	4	- .	2	6	3	7	15	14	1	-•	22
23	12	14	7	-	2	4	- .	2	6	2	8	16	13	0	- .	23
24	12	13	6	-•	2	3	-•	2	6	2	8	16	13	0		24
25	13	13	6	- .	2	3	- •	2	6	2	8	16	13	0		25
26	13	13	6	- .	2	3	-•	2	6	2	9	16	12		1	26
27	13	13	5		2	3	- .	3	6	1	9	16	12		1	27
28	13	13	5	.	3	3	-•	3	6	1	9	16	12		2	28
29	14	13	5	- .	3	3	-•	3	6	1	10	16	11		2	29
30	14	. .	4	-•	3	3	-•	3	6	0	10	16	11		3	30
31	14	-•	4	-•	- .	3	-•	-•	6	0	- .	16	- .		3	31

VI. the lengtil of a degree of thif mebidian and of the parallel.

The formule from which the following tables have been computed are as follows:1 degree of the meridian $=111,132.09^{\mathrm{m}}-566.05^{\mathrm{m}} \cos 2 \phi+1.20^{\mathrm{m}} \cos 4 \phi-$ $0.003^{\mathrm{m}} \cos 6 \phi$, etc., in which ϕ is the latitute. 1 degree of the parallel $=111,415.10^{\mathrm{m}}$ $\cos \phi-94.54^{\mathrm{m}} \cos 3 \phi+0.12^{\mathrm{m}} \cos 5 \phi$, in which ϕ is the middle latitude. For example, the number given for 40° in the meridian table gives the length from 39.30° to 40.30°. The dimensions of the earth used in the formula are those of Clarke's spheroid of revolution of 1866 , and are the same as those now (1884) used in the U. S. Coast and Geoletic Survey: They are ats follows :-

$$
\begin{array}{rlrl}
a, \text { semi-axis major }=6.378 .206 .4 \text { metres, } \log a & =6.80469857 . \\
b, \text { semi axis minor }=6,3.56,583.8 \text { metres, } \log b & =6.80322378 . \\
e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=0.0064686 .580 & \log e^{2} & =7.83050257 . \\
\frac{a-b}{a}=0.003390075 & \log \frac{a-b}{a} & =7.53020934 . \\
\log \frac{a-b}{a+b} & =7.22991612 .
\end{array}
$$

The numbers used in reduction to the different measures are as follows:-
German mite $\quad=\frac{1}{15}$ equatorial degree $=7421.3802$ metres, $\log 3.87048468$
Nantical league $=\frac{1}{2}$ equatorial degree $=5.56 .03 .01$ metres, $\log 3.745 .54594$
French league $=\frac{1}{2}$ equatorial degree $=4452.8281$ metres, $\log 3.64863593$
Naut. or geog. mile $=\frac{1}{6} \overline{0}$ equatorial degree $=1855.3450$ metres, $\log 3.26842469$
Statute mile $\quad=1609.3296$ metres, $\log 3.20664499$
Russian werst $\quad=1066.781$ metres, $\log 3.0280752$
1.) Length of one degree of the meridian in different measures. 699

Degrees.	Metres.	$\begin{aligned} & \text { German } \\ & \text { Miles. } \\ & 15=1^{\circ} \mathrm{Eq.} . \end{aligned}$	Nautical Leagues. $20=1^{\circ}$ Eq.	$\begin{gathered} \text { French } \\ \text { Leatrues. } \\ 25=i^{\circ} \mathrm{E} . \end{gathered}$	Nautical or Geog. Miles. $60)=1^{\circ} \mathrm{E4}$.	Statute Miles.	Russian Wersts.
0	110567.2	14.898	19.865	24.831	59.594	68.704	103.646
1	110567.6	14.899	19.865	24.831	59.594	68.704	103.646
2	110568.6	14.899	19.865	24.831	59.595	68.705	103.647
3	110570.3	14.899	19.865	24.832	59.596	68.706	103.649
4	110572.7	14.899	19.866	24.832	59.597	68.707	103.651
5	110575.8	14.900	19.866	24.833	59.598	68.709	103.654
6	110579.5	14.900	19.867	24.834	59.600	68.711	103.657
7	110583.9	14.901	19.868	24.835	59.603	68.714	103.661
8	110589.0	14.901	19.869	24.836	59.606	68.717	103.666
9	110594.7	14.902	19.870	24.837	59.609	68.721	103.671
10	110601.1	14.903	19.871	24.838	59.612	68.725	103.677
11	110608.1	14.904	19.872	24.840	59.616	68.729	103.684
12	110615.8	14.905	19.573	24.842	59.620	68.734	103.691
13	110624.1	14.906	19.875	24.844	59.625	68.739	103.699
14	110633.0	14.907	19.876	24.846	59.629	68.745	103.707
15	110642.5	14.909	19.878	24.848	59.634	68.751	103.716
16	110652.6	14.910	19.880	24.850	59.640	68.757	103.726
17	110663.3	14.911	19.882	24.852	59.646	68.763	103.736
18	110674.5	14.913	19.884	24.855	59.652	68.770	103.746
19	110686.3	14.914	19.886	24.857	59.658	68.778	103.757
20	110698.7	14.916	19.888	24.860	59.665	68.786	103.769
21	110711.6	14.918	19.891	24.863	59.672	68.794	103.781
22	110725.0	14.920	19.893	24.866	59.679	68.802	103.793
23	110738.8	14.922	19.895	24.869	59.686	68.810	103.806
24	110753.2	14.924	19.898	24.872	59.694	68.819	103.820
25	110768.0	14.926	19.901	24.876	59.702	68.829	103.834
26	110783.3	14.928	19.903	24.879	59.710	68.838	103.848
27	110799.0	14.930	19.906	24.883	59.719	68.848	103.863
28	110815.1	14.932	19.909	24.886	59.727	68.858	103.878
29	110831.6	14.934	19.912	24.890	59.736	68.868	103.893
30	110848.5	14.936	19.915	24.894	59.745	68.879	103.909
31	110865.7	14.939	19.918	24.898	59.755	68.889	103.925
32	110883.2	14.941	19.921	24.902	59.764	68.900	103.942
33	110901.1	14.943	19.925	24.906	59.774	68.911	103.959
34	110919.2	14.946	19.928	24.910	59.784	68.923	103.976
35	110937.6	14.948	19.931	24.914	59.794	68.934	103.993
36	110956.2	14.951	19.935	24.918	59.804	68.946	104.010
37	110975.0	14.953	19.938	24.922	59.814	68.957	104.028
38	110994.1	14.956	19.941	24.927	59.824	68.969	104.046
39	111013.3	14.959	19.945	24.931	59.834	68.981	104.064
40	111032.7	14.961	19.948	24.935	59.845	68.993	104.082
41	111052.2	14.964	19.952	24.940	59.855	69.005	104.100
42	111071.7	14.966	19.955	24.944	59.866	69.017	104.119
43	111091.4	14.969	19.959	24.948	59.876	69.029	104.137
44	111111.1	14.972	19.962	24.953	59.887	69.042	104.156
45	111130.9	14.974	19.966	24.957	59.898	69.054	104.174

1.) LENGTH OF ONE DEGREE OF THE MERIDIAN IN DIfFERENT MEASURES.

Degrees.	Metres.	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=1^{\circ} \text { Eq. } \end{gathered}$	$\begin{aligned} & \text { Nautical } \\ & \text { Leagues. } \\ & 20=1 \text { Eq. } \end{aligned}$	$\begin{gathered} \text { French } \\ \text { Leagues. } \\ 25=1^{\circ} \text { Eq. } \end{gathered}$	Nautical or Geog. Miles. $60=1^{\circ} \mathrm{Eq}$.	Statute Miles.	Russian Wersts.
46	111150.7	14.977	19.969	24.962	59.908	69.067	104.193
47	111170.4	14.980	19.973	24.966	59.919	69.079	104.211
48	111190.1	14.982	19.976	24.971	59.929	69.091	104.230
49	111909.7	14.985	19.980	24.975	59.940	69.103	104.248
50	111229.3	14.988	19.984	24.979	59.951	69.115	104.266
51	111248.7	14.990	19.987	24.984	59.961	69.127	104.285
52	111268.0	14.993	19.991	24.988	59.972	69.139	104.303
53	111287.1	14.995	19.994	24.992	59.982	69.151	104.321
54	111306.0	14.998	19.997	24.997	59.992	69.163	104.338
55	111324.8	15.000	20.001	25.001	60.002	69.175	104.356
56	111343.3	15.003	20.004	25.005	60.012	69.186	104.373
57	111361.5	15.005	30.007	25.909	60.022	69.198	104.390
58	111379.5	15.008	20.011	25.013	60.032	69.209	104.407
59	1113!7.2	15.010	20.014	25.017	60.041	69.220	104.424
60	111414.5	15.013	20.017	25.021	60.051	69.230	104.440
${ }_{61}$	111431.5	15.015	20.020	25.025	60.060	69.241	104.456
62	111448.2	15.017	20.023	25.029	60.069	69.251	104.472
63	111464.4	15.019	20.026	25.032	60.077	69.261	104.487
64	111480.3	15.022	20.029	25.036	60.086	69.271	104.502
65	$1114!5.7$	15.024	20.031	25.039	60.094	69.281	104.516
66	111510.7	15.026	20.034	25.043	60.102	69.290	104.530
67	111525.3	15.028	20.037	25.046	60.110	69.299	104.544
68	111539.3	15.029	20.039	25.049	60.118	69.308	104.557
69	111552.9	15.031	20.042	25.052	60.125	69.316	104.570
70	111565.9	15.033	20.044	25.055	60.132	69.324	104.582
71	111578.4	15.035	20.046	25.058	60.139	69.332	104.594
72	111590.4	15.036	20.048	25.061	60.145	69.340	104.605
73	111601.8	15.038	20.050	25.063	60.151	69.347	104.616
74	111612.6	15.039	20.052	25.066	60.157	69.354	104.626
75	111622.9	15.041	20.054	25.068	60.163	69.360	104.635
76	111632.6	15.042	20.056	25.070	60.168	69.366	104.644
77	111641.6	15.043	20.058	25.072	60.173	69.372	104.653
78	111650.0	15.044	20.059	25.074	60.177	69.377	104.661
79	111657.8	15.045	20.061	25.076	60.182	69.382	104.668
80	111664.9	15.046	20.063	25.077	60.186	69.386	104.675
81	111671.4	15.047	20.063	25.079	60.189	69.390	104.681
82	111677.2	15.048	20.064	25.080	60.192	69.394	104.686
83	111682.4	15.149	20.065	25.081	60.195	69.397	104.691
84	111686.9	15.049	20.066	25.082	60.197	69.400	104.695
85	111690.7	15.050	20.066	25.083	60.199	69.402	104.699
86	111693.8	15.050	20.067	25.084	60.201	69.404	104.702
87	111696.2	15.051	20.067	25.084	60.202	69.405	104.704
88	111698.0	15.051	20.068	25.084	60.203	69.407	104.706
89	111699.0	15.051	20.068	25.085	60.204	69.407	104.707
90	111699.3	15.051	20.068	25.085	60.204	69.407	104.707

2.) Length of one degree of the parallel in different measures.

Degrees.	Metres.	$\begin{gathered} \text { German } \\ \text { Miles. } \\ 15=-1^{\circ} \mathrm{E}_{1} . \end{gathered}$	Nautical Leagues. $20=1^{\circ} \mathrm{E}!$.	French Leagues. $25=10 \mathrm{E} 1$.	Nautical or Geog. Mnles. $60=1^{\circ} \mathrm{Eq}$.	Statute Miles.	Russian Wersts.
0	111320.7	15.000	20.000	25.000	60.000	69.17	104.352
1	111303.9	14.998	19.997	24.996	59.991	69.162	104.336
2	111953.4	14.991	19.988	$\simeq 4.985$	59.964	69.130	104.289
3	111169.2	14.980	19.973	24.966	59.918	69.078	104.210
4	111051.3	14.964	19.952	24.940	59.855	69.005	104.100
5	110599.9	14.943	19.924	24.905	59.773	68.911	103.958
6	110714.9	14.918	19.891	24.864	59.673	68.796	103.784
7	110496.5	14.889	19.852	24.815	59.556	68.660	103.579
8	114244.6	14.855	19.807	24.758	59.420	68.503	103.343
9	109959.3	14.817	19.755	$24.69 \pm$	59.266	68.320	103.076
10	109640.7	14.774	19.698	24.623	59.095	68.128	$10 \cdot 3.777$
11	109288.9	14.726	19.635	$\boxed{24.544}$	58.905	67.909	102.447
12	108904.0	14.674	19.566	24.457	58.697	67.670	102.087
13	108486.1	14.618	19.491	24.363	58.472	67.411	101.695
14	108035.4	14.557	19.410	24.262	58.239	67.131	101.272
15	107551.9	14.492	19.323	$\bigcirc 4.154$	57.969	66.830	100.819
16	107035.8	14.433	19.230	24.038	57.690	66.510	100.335
17	106487.3	14.349	19.132	23.915	57.395	66.169	99.821
18	105906.5	14.270	19.027	93.784	$57.08{ }^{\text {a }}$	65.808	99.976
19	105293.6	14.188	18.917	23.646	56.751	65.427	98.702
20	104648.7	14.101	18.801	23.502	56.404	65.026	98.098
21	103972.0	14.010	18.680	23.350	56.039	64.606	97.463
2.2	$103: 63.8$	13.914	18.553	23.191	55.657	64.166	96.799
23	102524.2	13.815	18.420	23.025	55.259	63.706	96.106^{2}
24	101753.5	13.711	18.281	22.851	54.843	63.297	95.384
25	100951.8	13.603	18.137	92. 971	54.411	62.729	94.630
	100119.5	13.491	17.988	22.485	53.963	62.21:	93.852
27	99.56 .7	13.374	17.833	22.391	53.498	61.676	93.043
28	98363.7	13.254	17.672	22.090	53.016	61.121	92.206
99	97440.8	13.130	17.506	21.883	52.519	60.548	91.341
30	96458.2	13.001	17.335	21.669	52.006	59.956	90.448
	95506.2	12.869	17.159	21.448	51.476	59.345	89.508
32	94495.1	12.733	16.977	21.221	50.931	58.717	88.580
33	93455.2	12.593	16.790	20.988	50.371	58.071	87.605
	92386.9	12.449	16.598	20.748	49.795	57.407	86.603
	91290.3	12.301	16.401	20.502	49.204	56.726	85.575
	90165.8	12.149	16.199	20.249	48.598	56.027	84.521
36 37	89013.8	11.994	15.992	19.990	47.977	55.311	83.442
	87834.6	11.835	15.780	19.726	47.341	54.578	82.3:36
39	86628.6	11.673	15.564	19.455	46.691	53.939	81.306
40	85396.1	11.507	15.342	19.178	46.027	53.0693	80.050
	84137.4	11.337	15.116	18.895	45.349	52.281	78.870
	82853.0	11.164	14.885	18.607	44.656	51.483	77.668
	81543.3	10.988	14.650	18.313	43.950	50.669	76.439
	$80 \geq 08.5$	10.808	14.410	18.013	43.231	49.840	75.187
44 45	78849.1	10.625	14.166	17.708	42.498	48.995	73.913

702

2.) Lengtif of one degree of the parallel in different measures.

Degrees.	Metres.	$\begin{aligned} & \text { German } \\ & \text { Miles. } \\ & 15=1^{\circ} \text { Eq. } \end{aligned}$	$\begin{aligned} & \text { Nautical } \\ & \text { 10:10nes. } \\ & 20=10 \mathrm{Ey} . \end{aligned}$	$\begin{gathered} \text { French } \\ \text { League. } \\ 20=1^{\circ} \mathrm{Eq} . \end{gathered}$	Nautical or Geng. Miles. $60=1^{\circ} \mathbf{E}_{1}$	Statute Miles.	Russian Wersts.
46	77465.6	10.438	13.918	17.397	41.753	48.135	72.616
47	76058.3	10.249	13.665	17.081	40.994	47.261	71.297
48	74627.7	10.056	13.408	16.760	40.223	46.372	69.956
49	73174.1	9.860	13.147	16.433	39.440	45.469	68.593
50	71698.1	9.661	12.881	16.102	38.644		67.210
51	70200.0	9.459	12.612	15.765	37.837	43.621	65.805
52	68680.3	9.254	12.339	15.424	37.018	42.676	64.381
53	67139.5	9.047	12.062	15.078	36.187	41.719	62.937
54	45.578 .1	8.836	11.782	14.727	35.346	41.749	61.473
55	63996.4	8.623	11.498	14.372	34.493	39.766	59.990
56	1523:5.0	8.407	11.210	14.013	33.630	38.771	58.489
57	60\%74.4	8.189	10.919	13.649	32.757	37.764	56.970
58	59185.1	7.968	10.624	13.280	31.673	36.745	55.433
59	57478.5	7.745	10.326	12.908	30.979	35.715	53.679
60	55502.2	7.519	10.025	12.532	30.076	34.674	52.309
61	54109.4	7.291	9.721	12.152	29.164	33.622	50.722
62	52400.3	7.061	9.414	11.768	28.243	32.560	49.120
63	50674.9	6.828	9.104	11.380	27.313	31.488	47.503
64	48.338 .7	6.594	8.791	10.989	26.374	30.406	45.870
65	47177.5	6.357	8.476	10.595	25.428	29.315	44.224
66	45406.6	6.118	8.158	10.197	24.473	28.215	42.564
67	43621.7	5.878	7.837	9.796	23.511	27.106	40.691
68	41823.3	5.636	7.514	9.392	22.542	25.988	39.205
69	40012.0	5.391	7.189	8.986	21.566	24.862	37.507
70	38158.2	5.146	6.861	8.576	20.583	23.729	35.780
71	36352.6	4.898	6.531	8.164	19.593	22.589	34.077
72	34505.8	4.649	6.199	7.749	18.598	21.441	32.346
73	32445.2	4.399	5.866	7.332	17.597	20.287	30.604
74	30780.5	4.148	5.530	6.913	16.590	19.126	28.854
75	28903.3	3.595	5.193	6.491	15.578	17.960	27.094
76	27017.1	3.640	4.854	6.067	14.542	16.788	25.326
77	25122.5	3.385	4.514	5.642	13.541	15.611	23.550
78	23200.2	3.129	4.172	5.215	12.515	14.428	21.767
79	21310.6	2.872	3.829	4.786	11.486	13.242	19.977
80	19394.4	2.613	3.484	4.356	10.453	12.051	18.1 と0
81	17472.2	2.354	3.139	3.924	9.417	10.857	16.378
82	15544.5	2.095	2.793	3.491	8.378	9.659	14.571
83	13612.0	1.834	2.446	3.057	7.337	8.458	12.760
84	11675.3	1.573	2.098	2.622	6.293	7.255	10.944
85	9735.0	1.312	1.749	2.186	5.247	6.049	9.126
86	7791.6	1.0511	1.400	1.750	4.200	4.841	7.304
87	5845.8	0.788	1.050	1.313	3.151	3.632	5.480
88	3898.2	0.525	0.700	0.875	2.101	2.422	3.654
89	1949.4	0.263	0.350	0.438	1.051	1.211	1.827
90	0.	0.	0.	0.	0 .	0.	0.

VII. tables for computing terrestrial surfaces.

These tables replace a similar set in the earlier edition, which were published first by Delcros in the Anmuaire Météorologique de la France pour 1850, p. 6is et seq. In the following tables the dimensions assumed for the earth are those of Clarke's spheroid of revolution of 1866 (see table, p. G 14 et sec.)

The formula from which the tables have been computed reads as follows :-

$$
\mathrm{S}=\frac{a b \pi}{90}\left\{\begin{array}{l}
\sin \frac{1}{2} \phi \cos \left(\mathrm{~L}+\frac{1}{2} \phi\right) \\
-\frac{1}{3}\left[2\left(\frac{a-b}{a+b}\right)+\left(\frac{a-b}{a+b}\right)^{2}\right] \sin \left(\phi+\frac{1}{2} \phi\right) \cos \left[3 \mathrm{~L}+\left(\phi+\frac{1}{2} \phi\right)\right] \\
+\frac{1}{5}\left[3\left(\frac{a-b}{a+b}\right)^{2}+\left(\frac{a-b}{a+b}\right)^{3}\right] \sin \left(2 \phi+\frac{1}{2} \phi\right) \cos \left[5 \mathrm{~L}+\left(2 \phi+\frac{1}{2} \phi\right)\right] \\
- \text { elc: }
\end{array}\right.
$$

in which a and b are the semi-axes, L and L^{\prime} the latitudes of the upper and lower limits of the quadrilateral surface respectively, $\phi=\mathrm{L}^{\prime}-\mathrm{L}$. Substituting numerical values, we have for surface of one degree

$$
\mathrm{S}=\left\{\begin{array}{l}
224.996175 \cos \left(\mathrm{~L}+0^{\circ} 30^{\prime}\right) \\
-0.764620 \cos \left(3 \mathrm{~L}+1^{\circ} 30^{\prime}\right) \\
+0.001946 \cos \left(5 \mathrm{~L}+2^{\circ} 30^{\prime}\right) \\
+ \text { etc. }
\end{array}\right.
$$

As in the tables in the earlier edition the numbers are given in square miles the linear base of which is a mile equal to $\frac{1}{1}$ a of the mean degree of the meridian. That mile is thus $\frac{10001888.2}{90 \times 15}=7408.806$ metres, log. 3.86974822 . In order to convert these results into geographical miles, $60=1^{\circ}$ equator, multiply by 15.9458 .27 , log. 1.20264706 ; into French leagues, $25=1^{\circ}$ equator, multiply by 2.768371 , log. 0.44222458 ; into nautical leagues, $20 \doteq 1^{\circ}$ equator, multiply by 1.771759 , log. 0.24840456 ; into German miles, $15=1^{\circ}$ equator, multiply by 0.996614 , log. 9.99852708 ; into English statute miles, multiply by 21.193684 , $\log .1 .32620646$.

Use of the Tables.

Table I., which gives the number of square miles contained in the quadrilateral surfaces of one degree in latitnde and longitude, successively from the equator to the pole, will be more frequently used. Table II. has been computed for maps on a smaller scale; and Tables III. and IV. for maps of very small scale, covering large areas, in which surfaces of one degree could not be estimated with sufficient accuracy. If the scale is large enough to have the minntes traced on, then Table V. is to be used. For computing a surface by Table I., which may serve as an example for all the others, find first the lowest parallel circle which crosses, on the map, the surface to be estimated; suppose it is 40° lat. N., and the zone within 40° and 41° lat. N. contains four integral degrees of longitude, that is, four surfaces of one degree each way; then in the tirst column of the table, on the line beginning with latitude 40°, and in the vertical column headed 4 , take the value of these fonr surfaces, viz. 685.94. Then take likewise the valne of the number of surfaces between 41° and 420 lat. N., and so on. The fractional parts left outside of the integral degrees are best estimated, with the compass, in decimals, the values of which can be fonnd in the columns of the multiples, by properly moving the decimal point to the left. Having taken them in that way, and summing them up with all the integral surfaces, we obtain the total surface required.

Table 1,) Quaphlateral Surfaces of 1 Deghee ix Latitude and in Longltude on the Terrestrial Ellipsehd.

$\begin{aligned} & \text { Limiting } \\ & \text { Latitudes. } \end{aligned}$		Multiples of these Qudrilateral surfaces from $\mathbf{1}$ to $\mathbf{9}$.								
lnf.	Sup.	1.	2.	3.	4.	5.	6.	7.	s.	9.
0	1	224.225	448.45	672.68	896.90	1121.13	1345.35	1569.58	1793.81	2018.03
1	2	224.154	448.32	672.45	896.63	1120.79	1344.95	1569.11	1793.27	2017.43
\because	3	224.026	448.05	67.2 .08	896.10	1120.13	1344.15	1568.18	1792.21	2016.23
3	4	233.827	447.65	671.45	895.31	1119.13	1342.96	1566.79	1790.61	2014.44
4	5	223.561	447.12	670.68	894.24	1117.80	1341.36	1564.93	17 -8.49	2012.05
5	6	223.229	446.46	669.69	8.92 .92	111614	133:.37	1542.60	1785.83	2009.06
6	7	22.831	445.66	668.49	631.32	1114.15	1336.98	1559.*1	1782.6.4	2005.48
7	\checkmark	222.36	44.73	667.10	859.47	1111.83	1334.20	1556.59	1775.13	2001.30
8	9	221.836	443.67	665.51	887.34	1109.18	1331.02	1552.05	1774.69	1996.52
9	10	221.240	442.48	663.72	884.96	1106.20	1327.44	1548.68	1769.92	1991.16
10	11	220.575	441.16	661.73	882.31	1102.89	1323.47	1544.04	1764.62	1985.20
11	12	219.650	439.70	(0.9.55)	879.40	1099.25	1319.1	1535.95	1758.80	1978.65
12	13	219.05	438.11	637.17	876.33	1095.29	1314.34	1533.40	1752.46	1971.51
13	14	215.199	436.40	65.460	872.80	1090.49	1304.19	1527.39	1745.59	1963.79
14	15	21	434.55	. 6.51 .83	869.10	10868.38	1303.65	1500.93	1738.20	1955.46
15	16	21	432.57	649.86	865.15	10.1 .44	1297.72	1514.01	1730.30	1946.58
16	17	215.204	430.17	645.70	860.94	1076.17	1291.41	1506.64	1721.88	1983.11
17	13	214.117	428.23	642.35	856.47	1070.5!	1284.70	1498.82	1712.94	. 06
18	19	$\because 12.936$	425.87	638.81	851.74	10164.68	1277.62	1490.55	1763.49	1315.42
19	20	211.61	423.38	1855.07	846.7	1058.45	1270.15	1481.E4	$16: 33.53$	1905.22
20	21	210.382	420.76	631.15	8	10.51 .91	1212.29	1472.68	1683.06	1893.44
21	$\therefore 2$	209.01 J	415.02	627.03	836.04	1045.05	1254.06	1463.17	1672.48	1881.10
22	$\because 3$	207.576	415.15	622.73	830.30	1037.85	1245.46	1453.03	1660.61	1868.18
23	$\because 4$	206.079	+12.16	618.24	1.3	1030.39	12365.47	1443.55	1648.63	1854.71
24	25	204.519	400. 0.4	613.56	818.08	1022.60	1227.12	1431.64	1636.16	7
25	21	202	4	608.70	59	1014.49	1217.39	1420.29	1623.19	. 09
$2 ;$	27	211.216	40.2 .3	603.65	804.86°	1006.08	1207.30	1408.51	1609.73	810.95
27	28	199.473	$3!心 .9 \%$	548.42	797.ヶ9	097.36	1196.84	1396.31	1595.78	1795.26
$\because 8$	$2!$	197.469	395.34	593.01	790.65	988.34	1186.01	1383.68	16 b 1.35	1779.02
$\because 9$	30	195.805	391.6]	587.42	783.22	979.03	1174.83	1370.64	15664.44	5
30	31	193.852	35	4	775.53	969.41	1163.29	1357.17		93
31	32	191.599	383.60	575.70	767.60	959.49	1151.39	1343.29	15:5. 19	1727.09
32	33	159.55	379.72	569.57	759.43	949.29	$113!5$	1329.00	1518.86	1708.72
33	34	187.759	375.52	563.25	751.03	938.79	1106.55	1314.31	1509.07	1689.83
34	35	185.602	371.20	556.81	742.41	92.2 .01	1113.61	1299.21	1404.80	670.42
35	36	183.388	366.78	550.16	733.55	916.94	$1100.3: 3$	1283.72	1467.11	1650.49
36	37	181.118	362.24	543.35	724.47	905.59	1086.71	1267.83	1445.94	1630.06
37	38	178.792	357.58	536.35	715.17	893.96	1072.75	123.5\%	14:0.34	1609.13
38	39	176.411	352.82	529.23	705.64	88.005	10.54 .46	129458	1411.20	1587.70
39	40	173.976	347.95	521.93	095.90	869.88	1043. 5	1217.83	1391.80	1565.78
40	41	171.456	3 ± 2.97	514.46	685.94	857.43	1025.92	1200.49	1371.89	1543.37
41	42	168.943	337.89	506.83	675.77	84.72	1013.66	1152.60	1351.55	1520.49
42	43	166.34	33:2.70	499.05	665.39	831.74	998.09	11ti4.44	1330.79	1497.14
43	44	163.701	327.40	491.10	654.81	818.51	98.21	1145.91	1309.61	1473.31
4	4.)	161.003	322.01	483.01	644.01	0.05 .02	966.02	1107.02	1288.03	1449.03

TABLE 1.) (Concluded) Quadrifateral Surfaces of 1 Degree in Latitude and in Longitude un the 'Terrestrial Ehhisulib.

Limiting Latitudes.		Multiples of these Quadrilateral Surfaces from 1 to 9.								
Inf.	Sup.	1.	2.	3.	4.	5.	6.	7.	S.	9.
45	46	158.255	316.51	474.77	633.02	791.28	949.53	1107.79	1266.04	1424.30
46	47	155.457	310.91	466.37	621.83	777.29	932.74	1088.20	1243.66	1399.12
47	48	152.611	305.22	457.83	610.44	763.05	915.66	1068.27	1220. 89	1373.50
48	49	149.716	299.43	449.15	598.86	748.58	898.30	1048.01	1197.73	1347.45
49	50	146.775	293.55	440.32	587.10	733.87	880.65	1027.42	1174.20	1320.97
50	51	143.787	287.57	431.36	575.15	718.93	862.72	1006.51	1150.29	1294.08
51	52	140.753	281.51	422.26	563.01	703.77	844.52	985.27	1126.02	1266.78
52	53	137.675	275.35	413.03	550.70	688.38	826.05	963.73	1101.40	1239.08
53	54	134.554	269.11	403.66	538.21	67.37	807.32	941.88	1076.43	1210.98
54	55	131.389	262.78	394.17	525.56	656.95	788.33	919.72	1051.11	1182.50
55	56	128.183	256.37	384.55	512.73	640.91	769.10	897.28	1025.46	1153.65
56	57	124.936	249.87	374.81	499.74	624.68	749.62	874.55	999.49	1124.42
57	58	121.649	243.30	364.95	486.60	608.24	729.89	851.54	973.19	1094.84
58	59	118.323	236.65	354.97	473.29	591.62	709.94	828.26	946.59	1064.91
59	60	114.959	229.92	344.88	459.84	574.80	689.76	804.72	919.68	1034.63
60	61	111.559	223.12	334.68	446.24	557.79	669.35	780.91	892.47	1004.03
61	62	108.122	216.24	324.37	432.49	540.61	648.73	756.86	864.98	973.10
62	63	104.651	209.30	313.95	418.60	523.26	627.91	732.56	837.21	941.86
63	64	101.146	202.29	303.44	40.4 .58	505.73	606.88	70.02	809.17	910.31
64	65	97.608	195.22	292.83	390.43	488.04	585.65	683.26	780.87	878.48
65	66	94.039	188.08	282.12	376.16	470.20	564.23	658.27	752.31	846.35
66	67	90.440	180.88	271.32	361.76	452.20	542.64	633.08	723.52	813.96
67	68	86.811	173.62	260.43	347.24	434.05	520.86	607.67	694.48	781.30
68	69	83.153	166.31	249.46	332.61	415.77	498.92	582.07	665.23	748.38
69	70	79.469	158.94	238.41	317.88	397.35	476.82	556.28	635.75	715.28
70	71	75.759	151.52	227.28	303.04	378.80	454.56	530.31	606.07	681.83
71	72	72.024	14.05	216.07	288.10	360.12	432.15	504.17	576.19	648.22
72	73	68.266	136.53	204.80	273.06	341.33	409.60	477.86	546.13	614.40
73	74	64.486	128.97	193.46	257.94	322.43	386.91	451.40	515.89	580.37
74	75	60.684	121.37	182.05	242.74	303.42	364.10	424.79	485.47	546.16
75	76	56.863	113.73	170.59	227.45	284.31	341.18	398.04	454.90	511.76
76	77	53.023	106.05	159.07	212.09	265.11	318.14	371.16	424.18	477.20
77	78	49.165	98.33	147.50	196.66	245.83	294.99	344.16	393.32	442.49
78	79	45.292	90.58	135.88	181.17	226.46	271.75	317.04	362.33	407.63
79	80	41.403	82.81	124.21	165.61	207.02	248.42	289.82	331.23	372.63
80	81	37.501	75.00	112.50	150.01	187.51	225.01	262.51	300.01	337.51
81	82	33.587	67.17	100.76	134.35	167.94	201.52	235.11	268.70	302.28
82	83	29.662	59.32	88.99	118.65	148.31	177.97	207.63	237.29	266.95
83	84	25.727	51.45	77.18	102.91	128.63	154.36	180.09	205.81	231.54
84	85	21.783	43.57	65.35	87.13	108.91	130.70	152.48	174.26	196.05
85	86	17.832	35.66	53.50	71.33	89.16	106.99	124.83	142.66	160.49
86	87	13.876	27.75	41.63	55.50	69.38	83.25	97.13	111.00	124.88
87	88	9.914	19.83	29.74	39.66	49.57	59.49	69.40	79.32	89.23
88	89	5.950	11.90	17.85	23.80	29.75	35.70	41.65	47.60	53.55
89	90	1.984	3.97	5.95	7.93	9.92	11.90	13.89	15.87	17.85

G

TABLE 2.) Quadrilateral Surfaces of 2 Degrees in Latitude and in Lungitude on the Terrestrial kllifsuid.

Limiting Latitudes.		Multiples of these Quadrilateral Surfaces from 1 to 9.								
Inf.	Sup.	1.	2.	3.	.	5.	6.	7.	S.	9.
0	2	896.7	1793.54	2690.30	35	4483.84	5380.61	6277.37	7174.14	
2	4	895.705	1791.41	2687.11	3582.82	4478.52	5374.23	6269.93	7165.64	8061.34
4	6	893.579	1787.16	2680.74	3574.32	4467.90	5361.48	6255.06	7148.64	8042.21
6	8	890.394	1780.79	2671.18	3561.58	4451.97	5342.36	6232.76	7123.15	8013.55
8	10	886.1	1772.30	2658.46	3544.61	4430.76	5316.91	6203.06	7089.21	7975.37
10	12	880	1761.71	2642.57	3523.42	4404.28	5285.14	6165.99	7046.85	7927.71
12	14	574.512	1749.02	2623.54	3498.05	4372.	5247.07	6121.58	6996.09	7870.61
14	16	867.10.	1734.25	2601.38	3468.50	4335.63	5202.75	6069.88	6937.00	7804.13
16	18	855.70	1717.41	2576.11	3434.81	4293.52	5152.22	6010.92	6869.63	7728.33
18	20	849.254	1698.51	2547.76	3397.02	4246.27	5095.52	5944.78	6794.03	7643.28
20	22	838.7	1677.57	2516.36	3355.14	4193.93	5032.72	5871.50	6710.29	7549.07
22	24	8.27 .3	1654.62	2481.93	3309.24	4136.55	4963.86	5791.17	6618.48	7445.79
24	26	814.83	1629.67	2444.51	3259.34	4074.18	4889.01	5703.85	6518.68	7333.52
26	± 8	801.37	1602.76	2404.13	3205.51	4006.89	4808.27	5	6411.02	7212.40
28	30	78	1573.90	2360.84	3147.76	3934.74	4721.69	5508.64	6295.59	7082.53
30	32	771	1	2314.68	3086.24	3557.81	4629.37	5400.93		6944.05
32	34	75...	15	2265.70	3021.93	3776.16	4531.40	5286.63	6041.86	6797.09
34	36	73	1	2213.94	29	3689.90	4 ± 27.	5165.86	5903.84	6641.82
36	38	719.8	1439.64	21		3599.10	4318.92	5038.74	6	
38	40	700.	14	21	2	3503.87	4204.64	4905.41	5606.19	96
40	42	68				3404.30	4085.15	4766.01	5446.57	73
42	4	660.100	1320.	1980.30	2640.	3300.50	3960.60	4620.70	5280.80	5940.90
44	46	638.517	1277.03	1915.55	2554.07	3192.59	3831.10	4469.62	5108.14	5746.65
46	48	616.136	1232.27	1848.41	2464	3080.68	3696.82	4312.95	4929.09	5545.22
48	50	592.982	1185.96	1778.94	2371.93	2964.91	3557.89	4150.87	4743.85	336.83
50	52	569.07	1138.16	1707.24	2276.32	2845.40	3414.48	3983.56	4552.64	11
52	54	544.457	1088.91	1633.37	2177.83	2722.29	3266.74	3811.20	4355.66	4900.12
54	56	519.144	1038.39	1557.43	20	2595.72	3114.87	3634.01	4153.15	4672.30
56	58	493.17	. 3	1	¢	2465.85	2959.02	3452.19	3945.36	4438.53
58	60	466.565	933.13	13	1	$233 \pm .83$	2799.39	3265.96	3732.52	9
60	62	439.363	8.73	1318.09	1757.45	2196.81	2636.18	3075.54	3514.90	
62	64	411.594	823.19	1234.78	1646.38	2057.97	2469.57	2881.16	3292.75	3704.35
64	66	35	766.59	1149.88	15	1916.47	2299.77	2683.06	3066.36	3449.65
66	68	354.500	709.00	1063.50	1418.00	1772.50	2127.00	2481.50	2836.00	3190.50
68	70	32.5 .245	650.49	975.74	1300.98	1626.23	1951.47	2276.72	2601.96	
70	72	295.567	591.13	886.70	1182.27	1477.83	1773.40	2068.97	2364.54	2660.10
72	74	265.504	531.01	796.51	1062.02	1327.53	1593.02	1858.53	2124.03	2359.53
74	76	235.09	470.19	705.28	940	1175.	1410.56	1645.66	1880.75	2115.84
76	78	204.376	408.75	613.13	0	1021.68	1226.26	1430.63	1635.01	38
78	80	173.390	346.78	520.17	693.56	866.95	1040.34	1213.73	1387.12	1560.51
80	82	142.177	284.35	426.53	568.71	710.88	853.06	995.24	1137.41	1279.59
82	84	110.737	221.55	332.33	443.11	553.88	664.66	775.44	886.21	996.99
54	86	79.230	158.46	237.69	316.	396.15	475.38	554.41	633.84	713.07
86	88	47.580	95.16	142.74	190.32	237.90	285.45	333.06	380.64	428.22
88	90	15.867	31.73	47.60	63.47	79.34	95.20	111.07	126.94	142.80

TABLE 3.) Quadrilateral Surfaces of 5 Degrees in Latitude and in Lungitude un the 'Terrestrial Ellipsuid.

$\underset{\text { Latitit }}{\text { Limi }}$	iting,	Multiples of these Quadrilaterai Surfaces from 1 to 9.								
Iuf.	Sup.	1.	2.	3.	4.	5.	6.	$\%$	s.	9.
0	5	5598.9851	11197.97	16796.96	22395.94	27994.93	33593.91	39192.90	44791.88	50390.87
5	10	5557.5091	11115.021	16672.53	22230.04	27787.55	33345.06	38902.57	44460.07	50017.58
10	15	5474.7971	10949.591	16424.39	21899.19	27373.98	32848.78	38323.58	43798.38	49273.17
15	20	5351.3291	10702.661	16053.99	21405.32	26756.65	32107.98	37459.30	42810.63	48161.96
20	25	5187.8381	10375.681	15563.51	20751.35	25939.19	31127.02	36314.86	41502.70	46690.54
25	30	4985.307	9970.61	14955.98	19941.23	24926.54	29911.85	34897.15	39882.46	44867.77
30	35	4744.993	9489.99	14234.98	18979.97	23724.96	28469.96	33214.95	37959.94	42704.94
35	40	468.425	8936.85	13405.271	17873.70	22342.13	26810.55	31278.97	35747.40	40215.82
40	45	4157.414	8314.83	12472.24	16629.66	20787.07	24944.49	29101.90	33259.31	37416.73
45	50	3814.070	'7628.14	11422.211	15256.28	19070.35	22884.42	26698.49	30512.56	34326.63
50	55	3440.788	6881.58	10322. 36	13763.15	17203.94	20644.73	24085.51	27526.30	30967.09
55	60	3040.252	6080.50	9120.76	12161.01	15201.26	18241.51	21281.78	24322.02	27362.27
60	65	2615.434	5230.87	7846.301	10461.74	13077.17	15692.60	18308.04	20923.47	23538.91
65	70	2169.559	4339.12	6503.68	8678.24	10847.79	13017.35	15186.91	17356.47	19526.03
70	75	1706.098	3412.20	5118.29	6824.39	8530.49	10236.59	11942.69	13648.78	15354.88
75	80	1228.729	2457.46	3686.19	4914.92	6143.65	7372.37	8601.10	9829.83	11058.56
80	85	741.298	1482.60	2223.89	2965.19	3706.49	4447.79	5189.09	5930.38	6671.68
85	90	247.779	495.56	743.34	991.12	1238.90	1486.67	1734.45	1982.23	2230.01

TABLE 4.) Quadrilateral Surfaces of 10 Degrees in Latitude and in Longitule on the Terrestrial Ellipsoid.

TABLE 5.) Mean Quadrilateral Surfaces of 1, 10, 20, and 30 Minutes in Latitude ani, in Longitude deduced from each Quadrilateral of 1 Degree in T'able 1.)

COMPARISON

of The

STANDARDS OF LENGTH

OF

ENGLAND, FRANCE, BELGIUM, PRUSSSLA, RUSSIA, INDIA, AND ALSTRALIA,

MADE AT

THE ORDNANCE SURVEY OFFICE, SOUTHAMPTON.

BY
Captain A. R. CLARKE, R.E., F.R.S.,

UNDER THE DIRECTION OF

Colonel Sir HENRY JAMES, R.E., F.R.S., etc., director of ordnance surver.

IX. Tables for finding tie Length of Tine of Insolation for any Latitude, and for any Day of the Year.

The formula for computing the length of time of daily solar illumination are obtained as follows :-

Let $P^{\prime \prime}$ be the north pole (celestial), S the true place of the sun's centre when that centre is bronght by refraction to the hori-
 zon of the place, and let Z be the zenith of the place.
Let $\delta=$ the north declination of the sun (negative when south)

$$
\begin{aligned}
& =90^{\circ}-P S \\
& =90^{\circ}-P Z \\
& =Z S-90^{\circ}
\end{aligned}
$$

$l=$ the norti latitude of the place
(negative when south)
$r=$ the horizontal refraction
$h=$ the hour angle $Z P S$.
We have $\quad \cos Z S=\cos P Z \cos P S+\sin P Z \sin P S \cos Z P S$.
Or $\quad-\sin r \quad=\sin l \sin \delta+\cos l \cos \delta \cos h$
Also $\quad \cos (l-\delta)=\cos l \cos \delta+\sin l \sin \delta$
$\cos (l+\delta)=\cos l \cos \delta-\sin l \sin \delta$
Subtract [1] from [2], and add [1] to [8].

$$
\begin{aligned}
& \cos (l-\delta)+\sin r=\cos l \cos \delta(1-\cos h)=2 \cos l \cos \delta \sin ^{2} \frac{1}{2} h \\
& \cos (l+\delta)-\sin r=\cos l \cos \delta(1+\cos h)=2 \cos l \cos \delta \cos ^{2} \frac{1}{2} h
\end{aligned} \quad\left[\frac{4}{2}\right]
$$

Observing that $\sin x+\sin y=2 \sin \frac{1}{2}(x+y) \cos \frac{1}{2}(x-y)$ the two last equations give us

$$
\begin{align*}
& \sin ^{2} \frac{1}{2} h=\frac{\sin \left(45^{\circ}-\frac{1}{2} l+\frac{1}{2} \delta+\frac{1}{2} r\right) \cos \left(45^{\circ}-\frac{1}{2} l+\frac{1}{2} \delta-\frac{1}{2} r\right)}{\cos l \cos \delta} \tag{6}\\
& \cos ^{2} \frac{1}{2} h=\frac{\sin \left(45^{\circ}-\frac{1}{2} l-\frac{1}{2} \delta-\frac{1}{2} r\right) \cos \left(45^{\circ}-\frac{1}{2} l-\frac{1}{2} \delta+\frac{1}{2} r\right)}{\cos l \cos \delta} \tag{7}
\end{align*}
$$

which are the formula used in computing the tables.
The refraction has been assumed to be 34^{\prime}.
The declinations used are from the Nautical Almanac for 1862, for Greenwich mean noon; except in finding the limiting date when the sun's centre does not go below the horizon throughout the whole day, in which case the midnight declination hats been used.

A supplementary table is given by the aid of which the main table may be used for southern as well as northern latitudes.

The use of the main table may be illustrated by the following example:-
Find the time of insolation for May 13th, latitude $43^{\circ}-30 \mathrm{~N}$.

May 11th, lat. 42°	$=14^{\mathrm{h}} .37$	May 11 th, lat. $44^{\circ}=14^{\mathrm{h}} .54$
$\frac{2}{2}$ diff. to May 16 th,	$=+.07$	$\frac{2}{5}$ 恀. to May $16 \mathrm{th}=+.07$
May 13 th, lat. 42°	$=14^{\mathrm{h}} .44$	May 13 th, lat. $44^{\circ}=14^{\mathrm{h}} .61$
$\frac{5}{4}$ diff. 42° to 44°	$=+.13$	Diff. lat. 42 to $44^{\circ}=0^{\mathrm{h}} .17$

May 13th, lat. $43^{\circ}-30=14^{\mathrm{h}} .57 \mathrm{ans}$.
The use of the supplementary table is sufficiently plain. For example: To find the time of insolation for Jannary 6 th in any south latitude, add the tabular number 1 d .97 to the corresponding date of July; with the latter and the latitude of the place (regarding it as north instead of south) as arguments, the required time of insolation may at once be found.

DATE.	Latitude North.										
	0	5°	80	$\underline{120}$	16°	20°	210	28°	$3{ }^{12}$	36°	10°
January $\begin{aligned} & \text { J } \\ & 1 \\ & 1 \\ & 2 \\ & 2\end{aligned}$	12 hb .08	$11^{\text {h. }} 86$	$11^{\mathrm{h}} .63$	$11^{\mathrm{h}} .39$	$11^{\mathrm{h}} .15$	$10^{\mathrm{h}} .90$	$10^{\text {h }} .63$	$10^{\mathrm{h}} .35$	$10^{\text {b }} .04$	$9^{\text {b }} .70$	$9^{\text {b }} .32$
	12.08	11.86	11.64	11.41	11.18	10.93	10.67	10.40	10.10	9.77	9.40
	12.08	11.87	11.65	11.43	11.21	10.97	10.72	10.46	10.17	9.85	9.50
	12.08	11.88	11.67	11.46	11.25	11.02	10.78	10.53	10.25	9.95	9.62
	12.08	11.89	11.69	11.49	11.29	11.08	10.55	10.61	10.35	10.07	9.75
	12.08	11.90	11.72	11.53	11.34	11.14	10.93	10.71	10.47	10.21	9.91
February $\begin{array}{r}\text { r } \\ \\ 1 \\ 1 \\ 2 \\ 2\end{array}$	12.08	11.92	11.75	11.58	11.41	11.23	11.04	10.84	10.62	10.38	10.11
	12.08	11.93	11.78	11.63	11.47	11.30	11.13	10.95	10.75	10.54	10.30
	12.08	11.95	11.81	11.67	11.53	11.38	11.83	11.07	10.90	10.71	10.50
	12.08	11.96	11.84	11.72	11.60	11.47	11.34	11.20	11.05	10.88	10.70
	12.08	11.98	11.88	11.78	11.67	11.56	11.45	11.33	11.20	11.06	10.91
	12.08	12.00	11.91	11.83	11.74	11.65	11.56	11.46	11.36	11.24	11.12
March	12.08	12.01	11.94	11.87	11.79	11.71	11.63	11.55	11.46	11.36	11.25
	12.08	12.03	11.97	11.92	11.86	11.80	11.75	11.69	11.62	11.54	11.46
	12.08	12.14	12.01	11.98	11.94	11.90	11.86	11.82	11.78	11.73	11.68
	12.08	12.06	12.04	12.03	12.01	12.00	11.98	11.96	11.94	11.92	11.90
	12.08	12.08	12.08	12.08	12.09	12.10	12.10	12.11	12.11	12.12	12.13
	12.08	12.10	12.12	12.14	12.17	12.20	12.23	12.26	12.29	12.32	1235
April	12.08	12.12	12.16	12.20	12.25	12.30	12.35	12.41	12.47	12.53	12.61
	12.08	12.13	12.19	12.26	12.33	12.40	12.47	12.55	12.63	12.72	12.53
	12.05	12.15	12.23	12.31	12.40	12.49	12.58	12.68	12.79	12.91	13.04
	12.08	12.17	12.27	12.37	12.47	12.58	12.69	12.81	12.95	13.09	13.25
	12.08	12.19	12.30	12.42	12.54	12.67	12.80	12.94	13.10	13.27	13.46
	12.08	12.21	12.34	12.48	12.62	12.76	12.90	13.07	13.25	13.44	13.66
May	12.08	12.22	12.37	12.52	12.67	12.83	13.00	13.19	13.39	13.61	13.85
	12.08	12.24	12.40	12.56	12.73	12.91	13.10	13.30	13.52	13.76	14.03
	12.08	12.25	12.43	12.61	12.79	12.9s	13.19	13.41	13.65	13.91	14.20
	12.08	12.27	12.46	12.65	12.84	13.05	13.27	13.51	13.77	14.05	14.36
	12.08	12.28	12.48	12.68	12.89	13.11	13.35	13.60	13.87	14.17	14.51
	12.08	12.29	12.50	12.71	12.93	13.17	13.42	13.68	13.96	14.28	14.64
June $\begin{array}{cc} \\ & \\ & 1 \\ & 1 \\ & 2 \\ & 2\end{array}$	12.08	12.30	12.52	12.74	12.97	13.22	13.48	13.76	14.06	14.39	14.76
	12.05	12.30	12.53	12.76	13.00	13.25	13.52	13.81	14.12	14.46	14.85
	12.08	12.31	12.54	12.78	13.02	13.28	13.55	13.84	14.16	14.52	14.91
	12.08	12.31	12.55	12.79	13.03	13.29	13.57	13.87	14.19	14.55	14.95
	12.08	12.31	12.55	12.79	13.04	13.30	13.58	13.88	14.20	14.56	14.96
	12.08	12.31	12.55	12.79	13.03	13.29	13.57	13.87	14.19	14.55	14.95

Date.		Latitude North.										
		0	4°	\mathbf{s}°	120	16°	$\mathbf{2 0}{ }^{\circ}$	24	28	320	36°	40°
July	1	$12^{\mathrm{h}} .08$	$12^{\text {h }} .31$	12 b .54	$12^{\text {h. }} 78$	$13^{\text {n }} .02$	$13^{\text {b }} .28$	$13^{\text {b }} .55$	$13^{\text {h }} .84$	$14^{\text {h }} .16$	$14^{\text {b }} .52$	$14^{\text {b }} .92$
	6	12.08	12.30	12.53	12.76	13.00	13.25	13.52	13.81	14.12	14.46	14.86
	11	12.08	12.30	12.52	12.74	12.98	13.2.2	13.48	13.76	14.06	14.39	14.77
	16	12.08	12.29	12.50	12.72	12.94	13.18	13.43	13.70	13.99	14.31	14.67
	21	12.08	12.28	12.48	12.68	12.90	13.13	13.37	13.63	13.90	14.20	14.55
	26	12.08	12.27	12.46	12.65	12.86	13.07	13.30	13.54	13.79	14.08	14.41
August	1	12.08	12.25	12.43	12.61	12.80	12.99	13.20	13.42	13.66	13.93	14.22
	6	12.08	12.24	12.40	12.57	12.74	12.92	13.11	13.32	13.54	13.79	14.05
	11	12.08	12.22	12.37	12.52	12.68	12.85	13.02	13.20	13.41	13.63	13.87
	16	12.08	12.21	12.34	12.48	12.62	12.77	12.92	13.08	13.26	13.46	13.68
	21	12.05	12.19	12.31	12.43	12.55	12.68	12.82	12.96	13.12	13.29	13.49
	26	12.08	12.17	12.27	12.37	12.48	12.59	12.71	12.83	12.97	13.12	13.29
September		12.08	12.15	12.23	12.31	12.40	12.49	12.58	12.68	12.79	12.91	13.04
	6	12.08	12.14	12.20	12.26	12.33	12.40	12.47	12.55	12.63	12.72	12.83
	11	12.08	12.12	12.16	12.20	12.25	12.30	12.35	12.41	12.47	12.54	12.61
	16	12.08	12.10	12.13	12.15	12.18	12.21	12.24	12.27	12.31	12.35	12.40
	21	12.08	12.09	12.09	12.10	12.10	12.11	12.12	12.13	12.15	12.17	12.18
	26	12.08	12.07	12.05	12.04	12.03	12.02	12.01	12.00	11.99	11.98	11.96
October	1	12.08	12.05	12.02	11.99	11.96	11.93	11.89	11.86	11.82	11.78	11.74
	6	12.08	12.03	11.98	11.93	11.58	11.83	11.78	11.72	11.66	11.59	11.52
	11	12.08	12.01	11.94	11.88	11.81	11.74	11.67	11.59	11.50	11.40	11.31
	16	12.08	12.00	11.91	11.83	11.74	11.65	11.55	11.45	11.34	11.22	11.09
	21	12.08	11.95	11.87	11.77	11.66	11.56	11.44	11.31	11.18	11.04	10.88
	26	12.08	11.96	11.84	11.72	11.59	11.46	11.33	11.18	11.03	10.86	10.68
November		12.08	11.94	11.80	11.66	11.52	11.37	11.21	11.04	10.86	10.66	10.44
	6	12.08	11.93	11.77	11.61	11.45	11.25	11.11	10.92	10.71	10.49	10.25
	11	12.08	11.91	11.74	11.57	11.39	11.21	11.01	10.80	10.58	10.34	10.07
	16	12.08	11.90	11.71	11.53	11.34	11.14	10.92	10.70	10.46	10.20	9.90
	21	12.08	11.69	11.69	11.49	11.29	11.08	10.85	10.61	10.35	10.07	9.75
	26	12.08	11.88	11.67	11.46	11.25	11.02	10.78	10.52	10.25	9.95	9.61
December		12.08	11.87	11.65	11.43	11.21	10.97	10.72	10.45	10.17	9.85	9.49
	6	12.08	11.86	11.64	11.41	11.18	10.93	10.67	10.40	10.10	9.77	9.40
	11	12.08	11.86	11.63	11.39	11.15	10.90	10.64	10.36	10.05	9.71	9.33
	16	12.08	11.85	11.62	11.38	11.13	10.88	10.62	10.33	10.01	9.67	9.29
	21	12.08	11.85	11.62	11.38	11.13	10.88	10.61	10.32	10.00	9.65	9.27
	26	12.08	11.85	11.62	11.38	11.13	10.88	10.61	10.32	10.01	9.66	9.28

DATE.		Latitude North.										
		40°	42	44°	46°	48°	50°	520	$54{ }^{\circ}$	56°	58	60°
Januar	1	9 h .32	9 d .11	$8^{\mathrm{n}} .89$	$8^{\text {b }} .65$	$8^{\text {b }} .39$	$8{ }^{\text {b }} .10$	7h. 77	7 7 .40	$6^{\text {L }} .99$	$6^{\text {b. }} 51$	$5^{4} .92$
	6	9.40	9.19	8.98	8.74	8.48	8.20	7.89	7.53	7.13	6.67	6.12
	11	9.50	9.30	9.09	8.86	8.62	8.35	8.05	7.71	7.33	6.89	6.38
	16	9.62	9.43	9.23	9.01	8.78	8.52	8.24	7.93	7.57	7.16	6.68
	21	9.75	9.58	9.39	9.19	8.97	8.73	8.47	8.17	7.84	7.47	7.03
	26	9.91	9.75	9.58	9.39	9.18	8.96	8.72	8.45	8.15	7.81	7.41
Februa	y 1	10.11	9.97	9.82	9.65	9.46	9.26	9.05	8.81	8.54	8.24	7.90
	6	10.30	10.17	10.03	9.88	9.71	9.53	9.34	9.13	8.89	8.62	8.32
	11	10.50	10.38	10.25	10.12	9.97	9.85	9.65	9.46	9.26	9.12	8.76
	16	10.70	10.60	10.49	10.37	10.25	10.12	9.97	9.81	9.63	9.43	9.21
	21	10.91	10.83	10.74	10.64	10.53	10.42	10.29	10.16	10.01	9.84	9.66
	26	11.12	11.05	10.98	10.90	10.81	10.72	10.62	10.51	10.39	10.26	10.11
March	1	11.25	11.19	11.12	11.05	10.98	10.90	10.82	10.73	10.62	10.51	10.38
	6	11.46	11.42	11.37	11.32	11.27	11.21	11.15	11.09	11.02	10.94	1084
	11	11.68	11.65	11.62	11.59	11.56	11.53	11.49	11.45	11.41	11.36	11.29
	16	11.90	11.69	11.88	11.87	11.86	11.85	11.83	11.81	11.80	11.78	11.75
	21	12.13	12.13	12.14	12.14	12.15	12.16	12.17	12.18	12.19	12.20	12.21
	26	12.35	12.37	12.39	12.41	12.44	12.47	12.50	12.54	12.58	12.62	12.66
April	1	12.61	12.65	12.69	12.74	12.79	12.84	12.90	12.97	13.04	13.12	13.21
	6	12.83	12.88	12.94	13.01	13.08	13.16	13.24	13.33	13.43	13.54	13.66
	11	13.04	13.11	13.19	13.27	13.36	13.46	13.57	13.58	13.81	13.96	14.12
	16	13.25	13.34	13.43	13.53	13.64	13.76	13.89	14.03	14.19	14.37	14.57
	21	13.46	13.56	13.67	13.79	13.92	14.06	14.21	14.38	14.57	14.78	15.01
	26	13.66	13.78	13.90	14.03	14.18	14.34	14.52	14.71	14.93	15.18	15.45
May	1	13.85	13.98	14.12	14.27	14.44	14.63	14.83	15.05	15.29	15.57	15.89
	6	14.03	14.18	14.34	14.51	14.69	14.89	15.12	15.37	15.64	15.96	16.32
	11	14.20	14.37	14.54	14.73	14.93	15.15	15.39	15.66	15.97	16.32	16.72
	16	14.36	14.54	14.72	14.93	15.15	15.39	15.65	15.95	16.29	16.67	17.11
	21	14.51	14.69	14.89	15.11	15.35	15.61	15.89	16.21	16.58	17.00	17.48
	26	14.64	14.83	15.04	15.27	15.52	15.80	16.11	16.45	16.84	17.29	17.82
June	1	14.76	14.97	15.20	15.44	15.70	15.99	16.32	16.69	17.11	17.60	18.18
	6	14.85	15.07	15.30	15.55	15.82	16.12	16.46	16.85	17.29	17.80	18.42
	11	14.91	15.13	15.37	15.63	15.91	16.22	16.57	16.97	17.43	17.95	18.60
	16	14.95	15.17	15.41	15.67	15.96	16.28	16.64	17.04	17.50	18.05	18.71
	21	14.96	15.19	15.43	15.69	15.98	16.30	16.66	17.06	17.53	18.08	18.75
	26	14.95	15.18	15.42	15.68	15.97	16.29	16.64	17.04	17.51	18.05	18.72

Date.		Latitude North.										
		40°	420	$4{ }^{\circ}$	46°	480	50°	5:10	540	56°	58°	60°
July	1	$14^{4 .} 92$	$15^{\text {h }} .14$	$15^{\text {b }} .37$	$15^{\text {b }} .63$	$15^{\text {b }} .92$	$16^{\text {b }} .24$	$16^{\text {b }} .59$	$16^{\text {b }} .98$	$17^{\mathrm{h}} .43$	$17^{\mathrm{h}} .97$	$18^{\text {h }} .61$
	6	14.86	15.07	15.30	15. 5	15.83	16.14	16.48	16.86	17.30	17.82	18.44
	11	14.77	14.98	15.21	15.46	15.72	16.01	16.34	16.71	17.13	17.62	18.20
	16	14.67	14.87	15.09	15.32	15.57	15.85	16.16	16.51	16.91	17.37	17.92
	21	14.55	14.74	14.94	15.16	15.40	15.67	15.96	16.29	16.66	17.09	17.60
	26	14.41	14.59	14.78	14.99	15.31	15.46	15.73	16.03	16.38	16.78	17.24
August	1	14.22	14.39	14.56	14.75	14.95	15.17	15.43	15.71	16.01	16.36	16.77
	6	14.05	14.20	14.36	14.53	14.72	14.93	15.15	15.40	15.68	16.00	16.37
	11	13.87	14.00	14.15	14.31	14.48	14.67	14.87	15.09	15.34	15.62	15.95
	16	13.68	13.80	13.94	14.08	14.23	14.39	14.57	14.77	14.99	15.24	15.52
	21	13.49	13.60	13.72	13.84	13.96	14.11	14.26	14.43	14.62	14.84	15.08
	26	13.29	13.38	13.47	13.57	13.69	13.82	13.95	14.09	14.25	14.43	14.64
September		13.04	13.11	13.19	13.27	13.36	13.46	13.56	13.68	13.81	13.95	14.11
	6	12.83	12.88	12.95	13.01	13.08	13.16	13.24	13.33	13.42	13.53	13.66
	11	12.61	12.65	12.70	12.74	12.79	12.85	12.91	12.98	13.04	13.12	13.21
	16	12.40	12.42	12.45	12.48	12.51	12.54	12.58	12.62	12.66	12.71	12.76
	21	12.18	12.19	12.20	12.21	12.22	12.23	12.24	12.26	12.27	12.29	12.31
	26	11.96	11.96	11.95	11.94	11.93	11.92	11.91	11.90	11.89	11.88	11.86
October	1	11.74	11.72	11.69	11.67	11.64	11.61	11.58	11.54	11.50	11.46	11.41
	6	11.52	11.48	11.44	11.40	11.35	11.30	11.24	11.18	11.12	11.05	10.96
	11	11.31	11.25	11.19	11.13	11.06	10.99	10.91	10.82	10.73	10.63	10.51
	16	11.09	11.02	10.95	10.87	10.78	10.68	10.58	10.47	10.35	10.22	10.06
	21	10.88	10.80	10.71	10.61	10.50	10.39	10.26	10.12	9.97	9.80	9.61
	26	10.68	10.58	10.47	10.35	10.22	10.09	9.94	9.78	9.60	9.39	9.17
November		10.44	10.32	10.19	10.05	9.90	9.74	9.56	9.37	9.15	8.90	8.63
	6	10.25	10.12	9.97	9.82	9.65	9.47	9.27	9.05	8.80	8.52	8.21
	11	10.07	9.92	9.76	9.59	9.40	9.20	8.98	8.73	8.46	8.15	7.79
	16	9.90	9.73	9.56	9.38	9.17	8.95	8.71	8.44	8.13	7.79	7.39
	21	9.75	9.57	9.39	9.19	8.96	8.72	8.46	8.16	7.83	7.45	7.02
	26	9.61	9.42	9.22	9.01	8.77	8.52	8.23	7.91	7.56	7.15	6.67
December		9.49	9.30	9.09	8.86	8.61	8.34	8.04	7.70	7.32	6.88	6.36
	6	9.40	9.20	8.98	8.73	8.48	8.20	7.89	7.53	7.13	6.66	6.11
	11	9.33	9.12	8.89	8.64	8.38	8.09	7.77	7.40	6.98	6.50	5.92
	16	9.29	9.07	8.84	8.59	8.32	8.02	7.69	7.32	6.89	6.39	5.79
	21	9.27	9.05	8.82	8.57	8.30	8.00	7.66	7.28	6.85	6.35	5.75
	26	9.28	9.06	8.84	8.59	8.31	8.01	7.68	7.31	6.88	6.38	5.78

DATE.		Latitude North.										
		60°	$61{ }^{\circ}$	$6: 2$	$63{ }^{\circ}$	64°	65°	66°	6\%	6so	69°	80°
January	1	$5^{\text {h. }} 92$	$5^{\text {h }} .59$	54.22	$4^{\text {b }} .79$	$4^{\text {b }} .30$	$3^{\text {b }} .70$	$2^{2 .} 91$	$1^{4} .60$	Appears Jin. 6 , A. \mathbf{M}.		
	6	6.12	5.80	5.45	5.05	4.59	4.05	3.37	2.46	$0 .{ }^{1} 63$	Appears Jan. 13, $11 h .54$	
	11	6.38	6.05	5.75	5.39	4.97	4.48	3.91	3.17	213		
	16	6.68	6.41	6.11	5.7	6.40	4.97	4.48	3.57	3.10	$1^{\text {b }} 97$	
	21	7.03	6.78	6.51	6.21	6.88	5.50	5.08	4.58	3.97	3.20	$2{ }^{2} .06$
	26	7.41	7.19	6.95	6.69	7.40	6.07	5.70	5.28	4.79	4.20	3.45
February	1	7.90	7.71	7.50	7.27	7.02	6.75	6.44	6.10	5.11	5.27	4.73
	6	8.32	8.15	7.97	7.7	7.56	7.33	7.07	6.78	6.45	6.09	5.67
	11	8.76	8.61	8.46	8.29	8.11	7.91	7.69	7.45	7.18	6.85	6.54
	16	9.21	9.09	8.96	8.82	S. 66	8.49	8.31	8.11	7.89	7.64	7.37
	21	9.66	$9 \cdot 56$	9.44	9.33	9.20	9.07	8.92	8.76	8.58	ع.38	8.16
	26	10.11	10.03	9.94	9.54	9.74	9.63	9.81	9.38	9.25	9.10	8.93
March	1	10.38	10.31	10.24	10.16	10.07	9.98	9.88	9.77	9.65	9.52	9.38
	${ }^{6}$	10.84	10.79	10.74	10.68	10.62	10.55	10.45	10.40	10.32	10.23	10.13
	11	11.29	11.26	11.23	11.20	11.16	11.12	11.08	11.03	10.95	10.92	10.86
	16	11.75	11.74	11.73	11.72	11.70	11.69	11.67	11.65	11.63	11.61	11.58
	21	12.21	12.21	12.22	12.23	12.24	12.25	12.26	12.27	12.29	12.30	12.31
	26	12.66	12.69	12.72	12.75	12.78	12.82	12.c6	12.90	12.94	12.99	13.04
A ${ }^{\text {pril }}$	1	13.21	13.26	13.31	13.37	13.43	13.49	13.56	13.64	13.72	13.81	13.92 .
	6	13.66	13.73	13.60	13.88	13.97	14.06	14.16	14.27	14.38	14.51	14.66
	11	14.12	14.20	14.30	14.40	14.51	14.63	14.76	14.90	15.05	15.22	15.41
	16	14.57	14.67	14.79	14.92	15.05	15.19	15.36	15.54	15.73	15.94	16.18
	21	15.01	15.14	15.28	15.44	15.60	15.77	15.97	16.19	16.42	16.68	16.98
	26	15.45	15.60	15.77	15.95	16.14	16.35	16.59	16.84	17.13	17.45	17.82
May	1	\|15.89	16.07	16.26	16.47	16.69	16.94	17.21	17.51	17.86	18.26	18.72
	6	16.32	16.52	16.74	16.98	17.23	17.52	17.85	18.21	18.63	19.12	19.71
	11	16.72	16.95	17.20	17.47	17.77	18.10	18.48	18.92	19.43	20.05	20.86
	16	17.11	17.37	17.65	17.95	18.30	18.68	19.13	19.66	20.30	21.15	22.55
	21	17.48	17.7	18.15	18.42	18.81	19.26	19.79	20.45	21.31	$\underline{2} 2.81$	
	26	17.82	18.13	18.47	18.86	19.30	19.82	20.46	21.89	22.68		$\begin{gathered} \text { Mrom } \\ \text { May } 17, \end{gathered}$
June	1	18.18	18.52	18.90	19.33	19.84	20.46	21.27	22.56	Above horizon	May 22, 0 . 4	$\begin{aligned} & \text { A. } 3.59 \\ & \text { Jul to } \\ & \text { Jut } \end{aligned}$
	6	18.42	18.78	19.19	19.66	20.23	20.94	21.95	$\underset{\substack{\text { Above } \\ \text { borizulu } \\ \text { troni }}}{\text { a }}$	$\begin{aligned} & \text { frum } \\ & \text { May }=8, \end{aligned}$		
	11	18.60	18.98	19.41	19.92	20.54	21.34	2.2 .65	$\begin{aligned} & \text { trom } \\ & \text { June } \\ & \text { 5h i } \end{aligned}$	$\begin{aligned} & \text { Ah. } 26 \\ & \text { A. } \end{aligned}$		$70 d 23 \mathrm{~h} .0$
	16	18.71	19.11	19.56	20.09	20.74	21.62	23.40		to, Juls		
	21	18.75	19.15	19.60	20.14	20.81	21.72		$\left\{\begin{array}{c} 11 h .56 \\ \mathrm{p} . \mathrm{I}_{6} \\ 35 d 23 h .31 \end{array}\right.$	$\begin{gathered} 11 / 56 \\ p .3 . \\ \text { 43d } 33 . h 30 \end{gathered}$		
	26	18.72	19.11	19.56	20.09	20.75	21.64	23.45				

Table from which may be taken for any given date the number of days to be added (algebraically, as the sigu directs) to its supplementary date so as to give the date with which to find from the table of insolations for the given date the insolation for the given date in a southern latitude.

Given date.	Days to be added to supplementary date.	Given date.	Days to be added to supplementary date.	Given date.	Days to be added to supplementary date.	Given date.	Days to le added to supple. mentary date.
January 6	$+1^{\text {d }} .97$	April 6	$+3 \mathrm{~d} .51$	July 6	$-1^{\text {d }} .83$	October 6	$-3{ }^{\text {d }} .53$
16	+2.66	16	$+3.39$	16	-2.52	16	-3.44
26	+3.31	26	$+3.18$	26	-3.18	26	-3.26
February 6	+ 3.95	May 6	$+1.86$	August 6	-3.71	November 6	-1.92
16	$+4.46$	$11 i$	+1.45	16	-4.25	16	-1.52
26	$+4.86$	26	$+0.96$	26	-4.68	26	-1.03
March 6	$+2.14$	June 6	$+1.30$	September 6	-2.08	December 6	-1.39
16	+ 2.35	$11 ;$	+ 0.64	16	- 2.34	16	-0.68
26	$+2.50$	26	-0.03	26	-2.48	219	$+0.03$

ALPHABETICAL INDEX.

A.
Air, column corresponding to a Millimetre in Barometer page 427
" same at different Temperatures and Elevations 429
" column corresponding to tenths of an inch in Barometer 427
" same at different Temperatures and Elevations 18
" cubic foot, Dry and Saturated, compared
Albany, Monthly corrections Non-periodic Variations of Temperature 677
Altitudes, comparison of lengths used in measuring 449 -500
Amherst, Hourly corrections Periodic Var. Temperature 592
Apenrade, Hourly corrections Periodic Var. 'Temperature 632
Apjohn, Factors for computing Force of Vapor 176
Aqueous Vapor, comparison of Dry and Saturated Air 180
" " Elastic force of, in French measures, Regnault 46
" " " ، Greenwich constants 137
" " ، 6 in Millimetres, August 186
" ". " .. ." . Kacmtz 188
" " . . . " Magnus 188
" ، " . 6 Cubic Foot of Saturated Air 130
.. ، " .، Greenwich constants 179
" " Force of, and Relative Humidity corresponding to degrees of Saussure's Hygrometer, Gay Lissac 198
" " " different values of different authorities 190
" ." \quad English measures, Regnault 7
" " " Greenwich Homrly corrections, Glaisher 65:3
" " ، Inches, Royal Soc. $18!$
" " " weight of, in Cubic Metre of air 74" " " ." Factor for deducing from indications ofdew point instruments . . 17!in Grammes, in Cubic Metre of air,Kaemtz192
in Grammes. in Cubic Metre of air. Pouillet 192
Arc, from Sidereal Time 69.5
" into Sidereal Time 693
Athabasca, Hourly corrections Periodic Var. Temperature 589
PAGE
August, Elastic force of Vapor in Millimetres 186
Australia, standards of Length compared with other nations 709
Austrian Miles into Kilometres 508
" " Prussian Miles," " German Miles," " Nautical Leagues," " French Leagues," " Geographical Miles," " English Statute Miles,
"، " Russian Wersts 508
Austrian Square Miles into Square Kilometres 540
" " " 3 Prussian Square Miles,
" ${ }^{6}$ " " German Square Miles,
" " " Nautical Square Leagues," " " Freuch Square Leagues," " " Geographical Square Miles," " " English Square Statute Miles," " " Russian Square Wersts 540
B.
Baily, depression of Barometric column, capillary 340
". Hypsometric Tables, English measures 407
Barometer, English and Metrical compared 215
" "، " old French compared 219
" " brass scale reduced to freezing point 269
" " capillary correction 337
" " from Metrical 225
" " " old French 238
" " glass or wooden scale reduced to freezing point 276
equivalents of millimetres, in metres 427
same at different Temperatures and Elevations 429
equivalents of Paris Lines, in French Feet 427
" tenths of an inch, in English Feet 427
same at different 'Temperatures and Elevations 430
Metrical, capillary corrections (Meniscus) 338
" 6 from English 215
" " "، old French 243
" "، " Russian 247
" " into English 225
" "، reduced to freezing point, Delcros 281
" " " ، " Haeghens 287
" old French, reduced to freezing point 330
" " compared with English 238
" " " " Metrical 243
" " " "، Russian 252
page
Barometer reduced to Sea Level 426
Barometric column, capillary correction for English Barometers 337
" " " " " French Barometers 338
" " " depression, Baily 340
" " 6 " Delcros 340
" " ، Gehler 339
" " " ." Pouillet 339
" differences, comparison of 257-261
" pressure, true mean, Hourly Corrections, Greenwich 432
" " " " " $"$ Philatelphia 431
" pressures, corresponding to Temperatures of boiling water, Metrical 442
" " same, Metrical, Regnault 438
" " same, English measures 444
" scales, comparison of different 209-252
Barometrical Tables 209-340
Bavarian Feet, into Metres 493
Belgium, standards of Length compared with other nations 709
Berghaus, Horary correction 418
Berlin, Hourly corrections Periodic Var. Temperature 629
" Monthly corrections Non-periodic Var. Temperature 666
Bernaul, Hourly corrections Periodic Var. Temperature 606-608
Bessel, Plantamour's Hypisometric Tables 410
Boiling water, Temperatures aud corresponding Barometric pressures, English measures 444
" " same, Moritz, Metrical measures 442
" "، same, Regnault, Metrical measures 438
Bolivian Fect, into English Feet 496
". Varas, into Metres 496
Bombay, Hourly corrections Periodic Var. 'Temperature 599, 602
Boothia Felix, Hourly corrections Periodic Var. Temperature 588
Bossekop, Hourly corrections Periodic Var. Temperature 645
Brussels, Hourly corrections Periodic Var. Temperature 621, 622
C.
Calcutta, Hourly corrections Periodic Var. 'Temperature 602
Cape of Good Hope, Hourly corrections Periodic Var. Temperature 649
Capillary action, correction for English Barometers 337
" " " " Metrical Barometers, Delcros 338
" " depression of barometric column, Baily 340
" " ." " $"$ Delcros 340
" " " " " Geller 339
" ، " ، Ponillet 339
Carlsrulie, Monthly corrections Non-periodic Var. Temperature 664
Castilian Varas, into Metres 494
PAGE
Catharinenburg, Hourly corrections Periodic Var. Temperature 636, 637
Centigrade degrees, expressed in equal number of degrees of Fahrenbeit 35
 34
" Scale, compared with Reaumur's and Fahrenheit's, full degrees from $+100^{\circ}$ to $+50^{\circ}$ 10
" " converted into Fahrenheit, tenths of degrees from $+50^{\circ}$ to -54°, and from $+100^{\circ}$ to $+89^{\circ}$ 25
" " " " Reaumur, tenths of degrees from $+40^{\circ}$ to -40° 28
Centimetres (rain measure), from English Inches 201
" " " " French Inches and Lines 202
" " " into English inches 200
" " ، " French Inches and Lines 200
Christiania, Hourly corrections Periodic Var. Temperature 641
Cocfficients of Hourly Corrections, Berghaus 418
Column of air, Height corresponding to a Millimetre, in Metres 427
" ". same at different Temperatures and Elevations 429
" " equivalents of Paris Lines, in French Feet 427
" ، " " tenths of an inch, in English Feet 427
$66 \quad 66$ same at different Temperatures and Elevations 430
Comparison of Barometrical differences 257-261
.. "، different Barometric Scales 209-252
". " measures of length used in measuring altitudes 449-500
" " most important measures of Geographical Distances 501-532
" " " " 6 Geographical Surfaces 533-564
" " . " " Length (units) 499
" " " " " Surface (units) 564
" "Quantities of Rain-water, different measures 200-203
" " Standards of Lengtl of England, France, Belginm, Prussia, Russia. India, and Australia 709
Constants of Greenwich observations, Iygrometric Tables based on them 137-182
" " Laplace, Hypsometrical Tables based on them 347-409
" ". Regnault, Hygrometric Tables based on them 44-129
Copenhagen, Monthly eorrections Non-priodic Var. Temperature 669
Correction of Barometrical observations for capillary action 335-340
" Horary, coefficients of Berghaus 418
"، "، old French Measures 419
" hypsometric, for curvature and refraction 434
" of Time from Solar observation, to obtain True time of Clocks 697
Corrections, for Half-sums of Temperatures at Geneva and St, Bernard, Plan- tamour 420
" Ilorary, to be applied to obtain True mean Barometric Pressure, Greenwich 432
" to be applied to obtain True mean Barometric Pressure, Philadelphia 431
Corrections, Hourly Periodic Var. Temperature 579-650
" ." ." " Force of Vapor and Relative ILumidity 683, 684
، Monthly, for Non-periodic Var. Temperature $654-679$
Cubic foot of air, Weight of Vapor in English measures 130
Greenwich Observations 179
" " Dry and Saturated air compared in weight 180
" metre of air, Weight of Vapor in French measures 74
-. ." \quad. 6 Grammes, Kaemtz 192
Curvature and Refiaction, Hypsometric correction 192 434

D.

Day, length of, at.different Latitudes 711
Degrees, Centigrade, expressed in equal number of degrees of Fahrenheit 3.5
34
" ". scale, compared with Fahrenheit and Reammur 11
" ." ." converted into Fahrenheit 2.9
Reammor 25
" Fahrenheit, expressed in equal number of degrees of Centigrade 34
" " " " $"$. 34
" " scale, compared with Centigrade and Reammur r
" ". " converted into Centigrade 13
" 6 . 6 Reaumur 18
". from Time 695
" into Time 693
.- length of, on Meridian and Parallel 695
.- Reaumur, expressed in equal number of digrees of C'rntigrade 35

- " " " " 6 Fahrenheit 35
" " scale, comipared with Centigrade and Fahrenheit 10
". ." . converted into C'entigrade 32
" . " 6 Fahrenheit 30
" Squares of 703
Delcros, correction for capillary action, metrical 338
" depression from capillary action 340
" Hypsometric Tables 349
" normal height of meniscus, in Millimetres 337
". Reduction of Metrical Barometer to freezing point 281
Depression of Barometric colmmn, capillary, Baily 340
" " " " " Deleros 340
" " " " " Gehler 339
" " " " " Pouillet 339
" " " " correction, English Barometers 337
" " " Metrical Barometers 338
Dew point, factors for deducing weight of Vapor 179
PAGE
Dew point, from Psychrometer readings 178, 182
"، Guyot's Tables, English measures 111" Haeghens's Tables for reducing Relative Humidity, Frenchmeasures66
Dippe's modified Gauss's Tables, Hypsometric 392
Tables, Hypsometric 396
Distances, comparison of measures of Geographical 501-532
Drontheim, Hourly corrections Periodic Viar. Temperature 642
Dry air, cubic foot, compared with Saturated air 180
Dublin, Hourly corrections Periodic Var. Temperature 635
E.
Elastic force of Aqueous Vapor, English measures 78
" "، ، ، French measures 46
" " " " Greenwich constants 137
" " Vapor, difference in Values 190
" " " English Inches, Royal Soc. Report 189
" " " in millimetres, by August 186
" " ، 6 " Kaemtz 188
" " " " " Magnus 188
England, standards of Length compared with those of other nations 709
English Baroneter and Metrical Barometers compared 215
" . \quad old Frenclı Barometers compared 219
". ${ }^{\text {. }}$ brass scale, to freezing point 269
" " capillary correction 337
" "، from Metrical 225
"، ، " old French 238
"، " glass or wooden scale, to freezing point 276
". Fathoms from Metres 500
". \quad into Metres 500
". Feet, equivalents of, tenths of an inch in Barometer 427
". ." equivalents of, tenths of an inch in Barometer at different Temperatures and Elevations 430
" " from Bolivian Feet 496
" ، " Feet of Viema 489
.. ." ". French Toises 461
". ." " Klatter of Vienna 486
" ." ". Metres 466
.. ". " Mexican Feet 495
". " " Paris Feet 477 •
.. "، " Rhine Feet 492
". ". into Metres 481
" " " Paris Feet 482
" " " Rline Feet 483
" " " Feet of Vienna 484page
English Hypsometric Tables, Guyot 371
". Inches, from Centimetres (rain measure) 200
" " " French Inches and Lines (rain measure) 203
" ". " French or Paris Lines 260
" ." " Millimetres 258
" \quad into Centimetres (rain measure) 201
" " " French Inches and Lines (rain measure) 201
" ." ". French or P'aris Lines 257
.. .. ." Millimetres 2.5
." Measures for Thermonetrical measurement of heights 444
". Statute Miles into Kilometres 526
" " " Austrian Miles,
" 6 ." Prussian Miles,
" ". ". German Miles,
" " ، Nautical Leagues,
" ، "، French Leagues,
" " " Geographical Miles,
" ". " Russian Wersts 526
". Square Statute Miles into Square Kilometres . . . 258
" ". " " Austrian Square Miles,
" " " " Prussian Square Miles,
" " " " German Square Miles,
" " " ${ }^{6}$ Nautical Square Leagnes,
" " " " French Square Leagues,
" " " " Geographicai Square Miles,
" " " " Russian Square Wersts . . . 558
" Yards, into French Toises 480
" " ، Metres 450
F.
Factor $\frac{100}{\mathbf{F}}$ for computing relative Humidity, Regnault's constants, English measures 126
" " " " Regnault's constants, French measures 72
Factors for computing force of vapor, from Psychrometrical observations, Apjohn's formula 176
" deducing the Weight of Vapor from the Indications of Dew Point Instruments 179
" finding Temperature of the Dew Point from the Readings of the Psychrometer 178
Fahrenheit degrees, expressed in equal number of degrees Centigrade 34
. 6 6 6 6 6 of Reanmur 34" scale, compared with Centigrade and Reaummr, full degrees (from$+212^{\circ}$ to -39°)8Fahrenheit scale, converted into Centigrade, tenths of degrees (from $+122^{\circ}$to -76 6°)13
" " converted into Reaumur, tenths of degrees (from $+122^{\circ}$ to -38°) 18
Fathoms, English, from Metres 500
.. .. into Metres 500
Feet and inches, from Decimals of a Toise 497
.- Bavarian, into Metres 493
.- Bolivian, into English Feet 496
.. 6. ". Metres 496
-. English, equisalents of tenths of an inch in Barometer 427
". " equivalents of tenths of an inch in Barometer at different Tem- peratures and Elevations 430
" ${ }^{\text {. }}$ from Bolivian Feet $4!6$
". " " French Toises 461
"، "، 6 Metres 466
" ". " Mexican Feet 49.
" " 6 Paris Feet 477
، " ، Rhine Feet 492
"، 6 V Vienna Feet 489
". " ${ }^{6}$ Vienna Klafter 486

6. Mexican, into English Feet 49.
6 's " Metres 495
" old Spamish, into Metres 494
". Paris, from English Feet 482
" " " French Toises 4619
6 " " Metres $46: 3$
" " " Rline Feet 492
" "، " Vienna Feet 485
7. "6 "، Vienna Klafter 481;
" Prussian or Rhine, from Metres 474
" Rhenish, from French Toises 461
" Rhine, from English Feet $48: 3$
" " " Paris Feet. 48.
" " " Vienna Feet 490
" " into English Feet 492
"، ، " French Toises 491
" ، " Metres 491
" " " Paris Feet 492
" ، " Vienna Feet 493
"، Vienna, from English Feet 484
" ، " Paris Feet $47!$
". " " Rhine Feet 493
" .. " Metres 474
" ." into English Feet 489
Feet, Vienna, into Metres 4871AGE
.. " " Paris Fect 488
" ، "6 Rhine Feet 490
Foot, Decimals of, into Inches and Decimals 498
" " from Inches and Duodecimal Lines 498
" $6 \quad$ into Inches and Duodecimal Lines 498
Force of Aqueous Vapor, Elastic, Greenwich constants 137
" " " " Regnault's constants, English measures 78
" " ، " " " French measures 46
" " " inches, Royal Soc. Report 189
" Vapor, Elastic, in Millimetres, August 186
" " ، " Kaemtz 188
" 6 6 " Magnus 188
" " " different values of different authorities 190
" " and Relative Itumidity corresponding to the degrees ofSaussure's Ilair Hygrometer, Gay Lassac193
Force of Vapor, Greenwich, Glaisher 683
France, Standards of Length compared with other nations 769
Franktort Arsenal, Pa., Hourly corrections Periodic Var. Temperature 581, 582
Freezing Point, English Barometer, brass scale 269
" " " " glass or wooden scale 276
". Metrical Barometer 287
" old French Barometer 330
French Barometer, reduction to Freezing point 330
" old, compared with English 238
"، "6 " Metrical 243
" Russian 252
Feet, equivatents of Paris Lines, in Barometer 427
" Inches and Lines (rain measure), from Centimetres 200
" " " " English Inches 201
" " " into Centimetres 20:2
" " " English Inches 203
Leagaes into Kilometres 520
" " Anstrian Miles,
" " Prussian Miles,
" " German Miles,
" " Nantical Miles,
" " Geographical Miles," "6 English Statute Miles," " Russian Wersts520
Lines, into English Inches 260
" "، Millimetres 260
measures, old, correction for hour of day 419
" " Dippe's Hypsometric Tables 398
" " " Gauss's Mypsometric Tobles 396
PAGE
French Square Leagues into Square Kilometres 552" ." ". ". Austrian Square Miles,

"،	"	"	"	Prussian Square Miles,		
"	"	"	" German Square Miles,			
"	"	"	"	Nautical Square Leagues,		
"	"	"	"	Geographical Square Miles,		
"	"	"	"	English Square Statute Miles,		
"	"	"	"	Russian Square Wersts	. . . 552	

". Toises, from English Yards 480
"، \quad Rhine Feet 491
" " into Metres 460
" " " English Feet 461
" " " Paris Feet 460
" " " Rhine Feet 461
G.
Gauss's Hypsometric Tables, modified by Dippe 396
Gay Lussac, Force of Vapor and Relative Humidity corresponding to degrees of Saussure's Hygrometer 193
Gehler's Worterbuch, capillary depression, Barometric column 339
Geneva, correction for half-sums of Temperature, Geneva, St. Bernard 420
" Hourly corrections Periodic Var. Temperature 613
" Monthly corrections Non-periodic Var. Temperature 658
Geographical Distances, Comparison of measures 501-532
"، measures, comparison of 447-565
" Miles into Kilometres 523
" 6 Austrian Miles," " Prussian Miles," " German Miles," "، Nautical Leagues," " French Leagues," ، English Statute Miles," " Russian Wersts 523
" Square Miles into Siquare Kilometres 555" " " Austriiu Square Miles," " " Prussian Square Miles," " " German Square Miles," " " Nautical Square Leagues," "، " French Square Leagues," " " English Square Statute Miles," " " Russian Square Wersts . . . 555
" Surfaces, Comparison of' measures 533-564
German Miles mto Kilometres 514" Austrian Miles,
German Miles into Prussian Miles," Nautical Leagues," French Leagues," Geographical Miles," English Statute Miles,
" Russian Wersts 514
Square Miles into Square Kilometres j46
" Austrian Square Miles,
" Prussian Square Miles,
" Nautical Square Leagues,
" French Square Leagues,
" Geographical Square Miles,
" English Square Statute Miles,
" Russian Square Wersts 546
Glaisher, Force of Vapor, Greenwich 683
" Psychrometer Tables 140
" Relative Humidity, Greenwich 684
Godthaab, Monthly corrections Non-periodic Var. Temperature 679
Gottingen, Hourly corrections Periodic Var. Temperature 628
Greenwich, Force of Vapor, Glaisher 683
" Relative Humidity, Glaisher 684
" Hourly correction to mean Barometric Pressure 432
" " corrections Periodic Var. Temperature $624-626$
" " " " " Force of Vapor and Relative
Humidity 683, 684
" Hygrometric Constants 137-182
Guyot's Hypsometric Tables 371
" Psychrometric Tables, English measures 82
" Relative Humidity from dew point observations 111
II.
Haeghens, Psychrometrical Tables, French measures 48
" Relative Humidity and Force of Vapor from Saussure's Hygro- meter 194
" Reduction to freezing point, Metrical Barometer 287
Halle, Hourly correction Periodic Var. Temperature 627
Hecla Cove, Hourly correction Periodic Var. Temperature 589
Helsingfors, Hourly correction Periodic Var. Temperature 638, 640
Hobarton, Hourly correction Periodic Var. Temperature 650
Hourly corrections, Berghaus 418
" " for mean Barometric Pressure, Greenwich 432
" " " " " Philadel!hia 431
" "، old French measures 419
" " Periodic Var. Temperature 579-650
Page
Humidity, Relative, and Force of Vapor, Haeghens 194
Katemtz 195
" ، Factor ${ }_{F}^{100}$, English measures 126
، "، "، French measures 72
" " from Dew point Instruments 111
" " " Saussure's Hygrometer, Gay Lussac 193
". " " ، " Hateghens 194
". ." Greenwich, Glaisher 140
Hygrometrical Tables $37-205$
". ." based on Greenwich observations 137
" " constants of Laplace 349
"، "، 6 Regnault 46
Hypsometric correction for curvature and refraction 434
" Tables, Baily (English measures) 407
" " Delcros 349
" "، Dippe 398
"، ". " modified Ganss's 392
، ، Guyot 371
" " Plantamour's, Besse! 410
I.
Inches and Duodecimal Lines into Decimals of a Foot 498
". English, from Centimetres 200
"، "، French Inches and Lines 203
، .، "، "t or Paris Lines 260
" ." " Millimetres 258
"، .، moto Centimetres 201
، ". "، French Inches and Lines 201
" ، ، " or Paris Lines 257
" ، " Millimetres 2.7
" French, from Centimetres (rain measures) 200
" " " English Inches (rain measures) 201
" into Centimetres (rain measures) 202
" English Inches (rain measures) 203
India, standard of Length compared with other nations 709
Insolation, length of, for any given Latitude 711
K.
Kaemtz, Elastic Force of Vapor, in Millimetres 188
". Reduction of old French Barometer to freezing point 330
" Relative Hmmidity, corresponding to degrees of Saussure's Hygro- meter 195
" Weight of Vapor, in Grammes in Cubic Metre of Air 192
Kara, Straits of, Hourly correction Periodic Var. Temperature 643
Kilometres into Austrian Miles 505
" " Prussian Miles, " " German Miles,
"6 " Nautieal Leagues, " " French Leagues,
" " Geographical Miles,
" " English Statute Miles, " " Russian Wersts 505
" Square, into Austrian Square Miles 537
"، ". " Prussian Square Miles," " " German Square Miles," " " Nautical Square Leagroes," " " French Square Leagues," " " Geographical Sipuare Miles," " " English Square Statute Miles,"6 " " Russian Square Wersts 537
Kinfams Castle, Monthly correction Non-periorlic Viar. Temperature (676
Klafter of Viemna, into English Feet 486
" " ، Metres 485
" " " Paris Feet 486
Kremsmunster, Hourly correction Periodic Var. Temperature 615
L.
Laplace, constants of Hypsometric Tables 349-407
Latitude, length of Insolation for any given 711
Latitudes, length of a degree at different 698
" of Prineipal Observatories 689
" surfaces at different 703
Leagues, French, into Kilometres 520
" ." " Austrian Miles,
" ." " Prussian Miles," 6 " German Miles," ${ }^{6}$ " Nantieal Leagnes," " " Geographical Miles,". ". ". English Statute Miles,
، " ، Russian Wersts 520

* Nantical, into Kilometres 517
"، Austrian Miles,
" ، $"$ " Prussian Miles,
" " " German Miles,
" "، " French Leagues,
" " " Geographical Miles,
" ". "، English Statute Miles,
" ، "، Russian Wersts 517

M.

Madras, Mourly corrections Periodic Var. Temperature . . 597, 601
${ }^{6}$ Monthly corrections Non-periodic Var. Temperature . © 4
Magnus, Elastic Force of Vapor in Millimetres . . . 188
Makerstoun, Hourly correetions, Periodic Yar. Temperature . 635
Matoschkin Schar, Hourly corrections, Periodic Var. Temperature . . 644
Measures of Geographical Distances 501-531
"، ، " comparison of units 532
". "، ${ }^{6}$ Surfaces 533-563
" " Length, Comparison of units 499
" " " used in measuring Altitudes, Comparison of 449-500
" " Surface, Comparison of units 564
Melville Island, Hourly corrections Periodic Var. Temperature 589
Meniscus, normal Height of, in Millimetres 337
Meridian, Lengths of Degree of 695
Metres, from Bavarian Feet 493
". " Bolivian Feet 496
". " ، Varas 496
." " English Fathoms 500
" .. "، Feet 181
" " " Yards 480
" " Feet of Vienna 487
" " French Toises 460
، "، Klafter of Viemna 48.5
" " Paris Feet 476
" " Mexican Feet 495
" "، " Varas $4!5$
" ${ }^{6}$ old Spanish or Castillian Varas $4!4$
". " ، " Feet 494
". ، Rhine Feet 491
." into English Fathoms 500
" ، 6 Feet 4196
، "، Feet of Vienna 474
" " French Toises 462
" "، Paris Feet 463
" Rhine or Prussian Feet 474
" Height of Column of Air corresponding to Millimetre in Barometer 427
" same at different Temperatures and Elevations $4 \because 9$
Metrical Barometer, Capillary corrections, Deleros 338
" ". from English 215
" "، "، old French 243
" " " Russian 247
" " into English 225
" ، " old French 231
" " reduction to Freezing point, Delcros 281
" " " " Haeghens 287
" Measures, Deleros Hypsometrical Tables 349
" " Plantamour's Hypsometrical Tables 410" " Regnanlt's Barometric pressures, corresponding to Tem-peratures of boiling water, Moritz442
same, English measures 444
Mexican Feet into English Feet 495
" 6 " Metres 495
". Varas into Metres 495
Milan, Monthly corrections Non-periodic Var. Temperature . 6506, 657 Miles, Austrian, into Kilometres 508
" ، " Prussian Miles,
" "6 " German Miles,
" ، " Nautical Leagues,
" " " French Leagues,
" ، " Geographical Miles,
" ، ، Engli-h Statute Miles,
" " " Russian Wersts 508
" Prussian, into Kilometres 511
". ." ." Anstrian Miles,
-" 6 .. German Miles,
" " " Nautical Leagues,
" " ." French Leagues,
.. ". ". Geographical Miles,
" " " English Statute Miles,
.، ". " Rusition Wersts 511
.. German, into Kilometres 514
". ." ". Austrian Miles,
." ." " Prussitu Miles,
" " " Nantical Leagues,
" " " French Leagues,
" " . " Geographical Miles,
" " " English Statute Miles,
" " ". Rusian Wersts 514
" Greographical, into Kilometres 523
.. .. ". Austrism Miles,
." Prussian Miles,
.. ". \quad Cerman Miles,
" " $"$ Nautical Leagues,
.. ،. ." French Leagues,
.. .. ." English Statute Miles,
.. " ، Russian Wersts 523
" English Statute, into Kilometres 2 ;
" Anstrian Miles,
" ، ." "، Prussian Miles,
.. German Miles.
.. " . " Niatical Leagues,
.." French Leagues,
." " " " Geographical Miles,
.. " ، " Russian Wersts 529
". Anstrian Sipuare, into Square Kilometres 540
.. ، .. " Prussian Square Miles.

" Prusian Square, into Square Kilometres i43" " Anstrian Square Miles,
" " .. ". German Square Miles,
" 6 "، " Nautical Square Leagues,
" " " " French Square Leagues,
" " " " Geographical Square Miles,
" " " " English Square Statute Miles,
" 6 " " Russian Square Wersts 543
" German Square, into Square Kilometres i 44

" Geographical Square, into Square Kilometres ins
" " " " Austrian Square Miles,
" ، " " Prussian Square Miles,
" " " " German Square Miles,
". "، " Nautical Square Leagues,
" " " " French Square Leagues,

" English Square Statute, into Square Kilometres 55s
" ". " " . A Austrian Square Miles,

." " Prussian Square Miles,

." ." ". " German Square Miles,

" .. " .. " Nautical Square Leagues,

.. .. ". " " French Square Leagues.

.. ". " " Geographical Square Miles, i.s
Millimetre, Height of Colamn of Air corresponding to a 127
" same at different Temperatures and Elevations ! 9
Millimetres, Elastic force of Vapor expressed in, by August
". " Kaemitz 1 1s
" 6 " 6 Magnus 1 s
" from English inches
(، " French or Paris Lines $\therefore 150$
Page
Millimetres, from Russian Half-Lanes 261
" into English Inches 258
" " French or Paris Lines 259
" normal Height of Memiscus, Deleros 337
Montreal, Hourly corrections Periodic Var. Temperature 586
Moritz, Tables for Barometric pressures correspouding to Temperatures of Boiling water 442
" same, in English measures 444
Mithithausen, Hourly corrections Periolic Var. Temperature 623
Munich, Hourly corrections Periodic Var. 'Temperature 616, 617
N.
Nantical Leagues into Kilometres 517
" " ." Austrian Miles,

" " " ${ }^{6}$ Prussian Miles,

" " " German Miles,
" " " Frenclı Leagues, " " " Geographical Miles,
" " " English Statute Miles,

- "، Russian Wersts 517
.. Miles into Kilometres 523" ". .. Austrian Miles,
" ". " Prussian Miles,
." .. ." German Miles,
" .. " Nautical Leagues,
". ." ". French Leagues,
" .. ". English Statute Miles,
". ". " Russian Wersts 523
-. Square Leagues into Square Kilometres 549
" " ، " Austriau Square Miles, "، " Prussian Square Miles, ." .. " " German Square Miles, ." .. " " French Square Leagues, " ." ". " Geographical Square Miles, " .. "6 " English Square Statute Miles,
*.. \quad. ${ }^{6}$ Russian Square Wersts 549
" ." Miles into Square Kilometres 555
" " " " Austrian Square Miles,.. ." "، " Prussian Square Miles,". " " " German Square Miles,.. .. ". " French Square Leagues,." ." ." " Nantical Square Leagues,." .. ". " English Square Statute Miles," " Russian Square Wersts555
Non-periodic Variations of Temperature, Monthly Corrections

Nertchinsk, Hourly corrections Periodic Var. Temperature . . 604, 605

O.

Observatories, Positions of Principal $68!$

P.

Padua, Hourly corrections Periodic Var. Temperature 612
Palermo, Monthly corrections Non-periodic Var. "1emperature 65.5
Parallel, length of degree of 698
Paris Feet from English Feet 482
". " . French Toises 460
"، " " Metres 463
" " ، Rhine Feet 492
، ، .، Vienna Feet 485
، ،6 6 Viemna Klafter 4×1
" Lines from Russian Half-Lines 261
" " into English Inches 260
" " ، Millimetres 260
" Monthly corrections Non-periodic Var. Temperature (i71
Peking, Hourly corrections Periodic Var. Temperature 603, 6,04
Periodic Variations of 'Temperature, Howrly Corrections 579-650
" ، Force of Vapor and Relative Humidity, Hourly Cor-iections683, 684
Philadelphia, Hourly corrections Periodic Yar. 'Temperature 579, 580
Plantamour, Corrections for Half-sums of 'Cemperatures at Geneva and St. Bernard 420
Hypsometric Tables, Bessel 110
Plymonth, England, Hourly corrections Periodic Var. 'Temperature 619, 620
Pouillet, Depression of Barometric column due to terpillary action 339

- Weight of Vapor in Grammes in Cubic Metre of Air 192
Prague, Hourly corrections Periodic Var. 'Гemperature 617, 618
Pressure, Barometric, corresponding to 'Temperatures of Boiling water 438-445
Prussia, standards of Length compared with other nations 709
Prussian Miles into Kilometres 511

"	"	"	Austrian Miles		
"	"	"	German Miles,		
"	"	"	Nautical Leagues,		
"	"	"	French Leagues,		
"	"	"	Geographical Miles,		
"	"	.	English Statute Miles,		
"	"	"	Russian Wersts 511	

Prussian Square Miles into Square Kilometres, 543
.. .. ". .. " Anstrian Square Miles,
.. .. " ." "6 German Square Miles,
.. .. " ." " Nantical Square Leagues,
" " " . " " French Square Leagnes,
.. 6 Geographical Square Miles,
.. ." ، ، " English iquare Statute Miles,
.. .. ." ". " Rusian Square Wersts . . . 543
Psychrometer, Fators tor finding Dew point from readings, of 178-182
Psyehrometrical observations, Factors for deducing Force of Vapor, Apjohn 176
Tables, Glaisher, Greenwich constants 140
". $،$ Guyot, English measures 82
" " Hategens, Freuch measures 48
R.
Rain measure, Centimetres, from English Inches 201
". ." ". French Inclees and Lines 212
." ". \quad into English inches 200
.. " French Inches and Lines 200
.. ". English Inches, from Centimetres 200
.. .. ". ". French Inches and Lines 203
" .. " " into Centimetres 201
". .. ". " " French Inches and Lines 201
". . French Inches and Lines, from Centimetres 200
" ." " ." "، " English Inches 201
.، .. " " ${ }^{\text {. }}$ into Centimetres 202
" ." ". .6 " " English Inches 203
Ratisbon, Monthly corrections Non-periodic Variations of 'Temperature 661, 662
Reammur degrees, expresed in equal number of degrees of Centigrade 35
" ". " . " " Fahrenheit 35
." Scale, compared with Fahrenheit and Centigrade, full degrees from $+80^{\circ}$ to $+40^{\circ}$ 10
" " converted into Centigrade, tenths of degrees from $+40^{\circ}$ to -40° 32
6 " Falirenheit, tenths of degrees from $+40^{\circ}$ to -40°. 30
Reducing Barometer to Sea Level 426
Refraction and Curvature, Hypsometric correction 434
Regnault's Barometric Pressure, equivalent to 'Temperature of Boiling water 438
to Temperature of Boiling water English measure, Moritz 444
" " " " to Temperature of Boiling water Metrical measures, Moritz 442
،. Constants, Hygrometric Tables based on them 44-129
Reikiarik, Monthly correction Non-periodic Var. Temperaturepage
Relative Humidity, corresponding to degrees of Saussure's Hair Hygrometer 195
corresponding to degrees of Saussure's Hair Hygrometer, Gay Lussac 193
" " deduced from Indications of Saussure? Hair Hygrometer, Haeghens 194
 126 72
" $"$ from Dew point instruments 111
". Haeghens 66
Rhine Feet into English Feet 492
.. .. Feet of Vienna 493
.. .. French Feet 492
،. 6 .. Toises 491
". 6 Motres 491
Rio Taneiro, Homly corrections Periodic Var. Temperature 890, 591
Rome, Hourly corrections Perionlic Var. Temperature 611
Russia, standards of Length compared with other mations 709
Russian Barometer compared with Metrical 247

- old French 25:
.: Half-Lines converted into Millimetres 261
.. Paris Lines 261
Russian Wersts into Kilometres 529.. Anstrian Miles,.. Prussian Miles, German Miles,
.. Nantical Leagues,
.. French Leagues,.. Geographical Miles,
.. English Statute Miles 529
.- Square Wrats into Square Kilometres 261
.. "A Anstrian Square Miles... " Prussian Square Miles,
.. German Square Miles.
.. Nantical Spuare Leagues,
.. French Square Leagues,
.. Geographical Square Miles,
.. English Square Statute Miles 561

s.

Salem, Monthly corrections Non-periodic Viar. Temperature $1: 78$
Salzburg, Hourly corrections Periotic Var. Temperature 1116
S:lzuflen, Hourly corrections Periodic Var. 'Temperature 1330
page
Saturated Air, Cubic foot, compared with Dry Air 180
Saussure's Hygrometer, for deducing Relative Humidity from indications of, Haeghens. 194
" " Force of Vapor and Relative Humidity, correspond- ing to degrees of 193
" " Relative Humidity, corresponding to degree of, Kaemtz 195
Schwerin, Hourly corrections Periodic Var. Temperature 622
Sidereal Time, from parts of Equator in Are 694
" " into mean Solar Time 696
" ، " parts of Equator in Are 695
Sitka, Hourly corrections Periodic Var. Temperature 587
Solar observations, Correction of Time to obtain True Time of Clock 697
". Time, mean, into Sidereal Time 696
Spanish old or Castilian Varas, into Metres 494
.، \cdot Feet irto Metres 494
Square Austrian Miles, see Miles, or 540
". English Statute Miles, see Miles, or 558
". French Leagues, see Leagues, or 552
". Geographical Miles, see Miles, or 555
" German Miles, see Miles, or 546
". Nautical Leagnes, see Leagues, or 549
" Prissian Miles, see Miles, or 543
.. Russian Wersts, see Wersts, or 561
Square Statute Miles, English, into Square Kilometres 558
" Austrian Square Miles, .. ". ." " Prussian Square Miles, ". .. ." ". " German Square Miles,
". . ." " " Nantical Square Leagnes,
." ". " French Square Leagues,
.. "، ". " Geographical Square Miles, 558
Statute Miles, English, into Kilometres 526
.. " ". " Anstrian Miles,
." .. " " Prussian Miles, ."" German Miles,
" ، ". " French Leagues,
. " " " Geographical Miles,
.. .. ." ". Russian Wersts 526
Stettin. Hourly corrections, Periodic Var. Temperature 631
St. Bernard and Geneva, corrections for Half-sums of 'Temperatures, Planta- mour 420
St. Bernard, Hourly corrections Periodic Var. Temperature 614
St. Helena, Hourly corrections Periodic Var. Temperature 6.49
St. Petersburg, Hourly correction Periodic Var. Temperaturepage
Stuttgart, Monthly corrections Non-periodic Var. Temperature 663
Sun, correction of 'Time by observation of, to obtain True Time of Clock 697
Surfaces, comparison of measures of Geographical 534-563
units of measures 564
" Tables for computing Terrestrial 703
T.
Temperature, corrections for Half-sums of, at Geneva and St. Bernard,
Plantamour 420
" Hourly corrections Periodic Variations, Amherst 592

". Apenrade 632
.. Athabasca Lake 589
$\begin{array}{ll}\text {.. } & \text { Berm } \\ & \text { Bernanl }\end{array}$ 629
.. Bombay 599, 602
"، -. Bossekop 645

"
.. Brussels 621, 622
." Calcutta 602
.. Cape of Good Hope 649
" Catharinenburg 636, 637
" Clnristiania 641
.. Drontheim 642
.- Dublin 635
.. Frankfort Arsenal 581, 582
.. Geneva 613
.. Greenwich 624, 626
.. Göttingen 628
.. Halle 627
.. Hecla Cove 589
.. Helsingfors 638, 64"

- Hobarton - 650
". Kara, Straits of - 643
". Kremsmunster 615
" Leith 633, 634
، Madras -997, 601
.. Makerstoun -635
". Matoschkin Schar 644
" Melville Island 589
"، Montreal 586
". Miihlhausen 623
". Munich 616, 617
" Nertchinsk 604, 605
PAGE
Temperature, Hourly corrections Periodic Variations, Padua 612
". Peking 603, 60.4
" Philadelphia 579, 580
، Plymouth, England
17,
". Prague 617, 618
". Rio Janeiro 590, 591
.- Rome 611
.. Salzhurg 616
.. Salzuflen 630
". Schwerin 622
.. Sitka 587
.. Stettin 631
". St. Bernard 614
.. St. Helena 649
.- St. Petersburg 637, 639
.. Tiflis 603
.. Toronto 583-586
-. Trevandrum 595, 596
.. Uirecht 624
W:ahington 579
Monthly corrections Non-periotic Variations, Albany 677
Berlin 666-668
Carlsruhe 664, 665
.. Copenhagen 669
". Geneva 658, 659
.. Godthaab $67!$
-• Kinfanns Castle 676
.. London 674 . 675
.. Madras 6.54
-. Milan 656, 6.57
.. Palermo 6.5.)
.. Paris 671
.- Ratisbon 661, $66 \div$
.. Reikiavik 679
.. Salem 67 x
.- Stuttgart (663)
. Torneá 686. 677
". Vienna fo60, 1861
Zwanemburg 67き-(674
of Boiling Waler. Barometric Pressures corresponding to, Moritz, English measures 44
Barometric Pressures corresponding to, Moritz. Metrical measures 442
Barometric Pressures corresponding to, Regnault 438
Temperature of Dew point, from Psychrometrical readings 178-182page
" Non-periodic Variations, Monthly corrections 651-679
" Periodic Variations, Hourly corrections 579-650
Terrestrial Longitule in Arc, from Time 69.
" 6 .. into Time
" Surfaces, Tables for computing $70:$
Thermometric mesturement of Heights 435-445
Thermometrical Tables 8-3.9
Tiflis, Hourly correction Periodic Var. Temperature 603
Time correction of Solar observation to oltain True Time of clock 697
-. mean Solar, into Siderial Tine 696
". Silerial, from parts of Equator in Are 693
". .. into mean Solar Time 696
" ". " parts of Equator in Are 695
Toise, Decimals of, into Feet and Inches 497
" Frencli, from EnglishYards 480
". ، .. Rhine Feet 491
" .. ". Metres $46{ }^{2}$
" ، ." Paris Feet 47.5
". .. into English Feet 461
". " 6 Metres 460
". ." " Paris Feet 460
" " " Rhine Feet 461
Torneá, Monthly corrections Non-periodic Var. Temperature 676, 677
Toronto, Hourly corrections Periodic Var. Temperature 583-586
Trevandrum, Ilourly corrections Periodic Var. 'Temperature 595, 596
Tropic hours of daty Variation at Halle 425
True Time of clock correction for Solar observations 697
U.
Utrecht, Hourly corrections Periodic Var. Temperature 624
V.
Vapor, comparison of Mry and Saturated Air (Greenwich) 180
" Elastic force of, in French measures, Reguatult 46
" . " " Greenwich constants 137
" ". ". " in Millimetres, August 186
". ." .. ". ${ }^{\circ}$ Katemtz 188
" " ." " Magnus 188
" " ." " Cubic Foot of Saturated Air 130
" " " " " " " Greenwich constants 179
Force of, and Relative Ihmidity corresponding to degrees of Saussure'sHygrometer, Gay Lassac193
PAGE
Yapor, Force of, different values of different authorities 190
" " Erglish measures, Regnault 78
" " Greenwich, Glaisher, Hourly corrections Periodie Variations 683
" Inches, Royal Society 189
" Weight of, in Cubic Foot of air 130
" ". " Metre of air 74
" " Factor for deducing from indications of dew point instru- ments 179
in Grammes, in Cubic Metre of air, Kaemtz 192
" $،$ " 6 . \quad Pouillet 192
Vienna, Feet of, from English Feet 484
" ، ، Paris Feet 479
" ، .. Rhine Feet 493
" " into English Feet 489
، ، ، Metres 487
" " " Paris Feet 488
" ، " Rline Feet 490
" Klafter of, into English Feet 486
" " ، Metres 485
، ". ، Paris Feet 486
Vienna, Montlly corrections Non-periodic Var. Temperature 660, 661
Varas, Bolivian, into Mptres 496
" Mexican, into Metres. 495
" old Spanish or Castilian, into Metres 494
W.
Washington, Hourly corrections Periodic Var. Temperature 579
Water, Temperatures of Boiling, and corresponding Barometric Pressures, Moritz, English measures 444
and corresponding Barometric Pressures, Moritz, French measures 442
and corresponding Barometric Pressures, Regnault 438
Weight of Cubic Foot of Dry and Satmrated Air 180
، Vapor, Factors for deducing, from Dew point indications 179
، "، ، " " Greenwieh 179
، "، in Cubic Foot of Air, Regnault 130
.، ". . Metre of Air, Regnault 74
.. ،6 in Grammes in Cubic Metre of Air, Kiamtz 192
"، 6 Pouillet $1!2$
Wersts, Russian, into Kilometres 52!
" " " Austrian Miles,
." .. " Prussian Miles,
" ." "، German Miles,
ALPMABETICAL INDEX. 747
Wersts, Russian, into Nautical Leagues,
". .. " French Leagues,
.. ." "6 English Statute Miles 52!)
.. .. Square, into Square Kilometres 561
.. ، ، ، Prussian Square Miles,
" 6 " " German Square Miles,
. ، ، ". English Square Statute Mile 561
Y.
Yards, English, into French 'Toises 480
" " ، Metres 480
Z.
Zwanenburg, Monthly corrections Non-periodic Var. Temperature 672-674

[^0]: A

[^1]: * Etudes sur l'Hygrométrie, par M. V. Regnault. Annales de Chimie et de Physique, $3^{\text {me }}$ Série, Tom XV., 1845.

[^2]: * While .his table was moing through the press, a similar one, prepared by Prof. J. H. Coffin for his private use, was published by the Smithsonian Institution, in order to meet an urgent demand from many quarters. Being based on the same formula, it gives the same results, except, perhaps, in degrees below 14° Fahrenheit, where the tables show slight discrepancies. These mimportant differences arise from the fact that Prof. Coffin's table was computed from Regnault's tensions, as given in the first edition of this collection, while the anthor's table is based on the table of tensions as given in this second edition, in which the valnes below 14° Fahrenheit have been somewhat modified, for reasons given above. The following table gives also the relative humidity with one more decimat, which makes the interpolations more easy ; and a column of differences for finding the values for fractions of t^{\prime}. A table for reducing the results to another barometric height is added at the end of the table.

[^3]: Mean Horizontal Difference of Force of Fapor for each $0^{\circ} .1=0.0013$.

[^4]: In this table each measure named at the head of its vertical column, occurs once as unit, and all the numbers, on the same horizontal line, express the equivalents of that unit in the other measures. The smaller figures, below the larger ones, are the logarithms of the same.

[^5]: The mantera withum sign must be added : those with the sign - must be subracted.

[^6]: The numbers without sign must be subtracted ; those with the sign - must be added.

